
HAL Id: tel-00843874
https://theses.hal.science/tel-00843874

Submitted on 12 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building manageable autonomic control loops for large
scale systems

Russel Nzekwa

To cite this version:
Russel Nzekwa. Building manageable autonomic control loops for large scale systems. Software
Engineering [cs.SE]. Université des Sciences et Technologie de Lille - Lille I, 2013. English. �NNT : �.
�tel-00843874�

https://theses.hal.science/tel-00843874
https://hal.archives-ouvertes.fr

Département de formation doctorale en informatique École doctorale SPI Lille

UFR IEEA

Building Manageable Autonomic

Control Loops for Large Scale Systems

THÈSE

présentée et soutenue publiquement le 05/7/2013

pour l’obtention du

Doctorat de l’université Lille 1 Sciences et Technologies

(spécialité informatique)

par

Russel Nzekwa

Composition du jury

Rapporteurs : Jean-charles Fabre - Professeur des Universités, ENSEEIHT, Toulouse- France

Sara Bouchenak - Mâıtre de Conférences, Université de Grenoble - France

Examinateurs : Jacques Malenfant - Professeur des Universités, Université Pierre et Marie Curie - France

Eric Rutten - Chargé de Recherche, LIG/INRIA Grenoble - France

Directeurs : Lionel Seinturier - Professeur des Universités, Université Lille I et IUF - France

Romain Rouvoy - Mâıtre de Conférences, Université Lille I - France

LIFL – UMR Université Lille 1 Sciences et Technologies/CNRS 8022 – INRIA Lille Nord Europe

Mis en page avec la classe thloria.

A mes parents, Jacob et Paulette Nana

pour leur soutient et leur amour inconditionnel

i

ii

Remerciements

Cette thèse fut un parcours à la fois intellectuel et personnel. J’aimerai par conséquent saisir

l’opportunité de ce moment qui sanctionne la fin de cette entreprise pour remercier tous

ceux qui de près ou de loin ont contribué à rendre possible ce travail même s’ils ne sont pas

nommément cités dans la suite.

En premier lieu, j’aimerai remercier mes encadrants Lionel et Romain. Lionel pour sa

disponibilité et ses conseils bienveillants durant ces années. Romain, pour ses idées et son

investissement constant. J’aimerai en deuxième lieu remercier les membres du jury Sara

Bouchenak et Jean-Charles Fabre pour avoir accepté de rapporter ma thèse. J’adresse mes

remerciements à Eric Rutten pour avoir accepté de participer au jury de ma thèse et à Jacques

Malenfant pour avoir accepté de présider ce jury.

Je voudrai adresser mes vifs remerciements à tous les membres de l’équipe INRIA

ADAM. En particulier à Laurence Duchien qui a toujours promu un esprit de fraternité au

sein de l’équipe, et à Philippe Merle pour ses conseils sur les aspects du développement

avec FraSCAti. Je tiens aussi à remercier mon collègue Daniel Romero avec qui nous avons

beaucoup discuté et fait du jogging durant ces années.

Je voudrai aussi remercier les membres du projet SALTY avec qui j’ai collaboré durant

ces années. En particulier, Filip Krikava avec qui j’ai échangé sur de nombreux aspects tech-

niques dans le cadre du projet. J’aimerai aussi remercier les membres de l’équipe associée de

l’université d’Oslo en particulier Frank Eliassen, pour l’accueil et l’accompagnement. Merci

également aux différentes assistantes de l’équipe qui n’ont pas ménagé d’efforts pour nous

accompagner dans la gestion de nos fiches de mission.

Je ne terminerai pas sans remercier mes amis qui m’ont soutenu et parfois inspiré durant

cette période. Je pense en particulier à Mathieu, Jean et Rémi. Enfin mais pas des moindres,

je voudrai remercier ma famille, en premier mes parents, Jacob et Paulette pour leur soutient

inébranlable, mais aussi mes frères Joel, Michael, Gauis, Franklin et ma soeur Claudia pour

le réconfort qu’ils m’ont apporté.

iii

iv

Abstract

Keywords: Autonomic systems, Feedback Control Loops, Stabilization, Service, Adaptation, Com-

ponent, Model driven engineering

Modern software systems are getting more complex. This is partly justified by the heterogeneity

of technologies embedded to deliver services to the end client, the large-scale distribution of software

pieces that intervene within a single application, or the requirements for adaptive software systems.

In addition, the need for reducing the maintenance costs of software systems has led to the emer-

gence of new paradigms to cope with the complexity of these software. Autonomic computing is a

relatively new paradigm for building software systems which aims at reducing the maintenance cost

of software by building autonomic software systems which are able to manage themselves with a

minimal intervention of a human operator.

However, building autonomic software raises many scientific and technological challenges. For

example, the lack of visibility of the control system architecture in autonomic systems makes them

difficult to maintain. Similarly, the lack of verification tools is a limitation for building reliable au-

tonomic systems. The flexible management of non-functional-properties, or the traceability between

the design and the implementation are other challenges that need to be addressed for building flexi-

ble autonomic systems.

The main contribution of this thesis is CORONA. CORONA is a framework which aims at help-

ing software engineers for building flexible autonomic systems. To achieve that goal, CORONA relies

on an architectural description language which reifies the structure of the control system architec-

ture. CORONA enables the flexible integration of non-functional-properties during the design of

autonomic systems. It also provides tools for conflicts checking in autonomic systems architecture.

Finally, the traceability between the design and the runtime implementation is carried out through

the code generation of skeletons from architectural descriptions of control systems. These properties

of the CORONA framework are exemplified through three case-studies.

Résumé

Mots-clés: Applications autonomes, Boucle de contrôle rétroactive, Stabilisation, Service,

Adaptation, Composant, Ingénierie dirigé par les modéles.

Les logiciels modernes sont de plus en plus complexes. Ceci est dû en partie à

l’hétérogénéité des solutions misent en oeuvre, au caractère distribué des architectures de

déploiement et à la dynamicité requise pour de tels logiciels qui devraient être capable

de s’adapter en fonction des variations de leur contexte d’évolution. D’un autre coté,

l’importance grandissante des contraintes de productivité dans le but de réduire les coûts

de maintenance et de production des systèmes informatiques a favorisé l’émergence de nou-

veaux paradigmes pour répondre à la complexité des logiciels modernes. L’informatique des

systèmes autonomes (Autonomic computing) s’inscrit dans cette perspective. Elle se pro-

pose entre autres de réduire le coût de maintenance des systèmes informatiques en dévelop-

pant des logiciels dits autonomes, c’est à dire dotés de la capacité de s’auto-gérer moyennant

une intervention limité d’un opérateur humain.

Toutefois, le développement de logiciels autonomes soulèvent de nombreux défis sci-

entifiques et technologiques. Par exemple, l’absence de visibilité de la couche de contrôle

dans les applications autonomes rend difficile leur maintenabilité, l’absence d’outils de véri-

fication pour les architectures autonomes est un frein pour l’implémentation d’applications

fiables, enfin, la gestion transparente des propriétés-non-fonctionnelles et la traçabilité en-

tre le design et l’implémentation sont autant de défis que pose la construction de logiciels

autonomes flexibles.

La principale contribution de cette thèse est CORONA. CORONA est un canevas logi-

ciel qui vise à faciliter le développement de logiciels autonomes flexibles. Dans cet objectif,

CORONA s’appuie sur un langage de description architecturale qui réifie les éléments qui

forment la couche de contrôle dans les systèmes autonomes. CORONA permet l’intégration

transparente des propriétés-non-fonctionnelles dans la description architecturale des sys-

tèmes autonomes. il fournit aussi dans sa chaîne de compilation un ensemble d’outils qui

permet d’effectuer des vérifications sur l’architecture des systèmes autonomes. Enfin, la

traçabilité entre le design et l’implémentation est assurée par un mécanisme de génération

des skeletons d’implémentation à partir d’une description architecturale. Les différentes

propriétés de CORONA sont illustrées par trois cas d’utilisation.

Contents

List of Tables xv

Chapter 1 Introduction 1

1.1 Introduction . 1

1.2 Problem Statement . 3

1.3 Dissertation Goals . 4

1.4 Contributions . 5

1.5 Dissertation Roadmap . 6

1.6 Publications . 7

Part I State of the Art 9

Chapter 2 State of the Art 11

2.1 Autonomic Computing . 12

2.2 Existing Autonomic Systems Approaches 16

2.3 Assessing Autonomic Systems . 26

2.4 Summary . 30

vii

Contents

Chapter 3 Salty Model 33

3.1 SALTY Structural Model . 34

3.2 SALTY Graphical Formalism . 37

3.3 SALTY DSL . 39

3.4 Summary . 42

Part II Contribution 43

Chapter 4 Contributions Overview 45

4.1 Challenges Revisited . 46

4.2 Goals Revisited . 47

4.3 CORONA in a Nutshell . 48

4.4 Summary . 51

Chapter 5 Runtime Architecture 53

5.1 Feedback Control Loops and Autonomic Systems 54

5.2 Runtime Component-based Feedback Control Loops 56

5.3 Feedback Control Loop Customization . 67

5.4 Summary . 79

Chapter 6 Compilation Infrastructure 81

6.1 Component-based Generative ToolChain 82

6.2 Mapping from SALTY Model to SCA Model 85

6.3 Control Loop Architecture Distribution . 89

6.4 Conflicts Checking on Feedback Control Loop Architectures 93

6.5 Control Loop Architecture Evolution . 105

6.6 Summary . 106

viii

Part III Validation 109

Chapter 7 Condor Case-Study 111

7.1 Case-study Objective . 112

7.2 Condor Case-Study Description . 112

7.3 Control System Architecture . 113

7.4 Quantitative Evaluation . 115

7.5 Summary . 120

Chapter 8 Fire Emergency Case-Study 123

8.1 Case-Study Objective . 124

8.2 Scenario Description . 124

8.3 Control System Architecture . 125

8.4 Control System Implementation & Measures 126

8.5 Summary . 130

Chapter 9 Smart-Mall Case-Study 131

9.1 Objective . 131

9.2 Smart-Mall Scenario Description . 132

9.3 Experiment & Measures . 134

9.4 Summary . 139

Part IV Conclusion & Persperctives 141

Chapter 10 Conclusion 143

10.1 Summary of the Dissertation . 143

10.2 Perspectives . 146

Bibliography 149

ix

Contents

x

List of Figures

2.1 Structure of an Autonomic Element [Kep05] . 14

2.2 Overview of an Autonomic System Architecture 15

2.3 Overview of the Jade Approach [BPHT06] . 17

2.4 Architecture of Unity Autonomic System . 19

2.5 Architecture of an Autonomic Agent in Autonomia 20

2.6 Rainbow System Architecture with Customization Points [wC08] 21

2.7 Ceylan Autonomic Control Architecture [MDL10] 23

2.8 Control Architectural Style in DiaSpec . 24

3.1 SALTY Graphical Notations . 38

3.2 Example of Apache Control Architecture Representation with the SALTY

Specification . 38

3.3 Annotation Class Diagram . 41

4.1 Overview Of the CORONA Development Process 49

4.2 SCA Architecture of the CORONA Toolchain 50

5.1 Close And Open Loop Paradigms . 55

5.2 Basic concepts of the SCA Metamodel . 58

5.3 Graphical Representation of a Component in SCA 58

5.4 Auto-Scale Feedback Control Architecture . 59

5.5 Generated Auto-Scale Feedback Control Loop Architecture in SCA 61

xi

List of Figures

5.6 Generated Sensors Artifacts . 62

5.7 Customizable MAPE-K Architecture Model . 68

5.8 Feedback Block Diagram in Control Engineering 70

5.9 Unstable Auto-Scale Feedback Control System 70

5.10 Classification of Stabilization Algorithms According to their Class and Cost . 76

5.11 Relationships between algorithms of the first(a), second (b) and third (c) layer

of the classification . 77

5.12 Stabilization Algorithms Composition Models 78

6.1 ToolChain Key Features Behavior . 83

6.2 SCA Architecture of the CORONA Compiler 83

6.3 Condor [TTL05] Control Loop Architecture . 86

6.4 Illustration of Possible ambiguity in the interaction model 88

6.5 Basic Concepts of the Network Meta-Model . 90

6.6 Illustration of a Feedback Control Loop Architecture with Constraints Anno-

tations . 92

6.7 Computation Result of the location Optimizer Service 93

6.8 Illustration of the Invisible Interference Problem 94

6.9 Conflicts verification Process . 96

6.10 Direct overlaps Patterns . 97

6.11 Transitive overlap Example . 98

6.12 (A)– Control Architecture with Conflicts, (B)– Resolution of Architecture Con-

flicts with Proxy Pattern . 102

6.13 (A)– Resolution of Conflicts with the Supervisor Mechanism, (B)– SCA imple-

mentation of the Supervisor Mechanism on an Effector 103

6.14 Supervisor Mechanism Coordination Logic . 104

6.15 Control Loop Architecture Evolution Cycle . 105

6.16 Control Architecture Selective Generation . 106

7.1 Self-Adaptive Distributed Infrastructure . 113

7.2 Self-Scale Feedback Loop . 114

7.3 Budget Feedback Loop . 114

xii

7.4 Feedback Loops Overlaps Detection Time . 116

7.5 System without Feedback Loops . 118

7.6 System With a Single Budget Feedback Loop 118

7.7 System With a Single User SLA Feedback loop 119

7.8 System with Uncoordinated Feedback Loops 119

7.9 coordinated Control System Architecture . 121

7.10 System with Coordinated Feedback Loops . 121

8.1 Illustration of the Fire-emergency Scenario . 125

8.2 Architecture of the fire-emergency Control System 126

8.3 Fire-emergency SCA assembly architecture . 129

9.1 Smart-Mall Scenario illustration . 133

9.2 Showroom Control System Architecture . 135

9.3 Stabilized application behavior with Kalman Filter or Delta Operator 136

9.4 Stabilized application behavior with Horizontal Composition (DO+KF) . . . 136

9.5 Media Player Control System Architecture . 137

9.6 Variation of Triggered Adaptations . 138

9.7 Precision of Context Stabilization . 138

xiii

List of Figures

xiv

List of Tables

2.1 Classification of Architecture-based Autonomic Solutions 29

5.1 Characterization of Stabilization Algorithms According to the Data Scope Cri-

terion. 74

5.2 Analytic Definition of Algorithmic Process Behavior Classes 75

6.1 Mapping Rules Between SALTY and SCA Concepts 88

8.1 Metrics of generated and Implemented Code 129

xv

This page was intentionally left blank

Chapter 1

Introduction

“Civilization advances by extending the number of important operations which we can perform

without thinking about them."-Alfred N. Whitehead

Contents

1.1 Introduction . 1

1.2 Problem Statement . 3

1.3 Dissertation Goals . 4

1.4 Contributions . 5

1.5 Dissertation Roadmap . 6

1.6 Publications . 7

1.1 Introduction

Think in a wink about “computing systems capable of running themselves, adjusting to varying

circumstances, and preparing their resources to handle most efficiently the workloads we put upon

them; capable to anticipate their needs and allow users to concentrate on what they want to accomplish

rather than figuring how to rig the computing system to get them there" [IBM01]. It is in this terms

that Paul Horn, senior vice president of IBM research, presented in 2001 his vision of the

future of information systems. This new vision of software systems is the subject of the

autonomic computing.

Autonomic computing is a nearly recent research field that addresses the increasing com-

plexity of software systems. Modern software applications are distributed, and are build

from heterogeneous components. This make them very difficult to maintain. In particular,

the growth of software complexity has blew up the cost of maintenance. Some estimate that,

the number of IT workers required to support billions of users interacting with millions of

1

Chapter 1. Introduction

business applications connected via Internet is about 200 million, which is almost the popu-

lation of a country like the United State of America. Recently in France, the 6th of July 2012,

customers of a well-established telecommunication company have experienced a blackout

due to a critical software failure. For several hours, customers have not been able to receive

text messages or make phone calls. More than 200 engineers were mobilized to solve the fail-

ure, and for hours could not figure where the problem was. The company estimated to 30

million euros, the cost related to that failure. Undoubtedly, the actual complexity of software

infrastructures is a threat that could lead information technology to a serious crisis.

Up until recent years, the maintenance cost of software systems was not a matter of

concerns. Indeed, the improvement of hardware performance has been the main focus of the

research and the industry community over these last decades. In particular, the fulfillment

of predictions of Moore’s law has allowed to develop faster and cheaper systems. In the

same time, software development techniques were improving, and the emergence of object

oriented languages in the early 90’s, and components oriented languages a bit later, have

significantly increased the quality of software systems. However, the advent of Internet has

given rise to a new class of software systems that are heterogeneous, large-scale, and distributed.

The maintenance of this new class of systems is challenging at least for the three follow-

ing reasons:

• Heterogeneity. The reduction of the time to market to cope with a competitive economic

environment has forced software vendors to bet on the reuse of off-the-shelves compo-

nents (COTS). That is, new software systems are build by assembling a set of existing

software pieces developed by the vendor or his partners. Existing pieces of software

are developed in various technologies. As a consequence, the maintenance of a soft-

ware solution based on several technologies is very challenging for a human adminis-

trator.

• Dynamicity. Modern software systems evolve in a dynamic environment where re-

sources they operate on are subject to constant changes. A change can be the availabil-

ity or the unavailability of some services, or a workload surge in the demand of one

service. Therefore, software systems need to be adapted constantly according to varia-

tions in their environment in order to achieve their objectives. When this dynamicity is

coupled with scalability, it becomes very challenging for a human operator to manage

them.

• Scalability. Software systems are distributed at large-scale, and consist of many inter-

connected components that collaborate in order to deliver the expected service. A

global coordination of these components is challenging and error-prone.

Autonomic computing is a good candidate for addressing these challenges, because it

enables software systems to manage themselves without or with a limited human interven-

tion. Autonomic systems shift the burden of managing software systems from the human to

2

1.2. Problem Statement

the system itself. The benefits of autonomic computing for the IT industry are multiple. For

example, the reduction of the maintenance costs of software systems, the reduction of system

failure due to human errors, or the optimization of resources usage. However, engineering

such systems is a scientific and technological challenge.

Important progress has been made by the research and the industry community for de-

veloping autonomic solutions. Notably, the adoption of service oriented architecture(SOA)

in order to cut down the complexity of engineering autonomic systems. SOA advocates a

loose-coupling between components of a software system in order to manage the later ef-

ficiently. In addition, the increasingly automatization of administrative tasks in autonomic

software solutions has reduced the workload for the human operator. Many autonomic

systems provide high-level abstractions for hiding the complexity of the managed system.

These abstractions enable developers of autonomic systems to express the behavior policies

of autonomic systems without worrying about the complexity of the managed system.

Despite these progresses, engineering autonomic systems rise many difficulties. A

prominent difficulty is the complexity of maintaining autonomic systems or making them

evolve. That is because in traditional engineering approaches, the architecture of autonomic

managers is masked under layers of abstractions. As a consequence, it is very difficult to

understand the behavior of autonomic managers. This lack of visibility is a limitation for

engineering large-scale autonomic systems where multiple autonomic managers collaborate

together in order to adapt according to changes in their environment. In particular, the

burden of detecting and preventing conflicts in the control architecture fall on developers’

shoulders. This results in error-prone and time-consuming tasks for them.

This thesis takes a step ahead concerning the engineering of autonomic systems. We pro-

pose a new brand approach for engineering autonomic systems. Our approach proposes to

reduce the time and efforts required for implementing autonomic systems. For that purpose,

we rely on generative techniques of the code source and automated verifications tools for

ensuring the validity of the control system architecture. Our approach fosters the visibility

of the control system architecture and enables the implementation of amenable autonomic

solutions.

Structure of the chapter

The rest of this chapter is organized as follows: In Section 1.2, we identify the motivation of

this dissertation. Then, in Section 1.3, we introduce the goals of this dissertation. We give

a glimpse of the contribution of this thesis in Section 1.4. Section 1.5 presents the structure

of this document by reviewing main ideas of each chapter. Finally, we conclude this chapter

with a list of publications (cf. Section 1.6).

1.2 Problem Statement

In the previous section, we have presented autonomic computing as a good candidate for tack-

ling the growing complexity of software systems, in particular in a large-scale environment.

3

Chapter 1. Introduction

However, despite notable advances, many problems hinder the engineering of amenable au-

tonomic systems. In this dissertation, we have identified some of them that we discuss in

this section.

Visibility of the control system

Existing autonomic software solutions lack of visibility of the control system. In order to im-

plement amenable autonomic systems, feedback control loops that govern self-adaptation

must be visible at design and at runtime. This visibility increases the understanding of con-

trol flows, and enables a transparent coordination of feedback loops that implement various

behavior. The visibility of the control system architecture is one of the problem towards

amenable autonomic solutions. For many existing autonomic solutions, the control system

architecture remains hidden at runtime.

Traceability from the control design to the runtime implementation

Traceability is a strong asset for having amenable autonomic solutions. In fact, very often the

design and the implementation of the control system are not traceable. That is, it does not

exist a strong coherence between the design and the implementation. That is because devel-

opers are not guided during the implementation of autonomic systems. As a consequence,

developers implement control behavior in a adhoc manner. Traceability is important for

supporting a flexible evolution of the control architecture.

Lack of tools and algorithms for verification

Large-scale autonomic systems, very often involve many control systems that collaborate

to achieve conflictual objectives. The detection of this conflicts are crucial to ensure the

consistency of the control system. In addition, the development of algorithms in order to

check this conflict reduce the cost of engineering autonomic systems. The lack of visibility

of the control architecture does not enable the implementation of tools and algorithms for

verification in many existing autonomic solutions.

Transparent support of Non-Functional-Properties (NFP)

Autonomic solutions implement NFPs to customize the manner in which their functionali-

ties are delivered. Many existing autonomic solutions does not provide support for imple-

menting NFPs in a transparent manner, usually they are indistinguishably embedded in the

control logic behavior. We think that in order to leverage a flexible adaptation of autonomic

systems, NFPs must be transparently implemented in the control system.

1.3 Dissertation Goals

Our objective in this dissertation is to provide a solution for engineering amenable auto-

nomic softwares. In the section above (cf. Section 1.2), we have highlighted some problems

that hinder the achievement of that objective. In order to address these problems, we pro-

pose a generic approach for engineering autonomic solutions where feedback control loops

are reified as first-class citizens. We leverage the visibility of feedback loops by providing a

control-oriented language for designing control systems. We address the traceability from

4

1.4. Contributions

the design to the implementation of the control architecture by ensuring a strong mapping

between design and runtime concepts. The visibility of the control system enables to develop

algorithms for automatic checking of the control architecture. Finally, we provide a flexible

support for the implementation of non-functional-properties in the control architecture. The

main goals of our proposal are the following:

• Domain agnosticism. We aim at defining a generic solution which targets several

application domains. Agnosticism with regards to the domain of application enables

our solution to be used for a wide range of autonomic systems. The design of the

control architecture must be independent of a specific implementation platform.

• Flexible adaptation and evolution. To reduce the complexity of maintaining auto-

nomic systems, feedback loops that govern adaptations must become visible at run-

time. The visibility of control flows in the control system facilitates the engineering of

scalable adaptive systems where several control systems collaborate in order to achieve

complex objectives. In addition, it facilitates the evolution of the control system archi-

tecture.

• Cost-effectiveness. It is important to develop a solution that is cost-effective for en-

gineering autonomic systems. The cost of engineering autonomic system can be ad-

dressed at two different levels: At the implementation level, by providing an imple-

mentation support for developers of autonomic systems; at the design level by sup-

porting automatic verification of the control architecture.

• Consistency. The consistency of the control system architecture is a good property for

building reliable autonomic systems. It is important to detect potential conflicts in the

control system architecture before the deployment. This will save a lot of time and

efforts for developers of autonomic systems.

1.4 Contributions

In order to enhance the understanding of this dissertation, we briefly describe in this section

the main contribution of this thesis. The contribution of this dissertation can be organized in

the four following points:

• The first contribution is the reification of feedback control loops as first-class citizen at

runtime. This is done by ensuring a strong mapping between architectural concepts

and implementation concepts. We leverage the visibility of feedback control loops by

relying on a service component platform.

• The second contribution consists of enabling the customization of the MAPE-K archi-

tecture pattern of feedback control loops. In particular, we focus on the integration of

stabilization algorithms for designing stable control systems.

5

Chapter 1. Introduction

• The third contribution is the traceability. we provide an automated mapping between

the control architecture design and its runtime implementation. The implementation

of the control architecture is guided in order to ensure the conformity between the

design and the implementation.

• The fourth contribution is the support for verification when building autonomic sys-

tems. We have identified and characterized conflicts patterns that can appears during

control systems design, and have implemented tools for their detection and the auto-

matic resolution of some them.

1.5 Dissertation Roadmap

This dissertation is divided in four parts. The first part gives an overview of the state-of-

the-art of autonomic solutions, and introduces the SALTY1 meta-model which is used in this

dissertation for explaining our contribution. The second part is the Contribution part. This

part explains the proposal of this dissertation. The third part of this thesis is the Validation

part. The Validation part presents some experimental evaluations that validate the proposal

of this dissertation. The Conclusion part is the fourth part of this dissertation. It provides a

summary of this work, and discusses some perspectives.

Part I: State of the Art

• Chapter 2: State of the Art. In chapter 2, we introduce some backgrounds and defini-

tions related to autonomic systems. Then, we give an overview of architecture-based

autonomic solutions, classify them, and point out some limitations of these solutions.

• Chapter 3: SALTY Model. This chapter presents the SALTY meta-model. In chapter

3, we first introduce the graphical formalism for designing a control architecture with

the SALTY meta-model.

Part II: Contribution

• Chapter 4: Contributions Overview. This chapter revisits the challenges and the ob-

jectives of this dissertation. Then, an overview of the our contribution called CORONA

is introduced.

• Chapter 5: Runtime Architecture. This chapter presents two contributions of this dis-

sertation. The first contribution consists of reifying feedback control loops as first-class

citizen at runtime. The second contribution depicted in this chapter is the support for

non-functional-properties through the customization of the control loop architecture.

1This thesis was funded by the SALTY ANR project in which I participated. https://salty.unice.fr/

6

1.6. Publications

• Chapter 6: Compilation Infrastructure. This chapter discusses the CORONA toolchain

that provides support for engineering cost-effective autonomic system. It covers two

other contributions of this dissertation. The first one is the traceability between the

design and the implementation of control system, and the second one is the verification

algorithms for conflict checking in the control architecture.

Part III: Validation

• Chapter 7: Condor Case-Study. This chapter validates one of the claim of this thesis

which is the consistency of the control architecture. It shows how verifications algo-

rithms can be used for designing more reliable autonomic systems. This is illustrated

on the Condor case-study.

• Chapter 8: Fire Emergency Case-Study. This chapter validates the second claim of this

dissertation which is integration & transparency. In particular, we discuss how control

systems developed with CORONA can be integrated in existing control architecture.

The integration & transparency claim is illustrated with the Fire emergency case-study.

• Chapter 9: Smart Mall Case-Study. This chapter validates the integration of stabiliza-

tion algorithms in order to design flexible control systems

Part IV: Conclusion

• Chapter 10: Conclusion. This chapter gives a summary of this dissertation and recall

the contributions of our proposal. We conclude this dissertation with a discussion of

the perspectives of our work. We point out interesting research directions that could

be addressed to complete and improve this thesis.

1.6 Publications

Below, we present the list of research articles that were published during this thesis.

International Journals

• The DigiHome Service-Oriented Platform. Daniel Romero, Gabriel Hermosillo, Amirho-

sein Taherkordi, Russel Nzekwa, Romain Rouvoy and Frank Eliassen. Software: Prac-

tice and Experience (SPE). 2011. Rank(CORE): A. To appear.

International Conferences

7

Chapter 1. Introduction

• RESTful Integration of Heterogeneous Devices in Pervasive Environments. Daniel Romero,

Gabriel Hermosillo, Amirhosein Taherkordi, Russel Nzekwa, Romain Rouvoy and

Frank Eliassen. In 10th IFIP International Conference on Distributed Applications and

Interoperable Systems (DAIS’10). pages 113–126 of LNCS 6115 (Springer). Amster-

dam, Netherlands. June 2010.

International Workshops

• Modelling Feedback Control Loops for Self-Adaptive Systems. Russel Nzekwa, Romain Rou-

voy, Lionel Seinturier. 3rd International DisCoTec Workshop on Context-Aware Adap-

tation Mechanisms for Pervasive and Ubiquitous Services (CAMPUS 2010). Amster-

dam, Netherlands. June 2010.

• A Flexible Context Stabilization Approach for Self-Adaptive Application. Russel Nzekwa,

Romain Rouvoy, Lionel Seinturier. 7th IEEE Workshop on Context Modeling and Rea-

soning (CoMoRea) at the 8th IEEE International Conference on Pervasive Computing

and Communication (PerCom’10). Manheim, Germany. March 2010.

• Towards a Stable Decision-Making Middleware for Very-Large-Scale Self-Adaptive Systems.

Russel Nzekwa, Romain Rouvoy, Lionel Seinturier. The 8th BElgian-NEtherlands soft-

ware eVOLution seminar (BENEVOL’09). Louvain-la-Neuve, Belgium. December

2009.

8

Part I

State of the Art

9

Chapter 2

State of the Art

"Nothing in the world is more dangerous than sincere ignorance and conscientious stupidity."

–Martin Luther King

Contents

2.1 Autonomic Computing . 12

2.1.1 Context . 12

2.1.2 Definitions & Taxonomy . 12

2.1.3 Autonomic System Properties . 15

2.2 Existing Autonomic Systems Approaches 16

2.2.1 JADE . 16

2.2.2 TUNe . 18

2.2.3 UNITY . 18

2.2.4 AUTONOMIA . 20

2.2.5 RAINBOW . 21

2.2.6 CEYLON . 22

2.2.7 DiaSpec . 24

2.3 Assessing Autonomic Systems . 26

2.3.1 Comparison Criteria . 26

2.3.2 Classification of Autonomic System Approaches 27

2.4 Summary . 30

In this chapter, we introduce some basics concepts and software approaches used as a

background for this dissertation, we also present the scientific context and rationales of this

thesis. In particular, we define concepts related to autonomic computing and review existent

software solutions for building autonomic systems.

11

Chapter 2. State of the Art

Structure of the Chapter

This chapter is organized as follows: Section 2.1 defines and introduces some concepts re-

lated to autonomic computing. Section 2.2 presents existing software approaches for build-

ing autonomic systems. In Section 2.3, we discuss the limitations of these approaches and

point out challenges ahead in order to address them. Finally, we conclude (cf. Section 2.4)

this chapter with a summary.

2.1 Autonomic Computing

In this section, we start by introducing the context of autonomic computing (cf. Sec-

tion 2.1.1), then we give some definitions and explain some concepts related to the auto-

nomic computing (cf. Section 2.1.2). We end this section by presenting some properties of an

autonomic control system (cf. Section 2.1.3).

2.1.1 Context

In the previous chapter (cf. Chapter 1), we have stated that the increasing complexity of

software systems, and their maintenance costs were the prominent motivations for auto-

nomic computing. Autonomic computing draws upon a wide range of research fields, from

biology to robotic through control engineering [Kep05]. This makes difficult any attempt for

characterizing and describing this research field.

The term autonomic in autonomic computing, comes from the analogy with the au-

tonomous nervous systems that ensures the regulation of visceral functions of the human

body like, the respiration, the digestion or the micturition. The nature provides plenty of il-

lustrations of complex autonomic systems that cooperate in an astonishing manner in order

to achieve the desired goal. Despite the complexity of biological autonomic systems, they

appear to be more tolerant to failure than software systems. One of the purpose of autonomic

computing is to identify and understand principles behind the self-adaptive behavior of nat-

ural autonomic systems, in order to implement software systems with similar properties.

In contrast to biological autonomous systems where control loops that govern self-

adaptation are often not visible, feedback loops are the central element of control engineer-

ing. Control engineers are provided with well established models, tools and techniques for

designing and characterizing control systems [DB00]. Autonomic computing researchers seek

to which extent some principles of control theory can be used for reasoning about autonomic

software systems.

2.1.2 Definitions & Taxonomy

There are more than one definition of what is autonomic computing in the literature. We have

retained here three of them, proposed by renowned scientists of this research field:

12

2.1. Autonomic Computing

Definition 1: “The vision of autonomic computing is to create software through self-* prop-

erties" [SH05].

Definition 2: “Autonomic computing is the ability to manage your computing enterprise

through hardware and software that automatically and dynamically responds to the

requirements of your business" [Mur04].

Definition 3: “Systems manage themselves according to an administrator’s goals. New

components integrate as effortlessly as a new cell establishes itself in the human

body" [Kep05].

The above three definitions are coherent, and underline the ultimate purpose of au-

tonomic computing, which is to reduce the complexity of implementing and maintaining

information systems for software engineers.

Autonomic computing vision for addressing the complexity of software systems premises

on the IBM blueprint [IBM01]. According to the IBM’s vision, autonomic systems must be

a collection of interacting autonomic elements. Autonomic elements are the individual con-

stituents of the system that deliver a given service to humans or other autonomic elements.

Autonomic elements must manage their relationships with their environment (managed sys-

tem or other autonomic elements) in accordance with established policies of the autonomic

system. Consequently, they will relieve humans from the responsibility of directly intervene

for adjusting the behavior of the managed system. The IBM’s vision of autonomic systems is

modeled into the MAPE-K paradigm.

Figure 2.1 depicts the structure an autonomic element. The autonomic element implements

the MAPE-K paradigm. MAPE-K stands for Monitor, Analyze, Plan, Execute and Knowledge.

The MAPE-K paradigm defines the essentials activities of an autonomic element.

Monitor. The feedback cycle of an autonomic element starts with the monitoring activity.

