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ABSTRACT

A numerical model to predict train induced vibrations is presented. The dy-
namic computation considers mutual interactions in vehicle/track coupled system
by means of a finite and discrete elements method. The vehicle is modeled by 7
bi-dimensional rigid elements representing: the body, the two boogies and the four
wheels. The railway is discretized as finite Timoshenko beam elements. Axial defor-
mation is assumed insignificant. The substructure is made-up of: rail-pads, sleepers,
ballast, and background. Rail-pads are modeled as spring/damper couples without
mass and sleepers are modeled as rigid elements. The rail-sleeper contact is assumed
extended to a connection-area, rather than a single point assumption. To model this
area many spring/damper couples are disposed along the length of sleepers. The bal-
last is modeled as blocks of mass made-up of rigid elements, connected to sleeper by
spring/damper couples. To allow the transmission of vibrations in longitudinal direc-
tion too, spring/damper couples connect ballast elements horizontally. The dynamic
interaction between the wheel-sets and the rail is accomplished by using the non-linear
Hertzian model with hysteresis damping. The rail defects and the case of out-of-round
wheels are considered too.

A modal analysis of supporting structure is done to validate the substructure model
comparing it to experimental data. Comparisons between numerical results of our
model, experimental data and numerical results of others literature models are done
on contact-force, rail accelerations and sleepers accelerations to validate the coupled
vehicle/track system. Moreover a modal analysis of the coupled vehicle/track system
is done to analyse the relationship between resonance frequencies, train velocities and
ballast displacements. A sensitivity analysis is done to evaluate the variables more af-
fecting the maintenance costs. The parameters more conditioning the ballast mainte-
nance costs are the ballast modulus and the train mass. The effects of train velocity on
the ballast displacements are analysed in relationship with substructure properties.

A new formulation to evaluate the railway toll connected to ballast wear is intro-
duced. A new interpretation of the critical velocity in the range 100 − 300 km h−1 is
proposed.

Keywords: critical speed, railway toll, contact-force, vehicle/track, sensitivity analysis, bal-
last settlement, receptance.





RÉSUMÉ

Ces dernières années les états membres de la communauté européenne ont entrepris
une campagne dont l’objectif est le développement du réseau ferroviaire européen. Les
plus grands changements induis par cette campagne sont la libéralisation du marché
du trafic ferroviaire, l’interopérabilité des infrastructures et la création d’un réseau de
transport transeuropéen (RTE-T). Selon la classification européenne tous les trains qui
dépassent la vitesse de 250 km h−1 sont considérés “à grande vitesse”. Durant les cin-
quante dernières années le développement technologique du train et des infrastruc-
tures ferroviaires ainsi que la rapide augmentation des vitesses en ligne ont provoqué
une forte augmentation du besoin d’outils numériques pour la conception des infras-
tructures et des véhicules.

Les objectifs principaux de nos travaux sont de deux ordres. Le premier est de con-
tribuer à faire progresser les méthodes numériques, en développant un outil rapide
et simple, capable de simuler les principaux comportements physiques. Le second est
d’étudier, de comprendre et de décrire deux phénomènes particuliers : la vitesse cri-
tique et le tassement du ballast.

La thèse est composée de deux parties. Dans la première partie on montre le
modèle numérique adopté pour simuler le système véhicule/infrastructure. Les pre-
miers chapitres sont dédiés, chacun, à la modélisation d’un composant du système
véhicule/infrastructure : le véhicule, le rail, les attaches, les traverses et le ballast.
Chaque chapitre se présente selon le schéma suivant. Au début on présente l’état de
l’art des modèles utilisés pour décrire le composant introduit. Ensuite on présente les
équations du mouvement pour chaque corps assemblés sous forme matricielle. Enfin
on discute le choix des paramètres physiques adoptés. Un chapitre est dédié à la mod-
élisation des défauts des roues et du rail. Enfin, le dernier chapitre de la première partie
propose deux algorithmes finalisés pour résoudre les équations du mouvement.

Le véhicule est modélisé par 7 éléments rigides bi-dimensionnels représentant : La
caisse, les deux bogies, et les quatre roues. La Figure 1 représente un schéma du modèle
du véhicule.
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Figure 1 – Modèle véhicule.

Le rail est discrétisé par des éléments finis de type Timoshenko pour ternir comte
des effets du cisaillement ; la déformation axiale est considérée négligeable. Des élé-
ments à deux et à trois nœuds ont était testés numériquement en comparant les modes
de vibrations avec des résultats analytiques.

Les attaches sont modélisées par des couples ressort/amortisseur sans masse et les
traverses sont modélisées par des éléments rigides avec masse. À la différence des mod-
èles présents dans la littérature, ces fixations rail/traverse sont modélisées par des con-
tacts surfacique au lieu de contacts ponctuels. En effets, cette liaison est bien plus proche
de la réalité, en permettant des configurations du rail déformé très différentes de celles
du cas d’une liaison ponctuelle (Figure 2). Le ballast est modélisé par des blocs rigides
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Figure 2 – Schéma de la déformation du rail dans le cas d’une liaison rail/attache ponctuel et le cas
d’une liaison répandue sur un surface de contact.

massiques connectés aux traverses par des couples ressort/amortisseur. Les coefficients
de rigidité et d’amortissement du ballast ont était évalués en considérant la partie de
volume intéressée par les contraintes transmises par les traverses (Figure 3(a)). En effet



on peut prévoir, avec une bonne approximation, que les contraintes se propagent dans
le milieux du ballast selon un volume trapézoïdale dont l’angle d’incidence respecte
le rapport de Poisson [82]. Des couples ressort/amortisseur sont disposés horizontale-

(a)

(b)

Figure 3 – L’infrastructure : (a) distribution simplifiée des contraintes dans le ballast [82]
(b) représentation du modèle.

ment pour permettre aussi la transmission longitudinale des vibrations. La Figure 3(b)
montre une représentation du modèle de l’infrastructure. La masse des blocs du bal-
last a était évalué selon le même principe en considérant un volume théorique vibrant
(Figure 3(b)). Le modèle du véhicule et de l’infrastructure sont couplés par le contact

Figure 4 – Volume théorique vibrant du ballast.



roue/rail. La force de contact est modélisée par la théorie non linaire de Hertz avec un
amortisseur à hystérésis.

Pour tenir compte des irrégularités de la surface de contact du rail et des
roues, causés par l’usure due au frottement présent à l’interface, des “fonctions
défauts” sont implémenté dans le modèle. Trois modèles différents sont utilisés
selon les cas étudiés. Le premier est celui indiqué par la norme EN ISO 3095 :
2004 standard. L’Organisation International pour la Standardisation reporte le spec-
tre des fréquences des irrégularités du rail. En partant du spectre des fréquences le
profil du rail est évalué en 1/3 des bandes d’octave en discrétisant chaque bande par
50 longueurs d’ondes. Le second modèle, utilisé par l’Association Ferroviaire Améri-
cain AAR (AssociationofAmericanRailways), permet de simuler le vieillissement de
l’infrastructure en variant le degré d’intensité des irrégularités. Le troisième modèle
consiste à construire une fonction de défaut équivalente appliqué au rail pour simuler
la variation de forme du profil de roues due aux freinages brusques.

Les innovations fondamentales introduites dans cette première partie de la thèse
résident dans le modèle de liaison entre les attaches et le rail, et dans le nouvel algo-
rithme proposé pour résoudre la non linéarité du problème. En effet la distance entre
deux traverses varie entre 60 et 70 cm ; la longueur d’une attache, mesurée dans la di-
rection du rail, varie entre 17 et 26 cm. Si on compare ces deux longueurs entre elles,
on peut constater que la modélisation de cette liaison avec un point de contact se révèle
excessive. L’étude des fréquences naturelles de l’infrastructure, présentée dans la deux-
ième partie de cette thèse, révèle l’importance de cette hypothèse en montrant que les
amplitudes de la première fréquence naturelle, déterminées dans le cas du modèle de
liaison ponctuelle, amènent des importants erreurs d’estimation. En effet dans le cas
d’excitation du rail à mi-portée (entre deux traverses) l’amplitude est surestimée de
400% ; et dans le cas d’excitation du rail en correspondance d’une traverse l’amplitude
est sous-estimée de 150% (Figures 5 et 6).

La deuxième innovation consiste dans l’algorithme de résolution proposé pour ré-
soudre les équations du mouvement. Le problème consiste à résoudre les deux sys-
tèmes des équations : un pour le véhicule et l’autre pour l’infrastructure. Ces deux
systèmes d’équations sont couplés par les forces de contact roue/rail. En effet la force
de contact est à la fois dépendante des déplacements des roues et des nœuds du rail.
Le problème est non linéaire à cause du modèle Hertzien utilisé pour évaluer la force
de contact. La méthode du point fixe a été utilisée pour coupler les deux systèmes entre
eux. Pour chaque pas de temps les itérations de la méthode du point fixe consistent à
fixer les déplacements du véhicule et à résoudre le système associé à l’infrastructure
en calculant la force de contact avec les valeurs de déplacements de l’infrastructure
calculées dans l’itération précédente ; Ensuite, dans le même pas de temps, les déplace-
ments de l’infrastructure sont fixés et le système associé au véhicule est résolu jusqu’à
la convergence de la solution. Afin de rendre plus rapide la résolution, la méthode du
point fixe a été couplée avec la méthode de Newton Raphson. En effet la résolution
du système associé au véhicule est faite en considérant la partie de la non-linéarité de
la force de contact liée aux déplacements des roues et le système est résolu avec la
méthode de Newton Raphson. De cette manière la partie de la non-linéarité associé au
véhicule est résolue pour chaque itération de point fixe et le nombre total d’itérations de
point fixe est réduit. Enfin la méthode de Newton Raphson est appliquée uniquement
au système des 10 équations du véhicule. De cette façon la factorisation et la résolution
du système des équations du mouvement sont des opérations qui occupent un temps
tout à fait négligeable comparés aux avantages apportés.
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Figure 5 – Comparaison des analyses modales de l’infrastructure évaluées dans le cas de : contact
ponctuel, contact surfacique et résultats expérimentaux [42] ; excitation à mi-portée de l’entraxe entre

deux traverses.
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Figure 6 – Comparaison des analyses modales de l’infrastructure évaluées dans le cas de : contact
ponctuel, contact surfacique et résultats expérimentaux [42] ; excitation en correspondance d’une

traverse.



La deuxième partie de la thèse est consacrée à la présentation des résultats
numériques obtenus. Le comportement du modèle a été testé en trois étapes. Dans
la première étape l’infrastructure a été excitée par une force impulsive. Ce procédé a
permis la calibration des paramètres du modèle et la correction des erreurs présentes
dans le logiciel. Généralement l’analyse modale représente l’outil utilisé dans la littéra-
ture scientifique pour valider les modèles de l’infrastructure. Nos analyses ont été com-
parées avec des résultats expérimentaux et d’autres modèles numériques. Les Figures
5 et 6 montrent que le modèle de contact surfacique est bien plus proche des résultats
expérimentaux que le modèle de contact ponctuel. Dans la deuxième étape le véhicule
a été ajouté au modèle. Des simulations ont était effectuées pour étudier les accéléra-
tions des traverses et du rail générées par le passage d’une locomotive. En comparant
les résultats numériques avec ceux expérimentaux, cette étape a permis la calibration
: des irrégularités de surface, du modèle du véhicule, et de la méthode de couplage
véhicule/infrastructure. Pendant cette étape l’efficience et la précision du modèle ont
était évaluées. Dans la troisième étape une analyse de sensibilité du modèle a était
menée. Les paramètres de contrôle choisis pour réaliser l’analyse sont le coefficient
d’amplification dynamique δdyn et la déflection élastique d’une traverse zsl. Les Fig-
ures 7 et 8 montrent les résultats de l’analyse.

Figure 7 – Analyse de sensibilité pour le coefficient d’amplification dynamique.

Pendant cette dernier étape, les résultats des simulations ont était utilisés pour la
compréhension et la description de l’origine de la vitesse critique et des effets du train
sur le tassement du ballast.



Figure 8 – Analyse de sensibilité pour la déflection d’une traverse.

La vitesse critique peut être définie comme une certaine valeur de vitesse que
provoque un fort incrément des vibrations et des déplacements verticaux et latéraux
de l’infrastructure. Pour les valeurs de vitesses plus grandes ou plus petites que cette
valeur critique, les effets sont mineurs. Ce phénomène a été étudié par plusieurs
équipes [69, 43, 31, 19, 57] et a été attribué à un effet de résonance comparable au
phénomène aérodynamique du mur du son : “Mach effect”. Quand un mobile atteint la
vitesse du son dans un fluide, il se produit un phénomène de concentration de l’onde
de surpression qui provoque une onde de choc. Cet effet se produit car le mobile re-
joint les vagues sonores qu’il produit lui même. De la même façon le train produit des
vagues de déformation sur l’infrastructure. La vitesse de ces vagues, nommé “vitesse
de Rayleigh”, dépend principalement des caractéristiques du ballast et du sol. Quand
le train rejoint la vitesse des vagues de déformation qu’il produit, une amplification
des vibrations apparait. Les études s’accordent sur l’existence de deux vitesses cri-
tiques. La première peut être assimilée à la vitesse de Rayleigh du sol, la deuxième,
assez proche de la première, est influencée par la rigidité flexionnelle et par la masse
du système rail/talus. Des observations et des résultats expérimentaux [53, 70, 61, 30]
ont confirmé ce phénomène dans l’intervalle des vitesses 100 − 300 km h−1. Plusieurs
méthodes ont été développées afin de prévoir la réponse de l’infrastructure aux pas-
sages des trains roulant à la vitesse critique : Fonction de Green [43, 74, 75], vaguelette
[46], éléments finis de frontière et éléments finis classiques, même avec des maillages
adaptatifs qui bougent avec le train [21]. Dimitrovová and Varandas [19] ont estimé la
vitesse critique, pour quatre différents types de sols, appartenir à un intervalle entre
702 et 1200 km h−1. En effet la vitesse des vagues de Rayleigh estimée pour des sols



typiques dans le domaine des infrastructures ferroviaires dépasse les 500 km h−1, soit
une vitesse bien supérieure aux vitesses typiques adoptées en ligne (maximum environ
350 km h−1). Ainsi le phénomène étudié en correspondance de ces vitesses n’a qui un
intérêt de type académique. En effet même si l’effet “Mach” est physiquement plausible
pour ces conditions, les trains n’atteignent pas, pour le moment, ces vitesses. De plus,
même en présence de sols très flexibles comme des couches de tourbe, où la vitesse de
Rayleigh est dans l’intervalle 320−400 km h−1, des résultats expérimentaux ont permis
l’observation du phénomène de la vitesse critique pour des trains roulant à la vitesse
de 135 km h−1 (nombre Mach proche à 0.4). Donc, pour le moment, il n’y a ni estima-
tion exacte ni explication physique de la vitesse critique dans l’intervalle inférieur à la
vitesse de Rayleigh.

Dans cette thèse une nouvelle explication a était proposé. La cause majeur
d’excitation de la force de contact est la variation de rigidité due à la présence des
traverses. La distance entre deux traverses (environ 0.65 m) peut donc être assimilée
à la longueur d’onde de la fonction d’excitation. Cette considération lie la vitesse du
train à la fréquence d’excitation :

V = 3.6 · 0.65 · f
[

kmh−1
]

, (1)

avec la fréquence f exprimés en Hz. Plusieurs auteurs ont mis en relation les fréquences
naturelles de l’infrastructure avec la vitesse du train. En réalité la masse du train et les
suspensions ont une influence non négligeable qui modifie la réponse du système en
termes de modes de vibration. Pour cette raison, il est nécessaire de lier les fréquences
d’excitation, et donc la vitesse du train (Équation 1), avec les modes de vibration du
système couplé véhicule/infrastructure. Des comparaisons entre les analyses modales
du système couplé et la déflection de la traverse en fonction de la vitesse du train ont
était menés.



Figure 9 – Comparaison entre la analyse modale du système couplé et la déflection de la traverse en
fonction de la vitesse du train

La Figure 9 montre un des résultats de cette comparaison. Le système couplé
véhicule/infrastructure présente un mode de vibration très prononcé en correspon-
dance d’environ 60 Hz. Lorsque la vitesse du train, qui excite le système suite aux pas-
sage des traverses, rejoint la valeur critique d’environ 150 km h−1, un phénomène de
résonance s’observe. En conséquence les études sur la vitesse critique ne peuvent pas
être menés en analysant seulement les caractéristiques de l’infrastructure en le consid-
érant isolé, mais il est nécessaire de tenir compte du système couplé avec le véhicule.
De plus, cet étude donne une explication aux phénomènes des vitesses critiques trouvés
expérimentalement dans l’intervalle (100−300 km h−1) et qui ne peut pas être interprète
par la théorie de “Mach-Rayleigh”.



La deuxième étude développé concerne les coûts des entretiens liés au tassement
du ballast. Le but est de trouver une fonction de coûts liés aux caractéristiques et aux
variables du véhicule, et de proposer une nouvelle méthode pour calculer la partie du
péage ferroviaire lié au tassement du ballast (50 % environ du coût total). Plusieurs
auteurs [14, 27] ont trouvé une relation de linéarité entre le tassement du ballast et le
nombre de cycle de charge (nombre de passages des axes du véhicule). Il se trouve aussi
que le coefficient angulaire de cette relation est une fonction exponentielle de la déflec-
tion subit par le ballast pour chaque cycle de charge. En conséquence, en calculant la
déflection du ballast grâce au modèle présenté dans cette thèse, il est possible d’évaluer
l’effet de chaque véhicule sur le tassement. Une fois calculé le coût total d’un certain

Figure 10 – Coût du tassement en fonction de la vitesse du véhicule.

type de ligne, lié à une certain seuil d’intervention (somme des intervention des bour-
rages plus la substitution total du ballast), il est possible d’évaluer le coût de chaque
passage de train et de le lier à toutes le variables du modèle. La Figure 10 montre le
coût du passage d’une locomotive en fonction de sa vitesse.
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1INTRODUCTION

1.1 INTRODUCTION

The transport by train of freight and passengers is one of the oldest type of transport
and yet a continual improvement process get this service better and better. In these
days, with the arrival and developing of high speed trains, the operational range of
railways can surround distances in a very short time. This fact had produced a com-
petition even with airplane for some type of segments. The principal directs benefits
perceived by passengers are evidently connected to the time and the cost of displace-
ments. Even if the nett duration of displacement by airplane is still lesser than ones by
train (due to the difference of speeds), in some cases the total time can results more con-
venient for the train displacements. Indeed to evaluate the total time that separates the
point of origin of the displacement to the point of destination many parameters must
to be considered such that: the distance from infrastructure to the point of origin, the
time to access to the vehicle, waiting lines, the time spent for passengers control, the
time spent to wait luggages, the distance from the arrival infrastructure to the point of
destination. Considering all of these parameters, in many cases, even if the airplane is
speeder than train, the total time of displacement results lesser by train. This reason
and others (such as the continual increasing of petrol cost or pollution) have incited the
states to support this development. In particular, member states of EU have begun in
last years a real campaign to promote the railways Infrastructure expansion. The prin-
cipal effects of this campaign, among others, are the deregulation of rail transport, the
interoperability of Infrastructure, the creation of Trans-European Networks. All railway
lines with an operating speed greater than 250 km h−1 are classified In Europe as high-
speed line. The necessity to benefit from computer tools had grown up exponentially
in last 50 years with the increasing of the operating speed and train development. The
numerical models are, in our days, valuable tools for the designing of vehicles, mech-
anism and structures, to study the wear of the infrastructure, to predict the behaviors
of system, the vibrations and the stress exchanged between vehicle and substructure.
The objectives of this work are principally two. First this thesis aims to contribute to
the advancement of methods, developing a simple and fast numerical method able to
simulate the main physical behaviors. The second purpose is, with the support of the
tool proposed, to understand and describe two phenomenon: the critical speed and the
effect of train and track variables on the ballast settlement. In following paragraphs a
resume of main numerical models developed by other authors is done.

