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IntrodutionL'informatique est la siene du traitement automatique de l'information. Lavision par ordinateur en est une branhe, dont l'objetif est le traitement au-tomatique d'informations de nature visuelle. Elle est née dans les années 70omme une branhe de l'intelligene arti�ielle. Son projet initial était de do-ter des ordinateurs ou des robots d'une vision similaire à la vision biologique� une appliation typique étant de permettre à un robot muni d'unes ou plu-sieurs améras de se déplaer de façon autonome dans son environnement.Parmi les problèmes auxquels la vision par ordinateur s'intéresse �gurentdon la reonstrution tridimensionnelle de l'environnement à partir d'uneou plusieurs images, la séparation d'une image en omposantes pertinentes �par exemple un objet et son arrière-plan � appelée segmentation, puis l'ob-tention d'information de plus haut niveau onernant l'environnement � parexemple reonnaitre tel ou tel objet � en vue d'interagir ave elui-i.Ce programme général est loin d'être résolu, mais en empruntant à de nom-breuses disiplines, telles les mathématiques, le traitement du signal et l'ap-prentissage, la vision par ordinateur a néanmoins développé un grand nombred'outils permettant l'analyse et le traitement d'images ou de séquenes d'images,ouvrant la voie à des appliations dans de nombreux hamps.En parallèle d'appliations dont le béné�e soial est sujet à aution � ap-pliations militaires et videosurveillane � la vision par ordinateur a permisdes progrès onsidérables dans le adre de l'imagerie médiale. L'émergeneréente de nouvelles modalités d'imagerie (IRM et ses variantes, MEEG,PET. . .) a permis des avanées importantes en terme de diagnosti de pa-thologies et de ompréhension du fontionnement des être vivants, mais aégalement réé un besoin d'outils permettant d'analyser des données de plusen plus volumineuses, dont le traitement manuel par un expert peut s'avérer9



10 TABLE DES MATIÈREStrès outeux en temps, voire impossible.Ce travail de thèse propose quelques appliations du formalisme des plusourts hemins à la segmentation de strutures anatomiques dans des imagesmédiales issues de modalités diverses.OutlineChapter I proposes a general viewpoint of shortest paths problems in disreteor ontinuous spaes, and mentions some appliations of this formalism inomputer siene, as well as in other domains. It introdues some notionsabout shortest paths in Riemannian manifolds, and in spaes equipped witha potential, i.e. in whih displaement speed is not neessarily onstant in thewhole spae.Chapter II details some algorithms to ompute shortest paths. The exposi-tion fouses on Dijkstra algorithm in the disrete ase, and on Fast-Marhingin the ontinuous ase. We propose a uni�ed presentation of those two algo-rithms. A new onvergene proof of Fast-Marhing is proposed in the ase ofa bidimensional spae equipped with an isotropi potential and disretized ona regular grid. Our formalism is extended to more and more general spaes.Finally, we show onvergene of Fast-Marhing on a Riemannian manifoldequipped with an anisotropi potential, provided the disretization satis�essome ondition we will detail in the sequel.The next hapter are dediated to appliations of this algorithm to analysisof medial images. A entral idea of our work is to ompute shortest pathsin abstrat spaes � derived from the image spae � but whih ontain moreinformation, typially onerning the orientation of the anatomial strutureswe wish to segment.Chapter III shows how suh a formalism an be used to segment tubularstruture in bidimensional images � typially blood vessels, but we will showthat it an also be applied to road segmentation in satellite images. Ourmain ontribution is to use a four-dimensional spae whih takes into aountorientation and radius of the vessels. We will show several advantages to usesuh a spae.



TABLE DES MATIÈRES 11We will also apply this framework to the segmentation of ortial imagesfrom a blood �ow analysis, and propose an extension to an iterative methodfor the segmentation of a network of tubular strutures.Chapter IV is an appliation of shortest paths to the analysis of di�usionMRI with high angular resolution data. We will use a spae of dimension �veto perform this task.The �rst appendix takles problems related with shortest paths omputa-tions. It takles the omputation of shortest paths in the presene of a maskwhih forbids a part of spae, as well as the omputation of some onnetivitymeasures.The seond appendix onsists in an independent work about the semi-automatilabelling of eletrodes in Eletroenephalography (EEG). This work is a partof a not-yet developed system to quikly obtain tridimensional alibration ofeletrodes during EEG experiments.All this work has given rise to publiations in omputer vision and medialimaging onferenes. Chapter III is adapted from the artile Extration ofTubular Strutures over an orientation domain published in the onfereneComputer Vision and Pattern Reognition 2009 [167℄, with Gabriel Peyréand Renaud Keriven, and of SIFT-based Sequene Registration and Flow-based Cortial Vessel Segmentation applied to High Resolution Optial Ima-ging Data[168℄, published in International Symposium on Biomedial Imaging2008 with Thomas Deneux, Ivo Vanzetta and Renaud Keriven. The end ofthe hapter is published as a researh report, and is urrently under reviewin Medial Image Analysis. A part of the work exposed in hapter IV waspublished in Medial Image Computing and Computer Assisted Intervention2009, with Maxime Desoteaux and Renaud Keriven.Finally, appendix B orresponds to an independent work published in theMedial Image Computing and Computer Assisted Intervention 2007 [166℄with Renaud Keriven, Théodore Papadopoulo and Jean-Mihel Badier.Implementations were done mainly in C++, using the CertisLib library, de-veloped by the CERTIS team. Visualisation and analysis of data were perfor-med usingMatlab, Paraview and BrainVizu for the work presented in hapterIV.
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Chapitre IShortest paths� Le hemin le plus ourt d'un point à un autre est la ligne droite,à ondition que les deux points soient bien en fae l'un de l'autre. �(�The shortest path from one point to another is the straight line,provided that the two points are squarely in front of eah other�)(Pierre Da, Franis Blanhe)IntrodutionComputing shortest path is a spei� instane of optimisation problem, anda major human onern : eah time we ask ourselves if we would bettertake motorway rather than trunk road, whih route to follow in order to gofrom Saint-Malo to Pointe-à-Pitre, how to solve a Rubik's Cube in a minimalnumber of moves, how to get our knight from 3 to e5, or if we should takeline 6 then 13 rather than 8 then 13 to go from Daumesnil to Varenne, we areattempting to solve a shortest path problem � or at least to ompare severalpaths whih have the same extremities � typially the plae where we are,and the plae where we want to go.In view of the diversity of these problem, the ommonplae that the shortestpath between two points is a straight line is learly not su�ient. Short doesit mean short in spae or in time ? What is a straight line in a Rubik's Cube ?In short, what are we talking about exatly ?13



14 Shortest paths
• In whih spae are we moving ? Is it a tridimensional Eulidean spae ? Arelativist spae ? A disrete spae ? Are there obstales ?
• What is a path in that spae ?
• What is the ost assoiated with this path ? For example, do we want to�nd the shortest or the quikest path ?Now ome the more alarming questions :
• is there a (one only) shortest path ?And, if the answer is yes,
• how to ompute it ?Setion I.1 desribes a general framework for shortest paths, and enuniatessome basi properties. Setion I.2 fouses on disrete shortest paths. Finally,setion I.3 desribes many framework for ontinuous shortest paths problems,details some appliations, and gives some mathematial properties of theonsidered spaes.ContentsI.1 Generalities on shortest paths . . . . . . . . . . . . 14I.2 Disrete Shortest Paths . . . . . . . . . . . . . . . . 17I.2.1 Direted graphs . . . . . . . . . . . . . . . . . . . . 17I.2.2 Undireted Graph . . . . . . . . . . . . . . . . . . 18I.2.3 Existene and uniqueness of shortest paths . . . . 18I.2.4 Appliations . . . . . . . . . . . . . . . . . . . . . . 21I.3 Continuous shortest paths and distane maps . . 22I.3.1 Di�erent frameworks for ontinuous shortest paths 22I.3.2 Theoretial aspets . . . . . . . . . . . . . . . . . . 33I.4 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . 38
I.1 Generalities on shortest pathsLet E be a set.In this work, we are interested in a spei� lass of shortest path problems.In partiular, we will impose that :



I.1 Generalities on shortest paths 15
• a path has a starting point and an ending point � if we denote by Cst theset of paths from s ∈ E to t ∈ E, the set {Cst |(s, t) ∈ E2} is a partition(whih an ontain the empty set) of the set of all the paths C,
• the paths an be onatenated if they are ompatibles : if C1 ∈ CXY and
C2 ∈ CY Z , then C1@C2 ∈ CXZ : @ is a partial assoiative binary operationon the set of paths C,
• a ost funtion c from C to F is de�ned � where F is an ordered setequipped with a binary operation + whih is ompatible with the orderrelation. We furthermore impose that c(C1@C2) = c(C1) + c(C2) for allompatible paths.
• for all s ∈ E, there exist a path in Css with null ost, and neutral for @.Let us also introdue the notion of subpath :De�nition I.1.0.1 (Subpath)Let C ∈ Cst be a path from s to t. C ′ is a subpath of C if and only if thereexists two paths C1 and C2 suh that C = C1@C

′@C2.In the sequel, we will fous on the F = R
+ ase, in whih the ost an benaturally interpreted in terms of length (or duration) of the path.We then de�ne the distane between two points s and t by :

d(s, t)
def.
=

{
inf

γ∈Cst

c(γ) if Cst 6= ∅
+∞ otherwise

(I.1.1)We then haveProposition I.1.0.1
d satis�es the triangular inequalityProof : Let us onsider s, t and u ∈ E. If Cst = ∅ or Ctu = ∅, we learly have d(s, u) ≤

d(s, t) + d(t, u). Otherwise, we hose ǫ > 0. By de�nition of d(s, t) and d(t, u), there existstwo paths γ1 ∈ Cst and γ2 ∈ Ctu suh that c(γ1) ≤ d(s, t) + ǫ/2 and c(γ2) ≤ d(t, u) + ǫ/2.Then, γ1@γ2 ∈ Cst and c(γ1@γ2) ≤ d(s, t) + d(t, u) + ǫ, hene d(s, u) ≤ d(s, t) + d(t, u).
�If we �x a point s ∈ E, and if the distane from s to any other point in E is�nite, we get the following funtion :
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Us

def.
=

{

E → R
+

t 7→ d(s, t)
(I.1.2)alled distane map from s.We all shortest path between two points s and t any path of Cst with length

d(s, t) :
γ∗(s, t)

def.
= argmin

γ∈Cst

c(γ) (I.1.3)Existene or uniqueness of shortest paths are not guaranteed, and stronglydepends on the properties on the spae E.Equipped with this nutshell formalism, we already an enuniate the follo-wing property :Proposition I.1.0.2A subpath of a shortest path is a shortest path.Proof : Let C ∈ Cst be a shortest path, and C ′ ∈ Cuv a subpath of C. Let C1 and C2 betwo paths suh that C = C1@C ′@C2. We have c(C) = c(C1)+c(C ′)+c(C2). Let us assumethat C ′ is not a shortest path from u to v. Then there exists a path C ′′ ∈ Cuv suh that
c(C ′′) < c(C ′). Then, C1@C ′′@C2 ∈ Cst and c(C1@C ′′@C2) = c(C1) + c(C ′′) + c(C2) <

c(C), whih is absurd.
�Shortest paths between sets The shortest path notion an be generali-sed to starting and ending sets of points.If S ⊂ E and T ⊂ E, we an de�ne the set of all path from S to T as

CST
def.
=
⋃

s∈S
t∈T

Cst (I.1.4)and then the distane between those sets as
d(S, T )

def.
=

{
inf

γ∈CST

c(γ) if Cst 6= 0

+∞ otherwise
= inf

s∈S
t∈T

d(s, t) (I.1.5)



I.2 Disrete Shortest Paths 17along with the distane map from S :
US

def.
=

{

E → R
+

t 7→ d(S, {t}) (I.1.6)A shortest path between S and T is a path reahing the distane (if it exists) :
γ∗(S, T )

def.
= argmin

γ∈CST

c(γ) (I.1.7)In the sequel, we will handle shortest paths and distane maps problemsin whih the entire spae is know a priori � not disovered progressivelyduring omputation, whih is often the ase for motion planning problems inrobotis.Suh problems an be lassi�ed in two main lasses, depending on the onti-nuous or disrete harater of the spae E.I.2 Disrete Shortest PathsMost of the disrete shortest paths problems an be reast in graph theoryterms. A very good introdution to graph theory and its algorithms an befound in [3℄.I.2.1 Direted graphsLet (S,A,w) be a graph in whih S is a �nite set of verties, A ⊂ S × Sis the set of edges linking the verties and w : A → R is a weight funtionde�ned on the edges.We all path from s ∈ S to t ∈ S any suession (s0, a0, s1, . . . , am−1, sm) m ∈
N of edges and verties suh that
• s0 = s

• sm = t

• ∀i ∈ [0,m− 1] ai = (si, si+1).We thus de�ne the onatenation of two ompatible paths in the followingway :
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(s0, a0, . . . am−1, sm)@(t0, b0, . . . bn−1, tn) =

(s0, a0, . . . am−1, sm = t0, b0, . . . bn−1, tn)
(I.2.1)and the length of the path (�gure 1.1) γ = (s0, a0, s1, . . . , am, sm) as

c(γ)
def.
=

m∑

i=1

w(ai) (I.2.2)In partiular, (s0) is a path from s0 to itself, of null length.
s1

s3

s2
s5

s4

s6

21 1 2 233 51Fig. 1.1 � An example of graph. (s1, (s1, s2), s2, (s2, s4), s4, (s4, s5), s5) is apath from s1 to s5 of length 6.
I.2.2 Undireted GraphShortest paths problems on undireted graphs is a spei� ase of the previousproblem. To any undireted graph, we an assoiate a direted graph byreplaing every edge by two opposite edges of same weight.I.2.3 Existene and uniqueness of shortest pathsThe existene of a shortest path is not guaranteed on a graph :
• there an be no path between two verties (�gure 1.2, left).
• there an a path but no minimal path (�gure 1.2, right).
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s

t

4 -3 2 -2 3 s

1
2

3
4 t

4 -3 2 -1 2-3 3-3
Fig. 1.2 � Left : a graph without path from s to t. Right : agraph without shortest path from s to t. The negative length loop
(1, (1, 2), 2, (2, 4), 4, (4, 3), 3, (3, 1), 1 allows to �nd arbitrary small paths bet-ween the points.However, we have the following property :Proposition I.2.3.1Let (S,A,w) be a graph, suh that w : A→ R

+. Let s and t ∈ S.If Cst 6= ∅, then a shortest path exists from s to t.Proof :
• First, notie that for all path in Cst, there exist a shortest path without loop in Cst,
• then notie that there is a �nite number of paths without loop from s to t, hene theexistene of a minimal length path, whih is also a shortest path in Cst.

�

In partiular, in a strongly onneted graph with positive weights, shortestpaths exist between any pair of verties.



20 Shortest pathsHere is an interesting property of shortest paths between ont vertex s andall other verties.Proposition I.2.3.2Let (S,A,w) be a graph, with w : A → R
+. Let s ∈ S. Then, there exist atree A build from S suh that

• s is the root of the tree ;
• t is a node of the tree if and only if there exists a shortest path from s to
t ;
• if the paternity relation in A is denoted by p, (s . . . p(t), (p(t), t), t) is ashortest path from s to t.Proof :This tree is simply a set of edges whih ontains a shortest path from s to all aessiblevertex t, and whih is minimal for inlusion.

�Suh a tree is alled shortest paths tree (�gure 1.3).
s 1

4 7 12 1 21 1
3772 0 4

1
2
3

4
1Fig. 1.3 � Distane map and shortest path tree from vertex sIn setion II.1.1, we will explain how to ompute suh distane maps andshortest path trees.



I.2 Disrete Shortest Paths 21I.2.4 AppliationsA huge amount of problems an be reast in this framework. It is pointlessto try and draw up a omplete map of possible appliations. Let us ite somelassial problems.
• A lassial appliation of shortest paths on graph is the omputation oftrajetories over transportation networks. Edges orrespond to portions ofroads, and verties to intersetions. Weights aount for the time to travelalong a portion of road.
• This framework is used to ompute routing in eletroni data networks [205℄.Verties represent routers (or other nodes), and edges represent onnexionsbetween routers. Weights depend on the available bandwidth.
• The omputation of knight moves we mentioned earlier an be asted ina searh of shortest path on a graph (�gure 1.4). More generally, for allsystem with a �nite number of states, and transitions between those state,�nding paths between two states an be done by omputing shortest pathsin a graph with onstant weights.

Fig. 1.4 � Undireted graph orresponding to the possible moves of a knightover a hessboard. Eah vertex orresponds to a square, eah edge to a pos-sible move. In red, yellow, and green : three paths from e3 to 5 in a minimalnumber of moves.
• More generally, all dynami programming problems an be formulated interms of shortest paths problem in a graph. [131℄.
• Some linear programming problem an be reast in disrete shortest paths



22 Shortest pathsShortest pathsin R
n

Shortest pathsin R
n+ speed Shortest pathsin manifolds

Shortest pathsin R
n+ anisotropy Shortest pathsin Riemannianmanifolds

Shortest pathsin a subsetof R
n

Fig. 1.5 � Di�erent ontinuous shortest paths problemsomputation [40℄.
• Many motion planning problems an also be formulated in this frame-work [113℄.I.3 Continuous shortest paths and distane mapsI.3.1 Di�erent frameworks for ontinuous shortest pathsIn this setion, we will present some shortest paths problems whih ourin di�erent domains, and require di�erent theoretial frameworks. Figure 1.5synthesises these frameworks.Let us onsider a ontinuous spae E � for pratial purposes, E is generallya subset of R

n or a �nite dimension manifold.We de�ne a path as a funtion C0 and pieewise-C1 from [0, 1] to E � this



I.3 Continuous shortest paths and distane maps 23

f(0)

f(1)

Fig. 1.6 � A path in R
2ondition being su�ient in order to de�ne the length of suh a urve 1. If fis suh a path, the extremities of f are f(0) and f(1) (�gure 1.6).The onatenation of two paths f1 : [0, 1]→ E and f2 : [0, 1]→ E is de�nedas

f1@f2
def.
=

{

t ∈ [0, 1/2] 7→ f1(2t)

t ∈]1/2, 1] 7→ f2(2t− 1)
(I.3.1)I.3.1.1 Shortest paths in R

n : the straight line strikes bakLet us de�ne E = R
n, with n ≥ 1.The length of a urve f is de�ned by

L(f)
def.
=

∫ 1

0

‖f ′(t)‖dt (I.3.2)Notie that this quantity is invariant when one reparametrise the urve. Inpartiular, if we use the ar length, we get
L(f) =

∫ L(f)

0

‖f ′(s)‖ds (I.3.3)1still, it is not neessary : it is possible to de�ne a length for a more general lass ofurves, namely reti�able urves



24 Shortest pathswith ‖f ′(s)‖ = 1.In this framework, we an show the following property :Proposition I.3.1.1Let x and y ∈ E. Then, the shortest path from x to y is the straight line, i.e.
f ∗ : t 7→ x+ t y−x

‖y−x‖Proof :If f is a urve with x and y extremities, we have L(f∗) =
∫ 1

0
‖f∗′(t)‖dt = ‖x − y‖ =

‖
∫ 1

0
f ′(t)dt‖ ≤

∫ 1

0
‖f ′(t)‖dt = L(f)

�The distane between two points orresponds with Eulidean distane, i.e.
Us(t) = ‖t − s‖2. In partiular, level sets of distane map are irles in 2D,and spheres in 3D (�gure 1.7).

s

Fig. 1.7 � Shortest paths in R
2. Level sets of distane map are irles, andshortest paths are segments.Things are beoming more interesting when one onsider a set S of startingpoints instead of one point. If S is a losed set, a ompaity argument easilyshows the existene of a shortest path from S to any point of E. This shortestpath is still a straight line. Figures 1.8 and 1.9 demonstrate this on twoexamples.
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s2s1

Fig. 1.8 � Shortest paths to 2 points s1 and s2. Level sets are represented inblak, and shortest paths in red. The blue line orrespond to points whih areequidistant from s1 and s2, i.e. to the shok points of the fronts emanatingfrom s1 and s2.
S

Fig. 1.9 � Shortest paths to a segment. Level sets are represented in blak,and shortest paths in red.These results an be interpreted in terms of front propagation [188℄ : let usonsider a starting set S, and a front propagating outside S with a onstantspeed 1. The US(t) = α level set orresponds to the front position after atime α. A lassial analogy is the propagation of a forest �re propagating atonstant speed from an initial hearth [30℄.Appliations The interpretation in terms of front is extremely produtive.As illustrated �gure 1.8, the meeting points between two fronts orrespond



26 Shortest pathsto points that are equidistant from starting points in S. This results an begeneralised to an arbitrary number of starting points, whih paves the waytoward two appliations : the alulation of Voronoi diagrams [188℄ if S isdisrete, and skeletization of objets Ω by using S = δΩ [204, 173, 78℄.Another appliation is shape o�setting, whih onsists in �nding level setsof distane funtions to a given set [188℄ � with appliations to growing ofobstales in motion planning.Computing the distane funtion to a losed urve is also a lassial step oflevel sets [188℄ implementations � in order to obtained a smooth funtionwhih zero level set orrespond to the urve.This formalism was also used in images denoising in 2D or 3D, leading toalgorithms that an guarantee topologial properties of the objet to be de-noised, suh that homotopy to a sphere [108, 202, 13℄.A list of other appliations an also be found in [57℄.I.3.1.2 Shortest paths on a subset of R
nFrom a mathematial point of view, things beome muh more omplex assoon as the onsidered spae is a strit subset of R

n.As an example, let us onsider the plane without the origin. There is noshortest path from (1, 0) to (0, 1) : paths with a length arbitrarily lose to 2exist, but no path of length 2(�gure 1.10).
(0, 0)(0, 1) (1, 0)Fig. 1.10 � Existene of shortest path is not guaranteed in a subset of theplaneHowever existene of shortest paths is guaranteed for several spei� ases.Appliations. An important appliation of this formalism is again motionplanning : this alulation allow to plan trajetories of robots in an envi-ronment onsisting of obstales, or in whih some position are forbidden.



I.3 Continuous shortest paths and distane maps 27Approximate numerial methods exists for general spaes [99, 96, 68, 69℄.However, it is often advantageous to take advantage of the shape of obstalesin order to obtain dediated exat algorithms.For example, if the obstales are open polygons, it is possible to ompute anexat solution in polynomial time. Indeed, this problem an be redues to aalulation of disrete shortest path in a visibility graph, or by deomposingspae into onneted ells [138℄. An interesting introdution to this topi anbe found in [113℄.I.3.1.3 Loal speedLet E be a subset of R
n, and let us onsider a mapping ρ : E → R

+∗ � alledpotential over E.Keeping the urve de�nition above, we an de�ne the length of a urve withrespet to this potential as
Lρ(f)

def.
=

∫ 1

0

ρ(f(t))‖f ′(t)‖dt (I.3.4)If we parametrise the urve by ar length, we have
Lρ(f) =

∫ L(f)

0

ρ(f(s))ds (I.3.5)hene
Lρ(f)

L(f)
=< ρ >f (I.3.6)where < ρ >f is the average value of ρ along the urve. If we interpret Lρ(f)as a travel time to go from f(0) to f(1), L(f) being the Eulidean length ofthe urve, ρ an be seen as the inverse of a loal speed of displaement.For pratial purposes, as soon as the onsidered potential map is non-trivial,there is no analytial form for the shortest paths. Solution will not reside any-more in exat algorithms, but on numerial methods leading to approximatesolutions � one of these methods will be thoroughly detailed in II.3.However, exat algorithms exists in some spei� ases, for example if the2D spae is partitioned into polygons in whih speed is onstant [137℄.



28 Shortest pathsFrom a theoretial point of view, there is no general guarantee of the existeneof shortest paths. As an example, let us onsider the spae E = [0, 1]2 withpotential
ρ

def.
= (x, y)→

{

1 si y < 1/2

2 otherwiseThen, there is no shortest path from (0, 1/2) to (1, 1/2).Nevertheless, we will see an existene theorem for shortest paths in a moregeneral framework, whih guarantees in partiular the existene of shortestpaths in [0, 1]n when ρ is ontinuous.AppliationsThis problem is partiularly important from an historial point of view ingeometrial optis [110℄. The refrative index of a medium is de�ned as theratio between light elerity in void over light elerity in that medium, i.e.
n

def.
= c

v
. The Fermat's priniple enuniates that the trajetories followed bylight rays are of extremal duration. If we onsider a medium E and an index

n(x) for eah point, the duration of light journey along a trajetory f is thusgiven by
L(f) =

1

c

∫ 1

0

n(f(t))‖f ′(t)‖dt (I.3.7)Shortest paths for this length orrespond to possible trajetories of light rays� and in partiular we �nd that lights propagates along straight lines in anhomogeneous medium.The refration laws (or Snell-Desartes' laws), whih desribe the behaviourof light rays at the interfae between two homogeneous media an also beretrieved from this equation (�gure 1.11).This formalism is also applied in image analysis to ontour segmentationeither as an alternative to ative ontours [38℄ or in the framework of seg-mentation by region growing [127, 132, 49℄. In [65, 95℄, riteria similar to I.3.6were also analysed and used to perform ontour segmentation. The basi idea� whih we will detail further in hapter II � is to ompute shortest pathsor distane maps in the image plane, setting the potential suh that shortest
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n2

n1

θ2

θ1

Fig. 1.11 � Left : refration of a light ray at the interfae of two homogeneousmedia of index n1 and n2 with n2 < n1. The ray follows the shortest path,and its trajetory tends to remain longer in the half-plane with smaller index.More preisely, we have sin(θ1)n1 = sin(θ2)n2. Right : illustration of thisphenomenon at the interfae between air and water � water index beingapproximately 1.3 times bigger. Bottom : distane map and shortest pathsin a plane separated in two domains of indies 1 and 4 � s being in the areaof bigger index.



30 Shortest pathspaths or level sets of distane maps follow interesting urves in the image �e.g. blood vessels or objets ontours.This kind of methods an be paired with watershed algorithms in order tosegment luster of objets [144℄.Distane map and front alulation is also used to estimate arrival timesfor seismi waves in Earth's mantle [189℄, or to model propagation of eletrisignals in the framework of human heart eletrophysiologial modelling [184℄.In [64℄, the same formalism is used in order to ompute orrespondenesbetween urves.Finally, the shape from shading � whih onsists in reonstruting a tridi-mensional shape from its illumination � needs the use of a formalism lose tothe one of distane maps [94, 174, 99, 162℄. It is also the ase for the problemof reonstruting a depth map from the normals of the surfae [81℄.I.3.1.4 AnisotropyHere is another interpretation of shortest paths omputation in a spae witha potential. Let E and ρ be de�ned as previously. Let us de�ne for all x ∈ Eand for all v ∈ R
n

‖v‖x def.
= ρ(x)‖v‖. (I.3.8)If we onsider equation (I.3.4), we have,

Lρ(f) =

∫ 1

0

‖f ′(t)‖f(t)dt (I.3.9)We meet again the de�nition of length proposed in (I.3.2), but in a spaeequipped with a di�erent metri.From now, it is easy to generalise these de�nitions to anisotropi metris,for whih the potential depends not only on the loation, but also on theorientation of the urve.Let E be a subset of R
n, and let us onsider a mapping g : E → S+

n (R),where S+
n (R) is the set of symmetri positive de�nite matries of size n× n.For every point x ∈ E, it de�nes a metri : for all v ∈ R

n, we de�ne
‖v‖g(x)

def.
=
√

vTg(x)v (I.3.10)
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Fig. 1.12 � A path on an ellipsoidThen, we an de�ne again the length of a urve as follows :
Lg(f)

def.
=

∫ 1

0

‖f ′(t)‖g(f(t))dt (I.3.11)(I.3.8) is therefore a spei� ase of this equation when g(x) = ρ(x)2In is anhomothety.AppliationsThis formalism was mainly used in medial imaging in order to model ele-trophysiologial phenomena [185℄, or to reonstrut �bers if di�usion tensorimaging [87, 145℄.I.3.1.5 Shortest paths in a manifoldLet E = V be a manifold [176℄ of dimension k, embedded in R
n for some

n ∈ N.We an de�ne the length of a urve on this manifold as
L(f)

def.
=

∫ 1

0

‖f ′(t)‖dt (I.3.12)where ‖.‖ denotes the Eulidean norm in R
n.Figure 1.12 shows an example of path on an ellipsoid embedded in R

3.Shortest paths problems on manifolds appear in trajetories issues on thesurfae of the Earth � whih is of apital interest to allow navigators to reahone point from another as fast as possible.It is possible to show that shortest paths on this surfae are portions of greatirles on the sphere (�gure 1.13). This result is known at least from Aristotle.
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Fig. 1.13 � Shortest paths on a sphere are portions of great irlesA geometrial demonstration of this result is proposed in [124℄, as well asresults onerning shortest paths on ylinder or ones.Leonhard Euler [55℄ was the �rst one to takle this problem on a generalsurfae. For a onvex surfae, Euler solves it by notiing that a shortest pathbetween two points orresponds to a tighten thread on the surfae goingthrough those points.The shortest path notion on a manifold is related with the notion of geodesi.A geodesi is de�ned a a urve with normal aeleration on the manifold. Itis possible to show that a shortest path on a manifold is a geodesi, andthat a geodesi is loally a shortest path [66℄. These to notions are generallymixed up in the omputer vision ommunity, and we will use either of thetwo words in the sequel.AppliationsSeveral geometri problems are based on shortest paths omputations on ma-nifolds : parametrisation of surfaes [182℄, sampling of surfaes [155℄, Voronoidiagrams alulation on surfaes [188, 99℄.Shortest path alulation on polyhedra was also studied, an is applied toproblem in motion planning [2, 158, 157℄.I.3.1.6 Shortest paths on a Riemannian manifoldLet V be a manifold of dimension k embedded in R
n for some n ∈ N. Forall x ∈ V , let us denote by Tx(V ) the tangent spae of V at x. It is a vetor



I.3 Continuous shortest paths and distane maps 33spae of dimension k suh that for any urve f on the manifold, and for allpoint f(t) ∈ V on the urve, f ′(t) ∈ Tf(t)(V ).A Riemannian manifold (V, g) is de�ned as a manifold V suh that for allpoint x ∈ V , Tx(V ) is equipped with a symmetri positive de�nite bilinearform g(x) : Tx(V ) × Tx(V ) → R
+ alled potential. Usually, a ontinuityonstraint is imposed for g. Exellent introdution to the study of Rieman-nian manifolds an be found in [116℄ and [66℄.

