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Résumé

La modélisation 3d automatique d’un environnement à partir d’images est un sujet tou-
jours d’actualité en vision par ordinateur. Ce problème se résout en général en trois temps:
déplacer une caméra dans la scène pour prendre la séquence d’images, reconstruire la géométrie,
et utiliser une méthode de stéréo dense pour obtenir une surface de la scène. La seconde
étape met en correspondances des points d’intérêts dans les images puis estime simultanément
les poses de la caméra et un nuage épars de points 3d de la scène correspondant aux points
d’intérêts. La troisième étape utilise l’information sur l’ensemble des pixels pour reconstruire
une surface de la scène, par exemple en estimant un nuage de points dense.

Ici nous proposons de traiter le problème en calculant directement une surface à partir
du nuage épars de points et de son information de visibilité fournis par l’estimation de la
géométrie. Les avantages sont des faibles complexités en temps et en espace, ce qui est utile
par exemple pour obtenir des modèles compacts de grands environnements comme une ville.

Pour cela, nous présentons une méthode de reconstruction de surface du type sculpture
dans une triangulation de Delaunay 3d des points reconstruits. L’information de visibilité est
utilisée pour classer les tétraèdres en espace vide ou matière. Puis une surface est extraite de
sorte à séparer au mieux ces tétraèdres à l’aide d’une méthode gloutonne et d’une minorité
de points de Steiner. On impose sur la surface la contrainte de 2-variété pour permettre
des traitements ultérieurs classiques tels que lissage, raffinement par optimisation de photo-
consistance ... Cette méthode a ensuite été étendue au cas incrémental: à chaque nouvelle
image clef sélectionnée dans une vidéo, de nouveaux points 3d et une nouvelle pose sont
estimés, puis la surface est mise à jour. La complexité en temps est étudiée dans les deux
cas (incrémental ou non).

Dans les expériences, nous utilisons une caméra catadioptrique bas coût et obtenons des
modèles 3d texturés pour des environnements complets incluant bâtiments, sol, végétation...
Un inconvénient de nos méthodes est que la reconstruction des éléments fins de la scène n’est
pas correcte, par exemple les branches des arbres et les pylônes électriques.

Mots-clefs: Reconstruction de 2-variété, triangulation de Delaunay 3d, sommets de
Steiner, analyse de complexité, nuage de points épars, Structure-from-Motion.

v



vi



Abstract

The automatic 3d modeling of an environment using images is still an active topic in Com-
puter Vision. Standard methods have three steps: moving a camera in the environment to
take an image sequence, reconstructing the geometry of the environment, and applying a
dense stereo method to obtain a surface model of the environment. In the second step, inter-
est points are detected and matched in images, then camera poses and a sparse cloud of 3d
points corresponding to the interest points are simultaneously estimated. In the third step,
all pixels of images are used to reconstruct a surface of the environment, e.g. by estimating
a dense cloud of 3d points.

Here we propose to generate a surface directly from the sparse point cloud and its visibility
information provided by the geometry reconstruction step. The advantages are low time and
space complexities; this is useful e.g. for obtaining compact models of large and complete
environments like a city.

To do so, a surface reconstruction method by sculpting 3d Delaunay triangulation of the
reconstructed points is proposed. The visibility information is used to classify the tetrahedra
in free-space and matter. Then a surface is extracted thanks to a greedy method and a minor-
ity of Steiner points. The 2-manifold constraint is enforced on the surface to allow standard
surface post-processing such as denoising, refinement by photo-consistency optimization ...
This method is also extended to the incremental case: each time a new key-frame is selected
in the input video, new 3d points and camera pose are estimated, then the reconstructed
surface is updated. We study the time complexity in both cases (incremental or not).

In experiments, a low-cost catadioptric camera is used to generate textured 3d models
for complete environments including buildings, ground, vegetation ... A drawback of our
methods is that thin scene components cannot be correctly reconstructed, e.g. tree branches
and electric posts.

Key-words: 2-Manifold Reconstruction, 3d Delaunay Triangulation, Steiner Vertices,
Complexity Analysis, Sparse Point Cloud, Structure-from-Motion.
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Notations

Here we give the notations which are frequently used in this dissertation.

� R is the set of reals.

� R+ is the set of positive reals.

� R3 is the 3d space, i.e. the set of triples in which each coordinate is a real.

� O is the “big o” notation used in the complexity studies, which should not be con-
founded with the letter O.

� I i is the image with index i in an image sequence.

� ci stands for a reconstructed camera pose (rotation and location in 3d) corresponding
to the image I i.

� ti is the location of camera pose ci.

� qj is a reconstructed 3d point with index j.

� C = {c1, .., cm} is the list of reconstructed camera poses.

� T = {t1, .., tm} is the list of reconstructed camera viewpoints locations.

� Q = {q1, ..,qn} is the list of reconstructed 3d points.

� I3 is the 3× 3 identity matrix.

� 3 × 3 matrix [a]× is the skew-symmetric matrix for the 3d vector a: let a,b be two
vectors in 3d, the cross product meets a ∧ b = [a]×b.

For 3d geometry reconstruction (Chap. 3), we have also

� pi
j is the matched 2d point of the 3d point qj in the image Ii.

� [tiqj) is the ray (half-line) in 3d which originates from camera location ti and goes
through the reconstructed 3d point qj .

� Di
j is the direction vector of ray [tiqj) in the camera coordinate system.
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� [tipi
j) is the ray (half-line) in 3d which originates from camera location ti and goes

through the matched 2d point pi
j .

� di
j is the direction vector of ray [tipi

j) in the camera coordinate system.

For surface reconstructions (Chap. 4 and Chap. 5), we have also

� tiqj is the visibility constraint (line segment) between camera viewpoint location ti

and reconstructed 3d point qj .

� Vj is the visibility constraint list of point qj .

� D is a 3d Delaunay triangulation.

� Δ is a tetrahedron of D.
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Introduction

Image-based Automatic 3d Modeling

Human beings use eyes to acquire visual information of environments. By analyzing the
visual information, our brains are able to perceive 3d information of environments. However,
human eyes cannot store images and the acquired information can be quickly lost due to the
forget function of human brains. The digital camera is invented to solve this problem. Visual
information of an environment can be stored in 2d images by using a digital camera. Then
by interpreting several images of a same environment taken by a digital camera with the
help of a computer, 3d information of the environment can be obtained and a 3d model of
the real environment can be estimated. The process of automatically estimating 3d models
of environments using 2d images is called the image-based automatic 3d modeling. Here,
the word “automatically” should be understood in a sense that images are manually taken
by cameras and the 3d modeling using these images is automatically done by a computer.

Numerous applications can be realized on the estimated 3d models. The models can be
simply rendered for an interactive visualization, and the related applications cover variant
fields, such as virtual visit in games and entertainment, prototyping in manufacturing, visu-
alization and simulation in geology, diagnosis in medicine etc. The estimated models can also
be used for further processing such as robot auto-navigation, 3d printing, computer aided
animation and film etc.

There are several categories of models used for image-based automatic 3d modeling.
The simplest model is the 3d point cloud: a set of independent 3d points reconstructed from
images and each 3d point has 3d coordinate–supposing there exists a Cartesian world coordi-
nates system–and eventually other information such as the color, the orientation etc. The 3d
point cloud is sufficient for some applications such as localization for robot auto-navigation
or the visualization in case that the point cloud is very dense. However, more sophisticated
models like depth maps, voxels, surfaces, are preferred for most of the applications. A very
common model used by the image-based 3d modeling methods is the surface. A surface can
be defined as a function which maps a 2d parameter domain into the 3d space, and we talk
about the parametric surface. It can also be defined as the zero set of a scalar function, e.g.
the zero set of a distance function which maps every node of a Cartesian grid to its signed
distance to the surface, and in this case we talk about the implicit surface.

The image-based automatic 3d modeling is challenging in a lot of aspects. First, the input
is a set of images which contain rich information, e.g. one image contains often millions of
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8 bits (gray level) or 24 bits (color) information. A lot of the information is redundant at
the most of the time, so it should be efficiently interpreted to provide 3d information of
environments. Second, the estimated models of environments should be close to the real
environments as much as possible. In case that only images are available, the estimated
models should be consistent as much as possible to the input images, which contain noise
due to the sensor and the image taking conditions. Third, the estimated models should
be adequate to the aimed application, e.g. many Computer Graphics applications require
the models to verify some topology properties. Fourth, more and more applications need
the modeling process be incremental or real time. It means that the estimated models of
environments should be progressively updated when new images of the environment are
provided and the computation time of each model updating process should be small enough
to satisfy the real time performance.

Objective and Our Methods

The objective of this thesis is to develop new image-based automatic 3d modeling methods
which deal with complete environments such as part of a city. In our case, we assume that
objects of environments are rigid and we do not deal with 3d modeling for deformable scenes.
Besides, our methods do not use active sensors such as a range scanner. We believe that the
passive camera is more adequate for a large-scale environment modeling: most of the active
sensors are limited to indoor scene modeling or are very expensive. Furthermore, a camera
can deal with both indoor and outdoor environments and has a low price. In our work,
we use the catadioptric (omni-directional) camera, which provides wide field-of-view images.
Indeed, a wide field of view is required to reconstruct every point of the environment.

To estimate models of the environment, most of previous works involve all or most of the
image pixels to estimate the model. Some of them directly estimate a 3d model by satisfy-
ing the consistency between the estimated model and input images, e.g. multi-view stereo
methods surveyed in [124]. Others firstly use dense matching to estimate the geometry of
the environment, which is easily converted to a dense 3d point cloud, then reconstruct a
surface to fit the reconstructed geometry, e.g. [23, 76]. In contrast to methods above, our
methods reconstruct few pixels of input images in 3d to form a sparse 3d point cloud by using
Structure-from-Motion (SfM), and reconstruct a surface using a 3d Delaunay triangulation
of the estimated point cloud and visibility information between camera viewpoints and es-
timated points. Thus our modeling methods can be seen as surface reconstruction methods
with a geometry reconstruction pre-processing step, i.e. the sparse point cloud computation.

Many Computer-Aided Design methods uses 2-manifolds for object modeling [68]. Be-
sides, a lot of the surface reconstruction methods in the Computer Graphics field (Sec. 2.2.2)
also enforce manifold property on the output surface. Such a surface has a lot of advan-
tages in post-processing (see Sec. 1.4.2). Our methods also generate a manifold surface
which can have multi genus, by alternating a greedy algorithm and a topology extension
process. The surface denoising post-processing of our methods is improved thanks to the
manifold property of the reconstructed surface. Besides, the reconstructed manifold surface
is a compact surface model of environments, which can also be a good initialization for a
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more sophisticated dense stereo method.
Finally, two image-based automatic 3d modeling methods have been developed in our

work: a batch and an incremental method. Both methods have features described above.
The batch modeling method assumes that all input images are available at a time. The
geometry reconstruction uses all images to firstly estimate a sparse point cloud, which is
then used to reconstruct the environment surface. Regarding the incremental method, the
input images are assumed to be progressively provided. A sparse point cloud and a surface
are initialized using the first three images. Then for each image, new points are reconstructed
to update the sparse point cloud and the environment surface is incrementally reconstructed.
The incremental surface reconstruction here is not a complete surface reconstruction using
the current point cloud, but an update based on previous surface results. In the ideal case,
the processing time per image of an incremental surface reconstruction does not increase
with time.

Contributions and Document Structure

Now we summarize the major contributions of this thesis. These works also lead to several
publications.

� A batch image-based automatic 3d modeling method has been proposed [1, 3, 6]. The
manifold constraint and the visibility information are combined to estimate a multi-
genus manifold surface of environments, by using sparse SfM points reconstructed from
image or video sequences. Besides, in order to improve the surface quality, spurious
handles existing on the reconstructed 2-manifold surface are detected and removed
using a “detect, force and repair” process [5].

� An incremental environment modeling method [4, 6] is also proposed. It is an incremen-
tal version of the batch method. Manifold surfaces of environments are incrementally
reconstructed and both our batch and incremental environment modeling methods are
able to deal with long image or video sequences.

� Complete and detailed time complexity analyses of our surface reconstruction methods
are given, under different assumptions on the input data sets.

� Various experiments are done on quite large image sequences of complete environ-
ments. Our surface reconstruction methods take only a few seconds/minutes for hun-
dreds/thousands images.

The dissertation is organized as follows. Chap. 1 gives preliminary notions on 2-manifold,
simplicial complex, triangulated 2-manifold and 3d Delaunay triangulation. Chap. 2 inves-
tigates the existing image-based automatic 3d modeling methods. Chap. 3 presents the
geometry reconstruction methods used in our modeling methods. Chap. 4 and Chap. 5 show
respectively our batch and incremental surface reconstruction methods. The time complex-
ity analyses of both methods are in Chap. 6. Chap. 7 describes experiments of our modeling
methods. Last, we conclude in Chap. 8.
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Chapter 1

Preliminaries

1.1 2-Manifold

This section presents the definition of 2-manifold. A 2-manifold is a surface that can be
defined in R3 and it is a special case of topological space [99]. Now we begin by the definition
of topological space.

Definition 1.1 (Topological space) Let X be a set and T be a set of subsets of X. The
pair (X,T ) is a topological space if

� ∅ ∈ T and X ∈ T ,

� every union of elements of T is also an element of T ,

� every finite intersection of elements of T is also an element of T .

The elements of T are called open sets, and T is called the topology for X. Intuitively, we
can “think of a topology as the knowledge of the connectivity of a space X: each point in
X knows which points are near it, that is, in its neighborhood” [152].

The Euclidean spaces Rk are examples of topological spaces. Indeed, the Euclidean
distance d of Rk define open balls which generate a topology for Rk. Here we omit the
notation of the topology for Rk. An open ball has center c ∈ Rk, radius r > 0, and it is the
set of points

Bk(c, r) = {x ∈ Rk, d(x, c) < r}. (1.1)

Let M ⊆ X and TM = {V ∩M,V ∈ T}. Then (M,TM ) is a topological space. We
say that (M,TM ) is a subspace of (X,T ) and TM is the induced topology of T by M . In
our case, X = R3, T is the topology generated by d, and the topological subspace (M,TM )
becomes a 2-manifold once we describe a tool to assert that (M,TM ) has dimension 2. Here
is this tool.

Definition 1.2 (Homeomorphism) Let (X1, T1) and (X2, T2) be two topological spaces.
Function f : X1 → X2 is a homeomorphism between these spaces if

5
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� f is bijective

� f is continuous, i.e. ∀V ∈ T2, f
−1(V ) ∈ T1

� f−1 is continuous, i.e. ∀V ∈ T1, f(V ) ∈ T2.

In this case, we say that spaces (X1, T1) and (X2, T2) are homeomorphic. For example, it
can be shown that Bk(0, 1) and Rk are homeomorphic. Now we can define a k-manifold.

Definition 1.3 (k-manifold in Rn) Let M ⊆ Rn and k ∈ N such that 1 ≤ k ≤ n. We say
that (M,TM ) is a k-manifold in Rn if every x ∈M is contained in an open set V ∈ TM such
that V is homeomorphic to Bk(0, 1).

As mentioned in [152], “Intuitively, a k-manifold is a topological space that locally looks
like Rk.” In other words, we can parameterize a small enough neighborhood in M of every
point x ∈M by k real parameters. In our work, we say that M is a k-manifold omitting the
induced topology TM .

See Fig. 1.1 for examples of 2-manifolds: a two-dimensional Euclidean sphere, border of
a cube, border of tetrahedron (a manifold does not need to be “smooth”). Furthermore,
these three 2-manifolds are homeomorphic.

Figure 1.1: Examples of homeomorphic 2-manifolds. From left to right: a two-dimensional
Euclidean sphere, border of a cube and border of a tetrahedron.

1.2 2-Manifold Classification

The homeomorphisms define equivalence classes among the manifolds. The manifolds in a
same class are homeomorphic and they have the same topological properties: same dimension
k (Section 1.1), same number of connected components (see Definition 1.4) and same genus
(see definition in Theorem 1.1).

Definition 1.4 (Connected Component) Let M ⊆ Rn be a k-manifold and x ∈M . The
connected component of x in M is the set of points y ∈M such that there exists a path linking
x and y in M , i.e. there exists a continuous function f : [0, 1]→M such that f(0) = x and
f(1) = y.

6



1.3 Simplicial Complex

Here we confound connected and path-connected components since they are equivalent for
a manifold [56]. The latter is preferred in the definition since it is more intuitive than the
former. We say M is connected if it has a single connected component.

Theorem 1.1 (2-Manifold Classification in R3) Let M be a connected and compact 2-
manifold in R3. There is an unique h ∈ N such that M is homeomorphic to a 2-sphere with
h handle(s). More precisely, M is homeomorphic to

� sphere S2 = {(x, y, z) ∈ R3, x2 + y2 + z2 = 1} if h = 0,

� torus T2 = {(x, y, z) ∈ R3, z2 + (
√
x2 + y2 − 1)2 = 1/9} if h = 1,

� a 2-manifold defined by h tori T2 joined by h− 1 tubes as in Fig. 1.2 if h ≥ 2.

Integer h is also called the genus of M , or the number of handles of M .

Figure 1.2: Example of h-holed torus1.

The original 2-manifold classification Theorem 4 in p. 161 of [99] is more general: it deals
with 2-manifolds which can have a cross-cap as the Klein’s bottle embedded in R4. However,
this generality is not useful in our work where the 2-manifolds are embedded in R3 (see also
p. 6 of [39]). Last, we remind that a subset M of R3 is compact if M is bounded and R3 \M
is an open set of R3.

1.3 Simplicial Complex

Curves, surfaces and volumes can be approximated by piecewise linear discretizations defined
from a finite number of points. Here we give the definition of a single mathematical tool
which can do all these approximations: the simplicial complex [55, 99]. Now we begin by
introducing the definition of simplex.

Definition 1.5 (k-simplex) Let V = {v0,v1, · · · ,vk} be a set of k + 1 points in general
position in Rn. The k-simplex σV is the convex hull of V , i.e.

σV = {
k∑

i=0

λivi, λi ∈ R+,

k∑
i=0

λi = 1, }. (1.2)

We also note σV as v0v1 · · ·vk, and k is called the dimension of σV .

1Image source: http://www.ualberta.ca/dept/math/gauss/fcm/topology/AlgbrcTop/gennsurf.htm
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Remind that “V is in general position” means that k is the dimension of the linear space
generated by v1 − v0, · · · ,vk − v0 (which implies that k ≤ n).

Let V ′ be a subset of V with k′ (k′ < k) elements. Then simplex σV ′ is called a k′-face
of σV . Here, we use the notation σV ′ < σV to say that simplex σV ′ is a k′-face of σV .

There are four kinds of simplices in R3: vertices (0-simplices), edges (1-simplices), trian-
gles (2-simplices) and tetrahedra (3-simplices).

Definition 1.6 (simplicial complex) A simplicial complex K is a finite set of simplices
such that

� if σ ∈ K and τ < σ, then τ ∈ K

� if σ, τ ∈ K and σ ∩ τ �= ∅, then σ ∩ τ is a face of both σ and τ .

The dimension of K is the largest dimension of its simplices.

We say that K ′ is a subcomplex of K if K ′ is a simplicial complex such that K ′ ⊆ K.
Two simplices of K are incident if they intersect. Two simplices of K are adjacent if they
have the same dimension k and their intersection is a simplex of dimension k − 1.

1.4 Triangulated 2-Manifold

1.4.1 Notions & Definitions

Let K be a simplicial complex. The union of the simplices of K is noted {K}. {K} is
called a polyhedron. According to Section 1.1, {K} is a topological subspace of Rn using the
topology induced by the topology of Rn. Here we introduce the definition of triangulated
k-manifold (p. 5 of [99]) as follows,

Definition 1.7 (Triangulated k-Manifold) A triangulated k-manifold is a simplicial com-
plex K such that {K} is a k-manifold.

In case of k = 2, we can see that a triangulated 2-manifold is a simplicial complex K
such that {K} is 2-manifold. In this dissertation, “triangulated 2-manifold” is shortened to
“2-manifold”.

Now we review two methods which check that K is a 2-manifold: a triangle-based test
(p. 723 of [58]) and an edge-based test (p. 87 of [55]).

Property 1.1 (Triangle-Based Test) A two-dimensional simplicial complex is a 2-manifold
if and only if every edge is incident with two triangles, and the triangles around a vertex can
be ordered as f0, · · · , fk−1 so that there is exactly one edge incident with both fi and fi+1

(indices modulo k).

Before presenting the edge-based test, we should remind what is a simple closed polygon
and what is the link of a vertex in a simplicial complex.

8
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�
�

� �

�

Figure 1.3: Star St(v) and link L(v) of a vertex v on a 2-manifold simplicial com-
plex. St(v) contains triangles vab,vbc,vcd,vda and all their faces. Furthermore, L(v) =
{ab,bc, cd,da,a,b, c,d}.

�� ��

Figure 1.4: A regular and a singular vertex. The link of a vertex is shown in bold. We see
that v1 is regular since its link is a simple closed polygon and v2 is singular since its link is not
a simple closed polygon.

Definition 1.8 (Simple Closed Polygon) A simple closed polygon is a one-dimensional
simplicial complex with k (k ≥ 3) distinct vertices v1,v2, . . .vk, and the same number of
edges which are v1v2,v2v3, · · · ,vk−1vk,vkv1.

Definition 1.9 (Star and Link of a Vertex) Let v be a vertex in a simplicial complex
K. Let St(v) be the set of simplices of K containing v, and their faces. Then St(v) is the
star of v in K and it is a subcomplex of K. The link L(v) of v is the set of simplices of
St(v) which do not contain v.

See Fig. 1.3 for an example of the star and link of a vertex in a 2-manifold simplicial
complex. Based on the definitions above, the edge-based test can be presented as follows,

Property 1.2 (Edge-Based Test) A two-dimensional simplicial complex is a 2-manifold
if and only if the link of every vertex is a simple closed polygon.

If the link of a vertex is a simple closed polygon, then this vertex is called a regular
vertex. Otherwise, it is called a singular vertex. Fig. 1.4 shows examples of a regular and a
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singular vertex.

Once we known that the simplicial complex K is a (connected) 2-manifold in R3, one
can classify K thanks to Theorem 1.1 since K is compact.

1.4.2 Using a triangulated 2-manifold for scene modeling

Estimating a triangulated 2-manifold surface to model scenes is a very popular choice in the
image-based modeling methods [23, 70, 76]... More details can be found in Chap. 2.

Advantages exist by enforcing 2-manifold property for an estimated surface which models
the scene. Assuming that the true scene surface is a smooth 2-manifold, the continuous
differential operators of normal and curvature can be well defined. Now if the estimated
surface which approximates the true surface is also a 2-manifold, these operators can be
extended to the discrete case [27, 97]. Then the discrete operators can be used to enforce
constraints on the computed surface, in surface fairing methods or dense methods which
minimize a global cost function involving a regularization term (e.g. [64]). More generally,
a lot of Computer Graphic algorithms do not apply if the estimated surface is not a 2-
manifold [27]. Here is a simple example shown in Fig. 1.5: the oriented normal of a surface
is not well defined for a non-manifold surface. In our work, the manifold property is used to
constrain a surface interpolating a sparse point cloud and to improve surface denoising.

�
�

Figure 1.5: Oriented normals of a non-manifold surface in the 2d case. r has a well defined
normal but s has not.

1.5 3D Delaunay Triangulation

The 3d Delaunay Triangulation is frequently used in the problem of surface reconstruction
from a point cloud [31, 39]. This tool is talked about in this section.

Definition 1.10 (3D Delaunay triangulation) Let Q = {q1, · · · ,qn} be a set of n ≥ 4
points in R3. A 3D Delaunay triangulation of Q is a three-dimensional simplicial complex
K such that

� Q is the set of vertices of K

10



1.5 3D Delaunay Triangulation

� the union of the tetrahedra of K is the convex hull of Q

� the circumscribing sphere of every tetrahedron of K does not contain any vertex in its
interior.

A 3D Delaunay triangulation always exists for Q. Furthermore, it is unique if Q is
in general position, i.e. if Q does not contain 5 cospherical points and does not contain
4 coplanar points.

1.5.1 “Good” Surface Reconstruction

Assume that the set Q of points is a sampling of the (unknown) scene surface S0. On the
one hand, the 3D Delaunay triangulation D is a simplicial complex which, intuitively, stores
the nearest neighbors of every vertex in every direction using edges. On the other hand, a
surface reconstruction method can try to approximate S0 by choosing a list S of triangles
which connect adjacent point triples in Q. As a result, the idea of searching the surface S as
a two-dimensional subcomplex of the 3D Delaunay triangulation comes naturally to mind.

It can be shown that, under assumptions on S0 and Q, there exists a subcomplex S of D
which is a “good” approximation of S0 [12, 25]. We summarize this fact by the Theorem 1.2
presented in the following paragraph. Details are omitted (definitions of ε-sample, small
enough ε, and restricted Delaunay triangulation) since they are not required in our work.

Theorem 1.2 (“Good” Surface Reconstruction) Let S0 be a compact and C2 continu-
ous 2-manifold in R3. Let Q be an ε-sample of S0 where ε > 0 (the smaller ε, the higher
density of Q in S0. The Q density is adapted to the S0 curvature). Let D be the 3D Delaunay
triangulation of Q.

If ε is small enough, there is a simplicial subcomplex S′ of D such that

� S′ is homeomorphic to S0

� the Hausdorff distance between S′ and S0 is O(ε2).

A solution S′ can be computed from S0 as the Delaunay triangulation of Q restricted to S0.

Note that the approximation is “good” in both topological sense (S′ is a triangulated
2-manifold homeomorphic to S0 [12]) and geometrical sense (the Hausdorff distance between
S′ and S0 [25] is small).

1.5.2 Infinite Vertex

A 3D Delaunay triangulation D of point set Q can be seen as the adjacency graph of its
tetrahedra:

� a graph vertex is a tetrahedron,

� a graph edge is a triangle between two tetrahedra.

11
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All tetrahedra have 4 neighbors, except a few tetrahedra which have (at least) a triangle
on the border δC of the convex hull C of Q. To make easier both design of algorithms
and implementation, a standard method [7] completes this graph such that all tetrahedra
(without exception) have exactly 4 neighbors.

Figure 1.6: Delaunay triangulation D with infinite vertex v∞. We have finite vertices of D
(round black points), finite edges of D (solid lines), the infinite vertex v∞ (squared red point),
infinite edges of D (dashed curves), finite cells (gray), infinite cells (white).

The infinite vertex v∞ is introduced such that we define a virtual tetrahedron joining
every δC triangle and v∞. See Fig 1.6 for an example. The virtual tetrahedra (and v∞) do
not exist in R3, but they are vertices of the adjacency graph. Then, the adjacency graph
becomes a 4-regular graph.

1.5.3 Space and Time Complexities

Here we only describe properties [58] (p. 516) that we need. We use the standard “big o”
notation O and we assume that the number of vertices in a 3d Delaunay triangulation D is
n.

First, the number of tetrahedra |D| in D can vary from O(n) to O(n2). In the worst case,
|D| is O(n2) and its maximum vertex degree d is O(n) [18]. Here, d is the maximum number
of tetrahedra incident to a vertex of D except v∞. [36] shows that |D| can be O(n log(n)) if
Delaunay vertices sample a smooth surface under some uniform sampling condition. However
our Delaunay vertices are sparse points without uniformity guarantee, thus we prefer to use
O(n2) as the theoretical complexity of |D|.

Second, the 3d Delaunay triangulation can be computed in O(n2). In our work, we use
the CGAL implementation [7] of the algorithm [38] and it has a complexity of O(n2) in the
worst case [26]. Besides, the complexity of adding a 3d point in D is also O(n2) in the worst
case, where all tetrahedra of D are destroyed and D is reconstructed.
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Chapter 2

State of the Art of Automatic
Image-based 3d Modeling

Automatic modeling of scenes from images is a well studied subject during the recent decades.
This chapter surveys the existing methods in the literature. Here, we investigate only meth-
ods using passive visual sensors like a camera and objects in scenes are assumed to be
non-deformable. Methods using active vision or dealing with deformable scenes are out of
the scope of our survey.

One category of automatic image-based 3d modeling methods, e.g. [48, 74, 81, 147],
directly model scenes from images by using tools such as voxels, level-sets, meshes or depth
maps [124]. Another category of methods firstly estimate a 3d point cloud from images, and
then apply a surface reconstruction method, e.g. [82, 149], to model scenes. In our work, we
roughly classify the automatic image-based 3d modeling methods in these two categories.
Sec. 2.1 presents methods which model directly from images and Sec. 2.2 presents methods
which model via a point cloud. Notice that Sec. 2.1 is relatively short compared to Sec. 2.2
since methods in Sec. 2.1 are quite different from ours. Besides, we survey the incremental
and real time image-based modeling methods in Sec. 2.3. At last, a conclusion of our survey
is given in Sec. 2.4.

2.1 Modeling directly from Images

Many image-based modeling methods, known as multi-view stereo methods, directly esti-
mate a model of scenes from images. In most cases, the input images are calibrated before
modeling. It means that not only camera intrinsic parameters but also the camera orienta-
tions and locations where images are taken are known. The calibration of camera parameters
from multi images is a standard problem in Computer Vision that we do not present here.
One might refer to [63] or Chap. 3 for further reading. Now we suppose that all input images
are calibrated.

The work [124] gives a survey and classification of multi-view stereo methods. Inspired by
this work, we classify the methods which model scenes directly from images in four categories,
according to their representation structures: voxels, level sets, meshes and depth maps.
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2. STATE OF THE ART OF AUTOMATIC IMAGE-BASED 3D MODELING

Before going into details, we remark that our classification criterion is on the repre-
sentation structure used by the final estimated model. One structure might be converted
to another one using a suitable algorithm, e.g. the voxels and level sets can be efficiently
converted to a mesh using marching-cube algorithm [92]. The classification criterion that
we used is a common one, and there are also other criteria [124] such as reconstruction
algorithm.

2.1.1 Voxels

Some works [28, 81, 123, 129, 139, 146]... model scenes as a voxel-occupancy function.
The majority of these methods [81, 123, 129, 139]... measure a compatibility score of the
voxel with input images and decide if this voxel is occupied. This score is called the photo-
consistency [81]. These methods are usually known as “space-carving” approaches.

Let us take the work [81] as an example. This work initializes with a volume V (a
Cartesian grid) containing the object to model and removes the non-photo-consistent voxels
from V . To do so, each voxel is back-projected to visible images and the photo-consistency
score of the voxel is computed. This score is calculated based on the deviation of colors of the
back-projected pixels and compared to a threshold to decide if the voxel is photo-consistent
or not. In practice, voxels of grid are swept in an order such that the occluder is swept before
voxels that they occlude.

2.1.2 Level Sets

Some works [48, 72, 91, 115]... model scenes as a level set of a scalar function. The scalar
function is sampled on a regular Cartesian grid and the implicit surface which models scenes
is located at the set of points where the scalar (interpolated) function values are zero.

Generally, level sets methods are variational approaches. They start at an initial guess
of the surface and then the surface evolves (shrinks or expands) to a final surface which is
consistent to input images. We take the work [48] as an example. Assume that C0 = {x ∈
R3, f0(x) = 0} is the initial surface and C(t) = {x ∈ R3, f(x, t) = 0} is the deformed surface
at time t. Here, f0 and f are two scalar functions in class C2 such that f0(x) = f(x, 0).
The evolution of surface C(t) is described by partial differential equations of f which can
be obtained as follows. A mobile point x(t) in C(t) meets f(x(t), t) = 0, which also means
∂f
∂t +∇f dx

dt = 0. By noting n = ∇f
|∇f | and β = −ndx

dt , we have ∂f
∂t = β|∇f |. Here β(x) is the

evolution speed of point x in the surface in direction of its normal to the surface. The idea
is to choose β in function of a criterion of global matching to minimize. For x ∈ C(t), the
more the neighbors of projections of x in different images are similar, the more β(x) should
have a magnitude near to zero, i.e. the less the surface must move in x. The criterion of
global matching is the integral of a correlation coefficient of the neighborhood of all points
x in C(t) between well-chosen image pairs. β is chosen as the component along the normal
of C(t) of Euler-Lagrange equations associated in the problem of criterion minimization.

At each instant, f is defined in nodes of a Cartesian grid containing objects to model.
Values of f at t+ 1 are defined by values at t thanks to the equation ∂f

∂t = β|∇f |. Surfaces
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2.1 Modeling directly from Images

defined by level sets are suitable for modeling objects of complex shapes: the surface C(t)
can be separated to several connected components or merge without specific treatment.

2.1.3 Meshes

A mesh is an object connecting vertices by edges and polygon faces. It is specially efficient
for store and render. Therefore many image-based modeling methods [52, 64, 70, 71, 84,
138, 146]... rely on it to represent the scene.

A lot of these methods [70, 138, 147]... convert a Cartesian grid (which contains objects
to model) to a graph, and use volumetric graph cuts techniques to extract a mesh which
optimizes global cost functions e.g. photo-consistency of grid voxels. To do so, each voxel of
the grid is a node in the graph and each face separating a pair of neighbor voxels is a graph
edge. Each graph edge is weighted by a cost function. Then the minimum (cost) cut of the
graph, which is a polygon mesh, can be computed as the final model. Notice that this mesh
separates all grid voxels into two regions thus these methods can also be seen as voxels based
methods presented in Sec. 2.1.1.

Let us take the work [146] as an example to present the graph-cuts framework for image-
based modeling. In this work, a base surface is firstly computed. This base surface can be
either the visual hull of the object to reconstruct, by intersecting cones of the silhouettes
of the scene, or a surface triangulating sparse correspondences in case that the scene is not
circumnavigated. Besides, an inner surface is also computed by shrinking the base surface.
Now, a Cartesian grid containing both surfaces is used, which is considered as a graph.
Voxels between the base surface and the inner surface are projected to images and photo-
consistency scores are calculated using normalized cross-correlation of the projections. The
weight of an edge in the graph is defined by involving the photo-consistency scores of both
graph nodes (voxels) linked by this edge. Finally, by considering the base surface as the
source and the inner surface as the sink, the minimum cut of the graph (a mesh) can be
obtained. The principal advantage of the graph cuts based methods is that the resulting
mesh is a minimal surface for a cost function which combines the global photo-consistency
score and the surface smoothness.

Some mesh based methods [51, 52, 64, 71]... are variational approaches like level sets
methods in Sec. 2.1.2. They deform an initial mesh to converge to a final mesh by minimizing
a cost functional.

Let us take the work [52] as an example. This work combines the multi-view stereo
and shape-from-shading techniques to deform a (hexagonally connected) triangulated mesh.
It relies on an initial regular mesh obtained by applying an approximative dense stereo
algorithm and refines the mesh by moving vertices of the mesh such that a cost functional is
minimized by a conjugate gradient descent method. This cost functional is a weighted sum of
three terms: a smoothing term over mesh vertices, a multi-image intensity correlation term
by taking into account occlusions for each triangle, and a smoothing term of albedo coefficient
(ratio of reflected to incident light) for each pair of adjacent triangles. The smoothing term
over mesh vertices play a double role. It makes the functional more convex so that the
minimization convergence is more rapid, especially at the beginning. Besides, the surface
estimation is less sensible to image noise. The terms of multi-image intensity correlation and
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albedo are complementary: the former brings accurate information in textured regions of
images in contrast to the latter. By using this cost functional, various kinds of information
obtained from multiple images are combined and poorly textured objects such as human
faces can be successfully modeled.

2.1.4 Depth Maps and Disparity Maps

The depth map is an image on which each pixel has a depth information related to the
distance between the surface of the scene and the camera viewpoint. The core problem of
depth maps computation is the dense stereo matching, which consists in finding correspon-
dent pixels (pixels correspondent to a same 3d point) in different images. Once a pixel is
matched to another pixel in a different image, the disparity, i.e. a 2d vector from the pixel
to its correspondent pixel in the image space can be calculated. By doing so for all pixels,
a disparity map is obtained and the depth value for each pixel of the disparity map can be
subsequently estimated [47], thanks to the calibrated camera parameters.

We briefly summarize some tools frequently used by dense stereo matching. First, an
image rectification step is usually applied to a pair of images in order to facilitate the subse-
quent matching steps, i.e. warping both images such that their epipolar lines are horizontal.
Remember that an epipolar line is the intersection between an image plane and a plane which
contains both camera centers. Thanks to image rectification, the searching zone of the cor-
respondent point is reduced to a horizontal segment and the 2d disparity vector becomes 1d.
Note that there exist some methods which do not need a pre-rectification step, e.g. plane
sweep methods [34, 148] and [90].

Now assume that an image pair is rectified and we want to match pixels of an image to
pixels of another image. One can measure the similarity of pixels or regions in two images
by calculating correlation scores (e.g. Zero Normalized Cross Correlation) or measure the
dissimilarity by calculating a matching cost function, e.g. Sum of Squared Difference. Instead
of matching a single pixel which is very erroneous, standard approaches match a window of
pixels around the pixel in question [141]. However, only using similarity measures is not
sufficient [41]. Some matching constraints can be imposed to reduce false positive matches.
Here we list the most important ones,

� disparity limit Suppose that the distance between camera locations of image pair are
small compared to the distance between camera locations and the surface of observed
scenes. The disparity of two correspondent points in the image space has a small
magnitude compared to the dimension of image.

� disparity continuity Disparities of correspondent points should have a smooth vari-
ation in the image space (except at depth discontinuities).

� uniqueness Each pixel admits at most one correspondent point in another image.

� ordering constraint Pixels of an epipolar line and their correspondent pixels in the
conjugate epipolar line are in the same order.
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� disparity gradient limit to 1 The magnitude of disparity gradient, i.e. variation of
disparity for two neighbor pixels, is limited to 1 if normals of their corresponding 3d
points in the real surface of scenes are near to the observation directions of camera.

