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i
To Emmi and Evi

"Die gefährlihste aller Weltanshauungen ist die Weltanshauung der Leute,welhe die Welt nie angeshaut haben."(The most dangerous of all world-views is the one of people who have never viewedthe world.) Zugeshrieben: Alexander von Humboldt
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AbstratThis thesis enters on the development of a point-based statistial shape modelrelying on orrespondene probabilities in a sound mathematial framework. Furtherfous lies on the integration of the model into a segmentation method where anovel approah is taken by ombining an expliitly represented shape prior with animpliitly represented segmentation ontour.In medial image analysis, the notion of shape is reognized as an important fea-ture to distinguish and analyse anatomial strutures. The modeling of shape reali-zed by the onept of statistial shape models onstitutes a powerful tool to failitatethe solutions to analysis, segmentation and reonstrution problems. A statistialshape model tries to optimally represent a set of segmented shape observations ofany given organ via a mean shape and a variability model. A fundamental hallengein doing statistis on shapes lies in the determination of orrespondenes betweenthe shape observations. The prevailing assumption of one-to-one point orrespon-denes seems arguable due to unertainties of the shape surfae representations aswell as the general di�ulty of pinpointing exat orrespondenes.In this thesis, the following solution to the point orrespondene problem isderived: For all point pairs, a orrespondene probability is omputed whih amountsto representing the shape surfaes by Mixtures of Gaussians. This approah allowsto formulate the model omputation in a generative framework where the shapeobservations are interpreted as randomly generated by the model. Based on that, theomputation of the model is then treated as an optimization problem. An algorithmis proposed to optimize for model parameters and observation parameters througha single maximum a posteriori riterion whih leads to a mathematially sound anduni�ed framework.The method is evaluated and validated in a series of experiments on synthetiand real data. To do so, adequate performane measures and metris are de�nedbased on whih the quality of the new model is ompared to the qualities of alassial point-based model and of an established surfae-based model that bothrely on one-to-one orrespondenes.A segmentation algorithm is developed whih employs the a priori shape know-ledge inherent in the statistial shape model to onstrain the segmentation ontourto probable shapes. An impliit segmentation sheme is hosen instead of an ex-pliit one, whih is bene�ial regarding topologial �exibility and implementationalissues. The mathematially sound probabilisti shape model enables the hallengingintegration of an expliit shape prior into an impliit segmentation sheme in anelegant formulation. A maximum a posteriori estimation is developed of a level setfuntion whose zero level set best separates the organ from the bakground under ashape onstraint introdued by the model. This leads to an energy funtional whihis minimized with respet to the level set using an Euler-Lagrangian equation. Sin-e both the model and the impliitly de�ned ontour are well suited to representmulti-objet shapes, an extension of the algorithm to multi-objet segmentationis developed whih is integrated into the same probabilisti framework. The novelmethod is evaluated on kidney and hipjoint segmentation.
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ZusammenfassungEin probabilistishes Frameworkfür punktbasierte Formmodellierungin der medizinishen BildanalyseDie vorliegende Doktorarbeit konzentriert sih auf die Entwiklung eines auf Kor-respondenzwahrsheinlihkeiten beruhenden punktbasierten statistishen Formmo-dells in einem mathematish fundierten und geshlossenen Framework. Ein weitererShwerpunkt liegt in der Integration des entwikelten Modells in eine Segmentie-rungsmethode. Hier wird ein neuartiger Ansatz vorgestellt, in welhem explizit de�-niertes Formwissen mit einer implizit de�nierten Segmentierungskontur kombiniertwird.In der medizinishen Bildanalyse gilt der Begri� der Form als wihtiges Merkmalfür die Erkennung und die Analyse anatomisher Stukturen. Die Formmodellierungmittels des Konzeptes der statistishen Formmodelle verkörpert ein mähtiges Werk-zeug, welhes zu Lösungen für Analyse-, Segmentierungs- und Rekonstruktionspro-bleme beiträgt. Ein statistishes Formmodell versuht, einen Satz von segmentiertenFormbeobahtungen eines gegebenen Organs optimal durh eine mittlere Form undein Variabilitätsmodell zu repräsentieren. Eine groÿe Herausforderung für jeglihenstatistishen Ansatz stellt hierbei die Bestimmung von Korrespondenzen zwishenden Formen dar. Die üblihe Annahme von 1-zu-1 Korrespondenzen ist problema-tish aufgrund der Unsiherheiten die Genauigkeit der Segmentierung betre�end alsauh aufgrund der allgemeinen Shwierigkeit, exakte Korrespondenzen zu lokalisie-ren.In dieser Arbeit wird als Lösung für das Punkt-Korrespondenzproblem eine Kor-respondenzwahrsheinlihkeit für alle Punktepaare berehnet. Dies bedeutet, daÿdie Formober�ähen durh Gauÿ'she Mishverteilungen repräsentiert werden. DieseHerangehensweise erlaubt eine Formulierung der Modellberehnung in einem gene-rativen Rahmen, in dem die Beobahtungen als zufällig durh das Modell generier-te Stihproben interpretiert werden. Darauf aufbauend wird die Modellberehnungals Optimierungsproblem behandelt. Es wird ein Algorithmus zur Berehnung derModell- und Beobahtungsparameter in einem einzigen Maximum-A-Posteriori Kri-terium vorgeshlagen. Dies führt zu einem mathematish fundierten und geshlos-senen Framework.Die Methode wird in einer Experimentserie an synthetishen und realen Datenevaluiert und validiert. Dafür werden adäquate Leistungsmaÿe und Metriken de�-niert, anhand derer die Qualität des neuen Modells mit den Qualitäten eines klas-sishen punktbasierten Modells und eines etablierten ober�ähenbasierten Modells,die beide auf 1-zu-1 Korrespondenzen beruhen, verglihen wird.Es wird ein Segmentierungsalgorithmus entwikelt, welher das im Modell ent-haltene Vorwissen über die Formen einsetzt, um die Segmentierungskontur auf wahr-sheinlihe Formen zu beshränken. Statt eines expliziten wird ein impliziter Seg-mentierungsansatz gewählt, da dieser in Bezug auf topologishe Flexibilität und



viiiImplementierungsfragen Vorteile aufweist. Das mathematish fundierte probabili-stishe Formmodell ermögliht auf elegante Weise die anspruhsvolle Integrierungvon explizit repräsentiertem Vorwissen über die Form in einen impliziten Segmentie-rungansatz. Es wird eine Maximum-A-Posteriori Shätzung einer Levelsetfunktionso formuliert, daÿ das zugehörige Zero-Levelset das zu segmentierende Organ un-ter Einbeziehung der Formbeshränkung, die durh das Modell gegeben ist, optimalvom Hintergrund trennt. Dies führt zu einem Energiefunktional, welhes unter Nut-zung der Euler-Lagrange-Gleihung in Rihtung der Levelsetfunktion di�erenziertwird. Da sowohl das Modell als auh der Segmentierungsansatz gut geeignet sind fürdie Beshreibung von Formen, die aus mehreren Objekten bestehen, wird eine Er-weiterung des Algorithmus zu einer Multi-Objekt-Segmentierung entwikelt und indie gleihe probabilistishe Formulierung integriert. Der Segmentierungalgorithmuswird an Nierendaten und Hüftgelenkdaten evaluiert.
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Chapter 1Introdution
Contents1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Objetives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 Struture of Manusript . . . . . . . . . . . . . . . . . . . . . 31.4 List of Publiations . . . . . . . . . . . . . . . . . . . . . . . . 61.1 MotivationSine the disovery of X-rays in 1895, many di�erent imaging tehniques have beendeveloped whih gain visual aess to the interior of a losed body without opening it.Nowadays, these tehniques are widely used in health-are and biomedial researhand onstitute a substantial part of the linial pratie. In order to failitate theinterpretation of the generated body images, a multitude of medial image analysingmethods has been realized whih support the physiians in the �elds of diagnostis,surgial planning and image guided surgery as well as medial researh. With theprogress of image aquisition tehniques, the modeling of anatomial strutures in3D or even 4D has beome an important omponent in medial image omputing asthese models o�er an additional perspetive for the surgeons and are used for model-based analysis, segmentation and lassi�ation problems. A popular approah forshape modeling is onstituted by statistial methods whih aim to represent an or-gan by statistial shape models. As opposed to a single 3D model or an atlas of anorgan whih are only (typial) shape examples, a statistial shape model representsa set ontaining segmented organs by a mean shape and a variability model. Hene,statistial shape models inorporate a priori shape knowledge drawn from many or-gan examples. Espeially for segmentation problems, the appliation of statistialshape models has been proven to be very suessful for a wide range of anatomialstrutures in CT, MR and ultrasound images.The idea of doing statistis on shapes �rst leads to the problem of distintly de�ningthe onept of a shape. A well known de�nition proposed by the mathematiian D.G. Kendall in 1984 reads as follows: "Shape is all the geometrial information thatremains when loation, sale and rotational e�ets are �ltered out from an objet"[Kendall 1984℄. However, when dealing with anatomial strutures, a more �exiblede�nition is needed whih also reognizes deformable objets based on their shapes.Therefore, at least e�ets like �exion and shearing have to be integrated. This meansthat the shape analysis methods are applied only after an a�ne alignment of therespetive deformable objets.



2 Chapter 1. IntrodutionThe harateristis of a statistial shape model essentially depend on the repre-sentation of the shape surfae. Basially, a surfae an be seen as a boundarywhih separates geometrial regions in 3D. Mostly, it is represented expliitly usingmeshes or point louds or impliitly based on distane funtions. In order to om-pute a surfae representation for a binary objet, a sampling of the isosurfae hasto be performed. The sampling is a ruial step whih - together with the imagingtehnique - determines the detailedness of the resulting surfae model.A fundamental problem for the omputation of statistial shape models is the de-termination of orrespondenes between the observations. In order to quantitativelyanalyse shape di�erenes, a method is needed to loate a orresponding point lo-ation on one shape for a given point loation on another shape. Obviously, thesolution to this problem always depends on the shape representation. Most urrentmethods rely on surfae-based representations and work with one-to-one orrespon-denes. They do not onsider the unertainties neither of the segmentations nor ofthe sampling output nor of the registration results. Moreover, even for the utopianase of perfet segmentation and ontinuous surfae representation, orrespondenedetermination is never non-ambiguous but for reproduible prominent landmark lo-ations.The motivation of this thesis is to develop an alternative statistial shape modelwhih takes into aount the unertainties of the whole sene and to investigatemethods of applying this model for automati segmentation. Most urrent algo-rithms ompute the mean shape and variability model on a step-by-step basis.Therefore, a spei� goal of this thesis is to realize the model omputation in asound mathematial framework.1.2 ObjetivesFollowing the motivation phrased in the previous setion, we argue that when seg-menting anatomial strutures in noisy image data, the sampled surfae points onlyrepresent probable surfae loations and not neessarily the exat "true" shape sur-fae. Besides, the hoie of sampling method signi�antly in�uenes the statistialanalysis of the shapes. For instane, when the same binary objet is sampled twiewith di�erent resolutions, the resulting surfae representations will not be identi-al whih makes the determination of exat orrespondenes impossible. Moreover,even for theoretially perfetly ontinuous surfaes, a unique and reproduible de-termination of orrespondenes is an open problem. It even beomes impossible ifone of the surfaes features a shape detail that the other one laks. For an illus-tration, imagine a reonstruted head of the sphinx ontaining a nose, and thenimagine the hallenge of determining a orresponding point for the tip of that noseon the original sphinx head. It is desirable to expliitly model the unertainties ofthe sene. In order to ome up with a realisti modeling of a surfae based on thesampled points, the goal is to investigate the possibilities of representing the shapesin a probabilisti framework where eah sampled surfae point is drawn from a 3Dprobability density funtion (typially a Gaussian).Most algorithms in the state-of-the-art approah the problem of model omputation



1.3 Struture of Manusript 3based on a set of segmented organ shapes for whih the best statistial shape modelmust be omputed. In order to develop a theoretial foundation of the algorithm itmight be of interest to adopt an alternative view on the problem of model ompu-tation. The fous of this thesis lies on the development of a statistial shape modelbased on orrespondene probabilities in a sound mathematial framework and itsappliation in medial image segmentation.These demands lead mainly to the following three objetives:
• Development of a probabilisti framework to ompute a generativestatistial shape model based on orrespondene probabilities: The�rst problem takled is the omputation of a generative statistial shape modelthat optimally represents the shapes in a training data set. The aim is to de-sign a point-based parametri model whih allows the modeling of variabilityfor eah point. This might help physiians to physially interprete the de-formations. The fous lies on the development of a generative probabilistiframework whih inludes all variables needed to desribe the sene. Ad-ditionally, the framework has to integrate a solution to the orrespondeneproblem.
• Development of a deformable model segmentation in a probabilistiframework: A major problem in medial image proessing is the automatisegmentation of anatomial strutures. Therefore, the seond problem to bedealt with is the integration of the generative statistial shape model into anautomati segmentation sheme. The objetive is to develop a sound mathe-matial formulation whih is based on the same probabilisti assumptions asthe framework for the omputation of the statistial shape model. It is in-tended to develop a segmentation algorithm whih enables the segmentationof objets with non-spherial topology as well as multiple-objet shapes.
• Evaluation and validation with respet to existing methods: A mainadvantage of working with point-based shape representation is the simpliityof the resulting model with respet to its power. On the other hand, surfae-based models generally feature better quality measures than point-based mod-els. However, the quality of the surfae information they use depends on imagequality and on the segmentation method (whih is often based on points drawnby experts). In order to plae the new method in the state-of-the-art, it is ru-ial to evaluate the quality of the probabilisti model in omparison with otherstatistial shape models, investigate appliations like lassi�ation methodsand expose advantages and limits of the new model. Seondly, an evaluationof the segmentation method on di�erent real data segmentation problems isneeded in order to identify the strengths of the method with respet to thestate-of-the-art.1.3 Struture of ManusriptThis thesis is organized pursuing these motivation and objetives as follows:Chapter 2 provides information about the state-of-the-art in statistial shape



4 Chapter 1. Introdutionanalysis. Chapter 3, 4 and 5 ontain the main ontributions regarding thedevelopment and appliation of a new statistial shape model and a new level setsegmentation method relying on the model. Chapter 6 onludes the manusript.In the following, a ondensed summary is given for eah hapter.In Chapter 2 the bakground information needed about urrent methods instatistial shape analysis is summarized. It begins with a desription of thestate-of-the-art regarding the use and types of statistial shape models. Thenthe point orrespondene problem is overed in detail before di�erent methodsfor the omputation of statistial shape models and their appliations are presented.In Chapter 3 an approah to the problem of designing a generative statisti-al shape model is developed [Hufnagel 2007b, Hufnagel 2008b℄. First, a solutionto the point orrespondene problem is derived by representing the shapes byMixtures of Gaussians. Following that, a sound and uni�ed framework is developedfor the omputation of model parameters and observation parameters as well asnuisane parameters, and a maximum a posteriori estimation is formulated whihleads to a global riterion. Expliit formulas are derived for its optimization withrespet to all parameters. Finally, pratial aspets of the implementation andadaptions of the algorithm for speial ases are disussed.In Chapter 4 an evaluation and validation of the generative Gaussian Mix-ture statistial shape model as developed in this thesis is performed. First, thehoie of performane measures is established. Then, the performane of the newstatistial shape model is ompared to the performane of a lassial point-basedstatistial shape model based on the iterative losest points registration and theprinipal omponent analysis [Hufnagel 2009a℄. Furthermore, the performaneof the new statistial shape model in omparison with a surfae-based statistialshape model whih is omputed by the minimum-desription-length approah isevaluated. The evaluation is done on syntheti and real data. Di�erent examplesovering onvex and non-onvex as well as spheri and non-spheri shape data arehosen.In Chapter 5 an automati segmentation algorithm is developed whih em-ploys the a priori shape knowledge inherent in the new statistial shape model.After explaining the bene�ts of employing a non-parametri segmentation ontourinstead of a parametri one, the problem of integrating an expliitly representedstatistial shape model into an impliit segmentation sheme is takled. To ourknowledge, very few works onsidered that option. The problem is solved bydeveloping a novel maximum a posteriori estimation of the segmentation ontourwhih is optimized based on the image information as well as on the statistialshape model information. Here, the respetive steps whih �nally lead to a soundprobabilisti segmentation sheme are explained elaborately. It is demonstratedin detail how to optimally exploit the image information to guide the evolution ofthe ontour, and the implemented tehniques to determine an initial positioning ofthe segmentation ontour are presented. As the model is based on orrespondene



1.3 Struture of Manusript 5probabilities instead of one-to-one orrespondenes, the modeling and segmentationof non-spheri and multi-objet strutures is possible. Consequently, an extensionof the algorithm to multi-objet segmentation is developed whih is integrated inthe same framework by adapting the orrespondene riterion. Experiments aredesigned and onduted in order to validate the segmentation method on kidneydata and on hip joint data. Finally, the results are ritially disussed, and theadvantages and limits of this segmentation method are revealed. Part of thishapter is published in [Hufnagel 2009℄.In Chapter 6 the ontributions of this thesis are disussed and perspetivesfor future work are given.Appendix A ontains the mathematial bakground and detailed explana-tions for some of the derivations in the manusript.
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Chapter 2Current Methods in StatistialShape Analysis
Contents2.1 Shape Modeling in Medial Imaging . . . . . . . . . . . . . . 92.2 The Correspondene Problem . . . . . . . . . . . . . . . . . . 122.3 Computation of Statistial Shape Models . . . . . . . . . . . 172.4 Segmentation Using Shape Priors . . . . . . . . . . . . . . . 212.5 Disussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26The extration of information out of 2D or 3D images often relies on the dete-tion, reognition and interpretation of shapes and shape variabilities. This diretlyinvolves the (mathematial) representation of shapes as well as methods to aountfor and measure the morphologial di�erenes. Even though in linial routine shapeanalysis is frequently done by viewing the images alone, there is a wide range of ap-pliations where automatial methods with formalized metris are needed for overalldata interpretation and shape statistis. This hapter is dediated to the desriptionof these methods and is divided as follows: First, the importane of shape modelingin medial image analysis is outlined and the onept of statistial shape modelsand their representations are disussed in setion 2.1. Following that, we expandon the fundamental problem of determining orrespondenes between shapes andon several methods of solution (setion 2.2) whih diretly leads us to disuss theassoiated statistial shape models in setion 2.3. Setion 2.4 explores the bene�tsof statistial shape models for medial image segmentation and disusses expliitlyand impliitly represented shape priors.2.1 Shape Modeling in Medial ImagingShape models are used for a wide range of medial imaging problems like segmenta-tion, reonstrution or shape analysis. In this setion, a ondensed overview aboutthe domain of shape analysis tehniques in nowadays medial researh is given (se-tion 2.1.1) and then the subjet of doing statistis on di�erent shape representationsis introdued (setion 2.1.2).2.1.1 Shape AnalysisThe thorough analysis of organ morphology is driven by the hope of better under-standing organ shape harateristis and how diseases might a�et them. The idea



10 Chapter 2. Current Methods in Statistial Shape Analysisis to �nd information based on the shape deformation or shape di�erenes whiheventually help in the diagnostis, espeially in the neuroimaging ommunity. Themodeling of shape and the measuring of morphologial hanges in shape instanesis also of great interest for the disrimination between healthy and pathologialanatomial strutures. An intuitive approah for deteting shape di�erene is themeasurement of the global shape volume, however, this feature is often not signi�-ant with respet to the studied disease. This has been shown for example by Geriget al. [Gerig 2001℄ based on the detetion of group di�erenes in hippoampal shapesin shizophrenia. Results of higher signi�ane are often obtained by performing aloal shape analysis. A wide range of approahes exists in the literature whih anbe roughly ategorized aording to the (shape) features hosen to do the statistison. In the following, an overview of developments in that �eld is given by means ofexemplarily seleted publiations.Early methods proposed to analyse and ompare the transformation �elds obtainedwhen registering an organ to a template, whih is used e.g. in the work of Davatzikoset al. [Davatzikos 1996℄ who analyse the morphology of the orpus allosum. A sim-ilar idea is applied in the work of Boisvert et al. [Boisvert 2008℄ who model spineshape deformation by a vetor of rigid transformations. First e�orts in mathemat-ially apturing morphology hanges by doing statistis on anatomial landmarkswere undertaken by F.L. Bookstein [Bookstein 1986, Bookstein 1991℄. The oneptof statistial shape analysis based on landmarks and pseudo-landmarks was takenon by Dryden and Mardia [Dryden 1993℄ for the detetion of gender related di�er-enes in monkey rania and by Bookstein [Bookstein 1997℄ for the detetion of braindi�erenes in shizophrenia patients. In both approahes, the shape variations aremeasured based on Prorustes or Riemannian distanes. Another shape analysismethod is based on a medial shape desription to model loal and global hangesas e.g. used by Styner et al. [Styner 2003b℄ who analyse the hippoampus shapeof shizophrenia patients. In several works the shapes are represented by distanefuntions whose feature vetors are used as input for a learning algorithm, e.g. inthe work of Golland et al. [Golland 2001℄ who ompute a lassi�er for healthy andpathologial hippoampal shapes in shizophrenia or in the work of Kodipaka et al.[Kodipaka 2007℄ whose Kernel Fisher disriminant distinguishes between ontrolsand epileptis by analysing the shape of the temporal lobe or in the work of Tsai etal. [Tsai 2005℄ who propose an EM formulation to automatially label lung shapesrepresented by level set funtions to belong to the normal or the emphysema shapelass. In the work of Peter et al. [Peter 2006a℄, shapes are represented by a GaussianMixture Model on the landmarks, and the shape di�erenes (here of orpus allosumshapes) are measured using geodesi distanes under the Fisher-Rao metri.Naturally, all of these approahes have their strengths and weaknesses. The hoieof feature suited as input for the statistial analysis depends on the representationof the shapes as well as on the demands of the appliation. The work done in theframework of this thesis onentrates on the ategory of shape analysis based onpoint representations sine statistis on points are easily interpretable and have aphysial signi�ane. The general onept however is not neessarily on�ned tothat ategory.