This activity consists of collecting information from the environment of the autonomic

element that reflect changes of the monitored system. The monitoring activity is im-

plemented by sensors.

Analyze. An autonomic element analyzes collected data from the previous activity (mon-

itoring). The activity analyze is a part of the reasoning or decision-making of the au-

tonomic element and aims at identifying symptoms that require the system to take

specific actions.

Plan. The plan activity collects information from the activity analyze and makes decision

about how the monitored system need to be adapt in order to reach the desirable state.

Execute. To implement the decision taken, the autonomic element interacts with the moni-

tored systems through effectors or actuators.

13

Chapter 2. State of the Art

Autonomic manager

Knowledge

Managed element

Analyze Plan

Monitor Execute

Figure 2.1: Structure of an Autonomic Element [Kep05]

Knowledge in the MAPE-K paradigm does not correspond to an activity of the autonomic

element. It expresses the base of information (control flow) that is exchanged between the

four activities of an autonomic element. Autonomic elements are also known as autonomic

managers because they regulate the behavior of the system that they control by interacting

with the later. In the IBM vision of autonomic computing, an autonomic system arises from

the interactions of autonomic managers amongst themselves (the coordination), and their

interactions with the managed system. Autonomic elements of an autonomic system form

the control system. An autonomic manager can be designed for achieving one or several goals.

The term feedback control loop (FCL) usually refers to a control flow of the autonomic manager

that implement a single goal. The control flow denotes the sequence of actions corresponding

to activities of an autonomic manager.

Figure 2.2 depicts an autonomic system architecture. It generally consists of two sub-

systems: the control system that implements the control behavior, and the managed system

that consists of managed elements interacting with the control system. The control system

consists of autonomic managers that cooperate in order to ensure a consistent behavior of

the autonomic system. The type of coordination between autonomic managers can be of

various forms [ASHP+08], hierarchical, peer-to-peer, hybrid. Interactions between autonomic

managers and managed elements take place through touch-points.

14

2.1. Autonomic Computing

Autonomic Manager

Execute

Analyze Plan

Monitor Knowledge

Autonomic Manager

Execute

Analyze Plan

Monitor Knowledge

Autonomic Manager

Execute

Analyze Plan

Monitor Knowledge

Autonomic Manager

Execute

Analyze Plan

Monitor Knowledge

Autonomic Manager

Execute

Analyze Plan

Monitor Knowledge

Autonomic Manager

Execute

Analyze Plan

Monitor Knowledge

Touch Point

Managed Element

Touch Point

Managed Element

Touch Point

Managed Element

Touch Point

Managed Element

Touch Point

Managed Element

Touch Point

Managed Element

Coordination

C
o

n
tr

o
l
S

y
s

te
m

M
a

n
a

g
e

d
 S

y
s

te
m

Figure 2.2: Overview of an Autonomic System Architecture

In this section, we have introduced some definitions and concepts related to autonomic

computing. We have also depicted the structure of an autonomic element with respect to the

MAPE-K paradigm promoted by IBM. Autonomic systems adapt their behaviors according

to changes in their environment in order to conform to their goals. Consequently, adaptation

is a central aspect for autonomic systems. These adaptations can be of many kinds. In the

next section, we introduce some properties of autonomic systems from the adaptation point

of view.

2.1.3 Autonomic System Properties

Autonomic systems are characterized by four properties that defined their behavior. These

properties were defined in accordance to self-adaptation mechanisms in biological organ-

isms [KC03]. An autonomic system that implements all these four properties is qualified as

self-managed system. The following list elaborates in details on the properties of autonomic

systems.

• Self-configuration. This property refers to the capability of an autonomic system for

dynamic reconfiguration in response to changes in the environment by installing, up-

dating, or integrating new software entities.

• Self-healing. This property is also know as self-repair. It refers to the capability of an

autonomic system to discover, diagnose, and react to disruptions. This property en-

capsulates proactive actions of the system for preventing errors, faults or failures.

15

Chapter 2. State of the Art

• Self-optimization. This property is also known as self-tuning. It characterizes the capabil-

ity of the system for managing performance and resource allocation in order to satisfy

its goals.

• Self-protecting. This property refers to the capability of the system for detecting failures

and recover from them. Self-protecting autonomic systems defend their-selves against

malicious attacks and mitigate their effects on the system behavior.

The above properties are usually subsumed under the term of CHOP (Configure, Heal,

Optimize, and Protect) [HS06] or self-*. Now that we have introduced the architecture and

properties of autonomic systems, let us look in details into some existing autonomic solu-

tions.

2.2 Existing Autonomic Systems Approaches

As we mentioned at the beginning of this chapter, autonomic computing embraces a wide

range of research fields, and makes it difficult to provide an exhaustive vision of the state-

of-the-art. In this section, we present existing approaches for building autonomic systems.

However, we are going to focus the spectrum of our analysis to architecture-based approaches

which present a great interest for the rest of this dissertation.

Architecture-based approaches define for a class of systems, a vocabulary of element types,

properties common to the element types in theses systems, a set of constraints on the

permitted composition, and the associated analyses for reasoning about this class of sys-

tems [AAG93]. This means that architecture-based approaches provide a higher level abstrac-

tion for reasoning or implementing solutions for a given domain.

2.2.1 JADE

Jade [BPHT06] is a framework for the management of distributed autonomic systems. Jade

focus on the management of J2EE cluster legacy applications. Jade relies on the FRAC-

TAL [BCS02] component model. The FRACTAL component model is a generic model for

implementing complex software systems that can be dynamically adapted.

The autonomic behavior is achieved through autonomic managers that are in charge of

regulating the behavior of the managed system. Figure 2.3 gives an overview of the Jade

approach. The implementation of the control system and the interaction with the managed

system is done as follows:

• Interaction with the Managed System

Since managed applications are heterogeneous, developers must implement wrappers

as FRACTAL components in order to provide uniform interfaces to interact with the

control system. That is, the legacy system layer (clustered applications) is wrapped

into a management layer implemented by FRACTAL components.

16

2.2. Existing Autonomic Systems Approaches

!"#!$% &'()&($%
&'()&($%!"#!$%

&'()&($%!"#!$%

*"+&,%

-.)!("%

/&#&0"%

1".23%"'$4"%5

/&#&0"%

&'()&($%
&'()&($%

!"#!$%
!"#!$%

&'()&($%!"#!$%

*"!,6"

1".23$+(,/,6&(,$#

/&#&0"%

7&8"

1$2(9&%"

:#!(&..&(,$#

!"%4,'"

;&#&0"8<!5!("/

Figure 2.3: Overview of the Jade Approach [BPHT06]

• Implementation of the Autonomic Control Loop

Autonomic managers in the Jade approach are organized according to self-properties

aspects like self-optimization or self-healing. Autonomic managers are implemented ac-

cording to the MAPE-K paradigm. Jade provides flexible mechanisms for creating

autonomic managers and to manage their deployment. The logic behavior of an auto-

nomic manager is implemented in the decision block of the autonomic manager. It can

be for example, an algorithm for resizing the cluster of replicated servers upon load

surges for a self-optimization autonomic manager.

In the Jade approach, the implementation of autonomic managers conforms to the

MAPE-K model. However, the separation of autonomic managers according to self-

properties aspects is not always possible, because sometimes self-adaptive behaviors over-

lap, and cannot be represented independently. In this case, it is almost impossible to im-

plement them independently without creating conflicts. In addition, in the Jade approach,

the coordination between autonomic managers is not explicit. Finally, Jade uses a generic

syntax language (FRACTAL component syntax) for describing and implementing the archi-

tecture of the control system. As a result, the visibility of the control system is hidden at

runtime because it is hard to distinguish between control architecture components and man-

aged system components. This lack of visibility is a threat for the autonomic system, because

it does not allow verifications of the control system architecture in order to detect potentials

conflicts between autonomic managers.

17

Chapter 2. State of the Art

2.2.2 TUNe

Tune [BHS+08] is a platform designed for building autonomic managers. Tune is an exten-

sion of the Jade framework. As Jade, Tune focuses on the autonomic management of legacy

systems. Tune introduces an higher-level formalism for the specification of the deployment

and the management policies of legacy J2EE systems. The purpose of the higher-level for-

malism is to hide details of the FRACTAL component model, and provide a more intuitive

syntax for wrapping these systems into a uniform abstraction interface, than what was avail-

able in Jade.

The implementation of the control system and the interaction with the managed system

is done as following:

• Interaction with the Managed System

In Tune, interactions with the managed system are implemented through the WDL lan-

guage. This language enables developers to specified a list of methods with parameters,

that can be called for a given wrapper component. At this stage the notion of sensor and

effector is not explicit.

• Implementation of the Autonomic Control Loop

The implementation of the control behavior is basically done through the reconfigu-

ration language where developers specify reconfiguration policies for an autonomic

manager. However, like for Jade, it is not clear how the control logic of an autonomic

manager can be changed or specified.

Overall, Tune provides a higher level formalism to facilitate the implementation of au-

tonomic managers for legacy J2EE servers. However, the introduction of a supplementary

layer of abstraction masks the visibility of the control system architecture. This lack of visi-

bility is a threat for implementing consistent control systems.

2.2.3 UNITY

Unity [CSW04] is one the first autonomic software solution that was implemented. Unity

was developed by IBM which is a pioneer company in the development of software solutions

that enable to build effective autonomic systems. Concurrently to the Unity project, IBM has

developed other projects like ABLE [BSP+02] or the Autonomic Toolkit [Bar04] that rely on the

multi-agent paradigm for implementing autonomic behavior.

Unity was designed for managing resource allocation in a distributed system [TCW+04].

The Unity project relies on the MAPE-K paradigm. Figure 2.4 illustrates the architecture of

the Unity autonomic system. The Figure shows that the architecture of Unity autonomic

system consist of autonomic applications, a resource pool, an arbiter, and a policy repository.

The implementation of the control system and the interaction with the managed system

is realized as following:

18

2.2. Existing Autonomic Systems Approaches

Process
Resource Resource Resource

Resource pool

policy

repository

Autonomic

Application 1
Autonomic

Application k

Arbiter

....

Figure 2.4: Architecture of Unity Autonomic System

• Interaction with the Managed System

The managed system in Unity is represented by the resource pool. Autonomic applications

interact through managers directly with the resource pool. Mangers are able to increase

or decrease resource allocation for a given application according to its needs. The com-

munication between autonomic applications and the resource pool is completely specified

and hard-coded through Java interfaces. The notions of sensor and effector remain very

implicit.

• Implementation of the Autonomic Control Loop

The implementation of the control system is realized at the level of each application

through a manager. The logic behavior of a manager is specified through a high-level

policy language. All policies defined in the Unity environment are referenced in the

policy repository. The resource Arbiter is used in order to coordinate the access of auto-

nomic applications to the resource pool.

Unity provides a very specialized and flexible solution for building autonomic systems.

It focuses on the issue of resource allocation. Unity allows developers to specify control

policies with an high level syntax. However, the specialization of Unity makes difficult its

reuse for other type of autonomic management not related to the resource allocation. In ad-

dition, the use of an arbiter for the coordination of autonomic applications limits the scalability

of Unity. Finally, although the MAPE-K paradigm is used in Unity, the architecture of the

control system remains fuzzy because its constituents are not clearly identified. For example,

19

Chapter 2. State of the Art

the notions of sensor and effector of the MAPE-K paradigm cannot be explicitly infered from

interfaces implementing the communication between the managed and the control system.

2.2.4 AUTONOMIA

The Autonomia [XSL+03][YCHP05] project was developed at the University of Arizona. Au-

tonomia defines an approach for building autonomic systems on the basis of multi-agents.

The purpose of the project is to provide developers of autonomic systems with tools for

implementing mobile autonomous agents. Autonomia focus on increasing capacities of exist-

ing software applications with “agent properties". Figure 2.5 depicts the architecture of an

autonomic agent in autonomia.

Execute

Analyze

supervise

Managed System

Configuration

control

operation

Plan

R
u

n
ti

m
e

 M
a

n
a

g
e

r
In

te
rf

a
c

e
 M

a
n

a
g

e
r

Agent

Figure 2.5: Architecture of an Autonomic Agent in Autonomia

Figure 2.5 shows that the architecture of an autonomic agent consists of two layers: the

interface manager and the runtime manager. These layers implement the autonomic behav-

ior of an agent in autonomia. In autonomia, the implementation of the control system and the

interaction with the managed system is realized as follows:

• Interaction with the Managed System

Interactions with the managed systems are organized through the interface manager.

It defines a set of operations that can be performed on the managed systems. These

operations can be supervised by controllers which can be configured for executing au-

tonomic tasks. The main constituents of the interface manager are depicted on Figure 2.5.

20

2.2. Existing Autonomic Systems Approaches

• Implementation of the Autonomic Control Loop

The implementation of the control behavior within an agent is realized by the runtime

manager. The runtime manager defines the management policy of the autonomic agent.

These policies are expressed in the form of event-condition-action rules. As depicted on

Figure 2.5, the architecture of the runtime manager conforms the MAPE-K paradigm.

The whole approach adopted in Autonomia for implementing autonomic systems is

very close to the one promoted by ORACLE with the JMX [ORA] framework in Java. JMX

offers the possibility to enhance Java applications with management capabilities through the

extension of JMX’s interfaces by Java classes. The architecture of the Autonomia framework

is highly distributed and bring a lot of flexibility for defining policies of an autonomic agent.

However, the definition of these policies are not coordinated for all autonomic agents of

the environment. This can lead to some inconsistencies of the control system architecture.

Finally, the language for implementing the control system does not reify its architecture.

2.2.5 RAINBOW

Rainbow [wC08][wCcHG+04] is a framework for implementing autonomic systems devel-

oped at Carnegie Mellon University in 2004. The main claim of Rainbow is to reduce the cost

of implementing autonomic systems. For that purpose, Rainbow defines a generic architec-

ture of an autonomic system based on the MAPE-K paradigm that developers can customize

to their needs. Rainbow supports a high-level description language for implementing the be-

havior of the control system. Figure 2.6 depicts the architecture of the Rainbow autonomic

system.

Figure 2.6: Rainbow System Architecture with Customization Points [wC08]

21

Chapter 2. State of the Art

Figure 2.6 shows that the Rainbow architecture conforms to the MAPE-K paradigm.

The customization of the Rainbow architecture is represented by colored pentagons on Fig-

ure 2.6. In Rainbow, the implementation of the control system and the interaction with the

managed system is realized as follows:

• Interaction with the Managed System

Rainbow requires a model of the managed system for reasoning about changes in the

system. The translation infrastructure plays the role of mapping between the model of

the managed system and its implementation. The translation infrastructure interacts

with the managed system through effectors and probes. It forwards the informations

collected from the managed system to the autonomic control system.

• Implementation of the Autonomic Control Loop

The implementation of the control system in Rainbow requires to define the model of

the managed system in addition to the control architecture model. The constituents of

the control architecture exist in a generic form, but must be customized for implement-

ing specific behavior of a given application. The description of the autonomic manager

in Rainbow is independent of the execution platform.

Rainbow offers an effective way to reduce implementation efforts when building auto-

nomic systems. However, the main limitation of the Rainbow approach as pointed by the

authors [wC08] is the centralization of the control system which can be an issue for the scal-

ability of the solution.

2.2.6 CEYLON

Ceylon [MDL10] is a service oriented framework for building autonomic managers. Ceylon

implements autonomic managers like an opportunistic composition of service oriented com-

ponents. In Ceylon, complex management policies are achieved through the orchestration of

simple policies implemented by specialized components. Figure 2.7 depicts the architecture

of Ceylon autonomic system.

Figure 2.7 shows that the behavior of the control system is the result of the composition

of service components by the task manager. The composition is opportunistic in the sense

that, it is performed at runtime depending on the high level goals of the system. The imple-

mentation of the control system and the interaction with the managed system is realized as

follows:

• Interaction with the Managed System

Interactions with the managed system are implemented by individual service compo-

nents. Components are activated or stopped by the task manager which is in charge

of coordinating the behavior of individual components in order to achieved the goal

22

2.2. Existing Autonomic Systems Approaches

Figure 2.7: Ceylan Autonomic Control Architecture [MDL10]

of the control system. Ceylon relies on OSGI/iPOJO components model for the imple-

mentation behavior of service components. The communication layer between service

components and the managed system is not explicit for developers, neither the im-

plementation of these components. In the Ceylon approach, service components are

provided by the platform and registered in a repository as shown on Figure 2.7.

• Implementation of the Autonomic Control Loop

As depicted in Figure 2.7, the control system in Ceylon is implemented by two entities:

the strategy manager and the task manager. The strategy manager supervises the task

manager. The task manager orchestrates the behavior of service components, by acti-

vating and deactivating them when necessary. The behavior of the control system is

configured through interfaces of the Ceylon container.The Ceylon container provides

high level syntax for customizing different aspects of the control behavior like goal

management, life-cycle management or human-machine interactions.

The strength of Ceylon is the service oriented component (SoC) approach for implement-

ing autonomic systems. SoC offers an effective way to address the scalability of autonomic

systems. In addition, Ceylon provides a high level syntax for specifying the behavior of the

control system. However, the visibility of the control system architecture is masked by mul-

tiple layers of abstractions. In particular, interactions between service components and the

managed system, as well as their implementation logic are not transparent for developers.

This is a critical threat for the control system because, it is a potential source of conflicts. The

task manager tries to limit conflicts by ensuring that components with similar behavior are

23

Chapter 2. State of the Art

not activated at the same time. However, since the architecture of the later is not explicit, the

consistency of their coordination cannot be guaranteed.

2.2.7 DiaSpec

DiaSpec [CBCL11] is a domain specific architectural framework dedicated for the implemen-

tation of autonomic applications. DiaSpec promotes the SCC (sense-compute-control) pattern.

The SCC pattern presents a great similarity with the MAPE-K pattern. From an architec-

tural perspective, in the SCC paradigm, we distinguish four types of elements: (1) sensors

at the bottom of the architecture collect information from the environment; then (2) context

operators which processed this information; then (3) control operators, which refine this infor-

mation; and finally actuators at the top of the architecture which impact the environment.

The Architectural style of the DiaSpec framework is depicted in Figure 2.8.

 !"#$%&#!
'()*+,&-.
/-#&"(-)!-,

 !"#$%

&'%&'(#)*

!$%"'+"
("

, -#("

$,(',&

 !"#$%#&

 !"#'!(($'&

0(+"1!%

21,&(-%

)$*+,$&

Figure 2.8: Control Architectural Style in DiaSpec

Figure 2.8 shows the SCC organization of the control architecture in DiaSpeC. One of the

specificity of DiaSPec is that, it uses generative techniques (MDE) [BG01] for generating the

implementation framework of the control system from an initial architectural description.

The implementation of the control system and the interaction with the managed system is

realized as follows:

• Interaction with the Managed System

From the architectural description of the control system, diaspec generates an imple-

mentation framework. The implementation framework enables to specify the logic be-

havior of each elements of the control system. Interactions with the managed system

are implemented from sensors and effectors classes provided by the implementation

framework. On Figure 2.8, sensors correspond to sources of devices and effectors to

actions of devices.

24

2.2. Existing Autonomic Systems Approaches

• Implementation of the Autonomic Control Loop

The behavior of the control system is implemented from the generated implementation

framework. This is done by extending abstract classes corresponding to the control

architecture elements (sensors, operators, effectors).

The DiaSpec approach enables to build autonomic system in three phases: The first

phase consists in the description of the control system architecture through a domain spe-

cific architectural language. The second phase consists in the implementation of the behavior

of the control system through a generated implementation framework language. The third

phase is the distribution phase which consists in exporting the implemented control sys-

tem into different target technologies like RMI, SIP or web services. The generative approach

adopted by DiaSpec significantly reduces the burden of implementing control systems for

developers, while providing a high flexibility for adapting it to their needs. The visibility

of the control architecture is raised through the explicit support of the SCC paradigm in the

implementation framework.

One limitation of DiaSpec lies in the management of cross-cutting concerns. In particu-

lar, the management of conflicts between feedback loops involved in the control architecture

is not addressed. A recent work [JCL11] based on DiaSpec addresses this issue by provid-

ing and extension language for implementing architecture conflicts of the control system.

In addition, in DiaSpec, the chain of visibility of the control system is interrupted at run-

time because the transformation from the implementation framework to the target runtime

platform does not guarantee a strong mapping between architectural concepts and their im-

plementation at runtime.

Summary

In this section, we have overviewed the landscape of architecture-based autonomic solu-

tions. We have noticed that existing solutions are very diverse, with their own strengths and

weaknesses. In particular, we have showed that some solutions like Rainbow, or Tune require

a model of the managed system in order to implement autonomic applications. We have

noticed that many paradigms are used to structure the architecture of the control system,

and namely, the SCC paradigm, the MAPE-K paradigm or agent-based paradigms. We have

presented solutions that rely on centralized control architecture, and others that are fully

decentralized like Ceylon. We have presented the advantages of an higher customization

of the control architecture in terms of reuse of architectural components, and the flexibility

provided by a generative approach. At this stage, it appears that in order to clearly iden-

tify challenges ahead for improving existing solutions of the state-of-the-art, it is relevant to

compare these solutions on the basis of common criteria. That is what we are going to focus

on in the next section.

25

Chapter 2. State of the Art

2.3 Assessing Autonomic Systems

In this section, we introduce some criteria in order to classify autonomic system solutions

(cf. Section 2.3.1) presented in the previous section. Then, we present a classification (cf.

Section 2.3.2) of these solutions in order to leverage challenges to address for improving the

engineering of software autonomic systems.

2.3.1 Comparison Criteria

Autonomic systems can be classified according to two dimensions: Quality/Quantity dimen-

sion and engineering dimension.

Quality/Quantity Dimension

The quality/quantity dimension refers to criteria used to assess autonomic solutions in a quan-

titative or qualitative manner. In [MH04], McCann et al. suggest the following metrics for

assessing autonomic solutions according to quality/quantity dimension: Quality of Service, cost,

stabilization, sensitivity, adaptation and reaction time.

• Quality of Service is a metric which evaluates to which extend the system has reached

its primary goals. It can consist of elementary metrics like the response time over the

service execution cost. It is an highly important metric for autonomic systems as they

are typically designed for improving some aspects of a service.

• Cost is a broad metric which evaluates the cost of the autonomicity. The cost can be

measured in terms of the amount of communication between components of the con-

trol system, or in terms of time and people required for developing and maintaining

an autonomic solution.

• Stabilization is a metric which refers to the sensitivity of the system, and evaluates the

time taken for an autonomic solution to learn its environment and stabilize its opera-

tions.

• Sensitivity is a metric which measures how well an autonomic system fits with the en-

vironment in which it evolves. At one extreme, an highly sensitive system will detect

subtle changes in the environment and adapt according to. At another extreme, lowly

sensitive system will not be able to detect important changes of the environment. De-

pending on the type of activities, a trade-off between both extremes must be found to

have an efficient behavior of the system.

• Adaptation and Reaction Time metrics are related to the system reconfiguration and

adaptation. The adaptation time measures the time that it takes for the system to adapt

to a change in the environment. The reaction time measures the time between when

an environmental element has changed and the system recognizes that change. The

reaction time can be seen as a part of the adaptation time.

26

2.3. Assessing Autonomic Systems

The comparison between autonomic solutions through quality/quantity dimension criteria

required the use of benchmark applications, to ensure that autonomic systems are evaluated

within the same context. So far, a consensus does not exist concerning benchmark applica-

tions for the evaluation of autonomic systems. For that reason, we will focus our comparison

on engineering dimension criteria.

Engineering Dimension

The engineering dimension refers to the criteria used to characterize autonomic system in a

descriptive manner. Engineering dimension defines several aspects that characterize the vari-

ability in the engineering process of autonomic systems. Engineering dimension is related to

design and runtime choices in the engineering process of autonomic systems. To classify

existing autonomic solutions according to the engineering dimension, we will use the fol-

lowing criteria:

• Abstraction Layer. This criteria refers to the level of abstraction provided by an au-

tonomic solution for implementing the control system. The abstraction layer can be

High– general purpose or domain specific–, or Low–general purpose or domain spe-

cific. An high abstraction layer means that an autonomic solution provides an high

level architectural language for implementing the control system.

• Customization/Reuse. This criteria characterizes the support for reusing customizable

parts of the control system architecture. That is, when implementing a new control

system, developers can benefit from existing pieces of the control system.

• Scalability. This criteria refers to the centralized or decentralized coordination of feed-

back control loops implemented with an autonomic solution. It characterizes the suit-

ability of the control system for managing large scale distributed infrastructures.

• Autonomic Properties. This criteria expresses the possibility of implementing all self-

adaptive behaviors of an autonomic system. It tells whether an autonomic solution is

specialized or not for the implementation of a specific self-adaptive behavior.

• Control Visibility. This criteria defines the visibility of the constituent elements of the

control system. The control visibility is characterized at design and at run time.

2.3.2 Classification of Autonomic System Approaches

In this section, we introduce the classification of common architecture-based autonomic solu-

tions presented above (Section 2.2). This classification is based on the engineering dimension

criteria. To ease the readability of this classification, we adopt the following semantics. The

yes denotes that the criteria is fully implemented by the autonomic solution; the yes/no means

that the criteria is partially implemented by the autonomic solution; and the no denotes that

the criteria is not implemented for the autonomic solution. High or low denotes that an auto-

nomic solution provides a high or low level abstraction language. Generic or Domain-specific

27

Chapter 2. State of the Art

indicates that the language used for implementing autonomic behaviors is general-purpose

or specific to an application domain. Self-CHOP indicates the kind of self-adaptive property

that can be implemented with an autonomic solution. Each Letter of CHOP indicates one

self-adaptive property, and namely Configuration, Healing, Optimization, and Protection.

Table 2.1 gives the classification of architecture based solutions with respect to the engineer-

ing criteria.

28

2.3.
A

ssessin
g

A
u

to
n

o
m

ic
S

y
stem

s

Architecture-based

Autonomic solutions

Classification Criteria

Abstraction

Layer

Customization/

Reuse

Scalability Autonomic

Properties

Control

Visibility

JADE [BPHT06] High, Generic Yes No Self-CHOP Yes/No

TUNe [BHS+08] High, Domain-

Specific

Yes Yes Self-CHO No

UNITY[CSW04]

[TCW+04]

High, Domain-

Specific

Yes/No No Self-O No

AUTONOMIA [XSL+03]

[YCHP05]

Low, Domain-

Specific

No Yes Self-CHOP No

RAINBOW[wC08]

[wCcHG+04]

High, Domain-

Specific

Yes No Self-CHOP Yes/No

CEYLON [MDL10] High, Domain-

Specific

Yes Yes Self-CHOP No

DiaSpec [CBCL11] High, Domain-

Specific

No Yes/No Self-CHOP Yes/No

Table 2.1: Classification of Architecture-based Autonomic Solutions

29

Chapter 2. State of the Art

The analysis of the classification of autonomic solutions provided on Table 2.1 shows

many limitations of existing solutions for tackling the issue of engineering amenable auto-

nomic solutions. This classification shows that many architecture-based autonomic solutions

provide high level abstraction languages for implementing autonomic systems. However,

these high level abstraction languages usually mask the visibility of the control architecture.

Sometimes, even when the control architecture remains visible like in Jade or Rainbow, the

implementation of its constituents are not transparent for developers. We also observe that

the visibility of the control architecture can be reified at design time but disrupted at run-

time like in DiaSpec. The customization or the reuse of components during the engineering

process are diversely implemented. However, the type of mechanisms used for supporting

the customization can have a strong impact on the scalability of the solution. For example in

Rainbow, the choice of static control architecture with points of customization significantly

impact the scalability of the control system, because it tends to promote a centralized con-

trol architecture. Finally, autonomic properties are diversely supported. Some solutions like

Unity provide specialized autonomic managers that implement a specific autonomic prop-

erty, and other a generic support for implementing all self-adaptive properties.

The comparison of existing software autonomic solutions presented in this chapter

shows that none of existing solutions fully satisfies the engineering criteria of autonomic

systems. In particular, a recurrent limitation is the lack of visibility of the control architec-

ture. The lack of visibility of the control system is a serious threat for autonomic systems,

because it makes them difficult to maintain and consequently increase their maintenance

cost which the opposite of the target goal of the autonomic computing. We think that the

following challenges need to be addressed for tackling the limitations of existent autonomic

solutions:

• Challenge 1: Make feedback control loop explicit at design and at run time to enable

their understanding and analysis.

• Challenge 2: Provide some verification techniques for evaluating the correctness of the

control architecture in order to facilitate their maintenance.

• Challenge 3: Provide techniques that reduce the cost of engineering and maintaining

autonomic systems.

The above mentioned challenges were discussed and acknowledged as rele-

vant research avenues for autonomic computing in specialized international confer-

ences [CdLG+][BSCG+09]. In the contribution part (cf. Part II), we present how these chal-

lenges are addressed within this thesis.

2.4 Summary

In this chapter, we have introduced autonomic computing and presented the objective of

this research field. We have surveyed some existing autonomic software solutions, and com-

30

2.4. Summary

pared them according to defined criteria. From this comparison, we outlined some chal-

lenges that need to be addressed in order to improve the engineering of autonomic system.

In particular, we underlined the visibility of the control architecture at design time and at

run time as an essential requirement towards building amenable autonomic systems.

In the next chapter, we introduce the SALTY model which is a control oriented model

that serves as a ground for this thesis contribution. The originality of the SALTY model is

to enable the description of control systems where feedback loops are reified as first-class

entities and represented with respect to the MAPE-K paradigm.

31

This page was intentionally left blank

Chapter 3

Salty Model

"Try to learn something about everything and everything about something."

– Thomas Henry Huxley

Contents

3.1 SALTY Structural Model . 34

3.1.1 Requirements . 34

3.1.2 Concepts . 35

3.2 SALTY Graphical Formalism . 37

3.3 SALTY DSL . 39

3.3.1 Control Elements . 39

3.3.2 Connectivity . 40

3.3.3 Non-functional Properties . 41

3.4 Summary . 42

In the previous Chapter (cf. Chapter 2), we have presented the state-of-the art of auto-

nomic computing, and pointed out the limitations of existing works for building manageable

autonomic systems. In this chapter, we introduce the SALTY model which is used as a basis

for our proposal discussed later in the contribution part (cf. Part II) of this thesis. The SALTY

model has been developed within the ANR SALTY project through which the current thesis

was funded. The SALTY project aims at proposing a new step ahead regarding runtime self-

adaptation of large scale distributed systems. In order to achieve this objective, the SALTY

project relies on the usage of autonomic computing and control theory principles, for build-

ing an end-to-end Model-Driven approach [Ken02] using models for and at run-time, with

representation of large-scale distributed system at different abstraction levels.

The SALTY Model fits into the vision of the SALTY project, by proposing control ori-

ented concepts that enable the modelisation of Self-Adaptive Systems–ie, systems that are able

33

Chapter 3. Salty Model

to adjust their behavior with regards to some defined goals in response to their perception

of the environment and the system itself, and do that autonomously. The aim of the SALTY

model is to ease the process of designing the architecture of self-adaptive systems. It al-

lows an explicit definition of the semantics of a self-adaptive behavior without any major

technological concerns. The idea is to focus on an externalized adaptation, that is to introduce

self-adaptive behavior into already existing legacy systems and support different degrees

of separation with respect to the target system. This is an alternative approach to the more

traditional mechanisms, which allow these systems to detect and recover from errors, that

are typically wired at the level of code where they are hard to change, reuse or analyze [GS02].

The use of the SALTY model combined with our proposal empower software engineers to

turn existing systems into self-adaptive systems in time and cost effective manner.

Structure of the Chapter

This Chapter is organized as follows. Section 3.1 discusses the concepts of the SALTY model.

Section 3.2 introduces the graphical formalism used to represent a control architecture using

the SALTY model specification. In Section 3.3, we introduce the SALTY language, which pro-

vides a means for designing feedback control loops with the concepts of the SALTY model.

Finally, we conclude this chapter with a summary.

3.1 SALTY Structural Model

The structure of the SALTY model is represented as an EMF Ecore model. The model is in a

nutshell a graph of distributed adaptive elements with various profiles: sensor, effector and

controller and associations between them. The model is defined using a meta- modeling

approach (similar to the UML).

3.1.1 Requirements

In this section, we outline the main requirements for building self-adaptive systems pre-

sented in [CdLG+], and that have guided the specification of the SALTY model.

• Making the control loops explicit and exposing self-adaptive properties to allow the

designer to reason about the system modeling support for control loops.

• Support for different types of control composition. Instances of feedback control loop

(FCL) can also be created to control different aspects of other FCL on a control system

architecture.

– FCLs are to be instantiated to coordinate other loops at the same level, forming a

hierarchy of loops.

34

3.1. SALTY Structural Model

– FCLs will aim at controlling control elements (monitors, etc.), thus being loops at

the meta-level. More generally, any FCL element can be self-managed in the same

way.

– FCL might have to control the behavior of several or all FCLs, also from the meta-

level. For example, this will be used to enforce time constraint on the overall

self-adaptive parts or any constraints on the features of the loops.

3.1.2 Concepts

This section summarizes the main design principles that were used in the creation of the

structural model. The adaptation semantics, the definition of the feedback elements with

their relevant inputs and outputs for data and control flows, is captured in a technologically

agnostic model where each phase of the feedback control is made explicit and reified as an

first-class element. The targeted system, the subject of the adaptation, is only represented

through its touch-points: sensors for context observation (sensor elements), and actuators from

which the adaptation is performed (effector elements). The core of the adaptation, the decision

making process is encapsulated in the controller element. There is no assumption on which

kind of controllers should be used in the system. The model also explicitly defines data and

control flows in the architecture via links that express the dependencies among the respective

elements.

