
HAL Id: tel-00844123
https://theses.hal.science/tel-00844123

Submitted on 12 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Growth-fragmentation equations in biology
Marie Doumic

To cite this version:
Marie Doumic. Growth-fragmentation equations in biology. Analysis of PDEs [math.AP]. Université
Pierre et Marie Curie - Paris VI, 2013. �tel-00844123�

https://theses.hal.science/tel-00844123
https://hal.archives-ouvertes.fr


.

UNIVERSITE PARIS VI - PIERRE ET MARIE CURIE

Habilitation à diriger des recherches
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Part I

Résumé étendu (short French version)

Dans ce mémoire d’habilitation, je présente les travaux de recherche effectués depuis mars
2007 à Inria Paris-Rocquencourt, au sein de l’équipe-projet BANG dirigée par Benôıt Perthame.
Avant d’entrer dans le vif du sujet, le paragraphe ci-dessous résume mes travaux de recherche
antérieurs, effectués au cours de ma thèse, et explique mon parcours professionnel. J’aborde
ensuite mon sujet de recherche actuelle: les phénomènes de croissance et de division (ou frag-
mentation) en biologie. J’en détaille de façon plus approfondie les divers aspects: analyse
mathématique, problème inverse, modélisation et applications en biologie. Enfin, j’esquisse
les perspectives de ma recherche en cours et à venir.

1 Travaux antérieurs et parcours professionnel

1.1 Travaux de thèse: l’interaction laser-matière

Ma thèse se déroula au Commissariat à l’Energie Atomique et à l’Ecole Normale Supérieure,
sous la direction de Rémi Sentis et de François Golse. Le projet Laser Mégajoule du CEA
fournit mon sujet d’étude: l’interaction laser-matière. Ces travaux présentent une forte
cohérence, et je n’ai pas abordé de nouveau ce thème de recherche depuis ma soutenance,
en mai 2005: je laisse donc le lecteur intéressé se reporter à ce précédent manuscrit [3], et je
me contente d’en faire ici un très bref résumé.

L’objectif était de modéliser puis de simuler la propagation laser dans un plasma lorsque
la direction de la lumière, loin d’être orthogonale au domaine de simulation, présente un
angle d’incidence prononcé. Les travaux antérieurs ne permettaient qu’un angle très faible
[65]. Cela est problématique lorsqu’il s’agit, comme dans le projet Laser Mégajoule, de
prendre en compte des variations dans la direction de propagation ou encore des croisements
de faisceaux.

Partant de travaux de physiciens [65], et par un développement asymptotique de type
Chapman-Enskog [44], nous bâtimes tout d’abord un modèle de propagation laser oblique
en milieu inhomogène, modèle que nous justifiâmes par des estimations d’énergie (voir
l’introduction de ma thèse [3], ainsi que [5]). Nous construiŝımes alors un schéma numérique
capable de rendre compte de cette propagation pour un angle d’incidence quelconque, allant
jusqu’à presque 90 degrés [8]. Ce schéma est fondé sur la résolution analytique de l’équation
dans un cas simple (coefficients constants) par transformée de Fourier [5]. La méthode est
également efficace dans le cas de coefficients variables [6], et fut intégrée par F. Duboc à la
plateforme de calcul HERA du Commissariat à l’Energie Atomique [26].
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1.2 Parcours professionnel

Je commençai ma thèse en septembre 1999. Après un an, je décidai de me tourner vers une
carrière opérationnelle et donc de quitter la filière scientifique – définitivement, croyais-je: je
candidatai et je fus reçue au Corps des Ponts et Chaussées, devenu depuis le Corps des Ponts
et Forêts. De 2000 à 2003, je suivis la scolarité normale des ingénieurs-élèves, alternant cours
et stages professionnels.

En août 2003, je pris le poste de chef du service ”Techniques de la voie d’eau”, au ser-
vice Navigation de la Seine. J’y étais responsable d’un service d’environ quarante personnes
(ingénieurs, techniciens, personnel administratif et surveillants de travaux), service qui avait
pour fonction de planifier et d’organiser les appels d’offres puis de suivre la réalisation des
grands travaux fluviaux sur le bassin de la Seine (barrages de navigation, passes à pois-
sons et écluses principalement). J’y passai trois années passionnantes et formatrices. Mes
publications de l’époque, en collaboration avec un grand nombre d’auteurs, s’appellent la
reconstruction des barrages de l’Oise, la reconstruction du barrage de Chatou, la passe à
poissons d’Andrésy, la réorganisation de la filière ingénierie.

En parallèle, j’achevai ma thèse et la soutins en mai 2005. Je pensais mettre ainsi un
point final à mes travaux scientifiques. Pourtant, lorsque deux ans plus tard, comme prévu
dans par ma carrière d’ingénieur, je commençai à chercher un deuxième poste, je me tournai
de nouveau vers la recherche.

Trois facteurs jouèrent dans ma décision. Le premier fut la maturité que j’avais acquise
dans l’ ”opérationnel”: je n’envisageais pas cela comme un retour en arrière ni même comme
un retour à de premières amours, suite à un égarement passagé, mais comme une façon
différente de faire de la science que lorsque j’étais étudiante. Le deuxième fut que mes travaux
de thèse aient été fructueux, repris par F. Duboc et mis en oeuvre dans la plateforme HERA:
mon travail avait donc été plus utile que ce que j’en avais perçu sur le coup. Le troisième, et
l’élément déclencheur, fut une petite phrase – presque anachronique dans le contexte de ma
soutenance de thèse – que Claude Bardos tint à ajouter à mon compte-rendu de soutenance:
”la candidate pourrait faire une très bonne carrière dans la recherche scientifique”. Je voulus
tenter ce pari, aussi étrange qu’il semblât, et malgré un certain scepticisme ambiant - à
commencer par le mien propre. Si aujourd’hui je crois pouvoir dire qu’il est tenu, je le dois
à de nombreux soutiens et aux collaborations développées depuis cinq ans, et plus que tout
autre à Benôıt Perthame.

En mars 2007, je rejoignis en tant que chercheur (mon statut exact est celui d’ingénieur
en détachement du Corps des Ponts, des Eaux et des Forêts) l’équipe-projet BANG dirigée
par Benôıt Perthame. Mon activité de recherche porta, et continue de porter, sur la
compréhension de phénomènes de croissance et de fragmentation, avec un souci constant
que les problèmes mathématiques envisagés soient liés à une question de biologie contem-
poraine. De juin 2008 à juin 2011, j’encadrai avec B. Perthame la thèse de Pierre Gabriel
sur les équations de transport-fragmentation et applications aux maladies à prion. Il est
maintenant mâıtre de conférences à l’université de Versailles-St Quentin en Yvelines et fut
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lauréat du prix solennel de la chancellerie des Universités de Paris ”Thiessé de Rosemont
/ Demassieux” en 2012. Je co-encadre actuellement avec B. Perthame les thèses de H.W.
Haffaf depuis septembre 2011 et T. Bourgeron depuis septembre 2012.

De septembre 2009 à décembre 2012, je coordonnai un projet ANR du programme blanc,
TOPPAZ (pour Theory and Observation of protein Polymerization in Amyloid Diseases
(Prion, Alzheimer’s)), dans le cadre duquel la thèse de P. Gabriel fut effectuée. Dans la
ligne de ce projet ANR, de décembre 2012 à décembre 2017, je dirige un projet européen
du programme ERC Starting Grant, le projet SKIPPERAD acronyme de Simulation of the
Kinetics and Inverse Problems for protein Polymerization in Amyloid Diseases. L’idée de
cet axe de recherche est la confrontation de nos modèles de croissance et fragmentation avec
les données expérimentales les plus récentes, tant par des techniques de problèmes inverses
que par l’analyse mathématique.

2 Phénomènes de croissance et de fragmentation

2.1 Quelques équations de population structurée [4, 12, 14]

Soit une population dont les individus grandissent et se reproduisent, et dont on souhaite
suivre - et comprendre - le comportement au cours du temps. Les équations dites ”de
population structurée” ont été écrites dans ce but: elles rendent compte de l’évolution de
la population au cours du temps, en fonction d’une variable qu’on appelle ”structurante”,
c’est-à-dire qu’elle est choisie pour être caractéristique de la croissance et de la division des
individus.

A ce stade, avant même l’écriture des équations, une question se pose: comment bien
choisir la ou les variables structurantes ? Quelle grandeur intrinsèque permet de compren-
dre le développement de la population ? La réponse n’est bien sûr pas la même selon la
population que l’on considère. Dans mes travaux, j’ai étudié dans [4] un modèle écrit pour
des populations de cellules en division [34] où les variables structurantes étaient l’âge et le
contenu en protéine (ce qui est mathématiquement le cas structuré en taille). Dans [12, 14],
nous avons analysé des modèles non linéaires structurés en maturité, ce qui est utile, par
exemple, pour modéliser l’hématopoièse où les cellules se différencient au fur et à mesure,
selon un arbre qui va des cellules souches aux cellules sanguines. Dans [31, 1], l’équipe de
H.T. Banks, avec laquelle j’ai collaboré, a étudié un modèle structuré en label fluorescent,
qui présente l’avantage de pouvoir - contrairement à l’âge ou à la maturité - être directement
mesuré, mais qui présente l’inconvénient concomitant de ne pas être à proprement parler
structurant, c’est-à-dire qu’il s’agit d’un marqueur qui est rarement le moteur de la crois-
sance ou de la division. Dans [7, 2, 15, 11, 13, 16] enfin, nous avons étudié, mes co-auteurs
et moi-même, divers aspects de l’équation suivante:

∂

∂t
n(t, x) +

∂

∂x
(g(x)n(t, x)) +B(x)n(t, x) = 2

∞∫

x

k(x, y)B(y)n(t, y)dy, x > 0, (2.1)
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que l’on complète par une condition initiale n(t = 0, x) = nin(x) et une condition de flux au
bord g(0)n(t, 0) = 0.

Il n’y a pas de terminologie unifiée pour cette équation: selon le contexte, elle est appelée
équation de division structurée en taille [128], équation de croissance-fragmentation [42], de
transport-fragmentation [67], d’agrégation-fragmentation [7], de division cellulaire lorsque les
cellules se divisent par fission [79]. Dans la suite, j’y ferai référence sous le nom d’équation
de croissance-fragmentation.

Ici, la densité de population est décrite par u(t, x), où t est le temps et x la variable
structurante - typiquement, la taille d’un individu. Les individus grossissent avec un taux
de croissance g(x), et se divisent avec un taux de division B(x). La probabilité de donner
naissance à deux individus de taille respective x et y − x, pour un individu parent de taille
y, est donnée par le noyau de fragmentation k(x, y).

2.2 Etudes de l’équation de croissance-fragmentation [7, 2]

Croissance et fragmentation sont deux phénomènes de dynamique opposée: la première
entrâıne la population vers les grandes tailles, tandis que la seconde la ramène vers les plus
petites. Lorsque leurs actions sont de force disons, d’une façon heuristique, comparable (cf.
[7] pour une définition plus précise), il a été démontré qu’asymptotiquement la solution
converge vers le produit d’un profil stationnaire N(x) et d’une exponentielle en temps eλt.
Ce phénomène est une réalité non seulement mathématique mais biologique, illustré par
exemple par les phénomènes de désynchronisation des cellules [45]: au bout d’un certain
temps, les cellules oublient leur répartition initiale (synchronisée) et se répartissent selon un
profil stationnaire.

Les premiers résultats sur la convergence asymptotique remontent à ma connaissance
1967, dans des articles de biophysique de Bell et Anderson [37, 36]. Des démonstrations
mathématiques fondées sur l’analyse des systèmes dynamiques, avec des méthodes de semi-
groupe et l’application du théorème de Krein-Rutman [88], suivirent dans les années 80
[79, 80, 52]. Plus récemment, le comportement asymptotique a été généralisé à l’aide de
deux outils fondamentaux: d’une part et comme précédemment, l’existence et l’unicité d’un
premier vecteur propre positif associé à une valeur propre positive; d’autre part, la gamme
d’inégalités de type entropique baptisée General Relative Entropy par B. Perthame et ses
co-auteurs [108].

La première question qui se pose est celle des conditions d’existence et d’unicité de ce
premier vecteur propre. Il s’agit de démontrer l’existence et l’unicité du couple (λ,N) avec
λ > 0, N ∈ L1(R+), solutions de

λN(x) + ∂
∂x

(
g(x)N(x)

)
+B(x)N(x) = 2

∞∫
x

k(x, y)B(y)N(y)dy, x > 0,
∫∞
0
N(x)dx = 1, N(x > 0) > 0, g(0)N(0) = 0.

(2.2)

A la suite des travaux de Diekmann, Heijmans et Thieme d’une part [79, 80, 52], de P. Michel
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[105], B. Perthame et L. Ryzhik [128] d’autre part, nous voulûmes chercher les hypothèses les
plus générales possibles sous lesquelles obtenir une telle propriété, autorisant en particulier
le taux de croissance g(x) à s’annuler en 0. C’est l’objet de l’article [7].

Les preuves reposent sur le théorème de Krein-Rutman ([88] pour l’article fondateur, ou
[51] ch.VIII) vérifié par une équation régularisée, et par des estimations fines permettant
d’obtenir de la compacité sur la suite des solutions régularisées, et donc sa convergence vers
une solution de l’équation originelle. Ces estimations font jouer tour à tour la domination du
taux de division par le taux de croissance, au voisinage de 0, et la domination réciproque au
voisinage de l’infini. Pour le vecteur propre adjoint, on utilise aussi un principe du maximum
pour construire une sur-solution de la suite des solutions régularisées. Enfin, la preuve de
l’unicité repose sur une méthode entropique (l’entropie relative généralisée introduite par P.
Michel, S. Mischler et B. Perthame [107, 108, 127]).

Les estimations récursives de [7] se sont révélées caractéristiques de l’équation, et utiles
à d’autres études. Dans [42, 24], elles sont à la base d’estimations plus précises, nécessitant
des hypothèses plus restrictives, qui servent à prouver l’existence d’un trou spectral, et donc
une convergence exponentiellement rapide vers le comportement asymptotique. Dans [16],
nous nous en serv̂ımes pour étudier la régularité de l’opérateur Γ : (g,B)→ (λ,N).

Dans [2] enfin, avec un changement de variables auto-similaire bien choisi, ces estima-
tions nous conduisirent à mettre en évidence un comportement inattendu de l’équation.
Nous souhaitions étudier le comportement du vecteur propre et de la valeur propre domi-
nante lorsque la fragmentation (ou, de façon symétrique, la croissance) est modulée par un
paramètre a > 0, ce qui peut se modéliser ainsi:

λaNa(x) +
∂

∂x
(g(x)Na(x)) + aB(x)Na(x) = 2a

∞∫

x

k(x, y)B(y)Na(y)dy, x > 0. (2.3)

Une telle étude peut servir de modèle-jouet pour comprendre l’effet d’une action influençant
la fragmentation, comme dans le protocole appelé PMCA où la fragmentation des polymères
de la protéine Prion est amplifiée par des ondes sonores (processus de sonication). Elle peut
aussi être un pas pour mieux comprendre des modèles non linéaires, comme celui du Prion
(cf. ci-dessous) ou encore pour optimiser l’action de médicaments anti-cancéreux [46].

Nous avons montré que le comportement de la valeur propre dominante λa ne dépendait
pas nécessairement de façon monotone d’un tel paramètre, car lorsque a→ 0 (respectivement
a→∞) il est déterminé par le comportement du taux de croissance au voisinage de l’infini
(respectivement de 0).

2.3 Problème inverse [15, 13, 16]

Un autre regard sur l’équation de croissance-fragmentation est donné par les études de
problèmes inverses [57], souvent riches de connaissances insoupçonnées sur un modèle donné.
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En effet, le problème dit direct se pose en général d’une seule façon: étant données cer-
taines valeurs de paramètres et un problème d’évolution, comment montrer que le problème
est bien posé (et dans quel espace), et que dire du comportement asymptotique en temps
(et éventuellement en espace). Il n’en est pas de même pour les problèmes inverses, qui
répondent chacun à une question du type: étant donné tel observable sur ma solution, telles
hypotèses a priori sur les paramètres, puis-je reconstruire tels autres paramètres et/ou l’état
initial du système; et les estimations obtenues sur cette reconstruction sont-elles optimales?
A chaque observable et à chaque question applicative correspond donc un problème inverse
différent, bien que relié à un unique problème d’évolution.

Ainsi, l’équation ”cousine”, où la variable structurante est l’âge, a fait l’objet de nom-
breuses études portant sur différents problèmes inverses - cf. par exemple [75, 76, 141, 142,
131, 58].

Pour l’équation de transport-fragmentation, le problème inverse de principale importance
ne consiste bien sûr pas à rechercher la condition initiale, étant donné l’oubli de cette con-
dition liée à la convergence rapide vers le profil stationnaire. On peut aussi concevoir que
dans bien des cas, il est possible de mesurer d’une façon directe le taux de croissance g(x).
En revanche, développer des méthodes pour estimer le taux de division B(x) peut se révéler
d’un grand intérêt.

La méthode introduite dans [130] consiste à utiliser le comportement asymptotique pour
simplifier le problème: à partir de mesures bruitées du profil stationnaire N(x), et du taux
de croissance exponentiel de la population λ, comment estimer le taux de division B dans
le cadre du modèle dit de la mitose égale, avec g(x) = 1 et k(x, y) = δx= y

2
? L’équation

considérée est donc toujours (2.2), mais l’inconnue n’est plus le couple (λ,N) mais le taux
de division B(x). Notant H = BN, et L(N) = λN + ∂

∂x
(gN), on peut diviser ce problème

en trois étapes.

• Résoudre, dans des espaces bien choisis, l’équation

4H(2x)−H(x) = L(x), (2.4)

et montrer la continuité de l’opérateur L : L→ H dans ces espaces bien choisis.

• Sachant qu’on ne mesure non pas N mais Nε, proche de N en un certain sens, et
que donc on ne connâıt pas l’exacte valeur de L dans l’équation (2.4), comment en
déduire un Hε proche de la solution H de (2.4) ? La notion de régularisation intervient
ici, et consiste à faire en sorte de se placer dans le cadre des espaces de régularité de
l’opérateur L.

• Diviser Hε par Nε de façon à estimer le taux de division B. Cette division pose
deux problèmes: tout d’abord, Nε n’est pas exactement N, ensuite, l’estimation est
nécessairement de très mauvaise qualité lorsque la densité N tend vers 0.

L’article fondateur [130] étudie le problème inverse dans le cas ci-dessus dit de la mitose
égale, dans l’espace L2(R+) - donc on suppose qu’on mesure Nε avec ‖N − Nε‖L2(R+) ≤ ε.

10



Dans L2, on peut montrer que l’opérateur L est continu. Les auteurs proposent alors une
méthode de régularisation dite de quasi-réversibilité, en écho à [90]: par l’ajout d’un petit
terme de dérivée α∂BN

∂x
, les régularités de BN et de N deviennent comparables, et on obtient

une estimation en ε
α

+ α, où régularisation et bruit s’équilibrent, de telle sorte que le choix
optimal est α =

√
ε et que l’on arrive à estimer le taux de division à

√
ε près, modulo la

division par Nε.

A la suite des travaux de B. Perthame et J. Zubelli [130] et en collaboration avec eux,
dans [15], nous avons tout d’abord proposé une deuxième méthode de régularisation possible,
consistant à convoler L(Nε) avec une suite régularisante. Nous avons également construit
une méthode numérique, ce qui a fait apparâıtre un point délicat: l’équation (2.4) possède
en réalité une infinité de solutions au sens des distributions, parmi lesquelles il s’agit de
sélectionner la ”bonne” - de notre point de vue.

Ce problème apparut de façon plus aigue encore lorsque, en collaboration avec L.M.
Tine [16], nous avons généralisé l’étude théorique et numérique ci-dessus à un noyau de
fragmentation k(x, y) quelconque. En effet, l’équation (2.4) généralisée s’écrit

2

∞∫

x

k(y, x)H(y)dy −H(x) = L(x), (2.5)

où le terme 4H(2x) est remplacé par un terme intégral non local. On ne peut donc plus
considérer cette équation que comme écrite en x, et non plus en y = 2x. Cela entrâıne que le
problème se résout bien dans un espace L2(xpdx) avec p > 3, comme précédemment (c’est le
cas ou le terme identité, deuxième terme du membre de gauche, domine le terme intégral),
mais pas lorsque p < 3 (où l’on espérerait que le terme intégral domine). D’un point de vue
numérique, le problème est le même: contraints d’employer des schémas d’implémentation
qui partent de la connaissance de H(y) pour y ≥ x pour en déduire la valeur de H en x, une
amplification importante du bruit au voisinage de x = 0 est observée. Dans le travail en cours
[19], nous proposons une méthode pour résoudre ce problème dans le cas des fragmentations
auto-similaires, i.e. si k(y, x) = 1

y
k0(

x
y
) avec k0 une mesure de probabilité sur [0, 1].

2.4 Point de vue statistique [11]

Comme vu ci-dessus, nous avons jusqu’à présent considéré un bruit exprimé de façon déterministe
comme une erreur de mesure dans L2, et avons résolu le problème également dans L2. Nos
travaux se généraliseraient d’ailleurs sans difficulté à un bruit dans un espace de Hilbert
Hs et à une recherche de solution dans un espace Hs′ ; on peut prouver que dans ce cas,
sous certaines hypothèses bien choisies de régularité des coefficients, l’estimation optimale
est en 0(ε

s
s+1 ). En effet, notre problème rentre ”presque” dans le cadre général de la théorie

des problèmes inverses linéaires, cf. par exemple [57], et les résultats obtenus dans ce cadre
général s’adaptent sans difficulté majeure à notre cas (de même que d’autres méthodes de
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régularisation, comme le montrent par exemple les travaux de A. Groh, J. Krebs et M.
Wagner [73]).

Mais en quoi consiste ce bruit exactement, et comment le modéliser d’une façon qui
rende compte au mieux des mesures expérimentales ? Dans [13], nous avions appliqué notre
méthode à des données sur les volumes de la bactéries E. Coli, mais en prenant comme point
de départ des données pré-traitées [89].

Pour modéliser les mesures d’une population d’individus, dans [11], en collaboration avec
M. Hoffmann, P. Reynaud-Bouret et V. Rivoirard, nous avons supposé que nous considérions
un échantillon de n cellules, dont les tailles étaient des variables aléatoires indépendantes
de loi N(x) la solution de l’équation (2.2). Il s’agit alors, pour proposer une estimation
du second membre L de l’équation 2.4, d’estimer la densité N(x) ainsi que le terme dérivé
∂
∂x

(gN); ensuite, le reste de la méthode décrite ci-dessus dans le cadre déterministe reste
inchangé.

Nous avons de plus adapté la méthode introduite par Goldenschluger et Lepski [70, 69] qui
permet de choisir automatiquement le paramètre de régularisation de façon optimale en fonc-
tion de la régularité inconnue de la densité N(x), sous-jacente à l’échantillon. L’équivalent
déterministe serait des méthodes comme le discrepancy principle [57]. La preuve fait inter-
venir entre autres des inégalités fines de concentration [102], permettant d’estimer la distance
entre la variable aléatoire définissant notre estimateur et son espérance en fonction de la taille
n de l’échantillon; cette partie a été réalisée par mes collaborateurs statisticiens.

2.5 Modélisation de la polymérisation des protéines [18]

2.5.1 Modèle du Prion: équation de croissance-fragmentation non linéaire

Ce n’est que récemment que l’équation de croissance-fragmentation ci-dessus (2.1) a été
introduite pour modéliser la polymérisation et plus particulièrement la polymérisation des
protéines. A ma connaissance, les premiers travaux sont ceux de Greer et al. [72, 71]. Les
équations originelles sont en effet des systèmes différentiels, obtenus à partir de la loi d’action
de masse. Par exemple, pour modéliser la polymérisation des protéines prion, Masel et al.
[101] écrit le système ci-dessous:

dni
dt

= −V (t)
(
gini − gi−1ni−1

)
−Bini + 2

∞∑

j=i+1

Bjki,jnj, (2.6)

dV

dt
= λ− γV − V

∞∑

i=i0

gini + 2
∑

j≥i0

∑

i<i0

iki,jBjnj, (2.7)

où V désigne la concentration de monomères et ni la concentration de polymères de taille i,
i.e. formés par l’agrégation de i monomères. Greer et al. proposent une version continue de
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ce modèle dans [134], sous la forme

∂n

∂t
+ V (t)

∂

∂x

(
g(x)n(t, x)

)
+B(x)n(t, x) = 2

∞∫

x

k(x, y)B(y)n(t, y)dy, (2.8)

dV

dt
= λ− γV − V (t)

∫ ∞

x0

g(x)n(t, x)dx, (2.9)

g(x0)n(t, x0) = 0. (2.10)

On reconnâıt bien dans (2.8) l’équation de croissance-fragmentation, mais elle est ici couplée,
via le terme de croissance, à l’équation pour les monomères (2.9). Ici, n(t, x) représente la
densité de polymères de taille x à l’instant t, qui grossit par addition de monomères avec un
taux de croissance g(x)V (t) proportionnel à la densité de monomères, par la loi d’action de
masse. A cela s’ajoute, dans un modèle in vivo, le taux de production de monomères λ et
les taux de mort γ et µ.

Dans les articles d’origine [101] et [72], dans leurs versions tant discrète que continue, les
paramètres g(x), B(x) sont supposés constants, et le noyau de fragmentation est uniforme
k(x, y) = 1

y
1lx≤y. Par sommation, cela permet de réduire le système infini ou l’EDP à un

système fermé de trois équations portant sur V, sur le moment d’ordre 0 P =
∑
ni, et sur

le moment d’ordre 1 M =
∑
ini, qui représente aussi la masse totale polymérisée.

Outre le remplacement des sommes par des intégrales et des différences par des dérivées,
il existe une différence majeure entre le système discret (2.6)–(2.7) et le système (2.8)–(2.9):
la condition au bord (2.9) n’a pas d’équivalent, mais est indispensable pour que le problème
soit bien posé, contrairement au cas discret. Cependant, rien ne justifie a priori - sauf
l’intuition d’une condition de flux entrant nul - la condition au bord nulle.

Nous nous sommes donc penchés sur cette question dans l’article [9], en collaboration
avec T. Goudon et T. Lepoutre, en nous appuyant sur des travaux portant sur des équations
proches (Lifshitz-Slyozov d’une part dans [48], où seul le mécanisme de polymérisation/dépolymérisation
apparâıt ; l’équation de fragmentation-coalescence d’autre part dans [91], où la polymérisation
est remplacée par de la coalescence). Nous avons étudié comment déduire le système (2.8)–
(2.9) du système (2.6), par un changement d’échelle approprié, par une définition précise
de ce qu’est une solution admissible, ainsi que par des estimations sur les moments. Nous
nous sommes placés dans un espace de mesures, de façon à inclure le cas de la formation
de poussières (i.e., l’apparition d’une masse de Dirac en x = 0). Nous n’avons pu obtenir
la condition au bord que dans certains cas, celui où x0 > 0 (ce qui est assez improbable
d’un point de vue pratique, car cela signifie que la taille du plus petit polymère est déjà très
grande par rapport à 1), ou encore celui où la polymérisation s’annule au voisinage de x0 (ce
qui là encore est assez improbable, car il s’agit de l’initiation de la réaction en châıne), ou
encore si le taux de polymérisation est constant près de 0 - cette dernière hypothèse étant
raisonnable.
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2.5.2 Généralisation: modèles de polymérisation de protéines

Pour intéressant qu’il soit, le modèle dit (assez improprement) ”prion” ci-dessus, est un cas
particulier par rapport à la complexité des réactions en châıne possibles. Il suppose par
exemple que la polymérisation a lieu par addition de monomères. En réalité, rien n’est
moins sûr, H. Rezaei et al. ayant par exemple mis en évidence l’existence de plusieurs voies
de polymérisation chez la protéine PrPc (protéine prion recombinante, obtenue à partir de
bactéries [136]). Ainsi, la protéine PrPc forme tout d’abord des oligomères de taille 12, 24
et 36 monomères, seuls les polymères de taille 36 étant ensuite capable de polymériser en
très longs polymères, de taille pouvant aller jusqu’à 105 monomères.

Le modèle prion apparâıt ainsi comme le modèle-jouet d’une maladie infectieuse où la
transmission se fait par le seul jeu de la polymérisation/fragmentation des protéines. En
effet, il suffit d’une très faible quantité de polymères initiale pour que la réaction démarre,
entrâınant la formation de nombreux autres polymères capables à leur tour de transmet-
tre la maladie [43, ?]. C’est d’ailleurs le sens de l’acronyme PRION, pour PRoteinasceous
Infectious ONly (cet acronyme a été inventé par Stanley Prusiner en 1982 [133]). En re-
vanche, le modèle ne peut rendre compte de l’apparition spontanée de la maladie: si aucun
polymère n’est présent initialement, rien ne se passe, contrairement à un modèle qui inclue
une réaction de nucléation, où la rencontre de monomères entrâıne la formation spontanée
de petits oligomères.

Afin donc de généraliser la dérivation de [9] et de prendre en compte l’apparition spon-
tanée de la maladie, nous avons écrit un modèle plus complet dans [18], modèle destiné non
pas à être employé tel quel pour toute protéine s’agrégant en longs polymères mais plutôt ex-
emple d’une méthode à adapter à chaque situation. Ce modèle, dans une version simplifiée,
s’écrit:

dV

dt
= −i0 k

N
on V

i0+1g(x0)

kNoff + g(x0)V
− V

∞∫

x0

g(x)n(t, x)dx+

∞∫

x0

g−(x)n(t, x)dx, (2.11)

∂n

∂t
= −V ∂

∂x

(
g(x)n(t, x)

)
+

∂

∂x
(g−(x)n(t, x)

)
+ 2

∞∫

x

B(y)k(x, y)n(t, y)dy

−B(x)n(t, x) +
1

2

x∫

x0

kcol(y, x− y)n(t, y)n(t, x− y)dy −
∞∫

x0

kcol(x, y)n(t, x)n(t, y)dy,

(2.12)

g(x0)n(t, x0) = g(x0)
kNon V

i0

kNoff + g(x0)V
. (2.13)

La principale originalité réside dans l’introduction de la nucléation, qui apparâıt désormais
comme une condition au bord (2.13). Dans [18], nous avons aussi appliqué notre méthode à
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la polymérisation de la protéine PolyQ, responsable de la maladie de Huntington. Une com-
paraison de notre modèle à des données expérimentales nous a permis de mettre en évidence
le mécanisme réactionnel de nucléation, qui s’est révélé être un échange conformationnel
entre plusieurs espèces de monomères.

2.6 Perspectives

2.6.1 Applications à la polymérisation des protéines

Le modèle (2.11)–(2.13), proposé dans [18], a servi de base à un projet ERC Starting Grant,
SKIPPERAD, qui se déroule jusqu’en novembre 2017 et structurera fortement mon activité
de recherche sur cette période. Il s’agit à la fois d’élargir ma recherche actuelle à des modèles
plus généraux, et de l’appliquer à la polymérisation des protéines caractéristique des maladies
amylöıdes.

Voici différentes directions de recherche qui font partie de ce projet et sont spécifiques
de l’application à la polymérisation des protéines. D’autres sont des problèmes propre-
ment mathématiques, et en tant que tels peuvent ou non s’y rattacher, ayant un champ
d’application plus large.

• Analyse de sensibilité du modèle par rapport à ses paramètres

La question est de savoir quels mécanismes influencent davantage quelle phase de
la réaction afin de déterminer quelles données sont les plus fondamentales et quels
paramètres sont les plus importants. Les outils utilisés seront les fonctions de sensi-
bilité généralisées [30]. Ce travail se fera en lien avec l’équipe de H. Thomas Banks
aux Etats-Unis, et au cours de la thèse de H.W. Haffaf.

• Dérivation rigoureuse du modèle continu

De la même façon que dans [9], il s’agit de justifier théoriquement le modèle continu
obtenu de façon formelle dans [18]. Ce travail pourra être proposé à un étudiant.

• Adaptation du modèle-cadre de [18] à chaque cas

Les mécanismes en jeu pour les différentes protéines ne sont pas les mêmes: par ex-
emple, on a montré expérimentalement que pour PolyQ il n’y a ni fragmentation ni
coalescence. Pour le Prion, ce sont non pas des monomères mais des oligomères qui
s’agrègent les uns aux autres. Il s’agit donc d’adapter le modèle général à chacun de
ces cas.

• Problèmes inverses

Une première question consiste à améliorer les résultats de [16] pour l’estimation du
taux de division dans l’équation de croissance-fragmentation générale. En effet, comme
dit plus haut, les résultats théoriques sont dans L2(xpdx) avec p > 3, ce qui donne des
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résultats numériques de qualité moyenne. Dans le cas d’un noyau de fragmentation
auto-similaire, une méthode fondée sur la transformée de Mellin [155] permet des esti-
mations dans tous les L2(xpdx) pour p ≥ 0. Cette étude est l’objet du début de thèse
de Thibault Bourgeron (en co-direction avec Benôıt Perthame), en collaboration avec
Miguel Escobedo [19].

La question de retrouver les paramètres du modèle de [18] pose une série de ques-
tions de type ”problèmes inverses”: comment utiliser au mieux les données? A partir
de distribution de tailles de polymères, peut-on appliquer ou adapter les méthodes
développées dans [13, 15, 16]? Comment mettre au point des logiciels de simulation
utilisables par les biophysiciens?

Ces questions font l’objet du travail de thèse de Hadjer Wafaâ Haffaf, à partir de
septembre 2012, en lien étroit avec l’équipe d’Human Rezaei, ainsi qu’avec l’équipe-
projet MACS (Philippe Moireau et Marc Fragu).

2.6.2 Interactions statistiques et analyse

Cette partie de ma recherche a commencé par des discussions avec Marc Hoffmann, Patricia
Reynaud, Vincent Rivoirard, au sein d’un groupe de travail informel que nous avions organisé
au cours de l’année 2008-2009. Ces discussions avaient pour point de départ un certain
parallélisme entre les travaux des statisticiens et les problèmes inverses déterministes: les
théorèmes et méthodes présentent de nombreuses similarités, sans pour autant qu’une des
approches soit réductible à l’autre.

Suite à notre premier article [11], cette collaboration prend maintenant deux directions.
D’une part, j’ai été associée à un projet ANR blanc (projet ”CALIBRATION”) 2011-

2014 dirigé par Vincent Rivoirard, puis au projet ANR blanc ”PIECE” de Florent Malrieu
2012-2015. Dans ce cadre nous pourrons donner plusieurs suites à ce travail: méthode de
Lepski dans un cadre déterministe ou à l’inverse méthode du discrepancy principle dans un
cadre statistique 1; méthodes de reconstruction lorsque le niveau de bruit n’est pas connu ;
mise en équation puis analyse de modèles statistiques de neurosciences [126] ou de génétique
[135] et, de façon plus générale, des processus de Hawkes [78, 41].

D’autre part, nous travaillons maintenant en lien avec Lydia Robert, biologiste à l’ENS,
qui dispose de données expérimentales sur la croissance des bactéries, est très intéressée par
une interaction avec les mathématiques, et nous a soumis une série de problèmes fascinants
en lien direct avec les méthodes mathématiques développées. Pour la partie la plus théorique,
nous proposons dans [10] (non inclus dans ce mémoire) un modèle probabiliste complet au
niveau microscopique, modèle qui converge macroscopiquement vers une dynamique décrite
par les EDP de croissance-fragmentation. Diverses extensions de ce modèle sont possibles,
ce qui permet une compréhension unifiée des modèles: c’est le travail de thèse d’Adéläıde

1Il s’agit de méthodes de reconstruction, l’une statistique, l’autre déterministe, qui s’adaptent automa-
tiquement à la régularité de la fonction
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Olivier, en co-direction avec Marc Hoffmann. Ensuite, dans un travail en cours nous testons
nos méthodes de reconstruction sur les données expérimentales de Lydia Robert [157, 152]
et interprétons nos résultats afin de sélectionner le modèle adéquat. Enfin, nous enrichissons
au fur et à mesure nos méthodes pour répondre à des problématiques plus riches soulevées
par Lydia Robert - prise en compte de la variabilité entre cellules, structure en ADN.

2.6.3 Dynamique des populations

A la suite des travaux de [4, 7, 2], de nombreux problèmes restent ouverts, certains partic-
ulièrement ardus. Je cite ici deux voies qui me semblent particulièrement importantes.

• Dynamique en temps long

Le comportement en temps long du mécanisme de polymérisation régit les expériences
in vitro. La difficulté mathématique de son étude réside dans le couplage non linéaire
des équations (2.8)–(2.9) (ce couplage quadratique pourrait d’ailleurs devenir poly-
nomial dans le cas où ce seraient des oligomères et non plus des monomères qui
s’agrègeraient). Numériquement, on observe que la population tend toujours vers un
état stationnaire infectieux. De premiers résultats théoriques ont été obtenus dans
[43, ?], concernant la stabilité ou l’instabilité de zéro, à l’aide de l’entropie relative
généralisée, mais le problème de la convergence vers un état stationnaire non nul de-
meure. De manière générale, cela rejoint la question du comportement asymptotique
de nombreux problèmes non linéaires en dynamique des populations - question encore
largement ouverte (cf. [129, 106, 109, 67, 42, 24, 123, 124, 125]).

• Autres convergences asymptotiques

Dans [7], nous avons donné des conditions, les plus générales possibles, pour que
l’équation linéarisée (2.12) (i.e. découplée de l’équation pour V (2.11)) ait comme
comportement asymptotique une croissance exponentielle avec un profil stable, i.e
u(t, x) → U(x)eλt. D’autres articles ([60, 61, 63] étudient au contraire des cas où des
équations proches (de fragmentation ou de coagulation) soient tendent vers un Dirac
en zéro (phase poussière), soient forment en temps fini des polymères infinis (gélation,
possible uniquement si de la coagulation s’ajoute à l’équation). Il resterait à achever
la théorie pour avoir une vision complète de tous les comportements possibles: quelles
sont les hypothèses optimales pour chaque cas ? Quels sont les cas limites, et que s’y
passe-t-il ?
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Part II

Presentation of Research (English
version)

1 Structured population equations

1.1 A brief history and some philosophy

1.1.1 Structured populations in biology

Let us consider a population, i.e., a group of individuals that grow, change, live, reproduce
and die. How can we follow and understand its evolution over time? The field of ”structured
population equations” has been developed for this purpose: describe adequately a population
dynamics, not only by means of average quantities, but by its distribution along ”structuring”
variables. Such parameters are termed structuring because they are supposed to be well-
chosen traits that characterize the individuals’ behaviour.

The first ”structured equations” go back to the beginning of the twentieth century, with
the work of Sharpe and Lotka [144], Mc Kendrick [103], Kermack [83, 84] on an age structure.
In 1911, in a discrete setting, Sharpe and Lotka had paved the way by establishing the major
facts concerning such a population [144]: when birth and death are independent of time,
the age distribution does not depend asymptotically on the initial distribution, and tends to
a steady profile. The proof relies on the Perron-Frobenius theorem. In one of its variants,
such an equation can be written as follows:





∂
∂t
n(t, a) + ∂

∂a
n(t, a) = −µ(a)n(t, a),

n(t, a = 0) =
∞∫
0

B(a)n(t, a)da,
(1.1)

where n(t, a) denotes the density of cells of age a at time t, B(a) the birth rate and µ(a)
is the death rate. The case where a cell divides into two offspring can be considered as a
particular case of Equation (1.1), where µ(a) is replaced by µ(a) + B(a)/2. Size structure
was introduced only in the second half of the twentieth century, with the work of Bell and
Anderson [36, 37], Sinko and Streifer [148, 149]. The size-structured equation can be written
in full generality as follows:




∂
∂t
n(t, x) + ∂

∂x

(
g(x)n(t, x)

)
= −µ(x)n(t, x)−B(x)n(t, x) + 2

∞∫
x

k(x, y)B(y)n(t, y)dy,

g(x = 0)n(t, x = 0) = 0, n(t = 0, x) = n0(x).
(1.2)

In this equation, n(t, x) denotes the density of cells of size x at time t, which can die with a
rate µ(x), or divide with a rate B(x), giving rise to one individual of size y and one of size
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x− y with a probability kernel k(y, x). There exist several variants of this equation, and it
can also be generalized to non binary fragmentation. Also, what is called ”size” may refer to
any physical quantity of the individual such as volume, length, protein or parasite content.

The nomenclature has not yet been unified and remains a little confusing even today, due
to the fact that refering to a ”size” or ”age” or ”protein” structure refers to the biological
application rather than to the mathematical structure of the model. Size-structured models
are an illuminating example: in a wide range of articles, e.g. [20, 64, 29], what is called a ”size
structure” rather refers to what I would call an age structure 2, since the size at birth is the
same for any cell, and thus can be set at zero without lack of generality - exactly as in an age
model. In such a way, age-structure appears as a particular case of the growth-fragmentation
equation, where k(x, y) = 1

2
(δx=0 + δx=y).

To avoid such confusion, I usually refer to the size-structured model as the growth-
fragmentation equation, as it is called when applied to physics - ”transport-fragmentation”
or ”drift-fragmentation” would maybe appear even clearer, since growth could occur in
different ways, for instance by coagulation of individuals.

Simultaneously to the size-structured model, other physiologically structured equations
emerged, such as age-size [148], maturity [139], satiety [104], age and generation-time [140].

1.1.2 Coagulation-fragmentation equations in physics

As concerns applications in physics, the growth-fragmentation equation may be viewed as
a particular case of coagulation-fragmentation models. These were initially written in a
discrete way, as infinite systems of ordinary differential equations [146, 33, 150, 151]. Such
systems consist of the equations satisfied by ci, the concentration of the clusters containing
i objects (this object’s concentration, when unbounded to any other, is denoted c1 and it
may be a dust, a unitary particle or a monomer). In 1917, Smoluchowski proposed the first
coagulation model for colloidal solutions. In 1935, R. Becker and W. Döring proposed a
system which modelled the interaction between monomers and large clusters, in the theory
of nucleation of liquid droplets in solids, and in 1941, R. Simha wrote a discrete system for
the degradation (fragmentation) of long chain polymers.

When the average sizes of the clusters are large enough for them to be coarse-grained and
viewed as a continuous variable, continuous PDE were derived from these models. In 1961,
I.M. Lifshitz and V.V. Slyozov proposed such a model to approximate the Becker-Döring
system [99]. It consists in a transport equation for the clusters (structured in size as a one-
dimensional continuous variable), quadratically coupled with an ODE for the monomers, see
[48]3. Similar coarse-graining was also performed on coagulation equations [53, 21, 91].

To the best of my knowledge, the discrete growth-fragmentation equation, when applied

2The age-structured equation (1.1) could be written with a variable ”aging speed” g(a) not necessarily
equal to 1.

3Taking into account the second-order term in the asymptotic development leads to a diffusion term [49].
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to physical phenomena, initially appeared in the context of protein polymerization [122].
Fragmentation was viewed as a secondary process, which balances and speeds-up the poly-
merization dynamics [39, 132]. More recently, it was applied to an in vivo prion model [101],
for which a continuous version was proposed by Greer et al. [72].

1.1.3 Some philosophy

Before writing any equation, we need to answer the following question: how can we choose the
appropriate structuring variables for the population under concern? Which quantity gives
access to the effective behaviour of the individuals? The answer depends on each specific
situation. I would like to focus on a specific difficulty when using abstract variables, for
which no measure or easy relation to a physical quantity is available, to serve as a structure.
A telling example concerns models for maturing/differentiating processes.

An initial model of maturity-structured population was proposed in [139] in 1968. Since
then, many studies have been carried out, producing various types of models, from individual-
based [138] to PDE through differential equations [55], each of these models considering one
specific situation (haematopoiesis probably being the most prolific). Their aim is often to
provide a qualitative explanation or even a prediction for experimental observations.

Modelling questions arise; for instance, are discrete modelling better, equivalent or less
suitable than continuous ones? This was one of the questions we investigated in [14], where
we compared the discrete model written in [100, 153] with its natural continuous counterpart.
It was clear that the two kinds of models were far from being equivalent, even qualitatively,
since they exhibit different asymptotic behaviours.

As a second example of the difficulties of modelling maturity (or ”satiety” [104] or any
abstract quantity), let us consider the individual-based model (IBM) built by Roeder et al.
[138]. In [86], P. Kim, P. Lee and D. Levy derived a PDE model that perfectly fits the IBM.
We investigated the PDE model theoretically and numerically in [12]. In [137], Roeder et
al. also derived an approximate PDE model, that turned out not to be the exact equivalent
of the one in [86]. This difference is explained by the following elementary considerations.

The derivation of conservation laws is well-known in physics, where the variables are
time, denoted by t, the particles’ speed v, and a space variable x. The equation for the space
density n(t, x, v) can be derived in two equivalent ways. The first one consists in considering
a small fixed volume V = dx3, and establishing the variations of a quantity N(t, x) during
a small time interval dt, then letting the small quantities dx and dt vanish. The second
one consists in following a small fixed quantity n(t, x(t)).V (t) on a small interval of time dt
along the characteristic curves. I must stress the fact that we do not directly consider the
density n(t, x), but rather the physically meaningful object which is a quantity n(t, x)V (t, x),
V being a volume.

In biology, the above-mentioned structured equations are also derived as conservation
laws, or, more accurately, as balance laws since there is not conservation [127], in the same
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spirit as in physics, but giving other meanings to the variable x. As seen above, this variable
can represent a somewhat physical quantity, which is easy to imagine if not to measure, like
age (increasing over time), size, weight or position. But it can also represent an abstract
quantity: an aggregated variable representing a protein content for instance, or maturity,
affinity, satiety [104]. For such abstract quantities, the conservation law can be derived in
the same way as in physics, but the concept of a ”density per unit of satiety” for instance
is quite abstract... For this reason, one has to bear in mind that what is experimentally
observed is not the density n(t, x) but the quantity n(t, x).dV.

In the example of Ingo Roeder’s model (I’ll skip all the details and only keep what is
useful here: the maturity structure), we have an individual-based model, discrete in time,
where the maturity variable is called the affinity. It can either decrease by a factor 1/d in a
certain region (called niche), or increase by a factor r in another one. Let us denote a the
affinity, na(t, a) the density ”per unit of affinity” of the number of cells. The general form
of the mass conservation equation (in the case of no source term) is then:

∂

∂t
na(t, x) +

∂

∂t
(va(t, a)na(t, a)) = 0, (1.3)

where va(t, a) = da
dt

represents the instantaneous velocity of the density na(t, a). If we make
the change of variables x = g(a) where g is monotonous, and if we look for the mass balance
equation in this new abstract variable x (a priori no better or worse than a), we will obtain
the same general equation:

∂

∂t
nx(t, x) +

∂

∂t
(vx(t, x)nx(t, x)) = 0, (1.4)

where vx(t, x) = dx
dt

represents the instantaneous velocity of the density nx(t, x). There is
an easy link between vx and va given by vx = dx

dt
= dx

da
da
dt

= g′(a)va. The sensitive point is
not to forget the indices when writing nx and na, since these two quantities do not represent
the same thing. In [137], the equation was written in the variable a, whereas in [86] it was
written for x = Log(a) due to the exponential behaviour of the affinity.

Both equations are correct, but do not refer to the same object. The question is now:
How can we compare the results obtained with each other, and how can they be compared
with those obtained in the IBM? It is possible through comparison of quantities rather than
densities, i.e. compare

∫ a2
a1
na(t, a)da =

∫ x2
x1
nx(t, x)dx, if we choose x1 = g(a1), x2 = g(a2).

In the case of the IBM of Ingo Roeder’s model, it leads to comparing N(t, x) with either
nx(t, x)dx or ana(t, a)da, due to the exponential behaviour of the affinity, leading to an
infinitesimal volume ada. Here, the ”physical” reference is given by the IBM; this illustrates
the unavoidable role of arbitrary choices in such modelling.
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1.2 Nonlinear maturity-structured equations [12, 14]

In this section, I will briefly review the results of the two articles [12, 14], concerning models
of structured populations of the family of age-structured equations.