‖v‖x def.
=
√

g(x)(v,v) (I.3.13)We an now de�ne the length of a urve on V by
Lg(f)

def.
=

∫ 1

0

‖f ′(t)‖f(t)dt (I.3.14)
g an be interpreted as the inverse of a speed tensor.Therefore, shortest paths on manifolds is a spei� ase of this framework,in whih g(x)(v,v) orresponds with the Eulidean norm of the embeddingspae.Appliations When the potential is isotropi, this formalism an be usedto segment targeted urves on surfaes. In [203, 10℄, the authors proposed touse it to segment suli on ortial surfae. It was also used to segment surfaesin tridimensional images � viewed as an union of shortest paths belonging tothat surfae [6, 7℄.I.3.2 Theoretial aspetsIt is possible to prove existene of geodesis and to demonstrate propertiesof the distane maps in the most general ase we have mentioned. Completeproofs ome under non-trivial mathematis, and will not be detailed here.However, we will give intuitive proofs in a few spei� ases.



34 Shortest pathsI.3.2.1 DistaneProposition I.3.2.1Let (V, g) be a onneted omplete Riemannian manifold, equipped with aontinuous metri. We de�ne the length L of a urve as previously.Then, the mapping d indued by L (I.1.1) is a distane funtion.Proof :We present a sketh of proof. A omplete one an be found in [66℄.Triangular inequality holds from I.1.0.1.Symmetry is derived from the possibility of travelling on the urve in both diretions : if
f is a path from a to b, then t→ f(1− t) is a path from b to a of same length. Symmetryis obtained by onsidering the in�mum of length of all paths from a to b.The de�nite harater is more di�ult to show. Let us onsider two distint points sand t. We will prove that d(s, t) > 0. Let us embed the manifold in some spae R

nand let us onsider the ompat set Bs
def.
= V ∩ B(s, ‖s−t‖

2 ). By ontinuity of the metri,there exist ǫ ∈ R suh that for all x ∈ Bs and for all v ∈ Tx(V ) g(x)(v, v) > ǫ‖v‖.Let us onsider a path from s to t, and denote t0
def.
= inf

t∈[0,1]
{t ∈ [0, 1] | f(t) /∈ Bs}.Then, Lρ(f) ≥

∫ t0
0
‖f ′(t)‖f(t)dt ≥ ǫ

∫ t0
0
‖f ′(t)‖ ≥ ǫ|

∫ t0
0

f ′(t)| = ǫ‖s−t‖
2 . Therefore, we have

d(s, t) ≥ ǫ‖s−t‖
2 > 0

�

I.3.2.2 GeodesisThe Hopf-Rinow theorem [83℄ guarantees the existene of geodesis for alarge lass of Riemannian manifolds.Theorem I.3.2.2 (Hopf-Rinow)For any omplete onneted Riemannian manifold, and for any ouple ofpoints (s, t) of the manifold, there exists a geodesi of minimal length between
s and t.



I.3 Continuous shortest paths and distane maps 35I.3.2.3 Distane map propertiesReall that the distane map U(S) to a starting set is de�ned as U(S, t)
def.
=

d(S, {t}) for all t ∈ V . We an hek easily thatProposition I.3.2.3Let (V, g) be a omplete onneted Riemannian manifold, equipped with aontinuous metri. Let S ⊂ V be a ompat set.Then U(S) is ontinuous.In partiular, the distane map to a single point is ontinuous.However, even in the simplest ases, the distane map if not di�erentiable.As an example, in the ase of distane map to a point in R
2 (�gure 1.7),

Us is not di�erentiable at point s. In the ase of distane map to two points(�gure 1.8), the distane map is also not di�erentiable at points whih areequidistant from the two starting points.Yet, we have the following property.Proposition I.3.2.4If Us is di�erentiable at t, then |∇tUs|[g(t)]−1 = 1.Proof :We provide a proof when E = R
n, equipped with a potential ρ. It an be extended to anyRiemannian spae, but this requires tehnial tools we will not develop here.If Us is di�erentiable at t, we an write

Us(t + dt) = Us(t) +∇tUs.dt + o(|dt|).Furthermore, Us(t + dt) being the length of the shortest path from s to t + dt, and thenorm being ontinuous, we have
Us(t + dt) ≤ Us(t) + ρ(t)|dt|+ o(|dt|).In partiular, if we set dt = ǫ∇tUs, and derease ǫ toward 0, we have

|∇tUs| ≤ ρ(t)Now let us onsider a shortest path γ from s to t. We set dt = γ(1)− γ(1− ǫ).Let us de�ne U(x)
def.
= Us(γ(x)). We thus have U ′(x) = ∇γ(x)Usγ′(x), and x = 1, U ′(1) =

∇tUs.γ′(1) ≤ |∇tUs||γ′(1)|.By the way, we have
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U(1)− U(1− ǫ) = ǫ|γ′(t)|ρ(t) + o(ǫ)hene

U ′(1) = |γ′(t)|ρ(t)and
|∇tUs|t ≥ ρ(t)hene the result.On the way, we also proved that γ′(t) and ∇tUs are ollinear.

�De�nition I.3.2.1We all Eikonal equation the following partial derivative equation :
‖∇xUS‖g−1(x) = 1 with ∀s ∈ S US(s) = 0 (I.3.15)The previous proposition enuniates that if the distane map is di�erentiableat some point, it is solution of the Eikonal equation at that point. It wouldbe interesting to obtain a onverse of this results, whih would haraterise

Us globally as a solution of Eikonal equation. This is a tough problem, sine,as we saw, Us is not di�erentiable at any point.[43℄ introdued the notion of visosity solution for a large lass of partialdi�erential equations, allowing to irumvent this issue (�gure 1.14).De�nition I.3.2.2We all u a visosity solution of the Eikonal equation if and only if for anymapping ϕ ∈ C1(V ) and for all x0 ∈ V loal minimum of u− ϕ we have
‖∇x0ϕ‖g−1(x0) = 1This de�nition disposes of the di�erentiability onstraint on u. Some physialinsight of this notion are detailed in [186℄.A spei� ase of results proved in [43℄ an be enuniated as followTheorem I.3.2.5Let (V, g) be a Riemannian manifold, and S ⊂ V a ompat set.Then, US is the unique visosity solution of the Eikonal equation (I.3.15).
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u

ϕ

x0Fig. 1.14 � Illustration of the visosity solution de�nition in dimension 1. uis the distane funtion to two initial points. ϕ is a C1(R) mapping. x0 is aloal minimum u− ϕ. Then the equality |∇x0ϕ| = 1 holds.The following theorem also holds.Theorem I.3.2.6Let (V, g) be a Riemannian manifold, and s, t ∈ V .Let γ be a geodesi between s and t. Then, up to parametrisation, γ is solutionof the following di�erential equation
γ′(t) = − g(γ(t))−1∇γ(t)Us

‖g(γ(t))−1∇γ(t)Us‖
with γ(0) = t. (I.3.16)Proof :In the ase of R

n equipped with a potential, we must show that
γ′(t) = − ∇γ(t)Us‖∇γ(t)Us‖

with γ(0) = t. (I.3.17)The proof is immediately derived from ollinearity of γ′(t) and ∇γ(t)Us we observed duringthe proof of I.3.2.4.This result an be generalised to Riemannian manifolds.
�In the ase of R

n equipped with a potential, this implies the orthogonalitybetween shortest paths and level sets of distane map (�gures 1.7 1.8 1.9).The last two results are extremely important for pratial omputation ofshortest paths and distane maps. Computing a distane map is redued tothe problem of approximating the solution of a partial di�erential equation(we will detail a method to do so in setion II.3), and omputing a shortest



38 Shortest pathspath boils down to performing a gradient desent on the obtained map � ormore preisely a desent along the harateristis of the solution [56℄ � whihaligns with with gradient diretion in the ase of an isotropi potential.I.4 ConlusionShortest paths naturally appear in the modelling of several problems, eitherin the disrete ase (shortest paths in a graph) or in the ontinuous one(shortest path in R
n or in a manifold). The expliit alulation of shortestpaths is thus of primary interest for the resolution of numerous problems.The next hapter details some methods allowing to ompute exat or ap-proximate solutions to these problems.



Chapitre IIShortest paths omputation
IntrodutionThis hapter is an attempt to propose a lear presentation of algorithms toompute shortest paths � in partiular Fast-Marhing.We will present Dijkstra algorithm for omputation of shortest paths ongraphs (setion II.1). Then we will show an fruitless attempt to use thisalgorithm in a ontinuous framework (setion II.2). We will thus presentthe state-of-the art solution to this problem � i.e. Fast-Marhing. . SetionII.3 will onsist in a full exposition of the method � our formalism beingdi�erent than the lassial one, whih will allow both to have a point-of-view uni�ed with Dijkstra algorithm, and to perform easy generalisations. Aproof of onvergene will be proposed in this ase. We will therefore showhow to extend this algorithm to any dimension, and to anisotropi potentialswith prinipal omponents aligned with the grid. Finally, in setion II.4 wewill detail the algorithm and give a proof in the most general framework �i.e. shortest paths on Riemannian spaes. This presentation, while keeping ageometrial point-of-view, is a generalisation of results indiated in [186℄ and[30℄.ContentsII.1 Disrete shortest paths omputation . . . . . . . . 40II.1.1 Dijkstra algorithm . . . . . . . . . . . . . . . . . . 41II.2 From disrete to ontinuous � a �rst attempt . . . 4739
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II.1 Disrete shortest paths omputationDepending on the targeted appliation, numerous methods exist in order toompute disrete shortest paths.We will restrit ourselves to the the problem of omputing distane maps andshortest paths from a �xed set of initial verties (notie that it is possible toompute distanes between any ouple of points using algorithms suh thatFloyd-Warshall and Johnson [181℄ .)If negative values are permitted in the graph, there is no guarantee of theexistene of shortest paths between two verties (�gure 1.2). In this ontext,�nding a shortest path between to verties is a NP-omplete problem [92℄.When the graph does not ontain any loop of negative length, one an provethat shortest paths exist, and they an be found using polynomial algorithmssuh that Bellman-Ford algorithm [123, 1, 139℄.



II.1 Disrete shortest paths omputation 41In the sequel, we will only onsider graphs with positive weights. In this ase,our problem an be solved in polynomial time by using Dijkstra algorithm �whih we are going to detail.Notie also that if all weights in the graph are equal to 1, dediate algorithmsexists to ompute shortest paths[19℄.II.1.1 Dijkstra algorithmIn this setion, we will fous on methods to ompute distane maps fromone given vertex s � along with shortest paths from any other vertex to
s. In the sequel, a graph will be denoted as (S,A), where S represents theverties, and A the edges. Furthermore we will denote n def.

= |S| and m def.
= |A|.

w : A → R
+ is a weight de�ned on the edges of the graph. N (s) ⊂ Srepresents the neighbors of s in the graph, and p

def.
= max

s∈S
{|N (s)|} is themaximal onnetivity for a vertex.We have the following fundamental property for the distane map Us from avertex s on a graph.Proposition II.1.1.1

Us(t) = min
v∈N (t)

Us(v) + w(v, t)Proof :For any neighbor v of t, we have Us(t) ≤ Us(v) + w(v, t).Furthermore, let us onsider a shortest path from s to t, namely (s, . . . u, (u, t), t) (f.I.1.0.2). Then, the sub-path (s, . . . u) is a shortest path from s to u. We then have Us(u) =

l(s, . . . u), and Us(t) = l((s, . . . u, (u, t), t)) = Us(u) + w(u, t).
�The proof also shows that if (s, . . . u, (u, t), t) is a shortest path, the minimumin (II.1.1.1) is reahed for v = u.Some vertex s being hosen, Dijkstra algorithm [54, 119℄ allows to omputethe distane map Us as long as a shortest paths tree in O(n(log(n)+p)) time.At any stage, the algorithm keeps up an estimate d of Us. It is based on aloal update routine derived from II.1.1.1. This routine allows to estimate dfor a vertex t, knowing values of d for its neighbors. Furthermore, it updatesthe father p(t) of t in the shortest paths tree.



42 Shortest paths omputationAlgorithm 1 update(t)Input: A vertex t.for all v ∈ N (t) doif d(v) + w((v, t)) < d(t) then
d(t)← d(v) + w((v, t))

p(t)← vend ifend forDijkstra algorithm travels all over the graph, and sequentially performs suhupdate steps. The order in whih to perform these operations is ritial.A �rst attempt is to iteratively perform them on all the verties. One getsthe algorithm desribed in 2.Algorithm 2 Iterative algorithm for shortest paths omputationsInput: A graph (S,A), s ∈ SOutput: ∀t ∈ V d(t) = Us(t)Initialization:Set d(s) = 0 and d(t) = +∞ for all t 6= s.
p(s)← 0while onvergene is not reahed dofor all t ∈ S doupdate(t)end forend whileIt is possible to show that n iterations are su�ient to reah onvergene.This algorithm thus runs in O(n2p) time.However, it is possible to improve this omplexity. Re�ning II.1.1.1, we ob-tain :Proposition II.1.1.2
Us(t) = min

v∈N (t)
Us(v)<Us(t)

Us(v) + w(v, t)This means that Us value for a given vertex only depends on values of neigh-



II.1 Disrete shortest paths omputation 43boring verties with lower values � in partiular, the update routine is per-forming useless operations.This property � whih introdues a ausality or upwinding notion in Us �allows one to design a new dynami-programming-like algorithm to omputeshortest paths : one an ompute Us for verties � lose� from s, and thenextend the omputation to further verties. In the ase when weights are all
1 in the graph, this orresponds to a breadth �rst exploration.Three disjoint sets of verties are kept up :
• A (alive) : the set of verties for whih d = Us.
• T (trial) : the set of verties for whih an estimation d of Us is available �i.e. points being onsidered.
• F (far) : the set of verties for whih no estimation d of Us is availableAt every iteration, the algorithm selets a vertex t ∈ T with minimal d(t)estimation. One an show that d(t) = Us(t) for suh a vertex. This vertex istransferred in A. Its neighbors are transferred in T , and their estimated dis-tane is updated by using the value found for d The algorithm is synthesisedin 3 and 4.Algorithm 3 update(v,t)Input: A vertex v. A neighboring vertex t.if d(t) + w((t, v)) < d(v) then

d(v)← d(t) + w((t, v))

p(v)← tend ifFigure 2.1 shows an iteration of the algorithm. At anytime during the om-putation, T an be seen as a front propagating from s.Dijkstra algorithm an be easily generalised to a set of starting verties S :one just need to replae T ← {s} with T ← S, and by setting ∀s ∈ S

d(s) = 0 during the initialisation.Proof of orretness Let us prove the orretness of Dijkstra algorithm.We want to prove that for any vertex t, we have d(t) = Us(t) after exeutionof the algorithm.



44 Shortest paths omputationAlgorithm 4 Dijkstra algorithmInput: A graph (S,A), s ∈ SOutput: ∀t ∈ V d(t) = Us(t)Initialization:Set d(s) = 0 and d(t) = +∞ for all t 6= s. Set A = ∅, T = {s} and
F = V \{s}.while there exists t ∈ T doSelet t ∈ T suh d(t) is minimal.
T ← T \{t}, A ← A∪ {t}for all v ∈ N (t)\A doif v ∈ F then
F ← F\{v}, T ← T ∪ {v}end ifupdate(v, t)end forend while
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Fig. 2.1 � One iteration of Dijkstra algorithm. Blak verties : A. Red ver-ties : T . Green verties : F . Vertex of T with minimal weight (in bold) isseleted, and transferred to A. The vertex under it is transferred from F to
T .



II.1 Disrete shortest paths omputation 45At any time, and for every vertex t, d(t) ≥ Us(t) : indeed (s, . . . p(t), (p(t), t), t)is a path from s de t, and its length is d(t).We are going to reursively show that at any time ∀t ∈ A d(t) = Us(t).Notie that this property holds after initialisation.Let us onsider the instant when a verties of T of minimal distane is hosen.let us denote by t0 ∈ T ∪ F a vertex minimising Us(t). We have
Us(t0) = min

v∈N (t0)
Us(v)<Us(t0)

Us(v) + w(v, t0)Furthermore, if v /∈ A, then Us(v) ≥ Us(t0). Therefore,
Us(t0) ≥ min

v∈N (t)∩A
Us(v) + w(v, t0)Let us onsider all the update operation that ourred to t0 until now. Forall neighbors v of t0 in A, the operation d(t0)← min{d(t0), d(v)+w((v, t0))}took plae when v was transferred in A.We thus have

d(t0) = min
v∈N (t)∩A

d(v) + w((v, t0)) = min
v∈A∪N (t)

Us(v) + w((v, t0)).
d(t0) = Us(t0) thus holds. Furthermore, for all v in T , d(t0) = Us(t0) ≤
Us(v) ≤ d(v).In partiular, d(t0) ≤ d(v). The inequality is strit, unless if Us(t0) = Us(v).We thus an assert that the set of verties of T of minimal evaluated distaneoinides with the set of verties of T of minimal atual distane.The hosen vertex t is therefore a vertex with minimal distane, and we have
d(t) = Us(t), whih onludes the proof.Complexity Every iteration is of O(p) omplexity. If an unstrutured setis used to implement T , the seletion of the minimal element in T runs inlinear time with respet to the size of T . n iterations being neessary, theoverall time omplexity of Dijkstra algorithm is thus de O(n(n+p)) ⊂ O(n2).Many implementations were proposed to derease this omplexity. In parti-ular, it is interesting to onsider T as a priority queue. It an thus be im-plemented as a heap[217, 62℄. A heap is an ordered data struture in whihinsertion and update of an element runs in logarithmi time, while aess tothe smallest element runs in onstant time. The omplexity of the algorithmtherefore beomes O(n(log(n) + p)).



46 Shortest paths omputationImproving the running time Other improvements an be made to therunning time of the algorithm.
• If one is only interested in �nding the shortest path between two verties
s and t, it is possible to stop the algorithm as soon as t is transferred to A� whih an bring a substantial gain of time by avoiding the explorationof a large part of the graph.
• If a prior for distane map is available, it is possible to use meta-heuristissuh as A∗ algorithm, whih allows to guide the exploration of the graphin a supposedly �good� diretion [150℄.
• When no preise prior is available, if one is only interested in quikly �ndingan approximation of shortest paths, it is possible to use Best First Searh-like algorithms, whih guide the exploration in some diretion heuristially� and stops as soon as the target point t is reahed [150℄.



II.2 From disrete to ontinuous � a �rst attempt 47II.2 From disrete to ontinuous � a �rst at-temptLet us onsider the problem desribed in I.3.1.3 for Ω = [−1, 1]×[−1, 1] ⊂ R
2with a potential P . In this setion, we present a �rst attempt to solve adisretized version of this problem.Let us disretize Ω with a regular grid with step h = 1/N : { i

N
, j

N
| −N ≤ i, j ≤ N

}.We build a graph whih verties orrespond to the grid points � and whihedges link all points in a 4-neighborhood (�gure 2.2).

Fig. 2.2 � Loal neighborhood system with 4 neighbors : the 4 red vertiesare neighbors of the blue vertex.Then we disretize the Eikonal Equation
‖∇U‖ = P (II.2.1)along the edges.Let us onsider two adjaent points x and y. We then have :

∣
∣
∣
∣

U(x)− U(y)

h

∣
∣
∣
∣
≈ P (x) (II.2.2)



48 Shortest paths omputationand
U(x) ≈ U(y) + hP (x) or U(x) ≈ U(y)− hP (x) (II.2.3)In view of updating U(x) from U(y), we have the onstraint U(x) > U(y),and with thus selet the �rst equation.Let us de�ne the weight of an edge (x, y) as w(x, y)

def.
= hP (x). The obtainedgraph is then �ompatible� with the ontinuous problem, in the sense thatthe length of a path in the graph is equal to the length of the orrespondinggeometri path in the plane.Therefore, we an apply Dijkstra algorithm to this graph in order to omputedistane maps and shortest paths (a similar formalism is proposed in [98, 101℄).When the potential is uniform, many shortest paths exist between two dif-ferent points, and they an be distant from the atual straight line shortestpath (�gure 2.3).

Fig. 2.3 � Shortest paths obtained by Dijkstra algorithm with a 4-neighborssystem, for a uniform potential. The obtained shortest paths (in blue) bet-ween the two blue points are distant from the atual shortest path (red).Figure 2.4 shows the result obtained by this method for a uniform potentialover a bigger grid, with s = (0, 0).Proposition II.2.0.3After the exeution of Dijkstra algorithm for a disretization step N , , theapproximation dN of Us is equal to dN

(
i
N
, j

N

)
= |i|

N
+ |j|

N
.In partiular, as the disretization is re�ned, if we denote for all (x, y) ∈

[−1, 1]2 dN(x, y)
def.
= dN

(
⌊Nx⌋

N
, ⌊Ny⌋

N

), we have lim
N→+∞

dN(x, y) = |x| + |y| =



II.2 From disrete to ontinuous � a �rst attempt 49

Fig. 2.4 � Results obtained by Dijkstra algorithm with a 4-neighbors systemfor a uniform potential over a 100 × 100 grid, starting point s being at theentre. Left : distane map (Us). Right : distane map (Us) along with levelsets (red), and some shortest paths from di�erent points to s (yan)
‖(x, y)‖1.The trajetories are onstrained to the axis diretions � and thus this methodsoutputs an approximation of Manhattan distane from s (t → ‖s − t‖1)instead of the orret Us = t→ ‖s− t‖2 distane.It is possible to onsider bigger neighborhood-systems, so that trajetoriesshould follow more preise diretions. For example, one an onsider 8 or 16neighbors for a generi point (�g 2.5).

Fig. 2.5 � Loal neighborhood-systems with 8 (left) and 16 (right) neighbors.For both �gures, red verties are neighbors of the blue one.At the sake of an inrease of running time, ont an thus improve the quality



50 Shortest paths omputationof omputed solutions (�g 2.6) � in partiular when the neighborhood-systeminreases, level-sets get loser to irles, and the distane map gets loser fromits theoretial value. Figure 2.7 also shows some results for a plane separatedin two half-planes with onstant potentials (1 and 4). The preision of theresults inrease while the neighborhood-system beome more important, butthe paths oming from the lower half-plane are still onverging near theinterfae, whih is ontraditory with the Snell-Desartes law.Figures 2.14 (top) and 2.15 (bottom) show errors obtained by the algorithmwith di�erent neighboring-systems for a uniform potential. Quality of theresults improves as expeted. Still, for all the onsidered systems, the tra-jetories are still onstrained to follow a disrete set of diretions, and thealgorithm remains unable to evaluate distanes orretly on other diretions,even in re�ning the disretization.Furthermore, if one whih to inrease the number of possible diretion, oneneed to onsider from eah point neighbors further away. If the potential ifvarying quikly, this will result in a loss of preision � the neighborhood-system establishes links between spatially far away points, potentially losingpreise value of potential between these two points.
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Fig. 2.6 � Distane maps, level sets and shortest paths for a uniform poten-tial. Top : 4 neighbors. Middle : 8 neighbors. Bottom : 16 neighbors.
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Fig. 2.7 � Distane maps, level sets and shortest paths for a plane separa-ted in two half-planes with onstant potentials (1 and 4). Top : 4 neighbors.Middle : 8 neighbors. Bottom Notie that even for the 16 neighbors expe-riment, trajetories in the bottom half-plane are still far away from the truesolution.



II.3 Fast-Marhing on a regular grid 53II.3 Fast-Marhing on a regular gridThe solution proposed in the last setion is not fully satisfatory. Anothermethod, based on the aeleration of numerial shemes � through ideas ins-pired from Dijkstra algorithm � was proposed in [187℄. This approah �alled Fast-Marhing � is a ontinuous version of the algorithms proposed inthe previous setions. It was initially written for the 2D ase. The generalroad map for Fast-Marhing algorithm is basially the same than for Dijkstraalgorithm. A more preise update step allows to relax the onstraint of pro-pagation in a �nite number of diretions. In this setion, we will present thealgorithm on a regular grid in 2D. The numerial sheme is equivalent to theone proposed in [187℄ � despite a di�erent shape � whih will allow a diretgeneralisation to more omplex ases. We will propose a onvergene prooffor our sheme � whih will be easily extensible to nD and to anisotropipotentials.II.3.1 Update stepThe whole idea behind Fast-Marhing update step is to bypass the onstraintof propagation along the edges (�gure 2.8.)
Fig. 2.8 � From Dijkstra to Fast-MarhingLet us onsider E = [−1, 1]2, disretized with a regular square grid withstep h, and a point (i, j) on the disretization. Its 4 neighbors are (i+ h, j),

(i − h, j), (i, j + h) and (i, j − h). These �ve points de�ne four triangles
{S(2)

i }i∈[1..4] and four edges {S(1)
i }i∈[1..4] (�gure 2.9).It is possible to disretize the Eikonal equation on eah of the triangles.As an example, on S(2)

1 , we obtain
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S

(2)
1

(i− h, j)
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(2)
2

(i, j)
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(2)
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(i, j + h)

(i+ h, j)

Fig. 2.9 � Neighborhood system indued by 4 neighbors in 2D.
∇U ≈

(
U(i+ h, j)− U(i, j)

h
,
U(i, j + h)− U(i, j)

h

) (II.3.1)and
(U(i+ h, j)− U(i, j))2 + (U(i, j + h)− U(i, j))2 = h2P (i, j)2 (II.3.2)denoting u def.

= U(i, j), we have
2u2−2u(U(i+h, j)+U(i, j+h))+U(i+h, j)2 +U(i, j+h)2−h2P (i, j)2 = 0(II.3.3)The quadrati equation has 0, 1 or 2 solutions depending on the sign of
∆′ def.

