
HAL Id: tel-00844399
https://theses.hal.science/tel-00844399

Submitted on 15 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Application d’un langage de programmation de type flot
de données à la synthèse haut-niveau de système de

vision en temps-réel sur matériel reconfigurable
Sameer Ahmed

To cite this version:
Sameer Ahmed. Application d’un langage de programmation de type flot de données à la synthèse
haut-niveau de système de vision en temps-réel sur matériel reconfigurable. Autre. Université Blaise
Pascal - Clermont-Ferrand II, 2013. Français. �NNT : 2013CLF22334�. �tel-00844399�

https://theses.hal.science/tel-00844399
https://hal.archives-ouvertes.fr

No d’ordre : D.U.2334
EDSPIC : 605

Université Blaise Pascal - Clermont-Ferrand II

École Doctorale

Sciences pour l’Ingénieur de Clermont-Ferrand

Thèse

présentée par

Sameer Ahmed

pour obtenir le grade de

Docteur d’Université
Spécialité: Vision pour la Robotique

Application of a Dataflow Programming Language

to the High Level Synthesis of Real-Time Vision Systems

on Reconfigurable Hardware

Soutenue publiquement le 24 Janvier 2013 devant le jury:

M. Greg Michaelson Rapporteur
M. Hassan Rabah Rapporteur
M. Dominique Ginhac Examinateur
M. Julien Dubois Examinateur
M. Jean Pierre Derutin Examinateur
M. François Berry Examinateur
M. Jocelyn Sérot Directeur de thèse

Abstract

Field Programmable Gate Arrays (FPGAs) are reconfigurable devices which can outper-

form General Purpose Processors (GPPs) for applications exhibiting parallelism. Traditionally,

FPGAs are programmed using Hardware Description Languages (HDLs) such as Verilog and

VHDL. Using these languages generally offers the best performances but the programmer must

be familiar with digital design. This creates a barrier for the software community to use FPGAs

and limits their adoption as a computing solution.

To make FPGAs accessible to both software and hardware programmers, a number of tools

have been proposed both by academia and industry providing high-level programming envi-

ronment. A widely used approach is to convert C-like languages to HDLs, making it easier

for software programmers to use FPGAs. But these approaches generally do not provide per-

formances on the par with those obtained with HDL languages. The primary reason is the

inability of C-like approaches to express parallelism. Our claim is that in order to have a high

level programming language for FPGAs as well as not to compromise on performance, a shift

in programming paradigm is required. We think that the dataflow/actor programming model

is a good candidate for this.

This thesis explores the adoption of dataflow/actor programming model for programming

FPGAs. More precisely, we assess the suitability of CAPH, a domain-specific language based on

this programming model for the description and implementation of stream-processing applica-

tions on FPGAs. The expressivity of the language and the efficiency of the generated code are

assessed experimentally using a set of test bench applications ranging from very simple appli-

cations (basic image filtering) to more complex realistic applications such as motion detection,

Connected Component Labeling (CCL) and JPEG encoder.

Keywords: Dataflow programming, stream-processing applications, FPGA, computer vi-

sion.

I

II

Résumé

Les circuits reconfigurables de type FPGA (Field Programmable Gate Arrays) peuvent

désormais surpasser les processeurs généralistes pour certaines applications offrant un fort degré

de parallélisme intrinsèque. Ces circuits sont traditionnellement programmés en utilisant des

langages de type HDL (Hardware Description Languages), comme Verilog et VHDL. L’usage

de ces langages permet d’exploiter au mieux les performances offertes par ces circuits mais re-

quiert des programmeurs une très bonne connaissance des techniques de conception numérique.

Ce pré-requis limite fortement l’utilisation des FPGA par la communauté des concepteurs de

logiciel en général.

Afin de pallier cette limitation, un certain nombre d’outils de plus haut niveau ont été

développés, tant dans le monde industriel qu’académique. Parmi les approches proposées,

celles fondées sur une transformation plus ou moins automatique de langages de type C ou

équivalent, largement utilisés dans le domaine logiciel, ont été les plus explorées. Malheureuse-

ment, ces approches ne permettent pas, en général, d’obtenir des performances comparables à

celles issues d’une formulation directe avec un langage de type HDL, en raison, essentiellement,

de l’incapacité de ces langages à exprimer le parallélisme intrinsèque des applications. Une

solution possible à ce problème passe par un changement du modèle de programmation même.

Dans le contexte qui est le notre, le modèle flot de données apparâıt comme un bon candidat.

Cette thèse explore donc l’adoption d’un modèle de programmation flot de données pour

la programmation de circuits de type FPGA. Plus précisémment, nous évaluons l’adéquation de

caph, un langage orienté domaine (Domain Specific Language) à la description et à l’implantation

sur FPGA d’application opérant à la volée des capteurs (stream processing applications). L’expr-

essivité du langage et l’efficacité du code généré sont évaluées expérimentalement en utilisant

un large spectre d’applications, allant du traitement d’images bas niveau (filtrage, convolution)

à des applications de complexité réaliste telles que la détection de mouvement, l’étiquetage en

composantes connexes ou l’encodage JPEG.

Mots-clefs: Modèle flot de données, FPGA, traitement d’images, vision par ordinateur.

III

IV

Dedicated to my father

V

VI

Contents

1 Introduction 1

2 Reconfigurable Computing 7

2.1 FPGAs . 9

2.1.1 FPGA Architecture . 10

2.1.1.1 Logic Block . 10

2.1.1.2 Routing Architecture . 11

2.1.1.3 Input and Outputs . 13

2.1.1.4 Others blocks . 13

2.1.2 Programming FPGAs . 15

2.2 High Level Synthesis (HLS) for FPGAs . 16

2.3 Dataflow Programming . 18

2.3.1 Dataflow Programming Model . 18

2.3.2 Dataflow Programming Languages . 19

2.3.3 Dataflow Programming Languages for FPGAs 20

2.3.3.1 CAL (Caltrop Actor Language) 20

2.3.3.2 Canals . 22

2.3.3.3 StreamIT . 23

2.3.3.4 FPGA Brook . 25

2.3.4 Conclusion . 27

3 The CAPH language 29

3.1 CAPH Types . 31

3.1.1 Base Types . 31

3.1.2 Structured Types . 31

3.1.2.1 Arrays . 32

3.1.2.2 DC (Data/Control) Type . 32

3.2 Program Structure . 33

3.2.1 Type Declarations . 33

3.2.2 Global Declarations . 33

3.2.3 I/O Declarations . 34

3.2.4 Actor Declarations . 34

3.2.4.1 Examples . 36

VII

VIII Contents

3.2.5 Network Declarations . 39

3.3 Tools and design flow . 42

3.3.1 Graph Visualizer . 42

3.3.2 Reference Interpreter . 42

3.3.3 Compiler . 43

3.3.3.1 Front-End . 43

3.3.3.2 Elaboration . 43

3.3.3.3 Back-Ends . 43

4 The VHDL Backend 45

4.1 Data Representation . 47

4.1.1 Data/Control Encoding . 47

4.1.2 Token Insertion . 47

4.1.3 Token Removal . 48

4.2 VHDL Code Generation . 48

4.2.1 VHDL code for the dataflow network . 50

4.2.2 VHDL code for the sub actor . 53

4.3 Dimensionning FIFOs . 57

4.3.1 FIFO size . 57

4.3.2 Actual FIFO Implementation . 59

5 Examples 61

5.1 Arithmetic . 63

5.2 One-pixel delay . 64

5.3 One-line delay . 68

5.4 1x3 Convolution . 74

5.5 3x3 Convolution . 76

5.6 Functions . 83

5.6.1 Global Functions . 83

5.6.2 External Functions . 85

6 Applications 87

6.1 Compiling CAPH Programs on FPGA . 89

6.2 Motion Detection Application . 94

6.2.1 Objective . 94

6.2.2 Principle . 94

6.2.3 Implementation . 95

6.2.4 Performance Results . 102

6.3 Connected Component Labeling . 105

6.3.1 Objective . 105

6.3.2 Principle . 105

6.3.3 Implementation . 107

6.3.4 Experimental Results . 112

6.4 JPEG Encoder . 115

6.4.1 Objective . 115

6.4.2 Principle . 115

Contents IX

6.4.2.1 Discrete Cosine Transformation (DCT) 115

6.4.2.2 Quantization . 117

6.4.2.3 ZigZag Scan . 118

6.4.2.4 Run Length Encoding . 119

6.4.3 CAPH implementation . 119

6.4.4 Experimental Results . 131

6.4.4.1 Final Results . 133

6.4.4.2 Performance Results . 137

7 Conclusion 143

A Matlab Code for JPEG Encoder 147

B Handwritten VHDL code for JPEG Encoder 151

X Contents

List of Figures

2.1 Implementation of 32 tap FIR filter on FPGA 9

2.2 Implementation of 32 tap FIR filter on a classical processor 10

2.3 Generic FPGA architecture . 10

2.4 Generalized FPGA Logic Element . 11

2.5 Altera Cyclone II Logic Element [1] . 12

2.6 FPGA routing technology . 12

2.7 FPGA routing modeling . 13

2.8 Typical I/O pad from the Altera Stratix . 13

2.9 Typical application for each Stratix memory blocks and Stratix floor-planning . . 14

2.10 Altera Stratix II DSP Block [2] . 15

2.11 FPGA design implementation steps . 15

2.12 Von Neumann vs dataflow execution model . 19

2.13 CAL dataflow network . 21

2.14 Canals dataflow network . 23

2.15 StreamIT dataflow network . 25

2.16 FPGA Brook dataflow network . 26

3.1 The structured stream representation of a 4x4 image 33

3.2 The image after application of a one-pixel delay per line 39

3.3 A dataflow network involving three actors . 40

3.4 A higher-order wiring function in CAPH . 41

3.5 Building complex graph patterns using higher-order wiring functions 41

3.6 CAPH Toolset . 42

4.1 Finite state machine diagram for token insertion process 48

4.2 Token insertion and removal . 48

4.3 Graph of dx Example . 49

4.4 CAPH to VHDL transition of actor connectivity 52

4.5 FIFO Architecture . 53

4.6 RTL diagram of network graph . 54

4.7 Intermediate Representation (IR) for the sub actor and transformation of the

second rule . 56

4.8 RTL diagram of sub actor . 58

XI

XII List of Figures

4.9 State machine generated by sub actor . 59

4.10 Annotation generated by the SystemC code . 59

5.1 One-pixel delay actor state diagram . 65

5.2 RTL view of d1p actor . 69

5.3 One-line delay actor state diagram . 70

5.4 RTL view of d1l actor . 75

5.5 Dataflow graph of 1x3 Convolution example . 76

5.6 RTL view of maddn actor . 77

5.7 RTL view of network file for 1x3 Convolution . 78

5.8 Dataflow graph of 3x3 Convolution application 79

5.9 Neighborhood of current pixel x . 81

5.10 RTL view of 3x3 Convolution application . 82

6.1 SeeMOS smart camera . 89

6.2 SeeMOS camera, developed at LASMEA . 90

6.3 Hardware architecture of the SeeMOS platform 91

6.4 Different cards forming the heterogeneous SeeMOS platform 92

6.5 FPGA I/O . 92

6.6 Structured stream generation for 8x8 image . 92

6.7 Different steps of motion detection application 94

6.8 Dataflow graph of motion detection application 103

6.9 Motion detection application results . 104

6.10 4-Pixel Connectivity . 105

6.11 Label merging in U-Shaped Object . 106

6.12 Merger chain and its resolution . 107

6.13 Different steps of CCL application . 108

6.14 Dataflow Graph of CCL application . 112

6.15 CCL application results . 113

6.16 RTL view of CCL application . 114

6.17 FPGA floorplan of CCL application . 114

6.18 Loeffler Algorithm to compute DCT . 116

6.19 The Butterfly Block . 117

6.20 The Rotator Block . 117

6.21 ZigZag Scan Pattern . 119

6.22 Dataflow graph of JPEG encoder application . 132

List of Tables

2.1 Dataflow Languages for FPGAs . 28

3.1 Builtin operators on scalar types . 32

5.1 Examples summary . 81

6.1 Characteristics of the FPGA device used in SeeMOS smart camera 91

6.2 Motion Detection Application Performance Results 103

6.3 CCL Application Performance Results . 112

6.4 DCT (Altera) . 137

6.5 Quantization + Zigzag Ordering (Altera) . 137

6.6 Run Length Encoding (Altera) . 138

6.7 DCT (Xilinx) . 138

6.8 Quantization + Zigzag Ordering (Xilinx) . 139

6.9 Run Length Encoding (Xilinx) . 139

6.10 All parts (Altera) . 140

6.11 All parts (Xilinx) . 140

XIII

XIV List of Tables

Chapter 1
Introduction

1

2

Chapter 1. Introduction 3

Field Programmable Gate Arrays (FPGAs) are reconfigurable devices used for implementa-

tion of digital logic circuits. In the past decade, there has been a tremendous increase in the

capacity of FPGAs. Moreover, many applications exhibiting parallelism, when implemented

on FPGAs can outperform General Purpose Processors (GPPs). An example of such a class

of applications is stream-processing applications. These applications operate on continuous

streams of data and require high computing power. Furthermore, most of the computationally

demanding tasks in these applications show parallelism. This makes FPGAs, a good candidate

for implementing these applications.

FPGAs are programmed with Hardware Description Languages (HDLs) such as Verilog

and VHDL. These languages provide the best performances in terms of area and speed. But,

since these languages were designed for hardware designers, one has to acquire expertise in

digital design to use them. From a programming point of view, this means that the FPGA

programming community is limited to hardware experts. A desirable objective, to enlarge

this community -and therefore the use of FPGA- is to make programming accessible to both

hardware as well as software programmers.

To make this possible, a lot of tools have been proposed, both from academia and industry to

provide high-level programming environment for FPGAs. The most commonly used approach,

is to convert C-like languages into (V)HDL. Since C is widely used by the software community,

this makes it easier for software programmer to program FPGAs. But this shift comes at a cost.

As discussed earlier, HDLs provide best performances which is crucial for large applications.

C-like approaches have to compromise on these performances. There are many reasons for this.

The primary reason is the incapability of C-like languages to express parallelism in applications,

which is the main factor of performance gain on FPGAs. Since C is intrinsically sequential, the

task to identify parallelism is left to the compiler. In the current state-of-the-art this cannot

be fully accomplished in an automatic way.

This means that in order to have a high level programing model for FPGA as well as not to

compromise on performance, a shift in programming paradigm is required. In other words, it is

crucial to reduce the gap between the programming model (as viewed by the programmer) and

implementation model (as implemented in target hardware). The Dataflow/actor programming

models, seem to be good candidate for this.

This thesis explores the adoption of a dataflow/actor programming model for programming

stream-processing applications on FPGAs. More precisely, it investigates whether applications

can be implemented at higher level using this model without compromising on performance.

CAPH [3], a domain specific language based on the dataflow/actor programming model, is

used to evaluate the aforementioned. The development and implementation of CAPH was

independent of this thesis work. The main contribution of the thesis lies in the experimental

benchmark of CAPH. First, a set of simple applications are developed to test whether it is

feasible to use CAPH for programming FPGAs, more specifically to test whether it improves

programmer efficiency or not. The results reported here show that CAPH can be used to

efficiently implement applications for FPGAs at a higher abstraction level. In the second

step, the performance of CAPH is evaluated by using more complex applications (Motion

Detection Application, Connected Component Labeling (CCL) and JPEG encoder). For the

last application results are also compared with direct VHDL implementation as well as another

popular dataflow language CAL. The comparison with the former is used to prove the gain in

4

expressivity offered by a higher level language does not come at the price of a reduced efficiency.

The main research contribution of this thesis is to evaluate CAPH for programming image

processing applications on FPGAs, this includes :

− At start, development of simple image processing applications in CAPH.

− Later, a benchmark of complex image processing applications implemented in CAPH.

− The experimental results of one application (JPEG encoder) are compared with handwrit-

ten VHDL and another popular dataflow language CAL on two different FPGA platforms.

The overall organization of the thesis is as follows:

Chapter 2 starts by introducing FPGAs, their architecture and the reason for their current

emergence in the reconfigurable computing domain. Programming issues, which are the main

obstacle to their widespread acceptance are described. Several state of the art C-like approaches

to this problem are described and the reason why these approaches fail to meet the required

performance are explained. Then, the Dataflow/actor programming model is proposed as an

alternative programming model and a introduction to the dataflow programming model is given.

Since this model was initially designed to program dataflow machines, some of the earlier and

most famous languages based on this model to program dataflow machines are described. The

recent and renewed interest in this model is due to the emergence of FPGAs. The reason for the

natural coherence of this model for programming FPGAs are outlined. This chapter will also

describe some languages based on the dataflow programming model for programming FPGAs.

Chapter 3 gives an overview of the CAPH language. The main constructs of the language

are illustrated with examples. Like other dataflow/actor based languages, applications are

described at two levels : one to describe the behavior of each actor and the other the intercon-

nections between the actors. The distinguished features of CAPH in describing these two levels,

as compared to the other languages discussed in the previous chapter, are also highlighted. We

also describe the design flow of the compiler and how this flow is supported by tools offered by

the CAPH language.

Chapter 4 discusses the main issues related to the generation of VHDL code from CAPH

programs. First of all, the representation of stream tokens is described at the hardware level.

The process of adding control tokens to the input stream and the encoding technique used to

distinguish them from data tokens is explained. With the help of small examples, an analysis

of the VHDL code generated for each CAPH statement/construct is conducted. This covers

the code generated for both the actor(s) and network parts. Issues related to FIFOs (used to

connect actors) are also discussed, since this is an important aspect of dataflow/actor model.

Chapter 5 focuses on some programming features introduced by CAPH distinct from the

basic programming constructs described in chapter 3. This chapter is divided into three parts.

The first part focuses on expressing arithmetic operations. The use of built-in library operators

provided by CAPH and the implementation of more complex operators are demonstrated. The

second part describes some memory-related features, which play an important role in image

Chapter 1. Introduction 5

processing applications, as used by many applications in the next chapter. The implementation

of a feature at the CAPH level as well as the resource utilization of the resulting VHDL design

are explained in detail. Finally, the functional features of CAPH are analyzed with the help of

examples which help to access their utility in improving application expressivity.

Chapter 6 starts by introducing the target platform we used to test CAPH applications

on FPGA. Then it moves to demonstrate the effectiveness of the CAPH language both in

terms of expressivity and performance. These are validated by describing the implementation

of several test bench applications. These applications include motion detection, connected

component labeling and parts of a JPEG encoder. Each application/experiment is described as

follows : first an introduction and the main objective of the implemented algorithm are given,

then its formulation in CAPH is described and finally, for the target FPGA, both resource

consumption (Logic Elements (LEs), memory bits, Digital Signal Processing (DSP) blocks etc.)

and performance (max. clock frequency, frame per second (FPS)) are given. For the last

application (i.e. the JPEG encoder parts), a comparative analysis is also made with a direct

VHDL implementation and another dataflow language CAL.

Chapter 7 concludes the thesis, by highlighting the original ideas explored and giving some

directions for future research work.

6

Chapter 2
Reconfigurable Computing

7

8

Chapter 2. Reconfigurable Computing 9

Reconfigurable computing (RC) refers to the ability for a system to provide some form of

hardware reprogrammability. By using RC, the same hardware can be changed to execute

different applications [4]. This innovative development of hardware for an unlimited amount

of reuse by re-programming led to a new field where many different hardware algorithms can

execute on a single hardware, as many different software algorithms can run on a conventional

microprocessor. Although the field of reconfigurable computing is not new [5], the recent surge

in the field is due to rapid development of FPGAs [6].

2.1 FPGAs

With the increase in application complexity there is a constant need for more computing

power, especially for applications like video processing, image recognition and processing etc.

The situation becomes more complex, when considering the factors like power consumption,

manufacturing cost and time to market. To keep on increasing processing power and decreas-

ing the aforementioned factors is a challenging task. Single high performance microprocessors

simply cannot meet the performance requirement for the computationally intensive applica-

tions. The above problems with conventional microprocessors have led to the recent interest

in FPGAs. The decrease in performance gain of conventional microprocessor, in addition to

considerable cost of their power requirement has left a vacuum to be filled by any other cost-

effective technology and FPGAs seem to fill this gap.

Figure 2.1: Implementation of 32 tap FIR filter on FPGA

In fact, due to their reconfigurable architecture, FPGAs perform hardware optimizations of

resources for an application as opposed to traditional processors. This results in the hardware

configuration of the FPGA according to the application. On the contrary, the traditional pro-

cessor has a fixed architecture and relies on a high clock frequency or duplication of processing

cores. For example, considering a signal processing algorithm FIR filter for 32 samples, an

FPGA performs massive parallelism with a pipeline of 32 registers (Fig. 2.1) and produces

output at each clock cycle. On the other hand, implementation on a traditional processor with

an arithmetic and logic unit (ALU) will perform 32 iterations to produce the same result (Fig.

2.2).

10 2.1. FPGAs

Figure 2.2: The implementation is known as a multiply-and-accumulate or MAC-type imple-
mentation. This is almost certainly the way a FIR filter would be implemented on a classical
processor.

It is therefore easy to understand that apart from the possibility of reconfiguration of the

FPGA hardware, FPGA works in “space” while a traditional processor works in “time”. In the

next section, we describe the internal structure of an FPGA emphasizing the characteristics of

different modules.

2.1.1 FPGA Architecture

FPGAs are components invented by Xilinx in the early 1980s [7] and improve the charac-

teristics of the CPLD (Complex Programmable Logic Device) type circuits. The most common

FPGA architecture consists of an array of logic blocks (called Configurable Logic Block (CLB)

or Logic Array Block (LAB) depending on the vendor), I/O pads, and routing channels as

shown in Fig. 2.3. Generally, all the routing channels have the same width (number of wires).

Multiple I/O pads may fit into the height of one row or the width of one column in the array.

Figure 2.3: Generic FPGA architecture

With the passage of time, the basic architecture of FPGA has evolved to include more

specialized programmable logic blocks. These include embedded memory, arithmetic logic

(multiplier or Digital Signal Processing (DSP) blocks), high speed I/O and even embedded

microprocessors. In the sections below, these main blocks are presented.

2.1.1.1 Logic Block

Since their invention in 1980’s, FPGAs have used a large variety of structure for logic block.

A simplified architecture of a programmable logic block is shown in Fig. 2.4. It consists of

Chapter 2. Reconfigurable Computing 11

programmable combinational logic, a flip-flop or latch and carry chain logic. The output of the

block is either the output of the combinational logic or the output of the flip-flop. The logic

block in commercial FPGAs is much more flexible than this simple one. The most common way

to implement the combinational logic is a look-up table (LUT), which acts as a memory with

N address lines and 2N memory locations. In order to implement a specific function, the truth

table has to be loaded into the memory. Because of area efficiency, most commercial FPGAs

use four-input LUTs. Many FPGAs combine logic blocks to form a cluster in order to reduce

the cost of routing. A special faster routing named “regional routing” is provided to connect

logic blocks inside a cluster. This helps implementing larger functions inside a cluster where

routing is the “speed bottleneck”. For example, in the Altera Stratix family [8], each logic block

consists of 4-input LUTs and 10 logic blocks are combined to form a cluster called Logic Array

Block (LAB). Later Altera Stratix families use a mini-cluster known as Adaptive Logic Module

(ALM) [9]. Each ALM consists of eight input adaptive look-up table (LUT), two dedicated

embedded adders, and four dedicated registers. On the Xilinx side, the mini-cluster is called a

Slice. Virtex 6 Slices consist of four look-up tables, eight registers, wide function multiplexer

and carry logic [10]. The association of two slices is called a Configurable Logic Block (CLB).

Figure 2.4: Generalized FPGA Logic Element

2.1.1.2 Routing Architecture

Logic Array blocks (LABs), DSP blocks, memory blocks and I/Os need to be connected

through routing. Generally, the FPGA routing is unsegmented. That is, each wiring segment

spans only one logic block before it terminates in a switch box (Fig. 2.6). By turning on some

of the programmable switches within a switch box, longer paths can be constructed. For higher

speed interconnect, some FPGA architectures use longer routing lines that span multiple logic

blocks.

12 2.1. FPGAs

Figure 2.5: Altera Cyclone II Logic Element [1]

SRAM

Pass
Transistor

Vertical Wire

Horizontal Wire

Antifuse
Switch box

SRAM

Vertical Wire

Horizontal Wire

High
Voltage

Figure 2.6: FPGA routing technology. There are two main approaches to configure the routing
network. First, SRAM-based (Static RAM) where the configuration bitstream is stored in a
classical SRAM. Since SRAM is volatile and cannot keep data without a power source, such
FPGAs must be programmed (configured) upon startup. The majority of FPGAs use this
routing approach. Second is the antifuse-based approach, where each device does not conduct
current initially, but can be “burned” to conduct current (the antifuse behavior is thus opposite
to that of the fuse, hence the name). The antifuse-based FPGAs cannot be reprogrammed since
there is no way to return a burned antifuse into the initial state.

Whenever a vertical and a horizontal channel intersect, there is a switch box. In this

architecture, when a wire enters a switch box, there are three programmable switches that

allow it to connect to three other wires in adjacent channel segments. The pattern or topology

of switches used in this architecture is the planar or domain-based switch box topology. In

Chapter 2. Reconfigurable Computing 13

this switch box topology, a wire in track number one connects only to wires in track number

one in adjacent channel segments, wires in track number 2 connect only to other wires in track

number 2 and so on.

Based on the switch and wire, interconnect routes can be modeled as RC networks (Fig.

2.7). The modeling explains why the placement is often a crucial point in a design. The routing

length causes time delays in the path.

Figure 2.7: FPGA routing modeling

2.1.1.3 Input and Outputs

Input and output blocks are used to connect an FPGA with external devices. Similar to

dedicated logic blocks, FPGAs also include dedicated I/O hardware (for example, for DDR

(double data rate) memories). In the Altera Stratix device, each I/O pin has an I/O element

(IOE) which is located at the end of LAB rows and columns. Each IOE contains a bidirectional

I/O buffer and six registers for registering input, output, and output-enable signals. There are

also high speed serial interface channels which support up to 840 Mbps transfer rates.

slow rate
 control

 pull-up/
pull-down

Pad

output
buffer

input
buffer

delay

Flip-Flop
D Q

CF

Q D

CE

T

Out

output
 clock

I

I

 clock
enable

input
clock

1

2

Figure 2.8: Typical I/O pad from Altera Stratix. FPGAs provide support for dozens of I/O
standards (TTL, CMOS, LVDS etc.) which are grouped in banks.

2.1.1.4 Others blocks

Apart from the previously described blocks, most of the latest FPGAs also integrate two

other dedicated blocks : embedded memory blocks and dedicated arithmetic blocks.

(a)Memory blocks

The circuitry inside logic blocks can be used for memory but they are inefficient for creat-

ing memories of large depth. So, FPGA vendors started providing SRAM blocks within the

architecture. The classical ways to use memory inside FPGAs are:

14 2.1. FPGAs

− Register File

− Shift-register block

− ROM and waveform generation

− First-in-First-Out memory

In the Altera Stratix, it is a TriMatrix memory (Fig. 2.9, consisting of three type of RAM

blocks : M512, M4K and M-RAM blocks). M512 blocks consist of 512 bits plus parity (576

bits). They can be configured with aspect ratio from 512x1 to 32x18. M4K blocks consist of 4K

bits plus parity (4,608 bits). They can be configured with aspect ratio from 4Kx1 to 128x36.

Finally, the M-RAM blocks consist of 512K bits plus parity (589,824 bits). These blocks can

be configured with aspect ratio from 64Kx8 to 4Kx144. The memory sizes of different range

facilitate the best size to be selected for the application needs without wasting many resources.

• Processor code storage
• Packet buffers
• Video frame buffers

M144K / M-RAM

• General -purpose memory
• Packet header or cell buffers

M4K / M9K

• Shift registers
• Small FIFO buffers
• Filter delay lines

M512 / MLAB

ApplicationsMemory Block

(a) (b)

Figure 2.9: (a) Typical application for each Stratix memory blocks; (b) Stratix floor-
planning [11]

(b)Arithmetic blocks

Logic blocks can be used to perform any operation with the help of carry chain logic and

adders but for complex operations it takes more area, delay and power. To overcome this,

FPGAs have started including dedicated blocks for arithmetic operations. These blocks can

perform addition/subtraction, multiplication and multiply-accumulate (MAC) operations. The

Xilinx device consists of 18x18 bit multipliers and Altera device contains DSP blocks. Altera

DSP blocks are more flexible than Xilinx multipliers, they can also perform accumulator func-

tion along with multiplication. These DSP blocks can be configured to eight 9x9 bit multiplier,

four 18x18 multiplier or one 36x36 multiplier. These blocks also contain 18-bit input shift

register (Fig. 2.10).

Chapter 2. Reconfigurable Computing 15

Figure 2.10: Altera Stratix II DSP Block [2]

This section gave an insight into different parts of an FPGA from an architectural perspective

along with benefits obtained as compared to traditional processor. The next step is to implement

an application to gain the benefits claimed by the device. The next section describes in detail

the design flow to implement an application on an FPGA.

2.1.2 Programming FPGAs

To implement a design on FPGA, the design flow consist of several steps as shown in Fig.

2.11. First, the design is described using Hardware Description Languages (HDLs), such as

VHDL [12] or Verilog [13]. This hardware description is synthesized and simulated to make

sure it gives the intended behavior. The synthesis step takes this description and generates

a gate level representation for the FPGA. It actually represents the design in terms of basic

building blocks on FPGAs. The output of this design is a netlist1 in EDIF (electronic design

interchange format). Gate level simulation is performed to test that the design is synthesized

correctly.

Algorithm

HDL

Synthesis

Place& Route

BitStream

GateLevel NetlistLo
gi

c
sy

nt
he

si
s

P
hy

si
ca

lm
ap

pi
ng

Static Timing
 Analysis

Post-Synthesis
 Simulation

Behavioral
Simulation

Figure 2.11: FPGA design implementation steps

In the next stage, the synthesized netlist is mapped on to the actual FPGA target. This is

accomplished in two steps. In the mapping step, the components to perform logic are selected

on the FPGA. They consist of selecting one LUT for simple operations or combination of LUTs

1A textual description of a circuit diagram

16 2.2. High Level Synthesis (HLS) for FPGAs

for complex operations. In the place and route step, these mapped components are assigned

to particular logic blocks on the FPGA and routing is performed to connect these components.

This step takes into account the timing requirement for placement and routing of critical paths.

In the last step, the configuration file is generated to program the FPGA. Apart from the first

step (specifying the design using HDLs), all other steps are performed by CAD tools, usually

provided by FPGA vendors. Since a typical user is only directly involved in the first step, we

focus on this step in sequel.

Even with modern HDLs such as VHDL [12] or Verilog [13], describing a design is often a

daunting task, because it requires a very good knowledge of concepts and techniques which are

specific to hardware design. This is a great hurdle to the wide spread acceptance of FPGAs to

software programmer community. To overcome this problem, several higher level programming

languages have been proposed in recent past. Some of these will be discussed in next section.

2.2 High Level Synthesis (HLS) for FPGAs

The most commonly used source input for high level synthesis is based on standard languages

such as ANSI C/C++ [14] and SystemC [15]. In the C-based High-level synthesis languages, the

code is analyzed, constrained architecturally, and scheduled to create a register transfer level

hardware design language (HDL), which is then synthesized to the gate level by the use of a

logic synthesis tool. The goal of HLS is to let software programmers efficiently build and verify

hardware design, by giving them better control over optimization of their design architecture.

This is achieved by facilitating the programmers to describe the design using higher level tool,

where the tool does the RTL implementation. Numerous languages have been proposed by

different research teams. In the sequel, some of them are listed:

− Impulse-C [16] by Impulse Accelerated Technologies, is a C-based language for writing

applications with the help of a library of functions to describe parallel processes. The

communication between processes is based on a stream-based model. Existing VHDL

designs can also be used with the help of external functions.

− Handle-C [17] is C-based hardware language provided by Celoxica. It provides statements

to define parallel processing elements (par) and constructs for communication between

them. It also supports flexible width variables, signals and bit-manipulation operations.

− Mitrion-C [18] is also a C-based hardware language by Mitrionics, to write code for FPGA

applications. It is a ANSI-C based functional language which means that parallelism is

expressed implicitly. The code written in Mitrion-C is converted to code for the Mitrion

Virtual Processor (MVP) which is a reconfigurable soft-core processor.

− The Carte-C [19] development environment provides a library of pre-synthesized hardware

functions to write programs. Users can also integrate their own VHDL/Verilog macros.

− Stream-C [20], by Los Alamos National Laboratory, is based on the Communicating

Sequential Process (CSP) [21] model of computation. It was developed for implementing

stream based applications on FPGAs. It consist of annotations for process, stream and

signal. A process is independently executing an object consisting of C routines and signals

synchronize execution of processes. Streams are used to associate inputs/outputs with

each process. With the help of steam information, the compiler generates a process graph.

Chapter 2. Reconfigurable Computing 17

− SA-C [22] is functional, single assignment language. The compiler generates a dataflow

graph of the application before generating FPGA code. SA-C does not include pointers,

recursion and while-loops.

− SPARK [23] is high-level language which convert C code to VHDL. It is targeted for

multimedia and image processing applications. For computational intensive blocks it

performs optimizations such as loop unrolling and code motion to increase instruction

level parallelism.

− The DWARV [24] C-to-VHDL generator converts C code into VHDL. The conversion

process includes several phases of analysis, transformations and optimizations. It has

limited C constructors, which include if statements and arithmetic and logic operations

over a scalar or one dimensional array of scalar data.

− Mobius [25] is a domain specific,concurrent programming language based on the CSP

model of communication. It has a Pascal-like syntax. The processes execute concurrently

and exchange data through unidirectional channels.

All of the above languages are C-based except Mobius, nevertheless all expose parallelism

by either providing statement-level annotations or relying on compiler to extract parallelism.

In the former case, code has to be rewritten, as in case of Stream-C or SA-C. For the later, the

compiler has to identify parallelism. In the current state-of-the-art, this cannot be done in a

fully automatic way and the programmer is required to put annotations (pragmas) in the code

to help the compiler. Finally, the code generally has to undergo various optimizations and trans-

formations before the actual HDL generation. These optimizations and transformations vary

from high level parallelization techniques to low level scheduling. The low level optimizations

can be beneficial to any algorithm, but the high level optimizations are specifically suggested in

the context of one field and would not give performance gains in other domains [24]. Moreover,

with some of the existing tools (e.g. Handle-C, Impulse-C), transformations and optimizations

require inputs from the programmer [26], who therefore must have a good knowledge of digital

design.

All this makes the development of easy to use and efficient programming environments for

FPGAs a challenging task [27]. In particular, one can question the use of the C language

as a good basis for such an environment. In fact, as C was initially designed for single core

architectures, it cannot efficiently be used as a language for expressing parallel computations.

Based on this constraint, the research community has started working on domain specific lan-

guages (DSLs) for programming FPGAs [28, 29]. By restricting the class of target platforms

and embedding some informations which cannot be easily expressed in a more general purpose

language, DSLs offer the opportunity to reach an acceptable expressivity versus performance

trade off. For this the gap between the programming model (as viewed by the programmer)

and execution model (as implemented on the target hardware) must be reduced. The dataflow

model of computation (MoC) has several properties making this possible. It is described in

next section.

18 2.3. Dataflow Programming

2.3 Dataflow Programming

2.3.1 Dataflow Programming Model

The dataflow programming model came into emergence in 1970s with the advent of dataflow

architectures which were designed with the objective to exploit massive parallelism [30]. Because

of the parallel execution of dataflow programs, these machines were able to overcome the von

Neumann architecture bottlenecks [31, 32, 33]. The two major objections to the von Neumann

model were the use of a global program counter and global memory [34]. From the start, it

was widely acknowledged that imperative languages were not adapted to program machines

based on this model [35]. Specific languages – namely dataflow languages– were designed in

this context [30, 36]. After the emergence of dataflow architectures in 1970s, the research

into the field of dataflow languages slowed after mid-1980s. The reason was unavailability of

cost-effective dataflow hardware [37].

The name dataflow comes from the conceptual notion that a program in a dataflow computer

is a directed graph and that data “flows” between instructions, along its arcs [38]. A program

written in dataflow programming language is compiled to a dataflow graph – the “machine

language” of dataflow computers [39]. There is no notion of a single point or locus of control

- nothing corresponding to the program counter. The nodes of the graph are operators or

“instructions”. The arrows between the nodes represent data dependencies. Data flows as

tokens along the arcs. Incoming arrows that flow toward a node are input to that node and

outgoing arrows are output from that node. Whenever a node has all the required data on

input, the node is fireable. As a result, it removes the data tokens from input, performs its

operation, and places new data tokens on output. It then waits to become fireable again.

By this method, nodes are executed as soon as input data becomes available. This stands in

contrast to the von Neumann execution model, in which an instruction is only executed when

the program counter reaches it, regardless of whether or not it can be executed earlier than

this. This model exploits parallelism by executing nodes in a pipeline fashion. A node starts

execution as soon as the data is available at the input(s). Fig. 2.12 shows a small program

and the corresponding dataflow graph, arrows represent arcs and circles represent instruction

nodes. Under the von Neumann execution model, this program would execute sequentially in

five steps. In the first step, a and 10 are added and result is stored in k. In second step, b is

subtracted from 10 and result is stored in l. The third step will multiply k with 9 and store

result in m. Similarly, the fourth step will multiply l with 6 and store result in n. The last step

will divide m by n and result is stored in r. The same program is executed in three steps under

the dataflow execution model. The first step performs the addition and subtraction operations

simultaneously, as soon as data is available for their execution. Similarly, both multiplication

operations are performed in the second step. Finally, in the third step the division operation is

performed.

Chapter 2. Reconfigurable Computing 19

Von Neumann model Dataflow model

k=a+10

l=10-b

m=k*10

n=l*6

r=m/n

Step1

Step2

Step3

Step4

Step5

Step1

Step2

Step3

10a b

+

* *

/

_

6

Figure 2.12: Von Neumann vs dataflow execution model

In the Dataflow model, nodes represent units of computation and edges represent FIFO

communication channels. By changing the regularity and determinism of the communication

pattern, as well as the amount of buffering allowed on the channels, different variants of the

dataflow model can be developed. One of the most widely used is Synchronous Dataflow

(SDF) [40]. In this model, the numbers of data items produced and consumed by one node

at each execution is constant and known at compile time. So, the amount of buffering needed

can be determined statically. Many variations of SDF have been defined, including cyclo-static

dataflow [41, 42] and multi dimensional synchronous dataflow [43].

Though it was defined before the advent of reconfigurable architectures, the Dataflow MoC

appears to be well suited for writing applications targeting FPGAs. In particular, it exploits the

inherent concurrency in the algorithm without requiring the programmer to make it explicit.

Moreover, the DFG representation of an application is in close resemblance with many image

and signal processing algorithms which are represented graphically using block diagrams. This

makes dataflow model a natural choice for these applications targeting FPGAs. In [44], authors

emphasize the importance of stream architectures and dataflow design techniques to address

concurrent design as compared to conventional general purpose languages. These languages are

not well suited for representing parallel architectures. One possible solution is to add concurrent

constructs but this is not natural and effects readability and programmer productivity. On the

other hand, relying completely on the compiler to extract parallelism is not possible in the

current state of the art. This advocates for a shift towards the dataflow model. In fact, the

recent renewed interest in stream or dataflow programming can be viewed as a consequence of

the development of reconfigurable computing (RC)/FPGAs, since this model provides a natural

way to program these devices. There are several new languages and the area currently attracts

considerable attention from academia and industry. Some of the languages will be introduced

in section 2.3.3.

2.3.2 Dataflow Programming Languages

Several programming languages have been designed based on the dataflow programming

model. Many of them rely on the concept of single assignment variables, i.e. variables which

can only be assigned once. This concept avoids the Von Neumann model memory problems

and a program is better suited for translation to DFGs.