1
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1.2 LITERATURE REVIEW

1.2.1 The vehicle/track models

The modern numerical methods used to simulate the behavior of train/track system
take advantages from many theories: multi-body systems, finite element (FE), discrete
element (DE) and analytical methods. The most authors have focused the attention
on vehicle behavior or track behavior (including rail, rail-pads, sleeper, ballast and
ground). Only few of them have treated the coupled system studying the interaction
between vehicle and track. The methods used to model vehicle, rail, rail-pads, sleepers,
ballast and ground can be summarized here:

• method adopted to model the vehicle: 2D or 3D multi-body systems;

• method adopted to model the rail: analytical model (Euler-Bernoulli or Timo-
shenko), 2D or 3D FEM;

• rail-pads: FE models, simple connection (spring/damper couple), analytical mod-
els;

• sleepers: FE models, rigid elements connected by spring/damper couple, analyt-
ical models;

• ballast: FE models, DE models, analytical models, rigid elements connected by
spring/damper couple;

• ground: FE models, analytical models, rigid elements connected by
spring/damper couple.

Often, when the track is the object of studies, the vehicle is represented by a load with
sinusoidal excitation or moving load simulating the contact force. Similarly, when the
vehicle is the object of studies, the track is represented by a rigid structure. The multi-
body methods allow to model the dynamic behavior of train principally. This meth-
ods are very common and many authors [71, 28, 79, 58, 44, 45, 47] have used it to
model train vehicles. They have modeled the train coach, or locomotive, with seven
two-dimensional rigid elements representing: the body, the two bogies and the four
wheels. The bogies are suspended on the wheels by primary suspensions represented
by a spring-damper couple. Similarly, the vehicle body is linked with bogies by sec-
ondary suspensions. The common 2D or 3D models consider 10, 17 or 27 DOF (degrees
or freedom). In 2D models (as in [45, 47]) the 10 DOF considered are the vertical dis-
placement of vehicle body, bogies and wheels; the pitch of bogies and vehicle body. In
3D models (as in [44]) the 7 additional DOF represent the roll movement of: two bogies,
vehicle body and four wheel-axis. If the lateral displacement and the yaw movement
of each element are considered too, 10 additional DOF are considered (as in [28, 79]).
Guo et al. [28] have presented a coupled vehicle/track model to study the behavior of
the Shinkansen train passing on a bridge. Xu and Ding [79] have studied the effect of
cross-winds on the vehicle/track interaction. Pombo et al. [58] have studied the effect
of wear of the rail-head on the dynamic behavior of vehicle. Additionally the motion
during way curves is treated with a 3D model. Kumaran et al. [44] have presented a
3D FE model of track structure and a multi-body model of train. They have focused the
attention on sleeper stress. Other authors [64, 16, 40] have treated the propagation of
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vibrations through the ground. Cai et al. [16] have studied the response of pavement
systems subjected to a moving traffic load. They have simulated the traffic loads as four
rectangular load pressures, and the rigid and flexible pavement systems have been re-
garded as an infinite plate resting on a poroelastic half-space soil medium. A similar
model has been presented by Karlström [40]. He has modeled the ground as a stratified
half-space with linearly viscoelastic layers. A rectangular embankment supporting the
rails and the sleepers has been placed on the top of the ground. Salvador et al. [65] have
presented an analytical method with two layers: the first one representing the track and
ballast, and the second one representing the subgrade and soil. They have modeled the
train as a moving load. Johansson and Nielsen [36] have presented a study of rail cor-
rugation growth. They have focused the study on the influence of powered wheel-sets
with wheel tread irregularities. Jens C.O. Nielsen [35] has proposed a model to predict
wheel-rail contact forces. He has focused the attention on frequency analysis of contact
force comparing it to experimental measurements and studying the relation with rail-
head corrugation. Ricci et al. [63] have presented a discrete/continuum double layer
model to simulate track behavior. They have modeled the train as a moving load. The
ballast has been modeled with discrete elements representing the ballast grains.

1.2.2 The ballast settlement models

Many authors [14, 56, 68, 27, 8, 9, 33? ] show how the ballast vertical settlement is pro-
portional to the elastic deflection caused by each wheel pass and the number of applied
wheel loads. Bodin-Bourgoin et al. [14] and Guerin [27] have proposed a linear pro-
portion between settlement and number of load cycles. Moreover they have studied a
relationship between the grow rate of settlement and the elastic deflection of ballast at
every load cycle doing tests on scale models. Paderno [56] has accomplished tests on a
1 : 1 model. She has studied the influence of ballast interventions and traffic on settle-
ment and ballast aging. Abdelkrim [8] has proposed an analytical numerical method to
study the phenomenon.

1.2.3 The critical speed phenomenon

Field observations and measurements have shown an increasing of vibrations and ver-
tical displacements when trains reach a specific speed. Many authors [69, 43, 31, 19, 57]
have studied this phenomenon calling it ”Critical Train Speed“. This ”mysterious“ crit-
ical condition is described as the resonance between the moving train and the Rayleigh
wave traveling in the soil embankment (analogous to the ”Mach“ effect caused by fly-
ing objects breaking through the sound barrier) [43]. It has been found that track should
have two critical speeds, one equal to the Rayleigh wave velocity of the ground, and
other, fairly close, controlled by the bending stiffness and mass of the rail/embankment
”beam“ in addition to the ground properties [49]. The experimental data [53, 70, 61, 30]
have indicated the appearing of this phenomenon in the speed range 100−300 km h−1.
Green’s functions [43, 74, 75], wavelets [46], boundary and finite elements, even with
the element net moving with the train [21], have been applied trying to predict track re-
sponse to trains passing at speeds around the critical value [49]. Huang and Chrismer
[31] have developed a 3D dynamic track model to investigate the track performance
and ballast settlement under freight and trains moving at critical speed. Varying the
speed between 20 and 100 m s−1, they found a critical speed at almost 90 m s−1 (324
km h−1). Dimitrovová and Varandas [19] have analyzed the transient dynamic response
of a beam supported on a foundation with sudden stiffness change and subjected to a
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force moving with constant velocity. They have studied the effect of loads, moving at
critical velocities on four different types of foundations. The range of critical velocity
studied is between 702 and 1200 km h−1. Anyway at this velocity range, even if the
phenomenon caused by the ”Mach“ effect is possible and physically plausible, it has
only academic interests.

Therefore an explanation and a accurate calculation of critical speed perceived un-
der the Rayleigh wave velocity seems to remain a problem unresolved. Indeed the
Rayleigh wave velocity of typical grounds (more than 500 km h−1) is very higher if
compared to train operative maximum speeds (almost 350 km h−1). Moreover, even in
the case of soft ground, as peat layer, where the Railegh wave velocity is in the range
320−400 km h−1, measurements [57] allow to observe the phenomenon for trains mov-
ing at 135 km h−1 (Mach number close to 0.4).

1.3 THE PLAN OF THE THESIS

The thesis is divided in two parts. The draft of the manuscript reflects the developing
of the work conducted in chronological order. In part I, the model of the train/track
coupled system is presented. In first chapters the model adopted for the train, the rail
model, and the rail-pads, sleeper and ballast model are described separately. Then, in
last chapter, the methods adopted to couple the vehicle and the track systems and to
solve the motion equation are shown. The results of simulations carried out with the
present model are shown in the part II. First, results have been compared to experi-
mental data and literature results to validate the efficacy and efficiency of the model
presented. Then the work has been focused on two topics: the railway toll functions
related to ballast wear, and the phenomenon of the critical speed.
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The Numerical Model
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IN this part, the numerical model adopted to simulate the vehicle/track system is pre-
sented. The first chapters are centered on modeling of vehicle, rail, rail-pads, sleepers

and ballast. Each chapter is presented following the same framework. first a literature
review of common models used is shown for the component of vehicle/track intro-
duced. Consequently, the model adopted is presented. Then its motion equations for
each DOF are shown and assembled in matrix form. Finally the values of model pa-
rameters adopted are discussed. The last chapter is dedicated to present the methods
of resolution adopted to solve motion equations.





2THE VEHICLE MODEL

2.1 THE MODEL

The aim of this thesis is to find a solution to reduce the dynamic overload. So, the worst
effects caused by trains pass have been considered. The locomotive is the heavier vehi-
cle, indeed it contains the engine and all the components needed for the train motion.
It can be assumed that locomotive effects are the worst. For this reason in the present
model only the locomotive effects are considered. Often in new high-speed trains the
motor bogies are present in many train coaches (normally the first and the last one).
At this conditions, the stress in vehicles connection is reduced and moreover the power
weight ratio increases. Weight per axle of power unit (M) and trailers (T) for some trains
are reported in table 2.1 Anyway in this work the attention will be focused on the part

Weight and max speed for some high speed trains

x2000 ETR500 AVE-T350

max speed 275.7 300 330 Km h−1

weight per axle (M) 18 17 22.5 tonn
weight per axle (T) 12.2 10.5 14.8− 17 tonn

Table 2.1 – Values taken from [5, 55, 4, 26, 2].

of substructure more charged by each axle; therefore the volume of ballast under every
wheel. In this case the effects produced by other train bogies are negligible. the vehicle
is modeled as seven discrete elements in accordance to [80, 81, 47, 25, 23, 24, 34]. There
are seven two-dimensional rigid elements representing: the body, the two bogies and
the four wheels. The problem is solved under the assumption of symmetry, so all the
masses are considered as half of their values. The bogies are suspended on the wheels
by primary suspensions represented by a spring-damper couple. Similarly, the vehi-
cle body is linked with bogies by secondary suspensions. Ten degrees of freedom are
considered: the vertical displacement of vehicle body, bogies and wheels; the pitch of
bogies and vehicle body. A draft of the vehicle model is shown in figure 2.1.

2.2 ASSEMBLED MOTION EQUATIONS FOR THE VEHICLE MODEL

The set of DOF (degrees of freedom) are represented in figure 2.1 ans is governed by
the following system of motion equations 2.1.

9
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Y Y

Y
Y

Y Y

Y

Figure 2.1 – A draft of the vehicle model

zc : mcz̈c + c2(żc − żt1) + c2(żc − żt1) + k2(zc − zt1) + k2(zc − zt1) = mcg

Ψc : JcΨ̈c + c2(Ψ̇c − Ψ̇t1)lt + c2(Ψ̇c − Ψ̇t1)lt + k2(Ψc − Ψt1)lt + k2(Ψc − Ψt1)lt = 0

zt1 :
z̈t1mt1 + c2(żt1 − zc)− c2żt1lt + c1(żt1 − żw1) + c1(żt1 − żw2)+

+k2(zt1 − zc)− k2zt1lt + k1(zt1 − zw3) + k1(zt1 − zw4) = mt1g

Ψt1 :
Ψ̈t1Jt1 + c1(Ψ̇t1lw − żw1)lw + c1(Ψ̇t1lw − żw2)lw+

+k1(Ψt1lw − zw1)lw + k1(Ψt1lw − zw2)lw = 0

zt2 :
z̈t2mt2 + c2(żt2 − zc)− c2żt2lt + c1(żt2 − żw1) + c1(żt2 − żw2)+

+k2(zt2 − zc)− k2zt2lt + k1(zt2 − zw1) + k1(zt2 − zw2) = mt2g

Ψt2 :
Ψ̈t2Jt2 + c1(Ψ̇t2lw − żw3)lw + c1(Ψ̇t2lw − żw4)lw+

+k1(Ψt2lw − zw3)lw + k1(Ψt2lw − zw4)lw = 0

zw,j=1, 2 : z̈wjmwj + c1(żwj − żt1 − ˙Ψt1lw) + k1(zwj − zt1 − Ψt1lw) +Rr/wj = mwjg

zw,j=3, 4 : z̈wjmwj + c1(żwj − żt2 − ˙Ψt2lw) + k1(zwj − zt2 − Ψt2lw) +Rr/wj = mwjg

,

(2.1)
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where 2lw is the wheelbase, 2lt is the distance between the bogies pivot points, g is the
gravity and Rr/wj

the reaction force of the rail on the wheel j. The system of equations
(2.1) can be written in the matrix form:

Mvz̈v +Cvżv +Kvzv − fsub/v(zv, zsub) = −qv, (2.2)

The displacement vector zv, the forces vector fsub/v, the mass matrix Mv, the stiffness
matrix Kv and the damping matrix Cv are defined by:

zv =















































zc

Ψc

zt

Ψt

zt

Ψt

zw1

zw2

zw3

zw4















































10×1

, qv =















































mcg

0

mtg

0

mtg

0

mwg

mwg

mwg

mwg















































10×1

, fsub/v =

















































0

0

0

0

0

0

−Rr/w1

−Rr/w2

−Rr/w3

−Rr/w4

















































10×1

, (2.3)

Mv = diag
[

mc Jc mt Jt mt Jt mw mw mw mw

]

10×10
, (2.4)

Kv =

















































2k2 0 −k2 0 −k2 0 0 0 0 0

0 2k2l
2
t −k2lt 0 k2lt 0 0 0 0 0

−k2 −k2lt k2 + 2k1 0 0 0 −k1 −k1 0 0

0 0 0 2k1l
2
w 0 0 −k1lw k1lw 0 0

−k2 k2lt 0 0 k2 + 2k1 0 0 0 −k1 −k1

0 0 0 0 0 2k1l
2
w 0 0 −k1lw k1lw

0 0 −k1 −k1lw 0 0 k1 0 0 0

0 0 −k1 −k1lw 0 0 0 k1 0 0

0 0 0 0 −k1 −k1lw 0 0 k1 0

0 0 0 0 −k1 −k1lw 0 0 0 k1

















































10×10
(2.5)
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Cv =

















































2c2 0 −c2 0 −c2 0 0 0 0 0

0 2c2l
2
t −c2lt 0 c2lt 0 0 0 0 0

−c2 −c2lt c2 + 2c1 0 0 0 −c1 −c1 0 0

0 0 0 2c1l
2
w 0 0 −c1lw c1lw 0 0

−c2 c2lt 0 0 c2 + 2c1 0 0 0 −c1 −c1

0 0 0 0 0 2c1l
2
w 0 0 −c1lw c1lw

0 0 −c1 −c1lw 0 0 c1 0 0 0

0 0 −c1 −c1lw 0 0 0 c1 0 0

0 0 0 0 −c1 −c1lw 0 0 c1 0

0 0 0 0 −c1 −c1lw 0 0 0 c1

















































10×10

.

(2.6)
The displacement vector zsub contains the displacements of contact points on the rail.
Indeed the contact forces Rr/wj

, evaluated by the Hertz theory, are non linear functions
of the relative displacements.

2.3 THE MANCHESTER BENCHMARK

The Manchester benchmark [34] has been adopted to assign a value to all vehicle model
parameters. This study was carried out for the International Workshop “Computer Sim-
ulation of Rail Vehicle Dynamics” at Manchester Metropolitan University on June 23rd

and 24th 1997. The aim of the project was to provide a standard reference allowing com-
parison in calculation to assess the effect of the various techniques and approximations
made. Two kind of vehicles were presented. Benchmark vehicle 1 is a general passenger
coach with two bogies and a simple primary suspension. Benchmark vehicle 2 is a two
axle freight vehicle with load dependent friction damping. Both models are as simple
as practically possible and further simplifications during the simulation may be carried
out by the package operator if desired. All bodies are considered rigid. The Manchester
Benchmark gives also parameters for different type of track. Benchmark vehicle model
1 should be run with in the high speed track. Values of benchmark 1 are reported in
table 2.2.
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Vehicle specification - Benchmark Vehicle 1

Masses and Inertias

wheel mass 1813 kg
bogies mass 2615 kg
bogies pitch inertia 1476 kg m2

body mass 32000 kg
body pitch inertia 1970000 kg m2

Primary suspension

stiffness 1220 kN/m
damping 4 kNs/m
damper series stiffness 1000 kN/m

Secondary suspension

stiffness 1220 kN/m
damping 32 kNs/m
damper series stiffness 6000 kN/m

Table 2.2 – Values taken from [5, 55, 4, 26, 2].

In the vehicle model presented in our work the stiffness is connected in parallel
to the damper; any other series stiffness is connected. In this work the damper series
stiffness has been considerate as a parallel spring to evaluate an equivalent value of
stiffness. A draft of both of the suspension types is shown in figure 2.2

��
�
�

�
�

�
�

�
�

Figure 2.2 – A draft of suspension types

2.4 THE WHEEL-RAIL CONTACT MODEL

The problem of contact between wheel and rail has been abundantly studied by many
authors [39, 60, 12, 48, 59]. In our model contact forces between the jth wheel and rail
are computed by the non-linear hertz model with hysteresis damping due to Lankarani
and Nikravesh [48, 59] as

Rw/r,j =

{

khδ
3
2 + chδ̇ if δ > 0,

0 if δ < 0;
(2.7)

where δ is the total deflection of wheel and rail at the contact point computed as

δ = zwj − zrj − ηrj , (2.8)

in which zwj is the vertical displacement of the jth-wheel, zrj and ηrj are the displace-
ment and the vertical defect of rail at jth connection-point respectively; kh and ch are
the Hertzian and the damping contact coefficient respectively. During the phase of cal-
ibration of the model the non dissipative behavior of the Hertz’s contact is emerged. So
at the end of calibration the damping coefficient ch has been neglected.