2.1 Shape Modeling in Medial Imaging 112.1.2 Doing Statistis on ShapesCommonly, a shape lass an be desribed by one typial shape example of therespetive organ. However, this approah is neither spei� nor mathematially a-urate. In order to reliably desribe a shape lass, we need to statistially evaluatethe shapes of as many observations of the organ as possible. This is usually done infour steps: First, a training data set whih ontains segmented observations of therespetive organ has to be provided. Next, the observations have to be aligned in aommon referene frame in order to eliminate pose variations. Then, a mean shapewhih optimally represents all aligned observations an be omputed. Finally, avariability model aounting for the shape di�erenes is determined. The variabilityontains information about how muh and in whih way the mean shape an bedeformed while still representing a plausible anatomial struture.In the state-of-the-art, shape models ontaining a mean shape and a variabilitymodel are referred to as statistial shape models (SSMs). The methods implement-ing the alignment as well as the statistial methods used for the omputation ofmean shape and variability model depend on the representation of the observations.An intuitive and widely-used method is to ompute SSMs on observations repre-sented by (triangulated) points whih are distributed over the surfae of the shapes.These so-alled point distribution models (PDMs) are either based on anatomiallandmarks [Huysmans 2005℄, on pseudo-landmarks that are strategially distributedover the observations' surfaes (e.g. [Frangi 2001, Rajamani 2004℄) or on points re-onstruted from impliit surfaes (e.g. [Kohlberger 2009℄) or on a ombination ofthese. Point-based shape samples represented by a number of N points in 3D areusually desribed by a shape vetor Sk ∈ R
3×N ontaining the point oordinates.The alignment to a ommon referene frame is often performed by a mesh-to-meshregistration over the shape vetors. The statisti evaluation then uses the alignedshape vetors as input for omputation of mean shape and variability model.For these steps, a notion of orrespondene has to be de�ned. A ommon approahis to assume and determine one-to-one point orrespondenes over all observations.In that ase, the oordinates of orresponding points are sorted in orrespondingentry positions in the shape vetors so that for all shape pairs Sk and Sl the i-thelement Sk(i) orresponds to Sl(i) for all i = 1, ..., 3N . The omputation of themean shape is then straight forward with M̄ = 1

n

∑n
k=1 Sk for a number of n obser-vations. The subsequent omputation of variation modes is usually aomplishedby a prinipal omponent analysis (PCA) on all observations and the mean shape.The variation modes ∈ R

3N are pairwise orthogonal and span the shape spae of theSSM. Mathematially, the representation of a random shape M in the shape spaespanned by the variation modes an be formulated using a linear model:
M = M̄ + Pbwhere the matrix R ∈ R

N×N ′ with 0 < N ′ ≤ N ontains the variation modes inits rows and the vetor b ∈ R
N ontains the oe�ients whih ontrol the extentof deformation. The variation modes are ranked aording to their variane. Forthe usage of an SSM, ommonly only the largest modes of variation are taken intoaount.



12 Chapter 2. Current Methods in Statistial Shape AnalysisThe employment of the PCA is not on�ned to point representations but an beemployed to other appliations where the shape properties are enoded in a featurevetor. Early methods inlude the representation of shapes by spherial harmon-is (SPHARM) whih parameterize the surfae by a mapping on the unit sphere[Brehbühler 1995, Székely 1996℄ or by Fourier surfaes whih employ an elliptiFourier deomposition of the boundary and use the Fourier oe�ients as featurevetors [Staib 1996, Floreby 1998℄. The statistis are thus done in parameter spae.Reently, the representation of SSMs in impliit frameworks has beome of interestas level set based segmentation is explored more deeply. Here, the observations inthe training data set are often represented by signed distane maps. The align-ment of the observations and the subsequent statistis are then done diretly on thedistane maps whih are used as feature vetors with individual voxels being thevetor omponents. The variability models an simply be omputed by a prinipalomponent analysis [Leventon 2000a℄ or by using more hallenging methods whihfor example aount for loal variations as well [Rousson 2002℄. Another strategyrepresents the surfaes by medial models whih onsist of a enterline and vetorsstrething from there to the organ surfae [Pizer 1999, Styner 2001℄. Here, orre-spondene between shapes are de�ned on the medial manifold. For omputing thevariability of manifold-valued data, a prinipal geodesi analysis is introdued whihis a diret generalization of prinipal omponent analysis.It has to be kept in mind that the PCA is done under the assumption that theshape vetors are samples of a random variable under a normal distribution. Thisis only the ase if the shape di�erenes in the training data set are normally dis-tributed whih is di�ult to establish. Another theoretial problem ours as thedimensions of the shape representation nearly always exeed the number of availabesamples. Besides, the PCA is optimal in a least-square sense and therefore sensitiveto outliers and lastly, all shapes have to be represented by feature vetors of equallengths. Nevertheless, the employment of the PCA for SSM omputation has beenproven to ome to aeptable results and is suessfully applied in pratie. Analternative for non-normally distributed data is o�ered by the so-alled independentomponent analysis (ICA) [Hyvärinen 2001℄. The ICA deorrelates the omponentsby maximizing their statistial independene. Another interesting approah is todo a prinipal fator analysis (PFA) whih leads to variation modes that are moreeasily interpretable in medial sense [Ballester 2005, Reyes 2009℄. However, thesemethods have the disadvantage that the variation modes annot be ranked easilywhih poses a problem for dimensionality redution.2.2 The Correspondene ProblemA fundamental problem when omputing statistial shape models is the determina-tion of orrespondenes between the observations in the training data set. Mathe-matially, this problem does not have a unique solution and depends heavily on thede�nition of 'shape' as well as on its representation. For shapes represented as on-tours in 2D, usually landmarks are determined manually by �rst hoosing exposedfeatures as landmarks, for example the �ngertips of a hand as well as the points



2.2 The Correspondene Problem 13between the �ngers, and by then adding a �xed number of equidistant landmarksbetween these. In that way, the orrespondenes from one labeled shape to the nextequally labeled one is straightforward and uniquely de�ned. In 3D, however, a man-ual determination of orrespondene is hardly feasible as it is very time-onsumingin general. In partiular, the pinpointing of exat orrespondenes without relyingon lear anatomial landmarks on 3D surfaes is an impossible task. In order toautomatize the detetion of landmarks, several methods extrat shape features suhas high surfae urvatures (e.g. [Benayoun 1994℄). Mostly however, automati de-termination of orrespondenes is done by performing a registration of model andobservation. Obviously, the solutions to the orrespondene problem highly de-pend on the shape representations. For meshes, a straightforward approah is toompute a similarity transformation found by least-square point distane minimiz-ers. For non-linear registration, often spline-based deformations are used. Anotherapproah is the mathing of an atlas or template mesh to all observations in thetraining data set. The warped meshes have to be relaxed in order to �t the observa-tions. This an be done for example by using a Markov random �eld regularizationas proposed by Paulsen and Hilger [Paulsen 2003℄ or by employing a spring-massmodel based on the surfae point set and the onneting edges as realized by Lorenzand Krahnstöver [Lorenz 2000℄. A method for volumetri representations is to om-pute a volumetri atlas with manually added surfae landmarks and then registerthe atlas to volumetrially represented observations. The warped landmarks thendetermine the orrespondenes.In this setion, two popular methods for orrespondene determinations are de-sribed based on di�erent shape representations whih play a role in the remainderof this thesis: First, the lassial Iterative Closest Points (ICP) registration algo-rithm that �nds one-to-one orrespondenes between two unstrutured point setsis explained. Then, an alternative approah to orrespondene determination usingspherial harmonis surfaes parameterization is presented. Here, the orrespon-denes are omputed by a registration between the parameterizations of the shapes.As an example for methods whih solve the orrespondene problem in a group-wise optimization approah together with the SSM omputation the maximum de-sription length (MDL) approah is summarized in setion 2.3. A omprehensiveomparison of di�erent solutions to the orrespondene problem an be found in[Styner 2003℄.2.2.1 Iterative Closest Point AlgorithmThe Iterative Closest Point algorithm is an e�ient method used for registrationof 2D and 3D shapes as �rst shown and elaborately explained 1992 in [Besl 1992℄.The ICP registration is an interesting approah as it an be used for di�erent rep-resentations of geometri data like point sets, triangle sets, and impliit or expliitsurfaes. It is applied to registration problems where the point orrespondenes arenot known in advane. The ICP algorithm o�ers many reognized advantages asit does not need preproessing or loal feature extrations in normal appliations,it is suited for parallel arhitetures and it an handle average noise. Following, asimple de�nition of the ICP algorithm and its appliation to point loud registration



14 Chapter 2. Current Methods in Statistial Shape Analysisis given.Let S be a set of Ns points si whih desribe the observation and M be a set of Nmpointsmj whih desribe the model. The ICP algorithm will math eah observationpoint si with one of the model points. Based on those mathes, a transformation Tis sought whih registers the observation with the model. The losest point operator
CP is de�ned as a distane metri

CP (si,M) = min
mj∈M

‖mj − si‖.We use mi
j = CP (si,M) where mi

j is the losest point in M to a given sene point
si. The ICP algorithm omputing T is implemented as follows:1. T (0) = T k is hosen as initial estimate of the transformation T .2. Repeat for k iterations or until onvergene:

• Compute the losest point mi
j ∈ M in the model for eah observationpoint si ∈ S. The olletion of resulting point pairs (si,m

i
j) is alled setof orrespondenes C with

Ck−1 = ∪Ns

i=1{si, CP (T k−1 ⋆ si,M)}.

• Compute T k that minimizes the mean square error between all pointpairs in C.For a rigid registration, the appliation of T to S looks like this
T ⋆ si = Rsi + t ∀iwith the rotation matrix R ∈ R

3x3 and the translation vetor t ∈ R
3. The minimiza-tion of the error between all point pairs in C is omputed using the Least Squaresriterion:

T = argmin
T

1

Ns

Ns∑

i=1

‖mi
j − T ⋆ si‖

2

= argmin
R,t

1

Ns

Ns∑

i=1

‖mi
j −Rsi − t‖

2.The ICP algorithm onverges always monotonially to the nearest loal minimumwhere �nearest� is meant in the sense of a mean-square distane metri.As main disadvantage it must be noted that the ICP is suseptible to gross statis-tial outliers. Several approahes deal with this problem by e.g. proposing robustestimators [Zhang 1994, Masuda 1996℄. Moreover, as any method minimizing anon-onvex ost funtion, the ICP laks robustness with respet to the initial trans-formation beause of loal minima. This problem has been takled by the workof Rangarajan et al. who use multiple weighted mathes based on Gaussian weight[Rangarajan 1997b℄ and based on Mutual Information [Rangarajan 1999℄.
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Figure 2.1: A orrespondene problem: One shape features two bumps, the otheronly one. How an we determine orrespondenes between the two?Overall, the ICP algorithm and its derivatives work well for a lot of registration prob-lems. However, the determination of one-to-one orrespondenes between unstru-tured point sets is di�ult when e.g. one shape features a ertain struture detailand the other one does not, see �gure 2.1. Moreover, in the absene of (anatomial)landmarks, the determination of orrespondene depends heavily on the samplingof the shape. To overome this problem, the Expetation Maximization - IterativeClosest Points (EM-ICP) algorithm introdues orrespondene probabilities insteadof exat orrespondenes. This onept is explored in setion 3.2.2.2.2 Spherial Harmoni DesriptionThe use of spherial harmonis for statistial shape modeling was introdued byBrehbühler et al. in 1995 [Brehbühler 1995℄ in order to approximate one-to-oneorresponding points on di�erent entities ontaining inlusions and protrusions. Asopposed to the use of a torus parameter spae using Fourier desriptors as proposedin [Staib 1992℄, the SPHARM surfae desription maps the observation surfaesinto a spherial two-oordinate spae, so it an only be onsidered for shapes withspherial topology whih applies for most anatomial strutures. If the mappinginludes an optimization of the distribution of nodes on the sphere, orrespondenesan then be established diretly by the parametri desription.Surfae objets with spherial topology an be parameterized by two polar variables,the longitude θ = [0, ..., 2π] and the latitude φ = [0, ..., π]. Two verties have to beseleted as the poles for this proess. The latitude should grow smoothly from 0 atthe north pole to π at the south pole. The longitude on the other hand is a yliparameter. Let x, y and z denote Cartesian objet spae oordinates. The funtionwhih spei�es the mapping of the oordinates from the unit sphere on the surfaeis spei�ed with
v(θ, φ) =





x(θ, φ)
y(θ, φ)
z(θ, φ)



 .where v(φ, θ) runs over the whole surfae objet.These oordinate funtions ould be parameterized by various basis funtions as e.g.



16 Chapter 2. Current Methods in Statistial Shape AnalysisB-splines or wavelets. The SPHARM algorithm makes use of spherial harmonisas they o�er the advantage of hierarhial shape representation whih �nally faili-tates the orrespondene determination [Brehbühler 1995℄. Typially, the followingtrunated series expansion is used:
v(θ, φ) =

R∑

r=0

r∑

−r

cmr Y
m
r (θ, φ)where Y m

r denotes the funtion of degree r and orderm with Y m
r : [0, 2π]×[0, π] → C.A omplete de�nition an be found in e.g. [Bronstein 2000℄. The shape desriptoroe�ients cmr are 3D vetors with omponents (x, y, z). Formally, the oe�ientsare omputed by the inner produt of funtion v and the basis funtion

cmr =

∫ π

0

∫ 2π

0
v(θ, φ)Y m

r (θ, φ)dφ sin θdθ. (2.1)Eventually, eah shape surfae Sk is uniquely desribed by a set of desriptor oef-�ients Ck = cmk,r.Due to the hierarhial shape representation, in pratie the level of shape detailswhih are modeled depends on the maximal degree R in the spherial harmonis.The parameterization for degree 1 maps the surfae to an ellipsoid. In order to de-termine shape point orrespondenes by parameterization to a sphere, the mappingbetween surfae and sphere must be bijetive whih is desribed in this ase by




x
y
z



 =





sin θ cos φ
sin θ sinφ

cos θ



 .Furthermore it must be ontinuous so that neighbouring points on the shape surfaeare mapped to neighbouring loations on the sphere. The mapping funtion shouldbe topology-preserving, and distortions whih inevitably appear when mapping asurfae faet to a spherial square should be minimal. This is done by solving thesurfae parameterization as a onstrained optimization problem with respet to theoptimal oordinates for all surfae points [Brehbühler 1995℄. Another problem o-urs as the oe�ients obtained by approximating equation (2.1) depend on therotation of the surfae in spae. Thus, for the determination of orrespondenesbetween di�erent shape observations, a rotation of all observations to a anonialposition in parameter spae is needed. This an be done using the spherial har-monis of degree 1 by rotating the parameter spae so that the north pole (where
θ = 0) is positioned at one end of the shortest main axis of the ellipsoid, and thepoint where the Greenwih meridian (φ = 0) rosses the equator (where θ = π/2)is positioned at one end of the longest main axis.The statistis on the shapes are now done by evaluation of the shape desriptors. Themean shape then is desribed by the spherial harmonis using the set of averagedshape desriptor oe�ients C̄ = 1

N

∑N
k Ck and the prinipal omponent analysis isdone using the ovariane matrix 1

N−1

∑

k(Ck − C̄)(Ck − C̄)T . A point distributionmodel an than be generated diretly by linear mapping [Kelemen 1999℄.