1.2.1 Modelling differentiation through nonlinear age-structured equations

Cell differentiation is a process by which dividing cells become specialized and equipped to
perform specific functions such as nerve cell communication or muscle contraction. Differ-
entiation occurs many times during the growth of a multicellular organism as the organism
changes from a single zygote to a complex system with cells of different types. Differentia-
tion is also a common process in adult tissues. During tissue repair and during normal cell
turnover a steady supply of somatic cells is ensured by proliferation of corresponding adult
stem cells, which retain the capability for self-renewal. The two following models aim at
modelling two different aspects of this stem cell self-renewal capability.

Modelling stem cells and haematopoeiseis in chronic myelogeneous leukemia
(CML) [12]

Various cancers are likely to originate from a population of cancer stem cells that have
properties comparable to those of stem cells, as proposed in a new paradigm by Bonnet et
al [40]. This hypothesis states that a variety of cancers originate from a self-replenishing,
cancer population, now known as cancer stem cells. Using this idea, Roeder et al. built
a mathematical model of chronic myelogeneous leukemia (CML) stem cells [138]. In their
model, leukemia stem cells continually circulate between proliferating and quiescent states.
This formulation contrasts with the alternative paradigm of Michor et al. in which leukemia
cells differentiate progressively from stem cells to differentiated cells without circulating back
to previous and more dormant states [111, 110]. Both the Roeder and Michor models are
directed to studying the dynamics of imatinib treatment. However, each model also presents
a general paradigm for haematopoiesis that describes blood cell development with or without
chronic myelogeneous leukemia.

Starting from the original agent-based model formulated by Roeder et al. [138], a com-
plete PDE formulation was made in [85], and proved to coincide very well with the simulation
results obtained by Roeder et al. In order to make this PDE model amenable to analysis, we
simplified it as much as possible, distinguishing between four successive approximation steps,
and justifying our approximations by numerical comparisons. It lead us to the conclusion
that a conceptually important feature of Roeder et al. IBM, namely that the maturing pro-
cess of early stem cells may be reversible, can be simplified into a kind of renewal equation
without any loss in the quantitative results: instead of a backward transport equation, this
means that cells entering the quiescent niche are instantaneously renewed, i.e their maturity
restarts from 0.

The theoretical analysis of the asymptotic behaviour of the simplified PDE model proved
that it possessed the same properties than the original agent-based model: according to
the parameters’ region, either 0 is an attractive steady state, or there is a unique positive
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steady state, either stable or unstable (in which case periodic solutions exist). The proofs for
stability of the trivial steady state rely on a well-chosen entropy (Lyapunov) functional for
the nonlinear system. As concerns the (linearised) stability of the non trivial equilibrium,
the nonlinear system does not seem to possess any entropy, but numerical computations of
the spectrum gave the stability regions.

The simplified model is thus of value in understanding the dynamics of haematopoiesis
and of chronic myelogeneous leukemia, and it presents the advantage of having fewer param-
eters, which makes comparison with both experimental data and alternative models much
easier. In its simplest form (Approximation 4 of [12]), it is stated as follows:

∂Ω

∂t
+ ρd

∂Ω

∂x
= (−α(A) + b) Ω(t, x), (1.5)

dA

dt
= −ω

(∫ 1

0

Ω(t, x)dx

)
A(t) + α(A)

∫ 1

0

Ω(t, x)dx, (1.6)

with boundary condition

Ω(0, t) =
ω
(∫ 1

0
Ω(t, x)dx

)

ρd
A(t). (1.7)

Here, Ω(t, x) represents the maturing cells density at time t of maturity x, and ρd is the
maturing velocity. The cells in the Ω compartment reproduce with an average fixed rate b
and exchange with the quiescent state A with a rate α(A) which decreases with the density
of quiescent cells A. This dependence models the fact that the exchange is possible only if
there is enough available room in the quiescent niche. In their turn, dormant cells in the A
compartment can go back to the maturing compartment, starting from 0 again, with a rate
ω depending on the total quantity of maturing cells

∫ 1

0
Ω(t, x)dx, modelling here again that

the rate is room-dependent. When reaching x = 1, the cells commit to differentiation, do
not transfer back to the A compartment and quit the system.

This system can be thought of as a variant of an age-structured model, due to the nonlocal
integral term in Equation (1.6), even if it is not directly in a Dirichlet boundary condition
but in its time derivative.

From discrete to continuous models of differentiation [14]
P. Kim et al. model focused on the spontaneous self-replenishing of stem cells, with

nonlinear loops only from stem cells to stem cells. I presented only the simplest case; the
following step consisted in adding a cancer stem cell compartment and study the competition
between normal and cancer stem cell, with or without a chemical treatment.

To model the case of feedback coming from mature cells (which is proved to occur for
instance through the signalling process due to cytokines), what is useful for another type of
applications, A. Marciniak et al. proposed the following model (here in a simplified version:
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System (18)–(21) of [14]):

d

dt
w(t) = α(v(t))w(t), (1.8)

∂tu(t, x) + ∂x
[
g
(
x, v(t)

)
u(t, x)

]
= p(x)u(t, x), (1.9)

u(t, 0) = w(t), t > 0, (1.10)

d

dt
v(t) = g(v(t), x∗)u(t, x∗)− µv(t), (1.11)

together with initial data. Here, u(t, x) (the counterpart of Ω(t, x) of the previous model)
is the density of maturing cells at time t of maturity x, and the maturing speed g(x, s(v))
depends also on the quantity of mature cells v(t). Mature cells v can only die, they don’t
reproduce anymore. Immature cells (stem cells, counterpart of both Ω(t, 0) and A) proliferate
or die with a rate α also depending on v, and is a source term for u.

First of all, we linked this continuous model with the discrete model proposed in [153],
showing a weak convergence of the discrete model to the continuous when the number of
compartments tends to infinity under appropriate assumptions on the orders of magnitude
of the coefficients. This was done in the same spirit than [9], and I refer to Section 5 for more
details. Under continuity and positivity assumptions on g, and mainly supposing that α(·)
is a decreasing function with α(+∞) < 0, we proved boundedness for the system, by the use
of the intermediate functional ∂x(ln(u)). By the use of a Lyapunov/entropy functional, we
proved extinction if α(0) < 0, persistence if α(0) > 0. When there exists a positive steady
state, we treat it in a similar manner than in [12], studying the linearized problem around
this steady state; we showed that Hopf bifurcations occur, so that it can be either stable or
unstable. We illustrated this by simulations.

Small discussion and comparison between the models of [12] and [14] Though
the maturity structure is basically the same in both models, leading to simple transport
equations (1.5) and (1.9), the focus is different. For P. Kim’s model, originated in Ingo
Roeder’s IBM, the idea is to model the self-replenishment of early stem cells. When cells
of the Ω compartment reach x = 1, they are not fully differentiated, but they begin their
differentiation process and cannot go back to stem cells. The paradigm of stem cell niches, as
places either more favourable to growth and preparation to differentiation (compartment Ω)
or more favourable to quiescence (compartment A), and the fact that the exchange between
these compartments leads to self-regeneration, is specific to this model, and to the best of my
knowledge was first proposed by I. Roeder. Till now, no experimental evidence has proved
or contradicted such an assumption, but the model turned out to fit properly data about
CML cells (though only indirect measures, through differentiated cells, are possible).

A. Marciniak’s model focus on what follows this early stage. In a sense, one could plug
both models, in which case P. Kim’s one would replace w(t) in A. Marciniak’s model, and
we set w(t) = Ω(t, x = 1). A. Marciniak’s model aims at modelling the feedback loop that
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exists (through signalling molecules like cytokins) between the amount of fully differentiated
cells v(t) and stem cells w(t) and u(t, x), what is not present in Ingo Roeder’s model.

1.3 Asymptotic analysis for a nonlinear age-size structured model
[4]

My very first study when I restarted research in Inria in 2007 consisted in the analysis of
the eigenvalue problem for the age-size structured equation, namely:




∂
∂t
n(t, a, x) + ∂

∂a
n(t, a, x) + ∂

∂x

(
g(a, x)n(t, a, x)

)
+B(a, x)n(t, a, x) = 0,

n(t, a = 0, x) = 2
∞∫∫
0

k(y, x)B(a, y)n(t, a, y)dyda.
(1.12)

I proved existence and uniqueness of a positive eigentriplet (λ,N, φ) to this problem and its
adjoint, under assumptions which include cases where the growth rate g(a, x) vanish. As
for the growth-fragmentation equation (see Section 2.1 below), the proof first relies on the
Krein-Rutman theorem applied to a regularised problem. To formulate it in a convenient
way as a fixed point problem, I used the method of characteristics, with the age variable
playing the role of time. In fact, the recursive estimates that we used in [7] for the growth-
fragmentation equation are no more valid in higher dimensions, so that other techniques
have to be used.

Among its numerous applications, this study was motivated by a two-compartment sys-
tem proposed by F. Bekkal Brikci, J. Clairambault and B. Perthame in [34, 35] to model the
cell cycle. The above-mentioned equation is satisfied by proliferating cells, and the variable x
models a protein content. These proliferating cells exchange with a quiescent compartment,
where cells do not undergo any change (neither in their age nor in their protein content):
they can only turn back to the proliferating compartment. This model presents a nonlinear
feedback: the exchange rate G, denoting the rate at which proliferating cells become quies-
cent, is supposed to depend on the total (weighted) population N , and to decrease with it
as α2 + α1

1+Nn for some α1, α2, n > 0.
By the use of relative entropy inequalities [108, 34], using weight functions coming from

the linearised adjoint eigenproblem around infinity (i.e. for G̃ = G(∞)), I showed that if the
quiescent cells do not die and if G̃ = 0 then the asymptotic regime for the total population is
a robust polynomial growth. Such a growth is in accordance both with experimental results
and with individual based simulations [54].

2 The growth-fragmentation equation

The core of my research since 2007 is the linear growth-fragmentation equation, namely:

∂

∂t
n(t, x) +

∂

∂x
(g(x)n(t, x)) +B(x)n(t, x) = 2

∞∫

x

k(x, y)B(y)n(t, y)dy, x > 0, (2.1)
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with an initial condition n(t = 0, x) = nin(x) and a boundary condition g(0)n(t, 0) = 0.
Though very simple to write - this is a one-dimension linear integro-PDE, this is a very rich
problem. With various collaborators I studied it from different points of view: eigenvalue
problem, self-similarity, inverse problem, link with fragmentation processes in statistics and
probability.

The density of the population is given by n(t, x) at time t of size x. The growth rate g
depends on x, as well as the division rate B. When division occurs at size y, the probability
density to give birth to two children of respective sizes x and y − x is k(x, y).

A particular case, and historically the first to have been studied, is given by the cell
division equation with equal mitosis:

∂

∂t
n(t, x) +

∂

∂x
(n(t, x)) +B(x)n(t, x) = 4B(2)n(t, 2x), x > 0, (2.2)

which corresponds to Equation (2.1) with g(x) ≡ 1 and k(x, y) = δx= y
2
.

2.1 Eigenvalue problem [7]

2.1.1 Asymptotic behaviour and the eigenproblem

Growth and fragmentation have two opposite dynamics: growth leads the population towards
larger sizes, whereas fragmentation leads to smaller and smaller sizes. We can roughly
distinguish three cases.

• Fragmentation dominates: ultimately, g(x) ≡ 0. It fits then the pure fragmentation
equation, studied for instance in [63, 42]. In such a case, under proper assumptions on
the fragmentation rate near zero, all the population concentrates in a Dirac mass δ0.

• Growth dominates: ultimately, B(x) ≡ 0. The population sizes grow more and more,
following the pure transport equation.

• In a certain way, detailed below, there is a balance between growth and division, so
that the population is maintained around finite sizes.

For our applications to biological populations, the third case is the most interesting, since as
it is easy to imagine cellular sizes can neither grow to infinity nor vanish. In this case, under
suitable assumptions, the solution n to (2.1) tends asymptotically to a stationary profile
N(x) times a time exponential eλt. This convergence is not only a mathematical result but
a biological fact [89].

To the best of my knowledge, the first results on the asymptotic behaviour lie in the
biophysical articles of Bell and Anderson [37, 36] in the late sixties. Detailed mathematical
proofs followed in the eighties [79, 80, 52]. They were based on dynamical systems analysis,
with semi-group methods and with the help of the Krein-Rutman theorem [88].
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More recently, the asymptotic behaviour has been proved by the use of two fundamental
methods: first, the existence and uniqueness of a positive dominant eigenvalue linked to a
positive eigenvector; second, to the range of inequalities called General Relative Entropy by
B. Perthame and co-authors [107, 108, 127].

The first question is to find optimal assumptions for existence and uniqueness of this first
eigenvector: we want to show under which conditions there exists a unique triplet (λ,N, φ)
with λ > 0, N ∈ L1(R+), N ≥ 0 solution of the following problem

λN(x) + ∂
∂x

(
g(x)N(x)

)
+B(x)N(x) = 2

∞∫
x

k(x, y)B(y)N(y)dy, x > 0,

−g(x) ∂
∂x

(φ(x)) +
(
B(x) + λ

)
φ(x) = 2B(x)

x∫
0

k(y, x)φ(y)dy, x > 0,

g(0)N(0) = 0, φ(x) ≥ 0, N(x) ≥ 0,
∞∫
0

N(x)dx =
∞∫
0

φ(x)N(x)dx = 1.

(2.3)

The existence and positivity of the adjoint vector φ is fundamental to prove relative entropy
inequalities, where φ appears as the suitable weight to counterbalance the terms coming
from N (see [127] for a complete explanation, or [107, 108] for the original articles).

Following B. Perthame and L. Ryzhik [128], and P. Michel [105], with P. Gabriel, we
investigated what could be the optimal assumptions for this eigenvalue problem [7]. In
particular, these assumptions include cases where the growth rate g(x) vanishes around 0.
We proved the following result.

Theorem 1 (Theorem 1 of [7]). Under assumptions (5)–(13) of [7], there exists a unique
solution (λ,N, φ) to the eigenproblem (2.3) with λ > 0, and we have

xαgN ∈ Lp(R+), ∀α ≥ −γ, ∀p ∈ [1,∞], xαgN ∈ W 1,1(R+), ∀α ≥ 0

∃k > 0 s.t.
φ

1 + xk
∈ L∞(R+), g

∂

∂x
φ ∈ L∞loc(R+).

2.1.2 ”optimal” assumptions for the eigenproblem (Theorem 1)

Without entering into too much detail, here are the main assumptions. Concerning the
fragmentation kernel, for modelling reasons we assumes symetry (what could be relaxed),
and we exclude the case of the age-structured equation 4 by assuming (Assumptions (5)–(7)
of [7]) ∫

k(x, y)dx = 1,

∫
xk(x, y)dx =

y

2
,

∫
x2

y2
k(x, y)dx ≤ c < 1/2. (2.4)

4For studies of the age-structured equation, see [127, 22, 74] for instance.
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Then, Assumptions (8)–(10) of [7] are positivity or regularity assumptions on B and g. A
space P of at most polynomial growth or decay is defined by

P :=
{
f ∈ L1

loc(R
∗
+), f ≥ 0 : ∃µ, ν ≥ 0, lim sup

x→∞
x−µf(x) <∞, lim inf

x→∞
xνf(x) > 0

}
, (2.5)

and Assumptions (8)–(10) are given by

B ∈ L1
loc(R

∗
+) ∩ P, ∃ α0 ≥ 0, g ∈ L∞loc(R+, x

α0dx) ∩ P, (2.6)

∀K compact in ]0,+∞[, ∃ mk > 0 : g(x) ≥ mk ∀x ∈ K, (2.7)

∃ b ≥ 0, suppB = [b,+∞). (2.8)

The three last assumptions (11)–(13) of [7] are the most important, and seem to characterize
more profoundly the behaviour of the equation. They link the three coefficients g, B and
k in an intricate way, so that under these assumptions, an extra hypothesis on one of these
three parameters has an influence on the others. They can be considered as ”optimal” in
the sense that we can exhibit counterexamples as soon as one of them is not satisfied.

To avoid shattering (zero-size polymers formation, see [27, 93]), we assume (Assump-
tion (11) of [7])

∃C > 0, γ ≥ 0 s.t.

∫ x

0

k(z, y) dz ≤ min
(

1, C
(x
y

)γ)
and

xγ

g(x)
∈ L1

0 (2.9)

where we denote L1
0 the space of locally L1 functions near zero. This assumption links

implicitely g to k, and does not exclude the case γ = 0 as soon as 1
g
∈ L1

0, i.e. g is not too

small around zero. We also assume (Assumption (12) of [7])

B

g
∈ L1

0, (2.10)

another way to say ”g is not too small around 0 compared to B”.

On the other hand, to avoid forming infinitely long polymers (gelation phenomenon, see
[60, 62]), we assume

lim
x→+∞

xB(x)

g(x)
= +∞. (2.11)

Contrarily to [128] or [127], we do not obtain exponential decay for N when x→∞; this is
due to Assumption (2.11). Such a decay requires a slightly stronger assumption than (2.11),
namely that lim infx→∞

B
g
> 0 : see [24] for more details.
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2.1.3 Some ideas for the proof

The proofs first rely on the positivity properties of the equation, linked to the fact that
they are mass balance equations. We can thus apply the Krein-Rutman theorem (see [88]
for the original article, or [51] ch.VIII for a recent proof and applications) to a regularised
and truncated equation, that easily converges to a truncated positive equation. We then
prove recursively a series of estimates, each relying on the previous ones. The main tool is
to multiply the (truncated) equation by weights xα and integrate it. We begin with α large
enough to uniformally bound

∫
xαB(x)N(x)dx thanks to Assumption (2.11). We then take

α = 0 to bound
∫
B(x)N(x)dx thanks to both the previous estimate and Assumption (2.10).

It implies L∞ bounds for xαg(x)N(x) for α ≥ 0; finally, to ensure compactness of the
regularised sequence of solutions in L1, we prove a uniform bound for α = −γ, using all the
above estimates and Assumption (2.9).

For the adjoint eigenvector φ, we use a maximum principle to obtain boundedness in
W 1,∞
loc (R∗+).

These recursive estimates make use of all the structure of the equation, and proved useful
for other studies. In [42, 24], they have been used to obtain a spectral gap, under some extra
assumptions concerning in particular the fragmentation kernel. In [16], we used them to
show the regularity of the operator Γ : (g,B)→ (λ,N).

2.2 Self-similar behaviour [2]

As seen above, the first eigenvalue solution of the eigenproblem is the asymptotic exponential
growth rate of the population. As such, it governs the long-term behaviour of the population,
and is often called the Malthus parameter or the fitness of the population. Hence it is of great
interest to know how it depends on the coefficients: for given parameters, is it favourable or
unfavourable to increase fragmentation? Is it more efficient to modify the transport rate g or
to modify the fragmentation rate B? Such concerns may have a deep impact on therapeutic
strategy (see [34, 35, 46, 4]) or on the design of experimental protocols such as PMCA5

(see [94] and references therein). Moreover, when modelling polymerization processes (see
Section 5), Equation (2.1) is quadratically coupled with the density of monomers V (t), which
appears as a multiplier for the growth rate g(x). The dynamics of V (t) is governed by one or
more ODE - see for instance [43, 72, 94]). The asymptotic study of such nonlinear versions of
Equation (2.1) closely depends on such a dependence: in [43, ?], the asymptotic results are
obtained under the assumption of a monotonic dependence of λ with respect to the growth
rate V (t)g(x).

Based on simple previous case studies [66, 72, 59, 134], where g(x) = 1, B(x) = x and
k(x, y) = 1/y for instance, it might be intuitively assumed that the eigenvalue λ always

5PMCA, Protein Misfolded Cyclic Amplification, is a protocol designed to amplify the quantity of prion
protein aggregates due to periodic sonication pulses. In this application, u represents the density of protein
aggregates and x their size; the division rate B is modulated by ultrasound waves.
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increases when growth or when fragmentation increases. Nevertheless, we proved in [2] that
this is not the case.

To study the dependence of the eigenproblem on its parameters, we fixed coefficients g(x)
and B(x), and studied how the problem is modified under the action of a multiplier of either
the growth or the fragmentation rate. We thus considered two problems, that we treated
simulaneously: first, we modulate the growth rate g(x) by a parameter α > 0,





α
∂

∂x
(g(x)Nα(x)) + (B(x) + λα)Nα(x) = 2

∫ ∞

x

B(y)k(x, y)Nα(y)dy, x > 0,

g(x)Nα(x = 0) = 0, Nα(x) > 0 for x > 0,
∫∞
0
Nα(x)dx = 1,

(2.12)

where α measures the strength of the growth rate, as in the Prion problem (see [72]), and
second, with the modulation in front of the fragmentation coefficients, replacing B(x) by
aB(x). We treated these two problems simultaneously, by a proper rescaling shown below.
We wanted to see how the solutions Nα behave in the limit cases α → ∞ and α → 0. As
already said, it is clear that if α→∞, the growth dominates and the mass tends to infinity,
whereas it tends to x = 0 when α → 0. Hence, the behaviour of Nα and λα will depend on
the behaviour of the coefficients g and B around L when α→ L.

Our main assumption is power-like behaviours of the coefficients in the neighbourhood
of L = 0 or L = +∞, namely that

∃ ν, γ ∈ R, B̄ > 0, ḡ > 0, such that g(x) ∼
x→L

ḡxν , B(x) ∼
x→L

B̄xγ. (2.13)

Theorem 2 (Theorem 1 of [2]). Under Assumption (2.13) and the assumptions of Theo-
rem 1, we have, for L = 0 or L = +∞,

lim
α→L

λα = lim
x→L

B(x).

Contrarily to what it seems, the limit does not depend only on B, because B and g are
intertwined by the assumptions of Theorem 1; in particular, they imply that 1 + γ − ν > 0.
This result shows that it is easy to obtain nonmonotonicity of the function α → λα : for
instance if B vanishes near zero and infinity.

We proved more than this asymptotic result, namely that when conveniently rescaled,
the eigenvector Nα tends to a steady self-similar profile, which is the unique solution of the
eigenproblem (2.3) with g(x) = gxν and B(x) = Bxγ. The proof for this convergence relies
on similar estimates than the ones of Theorem 1.

3 Inverse problems for growth models

Another point of view on growth-fragmentation problems is given by the inverse problem
approach [57]. Speaking of inverse problem is quite vague and refers to a physical, intuitive
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or historical vision of what can be considered as direct and what should be considered as
inverse.

In all what is above, departing from assumptions on the initial condition and the param-
eters, we studied different properties of the structured population, viewed as the solution to
our problem (2.1): its existence and uniqueness, its asymptotic behaviour, how it depends
on its coefficients, etc. All these questions refer to what we call the direct problem. Let us
take another viewpoint: we now consider the distribution of the population n(t, x) as being
a parameter of a new problem, which consists in finding one or several of the components
of the problem - e.g., the growth rate, and/or the fragmentation rate, and/or the initial
condition - and think of this component as the sought solution of Problem (2.1). Such a
problem is called inverse simply because it is not the usual or natural way it is handled. It
becomes useful and appears naturally when parameters or initial condition are difficult to
measure, contrarily to the solution or part of it. In such cases, inverse problems appear in
order to calibrate the model and make it predictive; or even, to refine noisy measures of the
solution.

This shows that there exist as many inverse problems as direct ones; even if general
methods have been developed and turned out to be accurate in many situations [57, 113],
each problem remains specific and requires a specific study, as shown below. Moreover,
results on inverse problems often reveal interesting aspects of the related direct problem.

3.1 Historical context and setting of the problem

Let us briefly recall some examples of inverse problems for structured populations that can
be found in the literature.

The initially-studied inverse problems concerned the age-structured equation. In several
articles [141, 75, 76], the inverse problem consists in estimating the birth function or the
birth and death functions from a measure of the evolution of the total population over time,
plus some extra information like a priori knowledge of the death function [141] and initial
distribution, or measure of the cumulative number of births [75, 76]. In [131], the initial
condition is to be estimated from the total population and a priori knowledge of birth and
death functions. In many of these articles, assumptions have to be made to ensure that the
asymptotic behaviour is not reached yet: if it were, the evolution of the total population
would be simply exponential, and would not provide substantial information on the birth
function. Such assumptions appear to be practically very restrictive, due to the fact that
convergence to the asymptotic behaviour is exponential under fairly general assumptions
that ensure the existence of a spectral gap [127].

To the best of my knowledge, the first study of the inverse problem for the growth-
fragmentation equation was done by [130]. This article is the basis of my research on the
topic.

The point of the article [130] as well as the one of the following articles
[15, 13, 16, 11] is to estimate the division rate B(x) in Equation (2.3). It appears
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in many applications as being the quantity which is the most difficult to estimate: direct
measures of the size distribution of individuals is often easy [89]; the growth and death rates
may also be measured; the fragmentation kernel k(x, y) can be guessed or even measured (for
equal mitosis, relevant for E. Coli for instance, it is k(x, y) = δx= y

2
). On the contrary, there

exists no direct way to measure or estimate the division rate B. In the biological litterature,
this parameter B is almost unknown, whereas size distributions are classical (see [89] for E.
Coli), and debates on the growth rate g(x) took place (still for E. Coli, see [50] to know
whether it is constant, which gives linear growth, or linear, which gives exponential growth).

The method introduced in [130] consists in making use of the asymptotic
behaviour to simplify the problem. In this article, the authors focused on the equal
mitosis case of Equation (2.2), and solved the following problem: How can we estimate the
fragmentation rate B(x) from (noisy) measurements of the steady distribution N(x) and of
the exponential growth rate λ of the population ?

3.2 The associated direct problem [16]

Before going further in the inverse problem defined right above, the associated direct problem
needs to be studied and gives light to it.

In [130], The direct map (i.e. the operator we want to inverse) was Γ : B → (λ,N)
solution to 




∂
∂x
N + (λ+B(x))N = 4B(2x)N(2x), x ≥ 0,

N(x = 0) = 0,
N(x) > 0 for x > 0,

∫∞
0
N(x)dx = 1.

(3.1)

As already said, this problem corresponds to the case g(x) = 1 and k(x, y) = δx= y
2

of
Equation (2.3). The authors proved (Theorem 3.2. of [130]) that for two given constants
0 < Bm < BM , the map Γ is Lipshitz-continuous - and therefore class C1 as a general
fact on the Fréchet derivatives of mapping with quadratic nonlinearities - from the space
L2(R+) ∩ {B(x), Bm ≤ B ≤ BM} into L2(R+). The boundedness condition for B is the
same than in [128], where Problem (2.2) is studied and its exponential speed of convergence
towards equilibrium is proved.

We generalized this result in [16] to general kernels k and growth rate g. Furthermore,
we slightly modified Γ, to make use of the measure of the growth rate λ in order to identify
a constant c in front of the growth rate g(x). In [13], practical application to experimental
data showed that even if the general growth behaviour of the individuals may be guessed,
for instance by supposing g(x) constant or linear, its scaling is linked to the time-scale of
the equation and thus to the exponential growth rate λ of the population. We formulate the
problem as follows: the direct map that we want to inverse is Γ : (c, B)→ (λ,N) solution of





c ∂
∂x

(
g(x)N) + (λ+B(x))N = 2

∞∫
x

B(y)N(y)k(x, y)dy, x ≥ 0,

gN(x = 0) = 0,
N(x) > 0 for x > 0,

∫∞
0
N(x)dx = 1.

(3.2)
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Similarly than for Theorem 3.2. of [130], which is based on the study of the eigenproblem
made in [128] under the boundedness condition Bm < B < BM , we built the domain of
definition for Γ on the ground of the study made in [7]. The difficulty is to contour which
kind of division rates B are acceptable for given g and k. This lead us to the following
definition.

Definition 3.1 (Definition 1.1. of [16]). Let g, k satisfying Assumptions (2.4) and (2.6)–
(2.8) (which are Assumptions (2) and (8)–(10) of [16], or Assumptions (5)–(9) of [7]). For
a constant b ≥ 0 and functions f0 ∈ L1

0, f∞ −−−−→
x→+∞

∞, the set D(b, f0, f∞) is defined by

D(b, f0, f∞) :=

{
B ∈ L∞loc(R∗+) ∩ P, supp(B) = [b̃ ≤ b,+∞),

B

g
≤ f0,

xB

g
≥ f∞

}
.

The regularity of the map Γ was then stated as follows.

Theorem 3 (Theorem 1.1. of [16]). Let parameters g and k satisfy the assumptions of
Definition 3.1. Then

i) The map Γ : (c, B) 7−→ (λ0, N) is injective and continuous under the L∞− weak-
∗topology for B from any set R∗+ ×D(b, f0, f∞) to R∗+ × L1(R+) ∩ L∞(R+).

ii) Let moreover 1
g
∈ L2

0. Then the map Γ is locally Lipschitz-continuous (and therefore

class C1, see [130]) under the strong topology of R∗+ × L2(R+) ∩ D(b, f0, f∞).

The proof partly relies on similar estimates than those of [7], so that we could simplify
the proof of [130] as concerns the most important point, i.e. the Lipshitz-continuity.

Having proved that Γ is of class C1 highlights the regularizing effect of the direct problem,
whose counterpart is the de-regularizing effect of an inverse mapping for Γ. If we seek an
inverse from L2 to L2, it cannot be continuous as it is: Γ−1 will need to be regularised. This
is discussed in the next section.

3.3 Deterministic setting [15, 16]

Let us now go back to the inverse problem, which consists in inverting the map Γ : B →
(λ,N) or Γ : (c, B)→ (λ,N) defined above.

As concerns the estimate of the constant c in Problem (3.2), using the first moment of
the equation, we obtain the identity

c = λ

∫
xN(x)dx∫
g(x)N(x)dx

, (3.3)

which shows how we define an estimate cε of c from a noisy measure (λε, Nε) of (λ,N). This
part does not present any major difficulty, so that I refer to [16] for more details but will not
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discuss it anymore, and I focus on the estimate of the division rate B, which is the heart of
the problem.

We now view Equation (2.3) as a problem where the unknown is B(x), and the couple
(λ,N), a given parameter only known with some uncertainty, so that we only have access to
(λε, Nε) with |λ−λε| ≤ ε and ‖N −Nε‖Z ≤ ε in a certain space Z. In [130, 15, 13], we have
Z = L2(R+); in [16], Z = L2(xpdx). In [11], the noise is a gaussian white noise that could

be heuristically compared to Z = H−
1
2 (R+).

To end the definition of the inverse problem to solve, we define the space where an
estimate for B has to be found. In [130], it is L2(N2

ε dx). Due to the multiplication of B
by N in the equation, it is more convenient to define a space X where H = BN has to
be found. Once an estimate for H is found, it remains to divide it by Nε or a regularised
version in order to get the estimate of the division rate B. The major difficulty linked to
this division is that the estimate necessarily becomes poor when the underlying distribution
vanishes, which is the case where x tends to ∞.

However, this difficulty is mainly theoretical, since the value of the division rate for such
large x has little influence on the distribution N , as shown by numerical simulations.

For the estimate of H, any space Lp or weighted Lp seems convenient from a modelling
point of view, and similar choices were made in [15, 16] as well as in [11]. All these elements
lead to the following complete definition.

Definition of the Inverse Problem: Given (λ,N) solution of Problem (3.2) for
parameters g, k, B satisfying the assumptions of Theorem 1, given two spaces X , Z
and a measure (λε, Nε) ∈ R∗+ × Z such that |λ − λε| ≤ ε and ‖N − Nε‖Z ≤ ε, the
inverse problem is: How can we get an estimate (cε, H

α
ε ) of H = BN such that

‖H −Hα
ε ‖X →ε→0 0?

Denoting L(λ,N) = λN + ∂
∂x

(gN), we decompose our problem in two main steps.

1. Set and solve in appropriate spaces (X ,Y) the following equation

L(H)(x) := 2

∞∫

x

k(x, y)H(y)dy −H(x) = L(x), (3.4)

and prove the continuity of the operator L−1 : L→ H in these appropriate spaces.

In the case of equal mitosis studied in [130, 15], Equation (3.4) becomes the following
dilation equation:

L(H)(x) := 4H(2x)−H(x) = L(x), (3.5)

and continuity of L−1 was proved e.g. for X = Y = L2(R+). It shows that Equa-
tion (3.5) a priori requires the same regularity for H than for L.

One also notices that this first step is a linear problem, and is specific of our growth-
fragmentation equation. On the contrary, the second step can be formulated as a
generic problem of estimating a function from its antiderivative (see [130] and [11]).
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2. Given that we do not have access to the exact value of (λ,N) but only to a noisy
measure (λε, Nε), close to (λ,N) in the sense that ‖N −Nε‖Z ≤ ε and |λ−λε| ≤ ε, we
do not know the exact value of L(λ,N) either, but only L(λε, Nε). How can we thus
find an estimate Hε ∈ X of the exact solution H of (3.4) ?

The operator L is not linear but quadratic, and becomes linear if we forget the depen-
dency on λε. Hence by easy manipulations, the same estimates as for a linear operator
may be obtained, and we can apply the general theory for linear inverse problems ([57]
for instance).

If the space Z where the noise for N is measured is such that L(R∗+ × Z) ⊂ Y , due
to the continuity of L−1, this step is empty: we can simply take Hε = L

(
L(λε, Nε)

)
,

and we will obtain an estimate in the order of ε. For equal mitosis, this would be the
case for instance if Z = H1(R+) : in such a case, L(R∗+ × H1) ⊂ L2(R+) = Y and
‖L(λε, Nε)− L(λ,N)‖Y = O(ε).

But if the space Z does not have a sufficient regularity with respect to the desired
space X , a regularisation step is required, characterized by a second parameter α that
needs to be conveniently scaled with respect to ε. The distance between the spaces
L(R+ × Z) and Y can be evaluated in the framework of Hilbert scales (see [57]) and
characterizes the degree of ill-posedness of the problem. In a heuristic way, taking the
Hilbert spaces Hs(R+) as a Hilbert scale and X = L2, we see that since Y = L2, if
Z = L2 the distance between L(R+ ×Z) = H−1 and L2 = H0 corresponds to a degree

of ill-posedness a = 1; if Z = H−
1
2 , the distance between L((R+ × Z) = H−

3
2 and

L2 = H0 corresponds to a degree of ill-posedness a = 3
2
.

Such a regularisation can be done in many different ways, among which I distinguish
two main types (that may be combined, as the approximate inverse method, applied
to our problem in [73]).

• From the measure Nε, define a function or distribution Lαε in the convenient
regularity space Y , at a distance from L(λ,N) vanishing with ε in Y and with α
in L(R∗+ × Z), and apply the operator L to it. Such a regularisation is done in
[15] by what we called the filtering method for instance, which simply consists
in a convolution with a mollifier ρα(x) = 1

α
ρ( x

α
), ρ ∈ C∞c (R),

∫
ρ(x)dx = 1. The

balance between α and ε appears clearly by noting that ‖ρα ∗ Nε − Nε‖L2 ≤
Cα‖Nε‖L2 , and ‖ρα ∗ εdf

dx
‖L2 ≤ Cε

α
‖f‖L2 . Since we want both terms to vanish, it

appears that the optimal choice for α is α = O(
√
ε).

• Approximate the operator L−1 by a more regular one L−1α , continuous from the
space L(R∗+×Z) to X and converging to L−1 when α vanishes. Then, apply this
operator L−1α instead of L to L(λε, Nε), and choose α appropriately to ensure a
sufficient regularity (so that α cannot be too small) together with a sufficiently
good approximation of L−1 (so that it cannot be too large).
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The original method of [130], called in [15] the quasi-reversibility method in ref-
erence to [90], is of this kind: we have Z = L2, so that L(R∗+ × Z) = H−1 and
we need a regularised operator L−1α such that L−1α (Z) ⊂ X = L2. Hence L−1 is
replaced by L−1α : L→ Hα solution of the following regularised problem:

{
α ∂
∂x

(
Hα(2x)

)
+ 4Hα(2x)−Hα(x) = L(x),

Hα(0) = 0.
(3.6)

Let us now detail how we solved each specific step, and which difficulties appeared.

3.3.1 Theoretical results - step 1: Solving equation (3.4)

In [130] and [15], the particular case of equal mitosis was studied, i.e. Equation (3.5). In
[15], Equation (3.5) did not appear explicitely, since the quasi-reversibility method considers
the regularizing equation (3.6).

Such a dilation equation also appears in other application contexts, like TCP-IP proto-
coles [23] and the construction of wavelets [154], and was studied by probabilists [112]. The
Lax-Milgram lemma lead us to the following result.

Proposition 1 (Proposition A.1. and Lemma A.2. of [15]). Let L ∈ L2(R+, x
pdx), with

p 6= 3, then there exists a unique solution H ∈ L2(R+, x
pdx) to (3.5) and

• for p < 3, this solution is given explicitly by the formula

H(1)(x) =
+∞∑

n=1

2−2nL(2−nx). (3.7)

Furthermore, for 1 ≤ q ≤ ∞, if L ∈ Lq(R+) then H(1) ∈ Lq(R+).
• for p > 3, this solution is given explicitly by the formula

H(2)(x) = −
+∞∑

n=0

22nL(2nx). (3.8)

The solutions to (3.5) with L = 0 in D′(0,∞) have the form f(log(x))
x2

with f ∈ D′(R) a
log(2)− periodic distribution.

This result emphasized two important points. First, the solution depends on the chosen
space, and in general is not the same in L2 and in L2(x4dx) for instance, since there is no
reason, for a general L, even belonging to L2((1 + x4)dx), that H(1) = H(2). Second, the
infinite number of distribution solutions may perturb numerical simulations.

In [16], we partly generalized Proposition 1, as follows.
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Proposition 2 (Proposition 2.1. of [16]). Let k satisfy Assumption (2.4). For r, q ≥ 0, we
define the following quantities:

Cr := sup
x

∞∫

x

xr

yr
k(x, y)dy, Dq := sup

y

y∫

0

xq

yq
k(x, y)dx. (3.9)

If 0 ≤ r ≤ p are such that

CrDp−r <
1

4
, (3.10)

Then for all L ∈ L2(R+, x
p dx) there exists a unique solution H ∈ L2(xp dx) to Problem (3.4),

and we have the following estimate

||H||L2(xp dx) ≤
1

1− 2
√
CrDp−r

||L||L2(xp dx).

As for Proposition 1, the proof relies on the Lax-Milgram lemma and on Young inequal-
ities. It corresponds to the case p > 3 when the identity dominates the integral kernel (see
Remark 1 of [16]).

3.3.2 Theoretical results - step 2: error estimates and convergence rates

As already said, the pioneering article [130] studied the inverse problem for the case of equal
mitosis of Equation (3.5), and solved it with the quasi-reversibility method described by
Equation (3.6). Theorem 4.1. of [130] proved that for L ∈ L2(R+), there exists a unique
solution H ∈ H1 which, for some constant C > 0, satisfied the following estimates

‖H‖2L2 + α2‖H‖2H1 ≤ C‖L‖2L2 , ‖H‖2H1 ≤ C‖L‖2H1 . (3.11)

Such estimates are the key of this second step. Defining Hε,α as the solution of Equation (3.6)
for L = L(λ,Nε), the error is decomposed as

‖H −Hε,α‖L2 ≤ ‖H −Hα‖L2 + ‖Hα −Hε,α‖L2 , (3.12)

where Hα is the solution of Equation (3.6) for L = L(λ,N). The first term of the right-hand
side is (up to a constant) smaller than α‖L(λ,N)‖H1 , and thus by α‖N‖H2 (Theorem 4.2.
of [130]). The second term may be bounded by C

α
‖N − Nε‖L2 (Proposition 5.2. of [130]).

All this lead them to the following error estimate (Theorem 5.1. of [130])

‖Bε,α −B‖L2(N2
ε dx)
≤ Cα‖N‖H2 +

C + ‖B‖L∞
α

‖Nε −N‖L2 , (3.13)

which showed an optimal convergence rate of order
√
ε as soon as N ∈ H2(R+), in accordance

with the general theory of linear inverse problems [57].

37



In collaboration with these authors, in [15] we applied a second regularisation technique,
the filtering method - refining only slightly the problem by assuming also that the measure of
λ was noisy. Similarly, we definedHε,α as the solution of Equation (3.4) for L = L(λε, ρα∗Nε),
and an intermediate function Hα solution of Equation (3.5) for L = L(λ, ρα ∗ N) may
also be defined. It lead to the exact equivalent of Estimate (3.13) (see Theorem 2.1. and
Proposition 2.2. of [15]).

As shown by the description of step 2 seen above, and as exemplified by the work of
another group [73], we could apply successfully any technique applicable to the classical
inverse problem of estimating a function from its antiderivative.

In the case of the filtering method, for a mollifier ρ such that
∫
xpρ(x)dx = 0 for p =

1, 2, · · · ,m0 and s ≤ m0, we could also easily generalize Estimate (3.13) as follows: if
N ∈ Hs+1, in Eq. (3.12) the first term (the bias) becomes of order O(αs)‖N‖Hs+1 , hence the

optimal value for α in Eq. (3.13) becomes α = O(ε
1

s+1 ), what leads to an estimate in the
order of ε

s
s+1 . This rejoins the general theory of linear inverse problems [57].

In [16], we generalized both methods (filtering and quasi-reversibility) to Equation (3.4).
We obtained similar estimates, but in L2(xpdx) with p > 3 instead of L2 due to Proposition 2
(Theorems 2.1. and 2.2. of [16]).

3.3.3 Numerical solution ([13, 15, 16]

The key point for the numerical solution of our inverse problem consists in solving numerically
Equation (3.4); the other details refer to classical numerical techniques, such as FFT or
upwind schemes, and I let the interested reader refer to [15] and [16].

The case of equal mitosis described by Equation (3.5) was solved in [15]. When examining
this equation, two strategies appeared.
Strategy 1. Compute H(2x) from H(x). This means that we re-write Equation (3.5) with
the new variable y = 2x. The scheme departs from zero, and one deduces the values of Hi

step by step, from the knowledge of Hj for j 6 i− 1.

Strategy 2. Compute H(x) from H(2x). The scheme departs from the largest point x = T
of the simulation domain. We suppose that for x > T we have H(x) = H(T ) = 0 (it is
relevant since we suppose that N vanishes for x large: see Theorem 1), and then deduce the
smaller values Hi step by step, from the knowledge of Hj for j > i+ 1.

The two approaches do not necessarily lead to the same result because as shown in
Proposition 1, the first strategy selects an approximation of the solution H(1) whereas the
second selects an approximation of the solution H(2). In the case of a very regular data
N , then H(2) will perform better around infinity, whereas H(1) will be better around zero.
However, if N is a solution of Equation (2.3), when we increase the number of points, the two
approaches converge to the same solution since H(2) = H(1). Since our simulation domain
[0, L] is bounded and contains zero, we prefered the first strategy. This choice was confirmed
by all the numerical tests we performed: the second approach leads to a solution exploding
around zero.
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We proposed the following scheme, based on two other important requirements: that
the two fundamental relations of ”quantity” balance and of mass balance, given by the
moments of order respectively 0 and 1 of the solution, are asymptotically preserved by the
discretization.

We defined a regular grid on [0, T ] with mesh k−1T by

0 = x0,k < x1,k < · · · < xi,k := i
k
T < . . . < xk,k = T.

We set

ϕi,k :=
k

T

∫ xi+1,k

xi,k

ϕ(x)dx for i = 0, . . . , k − 1,

and define by induction the sequence 6

Hi,k(ϕ) :=
1

4
(Hi/2,k(ϕ) + ϕi/2,k), i = 0, . . . , k − 1,

what gives, for i = 0 and i = 1

H0(ϕ) := 1
3
ϕ0,k, H1(ϕ) := 4

21
ϕ0,k + 1

7
ϕ1,k.

Finally, we define

L−1k (ϕ)(x) :=
k−1∑

i=0

Hi,k(ϕ)1[xi,k,xi+1,k)(x). (3.14)

The convergence of this scheme was proved in [11] by the following estimate.

Proposition 3 (Proposition 4 of [11]). Let T > 0 and L ∈ H1. Let H = L−1(L) denote the
unique solution of (3.5) belonging to L2(R+). We have for k ≥ 1:

‖L−1k (L)− L−1(L)‖2,T ≤ C
T√
k
‖L‖H1 ,

with C < 1√
6
.

Following this algorithm, numerical tests were performed in [15] and proved satisfactory,
even though the estimates become poor when N vanishes, as it was expected.

In [16], we implemented numerical schemes for general kernels k(x, y). The main problem
is that for this general case, we do not have the choice between Strategy 1 and Strategy 2:

we cannot avoid Strategy 2, defining H(x) from larger values present in
∞∫
x

k(x, y)H(y)dy.

It lead to correct approximations for large x, but not sufficiently good for small ones, as
illustrated in [16].

6for any sequence ui, i = 1, 2, . . ., we define

ui/2 :=
{ ui/2 if i is even

1
2 (u(i−1)/2 + u(i+1)/2) otherwise.
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4 Statistical viewpoint on the inverse problem [11]

As shown above, till now we modeled the noise in a deterministic way, supposing that ‖Nε−
N‖Z ≤ ε, with Z = L2 or Z = L2(xpdx). In [13], we applied our method on experimental
pre-processed data [89], without taking care of what the measure could be. However, take
the most of non pre-processed data is a major question, in order to use our techniques not
only to estimate B but also to validate or discriminate models.

In [11], we replaced the assumption Nε ∈ L2, which does not correspond to any realistic
model for the noise, by supposing that we measured the sizes x1, · · · , xn of a sample of
n individuals. Supposing that this sample was chosen uniformly randomly in a steady
population lead us to assume that the sizes were the realizations of X1, · · ·Xn independent
random variables whose law was N the solution of Equation 2.3. Mathematically, it may be
written

P(X1 ∈ dx1, . . . , Xn ∈ dxn) =
n∏

i=1

N(xi)dxi,

where the symbol P stands for probability. Asymptotics are taken as the number of obser-
vations n grows to infinity.

When we made this modelling assumption, we were guided by intuitive ideas and by
existing work on branching processes [32]. Till then, recent studies confirmed this point
[47, 10].

With such a statistical model, Step 2 now consists in estimating L(λ,N) from the n-
sample, i.e., the density N and its weighted derivative. Once this is achieved, Step 1 is
unchanged, so that we can combine the rest of the method with this statistical estimation.

Density estimation is a classical statistical problem, as well as estimation of the derivative
of a density. Many different techniques are possible, as in the deterministic setting. We
chose kernel regularisation partly because it is nothing else that what we called the filtering
method in a deterministic setting. As in a deterministic setting, we regularised the empirical

measure 1
n

n∑
i=1

δx=xi , which stands for Nε and represents an (ugly) estimate for the density N,

by convolution with a mollifier. In order to keep standard statistical notations, we denoted
this mollifier Kh, h replacing α and K replacing ρ in the notations of the deterministic
filtering method. Estimates are thus denoted for instance N̂h, which stands for Nε,α.

In [11], we went a step further, by adapting the method of Goldenschluger and Lepski
[70, 69]. This method selects automatically the regularisation parameter h (called bandwidth
in statistics), without any a priori knowledge on the regularity of the underlying density N.
Such methods are called adaptive, or in deterministic inverse problems a posteriori methods,
in contrast with a priori methods where the bandwidth/regularisation parameter is chosen
from an assumption on the regularity of the function, as for instance the above-mentioned
estimates of Theorem 2.1. of [15] lead to an optimal choice α = O(

√
ε) under the a priori

assumption that N ∈ H2. Among such methods, one can quote the discrepancy principle
[57], recently adapted to a statistical setting.
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4.1 The Goldenschluger and Lepski’s method

Without going into technical details, let us briefly explain in what consists the Goldenschluger
and Lepski’s method. We take here the example of estimating the density N ; to estimate
L(λ,N), we proceeded in a similar way (though rates of convergence are different due to the
derivative). For h > 0 and x ∈ R, we defined

N̂h(x) :=
1

n

n∑

i=1

Kh(x−Xi), (4.1)

where Kh(x) = h−1K(h−1x). Note in particular that E(N̂h) = Kh ∗ N , where ∗ denotes
convolution: in expectancy, it is what we denoted above Nα = ρα ∗ N . As above in the
deterministic setting, we measured the performance of N̂h via its squared integrated error,
i.e. the average L2 distance between N and N̂h. This error is decomposed as

E[‖N − N̂h‖2] ≤
∥∥N −Kh ∗N

∥∥
2

+ E[‖Kh ∗N − N̂h‖2]. (4.2)

We can compare this estimate with the above-mentioned Estimate (3.12): on the right-hand
side, the first term is exactly the same. It corresponds to what is called a bias term in
statistics: it biases the estimate in the sense that it does not depend on the measure but
only on the regularisation parameter/bandwidth h.