= 2h2P (i, j)2 − (U(i+ h, j)− U(i, j + h))2.Furthermore, we wish to have u ≥ U(i+ h, j) and u ≥ U(i, j + h). The sumof the roots of the equation being U(i+ h, j) + U(i, j + h), only the biggestroot u2 an satisfy this ondition. We have
u2 =

U(i+ h, j) + U(i, j + h) +
√

∆′

2
(II.3.4)A simple alulation shows that a su�ient ondition so that u2 ≥ max{U(i+

h, j), U(i, j + h)} is
(U(i+ h, j)− U(i, j + h))2 ≤ h2P (i, j)2. (II.3.5)



II.3 Fast-Marhing on a regular grid 55Notie that this ondition is stronger than the positivity ondition of ∆′.To sum up, we de�ne :
θ

(2)
P : (x, y) ∈ R

2 7→
{

x+y+
√

2P 2−(x−y)2

2
if (x− y)2 ≤ P 2

+∞ otherwise (II.3.6)
s
(2)
1

def.
= θ

(2)
hP (i,j)(U(i+ h, j), U(i, j + h)) (II.3.7)In other words, s(2)

1 is +∞ or a value :
• whih makes the Eikonal equation true in the triangle,
• whih is superior to the values of other verties of the triangles.Similarly, let us de�ne s(2)

2 , s
(2)
3 and s

(2)
4 the solutions in the triangles S(2)

2 ,
S

(2)
3 and S(2)

4 :
s
(2)
2

def.
= θ

(2)
hP (i,j)(U(i− h, j), U(i, j + h))

s
(2)
3

def.
= θ

(2)
hP (i,j)(U(i− h, j), U(i, j − h))

s
(2)
4

def.
= θ

(2)
hP (i,j)(U(i+ h, j), U(i, j − h))

(II.3.8)Let us also de�ne {s(1)
i }i∈[1..4] as the update values obtained by disretizingthe Eikonal equation along the edges {S(1)

i }i∈[1..4] :
θ

(1)
P : x ∈ R 7→ x+ P (II.3.9)

s
(1)
1

def.
= θ

(1)
hP (i,j)(U(i+ h, j))

s
(1)
2

def.
= θ

(1)
hP (i,j)(U(i, j + h))

s
(1)
3

def.
= θ

(1)
hP (i,j)(U(i− h, j))

s
(1)
4

def.
= θ

(1)
hP (i,j)(U(i, j − h))

(II.3.10)Let us de�ne
θP : (a, b, c, d) ∈ R

4 →
min{θ(2)

P (a, b), θ
(2)
P (b, c), θ

(2)
P (c, d), θ

(2)
P (d, a), θ

(1)
P (a), θ

(1)
P (b), θ

(1)
P (c), θ

(1)
P (d)}(II.3.11)



56 Shortest paths omputationThe update sheme of Fast-Marhing algorithm onsists in omputing thesolutions of Eikonal equation in all triangles and edges, and to selet theminimal value among them.
U(i, j)← min

i=1..2
j=1..4

{s(i)
j } = θhP(i,j)

(U(i+ h, j), U(i, j + h), U(i− h, j), U(i, j − h))(II.3.12)Notie that the update sheme in Dijkstra algorithm is
U(i, j)← min

j=1..4
{s(1)

j } (II.3.13)Let us reall that in Dijkstra algorithm, the update step ould be re�nedby onsidering only neighbors with a value smaller than the urrent point(property II.1.1.2).The same reasoning holds in the urrent situation : indeed, for all j ∈ [1..4],if we denote by S(1)
j the edge ((i, j), A), s(1)

j > U(A), and if we denote by S(2)
jthe triangle ((i, j), A,B), s(1)

j > max{U(A), U(B)}. An edge or a triangleannot be taken into aount in the update if the value of one of its vertiesis stritly superior to the urrent value of (i, j).let us denote by
S−(i, j)the set of edges or triangles whih are adjaent to (i, j) and suh that all itsverties distint from (i, j) have a value inferior to U(i, j).Then, the update step is equivalent to :

U(i, j)← min
S

(i)
j ∈S−(i,j)

{s(i)
j } (II.3.14)This formulation, in addition to allowing to save up omputations, will alsobe useful in the onvergene proof.This update state an be performed iteratively for all the disretizationpoints. However � as for Dijkstra algorithm � one an use ausality in orderto hoose a more lever order.Fast-Marhing algorithm is synthesised on �gure 5.As in Dijkstra algorithm ase, in order to avoid unneessary operations, theupdate step an be performed by taking into aount only triangles/edges



II.3 Fast-Marhing on a regular grid 57Algorithm 5 Fast-MarhingInput: { i
N
, j

N
| −N ≤ i, j ≤ N

} as a disretization of [0, 1]2. s ∈ S.Output: ∀t ∈ V d(t) = Us(t)Initialization:Set d(s) = 0 and d(t) = +∞ for all t 6= s. Set A = ∅, T = {s} and
F = V \{s}.while there exists t ∈ T doSelet t ∈ T suh that d(t) is minimal.
T ← T\{t}, A← A ∪ {t}for all v ∈ N (t)\A doif v ∈ F then

F ← F\{v}, T ← T ∪ {v}end ifupdate v using equation (II.3.14).end forend whilethat ontains the urrent point � and in the ase of triangles, suh that theremaining point belongs to A.Complexity. The analysis performed for Dijkstra algorithm holds. It showsthat the omplexity of this algorithm is O(Nlog(N)), where N is the numberof points explored by the algorithm.II.3.2 Convergene proofIn this setion, we will prove the onvergene of this numerial sheme, i.e.prove that when the disretization step h tends toward 0, the solution ompu-ted by the algorithm tends toward the visosity solution of Eikonal equation.Notie that another onvergene proof is given in [174℄ � the authors areusing a di�erent but equivalent formulation for the update step. The bene�tof our framework resides in the ease of generalisation of both the sheme andthe onvergene proof to more omplex ases.Let us de�ne
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S(h, (x, y), t, U)

def.
=

min
i=1..2
j=1..4

{s(i)
j } − t

h

=
θhP(x,y)

(U(x+ h, y), U(x, y + h), U(x− h, y), U(x, y − h))− t
h

(II.3.15)The update sheme (II.3.12) an thus be rewritten :
S(h, (i, j), U(i, j), U) = 0 (II.3.16)The omplete onvergene proof lies on two steps.

• Proving that any �x-point of the disrete problem II.3.12 tend toward thevisosity solution of (II.2.1) � whih is mainly a spei� ase of a generalproof made in [9℄ and taken up by [174℄.The proof is based on three harateristis of the sheme ([9℄) :� monotony of the update sheme II.3.12, whih an be enuniated asfollows :(II.3.16) is monotonous if and only if
U ≤ V ⇒ S(h, (i, j), t, U) ≤ S(h, (i, j), t, V )� stability of II.3.12 : the sheme is stable if the solution to the disreteproblem exists, and is bounded with a bound independent from thedisretization step.� onsisteny of II.3.12 � whih denote the fat that II.3.12 is a disreti-zation of Eikonal equation or an equivalent equation. In our ase, thisan be written

lim
h→0

(x′,y′)→(x,y)
ξ→0

S(h, (x′, y′), ϕ(x′, y′) + ξ, ϕ+ ξ) = H(∇ϕ, (x, y))for every funtion ϕ ∈ C∞ bounded over E, and where
H(∇ϕ, (x, y)) = 0is equivalent to Eikonal equation (H is alled Hamiltonian assoiatedwith the Eikonal equation).
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• Prove that the ordering of updates allows to ompute suh a �x-point. Thereasoning is somewhat similar to the one made during Dijkstra algorithmproof. Notie that the �rst demonstration of this fat was given in [187℄,yet with a di�erent proof.Some results. Some preliminary results will be needed during the onver-gene proof.Let us de�ne ΩP = {(x, y) ∈ R

2 | (x− y)2 ≤ P 2}, Ω+
P = {(x, y) ∈ R

+2 | x ≥
y et (x− y)2 ≤ P 2} and Ω−

P = {(x, y) ∈ R
+2 | x ≤ y et (x− y)2 ≤ P 2}.Lemma II.3.2.1 Properties of θ(2)

PLet (x, y) ∈ ΩP .
• θ(2)

P is ontinuous over ΩP .
• if (x, y) ∈ ΩP , a 7→ θ

(2)
P (x+ a, y + a) is non-dereasing over R

+.
• if (x, y) ∈ ΩP , a 7→ θ

(2)
P (x+ a, y) is non-dereasing over R

+.
• if (x, y) ∈ ΩP , a 7→ θ

(2)
P (x, y + a) is non-dereasing over R

+.
• if (x− y)2 = P 2, θ(2)

P (x, y) = min{x, y}+ P .These properties are illustrated on �gure 2.10.
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P
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Fig. 2.10 � Illustration of some properties of θ(2) : the funtion is non-dereasing in all the diretions indiated by blue arrows.



60 Shortest paths omputationLemma II.3.2.2 Properties of θ(1)
P

• θ(1)
P is ontinuous over R.

• θ(1)
P is non-dereasing over R.We an therefore dedue the following properties for θPLemma II.3.2.3 Properties of θP

• θP is ontinuous over R
4.

• θP is a non-dereasing funtion of eah of its variables.Proof :
• Using the ontinuity of θ

(1)
P and θ

(2)
P , θP is ontinuous everywhere, exept possibly inpoints suh that (a − b)2 = P 2, (b − c)2 = P 2, (c − d)2 = P 2 or (d − a)2 = P 2. As anexample, let us assume that (a− b)2 = P 2 and a > b. Then we have a = b + PThen θ

(2)
P (a, b) = a+b+

√
P 2

2 = 2a+2P
2 = a + P = θ

(1)
P (a).Similarly, if a < b, we get θ

(2)
P (a, b) = θ

(1)
P (b).The θ(1) mappings �stik� ontinuously on the border of the set where θ(2) < +∞, whihshows that θP is ontinuous at those points.

• The growing of θ results from the growing of θ
(1)
P and θ

(2)
P .

�Continuity an be geometrially interpreted in the following way : let usassume that for urrent values of U(i±h, j±h), the update is done from thethe ((i, j), (i+h, j), (i, j+h)) triangle � II.3.5 being true in this triangle. Letus also assume that U(i + h, j) inreases until equality is reahed in II.3.5.Then, the solution is equal to U(i+ h, j), i.e. the gradient of U est ollinearwith ((i, j), (i, j + h)). The update value for the triangle is then equal to theupdate value for the ((i, j), (i, j + h)) edge (�gure 2.11).Updates from edges are therefore ontinuously taking over from the updatesfrom triangles when the laters beome impossible.We now present the onvergene proof of the algorithm :Proof :monotony :Follows immediately from proposition II.3.2.3.stability :The existene of a solution of disrete problem an be demonstrated by borrowingan argument from [174℄.
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b

a

θ
(2)
P (a, b)

θ
(2)
P (a, b)

θ
(2)
P (a, b)

b

a

b

a

Fig. 2.11 � Continuity of θp : the update step from the θ(1)
P (a) edge onti-nuously taking over from the updates from θ

(2)
P (a, b) triangle when the gra-dient beomes ollinear with the edge � after an inrease of b.Let us onsider an algorithm whih apply the update state to all the points ofthe disretization, in the same order as Fast-Marhing algorithm, but an in�nitenumber of times (whih orrespond to the iterative version of Dijkstra algorithmproposed in II.1.1).For every point (i, j), d(i, j) is thus non-inreasing, and inferiorly bounded by 0.Therefore it tends toward some limit denoted dit(i, j).After an update step over (i, j), we have S(h, (i, j), U(i, j), U) = 0. S(h, (i, j), t, U)being ontinuous in t and in U , S(h, (i, j), t, U) tends toward

S(h, (i, j), dit(i, j), dit) along the iterations. Furthermore, after an in�nite number ofiterations, we have S(h, (i, j), U(i, j), U) = 0. This implies S(h, (i, j), dit(i, j), dit) =

0, and dit is therefore a solution of the disrete sheme.
dit is inferiorly bounded by 0. It is possible to show the existene of an upper boundwhih depends on the diameter of E, on the minimal potential over E � whih isnot zero by ompaity of E an ontinuity of the potential.onsisteny :let us onsider a funtion ϕ C∞ bounded over E, (x, y) ∈ E, and ξ ∈ R

+∗.
• Firstly, let us note that

s
(1)
1 = ϕ(x′ + h, y) + ξ + hPx′y′ (II.3.17)and

s
(1)
1 − ϕ(x′, y′)− ξ

h
=

D+xϕ(x′, y′)

h
+ Px′y′ (II.3.18)tends toward

dxϕ(x, y) + Pxy = θ
(1)
Pxy

(dxϕ(x, y)) (II.3.19)



62 Shortest paths omputationwhen (x′, y′)→ (x, y), h→ 0 and ξ → 0.Similarly, for the other edges, we �nd limits θ
(1)
Pxy

(−dxϕ(x, y)), θ
(1)
Pxy

(dyϕ(x, y))and θ
(1)
Pxy

(−dyϕ(x, y)).
• Let us now onsider S

(2)
1 triangle, and let us assume that (dxϕ(x, y)−dyϕ(x, y))2 <

P 2
xy.

P is ontinuous, and ϕ C∞. For any h lose enough to 0 and (x′, y′) lose enoughto (x, y), we thus have (ϕ(x′ + h, y′) + ξ − ϕ(x′, y′ + h)− ξ)2 = (ϕ(x′ + h, y′)−
ϕ(x′, y′) + ϕ(x′, y′) + ϕ(x′, y′ + h))2 ≤ h2P 2

x′y′ .Then,
s
(2)
1 =

2ξ+ϕ(x′+h,y′)+ϕ(x′,y+h′)+
√

2h2P 2
x′y′

−(ϕ(x′+h,y′)−ϕ(x′,y′+h))2

2and
s
(2)
1 − ϕ(x′, y′)− ξ

h
=

D+xϕ(x′,y′)
h

+ D+yϕ(x′,y′)
h

+

√

2P 2
x′y′ −

(
D+xϕ(x′,y′)

h
− D−yϕ(x′,y′)

h

)2

. (II.3.20)When h and (x′, y′) onverge toward their limits, this expression tends to
dxϕ(x, y) + dyϕ(x, y) +

√

2P 2
xy − (dxϕ(x, y)− dyϕ(x, y))2 =

θ(2)(dxϕ(x, y), dyϕ(x, y)) (II.3.21)Similar results an be obtained for the three remaining triangles :� if (dxϕ(x, y) + dyϕ(x, y))2 < P 2
xy,

s
(2)
2 −ϕ(x′,y′)−ξ

h
tends toward θ(2)(dxϕ(x, y),−dyϕ(x, y)).� if (−dxϕ(x, y) + dyϕ(x, y))2 < P 2

xy,
s
(2)
3 −ϕ(x′,y′)−ξ

h
tends toward θ(2)(−dxϕ(x, y),−dyϕ(x, y)).� if (−dxϕ(x, y)− dyϕ(x, y))2 < P 2

xy,
s
(2)
4 −ϕ(x′,y′)−ξ

h
tends toward θ(2)(−dxϕ(x, y), dyϕ(x, y)).Furthermore, these results remain true in the ases when (±dxϕ(x, y)±dyϕ(x, y))2 >

P 2
xy � when the limit is +∞.

• Thus � outside the limit ases where (±dxϕ(x, y)± dyϕ(x, y))2 = P 2
xy, we have

S(h, (x′, y′),Φ(x′, y′) + ξ,Φ + ξ) =
min{s(i)

j − ϕ(x, y)}
h

→
h→0

(x′,y′)→(x,y)
ξ→0

θPxy(dxϕ(x, y), dyϕ(x, y),−dxϕ(x, y),−dyϕ(x, y)) (II.3.22)



II.3 Fast-Marhing on a regular grid 63It is possible to show that this equation still holds in the limit ases : for example,let us assume that (dxϕ(x, y)− dyϕ(x, y))2 = P 2
xy and dxϕ(x, y) > dyϕ(x, y). Letus onsider ((xk, yk), hk, ξk)→ ((x, y), 0, 0).let us denote by ((xψ(k), yψ(k)), hψ(k), ξψ(k)) the subsequene made from termssuh that (ϕ(xψ(k) + h, yψ(k))− ϕ(xψ(k), yψ(k) + h))2 ≤ h2P 2

xψ(k)yψ(k)
, and

(xψ′(k), yψ′(k), hψ′(k), ξψ′(k)) the omplementary subsequene.Let us onsider sk =
s21−ϕ(xk,yk)

hk
. Like above, we have

lim
k→+∞

sψ(k) = θ(2)(dxϕ(x, y), dyϕ(x, y)).Furthermore, we still have lim
k→+∞

s
(1)
1 −ϕ(xk,yk)

hk
= θ(1)(dxϕ(x, y))As observed during the ontinuity proof of θ, these two quantities are equal. Wededue that

min{s2
1, s

1
1} − ϕ(xk, yk)

hk
→ θ(1)(dxϕ(x, y)).The other ases an be takled in the same way. Thus II.3.22 is valid for anyvalue of ϕ.The sheme is thus onsistent with the following Hamiltonian

H(∇ϕ, (x, y))
def.
= θPxy (dxϕ(x, y), dyϕ(x, y),−dxϕ(x, y),−dyϕ(x, y)) (II.3.23)Furthermore, θ(1) and θ(2) being non-dereasing, we have

H(∇ϕ, (x, y)) =

min{θ(2)(−|dxϕ(x, y)|,−|dyϕ(x, y)|), θ(1)(−|dyϕ(x, y)|), θ(1)(−|dyϕ(x, y)|)}.(II.3.24)One easily sees that H(∇ϕ, (x, y)) = 0 if and only if |∇ϕ(x, y)|2 − P 2
xy = 0.The sheme is thus onsistent.ordering :the proof of Dijkstra algorithm an be exatly transposed here. For any point tof the disretization, let us denote by dit(t) the distane obtained by the algo-rithm desribed in the stability proof.. dit is thus a �x-point of the update sheme.Furthermore, we haved ≥ dit (the �rst iteration orrespond exatly to the one ofFast-Marhing algorithm, and the following iterations an only derease the valuesof eah point.)Let us onsider the Fast-Marhing algorithm.We are going to prove indutively that, at any step of the algorithm, ∀t ∈ A d(t) =

dit(t). Notie that this property holds after the initialisation.



64 Shortest paths omputationLet us onsider the time when a point with minimal distane is hosen in T . Letus onsider t0 ∈ T ∪ F minimising dit(t).let us denote by
• S−(t0) the set of triangles/edges adjaent to t0 and suh that all the points ofthe triangle/edges di�erent from t have a value smaller than dit(t0),
• SA(t0) the set of triangles/edges adjaent to t0 and suh that all the points ofthe triangle/edges di�erent from t are in A.
dit veri�es II.3.14. Thus, we have
dit(t0) = min

Sij∈S−(t0)
sij(dit)Furthermore, if v /∈ A, we have dit(v) ≥ dit(t0).We dedue dit(t0) ≥ min

Sij∈SA(t0)
sit

i
j(dit)Let us onsider all the update operation that ourred to t0 until now. The updatefrom a triangle or an edge in SA(t0) ourred when the last vertex but one of thistriangle or this edge was transferred in A.We then have d(t0) = min

Sij∈SA(t0)
sij = min

Sij∈SA(t0)
sij(dit)by hypothesis.Then d(t0) ≤ dit(t0). Furthermore, for all v in T , d(t0) ≤ dit(t0) ≤ dit(v) ≤ d(v).In partiular, d(t0) ≤ d(v). This inequality is strit, unless if dit(t0) = dit(v). Wethus an assert that the set of verties of T of minimal evaluated distane oinideswith the set of verties of T of minimal atual distane.The hosen vertex t is therefore a vertex with minimal distane, and we have d(t) =

dit(t), whih onludes the proof.
�The monotoniity ondition will be the main obstale to the generalisationof Fast-Marhing algorithm to more general Riemannian manifolds.II.3.2.1 Improving the running timeThe alulation (II.3.12) request up to four resolutions of seond degree equa-tions. It is possible to redue this amount of operations.Let us de�ne Ax = (i− 1, j) and A′

x = (i + 1, j) if U(i − 1, j) ≤ U(i + 1, j),
Ax = (i+ 1, j), and A′

x = (i− 1, j) otherwise. Similarly, let us de�ne Ay and
A′

y. Up to a swith of two oordinates, we an assume that Ay ≤ Ax. Figure2.12 illustrates two possible on�gurations of s(2)
1 , s(2)

2 , s(2)
3 and s

(2)
4 . Let us
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y
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+∞ (x = y)

(x− y = hP )

θ(2)(Ax, Ay)

θ(2)(Ax, A′
y)θ(2)(A′

x, A′
y)

θ(2)(A′
x, Ay)

θ(1)(Ax)

θ(1)(A′
x)

θ(1)(A′
y)
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(y − x = hP )
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Ax

A′
y

A′
x

Ay

+∞

+∞ (x = y)

(y − x = hP )

(x− y = hP )

θ(2)(Ax, A′
y)

θ(2)(Ax, Ay)

θ(1)(Ax)

θ(1)(A′
x)

θ(1)(A′
y)

θ(1)(Ay)

θ(2)(A′
x, A′

y)

θ(2)(A′
x, Ay)Fig. 2.12 � Some possible on�gurations for s(i)

j .
note that we an also draw points orresponding to values of s(1)

1 , s(1)
2 , s(1)

3and s(1)
4 .



66 Shortest paths omputationA ase-study of the di�erent on�gurations gives the following results :Proposition II.3.2.4
min{s(i)

j } is
• either reahed for the ((i, j), Ax, Ay) triangle if the orresponding value is�nite,
• or reahed for the ((i, j), Ay) edge.To summarise, we de�ne

U(i, j)←







s
(2)
∗ =

U(Ax)+U(Ay)+
√

2h2P (i,j)2−(U(Ax)−U(Ay))2

2if (U(Ax)− U(Ay))
2 ≤ h2P (i, j)2

s
(1)
∗ = min{U(Ax), U(Ay)}+ hP (i, j)otherwisewhih redues the number of operations to perform with respet to (II.3.12)to at most one resolution of a quadrati equation.Despite the di�erent formulation, this sheme is equivalent to the one pro-posed in [188, 174℄ :

(max{Ui,j−Ui−1,j , Ui,j−Ui+1,j , 0})2+(max{Ui,j−Ui,j−1, Ui,j−Ui,j+1, 0})2 = P 2
(i,j)(II.3.25)Other improvements of the running time have been proposed, most of theminspired by variations of Dijkstra algorithm.

• When one is willing to ompute a shortest path between two points, it ispossible to stop the front propagation when the seond point is reahed.Another approah onsists in propagating fronts simultaneously from bothpoints, and to stop when the two fronts interset. A gradient desent fromthe intersetion in eah front will then give an approximation of the shor-test path between the two onsidered points [50℄.
• In the same artile, a freezing strategy is proposed � whih allows to stopfront propagation in high-potential areas.
• Inspired by Best First Searh algorithm, [156℄ proposes to use heurististo drive the propagation of the front in the orret diretion.



II.3 Fast-Marhing on a regular grid 67
• At the sake of a slight lost of preision, [219℄ has shown the possibility ofimplementing the algorithm with a O(n) time omplexity, using a untidypriority queue data struture instead of a heap to implement T .Notie that all these strategies an also be applied to the more general ver-sions of Fast-Marhing algorithm we will desribe in the sequel.II.3.3 Inreasing the neighborhood systemEven if onvergene of this algorithm is proved when the disretion stepsonverges toward 0, it is not an exat algorithm. Figures 2.14 and 2.15 showerrors obtained by the algorithm. Unlike the results obtained by Dijkstraalgorithm, we an observe that the relative error vanishes as we move awayfrom the origin. This means dually that � for a onstant potential � theevaluated distane map onverge toward its theoretial value when the thedisretization step tends toward zero.The numerial error of the algorithm is more important in the neighborhoodof s, in diretions where no edges are present in the neighborhood system. Notunlike the ase of Dijkstra algorithm, it is possible to improve the preision ofthe algorithm by onsidering a more important neighborhood system (�gure2.13) � as proposed in [46℄. The presented system onsists in 8 triangles and
8 edges.

S
(2)
2

S
(2)
1

S
(2)
3

S
(2)
5

S
(2)
6

S
(2)
7

S
(2)
8

(i− 1, j + 1) (i, j + 1) (i+ 1, j + 1)

(i− 1, j)

(i− 1, j − 1)

(i, j) (i+ 1, j)

(i, j − 1) (i+ 1, j − 1)

S
(2)
4

Fig. 2.13 � 8-neighbors system for 2D Fast-MarhingThe Fast-Marhing algorithm remains the same. The update sheme onsists



68 Shortest paths omputationin seleting the triangle or the edge whih produes the minimal value. Ho-wever, the are two di�erenes with the previously exposed algorithm :
• We need to ompute update values for triangles with a di�erent shape� and therefore to �nd an equivalent of II.3.1 for those triangles. It is aspei� ase of a more general equation we will introdue in setion II.4.
• It is not possible to redue the amount of neessary alulations as muhas in the previous ase.II.3.4 Numerial resultsWe ompare numerial results obtained by the methods exposed in the pre-vious setions.Figures 2.14 and 2.15 shows results obtained by the inrease of the neighbo-rhood system. Figure 2.16 presents similar results for a spae onsisting oftwo half-planes with uniform potentials 1 and 4 � for whih it is possible toompute the distane map with arbitrary preision.Inreasing the neighborhood system results in an improvement of the resultsobtained by Dijkstra algorithm. However, as shown in 2.15, the error does notvanish as we move away from the origin � or dually when the the disretiza-tion step tends toward zero. On the opposite, it is the ase for approximationomputed by Fast-Marhing algorithm.Figure 2.17 shows some shortest paths omputed from the distanes maps.II.3.5 Generalisation to nDIt is straightforward to generalise the presented algorithm to arbitrary di-mension.Let us onsider a n-dimensional spae, disretized with a regular grid, anda neighborhood system onsisting of 2n neighbors. Suh a system de�nes
Kn

def.
= 2n simplies of dimension n, Kn−1

def.
=
(

n
1

)
2n−1 = n2n−1 simplies ofdimension n− 1 . . .K1

def.
= 2

(
n

n−1

)
= 2n simplies de dimension 1 � i.e. 3n − 1simplies (�gure 2.18 shows some of these simplies in the ase of dimension4). These simplies are a generalisation of triangles and edges in dimension2.
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Fig. 2.14 � Relative errors obtained by the di�erent algorithms for a uniformpotential over a regular 100 × 100 grid. Left olumn, top to bottom : thepotential, Fast-Marhing with 4 neighbors, Fast-Marhing with 8 neighbors.Right olumn, top to bottom : Dijkstra with 4 neighbors, Dijkstra with 8neighbors, Dijkstra with 16 neighbors. All the images are represented withthe same gray level sale : blak : 0%, white : ≥ 40%
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Fig. 2.15 � Relative errors obtained by the di�erent algorithms for a uniformpotential over a regular 100× 100 grid. Top : maximum of relative error fora �xed distane to origin. Bottom : L2 norm of relative error for a �xeddistane to origin.
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Fig. 2.16 � Relative errors obtained by the di�erent algorithms for apieewise-onstant potential over a regular 100× 100 grid. Left olumn, topto bottom : the potential, Fast-Marhing with 4 neighbors, Fast-Marhingwith 8 neighbors. Right olumn, top to bottom : Dijkstra with 4 neighbors,Dijkstra with 8 neighbors, Dijkstra with 16 neighbors. All the images arerepresented with the same gray level sale : blak : 0%, white : ≥ 40%



72 Shortest paths omputation

Fig. 2.17 � Shortest paths obtained for a onstant potential (top), and for apieewise onstant potential (bottom), for the Fast-Marhing algorithm with4 (left) and 8 (right) neighbors.It is possible to disretize the Eikonal equation on eah simplex, and thus toobtain a generalisation of (II.3.1) and (II.3.3). Let us onsider a simplex S(k)
lof dimension k, and let us denote by v1 . . . vk the values on its verties. Letus de�ne u = U(i1, i2 . . . in). We have

∇U ≈
(
v1 − u
h

, . . .
vk − u
h

) (II.3.26)and
ku2 − 2u

k∑

i=1

vi +
k∑

i=1

v2
i − h2P (i, j)2 (II.3.27)
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Fig. 2.18 � Some simplies adjaent to x in dimension 3.Properties shown in 2D an easily be generalised.In the ase when
∆′ def.

= (
k∑

i=1

vi)
2 − k(

k∑

i=1

v2
i ) + kh2P (i, j)2

= kh2P (i, j)2 − 1

2

(
k∑

i=1

k∑

j=1

(vi − vj)
2

)

≥ 0 (II.3.28)the bigger solution of this equation is
u2

def.
=

(
∑k

i=1 vi

)

+
√

∆′

n
(II.3.29)In the ase when ∆′ ≥ 0, we thus have

u2 ≥ vl

⇔
∑k

i=1(vi − vl) ≥ 0 or (∑k
i=1(vi − vl)

)2

≤ h2∆′ (Cl)If the set C of all onditions (Cl) is veri�ed, we have ∆′ ≥ 0 have ∀l u2 ≥ vl.We thus de�ne
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θ

(k)
P : (xi) ∈ R

2k 7→






∑k
i=1 xi+

√

kP 2− 1
2

∑k
i=1

∑k
j=1(xi−xj)2

2
if C

1
+∞ otherwise (II.3.30)

s
(k)
l

def.
= θ

(2)
hP (i,j)(U(i1 + h . . . ik . . . in) . . . U(i1 . . . ik + h . . . in)) (II.3.31)and

θP (a+
1 , . . . a

+
n , a

−
1 , . . . a

−
n ) ∈ R+2n def.

= min
k=1..n

a±

i1
...a±

ik

{θ(k)
P (a±i1 . . . a

±
ik

)} (II.3.32)Therefore, we use the following update sheme :
U(i1, . . . in)← min

i=1..k
j=1..Ki

{s(i)
j } = θhP(i,j)

(U(i1 + h, . . . , in), . . . , U(i1, . . . , in + h),

U(i1 − h, . . . , in), . . . , U(i1, . . . , in − h))(II.3.33)As in the ase of 2D, it is possible to restrit the alulations to simpliessuh that their verties have values smaller than urrent value U(i, j).The algorithm is then the same as in dimension 2.Complexity. The update state requires 3n total omputations for eahvertex. The omplexity of the algorithm is thus a priori O(N(log(N)+n3n)),where N is the number of verties explored by the algorithm.Corretness. The 2D proof an be exatly transposed. It mainly relies onthe following lemma :Lemma II.3.5.1
• θP is ontinuous.
• θP is non-dereasing in eah of its variables.1For pratial purposes, in order to hek this ondition, one just need to ompute themaximal solution of the equation. If this solution exists and is bigger than all the vi, thenC holds.