Many dense stereo matching methods exist in the literature [121]. Some methods [22,
73, 74, 110] calculate a matching cost function for each pixel and estimate the disparity
of each pixel by choosing the one which locally minimizes the matching cost. Many other
methods [11, 21, 29, 95, 118, 132] formulate the dense matching as a global energy function
minimization scheme. Disparities are computed by minimizing an energy function which
involves the global matching costs and the matching constraints previously listed. Various
minimization tools are used such as PDE (e.g. [11, 132]), graph cuts (e.g. [21, 118]), dynamic
programming (e.g. [29, 95]) etc. Besides, a coarse-to-fine multi resolution scheme can be used
to improve both processing time and matching quality (e.g. [17, 117] They start matching
from the highest (coarsest) level to the lowest (finest) level of a pyramid of images, which
are generated from an original image pair.

We note that depth maps are not a “good” final solution for modeling scenes because
they are independent, redundant and not suitable for visualization. As a result, many image-
based modeling methods, either merge depth maps to estimate an unorganized dense point
cloud or directly take depth maps as input, to reconstruct a more sophisticated model (the
surface) of scenes. These methods will be further presented in Sec. 2.2.2.

2.2 Modeling via a Point Cloud

Many automatic image-based 3d modeling methods take a 3d point cloud as input to recon-
struct a surface fitting the point cloud. The point cloud is reconstructed from images and
the reconstructed surface is the estimated model of scenes. We called these methods the
surface reconstruction methods. Depending on how the 3d point cloud is computed, these
methods can be divided in two classes: the dense methods and the sparse methods. The
dense methods use a dense 3d point cloud which corresponds to all or almost all pixels of
(calibrated) images. They rely uniquely on the dense point cloud (and also the underlying
structures of the point cloud if it is organized), i.e. informations other than the point cloud,
e.g. the photo-consistency, are not used. The sparse methods uses a sparse point cloud (or
edges in some cases), which corresponds to features detected in images such as corners [62] or
edges. In contrast to the dense methods, the sparse surface reconstruction methods do not
use only the sparse point cloud but also other informations, notably the visibility information
between a 3d point and several camera locations.

2.2.1 How to compute a Point Cloud ?

Now we talk about how to compute a dense and a sparse point cloud from images. To limit
the scope of the survey, we briefly introduce them and do not investigate these methods.
After this section, we suppose that the point cloud is known and we focus on the survey of
surface reconstruction methods.
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Dense point cloud generation As we have already mentioned in Sec. 2.1.4, depth maps
estimated from images by a dense stereo matching method (e.g. [74]) can be directly used
to reconstruct a surface. These depth maps, also called range images, are organized point
sets such that by projecting pixels of range images to 3d space, an organized 3d point
cloud is formed and connectivities of 3d points are known. Some surface reconstruction
methods exploit the underlying structures of the organized point cloud to facilitate the
surface reconstruction step. These methods are surveyed in Sec. 2.2.2.2. Note that most
of these methods can also use range images obtained using other depth sensors e.g. laser
scanner.

An unorganized point cloud can be obtained by registering different depth maps in a same
coordinate system (range image registration) then followed by a point cloud simplification.
Many surface reconstruction methods rely on an unorganized point cloud to estimate a
surface model of scenes. The point cloud is said “unorganized” in a sense that points are
completely independent. Only 3d coordinates (and a 3d orientation vector in some cases)
of each point are given and connectivities between points are unknown. The range image
registration consists in estimating Euclidean transformations (rotations+translations) which
map points of all range images in a same coordinate system. The standard approach is the
Iterative Closest Point (ICP) algorithm [20]. To register a range image A to another one
B, the algorithm iteratively refines the transformation mapping A to B by minimizing the
sum of distances between registered points of A to their closest points in B. An unorganized
point cloud is obtained after this step, however it is very redundant due to the common
points of different range images. Thus a subsequent point cloud simplification step is usually
needed to reduce the redundancy [27].

Sparse point cloud generation For sparse point cloud, only feature points such corners
in images are reconstructed in 3d. A well known approach to compute the sparse point
cloud of an image sequence is the Structure-from-Motion (SfM) [63]. It begins by detecting
and matching feature points in images, reconstructs the feature points and also camera
parameters, and then refines the reconstruction results (e.g. bundle adjustment). Details
about SfM can be found in Chap. 3. Different from the dense methods and also the modeling
methods in Sec. 2.1, the SfM can be applied to a non calibrated image sequence, i.e. the
camera parameters are not known. And visibility information between reconstructed feature
points and cameras is also provided. By using visibility information together with the sparse
point cloud (a 3d point is observed in several views), the subsequent surface reconstruction
can still reconstruct a surface approximating scenes, in spite of the poor density of the point
cloud.

2.2.2 Dense Methods

As already mentioned in Sec. 2.2.1, dense methods can be regrouped in two classes: methods
using an unorganized dense point cloud and those using an organized one. Remember that
the difference between them is that the latter uses the underlying known structure in the
point cloud, i.e. adjacencies between points, to help the surface reconstruction.
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2.2.2.1 Methods using an unorganized point cloud

The surface reconstruction methods with an unorganized dense point cloud are firstly pre-
sented. According to the output format, some methods reconstruct a parametric surface to
model the scene and other methods use an implicit surface. Now to facilitate the presenta-
tion, we note Q for the input dense unorganized point cloud, and S for the reconstructed
surface.

Parametric surface The majority [12, 14, 15, 23, 32, 40, 45, 145]... of the methods using a
parametric surface are based on the Voronoi diagram or its dual, the Delaunay triangulation
(see also [31]). These methods rely on the principle that a “good” approximation of the
scenes surface is embedded in the 3d Delaunay triangulation of Q, if Q is a ε-sample with ε
small enough (see Sec. 1.5.1).

Some Delaunay-based methods [12, 14] exploits the fact that, if Q is sufficiently dense,
vertices of Voronoi cells of Q are generally far from the (unknown) surface of scenes in
a direction perpendicular to the surface. The Crust algorithm [12] builds a 3d Delaunay
triangulation using Q and poles of Q. Here, poles of a point q ∈ Q are the two farthest
vertices of the Voronoi cell of q. The Delaunay triangles which have at least one pole as
vertex are eliminated. Next, a second triangle filtering process is applied to remove irregular
triangles (e.g. a triangle is irregular if angles between its normal and pole vectors of triangle
vertices are large) and a set of triangles are selected such that each edge is incident to at least
two triangles. Finally, a 2-manifold is grown by a breadth-first search over the triangle set.
The Crust algorithm is further simplified by Cocone algorithm [14] which directly uses the
3d Delaunay triangulation of Q and selects a set of Delaunay triangles whose dual Voronoi
edges intersect cocone zones of points of Q. Here, a cocone zone of a point q ∈ Q is the
complement of the double cone which has q as apex and the pole vector of q as axis. The
aperture of a cone is slightly smaller than π, i.e. the cocone zone is a small zone containing
the tangent plane of q. At last, a 2-manifold is extracted from the selected triangle set as in
Crust [12].

Works [15, 40, 80] consider that the surface of objects can be approximated by using a
union of balls (Delaunay circumspheres), called polar balls, centered at poles of points in
Q. For example, [15] builds a power diagram of polar balls, which is a generalized Voronoi
diagram partitioning the space into polyhedral cells. A polyhedral cell for a given polar ball
B, contains all points in R3 such that its power distance to B is smaller than to other polar
balls. The surface is reconstructed by selecting faces in the power diagram which separate
cells of inner polar balls from those of outer polar balls. These faces are recognized using
an heuristic [13] such that two polar balls of adjacent cells have different labels (inner or
outer) if they do not intersect deeply. Another work [80] uses spectral graph partitioning
techniques to help separate Delaunay tetrahedra (via their dual Voronoi vertices) in two
sections. The idea is to build a pole graph based on the 3d Delaunay triangulation T of
Q by using all poles as graph nodes and each edge vivj of T is translated to four graph
edges: v+

i v
+
j ,v

+
i v

−
j ,v

−
i v

+
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−
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j , where v+

i ,v
−
i and v+
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j are respectively poles of vi,vj.

The heuristic of [13] is used to assign weights for graph edges. Each graph edge is weighted
positive (resp. negative) if their polar balls (resp. do not) intersect deeply. Then a spectral
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graph (bisection) partitioning method is used to cut graph nodes (so their dual Delaunay
tetrahedra) into two sections. At last, a second graph is built and cut based on previous
results. This graph cut labels remaining tetrahedra whose dual Voronoi vertices are not poles
and a surface is extracted from triangles in border of two sections.

Another well known family of Delaunay-based methods are sculpture methods [23, 32,
45, 145]. The first sculpture method [23] is proposed by Boissonnat in 1984. This method
constructs firstly a 3d Delaunay triangulation of Q, then sculpts it until all point of Q ap-
pear on the surface S while keeping the boundary of the Delaunay be always a polyhedron
(2-manifold with genus 0). Here, “sculpture” means that tetrahedra of the 3d Delaunay
triangulation are removed one by one in an order based on a priority criterion. The priority
criterion of a tetrahedron Δ is the maximum distance between faces of Δ on S and the cir-
cumsphere of D. After that, several sculpture approaches similar to [23] are proposed. [145]
sculpts the 3d Delaunay triangulation by computing γ−indicators for boundary Delaunay
tetrahedra as the sculpture priority criterion. Let Δ be a tetrahedron such that one of its
triangles is on the boundary of Delaunay. Let r be the radius of the circumcircle of the
boundary triangle and R be the radius of the circumsphere of Δ. Let d = 1− r

R (note that
0 < d < 1). The γ−indicator for Δ is −d (resp. d) if the circumsphere of Δ is centered
inside (resp. outside) the boundary of Delaunay. This method can deal with variable point
density however, like [23], this method cannot model objects with multi genus. Further, the
work [37] improves [23] by sculpting a connected set of tetrahedra each time instead of only
one tetrahedron each time. Consequently it improves the genus of the reconstructed objects.

In 2003, Chaine [32] proposes a geometric convection scheme which translates the surface
convection method [150] over the 3d Delaunay triangulation of Q. To do so, the method
takes the convex hull of Q as the initial pseudo-surface and shrinks (sculpts tetrahedra) it by
always maintaining the Gabriel property of each oriented half-facet, until the pseudo-surface
locally fits the input points. Remember that for an oriented half-facet, the Gabriel property
is met if the half diametrical ball of the half-facet does not contain any point in Q. Here the
term “pseudo-surface” comes from that both oriented half-facets of a same (non-oriented)
triangle can exist in the surface. Further, this geometric convection method has been used
by [9] which reconstructs the surface from points in a streaming scheme. The work [9] can
be seen as an incremental surface reconstruction method that we discuss in Sec. 2.3.

Some other approaches [16, 45] reconstruct an alpha shape of Q and consider the bound-
ary of the alpha shape as the final surface S. A 3d alpha shape or α-shape can be seen as
a sub-complex of a 3d Delaunay triangulation. For a given value of alpha, a tetrahedron in
the 3d Delaunay triangulation can be labeled as outside or inside of the boundary of the
alpha shape depending on the radius of its circumsphere and the value of alpha. In 1994,
Edelsbrunner and Mucke give the mathematical definition of alpha shapes in their work [45]
and present in details how to obtain alpha shapes based on 3d Delaunay triangulation to
reconstruct the surface of scenes.

A minority [19, 59] of parametric surface methods directly establish connectivities of
points in Q in forms of triangles. And a triangulated surface is extracted from these triangles.
[19] proposes a ball-pivoting algorithm (BPA). Starting from a triangle seed, a size-fixed ball
is pivoting around edge of triangles (endpoints of the pivoting edge are on the ball). Each
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time a point in Q is reached by the ball, a new triangle is formed by this point together with
endpoints of the pivoting edge and the process continues to try other edges. Finally, BPA is
tried several times until all points of Q are considered. Another work [59] firstly estimates
an oriented tangent plane for each point q ∈ Q and then creates a 2d Delaunay triangulation
for q by using projections of neighbors of q in its tangent plane. At last, a manifold surface
S is obtained by stitching a set of (3d) triangles which are obtained such that three input
points of Q form a triangle if they are mutual neighbors in the 2d Delaunay triangulations.
Notice that both methods presented above require that Q is sufficiently dense and uniform
or locally uniform to correctly reconstruct S.

Implicit surface Another category of surface reconstruction methods (using a dense un-
organized point cloud) reconstruct surfaces in an implicit form. These methods estimate an
implicit function f : R3 → R to interpolate or approximate points of Q. Each point q ∈ Q
constrains the function f such that f(q) = 0 (interpolation) or f(q) 
 0 (approximation).
And the function f is usually the sum of some base functions (global approaches) or a list
of local functions (local approaches).

Some methods [10, 24, 69] define the implicit function as a signed distance function. Let
us take the work [69] proposed by Hoppe et al. as an example. This method estimates the
signed distance for a point (grid node) in 3d as the distance between this point and the local
oriented tangent plane of the nearest point in Q. The tangent plane of each point q in Q is
locally computed by using the k-nearest points to q in Q. Then consistent orientations of
the tangent planes are obtained using minimum spanning tree optimization techniques such
that neighbor points of Q have similar orientations.

Some other methods [30, 101, 108, 120, 143] use radial basis functions (RBFs) to fit the
point cloud. A radial basis function is a real function φ whose value depends uniquely on the
distance from a point c, called the center, i.e. φ(x, c) = φ(|x−c|) (| · | is the Euclidean norm
in R3). The implicit function f to estimate is the sum of some weighted RBFs and each point
q in Q gives a constraint f(q) = 0. Here, centers of RBFs are usually (but not necessarily)
points in Q, and the RBFs weights need to be computed. Global fitting methods [120, 143]
translate constraints provided by points of Q in a linear equation system (LES) and weights
of RBFs can then be resolved. To avoid the trivial solution (all weights are zero), work [30]
proposes to add some off-surface constraint points in LES whose f values are non-zero.
Those points can be generated along the normals of points in Q. Besides, the solution
matrix of global RBFs methods is dense and ill-conditioned if all points in Q are centers of
RBFs. [30] iteratively reduces the number of RBF centers and uses a fast Multipole method
to accelerate the RBFs evaluation. There exist also local fitting methods [101, 108] using
RBFs. These methods use compactly supported RBFs models (a RBF is locally supported
in a neighborhood of the center) to locally fit the points in Q. The solution matrix is much
sparser but the difficulty of these methods is to choose suitable support size for RBFs in case
of non-uniform point cloud.

Some local fitting methods [109, 137] are based on the partition of the space containing
points of Q, which are known as the partition of unity methods. These methods partition
the space containing Q in subspaces where a local function is estimated using points (in
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Q) of each subspace. In the work [109], an adaptive octree grid is used to partition input
points Q in a set of cells based on the local density of Q. Normals of Q are pre-estimated,
and a quadratic or piecewise quadratic polynomial is adaptively chosen (depending on local
curvatures) and fitted to points of each cell. Finally, a global implicit function is obtained
by blending polynomial of each cell. This method can deal with large point sets thanks to
the adaptive subdivision of Q.

Another category of local fitting approaches [8, 79, 85, 111, 126] are Moving Least Squares
(MLS) methods. We take the work [85] as an example, which defines the surface using a
projection operator. For each point r in or near to the real (unknown) surface S, the method
firstly estimates a reference plane which locally approximating S. Then a polynomial locally
approximating S is initialized over the reference plane. Next, points in Q are projected on
the polynomial via a projection operator and least squared errors between points in Q and
their projections in the polynomial are iteratively minimized. Finally, the local surface of
point r is defined as the set of stationary points of the final projection operator. The MLS
methods naturally handle uniform noise and generate smooth surfaces, but are sensible to
outliers.

Another choice of implicit function is the indicator function used by methods [75, 76],
which has value one inside objects and zero outside objects. Let us take the work [76] as
an example. This method, known as the Poisson surface reconstruction, firstly computes a

vector field
−→
V from the input oriented point cloud Q by smoothing (applying a Gaussian

filter to) normals of Q. And then the goal is to determine χ such that gradient of χ best

fits
−→
V , which is formulated as resolving a Poisson equation: Δχ = ∇ · −→V , where Δ is the

Laplace operator and ∇· is the divergence operator. To do so, the sum of some weighted
compactly supported base functions (centered at points of Q) is used to represent χ. The
weights are globally resolved by minimizing the sum of squared errors between projections

of Δχ and ∇·−→V on each base function. This method is robust and provides excellent results
however, like many other implicit methods [30, 69, 109], normals of Q should be provided or
computed.

Level-set methods (Sec. 2.1.2) can also be applied to fit a point cloud. Here, remember
that the idea of a level-sets method is to deform an initial surface by minimizing an energy
functional defined by an integral over the surface. The work [150] proposes to minimize the

functional: E(S) = (
∫
S dp(x)ds)

1
p , 1 ≤ p ≤ ∞. Here, d(x) is the distance between a point x

in the surface to the nearest point in Q. This function can be seen as a surface area weighted
by the distance between the surface and Q, and it is minimized by using a gradient descent
method. The evolution speed of a point x ∈ S depends on d(x) and ∇d(x). In this method,
in order to efficiently perform the evolution process, an initial surface roughly fitting Q is
used as input of the level sets process. This initial surface is computed in a convection
scheme by iteratively refining an arbitrary surface (e.g. a bounding box) along the direction
of −∇d of points in the surface.
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2.2.2.2 Methods using an organized point cloud

Some surface reconstruction methods [33, 35, 53, 66, 67, 113, 131, 142, 149] directly estimate
a surface using range images (organized point sets) to model scenes. Each range image de-
fines a partial surface and the goal of these methods is to merge or fuse the partial surfaces
into a global surface. Thus these methods are also called “fusion methods”. The under-
lying connectivities between points in a range image can be used to facilitate the surface
reconstruction step. For example, a range image can be easily triangulated to produce a
triangulated mesh as follows. Four adjacent points on a range image are joined to form 0,
1 or 2 triangles and for each point, it has at most eight adjacent triangles. If the difference
of depths between two adjacent points is too large (superior to a threshold), then these two
points will not be connected.

Some methods [33, 113, 131, 142] generate triangulated meshes from range images and
directly merge meshes of all range images. A representative work is the Mesh Zippering [142]
proposed by Turk and Levoy. In this work, a variant of ICP algorithm is firstly used to register
range images one after another and for each range image, a triangulated mesh is generated
as described in the previous paragraph and zippered to a global one. To zipper two meshes,
redundant triangles (a triangle is redundant if its vertices lie within a tolerance distance
to another mesh) of both meshes are firstly removed. Now if meshes are intersected, then
vertices on boundaries of both meshes which have intersected triangles are re-triangulated.
If not, the boundary of a mesh will be thickened to connect to the other mesh. At last,
small triangles due to the meshes zippering, together with their vertices, are removed and
the resulting holes are filled by using constrained triangulation.

Other methods [35, 53, 66, 67, 149], instead of merging triangulated meshes of range
images, represent an implicit function over a Cartesian grid to fit depth maps and extract
finally an isosurface. Let us take the work [35] as an example. This work defines a weighted
signed distance function over a Cartesian grid. The function sums up for each grid voxel,
its weighted signed distance to each range surface, which is measured along the line of sight
to the sensor. Here, a range surface is the triangulated mesh of a range image. And the
weight depends on the uncertainty of the intersection between the line to sensor and the
range surface. A point in boundaries of a range surface should have a high uncertainty thus
a small weight. Finally, an isosurface can be extracted at the zero level set of the signed
distance function.

2.2.3 Sparse Methods

Now we present the image-based modeling methods which reconstruct a surface model of the
scene by using sparse feature points (or edges in some cases) estimated from images. The
sparsity comes from the fact that only interest points are detected and matched in images
such as Harris [62], which have uneven distributions and low densities in images. In our
sparse case, about 1 pixel over 200-300 is reconstructed by using SfM methods [87, 103].

Generally speaking, surface reconstruction using sparse data is more difficult than using
dense data due to the poor density of points. Sparse methods are also less popular and are a
minority in the bibliography. However there are several particular advantages by modeling
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scenes using sparse features.

Now the motivation of developing sparse methods is talked about in Sec. 2.2.3.1. Then
by examining the data structures encoding the potential adjacencies between points, sparse
methods are classified in two classes: works using a 3d Delaunay triangulation which are
presented in Sec. 2.2.3.2; and works using several 2d Delaunay triangulations (one per image)
which are presented in Sec. 2.2.3.3.

2.2.3.1 Why a sparse method ?

There are several advantages to model scenes by using sparse features.

First, in a computational viewpoint, building a 3d surface using sparse features is ob-
viously more efficient than that from a dense point cloud. Thus it is especially interesting
for developing on line surface reconstruction applications of large-scale scenes, e.g. it is
suitable for reconstructing compact models for cities. Second, the surface reconstructed
from sparse features could be a good initial surface for dense surface reconstruction methods
[105, 114, 146] etc. Third, there are some scenes where texture is so poor that only a sparse
(not dense) point cloud can be reliably reconstructed. Last, the accuracy of a point in SfM
cloud is expected to be better than that of a point in dense stereo cloud, thanks to the SfM
machinery [63] involving bundle adjustment.

One might directly apply some dense methods to sparse features, e.g. the sculpture
methods [23, 37, 145]. However these works are different from the methods specially designed
for sparse features. Sparse methods using a SfM point cloud have an additional visibility
knowledge: several viewpoints which reconstruct each 3d point by SfM. And all sparse
methods reconstruct a surface which is consistent to these visibility constraints in a sense
that, every line segment linking the 3d point and one of its viewpoints does not intersect the
surface. Such a line segment is called a “ray”. Some sparse methods [49, 93, 112] essentially
use the rays to sculpt an initial volume to build a visibility consistent scene representation.
Thanks to this additional knowledge, a surface can be reconstructed with a smaller number
of points than dense methods investigated in Sec. 2.2.2.

2.2.3.2 3d Delaunay-based methods

Works [49, 82, 93, 112] use 3d Delaunay triangulation as the geometry structure for the
surface reconstruction. Here, [93] is an incremental approach that we will talk about in
Sec. 2.3.

The work [49] of Faugeras et al. starts by constructing a constrained 3d Delaunay trian-
gulation with sparse feature edges. Then the objective of the method is to label tetrahedra
either free-space or matter, and the reconstructed surface is the collection of triangles sep-
arating free-space and matter tetrahedra. To do so, it firstly marks tetrahedra which are
intersected with visibility rays as free-space. Next, it applies several times a region-grown
algorithm [23] in the rest (non-marked) tetrahedra such that the border of each grow region
is a 2-manifold, until all tetrahedra are considered. Tetrahedra inside each region have the
same label which should be decided either free-space or matter. A heuristic can be used
to do so: if a region has a large number of vertices then its tetrahedra are labeled matter,
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otherwise they are labeled free-space. This work guarantees the reconstructed surface to be
a list of 2-manifolds, however limitations exist. This method is experimented with only very
simple data sets and the reconstructed surface is a set of genus-0 2-manifolds. Thus it is not
suitable to model large-scale scenes. A simple object like a torus may not be topologically
correctly reconstructed. Besides, the use of the heuristic described above may provide false
decisions.

In 2007, Labatut et al. [82] introduce a 3d Delaunay triangulation based surface recon-
struction method. Firstly, a point cloud is computed by matching a great number of interest
points. Next the 3d Delaunay triangulation is built after removing redundant points. At
last, a surface is obtained by using graph cuts techniques which minimize an energy function
involving the photo-consistency of Delaunay triangles, the visibility of sparse feature points
and the surface smoothness (area of the surface). Results of this work show that the recon-
structed surface is a good approximation of the scene. However compared to classical sparse
point clouds obtained by SfM methods, the point cloud used for this work is denser but less
accurate. Besides, the resulting surface is not guaranteed to be 2-manifold.

In 2009, Pan et al. implement a probabilistic on-line 3d surface reconstruction pipeline [112],
which builds a textured 3d model of an object with the help of human interaction. During
the on-line modeling, user should turn the object in order that all parts of object could be
captured by camera. The reconstruction pipeline begins by tracking 2d feature points in im-
ages and reconstructs them in 3d whenever there is a sufficient rotation. Next, a 3d Delaunay
triangulation is built using the reconstructed 3d points and also the previous reconstructed
ones. Then tetrahedra which are not consistent with the visibility rays of feature points are
carved away by using a probabilistic approach. To do so, for each triangle and the visibility
rays which intersect this triangle, a confidence score is calculated to decide if this triangle is
consistent to these visibility rays. The score is low if the intersected points of the triangle
with the visibility rays are close to 3d points. Tetrahedra which have one or more than one
inconsistent triangle are carved away and the final surface is then the boundary of the rest
tetrahedra. Results show that a simple surface model can be efficiently generated by this
method. However, this method is an on-line application while it is not incremental: the
surface is completely recomputed for each key-frame. Thus the processing time will increase
rapidly when the image sequence becomes longer thus this method is adequate for small
object acquisition but not for large-scale scenes. Besides, the reconstructed surface is not
guaranteed to be a 2-manifold.

2.2.3.3 2d Delaunay-based methods

Other sparse methods [100, 119, 136] build 2d Delaunay triangulation(s) in 2d image(s) and
back-project them to 3d in order to generate 2.5d surfaces.

In 2000, Morris and Kanade present an image-consistent surface reconstruction method
[100]. Given a set of images, this method begins by computing an initial 2d Delaunay
triangulation of a reference image and back-projects it to 3d to generate a 2.5d triangulation.
Then this triangulation is progressively refined to be consistent to other images by edge
flipping. And the image consistency of the triangulation is measured by the sum for all
triangles of the luminance covariance in the re-projected images. The reconstructed surface
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is a 2-manifold (genus 0) which is image-consistent. However whenever changing an edge, a
predicted image should be processed and a likelihood score should be calculated to check if
the novel triangulation is better. The method is experimented using only simple data sets.
Besides, the resulting 2-manifold has genus 0.

In [136], a feature based stereo algorithm is applied to clusters of images, and edges are
reconstructed. These edges are inserted in the constrained 2d triangulations, then the back-
projected 2.5d triangulations are merged by computing the union of the free-space defined
by the 2.5d triangulations. The resulting implicit surface is converted to 2-manifold mesh by
the marching cube method, which requires a regular subdivision of space. The reconstructed
surface is a visibility consistent 2-manifold. However, compared to other sparse methods, a
limitation of this method is: it uses a regular subdivision of space which is not suitable for
large-scale scenes, as mentioned in [82]. In fact, the subdivision should be sufficiently dense
to not degrade the quality of the reconstructed surface,

In [119], another 2d Delaunay triangulation based surface reconstruction method is pro-
posed. The input is a set of reconstructed 3d points and their 2d tracks in calibrated images.
After a pre-processing (merging, filtering and smoothing) of the input 3d point cloud, this
work detects contours in the 2d images and selects 3d points whose projections in 2d images
are near to contours. These points are called ctracks in the work, and edges (in contours)
connecting ctracks are inserted to a constrained 2d Delaunay triangulation which is based on
ctracks and projections of other 3d points. By doing so on all images, a soup of 3d triangles
is obtained. It is further filtered by taking into account the visibility rays of input 3d points,
normals and sizes of 3d triangles. And at last, a triangulated mesh is extracted from the
triangle soup by using a Delaunay refinement meshing process [25] (it is briefly introduced at
the end of this paragraph). This approach differs from other sparse method in the sense that
the output surface is an approximation (not interpolation) of sparse feature points. Now we
introduce the Delaunay refinement meshing process used at the end of [119]. Given an initial
surface S (triangle soup in case of [119]), this process performs firstly an initial sampling of
S, then it progressively enriches the samplings and finally constructs a Delaunay triangula-
tion restricted to S. The obtained restricted Delaunay triangulation is a triangulated mesh
which is close to S and provides good approximations of normals, areas and curvatures of
S. It is a 2-manifold if the sampling is sufficiently dense, i.e. ε-samples with a sufficiently
small ε. The meshing process relies only on an oracle that, given a segment, testing if the
segment intersects the surface (triangle soup in the case of [119]) and if so, calculating the
intersection points. This feature makes [25] applicable to mesh generation from a triangle
soup or an implicit surface (e.g. [10]).

2.3 (Real time) Incremental Modeling Methods

More and more computer vision applications need and achieve real time performance, thanks
to the well developed parallel calculating technologies. Recently, significant advances [9, 65,
93, 105, 106, 114, 134] have been made on real time or incremental image-based modeling.
Almost all of these methods (except [114]) are adequate for small scenes but not for large-
scale scenes. Regarding the modeling process, works [65, 93] presented in Sec. 2.3.1 use firstly
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SfM algorithms to reconstruct the sparse geometry of scenes, and then directly reconstruct
surface models of scenes. So they can be considered as sparse methods. Works [9, 105, 114]
presented in Sec. 2.3.2 estimate 3d models of scenes using dense points. Thus these methods
can be considered as dense methods.

2.3.1 Sparse Methods

In 2005, Hilton [65] describes a 2d Delaunay based incremental surface reconstruction method
interpolating sparse feature points and edges (extension of the work [96]). In each view, the
method builds a constrained 2d Delaunay triangulation of sparse features on the image
and back-projects it to the space and merges them to update a mesh. The mesh should
be maintained to be consistent to visibility constraints of feature points during the whole
process. Up to our knowledge, this is the first method which computes incrementally 3d
models using sparse SfM features. However, the reconstructed surface is non-manifold which
has holes and self-intersections. Besides, experiments are done with very short sequences.

In 2010, Lovi et al. propose an incremental 3d modeling method [93] based on space-
carving techniques. This method builds incrementally a 3d Delaunay triangulation of sparse
points obtained from SfM, then several heuristics are developed to update the triangulation,
including key frame addition, outlier deletion etc. Furthermore, it updates also incrementally
the carved/un-carved information for each tetrahedron of the triangulation. This method
is integrated with a SfM method PTAM [77] to realize a real time system which builds a
3d model from video. But the reconstructed surface is not 2-manifold. In addition, several
heuristics are used to handle the instability of points due to the standard refinement step of
SfM algorithms. However the unstable points are usually erroneous or even outlier, and it
might be more interesting and easier to only use the stable points, which are more accurate
and reliable.

2.3.2 Dense Methods

[9] proposes a streaming surface reconstruction scheme using geometric convection method [32].
The input is a set of dense points organized in slices along an axis and the surface is incre-
mentally reconstructed by slice of input points along the axis. The idea of this method is to
incrementally construct the Delaunay triangulation of points slice by slice, and guarantees
that the Delaunay tetrahedra Di of each slice Si are not in conflict with any point of another
slice Si+3 by splitting large tetrahedra (adding extra points in Delaunay). By doing so, Di

of slice Si and also the surface which is subsequently generated from Di remain stable when
further slices Si+4, Si+5, ... are added in Delaunay. Thus Di (except tetrahedra which have
triangles in the surface) can be destroyed and the algorithm continues to deal with new slice
Si+1 and so on. Here, to generate the surface from Di, the algorithm applies iteratively the
geometric convection which shrinks from outside or from inside of the surface through sev-
eral levels like a onion peeling process. This method achieves the surface reconstruction in a
streaming framework. It is able to deal with large amount of data (several millions of points)
without large memory consumption. However, the input points should be pre-estimated and
organized in a set of slices along an axis.
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A reconstruction system based on a costly hardware mounted on a car was also devel-
oped [114]. It involves several perspective cameras pointing in several directions, accurate
GPS/INS (global positioning system + inertial navigation system). The approach is briefly
summarized as follows. Firstly, successive poses are estimated using Kalman fusion of visual
reconstruction, INS and GPS. Secondly, interest points are detected and tracked in the im-
ages; then a sparse cloud of 3d points is obtained. Third, this cloud is used to select plane
normals in 3d, which are used to drive a denser reconstruction. Fourth, the obtained 3d
depth maps are merged by blocks of consecutive images. Last, a list of triangles which ap-
proximate the dense 3d information is generated. This approach is incremental and real-time,
it allows reconstruction of very long video sequences. However, the surface is not 2-manifold
(the triangles are not connected). At first glance, this problem could be corrected by using a
merging method such as [35] followed by a marching cube [92]. However it is not adequate to
large-scale scene since it requires a regular subdivision of space into voxels. For this reason
(and other reasons mentioned in [82]), an irregular subdivision of space into tetrahedra is
more interesting for large-scale scene.

In 2010, Newcombe and Davison [105] propose a live dense 3d modeling method. This
approach uses a Radial Basis Functions (RBFs) based method (similar to RBFs methods
described in Sec. 2.2.2.1) to continuously fit sparse points provided by a real time SfM
method. A mesh, called the base mesh, is automatically updated by polygonizing the implicit
surface of RBFs. Another process parallel to the base mesh generation, uses the base mesh
and input images to generate a dense surface. This process selects bundles of consecutive
cameras with a partial overlapped visible surface and each bundle has a reference camera
and several neighbor cameras. A dense depth map is estimated for the reference image,
by back-projecting all pixels of reference image to the base mesh and iteratively deforming
the base mesh into a photo-consistent dense model. Here, the displacement of a sampling
in the base mesh is calculated based on differences of the pixel in the reference image and
its matched pixels in neighbor images. The dense matching of two images is achieved by
projecting textured base mesh to cameras of the bundle to produce synthetic predictive
images, and applying a variational optical flow method [149] between synthetic and true
images. A local model is then obtained by triangulating the depth map, and finally fused
to the global surface model. This method provides high quality reconstructed surface and
a global surface model can be incrementally generated. However the reconstructed surface
may contain holes due to the occlusion and the method is not suitable for large-scale scenes.
Besides, the processing time of each local model computation and fusion is long. According
to the on line video provided by authors, it takes about 1.5s using two GPUs.

2.4 Conclusion

In this chapter, we have surveyed the image-based automatic 3d modeling methods in the
bibliography and roughly classified them in two categories. The first category contains the
Multi-view stereo methods which directly estimate models of scenes from calibrated images.
The second category contains the surface reconstruction methods which reconstruct a surface
by using a pre-estimated point cloud, either dense or sparse, depending on that if all pixels
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or only feature pixels of images are reconstructed. At last, we have also investigated the real
time or incremental approaches.

In our work, two methods are developed to automatically model scenes: a batch image-
based modeling method and its incremental version. Our methods reconstruct firstly sparse
points from an image sequence using SfM, and reconstruct surface models of scenes. The
surface reconstruction is a 3d Delaunay triangulation-based sculpture process inspired by
the work [23]. And the reconstructed surface is a 2-manifold with multi genus.

Compared to most of the Multi-view stereo methods (Sec. 2.1), our methods use sparse
feature points thus the processing time is lower and the estimated models are more compact.
Besides, most of the dense surface reconstruction methods (Sec. 2.2.2) are designed to deal
with points acquired by range scanners, which provide usually a “good”-quality point cloud.
A lot of these works rely on a dense, nearly uniform, and noise/outlier free point cloud. Thus
these methods are not widely used in the Computer Vision community, where it is difficult
to obtain such a point cloud. Now if we compare our methods to other sparse approaches,
our methods have several advantages which can be described as follows. First, our methods
generate multi genus 2-manifold. The manifold property has a lot of advantages in post-
processings (see Sec. 1.4.2), however it is ignored by many sparse works. Only [49, 100, 136]
generate (one or several genus-0) 2-manifolds, but these works are not suitable for large-
scale scenes, e.g. a camera moving around a building. Second, up to our knowledge, our
incremental method is the first incremental or real time image-based modeling method which
provides a 2-manifold from sparse SfM points only. And we deal with large-scale scenario
such as a camera mounted on vehicle/robot/human exploring an unknown and large scene.
This is different to the scenario of a camera moving in a limited workspace such as desk-
like/indoor scenes [105].
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Chapter 3

Pre-processing: Geometry
Reconstruction

Given a sequence of 2d images taken by a moving camera in an environment, the pre-
processing step of our 3d surface reconstruction methods is to reconstruct the geometry of
the environment. The catadioptric camera is used thanks to its wide field of view, which is
strongly required for an efficient acquisition and reconstruction of a complete environment
(not a small object). The geometry reconstruction consists in estimating parameters of the
camera which has taken the 2d images, a sparse 3d feature point cloud which describes
well the geometry of the scene and visibility information between the points and the camera.
This problem of geometry reconstruction with a moving camera is also called Structure-from-
Motion (SfM) in the Computer Vision field. Here, the purpose is not to do an exhaustive
survey of all available methods. We shortly present the tools that we use and basic principles
of SfM. A state of the art of SfM can be found in [104].

Generally, SfM methods begin by detecting and matching feature points in images, e.g.
corners. Then 3d coordinates of matched features points and camera parameters are calcu-
lated. Finally, a refining step, e.g. bundle adjustment, is usually applied to these 3d points
and camera parameters in order to minimize the reprojection errors.

Now we show firstly the principles and notions of each step of SfM in Sec. 3.1. Then,
we present our batch SfM method [87] in Sec. 3.2 and our incremental SfM method [104] in
Sec. 3.3. The “batch” SfM means that the whole image sequence of the scene is already known
before the geometry reconstruction process and the geometry of the scene is reconstructed
all at once. Regarding the incremental SfM, the 2d matched interest points are progressively
available, and the geometry of the scene is progressively updated each time new 2d matched
points are available.
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3.1 Principles and Notions

3.1.1 Camera Model

A digital camera is an optical system which focuses light on an image pickup device and
records images to acquire visual information of environments. The 2d image formation is a
projection process such that a 3d point in the space is mapped to a pixel on a 2d map of the
camera. A camera model mathematically describes this projection process.

3.1.1.1 Perspective Camera Model

The most common camera model is the perspective or pinhole camera model. It describes
the projection of a 3d point on to the image plane of the camera without taking into account
the distortions caused by lenses or discreteness of the signal. The principle of a perspective
camera model can be shown in Fig. 3.1. There is an optical center t, an image plane I of the
camera and an optical axis which goes through t and is perpendicular to I. It intersects the
image plane on a point t′ which is called the principal point. A 3d point q is projected on
I in such a way that there is a ray (line segment) which originates from q and goes through
t, and this ray intersects with I on p.