3THE RAIL MODEL

3.1 SOME OTHER MODELS

Many different approaches have been used to model the rail in recent years. Some
works [20, 40, 73] studied the waves propagation through the track-ground system in
three dimensions; they modeled rail with Euler-Bernoulli theory as:

∂z(x, t)

∂x4
+m

∂2z(x, t)

∂tt
+ µ

∂z(x, t)

∂t
+ kz(x, t) = Qδ(x− vt), (3.1)

where m is the rail linear mass, µ and k are respectively the linear damping and stiffness
of the equivalent winkler foundation, Q is the load, v the train velocity, and δ is the Dirac
function. They modeled contact forces as constant or harmonic vertical forces moving
along the rail. Others authors [54, 80] studied the coupled train/track system in two
dimensions; they modeled rail as a Timoshenko beam connected to pads by singular
points as:



















ρA
∂2wR

∂t2
−GAχ

(

∂2wR

∂x2
− ∂φr

∂x

)

= −
Ns
∑

i=1

FRSiδ(x− xi) +

4
∑

j=1

PWRjδ(x− xj)

ρI
∂2φR

∂t2
−GAχ

(wR

∂x
− φR

)

− EI
∂2φR

∂x2
= 0

,

(3.2)
where A is the rail section area, G is the shear modulus, χ is the Timoshenko’s coef-
ficient, ρ is the volume density and I is the bending inertia. The other variables are
shown in figure 3.1. Still others [45, 47] studied the coupled system modeling rail with

Figure 3.1 – timoshenko beam model of the rail [80]

finite elements connected to pads by singular points; they discretized the rail with a
singular finite element for each pair of sleepers. A draft of the singular finite element is
shown in figure 3.2. They have expressed the stiffness matrix of an element as:

15
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Figure 3.2 – Generalised beam element for the track structure [45]

Ke
l = Ke

b +Ke
e, (3.3)

where:

Ke
b =

























































EA

l
0 0 0 −EA

l
0 0 0

12EI

l3
−6EI

l2
0 0 −12EI

l3
−6EI

l2
0

4EI

l
0 0

6EI

l2
2EI

l
0

0 0 0 0 0

EA

l
0 0 0

Symm
12EI

l3
6EI

l2
0

4EI

l
0

0

























































(3.4)

and

Ke
b =





































Kx1 0 0 0 0 0 0 0

Ky1 0 −Ky1 0 0 0 0

0 0 0 0 0 0

Ky1 +Ky2 0 0 0 0

Kx1 0 0 0

Ky1 0 −Ky1

Symm 0 0

Ky1 +Ky2





































(3.5)

3.2 THE REASONS WHY A NEW RAIL MODEL IS PROPOSED

During the processing of this thesis all models shown in the paragraph 3.1 have been
implemented. The reasons why an upgrade of the rail model resulted necessary are ex-
posed here.
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The Euler-Bernoulli model presents many advantages. It is a simple and diffused model
and it results very appropriate to begin tests on model operation. Anyway shear effects
are neglected. This is the classical hypothesis assumed for slender beams. The height of
the rail section is 148 mm for a 50 UNI rail and 172 mm for a 60 UNI rail [62]. These
values compared to the distance between two sleepers (60−70 cm) are not small enough
to allow the slender beam hypothesis.
For this reason the Timoshenko model results better. Anyway in all past models adopt-
ing Timoshenko theory the rail is connected to pads by singular points. In truth, the
rail is connected to sleepers by a contact zone not negligible if compared to the length
of the rail suspended between two consecutive sleepers. Indeed, sleeper base measures
between 60 and 70 cm and the pad length along the rail direction measures between 17
and 26 cm.
In the past FEM models [45, 47] three hypothesis have resulted too much restrictive.
First, the shear effect cannot be neglected. Afterwards the maximum displacement dur-
ing vibrations or wheel pass occurs on the midspan point of the rail. These models have
discretized the rail with a singular finite element for each pair of sleepers. This kind of
discretization cannot represent accurately the real behavior. Finally also in this case the
connection-point connection between rail and sleepers results as extreme hypothesis.

3.3 THE NEW PROPOSED RAIL MODEL

A finite element discretization is used to model the rail. Considering insignificant the
axial displacement, we discretized the rail with finite beam elements with two degrees
of freedom for every node: rotation and vertical displacement. The algorithm allows to
choose the number of beam elements between two sleepers and the number of beam el-
ements vertically connected to sleeper by pads. Both 2-nodes and 3-nodes Timoshenko
beam elements have been implemented to model rail. Then a comparison between re-
sults in both cases have been done to see if the precision rests acceptable with the 2-
nodes beams even if the total number of degrees decreases and the computational time
too. Following the procedure to evaluate the stiffness, damping and mass matrices of
the elements are shown. A draft of the difference between the connection-area and the
connection-point model is shown in figure 3.3. It is clear how the deformed shapes
could be very different in the different cases.
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Figure 3.3 – Draft of rail deformed shape in the case of the connection-point model and connection-area
model.
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3.3.1 The stiffness and mass matrices for the two node Timoshenko element:

The deflection ν and the rotation α can be interpolated independently as:

v = N ·V =
[

n1 n2

]

[

v1

v2

]

,

α = N · α =
[

n1 n2

]

[

α1

α2

]

;

(3.6)

where the shape function vector N for a 2-node element is:

NT =

[

n1(x)

n2(x)

]

=





1− x

l
x

l



 . (3.7)

The partial derivatives with respect to x are:

∂n1

∂x
= −1

l

∂n2

∂x
=

1

l
; (3.8)

the deformation calculated with the Timoshenko theory are:

ǫxx =
∂u

∂x
= −y

∂αz

∂x

γxy =
∂v

∂x
− αz

. (3.9)

Being the vector of degrees of freedom:

sT = [v1 α1 v2 α2], (3.10)

the deformation ǫxx and γxy can be calculated as:

ǫxx = −y
∂α

∂x
= −y

[

0
∂n1

∂x
0

∂n2

∂x

]

s

= −y

[

0 −1

l
0

1

l

]

s

= bF,1 s;

(3.11)

γxy =
∂v

∂x
− α =

[

∂n1

∂x
0

∂n2

∂x
0

]

s−
[

0 n1 0 n2

]

s

=

[

−1

l
−n1

1

l
−n2

]

s

= bT,1s.

(3.12)

Now the element stiffness matrix can be calculated as sum of the share and the bending
contribution:

K1 = KF,1 +KT,1, (3.13)

where:
KF,1 =

∫

V
bT
F,1EbF,1 dAdx

KT,1 =

∫

V
bT
T,1EbT,1 dAdx.

(3.14)
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Being the moment of Inertia I =

∫

A
y dA, the bending contribution of the stiffness

matrix can be written as:

KF,1 = E

∫

A
y dA

∫

l

1

y
bT
F,1 bF,1 dx

= EI

∫

l

1

y
bT
F,1 bF,1 dx

=
EI

l













0 0 0 0

0 1 0 −1

0 0 0 0

0 −1 0 1













;

(3.15)

and the shear contribution of the stiffness matrix:

KT,1 = GAχ

∫

l
bT
T,1 bT,1 dx

=
GAχ

l



























1
l

2
−1

l

2

l

2

l2

3
− l

2

l2

6

−1 − l

2
1 − l

2

l

2

l2

6
− l

2

l3

3



























.

(3.16)

Anyway, implementing this matrices, a problem has emerged during simulations. In-
deed with the shape function shown in equation 3.7 the continuity of rotations is not
assured. In this case, during the motion of train, the wheel meets a variation of deflec-
tion in correspondence of nodes. This fact adds a noise frequency in the contact-force
signal with wavelength equal to length of a beam element l. If the continuity of deflec-
tions and rotations are both requested, the order of continuity is C2. At this condition
the shape functions are polynomial functions of third degree. The shape functions vec-
tor due to bending is:

Nb =
[

nb,1 nb,2 nb,3 nb,4

]

, (3.17)

and its components:

nb,1 =
1

1 + φ
(1 + 2ξ3 − 3ξ2 + φ(1− ξ))

nb,2 =
l

1 + φ

(

ξ + ξ3 − 2ξ2 +
φ

2
(ξ − ξ2)

)

nb,3 =
1

1 + φ
(−2ξ3 + 3ξ2 + φξ)

nb,4 =
l

1 + φ

(

ξ3 − ξ2 +
φ

2
(ξ2 − ξ)

)

.

(3.18)

The shape functions vector due to rotation is:

Nr =
[

nr,1 nr,2 nr,3 nr,4

]

, (3.19)
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and its components:

nr,1 =
6

(1 + φ)l
(ξ − ξ2)

nr,2 =
1

1 + φ
(3ξ2 − 4ξ + 1 + φ(1− ξ))

nr,3 =
1

(1 + φ)l
(6ξ − 6ξ2)

nr,4 =
1

1 + φ
(3ξ2 − 2ξ + φξ);

(3.20)

where:
φ =

12

l2
EI

GAχ
. (3.21)

The deformation ǫxx and γxy can be calculated as:

ǫxx = −y
∂α

∂x

= −y
∂Nr

∂X
S

= bF,3S

(3.22)

γxy =
∂v

∂x
− α

=

(

∂Nb

∂X
−Nr

)

S

= bT,3S.

(3.23)

Then, being:

KF,3 =

∫

V
bT
F,3EbF,3 dAdx

KT,3 =

∫

V
bT
T,3EbT,3 dAdx.

(3.24)

the element stiffness matrix is:

K3 = KF,3 +KT,3

=
EI

l3(1 + φ)













12 6l −12 −6l

6l (4 + φ)l2 −6l (2− φ)l2

−12 −6l 12 −6l

6l (2− φ)l2 −6l (4 + φ)l2













.
(3.25)
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The mass matrix is:

M3 =

∫

v
ρNT

b Nbdv = ρA

∫ l

0
NT

b Nbdv

=
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lφ+
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l2 +

11
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+
1

24
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+
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lφ2
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symm
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.

(3.26)

3.3.2 The stiffness and mass matrices for the three node Timoshenko element:

The deflection at the generic coordinate can be calculated as function of the deflections
of the three nodes as:

v = N ·V =
[

n1 n2 n3

]





v1
v2
v3



 , (3.27)

where the shape function vector N for a 3-node element in accordance to figure 3.4 is
[72]:

NT =









n1(ξ)

n2(ξ)

n2(ξ)









=













ξ

2
(ξ − 1)

1− ξ2

ξ

2
(ξ + 1)













, (3.28)

and the partial derivatives with respect to the ξ are:

Figure 3.4 – Local shape functions for 3-node element [72]

∂n1

∂ξ
= −1

2
+ ξ

∂n2

∂ξ
= −2ξ

∂n3

∂ξ
=

1

2
+ ξ ; (3.29)
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the jacobian is:

J = N X =

[

ξ

2
(ξ − 1) 1− ξ2

ξ

2
(ξ + 1)

]





0
l/2
l



 ,

J =
l

2
J−1 =

2

l
detJ =

l

2
,

(3.30)

where l is the length of the element, and the reference system for the ξ start form the
second node. The deformations are calculated with the Timoshenko theory as seen in
equation 3.9. Being the vector of degrees of freedom:

sT = [v1 α1 v2 α2 v3 α3], (3.31)

the deformation ǫxx and γxy can be calculated as:

ǫxx = −y
∂α

∂x
= −y

[

0
∂n1

∂x
0

∂n2

∂x
0

∂n3

∂x

]

s

= −yJ−1

[

0
∂n1

∂ξ
0

∂n2

∂ξ
0

∂n3

∂ξ

]

s

= −y
2

l

[

0 −1

2
+ ξ 0 −2ξ 0

1

2
+ ξ

]

s

= bF,2 s;

(3.32)

γxy =
∂v

∂x
− α =

[

∂n1

∂x
−n1

∂n2

∂x
−n2

∂n3

∂x
−n3

]

s

=

[

2

l

(

−1

2
+ ξ

)

1

2
(1− ξ) −4

l
ξ −(1− ξ2)

2

l

(

1

2
+ ξ

)

−1

2
ξ(1 + ξ)

]

s

= bT,2s.
(3.33)

Now the element stiffness matrix can be calculated as sum of the share and bending
contribution:

K2 = KF,2 +KT,2, (3.34)

where:
KF,2 =

∫

V
bT
F,2EbF,2 dAdx

KT,2 =

∫

V
bT
T,2EbT,2 dAdx.

(3.35)
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Being the moment of Inertia I =

∫

A
y dA, the bending contribution of the stiffness

matrix can be written as:

KF,2 =
2E

l

∫

A
y dA

∫

l

l

2y
bT
F,2 bF,2 dx

=
2EI

l

∫

l

l

2y
bT
F,2 bF,2 dx

=
2EI

l
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(3.36)

and the shear contribution of the stiffness matrix:

KT,2 = GAχ

∫

l
bT
T,2 bT,2 dx

=
GAχl
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(3.37)

The lumped mass matrix of the singular finite element is the following diagonal matrix:

M2 =
1

6
ρAl

















1 0 0 0 0 0
0 0 0 0 0 0
0 0 4 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

















. (3.38)

3.3.3 The damping matrix

In a first time of the present work the damping matrices of the rail beam elements have
been evaluated by the Raylegh’s theory as:

Ce = αMe + βKe. (3.39)
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To chose the Raylegh’s coefficients, Ekevid et al. [20] suggest following values: α =
0.005 and β = 0.005. However during the phase of calibration of the model the non dis-
sipative behavior of the rail has emerged. The dissipation of vibrations occurs entirely
through pads, sleepers and ballast. So at the end of calibration the damping matrix of
rail beam elements has been neglected.

3.3.4 The equivalent element nodal forces

The wheel/rail contact force can be considered as a concentrated vertical load moving
between nodes. Since the contact point moves along the beams, equivalent nodal forces
has to be calculated. To build the equivalent nodal loads vector, three terms have to
be considered: the gravitation load q′ij , the wheel/rail contact force f ′′

ij and sleeper/rail
connection force f ′′′

ij .

Figure 3.5 – Scheme of forces applied on a beam.

The gravitational term for the generic beam is computed by applying a uniform
load qv (see figure 3.5). The nodal forces vector is:

q′
ij =

∫

l
Nb(x)

T qvdl

=



























l

2

l2

12

l

2

l2

12



























qv.

(3.40)

The wheel/rail contact force term is added when a contact point is positioned between
the nodes i and j (see figure 3.5). If x∗ is the distance of the contact point from node i,
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the local forces vector of a beam can be written as

f ′′ij = Nb(x
∗)T Rw/r

=
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Rw/r

(3.41)

The sleeper/rail connection force occurs when a node i or j is connected to the sleeper.
The nodal force is:

f ′′′ij =
kp
n









zr,i − zs,i
0

zr,i − zs,i
0









+
cp
n









żr,i − żs,i
0

żr,j − żs,j
0









=
kp
n









zr,i
0
zr,j
0









+
cp
n









żr,i
0
żr,j
0









− kp
n









zs,i
0
zs,j
0









− cp
n









żs,i
0
żs,j
0









= f ′′′ij,1(zr) + f ′′′ij,2(żr) + f ′′′ij,3(zs) + f ′′′ij,4(żs).

(3.42)

In the next paragraph 3.4 the material coefficients included in f ′′′ij,1(zr) and f ′′′ij,2(żr) will
be added in the stiffness and damping matrices of the rail; and those included in f ′′′ij,3(zr)
and f ′′′ij,4(żr) will be added in the stiffness and damping matrices of the substructure
(paragraph 4.4, equation 4.10).

3.4 ASSEMBLED MOTION EQUATIONS FOR THE RAIL MODEL

As explained in paragraph 3.3 the beam elements of rail in contact with pads are
vertically connected to sleeper by spring-damper couples representing the behavior
of pads. This connection is physically equivalent to nodal forces as seen in equations
3.42. The first two terms of this equation can be treated as an increment of stiffness
in nodes connected to sleeper. This condition simplifies the implementation and the
resolution of model. Then, four different types of local matrices have to be built (see 3.6).

ss sj ij is

Figure 3.6 – The four type of stiffness matrices for the rail
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The local stiffness matrix Kij for a generic beam not connected to sleepers is K1 or
K2 or K3 calculated by equations 3.13, 3.25, 3.34. The local stiffness matrix for a generic
beam connected to a sleeper in the first node is1

Ksj = Kij +
kp
n









1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









; (3.43)

the local stiffness matrix for a generic beam connected to a sleeper in the last node is

Kis = Kij +
kp
n









0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0









; (3.44)

the local stiffness matrix for a generic beam connected to a sleeper by both nodes is

Kss = Kij +
kp
n









1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0









; (3.45)

where kp/n represents the vertical stiffness of the pad divided by the number of springs
modeling the connection. Similarly the four types of damping matrices Cij , Csj , Cis and
Css can be evaluated as:

Csj = Cij +
cp
n









1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









; (3.46)

Cis = Cij +
cp
n









0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0









; (3.47)

Css = Cij +
cp
n









1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0









; (3.48)

Where the matrix Cij equals to Ce evaluated as explained in 3.39. Once the stiffness
matrices (equations 3.25 or 3.34, 3.43, 3.44, 3.45), the damping matrices (equations 3.39,
3.46, 3.47, 3.48), the mass matrices (equations 3.26 or 3.38) and the local force vector
(equation 3.41) are defined for the generic beam element, it is possible to rewrite the
equations of motion in the matrix form:

Mrz̈r +Crżr +Krzr − fv/r(zv, zr)− fsub/r(zs) = −qr. (3.49)

The vector fv/r(zv, zr) includes the equivalent nodal forces vector f ′′ij shown in equation
3.41; the vector fsub/r includes the equivalent nodal forces vector f ′′′ij,3 and f ′′′ij,4 shown in
equation 3.42; and the vector qr includes the equivalent nodal forces vector q′

ij shown
in equation 3.40.

1for simplicity the matrix is considered 4x4; if Kij = K2 the stiffness matrix has dimension 6x6; in this
case to calculate Ksj the term kp/n is multiplied by the matrix Esj,6×6 where all values are nulls except
of E1,1 = 1; to calculate Kis the term kp/n is multiplied by the matrix Eis,6×6 where all values are nulls
except of E5,5 = 1.
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3.5 A TEST OF THE RAIL MODEL

A comparison with analytical results have been done to test the correctness and the
accuracy of the presented rail model. The first test consists in the calculation of the
mode shapes of a cantilever beam. Once the stiffness and the mass matrices have been
evaluated for each element, they can be assembled in the global stiffness. Then the
boundary conditions have to be applied. The target is to calculate the natural frequency
of a cantilever beam with a rectangular section (figure 3.7) in the hypothesis of slender
beam and stocky beam. The boundary conditions are:

�

�

��

�

Figure 3.7 – Cantilever beam and its transversal section

{

v = 0, x = 0;

φ = 0 x = 0;
(3.50)

A similar condition is to set an infinity value in the correspondent degree of freedom
of the global stiffness matrix. Then to find the natural frequencies it is sufficient to find
the solutions of the equation:

Mz̈+Kż = 0. (3.51)

This differential equation has this type of solution:

z = a sin(ωt); (3.52)

the first two derivatives are:
ż = aω cos(ωt)

z̈ = −aω2 sin(ωt);
(3.53)

so the equation 3.51 can be written as:

−aω2M sin(ωt) + aK sin(ωt) = 0

(K− ω
2M)a = 0

(

M−1K− ω
2I
)

a = 0.

(3.54)

The solutions are: a = 0 (the banal one), and the others can be found solving the equa-
tion:

det
∣

∣M−1K− ω
2I
∣

∣ = 0. (3.55)

So the natural pulsations are the eigenvalues of the matrix Aeig = M−1K. The eigen-
vectors represent the natural shape functions. Analytically, the pulsations of a slender
cantilever beam can be calculated with the Euler-Bernoulli theory as [17]:

ωi = β2
i

√

EI

ρA
, (3.56)
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where βi are the solutions of the transcendental equation:

cos(βi L)cosh(βi L) + 1 = 0. (3.57)

In table 3.1 the natural frequencies calculated analytically are compared with the natu-
ral frequencies calculated with the finite element method in the case of a slender beam.
Moreover the results are shown in function of the number of element chosen for the
discretization. The values adopted for the beam are are:

• L = 1 m;

• b = 10 mm;

• h = 10 mm;

• A = 10−4 m2;

• I = 8, 333 10−10 m4;

• E = 2, 1 1011 N/m2 (steel);

• ν = 0, 3 (the Poisson’s ratio) ;

• ρ = 7850 kg/m3.

natural frequencies of a slender cantilever beam

mode theory N = 5 ǫ N = 10 ǫ N = 15 ǫ

1 8, 33 8, 29 −0, 43% 8, 29 −0, 45% 8, 29 −0, 44%
2 52, 24 51, 99 −0, 47% 51, 97 −0, 52% 51, 97 −0, 52%
3 146, 26 146, 00 −0, 18% 145, 52 −0, 51% 145, 49 −0, 53%
4 286, 61 288, 34 0, 60% 285, 27 −0, 47% 285, 06 −0, 54%
5 473, 80 478, 40 0, 97% 472, 14 −0, 35% 471, 19 −0, 55%
6 707, 77 794, 38 12, 24% 706, 98 −0, 11% 704, 00 −0, 53%

Table 3.1 – Natural frequencies for a slender cantilever beam

In the case of a stocky beam the natural frequencies can be calculated analytically from
the Timoshenko theory. The procedure is described in [50]. In the tables 3.2 and 3.3
the natural frequencies for a stocky beam are calculated by three different ways: the
Euler-Bernoulli theory, the Timoshenko theory, the finite element method. Moreover
the comparison is shown in two cases:

• the case of lumped mass matrix (table 3.2);

• the case of consistent mass matrix (table 3.3).