Some of the popular early dataflow programming languages are :

20 2.3. Dataflow Programming

− Textual Dataflow Language (TDFL) [35], developed in 1975, is considered to be the first

dataflow language. A program in TDFL consist of series of modules (called procedures

in some languages). Each module then consists of statements that can be assignments,

conditional statements or calls to another module. Iterations are not directly supported

but modules can call themselves iteratively.

− LAU [45] was developed in 1976 for the LAU static dataflow architecture by the computer

structure group of Onera-Cert in France. It was a single assignment language. It provided

explicit parallelism through the expand keyword.

− Lucid [46], the best known of all dataflow languages, was not originally developed as a

dataflow language, but as a functional language to enable formal proofs. The objective

was to write real-life program in a purely declarative style to enable verification. But

later Lucid’s functional and single assignment semantics established it to be a dataflow

language [47].

− Id [48] was developed to write operating systems but without sequential controls and

memory cells. Thus the language had single assignment and was block structured and

expression based.

− There are several ’Manchester Languages’ including DCBL [49],SISAL [50] and LAPSE [51]

developed for the Manchester dataflow machine [52].

2.3.3 Dataflow Programming Languages for FPGAs

In this section, we will discuss some of the dataflow programming languages closely related

to our work, namely include CAL, Canals, StreamIT and FPGA Brook. The CAPH language,

which also belongs to this category, and on which our work is based, will be described separately

in chapter 3.

2.3.3.1 CAL (Caltrop Actor Language)

CAL [53, 54], a dataflow/actor-oriented language is based on the Actor model of compu-

tation [55] for dataflow systems. The basic concepts of CAL have a natural resemblance to

these systems. A dataflow model is described in CAL by a set of independent actors and their

connections (called a network of actors).

An actor has a set of input and outputs which are used to communicate with other actors

by exchanging data tokens. State variables are used to keep track of the internal state of an

actor. The behavior of an actor is described using a set of actions. There must be at least

one action in an actor. In the case of more than one action, CAL provides scheduling concepts

to control the execution order of actions. The execution of an action depends on its internal

state and the values available at input. During execution, an action can do all or any one of

the following : change the state variable(s), read values from input and write values at output.

It is also important to note that action execution is an atomic operation. At a time, only one

action will be in execution.

A simple example of a CAL increment actor is given in listing 2.1, it has one input port t

and one output port s, all of type integer [56]. This actor contains one action that consumes

Chapter 2. Reconfigurable Computing 21

one token from input port, and produces one token on the output port. This action will execute

when data token is available at input port.

Listing 2.1: A Simple increment actor in CAL

actor Inc () integer t => integer s :

action [a] => [i n c]

do

i n c := a + 1 ;

end

end

In the above example, it is also possible to use a type variable T to create generic a type

actor. The advantage is to declare actors with different types from one generic actor instead of

writing a separate actor for each type.

In order to implement an application, CAL actors are connected to each other to form a

network of actors. This is done by connecting the input and output ports of actors with each

other. The connections are made with the help of FIFOs. CAL does not provide any explicit

scheduling between actors, which means that the resulting system is entirely self-scheduling

based on the actual flow of tokens. The declaration of a network of actors consisting of two

actors, inc and sum, as shown in Fig. 2.13 is given in listing 2.2.

IncA Out OutA Sum
In

Out

Figure 2.13: CAL dataflow network

Listing 2.2: CAL network declaration

network Sum () In => Out :

entities

i n c = Inc () ;

sum = Sum () ;

structure

In −−> i n c .A;

inc . Out −−> sum .A;

sum . Out −− > Out ;

end

CAL takes care of low level communication details (e.g. message passing protocols) which

helps designers to focus on actors and their connection to form a network. However, designers

are provided control over connection communication parameters like length of FIFOs and the

type of data exchanged.

When generating hardware implementations from networks of CAL actors, each actor is

translated separately, and the resulting RTL descriptions are connected using FIFOs. Actors

interact with FIFOs using a handshake protocol, which allows them to sense when a token is

available or when a FIFO is full.

22 2.3. Dataflow Programming

CAL has been selected by ISO/IEC for the definition of new MPEG standard called Recon-

figurable Video Coding (RVC) [57]. All tools related to CAL are available under Orcc (Open

RVC-CAL Compiler) [58] which is an update of the previous set of tools available under the

Open Dataflow environment (OpenDF for short) [56]. It contains back ends for the generation

of HDL [59], C [60] and Java [61]. MPEG Reconfigurable Video Coding framework has been

implemented using CAL [62, 63]. CAL has many similarities with the CAPH language used in

this thesis. Some elements of comparison are given in section 6.4.

2.3.3.2 Canals

Canals [64, 65], another dataflow language is based on nodes and links. The former consists

of kernels and networks and latter is channel used to connected the nodes. Kernels are the

basic computing unit of the Canals language. A kernel performs computation on input data

and results are written on output. A kernel consist of three sections : an obligatory work

block, a section for variable declarations and a section to initialize specific operations. Actual

computations are performed inside a work block by using the Canals Kernel Language. This

is a sequential language having syntax similar to many programming languages. All variables

declared inside a kernel are local and cannot be accessed from outside. The values of these

variables are changed during the execution of a kernel.

A new kernel is defined by using keyword kernel along with unique name and data types

of input and output. The number of inputs read and the number of outputs written during the

execution of kernel are specified by get and put keywords in the header of the work block.

For example, work get 1 put 1 in the header means that during the execution the kernel will

read one value from input and write one value at the output. The code for a simple kernel

declaration in Canals named inc, with input data type dt1 and output data type dt2 and

consuming one element from input and producing one element at output during execution, is

given in listing 2.3.

Listing 2.3: A Simple increment kernel declaration in Canals

kernel dt1 −> dt2 inc

{
variable dt1 myIn ;

variable dt2 myOut ;

work get 1 put 1 {
myIn = get () ;

myOut = myIn + 1 ;

put(myOut) ;

}
}

The data types dt1 and dt2 are specified using the keyword datadef.

Channels are memory buffers used to store data between connected kernels. A channel is

specified using the channel keyword along with a name and a data type. The capacity of the

channel is described in the body. Canals also provides one pre-defined channel type called a

generic-channel. It is an unbounded FIFO queue for any defined data type. Furthermore,

in order to distribute and collect data, channels support scatter and gather operations. The

former is used to distribute data from one input channel to many output channels and the latter

is used to collect data from many channels.

Chapter 2. Reconfigurable Computing 23

In order to form a working application, a network is defined using the network keyword. A

network is defined by giving it a name and data types of input and output. Elements are added

to a network by using the statements add-network, add-channel, add-kernel, add-scatter

and add-gather. After adding these elements, they are connected by connect statements. The

connect statements must form at least one valid data flow path between an incoming data port

and an outgoing data port which are donated by NETWORK-IN and NETWORK-OUT respectively.

Other networks can also be added into a network. Although there can be many networks, there

is always one top-level network defined as network void -> void. This top-level network acts

as starting point for Canals program. An example of a network shown in Fig. 2.14 is defined

in Canals as given in listing 2.4.

K1 K2
t_in ch1 t_out

Figure 2.14: Canals dataflow network

Listing 2.4: Network declaration in Canals

network t i n −> t ou t N

{
add channel ch1 <gene r i c channe l >;

add kernel K1 <inc >;

add kernel K2 <sum>;

connect NETWORK IN −> K1 −> ch1 −> K2 −> NETWORKOUT;

}

The Canals compiler first generates a behavioral model, a mapping model and an architec-

ture model from the input code. All three are then combined to form an implementation model

which is platform independent. This model is used by different backends to generate code with

the help of Hardware Abstraction Layer (HAL) which contains the communication mechanism

for the target architecture.

The MPEG Reconfigurable Video Coding framework has been implemented in Canals [64].

In [65], the JPEG encoder was implemented on an Altera FPGA using the Canals back end

for FPGA.

2.3.3.3 StreamIT

StreamIT [66, 67] is an architecture-independent programming language for implementing

high-performance streaming applications, by introducing stream-specific abstractions. This

basic computational unit is called a filter. To build an application filters are connected

through streams. StreamIt is based on the synchronous data flow (SDF) MoC but differs

from this model by introducing multiple execution steps for filters, an option for declaring the

24 2.3. Dataflow Programming

input/output rate of filter to be dynamic, teleport messaging2, peeking (i.e. reading elements

from input queue without deleting) and allowing filters to input and output a number of elements

during initialization.

A filter consists of a single input channel and single output channel. Each filter is

completely independent of the others and all communications between filters take place through

input and output channels. It consists of two stages of execution: initialization and steady

state. During initialization, the parameters to a filter are resolved to constants and the init

function is called. During steady state execution, the work function is called repeatedly. It

is also possible to write a prework function which is called once between init and work [68].

The work function repeatedly executes as soon as sufficient data is available on its input FIFO

(queue). It reads data from its input queues using pop operations, writes data to its output

queue using push operations and can also inspect inputs without removing them from the

FIFO using a peek operation. The number of elements to push, pop or peek is declared in the

declaration section of the work function. The example of an increment filter in StreamIT is

given in listing 2.5.

Listing 2.5: A simple increment filter in StreamIT

int−>int filter i n c () {
int r e s u l t ;

init {
r e s u l t = 0 ;

}
}
work push 1 pop 1 {

r e s u l t = pop ()+1;

push(r e s u l t) ;

}
}

In StreamIT an application is build by connecting filters into stream graphs. To accom-

plish this, three hierarchical stream primitives are provided : pipeline, splitjoin, and

feedbackloop [69]. The pipeline structure creates a serial composition of streams by con-

necting inputs and outputs of filters to each others. A splitjoin specifies parallel streams

that diverge from a common splitter and merge into a common joiner3. And a feedbackloop

structure creates a cycle in the stream graph. The add keyword is used to instantiate and add

a new filter to current stream graph. A simple stream graph as shown in Fig. 2.15, consisting

of four filters in a pipeline can be written as in listing 2.6:

2To send a message from a filter’s work function to change a parameter in another filter
3It is implemented with the help of data reordering primitives e.g.duplicate,roundrobin

Chapter 2. Reconfigurable Computing 25

Source

Inc

Output

Sum

Figure 2.15: StreamIT dataflow network

Listing 2.6: Network declaration in StreamIT

int −> int p i p e l i n e Main () {
add Source () ;

add i n c () ;

add sum () ;

add Output () ;

}

StreamIt was originally designed for the RAW4 (Reconfigurable Architecture Workstation)

machine [70], but more recently it has been used to introduce Optimus, an optimizing synthe-

sis compiler for streaming applications on FPGAs [69]. It generates efficient Verilog HDL by

performing many optimizations. These optimizations include Queue Allocation, Queue Access

Fusion and Flip-Flop Elimination which effect space (area) and time (throughput) of the gen-

erated circuit. The first optimization reduces the size of the FIFO queues, the second fuses

multiple queue operations into a single wider one and last identifies and eliminates redundant

registers. The filters are synthesized using hardware templates and all templates are connected

using FIFOs. The set of experiments implemented using this Optimus compiler includes : FFT

(Fast Fourier Transform), parallel adder, bubble sort, merge sort, inverse DCT (Discrete Cosine

Transform), DES (Data Encryption Standard) and matrix multiply [69].

2.3.3.4 FPGA Brook

FPGA Brook is a streaming programming language based on the programming languages

Brook [71] and GPU brook [72]. The former is used to target multiprocessors [73] and the latter

is a variant specifically designed for GPUs [74]. In [75], Brook is used to target applications

on FPGAs by using the open source GPU brook compiler [72]. This version, called FPGA

Brook, extends the Brook syntax to include streams and kernels. Computations are performed

by kernels on input streams. Streams are collections of the data same as arrays but the

elements are mutually independent. Streams are declared using characters < and > instead of

square brackets. A kernel can exploit data-level parallelism by operating on individual stream

4A tiled multicore architecture

26 2.3. Dataflow Programming

elements as all are independent of each other. Data-level parallelism can also be achieved by

instantiating different instances of a kernel, each working on a part of the input stream. This

is called kernel replication and is implemented using the speedup pragma statement. A

special reduction kernel uses several elements of the input stream to produce one element of

the output stream. There are also many stream operators for transforming input streams. For

example, the StreamReapeat operator creates an output stream by repeating elements of the

input stream. A stencil operator selects several elements of the input stream to create the

output stream. StreamRead and StreamWrite operators are used to read (resp. write) input

(resp. output) to/from memory. Although, Brook is based on the C programming language, it

limits the usage of many features of the C language to make it easier for the compiler to analyze

programs and extract parallelism [76]. The example of a simple increment filter in FPGA Brook

is given in listing 2.7. The network depicted in Fig. 2.16 can be defined in FPGA Brook as

given in listing 2.8.

StreamRead

StreamRead

StreamWritemul sum

Figure 2.16: FPGA Brook dataflow network

Listing 2.7: A Simple increment kernel in FPGA brook

kernel void i n c (int a<>, int c<>)

{
c = a+1;

}

Listing 2.8: Network declaration in FPGA brook

void main ()

{
int Astr<1,N>, Tstr<1,N>, ystr <1,N>;

int A [1] [N] , R [1] [N] ;

streamRead (Astr , A) ;

inc (Astr , I s t r) ;

sum (I s t r , Rstr) ;

streamWrite (Rstr , R) ;

}

FPGA Brook does not directly generate HDL code for FPGA implementation. Instead the

design flow consist of two steps. In the first step, the program written in FPGA Brook is

converted to C code using C2H directives. C2H [77] is Altera’s high level synthesis tool which

converts C-like code to HDL. The first step converts kernels to C2H functions to be implemented

as hardware accelerators and also generates SOPC system description. In the second step,

Verilog HDL is generated from this code using C2H. The Verilog code is then synthesized into

FPGA logic by the Quartus II CAD tool [78] to produce the FPGA programming file, which

can then be used to program the FPGA device.

Chapter 2. Reconfigurable Computing 27

Applications implemented in FPGA Brook include FIR Filter, Two-Dimensional Convolu-

tion, Zigzag Ordering in MPEG-2, Inverse Quantization in MPEG-2, Saturation in MPEG-2

and Mismatch Control in MPEG-2 [76].

2.3.4 Conclusion

Table2.1 summarizes the difference between the languages described in the previous section.

Two of the languages (Canals and FPGA Brook) can only generate HDL code for a specific

target, so they cannot be called “generic” programming languages for FPGAs. Out of the

other two languages, CAL code has to undergo some changes to be executed on Altera FPGA.

Furthermore, all these languages rely on some textual language or graphical tool to describe

networks which is often a complicated task for big applications.

CAPH is introduced in the next chapter with the objective to overcome these limitations.

The following characteristics of CAPH differentiate it from other related languages described

in the previous section.

CAPH generates efficient VHDL code as compared to other languages (results of the com-

parison with one language (CAL) will be presented in chapter 6). But this efficiency comes

at the cost of expressivity at the language level. The CAPH languages offers less features

compared to CAL. So this efficiency is the result of a trade off with expressivity.

CAPH is based on formal semantics, which describes by a mathematical model all the

possible computations performed by the language. The advantages of using this approach for

CAPH are two fold. First, the transformation from high-level CAPH code to hardware-level

VHDL code is described formally. It helps generate accurate VHDL code based on mathematical

modeling of formal semantics. Second, the reference interpreter of the language is developed in

a systematic way which is used to evaluate the accuracy of results generated by backend code.

In CAPH, it is possible to describe arbitrarily complex data structures as well as actor

descriptions operating on these values. This means it can describe and operate on non-regular

and/or variable-size data structure. The objective is to target a large domain of applications in-

stead of restricting them to signal or image processing. This is achieved by separating the tokens

into two categories: data tokens(having actual values) and control tokens(used as structuring

delimiters).

The CAPH network sub-language is a small functional language which makes it easier to

describe complex dataflow graphs using a set of functional equations. It offers a better way to

describe application as compared to explicitly describing actor connections, even with the help

of graphical interface. This will be further illustrated with the help of complex examples in

next chapter.

28 2.3. Dataflow Programming

CAL Canals StreamIt FPGA Brook CAPH

Computing Unit Actor Kernel Filter Kernel Actor

Dataflow MoC Dynamic Dataflow Synchronous
Dataflow

Synchronous Dataflow Static Dataflow Dynamic
Dataflow

Output Verilog HDL Code for Altera
NIOS II processor

Verilog HDL C Code with C2H
directives

VHDL

Distribute data No Yes Yes Yes Yes

Gather data No Yes Yes Yes No

Affiliation IETR, France and
EPFL,Switzerland

Abo Akademi
Univ., Finalnd

MIT, USA Univ. of Toronto,
Canada

Institut Pas-
cal, France

Table 2.1: Dataflow Languages for FPGAs

Chapter 3
The CAPH language

29

30

Chapter 3. The CAPH language 31

The description of programming languages/environments for FPGAs in the previous chap-

ter suggests that there is a still need to explore this area to use FPGAs to their full potential.

Recently, considerable attention has been given to dataflow/actor-oriented model, as shown in

section 2.3.3 of the last chapter. One idea introduced by the research community is to restrict

the domain of applications by designing a domain specific language (DSL) to better utilize FP-

GAs for that specific domain. The CAPH [79] language is an example of this approach. CAPH

is a high-level language for implementing stream-processing applications on FPGAs relying

the dataflow/actor-oriented model of computation (MoC). It mainly differs from the languages

introduced in section 2.3.3 by the constituents used to describe actors and the network repre-

sentation respectively and also by introducing a way to represent streams containing arbitrarily

structured data.

The objective of this chapter is to give a brief introduction to the CAPH language. Here

CAPH v 1.6 is described, some changes have occurred since in the latest version. This chapter

will describe its main features and how an application can be described. The complete language

definition, describing concrete and abstract syntaxes and formal semantics, is given in the

Language Reference Manual(LRM) [3].

The CAPH compiler generates SystemC and synthesizable VHDL code. The chapter starts

by first describing the types supported by CAPH. Section 3.2 describes the different parts of a

typical CAPH program which are combined to form a complete application. Section 3.3 gives

an insight of the tools and design flow supported by the CAPH compiler.

3.1 CAPH Types

3.1.1 Base Types

The CAPH type system is polymorphic. Base types include signed and unsigned fixed-

precision integers and booleans.

A signed integer a of size 8 bits is declared by the following syntax :

var a : signed<8>

The range of the above declared integer is -27 to 27 − 1.

Similarly, a unsigned integers c of size 8 bits is declared as :

var c : unsigned<8>

The range of the above declared variable is 0 to 28 − 1.

A boolean value is declared as :

var e : bool

Floating-point values are not supported, since they are not directly supported by VHDL

synthesis tools. Built in operators on scalar types are given in Table 3.1. All of these op-

erators are supported by simulator and are automatically translated to SystemC and VHDL

implementation.

3.1.2 Structured Types

Two structured types are supported by CAPH : arrays and data/control discriminated values

(dc).

32 3.1. CAPH Types

Table 3.1: Builtin operators on scalar types

bool && || !
+ - * / %

unsigned < <= = >= >

signed land lor lnand lnor lxor lxnor lnot (bitwise operations)
<< >> (logical shift)

3.1.2.1 Arrays

Arrays are 1D or 2D collection of scalar type. Arrays have a fixed type and size, which are

defined at declaration. For an array of size N, indexes range from 0 to N-1. An array can be

initialized at declaration. To update an array, a new array is built from the previous one by

modifying some of the elements in the old array.

A 1D array is declared by the syntax :

var name : type array [s i z e]

Where var and array are keywords.

An array a containing 5 values of type unsigned<8> is declared as:

var a : unsigned<8> array [5]

A 2D array is declared as:

var name : type array [s i z e , s i z e]

It is also possible to initialize elements of an array. The following declaration initializes all

the elements of array with zero :

var c : unsigned<8> array [1 0] = [0 : 10]

Whereas the following declarations initializes all elements with a different value :

var d : unsigned<8> array [1 5] = [i in 0 . . 1 4 <− i]

var e : unsigned<8> array [5] = [6 , 5 , 9 1 , 2 , 3 0]

Similarly a 2D array is initialized as:

var f : unsigned<8> array [3 , 3] = [[1 , 2 , 3] , [4 , 5 , 6] , [8 , 9 , 1 0]]

To update an element, the following syntax is used :

name := name [index<−value]

For example, to update third element of array a with value 8, following code is used :

a := a[3<−8]

Some examples describing the use of arrays in CAPH are given in section 3.2.4.1.

3.1.2.2 DC (Data/Control) Type

The dc (data/control) type is used to represent streams containing arbitrarily structured

data. This structuring is achieved by dividing tokens circulating on channels and manipulated

by actors into two categories : data tokens (carrying values) and control tokens (acting as

structuring delimiters). Only two types of control tokens are used to achieve this : one for the

Chapter 3. The CAPH language 33

start of the structure, represented by ’<’ and other for end of the structure, represented by

’>’. For example, an image can be described as a list of lines, as depicted in Fig. 3.1, whereas

the stream

<<<41 120> 44><<12 73> 58><<52 211> 7>>

may represent, for example, a list of points of interest, each inner pair consisting of its

coordinates along with an attribute value.

Figure 3.1: The structured stream representation of a 4x4 image

3.2 Program Structure

A CAPH program consists of a set of declarations. These declarations can be divided into

five categories :

− Type declarations

− Global declarations

− Actor declarations

− I/O declarations

− Network declarations

3.2.1 Type Declarations

Type declarations are currently restricted to type synonyms: they give a name to an already

existing type.

Example:

type byte = unsigned<8>

type p i x e l = signed<8> dc ;

3.2.2 Global Declarations

Global declarations consist of constants and functions.

Constant declarations are used to assign value to a constant.

Example:

34 3.2. Program Structure

const s c a l e = 20 ;

const ke rne l = [1 , 3 , 1] ;

Function declarations are used to map identifier(s) to an expression. The type signature

can be optionally provided to give the type of the function (otherwise inferred by the compiler1).

Example:

function abs x = if x < 0 then 0−x else x ;

function dec x = x−1 : signed<8> −> signed<8> ;

External function declarations make it possible to use already written functions in SystemC

or VHDL. The type of the “imported” function must be provided.

Example:

function abs x = extern ” abs c ” ,” abs vhld ” ,” abs ml ” : unsigned<16>−>unsigned<16> ;

The above example uses three implementations of the function abs : abs c, abs vhld,

abs ml in SystemC, VHDL and Caml respectively. The Caml implementation of the function

is needed for program simulation. The files containing these functions are to be kept in the

same directory when compiling the respective code. Caml function also needs to be registered

using a dedicated function. Programmer should be careful about the actual type signature of

the function and the one provided in the declaration because the current version of compiler

does not support type-based translation for foreign values.

3.2.3 I/O Declarations

I/O declarations are used to define the way the application interacts with the operating sys-

tem (simulation) or the physical devices (VHDL code on FPGA). This is done through stream

declarations. A stream declaration includes a name, type, direction (input or output) and a

device. The CAPH application will read data from the input device, process it and write results

on the output device. When using the simulator, I/O devices will be files.

Example:

stream input : signed<8> from ”camera ” ;

stream output : signed<8> to ” monitor ” ;

3.2.4 Actor Declarations

In CAPH an actor declaration consists of an interface and a body.

The interface part consists of the name of the actor, an optional list of parameter(s) and a

list of input(s) and output(s). Inputs, outputs and parameter(s) are all typed. The interface is

the only part of an actor which is visible in the network declaration section, where inputs and

outputs will be used to connect channels and parameters are given values.

1The type inferred by the compiler is sometimes too general : for example, the type inferred for the function
dec x = x-1 is signed<α> -> signed<α>, where α is a size variable.

Chapter 3. The CAPH language 35

The following example gives the interface of a very simple actor, having one input and one

output and no parameters.

Example 1:

actor a1

in (a : unsigned<8>)

out (b : unsigned<8>)

−−next comes the body of the actor

The next example also includes a parameter in the actor declaration. It has two inputs and

one output.

Example 2:

actor a2 (k : unsigned<4>)

in (a : signed<8> , b : signed<8>)

out (b : signed<8>)

−−next comes the body of the actor

The body of an actor is used to define its behavior. It consists of a set of optional local

variables and a set of transition rules. Each variable declaration consists of a name, a type and

an optional initial value. The scope of variables is limited to the actor they are declared and

they keep their values during the successive executions of the actor. An actor variable can have

an enumerated type. This type is only supported for actor variables.

var s t a t e : {S0 , S1 , S2}

The above declaration introduced a new type state. But this type and the corresponding

data constructors (S0,S1,S2) are limited to the current actor.

The behavior of an actor is specified using a set of transition rules. Each transition rule

is made of a pattern and an expression. A pattern involves input(s) and/or local variables. The

former is used to inspect input tokens and the latter to inspect variable values. Similarly, an

expression involves output(s) and/or local variables. The former are used to write tokens and

the latter to update variables. At each activation, a fireable rule is searched for. The selection

of the transition rule to be fired is decided by sequential pattern matching. A rule is said to be

fireable if input(s) and variable(s) match the rule pattern and results can be produced on the

outputs involved in the expression. If no fireable rule is found then the actor waits for the next

activation.

Each rule is written as:

| (pat1,...,patm) -> (exp1,...,expn)

Parenthesis can be omitted if there is only one pattern or expression. The ”|” is optional

for the first rule. The referred variable or input/output in a pattern or expression is defined in

the rule format. It is declared after the keyword rules and before the transition rules as:

| (id1,...,idm) -> (id’1,...,id’n)

36 3.2. Program Structure

Where id (resp. id’) designates input (resp. output) or variable and id’ is output or vari-

able. The pattern (resp. expression) ” ” means ignore for input, i.e. don’t read input (resp.

don’t write output) and don’t care for local variables.

3.2.4.1 Examples

We now give a number of examples of actor declarations.

Example 1:

actor id ()

in (a : unsigned<8>)

out (c : unsigned<8>)

rules a −> c

| v −> v

This is a simple identity actor with one input and one output, of type unsigned<8>, no

parameter and no local variable. There is only one rule which states that if a token is available

on input a, then the actor will read this token, bound it to value v and copy the same value v

on output c.

Example 2:

actor add ()

in (a : unsigned<8> , b : unsigned<8>)

out (c : unsigned<9>)

rules (a,b) −> c

| (x,y) −> x+y

This is an add actor. It consist of two inputs, one output and no parameter. The single rule

states : the input tokens read from input a and b are bound to values x and y respectively, and

the sum of these two values is written on the output c. So, for an input stream of 1,9,6,...

and 7,5,11,... on a and b respectively, the output at c will be 8,14,17,...

Example 3:

actor sk ip (k : unsigned<8>)

in (a : unsigned<8>)

out (c : unsigned<8>)

rules a −> c

| v −> if v=k then else v

This example skips all input values which are equal to the value k, provided here as a

parameter. The value of this parameter will be specified when the skip actor is instantiated at

the network level. The rest of the input values are just sent at the output. So, for k=2, the

input stream 1,2,5,9,2,6,8,9,2,... will produce the output stream 1,5,9,6,8,9,....

Chapter 3. The CAPH language 37

Example 4:

actor sum ()

in (a : signed<8>)

out (c : signed<16>)

var s : signed<16> = 0

rules (a, s) −> (c,s)

| (v, s) −> (s, s+v)

The sum actor reads a sequence of values on its input and produces the integral of this

sequence on its output. For example, if the input stream is 0,1,2,3,4,..., the output stream

will be 0,1,3,6,10,.... A local variable s, with initial value 0, is used to keep track of the

running sum. The only transition rule can be read as follows : when a token carrying a value v

is available on input a, then read it, write the current value of variable s on output c and add

v to s.

Example 5:

actor i ncdec ()

in (a : signed<5>)

out (c : signed<5>)

var op : { Inc , Dec} = Inc

rules (op, a) −> (c, op)

| (Inc, v) −> (v+1, Dec)

| (Dec, v) −> (v-1, Inc)

The incdec actor alternately increments and decrements the input stream and sends the

result to the output. For example, if the input stream is 8,4,6,2,... , then the output stream

will be 9,3,7,1,.... It uses a local variable (op) to keep track of which operation to perform at

the next activation. The type of this variable is a (locally defined) enumerated type. There are

two transition rules. The first (resp. second) transition rule says : If op is ’Inc’ (resp. ’Dec’)

and a token carrying a value v is available on input a then consume the corresponding token,

write a token carrying value v+1 (resp. v-1) to output c and set s to ’Dec’ (resp. ’Inc’).

Example 6:

actor rep ()

in (a : unsigned<3>)

out (c : unsigned<8>)

var b : signed<8> array [8]= [0 , 10 , 20 , 30 , 40 , 50 , 60 , 70]

var i : unsigned<3> = 0

rules (a,b) −> c

| (i,b) −> b[i]

The above example will read the input stream and the value stored in array b at the index

given by the input value is sent at output. For the input stream 5,2,6,3,4,5,..., the output

will be 50,20,60,30, 40,50,....

Example 7:

actor dec ()

in (a : unsigned<8> dc)

out (c : unsigned<8> dc)

rules a −> c

| SoS −> SoS

38 3.2. Program Structure

| EoS −> EoS

| Data v −> Data (v-1)

The above example introduces the type dc for dealing with structured a stream of data. The

input and output types are unsigned<8> dc. For input stream <1,2,3>, the output will be

<0,1,2>. As described earlier, only two types of tokens (data and control) are used to describe

structured stream. Here the patterns appearing on the right hand side of the transition rules

are used to differentiate between these two type of tokens. The rules can be read as; if the

input token is a control token (SoS or EoS), write the same token on output, if the input token

is a data token, read the value, decrement it by one and write the resulting value on output.

The SoS, EoS and Data constructors may be abbreviated as ’<, ’> and ’ respectively. So, the

above example can also be written as:

Example 7 bis:

actor dec ()

in (a : unsigned<8> dc)

out (c : unsigned<8> dc)

rules a −> c

| ’< −> ’<

| ’> −> ’>

| ’v −> ’(v-1)

Example 8:

actor suml ()

in (a : unsigned<8> dc)

out (c : unsigned<16> dc)

var s t : {S0 , S1} = S0

var s : unsigned<8>

rules (st, a, s) −> (st, c, s)

| (S0, ’<,) −> (S1, , 0)

| (S1, ’p, s) −> (S1, , s+p)

| (S1, ’>, s) −> (S0, s,)

This example is a generalized form of the sum actor described in example 4. It accepts

a sequence of lists and computes the sum of each list. For example, given input stream <1

2> <7 8 9 3> <1 9 6>... it will produce the output stream 3, 27, 16,.... The < and >

control tokens are used to delineate lists. The first transition rule detects the start of a list and

initializes the accumulator s to 0. The second rule adds a list element to the accumulator. The

last rule writes the accumulator on the output c.

Example 9:

actor s c a l e ()

in (a : unsigned<8> dc)

out (c : unsigned<8> dc)

var b : unsigned<8> array [5] = [1 , 2 , 3 , 4 , 5]

var i : unsigned<4> = 0

rules (a , b, i) −> (c, i)

| (’<, b, i) −> (’<, 0)

| (’>, b, i) −> (’>,)

| (’v, b, i) −> (v*b[i], i+1)

Chapter 3. The CAPH language 39

The scale actor receives an input sequence of lists of length 5 and scales each element of

the list by multiplying it with a value stored in an array b. For example, for the input stream

<1,2,3,4,5> <6,7,8,9,10>,..., the output will be <1,4,9,16,25> <6,14,24,36,50>,....

The index i is used to access elements of the array b. At the start of each list, it is initialized

from zero (in the first rule). The third rule will multiply the input value with the corresponding

element stored in array and also increment the array index by 1.

Example 10:

actor d1p ()

in (a : unsigned<8> dc)

out (c : unsigned<8> dc)

var s : {S0 , S1 , S2} = S0

var z : unsigned<8>

rules (s, a, z) −> (s, c, z)

| (S0, ’<,) −> (S1, ’<,)

| (S1, ’>,) −> (S0, ’>,)

| (S1, ’<,) −> (S2, ’<, 0)

| (S2, ’p, z) −> (S2, ’z, p)

| (S2, ’>,) −> (S1, ’>,)

The example delays each line of an image – represented here as a list of lists – by one pixel.

For example, if the input image is the shown in Fig. 3.1 then the output image will depicted as

in Fig. 3.2.

Figure 3.2: The image after application of a one-pixel delay per line

The CAPH description for the d1p actor uses two variables. Variable z keeps track of the

previous pixel value, to be output when the current pixel is read and variable st acts as a state

variable. The first and second rules handle the start and the end of an image (reading and

writing a < and > control token respectively). The third rule is fired at each start of a new

line; a < control token, indicating a start of line is produced and the variable z is set to 0. The

fourth rule is fired for each pixel of a line; the previous pixel (stored in z) is output and the z

variable updated. The last transition rule handles the end of a line.

3.2.5 Network Declarations

An application is described in a dataflow language as a dataflow graph (network) of actors.

This is typically done by instantiating individual actors (creating nodes) and then connecting

these nodes (a process called “wiring”). This can be done either explicitly (either textually or

graphically) or implicitly. CAPH adopts the later approach, using a small purely functional

and higher-order sub-language to describe network of actors. The basic idea is that dataflow

graphs can be represented by functional equations. Here actors are functions, actor instantiation

correspond to functional application and the connections between actors represent functional

40 3.2. Program Structure

dependencies. At the network language level, the only visible part of an actor is its interface

(i.e. parameters and input(s)/output(s)). The network language instantiates these actors and

wires them thus forming the dataflow graph describing the application. The input and output

of the generated dataflow graph will be connected to external devices.

Example 1:

net o = dec i ;

This simple example instantiates one actor having one input and one output, connecting its

input to the application input i and its output to the application output o.

In the above case, the net keyword is used for binding network output. But it can also be

used to create wires i.e. bind the output(s) of an actor to use it later, as exemplified below.

Example 2:

net (x , y) = dup i ;

net o = add (s h i f t x , y) ;

The above example describes the graph depicted in Fig. 3.3. Here, the net keyword serves

to bind names to wires. The instantiation of the dup actor produces a node with two output

wires, which are named x and y respectively. These wires are then used as inputs for the

instances of the shift and add actors.

dup

shift

add
i o

Figure 3.3: A dataflow network involving three actors

The CAPH approach of implicitly describing networks offers a significantly higher level

of abstraction. In particular it saves the programmer from having to explicitly describe the

wiring of channels between actors, a tedious and error-prone task, even with a help a graphical

interface.

The CAPH approach for describing networks can be extended to define higher-order wiring

functions. Higher-order wiring functions (HOWFs) can be used to define reusable polymorphic

graph patterns, thus easing the process of building large applications from smaller ones. The

concept is illustrated in Fig. 3.4. Here, pipeline is such a HOWF, taking both an actor and a

wire as argument and building a sub-graph by ”chaining” three instances of the actor.

The network graph in Fig. 3.3, can also be described by the following example by using a

“triangle” HOWF :

Example 3:

net t r i a n g l e (a , b , c) x =

let (x1 , x2) = a x in

c (b x1 , x2) ;

Chapter 3. The CAPH language 41

net o = t r i a n g l e (dup , s h i f t , add) i ;

shift
i o

shift shift net p i p e l i n e (f , x) = f (f (f x)) ;
net o = p i p e l i n e (s h i f t , i) ;

Figure 3.4: A higher-order wiring function in CAPH

Another example is given in Fig. 3.5 where the triangle HOWF is used at three distinct

levels of nesting. In the inner most call, its arguments are the three actors dup, scale and

add. In the second inner call, the second argument is the triangle function which will result in

a triangle pattern inside a triangle. In the outer call, again its second argument is the triangle

function, which means the outer most triangle contains a triangle which in turn contains a

triangle pattern as shown in Fig. 3.5.

net t r i a n g l e (a , b , c) x =
let (x1 , x2) = a x in

c (b x1 , x2) ;

net o = t r i a n g l e (
dup ,
t r i a n g l e (

dup ,
t r i a n g l e (dup , s ca l e , add) ,
add) ,

add) i ;

2:o

1:i

3:dup

9:add

8:add

7:add

6:scale

5:dup

4:dup

Figure 3.5: Building complex graph patterns using higher-order wiring functions

42 3.3. Tools and design flow

Figure 3.6: CAPH Toolset

3.3 Tools and design flow

The current tool chain supporting the CAPH language is shown in Fig. 3.6. It consists of a

graph visualizer, a reference interpreter and a compiler producing SystemC and VHDL code.

3.3.1 Graph Visualizer

The graph visualizer is used for providing a graphical representation of a network of actors

in .dot format [80] which can be visualized with the GRAPHVIZ suite of tools [81].

3.3.2 Reference Interpreter

The reference interpreter implements the dynamic semantics of the language, written in

axiomatic style. It provides reference results to validate the correctness of SystemC and VHDL

code before actual hardware implementation. It is also used to test and debug programs at

early stage of development by reading/writing input/output to/from files. The input file can

be text file containing data or an image file2.It also provides several tracing and monitoring

facilities. These include dumping:

− built in typing environment(for debug only)

− typed program (for debug only)

− print sized types using underlying representation

− static environment (for debug only)

2Routines are provided with the compiler to convert image files to textual format to be readable by reference
interpreter

Chapter 3. The CAPH language 43

− intermediate representation (just before backends, for debug only)

− dynamic environment (for debug only)

− statistics about fifo usage after run

− fifo contents during run

− fifo usage in .vcd file during run

3.3.3 Compiler

The compiler is the core in this tool chain. It is comprised of the following parts:

3.3.3.1 Front-End

The front-end generates an Abstract Syntax Tree (AST) after parsing and type-checking.

This generated AST is then used by the graph visualizer, the reference interpreter and elabo-

ration.

3.3.3.2 Elaboration

The elaboration phase turns the Abstract Syntax Tree (AST) into a target-independent

intermediate representation (IR). The IR is generated at two levels; one for the actor network

and other for the description of each actor.

The network representation instantiates all the actors and connects them according to con-

nections provided in network declaration part of CAPH program. At this level, actors are

viewed as black boxes and the only visible parts of the actors are input(s), output(s) and pa-

rameter(s). This is achieved by using an abstract interpretation technique described in [82].

It evaluates the network declarations and for each representation of an actor, an instance of

actor is created in the dataflow graph, then actors in the graph are connected. The connections

between actors are represented by FIFO channels.

The IR for each actor is generated by converting the set of transition rules to a finite state

machine (FSM). This FSM represents the actor rules in the form of target-independent state

machine in which transitions are labeled with a condition/action set. The generation of the IR

will be detailed in section 4.2.2.

3.3.3.3 Back-Ends

The current toolset consist of two backends : the first generates cycle-accurate SystemC

code for simulation and profiling and second generates VHDL code for hardware synthesis.

Before generating VHDL code, SystemC code is executed to provide some refinements in the

VHDL implementation (for example, maximum depth needed for each FIFO is calculated, see

section 4.3).

In the SystemC back end, each actor is converted to a SystemC module and these modules

are connected through FIFO channels. The whole SystemC program is also converted to a

module where input and output correspond to I/O streams. This program works as a test

bench to test the whole design.

The VHDL back end is described in detail in the next chapter.

44 3.3. Tools and design flow

Chapter 4
The VHDL Backend

45

46

Chapter 4. The VHDL Backend 47

This chapter will describe in detail the steps followed for generating VHDL code from CAPH

programs. The first part of the chapter will focus on data representation and how this is encoded

at the VHDL level. The second part will describe the VHDL code generated by CAPH with the

help of simple examples. The last part will discuss the important issue of FIFO implementation.

4.1 Data Representation

As described in section 3.1, an important feature of CAPH is its ability to describe structured

data streams. For this, tokens are divided into two categories : data tokens and control tokens.

This section describes how these tokens are encoded in VHDL, and how they are physically

inserted in (resp. removed from) the input (resp. output) data stream.

4.1.1 Data/Control Encoding

As said in section 3.1.2.2, only two control tokens are required to encode arbitrary structured

data streams : A “Start of Structure” (SoS) control token and a “End of Structure” (EoS)

control token. These tokens are encoded using two extra bits in the binary representation of

the stream values. These two bits are 00 for data token, 01 for the SoS control token and

10 for the EoS control token. The value 11 at these two bits indicates an error. Hence, for a

stream carrying n-bit wide values

− Data tokens are encoded using n+2 bits as 00bn−1bn−2...b0

− The SoS control tokens is encoded as 010n−10n−2...00

− The EoS control tokens is encoded as 100n−10n−2...00

− The configuration 11xx...x is not used.