�

�

�

�����	
�	��


�

�

��

Figure 3.1: Perspective camera model. q is a 3d point, p is the projection of q on image plane,
f is the focal length, t is the center and t′ is the principal point.

Assume that there is a known world coordinate system, a 2d image coordinate system on
the image plane and a camera coordinate system which has the origin at point t. Besides,
the image x,y axis and the optical axis are respectively the x,y and z axis of the camera
coordinate system. The homogeneous coordinates of the 3d point q expressed in the camera
coordinate system is qc = (Xc Yc Zc 1)T . The homogeneous coordinates of the projected
point p expressed in the image coordinate system (in pixels) is p = (x y 1)T . We have,⎡

⎣xy
1

⎤
⎦ ≡

⎡
⎣fx s cx
0 fy cy
0 0 1

⎤
⎦
⎡
⎣Xc

Yc
Zc

⎤
⎦ (3.1)
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Here “≡” means equals up to a (non-zero) real scale. fx and fy are respectively the focal
length measured in width and height of the pixels. cx, cy are coordinates of the principal
point t′. s is a factor accounting for the skew due to non-rectangular pixels which is almost
zero for most cameras. They are parameters specific to the camera which do not depend on
camera motion, so we call them intrinsic camera parameters. And the process of calculating
intrinsic parameters is also called the camera calibration. If we use K to name the intrinsic
parameter matrix, Eq. 3.1 is, ⎡

⎣xy
1

⎤
⎦ ≡ K

⎡
⎣Xc

Yc
Zc

⎤
⎦ (3.2)

Note that (Xc, Yc, Zc)
T is a non-normalized direction of the ray which originates from the

optical center and goes through the 3d point q. It can be calculated up to scale by simply
inversing K, if p is known ⎡

⎣Xc

Yc
Zc

⎤
⎦ ≡ K−1

⎡
⎣xy
1

⎤
⎦ (3.3)

Then the normalized ray direction, denoted d, is 1√
X2

c+Y 2
c +Z2

c

(Xc Yc Zc)
T .

We can see that the projection pixel of a 3d point on an image can be calculated if camera
intrinsic parameters are known. However from a pixel of an image, one can only determinate
the ray which goes through the 3d point.

Let the homogeneous world coordinates of q be qw = (Xw Yw Zw 1)T . Assume that the
transformation of world coordinates to camera coordinates, i.e. the camera pose (R, t) is
known. Then we have,

p = KRT [I3 | −t]qw (3.4)

The camera pose is also called extrinsic camera parameters and the process of estimating
the camera pose (R, t) is called the camera pose estimation.

3.1.1.2 Catadioptric Camera

In our work, we use a catadioptric camera which is an omni-directional camera composed by
a perspective camera and a convex mirror in front of the camera as shown in Fig. 3.2. Our
catadioptric camera has a wide field of view. It has 360 degrees in the horizontal direction
and approximately 110 degrees in the vertical direction (in a half-plane): about 50◦ above
and 60◦ below the horizontal plane.

Several camera models for the catadioptric camera exist, e.g. [54, 57, 87, 98]. Describing
all these models is outside the scope of this dissertation. Here we present an “exact” non-
central model and an approximative central model introduced by [87]. The latter is selected
as the camera model used for our 3d geometry reconstruction methods. We give comparisons
of both models and explain why the latter is selected.

Non Central Catadioptric Camera Assume that there is a known world coordinate
system and a mirror coordinate system which has the origin at the mirror apex. The convex
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Figure 3.2: A catadioptric camera and an image taken by this camera.

mirror has a symmetry axis which is the z-axis of the mirror coordinate system. The non
central catadioptric camera model is defined by three parts:

1) the rotation matrix R and the location t ∈ R3 of mirror coordinate system expressed
in world coordinate system,

2) the perspective camera intrinsic parameters Kp, the rotation matrix Rp and location
tp of the perspective camera both expressed in the mirror coordinate system,

3) and the known mirror profile.
Let X be homogeneous world coordinates of a 3d point, then its 3d coordinate in mirror

coordinate system is RT (π3(X)−t). Here π3 is a function such that π3((x y z t)T ) = (xt
y
t

z
t )

T .
We assume that there is one and only one ray passing through the 3d point X, reflects

on the mirror and then passes finally through the perspective camera projection center tp.
Then the reflection point can be calculated by the reflection law if the mirror profile is
known. Details about how to calculate the reflection point from the mirror profile are shown
in [87]. Here we assume that the mirror profile is known and the function M(a,b) calculates
the reflection point for a,b where a,b ∈ R3. Here, a,b, and M(a,b) are all in the mirror
coordinate system.

We can express the projected pixel pnc(X) as follows,

pnc(X) = π2(KpR
T
p (M(tp, R

T (π3(X)− t))− tp)) (3.5)

where the function π2 is defined as π2((x y t)T ) = (xt
y
t )

T

Central Catadioptric Camera Different from non central model, our central model
makes an approximation which assumes that all extended rays reflecting on the mirror go
through a common point F , called the center. See Fig. 3.3 for schema of both models. We
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(b) Central

Figure 3.3: Non central and central catadioptric camera models

suppose also that the central model has a symmetry axis. The upper border of the mirror
and the border of the mirror support are projected on the image to form two concentric
circles (see Fig. 3.4b). Note that the mirror profile is not necessarily a conic. It makes this
model more general than other works such as the one of [54] which assumes the mirror profile
to be conic and the center F to be one of the conic foci.

Now suppose that there is a known world coordinate system and a camera coordinate
system which has the origin at F and the symmetry axis as its z-axis. The central model
can be defined by two parts:

1) the camera pose, which is composed by a rotation matrix R and location t ∈ R3 of
the center F , both expressed in the world coordinate system,

2) and an intrinsic projection function, C : R3 → R2 which is expressed in the camera
coordinate system.

Supposing X is the homogeneous world coordinates of a finite 3d point, there is a ray
passing through this point and is reflected on the mirror then projected on image of the
perspective camera. The projection is pc(X). We have,

pc(X) = C(d), d = RT [I3| − t]X (3.6)

d is the direction (up to scale) of the ray which originates from the center F and goes
through the 3d point, expressed in the camera coordinate system. We suppose that the
origin and z-axis of the camera coordinate system are respectively F and the symmetry axis.
The projection function C can be defined as,

C(d) = C(x, y, z) =

(
x0
y0

)
+ r(α(x, y, z))

1√
x2 + y2

(
x
y

)
(3.7)

Here (x0 y0)
T is the image coordinates of center’s projection, d = (x y z)T and α(x, y, z) is

the angle between z-axis and d. We have α(x, y, z) = acos( z√
x2+y2+z2

). The function r(α) is
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a positive and decreasing polynomial function which maps angle α to the distance between
pc(X) and the projection of center F . Thus we can see that by computing reverse function
of r(α), a 2d point on image can be mapped to a ray whose direction is d.
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(a) Vertical field of view of
the catadioptric camera

���

(b) rdown, r(α), and rup

Figure 3.4: Vertical field of view of catadioptric camera.

As shown in Fig. 3.4, rup and rdown are respectively radius of the concentric circles which
are projections of the upper border of the mirror and the border of the mirror support on
image plane. These borders define the vertical field of view of the catadioptric camera, and
the corresponding angles αup, αdown are respectively the lower bound and the upper bound of
α, αup ≤ α ≤ αdown. Thus we have, rdown = r(αdown) ≤ r(α) ≤ r(αup) = rup. If r is linear,
we say that the catadioptric camera is equiangular. The coefficients of the r polynomial are
our intrinsic parameters of the catadioptric camera.

Comparisons Now if we compare the central and non central model, we can see that the
central model is based on the assumption that all extended rays pass through a common
point and the model has a symmetry axis. The non central model has not these assumptions.

In the general case, the catadioptric camera is non central in the reality. Thus the
central model is an approximative catadioptric camera model and the non central model can
be seen as an exact model. It might be natural to choose the non central model for our 3d
geometry reconstruction because it approximates better to the reality. However, according
to exhaustive experiments provided by [87] which compare both models for our camera with
respect to robustness, accuracy and uncertainty estimations, the use of non-central model
does not provide significant improvement on the 3d reconstruction results. Moreover, the
geometry reconstruction using non central model is more complicated than using the central
model. As a result, we choose the central model for our geometry reconstruction methods.

3.1.2 Detection and Matching of Interest Points

We have seen previously that a 2d image pixel can be mapped to a 3d ray which goes through
the 3d point in question, however this 3d point can not be reconstructed by using only one
ray. Now if we know that pixels of an image are matched to pixels in another image taken
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at a different camera location, then not only 3d points but also the relative camera pose
between two camera poses can be reconstructed. Here a pixel in an image is “matched” to
a pixel in another image means that the two pixels are considered to be projections of a
same 3d point on different images. In our work, we do not match all pixels but some interest
points and reconstruct these interest points in 3d, i.e. our geometry reconstruction methods
are sparse methods. Now we present how interest points are detected and matched in our
batch and incremental SfM methods.

3.1.2.1 In the Batch SfM (Still image sequence)

We assume that the image sequence used for our batch SfM is composed of still images, i.e.
the user alternates one shot and one step in the scene. Firstly, the Harris point detector [62]
is used to detect interest points all images of the sequence. The Harris point detector is a
standard interest point detector based on curvatures of auto-correlation function of pixels. It
is selected as our interest point detector thanks to its detection stability and its invariance to
rotation and illumination [122]. Other detection and matching methods exist, e.g. the SIFT
detector [94]. But a review of these methods is outside the scope of this dissertation. Second,
a two-view matching method is applied to each pair of consecutive images of the sequence.
Here, each Harris point in one image is matched with Harris points in a corresponding
search area of the other image by calculating the ZNCC score (Zero Mean Normalized Cross
Correlation). And pairs of Harris points with high ZNCC scores are added to a list of
matches. In the work [87], this list is further enlarged by a quasi-dense match propagation
process [90] which progressively matches image pixels using a 2d-disparity gradient limit and
the uniqueness constraint. In our work, in order to provide a sparse point cloud, only Harris
points matched by [87] are used for subsequent steps. At last, the two-view matching is
chained throughout the sequence. By doing so, the two-view matching is extended to n-view
matching and a sequence of matched 2d points lists is obtained.

Note that our batch SfM can also deal with a video sequence by including an additional
key-frame selection process described in the following section.

3.1.2.2 In the Incremental SfM (video sequence)

We assume that a video sequence is used for our incremental SfM. In this case, the distance
between each pair of consecutive camera locations is not large enough which would make
the subsequent 3d geometry reconstruction strongly erroneous. To solve this problem, we
use an additional key-frame selection process [102]. This process uses also the two-view
matching method in Sec. 3.1.2.1 to match Harris points in pairs of consecutive video frames,
except that the match propagation process is not applied since the matching between two
consecutive video frames is easy. The first frame of the sequence is always chosen as a key-
frame, noted I1. The second key-frame I2 is chosen as the farthest frame in the sequence
under the condition that there is at least M matched points between I1 and I2. Whenever
key-frames I1 to Ii (2 ≤ i) are chosen, we choose I i+1 such that at least M matched points
exist between I i+1 and Ii and at least N matched points between I i+1 and Ii−1. In practice,
M = 600 and N = 400. At last, only the lists of matched points between key-frames are
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retained and used for our subsequent geometry reconstruction steps.

3.1.3 Camera Pose Estimation and 3d Point Reconstruction

This section shows methods of the 3d geometry (camera poses and 3d points) reconstruction
under different conditions. We should note that tools to be presented here are basic methods
used for initializing the scene geometry. They are usually combined with a robust estimation
method (RANSAC) and their results are refined by an optimization process (bundle adjust-
ment) to improve the reconstruction quality. Both RANSAC and bundle adjustment will be
presented in further sections (Sec. 3.1.4 and Sec. 3.1.5).

3.1.3.1 Essential Matrix and Epipolar Constraint

Figure 3.5: Epipolar geometry. t1, t2 are two camera locations, p1,p2 are respectively projec-
tions of a same 3d point q onto the images I1, I2 taken at t1, t2. The camera baseline (t1t2)
intersects I1, I2 on e1, e2 respectively, which are called epipoles. The ray [t1p1) intersects with
ray [t2p2), and the intersected point is q.

Let I1, I2 be two perspective images and t1, t2 be respectively two camera locations (in
world coordinates) where I1, I2 are taken. Assume that two camera coordinate systems exist
which have respectively their origins at t1, t2. Let c1 = (R1, t1) (resp. c1 = (R2, t2)) be
camera pose in world coordinates of I1 (resp. I2). Remember that a camera pose is the
transformation of world coordinates to camera coordinates.

Now a 3d point q is projected on I1, I2, and the projections are respectively p1 and p2 (see
Fig. 3.5). According to the perspective camera model (Sec. 3.1.1.1, both back-projected rays
(half-lines) [t1p1), [t2p2) should go through q. Let d1,d2 be directions of [t1p1), [t2p2) in
camera coordinates. The coplanarity of R1d1, R2d2 and t1−t2 gives the epipolar constraint
which can be expressed as follows,

(d1)T (R1)T [t2 − t1]×R2d2 = 0 (3.8)

It can be further simplified as,

(d1)TEd2 = 0 (3.9)
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where E = (R1)T [t2 − t1]×R2 is called the essential matrix. It is a 3 × 3 rank-two matrix
and it can be shown that its two nonzero singular values are equal.

According to Eq. 3.9, if d1 and d2 are known, then we have a linear constraint on E.
If d1 and E are known, then we have a linear constraint on d2. In this case, the epipolar
constraint can also be used as a matching constraint. Here, p1 ∈ I1 defines line (e2p2) on
which the potential matches of p2 ∈ I2 should lie.

We should note that Eq. 3.8 and Eq. 3.9 are also met for our central catadioptric camera
model. In this case, t1(resp. t2) is the center F 1 (resp. F 2). According to the central
catadioptric camera model (Sec. 3.1.1.2), projection points p1,p2 can be mapped to two
back-projected rays which both go through q. The ray direction is respectively d1,d2. At
last, the coplanarity of d1 and d2 gives Eq. 3.8 and Eq. 3.9.

3.1.3.2 Camera Pose Estimation

Camera poses can be estimated using epipolar constraints of pairs of matched points. Assume
that we know a pair of matched points p1,p2 in images I1, I2. Let camera poses of I1, I2

be respectively c1, c2. If the catadioptric camera is calibrated, then p1,p2 can be respec-
tively mapped to two rays [t1p1), [t2p2) whose directions are d1, d2 in camera coordinates.
Furthermore Eq. 3.9 is met.

Now the five-point algorithm [107] is used. This algorithm uses five pairs of matched
points to establish five constraints defined by Eq. 3.9 and the relative camera pose between c1

and c2 is efficiently calculated. We do not go to details for this algorithm (also seven-point or
three-point algorithm below), check [107] for more details. An alternative and simple method
estimates E using a linear (least squares) method from seven point correspondences [63].
Then R1, R2 and t1 − t2 can be estimated by singular value decomposition [63].

Now assume that the catadioptric camera is calibrated and some 3d points are also
reconstructed. In this case, given at least three 3d points and their 2d matched points in
one image I, the camera pose c of I can be estimated. In our work, we use the three-
point algorithm of Grunert [61] based on trigonometry calculations (law of cosines) in the
tetrahedron composed by the camera location of c and the three 3d points.

3.1.3.3 3d Point Reconstruction

In reality, [t1p1) and [t2p2) in Fig. 3.5 do not intersect due to image noise. In our work, we
use a classical solution to reconstruct (initialize) q: the mid-point method [47].

The principle of mid-point method is illustrated by Fig.3.6. In the non degenerate case
(d1 and d2 are not parallel), we calculate points q1,q2 such that q1,q2 lies respectively on ray
[t1p1) and [t1p1). Besides, q1q2 should be perpendicular to d1 and d2. The reconstructed
3d point q is then the middle point of q1q2.

Here are detailed formulas to calculate q1,q2 and q:

q =
q1 + q2

2
q1 = t1 + αd1

q2 = t2 + βd2

(3.10)
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Figure 3.6: Mid-point method. t1, t2 are two camera locations, I1, I2 are respectively two
images taken at t1, t2. p1,p2 are respectively two matched points corresponding to a same
3d point in I1, I2. d1, d2 are respectively directions of rays [t1p1), [t2p2). There is a line
perpendicular to d1 and d2, and intersects the ray [t1p1) and [t2p2) on q1, q2. The reconstructed
3d point q is the middle point of q1q2.

and,

α =
((t2 − t1) · d2)(d1 · d2)− ((t2 − t1) · d1)‖d2‖2

(d1 · d2)2 − ‖d1‖2‖d2‖2

β =
((t2 − t1) · d1)(d1 · d2)− ((t2 − t1) · d2)‖d1‖2

(d1 · d2)2 − ‖d1‖2‖d2‖2
(3.11)

3.1.4 Robust Estimation

It is important to estimate robustly parameters in the geometry estimation process because
the measures are not only noised but sometimes aberrant. These aberrant measures, called
also outliers, are usually due to erroneous measurements such as change of lighting, occlusion,
or matching failure. A robust estimation method is a method which can still correctly
estimate parameters despite the presence of outliers.

The robust estimation problem can be defined as follows. Given a set of n observations
{si}, i = 1..n, we know that ∀i, e(x∗, si) = 0 where x∗ are some unknown parameters, and
e(, ) ≥ 0 is an error function involving x∗ and {si}. We also know that an estimation x of
x∗ can be calculated by at least m(m ≤ n) observations. Now the objective is to find an
estimation x which is close to the real parameters x∗ despite the outliers.

The robust estimation method that we used in our work is the RANdom SAmple Consen-
sus (RANSAC) algorithm [50]. This algorithm performs a fixed number N of x estimations
and at last chooses the best one. In each tentative, it selects randomly m observations to
determinate x and calculates the number of observations which fit x. To check if an observa-
tion si fits x, i.e. si is inlier to x, the error function e(, ) ≥ 0 and a threshold emax are used:
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si is inlier to x if e(si, x) < emax. Here, the definition of e(, ) and how to choose emax in our
case will be given in Sec. 3.1.5. At last, the estimation x which has the largest number of
inliers is chosen as the solution.

The number N of tentatives should be chosen high enough to ensure a probability p (0.99
in practice) that there is at least one x to which the m observations are inlier. Let ε be the
percentage of inlier observations, then we have,

N ≥ log(1− p)

log(1− εm)

Note that the solution of RANSAC may be not the optimal estimation of x∗: as we limit the
number of iterations, there may be other estimation which has more inliers. Nevertheless,
RANSAC is able to provide high precision estimation even if many observations are outliers.

3.1.5 Bundle Adjustment

Bundle Adjustment (BA) is a process which refines the geometry reconstruction results
including 3d points, camera poses (and sometimes camera intrinsic parameters as in [87]),
by minimizing reconstruction errors. The reconstruction errors involving the matched 2d
points, the reconstructed 3d points and camera poses, are expressed as squared Euclidean
norms of many non linear functions,

E =
∑
i,j

‖eij‖2 (3.12)

Here ‖ · ‖ is the Euclidean norm. eij is the error vector of the reconstructed camera pose ci

and the reconstructed 3d point qj , with respect to the matched 2d point pi
j of qj on image

of ci. The sum of these errors is globally optimized by BA thus the problem turns to be a
non linear optimization problem. Different forms of eij exist, which will be discussed in the
next paragraph.

Errors for Bundle Adjustment Bundle adjustment refines the reconstructed geometry
by minimizing the sum of squared Euclidean norms of error values. Standard BA uses image
error which measures the discrepancy between the projections of reconstructed 3d points and
the matched 2d pixels [140], see Fig. 3.7a. In our approach, the error eij proposed by [87] is

used. Here, eij measures the angle between two rays originating from the same reconstructed

camera location ti. One ray, whose direction is di
j , goes through the detected matched 2d

point pi
j . The other ray, whose direction is Di

j , goes through the reconstructed 3d point qj

(see Fig. 3.7b). Note that both di
j and Di

j are expressed in the camera coordinate system.

Suppose that the world coordinates of reconstructed ci (camera pose) is (Ri, ti). Then error
eij is defined as follows,

eij = π2(R
i
jD

i
j),where Ri

j is a rotation matrix such that Ri
jd

i
j = (0 0 1)T (3.13)
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(a) Image Error. The ray with direction
Di

j originates from ti and goes through qj .
It has a reprojected pixel pic(qj) on Ii. The
image error is eij = pic(qj)− pi

j .
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(b) Angular Error. Rays of di
j and Di

j

both originate from ti. di
j goes through

pi
j and Di

j goes through qj . ‖eij‖ is the
tangent of the angle between di

j and Di
j .

Figure 3.7: Image error and angular error. Ii is the image taken by ti, qj is a reconstructed
3d point, pi

j is the 2d matched matched point of qj in Ii and eij is the error vector.

and π2(x y z)T = (xz
y
z )

T . Let Xj be the homogeneous world coordinates of qj , then we have

eij = π2(R
i
j(R

i)T [I3| − ti]Xj) (3.14)

We note that ‖π2(x y z)‖2 = x2+y2

z2
is the squared tangent of the angle between (0 0 1)T and

(x y z)T . Thus we have

‖eij‖2 = tan2(αi
j) with αi

j = angle(di
j ,D

i
j) (3.15)

This error model guarantees the C2 continuity even when the 3d point is in the infinite
plane (this is not the case when catadioptric image error is used) thus the local minimum
of the cost function can be efficiently reached [140]. Another advantage is that this error
model is generic: it does not involve the camera model during minimization. It is suitable
to catadioptric cameras but also works successfully with perspective cameras [86].

The error function defined here is also used for the RANSAC process described in
Sec. 3.1.4. In our case, the error function eij measures the angle between di

j and Di
j , which

involve the 2d matched points (observations) together with 3d reconstructed points and cam-
era poses (parameters). Besides, in RANSAC, a 2d matched point (observation) pi

j is inlier

to parameters x if the error e(pi
j , x) is smaller than a threshold emax. Here, e(p

i
j , x) = ‖eij‖

and it is calculated as the tangent of the angle eij . In practice, emax corresponds to an image
error of 2 pixels.

Levenberg-Marquardt The BA in our work is based on the Levenberg-Marquardt al-
gorithm (LM), which estimates a numeric solution for problem of non linear function mini-
mization.
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The reconstructed camera poses and 3d points (and intrinsic parameters in case of the
batch Structure-from-Motion method) form the parameter vector X for LM. Now LM begins
by an initial guess of X, adds a suitable δX to X in each iteration to reduce E (Eq. 3.12)
and finally converges to a locally optimal solution X̂ such that the sum E of reconstruction
errors ‖eij‖2 reaches the (local) minimum. LM combines the Gauss-Newton algorithm which
converges rapidly and the method of gradient descent which can converge (slowly) even if
the initial guess is far from the optimal solution. Details about the Levenberg-Marquardt
algorithm can be found in appendix A.

3.2 Our Batch Structure-from-Motion Method

Until now, we have presented all principles and notions that we use for our SfM methods and
we can now describe our SfM methods. Our batch SfM method is almost the same to the
method in [87]. Both estimate the geometry of a scene in a batch manner. Besides, camera
intrinsic parameters are also estimated and adjusted. The slight difference is that method
in [87] only deals with still image sequence but we can also deal with video sequence thanks
to a key-frame selection process (see Sec. 3.1.2.2).

In the first step, we initialize the intrinsic parameters of the central catadioptric camera
model (Sec. 3.1.1). To do so, large and small circles in each catadioptric image are firstly
detected or given. Then the projection function r(α) is defined as a linear function such
that r(αup) = riup and r(αdown) = ridown. r

i
up, r

i
down are respectively the radii of large, small

circles of each image and angles αup, αdown are initialized using values provided by the mirror
manufacturer. So we assume that the camera is equiangular for the initialization.

Second, Harris points are detected and matched for each pair of consecutive images
(Sec. 3.1.2) and for each image, rays are generated for each matched 2d point in the local
camera coordinate system.

Third, essential matrices for pairs of matched 2d points are estimated using the 7-point al-
gorithm [63] and RANSAC (Sec. 3.1.4), and refined by Levenberg-Marquardt (Appendix. A).
Next, 3d points are also reconstructed using pairs of rays and the mid-point method. As
many 3d points are tracked in three consecutive images, the 3d scale factor between every
two consecutive image pairs is calculated using triples of matched points. At the end of this
step, all points in each three views are reconstructed, in other words, partial geometry is
reconstructed for every triple of consecutive images.

Fourth, partial geometries of triples of consecutive images are refined and fused in a hi-
erarchical framework [63]. To do so, the sequence is divided in a binary tree. Sub-sequences
of the same parent node have two consecutive common images and sub-sequences of the
lowest level are thus triples of consecutive images whose partial geometries are already re-
constructed. See Fig. 3.8 for an example of hierarchy of a sequence of 10 images. Now, to
fuse two sub-sequences of the same parent node, the geometry of one sub-sequence is mapped
to the coordinate system of the other thanks to the common camera poses and the result is
the geometry of the node which is refined by BA after the fusion. By repeating the fusion
and BA, the geometry of the whole sequence is finally reconstructed.

At last, the linear function r(α) which defines an approximative calibration is replaced by
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Figure 3.8: Hierarchy framework of a sequence of 10 images. The sequence is subdivided in
a binary tree. For each node, i..j (1 ≤ i < j ≤ 10) means that the subsequence of the node
contains image Ii to image Ij (Ii, Ij included). Subsequences of a same parent node have two
consecutive common images.

a cubic polynomial. The four coefficients of the polynomial, together with the geometry of
the sequence are refined by an additional BA. Here, 4+6m+3n parameters are refined, where
m is the number of camera poses and n is the number of 3d points. In some cases, loops exist
in the camera trajectory, i.e. images are taken in a same position at different times. However
due to the accumulation of reconstruction errors, called SfM drift, the reconstructed camera
viewpoints at the beginning and the end of a loop are not the same. To deal with the SfM
drift, in our work, a loop closure method [88] is applied to remove the SfM drift. Details
about the loop closure can be found in [88].

3.3 Our Incremental Structure-from-Motion Method

Now we summarize the incremental SfM algorithm that we used, which is almost the same
to the one [104] in the central generic case. The input is a video sequence and our method
selects key-frames (Sec. 3.1.2.2) for the further steps of environment modeling. Note that
still image sequences can also be directly used by our incremental SfM without key-frame
selection.

Our incremental geometry reconstruction method begins by a three-view initialization
step based on RANSAC algorithm. We assume that the catadioptric camera is already
calibrated. Three key-frames are firstly selected, and then camera poses of the first and
the third key-frames c1, c3 are initialized using the five-point algorithm. Next, 3d points
are reconstructed using mid-point method, and c2 is initialized using Grunert three-point
algorithm (Sec. 3.1.3). At last, the three camera poses and reconstructed 3d points are
refined by bundle adjustment (BA).

After the three-view initialization, an incremental step is applied whenever the matched
point lists of a new frame are available. New key-frames are progressively selected based
on numbers of matches between the current frame and previous key-frames. For each new
key-frame, the corresponding camera pose ci is firstly computed using the 3-point algorithm
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and RANSAC. Then new 3d points are reconstructed for the new key-frame using RANSAC.
At last, a local BA is applied to refine the local reconstructed geometry.

Here we present the local BA mentioned in the paragraph above. The local BA refines
the local geometry of nl (3 ≤ nl) most recent key-frames by minimizing its errors involving
Nl (Nl ≥ nl + 2) most recent key-frames. More precisely, the parameters to be refined by
local BA are the nl last camera poses Ci = {ci−nl+1, .., ci} and the 3d points Qi projected
on key-frames of Ci. Regarding the reconstruction errors, local BA minimizes errors of rays
which go through a point of Qi and whose originating camera poses are in {ci−Nl+1, .., ci}.
In practice [104], nl is set to 3 and Nl is set to 10.

3.4 Comparison of Our Two SfM Methods

In this chapter, we have presented a batch and an incremental SfM methods, which are
respectively the pre-processing of our batch (Chap. 4) and incremental (Chap. 5) surface
reconstruction methods. Both SfM methods use common tools for the geometry reconstruc-
tion such as the central catadioptric camera model, the Harris point detection and matching,
the camera pose estimation, the RANSAC robust estimation and the Levenberg-Marquardt
algorithm for bundle adjustment (BA). However, there are several differences between them.

First, our batch SfM method accurately calibrates intrinsic parameters of the camera but
our incremental SfM method requires that the camera intrinsic parameters are pre-calibrated.

Second, our batch SfM reconstructs the entire geometry of the environment in an hier-
archical framework, while the incremental SfM reconstructs progressively the environment
geometry. Besides, our batch SfM has different hierarchical levels of BA while our incremen-
tal SfM has only nl = 3 local BAs per key-frame.

Third, if the camera trajectory contains loops, our batch SfM has a loop closure process
which deals with the SfM drift. Our incremental SfM does not have the loop closure.
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Chapter 4

Batch Surface Reconstruction

4.1 Introduction

Once the geometry of an environment is reconstructed, a 3d model can be estimated based
on the reconstructed geometry. Our batch surface reconstruction method reconstructs a 2-
manifold surface to model the environment, using the geometry reconstructed by the batch
SfM method presented in Sec. 3.2.

The surface is a widely used model in computer graphics and computer vision applica-
tions. Suppose that the environment to model is opaque, the 3d space of the environment can
be considered to be composed by two regions: the inside region and the outside region. The
former is the region inside objects of the environment which is invisible if one observes the
model at the camera viewpoints. The latter is the region outside objects of the environment
which are transparent to the observer. We assume that the surface of the real scene between
inside and outside regions is a 2-manifold. The objective of our method is to reconstruct a
2-manifold which approximates the real surface.

The batch SfM algorithm is used as the pre-processing of our batch surface reconstruction.
It provides the geometry information of environments for our surface reconstruction, which
includes a list of estimated camera viewpoints T = {ti}, a sparse cloud of reconstructed 3d
points Q = {qj}, and for each point qj , a list of visibility constraints Vj .

Here, a visibility constraint in Vj is a line segment which has qj and one of the camera
viewpoints ti as extremities such that qj should be visible to ti. Giving more details, in our
geometry reconstruction process (see Chap. 3), a 3d point qj is first initialized by using rays
originated from different camera viewpoints. After bundle adjustment, only inlier rays are
retained. Here, Vj corresponds to the list of these inlier rays. Thus a visibility constraint is
also called a visibility ray or simply a ray in the following scope of this dissertation.

Our batch surface reconstruction has six steps described as follows:

1. At first, a 3d Delaunay triangulation D is created by using points in Q as vertices.
Therefore the space is discretized into tetrahedra. (Sec. 4.2).

2. Then using visibility rays, tetrahedra of D are classified into two categories: free-space
and matter. (Sec. 4.3).
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4. BATCH SURFACE RECONSTRUCTION

3. Until now, a triangulated surface can already be obtained by selecting triangles sepa-
rating free-space and matter tetrahedra. However this surface is non-manifold which
is unfavorable for further processings like surface refinement or surface smoothing. In
this step, a greedy algorithm is applied to generate a 2-manifold as the surface model
of environments, which at the same time maximizes the visibility consistency obtained
at the SfM step. (Sec. 4.4).

4. The 2-manifold reconstructed by step 3 has genus 0 i.e. it has a ball topology. It is
problematic if the camera trajectory contains closed loop(s). To solve this problem, a
topology extension process is applied. (Sec. 4.5).

5. Spurious handles can exist on the reconstructed 2-manifold due to the step 3 and 4.
Two methods are used to deal with these spurious handles and try to remove them off.
(Sec. 4.6).

6. At last, to improve the model quality and to facilitate the model visualization, post-
processings are done on the 2-manifold including peak removal, surface denoising, sky
triangle removal, and surface texturing. (Sec. 4.7).

4.2 3d Delaunay Triangulation

The first step of our batch surface reconstruction is to obtain a discretization of the space.
The 3d Delaunay triangulation is chosen for this step, thanks to its advantages presented
in Sec. 1.5.1.

The 3d Delaunay triangulation D is built by taking points in Q as its vertices but not all
points in Q are added inD. A point qj has poor accuracy if it is reconstructed in a degenerate
configuration: if all rays of Vj are nearly parallel [63]. Remember that Vj is the list of inlier
rays which reconstruct qj in SfM (Sec. 4.1). The size of Vj is greater than two (two is
the theoretical minimum but it is insufficient for robustness). This degenerate configuration
occurs when the reconstructed points are close to part of the camera trajectory which is a
straight line. In our work, the point cloud is filtered (as in [42]) to avoid the degenerate
configuration: a point qj is added in D if and only if there is at least one aperture angle

t̂iqjtk of qj which meets ε ≤ t̂iqjtk ≤ π − ε. Here, tiqj and tkqj are in Vj , and ε > 0 is a
threshold.

In practice, ε is 5 or 10 degrees. Our 3d Delaunay triangulation is then built using
the filtered Q. By doing so, many inaccurate points are ignored for our subsequent surface
reconstruction. Besides, we obtain another consequence thanks to the point filter. It is
described in Lemma. 4.1 below.

Lemma 4.1 The length of a visibility ray in Vj is bounded by max ‖ti−tk‖
sin(ε) , where tiqj and tkqj

are in Vj.

Now we firstly present this lemma in the 2d case. Here, we remind a property of circle.
Assume that there are a circle and three points: a mobile point c, and two fixed points
a,b lying on the circle which separate the circle on two arcs. Then the angle âcb is always
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4.2 3d Delaunay Triangulation
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Figure 4.1: An example of point filter for a pair of camera viewpoints in 2d. {ti, tk} is a
pair of two camera viewpoints (red squared points), q1,q2,q3 are 3d points (blue round points),
tiqj and tkqj are in Vj (j ∈ {1, 2, 3}). h is the projection of qk on tiq1. For {ti, tk}, the
non degenerate region is in white, and the degenerate region is in gray. q1,q3 are in the non
degenerate region of {ti, tk}, thus can be added in D. q2 is outside this region thus cannot be
added inD according to {ti, tk}. Thus q2 should be tested with other pairs of camera viewpoints.

constant if c lies on the circle and moves in the same arc. âcb becomes bigger (resp. smaller)
if c moves towards (far from) the circle center.

With this property in mind, we can see that for a pair of camera viewpoints {ti, tk}, a
point qj is in non degenerate configuration if it is in a so-called “non degenerate” region (see

Fig. 4.1). The aperture angle t̂iqjtk in this region meets ε ≤ t̂iqjtk ≤ π−ε. Thus this region
is formed by two disks of same radius which both have ti and tk on their border (a circle),

with their intersected part removed. We have sin(t̂iqjtk) ≥ sin(ε) since ε ≤ t̂iqjtk ≤ π − ε.

As illustrated in Fig. 4.1, let h be the projection of tk on tiq1, then we have,

‖q1 − tk‖ = ‖h− tk‖
sin( ̂tiq1tk)

≤ ‖ti − tk‖
sin( ̂tiq1tk)

≤ ‖t
i − tk‖
sin(ε)

(4.1)

It means that the length of the ray in the non degenerate region defined by {ti, tk} is bounded
by lmax = ‖ti−tk‖

sin(ε) .

Now by rotating the 2d non degenerate region around axis titk, we extend this region
to 3d. Notice that lmax does not change. We can finally conclude the lengths of all rays are

bounded by lmax = max ‖ti−tk‖
sin(ε) .

At last, we also note that this point filter is just a simple way to select accurate points
for the 3d Delaunay triangulation. Other and more sophisticated criteria [43, 89] exist.
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4. BATCH SURFACE RECONSTRUCTION

4.3 Free-space/matter Labeling by Ray-tracing

As we have already mentioned in Sec. 4.1, the objective of this step is to divide the space
in two regions: free-space region and matter region. The 3d Delaunay triangulation D
discretizes the space, thus each tetrahedron of D should be classified to be either matter or
free-space.

Let Δ be a tetrahedron of D. If Δ is intersected with at least one ray of a point in
Q, then Δ should be transparent to an observer who observes the model at the camera
viewpoint of the intersected ray. Δ is then labeled free-space. A simple algorithm can then
be designed by checking for each tetrahedron Δ of D if Δ intersects any ray of any point in
Q. If yes then it is free-space, otherwise it is matter. This is a brute force approach which has
a high complexity. In our work, a more efficient method is preferred, called the ray-tracing
algorithm (as in [93]). Complexity analyses in Sec. 6.3.2.2 compare the complexity of both
approaches.

��
��

Figure 4.2: Ray-tracing in the 2d case. The process begins at qj and traces towards ti. It
continuously finds the tetrahedra intersected by tiqj and labels them free-space. Here, we see
also Delaunay triangles (solid lines) and the visibility constraint tiqj (dashed line).

Ray-tracing All tetrahedra are initialized as matter, including infinite tetrahedra. Re-
member that according to Sec. 1.5.2, D is a graph and infinite tetrahedra are formed by
triangles on convex hull of Q and the infinite vertex, which is outside the convex hull of
Q. In our work, Q is reconstructed in almost all directions around camera viewpoints (we
use a omni-directional camera). Thus generally, rays (and also all camera viewpoints) are
in the convex hull of Q and do not intersect infinite tetrahedra. As a result, these infinite
tetrahedra are labeled matter.

Saying that a tetrahedron Δ is intersected by a ray tiqj means that they have common
points, and at least one of the common points should be interior of Δ. In other words, if all
common points of Δ and tiqj are in faces, edges, or vertices of Δ, then we do not consider
that Δ is intersected by tiqj .