A) Type and Instances

The presented model contains both the type definition as well as the instance definition. At

the type level, the complete structure of each adaptive element is described. This involves

definition of its properties and features, data and control link binding, composite exports and

ports imports. At the instance level we define a tree of AdaptiveElementInstance following the

features that were defined in their corresponding types together with PropertyValue for their

property values.

B) Adaptive Elements

For a system to be self-manageable, it requires to be aware of itself. Therefore, besides having

the ability to observe the target system and the running environment, the adaptive system

also needs to know about its structure and behavior. For this, we use the AdaptiveElementType

as the main conceptual element in the model. It represents an abstract entity in the system

which the concrete behavior is defined by one of its subclasses. An adaptive element can, if

needed, provide its own sensors and effectors in order to present information about its state

or meta-data and to offer a way to adjust its behavior respectively. This reflective ability

thus allows to make explicit loops and their elements, to compose different loops, but also

to build a hierarchy of control on top of controllers as well as on top of any other adaptive

element.

35

Chapter 3. Salty Model

Data Providers - DataProvidingType. DataProvidingType represents elements that are part

of the monitoring subsystem, elements that supply information about the underlying

system into controllers so they can reason about the state of the target system and its

environment. There are two main kinds: a SensorType and a FilterType that are through

their data dependencies hierarchically organized in a form of a directed acyclic graphs.

The leaf nodes in the hierarchy - SensorType - provides data of a defined DataType that

are directly gathered from an external entity like various operating system resources,

services calls, user preferences, etc. The other nodes that are not leaves - FilterType - are

used to aggregate or in some other way process data that are coming from one or more

connected sensors. They can be real data filters, stabilization mechanisms, converters,

rules inference engines.

Data Processors - DataProcessingType. DataProcessingType represents elements that pro-

cess data that comes from the DataProvidingType. There are two main kinds: a FilterType

that has been described above and ControllerType. The latter represents the decision

making part in the model. In general, its responsibility is to choose an appropriate

action among the set of all permissible actions based on the observed state of the sub-

jected system. There are many different kinds of controllers that can be used for the

decision making process.

Effectors - EffectorType. EffectorType carries out the actual system modification and is or-

chestrated by one or more controllers. An effector encapsulates a set of operations

Operation that can be used by a ControllerType via ControlLinkType. An operation is

a named action that can take an arbitrary number of OperationParameters and whose

purpose is to adjust the target system.

Links - LinkType. LinkType is responsible to deliver data from a data provider to a data

processor in case of a DataLinkType or to invoke an operation requested by a controller

on an effector in case of ControlLinkType. The data flow in the system originates in

sensors and progresses through connected filters to terminate in controllers.

Ports - PortType. Ports represents the means to support distributed elements with remote

communication. The remote ability is an important aspect of a system that allows it to

spread its operation over multiple hosts possibly running in a distant places. However

the interaction between elements in a distributed system need to be dealt with in ways

that are intrinsically different from objects that interact in a single address space.

C) Structural Parts

The StructuralPart represents an abstract structural part of an AdaptiveElementType. There

are two types of structural parts available: a property, and a feature. They correspond roughly

to the concepts of an attribute (EAttribute) and a reference (EReference) from EMF. Each Adap-

tiveElementType can define one or more Properties whose values will be provided at the in-

36

3.2. SALTY Graphical Formalism

stantiation point and kept in AdaptiveElementInstance using PropertyValue. A feature repre-

sents a reference to another adaptive element type.

D) Datatype Parameters

Datatype parameters introduce a generic datatype declaration that allows to create a generic

reusable elements. Each AdaptiveElementType can declare zero or more DataTypeParameters.

The following elements require definition of a datatype DataTypeDefinition, they all inherit

from the DataTypedElement: DataProvidingType, OperationParameter, Property, DataLinkType,

and DataTypeArgument.

E) Operation Selectors

In order to foster reuse, a generic operation selector SelectorParameter can be used at the

places where an operation reference is needed. Besides just introducing a wildcard repre-

senting any operation name, additionally it has to specify the datatype of all its arguments

(zero or more). The following elements require to define an Operation: ControlLinkType and

SelectorArgument.

F) Composites

A control system, represented by the ControlSystem element, is composed of one or more

CompositeTypes. A composite is an element that allows to hierarchically compose other ele-

ments and form a tree of adaptive elements. Any element defined inside a composite can be

exported and thus made available to the outside.

G) Binding

A binding establishes a connection between a source LinkType and a target element depend-

ing on the concrete type of the link. The binding entity Binding, together with LinkType forms

the data and control flow in the system.

3.2 SALTY Graphical Formalism

The SALTY model syntax enables developers to describe control system architectures. Fig-

ure 3.1 depicts the graphical notations that can be used by developers in order to design con-

trol system architectures using the salty specification. The Figure shows that the graphical

syntax of SALTY is control oriented. That is, notations used for the graphical representation

of a control architecture are all related to the notion of control. These notations enable to

37

Chapter 3. Salty Model

effector

active sensor

sensor

filter

active filter

controller

composite

port

provides

exported link
site

data link

exported element

control link

exported element

Figure 3.1: SALTY Graphical Notations

represent control elements– i.e, sensors, filters, controllers, effectors–, composition aspects–i.e,

composites, port–, as well as the connectivity –data link, control link, exported link, provided link

– in the control architecture.

Illustrative example

To illustrate how to use the graphical notations of the SALTY model for designing a control

Apache Control System

Adapt monitoring frequency - indirectly controls the ApacheContro

m
e

ta
-c

o
n

tro
l

c
o

n
tro

l
c
o

n
tr

o
l

la
y
e

r

controller :
ApacheController

apacheUsage :
ProcessMemoryUsage

apacheRestart :
ProcessRestart

trigger
: TimedScheduler

push

avg
: MovingAverage

pull pull

controller :
AdaptiveMonitoringController

setPeriod
push

s
y
s
te

m

la
y
e

r

c
o

n
tr

o
l

la
y
e

r

s
y
s
te

m

la
y
e

r

FCL1

FCL2

Figure 3.2: Example of Apache Control Architecture Representation with the SALTY Speci-

fication

architecture, let us consider the example of the Apache usage memory control architecture.

38

3.3. SALTY DSL

The Apache usage memory control system, monitors the memory usage of an Apache server.

The behavioral policy for the Apache control system consists in restarting the Apache server

when the usage memory exceeds 1 Gigabyte (GB). The Apache control system is able to adapt

the frequency at which memory usage is monitored. Figure 3.2 illustrates how the Apache

control system can be modeled using the SALTY graphical formalism.

Figure 3.2 shows that the Apache control system consist of two feedback control loops,

FCL1 and FCL2. The first control loop FCL1 actually monitors the memory usage of the

Apache server and decides or not to restart it. The decision logic of the feedback loop FCL1 is

contained in the controller, ApacheController. The second loop, FCL2 monitors the frequency

at which the memory usage is pulled from sensor apacheUsage. The monitoring frequency

can be increased for example when the usage memory is getting close to 1GB. The feedback

loop FCL2 plays the role of a meta-controller, that is FCL2 controls another feedback loop

(FCL1).

The example depicted on Figure 3.2 shows that the semantic of the SALTY model is con-

trol oriented. This is relevant for developers of control systems, because they can explicitly

describe the behavior of the control system with concepts close to their application domains.

3.3 SALTY DSL

There are basically two options for designing a control system with the SALTY specification.

We can either use the Eclipse Modeling Framework (EMF) tool or the dedicated SALTY

domain specific language (DSL). The first option is close to a graphical design, while the

second option is a textual design. The SALTY DSL provides language constructions based

on the Scala [pl] programming language to ease the design process of control systems. In

this section, we are going to review some key language constructions of the SALTY DSL.In

particular, we are going to highlight how the use of annotations help to tackle cross-cutting

concerns. For example, the CORONA approach which is the main contribution of this thesis

and presented on the next part (cf. Part II) of this document, leverage concerns like constraint

analysis, code generation or non-functional properties through the annotation mechanism.

3.3.1 Control Elements

Basically, four types of control elements are generally used when designing control systems.

That is, sensors, effectors, filters and controllers types. To illustrate how control elements are

represented using the SALTY DSL, we are going to use the Apache control system presented

in Figure 3.2 as a reference architecture. The listing 3.1 gives a snippet of the syntax for

describing control elements in the SALTY DSL.

In the listing 3.1, we can notice that the definition of a control element consist in two

main steps: The first step consists in the definition of the control element type and the sec-

ond step consists in the definition of concrete instances for a given type of control element.

39

Chapter 3. Salty Model

In the listing 3.1, the lines 2–20 depict the syntax for ProcessMemoryUsage, ApacheController,

MovingAverage and ProcessRestart control element type. In particular, we can notice that the

filter type MovingAverage has a property named windowSize and a datalink named input.

1 / / c o n t r o l e l e m e n t s t y p e d e f i n i t i o n

2 sensorType (name = " ProcessMemoryUsage " , dtype = f l o a t)

3

4 f i l t e r T y p e (name = " MovingAverage ") i n i t { i m p l i c i t e =>

5 typeParameter (name = "T")

6 dtype = ‘T

7 property (name = " windowSize " , dtype = int32 , defaul tValue = i n t 3 2 (" 5 "))

8 dataLinkFeature (name = " input " , dtype = ‘T , required = true , ‘ type ‘ = ‘DL)

9 }

10

11 contro l l e rType (name = " ApacheController ") i n i t { i m p l i c i t e =>

12 dataLinkFeature (name = " input " , dtype = f l o a t ,

13 mode = push , required = true , ‘ type ‘ = ‘DL

14)

15 contro lL inkFeature (name = " a c t i o n " , operat ion = operat ion (i n t 3 2) ,

16 required = true , ‘ type ‘ = ‘CL

17)

18 }

19

20 e f fec torType (name = " P r o c e s s R e s t a r t " , operat ion = operat ion (i n t 3 2))

21

22 / / c o m p o s i t e

23 compositeType (name = " Main " , main = t rue) i n i t { i m p l i c i t e =>

24 / / c o n t r o l e l e m e n t i n s t a n c e s d e f i n i t i o n

25 / / s e n s o r s

26 sensor (name = " apacheUsage " , ‘ type ‘ = ‘ ProcessMemoryUsage)

27 / / f i l t e r

28 f i l t e r (name=" avg " , ‘ type ‘ = ‘ MovingAverage)

29 / / c o n t r o l l e r

30 c o n t r o l l e r (name = " c o n t r o l l e r " , ‘ type ‘ = ‘ ApacheController)

31 / / e f f e c t o r

32 e f f e c t o r (name = " apacheRestar t " , ‘ type ‘ = ‘ P r o c e s s R e s t a r t)

33 }

Listing 3.1: Control Elements Design with the Salty DSL

Similarly, the lines 26–32 correspond to the definition of apacheUsage, avg, controller and

apacheRestart instances. The definition of each instance indicates the type of the instance

through the type attribute.

3.3.2 Connectivity

In the SALTY DSL, the connectivity between the elements of the control system are expressed

through two types of bindings: That is, controlBinding and dataBinding. The main difference

between these type of links is that controlBinding can exist only between controllers and

40

3.3. SALTY DSL

effectors. The Listing 3.2 gives an excerpt of the SALTY DSL syntax for defining data and

control bindings. The lines 2–5 correspond to the definition of the dataBinding b1, and the

lines 7–10 to the definition of the controlBinding b2.

1 / / d a t a b i n d i n g d e f i n i t i o n

2 dataBinding (name = " b1 " ,

3 source = sensorRef (‘ apacheUsage) ,

4 t a r g e t = dataLinkRef (‘ avg , ‘ input)

5)

6 / / c o n t r o l b i n d i n g d e f i n i t i o n

7 contro lBinding (name = " b2 " ,

8 source = e f f e c t o r R e f (‘ apacheRestart) ,

9 t a r g e t = contro lLinkRef (‘ c o n t r o l l e r)

10)

Listing 3.2: Connectivity Design with the Salty DSL

3.3.3 Non-functional Properties

Non-functional properties are essentially carried out in the SALTY DSL through the annota-

tion mechanism. Annotations are used to integrate cross-cutting concerns during the design

of the control architecture. They offer a flexible way to keep the core model lightweight

while addressing other concerns that are not encapsulated in the core model.

name:EString

Annotation

Arguments

0..*

<<abstract>>

DataTypedElement

name:EString

abstract:EBoolean

AdaptiveElementType

0..*

Figure 3.3: Annotation Class Diagram

Figure 3.3 depicts the Annotation class diagram. The figure shows that an AdaptiveEle-

ment can be decorated with annotations. Since, control elements and connection links in the

SALTY model are derived from AdaptiveElement, the description of the latter can easily be

enriched with annotations. The Listing 3.3 illustrates how a dataBinding can be decorated

with an annotation.

The Listing 3.3 describes the @Stabilized annotation on the dataBinding b1. The use of

the stabilized annotation will drive the code generator for generating a filter component of

41

Chapter 3. Salty Model

type DeltaOperator between the apacheUsage sensor and the avg filter. The DeltaOperator

filter is a stabilization algorithm which purpose is to regulate the variation of input value

from the sensor apacheUsage to the filter avg. We elaborate on stabilization algorithms in the

contribution part of this thesis.

1 / / d a t a b i n d i n g d e f i n i t i o n

2 dataBinding (name = " b1 " ,

3 source = sensorRef (‘ apacheUsage) ,

4 t a r g e t = dataLinkRef (‘ avg , ‘ input)

5) i n i t { i m p l i c i t e=>

6 / / a n n o t a t i o n d e f i n i t i o n

7 annotat ion (" S t a b i l i z e d " , DeltaOperator)

8 }

Listing 3.3: Connectivity Design with the Salty DSL

3.4 Summary

In this chapter we have presented in details the concept provided by the SALTY model for

developers of autonomic systems. We have seen that these concepts are domains specific and

control oriented. The SALTY model enables developers to explicit control loop architecture

when building autonomic systems.

However, having an explicit description of the control system architecture at design time

is not enough. It is also important to keep the control system implementation explicit at run

time. This chapter concludes the state-of-the-art part of this thesis. In the next chapters, we

are going to introduce the main contribution of this thesis. In particular, we are going to ex-

plain how we keep explicit the runtime implementation of the control system for autonomic

applications.

42

Part II

Contribution

43

Chapter 4

Contributions Overview

“Important thing in science is not so much to obtain new facts as to discover new ways of thinking

about them."

– William Bragg

Contents

4.1 Challenges Revisited . 46

4.2 Goals Revisited . 47

4.3 CORONA in a Nutshell . 48

4.3.1 Development Process . 48

4.3.2 CORONA Toolchain . 50

4.3.3 CORONA Runtime . 50

4.4 Summary . 51

In the first part of this thesis, we described the landscape of autonomic systems in the

state-of-the-art. We presented how autonomic systems are engineered with existing ap-

proaches, and exposed their limitations. In particular, we pointed at the lack of visibility

of the feedback control loops at runtime.

The second part of this thesis introduces the CORONA (Control Oriented appROach for

buildiNg Autonomic systems) approach, which focuses on providing support for engineering

amenable autonomic systems with explicit runtime adaptive capabilities. The originality of

CORONA is that it enables a flexible management of autonomic systems, by reifying control

loop elements as first-class entities at runtime.

In the first chapter of this second part, we recall the challenges of this work, then we

present an overview of the our proposal. Our proposal is structured around the following

points: the CORONA runtime and the toolchain. The former provides a runtime environ-

ment for the implementation of the business logic of control loops elements, and the later

provides tools support for the code generation and the architecture analysis.

45

Chapter 4. Contributions Overview

4.1 Challenges Revisited

The growing complexity of software systems today has fostered the demand for solutions

able to cope with this complexity. In the state-art-of-art presented in Chapter 2, we acknowl-

edged the relevancy of autonomic systems for tackling this issue. However, building autonomic

systems rises a set of scientific challenges for software engineers and the research community.

In our study, we gave a particular focus to architecture-based autonomic solutions.

Despite the great achievements of these last decades, we noticed that significant progress

still need to be done for autonomic systems to keep their promises. Some of these require-

ments were largely discussed in specialized conferences and papers [ST09, MPS08, CdLG+,

BSCG+09].

In particular, the following challenges were reported:

Design Challenge Although the MAKE-K architecture model of autonomic systems pro-

posed by IBM is largely accepted by software engineers, alarmingly this model is usually

used informally for discussing the logic behavior of autonomic systems, but rarely imple-

mented in the final systems. The MAPE-K architecture defined essential features allowing

to build autonomic systems, and namely Monitoring, Analyze, Planning, Execution, with all

these features sharing a common Knowledge about the system state. Making the MAPE-K ar-

chitecture an engineering reality, will foster the visibility of control loops and self-adaptive

properties. That is, feedback loops that govern self-adaptation must become first-class enti-

ties when engineering autonomic systems. This will give a ground for the development of

tools support for automatic verification and validation of autonomic systems.

Runtime Challenge In general, building autonomic systems is accomplished in two

ways [LPH04]: (i) Extending programming languages or defining new adaptation primi-

tives; (ii) Enabling dynamic adaptations by allowing reconfiguration capabilities of software

entities (adding, removing, etc.). In practice, a combination of both solutions is required to

build autonomic elements, and provide a runtime support for their interactions and man-

agement. Although numerous research efforts have investigated both solutions, there is still

a lack of powerful framework that could help realize adaptation processes and instrument

autonomic entities (sensors, effectors, etc.) in a systematic manner.

Mapping Challenge Given the new requirements that will introduce an architecture

language that explicitly supports the description of control loops as first-class entities, it will

be necessary to provide systematic methods for refining models in the language down to

specific architecture runtime that support adaptation. That is because, depending on the

runtime architecture support (component-based, aspect-oriented, product-line) there could

be potentially a large gap in expressiveness between the runtime support and the architec-

ture language. Therefore, a semi-automated process for mapping architecture language to

the corresponding runtime support is required.

Validation and Verification Challenge Autonomic systems by virtue implement con-

trol loops each of which has their own objectives, but that must interact in order to deliver

46

4.2. Goals Revisited

a given service. Unintended interactions are potential source of conflicts and misbehavior

of autonomic systems. Consequently, the development of autonomic systems requires tech-

niques for validating effects of feedback loops interactions. In particular, identification of

anti-patterns of control loops interactions is a relevant step toward the automatization of

control loops validation, and the reduction of the cost entailed by their maintenance.

Reusability Challenge Functionalities implemented with an autonomic solution like

sensors or decision-making, usually cannot be easily reused across others solutions. This

requires developers to implement these functionalities over again when moving their appli-

cations from one solution to another one. That results in a lost of time and is error-prone.

The complexity of autonomic systems and requirements with regards to their reliability call

for generic and reusable solutions.

Scalability Challenge The need for enhancing software systems with self-adaptation

capabilities principally stems in the complexity for managing them in a large-scale environ-

ment. That is because modern software systems are extensively distributed and heteroge-

neous. Consequently, an effective solution for building autonomic solution must address the

decentralized architecture of the later.

4.2 Goals Revisited

To overcome the challenges mentioned above, we require a new global approach for software

engineering of autonomic systems. The purpose of this thesis is therefore to provide software

engineers with tools that support runtime self-adaptive capabilities as first class concerns.

In the pursuit of this goal, we aim at achieving the following objectives for the proposed

solution:

Application Domain Agnosticism An approach for building autonomic systems should

aims to target a wide range of application domains and platforms. That is because, au-

tonomic systems by virtue involve many stakeholders with different application domains.

Therefore, an autonomic system approach should be generic enough to target a rich spec-

trum of domains. This will be a significant step to enable reutilization of existing compo-

nents modules.

Transparency The approach should provide support for reasoning about self-adaptive

capabilities as first class citizen at design and at runtime. That means that, it should allow

software engineers to specify self-adaptation for distinct quality objectives, and integrate

them to achieve self-adaptations across multiple objectives. The approach should also sup-

port the automation of verification tools for autonomic control loops. Finally, it should main-

tain a strong relationship between the expressiveness of the architecture language and the

runtime capabilities to enable the evolution of systems.

Cost-effectiveness The solution should support low-cost efforts for engineering self-

adaptive capabilities. This can be principally achieved through support for code generation,

47

Chapter 4. Contributions Overview

verification automation and reutilization of implemented components. The automatic veri-

fication of autonomic systems architecture enables to implement conflict-free software, and

provide a gain of time for developers as errors are detected at the early stage of the develop-

ment process.

Modularity Since autonomic systems are usually deployed in a large-scale environment,

the modularity of the solution is a key objective in order to have scalable self-adaptive sys-

tems. The modularity is also related to implementation of non-functional properties that

must be as far as possible decoupled from the business logic of a given application.

In order to meet these objectives, we have developed a solution that reuse some good

principles and techniques of software engineering like Service oriented architectures (SOA),

and model driven engineering (MDE). In particular, our work support a clear separation be-

tween the adaptation logic and the business logic of the autonomic control loop.

4.3 CORONA in a Nutshell

4.3.1 Development Process

The CORONA approach enables the development of autonomic systems with an explicit de-

scription of feedbacks control loops architectures. CORONA aims at leveraging self-adaptive

capabilities for software applications through the implementation of feedback loops.

The development of an autonomic manager with CORONA follows the traditional

stages of a MDE approach. Figure 4.1 gives of an overview of the CORONA approach.

1. Control architecture Design: The CORONA engine toolkit takes as input feedback con-

trol loops architectural description based on SALTY DSL (Domain Specific Language),

presented in Chapter 3. At this stage (cf. step 1 in Figure 4.1), this initial architec-

ture can be incrementally enriched through annotation-driven processes by invoking

plugins services. Currently, CORONA includes one service based on Constraint Satis-

faction Problem (CSP)[Apt03a] techniques for optimizing the distribution process. This

service, called Location Optimizer Service, takes as input a control architecture instance

model and the network topology model to compute an optimal distribution of control

architecture modules for a given objective function.

2. Architecture Verification: Once the design phase is completed, and before the code gen-

eration of the implementation framework, the CORONA engine applies a set of heuris-

tics and algorithms for detecting conflicts architectural patterns on the control loop

architecture (cf. step 2 in Figure 4.1). In case of failure, CORONA rises some warn-

ings for the architect or the developer.

48

4.3. CORONA in a Nutshell

CORONA
Runtime
Framework

Generator Engine Toolkit

Compilation
Process

Orchestration

verification/
Analysis

Tool

 Component
Repository

Reusable
Components

Generated
Components

*.salty

*.scf

SALTY Meta-model

 Deployment Toolkit

Architect

Developer

Administrator

5

1

4

Compiler

3

Deployment
Generator

3
2

Figure 4.1: Overview Of the CORONA Development Process

3. Code Generation: At this stage, the final architecture of the autonomic control loop is

forwarded to the CORONA compiler (cf. step 3 in Figure 4.1). The compiler gen-

erates a set of code artifacts corresponding to the architecture description (based on

the Service Component Architecture - SCA [OAS07]), as well as code templates for the

selected implementation technologies (e.g., Java, Groovy, PHP,Web services).

4. Implementation: At this stage, the developers use the generated classes (cf. step 4 in Fig-

ure 4.1) to integrate the business logic implementation of autonomic loops nodes or to

implement library modules corresponding to business concepts (specialized concepts).

5. Deployment: Finally, the autonomic system is deployed using deployment tools (cf.

step 5 in Figure 4.1). In CORONA, the deployment phase consists in deploying com-

ponents on different hosts using a dedicated tool called FDF [FDDM08] or generated

Fabric [Fab] scripts.

The key features of the CORONA approach are the toolchain and the implementation

framework. We discuss the role of each feature in the section below.

49

Chapter 4. Contributions Overview

4.3.2 CORONA Toolchain

The CORONA toolchain maps the domain engineering to application engineering. It is re-

sponsible for several tasks such as the architectural checking, the mapping transformation

between the SALTY DSL and the CORONA framework, and the code generation. On Fig-

ure 4.1 it is represented by the CORONA engine toolkit.

Generator Engine Toolkit

CSP
Solver

Compilation
Process

Orchestration

Compiler

REST push

A Primitive Component

Composite Component Remote SCA Binding

Local Wire Connection
Legend:

text/html
text/json

JNA

REST REST

Component
RepositoryWS

Deployment
Generator

JNA

Figure 4.2: SCA Architecture of the CORONA Toolchain

The CORONA toolchain is built itself on a modular architecture based on service oriented

architecture (SCA) principles. Figure 4.2 depicts the SCA architecture of the toolchain. The

figure shows that the toolchain consists of independent distributed components that interact

through SCA wire connection or bindings.

4.3.3 CORONA Runtime

CORONA framework provides the runtime support for feedback loops implementation.

Currently, it is based on the FraSCAti [SMF+09] middleware, which is a runtime implemen-

tation of the SCA specification. Thanks to FraSCAti, the CORONA framework provides self-

adaptive capabilities for the feedback loops components at runtime. The CORONA frame-

work enhances the visibility of feedback control elements at runtime by providing specific

components schemas for each type of control loop elements. This helps leverage issue re-

lated to autonomic loop runtime management, like semantic carrying names or implicit access

type.

50

4.4. Summary

4.4 Summary

Modern software systems are getting more complex. This raises an important issue for their

maintenance at a reasonable cost. Many works of the state-of-the art while, acknowledging

the MAKE-K architectural paradigm for building autonomic systems do not provide explicit

support for feedback loops elements neither at design nor at runtime. Feedback control loops

that govern adaptation are usually hidden under abstraction layers of the implementation

platforms. This result in difficulties for the development of automation tools for supporting

the engineering autonomic systems.

In this chapter we have presented the objectives of this thesis, and gave a glimpse of

the principles and basic concepts of the CORONA approach. We emphasized the originality

of our approach which help coping the complexity of engineering autonomic systems by

reifying feedback control loops as first-class entities at runtime. In the next chapter, we

discuss the runtime architecture in the CORONA development process.

51

This page was intentionally left blank

Chapter 5

Runtime Architecture

“As far as the propositions of mathematics refer to reality they are not certain, and so far as they are

certain, they do not refer to reality."

– Albert Einstein

Contents

5.1 Feedback Control Loops and Autonomic Systems 54

5.2 Runtime Component-based Feedback Control Loops 56

5.2.1 Control System Architecture . 57

5.2.2 SCA Runtime Concepts . 57

5.2.3 Feedback Control Loop Example 59

5.2.4 Anatomy of Control Elements . 60

5.2.5 Interaction Model . 66

5.3 Feedback Control Loop Customization 67

5.3.1 Properties of Feedback Control Loops 69

5.3.2 Stabilization of Decision-Making 72

5.4 Summary . 79

In the foregoing chapter (Chapter 4), we presented scientific challenges that we aim at

tackling in the context of this thesis. We also gave an insight of the contributions of this

thesis in order to respond to these challenges. In particular, we emphasize one of the objec-

tive of this thesis which consists in providing software engineers with tools allowing them

to implement autonomic systems where feedback control are reified as first class citizen at

runtime.

In this Chapter, we go down in details to explain the CORONA approach for building

amenable autonomic systems. In particular, we elaborate on the runtime architecture of the

feedback control loop (FCL) elements. In the CORONA approach, self-adaptive capabilities

53

Chapter 5. Runtime Architecture

are realized through feedback control loops. They provide means to monitor activities of

the underlying system, to take decisions upon made observations, and to trigger behavioral

changes in the underlying system. CORONA allows the traceability of self-adaptive capabil-

ities by reifying feedback control loops elements as first-class components at runtime.

The contribution presented in this chapter addresses two aspects of the feedback control

loop architecture at runtime: The implementation of feedback control loops elements and the

customization of the feedback control loop itself.

1. Implementation of the feedback control loop elements. Following the MAPE-K architecture

pattern of the feedback control loop, we have defined the runtime implementation of

each elements of the FCL. The architectural description is generic for each category of

feedback control loop elements. However, the behavior of each control element can

be refined to meet the requirements of a specific application. Keeping a generic ar-

chitecture for FCL elements allow to instrument feedback control loop for verification

purpose. We elaborate in details on feedback control loop verification on Chapter 6.

2. Customization of the feedback control loop. The MAPE-K pattern describes a static archi-

tecture of the feedback control loop. In practice, the implementation of feedback con-

trol loops requires to take into account cross-cutting concerns that are not captured by

the MAPE-K pattern. Therefore, we have defined a meta-level on top of the MAPE-K,

for the customization of feedback control loops that provide support for crosscutting

preoccupations. In particular, our main contribution in this aspect is related to the

stabilization of the decisions throughout the feedback control loop.

Structure of the Chapter The rest of this chapter is organized as follows: We start by

presenting the architecture of a feedback control loop according to the MAPE-K pattern, and

explain how autonomic behaviors can be built on it (cf. Section 5.1). Then, we continue by

describing the component-based runtime architecture of the feedback control loop elements

(cf. Section 5.2). In Section 5.3, we elaborate on the meta-customization of the feedback

control loop. We give a particular focus to the stabilization of the control decision throughout

the feedback control loop. Finally, we conclude this chapter (cf. Section 10.1).

5.1 Feedback Control Loops and Autonomic Systems

Feedback control loops consist of a set of components that collaborate together to maintain

desired attributes for the controlled system. For example, an air conditioner maintains the

temperature in a room to a desired value by sensing the air temperature and turning the

heater or the cooler accordingly. The Reference MAPE-K model of a FCL presented in Chap-

ter 2, consists of four essential activities of self-adaptation, namely monitoring, analyzing,

planning and executing. However, IBM’s MAPE-K reference model does not give any direc-

tives concerning the implementation of these activities. Therefore, some of these activities

54

5.1. Feedback Control Loops and Autonomic Systems

can be performed manually by a human or automatically by a computing machine. This has

lead to the emergence of two main paradigms related to the implementation of autonomic

behaviors in software systems: That is the close loop and open loop paradigms [KBE99].

Monitor

Analyse Plan

Execute Monitor Execute

Close Loop

System

Open Loop

System

Autonomic Manager

Managed System Managed System

TouchPoint

Figure 5.1: Close And Open Loop Paradigms

Figure 5.1 depicts the both paradigms. The open loop paradigm envisioned interactions

with a human operator during the autonomic cycle of systems. In practice, activities devoted

to the human operator are decision-making activities, and namely analyzing and planning.

The open loop paradigm offers the advantage that the human operator is able understand and

take smarter decisions upon conflicting policies regarding situations or events that were not

and could not be anticipated before the system was actually running. On the other hand, the

close loop paradigm supposes the automation of all activities of the feedback control loop. The

latter has gained importance over the former, because it actually enables a system to evolve

on its own without any external interventions, which is the closest behavior of an autonomic

organisms in biology where the analogy of autonomic systems is drew from. However, as

we discuss in perspectives of this dissertation, we think the future evolution of autonomic

systems rely somewhere in between the both paradigms.

CORONA strives to combine both visions of the close loop and open loop paradigm. The

close loop paradigm is supported in CORONA by enabling the automation of autonomic man-

ager activities, and the open loop paradigm is leveraged through the visibility of autonomic

managers architecture, which enables a human operator to interact transparently with the

control system at runtime. Additionally, in the CORONA approach, the model of the managed

55

Chapter 5. Runtime Architecture

system is not required to build an autonomic system. The autonomic behavior is obtained by

building the control system on top of the managed system. Interactions between the control

system and the managed system is done through touch points, which are specific to each man-

aged system. The CORONA approach enforces a separation between the implementation of

the managed system and the control system. This enables feedback control loops of the control

system to be visible at runtime as first class entities.

5.2 Runtime Component-based Feedback Control Loops

As we mentioned in Chapter 4, in many research areas feedback control loops are the central

element for engineering autonomic systems. In particular, in control theory control engi-

neers are provided with well-established tools and models for engineering autonomic con-

trollers. Unfortunately, in software engineering despite some progress, feedback control

loops that govern self-adaptation in autonomic systems remain hidden at design time and

at runtime.

Self-adaptation enables software systems with the capacity to adapt their behavior de-

pending on changes in their environment in order to maintain the desired objectives. Large-

scale systems usually include many self-adaptive mechanisms in order to solve several

classes of problems at different abstraction levels. The resulting complexity of the systems

may lead to unexpected interactions with negative impact on the overall behavior of the sys-

tem. Therefore, feedback control loops in autonomic systems must be explicitly described

in order to enable control system checking for providing a reliable coordination of the self-

adaptation.

CORONA enables to turn self-adaption in large scale systems by providing means to

build feedback control loops on top of them. The particularity of the CORONA approach is

that feedback control loops components are explicitly reified at runtime. In the CORONA

approach software systems are empowered with autonomic capabilities by enhancing them

with feedback control loops. Feedback control loops implementation is generated from

architectural description based on the SALTY meta-model presented in Chapter 3. The

CORONA approach relies on MDE techniques, which allows to target multiple implemen-

tation platforms (Web-services, OSGI, etc.) from the same model. However, in this thesis

we focus on component-based implementation platform with respect to the SCA standard.

The SCA platform offers the flexibility of SOA, and the reconfiguration properties of CBSE.

In SCA, services are implemented as software components using various programming lan-

guages and technologies [SMF+09][OAS07].

The CORONA approach implements 3 principles in order to facilitate the process of

building autonomic systems: Separation of Concerns (SoC), Runtime reification of FCL architec-

tural elements, and reuse of their runtime implementation.

1. Separation of Concerns. Beside intrinsic business logic of each activities, feedback

control loops must implement non-functional behaviors. To increase the readability

56

5.2. Runtime Component-based Feedback Control Loops

and the traceability of the control behavior implementation, the CORONA approach

enforces the separation of concerns that must be implemented by the control system.

This is made possible by decorating the control system model with annotations specific

to each concern. The separation of concerns enables to have customizable feedback

control loop rather than a static one where the business logic of the control is indistin-

guishably mixed with non functional concerns. We elaborate in details about feedback

control customization in Section 5.3.