The second term on the right-hand side is the same in both estimates, except that in
Estimate (4.2) it is viewed in expectancy. It is easy to see that

E[‖Kh ∗N − N̂h‖22] ≤
∥∥K
∥∥2
2

nh
.

If one has to choose h in a family H of possible bandwidths, the best choice is h̄ where

h̄ := argminh∈H
{∥∥N −Kh ∗N

∥∥
2

+
1√
nh

∥∥K
∥∥
2

}
. (4.3)

This ideal compromise h̄ is called the ”oracle” in statistics: it depends on N and then cannot
be used in practice. In our deterministic setting, it would consists similarly in choosing

ᾱ := argminα∈H
{∥∥N − ρα ∗N

∥∥
2

+
ε√
α

∥∥ρ
∥∥
2

}
.

Hence one wants to find an automatic (data-driven) method for selecting a bandwidth
able to achieve this minimum up to a constant. The Lepski method [95, 96, 97, 98] is one
of the various theoretical adaptive methods available for selecting a density estimator. In
particular it is the only known method able to select a bandwidth for kernel estimators.
However the method does not usually provide a non asymptotic7 oracle inequality. Re-
cently, Goldenschluger and Lepski [70] developed powerful probabilistic tools that enable to

7i.e. valid for finite n and not only when n→∞.
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overcome this weakness and that can provide with a fully data-driven bandwidth selection
method. In [11], we gave a practical illustration of their work: how should one select the
bandwidth for a given kernel in dimension 1?

The main idea is to estimate the bias term by looking at several estimators. The method
consists in setting, for any x and any h, h′ > 0,

N̂h,h′(x) :=
1

n

n∑

i=1

(Kh ∗Kh′)(x−Xi) = (Kh ∗ N̂h′)(x).

Next, for any h ∈ H, define

A(h) := sup
h′∈H

{
‖N̂h,h′ − N̂h′‖2 −

χ√
nh′
‖K‖2

}
+
,

where χ is a well-chosen constant. The quantity A(h) is a good estimator of
∥∥N −Kh ∗N

∥∥
2

(see (4.2) and (4.3) in [11]). The next step consists then in setting

ĥ := arg min
h∈H

{
A(h) +

χ√
nh
‖K‖2

}
, (4.4)

and our final estimator of N is obtained by defining N̂ := N̂ĥ. With this choice, the following
optimal estimate is obtained.

Proposition 4 (Proposition 2 in [11]). Assume N ∈ L∞ and let K ∈ C(R) ∩ L2(R),∫
K(x)dx = 1. If H ⊂ {D−1, D = 1, . . . , Dmax} with Dmax = δn for δ > 0, then,

E
[
‖N̂ −N‖22

]
≤ C inf

h∈H

{
‖Kh ∗N −N‖22 +

∥∥K
∥∥2
2

(hn)

}
+ C1n

−1,

where C and C1 are constants depending on χ, δ, ‖K‖2, ‖K‖1 and ‖N‖∞.

This inequality is called an oracle inequality, for we have E[‖N̂−N‖2] ≤ (E[‖N̂−N‖22])1/(2)
and ĥ is performing as well as the oracle h̄ up to some multiplicative constant. In that sense,
we are able to select the best bandwidth within our family H.

A similar bandwidth selection and oracle inequality was obtained for the estimate of

∂
∂x

(g(x)N) in Proposition 3 of [11], the term

∥∥K
∥∥2

2

(hn)
being replaced by

∥∥K′
∥∥2

2

nh3
due to the

derivation.

The proofs used subtle concentration inequalities (see [102]), in order to estimate the
distance between the random variable N̂ and its expectancy. This was performed by my
co-authors.
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4.2 Rates of convergence

These oracle inequalities, together with the convergence of the numerical scheme of [15]
expressed by Proposition 3, lead to an upper bound for the estimate of B. Theorem 1 of [11]
gave a complete statement for this upper bound, which in its turn provided the following
rate of convergence.

Proposition 5 (From Proposition 1 of [11]). Under Assumptions of Theorem 1, if further-
more

• N, gN ∈ Hs+1(R+), and g ∈ L∞(R+),

• K ∈ C1(R) ∩ L2(R) ∩ L1((1 + xm0)dx) is a kernel such that
∫
K(x)dx = 1 and∫

xpK(x)dx = 0 for p = 1, 2, · · ·m0 − 1,

• the estimate λ̂ for λ satisfies Assumption 2 of [11].

Let us define Ĥ = L−1k (L̂) with k = n and L̂ selected as in [11] by the Goldenschluger and

Lepski’s method. Then Ĥ satisfies, for all s ∈ [1;m0 − 1]

E
[∥∥Ĥ −H

∥∥
2,T

]
= O

(
n−

s
2s+3

)
. (4.5)

Let us compare this rate of convergence with the one obtained in the deterministic setting.
After renormalization, we obtained the rate n−s/(2s+3) for estimating H, and this corresponds
to ill-posed inverse problems of order 1 in nonparametric statistics. We can make a parallel
with additive deterministic noise following Nussbaum and Pereverzev [121].

In the deterministic setting, we supposed that we had an approximate knowledge of
N up to a deterministic error that we can write εζ = Nε − N ∈ L2 with ‖ζ‖2 ≤ 1. As
discussed above in Section 3.3, the problem of estimating H is ill-posed of degree a = 1
in the terminology of Wahba [57, 156] for it involves the computation of the derivative of
N . By classical inverse problem theory for linear cases, this means that if N ∈ Hs+1, the
optimal recovery rate in L2-error norm should be εs/(s+a) = εs/(s+1).

Suppose now that we replace the deterministic noise ζ by a random Gaussian white noise:
we observe

Nε = N + εB (4.6)

where B is a Gaussian white noise, i.e. a random distribution in H−1/2, that operates on
test functions ϕ ∈ L2 and such that B(ϕ) is a centered Gaussian variable with variance ‖ϕ‖22.
Model (4.6) serves as a representative toy model for most stochastic error models such as
density estimation or signal recovery in the presence of noise.

Since we can make a heuristic correspondence between B and a deterministic distribution
inH−

1
2 , this leads to a degree of ill-posedness a = 3/2, and so the rate of convergence becomes

in this case ε
s

s+3
2 instead of ε

s
s+1 .
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Comparing now the level of noise ε with n, we have a formal correspondence ε = n−1/2,
which can be seen as due to the Berry-Esseen theorem (see also [120]).

We thus obtained the rate

εs/(s+3/2) = ε2s/(2s+3) = n−s/(2s+3).

This is exactly the rate we found in Proposition 5: the deterministic error model and the
statistical error model coincide to that extent. The statistician reader will note that the
rate n−s/(2s+3) is also the minimax rate of convergence when estimating the derivative of
a density, see [68], and the analyst that ε

s
s+1 is the rate for estimating a function from its

antiderivative.

5 Modelling and application to protein polymerization

5.1 Prion model: the nonlinear growth-fragmentation equation
[9]

Though fragmentation-coagulation equations are known and used in physical applications
for a while, the growth-fragmentation equation (2.1) was introduced only recently to model
polymerization, and, to be specific, protein polymerization. To the best of my knowledge,
the first was the model by Greer et al. in [72, 134, 59].

The original equations are differential systems obtained by the law of mass action. To
model protein polymerization for instance, Masel et al. [101] wrote the following system:

dni
dt

= −V (t)
(
gini − gi−1ni−1

)
−Bini + 2

∞∑

j=i+1

Bjki,jnj, i ≥ i0, (5.1)

dV

dt
= λ− γV − V

∞∑

i=i0

gini + 2
∑

j≥i0

∑

i<i0

iki,jBjnj, (5.2)

where ni denotes the concentration of polymers containing i monomers, and V = n1 is the
concentration of monomers. Each term of the equations is obtained by the law of mass action
for the following reactions.

• Polymers of size i can grow into polymers of size i + 1 by the addition of monomers
with a reaction rate gi. It gives the first two terms on the right-hand side, with a
quadratic coupling V (t)ni(t).

• Polymers of size i can break down into smaller ones with a rate Bi, and with a prob-
ability kj,i to give rise to two polymers of respective sizes j and i − j, 1 ≤ j ≤ i − 1.
Hence we have the following discrete equivalent of Assumptions (2.4):

i−1∑

j=1

kj,i = 1, ki,j ≥ 0, ki,j = kj−i,j, ki,j = 0 for j ≤ i. (5.3)
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• Monomers are produced at a constant rate λ and die with a rate γ.

• Polymers of size smaller than i0 are unstable, and immediately degraded into monomers,
what gives the last double summation term in the equation for V .

A fundamental equation is the mass balance: summing Equation (5.2) with the sum of
Equations (5.1) multiplied by i, we obtain

d

dt

(
V (t) +

∞∑

i=i0

ini(t)

)
= λ− γV. (5.4)

Such a system is far from being the first of this kind: see [39, 122] among many seminal
references. Greer et al. wrote a continuous version, under the form

∂n

∂t
+ V

∂

∂x

(
g(x)n(t, x)

)
+B(x)n = 2

∞∫

x

k(x, y)B(y)n(t, y)dy, x ≥ x0, (5.5)

dV (t)

dt
= λ− γV − V

∫ ∞

x0

g(x)n(t, x)dx+

x0∫

0

∞∫

x0

xk(x, y)B(y)n(t, y)dydx, (5.6)

g(x0)n(t, x0) = 0. (5.7)

As for the discrete system, the mass balance is obtained by summation:

d

dt

(
V (t) +

∞∫

x0

xn(t, x)dx

)
= λ− γV. (5.8)

The link between the discrete system (5.1)–(5.2) and the continuous one (5.5)–(5.6) is easy
to see, simply by replacing i by a continuous index x, sums by integrals and differences by
derivatives.

We recognize the growth-fragmentation equation in Equation (2.8), but here coupled
with the monomers equation (5.6) via the growth term. The unknown n(t, x) represents the
concentration of polymers of size x at time t, growing by monomer addition with a growth
rate g(x)V (t) proportionnal to the concentration of monomers by the law of mass action.

In the original articles [101] and [59, 134], as in most of the articles of the biological
literature [122, 87, 158], in their discrete version as in their continuous ones, parameters
g(x), B(x) are assumed to be constant, and the fragmentation kernel k is uniform k(x, y) =
1
y
1lx≤y. Such assumptions make it possible to reduce the system to a closed system of 3

ODE whose unknowns are V, the total number of polymers P =
∑
ni, and the total mass

M =
∑
ini. However, such assumptions are difficult if not impossible to justify biologically.

Some experimental results even tend to prove the contrary [145].
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Another major difference between the discrete system (5.2)–(5.1) and the continuous
version (5.5)–(5.7) lies in the boundary condition (5.7). This condition needs to be done
for the continuous problem to be well-posed. However, nothing justifies it a priori, except
the intuition of no influx. In [9], we gave it a weak definition and proved it under some
assumptions on the coefficients (Theorem 3 of [9]).

We settled our study on the basis of existing work on close equations: Lifshitz-Slyozov on
the one hand, in [48], where only the polymerization/depolymerization appears, coagulation-
fraagmentation equation on the other hand, in [91], where polymerization is replaced by co-
agulation. In collaboration with T. Goudon and T. Lepoutre, we studied in [9] in which sense
and under which assumptions System (5.5)–(5.6) is the asymptotic limit of System (5.1)–
(5.2).

The first step to understand formally the link between the two settings is to adimension
the discrete equations. We pass from the discrete model to the continuous model by associ-
ating to the ui’s a stepwise constant function, constant on each interval (εi, ε(i+ 1)). Then
sums over the index i will be interpreted as Riemann sums which are expected to tend to
integrals in the continuum limit while finite differences will give rise to derivatives. This
makes appear an appropriate scaling and a small parameter ε. We define

χεi (x) = χ[iε,(i+1)ε)(x), uε(t, x) :=
∞∑

i=n0(ε)

uεi (t)χ
ε
i (x),

and we study the limit ε→ 0, i→∞ whereas εi remains finite. To understand the physical
interpretation of ε, the best way is to look at the mass balance (5.4). In an adimensionned
version, it becomes

d

dt

(
V ε(t) +

U ε
Vε

∞∑

i=i0

inεi

)
= 0, (5.9)

where U ε is the characteristic value for the concentration of polymers ui, whereas Vε is the
one for the monomers V. Therefore, to admit Equation (5.8) as a formal limit, we are led to
set

U ε
Vε = ε2.

Let iM be the average length of a polymer: the polymerized mass
∑
iuεi is thus in the order

of
∑
iMU ε = i2MU ε. Supposing that the polymerized mass and the monomers’ mass V are

in the same order of magnitude, it leads to i2MU ε ≈ Vε. Hence, we get

ε =
1

iM
,

which corresponds to εiM remaining finite whereas ε → 0 and iM → ∞. Our limit corre-
sponds to the case of very large polymers, also called fibrils or amyloids in our applications.
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The average size of polymers go from some hundreds to some hundreds of thousands. Under
the following assumption (which is Assumption (8) in [9])

∃ K, α ≥ 0, 0 ≤ θ ≤ 1, 0 ≤ Bi ≤ Kiα, 0 ≤ gi ≤ Kiθ, (5.10)

the orders of magnitude of each characteristic value should lead to the following rescaled
equations

dnεi
dt

= −εθ−1V ε(t)
(
gin

ε
i − gi−1nεi−1

)
− εαBin

ε
i + 2εα

∞∑

j=i+1

Bjki,jn
ε
j , i ≥ i0, (5.11)

dV ε

dt
= λ− γV ε − εθ+1V ε

∞∑

i=i0

gin
ε
i + 2ε2+α

∑

j≥i0

∑

i<i0

iki,jBjnj. (5.12)

To obtain the convergence, we now need continuity assumptions on the coefficients, namely
(Assumptions (22) and (23) of [9])

|Bi+1 −Bi| ≤ Kiα−1, |gi+1 − gi| ≤ Kiθ−1, |
i−1∑

p=0

p−1∑

r=0

kr,j+1 −
i−1∑

p=0

p−1∑

r=0

kr,j| ≤ K. (5.13)

Under such a compactness assumption, up to a subsequence, the coefficients converge towards
continuous functions, as expressed by Lemma 1 and 2 of [9]. The proper definition of
the convergence for k(x, y) is the most sensitive point. Denoting M1([0,∞)) the space of
Radon measures on R+, the limit k is such that k : y → k(dx, y) ∈ M1

+([0,+∞)) is in
C([0,∞);M1

+([0,∞)− weak − ?).
Our proof relies on weak compactness arguments inM1, making use of moments conser-

vation through time. Hence the last important assumption is the following initial condition
(Assumption (21) in [9]):

∃ σ > max(θ, α− 1), V ε(0) +
∞∑

i=n0

(
ε+ ε2i+ ε2+σi1+σ

)
nεi (0) < +∞. (5.14)

Finally, we needed to exchange the equation for the monomers (5.12) by the mass bal-
ance (5.9), for convergence reasons: weak convergence as we obtained is not sufficient for the
convergence towards

∫
g(x)n(t, x)dx in Equation (5.12). In Definition 1 of [9], we defined a

monomer preserving solution as satisfying both the mass balance and the equation for V in
a weak way; this is equivalent to setting the boundary condition (5.7).

We obtained the following convergence results.

Theorem 4 (Theorems 2 and 3 in [9]). Under Assumptions (5.3), (5.10), (5.13) and (5.14),
there exists a subsequence (εn) such that

nεn → n in C([0, T ];M1([0,∞))− weak − ?, V εn → V uniformly on [0, T ].

The limit (n, V ) is a weak solution of Equations (5.5) and (5.8). Moreover, (n, V ) is a
monomer preserving solution in the following situations:
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• x0 = 0 and either θ > 0 or τi is constant,

• x0 > 0 and the discrete fragmentation coefficients fulfill a strengthened assumption
(Assumption (25) in [9]).

The assumption x0 > 0, if helpful from the point of view of analysis, is not biologically
relevant, since this means that the minimal stable size of a polymer (this polymer is called
the nucleus) is very large compared to 1. In practice, this is not satisfied, typical sizes going
from 2 to 5 or 6.

We also noticed that if the fragmentation kernel contains a Dirac mass in x+0 , then this
should appear in the boundary condition (5.7) instead of 0.

All these observations helped us to generalize the prion model to other types of polymer-
ization, including spontaneous formation of polymers from monomers alone.

5.2 General protein polymerization models [18]

The above-mentioned ”Prion” model may be viewed as a toy model, which as such remains
amenable to qualitative analysis and helps us to understand typical behaviour of fibrils
population. In this spirit, its nonlinear asymptotic behaviour was investigated and discussed
in [43, ?].

However, it remains oversimplified in view of the complexity of the possible chain re-
actions. For instance, there is no biological evidence that polymerization occurs through
monomer addition, rather than oligomer addition; on the contrary, H. Rezaei et al. [56]
showed the existence of several polymerization pathways for recombining PrPc

Moreover, the prion model is a toy model for a prion-like infectious disease: the disease,
characterized by the presence of the fibrils, is able to propagate through the polymerization-
fragmentation mechanism only. As shown in [43], a small amount of polymers at initial
time is sufficient for the process to initiate, forming a large number of other fibrils. But
the equations do not model the spontaneous appearance of the disease: if no polymer is
initially present, nothing happens, contrarily to models including nucleation, which is the
spontaneous formation of small oligomers by the encounter of monomers.

In order to generalize the derivation of [9] and to take into account such reactions, in [18]
we wrote a more complete model. It is not designed for direct use and study, but to give a
method to adapt to each situation.

In its discrete version, the model is the transcription in differential equations of the law
of mass action for the following reactions.

• Conformational exchange: inert monomers of concentration V ∗ may become active
conformers of concentration V, able to polymerize

V ∗
k+I

k−I

V,
dV ∗

dt
= −k+I V ∗ + k−I V + · · · , dV

dt
= k+I V

∗ − k−I V + · · ·
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• Nucleation: the smallest stable polymer of concentration ni0 is of size i0, and may
be formed from i0 monomers according the following reactions of association and dis-
sociation and their translation in ODE

V + · · ·+ V︸ ︷︷ ︸
i0

kNon

kNoff

ni0 ,
dV

dt
= −i0kNonV i0 + i0k

N
offni0 ,

dni0
dt

= kNonV
i0 − kNoffni0

(5.15)

• polymerization and depolymerization occur by monomer addition, at rates gi and g−i ,

• fragmentation of j−mers into i−mers occurs like in the prion model, with a fragmen-
tation rate Bjki,j,

• coalescence of i-mers and j-mers giving rise to (i+ j)− mers occurs at a rate ki,jcol.

• we can add degradation (as in the prion model), but this reaction being very simple,
for the sake of simplicity we don’t consider it here and let the reader refer to [9, 18].

From the discrete transcription of these reactions, we formally derived the following PDE
model (keeping the same notations)

dV ∗

dt
= −k+I V ∗ + k−I V, (5.16)

dV

dt
= k+I V

∗ − k−I V −
i0 k

N
on V

i0+1g(x0)

kNoff + g(x0)V
− V

∞∫

x0

g(x)n(t, x)dx+

∞∫

x0

g−(x)n(t, x)dx, (5.17)

∂n

∂t
= −V ∂

∂x

(
g(x)n(t, x)

)
+

∂

∂x
(g−(x)n(t, x)

)
+ 2

∞∫

x

B(y)k(x, y)n(t, y)dy

−B(x)n(t, x) +
1

2

x∫

x0

kcol(y, x− y)n(t, y)n(t, x− y)dy −
∞∫

x0

kcol(x, y)n(t, x)n(t, y)dy,

(5.18)

g(x0)n(t, x0) = g(x0)
kNon V

i0

kNoff + g(x0)V
. (5.19)

The main novelty is the nucleation term, which appears now as a source term in the boundary
condition (5.19) replacing (5.7). By this model, we proposed a new framework that can be
adapted to most protein polymerization reactions. While keeping all the richness of the
reactions, it may reduce the computational cost and is much more amenable to analysis; this
is particularly convenient for parameter estimation in which the model has to be evaluated
a large number of times ([158, 28]. Moreover, it proved to give at least as good results as
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previously used methods in the biophysical literature [158, 87]. Recent analytical tools as
the ones described above can also be applied.

As a proof of concept, we applied our method to new experimental data on Polyglu-
tamine aggregation, which is involved in Huntington’s disease. Our biologists collaborators
carried out biophysical analyses to investigate the aggregation kinetics of PolyQ41, which
are peptides containing a repetition of 41 glutamine residues per monomer. Such a length
of PolyQ repetition per molecule was proved to be sufficient to induce aggregation in vitro
and in transfected cells [143]. The experiments consist in letting an initial bath of monomers
aggregate spontaneously, till all the monomers become polymerized.

Due to its simplicity, PolyQ provides an excellent model system to test our mathematical
model. According to the experimental observations, fragmentation can be ignored as well as
coalescence. In order to determine whether coalescence occurs, we monitored simultaneously
two types of measurements. The first one, by static light scattering, can be viewed as a
measurement of I2(t) =

∑
i≥i0

i2ci =
∫
x2c(t, x)dx. The second one, by thioflavine T (ThT)

fluorescence, is mathematically expressed by M(t) =
∑

i≥i0 ici =
∫
xc(t, x)dx. If there were

coalescence, the weighted average polymer size would continue to grow even when the
total polymerized mass M(t) reached a plateau, so the second moment I2(t) would continue
to grow after the plateau has been reached by M(t). In our experiments, however, both
curves reached the plateau roughly simultaneously; therefore we concluded that coalescence
is negligible.

We also ignored depolymerization in the course of the experiment, so that the model
became quite simple: a pure transport equation, with a nonlinear source term for the nucle-
ation, and quadratically coupled with two ODEs standing for the monomer’s and conformer’s
concentrations

dV ∗

dt
= −k+I V ∗ + k−I V, (5.20)

dV

dt
= k+I V

∗ − k−I V −
i0 k

N
on g(0)V i0+1

kNoff + g(0)V
− V

∞∫

x0

g(x)n(t, x)dx, (5.21)

∂n

∂t
= −V ∂

∂x
(g(x)n(t, x)), (5.22)

n(t, 0) =
kNon V

i0

kNoff + g(0)V
. (5.23)

As an initial approach, we tested piecewise linear polymerization rates.
The parameters of this model were then estimated by fitting experimental data on

PolyQ41 protein polymerization. We performed this in two successive ways. The first con-
sisted in fitting separately each experimental curve, corresponding to a given experiment, at a
given concentration. The result is that whatever i0 is, the fit is excellent for any curve, with a
measurement error from 0.5 to 2% in L2 adimensioned norms. It gives almost undistinguish-
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able curves. However, the variability among the optimal coefficients was large, which led us
to the second step. This consisted in fitting simultaneously all the curves of experiments
carried out in identical experimental conditions, but for different concentrations. The total
adimensioned error (in L2−norm) diminished with i0, and reached its lowest level for i0 = 1.
For larger values of the nucleus, the error is moreover too large for the model to be accept-
able. It gave solid ground to the assumption, already suggested in the literature [82], that
the nucleus is of size 1, but with a specific and unconventional nucleation-elongation reaction
scheme, where the elongating species V and the nucleus ni0 = Ṽ are distinct conformers.

Another result of our simulations is that k−I is negligible, thus we can suppose that

c1 = c0e
−k+I t. In the same way, we can compare V to the solution of the following differential

equation
dVtest
dt

= k+I V (t = 0)e−k
+
I t − i0kNonV i0

test, Vtest(0) = 0,

i.e., ignore the contribution of polymers in the equation for V : it fits perfectly for the total
duration of the lag phase, which is the period during which the reaction initiates - an easy
definition for the lag phase could be, for instance, before the polymerized mass had reached
a level of 5% or 10% of the total mass.

6 Perspectives

6.1 Application to protein polymerization

The framework model (5.16)–(5.19) is the basis of a project funded by the European Research
Council as a Starting Grant of the program called IDEAS. It is called SKIPPERAD, which
stands for Simulation of the Kinetics and Inverse Problem for the Protein polymERization
in Amyloid Diseases (Prion, Alzheimer’s).

Amyloid diseases are a group of diseases which involve the aggregation and the deposi-
tion of misfolded proteins, called amyloid, which are specific for each disease (PrP for Prion,
Aβ for Alzheimer’s). In a healthy state, they remain monomeric, but when misfolded they
propagate the abnormal configuration and aggregate to others, forming very long polymers
also called fibrils. Elucidating the intrinsic mechanisms of these chain reactions, most prob-
ably specific for each disease, is a major challenge of molecular biology: do polymers break
or do they coalesce? Do some specific sizes polymerize faster? Does polymerization occur
by monomer, dimer, or i-mer addition? On which part of the reactions should a treatment
focus to arrest the disease? Up to now, only very partial and partially justified answers have
been provided.

The project aims at developing new mathematical methods in order to model fibrilliza-
tion reactions, analyse experimental data, help the biologists to discover the key mecha-
nisms of polymerization in these diseases and predict the effects of new therapies. Through
SKIPPERAD, I intend to enlarge my current research to more general models (built from
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the framework method described in [18]), combine analytical with statistical and probabilis-
tic viewpoints on growth-fragmentation processes, and permanently adjust my mathematical
research to the application to protein polymerization.

The project takes place from December 2012 to December 2017, and will be the guideline
for my research activity during these years. Human Rezaei, research director in biophysics
at INRA Jouy-en-Josas and specialist of Prion diseases, is fully involved in the project to
which he will devote 30% of his working time. 2 post-doctoral students and 2 PhD students
will be recruited, and the project will also facilitate the ongoing collaborations.

Here are the research directions which are specific of this project. However, many prob-
lems detailed in the other sections also belong to the SKIPPERAD project, but as mathe-
matical problems, they have a wider field of application so that they can be considered per
se.

6.1.1 Adapting the framework model (5.16)–(5.19) to specific situations

This model can be adapted, simplified or made more complex to fit particular cases, for
instance to take into account a conformer/monomer exchange, or to ignore coalescence or
depolymerization, etc., with much freedom and many possible variants. We depart from
existing experimental data and biological questions. Through careful discussions with H.
Rezaei, we shall define how much we can rely on these data, what are the origins of the
noises and measurement errors, and we will formulate a model and one (or better several)
suitable numerical scheme(s). To build such a model, we will adapt our general problem
(5.16)-(5.19) to the case corresponding to the experiment under consideration. Even for the
same disease and the same protein, it may not be the same part of the model that will
play the main role according to the experimental conditions (sonication or not, high or low
temperature, monomeric or fibril initial conditions etc.)

This modelling part will be the basis of mathematical studies, even if these ones could
then be considered as problems with potentially wider applications and interesting in their
own right.

6.1.2 Sensitivity analysis (in collaboration with H.T. Banks)

Once such a model is designed, to gain a first insight into which part of the reaction which
type of process influences, an interesting research direction is given by the generalized sensi-
tivity functions derived by H.T. Banks and co-authors [28, 30]. This method could also help
us to design better experiments, in order to obtain experimental data at the right moment
where it depends most on the parameters being sought.
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6.1.3 Fibrils Depolymerization: Lifshitz-Slyozov revisited and data assimilation
methods

As an example of such an adaptation of the general model, here is an ongoing work in
collaboration with H. Rezaei, S. Prigent, J. Torrent (for the biological part), P. Moireau,
H.W. Haffaf and M. Fragu (for the mathematical part).

Departing only from fibrils (of PrPsc, the Prion proteins) as an initial condition at time
t = 0 and with no monomers, H. Rezaei’s team perform measurements of the total population
of polymers, under experimental conditions that favour depolymerization. Surprisingly, they
observe oscillations.

Our first model to describe the behaviour of the population follows either the Becker-
Döring system, in a discrete way [25], or the Lifshitz-Slyozov equations [117], namely:

∂n

∂t
+

∂

∂x

((
V (t)g(x)− g−(x)

)
n

)
= 0 (6.1)

dV

dt
=

∞∫

0

(
g−(x)− V g(x)

)
n(t, x)dx, (6.2)

n(t, x = 0) =
kNonV

i0

kNoff + g(0)V
. (6.3)

Although this system (except the boundary condition (6.3)) and its asymptotic limits have
been widely studied, our biological focus sheds new light on this problem since our assump-
tions regarding the coefficients are far from the original ones as stated in the seminal paper
of Lifshitz and Slyozov [99, 119, 118] or Becker and Döring [33, 25, 81]. We will investigate
the following questions.

1. Is it possible to obtain permanent oscillations in the measured quantity I2 =
∫
x2n(t, x)dx,

as experimental observations seem to show? Our initial studies seem to answer in a
negative way, and also to show that the fact that we measure I2 rather than the total
polymerised mass I =

∫
xn(t, x)dx has a major influence. If so, which kind of reactions

could explain this unusual phenomenon ?

We are also studying under which conditions on the polymerization and depolymer-
ization coefficients we can observe multiple steady states for a given initial condition.
Hopf bifurcation and the studies carried out for related equations such as Prion provide
us with different research directions.

2. Can we deduce the polymerization and depolymerization size-structured rates from the
observation of I2 or I over time - with several experiments corresponding to different
initial concentrations?

This second question belongs to the general problem of identifiability or observability
of our system through the data provided. Ideally, an observability inequality involving the
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parameters to identify and the given data can be obtained, justifying the well-posedness of
the inverse problem.

To go further, a direction well-adapted is provided by data assimilation methods.
Data assimilation strategies [116], initially defined for evolution equations in weather

forecasting and geophysics, are now widely used for evolution problems in chemical systems,
biomechanical systems etc. We plan to investigate how such strategies can be applied to our
problems.

In essence, data assimilation consists in merging model and data in order to circumvent
the initial model uncertainties and improve the prediction computed. In the data assimila-
tion context, we distinguish two different approaches: first, the variational approach which
estimates the uncertainties by minimizing a least square criterion involving the discrepancy
between the data and the corresponding outputs from a model simulation [116]; secondly,
the sequential approach which filters the uncertainties over time to stabilize the computed
numerical system on the actual system partially observed – see [147] and references therein.
The classic examples of this approach are Kalman based filtering methods. These two strate-
gies are different in their practical use but both rely on the same fundamental observability
condition which expresses the fact that observing the system even partially – through a time
sequence of mean quantities observed in our case – is sufficient to compensate the lack of
initial knowledge about the system [147]. Moreover, the two approaches can be proved to be
equivalent in various cases. Despite their easier implementation in comparison to variational
strategies, most sequential approaches are known to suffer from a “curse of dimensionality”
as recalled by Bellman [38], and therefore are not widely used for systems derived from the
discretization of partial differential equations.

However, some recent studies [115, 113] have paved the way to adapt filtering strategies
to the joint state-parameter estimation of large dimensional problems. P. Moireau and co-
authors have demonstrated the efficiency of some adapted filtering methods from a theoretical
point of view [114] and also in a clinical context. In collaboration with this group, we expect
to generalize these results to our polymerization-fragmentation problems.

It seems very likely that our inverse problems, in their most general formulation, fall
within the scope of data assimilation methods which will give a well identified methodological
framework for solving them in practice. We can then rely on a generic data assimilation
library called Verdandi (http://verdandi.gforge.inria.fr/) already available and developed by
P. Moireau and co-authors, where their methods are available, alongside state-of-the-art
classical data assimilation algorithms. The numerical results obtained will help us identify
observability issues, for example by analyzing uncertainty covariances resulting from the
application of well-adapted methods.

6.2 Combining Statistical and Analytical Approaches

This part or my research, originated by a very informal workshop with Marc Hoffmann,
Patricia Reynaud and Vincent Rivoirard in 2008, progressively grows in importance.
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Following our common work [11], this collaboration now takes two directions
On the one hand, I have been associated to the project CALIBRATION funded by

the ANR, and supervised by Vincent Rivoirard, and then to the project ”PIECE” of Flo-
rent Malrieu. In this context, we imagine several possible directions: comparison between
the Goldenschluger and Lepski’s method and of the deterministic discrepancy principle; re-
construction methods with unknown level of noise ; analytical viewpoint on the Hawkes
processes, which seem to have much in common with nonlinear renewal equations [135].

On the other hand, we now collaborate with Lydia Robert, biologist at INRA and ENS,
on the cell division cycle of the bacteria E. Coli. For the most theoretical part, we build a
probabilistic modelling of the division, through a branching process whose empirical distribu-
tion satisfies the growth-fragmentation equation in expectancy. We also propose a statistical
method to estimate the division rate B from measurements of the distribution of the sizes of
dividing cells (and not of all the sizes, as in [11]). Finally, we progressively enrich our meth-
ods to give answers to biological issues studied by Lydia Robert. Among these issues, we
faced again the fundamental question raised in the introduction: what is the really intrinsic
structuring variable ? Is it size, age, or still some other hidden parameter?

6.3 Population Dynamics

Following [4, 7, 2], there remain many open problems in population dynamics, some known
to be very hard. I only quote here three possible directions.

• Nonlinear dynamics

Partial results have been proved for the nonlinear asymptotic behaviour of of the
growth-fragmentation equation in [67, 43, ?, 123, 124, 125], but the convergence to-
wards a nontrivial steady state has not yet been proved in general cases.

This rejoins the general question of nonlinear asymptotic behaviour of structured equa-
tions, which remains largely open [129, 106, 109].

• Optimal assumptions for a spectral gap

Several important advances to prove an exponential rate of decay towards the steady
distribution have been made; on the one hand, for perturbations of constant or decaying
division rate [128, 92, 124, 125], and on the other hand for perturbations of a uniform
fragmentation kernel [42, 24]. However, more general assumptions, maybe as general
as for the well-posedness of the eigenvalue problem [7], could probably yet be found.

• Non standard asymptotic behaviours

In [7], we found (probably optimal) assumptions under which the solution to Equa-
tion (2.1) behaves asymptotically as an exponential growth decoupled of a stable steady
profile, i.e. u(t, x)e−λt → U(x). Other articles [60, 61, 63] focus on cases where frag-
mentation or coagulation equations tend either to Dirac masses or to infinitely-long
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polymers. To complete the theory, it would be necessary to have optimal assumptions
for each case, as well as a study of limit cases - where oscillations may appear [77].
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Part III

Selection of articles [7, 15, 11, 9, 18]

1 Eigenvalue Problem [7]
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Eigenelements of a General Aggregation-Fragmentation Model.

Marie Doumic ∗ Pierre Gabriel †

June 12, 2009

Abstract

We consider a linear integro-differential equation which arises to describe both aggregation-
fragmentation processes and cell division. We prove the existence of a solution (λ,U , φ) to the
related eigenproblem, where λ denotes its first eigenvalue. Our study concerns a non-constant
transport term that can vanish at x = 0. Non lower-bounded transport terms bring difficulties to
find a priori estimates. We use weighted-norms to solve this problem.

Keywords Aggregation-fragmentation equations, eigenproblem, size repartition, polymerization pro-
cess, cell division, long-time asymptotic.

AMS Class. No. 35A05, 35B40, 45C05, 45K05, 82D60, 92D25

1 Introduction

Competition between growth and fragmentation is a common phenomenon for a structured population.
It arises for instance in a context of cell division (see, among many others, [22, 1, 4, 5, 6, 14, 30, 18, 20]),
polymerization (see [7, 13]), telecommunication (see [2]) or neurosciences (see [27]). It is also a
mechanism which rules the proliferation of prion’s proteins (see [10, 19, 21]). These proteins are
responsible of spongiform encephalopaties and appear in the form of aggregates in infected cells. Such
polymers grow attaching non infectious monomers and converting them into infectious ones. On the
other hand they increase their number by splitting. To describe such phenomenons, we write the
following integro-differential equation, used in [10, 19, 21] to study the proliferation of prion,





∂

∂t
u(x, t) +

∂

∂x

(
τ(x)u(x, t)

)
+ β(x)u(x, t) = 2

∫ ∞

x
β(y)κ(x, y)u(y, t) dy, x > 0,

u(x, 0) = u0(x),

u(0, t) = 0.

(1)

∗INRIA Rocquencourt, projet BANG, Domaine de Voluceau, BP 105, F-78153 Rocquencourt, France.
†Université Pierre et Marie Curie-Paris 6, UMR 7598 LJLL, BC187, 4, place de Jussieu, F-75252 Paris cedex 5;

corresponding author, email: gabriel@ann.jussieu.fr
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The aggregates density function u(x, t) represents the quantity of polymers of size x at time t. They
aggregate monomers with the rate τ(x). Equation (1) also takes into account the fragmentation of a
polymer of size y into two smaller polymers of size x and y−x. This fragmentation occurs with a rate
β(y) and produce an aggregate of size x with the rate κ(x, y). Equation (1) is a particular case of the
more general one

∂

∂t
u(x, t) +

∂

∂x

(
τ(x)u(x, t)

)
+ [β(x) + µ(x)]u(x, t) = n

∫ ∞

x
β(y)κ(x, y)u(y, t) dy, x > x0, (2)

with the bound condition u(x0, t) = 0 (see [3, 10, 21]). In this model, polymers are broken in an
average of n > 1 smaller ones by the fragmentation process, there is a death term µ(x) ≥ 0 representing
degradation, and a minimal size of polymers x0 which can be positive. Our results remain true for
this generalization.

To study the asymptotic growth of the quantity of polymers, we are looking at the eigenelements
(λ,U , φ) of (1), i.e., the solution of the equation





∂

∂x
(τ(x)U(x)) + (β(x) + λ)U(x) = 2

∫ ∞

x
β(y)κ(x, y)U(y)dy, x > 0,

τU(x = 0) = 0, U(x) ≥ 0,
∫∞

0 U(x)dx = 1,

−τ(x)
∂

∂x
(φ(x)) + (β(x) + λ)φ(x) = 2β(x)

∫ x

0
κ(y, x)φ(y)dy, x > 0,

φ(x) ≥ 0,
∫∞

0 φ(x)U(x)dx = 1.

(3)

Here λ is the first eigenvalue, U the corresponding eigenfunction and φ the dual eigenfunction. Our
parameters β, τ and κ are not necessarily regular. For the first equation (equation on U) we are
looking for D′ solutions defined as follows : U ∈ L1(R+) is a D′ solution if ∀ϕ ∈ C∞c (R+),

−
∫ ∞

0
τ(x)U(x)∂xϕ(x) dx+λ

∫ ∞

0
U(x)ϕ(x) dx =

∫ ∞

0
β(x)U(x)

(
2

∫ ∞

0
ϕ(y)κ(y, x) dy−ϕ(x)

)
dx. (4)

Concerning the dual equation, we are looking for a solution φ ∈ W 1,∞
loc (0,∞) such that the equality

holds in L1
loc(0,∞), i.e. almost everywhere.

Existence and uniqueness of such elements has already been proved for general fragmentation kernels
κ(x, y) and fragmentation rates β(x), but with very particular polymerization rates τ(x), namely
constant (τ ≡ 1 in [28]), homogeneous (τ(x) = xµ in [23]) or with a compact support (Supp τ = [0, xM ]
in [14]). It seems however of deep interest to consider more general τ as [10, 32] suggest. The proof
of [28] can be adapted for non constant rates but still positive and bounded (0 < m < τ(x) < M).
The paper [23] gives results for τ(0) = 0, but for a very restricted class of shape for τ. The paper [14]
gives results for τ with general shape in the case where there is also an age variable (integration in age
then allows to recover Problem (1)), but requires a compact support and regular parameters. Here we
consider polymerization rates that can vanish at x = 0, positive for x positive, with general shape and
few regularity for the all parameters (τ, β and κ), and we have to reformulate the space for solutions.
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Theorem 1 (Existence and Uniqueness) Under assumptions (5)-(13), there exists a unique so-
lution (λ,U , φ) (in the sense we have defined before) to the eigenproblem (3) and we have

λ > 0,

xατU ∈ Lp(R+), ∀α ≥ −γ, ∀p ∈ [1,∞],

xατU ∈W 1,1(R+), ∀α ≥ 0

∃k > 0 s.t.
φ

1 + xk
∈ L∞(R+),

τ
∂

∂x
φ ∈ L∞loc(R+).

The end of this paper is devoted to define precisely the assumptions and prove this theorem. It is
organized as follows : in Section 2 we describe the assumptions and give some examples of interesting
parameters. In Section 3 we prove Theorem 1 using a priori bounds on weighted norms and then we
give some consequences and perspectives in Section 4. The proof of technical lemmas and theorem
can be found in the Appendix.

2 Coefficients

2.1 Assumptions

For all y ≥ 0, κ(., y) is a nonnegative measure with a support included in [0, y]. We define κ on (R+)2

as follows : κ(x, y) = 0 for x > y. We assume that for all continuous function ψ, the application
fψ : y 7→

∫
ψ(x)κ(x, y) dx is Lebesgue measurable.

The natural assumptions on κ (see [19] for the motivations) are that polymers can split only in two
pieces which is taken into account by ∫

κ(x, y)dx = 1. (5)

So κ(y, .) is a probability measure and fψ ∈ L∞loc(R+). The conservation of mass imposes

∫
xκ(x, y)dx =

y

2
, (6)

a property that is automatically satisfied for a symetric fragmentation (i.e. κ(x, y) = κ(y − x, y))
thanks to (5). For the more general model (2), assumption (6) becomes

∫
xκ(x, y)dx = y

n to preserv
the mass conservation.
We also assume that the second moment of κ is less than the first one

∫
x2

y2
κ(x, y)dx ≤ c < 1/2 (7)

(it becomes c < 1/n for model (2)). We refer to the Examples for an explanation of the physical
meaning.
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For the polymerization and fragmentation rates τ and β, we introduce the set

P :=
{
f ≥ 0 : ∃µ, ν ≥ 0, lim sup

x→∞
x−µf(x) <∞ and lim inf

x→∞
xνf(x) > 0

}

and the space
L1

0 :=
{
f, ∃a > 0, f ∈ L1(0, a)

}
.

We consider
τ, β ∈ L1

loc(R+) ∩ P (8)

satisfying
∀K compact of (0,∞), ∃mK > 0 s.t. τ(x) ≥ mK for a.e. x ∈ K (9)

and
∃b ≥ 0, Suppβ = [b,∞). (10)

Assumption (10) is necessary to prove uniqueness and existence for the adjoint problem.

To avoid shattering (zero-size polymers formation, see [3, 21]), we assume

∃C > 0, γ ≥ 0 s.t.

∫ x

0
κ(z, y) dz ≤ min

(
1, C

(x
y

)γ)
and

xγ

τ(x)
∈ L1

0 (11)

β

τ
∈ L1

0. (12)

On the other hand, to avoid forming infinitely long polymers (gelation phenomenon, see [17, 16]), we
assume

lim
x→+∞

xβ(x)

τ(x)
= +∞. (13)

Remark 1 In case when (11) is satisfied for γ > 0, then (7) is automatically fulfilled (see Lemma 3
in the Appendix).

2.2 Examples

First we give some examples of coefficients which satisfy or not our previous assumptions.
For the fragmentation kernel, we first check the assumptions (5) and (6). They are satisfied for
autosimilar measures, namely κ(x, y) = 1

yκ0(xy ), with κ0 a probability measure on [0, 1], symmetric in
1/2. Now we exhibit some κ0.

General mitosis :

κr0 =
1

2
(δr + δ1−r) for r ∈ [0, 1/2]. (14)

Assumption (11) is satisfied for any γ > 0 in the cases when r ∈ (0, 1/2]. So (7) is also fulfilled thanks
to Remark 1. The particular value r = 1/2 leads to equal mitosis (κ(x, y) = δx= y

2
).

The case r = 0 corresponds to the renewal equation (κ(x, y) = 1
2(δx=0 + δx=y)). In this case, the size

of the polymers does not decrease during the fragmentation process. It is typically what we want to
avoid with assumption (7). For such a fragmentation kernel, assumption (11) is satified only for γ = 0,
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and the moments
∫
zkκ0(z)dz are equal to 1/2 for all k > 0, so (7) does not hold true. However, if

we consider a convex combination of κ0
0 with an other kernel such as κr0 with r ∈ (0, 1/2], then (11)

remains false for any γ > 0 but (7) is fulfilled. Indeed we have for ρ ∈ (0, 1)
∫
z2(ρκ0

0(z) + (1− ρ)κr0(z)) dz =
ρ

2
+

1− ρ
2

(r2 + (1− r)2) =
1

2
(1− 2r(1− r)(1− ρ)) <

1

2
.

Homogeneous fragmentation :

κα0 (z) =
α+ 1

2
(zα + (1− z)α) for α > −1. (15)

The parameter γ = 1 + α > 0 suits for (11) and so (7) is fulfilled. Uniform repartition (κ(x, y) =
1
y1l0≤x≤y) corresponds to α = 0 and is also included.

This last case of uniform repartition is useful because it provides us with explicit formulas for the
eigenelements. For instance, we can consider the two following examples.

First example : τ(x) = τ0, β(x) = β0x.
In this case, widely used by [19], the eigenelements exist and we have

λ =
√
β0τ0,

U(x) = 2

√
β0

τ0

(
X +

X2

2

)
e−X−

X2

2 , with X =

√
β0

τ0
x,

φ(x) =
1

2
(1 +X).

Second example : τ(x) = τ0x.
For such β for which there exists eigenelements, we have

λ = τ0 and φ(x) =
x∫
yU(y)

.

For instance when β(x) = β0x
n with n ∈ N∗, then the eigenelements exist and we can compute U and

φ and we have the formulas in Table 1. In this table we can notice that U(0) > 0 but the boundary
condition τU(0) = 0 is fulfilled.

n = 1 λ = τ0 U(x) = β0

τ0
e
−β0
τ0
x

φ(x) = β0

τ0
x

n = 2 λ = τ0 U(x) =
√

2β0

πτ0
e
− 1

2
β0
τ0
x2

φ(x) =
√

πβ0

2τ0
x

n λ = τ0 U(x) =
(
nβ0

τ0

) 1
n n

Γ( 1
n

)
e
− 1
n
β0
τ0
xn

φ(x) =
(
τ0
nβ0

) 1
n Γ( 1

n
)

Γ( 2
n

)
x

Table 1: The example τ(x) = τ0x, β(x) = β0x
n and uniform repartition κ(x, y) = 1

y1l0≤x≤y. The table
gives the eigenelements solution to (3).

Now we turn to non-existence cases. Let us consider constant fragmentation β(x) = β0 with an
affine polymerization τ(x) = τ0 + τ1x, and any fragmentation kernel κ which satisfies to assumptions
(5)-(6). We notice that (13) is not satisfied and look at two instructive cases.

5



First case : τ0 = 0.
In this case assumption (12) does not hold true. Assume that there exists U ∈ L1(R+) solution of
(3) with the estimates of Theorem 1. Integrating the equation on U we obtain that λ = β0, but
multiplying the equation by x before integration we have that λ = τ1. We conclude that eigenelements
cannot exist if τ1 6= β0.
Moreover, if we take κ(x, y) = 1

y1l0≤x≤y, then a formal computation shows that any solution to the

first equation of (3) belongs to the plan V ect{x−1, x
− 2β0

τ1 }. So, even if β0 = τ1, there does not exist an
eigenvector in L1.

Second case : τ0 > 0.
In this case (12) holds true but the same integrations than before lead to

∫
xU(x) dx =

τ0

β0 − τ1
.

So there cannot exist any eigenvector U ∈ L1(x dx) for τ1 ≥ β0.

3 Proof of the main theorem

3.1 A preliminary lemma

Before proving Theorem 1, we give a preliminary lemma, useful to prove uniqueness of the eigenfunc-
tions.