The parameters adopted for the beam are the same as the previous case except:

• L = 1 m;
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• b = 2 mm;

• h = 8 mm.

In figure 3.8 the first 6 mode shapes functions for a cantilever beam are shown.
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Figure 3.8 – first six modes shapes of a cantilever beam

3.6 THE RAIL PARAMETERS

Many types of rail are adopted to build railway infrastructure. The shape and the
proportions are similar but they are noticeable mainly by their weight and resistance.
Normally the infrastructure operators gives the standard specifications of the material
and shape for all the different types of rail. This specifications are not very different
in world countries. Following, we will see the most common type of Italian rails. The
Italian international standard UNI EN 13674 [62] describes three rail types:

• 46E4 (correspondent to the 46UNI in the old denomination);

• 50E5 (correspondent to the 50UNI in the old denomination);

• 60E1 (correspondent to the 60UNI in the old denomination).

The 60E1 type is the most common profile for the high speed railway lines. The same
profile is used in French (UIC60), in Belgium (Vign60), in German (SBBVI). In the figure
3.9 a section of this profile is shown. The rails are made of steel. The steel properties
have to be in keeping with the International Organization for the Standardization (ISO
9000:2001). The material parameters are the following:

• density: ρst = 7850 kg m3;

• modulus of elasticity: E = 2, 1 · 1011 N m2;

• Poisson’s modulus: ν = 0, 3.

Other material parameters for most common rail types are gathered in table 3.4.
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Figure 3.9 – A section of the rail type 60E1 [3]

Geometrical and material parameters for most common rail type

symbol parameter 46E4 50E5 60E1 unit

S transversal area 59, 78 63, 62 76, 70 cm2

mr linear mass 46, 9 49, 9 60, 21 kg m−1

Ixx moment of inertia (x-x axis) 1688 1844 3038, 3 cm4

Iyy moment of inertia (y-y axis) 338, 6 362, 4 512, 3 cm4

Table 3.4 – most common rail type for train infrastructure





4THE RAIL-PADS, SLEEPERS AND

BALLAST MODEL

4.1 INTRODUCTION

Comparing mass and stiffness between rail-pads and concrete sleepers it results that
rail-pad mass (1 ∼ 2 kg) is negligible with respect to concrete sleeper mass (250 ∼ 350
kg), and similarly sleeper stiffness (Ks = 30 ∼ 40 · 1012 N m−1) is six orders of mag-
nitude bigger than pad stiffness (15 ∼ 25 · 106 N m−1). Moreover rail-pads should not
be modeled as a punctual connection like [80, 45, 25, 51, 83], because rail-pads length
cannot be neglected compared to sleeper base. So rail-pad is modeled as many spring-
damper couples without mass. In accordance with [81, 25, 80, 83, 45] sleeper is modeled
as a discrete rigid element and ballast is modeled as single blocks placed in correspon-
dence of sleepers. A spring-damper couple, which represents the elasticity and viscos-
ity of every ballast block, connects them with sleepers-elements. Also a spring-damper
couple connects ballast blocks horizontally allowing the transmission of vibration in
sense of train motion. Ballast stiffness is calculated according to [82],

4.2 THE RAIL-PADS MODEL

Commonly rail-pads are made from polymeric compound, rubber or composite materi-
als. They are installed on rail seats in order to attenuate the dynamic variation of axles
loads and reduce noise. In figures 4.1 two type of high-density polyethylene (HDPE)
pads are shown. Due to their properties, the common scheme used to model pads is a
viscous damping connection. As explained in paragraph 4.1 the mass of pads it can be
neglected. A draft of pads model is shown in figure 4.2.

4.2.1 The rail-pad parameters

Rail-pad stiffness and damping properties depend on the type of rail fastening system
adopted. There are many type of systems: concrete, wood or steel sleepers, ballasted or
non ballasted track. In this thesis the model is developed to simulate the most common
high speed railway line present in Europe. In this case, concrete sleepers and ballasted
track is the usual configuration for the infrastructure. The values of stiffness and damp-
ing are given by rail-pad producers. The vertical stiffness kp varies between 50 and 300
MN m−1 and the vertical damping cp varies between 20 and 80 kNs m−1. In table 4.1
some values adopted by other authors are shown. In this table also the linear weight
of the rail is reported. Indeed the rail weight could be an index of the type of track (an
high speed line or classical). The standard for the high speed railway lines is the rail
type 60E1 (see table 3.4).

33
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(a) (b)

Figure 4.1 – [38] Rail pad specimens: (a) HDPE classic and (b) studded.

Figure 4.2 – A draft of rail pad model

Some values from bibliography

[42] [42] [80] [80] [25] [80] [45]

mr 50 56 56 56 56 60 60 kg m−1

kp 300 280 200 200 265 140 60 MN m−1

cp 45 63 21, 8 70 40 45 46 kNs m−1

Table 4.1 – Values of pad stiffness and damping used by other authors.

4.3 THE BALLAST MODEL

Track ballast forms the trackbed upon which railway sleepers are laid. It is packed
between, below, and around the ties. It is typically made of crushed stone. Some au-
thors [13, 67] studied the behavior of ballast under dynamic loads with discrete element
method. A discrete element method could represents the displacement of each crushed
stone giving a good description of real ballast behavior. Anyway the past models have
developed simulations for few centimeters of railway line. Their study was focused to
the volume of ballast around a singular sleeper. Only in this case the computational
time and the complexity of the model could be reasonable to use this kind of model.
Many studies [14, 56, 68, 27, 8, 9] show how the ballast vertical settlement is propor-
tional to the elastic deflection caused by each wheel pass and the number of applied
wheel loads. In this case, considering the objective of this work, the only interesting
output variable is the total elastic deflection. The displacement of each crushed stone
element is not required. For this reasons the ballast model made by Ahlbeck et al. [10]
has been implemented in this work. Ahlbeck et al. [10] assumed that the load trans-
mitting from sleeper to ballast coincides approximately with the cone distribution (see
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figure 4.3(a)). The inclination of the cone is just the ballast stress pervasion angle corre-
sponding to the Poisson’s ratio. On the basis of this assumption, it could be concluded

(a)

(b)

Figure 4.3 – The substructure: (a) load distribution region in continuous granular ballast [82]
(b) a draft of the substructure model.

that the vibrating part of the ballast under each sleeper is just the cone region such as
shown in figure 4.3(a). Therefore, the continuous granular ballast could be modelled
as a series of separate vibrating masses when analyzing the track dynamics, by which
the analytical process of the ballast vibration is greatly simplified [82]. Anyway this

Figure 4.4 – Theoretical vibrating ballast region.

simplification results extortionate in many cases. Therefore a longitudinal connection
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between ballast blocks is added to overcome this simplification (see figure 4.3(b)). This
connection allows the horizontal transmission of vibrations through the ballast, giving
to this part of track a shear stiffness and damping. Moreover, to represent the behavior
of background a spring-damper couple is added under ballast blocks (see figure 4.3(b)).

4.3.1 The ballast parameters

In accordance with Ahlbeck et al. [10] the stiffness for a ballast block can be evaluated
as:

kb =
2 tanϕ(ls − bs)Eb

ln
[

ls(2 tanϕhb+bs)
bs(2 tanϕhb+ls)

] , (4.1)

in which:

• ϕ is the cone load angle of ballast;

• ls and bs are the dimensions of the effective contact area between ballast and sleep-
ers (figure 4.5);

• hb is the height of the ballast stratus (figure 4.4);

• Eb is the modulus of elasticity of the ballast.

In the following table 4.2 values of kb and cb adopted by other authors are shown. The

Some values from bibliography

[42] [42] [80] [80] [25] [80] [45]

mr 50 56 56 56 56 60 60 kg
kb 100 70 31, 6 29, 1 240 29, 1 15 MN m−1

cb 72 82 21, 8 47 58, 8 47 9 kNs m−1

Table 4.2 – Values of ballast stiffness and damping used by other authors.

determination of Cb is quite difficult. Some authors [82] suggest to determine the ballast
damping with the results of the so-called "wheelset-dropping test", originally designed
by Sato [66] in Japanese Railways (JR) and now widely use in Chinese Railways. Others
authors [80] have estimated this coefficient as 40% of the critical damping coefficients,
that is equivalent to fix the damping ratio as ξ = 0.4. Anyway looking values adopted
by authors this kind of procedure overestimate the coefficient. In this work the value of
cb adopted has been found by the curve fitting method explained in paragraph 7.2. The
ballast stiffness kb calculated by equation 4.1 has been divided in half. Indeed the sym-
metry of problem is assumed, so the half of volume shown in figure 4.5 is considered.
According to the ballast volume as shown in figure 4.5, the vibrating mass of ballast
under sleeper support point could be evaluated as:

Mb = ρbhb

[

lsbs + (ls + bs)hbtan(ϕ) +
4

3
h2btan

2(ϕ)

]

, (4.2)

where ρb is the density of the ballast. In accordance with [80] coefficients for longi-
tudinal springs and dampers are calculated as 30% of respective vertical coefficient.
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Figure 4.5 – The 3D load distribution region under a sleeper.

Similarly, in accordance to this theory [82], the subgrade stiffness could be calculated as
the product of the cone base area and the modulus of subgrade:

kf = [ls + 2bstan(ϕ)][bs + 2lstan(ϕ)]Ef , (4.3)

where Ef is the K30
1 modulus of subgrade, which means the force acting on unit area

that leads to unit deformation. The ballast mass Mb and the subgrade stiffness calcu-
lated by equations 4.2 and 4.3 have to be divided in half for the same reason explained
for the ballast stiffness kb.

4.4 ASSEMBLED MOTION EQUATIONS FOR THE SUBSTRUCTURE

In order to simplify resolution of track/vehicle equations system, motion equations of
substructure are unified in matrix form by assembling equations of rail, sleepers and
ballast blocks. The motion equation for the mth sleeper (see figure 4.3(b)) is

msz̈s + (cb + cp)żs + (kb + kp)zs − cbżb − kbzb −
cp
n

n
∑

p=1

żr −
kp
n

n
∑

p=1

zr = msg; (4.4)

the motion equation for the mth ballast block is:2

mbz̈b + (2cw + cb + cf )żb + (2kw + kb + kf )zb − cwżbi+1
+

−cwżbi−1
− kwzbi+1

− kwzbi−1
− cbżs − kbzs = mbg.

(4.5)

Then the equations 3.49, 4.5 and 4.4 can be written in the matrix form:

Msubz̈sub +Csubżsub +Ksubzsub − fv/sub(zv, zsub) = qsub. (4.6)

1The K30 is the subgrade reaction modulus evaluated by the plate loading test (PLT) [41]
2The equation is written considering a generic ballast block connected horizontally with next and pre-

vious block. An exception has to be done for boundary condition in which i+1 and i− 1 terms in (4.5) are
nulls.
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This equation includes the rail motion equation too (equation 3.49). The term fsub/r(zs)
present in equation 3.49 is a linear function of sleeper displacements. So it can be in-
cluded in substructure assembled stiffness matrix shown in equation 4.6 as shown
froward (equation 4.10). Let n be the number of rail nodes and m be the number of
sleepers included in the track route considered; Msub is the assembled mass matrix of
substructure:

Msub =









Mr 02n×m 02n×m

0m×2n Ms 0m×m

0m×2n 0m×m Mb









(2n+2m)×(2n+2m)

, (4.7)

in which the sub-matrix Kr has been defined in paragraph 3.4; Ms and Mb are

Ms = diag
[

ms · · · ms

]

m×m
,

Mb = diag
[

mb · · · mb

]

m×m
; (4.8)

Ksub is the assembled stiffness matrix of substructure:

Ksub =









Kr BT 02n×m

B Ks D

0m×2n D Kb









(2n+2m)×(2n+2m)

, (4.9)

in which sub-matrices B, Ks, D and Kb are defined3 as

B =























−kp 0 0 0 0 0 · · · · · · · · · 0

0 0 0 0 −kp 0 · · · · · · · · · 0

0 0 0 0 0 0
. . . . . . . . .

...

...
...

...
...

...
...

. . . . . . . . .
...

0 0 0 0 0 0 · · · 0 −kp 0























m×2n

, (4.10)

Ks = diag
[

kb + kp · · · kb + kp
]

m×m
,

D = diag
[

−kb · · · −kb
]

m×m
, (4.11)

Kb =





































k′wbf −kw 0 · · · · · · · · · 0

−kw kwbf −kw 0 · · · · · · 0

0 −kw kwbf −kw 0 · · · 0

... 0 −kw
. . . . . . . . .

...

...
... 0

. . . . . . . . . 0

...
...

...
. . . . . . kwbf −kw

0 0 0 · · · 0 −kw k′wbf





































m×m

, (4.12)

3Sub-matrix B shown in this example is written for simplicity considering only two beams between
sleepers.
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where k′wbf = kw + kb + kf and kwbf = 2kw + kb + kf ;
Csub is the assembled damping matrix written as Ksub but substituting k terms with
correspondent c terms;
Zsub is the assembled vector of displacements and rotations:

Zsub =





zr
zs
zb





(2n+2m)×1

, (4.13)

in which zs and zb are defined as

zs =
[

zs1 · · · zsi · · · zsm
]T

m×1
,

zb =
[

zb1 · · · zbi · · · zbm
]T

m×1
; (4.14)

qsub and fsub are the assembled forces vector:

qsub =





qr

qs

qb





(2n+2m)×1

, (4.15)

fv/sub =





fv/r
0

0





(2n+2m)×1

, (4.16)

where qs and qb are defined as

qs = msim×1, qb = mbim×1 , (4.17)

and im×1 is a vector where all components are one. It has to be noted that only the
vector fv/r is present in equation 4.16. Indeed the vector fsub/r present in equation 3.49
is included in the stiffness and damping matrices (see sub-matrix B in equation 4.10).





5THE RAIL CORRUGATION

5.1 INTRODUCTION

The friction and the relative motion between wheel and rail-head surfaces makes the
rail head worn during train motion. A railway stands millions of wheel passes before
the grinding maintenance. Additionally, its substitution is necessary only in few oc-
casion, when major damages occur. Anyway the wear phenomenon does not appears
homogeneously. It follows that the wheels meet height gradient during the motion even
if the base level of the rail is perfectly horizontal. This phenomenon is well known and
studied. Many models have been edited to draw up track worn profiles. In this work,
three models have been used to generate track irregularities. The first one is suggested
by the EN ISO 3095 : 2004 standard [15]. The International Organization for Standard-
ization reports the frequency spectrum of rail irregularities. Then the roughness profile
has been evaluated in 1/3 octave bands discretizing with 50 wavelengths in each band.
The procedure to generate the roughness profile is described in [29]. The second model,
used by American railway [45], allows to simulate the aging of track varying the grade
of irregularities. In the third model an equivalent defect on the railway is used to sim-
ulate the effect of out-of-round wheels.

5.2 THE ISO 3095 MODEL

The ISO 3095 : 2004 standard gives the limit spectrum of rail roughness. The values in
dB re 1 µm can be described as a logarithmic function of the center band wavelength
as:

Lrough(λ) = 27, 176− 18, 419 log10

(

λ0

λ

)

with λ > 10mm. (5.1)

A graph of the function is shown in figure 5.1. The rail roughness level spectrum Lrough

is defined by [29]:

Lrough = 10 log10

(

r̃2

r̃2re

)

(dB re 1µm), (5.2)

where r̃2 is the mean square value of the roughness profile ηr(x) evaluated in 1/3 octave
bands. Then the rail roughness profile can be determined as sum of sine functions as:

ηr(x) =

Nd
∑

i=1

ai





M
∑

j=1

sin

(

2π

λij
x+ φij

)



 , (5.3)

Where Nd is the number of bands and M is an entire number big enough to have a
good discretization. The parameter φij is the mutually independent phase angle. It can
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Figure 5.1 – Limit spectrum of rail roughness given by EN ISO 3095 : 2004 standard

be calculated as an uniformly random variable distributed between 0 and 2π. The M
wavelengths λij in band i are determined by assuming a constant wavenumber incre-
ment ∆ki that is function of the minimum and maximum wavelength in each band:



























∆ki =
2π

M

(

1

λmin
i

− 1

λmax
i

)

λmin
i = 2−

1
6λi

λmax
i = 2

1
6λi

(5.4)

The amplitude of M sines in each band is obtained as:

ai =

√

2

Nd
10

Lrough(λi)

20 . (5.5)

In order to edit a roughness profile the limit of the wavelengths have to be chosen. It
can be defined λlower as the shorter wavelength and λupper as the longer. Then the re-
lated frequencies can be calculated as the ratio between train velocity and wavelengths
(fupper = V/λlower and flower = V/λupper). Following the number of center wavelengths
in each band has to be determined. The ratio between two consecutive bands center
frequencies in 1/3 octave band is k =

3
√
2 (see annex A.1), so:

fi+1 =
3
√
2 fi,

fi+2 =
3
√
2 fi+1 = (

3
√
2)2 fi,

fupper = (
3
√
2)Ndflower,

Nd = ⌈3log2
(

fupper
flower

)

⌉.

(5.6)

Then all the bands center frequencies are:

fi = (
3
√
2)iflower for i = 1, 2, . . . , Nd. (5.7)

Once all wavelengths λi are calculated too (λi = V/fi), the roughness level can be
calculated by the equation 5.1. Then the amplitude in each band is calculated by the
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equation 5.5. Finally the rail roughness profile can be edited by equation 5.3. The steps
of the procedure are resumed here:

• fixate the upper and lower wavelength of defects: λupper, λlower;

• fixate the number of band discretization M ;

• calculate the number of bands center frequencies with equation 5.6;

• calculate the value of every frequency by equation 5.7 (and then λi);

• calculate the roughness level by mean of ISO 3095 standard for each band by
equation 5.1;

• for each band i calculate the limit wavelengths λmin
i and λmax

i by equation 5.4;

• for each band i calculate all discretizing wavelengths λij by equation 5.4;

• for each band i edit M φij random variable uniformly distributed between 0 and
2π;

• calculate the defects amplitude for each band by equation 5.5;

• edit the roughness profile by equation 5.3.

5.3 THE AMERICA RAILWAY STANDARD MODEL

The value of vertical defect in accordance with Lei and N.A. Noda [45], can be written
as

ηr(t) =

Nd2
∑

k=1

ak sin(ωkt+ φk)

ηr(x) =

Nd2
∑

k=1

ak sin

(

ωk
V

x
+ φk

)

,

(5.8)

where ak is a Gaussian random variable with expectation zero and variance σk, φk is a
random variable with uniformity distribution in 0− 2π range, V is the train speed and
Nd2 is the number of defect functions. In this work these values are generated with the
Cristoforo Colombo random number generator. Pulsation for every sinusoidal function
is

ωk = ωl + (k − 1)∆ω, k = 1, 2, . . . , Nd2; (5.9)

with
∆ω =

ωu − ωl

Nd2 − 1
. (5.10)

The method requires the range of wavelengths, or the range of pulsation (upper pul-
sation ωu, lower pulsation ωl)1, to be given, and the number of sinusoidal function Nd2

has to be fixed. America Railway Standard gives the power spectral density S(ω) for
six line grades of railway tracks (from worst line to best line). It is

S(ω) =
0.25Avω

2
c

(ω2 + ω2
c )ω

2
, (5.11)

1If the train speed is constant, the pulsation can be calculated as function of the wavelength.
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where Av and ωc are defined in table 5.1.