II.3 Fast-Marhing on a regular grid 75Proof :
• As in the 2D ase, ontinuity is derived from the study of onnetions at points belongingto the border of C onditions. More preisely, we an show that if equality holds in (Cl),the solution obtained on the urrent simplex is equal to the solution obtained on the sub-simplex obtained by removing the lth vertex. This generalises the property illustratedby �gure 2.11 :Assume that we are on the border of the domain de�ned by C. Then there exists l suhthat (∑k

i=1(vi − vl)
)2

= h2∆′,∑k
i=1(vi− vl) ≤ 0 and u2 = vl. After some alulations,we an write

vl =

∑

i6=l vi +
√

(k − 1)h2P 2
xy − 1

2

∑

i6=l
∑

j 6=l(vi − vj)2

k − 1hene
u2 = vl =

∑

i6=l vi +
√

(k − 1)h2P 2
xy − 1

2

∑

i6=l
∑

j 6=l(vi − vj)2

k − 1
,whih orresponds with the solution on the sub-simplex obtained by removing the lthvertex (this solution being learly bigger than vi for all i 6= l).

• Growing is derived from growing of the θ(k) funtions with respet to eah of theirvariables in the domain where they are �nite.
�The onvergene proof is now exatly parallel to the one in 2D : stabilityand ordering are proved in the same way. Monotony of the sheme omesfrom monotony of θP . In order to prove onsisteny, we an demonstrate asin dimension 2 that if we de�ne

S(h, (x1, . . . , xn), t, U)
def.
==

θhP(x,y)
(U(x1 + h, . . . xn), . . . )− t

h
(II.3.34)then we have

lim
h→0

(x′
1,...,x′

n)→(x1,...,xn)
ξ→0

S(h, (x′, y′), ϕ(x′, y′) + ξ, ϕ+ ξ) =

θhP(x,y)
(d1ϕ(x, y), . . . dnϕ(x, y),−d1ϕ(x, y), · · · − dnϕ(x, y), ).

(II.3.35)This quantity vanishes if and only if ∇ϕ satis�es the Eikonal equation.



76 Shortest paths omputationII.3.5.1 Improving the running timeThe omputation of (II.3.33) requires up to the resolution of 3n quadratiequations. As in the 2D ase, it is possible to redue this number of opera-tions.Let us de�ne Ak = (i1 . . . , ik+h, . . . in) if U(i1 . . . , ik+h, . . . in) ≤ U(i1 . . . , ik−
h, . . . in), and U(i1 . . . , ik − h, . . . in) otherwise. Up to a permutation of oor-dinates, we an assume that U(A1) ≤ · · · ≤ U(An).We then de�ne

S
(n)
∗ = ((i1 . . . in), A1, . . . An)

S
(n−1)
∗ = ((i1 . . . in), A1, . . . An−1)

. . .

S
(1)
∗ = ((i1 . . . in), A1)

(II.3.36)and sn
∗ . . . s

1
∗ the orresponding values.We thus have the following result � whih generalise the result obtained inII.3.2.1 :Proposition II.3.5.2

• For all k ∈ [1..n], for all simplex S(k)
l of dimension k, if s(k)

∗ 6= ∞ then
sk
∗ ≤ s

(k)
l .

• For all k ∈ [2..n] if s(k)
∗ 6= +∞, then s(k−1)

∗ 6= +∞ and s(k) ≤ s
(k−1)
∗ .Proof :Comes immediately from monotony properties of θ

(k)
P in ΩkP .

�We an then use the following algorithm to ompute the update step � whihwas proposed in the appendix of [99℄ :whih redues the number of quadrati equations to solve to n− 1 instead of
3n.II.3.6 A step toward anisotropyThe update sheme for an anisotropi is theoretially more omplex thanthe shemes we studied in the previous setions. It will be studied in fullgenerality in setion II.4.



II.3 Fast-Marhing on a regular grid 77Algorithm 6 update(t)Input: A vertex t = (i1 . . . in).for k varying from n to 1 doCompute s(k)
∗ .If s(k)

∗ 6=∞, U(i1 . . . in)← s
(k)
∗ and quitend forHowever, in this setion, we will study a useful spei� ase of anisotropiFast-Marhing algorithm on a regular grid � for whih the prinipal ompo-nents of the potentials are ollinear with the grid axis. For this problem, thepreviously exposed method works diretly. Notie that [186℄ rapidly men-tions a method to solve the equivalent problem of �nding distane maps forisotropi potential on orthogonal irregular grid, without explaining preiselyhow to solve the disretized equation.Let us onsider a n dimensional spae, disretized with a regular grid. Letus assume that for any point, the potential has the following expression :

g(x)(v) = λx1v
2
1 + · · ·+λxnv

2
n � i.e. the tensor g has its prinipal omponentsaligned with the axis of the grid.Let us onsider a simplex S(n)
l of dimension n, and denote by v1 . . . vn thevalues on the verties. Let us de�ne u = U(i1, i2, . . . in). Injeting the disreteform of the gradient in I.3.15, we have

n∑

i=1

λxi(u− vi)
2 = 1 (II.3.37)hene

n∑

i=1

λxi

(
(u− vi)

h

)2

= 1 (II.3.38)
u2

(
n∑

i=1

λxi

)

− 2u

(
∑

i=1

viλxi

)

+
n∑

i=1

λxiv
2
i − h2 = 1 (II.3.39)When
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∆′ def.

= (
n∑

i=1

λxivi)
2 −

n∑

i=1

λxi(
n∑

i=1

v2
i ) +

k∑

i=1

λxih
2P (i, j)2

=
n∑

i=1

λxih
2P (i, j)2 − 1

2

(
k∑

i=1

k∑

j=1

λxiλxj(vi − vj)
2

)

≥ 0 (II.3.40)the bigger solution of this equation is
u2

def.
=

(
∑k

i=1 λxivi

)

+
√

∆′
∑n

i=1 λi

(II.3.41)The update step still onsists in omputing the update values for eah sim-plex, and to selet the minimal one. Similar alulations as in isotropi aseshow the monotony on eah simplex of the previous expression � hene wean dedue monotony and ontinuity of the update sheme, and then itsonvergene.II.3.6.1 Improving the running timeImproving the running time is tougher in this situation.However, we an notie that if we de�ne A = (i1 ± h, . . . ik + h, . . . i1 ±
n), B = (i1 ± h, . . . ik − h, . . . i1 ± n), and if we assert for example that
U(A) ≤ U(B), omputing solutions on simplies ontaining A is useless.Indeed, suh a solution is bigger than the one in the symmetri simplexobtained by replaing A with B.We thus de�ne Ak = (i1 . . . , ik+h, . . . in) if U(i1 . . . , ik+h, . . . in) ≤ U(i1 . . . , ik−
h, . . . in), and U(i1 . . . , ik − h, . . . in) otherwise. Up to a permutation of oor-dinates, we an assume that A1 ≤ · · · ≤ An.We an use the following algorithm to ompute the update value :The total number of quadrati equation to solve is thus 2n.Figure 2.19 shows shortest paths and distane maps omputed with thismethod.



II.3 Fast-Marhing on a regular grid 79Algorithm 7 update(t)Input: A vertex t = (i1 . . . in).Initialization:Set s∗ = +∞.for k varying from n to 1 doFor all k-uplet of points (Ai1 . . . Aik), ompute the solution s on thesimplex (t, Ai1 . . . Aik).
s∗ ← min{s, s∗}end for

U(i1 . . . in)← s∗.

Fig. 2.19 � Distane maps and shortest paths in anisotropi spaes. Top :horizontal speed is twie the vertial speed. Bottom : in upper half-plane,horizontal speed is twie the vertial speed. The opposite holds in bottomhalf-plane.



80 Shortest paths omputationII.4 Anisotropi Fast-Marhing, general aseIn this setion, we propose a sheme for the omputation of distane mapsand shortest paths in Riemannian manifolds. We generalise results proposedin [97℄ et [30℄. This sheme is diretly derived for the ones of previous setions.It also relies on the omputation of solutions for eah simplies adjaent tothe urrent point. The smallest solution verifying onditions whih generaliseII.3.5 will be seleted as update value.We will also expose a onvergene proof for a large lass of ases. In thease of isotropi potential, the ondition for onvergene is that for any pointof the disretization and any adjaent simplex, the angles of the simplex atthis point are aute. This is a generalisation of known results in dimension2 [97, 30℄.Notie that in the ase of a regular grid in dimension 3, our sheme is equi-valent with the one proposed in [163℄.II.4.1 Solution omputation in a simplexGeneralising the algorithms of previous setion on Riemannian manifolds isstraightforward. Only the omputation of the s(i)
j hanges. By the way, as wewill �nd out, ases appear in whih onvergene of the method is lost.Inasmuh as introduing anisotropi potentials does not result in extra di�-ulty, we will diretly desribe the more general ase.The framework of this setion in the one desribed in I.3.1.6. Let V be aRiemannian manifold of dimension n, disretized with a set of points. Weonsider a neighborhood system around this point, whih onsists of severalsimplies (2.13 and 2.18 are some examples in dimension 2 and 3).

V is loally di�eomorphi to an open subset of R
n, and we will work on suha spae to derive the equations in the sequel.Let x be a point of the disretization of V . Let us onsider a simplex S(k) ofdimension k, adjaent to x. Up to a translation, we assume that x = 0.The equation we want to disretize is as follow :

‖∇U‖x = 1 (II.4.1)



II.4 Anisotropi Fast-Marhing, general ase 81whih we an rewrite
‖M∇U‖ = 1 (II.4.2)where M is the n×n symmetri positive de�nite matrix assoiated with thepotential.We denote by x1 . . . xk the other verties of the simplex, v = (v1 . . . vk)T theorresponding values, and

X
def.
=






x1
1 . . . x1

n... ...
xk

1 . . . xk
n




 (II.4.3)We want to estimate u = U(x) = U(0) suh that (II.4.2) holds.Asserting U is a�ne on the simplex de�ned by 0, x1, . . . xn. ∇U is thereforeonstant on the simplex.For all i ∈ [1..k] let us onsider the funtion ui(λ)

def.
= U(λxi).Di�erentiating this expression, we get : u′i(λ) =< ∇U, xi > � whih isonstant.Furthermore, we have ui(0) = u and ui(1) = vi.We dedue

< ∇U, xi >= vi − u (II.4.4)hene
∑

j

Ujx
i
j = vi − u (II.4.5)and rewriting this in term of matries,

X∇U = v − u1 (II.4.6)If we denote by X+ def.
= (X tX)−1X t the pseudo-inverse of X, we have

∇U = X+(v − u1) (II.4.7)Notie that X+, only depends on the geometry of the neighborhood, and anthus be pre-omputed.



82 Shortest paths omputationWe also have the onstraint (II.4.1), whih an be rewritten
∇U tMM∇U = 1. (II.4.8)

(X+(v − u1))tMMX+(v − u1) = 1 (II.4.9)If we de�ne b def.
= X+tMMX+, we thus have

(v − u1)tb(v − u1) = 1 (II.4.10)Hene
1 = (v − t1)tb(v − u1) (II.4.11)

= u2(1tb1)− 2u(vtb1) + v
tbv (II.4.12)whih is a quadrati equation in u.

b is a symmetri positive de�nite matrix. We denote by < ., . >b the assoia-ted inner produt.The equation beomes
u2||1||2b − 2u < v,1 >b +||v||2b − 1 = 0 (II.4.13)When the grid is regular and the potential is isotropi with value P , wehave b = PIk, and we �nd the equation (II.3.27). The ase takled in II.3.6orresponds orresponds to a diagonal matrix b.This equation has roots if an only if
∆′ = ||1||2b+ < v,1 >2

b −||v||2b ||1||2b ≥ 0 (II.4.14)This has the following geometri interpretation : in the R
n spae equippedwith the metri indued by b, the inequality is equivalent to the distanefrom v to vet(1) being less than 1.The bigger root is then

u2 =
< v,1 >b +

√
∆′

‖1‖2b
(II.4.15)



II.4 Anisotropi Fast-Marhing, general ase 83II.4.1.1 Link between anisotropy and geometryIn the anisotropi framework, if we de�ne
X ′ def.

= XM−1 et U ′ = M−1U (II.4.16)we get
b = X ′+tX ′+and

∇U ′ = X ′+(v − 1u)Calulations in anisotropi ase are then equivalent to alulations in isotro-pi ase where simplies were deformed by the metri of spae.Therefore, from a theoretial, there is no major di�erene between updatesteps in isotropi an anisotropi ases.II.4.1.2 Conditions for onvergeneAs in the regular grid ase, the onvergene proof relies on
• the fat that the solution on eah simplex is a non-dereasing funtion ofits variables.
• the fat that the solution on eah simplex is bigger that the values on otherverties of the simplex.This seond ondition an be written

(u1− v) ≥ 0 (Cu) (II.4.17)In the isotropi ase, this has a simple geometri interpretation : it just assertsthat the gradient ∇U of the found solution must be in the opposite diretionwith respet to all edges of the simplex (�gure 2.20 (left)).Let us look for the monotony ondition on the simplex.We start from equation (II.4.15), and di�erentiate it with respet to vi. Weget
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Cu Cm

u2 u2

Fig. 2.20 � Geometrial interpretation of onditions Cu and Cm for a bi-dimensional simplex (isotropi ase). Top : Cu orresponds to the gradientbeing in the opposite diretion with respet to the edges of the simplex. Cmorresponds to the gradient oming from inside the simplex. Bottom : onthe left, a solution whih satis�es Cu but not Cm. Inreasing the value ofthe right vertex while keeping the norm of the gradient onstant results ina derease of the solution (blak arrows). On the right, a solution satisfying
Cu and Cm.

∂u2

∂vi
=
< ∂v

∂vi ,1 >
√

∆′+ < ∂v

∂vi ,1 >< v,1 > − < ∂v

∂vi ,v >< 1,1 >

‖1‖2b
√

∆′ (II.4.18)or
∂v

∂vi
= (0, 0, . . . 1 . . . , 0, 0) (II.4.19)
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∇u2 =

b1
√

∆′ + b1 < v,1 > −bv < 1,1 >

‖1‖2b
√

∆′
=
b(1u− v)√

∆′
(II.4.20)i.e. monotony on the simplex holds if and only if

b(u21− v) ≥ 0 (Cm) (II.4.21)In the isotropi ase, this ondition an be rewritten X+t∇U ≤ 0. From ageometri point of view, it is equivalent to the fat that the gradient omesfrom inside the onsidered simplex (�gure 2.20 (right)).In the ase of a regular grid with isotropi potential, we have b = Ik, and thetwo onditions Cu and Cm oinides � whih is oherent with the geometriinterpretation � but it is no longer the ase in the more general framework.However, we have the following property :Proposition II.4.1.1Up to loal deformation of the simplex using II.4.16, let us assume that thepotential in x is isotropi.If the angles of the simplex adjaent to x are aute, then
Cm ⇒ Cu.Proof :Indeed, if the designated angles are aute, then

XXt ≥ 0.Furthermore, let us notie that b−1 = (X+tX+)+ = XXt.Let us assume that
b(u21− v) ≥ 0.Multiplying by b−1, we have (u21− v) ≥ 0.

�Notie that if the urrent point x is entirely surrounded by simplies (inthe sense that the union of simplies adjaent to x ontains a topologialneighborhood of x), there will be a simplex ontaining the gradient, and the
(Cm) will be veri�ed. In this ase, the previous property asserts that (Cu)will be veri�ed � whih will be neessary to the onvergene of the sheme.



86 Shortest paths omputationFinally we denote by s(k) the solution on the simplex whih verifying themonotony ondition (if it exists). In partiular, this solution is superior tothe values of other points of the simplex. If suh a solution does not exist,we set s(k) = +∞.Furthermore, we de�ne θ(k)
b as the funtion whih maps the values on theverties of the simplex vi to s(k).

II.4.2 Update shemeThe update sheme simply onsists in seleting the smallest value produesby a simplex adjaent to x.
U(x)← min

s
s(i) (II.4.22)As in the previous setions, the points are explored in a non-inreasing or-dering. When a point x is transferred to A, the update step is applied to itsneighbors. It is also possible to ompute updates only from simplies ontai-ning x and other points in A.We denote by θ = min θk

b the funtion that maps the set of values of neighborsof x to the seleted update value.
II.4.3 Convergene proofHere again, the proof relies on the fat that on the border of Cm onditions,the omputed solution is equal to the solution omputed on a sub-simplex �whih will imply the ontinuity of θ.



II.4 Anisotropi Fast-Marhing, general ase 87We will need the following lemma :Lemma II.4.3.1 If a ∈ Mn(R) , let us a[i] the matrix from whih the ithline and ith olumn were deleted. If v ∈ Mn,1(R), let us denote by v[i] thevetor from whih the ith element was suppressed.Let b ∈Mn(R) be a symmetri positive de�nite matrix.Then
v solution de vtbv = 1 with biv = 0

⇒

v[i] solution de vt
[i]((b

−1)[i])
−1v[i] = 1Proof :We de�ne w = bv, hene v = b−1w.By hypothesis we have vtbv = 1 and biv = 0.Therefore wtb−1w = 1 and wi = 0, and wt[i](b

−1)[i]w[i] = 1.By the way, we have v[i] = (b−1)[i]w[i], so that w[i] = ((b−1)[i])
−1v[i], and vt[i]((b

−1)[i])
−1v[i] =

1.
�Let us onsider again the disretization of Eikonal equation over the S(k)simplex. (II.4.10) : (v− u1)tb(v− u1) = 1. Let us onsider a solution of thisequation suh that it is at the border of Cm onditions 2, i.e. bl(u1−v) = 0.From the preeding lemma, we have

(u1[l] − v[l])
t((b−1)[l])

−1(u1[l] − v[l]) = 12There is a tehnial di�ulty here � related to positivity ondition of ∆′ : indeed,
∆′ ≥ 0 is a neessary ondition to the existene of a solution verifying Cm. Therefore, itseems neessary to analyse the behaviour of the solution in the limit ase ∆′ = 0. However,as in the ase of dimension 2 on a regular grid, we an show that Cm is �stronger� than
∆′ ≥ 0, i.e. one never has ∆′ = 0 and Cm. Indeed, if we assume ∆′ = 0, Cm is rewritten
b1 < v, 1 >b −bv‖1‖2b ≥ 0. Multiplying with v

t, we have < v, 1 >2
b −‖v‖2b‖1‖2b ≥ 0, whihis ontraditory with ∆′ = ‖1‖2b+ < v, 1 >2

b −‖v‖2b‖1‖2b = 0.



88 Shortest paths omputationYet, b = X+tMMX+, hene b−1 = XM−1M−1X t, and
(b−1)[l] = (X[l])M

−1M−1(X[l])
t.

u is then solution of the disretized Eikonal equation on the sub-simplexobtained from S(k) by deleting the lth vertex � this solution being learlysatisfying Cm.)Continuity of θ follows.We know give the sketh of onvergene proof :monotony Follows immediately from monotony on eah simplex, and fromthe ontinuity of θ.stability The argument is the same as in dimension 2.onsistene In the sequel, we will assume that the simplies of the neighborhood-system homothetially tends toward a single point. It will be the aseif the onsidered spae is disretized by regular simplies of side h � orif it is onsists of simplies build always in the same way on a regulargrid of side h. It is possible to extend the results presented here : forexample, they remain true for simplies whih volume tends toward 0and suh that the orresponding normalised simplies tend toward alimit simplex. We restrits ourselves to the latter ase, in order not tomake the notations too heavy.Let us onsider a funtion ϕ ∈ C∞ and x = (x1 . . . xn).Let us onsider a point x′ = (x′1 . . . x
′
n), and a simplex (x′, x(1) . . . x(k))� its assoiated matrix being hX.Let us denote bhx′

def.
= (hX)+tMx′Mx′(hX)+ and uh = θbhx′

the solutionomputed on this simplex (if it exists) when the values on other vertiesare vh = (ϕ(x(1)) . . . ϕ(x(k))). Let us onsider ξ ∈ R

uh + ξ − ϕ(x′)− ξ =

<vh−ϕ(x′),1>b
hx′

+
√

‖1‖2
b
hx′

+<vh−ϕ(x′),1>2
b
hx′

−||vh−ϕ(x′)||2b
hx′

‖1‖2
b
hx′

‖1‖2
b
hx′

(II.4.23)Furthermore, when h→ 0 and x′ → x, vh−ϕ(x′) ≈ hX∇ϕ. Therefore,denoting b def.
= X+tMxMxX

+, we have
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ϕ(x)

ϕ(x)
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‖Mx∇ϕ‖ > 1 ‖Mx∇ϕ‖ = 1 ‖Mx∇ϕ‖ < 1Fig. 2.21 � Consisteny : di�erent ases
lim
h→0
x′→x
ξ→0

uh − ϕ(x′)

h
=

< X∇ϕ,1 >b +
√

‖1‖2b+ < X∇ϕ,1 >2
b −||X∇ϕ||2b‖1‖2b

‖1‖2b
=

θ
(k)
b (X∇ϕ) (II.4.24)A similar analysis as the one onduted in 2D and relying on the onti-nuity of θ = min θ

(k)
b shows that

lim
h→0
x′→x
ξ→0

(S(h, x′, ϕ(x′) + ξ, ϕ + ξ)
def.
= θ(.)−ϕ(x′)

h
) has as a ontinuous limit.The equivalene between the vanishing of this limit and ϕ satisfyingEikonal equation remains to be heked.The underlying intuition is illustrated �gure 2.21. We will prove that, inthe limit, solutions to the disretized equation exist in a simplex whihontains ∇ϕ (after deformation in the anisotropi ase). Dependingon how ‖Mx∇ϕ‖ ompares to 1, this solution will be stritly inferior,equal, or stritly superior to ϕ(x).Considering equation (II.4.24), we observe that for eah simplex, if

θ
(k)
b (X∇ϕ) 6= +∞ then
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θ

(k)
b (X∇ϕ) = 0

⇔< X∇ϕ, 1 >b≤ 0 et ‖X∇ϕ‖2b = ‖MxX
+X∇ϕ‖2 = 1 (II.4.25)

θ
(k)
b (X∇ϕ) > 0

⇐ ‖X∇ϕ‖2b = ‖MxX
+X∇ϕ‖2 < 1 (II.4.26)

θ
(k)
b (X∇ϕ) < 0

⇐< X∇ϕ, 1 >b≤ 0 et ‖X∇ϕ‖2b = ‖MxX
+X∇ϕ‖2 > 1 (II.4.27)By the way, X+X∇ϕ is the projetion of ∇ϕ onto the linear span ofthe simplex.Several ases have to be onsidered :

• If ‖Mx∇ϕ‖ < 1, then for any simplex, ‖MxX
+X∇ϕ‖ < 1. From(II.4.26) we have θ(k)

b (X∇ϕ) = +∞ or θ(k)
b (X∇ϕ) > 0. Therefore

limS > 0.
• If ‖Mx∇ϕ‖ = 1, let us onsider the n-dimensional simplex ontaining
∇ϕ after deformation � suh that θ(k)

b (X∇ϕ) 6= +∞. Then we have
θ

(k)
b (X∇ϕ) = 0 from (II.4.25). For other simplies, as in the previouspoint, we have θ(k)

b (X∇ϕ) = +∞ or θ(k)
b (X∇ϕ) > 0 and then limS =

0.
• If ‖Mx∇ϕ‖ > 1, we wish to show that there exists a simplex suh that
θ

(k)
b (X∇ϕ) 6= +∞,< X∇ϕ, 1 >b≤ 0 and ‖X∇ϕ‖2b = ‖MxX

+X∇ϕ‖2 >
1. From (II.4.27), this would entail limS < 0.
θ

(k)
b (X∇ϕ) 6= +∞ is equivalent to the existene of a solution u ofdisretized Eikonal equation in the simplex assoiated with X, withvalues X∇ϕ on the verties � Cm being satis�ed.Let us onsider a simplex S(n) whih ontains ∇ϕ after deformation,and denote by Xn its assoiated matrix. We de�ne u = ϕ(x) � it islear that u is not solution of the disretized equation on S(n). Letus progressively derease u. Two senarios an our.



II.4 Anisotropi Fast-Marhing, general ase 91� Either we get a u value verifying the disretized Eikonal equation,at a stage when Cm still holds. The problem is then solved.� Either one of the Cm onditions is violated before, whih meansthat bn(u1−Xn∇ϕ) < 0. In the limit,∇U belongs to a sub-simplex
S(n−1).Iterating this proess, we travel along a family of dereasing simplies

(S(n), S(n−1), S(n−2) . . . ). We will denote by Xi and bi the orresponding matries. Notiethat < Xi∇ϕ, 1 >bi
≤ 0 holds for all these simpliesIf a solution v of the disretized Eikonal equation is found a simplex

S(i) suh that ‖MxX
+
i Xi∇ϕ‖2 ≤ 1. Then v veri�es v ≥ ϕ(x), whih isabsurd : indeed the value of u when entering the simplex was stritlysmaller than ϕ(x).This proessed neessarily lead to a solution � in the worst ase inthe S(1) simplex, whih onludes the proof.ordering The argument is the same as in dimension 2.

We thus have the following theorem :Theorem II.4.3.2The distane map omputed from the algorithm proposed in II.4.2 onvergestoward the visosity solution of I.3.15 when the size of the simplies onvergesto 0.If the angles of the simplies have a maximal value θ, no obtuse angle anappear under a deformation by a tensor with anisotropy ratio less than
(tan(θ/2))−1. This lead to the following sample results.



92 Shortest paths omputation
• In dimension 2 :Theorem II.4.3.3In the following ases, the distane map omputed from the algorithm propo-sed in II.4.2 onverges toward the visosity solution of I.3.15 when the sizeof the simplies onverges to 0 :� Regular grid (�gure 2.9), and isotropi potentials (setion II.3) � or ani-sotropi potentials with prinipal omponents ollinear with the grid axis(setion II.3.6.)� 8 neighbors system (�gure 2.13), potentials with anisotropy ratio less than

(tan(π/8))−1 = 1√
2−1
≈ 2.4.� Neighborhood system onsisting of equilateral triangles, potentials with ani-sotropy ratio less than (tan(π/6))−1 =

√
3 ≈ 1.7.

• In dimension 3 :Theorem II.4.3.4In the following ases, the distane map omputed from the algorithm propo-sed in II.4.2 onverges toward the visosity solution of I.3.15 when the sizeof the simplies onverges to 0 :� Regular grid and isotropi potentials (setion II.3.5) � or anisotropi poten-tials with prinipal omponents ollinear with the grid axis (setion II.3.6.)� S48a neighborhood system (f. setion II.5.2), potentials with anisotropyratio less than ≈ 1.9.� S48b neighborhood system (f. setion II.5.2), potentials with anisotropyratio less than (tan(π/6))−1 =
√

3 ≈ 1.7.� Neighborhood system onsisting of regular tetrahedron, potentials with ani-sotropy ratio less than (tan(π/6))−1 =
√

3 ≈ 1.7.II.5 Numerial ResultsII.5.1 Dimension 2This setion presents some results obtained by the algorithm in 2D. If needbe, we applied the algorithm to simplies with obtuse angles � in this asewe seleted the smallest solution satisfying both Cm and Cu.



II.5 Numerial Results 93Figure 2.22 shows results obtained with a 4 neighbors system (�gure 2.9),with anisotropi potentials non-ollinear with the axis. Suh a potentialreates obtuse angles in the deformed simplies, and the distane map doesnot seem to onverge toward their theoretial value.Figure 2.23 (top and middle) shows results in the same spae, obtained witha 8 neighbors system (�gure 2.13). In this ase, the algorithm onverges. Infat as long as the maximal anisotropy ratio is less than (tan(π/8))−1 ≈ 2.4,the deformed angles remain aute � whatever the diretion of the tensor is.On the opposite, if anisotropy keeps on inreasing (bottom), obtuse anglesappear, and onvergene is lost.

Fig. 2.22 � Distane maps, level sets and shortest paths for a uniform aniso-tropi potential, obtained with a 4 neighbors system. Anisotropy ratio of thetensor is 2. Top : prinipal diretion is ollinear with e3π/4. Bottom : prinipaldiretion is ollinear with e5π/6.
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Fig. 2.23 � Distane maps, level sets and shortest paths for a uniform ani-sotropi potential, obtained with a 4 neighbors system. Top : Anisotropyratio of the tensor is 2, prinipal diretion is ollinear with e3π/4. Middle :Anisotropy ratio of the tensor is 2, prinipal diretion is ollinear with e5π/6.Bottom : Anisotropy ratio of the tensor is 4, prinipal diretion is ollinearwith e5π/6.



II.5 Numerial Results 95II.5.2 Dimension 3In this setion, we present some results obtained by the algorithm in 3Dfor di�erent uniform potentials, and di�erent neighborhood systems.(�gure2.24). The �rst system (S8) onsists in 8 simplies. The seond (S48a) andthird one (S48b) are bigger, and onsists in 48 simplies.