4.1.2 Token Insertion

A dedicated VHDL process is responsible for physically inserting control tokens into the

input data steam. The implementation of this process depends on the structure of input data.

It is implemented in VHDL with the help of a finite state machine. For example, for an input

data stream consisting of a sequence of lists of equal length, the implementation of this process

will be as follows : at the start, the SoS token is sent to the output. Next, an input value is

read, the extra two bits containing 00 are added and sent to the output. This step will also

keep a counter to track the number of data tokens sent : when this counter reaches the length

of the list, it is reinitialized to zero and the EoS token is sent to the output. Then the process

restarts. The graphical illustration of the process is given in figure 4.1. The delay of two clock

cycles due to insertion of two control tokens is overcome because of the gap between the lists

from the input device. The current CAPH toolset provides a set of parameterizable, predefined

VHDL processes handling the automatic insertion of control tokens for the most commonly

used data structures (lists and images). The VHDL process for adding control tokens in images

will be described in section 6.1.

48 4.2. VHDL Code Generation

S0

S1

S2

c:=SoS

a=p

c:=00p,i:=i+1c:=EoS

i=length_of_list

i:=0

Figure 4.1: Finite state machine diagram for token insertion process

4.1.3 Token Removal

This process removes the extra bits from the output stream. It also adds a signal indicating

whether the current data is valid or not. In case of control tokens, this bit will be set to 0 to

indicate that data is invalid. In case of data token, this bit is set to 1 and data is send to the

output by removing the extra two bits, leaving the remaining bits unchanged.

Fig. 4.2 illustrates the token insertion and removal process. Tokens are added to the raw

input data stream. This stream is processed by the CAPH application and control tokens are

removed from the output data steam. In this example, the input data stream is supposed to be

structured as a sequence of lists of length 3. The CAPH application will read the input data

stream and copy the same data at output without any modifications.

Raw Input Data Stream

Structure Input Data
 Stream

Structure Output Data
 Stream

Raw Output Data
 Stream

Ouput Valid Signal

Input Valid Signal

b c d e f ga h0 0

b c d e f ga h< > < >

b c d e f ga h< > < >

b c d e f ga h0 0 0 0

Clock

0 0

Figure 4.2: Token insertion and removal

4.2 VHDL Code Generation

In the sequel, we will discuss the process of VHDL code generation from a CAPH program

using a simple example. This example calculates the horizontal derivative of an input stream

consisting of a sequence of lines. The CAPH implementation involves two actors : d1p (delay

one pixel) and sub (subtract) as shown in Fig. 4.3. The complete CAPH code for this example

is given in listing 4.1.

Chapter 4. The VHDL Backend 49

5:split

4:sub

 w3:signed<8> dc3:d1p

 w1:signed<8> dc

2:o

1:i

 w5:pixel

 w4:pixel

 w2:signed<8> dc

Figure 4.3: Graph of dx Example

Listing 4.1: CAPH application to calculate horizontal derivative

1 type byte = signed<8> ;

2 type p i x e l = signed<8> dc ;

3

4 actor d1p

5 in (a : pixel)

6 out (c : pixel)

7 var s : {S0 , S1} = S0

8 var z : byte

9 rules (s, a, z) −> (s, c, z)

10 | (S0, ’<,) −> (S1, ’<, 0)

11 | (S1, ’p, z) −> (S1, ’z, p)

12 | (S1, ’>,) −> (S0, ’>,) ;

13

14 actor sub

15 in (a : pixel , b : pixel)

16 out (c : pixel)

17 rules (a, b) −> c

18 | (’<, ’<) −> ’<

19 | (’v1, ’v2) −> ’(v1-v2)

20 | (’>, ’>) −> ’> ;

21

22 stream i : pixel from ” sample . txt ” ;

23 stream o : pixel to ” r e s u l t . txt ” ;

24

25 net o = sub (i , d1p i) ;

The first part of the code (lines 1-2) consists of type declarations. Here pixel and byte

types are declared.

50 4.2. VHDL Code Generation

The second part (lines 4-20) consists of the definition of two actors; d1p and sub.

The d1p actor (lines 4-12) accepts a stream of pixels structured as a (potentially infinite)

sequence of lines of pixels –each line starting with the SoS (here denoted ’<) control token and

ending with the EoS (here denoted ’>) control token– and delays each line by one pixel. For

example, if the input stream is

< 1 2 3 4 > < 5 7 6 9 > . . .

then the output stream produced by the d1p actor will be

< 0 1 2 3 > < 0 5 7 6 > . . .

The description of this actor will be described in detail in section 5.2.

The sub actor (lines 14-20) has two inputs and one output. Depending on the input value,

one of the three rules will be fired. In case of a pair of control tokens, the same token is written

on output; in case of a pair of data tokens, the difference of two input values is written at

output.

The next section (lines 21-22) defines I/O streams.

The last section (line 24) describes the dataflow network. It connects the input stream i to

the d1p actor and to the first input of sub actor. The result of the sub actor is connected to

the output stream o.

For example, if the input stream is

< 1 2 3 4 > < 5 7 6 9 > . . .

then the output stream produced by this example will be

< 1 1 1 1 > < 5 2 -1 3 > . . .

Generating the VHDL (as well as SystemC) code from this CAPH description involves two

steps. The first is generating a dataflow graph from the network description and the second is

generating the behavioral description of each actor. In the case of VHDL, the generated code

consists of one network description file and one file for each actor. The next sections describe

the code generated for the network file and for the sub actor (the code for the d1p actor will

be described later in section 5.2).

4.2.1 VHDL code for the dataflow network

The network is depicted in Fig. 4.3. Note that the compiler has inserted a special node called

split. The corresponding actor is responsible for duplicating the stream of tokens produced

by the input i, in order to feed both the d1p and sub actors. The VHDL description for

this network, produced by the compiler is given in listing 4.2. Lines 1-5 consist of library

declarations. One is the standard IEEE library, the second the dc library containing the package

operating on structured values and FIFOs used to connect actors.

Listing 4.2: VHDL code generated for dataflow network

1 library i e e e ;

2 library dc ;

3 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

4 use dc . dcf low . a l l ;

5 use i e e e . s t d l o g i c u n s i g n e d . a l l ;

6

Chapter 4. The VHDL Backend 51

7 entity dx net is

8 port (

9 w5 f : out std logic ;

10 w5 : in std logic vector(9 downto 0) ;

11 w5 wr : in std logic ;

12 w13 e : out std logic ;

13 w13 : out std logic vector(9 downto 0) ;

14 w13 rd : in std logic ;

15 c l o ck : in std logic ;

16 r e s e t : in std logic

17) ;

18 end dx net ;

19

20 architecture arch of dx net is

21

22 component sub act is

23 port (

24 a empty : in std logic ;

25 a : in std logic vector(9 downto 0) ;

26 a rd : out std logic ;

27 b empty : in std logic ;

28 b : in std logic vector(9 downto 0) ;

29 b rd : out std logic ;

30 c f u l l : in std logic ;

31 c : out std logic vector(9 downto 0) ;

32 c wr : out std logic ;

33 c l o ck : in std logic ;

34 r e s e t : in std logic

35) ;

36 end component ;

37

38

39 component d1p act is

40 port (

41 a empty : in std logic ;

42 a : in std logic vector(9 downto 0) ;

43 a rd : out std logic ;

44 c f u l l : in std logic ;

45 c : out std logic vector(9 downto 0) ;

46 c wr : out std logic ;

47 c l o ck : in std logic ;

48 r e s e t : in std logic

49) ;

50 end component ;

51

52

53 signal w12 f : std logic ;

54 signal w12 : std logic vector(9 downto 0) ;

55 signal w12 wr : std logic ;

56 signal w10 f : std logic ;

57 signal w10 : std logic vector(9 downto 0) ;

58 signal w10 wr : std logic ;

59 signal w11 e : std logic ;

60 signal w11 : std logic vector(9 downto 0) ;

61 signal w11 rd : std logic ;

62 signal w8 f : std logic ;

63 signal w8 : std logic vector(9 downto 0) ;

52 4.2. VHDL Code Generation

64 signal w8 wr : std logic ;

65 signal w9 e : std logic ;

66 signal w9 : std logic vector(9 downto 0) ;

67 signal w9 rd : std logic ;

68 signal w6 f : std logic ;

69 signal w6 : std logic vector(9 downto 0) ;

70 signal w6 wr : std logic ;

71 signal w7 e : std logic ;

72 signal w7 : std logic vector(9 downto 0) ;

73 signal w7 rd : std logic ;

74

75 begin

76 F9 : f i f o s m a l l generic map (4 , 10) port map(w12 f , w12 ,

77 w12 wr , w13 e , w13 , w13 rd , c lock , r e s e t) ;

78 F8 : f i f o s m a l l generic map (4 , 10) port map(w10 f , w10 ,

79 w10 wr , w11 e , w11 , w11 rd , c lock , r e s e t) ;

80 F7 : f i f o s m a l l generic map (4 , 10) port map(w8 f , w8 ,

81 w8 wr , w9 e , w9 , w9 rd , c lock , r e s e t) ;

82 F6 : f i f o s m a l l generic map (4 , 10) port map(w6 f , w6 ,

83 w6 wr , w7 e , w7 , w7 rd , c lock , r e s e t) ;

84 S5 : s p l i t 2 generic map (10) port map(w5 f , w5 , w5 wr ,

85 w10 f , w10 , w10 wr , w6 f , w6 , w6 wr) ;

86 B4 : sub act port map(w7 e , w7 , w7 rd , w9 e , w9 , w9 rd ,

87 w12 f , w12 , w12 wr , c lock , r e s e t) ;

88 B3 : d1p act port map(w11 e , w11 , w11 rd , w8 f , w8 , w8 wr , c lock , r e s e t) ;

89 end arch ;

Lines 7-18 declare the CAPH program as an entity. The input(s) and output(s) of this

entity will be connected to the application I/Os. When simulating the program, these I/Os

will generally be read/written from/to file(s). When the program will be implemented on an

FPGA, these I/Os will generally be connected to the camera and display devices.

Lines 20-90 give the implementation of this entity in a structural way. First, a component

is declared for each actor (two here lines 22-50). Then signals are declared which are used to

connect FIFOs and actors. As shown in Fig. 4.4, each wire at the CAPH level is turned into a

FIFO and six signals are used to connect the two actors.

A1 A2A2A1
full

data data

wr rd

empty

CAPH Level VHDL Level

FIFO

Figure 4.4: CAPH to VHDL transition of actor connectivity

The architecture of the FIFO is shown in Fig. 4.5, the interface of each FIFO compo-

nent consists of eight signals : clock, reset, full, input, write, empty, output and read.

These signals are used by actors to read/write to/from the FIFO. One FIFO will be used

to connect at least two actors; one for writing and other for reading. The first three signals

(full,input,write) are used by the writing actor. The full output signal tells whether the

FIFO is full. If yes, the writing actor will wait until space is available for writing in the FIFO.

The input signal corresponds to the data sent by the actor to be written on FIFO. The write

signal is used by the writing actor to trigger the writing operation. The remaining three signals

Chapter 4. The VHDL Backend 53

Full

Input

Write

Clock Reset

Empty

Output

Read

FIFO

Figure 4.5: FIFO Architecture

(empty,output and read) are used by the reading actor. The empty output signal tells whether

the FIFO is empty or not. If yes, the reading actor will wait until some data is available in

the FIFO to be read. The output corresponds to the data sent by the FIFO. The read input

signal is used by the actor to request a read operation. When this signal is asserted (and the

FIFO is not empty), the FIFO updates its reading counter and writes the corresponding data

on the output signal at the next rising edge of the clock.

Lines 86-88 instantiate each actor as a VHDL component and these components are used to

form a network of actors through FIFO interconnections in lines 76-83. Since, in this case there

are three actors (including the split actor inserted by the compiler), the complete network

representation consists of four FIFOs and three actor components. The implementation of the

split actor is provided in the dc library1.

The correspondence between wires in Fig. 4.3 and the FIFOs in the above code is as follows

: FIFO F8 represents wire w1, FIFO F6 represents wire w3, FIFO F7 represents wire w2 and

FIFO F9 represents wire w4. The two parameters provided to each FIFO component are its

capacity and width in bits (see section 4.3).

The RTL view for the generated VHDL network file is shown in Fig. 4.6. The generated

structure of the graph, consisting of actors connected through FIFOs can easily be recognized.

4.2.2 VHDL code for the sub actor

This section describes the VHDL code generated by CAPH for the sub actor. As described

earlier, the VHDL code for each actor is generated in a separate file. The code for the sub actor

is given in listing 4.3.

Listing 4.3: VHDL code generated for sub actor

1 library i e e e ;

2 library dc ;

3 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

4 use dc . dcf low . a l l ;

5 use i e e e . s t d l o g i c u n s i g n e d . a l l ;

6

7 entity sub act is

8 port (

9 a empty : in std logic ;

10 a : in std logic vector(9 downto 0) ;

1This implementation contains different versions of this entity to support up to four duplications. This can
further be increased to application’s requirement.

54 4.2. VHDL Code Generation

Figure 4.6: RTL diagram of network graph

Chapter 4. The VHDL Backend 55

11 a rd : out std logic ;

12 b empty : in std logic ;

13 b : in std logic vector(9 downto 0) ;

14 b rd : out std logic ;

15 c f u l l : in std logic ;

16 c : out std logic vector(9 downto 0) ;

17 c wr : out std logic ;

18 c l o ck : in std logic ;

19 r e s e t : in std logic

20) ;

21 end sub act ;

22

23 architecture FSM of sub act is

24 type t s t a t e is (R0 , R1 , R2 , R3) ;

25 signal s t a t e : t s t a t e ;

26 begin

27 process(c lock , r e s e t)

28 variable v1 v : std logic vector(7 downto 0) ;

29 variable v2 v : std logic vector(7 downto 0) ;

30 begin

31 if (r e s e t = ’0 ’) then

32 s t a t e <= R0 ;

33 a rd <= ’ 0 ’ ;

34 b rd <= ’ 0 ’ ;

35 c wr <= ’ 0 ’ ;

36 elsif r i s i n g e d g e (c l o ck) then

37 case s t a t e is

38 when R0 =>

39 if b empty = ’0 ’ and i s s o s (b) and a empty = ’0 ’ and

40 i s s o s (a) and c f u l l = ’0 ’ then

41 b rd <= ’ 1 ’ ;

42 a rd <= ’ 1 ’ ;

43 c <= sos (1 0) ;

44 c wr <= ’ 1 ’ ;

45 s t a t e <= R1 ;

46 elsif b empty = ’0 ’ and i s d a t a (b) and a empty = ’0 ’

47 and i s d a t a (a) and c f u l l = ’0 ’ then

48 v2 v := data from (b) ;

49 b rd <= ’ 1 ’ ;

50 v1 v := data from (a) ;

51 a rd <= ’ 1 ’ ;

52 c <= to data (v1 v − v2 v , 1 0 , t rue) ;

53 c wr <= ’ 1 ’ ;

54 s t a t e <= R2 ;

55 elsif b empty = ’0 ’ and i s e o s (b) and a empty = ’0 ’

56 and i s e o s (a) and c f u l l = ’0 ’ then

57 b rd <= ’ 1 ’ ;

58 a rd <= ’ 1 ’ ;

59 c <= eos (1 0) ;

60 c wr <= ’ 1 ’ ;

61 s t a t e <= R3 ;

62 end if ;

63 when R1 =>

64 b rd <= ’ 0 ’ ;

65 a rd <= ’ 0 ’ ;

66 c wr <= ’ 0 ’ ;

67 s t a t e <= R0 ;

56 4.2. VHDL Code Generation

68 when R2 =>

69 b rd <= ’ 0 ’ ;

70 a rd <= ’ 0 ’ ;

71 c wr <= ’ 0 ’ ;

72 s t a t e <= R0 ;

73 when R3 =>

74 b rd <= ’ 0 ’ ;

75 a rd <= ’ 0 ’ ;

76 c wr <= ’ 0 ’ ;

77 s t a t e <= R0 ;

78 end case ;

79 end if ;

80 end process ;

81 end FSM;

The first part (lines 1-5) consists of library declarations. One is the standard IEEE library,

the second the dc library containing the package operating on structured values and FIFOs

used to connect actors.

After library declarations, lines 7-21 declare the VHDL entity for the actor. Other than

clock and reset signals, the remaining signals in the port declaration are for the input and

output FIFOs. The signals starting with a and b are for the input FIFOs and c for the

output FIFO.

Rdy

Avail(a)
Match(a,EoS)
Avail(b)
Match(b,EoS)
Avail(c)

Read(a)
Read(b)
Write(c,EoS)

3

Avail(a)
Match(a,Data v1)
Avail(b)
Match(b,Data v2)
Avail(c)

Bind(a,Data v1)
Bind(b,Data v2)
Write(c,v1-v2)

2

Avail(a)
Match(a,SoS)
Avail(b)
Match(b,SoS)
Avail(c)

Read(a)
Read(b)
Write(c,SoS)

1

Rdy R2

clk^

I[a].rd = 0
I[b].rd = 0
O[c].wr = 0

I[a].rd = 1
I[b].rd = 1
O[c].wr = 1

clk^
~I[a].empty
~I[b].empty
~O[c].full
I[a].Data
I[b].Data

v1 := I[a].dataout
v2 := I[b].dataout
O[c].datain = v1-v2

(a) (b)

Figure 4.7: Intermediate Representation (IR) for the sub actor of listing 4.3 and transformation
of the second rule.

In lines 23-81 the corresponding architecture is defined. The first two lines 24-25 declare a

state signal. This signal is used to encode a finite state machine in VHDL. This FSM is derived

from the rule-based specification of the actor. For this, the rules describing the behavior of the

actor are first converted to an intermediate representation. This intermediate representation is

then transformed into VHDL. The transformation process – described in detail in [79, 83]– is

illustrated in Fig. 4.7-a using the sub actor as an example. In this figure , the small number

besides each transition gives the number of the corresponding rule in the CAPH code. In

Fig. 4.7-b, the transformation of one rule for VHDL is also given. For this transformation,

FIFO signals are generated to control read (resp. write) operations on the input (resp. output)

FIFO. The Avail condition on the input (resp. output) reflects the availability of input (resp.

Chapter 4. The VHDL Backend 57

output) for reading (resp. writing). The rd (resp. wr) signals perform the actual read (resp.

write) operations. As these signals are asserted synchronously, an extra state is needed for

each rule. This transformation described here is for the second rule in Fig. 4.7-b. The clk^

represents the synchronizing clock signal, logical negation is denoted by the ~ prefix operation

and I[a] (resp. I[b] and O[c]) represents the FIFO connected to input a (resp. input b and

output o).

Lines 36-79 encode the resulting synchronous FSM. This FSM is initially in state R0. Then

at each clock cycle it will perform some operations and possible move to another state depending

on the availability of input(s), the value of input(s), the availability of room in the output FIFOs

(to write the results) and the value of local variables. The availability and value of inputs are

checked by calling the is sos, is data and is eos functions, provided by dc library. In the

case of data, input values are stored in variables v1 v and v2 v in lines 48 and 50 respectively.

The difference between these two variables is calculated and the result is stored in the output

FIFO by asserting the write signal for the output FIFO in lines 52 and 53. In case of control

tokens (i.e. SoS/EoS), the same token is written on the output. In all three conditions, the

FSM is moved to state R1 (resp. R2,R3) in order to reset the read and write signals to zero.

This means that when input (resp. output) FIFOs are available for reading (resp. writing),

one rule will actually take two cycles to execute.

There is no local variable in the sub actor used to control execution of transition rules.

When local variables are used (as in d1p actor), these variables are converted to signals in the

corresponding VHDL process (see section 5.2).

The RTL view of generated VHDL for the the sub actor is shown in Fig. 4.8. The yellow

box represents the state machine which is given in Fig. 4.9. The rest consists of registers, equal

operators and multiplexers. The output from equal operators is used by the multiplexers to

execute one of the if conditions in the R0 state and results are stored in registers before being

sent at output. The VHDL design for this actor, when compiled for an FPGA2 utilizes 18 logic

elements, none of the other resources (DSP, memory etc.) are used. The design operates at a

maximum frequency of 390 MHz.

4.3 Dimensionning FIFOs

FIFOs play a key role in the CAPH implementation model. But when targeted for resource

constrained devices like FPGAs, their usage must be strictly controlled. Therefore, considerable

attention is given by the CAPH compiler to FIFO utilization.

4.3.1 FIFO size

First, the width (in bits) of each FIFO is deduced in a straightforward way from the type

of the data it contains.

Assigning a depth (in places) to each FIFO is a more complex issue. If the capacity is too

small, then deadlocks can occur at execution. If this capacity is too big, then some waste of

resources occurs. Computing the optimal capacity at compile time is in general undecidable

because the time required by an actor to produce its results can depend on the value of its inputs.

The approach used by CAPH is to obtain an estimation of the required capacity using run-time

2using Quartus toolset for Stratix EP1S60 FPGA

58 4.3. Dimensionning FIFOs

Figure 4.8: RTL diagram of sub actor

Chapter 4. The VHDL Backend 59

Figure 4.9: State machine generated by sub actor

profiling. This is the main role of the CAPH SystemC back end. For this, the code generated

by the SystemC back end, when executed, monitors the run time occupancy of each FIFO and

writes it to a specific annotation file. The content of this file for the example introduced in

listing 4.1 and Fig. 4.3 is given in Fig. 4.10. Apart from the FIFO at wire w3, all other FIFOs

have a maximum occupancy of one. The FIFO at w3 has to store an extra value because the

second input of sub actor (wire w2) will be available after a delay of one clock cycle because of

the presence of the d1p actor in the corresponding path.

w5 fifo_max_occ = 1

w3 fifo_max_occ = 2

w2 fifo_max_occ = 1

w1 fifo_max_occ = 1

w4 fifo_max_occ = 1

Figure 4.10: Annotation generated by the SystemC code

The annotation file is used by the VHDL backend to assign accurate size to each FIFO.

This explains the arrow labeled “back-annotations” in Fig. 3.6.

In the absence of annotation file, the VHDL backend assigns a default depth to each

FIFO of the design. This default depth is 4. It can be changed with the compiler option

-vhdl default fifo capacity.

4.3.2 Actual FIFO Implementation

The actual implementation of the FIFO on the target device is also an important issue,

impacting specifically the resource usage of the target FPGA. There are basically two ways to

implement a FIFO : with registers or with embedded memory. The former is the simplest and

fastest solution but quickly becomes inadvisable for large FIFOs because it consumes a large

60 4.3. Dimensionning FIFOs

number of logic elements.

In order to make optimal usage of FPGA resources, different options are provided by

the compiler. The option -vhdl default fifo model sets the FIFO model to use for a “small”

FIFO which will be implemented with registers. The -vhdl big fifo model option selects the

model to use for “big” FIFO (which will be implemented with embedded memory). The -

vhdl fifo model threshold option is used to tell the compiler when to switch from the former

model to the second : FIFOs having a capacity smaller than the specified threshold will be

implemented with the “small” FIFO and those with capacity bigger than the threshold will be

implemented with the “big” model.

Chapter 5
Examples

61

62

Chapter 5. Examples 63

This chapter will highlight some features of CAPH using a set of selected examples. These

features are highlighted either because they illustrate some relevant points from a programming

perspective or raise interesting or challenging problems when translating the code to VHDL for

FPGA.

5.1 Arithmetic

We first introduce the usage and translation of basic arithmetic and logic operators. The

conversion of these operators from CAPH to VHDL boils down to selecting the right library

operator or function.

Example 1 : add

This simple example reads two inputs and writes their sum on output. The CAPH code for

this example is given in listing 5.1.

Listing 5.1: CAPH code for add example

1 actor add ()

2 in (a : signed<8> , b : signed<8>)

3 out (c : signed<9>)

4 rules (a,b) −> c

5 | (a,b) −> a+b

6 ;

The CAPH language uses the ’+’ operator for addition. The same operator is used in

VHDL for addition. The part of the VHDL code representing the rule is :

1 if b empty = ’0 ’ and a empty = ’0 ’ and c f u l l = ’0 ’ then

2 b v := b ;

3 b rd <= ’ 1 ’ ;

4 a v := a ;

5 a rd <= ’ 1 ’ ;

6 c <= a v + b v ;

7 c wr <= ’ 1 ’ ;

8 s t a t e <= R1 ;

Here it can be seen that the same operator is used for addition in VHDL. Regarding type con-

version, the inputs of type signed<8> in CAPH are converted to std logic vector(7 downto

0) in VHDL and one output of type signed<9> is converted to std logic vector(8 downto

0) in VHDL. The resulting conversion and size of vector will avoid any overflow during the

operation.

Example 2 : shift

This example reads an input value, performs a left shift of two bits and writes the result on

output. The CAPH code for this example is given in listing 5.2.

Listing 5.2: CAPH code for shift example

1 actor s h i f t ()

2 in (a : signed<8>)

3 out (c : signed<8>)

4 rules a −> c

5 | a −> a<<2

6 ;

64 5.2. One-pixel delay

The VHDL code generated by the backend for the only rule is :

1 if a empty = ’0 ’ and c f u l l = ’0 ’ then

2 a v := a ;

3 a rd <= ’ 1 ’ ;

4 c <= SHR(a v , 2) ;

5 c wr <= ’ 1 ’ ;

6 s t a t e <= R1 ;

7 end if ;

Here the ’<<’ CAPH operator is converted to the ’SHR’ VHDL function.

The list of all the operators supported by CAPH is given in chapter 2 of the Language

Reference Manual (LRM) [3].

Example 3 : Power of two series

The example reads an input value, and tells whether the input number is in the series of

powers of two (1,2,4,8,...) or not. The CAPH code for this example is given in listing 5.3.

Listing 5.3: CAPH code for power of two series example

1 in(a : unsigned<8>)

2 out(c : bool)

3 rules a −> c

4 | v −> i f (v land(v-1)=0) then true else false

5 ;

After input and output declarations, the only rule reads input, does the logical and between

the input value and one subtracted from the input and checks whether the result is equal to

zero. If yes then it is a number from the above series otherwise it is not. The VHDL code

generated for this rule is:

1 if a empty = ’0 ’ and c f u l l = ’0 ’ then

2 v v := a ;

3 a rd <= ’ 1 ’ ;

4 if (eq ((v v) AND ((v v)−(”00000001”)) ,”00000000”))

5 then c <= ”1” ;

6 e l s e c <= ”0” ;

7 end if ;

8 c wr <= ’ 1 ’ ;

9 s t a t e <= R1 ;

10 end if ;

Here the VHDL code generation is simple. A logical and operation is performed between

input value and one subtracted from it and equality with zero is checked with function eq

provided in the dc library. Depending on the result 1 or 0 is sent at output.

5.2 One-pixel delay

The corresponding actor has already been introduced in section 4.2. Its goal is to delay each

input line by one pixel. For example, if the input is

< a1, a2, ... , an >

then the output will be

< 0, a1, a2, ... , an−1 >.

Chapter 5. Examples 65

S0

S1

a='<

c:='<, z:=0

a='>

c:='>

a='p

c:=z, z:=p

Figure 5.1: One-pixel delay actor state diagram

A functional description of this actor could be :

d1p :< P1, P2, ... , Pn > −→ < 0, P1, P2, ... , Pn−1 >

The behavior of the actor is represented graphically in Fig. 5.1. In the figure, circles represent

states (the dotted circle is initial state), the arrows are used for transition between states

and text besides each arrow consists of action(s) and condition(s) (the text above the line is

condition(s) and below the line is action(s)). The CAPH code for this example is given in listing

5.4.

Listing 5.4: CAPH code for one-pixel delay example

1 actor d1p ()

2 in (a : unsigned<8> dc)

3 out (c : unsigned<8> dc)

4 var s : {S0 , S1} = S0

5 var z : unsigned<8>

6 rules (s, a, z) −> (s, c, z)

7 | (S0, ’<,) −> (S1, ’<, 0)

8 | (S1, ’p, z) −> (S1, ’z, p)

9 | (S1, ’>,) −> (S0, ’>,)

10 ;

The type of the input and output is unsigned<8> dc, meaning that these I/Os are struc-

tured stream of unsigned 8 bit values. The structuration of the stream– by means of ’< and

’> control tokens– is essential here for expressing the behavior of the d1p actor in a generic1

way.

Two local variables are used (declared in lines 4-5). Variable s keeps track of the actor

“state”. Its value is s0 when the actor is idle, waiting for new line to process and s1 when

actor is processing a line. Variable z is used to memorize the previous pixel.

The behavior of actor is described with three rules. The first rule (line 8) handles the start

of the line (reading and writing the start of line < control token). It initializes the variable z to

zero and moves to state s1 for processing the line. The second rule in line 9 handles the data

tokens. It reads the input value and stores it in a temporary variable p. The value stored in

variable z is written to the output, this variable is updated with the value read on input. The

third rule in line 10 handles the end of the line (reading and writing the end of line > control

token). It also moves back to state s0 and starts waiting for the next line at input.

The VHDL file generated for this actor is given in listing 5.5.

1In a sense that it does not depend on the actual length of the input lines

66 5.2. One-pixel delay

Listing 5.5: VHDL code generated for d1p actor

1 library i e e e ;

2 library dc ;

3 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

4 use dc . dcf low . a l l ;

5 use i e e e . s t d l o g i c u n s i g n e d . a l l ;

6

7 entity d1p act is

8 port (

9 a empty : in std logic ;

10 a : in std logic vector(9 downto 0) ;

11 a rd : out std logic ;

12 c f u l l : in std logic ;

13 c : out std logic vector(9 downto 0) ;

14 c wr : out std logic ;

15 c l o ck : in std logic ;

16 r e s e t : in std logic

17) ;

18 end d1p act ;

19

20 architecture FSM of d1p act is

21 type t s t a t e is (R0 , R1 , R2 , R3) ;

22 type t enum1 is (S0 , S1 , S2) ;

23 signal s t a t e : t s t a t e ;

24 signal s : t enum1 ;

25 signal z : std logic vector(7 downto 0) ;

26 begin

27 actorproce s s (c lock , r e s e t)

28 variable p v : std logic vector(7 downto 0) ;

29 variable z v : std logic vector(7 downto 0) ;

30 begin

31 if (r e s e t = ’0 ’) then

32 s t a t e <= R0 ;

33 s <= S0 ;

34 a rd <= ’ 0 ’ ;

35 c wr <= ’ 0 ’ ;

36 elsif r i s i n g e d g e (c l o ck) then

37 case s t a t e is

38 when R0 =>

39 if a empty = ’0 ’ and i s s o s (a) and s=S0 and c f u l l = ’0 ’ then

40 a rd <= ’ 1 ’ ;

41 s <= S1 ;

42 c <= sos (1 0) ;

43 c wr <= ’ 1 ’ ;

44 z <= ”00000000”;

45 s t a t e <= R1 ;

46 elsif a empty = ’0 ’ and i s d a t a (a) and s=S1 and c f u l l = ’0 ’ then

47 z v := z ;

48 p v := data from (a) ;

49 a rd <= ’ 1 ’ ;

50 s <= S1 ;

51 c <= to data (z v , 1 0 , f a l s e) ;

52 c wr <= ’ 1 ’ ;

53 z <= p v ;

54 s t a t e <= R2 ;

55 elsif a empty = ’0 ’ and i s e o s (a) and s=S1 and c f u l l = ’0 ’ then

56 a rd <= ’ 1 ’ ;

Chapter 5. Examples 67

57 s <= S0 ;

58 c <= eos (1 0) ;

59 c wr <= ’ 1 ’ ;

60 s t a t e <= R3 ;

61 end if ;

62 when R1 =>

63 a rd <= ’ 0 ’ ;

64 c wr <= ’ 0 ’ ;

65 s t a t e <= R0 ;

66 when R2 =>

67 a rd <= ’ 0 ’ ;

68 c wr <= ’ 0 ’ ;

69 s t a t e <= R0 ;

70 when R3 =>

71 a rd <= ’ 0 ’ ;

72 c wr <= ’ 0 ’ ;

73 s t a t e <= R0 ;

74 end case ;

75 end if ;

76 end process ;

77 end FSM;

Lines 1-6 are for library and lines 8-19 for entity declarations.

The architecture of the actor is defined in lines 21-81. The state and s variables in

lines 22-25 have already been described in section 4.2.2, the variable z in line 26 is the VHDL

translation of variable z in CAPH. In lines 29-30, the variables v z and p z are translation of

v and z variables in CAPH transition rule (line 9 of CAPH code).

Lines 37-76 are the conversion of the CAPH transition rules into a synchronized finite state

machine in VDHL.

Lines 40-46 are the translation of the first rule. The if condition starts by checking the

availability of data on input FIFO. If data is available then it should be a control token indicating

a line. Simultaneously, it checks the value of s, which must be S0 here, and whether data can

be written on output FIFO i.e. whether the FIFO is not full. If all these conditions are met

then the read signal for the input FIFO and the write signal for the output FIFO are asserted,

and the start of line control token is written to the output. The variable z is also initialized to

zero and the variable s is changed to S1 to move to next rule. The state variable is assigned

R1, to change to zero read (resp. write) signals to input (resp. output) FIFOs in the next clock

cycle.

Lines 47-55 correspond to the second transition rule. The changes from the previous if

condition are a check for data at the input instead of “start of line” control token and the

fact that variable s should now be S1. If these conditions are met, the input value is saved in

variable p v, the value of the variable z is saved in temporary variable z v which is then written

at output and z is updated with p v, s will not change and state is assigned R2 to change

FIFO read/write signals.

Lines 56-61 give the generated VHDL code for the third rule. They are similar to the ones

given for the first rule, the only difference being that the “end of line” control token is read at

input instead of “start of line”. The variable s is changed to S0 to move back to the first rule

to start processing the next line.

68 5.3. One-line delay

The generated VHDL code when compiled for an FPGA2, uses 50 Logical Elements (LEs),

none of the other resources (memory bit, DSP block etc.) are used. The design operates at the

maximum frequency of 250 MHz. The RTL diagram of the generated VHDL code is given in

Fig. 5.2. The state machine in represented by yellow box in the diagram. The variable z is a

register. The rest of the diagram consists of equal operators, multiplexers and registers. The

registers are used to store results before sent at output.

5.3 One-line delay

The d1l actor described in this section delays each image of its input stream by one line.

For example – taking here 2x2 image for simplicity – if the input stream is

< <1 2> <3 4> > < <5 6> <7 8> >. . .

then the output stream will be

< <0 0> <1 2> > < <0 0> <5 6> >. . . .

Functionally speaking :

d1l :< <

< P11, P12, ..., P1n > < 0, 0, ..., 0 >

< P21, P22, ..., P2n > −→ < P11, P12, ..., P1n >

...
...

< Pm1, Pm2, ..., Pmn > < P(m−1)1, P(m−1)2, ..., P(m−1)n >

> >

It works by sending zeros to the output for the first line while saving the input line in an

array. For the next lines of the image, the values stored in the array are sent to the output

and replaced by those read on input. This continues until the end of the image. The last line

stored in the array is discarded. The CAPH code for this example is given in the listing 5.6.

Listing 5.6: CAPH code for one-line delay example

1 actor d1l ()

2 in (a : pixel dc)

3 out (c : pixel dc)

4 var s : {S0 , S1 , S2 , S3 , S4}=S0

5 var z : pixel array [2 5 6] = [0 : 256]

6 var i : unsigned<8>

7 rules (s, a, z, i) −> (s, c, z, i)

8 | (S0, ’<, ,) −> (S1, ’<, ,)

9 | (S1, ’<, ,) −> (S2, ’<, , 0)

10 | (S2, ’>, ,) −> (S3, ’>, ,)

11 | (S2, ’p, z, i) −> (S2, ’0, z[i¡-p], i+1)

12 | (S3, ’>, ,) −> (S0, ’>, ,)

13 | (S3, ’<, ,) −> (S4, ’<, , 0)

14 | (S4, ’p, z, i) −> (S4, ’z[i], z[i¡-p], i+1)

15 | (S4, ’>, ,) −> (S3, ’>, ,)

16 ;

2using Quartus toolset for Stratix EP1S60 FPGA

Chapter 5. Examples 69

Figure 5.2: RTL view of d1p actor

70 5.3. One-line delay

In the variable declaration part, an array is declared. This array will memorize one entire

line of the input image. Its length is here fixed to 256 but it can be changed according to the

actual width of the input image.

S0

S1

S2

S3

S4

a='<
c:='<

a='<
c:='<, i:=0

a='p
c:=0, z[i]:=p, i:=i+1
a='>
c:='>

a='<
c:='<, i:=0

a='>
c:='>

a='>
c:='>

a='p
c:=z[i], z[i]:=p, i:=i+1

Figure 5.3: One-line delay actor state diagram

The behavior of the actor requires ten transition rules, which can be summarized graphically

in Fig. 5.3. The first rule (line 8) reads the “start of image” control token, writes the same

token to the output and changes state to S1. The second rule (line 9) handles the “end of

image” control token. The third rule (line 10) handles the “start of line” control token for the

first line of the image. The corresponding action writes the “start of line” control token to the

output, initializes the i variable to zero and moves to state S2. In state S2, the rule to be fired

depends on the input token. If the input token is “>” which means “end of line”, the same

token is written to the output and state is changed to S3. If this token is a data token, the fifth

rule is fired : we read an input data, write it in the array, increment the array index by one

and write zero to the output. The execution of the sixth or seventh rule also depends to the

input token. If this token marks the end of image, after writing “>” to the output, the state is

changed to S0 to prepare for processing of the next image. If this token marks the start of a

new line, the “<” token is written to the output, the variable i is initialized to zero and state

is changed to S4. The second last rule in line 15 is fired for each data token within a line. It

reads the input value, writes the value stored at index i of the array z to the output, updates

the array cell with the read value and increments the index i. The last rule in line 16 is fired

when an “end of line” control token is read and state is moved to S3 to start waiting for “start

of line” control token or “end of image” control token.

The VHDL file generated for this actor is given in listing 5.7. We will focus here on the

translation of the code involving the manipulation of array z.