Coefficients for Av and ωc

Igl Line grade Av (cm2 rad m−1) ωc (rad m−1)

1 1.2107 0.8245
2 1.0181 0.8245
3 0.6816 0.8245
4 0.5376 0.8245
5 0.2095 0.8245
6 0.0339 0.8245

Table 5.1 – Coefficients taken from American Railway Standard [45].

Once the power spectral density function is defined, the variance σk can be calcu-
lated as

σ2
k = 4S(ωk)∆ω, k = 1, 2, . . . , Nd2. (5.12)

5.4 THE RAIL EQUIVALENT CORRUGATION IN THE CASE OF OUT-OF-
ROUND WHEELS

Sometimes, when a sudden braking occurs, the wheels slide over the railway head for
many meters. The sliding generates a big increment of friction in a limited zone of
wheels. This phenomenon causes sever wear of the part of the wheel in contact with the
rail, leading to the formation of a “wheel flat”. Then these wheels continue to move on
railway rotating. An impulsive increment of dynamic contact force occurs when wheel
flats meet railway head during wheel rotation. This increment can be very conspicuous
if the wheel flat is large (up to about 100 mm) and the height of wear is a big value. For
this reason this phenomenon has been studied by many authors. In this work a study
of the wheel-flat effects has been carried out. A draft of an idealized flat is shown in
figure 5.2, As shown in figure 5.2 an idealized flat can be identified by his depth d and

Figure 5.2 – Rolling of a wheel with an idealized flat [77].

his length l. If r is the radius of the wheels, d and l are related by d ≈ l2/(8r). A perfect
wheel moving on an equivalent defect railway can be used to simplify the model. The
effects on the models will be the same. The following irregularity profile can be used
[77, 80]:

zp(xp) =
d

2

[

1− cos
(

2π
xp
l

)]

, (5.13)
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where xp is the longitudinal position of the contact point. The position of contact point
is not the same of the wheel center (see figure 5.3).

Figure 5.3 – Difference between center and contact point position [77].

The vertical position can be calculated as:

z0(x0) = zp(xp) + r(1− cosβ), (5.14)

where x0 is the longitudinal position of the wheel center and xp is the is the longitudinal
position of the contact point. They are related by:

x0 = xp + rsinβ. (5.15)

where β is the arctangent of the derivative of zp in the point xp as:

β = arctan
∂zp(xp)

∂xp
≈ ∂zp(xp)

∂xp
=

πd

l
sin

(

2π
xp
l

)

. (5.16)

Figure 5.4 – Wheel flat geometry from equation 5.13, r = 460mm d = 2, 15mm and l = 150mm;
continuous line: irregularity on the railhead, dashed line: wheel center trajectory.

In figure 5.4 both functions (the railhead corrugation and the wheel center trajec-
tory) are shown.





6SOLVING EQUATIONS

6.1 INTRODUCTION

In the previous chapters the physic model has been resumed in two equations: one for
the vehicle (Equation 2.2) and one for the substructure (Equation 4.6). To simplify the
reading of this work these Equations are reported here:

Mvz̈v +Cvżv +Kvzv − fsub/v(zv, zsub) = qv, (6.1)

Msubz̈sub +Csubżsub +Ksubzsub − fv/sub(zv, zsub) = qsub. (6.2)

The system is non linear because the term fsub/v(zv, zsub), present in both vector equa-
tions, contains the contact force evaluated by Hertz’s theory (see paragraph 2.4). Dur-
ing simulation, the train moves along the track with a fixed velocity. It’s also assumed
that the railway is straight in absence of curves. The first vector Equation 6.1 has the
fixed dimension of 10 DOF. The dimension of second equation depends of the length of
railway track, and the precision adopted for the discretization in the FE rail model. In
this chapter two method of resolution are shown. The first one is the classical Newton
Raphson method. This method and the model are shown in a paper published during
the thesis [23, 24]. The second method proposed in this work consists in an particular
algorithm that combines a fixed point and a Newton Raphson method. The algorithm
of resolution has been programmed with the software MATLAB R©. An user-friendly
interface has been designed to allow a more simple use of the tool (see figure 6.4).

6.2 THE DISCRETIZATION

The space discretization has been done with the DEM and FEM (see chapters 2, 3 and
4). The Finite Difference Method (FDM) has been used for the time discretization. Dis-
placements and speeds have been written as function of accelerations by the linear
acceleration method (Newmark scheme with δ = 1/2 and θ = 1/6).















żi+1 = żi +
∆t

2
(z̈i+1 + z̈i)

zi+1 = zi +∆tżi +
∆t2

6
(z̈i+1 + 2z̈i)

, (6.3)

where variables at ith time-step are knowns. Then the vector equations for the vehicle
and for the substructure can be rewritten in the discrete form:

Fv (z̈v,i+1) = Avz̈v,i+1 + fv,i+1(z̈v,i+1, z̈sub,i+1)− bv,i = 0 (6.4a)

Fsub (z̈sub,i+1) = Asubz̈sub,i+1 + fsub,i+1(z̈v,i+1, z̈sub,i+1)− bsub,i = 0 (6.4b)
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where

Aα =

(

Mα +
∆t

2
Cα +

∆t2

6
Kα

)

,

bα,i =

[

qα −Cα

(

żα,i +
∆t

2
z̈α,i

)

−Kα

(

zα,i +∆tżα,i +
∆t2

3
z̈α,i

)]

,

(6.5)

for α = v or sub. These two systems of equations are coupled by the contact vector.
Indeed, the contact forces Rr/w are inside both of the vectors fv,i+1 and fsub,i+1 with
opposite signs.

6.3 FIRST METHOD OF RESOLUTION

6.3.1 The Newton-Raphson method

As the forces vector, in both of the equations 6.4a and 6.4b, is a non linear function
of accelerations, it can be possible to solve the non linear system with the Newton-
Raphson iterative method. A singular vector equation that includes both equations for
vehicle and substructure can be written:

F (z̈i+1) = Az̈i+1 + fi+1(z̈i+1, z̈i+1)− bi = 0 (6.6)

where fi+1 is:

fi+1 =

[

−fsub/v(z̈v,i+1, z̈sub,i+1)

−fv/sub(z̈v,i+1, z̈sub,i+1)

]

. (6.7)

The number of equations in 6.6 is neq = 10 + 2n + 2m, where 10 is the number of
degrees of freedom of the vehicle, n is the number of rail nodes and m is the number
of sleepers included in the route considered. To simplify the calculation of Jacobian,
it can be useful to separate it in two terms. Looking the equation 6.6 the Jacobian of
three terms have to be calculated. The first term is Az̈i+1. This is a linear function of the
accelerations so the first Jacobian term is J1 = A. The second term is fi+1(z̈i+1, z̈i+1).
This term contains the Hertz contact forces. As seen in paragraph 2.4, contact forces are
not a linear function of displacements and consequently neither of accelerations. The
calculation of the Jacobian of this term will be shown in next paragraph 6.3.2. Finally the
Jacobian of the third term (bi) is null. The Jacobian connected to the system of equations
6.6 is:

J(z̈ki+1) = A+









06×6 06×(4+2n) 06×2m

0(4+2n)×6 R(z̈ki+1)(4+2n)×(4+2n) 0(4+2n)×2m

02m×6 02m×(4+2n) 02m×2m









, (6.8)

where R(z̈ki+1)(4+2n)×(4+2n) is a matrix which contains the derivatives of the compo-
nents of the vector fi+1 with respect to accelerations. The component at the line l and
the column c is:

Rl,c =
∂fl+6

∂z̈i+1,c+6
, 1 ≤ l ≤ (4 + 2n), 1 ≤ c ≤ (4 + 2n). (6.9)

Once the Jacobian is defined, the solution z̈i+1 can be calculated as limit of the sequence

J(z̈ki+1)(z̈
k+1
i+1 − z̈ki+1) = −F(z̈ki+1), (6.10)

where the superscript k is relative to the kth Raphson iteration and subscript i is relative
to the ith time-step.
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6.3.2 The derivation of the R matrix components to evaluate the Jacobian

The terms inside the matrix R depending of displacements are derivative of the contact-
forces. To simplify the construction of the matrix it is possible to split it in 4 sub-matrices
as:

R =

[

R114×4 R124×2n

R212n×4 R222n×2n

]

. (6.11)

R11 and R12 are related to the equation of motion of wheels (Equation 2.1). R21 and R22

are related to the equation of motion of rail nodes. Moreover, the matrices R11 and R21

contain the derivative of the contact force with respect to the wheel accelerations; the
matrices R12 and R22 contain the derivative of the contact force with respect to the rail
nodes accelerations. As shown in Equation 2.7 the wheel/rail contact force is calculated
as:

Rr/wj =







kh(zwj − ẑrj − ηrj)
3
2 + ch(żwj − ˙̂zrj − η̇rj) if δ > 0,

0 if δ < 0.
(6.12)

The derivation of R11 components

R11 is a 4 × 4 diagonal matrix. If l and c are respectively the generic line of the matrix
and the generic column, the cth term is the derivative of the contact force with respect
to the cth wheel acceleration as:

∂fk,i+1
sub/vl

∂z̈k,i+1
wc

=
∂Rk,i+1

r/wl

∂z̈k,i+1
wc

= kh
∆t2

4

(

zk,i+1
wl

− ẑk,i+1
rl

− ηi+1
rl

)
1
2
+ ch

∆t

2
,

(6.13)

with l = c varying from 1 to 4; zk,i+1
wc

is the displacement at the time-step i+1, at the kth

Newton iteration, of the cth wheel; the displacements zk,i+1(z̈k,i+1, zi) at the time-step
i+ 1 at the kth Newton iteration are calculated with Equations 6.3. The rail corrugation
function ηr doesn’t varies in k-iterations.

The derivation of R12 components

The components of this matrix contain the derivatives of contact force with respect to
the accelerations corresponding to cth DOF of the rail (if c is the generic column of the
matrix). R12 is a 4×2n matrix. Each line corresponds to each wheel and each column to
each DOF of the rail nodes. In each line the contact force is present only in the rail DOF
corresponding to the beam where the contact wheel/rail occurs. The the lc-terms of the
matrix is:

∂fk,i+1
sub/vl

∂z̈k,i+1
rc

=
3

2
kh(z

k,i+1
wl

− ẑk,i+1
rl

− ηi+1
rl

)
1
2
∂ẑk,i+1

rl

∂z̈k,i+1
rc

=
3

2
kh(z

k,i+1
wl

− ẑk,i+1
rl

− ηi+1
rl

)
1
2
∂ẑk,i+1

rl

∂zk,i+1
rc

∂zk,i+1
rc

∂z̈k,i+1
rc

=
3

2
kh(z

k,i+1
wl

− ẑk,i+1
rl

− ηi+1
rl

)
1
2
∂ẑk,i+1

rl

∂zk,i+1
rc

∆t2

6

=
∆t2

4
kh(z

k,i+1
wl

− ẑk,i+1
rl

− ηi+1
rl

)
1
2ni+1

c ;

(6.14)
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where ẑk,i+1
rl

is the rail displacement at the lth contact-point and zk,i+1
rc is the cth DOF of

the rail (a displacement or a rotation). The derivative of displacement with respect to
acceleration is (from 6.3):

∂zk,i+1
rc

∂z̈k,i+1
rc

=
∆t2

6
, (6.15)

and the derivative of the vertical displacement of the contact point ẑk,i+1
rl

with respect
to the cth DOF of the rail zk,i+1

rc corresponds to the shape function ni+1
c .

The derivation of R21 components

The components of this matrix contains the derivatives of local forces vector (Equations
3.41) with respect to the wheel displacements. R21 is a 2n × 4 matrix. In each column
the contact force is present only in the the rail nodes corresponding to the beam where
the contact occurs. The derivative of the term for the generic term of the matrix is:

−
∂fk,i+1

v/subl

∂z̈k,i+1
wc

= −ni+1
l

∂Rk,i+1
w/rc

∂z̈k,i+1
wc

= −ni+1
l

[

kh
∆t2

4

(

zk,i+1
wc

− ẑk,i+1
rc − ηi+1

rc

)
1
2
+ ch

∆t

2

]

,

(6.16)

The derivation of R22 components

The components of this matrix contains the derivatives of local forces vector (Equations
3.41) with respect to the nodes accelerations. R22 is a 2n×2n matrix. In each line the jth

contact force to derivate is the Rk,i+1
w/rj

connected to the ⌈l/2⌉th beam. The term is present

only in the the DOF where the contact occurs. The derivative of the term for the generic
term of the matrix is:

−
∂fk,i+1

v/subl

∂z̈k,i+1
rc

= −ni+1
l ni+1

c

∂Rk,i+1
w/rj

∂z̈k,i+1
rc

= −ni+1
l ni+1

c

[

kh
∆t2

4

(

zk,i+1
wj

− ẑk,i+1
rj − ηi+1

rj

)
1
2
+ ch

∆t

2

]

,

(6.17)

where the subscript j, varying from 1 to 4, indicates which wheel is in contact with the
lth DOF.

6.3.3 Computational time-costs

The resolution of the problem consists to determinate the Jacobian, factorize it, and
calculate the vector of displacement solving the system 6.10. This operation has to be
repeated for each Newton iteration k and for each time-step i. The problem to factorize
the Jacobian matrix is the step of the algorithm that requires the largest part of compu-
tational time. Both Cholesky and Lu factorization algorithm have been tested to find the
most faster. The results depend principally on the length of track simulated. To improve
the speed of the algorithm and allow simulations in shorter time another procedure is
proposed in following paragraph.
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6.4 SECOND METHOD OF RESOLUTION

6.4.1 Combination of Newton and Fixed point methods

This algorithm combines a fixed point and a Newton method to solve the non linear
contact problem. At every time-step, for first fixed-point iteration, substructure equa-
tions 6.4b are solved assuming that contact forces can be calculated with Eq. (2.7); where
Rw/r is calculated as function of vehicle and substructure displacements relative to pre-
vious time-step; instead rail defects values are related to current time-step. The dis-
placement vector of substructure, now calculated, becomes inputs for Newton-Raphson
method applied to vehicle dynamic equation 6.4a. Than the non-linear contact force is
calculated for every Newton-Raphson iteration, as function of vehicle displacements
(witch varies for every N.R.1 iteration); substructure displacements are temporally as-
sumed as constant.

The Jacobian related to the vehicle system (6.4a) is

J(z̈k,i+1
v , ziv, z

i
sub) = Av +

[

06×6 06×4

04×6 R4×4

]

, (6.18)

where R is a diagonal matrix. Once the Jacobian J is defined, the solution z̈i+1 can be

calculated as limit of the sequence
[

z̈ki+1

]

k∈N
, where the superscript k is relative to the

kth N.R. iteration, such that2:

J
(

z̈ki+1

)(

z̈k+1
i+1 − z̈ki+1

)

= −F
(

z̈ki+1

)

, (6.19)

At the end of N.R. iterations new contact-forces and new displacements vector for the
vehicle are calculated. Then new contact-forces become input for the next f.p.3 iteration.
At every f.p. iteration convergence is checked on displacement vector of substructure
as

norm(zhsub − zh−1
sub )

norm(zhsub)
≤ ǫ, (6.20)

where ǫ is the tolerance and subscript represents the jth f.p. iteration. If the inequality
(6.20) if satisfied, the algorithm goes to the next time-step. Similarly convergence is
checked on displacement vector of vehicle to proceed in N.R. iterations.

The strong point of this algorithm consists in treating the non linearity of contact
forces for every f.p. iteration applying N.R. only to the vehicle system. Indeed vehicle
matrices dimensions are widely smaller than ones of substructure, so matrix factoriza-
tion and system resolution result faster. Moreover, treating a part of non linearity of
system vehicle leads a diminution of f.p. iterations. A global overview of the method is
presented in Figure 6.1.

6.4.2 The derivation of the R matrix components to evaluate the Jacobian

In order to build the matrix R, the contact-force can be rewritten in function of acceler-
ations using the equations 6.3. So the contact force calculated at the time-step i + 1 for

1Newton-Raphson.
2subscript “v” is omitted to simplify notations
3fixed-point.
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Figure 6.1 – Algorithm of resolution.

the iteration k is:

Rk,i+1
r/wj

=



























kh(z
i
wj

+∆tżiwj
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0 if δ < 0.

(6.21)
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If l and c are respectively the generic line of the matrix and the generic column, the
diagonal elements are defined as

∂fk,i+1
sub/vl

∂z̈k,i+1
wc

=
∂Rk,i+1

r/wl

∂z̈k,i+1
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6
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wl
− 2z̈iwl

)− ẑk,i+1
rl

− ηi+1
rl

)

1
2

+ ch
∆t

2
,

(6.22)
with l = c varying from 1 to 4.

6.4.3 Computational time-costs

The algorithm here presented involves big advantages. Indeed in this case, Only the Ja-
cobian matrix 10× 10 has to be factorized at each kth iteration and at each ith time-step.
The matrix Asub in equations 6.4b has to be factorized only one time at the beginning of
the algorithm. Than it can be stocked in memory. Moreover the problem is non linear
cause of the Hertz contact-force. The non linearity is related for a half to the vehicle and
for a half to the substructure (see Equation 6.12). The part of non linearity connected to
the vehicle, with this method, is solved by the Newton-Raphson iterations. This fact al-
lows to have a minor number of p.f. iterations because at every p.f. iteration the part of
non linearity connected to the vehicle is resolved separately. Finally the advantages are
double. First the total number of p.f. iterations results minor than in the first method.
The second advantage consists in the c.p.u. computation time saved in each iteration.
Indeed in this case only the 10 × 10 Jacobian matrix of vehicle equations has to be
factorized allowing a faster computation. The model has been implemented in a first
time with VBA R©and than with MATLAB R©. Programming languages such as VBA R©or
FORTRAN R©could be best-performing. Anyway the speed of new algorithm proposed
in paragraph 6.4 and the limited complexity of the model allowed to take advantage of
the many tools included in MATLAB R©. This fact allowed a fast programmability and
a lot of advantages in the post-processing phase. The computational time for a generic
simulation is shown in Figure 6.2. The simulation parameters are:

• total number of DOF = 2498;

• length run by train L = 22.794 m;

• train speed 300 km h−1;

• time-step dt = 3.6 10−5 sec.

The total computational time has been T = 319.987 s. The characteristics of PC used are:

• RAM: 7.7 GiB;

• Processor: Intel Core i3-2310M CPU @ 2.10GHz x 4;

• OS: Windows 7 R©64-bit;

• software: MATLAB R©.
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The computational time in function of total number of DOF is shown in figure 6.3. In
this case train speed is 160 km h−1, the time-step chosen is 3.38 10−5 sec and the length
run by train varies between 3 and 38 meters.

Figure 6.2 – Computational time for a generic simulation.

Figure 6.3 – Computational time of simulations at varying the total number of DOF.
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Figure 6.4 – Interface of the software.
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IN this part the results taken-out with the model presented are shown. The results of
simulations have been carried out during three phases. In the first phase the simu-

lations have been conducted taking in consideration only the substructure and exciting
it with an impulsive force. This procedure has allowed to calibrate the model param-
eters and correct the errors present in the software. Indeed the analysis of track recep-
tance represents the most common mean used in literature to validate the substructure
model. Comparisons between experimental results and numerical data of other models
have been carried out. In a second phase the vehicle has been added to the model. A
check on the railway and sleeper accelerations caused by the train pass has been car-
ried out. Also in this phase, numerical data have been compared with other models and
experimental results. This phase has allowed to calibrate and correct the corrugations
functions, the vehicle model, and the vehicle/substructure coupling method. The accu-
racy and the efficiency have been evaluated in this phase. In the third phase the speed
and the sensitivity of the model have been evaluated. During this phase the treatment
of data and the new results have been used to extrapolate new studies about the phe-
nomenon of the critical speed and to develop a new formulation to evaluate the railway
tolls.