2. Runtime reification. CORONA ensures the mapping between the control system ar-

chitectural description and its runtime component-based implementation in SCA. The

SCA platform allows to represent feedback control loops and their activities as compo-

nents compositions. This raises the visibility of the feedback control loop at runtime,

and enable to reason on them for validation or verification purposes. An illustration of

verifications that can be done on the control system architecture is presented in Chap-

ter 6

3. Reuse of implementation behavior. One of the aim of CORONA is to reduce the cost

entailed with the engineering of feedback control loops. In this perspective CORONA

enforces the reuse of off-the-shelf components. From the architectural description of

the feedback control loop, developers can specify new implementation type of the

feedback control loop element, or use registered implementation type existing in the

CORONA repository library. This reduces the burden of implementing control behav-

ior logic.

5.2.1 Control System Architecture

5.2.2 SCA Runtime Concepts

The default target implementation platform of feedback control loops in the CORONA ap-

proach is SCA [OAS07]. CORONA uses the FraSCAti [SMR+12] runtime which is a well

known implementation of the the SCA specification. Prior to present runtime anatomy of

the feedback control loop using the CORONA approach we give an insight of SCA main

concepts.

Figure 5.2 gives a simplified description of the main concepts and relationships between

them in the SCA meta-model.

• Component is the basic element of business function in the SCA assembly, which are

combined into complete business solutions by SCA composites. Some characteristics

attributes of components are services, references, properties, and component implementa-

tions. Properties are attributes which are used to configure data values. Component

implementation specifies the type of the implementation behavior for the component.

SCA provides an extensibility point in the assembly model for supporting multiple

57

Chapter 5. Runtime Architecture

Composite

Service

Reference

Component

Wire

ComponentType

Implementation

Property

0..*

1

Service

0..*

10..*

1
Reference

Wire

0..* 0..1

0..*

Figure 5.2: Basic concepts of the SCA Metamodel

implementation types as Java, BPEL or C++ implementation. Figure 5.3 depicts the

graphical formalism of an SCA component.

• Composite is used to assemble SCA elements into logical groupings. It is the basic unit

of composition within an SCA Domain. A composite contains set of components, services,

references and wires for interconnecting all these entities. Composites can be used as

component implementations in higher-level composites.

Component...

Properties

ReferencesImplementation

- Java

-BPEL

-Composite

Services

Figure 5.3: Graphical Representation of a Component in SCA

58

5.2. Runtime Component-based Feedback Control Loops

• Service represents an addressable interface of component implementation. Services are

the entry points of to the component/composite business logic. A component can have

zero or more service elements.

• Reference represents a requirement that a component has on a service provided by

another component. Components can have zero or more reference elements.

• Wire is defined within a composite, and expresses the connection between component

references and services.

5.2.3 Feedback Control Loop Example

To illustrate the anatomy of the feedback control loop runtime elements, we consider a feed-

back control loop for monitoring allocations of new resources for Condor self-adaptive cloud

infrastructure. Condor2 is a software system that creates a High-Throughput Computing

(HTC) environment. Condor provides powerful resource management by match-making

resource owners with resource consumers. The complete scenario of the Condor case study

is presented in details in Chapter 7. In this scenario, we try to implement an autonomic

system which is able to adapt resource allocation in the Condor environment depending on

jobs workload and the price of resource leasing. One feedback control loop of the Condor

case study monitors the rate of incoming job requests in order to deliver the target quality

of service by ensuring the adequate allocation of resources available in the environment.

Figure 5.4 depicts the architecture of the auto-scale feedback control loop using the SALTY

specification.

provides

effector

active sensor

sensor filter

active filter controller observing data link

control link notifying data link

applicationState
:Aggregator

ratePerResource
:ResourceController

resourceCount
:CloudResourceCounter

activeResources
:CloudResourceProvisioner

µ

n

cpuRate
:IncomingRequestRate

p

requiredResource
:ResourceCapacity

(µ, n)
_

@stabilized(kalmanFilter)

Figure 5.4: Auto-Scale Feedback Control Architecture

The feedback architecture depicted on Figure 5.4 is composed of 6 architectural elements

that implement the MAPE-K feedback control loop activities.

2http://research.cs.wisc.edu/htcondor/

59

Chapter 5. Runtime Architecture

• Monitoring. This activity of the MAPE-K model is implemented by cpuRate and re-

sourceCount sensor elements. The cpuRate sensor is an active sensor. This means that

the sensor autonomously pushes information data (connections rate µ) to the target

consumer, applicationState. Inversely, resourceCount is a passive sensor from which in-

formation data is pulled by applicationState filter. The connection rate µ measurement

sway randomly between two computing cycle of applicationState filter. Since the accu-

racy of the latter measurement have a strong impact on the decision about resource

allocation in the cloud infrastructure, we can apply a stabilization algorithm on that

measurement to increase its accuracy. This is actually done with the annotation @stabi-

lized(kalmanFilter) on the link between cpuRate sensor and applicationState filter on the

feedback control loop architecture. The annotation @stabilized, drives CORONA for

generating the runtime implementation of the “kalmanFilter" stabilization algorithm.

• Analyzing. This activity is implemented by the filters applicationState and require-

dResource. The filter applicationState aggregates data from cpuRate (µ) and resourceCount

(n) sensors. The filter requiredResource uses these data for calculating the resource ca-

pacity criteria, which quantifies the ratio between the number of connections and the

number of allocated resources.

• Planning. This activity is implemented by the ratePerResource controller which decides

to increase or decrease allocated resources. The decision for increasing or decreasing

resources depends on the logic implemented by the ratePerResource controller. For ex-

ample, for a simple threshold policy, new resources are allocated when we are below the

threshold, and removed in the opposite case.

• Execution. This activity is implemented by the activeResources effector, which interacts

directly with the cloud infrastructure to execute the decision of the controller. Typically,

this consists in invoking native access method of the cloud infrastructure. That is, in

the case of the auto-scale FCL, methods for resource provisioning.

5.2.4 Anatomy of Control Elements

This section presents the runtime anatomy of control elements that implement autonomic

managers in CORONA. We exemplify the anatomy of control elements through the auto-

scale feedback control architecture depicted on Figure 5.4.

The CORONA toolchain generates a set of Java classes and component descriptors for

each adaptive element (sensors, effectors, filters, controllers) declared in the model. It also gen-

erates the component assembly and the interaction wires between components. Each Java

class implementing an entity behavior is provided with a set of methods that encapsulates

the default behavior of the current entity.

The CORONA toolchain reads the control system architecture model as the one depicted

on Figure 5.4 in order to generate the runtime skeleton for the control architecture. Thanks

60

5.2. Runtime Component-based Feedback Control Loops

to the model-based generation of the source code, we leverage all the benefits of a MDE

approach. Therefore, from the same architecture of the system we can target several imple-

mentation platforms depending on the target system requirements. However, in the context

of this thesis, we put the focus to SCA/Java implementation platform. Thanks to the good

properties that SCA exhibits in terms of modularity, it appears to be a good candidate for

representing feedback control loop at runtime as first class citizen.

Auto-scale

Composite

cpuRate
push

resourceCount

pull

applicationState

pull

requiredResource

pushpush

ratePerResource

pushpush

activeResources

kalmanFilter

push

pushpush

push

A Primitive Component Composite Component Local Wire Connection

push

Figure 5.5: Generated Auto-Scale Feedback Control Loop Architecture in SCA

From the architectural description of the feedback control loop depicted in Figure 5.4,

CORONA toolchain generates the runtime implementation of the auto-scale feedback con-

trol loop in SCA. Figure 5.5 shows the runtime architecture of the auto-scale control system

generated by CORONA. We can notice that this architecture reifies the feedback control loop

control elements as first class components. Sensors, filters, controllers, effectors are represented

at runtime by components instances that implement their behavior. Hence, CORONA makes

explicit at runtime the control system architecture.

Lets take a look at the concrete anatomy of the control elements generated by CORONA

toolchain. As CORONA tends to be flexible, the structure of the generated elements are

generic for the same type of control elements. That is Sensors types will share a common

implementation architecture, as well as filters, controllers, or effectors types. In the rest of

this dissertation, we will indifferently use the term effectors or actuators to refers to the same

concept.

Sensors Artifacts

Sensors are one of the control element that compose the feedback control loop architecture.

CORONA generates sensors runtime artifacts corresponding to each instance of sensor el-

ement that are depicted in the feedback control loop architecture. On Figure 5.5, cpuRate

and resourceCount SCA components represent the generated sensor artifacts of the auto-scale

61

Chapter 5. Runtime Architecture

sense():T

«interface»
Sensor

T

sense():Int
ResourceCount

Int

sense():Float
CpuRate

FloatJ
a

v
a

 c
o

d
e

S
C

A
 d

e
s
c
ri
p

to
r

resourceCount component (S)

Pull

resourceCount
Pull

requestRate component (S)

Push

active, period

cpuRate

Push

sense():T
SensorShellCommand

T

Figure 5.6: Generated Sensors Artifacts

feedback control loop (cf. Figure 5.4). Generated artifacts consists of Java classes and SCA de-

scriptors. Figure 5.6 gives an overview of generated sensors artifacts.

Each Java class implementing an entity behavior is provided with a set of methods that

encapsulates the default behavior of the current entity. For example, the method <T> sense ()

– where <T> is the type of the collected data– in a Java class implementing a Sensor interface,

encapsulates the application logic of the Sensor Component. This is actually the placeholder

for the code that gives access to the touchpoint of the managed system.

Having a dedicated set of methods for each entity type, significantly improve the read-

ability of the generated code source. In order to implement the complete behavior of the

Sensor Component, the developer will just have to provide an implementation of the sense()

method. The same methodology is adopted for implementing the logic behavior of all the

other types of entity of the control system architectural model. The implementation class of

the sensor also contains methods that allow the interactions between components. That is

the Pull and Push interfaces.

1public class ResourceCountImpl<int>

2 extends SensorShellCommand<int> {

3

4 public int pull() {

62

5.2. Runtime Component-based Feedback Control Loops

5 String command ="";

6 super.setCommand(command);

7 return super.sense();

8 }

9}

Listing 5.1: Generated ResourceCount Sensor Implementation Class

The Listing 5.1 gives an excerpt of the generated code for ResourceCount sensor. It shows

that ResourceCountImpl inherits from an existing type SensorShellCommand<int> which is pro-

vided by the CORONA toolchain. This demonstrates the aspect of components reuse in the

toolchain. The pull () method returns the result of the execution of the sense() method defined

in SensorShellCommand<int> class.

Filters Artifacts

Likewise sensors, filters are also control elements of the control system architecture.

CORONA generates filters runtime artifacts corresponding to each instance of filter con-

trol elements that are depicted in the feedback control loop architecture. For example, on

Figure 5.5 appplicationState filter component represents the generated runtime artifact of the

filter control element of the same name depicted on the auto-scale feedback control loop ar-

chitecture (c.f Figure 5.4). In addition, we can notice that another filter artifact (kalmanFilter)

that is not represented as a control element in the auto-scale FCL architecture is generated.

The latter was specified in the control architecture model (cf. Figure 5.4) through the anno-

tation @stabilized(kalmanFilter).

1<composite

2 x m l n s : f r a s c a t i =" h t t p : // f r a s c a t i . ow2 . org/xmlns/sca /1.1 "

3 xmlns:gt=" cgenerated "

4 . . .

5<component constrainingType=" g t : A p p l i c a t i o n S t a t e F l o a t I n t 3 2 "

name=" a p p l i c a t i o n S t a t e F i l t e r " >

6 <implementation . java

7 c l a s s =" . . impl . A p p l i c a t i o n S t a t e F i l t e r I m p l " />

8</component>

9

10< s e r v i c e name=" a p p l i c a t i o n S t a t e F i l t e r _ s r v 1 "

11 promote=" a p p l i c a t i o n S t a t e F i l t e r / a p p l i c a t i o n S t a t e F l o a t I n t 3 2 _ s r v 1 "

12/>

13

14< r e f e r e n c e name=" a p p l i c a t i o n S t a t e F i l t e r _ r e f 1 "

15 promote=" a p p l i c a t i o n S t a t e F i l t e r / a p p l i c a t i o n S t a t e F l o a t I n t 3 2 _ r e f 2 "

16/>

17

18< r e f e r e n c e name=" a p p l i c a t i o n S t a t e F i l t e r _ r e f 2 "

19 promote=" a p p l i c a t i o n S t a t e F i l t e r / a p p l i c a t i o n S t a t e F l o a t I n t 3 2 _ r e f 1 "

20/>

21</composite>

Listing 5.2: Generated SCA description of ApplicationState Component

63

Chapter 5. Runtime Architecture

Filters and controllers are part of the decision process that occurred within the feedback

control loop. In auto-scale architecture example, the kalmanFilter component plays the role of

stabilization mechanism. Stabilization mechanisms [NRS09] impact the quality (e.g., accu-

racy, up-to-dateness) of information processed through the FCL. The quality of information

in the CORONA approach is addressed as a crosscutting concerns. The separation of con-

cerns in the CORONA approach offers the possibility to customize the feedback control loop

architecture while keeping explicit its control behavior. These aspects of the FCL customiza-

tion which are one of the contribution of this thesis is discussed in details in Section 5.3.

Generated filter artifacts consist of Java class implementation and SCA assembly de-

scription. Listings 5.2 and 5.3 gives a snippet of the generated SCA description for the com-

ponent applicationState and the Java class implementing its behavior.

1@Scope("COMPOSITE")

2@Service(interfaces={ PushFloatItfc.class })

3public class ApplicationStateFilterImpl implements

PushFloatItfc {

4

5@Reference(name="applicationStateFilter_ref1")

6private PullInt32Itfc applicationStateFilter_ref1;

7

8@Reference(name="applicationStateFilter_ref2")

9private PushApplicationStateDataTypeItfc

10 applicationStateFilter_ref2;

11

12public void filter (float data , PullInt32Itfc data2) {

13 //TODO: add your code here

14}

15

16public void push (float data) {

17 //TODO: add your code here

18 return;

19}

20

21}

Listing 5.3: Generated ApplicationState Filter Implementation Class

Listing 5.2 describes that the component applicationStateFilter consists of two SCA refer-

ences (lines 14,18), and a SCA service (line 10). Line 7 of this listing indicates that the Java

implementation of the component behavior is specified in the Java class ApplicationState-

FilterImpl.

Listing 5.3 describes ApplicationStateFilterImpl Java implementation. We notice that this

class has a dedicated method filter () which should contains the code realizing the control

64

5.2. Runtime Component-based Feedback Control Loops

logic of the component. The method takes has input two parameters corresponding to in-

coming data from sensors resourceCount and cpuRate.

Controllers Artifacts

Controllers are another type of control elements that can compose a feedback control loop

architecture. CORONA generates controllers runtime artifacts corresponding to each in-

stance of controllers control elements that are depicted in the FCL architecture. For example,

the auto-scale feedback control loop architecture consists of one controller entity: ratePerRe-

source. This entity implements the logic of deciding upon the allocation or the deallocation

of cloud resources. CORONA generates the runtime artifacts for this entity as illustrated on

Figure 5.5. Controller runtime artifact consists of an SCA component description file and a

Java implementation class. Listing 5.4 gives an excerpt of the generated Java implementation

class RatePerResourceImpl for the controller ratePerResource.

1@Scope("COMPOSITE")

2@Service(interfaces={PushFloatItfc.class })

3public class RatePerResourceImpl implements PushFloatItfc {

4

5@Reference(name="RatePerResourceController_ref1")

6private PullStringItfc applicationStateFilter_ref1;

7

8

9public void compute(float data){

10 //TODO: add your code here

11}

12

13public void push (float data) {

14 //TODO: add your code here

15 return;

16}

17

18}

Listing 5.4: Generated RatePerResource Controller Implementation Class

The decision logic implemented by the controllers in the feedback control loop can be

more complex to be hold within a simple Java class. In some cases, in order to achieve a deci-

sion controllers must implement complex models with learning mechanisms like Markovian

Processus [SAH07], developed by a third party. Using the CORONA approach the Java class

implementing controller component can execute a script allowing to call that model.

Actuators Artifacts

Actuators are a type of control elements that can compose a FCL architecture. CORONA

generates actuators runtime artifacts corresponding to each instance of actuators control ele-

ments that are depicted in the feedback control loop architecture. For example, the auto-scale

65

Chapter 5. Runtime Architecture

architecture consists of one actuator–activeResources– as depicted on Figure 5.5. Similarly to

sensors, actuators interact directly with the managed system through touch-points. Execution of

the decision from controllers can be done by running specific scripts or using specifics ap-

plication programming interfaces (API) provided by the managed system. Generated artifacts

for actuators consist of SCA component description files and a Java implementation classes.

Listing 5.5 gives an overview of the generated Java implementation class for activeResources

actuator.

1@Scope("COMPOSITE")

2@Service(interfaces={PushFloatItfc.class })

3public class ActiveResourcesImpl implements PushFloatItfc {

4

5 public void execute(String resource){

6 //TODO: add your code here

7}

8

9 public void push (String data) {

10 //TODO: add your code here

11 return;

12}

13}

Listing 5.5: Generated ActiveResources Actuator Implementation Class

Listing 5.5 shows that the ActiveResourcesImpl Java class has a dedicated method exe-

cute() (line 5). This method must contained the code for accessing the managed system.

5.2.5 Interaction Model

So far we have put the focus on how the control elements were implemented at runtime.

In this section we discuss the interaction model between the generated components. The

interaction model between control elements of the feedback control loop inherits from the

architectural description model. The communications between components is essentially

data-driven. We essentially distinguish three modes of interaction: The notification, the

observation and the multimodal mode.

Notification Mode

This interaction mode consist of sending notifications from a component to all connected

components. It is also known as the Push mode. The notification mode is the characteristic of

active elements like the sensor cpuRate of the auto-scale architecture (cf. Figure 5.4).

Observation Mode

In the observation mode, information data of a given control elements can be retrieved by

another elements interested in that information. The observation mode is also known as the

66

5.3. Feedback Control Loop Customization

Pull mode and is the characteristics of passive elements like the sensor resourceCount of the

auto-scale architecture (cf. Figure 5.4).

1// pull interface

2 public interface Pull<P> {

3 public P pull();

4}

5// push interface

6 public interface Push <T> {

7 public void push(T pushData);

8}

Listing 5.6: Pull and Push Generic Interfaces

In SCA, communication between components is realized through wires or bindings. Wires

are used to indicate local communications between components within composites while

bindings characterized remote communication between composites. Wires or bindings in SCA

establish connections between references and provided services which are defined through

Java interfaces. In the CORONA approach the notification mode is implemented at runtime

through Push interfaces (cf. Listing 5.6 line 6), and the observation mode through Pull inter-

faces (cf. Listing 5.6 line 2).

Multimodal Mode

The multimodal mode consist of the combination of the notification and the observation mode

for interacting between the control elements. In the CORONA approach with the exception

of sensors and effectors, control elements can implement simultaneously Pull and Push inter-

faces.

In this section, we have explained how the control system architecture is reified at run

time in CORONA. In particular, we have showed that control elements that compose the

feedback control loop architecture are implemented as SCA components at run time. So

far then, we have essentially addressed functional aspects of the feedback control loop

implementation in CORONA. The next section will rather address the integration of non-

functional properties of the feedback control loop implementation. In particular, it focuses

on the customization of the control architecture with stabilization mechanisms.

5.3 Feedback Control Loop Customization

If it is advisable to keep a distinguishable structure of the FCL at runtime, it is equally impor-

tant to pay attention on how its constituent parts are implemented. Otherwise, the imple-

mentation of FCL elements can quickly result in a black box modules difficult to maintain,

and that rather play the role of logical than functional entities [MPS08]. In the CORONA

approach we use a good principle of software engineering that is the separation of concerns

(SoC)[KM05] for integrating various concerns in the FCL architecture. The feedback control

67

Chapter 5. Runtime Architecture

loop architecture can be enriched with these concerns through the mechanism of annota-

tions. This approach enforces the representation of control elements as first class citizen in

the feedback control loop architecture while enabling the customization of the latter. The

customization of the feedback control loop architecture result in an adaptive control system

architecture rather than a static one.

Autonomic Manager

Managed System

ExecuteMonitor

Plan

Legend:

Integration of Non-Functional Properties

Analyze

Knowledge

Figure 5.7: Customizable MAPE-K Architecture Model

Figure 5.7 illustrates our vision of adaptive FCL model. This figure depicts the MAKE-

K autonomic manager model customized with non-functional properties. The integration of

non-functional properties is represented on Figure 5.7 by the arrows with dashed lines. On

the Figure 5.7, we can notice that non-functional properties are integrated transversally to

the MAKE-K architecture model. This enables a flexible customization of the autonomic

manager.

In the CORONA approach the customization of the autonomic manager is implemented

through annotations. CORONA provides a bunch of annotations that enable to customize

the behavior of autonomic managers. Several non-functional properties can be used to cus-

tomize autonomic managers. For example, the security of the communications between

distributed control elements, or the quality of the information processed throughout the

feedback control loop. In particular, the latter has a huge impact on the nature of the con-

trol decision. One dimension of the quality of information (QoI) is the up-to-dateness [BS03].

Up-to-dateness informs about the age of the information. When decisions are about to be

made for triggering an adaptation, up-to-dateness criteria can be a crucial factor for an effi-

68

5.3. Feedback Control Loop Customization

cient decision-making. That is because, if a decision to trigger an adaptation is taken on the

basis of an old information, it may not be pertinent for the system.

The quality of information has an impact on the decision made at the level of the FCL,

and consequently on the relevancy of the triggered adaptations. In our approach, the qual-

ity of information in the feedback control loop is addressed through stabilization mechanisms.

Stabilization mechanisms modify data acquisition processes. They aim at reducing the im-

pact of data variability on the decision-making. The auto-scale architecture presented in

Figure 5.4 depicts how the feedback control loop architecture can be customized with stabi-

lization concerns in order to improve the decision-making.

5.3.1 Properties of Feedback Control Loops

The main objective of a feedback control loop consists in the regulation of a managed system,

by making decisions for adapting the latter on the basis of observations of its states. For s ∈ S

the states of the managed system, and e ∈ E(s) an action among the set of admissible actions,

the function φ : S → E captures the set of the decisions for the feedback control loop. These

decisions are implemented through the analyzing and planning phases of the feedback control

loop also known as decision-making phases. Consequently, one of the crucial task when

implementing feedback control loop resides in the implementation of the decision policy.

In order to assess the behavior of a feedback control loop, it is important to define criteria

which will serve as grounds for this assessment. In autonomic computing, to the best of

our knowledge, there is no consensus about the definition of such criteria. However, in

many other research areas where feedback control loops are largely used, sets of tools and

property for evaluating feedback control loops exist. For example, the emphasis in control

theory is on developing components and control algorithms such that the resulting system

achieves the control objectives. Control engineers evaluate feedback systems through a set

of four properties: Stability, Accuracy, Settling time, Overshoot, known as SASO properties. In

the following sections we explain how SASO properties are used to characterize a control

system. In particular, we put a special focus on the Stability property which is the single

aspect of SASO properties that we have investigated in this dissertation.

Figure 5.8 described a block diagram of a feedback control in control engineering. The

reference input is the control objective of the feedback block. The controller adjusts the setting

of control input to the target system so that its measured output is closest to the reference

input. Transducer represents some transformations that can be made on the measured output

in order to be directly processed by the controller.

Stability characterizes a control system for which for any bounded input, the output is

also bounded. In practice it corresponds to system without large oscillations of the output

signal. The accuracy measures the convergence of the control system against the reference

input. The settling time measures the time of convergence of the control system to its steady-

state. Finally, overshoot measures whether the control system goes over a threshold reference

capacity.

69

Chapter 5. Runtime Architecture

_

+
Reference

Input

Control

Error
Controller

Target

System

Disturbance

Input

Noise

Input

Transduced

output
Transducer

Measured

Output
Control

Input

Figure 5.8: Feedback Block Diagram in Control Engineering

Autonomic computing and the control theory have in common feedback control loops

as subject of study. Therefore, many researchers have tried to apply with more or less success

some techniques of control theory in autonomic computing. One of the fundamental premise

in this direction are the works of Hellerstein and al. [HDPT04]. In this thesis, we explore (cf.

Section 5.3.2) the relationship between control theory and autonomic computing through

the stability property of the feedback control loop. More precisely, we investigate how stable

control systems can be engineered thanks to the use of stabilization mechanisms.

Figure 5.9: Unstable Auto-Scale Feedback Control System

70

5.3. Feedback Control Loop Customization

Before going into details and explaining our contribution on the stabilization of control

systems, let us illustrate why it can be important to have a stable control system. For that

purpose, let us take a look at the plots on Figure 5.9. Figure 5.9 gives an example of an

unstable control system. This control system corresponds to the architecture of the auto-scale

feedback control without kalmanFilter component, and presented in Figure 5.5. The solid line

without markers on Figure 5.9 represents the cpu input reference for the control system. The

solid line with cross markers shows measured cpu values, and the solid line with vertical line

markers shows the variation of resources. The instability of the auto-scale control system is

characterized by the fact that measured values of the cpu usage oscillate around the reference

input. From the control theory perspective, this means that the controller of the auto-scale

system is not properly designed. In order words, the implementation logic of the decision-

making for the auto-scale feedback control is not efficient.

The decision-making in the auto-scale FCL is captured within filters applicationState, re-

quiredResource and the controller ratePerResource. The filter applicationState aggregates data

(cpu rate, number of resources) from sensors and forward them to the filter requiredResource

which tries to evaluate resource capacities for the given cpu load. The requiredResource

filter, then forward information to the controller. The decision logic implemented by the

controller is described by the algorithm 1.

Algorithm 1 ratePerResource Controller Implementation Logic

Require: cpuRate, cpuReferenceInput, resourceCapacity
Ensure: cpu usage in the system is less than the cpu reference input

if cpuRate ≥ cpuReferenceInput then

if resourceCapacity > 0 then

Allocate New Resources

end if

end if

According to algorithm 1, ratePerResource controller monitors the value of the cpu usage

and allocates new resources when this value is equal or above the cpu reference input value.

If we desired to have a stable control system, we have basically two way of going from here:

The first way consist of using a control decision model like the Markovian Decision Pro-

cesses (MDP) for implementing the controller logic. However, the implementation of such

models is complex and many software engineers can barely understand and build effective

control decision models. The second way consist in tuning in a ad-hoc manner the logic

behavior of the controller. The issue with the ad-hoc approach is that the code implement-

ing the controller logic can grow quickly, and becomes difficult to maintain. The CORONA

approach makes a tradeoff between the two aforementioned methodologies. In CORONA

a stable control behavior can be achieved through stabilization mechanisms. Stabilizations

mechanisms in CORONA consist of algorithms (including some models). Stabilization mech-

anisms impact the quality of the information processed within the feedback control loop,

and consequently the decision based on these information. For example, in the case of the

auto-scale FCL, the use of a learning stabilization mechanism like kalmanFilter can help to

anticipate the workload of the cpu, and allocate resources before the reference threshold is

71

Chapter 5. Runtime Architecture

exceeded.

CORONA facilitates the integration of stabilization mechanisms in the control architec-

ture, by providing support for a specialized annotation type– @stabilized("name of algo-

rithm"). When the algorithm is referenced in the CORONA library, developers can benefit

from it. In the next section we introduce some stabilization mechanisms and their character-

ization. This characterization helps developers to choose algorithms that meet their needs.

5.3.2 Stabilization of Decision-Making

Stability is one of the required property of a control system in control engineering. Con-

trol engineers are provided with set of tools and algorithms that drive them in order to

implement a stable control system. For example, the calculation of the transfer function or

the pole[HDPT04] of the control system helps them to build controllers with desired prop-

erties. Similarly, in CORONA software engineers can enhance autonomic feedback control

loop with stabilization mechanisms in order to reach a stable decision-making.

This section is organized as follows: we first introduce a classification of stabilization al-

gorithms, then a characterization of these algorithms in order to guide developers for choos-

ing algorithms that meet their needs. After that, we present some emerging properties of

stabilization algorithms that result from their composition. Finally, we illustrate the impact

of stabilization algorithms in order to implement stable decision-making.

Classification of Stabilization Mechanisms

We based our classification of stabilization mechanisms on the type of stabilization strategies

that they implement. Stabilization mechanisms are addressed in many works of pervasive

computing related to context reasoning or context fusion of information [dRRM06, SAH07,

Dar07].

Most of the proposals concerning the stabilization algorithms or techniques can be cate-

gorized into five groups:

Filtering techniques. These techniques focus on data-filtering using statistic or parametric-

based algorithms. For example, in MoCoA [dRRM06], which is a framework for the

management of network applications, data-filtering is achieved on the basis of geo-

graphical or temporal constraints.

Threshold techniques. For algorithms of this group, stabilization is realized by checking

the system state with regards to threshold values. The heartbeat (HB) algorithm de-

scribed in [TC04]—used for the stabilization of network connectivity failure in a mobile

environment—is an example of a threshold-based technique.

72

5.3. Feedback Control Loop Customization

Refresh techniques. The principle of these techniques is to update the system with new con-

textual information only when certain conditions are fulfilled. Usually these conditions

are expressed in the form of time-based constraints or events/actions constraints.

Probabilistic schemas. For algorithms that belong to this group, stabilization is reached by

inferring the system state on the basis of probabilities and previous states of the sys-

tem. Examples of this category include Kalman Filter [PZLB05] and Hidden Markov

Model [SAH07].

Uncategorized. This last group encloses all the algorithms that do not fit in the previous

categories, because they use ad hoc methods to handle the stabilization of the system.

From this classification of stabilization algorithms, we are going to provide a character-

ization of these algorithms for helping developers to choose algorithms that best fit their

needs when engineering autonomic systems.

Characterization of Stabilization Mechanisms

The characterization of stabilization mechanisms can be based on several criteria like the

algorithmic accuracy, or the algorithmic complexity. Depending on the situations, these criteria

may have different relevancy for the control system. For example, in some situations the

accuracy of the results can be preferred over the speed of producing these results. We re-

tained the two following criteria for characterizing stabilization algorithms: the algorithmic

data scope and the algorithmic responsiveness. Our choice for these criteria is motivated by the

fact that they are generic enough to be easily derived from most of stabilization algorithms.

Algorithmic Data Scope

The algorithmic data scope criterion informs about data input type (nominal, ordinal, numeric)

for an algorithm. The above mentioned group of algorithms have various data scope. The data

scope criterion is based on the data type categories proposed by Mayrhofer and al. [MRF03].

Authors suggest that primitive types of contextual information can be grouped in four cate-

gories:

• Nominal data (qualitative) includes values in a dataset on which no order relationship

has been or can be defined. An example of nominal data are binary features for which

values are defined in the set S = {0, 1}.

• Ordinal data (rank) covers values of a set with a defined order relationship.

• Numerical data (quantitative) encompasses values of an ordered set with predefined

operations (an algebraic field). It can be further distinguished according to the density

of values in the discrete (S ∈ Z) or continuous (S ∈ R) set.

• Interval data refers to intervals instead of single values.

73

Chapter 5. Runtime Architecture

Nominal Ordinal Numerical Interval

Delta Operators [BSBF02]
√√ √

Buffer [dRRM06]
√√ √√ √√ √√

Warm-up Time [BHRE07]
√√ √√ √√ √

Context Regions [APJ+03]
√√ √√ √

Sensitivity (speed,

acceleration) [PZLB05]

√√ √

Switch [PZLB05]
√√ √√ √√ √√

Statistical Techniques

(average, variance)

√√ √

Filtering Techniques

Statistical Filtering
√√ √

Parametric Filtering (time,

localisation)

√ √ √√ √

Threshold techniques

Simple threshold
√√ √√ √

Double threshold
√√ √√ √

Double double threshold

(hysteresis) [TC04]

√√ √√ √

Refresh techniques

Parametric Refresh (T)
√√ √√ √√ √√

Event/Action Refresh
√√ √√ √√ √√

Probabilistic schemas

Fuzzy Logic [Dar07]
√√ √√ √√ √√

Markov Chain [SAH07]
√√ √√ √

Bayesian Network [SAH07]
√√ √

Dempster-Shaffer Theory

(DST) [SAH07]

√√ √

Table 5.1: Characterization of Stabilization Algorithms According to the Data Scope Crite-

rion.

Table 5.1 reports an overall characterization of stabilization mechanisms according to

the data scope. We use the annotation “
√√

” to express that an algorithm completely targets

the data scope, while “
√

” expresses that an algorithm only partially targets data scope.

The data scope gives an hint to developers about the scope of information that stabiliza-

tion algorithms expect as an input value. They can therefore knowledgeably choose the one

that meet their needs.

Algorithmic Responsiveness

Algorithmic responsiveness characterizes the responsiveness of a stabilization algorithm. The

responsiveness of a stabilization algorithm, is the time that elapses between the reception of

an input signal (information) by an algorithm, and the output signal that the latter delivers

to the system in response. The system here can be any software application that implements

stabilization mechanisms. In particular, in the context of this chapter it refers to the control

74

5.3. Feedback Control Loop Customization

Algorithmic Process Behavior Class Analytic Definition

Class T1 T1(nt) = K, with K constant

Class T2 T2(nt) = f(nt)

Class T3 T3(nt) = g(nt) +
∑

i∈[0,t∗[g(ni)

Table 5.2: Analytic Definition of Algorithmic Process Behavior Classes

system.

The algorithmic responsiveness is correlated to algorithmic execution time which impacts

the performance of the overall system. When algorithmic responsiveness is high, algorithmic ex-

ecution time decreases and the overall reactivity of the system is improved. Algorithmic re-

sponsiveness can shepherd developers of control systems in order to asses the impact of the

choice of an algorithm on the performance of the system.