Listing 5.7: VHDL code generated for d1l actor

1 library i e e e ;

2 library dc ;

3 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

4 use dc . dcf low . a l l ;

5 use i e e e . s t d l o g i c u n s i g n e d . a l l ;

6

7 entity d 1 l a c t is

Chapter 5. Examples 71

8 port (

9 a empty : in std logic ;

10 a : in std logic vector(9 downto 0) ;

11 a rd : out std logic ;

12 c f u l l : in std logic ;

13 c : out std logic vector(9 downto 0) ;

14 c wr : out std logic ;

15 c l o ck : in std logic ;

16 r e s e t : in std logic

17) ;

18 end d 1 l a c t ;

19

20 architecture FSM of d 1 l a c t is

21 type t s t a t e is (R0 , R1 , R2 , R3 , R4 , R5 , R6 , R7 , R8 , R9) ;

22 type t enum1 is (S0 , S1 , S2 , S3 , S4) ;

23 type t z is array(0 to 255) of std logic vector(7 downto 0) ;

24 signal s t a t e : t s t a t e ;

25 signal i : std logic vector(7 downto 0) ;

26 signal z : t z := (others => ”00000000”) ;

27 signal s : t enum1 ;

28 actorbegin

29 actorproce s s (c lock , r e s e t)

30 variable p v : std logic vector(7 downto 0) ;

31 variable i v : std logic vector(7 downto 0) ;

32 begin

33 if (r e s e t = ’0 ’) then

34 s t a t e <= R0 ;

35 s <= S0 ;

36 a rd <= ’ 0 ’ ;

37 c wr <= ’ 0 ’ ;

38 elsif r i s i n g e d g e (c l o ck) then

39 case s t a t e is

40 when R0 =>

41 if a empty = ’0 ’ and i s s o s (a) and s=S0 and c f u l l = ’0 ’ then

42 a rd <= ’ 1 ’ ;

43 s <= S1 ;

44 c <= sos (1 0) ;

45 c wr <= ’ 1 ’ ;

46 s t a t e <= R1 ;

47 elsif a empty = ’0 ’ and i s e o s (a) and s=S1 and c f u l l = ’0 ’ then

48 a rd <= ’ 1 ’ ;

49 s <= S0 ;

50 c <= eos (1 0) ;

51 c wr <= ’ 1 ’ ;

52 s t a t e <= R2 ;

53 elsif a empty = ’0 ’ and i s s o s (a) and s=S1 and c f u l l = ’0 ’ then

54 a rd <= ’ 1 ’ ;

55 s <= S2 ;

56 c <= sos (1 0) ;

57 c wr <= ’ 1 ’ ;

58 i <= ”00000000”;

59 s t a t e <= R3 ;

60 elsif a empty = ’0 ’ and i s e o s (a) and s=S2 and c f u l l = ’0 ’ then

61 a rd <= ’ 1 ’ ;

62 s <= S3 ;

63 c <= eos (1 0) ;

64 c wr <= ’ 1 ’ ;

72 5.3. One-line delay

65 s t a t e <= R4 ;

66 elsif a empty = ’0 ’ and i s d a t a (a) and s=S2 and c f u l l = ’0 ’ then

67 i v := i ;

68 p v := data from (a) ;

69 a rd <= ’ 1 ’ ;

70 s <= S2 ;

71 c <= to data (”00000000” ,10 , t rue) ;

72 c wr <= ’ 1 ’ ;

73 z (c o n v i n t e g e r (i v)) <= p v ;

74 i <= i v + ”00000001”;

75 s t a t e <= R5 ;

76 elsif a empty = ’0 ’ and i s e o s (a) and s=S3 and c f u l l = ’0 ’ then

77 a rd <= ’ 1 ’ ;

78 s <= S0 ;

79 c <= eos (1 0) ;

80 c wr <= ’ 1 ’ ;

81 s t a t e <= R6 ;

82 elsif a empty = ’0 ’ and i s s o s (a) and s=S3 and c f u l l = ’0 ’ then

83 a rd <= ’ 1 ’ ;

84 s <= S4 ;

85 c <= sos (1 0) ;

86 c wr <= ’ 1 ’ ;

87 i <= ”00000000”;

88 s t a t e <= R7 ;

89 elsif a empty = ’0 ’ and i s d a t a (a) and s=S4 and c f u l l = ’0 ’ then

90 i v := i ;

91 p v := data from (a) ;

92 a rd <= ’ 1 ’ ;

93 s <= S4 ;

94 c <= to data (z (c o n v i n t e g e r (i v)) , 1 0 , t rue) ;

95 c wr <= ’ 1 ’ ;

96 z (c o n v i n t e g e r (i v)) <= p v ;

97 i <= i v + ”00000001”;

98 s t a t e <= R8 ;

99 elsif a empty = ’0 ’ and i s e o s (a) and s=S4 and c f u l l = ’0 ’ then

100 a rd <= ’ 1 ’ ;

101 s <= S3 ;

102 c <= eos (1 0) ;

103 c wr <= ’ 1 ’ ;

104 s t a t e <= R9 ;

105 end if ;

106 when R1 =>

107 a rd <= ’ 0 ’ ;

108 c wr <= ’ 0 ’ ;

109 s t a t e <= R0 ;

110 when R2 =>

111 a rd <= ’ 0 ’ ;

112 c wr <= ’ 0 ’ ;

113 s t a t e <= R0 ;

114 when R3 =>

115 a rd <= ’ 0 ’ ;

116 c wr <= ’ 0 ’ ;

117 s t a t e <= R0 ;

118 when R4 =>

119 a rd <= ’ 0 ’ ;

120 c wr <= ’ 0 ’ ;

121 s t a t e <= R0 ;

Chapter 5. Examples 73

122 when R5 =>

123 a rd <= ’ 0 ’ ;

124 c wr <= ’ 0 ’ ;

125 s t a t e <= R0 ;

126 when R6 =>

127 a rd <= ’ 0 ’ ;

128 c wr <= ’ 0 ’ ;

129 s t a t e <= R0 ;

130 when R7 =>

131 a rd <= ’ 0 ’ ;

132 c wr <= ’ 0 ’ ;

133 s t a t e <= R0 ;

134 when R8 =>

135 a rd <= ’ 0 ’ ;

136 c wr <= ’ 0 ’ ;

137 s t a t e <= R0 ;

138 when R9 =>

139 a rd <= ’ 0 ’ ;

140 c wr <= ’ 0 ’ ;

141 s t a t e <= R0 ;

142 end case ;

143 end if ;

144 end process ;

145 end FSM;

A variable z of type array is declared in line 27, where t z corresponds to the earlier declared

array type in line 24.

The translation of the CAPH fifth rule is in lines 67-76. The if condition checks the avail-

ability of input (resp. output) FIFO for reading (resp. writing), the type of the corresponding

token and the value of s. When the condition is true, the action is executed. It first stores the

value of index variable i in i v, asserts the read signal for the input FIFO and stores the input

data in variable p v. In the same way, the write signal for the output FIFO is asserted and zero

is written to the output. The value stored in p v is saved at index i v of array z. The array

index i is incremented by one. The s variable is changed to S2. Finally, state is moved to R5

to change the read/write signals of the FIFOs.

The ninth rule of CAPH is translated in lines 90-99. The if condition is similar to the one

described above. The array index i is stored in i v. The read signal to the input FIFO is

asserted and the read value is stored in p v. The write signal of the output FIFO is asserted

and the value at index i v of the array z is written to the output. Simultaneously, the value

at the same index i v of array is updated with p v.

The generated VHDL code when compiled for an FPGA3, uses 140 LEs and 2048 bits of

memory. The design operates at the maximum frequency of 140 MHz. The RTL diagram of

the generated VHDL code is given in Fig. 5.4. It is important to note that this description uses

memory for implementing the array z and not logic elements (in Fig. 5.4 z is a synchronous

block RAM). This is achieved by accessing the array elements in the finite state machine in a

way4 which will infer a block RAM5 for the array z on the FPGA. The resulting RAM block

will consist of a read address, write address, input, output, clock and write enable. Note also

3using Quartus toolset for Stratix EP1S60 FPGA
4By following the coding styles provided by tool vendors
5with a depth of 256 and 8 bits width

74 5.4. 1x3 Convolution

that the array z is both read and written in the same clock cycle, this is achieved by sending

read and write addresses to the RAM on each clock cycle.

5.4 1x3 Convolution

Convolution is a mathematical operation which is fundamental for many image processing

operations. It generally provides a way of multiplying an image with an array. This array is

also known as a kernel. This example will demonstrate the implementation of a 1x3 convolu-

tion operation in CAPH. Here 1x3 refers to the dimensions of the kernel. The mathematical

formulation of a 1x3 convolution operation is :

conv1x3 :< <

< P11, P12, ..., P1n > < f(P11), f(P12), ..., f(P1n) >

< P21, P22, ..., P2n > −→ < f(P21), f(P22), ..., f(P2n) >

...
...

< Pm1, Pm2, ..., Pmn > < f(Pm1), f(Pm2), ..., f(Pmn) >

> >

Where f(Pi,j) = (k0 ∗ Pi−2,j + k1 ∗ Pi−1,j + k2 ∗ Pi,j) >> n

and P−1,j = P−2,j = 0

The implementation given here uses the d1p operator introduced in section 5.26. The CAPH

code for this example is given in listing 5.8.

Listing 5.8: CAPH code for 1x3 convolution example

1 const k = [1 , 2 , 1] ;

2 const norm=2;

3

4 type uint = unsigned<8> ;

5

6 actor d1p ()

7 in (a : uint dc)

8 out (c : uint dc)

9 . . .

10

11 actor maddn (k : uint array [3] , n : uint)

12 in (a : uint dc , b : uint dc , c : uint dc)

13 out (s : uint dc)

14 rules (a,b,c) −> s

15 | (’< , ’< , ’<) −> ’<

16 | (’zzp, ’zp, ’p) −> ’(k[0]*zzp+k[1]*zp+k[2]*p)>>n

17 | (’> , ’> , ’>) −> ’>

18 ;

19

20 stream x : uint dc from ” sample . txt ” ;

21 stream r : uint dc to ” r e s u l t . txt ” ;

6It is also possible to give a formulation of convolution actor using a single actor

Chapter 5. Examples 75

Figure 5.4: RTL view of d1l actor

76 5.5. 3x3 Convolution

2:r

1:x

3:d1p

 w1:uint dc

5:maddn[[1,2,1],2]

 w3:uint dc

4:d1p

 w2:uint dc

 w4:uint dc

 w5:uint dc

 w6:uint dc

Figure 5.5: Dataflow graph of 1x3 Convolution example

22

23 net xz = d1p x ;

24 net xzz = d1p xz ;

25 net r = maddn [k , norm] (xzz , xz , x) ;

Lines 1-2 define two constants : k and norm. Here k is the kernel array and norm is the

normalization factor, given here as a right shifting factor.

Line 4 introduces a type abbreviation.

Lines 6-9 give the excerpt of d1p actor, it has been already described and commented in

section 5.2.

The maddn actor defined in line 11-18 performs the actual convolution operation. It calcu-

lates the value of a pixel by multiplying a 1x3 neighborhood of the current pixel by the kernel

and divide the resulting value by the normalize factor (here right shift operator is performed

instead of division).

Lines 23-25 define the dataflow network describing how the convolution operation is per-

formed on each line of the input stream. For this, two data streams, xz and xzz are constructed

using the d1p actor. Finally, the resulting three streams (x, xz, xzz), constituting the 1x3 neigh-

borhood of each input pixel, are combined by the maddn actor as shown in dataflow graph in

Fig. 5.5.

The generated VHDL design when compiled for an FPGA7, uses 418 LEs, none of the

other resources (memory bit, DSP block etc.) are used. The design operates at the maximum

frequency of 143 MHz. The RTL view of maddn actor is shown in Fig. 5.6. It consists of state

machine, multiplexers, operators and registers to perform the convolution operation. The RTL

view of the 1x3 convolution network file is shown in Fig. 5.7.

5.5 3x3 Convolution

This example will demonstrate the implementation of a 3x3 convolution operation operating

on images in CAPH. Here the size of the kernel array is 3x3. The mathematical formulation of

7using Quartus toolset for Stratix EP1S60 FPGA

Chapter 5. Examples 77

Figure 5.6: RTL view of maddn actor

78 5.5. 3x3 Convolution

Figure 5.7: RTL view of network file for 1x3 Convolution

Chapter 5. Examples 79

2:r

1:x

9:d1p

 w7 (cap=3)

3:d1l

 w1 (cap=3)

11:maddn[[...,4]

 w9 (cap=10)

10:d1p

 w11 (cap=7)

 w8 (cap=3)

 w10 (cap=8)8:d1p

 w14 (cap=5)

7:d1p

 w6 (cap=3)

 w13 (cap=6)6:d1p

 w17 (cap=3)

5:d1p

 w4 (cap=3)

 w16 (cap=4)

4:d1l

 w3 (cap=3)

 w15 (cap=6)

 w5 (cap=3)

 w2 (cap=3)

 w12 (cap=8)

 w18 (cap=3)

Figure 5.8: Dataflow graph of 3x3 Convolution application

this operation is:

conv3x3 :< <

< P11, P12, ..., P1n > < f(P11), f(P12), ..., f(P1n) >

< P21, P22, ..., P2n > −→ < f(P21), f(P22), ..., f(P2n) >

...
...

< Pm1, Pm2, ..., Pmn > < f(Pm1), f(Pm2), ..., f(Pmn) >

> >

Where f(Pi,j) = (k0 ∗ Pi−2,j−2 + k1 ∗ Pi−2,j−1 + k2 ∗ Pi−2,j
+ k3 ∗ Pi−1,j−2 + k4 ∗ Pi−1,j−1 + k5 ∗ Pi−1,j
+ k6 ∗ Pi,j−2 + k7 ∗ Pi,j−1 + k8 ∗ Pi,j) >> n

and P−2,j = P−1,j = Pi,−2 = Pi,−1 = 0

We take the same approach to that in section 5.4 for the 1x3 convolution : a set of delayed

streams is first constructed using one-pixel and one-line delay actors and these streams are com-

bined using a multiply, add and normalize (maddn) actor. The dataflow graph of the application

is shown in Fig. 5.8. The CAPH code for this example is given in listing 5.9.

Listing 5.9: CAPH code for 3x3 convolution example

1 const k = [1 , 2 , 1 , 2 ,4 ,2 , 1 , 2 , 1] ;

2 const norm=4;

3

4 type uint = unsigned<16> ;

5

6 actor d1p ()

80 5.5. 3x3 Convolution

7 in (a : uint dc)

8 out (c : uint dc)

9 . . .

10

11 actor d1l ()

12 in (a : uint dc)

13 out (c : uint dc)

14 . . .

15

16 actor maddn (k : uint array [9] , n : uint)

17 in (x0 : uint dc , x1 : uint dc , x2 : uint dc , x3 : uint dc ,

18 x4 : u int dc , x5 : uint dc , x6 : uint dc , x7 : uint dc , x8 : uint dc)

19 out (s : uint dc)

20 rules (x0, x1, x2, x3, x4, x5, x6, x7, x8) −> s

21 | (’< , ’< , ’< , ’< , ’< , ’< , ’< , ’< , ’<) −> ’<

22 | (’x0, ’x1, ’x2, ’x3, ’x4, ’x5, ’x6, ’x7, ’x8) −>
23 ’(k[0]*x0+k[1]*x1+k[2]*x2+k[3]*x3+k[4]*x4+k[5]*x5+k[6]*x6+k[7]*x7+k[8]*x8)>>n

24 | (’> , ’> , ’> , ’> , ’> , ’> , ’> , ’> , ’>) −> ’>

25 ;

26

27 stream x : u int dc from ” sample . txt ” ;

28 stream r : u int dc to ” r e s u l t . txt ” ;

29

30 net neigh13 x =

31 let z = d1p x in

32 x , z , d1p z

33 ;

34

35 net neigh33 x =

36 let xz = d1l x in

37 let xzz = d1l xz in

38 neigh13 x , neigh13 xz , neigh13 xzz

39 ;

40

41 net ((y11 , y12 , y13) , (y21 , y22 , y23) , (y31 , y32 , y33))= neigh33 x ;

42

43 net r=maddn [k , norm] (y33 , y32 , y31 , y23 , y22 , y21 , y13 , y12 , y11) ;

The first part of the code defines constants and types in lines 1-4. As described earlier,

here the kernel array k consist of nine elements.

The d1p and d1l actors in lines 6-14 have been described in section 5.2 and 5.3 respectively.

Here the maddn actor in lines 16-25 has nine input values instead of three as in 1x3 convo-

lution example.

The main difference is in the network declaration part (lines 30-43), where the nine pixels

belonging to the neighborhood of the current pixel are obtained from the input data stream

and given as input to the maddn actor. This is achieved by declaring two higher-order wiring

functions, neigh13 and neigh33. The neigh13 function encapsulates the stream formulation

process already seen in the 1x3 convolution example : it takes an input stream and generates 3

output streams corresponding to the input stream : the first is same input stream, the second

is this input stream delayed by one pixel and the third is the same input stream delayed by

2 pixels. The neigh33 function does the same thing but delays streams by zero, one and

two lines respectively and apply the neigh13 function to each of the resulting streams. It

Chapter 5. Examples 81

Y Y Y
Y

YY
Y Y

33 32 31

21

Y
112313

23 22

x=

Figure 5.9: Neighborhood of current pixel x

eventually produces nine output streams, Y11,Y12,Y13,Y21,Y22,Y23,Y31,Y32 and Y33 representing

the neighborhood of the input stream x as shown in Fig. 5.9. These nine values are given as

input to maddn actor to calculate the final value.

All the actors are connected to each other through FIFOs to form the dataflow network.

The important thing to note here is the different size of each FIFO. Here the size of each FIFO

is calculated by SystemC profiling. The code generated by the SystemC back end has been run

to calculate the run time occupancy of each FIFO. The resulting values are then used by the

VHDL back end to assign a size to each FIFO. This size assigned is shown in dataflow graph

of application in Fig. 5.8.

The generated VHDL code when compiled for an FPGA8, uses 2464 LEs (4% of total),

8192 bits of memory (<1% of total) and no DSP blocks. The memory bits are used by two d1l

actors. These actors use memory to store one line in array z as described in section 5.3. In this

example, the size of each pixel is 16 bits and each line consists of 256 pixels, so memory used by

one d1l actor is 4096 bits (256×16). On the other hand, all the FIFOs are implemented using

LEs. The reason is, size of all the FIFOs is small (the biggest is with a capacity of 10, wire

w9 in the Fig. 5.8). The design operates at the maximum frequency of 60 MHz. These results

are for 256x256 image and 3x3 kernel array. The RTL diagram of the network file is shown in

Fig. 5.10.

Table 5.1 summarizes all the four examples described in sections 5.2 to 5.5. It gives the

CAPH lines of code (LOC) to write an example, the VHDL LOC generated by the CAPH

compiler and FPGA resources used to execute the generated VHDL code on an FPGA.

Table 5.1: Examples summary

d1p d1l 1x3 convolution 3x3 convolution
CAPH LOC 10 17 27 58
VHDL LOC 76 144 285 660
Max Frequency 250 MHz 140 MHz 143 MHz 60 MHz
Logic Elements 50 140 (<1%) 418 (<1%) 2,464 (4%)
Memory Bits 0 2,048 (<1%) 0 8,192 (<1%)

8using Quartus toolset for Stratix EP1S60 FPGA

82 5.5. 3x3 Convolution

Figure 5.10: RTL view of 3x3 Convolution application

Chapter 5. Examples 83

5.6 Functions

There are two types of functions in CAPH : global functions and external functions.

5.6.1 Global Functions

Global functions are typically used to simplify the expression of a program. They will be

directly translated to VHDL or SystemC functions by the corresponding back ends.

Example 1

In this example, the input value is scaled by a factor k and the result is written to the

output. The CAPH implementation for this example using global function is given in listing

5.10.

Listing 5.10: Scale example using function

1 function mult (x , y)= x∗y : signed<8> −> signed<8> ;

2

3 actor s c a l e (k : signed<8>)

4 in (a : signed<8>)

5 out (c : signed<8>)

6 rules a −> c

7 | p −> (mult(p,k))

8 ;

Here instead of directly multiplying input p with parameter k, the multiplication is per-

formed by calling the function mult. This function is declared in the first line of code.

The code generated by the SystemC or VHDL back end for global functions is generated in

a separate file. For this example, the VHDL back end generates a file main globals.vhd which

contains the code given in listing 5.11.

Listing 5.11: VHDL code generated for mult function

1 package main g loba l s is

2 function mult (x : std logic vector ; y : std logic vector)

3 return std logic vector ;

4 end main g loba l s ;

5

6 package body main g loba l s is

7 function mult (x : std logic vector ; y : std logic vector)

8 return std logic vector is

9 begin

10 return mul (x , y) ;

11 end mult ;

12 end main g loba l s ;

84 5.6. Functions

Example 2

This example implements a median filter in CAPH. The code for this example in CAPH is

given in listing 5.12.

Listing 5.12: Median filter using functions

1 type uint = unsigned<8> ;

2

3 function min fn (x , y) = if x < y then x else y ;

4 function max fn (x , y) = if x > y then x else y ;

5 function med fn (x , y , z) = min fn (max fn (x , y) , min fn (max fn (y , z) , max fn (x , z))) ;

6

7 actor median ()

8 in (a : uint dc)

9 out (c : uint dc)

10 var s : {S0 , S1 , S2 , S3} = S0

11 var z : uint

12 var zz : uint

13 rules (s, a, z, zz) −> (s, c, z, zz)

14 | (S0, ’<, ,) −> (S1, ’<, 0, 0)

15 | (S1, ’>, ,) −> (S0, ’>, ,)

16 | (S1, ’p, z,) −> (S2, ’p, p, z)

17 | (S2, ’p, z,) −> (S3, ’min fn(z,p), p, z)

18 | (S3, ’p, z, zz) −> (S3, ’med fn(zz,z,p), p, z)

19 | (S3, ’>, ,) −> (S1, ’>, ,)

20 ;

21

22 stream x : uint dc from ” sample . txt ” ;

23 stream r : uint dc to ” r e s u l t . txt ” ;

24

25 net r = median x ;

This example uses three functions min fn,max fn and med fn. In fact, the med fn in turn

uses the other two functions to calculate the final result. The VHDL backend generates the

code for these functions in median globals.vhd which contains the code given in listing 5.13.

Listing 5.13: VHDL code generated for functions

1 package median g loba l s is

2 function med fn (x : std logic vector ; y : std logic vector ;

3 z : std logic vector)

4 return std logic vector ;

5 function max fn (x : std logic vector ; y : std logic vector)

6 return std logic vector ;

7 function min fn (x : std logic vector ; y : std logic vector)

8 return std logic vector ;

9 end median g loba l s ;

10

11 package body median g loba l s is

12 function med fn (x : std logic vector ; y : std logic vector ;

13 z : std logic vector)

14 return std logic vector is

15 begin

16 return min fn (max fn (x , y) , min fn (max fn (y , z) , max fn (x , z))) ;

17 end med fn ;

18 function max fn (x : std logic vector ; y : std logic vector)

19 return std logic vector is

Chapter 5. Examples 85

20 begin

21 return cond (x > y , x , y) ;

22 end max fn ;

23 function min fn (x : std logic vector ; y : std logic vector)

24 return std logic vector is

25 begin

26 return cond (x < y , x , y) ;

27 end min fn ;

28 end median g loba l s ;

5.6.2 External Functions

CAPH also provides a way to call functions written in VHDL or SystemC. These functions

must be provided in a file extfns.vhdl (resp. extfns.cpp). The example will describe it in

CAPH.Example

Here the same scale example described in section 5.6.1, will be implemented through ex-

ternal function. The CAPH code for this implementation is given in listing 5.14.

Listing 5.14: Scale example using external function

1 function mult = extern ” mult c ” , ” mult vhdl ” , ”mult ml” :

2 signed<8> ∗ signed<8> −> signed<8> ;

3

4 actor s c a l e (k : signed<8>)

5 in (a : signed<8>)

6 out (c : signed<8>)

7 rules a −> c

8 | p −> (mult(p,k))

9 ;

The mult c, mult vhdl and mult ml in the above code mean the implementation of mult

function in SystemC, VHDL and Ocaml respectively. The programmer can also use the same

name for all three implementations. It is also programmer’s responsibility to ensure the type

compatibility of the implemented function with the type provided in function declaration. The

requirement for the external function to inter-operate with the code generated by the backend

or the simulator are detailed in the CAPH language reference manual [3].

86 5.6. Functions

Chapter 6
Applications

87

88

Chapter 6. Applications 89

This chapter aims at demonstrating the effectiveness of CAPH in a realistic context. For this,

we describe the implementation of three applications : motion detection, connected component

labeling and JPEG encoding. For each application we first describe the objectives and principles

of the algorithms used, then how they are formalized in CAPH and finally the results obtained

by the derived FPGA implementation. For the last application we also include a comparison of

the obtained results with a handcrafted VHDL solution and another dataflow language (CAL).

The execution of code on a FPGA platform is not as simple as just compile and execute. An

important issue is the interaction with I/O devices. The first section of this chapter there

gives information about how the VHDL code generated by CAPH is interfaced to physical I/O

devices on a typical FPGA platform.

6.1 Compiling CAPH Programs on FPGA

The platform used in this thesis to validate experimental results, is a smart camera SeeMOS,

developed at LASMEA since 2004[84]. The primary objective of the SeeMos Project is to de-

velop a research platform dedicated to active vision and in particular to the early vision process.

The SeeMOS camera is an embedded system composed of a modular hardware architecture. It

Figure 6.1: SeeMOS smart camera

(figs. 6.1 and 6.2) consists of :

− CMOS imager ;

− Inertial device ;

− FPGA ;

− 5 external SRAM memory blocks ;

− DSP co-processing device ;

− Interface for firewire communication.

90 6.1. Compiling CAPH Programs on FPGA

Figure 6.2: SeeMOS camera, developed at LASMEA

The CMOS imager is a LUPA-4000 model by Cypress Semiconductor [85]. It is a monochrome

image sensor with 4 Mpixels resolution (2048 x 2048). It can acquire up to 66 Mpixels per sec-

ond, each pixel coded with 10 bits. The acquisition is done in the “global shutter” mode, to

avoid the problems of “rolling shutter” mode in certain CMOS imagers [86]. The acquisition

frequency allows a frame rate of more than 200 frames per second in VGA mode (640 x 480),

in good lighting conditions.

The CMOS imager is selected due to its ability to randomly address pixels within an image.

This feature is particularly useful in motion detection applications where only the part of image

containing object is required. The random addressing makes it possible to combine different

parts of an image by addressing only a small part of a photosensitive sensor, even for high

resolution at high acquisition speed. The design of the SeeMOS camera fully exploits random

addressing, for example a speed of 1000 fps can be obtained for 140 x 140 resolution images.

The inertial device consists of three accelerometers aligned at the X, Y and Z axes of

a sensor and three gyroscopes. The inertial data estimates the 3D movement of the camera

(ego-motion) and also its orientation and position.

All parts of the platform are connected through the FPGA (fig. 6.3) which is an Altera

Stratix model EP1S60F1020C7 and acts as the central part of the system. It is responsible for

connection, control and synchronization of sensor modules (imager + interial device), external

RAMs, the communication card (firewire interface) and the co-processor (DSP card). The

characteristics of the FPGA used are detailed in table 6.1.

The FPGA card (fig. 6.3) is also connected to 5 blocks of static RAM. Each block has a

capacity of 2 MB and has private data and address buses. So, different blocks can be accessed

concurrently. This is useful for exploiting parallelism offered by the FPGA device.

The interface between the camera and host system is accomplished by firewire module

(IEEE 1394). It offers a bandwidth of 20 Mbytes per second from the camera to the external

environment (host system), and 10 Mbytes in the other direction. These rates are achievable

i.e. these rates can be reached when transferring data between camera and host system.

One important feature of the SeeMOS hardware platform is its modularity as the different

hardware parts are on different card (fig. 6.4). This facilitates upgrading the platform, as cards

can be easily replaced. One part of the platform can be changed or updated without affecting

the other parts and the overall connectivity. Thanks to this property, the platform has evolved

Chapter 6. Applications 91

Figure 6.3: Hardware architecture of the SeeMOS platform

Model Altera Stratix EP1S60F1020C7

LEs (Logic Elements) 57.120
M512 RAM blocks (32 x 18 bits) 574
M4K RAM blocks (128 x 36 bits) 292
M-RAM blocks (4K x 144 bits) 6

Total RAM bits 5.215.104
DSP blocks 18

Embedded multipliers (9 x 9-bit) 144
PLLs (Phase-Locked Loops) 12

Package 1.020-Pin FineLine BGA
User I/O pins 773
Pitch (mm) 1,00
Area (mm2) 1.089

Length x width (mm x mm) 33 x 33
Speed grade -7

Table 6.1: Characteristics of the FPGA device used in SeeMOS smart camera

constantly, as shown in 6.1 and 6.2. Future proposed changes on the platform are, integration

of a dedicated DSP co-processor (instead of DSK Texas) and replacement of the FPGA with a

new generation device (Stratix III or Stratix IV).

The above characteristics make the SeeMOS smart camera a good research platform to

capture and process images. On the other hand, the number of different hardware elements

and their heterogeneity raises problems for the utilization of these resources. The programming

of such a platform requires expertise at the hardware level and also knowledge of different

programming language and development environments. As a result, the implementation of an

application on the SeeMOS platfrom can be a challenging task. One of the motivation of this

thesis is to make this easier by the use of the CAPH language.

92 6.1. Compiling CAPH Programs on FPGA

Communication
Board (Firewire)

Sensing boards
• CMOS Imager,
• Inertial devices

FPGA
board

Figure 6.4: Different cards forming the heterogeneous SeeMOS platform

FPGA

Image
Sensor

Image
Capture

Insert
Control
Tokens

CAPH
Design

Host
Communication

Remove
Control
Tokens

C
om

m
u
n
ic

at
io

n
 B

oa
rd

Figure 6.5: FPGA I/O

To test our applications, the design generated by CAPH is inserted into a “template archi-

tecture” developed in VHDL. This template takes care of the drivers to control the imager and

other sensors, and also the communication with host computer. In addition to these two IPs,

two other IPs are responsbile for insertion (resp. removal) of control tokens before (resp. after)

the CAPH design as shown in fig. 6.5. The detail of the token insertion process, for an input

stream of 8×8 image is shown in fig. 6.6.

Input

add_x

add_y

Output

Enable pixel
 Signal

Output Valid
 Signal

0 1 2 3 6 74 5 0 1 2 3 6 74 50 1 2 3 6 74 5.... 00 0 0 0 0 0 0 0 0

0 0 0 0 5 5 5 5 77 70 0 5 5 5 5 7 7 7 7 70 00 0 0 0 0 0 0 0 0 0

< < 9 > <5 > <11 5 17 21 13 24 137 19 1 14 9 12 13 5 18 220 010 6 23 16 20 > >

........

....

Clock

........

........

0 0

10 6 9 11 20 5 5 17 21 13 0 24 1323 16 7 19 1 14 9 12 13 5 18 220 0 0 0 0 0 0 0 0

Figure 6.6: Structured stream generation for 8x8 image

The token removal process is the same as described in section 4.1.3. It sends pixels to

the host computer for display, the user being responsible for adjusting the width and height

parameters in the C++ application to display the corresponding image on the screen.

Chapter 6. Applications 93

The complete design comprising of the VHDL code produced by the CAPH program and

supporing IPs is compiled and downloaded to the FPGA using the Altera Quartus toolset1.

1The code generated by CAPH is generic and does not include any specific parameters for any particular type
of FPGA. It can be compiled by any tool. In fact, the last experiment in this chapter has also been compiled
by the Xilinx ISE design tool.

94 6.2. Motion Detection Application

6.2 Motion Detection Application

6.2.1 Objective

The objective of this application is to detect the presence of a moving object in a scene. A

moving object is detected by spatio-temporal changes in the grey-level representation of succes-

sive frames. The algorithm estimates temporal variations by calculating the grey-level difference

between two consecutive frames. As a result, a rectangular window is drawn surrounding the

detected object in motion in the scene.

6.2.2 Principle

I
1

I
2

I3
...
..

......Asub

Thr

VProjHProj

Thr Thr

PeakPeakArea Area

Frame

Frame

S1f

I
2

Input

Output

Figure 6.7: Different steps of motion detection application

The different steps of the algorithm, as illustrated in figure 6.7, are

− Computing the image difference between two consecutive frames by calculating the pixel

by pixel difference. This is implemented in CAPH with the asub actor.

− Thresholding this difference to remove the noise and to obtain a binary image. This is

implemented in CAPH with the thr actor.

Chapter 6. Applications 95

− Computing the horizontal projection on this binary image. This projection is the sum

of values of all columns, calculated independently for each line. This is implemented in

CAPH with the hproj actor.

− Thresholding this projection to extract horizontal band(s) where moving object is likely

to be found. This is implemented in CAPH with the thr actor.

− Computing the vertical projection (column-wise sum) on the binary image. This projec-

tion is the sum of values of all lines, calculated independently for each column. This is

implemented in CAPH with the vproj actor.

− Thresholding this projection to extract vertical band(s) where a moving object is likely

to be found. This is implemented in CAPH with the thr actor.

− Computing the peaks of the thresholded horizontal band(s). This is implemented in

CAPH with the peak actor.

− Computing the whole area containing the thresholded horizontal band(s). This is imple-

mented in CAPH with the area actor.

− Computing the peaks of the thresholded vertical band(s). This is implemented in CAPH

with the peak actor.

− Computing the whole area containing the thresholded vertical band(s). This is imple-

mented in CAPH with the area actor.

− Drawing the horizontal lines of a rectangular window on the next frame of the input

image. This is implemented in CAPH with the frame actor. The next frame is obtained

by the s1f actor.

− Finally, drawing vertical lines on the above image to complete the rectangular window

surrounding the object in movement. This is implemented in CAPH with the frame actor.

6.2.3 Implementation

The CAPH implementation of this algorithm is given in listing 6.1. It consists of eight

actors.

Listing 6.1: CAPH implementation of motion detection application

1 function abs x = if x < 0 then 0−x else x ;

2 −−−−−−−−−−−−−−−−−−−−−−
3 −− ACTORS

4 −−−−−−−−−−−−−−−−−−−−−−
5 actor asub ()

6 . . .

7 actor thr (k : unsigned<10>)

8 . . .

9 actor hproj ()

10 . . .

11 actor vpro j ()

12 . . .

13 actor area ()

14 . . .

15 actor peak ()

96 6.2. Motion Detection Application

16 . . .

17 actor s 1 f ()

18 . . .

19 actor frame ()

20 . . .

21 −−−−−−−−−−−−−−−−−−−−−−−
22 −− IOs

23 −−−−−−−−−−−−−−−−−−−−−−−−
24 stream i 1 : unsigned<8> dc from ”camera : 0 ” ;

25 . . .

26 −−−−−−−−−−−−−−−−−−−−−−−−−−
27 −− Network d e c l a r a t i o n s

28 −−−−−−−−−−−−−−−−−−−−−−−−−−
29 net d i f f = asub (i1 , i 2) ;

30 . . .

31 net o = r ;

− The asub actor computes the absolute value of the difference between two frames. Func-

tionally speaking :

asub : f1 f2 ... fn, f0 f1 f2 ... fn−1 −→ f1 − f0 f2 − f1 ... fn − fn−1

where fi is a frame

and f =<< p11 p12 ... p1n >< p21 p22 ... p2n > ... < pm1 pm2 ... pmn >>

The CAPH description of the actor is given in listing 6.2. The first input is the image

coming from the camera and second is the image after a delay of one frame coming from

memory. For the first image, it consists of zeros. In case of control tokens at inputs, the

same token is written on output, for data tokens, it calculates the absolute of difference

between pixels and writes result at output.

Listing 6.2: Absolute difference actor

1 actor asub ()

2 in (a : unsigned<8> dc , b : unsigned<8> dc)

3 out (c : unsigned<10> dc)

4 rules (a,b) −> c

5 | (’< , ’<) −> ’<

6 | (’> , ’>) −> ’>

7 | (’p1,’p2) −> ’abs(p1-p2)

8 ;

− The thr actor writes 0 or 1 at output depending on whether the input value is greater

than the threshold parameter k or not.

thr(k) :< p1 p2 ... pn >−→< f(p1) f(p2) ... f(pn) >

where f(pi) =

1 if pi>k

0 otherwise

The CAPH description of this actor is given in listing 6.3. If input is control token then

same token is written on output, if input is data token then 1 is produced at output if

input is greater than k otherwise 0.

Chapter 6. Applications 97

Listing 6.3: Threshold Actor

1 actor thr (k : unsigned<10>)

2 in (a : unsigned<10> dc)

3 out (c : unsigned<1> dc)

4 rules a −> c

5 | ’< −> ’<

6 | ’> −> ’>

7 | ’p −> if p > k then ’1 else ’0

8 ;

− The hproj actor computes the horizontal projection of an image. This is done by adding

all the values in a line. Functionally speaking :

hproj :< <

< p11 p12 ... p1n > p11 + p12 + ...+ p1n

< p21 p22 ... p2n > −→ p21 + p22 + ...+ p2n

...
...

< pm1 pm2 ... pmn > pm1 + pm2 + ...+ pmn

> >

The CAPH description of this actor is given in listing 6.4. A local variable s is used

to add pixels of a line. The first two rules correspond to the start and end of a frame

respectively. In the third rule, the variable s is initialized from zero at the start of each

line (line 9). The fifth rule (line 11) adds the value of each pixel to the existing value of

s. In the fourth rule, the value stored in s is sent to the output at the end of a line (line

10).

Listing 6.4: Horizontal projection actor

1 actor hproj ()

2 in (a : unsigned<1> dc)

3 out (c : unsigned<10> dc)

4 var s : unsigned<10>

5 var s t : {S0 , S1 , S2} = S0

6 rules (st, a, s) −> (c, s, st)

7 | (S0, ’<,) −> (’<, , S1)

8 | (S1, ’>,) −> (’>, , S0)

9 | (S1, ’<,) −> (, 0, S2)

10 | (S2, ’>, s) −> (’s, , S1)

11 | (S2, ’p, s) −> (, s+p, S2)

12 ;

− The vproj actor computes the vertical projection of an image. This is done by adding all

98 6.2. Motion Detection Application

pixels of the same column. Functionally speaking :

vproj :< <

< p11 p12 ... p1n > p11 + p21 + ...+ pm1

< p21 p22 ... p2n > −→ p12 + p22 + ...+ pm2

...
...

< pm1 pm2 ... pmn > p1n + p2n + ...+ pmn

> >

The CAPH description of this actor is given in listing 6.5. To find the column-wise sum,

each pixel value in a column is to be added until end of the image. This is implemented

by using an array z. Each element of the array correspond to a column in the image. The

first rule initializes the array to zero at the start of each frame (line 9). In the fourth rule

(line 12), each pixel is added to the previous stored value at the corresponding index of

the array and the result is stored at the same index of the array. At the end of a frame,

the last rule (lines 14-16) sends the values stored in the array to the output and starts

processing the next frame by moving to the first rule.

Listing 6.5: Vertical projection actor

1 actor vpro j ()

2 in (a : unsigned<1> dc)

3 out (c : unsigned<10> dc)

4 var s : {S0 , S1 , S2 , S3}=S0

5 var z : unsigned<10> array [5 1 2] = [0 : 512]

6 var i : unsigned<10>

7 var w : unsigned<10>

8 rules (s,a,z, i, w) −> (s, c, z, i, w)

9 | (S0, ’<, z, ,) −> (S1, , z[i in 0..511 <- 0] , ,)

10 | (S1, ’>, z, i,) −> (S3,’<, , 0, i)

11 | (S1, ’<, , ,) −> (S2, , , 0,)

12 | (S2, ’p, z, i,) −> (S2, , z[i<-z[i]+p], i+1,)

13 | (S2, ’>, , ,) −> (S1, , , ,)

14 | (S3, , z, i, w) −> (if i<w then S3 else S0 ,

15 if i<w then ’z[i] else ’> ,

16 , i+1 ,)

17 ;

− The area actor analyses the thresholded horizontal/vertical projection and gives the whole

area where a moving object can be found. Functionally speaking :

area :< p1 p2 ... pn >−→< f(p1) f(p2) ... f(pn) >

where f(pi) =

 1 if k < i < l (k is start of area and l is end)

0 otherwise

The CAPH description of this actor is given in listing 6.6. It consists of two steps. In

the first step, indexes of the boundary of the area are calculated. This is accomplished

in the third and sixth rules (lines 12 and 15) and results are stored in the min and max

variables. In the second step, the output is written according to the boundary indexes.

Chapter 6. Applications 99

This is accomplished in the last rule (lines 17-24), where the value sent to the output is

1 for all indices between min and max and 0 for others.

Listing 6.6: Area computation actor

1 actor area ()

2 in (a : unsigned<1> dc)

3 out (c : unsigned<1> dc)

4 var s : {S0 , S1 , S2 , S3}=S0

5 var min : unsigned<10>

6 var max : unsigned<10>

7 var w : unsigned<10>

8 var i : unsigned<10>

9 rules (s,a, i,min,max, w) −> (s, c, i,min,max, w)

10 | (S0, ’<, , , ,) −> (S1, , 0, 0, 0,)

11 | (S1, ’0, i, , ,) −> (S1, ,i+1, , ,)

12 | (S1, ’1, i, , ,) −> (S2, ,i+1, i, ,)

13 | (S1, ’>, i, , ,) −> (S3,’<, 0, , , i)

14 | (S2, ’0, i, , ,) −> (S2, ,i+1, , ,)

15 | (S2, ’1, i, , ,) −> (S2, ,i+1, , i,)

16 | (S2, ’>, i, , ,) −> (S3,’<, 0, , , i)

17 | (S3, ,i,min,max,w) −>
18 (if i<w then S3 else S0 ,

19 if i<w then

20 if(i>min && i<max)

21 then ’1

22 else ’0

23 else ’> ,

24 i+1 , , ,) ;

− The peak actor analyses the thresholded horizontal/vertical projection and gives only

boundaries of the area where moving object can be found. Functionally speaking :

peak :< p1 p2 ... pn >−→< f(p1) f(p2) ... f(pn) >

where f(pi) =

 1 if (k < i < k + 10) or (l − 10 < i < l) (k is start of area and l is end)

0 otherwise

The CAPH description of this actor is given in listing 6.7. The difference from the previous

actor (i.e.area) is in the last rule in which the result is written to the output. Here instead

of sending the 1s for the whole area, 1s are sent only for the boundary of the area. The

boundary width is set here to 10, which can also be changed.