7THE ANALYSIS OF TRACK

RECEPTANCE

7.1 INTRODUCTION

The analysis of track receptance is a good technique used by many authors to char-
acterize the parameters of the models; for this reason receptance methods reflect the
emphasis in the literature. Indeed when the transfer function is known it is relatively
easy to calculate the response of the vehicle/track system to a moving irregularity [42].
It is possible to calibrate the parameters by a curve fitting technique, comparing mea-
sured and numerical calculated receptance. All measured vertical direct receptances of
track are characterized by a common behavior. A first resonance is just over 100 Hz. At
this frequency the sleepers and rail move on the ballast; a second is about 400−500 Hz,
in this frequencies range the rail moves relative to the sleepers on the railpads [42]. Up
to this second resonance frequency the point of excitation it is not very important. The
position of the excitation point becomes really relevant around the so-called “pinned-
pinned” resonance. In this frequency range (around 700− 1000Hz) there is a resonance
of the track when it is excited between sleeper and an anti-resonance when it is ex-
cited at a sleeper [42]. This resonance is very closed to the first natural frequency of
a beam (with the same characteristics of the rail) with pinned-pinned boundary con-
ditions considering the same length of the sleepers-base. Moreover for this reason the
models with continuously supported track cannot represent the correct behavior in the
pinned-pinned frequency range. Two type of receptance experiences are normally exe-
cuted to have the correct overview of the global behavior: the vertical receptance related
to a midspan excitation and the vertical receptance related to a on-sleeper excitation. In
figures 7.1 and 7.2 a draft of both experiences is shown. To edit the receptance chart two

Figure 7.1 – receptance simulation: midspan excitation

61
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Figure 7.2 – receptance simulation: on-sleeper excitation

ways can be followed. The first way consists to excite the railhead of track with a sinu-
soidal load and register the displacement. Then the transfer function between the input
function (excitation force) and output function (displacement) gives one point on the
receptance chart. Varying the excitation frequency the receptance chart can be edited in
the interested frequencies range. The second way consists to excite the track with an im-
pulsive force. In this case the transfer function gives the results for all frequencies with
one singular experience. In figure 7.3 the hammer for an impulsive excitation is shown.
In figure 7.7 the waves propagation in time and in space due to a midspan excitation
are is shown.

Figure 7.3 – receptance experience with the impact hammer: on-sleeper excitation [18]

7.2 THE CURVE FITTING

The technique of curve fitting can be adopted to calibrate the model parameters. Not all
the parameters are susceptible to a big uncertainty, indeed there are some value quite
sure and not modifiable. The “sure” parameters of the track are: the linear mass and
the stiffness of railway, the sleeper mass and the sleepers base. For this reason these pa-
rameters are known and they don’t play any role during the phase of curve fitting. The
procedures to estimate all other parameters values have been shown in part I. Some pa-
rameters such as the ballast stiffness or the ballast damping have been estimated with
procedures involving a margin of error bigger than the “sure” parameters. For this rea-
son these parameters play a fundamental role in the phase of curve fitting. A sensitivity
analysis has to be done in order to compare the measured and calculated receptances.
This step allows to estimate the importance of parameters and their influence to a given
output function (the receptance in this case). The parameters who influence more the
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receptance of track are: The ballast stiffness kb and damping cb, the railpads stiffness
kp and damping cp, the linear mass of rail mr and the rail bending stiffness kr = EI .
Varying these parameters the receptance changes with particulars behaviors. Looking
at figure 7.4 the influence of more important parameters is evident. The ballast stiff-

Figure 7.4 – The influence of the more important parameters to the receptance chart

ness, if incremented, moves the lowest resonance in the higher frequencies way. The
same behavior is caused by the pad stiffness to the second resonance. The rail bending
stiffness produces the same effect too. Anyway this parameter is quite sure, being the
bending stiffness proportional to the elastic modulus of steel and the inertial modulus
of rail section (”sure“ values). The ordinates in the receptance chart are proportional to
the vertical displacement. For this reason the ballast and the pad damping move the
resonance peaks up and down with inverse proportion. Another important parame-
ter is the sleeper base. Indeed the ”pinned-pinned“ resonance increases if the sleeper
base increases too. This fact deserves some details. The sleepers base is a parameter
known and fixed and it cannot be changed during the phase of calibration. Anyway,
more exactly, the vertical displacement at midspan point is proportional to the length
of rail not supported by pads but suspended between the internal faces of two consec-
utive sleepers. This is one of the reason why present model is more accurate than past
models. Indeed, as seen in paragraph 3.3 the length of rail between sleepers, allowing a
free vertical displacement in the connection-point model, is longer than reality. For this
reason the connection-point model over-estimates the receptance at the pinned-pinned
frequency. The present model, with the hypothesis of connection-area fits really better
this value.
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7.3 THE IMPORTANCE OF THE CONNECTION-AREA MODEL

In figures 7.5 and 7.6 the comparison between present model and experimental data
by Knothe and Grassie [42] is shown. To show the importance of the connection-area
model, the numerical results in the case of connection-point hypothesis is included
too. The connection-point model produces errors especially in the range of the pinned-
pinned frequency. In this frequency range, it overestimates the receptance by 402% in
the case of midspan excitation. Additionally, in the case of on-sleeper excitation, the re-
ceptance is underestimated by the 149%. On the contrary the connection-area model fits
very well the experimental data. All the parameters used in the simulation are reported
in table 7.1.

Table 7.1 – Model parameters adopted for evaluation of railway receptance.

notation parameter value unit

Model parameters of substructure

E young modulus of rail 2.07 · 1011 N m−1

I inertial modulus of raila 2348 · 10−8 m4

A section area of rail 71.7 · 10−4 m2

χ Timoshenko shear coefficienta 0.34

mr railway massa (per unit length) 56 kg m−1

Ms sleeper massa 220 kg

kp pad stiffnessa 280 · 106 N m−1

cp pad dampingb 35 · 103 N s m−1

kb ballast stiffnessb 160 · 106 N m−1

cb ballast dampingb 90 · 103 N s m−1

lsl sleeper basea 69.8 cm

Other simulation parameters

nms number of sleepers (midspan excitation) 99
nos number of sleepers (on-sleeper excitation) 100

dt time step 3.37 · 10−5 s
n number of pad elements 8
d number of beam elements between sleepers 10

a Values extracted form [42]
b estimated Values
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Figure 7.5 – Comparison between receptances of the railway in the case of: the connection-point model,
the connection-area model and experimental data [42]; case of midspan excitation.
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Figure 7.6 – Comparison between receptances of the railway in the case of: the connection-point model,
the connection-area model and experimental data [42]; case of on-sleeper excitation.
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Figure 7.7 – Waves propagation in time and in space due to a midspan excitation.



8SIMULATIONS WITH MOVING TRAIN

8.1 THE SCENARIOS STUDIED

A comparison with experimental results and with other numerical models is done to
validate the present model. An appropriate number of finite elements is chosen to have
a good approximation and simultaneously not extend too much the computational
time. The part of rail between two consecutive sleepers is discretized with nine beam
elements; the part of rail vertically connected to sleepers by pads is discretized with six
beam elements. The model is applied to many railway lines with different properties.
In the Case 1 the rail is an old line with wood sleepers. A corrugation function has been
assigned to the rail with the American railway standard procedure (see paragraph 5.3).
The comparison with experimental results is shown here. In the Case 2 the case of out-
of-round wheels is treated. Finally, in the Case 3 a newer line is studied. The corrugation
function in this case has been evaluated with the ISO3095 [15] method.

8.2 CASE 1 - CORRUGATED RAIL (AMERICAN RAILWAY STANDARD

[45]) - COMPARISON WITH EXPERIMENTAL RESULTS

First railway section, 64.35 m long, is relative to the Italian line Alcamo-Marsala (116
km). It’s an old line with wood sleepers. In this railway, measurements have been car-
ried out with a series of accelerometers by [25]. A running of a ALn688 train with a
single configuration, having a velocity of 90 km h−1, has been considered (see figure
8.1).

67
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Figure 8.1 – A picture of a ALN668 Locomotive at the Train Station

The model parameters are shown in table 8.1. A comparison between experimental
data [25] and numerical results of the rail vertical acceleration is shown in figure 8.2.
Similarly a comparison of sleeper vertical acceleration is shown in figure 8.3. Experi-
mental data (figure 8.2(a)) show how the peaks of rail vertical acceleration are included
between 50 m s−2 and 100 m s−2. Moreover, they occur in correspondence of the four
wheels-sets passes. The same behavior is predicted by numerical simulation (figure
8.2(b)). In numerical simulations G. Di Mino et Al. [25] found a similar behavior for the
sleeper acceleration too. However experimental data (figure 8.3(a)) shows that peaks of
sleeper vertical acceleration occur in correspondence of bogies passes but they are not
distinguishable for each wheel-set. figure 8.3(b) shows how present model predicts well
this kind of behavior. The defect grade of railway is unknown so it has to be assumed.
To study the influence of uncertainties connected to line grade index, many simulations
have been implemented. Numerical results and experimental data have been compared
varying the line grade index. The worst value of index (Ilg = 1) allows numerical sim-
ulation to fit well experimental data. Moreover as this case is referred to an old line it is
supposable that defects are relevant.
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Figure 8.2 – Comparison between: (a) experimental data [25] and (b) numerical results of the rail
vertical acceleration in the case 1.

8.3 CASE 2: OUT-OF-ROUND WHEELS - COMPARISON WITH EXPERI-
MENTAL RESULTS AND OTHER NUMERICAL MODELS

Second railway section is about the field testing reported by [22]. Their study has been
carried out to analyze vertical interaction between wagon and track in case of out-of-
round wheels. The wheels have been artificially grounded with a defect 40 mm long
and 0.35 mm deep. Experimental data has been used by [80] to validate their model.
The discretization adopted for the rail is the same as the previous case. Because of the
few parameters reported by [22], model parameters for train and substructure have
been extracted both from [80] and [22]. All values are reported in table 8.2. A compar-
ison between experimental data [80] and numerical results for the second railway line
is shown in figure 8.4. A simulation with no rail defects have been developed by other
authors too [80, 22] (see figure 8.5(a) and 8.5(b)). Focusing on figure 8.4(a), the con-
tact force returns to static value approximatively 0.05 s after the perturbation caused
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Figure 8.3 – Comparison between: (a) experimental data [25] and (b) numerical results of the sleeper
vertical acceleration in the first case.

by wheel defect. Analyzing the experimental data in figure 8.4(a) it can be seen how
the contact force maintains a periodical oscillation until next defect. This fact could be
probably explained considering that the experimental data is affected by a minimum
level of defects present on rail. A lower level of defect: Ilg = 6 is applied to the rail to
best represent this phenomena. Looking at figure 8.4(b) the simulation with rail defects
seems to fit better experimental data. The lower and the upper pulsation in table 8.2 are
equivalent to ordinary values of long wavelength roughness (2000 mm) and a medium
wavelength roughness (220 mm) when the train velocity is 70 km h−1. The number of
sinusoidal defects functions Nd2 (see equation 5.8) seems to be not so relevant after the
value of 100, anyway the X. Lei and N.A. Noda [45] suggested the value: Nd2 = 2500.
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Figure 8.4 – Comparison between experimental data [80] and numerical results for the case 2: (a) not
including rail defects; (b) including rail defects.
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(a)

(b)

Figure 8.5 – Numerical results of: (a) Sun and Dhanasekar[80]; (b) Fermer and Nielsen[22].
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Table 8.1 – Model parameters adopted for the simulation in first railway line.

Case 1

notation parameter value unit

Model parameters of substructurea

E young modulus of rail 2.07 · 1011 N m−1

I inertial modulus of rail 1884 · 10−8 m4

A section area of rail 63.62 · 10−4 m2

χ Timoshenko shear coefficient 0.34

mr railway mass (per unit length) 49.9 kg m−1

Ms sleeper mass 33 kg
Mb ballast mass 700 kg
kp pad stiffness 26.5 · 107 N m−1

cp pad damping 40 · 103 N s m−1

kb ballast stiffness 24 · 107 N m−1

cb ballast damping 58.8 · 103 N s m−1

kw horizontal stiffness 7.84 · 107 N m−1

cw horizontal damping 80 · 103 N s m−1

kf subgrade stiffness 7.68 · 107 N m−1

cf subgrade damping 64.6 · 103 N s m−1

ls sleeper base 65 cm

Model parameters of train Aln668a

2Mc car body mass 28800 kg
Mb bogie mass 3600 kg
2Mw wheelset mass 500 kg
lc total length 23540 mm
2lb wheelset base 2.45 m
2lw bogie base 15.95 m
k1 primary suspension stiffness 500 kN m−1

k2 secondary suspension stiffness 8800 kN m−1

c1 primary suspension damping 0.5 kN s m−1

c2 secondary suspension damping 41.5 kN s m−1

Other simulation parameters

dt time step 6 · 10−5 s
Kh Hertz contact coefficientb 0.87 · 1011 N m−3/2

Ch contact damping coefficient 3 · 105 N s m−1

Ls simulation line lengtha 64.45 m
n number of pad elements 7
d number of beam elements between sleepers 9
N number of defects functions 200

ωu upper pulsation 1560 rad s−1

ωl lower pulsation 12 rad s−1

Ilg line grade index 1

V train velocity 90 km h−1

a parameters extracted from [25].

8.4 CASE 3: CORRUGATED RAIL (ISO3095 [15]) - COMPARISON WITH

OTHER NUMERICAL MODELS

In this case a rail with corrugation based on ISO3095 [15] is considered. The modal
frequency analysis of the contact-force has been compared with results obtained by A.
Johansson and J.C.O. Nielsen [36] model. The comparison between models is shown
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in figure 8.6. The biggest amplitude of the normal contact-force Fourier spectrum cor-
responds to the train sleeper passing frequency: 85 Hz. Focusing on figure 8.6(b), am-
plitudes increase in magnitude around 600 Hz, 900 Hz and 1200 Hz. These frequencies
correspond to the bending modes of a rail, with pinned-pinned boundary conditions,
considering the same length of the boogie wheelbase [32, 78]. Experimental results con-
firm this behavior [36].
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(a) Fourier spectrum of the normal contact force by Johansson & Nielsen [36]
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(b) Fourier spectrum of the normal contact-force calculated with our model

Figure 8.6 – Comparison between A. Johansson and J.C.O. Nielsen [36] model and the proposed one in
case of ISO3095 [15] based corrugation.



8.4. Case 3: corrugated rail (ISO3095 [15]) - Comparison with other numerical models 75

Table 8.2 – Model parameters adopted for the simulation in second railway line.

Case 2

notation parameter value unit

Model parameters of substructure

E young modulus of raila 2.07 · 1011 N m−1

I inertial modulus of railb 2940 · 10−8 m4

A section area of railb 77.70 · 10−4 m2

χ Timoshenko shear coefficientb 0.34

mr railway massa (per unit length) 60 kg m−1

Ms sleeper massb 270 kg

Mb ballast massb 480 kg

kp pad stiffnessa 57.65 · 106 N m−1

cp pad dampinga 33.65 · 103 N s m−1

kb ballast stiffnessc 29.06 · 106 N m−1

cb ballast damping 8.30 · 103 N s m−1

kw horizontal stiffnessc 7.84 · 106 N m−1

cw horizontal dampingc 2.49 · 103 N s m−1

kf subgrade stiffnessc 76.80 · 106 N m−1

cf subgrade damping 64.6 · 103 N s m−1

lsl sleeper basea 68.5 cm
Ls effective length of rail support areab 16.4 cm

Model parameters of the train

2Mc car body massd 72000 kg
Mb bogie massb 3600 kg
2Mw wheelset massb 1900 kg
2lb wheelset baseb 1.675 m
2lw bogie baseb 10.36 m
k1 primary suspension stiffnessb 6500 kN m−1

k2 secondary suspension stiffnessb 2555 kN m−1

c1 primary suspension dampingb 10 kN s m−1

c2 secondary suspension dampingb 30 kN s m−1

rw wheel radiusa 0.475 m

Other simulation parameters

dt time step 5.14 · 10−5 s
Kh Hertz contact coefficientb 0.87 · 1011 N m−3/2

n number of pad elements 7
d number of beam elements between sleepers 9
N number of defects functions 2500

ωu upper pulsation 555 rad s−1

ωl lower pulsation 61 rad s−1

Ilg line grade index 6

V train velocity 70 km h−1

a Values extracted from [22]
b Values extracted form [80]
c Calculated Values





9THE SENSITIVITY ANALYSIS

9.1 INTRODUCTION

A sensitivity analysis has been done to study the influence of each model variable to
output parameters. Indeed all variables are susceptible to uncertainties. Moreover the
variables have a range of variation depending on the type of train or substructure. Dur-
ing the phase of model building it is necessary to study the influence of each variable
to focus the calibration on most important variable and, in some case, eliminate the
unnecessary ones. A OFAT method (one-factor-at-a-time) is adopted to evaluate the
sensitivity of parameters to each variable.

9.2 THE INPUT VARIABLES

In order to analyze the sensitivity of the model, the variational range of each values
has to be set. In tables 4.2 and 4.1 the values of kb, cb, kp, cp adopted by other authors
is shown. Considering these values, the variational range for the substructure stiffness
and damping values has been fixed. The sleeper masses are known; they depend prin-
cipally on the type and material used (wood, reinforced concrete, bi-block in reinforced
concrete and steel). Also the rail mass is known; it depends on the type of rail adopted.
The rail linear masses are shown in table 3.4. The Manchester Benchmark [34] and the
values adopted by other authors have been considered to evaluate the range of varia-
tion of the train variables. In figure 9.1 the variational range of each variable is shown.
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Figure 9.1 – Variational range of each input variable.

9.3 THE OUTPUT PARAMETERS

The output parameters selected for the analysis are the dynamic amplification factor of
the wheel-rail contact force δdyn = Rw/r/Rstatic (Rstatic is the vehicle weight divided
by the number of wheels) and the sleeper elastic vertical deflection zsl. The dynamic
amplification factor is time dependent. The contact force Rw/r varies around the static
value during the simulation and at certain time steps it assumes very high values. Any-
way, these values are singular points and do not represent the complete behavior of
contact-force during the whole time of simulation T . The following procedure has been
conducted to choose a representative output parameter. The time interval [0, T ] has
been divided in p intervals of size τ . For each g-range the maximum value of the dy-
namic amplification factor δdyn,g has been evaluated for the third wheel from the left. In
fact, the third wheel is the one less affected by boundary effects. Therefore the average
between maximum values in all the time ranges has been calculated for each simula-
tion. The procedure is summarized in equation (9.1).



































δdyn =

p
∑

g=1

δdyn,g
p

p =
T

τ

δdyn,g = max

[

Rw/r,3(t)

Rstatic

]

t ∈ [(g − 1)τ, (g)τ ]; g = 1, 2, . . . , p.

(9.1)

The interval τ has been calculated as the time necessary to cover the passing of three
consecutive sleepers. The sleeper distance used is 0.65 meters, so τ has been calculated
as 2.3m/V , being (3× 0.65m) < 2.3m. An example for p = 3 is shown in figure 9.2.
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Figure 9.2 – An example for the determination of the average dynamic amplification factor.