The responsiveness of an algorithm evaluates the latency of producing an output sig-

nal from a given input. To be able to reason on algorithmic responsiveness, we must define a

property that enables us to asses it for a given algorithm. For that purpose, we introduce the

notion of algorithmic process behavior which characterizes the processing time for a given al-

gorithm. The processing time corresponds to the time of execution required for an algorithm

to produce an output signal for a given input signal.

We defined three classes of algorithmic process behavior. Table 5.2 summarizes the ana-

lytic description of these classes. The first class T1 corresponds to algorithms with a constant

process time that does not depends on the size of input data. The second class T2 corre-

sponds to algorithms which process time is a function of data input size. The third class T3

describes algorithms for which the process time is a function of data size and the time of the

learning internal process.

Using the analytic definition of algorithmic classes defined in Table 5.2, stabilization

algorithms can be intuitively mapped to the corresponding class of process behavior. Algo-

rithmic process behavior classes allow assessing the algorithmic responsiveness. This means

that, if the process classes of two algorithms are known, we can deduce which of them has

the higher responsiveness. However, to be able to compare the responsiveness of stabiliza-

tion algorithms, it is necessary to explicit the definition of the functions f(nt), g(nt) of the

corresponding class. For example, assuming f(nt), g(nt) to be constant, we can deduce that

T3(nt) ≤ T2(nt) for t∗ ≤ k2−k3

k
′

3

, with k2, k3, k
′

3 constants. That means that, for constant be-

havioral functions the responsiveness of an algorithm of class T3 is less than that of class T2

when the execution time is better than (k2−k3

k
′

3

).

In practice, the analytic expression of functions f(nt), g(nt) can be derived empirically

using analysis method like least square regression. However, it is not always easy to perform

such empiric experiments because, an algorithm can have different expressions correspond-

ing to various range of data size. In addition, it is pretty hard to define threshold values for

data size range for which a given functional expression is valid.

75

Chapter 5. Runtime Architecture

For the foregoing reasons, we define an association between algorithmic process behav-

ior classes and the following qualitative attributes: Low, Medium and High. We also introduce

the notion of initial cost, Cinit, which corresponds to the initial responsiveness. The initial re-

sponsiveness can be defined as the time elapsed between the time t0 of the reception of the

first signal, and the time t∗ when the algorithm produces the first valid output.

From empirical observations of stabilization mechanisms listed in our classification, we

noticed that the cost Cinit(T1) ≤ Cinit(T2) ≤ Cinit(T3). That is, the initial cost of algorithms

of class T1 is less or equal to the cost of algorithms of class T2 that is less or equal to the cost

of algorithms of class T3.

In
c

re
a

s
in

g
 I
n

it
ia

l
C

o
s

t

(C
in

it
)

Qoc
Delta

Operator
Statistical

techniques
Switch

Filtering

Techniques
Buffer

Context

Regions

System

Sensitivity

Threshold

Techniques

Refresh

Techniques

Probabilistics

Schemas

Warm-up

Time

L
a
y
e
r

1
L

a
y
e
r

2
L

a
y
e
r

3

[T1]

[T2]

[T3]

Figure 5.10: Classification of Stabilization Algorithms According to their Class and Cost

Figure 5.10 depicts the classification of some common stabilization mechanisms on the

basis of their class characterization and the initial cost. The figure presents a multi-layered

diagram, that describes the relationships between stabilization algorithms. The diagram

consists of 3 layers. Layer 1 is associated with class T1 and Low initial cost, Layer 2 is associated

with class T2 and Medium initial cost and Layer 3 is associated with class T3 and High initial

cost.

Considering two algorithms Ai and Aj defined respectively with the cost Ci, Cj and

class Ti, Tj with i, j ∈ [1, 3]; if Cj < Ci, then Aj has a higher initial responsiveness than

Ai. However, it is important to notice that over the time, as the system is running, the

responsiveness of Ai can increase significantly and become better than that of Aj .

Figures 5.11 a-b-c, give a detailed description of the algorithms that compose each layer

of Figure 5.10. We choose to represent relationships between stabilization algorithms using

features diagrams [KCH+90] notation. Feature diagrams allow the expression of similarities

and choice options between stabilizations mechanisms. Figures 5.11 a-b-c represent stabi-

lization mechanisms as feature elements. For example, on Figure 5.11 a, the diagram points

out a dependency relationship between “Switch” and any other algorithm of the layer. Simi-

larly, an exclusion relationship between “Context Region” and “Double-double” is depicted in

Figure 5.11 b. Finally, an exclusion relationship is drawn between stabilization mechanisms

that implement quite similar methods of data processing.

76

5.3. Feedback Control Loop Customization

Alternative (OR)

Feature

Legend
Stabilization

Algorithms

Filtering

Techniques

Layer 1 Layer 2 Layer 3

Statical

Techniques
QoC

Delta

Operator

Fuzzy

Logic

Buffer

Techniques
Switch

excludes

depends

Layer 1 Layer 2 Layer 3

Threshold

Techniques
Refresh

Techniques

Context

Region

System

Sensibility

Stabilization

Algorithms

Simple Double
Double-

double

excludes

Layer 1 Layer 2

Stabilization

Algorithms

Probabilistic

Schemas

Warm-up

Time

DST Uncategorized

HMM DBN BN

Layer 3

(a)

(b) (c)

A

Figure 5.11: Relationships between algorithms of the first(a), second (b) and third (c) layer

of the classification

Composition of Stabilization Algorithms

On an individual basis, stabilization algorithms offer interesting properties in order to sta-

bilize data processing within the feedback control loop. For example, learning-based algo-

rithms like Kalmann Filter are able to take into account the data history in order to predict the

future, and threshold-based algorithms like simple threshold are able to detect small variations

between consecutive data sets. When composing them adequately, stabilization algorithms

offers more interesting properties that result from the combination of the properties of each

algorithm participating in the composition. In particular, we are going to focus here on three

types of composition model: The horizontal, the vertical, and the hybrid composition model.

Horizontal Composition

Although learning-based stabilization algorithms, like Dempster-Shaffer Theory (DST) [Wu03]

or Bayesian Networks (BN) are efficient in predicting contextual changes, they introduce a la-

tency in detecting variations in the application environment. According to our characteri-

77

Chapter 5. Runtime Architecture

Data Source

Shi

Data Consumers

Shj...

CR

Horizontal Composition (a)

 Data

Acquisition

Composition

Process

Data

Delivery

Data Source

Svi

Data Consumers

Svj

...

Vertical Composition (b)

Data Source

Data Consumers

...

Hybrid Composition (C)

S1 S2 S4

CR CR

CR

S3

S6S5

CR:

Si:

Horizontal composition

Vertical composition

Composition Rule

Stabilization Algorithm

Figure 5.12: Stabilization Algorithms Composition Models

zation (c.f Section 5.3.2), these algorithms correspond to the class T3 with a high initial cost.

On the other hand, algorithms based on threshold evaluation functions [BSBF02] are more

reactive than learning-based algorithms and are associated to the class T1 with a low initial

execution cost. We can achieve an efficient stabilization process by combining both classes

of algorithms through appropriate composition rules. One way to do this, is to use of the

principle of the horizontal composition, which consists in the concurrent execution of two or

more stabilization algorithms of different classes.

For example, using horizontal composition the latency of learning-based algorithms can

be compensated by the reactivity of threshold-based algorithms. The composition rule can

be a simple rule like “f(vn, vn+1) = max(vn, vn+1)”, where vn, vn+1 are context values, or

a more complex rule involving Quality of Context (QoC) of the processed data. In practice,

composition rules can be expressed with existing rule-based frameworks, like JESS [jes] or

Drools [dro]. Figure 5.12-a gives an illustration of the horizontal composition strategy. On

the figure, the output of source data is concurrently processed by two algorithms of different

classes Shi
, Shj

. Then, outputs of these algorithms are selected or moderated according to

the defined composition rule (CR) before being forwarded to data consumers.

Vertical Composition

The vertical composition consists in a sequential execution of stabilization algorithms orga-

nized as a stack. In a vertical composition, when composed algorithms have the same initial

cost, they can be placed at any position of the stack. On contrary, when the initial cost is

78

5.4. Summary

different, algorithms with high initial cost will be located at the top of the stack. These asso-

ciation rules are justified by the fact that, the amount of processed data decreases from the

bottom to the top of the stack, as they are being filtered out at each step. Thus, algorithms

with a high initial cost at the top of the stack would have to process less data than algorithms

at bottom. In addition, this organization reduces the overall cost of the stabilization process

at least at the beginning of the stabilization process.

Vertical composition can be used to improve the accuracy of data processing, by a se-

quential refinement of the information through the stabilization stack. Figure 5.12 b illus-

trates the vertical composition strategy. On the figure, the output of the data source is se-

quentially processed through the stack of stabilization algorithms before being delivered to

data consumers.

Hybrid Composition

The horizontal and vertical composition strategies can be combined using composition rules,

to achieve complex and richer behavior of the stabilization process. Hybrid composition con-

sist in the combination of horizontal and vertical composition models. Figure 5.12-c illus-

trates the combination of both strategies. This combination can be used in order to meet

accuracy and efficiency properties of the stabilization process.

The data source in Figures 5.12 a-b-c stands for any data provider, since the stabilization

strategies can be applied on any data coming from monitoring activities and on data coming

from adaptation activities like the decision-making entities.

5.4 Summary

In this chapter we have presented our solution for supporting the reification of feedback

control loop architecture elements as first-class citizens at runtime. Feedback loop architec-

ture elements are implemented by SCA components, which enables their instrumentation

for verification or validation purposes. We have also, showed how the feedback control loop

can be customized with cross-cutting concerns in our approach. In particular, we focused on

the implementation of a stable decision-making in the feedback control loop. We argued that

stabilization mechanisms were an effective method for implementing stable feedback con-

trol systems. The specialization of the feedback control system through stabilization mecha-

nisms is based on a composition model which enables to improve the accuracy or the latency

of the control system.

The CORONA approach is cost-effective and reduces the burden of implementing auto-

nomic systems for software engineers. That is because, CORONA supports the generation of

the control system implementation code from a control architecture description. In addition,

one of the originality of the CORONA approach revolves in the fact that, it tries to promote

good practices of engineering control systems inherited from the field of control theory. In

particular, the implementation of stabilization mechanisms in order to reach stable decision-

making.

79

Chapter 5. Runtime Architecture

In the next chapter, we will introduce the compilation infrastructure of the CORONA

toolchain. We will principally focus on two aspects: First, on the mapping rules that guide

the generation of the control system implementation. Especially, rules or constraints related

to the description of the interaction between control elements. The second aspect we will

pay attention to, is the verification of the control system architecture. In particular, con-

flicts checking in order to ensure coherence of the control system in the context of multiple

feedback control loops architectures.

80

Chapter 6

Compilation Infrastructure

“It is unworthy of excellent men to lose hours like slaves in the labor of calculation which could be

relegated to anyone else if machines were used."

– Gottfried Leibnitz

Contents

6.1 Component-based Generative ToolChain 82

6.1.1 CORONA Compiler . 83

6.1.2 Location Optimizer . 84

6.1.3 Verification Generator . 84

6.2 Mapping from SALTY Model to SCA Model 85

6.2.1 Mapping Rules . 85

6.3 Control Loop Architecture Distribution 89

6.4 Conflicts Checking on Feedback Control Loop Architectures 93

6.4.1 Motivating Example . 94

6.4.2 Conflicts Pattern Modelisation . 95

6.4.3 Conflicts Verification Algorithms 99

6.4.4 Conflicts Resolution . 102

6.5 Control Loop Architecture Evolution 105

6.6 Summary . 106

In Chapter 5, we have presented how feedback control loops can be reified at runtime

in order to increase their visibility. In particular, we have discussed the implementation of

the feedback control architecture in SCA. We have drawn the relationship between control

theory and software engineering, and introduced some properties of feedback control sys-

tems from control theory. We focused on the stability property, and suggest a methodology

to address this property when implementing control systems in software engineering.

81

Chapter 6. Compilation Infrastructure

The current chapter puts the focus on the compilation infrastructure of the CORONA

toolchain. This chapter investigates principally two challenges: The first challenge is the

mapping challenge, which consists of filling the gap between the expressiveness of architec-

tural description languages, and the implementation platform languages. The second chal-

lenge that is addressed in this chapter is the verification challenge, which aims at benefiting

from the explicitness of the control system architecture for building verification tools that

help developers to build autonomic systems that are more reliable. These two challenges

are addressed by the CORONA toolchain. The first challenge is addressed by the CORONA

toolchain through the generation of the runtime implementation code of the control architec-

ture from an architectural description. That is the toolchain automatically maps design con-

cepts into runtime concepts. The second challenge is addressed by the CORONA toolchain

through the implementation of a verification algorithm that checks the control architecture

against some conflicts between feedback control loops in the control system.

Structure of the Chapter

The rest of this chapter is organized as follows: we start by introducing features of the

CORONA toolchain that make cost-effective the implementation of autonomic systems (cf.

Section 6.1). Then, we elaborate in details on each of these features. In Section 6.2 we discuss

the mapping relationship between the SALTY design model and the SCA runtime concepts.

The deployment issue of the feedback control loop is discussed in Section 6.3. In Section 6.4,

we present some verification algorithms for the detection of conflicts in the control system

architecture. Section 6.5 addresses evolution aspects of the control system. Finally, we con-

clude this chapter with a summary (cf. Section 6.6).

6.1 Component-based Generative ToolChain

In Chapter 4– Section 4.3.2, we have presented an overview of the toolchain CORONA. In this

section, we are going more into details and discuss main features of the toolchain. Figure 6.1

gives an insight of these main features.

Figure 6.1 depicts the three main features of the toolchain CORONA: The compiler, the

location optimizer and the verification generator. The location optimizer and the verification gener-

ator play the role of tool support, and provide design feedbacks to architects/developers of

autonomic systems. When the control system architecture changes or evolves, the compiler

takes into account these changes and generates the corresponding source code.

The toolchain and its components are implemented according to the SCA standard. This

enhances the flexibility of the toolchain, and provides means to extend it with few engineer-

ing efforts. Now, let us take a close look at the architecture of key features of the CORONA

toolchain.

82

6.1. Component-based Generative ToolChain

SALTY

Model

CORONA

Compiler

Source

Code

Location

Optimizer

Verification

Generator

Control

Loop

Model

...

Deploy and

Execute in Target

Environment

T
o

o
ls

 S
u

p
p

o
rt

D
e

s
ig

n
 F

e
e

d
b

a
c
k

 Evolution

Figure 6.1: ToolChain Key Features Behavior

6.1.1 CORONA Compiler

The compiler in the CORONA toolchain is responsible for two main activities. First, the map-

ping between the control loop architecture model and the target platform model. Second, the

evolution of the control architecture to ensure the consistensy between the generated source

code and the control system architecture.

Compiler SCA Domain

Parser

Composite

Parser

ScaParser

Composite

ScaParser

Srv1

Srv2

Ref1 Srv1

Figure 6.2: SCA Architecture of the CORONA Compiler

83

Chapter 6. Compilation Infrastructure

Figure 6.2 gives the SCA architecture of the compiler. The compiler consists of two

composites: the Parser and ScaParser composite. The composite Parser has two services

(Srv1,Svr2), and one reference (Ref1). One of the service (Srv1) enables the loading process of

the control system architecture model, and the second launches the generation process. The

composite Parser has a dependency to the ScaParser composite for generating SCA imple-

mentation. To carry out another platform than SCA, it will be enough to extends the Parser

composite with a dependency reference for the new target platform. The service-oriented

architecture of the compiler enforces the flexibility of the CORONA toolchain, by providing

extension capabilities such as support for multiple target platforms.

6.1.2 Location Optimizer

The location optimizer provides a tool to developers of autonomic systems to tackle the is-

sue of the distributed deployment of the control loop. The location optimizer uses Constraint

Satisfaction Problem (CSP) techniques [Apt03b] to assign control elements among available

resources of the managed system. The assignment of a control element to a specific host

resource, is done by enriching the architectural model of the control loop with adequate an-

notations. The location optimizer tool can be used for example, in the context when the devel-

oper wants to optimize the distribution of the control loop components at runtime, knowing

the network topology of the deployment infrastructure. The optimization of the distribution

through the location optimizer can be done according to criteria like the bandwidth between

host machines.

The location optimizer tool is implemented as an SCA composite. This tool is not au-

tomatically trigger for a given control loop architecture, but must be explicitly called. It

requires the control loop architecture model and the network topology model as input, and

generates a control loop architecture model enriched with annotations as output. This archi-

tecture model contains annotations that drive CORONA compiler during the generation of

the source code, and the deployment script. We elaborates in details on the location optimizer

through a concrete example on Section 6.3 below.

6.1.3 Verification Generator

The verification generator is a tool that implements a set of algorithms that analyze the control

architecture. In particular, algorithms for detecting conflicts in the control architecture. The

verification generator, provides feedbacks to developers when some conflicts are found in the

control system architecture.

The verification generator is implemented as an SCA composite. It takes as input the

architecture model of the feedback control loop. This tool is automatically triggered by the

CORONA toolchain before the generation of the source code. However, even if it is strongly

recommended, developers can decide to follow or not the warnings generated by this tool

without prejudices for the generation of the source code. We elaborate in details on the

Verification generator on Section 6.4.

84

6.2. Mapping from SALTY Model to SCA Model

6.2 Mapping from SALTY Model to SCA Model

One of the challenges that need to be addressed concerning the engineering of autonomic

system, is to fill the gap of expressiveness between control architectural description lan-

guages and target implementation languages. Indeed, architectural languages empower de-

velopers with domain specific concepts that make their life easier, because these concepts

are close to their application domain. Inversely, generic implementation languages provide

developers with a bit too generic concepts that are far away from their application domains.

In our approach, we use MDE techniques to map the SALTY architectural language to the

SCA implementation language. In this manner, developers of control systems can benefit

from the expressiveness of the SALTY model without worrying about the mapping into a

runtime implementation language.

The mapping between SALTY model and SCA language is challenging, because the con-

cepts manipulated in both languages are different. For instance, the ecore model of SCA core

package has 55 classes, while SALTY model consists of 90 classes. In this section, we are not

going to provide a mapping between these two models. In particular, we are going to elab-

orate on four different aspects of the mapping, and namely: the composition, the dynamic,

the implementation and interaction aspects.

6.2.1 Mapping Rules

Before we dive into the details of mapping rules, we first introduce an example of a control

architecture specified with the SALTY model. Figure 6.3 gives an example of the Condor

control system architecture. The Condor control system architecture is composed of two

feedback control loops: The Main feedback control loop and the SubmissionRate feedback

control loop. Both loops have an hierarchical dependency. The SubmissionRate FCL is con-

trolled by the Main FCL. The Condor control system is used to manage jobs arrival rate into

the queue of the Condor infrastructure [TTL05].

In this section, we are not focusing on the explanation of the workflow of the Condor

control system architecture. This workflow is discussed in details in the validation Section

(c.f Part III) of this thesis. Here, we use the Condor architecture to illustrate the main con-

cepts of the SALTY model. In particular, in order to exemplify the mapping rules between

SALTY and SCA concepts. Now, let’s discuss the mapping between the SALTY and the SCA

model.

A) Composition Aspect

The expression of the composition in the SALTY language can mainly be done through two

constructions: provided feature, and composite.

85

Chapter 6. Compilation Infrastructure

serviceRate
: MovingAverage

processCounter
: MovingAverage

queueStat
: MovingAverage

sync
: Synchronizer

trigger
: PeriodicTrigger

controller
: Controller

setPeriod
: PropertySetter

setParams
: PropertySetter

SubmissionRate

serviceRate
: CondorServiceRate

processCounter
: ProcessCounter

queueStat
: CondorQueueStats

submissionRate
: SubmissionRate

execTime
: PropertyGetter

execTimeAvg
: MovingAverage

triggerRate
: TriggerRateController

dagmanDelayer
: CondorDAGmanDelayer

freeMemory
: FreeSystemMemory

freeMemoryAvg
: MovingAverage

modelParam
: ModelParamController

freeMemTrigger
: PeriodicTrigger

Main

provides

effector

active sensor

sensor filter

active filter

controller

observing data link

control linknotifying data link

composite

Figure 6.3: Condor [TTL05] Control Loop Architecture

Provided features enable the construction of compound control elements. A provided fea-

ture can be a sensor or an effector. On Figure 6.3, the sensor queueStat is a compound

control element with one provided element, the sensor execTime. Similarly, the filter

trigger has a provided effector, setPeriod. Compound control elements with provided

features are mapped into SCA composites, where each provided element is represented

as a SCA component.

Composites in the SALTY language are used to create individual control loops or to build

compound control elements. On Figure 6.3 we have two composites: SubmissionRate

composite and Main composite. These composites are mapped into SCA composites.

86

6.2. Mapping from SALTY Model to SCA Model

B) Dynamic Aspect

Dynamic aspect refers to the dynamicity of the information flow between the nodes of the

control system.

Active control elements initiate the propagation of information between them and con-

nected control elements. Information is pushed with a frequency rate. we distinguish

active filters and sensors in the SALTY language. Active control elements are mapped

into SCA components or composites with a property that represents the frequency rate

at which information is pushed. On Figure 6.3, the filter trigger and the sensor execTime

are example of active control elements.

Passive control elements are passive to the propagation of the information. This means

that, connected control elements need to initiate the process of collecting information

they require. On Figure 6.3, serviceRate and freeMemoryAvg are examples of passive

control elements. Passive control elements are mapped into SCA components or com-

posites depending on whether or not they are compound control elements.

C) Implementation Aspect

Control element types are mapped to a Java class that implements the behavior of the cor-

responding component. The component is related to other component of the control

architecture through SCA services and references. On Figure 6.3, TriggerRateController

indicates the type of the controller triggerRate.

Link types are mapped into SCA service or reference. The SALTY language distinguishes

between two types of link: control link and data link. On Figure 6.3, data links are repre-

sented by simple arrow lines, and control links by double arrow lines.

D) Interaction Aspect

Interactions between control elements describe the information propagation flow in the con-

trol system. On Figure 6.3, interactions are represented by oriented arrow lines that connect

control elements. Interactions are mapped into SCA binding or wires.

So far, we have seen that architects can use data links or control links to specify interactions

between control elements. In Section 5.2.5, we have described the three modes of interaction

between the nodes of the control system architecture in SALTY: The notification, the obser-

vation and the multimodal mode. However, the specification of interactions can sometimes

leads to ambiguous execution semantic.

A good illustration of the ambiguity that can occur is illustrated by Figure 6.4. The

figure depicts simpleFilter with three connections links: two Push link and one Pull link. This

architectural representation leads to an ambiguity concerning the semantic of the execution

87

Chapter 6. Compilation Infrastructure

Push

Push

Pull

link 1: T1

link 2 : T2

link 3: T3

Public T3 filter(T1 link1, T2 link2)

Public T3 filter(T1 link1)

Or

Public T3 filter(T2 link2)
simpleFilter

Synchronized model

Unsynchronized model

Figure 6.4: Illustration of Possible ambiguity in the interaction model

SALTY Concepts SCA Concepts

Simple Control Elements Component

Compound Control Element Composite

Provided Features Component

Composite Composite

Control System Composite(s)

Active Control Element Component/Composite with a property

Control Element Type Java Class

Control Link Service/Reference

Data Link Service/Reference

Bind Wire/Binding

DataType Java Class or primitive Java type

Table 6.1: Mapping Rules Between SALTY and SCA Concepts

of the simpleFilter. This is expressed by three different signatures of the method filter(), that

implements the business logic of the simpleFilter. The semantics of the first signature suppose

that the simpleFilter should wait for the two values from link1 and link2 before computing the

value that is pulled out on link3. This signature corresponds to the synchronized interaction

model. The second and the third signature suppose that the filter computes the output value

(link3), upon receiving any value from link1 or link2. This means that only one of the link is

required for the calculation of the output value. The last two signatures correspond to the

an unsynchronized interaction model.

To leverage the ambiguity of the semantics of interactions between control nodes, we

have adopted the synchronized interaction model. In this model, each control element re-

quires all input values for calculating the output. This means that, on the example of Fig-

ure 6.4, the first method signature corresponds to the execution semantics. Table 6.1 summa-

rizes the mapping rules between SALTY and SCA concepts.

In this section, we have given an insight of the architecture description semantics, and

88

6.3. Control Loop Architecture Distribution

the corresponding runtime concepts in SCA. In the next Section 6.3, we discuss how the

distributed deployment of the control architecture is tackled in our approach.

6.3 Control Loop Architecture Distribution

As previously introduced, thanks to its component-based architecture, CORONA provides

the flexibility to integrate customized services in order to check or refine control architectural

models. In particular, CORONA integrates location optimizer for calculating the distribution

of control elements on the deployment infrastructure, with respect to some constraints ob-

jectives. One of the constraint can consist for example in ensuring a minimal communication

latency between distributed control elements. In this the case, the location optimizer strives to

assign the deployment of control elements on hosts with high bandwidth.

The location optimizer service uses the control system architecture model, the network

model of the deployment infrastructure, and constraints objectives to determine the best

distribution of control elements. The control system architecture model is defined using

SALTY specifications. The network model is defined from the network meta-model, and

constraint objectives are specified using a CSP API. The current implementation of location

optimizer is based on the JaCoP (Java Constraint Programming) solver [KS10] API. In the fol-

lowing sections, we discuss how the network model and constraints are specified for the

location optimizer in CORONA.

Network Model

The network model includes information about host machines, the relationships between

them, as well as additional properties such as supported protocols, available memory on

machines, and the storage capacity. Figure 6.5 gives an overview of the main concepts of the

network meta-model. The figure shows that the network infrastructure consists of a set of

hosts with properties and communication protocols. For each protocol supported by a host,

we can specify users credentials for accessing that host. The network model is specified

independently from the control loop architecture model, and provides information about

the deployment infrastructure.

Once the control architecture model and the network model are provided, the location

optimizer is almost ready to run. However, to have it completely ready to run, developers

must specify constraints to configure its behavior. These constraints are defined through the

objective function and constraint annotations.

Objective function

Prior to the definition of the objective function of the location optimizer service, let us define

a set of concepts that are used for implementing its logic behavior.

89

Chapter 6. Compilation Infrastructure

Network

name:string
ip:string

Host

name:string
password:string
privatekey:string

User

Property

Protocol

0..*

0..*

0..*

0..*

0..*

neighbors

Figure 6.5: Basic Concepts of the Network Meta-Model

Core Definitions

For sake of simplicity, control elements–(sensor, effector, filter, controller)– in these definitions

are subsumed under the term of nodes. The control system (CS) represents the control sys-

tem architecture. These definitions characterize the control architecture and the deployment

infrastructure network.

Def. 1. CS = {l1, . . . , li, . . . , ln}, 1 ≤ i ≤ n ∧ 1 ≤ n: denotes the different loops that compose the

control system.

Def. 2. E = {e | ∃N1, N2 ∈ N e = {N1, N2}}: represents the connections between nodes of the

control system.

Def. 3. N = {N1, . . . , Ni, . . . , Nm}, 1 ≤ i ≤ m: The nodes of the control loop architecture.

Def. 4. H = {H1, . . . ,Hi, . . . ,Hn}, 1 ≤ i ≤ n: The host machines of the deployment infrastructure.

Def. 5. CH = {(Hi, Hj) ∈ H2 : Hi connected Hj}, i 6= j ∧ 1 ≤ i ≤ n ∧ 1 ≤ j ≤ n: Connections

between the hosts of the network.

Def. 6. NDHj = {N1, . . . , Ni, . . . , No}, 1 ≤ i ≤ o∧ o ≤ m: Nodes deployed on the jth host. This

set is a subset of N .

Def. 7. DH = {H1, . . . ,Hi, . . . ,Hp}, 1 ≤ i ≤ p ∧ p ≤ n: Hosts selected for the node deployment.

The set is a subset ofH.

90

6.3. Control Loop Architecture Distribution

Additionally, we define the following functions that help us to indicate selected hosts

for the deployment, and the assignment of a node to a specific host:

Def. 8. (sh(Hi) = 1⇒ Hi ∈ DH)∧(sh(Hi) = 0⇒ Hi /∈ DH): Indicates if the ith host is selected

or excluded for the deployment.

Def. 9. (nidhj(Ni)⇒ Ni ∈ NDHj) ∧ (¬nidhj(Ni)⇒ Ni /∈ NDHj): Indicates if the ith node is

deployed on the jthhost.

The objective function of the location optimizer is to find the minimal set of hosts which

complies to the constraint objectives. Using the definitions presented above, the objective

function of the location optimizer can be formalized as follow:

MIN

i=|H|∑

i=1

sh(Hi)

 (6.0)

Constraint Objectives

Constraint objectives are used to configure the behavior of the location optimizer service.

These constraints can be specified at two levels: architectural and implementation level.

Implementation Level

Developers can specify constraints in the configuration Java class of the location optimizer

service. This is done by defining primitives or set of constraints through the CSP application

programming interface. For example, the following restrictions can be specified concerning

the distribution of the nodes on the deployment infrastructure:

C1 {∀ Ni ∈ N : (∃Hj ∈ H : nidhj(Ni) = true): This restriction specifies that every node

must be deployed on a host.

C2 {∀ Ni ∈ N : (∀Hj , Hk ∈ H : nidhj(Ni) = true ∧ nidhk(Ni) = true ⇒ i = j): This

restriction specifies that each host can host only one node.

C3 {∀ Ni, Nj ∈ N : (Ni, Nj) ∈ E ⇒ (∃Hk, Hl,∈ H : (nidhk(Ni) = true ∧ nidhl(Nj) =

true)∧ (k = l∨ (k 6= l∧ (Hk, Hj) ∈ CH))): This constraint specifies that two connected nodes

are deployed on the same host or on two connected hosts.

Architectural Level

Developers can specify constraints on the control system architecture through annotations.

Annotations can be specified on control elements or on their connections. In practice, two

types of annotations can be used by developers. The @Host(hostname) annotation, and the

@Constraint(constraint logic). The @Host annotation is used to assign a node to a specific host

91

Chapter 6. Compilation Infrastructure

machine. It takes as parameter the name of the target host according to the network model

specification. The @Constraint annotation is used to indicate constraints on a node, between

two nodes, or on their connections. It takes as parameter the logic conditional constrained

supported by the CSP specification. For example, the logical condition Ni = Nj will be

interpreted by the location optimizer service, as a constraint requiring the nodes Ni and Nj to

be hosted on the same machine. The inverse of that expression–ie, (Ni 6= Nj)– will actually

have the opposite meaning.

fireDetectorSensor
: FireDetector

fireController
: FireController

turnstileController
: RoomController

turnstile
: TurnstileEffector

turnstileSync

@Host("machineA", "127.0.XX.XX")

@Constraint("neq(fireDetectorSensor,

 fireController)")

 effector("turnstile" -> "Turnstile")

 init { implicit e=>

 annotation("Host", "name" -> "machineA" , "ip"-> "127.0.xx.xx")

 }

 sensorBinding("b12","fireDetectorSensor" -> "fireController.input")

init { implicit e=>

 annotation("Constraint",

 "c1" -> "neq(fireDetectorSensor , fireController)"

)

 }

Figure 6.6: Illustration of a Feedback Control Loop Architecture with Constraints Annota-

tions

Figure 6.6 gives an illustration of the specification of constraints on the control system

architecture with the SALTY language. In fact, the language for expressing constraints is

not provided by the initial SALTY language. But, thanks to the flexibility of the SALTY lan-

guage, we can use the annotation construction to embed a CSP constraint syntax. The figure

represents a control system architecture with one sensor (fireDetectorSensor), two controllers

(fireController, turnstileController), and one effector turnstile. The distribution constraints are

indicated for the turnstile effector, and the connection link between fireDetectorSensor and

fireController. The annotation @Host on the effector indicates that it must be deployed on

the host machineA. The annotation @Constraint on the connection link indicates that the sen-

sor(fireDetectorSensor), and the controller (fireController) must be deployed on different hosts.

The figure also provides the corresponding syntax for specifying these constraints at the

architectural level. It is important to notice that at the architectural level, constraints are in-

92

6.4. Conflicts Checking on Feedback Control Loop Architectures

dicated for an instance of the control element, and not for its type. This means that we can

have different instances of the same type of a control element with different constraints.

The execution result of the location optimizer is an architecture model where each node

is annotated with information about the deployment. This information is indicated with the

annotation @Host. For example, for a deployment environment that consists of two machines

A and B, the execution of the location optimizer service on the control system architecture

model presented on Figure 6.6 will produce the architecture model depicted on Figure 6.7.

fireDetectorSensor
: FireDetector

fireController
: FireController

turnstileController
: RoomController

turnstile
: TurnstileEffector

turnstileSync

@Host("machineA", "127.0.XX.XX")@Host("machineA", "127.0.XX.XX")

@Host("machineB", "127.0.XX.XX") @Host("machineB", "127.0.XX.XX")

Figure 6.7: Computation Result of the location Optimizer Service

Figure 6.7 shows the result of the computation of the location optimizer service on a con-

trol architecture. The figure shows that the nodes of the feedback control loop are decorated

with information about the deployment. This information drives the compiler for the gener-

ation of the source code and the deployment script.

In this section, we have explained how the distribution of the control system architecture

was computed by the location optimizer service. We have also presented two ways of express-

ing constraint objectives for that service. In the next section (cf. Section 6.4), we discuss how

conflict verifications are performed on the control system architecture.

6.4 Conflicts Checking on Feedback Control Loop Architectures

In this section, we discuss how the verification generator tool handles conflicts verification

in the control system architecture. This section is organized as follows: In Section 6.4.1,

93

Chapter 6. Compilation Infrastructure

we introduce a motivation example to justify the importance of conflicts verification for the

control system architecture. Then, in Section 6.4.2, we introduce the modeling of some con-

flicts patterns. Section 6.4.3 describes conflicts verifications algorithms implemented in the

CORONA toolchain. Finally, Section 6.4.4 discusses the resolution of conflicts found in the

control architecture.