8 simplexes 48 simplexes - a 48 simplexes - bxxx

Fig. 2.24 � Di�erent neighborhood systems in dimension 3The starting set is redued to a single point. The algorithm is illustrated forthree potentials.
• an isotropi potential (�gure 2.25). In the S8 ase, the sheme orrespondsto the spei� ase detailed in setion II.3.5.
• an anisotropi potential, ollinear with the axis � speeds in the di�erentdiretions being 1,2 and 3 (�gure 2.26). In the S8 ase, the sheme orres-ponds to the spei� ase detailed in setion II.3.6.In these ases, for all the neighborhood systems, onvergene is proved. Ho-wever, the hoie of a bigger neighborhood system inreases the preision.
S48a or S48b give qualitatively equivalent results.
• the same anisotropi potential, but non-ollinear with the axis(�gure 2.27).Convergene is lost for S8. The last �gure shows result obtained for S48a∪
S48b � whih is not signi�antly better than the ones obtained for the twosystems independently.
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Fig. 2.25 � Results for a uniform isotropi potential. Top : level sets for
S8, S48a and S48b. Bottom : mean relative error for the three systems, as afuntion of distane from starting point
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Fig. 2.26 � Results for a uniform anisotropi potential, ollinear with theaxis. Top : level sets for S8, S48a and S48b. Bottom : mean relative error forthe three systems, as a funtion of distane from starting point.
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Fig. 2.27 � Results for a uniform anisotropi potential, non-ollinear withthe axis. Top : level sets for S8, S48a, S48b and S48a ∪ S48b. Bottom : meanrelative error for the three systems, as a funtion of distane from startingpoint.



II.6 Other algorithms for shortest paths omputation 99II.6 Other algorithms for shortest paths om-putationIn the ase of dimension 2 with a onstant potential (setion I.3.1.1), nu-merous methods have been developed to ompute distane maps. A reentreview of main algorithms an be found in [57℄. Notie that in this ase, exatalgorithms exists, with quasi-linear omplexity in the size of spae.It is also possible to use the idea of approximating ontinuous shortest pathsby disrete ones in order to ompute geodesis on manifolds represented byrandom point louds[201, 136℄.In dimension 2, [209℄ proposed an algorithm similar to Fast-Marhing almostsimultaneously. This algorithm was inspired by ontrol theory, and an begeneralised in dimension 3 [87℄. It is equivalent with Fast-Marhing in theas of isotropi potentials, but does not onverge to the theoretial solutionin more general ases.Several variants of Fast-Marhing have been proposed in order to obtainonvergent sheme in presene of obtuse angles � or dually when anisotropyis important.In dimension 2, [97℄ proposed a method to suppress obtuse angles based onextending the neighborhood. However this extension inrease running time,and its implementation seems to be triky in bigger dimension. In [190℄,the authors propose a more general method, based on an extended front �the amount of extension depending on the anisotropy ratio. In the ase ofparametri manifolds, [197℄ proposes a fast method for extending the neigh-borhood.In dimension 3 � the deformed spae being sampled by a regular grid � [31℄proposed a generi splitting algorithm based on integer programming, whihextends the method proposed in [197℄.It is also possible to keep the Fast-Marhing general sketh, but to allowupdates for points already in A. When the value of suh a point is modi�ed, areursive orretion of its neighboring points is performed [104℄. For pratialpurposes, the inrease of running time again depends on anisotropy ratio.While the onvergene is not guaranteed, the algorithm seems to behave well



100 Shortest paths omputationfrom strongly anisotropi metris.Finally, a method was proposed for anisotropi potentials in dimension 3 onregular grids [161℄. It appears to be equivalent with our formulation in thisase.II.7 Conlusion, disussionWe proposed a new presentation of Fast-Marhing algorithm. We emphasisedon the onnexions with Dijkstra algorithm. Our formulation is easily exten-ded to bigger dimensions, to anisotropi potentials, and to manifolds, andadmits a uni�ed proof.It would be of high interest to ompare and synthesise the algorithms forshortest paths omputations, in the ases when our sheme is not onvergent.To our knowledge, suh a work has not been done yet.



Chapitre IIITubular strutures segmentationusing shortest paths
IntrodutionIn this hapter, we propose an appliation of shortest paths to the segmenta-tion of tubular strutures � mainly vessels in bi-dimensional medial images.After an introdution (setion III.1), we propose to reast the 2D segmenta-tion problem as a geodesi omputation over a 4-dimensional spae in se-tion III.2. An additional sale dimension gives aess to the loal width ofthe vessels, and allows the diret extration of the enterline of the vessel.A rotational dimension redues erroneous detetion when two vessels areoverlapping.In setion III.3, we then propose an appliation of this framework to a �ow-based vessel segmentation algorithm for optial ortial imaging.Finally, in setion III.4 we show how to apply this framework to the extrationof networks of roads or vessels.ContentsIII.1 Tubular strutures segmentation . . . . . . . . . . 103III.1.1 State of the art . . . . . . . . . . . . . . . . . . . . 104III.1.2 Shortest paths methods . . . . . . . . . . . . . . . 105III.1.3 Overview of our method . . . . . . . . . . . . . . . 107III.2 A framework for tubular struture segmentation 109101
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• Extration of Tubular Strutures over an orientation domain. [167℄
• SIFT-based Sequene Registration and Flow-based Cortial Vessel Segmen-tation applied to High Resolution Optial Imaging Data. [168℄
• an artile urrently under review in MIA .



III.1 Tubular strutures segmentation 103III.1 Tubular strutures segmentationIn the sequel, we will denote by tubular strutures either roads in satelliteimages, or blood vessels in medial images (�gure 3.1). As we will see, bothshare ommon harateristis, whih allow their segmentation in one uni�edframework. While our method is originally designed for medial imaging ap-pliations, we will also show some of its results on high-resolution satelliteimaging.
Fig. 3.1 � Left : roads in a satellite image. Right : vessels in a medial image(ortial imaging)Blood Vessels Extrating tubular strutures is a entral problem in medi-al imaging. Detetion of vessels and vessels networks in bi-dimensional me-dial images is of primary interest to help medial diagnosti. The extrationof an aurate network allows one to ompute meaningful information suhas the loal width of the vessels and the onnetivity of the networks from asingle planar observation. These problems are ritial in retinal imaging[143℄for example, where they allow to diagnose pathologies suh as Diabeti Reti-nopathy [47℄.Several problems arise to orretly perform the segmentation task. Manyaquisition modalities produe highly noisy images. Furthermore, vesselsusually exhibit omplex tree-like strutures that require a areful proes-sing. Another spei� di�ulty in 2D imaging is the overlapping of vessels :two distint vessels in real anatomy an give rise to a rossing in the planeof the image (�gure 3.2).Roads
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Fig. 3.2 � A rossing of two blood vessels in a ortial image.Road segmentation is of primary interest for the automati analysis of satel-lite images. Automati or semi-automati artography mainly aims at upda-ting geographi information systems [194℄ � with appliations to road tra�management or automated navigation systems.III.1.1 State of the artThe problem of tubular struture extration has reeived onsiderable atten-tion in the omputer vision and medial imaging ommunities. The reentreviews [100℄ and [44℄ give extremely good topial outlines of the domain. Asurvey on several retinal imaging spei� methods an also be found in [126℄.Several lasses of methods have been proposed to segment tubular strutures.They generally rely on the use of a loal detetor, post-proessed by a methodthat links loally deteted strutures.Loal detetors allow to detet points belonging to tubular strutures orportions of tubular strutures depending on the modality of the image. Lo-al detetors inlude various methods : thresholding of images intensities,ridge or rest detetion [8, 164, 34℄, wavelets [89, 195, 41, 105℄, line dete-tor for low resolution satellite imaging [61, 135℄, gabor �lters [170℄, di�e-rential operators [153, 112℄, vesselness measures [63, 53, 114℄ or mathing�lters [71, 36, 82, 18, 35, 115, 159℄ � reently ombined with learning pro-esses [72℄.Many methods allow to link or post-proess the loally deteted points.Among lassial methods (inspired by ideas whih early arose in omputervision ommunity for edge detetion [33℄), thresholding [200℄, fusion pro-esses [93, 76, 130, 218℄, region growing algorithms [58, 180, 220, 80℄, front



III.1 Tubular strutures segmentation 105propagation [128, 188, 50℄, or pixel lassi�ation [41, 171, 193℄ tehniques wereproposed. Ative ontours [134, 151, 172℄, deformable models [142, 133℄, andmore reently geometri �ow based methods [212, 53℄ an also be used to �tmodels of tubular strutures or boundaries to the data.Geodesi based methods are another lass of methods allowing the linking ofloal features � usually pixels intensities : the notion of shortest path provedto be e�ient for the extration of salient urves in 2D or 3D images, see forinstane [37℄. Geodesi urves an also be used to extrat tubular struturesenterlines in 3D medial images, as proposed by [49℄ and by [177℄. In [120℄,the authors proposed to extend the shortest path omputation to a higherdimensional domain. They inlude loal radius of the tubular strutures asan additional sale dimension in order to stabilize the omputations and toselet the enterline without any post-proessing.Another way of linking loal features is the lass of traking methods whihstart from a point belonging to a vessel (either user-de�ned, or deteted usinga ad-ho method with respet to the modality), and iteratively trak thevessel by analyzing the neighborhood of the urrent point in the diretion ofthe tubular strutures (look-ahead) [152, 111, 179, 67, 121, 224, 206, 45, 199,24℄. Kalman �ltering is also used to robustify the traking proess [214, 223℄.While some of these methods an handle juntions, they usually fail to dealrobustly with rossings in the ase of bi-dimensional medial images.III.1.2 Shortest paths methods for road/vessels segmen-tationOur work was mainly inspired by shortest paths methods suh as [37℄ and [120℄.Starting from an image I : [0, 1]2 → R, the basi idea is to ompute road/vesselsas shortest paths in the plane of the image. A potential must be designedsuh that omputed shortest paths orrespond to atual road/vessels in theimages. Sine in most medial images, vessels appear to be darker than thebakground, a natural idea is to design the potential as a non-dereasing fun-tion of the gray level � doing so, shortest paths are likely to follow dark areasof the images, i.e. vessels. This is illustrated in �g 3.3. The opposite holds for



106 Tubular strutures segmentation using shortest pathssatellite images, in whih roads are usually lighter than the bakground. The-refore in this ase, the potential will be designed as a non-inreasing funtionof the Gray level. These methods an also be extended to 3D images, andan thus be used to segment anatomi strutures e.g. in endosopy.However, as illustrated in �gure 3.4, these methods usually fail to �nd theenterline of the targeted vessel if the enterline does not orrespond to aminima of gray level along the setion of the tubular struture. They are, aswell, unable to diretly reover its radius, whih evaluation may have signi-�ane, e.g. in retinal imaging. Several attempts have been made to addressthis problem. One of them is to apply a Gaussian blurring to the image asa pre-proessing step, hoping that after this operation, the potential will belower at the enterline of vessels. It is however unlear how the intensity ofthe blurring should be hosen, and how it a�ets the obtained segmentation.It is also possible to re�ne a �rst oarse segmentation using skeletization-like methods as a post-proessing [50, 208, 196, 77℄. Notie also that thereexist an important litterature onerning omputation of medial axis (e.g.[192, 28℄), but suh methods an usually only be applied to binary images.As we will show, our method will be able to ompute enterlines in a moreintrinsi way.An attempt to intrinsially ompute enterlines and radii is proposed in [120℄.The authors propose to lift the 2D image to a 3D spae taking into aountradius of vessels. They design a loal detetor whih allows to evaluate thelikelihood of the presene of the enterline of a vessel of radius r at everypoint of the image. Then they ompute shortest paths in this 3D spae, thepotential being a non-inreasing funtion of the likelihood. However, due totheir hoie of loal detetor, their method is extremely sensitive to initiali-zation and parameters. Their idea of using a radius spae was also adaptedin a Dijkstra-like framework [160℄.Notie that another algorithm inspired from this framework was proposedvery reently in [16, 17℄. After a preproessing of the image, it uses an aniso-tropi fast-marhing in suh a 3D spae to aurately segment vessels � whilenot handling intersetions.
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Fig. 3.3 � Vessel segmentation using shortest paths. Top left : original retinalimage. Top middle : distane map omputed from the white point (graylevel was used as potential) and isodistane lines (red). Notie that the frontpropagates faster along the vessel. Top right : shortest paths omputed fromanother point of the vessel. Bottom : synthesis on the distane funtionelevation mapIII.1.3 Overview of our methodOur method goes one step further with respet to the method of [120℄. It liftsthe 2D image in a 4D radius and orientation spae using loal detetors ofvessels at di�erent orientations and sales. The use of 4D orientation spaedisambiguates rossing on�gurations [91℄, and also allows to perform more
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Fig. 3.4 � Vessel segmentation using shortest paths � while the path is inlu-ded in the vessel, the enterline is not orretly evaluated. Top left : originalretinal image. Top middle : distane map omputed from the white point(gray level was used as potential) and isodistane lines (red). Top right :shortest paths omputed from another point of the vessel. Bottom : synthe-sis on the distane funtion elevation mapstable and aurate segmentation.Our method is independent from the loal detetor used, whih an be tunedpreisely to the targeted appliation. It then uses a geodesi based formalismto ompute optimal paths in this 4D spae, leading to a robust global seg-mentation of vessels as detailed in setion III.2. Unlike methods whih relyon a post-proessing skeletization to ompute the enterlines of the vessels,our method diretly and naturally omputes both enterlines and radii of



III.2 A framework for tubular struture segmentation 109vessels.We propose an appliation of this framework to the segmentation of vessels inortial imaging movies, using the �ow information to perform the detetionof vessels (setion III.3).Finally, in setion III.4, we propose to use this segmentation framework todesign an algorithm for network extration. Based on a traking frameworkon extended neighborhoods, our algorithm handles di�ult rossing on�gu-rations.III.2 A framework for tubular struture seg-mentationIn this setion, we present our new framework for the segmentation of tubularstrutures in a 4D radius and orientation spae.III.2.1 Loal Vessel ModelAn image will be treated as a 2D funtion I : [0, 1]2 → R. The loal geometryof a vessel is aptured with a vessel model M(x) ∈ R for x = (x1, x2) ∈ Λ =

[−Λ1,Λ1]× [−Λ2,Λ2]. This model is a 2D pattern that inorporates our priorknowledge about both the ross setion of the vessels and the regularity ofvessel.The prior on the ross setion of the vessel is inluded by onsidering models
M(x1, x2) = m(x2) that only depends on a 1D pro�le m (�gure 3.5). Theprior on the regularity of the vessels orresponds to the ratio Λ1/Λ2 of thehorizontal and vertial dimensions of the model.Model ross-setion for vessels. A 1D pro�le adapted to both ortialand optial imaging and retinal imaging is de�ned as

m(x2) =

{

1 for |x2| > Λ2/2,

exp(−α
√

(1/2)2 − (x2/Λ2)2) otherwise. (III.2.1)This model enompasses medial knowledge about the light re�exion aroundblood vessels in ortial imaging. The image intensity inside a vessel is as-
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M(x)

x

Λ2

Λ1

−Λ1

−Λ2

Fig. 3.5 � Left : intensity pro�le along a setion. Right : a vessel modelsumed to result from a light absorption (with oe�ient α) proportional tothe vessel width at this point. It is also widely used in the retina imageommunity [36℄.The value α ≈ 0.05 was evaluated from a set of typial ortial images.However, setion III.2.8.2 shows that our vessel extration method is robustwith respet to approximate hoies of this absorption parameter.Model for road extration. A typial road in satellite imaging has a slowvariation of intensity along a setion. It is e�iently aptured by a binarymodel de�ned as
m(x2)

def.
=

{

0 for |x2| > Λ2/2,

1 otherwise. (III.2.2)Regularity seletion. The ratio Λ1/Λ2 of the model dimensions ats as aprior on the regularity of typial vessels. The more typial vessels are urved,the smaller Λ1/Λ2 should be. Also, robustness to noisy images fores to usea model with a large enough area Λ1 × Λ2. The value of (Λ1,Λ2) = (1, 2)is used in our numerial experiments. This hoie is further disussed in thenumerial experiments setion.To overome the inherent di�ulties of the 2D detetion problem, additionalsale and orientation dimensions are introdued to inrease the detetability



III.2 A framework for tubular struture segmentation 111of vessels.III.2.2 Rotated and Saled ModelsThe normalized pattern M(x) is rotated and saled to math the varyingorientation and width of vessels. Beside the hoie of the pattern ross setion
m and the dimension Λ1 ×Λ2 of the model M(x), the saling of Λ(r) with ris another avenue to introdue some prior about vessels in the image. Smallsales ortial and retinal vessels are less regular than large sale vessels. Wethus hose to sale the dimensions of the model Λ(r) = rΛ linearly withthe radius r. This auses thin vessels to be deteted using a �ner orrelationanalysis.The warped model Mr,θ(x) for x ∈ Λ(r, θ) = RθΛ(r) is de�ned as

∀x ∈ Λ(r, θ), Mr,θ(x)
def.
= M(R−θ(x/r)) (III.2.3)where Rθ is the planar rotation of angle θ.Figure 3.6 shows examples of models de�ned with (III.2.1) and (III.2.2) thatare rotated and saled aording to (III.2.3).

θ

r r

θFig. 3.6 � Vessel models (left) and roads models (right) for di�erent orien-tations and sales. Here, Λ1/Λ2 = 1/2 and m(.) is given by (III.2.1).



112 Tubular strutures segmentation using shortest pathsIII.2.3 Sale/Orientation LiftingThe image I is lifted in a 4D spae by adding a sale and an orientationdimension. Let Ω be de�ned by
Ω

def.
= [0, 1]2 × [rmin, rmax]× [0, π) (III.2.4)the last dimension being periodi. Ω is thus a 4-dimensional manifold.We all lifting the funtion F omputed as the normalized ross-orrelation [73℄between the image and the loal model (III.2.3)

∀ω = (x, r, θ) ∈ Ω, F (ω)
def.
= NCCΛ(r,θ)(Mr,θ(·), I(x+ ·)) (III.2.5)where I(x + ·) is the image translated by x, NCCA(f, g) is the normalizedross-orrelation between f and g over the domain A, de�ned by :NCCA(f, g)

def.
=

∫

A
(f − f̄)(g − ḡ)

√
∫

A
(f − f̄)2

√∫

A
(g − ḡ)2

(III.2.6)where h̄ = (
∫

A
h)/|A|, |A| being the area of A.This lifting separates real 3D vessels that overlaps when projeted at thesame loation by the imaging system but have di�erent orientations.

rmin and rmax are respetively set as the minimum and maximum values ofthe vessels radius one wishes to detet in the image.The value F (x, r, θ) ranges from −1 to 1 and measures the likelihood ofobserving a vessel at a given loation x with a width r and an orientation
θ. The normalization of the detetor makes it invariant under to intensityvariations that ours in medial images due to the elevation variation of thevessels and the imperfetion of the imaging system. Adding a sale dimensionyields a robust and regularized estimation of the radius and the enter ofvessels.Figure 3.7 shows an example of a ortial image where orientation lifting isruial to distinguish loally between orientations.Numerial omputations. A medial image is aquired on a on disretegrid of n × n pixels. The 4D lifting is omputed for nr radii evenly spaedin [rmin, rmax] and nθ orientations evenly spaed in [0, π), with nr = 12 and
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x

y

x

θ

y

θ = π/2

θ = 0Fig. 3.7 � left : An original 2D image. right : Its 4D lifting (�xed radius),ranging from -1 (blak) to 1 (white). White values indiate likely positionsand orientations of vessels.
nθ = 12 in the experiments. This requires O((rmaxn)2n2nrnθ) operations with
rmax ≪ 1 and nr, nθ ≪ n.III.2.4 Lifted PotentialThe 4D lifting (III.2.5) de�nes an isotropi potential ρ over the 4D domain
Ω

∀ω ∈ Ω, ρ(ω)
def.
= max(1− F (ω), ǫ). (III.2.7)The parameter ǫ prevents the potential to vanish and is set to ǫ = 10−3 inthe numerial tests.This potential enodes loal information about the presene of a vessel at agiven position, sale and orientation.Notie that this hoie is somewhat arbitrary. Any non-inreasing funtionof F ould be onsidered.III.2.5 Distane Map and Geodesi ComputationThe length of a lifted urve γ : [0, 1] → Ω over the lifted domain is de�nedas

LF (γ)
def.
=

∫ 1

0

ρ(γ(t))‖γ′(t)‖dt. (III.2.8)



114 Tubular strutures segmentation using shortest pathswhere the length of the speed vetor v = γ′(t) = (vx, vr, vθ) is
‖v‖2 def.

= v2
x + λv2

r + µv2
θ , (III.2.9)

(λ, µ) being normalizing onstants that ontrols the penalty on sale andorientation variations along the vessels in the images. In pratie, as wewill demonstrate in the numerial experiments setion, we observed strongrobustness with respet to the hoie of (λ, µ).Given a set A ⊂ Ω of seeds points and a set B ⊂ Ω of ending points, ashortest lifted urve γ∗(t) ⊂ Ω joining A to B is de�ned as a shortest pathfor the metri LF

γ∗(A,B)
def.
= argmin

γ∈C(A,B)

LF (γ), (III.2.10)where C(A,B) is the set of urves γ suh that γ(0) ∈ B and γ(1) ∈ A. Theorresponding geodesi distane is dF (A,B) = LF (γ∗). This de�nition anbe speialized to a single starting point A = {ω0} and/or to single endingpoint B = {ω1} to de�ne the geodesi distane between points and/or sets,e.g. dF (ω0, ω1)
def.
= dF ({ω0}, {ω1}).Therefore, we are in exatly in the framework of shortest paths on a Rieman-nian manifold introdued in setion I.3.1.6.The tensor assoiated with the potential is proportional to








1 0 0 0

0 1 0 0

0 0 λ 0

0 0 0 µ






i.e. its prinipal omponents are aligned with the anonial basis of the spae.Furthermore, up to the periodiity of the θ dimension, we an assume that

Ω is a uboid of R
4.

Ω is disretized as a grid of N def.
= n2nrnθ, where extra links are set bet-ween points (i, j, r, 0) and (i, j, r, (nθ − 1) π

nθ
) and therefore we an apply theframework developed in setion II.3.6 to ompute shortest paths.A �rst order Euler-sheme was used to perform the gradient desent � the-refore omputing γ∗ with sub-pixel auray.



III.2 A framework for tubular struture segmentation 115III.2.6 Shortest Paths and 4D urvesA 4D urve c(x, x′) between two points x, x′ ∈ [0, 1]2 is omputed as a 4Dgeodesi in Ω between the 4D lifted sets A(x) and A(x′) de�ned as
A(x(′))

def.
=
{

(x(′), r, θ) \ r ∈ [rmin, rmax], θ ∈ [0;π)
}

. (III.2.11)The 4D urve is then de�ned as
cx,x′

def.
= γ∗(A(x),A(x

′

)). (III.2.12)This 4D urve ontains three omponents cx,x′(t) = (x̃(t), r(t), θ(t)). Thepath x̃(t) ⊂ [0, 1]2 is the atual enterline over the image plane, whereas r(t)and θ(t) give the loal width and orientation of the vessel, see Figure 3.8.
t

t

θ(t)

r(t)

Fig. 3.8 � Left : enterline extration of a vessel in a ortial image. Startingpoint : white square. Ending point : blak square. Right : orrespondingorientation θ(t) and radius r(t).
III.2.7 Another interpretationDue to the struture of the targeted images, we observed that the diretionof a shortest path projeted in the image plane is approximately equal to the



116 Tubular strutures segmentation using shortest pathsurrent angular position θ of a urve. Up to a renormalization, vθ is then theurvature of the projetion of γ in the image plane.The length of a lifted urve is written
LF (γ) =

∫ 1

0

ρ(γ(t))
√

v2
x + λv2

r + µv2
θdt (III.2.13)and then its minimization leads to urves with both small length and urva-ture � whih is somewhat similar to an optimization in a Sobolev spae.III.2.8 Evaluation of the Geodesi CenterlinesIn this setion, we present some results obtained by our method.III.2.8.1 Auray and robustness to noise and parameters hoieThe auray of the enterline extration is ompared on syntheti data tothe two other methods mentioned in the introdution :

• the method of [39, 38℄, in whih a 2D metri is omputed from an imageintensity blurred with a Gaussian �lter. The �ltering helps to re-enter thegeodesi sine the smoothed image exhibits a loal maxima around theenter of the vessels, at the ost of a loss of spatial resolution,
• the method of [120℄, in whih a 3D (spae+sale) metri is omputed. Allthe parameters of this 3D model are optimized to give the best results.In the experiments, our method was used with an absorption parameter α =

0.1, whih is not optimized to �t the α of all benhmark images.The preisions of the three algorithms are tested on several phantoms images.This phantoms images are build from �ve enterlines and radii analytialforms � thus with sub-pixeli auray. The ross setion orresponds to themodel (III.2.1) with parameter α = 0.01, α = 0.1 and α = 1. An additiveGaussian white noise with various amplitudes are added to the phantoms.Ten phantoms are generated for eah ondition, and eah noise level. Thisleads to a total database of about 3000 images. Figure 3.9 shows some of theobtained phantoms.For eah experiment, the true starting and ending points of eah phantomare used, as well as the true starting and ending radii for the [120℄ method.



III.2 A framework for tubular struture segmentation 117Default parameters Λ1/Λ2 = 0.5, nθ = 12, nr = 12, µ = 1 π
ntheta

and λ =

1 rmax−rmin

nr
were used for our algorithm. Its sensibility with respet to thishoie will be disussed.

Fig. 3.9 � Some of the phantoms used in our benhmark (basi intensitiesrange from 0 to 1), shown here with a spatially independent Gaussian noiseof variane 0.15.The extrated 4D urve c(t) = (x̃(t), r(t), θ(t)) is ompared to the groundtrust c∗ using the following errors :
{ ErrorC(c)2 =

∫ 1

0
‖x̃(t)− x̃∗(t∗)‖2dtErrorR(c)2 =

∫ 1

0
|r(t)− r∗(t∗)|2 dt

(III.2.14)where t∗ is suh that x̃∗(t) is the ground truth enterline point losest to
x̃(t), and where r is the radius omputed by the method (proposed methodand [120℄ only), and r∗ the ground truth radius.Figures 3.10,3.11,3.12,3.13 and 3.14 shows ErrorC(c) and ErrorR(c) urvesfor several syntheti images as a funtion of the noise level.Using the 3D spae+sale lifting [120℄ produes results of varying quality,and requires a areful tuning of the parameters to ahieve the optimal errorrate. [39, 38℄ with an optimal smoothing generally provides a preise eva-luation of the enterline loations, but without any evaluation of the loalradius. Notie also that the smoothing parameter ahieving the best resultvaries from one phantom to another. Our method provides both positions andradii with more robustness and auray � and outperforms other existingmethods, even when the model is not preisely tuned.Furthemore, �gure 3.15 shows an experiment where start and end points havebeen shifted two pixels to the right. Due to the slow variation of intensity



118 Tubular strutures segmentation using shortest pathsalong the setion of the benhmark, the 2D method is sensitive to this shift,while the 4D method reenters the paths, and does not su�er harshly fromthe shift.Robustness to Λ1

Λ2
Figure 3.16 shows the in�uene of the hoie of Λ1

Λ2
onthe results. Λ1

Λ2
= 0 orresponds to a model redued to a segment. The hoieof low values of Λ1

Λ2
allows to evaluate radius with a good auray when noiselevel is low, but leads to some instability. On the opposite, a too importantvalue hoie leads to preision lost. Λ1

Λ2
= 0.5 is a good ompromise.Robustness to disretization Figure 3.17 demonstrates the e�et of thehoie nθ � i.e. the number of angles used in the disretization. It appearsthat for low nθ, the quality of the segmentation depends on whether or notthe angle of the vessel is approximately present in the disretization of [0, π).We thus performed quality tests for 31 rotations of the benhmarks (of angles

{i/10}i=1..31). Low values of nθ lead to a higher variability in the segmenta-tion, depending on whether or not the vessel diretion is aligned with one ofthe disretized θ value. Overall the algorithm is quite robust to the hoie ofthis quantity.A similar experiment was run for nr (�gure 3.18). Although the enterlinedetetion is robust to hoies of small nr, the radius evaluation is extremelysensitive to it.Robustness to speed parameters We performed experiments to assesthe dependene of the algorithm with respet to the hoie of the angularspeed µ (�gure 3.19) and radius speed λ (�gure 3.20). Centerline segmen-tation shows little sensitivity with respet to the hoie of speed parameterin angular diretion � radius estimation is slightly a�eted is the speed isto low. The hoie of speed parameter in radius diretion seems to be moreimportant : a too important value will lead to good results for radius estima-tion when noise level is low, but will show a more unstable behavior whenthe noise inreases. λ = 0.5 rmax−rmin

nr
seems to be a good hoie.In all the subsequent setions, the results were obtained with parameters

Λ1/Λ2 = 0.5, nθ = 12, nr = 12 (rmin = 1 and rmax = 6.5), λ = 0.5 rmax−rmin

nr



III.2 A framework for tubular struture segmentation 119and µ = 0.1 π
nθ
. The hoie of a low µ is motivated by the neessity of having aspae Ω �wide enough� in angular diretion in order to disambiguate rossingon�gurations.III.2.8.2 Evaluation on Syntheti CrossingsThe 4D lifting (III.2.5) is hallenged by testing the extration of a urvedvessel with a self rossing. Figure 3.21 shows that the vessel urve is notorretly extrated with a metri that does not take into aount the loalorientation. A 2D purely spatial metri or a 3D spae+sale metri extratsa urve that does not apture the orret topology of the vessel. Our 4Denterline position+sale+orientation favors the extration of a longer urvethat is both well entered and geometrially faithful to the true vessel.III.2.8.3 Evaluation on Medial/Satellite ImagesFigure 3.22, left, shows vessels extration for a omplex optial imaging ofthe ortex with several branhes and intersetions. The enterlines omputedfrom di�erent ending points are overlapping.Figure 3.22, right, shows vessels extration on a retinal image from theDRIVE database [198, 143℄. The starting point is shown with a white squareand several end points are shown with blak squares. The rossings in thisretinal image show the interest of the 4D lifting, that allows to orretlydetet the geometry of the vessels.Figure 3.23 shows a similar experiment in a satellite image.In �gure 3.24, two initial seeds were provided, on the roads going down andto the right from the rossing. Shortest paths were then omputed from thetwo others segments of roads. The rossing is handled orretly, whih annot be done by the other methods whih do not use an orientation lifting.Figure 3.8 shows the estimated radius r(t) and orientation θ(t) for a vesselextrated in a ortial image. Both the enterline position, the radius andthe orientation are omputed with sub-pixel auray.The preision of our 4D lifting method is evaluated on the DRIVE data-base [198, 143℄. Approximate ground truth enterlines positions and radiiare omputed from the binary masks available with the database. Figure



120 Tubular strutures segmentation using shortest paths3.25, shows the binary segmented vessels together with the ground trust en-terline position and boundaries (top and middle), as well as the result of oursegmentation algorithm (bottom).The three geodesi extration algorithms are applied to these three imagesbetween the indiated starting and ending points. Table III.1 report the en-terlines position and radii errors ErrorC(γ) and ErrorR(γ) for eah method.For the enterline extration, due to the lak of preision of the ground truth,there is no signi�ant di�erene between the proposed 4D lifting method andthe spae only geodesi extration with smoothing of the metri. The 3Dspae+sale lifting [120℄ method showed unstable behavior with respet toits initialization and parameters, whih had to be hosen arefully - for theseond image, we did not manage to �nd parameters giving a orret result.Our 4D lifting method is also more preise for the radii estimation than the3D lifting. DRIVE 1 DRIVE 2 DRIVE 3ErrorC ErrorR ErrorC ErrorR ErrorC ErrorR2D metri 0.40 - 0.38 - 0.30 -3D metri 1.33 1.67 3.13 3.31 0.53 1.904D metri 0.31 0.43 0.35 0.44 0.40 0.47Tab. III.1 � Centerlines positions ErrorC and radii ErrorR estimation errorson retina images for the three di�erent methods.
III.2.9 Conlusion and DisussionWe proposed a reliable algorithm to segment tubular struture in bi-dimensionalimages, between user provided points. Experiments on real and syntheti datashow the auray and the robustness of the proposed methods.Furthermore, as it is widely independant of the loal detetor we used, it isvirtually appliable to other modalities. As an example, it ould be interestingto onsider less naive roads detetors than the simple one that was used inour work.