2.3 Computation of Statistial Shape Models 17While the SPHARM parameterization is apable to smoothly represent high levelsof shape details, it su�ers from the fat that for shapes featuring rotational sym-metry in the spherial harmonis of degree 1 the mapping to the anonial positionin parameter spae is not unique. Therefore, the orrespondene determination forsuh shapes beomes inappropriate as shown in a study on e.g. femoral heads byStyner et al. [Styner 2003℄.2.3 Computation of Statistial Shape ModelsIn order to ompute a SSM, a su�iently large training data set with segmentedorgan observations is needed. Obviously, the training data set should only ontainshapes onforming to the shape lass whih is modeled, that is, for a SSM of normalorgan variability, only healthy patient data is permitted. Eah observation has tobe segmented aurately. This is mostly done manually or semi-automatially bymedial experts who delineate the organ ontours slie by slie in medial images.Some organs an be segmented also in 3D under the support of automati tehniqueslike volume growing of thresholding. For binary segmentation, the onversion toa surfae representation is typially performed by the Marhing Cubes algorithm[Lorensen 1987℄. The �rst step is ommonly the alignment of the observation ina referene oordinate system. Then, a mean shape and a variability model areomputed suh as to optimally represent the shapes in the training data set. Here,the aurate detetion of orrespondene between the shapes plays an important roleregarding the quality of the �nal SSM. The resulting SSM produes new plausibleshapes or represents unknown shape observations of the same organ in di�erentpatients or under di�erent onditions.In this hapter, the omputation of two widely-used point distribution models issummarized: Setion 2.3.1 desribes the lassial Ative Shape Models (ASM) whilesetion 2.3.2 presents a method to build ASMs using gradient desent optimizationof the maximum desription length.2.3.1 Ative Shape ModelsWith the introdution of the 'Ative Contour Models' (ASMs) or 'Snakes' in 1988by Kass et al. �rst attempts were made to integrate a priori knowledge into thesegmentation proess by foring the segmentation ontour to omply to a ertainamount of smoothness [Kass 1988℄. The tehnique makes use of an iterative energyminimization where only loal shape onstraints are applied. Cootes et al. adoptedan iterative approah but instead of applying a simple snake ontour, they devel-oped a point distribution model or 'Ative Shape Model' to inorporate a prioriknowledge about the shape [Cootes 1992, Cootes 1995℄. When applying the ASMto segmentation, they use global shape onstraints.Let us desribe the N observations Sk in the training data set by meshes onsist-ing of nk points ski ∈ R
3. Furthermore, let us assume that nk = n ∀k and thatthe points with the same index i orrespond. The set of observations an then bealigned by translation, rotation and anisotropi saling so that the least squareddi�erenes between all orresponding points is minimized. This is done by an a�ne



18 Chapter 2. Current Methods in Statistial Shape Analysistransformation Tk. For an example see �gure 2.2(a). If the alignment is omitted, thevariation in size and pose are inluded in the �nal variability model. The points m̄iof the mean shape M̄ are then omputed by averaging over all aligned orrespondingobservation points m̄i = 1
N

∑N
k=1 Tk ⋆ ski. For an illustration see �gure 2.2(b). Inorder to ompute the variability model, a prinipal omponents analysis (PCA) isperformed. Under the assumption of dealing with normally distributed data sam-ples, the PCA determines a linear transformation whih transforms the data into aoordinate system where the axes (= eigenvetors) lie in the same diretion as thegreatest orrelations in the data. By transforming the data into the new oordi-nate system, the orrelations of the original data set beome unorrelated. Thus,the new axes lie in the diretions of the greatest variane of the transformed dataset. Hene, the data is represented in a system where its similarities and di�erenesan be seen learly whih makes the PCA a well-suited tool in the desription ofshape variability. The N atual eigenvetors vp and assoiated eigenvalues λp areomputed by e.g. doing a diagonalisation on the ovariane matrix with elements

covij =
PN

k=1
(ski−m̄i)(skj−m̄j)

T

N−1 , so vp ∈ R
3n whih amounts to one 3D eigenvetor vipper mean shape point m̄i, see �gure 2.2(). A plausible new instane of the shapelass an now be modeled by

M = M̄ +

N∑

p=1

ωpvp (2.2)where ωp ∈ R are the deformation oe�ients whih are typially onstrained to
ωp ≤ 3λp in order to only generate plausible shapes. Furthermore, a shape analysisan be done by interpreting the deformations aording to the eigenmodes with thegreatest eigenvalue (see �gure 2.2(d,e,f)).In order to better adapt the ASM to segmentation, Cootes et al. proposed the AtiveAppearane Models (AAMs) whih inorporate a priori knowledge not only aboutthe shape but also about mean and variation of the image intensities (appearaneor texture). This priniple an be adapted in a simpli�ed manner to all pointdistribution models given that the original image data is still available. Basially, thegrey value appearanes around eah point ski in the training data set are evaluatedby sampling the pixel information on either side of the ontour in normal diretion.Then a loal statistial appearane model is onstruted with mean pro�le andassoiated variability. During the image searh along the normal, the quality ofthe urrent pro�le around the model points is assessed with respet to the loalappearane model.2.3.2 SSM Based on Minimum Desription LengthWhile the SPHARM model as well as the ASM determine orrespondenes individ-ually for eah observation, other methods propose to assign orrespondenes arossall observations at the same time. This approah is driven by the idea that thebest orrespondenes are those whih lead to the optimal SSM given the trainingdata set. In order to �nd these, the orresponding points have to be moved indi-vidually over the surfaes of the observations until the best positions for all points



2.3 Computation of Statistial Shape Models 19

a) d)
b) e)

) f)Figure 2.2: ASM example. a) Aligned observations of a training data set. Eah ofthe 5 observations is represented by 10 points in 2D and depited in another olour.b) Mean shape point loud depited by red dots. ) axes of �rst eigenmode depitedfor eah of the orresponding points. d) Mean shape M̄ of point distribution model.e,f) Mean shape deformed aording to �rst eigenmode M̄ − 3λv1 and M̄ + 3λv1.



20 Chapter 2. Current Methods in Statistial Shape Analysisare found. The �rst to introdue this approah were Kothe� et al. who use thedeterminant of the ovariane matrix as objetive funtion for the omputation of2D SSMs [Kothe� 1998℄. By minimizing the determinant of the ovariane matrix,they expliitly favor ompat models whih means low eigenvalues and few eigen-vetors. Davies et al. take up on that idea but propose another objetive funtionin order to �nd a sound theoretial foundation as well as to ensure onvergene[Davies 2002℄. Their key priniple is to favour the simplest solution out of all sat-isfying ones (following the priniple of Oam's razor). Furthermore, they de�nethe model quality over three parameters, the ompatness, the generalization abil-ity and the spei�ity. A model is more ompat than another if it odes the samevariability information in less omponents. A great generalization ability meansthat the model is able to desribe unknown possible instanes of the shape lass.A spei� model only represents valid instanes of the shape lass. The method ofDavies et al. introdues the appliation of the minimum desription length (MDL)as measure for the simpliity of the SSM. Under the MDL approah, the �nal SSMoptimally balanes omplexity and the quality of �t between model and observa-tions. Originally, the MDL is a onept used in information theory for the optimaloding of messages. While the MDL framework is mathematially sound and leadsto very good results [Davies 2002a, Styner 2003b℄, the objetive funtion is omplexand omputationally expensive. Several approahes have been proposed to reduethe omplexity. Heimann et al. employ a simpli�ed MDL ost funtion introduedin [Thodberg 2003℄ and use a gradient desent optimization to minimize it. Theyan show that their approah is faster and less likely to onverge to loal minimathan previous approahes [Heimann 2005℄. In this setion, the prinipal onept oftheir algorithm is explained and the mesh parameterization as well as the optimaldetermination of orrespondenes used in their framework are outlined. The algo-rithm is onstrained to SSMs of organs with spherial topology.The ost funtion F whih is based on the MDL of the resulting SSM is de�ned as
F =

n∑

p=1

Lp with Lp =

{
1 + log(λp/ccut) for λp ≥ ccut

λp/ccut for λp < ccut
(2.3)where λp denotes the squareroot of the eigenvalues of the ovariane matrix. Theparameter ccut is a uto� onstant whih desribes the expeted noise in the trainingdata.Regarding the mesh parameterization, a mapping of all surfaes to the unit sphereis performed. The mapping has to assign for every point on the surfae of the mesha unique position on the sphere. The problem of mesh parameterization is that ofmapping a pieewise linear surfae with a disrete representation onto a ontinuousspherial surfae. In ontrast to Davies et al. who use initial di�usion mapping,Heimann et al. reate a onformal mapping that fouses on preserving angles. Thefuntion L maps eah point si of the surfae S to the unit sphere whih results ina spherial parameterization of S. The mapping funtion is de�ned as L : S → R

3with |L(si)| = 1 for all points si. The initialization is done by mapping eah si tothe position on the sphere orresponding to its normal vetor. The optimal map-ping is found by minimizing the string energy of the mesh as de�ned by Gu et al.



2.4 Segmentation Using Shape Priors 21who propose a variational method whih an �nd a unique mapping between anytwo genus zero manifolds [Gu 2003℄. Basially, two steps are exeuted: First, abaryentri mapping is performed whih positions eah point si at the enter of itsneighbouring points. Next, a onformal mapping is obtained by taking into aountthe angles between edges of the mesh for the parameterization. The mathematialproof of orretness of this approah is given in [Gotsman 2003℄.After obtaining a onformal mapping Lk for eah surfae observation Sk, orrespon-denes aross the training data set are determined by mapping a set of spherialoordinates to eah Sk. Subsequently, the optimal orrespondenes and thereforethe optimal positions of all points on the surfaes have to be determined. To do so,Heimann et al. hoose to modify the individual parameterizations Lk for all surfaes:In short, the orresponding landmarks of all observations are leared of the meanand then stored in a matrix B′. By employing a singular value deomposition to
B = 1√

n−1
B′, the eigenvetors and eigenvalues λp for the system of orrespondinglandmarks an be omputed. This means that the λp in the ost funtion in equa-tion (2.3) an be expressed in dependene of the singular values of B. Eventually,the ost funtion is minimized with respet to the elements of B by solving ∂F

∂bij
= 0.This derivation leads to a hange for the individual landmark positions as shown in[Erisson 2003℄ as it yields a 3D gradient for every landmark. In order to onvertthe gradients into optimal kernel movements (△θ,△φ), ∂F

∂(△θ,△φ) is omputed by
∂F

∂(△θ,△φ)
=

∂F

∂bij

∂bij
∂(△θ,△φ)where the surfae gradients ∂bij

∂(△θ,△φ) are estimated by �nite di�erenes.It has to be taken into aount that when moving one landmark, the adjaentlandmarks should be a�eted in a similar manner depending on their loseness.Therefore, a trunated Gaussian funtion is de�ned with
c(x, σ) =

{

exp(−x2

2σ2 −
−(3σ)2

2σ2 ) for x < 3σ
0 for x ≥ 3σwhere x denotes the distane between the spei� landmark and the enter ofthe kernel and σ ontrols the size of the kernel. If a point at position x ismoved by (△θ,△φ), all other points are a�eted by c(x, σ)(△θ,△φ). This re-parameterization is done iteratively over all landmarks and all observations. Fora detailed derivation of this algorithm as well as an evaluation please refer to[Heimann 2005, Heimann 2007℄.Note that this approah only makes sense for mesh representations of surfaes butnot for point loud representations.2.4 Segmentation Using Shape PriorsThe goal of a segmentation proess is the partitioning of an image into regions whihare homogeneous regarding a ertain number of harateristis. The multitude ofimage-based segmentation tehniques an be roughly ategorized into region-based,



22 Chapter 2. Current Methods in Statistial Shape Analysisedge-based, and lustering methods. Region-based methods searh for pixels amidstan area whih ful�ll a similarity riterion. A typial example are region-growingtehniques whih basially use a manually seleted seed voxel and then automat-ially extrat all voxels onneted to the seed or onneted to already extratedvoxels featuring the same gray value [Haralik 1985℄. Region-based methods areusually sensitive to noise and image-inhomogeneities. Edge-based methods detetontours whih are de�ned by abrupt gray value hanges in the image. For digitalimages, �ltering masks (e.g. Prewitt, Sobel, Laplae) are used in order to omputethe gradient images of �rst or seond order. A disadvantage of edge-based methodsis the fat that the resulting edges are often disonneted and onseutive bound-ary �nding methods have to be employed. A widely-used lustering method is thethresholding segmentation whih is a straightforward but often not very e�ienttehnique where the pixels of an image are lassi�ed simply by determining if theirgray value lies above or below an appointed threshold [Sahoo 1988℄. The same ideaapplies to watershed approahes where the di�erent gray levels are interpreted astopographi surfaes [Vinent 1991℄. For multi-spetral image data, luster-analysismethods are employed where the voxels are represented by feature vetors of higherdimensionality [Handels 2009℄. Elaborate overview of these ategories of segmenta-tion tehniques are given in [Gonzalez 2002℄.Medial images tend to feature noise, ontour gaps, intensity inhomogeneities andlow ontrasts. This is due to several problems: First, image aquisition systemsyield relatively low signal to noise ratio. Seondly, soft tissue boundaries do notneessarily feature lear gradients (see �gure 2.3(a)) and there is often a tissue vari-ability in the same organ aross patients (see �gure 2.3(,d)). Another problem areimage artifats due to patient motion or limited aquisition time whih redue theinformation ontent of the data (see �gure 2.3(b)). Generally, methods whih workon image information alone like region growing or thresholding or edge-�ltering aresensitive to these harateristis. Furthermore, they are prone to errors under typi-al shortomings of medial images like sampling artifats and spatial alias e�ets.In order to robustify the segmentation proess, an e�etive and popular approahis to employ models whih inorporate a priori information about the struture tobe segmented.The onept of deformable models is explained in setion 2.4.1, and the most impor-tant aspets of expliit and impliit shape priors are summarized in setions 2.4.2and 2.4.3.2.4.1 Deformable ModelsA substantial part of segmentation methods nowadays is based on the onept ofdeformable models whih was originally introdued for use in omputer vision by Ter-zopoulos et al. [Terzopoulos 1986℄. Sine the work about Snakes (Ative Contours)published in 1988 by Kass et al. [Kass 1988℄, deformable models are e�etively usedfor segmentation, reonstruting, visualization and mathing problems in 2D and3D and have suessfully been applied to a wide range of organs. A deformablemodel is usually represented by a ontour or a surfae. The deformation of themodel is governed by means of energy minimization where the energy funtional ba-
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a) b)
) d)Figure 2.3: Medial images. a) Kidneys in noisy CT data. b) Femur and hipboneCTs featuring ontour gaps and low resolution. ),d) Bladder CTs featuring intensityinhomogeneities due to ontrast agent and di�erent �lling levels.sially onsists of one term whih ontrols the resulting shape (internal energy) andone term whih attrats the ontour toward the boundary in the image (externalenergy):

E(C) = Eint + Eext.In a physial interpretation, deformable models are elasti bodies whih respondin a natural way to the in�uene of external fores. The deforming fores are de-termined by image data like edges or textures as well as by smoothness onditionsor a priori knowledge about the shape and loation of the respetive anatomialstrutures. The prior shape information renders the algorithm more robust andaurate [MInerney 1996℄. A deformable model is usually initialized in an ap-proximative manner around a region of interest. Then, it evolves from this initialrough solution to automatially improve the �t to the boundary of the region tobe deteted. Deformable models are able to model the omplexity and sometimessigni�ant variabilities of anatomial strutures. For a thorough survey whih fo-uses on the topologial, geometrial and evolutional aspets of deformable modelssee [Montagnat 2001℄.In the last years, the integration of a priori information about the shape has provento be a very e�ient approah whih led to a multitude of robust automati seg-mentation tehniques for various medial appliations. The key idea is to onstrainthe segmentation to plausible shapes. Mostly, statistial shape models (SSM) areemployed. The di�erent shape prior models an be divided into the following twomain approahes: the parametri models whih evolve orresponding the Eulerian



24 Chapter 2. Current Methods in Statistial Shape Analysisformulation (setion 2.4.2) and the impliit models whih evolve orresponding tothe Lagrangian formulation (setion 2.4.3). In order to demonstrate the varietyof segmentation methods whih bene�t from prior knowledge about the shape,a brief survey is given about some of the most popular appliations: Expliitlyrepresented SSMs have been suessfully employed e.g. for pelvi bone segmen-tation [Seebass 2003, Lameker 2004℄, for hipjoint segmentation [Kainmüller 2009℄and for (solioti) vertebrae segmentation [Benameur 2003, Pekar 2001℄. Further-more, SSMs are frequently used for soft tissue segmentation as e.g. for liver seg-mentation from CT data [Lameker 2003, Heimann 2007a℄ or for segmentationof aorti aneurysms from CT data [de Brujine 2002℄. Other authors use im-pliit SSM for CT kidney segmentation [Tsaagan 2002℄. Right from the start,SSMs were disovered to be bene�ial in the segmentation of ardia stru-tures as the left ventrile [Staib 1996, Kaus 2004, Shang 2004℄ or the whole heart[Lötjönen 2004, Lorenz 2006℄. Moreover, the use of SSMs is a widespread methodin brain segmentation on MR images, e.g. by SPHARM modeling [Székely 1996℄,m-rep modeling [Pizer 2003℄ or expliit modeling [Zhao 2005a℄.2.4.2 Expliitly Represented Shape PriorsWith the presentation of the Ative Shape Models (ASM) in 1992, Cootes and Tay-lor introdued a method to use expliitly represented point distribution models asshape priors for segmentation tasks [Cootes 1992℄. The de�nition and mathematialformulations of suh statistial shape models are given in setion 2.3. In short, thesegmentation tehniques using the ASM method work as follows: First, the modelis plaed in the image. This initial plaement favorably lose to the struture tobe segmented is often done manually. Next, for eah model point a movement issuggested along its normal toward a position lying loser to the ontour of the ob-jet to be segmented. Commonly, for eah point a andidate ontour position isdetermined by evaluating the neighbouring voxels in diretion of the ontour nor-mal. The andidate quality of positions depends on boundary-based and/or regionbased features. For their appearane models, Cootes propose to use the normalized�rst derivatives of the pro�les [Cootes 2001a℄. Brejl et al. make use of a ombina-tion of grey values and grey value gradients [Brejl 2000℄. Other appearane modelsinlude region-based features like the texture inside the shape [Cootes 2001b℄ or thereation of histograms on inside and outside regions [Broadhurst 2006℄. Eventually,the optimal hoie of appearane model depends on the image modality as well asthe anatomial struture to be segmented as shown for example in [Heimann 2008℄.After determining a andidate position for eah point, the model is transformedand deformed to optimally approximate the andidate points. The deformation isonstrained to lie in the model variability spae. These updates of the model areiterated until the moving distane of model points falls under a ertain threshold.A detailed explanation of the algorithm is given in [Cootes 2004℄.The prinipal idea of ASM segmentation still forms the basis for numerous seg-mentation methods employing statistial shape models nowadays. However, thelimits plaed on the model parameters ensuring that the segmentation ontouran only adapt to shapes whih are probable regarding the underlying train-



2.4 Segmentation Using Shape Priors 25ing data set are too onstraining for many segmentation tasks. This is mainlydue to the fat that the number of training observations is usually too small torepresent all probable shape variabilities. To lighten the onstraint, several au-thors proposed segmentation algorithms whih balane between prior shape knowl-edge introdued by the SSM and image information. These algorithms rangefrom using the onverged SSM as initialization for additional re�nement steps[Cootes 1996, Pekar 2001, Shang 2004℄ to employing a deformable mesh whose in-ternal energy is minimized with the distane to the losest allowed model defor-mation [Weese 2001, Tsaagan 2002, Kaus 2003, Heimann 2007b℄. A good overviewover these algorithms has reently been published by Heimann and Meinzer[Heimann 2009℄.2.4.3 Impliitly Represented Shape PriorsLevel sets methods desribe ontours or surfaes impliitly as the zero level set ofa higher dimensional funtion. Opposite to parametri deformable models, theyo�er the advantage to be topologially �exible and are thus able to model highlyomplex anatomial strutures like blood vessels or ortial surfaes. As the origi-nal level sets are not resistant to weak ontour edges and su�er from a signi�antnumerial dissipation, nowadays higher order, hybrid, and adaptive tehniques areused (e.g.[Delingette 2001, Losasso 2006℄) whih are unfortunately less e�ient andmore di�ult to implement than parametri models. The idea of using level sets forsurfae modeling was �rst proposed by Osher and Sethian [Osher 1988℄ and laterused for medial image segmentation e.g. by Malladi et al. who use front propaga-tion on stomah and artery tree strutures [Malladi 1995℄ and Leventon et al. whoadditionally employ intensity and urvature priors for segmenting orpora allosa[Leventon 2000b℄ and by Ciofolo and Barillot who use ompetitive level sets forbrain segmentation [Ciofolo 2005℄. A thorough study about the nature of level setmethods an be found in Sethian [Sethian 1999℄, while Osher and Paragios as wellas Cremers and Derihe present elaborate overviews about appliations of level setmethods in the �eld of omputer vision [Osher 2003, Cremers 2007℄.In 2000, Leventon et al. proposed a segmentation algorithm where the statistis onsurfaes are made diretly on level-set funtions [Leventon 2000a℄. Sine then, theidea of modeling a priori shape knowledge using level sets has gained in importane.Given a training data set of surfaes, the statistial shape prior is generated as fol-lows: The N surfae observations k in the training data set are embedded as zerolevel sets of the higher dimensional funtions φk whih are ommonly represented bysigned distane funtions. The mean funtion φ̄ is omputed by φ̄ = 1
N