Now the ray-tracing process is applied to each ray tiqj which forces all tetrahedra inter-
sected by tiqj to be free-space. As D is a graph (Sec. 1.5.2), tracing a ray tiqj is a walk
in the graph, as illustrated in Fig. 4.2. It starts from a tetrahedron incident to qj , moves
to another tetrahedron which is adjacent to the starting tetrahedron through the triangle
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4.3 Free-space/matter Labeling by Ray-tracing

intersected by the line segment tiqj , and stops to the tetrahedron which contains ti (the
inverse walk is also possible). Ray tiqj is traced if and only if qj is a vertex of D. Here,
remember that the two neighborhood definitions (“incident” and “adjacent”) are already
given in Sec. 1.3.

At last, after applying ray-tracing to all rays, tetrahedra which have at least one inter-
sected ray are free-space, the rest tetrahedra remain matter. The algorithm also saves for
each free-space tetrahedron, the number of rays which intersect this tetrahedron. It is used
as the priority score in the further 2-manifold generation step (Sec. 4.4.3).

Special Case A special case might occur in the ray-tracing process: if (at least) a camera
viewpoint is located outside the convex hull of the Delaunay triangulation D. In this case,
ray-tracing for some rays cannot be correctly applied (the infinite vertex is not geometrically
defined).

Figure 4.3: Delaunay triangulation D using a point cloud Q before and after adding a bounding
box (2d case). Left (resp. Right): D ofQ before (resp. after) adding bounding box vertices. Here,
we see 3d points Q (black round points), camera viewpoints T (red squared points), triangles of
D (black and blue lines), convex hull triangles of D (blue lines), finite tetrahedra of D (grey)
and the infinite tetrahedra of D (white)

This special case occurs rarely in our work because camera viewpoins (T ) are generally
inside the convex hull of Q, as mentioned in the previous Ray-tracing paragraph. Never-
theless, to be independent to the acquisition sensor for reasons of generality (e.g. if we use
a perspective camera), an extra step can be added to our surface reconstruction in order
to avoid this special case. Before ray-tracing, we check that all camera viewpoints of T are
inside the convex hull of Q. If it is not the case, a box bounding Q and T is calculated, and
the 8 vertices of this bounding box are inserted to D. Fig. 4.3 shows in 2d case D before
and after adding bounding box vertices. By doing so, we ensure that all camera viewpoints
are located in finite tetrahedra and the ray-tracing can be correctly applied.
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4. BATCH SURFACE RECONSTRUCTION

4.4 2-manifold Generation

4.4.1 Original (non-manifold) Surface

Until now, one can already reconstruct a surface which is consistent to the visibility in-
formation provided by SfM by simply collecting triangles between free-space and matter
tetrahedra. This surface is called the original surface in our work and some previous 3d
surface reconstruction methods [93, 112] based on sparse feature points and 3d Delaunay
triangulation consider such a surface as the final surface model of their methods.

Notations & Definition Let L be a list of finite tetrahedra of the 3d Delaunay triangu-
lation D. The border δL is the list of triangles of D such that each triangle is included in
only one tetrahedron of L. The original surface is δF , where F is the list of all free-space
tetrahedra in D.

Characteristics of original surface Let us analyze characteristics of the original surface
δF . First, as all triangles of δF are embedded in the 3d Delaunay triangulation D, δF is a
surface which does not have self-intersections elsewhere at vertices and edges of the surface
triangles. Furthermore, δF is closed and watertight, i.e. it encloses the tetrahedra of O.

�
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Figure 4.4: Tetrahedra incident to edge e in the original surface δF and the adjacency graph
ge in the 2d case. In the 2d case, edge e is a vertex and tetrahedra are triangles. In top, we
see free-space tetrahedra (triangles labeled F) and matter tetrahedra (triangles with no label).
All these tetrahedra contain edge e (round point). We see also triangles (bold segments) in δF
which contain e. In bottom, we see the corresponding adjacency graphs of Fe.

Second, an edge e in δF is always incident to two or more than two triangles. This
remark can be proved as follows. Let Fe be the list of tetrahedra in F which contain e. Let
ge be the adjacency graph of the tetrahedra in Fe. Here, remember that in an adjacency
graph of Delaunay tetrahedra, a graph node represents a tetrahedron and a graph edge
represents a triangle separating two adjacent tetrahedra (Sec. 1.5.2). Note that the graph of
all tetrahedra around edge e is a cycle, and ge is included in the cycle. Here, ge cannot be a
complete cycle because tetrahedra containing e cannot be all free-space. ge has (at least) a
ge vertex without edges, or (at least) two ge vertices with one edge... In all cases, we have

52



4.4 2-manifold Generation

at least two lacking edges in ge, which correspond to triangles in δF . Fig. 4.4 shows several
2d examples of Fe and ge.

Regular and singular vertices We distinguish two kinds of vertices in the original surface
by using their stars and links (see Definition. 1.9 in Sec. 1.4): the regular and singular vertices.

A vertex v in a surface is regular if its star in the surface is homeomorphic (see Def-
inition. 1.2 in Sec. 1.1) to a disk. Otherwise, this vertex is singular. If every vertex of a
surface is regular, then this surface is a 2-manifold (see Sec. 1.1). Fig. 4.5 shows examples
of a regular and two types of singular vertices.

�
��

��

Figure 4.5: Examples of a regular vertex and two singular vertices. v is regular, v′ and v′′ are
singular vertices. Here, we see links of vertices (bold solid lines) and edges incident to vertices
(standard solid lines).

An important drawback of the original surface δF is that no care has been taken to the
topology of the surface model: it can be non-manifold. This is not favorable for additional
processing of the surface such as surface fairing or texturing. In contrast, our work generates
a 2-manifold instead of the original surface as the final reconstructed surface model. The
discussion of why enforcing the reconstructed surface to be 2-manifold is detailed in Sec. 1.4.2.

4.4.2 Heuristics for 2-manifold Generation

4.4.2.1 Tetrahedra Status Inverse

We have tried several heuristics to generate a 2-manifold. A first approach is to try to inverse
the tetrahedra labels to reduce the number of singular vertices. If a tetrahedron Δ in D has
singular vertices, the method calculates the number of its singular vertices, and inverses the
label (free-space to matter or matter to free-space) of Δ if this number is reduced. We do
this for all tetrahedra which have singular vertices and repeat the process until no more
singular vertices could be removed. In practice, in order to reduce the maximum number
of singular vertices, tetrahedra having the largest number of singular vertices are tried first.
This approach is simple and very easy to implement however its default is obvious: not all
singular vertices are guaranteed to be removed and consequently the surface might not be
2-manifold. Furthermore, this approach can easily violate the visibility constraints provided
by SfM, and generate absurd results.
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(a) Left: first case of a singular vertex, right: O
is split to O′ and O′′
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(b) Left: second case of a singular vertex, right:
O is split to O′ and O′′, g is split to g′ and g′′

Figure 4.6: Examples of vertices splitting.

4.4.2.2 Singular Vertices Splitting

Another method tries to generate the 2-manifold by splitting each singular vertex into several
new vertices which are regular. Each new vertex has its star in surface homeomorphic to a
disk and its coordinates are the same or close to those of its original singular vertex. Here,
two types of singular vertices exist:

1) the singular vertex whose opposite edges form several disconnected polygons, as shown
in Fig. 4.6a,

2) the singular vertex whose opposite edges form several polygons which share a common
vertex, as shown in Fig. 4.6b.

This idea of splitting singular vertices is also used by other works in bibliography such
as [60] and [128], to extract 2-manifold surfaces from a simplicial complex like the original
surface δF . However, this approach adds a lot of additional vertices. Furthermore, splitting
singular vertices of δF will artificially increase the number of connected components (2-
manifolds after splitting).

4.4.3 Region-Growing

We now present the finally chosen 2-manifold generation method: the region-growing.

Remember that our objective is to generate a 2-manifold S based on results of free-
space/matter labeling and S should separate the matter and free-space tetrahedra “as much
as possible”.

Optimization Formulation In fact, our 2-manifold generation can be seen as an opti-
mization problem described as follows. Let r : F → R+∗ be a scalar and positive function.
Now imagine another tetrahedron list O ⊆ F and all tetrahedra contained in O are labeled
outside, i.e. outside the matter. All tetrahedra in its complement list D\O are labeled inside
Now we extend r to O by,

r(O) =
∑
Δ∈O

r(Δ). (4.2)
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4.4 2-manifold Generation

In general, the border δO of O is a triangle list and a two-dimensional closed surface (sub-
complex of D) as the original surface δF , but it is not a 2-manifold.

Now we would like to find O ⊆ F maximizing r(O) subject to the constraint that δO is
a 2-manifold, i.e.

O = arg max⎧⎨
⎩

O′ ⊆ F
δO′ is 2-manifold

r(O′). (4.3)

The target surface S is then δO.
Let us summarize the different tetrahedra lists used in our 2-manifold generation step, we

have: F=the free-space tetrahedra, D \F=the matter tetrahedra, O=the outside tetrahedra
and D \O=the inside tetrahedra. In addition, O ⊆ F thus D \ F ⊆ D \O.

The optimization problem is difficult due to the manifold constraint. In our work, Eq. 4.3
is solved by a greedy region-growing algorithm: tetrahedra of F are progressively added
in O as long as δO remains always a 2-manifold, then r(O) increases and the final O is
an approximation of the exact solution of Eq. 4.3. Fig. 4.7 illustrates this region-growing
process.

Figure 4.7: The principle of greedy region-growing in the 2d case. Region growing is illustrated
from left to right. Here we see, original surface (blue lines), free-space region (light gray), matter
region (white), outside region (dark gray) and inside region (light gray+white).

Choice of r The number of rays which intersect tetrahedron Δ is chosen as r(Δ). Thus
our region-growing process can be seen as a process which optimizes the visibility consistency
provided by SfM, i.e. the number of intersections between tetrahedra and rays. A free-space
(resp.matter) tetrahedron is visibility consistent if it is finally outside (resp.inside). Other
choices of r are also experimented in Sec. 7.2.3.

4.4.3.1 2-Manifold tests

Before presenting our greedy region-growing approach in details, methods which check that
a surface S (a list of triangles of the 3d Delaunay triangulation D) is a 2-manifold are
presented. A surface S is 2-manifold if and only if all vertices in it are regular (Sec. 4.4.1).
This topic is somewhat technical but very important in practice for the computation time
of our method.
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Figure 4.8: Edge-based test of regular and singular vertices. Left: v is regular since the edges
opposite to (the link of) v define a simple polygon acdea on the surface. Middle: v is singular
since polygon dacdbed has multiple vertex d. Right: v is singular since acda − befb is not
connected.

Edge-Based vertex test This test is based on the “Edge-based test” [23] which has
already been presented in Sec. 1.4. Vertex v in a surface S is regular if and only if the link
of v is a simple closed polygon, i.e. every vertex is regular. See Fig. 4.8 and also Fig. 4.5 for
examples.

Tetrahedron-based vertex test Here we propose another test [1] to check that v is
regular. Let gv be the graph of the tetrahedra incident to v (gv is a sub-graph of D).
Appendix. B shows that the link of v in S above forms a simple polygon if and only if all
inside tetrahedra of gv are connected and all outside tetrahedra of gv are connected. See
Fig. 4.9 for examples. Thus we check that v is regular thanks to a simple traversal of graph
gv where the edges between inside and outside are removed.

In our implementation, this test is fast since the graph is already encoded in the Delaunay
triangulation implementation of CGAL. We do not need to compute the edges/faces from a
tetrahedra graph as in the Edge-based vertex test.

Single tetrahedron test A third 2-manifold test is based on [23]. It checks that a single
tetrahedron Δ can be added in O such that the border δO of O remains 2-manifold. Assume
that δO before adding Δ is 2-manifold. Then Δ can be added in O if a condition based
on the neighborhood configuration of Δ is met. Appendix. C gives details of this condition.
This 2-manifold test is also very efficient because it only requires reading once the lists of
tetrahedra incident to the four Δ-vertices (without graph traversal). The single tetrahedron
test cannot be applied if more than one tetrahedron are added at once in O.

4.4.3.2 Greedy region-growing

According to the beginning of Sec. 4.4.3, the solution of Eq. 4.3 is approximated by a greedy
approach: an outside region O grows from ∅ by adding free-space tetrahedra one-by-one such
that δO remains 2-manifold (Sec. 4.4.3.1). The result of this step is the final δO. Each time,
the single tetrahedron test in Sec. 4.4.3.1 is used to check if a tetrahedron Δ can be added
in O or not.
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Figure 4.9: Relation between topology and graph. Top: 8 tetrahedra incident to v and their
adjacency graph gv. Bottom: three cases of tetrahedra labeling (inside is black, outside is white).
Middle: the resulting topology around v. Middle and bottom: v is regular if and only if the
inside tetrahedra are connected and the outside tetrahedra are connected.

The final δO depends on the adding order of tetrahedra to O. To approximate O of
Eq. 4.3, r is used to define a priority for the tetrahedra of F : the Δ with the largest r(Δ) is
added in O before the others. Remember that r is chosen as the number of rays intersected
by Δ. Besides, to avoid that the greedy algorithm gets stuck too easily in a bad solution, the
selected Δ is required to have at least one triangle shared with δO. So finally, the tetrahedra
in the neighborhood of O are stored in a heap (priority queue) for fast selection of the
tetrahedron with the greatest r. By doing so, our method tries to propagate the outside
region from the most visibility consistent tetrahedra to the least ones. A similar propagation
algorithm can be found in [90], but used for a very different problem (point matching).

A detailed algorithm (Algorithm. 1) is also given. In this algorithm, O is the outside
region, F is the set of free-space tetrahedra, Q is the priority queue and the function r maps
a tetrahedron Δ to the number of rays intersected with Δ. Q0 is the set of tetrahedra to
initialize Q (useful for Topology Extension presented in Sec. 4.5).

Note that a free-space tetrahedron Δ can be tried to be added to O for several times,
but there is no infinite loop in our region-growing process. This is shown in Sec. 6.2.2.4
(complexity analysis).
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Algorithm 1: Greedy region-growing

Inputs : O, F , Q0

Outputs: O
Step1: Initialization

Q = ∅;
if O == ∅ then

Let Δ ∈ F be such that r(Δ) is maximum;
Q← Q ∪ {Δ};

else
//Used by topology extension
For each tetrahedron Δ ∈ Q0 ∩ F :

if Δ /∈ O and Δ has an adjacent tetrahedron in O then
Q← Q ∪ {Δ};

Step2: Region-growing by adding tetrahedra one-by-one
while Q �= ∅ do

Pick from Q the Δ which has the largest r(Δ);
if Δ ∈ O then

continue;

O ← O ∪ {Δ};
if all vertices of Δ are regular then

For each tetrahedron Δ′ adjacent to Δ :
if Δ′ ∈ F && Δ′ /∈ O then

Q← Q ∪ {Δ′};
else

O ← O \ {Δ};

4.4.3.3 Drawbacks of greedy region-growing

Our greedy region-growing algorithm grows an outside region O by adding tetrahedra one by
one under the condition that the border δO of O is 2-manifold. A drawback of our algorithm
is that the resulting 2-manifold has always genus 0. As tetrahedra are added one-by-one
in O, the genus of the resulting 2-manifold δO cannot be changed, i.e. δO has the ball
topology [23]. This is problematic if the true outside does not have the ball topology, e.g.
if the camera trajectory contains closed loop(s) around building(s). In the simplest case of
one loop, the true outside has the toroid topology and the computed outside O cannot close
the loop (see Fig. 4.10).

Another drawback is the shelling stuck problem. We assume that there is an outside
region Ô that we want to reach using our greedy region-growing algorithm. In discrete
computational geometry field, our algorithm and also the sculpture algorithm of [23] can

58



4.5 Topology Extension

���������	
���

Figure 4.10: Greedy region-growing one-by-one. We can see that growing O by adding tetra-
hedra one-by-one cannot change the topology of O.

be seen as a process to find a shelling of Ô [44]. Here, a shelling means an ordering of the
tetrahedra such that every prefix defines a 3-ball, i.e. the border of every prefix is connected
2-manifold with zero genus. [151] shows that some 3-ball Ô embedded in a 3d Delaunay
triangulation does not have any shelling, i.e. Ô can never be reached by a greedy algorithm
whatever the order of tetrahedron adding.

4.5 Topology Extension

Figure 4.11: Topology extension. We can see that growing O by multi tetrahedra incident to
the same vertex can change the topology of O.

Dealing with the drawback of the greedy region-growing, a topology extension process is
proposed to extend the topology of the outside region O. It can be described as follows.

1. For a vertex in δO, if all inside tetrahedra incident to this vertex are free-space, then let
these tetrahedra be A and force them to be outside, i.e. we add A in O. Now we check
that all vertices of A regular by using the tetrahedron-based vertex test (Sec. 4.4.3.1).
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If there is at least one singular vertex, A are restored to inside, i.e. we remove A from
O.

2. If Step 1 succeeds, the greedy region growing algorithm (Algorithm. 1) in Sec. 4.4 is
applied. Here, Q0 in Algorithm. 1 in this case is the list of tetrahedra adjacent to A.

In practice, Step 1 and Step 2 are alternated several times for all vertices of δO. One
can see that thanks to this topology extension process, the topology types of 2-manifold can
be changed and it makes our environment modeling method more flexible. Besides, when
the greedy region-growing process gets stuck, the topology extension may restart the greedy
region-growing. As a result, the outside/free-space ratio is improved. However, it should be
noted that we cannot theoretically guarantee that all possible 2-manifold surfaces embedded
in the 3d Delaunay triangulation can be generated.

4.6 Spurious Handle Removal

Topology Extension (Sec. 4.5) calculates a 2-manifold without genus limitation and improves
our approximation of the Eq. 4.3 solution, but it has one drawback: it can generates spurious
handles.

Figure 4.12: Spurious handle (left) and its removal (middle and right).

Fig. 4.12 shows an example in a real case: the oblique handle on the left connects a small
wall to the ground. This handle is spurious: it does not exist on the true scene surface and
it should be removed while the manifold property should still be maintained.

In our work, the spurious handles removal deals only with handles which are both “visu-
ally critical” and due to “incomplete” outside growing in the free-space. “Visually critical”
means that we ignore the handles that are too small to be easily noticeable by an observer
(virtual pedestrians) located at all camera viewpoints reconstructed by SfM. “Incomplete”
means that the handles only contain free-space tetrahedra that are inside and which should
be forced to outside. These conditions are used to localize the spurious handles and to obtain
a final 2-manifold which meets the visibility constraints provided by SfM. For the remainder
of the reading, a “spurious handle that is visually critical and due to incomplete growing” is
shortened by “spurious handle”.
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4.6 Spurious Handle Removal

Two spurious handles removal methods are presented here. Both methods use Steiner
vertices, i.e. extra points added in D. These points are not in the original (SfM) input, thus
no ray is attached to them.

4.6.1 Method 1: Reduce Size of Tetrahedra

A simple method is used to reduce the risk of spurious handles in the beginning of our
work [3]. In the 3d Delaunay step (Sec. 4.2), Steiner points are added in D such that the
long tetrahedra potentially involved in spurious handles are split in smaller tetrahedra. The
Steiner points are added in the critical region for visualization: the immediate neighborhood
of the camera trajectory. For each camera location tj , a fixed and small number (2 in
practice) of Steiner vertices are randomly added inside a ball region centered at tj . The
radius of the ball is defined as a multiple (e.g. 10) of meanj ||tj+1 − tj ||.

Note that the addition of Steiner vertices increases the number of tetrahedra, while the
number of ray is unchanged. The risk is to obtain a ratio #tetrahedra/#rays (#L means
the number of tetrahedra in L) which is locally too large such that matter tetrahedra can
appear. However this risk is very low since we add Steiner vertices in the area which has a
high density of rays.

4.6.2 Method 2: Detect, Force and Repair

The first method is a simple way to avoid spurious handles in critical regions, however
spurious handles can still exist. Another more efficient removal method is developed in our
latter work [5]. It has three steps: Detect, Force and Repair which are described in the
following sections.

4.6.2.1 Detect

Let e be an edge with finite vertices ae and be. Let α > 0 be a threshold. Edge e is “visually
critical” if the three following conditions are met:

1. every tetrahedron including e is free-space

2. at least one inside tetrahedron includes e

3. there exists a view point tj such that angle âetjbe is greater than α.

As showed in Fig. 4.13, a spurious handle may have critical edges both on its border and its
interior. All visually critical edges are stored in a list Lα. The larger α, the smaller size of
Lα and also the greater lengths of the edges in Lα. Finally, a moderated number of handles
are selected thanks to α > 0.

4.6.2.2 Force

This step needs a mesh operator called “Edge Splitting”. It splits an edge of D by adding a
Steiner vertex at the middle of the edge, and every tetrahedron including the edge is split in
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Figure 4.13: Spurious handle (left) and edge splitting (right) in the 2d case. Here we see,
manifold edges (bold lines), Delaunay edges (simple lines), outside region (white), inside-freespace
region (light gray), and inside-matter (dark gray). Left: edges ab, cd, ac are visually critical.
Right: Steiner point f is inserted on cd, this splits triangle cde and adc.

two tetrahedra whose labels (free-space, matter, inside, outside) are the same as the original
tetrahedra. See an example in Fig. 4.13. The resulting triangulation D is not 100% Delaunay
after edge splitting, but the surface which separates outside and inside tetrahedra is still a
2-manifold (the set of surface points is the same).

The edge splitting is applied to every edge in the list Lα. This changes the graph of
tetrahedra and provides new tetrahedra for the next step, which is a local region growing of
outside O in free-space tetrahedra F . For each vertex vi on (split) critical edges, a list Li is
defined which collects all free-space and inside tetrahedra incident to vi. Now a first round
of (Force,Repair) is applied to the list Li. Function “Force” adds tetrahedra in O without
checking that δO is a 2-manifold, and function “Repair” (Sec. 4.6.2.3) tries to grow O such
that δO becomes a 2-manifold. If the first round fails, another round of (Force,Repair) is
tried for tetrahedra of Li one-by-one.

Algorithm. 2 shows the Force and Repair process.

Algorithm 2: Force and Repair

For each vertex vi on every edge e ∈ Lα :
Let Li be the list of inside and free-space tetrahedra incident to vi;
G = Li;
O ← O ∪G; // Force
if !Repair(G,O) then

For each tetrahedron Δ ∈ Li :
G = {Δ};
O ← O ∪G; // Force
Repair(G,O);
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4.6 Spurious Handle Removal

4.6.2.3 Repair

The Repair step is a local growing of O in F such that the number ns of singular vertices
of surface δO decreases and every regular vertex is maintained regular. At the beginning,
ns > 0 is due to the addition of G in O (Force). Then a free-space and inside tetrahedron Δ
is chosen in the neighbors of G, and it is added in O. If ns increases, Δ is removed from O
and another tetrahedron is tried. The process stops when every Δ candidate increases ns.
If the final ns is 0, the local region growing succeeds. Otherwise it fails and O is restored to
its value before the Force step.

Algorithm. 3 shows the Repair algorithm. The inputs are O, G and gmax (an upper
bound to limit the local growing complexity). The output is O and a boolean which asserts
that Repair is successful or failed.

Note that this algorithm looks like the greedy region-growing algorithm Algorithm. 1 in
Sec. 4.4. Its main differences compared to Algorithm. 1 are: (1) the 2-manifold tests are
replaced by non-increase tests of the number of singular vertices (2) the process can fail.
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4. BATCH SURFACE RECONSTRUCTION

Algorithm 3: Repair

Inputs : O, G, gmax

Outputs: boolean b, O
Let ns be the number of singular vertices of G;
Create a priority queue Q = ∅;
For each tetrahedron Δ ∈ G :

For each tetrahedron Δ′ adjacent to Δ :
if Δ′ ∈ F && Δ′ /∈ O then

Q← Q ∪Δ′;

while Q! = ∅ do
Pick from Q the tetrahedron Δ which has the largest r(Δ);
if Δ ∈ O then

continue;

Let b0i be true if and only if the i-th vertex of Δ is singular in δO;
n0 =

∑4
i=1 b

0
i ; //number of singular Δ-vertices;

O ← O ∪ {Δ};
Let b1i be true if and only if the i-th vertex of Δ is singular in δO;
n1 =

∑4
i=1 b

1
i ; //number of singular Δ-vertices;

if n0 ≥ n1 && b01 ≥ b11 && b02 ≥ b12&& b03 ≥ b13 &&b04 ≥ b14 then
G← G ∪ {Δ}; //G can be used at the growing end
ns ← ns + n1 − n0; // fast n update
if the size of G is gmax then

break; // too large computation: stop

For each tetrahedron Δ′ adjacent to Δ :
if Δ′ ∈ F && Δ′ /∈ O then

Q← Q ∪ {Δ′};
else

O ← O \ {Δ};
if 0 == ns then

return true;
else

O ← O \G;
return false;
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4.7 Post-processing

The reconstructed surface S has still several weaknesses which can be easily noticed during
visualization. This section shows a list of post-processings used in our work, dealing with
these weaknesses.

Here is a list of these post-processings:

1. Peak removal.

Sharp vertices which are not physically plausible are removed. It can also reduce effects
of bad (false positive) SfM points, which will be discussed in Sec. 4.8.

2. Surface denoising.

The noise of the estimated 2-manifold surface is reduced.

3. Removal of “sky” triangles.

Part of the surface corresponding to the sky (assuming outdoor sequences) is removed.
It facilitates the model visualization.

4. Texturing.

Assign textures extracted from input images to the reconstructed surface.

4.7.1 Peak Removal

On the reconstructed 2-manifold, some peaks can exist. Fig. 4.14 illustrates several examples
of this kind of peaks. These peaks are not physically plausible, i.e. they do not recover any
part of the scene, and should be removed.

Figure 4.14: Several examples of peaks (surrounded by red lines).

A peak is a vertex v in S such that the ring of its incident triangles in S defines a solid
angle w which is too small to be physically plausible, i.e. w < w0 where w0 is a threshold.
Let L be the list of the tetrahedra in the acute side of the peak ring. All tetrahedra of L have
the same label: outside or inside. Then w can be calculated by summing the solid angle of
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4. BATCH SURFACE RECONSTRUCTION

v in each tetrahedron of L. Appendix. D shows how to calculate the solid angle of a vertex
in a tetrahedron.

Now if v is a peak, i.e. w < w0, then it can be removed by inversing the labels of
tetrahedra in L: inside becomes outside, and vice versa. The inversing is successful if all
vertices of the tetrahedra in L remain regular. Otherwise, the L labels are restored to
original values and another peak is tried. In practice, the peak removal is done by going
through several times the list of S vertices. Note that this step does not take into account
the free-space/matter labeling of tetrahedra.

4.7.2 Surface Denoising

Surface denoising is usually a necessary process for a 3d modeling. Whatever the acquisition
captor is (laser, Kinect, camera etc.), and whatever the reconstruction method is (dense
stereo or structure from motion), the 3d points have always noise. Considering the surface
parameterized by function f : Ω → R3, where Ω ⊂ R2, the denoising process of a mesh is
generally a process to remove high-frequency noise of f . Thanks to the 2-manifold property
of our surface model, the surface denoising can be easily processed according to Sec. 1.4.2.

Uniform Laplacian Flow Operator A standard polygonal mesh denoising method is
used to denoise the reconstructed 2-manifold S: the uniform Laplacian flow operator [135] [78].
It should be noted that there exist other more sophisticated operators such as Laplace-
Beltrami operator [27] etc. Nevertheless, the uniform Laplacian operator is preferred in our
work thanks to its simpleness and stability.

�
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��

Figure 4.15: Umbrella operator. v is the vertex of the previous iteration, v1, · · · ,v7 are one-
ring neighbor vertices of v in the previous iteration, v′ is the updated vertex of v in the current
iteration

Let v be the original vertex in S, v′ be the denoised vertex of v, N(v) = {v1,v2, · · · ,vn}
be the list of one-ring neighbor vertices (neighbor vertices which are connected to v with
one edge) of v on S and n is its size. We have,

v′ = v + λΔv (4.4)

where λ is a constant (0.8 in practice) and Δv is the displacement vector, also called the
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4.7 Post-processing

umbrella operator (see Fig. 4.15). Δv is defined as follows,

Δv =
1

n

∑
vi∈N(v)

(vi − v) (4.5)

Advantages and Drawbacks There are several advantages by using uniform Laplacian
flow operator for surface denoising. It is very simple to use and triangle forms are also
improved: minimal angles of “thin” triangles become generally greater after surface denoising
and their forms become more regular [27].

�

�	

� ��

Figure 4.16: An example of non-manifold after surface denoising in 2d case. Left and right
are respectively 2-manifold surface S before denoising and the denoised surface S′. We can see
the vertices (round black points) in S, S′, the displacement vectors (arrows) of several vertices,
and self-intersections (red squared points) of S′. v is a vertex in S which is very distant to its
connected vertices, v′ is the denoised point of v.

Regarding the drawbacks, firstly surfaces with high curvatures are over-smoothed. In-
deed, the uniform Laplacian flow operator is a low-pass filter. Furthermore, as denoised
vertices are displaced, the 2-manifold might become non manifold. See Fig. 4.16 for an ex-
ample. In this example, the surface obtained after surface denoising has self-intersections
thus it is non-manifold. Nevertheless, we want the reconstructed surface to be 2-manifold in
our work so that post-processings such as surface denoising can be applied. Thus we only
guarantee the surface to be 2-manifold before surface denoising.

4.7.3 Removal of “Sky” Triangles

Our surface reconstruction method reconstructs the whole scene including the “sky” in case
of outdoor scenes. The “sky” part of the reconstructed surface can be seen as hallucinations
(which does not correspond to real surfaces) or highly erroneous part of the reconstructed
surface. In fact, the sky is usually far from the camera and the corresponding reconstructed
3d points are highly erroneous. Besides, as our final surface is a closed mesh, removing
part of the mesh allows a better visualization of the model in a bird view point, e.g. see
Fig. 4.17. So in our work, the “sky” part is removed off the reconstructed surface. Saying
about “remove”, the “sky” triangles are not really removed from the surface. They are only
detected and turned to be invisible for visualization.

The “sky” triangles removal is performed as follows:
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4. BATCH SURFACE RECONSTRUCTION

Figure 4.17: Bird view of textured models with and without sky. Left: model with sky. Right:
model without sky

1. We use the z-axis of our catadioptric camera (Sec. 3.1.1.2) to calculate the sky direction.
Let ni be world coordinates of the z-axis of the catadioptric camera for camera pose
ci. Then the sky direction is simply: 1

m

∑m
i=1 n

i.

2. A list of open rectangles are defined by the finite edge titi+1 and the two infinite edges
(half lines) starting from ti (or ti+1) with sky direction. A triangle of S which is
intersected by an open rectangle is marked as “sky” triangle.

3. “Sky” triangles are iteratively propagated on the S in a fixed number of iterations. In
each iteration, for each “sky” triangle, its neighbor triangle t will be marked as “sky”
triangle under condition that t is on S and the angle between the “sky” direction and
the normal direction of t is smaller than a threshold β. The number of iterations is
limited and in practice, 5 iterations are sufficient.

4.7.4 Texturing

Last, the texture should be defined for each triangle of S. A simplified version of [83] is used
here, which gets “as is” the texture of a well chosen view point tj for each triangle si of S. In
our case where the image sequence has hundreds or even thousands of images (not dozens),
a list of candidates for si are pre-selected. A camera viewpoint tj is selected as a candidate
if it meets the following conditions: 1) the triangle is entirely projected in the image taken
at tj (the triangle is split if it is too large); 2) si is not occluded by another triangle of S; 3)
tj provides one of the k-largest solid angle for si, where k is a threshold.

4.8 Discussion on Bad (False Positive) SfM Points

SfM can reconstruct bad point q due to repetitive texture or image noise. Now we discuss
the consequences and give solutions for this problem. If q is in the true matter of the scene,
some tetrahedra which should be matter are labeled free-space due to bad ray of p. If these
tetrahedra are in O, δO can be corrupted, i.e. a wall with a spurious concavity. In practice,
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the risk of bad p is low thanks to the SfM machinery (bundle adjustment, RANSAC, robust
matching, interest point detectors).

Figure 4.18: Peak removal can remove spurious concavity (2d case). Outside is white, inside
is gray. Points and camera locations are black squares and disks, respectively. The density of
good points on the surface is high (top) or low (bottom). Left: no bad point. Middle: one bad
point adds a spurious concavity due to its two rays. Right: Peak Removal removes the concavity
(which is a peak) if it has a small solid angle.

Nevertheless, our method also reduces this risk or even repairs spurious concavities. First,
the risk is reduced thanks to the choice of ε in the point selection step (Sec. 4.2): the larger
ε, the more accurate points and their rays used by Ray-Tracing (Sec. 4.3), the lower risk of
spurious concavity. Second, the spurious concavities created by the manifold constraint in
the growing steps (Sec. 4.4 and 4.5) cannot be worse (larger) than those of the free-space in
the matter. Indeed, a concavity is a list of outside tetrahedra which are included in free-space.
Third, Fig. 4.18 explains how Peak Removal (Sec. 4.7.1) can remove a spurious concavity
due to bad point p. Here p carves a peak due to its rays, the peak apex is p and the acute
side of the peak is the spurious concavity. The larger density of good points, the smaller
solid angle of the peak, the better success rate of the spurious concavity removal.

4.9 Conclusion

In this chapter, we have presented a batch surface reconstruction method using SfM output: a
sparse cloud of reconstructed Harris points and their visibilities in the images. The potential
adjacencies between the points are encoded in a 3d Delaunay triangulation, then the point
visibilities are used to label the tetrahedra, at last a 2-manifold is extracted thanks to a
greedy method and the use of Steiner vertices.

Our contributions include,

� a region-growing method [3, 6] which generates a 2-manifold of environments, and
optimizes the visibility consistency provided by SfM.
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4. BATCH SURFACE RECONSTRUCTION

� two methods [5] which remove artifacts called “spurious handles” in the estimated
2-manifold surface,

� an efficient tetrahedron-based test [1] which checks if a surface is 2-manifold (Sec. 4.4.3.1).
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Chapter 5

Incremental Surface Reconstruction

5.1 Introduction

The incremental surface reconstruction method estimates incrementally a 2-manifold surface
of the environment using sparse 3d points progressively provided by our incremental SfM
method.

Given a video sequence, the incremental SfM algorithm described in Sec. 3.3 continuously
selects key-frames and estimates the current geometry information of environments each time
a key-frame is selected. The estimated geometry for each key-frame includes the camera pose
(rotation+translation) corresponding to the current image, new 3d points and new visibility
rays between camera viewpoints and 3d points. To simplify, an “image” means a key-frame
in the following scope of this chapter. Each time the geometry of the current image is
computed, it is then used by our incremental surface reconstruction to update the current
reconstructed surface of environments. Here the index of image t is used to represent the
time.

In our work, “incremental” means that a surface obtained before time t + 1 is locally
updated by using geometry provided at time t + 1 to obtain the surface model at t + 1. In
the ideal case, the processing time for each surface update at t should be independent to t,
i.e. O(1) in terms of time complexity. Specifically, when t increases, the processing time of
each surface update should not increase.

Here our incremental surface reconstruction method is briefly summarized. Like other
standard real time or incremental algorithms, it begins by a short initialization phase and
then passes to its principal incremental phase. In the initialization phase, the surface is
estimated as in the batch case (Chap. 4) for the first three images. And in the incremental
phase, the following steps are sequentially applied each time the geometry of a new image is
available,

1. incremental 3d Delaunay triangulation (Sec. 5.2)

2. local free-space/matter labeling (Sec. 5.3)

3. incremental 2-manifold extraction (Sec. 5.4)
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5. INCREMENTAL SURFACE RECONSTRUCTION

4. incremental topology extension (Sec. 5.5)

5. incremental post-processing (Sec. 5.6)

Now details of these steps are described in the followings sections.

5.2 Incremental 3d Delaunay triangulation

The first step of our incremental surface reconstruction is the incremental 3d Delaunay
triangulation of 3d points. At time t = 1, 3d points of the first three images are used to
build the initial Delaunay. Note that in our work, time t starts from 1 (not 0), i.e. t = 1
means the beginning of the sequence. Then for other images, the Delaunay at time t (t > 1)
is obtained by updating Delaunay at t − 1 with the SfM points which become stable at t.
We use an incremental Delaunay triangulation implementation [7], which adds points one by
one to build the Delaunay triangulation.

5.2.1 Point Selection

In contrast to the work [93], our incremental Delaunay triangulation step does not add 3d
points newly reconstructed at the current time t but the 3d points which become stable
at t (see description below). Indeed, the Delaunay triangulation at time t is not totally
synchronized with the current geometry, however the update of Delaunay triangulation is
much more efficient from a computational viewpoint.

What means �� a point becomes stable at t �� ? A 3d point q becomes stable at t if
and only if q is no longer modified by the incremental SfM at and after t. Assume that
the Local Bundle Adjustment (LBA) of incremental SfM refines the local geometry of the
nl = 3 last images (as in [104]). It implies that q should be the point which is no longer
detected/tracked starting from t− 1. See Fig. 5.1 for examples of stable points and instable
points at t.

Method Here we explain why the Delaunay should be updated with stable points. During
the incremental SfM algorithm (Sec. 3.3), new 3d points are initialized and refined at time t.
Remember that at the same time, some old points which are initialized in previous images
(t − 1, t − 2, ..) are also refined by LBA and some of them may become outliers after LBA.
Let Qt be all these unstable points (old refined points and outliers). Now if the Delaunay
Dt−1 at t− 1 is updated to the Delaunay Dt at t with Qt, then the old refined points should
be removed and re-added, and the outliers should be removed from Dt−1.