Listing 6.7: Peak computation actor

1 actor peak ()

2 in (a : unsigned<1> dc)

3 out (c : unsigned<1> dc)

4 var s : {S0 , S1 , S2 , S3}=S0

5 var min : unsigned<10>

6 var max : unsigned<10>

7 var w : unsigned<10>

8 var i : unsigned<10>

9 rules (s, a, i, min, max, w) −> (s, c, i, min, max, w)

10 | (S0, ’<, , , ,) −> (S1, , 0, 0, 0,)

11 | (S1, ’0, i, , ,) −> (S1, , i+1, , ,)

12 | (S1, ’1, i, , ,) −> (S2, , i+1, i, ,)

100 6.2. Motion Detection Application

13 | (S1, ’>, i, , ,) −> (S3, ’<, 0, , , i)

14 | (S2, ’0, i, , ,) −> (S2, , i+1, , ,)

15 | (S2, ’1, i, , ,) −> (S2, , i+1, , i,)

16 | (S2, ’>, i, , ,) −> (S3, ’<, 0, , , i)

17 | (S3, ,i, min, max, w) −>
18 (if i<w then S3 else S0 ,

19 if i<w then

20 if ((i>min && i<min+10) | | (i<max && i>max-10))

21 then ’1

22 else ’0

23 else ’> ,

24 i+1 , , ,)

25 ;

− s1f performs a skip frame operation on the first image frame. The purpose of this actor is

to compensate for a FIFO equal to the size of one image frame, which results in reducing

the number of memory bits utilized on FPGA. Functionally speaking :

s1f : f1 f2 ... fn −→ f2 f3 ... fn

where fi is a frame

and f =<< p11 p12 ... p1n >< p21 p22 ... p2n > ... < pm1 pm2 ... pmn >>

The CAPH description of this actor is given in listing 6.8. For the first frame, input is

consumed without writing to the output. The first five rules (lines 6-10) perform this

task. The next five rules (lines 11-15), read the input value and write the same value to

the output which will continue for all the incoming frames.

Listing 6.8: Skip one frame actor

1 actor s 1 f ()

2 in (a : unsigned<8> dc)

3 out (c : unsigned<8> dc)

4 var s : {S0 , S1 , S2 , S3 , S4 , S5} = S0

5 rules (s,a) −> (s,c)

6 | (S0,’<) −> (S1,)

7 | (S1,’>) −> (S3,)

8 | (S1,’<) −> (S2,)

9 | (S2,) −> (S2,)

10 | (S2,’>) −> (S1,)

11 | (S3,’<) −> (S4,’<)

12 | (S4,’>) −> (S3,’>)

13 | (S4,’<) −> (S5,’<)

14 | (S5,’p) −> (S5,’p)

15 | (S5,’>) −> (S4,’>)

16 ;

Chapter 6. Applications 101

− The frame actor draws a window around the detected object. Functionally speaking :

frame :< q1 q2 ... qn >,

< r1 r2 ... rm >,

< <

< p11 p12 ... p1n > < f(q1, r1, p11) f(q2, r1, p12) ... f(qn, r1, p1n) >

< p21 p22 ... p2n > −→ < f(q1, r2, p21) f(q2, r2, p22) ... f(qn, r2, p2n) >

...
...

< pm1 pm2 ... pmn > < f(qn, rm, pm1) f(qn, rm, p2n) ... f(qn, rm, pmn) >

> >

where f(q, r, P) =

1 if q = 1 and r = 1

P otherwise

The CAPH description of this actor is given in listing 6.9. It uses the output produced

by peak and area actors to draw a window on the image. In fact, two frame actors are

used, first to draw the horizontal lines of the window and second to draw the vertical lines

of the window.

The input to the first frame actor are peak of horizontal projection, area of vertical

projection and image obtained by s1f actor. The objective is to draw horizontal lines at

the boundary of the horizontal projection. The area of the vertical projection is used to

restrict the width of lines in the area where the vertical projection is also found.

The input to the second frame actor is peak of vertical projection, area of horizontal

projection and output of the first frame actor. This actor will draw vertical lines at the

boundary of the vertical projection to complete the window. The area of the horizontal

projection is used to restrict the length of lines in the area where the horizontal projection

is also found.

The output of the frame actor is 1 when both first inputs are 1, otherwise the same pixel

read from third input will be sent to the output. In both instances of the frame actor,

the vertical projection (either area or peak) is the first input. This is saved in an array z

during the processing of the first line to be used for later lines (lines 13/14 and 19). On

the other hand, the horizontal projection (either area or peak) is the second input and is

read at the start of each line (lines 12 and 18).

Listing 6.9: Windows drawing actor

1 actor frame ()

2 in (a : unsigned<1> dc , b : unsigned<1> dc , c : unsigned<8> dc)

3 out (d : unsigned<8> dc)

4 var s : {S0 , S1 , S2 , S3 , S4 , S5 , S6}=S0

5 var z : unsigned<1> array [5 1 2] = [0 : 512]

6 var y : unsigned<1>

7 var i : unsigned<10>

8 rules (s, a, b, c, y, z, i) −> (s, d, y, z, i)

9 | (S0, , ,’<, , ,) −> (S1, ’<, , ,)

10 | (S1, , ,’>, , ,) −> (S0, ’>, , ,)

102 6.2. Motion Detection Application

11 | (S1,’<,’<,’<, , ,) −> (S2, ’<, , , 0)

12 | (S2, ,’t, , , ,) −> (S3, , t, ,)

13 | (S3,’1, ,’p, y, z, i) −> (S3 , if y=1 then ’1 else ’p , , z[i<-1] , i+1)

14 | (S3,’0, ,’p, , z, i) −> (S3, ’p, , z[i<-0], i+1)

15 | (S3,’>,’>, , , ,) −> (S4, ’>, , ,)

16 | (S4, ,’>,’>, , ,) −> (S0, ’>, , ,)

17 | (S4, , ,’<, , ,) −> (S5, ’<, , , 0)

18 | (S5, ,’t, , , ,) −> (S6, , t, ,)

19 | (S6, , ,’p, y, z, i) −> (S6 , if(z[i]=1 && y=1)then ’1 else ’p , , , i+1)

20 | (S6, , ,’>, , ,) −> (S4, ’>, , ,)

21 ;

The I/O streams are declared in listing 6.28. The first input is the image obtained from the

camera and second is the image obtained from memory after a delay of one frame in the input

image. This delay is obtained by generating zeros for the first image and at the same time

saving the image in the SDRAM. For the next image frames, the image coming from the camera

is saved in the memory and the existing image is sent to the CAPH program.

Listing 6.10: I/O Streams

1 stream i 1 : unsigned<8> dc from ”camera : 0 ” ;

2 stream i 2 : unsigned<8> dc from ”mem: 0 ” ;

3 stream o : unsigned<8> dc to ” d i sp l ay : 0 ” ;

The network declaration is defined in listing 6.11 which will generate the dataflow graph

shown in figure 6.8.

Listing 6.11: Network declaration

1 net d i f f = asub (i1 , i 2) ;

2 net thr d = thr [8 0] d i f f ;

3 net hp = hproj thr d ;

4 net hp t = thr [5 0] hp ;

5 net ah = area hp t ;

6 net pa = peak hp t ;

7 net s f = s 1 f i 1 ;

8 net vp = vpro j thr d ;

9 net vp t = thr [5 0] vp ;

10 net av = area vp t ;

11 net pv = peak vp t ;

12 net vf = frame (av , ph , s f) ;

13 net r = frame (pv , ah , v f) ;

14 net o = r ;

The results of the experiment performed on the SeeMOS platfrom are shown in figure 6.9.

Figure 6.9a and 6.9b are the two consecutive frames of the input image. The thresholded

difference of these two images is given in figure 6.9c. Horizontal and vertical projections of the

thresholded image are given in figures 6.9d and 6.9e respectively. The final result is shown in

figure 6.9f where a rectangular window is drawn around the moving object.

6.2.4 Performance Results

The application processes on the fly on video streams of 512 x 512 x 8 bit images at 15 FPS.

The performance results are summarized in table 6.2. The application achieves a maximum

Chapter 6. Applications 103

o:disp

i2:mem

4:asub

 w1

i1:cam

 w2

10:s1f

 w8

5:thr[80]

 w3

6:hproj

 w4

11:vproj

 w9

7:thr[50]

 w5

8:area

 w6

9:peak

 w7

16:frame

 w17 15:frame

 w14

 w13

12:thr[50]

 w10

13:area

 w11

14:peak

 w12

 w15

 w18

 w16

 w19

Figure 6.8: Dataflow graph of motion detection application

clock frequency of 150 MHz. It uses 3550 logic elements (6%), 17 kbits of memory bits (<1% of

total) and 512 kB of external meory. The external memory is used to store one image frame in

order to create a delay of one frame.

Table 6.2: Motion Detection Application Performance Results

Total Used
Max Frequency 150 MHz
Logic Elements 57120 3,550 (6%)
Memory Bits 5,215,104 17 kbits (<1%)
SRAM Blocks 5 1 (20%)
DSP Blocks 144 0 (0%)

104 6.2. Motion Detection Application

(a) First Image (b) Second Image

(c) Thresholded image difference (d) Horizontal Projection

(e) Vertical Projection (f) Final result

Figure 6.9: Motion detection application results

Chapter 6. Applications 105

6.3 Connected Component Labeling

6.3.1 Objective

Connected component labeling (CCL) is used in many image processing applications, es-

pecially in region segmentation algorithms [87]. The task is to assign a unique and different

label to each connected component of an object in an image. This is usually accomplished

in several steps. First thresholding is applied to the image to differentiate objects from the

background. Connected component labeling is then applied to this preprocessed binary im-

age, to assign a unique label to each object. Finally, each object is processed (for example

to assign a different color to each object). Many algorithms have been proposed to implement

this [88, 89, 90, 91, 92, 93, 94, 95, 96]. The next section will describe the basic principle adopted

by all the algorithms, the reason for their difference and finally the approach adopted for CAPH

implementation.

6.3.2 Principle

The classical connected component labeling algorithm [97] requires two passes through the

image. In the first pass, each pixel of the image is assigned a label according to the following

rules :

− If the pixel is a background pixel, it is assigned the label zero.

− If the pixel is an object pixel, 2 neighbors (in case of 4-connectivity as shown in figure 6.10)

are examined.

– If both neighbors are background pixels then a new label is assigned to the current

pixel.

– If both neighbors have the same label, this label is also assigned to the current pixel.

– If both neighbors have different labels then this indicates a merging condition.

..
Figure 6.10: 4-Pixel Connectivity

In case of a merging condition, one of the two labels will continue to be used and all instances

of the other label have to be replaced with the label retained. For example, let us dconsider a

U shaped object as shown in figure 6.11. Because pixels are generally read in raster row-major

order, there is no prior information that pixel p1 and p2 belong to the same object until pixel

p3 is reached. The main difficulty with the merging step is to relabel all the previous pixels

belonging to the object. This requires one more scan through the object. Since an image

may contain many merging cases, the relabeling process is carried out at the end of the image.

A merging table is maintained to keep a record of all the label equivalences introduced by

106 6.3. Connected Component Labeling

the merging cases. In the second pass, the equivalence table is used to relabel all the pixels

in the image. Based on this approach, several different ways of handling equivalences have

been proposed in the literature [97, 98, 99]. They differ in the data structure used to store

the equivalences as well as in the method used to merge objects by these equivalence [100].

This problem becomes more important for resource constraint devices like FPGAs. There are

number of variations of this algorithm proposed for FPGA implementation [101] : two pass

(classical) [97], multiple scan [102], parallel processing [103], contour tracing [104] and single

pass [105].

Figure 6.11: Label merging in U-Shaped Object

Single pass algorithm was developed for streaming data systems. Normally, the objective of

connected component labeling is to extract features from each region, where labeling is used to

separate regions. In these scenarios, there is no need to label the image provided that features

can be correctly extracted for each region. So, these algorithms extract data to calculate

features during the first pass. There is no need to buffer input image frames which results in

low memory requirements. However, single pass algorithms do have some limitations compared

to two pass algorithms. These are good for object counting and features of interest (position,

size, area etc.) but can not be used where a labeled object mask is required. Since our objective

is to assign different colors to objects to uniquely identify them, which means labeling objects

rather than feature extraction, a second pass through the image frame is required.

The merging step is implemented according to [106]. Whenever a merging situation occurs,

two tasks are performed. First, the smaller of the two labels is assigned to the current pixel and

secondly, the bigger label points to the smaller label in the equivalence/merging table. Merging

table is used as a look-up table on the output of the row buffer2. This ensures the assignment of

correct labels to previously stored pixels which have been subsequently merged. The merging

situation is complicated when there are multiple merging cases on the same line. The selection

of the smaller of the two labels solves the problem when the smaller label is on the left, as all

instances of the larger label are changed to the smaller one. But a problem arises when during a

merger the smaller label is on the right. This scenario is called merger chaining. This chaining

should be resolved before the start of the next row. Consider the example in figure 6.12a, where

blue boxes represent merging labels. At the end of the row, the merger table contains incorrect

final labels for 5,4 and 3 as shown in the left table in figure 6.12b. One simple approach can

be to search the whole merger table at the end of each line to resolve this chain as shown in

the right table in figure 6.12b. But this can take significant time when this table is big3. The

other way is to record new mergers for each row. Here only mergers with smaller labels on the

right are recorded. The relevant mergers are pushed onto a stack and then popped off at the

end of line to resolve the mergers. This is accomplished in three steps as shown in figure 6.12c:

2used to save the labels for the previous row
3The worst case for an MxN image can be (M/2)*(N/2)

Chapter 6. Applications 107

4
4
4
4

5
5
5

3
3
3
3
3

2
2
2
2
2
2

1
1
1
1
1
1
1

5 5 5 4 4 4 3 3 3 2 2 2 1

(a) Merger Chain

0

1

2

3

4

5

0

1

2

1

3

4

0

1

2

1

3

4

0

1

2

3

4

5

1

1

1

Merger Table Resolving Merger
 Chain

(b) Merger Table

2->1

3->2

4->3

5->4

Stack

Merger Table

0

1

2

3

4

5

0

1

2

3

4

5

1

1

1

1

(c) Resolution using stack

Figure 6.12: Merger chain and its resolution

1. The larger of the merged pair and the merger target (smaller of the pair) are popped from

the stack.

2. The target is looked up in the merger table to obtain the final target.

3. If the final target is different from that popped of the stack, this target is saved for the

larger of the merger table in the merger table.

The steps of the algorithm implemented as shown in figure 6.13, are :

� Thresholding the input image to remove noise and obtain a binary image. This is imple-

mented in CAPH with the thr actor.

� Assigning different labels to each connected object in this binary image. This is imple-

mented in CAPH with the ccl actor.

� Relabeling the object labels in the equivalence table to reduce the label count as many

temporary labels are used. This is implemented in CAPH with the resLabel actor.

� Resolving the different object labels assigned to one object by reassigning labels from

equivalence table. This is implemented in CAPH with the resLabel actor.

� Assigning different color to each object. This is implemented in a C++ application

displaying final image on the screen.

6.3.3 Implementation

The CAPH code for the application is given in listing 6.12. It consist of three actors.

Listing 6.12: CAPH implementation of CCL application

1 function l b l (p , d , b , l) =

2 if p=0 then 0

3 else if b=0 && d=0 then l

4 else if b=d then b

5 else if d=0 then b

6 else if b=0 then d

7 else if b<d then b

8 else d

9 : unsigned<1> ∗ unsigned<8> ∗ unsigned<8> ∗ unsigned<8> �> unsigned<8> ;

10 ����������������������
11 �� ACTORS

12 ����������������������
13 actor c c l ()

108 6.3. Connected Component Labeling

2

1

2

1
1
1

1 1 111
1
1
1

1
1

2
2

21
1
1

1 1 111
3
3
3

4
4

0
1
1
1
4

0
1
2
3
4

0
1
1
1
2

0
1
2
3
4

Thr

ccl

resolve
 label

reLabel

color

Input

Output

Figure 6.13: Different steps of CCL application

14 . . .

15 actor r e sLabe l ()

16 . . .

17 actor thr (k : unsigned<8>)

18 . . .

19 −−−−−−−−−−−−−−−−−−−−−−−
20 −− IOs

21 −−−−−−−−−−−−−−−−−−−−−−−
22 stream i : unsigned<8> dc from ”camera : 0 ” ;

23 stream o : unsigned<8> dc to ” d i sp l ay ” ;

24 −−−−−−−−−−−−−−−−−−−−−−−
25 −− Network d e c l a r a t i o n s

26 −−−−−−−−−−−−−−−−−−−−−−−
27 net (a , b) = (c c l (thr [4] i)) ;

28 net o = resLabe l (a , b) ;

− The thr actor is used to remove noise and obtain a binary image. Its implementation is

Chapter 6. Applications 109

same as in the previous application in section 6.2.

− The ccl actor implements connected component labeling algorithm on the above binary

image. The code for this actor is given in listing 6.13. It performs object labeling, merging

and merger chaining to label the objects in the image. Depending on the input image

pixel and two neighborhood pixel values, any of these tasks are performed. These are

implemented using guards on transition rules in lines 20-33. Of the two neighborhood

pixels, one is the previous pixel in variable d (d1p described in section 5.2) and other is

the previous line pixel in array variable b (d1l described in section 5.2).

The rule corresponding to merging is given in lines 20-22. It executes when both the

neighborhood pixels are neither zero, nor equal to each other and the previous line pixel

is greater than the previous pixel as given in the guards condition. The action part of

this rule updates the merged labels in the equivalence table et (declared in line 8). Since,

smaller of the labels is used, the entry for bigger label in equivalence table is updated

with smaller label (by assigning the value of d at the index of b[i]). Along with this,

the current pixel is assigned the value of d (i.e. smaller of the two labels).

The rule corresponding to merger chaining is given in lines 23-25. This rule executes

when the previous line pixel is less than the previous pixel in the guards condition. Upon

execution, this rule keeps the mergers in a stack instead of directly updating the merger

table. This stack saves both neighborhood pixel labels. This is implemented in CAPH

by using two arrays st1 and st2 (declared in lines 9 and 10). The array index variable

si keeps track of the number of merger chains occurring during each row. Apart from

recording merger chains, this rule also assigns the smaller label to the current pixel (i.e.

value of the previous line pixel from array b). At the end of each row, the merger chains

are resolved and the merger table is updated accordingly by moving to the ninth rule in

36-37. After completing the merger chain resolution, the stack index si is reinitialized to

zero and control is moved to the 3rd rule to start processing the next line.

All of the other conditions are handled by the rule in lines 26-33 which contain no guard

conditions. The conditions in lines 27-31 decide the label for the current pixel based on

the value of the current pixel and the labels of two the neighborhood pixels. There is

also a condition to assign a new label to the current pixel. The variable l is used for

the label counter. When the current pixel is assigned a new label, the label counter l is

incremented to keep the count updated (in line 32).

It is also important to note that arrays containing the previous line and the equivalence

table are reinitialized at the start of each frame, otherwise they will contain values from

the last line of the previous frame which will result in invalid label assignment for the

objects in the new frame. This is done in the first rule in lines 16-17.

This actor consists of two outputs. The first is the image containing the labeled pixels,

sent to the output after reading the input pixel and executing the corresponding rule.

The second is the equivalence table which is sent at the end of each frame. So, at the end

of a frame, the last rule in line 40 is executed to send the equivalence table to the output

before starting processing the next frame.

Listing 6.13: CCL actor

110 6.3. Connected Component Labeling

1 actor c c l ()

2 in (a : unsigned<1> dc)

3 out (c : unsigned<8> dc , e : unsigned<8> dc)

4 var s : {S0 , S1 , S2 , S3 , S4 , S5 , S6}=S0

5 var d : unsigned<8>

6 var bt : unsigned<8>

7 var b : unsigned<8> array [2 5 6] = [0 : 256]

8 var et : unsigned<8> array [2 0 0] = [i in 0 . . 1 9 9 <− i]

9 var st1 : unsigned<8> array [5 0] = [i in 0 . . 4 9 <− i]

10 var st2 : unsigned<8> array [5 0] = [i in 0 . . 4 9 <− i]

11 var si : unsigned<8>

12 var i : unsigned<8>

13 var l : unsigned<8> = 2

14 r u l e s

15 (s, a, b, d, i, l, et, st1, st2, si) −> (s, c, e, l, et, b, d, i, st1, st2, si)

16 | (S0 , ’< , b , , et , , , , ,) −> (S1,’<, ,2,et[i in 0..199<-i] ,

17 b[i in 0..255<-0] , , , , ,)

18 | (S1 , ’> , , , , , , , ,) −> (S5 , ’> , , , , , , , , ,)

19 | (S1 , ’< , , , , , , , ,) −> (S2 , ’< , , , , , 0 , 0 , , , 1)

20 | (S2,’p, b, d, i, l, et, st1, st2, si)when b[i]!=0 && d!=0 && d !=b [i] && b [i]>d−>
21 (S2 , if p=0 then ’0 else ’d , , l, et[b[i]<-d], b[i<-et[lbl(p, d, b[i], l)]] ,

22 et[lbl(p,d,b[i],l)], i+1, st1, st2, si)

23 | (S2,’p, b, d, i, l, et, st1, st2, si)when b [i] !=0 && d !=0 && d !=b [i] && b [i]<d−>
24 (S2 , if p=0 then ’0 else ’b[i] , , l, et, b[i<-et[lbl(p,d,b[i],l)]] ,

25 et[lbl(p,d,b[i],l)], i+1, st1[si<-d] ,st2[si<-b[i]], si+1)

26 | (S2, ’p, b, d, i, l, et, st1, st2, si) −>
27 (S2 , if p=0 then ’0

28 else if b[i]=0 && d=0 then ’l

29 else if b[i]=d then ’b[i]

30 else if d=0 then ’b[i]

31 else ’d ,

32 , if b[i]=0 && d=0 && p!=0 then l+1 else l ,

33 et, b[i<-et[lbl(p,d,b[i],l)]],et[lbl(p,d,b[i],l)],i+1, st1, st2, si)

34 | (S2 , >, , , , , , , , si) −> (S3 , ’> , , , , , , , , , si-1)

35 | (S3 , , , , , , et, st1, st2, 0) −> (S1 , , , , , , , , , ,)

36 | (S3 , , , , , , et, st1, st2, si) −> (S3 , , , ,

37 et[st1[si]<-et[st2[si]]] , , , , , , si-1)

38 | (S5 , , , , , , , , ,) −> (S6 , , ’< , , , , , 0 , , ,)

39 | (S6 , , , , 200 , , , , ,) −> (S0 , , ’> , , , , , 0 , , ,)

40 | (S6 , , , , i , , et , , ,) −> (S6 , , ’et[i] , , , , , i+1 , , ,)

41 ;

− The resLabel actor given in listing 6.14 is used to resolve equivalence labels. It receives

the equivalence table from the ccl actor and relabels the objects according to this table.

This requires one FIFO (FIFO 8 in figure 6.14) equal to the size of one frame as the

ccl actor sends this table at the end of a frame. Apart from resolving labels, another

task performed by this actor is the relabeling of object labels in the equivalence table.

Since many temporary labels are assigned to an object, this increases the label count. It

is possible that the first object has label 24 and the second object has a label 100. This

creates a problem when assigning different colors to each object. So, before relabeling the

objects of an image, the equivalence table is organized to give labels to each object without

wasting temporary used labels. This is achieved by having two arrays of equivalence labels

4label counter is initialized from 2

Chapter 6. Applications 111

: et and et1 (declared in lines 5 and 6). The first is used to create an updated equivalence

table and the second to point to the old labels to the new ones.

The relabeling is implemented in CAPH by using two rules in lines 13-15. The first one

contains a guard condition that compares the input value v with the previous input value

z. In case these are not equivalent and the et1 array for the current label points to zero,

a new label lb is assigned to the current label. The et array assigns this new label to the

current index and the et1 array will point the old label to the new one (line 14). In case

the guard condition is not true, the rule in line 15 is executed. It reads the value pointed

at the et1 array for the current label and saves it in the current index of the et array.

After organizing the labels in the equivalence table, the input image from the first input

is read and objects are relabeled according to the updated equivalence table. This is done

by reading the input label for the pixel and sending to the output the corresponding label

stored in the et array (line 21).

Both the arrays used to store equivalence tables are reinitialized at the start of each

frame to avoid any confusion with the old values. This is achieved by the initialization

statements in the first rule (line 12).

Listing 6.14: Resolve label actor

1 actor r e sLabe l ()

2 in (a : unsigned<8> dc , b : unsigned<8>dc)

3 out (c : unsigned<8> dc)

4 var s : {S0 , S1 , S2 , S3 , S4} = S0

5 var et : unsigned<8> array [2 0 0] = [i in 0 . . 1 9 9 <− i]

6 var et1 : unsigned<8> array [2 0 0] = [0 : 200]

7 var z : unsigned<8>

8 var lb : unsigned<8> = 2

9 var i : unsigned<8>

10 r u l e s

11 (s, a, b, et, et1, i, z, lb) −> (s, c, et, et1, i, z, lb)

12 | (S0 , , ’< ,et ,et1 , , ,)−>(S1, ,et[i in 0..199<-i],et1[i in 0..199<-0],0,0 ,)

13 | (S1, , ’v, et, et1, i, z, lb) when v>z && et1[v]=0 && v>1 −>
14 (S1, ,et[i<-lb],et1[v<-lb], i+1, v, lb+1)

15 | (S1, , ’v, et,et1, i, z,) −> (S1, ,et[i<-et1[v]], , i+1, v ,)

16 | (S1 , , ’> , , , , ,) −> (S2 , , , , 0 , ,)

17 | (S2 , ’< , , , , , ,) −> (S3 , ’< , , , , ,)

18 | (S3 , ’< , , , , , ,) −> (S4 , ’< , , , , ,)

19 | (S3 , ’> , , , , , ,) −> (S0 , ’> , , , , ,)

20 | (S4 , ’> , , , , , ,) −> (S3 , ’> , , , , ,)

21 | (S4 , ’v1 , , et , , , ,) −> (S4 , ’et[v1] , , , , ,)

22 ;

The dataflow graph of the application is shown in figure 6.14. The results of the experiment

are shown in figure 6.15. Figure 6.15a is the input image and figure 6.15b is the image obtained

after thresholding the input image. The final result with each object assigned a different color

is shown in figure 6.15c. The RTL view of the CCL application is given in figure 6.16. The

assignment of logic elements (LEs) and memory blocks is shown in figure 6.17, where light blue

color represents logic elements unused and dark blue color is for logic elements used. Similarly,

two dark green boxes represent the MRAM blocks used.

112 6.3. Connected Component Labeling

10:fif

2:o

 w15:unsigned<8> dc

9:fif

5:resLabel

 w13:unsigned<8> dc

8:fif

 w11:unsigned<8> dc

7:fif

3:thr[0]

 w9:unsigned<8> dc

6:fif

4:ccl

 w7:unsigned<1> dc

1:i

 w8:unsigned<8> dc

 w12:unsigned<8> dc w10:unsigned<8> dc

 w6:unsigned<1> dc

 w14:unsigned<8> dc

Figure 6.14: Dataflow Graph of CCL application

6.3.4 Experimental Results

The application processes on the fly video streams of 256 x 256 x 8 bit images at 20 FPS.

The performance results are summarized in table 6.3. The application achieves a maximum

clock frequency of 30 MHz. It uses 16559 logic elements (29%), 665360 memory bits (<13% of

total). The memory bit consumption is large in this experiment because of the size of one FIFO

which is equal to one image frame.

Table 6.3: CCL Application Performance Results

Total Used
Max Frequency 30 MHz
Logic Elements 57120 16,559 (29%)
Memory Bits 5,215,104 665360 (<13%)
DSP Blocks 144 0 (0%)

Chapter 6. Applications 113

(a) Input Image (b) Thresholded Image

(c) Final result

Figure 6.15: CCL application results

114 6.3. Connected Component Labeling

Figure 6.16: RTL view of CCL application

Figure 6.17: FPGA floorplan of CCL application

Chapter 6. Applications 115

6.4 JPEG Encoder

6.4.1 Objective

JPEG also known as ISO/IEC IS 10918-1 or ITU-T Recommendation T.81, is widely used

standard for image compression. Recommendation T.81 [107] is a document published by the

international standards bodies ITU-T (International Telecommunication Union) and ISO/IEC

(International Organization for Standardization / International Electrotechnical Commission).

According to this document, JPEG consists of several blocks such as Motion Estimation and

Compensation (ME/MC), Discrete Cosine Transformation (DCT), Quantization, ZigZag scan,

Run Length Encoding (RLE) and Variable Length Coding (VLC). The next section will describe

the parts of JPEG used for implementation i.e. DCT, Quantization, Zigzag scan and RLE.

6.4.2 Principle

6.4.2.1 Discrete Cosine Transformation (DCT)

The discrete cosine transform (DCT) [108] has been widely applied to many image and

video compression standards such as JPEG, MPEG and H.264 in order to reduce the spatial

redundancies in the correlation of signals. It transforms a signal or image from the spatial

domain to the frequency domain. It has the property that, for a typical image, most of the

visually significant information about the image is concentrated in just a few coefficients of the

DCT. DCT is block based transformation. The size of block is not fixed but all the standards,

including JPEG and MPEG/H.264 use an 8x8 block size.

Mathematically, the 1D DCT of a sequence of length N is described as

(X)u =
C(u)√

2N

N−1∑
i=0

(X)i cos
(2i+ 1)uπ

2N
, (6.1)

where 0 ≤ u < N − 1 and

C(u) =

 1√
2

u = 0

1 u > 0

Here (X)i is input and (X)u is transformed output. We are concerned with the implementation

of DCT for images. Since images are two-dimensional, this necessitates the extension of DCT

to a two-dimensional space [109, 110]. The 2-D DCT is a direct extension of the 1-D and is

given by

(X)u,v =
C(u)√

2N

C(v)√
2N

N−1∑
i=0

N−1∑
j=0

(X)i,j cos
(2i+ 1)uπ

2N
cos

(2j + 1)vπ

2N
, (6.2)

where 0 ≤ u, v < N − 1 and

C(u) =

 1√
2

u = 0

1 u > 0

and

C(v) =

 1√
2

v = 0

1 v > 0

(X)i,j is the pixel at coordinate (i, j) in the image. This equation calculates one value of a

116 6.4. JPEG Encoder

transformed image from one pixel of the original image. N is the size of block to which DCT

is applied. By replacing N with 8 as explained earlier, i and j range from 0 to 7. Therefore the

above equation becomes

(X)u,v =
1

4
C(u)C(v)

7∑
i=0

7∑
j=0

(X)i,j cos
(2i+ 1)uπ

16
cos

(2j + 1)vπ

16
, (6.3)

where 0 ≤ u, v < 7 and

C(u/v) =

 1√
2

u/v = 0

1 u/v > 0

Direct evaluation of equation 6.4 for an 8x8 DCT (where N = 8) requires 64 ∗ 64 = 4096

multiply (and the same number of addition) operations. Rearranging the 2D DCT equation

6.3 shows that the 2D DCT can be constructed from two 1D transforms as shown in equation

6.4 [111, 112, 113]. This is also referred as the row/column approach in the literature [114].

The basic idea is that the 2D DCT is calculated by evaluating a 1D DCT for each column of

the input matrix (the inner transform), and then evaluating a 1D DCT for each row of the

result of the first set of transforms (the outer transform). Each 1D transform takes 64 multiply

(and the same number of addition) operations, giving a total of 64 ∗ 8 ∗ 2 = 1024 multiply

(and the same number of addition) operations for an 8 x 8 DCT. This implementation makes

the 2D DCT fast compared to a single-pass 2D DCT which takes 4096 multiply (and the same

number of addition) operations.

(X)u,v =
1

4
C(v)

7∑
i=0

C(u)

7∑
j=0

(X)i,j cos
(2i+ 1)uπ

16

 cos
(2j + 1)vπ

16
(6.4)

This conversion of a single-pass 2D DCT to two 1D DCTs is not sufficient to reduce the

Figure 6.18: Loeffler Algorithm to compute DCT

number of computations. Instead many researchers have proposed a number of algorithms for

more efficient computation of this transformation such as Lee [115], Chen [116] , Loeffler [117]

and van Eijdhoven [118]. The main objective of these algorithms is to reduce the number of

multiplications and additions. We have selected Loeffler’s algorithm [117], which is one of the

most computationally efficient 1D DCT algorithm as compared to other approaches. It consists

of 11 multiplications and 29 additions. This algorithm to calculate a 1D DCT of length 8

is illustrated in figure 6.18. Figures 6.19 and 6.20 explain symbols used in the algorithm

Chapter 6. Applications 117

I0

1I

O
0

1O

O
0
= +I0 1I

1O = _
1II0

Figure 6.19: The Butterfly Block

I
0

I
1

O
0

O
1

O
0

O
1

I
0

I
0

I
1

I
1

=

=

_

+

k cos[nπ/16] k sin[nπ/16]
_ k sin[nπ/16] k cos[nπ/16]

k Cn

Figure 6.20: The Rotator Block

in figure 6.18. Figure 6.19 shows a butterfly block and the corresponding equations. The

rectangular block represents a rotation, which operates on a pair of inputs [I0, I1] and produces

a pair of outputs [O0, O1], as shown in figure 6.20. The constant Cn is equal to cos
[
nπ√
16

]
or

sin
[
nπ√
16

]
. The rotator block can be computed using only 3 multiplications and 3 additions

instead of 4 multiplications and 2 additions using the equivalence shown in equation 6.5.

O0 = aI0 + bI1 = (b− a) I1 + a (I0 + I1) , (6.5)

O1 = −bI0 + aI1 = − (b+ a) I1 + a (I0 + I1)

where

a = kcos
[nπ

16

]
and b = ksin

[nπ
16

]
This algorithm consist of 4 stages that have to be computed in serial mode because of the

data dependency. However, computations in the individual stages can be done in parallel. In

stage 2, the algorithm is split in two parts, one for the even coefficients and one for the odd ones.

Figure 6.18 shows that even part of stage 2 is a simple butterfly operation, again separated into

even and odd parts in stage 3. The round circle surrounding 1√
2

means multiplication by 1√
2
.

This algorithm also proposes two approaches for the computation of 2D DCT, using 1D

DCT twice and directly using 2D DCT. The former is used due to less computations [119], as

described earlier.

Loeffler’s algorithm uses fixed/floating point arithmetic for the calculation of DCT. To

change it to integer arithmetic, the ISO/IEC standard 23002-1 [120] is used. This standard

provides a way to calculate an accurate DCT using integer arithmetic by the use of bit-wise

operators. Multiplication and division operators are replaced by shift operators. This is de-

scribed in section 6.4.3 with the help of the CAPH code to implement this algorithm. For an

input image consisting of 8 bits for each pixel, 32 bits are needed to accurately implement DCT

using this standard.

6.4.2.2 Quantization

After DCT, the next step to be applied to each 8x8 block is quantization. The goal of this

step is to discard data which is not visually significant by taking advantage of the low sensitivity

of eye to reconstruction errors related to high frequencies as compared to low frequencies [121].

118 6.4. JPEG Encoder

Quick high frequency changes can often not be seen and can be eliminated whereas slow linear

changes in intensity or color are detected by the eye. The basic idea of quantization is to remove

as many as the possible nonzero DCT coefficients corresponding to high frequency components.

This is accomplished by the division of each block element by its corresponding quantizer step

size which is then rounded to nearest integer as shown in equation 6.6.

XQ
(u,v) = Round

(
X(u,v)

Q(u,v)

)
(6.6)

Varying levels of image compression and quality can be obtained through the selection

of a specific quantization matrices. Normally, the standard matrix given in equation 6.7 with

quality level of 50 is used. This matrix gives high compression as well as excellent decompressed

image quality. Subjective experiments involving the human visual systems have resulted in

this standard quantization matrix [122]. In case another level of quality and compression is

required, scalar multiples of standard matrix are used. For a quality level greater than 50 (less

compression, higher quality image), the standard matrix is multiplied by (100-quality level)/50.

For a quality level less than 50 (more compression, lower image quality), the standard matrix

is multiplied by 50/quality level. The contents of this matrix are totally independent of the

input image.

Q50 =

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

(6.7)

On hardware platforms, especially FPGAs, division utilizes more resources than multiplica-

tion. So, the best solution is to accomplish quantization using multiplication rather by division.

The quantization equation 6.6 has Q as divisor. This enables the calculation of the table con-

taining values of 1/Q for each possible Q value. Using this table, quantization is done by

multiplication instead of division. In the first step, the DCT coefficient is multiplied by a value

corresponding to 1/Q in the table. Then the computed value is shifted to the right 16 times

to obtain the final result. For example, division by Q value 16 is achieved by first multiplying

with the corresponding value in the table i.e. 4096. This value is then shifted on the right 16

times to obtain final result. This replacement of division by multiplication and shift operator

comes at a cost. The results obtained are not always as accurate as obtained by division. For

example, if the value to be quantized is 5000 and the corresponding value in the quantization

matrix is 5, the by using division this will result in 1000 but by using the above method this

results in 999.

6.4.2.3 ZigZag Scan

After quantization, most of the coefficients of the block are equal to zero. Each block is then

scanned in a zigzag pattern as shown in figure 6.21. The advantage of this scan is to combine

a large run of zeros which will compress well in the next step.

Chapter 6. Applications 119

Figure 6.21: ZigZag Scan Pattern

6.4.2.4 Run Length Encoding

After the zigzag scan, the block is encoded (compressed) using two values (LEVEL,RUN).

RUN is the distance between two nonzero coefficients i.e. number of zeros in a segment. LEVEL

is the nonzero value immediately following a sequence of zeros. The value (0,0) represents end

of block(EOB). This is useful in a situation where only zeros are left in the block, so instead of

counting all those zeros, this value will mark end of block. This step results in a compressed

8x8 block because after quantization there are large number of zeros in the block and the zigzag

ordering groups them together. Consider the input block consists of

26 3 1 3 2 6 2 5 0 2 0 0 0 1 5 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

After applying RLE, the output will be reduce to

26 0 3 0 1 0 3 0 2 0 6 0 2 0 5 1 2 3 1 0 5 5 1 0 0

6.4.3 CAPH implementation

The input to the CAPH design for the JPEG encoder is a sequence of image frames, where

each frame consists of a sequence of lists of 8x8 blocks. The CAPH code for the implementation

of the JPEG encoder is given in listing 6.15.