Lemma 1 (Positivity) Consider U and φ solutions to the eigenproblem (3).
We define m := inf

x,y

{
x : (x, y) ∈ Supp β(y)κ(x, y)

}
. Then we have, under assumptions (5), (6), (9)

and (10)
SuppU = [m,∞) and τU(x) > 0 ∀x > m,

φ(x) > 0 ∀x > 0.

If additionaly 1
τ ∈ L1

0, then φ(0) > 0.

Remark 2 In case Supp κ = {(x, y)/x ≤ y}, then m = 0 and Lemma 1 and Theorem 1 can be proved
without the connexity condition (10) on the support of β.

Proof. Let x0 > 0, we define F : x 7→ τ(x)U(x)e
R x
x0

λ+β(s)
τ(s)

ds
. We have that

F ′(x) = 2e
R x
x0

λ+β(s)
τ(s)

ds
∫
β(y)κ(x, y)U(y) dy ≥ 0. (16)

So, as soon as τU(x) once becomes positive, it remains positive for larger x.

We define a := inf{x : τ(x)U(x) > 0}. We first prove that a ≤ b
2 . For this we integrate the equation

on [0, a] to obtain ∫ a

0

∫ ∞

a
β(y)κ(x, y)U(y) dydx = 0,
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∫ ∞

a
β(y)U(y)

∫ a

0
κ(x, y) dxdy = 0.

Thus for almost every y ≥ max(a, b),
∫ a

0 κ(x, y) dx = 0. As a consequence we have

1 =

∫
κ(x, y) dx =

∫ y

a
κ(x, y) dx ≤ 1

a

∫
xκ(x, y) dx =

y

2a

thanks to (5) and (6), and this is possible only if b ≥ 2a.

Assume by contradiction that m < a, integrating (3) multiplied by ϕ, we have for all ϕ ∈ C∞c such
that Suppϕ ⊂ [0, a] ∫ ∫

ϕ(x)β(y)κ(x, y)U(y) dydx = 0. (17)

By definition of m and using the fact that m < a, there exists (p, q) ∈ (m, a)×(b,∞) such that (p, q) ∈
Supp β(y)κ(x, y). But we can choose ϕ positive such that ϕ(p)U(q) > 0 and this is a contradiction
with (17). So we have m ≥ a.
To conclude we notice that on [0,m], U satisfies

∂x(τ(x)U(x)) + λU(x) = 0.

So, thanks to the condition τ(0)U(0) = 0 and the assumption (9), we have U ≡ 0 on [0,m], so m = a
and the first statement is proved.

For φ, we define G(x) := φ(x)e
−
R x
x0

λ+β(s)
τ(s)

ds
. We have that

G′(x) = −2e
−
R x
x0

λ+β(s)
τ(s)

ds
β(x)

∫ x

0
κ(y, x)φ(y) dy ≤ 0, (18)

so, as soon as φ vanishes, it remains null. Therefore φ is positive on an interval (0, x1) with x1 ∈
R∗+ ∪ {+∞}. Assuming that x1 < +∞ and using that x1 > a = m because

∫
φ(x)U(x)dx = 1, we can

find X ≥ x1 such that

∫ X

x1

G′(x) dx = −2

∫ X

x1

∫ x1

0
e
R x
x0

λ+β(s)
τ(s)

ds
φ(y)β(x)κ(y, x) dy dx < 0.

This contradicts that φ(x) = 0 for x ≥ x1, and we have proved that φ(x) > 0 for x > 0.
If 1

τ ∈ L1
0, we can take x0 = 0 in the definition of G and so φ(0) > 0 or φ ≡ 0. The fact that φ is

positive ends the proof of the lemma.

3.2 Truncated problem

The proof of the theorem is based on uniform estimates on the solution to a truncated equation. Let
η, δ, R positive numbers and define

τη(x) =

{
η 0 ≤ x ≤ η
τ(x) x ≥ η.

7



Then τη is lower bounded on [0, R] thanks to (9) and we denote by µ = µ(η,R) := inf [0,R] τη. The

existence of eigenelements (λδη,Uδη , φδη) for the following truncated problem when δR < µ is standard
(see Theorem 3 in the Appendix).





∂

∂x
(τη(x)Uδη (x)) + (β(x) + λδη)Uδη (x) = 2

∫ R

x
β(y)κ(x, y)Uδη (y) dy, 0 < x < R,

τηUδη (x = 0) = δ, Uδη (x) > 0,
∫
Uδη (x)dx = 1,

−τη(x)
∂

∂x
φδη(x) + (β(x) + λδη)φ

δ
η(x)− 2β(x)

∫ x

0
κ(y, x)φδη(y) dy = δφδη(0), 0 < x < R,

φδη(R) = 0, φδη(x) > 0,
∫
φδη(x)Uδη (x)dx = 1.

(19)

The proof of the theorem 1 requires λδη > 0. To enforce it, we take δR = µ
2 and we consider R large

enough to satisfy the following lemma.

Lemma 2 Under assumptions (5), (8) and (13), there exists a R0 > 0 such that for all R > R0, if
we choose δ = µ

2R , then we have λδη > 0.

Proof. Assume by contradiction that R > 0 and λδη ≤ 0 with δ = µ
2R . Then, integrating between 0

and x > 0, we obtain

0 ≥ λ

∫ x

0
U(y) dy

= δ − τ(x)U(x)−
∫ x

0
β(y)U(y) dy + 2

∫ x

0

∫ R

z
β(y)κ(z, y)U(y) dy dz

= δ − τ(x)U(x) +

∫ x

0
β(y)U(y) dy + 2

∫ R

x

(∫ x

0
κ(z, y) dz

)
β(y)U(y) dy

≥ δ − τ(x)U(x) +

∫ x

0
β(y)U(y) dy.

Consequently

τ(x)U(x) ≥ δ +

∫ x

0

β(y)

τ(y)
τ(y)U(y) dy

and, thanks to Grönwall’s lemma,

τ(x)U(x) ≥ δe
R x
0
β(y)
τ(y)

dy
.

But assumption (13) ensures that for all n ≥ 0, there is a A > 0 such that

β(x)

τ(x)
≥ n

x
, ∀x ≥ A

and thus we have

τ(x)U(x) ≥ δxn, ∀x ≥ A.

8



Thanks to (8) we can choose n and A such that x−nτ(x) ≤ µ
4 for x ≥ A and then we have

1 =

∫ R

0
U(x) dx ≥

∫ R

A
U(x) dx ≥ δ

∫ R

A

xn

τ(x)
dx ≥ 2

R
(R−A)

what is a contradiction as soon as R > 2A; so Lemma 2 holds for R0 = 2A.

3.3 Limit as δ → 0 for U δη and λδη

Fix η and let δ → 0 (then R→∞ since δR = µ
2 ).

First estimate: λδη upper bound. Integrating equation (19) between 0 and R, we find

λδη ≤ δ +

∫
β(x)Uδη (x) dx,

then the idea is to prove a uniform estimate on
∫
βUδη . For this we begin with bounding the higher

moments
∫
xαβUδη for α ≥ 2.

Let α ≥ 2, according to (7) we have

∫
xα

yα
κ(x, y) dx ≤

∫
x2

y2
κ(x, y) dx ≤ c < 1

2
.

Multiplying the equation on Uδη by xα and then integrating on [0, R], we obtain for all A ≥ η
∫
xα

(
(1− 2c)β(x)

)
Uδη (x) dx ≤ α

∫
xα−1τη(x)Uδη (x) dx

= α

∫

x≤A
xα−1τη(x)Uδη (x) dx+ α

∫

x≥A
xα−1τ(x)Uδη (x) dx

≤ αAα−1 sup
(0,A)

τ + ωA,α

∫
xαβ(x)Uδη (x) dx,

where ωA,α is a positive number chosen to have ατ(x) ≤ ωA,αxβ(x), ∀x ≥ A. Thanks to (7) and (13),
we can choose Aα large enough to have ωAα,α < 1− 2c. Thus we find

∀α ≥ 2, ∃Aα : ∀η, δ > 0,

∫
xαβ(x)Uδη (x) dx ≤

αAα
α−1 sup(0,A) τ

1− 2c− ωAα,α
:= Bα. (20)

The next step is to prove the same estimates for 0 ≤ α < 2 and for this we first give a bound on
τηUδη . We fix ρ ∈ (0, 1/2) and define xη > 0 as the unique point such that

∫ xη
0

β(y)
τη(y)dy = ρ. It exists

because β is nonnegative and locally integrable, and τη is positive. Thanks to assumption (12), we

know that xη −→
η→0

x0 where x0 > 0 satisfies
∫ x0

0
β(y)
τ(y)dy = ρ, so xη is bounded by 0 < x ≤ xη ≤ x.

9



Then, integrating (19) between 0 and x ≤ xη, we find

τη(x)Uδη (x) ≤ δ + 2

∫ x

0

∫
β(y)Uδη (y)κ(z, y) dy dz

≤ δ + 2

∫
β(y)Uδη (y) dy

= δ + 2

∫ xη

0
β(y)Uδη (y) dy + 2

∫ ∞

xη

β(y)Uδη (y) dy

≤ δ + 2 sup
(0,xη)

{τηUδη}
∫ xη

0

β(y)

τη(y)
dy +

2

x2
η

∫ ∞

0
y2β(y)Uδη (y) dy

≤ δ + 2ρ sup
(0,xη)

{τηUδη}+
2

x2
η

B2.

Consequently, if we consider δ ≤ 1 for instance, we obtain

sup
x∈(0,x)

τη(x)Uδη (x) ≤ 1 + 2B2/x
2

1− 2ρ
:= C (21)

so τηUδη is uniformly bounded in a neighborhood of zero.

Now we can prove a bound Bα for xαβUδη in the case 0 ≤ α < 2. Thanks to the estimates (20) and
(21) we have

∫
xαβ(x)Uδη (x) dx =

∫ x

0
xαβ(x)Uδη (x) dx+

∫ R

x
xαβ(x)Uδη (x) dx

≤ xα sup
(0,x)
{τηUδη}

∫ x

0

β(y)

τη(y)
dy + xα−2

∫ R

x
x2β(x)Uδη (x) dx

≤ Cρxα +B2x
α−2 := Bα. (22)

Combining (20) and (22) we obtain

∀α ≥ 0, ∃Bα : ∀η, δ > 0,

∫
xαβ(x)Uδη (x) dx ≤ Bα, (23)

and finally we bound λδη

λδη = δ +

∫
βUδη ≤ δ +B0. (24)

So the family {λδη}δ belong to a compact interval and we can extract a converging subsequence

λδη −→
δ→0

λη.

Second estimate : W 1,1bound for xατηUδη , α ≥ 0. We use the estimate (23). First we give a L∞bound

for τηUδη by integrating (19) between 0 and x

τη(x)Uδη (x) ≤ δ + 2

∫ R

0
β(y)Uδη (y) dy ≤ δ + 2B0 := D0. (25)
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Then we bound xατηUδη in L1 for α > −1. Assumption (13) ensures that there exists X > 0 such that
τ(x) ≤ xβ(x), ∀x ≥ X, so we have for R > X

∫
xατη(x)Uδη (x) dx ≤ sup

(0,X)
{τηUδη}

∫ X

0
xα dx+

∫ R

X
xα+1β(x)Uδη (x) dx

≤ sup
(0,X)
{τηUδη}

Xα+1

α+ 1
+Bα+1 := Cα.

Finally

∀α > −1, ∃Cα : ∀η, δ > 0,

∫
xατη(x)Uδη (x) dx ≤ Cα (26)

and we also have that xαUδη is bounded in L1 because τ ∈ P (see assumption (8)).

A consequence of (23) and (26) is that xατηUδη is bound in L∞ for all α ≥ 0. We already have (25)
and for α > 0, we multiply (19) by xα, integrate on [0, x] and obtain

xατη(x)Uδη (x) ≤ α
∫ R

0
yα−1τη(y)Uδη (y) dy + 2

∫ R

0
yαβ(y)Uδη (y) dy ≤ αCα + 2Bα := Dα,

that give immediately

∀α ≥ 0, ∃Dα : ∀η, δ > 0, sup
x>0

xατη(x)Uδη (x) ≤ Dα. (27)

To conclude we use the fact that neither the parameters nor Uδη are negative and we find by the chain
rule, for α ≥ 0

∫ ∣∣ ∂
∂x

(xατη(x)Uδη (x))
∣∣dx ≤ α

∫
xα−1τη(x)Uδη (x) dx+

∫
xα

∣∣∂x(τη(x)Uδη (x))
∣∣ dx

≤ α
∫
xα−1τη(x)Uδη (x) dx+ λδη

∫
xαUδη (x) dx+ 3

∫
xαβ(x)Uδη (x) dx (28)

and all the terms in the right hand side are uniformly bounded thanks to the previous estimates.

Since we have proved that the family {xατηUδη}δ is bounded in W 1,1(R+) for all α ≥ 0, then, because

τη is positive and belongs to P, we can extract from {Uδη}δ a subsequence which converges in L1(R+)
when δ → 0. Passing to the limit in equation (19) we find that





∂

∂x
(τη(x)Uη(x)) + (β(x) + λη)Uη(x) = 2

∫ ∞

x
β(y)κ(x, y)Uη(y) dy,

Uη(0) = 0, Uη(x) ≥ 0,
∫
Uη = 1,

(29)

with λη ≥ 0.

3.4 Limit as η → 0 for Uη and λη

All the estimates (20)-(28) remain true for δ = 0. So we still know that the family {xατηUη}η belongs
to a compact set of L1, but not necessarily {Uη}η because in the limit τ can vanish at zero. We need
one more estimate to study the limit η → 0.

11



Third estimate: L∞bound for xατηUη, α ≥ −γ. We already know that xατηUη is bounded for α ≥ 0.
So, to prove the bound, it only remains to prove that x−γτηUη is bounded in a neighborhood of zero.
Let define fη : x 7→ sup(0,x) τηUη. If we integrate (29) between 0 and x′ < x, we find

τη(x
′)Uη(x′) ≤ 2

∫ x′

0

∫
β(y)Uη(y)κ(z, y) dy dz ≤ 2

∫ x

0

∫
β(y)Uη(y)κ(z, y) dy dz

and so for all x

fη(x) ≤ 2

∫ x

0

∫
β(y)Uη(y)κ(z, y) dy dz.

We consider xη and x defined in the first estimate and, using (11) and (12), we have for all x < xη

fη(x) ≤ 2

∫ x

0

∫
β(y)Uη(y)κ(z, y) dy dz

= 2

∫
β(y)Uη(y)

∫ x

0
κ(z, y) dz dy

≤ 2

∫ ∞

0
β(y)Uη(y) min

(
1, C

(x
y

)γ)
dy

= 2

∫ x

0
β(y)Uη(y) dy + 2C

∫ xη

x
β(y)Uη(y)

(x
y

)γ
dy + 2C

∫ ∞

xη

β(y)Uη(y)
(x
y

)γ
dy

= 2

∫ x

0

β(y)

τη(y)
τη(y)Uη(y) dy + 2Cxγ

∫ xη

x

β(y)

τη(y)

τη(y)Uη(y)

yγ
dy + 2C

∫ ∞

xη

β(y)Uη(y)
(x
y

)γ
dy

≤ 2fη(x)

∫ xη

0

β(y)

τη(y)
dy + 2Cxγ

∫ xη

x

β(y)

τη(y)

fη(y)

yγ
dy + 2C‖βUη‖L1xγ .

We set Vη(x) = x−γfη(x) and we obtain

(1− 2ρ)Vη(x) ≤ K + 2C

∫ xη

x

β(y)

τη(y)
Vα(y) dy.

Hence, using Grönwall’s lemma, we find that Vη(x) ≤ Ke
2Cρ
1−2ρ

1− 2ρ
and consequently

x−γτη(x)Uη(x) ≤ Ke
2Cρ
1−2ρ

1− 2ρ
:= C̃, ∀x ∈ [0, x]. (30)

This last estimate allows us to bound Uη by xγ

τ which is in L1
0 by the assumption (11). Thanks to

the second estimate, we also have that
∫
xαUη is bounded in L1 and so, thanks to the Dunford-Pettis

theorem (see [8] for instance), {Uη}η belong to a L1-weak compact set. Thus we can extract a subse-
quence which converges L1−weak toward U . But for all ε > 0, {xαUη}η is bounded in W 1,1([ε,∞))
for all α ≥ 1 thanks to (28) and so the convergence is strong on [ε,∞). Then we write

∫
|Uη − U| =

∫ ε

0
|Uη − U|+

∫ ∞

ε
|Uη − U|

≤ 2C̃

∫ ε

0

xγ

τ(x)
+

∫ ∞

ε
|Uη − U|.
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The first term on the right hand side is small for ε small because xγ

τ ∈ L1
0 and then the second term

is small for η small because of the strong convergence. Finally Uη −→
η→0
U strongly in L1(R+) and U

solution of the eigenproblem (3).

3.5 Limit as δ, η → 0 for φδη

We prove uniform estimates on φδη which are enough to pass to the limit and prove the result.

Fourth estimate : uniform φδη-bound on [0, A]. Let A > 0, our first goal is to prove the existence of
a constant C0(A) such that

∀η, δ, sup
(0,A)

φδη ≤ C0(A).

We divide the equation on φδη by τη and we integrate between x and xη with 0 < x < xη, where xη,

bounded by x and x, is defined in the first estimate. Considering δ < µ(1−2ρ)
x (fulfilled for R > x

2(1−2ρ)

since δ = µ
2R), we find

φδη(x) ≤ φδη(xη) + 2

∫ xη

x

β(y)

τη(y)

∫ y

0
κ(z, y)φδη(z) dz + xη

δ

µ
φδη(0)

≤ φδη(xη) + sup
(0,xη)

{φδη}
(

2

∫ xη

0

β(y)

τη(y)

∫ y

0
κ(z, y) dz + xη

δ

µ

)

and we obtain

sup
x∈(0,x)

φδη(x) ≤ 1

1− 2ρ− δx/µφ
δ
η(xη).

Using the decay of φδη(x)e
−
R x
x

β+λδη
τη , there exists C(A) such that

sup
x∈(0,A)

φδη(x) ≤ C(A)φδη(xη).

Noticing that
∫
φδη(x)Uδη (x)dx = 1, we conclude

1 ≥
∫ xη

0
φδη(x)Uδη (x)dx ≥ φδη(xη)

∫ xη

0
e
−
R xη
x

β+λδη
τη Uδη (x) dx,

so, as xη → x0 and
∫ x0

0 U(x)dx > 0 (thanks to Lemma 1 and because x0 > b ≥ a), we have

sup
(0,A)

φδη ≤ C0(A). (31)
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Fifth estimate : uniform φδη-bound on [A,∞). Following an idea introduced in [29] we notice that the

equation in (19) satisfied by φδη is a transport equation and therefore satisfies the maximum principle

(see Lemma 4 in the Appendix). Therefore it remains to build a supersolution φ that is positive at
x = R, to conclude φδη(x) ≤ φ(x) on [0, R].

This we cannot do on [0, R], but on a subinterval [A0, R] only. So we begin with an auxiliary function
ϕ(x) = xk + θ with k and θ positive numbers to be determined. We have to check that on [A0, R]

−τ(x)
∂

∂x
ϕ(x) + (λδη + β(x))ϕ(x) ≥ 2β(x)

∫
κ(y, x)ϕ(y) dy + δφδη(0),

i.e.

−kτ(x)xk−1 + (λδη + β(x))ϕ(x) ≥
(

2θ + 2

∫
κ(y, x)yk dy

)
β(x) + δφδη(0).

For k ≥ 2, we know that
∫
κ(y, x) y

k

xk
dy ≤ c < 1/2 so it is sufficient to prove that there exists A0 > 0

such that we have

−kτ(x)xk−1 + (λδη + β(x))(xk + θ) ≥ (2θ + 2cxk)β(x) + δC0(1) (32)

for all x > A0, where C0 is defined in (31). For this, dividing (32) by xk−1τ(x), we say that if we have

(1− 2c)
xβ(x)

τ(x)
≥ k +

2θβ(x) + δC0(1)

xk−1τ(x)
, (33)

then (32) holds true. Thanks to assumptions (8) and (13) we know that there exists k > 0 such that
for any θ > 0, there exists A0 > 0 for which (33) is true on [A0,+∞).

Then we conclude by choosing the supersolution φ(x) = C0(A0)
θ ϕ(x) so that

φ(x) ≥ φδη(x) on [0, A0],

and on [A0, R], we have



−τ(x) ∂

∂xφ(x) + (λδη + β(x))φ(x) ≥ 2β(x)
∫ x

0 κ(y, x)φ(y) dy + δφδη(0),

φ(R) > 0,

(34)

which is a supersolution to the equation satisfied by φδη. Therefore φδη ≤ φ uniformly in η and δ and
we get

∃k, θ, C s.t. ∀η, δ, φδη(x) ≤ (Cxk + θ). (35)

Equation (19) and the fact that φδη is uniformly bounded in L∞loc(R+) give immediately that ∂xφ
δ
η is

uniformly bounded in L∞loc(R+, τ(x)dx), so in L∞loc(0,∞) thanks to (9).

Then we can extract a subsequence of {φδη} which converges C0(0,∞) toward φ. Now we check that
φ satisfied the adjoint equation of (3). We consider the terms of (19) one after another.
First (λδη + β(x))φδη(x) converges to (λ+ β(x))φ(x) in L∞loc.
For ∂xφ

δ
η, we have an L∞ bound on each compact of (0,∞). So it converges L∞−∗weak toward ∂xφ.

It remains the last term which we write, for all x > 0,
∫ x

0
κ(y, x)(φδη(y)− φ(y)) dy ≤ ‖φδη − φ‖L∞(0,x) −→

η,δ→0
0.

14



The fact that
∫
φU = 1 comes from the convergence L∞ − L1 when written as

1 =

∫
φδη(x)Uδη (x) dx =

∫
φδη(x)

1 + xk
(1 + xk)Uδη (x) dx −→

∫
φ(x)

1 + xk
(1 + xk)U(x) dx =

∫
φU .

At this stage we have found (λ,U , φ) ∈ R+ × L1(R+) × C(R+) solution of (3). The estimates
announced in Theorem 1 also follow from those uniform estimates. It remains to prove that λ > 0
and the uniqueness.

3.6 Proof of λ > 0

We prove a little bit more, namely that

λ ≥ 1

2
sup
x≥0
{τ(x)U(x)}. (36)

We integrate the first equation of (3) between 0 and x and find

0 ≤ λ
∫ x

0
U(y) dy = −τ(x)U(x)−

∫ x

0
β(y)U(y) dy + 2

∫ x

0

∫ ∞

z
β(y)κ(z, y)U(y) dy dz

≤ −τ(x)U(x) + 2

∫ ∞

0

∫ ∞

z
β(y)κ(z, y)U(y) dy dz

= −τ(x)U(x) + 2

∫ ∞

0
β(y)U(y) dy

= −τ(x)U(x) + 2λ,

Hence 2λ ≥ τ(x)U(x) and (36) is proved.

3.7 Uniqueness

We follow the idea of [23]. Let (λ1,U1, φ1) and (λ2,U2, φ2) two solutions to the eigenproblem (3). First
we have

λ1

∫
U1(x)φ2(x) dx =

∫ (
−∂x(τ(x)U1(x))− β(x)U1(x) + 2

∫ ∞

x
β(y)κ(x, y)U1(y) dy

)
φ2(x) dx

=

∫ (
τ(x)∂xφ2(x)− β(x)φ2(x) + 2β(x)

∫ x

0
κ(y, x)φ2(y) dy

)
U1(x) dx

= λ2

∫
U1(x)φ2(x) dx

and then λ1 = λ2 = λ because
∫
U1φ2 > 0 thanks to Lemma 1.

For the eigenvectors we use the General Relative Entropy method introduced in [25, 26]. For C > 0,
we test the equation on U1 against sgn

(U1
U2
− C

)
φ1,

0 =

∫ [
∂x(τ(x)U1(x)) + (λ+ β(x))U1(x)− 2

∫ ∞

x
β(y)κ(x, y)U1(y) dy

]
sgn

(U1

U2
(x)− C

)
φ1(x) dx.
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Deriving
∣∣∣U1
U2

(x)− C
∣∣∣τ(x)U2(x)φ1(x) we find

∫
∂x(τ(x)U1(x))sgn

(U1

U2
(x)− C

)
φ1(x) dx =

∫
∂x

(∣∣∣U1

U2
(x)− C

∣∣∣τ(x)U2(x)φ1(x)
)
dx

+

∫
∂x(τ(x)U2(x))

U1

U2
(x)sgn

(U1

U2
(x)− C

)
φ1(x) dx−

∫ ∣∣∣U1

U2
(x)− C

∣∣∣∂x(τ(x)U2(x)φ1(x)) dx

and then

∫
∂x(τ(x)U1(x))sgn

(U1

U2
(x)− C

)
φ1(x) dx =

2

∫ ∣∣∣U1

U2
(x)− C

∣∣∣
[∫ x

0
β(x)κ(y, x)U2(x)φ1(y) dy −

∫ ∞

x
β(y)κ(x, y)U2(y)φ1(x) dy

]
dx

+2

∫ ∫ ∞

x
β(y)κ(x, y)U2(y) dy

U1

U2
(x)sgn

(U1

U2
(x)− C

)
φ1(x) dx

−
∫

(λ+ β(x))
U1

U2
(x)sgn

(U1

U2
(x)− C

)
U2(x)φ1(x) dx,

∫
∂x(τ(x)U1(x))sgn

(U1

U2
(x)− C

)
φ1(x) dx =

2

∫ ∫
β(y)κ(x, y)

[∣∣∣U1

U2
(y)− C

∣∣∣−
∣∣∣U1

U2
(x)− C

∣∣∣
]
U2(y)φ1(x) dxdy

+2

∫ ∫ ∞

x
β(y)κ(x, y)U2(y) dy

U1

U2
(x)sgn

(U1

U2
(x)− C

)
φ1(x) dx

−
∫

(λ+ β(x))
U1

U2
(x)sgn

(U1

U2
(x)− C

)
U2(x)φ1(x) dx.

So

0 = 2

∫ ∫
β(y)κ(x, y)

[∣∣∣U1

U2
(y)− C

∣∣∣−
∣∣∣U1

U2
(x)− C

∣∣∣
]
U2(y)φ1(x) dxdy

+2

∫ ∫ ∞

x
β(y)κ(x, y)U2(y) dy

U1

U2
(x)sgn

(U1

U2
(x)− C

)
φ1(x) dx

−2

∫ ∫ ∞

x
β(y)κ(x, y)U1(y) dy sgn

(U1

U2
(x)− C

)
φ1(x) dx

0 =

∫ ∫
β(y)κ(x, y)U2(y)

∣∣∣U1

U2
(y)− C

∣∣∣
[
1− sgn

(U1

U2
(x)− C

)
sgn

(U1

U2
(y)− C

)]
φ1(x) dxdy.
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Hence
[
1−sgn

(
U1
U2

(x)−C
)

sgn
(
U1
U2

(y)−C
)]

= 0 on the support of κ(x, y) for all C thus U1
U2

(x) = U1
U2

(y)

on the support of κ(x, y) and

∂x
U1

U2
(x) =

∫
β(y)κ(x, y)

(U1

U2
(y)− U1

U2
(x)

)U2(y)

U2(x)
dy = 0 (37)

so
U1

U2
≡ cst = 1.

We can prove in the same way that φ1 = φ2 even if we can have U ≡ 0 on [0,m] with m > 0. Indeed
in this case we know that β ≡ 0 on [0,m] and so

φi(x) = φi(0)e
R x
0

λ
τ(s)

ds ∀x ∈ [0,m], i ∈ {1, 2}.

4 Consequences, Perspectives

Existence of eigenelements is the basic stone for asymptotic studies when t → ∞. The so-called
”General Relative Entropy“ method, introduced in [28, 25] and widely used (see [10, 9, 5] for instance)
takes advantage of the eigenvalue problem and its adjoint to build entropy functionals. We recall for
instance the following theorem (see [25, 26, 29]) for the linear case of Equation (1).

Theorem 2 Let u0 a function defined on R+ satisfying

∃C0 > 0, s.t. ∀x ≥ 0 |u0(x)| ≤ C0U(x).

Then there exists a unique solution u(x, t) to the equation (1) and we have for all t > 0 the a priori
bounds

|u(x, t)|e−λt ≤ C0U(x),
∫
u(y, t)e−λtφ(y)dy =

∫
u0(y)φ(y)dy := 〈u0, φ〉,

and the asymptotic behaviour
∫ ∞

0

∣∣u(y, t)e−λt − 〈u0, φ〉U(y)
∣∣φ(y) dy −→

t→∞
0.

The eigenvalue problem can also be used in nonlinear cases, such as prion proliferation equations,
where there is a quadratic coupling of Equation (1) with a differential equation. In [10, 9] for instance,
the stability of steady states is investigated. The use of entropy methods in the case of nonlinear
problems remains however a challenging and widely open field (see [30] for a recent review).

A following work is to study the dependency of the eigenvalue λ on parameters τ and β (see [24]).
For instance, our assumptions allow τ to vanish at zero, what is a necessary condition to ensure that
λ tends to zero when the fragmentation tends to infinity. Such results give precious information on
the qualitative behaviour of the solution.
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Another possible extension of the present work is to prove existence of eigenelements in the case of
time-periodic parameters, using the Floquet’s theory, and then compare the new λF with the time-
independent one λ (see [11]). Such studies can help to choose a right strategy in order to optimize,
for instance, the total mass

∫
xu(t, x)dx in the case of prion proliferation (see [10]) or on the contrary

minimize the total population
∫
u(t, x)dx in the case of cancer therapy (see [12, 11]).

Finally, this eigenvalue problem could be used to recover some of the equation parameters like τ and
β from the knowledge of the asymptotic profile of the solution, as introduced in [31, 15] in the case of
symmetric division (τ = 1 and κ = δx= y

2
), by the use of inverse problems techniques. The method of

[31] has to be adapted to our general case, in order to model prion proliferation for instance, or yet
to recover the aggregation rate τ ; this is another direction of future research.
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Appendix

A Assumption on κ.

Lemma 3 Assumptions (5),(6) and (11) with γ > 0 imply that

inf
y

lim
η→0

∫ (1−η)y

ηy
κ(x, y) dx > 0,

which means that polymers undergo a decrease in the size during fragmentation process. As a conse-
quence, assumption (7) holds true.

Proof. With the first assumption (5) we have

1 =

∫ y

0
κ(x, y) dx =

∫ ηy

0
κ(x, y) dx+

∫ (1−η)y

ηy
κ(x, y) dx+

∫ y

(1−η)y
κ(x, y) dx.

The two other assumptions (6) and (11) allow to control the mass of κ at the ends :

∫ (1−η)y

ηy
κ(x, y) dx = 1−

∫ ηy

0
κ(x, y) dx−

∫ y

(1−η)y
κ(x, y) dx

≥ 1− Cηγ − 1

1− η

∫ y

(1−η)y

x

y
κ(x, y) dx

≥ 1− Cηγ − 1

2(1− η)
−→
η→0

1

2
,

which gives the first assertion of the lemma.
Now we can prove (7) :

∫ y

0

x2

y2
κ(x, y) dx ≤

[ ∫ ηy

0

x

y
κ(x, y) dx+

∫ y

(1−η)y

x

y
κ(x, y) dx

]
+

∫ (1−η)y

ηy

x2

y2
κ(x, y) dx

≤
[1

2
−
∫ (1−η)y

ηy

x

y
κ(x, y) dx

]
+(1− η)

∫ (1−η)y

ηy

x

y
κ(x, y) dx

=
1

2
− η

∫ (1−η)y

ηy

x

y
κ(x, y) dx

≤ 1

2
− η2

∫ (1−η)y

ηy
κ(x, y) dx.

We use the first part of the proof to conclude. Taking η = min
(

1
4 ,

1
(4C)1/γ

)
for instance, we obtain

∫ (1−η)y

ηy
κ(x, y) dx ≥ 1

3
,

and the lemma is proved for c = 1
2 − 1

48 .
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B Krein-Rutman

We prove existence of solution for the truncated equation (19). In this part η and δ are fixed (with
δR < µ), so we will omit these indices for τ, λ, U and φ but we keep in mind that τ(x) ≥ µ > 0.
We use the Krein-Rutman theorem which requires working in the space of continuous functions (see
[28] for instance). First we define regularized parameters as follows :

τε = ρε ∗ τ, βε = ρε ∗ β, and ∀y ≥ 0, κε(., y) = ρε ∗ κ(., y),

where ρε(x) = 1
ερ(xε ) with ρ ∈ C∞c ((0,∞)), positive and such that

∫∞
0 ρ = 1. Then we have the theorem

Theorem 3 Under assumptions (5)-(13) on the parameters and for all ε > 0, there is a unique
solution λε ∈ R and Uε, φε ∈ C1([0, R]) to the regularized eigenproblem





∂

∂x
(τε(x)Uε(x)) + (βε(x) + λε)Uε(x) = 2

∫ R

0
βε(y)κε(x, y)Uε(y) dy, 0 < x < R,

τεUε(x = 0) = δ
∫ R

0 Uε(y) dy, Uε(x) > 0,
∫ R

0 Uε(x)dx = 1,

−τε(x)
∂

∂x
φε(x) + (βε(x) + λε)φε(x)− 2βε(x)

∫ R

0
κε(y, x)φε(y) dy = τε(0)δφε(0), 0 < x < R,

φε(R) = 0, φε(x) > 0,
∫ R

0 φε(x)Uε(x)dx = 1.
(38)

Proof. We follow the proof of [28]. We define linear operators on E := C0([0, R]) to apply the
Krein-Rutman theorem.

Direct equation. For ν > 0 we consider the following equation on E




∂

∂x
(n(x)) +

ν + βε(x)

τε(x)
n(x)− 2

∫ R

0

βε(y)

τε(y)
κε(x, y)n(y) dy =

f(x)

τε(x)
, 0 ≤ x ≤ R,

n(x = 0) = δ
∫ R

0
n(y)
τε(y)dy,

(39)

and we prove that the linear operator A : f 7→ n (solution of (39)) satisfies to the assumptions of the
Krein-Rutman theorem.

First step: construction of A. Fix f ∈ E and for m ∈ E, we define n = T (m) ∈ E as the (explicit)
solution to





∂

∂x
(n(x)) +

ν + βε(x)

τε(x)
n(x) = 2

∫ R

0

βε(y)

τε(y)
κε(x, y)m(y) dy +

f(x)

τε(x)
, 0 ≤ x ≤ R,

n(x = 0) = δ
∫ R

0
m(y)
τε(y)dy,

We prove that T is a strict contraction. Therefore it has a unique fixed point thanks to the Banach-
Picard theorem. This fixed point is a solution to (39).
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In order to prove that T is a strict contraction, we consider m1 and m2 two functions in E, we
compute for n = n1 − n2, m = m1 −m2,





∂

∂x
(n(x)) +

ν + βε(x)

τε(x)
n(x) = 2

∫ R

0

βε(y)

τε(y)
κε(x, y)m(y) dy, 0 ≤ x ≤ R,

n(x = 0) = δ
∫ R

0
m(y)
τε(y)dy,

therefore




∂

∂x
|n(x)|+ ν + βε(x)

τε(x)
|n(x)| ≤ 2

∫ R

0

βε(y)

τε(y)
κε(x, y)|m(y)| dy, 0 ≤ x ≤ R,

n(x = 0) ≤ δ
∫ R

0
|m(y)|
τε(y) dy.

After integration, we obtain

|n(x)|e
R x
0
µ+βε
τε ≤ δ

∫ R

0

|m(y)|
τε(y)

dy +

∫ x

0
e
R x′
0

ν+βε
τε

∫ R

0

βε(y)

τε(y)
κε(x

′, y)|m(y)| dydx′

and thus

|n(x)| ≤ δ

∫ R

0

|m(y)|
τε(y)

dy +

∫ x

0
e−
R x
x′

ν+βε
τε

∫ R

0

βε(y)

τε(y)
κε(x

′, y)|m(y)| dydx′

≤ ‖m‖E
1

µ

[
δR+

∫ x

0
e−
R x
x′

ν+βε
τε

∫ R

0
βε(y)κε(x

′, y) dydx′
]

≤ ‖m‖E
1

µ

[
δR+

∥∥∥
∫ R

0
βε(y)κε(., y)dy

∥∥∥
L∞

∫ x

0
e
− ν
‖τε‖L∞

(x−x′)
dx′

]

≤ ‖m‖E
1

µ

[
δR+ ν−1‖τε‖L∞

∥∥∥
∫ R

0
βε(y)κε(., y)dy

∥∥∥
L∞

]

︸ ︷︷ ︸
:=k

.

Because δR < µ by assumption, we can choose ν large so that k < 1 and we obtain

‖n‖E ≤ k‖m‖E .

Thus T is a strict contraction and we have proved the existence of a solution to (39).

Second step: A is continuous. This relies on a general argument which in fact shows that the linear
mapping A is Lipschitz continuous. Indeed, arguing as above

|n(x)|e
R x
0
ν+βε
τε ≤ δ

∫ R

0

|n(y)|
τε(y)

dy+

∫ x

0
e
R x′
0

ν+βε
τε

∫ R

0

βε(y)

τε(y)
κε(x

′, y)|n(y)| dydx′+
∫ x

0
e
R x′
0

ν+βε
τε
|f(x′)|
τε(x′)

dx′,

and thus

|n(x)| ≤ k‖n‖E +

∫ R

0

|f(x′)|
τε(x′)

dx′ ≤ k‖n‖E +
R

µ
‖f‖E .

This indeed proves that

‖n‖E ≤
R

µ(1− k)
‖f‖E .
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Third step: A is strongly positive. For f ≥ 0, the operator T of the first step maps m ≥ 0 to n ≥ 0.
Therefore the fixed point n is nonnegative. In other words n = A(f) ≥ 0. If additionally f does not

vanish, then n does not vanish either. Therefore n(0) = δ
∫ R

0
n(y)
τε(y)dy > 0 and thus

n(x) ≥ n(0) + e−
R x
0
ν+βε
τε

∫ x

0
e−
R x′
0

ν+βε
τε

f(x′)
τε(x′)

dx′ > 0.

Fourth step: A is compact. For ‖f‖E ≤ 1, the third step proves that n is bounded in E and thus

∂

∂x
n = −ν + βε

τε
n+

∫
βε(y)

τε(y)
κ(x, y)n(y)dy +

f

τε

is also bounded in E. Therefore by the Ascoli-Arzela theorem the family n is relatively compact in E.

Adjoint equation. A function φ is a solution to the adjoint equation of (38) if and only if φ̃(x) :=
φ(R− x) satisfies





τ̃ε(x)
∂

∂x
φ̃(x) + (β̃ε(x) + λε)φ̃(x)− 2β̃ε(x)

∫ R

0
κε(y,R− x)φ̃ε(y) dy = δφ̃ε(R), 0 < x < R,

φ̃ε(0) = 0,

(40)

where τ̃ε(x) = τε(R− x) and β̃ε(x) = βε(R− x). Then the same method than for the direct equation
give the result, namely the existence of λ and φ̃ solution to (40).

Finally we have proved existence of (λU ,Uε) and (λφ, φε) solution to the direct and adjoint equations
of (38). It remains to prove that λU = λφ but it is nothing but integrating the direct equation against
the ajoint eigenvector, what gives

λU

∫
Uεφε = λφ

∫
Uεφε.

To have existence of solution for (19), it remains to do ε→ 0. For this we can prove uniform bounds
in L∞ for Uε and φε because we are on the fixed compact [0, R]. Then we can extract subsequences
which converge L∞∗−weak toward U and φ, solutions to (19) because τε and βε converge in L1 toward
τ and β. Concerning κε, we have that for all ϕ ∈ C∞c ,

∫
ϕ(x)κε(x, y)dx −→

∫
ϕ(x)κ(x, y)dx ∀y, and

it is sufficient to pass to the limit in the equations.

C Maximum principle

Lemma 4 If there exists A0 > 0 such that φ ≥ φ on [0, A0] and φ a supersolution of (3) on [A0, R]
with φ(R) ≥ φ(R), then φ ≥ φ on [0, R].
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Proof. The proof is based on the same tools than to prove uniqueness (see above) or to establish
GRE principles (see [25, 26] for instance).
We know that φ ≥ φ on [0, A0] and that φ is a supersolution to the equation satisfied by φ on
[A0, R], i.e. there exists a function f ≥ δφ(0) such that

−τ(x)
∂

∂x
φ(x) + (λ+ β(x))φ(x) = 2β(x)

∫ x

0
κ(y, x)φ(y) dy + f(x), ∀x ∈ [A0, R].

So we have for all x ∈ [A0, R]

−τ(x)
∂

∂x
(φ(x)− φ(x)) + (λ+ β(x))(φ(x)− φ(x)) = 2β(x)

∫ x

0
κ(y, x)(φ(y)− φ(y)) dy − f(x).

Then, multiplying by 1lφ≥φ, we obtain (see [28] for a justification)

−τ(x)
∂

∂x
(φ− φ)+(x) + (λ+ β(x))(φ− φ)+(x) ≤ 2β(x)

∫ x

0
κ(y, x)(φ− φ)+(y) dy − f(x)1lφ≥φ(x),

and this inequality is satisfied on [0, R] since (φ− φ)+ ≡ 0 on [0, A0].
If we test against U we have, using the fact that φ(R) = 0 < φ(R),

∫ R

0
(φ− φ)+(x)

∂

∂x
(τ(x)U(x)) dx+

∫ R

0
(λ+ β(x))(φ− φ)+(x)U(x) dx

≤ 2

∫ R

0
(φ− φ)+(y)

∫ R

y
β(x)κ(y, x)U(x) dxdy −

∫ R

0
f(x)1lφ≥φ(x)U(x) dx.

But if we test the equation (3) satisfied by U against (φ− φ)+, we find

∫ R

0
(φ− φ)+(x)

∂

∂x
(τ(x)U(x)) dx+

∫ R

0
(λ+ β(x))(φ− φ)+(x)U(x) dx

= 2

∫ R

0
(φ− φ)+(y)

∫ R

y
β(x)κ(y, x)U(x) dxdy,

and finally, substracting,

0 ≤ −
∫ R

0
f(x)1lφ≥φ(x)U(x) dx,

so

δφ(0)

∫ R

0
1lφ≥φ(x)U(x) dx ≤ 0

and this can hold only if 1lφ≥φ ≡ 0 or φ(0) = 0. But we deal with the truncated problem with

τ(x) ≥ η > 0, so 1
τ ∈ L1

0 and φ(0) > 0 thanks to the lemma 1. Thus 1lφ≥φ ≡ 0 and the lemma 4 is
proved.
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cations. [Theory and applications].

[9] V. Calvez, N. Lenuzza, M. Doumic, J.-P. Deslys, F. Mouthon, and B. Perthame. Prion dynamic
with size dependency - strain phenomena. J. of Biol. Dyn., in press, 2008.

[10] V. Calvez, V. Lenuzza, D. Oelz, J.-P. Deslys, P. Laurent, F. Mouthon, and B. Perthame. Size
distribution dependence of prion aggregates infectivity. Math. Biosci., 1:88–99, 2009.

[11] J. Clairambault, S. Gaubert, and T. Lepoutre. Comparison of perron and floquet eigenvalues in
age structured cell division cycle models. Math. Model. Nat. Phenom., page in press, 2009.

[12] J. Clairambault, S. Gaubert, and B. Perthame. An inequality for the Perron and Floquet eigen-
values of monotone differential systems and age structured equations. C. R. Math. Acad. Sci.
Paris, 345(10):549–554, 2007.

[13] O. Destaing, F. Saltel, J.-C. Geminard, P. Jurdic, and F. Bard. Podosomes Display Actin
Turnover and Dynamic Self- Organization in Osteoclasts Expressing Actin-Green Fluorescent
Protein. Mol. Biol. of the Cell, 14, 2003.

[14] M. Doumic. Analysis of a population model structured by the cells molecular content. Math.
Model. Nat. Phenom., 2(3):121–152, 2007.
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ABSTRACT

We introduce and analyze several aspects of a new model for cell differentiation.
It assumes that differentiation of progenitor cells is a continuous process. From the
mathematical point of view, it is based on partial differential equations of transport
type. Specifically, it consists of a structured population equation with a nonlinear
feedback loop. This models the signaling process due to cytokines, which regulate
the differentiation and proliferation process. We compare the continuous model to
its discrete counterpart, a multi-compartmental model of a discrete collection of cell
subpopulations recently proposed by Marciniak-Czochra et al. [17] to investigate the
dynamics of the hematopoietic system. We obtain uniform bounds for the solutions,
characterize steady state solutions, and analyze their linearized stability. We show
how persistence or extinction might occur according to values of parameters that
characterize the stem cells self-renewal. We also perform numerical simulations and
discuss the qualitative behavior of the continuous model vis a vis the discrete one.
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Introduction

Cell differentiation is a process by which dividing cells become specialized and equipped
to perform specific functions such as nerve cell communication or muscle contraction. Dif-
ferentiation occurs many times during the development of a multicellular organism as the
organism changes from a single zygote to a complex system with cells of different types.
Differentiation is also a common process in adult tissues. During tissue repair and dur-
ing normal cell turnover a steady supply of somatic cells is ensured by proliferation of
corresponding adult stem cells, which retain the capability for self-renewal. Also various
cancers are likely to originate from a population of cancer stem cells that have properties
comparable to those of stem cells [3].

Stem cell state and fate depends on the environment, which ensures that the critical
stem cell character and activity in homeostasis is conserved, and that repair and develop-
ment are accomplished [19]. Cell differentiation and the maintenance of self-renewal are
intrinsically complex processes requiring the coordinated dynamic expression of hundreds
of genes and proteins in response to external signaling. During differentiation, certain
genes become activated and other genes inactivated in an intricately regulated fashion.
As a result, differentiated cells develop specific structures and performs specific functions.
There exists evidence that disorder in self-renewal behavior may lead to neoplasia [3, 4].
For example, it has been shown that acute myeloid leukemia originates from a hierarchy of
cells that differ with respect to self-renewal capacities [13, 23]. Although much progress has
been made in identifying the specific factors and genes responsible for stem cells decisions
[20], the mechanisms involved in these processes remain largely unknown.

While different genetic and epigenetic processes are involved in formation and mainte-
nance of different tissues, the dynamics of population depends on the relative importance
of symmetric and asymmetric cell divisions, cell differentiation and death. The same genes
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A structured population model of cell differentiation 3

and proteins are observed to be essential for regulation of different tissues [21]. This unity
and conservation of basic processes implies that their mathematical models can apply
across the spectrum of normal and pathological (cancer stem cells) development.

One established method of modeling such systems is to use a discrete collection of ordi-
nary differential equations describing dynamics of cells at different maturation stages and
transition between the stages. These so called multi-compartmental models are based on
the assumption that in each lineage of cell precursors there exists a discrete chain of matu-
ration stages, which are sequentially traversed, e.g., [15, 27]. However, it is also becoming
progressively clear that the differentiated precursors form such sequence only under home-
ostatic (steady-state) conditions. Committed cells generally form a continuous sequence,
which may involve incremental stages, part of which may be reversible. As an example,
cell differentiation without cell divisions is observed during neurogenesis. Moreover, in
some tissues such as the mammary gland, different stages of differentiation are not well
identified [9].

These observations invoke not only the fundamental biological question of whether
cell differentiation is a discrete or a continuous process and what is the measure of cell
differentiation, but also how to choose an appropriate modeling approach. Is the pace of
maturation (commitment) dictated by successive divisions, or is maturation a continuous
process decoupled from proliferation? In leukemias, it seems to be decoupled. The classical
view in normal hematopoiesis seems to be opposite.

To address these questions and to investigate the impact of possible continuous trans-
formations on the differentiation process, we introduce a new model based on partial differ-
ential equations of transport type and compare this model to its discrete counterpart. The
point of departure is a multi-compartmental model of a discrete collection of cell subpop-
ulations, which was recently proposed in [17] to investigate dynamics of the hematopoietic
system with cell proliferation and differentiation regulated by a nonlinear feedback loop.
Furthermore, since self-renewal is an important parameter in our models, the proposed
models seem to be a right departure point to investigate cancer development, for example
in leukemias [23].