6.4.1 Motivating Example

The visibility of feedback control loops at runtime enables the implementation of automated

analysis tools that help reducing the cost of engineering autonomic systems. In particular,

one important issue that software engineers face, is the unwanted or unaware interferences

between control loops when designing complex control with multiple objectives. These in-

terferences impact the behavior of the control system as a whole, and require a lot of efforts

and time for their detection and correction.

Controller

(Crtl-1)

Component (CA) Component (CB)

changeaffect

propagation trigger

Controller

(Crtl-2)

change

Figure 6.8: Illustration of the Invisible Interference Problem

A good illustration of that, is the invisible interference problem [HGB10]. The invisible inter-

ference problem is an indirect influence of one feedback control on another one. A controller

triggers changes on a component, which triggers changes on a second component controlled

by another controller. Figure 6.8 gives an illustration of the invisible interference problem.

Figure 6.8 depicts two controllers Ctrl-1 and Ctrl-2 interacting indirectly. When the con-

troller (Ctrl-1) triggers changes on the component CA, the later propagates some changes

on the component CB, which is observed by the controller Ctrl-2. Consequently, an action

triggered by the controller Ctrl-1 is propagated to the controller Ctrl-2. If the both controllers

implement opposite objectives, then the system can turns into an unstable state.

Invisible interferences is a threat for the stability of the control system. In traditional en-

gineering approaches, the implementation of the feedback control loop behavior is usually

masked under layers of abstraction intended to hide the system complexity. The resulting

lack of visibility makes difficult the analysis of the control system architecture and therefore

94

6.4. Conflicts Checking on Feedback Control Loop Architectures

the detection of looming interference of the control flow. In the CORONA approach, the feed-

back control loop architecture is reify as first-class citizen which makes easier the analysis of

control flows and the detection of potential interferences. Additionally, CORONA provides

a strong mapping between the architectural model and target implementation models of the

control system. This ensures the compliance of the architectural model and the generated

implementation code of the control loop.

In general, the implementation of a control system begets many conflicts that are crucial

to detect earlier, in order to guarantee the consistency of the control system. In the following

sections, we introduce the types of conflicts (cf. Section 6.4.2) that are detected by the verifi-

cation generator, then the algorithms of detection and correction (cf. Section 6.4.3) of some

of these conflicts.

6.4.2 Conflicts Pattern Modelisation

The representation of feedback control loops as first-class entities at design and at runtime

in the CORONA approach enables reasoning on control systems concerns. In CORONA,

architecture analysis for conflicts detection takes place once architects have designed the

FCL architecture. The result of this analysis is used to generate warnings when conflicts are

found. At this stage, the architect can decide to modify the control system architecture in

order to provide a new one that complies analyses, or to cancel generated warnings. By de-

fault, if warnings are not cancelled by the architect, the later are instrumented by the compiler

for generating supervisor components for the runtime implementation of the control system.

The role of supervisors is to coordinate the behavior of conflicting feedback control loops. Su-

pervisors provide a correction for conflict patterns detected in the control loop architecture.

Figure 6.9 illustrates the verification of conflicts in the control loop architecture. This

verification process consists of 4 main steps: 1) Architecture design– on this step the control

loop architecture model is provided as input to the verification generator tool. 2) Warnings

generation– algorithms for the detection of conflicts are run on the control loop model, and

generate warnings when conflicts are found. 3)Warnings resolution– the architect acknowl-

edges the conflicts in the architecture and resolve, cancel or ignore them. 4)- Conflicts correction–

if some conflicts are ignored by the architect, the tool tries to resolve them by generating su-

pervisors. The final architecture obtained at the end of the fourth step, is used for generating

the implementation code of the control system.

Now that we have explained how the verification process is performed in CORONA, let

us take a look at what type of conflicts can be detected through analysis of the control system

architecture.

Conflicts Patterns

Conflicts in the control system architecture appears when feedback control loops overlap one

another. More precisely, conflicts result from uncoordinated behavior of two or more control

flows. In the example of invisible interference depicted on Figure 6.8, conflicts came from the

95

Chapter 6. Compilation Infrastructure

1- Architecture Design

Design Phase

Runtime Phase

conflicts

analysis

resolving

warnings

3-Warnings Resolution

 conflicts

correction

 code

generation

*.java

*.composite

4-Conflicts Correction

2-Warnings Generation

CancelWarningResolve

Figure 6.9: Conflicts verification Process

uncoordinated behavior of the control flow governed by the controller Ctrl-1, and the control

flow governed by Ctrl-2. Indeed, in order to identify conflicts in the control architecture, we

must be able to characterize these overlaps. We have identified two types of overlap in the

control architecture: Direct and Indirect overlaps.

Direct overlap is an overlap between control loops that share at least one control

element—i.e, Dov : ∃Na, Nb ∈ l1 , Nc ∈ l2 | ∃ e1 = (Na, Nb) e2 = (Na, Nc). We distin-

guish four types of direct overlaps: Sensor, filter, controller, and effector overlaps.

Name: Sensor Overlap

Description: Sensor overlap characterizes feedback control loops that overlap at a sensor

control element. Figure 6.10 gives an illustration of a sensor overlap between two

feedback control loops FCL4 et FCL5. These control loops have in common the sensor

control element of type SensorD.

Problem: Potential conflicts of the control system can result from the fact that two feed-

back loops use the same source of information (sensor) to fulfill different actions. On

the illustration of Figure 6.10, these actions are materialized by the effector e5 of type

EffectorE, and the effector e4 of type EffectorD.

96

6.4. Conflicts Checking on Feedback Control Loop Architectures

f1: FilterE c2:ControllerEs5:SensorD e5:EffectorE

n

fn:FilterE

a

f1: FilterA c1:ControllerAs1:SensorA e1:EffectorC

n

fn:FilterA

a

f1: FilterB c1:ControllerBs2:SensorB e2:EffectorC

n

fn:FilterB

a

f1: FilterC c2:ControllerBs3:SensorD e3:EffectorC

n

fn:FilterC

a

f1: FilterD c2:ControllerDs4:SensorD e4:EffectorD

n

fn:FilterC

a

effector
overlap

controller
overlap

filter
overlap

sensor
overlap

FCL1

FCL2

FCL3

FCL4

FCL5

Figure 6.10: Direct overlaps Patterns

Name: Filter Overlap

Description: Filter overlap characterizes an overlap of feedback control loops at a filter con-

trol element. Figure 6.10 gives an illustration of a filter overlap between FCL3 and FCL4

on filter of type FilterC.

Problem: Filters have direct or indirect dependencies to sensors. Therefore, filter overlap in-

dicates an implicit sensor overlap. Filter overlap can be of interest when two control loops

share the same instance of a filter. In this context, when the filter is related to a sensor

for example, the dependency between the sensor and the filter for one of the control

loop will not be explicit, and so the sensor overlap. The importance of this pattern is

well illustrated through the transitive overlap example on Figure 6.11.

Name: Controller Overlap

Description: controller overlap characterizes an overlap of control loop systems at a con-

troller control element. Figure 6.10 depicts a control overlap between FCL3 and FCL2 on

controller of type ControllerB.

Problem: When two controllers of two feedback control loops can take the same actions

upon a managed system without any coordination, conflicting situations can arise.

On the illustration of Figure 6.10, such conflicts can happen if the controllers c1 and

c2 trigger actions with opposite behavior on the effector. An example of action with

opposite behavior is a start/stop action.

97

Chapter 6. Compilation Infrastructure

Name: Effector Overlap

Description: effector overlap characterizes an overlap of control loop systems at an effector

control element. Figure 6.10 illustrates an effector overlap between FCL1 et FCL2 on

effector of type EffectorC.

Problem: The potential conflict results from the fact that two or more feedback control

loops can take the same actions on a managed system, without any coordination. On

the illustration example on Figure 6.10, we have two control loops FCL1 and FCL2

that implement different control policies (ControllerA, ControllerB) with the same action

(EffectorC) scope on the system.

Indirect overlap denotes feedback control loops that indirectly share a control element.

An example of an indirect overlap is a transitive overlap—i.e., when one FCL overlaps a second

FCL, which also overlaps a third one in such a way that there is an implicit dependency

between control elements of the first and the third loop. The dependency between the first

and the last feedback control loop is qualified as a transitive overlap. In a formal way, a

transitive overlap (Trov) can be defined as follows:

∃ l1, l2, l3 |Dov(l1, l2) = true , Dov(l2, l3) = true ⇒ Trov(l1, l3) = true.

s5:SensorD

f2: FilterE c2:ControllerE e5:EffectorE

n

fn:FilterE

a

f1: FilterB c2:ControllerBs5:SensorA e5:EffectorB

n

fn:FilterB

a

f1: FilterA c2:ControllerAs5:SensorA e5:EffectorA

n

fn:FilterA

a

f1: FilterB

FCL1

FCL2

FCL3

T
ra

n
s

itiv
e

 O
v

e
rla

p

Figure 6.11: Transitive overlap Example

In general, indirect overlaps are the most difficult to detect in the control system archi-

tecture. For the time being, the architecture analysis of indirect overlaps is restrained to the

scope of transitive overlaps. Figure 6.11 illustrates a transitive overlap between the feedback

control loops, FCL1 and FCL3. The figure shows that FCL1 and FCL2 overlap on sensor s5,

and FCL2 and FCL3 overlap on filter f1. Since, filter f1 depends on information provided by

sensor s5, there is an indirect dependency between feedback loops FCL1 and FCL3. The be-

havior of FCL1 impacts the behavior of FCL3, because the decision on both feedback control

loops is based on the same subset of information coming from the sensor of type SensorA. In

98

6.4. Conflicts Checking on Feedback Control Loop Architectures

particular, when the feedback from the monitoring of data provided by the sensors does not

conform to controller policies, the latter takes actions to remediate from the situation. When

they are not coordinated, these actions can possibly generate conflicts in the control system.

In this section, we have presented and characterized some conflict patterns that can be

a threat for the control system. The identification of these patterns enables to build algo-

rithms for checking them in the control system architecture. In addition, it is possible to

automatically generate some corrections for resolving these conflicts in the control system

architecture. In the next section (cf. Section 6.4.3), we first present algorithms for the detec-

tion of direct and indirect overlaps in the control system architecture, then the mechanism for

resolving detected conflicts automatically.

6.4.3 Conflicts Verification Algorithms

Conflicts verification consists in the analysis of the control system architecture for detecting

potential conflicting patterns. The purpose of this verification is to enable a consistent im-

plementation of the control system. Basically, two types of checking can be performed on

the architecture model of the control system: Direct checking and indirect checking.

The direct checking analyses the control system architecture for detecting direct overlap

patterns. In the same way, indirect checking parses the architecture model to check for transitive

overlaps. Transitive overlaps are a subset of indirect overlaps. Below, we specify both analyses

based on the following notations:

• CS = {l1, l2, ..., lk} denotes the set of all loops of the control architecture model;

• S = {s1, s2, ..., sn} denotes the set of all sensors of the control system;

• F = {f1, f2, ..., fm} denotes the set of all filters of the control system;

• C = {c1, c2, ..., cp} denotes the set of all controllers of the control system;

• A = {a1, a2, ..., at} denotes the set of all effectors (actuators) of the control system;

• SL = {(si, lj) ∈ S × CS : si belongs to lj } denotes a set of relationships between

sensors and feedback loops;

• FL = {(fi, lj) ∈ F×CS : fi belongs to lj } denotes a set of relationships between filters

and feedback loops;

• CL = {(ci, lj) ∈ C × CS : ci belongs to lj } denotes a set of relationships between

controllers and feedback loops;

• AL = {(ai, lj) ∈ A × CS : ai belongs to lj } denotes a set of relationships between

effectors and feedback loops.

99

Chapter 6. Compilation Infrastructure

Direct Checking

Direct checking analysis iteratively checks the control architecture model for the four types of

direct overlaps, and namely: sensor, filter, controller and effector overlaps.

Analysis Name: Direct checking–sensor overlap

Algorithm: Algorithm 2 summarizes sensor overlaps analysis in the control system archi-

tecture. It takes as an input the control architecture CS and the set of sensors S. It

produces the set of sensor overlaps detected in the control system architecture model.

The algorithm (1) builds the relationship set SL between sensors and feedback control

loops (lines 1–7), then (2) iterates over this set to calculate the pairs of feedback control

loops that share the same sensor element (lines 8–10).

Analysis Name: Direct checking–filter overlap

Algorithm: Similarly to the sensor overlap checking, the filter overlap algorithm takes as an

input the control system architecture CS and the filter set F . The algorithm produces

as output the set of filter overlaps Fov. The algorithm consists of two steps: In the

first step, the algorithm builds the set FL, and in the second step iterates over FL to

calculate filter overlaps Fov. Fov defines a set of triplets < f, la, lb >. A triplet indicates

that feedback control loops la and lb overlap at filter f .

Analysis Name: Direct checking–controller overlap

Algorithm: The controller overlap checking algorithm takes as an input the control archi-

tecture CS and the controller set C in order to calculate the set of controller overlaps

Cov. The algorithm processes the control system architecture in two steps: In the first

step the algorithm builds the set CL of relationships between controllers and feedback

control loops. The second step consists of iterating over CL in order to calculate Cov.

Cov defines a set of triplets < c, la, lb >. A triplet indicates that a controller c is the point

of overlap between feedback loops la and lb.

Analysis Name: Direct checking–effector overlap

Algorithm: The effector overlap checking algorithm takes as input the control architecture

model CS and the effector set A, and produces the set of effector overlaps Aov. The

algorithm processes the control system architecture in two steps: In the first step, the

algorithm builds the set AL of relationships between effectors and feedback loops. In

the second step, the algorithm iterates over AL in order to derive Aov. Aov defines a

set of triplets < a, la, lb >. A triplet indicates that an actuator a is the point of overlap

between feedback loops la and lb.

100

6.4. Conflicts Checking on Feedback Control Loop Architectures

Algorithm 2 Direct Checking: Sensor Overlap

Require: Set CS of control loops, Set S of sensors

Ensure: Calculate the Set Sov of sensor overlaps

1: for all s ∈ S do

2: for all l ∈ CS do

3: if s ∈ l then

4: SL← SL ∪ {s, l}
5: end if

6: end for

7: end for

8: for all (sli, slj) ∈ SL2 such that sli ∩ slj = {s} do

9: Sov ← Sov ∪ {s, li, lj}
10: end for

Indirect Checking

For the time being, indirect checking in CORONA is limited to the scope of transitive overlaps.

Transitive overlaps algorithms check the control system architecture for detecting indirect de-

pendency between feedback control loops that share a subset of information, but implement

different control policies. Transitive overlap can be a threat for the stability of the control

system because of the invisible interference that exist between feedback control loops.

Algorithm 3 Indirect Checking: Transitive Overlap

Require: Set CS of control loops, Set Sov of sensors overlaps, Set Fov of filters overlaps

Ensure: Calculate the Set TRov of transitive overlaps

1: for all l ∈ CS do

2: for all < s, la, lb > ∈ Sov do

3: if < s, la, lb > ∩ {l} = ∅ then

4: for all < f, ln, lm > ∈ Fov and < f, ln, lm > ∩ {l} = {l} do

5: if < s, la, lb > ∩ < f, ln, lm >6= ∅ then

6: TRov ← TRov ∪ {< f, ln, lm >, < s, la, lb >}
7: end if

8: end for

9: end if

10: end for

11: end for

Algorithm 3 summarizes the main steps of the transitive overlap checking. The algorithm

takes as an input the control system set CS, the set of sensor overlaps Sov, the set of filter

overlaps Fov, and produces as output the set TRov of transitive overlaps. The algorithm

consists of two steps: On the first step, the algorithm select a set of three loops (lines 1–3) for

which the first two overlap on a sensor. On the second step, the algorithm checks wether

there exists or not a filter overlap (lines 4–8) between the loops selected on the previous

step. The set of transitive overlap is progressively built by iterating over all the loops of the

101

Chapter 6. Compilation Infrastructure

system.

6.4.4 Conflicts Resolution

When conflicts are detected during the architecture analysis, the architect receives warnings

about detected conflicts. At this stage, conflicts can be resolved in two ways: manually or

automatically.

Manual conflict resolution is performed by the architect. Upon the reception of warning

notifications by the analysis tool, the architect can redesign the control architecture in order

to take into account these notifications. He/She can also decide to ignore these notifications.

In this case, he/she should change the status of the warning notification into resolve or cancel.

This is to disable the automatic conflict resolution by the CORONA toolchain.

Automatic conflict resolution is performed by the CORONA toolchain, when the control

system architecture is provided to the code generator with unresolved warnings. In this

context, the CORONA toolchain tries to resolve these warnings automatically. The CORONA

toolchain implements two types of mechanisms for resolving conflict warnings: The proxy

resolution pattern, and supervisors mechanism.

A) Proxy Resolution Pattern

The proxy resolution pattern is a mechanism implemented by the CORONA toolchain in order

to coordinate the behavior of conflicting feedback control loops. The principle behind the

proxy pattern is to provide a coordination node between conflicting loops.

c2:ControllerA
s1:SensorB e1:EffectorAf1:FilterB

c2:ControllerAs1:SensorA
e1:EffectorAf1:FilterA

FCL1

FCL2

s1:SensorB f1:FilterB

s1:SensorA f1:FilterA

V

V

v1

[v1,v2]

v2

aggregator:
Average

c2:ControllerA e1:EffectorA

(A) (B)

FCL1

FCL2

Figure 6.12: (A)– Control Architecture with Conflicts, (B)– Resolution of Architecture Con-

flicts with Proxy Pattern

To illustrate the proxy resolution pattern, let us consider a control system architecture that

consists of two feedback control loops with an effector and a controller overlap. An example of

such control system architecture is depicted on Figure 6.12–A. The resolution of conflicts de-

tected on the control architecture is depicted on Figure 6.12–B. The resolution pattern applied

102

6.4. Conflicts Checking on Feedback Control Loop Architectures

here is the proxy resolution pattern. Figure 6.12–B shows that the new architecture obtained

after conflict resolution contains the coordination node aggregator, which is a filter control

element. The aggregator element computes the average of incoming values v1 and v2. The

type of the computation–(calculation of the average)– can be customized during the imple-

mentation phase. The coordination node aggregator enables the coordination of the feedback

loop FCL1 and FCL2.

The proxy resolution pattern tries to provide a proxy element between conflicting loops.

The type of input/output values is inferred from the architecture analysis. Typically, on Fig-

ure 6.12–A, the output (v) from filters are used as input for the proxy element. Unfortunately,

it is not always possible to resolve control system architecture conflicts with the proxy reso-

lution pattern. When the CORONA toolchain cannot resolve conflicts through one resolution

mechanism, it tries to apply other available mechanisms like the supervisor mechanism.

B) Supervisor Mechanism

c2:ControllerB
s1:SensorB

e2:EffectorAf1:FilterB

c1:ControllerAs1:SensorA
e1:EffectorAf1:FilterA

FCL1

FCL2

V

V

(A)

@Supervisor("fcl2:e2")

@Supervisor("fcl1:e1")

 Effector Composite Supervisor Component

(B)

Effector (E)

Supervisor
proxy

Supervisor

Push

Figure 6.13: (A)– Resolution of Conflicts with the Supervisor Mechanism, (B)– SCA imple-

mentation of the Supervisor Mechanism on an Effector

The supervisor mechanism is a mechanism of conflict resolution used by the CORONA

toolchain. The purpose of the supervisor mechanism is to generate supervisors for the con-

trol architecture in order to coordinate the behavior of conflicting feedback control loops.

Supervisors are a specific type of controllers (processor), which implement a coordination

mechanism. The coordination logic of supervisors operates on the basis of effector overlaps.

The main purpose of the supervisor mechanism is to avoid concurrent actions of conflicting

feedback control loops at run time.

If we slightly change Figure 6.12–A, by removing controller overlaps, the proxy resolu-

tion pattern will fail. Therefore the CORONA toolchain will try to execute the observer

mechanism for resolving effector overlaps. Figure 6.13-A gives an illustration of control ar-

chitecture with effector overlaps, for which supervisor mechanism is used for resolving con-

flicts. Figure 6.13-A depicts a control system architecture where effectors are decorated with

103

Chapter 6. Compilation Infrastructure

annotations–@Supervisor(“param"). The @Supervisor annotation indicates for each effector

the list of influencing effectors. On the figure, effector e1 of FCL1 is influenced by effector e2

of FCL2. The @Supervisor annotation is later instrumented by the code source generator, for

generating observers components.

To illustrate the importance of the supervisor mechanism, it can be interesting to exem-

plify the control system architecture presented on Figure 6.13–A, with a concrete illustration.

Therefore, let us suppose that the objective of the FCL1 loop is to control the availability of

resources on a web server. Similarly, the objective of FCL2 is to repair resources when they

failed. When a resource fails, FCL1 detects it, allocates a new resource and moves files from

the failed resource to the new resource. Since both control loops operate on the same re-

sources (effector overlap), a conflict for accessing resources can happened when FCL1 tries to

move files from the failed resource, and FCL2 to get access to that resource for reparation. In

this context, both feedback control loops need for a coordination and this need can be fill by

the supervisor mechanism.

Figure 6.13–B depicts the implementation of the supervisor mechanism in SCA. The su-

pervisor mechanism uses the push/subscribe pattern for coordinating the behavior of con-

flicting loops. Each effector involved in the conflict encapsulates an supervisor-proxy compo-

nent. The supervisor-proxy component enables the communication with the supervisor com-

ponent. The supervisor component plays the role of a registry. Upon call of the push service,

the effector composite query for the status of conflicting effectors from the supervisor. The

coordination logic of the supervisor mechanism is illustrated on the sequence diagram de-

picted on Figure 6.14.

e2:

EffectorA
C2:

ControllerB

Call Push service

i: Interceptor

Getstatus(e1:fcl1)

set active status

set idle status

Figure 6.14: Supervisor Mechanism Coordination Logic

On Figure 6.14 the sequence of coordination consists of the following steps:

1. Call of a method m provided by the push service of the effector e2.

104

6.5. Control Loop Architecture Evolution

2. Collect the status of influencing effectors. The list of influencing effector is calcu-

lated during the architecture analysis, and provided for the runtime implementation

through the annotation @Supervisor. When influencing effectors have the idle status,

the execution of the method m can proceed.

3. Change the status of effector e2 to active, and publish it for the supervisor.

4. Change the status of effector e2 to idle at the end of the execution of method m. Then

publish the new status for the supervisor.

In this section we have presented two mechanisms for resolving conflicts in the control

system architecture. In the next Section 6.5, we discuss how the evolution of the control loop

architecture is supported in CORONA.

6.5 Control Loop Architecture Evolution

Architecture evolution is an important aspect of the process of implementing feedback con-

trol loops. The term evolution refers to the possibility that is given to developers to modify or

to change the control system architecture without lost of the part of implemented logic be-

havior. Figure 6.15 gives an overview of the three phases of the control system architecture

evolution.

D
e
s
ig
n

Step 1:

 Design Control Loop

Architecture

Step 2:

 Generate control

Loop

Implementation

Step 3:

 Complete

Control Loop

Implementation

Redesign control

architecture

R
u
n
tim

e

Figure 6.15: Control Loop Architecture Evolution Cycle

The first phase (cf. Step 1–Figure 6.15), is the design of the initial control system.

The second phase (cf. Step 2–Figure 6.15), consists in the generation of the control system

architecture.

105

Chapter 6. Compilation Infrastructure

fireDetectorSensor

: FireDetector

fireController

: FireController

@Generate("false")

 sensor("fireDetector" -> "FireDetector")

 init { implicit e=>

 annotation("Generate", "status" -> "true")

 }

Figure 6.16: Control Architecture Selective Generation

The third phase (cf. Step 3–Figure 6.15), consists in the completion of the control system

implementation code.

After the third phase, the developer can modify the control system architecture according

to his/her needs, and go again through the evolution process from the first phase. In order to

avoid any lost of the part of the code added by the developer, CORONA enables a selective

generation of the implementation code. This is possible by annotating the control system

architecture model.

Figure 6.16 depicts how the architecture of the control system can be annotated in order

to trigger a selective generation of the control system implementation code. On the Fig-

ure, the sensor fireDetectorSensor is annotated with the annotation @Generated(“false"). The

annotation @Generated with parameter false, indicates to the code source generator that an

architecture elements does not need to be generated.

6.6 Summary

In this chapter we have presented the CORONA toolchain. We have given the focus on tools

support provided for developers of autonomic systems. In particular, we have highlighted

the code source generation process and architecture verifications. We have identified conflict

patterns on the control architecture, and suggested mechanisms for detecting and resolving

them. We have concluded this chapter by addressing the evolution of the control system

architecture in our approach.

This chapter concludes the contribution part of this dissertation. In Chapter 4 we gave

a glimpse of the CORONA approach as well as challenges that the current thesis aim to ad-

dress. We stated that the originality of our approach revolves in increasing the visibility

of feedback control loops at runtime, while enhancing developers experience when engi-

neering autonomic systems. In Chapter 5, we dived into details by presenting the runtime

architecture of feedback control loops in our approach. We explained how control elements

106

6.6. Summary

were reify as first-class entity at runtime. We also described how the MAPE-k architecture

model can be customized with cross-cutting concerns. In particular we discussed how stabi-

lization mechanisms can help implementing stable control system. Chapter 6 focused on the

compilation infrastructure of the CORONA toolchain. The next part of this dissertation dis-

cusses the benefits and limitations of the CORONA approach through experiments on three

case studies.

107

This page was intentionally left blank

Part III

Validation

109

Chapter 7

Condor Case-Study

“The greatest challenge to any thinker is stating the problem in a way that will allow a solution."–

Bertrand Russell

Contents

7.1 Case-study Objective . 112

7.2 Condor Case-Study Description . 112

7.3 Control System Architecture . 113

7.4 Quantitative Evaluation . 115

7.4.1 Characterization of Conflicts Detection Algorithms 115

7.4.2 Condor Evaluation Test bed . 116

7.4.3 Characterization of the Condor’s Control system 117

7.5 Summary . 120

This chapter is the first of the three chapters of the validation part. The validation part is

organized as following: The first chapter (cf. chapter 7) illustrates the consistency of control

architecture implemented with the CORONA approach. It exemplifies how conflict detec-

tion algorithms can be used for implementing consistent, conflict-free control architecture.

The second chapter (cf. Chapter 8) illustrates the integration & transparency objective of the

CORONA approach. Finally, the third chapter (cf. Chapter 9) demonstrates how stabilization

mechanisms can be used for implementing stable control systems.

This chapter is organized as follows: Section 7.1 presents the objective of the condor

case-study. The description of the scenario is discussed in Section 7.2. Section 7.3 explores

the control system architecture corresponding to the case-study. The results of the quantita-

tive evaluation of the condor case-study are elaborated throughout Section 7.4. Finally, we

conclude (Section 7.5) this chapter with a summary.

111

Chapter 7. Condor Case-Study

7.1 Case-study Objective

Consistency refers to building reliable autonomic applications. In chapter 6, we have iden-

tified that, one of the threat for building large-scale autonomic systems is the complexity of

coping with conflicts in the control system architecture. In our approach, we have imple-

mented a set of algorithms for helping developers to build consistent autonomic systems.

It is important to notice that the CORONA toolchain checks the control system architecture

only against referenced conflict patterns identified in Chapter 6.

The implementation of automated conflicts checking in the control architecture enhances

the work of developers of autonomic systems. It also reduces the cost related to the mainte-

nance of these systems. In the next section, we illustrate how the CORONA approach helps

developers for handling conflicts of the control system. In particular, this example focus on

effector and controller overlap patterns.

7.2 Condor Case-Study Description

In this section, we first describe the Condor scenario example. Then, from there, we identify

conflicting policies of the control system.

Scenario Overview

The Condor scenario is a validation case-study of the SALTY project. We consider a cloud

environment for executing intensive workflows for a company. This executing environment

is distributed and is provided with a scheduler that is responsible for managing submitted

jobs and mapping them onto a set of resources where the actual execution is performed.

The space-shared policy is used for allocating jobs to resources. Since workflows tend to be

rather large, containing many computer-intensive tasks, the scheduler can easily become

overloaded, as the more tasks it has to handle the more resources it uses. The default behav-

ior of the scheduler is to accept all valid submission requests regardless of the current state

of the system.

We consider a family of legacy applications deployed by a company in the Condor envi-

ronment. Each of these applications are configured to ensure a specific Service Level Agree-

ment (SLA) to their users. To continuously maintain this SLA, each application exploits

the elasticity of the distributed environment to provision more or less computing resources

according to incoming requests. The usage cost associated to the provisioned resources is

generally computed as the product of the resource cost per hour (CostRes/hour) and the du-

ration of the lease (LeaseRes). To keep being profitable, the company owning applications

has defined a maximum budget per month for provisioning resources when needed (Bud-

getMax/month). Therefore, in order to save money, the control system tries to release provi-

sioned resources as soon as possible considering constraints on the budget, and on the SLA

for users.

112

7.3. Control System Architecture

Cloud infrastructure

Application Provider

Application D
Application C

Application B
Application A

Users

self-scale budget control

{SLA}

{SLA}

{SLA}

{SLA}

Figure 7.1: Self-Adaptive Distributed Infrastructure

Figure 7.1 illustrates the Condor scenario. Users request services provided by appli-

cations deployed in the Condor environment, while an autonomic manager takes care of

monitoring and maintaining SLA for each user. Resources are provisioned and released by

the dedicated manager hosted by the Cloud infrastructure. This manager implements two

feedback loops: The self-scale feedback control loop that ensures the respect of the user SLA,

and the budget feedback control loop that controls the budget allocated for the leasing of the

platform.

Architecture Conflits

In this scenario, the autonomic manager executes two conflicting policies: (i) The first policy

consists of maintaining an acceptable SLA for users, which is mostly achieved by provi-

sioning new resources. (ii) The second policy consists of saving the company provisioning

budget, and this is achieved by reducing the number of provisioned resources. To guarantee

a predictable behavior of deployed applications, the autonomic manager must be aware of

these conflicting goals (i) and (ii), and should encapsulate strategies to handle these conflicts.

7.3 Control System Architecture

According to the scenario, the control system architecture consists of two feedback control

loops: the self-scale and the budget feedback control loop. From the scenario, we derive

the specification of adaptation policies which are required to continuously adapt the system.

The specification of these policies is based on the SALTY model. The SALTY model fosters

the visibility of the control system architecture by reifying their constituents as first-class ele-

ments. The self-scale and the budget feedback control loops that manage the Condor platform

are depicted on Figure 7.2 and Figure 7.3, respectively.

The self-scale or auto-scale feedback control loop periodically monitors incoming re-

quests rate (µ), and computes an average value using a sliding window (µ), as reported in

113

Chapter 7. Condor Case-Study

applicationState
:Aggregator

ratePerResource
:ResourceController

resourceCount
:CloudResourceCounter

activeResources
:CloudResourceProvisioner

µ

n

requestRate
:IncomingRequestRate

requestRate
:MovingAverage

p

requiredResource
:ResourceCapacity

(u,n)

u

provides

effector

active sensor

sensor filter

active filter controller observing data link

control link notifying data link

Figure 7.2: Self-Scale Feedback Loop

Figure 7.2. The computed average value is aggregated with the current number of provi-

sioned resources (n), and used for evaluating requirement for resource allocation (p). Re-

source allocation requirement is used by the resource controller to provision the appropriate

number of resources when it differs from the current number of allocated resources.

ratePerResource
:ResourceController

activeResources
:CloudResourceProvisioner

hostingCost
:CloudResourceCost

applicationRevenue
:CloudApplicationRevenue

budgetContext
:Aggregator

c

r

allocatedBudget
:CloudApplicationBudget

b

maxResource
:ResourceBudget

(c, r,b)

p̂

Figure 7.3: Budget Feedback Loop

The budget feedback control loop aggregates the hosting cost (c), applications revenue

(r), and allocated budget (b) to compute allowed resource budget (p̂) as depicted on Fig-

ure 7.3. The resource budget is used to ceil the number of allocated resources in order to

control the resource consumptions of deployed applications.

Incidentally, when deploying both feedback control loops concurrently, the behavior of

managed applications becomes unstable. In particular, one can observe that, when reaching

the maximum budget under increasing request rates, both feedback control loops tend to

take conflicting decisions with regards to the number of resources to be provisioned, thus

making the whole system unstable. Furthermore, the probability of facing conflicting deci-

sions increases with the number of concurrent adaptation policies, thus making a manual

detection difficult. CORONA provides support for analyzing the control system architec-

ture against conflictual policies. This help developers of autonomic systems to implement

more reliable applications. In the next section, we provide a quantitative evaluation that

underlines the importance of detecting and managing conflicting policies in autonomic sys-

114

7.4. Quantitative Evaluation

tems. In particular, we evaluate the behavior of the control system before and after conflict

resolution.

7.4 Quantitative Evaluation

This section aims at demonstrating how conflicts checking enables to implement consistent

control systems. We present here results from experiments with the Condor control system

presented in Section 7.3. We introduce a characterization of conflicts detection algorithms

implemented in CORONA, then we discuss the behavior of the condor control system for

different architecture configurations.

This section is organized as follows: In Section 7.4.1, we provide and empirical evalu-

ation of the time required for checking control system architectures against conflicts using

our algorithms for conflicts detection. Prior to present results from the experiment, we de-

scribe in Section 7.4.2 the experiment test bed. Finally, Section 7.4.3 described the result of

the experiment we conducted. In this experiment we strive to evaluate the behavior of the

Condor control system with and without architecture conflicts.