Listing 6.15: CAPH implementation of JPEG Encoder

1

2 −−−
3 −−−−−Constant d e c l a t i o n s

4 −−−
5 const s c a l e = ([1024 ,1138 ,1730 ,1609 ,1024 ,1609 ,1730 ,1138 ,1138 ,1264 ,1922 ,1788 ,

6 1138 ,1788 ,1922 ,1264 ,1730 ,1922 ,2923 ,2718 ,1730 ,2718 ,2923 ,1922 ,1609 ,1788 ,2718 ,

7 2528 ,1609 ,2528 ,2718 ,1788 ,1024 ,1138 ,1730 ,1609 ,1024 ,1609 ,1730 ,1138 ,1609 ,1788 ,

8 2718 ,2528 ,1609 ,2528 ,2718 ,1788 ,1730 ,1922 ,2923 ,2718 ,1730 ,2718 ,2923 ,1922 ,1138 ,

9 1264 ,1922 ,1788 ,1138 ,1788 ,1922 ,1264] : s igned<16> array [6 4]) ;

10

11 const divtab = ([65536 ,32768 ,21845 ,16384 ,13107 ,10923 ,9362 ,8192 ,7282 ,6554 ,5958 ,

12 5461 ,5041 ,4681 ,4369 ,4096 ,3855 ,3641 ,3449 ,3277 ,3121 ,2979 ,2849 ,2731 ,2621 ,2521 ,

13 2427 ,2341 ,2260 ,2185 ,2114 ,2048 ,1986 ,1928 ,1872 ,1820 ,1771 ,1725 ,1680 ,1638 ,1598 ,

14 1560 ,1524 ,1489 ,1456 ,1425 ,1394 ,1365 ,1337 ,1311 ,1285 ,1260 ,1237 ,1214 ,1192 ,1170 ,

120 6.4. JPEG Encoder

15 1150 ,1130 ,1111 ,1092 ,1074 ,1057 ,1040 ,1024 ,1008 ,993 ,978 ,964 ,950 ,936 ,923 ,910 ,898 ,

16 886 ,874 ,862 ,851 ,840 ,830 ,819 ,809 ,799 ,790 ,780 ,771 ,762 ,753 ,745 ,736 ,728 ,720 ,712 ,

17 705 ,697 ,690 ,683 ,676 ,669 ,662 ,655 ,649 ,643 ,636 ,630 ,624 ,618 ,612 ,607 ,601 ,596 ,590 ,

18 585 ,580 ,575 ,570 ,565 ,560 ,555 ,551 ,546 ,542] : s igned<18>array [1 2 1]) ;

19

20 const qtab = ([16 , 11 , 10 , 16 , 24 , 40 , 51 , 61 , 12 , 12 , 14 , 19 , 26 , 58 , 60 , 55 , 14 , 13 , 16 , 24 , 40 , 57 ,

21 69 ,56 ,14 ,17 ,22 ,29 ,51 ,87 ,80 ,62 ,18 ,22 ,37 ,56 ,68 ,109 ,103 ,77 ,24 ,35 ,55 ,64 ,81 ,104 ,113 ,

22 92 ,49 ,64 ,78 ,87 ,103 ,121 ,120 ,101 ,72 ,92 ,95 ,98 ,112 ,100 ,103 ,99] : s igned<8>array [6 4]) ;

23 −−−
24 −−−−−Actors

25 −−−
26 actor s c a l e ()

27 . . .

28 actor s tage1 ()

29 . . .

30 actor stage2odd ()

31 . . .

32 actor stage3odd ()

33 . . .

34 actor s tage2even ()

35 . . .

36 actor s tage3even ()

37 . . .

38 actor ptos ()

39 . . .

40 actor t ranspose ()

41 . . .

42 actor r i g h t s h i f t ()

43 . . .

44 actor quant ()

45 . . .

46 actor z i g zag ()

47 . . .

48 actor r l e ()

49 . . .

50 −−−−−−−−−−−−−−−−−−−−−−−
51 −− IOs

52 −−−−−−−−−−−−−−−−−−−−−−−
53 stream i : signed<32> dc from ”cam : 0 ” ;

54 stream o : signed<32> dc to ”mem: 0 ” ;

55 −−−−−−−−−−−−−−−−−−−−−−−
56 −− Network d e c l a r a t i o n s

57 −−−−−−−−−−−−−−−−−−−−−−−
58 net dct1d f g h j k l m v =

59 . . .

60 net o = r l e zz ;

The first part of the code consists of constant declarations (lines 5-22).

The CAPH implementation of the JPEG encoder consists of twelve actors, of which, nine

are for DCT (i.e. scale, stage1, stage2odd, stage2even, stage34odd, stage3even, ptos,

transpose, rightshift), one is for quantization (i.e. quant), one is for zigzag scan (i.e.

zigzag) and one is for Run Length Encoding (i.e. rle).

− The scale actor performs a left shift on input values by seven places. Functionally

Chapter 6. Applications 121

speaking:

scale :< <

< p11 p12 ... p18 < p11 � 7 p12 � 7 ... p18 � 7

p21 p22 ... p28 −→ p21 � 7 p22 � 7 ... p28 � 7

...
...

p81 p82 ... p88 > p81 � 7 p82 � 7 ... p88 � 7 >

< ... > < ... >

...
...

> >

The CAPH description of this actor is given in listing 6.16. In the case of a data token

at input, it is left shifted seven places and the result is written to the output. If input is

a control token, the same token is written to the output.

Listing 6.16: Scale actor

1 actor s c a l e ()

2 in (a : signed<32> dc)

3 out (c : signed<32> dc)

4 rules a −> c

5 | ’< −> ’<

6 | ’> −> ’>

7 | ’ p −> ’ (p<<7)

8 ;

− The stage1 actor applies a butterfly block to eight values of a block and gives us eight

output values. Functionally speaking :

stage1 :< <

< p11 p12 ... p18 < f(p11 p12 ... p18)

p21 p22 ... p28 −→ f(p21 p22 ... p28)

...
...

p81 p82 ... p88 > f(p81 p82 ... p88) >

< ... > < ... >

...
...

> >

where f(pi1, pi2..., pi8) = pi1+pi8, pi1−pi8, pi3+pi6, pi3−pi6, pi2+pi7, pi2−pi7, pi4+pi5, pi4−pi5

The CAPH implementation of this actor is given in listing 6.17. To apply the butterfly

block, eight input values are required. This is accomplished by saving input values in

array z in the sixth rule (line 14). After reading eight input values, the butterfly block is

applied to the last rule (lines 15-16) and results are written to the output.

Listing 6.17: Stage1 actor

122 6.4. JPEG Encoder

1 actor s tage1 ()

2 in (a : signed<32> dc)

3 out (c : signed<32> dc , d : signed<32> dc , e : signed<32> dc , f : signed<32> dc ,

4 g : signed<32> dc , h : signed<32> dc , j : signed<32> dc , k : signed<32> dc)

5 var s : {S0 , S1 , S2 , S3}=S0

6 var z : signed<32> array [8] = [0 : 8]

7 var i : unsigned<8>

8 rules (s, a, i, z) −> (s, c, d, e, f, g, h, j, k, i, z)

9 | (S0 , ’< , ,) −> (S1 , ’< , ’< , ’< , ’< , ’< , ’< , ’< , ’< , ,)

10 | (S1 , ’> , ,) −> (S0 , ’> , ’> , ’> , ’> , ’> , ’> , ’> , ’> , ,)

11 | (S1 , ’< , , z) −> (S2 , ’< , ’< , ’< , ’< , ’< , ’< , ’< , ’< , 0 , z[i in 0..7 <-0])

12 | (S2 , , 8 ,) −> (S3 , , , , , , , , , 0 ,)

13 | (S2 , ’> , ,) −> (S1 , ’> , ’> , ’> , ’> , ’> , ’> , ’> , ’> , ,)

14 | (S2 , ’v , i , z) −> (S2 , , , , , , , , , i+1,z[i<-v])

15 | (S3 , , , z) −> (S2,’z[0]+z[7],’z[0]-z[7],’z[2]+z[5],’z[2]-z[5],

16 ’z[1]+z[6],’z[1]-z[6],’z[3]+z[4],’z[3]-z[4],0 ,)

17 ;

− The stage2odd actor reads four input values and calculates four output values by applying

Loeffler’s algorithm formulas. Functionally speaking :

stage2odd :

<< p11 p21 ... p81 > << f(p11, p17) f(p21, p27) ... f(p81, p87) >

... < ... >>, ... < ... >>,

<< p13 p23 ... p83 > << g(p13, p15) g(p23, p25) ... g(p83, p85) >

... < ... >>, −→ ... < ... >>,

<< p15 p25 ... p85 > << h(p15, p13) h(p25, p23) ... h(p85, p83) >

... < ... >>, ... < ... >>,

<< p17 p27 ... p87 > << i(p17, p11) i(p27, p21) ... i(p87, p81) >

... < ... >> ... < ... >>

where

f(pi1, pi7) = (((P11 � 9− P11)� 2) − (P11 � 9− P11))− (P17 � 1) ,

g(pi3, pi5) = ((P13 − (P13 � 3)− (P13 � 7)) + ((P15 � 3)− (P15 � 7))+

((((P15 � 3)− (P15 � 7))− (P15 � 11))� 1)),

h(pi5, pi3) = ((P15 − (P15 � 3)− (P15 � 7)) + ((P13 � 3)− (P13 � 7))+

((((P13 � 3)− (P13 � 7))− (P13 � 11))� 1)),

i(pi7, pi1) = (((P17 � 9− P17)� 2) − (P17 � 9− P17)) − (P11 � 1)

The CAPH implementation of this actor is given in listing 6.18. For the data tokens

above, the given formulas are applied, otherwise the same control token is written to the

output.

Listing 6.18: Stage2 odd actor

1 actor stage2odd ()

2 in (a : signed<32> dc , b : signed<32> dc , c : signed<32> dc , d : signed<32> dc)

Chapter 6. Applications 123

3 out (e : signed<32> dc , f : signed<32> dc , g : signed<32> dc , h : signed<32> dc)

4 rules (a, b, c, d) −> (e, f, g, h)

5 | (’< , ’< , ’< , ’<) −> (’< , ’< , ’< , ’<)

6 | (’> , ’> , ’> , ’>) −> (’> , ’> , ’> , ’>)

7 | (’v1, ’v3,’v5,’v7) −>(’(((v1>>9-v1)>>2)-(v1>>9-v1))-(v7>>1) ,

8 ’((v3-(v3>>3)-(v3>>7))+((v5>>3)-(v5>>7))+

9 ((((v5>>3)-(v5>>7))-(v5>>11))>>1)) ,

10 ’((v5-(v5>>3)-(v5>>7))-(((v3>>3)-(v3>>7))+

11 ((((v3>>3)-(v3>>7))-(v3>>11))>>1))) ,

12 ’(((v7>>9-v7)>>2)-(v7>>9-v7))+(v1>>1))

13 ;

− The stage3odd actor reads four input values and calculates four output values by applying

Loeffler’s algorithm formulas. Functionally speaking :

stage3odd :

<< p11 p21 ... p81 > << p11 + p13 + p15 + p17 ... p81 + p83 + p85 + p87 >

... < ... >>, ... < ... >>,

<< p13 p23 ... p83 > << p11 − p13 ... p81 − p83 >

... < ... >>, −→ ... < ... >>,

<< p15 p25 ... p85 > << p17 − p15 ... p87 − p85 >

... < ... >>, ... < ... >>,

<< p17 p27 ... p87 > << p11 + p13 − p15 − p17 ... p81 + p83 − p85 − p87 >

... < ... >> ... < ... >>

The implementation is given in listing 6.19. For data tokens above, the given formulas

are applied, otherwise the same control token is written to the output.

Listing 6.19: Stage3 odd actor

1 actor stage3odd ()

2 in (a : signed<32> dc , b : signed<32> dc , c : signed<32> dc , d : signed<32> dc)

3 out (e : signed<32> dc , f : signed<32> dc , g : signed<32> dc , h : signed<32> dc)

4 rules (a, b, c, d) −> (e, f, g, h)

5 | (’< , ’< , ’< , ’<) −> (’< , ’< , ’< , ’<)

6 | (’> , ’> , ’> , ’>) −> (’> , ’> , ’> , ’>)

7 | (’v1, ’v3,’v5,’v7) −> (’v1+v3+v7+v5, ’v1-v3, ’v7-v5, ’v1+v3-v7-v5)

8 ;

− The stage2even actor reads four input values and calculates four output values by ap-

124 6.4. JPEG Encoder

plying Loeffler’s algorithm formulas. Functionally speaking :

stage2even :

<< p12 p22 ... p82 > << p12 + p14 + p16 + p18 ... p82 + p84 + p86 + p88 >

... < ... >>, ... < ... >>,

<< p14 p24 ... p84 > << p16 − p18 ... p86 − p88 >

... < ... >>, −→ ... < ... >>,

<< p16 p26 ... p86 > << p18 − p12 ... p88 − p82 >

... < ... >>, ... < ... >>,

<< p18 p28 ... p88 > << p12 + p18 − p14 − p16 ... p82 + p88 − p84 − p86 >

... < ... >> ... < ... >>

The CAPH implementation of this actor is given in listing 6.20. For data tokens above,

the given formulas are applied, otherwise the same control token is written to the output.

Listing 6.20: Stage2 even actor

1 actor s tage2even ()

2 in (a : signed<32> dc , b : signed<32> dc , c : signed<32> dc , d : signed<32> dc)

3 out(e : signed<32> dc , f : signed<32> dc , g : signed<32> dc , h : signed<32> dc)

4 rules (a, b, c, d)−>(e, f, g, h)

5 | (’< , ’< , ’< , ’<)−>(’< , ’< , ’< , ’<)

6 | (’> , ’> , ’> , ’>)−>(’> , ’> , ’> , ’>)

7 | (’v0, ’v2,’v4,’v6)−>(’v0+v6+v4+v2,’v4-v2,’v0+v6-v4-v2,’v0-v6)

8 ;

− The stage3even actor reads four input values and calculates four output values by ap-

plying Loeffler’s algorithm formulas. Functionally speaking :

stage3even :

<< p12 p22 ... p82 > << p12 p22 ... p82 >

... < ... >>, ... < ... >>,

<< p14 p24 ... p84 > << f(p14, p18) f(p24, p28) ... f(p84, p88) >

... < ... >>, −→ ... < ... >>,

<< p16 p26 ... p86 > << p16 p26 ... p86 >

... < ... >>, ... < ... >>,

<< p18 p28 ... p88 > << g(p14, p18) g(p24, p28) ... g(p84, p88) >

... < ... >> ... < ... >>

Chapter 6. Applications 125

where

f(pi4, pi8) = (P18 + (P18 � 5)− (((P18 + (P18 � 5))� 2)))+

(((P14 + (P14 � 5))� 2) + (P14 � 4)),

g(pi4, pi8) = (((P18 + (P18 � 5))� 2) + (P18 � 4)) −

(P14 + (P14 � 5)− (((P14 + (P14 � 5))� 2)))

The CAPH implementation of this actor is given in listing 6.21. It will read input tokens

and for data tokens above, the given formulas are applied, otherwise the same control

token is written to the output.

Listing 6.21: Stage3 even actor

1 actor s tage3even ()

2 in (a : signed<32> dc , b : signed<32> dc , c : signed<32> dc , d : signed<32> dc)

3 out(e : signed<32> dc , f : signed<32> dc , g : signed<32> dc , h : signed<32> dc)

4 rules (a, b, c, d) −> (e, f, g, h)

5 | (’< , ’< , ’< , ’<) −> (’< , ’< , ’< , ’<)

6 | (’> , ’> , ’> , ’>) −> (’> , ’> , ’> , ’>)

7 | (’v0, ’v2,’v4,’v6) −> (’v0 ,

8 ’(v6+(v6>>5)-(((v6+(v6>>5))>>2)))+

9 (((v2+(v2>>5))>>2)+(v2>>4)) ,

10 ’v4 ,

11 ’(((v6+(v6>>5))>>2)+(v6>>4))-

12 (v2+(v2>>5)-(((v2+(v2>>5))>>2))))

13 ;

− The ptos actor acts as a parallel to serial converter. It reads eight input values and sends

these value to one output in serial order. Functionally speaking :

ptos :

<< p11 p21 ... p81 > ... < ... >>, << p11 p12 ... p18

<< p12 p22 ... p82 > ... < ... >>, p21 p22 ... p28

<< p13 p23 ... p83 > ... < ... >>, p31 p32 ... p38

<< p14 p24 ... p84 > ... < ... >>, −→ p41 p52 ... p58

<< p15 p25 ... p85 > ... < ... >>, p51 p52 ... p58

<< p16 p26 ... p86 > ... < ... >>, p61 p62 ... p68

<< p17 p27 ... p87 > ... < ... >>, p71 p72 ... p78

<< p18 p28 ... p88 > ... < ... >>, p81 p82 ... p88 >

... < ... >>

This CAPH implementation of this actor is given in listing 6.22. The eight input values

will be stored in array z in the fifth rule (lines 13-14). In the last rule (line 16) these

values are sent to the output k one by one by reading the array z.

Listing 6.22: Parallel to serial converter actor

126 6.4. JPEG Encoder

1 actor ptos ()

2 in (a : signed<32> dc , b : signed<32> dc , c : signed<32> dc , d : signed<32> dc ,

3 e : signed<32> dc , f : signed<32> dc , g : signed<32> dc , h : signed<32> dc)

4 out (k : signed<32> dc)

5 var s : {S0 , S1 , S2 , S3}=S0

6 var z : signed<32> array [8] = [0 : 8]

7 var i : unsigned<8>

8 rules (s, a, b, c, d, e, f, g, h, i, z) −> (s, k, i, z)

9 | (S0 , ’< , ’< , ’< , ’< , ’< , ’< , ’< , ’< , ,) −> (S1 , ’< , ,)

10 | (S1 , ’> , ’> , ’> , ’> , ’> , ’> , ’> , ’> , ,) −> (S0 , ’> , ,)

11 | (S1 , ’< , ’< , ’< , ’< , ’< , ’< , ’< , ’< , , z) −> (S2,’<,0,z[i in 0..7 <-0])

12 | (S2 , ’> , ’> , ’> , ’> , ’> , ’> , ’> , ’> , ,) −> (S1 , ’> , ,)

13 | (S2, ’v0, ’v1, ’v2, ’v3, ’v4, ’v5, ’v6, ’v7, i, z) −> (S3 , , 0 ,

14 z[0<-v0,1<-v1,2<-v2,3<-v3,4<-v4,5<-v5,6<-v6,7<-v7])

15 | (S3 , , , , , , , , , 8 ,) −> (S2 , , 0 ,)

16 | (S3 , , , , , , , , , i , z) −> (S3, ’z[i], i+1 ,)

17 ;

− The transpose actor transposes an 8x8 block. It first reads 64 values and then these

values are sent out in an order that will make a transpose of the input block. Functionally

speaking :

transpose :< <

< p11 p12 ... p18 < p11 p21 ... p81

p21 p22 ... p28 −→ p12 p22 ... p82

...
...

p81 p82 ... p88 > p18 p28 ... p88 >

< ... > < ... >

...
...

> >

The CAPH implementation of this actor is given in listing 6.23. The 8x8 block is saved in

array z in the fifth rule (line 15). The last two rules (lines 17-18) send the values stored

in the array z in an order that will transpose the input block. This is accomplished by

the index l used to read the array. After reading a value, it is incremented to read the

value of next line/column.

Listing 6.23: Transpose actor

1 actor t ranspose ()

2 in (a : signed<32> dc)

3 out (c : signed<32> dc)

4 var s : {S0 , S1 , S2 , S3}=S0

5 var z : signed<32> array [6 4] = [0 : 64]

6 var i : unsigned<8>

7 var k : unsigned<8>

8 var l : unsigned<8>

9 var j : unsigned<8>

10 rules (s, a, i, z, k, l, j) −> (s, c, i, z, k, l, j)

11 | (S0 , ’< , , , , ,) −> (S1 , ’< , , , , ,)

Chapter 6. Applications 127

12 | (S1 , ’> , , , , ,) −> (S0 , ’> , , , , ,)

13 | (S1 , ’< , , , , ,) −> (S2 , ’< , 0 , , , ,)

14 | (S2 , ’> , , , , ,) −> (S3 , , 0 , , 0 , 0 , 0)

15 | (S2 , ’ v , i , z , , ,) −> (S2 , , i+1 , z[i<-v] , , ,)

16 | (S3 , , 64 , , , ,) −> (S1 , ’> , 0 , , , ,)

17 | (S3 , , i , z , 7 , l , j) −> (S3 , ’z[l] , i+1 , , 0 , j+1 , j+1)

18 | (S3 , , i , z , k , l ,) −> (S3 , ’z[l] , i+1 , , k+1 , l+8 ,)

19 ;

− The rightshift actor normalizes the effect of the left shift operation performed at the

start (scale actor). Functionally speaking :

rightshift :< <

< p11 p12 ... p18 < f(p11) f(p21) ... f(p81)

p21 p22 ... p28 −→ f(p12) f(p22) ... f(p82)

...
...

p81 p82 ... p88 > f(p18) f(p28) ... f(p88) >

< ... > < ... >

...
...

> >

where f(Pi) = (((p ∗ scale[i]) + 524287− (p >> 31)) >> 20)

The CAPH implementation of this actor is given in listing 6.24. It first multiplies each

element with the corresponding value stored in the array scale and then further calcu-

lations (addition, subtraction and right shift) are performed to calculate the final value.

The array index i in last rule (line 11) is used to keep track of the index of elements in

the block.

Listing 6.24: Right shift actor

1 actor r i g h t s h i f t ()

2 in (a : signed<32> dc)

3 out (c : signed<32> dc)

4 var s : {S0 , S1 , S2}=S0

5 var i : unsigned<8>

6 rules (s, a , i, scale) −> (s, c, i)

7 | (S0 , ’< , ,) −> (S1 , ’< ,)

8 | (S1 , ’> , ,) −> (S0 , ’> ,)

9 | (S1 , ’< , ,) −> (S2 , ’< , 0)

10 | (S2 , ’> , ,) −> (S1 , ’> ,)

11 | (S2 , ’p , i , scale) −> (S2,’(((p*scale[i])+524287-(p>>31))>>20), i+1)

12 ;

128 6.4. JPEG Encoder

− The quant actor performs the quantization step. Functionally speaking :

quant :< <

< p11 p12 ... p18 < f(p11) f(p21) ... f(p81)

p21 p22 ... p28 −→ f(p12) f(p22) ... f(p82)

...
...

p81 p82 ... p88 > f(p18) f(p28) ... f(p88) >

< ... > < ... >

...
...

> >

where f(Pi) =

(((p ∗ divtab[qtab[i]− 1]) >> 16)) if p > 0

(((p ∗ (−1) ∗ divtab[qtab[i]− 1]) >> 16) ∗ (−1)) otherwise

The CAPH implementation of this actor is given in listing 6.25. The last rule (lines 11-

14) reads the input value and performs the multiplication and shift operations by reading

values from arrays declared in constant declarations to calculate the final result.

Listing 6.25: Quantization actor

1 actor quant ()

2 in (a : signed<32> dc)

3 out (c : signed<32> dc)

4 var s : {S0 , S1 , S2}=S0

5 var i : unsigned<8>

6 rules (s, a , i, divtab, qtab) −> (s, c, i)

7 | (S0 , ’< , , ,) −> (S1 , ’< ,)

8 | (S1 , ’> , , ,) −> (S0 , ’> ,)

9 | (S1 , ’< , , ,) −> (S2 , ’< , 0)

10 | (S2 , ’> , , ,) −> (S1 , ’> ,)

11 | (S2 , ’p , i , divtab , qtab) −> (S2 ,

12 if(p>0) then ’((p * divtab[qtab[i]-1])>>16)

13 else ’(((p*(-1)*divtab[qtab[i]-1])>>16)*(-1)) ,

14 i+1)

15 ;

− The zigzag actor reads a block and outputs it in zigzag order as shown in figure 6.21.

Chapter 6. Applications 129

Functionally speaking :

zigzag :< <

< p11 p12 ... p18 < p11 p12 p21

p21 p22 ... p28 −→ p31 p22 ...

...
...

p81 p82 ... p88 > p68 p78 p87 p88 >

< ... > < ... >

...
...

> >

The implementation of this actor is given in listing 6.26. The input block is stored in an

array z in the fifth rule (line 15). The index at which the element is stored is determined

by another array y. The array y contains the zigzag order. The last rule (line 17) writes

to the ouput the block stored in array z in zigzag order.

Listing 6.26: Zigzag actor

1 actor z i g zag ()

2 in (a : signed<32> dc)

3 out (c : signed<32> dc)

4 var s : {S0 , S1 , S2 , S3}=S0

5 var z : signed<32> array [6 4] = [0 : 64]

6 var i : unsigned<8>

7 var y : signed<7> array [6 4] = [0 , 1 , 5 , 6 , 14 , 15 , 27 , 28 , 2 , 4 , 7 , 13 , 16 , 26 , 29 , 42 , 3 , 8 ,

8 12 ,17 ,25 ,30 ,41 ,43 ,9 , 11 ,18 ,24 ,31 ,40 ,44 ,53 ,10 ,19 ,23 ,32 ,39 ,45 ,52 ,54 ,20 ,22 ,33 ,

9 38 ,46 ,51 ,55 ,60 ,21 ,34 ,37 ,47 ,50 ,56 ,59 ,61 ,35 ,36 ,48 ,49 ,57 ,58 ,62 ,63]

10 rules (s, a, i, z, y) −> (s, c, i, z, y)

11 | (S0 , ’< , , ,) −> (S1 , ’< , , ,)

12 | (S1 , ’> , , ,) −> (S0 , ’> , , ,)

13 | (S1 , ’< , , ,) −> (S2 , ’< , 0 , ,)

14 | (S2 , ’> , , ,) −> (S3 , , 0 , ,)

15 | (S2 , ’v , i , z , y) −> (S2 , , i+1 , z[y[i]<-v] , y)

16 | (S3 , , 64 , ,) −> (S1 , ’> , 0 , ,)

17 | (S3 , , i , z ,) −> (S3 , ’z[i] , i+1 , ,)

18 ;

− The rle actor reads the input block and performs Run Length Encoding (RLE) on it.

Functionally speaking :

rle :< <

< p1 0 0 ... p2 0 0 ... > < p1 k1 p2 k2 ...EOB >

... −→
...

< ... > < ... >

> >

130 6.4. JPEG Encoder

where ki is the number of zeros

and EOB (End of block) means the remaining elements in the block are all zero.

The CAPH implementation of this actor is given in listing 6.27. The input block is stored

in array z in line 19. The index of the End of Block (EOB) is calculated in the 8th rule

(lines 21-23). Next, the block elements are written in the form of (LEVEL,RUN) in array

y in the four rules in lines 29-34. EOB is added in two rules in lines 36-37. Finally, the

run length encoded block in array y is written to the output in the last rule (lines 39-40).

Listing 6.27: RLE actor

1 actor r l e ()

2 in (a : signed<32> dc)

3 out (c : signed<32> dc)

4 var s : {S0 , S1 , S2 , S3 , S3a , S4 , S4a , S4b , S4c , S5 , S6 , S6a , S7}=S0

5 var z : signed<32> array [6 4] =[0 : 64]

6 var y : signed<32> array [1 2 8] =[0 : 128]

7 var i : unsigned<8>

8 var k : unsigned<8>

9 var eob : unsigned<8>

10 var z r l : signed<32>

11 var zero : unsigned<1>

12 rules (s, a, i, k, eob, zero, zrl, z, y) −> (s, c, i, k, eob, zero, zrl, z, y)

13 | (S0 , ’< , , , , , , ,) −> (S1 , ’< , , , , , , ,)

14 | (S1 , ’> , , , , , , ,) −> (S0 , ’> , , , , , , ,)

15 | (S1 , ’< , , , , , , z ,) −> (S2 , ’< ,0 , , , , , ,)

16 | (S2 , , 64 , , , , , z ,) −> (S3 , , 63 , , 0 ,if(z[63]=0)then 1 else 0 ,

17 , ,)

18 | (S2 , ’> , , , , , , ,) −> (S1 , ’> , , , , , , ,)

19 | (S2 , ’v , i , , , , , z ,) −> (S2 , , i+1 , , , , , z[i<-v] ,)

20 | (S3 , , 0 , , eob , , , ,) −> (S4 , , 0 , , eob , , , ,)

21 | (S3 , , i , , eob ,zero , , z ,) −> (if(zero=1)then S3 else S3a , ,

22 if(zero=1)then i-1 else 0 , 0 , i ,

23 if(z[i-1]=0)then 1 else 0 , , ,)

24 | (S3a , , i , k , , , , z , y) −> (S4 , , i+1 ,k+1 , , , , , y[0<-z[0]])

25 | (S4 , , 64 , , , , , ,) −> (S2 , , 0 , , , , , ,)

26 | (S4 , , i , , eob , , , z ,) −> (if(i>eob)then S5 else S4a , ,

27 if(i>eob)then 0 else i , , ,

28 if(z[i]=0)then 1 else 0 , 0 , ,)

29 | (S4a , , 64 , , , , , ,) −> (S2 , , , , , , , ,)

30 | (S4a , , i , , , zero , zrl ,z ,) −> (if(zero=1)then S4a else S4b , , i+1 , , ,

31 if(z[i+1]=0)then 1 else 0 ,zrl+1 , ,)

32 | (S4b , , i ,k , , , zrl , z , y) −> (S4c , , , k+1 , , , , , y[k<-zrl-1])

33 | (S4c , , i ,k , , zero , , z , y) −> (S4 , , , k+1 , , if(z[i+1]=0)then 1 else 0 ,

34 0 , , y[k<-z[i-1]])

35 | (S5 , , , , eob , , , ,) −> (if(eob<63)then S6 else S7 , , , , , , , ,)

36 | (S6 , , , k , , , , , y) −> (S6a , , , k+1 , , , , , y[k<-0])

37 | (S6a , , , k , , , , , y) −> (S7 , , , k+1 , , , , , y[k<-0])

38 | (S7 , , 128 , , , , , ,) −> (S2 , , 0 , , , , , ,)

39 | (S7 , , i ,k ,eob , , , , y) −> (if(i=k-1)then S2 else S7 , ’y[i] ,

40 if(i=k-1)then 0 else i+1 , , , , , ,)

41 ;

I/O streams are declared in listing 6.28.

Chapter 6. Applications 131

Listing 6.28: I/O Streams

1 stream i : signed<32> dc from ”cam : 0 ” ;

2 stream o : signed<32> dc to ”mem: 0 ” ;

Dataflow network is described in listing 6.29. The resulting dataflow graph is shown in figure

6.22. Here “dct1d” is defined as higher-order wiring function (described in section 3.2.5). It

makes it easier to construct dataflow graph which contains two instances of the aforementioned

(as 1D DCT is used twice to compute 2D DCT).

Listing 6.29: Network Declarations

1 net dct1d f g h j k l m v =

2 let (s1x0 , s1x1 , s1x2 , s1x3 , s1x4 , s1x5 , s1x6 , s1x7) = f v in

3 let (s2x1 , s2x3 , s2x5 , s2x7) = g (s1x1 , s1x3 , s1x5 , s1x7) in

4 let (s2x0 , s2x2 , s2x4 , s2x6) = h(s1x0 , s1x2 , s1x4 , s1x6) in

5 let (s3x1 , s3x3 , s3x5 , s3x7) = j (s2x1 , s2x3 , s2x5 , s2x7) in

6 let (s3x0 , s3x2 , s3x4 , s3x6) = k (s2x0 , s2x2 , s2x4 , s2x6) in

7 let s = m(s3x0 , s3x1 , s3x2 , s3x3 , s3x4 , s3x5 , s3x6 , s3x7) in

8 l (s) ;

9

10 net sc = s c a l e i ;

11 net row =

12 dct1d stage1 stage2odd stage2even stage3odd stage3even t ranspose ptos sc ;

13 net c o l =

14 dct1d stage1 stage2odd stage2even stage3odd stage3even t ranspose ptos row ;

15 net r s = r i g h t s h i f t c o l ;

16 net qt = quant r s ;

17 net zz = z igzag qt ;

18 net o = r l e zz ;

6.4.4 Experimental Results

This section will compare FPGA implementations of JPEG encoder parts using different

development methodologies/tools. These methodologies include handwritten VHDL code and

automatically generated code from two dataflow compilers, CAPH [79] and CAL [123]. The

JPEG encoder is selected as application for comparison because of its complex implementation

and intensive computations.

The selected parts of the encoder are first implemented in Matlab. The results obtained by

Matlab are used as a reference to validate VHDL results obtained by the above three method-

ologies. The Matlab and handwritten VHDL implementations are given in Appendix A and

B respectively. The best way to compare encoder results is to take a 8x8 block as input and

compare the results generated by Matlab with these methodologies. The CAL code for these

encoder parts is obtained from [124], written by the CAL development community. This code

is compiled using the Eclipse IDE to generate VHDL code.

132 6.4. JPEG Encoder

scale

dct1d

dct1d

rightshift

quant

zigzag

rle

sc

row

col

rs

qt

zz

o

i

stage1

stage2odd stage2even

stage3evenstage3odd

ptos

transpose

s2x1

s1x3 s1x5 s1x7 s1x0 s1x2 s1x4 s1x6

s2x3 s2x5 s2x7

s3x1 s3x3 s3x5 s3x7

s2x0 s2x2 s2x4 s2x6

s3x0 s3x2 s3x4 s3x6

s1x1

s

Sub-graph generated by dct1d HOWF

Figure 6.22: Dataflow graph of JPEG encoder application

Chapter 6. Applications 133

For our experiments, the following 8x8 block is selected as input is :

154 123 123 123 123 123 123 136

192 180 136 154 154 154 136 110

254 198 154 154 180 154 123 123

239 180 136 180 180 166 123 123

180 154 136 167 166 149 136 136

128 136 123 136 154 180 198 154

123 105 110 149 136 136 180 166

110 136 123 123 123 136 154 136

6.4.4.1 Final Results

Discrete Cosine Transformation(DCT)

First, Loeffler’s algorithm is implemented in Matlab using the ISO/IEC 23002-1 standard.

Before moving to other implementations, the results obtained are compared with the built in

Matlab function dct2 to calculate 2D DCT. The result obtained by the built in Matlab function

dct2 is:

1186 41 20 72 30 12 -20 -11

30 108 10 32 28 -16 18 -2

-94 -60 12 -43 -31 6 -3 7

-39 -83 -5 -22 -14 15 -1 4

-31 18 -6 -12 14 -6 11 -6

-1 -12 13 0 28 13 8 3

5 -2 12 7 -19 -13 8 12

-10 11 8 -16 21 0 6 11

The result obtained by Matlab implementation of Loeffler’s Algorithm using ISO/IEC 23002-

1 standard is:

1187 41 21 72 31 13 -19 -11

30 107 11 33 28 -14 19 -1

-94 -59 13 -43 -31 6 -3 7

-38 -81 -5 -22 -13 15 -1 4

-31 18 -5 -12 15 -5 12 -5

0 -10 13 1 28 13 9 3

5 -2 13 7 -18 -12 8 13

-10 11 8 -15 22 1 6 11

As it can be observed, there is a minor difference of results from the two approaches. The

variance in result by the use of ISO/IEC 23002-2 is negligible. Afterwards, the same algorithm

is implemented using CAPH, CAL and handwritten VHDL.

The result obtained by CAPH is:

134 6.4. JPEG Encoder

1182 35 15 67 26 10 -22 -12

25 99 3 26 22 -19 15 -3

-99 -67 6 -49 -36 2 -6 5

-43 -88 -11 -27 -18 11 -4 2

-35 12 -11 -17 10 -9 9 -7

-4 -15 9 -3 25 10 7 2

3 -5 9 4 -21 -14 7 11

-11 9 6 -17 20 -1 5 10

The result obtained by CAL is:

1186 41 20 72 30 13 -20 -11

30 106 10 32 27 -14 18 -1

-94 -60 12 -43 -31 6 -3 7

-38 -81 -5 -22 -13 15 -1 3

-31 18 -6 -12 14 -6 11 -6

-1 -11 13 1 28 12 8 3

5 -2 12 7 -19 -13 8 12

-10 11 8 -16 21 0 6 10

The result obtained by handwritten VHDL is:

1182 35 15 67 26 10 -22 -12

25 99 3 26 22 -19 15 -3

-99 -67 6 -49 -36 2 -6 5

-43 -88 -11 -27 -18 11 -4 2

-35 12 -11 -17 10 -9 9 -7

-4 -15 9 -3 25 10 7 2

3 -5 9 4 -21 -14 7 11

-11 9 6 -17 20 -1 5 10

By observing the above results, it is clear that results obtained by CAL are more accurate

compared to CAPH or handwritten VHDL. The reason is that CAL generated VHDL code

involves a lot of data conversions to integer, signed/unsigned, where as in the later two cases,

operations are performed on std logic vector, without any conversion to integer. Even then the

maximum difference is 5 or 6. This is not big difference, as in the next step (i.e.quantization),

it will reduce to just 1.

Quantization

The output of DCT is used as input to the quantization. The Matlab implementation of

quantization gives the following result:

74 4 2 5 1 0 0 0

2 9 1 2 1 0 0 0

-7 -5 1 -2 -1 0 0 0

-3 -5 0 -1 0 0 0 0

-2 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Chapter 6. Applications 135

The result obtained by CAPH is:

73 3 1 4 1 1 0 0

2 8 0 1 0 0 0 0

-7 -5 0 0 0 0 0 0

-3 -5 -2 0 0 0 0 0

-1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

The result obtained by CAL is:

74 4 2 5 0 1 0 0

2 8 0 1 -1 0 0 0

-6 -4 1 0 0 0 0 0

-2 1 0 0 0 0 0 0

-4 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

The result obtained by handwritten VHDL is:

73 3 1 4 1 1 0 0

2 8 0 1 0 0 0 0

-7 -5 0 0 0 0 0 0

-3 -5 -2 0 0 0 0 0

-1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

By observing the above four results, it clear that they are almost identical. The maximum

difference is of 1. The reason of this small difference is the replacement of the division operator

by multiplication and shift operators. This has been explained in detail in section 6.4.2.2.

Zigzag Scan

The output of quantization is input to the zigzag scan. The result obtained by the Matlab

implementation is :

74 4 2 -7 9 2 5 1

-5 -3 -2 -5 1 2 1 0

1 -2 0 1 0 0 0 0

-1 -1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

The result obtained by CAPH is:

136 6.4. JPEG Encoder

73 3 2 -7 8 1 4 0

-5 -3 -1 -5 0 1 1 0

0 -2 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

The result obtained by CAL is:

74 4 2 -6 8 2 5 0

-4 -2 -4 1 1 1 0 1

-1 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

The result obtained by handwritten VHDL is:

73 3 2 -7 8 1 4 0

-5 -3 -1 -5 0 1 1 1

0 0 -2 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

This step only rearranges input values in a specific order. But here results of four imple-

mentations are not exactly same because of different input blocks. The actual comparison will

be in resource utilization which will be discussed in next section.

Run Length Encoding

The output of the zigzag scan is input to RLE. The result obtained by the Matlab imple-

mentation is:

74 0 4 0 2 0 -7 0 9 0 2 0 5 0 1 0 -5 0 -3 0 -2 0 -5 0 1 0 2 0 1 0 1 1 -2 0 1 1 -1 4 -1 0 0 0

The CAPH implemention result is :

73 0 3 0 2 0 -7 0 8 0 1 0 4 0 -5 1 -3 0 -1 0 -5 0 1 1 1 0 -2 2 0 0

The CAL implementation result is :

74 0 4 0 2 0 -6 0 8 0 2 0 5 0 -4 1 -2 0 -4 0 1 0 1 0 1 0 1 1 -1 0 1 2 0 0

The handwritten VHDL implementation result is :

73 0 3 0 2 0 -7 0 8 0 1 0 4 0 -5 1 -3 0 -1 0 -5 0 1 1 1 0 1 0 -2 2 0 0

For the RLE, no arithmetic operations are performed. The result will be identical for the

same input block.

Chapter 6. Applications 137

6.4.4.2 Performance Results

Altera

Tables 6.4, 6.5 and 6.6 provide a comparison of resources used by CAPH, CAL and hand-

written VHDL code for the implementation of the encoder parts for the Altera FPGA.

Table 6.4: DCT (Altera)

Total CAPH CAL Handwritten VHDL
Max Frequency 53 MHz 43 MHz 57 MHz
Logic Elements 57120 8,637 (15%) 8,607 (15%) 5,992 (10%)
Memory Bits 5,215,104 8,536 (<1%) 12,264 (<1%) 4,096 (<1%)
DSP Blocks 144 8 (6%) 8 (6%) 8 (6%)

Table 6.4 shows experimental results for the implementation of DCT. When comparing

CAPH and CAL, CAPH gives a maximum frequency of 52 MHz and CAL 43 MHz. CAPH and

CAL use almost the same number of Logic Elements (LEs), 8,637 and 8,607 respectively (15%

of total). Memory bits consumed by CAPH are 8,536 and by CAL are 12,264. Here in both

cases all memory bits are consumed by FIFOs between actors. The reason CAPH consumed

less memory bits than CAL is because of the calculation of the maximum depth needed for

each FIFO before generating VHDL code. This is done by calculating the run time occupancy

of each FIFO (described in section 4.3.1). The number of DSP blocks used is the same for

both, 8 (6% of total). In fact, the DSP block consumption directly depends on the number

of multiplication operations used, since it is equal for both codes, so the DSP consumption is

same.