In the present paper we extend the discrete model to a structured population model
accounting for a continuous process of differentiation of progenitor cells. Models of the
latter type have been already applied to the description of some aspects of hematopoiesis
[6, 5, 1, 2, 11]. These models are based on the assumption that differentiation of progenitor
cells is a continuous process, which progresses with a constant velocity. Mathematical
description involves so called age-structured population equations. The model presented
here is novel due to the nonlinearities in the coupling of the model equations, in particular
the nonlinear coupling in the maturity rate function.

The paper is organized as follows. In Section 1, we formulate the new model. In Section
1.2 the link between our model and the discrete model of [17] is accomplished. Sections 2,
3 and 4 are devoted to the analysis of the model. In Section 2 the existence and uniform
boundedness of the solutions are shown. In Section 3, it is shown that depending on the
value of a parameter characterizing stem cells self-renewal model solutions tend to zero
or they stay separated from zero. Section 4 provides the structure of steady states and
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A structured population model of cell differentiation 4

conditions for existence of a positive stationary solution, while Section 4.2 is devoted to
a linearized problem around the positive steady state when this state exists to investigate
its stability. Using the characteristic equation we study some special cases, for which we
show stability or instability of the positive stationary solution. In Section 5, a numerical
approach and some results on stability and instability are presented. We conclude in
Section 6 with some final comments and suggestions for further investigation.

1 Model of Cell Differentiation

1.1 Continuous Model

In the following we assume that the dynamics of differentiated precursors can be ap-
proximated by a continuous maturation model. Under this assumption we extend the
multi-compartmental system from [17]. Let w(t) denote the number of stem cells, v(t) the
number of mature cells and u(x, t) the distribution density of progenitor cells structured
with respect to the maturity level x, so that

∫ x2

x1
u(x, t)dx is equal to the number of progen-

itors with maturity between x1 and x2. This includes maturity stages between stem cells
and differentiated cells. Thus, u(0, t) describes a population of stem cells and u(x, t), for
x > 0, corresponds to progenitor cells. We assume that x = x∗ denotes the last maturity
level of immature cells, and therefore, u(x∗, t) describes the concentration of cells which
differentiate into mature cells.

The model takes the form

d

dt
w(t) = [2aw(s)− 1]pw(s)w(t)− dww(t), (1)

∂tu(x, t) + ∂x[g(x, s)u(x, t)] = p(x, s)u(x, t)− d(x)u(x, t), (2)

g(0, s)u(0, t) = 2[1− aw(s)]pw(s)w(t), t > 0, (3)

d

dt
v(t) = g(x∗, s)u(x∗, t)− µv(t), (4)

together with initial data

w(0) = w0 ≥ 0, u(0, x) = u0(x) ≥ 0, v(0) = v0 ≥ 0.

Integrating formally Equation (2) and adding it to Equations (1) and (4) yields the follow-
ing cell number balance equation

d

dt

[

w(t)+

∫ x∗

0

u(x, t)dx+ v(t)
]

= (pw(s)−dw)w(t)+

∫ x∗

0

(

p(x, s)−d(x)
)

u(x, t)dx−µv(t).

(5)
System (1)-(4) describes the following scenario: After division a stem cell gives rise to two
progeny cells. Cell divisions can be symmetric or asymmetric. We assume that on the
average the fraction aw of progeny cells remains at the same stage of differentiation as
the parent cell, while the 1 − aw fraction of the progeny cells differentiates, i.e. transfers
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A structured population model of cell differentiation 5

to the higher differentiation stage. This covers the symmetric and asymmetric scenarios.
Parameters pw and dw denote the proliferation rate of stem cells and their death rate,
respectively. Progenitor cells differentiate at the rate g, which depends on their maturity
stage and is also regulated by the feedback from mature cells given by a signaling factor s.
Parameters p(x) and d(x) denote the proliferation and death rates of precursor cells and
depend on the level of cell maturation. Mature cells do not divide and die at the rate µ. The
whole process is regulated by a single feedback mechanism based on the assumption that
there exist signaling molecules (cytokines) which regulate the differentiation or proliferation
process. The intensity of the signal depends on the level of mature cells, and is modeled
using the dependence

s = s[v(t)] =
1

1 + kv(t)
,

which can be justified using a quasi-steady state approximation of the plausible dynam-
ics of the cytokine molecules, see [17]. This expression reflects the heuristic assumption
that signal intensity achieves its maximum under absence of mature cells and decreases
asymptotically to zero if level of mature cells increases.

The concentration of signaling molecules s(v) influences the length of the cell cycle
(proliferation rate p) and/or the fraction of stem cells self-renewal (aw) as well as the rate
of cell maturation (g).
In this model, differentiation of stem cells takes place during mitosis. The differentiation
of progenitor cells occurs independently of proliferation. In other words, cells undergo
continuous transformations between divisions. We call this process maturation. In the
terms of the model this means that in an infinitesimal time interval (t, t+dt), the following
events occur to a cell of maturity x,

1. either the cell matures to level x+ dx, which happens with probability g[x, v(t)]dt,

2. or the cell divides into 2 daughters, which happens with probability p(x)dt, with
other events occurring with probabilities of the order o(dt).

If we stick to the discrete model proposed in [17], we obtain the following relations
linking proliferation and maturation

{

g(x, v) = 2[1− a(x)
1+kv(t)

]p(x),

aw = a(0), pw = p(0), 0 < aw = a(0) ≤ 1,
(6)

which does not necessarily mean that differentiation can only occur by division; see the
discussion at the end of Section 1.2.

This leads to a simplification of the boundary condition (3) that becomes

u(0, t) = w(t).
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A structured population model of cell differentiation 6

1.2 Discrete versus Continuous Models

General Setting

In this section we consider the relationship between the structured population model (1)-
(4) and the multicompartmental model introduced in [17]. Following reference [18], the
multicompartmental model can be formulated in a general way,

d

dt
u1 = p1(s)u1 − g1(u1, s)− d1u1, (7)

d

dt
ui = pi(s)ui + gi−1(ui−1, s)− gi(ui, s)− diui, for i = 1, ..., n− 1 (8)

d

dt
un = gn−1(un−1, s)− dnun, (9)

where gi(ui, s) denotes a flux of cells from the subpopulation i differentiating to the sub-
population i + 1. The terms pi(s)ui and diui describe cell fluxes due to proliferation and
death, respectively. In the general case proliferation or differentiation may depend on
signal intensity.

In reference [17], differentiation was linked to proliferation and the following expressions
were proposed:

gi(ui, s) = 2(1− ai
1 + kun

)piui. (10)

This is similar to what was defined for stem cells with pw and aw; here
ai

1+kun
represents

the fraction of cells remaining at the same stage of differentiation i as the parent cell while
the 1 − ai

1+kun
fraction of cells differentiates to the higher stage i+ 1. Formulation (7)-(9)

describes the differentiation process independently of cell proliferation in the sense that
cells either multiply at stage i or differentiate from compartment i to i + 1 and so forth.
Assuming that cell differentiation occurs at a properly-chosen time scale compared to the
time scale of the cell division process, we show in the next paragraph how to obtain, after
a suitable renormalization, the structured population model of the next paragraph.

Continuous Limit

Let us write System (7)–(9) in a dimensionless way. We define P, D, G1, G, U1, U and Un

as characteristic values for the quantities pi, di, g1, gi for i ≥ 2, u1, ui for 2 ≤ i ≤ n − 1,
and un, respectively. Then, we define dimensionless quantities by p̄i =

pi
P

etc. We make
the following hypothesis

gi(ui, s) = gi(s)ui.
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A structured population model of cell differentiation 7

Then, system (7)–(9) becomes

d

dt
ū1 = P p̄1(s)ū1 − G1ḡ1ū1 −Dd̄1ū1, (11)

d

dt
ū2 = P p̄2(s)ū2 + G1

U1

U ḡ1ū1 − Gḡ2ū2 −Dd̄2ū2, (12)

d

dt
ūi = P p̄i(s)ūi + G(ḡi−1ūi−1 − ḡiūi)−Dd̄iūi, for i = 3, ..., n− 1, (13)

d

dt
ūn =

GU
Un

ḡn−1ūn−1 −Dd̄nūn. (14)

Letting the number of compartments tend to infinity, we pass from the discrete model
to the continuous model by associating to the ui’s a function, constant on intervals of
type (εi, ε(i + 1)), with ε → 0, i → ∞ and the product εi remaining positive and finite,
say n = nε, with εn → x∗ ∈ R∗

+ = (0,+∞). Compartment dependent constants tend to
continuous functions, sums over the index i are interpreted as Riemann sums tending to
integrals while finite differences give rise to derivatives. A precise discussion of the limiting
process is outside the scope of this presentation. We refer, for instance, to [7, 10] for recent
examples of how to obtain such limits based on moments estimates.

In order to interpret the terms G(ḡi−1ūi−1− ḡiūi) in Equation (13) and G1
U1

U
ḡ1ū1−Gḡ2ū2

in Equation (12), as a finite differences tending to a derivative, we take

G =
1

ε
, G1

U1

U =
1

ε
.

Assuming that P p̄i(s)ūi and Dd̄iūi tend toward limits p(x, s)u(x, t) and d(x)u(x, t) leads
to

P = 1, D = 1.

In order to obtain that GU
Un

ḡn−1ūn−1 converges to the limit g(x∗)u(t, x∗) in Equation (14),
we require

1 =
GU
Un

=
1

ε

U
Un

Un =
U
ε
.

This means that the order of magnitude of the number of mature cells is much larger than
the one of the maturing cells and stem cells. This can be interpreted by the fact that ui

tends to u(t, x) a density of cells per unit of maturity, whereas u1 and un are numbers of
cells. This scaling follows also from mass balance considerations: System (7)–(9) leads to
the following mass balance

d

dt
u1 +

d

dt

n−1
∑

i=2

ui +
d

dt
un = p1u1 +

n−1
∑

i=2

piui − d1u1 −
n−1
∑

i=2

diui − dnun, (15)

meaning that the exchange among compartments at maturation rate gi does not influence
the total growth of the population. In this equation, we keep the specific values u1 and un
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A structured population model of cell differentiation 8

and interpret the sum for 2 ≤ i ≤ n− 1 as an integral. We obtain

d

dt
u1 +

d

dt

n−1
∑

i=2

ui +
d

dt
un =

d

dt
U1ū1 + U d

dt

n−1
∑

i=2

ūi + Un

d

dt
ūn,

which leads to the following choice

U
Un

=
U
U1

= ε.

With this choice and the previous relations, we are led to choose G1 = 1, which allows a
limit for Equation (11). We note however that this implies a different order of magnitude
for G1 and for G; the interpretation could be that we have divided the previous discrete
compartments into smaller ones, of size ε, where division does not occur but where matu-
ration occurs. In this framework, G1 is not homogeneous to G but rather to the integral of
G over a small compartment of size ε.

Under these assumptions, let us set

χε
i (x) = χ[iε,(i+1)ε)(x),

with χA being the indicator function of a set A. We introduce the piecewise constant
function

uε(x, t) :=
nε
∑

i=1

ui(t)χ
ε
i (x).

By the same token, we associate the following functions to the coefficients

dε(x) :=

nε
∑

i=1

diχ
ε
i (x), pε(x, s) :=

nε
∑

i=1

pi(s)χ
ε
i (x), gε(x, u(x), s) :=

nε
∑

i=1

gi(ui, s)χ
ε
i (x).

We make the following continuity assumptions on the dimensionless system:

∃K > 0 s.t. |gi|+ |di|+ |pi| ≤ K, |gi+1 − gi|+ |di+1 − di|+ |pi+1 − pi| ≤ K
i

pi, gi are uniformly continuous with respect to the variable s.
(16)

We define the piecewise constant functions gε, dε and pε on the respective basis of the
discrete coefficients gi, di and pi, similarly as uε was defined for ui. Assumption (16) leads
to their convergence (up to subsequences) to continuous functions g, d and p of both
variables x and s (see Lemma 1 of [10] for instance). We can prove (based e.g. on [7, 10])
the following result.

Proposition 1.1 Suppose that uε
i is a solution of Equation (13) verifying (ui(t = 0)) ∈ l1.

Under Assumption (16), for all T > 0, there exists a subsequence of (uε
i ) converging towards

a limit u ∈ C(0, T ;M1([0, x∗])−weak−∗) solution of Equation (2), uε
1 to a limit u1 ∈ C(0, T )

solution of Equation (1) where s = s(v) with v a limit of a subsequence of uε
n. The boundary

condition (3) is satisfied in a distributional sense and Equation (5) is satisfied, what is
equivalent to a weak formulation of the boundary condition (4).
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A structured population model of cell differentiation 9

We note that we have used the fact that maturation and proliferation are decorrelated.
If this were not the case, it would be impossible to make a 1/ε factor appear in G, since
P = 1. In such case in the limit equation the transport appears as a first order corrective
term and Equation (2) is replaced by

∂tu(x, t) + ε∂x[g(x, s)u(x, t)] = p(x, s)u(x, t)− d(x)u(x, t). (17)

Figure 1 in Section 5.2 depicts related numerical simulations.

2 Uniform Bounds for the Continuous Model

In the remainder of this work we will consider a special version of the above model assuming
time independent proliferation rates p(x), and zero death rates of undifferentiated cells
dw = 0 and d(x) = 0. Indeed, neglecting death rates of immature cells does not change the
analysis. Concerning the feedback loops it was shown in [17] for the discrete model that
the feedback on the stem cells self-renewal fraction and on the maturation speed g is much
more important for the efficiency of the process than the feedback on the proliferation
rate p(x). Therefore, in the reminder of this work we focus on the model with regulated
self-renewal and maturation. We also introduce simpler notation which makes it easier for
analysis. This yields the following system of differential equations for t > 0, x > 0.

d

dt
w(t) = α(v(t))w(t), (18)

∂tu(x, t) + ∂x[g(x, v(t))u(x, t)] = p(x)u(x, t), (19)

u(0, t) = w(t), (20)

d

dt
v(t) = g(x∗, v(t))u(x∗, t)− µv(t), (21)

together with initial data

w(0) = w0 ≥ 0, u(0, x) = u0(x) ≥ 0, v(0) = v0 ≥ 0. (22)

We obtain the cell number balance law

d

dt

[

w +

∫

u(x, t)dx+ v
]

= [α(v) + g(0, v)]w +

∫

p(x)u(x, t)dx− µv(t), (23)

corresponding to the fact that the total population can only change by proliferation or
death. Indeed, one can interpret α + g(0, v) as the stem cells proliferation rate, see above
sections and Equation (5).
In the sequel we will study model (18)–(21) under the following assumptions

gx, gxx ∈ L∞([0, x∗]× R
+), α(x) ∈ C([0,∞)), p(x) ∈ C1([0, x∗]), (24)

α(v) ∈ [α∞, α0], α is decreasing , α(+∞) := α∞ < 0, (25)
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A structured population model of cell differentiation 10

0 < g− ≤ g(x, v) ≤ g+ < ∞, ∀(x, v) ∈ [0, x∗]× R
+, (26)

First we show that the model solutions are uniformly bounded

Theorem 2.1 Under assumptions (24)–(26) and that u0(x) ∈ C1([0, x∗]), the solution to
System (18)–(22) is uniformly bounded. More precisely, all the components w(t), u(x, t),
v(t) are uniformly bounded.

The remainder of the section is devoted to the proof of this result, which uses some technical
lemmas. We first prove the following estimate

Lemma 2.2 Under the assumptions of Theorem 2.1, the function z(x, t) = ∂x(ln u) is
uniformly bounded on [0, x∗]× R+.

Proof. The equation for z reads
{

∂tz + ∂x(gz) = −gxx + px,

z(0, t) = −α(v)−p(0)
g(0,v)

− gx(0,v)
g(0,v)

∈ L∞(0,+∞).
(27)

Indeed, we have z(0, t) = ux(0,t)
u(0,t)

and thus we can compute

z(0, t) = −∂tu(0, t)− p(0)u(0, t) + gx(0, v)u(0, t)

g(0, v)u(0, t)

= −α(v)− p(0)

g(0, v)
− gx(0, v)

g(0, v)
.

And we conclude that z(0, t) is uniformly bounded by assumptions (24)–(26).
Next, we rewrite the equation for z as

∂tz + g∂xz = −gxz +Q(x, v), (28)

where Q = −gxx + px is a bounded function of v and x.

In the following, we show that the solution to (28) satisfies the estimate

||z(x, t)||L∞ ≤ M :=

(

sup
t

|z(0, t)|+ sup
x

|z(x, 0)|+ x∗ ||Q
g
||L∞

)

ex
∗|| gx

g
||L∞ . (29)

Indeed, since g ≥ g− > 0, we can rewrite Equation (28) as

∂xz +
1

g
∂tz = −gx

g
z +

Q(x, v)

g
,

and apply the method of characteristics by defining as usual (except that x plays the role
of time),

dT

dx
(x, t) =

1

g
(x, v(T (x, t))), T (x = 0, t) = t,
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A structured population model of cell differentiation 11

dT−1

dx
(x, t′) = −1

g
(x, v(T−1(x, t′))), T−1(x = 0, t′) = t′.

We look for solutions of the form Z(x, t) = z(x, T (x, t)), which satisfy the following equa-
tion

∂xZ +
gx
g
(x, T (x, t))Z = ∂x(Ze

x∫

0

gx
g
(ζ,T (ζ,t))dζ

)e
−

x∫

0

gx
g
(ζ,T (ζ,t))dζ

=
Q

g
(x, v(T (x, t))).

Integrating the above equation yields

Z(x, t)e

x∫

0

gx
g
(ζ,T (ζ,t))dζ

= Z(0, t) +

x
∫

0

Q

g
(ξ, v(T (ξ, t)))e

ξ∫

0

gx
g
(ζ,T (ζ,t))dζ

dξ,

Z(x, t) = Z(0, t)e
−

x∫

0

gx
g
(ζ,T (ζ,t))dζ

+

x
∫

0

Q

g
(ξ, v(T (ξ, t)))e

−
x∫

ξ

gx
g
(ζ,T (ζ,t))dζ

dξ,

z(x, T (x, t)) = z(0, t)e
−

x∫

0

gx
g
(ζ,T (ζ,t))dζ

+

x
∫

0

Q

g
(ξ, v(T (ξ, t)))e

−
x∫

ξ

gx
g
(ζ,T (ζ,t))dζ

dξ.

Defining t̄ = T (x, t), or yet t = T−1(x, t̄), yields T−1 ≥ 0 for t̄ ≥ x∗

gmin
, and we obtain

z(x, t̄) = z(0, T−1(x, t̄))e
−

x∫

0

gx
g
(ζ,T (ζ,T−1(x,t̄)))dζ

+

x
∫

0

Q

g
(ξ, v(T (ξ, T−1(x, t̄))))e

−
x∫

ξ

gx
g
(ζ,T (ζ,T−1(x,t̄)))dζ

dξ.

Therefore, for t̄ ≥ x∗

gmin
it holds

||z||L∞ ≤ (|z(0, ·)|+ x∗||Q
g
||L∞)ex

∗|| gx
g
||L∞ .

From Lemma 2.2, we deduce several useful estimates

Lemma 2.3 There exist positive constants M1, M2, M3 such that the solutions to system
(18)–(22) satisfy

(i) w(t) ≤ M1u(x, t),

(ii) w(t) ≤ M2v(t),

(iii) u(x, t) ≤ M3w(t).
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A structured population model of cell differentiation 12

Proof (i) Boundedness of −z = − ∂
∂x

ln u results in the following inequality

ln
1

u
≤ ln

1

w
+Mx,

which in turn yields assertion (i) with M1 = eMx∗

.

(ii) To bound w by v, we calculate

d

dt

w

v
=

w

v

(

α(v(t))− g(x∗, v(t))
u(x∗, t)

v
+ µ

)

.

Since α(v) ≤ α(0), g(x∗, v(t)) ≥ g− and u(x∗, t) ≥ w(t)/M1 we obtain

d

dt

w

v
≤ w

v

(

α(0) + µ− g−
M1

w

v

)

.

This yields the estimate

w(t) ≤ v(t)max

(

w(0)

v(0)
,M1

α(0) + µ

g−

)

:= M2v(t),

and the assertion (ii) is proved.

(iii) The proof follows as in (i), departing from ln u(x, t) ≤ lnw(x, t) +Mx.

As a consequence of Lemma 2.3, we derive

Corollary 2.4 Under the assumptions of Theorem 2.1, the components w(t), u(x, t) and
v(t) of the solutions to System (18)–(22) are uniformly bounded.

Proof. Applying Lemma 2.3 (ii) to equation (18), we obtain

dw

dt
≤ α

(

w

M2

)

w.

This yields boundedness of w by Assumption (25).
Boundedness of w yields also boundedness of u using Lemma 2.3 (iii). Finally, bound-

edness of v results from Equation (21) due to boundedness of u(x∗, t) because g ≤ g+.

The proof of Theorem 2.1 is now complete.

We also state another result, in the spirit of Lemma 2.3, that is used later on

Lemma 2.5 There exists a constant M4 > 0 and 0 < γ < 1 such that v(t) ≤ M4w
γ(t).
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A structured population model of cell differentiation 13

Proof. We calculate

d

dt

v

wγ
≤ M3g(x

∗, v(t))w1−γ − v

wγ
(µ+ γα(v)).

We choose γ > 0 small enough such that µ + γα∞ := µ1 > 0 and γ < 1. Since w is
uniformly bounded, we find

d

dt

v

wγ
≤ C − v

wγ
µ1

which yields boundedness of v
wγ .

Finally, we conclude this section with a consequence of Theorem 2.1.

Corollary 2.6 Under the Assumptions (24)–(26) and that u0(x) ∈ C1([0, x∗]), System (18)–
(22) has a unique global solution. Furthermore, such solution is uniformly bounded.

Proof. Local in time existence of the unique solution follows from the Cauchy-Lipschitz
theorem. Theorem 2.1 provides uniform boundedness of solutions and hence the global
existence.

3 Extinction and Persistence

In this section we provide conditions for extinction and persistence of positive solutions.

First, we consider a case when α(0) < 0. In this case there exists only a trivial steady
state of the model and

Theorem 3.1 Assume (24)–(26). If α(0) < 0, then all solutions of system (18)–(22)
converge to zero at an exponential rate.

Proof First of all, notice that, since α(v) ≤ α(0) < 0, it is obvious from equation (18)
that w converges to 0 exponentially.
For the other components, we consider a functional γw(t) +

∫ x∗

0
e−βxu(x, t)dx + e−βx∗

v,
with positive constants γ and β to be determined. We compute its time derivative,

d

dt

(

γw(t) +

∫ x∗

0

e−βxu(x, t)dx+ e−βx∗

v
)

= γα(v)w(t)− β

∫ x∗

0

e−βxg(x, v)u(x, t)dx− e−βx∗

g(x∗, v)u(x∗, t)

+g(0, v)u(0, t) +

∫ x∗

0

p(x)u(x, t)e−βxdx+ g(x∗, v)u(x∗, t)e−βx∗ − µe−βx∗

v

= [γα(v) + g(0, v)]w(t) +

∫ x∗

0

e−βxu(x, t)
(

p(x)− βg(x, v)
)

dx− µe−βx∗

v.
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A structured population model of cell differentiation 14

Since α(v) ≤ α(0) < 0 we may choose γ such that γα(0)+supv g(0, v) ≤ −Γ < 0. Moreover,
choosing β such that p(x)− βg(x, v) < −Γ implies that

d

dt

(

γw(t) +

∫ x∗

0

e−βxu(x, t)dx+ e−βx∗

v
)

≤ −Γw(t)− Γ

∫ x∗

0

e−βxu(x, t)dx− µe−βx∗

v.

We conclude that the solutions converge to zero at an exponential rate for t → ∞.

Secondly, if it is the case that α(0) > 0, then we conclude that the solutions to the
system cannot become extinct.

Theorem 3.2 Assume (24)–(26), w(0) > 0 and u0(x) ∈ C1([0, x∗]). If α(0) > 0, the
solution u, v, w of system (18)-(21) with positive initial conditions remain bounded away
from zero.

Proof Applying Lemma 2.5 to equation (18), we obtain

dw

dt
≥ α (M4w

γ)w,

and the assumption α(0) > 0 allows us to conclude. Then, the estimates of Lemma 2.3
conclude for u and v.

4 Stationary Solutions and Their Stability

4.1 Stationary Solutions

As usual in dynamical systems, a natural question concerns the existence of steady states
(stationary solutions). We shall now investigate this issue.

In our case, the steady states are given by the solutions (w̄, ū, v̄) to the system

α(v̄)w̄ = 0, (30)

d

dx
[ḡ(x)ū(x)] = p(x)ū(x), (31)

ū(0) = w̄, (32)

ḡ(x∗)ū(x∗)− µv̄ = 0, (33)

where ḡ(x) := g(x, v̄).
System (18)–(21) always admits the trivial steady state w = 0, u = 0, v = 0, which

we do not consider. Depending upon the value α(0) it may also have exactly one positive
steady state (w̄, ū, v̄), as we state it in the

Lemma 4.1 Under the Assumptions (24)–(26), the System (18)-(21) has a strictly positive
steady state if and only if α(0) > 0. Furthermore, the steady state is unique.
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A structured population model of cell differentiation 15

This condition is in agreement with biological observations concerning self-renewal of
stem cell subpopulation [12] and an analogous condition for the compartmental model was
discussed in [18].

Proof Since we discard the trivial steady state, from equation (30) we obtain the con-
dition α(v̄) = 0. As we know that α decreases and tends to α∞ < 0 at infinity, there exists
a unique solution v̄ to

α(v̄) = 0, (34)

if and only if the condition α(0) > 0 holds. Thus, we may compute

ū(x∗) =
µv̄

ḡ(x∗)
.

Solving differential equation (31) with this boundary condition at x = x∗ yields,

ū(x) =
ḡ(x∗)

ḡ(x)
ū(x∗) exp

{

−
∫ x∗

x

p(ξ)

ḡ(ξ)
dξ
}

. (35)

We finally identify w̄ using the boundary condition at x = 0, w̄ = ū(0), which leads to

w̄ =
ḡ(x∗)

ḡ(0)
ū(x∗) exp

{

−
∫ x∗

0

p(ξ)

ḡ(ξ)
dξ
}

=
µv̄

ḡ(0)
exp

{

−
∫ x∗

0

p(ξ)

ḡ(ξ)
dξ
}

. (36)

This gives explicit values of the model and completes the proof.

For α given explicitly by (6), we may compute

{

v̄ = 2aw−1
k

,

ū(x∗) = µ

kp(x∗)
aw(2aw−1)
2aw−a(x∗)

.
(37)

4.2 The Linearized Problem around the Steady State

In order to investigate local linear stability, we consider in this section the linearization
around the positive steady state. We first derive a characteristic equation for the eigenvalue
problem. The signs of the real parts of these eigenvalues give stability (if they all are
negative) or instability (if there exists one with positive real part). To emphasize our main
point, which is that stability as well as instability of the positive steady state can take
place for a suitable choice of model parameters, we shall focus on some simpler cases where
stability analysis is more transparent.
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A structured population model of cell differentiation 16

The Characteristic Equation in the General Case

We denote by (w̄, ū, v̄) the steady state solution to Equations (30)–(33). Positivity of the
considered steady state yields α(v̄) = 0. The linearized problem reads

d

dt
w(t) =

dα

dv
(v̄)w̄v(t), (38)

∂tu(x, t) + ∂x[g(x, v̄)u(x, t)] + ∂x[
∂g

∂v
(x, v̄)ū(x)]v(t) = p(x)u(x, t), (39)

u(0, t) = w(t), (40)

d

dt
v(t) = g(x∗, v̄)u(x∗, t) +

∂g

∂v
(x∗, v̄)ū(x∗)v(t) − µv(t), (41)

where w, u, and v denote now the deviation of the solution from the steady state. Setting
w(t) = Weλt, u(x, t) = U(x)eλt and v(t) = V eλt we obtain the eigenvalue problem of the
form

λW =
dα

dv
(v̄)w̄V, (42)

λU(x) + ∂x[g(x, v̄)U(x)] + ∂x[
∂g

∂v
(x, v̄)ū(x)]V = p(x)U(x), (43)

U(0) = W, (44)

λV = g(x∗, v̄)U(x∗) +
∂g

∂v
(x∗, v̄)ū(x∗)V − µV. (45)

Defining an auxiliary function f(x) such that

f(x)e

x∫

0

−p(s)
g(s,v̄)

ds

= −∂x[
∂g

∂v
(x, v̄)ū(x)],

we obtain

∂x[g(x, v̄)U(x)e

x∫

0

λ−p(s)
g(s,v̄)

ds

] = f(x)V e

x∫

0

λ
g(s,v̄)

ds

,

g(x, v̄)U(x) = g(0, v̄)U(0)e
−

x∫

0

λ−p(s)
g(s,v̄)

ds

+ V e
−

x∫

0

λ−p(s)
g(s,v̄)

ds
x

∫

0

f(s)e

s∫

0

λ
g(σ,v̄)

dσ

ds.

Hence, using (42) and (44) leads to

g(x∗, v̄)U(x∗) =

(

g(0, v̄)
dα

dv
(v̄)

w̄

λ
+

x∗

∫

0

f(s)e

s∫

0

λ
g(σ,v̄)

dσ

ds

)

V e
−

x∗∫

0

λ−p(s)
g(s,v̄)

ds

.

We insert this expression in Equation (45) and obtain the characteristic equation

λ+ µ− dg

dv
(x∗, v̄)ū(x∗) =

(

g(0, v̄)
dα

dv
(v̄)

w̄

λ
+

x∗

∫

0

f(s)e

s∫

0

λ
g(σ,v̄)

dσ

ds

)

e
−

x∗∫

0

λ−p(s)
g(s,v̄)

ds

. (46)
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A structured population model of cell differentiation 17

The Simplest Case: g independent of v

We first focus on the simplest case when the maturation rate g(x, v) = g(x) does not
depend on v. In other words, the feedback loop only affects stem cells. Although this
case is very restrictive compared to the original discrete model, since it does not include
relation (6), it is an illustrative example of a possible general behavior. Instability and
appearance of the oscillations in this model suggest that regulation of the processes solely
by the stem cell level is not enough to stabilize the system. Moreover, regulatory feedback
between mature cells and progenitor cells has a stabilizing effect and is essential for efficient
regulation of the process.
Since we have f = 0, combining Equation (36) with Equation (46), we arrive at

λ2 + µλ = µv̄
dα

dv
(v̄)e−τλ, τ =

x∗

∫

0

1

g(s)
ds > 0. (47)

The relationship is identical with the characteristic equation of a delay differential system.
Indeed, problem (18)–(21) can be reformulated as a delay differential system. We obtain
the following result.

Proposition 4.2 Assume that Equations (24)–(26) hold, α(0) > 0, and g is independent
of v. Consider the steady state (ū, v̄, w̄) given in Lemma 4.1. Then,
(i) for 1 < τv̄ |dα

dv
(v̄)| < π

2
, the system undergoes a Hopf bifurcation for a single value µ0 > 0

of the parameter µ. Therefore the steady state can be either locally stable or unstable.
(ii) Further bifurcations also occur for τ v̄ |dα

dv
(v̄)| > 2kπ + π

2
and k ≥ 1 for at least one

value µk > 0.

Because in the special case at hand, the system can be reduced to a delay differential
equation, the linearised stability implies the stability of the nonlinear system, which then
undergoes a Hopf bifurcation for certain values of the parameters (see [8, 16] and the ref-
erences therein).

Proof. (i) In order to identify the parameter values for which the bifurcation occurs, we
look for purely imaginary solutions λ = iω with ω ∈ R. We obtain the two following
relations

ω2 = µv̄ |dα
dv

(v̄)| cos(τω), τω = τ v̄ |dα
dv

(v̄)| sin(τω).

By symmetry, we only consider ω > 0. The second relation gives a single value τω0 ∈ (0, π
2
)

as soon as 1 < τv̄ |dα
dv
(v̄)| < π

2
. We can enforce the first relation for a single µ, because

cos(τω0) > 0. This proves statement (i). (ii) For τ v̄ |dα
dv
(v̄)| > 2kπ + π

2
and k ≥ 1,

the equation τω = τ v̄ |dα
dv
(v̄)| sin(τω) also has a root τωk ∈ (2kπ, 2kπ + π

2
, for which

cos(τωk) > 0 and thus we can find again a µk for which the first equation is satisfied. But
there might be multiple compatible crossings and several bifurcations are possible.

We now proceed numerically using, for instance Matlab’s device DDE BIFTOOL. We
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A structured population model of cell differentiation 18

check that for the values µ = τ = 1, we get stability for µv̄ dα
dv
(v̄) = −1 and instability for

µv̄ dα
dv
(v̄) = −2.

This proposition as well as numerical simulations (see Figures 4 and 5) show that instability
occurs through a Hopf bifurcation, and that regular oscillations appear.

A Case Motivated by the Discrete Model

In this section we will study more closely the case given by the relations (6). We can use
the values of the steady state computed in Equations (34)–(36), keeping g(x, v) and p(x)
fully general. It implies, denoting ḡ(x) = g(x, v̄)

dα

dv
(v̄) = − 2kawpw

(1 + kv̄)2
= −kpw

2aw
, w̄ =

ḡ(x∗)

pw
ū(x∗)exp

{

−
∫ x∗

0

p(ξ)

ḡ(ξ)
dξ
}

.

We can show (see the Appendix for detailed calculations) that Equation (46) can be written
as

λ+ µ =
µ

k
(2aw − 1)

(

k

2aw

(

−pw
λ

+ 1
)

+

x∗

∫

0

∂g

∂v
(x, v̄)

λ− p(x)

ḡ(x)2
e

x∫

0

λ
ḡ(s)

ds

dx

)

e
−

x∗∫

0

λ
ḡ(s)

ds

. (48)

Case of α(v) = pw(
2aw
1+kv

− 1) and g independent of x

Since g(v) is now independent of x, we have that for all x

g(x, v) = g(0, v) = pw − α(v) = 2pw(1−
aw

1 + kv
) .

In particular g(v̄) = pw so dg

dv
(v̄) = pw

k
2aw

. We now substitute g(x, v̄) = g(v̄) in Equation
(48) and obtain

λ+ µ = µ
2aw − 1

2aw

(

−pw
λ

+ 1 +

x∗

∫

0

λ− p(x)

pw
e

x∫

0

λ
pw

ds

dx

)

e
−

x∗∫

0

λ
pw

ds

.

We compute the first part of the integral term:
x∗

∫

0

λ
pw
e

x∫

0

λ
pw

ds

dx = e
λ
pw

x∗ − 1, and so

λ+
µ

2aw
= − µ

2aw
(2aw − 1)

(

pw
λ

+

x∗

∫

0

p(x)

pw
e

λ
pw

xdx

)

e−
λ
pw

x∗

. (49)

Proposition 4.3 Let α(v) be defined by (6) with aw > 1
2
, and (ū, v̄, w̄) be defined by

Equations (34)–(36) the unique steady state solution of System (18)–(21). If the maturation
rate g(x, v) is independent of the maturity of the cell x and if the proliferation rate p is
constant, then the steady state (ū, v̄, w̄) is locally linearly stable. For a non-decreasing
proliferation rate, instability may appear.
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A structured population model of cell differentiation 19

We treat a case of non-decreasing proliferation rate because it is the most biologically
relevant; however instability may appear for other cases, and is even easier to exhibit, as
the proof (postponed to the Appendix) shows. Figures 2 and 3 below illustrate a case of
instability with a nondecreasing proliferation rate.

5 Numerical Simulations

In this section we illustrate our theoretical results with a number of numerical simulations.
We start with a description of our numerical methods.

5.1 The Numerical Scheme

We build a simple numerical scheme for System (18)–(21). We discretize the problem on
a grid regular in space and adaptive in time. We denote by ∆tk = tk+1 − tk the time step
between time tk+1 and time tk, by ∆x = x∗/I the spatial step, where I denotes the number
of points: xi = i∆x, 0 6 i 6 I.

We use an explicit upwind finite volume method for u

uk
i =

1

∆x

x
i+1

2
∫

x
i− 1

2

u(tk, y)dy,
1

∆tk

∆tk
∫

0

u(tk + s, xi+ 1
2
)ds ≈ uk

i .

For time discretization, we use a marching technique. At each time tk, we choose the time
step ∆tk so as to satisfy the largest possible CFL stability criterion

θ := g
∆tk

∆x
≤ 1,

so that

∆tk =
∆x

Maxxg(x, vk)
.

In order to avoid a vanishing time step, it is necessary here to suppose g ∈ L∞. Also,
more efficient schemes (of WENO type for instance, see [24, 22]) could be used to capture
discontinuities of g.

The algorithm is the following:

• Initialization We use the initial data

w0 = w0, u0
j =

1

∆x

x
i+1

2
∫

x
i− 1

2

u0(y)dy, v0 = v0.

• From tk to tk+1 :
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A structured population model of cell differentiation 20

– We calculate αk = α(vk) and define wk+1 = (1 + ∆tkαk)wk.

– We calculate ∆tk = ∆x
Maxig(xi,vk)

and define tk+1 = tk +∆tk.

– For a boundary condition at i = 0, we define uk+1
0 = wk+1.

– We define uk+1
i by the following scheme

uk+1
j − uk

j

∆tk
+

g(xj, v
k)uk

j − g(xj−1, v
k)uk

j−1

∆x
= pju

k
j .

– We define vk+1 by
vk+1 − vk

∆tk
= g(xI , v

k)uk
I − µvk+1,

and the term µvk+1in the right hand side is discretized implicitely for stability.
The reason for the choice of uk

I instead of uk+1
I in the right-hand side of this last

scheme is due to cell number balance considerations as shown below.

• Cell number balance. From Equation (18)–(21) we have obtained the cell number
balance (23). We check the equivalent discrete mass balance:

wk+1 − wk

∆tk
+

I
∑

j=0

uk+1
j − uk

j

∆tk
+

vk+1 − vk

∆tk
=

(

αk + g(x0, v
k)
)

wk +

I
∑

i=0

pju
k
j∆x− µvk+1.

5.2 Numerical Simulations

First we compare results of the numerical simulations of the discrete and the continuous
models. To do so, we depart from the discrete values of parameters given in [25]. The
notations are those of System (7)-(9), with gi(s, ui) = 2[1− ai(s)]piui, pi independent of s,
di = 0 for i < n and ai(s) =

ai
1+kun

. It corresponds to the model 1 studied in [17, 18].

Parameter Value Parameter Value Parameter Value

a1 0.77 p1 2.151̇0−3 day−1 d8 0.6925 day−1

a2 0.7689 p2 11.211̇0−3 day−1 k 12.8.10−10

a3 0.7359 p3 5.661̇0−2 day−1

a4 0.7678 p4 0.1586 day−1

a5 0.154 p5 0.32 day−1

a6 0.11 p6 0.7 day−1

a7 0.605 p7 1 day−1
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A structured population model of cell differentiation 21

To make comparison easier, for the continuous maturation model, we replace the interval
[0, x∗] by the interval [1, 7] (7 being the number of maturing steps in the discrete model) and
we define a(x) and p(x) based on parameters in Table 5.2 by piecewise linear continuous
functions with values ai and pi at x = i. We take them along a regular grid to obtain
approximations of a(x) and p(x).

In Figure 1, the results of the discrete model are identical with the ones of the continuous
model if the grid is equal to X = [1, 2, ...7] (case I = 6). If the grid becomes finer, we
observe a slower convergence toward the steady state together with an increase of the
relative importance of the stem cell population. Though unrealistic from a biological
viewpoint, it was expected by the derivation of the continuous model from the discrete
one. It shows that the analogy between the two models is limited. They exhibit different
quantitative properties (see [18] for a study of the discrete model properties), as well as
conditions for nontrivial steady state. Moreover, we see that the typical parameter sizes
have to be adapted. Indeed, the time evolution is much too slow compared to experimental
data.

Let us now focus on the stability and instability properties, in order to illustrate the
theoretical results of Propositions 4.2 and 4.3.

Figures 2 and 3 are an illustration of the instability case stated in Proposition 4.3.
Here, we took a maturity interval [0, X∗] with X∗ = 50, and a proliferation rate p(x) =
pw + Bχx≥Y ∗ with pw = 30, Y ∗ = 20, B = 50. We keep a(x) constant equal to aw = 0.75
and k = 1.28x10−9 as in the discrete case. The maturation speed g(x) is given by Equation
(6). We see that the destabilization is very slow, and our example is very unrealistic, since
the stem cell population level is tiny.

In Figures 4 and 5, we illustrate instability in the case of Proposition 4.2. We have
taken here X∗ = 1, constant proliferation rate p(x) = pw = 6 and maturation rate g(x) = 1
and α(v) = ( 2aw

1+kv
− 1)pw with aw = 0.75 and k = 1.28x10−9.

6 Final Remarks

In this paper we have developed a structured population model of cell differentiation and
self-renewal with a nonlinear regulatory feedback between the level of mature cells and the
rate of the maturation process. We showed that perturbations in the regulatory mechanism
may lead to the destabilization of the positive steady state, which corresponds to the
healthy state of the tissue. In particular, we showed that the regulation of stem cells self-
renewal is not sufficient for stability of the system and the lack of the regulation on the
level of progenitor cells may lead to the persistent oscillations. This and other stability
results suggest how imbalanced regulation of cell self-renewal and differentiation may lead
to the destabilization of the system, which is observed during development of some cancers,
such as leukemias. The model developed in this paper is rather general and, after adjusting
it to specific biological assumptions, may serve as a tool to explore the role of different
regulatory mechanisms in the normal and pathological development.

Comparing the model to its discrete counterpart we addressed the question of the choice
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A structured population model of cell differentiation 22

of the right class of models, for example discrete compartments versus continuous matu-
ration, punctuated by division events. We showed that the models may exhibit different
dynamics. Interestingly, the structure of steady states varies and the discrete compart-
mental model admits semi-trivial steady states of the form (0, .., 0, ūi, .., ūn), which do not
exist in the continuous differentiation model.

To understand the difference between the two models, we derived a limit equation for
the discrete model assuming that a continuum of differentiation stages can be defined.
The rationale for such assumption is provided by the fact that differentiation is controlled
by intracellular biochemical processes, which are indeed continuous in time, at least when
averaged over a large number of cells. Consequently, for the proper time scaling we have to
assume that commitment and maturation of cell progenitors do not proceed by the division
clock (one division = one step in the maturation process) but is a continuous process and
can take place between the divisions. This observation explains the fundamental difference
between the two models. The structured population model is indeed not a limit of the
discrete model with the transitions between compartments correlated to the division of the
cells. However, the models can exhibit exactly the same dynamics for a suitable choice of
the maturation rate function g.

Figure 1: Comparison of numerical simulations using different grids on the interval [1, 7],
from I = 6 (7 points, maturity step dx = 1, discrete model) to I = 100. Left: mature
cells evolution with time. Right: distribution of cell density along the maturation level,
at steady state. One can see that the model is extremely sensitive to the number of steps
(even 7 to 10): small numbers seem to be unstable, whereas for large numbers the numerical
scheme converges.
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A structured population model of cell differentiation 23

Figure 2: Example of instability, in illustration of Proposition 4.3. Left: evolution of
mature cells. Right: evolution of stem cells.

Figure 3: Same case as in Figure 2. Left: final distribution of cells according to their

maturity level. Right: time evolution of

√

∫
| ∂
∂t

u(x,t)|2dx
∫
|u(x,t)|2dx

, to measure the trend to a stable

maturity level distribution.

in
ria

-0
05

41
86

0,
 v

er
si

on
 1

 - 
1 

D
ec

 2
01

0



A structured population model of cell differentiation 24

Figure 4: Example of instability, in illustration of Proposition 4.2. Left: evolution of
mature cells. Right: evolution of stem cells.
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A structured population model of cell differentiation 25

Figure 5: Same case as in Figure 4. Left: final distribution of cells according to their

maturity level. Right: time evolution of

√

∫
| ∂
∂t

u(x,t)|2dx
∫
|u(x,t)|2dx

, to measure the trend to a stable

maturity level distribution.

A Appendix: Proofs of the Results in Section 4.2

A.1 The Characteristic Equation in the Case Derived from the

Discrete Model

Using definitions given in (6), Equation (46) can be rewritten as

λ+ µ− dg

dv
(x∗, v̄)ū(x∗) =

(

− k

2aw
pw

ḡ(x∗)

λ
ū(x∗) + e

∫ x∗

0
p(ξ)
ḡ(ξ)

dξ

x∗

∫

0

f(s)e

s∫

0

λ
g(σ,v̄)

dσ

ds

)

e
−

x∗∫

0

λ
g(s,v̄)

ds

.

(50)
Calculating the term with f we obtain

x∗

∫

0

f(x)e

x∫

0

λ
g(s,v̄)

ds

dx =

x∗

∫

0

−∂x[
∂g

∂v
(x, v̄)ū(x)]e

x∫

0

λ−p(s)
g(s,v̄)

ds

dx

= +

x∗

∫

0

∂g

∂v
(x, v̄)ū(x)∂x[e

x∫

0

λ−p(s)
g(s,v̄)

ds

]dx− ∂g

∂v
(x∗, v̄)ū(x∗)e

x∗∫

0

λ−p(s)
g(σ,v̄)

ds

+
∂g

∂v
(0, v̄)ū(0)

= +

x∗

∫

0

∂g

∂v
(x, v̄)ū(x)

λ− p(x)

g(x, v̄)
e

x∫

0

λ−p(s)
g(s,v̄)

ds

dx− ∂g

∂v
(x∗, v̄)ū(x∗)e

x∗∫

0

λ−p(s)
g(σ,v̄)

ds

+
k

2aw
pww̄.
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A structured population model of cell differentiation 26

Inserting it into Equation (50) leads to

λ+µ =

(

− k

2aw
pw

ḡ(x∗)

λ
ū(x∗)+e

∫ x∗

0
p(ξ)
ḡ(ξ)

dξ
(

x∗

∫

0

∂g

∂v
(x, v̄)ū(x)

λ− p(x)

ḡ(x)
e

x∫

0

λ−p(s)
ḡ(s)

ds

dx+
k

2aw
pww̄

)

)

e
−

x∗∫

0

λ
ḡ(s)

ds

.

Due to the definition of w̄ given by Equation (36), the first and the last term of the
right-hand side can be written together as

λ+µ =

(

k

2aw
ḡ(x∗)ū(x∗)

(

−pw
λ
+1

)

+e
∫ x∗

0
p(ξ)
ḡ(ξ)

dξ
(

x∗

∫

0

∂g

∂v
(x, v̄)ū(x)

λ− p(x)

ḡ(x)
e

x∫

0

λ−p(s)
ḡ(s)

ds

dx
)

)

e
−

x∗∫

0

λ
ḡ(s)

ds

.

Using Equation (35) we obtain

ū(x)
λ− p(x)

ḡ(x)
e

x∫

0

λ−p(s)
ḡ(s)

ds

= ḡ(x∗)ū(x∗)e
−

x∗∫

0

p(s)
ḡ(s)

dsλ− p(x)

ḡ(x)2
e

x∫

0

λ
ḡ(s)

ds

.

So finally, using Equations (33) and (34) and taking ḡ(x∗)ū(x∗) = µ

k
(2aw − 1), we obtain

the expression given by Equation (48).

Proof of Proposition 4.3

The local linear stability is equivalent to the fact that all eigenvalues λ ∈ C, given by
solutions of Equation (49), have negative real parts.
First step: λ is a solution of the following equation

λ2 + Cλ+D = − µ

2aw
(2aw − 1)λ

x∗

∫

0

b(x)e
λ
pw

(x−x∗)dx (51)

with C = µ

2aw
> 0, D = pwµ

2aw−1
2aw

> 0, and b(x) = p(x)−pw
pw

≥ 0 a non-decreasing function.