Furthermore, it will be problematic for the subsequent ray-tracing process. Each tetra-
hedron Δ should hold a list L(Δ) of rays intersected with Δ. If a ray of L(Δ) is modified
after LBA, then we should recheck that this ray intersects Δ. The computation time for
large-scale scene can be high and experiments of work [93] show that if the size of L(Δ) is
not manually bounded, the processing time for each image increases when t increases.
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Figure 5.1: Stable and instable points at time t. At time t, Local Bundle Adjustment (LBA)
is applied at t, t− 1, t− 2. Then q1 has already become stable at t− 1, q2 becomes stable at t,
q3,q4 are instable at t (they will be refined by LBA at time t+ 1).

After selecting the points which become stable at t, a point filter is applied to the selected
points as in the batch case (Sec. 4.2): a point q will not be added to Delaunay if angles
between all pairs of rays associated to q are less than a threshold ε (5 or 10 degrees in
practice) or greater than π − ε. Besides, a fixed number (2 in practice) of Steiner points are
added in the neighborhood of the current camera viewpoint tt to reduce the risk of spurious
handles, as in the batch case Sec. 4.6.1.

5.2.2 Dating

A creation date is assigned to each tetrahedron and each vertex of the current Delaunay
Dt. The dating process is necessary for all further steps (local ray-tracing, incremental 2-
manifold generation...) and can be easily done thanks to the Delaunay implementation of
CGAL [7].

When a point q is added to the Delaunay at time t, a list Ld(q) of tetrahedra are
destroyed and a list Lc(q) of tetrahedra are created. So the date t is assigned to q and every
tetrahedron of Lc(q). By doing so, the Delaunay is finally partitioned to a list of temporal
layers of tetrahedra created at different times. Here, we also note the smallest creation date
of tetrahedra in Ld as dt, which will be useful in our further 2-manifold generation step
(Sec. 5.4).

By adding 3d points progressively along the camera trajectory and dating the Delaunay
triangulation, a direct link is made between the spatial and the temporal information of 3d
points and tetrahedra in Delaunay. We have:

1. From a global viewpoint, 3d points and tetrahedra with similar creation dates are
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usually incident.

2. From a local viewpoint, incident tetrahedra and points have often similar creation
dates.

There exist exceptions. When loops exist in the camera trajectory, the first observation is still
valid however the second is false. More precisely, in the area where a loop is closed, a point
or tetrahedron with late creation date (loop end) can be neighbor to points or tetrahedra
created early (loop beginning).

5.3 Local Ray-tracing

In the batch version, a ray-tracing algorithm is used to label free-space andmatter tetrahedra.
It is still used by our incremental surface reconstruction method, except that not all rays
are used. In fact, using all rays of each image is too time consuming and the complexity is
at least linear to the number of rays, which is also linear to the time.

A process called the local ray-tracing is used in the incremental case. Only part of rays
are used by this process: at time t, the ray-tracing is only applied to the rays with creation
dates in {t− k + 1, · · · , t− 1, t} (the creation date of a ray is the one of the point to which
this ray is attached), where k is a threshold.

We can show that results of all local ray-tracings are almost the same to results of global
ray-tracing. The justification is given in following paragraphs.

Justification Let Dnew be the list of tetrahedra which are created at t (their creation date
is t). The other tetrahedra in D are D \Dnew, noted as Dold. We note that all tetrahedra of
Dold have a creation date less than t. Let Rnew be the list of rays used for local ray-tracing
(their creation dates are in {t − k + 1, · · · , t − 1, t}), and other rays are Rold, which have
creation dates less than t− k + 1.

1. If the batch ray-tracing is used, all tetrahedra, i.e. Dnew ∪Dold are tested with all rays
Rnew ∪ Rold to check their intersections. It means Dnew should be tested with Rnew

and Rold, and Dold should also be tested with Rnew and Rold.

2. Now if local ray-tracing is used, the ray-tracing is only applied to Rnew, i.e. Dnew and
Dold are checked with Rnew. Besides, Dold are already tested with Rold in previous
local ray-tracings.

Finally, the only difference between the local and global ray-tracing is that Dnew are not
tested with Rold.

In general, it is useless to test Dnew with Rold. In fact, if the camera trajectory does not
contain loops, Rold have almost no intersection with Dnew if k is large enough. As showed
in Fig. 5.2, when k = 1, Dnew have intersections with Rold. The number of intersections
decreases when k increases to 2 and becomes 0 when k = 3. In practice, k = 40 is used in
the local ray-tracing, and almost the same results to the batch ray-tracing are obtained.
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Figure 5.2: Examples of local ray-tracing at time t = 6 with different k. k = 1 (top), k = 2
(middle) and k = 3 (bottom)

In case of loops in the camera trajectory Assume that loops exist in the camera
trajectory. In the area where a loop is closed, the tetrahedra Dnew recently created are near
to 3d points with old creation dates. As tetrahedra of Dnew are not tested with Rold, there
might exist un-carved tetrahedra. However, these un-carved tetrahedra are rare. In fact, as
we use an omni-directional camera, new images acquired at the closed loops area are similar
to the old images acquired at this area. Under some conditions (we talk about them in the
next paragraph), almost the same 3d points are reconstructed by SfM. It implies that the
space covered by Rnew is almost the same to the space covered by Rold in the closed loop
area. Consequently, we do not test Dnew with Rold.

The proof above is valid under some conditions. The camera moving directions should
be roughly parallel at the beginning and at the end of the loop in the camera trajectory.
This is due to the point filter used for selecting points to add in the Delaunay triangulation
D. Remember that for a pair of camera viewpoints {t1, t2}, a 3d point q can be selected in
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5. INCREMENTAL SURFACE RECONSTRUCTION

D only if q is in a so-called non degenerate region such that ε < t̂1qt2 < π − ε (Sec. 4.2).
The proof in the paragraph above requires that almost the same 3d points are reconstructed
at the beginning and the end of the loop. That means the non degenerate regions of camera
viewpoint pairs at the beginning and the end of the loop should be almost the same (over-
lapping). Assume that {ta, tb} and {tc, td} are respectively at the beginning and the end of
a loop. As illustrated by Fig. 5.3, we can see that the non degenerate zones of {ta, tb} and
{tc, td} are almost overlapping only if tatb and tctd are roughly parallel and close.
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Figure 5.3: Overlapping of non degenerate regions for camera viewpoints at the beginning and
the end of a loop in the camera trajectory. Camera viewpoints (red squared points) ta, tb and
tc, td are respectively at the beginning and the end of a loop in the camera trajectory (dashed
line). The overlapping of non degenerate regions of camera pairs {ta, tb} and {tc, td} is in white.
Left: tatb and tctd are roughly parallel and close, thus their non degenerate regions are almost
overlapped. Right: tatb and tctd are not parallel thus only part of their non degenerate regions
are overlapped.

5.4 Incremental 2-manifold Generation

5.4.1 Problem

The third step of our incremental surface reconstruction is 2-manifold generation by applying
an incremental region-growing process. It is an incremental version of the region-growing
algorithm used in the batch version (Sec. 4.4). At each time t, it grows an outside region
Ot in the free-space tetrahedra and the border of Ot is a 2-manifold St. It is obvious that
growing Ot from ∅ like in the batch case cannot satisfy the incremental performance. As
the region-growing is a progressive process, an intuitive idea of growing the current region
based on previous regions comes naturally into mind: if the outside region Ot−1 is already
grown at t − 1, one can grow from Ot−1 with free-space tetrahedra obtained at t to obtain
the outside region Ot at t.

However there exists a problem: Ot−1 will probably be modified at t due to the add of
new points to Dt−1 and the surface St−1, which is the border of Ot−1, will be no longer 2-
manifold. Consequently, the region-growing from Ot−1 to Ot cannot apply. Fig. 5.4 illustrates
an example of this problem. The add of new 3d points toDt−1 at t destroy some tetrahedra of
Ot−1. The tetrahedra destruction is uncontrolled and St−1 becomes probably non-manifold.
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Figure 5.4: Problem of region-growing. Left: 2-manifold at t − 1. Right: surface at t. In
both figures, we see outside region (gray), inside region (white), St−1 (black line), new 3d points
added at t (red points), St−1 after adding new 3d points at t (red lines).

5.4.2 Principle of our Solution

The proposed solution still takes the idea of growing outside region from previous outside
regions and at the same time always maintains the 2-manifold property. This solution is
based on temporal layers of tetrahedra of the Delaunay. The idea is that: outside regions
created at all instances are stored. Then the outside region Ot at time t can be grown from
a stored outside region Oi0(i0 < t) such that the border of Oi0 is 2-manifold.

Now assume that the border of the outside region Oi0(i0 < t) is 2-manifold and Ot is
grown from Oi0 . The region-growing is done layer by layer. For each temporal layer i, a
new outside region Oi(i0 ≤ i ≤ t) corresponding to this layer is generated and stored. Only
free-space tetrahedra created before or at layer i can be added into Oi. As a result, for each
temporal layer, a 2-manifold can be generated as the border of Oi and all tetrahedra in Oi

have a creation date ≤ i. The region-growing stops when i = t and the border of the last
Oi is then the target 2-manifold. This process of region-growing layer by layer is named the
layer-wise region-growing.

How to choose the starting temporal layer i0 is showed as follows. We recall that when
new 3d points are added to the Delaunay Dt−1 to create Dt, some tetrahedra are destroyed
and some new tetrahedra are created. Let dt (dt < t) be the smallest creation date of
destroyed tetrahedra. We can see that the border of the outside region at the temporal layer
dt − 1 (and also other temporal layers before dt − 1) is a valid 2-manifold. Thus dt − 1 can
be chosen as the beginning temporal layer i0 of the incremental region-growing.

Unfortunately, as showed by the experiment in Sec. 7.3.4, the layer-wise region-growing
is not efficient from a computational viewpoint. At time t, assume that Dt has two incident
tetrahedra Δa, Δb which have respectively creation dates a, b such that i0 ≤ a < b ≤ t.
Assume also that Δb can be added in the outside region Ob by region-growing at layer b.
From layer a, Δa is tried to be added in Oi (i ∈ {a, · · · , b}). However depending on neighbor
configuration of Δa, sometimes it cannot be added in Oi if Δb is not in Oi. Thus redundant
tentatives of adding Δa in Oi are done, until Δb is added in Oi.
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Figure 5.5: An example (in the 2d case) showing why the layer-wise region-growing is inefficient.
At time t = 20, we see outside region (gray zone), inside region (white zone), a tetrahedron Δa

(waved triangle) of creation date 10, a tetrahedron Δb (white triangle) of creation date 20 which
is adjacent to Δa. The vertex v (red round point) will be singular if Δa is added in the outside
region before Δb. Thus b − a = 10 redundant tentatives have been done for Δa before region-
growing at layer 20 where Δb and Δa are successively added in the outside region.

Let us see an example in Fig 5.5 for better understanding. At time t = 20, a tetrahedron
Δa of creation date a = 10 and another tetrahedron Δb of creation date b = 20 are adjacent.
Due to vertex v, Δa cannot be added in O if Δb is inside. As a result, b− a = 10 redundant
tests are done for Δa before adding it to O.

5.4.3 Region-Growing by Pack of Temporal Layers

In our final incremental region-growing algorithm, a region-growing method by pack of tem-
poral layers is used to generate incrementally the 2-manifold. Let Li be the free-space
tetrahedron list of each layer ti. At each time t, several lists of outside tetrahedra are hold
which correspond to particular creation dates (multiples of a parameter l): Ol, O2l, ... Oitl

where l is a fixed integer and it is the largest integer such that itl ≤ t. These lists and also
Ot of outside tetrahedra meet

Ol ⊆ O2l ⊆ · · · ⊆ O(it−1)l ⊆ Oitl ⊆ Ot

∀t′ ∈ {l, 2l, · · · , itl, t}, Ot′ ⊆ Ft′ = L1 ∪ L2 ∪ · · · ∪ Lt′

and the border of Ot′ is 2-manifold. (5.1)

The border of Ot is the target 2-manifold S at time t. If t ≤ l, we apply the batch region-
growing in all free-space tetrahedra from O0 to obtain Ot (O0 = ∅). Now assume that t > l.
The algorithm works from Eq. 5.1 at t− 1 to Eq. 5.1 at t. Let i0 be the largest integer such
that i0l < dt. If i ≤ i0, Oil is unchanged and its border is still manifold. If i0 < i, tetrahedra
may be destroyed in Oil, its border may be non manifold and Oil should be recomputed.
Time starts from 1, thus 1 ≤ dt, 0 ≤ i0 and Oi0l exists. Then our method grows from Oi0l

to obtain O(i0+1)l, then from O(i0+1)l to obtain O(i0+2)l and so on, until Oitl is obtained. At
last, our method grows from Oitl to obtain Ot if itl < t. An example is shown in Fig. 5.6.
In this example, t = 98, l = 20, dt = 51.
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(a) Before region-growing for
image 98, the 2-manifolds of
layers 20, 40, 60, 80 and 97
are already computed.
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(b) The points additions de-
stroy tetrahedra. The earli-
est creation date of tetrahe-
dra which are destroyed due
to point additions to the De-
launay is dt = 51.
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(c) The 2-manifolds of layers
60, 80, and 97 become invalid
so they are destroyed.
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(d) Region-growing from
layer i0l = 40 to layer 98 by
pack of l = 20 layers.

Figure 5.6: An example of incremental region-growing. The current time t is 98, the number
of temporal layers contained in a pack is l = 20, and the smallest creation date of destroyed
tetrahedra dt is 51.

In summary, our incremental region-growing method for time t, can be considered as a
series of successive region-growings for fixed special times {i1l, · · · , itl, t}. Each successive
region-growing is based on results of the previous region-growing (except for the first one
which performs based on the outside region of time i0l).

Algorithm of Successive Region-growing Let t be the current time and let us consider
the successive region-growing from layer il to layer (i + 1)l ≤ t. Algorithm. 4, which is a
modification of Algorithm. 1, shows the detailed algorithm of the successive region-growing.

Here, the inputs are Oil and F(i+1)l, where Oil is the outside region at il. F(i+1)l is the set
of free-space tetrahedra created before or at (i + 1)l. For reasons of theoretical complexity,
we use F(i+1)l = L(i0−1)l ∪ · · · ∪ L(i+1)l (not those of L1 ∪ · · · ∪ L(i+1)l). In addition, the list
Q0 of tetrahedra used to initialize the priority queue Q is Lil−b0 ∪ Lil−b0+1 ∪ · · · ∪ L(i+1)l.
Here, b0 is a threshold and b0 ∈ N.
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Algorithm 4: A Successive Region-growing from Oil to O(i+1)l

Inputs : Oil, Q0, F(i+1)l

Outputs: O(i+1)l

Step1: Initialization
Create a priority queue Q;
if Oil == ∅ then

//the case dt < l
Let Δ ∈ F(i+1)l be such that r(Δ) is maximum;
Q← Q ∪ {Δ};

else
For each tetrahedron Δ ∈ Q0 ∩ F(i+1)l :

if Δ has at least one adjacent tetrahedron in Oil && Δ /∈ Oil then
Q← Q ∪ {Δ};

Step2: Region-growing (same as Step 2 of Algorithm. 1, rewritten here for clarity)
O(i+1)l = Oil;

while Q �= ∅ do
Pick from Q the Δ which has the largest r(Δ);
if Δ ∈ O(i+1)l then

continue;

O(i+1)l ← O(i+1)l ∪ {Δ};
if all vertices of Δ are regular then

For each adjacent tetrahedron Δ′ of Δ :
if Δ′ ∈ F(i+1)l and Δ′ /∈ O(i+1)l then

Q← Q ∪ {Δ′};
else

O(i+1)l ← O(i+1)l \ {Δ};

5.5 Incremental Topology Extension

Each time after a region-growing from O(i−1)l to Oil (including Ot), the outside region Oil

obtained at the previous step is improved by an incremental version of “Topology Extension”
(Sec. 4.5) . The improved Oil still meets Eq. 5.1. Here, the free-space tetrahedron list Fil

used for region-growing from O(i−1)l to Oil is also used in the topology extension.
For a vertex v in the current 2-manifold δOil, the topology extension of v in the incre-

mental case applies two steps as follows:

1. it tries to switch the set A of inside tetrahedra incident to v to outside, i.e. Oil is
updated. Here, all tetrahedra in A should be in Fil.

2. if the Step 1 succeeds, the successive region-growing algorithm (Algorithm. 4) is ap-
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plied. The inputs Oil, Fil are the same as in the incremental manifold generation
(Sec. 5.4.3) and only Qil is different. In this case, Qil is the list of tetrahedra adjacent
to A.

For reasons of computational costs, not every vertex in δOil is tried but only vertices
with the most recent creation dates to layer il. More precisely, both steps above are only
applied to the vertices of δOil which have creation dates in {il − b1, · · · , il − 1, il} where
b1 ∈ N is a threshold such that b1 < l. In addition, these vertices are tried only once.

5.6 Incremental Post-processing

Incremental Surface Denoising An incremental version of the surface denoising process
in Sec. 4.7.2 is applied to reduce the noise of the incremental 2-manifolds obtained.

Let St−1 and St be the 2-manifolds obtained at time t − 1 and t respectively. Let
S′
t−1 be the denoised 2-manifold obtained at time t − 1. Now the objective is to calculate

the denoised 2-manifold S′
t at time t. Assume that both St−1 and St have a vertex v,

����� ��������

Figure 5.7: Vertices which should be denoised in incremental surface denoising for time t.
Outside region Ot (light and dark gray) obtained at t is grown from Oi0l (light gray) and the
grown volume is Ot \ Oi0l (dark gray). The border of Ot is the 2-manifold St for time t. In
vertices (round and squared points) of St, those (squared points) which should be denoised are
on border or one-ring neighbors to the border of the grown volume Ot \Oi0l.

and the v neighborhood (one ring neighbors) in St−1 is the same as the one in St, i.e.
N(v, St−1) = N(v, St). Then the denoised vertex v′ in S′

t is the same to the one in S′
t−1,

thus it is useless to recalculate it. More precisely, remember that in the batch case, we have
v′ = v + λΔv (Eq.4.4). The denoised vertex v′ depends on v and N(v) which is the list
of one-ring neighbor vertices of v on the 2-manifold. In the incremental case, v′ should be
(re)-calculated only if v is a new vertex in St or if N(v, St−1) �= N(v, St).

The incremental region-growing step (Sec. 5.4.3) and the incremental topology extension
step (Sec. 5.5) grow from an outside region Oi0l to obtain Ot. Ot \Oi0l is the outside volume
newly grown. So the vertices in St which should be denoised are those on the border or
one-ring neighbors to the border of Ot \Oi0l. In other words, v′ will be (re)-calculated if v is
in St and N(v, St) ∪ {v} contains at least one vertex of the border of Ot \Oi0l. See Fig. 5.7
for an example.
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5.7 Conclusion

In this chapter, we have presented an incremental surface reconstruction method using re-
sults of an incremental SfM algorithm. Sparse SfM points are progressively provided and a
2-manifold surface modeling the environment is incrementally updated, i.e. each time new
SfM points are available, a new 2-manifold surface is reconstructed by updating the surface
previously reconstructed with these new SfM points. Each surface update firstly incremen-
tally updates a 3d Delaunay triangulation and labels free-space tetrahedra with new SfM
points and point visibilities. Then it grows a new outside region from a previous outside
region (whose border is 2-manifold) in the Delaunay triangulation. Finally, the border of
the new outside region is the updated 2-manifold.

Up to our knowledge, this surface reconstruction method [4, 6] which incrementally es-
timates a 2-manifold using sparse (SfM) points is novel in the Computer Vision field. Note
that it can be seen as the incremental version of our batch surface reconstruction method
presented in Chap. 4, although the incremental one is not 100% complete compared to the
batch version. In the incremental version, the second method of spurious handle removal
and several post-processings (peak removal, sky removal and texturing) are lacking.
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Chapter 6

Time Complexity Analyses

In this chapter, the time complexities in the worst case of all steps of our batch and incre-
mental surface reconstruction methods are analyzed. The standard “big o” notation O(x)
is used and O(1) means “bounded”. Note that the font O used for the “big o” notation is
different from the font O, which is used to represent the list of outside tetrahedra.

In Sec. 6.1, some notations and data structures used for complexity analyses are pre-
sented. In Sec. 6.2, loose analyses about the worst case time complexity of our surface
reconstruction methods are shown. These analyses are done with very few lemmas deduced
from our SfM methods. In Sec. 6.3, a Steiner grid bounding the input point cloud is added
to the Delaunay triangulation for complexity analysis. Compared to Sec. 6.2, more assump-
tions can be made and tight complexities, which are more consistent to the experimental
complexities, can be obtained. At the same time, the Steiner grid has a very low density so
that the reconstructed surface quality and the process time are almost unchanged. At last,
Sec. 6.4 summarizes results of the time complexity analyses.

6.1 Notations and Data Structures

Here we introduce some notations and data structures used for the complexity analyses.

The 3d Delaunay triangulation is D. |L| is the number of elements of a list L; |D| is the
number of tetrahedra of D. n is the number of SfM points and m is the number of camera
viewpoints. d is the maximum vertex degree of D, i.e. the maximum number of tetrahedra
incident to a vertex of D except the infinite vertex v∞.

A list of informations frequently used are attached to each tetrahedron and each vertex
of D:

1. For every tetrahedron Δ, we store: the index list of 4 Δ vertices, the index list of 4
neighbor tetrahedra of Δ, the number r(Δ) of intersected rays, a label outside or inside.
Here, the label free-space or matter is not stored because r(Δ) > 0 means free-space
and r(Δ) = 0 means matter. In the incremental case, informations above are updated
each time when necessary. Besides, we store also other informations like the creation
date dc(Δ) and the grown date dg(Δ) of Δ. Here the grown date of Δ is the index of
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the layer from which Δ is grown, i.e. it is il if Δ becomes outside in the region-growing
from layer (i− 1)l to il.

2. For every vertex v, we store: the list of indices of its incident tetrahedra, the list of its
visibility rays. Besides, in the incremental case, informations above are updated each
time when necessary and the creation date of v is also stored.

Note that in the incremental case, we use the creation date dc(Δ) to indicate if Δ is
in Ft or Fil. And the grown date dg(Δ) can be used to indicate if Δ is in Ot or Oil, e.g.
dg(Δ) = il implies that Δ ∈ Oil and Δ /∈ O(i−1)l (assuming that (i− 1)l ≥ 0).

6.2 Loose Complexity Analysis

6.2.1 Assumptions and Lemmas

Here are some assumptions and lemmas which are obtained thanks to properties of our SfM
methods. They are used for the loose complexity analyses.

� H1: the size of the ray list V of a 3d point q is O(1).

� H2: in the incremental case, O(1) reconstructed points are added to the 3d Delaunay
Dt at time t.

We suppose that a detected Harris point is tracked in a limited number of consecutive
images. It implies that the size of V is bounded (H1).

In the pre-processing step, for each image, the incremental SfM detects and matches a
limited number of Harris points (Sec. 3.1.2). Besides, a detected Harris point is tracked in
a limited number of consecutive images(H1). Thus given an image t, the number of Harris
points which stop to be tracked at t− 2, i.e. the number of 3d points which become stable
at t, is also bounded. Remember that a 3d point q is added to the Delaunay triangulation
Dt at t only when q becomes stable at t (Sec. 4.2). As a result, we can conclude that : the
number of 3d points added to the Delaunay Dt at t is always O(1) (H2).

6.2.2 Batch Surface Reconstruction

Loose complexities of the batch surface reconstruction are analyzed in this section. They
are expressed by using the number of camera viewpoints locations m and the number of 3d
points n. In practice, we have m < n.

6.2.2.1 3d Delaunay triangulation

The first step is the point filtering. For each SfM point qj , checking that qj can be added in
the Delaunay triangulation D consists in calculating aperture angles using all pairs of rays
in ray list Vj of qj . The size of Vj is O(1) (H1), thus the check for one SfM point has a
complexity of O(1). There are n SfM points, so the complexity of the point filtering is O(n).
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Now given O(n) points, according to Sec. 1.5.3, the Delaunay triangulation construction
of D using these points has a time complexity of O(n2) in the worst case, and D has O(n2)
tetrahedra (Sec. 1.5.3).

6.2.2.2 Free-space/matter labeling

The ray-tracing algorithm is applied to every ray to label free-space/matter tetrahedra. The
worst case of ray-tracing for a ray is that this ray goes through all tetrahedra of D [127].
Note that D contains O(n2) tetrahedra and there are O(n) 3d points. Besides, the number
of rays of a point is bounded (H1). As a result the worst time complexity of this step is
O(n3).

6.2.2.3 2-manifold tests

Here we analyze complexities of different 2-manifold tests presented in Sec. 4.4.3.1. These
tests are used in steps of 2-manifold generation (Sec. 4.4), topology extension (Sec. 4.5) and
the second method of spurious handle removal (Sec. 4.6.2). They check that the surface δO
is still 2-manifold after adding the tetrahedron list A in O, i.e. all vertices of tetrahedra
of A are regular. Here, A contains a single finite tetrahedron or several finite tetrahedra
sharing a same surface vertex. In the second case, the shared vertex cannot be the infinite
vertex v∞ since all v∞-incident tetrahedra are matter and every surface vertex is incident
to a free-space tetrahedron. Thus, |A| ≤ d, i.e. |A| = O(d), and the number of vertices of
the tetrahedra in A is O(d).

In case of edge-based or tetrahedron-based vertex tests, A is firstly added in O and we
check that every vertex of tetrahedra in A is regular. For the edge-based vertex test, checking
that a vertex v is regular consists in calculating the link of v and checking that the link is a
simple polygon. The complexity is O(d2). For the tetrahedron-based vertex test, it consists
in a simple travel in the graph of tetrahedra incident to v. The complexity is O(d). The
latter has a better complexity than the former, thus we prefer to use the latter to check that
a vertex is regular in practice. If A contains a single tetrahedron, the complexity of checking
all vertices of A using the tetrahedron-based vertex test is O(d). If A contains more than
one tetrahedra, the complexity is O(d2).

In case of single tetrahedron test, the test checks the incident tetrahedra configuration
of each vertex of a tetrahedron Δ to decide if Δ can be added in O. Each vertex has O(d)
incident tetrahedra. According to the proof of the single tetrahedron test in Appendix C,
one possible configuration to add Δ in O involves incident tetrahedra lists of two vertices. In
this case, the complexity is O(d) if the lists are ordered, or O(d2) if the list are not ordered.
In our implementation, the incident tetrahedron lists are ordered to reduce the complexity.
Thus finally, the complexity of our single tetrahedron test is O(d).

6.2.2.4 2-manifold generation

Now the time complexity of the greedy region-growing algorithm introduced in Sec. 4.4.3.2
is analyzed. One might refer to Algorithm. 1 for better reading. Let q0 be the number of
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tetrahedra in list Q0. Let g be the number of grown tetrahedra, i.e. the difference between
the number of tetrahedra in the output O and in the input O of this algorithm. A tetrahedron
Δ is definitely added at most once into O. In this case, at most four tetrahedra are added to
Q. There is no other addition to Q, except at the initialization of Q where there are at most
O(q0) additions to Q. Thus the number of “while” iterations in Algorithm. 1 is O(g + q0).

In one “while” iteration, picking the best tetrahedron in heap Q is O(log(g + q0)). Then
the single tetrahedron 2-manifold test is used to check that if a finite tetrahedron Δ can
be added in O. According to Sec. 6.2.2.3, it has a complexity of O(d). As a result, the
complexity of one “while” iteration is O(log(g + q0) + d).

The complexity of the greedy region-growing algorithm is then O((g+q0)(log(g+q0)+d)).
The 2-manifold generation process uses the greedy region-growing process by starting O from
∅. Thus, g = O(n2) and q0 = 1. Besides, Q should be initialized by choosing the tetrahedron
with the largest r, which has a complexity of O(|D|). Finally, the 2-manifold generation
process has a complexity of O(|D| + (g + q0)(log(g + q0) + d)). Then it is O(n3) since
|D| = O(n2), g + q0 = O(n2) and d = O(n).

6.2.2.5 Topology extension

Remember that “Topology Extension” alternates two steps:

1. Switching from inside to outside tetrahedra incident to a surface vertex v, and check
that the resulting surface is still 2-manifold.

2. Region growing in F starting from the neighborhood of reversed tetrahedra of step 1.

If Step 1 is successful, Step 2 occurs. Otherwise, the switching of Step 1 is reversed (from
outside to inside). This process is tried a finite number of times for every surface vertex.

In Step 1, we consider firstly one vertex v in the surface. Let L′(v) be the list of inside
tetrahedra of v. The goal is to check that all vertices of tetrahedra in L′(v) are regular if
L′(v) is added in O. The tetrahedron-based test is used here. Here, we see that the size of
L′(v) can be larger than one. So according to Sec. 6.2.2.3, the tetrahedron-based test in this
case has a complexity of O(d2). Now let s be the number of vertices in the reconstructed
2-manifold S, thus doing Step 1 for all vertices on S is O(d2s). As s = O(n) and d = O(n),
finally the complexity of all Steps 1 is O(n3).

The i-th growing from the i-th vertex (step 2) has complexity O((gi+qi)(d+log(gi+qi)))
(refer to the complexity analysis of the greedy region-growing algorithm in Sec. 6.2.2.4).
gi is the number of grown tetrahedra and qi the number of tetrahedra in Q0. We have∑

i gi = O(n2) since the total number of tetrahedra is O(n2). As qi = O(d), we have∑
i qi =

∑
i O(d) = O(nd). Then

∑
i qi = O(n2). The complexity of all Steps 2 is,∑

i∈I
(gi + qi)(d+ log(gi + qi)) ≤ (

∑
i∈I

(gi + qi))(d+ log(
∑
i′∈I

gi′ +
∑
i′∈I

qi′))

= O(n2(d+ log(n2))
= O(n3). (6.1)

In summary, the topology extension has a complexity of O(n3).
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6.2.2.6 Spurious handles removal

The first handle removal method (Sec. 4.6.1) adds to D a number of Steiner vertices which
is linear to m. The number of Steiner vertices per camera location is O(1) and they act as
reconstructed vertices with empty ray lists. Since m < n, the complexities of all steps of the
surface reconstruction do not change.

The second handle removal method (Sec. 4.6.2) has steps “Detect”, “Force” and “Repair”.
D has n vertices, and each vertex has maximum O(n) edges, thus D has O(n2) edges. The
complexity of “Detect” for every edge is O(m). So the complexity of “Detect” is O(mn2).

Now we analyze the complexity of “Force” and “Repair”. A Steiner vertex is added in
each critical edge, thus there are three vertices in each critical edge. Let L be the list of
tetrahedra incident to one vertex. The size of L is O(d). Now two rounds of “Force” and
“Repair” are applied for each vertex. Both rounds force a list A of of tetrahedra to be
outside, and apply a greedy region-growing algorithm to increase O using a heap Q (as the
Algorithm. 1 in Sec. 4.4). As already shown in Sec. 6.2.2.4, the number of “while” iterations
is O(g + q0), where g is the number of grown tetrahedra and q0 the number of tetrahedra
in the initialization of heap Q. Furthermore, the complexity of one “while” iteration is
O(d+ log(g + q0)).

In the first round, the list A contains all inside and free-space tetrahedra of L. Thus its
size is O(d). The initialized heap Q contains all inside and free-space tetrahedra which are
adjacent to A. Thus q0 = O(d). Besides, g ≤ gmax where gmax is the constant to limit the
computation time for one “Repair”. So the complexity of the first round is O(gmax+ q0)(d+
log(gmax + q0)), which is O(d2).

In the second round, the list A contains respectively each inside and free-space tetra-
hedron of L. The size of A is 1 and the second round is applied O(d) times. For each
time, q0 = O(1) since the number of inside and free-space tetrahedra adjacent to A is
less or equal to 4. Besides, g ≤ gmax. Thus the complexity of the second round is
O(d(gmax + q0)(d+ log(gmax + q0)), which is O(d2).

In summary, the “Force” and “Repair” for one vertex in a critical edge is O(d2). Since
there are w critical edges and each critical edge has three vertices, the complexity of all
“Force” and “Repair” steps is O(wd2), which is O(n2d2). We conclude that the complexity
of the second method of spurious handle removal is O(mn2 + n4). As m < n, so the final
complexity is O(n4).

6.2.2.7 Post-processings

Complexities of the post-processings are shown in the following paragraphs except the tex-
turing which is not our contribution.

Peak Removal We consider at first one vertex v in the 2-manifold S. Let L(v) be the
list of tetrahedra incident to v. |L(v)| is O(d), thus calculating the solid angle for v has a
complexity of O(d). Now if v is a peak, then the peak removal of v consists in inversing labels
of L(v) and checking that vertices of all tetrahedra in L(v) are regular using tetrahedron-
based test in Sec. 4.4.3.1. The former has a complexity of O(d). The complexity of the latter
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is O(d2) since the number of vertices of all tetrahedra in L(v) is O(d) and the tetrahedron-
based test has a complexity of O(d) (Sec. 6.2.2.3). As a result, the complexity of peak
removal for one vertex is O(d2), which is O(n2). The 2-manifold S has O(n) vertices thus
finally, the complexity of the peak removal is O(n3).

Surface denoising The 2-manifold S has O(n) vertices and for each vertex v, the Lapla-
cian operator is applied to v and its one-ring neighbor vertices N(v). |N(v)| is O(d). Thus
the complexity of surface denoising is O(nd), thus O(n2).

Sky removal The sky direction is calculated using all z-axis of catadioptric camera, thus
it has a complexity of O(m). The number of triangles of S is less than 4 × |D|. Thus it is
O(n2). So the rectangle-triangle intersections are O(n2m) since S has O(n2) triangles and
there are m open rectangles. The border growing is bounded by the number of S triangles
(O(n2)). We conclude that the complexity of Sky Removal is O(n2m).

In summary, the complexity of the post-processings is O(n3 + n2 + n2m). As m < n, thus
the complexity is O(n3).

6.2.3 Incremental Surface Reconstruction

Let t be the current time and let nt be the current number of points. Let dt be the smallest
creation date of the tetrahedra which are destroyed due to the addition of 3d points at t. Dt

is the 3d Delaunay triangulation at time t. H2 implies that at each time, a bounded number
of points are added to the Delaunay, thus we have nt = O(t). So at time t, the current
Delaunay triangulation has O(t) vertices and O(t2) tetrahedra. Besides, it is obvious that
the number of camera viewpoint locations m = t. Thus we use t and dt instead of n and m
to parameterize complexities of our incremental surface reconstruction method.

6.2.3.1 Incremental 3d Delaunay triangulation

First, the complexity of checking if a SfM point can be added in the Delaunay triangulation
is O(1) thanks to H1. Second, Dt−1 has O(t) vertices. According to Sec. 1.5.3, adding a
3d point in a Delaunay triangulation of O(t) vertices has a complexity of O(t2). At last,
dating new tetrahedra after adding a 3d point has also a complexity of O(t2) in the worst
case where all tetrahedra of Dt−1 are destroyed and rebuilt. As a result, the incremental 3d
Delaunay triangulation for one 3d SfM point has a complexity of O(t2). Since the number of
new SfM points available at t is O(1) (H2), the complexity of the incremental 3d Delaunay
triangulation is O(t2).

6.2.3.2 Local ray-tracing

In the local ray-tracing step, only rays of 3d points whose creation dates are in the k most
recent dates are used (t− k + 1, t− k + 2, ..., t). Besides, H1 and H2 imply that the number
of rays associated to each date is bounded. Thus, the number of rays used in this step is
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O(1). Furthermore, as already shown in the batch case (Sec. 6.2.2.2), ray-tracing for one ray
has O(t2) complexity. As a result, the complexity of local ray-tracing is O(t2).

6.2.3.3 Incremental 2-manifold generation

The incremental 2-manifold generation is composed by several successive region-growing in

Ft = L(i0−1)l ∪ · · · ∪ Lt : (6.2)

from Oi0l to O(i0+1)l, from O(i0+1)l to O(i0+2)l, ... and at last from Oitl to Ot. i0 is the
largest integer such that i0l < dt and it is the largest integer such that itl < t. Let I =
{i0, i0 + 1, .., it}, we have |I| = O(t− dt).

According to results of the previous complexity analysis in Sec. 6.2.2.4, we know that
i-th region-growing has a complexity of O((gi + qi)(log(gi + qi) + d)) where i ∈ I. gi is the
number of tetrahedra grown by this region-growing iteration, qi is the number of tetrahedra
in the initialized heap and d is the maximum vertex degree.

Note that
∑

i∈I gi are tetrahedra grown from layer i0l to t and
∑

i∈I gi = O(t2). Indeed,
one tetrahedron can be added in the outside region only one time in an incremental surface
reconstruction. The heap is initialized by using b0+ l+1 layers of tetrahedra, and each layer
contains O(t2) tetrahedra, thus qi = O(t2). So

∑
i∈I qi = O((t− dt)t

2).

Now the complexity of the incremental manifold generation is then,

∑
i∈I

(gi + qi)(log(gi + qi) + d) ≤ (
∑
i∈I

gi +
∑
i∈I

qi) log(
∑
i′∈I

gi′ +
∑
i′∈I

qi′)

+ d(
∑
i∈I

gi +
∑
i∈I

qi)

= O{(t2 + (t− dt)t
2)(log(t2 + (t− dt)t

2) + t)}
= O(t3(t− dt))

(6.3)

6.2.3.4 Incremental topology extension

The topology extension is applied each time after the successive region-growing (Algo-
rithm. 4) presented in Sec. 5.4.3.

Consider that one of a successive region-growing is already done which grows from O(i−1)l

to Oil (0 ≤ (i−1)l and il ≤ t). In order to extend the topology of Oil, two steps are alternated
for each v of δOil such that the creation date of v should be in {il− b1, · · · , l− 1, il} where
b1 ∈ N and b1 < l. These two steps are:

1. switch the set A of tetrahedra incident to v from inside to outside. Check that if
the resulting 2-manifold is still valid using the tetrahedron-based test and reverse the
switching if it is not the case. Here, all tetrahedra in A should be in Fil.