When comparing handwritten VHDL and CAPH for DCT, the former generates a maximum

frequency of 57 MHz as compared to CAPH’s 52 MHz. Handwritten VHDL consumes 6000 LEs

(10% of total) as compared to 8,637 by CAPH. Memory bits consumed by handwritten VHDL

are 4096, far less than 8,536 consumed by CAPH. The reason CAPH consumes more memory

elements is because of the basic principle of dataflow methodology where different actors are

connected by FIFOs. In the handwritten VHDL, memory bits are consumed by arrays which

are used to store elements. The number of DSP blocks used is the same for both, 8(6% of total).

Table 6.5: Quantization + Zigzag Ordering (Altera)

Total CAPH CAL Handwritten VHDL
Max Frequency 49 MHz 43 MHz 50 MHz
Logic Elements 57120 600 (1%) 572 (1%) 456 (1%)
Memory Bits 5,215,104 2,048 (<1%) 2,048 (<1%) 2,048 (<1%)
DSP Blocks 144 16 (11%) 16 (11%) 16 (11%)

Quantization and zigzag scan are not as extensive in terms of resources as DCT, so both

are combined for performance comparison. Both consist of one actor each. As shown in Table

6.5, CAPH has a maximum frequency of 49 MHz and CAL has 43 MHz. CAPH consume 600

LEs and CAL 572 : both are 1% of total. Since the actors are not complex, LE consumption

is almost the same. Only one FIFO needed is before zigzag actor and depth of this FIFO is

equal to the size of block. So, memory bit consumption is same for both, which is 2048. Here

again, because of the same reason discussed earlier, DSP block consumption is 16 for both.

For quantization and zigzag scan, handwritten VHDL gives a maximum frequency of 50

138 6.4. JPEG Encoder

MHz, slightly better than 49 MHz of CAPH. Handwritten VHDL consumes 456 LEs as com-

pared to 600 by CAPH. Actors are simple, so the difference of LE is small. Memory bit

consumption is 2,048 for both because both need to store one block for zigzag ordering. Both

use the same number of DSP blocks, 16 (11% of total). As this part consumes less resources, so

the difference is also small.

Table 6.6: Run Length Encoding (Altera)

Total CAPH CAL Handwritten VHDL
Max Frequency 75 MHz 68 MHz 88 MHz
Logic Elements 57120 700 (1%) 1,022 (2%) 560 (1%)
Memory Bits 5,215,104 6,144 (<1%) 6,144 (<1%) 6,144 (<1%)
DSP Blocks 144 0 (0%) 0 (0%) 0 (0%)

In the case of RLE, CAPH and CAL have a maximum frequency of 75 MHz and 68 MHz

respectively as shown in Table 6.6. LEs consumed by CAPH are 560 (1% of total), whereas CAL

consumes 1,022 (2% of total). Both consume 6,144 memory bits : here memory bits are not

consumed by a FIFO but by large arrays which are used in the actor to store blocks. For both

codes, no DSP block is used in this part as it does not involve any multiplication operation.

For RLE, handwritten VHDL has a maximum frequency of 88 MHz, compared to 75MHz

for CAPH. LEs consumed by handwritten VHDL and CAPH are almost the same, at 560 and

700 respectively (1% of total). Both consume 6,144 memory bits, which are used inside the actor

to store blocks. Whereas, since no multiplication operation is performed in this part, no DSP

block is used by either.

It can be observed from the discussion of the first three tables that the main difference

in resources is in DCT implementation and the remaining two parts are almost the same.

This is the reason DCT is considered the most important part of a decoder and performance

comparisons are drawn on the basis of DCT.

Based upon the above discussion, it can be concluded that on the Altera FPGA, CAPH

generated code is slight behind in performance and resource utilization when compared with

handwritten VHDL but it is better than CAL in the case of the above implemented parts of

encoder.

Xilinx

To compare resource utilization on Xilinx, the HDL code is synthesized using the ISE design

software version 10.1. The device selected is a Virtex 2P XC2VP70. Tables 6.7, 6.8 and 6.9

describe resources consumed by each methodology for the implementation of encoder parts.

Table 6.7: DCT (Xilinx)

Total CAPH CAL Handwritten VHDL
Max Frequency 58 MHz 57 MHz 72 MHz
Slices 33,088 5,582 (16%) 3,955 (11%) 2,745 (8%)
Slice Flip Flops 66,176 5,655 (9%) 3,597 (5%) 2,406 (3%)
4 input LUTs 66,176 9,346 (14%) 5,046 (7%) 4,456 (6%)
Block RAMs 328 5 (1%) 9 (2%) 4 (1%)

For DCT as shown in Table 6.7, CAPH has a maximum frequency of 58 MHz whereas CAL

has 57 MHz. The number of slices consumed by CAL is 3,955 (11% of total) and by CAPH 5,582

Chapter 6. Applications 139

(16% of total). The number of slice flip flops is 5,655 (9% of total) for CAPH and 3,597(5% of

total) for CAL. The consumption of 4 input LUTs is 9,346 (14% of total) for CAPH and 5,046

(7% of total) for CAL. The RAM blocks used by CAPH are 5 (1% of total) and by CAL are

9 (2% of total). It can be deduced that CAL utilizes less resources than CAPH on Xlinix but

CAPH has better maximum frequency.

When compared with handwritten VHDL, it has a maximum frequency of 72 MHz, compared

with CAPH’s 58 MHz. The number of slices consumed by handwritten code is 2,745 (8% of

total) and 5,582 (16% of total) by CAPH. In terms of the number of slice flip flops, handwritten

VHDL uses 2,406 (3% of total) and CAPH uses 5,655 (9% of total). The total number of 4

input LUTs utilized by handwritten VHDL is 4,456 (6% of total) and for CAPH 9,346 (14%

of total). Block RAMs used by Handwritten VHDL is 4 (1% of total) and 5 (1% of total)

by CAPH. The consumption of resources is almost the same for both but handwritten VHDL

is better in terms of maximum frequency. For quantization and zigzag scan, the results are

Table 6.8: Quantization + Zigzag Ordering (Xilinx)

Total CAPH CAL Handwritten VHDL
Max Frequency 64 MHz 66 MHz 77 MHz
Slices 33,088 253 (<1%) 286 (<1%) 221 (<1%)
Slice Flip Flops 66,176 227 (<1%) 196 (<1%) 125 (<1%)
4 input LUTs 66,176 500 (<1%) 462 (<1%) 423 (<1%)
Block RAMs 328 1 (<1%) 1 (<1%) 1 (<1%)

shown in Table 6.8. Since this part is not complex, so resource consumption is almost the same

for CAPH and CAL. CAL has a maximum frequency of 64 MHz which is almost the same as

CAPH’s 66 MHz. Both consume less than 1% of the slices, with CAPH using 300 and CAL

using 286. The number of slice flip flops used by CAPH is 227 (<1% of total) and by CAL is

196 (<1% of total). The total number of 4 input LUTs consumption is also less than 1% of the

total, with CAPH using 500 and CAL using 462. Both use one RAM block.

When comparing CAPH and handwritten VHDL, the later has a better maximum frequency

of 77 MHz as compared to the former’s 64 MHz. For slices, slice flip flops and 4 input LUTs,

resource consumption is almost the same, with both utilizing <1% of each. Both use one RAM

block. So, apart from the maximum frequency, the rest of the parameters are the same for

CAPH and handwritten VHDL.

Table 6.9: Run Length Encoding (Xilinx)

Total CAPH CAL Handwritten VHDL
Max Frequency 129 MHz 130 MHz 135 MHz
Slices 33,088 480 (1%) 542 (1%) 380 (1%)
Slice Flip Flops 66,176 500 (<1%) 570 (<1%) 490 (<1%)
4 input LUTs 66,176 937 (1%) 849 (1%) 475 (1%)
Block RAMs 328 2 (<1%) 2 (<1%) 2 (<1%)

In the case of Run Length Encoding(RLE) as shown in Table 6.9, CAPH has a maximum

frequency of 129 MHz whereas CAL has 130 MHz. The number of slices consumpted is 480

by CAPH and 542 by CAL (both are 1% of total). CAPH uses 500 slice flip flops and CAL

570, which are <1% of total. The number of 4 input LUTs used by CAPH is 937 and 849 by

CAL. Both use two RAM blocks. In this part, the maximum frequency as well as the resource

140 6.4. JPEG Encoder

consumption is almost the same for both languages.

When comparing with handwritten VHDL, it has a better maximum frequency of 135 MHz

as compared to 129 MHz by CAPH. In this part also, the consumed number of slices, slice

flip flops and 4 input LUTs is almost the same for both language (around 1% of total). The

number of block RAMs used by both is 2. For RLE, the only major difference between CAPH

and handwritten VHDL is the maximum frequency and resource consumption is almost same.

On Xilinx hardware, CAPH generated VHDL code is behind CAL generated code. The big

difference is in the DCT part; in the remaining two parts, the results are almost the same.

Table 6.10 and 6.11 summarize the resource utilization for all encoder parts combined for

the three methodologies on Altera and Xilinx FPGAs respectively.

Table 6.10: All parts (Altera)

Total CAPH CAL Handwritten VHDL
Max Frequency 40 MHz 41 MHz 47 MHz
Logic Elements 57120 9,686 (17%) 10,091 (18%) 6,785 (12%)
Memory Bits 5,215,104 16,728 (<1%) 19,456 (<1%) 12,288 (<1%)
DSP Blocks 144 24 (17%) 24 (17%) 24 (17%)

Table 6.11: All parts (Xilinx)

Total CAPH CAL Handwritten VHDL
Max Frequency 59 MHz 58 MHz 74 MHz
Slices 33,088 6,680 (20%) 5,232 (15%) 4,515 (13%)
Slice Flip Flops 66,176 6,590 (10%) 4,630 (6%) 3,305 (4%)
4 input LUTs 66,176 11,920 (18%) 7,207 (10%) 6,931 (10%)
Block RAMs 328 8 (2%) 12 (3%) 7 (2%)

On the Altera hardware, CAPH has a maximum frequency of 40 MHz, compared to 41 MHz

for CAL. CAPH consumes 9,686 LEs (17% of total), slightly less than 10,091 LEs (18% of total)

by CAL. CAPH uses 16,728 meory bits and CAL uses 19,456, both are less than 1% of total.

Both use the same number of DSP blocks (i.e. 24). In case of handwritten VHDL, it has a

better maximum frequency of 47 MHz, compared to 40 MHz for CAPH. It consumes 6,785 LEs

(12% of total) as compared to 9,686 (17% of total) by CAPH. The memory bit consumption

is 12,288 , the numbers are less than consumed by CAPH but the percertange of total is the

same for both. The number of DSP blocks consumed is same for both methodologies.

On the Xilinx hardware, CAPH has a maximum frequency of 59 MHz, compared to 58 MHz

for CAL. CAPH consumes 6,680 slices (20% of total), where as CAL consumes 5,232 (15% of

total). Slice flip flops consumtion for CAPH is 6,590 (10% of total) and 4,630 (6% of total) for

CAL. The number of 4 input LUTs used by CAPH is 11,920 (18% of total) and 7,207 (10%

of total) by CAL. The number of block RAMs used by CAPH is 8 (2% of total) and 12 (3%

of total). When comparing with handwritten VHDL, it has a maximum frequency of 74 MHz,

compared to 59 MHz by CAPH. Handwritten VHDL uses 4,515 slices (13% of total), whereas

CAPH uses 5,232 (15% of total). The slice flip flops consumption is 3,305 (4% of total) for

handwritten VHDL and 6,590 (10% of total) for CAPH. Handwritten VHDL consumes 6,931

(10% of total) 4 input LUTs and CAPH 11,920 (18% of total). The number of block RAMs

used is 7 for handwritten VHDL and 8 for CAPH, both are 2% of total.

Chapter 6. Applications 141

Overall, the handwritten VHDL outperforms the code generated by both the methodologies,

both for the maximum frequency as well as resources consumed. But both of these methodolo-

gies (i.e. CAPH and CAL) offer a significant gain in programming effort. When considering this

effort, the overhead in performance can be neglected. On the other hand, it is quite interesting

to compare CAPH and CAL on two different FPGAs. On the Altera FPGA, code generated

by CAPH consumes less LEs and memory bits compared to CAL code. On the other hand, for

Xilinx FPGA, CAL code consumes less slices, slice flip flops and 4 input LUTs compared to

CAPH code. Whereas CAPH consumes less block RAMs due to FIFO size estimation (detailed

in section 4.3). The same is the reason for less memory bits consumption on the Altera FPGA.

In terms of maximum frequency, on both the platforms, there is no significant difference.

The organization of on-chip memory blocks is different on both FPGAs. Stratix device uses

the “TriMatrix” memory structure which consists of three sizes of RAM blocks (512-bit, 4K-bit,

512K-bit). On the other hand, the VirtexII device only provides RAM blocks with a fixed size

of 18 Kbit. So the memory utilization is efficient on Stratix compared to VirtexII.

142 6.4. JPEG Encoder

Chapter 7
Conclusion

143

144

Chapter 7. Conclusion 145

Over the past decade, FPGAs use has been growing rapidly as a result of advancement

in silicon technology. A potential risk to the hindrance of this growth is the availability of

sophisticated design tools for implementing applications from high-level descriptions. This

thesis evaluates the effectiveness of the dataflow programming model for implementing stream

processing applications on FPGAs.

CAPH, a domain specific language (DSL) based on the dataflow programing model, is

selected for this evaluation. Applications are described in CAPH as networks of dataflow actors

operating on structured streams of tokens. This makes the language very well suited to the

description of stream processing applications. The language has a solid formal basis (rooted in

functional programming principles) and this eases the development of target-specific back ends.

Our work essentially concerned the VHDL backend (and, marginally the SystemC backend

since some by-products of the latter are actually used by the former). A number of applications

ranging from very simple to complex have been written in order to explore both the expressivity

of the language and the efficiency of the generated VHDL code.

Our results show that, at least for the set of demonstrated applications, CAPH offers a

significant improvement in expressivity compared to hand-crafted VHDL while producing code

whose performances are on a par with the latter solution.

This said, CAPH is still a ”young” language and our work must be viewed as preliminary.

As a result, many questions remain open, offering opportunities for further work.

First, the set of applications for assessing the language and associated tools has to be en-

riched, in size and spectrum, to confirm our conclusions. More comparisons with existing

applications (both in VHDL and with other high-level languages) are definitely needed. Ulti-

mately, the question of whether the dataflow model is actually suited to the formulation of all

stream-processing applications remains open. An intermediate question concerns the amount of

reformulation that a programmer is ready to do in order to adapt a initial formulation, written

in a imperative language for example, to this model.

Second, the language and the tools themselves could be improved in several ways. For

example, the introduction of sized types could make the actor descriptions more ”generic” (in

the sense that they could operate on tokens having a variable size in bits), this allowing the

construction of a fully reusable library of actors. The definition of higher-order actors (i.e.

actors taking functions as parameters) could push this genericity even further. On the other

side, the VHDL back end could be optimized to produce even better code. For instance, a

limitation, deriving from the current elaboration process, is that the expressions on the right-

hand side of the rules are evaluated in one clock cycle. This is not a problem for “simple”

actors such as the ones used in the application described here but we anticipate that for actors

involving more complex computations, this approach could result in unacceptable critical paths.

In this case, the programmer would have to “break” complex actors into small enough actors

to reach a given clock frequency. Some work is needed for formalizing and implementing the

transformation rules that could assist the programmer in carrying out this transformation.

Third, although CAPH has been used mainly to implement real-time image processing ap-

plications, the dataflow, stream-processing model it supports could be applied to many other

domains, such as nD-signal processing, number crunching applications or neural network sim-

ulations.

Finally, the code will be generated for more hardware elements. For example, for the DSP

146

co-processor in case of SeeMOS platform. At the start, the code generated for each hardware

part will be hard coded in code. Later on, it will be done automatically by calculating the

computing time for each part of code on different hardware parts. This approach can be

further extended to another research platform which contains more hardware parts or by the

addition of hardware elements on SeeMOS platform.

Appendix A
Matlab Code for JPEG Encoder

function res = encoder ()

A = [154 123 123 123 123 123 123 136

192 180 136 154 154 154 136 110

254 198 154 154 180 154 123 123

239 180 136 180 180 166 123 123

180 154 136 167 166 149 136 136

128 136 123 136 154 180 198 154

123 105 110 149 136 136 180 166

110 136 123 123 123 136 154 136];

scale = [1024 1138 1730 1609 1024 1609 1730 1138

1138 1264 1922 1788 1138 1788 1922 1264

1730 1922 2923 2718 1730 2718 2923 1922

1609 1788 2718 2528 1609 2528 2718 1788

1024 1138 1730 1609 1024 1609 1730 1138

1609 1788 2718 2528 1609 2528 2718 1788

1730 1922 2923 2718 1730 2718 2923 1922

1138 1264 1922 1788 1138 1788 1922 1264];

QTab = [16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99];

DivTab = [65536 32768 21845 16384 13107 10923 9362 8192

7282 6554 5958 5461 5041 4681 4369 4096

3855 3641 3449 3277 3121 2979 2849 2731

2621 2521 2427 2341 2260 2185 2114 2048

1986 1928 1872 1820 1771 1725 1680 1638

1598 1560 1524 1489 1456 1425 1394 1365

1337 1311 1285 1260 1237 1214 1192 1170

1150 1130 1111 1092 1074 1057 1040 1024

1008 993 978 964 950 936 923 910

898 886 874 862 851 840 830 819

809 799 790 780 771 762 753 745

736 728 720 712 705 697 690 683

147

148

676 669 662 655 649 643 636 630

624 618 612 607 601 596 590 585

580 575 570 565 560 555 551 546 542];

ZZTab = [0 1 8 16 9 2 3 10

17 24 32 25 18 11 4 5

12 19 26 33 40 48 41 34

27 20 13 6 7 14 21 28

35 42 49 56 57 50 43 36

29 22 15 23 30 37 44 51

58 59 52 45 38 31 39 46

53 60 61 54 47 55 62 63];

% shift left 7

A3 = A*128;

%first 1D DCT

for i=1:8

OutT(i,:)= f_dct(A3(i ,:));

end

%Transpose

B = transpose(OutT);

%Second 1D DCT

for i=1:8

OutT(i,:)= f_dct(B(i ,:));

end

%Transpose

OutT = transpose(OutT);

%shift right + scale

dct = round((OutT .* scale + 524287 - (OutT /2147483648)) / 1048576);

%Quantization

for i =1:8

for j=1:8

qtz(i,j) = (dct(i,j) * DivTab(1,QTab(i,j)))/65536;

end

end

%Transpose+ reshape to make Quantization matrix one dimentioanal array

qtz = reshape(transpose(qtz),1,64);

%ZigZag Ordering

for i =1:8

for j=1:8

zz(i,j) = qtz(1,ZZTab(i,j)+1);

end

end

%Reshape zigzag to 1D array and round to make comparison equal to zero

zz = round(reshape(transpose(zz) ,1,64));

%Run Length Encoding

EOB_index = 64;

Appendix A. Matlab Code for JPEG Encoder 149

while (zz(EOB_index)==0)

EOB_index = EOB_index -1;

end

k=1;

i=1;

while(i <=EOB_index)

ZRL =0;

zero=(zz(i)==0);

while(zero)

ZRL=ZRL +1;

i=i+1;

zero=(zz(i)==0);

end

rle(1,k)=zz(i);

k=k+1;

rle(1,k)=ZRL;

i=i+1;

k=k+1;

end

if(EOB_index <64)

rle(1,k)=0;

rle(1,k+1)=0;

end

res = rle;

end

function [OutT] = f_dct(InT)

x0 = InT(1) + InT (8);

x1 = InT(1) - InT (8);

x4 = InT(2) + InT (7);

x5 = InT(2) - InT (7);

x2 = InT(3) + InT (6);

x3 = InT(3) - InT (6);

x6 = InT(4) + InT (5);

x7 = InT(4) - InT (5);

xa = pmul_1_2(x3);

x3 = pmul_1_1(x3);

xb = pmul_1_2(x5);

x5 = pmul_1_1(x5);

x3 = x3 + xb;

x5 = x5 - xa;

xa = pmul_2_2(x1);

x1 = pmul_2_1(x1);

xb = pmul_2_2(x7);

x7 = pmul_2_1(x7);

x1 = x1 - xb;

x7 = x7 + xa;

xa = x1 + x3;

x3 = x1 - x3;

xb = x7 + x5;

x5 = x7 - x5;

x1 = xa + xb;

x7 = xa - xb;

xa = x0 + x6;

x6 = x0 - x6;

150

xb = x4 + x2;

x2 = x4 - x2;

x0 = xa + xb;

x4 = xa - xb;

xa = pmul_3_2(x2);

x2 = pmul_3_1(x2);

xb = pmul_3_2(x6);

x6 = pmul_3_1(x6);

x2 = xb + x2;

x6 = x6 - xa;

OutT (1) = x0;

OutT (2) = x1;

OutT (3) = x2;

OutT (4) = x3;

OutT (5) = x4;

OutT (6) = x5;

OutT (7) = x6;

OutT (8) = x7;

end

function x1 = pmul_1_1(x)

x1 = x - (x / 8) - (x / 128);

end

function x2 = pmul_1_2(x)

tmp1 = (x / 8) - (x / 128);

tmp2 = tmp1 - (x / 2048);

x2 = tmp1 + (tmp2 /2);

end

function x3 = pmul_2_1(x)

tmp = (x / 512) - x ;

x3 = (tmp /4) - tmp;

end

function x4 = pmul_2_2(x)

x4 = x /2;

end

function x5 = pmul_3_1(x)

tmp = x + (x / 32);

x5 = (tmp / 4) + (x / 16);

end

function x6 = pmul_3_2(x)

tmp = x + (x / 32) ;

x6 = tmp - (tmp / 4);

end

Appendix B
Handwritten VHDL code for

JPEG Encoder

--encoder.vhdl file

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.numeric_std.ALL;

use IEEE.STD_LOGIC_SIGNED.ALL;

ENTITY encoder IS

PORT(

clk ,reset ,start_in : in std_logic;

data_in : in signed (31 downto 0);

start_out : out std_logic;

data_out : out signed (31 downto 0):=(others =>’0’));

END encoder;

ARCHITECTURE rtl OF encoder IS

component dct_top IS

PORT(

clk ,reset ,start_in : in std_logic;

data_in : in signed (31 downto 0);

start_out : out std_logic;

data_out : out signed (31 downto 0):=(others =>’0’));

END component;

component rightshift IS

PORT(

clk ,reset ,start_in : in std_logic;

data_in : in signed (31 downto 0);

start_out : out std_logic :=’0’;

data_out : out signed (31 downto 0):=(others =>’0’));

END component;

component qtz_zz_top IS

151

152

PORT(

clk ,reset ,start_in : in std_logic;

data_in : in signed (31 downto 0);

start_out : out std_logic;

data_out : out signed (31 downto 0):=(others =>’0’));

END component;

component RLE IS

PORT(

clk ,reset ,start_in : in std_logic;

data_in : in signed (31 downto 0);

out_send : out std_logic;

data_out : out signed (31 downto 0):=(others =>’0’));

END component;

signal temp ,temp1 ,temp2 ,temp3 : signed (31 downto 0);

signal data_in1 : signed (31 downto 0);

signal start ,start1 ,start2 ,start3 : std_logic := ’0’;

signal st1 : std_logic := ’0’;

begin

data_in1 <= shift_left(data_in ,7);

st1 <=st;

DCT_1D_1: dct_top port map(clk ,reset ,st1 ,data_in1 ,start ,temp);

DCT_1D_2: dct_top port map(clk ,reset ,start ,temp ,start1 ,temp1);

right_sh: rightshift port map(clk ,reset ,start1 ,temp1 ,start2 ,temp2);

QTZ_zz : qtz_zz_top port map(clk ,reset ,start2 ,temp2 ,start3 ,temp3);

RLE_1 : RLE port map(clk ,reset ,start3 ,temp3 ,start_out ,data_out);

END rtl;

--dct_top.vhdl file

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.numeric_std.ALL;

use IEEE.STD_LOGIC_SIGNED.ALL;

ENTITY dct_top IS

PORT(

clk ,reset ,start_in : in std_logic;

data_in : in signed (31 downto 0);

start_out : out std_logic;

data_out : out signed (31 downto 0):=(others =>’0’));

END dct_top;

ARCHITECTURE rtl OF dct_top IS

component stage1 IS

PORT(

clk ,reset ,start_in : in std_logic;

data_in : in signed (31 downto 0);

start_out : out std_logic :=’0’;

data_out0 : out signed (31 downto 0):=(others=>’0’);

data_out1 : out signed (31 downto 0):=(others=>’0’);

Appendix B. Handwritten VHDL code for JPEG Encoder 153

data_out2 : out signed (31 downto 0):=(others=>’0’);

data_out3 : out signed (31 downto 0):=(others=>’0’);

data_out4 : out signed (31 downto 0):=(others=>’0’);

data_out5 : out signed (31 downto 0):=(others=>’0’);

data_out6 : out signed (31 downto 0):=(others=>’0’);

data_out7 : out signed (31 downto 0):=(others =>’0’));

END component;

component stage2 IS

PORT(

clk ,reset ,start_in : in std_logic;

data_in0 : in signed (31 downto 0);

data_in1 : in signed (31 downto 0);

data_in2 : in signed (31 downto 0);

data_in3 : in signed (31 downto 0);

data_in4 : in signed (31 downto 0);

data_in5 : in signed (31 downto 0);

data_in6 : in signed (31 downto 0);

data_in7 : in signed (31 downto 0);

start_out : out std_logic :=’0’;

data_out0 : out signed (31 downto 0):=(others=>’0’);

data_out1 : out signed (31 downto 0):=(others=>’0’);

data_out2 : out signed (31 downto 0):=(others=>’0’);

data_out3 : out signed (31 downto 0):=(others=>’0’);

data_out4 : out signed (31 downto 0):=(others=>’0’);

data_out5 : out signed (31 downto 0):=(others=>’0’);

data_out6 : out signed (31 downto 0):=(others=>’0’);

data_out7 : out signed (31 downto 0):=(others =>’0’));

END component;

component stage3 IS

PORT(

clk ,reset ,start_in : in std_logic;

data_in0 : in signed (31 downto 0);

data_in1 : in signed (31 downto 0);

data_in2 : in signed (31 downto 0);

data_in3 : in signed (31 downto 0);

data_in4 : in signed (31 downto 0);

data_in5 : in signed (31 downto 0);

data_in6 : in signed (31 downto 0);

data_in7 : in signed (31 downto 0);

start_out : out std_logic :=’0’;

data_out0 : out signed (31 downto 0):=(others=>’0’);

data_out1 : out signed (31 downto 0):=(others=>’0’);

data_out2 : out signed (31 downto 0):=(others=>’0’);

data_out3 : out signed (31 downto 0):=(others=>’0’);

data_out4 : out signed (31 downto 0):=(others=>’0’);

data_out5 : out signed (31 downto 0):=(others=>’0’);

data_out6 : out signed (31 downto 0):=(others=>’0’);

data_out7 : out signed (31 downto 0):=(others =>’0’));

END component;

component ptos IS

PORT(

154

clk ,reset ,start_in : in std_logic;

data_in0 : in signed (31 downto 0);

data_in1 : in signed (31 downto 0);

data_in2 : in signed (31 downto 0);

data_in3 : in signed (31 downto 0);

data_in4 : in signed (31 downto 0);

data_in5 : in signed (31 downto 0);

data_in6 : in signed (31 downto 0);

data_in7 : in signed (31 downto 0);

start_out : out std_logic :=’0’;

data_out : out signed (31 downto 0):=(others =>’0’));

END component;

component transpose IS

PORT(

clk ,reset ,start_in : in std_logic;

data_in : in signed (31 downto 0);

start_out : out std_logic :=’0’;

data_out : out signed (31 downto 0):=(others =>’0’));

END component;

signal temp ,temp1 ,temp2:signed (31 downto 0);

signal s1_data_out0 ,s1_data_out1 ,s1_data_out2 ,s1_data_out3 ,s1_data_out4 ,s1_data_out5 ,

s1_data_out6 ,s1_data_out7 ,s2_data_out0 ,s2_data_out1 ,s2_data_out2 ,s2_data_out3 ,

s2_data_out4 ,s2_data_out5 ,s2_data_out6 ,s2_data_out7 ,s3_data_out0 ,s3_data_out1 ,

s3_data_out2 ,s3_data_out3 ,s3_data_out4 ,s3_data_out5 ,s3_data_out6 ,s3_data_out7 ,

ptos_data_out : signed (31 downto 0);

signal start ,start1 ,start2 ,start3 : std_logic := ’0’;

signal st1 : std_logic := ’0’;

begin

E1: stage1 port map(clk ,reset ,start_in ,data_in ,start ,s1_data_out0 ,s1_data_out1 ,

s1_data_out2 ,s1_data_out3 ,s1_data_out4 ,s1_data_out5 ,s1_data_out6 ,

s1_data_out7);

E2: stage2 port map(clk ,reset ,start ,s1_data_out0 ,s1_data_out1 ,s1_data_out2 ,

s1_data_out3 ,s1_data_out4 ,s1_data_out5 ,s1_data_out6 ,s1_data_out7 ,

start1 ,s2_data_out0 ,s2_data_out1 ,s2_data_out2 ,s2_data_out3 ,

s2_data_out4 ,s2_data_out5 ,s2_data_out6 ,s2_data_out7);

E3: stage3 port map(clk ,reset ,start1 ,s2_data_out0 ,s2_data_out1 ,s2_data_out2 ,

s2_data_out3 ,s2_data_out4 ,s2_data_out5 ,s2_data_out6 ,s2_data_out7 ,

start2 ,s3_data_out0 ,s3_data_out1 ,s3_data_out2 ,s3_data_out3 ,

s3_data_out4 ,s3_data_out5 ,s3_data_out6 ,s3_data_out7);

E4: ptos port map (clk ,reset ,start2 ,s3_data_out0 ,s3_data_out1 ,s3_data_out2 ,

s3_data_out3 ,s3_data_out4 ,s3_data_out5 ,s3_data_out6 ,s3_data_out7 ,

start3 ,ptos_data_out);

E5:transpose port map(clk ,reset ,start3 ,ptos_data_out ,start_out ,data_out);

END rtl;

--stage1.vhdl file

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.numeric_std.ALL;

use IEEE.STD_LOGIC_SIGNED.ALL;

ENTITY stage1 IS

Appendix B. Handwritten VHDL code for JPEG Encoder 155

PORT(

clk ,reset ,start_in : in std_logic;

data_in : in signed (31 downto 0);

start_out : out std_logic :=’0’;

data_out0 : out signed (31 downto 0):=(others=>’0’);

data_out1 : out signed (31 downto 0):=(others=>’0’);

data_out2 : out signed (31 downto 0):=(others=>’0’);

data_out3 : out signed (31 downto 0):=(others=>’0’);

data_out4 : out signed (31 downto 0):=(others=>’0’);

data_out5 : out signed (31 downto 0):=(others=>’0’);

data_out6 : out signed (31 downto 0):=(others=>’0’);

data_out7 : out signed (31 downto 0):=(others =>’0’));

END stage1;

ARCHITECTURE rtl OF stage1 IS

BEGIN

process(clk ,reset)

variable compt : integer :=0;

variable start : std_logic :=’0’;

type mem is array(0 to 7) of signed (31 downto 0);

variable input : mem := ((others=> (others =>’0’)));

begin

if (clk ’event and clk=’1’) then

if(reset=’0’)then

start:=’0’;

compt :=0;

input :=((others=> (others =>’0’)));

start_out <=’0’;

else

if(start_in =’1’)then

input(compt):= data_in;

if(compt =7) then

compt :=0;

start:=’1’;

else

compt:= compt +1;

start:=’0’;

start_out <=’0’;

end if;

if(start=’1’)then

data_out0 <= input (0) + input (7);

data_out1 <= input (0) - input (7);

data_out4 <= input (1) + input (6);

data_out5 <= input (1) - input (6);

data_out2 <= input (2) + input (5);

data_out3 <= input (2) - input (5);

data_out6 <= input (3) + input (4);

data_out7 <= input (3) - input (4);

start_out <=’1’;

end if;

else

start_out <=’0’;

end if;

end if;

end if;

156

end process;

END rtl;

--stage2.vhdl file

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.numeric_std.ALL;

use IEEE.STD_LOGIC_SIGNED.ALL;

ENTITY stage2 IS

PORT(

clk ,reset ,start_in : in std_logic;

data_in0 : in signed (31 downto 0);

data_in1 : in signed (31 downto 0);

data_in2 : in signed (31 downto 0);

data_in3 : in signed (31 downto 0);

data_in4 : in signed (31 downto 0);

data_in5 : in signed (31 downto 0);

data_in6 : in signed (31 downto 0);

data_in7 : in signed (31 downto 0);

start_out : out std_logic :=’0’;

data_out0 : out signed (31 downto 0):=(others=>’0’);

data_out1 : out signed (31 downto 0):=(others=>’0’);

data_out2 : out signed (31 downto 0):=(others=>’0’);

data_out3 : out signed (31 downto 0):=(others=>’0’);

data_out4 : out signed (31 downto 0):=(others=>’0’);

data_out5 : out signed (31 downto 0):=(others=>’0’);

data_out6 : out signed (31 downto 0):=(others=>’0’);

data_out7 : out signed (31 downto 0):=(others =>’0’));

END stage2;

ARCHITECTURE rtl OF stage2 IS

function pmul_1_2(X : signed) return signed is

variable pmul_1_2_tmp1_1 : signed (31 downto 0);

variable pmul_1_2_tmp2_1 : signed (31 downto 0);

begin

pmul_1_2_tmp1_1 := shift_right(X,3) - shift_right(X,7);

pmul_1_2_tmp2_1 := pmul_1_2_tmp1_1 - shift_right(X,11);

return pmul_1_2_tmp1_1 + shift_right(pmul_1_2_tmp2_1 ,1);

end pmul_1_2;

function pmul_1_1(X : signed) return signed is

begin

return X - shift_right(X,3) - shift_right(X,7);

end pmul_1_1;

BEGIN

process(clk ,reset)

variable x0,x1,x2 ,x3,x4,x5 ,x6,x7 ,xa,xb:signed (31 downto 0);

begin

if (clk ’event and clk=’1’) then

if(reset=’0’)then

start_out <=’0’;

else

if(start_in =’1’)then

x0 := data_in0;

Appendix B. Handwritten VHDL code for JPEG Encoder 157

x1 := data_in1;

x2 := data_in2;

x3 := data_in3;

x4 := data_in4;

x5 := data_in5;

x6 := data_in6;

x7 := data_in7;

xa := pmul_1_2(x3);

x3 := pmul_1_1(x3);

xb := pmul_1_2(x5);

x5 := pmul_1_1(x5);

x3 := x3 + xb;

x5 := x5 - xa;

xa := x0 + x6;

x6 := x0 - x6;

xb := x4 + x2;

x2 := x4 - x2;

x0 := xa + xb;

x4 := xa - xb;

data_out0 <= x0;

data_out1 <= x1;

data_out2 <= x2;

data_out3 <= x3;

data_out4 <= x4;

data_out5 <= x5;

data_out6 <= x6;

data_out7 <= x7;

start_out <=’1’;

else

start_out <=’0’;

end if;

end if;

end if;

end process;

END rtl;

--stage3.vhdl file

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.numeric_std.ALL;

use IEEE.STD_LOGIC_SIGNED.ALL;

ENTITY stage3 IS

PORT(

clk ,reset ,start_in : in std_logic;

data_in0 : in signed (31 downto 0);

data_in1 : in signed (31 downto 0);

data_in2 : in signed (31 downto 0);

data_in3 : in signed (31 downto 0);

data_in4 : in signed (31 downto 0);

data_in5 : in signed (31 downto 0);

data_in6 : in signed (31 downto 0);

data_in7 : in signed (31 downto 0);

start_out : out std_logic :=’0’;

158

data_out0 : out signed (31 downto 0):=(others=>’0’);

data_out1 : out signed (31 downto 0):=(others=>’0’);

data_out2 : out signed (31 downto 0):=(others=>’0’);

data_out3 : out signed (31 downto 0):=(others=>’0’);

data_out4 : out signed (31 downto 0):=(others=>’0’);

data_out5 : out signed (31 downto 0):=(others=>’0’);

data_out6 : out signed (31 downto 0):=(others=>’0’);

data_out7 : out signed (31 downto 0):=(others =>’0’));

END stage3;

ARCHITECTURE rtl OF stage3 IS

function pmul_2_2(X : signed) return signed is

begin

return shift_right(X,1);

end pmul_2_2;

function pmul_2_1(X : signed) return signed is

variable pmul_2_1_tmp_1 : signed (31 downto 0);

begin

pmul_2_1_tmp_1 := shift_right(X,9) - X;

return shift_right(pmul_2_1_tmp_1 ,2) - pmul_2_1_tmp_1;

end pmul_2_1;

function pmul_3_2(X : signed) return signed is

variable pmul_3_2_tmp_1 : signed (31 downto 0);

begin

pmul_3_2_tmp_1 := X + shift_right(X,5);

return pmul_3_2_tmp_1 - shift_right(pmul_3_2_tmp_1 ,2);

end pmul_3_2;

function pmul_3_1(X : signed) return signed is

variable pmul_3_1_tmp_1 : signed (31 downto 0);

begin

pmul_3_1_tmp_1 := X + shift_right(X,5);

return shift_right(pmul_3_1_tmp_1 ,2) + shift_right(X,4);

end pmul_3_1;

BEGIN

process(clk ,reset)

variable x0,x1,x2 ,x3,x4,x5 ,x6,x7 ,xa,xb:signed (31 downto 0);

begin

if (clk ’event and clk=’1’) then

if(reset=’0’)then

start_out <=’0’;

else

if(start_in =’1’)then

x0 := data_in0;

x1 := data_in1;

x2 := data_in2;

x3 := data_in3;

x4 := data_in4;

x5 := data_in5;

x6 := data_in6;

x7 := data_in7;

xa := pmul_2_2(x1);

x1 := pmul_2_1(x1);

Appendix B. Handwritten VHDL code for JPEG Encoder 159

xb := pmul_2_2(x7);

x7 := pmul_2_1(x7);

x1 := x1 - xb;

x7 := x7 + xa;

xa := x1 + x3;

x3 := x1 - x3;

xb := x7 + x5;

x5 := x7 - x5;

x1 := xa + xb;

x7 := xa - xb;

xa := pmul_3_2(x2);

x2 := pmul_3_1(x2);

xb := pmul_3_2(x6);

x6 := pmul_3_1(x6);

x2 := xb + x2;

x6 := x6 - xa;

data_out0 <= x0;

data_out1 <= x1;

data_out2 <= x2;

data_out3 <= x3;

data_out4 <= x4;

data_out5 <= x5;

data_out6 <= x6;

data_out7 <= x7;

start_out <=’1’;

else

start_out <=’0’;

end if;

end if;

end if;

end process;

END rtl;

--ptos.vhdl file

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.numeric_std.ALL;

use IEEE.STD_LOGIC_SIGNED.ALL;

ENTITY ptos IS

PORT(

clk ,reset ,start_in : in std_logic;

data_in0 : in signed (31 downto 0);

data_in1 : in signed (31 downto 0);

data_in2 : in signed (31 downto 0);

data_in3 : in signed (31 downto 0);

data_in4 : in signed (31 downto 0);

data_in5 : in signed (31 downto 0);

data_in6 : in signed (31 downto 0);

data_in7 : in signed (31 downto 0);

start_out : out std_logic :=’0’;

160

data_out : out signed (31 downto 0):=(others =>’0’));

END ptos;

ARCHITECTURE rtl OF ptos IS

type t_state is (s0,s1);

signal state: t_state;