∑N
k=1 φk andthe variability model is determined by a prinipal omponent analysis done diretlyon the distane funtions. In general, the level set segmentation is omputed by amaximum a posteriori (MAP) estimation where the level set funtion is evolved toonverge towards the boundary of the organ to be segmented. The evolution of thelevel set is ontrolled by the optimization of an energy funtional whih is basedon the image information as well as on the statistial shape prior and additionallyintegrates a regularization term. This method was adapted by Tsai et al. who fo-used on e�ieny and robustness of the algorithm [Tsai 2003℄ as well as by Rousson



26 Chapter 2. Current Methods in Statistial Shape Analysiset al. who propose variational integrations of the shape prior [Rousson 2004℄. In[Cremers 2006℄, Cremers extended the approah by dynamial priors for trakingproblems.Though, for the statistis done on the distane maps, it has to be kept in mindthat the spae of signed distane funtions is not linear whih means that a linearombination of signed distane funtions does not neessarily orrespond to a signeddistane funtion. Besides, the prinipal omponents of impliit shape models de-sribe the variability of the distane maps but not the variation of the embeddedontours. Therefore, understanding the variability information on distane fun-tions is not obvious so that it seems di�ult to exploit the variability model for aphysial modeling of the shape variability.2.5 DisussionThis hapter illuminates the important role whih statistial shape models play inmedial imaging. Espeially segmentation problems beome better posed by theemployment of prior shape information in the form of SSMs. Away from being aomplete review on this subjet, this hapter is an attempt to highlight the mainapproahes and to lay the ground for further researh in this area.Even though SSMs have been part of the state-of-the-art for more than �fteen years,new re�ned SSM methods emerge every year, and several open questions remain.Espeially the orrespondene problem has not been solved satisfatorily in our eyesas the assumption of one-to-one orrespondenes on 3D surfaes seems too strong.Furthermore, most algorithms whih ompute SSMs employ step by step tehniquesby �rst determining orrespondene, aligning the observations, omputing the meanshape and �nally omputing the variability model. This is an intuitive tehniquebut not a sound mathematial framework. As the mean shape and the variationmodes should optimally represent the whole sene of observations, a global approahseems to be favorable where the determination of orrespondene, the alignment aswell as the omputation of mean shape and variability are uni�ed in one global ostfuntion. By doing so, a theoretial onvergene ould be ensured. The work inthis thesis will demonstrate how a statistial shape model based on orrespondeneprobabilities an be omputed in a sound mathematial sheme.Regarding the employment of SSMs in segmentation algorithms, two independentdomains were asserted: One group of methods is based exlusively on expliit rep-resentation of SSMs and segmentation ontours while the other group only usesimpliit SSMs and formulates impliit segmentation shemes. Naturally, both ap-proahes feature di�erent strengths and su�er from di�erent weaknesses. This raisesthe question if and how the strit separation of the two domains ould be openedin order to develop a segmentation algorithm whih bene�ts from the advantagesof both. In this thesis, it will be shown how a ombination of expliit and impliitmodeling ould be realized whih might open new insights on that matter.



Chapter 3A Generative Gaussian MixtureStatistial Shape Model
Contents3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273.2 Expetation Maximization - ICP Algorithm . . . . . . . . . 293.3 The Uni�ed Framework . . . . . . . . . . . . . . . . . . . . . . 373.4 Computation of the Observation Parameters . . . . . . . . . 423.5 Computation of the Model Parameters . . . . . . . . . . . . 453.6 Pratial Aspets . . . . . . . . . . . . . . . . . . . . . . . . . 493.7 Extension of the Criterion for Non-Convex Strutures . . . 503.8 Disussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Statistial shape models are a valuable tool in medial image analysis and aree�iently used in lassi�ation, reognition, reonstrution and segmentation meth-ods. The models inorporate statistial knowledge mainly about the expeted shapeand shape variability. The olletion of that knowledge is done by statistially evalu-ating the shape information of a number of observations of the respetive struture.To do so, the fundamental problem of determining proper orrespondene betweenthe observations has to be solved. The solution of the orrespondene problem aswell as the method of model omputation depends on the representation of theshapes. In this hapter, a generative method for the omputation of a parametri3D statistial shape model for point-based shape representations is developed. Aprobabilisti modeling is hosen instead of a deterministi one and the shapes arerepresented by mixtures of Gaussians. The omputation of the Gaussian MixtureSSM is formulated in a generative framework.3.1 MotivationMost methods in the state-of-the-art ompute the parameters needed for the SSMin a step-by-step manner: First, the observations are aligned in a ommon refer-ene frame. Then, the mean shape is omputed and �nally, the variability model isdetermined. While usually leading to good results, the mathematial foundation isunlear and no onvergene an be ensured. In order to reate a sound mathemat-ial framework, this work proposes to ompute a generative model and unify theomputation of all parameters whih take part in the SSM omputation into oneglobal riterion.



28 Chapter 3. A Generative Gaussian Mixture Statistial Shape ModelFurthermore, as disussed in setion 2.2, one of the entral di�ulties of analyzingdi�erent organ shapes in a statistial manner is the identi�ation of orrespondenesbetween the points of the shapes. As the manual identi�ation of landmarks is notan aeptable option in 3D, several preproessing tehniques were developed in theliterature to automatially �nd exat one-to-one orrespondenes between surfaeswhih are represented by meshes as in [Lorenz 2000, Bookstein 1996, Styner 2003a,Vos 2004℄ to just name a few. A popular method is to optimize the orrespon-denes and the registration transformation at the same time as does the IterativeClosest Points (ICP) algorithm [Besl 1992℄ for point louds as explained in setion2.2.1. More elaborate methods diretly ombine the searh of orrespondenes andof the SSM for a given training data set as proposed in [Zhao 2005b, Chui 2003℄or the Minimum Desription Length (MDL) approah to statistial shape model-ing [Davies 2002, Heimann 2005℄. The MDL is used to optimize the distributionof points on the surfaes of the observations in the training data set when de-termining the best SSM. For unstrutured point sets, the MDL approah is notsuited to ompute a SSM beause it needs an expliit surfae information. An-other interesting approah proposes an entropy based riterion to �nd shape or-respondenes, but requires impliit surfae representations [Cates 2006℄. Other ap-proahes ombine the searh for orrespondenes with shape based lassi�ation[Tsai 2005, Kodipaka 2007℄ or with shape analysis [Peter 2006b℄. However, thesemethods are not easily adaptable to multiple observations of unstrutured pointsets as they either depend on underlying surfae information or �x the number ofpoints representing the surfae. The approah in [Chui 2004℄ for unstrutured pointsets fouses only on the mean shape. In all ases, enforing exat orrespondenesfor surfaes represented by unstrutured point sets leads to variability modes thatnot only represent the organ shape variations but also arti�ial variations whoseimportane is linked to the loal sampling of the surfae points.We argue that when segmenting anatomial strutures in noisy image data, theextrated surfaes (points) only represent probable surfae loations. Therefore,a method for shape analysis should better rely on probabilisti point loations aspresented with the rigid EM-ICP registration in [Granger 2002℄. Aordingly, wepropose to solve the orrespondene problem by desribing the observations as noisymeasurements of the model. This amounts to representing the shapes by mixturesof Gaussians whih are entered on the model surfae points. The shapes are thenaligned by maximizing the orrespondene probability between all possible pointpairs. It should be noted that the SoftAssign algorithm [Rangarajan 1997a℄ has aprobabilisti formulation whih is losely related but di�ers in that it gives the samerole to the model and the observations. This is justi�ed for a pair-wise registrationbut not for a group-wise model to observation registration, whih is needed for theSSM omputation.This hapter is strutured as follows: In setion 3.2, an a�ne version of the EM-ICP registration algorithm is derived in order to establish a probabilisti frameworkfor omputing orrespondene probabilities between the observations. Following insetion 3.3, the generative Gaussian Mixture statistial shape model (GGM-SSM) isdeveloped, and a maximum a posteriori framework is proposed to ompute all modelparameters and observation parameters at one. The solutions for optimizing the



3.2 Expetation Maximization - ICP Algorithm 29assoiated global riterion with respet to the observation and model parameters arederived in setions 3.4 and 3.5. The integration of normals as additional informationinto the global riterion is realized in setion 3.7. We onlude this hapter with adisussion about the harateristis of the new model (setion 3.8).3.2 Expetation Maximization - ICP AlgorithmIn MR or CT medial imaging, the auray of the anatomial representation de-pends on the slie thikness as well as the resolution in the plane. Even with avery high spatial resolution, partial volume e�ets will our, so it has to be pointedout that the resulting image always remains an estimation of the true anatomialstruture. Due to the reording tehniques, there is always a ertain amount ofinertitude regarding the extrated image information.For the omputation of a SSM, a training data set ontaining segmented observa-tions has to be reated. The observations are mostly generated in a proess whihomprises two steps: First, an automati, semi-automati or manual segmentationof the respetive struture is performed whih results in a set of 2D binary images orone binary volume. Next, a surfae extrating algorithm is applied. For both steps,a multitude of well researhed and problem-adapted methods exists, nevertheless,the resulting segmentation will always be an estimation of the true struture surfae.Conerning the orrespondene problem, this means that the proess of determininghomologies between extrated surfaes relies on information whih is not neessarilyorret. Furthermore, one-to-one orrespondenes pose a problem for observationswhih feature distintive shape detail di�erenes as shown in �gure 3.1. For thesereasons, it is advantageous to use orrespondene probabilities instead of exat or-respondenes. The EM-ICP algorithm is a onvenient method to �nd those.In this setion, an a�ne extension for the Expetation Maximization - IterativeClosest Point registration is derived whih takles the orrespondene problem bydetermining orrespondene probabilities instead of one-to-one orrespondenes. Therigid EM-ICP was �rst introdued in 2002 by Granger and Penne and proved tobe robust, preise, and fast [Granger 2002℄. As the aim is to model the shape vari-ations whih remain after pose, saling and shearing variations are eliminated, analgorithm is needed whih does an a�ne alignment of the shapes.3.2.1 AlgorithmThe EM-ICP algorithm determines the registration transformation T that bestmathes a model point set M ∈ R
3Nm onto an observation point set S ∈ R

3Nswith Nm and Ns desribing the number of points of the model and the observationrespetively. The fous lies on the probability of an observation point si to be ameasure of a transformed model point T ⋆mj . In that way, the point si is desribedas a displaed and noisy version of point mj. Now all sene points are onsidered asbeing onditionally independent. If the point si orresponds exatly to the modelpoint mj , the measurement proess an be modeled by the Gaussian probability
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p(si|mj, T ) =

1

(2π)
3

2 |Σj |
1

2

exp(−
1

2
(si − T ⋆ mj)

T .Σ−1
j (si − T ⋆ mj)) (3.1)where Σj represents the noise as the ovariane of mj. For an illustration see �gure3.2.However, the observation point si an in fat be a measure of any of the modelpoints as illustrated in �gure 3.3. It is assumed that a priori all mi are equallyprobable for being mathes to si. Sine M onsists of Nm model points mj, theprobability distribution model of the spatial loation of si is the mixture

p(si|M,T ) =
1

Nm

Nm∑

j=1

p(si|mj , T ). (3.2)Unfortunately, even under the assumption that all sene point measurements areindependent, no losed form solution exists for the maximization of p(S|M,T ). Asolution is to model the unknown orrespondenes H ∈ R
Ns×Nm as random hid-den variables and to maximize the log-likelihood of the omplete data distribution

p(S,H|M,T ) e�iently using the EM algorithm. We denote E(Hij) as the ex-petation of point si being an observation of point T ⋆ mj (with the onstraint
∑Nm

j E(Hij) = 1) and ompute the expetation of the log-likelihood with
E(log p(S,H|M,T )) =

1

Nm

Ns∑

i

Nm∑

j

E(Hij) log p(si|mj, T ). (3.3)In the following, uniform priors on H are assumed.In the expetation step, T is �xed and log p(S,H|M,T ) is estimated toompute the expetation of orrespondene E(H):
P (Hij = 1) = E(Hij) =

exp(−µ(si, T ⋆ mj))
∑

k exp(−µ(si, T ⋆ mk))with µ(si, T ⋆ mj) = 1
2(si − T ⋆ mj)

T .Σ−1
j (si − T ⋆ mj).In the maximization step, E(H) is �xed and the estimated likelihood ismaximized with respet to T . For this purpose, onstants and normalizing fatorsof equation (3.3) do not have to be taken into aount. Hene, the EM-ICPriterion CEM to be optimized takes the following form:

CEM (T,E) =

Ns∑

i

Nm∑

j

E(Hij)(si − T ⋆ mj)
T Σ−1

j (si − T ⋆ mj). (3.4)Without loss of generality, it is assumed from now on a homogeneous and isotropiGaussian noise with variane σ2 in order to simplify the equations. The transfor-mation is then found by
T̂ = argmin

T

1

σ2

Ns∑

i

Nm∑

j

E(Hij)‖si − T ⋆ mj‖
2. (3.5)



32 Chapter 3. A Generative Gaussian Mixture Statistial Shape ModelWe see that the elements of E(H) serve as weighting fators. The solution of thisleast-squares estimation for a rigid transformation T an be seen in [Granger 2002℄.3.2.2 Generalization to A�ne TransformationWhen dealing with an a�ne transformation Taff , a point mj is transformed by Taffas follows: Taff ⋆ mj = Amj + t with the transforming matrix A ∈ R
3x3 and thetranslation vetor t ∈ R

3. In order to �nd the best translation t, equation (3.4) isdi�erentiated with respet to t, and we obtain
∂CEM(t)

∂t
= −2

1

σ2
(

Ns∑

i

si −A
Nm∑

j

mj

Nm∑

i

E(Hij)−Nst)knowing ∑Nm

j E(Hij) = 1 ∀i. Thus, at the optimum we �nd
t̂ =

1

Ns

Ns∑

i

si −A
1

Ns

Nm∑

j

mj

Ns∑

i

E(Hij). (3.6)We see that t̂ aligns the baryentre s̄ = 1
Ns

∑Ns

i si and the pseudo baryentre m̃ =
1

Ns

∑Nm

j mj
∑Ns

i E(Hij) of the two point louds S and M . Using �baryentre�oordinates s′i = si − s̄ and m′
j = mj − m̃ allows us to simplify the riterion into

C ′
EM (T,E) =

1

σ2
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i

Nm∑

j

E(Hij)(s
′T
i s

′
i − 2s′Ti Am

′
j +m′

jA
TAm′

j). (3.7)Next, C ′
EM(T ) is di�erentiated with respet to the a�ne transformation matrix A:
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EM (A)

∂A
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Nm∑

j

E(Hij)s
′
im

′T
j +

2

σ2

Ns∑

i

Nm∑

j

E(Hij)Am
′
jm

′T
j

=
2

σ2
(−Γ +AΥ)with Υ,Γ ∈ R

3×3.We solve for A with
AΥ = Γ⇔ A = ΓΥ−1.If Υ is singular (det(Υ) = 0), the pseudo-inverse Υ+ has to be determined insteadof the inverse Υ−1. From an implementational point of view, it is advantageousto always determine the pseudo-inverse. As Υ is symmetri, the pseudo-inverse isomputed using the Jaobi method for eigenvalue deomposition. For details seesetion A.1.The resulting transformation T is applied to the points of the target loudM beforethe next Expetation step. The two EM-steps are alternated until |CEM(T,E)(i) −

CEM(T,E)(i−1)| < ǫ. A mathematial proof of onvergene for the EM algorithmis provided in [Dempster 1977℄.



3.2 Expetation Maximization - ICP Algorithm 333.2.3 EM-ICP Multi-SalingIn order to robustify the omputation of the a�ne transformation, an iterative multi-sale sheme is implemented. Here, the variane σ2 ontrolling the orrespondeneprobabilities between shapes (as formulated in equations (3.1) and (3.2)) is used asa sale parameter. In his thesis, S. Granger analysed the in�uene of the variane onthe onvergene of the rigid EM-ICP algorithm [Granger 2003℄. The results suggestthat the algorithm should be started with a large variane to guarantee the robust-ness and that the �nal variane should be in the range of the real noise variane inorder to ensure the most aurate results. A large variane makes sure that shapepositions and rotations of soure and target are aligned. A low variane makes surethat the shape details of soure and target are aligned. This is implemented asfollows: We start the EM-ICP registration with sigma σstart in the �rst iteration.In eah following iteration it, the sigma value is redued to σit = r-fatorit · σstartwhere the redution fator is a salar with 0 < r-fator < 1. Its value has to behosen arefully as a fast derease of the multi-sale variane σ2 ould easily freezethe model in loal minima. The same applies for the hoie of the initial σ-value.If the sigma is hosen too small, the EM-ICP behaves like the ICP registrationalgorithm whih means that always only one point, the losest neighbour, is �xedas orresponding point. For mathematial proof please refer to appendix A.2. Ifsigma is hosen too great, the soure tends to shrink to the baryentre of the target.Eventually, the hoie of sigma depends on the data at hand and is determinedheuristially so far. In order to illustrate the in�uene of sigma and redution fatorin the multisale-sheme, we examine an example: The a�ne EM-ICP is employedto register two kidneys represented by around 3000 points eah. The value of σstartis set to 12, the registration is iterated 100 times. In the �rst registration, no multi-saling is performed. In the seond registration, a multi-saling is performed witha redution fator r-fator=0.97. The algorithm with multi-saling omes to betterresults as without as illustrated in �gures 3.4 and 3.5.We then test the behaviour of the a�ne EM-ICP on a syntheti registration problem.Our data onsists of a segmented kidney S whih is represented by N = 10466 sur-fae points si and has a size of about 70mm×40mm×120mm. We generate a seondkidney ST by deforming S with a syntheti transformation Tsynth: ST = Tsynth ⋆ S.Subsequently, both point sets are deimated to Sd and Sd
T using a deimation al-gorithm whih is based on the tehnique presented in [Shroeder 1992℄. Here, thepoints are splitted and moved during deimation. By hoosing di�erent deimationparameters (di�erent number or triangles, di�erent point priority queues) for S and

ST , it is ensured that the number of ommon onserved points (exat orrespon-denes) between Sd and Sd
T is less than 15%, so real onditions - where no exatone-to-one orrespondenes an be determined - are simulated. Moreover, the num-ber of points di�ers. In the following experiments, Sd and Sd

T are represented byaround 510 points.In order to quantify the auray of registration, we de�ne a distane measure asthe normalized sum of distanes between all orresponding points si and sT,i of the
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(a) 5 iterations. (b) 20 iterations. () 100 iterations.Figure 3.4: A�ne EM-ICP registration on two kidney point louds, soure in greenand target in purple. The variane is set to 12 and remains onstant for the wholeregistration proess.
(a) 5 iterations. (b) 20 iterations. () 100 iterations.Figure 3.5: A�ne EM-ICP registration on two kidney point louds, soure in greenand target in purple. The variane is set to 12 for the �rst iteration and is thenredued with a redution fator of 0,97 in eah new iteration.