2. region-growing in Fil starting from a neighborhood of v (if Step 1 is successful).
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In Step 1, switching tetrahedra A from inside to outside for one vertex v has the com-
plexity of O(d). As A has generally more than one tetrahedra, checking that all vertices of
tetrahedra in A are regular has a complexity of O(d2) (Sec. 6.2.2.3). For the i-th incremental
topology extension, the switching is applied to vertices of creation dates between il− b1 and
il. Thanks to H2, the number of vertices with the same creation date is bounded. Thus
there are O(1) switching vertices for the i-th topology extension. As there are |I| incremental
topology extensions and |I| = O(t−dt) (Sec. 6.2.3.3), the total number of switching vertices,
which is also the number of Steps 1, is O(t− dt). As a result, the complexity of all Steps 1
is O(d2(t− dt)), so O(t2(t− dt)).

The complexity analysis for Steps 2 is similar to the one of incremental 2-manifold gen-
eration in Sec. 6.2.3.3. The differences are the list I and the heap initialization for each
Step 2.

Each time a vertex is successfully switched in Step 1, the Step 2 will be applied. So the
list I contains indices of all these vertices. In the worst case (all Steps 1 succeed), |I| is equal
to the number of Steps 1 which is O(t− dt). Besides, for each vertex v, the heap in Step 2 is
initialized by using the tetrahedra which are adjacent to A. Thus for each i ∈ I, qi = O(d)
and

∑
i∈I qi = O((t− dt)d), which is O(t(t− dt)).

gi is the number of tetrahedra grown by each Step 2. One tetrahedron can be added in
the outside region only one time, so

∑
i∈I gi = O(t2). Thus

∑
i∈I gi +

∑
i∈I qi = O(t2).

Finally the complexity of all Steps 2 is,∑
i∈I

(gi + qi)(log(gi + qi) + d) ≤ (
∑
i∈I

gi +
∑
i∈I

qi) log(
∑
i′∈I

gi′ +
∑
i′∈I

qi′)

+ d(
∑
i∈I

gi +
∑
i∈I

qi)

= O(t2 log t) + O(t3)

= O(t3)

(6.4)

In summary, the incremental topology extension has a complexity of O(t2(t− dt)) +O(t3) =
O(t3).

6.2.3.5 Incremental post-processing

Incremental surface denoising The number of vertices on the border of Ot \ Oi0l is
O(t). For each vertex, the complexity of applying the Laplacian operator is same to the one
in the batch case (Sec. 6.2.2.7). It is O(d), which is O(t). As a result, the complexity of
incremental surface denoising is O(t2).

6.3 Tight Complexity Analysis

The loose complexity analyses presented previously give theoretical complexities in the worst
case. These results are obtained with few assumptions (H1 and H2 in Sec. 6.2.1) on the
input data sets. However, the complexities are high and far from results of experiments in
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Sec. 7.2.7 and Sec. 7.3.2. To better fit the complexities in experiments, a Cartesian grid
bounding the input point cloud is introduced: we add vertices of the Cartesian grid in the
Delaunay triangulation. Then tighter theoretical complexities which are close to complexities
of experiments can be obtained thanks to these grid vertices. These vertices are not in the
input SfM points thus can be seen as Steiner vertices and the Cartesian grid can also be called
the Steiner grid. The density of this grid is guaranteed to be very low. It slightly changes
the input data sets while results of the surface reconstructions, including both reconstructed
surfaces and processing times, are almost not changed in experiments. In our work, the
Steiner grid has essentially a theoretical interest: it guarantees tight theoretical complexities
of our methods while it almost does not change the results in the reality.

6.3.1 Assumptions and Lemmas

6.3.1.1 Additional point assumptions

First, we assume that the density of the reconstructed points in 3d is bounded: there are
p > 0 and q > 0 such that every p-ball contains at most q points. A p-ball is a ball with
radius p. This could be justified as follows:

(1) only interest points are reconstructed and
(2) the scene surface has texture such that the interest points, which are detected due to

gray-level 2d variations in their neighborhood, have a bounded density (e.g. no fractal-like
texture).

Second, a Cartesian Steiner grid bounding the input points is added to the Delaunay
triangulation. The adding of Steiner vertices is a standard method in Computational Geom-
etry to generate meshes with good properties, e.g. to guarantee a linear-size 3d Delaunay
triangulation with bounded vertex degree [18]. Every Steiner vertex has empty visibility
list. In practice, the number ns of Steiner vertices is quite smaller than the number n of
reconstructed vertices.

The Steiner grid is added before the surface reconstruction, both in batch and incremental
cases. Appendix E.3 shows that this can be done in O(ns). In the incremental case, it would
be better to add the Steiner vertices incrementally and during the surface reconstruction
process. However the complexity analyses will be more complicated.

The voxel size is large enough such that:
1) the initialization above is not a problem from the computational viewpoint,
2) the number ns of Steiner vertices is much smaller than n,
3) the effect of Steiner vertices on the reconstructed surface is negligible.
The voxel size can be chosen as a multiple (e.g. 10) of the expected mean of the camera

step between two consecutive camera locations.

6.3.1.2 Bounded density of tetrahedra and bounded vertex degree

Sec. 6.3.1.1 implies that the tetrahedron density is bounded, i.e. there are p′ > 0 and q′ > 0
such that every p′-ball intersects at most q′ tetrahedra.

Here is the proof. Since D is Delaunay, every tetrahedron has a circumsphere such that
the interior does not contain a Delaunay vertex (Sec. 1.5). These vertices include the Steiner
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Figure 6.1: Delaunay mesh D (in the 2d case) for tight complexity analysis. Steiner and
reconstructed points are small and large black squares, respectively. The dotted circles are
circumcircles of triangles. The surrounded points by small circle are the border of the bounding
box. This box is increased by an additional layer of Steiner points.

vertices of the grid. Then we show that the circumsphere diameter is less than (or equal
to) the diagonal length l of the grid voxels in Appendix E.1. The proof requires that the
bounding box of the grid is increased by an additional layer of voxels/Steiner vertices as
shown in Fig. 6.1. Thus, the tetrahedron diameter is less than (or equal to) l.

Let p′ > 0 and L(z) be the list of tetrahedra which intersect the p′-ball centered at point
z. Then we show that the tetrahedra of L(z) are in the p′ + l-ball centered at z, thanks to
the triangular inequality. Here, let Δ be a tetrahedron in L(z) and a is a vertex in Δ. Then
there exists a point b in the p′-ball such that ‖b − a‖ ≤ l because Δ intersects the p′-ball
and the diameter of Δ is less than (or equal to) l. Besides, ‖b− z‖ ≤ p′ since b is in p′-ball,
thus the triangular inequality implies that ‖a− z‖ ≤ ‖a− b‖+ ‖b− z‖ ≤ p′ + l.

In R3, we can cover the p′ + l-ball with a finite number b of p-balls (b does not depend
on z). According to Sec. 6.3.1.1, each p-ball contains at most q vertices. Thus the p′ + l-
ball contains at most bq vertices. Since a tetrahedron is a 4-tuple of vertices, we see that
the number of tetrahedra in L(z) is bounded. We conclude that the tetrahedron density is
bounded.

If we choose z at a finite vertex of the Delaunay triangulation, we see that the maximum
vertex degree d is bounded. It implies that the number of tetrahedra is also bounded, i.e.
|D| = O(n).

6.3.1.3 List of assumptions and lemmas

The assumptions and lemma used in the tight complexity analyses are listed as follows.

� H1: the density of the point cloud is bounded.
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� H2: the size of ray list of a 3d scene point is bounded.

� H3: the ray length is bounded.

� H4: in the incremental case, O(1) new 3d points are added to D at each time.

� H5: before the surface reconstruction, D is initialized by Steiner grid vertices in O(ns).
Here, ns is the number of Steiner vertices which is much smaller than n.

� H6: the density of tetrahedra in the Delaunay triangulation is bounded.

� H7: the vertex degree is bounded.

� H8: adding one reconstructed point to D has O(1) complexity.

� H9: the number of tetrahedra in D is O(n).

H1, H5, H6, H7, H9 are already introduced (or shown) in Sec. 6.3.1.1 and Sec. 6.3.1.2.
H2 and H4 are lemmas already used in loose complexity analyses (Sec. 6.2.1).
H3 is the Lemma. 4.1 which is already shown in Sec. 4.2.
H8 is compatible with the fact that the incremental addition algorithm for 3d Delaunay

triangulation is almost linear in practice [49]. In our work we conjecture that H5 and
H6 imply H8. Details are given in Appendix E.3.

6.3.2 Batch Surface Reconstruction

Tight complexities of the batch surface reconstruction are analyzed. As in the loose case
(Sec. 6.2.2), the number n of input SfM points and the number m of camera viewpoint
locations are used to parameterize the complexities.

6.3.2.1 3d Delaunay triangulation

The complexity analysis of point filter is the same as in the loose case. Checking that if n
points can be added in the 3d Delaunay triangulation D has a complexity of O(n). Thanks
to H5 and H8, the complexity of 3d Delaunay triangulation construction is O(ns + n). As
ns < n, the complexity becomes O(n).

6.3.2.2 Free-space/matter labeling

Before presenting the complexity of ray-tracing algorithm, we analyze the complexity of the
brute force approach introduced in Sec. 4.3, to show that ray-tracing is indeed more efficient
in terms of time complexity.

The brute force approach of free-space/matter labeling tries to check if each ray intersects
each tetrahedron, thus it has a complexity of O(nrnD) with nr the number of all rays and
nD the number of all tetrahedra in D. We know that the size of ray list of a scene point is
bounded (H2), so O(nr) = O(n). Besides, nD is O(n) (H9). Finally, the complexity of the
brute force approach is O(n2).

93



6. TIME COMPLEXITY ANALYSES

Regarding the ray-tracing approach, we first estimate the complexity of tracing one ray
(line segment) tiqj . The ray is covered by a number of p′-balls which is linear to the Euclidean
distance ||ti − qj ||. Since every p′-ball intersects at most q′ tetrahedra (H6), tiqj intersects
O(||ti−qj ||) tetrahedra. Furthermore, tiqj-tracing is a walk (Sec. 4.3) in graph D restricted
to these tetrahedra and started from qj , which is a D vertex. Thus it has a complexity of
O(d + ||ti − qj ||). As ||ti − qj || = O(1) (H3) and d = O(1) (H7), tracing a ray has finally
a complexity of O(1). Now ray-tracing is applied for all 3d points which have a ray list.
The number of these points is O(n) and the size of the ray list is bounded (H2). So the
complexity of the ray-tracing approach is O(n). Compared to the one of the brute force
approach (O(n2)), we conclude that the ray-tracing approach is more efficient in terms of
time complexity.

6.3.2.3 2-manifold generation

The complexity of the greedy region-growing algorithm is O((g + q0)(log(g + q0) + d))
(Sec. 6.2.2.4). Remember that g is the grown tetrahedra, q0 is size of the tetrahedra list
to initialize the heap Q and d is the maximum vertex degree. Now in the tight case, this
complexity becomes O((g + q0) log(g + q0)) since d = O(1) (H7).

The 2-manifold generation is the greedy region-growing algorithm by starting the outside
region O from ∅. Thus q0 = 1 and the complexity of initializing Q should be added. Its
complexity becomes O(|D| + g log(g)). In the tight case, |D| = O(n) and g = O(n). So
finally, the complexity of the 2-manifold generation is O(n log n).

6.3.2.4 Topology extension

Topology extension alternates two steps:

1. switch from inside to outside tetrahedra around a surface vertex v and check if vertices
of all tetrahedra incident to v are regular.

2. region-growing in F starting from the neighborhood of these tetrahedra.

Step 2 only occurs if Step 1 is successful. This process is tried a finite number of times for
every surface vertex.

There are O(n) surface vertices, and H7 implies that Step 1 is O(1) for one vertex. So
the complexity of all steps 1 is O(n).

According to the result of Sec. 6.3.2.3, the i-th greedy region-growing from the i-th
vertex (Step 2) has a complexity of O((gi+ qi)(log(gi+ qi))) where gi is the number of grown
tetrahedra and qi the number of tetrahedra to initialize the heap. We have

∑
i gi = O(n) since

the total number of tetrahedra is O(n). We have
∑

i qi =
∑

i O(1) = O(n) since qi = O(1)
thanks to H7. Thus,∑

i∈I
(gi + qi) log(gi + qi) ≤

∑
i∈I

(gi + qi) log(
∑
i′∈I

gi′ +
∑
i′∈I

qi′) = O(n(log n)) (6.5)

In summary, the complexity of topology extension is O(n log n).
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6.3.2.5 Spurious handles removal

The first method (Sec. 4.6.1) in the tight case has the same complexity as in the loose case:
adding Steiner points along the camera trajectory has a complexity of O(m), which does not
change complexities of other steps. Note that these Steiner points are those of the handle
removal but not those of the Cartesian grid.

Now we study the second method (Sec. 4.6.2). Thanks to H7, D has O(n) edges and the
complexity of step “Detect” for every edge is O(d +m) = O(m). Then “Detect” is O(nm).
Besides, the number w of critical edges is O(n).

In “Force” and “Repair”, a Steiner vertex is added for each critical edge detected. And
for each vertex v of a critical edge, including the Steiner vertex, two rounds of “Force”
and “Repair” are applied to free-space and inside tetrahedra incident to v. According to
Sec. 6.2.2.6, both rounds have a complexity of O(d2), which is O(1) in the tight case (H7). As
there are w = O(n) critical edges, and each critical contains three vertices, the complexity of
“Force” and “Repair” is O(n). We conclude that the the complexity of the second removal
method is O(nm+ n+ n) = O(nm).

6.3.2.6 Post-processing

Peak removal According to Sec. 6.2.2.7, the complexity of peak removal for each vertex
is O(d2), which is O(1) since d = O(1) (H7). The manifold S has O(n) vertices thus the
complexity of the peak removal is O(n).

Surface denoising Remind that the denoised vertex q′ of a vertex q in the surface S is
calculated using q and N(q). Here, N(q) is the list of vertices which are one-ring neighbors
of q in S. Thanks to H7, the calculation of N(q) is O(1). As S has O(n) vertices, the
complexity of Surface denoising is O(n).

Sky removal Same to the loose complexity analysis in Sec. 6.2.2.7, the sky direction
computation has a complexity of O(m) in the tight case. The complexity of rectangle-
triangle intersection is O(nm) since S has O(n) triangles thanks to H6 and there are m open
rectangles. The border growing is bounded by the number of S triangles (O(n)). So the
complexity of Sky Removal is O(nm).

In summary, the complexity of the post-processings is O(n+ n+ nm) = O(nm).

6.3.3 Incremental Surface Reconstruction

Now we look at the tight complexity our incremental surface reconstruction method. Results
are given using parameters t and t− dt as in Sec. 6.2.3. Remember that t is the time and dt
is the smallest creation date of the tetrahedra which are destroyed due to the addition of 3d
points at time t.
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6.3.3.1 Incremental 3d Delaunay triangulation

H2 and H4 imply that the point filter of input SfM points at time t is O(1). H4 and H8 imply
that updating Dt−1 to Dt by adding selected points and dating has a complexity of O(1).
Finally, the complexity of the incremental 3d Delaunay triangulation is O(1).

6.3.3.2 Local ray-tracing

In the local ray-tracing step, our method uses only rays of 3d points whose creation dates
are in the k most recent dates. The number of rays associated to points which have a same
creation date is bounded thanks to H2 and H4. Thus the number of rays used for local
ray-tracing is kO(1) = O(1). As ray-tracing of one ray has O(1) complexity according to the
analysis in Sec. 6.3.2.2, we can see that the complexity of the local ray-tracing step is O(1).

6.3.3.3 Incremental 2-manifold generation

The incremental 2-manifold generation is composed by several successive region-growings
which grow in

Ft = L(i0−1)l ∪ · · · ∪ Lt : (6.6)

from Oi0l to O(i0+1)l, from O(i0+1)l to O(i0+2)l, ... from Oitl to Ot. i0 is the largest integer
such that i0l < dt and it is the largest integer such that itl < t. Let I = {i0, i0 +1, .., it}, we
have |I| = O(t− dt).

One region-growing has a complexity of O((gi+qi) log(gi+qi)) (already shown in Sec. 6.2.2.4
using d = O(1)). gi is the number of tetrahedra grown by this region-growing iteration, qi is
the number of tetrahedra in the initialized heap.

The complexity of the incremental 2-manifold generation is the complexity of the sum
of successive region-growings: O(

∑
i∈I(gi + qi) log(gi + qi)). In Appendix E.2, we show for

large values of t− dt that, ∑
i∈I

gi = O(t− dt) (6.7)

and ∑
i∈I

qi = O(t− dt) (6.8)

Then we have,

∑
i∈I

(gi + qi) log(gi + qi) ≤ (
∑
i∈I

gi +
∑
i∈I

qi) log(
∑
i′∈I

gi′ +
∑
i′∈I

qi′)

= O((t− dt) log(t− dt)).

(6.9)

As a result, the complexity of the incremental 2-manifold generation is O((t−dt) log(t−dt)).
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6.3.3.4 Incremental topology extension

The topology extension is applied each time after the successive region-growing. The com-
plexity analysis is similar to the one in the loose case (Sec. 6.2.3.4).

Suppose that a region growing is already done which grows Oi−1l to Oil. Then the
incremental topology extension applies two steps to vertices of δOil:

1. switch the set A of tetrahedra incident to a vertex v from inside to outside. Check
if the resulting 2-manifold is still valid and reverse the switching if it is not the case.
Here, all tetrahedra in A should be in Fil.

2. region-growing in Fil starting from a neighborhood of v (if Step 1 is successful).

The complexity of one Step 1 is O(d2), which is O(1) in the tight case. The switched
vertices are those of creation dates between i0l and t. Let I be the indices of these vertices.
Thanks to H4, |I| = O(t− i0l) = O(t− dt). So the complexity of all Steps 1 is O(t− dt).

Step 2 is applied each time Step 1 succeeds. Thus the number of Steps 2 is O(t− dt) in
the worst case (all Steps 1 succeed). Besides, Step 2 is a region-growing algorithm whose
complexity is O((gi + qi) log(gi + qi)) (Sec. 6.3.2.3). The complexity of all Steps 2 is thus∑

i∈I(gi + qi) log(gi + qi).
Each time Step 2 is applied to a vertex v, the heap is initialized by using adjacent

tetrahedra of the tetrahedra which are incident to v. Thus qi = O(d), which is O(1) in the
tight case. We have

∑
i∈I qi = O(t− dt). gi is the number of tetrahedra grown in Ft by each

Step 2. We have
∑

i∈I gi ≤ |Ft|. Ft = O(t− dt) according to Eq. E.12 in Appendix E. Thus
the complexity of

∑
i∈I gi is O(t− dt).

Finally the complexity of all Steps 2 is,∑
i∈I

(gi + qi)(log(gi + qi)) ≤ (
∑
i∈I

gi +
∑
i∈I

qi) log(
∑
i′∈I

gi′ +
∑
i′∈I

qi′)

= O((t− dt) log(t− dt))

(6.10)

In summary, the incremental topology extension has a complexity of O((t− dt) log(t− dt)).

6.3.3.5 Incremental post processing

Surface denoising The tetrahedra of Ot \ Oi0l are in Ft and |Ft| = O(t− dt). Thus, the
number of vertices on the border of Ot \ Oi0l is less than 4|Ft|, which is O(t − dt). The
calculation of the discrete Laplacian for one vertex is O(1) thanks to H7. As a results, the
time complexity of the incremental surface denoising is O(t− dt).

6.4 Summary of Complexities

Table 6.1 summarizes the results of our complexity analyses. The batch surface reconstruc-
tion has a loose complexity of O(n4) and a tight complexity of O(n log n+ nm). The incre-
mental surface reconstruction has a loose complexity of O(t3(t− dt)) and a tight complexity
of O((t− dt) log(t− dt)).
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6. TIME COMPLEXITY ANALYSES

Loose Batch Tight Batch Loose Incremental Tight Incremental

DT n2 n t2 1
RT n3 n t2 1
MG n3 n log n t3(t− dt) (t− dt) log(t− dt)
TE n3 n log n t3 (t− dt) log(t− dt)
HR2 n4 nm - -
PP n3 nm t2 t− dt

Global n4 n log n+ nm t3(t− dt) (t− dt) log(t− dt)

Table 6.1: Summary of the worst case time complexities. DT: Delaunay Triangulation con-
struction including the first method of spurious handle removal, RT: Ray-Tracing, MG: 2-
Manifold Generation, TE: Topology Extension, HR2: second Handle Removal method, PP:
Post-Processing, Global: the sum of all steps. The sign O() is omitted and “ - ” means does not
exist.

Globally, both our surface reconstruction methods have high theoretical complexities in
the loose case where very few assumptions are made on the input data sets. Now in order to
obtain tight theoretical complexities, a Steiner grid bounding the input point cloud is added
to input points which allows our methods to generate a linear-size Delaunay triangulation.
Additional assumptions are made thanks to the grid and we obtain tight complexities of our
surface reconstruction methods which fit better the experimental results in Sec. 7.2.7 and
Sec. 7.3.2.

The tight complexity analysis of the batch method is also done in [1]. We think that
the complexities of our methods could be improved by using hierarchical bounding boxes
to accelerate the detection of HR2 and the rectangle-triangle intersection test of the sky
triangle removal post processing. We do not investigate this in depth since this is far from
the core of our contribution (2-manifold enforcement).
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Chapter 7

Experiments

Our experiments are done in three steps. First, image or videos sequences are taken in
the environment that we want to model. Second, sparse SfM points and camera poses are
reconstructed by the geometry reconstruction. At last, the surface reconstruction is applied
to reconstruct the surface model of the environment.

Equipments used in our experiments are firstly introduced in Sec. 7.1. Then detailed re-
sults of our batch and incremental environment modeling methods are respectively presented
in Sec. 7.2 and Sec. 7.3. At last, we provide other experiments without details in Sec. 7.4.

In this chapter, the suffix k means ×1000. Besides, we provide also a lot of figures
showing experiments results. Readers are recommended to view them in the PDF version of
this dissertation or the version printed in colors.

7.1 Equipments

The necessary equipments for our image-based environment modeling methods are very
simple in order to be adequate for the 3d modeling of complete environments at low cost.
An equiangular catadioptric camera is needed for image sequence acquisition and both 3d
geometry and surface reconstruction are done using a standard PC.

The catadioptric camera is hand/helmet-held, and it is composed by a convex mirror
and a standard perspective camera. Our convex mirror is a 0-360 mirror 1 mounted in front
of the perspective camera thanks to an additional adapter ring. The perspective camera
is pointing roughly oriented to the sky when our image sequence is taken. It has a view
field of 360◦ in the horizontal plane and about 50◦ − 60◦ above and below the horizontal
plane. Here, two catadioptric cameras are used in experiments. One is a 0-360 mirror
with a Nikon Coolpix 8700, which is showed on the left of Fig. 7.1. It is used to take still
3264 × 2448 JPEG images sequences used for our batch modeling method. The other is a
0-360 mirror with a Canon Legria HFS10, which is showed on the right of Fig. 7.1. It is used
to take 1920 × 1080 AVCHD (MP4) video sequences used for the both batch (Sec. 7.2.10)
and incremental modeling methods. Both still image and video sequences are down-sampled

1http://www.0-360.com/
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7. EXPERIMENTS

by 2 to accelerate the subsequent SfM steps. In addition, the AVCHD video is interlaced, so
each video frame is read one line in two.

Figure 7.1: Catadioptric cameras used in experiments. Left: 0-360 mirror + Nikon Coolpix
8700; Right: 0-360 mirror + Canon Legria HFS10

The PC used in experiments is an Intel CoreTM Duo E8500 at 3.16GHz. Our methods
are implemented without multi-threading or other parallel techniques. Only one CPU core
is used during the program execution.

7.2 Batch Environment Modeling

Sec. 7.2.1 provides an overview of our batch environment modeling results in case of a still
image sequence. It includes also a summary of the pre-processing geometry reconstruction
(SfM) results. Next, we experiment and discuss the manifold constraint in Sec. 7.2.2. Then
we show and discuss the surface reconstruction results by varying different parameters, algo-
rithms or inputs: in Sec. 7.2.3, we use different choices of function r, i.e. the function which
calculates the priority score in region-growing; in Sec. 7.2.4 and 7.2.5, we vary respectively
densities of Steiner points and those of the reconstructed SfM 3d points; and in Sec. 7.2.6,
we compare two methods of spurious handle removal. After that, the processing time of
our batch surface reconstruction is analyzed in Sec. 7.2.7. And then, a comparison with the
Poisson surface reconstruction [76] is done in Sec. 7.2.8. A quantitative evaluation using
a synthetic image sequence is also given in Sec. 7.2.9 and finally, we show results of the
environment modeling using a 1.4 km long video sequence in Sec. 7.2.10.
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7.2 Batch Environment Modeling

Figure 7.2: Overview of the batch SfM. Top view of the 136 k 3d points and 343 camera poses
reconstructed by SfM and several images of the sequence. 3d points are in gray and camera poses
are in black.

7.2.1 Overview of Results

Except in Sec. 7.2.9 and 7.2.10, we use a still JPEG image sequence of 343 images during
a complete walk around a church of a commune in France called Grand Bornand. The
trajectory length is about (30± 5 cm) ∗ 343 = 103± 17 m. The exact step lengths between
consecutive images are unknown. The radii of large and small circles of the catadioptric
images are 574 and 103 pixels.

Batch Geometry Reconstruction (SfM) Fig. 7.2 shows top view of our SfM, which
reconstructs 343 camera poses and 136k 3d points from 343 images. The radial function
r(α) (Sec. 3.1.1.2) in our central catadioptric camera model, which maps the angle between
a ray direction and the mirror symmetry axis to a 2d image pixel, is 1.40278− 0.618567α+
0.0394814α2 − 0.00308602α3 after the final bundle adjustment. 872k Harris (inlier) points
are detected and 136k 3d points are reconstructed. In average, the number of detected Harris
points is 2.5k per image and the ratio between the number of 3d points and images is 397
points/image. A 3d point has in average 6.4 tracks in images, i.e. 6.4 rays. A ray (and also
its corresponding 2d point) is considered as outlier if its reprojection error is greater than 2
pixels. The RMS (Root-Mean-Square) error of the final bundle adjustment is 0.74 pixels.

Batch Surface Reconstruction Fig. 7.3 shows the surface estimated using ε = 10◦

(Delaunay Step), without the Steiner vertices of the tight time complexity (Sec. 6.3), with
the second Handle Removal method R2 (Sec. 4.6.2) and α = 5◦, and using post-processing
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7. EXPERIMENTS

Figure 7.3: Overview of the batch surface reconstruction. Top and oblique views of the recon-
structed surface (152k triangles), including triangle normals (gray) and trajectory (black).
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7.2 Batch Environment Modeling

thresholds: w0 = π/2 steradians (Peak Removal), β = 45◦ (Sky Removal), and kt = 10
(Texturing). The VRML model has 152k triangles, which are few for a scene like this. It
is done in 35 s including 7.6 s for Delaunay Step, 2.9 s for Free-space/matter, 2.5 s for 2-
Manifold Generation, 2.9 s for Topology Extension, 16.8 s for Handle Removal and 2.5 s
for Post-Processing (ignoring Texturing). The 3d Delaunay is constructed with 81k selected
vertices, and it has 500k tetrahedra (without v∞). 47.1% of these tetrahedra are free-space,
88.6% of the free-space tetrahedra are outside by the 2-Manifold Generation, and 92.0% of
the free-space tetrahedra are outside at the end of the process. More details are given in the
following sections.

7.2.2 2-Manifold Constraint

Here are additional informations on the 2-manifold constraint in the experiment of Sec. 7.2.1.
First, there are several methods to test if a surface is manifold (Sec. 4.4.3.1). We use the
single tetrahedron test for the 2-Manifold Generation step (adding the tetrahedra one-by-one
in O), and the tetrahedron-based manifold test for the Topology Extension step (adding the
tetrahedra several-at-once in O). In our implementation, the edge-based test is slower: if we
use it, it multiplies the computation time of the 2-Manifold Generation step by 1.4 and that
of the Topology Extension step by 1.9. We also check that the different tests provide the
same surface.

Now, we study the advantage of the 2-manifold constraint. We start from two closed
surfaces: the original surface, i.e. the border of the free-space tetrahedra which is non-
manifold, and the 2-manifold surface, i.e. the border of the outside tetrahedra generated
by the 2-Manifold Generation step which is manifold. In the original surface, 24.62% of the
surface vertices are singular. Then the denoising step is applied to both surfaces, and finally
we have four surfaces: denoised original surface, non-denoised original surface, denoised
manifold, and non-denoised manifold. For the remainder of Sec. 7.2.2, we do not apply
the further steps of our method: Topology Extension, Spurious Handle Removal, Post-
processings except texturing.

Fig. 7.4 shows that the manifold constraint helps surface denoising: the denoised manifold
surface is smoother than the denoised original surface. The use of several denoisings does
not change this observation.

Remind that our denoising method is based on the uniform discrete Laplacian opera-
tor [135], where a denoised vertex is a sum of the weighted vertices in its immediate neigh-
borhood on the surface. Although this method is simple, it improves the texturing step.
Indeed, Fig. 7.4 also shows that the texturing of the denoised 2-manifold is better than the
texturing of the non-denoised 2-manifold.

7.2.3 Varying Function r in Region-growing

Remind that our target surface depends on function r: the 2-Manifold Generation (Sec. 4.4)
is a best-first region growing of the outside tetrahedra in the free-space tetrahedra, and the
growing order is defined by r. In this section, we compare the performance of the 2-Manifold
Generation for several choices of r. Let Δ be a free-space tetrahedron. We try
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7. EXPERIMENTS

Figure 7.4: Importance of the 2-manifold constraint and surface denoising. With (top and
middle) and without (bottom) the manifold constraint. Without (left) and with (right) surface
denoising.

104



7.2 Batch Environment Modeling

� rrandom(Δ), a random number in interval ]0, 1[

� redge(Δ), the largest length of the 6 edges of Δ

� rvolume(Δ), the volume of Δ.

� rcircumradius(Δ), the radius of the circumsphere of Δ

� rvisibility(Δ), the number of rays which intersects Δ (default choice).

A quantitative comparison is done for the input data in Sec. 7.2.1 using free-space/outside
ratio. Here, remember that the list O of outside tetrahedra grows in the list of free-
space tetrahedra, and the ratio between the numbers of outside and free-space tetrahedra,
called free-space/outside ratio, can be used to compare the performances of the growing
steps (2-Manifold Extraction and Topology Extension). The five r-choices are ordered from
worse to best: the percentages are prandom = 75.02%, pedge = 86.77%, pvolume = 87.03%,
pcircumradius = 87.74%, pvisibility = 88.62%. Here we do not use the further steps of our
method. If we use them, the final results are similar (except for “random” which is slightly
worse).

7.2.4 Varying Density of Steiner Grid Vertices

Here we study the effects of the Steiner grid introduced in Sec. 6.3.2 if it is added to the input
point cloud. Remember that the Steiner grid is a Cartesian grid of Steiner points where the
Steiner vertices are located at the corners of the grid. The length of voxel edges of the grid is a
multiple sz of the camera step between two consecutive images (the length is sz meanj ||cj+1−
cj ||). We use the CGAL [7] implementation of the 3D Delaunay triangulation, which deals
with the degenerate configurations of vertices as those of the grid. However, the computation
of the degenerate cases is costly and we prefer to perturb slightly and randomly the grid
vertex locations to accelerate the computation. This does not compromise the bounded size
of the Delaunay tetrahedra.

sz s/m |T |/v d DT(s) RT(s) ME(s) TE(s) HR2(s)

10 0.079 6.11 386 9.0 2.7 2.4 2.2 15.1

20 0.016 6.16 550 7.7 3.0 2.5 2.9 15.8

∞ 0 6.19 296 7.6 2.9 2.5 2.9 16.8

Table 7.1: Statistical results of surface reconstruction using several grids. From left to right:
edge length coefficient, ratio between the numbers of Steiner grid vertices and reconstructed
vertices, ratio between numbers of tetrahedra and all vertices, vertex degree, time in seconds of
Delaunay/Ray-tracing/2-Manifold Generation/Topology Extension/Handle Removal Method 2
(Detect-Force-Repair).

Fig. 7.5 shows views for sz ∈ {2, 5, 10, 20}. We see that the surface quality is degraded if
sz becomes smaller. When sz is 10 or 20, the reconstructed surface is almost the same. The
negative effect of the Steiner vertices becomes noticeable when sz is under 10 in the areas
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Figure 7.5: Effect of grids of Steiner vertices.

where the density of reconstructed vertices is low (sky and parts of ground in our example).
In the sky, there are too much tetrahedra for a fixed number of rays, then small matter
tetrahedra appears if sz is small. Thus sz should not be too small.

Tab. 7.1 shows the experimental computation times for large enough sz (sz =∞ means
the Steiner grid is not used). We can see that the grid does not really have complexity
advantage in practice, and we conclude that the grid has essentially a theoretical interest: it
guaranties the worst case complexities derived in Sec. 6.3.2. The fact that the smallest d in
Tab. 7.1 is obtained without the grid might be surprising, but this is not in contradiction to
the fact that every finite grid size sz guaranties an upper bound for d (Sec. 6.3.1.2). Note
that d can be smaller than d(sz =∞), e.g. d(sz = 5) = 264.

7.2.5 Varying Density of SfM 3d Points

Since our goal is the 2-manifold estimation from a small number of SfM points (and their
visibility), it would be interesting to experiment on the same data as in Sec. 7.2.1, but
with a yet smaller number of points. Thus we reduce the size of the images by several
coefficients. Then for each resulting sequence, the whole process, including both SfM and
surface reconstruction, is applied with the same parameter settings. This reduces the number
of reconstructed points as if we use a different camera to reconstruct the same scene. The
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7.2 Batch Environment Modeling

image reduction also increases the image noise impact on the 3d result. We think that this
experiment is more interesting than the surface calculations from random selections of the
SfM points using the original image sequence in Sec. 7.2.1.

rc SfM m |T |/v d |δO| Time (s)

1 136k 81k 6.19 296 152k 35

1.5 65k 40k 6.21 620 76k 20

2 37k 23k 6.22 386 44k 12

2.5 23k 14k 6.23 501 28k 9.8

Table 7.2: Statistical results on reduced sequences. From left to right: reduction coefficient,
number of reconstructed points, number of Delaunay vertices, ratio between the numbers of
tetrahedra and vertices, vertex degree, number of triangles, surface computation time in seconds.

Tab. 7.2 provides statistical results using reduction coefficients rc ∈ {1, 1.5, 2, 2.5}. The
number of reconstructed points is roughly linear to 1/(rc)2, the ratio between the numbers
of tetrahedra and vertices of the Delaunay is almost constant, and the calculation times are
very small for large rc (a few seconds). Fig. 7.6 shows the surfaces for different rc values.
We can see the progressive reduction of the level of details when rc increases.
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7. EXPERIMENTS

Figure 7.6: Surfaces for several densities of reconstructed points. The density is defined by
coefficient rc. From top to bottom: texture and normals for rc = 1, 1, 1.5, 2, 2.5.
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7.2.6 Varying Handle Removal Method

Figure 7.7: Comparison of the two handle removal methods. Results using R1 are at the
bottom and results using R2 are at the top and the middle. Each column shows the results for
given number of Steiner points per camera pose for the first method (from left to right: 0, 1, 5,
10).

Fig. 7.7 compares the two handle removal methods. Method R1(ns) (Sec. 4.6.1) adds
randomly a given number ns of Steiner points in the ball neighborhood of every camera
location. The radius coefficient is 10. Method R2 (Sec. 4.6.2) detects, forces and repairs
the spurious handles. We compare R2 to R1(ns) with several values of ns ∈ {0, 1, 5, 10}
(ns = 0 means that the handle removal is not applied). The right column shows the largest
spurious handles of the surface if ns = 0. These handles are reduced by R1(1) and are
removed by R2 and R1(ns), ns ∈ {5, 10}. However, R1(ns), ns ∈ {1, 5, 10} are not able to
remove spurious handles at other locations (two examples are shown in the two columns on
the right). Furthermore, we notice that ns should not be too large for the same reasons as
sz should not be too small in Sec. 7.2.4. R2 gives the best results and removes the large
handles at the locations viewed by Fig. 7.7 (and others). Note that the sky is not removed
in these experiments since we would like to examine the Handle Removal step only. Indeed,
Sky Removal also removes spurious handles in a special case: if they are above the camera
locations (they are intersected by the open rectangles of Sec. 4.7.3).

Remind that the main parameter of R2 is the angle α, which selects the minimal size of
critical edges where the computations are done. We found that α = 5◦ is a good compromise:
(1) R2 misses visually noticeable handles if α is larger than 5 and (2) the calculation times
increases while the improvement is negligible if α is smaller than 5. For this image sequence,
1.5% of the 581k Delaunay edges are critical edges using α = 5.
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7.2.7 Experimental Complexities

In Sec. 7.2.5, 3d points of different densities are reconstructed by SfM with images of different
resolutions, and these points are used for batch surface reconstruction. Their processing time
results can be used to analyze the experimental time complexities of our method. Note that
the number of camera viewpoints m does not change in experiments since we vary only input
image resolution.

Figure 7.8: Processing time of batch surface reconstruction as a function of the number of
input SfM points.

Fig. 7.8 illustrates the relationship between the processing time of the batch surface re-
construction and the number n of SfM points. We see that the experimental time complexity
of our method is roughly O(n). It is slightly better than the tight theoretical complexity
in the worst case of our batch surface reconstruction O(n log n + nm) (Sec. 6.3.2), which is
O(n log n) in this case since m does not change.