7.4.1 Characterization of Conflicts Detection Algorithms

In CORONA, we use a control-oriented syntax based on the MAPE-K paradigm to reify the

structure of the control flow in the control system architecture. The visibility of the control

flow facilitates the analysis of the control system architecture in order to detect conflicting

policies. In chapter 6, we have presented some conflicts detection algorithms implemented

in CORONA. In order to characterize these algorithms, we have conducted some experi-

ments. Figure 7.4 illustrates the result of these experiments.

Figure 7.4 shows the algorithm execution time variation depending on loop complexity

(K). The loop complexity criteria is the product of the number of architecture elements (nodes

and edges) and the number of overlaps over the number of feedback loops. The number of overlaps

corresponds to the number of known conflicts pattern between the feedback control loops

of the control architecture. The figure shows two curves, the curve with the diamond line

points shows variations of the algorithm execution time for 3 overlaps in the control system

architecture. Respectively, the square line points shows variations for 10 overlaps. All points

correspond to the average value, obtained after executing the algorithm on the architecture

100 times. The figure shows that for 200 architectural elements (complexity of 1.2), overlaps

are found in less that 16ms3. We also notice that the behavior of the algorithm seldom varies

when the number of overlaps in the architecture triples (from 3 to 10 overlaps). This is con-

firmed by the fact that the algorithm execution time remains moderate with an important

number of overlaps in the architecture. For example, for 200 architectural elements and 50

overlaps in the architecture, we notice that the execution time is around 250ms.

3notice that, most of the existing control system can be designed with very less elements.

115

Chapter 7. Condor Case-Study

Figure 7.4: Feedback Loops Overlaps Detection Time

The fact that the execution time of the algorithm is low is an essential criteria, especially

for developers of autonomic systems. This is because it will significantly reduce the time

they spend for checking conflicts in the architecture. We agree that an algorithm faster than

ours may exist, but since our algorithm takes less than 1s to be executed, developers will

hardly notice the difference between both algorithms.

The experiment was conducted on a Intel core 2 duo 2.8Ghz processor. The algorithmic

precision for detecting direct overlaps, and transitive indirect overlaps is of 100% for all the

tests we performed. The detection of other types of indirect overlaps is not trivial, but the job

mainly consists in identifying a pattern for each of them, as we have showed for transitive

overlaps. Later, theses patterns can be used to formalize and implement algorithms for the

detection of these overlaps in the architecture.

7.4.2 Condor Evaluation Test bed

GridSim [BM02] is an open source library that allows modeling and simulation of entities

in parallel and distributed computing (PDC) systems-users. We setup the following experi-

ment based on GridSim, to evaluate how the conflicting policies mentioned above can affect

the behavior of the deployed application. The testing environment is an Intel core 2 duo

116

7.4. Quantitative Evaluation

2.8Ghz on which GridSim is installed. The GridSim environment consists of a initial set of

9 resources, consisting of Sun Ultra processing element (PE) architecture, and initial set of

50 clients sending jobs according to a poisonous distribution law. We used a space-shared

algorithm for jobs scheduling. The network topology is the same as the one depicted on

Figure 7.1. The bandwidth between users/company and the cloud infrastructure is set to

500MHz and within the cloud infrastructure entities (scheduler, queue, etc...) to 1GHz.

7.4.3 Characterization of the Condor’s Control system

To characterize the Condor control system, we have performed some experiments. Fig-

ures 7.5, 7.6, 7.7, 7.8 present the results that we have obtained for different configurations.

Figure 7.5 depicts the behavior of the condor application without any control system.

Figure 7.6 and Figure 7.7 describes the behavior of the system with a single feedback con-

trol loop, the budget FCL and the autoscale FCL respectively. Figure 7.8 depicts the system

behavior when both feedback control loops (budget and autoscale) are running without co-

ordination. In addition to these figures, we described through Figure 7.10 the behavior of

the condor system when both feedback control loops are coordinated thanks to the detection

of conflicts through our checking algorithms.

On each of the figures, the curve (A) shows the variation of provisioning resources, curve

B the workload of the system, curve C the variation of the budget, curve D the CPU usage,

curve E the amount of running jobs, curve Fb the budget threshold and curve Fc the CPU

threshold.

Figure 7.5 depicts the behavior of the standalone application behavior without the auto-

nomic manager. We can observe that the cpu-usage is quickly saturated to reach 100% (max-

imum available). The same observation is valid for the budget variation that grows rapidly.

Figure 7.6 and Figure 7.7 show the behavior of the system with a single feedback loop. On

Figure 7.6, we can observe that the budget curve C remains below the budget-threshold

curve Fb. This is because, the budget feedback control loop free provisioned resources to

maintain the cost of resources utilization affordable for the company. The curve A shows

that the amount of available resources decreases.

Similarly, Figure 7.7 shows that the variation of the cpu-usage on curve D does not go

beyond the cpu-usage threshold curve Fc. This is because, the autonomic manager allocates

new resources to maintain the user’s SLA acceptable. Meanwhile, on that figure, the curve

C of the budget is above the budget-threshold. Finally, Figure 7.8 depicts the behavior of

the system with an autonomic manager which consist of uncoordinated budget and SLA

feedback control loops. The global behavior of the system observed on Figure 7.8 is not

better than the one obtained with the standalone application on Figure 7.5. On Figure 7.8,

the curve A of the resource variation indicates the instability of the system because resources

are being allocated and de-allocated continuously.

117

Chapter 7. Condor Case-Study

(A)

(B)

(C)

(D)
(E)

 Standalone Application behavior

G3

Figure 7.5: System without Feedback Loops

 Autonomic Manager With Single Budget Loop

(A)

(B)

(D)

(C)
(E)

(Fb)

 Standalone Application behavior

G1

Figure 7.6: System With a Single Budget Feedback Loop

118

7.4. Quantitative Evaluation

 Autonomic Manager With Single user SLA Loop

(A)

(B)

(D)

(C)
(E)

(Fc)

G2

Figure 7.7: System With a Single User SLA Feedback loop

Uncoordinated Autonomic Manager

(B)

(D)
(C) (E)

(A)

G4

Figure 7.8: System with Uncoordinated Feedback Loops

119

Chapter 7. Condor Case-Study

These results underline two important facts: First, the need of coordination strategies

between conflicting feedback control loop policies of the autonomic manager. Second, the

importance to evaluate the behavior of an autonomic manager before the deployment on a

real infrastructure. By applying the CORONA approach for detecting conflicting policies

in the case of the Condor use case, we obtain a good coordination of the control system.

Figure 7.10 depicts the behavior of the autonomic application when feedback loops are co-

ordinated according to the control system architecture provided on Figure 7.9.

Figure 7.10 consists of several annotated curves: curve A correspond to resources vari-

ation for the experiment set, curve B shows the workload variation, curve C the variation

of the budget, curve D the CPU usage, curve E the number of running jobs, curve Fc the

CPU threshold and curve Fb the budget threshold. By analyzing these curves, we observe

that the CPU usage curve D does not go above the CPU threshold curve Fc. Similarly, the

budget curve C remains below the budget threshold Fb. From these observations, we can

conclude that the implemented conciliation strategy of the budget and users SLA conflicting

was effectively resolved in this experiment. However, it is not always the case, for example

we realized that if the allocated budget per month is reduced by 10%, users SLA policy will

not be guaranteed. That is because, the double Threshold [NRS10] coordination strategy gives

priority to budget over the users SLA.

7.5 Summary

The prevention of FCL side effects is an important issue for autonomic systems in order to

make them reliable, especially in the context of a multi-objectives control systems. In this

chapter, we have presented some experimental results to asses the consistency claim of the

CORONA approach. We have used the Condor case-study, to explain architecture conflicts

in autonomic systems. Then, we have presented how the coordination between feedback

loops can help to achieve better results. In the next chapter, we show how the reusability

and the heterogeneity properties are supported in the CORONA approach. We illustrate

these properties through the fire-emergency case-study.

120

7.5. Summary

Budget control policy

Self-scaling policy

applicationState
:Aggregator ratePerResource

:ResourceController

resourceCount
:CloudResourceCounter

activeResources
:CloudResourceProvisioner

µ

n

requestRate
:IncomingRequestRate

requestRate
:MovingAverage

hostingCost
:CloudResourceCost

applicationRevenue
:CloudApplicationRevenue

budgetContext
:Aggregator

c

r

p!" #$

allocatedBudget
:CloudApplicationBudget

b

maxResource
:ResourceBudget

p

requiredResource
:ResourceCapacity

maxResources
:ThresholdFilter

sync2
:Aggregator

(u,n)

u

(c, r,b)

p̂

(p, p̂)

Figure 7.9: coordinated Control System Architecture

(A)

(B)

(C)

(D)

(E)

(Fc)

(Fb)

Figure 7.10: System with Coordinated Feedback Loops

121

This page was intentionally left blank

Chapter 8

Fire Emergency Case-Study

“We should be taught not to wait for inspiration to start a thing. Action always generates

inspiration. Inspiration seldom generates action."

–Frank Tibolt

Contents

8.1 Case-Study Objective . 124

8.2 Scenario Description . 124

8.3 Control System Architecture . 125

8.4 Control System Implementation & Measures 126

8.5 Summary . 130

In the previous chapter, we have demonstrated with the Condor case-study, the impor-

tance of providing support for conflicts checking analysis when building autonomic systems.

In particular, we have shown that automatic architecture verification helps developers of au-

tonomic systems to build more reliable applications. As a consequence, it also reduces the

maintenance costs of autonomic systems. In this chapter, we demonstrate how CORONA can

be used for enhancing existing software systems with autonomic capabilities. The main goal

of this chapter, is to show that feedback control loops implemented through the CORONA

approach can be integrated effortlessly within existing systems. The generality of CORONA

is illustrated through the Fire-emergency case-study.

Structure of the Chapter

This chapter is organized as follows: We start by recalling some issues related to the engi-

neering of autonomic systems that justify requirements for a generic engineering approach

(cf. Section 8.1). In Section 8.2, we describe the Fire-emergency scenario. Then, in Section 8.3,

we present the control system architecture of the Fire-emergency case-study. In Section 8.4,

we introduce the runtime implementation architecture of the control system generated by

the CORONA toolchain, and discuss some measures related to engineering efforts required

for implementing this architecture. We conclude this chapter by a summary (cf. Section 8.5).

123

Chapter 8. Fire Emergency Case-Study

8.1 Case-Study Objective

In the first chapter of this thesis, we have explained that autonomic systems were built from

heterogeneous technology platforms, and that in order to cope with this heterogeneity, we

needed a technology agnostic approach for building autonomic solutions. In the contri-

bution part of this dissertation, we have shown that the CORONA approach is platform

agnostic, and provides developers of autonomic systems a control-oriented syntax for im-

plementing autonomic behaviors. In this chapter, we want to enforce the generality aspect

of the CORONA approach, by presenting how it can be used for enhancing existing soft-

ware with autonomic capabilities. For that purpose, we use the Fire-emergency case-study.

This case-study is interesting because, it demonstrates how interoperability can be achieved

between heterogenous components of the control system.

The objective of the fire-emergency case-study is twofold:

• Demonstrate the generality of the CORONA approach. This is realized by showing

how heterogenous technology protocols can be combined for implementing an au-

tonomic manager. This is possible thanks to the FraSCAti runtime which supports

interoperability between heterogeneous components.

• Demonstrate the reusability of existing components. This objective is achieved by

showing how implemented software components can be reused for implementing an

autonomic manager.

8.2 Scenario Description

The Fire-emergency scenario was developed for the ITEMIS4 ANR project. The purpose

of the scenario is to build an autonomic manager for handling a fire emergency crisis in a

smart environment. The smart environment is composed of sensors (Fire-detector) that sense

the environment for detecting fire-emergency situations. This environment is also composed

of actuators, and namely sprinklers and turnstile doors. In case of fire, sensors must detect

it, sprinklers should be triggered and turnstile door open to allow evacuation. In addition,

a notification message should be sent to a Twitter account to inform subscribers about the

emergency. The current status of each actuator is registered at the fire controller center.

Figure 8.1 gives an illustration of the fire-emergency scenario.

Figure 8.1 depicts the relationship between components involved in the fire-emergency

scenario. Fire-detectors collect information about the environment and notify actuators com-

ponents. When their status change, actuators notify the fire-controller center about that

change. The fire-emergency scenario is interesting for illustrating the generality of the

CORONA approach, because it involves heterogeneous components. In particular, SOAP,

4http://www.itemis-anr.org/

124

8.3. Control System Architecture

Information Source
Lengend:

Actuator

Turnstile Sprinkler
Twitter

Fire-detector

Fire-controller center

Controller

SOAP
REST

SOAP

JMS

Figure 8.1: Illustration of the Fire-emergency Scenario

REST and JMS protocols are used for exchanging messages between the component of the

control system. Let now have a detailed look at how this control system can be designed

using CORONA.

8.3 Control System Architecture

In this section, we provide the architecture of the control system of the fire-emergency sce-

nario. We put the focus on how the control system architecture can be enriched for driving

the generation of its implementation code.

Figure 8.2 gives an overview of the fire-emergency control architecture. This architecture

is composed of Sensors, Controllers, and Effectors.

• Sensors. Figure 8.2 depicts two types of sensors. An active sensor, fireDetectorSen-

sor which sends alarm signal to the controller fireController; and three passive sensors

tunrstileSync, sprinklerSync and twitterSync which are provided element of fireController.

• Controllers. Five controllers are represented on Figure 8.2. The fireController which

receives notifications from the sensor fireDetectorSensor and forward them to sprinkler-

Controller, TwitterController, and TurnstileController. These controllers implement the

125

Chapter 8. Fire Emergency Case-Study

fireDetectorSensor
: FireDetector

updateGuiCenter
: GuiCenterEffector

Alarm

Alarm

sprinkler
: SprinklerEffector

twitter
: TwitterEffector

turnstile
: TurnstileEffector

twitterSync

sprinklerSyncturnstileSync

turnstileController
: TurnstileRoomController

twitterController
: TwitterRoomController

sprinklerController
: SprinklerRoomController

fireControllerCenter
: FireControllerCenter

fireController
: FireController

Figure 8.2: Architecture of the fire-emergency Control System

decision logic for deciding to open turnstile, trigger sprinkler or send a Twitter mes-

sage. The fireControllerCenter also receives notifications from the fireDetectorSensor and

updates the graphic interface of the control center.

• Effectors. Figure 8.2 depicts four effectors of the fire-emergency control architecture:

sprinkler, turnstile, twitter and updateGuiCenter. The effector updateGuiCenter enables

the interaction with the graphic interface of the control center.

Now, that we have described the fire-emergency control architecture using the SALTY

graphical formalism, we need to implement a model of this architecture using the SALTY

architectural language. The next section will present how to do that. In addition, we will

provide some measures for comparing the code generated by CORONA with the code that

is fully hand-coded by a developer in order to assess the cost-effectiveness of our approach.

8.4 Control System Implementation & Measures

In this section, we discuss the design of the fire-emergency control system architecture and

its runtime implementation in SCA. We illustrate how annotation of the control system ar-

chitecture can be used to drive the generation by the CORONA toolchain. But, before we

126

8.4. Control System Implementation & Measures

dig into the details of the implementation, we will first recall the development process of the

CORONA approach defined in Chapter 4. Then, we explain for each step of the process the

corresponding artifacts that are manipulated.

The development process in the CORONA approach consists of two main phases.

• Design phase. This phase of the process consists of two steps. The first step consists

in designing the control architecture of the fire-emergency control system using the

SALTY DSL. The second step consists in generating the corresponding Ecore model of

the control system from the control architecture.

• Runtime Phase. From the Ecore model of the control architecture obtained at the end

of the second step, CORONA toolchain generates the runtime implementation of the

control system in SCA.

Design Phase

At this phase, developers design the control architecture using the SALTY DSL. The listing

(cf. Listing 8.1) below provides an excerpt of the fire-emergency control architecture design.

1 o b j e c t FireEmergency extends App with FCDMBuilder {

2

3 dataLinkType (name = "DL")

4 controlLinkType (name = "CL")

5

6 val Alarm = typedef {

7 dataType (" Alarm ") i n i t { annotat ion (" corona . t y p e r e f " ,

8 " impl " −> " f r . i n r i a . exampledsdf . F i r e D e t e c t o r ") (_) }

9 }

10

11 sensorType (name = " F i r e D e t e c t o r " , dtype = Alarm)

12 e f fec torType (name = " GuiCenterEf fec tor " , operat ion = operat ion (i n t 3 2))

13

14 / / . . . d e f i n i t i o n o f o t h e r c o n t r o l node t y p e s

15 / / (s p r i n k l e r C o n t r o l l e r , f i r e C o n t r o l l e r C e n t e r)

16

17 / / t h e main g l o b a l a r c h i t e c t u r e

18 compositeType (name = " Main " , main = t rue) i n i t { i m p l i c i t e =>

19

20 / / s e n s o r s

21 sensor (name = " f i r e D e t e c t o r S e n s o r " , ‘ type ‘ = ‘ F i r e D e t e c t o r)

22

23 / / c o n t r o l l e r s

24 c o n t r o l l e r (name = " f i r e C o n t r o l l e r C e n t e r " , ‘ type ‘ = ‘ F i r e C o n t r o l l e r C e n t e r)

25 c o n t r o l l e r (name = " f i r e C o n t r o l l e r " , ‘ type ‘ = ‘ F i r e C o n t r o l l e r)

26 c o n t r o l l e r (name = " s p r i n k l e r C o n t r o l l e r " , ‘ type ‘ = ‘ S p r i n k l e r C o n t r o l l e r)

27 c o n t r o l l e r (name = " t w i t t e r C o n t r o l l e r " , ‘ type ‘ = ‘ T w i t t e r C o n t r o l l e r)

28 c o n t r o l l e r (name = " t u r n s t i l e C o n t r o l l e r " , ‘ type ‘ = ‘ T u r n s t i l e C o n t r o l l e r)

29

30 / / . . . d e f i n i t i o n o f e f f e c t o r s

31

127

Chapter 8. Fire Emergency Case-Study

32 / / d a t a b i n d i n g

33 dataBinding (name = " b14 " , source = sensorRef (‘ f i r e C o n t r o l l e r . t u r n s t i l e S y n c) ,

34 t a r g e t = dataLinkRef (‘ t u r n s t i l e C o n t r o l l e r , ‘ input)) i n i t { i m p l i c i t => e

35 annotat ion (" bind " , " type "−>"ws" , " u r i "−>" http :// l o c a l h o s t :9001/ T u r n s t i l e " ,

36 " wsdl "−>" http ://demo . i t e m i s /#wsdl . port (T u r n s t i l e S e r v i c e / T u r n s t i l e P o r t) ")

37 }

38

39 dataBinding (name = " b16 " , source = sensorRef (‘ f i r e D e t e c t o r S e n s o r . t w i t t e r S y n c) ,

40 t a r g e t = dataLinkRef (‘ t w i t t e r C o n t r o l l e r , ‘ input)) i n i t { i m p l i c i t => e

41 annotat ion (" bind " , " type "−>" r e s t " , " u r i "−>"/Twit ter ")

42 }

43

44 } }

Listing 8.1: Design of the Fire-emergency Control Architecture with the Salty DSL

The listing 8.1 depicts the fire-emergency control architecture design using the SALTY

DSL. Lines 3–4 define datalink and controllink types. Datalink and controllink type are

used for defining bindings (databinding and controlbinding) between nodes of the architec-

ture. Lines 6–12 define the data type Alarm, and the node types sensorType and effectorType

for the node FireDetector and GuiCenterEffector respectively. For the sake of simplicity, a com-

plete definition of all the node types of the fire-emergency architecture is not provided in this

listing. Lines 16–46 of the listing define the concrete architecture of the fire-emergency con-

trol system using element types defined earlier. In this concrete architecture, we define all

the nodes of control system and connections between them. Lines 22-32 of the listing define

controllers of the control system, and lines 37–45 define databinding between some nodes of

the architecture. In particular, lines 37–40 depict a binding between the sensor turnstileSync

and the controller turnstileController.

Listing 8.1 exhibits how reusability and the heterogeneity properties are carried out

in the CORONA approach. Concerning the reusability, lines 7–8 show how implemented

software pieces can be used for designing the control system. On these lines, the an-

notation @corona.typeref is used to specify the Java class fr.inria.exampledsdf.FireDetector

that implements alarm signal. In the context of this scenario, the Java class

fr.inria.exampledsdf.FireDetector as already been implemented, and using the annotation

@corona.typeref, developers can enforce the reusability of this class when designing the con-

trol system.

Similarly, the heterogeneity of the CORONA approach is illustrated on lines 37–40, and

43–45 of Listing 8.1. These lines show how annotations can be used for describing bind-

ing based on heterogeneous implementation technologies. On lines 37–40, the annotation

@bind is used to specify a binding of type WebService (ws), while on lines 43–45, it is used to

specify a binding of type REST. These annotations are instrumented by the code generator

for generating corresponding artifacts with respect to the required target technology. In the

case of this scenario, CORONA generates SCA binding of type WebService and REST. Thanks

to the FraSCAti runtime, these heterogeneous technologies can interoperate with each other.

128

8.4. Control System Implementation & Measures

Generated Artifacts Implemented Code

Java SCA Java

Artifacts 13 13 0

LoC 84 112 65

Ratio LoC (%) 75 25

Table 8.1: Metrics of generated and Implemented Code

Now let us take a look at generated SCA artifacts that implements the fire-emergency control

system.

Runtime Phase

The CORONA code generator uses the ecore model of the control system architecture ob-

tained at the end of the design phase to generate runtime artifacts of the control system in

SCA. Figure 8.3 depicts the assembly architecture of the fire-emergency control system in

SCA.

FireEmergency

sprinklerController

fireDetector

Sensor
push

fireController

push

SOAP

sprinkler

twitter

turnstile

SOAP

REST

SOAP

SOAP

REST

SOAP

twitterController

REST
REST

fireController

Center
push

p
u
s
h

updateGuiCenter

push

J
M
S

turnstileController

SOAP SOAP

JMS

JMS

JMS

SOAP

A Primitive Component

Composite Component

Local Wire Connection

Remote Binding

Figure 8.3: Fire-emergency SCA assembly architecture

Figure 8.3 shows that for each element of the control system depicted on Figure 8.2,

CORONA generates a corresponding component or a composite artifact in SCA. This en-

129

Chapter 8. Fire Emergency Case-Study

forces the visibility of feedback control loops and the traceability between the design and

the implementation of the control system. On Figure 8.3, we also observe different types

of binding, and namely SOAP, REST, JMS bindings. Once, the implementation of the con-

trol system is generated, developers can complete this implementation to have the running

instance of the control system.

Table 8.1 summarizes the metrics related to the generated and implemented code of the

fire-emergency control system. Artifacts refers to classes/interfaces in Java, and compos-

ites/components in SCA. On Table 8.1, when we look at the implemented code column, we

notice that no additional artifacts where implemented. That is because the toolchain gen-

erates all necessary artifacts required for implementing the behavior of the control system.

Developers just have to complete these artifacts with the code implementing their behavior.

Table 8.1 shows that for this case study developers has to write only 25% of the code im-

plementing the control system. This is clearly a gain of time for developers of autonomic

systems. This ratio can be different for other experiments, but what remains relevant to us is

that efforts that are deployed for implementing autonomic systems are reduced through our

approach where a portion of the required implementation code is generated.

The SCA assembly of the control architecture can be executed with the FraSCAti plat-

form which interprets this assembly to build an instance of the fire-emergency control sys-

tem. FraSCAti also provides support for dynamic inspection and reconfiguration of SCA

components. Support for dynamic reconfiguration of SCA components allow to modify

some architectural properties at runtime.

8.5 Summary

In this chapter we have presented the fire-emergency case-study, and used it to demon-

strate the reusability and the generality of the CORONA approach. We have showed that by

using annotations during the design of the control system architecture, developers of auto-

nomic system can enforce the reuse of software pieces that have already been implemented.

We have also showed that CORONA leverage the heterogeneity of various implementation

technologies through annotations. We have exemplified this aspects with the WebService and

REST binding in the fire-emergency control architecture. Finally, we have demonstrated that

the CORONA approach is cost-effective because it requires less time for implementing auto-

nomic behavior. Thanks to a generative approach, almost 75% of the code implementing the

fire-emergency control system is generated.

In the next chapter, we discuss the effectiveness of using stabilization algorithms for

designing control system.

130

Chapter 9

Smart-Mall Case-Study

“The power of accurate observation is frequently called cynicism by those who don’t have it."

– George Bernard Shaw

Contents

9.1 Objective . 131

9.2 Smart-Mall Scenario Description . 132

9.3 Experiment & Measures . 134

9.4 Summary . 139

9.1 Objective

In autonomic systems, feedback control loops that control adaptive behaviors observe the

environment and take decisions on the ground of these observations. For autonomic sys-

tems, the stabilization of the control system is an important issue because, on one extreme, if

an autonomic manager is not reactive enough to respond to changes in the environment, it

will miss some important changes that occurred in this environment. On the other extreme,

if an autonomic manager is sensitive to any subtle changes that occur in the environment,

this can lead the system to an unstable state. Finding the trade-off between the responsive-

ness and the stability is an important issue for autonomic systems.

In chapter 5, we have introduced stabilization mechanisms and a composition model for

engineering control systems. We have argued that stabilization algorithms can help to build

autonomic systems with a stable control system. The objective of this chapter is to assess

that claim by showing how our composition model can help implementing applications with

stable control systems.

131

Chapter 9. Smart-Mall Case-Study

Structure of the chapter

This chapter is organized as follows: In Section 9.2, we describe the Smart-mall scenario.

Then, in Section 9.3, we present some measures that illustrate the stabilization mechanism.

Finally, we conclude this chapter with a summary (cf. Section 9.4).

9.2 Smart-Mall Scenario Description

In this scenario, we consider a mall which offers several services that can be accessed from

customers mobile devices. In particular, the smart-mall environment is equipped with ad-

vertising services which can collect users’ preferences from their mobile devices, and provide

promotional products on sale near users locations. The mall also provides other services, like

a localization service that helps customers to find store locations.

In this scenario, while customers are walking through the gallery, they can discover and

access services. These services are available only within their coverage area. For example,

near a music store, customers can use a free multimedia service which remains accessible

only around the music store area. The mall also has a showroom, where customers can ac-

tively try upcoming appliances.

The showroom is a smart environment equipped with smart devices like sensors (light,

temperature, movement, etc.) to track changes in the environment, such as the entrance to

or the exit from the showroom, and actuators for interacting with the environment. The

showroom is equipped with a temperature regulation system that prevents temperature to

rise above 25.5 ◦C. This system collects information from different sensors in the room and

decides the adjustments on the air conditioner to keep the temperature under the threshold.

Figure 9.1 illustrates this scenario.

From this scenario description, we consider two situations:

Situation 1

Bob is in the music store area. His mobile device executes a music player application that

connects to the multimedia service and starts playing available songs according to his pref-

erences. Because of the increasing number of connections to the store multimedia service,

the quality of service starts to degrade. In particular, the service responsiveness oscillates

between available and unavailable status.

Situation 2

The temperature regulation system has to consider several information to determine the

temperature variation inside the showroom, and to keep it under the threshold value. For

example, when appliances on test are turned on by visitors, they can generate heat or cold.

In a similar way, when new people are getting in or out of the showroom, or when children

stand at the doors preventing them from closing, this generates modifications of the room

temperature.

132

9.2. Smart-Mall Scenario Description

Show Room

Advertising
service

Light
sensor Movement

sensor

Temperature
sensor

Temperature
regulation

system

Advertising
service

Location
service

Multimedia
service

Music
Player

Air
Conditioner

Information SourceAdaptive Application

Lengend:

Actuator Service Coverage Area

Figure 9.1: Smart-Mall Scenario illustration

Challenge

Situations described above raise some challenges concerning adaptations with regards to

changes in the environment.

In the scenario, the main challenge consists in identifying relevant situations from in-

formation generated in the environment in order to adapt the behavior of the system ac-

cordingly. Hence, the relevancy of the decision-making largely depends on the quality of

the collected information. For example, information up-to-dateness[BS03]–which refers to the

time elapsed since information was produced or collected from the environment– is impor-

tant for the decision-making because, as the environment evolves rapidly, decision made on

old information may become useless. In the same manner, a newly updated information

which does not complies with the evolution trend of the environment may induce inade-

quate decision-making, where an old but accurate information will engender smart decision-

making.

The high number of connections to the store multimedia service, requires the music

player application on Bob’s phone to perform some adaptations to ensure that he can con-

tinue to listen to music without interruptions. For this situation, several adaptations can be

envisioned. One possible adaptation can be to use a cache, to buffer songs downloaded from

the multimedia service on Bob’s phone. Another adaptation can consist in playing songs

133

Chapter 9. Smart-Mall Case-Study

available on the phone while the multimedia service remains overshoot. Since the avail-

ability of the multimedia service fluctuates over the time, it important for the application to

adapt smartly. It would be inefficient, if the music player application triggers an adaptation

each time that the multimedia service is getting available or unavailable. In particular, this

can be expensive in terms of battery consumption for Bob’s mobile phone.

In the section below, we discuss how the composition of stabilization algorithms can be

used for selecting relevant changes in the smart-mall environment for performing adapta-

tions.

9.3 Experiment & Measures

In order to evaluate our proposal on the composition of stabilization algorithms, we used a

MacBook Pro laptop, with the following software and hardware configuration: 2.4 GHz pro-

cessor, 2 GB of RAM, Mac OS X 10.5.6 (kernel Darwin 9.6.0), Java Virtual Machine 1.6.0. The

experimental test bed is completely modeled with the SIAFU [MN06] simulation engine.

This engine allows us to create repeatable environment for the experiment.

In this section, we present the result of two experiments corresponding to the situation 1

and 2 of the smart-mall scenario.

A- Temperature variation in the showroom

In this experiment, we consider the monitoring of temperature variation in the showroom of

the smart-mall presented in Section 9.2. This experiment explores the efficiency of composi-

tion strategies in an environment characterized with important variations of the observable

context. In the scenario, many factors contribute to temperature variation inside the show-

room: doors that open and close as people getting in and out, appliances activities that

generate heat or the number of people gathered in the room. To keep the temperature be-

low the target threshold (25.5◦C), the temperature regulation system of the showroom has

to adapt its behavior according to these changes. In particular, the regulator system should

be able to detect when temperature is within the critical range of 24◦C to 25.5◦C in order

to perform required actions (e.g, to increase heat or decrease cold). We assume that data re-

trieved from temperature sensors has an uncertainty of 0.1◦C. The frequency for collecting

data from sensors is 300ms.

Figure 9.2 illustrates the control system architecture for regulating temperature variation

in the showroom. The control system is composed of three sensors (lightDetectorSensor, move-

mentDetectorSensor, temperatureDetectorSensor), one controller (temperatureController), and one

effector (conditionerEffector). The annotation @stabilized for the connection between the tem-

peratureDetectorSensor and the temperatureController indicates the use of a stabilization algo-

rithm DeltaOperator. The latter intends to stabilize the variation of input values from the

temperature sensor.

The experiment is realized in three steps. First, we run the experiment with the Delta

Operator (DO) [BSBF02] stabilization algorithm, which is associated to high responsiveness

134

9.3. Experiment & Measures

lightDetectorSensor
: LightDetector

temperatureDetectorSensor
: TemperatureDetector

movementDetectorSensor
: MovementDetector

temperatureController
: ThresholdController

conditionerEffector
:ConditionerEffector

@stabilized(DO)

Figure 9.2: Showroom Control System Architecture

according to our classification (cf. Chapter 5). Second, we rerun the experiment with the

Kalman Filter (KF) algorithm, which refers to the class of less responsive algorithms. And fi-

nally, we run the experiment by applying an horizontal composition strategy for DO and KF

algorithms. We used the following composition rule (CR) : Max (Min (Tdot−1
, Tdot

), Tkft
),

where Tdot−1
, Tdot

are temperature values from DO at time t − 1 and t of the execution, and

Tkft
is the temperature value from KF at time t of the execution. The transition matrix A

for Kalman Filter algorithm was defined as follows: given xk−1, zk−1, R, the prediction, the

value of the measured variable at k − 1 step, and the variance respectively.

We define ε, ∆ and A as follows: ∆ = xk−1 − zk−1, ε = R ∗ zk−1

AK =

Ak−1 for |∆| ≤ ε
zk−ε
xk−1

for |∆| > ε and ∆ < 0
zk+ε
xk−1

for |∆| > ε and ∆ > 0

With the assumption that temperature in the showroom changes rapidly, it is challeng-

ing to choose the right stabilization mechanism in order to filter out false positive events. A

false positive event can be observed for example, when for two consecutive readings of tem-

perature sensors, the first value is within the critical range and the second value is out of it.

In general, a false positive event can be considered as an isolated event that does not reflect

the global trend of the system behavior.

The results of this experiment are reported in Figures 9.3 and 9.4. Figure 9.3 depicts 3

curves representing the application behavior without stabilization, stabilized with KF, and

stabilized with DO. The two horizontal lines on the figure indicate the critical range. Each

point in the critical area corresponds to a triggered adaptation. The behavior of KF and DO

on the Figure is conformed to our classification, which associate DO with a high responsive-

ness and KF with a low responsiveness. This is confirmed by the curve of the application

stabilized with KF. That curve shows few points within the critical range, which means that

135

Chapter 9. Smart-Mall Case-Study

few adaptations were triggered. On contrary, the curve of the application stabilized with DO

has more points than the former.