3.2 Expetation Maximization - ICP Algorithm 35original, non-deimated, kidneys:
d2(S, ST ) =

1

NS

NS∑

i=1

‖si − sT,i‖
2.We hose this distane measure instead of omparing the omputed transforma-tion with the original one sine Eulidean point distanes are easier to interpretethan matrix oe�ient di�erenes. In summary, the experiments are onduted byperforming the following steps:1. Choosing Tsynth to generate ST .2. Deimation of S and ST resulting in Sd and Sd

T .3. Registration of Sd and Sd
T using the a�ne EM-ICP.4. Applying the resulting transformation Tres to ST .5. Computing the distane between S and Tres ⋆ ST .We tested for similarity and a�ne Tsynth. The similarity transformation representsa rotation with rotx = 20◦, roty = 10◦, and rotz = 5◦, a saling of scalex = 1.1,

scaley = 0.9, and scalez = 1, and a displaement of dispx = 10mm, dispy = 10mm,and dispz = 10mm. No shearing is applied. We start the registration with σstart =
8mm and used a redution fator of r-fator=0.9. The algorithm onverged after30 iteration and resulted in a distane of d(S, ST ) = 0.5mm. The result is shown in�gure 3.6.The a�ne transformation has a high shearing e�et with

Tsynth,affine =







1 0 0 0
0.1 1 0 0
0.07 0.02 1 0
0 0 0 1






.Again, the registration is started with σstart = 8mm but in this experiment,the redution fator is varied with r-fator = {0.5 0.85 0.90 0.95}. Figure 3.8shows the in�uene of the redution fator on the onvergene rate for the a�ne

Tsynth. The �nal surfae distanes are in the range of d(S, ST ) = 0.35mm for thetested r-fators {0.85 0.90 0.95}. A r-fator of 0.5 however leads to a distane of
d(S, ST ) = 0.46mm sine the algorithm freezes in a loal minimum for that ase.For a result example of the a�ne transformation experiments see �gure 3.7.We ould establish that the a�ne EM-ICP registration results in a typialdistane of d(S, Tres ⋆ ST ) ≤ 0.5mm for our data set under the tested transforma-tions. This value lies in the same range as the average distane of one point in Sto its losest neighbour (0.74mm). Typially, 30 iterations su�ed for the kidneyregistration in this set-up. The EM-ICP needs no previous rigid registration for thea�ne ase.
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(a) (b)Figure 3.6: The original objets S (pink) and their transformed versions ST (green)(a) before registration with d(S, ST ) = 51, 7mm and (b) after registration with

d(S, Tres ⋆ ST ) = 0.5mm. For the EM-ICP, the kidneys were deimated from 10466to around 510 points, we hose an initial sigma of 8mm, 30 iterations and a reduingfator of 0.9 (whih leads to a �nal sigma of 0.38mm).
(a) (b)Figure 3.7: The original objets S (pink) and their transformed versions ST (green)(a) before registration with d(S, ST ) = 40, 3mm and (b) after registration with

d(S, Tres ⋆ST ) = 0.35mm. For the EM-ICP, the kidneys were deimated from 10466to around 510 points, we hose an initial sigma of 8mm, 30 iterations and a reduingfator of 0.9 (whih leads to a �nal sigma of 0.38mm).
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Figure 3.8: Convergene of EM-ICP in a�ne kidney registration. The EM-ICPriterion values are plotted with respet to the number of iterations for three di�erentredution fators (r-fator). The �nal surfae distane were all in the range of
≈ 0.35mm. A redution fator of 0.5 however leads to a distane of 0.46mm sinethe algorithm freezes in a loal minimum for that ase.



3.3 The Uni�ed Framework 373.3 The Uni�ed FrameworkIn the probabilisti approah, the aim is to ompute a generative model whih op-timally �ts the given data set. We realize this by developing a global and uniqueriterion whih is optimized iteratively with respet to all model and all observa-tion parameters. The optimization is done through a single maximum a posteriori(MAP) riterion and leads to very e�ient and losed-form solutions for (almost) allparameters without the need for one-to-one orrespondenes as is usually requiredby the prinipal omponent analysis. The registration transformations whih areneeded to math the model on the observations are omputed using an a�ne ver-sion of the Expetation Maximization - Iterative Closest Point (EM-ICP) algorithmwhih is based on probabilisti orrespondenes and whih proved to be robust andfast. By relying on orrespondene probabilities, the generative statistial shapemodel representing the training data set is modeled as a mixture of Gaussians.In setion 3.3.1, the generative model parameters and observation parameters arepresented and integrated in a uni�ed framework. In setion 3.3.2, the global riterionobtained by the MAP estimation is developed.3.3.1 The Generative ModelWe assume a training data set of segmented organs whih ontains N observations
Sk. The observations are represented by point louds with respetively Nk pointsin 3D, so that Sk ∈ R

3Nk . We want to determine a generative statistial shapemodel whih best represents the given observations. Here, the observations areinterpreted as randomly generated by the model: The sene Sk is seen as a setof noised measurement of the model. The model itself is modeled as a randomvariable desribed by a Gaussian distribution.In order to avoid homology assumptions, the approah is based on orrespon-dene probabilities. In the following, the involved parameters are presented in detail.Generative Gaussian Mixture SSM Parameters Θ:The GGM-SSM is expliitly de�ned by the following 4 model parameters
Θ = {M̄, vp, λp, n}:
• M̄ ∈ R

3Nm : Mean shape of the model parameterized by a point loud of Nmpoints mj ∈ R
3.

• vp ∈ R
3Nm : n variation modes represented by Nm 3D vetors vpj.

• λp ∈ R: n assoiated standard deviations λp ∈ R whih desribe - similar tothe lassial eigenvalues of the Prinipal Component Analysis - the impat ofthe variation modes.
• n: Number of variation modes (n ≤ N).Observation Parameters Q:From the parameters Θ of a given struture, the shape variations of that struture



38 Chapter 3. A Generative Gaussian Mixture Statistial Shape Modelan be generated by
M = M̄ +

N∑

p=1

ωpvp, N ≤ nwith ωp ∈ R being the deformation oe�ients Ω = {ω1, ..., ωn} of the urrent shape(observation parameter) along the modes v1, ..., vn (model parameter). The proba-bility of obtaining a random deformed model M depends on the probability of thedeformation oe�ient parameters given Θ. We model the deformation oe�ientsdistribution as Gaussian:
p(M |Θ) = p(Ω|Θ) =

n∏

p=1

p(ωp|Θ) =
1

(2π)n/2
∏n

p=1 λp
exp



−
n∑

p=1

ω2
p

2λ2
p



 (3.8)where the standard deviation λp is a model parameter.In the framework of the GGM-SSM omputation for a training data set ontainingthe observations Sk, the deformation oe�ients are denoted ωkp aording to the
Sk they belong to.The seond observation parameter are the registration transformations whih posi-tion our system in spae by aligning the model shape with eah of the observations.Eah transformation is assoiated with one observation Sk, they are denoted as
Tk = {Ak ∈ R

3×3, tk ∈ R
3} with rotational or a�ne matrix Ak ∈ R

3×3 and transla-tion tk. In order to ompute the transformation whih maximizes the orrespondeneprobability between the model and a observation, the Expetation Maximization It-erative Closest Points registration algorithm whih is explained in detail in setion3.2 is employed. The hidden variable in the Expetation Maximization algorithm isthe orrespondene probability matrix Ekij ∈ R
Nk×Nm . Its elements at position ijdesribe the orrespondene probability for observation point si with model point

mj.Applying the transformation Tk to a model point mj is written as
Tk ⋆ mj = Akmj + tk.The instantiated and plaed model Mk is then determined by applying the trans-formation to all model points mj whih is denoted as

M = Tk ⋆ M. (3.9)We summarize the observation parameters as Q = {Ωk, Tk}.The uni�ed framework of the parameters and their spei� relations are illustratedin the diagram shown in �gure 3.9.3.3.2 Optimization of Parameters through a Single MAP CriterionAs desribed in setion 3.3.1, the approah deals with two sets of parameters:1. Model parameters: Θ = {M̄, vp, λp, n}.
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Mk = M̄ +
∑N

p=1 ωkpvp

p(Mk|Θ) = 1
(2π)n/2

Qn
p=1

λp
exp

(

−
∑n

p=1

ω2

kp

2λ2
p

)

Deformation of the Model
with rotational or a�ne matrix Ak and translation tkTk = {Ak ∈ R3×3, tk ∈ R3}

Geometrial transformation Tk

Model Θ

λp ∈ R: n assoiated standard deviations
n: Number of variation modes (n ≤ N)vp ∈ R3Nm : n variation modes omposed of Nm 3D vetors vpj

M̄ ∈ R
3Nm : Mean shape of the model omposed of Nm 3D points

Plaement in spae
Ek ∈ RNk×Nm

∑

j Ekij = 1

Sampling
M

′
k = Tk ⋆ Mk Correspondene probability Ek

ski = Tk ⋆ mj +N(0, σ) with probability Ekij

Shape Variability Parameter Ωeah assoiated with a vp and Sk

ωkp : n deformation oe�ients,

Figure 3.9: Uni�ed framework for GGM-SSM omputation. The model parameters,the observation parameters and their respetive relations are illustrated.



40 Chapter 3. A Generative Gaussian Mixture Statistial Shape Model2. Observation parameters: Qk = {Ωk, Tk} and assoiated nuisane parame-ters (hidden variables) Ek.In order to develop a framework to ompute these parameters for a given trainingdata set S, the aim is to �nd the parameters Θ and Q whih most probably generatedthat sene. The likelihood funtion is given by (Q,Θ) 7→ p(S|Q,Θ). We �rstapproah the situation from the view point of its use, that is, it is assumed thatthe model parameters in Θ are known. We are interested in the searh for theparameters linked to the shape observations: Q = {Qk}. The model is modeled as arandom variable with a Gaussian distribution whih means that a prior distributionover (Q,Θ) exists whih is not uniform sine p(Q,Θ) 6= constant. In order to takeinto aount the prior that the model is providing on the observation parameters,a maximum a posteriori estimation should be optimized instead of a maximumlikelihood estimation of Q and Θ. The posterior distribution of (Q,Θ) is then
(Q,Θ) 7→ p(Q,Θ|S). In the MAP estimation, Bayes' theorem is used whih leadsto MAP = −

N∑

k=1

log(p(Qk,Θ|Sk)) = −

N∑

k=1

log

(
p(Sk|Qk,Θ)p(Qk|Θ)p(Θ)

p(Sk)

)

. (3.10)The probability of the observations p(Sk) does not depend on the model parameters
Θ and p(Θ) does not play a role with Θ known. Hene, the MAP estimation an besimpli�ed and the global riterion integrating our uni�ed framework is the following:

C(Q,Θ) = −

N∑

k=1



log(p(Sk|Qk,Θ)
︸ ︷︷ ︸ML estimate + log(p(Qk|Θ))

︸ ︷︷ ︸Prior 

 .The �rst term desribes a maximum likelihood (ML) estimation with p(Sk|Qk,Θ) =
p(Sk|Tk,Ωk,Θ), whih gives

p(Sk|Qk,Θ) =

Nk∏

i=1

1

Nm

Nm∑

j=1

p(ski|mkj, Tk) with mkj = m̄j +

n∑

p=1

ωkpvpj.As a given sene point ski is modeled as a noisy measurement of a (transformed)model point mj, the probability of the observed point is given by
p(ski|mj , Tk) =

1

(2π)
3

2σ
exp(−

1

2σ2
(ski − Tk ⋆ mj)

T .(ski − Tk ⋆ mj)). (3.11)The seond term of C(Q,Θ) (the prior) depends on the probability of the deforma-tion oe�ients ωkp as desribed in equation (3.8).



3.3 The Uni�ed Framework 41For the omplete riterion we thus we �nd
C(Q,Θ) = −

N∑

k=1

Nk∑

i=1

log




1

Nm

Nm∑

j=1

1

(2π)
3

2σ
exp

(

−
‖ski − Tk ⋆ mkj‖

2

2σ2

)




+
N∑

k=1



log((2π)n/2) + log(
n∑

p=1

λp) +
n∑

p=1

ω2
kp

2λ2
p



 (3.12)
= α(n) + β(Nm)− ζ(σ) +

N∑

k=1

Ck(Qk,Θ).The number of variation modes is not optimized but a �xed number is assumed.The number Nm of points in the model is �xed and a multi-variane sheme isemployed. Hene, α(n) =
∑

k log((2π)n/2), β(Nm) =
∑

k Nk log(Nm) and ζ(σ) =

NNk log
(

(2π)−
3

2σ−1
) beome onstants.Our riterion thus simpli�es to Cglobal(Q,Θ) =

∑N
k=1Ck(Qk,Θ) with

Ck(Qk,Θ) =

n∑

p=1

(

log(λp) +
ω2

kp

2λ2
p

)

−

Nk∑

i=1

log





Nm∑

j=1

exp

(

−
‖ski − Tk ⋆ mkj‖

2

2σ2

)


 .(3.13)The �rst term is responsible for maximizing the probability of deformation whilethe seond term tries to minimize the point distanes of model and observations.The global riterion of equation (3.13) inorporates the uni�ed framework for themodel omputation. By optimizing it alternately with respet to the operands in
{Q,Θ}, we are able to determine all parameters we are interested in.Some terms will reur in the di�erent optimizations as the derivative of the seondterm of the global riterion is always performed in the same manner. We willintrodue the following notations for simpli�ation reasons: The derivative of anarbitrary funtion ξ

ξkij(Tk,Ωk, M̄ , vp, λp) = log

Nm∑

j=1

exp

(

−
‖ski − Tk ⋆ mkj‖

2

2σ2

)with respet to one of the funtion's parameters (let's say x) is
∂ξkij

∂x
= −

Nm∑

j=1

γkij
(ski − Tk ⋆ mkj)

T

σ2

∂(ski − Tk ⋆ mkj)

∂xwith
γkij =

exp
(

−
‖ski−Tk⋆mkj‖2

2σ2

)

∑Nm

l=1 exp
(

−‖ski−Tk⋆mkl‖2

2σ2

) . (3.14)



42 Chapter 3. A Generative Gaussian Mixture Statistial Shape ModelThe details of this derivative an be found in appendix A.3.Note that the variable γkij is equal to the elements Ekij of the expetation matrixwhih means that the derivatives of all parameters are weighted by the orrespon-dene probabilities of all ski and mj.3.4 Computation of the Observation ParametersIn this setion, the alternated optimizations of the observation parameters {Tk,Ωk}with �xed and known model parameters Θ = {M̄ , vp, λp, n} are desribed in detail.3.4.1 TransformationWe optimize the global riterion (equation (3.13)) with respet to the spatialtransformation Tk, so Ωk and Θ are �xed. Here, the onept of the a�ne EM-ICPregistration desribed elaborately in setion 3.2 is used where the orrespondeneprobabilities Ekij are modeled as hidden variables.1. The Expetation Step:In the expetation step, the transformation Tk is �xed. We ompute the expetanyof the log-likelihood of the omplete data distribution and derive
Ekij = γkij =

exp
(

−
‖ski−Tk⋆mkj‖2

2σ2

)

∑Nm

l=1 exp
(

−‖ski−Tk⋆mkl‖2

2σ2

) , (3.15)ompare equation (3.14).2. The Maximization Step:In the maximization step, the orrespondene probabilities Ek are �xed, andthe transformations Tk have to be determined. Therefore, the global riterion isoptimized �rst with respet to the translation tk and next with respet to the a�neregistration matrix Ak.Optimization with respet to the translationWe optimize the riterion with respet to the translation tk. For the derivative ofthe seond term, the general derivative desribed in equation (3.14) is employed:
∂Ck(Qk,Θ)

∂tk
= +

Nk∑

i=1

Nm∑

j=1

γkij
(ski − Tk ⋆ mkj)

T

σ2

∂(ski − Tk ⋆ mkj)

∂tkwith
∂(ski − Tk ⋆ mkj)

∂tk
=

∂

∂tk
(ski − tk −Ak(m̄j +

n∑

p=1

ωkpvpj
)) = −I3×3.



3.4 Computation of the Observation Parameters 43Solving for ∂Ck(Qk,Θ)
∂tk

= 0, we �nd
1

σ2

Nk∑

i=1

Nm∑

j=1

γkij(ski − tk −Ak(m̄j +

n∑

p=1

ωkpvpj)) = 0whih gives expliitly the transformation
tk = s̃k −Ak



 ˜̄mj +

n∑

p=1

ωkpṽp)



 . (3.16)with̃
sk =

1

Nk

Nk∑

i=1

ski, ˜̄mj =
1

Nk

Nm∑

j=1

m̄j

Nk∑

i=1

γkij and ṽp =
1

Nk

Nk∑

i=1

γkijvpj.This is no more than the superposition of weighted baryentres with weights a bitmore omplex than usual sine the model baryentre inludes a orretion for themodes.Optimization with respet to the a�ne matrixIn order to optimize the riterion with respet to the a�ne matrix Ak, thetranslation tk is replaed as found above (equation (3.16)), so the implementationof the whole transformation derivative beomes simpler. The points of the shapesare now expressed with respet to their baryentres and we set
s′ki = ski − s̃k and m′

kj = m̄j − ˜̄mj +

n∑

p=1

ωkp(vpj − ṽp).The �rst term of the global riterion in equation (3.13) does not ontain transfor-mation parameters, so we an rewrite our riterion to
C ′

k(Qk,Θ) = onst− N∑

k=1

Nk∑

i=1

log





Nm∑

j=1

exp

(

−
‖s′ki −Akm

′
kj‖

2

2σ2

)

 .Then the derivative of C ′
k(Qk,Θ) is solved with respet to Ak. Here, the derivativeform shown in equation (A.2) is used whih simply is:

∂C ′
k(Qk,Θ)

∂Ak
= −

Nk∑

i=1

Nm∑

j=1

γkij
∂

∂Ak

‖s′ki −Akm
′
kj‖

2

2σ2
= 0and whih �nally leads to a matrix equation in the form of

Ak

Nk∑

i=1

Nm∑

j=1

γkijm
′
kjm

′T
kj =

Nk∑

i=1

Nm∑

j=1

γkijs
′
kim

′T
kj

⇔ AkΥk = Ψk, Υk,Ψk ∈ R
3×3.



44 Chapter 3. A Generative Gaussian Mixture Statistial Shape Model(The detailed derivation an be found in appendix A.3.) The elements of Υk and
Ψk in row r and olumn s are determined by

υ[r][s] =

Nk∑

i=1

Nm∑

j=1

γkij m
′
kj[r] m

′
kj[s]and

ψ[r][s] =

Nk∑

i=1

Nm∑

j=1

γkij s
′
ki[r] m

′
kj[s].where m′

kj[s] denotes the entry of vetor m′
kj at position s.Hene, the omputation of the transformation an be e�iently done in a losed-form solution by solving a 3× 3 equation system.3.4.2 Deformation Coe�ientsIn order to ompute the deformation oe�ients Ω = {Ωk}, the global riterion(equation (3.13)) is optimized with respet to the deformation oe�ients Ωk. Thetransformations Tk and the model parameters Θ are �xed. For the derivative ofthe seond term of the riterion, again the general derivative desribed in equation(3.14) is employed. For details please see appendix A.3. We �nally �nd

∂Ck(Qk,Θ)

∂ωkp
=
ωkp

λ2
p

−
1

σ2

Nk∑

i=1

Nm∑

j=1

γkij(ski − T ⋆ mkj)
TAkvpj = 0.In order to simplify, let us introdue the real values dkp and gkqp (with gkqp = gkpq):

dkp =

Nk∑

i=1

Nm∑

j=1

γkij(ski − tk −Akm̄j)
TAkvpjand

gkqp =

Nk∑

i=1

Nm∑

j=1

γkijv
T
qjA

T
kAkvpj.Thus, the system whih has to be solved for the optimal ωkp is (for all p):

σ2

λ2
p

ωkp − dkp +

n∑

q=1

ωkqgkqp = 0.We solve this equation with respet to all ωkp at a time by swithing to a matrixnotation where all ωkp are sorted in vetor Ωk ∈ R
n, all dkp are sorted in vetor

~dk ∈ R
n and all gkpq are sorted in the symmetri matrix Gk ∈ R

n×n:
0 = σ2







1
λ2

1

0. . .
0 1

λ2
n







Ωk − ~dk +GkΩk.