Many studies [14, 56, 68, 27, 8, 9] show how the ballast vertical settlement is pro-
portional to the elastic deflection caused by each wheel pass and the number of ap-
plied wheel loads. Being ballast maintenance one of the most important cost for the
rail infrastructure operators, a sensitivity analysis of the sleeper deflection is done. The
sleeper chosen to check the maximum deflection value is the nearest one to the mid-
point between the end of the railway length and the fourth wheel from the left. Among
others, this sleeper is the one less affected by boundary effects.

9.4 THE OFAT METHOD

The sensitivity index for every variable can be calculated with the standard regression
coefficient [37] as:

SRCi =
β2
i V (Xi)

V (Y )
∈ [0, 1] (9.2)

where the operator V means variance of ; The coefficient βi, in the case of a linear
model, can be calculated as the ratio between the variation of the output parameter ∆Y
and the increment of the variable ∆Xi. Two simulations have been done for each input
variable. One considering the value xmin and one considering Xmax. Then the values β
have been determined as:

β =
β1 + β2

2

β1 =
y(xmax)− y(x0)

xmax − x0

β2 =
y(x0)− y(xmin)

x0 − xmin
.

(9.3)

The SRC of each variable for the dynamic amplification factor and the sleeper deflec-
tion are reported in figures 9.3 and 9.4. In the first figure 9.3 the variables are sorted by
model parts: the substructure and the train; in the second figure 9.4 the variables are
sorted by type: mass, damping and stiffness.
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Figure 9.3 – Standard regression coefficients of input variables sorted by parts.

Figure 9.4 – Standard regression coefficients of input variables sorted by type.

9.5 THE RESULTS

In figure 9.5, input parameters are plotted in a log scale and ordered according to their
influence. SRC values are also reported in tables 9.6 and 9.7. The importance of train
mass is observed in both analysis. The ballast equivalent stiffness has a lot of influence
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on the sleeper deflection but not on the dynamic amplification factor. Focusing on figure
9.5(a) a significant outcome is about the damping properties of ballast. Indeed they
results not very important if compared to damping of pads. This property is inverted
for the ballast deflection (figure 9.5(b)) where the ballast equivalent damping is more
significant. Moreover in both of the analysis the wheel masses show a large influence.

(a)

(b)

Figure 9.5 – Sensitivity analysis of: (a) the dynamic amplification factor; (b) the sleeper elastic
deflection.
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Figure 9.6 – Standard regression coefficients of input variables for the dynamic amplification factor
ordered by importance.



9.6. The influence of Train speed on sleeper elastic deflection and dynamic amplification
factor 83

Figure 9.7 – Standard regression coefficients of input variables for the sleeper deflection ordered by
importance.

9.6 THE INFLUENCE OF TRAIN SPEED ON SLEEPER ELASTIC DEFLEC-
TION AND DYNAMIC AMPLIFICATION FACTOR

The influence of train speed on sleeper elastic deflection and on dynamic amplification
factor can be studied with a sensitivity analysis too. In this case all input variables
except velocity are fixed. The values adopted to do the analysis are the same as those
of figure 9.1. The variational range of train speed is 40− 450 km h−1. The sleeper elastic
deflection and the dynamic amplification factor in function of train velocity are shown
in figure 9.8.
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(a)

(b)

Figure 9.8 – The influence of train speed on: (a) the sleeper elastic deflection; (b) the dynamic
amplification factor.

Focusing on figure 9.8(a), the behavior of curve can be separated in five ranges. In
the first range 40− 120 km h−1 the tendency of the curve is an inverse proportion. This
fact could be explained with a comparison to road infrastructure. It is well known how
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the dynamic modulus of many material is directly proportional to the frequency of ex-
citation. This is the case for the road infrastructure. Indeed the slower vehicles, weight
being equal, produce much rutting than faster vehicles. In the same way it can be af-
firmed that, for slow speeds, the equivalent complex modulus of substructure is directly
proportional to train velocity. Then the deformation decrease with speed increasing. In
the second range 120 − 145 km h−1 the behavior changes totally. In this interval the
elastic deflection increases quickly up to a critical speed (145 km h−1 in this case). The
reason of this behavior will be discussed in paragraph 12.2.1. Once the critical speed is
passed the elastic deflection decreases quickly in the range 145 − 170 km h−1. This in-
terval where the deflection increases and decreases quickly is centered on critical speed
with a range of Vc ± 25 km h−1. Once this interval is passed the deflection continues to
decrease but with a smaller slope. This range is 170− 300 km h−1. Finally the deflection
restarts to increase with a small inclination in the range 300 − 450 km h−1. Focusing
on figure 9.8(b), the behavior of dynamic amplification factor has been divided in five
range too, only to compare intervals with elastic deflection chart. In this case the dy-
namic amplification factor is proportional to speed in first, fourth and fifth interval. In
the range Vc ± 25 km h−1, it assumes the same behavior than sleeper deflection. Some
guesswork could be done comparing curves. Overlooking what happens near to critical
speed, the elastic deflection must obey to two physical phenomenons contemporane-
ously. The first one is about the equivalent complex modulus of substructure. It could
be deduced, force being equal, that the elastic deflection should always decrease with
speed increasing. The second phenomenon can be seen focusing on dynamic amplifi-
cation factor behavior. Indeed, increasing the speed, the dynamic load increases too.
It follows that the elastic deflection should increase with the dynamic load increasing.
Finally these two phenomenons contrasts each to other. In the case studied, the first
phenomenon wins on second one up to 300 km h−1 speed. Once this speed is passed
the dynamic loads still increases inversing the process.





10A NEW FORMULATION TO EVALUATE

THE RAILWAY TOLLS

10.1 INTRODUCTION

The target of this paragraph is to propose a new formulation for the calculation of the
railway toll. In accordance to the new deregulation of European rail transport, all mem-
ber states of EU have to separate the railway administration in two separate agency: the
Infrastructure Manager and the Train Operator. Indeed this separation will allow to lib-
eralize the trade of this kind of service. In this scenario Train Operators pay a toll to
the Infrastructure Manager to allow the trains circulation. The toll depends on many
parameters such as the train speed, the weight, the train type, the type of railway track,
the energy consumption, the time and the kilometers run. A part of toll is proportional
to the Infrastructure wear. It is well known that the biggest wear cost is related to the
ballast maintenance. It’s a difficult problem to find a simple relationship between costs
and train parameters. For this reason in this paragraph a method to evaluate the part
of toll related to the ballast maintenance is proposed. Moreover we perceived that the
Italian method to evaluate the wear tolls is improper.

10.2 THE ITALIAN SCENARIO

The Italian Infrastructure Manager in Italy is RFI (Rete Ferroviaria Italiana). It is re-
sponsible for the track, the stations and the installations. RFI ensures to railway un-
dertakings the access to the railway network, performs the maintenance and the safe
circulation on the whole network, manages the investments for the upgrading and im-
provement of railway lines and installations and it develops the technology of systems
and materials [1]. All Train Operators, such as Trenitalia or NTV, have to follow the
EU directive on the deregulation of European rail transport. As a consequence they
have to pay a toll to RFI to allow the trains circulation. The relations between Infras-
tructure Manager and Train Operators are regulated by the PIR (Prospetto Informativo
di Rete). This document, among other things, sanctions the rules for the toll payment.
Moreover an Italian Ministerial Decree reports the method to evaluate the toll. The De-
cree is D.M. 21/04/2000: determinazione dei criteri di determinazione del canone di utilizzo
dell’infrastruttura ferroviaria (the methodology to evaluate the Railway Infrastructure
tolls). According to the Decree the total Toll can be divided in two parts:

$ = $1(line) + $2(space, time). (10.1)

The part $1 is a fixed quota depending on the type of line. This part considers the quality
of the Infrastructure in the way requested by train Operator. The second part depends
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on the use of the Infrastructure. Therefore this part is proportional to time and space. It
can be calculated as

$2 = $ref

n
∑

j=1

s
∑

w=1

kmjw (α1Wcapacity + α2Wdensity + α3Wwear), (10.2)

where:

• $ref is a reference fixed cost $ref = 1e;

• j is the type of line (a list is shown in the decree);

• n is the total number of line types;

• w is the type of time slot (a list is shown in the decree);

• s is the total number of time slots;

• α1, α2, and α3 are three fixed coefficients; the sum as to be equal to 1; the decree
attachment specify that each coefficient is αi = 0.3;

• Wcapacity is the cost weight related to the reduction of Infrastructure capacity;

• Wdensity is the cost weight related to the vehicle traffic density;

• Wwear is the cost weight related to wear.

Finally the wear is 1/3 of total cost $2. This weight can be evaluated as discrete function
of a variable z. The values of Wwear in function of z are reported in table 10.1.

Coefficients for Wwear

Interval Interval limits Wwear

i zi−1 zi Wwear,i

1 0 0.8 0.7
2 0.8 1.2 1.0
3 1.2 2.0 1.8
4 2.0 > 2 3.5

Table 10.1 – Values of the discrete function Wwear(z)

The variable z is function of train speed, train weight and number of pantographs
used. It is:

z =
β1 (V

2 P ) + β2 (V N)

β1 (V 2
ref Pref ) + β2 (Vref Npant,ref )

, (10.3)

where:

• β1 = 0.85;

• β2 = 0.15;

• V is the train speed;
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• P is the train weight;

• N is the number of pantographs used;

• Vref is the train reference speed Vref = 80 km h−1;

• Pref is the train reference weight Pref = 500 tonn.

The aim of this paragraph is to evaluate the relationship between wear costs and train
variables. To compare it to the new formulation proposed, the part of cost related to
substructure has to be isolated. The function z can be separated in two parts, one for
the substructure wear and one for the pantograph wear:

z = zsub + zpant

z =
β1 (V

2 P )

β1 (V 2
ref Pref ) + β2 (Vref Npant,ref )

+
β2 (V Npant)

β1 (V 2
ref Pref ) + β2 (Vref Npant,ref )

.

(10.4)
Moreover, looking at coefficients β1 = 85% and β2 = 15%, it can be affirmed that the
substructure cost is more relevant. Than, grouping all constants, the function zsub(V, P )
can be defined as:

zsub = csub P V 2

csub =
β1

β1 (V 2
ref Pref ) + β2 (Vref Npant,ref )

.
(10.5)

Knowing the function zsub(V ) and Wwear(z) it is possible to determine the function WV .
To define this function the approximation zpant = 0 has been assumed. This assumption
is reasonable if considering the coefficients β1 and β2. Moreover the aim is not to focus
on Wwear values but only on the relationship with train speed. Next considerations are
true not considering costs connected to the wear of pantographs.
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Figure 10.1 – Wear weight cost Wwear in function of z, and zsub in function of speed.

In figure 10.1 both functions are shown and related to train speed. To edit the charts
the train weight has been fixed as P = 500 tonn. The Wwear is a discrete function of z
and so, it will be a discrete function of speed too. It can be said that the cost is fixed
under a minimum speed V (z1), than it increases with the speed by a discrete function,
finally it is constant over a maximum speed V z2. In the example shown the values of
minimum and maximum speeds are Vmin = 51 km h−1 and Vmax = 119 km h−1. These
values are function of P being:

Vmin =

√

z1
CsubP

Vmax =

√

z3
CsubP

, (10.6)

Where z1 and z3 are shown in table 10.1. To understand the trend of Wwear(V ) in the
Vmin − Vmax range the discrete function Wwear can be redefined doing a regression
between the average values of discrete intervals. In this case the new function Ŵwear is
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defined as:

Wwear = f(z) =























W1 z < z1

W2 z1 ≤ z < z2

W3 z2 ≤ z < z3

W4 z3 ≤ z

→ Ŵwear = g(z) =











W1 z ≤ zm1

h(z) zm1 < z < zm4

W4 zm4 ≤ z

;

(10.7)
where the average values zm2 and zm3 are the centers of the intervals z1−z2 and z2−z3;
and the values zm1 and zm4 are calculated fixing the distance between zmi points:

zm1 = z1 − (z2 − z1)

zm2 = z3 + (z2 − z1)
(10.8)

Doing a regression in this range (zm1 − zm2) a quadratic relationship between Wwear

and V has been found:

Wwear = Wwear(0) +m(z − zm1)
2. (10.9)

taking m = 0.847 the regression results a good approximation (R2 = 0.99). Now the
function Wwear(V ) can be defined in this range as:

Ŵwear = h(z) = W (0) +mz2m1 − 2mcsubPV 2 +mc2subP
2V 4. (10.10)

A chart of this function is shown in figure 10.2.

Figure 10.2 – Wear weight cost Wwear in function of speed V .

This function evidences the strong proportionality (almost 4th degree) between
wear costs and train speed. As shown in next paragraph, this hypothesis results to
much strong and discordant to reality. Indeed the part of wear cost, that is the biggest
part of total wear cost, has a different relationship with train speed.
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10.3 THE BALLAST SETTLEMENT PHENOMENON

Many studies [14, 56, 68, 27, 8, 9] show how the ballast vertical settlement is propor-
tional to the elastic deflection caused by each wheel pass and the number of applied
wheel loads. [14] and [27] have proposed a linearly proportion between settlement
and load cycles after a phase of stabilization. They have noticed that the duration of
this phase (almost 50, 000 − 100, 000 cycles) is related to the type of ballast interven-
tion adopted: tamping or stoneblowing (see annex A.2). Bodin-Bourgoin et al. [14] and
Guerin [27] have expressed the derivative of ballast settlement in function of two vari-
ables: the number of load cycles and the elastic deflection; as:

∂δpl
∂Nc

= azbsl

δpl = mNc

, (10.11)

where the coefficients a and b are given, Nc is the number of wheel passes, and zsl is the
elastic deflection of ballast. Bodin-Bourgoin et al. [14] and Guerin [27] have proposed
different values for a and b. Both authors have proposed these empiric formulations
interpolating data of experimental tests. The tests have been carried out on scale model
but only Bodin-Bourgoin et al. [14] have proposed values correcting the scale error. The
values suggested by Bodin-Bourgoin et al. [14] are: a = 2.1 · 10−6 and b = 1.17. In
the model presented in this work the elastic deflection in equation 10.11 equals to the
sleeper vertical displacement. Other authors have studied the ballast settlement during
the stabilization phase. Indraratna and Salim [33] have proposed the following relation
up to 100, 000 load cycles:

δpl = c+ d logNc. (10.12)

Looking equations 10.11 and 10.12 some considerations can be done. In the first phase
(almost 100, 000 load cycles) the ballast settlement increases very fast with load cycles.
Paderno [56] has noticed the same behavior carrying out tests on a 1 : 1 scale model.
Than, once this phase is finished, the increasing ratio appears stabilized and the settle-
ment is linearly proportional to load cycles. Looking the equations 10.11 and 10.12 only
the second one seems to represent this fact. In truth the equation 10.11 considers this
behavior implicitly. Indeed as shown by Paderno [56] the ballast stiffness grows quickly
in the first phase after every maintenance intervention. Consequentially the elastic de-
flection decreases. The elastic deflection caused by the train tr can be evaluated once the
substructure variables are fixed. If a reference train (with a reference speed and weight)
is chosen, it is possible to edit the trend of ballast settlement in function of the number
of wheel passes. Similarly it is possible to edit the trend for the train tr. An example
of trend is shown in figure 10.3. The angular coefficient is more than proportional to
elastic deformation.
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Figure 10.3 – Settlement of ballast.

Every Infrastructure Manager fixes the limits of intervention for the ballast settle-
ment. The ballast settlement is often connected to the vertical alignment V A. The ver-
tical alignment is an index of the surface uniformity in the vertical plane. In tables
10.2 and 10.3 the limits of intervention of the vertical alignment V A for the Italian and
French infrastructure are shown.

Limit of intervention in Italy

speed range [km h−1] values [mm]

200− 250 10 < V A ≤ 14
160− 200 11 < V A ≤ 20
120− 160 12 < V A ≤ 20
< 120 15 < V A ≤ 22

Table 10.2 – Intervention limits of vertical alignment V A for the Italian infrastructure

Limit of intervention in French

speed range [km h−1] values [mm]

220− 300 V A10−15 ± 9
220− 300 V A15−20 ± 12
220− 300 V A25−35 ± 18
160− 220 ±9
120− 160 ±10
80− 120 +10,−15
40− 80 +10,−20
< 40 ±25

Table 10.3 – Intervention limits of vertical alignment V A for the French infrastructure

The V A index can be evaluated measuring the vertical deflection of the rail at the
midpoint of a chord positioned along railhead. The length of chord is 10 m in Italy and
in French too. The only difference occurs in the high lines (220 − 300 km h−1). In this
range the French Infrastructure Manager applies different base to evaluate the VA in-
dex longer bases (10− 15 m, 15− 20 m, 25− 30 m) as seen in table 10.3. Once the limit
of vertical alignment is passed, the maintenance of ballast is necessary. In worst cases,
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when the life of ballast approach to its end, a total substitution is preferred to the main-
tenance intervention. Indeed the frequency of interventions increases proportionally to
the age of ballast. A typical scheme of ballast interventions following the Veit model [?
] is shown in figure 10.4.

Figure 10.4 – Scheme of ballast interventions.

In this figure the green dotted lines represent the interventions of tamping and reg-
ulation (T + R), the violet line is the trend of vertical alignment, the blue dotted line
represents the aging effect. The aging of ballast is caused directly and indirectly by the
trains traffic. By a direct way, trains traffic affects the wear of ballast with vibration and
dynamic loads; this fact is 30% responsible of ballast aging. Indirectly, the train traffics
causes maintenance intervention to restore the correct vertical alignment of the track.
These interventions are 60% responsible of ballast aging [? ].

10.4 THE COST OF SETTLEMENT: A NEW FORMULATION FOR THE RAIL-
WAY TOLL

The aim of this paragraph is to suggest a renovation for the toll cost functions. In partic-
ular the function proposed will affect the wear costs related to ballast maintenance. The
maintenance of ballast represents the 40− 50% of the total maintenance costs [56]. The
French group SNCF estimates a cost of 9, 500 e km−1 for the maintenance operation of
ballast tamping and regulation; and a cost of 710, 000 e km−1 for the substitution [52].
These costs are so high because the largest part of works has to be executed during the
night. In order to propose a new formulation some important considerations done in
past paragraphs are here resumed:

• the cost of ballast maintenance is proportional to the grow rate of ballast settle-
ment;

• the grow rate of ballast settlement is proportional to elastic deflection (equation
10.11);

• The elastic deflection depends on substructure parameters, train parameters and
it varies with velocity (figure 9.8(a));



10.4. The cost of settlement: a new formulation for the railway toll 95

• the substructure parameters are affected by age (equation 10.12 and [? ]);

• the elastic deflection is affected by ballast age;

• the ballast aging implies an increasing of settlement grow rate.

The cost per kilometer connected to a vertical alignment limit $V A can be calculated as:

$V A =

op
∑

i=1

$it+r + $s
[

e km−1
]

, (10.13)

where op represents the number of maintenance operations of ballast tamping and reg-
ulation done before the substitution, $it+r is the cost for the tamping and regulation
(9, 500e km−1), and $s is the cost for the substitution (710, 000e km−1). Then it is pos-
sible to evaluate the cost for unit of ballast settlement $bs:

$bs =
$V A

V A (op+ 1)−
∑op+1

1 AGi

[

e km−1mm−1
]

, (10.14)

where AGi is the part of settlement that cannot be restored even with the intervention
(see figure 10.4). Finally the toll cost for the train tr could be calculated as:

$trtoll = $bs∆δtrpl
[

e km−1
]

, (10.15)

where ∆δtrpl is the settlement caused by the pass of the train tr. It can be calculate from
equation 10.11 as:

∆δtrpl = 1.44 · 10−6
[

z2.51zsl,locoN
tr
axles,loco + z2.51zsl,wagonN

tr
axles,wagon

]

[mm], (10.16)

where N tr
axles,loco is the axles number of the train locomotive tr and N tr

axles,wagon is the
axles number of the train wagon.