Indeed, with this definition of b(x) we rewrite Equation (49) in the form

λ+
µ

2aw
= − µ

2aw
(2aw − 1)

(

pw
λ

+

x∗

∫

0

(1 + b(x))e
λ
pw

xdx

)

e−
λ
pw

x∗

.

Integrating by parts we obtain pw
λ
+

x∗

∫

0

e
λ
pw

xdx = pw
λ
e

λ
pw

x∗

.

Second step: the limiting case is for b(x) = 0, i.e., p independent of x. In this case, the
eigenvalues are given by

λ± =
−C ±

√
C2 − 4D

2
.
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A structured population model of cell differentiation 27

For C2 − 4D > 0 these two eigenvalues are negative. If C2 − 4D < 0, they are complex
conjugated with negative real parts. In any case, the steady state is locally linearly stable
and the first part of the proposition is proved.
Third step: In the general case, in order to study the sign of the real part of the eigenvalues
λ, we look for values of the parameters such that λ = iω with ω ∈ R. It corresponds to a
Hopf bifurcation and it leads to:

−ω2+iCω+D = − µ

2aw
(2aw−1)iω

x∗

∫

0

b(x) cos(
ω

pw
(x−x∗))dx+

µ

2aw
(2aw−1)ω

x∗

∫

0

b(x) sin(
ω

pw
(x−x∗))dx.

Taking the imaginary part of this equation yields, since ω 6= 0 :

C = − µ

2aw
(2aw − 1)

x∗

∫

0

b(x) cos(
ω

pw
(x− x∗))dx = − µ

2aw
(2aw − 1)

x∗

∫

0

b(x∗ − y) cos(
ω

pw
y)dy

Since b is increasing, b(x∗ − ·) is decreasing. This leads to

Min(x∗, pw
ω

π)
∫

0

b(x∗ − y) cos(
ω

pw
y)dy ≥ 0.

Indeed, either x∗ ≤ π
2
pw
ω
, in which case it is evident because b(x∗ − y) cos( ω

pw
y) ≥ 0 for all

0 ≤ x ≤ x∗, or x∗ ≥ π
2
pw
ω

and we can write

Min(x∗,
pw
ω

π)
∫

0

b(x∗−y) cos(
ω

pw
y)dy ≥ b(x∗−π

2

pw
ω
)

π
2

pw
ω

∫

0

cos(
ω

pw
y)dy−b(x∗−π

2

pw
ω
)|

pw
ω

π
∫

π
2

pw
ω

cos(
ω

pw
y)dy = 0.

To end the proof, let us simply exhibit an example where instability can occur: Let χ
denote the Heaviside function. Defining

b(x) = Bχy∗≤x≤x∗,

we compute explicitely

−ω2+i
µω

2aw
+pwµ

2aw − 1

2aw
= −pwµ

2aw − 1

2aw
iB sin(

ω

pw
(x∗−y∗))+pwµ

2aw − 1

2aw
B
(

cos(
ω

pw
(x∗−y∗))−1

)

.

It provides two relations

ω
pw

= −(2aw − 1)B sin( ω
pw
(x∗ − y∗)), ω2

p2w

2aw
2aw−1

= µ

pw

(

1 +B
(

1− cos( ω
pw
(x∗ − y∗))

)

)

.
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A structured population model of cell differentiation 28

We can see that there exist many sets of parameters such that both relations are satisfied.
Given aw, B, pw, and ω such that

ω

pw(2aw − 1)B
≤ 1,

we can always find x∗ − y∗ such that the first relation is satisfied, and then fix µ using the
second relation.
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Numerical Solution of an Inverse Problem in Size-Structured
Population Dynamics

Marie Doumic ∗‡ Benôıt Perthame†‡ Jorge Zubelli§

June 26, 2008

Abstract

We consider a size-structured model for cell division and address the question of determining
the division (birth) rate from the measured stable size distribution of the population. We propose a
new regularization technique based on a filtering approach. We prove convergence of the algorithm
and validate the theoretical results by implementing numerical simulations, based on classical tech-
niques. We compare the results for direct and inverse problems, for the filtering method and for
the quasi-reversibility method proposed in [1].

1 Introduction

The use of size-structured models to describe biological systems has attracted the interest of many
authors and has a long standing tradition. In particular, the use of size structures was very well
documented and compared to experiments in the 70’s. This led to the survey book [2] and subsequent
mathematical analysis (see also the references in [3]). Needless to say, in such models it is crucial for
the analysis, computer simulation and prediction to calibrate the corresponding model parameters so
as to obtain good quantitative results. Indeed, in the inverse problem literature, a number of authors
have addressed the calibration of certain structured population models. See for example [4, 5, 6, 7]
and references therein.
In this article, we consider theoretical and numerical aspects of the inverse problem of determining

the division rate coefficient B = B(x) in the following specific size-structured model for cell division:





∂
∂tn(t, x) +

∂
∂xn(t, x) +B(x)n(t, x) = 4B(2x)n(t, 2x), x > 0, t > 0,

n(t, x = 0) = 0, t > 0,

n(0, x) = n0(x) ≥ 0.

(1)
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Here, the cell density is represented by n(t, x) at time t and size x. The division rate B expresses the
division of cells of size 2x into two cells of size x.
By making use of flux cytometry technologies for instance, it is possible to determine cell populations

with certain properties as protein content on a large scale of tenths of thousands of cells. In other
applications, like coagulation fragmentation equation [8, 9, 10, 11, 12], or prion aggregation and
fragmentation [13, 14, 15], similar equations arise, and much less is known on aggregate size repartition.
The division rate B(x), on the contrary, is not directly measurable.
The long time behavior of solutions is well known. Indeed, it was proved in [16, 17] that under fairly

general conditions on the coefficients, there is a unique solution (N,λ0) to the following eigenvalue
problem 




∂
∂xN + (λ0 +B(x))N = 4B(2x)N(2x), x > 0,

N(x = 0) = 0,

N(x) > 0 for x > 0,
∫∞
0 N(x)dx = 1,

(2)

where λ0 > 0 and Neµx ∈ L∞ ∩ L1 for all µ < λ0.
It was shown in [18, 16]

n(t, x)e−λ0t −−−−→
t→∞ m0N(x), in L1(R+, φ(x)dx),

where the weight φ is the unique solution to the adjoint problem





− ∂
∂xφ+ (λ0 +B(x))φ = 2B(x)φ(x2 ), x > 0,

φ(x) > 0,
∫∞
0 φ(x)N(x)dx = 1.

(3)

In other words, λ0 is the growth rate of such a system and is usually called “Malthus parameter” in
population biology. From [18, 16, 3] we also know that λ0 is related to N by the relation

λ0 =

∫∞
0 Ndx∫∞
0 xNdx

. (4)

The question we address here is the following: How can we estimate the division rate B from the
knowledge of the steady dynamics N and λ0 ? The inverse problem thus consists of finding B a
solution to

4B(2x)N(2x)−B(x)N(x) = L(x) :=
∂

∂x
N(x) + λ0N(x), x > 0, (5)

assuming that (N,λ0) is known, or thanks to (4) that N is known. As seen in [1], this problem is
well-posed if N satisfies strong regularity properties such as ∂

∂xN(x) ∈ Lp(R+) for some p > 1.
However, in practical applications we have only an approximate knowledge of (N,λ0), given by noisy

data (Nε, λε), with Nε ∈ L2
+(R+) for instance.

1 This means that we have no way of controlling ∂
∂xNε,

so we cannot control the precision of a solution Bε to problem (5) when a perturbed Nε replaces N .
Furthermore, it is not even clear whether such a Bε exists.

1Actually, our knowledge of λ0 is presumably an order of precision higher than that of N , since the rate λ0 can be
estimated independently by means of time information.
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The question we focus on is then: How to approximate the problem (5) in order to get a solution
Bε as close as possible to the exact division rate B?

We remark that, in the context of noisy data, the inverse problem under consideration is ill-posed [1]
and thus regularization would be required. A natural tool to be invoked from the inverse problem
literature would be some kind of Tikhonov regularization method [19, 20]. However, this would lead to
computationally intensive problems. Indeed, for each forward problem evaluation a dilation-differential
equation of the form (2) would have to be solved.
In [1], two of the present authors proposed a method of regularization consisting in the solution of

the following approximate problem:




α ∂
∂y (Bε,αNε) + 4Bε,α(y)Nε(y) = Bε,α

(y
2

)
Nε

(y
2

)
+ λ0Nε

(y
2

)
+ 2 ∂

∂y

(
Nε

(y
2

))
, y > 0,

(Bε,αNε)(0) = 0,

where α is a regularizing parameter. It was shown that a convergence rate of order
√
ε could be

obtained, for α = O(
√
ε), where ε is the error on the data N in an appropriate norm.

The above method of the solution to the inverse problem will be called quasi reversibility in accor-
dance with the general spirit of the terminology of [21, 22]. The main goal of this work is to investigate
the numerics of such approach, to consider an alternative technique based on filtering ideas and to
compare the performance of the different methods. The alternative technique is also analyzed from
the theoretical point of view and estimates are presented.
In this work, we have modified slightly the original regularization equation by writing λε,α instead

of λ0 for the reasons we shall explain in the sequel. Thus, we work with




α ∂
∂y (Bε,αNε) + 4Bε,α(y)Nε(y) = Bε,α

(y
2

)
Nε

(y
2

)
+ λε,αNε

(y
2

)
+ 2 ∂

∂y

(
Nε

(y
2

))
, y > 0,

(Bε,αNε)(0) = 0.

(6)

Indeed, in order to conserve regularity properties of the solution H = BN to the inverse problem, we
want it to be both in L1(R+) and in L1(R+, xdx) in order to express that both the total number of
cells and the total biomass are finite. Hence, formal integration of Equation (6) gives

λε,α

∫ ∞

0
Nεdx =

∫ ∞

0
Bε,αNεdx, (7)

and integration against the weight x gives

−α
∫ ∞

0
Bε,αNεdx = 4λε,α

∫ ∞

0
xNεdx− 4

∫ ∞

0
Nεdx. (8)

Hence, we have to choose, according to the eigenvalue theory:

λε,α =

∫∞
0 Nεdx∫∞

0 xNεdx+ α
4

∫∞
0 Nεdx

. (9)

The choice of λε,α can be understood as a compatibility condition when α > 0 and for α = 0 it tells us
that (N,λ0) is overdetermined data for the inverse problem. Therefore, if we have a priori knowledge
on λ0, we could verify its distance to λε,α as a way of checking the error of the inverse problem solution.
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The plan of this work is the following: In Section 2, we propose yet another method to regularize
the inverse problem, and obtain a convergence rate. The convergence rate turns out to be as good as
the one in [1]. In Section 3 we give a numerical method to solve it, and in Section 4 we show some
numerical simulations so as to compare the accuracy of the different methods.

2 Regularization by Filtering

2.1 Filtering approach

Taking a closer look at Equation (5), we see that all the difficulties come from the differential term
∂
∂xN. In [1], the choice was to add an equivalent derivative α ∂

∂x(BN) to the equation; here on the
contrary, we choose to regularize it by a convolution method.
For α > 0, we use the notation

ρα(x) =
1

α
ρ(
x

α
), ρ ∈ C∞

c (R),
∫ ∞

0
ρ(x) dx = 1, ρ > 0, Supp(ρ) ⊂ [0, 1], (10)

and we replace in (5) the term ∂
∂xNε + λ0Nε by

( ∂
∂x
Nε + λε,αNε

)
∗ ρα(x) = Nε ∗

( ∂
∂x
ρα + λε,αρα

)
(x) =

∫ ∞

0
Nε(x

′)
( ∂
∂x
ρα + λε,αρα

)
(x− x′)dx′.

We now use the notation
Nε,α = Nε ∗ ρα.

In this way, we obtain a smooth term in L2(R+). Furthermore, Nε,α converges to Nε in L
2(R+) when

α tends to zero. We now have to consider the following problem:
Find Bε,α solution of

4Bε,α(2x)Nε,α(2x) +Bε,α(x)Nε,α(x) =
∂

∂x
Nε,α + λε,αNε,α(x), x > 0 . (11)

As in Equation (6), for the quasi-reversibility method, we need to choose λε,α appropriately. Indeed,
we perform the same manipulations leading to Equation (9) to get

λε,α =

∫∞
0 Nε,α(x)dx∫∞
0 xNε,α(x)dx

. (12)

By Theorem A.3 (see the Appendix), we know that the problem in Equation (11) has a unique
solution Bε,α ∈ L2(R+, N

2
ε,αdx).

2.2 Estimates for the filtering approach

The main result of this section establishes an estimate for the regularization of the inverse problem
by means of the filtering method described above.

Theorem 2.1 Suppose that N ∈ H2(R+) and B ∈ L∞(R+), B > 0 verify (2). Let ε > 0 and
Nε ∈ L2(R+), Nε(x) > 0 for x > 0, such that

||Nε −N ||L2(R+) 6 ε||N ||L2(R+).
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Let Bε,α ∈ L2(R+, N
2
ε,αdx) be the unique solution of (10) and (11). We have the following estimate:

||Bε,α −B||L2(N2
ε dx)
6 C(α+ |λε,α − λ0|)||N ||H2(R+) +

C

α
||Nε,α −N ||L2(R+), (13)

where C is a constant depending only on ||B||L∞ , ||Bε,α||L∞ and the regularizing function ρ.

This theorem relies on a first estimate.

Proposition 2.2 Using the same notations as in Theorem 2.1, we have

||Bε,αNε,α−BN ||2L2(dx) 6 C
(
1 + λ20

)(
1 +

1

α2

)
||Nε−N ||2L2(dx)+C(α

2+|λε,α−λ0|2)||N ||2H2(R+) , (14)

where C depends only on the regularizing function ρ.

Proof of Prop. 2.2: Denote by Q = Bε,αNε,α − BN, R = Nε,α − N and δ = λε,α − λ0. From
Equations (2) and (11), Q verifies:





∂
∂xR(x) + λ0R(x) + δNε,α(x) +Q(x) = 4Q(2x), x > 0,

Q(x = 0) = 0.

(15)

(Since Nε,α ∈ H1(R+), the definition of Q(x = 0) is not ambiguous.) Multiplying this equation by
Q(2x) and integrating on the interval (0, y) yields

4

y∫

0

Q(2x)2dx =

y∫

0

Q(2x)
∂

∂x
R(x)dx+ λ0

y∫

0

Q(2x)R(x)dx

+ δ

y∫

0

Q(2x)Nε,α(x)dx+

y∫

0

Q(2x)Q(x)dx.

From the Cauchy-Schwarz inequality, after the change of variables x→ 2x, we have

4

y∫

0

Q(2x)2dx 6 1

2

y∫

0

(
∂

∂x
R

)2

(x)dx+
1

2

y∫

0

Q(2x)2dx+
λ0
2

y∫

0

CR(x)2dx+
λ0
2

y∫

0

Q(2x)2

C
dx

+
|δ|2
2

y∫

0

Nε,α(x)
2dx+

1

2

y∫

0

Q(2x)2dx+
1

2

y∫

0

Q(2x)2dx+

y
2∫

0

Q(2x)2dx.

We take, for instance, C = λ0. We obtain

||Bε,αNε,α −BN ||2L2 6 ||Nε ∗
∂

∂x
ρα − ∂

∂x
N ||2L2 + λ20||Nε ∗ ρα −N ||2L2 + |λε,α − λ0|2||Nε ∗ ρα||2L2 . (16)

The last two terms of this inequality are easy to estimate, writing

||Nε ∗ ρα −N ||L2 6 ||Nε ∗ ρα −N ∗ ρα||L2 + ||N ∗ ρα −N ||L2 6 C (||Nε −N ||L2 + α||N ||H1) ,
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and
||Nε ∗ ρα||L2 6 C||N ||L2 .

It remains to evaluate the first term on the right-hand side of inequality (16). We write

||Nε ∗
∂

∂x
ρα − ∂

∂x
N ||2L2 6 2||Nε ∗

∂

∂x
ρα −N ∗ ∂

∂x
ρα||2L2 + 2||N ∗ ∂

∂x
ρα − ∂

∂x
N ||2L2 .

By a convolution estimate we evaluate the first term as

||Nε ∗
∂

∂x
ρα −N ∗ ∂

∂x
ρα||2L2(R+,dx) 6 ||Nε −N ||2L2(R+,dx)||

∂

∂x
ρα||2L1 .

Since
∫∞
0 | ∂

∂xρα(x)|dx = 1
α

∫∞
0 | ∂

∂xρ(y)|dy, we have

||Nε ∗
∂

∂x
ρα − ∂

∂x
N ||2L2(R+,dx) 6

C(ρ)

α2
||Nε −N ||2L2(R+,dx) + 2||N ∗ ∂

∂x
ρα − ∂

∂x
N ||2L2(R+,dx) .

To evaluate the last term ||N ∗ ∂
∂xρα− ∂

∂xN ||2L2 , we extend to R the functions N and ∂
∂xN by zero and

consider their Fourier transforms. We denote f̂(ξ) the Fourier transform of f ∈ L2(R+) at ξ, where f
is extended as zero on R−. We obtain by Fourier analysis

||N ∗ ∂

∂x
ρα − ∂

∂x
N ||2L2(R+,dx) = ||iξN̂ ρ̂α − iξN̂ ||2L2(R+,dx) 6

∫ ∞

−∞
|N̂(ξ)|2|ξ|4 |ρ̂α(ξ)− 1|2

|ξ|2 dξ.

Using that

| |ρ̂α(ξ)− 1|2
ξ2

| 6 C(ρ)α2, (17)

where C(ρ) only depends on the regularization function ρ, we have that

||N ∗ ∂

∂x
ρα − ∂

∂x
N ||2L2(R+,dx) 6 C(ρ)α2||N ||2H2(R+) .

Going back to (16), this concludes the proof of Proposition 2.2.

We can now deduce the proof of Theorem 2.1. We write:

||Bε,α −B||L2(N2
ε dx)
6 ||Bε,αNε −Bε,αNε,α||L2(R+) + ||Bε,αNε,α −BN ||L2(R+) + ||BN −BNε||L2(R+).

Using Proposition 2.2, and the fact that

||Nε −Nε,α||L2 6 2||Nε −N ||L2 + α||N ||H1 ,

this inequality gives the result.

3 Numerical Solution of the Inverse Problem

This section is concerned with the numerical aspects of the solution of the inverse problem. In order
to do that we start with a description of the solution to the direct one in Subsection 3.1.
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3.1 Direct Problem

In the direct problem, we assume we know the proliferation rate B, we look for N and λ0 > 0 solutions
of (2). For this purpose, we solve the time-dependent problem (1) and look for a steady dynamics. As
already said, this problem is well-posed (see for instance [3]) and it was proved in [18] that solutions
grow at an exponential rate towards ρN(x)eλ0t with ρ =

∫∞
0 n(0, x)φ(x)dx, recalling the notation in

(3). Furthermore, under more restrictive conditions it was shown in [16] that there exists constants
µ > 0 and C(n0) > 0, such that

||n(t, x)e−λ0t − ρN(x)||L1(R+,φ(x)dx) 6 Ce−µt.

To solve it numerically, we discretize the problem (1) along a regular grid, denote by ∆t the time step
and by ∆x = L/I the spatial step, where I denotes the number of points and L the computational
domain length: xi = i∆x, 0 6 i 6 I.
We use an upwind finite volume method (cf. [23, 24, 25])

nki =
1

∆x

x
i+1

2∫

x
i− 1

2

n(k∆t, y)dy,
1

∆t

∆t∫

0

n(k∆t+ s, xi+ 1
2
)ds ≈ nki .

For the time discretization, we use a marching technique. We choose the time step ∆t so as to satisfy
the largest possible CFL stability criteria θ := ∆t

∆x = 1.
The numerical scheme is given, for i = 1, ..., I, by nk0 = 0 and

nk+1
i − nki
∆t

+
nki − nki−1

∆x
+Bin

k+1
i = B2i−1n

k
2i−1 + 2B2in

k
2i +B2i+1n

k
2i+1 , (18)

with the convention that nj = 0 for j > I. For stability reasons, we have used an implicit method for
the division term in the left hand side and explicit for the right hand side of the equation. The specific
form for the right hand side is simply motivated by the need of also dividing cells of odd labels.
According to the power algorithm, we do not keep nk+1 from (18) but rather renormalize it as

ñk+1 =
nk

∆x
I∑

j=1
nkj

.

It is standard, for these positive matrices arising in (18), that

ñk+1 −→
k→∞

N,
I∑

i=1

Ni = 1, Ni > 0,

where N is the dominant eigenvector for the problem

Ni −Ni−1

∆x
+ (λ0 +Bi)Ni = B2i−1N2i−1 + 2B2iN2i +B2i+1N2i+1.

One can also find the dominant eigenvalue as

λ0 = lim
k→∞

1

∆t
log

(
I∑

i=1
nk+1
i

I∑
i=1

nki

)
.
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For matrices with one dominant eigenvalue and a corresponding one-dimensional eigenspace, it is
known that the power algorithm is fast and in fact converges with exponential rate [26]. In practice
we can stop the iterations when the relative error on the normalized quantity

1

∆t

( I∑

i=1

ñk+1
i −

I∑

i=1

ñki

)

is small enough, say of the order of 10−10.

3.2 Inverse Problem: General Strategy

In the sequel, we denote by H the product B.N and its approximations. Indeed, from Equations (6)
or (11), we have to search for the product H = Bε,αNε or H = Bε,αNε,α before computing Bε,α. In
particular, we cannot avoid a loss of information where Nε is small, i.e., for x ≈ 0 or x� 1.
The inverse problem (5), as well as (11), can be written as

4H(2x)−H(x) = L(x), (19)

with different expressions for H and L. We may think of two possible numerical approaches.

Strategy 1. Compute H(2x) from H(x): This means that we re-write Equation (19) with the new
variable y = 2x, and arrive at

4H(y)−H(
y

2
) = L(

y

2
). (20)

The scheme departs from zero, and one deduces the values of Hi step by step, from the knowledge of
Hj for j 6 i− 1.

Strategy 2. Compute H(x) from H(2x): The scheme departs from the largest point x = L of our
simulation domain. We suppose that for x > L we have H(x) = H(L) = 0 (it is relevant since we
suppose that N vanishes for x large: see below), and then deduce the smaller values Hi step by step,
from the knowledge of Hj for j > i+ 1.

The two approaches do not necessarily lead to the same result because the continuous equation

4H(2x)−H(x) = 0 (21)

has infinitely many solutions. This issue is interesting on its own and is related to the construction of
wavelets, see [27]. It is discussed in Proposition A.1 of the Appendix.
By imposing H ∈ L2(R+), we select a unique solution, as shown in Theorem A.3. The question is

then: Which numerical strategy should we use to select the correct solution, i.e. the one in L2(R+) ?
Among the solutions of Equation (19), we single out two, defined by the power series:

H(1)(x) =

+∞∑

n=1

2−2nL(2−nx) and H(2)(x) = −
+∞∑

n=0

22nL(2nx) , ∀ x > 0.

Proposition A.1 shows that for L ∈ L2(R+, x
pdx), there is a unique solution in L2(R+, x

pdx), given
by H(1) if p < 3 and by H(2) if p > 3 (and the power series converge in the corresponding spaces).
For B > 0 smooth and bounded from above and from below, we know that N is smooth and

vanishes at x ≈ 0 and x ≈ ∞, and BN inherits these properties. For instance, we know that
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H ∈ L2(dx) ∩ L2(x4dx). By uniqueness of a solution in each space, Proposition A.1 implies that
H(2) = H(1), or equivalently:

+∞∑

n=−∞
22nL(2nx) = 0, ∀ x > 0.

This very particular property cannot be verified at the discrete level. Hence, the two strategies
generally give two different approximations of the same solution of (19). The first strategy selects an
approximation of the solution H(1) whereas the second selects an approximation of the solution H(2).
In the case of a very regular data N , then H(2) will perform better around infinity, whereas H(1) will
be better around zero. However, if N is a solution of Equation (2), when we increase the number of
points, the two approaches converge to the same solution since H(2) = H(1).
Since our simulation domain [0, L] is bounded and contains zero, we prefer the first strategy. This

choice is confirmed by all the numerical tests we have performed: the second approach has always
lead to a solution exploding around zero. However, for the sake of completeness, we also describe the
scheme we used for the second approach.

3.3 Inverse Problem: Filtering Approach

According to strategies 1 and 2, we now present two approaches to handle the numerical solution of the
inverse problem regularized with the filtering approach. Both need to first compute the convolution
terms arising in (11). To do so we first take the Fast Fourier Transform F of Nε, multiply it by iξρ̂α(ξ),
and then take the inverse Fast Fourier Transform F∗. We choose and define the regularization function
ρα by its Fourier transform:

ρ̂α(ξ) =
1√

1 + α2ξ2
.

This leads us to the numerical approximation

∂

∂x
Nε,α ≈ dNα = F∗

(
iξρ̂α(ξ)F(Nε)(ξ)

)
. (22)

We also impose dNα,0 = 0 for compatibility with the continuous equation and further use.
As mentioned earlier, there are two alternatives, either starting from zero or coming from infinity.

The Filtering Approach Starting from Zero (strategy 1). We solve Equation (11) considered
as an equation in the variable y = 2x, that is to say (20), in order to compute its solution H(1)(x).
At the discrete level, we use the notations

Hf
i ≈ BiNi, Lf

i = dNα,i + λε,αNi, Lf
0 = 0.

The discrete version of (20) reads

4Hf
i = Hf

i
2

+ Lf
i
2

, ∀ 0 6 i 6 I, (23)

and we need to define the quantities G i
2
. We choose

G i
2
=





G i
2

when i is even,

1
2

(
G i−1

2
+G i+1

2

)
when i is odd.

(24)
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In particular, we have Hf
0 = 0.

Summing up all the terms in (23) for 1 6 i 6 I, we find (with I even to simplify):

4

I∑

i=0

Hf
i = 2

I
2∑

i=0

(Hf
i + Lf

i )−
1

2
(Hf

I/2 + Lf
I/2).

Since we have assumed that N has exponential decay for x� 1, it follows that

I∑

i=0

Hf
i =

I∑

i=1

Lf
i + EI , with |EI | 6 2

I∑

i= I
2

|Hi|. (25)

Multiplying (23) by xi and summing up again, we find

I
2∑

i=1

xiL
f
i = FI , with |FI | 6

I∑

i= I
2

xi|Hi|. (26)

As a consequence, we can choose:

λε,α = −
∑
xidNα,i∑
xiNi

, (27)

as the discrete version of the relations (4) or (12).

The Filtering Approach Starting from Infinity (strategy 2). Another method is to discretize

the formulation (19) in order to compute its solution H(2)(x). We define the extension Hf
i = 0 for

i > I + 1, and for 2 ≤ i ≤ I, we define by backward iterations

Hf∞
i = 2Hf∞

2i +Hf∞
2i+1 +Hf∞

2i−1 − Lf
i . (28)

This however does not apply to the indices i = 0, 1 and we set Hf
0 =

Lf
0
3 = 0 and Hf

1 = 4Hf
2 − Lf

1 .
By summing up all the terms in (28), we find balance properties equivalent to (25)–(26), but with
remainders EI and FI depending on H1 and H2 instead of Hi> I

2
. One has to check a posteriori that

these last quantities are very small ; it is not the case in a standard calculation, but becomes true
when the precision of the direct problem scheme increases.

3.4 Inverse problem: Quasi-Reversibility Approach

In this section, we present a numerical scheme for the regularized inverse problem proposed in [1].
This problem leads to solving (6) taken at y = 2x, that is





α ∂
∂y (Bε,αNε) + 4Bε,α(y)Nε(y) = Bε,α

(y
2

)
Nε

(y
2

)
+ λε,αNε

(y
2

)
+ 2 ∂

∂y

(
Nε

(y
2

))
, y > 0,

(Bε,αNε)(0) = 0,

where α > 0 is the regularizing parameter and λε,α is defined by (9). This gives, in a discretized
version, after dropping the index ε,

λε,α =

∑
Ni∑

xiNi +
α
4

∑
Ni
. (29)
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For the numerical discretization we set HQ
−1 = 0 and also recall that N0 = 0 and assume that the

data satisfies NI+1 = 0. We use a standard upwind scheme for the differential term:

α

∆x
(HQ

i −HQ
i−1) + 4HQ

i = HQ
i
2

+ LQ
i
2

, (30)

where we have defined the fractional indices as in the filtering approach by (24), and here

LQ
i = λεNi +

Ni+1 −Ni

∆x
.

If we neglect the terms HQ

i> I
2
+1

, we can easily verify a discrete version of the balance laws (7) and (9),

equivalent to (25)–(26).

4 Numerical Tests

As input data, we take the values of the function N obtained by the numerical solution of the direct
problem in Section 3.1, we add a random noise uniformly distributed in [− ε

2 ,
ε
2 ], and we enforce

nonnegativity of the data
Nε = max(N + ε r, 0).

We solve the direct problem on a regular grid of I + 1 points, on an interval [0, 2L]. We need L large
enough, such that it is possible to assume that N(x > L) ≈ 0 and we have checked it a posteriori.
Indeed, we have seen that this property is essential when we use the inverse schemes on a domain
[0, L] in order to verify the balance laws (7)–(9). In other words, we solve the direct problem on a
domain twice larger than for the inverse problem. In the numerical tests we take L = 4, and we show
the numerical solution N only on the interval [0, L] since it is uniformly small on [L, 2L].
We solve the inverse problem by the different methods on a regular grid of I1 + 1 points on [0, L],

with ∆x1 = L/I1. This grid is taken ten times finer than the grid used for the direct problem, i.e. we
take I1 = 10I. Since we have chosen L large enough so that N(x > L) ≈ 0, we have always obtained
that indeed H(x > L) ≈ 0.
As before, we denote by HQ and Hf the solution data H obtained respectively by the quasi-

reversibility method of Section 3.4 and by the first filtering approach (from zero) of Section 3.3. We
also define a solution HfQ by mixing both methods, i.e. by solving the following equation:





α ∂
∂x(Bε,αNε)(y) + 4Bε,α(y)Nε(y)−Bε,α(x)Nε(x) =

(
∂
∂xNε + λε,αNε

)
∗ ρα(x), x > 0,

Bε,α(x = 0)Nε(x = 0) = 0,

(31)

where λε,α is defined by

λε,α =

∫∞
0 Nε ∗ ραdx∫∞

0 xNε ∗ ραdx+ α
4

∫∞
0 Nε ∗ ραdx

. (32)

The relative error is measured, as seen in Theorem 2.1 and in Theorem 5.1 of [1], by

δQ =
||BNε −HQ||2l2

||Nε||l2
, δf =

||BNε −Hf ||2l2
||Nε||l2

, δfQ =
||BNε −HfQ||2l2

||Nε||l2
.

11



We have divided by ||Nε||L2 and not by ||N ||H2 because in practice we only know the entry data with
noise.
In order to illustrate the accuracy of our method, we also compare it to a naive way (brute force) of

considering the equation. Namely, we approximate ∂
∂xN(x) by a second-order Euler scheme without

regularization. It gives a solution Hb by the same formula (30), where we simply take α = 0.

The Direct Problem. We have first tested the direct problem for various division rates B. Three
different solutions N for three given division rates B are depicted in Figure 1 with 800 grid points.
In the particular case when B is constant, we can go further and evaluate the computational error.

Then, we know that λ = B and the exact solution Nexact can be explicitly calculated, as shown in
[16, 3], by the formula:

Nexact(x) = N̄
∞∑

n=0

αne
−2nBx, (33)

where the coefficients are defined recursively by α0 = 1 and αn = (−1)n 2αn−1

2n−1 , and N̄ is chosen to
ensure the mass one normalization. We take B = 1 and obtain the continuous curve of Figure 1. We
can measure here the relative error by

δD =
‖N −Nexact‖l1

‖Nexact‖l1
,

where N represents the numerical solution of Section 3.1. We choose this norm because for B constant,
the solution of the adjoint problem is φ = 1 and the General Relative Entropy Principle ([18, 3]) gives
us that this quantity decreases along the time iterations. Still for 800 points, we obtain δD = 7.7.10−3.

Figure 1: Solutions N (left) obtained by the numerical resolution of Section 3.1 for the direct problem
with three different division rates B (right).

The noiseless case (ε = 0). In the simplest case where the data is perfectly known, i.e. for ε = 0,
we verify that the different schemes allow us to recover B. Since the precision of the data is directly

12



linked to the number of points used in the scheme, we run the codes with 1.000 points for the direct
problem (below, we will take only 100 points).
We test several values of α and we use the three functions B of Figure 1 for each method for the

inverse problem. The error estimate is found to depend on the method used but not significantly on
the division rate B. Therefore we have drawn in Figure 2 the average error estimates for the three
division rates B. In Figure 3 we have depicted the products B.N in the case B = 1 and α = 0.01
(other cases are similar): it shows that the precision obtained is satisfactory. In Figures 4, 5 and 6 we
have drawn the approximations of B in each of the three cases, calculated only for N > 0.01 (indeed,
for N too small the division leads to insignificant results on B).
Not surprisingly, the brute force method reveals to be satisfactory, with an error estimate of δb =

1.3.10−2, since we are in the case where N is very regular. The filtering method can reach this level of
error for α = 10−2 but cannot go further. However, both the quasi reversibility method and the mixed
method given by Equation (31) improve it with minimum values δQ = 6.9.10−3 and δfQ = 6.5.10−3

reached for α = 10−2.

Figure 2: For ε = 0, numerical errors obtained
with the different methods for the inverse prob-
lem.

Figure 3: Numerical reconstruction of B.N ob-
tained by each method for the inverse problem
when B = 1, ε = 0 and α = 0.01.

Link between the noise level ε and the regularization parameter α. For noise levels ε = 0.01,
ε = 0.05 and ε = 0.1 respectively, the Figures 7, 8 and 9 give the curves ε as a function of α for the
three inverse methods. We compare the reconstructed division rates B in Figures 10 and 11.
Each of the error curves presents a minimum for an optimal value of α, as expressed by estimate

(13) for instance. In Figures 12, 13, 14 and 15, we have compared three curves, drawn in a log-log
scale:

√
ε to serve as a reference curve, f(ε) = min

α
δ(α, ε), and g(ε) = argmin

α
δ(α, ε). One can see

that for each method, these three curves have comparable slopes (12 on a log-log scale): they show that
even though the combination of filtering and quasi-reversibility method improves the optimal errors
in absolute value, it does not change the order of convergence of the approximation, which remains
of order O(

√
ε). Figure 15 gives also the convergence of the filtering method for much smaller values
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Figure 4: Reconstructed division rate B using
the three inverse methods, for ε = 0, α = 0.01
with N computed from B = 1.

Figure 5: Reconstructed division rate B, for
ε = 0, α = 0.01 and a jump B = 1 to 5 as in
Figure 1

of ε (for which an increased number of 500 points has been taken, in order to avoid numerical bias):
the comparison with

√
ε is there particularly evident, and we have obtained similar curves for the

two other methods. The speed of convergence is though in complete accordance with the theoretical
estimate (13).

Influence of the choice of λ0 instead of λε,α. To evaluate the influence of the error term due to
the distance |λε,α − λ0|, we compare the curves obtained respectively by taking on the inverse code
the exact λ0 or the value λε,α expressed by the balance laws. They are drawn in Figure 13 for the
quasi-reversibility method. They show that even though the a priori knowledge of λ0 improves the
error in absolute value, it does not change the order of convergence of the scheme. Thus it is in
complete accordance with Estimate (13).

5 Conclusions

We have considered size-structured equations connected to several areas of biology from cell division
to prion proliferation by aggregation and fragmentation. We have addressed the numerical efficiency
of some inverse problem solution methods to tackle the problem of recovering the division rate from
the size distribution of cells. The latter involves a dilation equation with a singular right-hand side
that needs regularization for actual implementation. For that purpose, we have introduced a filtering
method and proved its convergence for noisy data. This method brings in an operator that has a
non-trivial kernel and we have selected a numerical approximation that is able to recover the natural
solution we want to reach.
The implementation of the inverse algorithm, based on the filtering method, confirms the conver-

gence analysis. In particular, there is an optimal regularization parameter as can be seen in the
graphs of Figures 7, 8 or 9 for instance. Comparison with a quasi-reversibility method introduced
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Figure 6: Reconstructed division rate B, for
ε = 0, α = 0.01 and B = 1 + exp(−8(x− 2)2).

Figure 7: Numerical error when ε = 0.01 for
the different methods.

earlier leads to the conclusion that a combination of filtering and quasi-reversibility methods seems to
be more efficient because the oscillations are reduced, but without improving the rate of convergence.
We also analyzed the impact of using the exact value of λ0 or the λε on the different solutions of the

inverse problem. In our simulations, the difference between using λ0 or λε seemed to be immaterial as
far as the accuracy of method is concerned. This is in perfect accordance with the theoretical estimate
(13).
The above remarks open several directions for continuation and extension of the present work. On

the practical side, the present work sets the stage for the use of experimental data either from the
existing literature or from more recent biological experiments. On the theoretical side, the possibility
of improving the convergence by combining the filtering and quasi-reversibility methods should be
investigated further.
Finally, we point out that although the Tikhonov method is more standard, we did not study it

so far because it seems more time consuming. Indeed, iterations are needed to solve both the direct
problem and the inverse one. To overcome such difficulty a completely new theory has to be developed
so as to suit the particular structure of our model. This provides yet another direction for future work.
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Figure 8: Numerical error when ε = 0.05. Figure 9: Numerical error when ε = 0.1.

A Well-Posedness of Functional Equation Associated to the Inverse
Problem.

We have seen that the regularization method for the inverse problem relies mostly on solving the
equation

4H(2x)−H(x) = L(x), x ≥ 0. (34)

Eventhough this equation is formally very simple, its analysis reveals some complexity. It may admit
several solutions in general. Among them, we can mention two with simple representation formulas
(we leave to the reader to check they are indeed formally solutions)

H(1)(x) =
+∞∑

n=1

2−2nL(2−nx). (35)

H(2)(x) = −
+∞∑

n=0

22nL(2nx), (36)

To clarify this issue and motivate our choice of a solution, we first state general results concerning
solutions to (34) and then come back to our original problem (5).
We first mention the following

Proposition A.1 Let L ∈ L2(R+, x
pdx), with p 6= 3, then there exists a unique solution H ∈

L2(R+, x
pdx) to (34) and

• for p < 3, this solution is given explicitly by the formula (35). Furthermore, for 1 ≤ q ≤ ∞, if
L ∈ Lq(R+) then H

(1) ∈ Lq(R+).
• for p > 3, this solution is given explicitly by the formula (36).

Because we look for an integrable function H (the number of cells is supposedly finite), the function
H(1) is preferable (take q = 1). It also behaves better near x ≈ 0 because the weight p < 3 imposes
that H(1) vanishes at 0 as we expect.
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Figure 10: In the case ε = 0.01, α = 0.05, B = 1 + e−8(x−2)2 , numerical solution B.N (left) and B
(right) by the different methods.

From the point of view of exact solutions of the direct problem, we find that H = BN and L belong
to all spaces L2(R+, x

pdx) for all p ∈ R. Therefore, the two solutions coincide and in principle we
could choose any of them. In practice, errors on the data L are better handled by H(1) than by H(2)

for the afore mentioned reason. Notice indeed that these two solutions are different in general. One
can check for instance that for L = 0, there is a singular distributional solution δ′x=0. Furthermore,

Lemma A.2 The solutions to (34) with L = 0 in D′(0,∞) have the form f(log(x))
x2 with f ∈ D′(R) a

log(2)− periodic distribution.

Proof of Proposition A.1: We consider the Hilbert space X = L2(R+, x
pdx) and we simply apply

the Lax-Milgram theorem to a properly chosen bilinear form.

Case 1, p < 3. We solve the equation in the variable y = 2x that is (20). and consider the bi-
linear form a(u, v) on X ×X defined by

a(u, v) = 4

∫ ∞

0
u(y)v(y)ypdy −

∫ ∞

0
u(
y

2
)v(y)ypdy.

This form is obviously continuous and it remains to prove that it is coercive. We have

a(u, u) = 4

∫ ∞

0
u(y)2ypdy −

∫ ∞

0
u(
y

2
)u(y)ypdy > (4− 2

p+1
2 )

∫ ∞

0
u(y)2ypdy,

and it is indeed coercive as long as α = 4 − 2
p+1
2 is positive which holds true for p < 3. The Lax-

Milgram Theorem asserts that there is a unique H ∈ X such that a(H, ·) = (L, ·), where (·, ··) denotes
the inner product in X, that is a solution of (20).

Case 2, p > 3. We work in the variable x and consider the continuous bilinear form b(u, v) on
X ×X defined by

b(u, v) = −4

∫ ∞

0
u(2x)v(x)xpdx+

∫ ∞

0
u(x)v(x)xpdx.
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Figure 11: In the case ε = 0.1
and B = 1, the numerical solu-
tion B.N by the different methods.

10-2 10-1

10-1

minimal error taken over all α
square root of ε
α giving the minimal error

Filtering + quasi-reversibility method

ε

Figure 12: Filtering and quasi-reversibility
method: minimal error as a function of the
noise level ε for the optimal value α, with a
comparison to the theoretical curve

√
ε.

The same calculation leads us to:

b(u, u) > α
∫ ∞

0
u(x)2xpdx, with α = 1− 2

3−p
2 > 0,

and the same conclusion holds.

To check formulae (36) and (35), it remains to prove that these solutions belong to the corresponding
spaces:

‖H(1)‖L2(R+,xpdx) 6
∞∑

n=1

2−2n||L(2−nx)||L2(R+,xpdx) =
∞∑

n=1

2
n
2
(p−3)||L(x)||L2(R+,xpdx).

This sum converges iff p > 3. In the same way, we write:

||H(2)||L2(xpdx) 6
∞∑

n=0

22n||L(2nx)||L2(R+,xpdx) =
∞∑

n=0

2
n
2
(3−p)||L(x)||L2(R+,xpdx),

which converges iff p > 3.

Proof of Lemma A.2: When L = 0, we first define H ∈ D′(0,∞) as the second antiderivative of H,
and notice that it should verify

H(2x) = H(x).

We perform the change of variables y = log(x) and notice that, if H ∈ D′(0,∞), it is equivalent to
look for solutions f ∈ D′(R) of

f
(
y + log(2)

)
= f(y). (37)
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minimal error obtained over all α
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Figure 13: Quasi-reversibility method, with (left) λε,α given by relation (9) or (right) a priori knowl-
edge of λ0 : minimal error and optimal regularization parameter α as functions of the noise level ε,
with a comparison to the theoretical curve

√
ε. We see that the a priori knowledge of λ0 does not

improve the speed of convergence of the scheme.

Hence, all the solutions in D′(0,∞) are given by
f
(
log(x)

)
x2 , where f ∈ D′(R).

To conclude this Appendix, we come back to our original problem (5) and draw the consequences
in terms of B, not H.

Theorem A.3 Let N ∈ L2(R+), with N(x) > 0 for x > 0. Let L ∈ L2(R+). There exists a unique
B ∈ L2(R+, N

2dx) solution of

4B(2x)N(2x)−B(x)N(x) = L(x). (38)

Proof: The theorem follows directly from Proposition A.1 for p = 0, and since N > 0, we can define
B = H/N for B ∈ L2(R+, N

2dx).

This theorem shows that we can find a solution B of (5) for all N and all λ, this is the basis of our
algorithm. However, if we want that the solution B belongs to the space L1(R+;xN(x)dx), integration
of (38) multiplied by x shows that L has to satisfy the condition

∫ ∞

0
xL(x)dx = 0.

Applying this to Equation (5), we recover that λ0 =
∫∞
0 N(x)dx/

∫∞
0 xN(x)dx. In the case of Equa-

tions (6) and (11) respectively, we get formulae (9) and (12), which discrete versions are expressed by
(29) and (27).
In view of these considerations, it is better to use a discrete scheme defined by a matrix A that

preserves a similar discrete property. Namely, for all H = (Hi), we should have
∑
i
i(AH)i = 0, in

other words the vector of components i belongs to the kernel of the adjoint of A. Indeed, this property
yields the (discrete) regularity H ∈ L1(R+;xdx).
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Figure 14: Filtering method for standard levels
of noise.
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Figure 15: Filtering method for smaller values
of ε and increased number of points.
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NONPARAMETRIC ESTIMATION OF THE DIVISION RATE OF A
SIZE-STRUCTURED POPULATION ∗

M. DOUMIC† , M. HOFFMANN‡, P. REYNAUD-BOURET§, AND V. RIVOIRARD¶

Abstract. We consider the problem of estimating the division rate of a size-structured population in a non-
parametric setting. The size of the system evolves according to a transport-fragmentation equation: each individual
grows with a given transport rate, and splits into two offsprings of the same size, following a binary fragmentation
process with unknown division rate that depends on its size. In contrast to a deterministic inverse problem approach,
as in [24, 5], we take in this paper the perspective of statistical inference: our data consists in a large sample of
the size of individuals, when the evolution of the system is close to its time-asymptotic behavior, so that it can be
related to the eigenproblem of the considered transport-fragmentation equation (see [23] for instance). By estimating
statistically each term of the eigenvalue problem and by suitably inverting a certain linear operator (see [5]), we are
able to construct a more realistic estimator of the division rate that achieves the same optimal error bound as in
related deterministic inverse problems. Our procedure relies on kernel methods with automatic bandwidth selection.
It is inspired by model selection and recent results of Goldenschluger and Lepski [14, 15].

Key words. Lepski method, Oracle inequalities, Adaptation, Aggregation-fragmentation equations, Statistical
inverse problems, Nonparametric density estimation, Cell-division equation

AMS subject classifications. 35A05, 35B40, 45C05, 45K05, 82D60, 92D25, 62G05, 62G20

1. Introduction.

1.1. Motivation. Structured models have long served as a representative deterministic model
used to describe the evolution of biological systems, see for instance [20] or [21] and references
therein. In their simplest form, structured models describe the temporal evolution of a population
structured by a biological parameter such as size, age or any significant trait, by means of an
evolution law, which is a mass balance at the macroscopic scale. A paradigmatic example is given
by the transport-fragmentation equation in cell division, that reads





∂

∂t
n(t, x) +

∂

∂x

(
g0(x)n(t, x)

)
+B(x)n(t, x) = 4B(2x)n(t, 2x), t ≥ 0, x ≥ 0,

gn(t, x = 0) = 0, t > 0,

n(t = 0, x) = n0(x), x ≥ 0.

(1.1)

The mechanism captured by Equation (1.1) can be described as a mass balance equation (see
[1, 21]): the quantity of cells n(t, x) of size x at time t is fed by a transport term g0(x) that accounts
for growth by nutrient uptake, and each cell can split into two offsprings of the same size according
to a division rate B(x). Supposing g0(x) = κg(x), where we suppose a given model for the growth
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§CNRS-UMR 6621 and Université de Nice Sophia-Antipolis, Laboratoire J-A Dieudonné, Parc Valrose, 06108
Nice cedex 02, France. email: patricia.reynaud-bouret@unice.fr
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rate g(x) known up to a multiplicative constant κ > 0, and experimental data for n(t, x), the
problem we consider here is to recover the division rate B(x) and the constant κ.

In [24], Perthame and Zubelli proposed a deterministic method based on the asymptotic behav-
ior of the cell amount n(t, x) : indeed, it is known (see e.g. [22, 23]) that under suitable assumptions
on g and B, by the use of the general relative entropy principle (see [20]), one has

∫ ∞

0

∣∣n(t, x)e−λt − 〈n0, φ〉N(x)
∣∣φ(x) dx −→

t→∞
0 (1.2)

where 〈n0, φ〉 =
∫
n0(y)φ(y)dy and φ is the adjoint eigenvector (see [22]). The density N is the

first eigenvector, and (λ,N) the unique solution of the following eigenvalue problem




κ
∂

∂x

(
g(x)N(x)

)
+ λN(x) = 4BN(2x) −BN(x), x > 0,

B(0)N(0) = 0,
∫
N(x)dx = 1, N(x) ≥ 0, λ > 0.