III.2 A framework for tubular struture segmentation 121Questions remains about the hoie of the metri and of the potential fun-tion. Although we did not notie high sensibility with respet to the hoieof any reasonnable potential in our experiments, it would be interesting tounderstant how design it in order to reah an optimal segmentation for thetargeted appliation. Metri hoie ould also be used for example to favorfaster rotations for smaller vessels. Tuning it would require a areful statis-tial analysis of a database of manually segmented tubular strutures.Theoretially, this framework ould be extended to tri-dimensional images,but the lifting would lead to a 6 or 8 dimensional spae � depending if thesetion of a vessel is modelised by a irle (1 parameter) or an ellipse (3parameters) � whih is likely to be omputationally untratable. Moreover,as there is no need of orientation disambiguation in tri-dimensional images,it is not lear that this algorithm would lead to improvments with respet toexisting methods. However, as explained in IV.2, several traks may be fol-lowed in order to redue omputational omplexity in that ase, for exampleomputations on a partial volume or approximation of the update step.
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Fig. 3.10 � Centerlines positions and radii estimation errors for the phantom1 of Figure 3.9.Top, middle and bottom row respetively show results for phantoms genera-ted with parameters α = 0.01, α = 0.1 and α = 1.Left olumn : error ErrorC(γ) (in pixel) for the three methods, as a funtionof the noise level (100σ where σ is the independent Gaussian noise variane).(red : 4D metri (spae+sale+orientation), green : 3D metri (spae+sale)[120℄, blue : 2D metri with di�erent pre-smoothing [39, 38℄)Right Column : Radii error ErrorR(γ) (in pixel) for the 3D and 4D methods,as a funtion of the noise level.
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Fig. 3.11 � Centerlines positions and radii estimation errors for the phantom2 of Figure 3.9. See 3.10 for legend.
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Fig. 3.12 � Centerlines positions and radii estimation errors for the phantom3 of Figure 3.9.See 3.10 for legend.
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Fig. 3.13 � Centerlines positions and radii estimation errors for the phantom4 of Figure 3.9.See 3.10 for legend.
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Fig. 3.14 � Centerlines positions and radii estimation errors for the phantom5 of Figure 3.9.See 3.10 for legend.
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Fig. 3.15 � Centerlines positions and radii estimation errors for the phantom2 of Figure 3.9 with α = 0.01, with start and end points shifted two pixelson the right. Compare results with 3.11 (top left)
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Fig. 3.16 � In�uene of the hoie of Λ1

Λ2
: experiments for benhmark 1.Di�erent urves are for several values of Λ1

Λ2
(dark blue → yan → red). TopLeft : mean enterline errors. Bottom Left : standard deviation of enterlineerrors.Top Right : mean radius errors. Bottom Right : standard deviation ofradius errors.
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Fig. 3.17 � In�uene of the hoie of disretization step in angular diretion.Results for phantoms 1 (Top row) and 5 (Bottom row) with noise 0.4. x-axis :number of angles of the disretization. Left : enterline errors, bars representstandard deviation. Right : radius errors, bars represent standard deviation.
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Fig. 3.18 � In�uene of the hoie of disretization step in radius diretion.Results for benhmark 1 (Top row) and 4 (Bottom row) with noise 0.4. x-axis : number of radius of the disretization. Left : enterline errors, barsrepresent standard deviation. Right : radius errors, bars represent standarddeviation.
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Fig. 3.19 � In�uene of the hoie of speed in angular diretion. Results forbenhmark 1 (Top row) and 5 (Bottom row) as a funtion of noise level. Left :enterline errors. Right : radius errors.
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Fig. 3.20 � In�uene of the hoie of speed in radius diretion. Results forbenhmark 1 (Top row) and 4 (Bottom row) as a funtion if noise level. Left :enterline errors. Right : radius errors.

2D metri [39, 38℄ 3D metri [120℄ our method : 4D metri(position) (position+sale) (position+sale+orientation)Fig. 3.21 � Comparison of the 2D [39, 38℄, 3D [120℄ and 4D lifting (ourmethod) when enountering a self-rossing.
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Fig. 3.22 � Centerlines positions and radii extration of vessels in a ortialimage (left), and in a retinal image (right).

Fig. 3.23 � Centerlines positions and radii extration of roads in a satelliteimage.
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Fig. 3.24 � Centerlines and radii extration of roads for the three testedmethods. Two starting points (white squares/irles) and two ending points(blak squares/irles) were provided for eah method. From top to bottom :2D, 3D, 4D methods.

Fig. 3.25 � Binary segmented images from the DRIVE database, togetherwith the extrated ground trust. middle : orresponding images with ground-truth enterline and boundary and initial and ending points. bottom : en-terlines positions and boundaries omputed with our method.



III.3 Appliation to �ow-based extration 135III.3 Appliation to �ow-based extrationIn this setion, we present an appliation of our shortest paths vessels seg-mentation algorithm to the analysis of ortial optial imaging.III.3.1 IntrodutionMagneti Resonane Imaging (MRI) is a widely used medial imaging moda-lity, disovered in the�1970's [11, 129℄. It allows the tri-dimensional imagingof several tissues with good ontrast and high spatial de�nition, while beingnon-invasive. Its basi priniple is to put a subjet in a high intensity magne-ti �eld, therefore aligning the protons in water moleules with the �eld. Aseond �eld is then applied brie�y, hanging the alignment of protons. Whenrelaxing to the alignment indued by the �rst magneti �eld, the protons emita signal in radio frequeny, whih an be deteted. The use of non-onstantmagneti �elds allows one to loate the spatial position from whih the signalwas emitted. Furthermore, the intensity of this signal is related to propertiesof the tissues from whih it originates. This leads to a tri-dimensional imageof an organ, usually disretized in voxels whose resolution an be under 1mm3(�gure 3.26).

Fig. 3.26 � A sagittal slie of my head, aquired with MRI.Funtional Magneti Resonane Imaging (fMRI) [109, 146℄ is a variant ofMRI for the imaging of neural ativity. When neurons in an area of brainativate, one an observe a subsequent inrease in blood �ow in the area,aiming at providing gluose and oxygen to the neurons. This phenomenon isalled Hemodynami Response. fMRI is able to detet this response, through



136 Tubular strutures segmentation using shortest pathsthe detetion of hanges in oxyhemoglobin onentration, and an thus issuean ativation map of brain. Due to its high spatial preision, fMRI has beomein a few years one of the most widely used tehnique for funtional imagingof the brain.However, fMRI does not diretly measure the neural eletri ativity, butthe hemodynami response. There is therefore a strong need for relatinghemodynami response to neural ativity [32, 48℄.Moving red blood ells (RBCs) an be diretly "seen" by optial imagingof the ortex at adequate wavelengths [26℄, allowing to quantify blood �owin vasular networks [75℄. However, to ahieve a robust, fast and reliabledetermination of the small, eventually ativity-evoked hanges in erebralblood �ow (CBF), some obstales still have to be overome [211℄.In partiular, vessels segmentation is a highly time-onsuming task if relyingon user input, but is a hallenge for standard automati methods due to theweakness of ontrast of small vessels and ambiguities posed by rossing andbranhing points.Here, we present a new algorithmi approah based on our shortest pathalgorithm, allowing to segment vessels by using �ow information rather thananatomial information.III.3.2 Pre-proessingIII.3.2.1 Sequene RegistrationImages were aquired at 200Hz with a CCD, upon illumination at 570nm,from the primary visual ortex of an awake maaque who had a 1m2 trans-parent ranial window hronially implanted above the area of interest. Eventhough, during the experiment, the monkey's head is thoroughly stabilized,the urvature of the ortial surfae, its position with respet to the ameraand the exat morphology of the vasulature hange slightly under the ef-fets of the heart-beat and the monkey's body movements. These movementsan be as large as a few pixels, and an be relatively fast (until hundred ofHz). An inter-frame spatial mathing step is therefore required to be able tofurther proess eah image-sequene. [225℄ o�ers a reent survey of severalimage suh image registration methods.
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p

pi

I0

IiFig. 3.27 � Left : Blue : SIFT points on a part of the �rst frame of the se-quene. Red : orresponding Delaunay triangulation. Right : Registration betweentwo frames : a point belonging to a triangle in the �rst image is registered to thepoint with same baryentri oordinates in the orresponding triangle of the seondimage.Sale-bar is 500µm in all �guresWe used a ad-ho features-based method for registering a omplete sequene,based on Sale-Invariant Feature Transform (SIFT) desriptors [122℄. SIFT isa state-of-the-art fast and robust algorithm for extrating and haraterizingsalient features from an image whih an deal with several omputer visionproblems. For eah image, the SIFT algorithm yields a number (ontrolled bya threshold) of 2D points p with sub-pixel preision, along with a desriptorvetor vp in R
128 for eah point p, whih represents the image around thedeteted point. The main feature of the SIFT detetor is that the pointsand desriptors obtained are invariant with respet to sale, rotation, andillumination hanges.Our method an be desribed by the following steps :1. Features Detetion : the SIFT algorithm is applied to eah image of thesequene, to detet harateristi points along with their desriptors(�gure 3.27) after images have been smoothed with a narrow Gaussian�lter (∼ 2 pixels) to remove high spatial frequeny omponents.2. Features Mathing : we use one frame (usually the �rst, 0) as a refereneand math its SIFT keypoints to those of other frames. Using somethreshold δ, we keep from the set of these keypoints only those p0



138 Tubular strutures segmentation using shortest pathswhih math with one and only one keypoint pi (||vp0 , vpi
||2 < δ) inevery other frame i. Notie that no spatial information is used duringthis step : only the points' desriptors are used during the mathingproess, not their positions. This potentially allows for large movementsbetween frames.3. Full Image Mathing : the third step is intended to extend the mathingof the harateristi points to the whole spae. For this purpose, we �rstapply Delaunay triangulation [25℄ to form a meshM0 whih verties arethe SIFT points of the referene frame (�gure 3.27). Then eah triangle

(p0a, p0b, p0c) of this mesh is mathed to its ounterpart (pia, pib, pic) ineah other image i using an a�ne transformation (�gure 3.27).However naive, this method seems to be fast and to be well suited for theregistration of almost unhanging (up to a rigid transform) images.III.3.2.2 Beer-Lambert orretionThe Beer-Lambert law predits the measured signals as a funtion of theabsorption of the illumination light by the tissues. If we separate the ab-sorption by the RBCs from the one from vessels or other ortial tissues, weget I ≈ I0e
−α2de−β2d′ , where I is the re�eted light intensity, I0 the inidentlight, α the absorption oe�ient of vessel, d the width of the vessel at theonsidered point, β the absorption oe�ient of the RBCs and d′ its width.Thus the signal of interest - e.g. the presene of RBCs an be extrated byapplying the following �lter to eah point of the sequene : d′ ∽ −log( I

Ibase
)where Ibase = I0e

−α2dFor eah point Ibase is evaluated as a robust minimal intensity throughoutthe registered sequene. Suh a normalization using the minimal intensityinstead of average intensity [211℄ enhanes the signal from RBCs motion inthe vessels without inreasing the noise outside.III.3.3 Flow-based vessels extrationBlood-�ow based image segmentation To adapt the shortest path for-malism to a �ow-based extration of vessels, we replae the light-intensity
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Fig. 3.28 � Extration of the space− time image. Left : neighborhood of p in thediretion θ. Right : orresponding space− time image.(gray level) information by a value depending on the presene � or absene �of blood-�ow. For a point p and an orientation θ, we determine whether �owfollowing the diretion θ is present at p throughout the sequene. To ahievethis, we �rst extrat a 2-dimensional space− time image from a small neigh-borhood of p in our sequene of frames in diretion θ (�gure 3.28), yieldingan image I(l, t). Using the same struture tensor formalism as in [211℄, weompute the following tensor :
T (x, θ, t) =

〈(
∂I

∂t
,
∂I

∂l

)(
∂I

∂t
,
∂I

∂l

)T
〉As noted in [211℄, this orientation of this tensor an be used to loally eva-luate the inlination of stripes in the image, and therefore the speed of �ow.Furthermore, the ratio between its two eigenvalues (i.e. its anisotropy) givesan indiator of the presene of �ow in that diretion � the more the tensoris anisotropi, the more likely there is signi�ant �ow.Let T̄ (x, θ) be the mean of this tensor over the time sequene. We propose touse the ratio ρ(x, θ) between the two eigenvalues of T̄ (x, θ) as an indiationof the presene of �ow at point x in diretion θ.Let Ω be de�ned by

Ω
def.
= [0, 1]2 × [rmin, rmax]× [0, π) (III.3.1)We propose the following approah inspired by the work presented in setionIII.2.3 to segment vessels based on �ow information as shortest paths.



140 Tubular strutures segmentation using shortest pathsAssuming that the anisotropy of the tensors is onstant aross the setion ofa vessel, we propose the following model for anisotropy, for a vessel of width
Λ2 :

m(x2)
def.
=

{

1 for |x2| > Λ2/2,

0 otherwise. (III.3.2)This assumes that the anisotropy is onstant inside and outside a vessel, andthat it is more important inside. Notie that this rough assumption shouldbe further investigated. We then de�ne a set of saled and rotated models asde�ned in (III.2.3).Then, we denote by F the following quantity :
∀ω = (x, r, θ) ∈ Ω, F (ω)

def.
= NCCΛ(r,θ)(Mr,θ(·), T̄ (x+ ·, θ))A potential is thus de�ned over the 4D domain as

∀ω ∈ Ω, ρ(ω)
def.
= max(1− F (ω), ǫ). (III.3.3)Vessels as then extrated as shortest paths for this potential, as explained inIII.2.5.Figure 3.29 shows some results of vessels extrated by this method, super-imposed on the �rst image of the sequene. Note how the smoothness inorientation imposed by our method allows the extration of the vessel, evenwhen rossings are luttering the image. Also, in the left image, the segmen-ted vessels has a very bad ontrast with respet to the bakground, but isstill segmented, whih shows the interest of using a �ow based segmentationfor this modality.III.3.4 ResultsIII.3.4.1 Frame registrations : rigid vs. non-rigidFigure 3.30 ompares the performane of our SIFT-based registration methodwith a lassial rigid registration algorithm. Notie our method orretlyregisters the borders of the vessels.
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Fig. 3.29 � Automatially extrated vessels. Initial and �nal points areshown with squares. Notie that only �ow information (vs anatomi infor-mation) was used to perform these segmentations.III.3.4.2 Average �ow in the vasulatureFigure 3.31 shows RBCs' speeds in three automatially segmented vessels.RBCs were found to ross any given setion of the vessel one-by-one. Also,linear RBC density along the vessels'axis was found to be essentially equalfor all three vessels (D1 ∼ D2 ∼ D3 ∼ 6.7 ± 1.18 mm−1). The RBC urrentonservation equation V1D1 + V2D2 + V3D3 = 0 is therefore satis�ed withinthe variability of the data (where Vi are the RBCs' speeds in the vessels, and
Di the density of RBCs).III.3.4.3 Variations of the �ow in timeEstimation of veloity hanges of the RBCs �ow inside the vessels is muhsensible to the auray of frame registration and vessel extration. We per-formed suh estimations on a trial of our monkey experiment presenting ahigh level of vibrations. Figure 3.32 shows that in the rigid registration ase,the data remains too muh polluted by signals originating from outside thevessel and no �ow estimation is possible ; whereas the SIFT registration al-lows to deal with these vibrations most of the time (exept when they arefaster than frame aquisition rate, resulting in blurred raw images).
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Fig. 3.30 � Top : ratio between frame 0 and frame 300 of a representativesequene, on an area of interest. From left to right : raw (no registration),rigid registration, SIFT-based registration (lipping range - i.e. gray-levelintensity sale - is the same for the 3 images), SIFT-based registration witha lipping range ten times smaller. Bottom : || ||2 omparison of eah frame inthe whole sequene to frame 0 (for the area of interest). Raw, rigid registrationand SIFT-based registration are respetively represented in green, blue andred. Left : whole sequene. Right : zoom on frames 250 to 350
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(10.0µm/ms)

(10.0µm/ms)

(18.3µm/ms)

Fig. 3.31 � RBCs' speeds in three automatially segmented vesselsIII.3.5 Conlusion and DisussionUsing the non-rigid image registration desribed here, we were able to ahievefar better spatial mathing between the vasulature in di�erent frames. As aresult, the blood �ow signal ould be reovered in vessels that did not yieldany signal upon rigid registration. The obtained RBC �ow ould also bevalidated for onservation in vasular branhing points, the total number ofRBCs �owing in and out being found to math. The desribed data proessingwill hopefully allow inreasing the auray and the sensitivity of optialimaging-based blood �ow measurements, in partiular with respet to reliablymapping over large vasular networks the small ativity dependent blood�ow hanges eliited by neuronal ativation. However, in view of the greatdi�ulty of ortial imaging aquisition, we had only one sequene at ourdisposal in order to assess the quality of our methods. Validation on otherdata set should thus be needed.
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Fig. 3.32 � Comparison of the estimations of RBCs veloity hanges after ri-gid vs non-rigid sequene registration. (F) Vessel onsidered, extrated using�ow-based segmentation. (A,B) Spae-time data extrated along this vesselafter rigid and non-rigid registrations respetively. (C,D) Corresponding es-timates of RBCs veloity, using the tensor struture information : only in thenon-rigid ase it is possible to estimate the veloity and then detet heart-pulsation hanges. (E) Estimation in the non-rigid ase, when averaging thestruture tensor over the whole setion of the vessel : only little informationis added ompared to using only the middle line of the vessel (D)



III.4 Appliation to Network of Curves Extration 145III.4 Appliation to Network of Curves Extra-tionIII.4.1 IntrodutionIn setion III.2, we presented a framework for the extration of vessels orroads between two user-de�ned points. It is however interesting for manymedial appliations to automatially extrat full networks of vessels. In thissetion, we propose an extension of this work to extrat full networks ofvessels.The proposed algorithm onsists in an iterative growing of the network. Ateah step of the algorithm, a set of key points and juntion points is added toseed new geodesi branhes that are onneted to the urrent network. Thelength τ of these branhes is �xed and de�nes the granularity of the network.Notie that [15℄ reently proposed a similar growing-of-minimal-paths fra-mework, but it is speialized in the segmentation of losed urves in 2D andmeshing of surfaes in 3D.III.4.2 Extension DomainGiven a network A = A(i) obtained after i steps of the algorithm, the growingproess omputes an extended network A(i+1) by adding new geodesis thathave an Eulidean length τ > 0. This ensures that the branhes ofA(i+1) haveequal length so that its distribution is uniform, avoiding lusters of geodesiurves.As in setion A.2.1, the Eulidean geodesi distane UEuA (ω0) from ω0 to Ais the Eulidean length of the geodesi γ∗ = γ(A, ω0) joining ω0 to A
UEuA (ω0) =

∫ 1

0

‖(γ∗)′(t)‖dt.The extension domain is de�ned as
E(A, τ) = ∂BEu(A, τ) ∩ B(A, τσ) (III.4.1)with notations :
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BEu(A, r) =

{
ω ∈ Ω \ UEuA (ω) ≤ r

}

∂BEu(A, r) =
{
ω ∈ Ω \ UEuA (ω) = r

}

B(A, r) = {ω ∈ Ω \ UA(ω) ≤ r}
∂B(A, r) = {ω ∈ Ω \ UA(ω) = r}

(III.4.2)It is omposed of points ω ∈ Ω that an be reahed from A by geodesis ofEulidean length τ . We also want these points to be meaningful aording totheir geodesi distane to A, whih requires that UA(ω) ≤ τσ. This imposesthat for any point on E(A, τ), UA(ω)/UEuA (ω) ≤ σ, e.g. the average value of
ρ along the geodesi urve joining ω to A is better than σ. The threshold σthus guarantees that the extension domain does not extend in areas whereno vessel is present. σ must be seleted aording to the average response ρof the vessel detetor for the targeted appliation.Figure 3.33 shows a typial extension domain around a single vessel.Numerial omputation. The omputation of UEuA is desribed in ap-pendix A.In order to save time, the propagation for the omputation of both UEuA and
UA is performed only on the grid points ω that satisfy UA(ω) ≤ τσ.Figure 3.33 shows the level sets of the geodesi distane, omputed inside theregion where UA(ω) ≤ τσ. E(A, τ) is the intersetion of the Eulidean ballborder (light) and the geodesi ball (gray).III.4.3 Network ExtensionA set K(A) of loally optimal key points are seeded on the extension domain
E(A, τ). Theses points are the extremities of the new geodesi branhes addedto the urrent network A.Key points seletion. A key point ω ∈ K(A) is a loal minimum of thegeodesi distane, as measured using a neighborhood of size δ in the spatialdomain. A point ω = (x, r, θ) ∈ E(A, τ) is a loal minimum of the geodesidistane if

∀ω̃ = (x̃, r̃, θ̃) ∈ E , |x− x̃| ≤ δ =⇒ UA(x) ≤ UA(x̃). (III.4.3)
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Fig. 3.33 � left : retinal image. Projetion of the starting set A is indiatedby a white square. middle : 2D shemati representation of the distanefrom A, restrited to B(A, τσ) (for eah 2D point x, minr,θUA(x, r, θ) isrepresented). Corresponding level-sets are shown. A 2D representation of
∂BEu(A, τ) is superimposed, and key points are indiated by white squares.right : key points onnexions to A.The set of key points is

K(A) = lo.argmin
ω∈E(A,τ)

UA(ω), (III.4.4)Extration of loal minimum of geodesi salieny is sensitive to noisy datasets, in partiular in �at areas where no vessel is present. The size δ of thespatial neighborhood should be adapted to the noise level of the image. δ isset to 4 pixels in the numerial experiments.Figure 3.34 shows a key point deteted on the boundary of the extensiondomain in a syntheti example. Figure 3.33 shows that several key points aredeteted on a medial image near a branhing of vessels.Key points onnexion. An augmented network is obtained by linkingeah ω ∈ K(A) to the urrent network A. The geodesi γ∗(ω,A) linking ωto A is omputed and is added to the existing network. These paths arelikely to be vessels segments starting from the initial set A. This requires noadditional omputation sine UA(ω) is readily available inside B(A, τσ), and
γ∗(ω,A) ⊂ B(A, τσ).We denote the union of these paths by :
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A

E(A, τ)

ω ∈ K(A)

Fig. 3.34 � Shemati display of the extension domain extension domain
E(A, τ) where a single key point ω ∈ K(A) is deteted.

K(A) =
⋃

ω∈K(A)

γ∗(ω,A) (III.4.5)III.4.4 Network JuntionsIn the ase whenA onsists of several starting points, the proedure desribedin the previous setion may not be su�ient to extrat a omplex network.Linking di�erent part of the network is required in some ases (�gure 3.35).Also, noisy images generate a network whose topology might progressivelydiverge from the true network, and orreting this requires to join severalparts of it. This is ahieved by omputing a set of juntion points J (A) ⊂
B(A, τσ)∩BEu(A, τ) and linking these points to the network with geodesis.Juntion points seletion. The geodesi distane UA is singular at apoints ω that are onneted by two geodesis to two di�erent networks points
ω1, ω2 ∈ A. These two points are neessarily at equal geodesi distanes
dF (ω, ω1) = dF (ω, ω2) = UA(ω). To ensure that these two points belong todi�erent parts of the network that should be joined, we impose that theyare far away aording to the topology of A, as measured by their distane
DA(ω1, ω2) de�ned as the Eulidean length of the shortest path from ω1 to
ω2 in A. Also, like in the ase of extension domain, we require that thepoints are meaningful from the point of view of underlying vessels, e.g. that
UA(ω1)/UEuA (ω1) and UA(ω2)/UEuA (ω2) are less than σ.



III.4 Appliation to Network of Curves Extration 149We denote as ω ∈ J0(A) the set of singular points whose losest networkpoints (ω1, ω2) satisfyDA(ω1, ω2) > η, UA(ω1)/UEuA (ω1) ≤ σ and UA(ω2)/UEuA (ω2) ≤
σ. η is set to 10 pixels in the numerial experiments.Similarly to key points (III.4.4), juntions points are loal minimum of thegeodesi distane, but are restrited to be singular points

J (A) = lo.argmin
ω∈J0(A)

SA(ω) (III.4.6)where (III.4.3) de�nes a loal minimum. Figure 3.35 shows an example ofjuntion points where two parts of A are aligned along the same vessel.
A

ω ∈ J (A)

A J0(A)

Fig. 3.35 � Juntion point ω ∈ J (A).
Juntion onnexion. Eah juntion point ω ∈ J (A) is linked to the net-work A by extrating the two geodesis γ∗1 and γ∗2 linking ω to its two losestpoints ω1, ω2 ∈ A. Numerially, the set J0 is determined during the FastMarhing propagation as points where the fronts emanating from di�erentbase points inA are ollapsing. A areful initialization of the gradient desentaround the point ω is needed beause the distane funtion UA is singularat this loation. In order to ompute the geodesi to ω1, we perform a gra-dient desent by using a numerial approximation of the gradient that onlydepends on values at points belonging to the front emanating from ω1. Thesame holds for ω2 .Two proper gradients are therefore omputed that de�nethe two desent diretions for γ∗1 and γ∗2 .We denote the union of these paths by :
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J(A) =

⋃

ω∈J (A)

γ∗1(ω,A) ∪ γ∗2(ω,A) (III.4.7)III.4.5 Vessels CroppingUsing geodesis that emanate from both key points and juntions points, are�ned network Ā(i+1) is obtained that extend the initial network A = A(i)

Ā(i+1) = A(i) ∪K(A(i)) ∪ J(A(i)) (III.4.8)Sine the extremities of this re�ned network lie at a �xed distane τ from A,the network might extend slightly beyond the boundaries of vessels. The �nalextended network A(i+1) is obtained from Ā(i+1) using a ropping proess thatremove part of the network that are unlikely to belong to vessels.For eah urve {γ∗(t)}1t=0 emanating from a key point in the re�ned network
Ā(i+1), a ropped urve is omputed as {γ∗(t)}tct=0, where tc is the minimum
t satisfying F (γ∗(t)) ≤ σ. The �nal network A(i+1) is obtained from Ā(i+1)by ropping all the geodesi urves.III.4.6 Overview of the AlgorithmStarting from an initial set A(0) of (either isolated or not) seed points, thenetwork is progressively grown by inserting new key points and juntionpoints. In pratie, a set {x1, . . . , xK} of spatial loations are provided eitherby the user or in an automati way depending on the modality, and A(0) =

{A(xk)}Kk=1. This leads to the following steps :1. Initialization : the initial points are A(0), set i← 0.2. Computing the extension domain : ompute E(A(i), τ) as explained inSetion III.4.2.3. Seeding key points : ompute the set of key points K(A(i)) as explainedin Setion III.4.3.4. Seeding juntion points : ompute the set of key points J (A(i)) asexplained in Setion III.4.4.5. Network extension : ompute the extended network Ā(i+1) de�ned in(III.4.8) by onneting seeded point.