Figure 9.3: Stabilized application behavior with Kalman Filter or Delta Operator

Figure 9.4: Stabilized application behavior with Horizontal Composition (DO+KF)

In the third step of this experiment, we evaluate the behavior of the application sta-

bilized with a single stabilization algorithm (DO or KF), and with both algorithms using

horizontal composition strategy. Figure 9.4 compares curves of the stabilized application be-

havior. The Arrows on the Figure indicate the curve of the application stabilized using the

horizontal composition strategy. The others curves correspond to the application behavior sta-

bilized with DO and KF as presented in Figure 9.3. On Figure 9.4, two zones of the curve

136

9.3. Experiment & Measures

(DO+KF) are represented by an ellipse. On that Figure, we notice that the curve (DO+KF)

has its first event within the critical area (cf. zone B) earlier (t = 2.5s) than the curve (KF),

which has it first event at time t = 4.2s. This can be explained by the fact that, by combining

both algorithms, the resulting application benefits from the responsiveness of DO and be-

comes more responsive than KF algorithm alone. We observe that, for the curve (DO+KF),

events in the adaptation area are grouped. This can also be explained by the fact that, by

combining both algorithms, the resulting application benefits from KF’s prediction property

which causes the system to moderate variations of the input data. These observations tend

to demonstrate that the composition of stabilization mechanisms offers a good compromise

in terms of responsiveness for pervasive applications in fast changing context.

The horizontal composition of stabilization algorithms gives the best result in this sce-

nario situation. By combining algorithms with different responsiveness (DO, KF) we were

be able to detect relevant temperature variations within the critical area.

B- Media service availability near music store

This experiment focuses on the adaptation of Bob’s media player application around the

music store of the smart-mall scenario. In the scenario, because of the high number of con-

nections, the store multimedia service is sometime unavailable. Bob’s music player needs

to adapt according to the volatility of the store multimedia service. In addition, these adap-

tations have some impacts on Bob’s phone battery. Therefore, it is important for the player

to perform smart adaptations in order to ensure that Bob can listen to music with few in-

terruptions, and that phone’s battery last. The purpose of this experiment is to demonstrate

how using vertical composition strategy helps at performing smart adaptations in a volatile

context.

connectivitySensor
: MMConnectivityDetector

musicController
: MusicController

cacheEffector
:CacheEffector

localPlayEffector
:localPlayEffector

@Stabilized(DO)

phoneBatterySensor
: PhoneBatteryDetector

Figure 9.5: Media Player Control System Architecture

Figure 9.5 illustrates the control system architecture of bob’s phone multimedia player.

The control system is composed of two sensors (connectivitySensor, phoneBatterySensor), one

controller (musicController), and two effectors (localPlayEffector, cacheEffector). The annotation

@stabilized for the connection between the connectivitySensor and the musicController indi-

cates the use of a stabilization algorithm DeltaOperator. The latter intends to stabilize the

variation of input values from the sensor connectivitySensor. The effector localPlayEffector

137

Chapter 9. Smart-Mall Case-Study

enforces the player to play music from the phone’s media library, while the effector cacheEf-

fector activate the use of a buffer for caching information downloaded from the multimedia

service.

To assess the behavior of stabilizations algorithms in a volatile context, we randomly

generate bandwidth values to characterize variations of the media service availability. Then,

we evaluate the number of adaptations triggered by the system for three configuration cases:

(i) Application running without any stabilizations mechanisms, (ii) Application running

with DO algorithm and, (iii) Application running with vertical composition strategy of DO

and SimpleFuzzy.

Figure 9.6: Variation of Triggered Adaptations

Figure 9.7: Precision of Context Stabilization

138

9.4. Summary

Figure 9.6 gives the variations of the number of adaptations triggered by the applications

for three configuration cases. The experiment is repeated for various samples of bandwidth

measurements. This figure shows that the lowest rate of adaptations are triggered for the

case when the application is working with the composition of DO and SF algorithms. That

is because, the application working with DO and SF is less responsive to the variation of

the bandwidth. When the application’s goal is to minimize Bob’s phone battery usage, the

configuration case (iii) should be the most suitable in order to achieve it. That is because,

the more the application needs to adapt the more it consumes battery. However, having few

adaptations triggered by the application (case iii), does not reveal anything about the quality

of these adaptations. This raises the following questions: does the application was able to

detect relevant adaptation situations? What is the percentage of false positive adaptations

detected by the application?

To answer the above questions, we completed this experiment and realized additional

measurements on the precision and recall of the context stabilization. For that purpose,

we injected adaptation situations in the measure samples, and try to evaluate how many

of them the application was able to retrieve. Precision Pri
and Recall Ri are calculated as a

percentage of the following formulas:

Pri
= |{Injected adaptation situations} ∩ {Retrieved adaptations}|

|{Retrieved adaptations}|

Ri = |{Injected adaptation situations} ∩ {Retrieved adaptations}|
|{Injected adaptation Situations}|

Figure 9.7 summarizes the result of the average precision for the context stabilization.

The recall calculated is 100% for all the configurations. It means that, all injected adaptation

situations were successfully retrieved during the experiment. However, as depicted on

Figure 9.7, the highest precision is reached for the configuration case (iii). From that we

can infer that the vertical composition of DO + SF increases the accuracy of decisions for

adapting.

One can argue that similar results can be obtained without our composition model. In-

deed, the idea of combining stabilization algorithms is not new [SAH07]. We can easily find

applications that rely on the combination of several stabilization mechanisms. However, in

all these applications the implementation of stabilization mechanisms remains static, and

ties to the application architecture. In our approach the stabilization algorithms participat-

ing in the decision making can be adapted. This means that, they can be changed, and the

way they are interacting as well.

9.4 Summary

In this chapter, we have presented the smart-mall scenario experiment to validate the impor-

tance of stabilization algorithms in order to implement stable control systems. In particular,

139

Chapter 9. Smart-Mall Case-Study

we have evaluated the efficiency of our stabilization algorithms composition model. We

have showed that the horizontal composition of stabilization algorithms with various respon-

siveness class enable to detect relevant changes of the context in a fast changing environ-

ment. In the same way, we have demonstrated that a vertical composition of stabilization al-

gorithm increases the accuracy of decisions for adapting applications with regard to changes

in the environment.

In the next chapter, we start the final part of this thesis, and present the conclusion and

the perspectives of this dissertation.

140

Part IV

Conclusion & Persperctives

141

Chapter 10

Conclusion

“However long the night, the dawn will break." unknown author

Contents

10.1 Summary of the Dissertation . 143

10.1.1 Objectives vs. Contributions . 145

10.2 Perspectives . 146

10.2.1 Short Term Perspectives . 146

10.2.2 Long Term Perspectives . 147

This chapter summarizes the main contributions of this dissertation and highlights some

research perspectives of this work. The chapter is organized as follows: We first give a

summary of this dissertation (cf. Section 10.1), then we conclude the chapter by discussing

some perspectives (Section 10.2).

10.1 Summary of the Dissertation

The increasing complexity of modern software systems has pushed the research community

to investigate innovative paradigms for engineering, managing, and deploying them. Au-

tonomic computing which promotes the vision of software systems that are able to manage

themselves in an autonomous manner seems to offer an approach to address this complexity

in an effective way. As a consequence, this last decade, autonomic computing has become a

major research topic that has mobilized both the research and the industry communities.

In addition to the software complexity, modern software systems must satisfy require-

ments in term of software qualities. For example, the growing importance for environmental

and sustainable development concerns at the socio-political level has created the need for

143

Chapter 10. Conclusion

energy-efficient software. Therefore, the challenge that stands ahead autonomic researchers

is to provide software engineers with techniques for engineering amenable autonomic soft-

ware systems that takes into account energy effeciency.

In the state-of-the-art (cf. Part I), we have seen that many autonomic solutions were

proposed by the industry and the research community. But successful solutions are scarce

and partially satisfy engineering requirements for building amenable autonomic systems.

In particular, concerning architecture-based autonomic solutions which have been the

scope of interest during this thesis, feedback control loops that implement control sys-

tems merely serve as blueprint for the design of autonomic solutions. In case they are

explicitly used for designing control systems, the runtime implementation of the control

system does not reflect the design. This disruption between the design and the runtime

implementation of control systems as been reported in specialized conferences and pa-

pers [ST09, MPS08, CdLG+, BSCG+09] as one of the major limitation for building amenable

autonomic systems. One of the main reasons that justifies the importance of visible control

systems architecture is the need for building dependable autonomic systems. One solution

for filling this need is to implement verification techniques for validating autonomic systems.

However, the lack of visibility is the main limitation for implementing such techniques.

Nevertheless, the visibility of feedback control loops is not enough, it is just a mean

towards building amenable autonomic systems. Throughout this dissertation, we have ad-

dressed the visibility challenge and propose a new approach, CORONA, for engineering

amenable autonomic systems. In the CORONA approach, the challenge of building auto-

nomic systems with visible feedback control loops is achieved by relying on the SALTY

model for designing control systems. The SALTY model provides a control-oriented syn-

tax where feedback control loops are represented as first-class concerns. In addition, to en-

hance the traceability between the control system design and its runtime implementation,

we have developed the CORONA toolchain that ensures a strong mapping between the de-

sign and the implementation of the control system. In the CORONA approach, to guide the

implementation of the control system, the CORONA toolchain generates a part of the im-

plementation code of the control system which conforms to the design. This accelerates the

development process of autonomic solutions, and reduces the overall cost of implementing

autonomic solutions.

Furthermore, in CORONA we have identified and modeled conflicts patterns that oc-

cur when implementing control systems. We have implemented verification algorithms for

automated checking of the control system architecture model against these conflicts, and de-

veloped some algorithms for the automatic resolution of some of them. As a consequence,

our approach enables developers of autonomic systems to build more reliable software so-

lutions.

Finally, we have shown how non-functional properties can be seamlessly integrated

during the design of the control system architecture in order to deliver required quality

attributes. In particular, we have focused our research on the engineering of autonomic sys-

tems with a stable control. For that purpose, we have proposed a composition model of sta-

144

10.1. Summary of the Dissertation

bilization algorithms based on the qualitative characterization of the later. Our composition

model consists mainly in two strategies: the horizontal composition, and the vertical compo-

sition. Horizontal composition enables to increase the responsiveness of the control system

without going unstable. Vertical composition enables to increase the accuracy of that respon-

siveness. Stabilization mechanisms empower developers to build autonomic solutions with

a stable control system.

10.1.1 Objectives vs. Contributions

In this section we discuss the contributions with regards to the objectives defined at the

beginning of this thesis.

In chapter 4 of this thesis, we have defined the following objectives for this work:

• Domain agnosticism. With this objective, we aimed at defining a generic solution for

engineering autonomic systems. In our proposal, the design of the control system is

based on the SALTY model which provides a platform-agnostic syntax. As a conse-

quence, a control system architecture design can be used for different implementation

platform. In the fire-emergency case-study (cf. Chapter 8), we have illustrated with the

REST and SOAP (WebService) binding, how different technologies can been reached

from the unique description of the control architecture. Agnosticism with regards to

the implementation platforms enhances the reusability of the control system architec-

ture.

• Transparency. This objective aims at providing support for reasoning about self-

adaptive capabilities of autonomic systems at design and at runtime. That is, auto-

nomic systems must explicitly describe their control flow. Transparency is particu-

larly required in the context of multiple control systems with multiple objectives. In

CORONA this objective is achieved in two steps: First, by providing a syntax for de-

signing control systems where feedback control loops are reified as first-class concerns.

Secondly, by ensuring a strong mapping between the design and the implementation

of the control system.

• Cost-effectiveness. This objective aims at reducing the cost for engineering and main-

taining autonomic systems. This objective is achieved in our proposal in three different

ways: First, the visibility of the feedback control loops that govern autonomic systems,

increases their maintainability, because the objective of each control system can be eas-

ily identified. Secondly, the use of generative techniques for generating part of the control

system implementation code, reduce the burden of implementing autonomic solutions

for developers. Finally, the support for conflicts-free control systems through automatic

checking of the control architecture model enforces the implementation of more reli-

able autonomic solutions.

145

Chapter 10. Conclusion

• Modularity. This objective aims at building flexible and scalable autonomic solutions.

In CORONA we have addressed this objective by promoting a decentralized control

architecture approach. That is, the control system is build from the composition of

feedback control loops. From there, various style of collaboration can be envisioned

for building the control system architecture. The second level for supporting modular-

ity in CORONA is the transparent integration of cross cutting-concerns in the control

system architecture. This is behavior is mainly implemented by enriching the control

system architecture model with specialized annotations construction.

10.2 Perspectives

In this dissertation, we have presented our vision and our solution towards building

amenable autonomic systems. However, there are still some aspects where our work needs

to be completed. In this section, we present the short-term and the long-term perspectives

that appears to be the must relevant for the continuation of this work.

10.2.1 Short Term Perspectives

Conflicts patterns modelisation

In this thesis, we have identified some conflicts patterns that occur when designing control

systems. We think that the identification of new conflicts patterns is important for building

more reliable autonomic systems. In particular, the identification of other types of indirect

overlaps (cf. Chapter 6 Section 6.4.2) patterns seems to be a promising research direction.

We also think that the identification of new kind of conflict patterns will raise some issues

related to the domain of analysis for interpreting the meaning of analysis results. Finally, we

believe that it is relevant to work on automated reconciliation strategies to resolve conflicts

detected in the control system architecture.

Quality attributes for verification tools analysis results

Another aspect that can be interesting to investigate as a continuation of this work relates

with quality attributes for verification tools. This perspective fits in the vision of increasing

the understandability of results provided by verification tools. Indeed, in order to leverage

the result of verification tools, we must investigate the option of providing a way to qual-

ify and categorize these verifications. For example, by indicating the coverage rate of the

analysis like we do for software testing in common programming languages.

Automatic test generation

Automatic test generation for evaluating the execution behavior of the control system in au-

tonomic systems is another direction to investigate towards building amenable autonomic

system. During this dissertation, we have observed that there is a lack of tools and estab-

lished methodologies for testing the behavior of control systems. This is partly due to the

heterogeneity of managed systems which can be costly to reproduce on physical machines.

146

10.2. Perspectives

We think that, the use of simulation tools can offer some first answer to that issue. During

this dissertation, we have demonstrated the uses of some simulation tools for testing the

behavior of control systems. The next step in that perspective consists in automating the

generation of simulation testbeds from the architecture design of the control system.

Graphical user interface

Thanks to the SALTY model, developers of autonomic systems can easily design control

systems with a syntax that reifies feedback control loops as first-class concerns. However, we

think that a graphical user interface that can enable designers of control systems to draw an

architecture and obtain an automatic generation of the design code in the SALTY language

can significantly enhance the work of the later. In addition, this will improve the engineering

process of implementing autonomic systems through the CORONA approach.

10.2.2 Long Term Perspectives

Implementing -ASO5 properties of autonomic systems

One of the key contribution of this dissertation is the attempt of bringing into software engi-

neering some good principles of the control theory for engineering feedback control loops. In

particular, we have demonstrated how the use of stabilization mechanisms can helps imple-

menting autonomic systems with a stable control. However, beside the stability, the accuracy,

the settling time and the overshoot are others properties used by control engineers to calibrate

the behavior of feedback control loops. Similarly to what we have done for the stability, one

perspective of this dissertation can be to investigate to which extends accuracy, settling time,

and overshoot can be used in software engineering for implementing control systems.

Consistency for dynamic reconfiguration of the control system architecture

Thanks to the FraSCAti runtime, control systems implemented with the CORONA approach

can be dynamically adapted and reconfigured. The dynamic adaptation of the control sys-

tem architecture can introduce some inconsistencies that can generate side-effects behaviors.

As a consequence, it is important to provide support for runtime checking of the control

system in order to ensure that it remains conforms to design constraints after an adapta-

tion. We believe that the consistency of dynamic and adaptable control systems is a relevant

perspective that derives from this dissertation.

5Refers to the SASO (stability, accuracy, settling time, overshoot) properties in control engineering presented

in Chapter 5

147

This page was intentionally left blank

Bibliography

[AAG93] Gregory Abowd, Robert Allen, and David Garlan. Using style to understand

descriptions of software architecture. SIGSOFT Softw. Eng. Notes, 18(5):9–20,

December 1993. 16

[APJ+03] Michael Atighetchi, Partha P. Pal, Christopher C. Jones, Paul Rubel, Richard E.

Schantz, Joseph P. Loyall, and John A. Zinky. Building Auto-Adaptive Dis-

tributed Applications: The QuO-APOD Experience. In Distributed Computing

Systems Workshops, pages 104–109. IEEE, May 2003. 74

[Apt03a] Krzysztof Apt. Principles of Constraint Programming. Cambridge University

Press, 2003. 48

[Apt03b] Krzysztof Apt. Principles of Constraint Programming. Cambridge University

Press, 2003. 84

[ASHP+08] Ahmad Al-Shishtawy, Joel Höglund, Konstantin Popov, Nikos Parlavantzas,

Vladimir Vlassov, and Per Brand. Distributed control loop patterns for man-

aging distributed applications. In Proceedings of the 2008 Second IEEE In-

ternational Conference on Self-Adaptive and Self-Organizing Systems Workshops,

SASOW ’08, pages 260–265, Washington, DC, USA, 2008. IEEE Computer So-

ciety. 14

[Bar04] Bart Jacob, Richard Lanyon-Hogg, Devaprasad K Nadgir, Amr F Yassin. A

Practical Guide to the IBM Autonomic Computing Toolkit. IBM Redbooks, Apr

2004. 18

[BCS02] E. Bruneton, T. Coupaye, and J. B. Stefani. Recursive and dynamic software

composition with sharing. 2002. 16

[BG01] Jean Bézivin and Olivier Gerbé. Towards a precise definition of the omg/mda

framework. In Proceedings of the 16th IEEE international conference on Automated

software engineering, ASE ’01, pages 273–, Washington, DC, USA, 2001. IEEE

Computer Society. 24

149

Bibliography

[BHRE07] Gunnar Brataas, Svein Hallsteinsen, Romain Rouvoy, and Frank Eliassen.

Scalability of Decision Models for Dynamic Product Lines. In Proceedings of the

International Workshop on Dynamic Software Product Line (DSPL), pages 23–32,

September 2007. 74

[BHS+08] Laurent Broto, Daniel Hagimont, Patricia Stolf, Noel Depalma, and Suzy Tem-

ate. Autonomic management policy specification in tune. In Proceedings of the

2008 ACM symposium on Applied computing, SAC ’08, pages 1658–1663, New

York, NY, USA, 2008. ACM. 18, 29

[BM02] Rajkumar Buyya and Manzur Murshed. Gridsim: A toolkit for the model-

ing and simulation of distributed resource management and scheduling for

grid computing. concurrency and computation: practice and experience (CCPE),

14(13):1175–1220, 2002. 116

[BPHT06] Sara Bouchenak, Noel De Palma, Daniel Hagimont, and Christophe Taton.

Autonomic management of clustered applications. In CLUSTER, 2006. xi, 16,

17, 29

[BS03] Thomas Buchholz and Michael Schiffers. Quality of context: What it is and

why we need it. In In Proceedings of the 10th Workshop of the OpenView Univer-

sity Association: OVUA0́3, 2003. 68, 133

[BSBF02] Céline Boutros Saab, Xavier Bonnaire, and Bertil Folliot. PHOENIX: A Self

Adaptable Monitoring Platform for Cluster Management. Cluster Computing,

5(1):75–85, 2002. 74, 78, 134

[BSCG+09] Yuriy Brun, Giovanna Di Marzo Serugendo, Holger Giese Cristina Gacek,

Holger Kienle, Hausi Müller Marin Litoiu, Mauro Pezzè, and Mary Shaw.

Engineering Self-Adaptive Systems through Feedback Loops. Software Engi-

neering for Self-Adaptive Systems (SELfSAS), 5525:48–70, 2009. 30, 46, 144

[BSP+02] J. P. Bigus, D. A. Schlosnagle, J. R. Pilgrim, W. N. Mills, and Y. Diao. Able: a

toolkit for building multiagent autonomic systems. IBM Syst. J., 41(3):350–371,

July 2002. 18

[CBCL11] Damien Cassou, Emilie Balland, Charles Consel, and Julia Lawall. Leveraging

software architectures to guide and verify the development of sense/com-

pute/control applications. In Proceedings of the 33rd International Conference

on Software Engineering, ICSE ’11, pages 431–440, New York, NY, USA, 2011.

ACM. 24, 29

[CdLG+] Betty Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, Jeff Magee,

Jesper Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic,

Giovanna Di Marzo Serugendo, Schahram Dustdar, Anthony Finkelstein,

Cristina Gacek, Kurt Geihs, Vincenzo Grassi, Gabor Karsai, Holger Kienle, Jeff

150

Kramer, Marin Litoiu, Sam Malek, Raffaela Mirandola, Hausi Müller, Sooy-

ong Park, Mary Shaw, Matthias Tichy, Massimo Tivoli, Danny Weyns, and Jon

Whittle. Software engineering for self-adaptive systems: A research roadmap.

In Betty Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, and Jeff

Magee, editors, Software Engineering for Self-Adaptive Systems, volume 5525 of

Lecture Notes in Computer Science, pages 1–26. Springer Berlin/Heidelberg. 30,

34, 46, 144

[CSW04] David M. Chess, Alla Segal, and Ian Whalley. Unity: Experiences with a pro-

totype autonomic computing system. In Proceedings of the First International

Conference on Autonomic Computing, ICAC ’04, pages 140–147, Washington,

DC, USA, 2004. IEEE Computer Society. 18, 29

[Dar07] Waltenegus Dargie. The Role of Probabilistic Schemes in Multisensor Context-

Awareness. In 5th IEEE International Conference on Pervasive Computing and

Communication workshops (PerCom’07), pages 27–32. IEEE, 2007. 72, 74

[DB00] Richard C. Dorf and Robert H. Bishop. Modern Control Systems. Prentice-Hall,

Inc., Upper Saddle River, NJ, USA, 9th edition, 2000. 12

[dro] DROOLS Rule Engine. http://www.jboss.org/drools/. 78

[dRRM06] Couto Antunes da Rocha, Ricardo, and Endler Markus. Middleware: Context

Management in Heterogeneous, Evolving Ubiquitous Environments. IEEE

Distributed Systems Online, 7(4), 2006. 72, 74

[Fab] Fabric. Python library and command-line tool. http://docs.fabfile.org/

en/1.4.3/index.html. 49

[FDDM08] Areski Flissi, Jérémy Dubus, Nicolas Dolet, and Philippe Merle. Deploying

on the Grid with DeployWare. In Proceedings of the 8th International Symposium

on Cluster Computing and the Grid (CCGRID), pages 177–184. IEEE, May 2008.

49

[GS02] David Garlan and Bradley Schmerl. Model-based adaptation for self-healing

systems. In Proceedings of the first workshop on Self-healing systems, WOSS ’02,

pages 27–32, New York, NY, USA, 2002. ACM. 34

[HDPT04] Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M. Tilbury. Feed-

back Control of Computing Systems. John Wiley & Sons, 2004. 70, 72

[HGB10] Regina Hebig, Holger Giese, and Basil Becker. Making control loops explicit

when architecting self-adaptive systems. In Proceedings of the second interna-

tional workshop on Self-organizing architectures, SOAR ’10, pages 21–28, New

York, NY, USA, 2010. 94

[HS06] Michael G. Hinchey and Roy Sterritt. Self-managing software. IEEE Computer,

39(2):107–109, 2006. 16

151

http://docs.fabfile.org/en/1.4.3/index.html
http://docs.fabfile.org/en/1.4.3/index.html

Bibliography

[IBM01] IBM. Autonomic Computing: IBM’s Perspective on the State of Information Tech-

nology. IBM Research Center, 2001. 1, 13

[JCL11] Henner Jakob, Charles Consel, and Nicolas Loriant. Architecturing conflict

handling of pervasive computing resources. In DAIS, pages 92–105, 2011. 25

[jes] JESS Java Engine Rule. http://www.jessrules.com/. 78

[KBE99] M.M. Kokar, K. Baclawski, and Y.A. Eracar. Control theory-based foundations

of self-controlling software. Intelligent Systems and their Applications, IEEE,

14(3):37–45, 1999. 55

[KC03] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.

Computer, 36(1):41–50, January 2003. 15

[KCH+90] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and

A. Spencer Peterson. Feature-Oriented Domain Analysis (FODA) Feasibil-

ity Study. Technical Report CMU/SEI-90-TR-21, ESD-90-TR-222, Software

Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania,

November 1990. 76

[Ken02] S. Kent. Model driven engineering. In Integrated Formal Methods, pages 286–

298. Springer, 2002. 33

[Kep05] Jeffrey O. Kephart. Research challenges of autonomic computing. In Proceed-

ings of the 27th international conference on Software engineering, ICSE ’05, pages

15–22, New York, NY, USA, 2005. ACM. xi, 12, 13, 14

[KM05] Gregor Kiczales and Mira Mezini. Separation of concerns with procedures,

annotations, advice and pointcuts. In Andrew Black, editor, ECOOP 2005 -

Object-Oriented Programming, volume 3586 of Lecture Notes in Computer Science,

pages 733–733. Springer Berlin / Heidelberg, 2005. 67

[KS10] Krzysztof Kuchcinski and Radoslaw Szymanek. Jacop - java constraint pro-

gramming solver, 2010. 89

[LPH04] H. Liu, M. Parashar, and S. Hariri. A component-based programming model

for autonomic applications. In Autonomic Computing, 2004. Proceedings. Inter-

national Conference on, pages 10–17. IEEE, 2004. 46

[MDL10] Yoann Maurel, Ada Diaconescu, and Philippe Lalanda. Ceylon: A service-

oriented framework for building autonomic managers. In Proceedings of the

2010 Seventh IEEE International Conference and Workshops on Engineering of Au-

tonomic and Autonomous Systems, EASE ’10, pages 3–11, Washington, DC, USA,

2010. IEEE Computer Society. xi, 22, 23, 29

[MH04] Julie A. McCann and Markus C. Huebscher. Evaluation issues in autonomic

computing. In GCC Workshops, pages 597–608, 2004. 26

152

[MN06] Miquel Miquel and Petteri Nurmi. A Generic Large Scale Simulator for Ubiq-

uitous Computing. In 3rd Annual International Conference on Mobile and Ubiq-

uitous Systems, pages 1–3. IEEE, 2006. 134

[MPS08] Hausi Müller, Mauro Pezzè, and Mary Shaw. Visibility of Control in Adaptive

Systems. In Proceedings of the 2nd international workshop on Ultra-Large-Scale

Software-Intensive Systems (ULSSIS), pages 23–26, 2008. 46, 67, 144

[MRF03] Rene Mayrhofer, Harald Radi, and Alois Ferscha. Recognizing and Predict-

ing Context by Learning from User Behavior. In International Conference on

Advances in Mobile Multimedia, pages 25–35, September 2003. 73

[Mur04] R. Murch. Autonomic computing. IBM Press, 2004. 13

[NRS09] Russel Nzekwa, Romain Rouvoy, and Lionel Seinturier. Towards a Stable

Decision-Making Middleware for Very-Large-Scale Self-Adaptive Systems.

In BElgian-NEtherlands software eVOLution seminar (BENEVOL), Louvain-la-

Neuve, Belgium, 2009. 64

[NRS10] Russel Nzekwa, Romain Rouvoy, and Lionel Seinturier. A Flexible Con-

text Stabilization Approach for Self-Adaptive Applications. In Proceedings of

the 7th IEEE Workshop on Context Modeling and Reasoning (CoMoRea), page 6,

March 2010. 120

[OAS07] OASIS Open CSA. Service Component Architecture (SCA), March 2007.

http://www.oasis-opencsa.org/sca. 49, 56, 57

[ORA] ORACLE. Java Management Extensions (JMX). http://www.oracle.com/

technetwork/java. 21

[pl] Scala programming language. http://www.scala-lang.org/. 39

[PZLB05] Amir Padovitz, Arkady Zaslavsky, Seng Wai Loke, and Bernard Burg. Main-

taining Continuous Dependability in Sensor-Based Context-Aware Pervasive

Computing Systems. In 38th Annual Hawaii International Conference on System

Sciences (HICSS’05). IEEE Computer Society, 2005. 73, 74

[SAH07] Odysseas Sekkas, Christos B. Anagnostopoulos, and Stathes Hadjiefthymi-

ades. Context Fusion Through Imprecise Reasoning. In IEEE International

Conference on Pervasive Services, pages 88–91. IEEE, 2007. 65, 72, 73, 74, 139

[SH05] Roy Sterritt and Mike Hinchey. Autonomic computing " panacea or poppy-

cock? In Proceedings of the 12th IEEE International Conference and Workshops on

Engineering of Computer-Based Systems, ECBS ’05, pages 535–539, Washington,

DC, USA, 2005. IEEE Computer Society. 13

153

http://www.oasis-opencsa.org/sca
http://www.oracle.com/technetwork/java
http://www.oracle.com/technetwork/java
http://www.scala-lang.org/

Bibliography

[SMF+09] Lionel Seinturier, Philippe Merle, Damien Fournier, Nicolas Dolet, Valerio

Schiavoni, and Jean-Bernard Stefani. Reconfigurable SCA Applications with

the FraSCAti Platform. In 6th IEEE International Conference on Service Comput-

ing (SCC), pages 268–275. IEEE, 2009. 50, 56

[SMR+12] Lionel Seinturier, Philippe Merle, Romain Rouvoy, Daniel Romero, Valerio

Schiavoni, and Jean-Bernard Stefani. A Component-Based Middleware Plat-

form for Reconfigurable Service-Oriented Architectures. Software: Practice and

Experience, 42(5):559–583, May 2012. 57

[ST09] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape

and research challenges. ACM Trans. Auton. Adapt. Syst., 4(2):14:1–14:42, May

2009. 46, 144

[TC04] Lynda Temal and Denis Conan. Failure, Connectivity and Disconnection De-

tectors. In 1st French-speaking Conference on Mobility and Ubiquity Computing

(UbiMob’04), pages 90–97. ACM, 2004. 72, 74

[TCW+04] Gerald Tesauro, David M. Chess, William E. Walsh, Rajarshi Das, Alla Segal,

Ian Whalley, Jeffrey O. Kephart, and Steve R. White. A multi-agent systems

approach to autonomic computing. In Proceedings of the Third International Joint

Conference on Autonomous Agents and Multiagent Systems - Volume 1, AAMAS

’04, pages 464–471, Washington, DC, USA, 2004. IEEE Computer Society. 18,

29

[TTL05] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed computing

in practice: the condor experience: Research articles. Concurr. Comput. : Pract.

Exper., 17(2-4):323–356, February 2005. xii, 85, 86

[wC08] Shang wen Cheng. Rainbow: Cost-effective Software Architecture-based Self-

adaptation. PhD thesis, Carnergie Mellon University, 2008. xi, 21, 22, 29

[wCcHG+04] Shang wen Cheng, An cheng Huang, David Garlan, Bradley Schmerl, and

Peter Steenkiste. Rainbow: Architecture-based self-adaptation with reusable

infrastructure. IEEE Computer, 37:46–54, 2004. 21, 29

[Wu03] Huadong Wu. Sensor Data Fusion for Context-aware Computing using Dempster-

shafer Theory. PhD thesis, Carnergie Mellon University, Pittsburgh, 2003. 77

[XSL+03] Dong X., Hariri S., Xue L., Chen H., Zhang M., Pavuluri S., and Rao S. Autono-

mia: an autonomic computing environment. In Proceedings of the Performance,

Computing, and Communications IEEE International Conference 2003, pages 61–

68, 2003. 20, 29

[YCHP05] Jingmei Yang, Huoping Chen, Salim Hariri, and Manish Parashar. Autonomic

runtime manager for adaptive distributed applications. In Proceedings of the

High Performance Distributed Computing, 2005. HPDC-14. Proceedings. 14th IEEE

154

International Symposium, pages 69–78, Washington, DC, USA, 2005. IEEE Com-

puter Society. 20, 29

155

Bibliography

156

	Couverture
	Dédicace
	Remerciements
	Abstract
	Résumé
	Contents
	List of Tables
	Chapter 1 Introduction
	1.1 Introduction
	1.2 Problem Statement
	1.3 Dissertation Goals
	1.4 Contributions
	1.5 Dissertation Roadmap
	1.6 Publications

	Part I State of the Art
	Chapter 2 State of the Art
	2.1 Autonomic Computing
	2.2 Existing Autonomic Systems Approaches
	2.3 Assessing Autonomic Systems
	2.4 Summary

	Chapter 3 Salty Model
	3.1 SALTY Structural Model
	3.2 SALTY Graphical Formalism
	3.3 SALTY DSL
	3.4 Summary

	Part II Contribution
	Chapter 4 Contributions Overview
	4.1 Challenges Revisited
	4.2 Goals Revisited
	4.3 CORONA in a Nutshell
	4.4 Summary

	Chapter 5 Runtime Architecture
	5.1 Feedback Control Loops and Autonomic Systems
	5.2 Runtime Component-based Feedback Control Loops
	5.3 Feedback Control Loop Customization
	5.4 Summary

	Chapter 6 Compilation Infrastructure
	6.1 Component-based Generative ToolChain
	6.2 Mapping from SALTY Model to SCA Model
	6.3 Control Loop Architecture Distribution
	6.4 Conflicts Checking on Feedback Control Loop Architectures
	6.5 Control Loop Architecture Evolution
	6.6 Summary

	Part III Validation
	Chapter 7 Condor Case-Study
	7.1 Case-study Objective
	7.2 Condor Case-Study Description
	7.3 Control System Architecture
	7.4 Quantitative Evaluation
	7.5 Summary

	Chapter 8 Fire Emergency Case-Study
	8.1 Case-Study Objective
	8.2 Scenario Description
	8.3 Control System Architecture
	8.4 Control System Implementation & Measures
	8.5 Summary

	Chapter 9 Smart-Mall Case-Study
	9.1 Objective
	9.2 Smart-Mall Scenario Description
	9.3 Experiment & Measures
	9.4 Summary

	Part IV Conclusion & Persperctives
	Chapter 10 Conclusion
	10.1 Summary of the Dissertation
	10.2 Perspectives

	Bibliography