7.2.8 Comparison with Poisson Surface Reconstruction

Our method is also compared to the Poisson Surface Reconstruction [76]. A summary of
this method is already given in Sec. 2.2.2.1. Remind that it takes a set of points and
their oriented normals as input, and the reconstructed surface is a triangulated 2-manifold
approximating input points, whose size is moderated thanks to an octree-based sampling.
We use the implementation1 of the authors with parameter depth = 12 to obtain a large
enough resolution.

Several surfaces are reconstructed by using different methods to compute the oriented
normal ni of reconstructed point qi:

Sray: ni is the mean of directions of all qi’s rays.

S6nn: ni is the normal of the plane Π minimizing the sum of the squared point-plane
distances between Π and the 6-nearest neighbors of qi.

1http://www.cs.jhu.edu/ misha/Code/PoissonRecon/
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Figure 7.9: Comparison of surfaces reconstructed by our method and Poisson. Different
surfaces are viewed from the same viewpoint.

� Sman: ni is a weighted sum of normals of the qi-incident triangles separating outside
and inside tetrahedra.

Besides, let Sours be the surface of our method. Notice that the normal estimation of
Sman is obtained using the reconstructed surface of our method. Furthermore, the normal
weight is the incident triangle angle at qi [27], and qi is not used by Sman if its normal cannot
be computed due to the qi-tetrahedra labeling. To calculate Sray, S6nn, Sman and Sours, the
point filtering of Sec. 4.2 is applied and there is no Sky Removal step.

Fig. 7.9 shows views of the four surfaces. As shown by the experiments, the better
accuracy of normal computation, the better quality of the Poisson surface: Sman is better
than S6nn, which is better than Sray. The quality of Sours is between those of S6nn and Sman,
although Sman is oversmoothed compared to Sours. Regarding the processing time, Sours

has 154k triangles computed in 35 s and Sman has 178k triangles computed in 128 s, whose
computation time is about 3.5 times of that of Sours.
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7.2.9 Quantitative Evaluation

Figure 7.10: Reconstruction results of synthetic image sequence. From left to right: two
synthetic catadioptric images, top view of sparse point cloud (and camera trajectory) by SfM,
top view of the reconstructed surface (the colors encode the triangle normal).

The quantitative evaluation of our surface reconstruction methods is done by using a
synthetic image sequence. The evaluation process can be summarized as follows.

First, a synthetic scene is manually generated using images taken in a real environment.

Second, a synthetic catadioptric image sequence is generated using the synthetic scene.

Third, the batch SfM and surface reconstruction are applied to the synthetic image
sequence.

Fourth, the reconstructed surface is registered to the ground truth surface, i.e. the
manually generated scene in the first step.

At last, an error function is defined and used to measure errors between the recon-
structed surface and the ground truth surface.

Firstly, the synthetic scene should be manually generated. In our work, we use a syn-
thetic model which is provided by CRISTAL project1 for the quantitative evaluation. The
advantage of this model is that it uses textures and dimensions of a real environment thus
the scene and the subsequent image sequence acquisition are more realistic. To generate this
model, a perspective camera is used to take real images in a city and a “simple” 3d model of
part of the city is manually generated and textured using data of GPS-RTK and a telemeter.
Notice that this 3d model is not necessarily accurate since our objective is to reconstruct a
3d surface which approximates this 3d model, but not the real environment. For reminder

1An innovation project about the future public transport conducted by LOHR Industry, Transitec, INRIA,
Vulog, UTBM and Institut Pascal.
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of this section, the ground truth in the evaluation process refers to this 3d model in a metric
coordinate system.

The synthetic catadioptric image sequence generation is a computer graphic method.
It uses ray-tracing techniques and takes into account the ray reflection on the mirror of
catadioptric camera. The trajectory of the sequence is a 230 m long closed loop around a
building including several shops. The large circle, which contains the scene projection in the
image, has a 600 pixel radius. Fig. 7.10 (left) shows two images of the synthetic sequence.

The synthetic image sequence is then used by the batch SfM to reconstruct the geometry
of the scene, which includes 600 camera poses and a sparse cloud of 257k 3d points (middle
in Fig. 7.10). Our batch surface reconstruction method is subsequently applied. The recon-
structed surface (right in Fig. 7.10) has 120k vertices and 241k triangles. And the ratio of
free-space/outside tetrahedra is 90.96%.

Now the reconstructed surface is registered to the ground truth surface. Let Te be
[t0e t

1
e ... t

599
e ] and Tg be [t

0
g t

1
g ... t

599
g ]. Here, tie and tig are respectively the estimated locations

and the ground truth locations of the camera i (tie is at the camera center and tig is at the
mirror apex). We firstly estimate transformation matrix Z using a linear method based on
the singular value decomposition [46]. Then by using Levenberg-Marquardt algorithm, Z is
refined such that E(Z) =

∑599
i=0 ||Z(tie)−tig||2 is minimized. We found

√
E(Z)/600 = 5.1 cm

and use Z to map the reconstructed surface in the ground truth coordinate system.
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Figure 7.11: An example of error function. tie, t
i
g are respectively the i-th reconstructed camera

location and ground truth camera location, p is a pixel of the i-th image, E,G are respectively
the reconstructed surface and the ground truth surface, and qe,qg are respectively intersected
point of the back projected ray of tie, t

i
g with E,G. Error e(p) is the distance between qe and

qg.

The error function e to measure the difference between the reconstructed surface and the
ground truth surface should be defined. Traditional error function e(q) [124] measures the
distance between the ground truth surface and vertex q of the reconstructed surface. However
it is not suitable in the sparse case since this error is biased in favor of reconstructed areas
which have the largest densities of reconstructed points. Furthermore, the closest point in
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the ground truth surface does not necessarily correspond to the same point q.
We prefer an error function based on ray tracing, as seen in Fig. 7.11. Let p be a pixel

in an image of the sequence. Let qe be the intersection of the reconstructed surface and the
back-projected ray of p from the reconstructed camera location. Let qg be the intersection
of the ground truth surface and the back-projected ray of p by the ground truth camera
location. In both cases, if there are several intersections, we take the intersection which is
the closest to the camera location. Then we use error e(p) = ||qe−qg||. If qg does not exist
or e(p) > μ0 (where μ0 = 2 m), we assume that the point matching (qe,qg) is outlier (e.g.
pixels corresponding to the sky). In practice, the statistic of e(q) is estimated by uniform
sampling in all images of the sequence. 6× 106 pixels are sampled in the sequence. 75.7% of
sampled pixels are inliers, the error median of inliers is 8 cm and the 90% quantile of inliers
is 55 cm.

Lastly, the same experiment (both SfM and surface estimations) is re-done for the same
images down-sampled by 2. We found

√
E(Z)/600 = 56 cm, which implies that the SfM

drift is larger than in the previous case. 73.9% of sampled pixels are inliers, the error median
of inliers is 64.3 cm, the 90% quantile of inliers is 103 cm.

Other quantitative evaluations in different contexts are provided in Sec. 7.4.3.

7.2.10 Video as Input

At last, we test our batch surface reconstruction method by using a video as input. The
video sequence contains 24700 frames and the trajectory length is about 1.4 km long. The
camera is mounted on an helmet worn by a person who rides a bike. The radii of large and
small circles of the catadioptric images are 297 and 59 pixels.

Fig. 7.12 shows a top view of the SfM result. As already mentioned in Sec. 3.1.2, a
key-frame selection process is applied in case of using a video as input. Here, 2504 key-
frames are selected from 24700 frames such that about 600 Harris points are matched in
three consecutive key-frames. We obtain 385k 3d points reconstructed from 2230k Harris
(inlier) points.

Fig. 7.13 shows views of the VRML model with the parameters in Sec. 7.2.1. The 416k
triangles of the surface are estimated in 166 s, including 18.7 s for the Delaunay Step, 6.9 s
for Ray-tracing, 6.7 s for 2-Manifold Generation, 5.9 s for Topology Extension, 120 s for
Handle Removal and 7.7 s for Post-Processing. The 3d Delaunay is initialized with 213k
selected vertices and it has 1335k tetrahedra (without v∞). 51.41% of these tetrahedra are
free-space, 87.33% of the free-space tetrahedra are outside by the 2-Manifold Generation, and
91.82% of the free-space tetrahedra are outside at the end of the process. The most costly
step is Handle Removal; 3% of the 1548k Delaunay edges are critical edges.

Every key-frame adds about 85 points in the 3d Delaunay, and the distance between two
consecutive key-frames is about 55 cm. This implies a very simplified and compact model
of the scene. The thin details such as electric posts, window carriers and trees with low
density foliage cannot be modeled. Note that the point density of the still image sequence
(Sec. 7.2.1) is higher than the one of the video sequence: every key-frame adds about 213
points in the 3d Delaunay and the distance between two consecutive key-frames is about
30 cm. Both image resolution and number of points contribute to the surface quality.
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Figure 7.12: Catadioptric camera, images of input video and SfM results.
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Figure 7.13: Reconstructed models using video as input. Images are taken in viewpoints which
are not in the camera trajectory. Camera poses are represented by cones.
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7.3 Incremental Environment Modeling

Now we present the experiments of our incremental environment modeling method. Sec. 7.3.1
shows the overview of our experiments results. Sec. 7.3.2 analyzes the experimental complex-
ities. In Sec. 7.3.3 and Sec. 7.3.4, we vary respectively parameters k (in local ray-tracing) and
l (in incremental 2-manifold generation) of our method and show the results. In Sec. 7.3.5,
we give a quantitative evaluation of our incremental surface reconstruction method and a
comparison to evaluation results of our batch method.

7.3.1 Overview of Results

The input is a AVCHD video (MP4) of 25278 frames taken by walking in a city during 505
seconds. Ground truth is not available, but we know that the trajectory length is about
800 m. Fig. 7.14 shows our camera and several images of the sequence. The horizontal and
vertical radii of the large ellipse, which contains the scene projection in the images, are 700
and 693 pixels, respectively.

Incremental Geometry Reconstruction (SfM) The incremental SfMmethod in Sec. 3.3
is firstly applied and 1033 key-frames are progressively selected from 25278 frames. In av-
erage, about 600 (inlier) Harris points are matched by correlation in three consecutive key-
frames and the ratio between the number of reconstructed 3d points and key-frames is 182
point/key-frame. The decision of inlier/outlier for a 2d point or a ray is based on our angular
error threshold, which is equivalent to a reprojection error of 2 pixels. The average RMS
error is equivalent to a reprojection error of 0.73 pixels. Finally, 1033 camera poses and
188k 3d points are reconstructed for the complete sequence. Fig. 7.14 shows these recon-
structed points and camera poses. Thanks to an aerial photography, we can see the drift our
incremental SfM. It is unused by our method.

Incremental Surface Reconstruction The incremental surface reconstruction is done
with the following parameter setting: ε for point filter (Sec. 5.2) is 10◦, the number k of layers
used in local ray-tracing (Sec. 5.3) is 40 and the number l of layers contained in a pack in
incremental 2-manifold generation (Sec. 5.4) is 60. Besides, threshold b0 used in the priority
queue initialization for a successive region-growing in incremental 2-manifold generation is
10, and threshold b1 used in the incremental topology extension (Sec. 5.5) is 10.

1031 incremental surfaces are successively reconstructed which correspond to times from
3 to 1033. Fig. 7.15 shows some of them in a top viewpoint without sky removal. And we
show also local views of some incremental surfaces in Fig. 7.16, which are extracted from our
on-line video1. Here, the observer moves in the scene such that he/she is observing the most
recent part of the surface at a (roughly) constant distance. At time t, this part is mainly
within a ball whose center is located at camera pose ct−2. The observer is located at ct−20

and is looking towards ct−2. The observer and the surface end come forward simultaneously.
The reconstructed incremental surfaces are posteriorly textured for better visualization.

1http://www.youtube.com/watch?v=4QZFgfMeG4E
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In average, to update a reconstructed surface to a new surface, about 118 3d points
are selected from 182 SfM points and added in the Delaunay triangulation. The average
percentage of free-space/all tetrahedra is 44.9% and the one of outside/free-space tetrahedra
is 88.2%. The final Delaunay triangulation contains 121k points selected from 188k SfM
points. The final reconstructed surface, showed in Fig. 7.17, contains 233k triangles and
117k vertices. The processing time of each incremental model computation is bounded by
300 ms (see Fig. 7.18), except at the end of the sequence where a small (incomplete) loop
exists.
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Figure 7.14: Overview of incremental SfM. At the top, we see from left to right: the catadioptric
camera, two sequence images and aerial view of trajectory. At the bottom, we see the final
reconstructed SfM points and camera poses.
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Figure 7.15: Bottom views of incremental surfaces. We show respectively bottom views of the
incremental surfaces reconstructed at time 100 (top left), 400 (top right), 800 (bottom left) and
1033 (bottom right).
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Figure 7.16: Local view of incremental surfaces obtained at different time t. Top: gray levels
encode the triangle normals. Bottom: one omnidirectional image is used for texture mapping.
The black areas are due to triangles without texture in this image.

Figure 7.17: Final incremental surface. We show the final incremental surface (t = 1033) with
“sky” triangles removed. The left ones are models where colors encode triangle normals and the
right ones are models with texture.
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7.3.2 Processing Time and Experimental Complexities

Now we present and analyze the results of processing time of our method. Fig. 7.18 illus-
trates the computation times of the different steps at each time t: “Delaunay” in yellow (3d
Delaunay Triangulation+Dating), “Ray-tracing” in blue (Ray Tracing), “Manifold” in red
(2-Manifold Extraction+Topology Extension), “Post-processing” in green (Surface Denois-
ing) and “Total” in black.

������

Figure 7.18: Processing time of incremental surface reconstruction as a function of time t.

“Delaunay” and “Post-processing” have almost negligible computation times compared
to the other steps. “Ray-tracing” is less than 190 ms. If t ∈ [0, 925], “Manifold” is less than
200 ms. In the other cases, “Manifold” is between 50 and 600 ms.

Thanks to Fig. 7.19, we see that the computation times of “Manifold” and “Post-
Processing” globally increase if t − dt increases and t − dt > 50. Furthermore, t − dt < 280
in the whole sequence. Remember that dt is the smallest date of all outside tetrahedra
destroyed at time t by “Delaunay”. These results are consistent with those of the tight the-
oretical time complexity study (Sec. 6.3.3): Delaunay and Ray-tracing are O(1), Manifold is
O((t− dt) log(t− dt)), Post-Processing is O(t− dt).

We note that the processing time of Manifold in Fig. 7.18 has a zig-zag form with per-
turbations. It can be explained as follows. Assume firstly that t − dt is constant; t − dt is
about 30 = l/2 in practice. If t− itl > 30, then i0 = it and we have one region-growing from
Oitl to Ot. Otherwise, we have i0 = it − 1 and there are two region-growings: from O(it−1)l

to Oitl, then from Oitl to Ot. In both case, the number of tetrahedra in Ot increases with t
(these tetrahedra are dated itl+1, · · · , t− 1, t). This implies the sawtooth form of Manifold
processing time. This form is disturbed by variations of t − dt around its mean, especially
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Figure 7.19: Processing time of incremental surface reconstruction as a function of t− dt.

when the t− dt variations change the number of region-growings from 1 to 2 or from 2 to 1.

We now explain the large values of “Manifold” if t ∈ [925, 1032]. In a complete trajectory
loop, vertices added at the loop end (at time t) destroy outside tetrahedra created at the
loop beginning (at time dt) since these vertices and tetrahedra have similar 3d locations. The
larger the loop, the larger t − dt, and the larger the computation time of “Manifold” (and
“Post-Processing”). Fig. 7.14 shows that the reconstructed trajectory has two incomplete
(about 75%) loops: a large one on the top and a small one on the bottom. Here both loops
are incomplete but the principle presented above still applies for the small loop which is 75%
closed if t ∈ [925, 1032]: there are times in [925, 1032] such that added vertices destroy outside
tetrahedra created at the loop beginning. However, it does not apply in case of the large loop.
It is because that the added vertices and outside tetrahedra are in a tubular neighborhood
of the camera trajectory, and the neighborhood radius is small enough compared to the
distance between the beginning and the end of the loop. Fig. 7.17 shows the neighborhood
and its size and we see the small loop on the top and the large loop on the bottom of the
figure.

7.3.3 Varying Parameter k in Local Ray-tracing

We vary the parameter k of the local ray-tracing step (Sec. 5.3) in { 10, 40, 80, 2000} and
compare results of the incremental surface reconstruction. Here, k = 2000 means that the
ray-tracing is applied to all rays up to t since t is in {3, 4, ..., 1033}. Thus the local ray-tracing
at t using k = 2000 is same to the ray-tracing step of batch surface reconstruction using all
available rays at t.

According to Fig. 7.20, the processing time of ray-tracing depends on k. Using all rays,
i.e. k = 2000, has a complexity of O(t) and using k = 10, 40 or 80 has a complexity of O(1).
Besides, according to statistic results showed in Tab. 7.3, if k = 10, the average ratio of
free-space/all tetrahedra of the incremental surface reconstruction is 40.81%. It is smaller
than 44.95% which is the one by using all rays. Now if k = 40, the average free-space/all
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k free-space/all outside/free-space processing time

10 40.81% 86.16% 37 ms

40 44.87% 88.12% 105 ms

80 44.95% 87.94% 209 ms

2000 44.95% 87.97% 1279 ms

Table 7.3: Incremental surface results using different k. k is in {10, 40, 80, 2000}. We show
from left to right: value of k, the average ratio of free-space/all tetrahedra, the average ratio of
outside/free-space tetrahedra and the average processing time of local ray-tracing.

Figure 7.20: Processing time of local ray-tracing as a function of time t.

ratio is 44.87% which is close to 44.95%. As the number of all tetrahedra of the Delaunay
triangulation does not change when k is varied, so the free-space/all ratio indicates the
completeness of the local ray-tracing, which is the best if all rays are used. By using a
suitable k, here 40 in our case, the local ray-tracing results are almost the same to those of
ray-tracing using all rays. It proves the remark made in Sec. 5.3.

7.3.4 Varying Parameter l in Incremental 2-Manifold Generation

In the incremental 2-manifold generation step 5.4, the region-growing is applied by pack of
l layers. We now vary l in {20, 60, 100, 2000} to see its impact on the results of incremental
surface reconstruction. Here, l = 2000 means that the incremental 2-manifold generation at
time t contains only one region-growing which grows from ∅. Thus results of the incremental
2-manifold generation using k = 2000 at t are close to results of batch 2-manifold generation
(Sec. 4.4) using all points available at t.

Tab. 7.4 illustrates the results of “Manifold” using different l. Here, “Manifold” includes
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l outside/free-space |outside tetrahedra| processing time

1 66.61% 225k 187 ms

20 86.95% 295k 77 ms

60 88.12% 298k 98 ms

100 88.03% 298k 125 ms

2000 88.58% 299k 621 ms

Table 7.4: Incremental surface results using different l. l is varied in {20, 60, 100, 2000}. We
show from left to right: value of l, the average ratio of outside/free-space tetrahedra, the number
of outside tetrahedra in the final Delaunay triangulation and the average processing time of
“Manifold”.

steps of 2-manifold generation and topology extension. Remember that the outside/free-
space ratio is an indicator of the performance of our surface reconstruction. If l = 1, i.e.
the region-growing is done layer by layer, we see that the outside/free-space ratio is lower
and the processing time is higher compared to region-growing results using other values
of l. In fact, the incremental region-growing have both dating and manifold constraints:
Oi0l ⊆ Oi1l, · · · , Oitl ⊆ Ot and their borders δOi0l, · · · , δOt are always 2-manifold. The
impact of dating constraints becomes important if the number of outside regions is large,
i.e. if l is small. We found that if l is sufficiently large, e.g. 60, the outside/free-space ratio
is close to the one of region-growing using k = 2000. In addition, from l = 20, the average
processing time of “Manifold” is higher if l is larger. Finally, l = 60 is a good compromise
between the outside/free-space ratio and the “Manifold” processing time in our experiments.

7.3.5 Quantitative Evaluation and Comparison to Batch Surface Recon-
struction

In this section, the quantitative evaluation of our incremental surface reconstruction method
is performed by using synthetic data, and the evaluation results are compared to those of
the batch surface reconstruction. The same evaluation process and synthetic image sequence
are used as in Sec. 7.2.9. Here, to reduce the impact of the geometry reconstruction, we
do not use the incremental SfM presented in Sec. 3.3. Instead, we progressively provide the
SfM points and camera poses which are reconstructed by batch SfM from synthetic images
as follows. The camera pose ci obtained by batch SfM is available for the incremental
surface reconstruction at time i. For a 3d point qj obtained by batch SfM, if its last 2d
track is in the image of camera pose ci, then qj will be available for the incremental surface
reconstruction at time i + 2. The incremental surface reconstruction is performed using
parameters in Sec. 7.3.1 and finally 598 surfaces are successively reconstructed. We use the
final incremental surface (t = 600) for the quantitative evaluation and comparison.

Qualitative comparison The results of the batch and the incremental surface reconstruc-
tion methods are compared. The input SfM points are the same for both methods. The batch
method uses the second handle removal method (R2) while the incremental method uses the
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Figure 7.21: Surfaces reconstructed by batch and incremental surface reconstruction methods
using synthetic data . We show respectively surfaces reconstructed by batch and incremental
methods on left and right. Colors encode triangle normals of surfaces. “sky” triangles are
removed using the sky triangle removal method in Sec. 4.7.3.

first one (R1)—see Sec. 4.6 for more details about R1 and R2. Thus the final triangulations
of both methods contain slightly different number of points. We have 129k vertices and 782k
tetrahedra in the triangulation of the batch method, and 123k vertices and 750k tetrahedra
in the final Delaunay triangulation of the incremental method. The resulting surfaces of
batch and incremental methods have respectively 241k and 232k triangles. Here, “sky” tri-
angles of both surfaces are also included. We have a slightly better free-space/outside ratio
in the batch case than in the incremental case. The former is 90.96% while the latter is
85.8%. This result can be explained as follows: the incremental growing is more constrained
than the batch growing. In the incremental case, both dating and manifold constraints are
used however the batch method only uses manifold constraints. We have already seen in
Sec. 7.3.4 that the dating constraints become important if l is small and the reconstruction
results become worse. Additionally, as shown in Sec. 7.2.6, R2 used by the batch method is
more efficient than R1 used in the incremental method and improves the free-space/outside
ratio.

Quantitative comparison Errors between the final incremental surface and the ground
truth surface are evaluated using the same method described in Sec. 7.2.9. Note that the
transformation matrix Z which registers the incremental surface to the ground truth surface
is the same to the one in the batch case since the camera poses used in both cases are the
same. The same experiment (both SfM and surface calculations) is re-done for the same
synthetic images down-sampled by 2. In this case, we found

√
E(Z)/600 = 56 cm, which

implies that the SfM drift is larger than in the previous case where
√
E(Z)/600 = 5.1 cm.

According to Tab. 7.5, we see that the batch method has better results than the incre-
mental method. It is because that the batch method uses the second spurious handle removal
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method inliers (%) median (cm) 90% quantile (cm)

batch 77.5 (74.1) 7.7 (64.0) 30.7 (101)

increm. 72.4 (69.7) 8.6 (71.0) 49.7 (106)

Table 7.5: Errors of batch and final incremental surfaces using ground truth surface. The
numbers between parentheses are obtained for down-sampled images.

method, the peak removal post processing and does not have dating constraints. We also
note that errors of the reconstructed surfaces depend mainly on the SfM drift. It is shown
in Tab. 7.5 that the magnitude order of the median error is roughly the same to the average
SfM drift.

Fig. 7.22 gives more details on the distribution of errors. We see that the batch surface
has slightly more errors distributed in low error interval than the incremental surface. In
addition, the majority of errors of reconstructed surfaces using the original image sequence
are in interval (0 m, 0.1 m). When the down-sampled image sequence is used, the image
resolution is smaller thus the SfM drift is larger. It implies that the surface accuracies are
degraded where most errors are in interval (0.5 m, 1 m).

Figure 7.22: Error distributions of reconstructed surfaces in histograms. For each sub figure,
the horizontal axis is the error axis (in meter) containing 20 uniform intervals, and the vertical
axis is the error distribution axis which indicates the percentage of inlier samples in an interval
in all inlier samples.
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7.4 Other Examples

7.4.1 Laschamps Church

This sequence is a still JPEG image sequence of 208 images and the camera trajectory
is a complete loop around a church at Laschamps in France. It is also used in our first
publication [3] where our batch environment modeling method (except the second method
of handle removal) is presented. A video showing the reconstructed surface is on line1. Most
of the parameters used here are same to those in Sec. 7.2.1, except that ε used in point
filter is 5◦ instead of 10◦ and R1 is used instead of R2 for the spurious handle removal. The
incremental environment modeling method is also applied to this image sequence by using
most of the parameters in Sec. 7.3.1 except that ε is set 5◦.

Fig. 7.23 illustrates results of batch and incremental SfM. We see that the SfM drift is re-
moved in the batch SfM, thanks to the loop closure. Fig. 7.24 and Fig. 7.25 show respectively
surfaces reconstructed by the batch and incremental surface reconstruction methods.

Figure 7.23: Top view of 3d points and camera poses reconstructed by batch and incremental
SfM using Laschamps Church image sequence. Results of batch SfM are on the left and those of
incremental SfM are on the right. Points are in gray and camera poses are in black.

1http://www.youtube.com/watch?v=mNcbWhvNftk
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Figure 7.24: Results of batch surface reconstruction for Laschamps Church image sequence.
We show effects of some steps of our method. The two left columns show results without using
these steps and the right two columns show results using complete steps of our method. Row 1
shows effects of two post-processings: peak removal and surface denoising. Row 2 shows effects
of the post-processing: sky removal (top views). Row 3 and 4 show effects of the “Topology
Extension”. Row 5 shows effects of the first method of spurious handle removal.
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Figure 7.25: Results of incremental surface reconstruction for the Laschamps image sequence.
Row 1 and 2 show local views of the final incremental surface, Row 3 and Row 4 show respectively
local views at the end of the camera trajectory loop of the final incremental surface and the batch
surface. The left column shows views of textured models and the right column shows views of
models colored in function of triangle normals. The processing time in function of time t is shown
in the bottom. Here, about 300 points are added in the Delaunay at each time.
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7.4.2 Clermont-Ferrand Downtown

The sequence is a still JPEG image sequence of 354 images taken in the downtown of
Clermont-Ferrand. It is also used by our incremental environment modeling method in
our publication [6], by using parameters in Sec. 7.3.1. Here, we reuse the experiment results
of [6]. Besides, the batch environment modeling method is also applied to this image se-
quence. Most of the parameters in Sec. 7.2.1 are used except that R1 is used instead of R2
for spurious handle removal.

Fig. 7.26 presents results of batch and incremental SfM. Fig. 7.27 and Fig. 7.28 show
respectively final surfaces reconstructed by batch and incremental surface reconstruction.

Figure 7.26: Top view of 3d points and camera poses reconstructed by batch and incremental
SfM using Clermont-Ferrand Downtown image sequence. We see respectively four images of the
sequence on the top, top view of the batch SfM in the middle and top view of the incremental
SfM on the bottom.
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Figure 7.27: Batch surface for Clermont-Ferrand Downtown sequence. Row 1,2 show two bird
views of the surface. Row 3-6 show local views of the surface at position 1-4 of Fig. 7.26. The
left column shows views of the textured model and the right column shows views of the model
colored in triangle normals.
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Figure 7.28: Incremental surfaces of Clermont-Ferrand Downtown sequence. Row 1,2 show
two bird views of the final surface. Row 3,4 show local views of the surface at four times. Row 5
shows the processing time in function of time. Here, about 200 points are added in the Delaunay
each time.
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7.4.3 Standard Multi-view Stereo Data Sets (Perspective Camera)

Our batch surface reconstruction method is also applied to 3d points reconstructed from
three standard multi-view stereo data sets with available ground truths: “Temple” [124],
“Fountain-P11” and “Herzjesu-P8” [133]. The reconstructed surfaces are further quanti-
tatively evaluated. The surface reconstruction is done by using most of the parameters
in Sec. 7.2.1 except that R1 is used for the spurious handle removal. Here, we give only a
summary of the experiments and details can be found in [2].

Camera poses are given by the input data sets and are used to reconstruct interest points
detected and matched in input images. Curves in input images can also be reconstructed and
points sampling curves are integrated in the reconstructed point cloud [2]. Finally our batch
surface reconstruction method is applied. Note that our environment modeling methods
assume that the camera is omni-directional, while images of these data sets are taken by the
perspective camera with small field of view. Thus we slightly modify our methods to be able
to deal with these data sets (Sec. 4.3). Statistical results of the batch surface reconstruction
for all three data sets are given in Tab. 7.6. Note that we do not show results using curves for
Fountain-P11 and Herzjesu-P8 because adding curves provides a very minor improvement.

Temple Fountain-P11 Herzjesu-P8

number of images 312 11 8

image resolution 640× 480 3072× 2048 3072× 2048

number of 3d points (curves) 32k (56k) 67k 29k

number of surface triangles (curves) 49k (82k) 121k 52k

time: 3d points (+curves) reconstruction 13 s (+18 s) 100 s 64 s

time: surface reconstruction 18 s (+10 s) 23 s 10 s

Table 7.6: Statistical results of batch surface reconstruction for “Temple”, “Fountain-P11” and
“Herzjesu-P8”.

Temple The “Temple” data set contains 312 separate views of a plaster replica. The
tight bounding box of the “Temple” model is about 0.1× 0.16× 0.07 m3. Two surfaces are
computed and sent to data set creators1 for evaluation. The first one, named the point-only
surface, uses only points. The second one, named the point-curve surface, uses both points
and curves. Evaluation results show that the point-curve surface is slightly better than the
point-only surface. The point-only surface computation takes 31 s and provides an accuracy
of 0.66 mm (for 90% of reconstructed points) and a completeness of 93% (for an error less
than 1.25 mm). The point-curve surface computation takes 59 s, and provides an accuracy
of 0.59 mm and a completeness of 95.4%. Note that spurious handles exist on both surfaces
(R1 is used for spurious handle removal). They can be removed by using R2 with a small
value of α. Fig. 7.29 shows the reconstructed surfaces.

1http://vision.middlebury.edu/mview/eval/

134



7.4 Other Examples

Figure 7.29: Ground truth and reconstructed surfaces of “Temple”. Left: ground truth.
Middle: reconstructed surfaces using R1. Right: reconstructed surfaces using R2. For Middle
and Right, points-only surfaces are at the top and points-edges surfaces are at the bottom.

“Fountain-P11” and “Herzjesu-P8” The “Fountain-P11” and “Herzjesu-P8” data sets
contain respectively 11 and 8 high-resolution images. Our reconstructed surfaces are quan-
titatively evaluated against ground truths provided by data set creators. The evaluation
consists in measuring errors between each vertex of our surface and the nearest point in
the ground truth surface. We find that 80% of reconstructed surface vertices have an error
smaller than 6 cm for “Fountain-P11” and smaller than 7 cm for “Herzjesu-P8” respectively.
The computations of “Fountain-P11” and “Herzjesu-P8” take 123 s and 74 s respectively.
Surfaces are reconstructed using R1 and spurious handles exist. Most of them can be removed
by using R2 using a small value of α. Fig. 7.30 shows the reconstructed surfaces.

Comparison to dense multi-view stereo methods According to the comparison of
our reconstructed surfaces with the ground truths, the precision achieved by our sparse
environment modeling method cannot yet compete with the dense multi-view stereo methods,
but we think that it is sufficient to be used as initialization of dense stereo. Furthermore,
given the achieved speed, the algorithm is indeed a good choice not only for this purpose
but also for the applications where the speed is at least as important as the precision.
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Figure 7.30: Ground truths and reconstructed surfaces of “Fountain-P11” and “Herzjesu-P8”.
We show “Fountain-P11” on the left and “Herzjesu-P8” on the right. We show from top to
bottom: one image of the ground truth, reconstructed surfaces using R1 and reconstructed
surfaces using R2.
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7.5 Conclusion

Experiments of our batch and incremental environment modeling methods are presented in
details in this chapter. A low-cost catadioptric omni-directional camera is used to take im-
ages of the environment. Then with the help of a standard PC, we apply our environment
modeling methods: a batch method which consists of a geometry reconstruction step (batch
SfM) and a subsequent surface reconstruction step, and an incremental method which al-
ternates an incremental geometry reconstruction step (incremental SfM) and an incremental
surface reconstruction step. In experiments of the batch method, we have shown the interest
of the manifold constraint, results by varying different parameters or steps of the method,
results of the experimental time complexity, a comparison to the Poisson surface reconstruc-
tion method, a quantitative evaluation, and results using both image and video sequences. In
experiments of the incremental method, we have shown results by varying different parame-
ters of the method, the experimental complexities, a quantitative evaluation and comparison
of our incremental surface reconstruction method to our batch method. At last, other ex-
amples which have also been used in our publications are also provided, including an image
sequence of a complete-loop camera trajectory, a video sequence of a canyon-like environment
and standard multi-view stereo data sets with ground truths. Besides, our batch surface re-
construction is also used in the work [2]. In this work, SfM points are reconstructed from
images taken by a Ladybug omni-directional camera and surface models of both indoor and
outdoor environments are reconstructed.

Through these experiments, we see that our environment modeling methods are able to
efficiently estimate 2-manifold surface models of complete environments using sparse SfM
points in a short time. The extended incremental method can incrementally reconstruct 2-
manifold surfaces of environments and the processing time of each incremental reconstruction
does not increase with time in case that no loop exists in the camera trajectory. Despite
the achievements above, we can see some defects on results of the experiments: incomplete
reconstruction of thin objects, high time consumption for the second method of spurious
handle removal, high processing time for the incremental surface reconstruction at the end
of loops. These drawbacks need to be removed in future works.
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Chapter 8

Conclusion

Summary

This thesis deals with the problem of image-based automatic 3d modeling by reconstructing
surfaces using results of Structure-from-Motion.

A batch environment modeling method is proposed. The method reconstructs a 2-
manifold surface from the SfM output: a sparse cloud of reconstructed Harris points and
their visibilities in the images. The potential adjacencies between the points are encoded
in a 3d Delaunay triangulation, then the point visibilities are used to label the tetrahe-
dra. A multi-genus 2-manifold is extracted thanks to a greedy region-growing method and
a topology extension process. At last, a spurious handle removal process and several post-
processings including surface denoising, peak removal, “sky” triangles removal and texturing,
are applied to improve the surface quality and visualization. Compared to other environ-
ment modeling methods, our method combines both manifold and visibility constraints and
the reconstructed surface is a multi-genus 2-manifold surface using sparse SfM points only.
The theoretical time complexity analysis of the method is given and various experiments are
presented. Our experiments show: the interest of manifold constraint which is neglected by
most of the previous Computer Vision works based on sparse SfM points only, results by
varying different parameters or steps of the method, results of the experimental time com-
plexity, a comparison to the Poisson surface reconstruction method, quantitative evaluations,
and results using both image and video sequences.

The batch environment modeling method is also extended to the incremental case. Video
frames of the environment are progressively provided and key-frames are selected. Each time
a key-frame is selected, new Harris points are reconstructed. They, together with their visi-
bilities in images, are subsequently used by an incremental surface reconstruction method to
incrementally update the current surface of the environment. The processing time of each
update does not increase with time (except at the end of a camera trajectory loop). At all
times, the current surface of the environment is always a multi-genus 2-manifold surface. To
our knowledge, this method is the first system with four features: incremental reconstruc-
tion for triangulated manifold surface from sparse point cloud generated by SfM. Detailed
theoretical time complexity analysis of the method is given. At last, we provide experiments,
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including results by varying different parameters of the method, the experimental complex-
ities, a quantitative evaluation and comparison of our incremental surface reconstruction
method to our batch method.

An omni-directional catadioptric camera is used in our experiments. But our surface
reconstruction methods are also able to deal with data sets using other cameras. In the
PhD work of Vadim Litvinov [2], our batch surface reconstruction method is used for images
taken by a Ladybug camera. Besides, we also provide quantitative evaluation results using
standard multi-view stereo data with ground truths.

Our sparse environment modeling methods could be used in a lot of applications. For
example, we plan to use these methods in robotics, especially for autonomous navigation.
We expect to extend the volume of cameras to localize thanks to the reconstructed surface of
environments. Our methods could also be used for visualization after improving the surface
using a dense stereo method, or be directly used for virtual visit using a low-performance
device such as a tablet or a smartphone. Our reconstructed surfaces could also be used in
augmented reality which handles occlusions.

Limitations

Here we discuss on the limitations of our environment modeling methods.

We remark that thin objects in environments such as tree branches, window concavities
in a wall and electric posts cannot be correctly reconstructed due to the lack of points.

The second handle removal method is the slowest step of our batch method (see Sec. 7.2.1)
and should be accelerated. Furthermore, although most of the spurious handles can be
detected and removed, this process may fail in removing certain handles.

Results of the incremental surface reconstruction method are not as good as those of the
batch method (Sec. 7.3.5). In addition, as shown in Sec. 7.3.2, the processing time of the
incremental surface reconstruction at the end of a camera trajectory loop depends on the
size of the loop, i.e. it is not limited to a constant.

The surface denoising operator that we used is an uniform Laplacian operator. As dis-
cussed in Sec. 4.7.2, surfaces with high curvatures are over-smoothed and the resulting surface
is no more manifold.