⇔ (Gk +Rnn)Ωk = ~dk (3.17)



3.5 Computation of the Model Parameters 45with matrix Rnn = σ2diag(λ−2
1 , ..., λ−2

n ). In order to ompute the ωkp, for eah kthe matrix Gk and the vetor ~dk have to be evaluated. In the implementation, thelinear equation system is solved using a LU deomposition of (Gk +Rnn).3.5 Computation of the Model ParametersFor the omputation of all model parameters, we assume the observation parameters
Qk = {Ωk, Tk} to be �xed and known and optimize the global riterion of equation(3.13) with respet to the parameters in Θ with Θ = {M̄ , vp, λp}.3.5.1 Mean ShapeWe optimize the global riterion (equation (3.13)) with respet to the mean shape M̄ ,so the standard deviation λp, the variation modes vp and the observation parameters
Qk are �xed. We evaluate the derivative for eah mean shape point m̄j. The �rstterm of the global riterion in equation (3.13) does not ontain any mj, so weonentrate on the seond term. Using the general derivative presented in equation(3.14), we diretly �nd

∂Cglobal(Q,Θ)

m̄j
= +

N∑

k=1

Nk∑

i=1

γkij
(ski − Tk ⋆ mkj)

T

σ2

∂(ski − Tk ⋆ mkj)

∂m̄j
= 0.We �nally solve for mj by

m̄j =

(
N∑

k=1

Nk∑

i=1

γkijA
T
kAk

)−1 N∑

k=1

Nk∑

i=1

γkijA
T
k (ski − tk −Ak

n∑

p=1

ωkpvpj) (3.18)whih is derived in detail in appendix A.3. We see that the mean shape pointsare omputed as the average of all observation points whih are weighted by theirrespetive orrespondene probabilities γkij .3.5.2 Standard DeviationWe optimize the global riterion (equation (3.13)) with respet to the standarddeviation λp, so M̄, vp and Qk are �xed. The derivative in this ase is quite easy:
∂Cglobal(Q,Θ)

∂λp
=

N∑

k=1

(

1

λp
−
ω2

kp

λ3
p

)

= 0

⇔ λ2
p =

1

N

N∑

k=1

ω2
kp. (3.19)This is onsistent with the ML estimation of the standard deviation based on anormal distribution.



46 Chapter 3. A Generative Gaussian Mixture Statistial Shape Model3.5.3 Variation ModesWe optimize the global riterion (equation (3.13)) with respet to the variationmodes vp, so all λp, M̄ and Qk are �xed. As we are working with a matrix notation,we �rst de�ne the matrix V ∈ R
3Nm×n ontaining the variation modes vp ∈ R

3Nmin its olumns. The omputation of the variation modes is omplex, for one as ishas to be made sure that the resulting vetors are orthogonal to eah other:
vT
p vq = δpq =

{
1 if p = q
0 if p 6= qwhih leads to the onstraint

V TV = In×n.In order to integrate this onstraint into the optimization, we employ Lagrangemultipliers. This means that a new variable Z ∈ R
n×n is introdued with a Lagrangefuntion Λ where

∂Λ

∂Z
= 0 ⇔ V TV = In×nand our global riterion is extended to

Λ = Cglobal +
1

2
tr
(
Z(V TV − In×n)

)
. (3.20)We di�erentiate the two terms independently and point-wise. Here, vjp ∈ R

3 denotethe elements of vp whih model the variation of model point mj . We begin with thederivative of Cglobal. :
∂Cglobal

∂~vjp
= −

1

σ2

N∑

k=1

Nk∑

i=1

γkij(ski − Tk ⋆ mkj)
T ωkpAkIn order to simplify the notation for larity purposes, in the following we denote

∂Cglobal

∂~vjp
=

n∑

q=1

Bpqj~vjq − ~qjpwith
~qjp =

1

σ2

N∑

k=1

Nk∑

i=1

γkij(ski − tk −Akm̄j)
T ωkpAk, qjp ∈ R

3and
Bpqj =

1

σ2

N∑

k=1

Nk∑

i=1

γkijωkqωkpA
T
kAk, Bpqj ∈ R

3×3 ∀j.Di�erentiating the Lagrange multiplier with respet to ~vjp gives
∂

∂~vjp

1

2
tr
(
Z(V TV − In×n)

)
=

∂

∂~vjp

1

2
tr
(
ZV TV

)

=
n∑

q=1

1

2
(zqp + zpq)~vjq with zqp = zpq.



3.5 Computation of the Model Parameters 47We now summarize the derivative to
∂Λ

∂~vjp
=

n∑

q=1

zqp~vjq +
n∑

q=1

Bpqj~vjq − ~qjp. (3.21)In the rigid ase, Ak is a rotation matrix - and thus orthonormal - so it holds
AT

kAk = I3×3. The matrix Bpqj an then be written as the identity matrix multipliedby a salar: Bpqj = bpqjI3×3 with bpqj = 1
σ2

∑N
k=1

∑Nk

i=1 γkijωkqωkp. Hene we ansimplify the solution of ∂Λ
∂~vjp

= 0 to a vetor summation:
n∑

q=1

(zqpI3×3 + bpqjI3×3)~vjq = ~qjp ⇔

n∑

q=1

~vjq(zqp + bpqj) = ~qjp (3.22)This equation annot be extended to a matrix notation in order to ompute all ~vjp atthe same time beause we deal with a di�erent bpqj for eah point j, thus, B wouldbe a tensor. Therefore, we approah the problem regarding eah band [V ]{j} ∈ R
3×nof matrix V ∈ R

3Nm×n separately with
[V ]{j} = [~vj1, ..., ~vjq, ..., ~vjn].There are Nm bands [V ]{j}.Now we an write equation (3.22) in a matrix notation
[V ]{j} (Bj + Z) = [Q]{j}.with the matrix Bj ∈ R

n×n holding the bpqj and the matrix [Q]{j} ∈ R
3×n holdingthe ~qjp. The omputation of eah band [V ]{j} is then realized in an iterativemanner as follows:1.) If Z is known we an ompute V : [V ]{j} = [Q]{j} (Bj + Z)−1 .2.) If all [V ]{j} are known, we an determine Z: [V ]{j}Z = [Q]{j} − [V ]{j}Bj ∀j.For readability reasons, we set [Q]{j} − [V ]{j}Bj = [Q̃]{j}. Looking at all jsimultaneously, we �nd the following matrix equation

V Z = Q̃.with V ∈ R
3Nm×n, Z ∈ R

n×n and Q̃ ∈ R
3Nm×n.For the implementation, we add two steps. First, we fore the V resulting fromstep 1.) to be orthonormal. To do so, we apply �rst a singular value deomposition

V = USRT with U ∈ R
3Nm×n, S ∈ R

n×n and R ∈ R
n×n. Then we replae V withits orthonormal parts V ← URT .Next, we want Z to be symmetri. Hene, instead of omputing Z = V T Q̃ weompute

Z =
1

2

(

V T Q̃+ (V T Q̃)T
)

.Finally, the optimization of the global riterion with respet to ~vjp is done as follows:We iterate



48 Chapter 3. A Generative Gaussian Mixture Statistial Shape Model1. Compute Q̃ with bands [Q̃]{j} = [Q]{j} − [V ]{j}Bj.2. Compute Z̃ = V T Q̃ and Z = 1
2(Z̃ + Z̃T ).3. Update V band per band: [V ]{j} = [Q]{j} (Bj + Z)−1.4. Modify V = USRT to be orthonormal: V ← URT .until ‖V t+1 − V t‖2 ≤ ǫ.In the a�ne ase, it holds AT

kAk 6= I3×3, so the solution to ∂Λ
∂~vjp

= 0 is abit more umbersome as Bpqj is not a diagonal matrix anymore and not sparse.In the following, the general approah is explained. For all j and all p we want tosolve
n∑

q=1

(zqpI3×3 +Bpqj)~vjq = ~qjp ⇔

n∑

q=1

B̃pqj~vjq = ~qjp. (3.23)For a matrix notation, we arrange the elements of the variation modes vp in thevetors [V̂ ]{j} ∈ R
3n with

[V̂ ]{j} =











~vj1...
~vjq...
~vjn











.

Then we arrange the matries B̂pqj in [Bj ]pq ∈ R
3n×3n:

[Bj ]pq =











B̂11j . . . B̂1qj . . . B̂1nj... . . . ... . . . ...
B̂p1j . . . B̂pqj . . . B̂pnj... . . . ... . . . ...
B̂n1j . . . B̂nqj . . . B̂nnj











,

so we obtain the following linear system to solve:
[Bj]pq[V̂ ]{j} = [Q̂]{j}Again we realize the omputation iteratively by solving alternately for Z and for

V . In pratie, after a �rst rough alignment of the observations, the values of
AT

kAk ome lose to the identity matrix, so the rigid variant of the variation modeomputation an be employed whih is faster.



3.6 Pratial Aspets 493.6 Pratial Aspets3.6.1 Initialization and Control of the ParametersAs the omputation of the observation parameters is based on known model param-eters Θ = {M̄, vp, λp}, the mean shape M̄ is initialized with one of the observations
Sk in the given data set, preferably with a typial shape. Next, by applying the EM-ICP registration, the resulting orrespondene probabilities between M̄ and eah Skare evaluated, and �virtual� one-to-one orrespondenes are determined. We intro-due the virtual orresponding points s̆kj for eah mj and eah Sk by evaluating themean position of the probabilisti orrespondenes:

s̆kj =

Ns∑

i

E(Hkij
)

∑

iE(Hkij
)
(T−1

k ⋆ sik). (3.24)The s̆kj represent probable sampling points of an unknown underlying surfae ofobservation Sk. We ompute a set of s̆kj for eah Sk. The resulting sets of assumedexat orrespondenes (T ⋆mj, s̆kj) are then used as input for the Prinipal Compo-nents Analysis to ompute the initial eigenvetors vp and the initial eigenvalues λp.For a detailed explanation of the omputation see setion 3.6.2. The observationparameters Q = {T,Ω} are initialized with Ak = I3×3 and tk = (0, 0, 0) for all k forthe transformation and with ωkp = 0 for all k and all p.In order to test for the sensibility of our SSM omputation with respet to the initialmean shape, we ompared the mean shape results whih are obtained when usingdissimilar initial mean shapes M1 and M2. We established that M1 an be gen-erated based on the SSM found with M2 with statistially very small deformationoe�ients ω1p: M1 = M2 +
∑

p ω1p~vp with ω1p << λ2p [Hufnagel 2007b℄.As the aim is to �nd a good balane between omplexity and simpliity of the model,the dimension of the variation mode vetor spae is redued during the iterated om-putation of the parameters. If the standard deviation λp beomes �too small�, theassoiated variation modes vp are no longer taken into aount. This does sarelyin�uene the onvergene rate of the global riterion as shown in �gure 3.10.3.6.2 Solving for the Initial Variation ModesA training data set ontaining N observations Sk with a �xed number Nm of virtualorresponding points is leared of the mean and then stored in the matrix B ∈
R

3Nm×N . In order to ompute the prinipal omponents, the assoiated ovarianematrix is built with Cov(B) = BBT ∈ R
3Nm×3Nm , and a eigenvalue deompositionis performed:

BBT = ESETwhere S ∈ R
3Nm×3Nm is a diagonal matrix whih ontains the eigenvalues of BBTand E ∈ R

3Nm×3Nm is an orthogonal matrix ontaining the assoiated eigenvetors.However, for representing an organ like e.g. the kidney with a reasonable amountof details, at least Nm = 3000 points (if evenly distributed) are neessary, thus,
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Figure 3.10: Global riterion values of SSM omputation for syntheti ellipsoid dataset as illustrated in setion 4.2.1.1. Sine variation modes whose standard devia-tion falls below a ertain threshold are disarded, the number n of variation modesdiminishes from 10 to 7 during omputation.the system to solve beomes very large with Cov(B) ∈ R
9000×9000 and is not sparse.Therefore, we apply an alternative solution to the standard eigenvalue deompositionand employ the Singular Value Deomposition (SVD) of B:

B = UΣV T (3.25)with U being an orthogonal matrix U ∈ R
3Nm×3Nm , V T being the transpose of theorthogonal matrix V ∈ R

N×N and Σ being a diagonal matrix Σ ∈ R
mxn with thesingular values σi on the diagonal. Now we use these omponents to represent BBTresulting in

BBT = UΣV TV ΣTUT = UΣΣTUT = ESET . (3.26)We see that U holds the sought eigenvetors of the big system as U = E while ΣΣThold the eigenvalues of the ovariane matrix. Using the singular value deompo-sition means that we never need the spae 3Nm × 3Nm to ompute the ovarianematrix. Moreover, the SVD is numerially more stable than the eigenvalue de-omposition and therefore more aurate if the ovariane matrix is ill-onditioned[Kalman 1996℄. For a detailed derivation of eigenvalue and singular value deompo-sition please refer to setion A.1.3.7 Extension of the Criterion for Non-Convex Stru-turesThe EM-ICP algorithm works very well for shapes whih are onvex. Conave shapeshowever pose a problem as points whih lie lose to one another do not neessarilybelong to the same part of the shape. However, their orrespondene probabilitywill be high aording to the EM-ICP. For an example see �gure 3.11 whih showsthe left ventrile of the heart and an illustrative syntheti struture.
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a) b)Figure 3.11: Non-onvex strutures. a) The left ventrile of the heart is an examplefor a non-onvex organ struture (Image ourtesy of Dennis Säring [Säring 2009℄).b) Syntheti examples: Points whih lie lose to one another do not neessarilybelong to the same part of one shape. More information than the Mahalanobis dis-tane is needed in order to determine the orret orrespondene for point mj in thisillustrated ase.3.7.1 Integration of NormalsFor non-onvex shapes, an additional information is needed about the shape along-side the Mahalanobis distanes used in the EM-ICP. When looking at the �gure3.11, what easily omes to mind is the distintion of the diretion the surfae isfaing. Therefore, the normal information is integrated into the global riterion toobtain small probabilities of orrespondene between points whih feature normalsshowing in very di�erent diretions.Let us denote the normalized normal belonging to point si as ηsi and the normalizednormal belonging to point mj as ηmj . We ould now either measure the di�erenebetween the normals by analysing the angle between them or just by using the Eu-lidean norm ‖ηsi− ηmj‖. Before omparing the normals, the transformation T hasto be applied to the normal vetor. This is done by multiplying the inverted andtransposed transformation matrix with the normal vetor. The translation is notneeded: T ⋆ ηmj = (A−1)T ηmj . Next, a renormalization of the normal is done, so inour ase T ⋆ ηmj =
(A−1)T ηmj

|(A−1)T ηmj | . A small di�erene means high probability, so we ex-tend the term of the EM-ICP given in equation (3.11) to obtain the orrespondeneprobability of point si with respet to the transformed point mj by
p(si|T,mj) =

1

const
exp(−

‖si − T ⋆ mj‖
2

2σ2
) exp(−

‖ηsi − T ⋆ ηmj‖

2σ2
η

).The orrespondene probability relying on additional (normal) information betweentwo points an be diretly integrated in the global riterion. The elements of theexpetation matrix and therefore the values γkij in the derivatives simply hange to
γη
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52 Chapter 3. A Generative Gaussian Mixture Statistial Shape ModelOnly the omputation of the transformation matrix beomes more ompliated asthe derivative of the normal term has to be taken into aount.3.7.2 Estimating Normals for Unstrutured Point CloudsThe omputation of normal vetors for a ontinuous surfae is straightforward. How-ever, the omputation of normals for a non-oriented unstrutured point loud provesto be more di�ult as no onnetivities between the points exist. Therefore, addi-tional information as onnetivity or tangential planes have to be estimated.Often, numerial tehniques as �rst proposed in [Hoppe 1992℄ and then extendedin e.g. [Pauly 2003, Mitra 2004℄ are used. Basially, for eah point in the pointloud a normal is estimated by �rst omputing a tangential plane whih is obtainedby applying the Least-Squares method to the k nearest neighbours. The normalis then omputed as the vetor perpendiular to that plane. Another main ap-proah is a ombinatorial one based on Voronoi/Delaunay properties as proposedby [Amenta 1999℄ for noise-free data and then extended by e.g. [Dey 2004℄ to noisydata.An interesting approah omputes the normals in a probabilisti framework as shownin [Granger 2003℄. It is based on the aspet that the spae of normals forms a di�er-ential manifold analogous to a sphere. The omputation of normals for an unstru-tured point loud is then done following a rigorous mathematial notion on randomnormal statistis [Penne 1996℄. The probability for a normal ~ns at point s knowingthe position of a neighbouring point si at distane d is given by p(~ns|s, si) = p(|φ|, d)with φ being the angle between the normal and the segment ssi. For an illustrationsee �gure 3.12. This probability is synthesized by a tensor formulation and �nallyleads to the following algorithm for omputing all normals of a point loud:For eah point si:
• Determine a number of losest neighbours sj using a kD-tree.
• Compute the tensor T =

∑

j exp(−4a2|sisj|)
sisj

|sisj |(
sisj

|sisj |)
T where a2 representsthe angular dispersion of the normal for a distane of 1mm.

• Determine eigenvetors and eigenvalues of T .
• Normal ~nsi

equals eigenvetor with greatest eigenvalue.Another feasible approah for establishing normal information is to exploit imageinformation of the observations if available. For organs whose grey values at theboundary learly di�er from those of the bakground, a gradient image is omputed.Following that, a normal is automatially estimated for eah point of the observationbased on the gradient information. An example is illustrated for the approximationof normals for the left ventrile in an MR image, see �gure 3.13.3.8 DisussionIn this hapter, a novel algorithm was developed to ompute a generative GaussianMixture statistial shape model whih is based on a sound mathematial framework.
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s

d φ

~ns

siFigure 3.12: The most probable normal diretion for point s is omputed knowingthe positions of the neighbours si.