(1.3)

Moreover, under some supplementary conditions, this convergence occurs exponentially fast (see
[23]). Hence, in the rest of this article, we work under the following analytical assumptions.
Assumption 1 (Analytical assumptions).

1. For the considered nonnegative functions g and B and for κ > 0, there exists a unique
eigenpair (λ, N) solution of Problem (1.3).

2. This solution satisfies, for all p ≥ 0,
∫
xpN(x)dx < ∞ and 0 <

∫
g(x)N(x)dx < ∞.

3. The functions N and gN belong to Ws+1 with s ≥ 1, and in particular
∥∥N

∥∥
∞ < ∞ and∥∥(gN)′

∥∥
2
< ∞. (Ws+1 denotes the Sobolev space of regularity s+1 measured in L2-norm.)

4. We have g ∈ L∞(R+) with R+ = [0,∞).
Hereafter ‖•‖2 and ‖•‖∞ denote the usual L2 and L∞ norms on R+. Assertions 1 and 2 are

true under the assumptions on g and B stated in Theorem 1.1 of [3], under which we also have
N ∈ L∞. Assertion 3 is a (presumably reasonable) regularity assumption, necessary to obtain rates
of convergence together with the convergence of the numerical scheme. Assertion 4 is restrictive,
but mandatory in order to apply our statistical approach.

Thanks to this asymptotic behavior provided by the entropy principle (1.2), instead of requiring
time-dependent data n(t, x), which is experimentally less precise and more difficult to obtain, the
inverse problem becomes: How to recover (κ,B) from observations on (λ,N) ? In [24, 5], as generally
done in deterministic inverse problems (see [6]), it was supposed that experimental data were pre-
processed into an approximation Nε of N with an a priori estimate of the form ‖N−Nε‖ ≤ ε for a
suitable norm ‖•‖. Then, recovering B from Nε becomes an inverse problem with a certain degree
of ill-posedness. From a modelling point of view, this approach suffers from the limitation that
knowledge on N is postulated in an abstract and somewhat arbitrary sense, that is not genuinely
related to experimental measurements.

1.2. The statistical approach. In this paper, we propose to overcome the limitation of
the deterministic inverse problems approach by assuming that we have n data, each data being
obtained from the measurement of an individual cell picked at random, after the system has evolved
for a long time so that the approximation n(t, x) ≈ N(x)eλt is valid. This is actually what happens
if one observes cell cultures in laboratory after a few hours, a typical situation for E. Coli cultures
for instance, provided, of course, that the underlying aggregation-fragmentation equation is valid.

Each data is viewed as the outcome of a random variable Xi, each Xi having probability
distribution N(x)dx. We thus observe (X1, . . . , Xn), with

P(X1 ∈ dx1, . . . , Xn ∈ dxn) =

n∏

i=1

N(xi)dxi,



Nonparametric Estimation of the Division Rate 3

and where P(•) hereafter denotes probability1. We assume for simplicity that the random variables
Xi are defined on a common probability space (Ω,F ,P) and that they are stochastically indepen-
dent. Our aim is to build an estimator of B(x), that is a function x  B̂n(x,X1, . . . , Xn) that
approximates the true B(x) with optimal accuracy and nonasymptotic estimates. To that end,
consider the operator

(λ,N) T(λ,N)(x) := κ
∂

∂x

(
g(x)N(x)

)
+ λN(x), x ≥ 0. (1.4)

From representation (1.3), we wish to find B, solution to T(λ,N) = L(BN), where

L
(
ϕ
)
(x) := 4ϕ(2x) − ϕ(x), (1.5)

based on statistical knowledge of (λ,N) only. Suppose that we have preliminary estimators L̂ and
N̂ of respectively T(λ,N) and N, and an approximation L−1

k of L−1. Then we can reconstruct B
in principle by setting formally

B̂ :=
L−1
k (L̂)

N̂
.

This leads us to distinguish three steps that we briefly describe here. The whole method is fully
detailed in Section 2.

The first and principal step is to find an optimal estimator L̂ for T(λ,N). To do so, the main
part consists in applying twice the Goldenschluger and Lepski’s method [15] (GL for short). This
method is a new version of the classical Lepski method [10, 11, 12, 13]. Both methods are adaptive
to the regularity of the unknown signal and the GL method furthermore provides with an oracle
inequality. For the unfamiliar reader, we discuss adaptive properties later on, and explain in details
the GL method and the oracle point of view in Section 2.

1. First, we estimate the density N by a kernel method, based on a kernel function K. We
define N̂ = N̂ĥ where N̂h is defined by (2.1) and the bandwidth ĥ is selected automatically
by (2.3) from a properly-chosen set H. (see Section 2.1 for more details). A so-called oracle
inequality is obtained in Proposition 2 measuring the quality of estimation of N by N̂ .
Notice that this result, which is just a simplified version of [15], is valid for estimating any
density, since we have only assumed to observe an n−sample of N, so that this result can
be considered per se.

2. Second, we estimate the density derivative (up to g) D = ∂
∂x (gN), again by a kernel

method with the same kernel K as before, and select an optimal bandwidth h̃ given by
Formula (2.6) similarly. This defines an estimator D̂ := D̂h̃ where D̂h is specified by (2.4),

and yields an oracle inequality for D̂ stated in Proposition 3. In the saemway as for N,
this result has an interest per se and is not a direct consequence of [15].

From there, it only remains to find estimators of λ and κ. To that end, we make the following a
priori (but presumably reasonable) Assumption 2 on the existence of an estimator λ̂n of λ.

Assumption 2 (Assumption on λ̂n). For some q > 1 we have

ελ,n =
(

E[|λ̂n − λ|q]
)1/q

< ∞, Rλ,n = E[λ̂2qn ] < ∞.

Indeed, in practical cell culture experiments, one can track n individual cells that have been
picked at random through time. By looking at their evolution, it is possible to infer λ in a classical

1In the sequel, we denote by E(•) the expectation operator with respect to P(•) likewise.
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parametric way, via an estimator λ̂n that we shall assume to possess from now on2. Based on the
following simple equality

κ = λρg(N) where ρg(N) =

∫
R+
xN(x)dx

∫
R+
g(x)N(x)dx

, (1.6)

obtained by multiplying (1.3) by x and integrating by part, we then define an estimator κ̂n by

(2.8). Finally, defining L̂ = κ̂nD̂+ λ̂nN̂ ends this first step. The second step consists in the formal
inversion of L and its numerical approximation: For this purpose, we follow the method proposed
in [5] and recalled in Section 2.4. To estimate H := BN , we state

Ĥ := L−1
k (L̂) (1.7)

where L−1
k is defined by (2.10) on a given interval [0, T ]. A new approximation result between L−1

and L−1
k is given by Proposition 4. The third and final step consists in setting B̂ := Ĥ

N̂
, clipping

this estimator in order to avoid explosion when N becomes too small, finally obtaining

B̃(x) := max(min(B̂(x),
√
n),−√

n). (1.8)

1.3. Rates of convergence. Because of the approximated inversion of L on [0, T ], we will

have access to error bounds only on [0, T ]. We set
∥∥f

∥∥2

2,T
=

∫ T

0 f2(x)dx. for the L2-norm restricted

to the interval [0, T ]. If the fundamental (yet technical) statistical result is the oracle inequality
for Ĥ stated in Theorem 1 (see Section 2.5), the relevant part with respect to existing works in
the non-stochastic setting [5, 24] is its consequence in terms of rates of convergence. For presenting
them, we need to assume that the kernel K has regularity and vanishing moments properties.
Assumption 3 (Assumptions on K). The kernel K is differentiable with derivative K ′. Further-
more,

∫
K(x)dx = 1 and

∥∥K
∥∥
2

and
∥∥K ′∥∥

2
are finite. Finally, there exists a positive integer m0

such that
∫
K(x)xpdx = 0 for p = 1, . . . ,m0 − 1 and I(m0) :=

∫
|x|m0K(x)dx is finite.

Then our proposed estimators satisfy the following properties.
Proposition 1. Under Assumptions 1, 2 and 3, let us assume that Rλ,n and

√
nǫλ,n are bounded

uniformly in n and specify L−1
k with k = n f. Assume further that the family of bandwidth H =

H̃ = {D−1 : D = Dmin, ..., Dmax} depends on n is such that 1 ≤ Dmin ≤ n1/(2m0+1) and
n1/5 ≤ Dmax ≤ n1/2 for all n. Then Ĥ satisfies, for all s ∈ [1;m0 − 1]

E
[∥∥Ĥ −H

∥∥q

2,T

]
= O

(
n− qs

2s+3
)
, (1.9)

Furthermore, if the kernel K is Lipschitz-regular, if there exists an interval [a, b] in (0, T ) such that

[m,M ] := [ inf
x∈[a,b]

N(x), sup
x∈[a,b]

N(x)] ⊂ (0,∞), Q := sup
x∈[a,b]

|H(x)| < ∞,

and if ln(n) ≤ Dmin ≤ n1/(2m0+1) and n1/5 ≤ Dmax ≤ (n/ ln(n))1/(4+η) for some η > 0, then B̂
satisfies, for all s ∈ [1,m0 − 1],

E
[∥∥(B̃ −B)1[a,b]

∥∥q

2

]
= O

(
n− qs

2s+3
)
. (1.10)

2Mathematically sepaking, this only amounts to enlarge the probability space to a rich enough structure that
captures this estimator. We do not pursue that here.
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1.4. Remarks and comparison to other works. 1) Let us establish formal correspon-
dences between the methodology and results when recovering B from (1.3) from the point of view
of statistics or PDE analysis. ¡ After renormalization, we obtain the rate n−s/(2s+3) for estimating
B, and this corresponds to ill-posed inverse problems of order 1 in nonparametric statistics. We
can make a parallel with additive deterministic noise following Nussbaum and Pereverzev [19] (see
also [16] and the references therein). Suppose we have an approximate knowledge of N and λ up
to deterministic errors ζ1 ∈ L2 and ζ2 ∈ R with noise level ε > 0: we observe

Nε = N + εζ1, ‖ζ1‖2 ≤ 1, (1.11)

and λε = λ+ εζ2, |ζ2| ≤ 1. From the representation

B =
L−1T(N, λ)

N
,

where T(N, λ) is defined in (1.4), we have that the recovery of T(N, λ) is ill-posed in the terminology
of Wahba [26] for it involves the computation of the derivative of N . Since L is bounded with an
inverse bounded in L2 and the dependence in λ is continuous, the overall inversion problem is
ill-posed of degree a = 1. By classical inverse problem theory for linear cases3, this means that if
N ∈ Ws, the optimal recovery rate in L2-error norm should be εs/(s+a) = εs/(s+1) (see also the
work of Doumic, Perthame and collaborators [24, 5]).

Suppose now that we replace the deterministic noise ζ1 by a random Gaussian white noise: we
observe

Nε = N + εB (1.12)

where B is a Gaussian white noise, i.e. a random distribution in W−1/2 that operates on test func-
tions ϕ ∈ L2 and such that B(ϕ) is a centered Gaussian variable with variance ‖ϕ‖22. Model (1.12)
serves as a representative toy model for most stochastic error models such as density estimation or
signal recovery in the presence of noise. Let us formally introduce the α-fold integration operator
Iα and the derivation operator ∂. We can rewrite (1.12) as

Nε = I1(∂N) + εB

and applying I1/2 to both side, we (still formally) equivalently observe

Zε := I1/2Nε = I3/2(∂N) + εI1/2B.

We are back to a deterministic setting, since in this representation, we have that the noise εI1/2B
is in L2. In order to recover ∂N from Zε, we have to invert the operator I3/2, which has degree of
ill-posedness 3/2. We thus obtain the rate

εs/(s+3/2) = ε2s/(2s+3) = n−s/(2s+3)

for the calibration ε = n−1/2 dictated by (1.12) when we compare our statistical model with
the deterministic perturbation (see for instance [18] for establishing formally the correspondence
ε = n−1/2 is a general setting). This is exactly the rate we find in Proposition 1: the deterministic
error model and the statistical error model coincide to that extent4.

3although here the problem is nonlinear, but that will not affect the argument.
4The statistician reader willl note that the rate n−s/(2s+3) is also the minimax rate of convergence when

estimating the derivative of a density, see [7].
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2) The estimators Ĥ and B̂ do not need the exact knowledge of s as an input to recover this
optimal rate of convergence. We just need to know an upper bound m0 −1 to choose the regularity
of the kernel K. This capacity to obtain the optimal rate without knowing the precise regularity
is known in statistics as adaptivity in the minimax sense (see [25] for instance for more details).
It is close in spirit to what the discrepancy principle can do in deterministic inverse problems [6].
However, in the deterministic framework, one needs to know the level of noise ε, which is not
realistic in practice. In our statistical framework, this level of noise is linked to the size sample n
through the correspondence ε = n−1/2.

3) Finally, note that the rate is polynomial and no extra-logarithmic terms appear, as it is
often the case when adaptive estimation is considered (see [10, 11, 12, 13]).

The next section explains in more details the GL approach and presents our estimators to a full
extent, including the fundamental oracle inequalities. It also elaborates on the methodology related
to oracle inequality. The main advantage of oracle inequalities is that they hold nonasymptotically
(in n) and that they guarantee an optimal choice of bandwidth with respect to the selected risk.
Section 3 is devoted to numerical simulations that illustrate the performance of our method. Proofs
are delayed until Section 4.

2. Construction and properties of the estimators.

2.1. Estimation of N by the GL method. We first construct an estimator of N . A natural
approach is a kernel method, which is all the more appropriate for comparisons with analytical
methods (see [5] for the deterministic analogue). The kernel function K should satisfy the following
assumption, in force in the sequel.
Assumption 4 (Assumption on the kernel density estimator). K : R → R is a continuous
function such that

∫
K(x)dx = 1 and

∫
K2(x)dx < ∞.

For h > 0 and x ∈ R, define

N̂h(x) :=
1

n

n∑

i=1

Kh(x −Xi), (2.1)

whereKh(x) = h−1K(h−1x). Note in particular that E(N̂h) = Kh⋆N , where ⋆ denotes convolution.
We measure the performance of N̂h via its squared integrated error, i.e. the average L2 distance
between N and N̂h. It is easy to see that

E[‖N − N̂h‖2] ≤
∥∥N −Kh ⋆ N

∥∥
2
+ E[‖Kh ⋆ N − N̂h‖2],

with

E[‖Kh ⋆ N − N̂h‖22] =
1

n2
E

[ ∫ [ n∑

i=1

(
Kh(x−Xi) − E

(
Kh(x −Xi)

))]2
dx

]

=
1

n2

∫ n∑

i=1

E
[(
Kh(x−Xi) − E

(
Kh(x−Xi)

))2]
dx

≤ 1

n
E

[ ∫
K2

h(x−X1)dx
]

=

∥∥Kh

∥∥2

2

n
=

∥∥K
∥∥2

2

nh
.

Applying the Cauchy-Schwarz inequality, we obtain

E[‖N − N̂h‖2] ≤ ‖N −Kh ⋆ N‖2 +
1√
nh

∥∥K
∥∥
2
.
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The first term corresponds to a bias term, it decreases when h → 0. The second term corresponds
to a variance term, which increases when h → 0. If one has to choose h in a family H of possible
bandwidths, the best choice is h̄ where

h̄ := argminh∈H
{∥∥N −Kh ⋆ N

∥∥
2

+
1√
nh

∥∥K
∥∥
2

}
. (2.2)

This ideal compromise h̄ is called the ”oracle”: it depends on N and then cannot be used in prac-
tice. Hence one wants to find an automatic (data-driven) method for selecting this bandwidth.
The Lepski method [10, 11, 12, 13] is one of the various theoretical adaptive methods available for
selecting a density estimator. In particular it is the only known method able to select a bandwidth
for kernel estimators. However the method do not usually provide a non asymptotic oracle inequal-
ity. Recently, Goldenschluger and Lepski [14] developed powerful probabilistic tools that enable to
overcome this weakness and that can provide with a fully data-driven bandwidth selection method.
We give here a practical illustration of their work: how should one select the bandwidth for a given
kernel in dimension 1?

The main idea is to estimate the bias term by looking at several estimators. The method
consists in setting first, for any x and any h, h′ > 0,

N̂h,h′(x) :=
1

n

n∑

i=1

(Kh ⋆ Kh′)(x −Xi) = (Kh ⋆ N̂h′)(x).

Next, for any h ∈ H, define

A(h) := sup
h′∈H

{
‖N̂h,h′ − N̂h′‖2 − χ√

nh′
‖K‖2

}
+

= sup
h′∈H

{
max

{
0, ‖N̂h,h′ − N̂h′‖2 − χ√

nh′
‖K‖2

}}
,

where, given ε > 0, we set χ := (1 + ε)(1 + ‖K‖1). The quantity A(h) is actually a good estimator
of

∥∥N −Kh ⋆ N
∥∥
2

up to the term
∥∥K

∥∥
1

(see (4.2) and (4.3) in Section 4). The next step consists
then in setting

ĥ := arg min
h∈H

{
A(h) +

χ√
nh

‖K‖2
}
, (2.3)

and our final estimator of N is obtained by putting N̂ := N̂ĥ. Let us specify what we are able to
prove at this stage.
Proposition 2. Assume N ∈ L∞ and work under Assumption 4. If H ⊂ {D−1, D = 1, . . . , Dmax}
with Dmax = δn for δ > 0, then, for any q ≥ 1,

E
[
‖N̂ −N‖2q2

]
≤ C(q)χ2q inf

h∈H

{
‖Kh ⋆ N −N‖2q2 +

∥∥K
∥∥2q

2

(hn)q
}

+ C1n
−q,

where C(q) is a constant depending on q and C1 is a constant depending on q, ε, δ, ‖K‖2, ‖K‖1
and ‖N‖∞.

The previous inequality is called an oracle inequality, for we have E[‖N̂ − N‖2] ≤ (E[‖N̂ −
N‖2q2 ])1/(2q) and ĥ is performing as well as the oracle h̄ up to some multiplicative constant. In that
sense, we are able to select the best bandwidth within our family H.
Remark 1. As compared to the results of Goldenschluger and Lepski in [14], we do not consider
the case where H is an interval and we do not specify K except for Assumption 4. This simpler
method is more reasonable from a numerical point of view, since estimating N is only a preliminary
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step. The probabilistic tool we use here is classical in model selection theory (see Section 4 and [17])
and actually, we do not use directly [14]. In particular the main difference is that, in our specific
case, we are able to get max(H) fixed whereas Goldenschluger and Lepski [14] require max(H) to
tend to 0 with n. The price to pay is that we obtain a uniform bound (see Lemma 1 in Section 4.3)
which is less tight, but that will be sufficient for our purpose.

2.2. Estimation of ∂
∂x

(
g(x)N(x)

)
by the GL method. The previous method can of course

be adapted to estimate

D(x) :=
∂

∂x

(
g(x)N(x)

)
.

We adjust here the work of [15] to the setting of estimating a derivative. We again use kernel
estimators with more stringent assumptions5 on K.
Assumption 5 (Assumption on the kernel of the derivative estimator). The function K is
differentiable,

∫
K(x)dx = 1 and

∫
(K ′(x))2dx < ∞.

For any bandwidth h > 0, we define the kernel estimator of D as

D̂h(x) := 1
n

∑n
i=1 g(Xi)K

′
h(x −Xi)

= 1
nh2

∑n
i=1 g(Xi)K

′(x−Xi

h

)
.

(2.4)

Indeed

E(D̂h(x)) =

∫
K ′

h(x− u)g(u)N(u)du

=
(
K ′

h ⋆ (gN)
)
(x) =

(
Kh ⋆ (gN)′

)
(x).

Again we can look at the integrated squared error of D̂. We obtain the following upper bound:

E[‖D̂h −D‖2] ≤ ‖D −Kh ⋆ D‖2 + E[‖Kh ⋆ D − D̂h‖2],

with

E[‖Kh ⋆ D − D̂h‖22 =
1

n2
E

[ ∫ [ n∑

i=1

(
g(Xi)K

′
h(x −Xi) − E

(
g(Xi)K

′
h(x−Xi)

))]2
dx

]

=
1

n2

∫ n∑

i=1

E
[(
g(Xi)K

′
h(x −Xi) − E

(
g(Xi)K

′
h(x−Xi)

))2]
dx

≤ 1

n
E

[ ∫
g2(X1)K

′
h
2
(x−X1)dx

]

≤
∥∥g

∥∥2

∞
∥∥K ′

h

∥∥2

2

n
=

∥∥g
∥∥2

∞
∥∥K ′∥∥2

2

nh3
.

Hence, by Cauchy-Schwarz inequality

E[‖D − D̂h‖2] ≤
∥∥D −Kh ⋆ D

∥∥
2
+

1√
nh3

∥∥g
∥∥
∞

∥∥K ′∥∥
2
.

Once again, there is a bias-variance decomposition, but now the variance term is of order
1√
nh3

∥∥K ′∥∥
2

∥∥g
∥∥
∞. We therefore define the oracle by

¯̄h := argminh∈H̃
{∥∥D −Kh ⋆ D

∥∥
2

+
1√
nh3

∥∥g
∥∥
∞

∥∥K ′∥∥
2

}
. (2.5)

5For sake of simplicity we use the same kernel to estimate N and D but this choice is not mandatory.
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Now let us apply the GL method in this case. Let H̃ be a family of bandwidths. We set for any
h, h′ > 0,

D̂h,h′(x) :=
1

n

n∑

i=1

g(Xi)(Kh ⋆ Kh′)′(x −Xi)

and

Ã(h) := sup
h′∈H̃

{
‖D̂h,h′ − D̂h′‖2 − χ̃√

nh′3
‖g‖∞‖K ′‖2

}
+
,

where, given ε̃ > 0, we put χ̃ := (1 + ε̃)(1 + ‖K‖1). Finally, we estimate D by using D̂ := D̂h̃ with

h̃ := argminh∈H̃
{
Ã(h) +

χ̃√
nh3

‖g‖∞‖K ′‖2
}
. (2.6)

As before, we are able to prove an oracle inequality for D̂.
Proposition 3. Assume N ∈ L∞. Work under Assumption 5. If H̃ = {D−1, D = 1 . . . , D̃max},
with D̃max =

√
δ̃n for δ̃ > 0, then for any q ≥ 1,

E
[
‖D̂ −D‖2q2

]
≤ C̃(q)χ̃2q inf

h∈H̃

{
‖Kh ⋆ D −D‖2q2 +

(
∥∥g

∥∥
∞‖K ′‖2√
nh3

)2q}
+ C̃1n

−q,

where C̃(q) is a constant depending on q and C̃1 is a constant depending on q, ε̃, δ̃,
∥∥K ′∥∥

2
,
∥∥K ′∥∥

1
,∥∥g

∥∥
∞ and

∥∥N
∥∥
∞.

2.3. Estimation of κ (and λ). As mentioned in the introduction, we will not consider the

problem of estimating λ and we work under Assumption 2: an estimator λ̂n of λ is furnished by the
practitioner prior to the data processing for estimating B. It becomes subsequently straightforward
to obtain an estimator of κ by estimating ρg(N), see the form of (1.6). We estimate ρg(N) by

ρ̂n :=

∑n
i=1Xi∑n

i=1 g(Xi) + c
, (2.7)

where c > 0 is a (small) tuning constant6. Next we simply put

κ̂n = λ̂nρ̂n. (2.8)

2.4. Approximated inversion of L. From (2.7), the right-hand side of (1.3) is consequently
estimated by

κ̂nD̂ + λ̂nN̂ .

It remains to formally apply the inverse operator L−1. However Given ϕ, the dilation equation

L
(
ψ

)
(x) = 4ψ(2x) − ψ(x) = ϕ(x), x ∈ R+ (2.9)

admits in general infinitely many solutions, see Doumic et al. [5], Appendix A. Nevertheless, if
ϕ ∈ L2, there is a unique solution ψ ∈ L2 to (2.9), see Proposition A.1. in [5], and moreover it
defines a continuous operator L−1 from L2 to L2. Since Kh and gK ′

h belong to L2, one can define

6In practice, one can take c = 0.
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a unique solution to (2.9) when ϕ = κ̂nD̂ + λ̂nN̂ . This inverse is not analytically known but we
can only approximate it via the fast algorithm described below.

Given T > 0 and an integer k ≥ 1, we construct a linear operator L−1
k that maps a function

ϕ ∈ L2 into a function with compact support in [0, T ] as follows. Consider the regular grid on [0, T ]
with mesh k−1T defined by

0 = x0,k < x1,k < · · · < xi,k := i
kT < . . . < xk,k = T.

We set

ϕi,k :=
k

T

∫ xi+1,k

xi,k

ϕ(x)dx for i = 0, . . . , k − 1,

and define by induction the sequence 7

Hi,k(ϕ) :=
1

4
(Hi/2,k(ϕ) + ϕi/2,k), i = 0, . . . , k − 1,

what gives, for i = 0 and i = 1, H0(ϕ) := 1
3ϕ0,k, and H1(ϕ) := 4

21ϕ0,k + 1
7ϕ1,k. Finally, we define

L−1
k (ϕ)(x) :=

k−1∑

i=0

Hi,k(ϕ)1[xi,k,xi+1,k)(x). (2.10)

As stated in the introduction, we eventually estimate H = BN by

Ĥ = L−1
k (κ̂nD̂ + λ̂nN̂).

The stability of the inversion is given by the fact that L−1
k : L2 → L2 is continuous, see Lemma 4

in Section 4.3, and by the following approximation result between L−1 and L−1
k .

Proposition 4. Let T > 0 and ϕ ∈ W1. Let L−1(ϕ) denote the unique solution of (2.9) belonging
to L2. We have for k ≥ 1:

‖L−1
k (ϕ) − L−1(ϕ)‖2,T ≤ C

T√
k

‖ϕ‖W1 , with C <
1√
6
.

Hence, L−1
k behaves nicely over sufficiently smooth functions. Moreover the estimation of N

and the estimators κ̂n and λ̂n are essentially regular. Finally we estimate B as stated in (1.8). The
overall behaviour of the estimator is finally governed by the quality of estimation of the derivative
D, which determines the accuracy of the whole inverse problem in all these successive steps.

2.5. Oracle inequalities for Ĥ. We are ready to state our main result, namely the oracle
inequality fulfilled by Ĥ .
Theorem 1. Work under Assumptions 1 and 2 and let K a kernel satisfying Assumptions 4 and 5.
Define H ⊂ {D−1, D = 1 . . . , Dmax} with Dmax = δn for δ > 0 and H̃ ⊂ {D−1 : D = 1, ..., D̃max}
with D̃max =

√
δ̃n for δ̃ > 0. For k ≥ 1 and T > 0, let us define L−1

k by (2.10) on the interval
[0, T ]. Finally, define the estimator

Ĥ = L−1
k (λ̂nN̂ĥ + κ̂nD̂h̃),

where N̂ĥ and D̂h̃ are kernel estimators defined respectively by (2.1) and (2.4), and where we have

selected ĥ and h̃ by (2.3) and (2.6). Moreover take κ̂n as defined by (2.7) and (2.8) for some c > 0.

7for any sequence ui, i = 1, 2, . . ., let ui/2 := ui/2 if i is even and 1
2
(u(i−1)/2 + u(i+1)/2) otherwise.
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The following upper bound holds for any n :

E
[∥∥Ĥ −H

∥∥q

2,T

]
≤ C1

{√
Rλ,n inf

h∈H̃

[
‖Kh ⋆ D −D‖q2 +

(
∥∥g

∥∥
∞‖K ′‖2√
nh3

)q]

+ inf
h∈H

[
‖Kh ⋆ N −N‖q2 +

(
∥∥K

∥∥
2√

nh

)q]
+ εqλ,n +

(
(‖N‖W1 + ‖gN‖W2)

T√
k

)q}
+ C2n

− q
2 ,

where C1 is a constant depending on q, g, N , ε, ε̃,
∥∥K

∥∥
1

and c; and C2 is a constant depending

on q, g, N, ε̃, ε, δ, δ̃,
∥∥K

∥∥
2
,
∥∥K

∥∥
1
,
∥∥K ′∥∥

2
,
∥∥K ′∥∥

1
.

1) Note that the upper bound quantifies the additive cost of each step used in the estimation
method. The first part is an oracle bound on the estimation of D times the size of the estimator
of λ. The second part is the oracle bound for N . Of course, the results are sharp only if λ̂ is good,
which can be seen through ελ,n. Finally, the bound is also governed by the approximated inversion
through the only term where k appears. The last term is just a residual term, that will be in
most of the cases negligible with respect to the other terms. In particular since all the previous
errors are somehow unavoidable, this means that, as far as our method is concerned, our upper
bound is the best possible that can be achieved in order to select the different bandwidths h, up
to multiplicative constants. Moreover, one can see how the limitation in k influences the method
and how large k needs to be chosen to guarantee that the main error comes from the fact that one
estimates a derivative.

2) The result holds for any n. In particular, we expect the method to perform well for small
sample size, see the numerical illustration below. This also shows that we are able to select a good
bandwidth as far as the kernel K is fixed, even if there is no assumption on the moments of K and
consequently on the approximation properties of K. In the next simulation section, we focus on a
Gaussian kernel which has only one vanishing moment (hence one cannot really consider minimax
adaptation for regular function with it) but for which the bandwidth choice is still important in
practice. The previous result guarantees an optimal bandwidth choice even for this kernel, up to
some multiplicative constant.

3) From this oracle result, we can easily deduce the rates of convergence of Proposition 1 at
the price of further assumptions on the kernel K, i.e. Assumption 3 defined in the Introduction.
Section 1.2.2 of [25] recalls how to build compactly supported kernels satisfying Assumption 3. If
m0 satisfies Assumption 3, then for any s ≤ m0, for any f ∈ Ws,

‖Kh ⋆ f − f‖2 ≤ C‖f‖Wshs,

where C is a constant that can be expressed by using K and m0 (see Theorem 8.1 of [9]). Now, it is
sufficient to choose h = D−1 of order n−1/(2s+3) to obtain (1.9). The complete proof of Proposition
1 is delayed until the last section.

3. Numerical illustration. Let us illustrate our method through some simulations.

3.1. The numerical protocol. First, we need to build up simulated data: to do so, we depart
from given g, κ and B on a regular grid [0, dx, . . . , XM ] and solve the direct problem by the use
of the so-called power algorithm to find the corresponding density N and the principal eigenvalue
λ (see for instance [5] for more details). We check that N almost vanishes outside the interval
[0, XM ]; else, XM has to be increased. The density N being given on this grid, we approximate
it by a spline function, and build a n-sample by the rejection sampling algorithm. For the sake of
simplicity, we do not simulate an approximation on λ and keep the exact value, thus leading, in
the estimate of Theorem 1, to Rλ,n = λ2q and λ̂n = λ.

We then follow step by step the method proposed here and detailed in Section 2.
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1. The GL method for the choice of N̂ = N̂h̄. We take the classical Gaussian kernel
K(x) = (2π)−1/2 exp

(
−x2/2

)
, set Dmax = n and limit ourselves to a logarithmic sampling

H = {1, 1/2, . . . , 1/9, 1/10, 1/20, . . . , 1/100, 1/200, . . . , 1/n} in order to reduce the cost of
computations (The GL method is indeed the most time-consuming step in the numerical
protocol).

2. The GL method for the choice of D̂h. The procedure is similar except that we choose here
Dmax =

√
n. The selected bandwidths h̄ and h̃ can be different. We check that the GL

method does not select an extremal point of H.
3. The choice of κ̂n, as defined by (2.8).
4. The numerical scheme described in Section 2.4 and in [5] for the inversion of L.
5. The division by N̂ and definition of B̃ as described in (1.8).

At each step, we compare, in L2-norm, the reconstructed function and the original one: N̂ vs N,
∂
∂x (gN̂) vs ∂

∂x(gN), Ĥ vs BN and finally B̂ vs B.

3.2. Results on simulated data. We first test the three cases simulated in [5] in which
the numerical analysis approach was dealt with. Namely on the interval [0, 4], we consider the
cases where g ≡ 1 and first B = B1 ≡ 1, second B(x) = B2(x) = 1 for x ≤ 1.5, then linear to
B2(x) = 5 for x ≥ 1.7. This particular form is interesting because due to this fast increase on B,
the solution N is not that regular and exhibits a 2-peaks distribution (see Figure 3.1). Finally, we
test B(x) = B3(x) = exp(−8(x− 2)2) + 1.

Fig. 3.1. Reconstruction of N (left) and of ∂
∂x

(gN) (right) obtained with a sample of n = 5.104 data, for three
different cases of division rates B.

In Figures 3.1 and 3.2, we show the simulation results with n = 5.104 (a realistic value for in
vitro experiments on E. Coli for instance) for the reconstruction of N, ∂

∂x (gN), BN and B.

One notes that the solution can well capture the global behavior of the division rate B, but,
as expected, has more difficulties in recovering fine details (for instance, the difference between B1

and B3) and also gives much more error when B is less regular (case of B2). One also notes that
even if the reconstruction of N is very satisfactory, the critical point is the reconstruction of its
derivative. Moreover, for large values of x, even if N and its derivative are correctly reconstructed,
the method fails in finding a proper division rate B. This is due to two facts: first, N vanishes, so the
division by N leads to error amplification. Second, the values taken by B(x) for large x have little
influence on the solutions N of the direct problem: whatever the values of B, the solutions N will
not vary much, as shown by Figure 3.1 (left). A similar phenomenon occurred indeed when solving
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Fig. 3.2. Reconstruction of BN (left) and of B (right) obtained with a sample of n = 5.104 data, for three
different cases of division rates B.

the deterministic problem in [5] (for instance, we refer to Fig. 10 of this article for a comparison
of the results).

We also test a case closer to biological true data, namely the case B(x) = x2 and g(x) = x.
The results are shown on Figures 3.3 and 3.4 for n-samples of size 103, 5.103, 104 and 5.104.

Fig. 3.3. Reconstruction of N (left) and of ∂
∂x

(gN) (right) obtained for g(x) = x and B(x) = x2, for various
sample sizes.

One notes that reconstruction is already very good for N when n = 103, unlike the reconstruc-
tion of ∂

∂x (gN) that requires much more data.
Finally, in Table 3.5 we give average error results on 50 simulations, for n = 1000, g ≡ B ≡ 1.

We display the relative errors in L2 norms, (defined by ||φ − φ̂||L2/||φ||L2), and their empirical
variances. In Table 3.6, for the case g(x) = x and B(x) = x2, we give some results on standard
errors for various values of n, and compare them to n−1/5, which is the order of magnitude of
the expected final error on BN, since with a Gaussian kernel we have s = 1 in Proposition 1. We
see that our numerical results are in line with the theoretical estimates: indeed, the error on H is
roughly twice as large as n−1/5.
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Fig. 3.4. Reconstruction of BN (left) and of B (right) obtained for g(x) = x and B(x) = x2, for various
sample sizes.

Error on N : average Variance Error on ∂
∂x(gN) : average Variance

0.088 0.15 0.51 0.28

Error on BN : average Variance Average ĥ Average h̃
0.39 0.29 0.12 0.40

Fig. 3.5. Average error results on 50 simulations, for n = 1000, g ≡ B ≡ 1.

4. Proofs. In Section 4.1, we first give the proofs of the main results of Section 2. This allows
us, in Section 4.2, to prove the results of Section 2.5, which require the collection of all the results
of Section 2, i.e. the oracle-type inequalities on the one hand and a numerical analysis result on
the other hand. This illustrates the subject of our paper that lies at the frontier between these
fields. Finally, we state the technical lemmas used in Section 4.1, whose proofs can be found in
the companion paper [4]. These technical tools are concerned with probabilistic results, namely
concentration and Rosenthal-type inequalities that are often the main bricks to establish oracle
inequalities, and also the boundedness of L−1

k . In the sequel, the notation �θ1,θ2,... denotes a generic
positive constant depending on θ1, θ2, . . . (the notation � simply denotes a generic positive absolute
constant). It means that the values of �θ1,θ2,... may change from line to line.

4.1. Proofs of the main results of Section 2.

Proof of Proposition 2. For any h∗ ∈ H, we have:

‖N̂ −N‖2 ≤ ‖N̂ĥ −Nĥ,h∗‖2 + ‖Nĥ,h∗ − N̂h∗‖2 + ‖N̂h∗ −N‖2
≤ A1 +A2 +A3,

with

A1 := ‖N̂ĥ −Nĥ,h∗‖2 ≤ A(h∗) +
χ√
nĥ

‖K‖2,

A2 := ‖Nĥ,h∗ − N̂h∗‖2 ≤ A(ĥ) +
χ√
nh∗

‖K‖2

and

A3 := ‖N̂h∗ −N‖2.
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n n− 1
5 ĥ h̃ error on N error on D error on H

103 0.25 0.1 0.5 0.06 0.68 0.42
5.103 0.18 0.07 0.3 0.03 0.45 0.28
104 0.16 0.08 0.3 0.035 0.46 0.29

5.104 0.11 0.04 0.2 0.014 0.31 0.19

Fig. 3.6. Some results on standard errors for various values of n, case g(x) = x and B(x) = x2.

We obtain

‖N̂ −N‖2 ≤ A(h∗) +
χ√
nĥ

‖K‖2 +A(ĥ) +
χ√
nh∗

‖K‖2 + ‖N̂h∗ −N‖2

≤ 2A(h∗) +
2χ√
nh∗

‖K‖2 + ‖N̂h∗ −N‖2. (4.1)

Since we have

A(h∗) = sup
h′∈H

{
‖N̂h∗,h′ − N̂h′‖2 − χ√

nh′
‖K‖2

}
+

≤ sup
h′∈H

{{
‖N̂h∗,h′ − E[N̂h∗,h′ ] −

(
N̂h′ − E[N̂h′ ]

)
‖2 − χ√

nh′
‖K‖2

}
+

+‖ E[N̂h∗,h′ ] − E[N̂h′ ]‖2
}

(4.2)

and for any x and any h′

E
[
N̂h∗,h′(x)) − E(N̂h′(x)

]
=

∫
(Kh∗ ⋆ Kh′)(x− u)N(u)du−

∫
Kh′(x− v)N(v)dv

=

∫ ∫
Kh∗(x− u− t)Kh′(t)N(u)dtdu −

∫
Kh′(x− v)N(v)dv

=

∫ ∫
Kh∗(v − u)Kh′(x− v)N(u)dudv −

∫
Kh′(x− v)N(v)dv

=

∫
Kh′(x− v)

( ∫
Kh∗(v − u)N(u)du−N(v)

)
dv,

we derive

‖ E(N̂h∗,h′) − E(N̂h′)‖2 ≤ ‖K‖1‖Eh∗‖2, (4.3)

where

Eh∗(x) := (Kh∗ ⋆ N)(x) −N(x), x ∈ R+

represents the approximation term. Combining (4.1), (4.2) and (4.3) entails

‖N̂ −N‖2 ≤ ‖N̂h∗ −N‖2 + 2‖K‖1‖Eh∗‖2 +
2χ√
nh∗

‖K‖2 + 2ζn,

with

ζn := sup
h′∈H

{
‖N̂h∗,h′ − E[N̂h∗,h′ ] −

(
N̂h′ − E[N̂h′ ]

)
‖2 − χ√

nh′
‖K‖2

}
+

= sup
h′∈H

{
‖Kh∗ ⋆

(
N̂h′ − E[N̂h′ ]

)
− (N̂h′ − E[N̂h′ ])‖2 − (1 + ε)(1 + ‖K‖1)√

nh′
‖K‖2

}
+

≤ (1 + ‖K‖1) sup
h′∈H

{
‖N̂h′ − E[N̂h′ ]‖2 − (1 + ε)√

nh′
‖K‖2

}
+
.
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Hence

E
[
‖N̂ −N‖2q2

]
≤ �q

(
E

[
‖N̂h∗ −N‖2q2

]
+

∥∥K
∥∥2q

1
‖Eh∗‖2q2 + χ2q ‖K‖2q2

(nh∗)q
+ (1 +

∥∥K
∥∥
1
)2q E[ξ2qn ]

)
,

where

ξn = sup
h′∈H

{
‖N̂h′ − E(N̂h′)‖2 − (1 + ε)√

nh′
‖K‖2

}
+
.

Now, we have:

E
[
‖N̂h∗ −N‖2q2

]
≤ 22q−1

(
E

[
‖N̂h∗ − E[N̂h∗ ]‖2q2

]
+ ‖ E[N̂h∗) −N‖2q2

]

≤ 22q−1
(

E
[
‖N̂h∗ − E[N̂h∗ ]‖2q2

]
+ ‖Eh∗‖2q2

)
.

Then, by setting

Kch∗(Xi, x) := Kh∗(x−Xi) − E(Kh∗(x−X1)),

we obtain

E
[
‖N̂h∗ − E[N̂h∗ ]‖2q2

]
= E

[( ∫ ( 1

n

n∑

i=1

Kch∗(Xi, x)
)2

dx
)q]

≤ 2q−1

n2q

(
E

[( n∑

i=1

∫
Kc2h∗(Xi, x)dx

)q]

+ E
[∣∣∣

∑

1≤i,j≤n i6=j

∫
Kch∗(Xi, x)Kch∗(Xj , x)dx

∣∣∣
q])

.

Since

∫
Kc2h∗(Xi, x)dx =

∫ (
Kh∗(x−Xi) − E

[
Kh∗(x −X1)

])2

dx

≤ 2
( ∫

K2
h∗(x−Xi)dx +

∫ (
E

[
Kh∗(x−X1)

])2

dx
)

≤ 2
(
‖Kh∗‖22 +

∫
E

[
K2

h∗(x−X1)
]
dx

)

≤ 4‖Kh∗‖22 =
4

h∗
‖K‖22,

the first term can be bounded as follows

E
[( ∫ n∑

i=1

Kc2h∗(Xi, x)dx
)q] ≤

(4n

h∗
‖K‖22

)q
.
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For the second term, we apply Theorem 8.1.6 of de la Peña and Giné (1999) (with 2q ≥ 2) combined
with the Cauchy-Schwarz inequality:

E
[∣∣∣

∑

1≤i,j≤n i6=j

∫
Kch∗(Xi, x)Kch∗(Xj , x)dx

∣∣∣
q]

≤
(

E
[∣∣ ∑

1≤i,j≤n i6=j

∫
Kch∗(Xi, x)Kch∗(Xj , x)dx

∣∣2q
]) 1

2

≤ �qn
q
(

E
[∣∣

∫
Kch∗(X1, x)Kch∗(X2, x)dx

∣∣2q]
) 1

2

≤ �qn
q
(

E
[∣∣

∫
Kc2h∗(X1, x)dx

∣∣2q]
) 1

2 ≤ �q

(4n

h∗
‖K‖22

)q
.

It remains to deal with the term E(ξ2qn ). By Lemma 1 below, we obtain

E[ξ2qn ] ≤ �
q,η,δ

∥∥K
∥∥

2
,
∥∥K

∥∥
1
,
∥∥N

∥∥
∞
n−q

and the conclusion follows.

Proof of Proposition 3. The proof is similar to the previous one and we avoid most of the
computations for simplicity. For any h0 ∈ H̃,

‖D̂h̃ −D‖2 ≤ ‖D̂h̃ − D̂h̃,h0
‖2 + ‖D̂h̃,h0

− D̂h0‖2 + ‖D̂h0 −D‖2
≤ Ã1 + Ã2 + Ã3,

with

Ã1 := ‖D̂h̃ − D̂h̃,h0
‖2 ≤ Ã(h0) +

χ̃√
nh̃3

‖g‖∞‖K ′‖2,

Ã2 := ‖D̂h̃,h0
− D̂h0‖2 ≤ Ã(h̃) +

χ̃√
nh30

‖g‖∞‖K ′‖2

and

Ã3 := ‖D̂h0 −D‖2.
Then,

‖D̂h̃ −D‖2 ≤ 2Ã(h0) +
2χ̃√
nh30

‖g‖∞‖K ′‖2 + ‖D̂h0 −D‖2.

To study Ã(h0), we first evaluate

E[D̂h1,h2(x)] − E[D̂h2(x)]. = (Kh1 ⋆ Kh2 ⋆ (gN)′)(x) − (Kh2 ⋆ (gN)′)(x)

=

∫
D(t)(Kh1 ⋆ Kh2)(x− t)dt−

∫
D(t)Kh2(x− t)dt

=

∫
D(t)

∫
Kh1(x− t− u)Kh2(u)dudt−

∫
D(t)Kh2(x − t)dt

=

∫
D(t)

∫
Kh1(v − t)Kh2(x− v)dvdt −

∫
D(v)Kh2(x− v)dv

=

∫
Kh2(x− v)

( ∫
D(t)Kh1(v − t)dt−D(v)

)
dv

= (Kh2 ⋆ Ẽh1)(x),
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where we set, for any real number x

Ẽh1(x) :=

∫
D(t)Kh1(x − t)dt−D(x)

= (Kh1 ⋆ D)(x) −D(x). (4.4)

It follows that

Ã(h0) = sup
h∈H̃

{
‖D̂h0,h − D̂h‖2 − χ̃√

nh3
‖g‖∞‖K ′‖2

}
+

≤ sup
h∈H̃

{{
‖D̂h0,h − E[D̂h0,h] −

(
D̂h − E[D̂h]

)
‖2 − χ̃√

nh3
‖g‖∞‖K ′‖2

}
+

+‖ E[D̂h0,h] − E[D̂h]‖2
}

≤ sup
h∈H̃

{
‖D̂h0,h − E[D̂h0,h] − (D̂h − E[D̂h])‖2 − χ̃√

nh3
‖g‖∞‖K ′‖2

}
+

+ ‖K‖1‖Ẽh0‖2

≤ (1 + ‖K‖1) sup
h∈H̃

{
‖D̂h − E[D̂h]‖2 − (1 + ε̃)√

nh3
‖g‖∞‖K ′‖2

}
+

+ ‖K‖1‖Ẽh0‖2, (4.5)

In order to obtain the last line, we use the following chain of arguments:

D̂h0,h(x) =
1

n

n∑

i=1

g(Xi)

∫
K ′

h(x−Xi − t)Kh0(t)dt

=

∫
Kh0(t)

( 1

n

n∑

i=1

g(Xi)K
′
h(x−Xi − t)

)
dt

and

E
[
D̂h0,h(x)

]
=

∫
Kh0(t)

( ∫
g(u)K ′

h(x− u− t)N(u)du
)
dt,

therefore

D̂h0,h(x) − E
[
D̂h0,h(x)

]
=

∫
Kh0(t)G(x − t)dt = Kh0 ⋆ G(x),

with

G(x) =
1

n

n∑

i=1

g(Xi)K
′
h(x−Xi) −

∫
g(u)K ′

h(x− u)N(u)du

= D̂h(x) − E
[
D̂h(x)

]
.

Therefore

‖D̂h0,h − E[D̂h0,h]‖2 ≤ ‖Kh0‖1‖G‖2
≤ ‖K‖1‖D̂h − E[D̂h]‖2,

which justifies (4.5). In the same way as in the proof of Proposition 2, we can establish the following:

E
[
‖Ẽh0‖2q2

]
= E

[
‖D̂h0 −D‖2q2

]
≤ �q

(
‖Ẽh0‖2q2 +

(∥∥g
∥∥
∞‖K ′‖2√
nh30

)2q)
.

Finally, we successively apply (4.4), (4.5) and Lemma 1 in order to conclude the proof.
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Proof of Proposition 4. We use the notation and definitions of Section 2.4. We have

‖L−1
k (ϕ) − L−1(ϕ)‖22,T =

k−1∑

i=0

xi+1,k∫

xi,k

(
Hi,k − L−1(ϕ)(x)

)2
dx :=

k−1∑

i=0

Li,k.