The greedy region-growing process of our surface reconstruction methods has a shelling
stuck problem, as already introduced in Sec. 4.4.3.3. In our work, the topology extension
and also the second method of spurious handle removal can loosen up and restart the greedy
region-growing. However it still remains an open theoretical problem for us: is our envi-
ronment modeling method able to reach every outside region (whose border is 2-manifold)
embedded in the 3d Delaunay triangulation ?
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Perspectives

SfM Drift

The SfM drift due to the propagated geometry reconstruction errors in our incremental SfM
is an important error source of our reconstructed surfaces. A priori informations can be
used to improve the SfM accuracy. For example, as our camera is mounted on a car or
on a helmet, the symmetric axis of our catadioptric camera can be assumed vertical, and
the distance between a camera viewpoint and the ground can be considered constant. This
distance can be measured and used as a constraint in the local bundle adjustment to limit
the reconstruction error. More precisely, the drift of the scalar factor in SfM can be reduced.

Edges or Curves

More SfM points can be reconstructed in order to improve the completeness of our environ-
ment modelings. For example, the work [2] reconstructs curves in input images to enrich the
reconstructed SfM points and computes surfaces of environments using our batch method.
The resulting surfaces (see Sec. 7.4.3) have a better completeness and accuracy than those
using only interest points, especially for indoor environments. In the future works, we plan
to also use edges and curves in the incremental surface reconstruction.

Using SfM points of Unorganized Images

SfM points used by our surface reconstruction methods are reconstructed from sequences
of consecutive images. We plan to check if our surface reconstruction methods are still
applicable to SfM points reconstructed from unstructured collection of images such as images
in [130] (Photo Tourism).

Visibility Score

The work [112] also reconstructs a surface which is consistent to visibility rays obtained by
SfM. It is a probabilistic approach which considers that the intersection between a visibility
ray and a triangle is less confident if the intersected point is close to the 3d point of the ray.
By doing so, the effects of false SfM points, which have already been discussed in Sec. 4.8,
are reduced. Inspired by this idea, in our work, we could assign a visibility score to each
tetrahedron. And the score depends on the rays which intersect the tetrahedron and the
confidence measure of each intersection. Then, free-space tetrahedra with a low visibility
score can be removed from the free-space tetrahedra list.

Photo-consistency Driven Region-growing

The photo-consistency measurement might be helpful in our visibility optimization process.
In our current work, an outside region O is grown under a rigid manifold constraint on the
border δO of O. And we optimize the visibility information, i.e. the number of intersections
between tetrahedra in O and visibility rays. We could also measure the photo-consistency
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our surface and combine it in the optimization process. For example, for each free-space
tetrahedron Δ adjacent to O, we could measure the photo-consistency of its triangle(s) in O
and combine it with the visibility score of Δ to define its priority score. Δ has low priority
score if its triangle(s) have high photo-consistent score(s). The photo-consistency score is
particularly interesting to tetrahedra which have poor visibility information. We expect that
the resulting surface would be more consistent to the input images than the current one.
Note that the work [82] optimizes also the visibility information and the photo-consistency
measures of Delaunay triangles. The difference is that its optimization process is realized
using graph cuts techniques and the resulting surface is not guaranteed to be 2-manifold.

Loop Closure

A drawback of our incremental surface reconstruction approach is the complexity when the
camera closes a trajectory loop: the time complexity is O(ls) log(ls), where ls is the size of
the loop. In the PhD work of Vadim Litvinov, an alternative approach of incremental surface
reconstruction is studied, which does not have this drawback. It would be based on a local
update of the outside volume near the current location of the camera.

Improve Surface Denoising

Our reconstructed surfaces interpolate sparse SfM points which have usually a non-uniform
point distribution. The surface denoising process of our environment modeling methods
may be improved by applying an operator such as Laplacian-Beltrami operator [27]. By
doing so, the denoising process could better deal with non-uniform data. Furthermore, we
should also avoid self intersections of triangles to maintain the 2-manifold property in the
post-processing step.

Image-based Automatic Modeling Pipeline

Remind that experiments of our environment modeling process are done in three separating
steps: image or video sequence acquisition, geometry reconstruction and surface reconstruc-
tion. Output of the first (resp. second) step is input of the second (resp. last) step and
communications between different steps are currently realized via ASCII files. For our in-
cremental environment modeling method, it would be interesting to combine the separating
three steps in a complete pipeline. By doing so, our environment modeling pipeline could be
used in real time to reconstruct the surface model of environments.
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Appendix A

Levenberg-Marquardt

This appendix presents the Levenberg-Marquardt (LM) algorithm [63, 116] used for bundle
adjustment and its implementation in our work.

Remind that LM is an iterative numeric algorithm to minimize the non linear function
error function ‖E‖2, where E = (.., eij , ..)

T and eij is an error function involving the recon-

structed camera pose ci and 3d point qj . The parameter vectorX of ‖E‖2 is (c1, .., cm,q1, ..,qn)
T ,

which is simplified to X = (Xc Xq)T

The algorithm begins at an initial guess of the solution X0 and finally converges to a
locally optimal solution. Now assume that the current parameter vector is Xk. In the next
LM iteration, Xk is replaced byXk+1 = Xk+δX to approximate the local minimum. Writing
the first order Taylor expansion of the error function E(Xk+1), we have

E(Xk + δXk) ≈ E(Xk) + JkδXk (A.1)

where, Jk is the Jacobian of E at Xk. A local minimum of δXk �→ ‖E(Xk + δX)‖2 ≈
‖E(Xk) + JkδXk‖2 exists when the gradient of this function reaches zero. That means:

JT
k JkδXk = −JT

k E(Xk) (A.2)

Finding δXk by resolving the linear equation system A.2 is the principle of Gauss Newton
algorithm. It converges rapidly if the initial guess is sufficiently close to the optimal solution.
The contribution of Levenberg-Marquardt is to replace JT

k Jk by JT
k Jk+λdiag(JT

k Jk), λ > 0.
Here, diag(JT

k Jk) is a matrix filled by zero except that its diagonal is same to the one of
JT
k Jk. We have,

(JT
k Jk + λkdiag(J

T
k Jk))δXk = −JT

k E(Xk) (A.3)

λk is a positive parameter (initialized to 10−3 in practice) which evolves as follows. If
the cost is reduced with the current λk, i.e. E(Xk+1) < E(Xk), then λk is reduced in the
next iteration (divided by 10) to accelerate the convergence. In this case the algorithm
behaviors like a Gauss-Newton algorithm. Otherwise, λk is increased (multiplied by 10) and
the algorithm behaviors more like a gradient descent algorithm to guarantee a decreasing cost

function. We consider that the algorithm converges if ‖E(Xk+1)‖ < ‖E(xk)‖ ≤ ‖E(Xk+1)‖
σ ,

where σ is a positive parameter which is set to be 0.9999 in practice.
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Linear System Resolution The main implementation problem for LM which is the res-
olution of linear equation system in Eq. A.3. We suppose that Xk is composed of m cam-
era poses and n 3d points (and eventually 4 intrinsic parameters which are not included
in this example). Let matrix Hk = JT

k Jk + λkdiag(J
T
k Jk), then Hk has a dimension of

(6m+ 3n)× (6m+ 3n). In general, image sequences have hundreds or thousands of camera
poses and from thousands to hundreds of thousands points. Directly inversing such a matrix
is extremely expensive in terms of computation time.

An efficient solution to resolve this problem is to exploit the sparse structure of the
matrix JT

k Jk. In fact, Jk, the Jacobian matrix of E(Xk), is composed of partial derivations
of E(Xk) with respect of all points and camera poses. Fortunately, all points are not viewed
by all camera poses, thus Jk contains a majority of zero values. In other words, Jk is a sparse
matrix. Consequently, JT

k Jk and Hk = JT
k Jk + λdiag(JT

k Jk) are also sparse matrices.

�

�

�

��

�����
������ �	
Figure A.1: Structure of sparse matrix Hk. black means zero values.

Fig. A.1 shows the structure of the sparse matrix Hk which is composed of four sub-
matrices: U,W,W T and V . U has a dimension of 6m × 6m and is composed of m blocks
of 6 × 6 in diagonal and null coefficients in other blocks. The i-th diagonal block contains
product of partial derivatives of E(Xk) with respect of the 6 extrinsic parameters of ci. The
matrix W , has a dimension of 6m×3n, and is composed of m×n blocks of 6×3. It represents
the inter-correlations between points parameters and camera extrinsic parameters. The (i,j)-
th 6× 3 block W (i, j) of W is 0 if the j-th point is not in the i-th image. V is a block-wise
diagonal matrix which is invertible. The j-th diagonal block in V contains a sum of products
of partial derivatives of E(Xk) with respect to the 3 parameters of qj .

Then the linear equation system Eq. A.3 can be rewritten as follows,

[
U W
W T V

] [
δXc

k

δXq
k

]
=

[
Ec

k

Eq
k

]
(A.4)

δXc
k and δXq

k are respectively steps for camera poses and 3d points in the iteration k. Ec
k and

Eq
k are respectively −1

2× gradients of ‖E‖2 for camera poses and 3d points in the iteration
k. As V is invertible, we can calculate the schur complement of U in Hk: U −WV −1W T by
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multiplying Eq. A.4 on the left by

[
I −WV −1

0 I

]
. Then we have,

[
U −WV −1W T 0

W T V

] [
δXc

k

δXq
k

]
=

[
Ec

k −WV −1Eq
k

Eq
k

]
(A.5)

Now the linear equation system (Eq. A.5) can then be resolved in two steps:

1. Calculate the increment of camera parameters by solving the equation:

(U −WV −1W T )δXc
k = Ec

k −WV −1Eq
k (A.6)

2. Calculate the increment of point parameters

δXq
k = V −1(Eq

k −W T δXc
k) (A.7)

We can see that directly solving Eq. A.4 consists in inversing the matrix Hk and it is
computationally expensive. Now, by using schur complement, we solve subsequently Eq. A.6
and Eq. A.7 instead of directly solving Eq. A.4. And the process is much more efficient in
terms of computation costs: U −WV −1W T is a 6m× 6m matrix (much more smaller than
Hk) and Eq. A.6 can be solved by using Cholesky factorization; V is a block-wise diagonal
matrix thus Eq. A.7 can be efficiently solved by block.
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Appendix B

Proof of Tetrahedron-based Vertex
2-Manifold Test

Here we use theory on planar graphs and duality in [125] to show that the tetrahedron-based
and edge-based tests in Sec. 4.4.3.1 are equivalent. This proof is also submitted in [1].

First, we introduce graphs G and G∗. Let v be a vertex on surface δO. Let V ∗ be the list
of v-incident tetrahedra of the Delaunay T . Let E∗ be the list of triangles between adjacent
tetrahedra in V ∗. Graph G∗ = (V ∗, E∗) has vertices V ∗ and edges E∗. Let V be the list of
vertices of the tetrahedra of V ∗, except v. Let E be the list of edges of the tetrahedra of V ∗

without endvertex v. Graph G = (V,E) has vertices V and edges E.

Fig. B.1 shows an example. There are eight v-incident tetrahedra whose union is an
octahedron centered at v. G has the vertices and edges of the octahedron, and G∗ has the
vertices and edges of a cube. Note that G∗ is also the adjacency graph of the v-opposite
triangles in the v-incident tetrahedra.

Second we detail the duality between G and G∗. Graph G is planar since it lies on the
border of a v-star-shaped volume which is homeomorphic to a 2-sphere. Remind that a
planar graph (e.g. G) is embedded in R2, it cuts R2 into regions called faces such that every
edge has two faces (one on the left and one on the right). The dual graph of G is defined as
follows: its vertices are the faces of G, its edges connect the left and right faces of an edge
in G. Now we see that G∗ is the dual graph of G.

Third we explicit the duality between edges due to the inside-outside labeling of tetra-
hedra. We have a nontrivial bipartition of V ∗: V ∗

I (inside tetrahedra) and V ∗
O (outside

tetrahedra). This implicitly defines a bipartition of inside and outside (v-opposite) trian-
gles. Let F ∗ be the edges of graph G∗ having an endvertex in V ∗

I and an endvertex in V ∗
O. Let

F be the edges of graph G having an inside triangle and an outside triangle as its two faces.
The edges F ∗ of graph G∗ are the duals of edges F of graph G (one example in Fig. B.1).

Last we show that tetrahedron-based and edge-based tests give the same result. Accord-
ing to the tetrahedron-based test, v is regular if and only if V ∗

I and V ∗
O are the connected

components of the graph (V ∗, E∗ \ F ∗), i.e. if and only if F ∗ is a minimal edge-cut of G∗.
According to the edge-based test, v is regular if and only if F is a cycle in graph G. Now
we use proposition 7 in [125]: “Let G = (V,E) be a connected plane multigraph. A set F
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Figure B.1: Duality of planar graphs. Left: the eight v-adjacent tetrahedra (octahedron
volume), and border (bold edges) between inside and outside tetrahedra. Middle: planar graph
G and bold edges F . Right: planar graph G∗ and bold edges F ∗. The dual of G (octahedron) is
G∗ (cube). The dual of F = {ac, cd, de, ea} is F ∗ = {jg, jn, im, ih}.

included in E is a cycle in G if and only if F ∗ is a minimal edge-cut in G∗”. We obtain the
result. Note that a multigraph is a graph allowing loop edges and parallel edges, that our
graphs have not.
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Appendix C

Proof of the Single Tetrahedron
2-Manifold Test

In this part, T is the Delaunay triangulation, O is a list of tetrahedra of T , Ov is the list
of the tetrahedra in O which are incident to vertex v. The border δO of O is the list of
triangles of tetrahedra in O such that every triangle is included in exactly one tetrahedron
of O.

We can add a tetrahedron Δ in O if and only if the condition of the following Theorem
is met.

Theorem C.1 (Add One Tetrahedron) Assume that δO is 2-manifold. Let Δ be a tetra-
hedron in T \ O and f be the number of Δ-triangles included in δO. Then, the border
δ(O ∪ {Δ}) of O ∪ {Δ} is 2-manifold if and only if one of the following conditions is meet:

� if f = 0 and every Δ-vertex v meets Ov = ∅

� if f = 1 and the Δ-vertex v which is not in δO meets Ov = ∅

� if f = 2 and the Δ-edge which is not in δO has end-vertices v and w such that
Ov ∩Ow = ∅

� if f = 3

� if f = 4.

In practice, the lists Ov are ordered (e.g. by increasing indices of tetrahedra) so that the
computation of Ov ∩Ow has linear complexity in the sizes of Ov and Ow.

The following proof is submitted in [1]. Although this theorem is derived from Figures
of [23], it should be stressed that there is no formal proof in [23] or even in other previous
work (up to our knowledge).

149
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C.1 Principle of the Proof

Let L be a list of tetrahedra of T . A path in L between Δa and Δb is a tetrahedron series
Δi ∈ L, i ∈ {0, 1, · · · k} such that Δ0 = Δa, Δk = Δb, and Δi and Δi+1 are adjacent (i.e.
Δi ∩Δi+1 is a triangle) for every i ∈ {0, 1, · · · k− 1}. We say that L is connected if and only
if there is a path in L between every pair of tetrahedra in L. We use the following notation:
Tv is the list of all tetrahedra which are incident to vertex v, Te is the list of all tetrahedra
including edge e, ge is the adjacency graph of all tetrahedra of Te (ge is a cycle).

In almost all cases, our proof is based on the Tetrahedron-based Test that we rewrite
here for both surfaces δO and δ(O ∪ {Δ}):
Lemma C.1 A vertex v of δO is regular in δO if and only if Ov is connected and Tv \Ov

is connected. Assume that v is a vertex of Δ and δ(O ∪ {Δ}), v is regular in δ(O ∪ {Δ}) if
and only if Ov ∪ {Δ} is connected and Tv \ {Ov ∪ {Δ}} is connected.

The principle of the proof is the following: for every vertex v of Δ, we check that v is
regular (or singular) in surface δ(O ∪ {Δ}) by studying the connectivity of Ov ∪ {Δ} and
Tv \ {Ov ∪ {Δ}} using the fact that δO is 2-manifold (i.e. Ov and Tv \ Ov are connected).
Then δ(O ∪ {Δ}) is 2-manifold if and only if every Δ-vertex is regular in δ(O ∪ {Δ}).

The other vertices of δ(O∪{Δ}) does not need to be checked since their incident triangles
are the sames in both surfaces δO, which is 2-manifold, and δ(O ∪ {Δ})

The proof depends on f , the number of adjacencies between Δ and the tetrahedra in O,
i.e. the number of triangles which are in (δΔ) ∩ (δO).

C.2 Δ is not adjacent to a tetrahedron in O, i.e. f = 0

Let v be a Δ-vertex. If Ov = ∅, Ov ∪ {Δ} is connected and Tv \ {Ov ∪ {Δ}} is connected
(since v is regular in δΔ). Then v is regular in δ(O ∪ {Δ}).

If Ov �= ∅, there are (at least) two tetrahedra Δ and Δ′ in Ov ∪ {Δ}. Since f = 0, Δ is
not adjacent to the tetrahedra in Ov. Then, there is no path in Ov ∪ {Δ} between Δ and
Δ′. Thus Ov ∪ {Δ} is not connected and v is singular in δ(O ∪ {Δ}).
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C.3 Δ is adjacent to one tetrahedron in O, i.e. f = 1
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Figure C.1: Single tetrahedron 2-manifold test in several cases. Cases f = 1 (left), f = 2
(middle) and f = 3 (right) Tetrahedron Δ has vertices t,u,v,w and edge e. We have Δ /∈ O.
Tetrahedra Δt,Δu,Δv,Δw are in O and adjacent to Δ (Δv is opposite to v for Δ).

C.3 Δ is adjacent to one tetrahedron in O, i.e. f = 1

Let v be the Δ-vertex opposite to the triangle of δΔ which is in δO, as illustrated in Fig. C.1
(left). This and f = 1 imply that Δ is not adjacent to the tetrahedra in Ov. According to
Section C.2, v is regular in δ(O∪{Δ}) if and only if Ov = ∅. Thus δ(O∪{Δ}) is 2-manifold
implies that Ov = ∅.

Conversely, we assume that Ov = ∅ and show that every other vertex w of Δ is regular
in δ(O ∪ {Δ}). To do this, we show that Ow ∪ {Δ} is connected and Tw \ {Ow ∪ {Δ}} is
connected.

We have w ∈ δO and δO is 2-manifold, then Ow is connected and Tw \Ow is connected.
Since f = 1, Δ is adjacent to one tetrahedron Δ′ of Ow. Now we see that Ow ∪ {Δ} is
connected.

Let Δa,Δb be in Tw \{Ow∪{Δ}}. Since Tw \Ow is connected, there is a path P1 defined
by Δi ∈ Tw \ Ow, i ∈ {0, 1 · · · k} between Δa and Δb. If there is i0 such that Δi0 = Δ,
Δi0−1 ∩ Δ ∩ Δi0+1 is an edge e of Δ. This edge has end-vertex w (since Δi ∈ Tw) and
end-vertex v (otherwise Δ′ ∈ {Δi0−1,Δi0+1}, which is impossible since Δ′ ∈ O and Δi /∈ O).
Thus e = vw, which implies Te ∩ O ⊆ Ov = ∅ and then Te ⊆ Tw \ Ow. Furthermore ge
is a cycle: there is a path P2 in Te \ {Δ} between Δi0−1 and Δi0+1. In P1, we replace
(Δi0−1,Δ,Δi0+1) by P2 and obtain a path in Tw \ {Ow ∪ {Δ}} between Δa and Δb. Thus
Tw \ {Ow ∪ {Δ}} is connected.

C.4 Δ is adjacent to two tetrahedra in O, i.e. f = 2

As showed in Fig. C.1 (middle), the two triangles which are both in δΔ and δO have two
vertices t and u. Let v and w be the two other Δ-vertices.

First we show that u (and similarly t) is regular in δ(O ∪ {Δ}). Since u ∈ δO and δO
is 2-manifold, Ou is connected and Tu \Ou is connected. Since f = 2, Δ is adjacent to two
tetrahedra of Ou. We see that Ou∪{Δ} is connected. Let Δa and Δb be in Tu \{Ou∪{Δ}}.
Since Tu \Ou is connected, there is a path Δi ∈ Tu \Ou, i ∈ {0, 1 · · · k} between Δa and Δb.
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If there is i0 such that Δi0 = Δ, we have Δi0−1 = Δi0+1 since Δ is adjacent to exactly one
tetrahedron of Tu \Ou (indeed, Δ is adjacent to 3 tetrahedra in Tu and 2 tetrahedra in Ou).
Then we remove (Δ,Δi0+1) from the path and obtain a path in Tu \ {Ou ∪ {Δ}} between
Δa and Δb. We see that Tu \ {Ou ∪ {Δ}} is connected and Ou ∪ {Δ} is connected, then u
is regular in δ(O ∪ {Δ}).

Second we examine v (and similarly w). We assume Ov∩Ow = ∅ and show that Ov∪{Δ}
is connected and Tv \ {Ov ∪{Δ}} is connected, which imply that v is regular in δ(O∪{Δ}).
We have v ∈ δO and δO is 2-manifold, then Ov is connected and Tv \ Ov is connected.
Since Ov is connected and Δ is adjacent to one tetrahedron of Ov, we see that Ov ∪ {Δ} is
connected. Let Δa,Δb be in Tv \ {Ov ∪{Δ}}. Since Tv \Ov is connected, there is a path P1

defined by Δi ∈ Tv \Ov, i ∈ {0, 1 · · · k} between Δa and Δb. If there is i0 such that Δi0 = Δ,
Δi0−1 ∩ Δ ∩ Δi0+1 is an edge e of Δ. Since Δi0−1 /∈ O and Δi0+1 /∈ O, e = vw. Thus
Te ∩ O ⊆ Ov ∩ Ow = ∅ implies Te ⊆ Tv \ Ov. Furthermore ge is a cycle, this implies that
there is a path P2 in Te \ {Δ} between Δi0−1 and Δi0+1. In P1, we replace (Δi0−1,Δ,Δi0+1)
by P2 and obtain a path in Tv \ {Ov ∪ {Δ}} between Δa and Δb. Thus Tv \ {Ov ∪ {Δ}} is
connected.

Conversely, we assume that Ov ∩ Ow �= ∅ and show that δ(O ∪ {Δ}) is not 2-manifold.
Since f = 2, cycle ge of edge e = vw contains three successive and different tetrahedra
Δa,Δ,Δb which are not in O. Since Ov ∩Ow �= ∅, there exists Δc ∈ Ov ∩Ow = Te ∩O. We
see that ge contains (at least) four pairs of consecutive tetrahedra Δi,Δi+1 (indices modulo
the cycle length) such that { Δi ∈ O ∪ {Δ} and Δi+1 /∈ O ∪ {Δ} } or { Δi /∈ O ∪ {Δ} and
Δi+1 ∈ O ∪ {Δ} }. This implies that e is included in (at least) four triangles of δ(O ∪Δ).
Assuming that δ(O ∪ Δ) is 2-manifold (reductio ad absurdum), e is included in only two
triangles of δ(O ∪Δ) (read p. 723 of [58]). Then δ(O ∪Δ) is not 2-manifold.

C.5 Δ is adjacent to four tetrahedra in O, i.e. f = 4

Since f ≥ 3, every Δ-vertex v is in δO. Then Tv \ Ov is connected since δO is 2-manifold.
Furthermore Tv \Ov contains Δ, which is not adjacent to other tetrahedra in Tv \Ov (Δ is
adjacent to 3 v-incident tetrahedra, which are in Ov). We see that Tv \Ov = {Δ}. Thus v
is not in δ(O ∪ {Δ}).

C.6 Δ is adjacent to three tetrahedra in O, i.e. f = 3

As in Section C.5, Ov is connected and Tv \ Ov is connected for every Δ-vertex v (see the
right of Fig. C.1 for an example). Assume that v is the vertex incident to the three triangles
of δΔ which are in δO. As in Section C.5, v is not in δ(O ∪ {Δ}).

Assume that w is one of the three other vertices of Δ. Since Ow is connected and Δ is
adjacent to two tetrahedra of Ow, Ow ∪{Δ} is connected. Let Δa and Δb be two tetrahedra
of Tw \{Ow∪{Δ}}. Since Tw \Ow is connected, there is a path Δi ∈ Tw \Ow, i ∈ {0, 1 · · · k}
between Δa and Δb. If there is i0 such that Δi0 = Δ, Δi0−1 = Δi0+1 (since Δ is connected
to a single tetrahedron not in O and Δi /∈ O). We remove (Δ,Δi0+1) from the path and
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C.6 Δ is adjacent to three tetrahedra in O, i.e. f = 3

obtain a path in Tw \ {Ow ∪ {Δ}} between Δa and Δb. Then w is regular in δ(O ∪ {Δ})
since {Ow ∪ {Δ}} and Tw \ {Ow ∪ {Δ}} are connected.
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Appendix D

Solid Angle Calculation

Here are details about the solid angle of a tetrahedron vabc at vertex v and how to calculate
it. As showed by Fig. D.1, the solid angle w on vertex v is the area in a unit sphere covered
by the projected triangle �a′b′c′ of �abc onto the sphere. The solid angle of a sphere is 4π.
Besides, the threshold w0 is set to be the solid angle of one eighth of a unit sphere, which is
π/2.

�
�

�
�

��
��

��

Figure D.1: Example of a solid angle. The solid angle of a tetrahedron vabc on v is the area
in a unit sphere covered by the projected triangle �a′b′c′ of �abc onto the sphere

To calculate w, an efficient method proposed by Oosterom and Strackee [144] is used.
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D. SOLID ANGLE CALCULATION

Let �a,�b,�c be vectors a− v,b− v, c− v respectively. We have,

tan

(
1

2
w

)
=

|�a �b �c|
‖�a‖‖�b‖‖�c‖+ (�a ·�b)‖�c‖+ (�a · �c)‖�b‖+ (�b · �c)‖�a‖

(D.1)

where
∣∣∣�a �b �c∣∣∣ is the determinant of the matrix [�a �b �c], and ‖�a‖ is the norm of �a. 1

2w ∈ [−π
2 ,

π
2 ]

thus w ∈ [−π, π]. As a solid angle is always positive, we apply w ← w + 2π if w < 0, and
finally w ∈ [0, 2π].
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Appendix E

Proofs of Complexities

E.1 Bounded Radius of Tetrahedron Circumsphere

Let A = {−1, 0, 1, 2}. Without loss of generality, the grid contains vertices A3, a point q
is in the cube [0, 1]3 and the length of the cube diagonal is

√
3. Let c be the center of a

circumsphere S of a tetrahedron which has vertex q. Now we show that ||c− q|| ≤ √3/2.


� � � �

�

�


�

�
� �

Figure E.1: Relation between c and q (2d case). We see grid vertices (small round points) of
A2 and another point q is in square [0, 1]3. If point c /∈ [−1, 2]2, then we have mins∈A3 ‖c− s‖ <
‖c− q‖.

Assume (reductio ad absurdum) that c /∈ [−1, 2]3. According to Fig. E.1, we show that

min
s∈A3

||c− s|| < ||c− q||. (E.1)

Using coordinates of vectors c, s and q, Eq. E.1 means that

min
sx∈A

(cx − sx)
2 + min

sy∈A
(cy − sy)

2 + min
sz∈A

(cz − sz)
2 (E.2)

is less than

(cx − qx)
2 + (cy − qy)

2 + (cz − qz)
2. (E.3)
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E. PROOFS OF COMPLEXITIES

Using u ∈ {x, y, z}, we introduce

fu = (cu − qu)
2 − min

su∈A
(cu − su)

2. (E.4)

Thanks to 0 ≤ qu ≤ 1 and su ∈ {−1, 0, 1, 2}, it can be shown that

cu ∈ [−1, 2] ⇒ fu ≥ − min
su∈A

(cu − su)
2fu ≥ −1

4
cu ≤ −1 ⇒ fu = (cu − qu)

2 − (cu + 1)2

fu = q2u − 1− 2cu(qu + 1)
fu(cu = −1) = q2u − 1 + 2(qu + 1) = (qu + 1)2 ≥ 1

Besides,
∂fu
∂cu

= −2(qu + 1) ≤ 0

Thus, fu(cu ≤ −1) ≥ 1
2 ≤ cu ⇒ fu = (cu − qu)

2 − (cu − 2)2

fu = q2u − 4 + 2cu(2− qu)
fu(cu = 2) = q2u − 4 + 4(2− qu) = (qu − 2)2 ≥ 1

Besides,
∂fu
∂cu

= 2− qu ≥ 0

Thus, fu(cu ≥ 2) ≥ 1. (E.5)

Since c /∈ [−1, 2]3, there is u ∈ {x, y, z} such that cu /∈ [−1, 2]. Thus fx + fy + fz ≥
1− 1/4− 1/4 > 0 and Eq. E.1 is meet.

However, ||c − q|| is the S radius and Eq. E.1 means that the interior of S contains a
vertex s of the grid. This is not possible in a 3d Delaunay triangulation. Thus assumption
c /∈ [−1, 2]3 is wrong.

Since c ∈ [−1, 2]3, c is in a cube of A3 grid. So there is a vertex s ∈ A3 such that
||s − c||2 ≤ (1/2)2 + (1/2)2 + (1/2)2, i.e. ||s − c|| ≤ √3/2. Since the interior of S does not
contains s, we see that ||c− q|| ≤ ||s− c|| ≤ √3/2.

E.2 Complexity of Tight Incremental 2-manifold Generation

The incremental 2-manifold generation step is composed by several successive region-growings,
which grow in

Ft = L(i0−1)l ∪ · · · ∪ Lt : (E.6)

from Oi0l to O(i0+1)l, from O(i0+1)l to O(i0+2)l, ... from Oitl to Ot.

Let I = {i0, i0+1, · · · , it}. The i-th region-growing has a complexity of O((gi+qi) log(gi+
qi)) (already shown in Sec. 6.2.2.4). And the complexity of incremental 2-manifold generation
is O(

∑
i∈I(gi + qi) log(gi + qi)).

Now in the following paragraphs we want to show, for large values of t− dt, that∑
i∈I

gi = O(t− dt) (E.7)
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E.3 Conjecture on the Time Complexity of 3D Delaunay Triangulation under
our Assumptions

and ∑
i∈I

qi = O(t− dt) (E.8)

We note |L| the number of tetrahedra in a list L of tetrahedra. The successive region-
growings in Ft imply that ∑

i∈I
gi ≤ |Ft| (E.9)

Lt is a list of free-space tetrahedra whose creation date is t. When we add one point
at time t, we create at most d tetrahedra which have creation date t. As the number of
new points added in the Delaunay triangulation at t is O(1) (H4 Sec. 6.3.1.3) and the vertex
degree is bounded (H7 Sec. 6.3.1.3), we have,

|Lt| = O(1) (E.10)

Remember that i0 is the largest integer such that i0l < dt. Thus (i0 + 1)l ≥ dt and −i0l ≤
−dt + l. For large t− dt and l = O(1), we obtain

t∑
i′=(i0−1)l

1 = t− i0l + l + 1 ≤ t− dt + 2l + 1 = O(t− dt). (E.11)

Thanks to Eqs. E.6, E.10 and E.11, we obtain

|Ft| =
t∑

i′=(i0−1)l

|Li′ | = O(
t∑

i′=(i0−1)l

1) = O(t− dt). (E.12)

We see that Eqs. E.9 and E.12 imply Eq. E.7.

Furthermore, l ≥ 1, itl ≤ t and Eq. E.11 imply

it∑
i=i0

1 = it − i0 + 1 ≤ l(it − i0 + 1) ≤ t− (i0 − 1)l = O(t− dt). (E.13)

Since the initial priority queue collects b0 + l+ 1 = O(1) layers and |Lt| = O(1), we have
qi = O(1). Then qi = O(1) and Eq. E.13 imply Eq. E.8.

E.3 Conjecture on the Time Complexity of 3D Delaunay Tri-
angulation under our Assumptions

Here we explain our conjecture in Sec. 6.3.1.3: the worst case time complexity of 3d Delaunay
is linear thanks to the assumptions in Sec. 6.3.1.3. We do not investigate the robustness
effects of points in non general position.

At the beginning, we initialize the 3d Delaunay triangulation D by ns Steiner vertices,
which are the corners of the cartesian grid. Since the eight vertices of a grid cube are on the
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Figure E.2: 3d Delaunay triangulation for every cube. Left: eight vertices. Middle: opposite
tetrahedra ACEG and BDFH in the cube. Right: tetrahedra DGCE, DGEF, DGFH and DGHC
around diagonal DG. The triangulation is consistent with those of the adjacent cubes thanks to
parallel edges: CE//HF, CG//DF, HD//GE.

same sphere, we can choose the Delaunay tetrahedra of every cube as in Fig. E.2. Thus, the
time complexity of this initialization is O(ns).

Then, O(n) reconstructed points are added in D, one-by-one. We show that adding one
reconstructed point q to D has time complexity O(1). The addition of q to D has three
steps [49]: localization, deletion of a list Ld of old tetrahedra, creation of a list Lc of new
tetrahedra.

Firstly, we study the localization step. We find the closest Steiner vertex v from q.
Thanks to the cartesian grid filling the rectangular bounding box, this is O(1) and the
distance between v and q is less than voxel diagonal l. Thus we can go from v to the
tetrahedron Δq which contains q by vq-tracing in O(1) (according to Sec. 6.3.2.2). This is
the localization step, and it is O(1).

Secondly, we study the deletion step. Since D is Delaunay, Ld is the list of tetrahedra
whose circumsphere contains q. The diameters of these spheres are less than l (Sec. E.1).
This implies that Ld volume is included in the l-ball centered at q. This l-ball can be covered
by a bounded number of p′-balls such that every p′-ball intersects at most q′ tetrahedra (H1).
Thus Ld has a bounded number of tetrahedra. It is computed as the list of tetrahedra by
a traversal in graph D started from Δq, while the current tetrahedron has his circumsphere
which contains q. We see that the calculation of Ld is O(1). The deletion step is O(1).

Lastly, there is the creation step. The tetrahedra of Lc connect vertex q to triangles,
which are the border of Ld. Since list Ld is bounded, list Lc is also bounded. Now we see
that the creation step is also O(1).
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Résumé

La modélisation 3d automatique d’un environnement à partir d’images est un sujet toujours d’actualité
en vision par ordinateur. Ce problème se résout en général en trois temps: déplacer une caméra dans la scène
pour prendre la séquence d’images, reconstruire la géométrie, et utiliser une méthode de stéréo dense pour
obtenir une surface de la scène. La seconde étape met en correspondances des points d’intérêts dans les images
puis estime simultanément les poses de la caméra et un nuage épars de points 3d de la scène correspondant
aux points d’intérêts. La troisième étape utilise l’information sur l’ensemble des pixels pour reconstruire une
surface de la scène, par exemple en estimant un nuage de points dense.

Ici nous proposons de traiter le problème en calculant directement une surface à partir du nuage épars
de points et de son information de visibilité fournis par l’estimation de la géométrie. Les avantages sont des
faibles complexités en temps et en espace, ce qui est utile par exemple pour obtenir des modèles compacts de
grands environnements comme une ville.

Pour cela, nous présentons une méthode de reconstruction de surface du type sculpture dans une triangu-
lation de Delaunay 3d des points reconstruits. L’information de visibilité est utilisée pour classer les tétraèdres
en espace vide ou matière. Puis une surface est extraite de sorte à séparer au mieux ces tétraèdres à l’aide
d’une méthode gloutonne et d’une minorité de points de Steiner. On impose sur la surface la contrainte de
2-variété pour permettre des traitements ultérieurs classiques tels que lissage, raffinement par optimisation
de photo-consistance ... Cette méthode a ensuite été étendue au cas incrémental: à chaque nouvelle image
clef sélectionnée dans une vidéo, de nouveaux points 3d et une nouvelle pose sont estimés, puis la surface est
mise à jour. La complexité en temps est étudiée dans les deux cas (incrémental ou non).

Dans les expériences, nous utilisons une caméra catadioptrique bas coût et obtenons des modèles 3d
texturés pour des environnements complets incluant bâtiments, sol, végétation... Un inconvénient de nos
méthodes est que la reconstruction des éléments fins de la scène n’est pas correcte, par exemple les branches
des arbres et les pylônes électriques.

Mots-clefs: Reconstruction de 2-variété, triangulation de Delaunay 3d, sommets de Steiner, analyse de
complexité, nuage de points épars, Structure-from-Motion.

Abstract

The automatic 3d modeling of an environment using images is still an active topic in Computer Vision.
Standard methods have three steps: moving a camera in the environment to take an image sequence, recon-
structing the geometry of the environment, and applying a dense stereo method to obtain a surface model
of the environment. In the second step, interest points are detected and matched in images, then camera
poses and a sparse cloud of 3d points corresponding to the interest points are simultaneously estimated. In
the third step, all pixels of images are used to reconstruct a surface of the environment, e.g. by estimating a
dense cloud of 3d points.

Here we propose to generate a surface directly from the sparse point cloud and its visibility information
provided by the geometry reconstruction step. The advantages are low time and space complexities; this is
useful e.g. for obtaining compact models of large and complete environments like a city.

To do so, a surface reconstruction method by sculpting 3d Delaunay triangulation of the reconstructed
points is proposed. The visibility information is used to classify the tetrahedra in free-space and matter.
Then a surface is extracted thanks to a greedy method and a minority of Steiner points. The 2-manifold
constraint is enforced on the surface to allow standard surface post-processing such as denoising, refinement
by photo-consistency optimization ... This method is also extended to the incremental case: each time a new
key-frame is selected in the input video, new 3d points and camera pose are estimated, then the reconstructed
surface is updated. We study the time complexity in both cases (incremental or not).

In experiments, a low-cost catadioptric camera is used to generate textured 3d models for complete
environments including buildings, ground, vegetation ... A drawback of our methods is that thin scene
components cannot be correctly reconstructed, e.g. tree branches and electric posts.

Key-words: 2-Manifold Reconstruction, 3d Delaunay Triangulation, Steiner Vertices, Complexity Anal-
ysis, Sparse Point Cloud, Structure-from-Motion.