Figure 10.5 – Settlement of ballast caused by the pass of the train tr.

To evaluate the ballast settlement in equation 10.16, we decided to use the equation
10.11 and not the equation 10.12 for two reasons. First, equation 10.12 considers the
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aging of ballast, but a train has not to be considered as responsible if it passes when the
substructure is old or new. Indeed the objective is to evaluate its effect and it should
not vary in function of the moment of transit. Second, in the equation 10.12 no physical
variables appear; Indeed c and d are two constants depending on substructure and train
but not directly related with some known parameters. On the contrary in equation 10.11
the elastic deflection could be evaluated with present model as seen in paragraph 9.6.
Finally we propose an equation, where the toll can be expressed in function of elastic
deflection: from equations 10.15 and 10.16:

$trtoll = $bs 1.44 · 10−6
[

z2.51zsl,locoN
tr
axles,loco + z2.51zsl,wagonN

tr
axles,wagon

] [

e km−1
]

. (10.17)

The toll function cost in equation 10.17 represents the most common situation in which
only two type of axles (one for the locomotive and one for other wagons) are present.
If the train has a complex composition, and not only two type of axles are present, the
equation for the toll cost can be becomes:

$trtoll = $bs 1.44 · 10−6
ty
∑

1

z2.51sl,tyN
tr
axles,ty

[

e km−1
]

, (10.18)

where the subscript ty index the type of axle. The values of $bs and N tr
axles are simple

to evaluate; on the contrary zsl depends on train characteristics, substructure type, and
especially the speed of train. Anyway for a chosen train and a chosen substructure, the
only variable of interest is the speed of transit of the train. Only numerical method,
as the one presented in this work, can give a good reliability of elastic deflection in
function of speed. In figure 9.8(b) we have seen the function Zsl(V ). From these values
it is easy to edit the curve $trtoll(V ). In the figure 10.6 an example of toll function cost is
shown.

Figure 10.6 – Example of toll in function of train speed.

For this example the values reported in table 10.4 are adopted.
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parameter value

op 20
V A 12
N tr

axes 20
ty 1

Table 10.4 – Values adopted for the toll function cost example.

The values adopted for the substructure and the train, are the input variables used
for the sensitivity analysis (see figure 9.1).





11A RECEPTANCE ANALYSIS FOR THE

COUPLED VEHICLE/TRACK SYSTEM

11.1 INTRODUCTION

The problem to study the response of substructure to the variation of train speed
equals, for many points of view, to study the substructure reaction to different exci-
tation frequencies. During motion the contact force is subjected to variate with two
causes of excitation:

• the rail deflection (that varies along the motion direction);

• the rail corrugations.

Moreover if we see the contact force registered on a fixed point of the rail, the excitation
is an impulsive force present when a wheel passes over the point. In this case the
frequencies of excitation are caused by:

• the wheel-base;

• the boogie-base.

On the other side the response of the substructure could be studied by a modal analysis.
The study of receptance view in paragraph 7 gives some important informations about
the substructure behavior. Anyway it cannot be enough to understand the response
of track during a train pass. Indeed train masses and suspension play an important
role during the contact with track, modifying its response. Then it results necessary
to do a receptance analysis of the coupled structure, considering both systems: train
and substructure. Many positions of train and many points of excitation have been
combined to do the analysis.

11.2 TRAIN AT THE CENTER OF TRACK

In the first combination the train has been positioned to the center of track. Both
midspan excitation and on-sleeper excitation have been tested to analyze the recep-
tance. A draft of these combinations is shown in figure 11.1.
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(a)

(b)

Figure 11.1 – Type of excitation for the receptance simulation: (a) centered train, midspan excitation;
(b) centered train, on-sleeper excitation.

In this case the receptances measured aren’t very different from the ones measured
without train. The results are shown in figure 11.2. The peaks rest in the same posi-
tion but with smaller value. It can be concluded that the wheels are far enough from
the point of excitation and they don’t modify the natural frequencies of the structure.
However they influence their amplitudes. Indeed the only effect observed is an increas-
ing of damping. In figure 11.3 the waves propagation in time and in space, in the case
of on-sleeper excitation, is shown.
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(a)

(b)

Figure 11.2 – Analysis of receptance of the coupled system for different combinations: (a) centered train,
midspan excitation; (b) centered train, on-sleeper excitation.
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Figure 11.3 – Waves propagation in time and in space in the case of centered train, on-sleeper excitation.

11.3 THIRD WHEEL AT THE CENTER OF TRACK

In the second combination the third wheel has been positioned to the center of track.
Both midspan excitation and on-sleeper excitation have been tested to analyze the re-
ceptance. A draft of these combinations is shown in figure 11.4. Maybe this combination
represents the most important receptance analysis. The impulsive force is applied in the
same position of the contact force. The study of receptance in this case is more useful
because it represents the response to the contact force. On the contrary in any case a
load will be applied between wheels (as seen in paragraph 11.2).
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(a)

(b)

Figure 11.4 – Type of excitation for the receptance simulation: (a) centered third wheel, midspan
excitation; (b) centered third wheel, on-sleeper excitation.

The results are totally different if compared to ones without the train. The recep-
tance reveals one singular peak in a low frequency range 50− 120 Hz (see figures 11.7,
11.9, 11.11, 11.13). The wave propagation in time and space are shown in figure 11.5.
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Figure 11.5 – Waves propagation in time and in space in the case of centered third wheel, on-sleeper
excitation.

The results of four scenarios are presented in following paragraphs, two different
types of vehicle are combined with three types of substructure.

11.3.1 Scenario 1

In the first scenario the vehicle type Manchester Benchmark has been chosen. The val-
ues adopted for the substructure correspond to the values xmax in figure 9.1 and the rail
adopted is the 50E5 type (see table 3.4). Looking at figure 11.7(a) a resonance frequency
can be recognized at about 69 Hz. Other natural frequencies, even if with a very smaller
amplitude, can be recognized at about 230, 390 and 500 Hz. In figure 11.6 the vertical
displacement of excited point is shown in function of time steps. Focusing on this figure
11.6 it can be seen how, after few time-steps (red dotted line), all frequencies have been
damped except the one at 69 Hz. This fact is confirmed in figure 11.7(b), where the FFT
algorithm has been applied only in the part of function after the red dotted line. In this
case a clear peak is present at the frequency of 69 Hz.
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Figure 11.6 – Vertical displacement for the receptance analysis in the scenario 1.

(a) (b)

Figure 11.7 – Comparison between: (a) the receptance considering all time-steps and (b) the receptance
considering stabilized part in the scenario 1.

11.3.2 Scenario 2

In the second scenario all the values adopted are the same of scenario 1 except the
type of rail. In this scenario a 60E1 (see table 3.4) type has been adopted. The behavior
observed is the same described as in the scenario 1. The vertical displacement of excited
point is shown in figure 11.8. The receptance analysis are shown in figure 11.9. Even in
this case a receptance analysis of the vertical displacement after the damping of higher
frequencies is shown in figure 11.9(b).
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Figure 11.8 – Vertical displacement for the receptance analysis in the scenario 2.

(a) (b)

Figure 11.9 – Comparison between: (a) the receptance considering all time-steps and (b) the receptance
considering stabilized part in the scenario 2.

11.3.3 Scenario 3

In the third scenario the vehicle adopted is the ALN668 locomotive. The parameters for
the train model are those reported in table 8.1. The values adopted for the substructure
are the x0 shown in figure 9.1. The vertical displacement of excited point is shown
in figure 11.10. The receptance analysis are shown in figure 11.11. Even in this case a
receptance analysis of the vertical displacement after the cut-off of higher and smaller
frequencies is shown in figure 11.9(b).
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Figure 11.10 – Vertical displacement for the receptance analysis in the scenario 3.

(a) (b)

Figure 11.11 – Comparison between: (a) the receptance considering all time-steps and (b) the receptance
considering stabilized part in the scenario 3.

11.3.4 Scenario 4

In the last scenario studied, all values adopted (for the vehicle and substructure) are
those used in the paragraph 9. The vehicle used is the Manchester Benchmark type.
The substructure parameters are the x0 values of figure 9.1. The rail adopted is the 60E1
type. The vertical displacement of excited point is shown in figure 11.12. The receptance
analysis are shown in figure 11.13. Even in this case a receptance analysis of the vertical
displacement after the cut-off of the higher frequency is shown in figure 11.13(b).
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Figure 11.12 – Vertical displacement for the receptance analysis in the scenario 4.

(a) (b)

Figure 11.13 – Comparison between: (a) the receptance considering all time-steps and (b) the receptance
considering stabilized part in the scenario 4.

11.4 CONCLUSIONS

The presence of the train on the track modifies substantially the response of system
to excitation frequency. Looking the receptance of the track with no train shown in
figure 7, three resonance frequencies appear in the intervals: 100 − 200 Hz, 400 − 500
Hz and 700− 1000 Hz. Indeed, focusing on receptance of vehicle/track system (figures
11.7, 11.9, 11.11, 11.13), one singular frequency seems to be the only excitation with
induces resonance of the system. Moreover its values is in range very lower (50 − 120
Hz). Consequentially it results suitable to carry out a study of receptance always on the
coupled vehicle/track system to analyze the natural frequencies.



12A NEW POSSIBLE EXPLANATION OF

THE CRITICAL SPEED PHENOMENON

12.1 INTRODUCTION

Field observations and measurements [69] had indicated a so called ”Critical Train
Speed“ in the range 100− 300 km h−1. At these conditions the moving of trains causes
an increasing of vertical and lateral track vibrations. This ”mysterious“ critical condi-
tion is described as the resonance between the moving train and the Rayleigh wave
traveling in the soil embankment (analogous to the ”Mach“ effect caused by flying ob-
jects breaking through the sound barrier) [43]. Some authors [76, 7] have affirmed that
the problem is more complicated than a simply interaction with the Raylegh wave in
the ground. They have treated the rail as beams on homogeneous half space. Basing
on this assumption, it has been found that track should have two critical speeds, one
equal to the Raylegh wave velocity of the ground, and other, fairly close, controlled
by the bending stiffness and mass of the rail/embankment ”beam“ in addition to the
ground properties [49]. Green’s functions [43, 74, 75], wavelets [46], boundary and fi-
nite elements, even with the element net moving with the train [21], have been applied
to try to predict track response to trains moving at speeds around the critical value
[49]. Anyway a real explanation and a precise calculation of critical speed seems to
rest an unresolved problem. Numerical models, and measurements show the amplifi-
cation of contact force and displacement, but the physical explanations given to this
phenomenon seem to be not satisfactory. In following paragraph a new approach and
explanation is proposed.

12.2 THE PHENOMENON

The phenomenon of critical speed has been revealed during numerical simulation with
the model presented in this work. The effect of critical speed to sleeper vertical dis-
placement and contact force has been shown in paragraph 9.5. The dynamic contact
force in function of time steps for different train speeds is shown in figures 12.1, 12.2,
12.3, 12.4 and 12.5. The values adopted are those obtained by the curve fitting method
(table 7.1). In these simulations the corrugation has been fixed as a sinusoidal function
with amplitude 0.025 mm and wavelength 5 mm.
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Figure 12.1 – Dynamic contact force in function of time at 50 km h−1

Figure 12.2 – Dynamic contact force in function of time at 100 km h−1
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Figure 12.3 – Dynamic contact force in function of time at 130 km h−1

Figure 12.4 – Dynamic contact force in function of time at 160 km h−1
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Figure 12.5 – Dynamic contact force in function of time at 190 km h−1

As it can be seen comparing figures, the dynamic effects increase up to 160 km −1

and then decrease again. The same phenomenon can be probably more evident looking
the dynamic amplification factor and sleeper vertical displacement in figures 12.6, 12.7
and 12.8. The values adopted for the simulation are:

• figure 12.6: the same values adopted in scenario 3 (see paragraph 11.3.3);

• figure 12.7: the same values adopted in scenario 4 (see paragraph 11.3.4);

• figure 12.8: values evaluated by curve fitting (table 7.1) for the substructure and
Manchester Benchmark [34] for the vehicle type (it will be called it scenario 5).

In figure 12.6 a critical speed is observed at 250 km h−1 in the first and case. In figure
12.7 and 12.8 the critical speed results lower: 145 km h−1. The charts have been cut in
five ranges with the same procedure explained in paragraph 9.6. It can be noticed that
the critical speed range is Vc±25 in the last two cases and Vc±50 in the first one. Maybe
this interval is larger with the increasing of critical speed.
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(a)

(b)

Figure 12.6 – Scenario 3: (a) sleeper vertical displacement and (b) dynamic amplification factor in
function of train speed
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(a)

(b)

Figure 12.7 – Scenario 4 (a) Sleeper vertical displacement and (b) dynamic amplification factor in
function of train speed
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(a)

(b)

Figure 12.8 – Scenario 5: (a) sleeper vertical displacement and (b) dynamic amplification factor in
function of train speed

12.2.1 A new explanation of the critical speed

The major source of excitation of the contact force is the sleeper passing frequency. In
the three cases shown in last paragraph the sleeper base is 65 cm. Considering this
length as the wavelength of the excitation function it can be convenient to compare
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resonance frequencies and speed with the relationship:

V = 3.6 · 0.65 · f
[

kmh−1
]

, (12.1)

being f the frequencies expressed in Hz. This relation 12.1 connects the velocity of the
wheel j with the sleeper passing frequency. Many authors have compared the natural
frequencies determined by the analysis of receptance as seen in paragraph 7 with the
train speed. Anyway as explained in paragraph 11 train masses and suspension play
an important role during the contact with track, modifying its response. Then it results
necessary to compare speeds with receptance analysis of the coupled structure, con-
sidering both systems: train and substructure. The comparison between receptances of
coupled system and the vertical sleeper displacement in function of speed are shown in
figures 12.9, 12.10 and 12.11. A surprising results has emerged. The perfect coincidence
between critical speed and resonance frequency of the coupled system is shown. It fol-
lows that a critical speed cannot be connected uniquely to substructure properties but
it is necessary to considerate always the coupled system.
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Figure 12.9 – Scenario 3: comparison between critical speed and resonance frequency
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Figure 12.10 – Scenario 4: comparison between critical speed and resonance frequency
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Figure 12.11 – Scenario 5: comparison between critical speed and resonance frequency





CONCLUSIONS AND PERSPECTIVES

The 2D model presented in this work allows to predict contact-forces and vibrations
in both vehicle and track components. The validation shows how predictions fit well
experimental data. The model of the rail support, here introduced, can be more accurate
than past models especially to conduct modal analysis of contact force and vibrations.
The connection-area model is strongly recommended to evaluate the track receptance.
The connection-point model gives good solutions too, but it results widely incorrect in
the pinned-pinned frequency range. In particular it has been found that the connection-
point method overestimates the receptance at the pinned-pinned frequency by 402% in
the case of midspan excitation. Additionally, in the case of on-sleeper excitation, the
receptance is underestimated by the 149%. Varying track and vehicle parameters it has
been noticed how the more relevant parameters characterizing the problem of wear are
the train mass and the ballast modulus.

The Italian formulation to evaluate the railway toll related to ballast wear results
improper. The method proposed in this work is related to the physical phenomenon
allowing a more precise evaluation of costs. Moreover the relation between toll, speed
and weight needs analysis which can be carried out only by numerical models as the
one presented. So, it is recommended to use this software utility to evaluate cost in each
different scenario (considering the type of train and railway line).

The analysis of natural frequencies cannot be conducted considering only the track
system. When the train passes on the railway the response of system changes substan-
tially modifying the natural frequencies. The influence of the vehicle consists on a dras-
tic reduction of resonance frequency bringing it in the range 50− 120 Hz.

This fact is directly connected to the phenomenon of train critical speed in the range
100− 300 km h−1. Indeed the “Mach” phenomenon related to Rayleigh waves, affects a
range of speeds too much higher to explain the vibrations peaks measured at lower ve-
locities. In this work an explanation of this phenomenon has been founded. The critical
speed in the range 100−300 km,h−1 can be evaluated comparing the sleeper passing fre-
quency to the resonance frequency evaluated by the vehicle/track receptance analysis.
The speed correspondent to the sleeper passing frequency, that excites the vehicle/track
system at the resonance condition, is the critical value.

As perspectives, the influence of the wheelbase on the critical speed and on the bal-
last settlement should be studied. Indeed the sleeper passing frequency corresponds to
the pass of the wheel axle on a sleeper. Maybe an effect of resonance could be found
if the excitation frequency produced by the transit of boogie axis is an entire multi-
ple of the resonance frequency of the vehicle/substructure system. A study could be
conducted on the ratio between wheelbase and distance between sleeper too. What is
more, the values adopted for the settlement function do not consider the different types
of substructure so maybe the parameters of the function should change in function of
track features. Furthermore the formulation to evaluate toll costs must be extended. In-
deed, in this work, we have shown a method to evaluate the part of costs related to the
ballast settlement, in future also the other components of substructure such as sleep-
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ers, rail-pads and pantograph must be considered. The objective could be to propose a
unique European toll function.
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A.1 THE ONE THIRD OCTAVE BAND

The octave band is defined as the frequency range between two frequencies whose ratio
is exactly 2 as:

f2
f1

= 2. (A.1)

where f2 and f1 are respectively the upper and the lower frequency limit of the band
as shown in figure A.1. The proportion between band width and central frequency is a
constant. In the case of octave band this constant is

√
2 as:

∆f

fc
=

f2 − f1
fc

=
√
2 (A.2)

A one-third octave band is defined as a frequency band whose upper band-edge fre-
quency (f3 for the first 1/3 octave band in figure A.1) is the lower band frequency (f1)
times the cube root of two as:

f3 = f1
3
√
2

f4 = f3
3
√
2

f2 = f4
3
√
2.

(A.3)

Figure A.1 – Octave band and 1/3 octave band frequencies.
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A.2 BALLAST INTERVENTIONS TYPE

In this paragraph two different type of interventions for the ballast are described: the
tamping and the stoneblowing. The tamping intervention is used to correct long wave-
length. Figure A.2 shows the operating sequence of the tamping machine, where [11]:

• (A) the track and sleeper are in an arbitrary position before tamping begins;

• (B) the track and sleeper are raised by the machine to the target level. As a result,
there is an empty space under the sleeper;

• (C) the tamping tines are inserted into the ballast on both sides of the sleeper. This
step can cause ballast breakage;

• (D) the tamping tines squeeze the ballast into the empty space under the sleeper.
Therefore, the correct position of the rail and sleeper is recovered. This might also
cause ballast breakage;

• (E) the tamping tines are lifted from the ballast. They will then move on to tamp
around the next sleeper.

Figure A.2 – Tamping sequence [6]

For short wavelength geometric faults, the stoneblowing maintenance, that is less dam-
aging for the ballast, is more suitable. The operating sequence of stoneblowing mainte-
nance is shown in figure A.3, where:

• (A) the track and sleeper are in an arbitrary position before tamping begins;

• (B) the track and sleeper are raised by the machine to the target level. As a result,
there is an empty space under the sleeper;

• (C) the stoneblowing tubes are inserted into the ballast layer;
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• (D) a measured quantity of stone is blown by compressed air into the space be-
tween the sleeper and the ballast;

• (E) the tubes are withdrawn from the ballast layer;

• (F) the sleeper is lowered onto the top of the blown stone which will be compacted
by subsequent traffic.

Figure A.3 – Stoneblowing sequence [6]
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