III.4 Appliation to Network of Curves Extration 1516. Network pruning : ompute A(i+1) from Ā(i+1) as explained in SetionIII.4.5.7. Stop : if A(i+1) 6= A(i), set i← i+ 1 and go bak to 2.Multi-pass re�nement. The algorithm presented in the previous setionuses a �xed τ , and might thus fail to detet vessel extremities. Indeed, if thevessel extremity is loated far from E(A(i), τ), it might not be part of a geo-desi starting from the key points K(A(i)). To address this issue, a re�nementpass is added if A(i+1) = A(i), whih lower the value of τ . In the numerial ex-periments, we have used a set of values τ = {τmax, τmax/2, τmax/4}. Reduingthe value of τ does not require to re-ompute UA and UEuA .III.4.7 Numerial ExperimentsExperiments were arried out on both syntheti and medial images. Forall the presented results, we used disretization nr = 12 and nθ = 12 forradius and orientation dimensions. The speed on the orientation dimensionwhat set to µ = 0.1 π
nθ
, and the speed on the radius dimension what set to

λ = 0.5 rmax−rmin

nr
. Otherwise indiated, the values σ = 0.25 and τmax = 48where used for syntheti examples, and σ = 0.33 and τmax = 36 for medialexamples where the quality of vessel is less good on average.Phantom experiment of �gure 3.36 (top) shows the behavior of our methodin ase of juntions. All the juntions are handled orretly by the algorithm.Phantom experiment of �gure 3.36 (bottom) shows the behavior of our me-thod in ase of a (self-)rossing. The orret segmentation of the vessel isretrieved by the algorithm. All the examples where omputed from a singleuser-provided seed point.Figures 3.37, 3.38 and 3.39 show results on medial images. For �gures 3.37,3.38, the only required human-interation is to set the initial points, e.g. topoint out the relevant struture to segment in the image. For �gure 3.38,initial points were omputed automatially as loal minima of ρ. Notie thatdepending on the image modality, the initial point ould be omputed auto-matially (e.g. detetion of optial papilla on retinal images).
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Fig. 3.36 � top : Multiple juntions example on syntheti data, after fullrunning of the proposed method (τmax = 96) White square : user providedinitial seed. Blak squares : key points. Blak irles : juntion points. bot-tom : Crossing examples on syntheti data, after full running of the proposedmethod. White square : user provided initial seed.III.4.8 Conlusion and disussionThe networks of urves extration algorithm proposes a framework whih na-turally extend the geodesi method by de�ning the network extension notion.This method was tested on several syntheti and medial examples, and for
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Fig. 3.37 � Experiments of the network extration algorithm on ortialimages. White square : user-de�ned initial seed. Notie the orret handlingof intersetions and forks.

Fig. 3.38 � Experiments of the network extration algorithm on retinalimages. Two initial points were provided (white squares). Intersetions andforks are orretly handled.di�erent kinds of initial onditions.Some problems remain, and their preise analysis ould lead to improvmentsin our algorithm.
• The overall speed of the algorithm ould be improved. One ould onsiderimplementing speed-up versions of Fast-Marhing. Furthermore, as Fast-
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Fig. 3.39 � Experiments of the network extration algorithm on retinalimages. Initial seeds (white squares) were omputed automatially as loalminima of ρ over an extended 15 pixels neighborhood. Juntion betweendi�erent parts of the network are orretly handled. Notie that an inorretseed (bottom), did not give birth to any loal network.Marhing starts from the full urrent network at eah step, many ompu-tations are performed several times � one ould thus onsider freezing likestrategies, or partially reuse already omputed distanes map in some way.
• The algorithm does not make an atual di�erene between rossings andjuntions � whih are just disriminated by the angle of inidene of thevessel(s). The speed parameter on angular diretion ats as a seletionparameter for an admissible juntion angle. Two vessels rossing with asmall angle will lead to a false segmentation. It seems di�ult to overomethis limitation without the help of a post-proessing step.
• In our implementation, the parameters τ and σ were set globally by hand,and will deide wether or not an intersetion is rossed or not. It wouldbe interesting to be able to learn those parameters, or to make them be(loally) adaptable to harateristis of the image.
• Extremities of vessels are sometimes miss-handled (f �gure 3.39). This isdue to the fat that parameter τ annot be dereased too muh withouthaving inertainty in the speed along the shortest path. Again, a post-proessing ould handle this ase.



Chapitre IVHARDI-traking using shortestpaths
IntrodutionIn this hapter, we propose an appliation of shortest paths formalism to theproblem of �ber traking in High Angular Resolution Di�usion Imaging.Di�usion Magneti Resonnane Imaging (DMRI) [11℄ is derived from MRI(f. setion III.3.1), but allows to evaluate the probability distribution ofwater moleules in any diretion at any point of a tissue. Its main appliationis to produe an image of white water �ber bundles in the human brain : dueto organization and physio-himial properties of the neurons axones, watermoleules tend to di�use faster along suh bundles. Using DMRI imaging,one an then assess the presene of a white matter �ber at a given point ofthe brain, in a given diretion. White matter �bers bundles are known toonvey neural information between di�erent part of the brain, and studyingtheir anatomy helps to improve the knowledge of neurosientists with respetto the onnexion of di�erent parts of the brain, and to its way of operating.Many new di�usion models and �ber traking algorithms have reently ap-peared in the literature always seeking better brain onnetivity assessment,in partiular regarding omplex �ber on�guration suh as rossing, bran-hing or kissing �bers. Clinial appliations are also asking for robust tra-tography methods, as they are the unique in vivo tool to study the integrity155



156 HARDI-traking using shortest pathsof brain onnetivity.The most ommonly used model is the di�usion tensor (DTI) [12℄, in whihdi�usion is measured in the three prinipal diretions (�gure 4.1, left). Thismodality is only able to haraterize one �ber ompartment per voxel, andis not adapted to areas of �bers rossings.Several alternatives have been proposed to overome this limitation of DTI,mainly using high angular resolution di�usion imaging (HARDI) [210℄. Seve-ral ompeting HARDI reonstrution tehnique exist in the literature, whihall have their advantages and disadvantages. Nonetheless, the ommunityseems to now agree that a sharp orientation distribution funtion (ODF),often alled �ber ODF or �ber orientation density funtion (fODF) [86, 207,90, 51℄, able to disriminate low angle rossing �bers needs to be used for�ber tratography (�gure 4.1, right).

Fig. 4.1 � DTI of a human brain (left) and fODF (right) on the same oronalslie. Fibers of the Corpus Callosum (CC) and of the Cortiospinal Trat anbe seen in the plane of the image, as well as a setion of Cingulum (Cing).Three lasses of algorithms exist to ompute �bers or evaluate onnetivitiesbetween di�erent part of the brain from the volumi data : deterministi,probabilisti and geodesi. A large number of tratography algorithms havebeen developed for DTI, whih are limited in regions of �ber rossings. WhileHARDI-based extensions of streamline deterministi [210, 107, 20, 215, 51℄and probabilisti [147, 154, 191, 14, 178, 221, 51℄ traking algorithms have



IV.1 Method 157�ourished in the last few years, there has not been, to our knowledge, anyproposition to generalize DTI geodesi traking [163, 88℄ for HARDI measu-rements.In this hapter, we develop an algorithm for brain onnetivity assessmentusing geodesis in HARDI. We propose to reast the problem of �ndingonnetivity maps in the white matter to the alulation of shortest pathson a Riemannian manifold. This Riemannian manifold is a ross-produtbetween white matter volume and a unit sphere representing the possiblediretion of �bers. The potential will be de�ned from �ber ODFs omputedfrom HARDI measurements.Anisotropy will be used in order to onstraint the paths to follow a diretionin the white matter whih is oherent with the position on path on the unitsphere. Notie that in hapter III, this was unneessary, due to the strutureof the vessels : with our model, it is very unlikely for example to �nd shortestpaths perpendiular to vessels.ContentsIV.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . 157IV.1.1 HARDI Riemannian manifold . . . . . . . . . . . . 159IV.2 Implementation . . . . . . . . . . . . . . . . . . . . . 162IV.3 Experimental results . . . . . . . . . . . . . . . . . 164IV.3.1 Real HARDI data . . . . . . . . . . . . . . . . . . 164IV.3.2 Geodesi onnetivity results . . . . . . . . . . . . 164IV.3.3 Comparison with existing methods . . . . . . . . . 168IV.3.4 Approximation quality . . . . . . . . . . . . . . . . 169IV.4 Conlusion and Disussion . . . . . . . . . . . . . . 169Publiation related to this workThis hapter is based on the work published in [165℄.IV.1 MethodFirstly, let us reall some basis de�nitions about Riemannian manifolds �these de�nitions were already introdued in setion I.3.



158 HARDI-traking using shortest pathsLet (V, g) be a Riemannian manifold i.e.
• V is a k-dimensional manifold
• for all x ∈ V , g(x) is a bilinear symmetri positive de�nite appliation on
TxV , induing a metri ||y||x def.

=
√

g(x)(y, y) over that manifold.The length of a smooth urve γ : [0, 1]→ V is then de�ned as
L(γ)

def.
=

∫ 1

0

‖γ′(t)‖γ(t)dt
def.
=

∫ 1

0

√

γ′(t)Tg(γ(t))γ′(t)dt. (IV.1.1)Given a set A ⊂ V of seeds points and a set B ⊂ V of ending points, ageodesi γ∗(t) ⊂ V joining A to B is de�ned as a urve with minimal lengthbetween A and B :
γ∗(A,B)

def.
= argmin

γ∈C(A,B)

L(γ), (IV.1.2)where C(A,B) is the set of urves γ suh that γ(0) ∈ A and γ(1) ∈ B. Theorresponding geodesi distane is d(A,B)
def.
= L(γ∗(A,B)).Following A, let us also de�ne the Eulidean length of the urve γ

Leuc(γ)
def.
=

∫ 1

0

‖γ′(t)‖dt. (IV.1.3)and
Lsq(γ)

def.
=

∫ 1

0

‖γ′(t)‖2γ(t)dt. (IV.1.4)If we interpret the metri indued by g as as the inverse of a �speed� tensorover V , for any smooth urve γ, L(γ)/Leuc(γ) an be thought of as theaverage of inverse speed along the urve, while
√

Lsq(γ)/Leuc(γ)− (L(γ)/Leuc(γ))2 represents the standard deviation of thisquantity.Connetivity measures. Considering A and B two subset of V we thende�ne
C(A,B)

def.
=
L(γ∗(A,B))

Leuc(γ∗(A,B))
, Cmax(A,B)

def.
= max

t∈[0..1]
‖(γ∗(A,B))′(t)‖γ(t)

Cσ(A,B)
def.
=

√

Lsq(γ∗(A,B))

Leuc(γ∗(A,B))
−
( L(γ∗(A,B))

Leuc(γ∗(A,B))

)2 (IV.1.5)
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γ∗(A,B) being a geodesi betweenA and B, C(A,B), Cσ(A,B) and Cmax(A,B)are respetively measures of average inverse speed, inverse speed standard de-viation, and worst inverse speed to reah B from A. They an therefore beinterpreted as three di�erent onnetivity measures between A and B (seeA).IV.1.1 HARDI Riemannian manifoldWe now explain how we reast the �bers bundles traking problem fromHARDI data to the alulation of onnetivity maps on a Riemannian ma-nifold.let us denote by E ⊂ R

3 the white matter volume, S the unit sphere and
V

def.
= E × S. Using suh a 5-dimensional spae an disambiguate rossingon�gurations sine in suh a spae (x, y, z, eθ,ϕ) and (x, y, z, eθ′,ϕ′) are om-pletely di�erent points. The idea was introdued [91℄, but the authors pro-posed to segment rather than trak bundles using level-sets.At every point (x, y, z) ∈ E, we an ompute the fODF fxyz : eθ,ϕ ∈ S →

fxyz(eθ,ϕ) ∈ R
+.The full data an thus be naturally modelled as a mapping

f from V to R
+ : f : (x, y, z, eθ,ϕ) ∈ V 7→ fxyzθϕ

def.
= fxyz(eθ,ϕ) ∈ R

+.Let us de�ne the metri g at any point (x, y, z, eθ,ϕ) of V as
g−1

xyzθϕ

def.
=














E
︷ ︸︸ ︷

S
︷ ︸︸ ︷

ρ(fxyzθϕ) 0 0 0 0

0 ρ(fxyzθϕ) 0 0 0

0 0 ρ(fxyzθϕ) 0 0

0 0 0 α 0

0 0 0 0 α














=

(

ρ(fxyzθϕ)I3 0

0 αI2

)

where ρ is an inreasing funtion from R
+ to R

+∗ and α is a parameterontrolling the speed on the angular spae S with respet to the speed onthe E volume. Suh a metri �favors� paths going through areas of highdi�usion (�gure 4.2).Reasting the problem in the white matter volume, let us onsider twopoints (x1, y1, z1) and (x2, y2, z2) ∈ E between whih we wish to estimatethe onnetivity. Let us denote A = {x1, y1, z1, eθ,ϕ | eθ,ϕ ∈ S} and B =

{x2, y2, z2, eθ,ϕ | eθ,ϕ ∈ S} ⊂ E × S.
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θ = π/2θ = 0

Fig. 4.2 � Illustration of the proposed potential in 2D. Starting from a 2D →
(θ → R

+) dataset (top), we interpret it as a (2D× θ)→ R
+ mapping. Sliesfor θ = 0 (bottom left) and θ = π/2 (bottom right) are represented. Potentialis lower on the θ = 0 slie. Paths (in blue and red) are omputed on this

(2D × θ) spae, and then reprojeted in 2D. Notie however that the bluepath is not onsistant as it was omputed in the θ = 0 slie while having a
θ = π/2 diretion.
C(A,B), Cσ(A,B) and Cmax(A,B) are then natural measures of onnetivitybetween (x1, y1, z1) and (x2, y2, z2). Furthermore, let us denote by π : E×S →
E the projetion suh that π(x, y, z, eθ,ϕ) = (x, y, z). To the geodesi γ∗(A,B)in E × S then orresponds a projeted path π(γ∗(A,B)) in E ⊂ R

3. Sine
γ∗(A,B) follows a high di�usion trajetory, π(γ∗(A,B)) is likely to follow anatual �ber bundle in the volume. With this point of view, α an be seen asa smoothing parameter of the angular variations of the �bers.However, among the paths γ : [0, 1] → V , we would like to favor the onessuh that at every point π(γ) follows the orresponding eθ,ϕ diretion : if
γ(t0) = (x0, y0, z0, eθ0,ϕ0), we would like to have

(π(γ)x(t0), π(γ)y(t0), π(γ)z(t0)) ≈
±eθ0,ϕ0 ||(π(γ)x(t0), π(γ)y(t0), π(γ)z(t0))||

(IV.1.6)



IV.1 Method 161The blue urve in �gure 4.2 shows a path whih is not satisfying this onstraint,but as the same length as the red path.In order to enourage these paths and thus to penalize paths whih are trans-versal to �bers, we propose the following approah : let us onsider a point
(x, y, z, eθ,ϕ). Instead of using an isotropi metri ρ(fxyzθϕ)I3 in the �rst threediretions, one would like to favor propagation along the eθ,ϕ diretion. Inorder to do so, ρ(fxyzθϕ)I3 is replaed by the following matrix :

(Rθ,ϕ)T






ρ(fxyzθϕ) 0 0

0 min(ǫ, ρ(fxyzθϕ)) 0

0 0 min(ǫ, ρ(fxyzθϕ))




Rθ,ϕwhere Rθ,ϕ is a rotation whih maps the �rst axis to the eθ,ϕ diretion, and

ǫ is some onstant. As long as ρ(fxyzθϕ) > ǫ, this tensor favors propagationin the eθ,ϕ diretion. However if ρ(fxyzθϕ) ≤ ǫ (i.e. if the di�usion is smallat this point), this does not make sense, and we keep the isotropi tensorde�ned by ρ(fxyzθϕ)I3. Figure 4.3 illustrate this : in the θ = 0 slie, wherepotential is low, we enourage propagation in the θ = 0 diretion. The redurve will then be shorter than the blue one.
θ = π/2θ = 0

Fig. 4.3 � Illustration of the proposed orreted potential in 2D.The hoie of this metri is a natural way of handling the 5-dimensional



162 HARDI-traking using shortest pathsHARDI data and to obtain onnetivity maps and �bers. It ensures that (i)the full HARDI angular information is used, (ii) geodesis go through areasof high di�usion, (iii) geodesis travel in those areas in the orret diretionsand (iv) rossing on�gurations are disambiguated.Notie also that the analysis onduted in III.2.7 apply to this framework :the hoie of the metri desribed above favors urves with low urvature.IV.2 ImplementationFor our problem, E was disretized as a subset of a 3-dimensional grid, atthe HARDI measurement spatial de�nition � notie that due to the non-retangular shape of E, we use the method desribed in appendix A.1 toprevent the front to be omputed outside E, e.g. to propagate outside thewhite matter volume. S was meshed in suh a way that every vertex of themesh orresponds to a diretion of HARDI measurements � leading to a 6neighbors system. Furthermore, in order to ahieve good preision, we hoseto use a 26-neighborhood in the disretization of E.However, omputing distane map using Fast-Marhing algorithm is this fra-mework is unreallisti. Reall that the update state is of exponential om-plexity in the dimension of the spae. In the proposed framework, every pointof the disretization has 156 neighbors, and is surrounded by thousands ofsimplies.Sine we are mainly interested in preision in the high di�usion diretions, wepropose to ompute d(A, {x}) at eah point by using Dijkstra loal updatestep for the 156 neighbors. The Fast-Marhing loal update step is then onlyapplied for the simplies Sd of S48a (see setion II.5.2) in the 3 �rst dimensionswhih ontain ±eθ,ϕ diretion, and their sub-simplies (see �gure 4.4, seondsheme). Furthermore, we perform this omputation only if the di�usion isimportant enough (i.e. ρ(fxyzθϕ) > ǫ) at urrent point. We also hose toupdate from a simplie only if the omputed values satis�es monotiity andupwinding onditions desribed in II.4. The update step is thus the following.
U(x)← min{min

S
(1)
j

{s(1)
j }, sd} (IV.2.1)
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eθ,ϕ

Fig. 4.4 � Illustration of the simplies used in the update step, in 2D, witha 8-neighbors system. All the 1-dimensional simplies are used, while forsimplies of bigger dimension, only the ones ontaining ±eθ,ϕ diretion areused.Figure 4.5 shows an appliation of this strategy to a uniform anisotropipotential in dimension 2.

Fig. 4.5 � Results of the mixed Dijkstra-FastMarhing algorithm for a uni-form anisotropi potential in dimension 2, using the neighborhood systemdesribed in 2.9.
This leads to traktable omputations, while the preision in the �bers dire-tion is preserved. This hoie will be further disussed in the experimentalresults setion.



164 HARDI-traking using shortest pathsIV.3 Experimental resultsIV.3.1 Real HARDI dataThe HARDI dataset was aquired on a whole-body 3 Tesla Magnetom Triosanner (Siemens, Erlangen) equipped with an 8-hannel head array oil [4℄.The spin-eho EPI sequene, TE = 100 ms, TR = 12 s, 128 x 128 imagematrix, FOV = 220 x 220 mm2, onsists of 60 evenly distributed di�usionenoding gradients with a b-value of 1000 s/mm2 and 7 images without anydi�usion weightings. The measurement of 72 slies with 1.7mm thikness (nogap), whih overed the whole brain, was repeated three times, resulting inan aquisition time of about 45 minutes. The SNR in the white matter of this
S0 image was estimated to be approximately 37. Additionally, fat saturationwas employed, 6/8 partial Fourier imaging, Hanning window �ltering andparallel GRAPPA imaging with a redution fator of 2.From these HARDI measurements, the �ber ODF was reonstruted. Asmentioned in the introdution, several �ber ODF reonstrution algorithmexist [86, 207, 90, 51℄. Here, we used the analytial spherial deonvolutiontransform of the q-ball ODF using spherial harmonis [51℄. We used anorder 4 estimation with symmetri deonvolution �ber kernel estimated fromthe real data, resulting in a pro�le with FA = 0.7 and [355, 355, 1390] ×
10−6mm2/s.The geodesi traking is performed within a white matter mask was obtainedfrom a minimum frational anisotropy (FA) value of 0.1 and a maximumADCvalue of 0.0015. These values were optimized to produe agreement with thewhite matter mask from the T1 anatomy. The mask was morphologiallyheked for holes in regions of low anisotropy due to rossing �bers.IV.3.2 Geodesi onnetivity resultsFor eah bundle exept the Superior Longitudinal Fasiulus (SLF), expe-riments were arried out with ρ(f) = ln(f)/ln(2), ǫ = 1 and α = 2 afterthresholding values of the fODF under 1 to avoid negative values � the hoieof a logarithmi funtion for ρ was driven by both the need to ompat thehighly variable values of the fODF (many other methods perform a linear



IV.3 Experimental results 165voxelwise resale � whih is not suitable for our purpose), and the need toavoid strong anisotropy that will lead to violations of the upwinding ondi-tions (II.4.17). Our method however demonstrates robustness with respetto the exat hoie of these parameters.Sine SLF has high urvature, we set angular speed α = 8 in order to fa-vor traking of atual SLF rather than projetions on the oipital ortex.Runtime was about 75min for eah bundle. It an be further redued by om-puting only some of the onnetivity maps, or by omputing them only ona subset of white matter. While results presented below show onnetivitymaps on the full maps, experiments show that the bundles an be retrie-ved by stopping the algorithm when 20% of the mask has been visited. Theruntime is then redued to about 12min.Figure 4.6 shows onnetivity measures and some geodesis obtained fromdi�erent seeds manually plaed into major �bers bundles, whih agree withour knowledge of the white matter anatomy. Notie the orretness of themaps on Cortiospinal Trat (CST) , whih does not spread into the CorpusCallosum (CC). Also, the Cingulum (Cg), whih is a thin struture loseto CC is orretly handled by our method. This learly shows the advan-tage of using a 5D spae : sine �bers in Cg and CC are perpendiular,these two bundles are very distant in our 5D spae, while they are extre-mely lose in 3D. Other �bers bundles are also orretly retrieved, suh asthe Inferior Fronto-Oipital Fasiulus (IFO) and the Anterior ThalamiRadiations (ATR). Furthermore, oherent results are obtained by the threeproposed onnetivity measures.On �gure 4.7 isosurfaes of the onnetivity maps are shown for all the pre-vious �bers bundles, and for the orresponding �bers in the right hemisphere.Notie that the lower part of SLF is missed in the right hemisphere.Figure 4.8 shows some geodesis in the left hemisphere.Figure 4.9 shows results on Corpus Callosum (CC). Several experiments wereran from manually provided seeds. Notie that CC is not segmented by ourmethod. Rather, �bers � inlude spenium on the posterior part of CC �are traked from eah given seed. Cingulum is also represented. While thisanatomial struture is very lose to CC in 3D spae, it is not in our 5Dsegmentation spae, and thus it is orretly not retrieved by our method.
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CST
Cg
IFO
ATR

SLFFig. 4.6 � Geodesi traking results on �ve major �bers bundles in lefthemisphere. From left to right, C, Cmax, Csigma and FA.
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Fig. 4.7 � Geodesi traking results on major �bers bundles � left and righthemispheres. Isosurfaes of the onnetivity measures are shown. Eah bundlein a di�erent olor. In yellow, the CST (C) ; in blue, the Cg (C) ; in red, theIFO (Cmax) ; in orange, the SLF (Cmax) ; in green, the ATR (C). Bottom Row :some orresponding geodesis.

Fig. 4.8 � Geodesis orresponding to major �bers bundles in left hemisphere.In yellow, the CST ; in blue, the Cg ; in red, the IFO ; in orange, the SLF ; ingreen, the ATR.
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Fig. 4.9 � Geodesi traking results on Corpus Callosum (CC). Seeds areindiated in red. Cingulum in left hemisphere is also represented (Red)IV.3.3 Comparison with existing methodsIn this setion, we ompare our results with results obtained by other methodson the same data :
• The GCM algorithm of [163, 118℄ (�gures 4.10 and 4.11). Tensors wereevaluated from the raw data using the framework developped in [117℄.Connetivity measures orresponding to our C and Cσ were omputed asindiated in [163, 118℄. We furthermore omputed the Cmax onnetivitymeasure.
• The deterministi HARDI traking algorithm desribed in [52℄ (�gure4.12).While GCM are faster than our method, the obtained C and Cmax resultsare less foussed on the bundles of �bers, and are subjet to �leaks� in otherbundles (Cg, SLF, and link to the opposite hemisphere through CC for CST).Moreover, shallow bundles not aligned with the grid seem to be missed bythe method (e.g. Cg, lower part of CST)



IV.4 Conlusion and Disussion 169On all experiments, Csigma is sensitive to the grid orientation, and givesresults of varying quality (�gure 4.10).The deterministi traking approah (�gure 4.12) gives generally satisfyingresults, but is also subjet to leaks (leak in opposite hemisphere for ATR, leakin CC from Cg). Due to its high urvature and its ambiguity, SLF is also nottraked orretly.Overall, while these two methods are faster, our method seems to perform ina omparable or better way on the seleted traks.IV.3.4 Approximation qualityIn this setion, we disuss the hoie of (IV.2.1) as an approximation of moreomplete Fast-Marhing update steps. We omputed onnetivity maps using4 di�erent update shemes : (1) pure Dijkstra algorithm, (2) (IV.2.1) sheme,(3) : (2) + Fast-Marhing update state applied to the neighboring simpliesin the three �rst diretions (4) Fast-Marhing update state applied to allsimplexes in the three �rst diretions. Figure 4.13 synthesizes those shemes.Isosurfaes of onnetivity maps are shown �gure 4.14, for the 4 shemes,and the same onnetivity value. While pure Dijkstra algorithm produesdi�erent results, the other methods provided qualitatively equivalent results.This plaid for the use of sheme (2), whih is the fastest among those three.IV.4 Conlusion and DisussionWe presented a geodesi based traking algorithm on HARDI data. Ourmethod rapidly estimates onnetivity maps inside a white matter mask fromseed points, without the need for an expliit omputation of �bers. All thediretions of HARDI measurments are used by our method. Our experimentsplaid for the use of a 5D spae and show that our method is able to reoveromplex �ber bundles, whih are often di�ult to trak.However, our experiments are preliminar. A full validation of the methodwould imply a systemati study on a inter-subjet large database, as well asa the study of the dependany of the method with respet to its parameters,inluding the hoie of ρ.
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CST
Cg
IFO
ATR

SLFFig. 4.10 � GCM results on �ve major �bers bundles in left hemisphere.From left to right, C, Cmax, Csigma and FA.
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Fig. 4.11 � GCM results on major �bers bundles in the left hemispheres.Isosurfaes of the onnetivity measures are shown. Eah bundle in a di�erentolor. In yellow, the CST (C) ; in blue, the Cg (C) ; in red, the IFO (Cmax) ;in orange, the SLF (Cmax) ; in green, the ATR (C).
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Fig. 4.12 � Deterministi traking results on �ve major �bers bundles. Fromtop to bottom and from left to right : ATR, Cg, IFO, ATR, SLF
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eθ,ϕ eθ,ϕ eθ,ϕ eθ,ϕ

Fig. 4.13 � Illustration of the simplies used in the di�erent update shemesin 2D, with a 8-neighbors system. From left to right : (1), (2), (3) and (4).