We prove by induction that for all i, one has Li,k ≤ C2 T 2

k2 ‖ϕ‖2W1 . The result follows by summation
over i. We first prove the two following estimates:

xi+1,k∫

xi,k

(
ϕi,k − ϕ(x)

)2
dx ≤ T 2

4π2k2
‖ϕ‖2W1 , (4.6)

|ϕi+1,k − ϕi,k|2 ≤ T

k
‖ϕ‖2W1 . (4.7)

By definition, ϕi,k is the average of the function ϕ on the interval [xi,k, xi+1,k] of size T
k . Thus

(4.7) is simply Wirtinger inequality applied to ϕ ∈ W1 on the interval [xi,k, xi+1,k].For(4.7), we
use the Cauchy-Schwarz inequality:

|ϕi+1,k − ϕi,k|2 =
k2

T 2

( xi+1,k∫

xi,k

(
ϕ(x+

T

k
) − ϕ(x)

)
dx

)2

=
k2

T 2

(
xi+1,k∫

xi,k

x+T
k∫

x

ϕ′(z)dz dx
)2

≤ k2

T 2

( xi+1,k∫

xi,k

√
T

k
‖ϕ‖W1dx

)2

=
T

k
‖ϕ‖2W1 .

We are ready to prove by induction the two following inequalities:

Li,k ≤ C2
1

T 2

k2
‖ϕ‖2W1 , (4.8)

|Hi+1,k −Hi,k|2 ≤ C2
2

T

k
‖ϕ‖2W1 . (4.9)

for two constants C1 and C2 specified later on. First, for i = 0, we have

L0,k =

T
k∫

0

|H0,k(ϕ) − L−1(ϕ)(x)|2dx =

T
k∫

0

∣∣1
3
ϕ0,k − L−1(ϕ)(x)

∣∣2dx.

We recall (see Proposition A.1. of [5]) that L−1(ϕ)(x) =
∞∑
n=1

2−2nϕ(2−nx), and we use the fact

that 1
3 =

∞∑
n=1

2−2n and for a, b > 0, ab ≤ 1
2 (a2 + b2) in order to write

L0,k =

T
k∫

0

∣∣
∞∑

n=1

2−2n
(
ϕ0,k − ϕ(2−nx)

)∣∣2dx ≤
∞∑

n,n′=1

2−2n−2n′

T
k∫

0

|ϕ0,k − ϕ(2−nx)|2dx

≤ 1

3

∞∑

n=1

2−n

2−n T
k∫

0

|ϕ0,k − ϕ(y)|2dy ≤ 1

3

T 2

4π2k2
‖ϕ‖2W1 .
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This proves the first induction assumption for i = 0, and

|H1,k −H0,k|2 =
∣∣1
7
(ϕ1,k − ϕ0,k)

∣∣2 ≤ 1

72
T

k
‖ϕ‖2W1 ,

proves the second one. Let us now suppose that the two induction assumptions are true for all
j ≤ i− 1, and take i ≥ 1. Let us first evaluate

Li,k =

xi+1,k∫

xi,k

(
Hi,k − L−1(ϕ)(x)

)2
dx =

1

16

xi+1,k∫

xi,k

(
H i

2 ,k
+ ϕ i

2 ,k
− L−1(ϕ)(

x

2
) − ϕ(

x

2
)
)2
dx.

We distinguish the case when i is even and when i is odd. Let i be even: then, by definition

Li,k ≤ 1

8

xi+1,k∫

xi,k

(
H i

2 ,k
− L−1(ϕ)(

x

2
)
)2
dx+

1

8

xi+1,k∫

xi,k

(
ϕ i

2 ,k
− ϕ(

x

2
)
)2
dx ≤ 1

4
(C2

1 +
1

4π2
)
T 2

k2
‖ϕ‖2W1

by the induction assumption and Assertion 4.7 on ϕ for j = i
2 . If i is odd, we write by definition

Li,k =
1

16

xi+1,k∫

xi,k

(
H i−1

2 ,k+ϕ i−1
2 ,k−L−1(ϕ)(

x

2
)−ϕ(

x

2
)+

1

2
(H i+1

2 ,k−H i−1
2 ,k)+

1

2
(ϕ i+1

2 ,k−ϕ i−1
2 ,k)

)2

dx.

Hence, re-organizing terms, we can write

Li,k ≤ 1

2

x i−1
2

+1,k∫

x i−1
2

,k

(
H i−1

2 ,k − L−1(ϕ)(y)

)2

dy +
1

2

x i−1
2

+1,k∫

x i−1
2

,k

(
ϕ i−1

2 ,k − ϕ(y)

)2

dy

+
1

16

T

k
(H i+1

2 ,k −H i−1
2 ,k)

2 +
1

16

T

k
(ϕ i+1

2 ,k − ϕ i−1
2 ,k)

2

Putting together the four inequalities above (the estimates for ϕ and the induction assumptions),
we obtain

Li,k ≤ T 2

k2
‖ϕ‖2W1

(
C2

1

2
+

1

8π2
+
C2

2

16
+

1

16

)

and (4.8) is proved. It remains to establishe (4.9). Let us write it for i even (the case of an odd i
is similar):

|Hi+1,k −Hi,k|2 =
1

16
|H i+1

2
−H i

2
+ ϕ i+1

2
− ϕ i

2
|2 =

1

32
|H i

2+1 −H i
2

+ ϕ i
2+1 − ϕ i

2
|2.

Hence, as previously, we obtain

|Hi+1,k −Hi,k|2 ≤ 1

16

T

k
‖ϕ‖2W1(C2

2 + 1).

To complete the proof, we remark that C2
2 = 1

15 and C2
1 = 1

4π2 + 1
8 (1 + 1

15 ) < 1
6 are suitable. It is

consequently sufficient to take C = C1.

4.2. Proof of Theorem 1 and Proposition 1.
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Proof of Theorem 1. It is easy to see that

‖Ĥ −H‖2,T = ‖L−1
k (κ̂D̂ + λ̂nN̂) − L−1(L(BN))‖2,T

≤ ‖L−1
k (κ̂D̂ + λ̂nN̂) − L−1

k (L(BN))‖2,T
+‖L−1

k (L(BN)) − L−1(L(BN))‖2,T
≤ ‖L−1

k (κ̂D̂ + λ̂nN̂ − (κD + λN))‖2,T
+

1

3

T√
k

‖L(BN)‖W1 ,

thanks to Proposition 4. Note that L(BN) = κ(gN)′ + λN so that we can write

‖L(BN)‖W1 ≤ C(‖N‖W1 + ‖gN‖W2).

We obtain, thanks to Lemma 4 that gives the boundedness of the operator L−1
k :

‖Ĥ −H‖2,T ≤ �
(∥∥κ̂nD̂ − κD

∥∥
2,T

+
∥∥λ̂nN̂ − λN

∥∥
2,T

+ (‖N‖W1 + ‖gN‖W2)
T√
k

)

≤ �
(
|κ̂n|‖D̂ −D‖2 + |λ̂n|‖N̂ −N‖2 + |κ̂n − κ|‖D‖2 + |λ̂n − λ|‖N‖2

+ (‖N‖W1 + ‖gN‖W2)
T√
k

)

≤ �
(
|λ̂n||ρ̂n|‖D̂ −D‖2 + |λ̂n|

(
‖N̂ −N‖2 + |ρ̂n − ρg(N)|‖D‖2

)

+
(
‖N‖2 + |ρg(N)|‖D‖2

)
|λ̂n − λ| + (‖N‖W1 + ‖gN‖W2)

T√
k

)
.

Taking expectation and using Cauchy-Schwarz inequality, we obtain for any q ≥ 1,

E[‖Ĥ −H‖q
2,T ] ≤ �q

[(
E[λ̂2q

n ]
)1/2

{(
E[ρ̂4q

n ]
)1/4(E[‖D̂ −D‖4q

2 ]
)1/4

+
(

E[‖N̂ −N‖2q
2 ]

)1/2

+ ‖D‖q
2

(
E[|ρ̂n − ρg(N)|2q ]

)1/2}

+
(
‖N‖2 + ρg(N)

∥∥D
∥∥

2

)q E[|λ̂n − λ|q] +
(
(‖N‖W1 + ‖gN‖W2)

T√
k

)q]
.

Now, Lemma 3 gives the behaviour of E[|ρ̂n − ρg(N)|2q]. In particular, we obtain

E[ρ̂4qn ] ≤ �q,g,N,c.

We finally apply successively Propositions 2 and 3 to obtain the proof of Theorem 1.

Proof of Proposition 1. We have already proved (1.9). It remains to prove (1.10). We
introduce the event

Ωn = {2N̂(x) ≥ m for any x ∈ [a, b]}.
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Then, for n larger that Q2,

E
[(∫ b

a

(
B̃(x) −B(x)

)2
dx

) q
2
]

= E
[(∫ b

a

(
B̃(x) −B(x)

)2
dx× 1Ωn

) q
2
]

+ E
[( ∫ b

a

(
B̃(x) −B(x)

)2
dx× 1Ωc

n

) q
2
]

≤ E
[(∫ b

a

(
B̂(x) −B(x)

)2
dx× 1Ωn

) q
2
]

+
(
2(b− a)(n+Q2)

) q
2 P(Ωc

n)

≤ E
[(∫ b

a

( Ĥ
N̂

− H

N

)2

× 1Ωn

) q
2
]

+
(
4n(b− a)

) q
2 P(Ωc

n)

≤ E
[(∫ b

a

( ĤN − N̂H

N̂N

)2

× 1Ωn

) q
2
]

+
(
4n(b− a)

) q
2 P(Ωc

n)

≤ �q,m,M,Q

(
E

[∥∥Ĥ −H
∥∥q

2

]
+ E

[∥∥N̂ −N
∥∥q

2

])
+

(
4n(b− a)

) q
2 P(Ωc

n).

The first term of the right hand side is handled by (1.9) and Proposition 2. The second term is
handled by Lemma 2 that establishes that P(Ωc

n) = O(n−q).

4.3. Technical lemmas. We state a series of technical results, proof of which we omit. The
interested reader may find detailed proofs in the preprint [4]. The first ingredient is a concentration
inequality. Note that a more general version of this result can be found in [14].
Lemma 1 (A concentration result). We have the following estimates

• Assume that
∥∥K

∥∥
2
,
∥∥K

∥∥
1
,
∥∥g

∥∥
∞ and

∥∥N
∥∥
∞ are finite. For every q > 0, introduce the grid

H ⊂ {1, 1/2, ..., 1/Dmax} and Dmax = δn for some δ > 0. Then, for every η > 0

E
[

sup
h∈H

{
‖N̂h − E[N̂h]‖2 − (1 + η)√

nh
‖K‖2

}2q

+

]
≤ �q,η,δ‖K‖2,‖K‖1,‖N‖∞n

−q.

• Assume that ‖K ′‖2, ‖K ′‖1, ‖g‖∞ and ‖N‖∞ are finite. For every q > 0, introduce the grid

H̃ ⊂ {1, 1/2, ..., 1/D̃max} and D̃max =
√
δ̃n for some δ̃ > 0. Then for every η > 0

E
[

sup
h∈H̃

{
‖D̂h − E[D̂h]‖2 − (1 + η)√

nh3
‖g‖∞‖K ′‖2

}2q

+

]
≤ �q,η,δ̃,‖K′‖2,‖K′‖1,‖g‖∞,‖N‖∞

n−q.

The second result is based on probabilistic arguments as well.
Lemma 2. Under Assumptions and notations of Proposition 1, if there exists an interval [a, b] in
(0, T ) such that

[m,M ] := [ inf
x∈[a,b]

N(x), sup
x∈[a,b]

N(x)] ⊂ (0,∞), Q := sup
x∈[a,b]

|H(x)| < ∞,

and if ln(n) ≤ Dmin ≤ n1/(2m0+1) and n1/5 ≤ Dmax ≤ (n/ ln(n))1/(4+η) for some η > 0 fixed, then
there exists Cη, a constant depending on η, such that for n large enough,

P(Ωc
n) ≤ Cηn

−q.

The third technical ingredient studies the behavior of the moments of ρ̂n. It is based on the
Rosenthal inequality.
Lemma 3 (Rosenthal-type inequality). For any p ≥ 2,

E
[
|ρ̂n − ρg(N)|p

]
≤ �p,g,N,cn

−p/2.
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Our final technical result is the boundedness of the approximation operator L−1
k .

Lemma 4. For any function ϕ, we have:

∥∥L−1
k (ϕ)

∥∥
2,T

≤
√

1

3

∥∥ϕ
∥∥
2,T
.
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Abstract

Protein polymerization consists in the aggregation of single monomers into polymers that may fragment. Fibrils assembly is
a key process in amyloid diseases. Up to now, protein aggregation was commonly mathematically simulated by a polymer
size-structured ordinary differential equations (ODE) system, which is infinite by definition and therefore leads to high
computational costs. Moreover, this Ordinary Differential Equation-based modeling approach implies biological
assumptions that may be difficult to justify in the general case. For example, whereas several ordinary differential
equation models use the assumption that polymerization would occur at a constant rate independently of polymer size, it
cannot be applied to certain protein aggregation mechanisms. Here, we propose a novel and efficient analytical method,
capable of modelling and simulating amyloid aggregation processes. This alternative approach consists of an integro-Partial
Differential Equation (PDE) model of coalescence-fragmentation type that was mathematically derived from the infinite
differential system by asymptotic analysis. To illustrate the efficiency of our approach, we applied it to aggregation
experiments on polyglutamine polymers that are involved in Huntington’s disease. Our model demonstrates the existence
of a monomeric structural intermediate ~cc1 acting as a nucleus and deriving from a non polymerizing monomer (c1).
Furthermore, we compared our model to previously published works carried out in different contexts and proved its
accuracy to describe other amyloid aggregation processes.
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Introduction

Protein aggregation and misfolding are involved in several fatal

human disorders, such as Alzheimer’s, Prion, Huntington’s

diseases [1,2]. Certain types of aggregates display specific

structural traits (e.g. a b{sheet enriched secondary structure) that

characterize amyloid assemblies. Recent progress in solid state

Nuclear Magnetic Resonance (NMR) has led to a better

understanding of amyloid assemblies at the molecular level [3].

However, this structural knowledge constitutes only a snapshot of

the dynamic processes. Protein aggregation involves a large

amount of chain reactions, e.g. conformational exchange, nucle-

ation (which is the formation of a first stable intermediate),

polymerization by monomer, dimer or i{ mer addition,

coalescence, depolymerization (by loss of mono, di or oligomers),

fragmentation (breakage into two or more polymers), protein

degradation.

To explore the dynamics of amyloid assemblies, nucleation/

polymerization reaction schemes have been applied, and to model

them, ordinary differential equations (ODEs) have been used for

many years [4]. An ODE means an equation containing only one

independent variable (e.g. the chemical concentration of mole-

cules) and its derivatives. Therefore in the case of polymerization,

the number of equations should be at least equal to the number of

sub-units constituting the longuest polymer. This value is

extremely large in the case of amyloid fibrils (amyloid fibril sizes

can go up to 1 mm length [5]), therefore simplifying assumptions

are commonly admitted, e.g. constant reaction rates, meaning that

polymers of any size behave roughly in the same way [6–9].

Although such assumptions allow the system to be reduced from

an infinite set of ODEs to a couple of equations [4,7], assumptions

of this nature are difficult to justify biochemically.

We propose here a new and global framework that can be

adapted to most protein polymerization reactions. This method

relies on partial differential equations (PDEs). In contrast to an

ODE, a PDE permits formulation of problems involving functions

of several variables. Instead of handling an infinite set of ODEs, we

show that under reasonable assumptions, we can derive an

equivalent model composed of a small number of ODEs coupled

with a single size-structured PDE. The size variable of fibers

replaces the infinite number of ODEs. To derive our model, we

tune asymptotic methods from previously published works [10,11].

A fully general model, which is much easier to handle both

theoretically and numerically, is obtained. It allows much faster

computations than for the full ODE set of equations. Moreover,

recent analytical tools developed for PDE analysis can be applied.
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The obtention of size-distributions of polymers is a fundamental

step [12], as it makes it possible to estimate quantitative reaction

rates and build a predictive model by the means of recently

developed inverse problem techniques [13].

To illustrate our method, we first formally derive the PDE

model in a general case, and then apply our method to expanded

polyglutamine (PolyQ) diseases. Finally, we compare our results to

existing work [7,8].

Results

The Infinite ODE System
Let us first recall how one can write the differential system

describing all the reactions that occur during nucleated protein

polymerization. We denote c1 the protein monomeric concentra-

tion and c�1 the one of a misfolded monomeric species which

displays the ability to polymerize. c1 monomers transform into this

monomeric species c�1 at the rate kz
I , and c�1 transform back to c1

at the rate k{
I :

ci represents the concentration of polymers made up of i

monomers. We assume that polymers and monomers are

degraded with a size-dependent degradation rate denoted ki
m:

The misfolded monomers c�1 are able to polymerize to give rise to

a nucleus ci0 , composed of i0 monomeric units, with the rate kN
on:

As proposed by Oosawa and co-authors [4], a nucleus is generated

by the addition of an object to highly unstable entities that are too

transitory to be observed. The object stabilizing the highly

unstable entities can be a monomer (c1). If we consider a nucleus

ci0 with a size i0, its formation does not consist in a sequential

addition of c1 till ci0 (where it would be represented by

c1?c2?c3? � � �?ci0 ), but follows an i0 order kinetic (where

i0c�1?ci0 ).

This nucleus can dissociate at the rate kN
off : We make the

reasonable assumption that there is an equilibrium between

monomers and oligomers [4].

c1 '
k{

I

kz
I

c�1, c�1z � � �zc�1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
i0

'
kN

off

kN
on

ci0
ð1Þ

Polymers of size i larger than i0 can polymerize or depolymer-

ize, which is the gain or the loss of a single monomeric unit: the

elongating species is assumed here to be c�1 (our model is easy to

adapt to other cases, e.g if the elongating species is a dimer or an

oligomer [8]). Those reactions occur at the rate ki
on and ki

dep

respectively.

cizc1 '
kiz1

dep

ki
on

ciz1 ð2Þ

Polymers can also coalesce with other polymers or break into

two smaller polymers. For the sake of simplicity, we assume that a

polymer can only break into two pieces at the exact same time (a

breakeage into 3 or more pieces is generally much more

hazardeous, so that it can be neglected). Coagulation of two

polymers of respective size i and j occurs at the rate k
i,j
col .

Fragmentation of a polymer of size i gives rise to smaller polymers

of size j and i{j (where 2ƒjƒi0), at the rate k
j,i
off :

cizcj '
k

i,izj
off

k
i,j
col

cizj ð3Þ

We could have kept the same notation for fragmentation and

depolymerization, by denoting k1,i
off ~ki{1,i

off ~
1

2
ki

dep: We prefered

however to distinguish them, because they involve reactions of

different kinds, so that the orders of magnitude may appear

different.

Let us define K
j
off ~

Xj{2

i~2

k
i,j
off : This represents the total rate with

which a polymer of size j can break to give smaller polymers. By

symmetry we have that k
i,j
off ~k

j{i,j
off and k

i,j
col~k

j,i
col :

The following model is the exact deterministic transcription of

the previously considered reactions. It could be completed by

other reactions (polymerization pathways, other types of confor-

mational exchange, for instance) to adapt to any possible case. The

variation
dc

dt
of the species ci (or c1, c�1) depends on two

phenomena: 1) their rates of consumption, including depolymer-

ization into a smaller polymer (or transformation into c1 in the

case of c�1), polymerization into a higher polymer (or transforma-

tion into c�1 in the case of c1) and degradation km, and 2) their rates

of production, i.e. polymerization from smaller polymer (or

transformation from c1 in the case of c�1) and depolymerization

from higher polymer (or transformation from c�1 in the case of c1).

This induces the following equations.

dc1

dt
~{kz

I c1zk{
I c�1{k1

mc1, ð4Þ

dc�1
dt

~kz
I c1{k{

I c�1{i0 kN
on (c�1)i0zi0 kN

off ci0
{k1�

m c�1

{c�1
X
i§i0

ki
on ciz

X?
j~i0

k
j
depcjz2

Xi0{1

i~2

X?
j~i0

i k
i,j
off cj ,

ð5Þ

dci0

dt
~kN

on (c�1)i0{kN
off ci0

{k
i0
on ci0

c�1zk
i0z1

dep ci0z1{k
i0
m ci0

z2
X?

j~i0z2

k
i0,j

off cj{K
i0
off ci0

{
X
j§i0

k
i0,j

col ci0
cj ,

ð6Þ

dci

dt
~c�1(ki{1

on ci{1{ki
on ci){(ki

depci{kiz1
dep ciz1){ki

mci

z2
X?

j~iz2

k
i,j
off cj{Ki

off ciz
1

2

X
i0ƒjƒi{2

k
j,i{j
col cj ci{j

{
X
j§i0

k
i,j
colci cj :

ð7Þ

This model and variants of it have been extensively studied,

either in the general case in the mathematical literature (see
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[10,14] and references therein), or when applying simplifying

assumptions in the biological literature [4,6–8]. It is an efficient

tool to study protein aggregation when the average size of protein

iM is of a reasonable order. However, for long polymer reactions,

this modeling technique may be time-consuming and therefore

inefficient to understand the underlying complexity. One can

notice the resemblance between this infinite ODE model and a

coupled PDE [15].

From ODEs to PDE: a New Size-structured Model
We propose here a new size-structured model composed of two

ODEs and one PDE in the case of a large average size iM of

polymers - i.e., iM&1: The main idea is to replace the discrete size

i of a polymer by a continuous variable x[(ei,e(iz1)), in which we

have defined the small parameter e : ~
1

iM
%1: In the same way,

the densities (ci(t)) are replaced by a continuous-in-size function

c(t,x) (see supplementary data S1 for more details). This model

can be derived from the infinite set of ODEs if the two following

assumptions hold.

First, for most polymer sizes i, there is only a slight difference

between what happens for i{ mers and for iz1-mers. In other

terms, even if quantities and reaction rates vary, it occurs in a

‘‘continuous’’ manner, implying only slight changes from one size i
to its neighbor sizes iz1 and i{1 except for a small number of

values. For instance, for degradation coefficients ki
m, it is

formalized as: There exists a constant, denoted below Cstw0,
such that

For all i§i0, Dkiz1
m {ki

mDƒ
Cst

i
:

This assertion allows a continuous viewpoint on the equations

for ci. It also means that disruptions in the concentrations or in the

coefficients can only appear at some specific points, that will have

to be identified, and that are meaningful biologically. Though, this

assertion appears to be natural since the conformational changes

in polymers only occur at specific sizes [16]. Moreover, having a

look at experimental size distributions (Figure 1) confirms how

natural it is to view the size of polymers as a continuous quantity.

The second and quite standard assumption is that at the

beginning of the reaction, when polymer concentrations remain

small compared to monomers, polymerization is the main process,

whereas fragmentation and coalescence are secondary processes

[4,6]. This assumption can be replaced if necessary by a similar

one, such as the existence of a dominant polymerization by j{mer

addition, with j%iM a relatively small oligomer. In such a case, the

polymerization terms ki
onc1ci would be replaced by ki

oncjci in the

equations, and a similar treatment can apply.

We refer to supplementary data S1 for a rigorous mathematical

formulation of these two assertions. They are obtained when the

system of equations is rescaled, and this allows us to estimate the

relative contribution of each process to the overall dynamics.

Let us turn to the nucleus ci0 : In this equation, the two assertions

make it possible to ignore the influence of fragmentation and

coalescence. Then as we are in the case where iM&1, the time-

dependency of the equation for ci0 is much faster than the one for

c1: it can be written
d

dt
ci0~

1

e
� � � (see supplementary data S1).

Hence, it is valid to suppose that it reaches its equilibrium

instantaneously, and we can replace Equation (6) by

0~kN
on(c�1)i0{kN

off ci0
{k

i0
onci0

c�1:

We thus obtain the following equality, which generalizes well-

established formulas [6]

ci0
(t)~

kN
on (c�1)i0

kN
off zk

i0
onc�1

: ð8Þ

We can now write the following coupled ODE and PDE system,

where i is replaced by a continuous variable x: Differences are

replaced by derivatives and sums by integrals.

dc1

dt
~{kz

I c1zk{
I c�1{k1

mc1, ð9Þ

dc�1
dt

~kz
I c1{k{

I c�1{
i0 kN

on (c�1)i0z1k
i0
on

kN
off zk

i0
onc�1

{k1�
m c�1

{c�1

ð?
x0

kon(x)c(t,x)dxz

ð?
x0

kdep(x)c(t,x)dx,

ð10Þ

Lc

Lt
~{c�1

L
Lx

(kon(x)c(t,x))z
L
Lx

(kdep(x)c(t,x))

z2

ð?
x

koff (x,y)c(y)dy{Koff (x)c(t,x)

z
1

2

ðx
x0

kcol(y,x{y)c(t,y)c(t,x{y)dy

{

ð?
x0

kcol(x,y)c(t,x)c(t,y)dy{km(x)c(t,x),

ð11Þ

Figure 1. PolyQ41 Fibrils size distribution before (blue plain
line) and after (dashed green) 10 min of sonication. The absence
of any change in the distribution shows that neither fragmentation nor
coalescence occured.
doi:10.1371/journal.pone.0043273.g001
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kon(x0)c(t,x0)~kon(x0)
kN

on c
i0
1

kN
off zkon(x0)c1

: ð12Þ

Complete rigorous mathematical derivation can be found in

supplementary data S1, and also shows that generally the third

term in the right-hand side of Equation (10) (the ratio

i0 kN
on (c�1)i0z1ki0

on

kN
off zki0

onc�1
) is negligible. Even mathematical approximation

theorems can be written to validate the model, as is done for

instance in [10,11,17].

The advantages are twofold. First, it allows us to investigate

numerically, using standard and well-known numerical schemes

(see [18]), how a change in the coefficients can influence the

overall reaction, and, more specifically, the size distribution. Also,

inverse problem techniques could allow size-dependent parame-

ters to be estimated (see for instance [19,20]). Secondly, it is easier

to handle mathematically. Theoretical analysis can help us

understand the intrinsic mechanisms and formulate new para-

digms [21,22].

Application to PolyQ Polymerization
Aggregation of polyglutamine (PolyQ)-containing proteins is

responsible for several neurodegenerative disorders including

Huntington’s disease. We have carried out biophysical analyses

to investigate the aggregation kinetics of PolyQ41, which are

peptides containing a repetition of 41 glutamine residues per

monomer. Such a length of PolyQ repetition per molecule is

sufficient to induce aggregation in vitro and in transfected cells [23].

Due to its simplicity, PolyQ provides an excellent model system

to test our mathematical model. According to the experimental

observations (Figure 1), fragmentation can be ignored. Indeed, in

Figure 1, the size distribution of PolyQ41 fibrils did not change

after 10 min of ultrasound treatments, showing that polymer-to-

polymer reactions do not occur.

In order to determine whether coalescence occurs, we

monitored simultaneously two types of measurements, polymer

size and total polymerized mass. Polymer size was estimated by a

static light scattering (SLS) signal. SLS is governed by the weighted

average mass of oligomers and therefore highly depends on

oligomer size. It can be viewed as a measurement of

I2(t)~
P

i§i0

i2ci~
Ð

x2c(t,x)dx: Total polymerized mass was fol-

lowed by thioflavine T (ThT) fluorescence. Such fluorescence

arises from interactions between ThT and the peculiar structure of

amyloids, relatively independently of amyloid size (above a certain

size threshold). ThT can be mathematically expressed by

M(t)~
P

i§i0
ici~

Ð
xc(t,x)dx: If there were coalescence, the

weighted average polymer size would continue to grow even when

the total polymerized mass M(t) reached a plateau, so the second

moment I2(t) would continue to grow after the plateau has been

reached by M(t): Here, however, both curves reach the plateau

roughly simultaneously (see supplementary data S2). Therefore we

conclude that coalescence is negligible. As described in Materials

and Methods, the spontaneous polymerization of PolyQ41 is

prevented by a glutathione s-transferase (GST) tag attached to

PolyQ41 peptide. Such experimental system has the advantage of

providing a system where only monomeric species are present at

time 0, i.e. no seeding was required for polymerization:

c1(t~0)~ctot, c�1(t~0)~ci(t~0)~0: As the GST-polyQ41 does

not constitute the pro-aggregative conformer, the PolyQ41

aggregation needs to be ignited by an irreversible enzymatic

cleavage (here by thrombin hydrolysis), releasing the GST region

apart from PolyQ41. This enzymatic cleavage can be assimilated

to an activation process along which the poly Q41 monomer turns

into a structurally activated form prone to aggregation. This led us

to establish a minimal activation scheme in which the GST-

polyQ41, denoted by c1, is converted into an active form denoted

c�1 with a constant rate kz
I . The nucleus size i0, of unknown value,

can be equal to 1, 2, 3 or even more. With these assumptions,

Model (4)–(7) becomes

dc1

dt
~{kz

I c1zk{
I c�1, ð13Þ

dc�1
dt

~kz
I c1{k{

I c�1{i0 kN
on (c�1)i0zi0 kN

off ci0
{c�1

X
i§i0

ki
on ci, ð14Þ

dci0

dt
~kN

on (c�1)i0{kN
off ci0

{k
i0
on ci0

c�1 ð15Þ

dci

dt
~c�1(ki{1

on ci{1{ki
on ci), ð16Þ

and we use the continuous version of this model, given by (9)–(12),

which becomes

dc1

dt
~{kz

I c1zk{
I c�1, ð17Þ

dc�1
dt

~kz
I c1{k{

I c�1{
i0 kN

on k
i0
on(c�1)i0z1

kN
off zk

i0
onc�1

{c�1

ð?
x0

kon(x)c(t,x)dx,

ð18Þ

Lc

Lt
~{c�1

L
Lx

(kon(x)c(t,x)), ð19Þ

kon(x0)c(t,x0)~kon(x0)
kN

on (c�1)i0

kN
off zkon(x0)c�1

: ð20Þ

As an initial approach, we tested piecewise linear polymeriza-

tion rates. They are linear from kmin
on to kmax

on on (xi0 ,x1), constantly

equal to kmax
on on (x1,x2) and linearly decreasing to zero on

(x2,xM ) with kmin
on and kmax

on parameters to be calibrated. We

arbitrarily set kmin
on and x1, which led to 7 free parameters. We

have also tested two different kinds of kinetics when i0~1: first, the

special case where there is no nucleus, i.e. the polymerization

process starts directly from c�1, which means kN
on~kon and kN

off is

negligible. This reaction scheme was unable to fit properly even a

single experimental curve so we abandoned it. Second, the case

when the previous model is unchanged but where i0~1 : this
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means that the nucleus ci0~~cc1 is a monomeric species differing

only from c�1 in its conformation. The elongating species remains

the intermediate c�1: In the following, i0~1 refers to this second

case.

The parameters of this model were then estimated by fitting

experimental data on PolyQ41 protein polymerization. We

performed this in two successive ways. The first consists in fitting

separately each experimental curve, corresponding to a given

experiment, at a given concentration. The result is that whatever

i0 is, the fit is excellent for any curve, with a measurement error

from 0:5 to 2% in L2 adimensioned norms (see supplementary

data S2). It gives almost undistinguishable curves. However, the

variability among the optimal coefficients was large, which led us

to the second step. This consisted in fitting simultaneously all the

curves of experiments carried out in identical experimental

conditions, but for different concentrations. The global adimen-

sioned error (in L2{norm) diminished with i0, and reached its

lowest level for i0~1, as shown in Figure 2. For larger values of the

nucleus, the error is moreover too large for the model to be

acceptable (results shown in supplementary data S2). It gives solid

ground to the assumption, already suggested in the literature [24],

that the nucleus is of size 1, but with a specific and unconventional

nucleation-elongation reaction scheme, where the elongating

species c�1 and the nucleus ci0~~cc1 are distinct conformers.

Another result of our simulations is that k{
I is negligible, thus

we can suppose that c1~c0e{kz
I

t: In the same way, we can

compare c�1 to the solution of the following differential equation

dctest

dt
~kz

I c0e
{kz

I
t
{i0kN

onc
i0
test, ctest(0)~0,

i.e., neglect the contribution of polymers in the equation for c�1: it

fits perfectly for the total duration of the lag phase.

Application to the Knowles et al. Model [7]
As seen for the application to PolyQ, the fully general model

(9)–(12) is not yet directly applicable, precisely because of its

general character. It can be thought of as the departure point for

numerical, biological and mathematical analysis; and it is indeed a

powerful way to tackle polymerization issues. To illustrate our

approach, we have applied our model to experimental data of

amyloid protein aggregation from other authors and we have

compared or transposed our model to the recently published

models that were accompanying the data [7,8].

In [7], Knowles and coauthors set up a model for polymeri-

zation of breakable filament assembly. This model is an analytical

approximation that they have applied to (potential) experimental

data and compared to exact equations representing the experi-

mental data. For their approximation model, Knowles and

coauthors made the following assumptions.

N Polymerization at a constant rate independent of the size of the

polymers,

N no degradation of polymers neither monomers,

N the size of the nucleus is i0~2,

N fragmentation rate depends linearly on the size of the polymer:

k
i,j
off ~koff constant,

Figure 2. Simulation vs Experiments for Experimental Set 1, for an initial PolyQGST concentration of 100 mM: The parameters were first
estimated for an experimental set of initial concentration 285 mM, then we compared the experimental measures (dotted lines) for an initial
concentration 100 mM with the simulations (in solid lines) for i0~1,2,3,4: We see that the smaller i0 is, the closer the simulation to experimental
curves.
doi:10.1371/journal.pone.0043273.g002
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N no coalescence,

N nucleation disaggregation occurs with the same rate koff as

depolymerization.

With these assumptions, it is well-known that the original ODE

system simplifies by summation on a system of 2 non linear

coupled ODEs (Equations (3a) and (3b) in [7]), namely:

dP

dt
~koff (M{(2i0{1)P)zkN

on(C0{M)i0 , ð21Þ

dM

dt
~(kon(C0{M){i0(i0{1)koff )Pzi0kN

on(C0{M)i0 ð22Þ

where M~
X
i§i0

ici represents the total polymerized mass, and

P~
X
i§i0

ci represents the total number of polymers. They

approximate this system by an analytical formula, justified by a

fixed point method and shown numerically to give a good

approximation. To apply our method, we first look at the average

size iM (t) of polymers, which is given by iM~
M(t)

P(t)
: It is shown in

Figure 3 for the parameter values kon~105M{1s{1,

koff ~2:10{8s{1, C0~5:10{6M, kN
on~2:10{5M{1s{1, i0~2,

M(0)~P(0)~0: All these values, taken from [7] (fig. 1 of

KnowlesTM manuscript), directly represent the exact system of

(potential) experimental data. We see that our assertion of large

polymers is satisfied. Similarly, we check that the range of

parameters that they proposed fit to our other assumptions, so that

our method can be applied. The assumption on kN
off ~koff implies

that the nucleus dissociation term in the equations for c1 and ci0
is

negligible: indeed we have koff ci0
to be compared to c1koniMci:

We followed their modelling ideas but our method allows us to

relax their assumptions in the following sense.

N Polymerization is not necessarily constant, but values

kon(0)w0 for small polymers of size i close to i0%iM :

N We neglect degradation of small polymers and of monomers,

but we keep a degradation for large polymers,

N I0 = 2,

N fragmentation rate does not necessarily depend linearly on the

size of the polymer, but it is true for small polymers:

koff (x%1,y%1)~k0
off constant,

N coalescence is negligible compared to polymerization as long

as c1 remains in the order of (C0):

With these assumptions, System (9)–(12) can be simplified as

follows:

dc1

dt
~{i0 kN

on c
i0
1 {c1

ð?
0

kon(x)c(t,x)dx, ð23Þ

Lc

Lt
~{c1

L
Lx

(kon(x)c(t,x)))

z2

ð?
x

koff (x,y)c(y)dy{Koff (x)c(t,x){km(x)c(t,x),

ð24Þ

koncDx~0~kN
onc

i0{1

1 : ð25Þ

If we take as in [7] koff and kon constant, we recover System

(??)(??) by summation, but with the terms (2i0{1)P(t) and

i0(i0{1)koff P(t) neglected. Numerical simulations are shown in

Figure 3, and we see that this simplification allows a perfect fit with

the complete model, fast simulations, and a better understanding

of which reaction dominates at any moment (since we have access

to size distributions, see Figure 4).

Comments on Size Distributions. For the size parameters

taken from [7], fig. 1, we are able to observe the evolution of

polymer size distributions over time: see Figure 4. At the beginning

of the reaction (in this particular case, for a time between 0 and 5
hours), the average size increases very fast. Then it reaches an

equilibrium, and between 6 to 15 hours it reaches an exponential

regime during which the whole size distribution, not only the

average size, is quite steady. An explanation for this could be taken

from [25] for instance. After this period, the average size decreases

- and ultimately, the model shows that M=P?i0z1 but this

would be accomplished only after a very long period of time. A

good test for the model proposed by [7] would be to check whether

size distribution of polymers resembles such a one-peak distribu-

tion. If not, the assumptions would have to be relaxed, e.g. by

taking variable coefficients [25].

PDE Model Applied to the Xue et al. Model [8]
Xue and colleagues present a new strategy to analyse the self-

assembly of misfolded proteins into amyloid fibrils [8]. They

analysed fibril length distribution of b2-microglobulin, a protein

involved in dialysis-related amyloidosis. Xue and colleagues have

developed the following approach. Based on a large data set of

experimental growth curves, transitional general parameters of the

time-curve, namely the length of the lag phase (Tlag) and the slope

(k) of the reaction curve at the inflexion point were extracted.

Several theoretical models are simulated using the ODE formu-

lation and the theoretical transitional parameters Tlag and k were

extracted from the numerical growth curve in the same way as for

the experimental curve (see Table S2 in Supplementary data S3).

Then the best model and its parametrization were determined by

comparing the theoretical values with the experimental data

through least-squares analysis. This powerful approach is based on

the simulation of a full ODE system (with one equation per size of

aggregates) for each model investigated and no simplifications

were made to reduce the dimension of this system. As a

consequence, the method is time-consuming, which limits the

number of mechanisms studied and the maximal polymer size

(2400 in [8]). In addition, estimation of the best fitting model is

based only on general parameters of the curve, which do not seem

much sensitive to the distribution of the fragmentation process (see

supplementary data S3). To overcome these limitations, we

propose transposing their approach using PDE models, allowing

for i) faster simulations, ii) no limitation in the size of aggregates,

and iii) development of inverse problem techniques ([26,27]) to

estimate parameters using the overall time evolution process.

Xue et al investigated b2{microglobulin growth, using models

including different processes: a pre-polymerization step (charac-

terized by either no pre-polymerization, or monomer-dimer

equilibrium and dimer addition mechanism, or conformation

exchange), an elongation of the aggregates following a one-step

function, a linear function or a power function, and a possible
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secondary process such as fragmentation. Their best-fit model is

given by:

N No conformational exchange, no coalescence and no degra-

dation of polymers or monomers,

N the size of the nucleus is i0~2 and nucleus dissociation occurs

only through depolymerization,

N polymerization and depolymerization follow a one-step

function with the step at i~6,

N fragmentation into two smaller polymers occurs.

Thus, using the previously introduced notations, the original

ODE system can be written

dc1

dt
~{i0kN

onc
i0
1 zi0kN

off ci0
{c1

X
i§i0

ki
onci, ð26Þ

dci0

dt
~kN

onc
i0
1 {kN

off ci0
{k

i0
onc1ci0

z2
X

j§i0z2

k
i0,j

off cj ð27Þ

Figure 3. Numerical solution of Equation (21) (22) either using the exact equations, directly representing (potential) experimental
data, the PDE approximation, or the analytical approximation proposed in [7]. Left: average size of polymers. Right: monomers
concentration. It is clear that the PDE approximation gives excellent results. The parameters used for the exact equations (i.e. values for elongation
rate, fragmentation rate and nucleus size) are those from Fig. 1 of [7].
doi:10.1371/journal.pone.0043273.g003

Figure 4. Adimensionned Distributions of the sizes of polymers
for various times. To obtain adimensionned distributions of polymer
sizes, our model was applied to data taken from Figure 1 of [7]. From 6
to 18 hours one can see that the distribution remains roughly stable.
doi:10.1371/journal.pone.0043273.g004
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dci

dt
~c1(ki{1

on ci{1{ki
onci)

{(ki
depci{kiz1

dep ciz1)z2
X

j§iz2

k
i,j
off cj{Ki

off ci:
ð28Þ

For the particular choice of fragmentation made in [8],

however, fragmentation in polymers of size 1 is close to 0. This

ODE system is then formally equivalent to the following PDE

system:

dc1

dt
~{

i0kN
onkon(x0)c

i0z1

1

kN
off zkon(x0)c1

{c1

ð?
x0

kon(x)c(t,x)dx, ð29Þ

Lc(t,x)

Lt
~{c1

L
Lx

(kon(x)c(t,x))z
L
Lx

(kdep(x)c(t,x))0

z2

ð?
x

koff (x,y)c(t,y)dy{Koff (x)c(t,x),

ð30Þ

c(t,x0)~
kN

onc
i0
1

kN
off zkon(x0)c1

: ð31Þ

Due to the shape of the polymerization process, which has a step

at i~6 (meaning that ki
on~K1 for iƒ5, ki

on~K2 for i§6), if the

step is high, that is if K2&K1, it is however preferable to keep all

the ODEs occurring for iƒ6 and to set up the PDE (30) only for

i§6: We then adapt the boundary condition (31) as shown in

supplementary data S3. This can also be approximated by the

Bishop and Ferrone model [6] by adjusting a nucleus critical size

to i0~6: Similar work can be done for the different processes

studied in [8]. Our study allowed us to enhance their approach by

quick investigation of different fragmentation kernels, showing that

the shape of the fragmentation does not influence the polymer-

ization dynamics (see supplementary data S3).

Discussion

We proposed a new model (9)–(12) to serve as a global

framework to investigate the leading mechanisms of nucleation-

elongation processes in amyloid fibrils’ assemblies. We applied it to

PolyQ41 aggregation, demonstrating experimentally that coales-

cence and fragmentation were negligible, and predicting by our

simulations that the monomer activation was irreversible. More-

over, it highlighted the early step of PolyQ41 nucleus formation

and assemblies. With regard to the bibliography, the concept of

nucleus in protein aggregation remains obscure. Here the analysis

of PolyQ polymerization suggested a kinetic scheme in which c�1 is

at an equilibrium with ~cc1. These two species are monomeric and

only differ in their conformation. According to the conventional

model of nucleation-elongation process [4], the nucleus is

thermodynamically stabilized by the addition of at least one

monomer. Here we proposed an unconventional mechanism of

nucleation in which the ~cc1 formation constitutes the limiting step

in the polymerization process which is stabilized by an interaction

with c�1. Therefore, the formation of the ½~cc1{c�1� complex

constitutes the first proaggregative species. Furthermore, during

the formation of this complex, a structural information exchange

should occur between ~cc1 and c�1. To reach the formation of a

nucleus, two changes of conformation are hence required. The

first one arises from the GST-cleavage of c1 to a conformer c�1
released as a random coil structure, that is not proaggregative. The

second change of conformation is an internal change of the

random coil c�1 into a proaggregative species ~cc1 that is still

monomeric.

Our approach also proved highly efficient when applied to

previously designed models [7,8], where it can be adapted and

used to pursue the research further. We believe it could be applied

to many other cases, providing both a unified framework and an

efficient way to carry out fast simulations, model discrimination

[28], inverse problem methods and analysis.

Materials and Methods

Model Derivation
To derive the continuous model, we first write a rescaled version

of the model, that makes use of typical orders of magnitude. Then,

quantifying our assumptions, we approximate sums by integrals

and differences by derivatives. Finally, from the equation for ci0 we

deduce the boundary condition for c(t,x~x0) (full details in

supplementary data S1).

Numerical Implementation
To avoid useless conversions, we implemented the PDE model

(9)–(12) with dimensioned numbers, and checked a posteriori that

the considered orders of magnitude fit the assumptions. We use an

explicit upwind scheme - finer methods can be used such as

WENO [18].

Parameter Estimation
The parameter estimation was performed by a least-square

approach. For i0~1,2,3,4, we searched for the optimal set of

parameters such that it minimized the quadratic distance between

the data points obtained by ThT measures and the simulated

curve of the mass, represented by
Ð

c(t,x)xdx in the PDE model or

by
P

ici in the ODE one. The minimization task was performed

by the CMAES algorithm [29]. It was run with 50 different initial

parameters sets. Then the optimal solution was used as an initial

guess and the minimization algorithm was run again 50 times.

Experimental Results
GST-PolyQ production. The GST-Q41 expression vector

was described by Masino et al [30]. GST-polyQ41 fusion protein

was produced in E.Coli BL21DE3 and purified by affinity

chromatography using Glutathione Sepharose affinity beads

(Pharmacia).

Fragmentation experiments. The Fragmentation experi-

ments were performed using an immersion sonotrod oscillating at

40 kHz. The size distributions of polyQ fibrils were monitored

before and after sonication by dynamic light scattering (DLS,

Wyatt).

Kinetic experiments. All polymerization experiments were

performed at 33uC. Aggregation was initiated by thrombin

addition (0.5 unit/ÂmM of GST-PolyQ41) leading to the release

of PolyQ41 peptide from GST. The aggregation was monitored

either by Thioflavine T (Tht) (100 mM) in a 96-well plate

fluorescence spectrometer or by a homemade multiwavelength

static light scattering/fluorescence system (SLS).
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Supporting Information

Figure S1 Parameter estimation considering each curve
separately. Time evolution of PolyQ41 polymerized mass for an

initial PolyQGST concentration equal to 285 mM. The experimental

results are plotted in dotted line and the best-fit curve in solide line. i0 is

set to 3. Best-fit parameters are kz
I ~0:67 h{1, k{

I ~0, kN
on~

7:8:102 M{2h{1, kN
off ~5:10{2 h{1, kmax

on ~1:2:109 M{1h{1,

imax~2:106, x2~0:2 imax.

(TIF)

Figure S2 Parameter estimation for Experimental Set 1
when i0 is set to 3. Time evolution of the adimensioned

PolyQ41 polymerized mass for an initial PolyQGST concentra-

tion equal to 100 mM (A), 285 mM (B), 420 mM(C). Dotted curves

represent experimental results. The solid curve is the best-fit. The

global error in L2 adimensioned norm was equal to 40% and the

optimal parameters are very close to those of Figure 1.

(TIF)

Figure S3 Parameter estimation for Experimental Set 1
when i0 is set to 1. Time evolution of the adimensioned

PolyQ41 polymerized mass for an initial PolyQGST concentra-

tion equal to 100 mM (A), 285 mM (B), 420 mM (C). Dotted curves

represent experimental results. The solid curve is the best-fit. The

global error in in L2 adimensioned norm was equal to 11%. The

best-fit parameters are kz
I ~0:65 h{1, k{

I ~0, kN
on~

7:10{6 M{1h{1, kN
off ~5:10{2h{1, kmax

on ~2:3:109M{1h{1,

x2~0:1 imax, imax~5:106:
(TIF)

Figure S4 Left: Size distribution of the fragmentation rate for an

aggregation of size 20, following a uniform distribution (black) or a

mechanical-based distribution (red) of fragmentation. Right:

Simulated normalized reaction progress curves of amyloid

formation for a uniform distribution (black) and a mechanical-

based distribution (red) of fragmentation. See below for the

numerical values.

(TIF)

Figure S5 Examples of simulated size distribution of
the aggregates for a uniform distribution (black) and a
mechanical-based distribution (red) of fragmentation.
See above for the numerical values.

(TIF)

Supplementary Data S1 Model derivation from ODE to
PDE.
(PDF)

Supplementary Data S2 Application to PolyQ41 poly-
merization.
(PDF)

Supplementary Data S3 Effect of the fragmentation
distribution on the kinetics of the Xue et al. model [1].
(PDF)
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[62] M. Escobedo, S. Mischler, and B. Perthame. Gelation in coagulation and fragmentation
models. Comm. Math. Phys., 231(1):157–188, 2002.

175



[63] M. Escobedo, S. Mischler, and M. Rodriguez Ricard. On self-similarity and stationary
problem for fragmentation and coagulation models. Ann. Inst. H. Poincaré Anal. Non
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[93] P. Laurençot and C. Walker. Well-posedness for a model of prion proliferation dynam-
ics. J. Evol. Equ., 7(2):241–264, 2007.
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