BEGIN

process(clk ,reset)

variable compt : integer :=0;

type mem is array(0 to 7) of signed (31 downto 0);

variable input : mem := ((others=> (others =>’0’)));

begin

if (clk ’event and clk=’1’) then

if(reset=’0’)then

state <=s0;

compt :=0;

input :=((others=> (others =>’0’)));

start_out <=’0’;

else

case state is

when s0=>

if(start_in =’1’)then

input (0) := data_in0;

input (1) := data_in1;

input (4) := data_in4;

input (5) := data_in5;

input (2) := data_in2;

input (3) := data_in3;

input (6) := data_in6;

input (7) := data_in7;

compt :=0;

start_out <=’0’;

state <=s1;

else

start_out <=’0’;

end if;

when s1=>

data_out <= input(compt);

start_out <=’1’;

if(compt =7) then

compt :=0;

state <=s0;

start_out <=’0’;

else

compt:=compt +1;

end if;

end case;

end if;

end if;

end process;

END rtl;

--transpose.vhdl file

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

Appendix B. Handwritten VHDL code for JPEG Encoder 161

use IEEE.numeric_std.ALL;

use IEEE.STD_LOGIC_SIGNED.ALL;

ENTITY transpose IS

PORT(

clk ,reset ,start_in : in std_logic;

data_in : in signed (31 downto 0);

start_out : out std_logic :=’0’;

data_out : out signed (31 downto 0):=(others =>’0’));

END transpose;

ARCHITECTURE rtl OF transpose IS

type t_state is (s0,s1);

signal state : t_state;

BEGIN

process(clk ,reset)

variable x0,x1,x2 ,x3,x4,x5 ,x6,x7 ,xa,xb : signed (31 downto 0);

type matrix is array(0 to 63) of signed (31 downto 0);

variable m1 : matrix := ((others=> (others =>’0’)));

variable j,k,l : std_logic_vector (7 downto 0);

variable compt ,compt2 : integer := 0;

begin

if (clk ’event and clk=’1’) then

if(reset=’0’)then

start_out <=’0’;

l := "00000000";

compt :=0;

else

case state is

when s0=>

if(start_in =’1’)then

m1(compt) := data_in;

if(compt =63) then

compt :=0;

state <=s1;

else

compt:=compt +1;

end if;

else

start_out <=’0’;

end if;

when s1=>

data_out <=m1(conv_integer(l));

start_out <=’1’;

if(compt2 =63) then

compt2 :=0;

state <=s0;

else

if(k="00000111") then

k:="00000000";

j:=j+1;

l:=j;

else

162

k:=k+1;

l:=l+"00001000";

end if;

compt2 := compt2 +1;

end if;

end case;

end if;

end if;

end process;

END rtl;

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.numeric_std.ALL;

use IEEE.STD_LOGIC_SIGNED.ALL;

--rightshift.vhdl file

ENTITY rightshift IS

PORT(

clk ,reset ,start_in : in std_logic;

data_in : in signed (31 downto 0);

start_out : out std_logic :=’0’;

data_out : out signed (31 downto 0):=(others =>’0’));

END rightshift;

ARCHITECTURE rtl OF rightshift IS

BEGIN

process(clk ,reset)

type t_s is array (0 to 63) of integer;

variable s : t_s := (1024, 1138, 1730, 1609, 1024, 1609, 1730, 1138,

1138, 1264, 1922, 1788, 1138, 1788, 1922, 1264, 1730 ,1922 ,2923 , 2718,

1730, 2718, 2923, 1922, 1609, 1788, 2718, 2528, 1609 ,2528 ,2718 , 1788,

1024, 1138, 1730, 1609, 1024, 1609, 1730, 1138, 1609 ,1788 ,2718 , 2528,

1609, 2528, 2718, 1788, 1730, 1922, 2923, 2718, 1730 ,2718 ,2923 , 1922,

1138, 1264, 1922, 1788, 1138, 1788, 1922, 1264);

variable i : integer :=0;

variable temp : signed (31 downto 0);

begin

if(reset=’0’)then

i:=0;

data_out <=(others=>’0’);

start_out <=’0’;

else

if (clk ’event and clk=’1’) then

if(start_in =’1’)then

temp:= 524287 - shift_right(data_in ,31);

data_out <= resize(shift_right ((data_in * s(i) + temp) ,20) ,32);

start_out <=’1’;

if(i=63) then

i:=0;

else

i:=i+1;

end if;

Appendix B. Handwritten VHDL code for JPEG Encoder 163

else

start_out <=’0’;

end if;

end if;

end if;

end process;

END rtl;

--qtz_zz_top.file

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.numeric_std.ALL;

use IEEE.STD_LOGIC_SIGNED.ALL;

ENTITY qtz_zz_top IS

PORT(

clk ,reset ,start_in : in std_logic;

data_in : in signed (31 downto 0);

start_out : out std_logic;

data_out : out signed (31 downto 0):=(others =>’0’));

END qtz_zz_top;

ARCHITECTURE rtl OF qtz_zz_top IS

component qtz IS

PORT(

clk ,reset ,start_in : in std_logic;

data_in : in signed (31 downto 0);

start_out : out std_logic :=’0’;

data_out : out signed (31 downto 0):=(others =>’0’));

END component;

component zigzag IS

PORT(

clk ,reset ,start_in : in std_logic;

data_in : in signed (31 downto 0);

start_out : out std_logic :=’0’;

data_out : out signed (31 downto 0):=(others =>’0’));

END component;

signal temp:signed (31 downto 0);

signal start:std_logic :=’0’;

begin

QTZ_1: qtz port map(clk ,reset ,st,data_in ,start ,temp);

ZZ_2 : zigzag port map(clk ,reset ,start ,temp ,start_out ,data_out);

END rtl;

--qtz.vhdl file

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

164

use IEEE.numeric_std.ALL;

use IEEE.STD_LOGIC_SIGNED.ALL;

ENTITY qtz IS

PORT(

clk ,reset ,start_in : in std_logic;

data_in : in signed (31 downto 0);

start_out : out std_logic :=’0’;

data_out : out signed (31 downto 0):=(others =>’0’));

END qtz;

ARCHITECTURE rtl OF qtz IS

type mem is array(0 to 63) of signed (31 downto 0);

signal input ,input1 : mem := ((others=> (others =>’0’)));

attribute ramstyle : string;

attribute ramstyle of input ,input1 : signal is "M4K";

BEGIN

process(clk ,reset)

variable compt ,compt1 ,compt2: integer :=0;

type memory_type_QT is array (0 to 63) of integer;

constant QT : memory_type_QT := (16, 11, 10 ,16 ,24 ,40 ,51 ,61 ,12 ,12 ,14 ,19 ,

26 ,58 ,60, 55 ,14 ,13 ,16 ,24 ,40 ,57, 69 ,56 ,14 ,17 ,22 ,29, 51 ,87 ,80 , 62 ,

18 ,22 ,37 , 56 ,68 ,109 ,103, 77 ,24 ,35 ,55 ,64 ,81 ,104 ,113 ,92 ,49 ,64 ,78 ,

87 ,103 ,121 ,120 ,;101 ,72 ,92 ,95 ,98 ,112 ,100 ,103 ,99);

type memory_type_zigzag is array (0 to 63) of integer;

constant zigzag : memory_type_zigzag := (0, 1, 5, 6, 14, 15, 27, 28, 2, 4, 7, 13,

16, 26, 29, 42, 3, 8, 12, 17, 25, 30, 41, 43, 9, 11, 18, 24, 31, 40,44,53,10, 19,

23, 32, 39, 45, 52, 54, 20, 22, 33, 38, 46, 51, 55, 60, 21, 34, 37, 47,50,56, 59,

61, 35, 36, 48, 49, 57, 58, 62 ,63);

type memory_type_DivTab is array (0 to 120) of integer;

constant DivTab : memory_type_DivTab := (65536 , 32768, 21845, 16384, 13107 ,

10923, 9362, 8192, 7282, 6554, 5958, 5461, 5041, 4681, 4369, 4096, 3855, 3641,

3449, 3277, 3121, 2979, 2849, 2731, 2621, 2521, 2427, 2341, 2260, 2185, 2114,

2048, 1986, 1928, 1872, 1820, 1771, 1725, 1680, 1638, 1598, 1560, 1524, 1489,

1456, 1425, 1394, 1365, 1337, 1311, 1285, 1260, 1237, 1214, 1192, 1170, 1150,

1130, 1111, 1092, 1074, 1057, 1040, 1024, 1008, 993, 978, 964, 950, 936,923,

910, 898,886, 874, 862, 851, 840, 830, 819, 809, 799, 790, 780, 771, 762,753,

745, 736, 728, 720, 712,705, 697, 690, 683,676, 669, 662, 655, 649, 643, 636,

630, 624, 618, 612, 607, 601, 596, 590,585, 580,575, 570, 565, 560, 555, 551,

546, 542);

variable temp : integer;

begin

if (clk ’event and clk=’1’) then

if(reset=’0’)then

compt :=0;

else

if(start_in =’1’)then

temp := DivTab(QT(compt)-1);

if(data_in <0) then

data_out <= resize(shift_right(data_in * (-1)* temp ,16) * (-1) ,32);

else

data_out <= resize(shift_right(data_in * temp ,16) ,32);

Appendix B. Handwritten VHDL code for JPEG Encoder 165

end if;

if(compt =63) then

compt :=0;

else

compt := compt + 1;

end if;

start_out <=’1’;

else

start_out <=’0’;

end if;

end if;

end if;

end process;

END rtl;

--zigzag.vhdl file

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.numeric_std.ALL;

use IEEE.STD_LOGIC_SIGNED.ALL;

ENTITY zigzag IS

PORT(

clk ,reset ,start_in : in std_logic;

data_in : in signed (31 downto 0);

start_out : out std_logic :=’0’;

data_out : out signed (31 downto 0):=(others =>’0’));

END zigzag;

ARCHITECTURE rtl OF zigzag IS

type state is (s0 ,s1);

signal s:state;

type mem is array(0 to 63) of signed (31 downto 0);

signal input ,input1 : mem := ((others=> (others =>’0’)));

attribute ramstyle : string;

attribute ramstyle of input ,input1 : signal is "M4K";

BEGIN

process(clk ,reset)

variable compt ,compt1 ,compt2: integer :=0;

type memory_type_zigzag is array (0 to 63) of integer;

constant zigzag : memory_type_zigzag := (0, 1, 5, 6, 14, 15, 27, 28, 2, 4, 7, 13,

16, 26, 29, 42, 3, 8, 12, 17, 25, 30, 41, 43, 9, 11, 18, 24, 31, 40, 44, 53, 10,

19, 23, 32, 39, 45, 52, 54, 20, 22, 33, 38, 46, 51, 55, 60, 21, 34, 37, 47, 50,

56, 59, 61, 35, 36, 48, 49, 57, 58, 62 ,63);

begin

if (clk ’event and clk=’1’) then

if(reset=’0’)then

s <= s0;

compt :=0;

compt1 :=0;

else

case s is

when s0 =>

if(start_in =’1’)then

166

input(zigzag(compt)) <= data_in;

if(compt =63) then

compt :=0;

s<=s1;

else

compt := compt + 1;

s<=s0;

end if;

end if;

when s1 =>

start_out <=’1’;

data_out <= input(compt1);

if(compt1 =63) then

compt1 :=0;

s<=s0;

else

compt1 := compt1 + 1;

s<=s1;

end if;

end case;

end if;

end if;

end process;

END rtl;

--rle.vhdl file

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.numeric_std.ALL;

use IEEE.STD_LOGIC_SIGNED.ALL;

ENTITY RLE IS

PORT(

clk ,reset ,start_in : in std_logic;

data_in : in signed (31 downto 0);

out_send : out std_logic;

data_out : out signed (31 downto 0):=(others =>’0’));

END RLE;

ARCHITECTURE rtl OF RLE IS

type mem is array(0 to 63) of signed (31 downto 0);

signal input : mem := ((others=> (others =>’0’)));

type mem1 is array (0 to 127) of signed (31 downto 0);

signal output : mem1 := ((others=> (others =>’0’)));

type state is (s0 ,s01 ,s1,s11 ,s12 ,s13 ,s2,s21 ,s22 ,s23 ,s3 ,s31 ,s4);

signal st:state;

BEGIN

process(clk ,reset)

variable compt ,k,i: integer :=0;

variable temp: signed (31 downto 0);

variable EOB_idx ,ZRL: integer :=0;

variable rb_done ,done ,zero: boolean ;

Appendix B. Handwritten VHDL code for JPEG Encoder 167

begin

if (clk ’event and clk=’1’) then

if(reset=’0’)then

st <= s0;

compt :=1;

i := 0;

k := 0;

EOB_idx := 0;

out_send <=’0’;

else

case st is

when s0=>

if(start_in =’1’)then

input(compt)<=data_in;

out_send <=’0’;

if(compt =63) then

compt :=0;

i := 63;

k := 1;

EOB_idx := 63;

st <= s01;

else

compt:= compt +1;

st <= s0;

end if;

end if;

when s01=>

done :=(input(i)=0);

st <= s1;

when s1=>

if(done)then

st <=s11;

i := i-1;

else

st <=s12;

EOB_idx := i;

i := 1;

end if;

when s11=>

done := (input(i)=0);

st <=s1;

when s12=>

output(k)<=input(i);

i:=i+1;

k:=k+1;

st <=s13;

when s13=>

output(k)<= to_signed (0 ,32);

k:=k+1;

st <=s2;

zero :=(input(i)=0);

when s2=>

if(i=EOB_idx)then

output(k)<=input(i);

st <=s23;

i:=1;

168

else

if(zero)then --input(i)=0

ZRL := ZRL + 1;

i := i + 1;

st <=s22;

else

output(k)<=input(i);

i := i + 1;

k := k + 1;

st <=s21;

end if;

end if;

when s21=>

output(k)<=to_signed(ZRL ,32);

ZRL := 0;

k := k + 1;

st <=s2;

zero :=(input(i)=0);

when s22=>

zero :=(input(i)=0);

st <=s2;

when s23=>

k:=k+1;

output(k)<=to_signed(ZRL ,32);

st <=s3;

when s3=>

if (EOB_idx < 64) then

k := k + 1;

output(k)<=to_signed (0 ,32);

st <= s31;

else

st <= s4;

end if;

when s31=>

k := k + 1;

output(k)<=to_signed (0 ,32);

st <= s4;

when s4=>

if(i=k)then

data_out <= output(i);

out_send <=’1’;

i:=1;

k:=1;

st <= s0;

else

data_out <= output(i);

out_send <=’1’;

i := i + 1;

st <= s4;

end if;

end case;

end if;

end if;

end process;

END rtl;

Bibliography

[1] Cyclone II Device Handbook, Volume 1, Altera Corporation, Feburary 2007.

[2] Altera stratix ii dsp blocks. [Online]. Available:

http://www.altera.com/devices/fpga/stratix-fpgas/stratix-ii/stratix-ii/features/dsp/st2-

dsp block.html

[3] J. Serot., Caph language reference manual - v 1.5. [Online]. Available:

http://wwwlasmea.univ- bpclermont.fr/Personnel/Jocelyn.Serot/caph.html

[4] C. Bobda, Introduction to Reconfigurable Computing: Architectures, Algorithms, and Ap-

plications, 1st ed. Springer Publishing Company, Incorporated, 2007.

[5] G. Estrin, B. Bussell, R. Turn, and J. Bibb, “Parallel Processing in a Restructurable

Computer System,” Electronic Computers, IEEE Transactions on, pp. 747–755, Dec.

2006. [Online]. Available: http://dx.doi.org/10.1109/PGEC.1963.263558

[6] D. A. Buell, J. M. Arnold, and W. J. Kleinfelder, Eds., Splash 2: FPGAs in a Custom

Computing Machine. Wiley-IEEE Computer Society Press, 1996.

[7] W. Carter, K. Duong, R. H. Freeman, H. Hsieh, J. Y. Ja, J. E. Mahoney, L. T. Ngo,

and S. L. Sze, “A user programmable reconfiguration gate array,” in Proceedings of IEEE

Custom Integrated Circuits Conference, May 1986, pp. 233–235.

[8] Stratix Device Handbook, Volume 1, Altera, July 2005.

[9] Stratix II device handbook, Volume 1, Altera Corporation, May 2007.

[10] Virtex-6 FPGA Configurable Logic Block User Guide, Xilinx, February 2012.

[11] Altera stratix ii architecture. [Online]. Available:

http://www.altera.com/devices/fpga/stratix-fpgas/stratix-ii/stratix-ii/st2-index.jsp

[12] Institute of Electrical and Electronics Engineers (IEEE) : 1076-2000 IEEE Standard

VHDL Language Reference Manual (2000).

[13] Institute of Electrical and Electronics Engineers(IEEE) : 1364-2001 IEEE Standard Ver-

ilog Hardware Description Language (2001).

[14] International Organization for Standardization (ISO) : ISO/IEC 9899 : 1999.

169

170 Bibliography

[15] Institute of Electrical and Electronics Engineers (IEEE) : 16662005 IEEE standard Sys-

temC.

[16] Impulse-codeveloper. [Online]. Available: http://www.impulsec.com/

[17] Handle-c. [Online]. Available: http://www.celoxica.com/

[18] Mitrion-c. [Online]. Available: http://www.mitrionics.com/

[19] D. S. Poznanovic, “Application development on the src computers, inc. systems,” in

IPDPS, 2005.

[20] M. Gokhale, J. M. Stone, J. M. Arnold, and M. Kalinowski, “Stream-oriented fpga com-

puting in the streams-c high level language,” in FCCM, 2000, pp. 49–58.

[21] T. Hoare, Communicating Sequential Processes. Prentice Hall International, 1985.

[22] W. Najjar, W. Bohm, B. Draper, R. Hammes, J.and Rinker, R. Beveridge, M. Chawathe,

and C. Ross, “High-level language abstraction for reconfigurable computing,” IEEE Com-

puter, vol. 36, no. 8, pp. 63–69, August 2003.

[23] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Spark : A high-lev l synthesis frame-

work for applying parallelizing compiler transformations,” VLSI Design, International

Conference on, 2003.

[24] Y. D. Yankova, K. Bertels, S. Vassiliadis, G. Kuzmanov, and R. Chaves, “Hll-to-hdl

generation: Results and challenges,” in Proceedings of ProRisc 2006, November 2006.

[25] Z. ul Abdin and B. Svensson, “A study of design efficiency with a high-level language for

fpgas,” in IPDPS, 2007, pp. 1–7.

[26] Y. Yankova, K. Kuzmanov, G.and Bertels, G. Gaydadjiev, Y. Lu, and S. Vassiliadis,

“Dwarv: Delftworkbench automated reconfigurable vhdl generator,” in International

Conference on Field Programmable Logic and Applications, 2007.

[27] W. A. Najjar, E. A. Leeb, and G. Gaoc, “Advances in the dataflow computational model,”

Parallel Computing, vol. 25, pp. 1907–1929, December 1999.

[28] A. Gill, T. Bull, G. Kimmell, E. Perrins, E. Komp, and B. Werling, “Introducing

kansas lava,” in 21st International Symposium on Implementation and Application of

Functional Languages, LNCS 6041. LNCS 6041, 11/2009 2009. [Online]. Available:

http://www.ittc.ku.edu/csdl/fpg/sites/default/files/kansas-lava-ifl09.pdf

[29] J. Agron, “Domain-specific language for hw/sw co-design for fpgas,” in Proceedings

of the IFIP TC 2 Working Conference on Domain-Specific Languages, ser. DSL

’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 262–284. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-03034-5 13

[30] J. B. Dennis, “First version of a data flow procedure language,” in Programming Sympo-

sium, Proceedings Colloque sur la Programmation. London, UK, UK: Springer-Verlag,

1974, pp. 362–376. [Online]. Available: http://dl.acm.org/citation.cfm?id=647323.721501

Bibliography 171

[31] J. W. Backus, “Is computer science based on the wrong fundamental concept of program?

an extended concept,” in Algorithmic Languages, de Bakker/van Vliet, Ed. North Hol-

land, 1981, p. 133.

[32] S. Wail and D. Abramson, “Can data-flow machines be programmed with an imperative

language?” in Advanced Topics in Dataflow Computing, B. Editors Gao and Gaudiot,

Eds. IEEE Computer Society Press, 1995, pp. 229–266.

[33] Arvind, D. Culler, and G. Maa, “Assessing the benefits of fine-grain parallelism in dataflow

programs,” in Supercomputing ’88, vol. 1, November 1988, pp. 60–69.

[34] J. Backus, “Can programming be liberated from the von neumann style?: a functional

style and its algebra of programs,” Commun. ACM, vol. 21, no. 8, pp. 613–641, Aug.

1978. [Online]. Available: http://doi.acm.org/10.1145/359576.359579

[35] K.-S. Weng, “Stream oriented computation recursive data flow schemas,” Laboratory for

Computer Science, MIT,Cambridge, Tech. Rep., 1975.

[36] P. R. Kosinski, “A data flow language for operating systems programming,” in

Proceeding of ACM SIGPLAN - SIGOPS interface meeting on Programming languages -

operating systems. New York, NY, USA: ACM, 1973, pp. 89–94. [Online]. Available:

http://doi.acm.org/10.1145/800021.808289

[37] P. Whiting and R. Pascoe, “A history of data-flow languages,” IEEE Annals of the History

of Computing, vol. 16, no. 4, pp. 38 – 59, 1994.

[38] A. L. Davis and R. M. Keller, “Data flow program graphs,” IEEE Computer, vol. 15,

no. 2, pp. 26–41, 1982.

[39] W. M. Johnston, J. R. P. Hanna, and R. Millar, “Advances in dataflow programming

languages,” ACM Computing Surveys (CSUR), vol. 36, no. 1, pp. 1 – 34, March 2004.

[40] E. Lee and D. Messerschmitt, “Synchronous data flow,” in Proceedings of the IEEE,

vol. 75, no. 9, Sept. 1987, pp. 1235 – 1245.

[41] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cyclo-

static dataflow,” vol. 44, no. 2, pp. 397–408, 1996. [Online]. Available:

http://cat.inist.fr/?aModele=afficheN&cpsidt=3024849

[42] T. M. Parks, J. L. Pino, and E. A. Lee, “A comparison of synchronous

and cycle-static dataflow,” in Proceedings of the 29th Asilomar Conference on

Signals, Systems and Computers (2-Volume Set), ser. ASILOMAR ’95. Wash-

ington, DC, USA: IEEE Computer Society, 1995, pp. 204–. [Online]. Available:

http://dl.acm.org/citation.cfm?id=784104.784293

[43] P. K. Murthy and E. A. Lee, “Multidimensional synchronous dataflow,” IEEE Transac-

tions on Signal Processing, vol. 50, pp. 3306–3309, 2002.

[44] S. Neuendorffer and K. Vissers, “Streaming systems in fpgas,” Embedded Computer Sys-

tems: Architectures, Modeling, and Simulation (Lecture Notes in Computer Science), vol.

5114/2008, pp. 147–156, 2008.

172 Bibliography

[45] O. Gelly, “Lau software systems: a high level data driven language for parallel processing,”

in International Conference on Parallel Processing, 1976.

[46] E. A. Ashcroft and W. W. Wadge, “Lucid, a nonprocedural language with

iteration,” Commun. ACM, vol. 20, pp. 519–526, July 1977. [Online]. Available:

http://doi.acm.org/10.1145/359636.359715

[47] W. W. Wadge and E. A. Ashcroft, LUCID, the dataflow programming language. San

Diego, CA, USA: Academic Press Professional, Inc., 1985.

[48] Arvind, K. Gostelow, and W. Plouffe, “An asynchronous programming language and

computing machine,” University of California, Irvine, Tech. Rep. TR 114a, 1978.

[49] J. Herath, N. Saito, K. Toda, Y. Yamaguchi, and T. Yuba, “Dcbl: dataflow computing

based language with n-value logic,” in Proceedings of 1986 ACM Fall joint computer

conference, ser. ACM ’86. Los Alamitos, CA, USA: IEEE Computer Society Press, 1986,

pp. 353–362. [Online]. Available: http://dl.acm.org/citation.cfm?id=324493.324586

[50] J. Mcgraw, S. Skedzielewski, S. Allan, O. Oldehoeft, J. Glauert, C. Kirkham, B. Noyce,

and R. Thomas, SISAL: Streams and iteration in a single assignment language, language

reference manual version 1.2. Lawrence-Livermore-National-Laboratory, Mar. 1985.

[51] J. Glauert, “A single assignment language for dataflow computing,” Master’s thesis, Uni-

versity of Manchester, Manchester,U.K., 1978.

[52] J. Gurd, “The manchester dataflow machine,” Computer Physics Com-

munications, vol. 37, no. 1-3, pp. 49–62, 1985. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/0010465585901353

[53] J. Eker and J. Janneck, “Cal language report,” University of California at Berkeley, Tech.

Rep. ERL Technical Memo UCB/ERL M03/48, December 2003.

[54] R. Thavot, R. Mosqueron, M. Alisafaee, C. Lucarz, M. Mattavelli, J. Dubois, and V. Noel,

“Dataflow design of a co-processor architecture for image processing,” in Proceedings of

the 2008 Conference on Design and Architectures for Signal and Image Processing, 2008.

[55] W. D. Clinger, “Foundations of actor semantics,” Cambridge, MA, USA, Tech. Rep.,

1981.

[56] S. Bhattacharyya, G. Brebner, J. Eker, J. Janneck, M. Mattavelli, and C. Platen,

“Opendf– a dataflow toolset for reconfigurable hardware and multicore systems,” in First

Swedish workshop on multi-core computing(MCC), 2008.

[57] S. S. Bhattacharyya, J. Eker, J. W. Janneck, C. Lucarz, M. Mattavelli, and

M. Raulet, “Overview of the mpeg reconfigurable video coding framework,” J.

Signal Process. Syst., vol. 63, no. 2, pp. 251–263, May 2011. [Online]. Available:

http://dx.doi.org/10.1007/s11265-009-0399-3

[58] [Online]. Available: http://orcc.sourceforge.net/

[59] J. W. Janneck, I. D. Miller, D. B. Parlour, G. Roquier, M. Wipliez, and M. Raulet,

“Synthesizing hardware from dataflow programs: An mpeg-4 simple profile decoder case

study,” in SiPS, 2008, pp. 287–292.

Bibliography 173

[60] G. Roquier, M. Wipliez, M. Raulet, J. W. Janneck, I. D. Miller, and D. B. Parlour,

“Automatic software synthesis of dataflow program: An mpeg-4 simple profile decoder

case study,” in SiPS, 2008, pp. 281–286.

[61] [Online]. Available: http://orcc.sourceforge.net/getting-started/code-generation/

[62] M. Wipliez, G. Roquier, and J.-F. Nezan, “Software code generation for the rvc-cal

language,” J. Signal Process. Syst., vol. 63, no. 2, pp. 203–213, May 2011. [Online].

Available: http://dx.doi.org/10.1007/s11265-009-0390-z

[63] M. Wipliez, G. Roquier, M. Raulet, J.-F. Nezan, and O. Dforges, “Code generation for

the mpeg reconfigurable video coding framework: From cal actions to c functions,” in

ICME’08, 2008, pp. 1049–1052.

[64] A. Dahlin, J. Ersfolk, G. Yang, and J. Lilius, “Configurable video decoding in a dataflow

language,” in Conference on Design and Architectures for Signal and Image Processing

(DASIP ’09), 2009.

[65] A. Dahlin, J. Ersfolk, G. Yang, H. Habli, and J. Lilius, “The canals language and its com-

piler,” in 12th International Workshop on Software and Compilers for Embedded Systems,

2009.

[66] Streamit homepage. [Online]. Available: http://cag.csail.mit.edu/streamit

[67] W. Thies, M. Karczmarek, and S. P. Amarasinghe, “Streamit: A language for streaming

applications,” in CC, 2002, pp. 179–196.

[68] W. Thies, “Language and compiler support for stream programs,” Ph.D. dissertation,

Department of Electrical Engineering and Computer Science, Massachusetts Institue of

Technology, February 2009.

[69] M. Hormati, A. andKudlur, S. Mahlke, D. Bacon, and R. Rabbah, “Optimus: efficient

realization of streaming applications on fpgas,” in Proceedings of the 2008 international

conference on Compilers, architectures and synthesis for embedded systems(CASES ’08),

2008.

[70] E. Waingold, M. Taylor, V. Sarkar, V. Lee, W. Lee, J. Kim, M. Frank, P. Finch, S. Devab-

haktumi, R. Barua, J. Babb, S. Amarsinghe, and A. Agarwal, “Baring it all to software:

The raw machine,” Cambridge, MA, USA, Tech. Rep., 1997.

[71] I. Buck, “Brook spec v0.2, technical report cstr 2003-04 10/31/03 12/5/03,” Stanford

University, Tech. Rep., 2003.

[72] Gpu brook source code. [Online]. Available: http://sourceforge.net/projects/brook/

[73] W. J. Dally, F. Labonte, A. Das, P. Hanrahan, J.-H. Ahn, J. Gummaraju,

M. Erez, N. Jayasena, I. Buck, T. J. Knight, and U. J. Kapasi, “Merrimac:

Supercomputing with streams,” in Proceedings of the 2003 ACM/IEEE conference on

Supercomputing, ser. SC ’03. New York, NY, USA: ACM, 2003. [Online]. Available:

http://doi.acm.org/10.1145/1048935.1050187

174 Bibliography

[74] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and

P. Hanrahan, “Brook for gpus: stream computing on graphics hardware,” ACM

Trans. Graph., vol. 23, no. 3, pp. 777–786, Aug. 2004. [Online]. Available:

http://doi.acm.org/10.1145/1015706.1015800

[75] F. Plavec, Z. Vranesic, and S. Brown, “Towards compilation of streaming programs

into fpga hardware,” in Forum on Specification, Verification and Design Languages(FDL

2008), 2008, pp. 67 – 72.

[76] F. Plavec, “Stream computing on fpgas,” Ph.D. dissertation, Graduate Department of

Electrical and Computer Engineering,University of Toronto, 2010.

[77] (November 2007) Nios ii c-to-hardware acceleration compiler. Altera. [Online]. Available:

http://www.altera.com/products/ip/processors/nios2/tools/c2h/ni2-c2h.html

[78] Quartus II Handbook, Altera.

[79] J. Sérot, F. Berry, and S. Ahmed, “Implementing stream-processing applications on fpgas

: a dsl-based approach,” in 21st International Conference on Field Programmable Logic

and Applications, Crete, Sep 2011.

[80] S. North and E. Koutsofios, “Applications of graph visualization,” in Graphics Interface,

Banff, Alberta, 1994.

[81] Graphviz - graph visualization software. [Online]. Available: www.graphviz.org/

[82] J. Serot, “The semantics of a purely functional graph notation system,” in 9th Symposium

on Trends in Functional Programming, 2008.

[83] J. Serot, F. Berry, and S. Ahmed, “Caph: A language for implementing stream-processing

applications on fpgas,” in Embedded Systems Design with FPGAs, P. Athanas, D. Pnev-

matikatos, and N. Sklavos, Eds. Springer, 2012.

[84] P. Chalimbaud and F. Berry, “Versatile imaging architecture based on a system on chip,”

in FPL, 2004, pp. 1162–1164.

[85] LUPA 4000: 4 MegaPixel CMOS Image Sensor, Cypress Semiconductor Corporation,

2009.

[86] J. Leconte, “Areascan cameras: How to choose between global and rolling shutter,” AT-

MEL, pp. 37 –39, 2006.

[87] K. Suzuki, I. Horiba, and N. Sugie, “Linear-time connected-component la-

beling based on sequential local operations,” Computer Vision and Im-

age Understanding, vol. 89, no. 1, pp. 1–23, 2003. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1077314202000309

[88] T. Gotoh, Y. Ohta, M. Yoshida, and Y. Shirai, “High-speed algorithm for component

labeling,” Systems and Computers in Japan, vol. 21, no. 5, pp. 74–84, 1990. [Online].

Available: http://dx.doi.org/10.1002/scj.4690210507

Bibliography 175

[89] M. Komeichi, Y. Ohta, T. Gotoh, T. Mima, and M. Yoshida, “Video-rate labeling proces-

sor,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,

ser. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, P. J. S.

Hutzler and A. J. Oosterlinck, Eds., vol. 1027, 1989, p. 69.

[90] L. Thurfjell, E. Bengtsson, and B. Nordin, “A new three-dimensional connected

components labeling algorithm with simultaneous object feature extraction capability,”

CVGIP: Graph. Models Image Process., vol. 54, no. 4, pp. 357–364, Jul. 1992. [Online].

Available: http://dx.doi.org/10.1016/1049-9652(92)90083-A

[91] R. Lumia, “A new three-dimensional connected components algorithm,” Computer

Vision, Graphics, and Image Processing, vol. 23, no. 2, pp. 207–217, 1983. [Online].

Available: http://www.sciencedirect.com/science/article/pii/0734189X83901135

[92] R. Lumia, L. Shapiro, and O. Zuniga, “A new connected components al-

gorithm for virtual memory computers,” Computer Vision, Graphics, and

Image Processing, vol. 22, no. 2, pp. 287–300, 1983. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/0734189X83900713

[93] A. Rosenfeld, “Connectivity in digital pictures,” J. ACM, vol. 17, no. 1, pp. 146–160,

Jan. 1970. [Online]. Available: http://doi.acm.org/10.1145/321556.321570

[94] M. B. Dillencourt, H. Samet, and M. Tamminen, “A general approach to connected-

component labeling for arbitrary image representations,” J. ACM, vol. 39, no. 2, pp.

253–280, Apr. 1992. [Online]. Available: http://doi.acm.org/10.1145/128749.128750

[95] P. Bhattacharya, “Connected component labeling for binary images on a reconfigurable

mesh architecture,” J. Syst. Archit., vol. 42, no. 4, pp. 309–313, Nov. 1996. [Online].

Available: http://dx.doi.org/10.1016/1383-7621(96)00027-6

[96] D. S. Hirschberg, A. K. Chandra, and D. V. Sarwate, “Computing connected components

on parallel computers,” Commun. ACM, vol. 22, no. 8, pp. 461–464, Aug. 1979. [Online].

Available: http://doi.acm.org/10.1145/359138.359141

[97] A. Rosenfeld and J. L. Pfaltz, “Sequential operations in digital picture pro-

cessing,” J. ACM, vol. 13, no. 4, pp. 471–494, Oct. 1966. [Online]. Available:

http://doi.acm.org/10.1145/321356.321357

[98] R. Haralick and L. Shapiro, Computer and Robot Vision. Addison Wesley, 1992, vol.

Volume 1.

[99] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. Boston, MA, USA:

Addison-Wesley Longman Publishing Co., Inc., 2001.

[100] L. di Stefano and A. Bulgarelli, “A simple and efficient connected components labeling

algorithm,” in Proceedings of the 10th International Conference on Image Analysis and

Processing, ser. ICIAP ’99. Washington, DC, USA: IEEE Computer Society, 1999.

[Online]. Available: http://dl.acm.org/citation.cfm?id=839281.840794

[101] R. Walczyk, A. Armitage, and D. Binnie, “Comparative study on connected

component labeling algorithms for embedded video processing systems.” in IPCV’10,

176 Bibliography

H. Deligiannidis, Ed. Las Vegas, USA: CSREA Press, 2010, vol. 2. [Online]. Available:

http://researchrepository.napier.ac.uk/3901/

[102] R. Haralick, Real-Time Parallel Computing Image Analysis. New York: Plenum Press,

1981, ch. Some Neighborhood Operators, pp. 11–35.

[103] E. Mozef, S. Weber, J. Jaber, and G. Prieur, “Parallel architecture dedicated to image

component labeling in o(n log n): Fpga implementation,” pp. 120–125, 1996.

[104] F. Chang, C.-J. Chen, and C.-J. Lu, “A linear-time component-labeling algorithm using

contour tracing technique,” Computer Vision and Image Understanding, vol. 93, no. 2,

pp. 206–220, Feb. 2004. [Online]. Available: http://dx.doi.org/10.1016/j.cviu.2003.09.002

[105] C. T. Johnston and D. G. Bailey, “Fpga implementation of a single pass connected com-

ponents algorithm,” in DELTA, 2008, pp. 228–231.

[106] D. G. Bailey and C. T. Johnston, “Single pass connected components analysis,” Image

and Vision Computing New Zealand, vol. 10, December 2007. [Online]. Available:

http://www.ncbi.nlm.nih.gov/pubmed/21698715

[107] Digital compression and coding of continuous-tone still images Requirements and guide-

lines, International Telecommunication Union Std.

[108] N. Ahmed, T. Natarajan, and K. Rao, “Discrete cosine transform,” in IEEE Transactions

on Computers, vol. C-32, Jan. 1974, pp. 90–93.

[109] G. K. Wallace, “The jpeg still picture compression standard.” Commun. ACM, vol. 34,

no. 4, pp. 30–44, 1991.

[110] D. Le Gall, “Mpeg: a video compression standard for multimedia applications,” Commun.

ACM, vol. 34, no. 4, pp. 46–58, Apr. 1991.

[111] M. Wagh and H. Ganesh, “A new algorithm for discrete cosine transform of arbitrary

number of points,” in IEEE Transactions on Computers, vol. C-29, no. 4, April 1980, pp.

269 – 277.

[112] B. Lee, “A new algorithm to compute the discrete cosine transform,” in IEEE Transac-

tions on Acoustics, Speech and Signal Processing, vol. 32, no. 6, Dec 1984, pp. 1243–1245.

[113] Y.-H. Chan and W.-C. Siu, “A cyclic correlated structure for the realization of discrete

cosine transform,” in IEEE Transactions on Circuits and Systems II: Analog and Digital

Signal Processing, vol. 39, no. 2, Feb 1992, pp. 109 – 113.

[114] A. B. Atitallah, P. Kadionik, F. Ghozzi, P. Nouel, N. Masmoudi, and H. Levi, “An

fpga implementation of hw/sw codesign architecture for h.263 video coding,” AEU -

International Journal of Electronics and Communications, vol. 61, no. 9, pp. 605–620,

2007.

[115] Y.-P. Lee, T.-H. Chen, L.-G. Chen, M.-J. Chen, and C.-W. Ku, “A cost-effective archi-

tecture for 8x8 two-dimensional dct/idct using direct method,” in IEEE Transactions on

Circuits and Systems for Video Technology, vol. 7, no. 3, Jun 1997, pp. 459 – 467.

Bibliography 177

[116] W.-H. Chen, C. Smith, and S. Fralick, “A fast computational algorithm for the discrete

cosine transform,” in IEEE Transactions on Communications, vol. 25, no. 9, Sep 1977,

pp. 1004 – 1009.

[117] C. Loeffler, A. Ligtenberg, and G. Moschytz, “Practical fast 1-d dct algorithms with

11 multiplications,” in International Conference on Acoustics, Speech, and Signal

Processing,ICASSP-89., vol. 2, May 1989, pp. 988 – 991.

[118] V. Eijndhoven and F. W. Sijstermans, “Data processing device and method of computing

the costine transform of a matrix,” Nertherland Patent WO/1999/048 025, 1999.

[119] C.-Y. Lu and K.-A. Wen, “On the design of selective coefficient dct module,” in IEEE

Transactions on Circuits and Systems for Video Technology, vol. 8, no. 2, Apr 1998, pp.

143 – 146.

[120] Accuracy requirements for implementation of integer-output 8x8 inverse discrete cosine

transform, ISO (the International Organization for Standardization) and IEC (the Inter-

national Electrotechnical Commission) Std. ISO/IEC 23 002-1.

[121] N. Jayant, J. Johnston, and R. Safranek, “Signal compression based on models of human

perception,” in Proceedings of the IEEE, vol. 81, no. 10, Oct 1993, pp. 1385 – 1422.

[122] ITU, ISO/IEC 10918-1 : 1993(E) CCIT Recommendation T.81, Std., 1993. [Online].

Available: http://www.w3.org/Graphics/JPEG/itu-t81.pdf

[123] C. Lucarz and M. Mattavelli, “Dataflow/actor-oriented language for the design of complex

signal processing systems,” in Conference on Design and Architectures for Signal and

Image Processing (DASIP), Brussels, Belgium, 2008.

[124] [Online]. Available: http://sourceforge.net/projects/orc-apps/