Fig. 4.14 � Isosurfaes of C for Cingulum (top), and Cmax for IFO (bottom).From left to right, shemes (1), (2), (3) and (4) were used.
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Conlusion généraleLe travail de thèse dont il est rendu ompte dans e manusrit a porté surl'appliation de méthodes de alul de plus ourts hemins à di�érentes pro-blématiques tirées du domaine de l'imagerie médiale : segmentation de vais-seaux et de réseaux de vaisseaux pour di�érentes modalités, et aluls deartes de distanes dans la matière blanhe à partir de données d'IRM dedi�usion à haute résolution angulaire.D'un point de vue théorique, sa ontribution prinipale est une présentationuni�ée de di�érentes versions des Fast-Marhing � donnant une vision géomé-trique de l'algorithme, et permettant d'e�etuer une preuve de onvergenerelativement simple dans le as le plus général. Le hapitre orrespondantse veut également une tentative de lari�ation par rapport à des référenesonsidérées omme lassiques, mais qui ontiennent néanmoins nombre d'im-préisions. Le ÷ur de ette thèse porte sur des appliations de es algo-rithmes.Du point de vue appliatif, une idée entrale du travail présenté est ellede se plaer dans des espaes où l'orientation des strutures anatomiquesonsidérées est représentée expliitement. Cei est évidemment naturel etimportant dans le adre de aluls de artes de onnetivités au sein de lamatière blanhe, les données que nous avons à disposition rendant essen-tiellement ompte de l'orientation des faiseaux de �bres. Mais nous avonségalement montré l'intérêt d'introduire e genre de méthodes dans le adrede segmentation d'images bidimensionnelles, pour lesquelles il n'y a auuneinformation a priori onernant l'orientation des strutures à segmenter.Dans le adre d'images bidimensionnelles, nous avons proposé un formalismepermettant de segmenter de façon robuste des strutures tubulaires, tout enévaluant leur rayon. Les appliations à di�érentes modalités, et en partiu-175



176 HARDI-traking using shortest pathslier l'extension proposée à la segmentation à partir de �ot optique suggèreque notre méthode pourrait trouver d'autres appliations dans le adre del'imagerie médiale. Le travail onernant la segmentation automatique de ré-seaux ouvre également des perspetives vers la réation de nouveaux systèmesautomatiques ou semi-automatiques de traitement d'images médiales. L'op-timisation du temps de alul n'a pas été une préoupation entrale de notretravail. Son amélioration pourrait permettre l'inlusion de nos méthodes dansdes interfaes de type livewire.Conernant les appliations au alul de artes de onnetivité dans la ma-tière blanhe, l'algorithme que nous avons proposé � s'il n'a pas enore ététesté sur des jeux de données omplet � o�re des premiers résultats inté-ressants : en un temps faible omparé à elui de l'aquisition des données,il permet d'obtenir des artes de onnetivité orrespondant à nos onnais-sanes anatomique, y ompris pour des faiseaux �ns et/ou prohes d'autresfaiseaux, tels le Cingulum. Étant donné la dimension de l'espae onsidérépour ette méthode, notre parti pris a été de sari�er la préision � en par-tiulier, notre shéma ne onverge pas vers une solution théorique � a�n dediminuer le temps de alul. Nous avons ependant veillé à onserver la pré-ision dans les diretions prinipales des �bres. Une étude plus approfondiede e que nous perdons par rapport aux Fast-Marhing omplets serait inté-ressante. Il serait également judiieux de valider ette méthode sur une étudeà plusieurs sujets, et de la omparer à d'autres méthodes existantes.



Annexe AAppendix to shortest pathsomputationLet us onsider the framework desribed in II.4.A.1 Shortest paths omputation on a subset of
R
n or VFast-Marhing an be easily adapted to the omputation of shortest pathson a subset Ω of R

n or of the onsidered manifold V (setion I.3.1.2).A �rst solution is to put the points of the disretization outside Ω in A atthe beginning of the algorithm with +∞ value � or to simply remove themfrom the disretization. Therefore, those points will not be update, nor theywill partiipate in updates of their neighbors.However, in view of performing a gradient desent to ompute geodesis, itis desirable to dispose of the value of U at any point immediately outside
Ω � whih will allow a uni�ed evaluation of the gradient in Ω. One possiblesolution is to label suh points, and to set their initial value to +∞. Thesepoints we behave as Ω points during the exeution of the algorithm, with theexeption that they will not be used to update their neighbors values. Anevaluation of U will thus be available for those points, without perturbingthe values obtained for points in Ω. 177



178 Appendix to shortest paths omputation
x

yx1
x2Fig. 1.1 � Approximation of the shortest path in the simplex used duringthe update step.A.2 Connetivity measuresA.2.1 De�nitions, omputationsIf we interpret the loal metri as the inverse of a speed tensor (setionI.3.1.6), we saw that a shortest path an be onsidered as shortest in a tem-poral sense. The average potential of the shortest path between two pointsan then be interpreted as a onnetivity measure between these two pointsin several ontexts (hapter II). The standard deviation of speed, as long asits minimal value along the path an also be meaningfull for the onnetivityassesment between two points (hapter III.)In order to estimate those quantities, we propose to use a generalization ofthe proess desribed in [163℄. Let us onsider an update step in a simplex ofmatrixX. Condition Cm implies thatM−2∇U omes from inside the simplex(�gure 1.1).Inside the simplex, we an approximate the shortest path to x with the linegoing through x of diretion M−2∇U . Let us denote by y the intersetion ofthis line and the faet opposed to x in the simplex.Furthermore, we write y =

∑n
i=1 λixi in baryentri oordinates 1.1The equation of the opposite faet of the simplex is given by ∑ eiti = 1, where

e
def.
= X+

1. We immediately dedue the oordinates of point y. λ is then expressed as
X+ty.



A.2 Connetivity measures 179For any point x, let us denote by Ueuc(x) the estimated Eulidean lengthalong the shortest path from x to the origin. We will use the following ap-proximation :
Ueuc(x) ≈

n∑

i=1

λiUeuc(xi) + ‖x− y‖ (A.2.1)Average potential along a geodesi is then given by C = U/Ueuc.Similarly, we an estimate the square of the potential, averaged along a geo-desi (Usq) and the maximal potential (or the minimal speed) along a geodesi(Umax).
Usq(x) ≈

n∑

i=1

λiUsq(xi) + ‖x− y‖‖x− y‖
2
b

‖x− y‖2 (A.2.2)
Umax(x) ≈ max{

n

min
i=1
{λiUmax(xi)},

‖x− y‖b
‖x− y‖ } (A.2.3)

Cmax = Umax an be seen diretly as a onnetivity measure.The standard deviation of potential along a geodesi � Cσ =
√

Usq/Ueuc − (U/Ueuc)
2� measures the �regularity� of the trajetory between two points.A.2.2 Numerial resultsWe will not give any onvergene results for the alulation of C, Cmax et

Cσ. We present results obtained for these measures for two di�erent potentialmaps in dimension 2. A 4 neighbors system is used in all the experiments.A.2.2.1 �Vessels� PotentialThe �rst tested potential mimis a vessel (f. setion III.1). It is equal to 1in all the spae exept in a shallow vessel in whih its value is 1/4 � whihfavors front propagation (�gure 1.2, left).Figure 1.3 presents the obtained results. The three onnetivity measures areminimal inside the vessel.Figure 1.4 shows similar results for a noisy potential. Gaussian noise wasadded in the lower left part, and the vessels was ut in its right part (�gure
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Fig. 1.2 � Potentials used for testing onnetivity measures. Noise free (left)and noisy (right).

Fig. 1.3 � Connetivity measures for �vessel� potential. Top, from left toright : U , Ueuc and Usq. Bottom, from left to right : the extremal intensityvalues being given, C (0.2, 1), Cσ (0, 0.4), Cmax (0.2, 1).



A.2 Connetivity measures 181

Fig. 1.4 � Connetivity measures for noisy �vessel� potential. Top, from leftto right : U , Ueuc and Usq. Bottom, from left to right : the extremal intensityvalues being given, C (0.2, 1), Cσ (0, 0.4), Cmax (0.2, 1).1.2, right). Cσ et Cmax seem to be more sensitive to noise than C. These tomeasures are also more disturbed by the delete piee of vessel.A.2.2.2 Anisotropi PotentialThe seond potential is a uniform anisotropi potential. The tensor is alognedwith the axis, and horizontal speed is twie as muh as horizontal vertialspeed. Figure 1.5 shows some results for this potential. C et Cmax exhibit theexpeted behavior � i.e. they are smaller in the horizontal diretion. Sinethe shortest paths are straight lines in this ontext, the expeted value for
Cσ is 0 at any point. In this experiments, we found exat values in this axisdiretions. In other diretion, they range between 0 and 0.2, with maximumaround the starting point.
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Fig. 1.5 � Connetivity measures for anisotropi potential. Top, from left toright : U , Ueuc and Usq. Bottom, from left to right : the extremal intensityvalues being given, C (0.5, 1), Cσ (0, 0.5) � maximale value in the plane islower than 0.2, Cmax (0.5, 1).



Annexe BEletrodes registration in EEGusing disrete optimizationThis appendix has been adapted from the researh report [140℄ orrespondingto a work published in [166℄. It is an early work in this thesis, independantfrom the rest of the presented methods. However, sine the algorithm desri-bed here is urrently used by EEG experimenters, and sine developping afull framework for the loalization of EEG eletrodes from pitures would beof high interest, we believe it is interesting to reprodue this appendix as areferene.B.1 IntrodutionEletroenephalography (EEG) is a widely used method for both linial andresearh purposes. Clinially, it is used e.g. to monitor and loate epilepsy,or to haraterize neurologial disorders suh as sleeping or eating disordersand troubles related to multiple slerosis. Its main advantages are its prieompared to magnetoenephalography (MEG), and its very good time reso-lution ompared e.g. to fMRI. Conventionally, EEG readings were diretlyused to investigate brain ativity from the evolution of the topographies onthe salp. Nowadays, it is also possible to reonstrut the brain soures thatgave rise to suh measurements, solving a so-alled inverse problem. To thispurpose, it is neessary to �nd the eletrode positions and to relate them to183



184 Eletrodes registration in EEG using disrete optimizationthe head geometry reovered from an anatomi MRI. Current tehniques todo so are slow, tedious, error prone (they require to aquire eah of the ele-trodes in a given order with a devie providing 3D oordinates[106℄) and/orquite expensive (a speialized system of ameras is used to trak and label theeletrodes[175℄). Our goal is to provide a heap and easy system for eletrodeloalization based on omputer vision tehniques.In modern EEG systems, the eletrodes (64, 128 or even 256) are organizedon a ap that is plaed on the head. system, eletrodes, obtain suh a oneto obtain used as a some roots between the and those multiple pituresof the head wearing the ap from various positions. As a preliminary step,eletrodes are loalized and their 3D positions are omputed from the imagesby self-alibration (a tehnique that reovers the ameras' positions from theimage information [59℄) and triangulation. These are standard tehniquesthat an provide 3D point oordinates with a quite good auray. Remainsthe problem of eletrode identi�ation whih labels eah 3D position with thename of the orresponding eletrode. Finding a solution to this last problemis the fous of this paper. Note, that a good labeling software an also improveurrent systems by removing aquisition onstraints (suh as the reordingof the eletrodes in a given order) and by providing better user interfaes.We propose a method that reovers this labeling from just a few (two orthree) manually annotated eletrodes. The only prior is a referene, subjetindependent, 3D model of the ap. Our framework is based on ombinato-rial optimization (namely on an extension of the Loopy Belief Propagationalgorithm[148℄) and is robust to soft deformations of the ap aused both bysliding e�ets and by the variability in subjets' head geometry.B.2 Problem de�nitionThe inputs of our method onsist in :
• a template EEG ap model providing labeled eletrodes, along with their3D positions (in fat, as we will explain further, an important feature of ourmethod is that only the distanes between lose eletrodes are used). L willdenote the set of labels (e.g. L = {Fpz,Oz, · · · }), and C = {Cl, l ∈ L} willbe their orresponding 3D positions. Cl ould be for example the average



B.3 Motivation 185position of eletrode l among a variety of prior measures. However, in ourexperiments, it was just estimated on one referene aquisition.
• the measured 3D positions of the eletrodes to label, obtained by 3D re-onstrution from images. We will denote by M = {Mi, i ∈ [1..n]}, these
n 3D points.The output will be a labeling of the eletrodes, i.e. a mapping ϕ from [1..n]to L. Note that n ould be less than the total number |L| of eletrodes inases where some eletrodes are of the ap are not used.B.3 MotivationIn this setion, we disuss other possible approahes for the eletrode labelingproblem. As it will be detailed in setion B.6, we have tried some of thesemethods without any suess. This will motivate our energy-based ombi-natorial approah. A simple method ould onsist in a 3D registration step,followed by a nearest-neighbor labeling. Let T be a transformation that sends

M into the spatial referential of C. A straight labeling ould be :
ϕ(i) = arg min

l∈L
d(Cl, T (Mi))where d(A,B) denotes the Eulidean distane between points A and B. A-tually, we �rst tested two diret ways of obtaining an a�ne transformation

T :
• moment-based a�ne registration : in this ase, we omputed �rst and se-ond order moments of the sets of points M and C and hoose T as ana�ne transformation whih superimposes these moments.
• 4 points manual registration : here, we manually labeled 4 partiular ele-trodes in M and took for T the a�ne transformation whih exatly sendsthese 4 eletrodes to the orresponding positions in C.As explained in setion B.6, we observed that these two approahes givevery bad average results. One ould argue that this might be aused by thequality of the registration. A solution ould be to use more optimal a�neregistration methods, like Iterative Closest Points[222, 22℄. Yet, a lose lookat what aused bad labeling in our experiments, reveals that this would notimprove the results. The main reasons are indeed that (i) the subjet whose



186 Eletrodes registration in EEG using disrete optimizationEEG has to be labeled does not have the same head measurements than thetemplate, and moreover that (ii) the ap is a soft struture that shifts andtwists from one experiment to another.It is lear that only a non-rigid registration ould send M lose to C. Howe-ver, modeling the problem in term of spae deformation is not suitable. Forinstane, a Thin-Plate Spline[27, 79℄ based algorithm would not be adapted.Atually, a more suitable framework ould be a deformable shape mathingone. We ould see our problem as a shape registration one, based on shape de-formation and intrinsi shape properties[183℄, rather than on deforming theambient spae in order to make the shapes math. Beause of the topologyof the eletrodes on the ap, relations between points are also of importane.In that sense, our problem is lose to the one investigated by Coughlan etal. [42, 5℄, whih they solve reovering both deformations and soft orrespon-denes between two shapes. Yet, in our ase, we see two main di�erenes :(i) labeling, rather than shape mathing, is the key issue, and (ii) enforingrelational onstraints between points are more important than regularizingdeformations. For these reasons, we propose a method based on optimal la-beling for whih the only (soft) onstraints are the distanes between nearbypoints, without modeling any deformation.In the remaining of the artile, we �rst state our model and the assoiatedenergy ; we then disuss our hoie for an energy minimization algorithm.Finally, we validate our method giving qualitative and quantitative resultson real experiments.B.4 Proposed frameworkThe omplete pipeline of our system is depited �gure 2.1. As we alreadyexplained, we do not onsider here the 3D reonstrution step, but only thelabeling one. From the measured data M , we onstrut an undireted graph
G = (V,E), where V = [1..n] is the set of verties and E a ertain set of edgeswhih odes the relations between nearby eletrodes. As it will beome learin the following, the hoie of E will tune the rigidity of the set of points M .Pratially, the symmetri k-nearest neighbors or all the neighbors loser thana ertain typial distane, are two valid hoies. Given an edge e = (i, j) ∈ E
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Fig. 2.1 � Complete pipeline : we obtain 3D positions M (bottom left) byreonstrution from several (usually 6) pitures (top left). A graph G then isonstruted from these positions (bottom right). Considering a template apand assoiated positions C (top right), we label the measured eletrodes byestimating ϕ∗ = arg min(U(ϕ)). In this example, ϕ(i) = k, ϕ(j) = l.for i ∈ V and j ∈ V , we denote by dij = d(Mi,Mj) the distane betweenpoints Mi and Mj in the measured data and by d̃ij = d(Cϕ(i), Cϕ(j)) thereferene distane between the eletrodes ϕ(i) and ϕ(j). In order to preservein a soft way the loal struture of the ap, we propose to simply minimizethe following energy :
U(ϕ) =

∑

(i,j)∈E

ρ(dij, d̃ij) (B.4.1)where ρ is a ost-funtion whih penalizes di�erenes between the observedand template distanes. Note that, whereas the global one-to-one harater of
ϕ is not expliitly enfored by this model, the loal rigidity-like onstraints en-fore it. Graph rigidity theory is a very omplex domain (see for example [23℄as an introdution), beyond the purpose of this artile.Following the lassial framework of Markov Random Fields (MRF) [125,21, 70℄, this an be rewritten as maximizing the following funtion :

P (ϕ) = exp(−U(ϕ)) =
∏

(i,j)∈E

exp(−ρ(dij, d̃ij)) =
∏

(i,j)∈E

Ψi,j(ϕ(i), ϕ(j))(B.4.2)Normalizing P by dividing by the sum over all the possible mappings ϕ,



188 Eletrodes registration in EEG using disrete optimizationyields a Gibbs distribution over a MRF derived from graph G with L asthe set of possible labels eah vertex. The problem is thus redued to thelassial ase of �nding a Maximum A Posteriori (MAP) on�guration of aGibbs distribution :
p(ϕ) =

1

K

∏

i∈V

ψi(ϕ(i))
∏

(i,j)∈E

ψi,j(ϕ(i), ϕ(j)) (B.4.3)where K is a normalizing onstant and ψi(ϕ(i)) = 1 in our ase.B.5 Energy minimizationThe problem of �nding a MAP on�guration of a Gibbs distribution beingNP-omplete [102℄, we annot expet to get an algorithm that optimallysolves every instane of the problem. Sine the seminal work of Geman & Ge-man [70℄, who proposed an algorithm that warrants the probabilisti onver-gene toward the optimal solution � however with an unreasonable run-time� several methods have been investigated to maximize general distributionslike (B.4.3). Among these, minimal-ut based methods (often referred to asGraphCuts), introdued in omputer vision and image proessing by [74℄,has reeived many attention (see [85, 29℄). These methods an ahieve globaloptimization for a restrited lass of energies[84℄. For more general energies,approximations were proposed [169℄. As we experimented[140℄, these approxi-mations fail to reover a orret labeling in our problem, whih belongs to alass of multilabel problems that are not easily takled by GraphCuts.As a onsequene, we opted for a ompletely di�erent but widely spread al-gorithm, namely Belief Propagation (BP), and more preisely for its variantadapted to graphs : Loopy Belief Propagation (LBP). Please see [60℄ for areent referene. Brie�y, it onsists in propagating information through theedges of the graph : eah node i sends messages to its neighbors k, measu-ring the estimated label of k from its own point of view. Messages are passedbetween nodes iteratively until a onvergene riterion is satis�ed. This al-gorithm is neither guaranteed to onverge nor to onverge to an optimalsolution. However, it behaves well in a large variety of early vision problems.Empirial and theoretial onvergene of this family of methods were studied



B.5 Energy minimization 189for instane in [141, 216℄.Atually, we designed for this work an original and faster version of LBP. Itis an improved version of LBP based on the idea of [103℄.Let us �rst explain lassial LBP algorithm.B.5.1 LBPLoopy Belief Propagation (LBP) algorithm [60℄ is a widely used method to�nd approximate solutions to the MAP problem when the sub-modularityondition is not ful�lled. It onsists in propagating information through theverties of the mesh seen as a graph : roughly speaking, eah node i sendsmessages to its neighbors k, measuring the estimated label of k from thepoint of view of i.The LBP algorithm is derived from an exat algorithmworking on trees alledBelief Propagation (BP) or Max-Produt algorithm [149℄. In the original BP,messages measuring belief in a loal labeling propagate from the leafs tothe root of the tree. Then a bakward pass is omputed in whih label thatmaximizes the belief is hosen at eah node, knowing the label of the father.Let us introdue some notations :
r the root of the tree, s the appliation that maps a node to its sons and fthe appliation that maps a node to its father. L is the set of the leafs of thetree.
mi→j will denote the message passed by node Vi to node Vj. mi→j(l) is ameasure of how on�dent node Vi is that node Vj is given the l label, i.e.
ϕ(Vj) = l.We denote by bi(li, lf(i)) = ψi(li)ψf(i)i(lf(i), li)

∏

j∈s(i)mj→i(li) for li ∈ C and
lf(i) ∈ C the joint belief that node Vf(i) is assigned label lf(i) and node Vi isassigned label li.The BP algorithm is desribed in algorithm 8.When the graph is not a tree, the ordered treatment of BP is impossible toapply. However, disregarding the relation of paternity of the nodes, it is stillpossible to pass messages from nodes to nodes in the graph. A belief analso be omputed the same way as for BP. The idea of LBP is then to applythe message passing simultaneously or sequentially to all the neighboring



190 Eletrodes registration in EEG using disrete optimizationAlgorithm 8 Belief Propagation
K = LForward passwhile Vi ∈ K doremove Vi from Kompute mi→f(i)(lf(i)) = maxli(bi(li, lf(i))) for all lf(i) ∈ C.ompute δ(lf(i)) = argmaxli(bi(li, lf(i))) for all lf(i) ∈ C.if all sons of Vf(i) have been treated, add Vf(i) to Kend whileBakward pass
ϕ̄r = δr

K = s(r)while Vi ∈ K doremove Vi from Kompute ϕ̄i = δi(ϕ̄f(i))

K = K ∪ s(Vi)end whilereturn ϕ̄nodes of the graph. A stopping riterion is then to be de�ned - usually aonvergene riterion or a �xed number of iterations.Let us adapt slightly the notations and denote by N(i) the set of neighbornodes of Vi.
mt

i→j is the message passed by node Vi to node Vj at time t. Let bti(li, lj) =

ψi(li)ψij(li, lj)
∏

k∈N(i),k 6=j m
t
k→i(li) for (li, lj) ∈ C2 be the joint belief forneighbor nodes Vi and Vj. Finally, let bti(li) = ψi(li)

∏

k∈N(i)m
t
k→i(li) be the

belief vector at node Vi and time t (taking into aount all the neighbors ofnode Vi).This leads to algorithm 9.This algorithm is neither guaranteed to onverge nor to onverge to an opti-mal solution. However, it behaves well in a large variety of early vision pro-blems. Empirial and theoretial onvergene of this kind of methods werestudied for instane in [141℄ and [216℄.Notie that the omplexity of one step of this algorithm is basially |(C)|2|E|



B.5 Energy minimization 191Algorithm 9 Loopy Belief Propagationset m0
p→q(lq) = 1 for all (p, q) ∈ E.for t = 1, t ≤ T, t+ + dofor all (i, j) in V do
mt

i→j(lj) = maxli∈C(bt−1
i (li, lj))end forend forreturn ϕ̄i = argmaxli∈Cb

T
i (li)where |E| is the number of edges of the graph.B.5.2 Improving belief propagationSeveral methods have been proposed to improve both the onvergene andthe quality of results obtained by LBP algorithm. [213℄ proposed a slightlydi�erent algorithm based on a di�erent theoretial framework with inter-esting onvergene properties. More reently, [103℄ proposed an interestingmodi�ation of LBP based on label pruning aording to urrent belief ateah node, and on a hoie of a priority order for overing all nodes. But,their method show a greedy behavior, sine a label annot appear again oneit has been pruned.A new intermediate and simpler version of LBP based on label pruning isproposed here. It is based on the idea that if a label is very unlikely for agiven vertex, it ought to be useless to use this label for the alulation of theoutgoing messages for this vertex. Hene, after eah step, the belief vetor

bti(li) is omputed for eah node as well as its maximum and minimum values
M t

i and mt
i. Then, eah label with a belief lower than the geometri mean gt

iof mt
i and M t

i is delared inative for the next iteration only, e.g. it won't beonsidered as a andidate label in omputing outgoing messages toward theneighbors of Vi (notie that the hoie of the mean is somewhat arbitrary. Itshould be adapted to the struture of the belief vetor. For our appliation,we didn't notie e�et of the hoie of a threshold between 0.5 and 0.8 overspeed nor quality of results).Let us denote by Actti the set of ative labels of Vi omputed at iteration t.



192 Eletrodes registration in EEG using disrete optimizationOur method is desribed algorithm 10.Algorithm 10 Fast Loopy Belief Propagationset Act0i = C for all Vi ∈ Vset m0
p→q(lq) = 1 for all (p, q) ∈ E.for t = 1, t ≤ T, t+ + dofor all (i, j) in V do
mt

i→j(lj) = maxli∈Actt−1
i

(bt−1
i (li, lj))set Actti = {li : li ≥ gt

i}end forend forreturn ϕ̄i = argmaxli∈Cb
T
i (li)The |C|2 fator for eah edge in the omplexity for one step is then replaedby a |C||C ′| where |C ′| is the number of ative labels of the original node.B.6 ExperimentsWe used 6 sets of 63 eletrodes. Eah set onsists in 63 estimated threedimensional points, aquired on di�erent subjets with the same EEG apand manually labeled. To test our algorithm as extensively as possible, weran the algorithm on eah set, taking suessively eah of the other setsas a referene. We hene simulated 30 di�erent pairs (M,C). At least oneeletrode in M was manually labeled (see further).

E was hosen the following way : we �rst estimated a typial neighbor dis-tane by omputing the maximum of the nearest neighbor distane for alleletrodes inM , and then onsidered as belonging to E, every pair of distinteletrodes within less than three times this distane. In order to aelerateand enfore onvergene, we used the three following tehnial triks :
• we used our modi�ed LBP algorithm
• we added a lassial momentum term [141℄
• denoting by Vf the subset of V of the manually labeled eletrodes, we addedthe set of edges Vf × V to E, allowing aurate information to propagatequikly in the graph.



B.6 Experiments 193Although non indispensable, this led to a mean running time of less than11s on a standard 3GHz PC and to a smaller number of non onvergingoptimization.The ost-funtion ρ was of the form ρ(x, y) = x
y+ǫ

+ y
x+ǫ

where ǫ is a smallpositive onstant. We did not notie sensitivity with respet to this hoie, asfar as the following key onditions are ful�lled : (i) penalizing di�erenes bet-ween x and y and (ii) penalizing small values of x or y. This latest onditionenfores (yet does not warrant) a one-to-one mapping ϕ.Di�erent experiments where arried out. First, the prior onsisted in ma-nually labeling eletrodes Fpz, Oz, and T8. In that ase, our method reo-vers all the eletrodes, whih was, as expeted, not at all the ase with ana�ne registration+nearest neighbor approah (see �gure 2.2). Atually, weobserved that labeling (Oz, T8) seems su�ient. Yet, without any furtherdata, we do not onsider that labeling two eletrodes only is reliable. Figure2.4 shows a result on a ase where a�ne registration does not work and the�nal 3D reonstrution with our method.To demonstrate the robustness of our algorithm, we also tested hundredsof other onditions, in whih 1, 2 or 3 randomly hosen eletrodes were"manually" labeled. Non-onvergene was only observed for non reasonablehoies of "manually" labeled eletrodes : indeed, if they are hosen on thesagittal medium line, there is an undetermination due to the left-right sym-metry of the ap. This does not our when the eletrodes are set by a humanoperator. The lassi�ation error rates are low (see �gure 2.2 again) but notnegligible. This makes us plead for a manual labeling of two or three �xedand easy to identify eletrodes, e.g. (Fpz,Oz, T8).Finally, we also suessfully tested ases for whih n < |L|, i.e. when someeletrodes are missing : if a few eletrodes were forgotten in the 3D reons-trution proess, our algorithm should still be able to label the deteted ones.This should allow us to �nd whih eletrodes were forgotten, to ompute theirapproximate 3D position from the template ap model and to use this infor-mation to detet them bak in the pitures. To arry our experiments, weremoved randomly from 1 to 10 eletrodes in the data sets to be labeled. La-belisation was performed using the (Fpz,Oz, T8) prior as explained above.Results are synthetized �gure 2.3.
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NC mislassi�ed labelsA�ne registration (moment based) - 48.7%A�ne registration (4 manual points) - 21.3%Our method - (Fpz,Oz, T8) manually labeled 0% 0%Our method - (Oz, T8) manually labeled 0% 0%Our method - 3 random eletrodes labeled 0% 0.03%Our method - 2 random eletrodes labeled 0.3% 0.2%Our method - 1 random eletrode labeled 4.2% 3,7%Fig. 2.2 � Classi�ation errors. NC gives the perentage of instanes of theproblem for whih our method did not onverge. Mislassi�ed labels peren-tages are estimated only when onvergene ours.missing eletrodes mislabeled eletrodes1 0%2 0%3 0.01%4 0.02%5 0.02%6 0.04%7 0.04%8 0.3%9 1.1%10 1.1%Fig. 2.3 � Results with missing eletrodes.B.7 DisussionExperiments show that our framework leads to fast, aurate and robustlabeling on a variety of data sets. We onsider providing on the WEB ina near future an omplete pipeline inluding our algorithm - ranging from3D reonstrution of eletrodes to their labeling. Suh a system would onlyrequire a standard digital amera and would imply minimal user interation
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Fig. 2.4 � A sample result. M is in red and C in green. Top left : 63 esti-mated 3D eletrodes positions. Top enter : referene. Bottom left : subsetof a labeling with the moment based algorithm ; C4 is wrongly labeled CP4,and F1 is labeled F3 (not shown). Bottom enter : a subset of orret orres-pondenes retrieved by our algorithm. Top and bottom right : full labelingretrieved by our algorithm, superimposed with anatomial MRI(manually labeling three eletrodes).Note that the �exibility of our MRF formulation allows di�erent priors. Weplan for instane to use the olor of eletrodes on the images as a furtherprior for labeling. This ould lead to a fully automated system, where nouser interation would be required.
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