Figure 3.13: Estimation of normals using image information.The omputation of the SSM is realized as an optimization problem: An algorithmis proposed to optimize for model parameters and observation parameters througha single maximum a posteriori riterion whih led to a mathematially sound anduni�ed framework. Closed form solutions were e�etually derived for optimizing theassoiated riterion alternately for almost all parameters. From a theoretial pointof view, a very powerful feature of the method is that we are optimizing a uniqueriterion. Thus, theoretially the onvergene is ensured. In pratie, the onver-gene rate has to be adapted to the problem at hand as e.g. a too fast derease ofthe multi-sale variane σ2 might freeze the model in loal minima. As opposedto most approahes in the literature, no prinipal omponent analysis is employed.SSM omputation methods whih rely on one-to-one orrespondenes and performa PCA on the assoiated ovariane matrix ompute a number of eigenmodes whihmodel both shape variation and noise. In order to disard the noise-related vari-ations from the �nal variability model, eigenmodes with small eigenvalues are nottaken into aount. This is largely an heuristi method. In ontrast, in the pre-sented GGM-SSM the variation modes only model the shape variation as the noiseis represented separately through the Gaussian Mixture.Furthermore, the GGM-SSM does not need one-to-one point orrespondenes butrelies solely on point orrespondene probabilities for the omputation of mean shapeand variation modes. Therefore, elaborate preproessing of the observations in thedata set to establish orrespondenes beomes obsolete, no questionable orrespon-denes between point louds representing surfaes are assumed, and the numberof points in the observation shapes may vary. The approah an be used for non-



54 Chapter 3. A Generative Gaussian Mixture Statistial Shape Modelspherial surfaes and an be adapted to appliations on data sets with di�erenttopologies as the onnetivity between points does not play a role.At the moment, all points of the observations are equally inluded into the ompu-tation of the model. However, the orresponding matrix omputed by the EM-ICPregistration ontains information about the probability for eah point of an obser-vation to orrespond to any of the points of the model. For future appliations, aweighting of the in�uene of observation points on the �nal result might be inter-esting, e.g. in order to redue the in�uene of outliers. The same applies to pointsets whih are not evenly distributed over the estimated surfae. In that ase, re-gions ontaining relatively many points exert a higher amount of impat on theomputation of the registration transformation than regions with fewer points. Thisbehaviour is very helpful when shape details should be modeled but for other asesit might not be desirable and ould be balaned by assigning a weight to eah point.A main advantage of working with point-based shape representation is the simpliityof the resulting model with respet to its power. In the literature however, rathersurfae-based models are applied as the surfae o�ers additional information aboutthe boundary of the shape. Here it has to be kept in mind that the quality ofthe surfae information they use depends on image quality and on the segmenta-tion method. In order to expose advantages and limits of the new model omparedto state-of-the-art models, its performane has to be ompared to other statistialshape models for di�erent kinds of appliation. An elaborate evaluation is performedin hapter 4.



Chapter 4Evaluation of the GGM-SSM
Contents4.1 Performane Measures . . . . . . . . . . . . . . . . . . . . . . 554.2 Comparison to an ICP-SSM . . . . . . . . . . . . . . . . . . . 594.3 Comparison to ICP-SSM and MDL-SSM . . . . . . . . . . . 694.4 Unsupervised Classi�ation . . . . . . . . . . . . . . . . . . . 744.5 Disussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75In this hapter, the GGM-SSM method is submitted to an extensive evaluation.The aim is to quantitatively ompare its performane to other SSM methods inthe literature and to gather knowledge about its behaviour and harateristis fordi�erent types of shapes. In setion 4.1, the performane measures whih are om-monly used to assess the quality of SSMs are presented and disussed, and severaldistane metris that are suited for point-based SSMs are introdued. Followingthat, the performanes of the GGM-SSM and a lassial ASM method for unstru-tured point sets are ompared on di�erent syntheti and real training data in setion4.2. Setion 4.3 is dediated to an evaluation of the GGM-SSM in omparison toa MDL-based approah. In setion 4.4 it is demonstrated on a real data examplehow the GGM-SSM an be used for automati shape lassi�ation. This hapteris onluded with a ritial onsideration of the advantages and weaknesses of thedeveloped model (setion 4.5).4.1 Performane Measures4.1.1 Assessing SSM QualityIn order to assess the quality of a given statistial shape model, an obje-tive performane measure is needed. The measures introdued in the PhD the-sis of R.H. Davies in 2002 have beome a ommon standard in the ommunity[Davies 2002b, Styner 2003, Heimann 2005℄. A good SSM is expeted to1. be able to model formerly unseen shapes of the same shape lass.2. only deform to plausible shapes when deformed in the shape spae spannedby the variation modes and onstrained by the standard deviations.The �rst requirement is alled generalization ability. The generalization ability in-diates how well a SSM is able to math new - that is unknown - shapes. This isimportant e.g. when using the SSM to segmentation problems. The generalization



56 Chapter 4. Evaluation of the GGM-SSMability is tested in a series of leave-one-out experiments where it is analysed howlosely the SSM mathes an unseen observation. This is done in two steps: First, theoptimal a�ne transformation is omputed to align the shapes in spae. Seondly,the optimal deformation oe�ients are determined and used to deform the alignedSSM in order to optimize the mathing. Finally, the distane of the deformed SSMto the left-out observation is measured.The seond requirement is alled spei�ity. The spei�ity indiates if the modeledvariability in the SSM atually is a variability found in the training data set. Inother words, the model should not be able to generate illegal shapes. For estimatingthe spei�ity, a high number of random shapes has to be generated by submittingthe mean shape of the SSM to random deformations in the shape spae spannedby the variation modes. Therefore, random deformation oe�ients are generatedunder a uniform distribution with zero mean and varianes equal to the squaredstandard deviation of the respetive SSM. Then, the distane of the random shapesto the respetive most similar observation in the training data set is measured.In pratie, these performane measures quantify the quality of a SSM in termsof orrespondene evaluation. This sometimes poses a problem for several reasons:First, usually no ground-truth shape orrespondenes are availabe for medial im-age objets. Seondly, the measures depend on the point distribution on the shapes.Due to di�erent SSM methods, the points representing the �nal SSMs will not bepositioned at the same loations. Therefore, the variability model will not ap-ture the same shape variations. This problem is ampli�ed when omparing SSMsbased on di�erent numbers of points as a SSM with a greater number of points isnaturally able to model more variation. These and other shortomings of the per-formane measures were reently addressed in the work of Erisson and Karlssonwho propose manually set ground-truth orrespondene measures [Erisson 2007℄in an attempt to remedy the problems. They generate syntheti examples whihdemonstrate learly that better performane measures do not neessarily mean bet-ter SSM. Espeially for ases where one SSM models more variability - e.g. on ahigher detail level - than a seond SSM, the spei�ity measure does not re�et thebetter quality of the �rst SSM.To exemplify, let us regard a data set where some of the observations feature anose-like shape and other do not (�gure 4.1(a)). Let us assume that SSM 1 is ableto apture this detail in one of its variation modes but SSM 2 fails to do so (�g-ure 4.1(b,)). During the test series for spei�ity, SSM 1 will probably produeseveral shapes with noses (e.g. shown in �gure 4.1(d)) - as these exist in the shapespae spanned by its variation modes - whereas SSM 2 will not. Instead, SSM 2will produe shapes with less variability (e.g. shown in �gure 4.1(e)). Naturally, thedistanes of the deformed mean shapes with prominent shape details to the obser-vations in the training data set are greater than those of the shapes generated bySSM 2 as illustrated in �gure 4.1(f,g). Therefore, we deem the performane measure'spei�ity' to be not very well suited for measuring the quality of a SSM regardingshape details whih do not our in all observations. Generally, it has to be kept inmind that the realisti quality of a SSM always depends on its �eld of appliation.For example, a SSM that is very well suited for segmentation tasks does not nees-sarily perform well in lassi�ation tasks.
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a)
b)

)
d) e)

f) g)Figure 4.1: Inoherent spei�ity example in 2D. a) Some observation examples ofthe training data set. b) SSM 1, the variability of the prominent feature in thetraining data set is aptured. ) SSM 2 fails to apture the prominent feature in thetraining data set. d) Deformed mean shape in shape spae spanned by the variationmodes of SSM 1. e) Deformed mean shape in shape spae spanned by the variationmodes of SSM 2. f) Distane of deformed mean shape of SSM 1 to observations intraining data set is measured. The Hausdor� distane is great due to the prominentfeature. g) Distane of deformed mean shape of SSM 1 to observations in trainingdata set is measured. The Hausdor� distane is smaller than the one of SSM 1.



58 Chapter 4. Evaluation of the GGM-SSMIn the following experiments, the generalization ability and - for the sake of om-pleteness - also the spei�ity measures are evaluated.4.1.2 Distane MeasuresAmetri suited to evaluate the performane measures of a SSM obviously depends onthe representation of the shapes. As in this work the shape surfaes are representedby point louds, the distanes are omputed based on point oordinates. In orderto quantify the distane between two shapes S and M , an intuitive measure is theaveraged Eulidian distane between all orresponding points:
d2

CP (S,M) =
1

NS

NS∑

i=1

‖si −mi‖
2with NS being the number of points of S andM . However, in the GGM-SSM no one-to-one orrespondenes are omputed. Hene, the distane d from an observation Skwith Nk points ski to the deformed mean shape Mdef with Nm points mj is de�nedas the square root of the normalized sum of squared di�erenes (SSD) with

d2(Sk,Mdef ) =
1

Nk

Nk∑
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‖ski −mki‖
2where mki = arg minmj

‖ski−mj‖. This distane measure is not symmetri, hene,we also ompute
d2(Mdef , Sk) =

1

Nm

Nm∑

j=1

‖skj −mj‖
2where skj = arg minski

‖ski − mj‖. In addition, the maximum distane
dmax(Sk,Mdef ) is omputed as the maximal minimal distane found from Sk toMdeffor ‖ski −mki‖ with mki = arg minmj

‖ski −mj‖ and respetively dmax(Mdef , Sk).The Hausdor� distane is then
H(Sk,Mdef ) = max (dmax(Sk,Mdef ), dmax(Mdef , Sk)) .This symmetri measure is espeially useful for evaluating SSMs on data sets wheresome observations feature di�erent shape details than others.Obviously, the measures de�ned above depend on the loseness of points after the�tting whih does not neessarily always represent the atual shape similarity. Forexample, di�erent distributions of landmarks over the estimated surfae of the obser-vations might a�et the results. A more independent method would be to measurethe volume overlaps between the �tted shapes. However, as the GGM-SSM is basedon unstrutured point sets, a binary representation an only be approximated foreah shape. This is done when omparing the GGM performane to the perfor-mane of an MDL-based SSM in setion 4.3. Here, the Jaard oe�ient is usedto ompute the symmetri overlap of shape volumes A and B:

CT =
|A ∩B|

|A ∪B|
.



4.2 Comparison to an ICP-SSM 59It has to be kept in mind however that the Jaard oe�ient does not re�et wellif shape details - whih do not ontribute muh to the overall volume - are modeledor not.For omputing the distanes between a SSM and a given observation, �rst the meanshape of the SSM is aligned with the observation. Then, the optimal deformationoe�ients have to be omputed. For the GGM-SSM, this is done by optimizingequation (3.13) with respet to the deformation oe�ients ωp. Here, k = 1 and
S1 equals the observation in question. The resulting oe�ients are used to deformthe aligned SSM in order to optimize the mathing. Finally, the distane of thedeformed SSM to the observation is measured.4.2 Comparison to an ICP-SSMIn this setion the performane of the GGM-SSM is evaluated in omparion with an-other SSM whih is also based on unstrutured point sets. As opposed to the GGM-SSM, the heneforward alled ICP-SSM relies on one-to-one orrespondenes. It isbased on the lassial ASM approah applied to unstrutured point sets representedby varied numbers of points. The ICP-SSM is omputed as follows:1. The observations in the training data set are aligned with an initial meanshape employing a�ne Iterative Closest Points (ICP) registrations. (For thealgorithm see setion 2.2.1.) The ICP mathes the observations and determinesorrespondenes simultaneously. The orrespondenes are expliitely given bythe nearest neighbour for eah point.2. The mean shape is omputed on the aligned observations. Registration andmean shape omputation are iterated. For the data sets used in pratie wefound that after 2 or 3 iterations, the mean shape does not hange signi�antlyanymore.3. A prinipal omponent analysis is performed on the aligned data set to de-termine the eigenmodes and the eigenvalues. Here, a SVD is applied on theovariane matrix leared of the mean.The omputation of a distane between ICP-SSM and a given observation followsthe same proedure as explained for the GGM-SSM in setion 4.1.2. Here, thedeformation oe�ients ωp are omputed by solving the linear system of equation(2.2) where M equals the observation in question.The performanes of the two SSM omputations are evaluated on three di�erentsyntheti data sets in setions 4.2.1 and 4.3 and on a real data set ontaining brainstrutures in setion 4.2.2.4.2.1 Syntheti Data4.2.1.1 EllipsoidsThe determination of orrespondenes between unstrutured point sets is espeiallydi�ult when one shape features a ertain struture detail and the other one does
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a)

b)
)

d)
1 2 1 2

ICP EM−ICPFigure 4.2: a) Observation examples of a syntheti training data set featuring twodistintive shape lasses (ellipsoids with bump and ellipsoids without bumps). b,)Results of a SSM built on exat orrespondenes (ICP-SSM)(b) and of a SSM built onorrespondene probabilities (GGM-SSM)() for the training data. For both SSMs,the mean shape (middle), and the mean shape deformed with respet to the �rsteigenmode (M̄−3λ1~v1 (left) and M̄+3λ1~v1 (right)) are depited. d) One-to-one or-respondene versus orrespondene probabilities. Left: ICP registration, eah pointon ontour 1 orresponds to the losest point on ontour 2. Right: EM-ICP regis-tration, eah point on ontour 1 orresponds with a ertain probability to all pointson ontour 2.



4.2 Comparison to an ICP-SSM 61Table 4.1: Ellipsoid shape results. Shape distanes found in generalization experi-ments (leave-one-out tests) with ICP-SSM approah and with GGM-SSM approah.The distanes and assoiated standard deviations are given in cm.ICP-SSM GGM-SSMmean distane target to soure 0.207 ± 0.048 0.139 ± 0.032mean distane soure to target 0.214 ± 0.058 0.125 ± 0.030maximal distane target to soure 0.431 ± 0.036 0.415 ± 0.042maximal distane soure to target 0.567 ± 0.186 0.380 ± 0.044Table 4.2: Ellipsoid shape spei�ity results on 100 random shapes found with ICP-SSM approah and with GGM-SSM approah. The average distane from the ran-domly deformed mean to the respetive losest observation is measured. The dis-tanes and assoiated standard deviations are given in cm.ICP-SSM GGM-SSMaverage distane 0.102 ± 0.003 0.160 ± 0.022not. For an experimental evaluation, a training data set is generated ontaining twodistintive shape lasses. The data set onsisted of 9 ellipsoids featuring a bumpand 9 ellipsoids without bump. Their sizes as well as the bump sizes and their 3Drotations in spae varied. For several observation examples, see �gure 4.2(a). Thelong axes measure around 70mm. The observations are represented by 276 − 337points respetively, and the point distanes average 0.24mm. The GGM-SSM aswell as the ICP-SSM are omputed for these data. For the omputation of theGGM-SSM, the following parameters were hosen: σstart = 0.5mm, redutionfator = 0.7, 7 iterations (EM-ICP multi-saling) with 15 SSM iterations. For theICP-SSM, the ICP is iterated 40 times. Then the tests for generalization ability areperformed in a series of leave-one-out experiments. The spei�ity for both modelswas tested using 100 randomly generated shapes.Results: The respetive mean shapes and deformations aording to the�rst mode of variation for the GGM-SSM as well as the ICP-SSM are illustrated in�gure 4.2(b,). Clearly, the GGM-SSM models the bump of the ellipsoids in its �rstmode of variation while the ICP-SSM fails to do so. Quantitatively, this is bakedup by the results obtained in the evaluation of the performane measures. Thevalues of the generalization ability are depited in table 4.1 for both SSMs. Themean distanes of the left-out observation to the respetive �tted SSM are about
35% smaller for the GGM-SSM (0.139cm and 0.125cm) than for the ICP-SSM(0.207cm and 0.214cm). Also the omparatively great Hausdor� distanes indiatethat the ICP-SSM is not able to suessfully model the bump on the ellipsoidshapes.The results for the spei�ity are depited in table 4.2. The average distanes of therandomly deformed GGM-SSM mean shape to the respetively losest observationin the training data set are a bit higher than the average distanes of the ICP-SSM.As a visual inspetion as well as the generalization ability values strongly indiatethe superior performane of the GGM-SSM on the given data, these spei�ity
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Figure 4.3: Four observation examples of a syntheti training data set featuring bagelshapes, shown from above and from the side.results orroborate the problems onerning the spei�ity measure as disussed insetion 4.1.1.The GGM-SSM based on the EM-ICP models the whole data set, it is able torepresent the ellipsoids featuring a bump and those without as that deformationinformation is inluded in its variability model. The SSM based on the ICP howeveris not able to model the bump. This is due to the fat that the ICP only takes intoaount the losest point when searhing for orrespondene. Thus, the points ontop of the bump are not neessarily involved in the registration proess and do notontribute to the variability model. The EM-ICP, on the other hand, analyzes theorrespondene probability of all points, therefore, also the points on top of thebump are taken into aount. These two onepts are illustrated in �gure 4.2(d).4.2.1.2 Bagel ShapesAnother interesting problem regarding statistial shape models are shapes featuringnon-spherial surfaes. Here, the aim is to evaluate the performane of theGGM-SSM on shapes with genus 1 topology. In the ase of a simple ring torus, thesurfae an be reated in Eulidean spae by revolving a irle about an axis in itsplane. Non-spherial shapes annot be modeled by all urrent SSM omputationmethods, e.g. the SPHARM and the MDL approahes (setion 2) work exlusivelyfor spherial topologies.For the generation of the data set, the rotation axes did not neessarily lie in aplane. Furthermore, the inner and outer radii from observation to observation arevaried whih means that our bagel shapes are not radially symmetri. For someobservation examples see �gure 4.3. A syntheti data set was generated ontaining15 observations. The observations are represented by 332 − 512 points, theirbounding boxes measure about 1500 × 1500 × 500mm3 and the point distanesaverage 82mm. The GGM-SSM as well as the ICP-SSM are omputed for thesedata. For the omputation of the GGM-SSM, the following parameters were hosen:



4.2 Comparison to an ICP-SSM 63Table 4.3: Torus shape generalization results. Shape distanes found in general-ization experiments with ICP-SSM approah and with GGM-SSM approah. Thedistanes and assoiated standard deviations are given in mm.ICP-SSM GGM-SSMmean distane target to soure 41.47 ± 6.42 31.08 ± 15.01mean distane soure to target 38.25 ± 5.18 29.34 ± 12.68maximal distane target to soure 87.73 ± 11.10 77.83 ± 31.09maximal distane soure to target 109.05 ± 35.14 75.04 ± 25.36Table 4.4: Torus shape spei�ity results on 500 random shapes found with ICP-SSM approah and with GGM-SSM approah. The distanes and assoiated standarddeviations are given in mm. ICP-SSM GGM-SSMaverage distane 45.95 ± 2.52 33.82 ± 5.47

σstart = 100mm, redution fator = 0.9, 5 iterations (EM-ICP multi-saling) with15 SSM iterations. Then the tests for generalization ability were performed in aseries of leave-one-out experiments. The spei�ity for both models was testedusing 500 randomly generated shapes.Results: The mean shape as well as the deformations aording to the �rsttwo variation modes of GGM-SSM and ICP-SSM are displayed in �gure 4.4.As an be seen, the �rst variation mode prinipally models the thikness of thebagel while the seond variation mode mainly model its �exion. The quantitativeevaluation results for the generalization ability are shown in table 4.3. The valuesshow a better generalization ability for the GGM-SSM than for the ICP-SSM asthe mean distanes are more than 30% smaller. The Hausdor� distanes showthat apparently the GGM-SSM (75.04mm) aptured more shape variation thanthe ICP-SSM (109.05mm). An illustration is shown in �gure 4.5. The �exion inthe bagels seems to lead to erroneous orrespondenes in the ICP-SSM. Lookingloser at the leave-one-out series, it ould be established that espeially the bagelshapes of whih the axes do not lie in planes are mathed better by the GGM-SSM.This is illustrated in �gure 4.6 with an example. The results for the spei�ityevaluation are depited in table 4.4. The spei�ity values are a little better for theGGM-SSM than for the ICP-SSM.
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a)
b)
)
d)Figure 4.4: SSM results for bagel data set. GGM-SSM (a,) and ICP-SSM (b,d)deformations to �rst (a,b)and seond (b,) variation mode: Mean shape (middle),and mean shape deformed aording to variation modes, left: M̄ − 3λp~vp and right:

M̄ + 3λp~vp.
a) b)Figure 4.5: Shemati illustration of modeled amount of �exion. Deformations a-ording to seond variation mode for ICP-SSM (a) and GGM-SSM (b). A higheramount of �exion seems to be modeled by the GGM-SSM.
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a) b) )Figure 4.6: Generalization ability example for one left-out observation with highamount of �exion. a) Left-out observation featuring high amount of �exion. b)Fitting result of ICP-SSM. ) Fitting result of GGM-SSM. The left-out observationis oloured in red with low opaity, the results of ICP-SSM and GGM-SSM areoloured in blue.
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a) b)Figure 4.7: CT-images with segmented putamen in a 2D (a) and 3D (b) view.4.2.2 Brain Struture MR: PutamenIn this setion, the performane of the GGM-SSM on brain struture data isevaluated. The data has been olleted in the framework of a study on handdystonia and the possible in�uene of this disease on the shape of the putamen, astruture belonging to the basal ganglia situated lose to the audate nuleus. TheMR images as well as the segmentations of the putamen were kindly provided by theH�pital La Pitié-Salpêtrière, Paris, Frane. An example of left and right putamenis shown in �gure 4.7. The MR images ontain 255 × 255 × 105 voxels of size
0.94mm× 0.94mm× 1.50mm. The training data set for this experiment onsists of
N = 20 left segmented putamens (approximately of size 20mm × 20mm × 40mm)whih are represented by min 994 and max 1673 point. Some observation examplesare shown in �gure 4.8(a). The omputation of a SSM for the putamen data mightbe useful either for segmentation purposes or for an analysis of the shape variabilityin patient and ontrol groups.The GGM-SSM as well as the ICP-SSM are omputed for these data and thentested for generalization ability in a series of leave-one-out experiments. Thespei�ity for both models was tested using 500 randomly generated shapes.For the omputation of the GGM-SSM, the following parameters were hosen:
σstart = 4mm, redution fator = 0.85, 10 iterations (EM-ICP multi-saling) with5 SSM iterations. For the ICP-SSM, the ICP is iterated 50 times. Most of theparameter values were found in an heuristi way.Results: The resulting mean shapes and deformations aording to the �rsttwo variation modes are shown in �gure 4.8(b,) for the GGM-SSM and in �gure4.8(d,e) for the ICP-SSM. The mean shapes of both approahes resemble. However,the �rst and seond variation mode of the GGM-SSM model more shape detailsthan the �rst and seond eigenmodes of the ICP-SSM. This visual impression ison�rmed by the values found for the generalization ability as depited in table 4.5.The generalization ability is omputed in dependene of the number n of variationmodes used. The results for the �rst n = 5, n = 10 and n = 18 variation modesare shown. Obviously, the number of variation modes ontrols the auray of thedeformed SSM. The GGM-SSM performed better for all ases with a mean distane



4.2 Comparison to an ICP-SSM 67Table 4.5: Shape distanes found in generalization experiments with the ICP-SSMapproah and with GGM-SSM approah. The generalization ability was tested forthe �rst n = 5, n = 10 and n = 18 variation modes. The distanes and assoiatedstandard deviations are given in mm. ICP-SSM GGM-SSM5 variation modesaverage mean distane + std dev. in mm 0.634 ± 0.090 0.512 ± 0.083average maximal distane + std. dev. in mm 4.478 ± 0.927 2.929 ± 0.57610 variation modesaverage mean distane + std. dev. in mm 0.623 ± 0.099 0.490 ± 0.088average maximal distane + std. dev. in mm 4.449 ± 0.909 2.496 ± 0.44518 variation modesaverage mean distane + std. dev. in mm 0.610 ± 0.089 0.471 ± 0.076average maximal distane + std. dev. in mm 4.388 ± 0.930 2.559 ± 0.563Table 4.6: Shape distanes found in spei�ity experiments (500 random shapes)with ICP-SSM approah and with GGM-SSM approah using 18 eigenmodes.ICP-SSM GGM-SSMaverage mean distane + std. dev. in mm 0.515 ± 0.117 0.463 ± 0.052of 0.471 for the GGM-SSM and a mean distane of 0.610mm for the ICP-SSMunder the use of 18 variation modes. It is interesting to see that the performanedi�erene between the two SSMs inreased a little with a higher number of variationmodes. The mean distane derease regarding the ase of n = 5 variation modesand the ase of n = 18 variation modes is about 5% using the SSM-ICP and about
8% using the GGM-SSM. Commonly, the variation modes with great standarddeviations model the obvious variabilities as e.g. thikness or torsion in spae whilethe variation modes with smaller standard deviations model the shape details.The Hausdor� distane in the GGM-SSM is more than 40% (nearly 2mm) smallerthan the Hausdor� distane of the ICP-SSM. This result again indiates that theGGM-SSM is better able to apture shape details than the ICP-SSM. The resultsfor the spei�ity evaluation are depited in table 4.6. The spei�ity values are alittle better for the GGM-SSM than for the ICP-SSM.
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a)
b)
)
d)
e)Figure 4.8: Real training data set featuring the putamen. a): Observation exam-ples. b)/): GGM-SSM. d)/e): ICP-SSM. Mean shapes (middle) and mean shapesdeformed with respet to the �rst (b,d) and seond (,e) variation mode. Left:

M̄ − 3λ ~v1,2 and right:M̄ + 3λ ~v1,2. The regions in irles mark shape details whihare represented by the GGM-SSM and whih are not modeled by the ICP-SSM.



4.3 Comparison to ICP-SSM and MDL-SSM 694.3 Comparison to ICP-SSM and MDL-SSMIn this setion, the performane of the GGM-SSM is evaluated in omparison to aSSM whose omputation is based on the minimization of a Maximum-Desription-Length (MDL). This SSM method is explained in detail in setion 2.3.2. Basially,the MDL is used to optimize the distribution of orresponding points on the surfaesof the observations in the training data set. Here, the best point distributions or or-respondenes yield the best SSM in terms of simpliity. One key step in omputing aMDL-SSM is the movement of points on the surfaes of the respetive observations.Hene, as it needs expliit surfae information, the MDL approah is not suited toompute a SSM for unstrutured point sets. Nevertheless, an interesting prospet isto ontrast the performane of the ICP-SSM and the GGM-SSM with a MDL-SSMto point out the di�erenes in the approahes and to position our method in thestate-of-the-art. In order to be able to use the MDL-method, a training data setof observations with surfaes represented by triangulated points has to be generated.Data Set: Unlike the GGM-SSM, the MDL-method an only be applied fordata with spherial topologies. The objetive is to test both approahes as wellas the ICP-SSM on non-onvex shapes whih an be hallenging, e.g. as pointslying lose do not neessarily belong to the same part of the shape. Moreover,points with similar normal vetor diretion do not neessarily lie lose to eahother. A syntheti data set is generated ontaining 15 observations shaped likebananas, see �gure 4.9. The observations are represented by triangulated meshes.In order to obtain meaningful results, the variability in the training data set ishigh: The urvature of the banana as well as the size, thikness and orientationin spae hange from observation to observation. The sizes of their boundingboxes measure around 480 × 720 × 260mm3. The number of points range fromminimum 386 points to maximum 642 points. The point distanes average 29.3mm.Set-Up: The MDL-SSM experiments on this data were performed by To-bias Heimann of the German Caner Researh Center (Department of Medial andBiologial Informatis) who kindly provided his evaluation results for this setion.The alignment of observations is done using a generalized Prorustes analysis insimilarity mode. The �nal number of points is set to 648.For the omputation of the GGM-SSM, the following parameters were hosen:
σstart = 15 − 50mm (dependent on the observation shape), redution fator
= 0.7 − 0.9, 10 iterations (EM-ICP multi-saling) with 5 SSM iterations. For theICP-SSM, the ICP is iterated 50 times. Most of the parameter values were foundin an heuristi way. The mean shapes of the GGM-SSM as well as of the ICP-SSMontain 446 points whih is 200 points less than used by the MDL-SSM.For determining the performane measures in these experiments, the average pointdistanes as introdued in setion 4.2 are only a well-suited metri when SSMs withequal numbers of points and similar point distributions are ompared. This is notthe ase when omparing the MDL-SSM to the GGM-SSM as the MDL methodmoves the points over the surfaes and an add any number of points. Therefore,in the experiments the Jaard oe�ient (or Tanimoto oe�ient) is used as
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Figure 4.9: Syntheti training data set: Non-onvex banana shapes with 15 observa-tions represented by triangulated meshes.



4.3 Comparison to ICP-SSM and MDL-SSM 71distane metri instead of the point distanes. To do so, a binary representationhas to be approximated for all observations as well as for eah deformed SSM. Forthe GGM-SSM a well as the ICP-SSM this is done by keeping the edges of thetriangles in the initial mean shape for the representation of the �nal mean shapeand its deformations. As the GGM-SSM is based on unstrutured point sets, thisproedure ould theoretially lead to ontorsions of the mesh but this was not thease in the experiments.The generalization ability is evaluated in a series of leave-one-out tests. Thedistanes were measured in dependene of the number n of employed variationmodes ranging from n = 0 to n = 13. For the spei�ity, 500 random shapesare generated. Due to the high omputational time when generating the binaryvolume representation, the alignment of eah randomly deformed mean shape withall observations is omitted. Instead, all observations are aligned one with theundeformed mean shape. That way, for eah randomly deformed mean shape, onlyone binary representation has to be omputed and ompared to the observations.Results: The mean shapes and the deformations aording to �rst, seondand third mode of variation are depited for the ICP-SSM and the GGM-SSM in�gures 4.10 and 4.11. The �rst three variation modes roughly represent similarvariabilities. However, it is notieable that the GGM-SSM variability model isstrongly foused on the region of the banana tips whereas the ICP-SSM rathermodels global variation of the banana shapes. The values resulting from the testingseries of the generalization ability are illustrated in �gure 4.12 for ICP-SSM, GGM-SSM and MDL-SSM methods. The volume overlap between left-out observationand �tted SSM is used as distane metri. Regarding these values, the experimentsrevealed that the MDL-SSM has a higher generalization ability with an averageJaard oe�ient of 0.92 than the GGM-SSM (Jaard oe�ient = 0.88) and theICP-SSM (Jaard oe�ient = 0.86). As - ontrary to point-based methods - theMDL-SSM method makes use of the observation surfaes as additional information,this result is not surprising. In partiular, it has to be kept in mind that theMDL-SSM approah optimizes the distribution of orresponding points over theobservation surfaes whih is one of its great strengths. The GGM-SSM methodhowever uses the initial point loations. Regarding the banana shapes, the pointdistribution at the banana tips is more dense than on the banana orpus. Usingthe GGM-SSM, this leads to a more detailed modeling of the banana tip regions.Unfortunately, a volume overlap metri does not neessarily re�et if shape detailsare well modeled.Besides, the following bias in the MDL-SSM generalization ability values has tobe onsidered: For SSMs where the orrespondenes are desribed by monotonousparameterization funtions the parameterization of the left-out funtion is unknown.To solve this problem, the left-out shape is normally inluded in the orrespondeneloalisation. This proedure �nally leads to an over-estimated generalization ability[Erisson 2007℄.The spei�ity values are illustrated in �gure 4.13. Here, the GGM-SSM and theMDL-SSM obtained very similar overlap values while the ICP-SSM obtained valuesa little higher.
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a)
b)
)Figure 4.10: GGM-SSM for the banana shape data set. Mean shapes (middle) andmean shapes deformed aording to the �rst (a), seond (b) and third () variationmode.

d)
e)
f)Figure 4.11: ICP-SSM for the banana shape data set. Mean shapes (middle) andmean shapes deformed aording to the �rst (a), seond (b) and third () variationmode.
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Figure 4.12: Generalization ability. The generalization ability was tested in leave-one-out tests for the banana shapes. Here, the average overlap between deformedmean shape and left-out observation is presented for the MDL-SSM, the GGM-SSMand the ICP-SSM.

Figure 4.13: Spei�ity. The spei�ity was tested for the banana shapes using 500testing shapes. Here, the average overlap between randomly deformed mean shapeand losest observation is presented for the MDL-SSM, the GGM-SSM and the ICP-SSM. The random deformation followed a natural distribution with σ equal to thestandard deviations of the respetive model.
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a) b) )Figure 4.14: Generalization ability example for a rather extreme left-out torus ob-servation. a) Left-out observation. b) Fitting result of ICP-SSM. ) Fitting result ofGGM-SSM. The left-out observation is oloured in red with low opaity, the resultsof ICP-SSM and GGM-SSM are oloured in blue.Table 4.7: Banana shape generalization results. Shape distanes found in general-ization experiments with ICP-SSM approah and with GGM-SSM approah. Thedistanes and assoiated standard deviations are given in mm.ICP-SSM GGM-SSMmean distane target to soure in mm 15.75 ± 2.28 16.48 ± 3.24mean distane soure to target in mm 26.35 ± 12.78 17.81 ± 2.75maximal distane target to soure in mm 36.23 ± 4.60 53.78 ± 7.33maximal distane soure to target in mm 83.87 ± 54.58 43.81 ± 8.41Overall, it ould be established that the GGM-SSM and the ICP-SSM obtaingeneralization ability values whih lie in the same order as those of the MDL-SSMfor the given data set. Moreover, the GGM-SSM performed better than theICP-SSM. This is again due to the fat that shape details are easily lost for theICP-SSM. This is demonstrated with an example of a rather extreme left-outobservation in �gure 4.14. The ICP-SSM adapts very well to the orpus of thebanana but fails to deform into its tip. Yet, the variability model of the GGM-SSMis able to represent the tip region of the banana. This behaviour is on�rmed by anevaluation of the generalization ability under a point distane metri (as introduedin setion 4.1.2 and as used for the experiments in setion 4.2.1). The valuesfor ICP-SSM and GGM-SSM whih are depited in table 4.7 indiate that theGGM-SSM performs better. This beomes lear espeially regarding the Hausdor�distanes as the GGM-SSM obtains a Hausdor� distane of 53, 78mm whih is 37%smaller than the Hausdor� distane of the ICP-SSM (83, 87mm).4.4 Unsupervised Classi�ationIn this setion the GGM-SSM is applied to a lassi�ation problem. This an bedone diretly by exploiting the observation parameters omputed during the GGM-SSM omputation. Here, the �nal deformation oe�ients ωkp represent the amountof variation for the respetive observation Sk aording to eah variation mode vp.



4.5 Disussion 75Therefore, information about shape harateristis an be gained by evaluating thedeformation oe�ients [Hufnagel 2007b℄. In SSM methods where the deformationoe�ients are not omputed during optimization of the model, their determinationis less straightforward.In an experimental evaluation, the deformation oe�ients diretly serve as a las-si�ation measure regarding the shape of the observations Sk. To do so, featurevetors ωk = (ωk1, ωk2, ..., ωkn) are formed and then used as input for a k-meanslustering. This approah is tested on the syntheti data set of ellipsoids as used insetion 4.2.1.1. The data set onsists of two shape lasses as it ontains ellipsoidswith and without 'bump' as an be seen exemplarily in �gure 4.2(a). An averageRand index [Rand 1971℄ of 0.95 is employed for the k-means lustering. The result-ing two lasses oinide with the 'bump' and 'without bump' lasses, see �gure 4.15for an example of the values of the 2D feature vetors (ωk1, ωk2).Tame approah is applied to lassify the putamen data set as presented in setion4.2.2. As the data was gathered in a study about hand dystonia, a relation ofshape and disease might exist. In order to analyse the shapes, the data is testedfor statistially signi�ant shape di�erenes between dystonia patients and ontrolgroup after a�ne normalizations. Again feature vetors ωk = (ωk1, ωk2, ..., ωkn) areformed and used as input for a k-means lustering. In this ase, no two distintshape lasses were found (see �gure 4.16 for the values of the 2D feature vetors
(ωk1, ωk2)). This on�rms the presumption of the onerned physiians.4.5 DisussionAn aurate and robust modeling of variability is an important feature of a SSM,partiularly when it is employed to the segmentation of anatomial strutures forradiotherapy or surgery planning where the preision must be high. In order to learnabout the qualities of the GGM-SSM as well as its standing in the state-of-the-art,the evaluation has been divided into two experiments: The �rst part was aimedat an analysis of the GGM-SSM performane in omparison to another SSM forunstrutured point sets (ICP-SSM). The seond part of the evaluation investigatedthe GGM-SSM performane in omparison to a well established method whih usessurfae information (MDL-SSM).A prinipal di�erene between the ICP-SSM and the GGM-SSM is the inter-pretation of orrespondene. While the ICP-SSM is based on one-to-one pointorrespondenes, the GGM-SSM implements a probabilisti orrespondene oneptwhih allows to take into aount all points of all shapes. This is advantageous onthe one hand as all shape details are integrated into the variability model. On theother hand, the approah is less sensitive to possible outliers. By evaluating thegeneralization ability values of GGM-SSM and ICP-SSM for the syntheti data setof ellipsoid shapes, it ould be established that shape details whih are not apturedvery well by the ICP-SSM are e�etively aptured and modeled by the GGM-SSM.This is espeially the ase for training data where not all observations feature thesame shape details. Furthermore, when testing both SSMs on shape data witha global variation in its �exion angle, the generalization ability values indiate
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Figure 4.15: 2D deformation oe�ient feature vetors (ωk1, ωk2) for the �rst twoeigenmodes of the ellipsoid data set. Observations 'with bump' are represented bydiamonds, observation 'without bump' are represented by stars.
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Figure 4.16: 2D deformation oe�ient feature vetors (ωk1, ωk2) for the �rst twoeigenmodes of the putamen data set. 'Control' observations are represented as dia-monds and 'patient' as stars.



4.5 Disussion 77that the ICP-SSM did not model well the variability of �exion. The performanemeasures of GGM-SSM and ICP-SSM in the experimental evaluation on real braindata show a similar piture. The GGM-SSM is better able to apture shape detailswhih an be observed by a visual inspetion of the prinipal variations modeledby the variability models and whih is also re�eted in the generalization abilityvalues. Still, the ICP-SSM faster and easier to handle than the GGM-SSM as lessparameters have to be estimated beforehand. The relatively high omputationaltime of the GGM-SSM is mainly due to the ostly update of variation modes whihinvolves several matrix multipliations with matries ∈ R
3Nm×n with number ofmean shape points Nm and number of variation modes n. However, the analysis ofshape in medial pratie is generally no time sensitive matter.As argued in setion 4.1.1, we doubt the meaningfulness of spei�ity valuesregarding the quality of a SSM. These doubts were on�rmed by the resultsobtained for the SSMs in the ellipsoid data set. Here, the generalization ability aswell as visual inspetion learly indiate a superior performane of the GGM-SSM,but still the ICP-SSM obtain better spei�ity values.The seond part of the evaluation serves to position the GGM-SSM in thestate-of-the-art by outlining its advantages and weaknesses ompared to thewell-aepted surfae-based MDL-SSM method. The MDL-SSM approah makesuse of surfae information for the modeling of the training data set. During SSMomputation, points are added and moved over the observation surfaes in order to�nd optimal orrespondenes. Therefore, the MDL-SSM is more �exible than theGGM-SSM as the results do not depend on the original point distribution in theobservation meshes. Yet, it has to be kept in mind that the MDL-SSM is expliitlyde�ned on surfae representations for spherial topologies. Hene, it annot beemployed for the evaluation on the bagel shape training data but a training data setwith banana-shaped observations was designed. As the training data set ontainsobservations with very non-onvex shapes, we deem the obtained results of theMDL-SSM as well as the GGM-SSM to be quite good. In the generalization abilityexperiments, the MDL-SSM performed better than the GGM-SSM by obtaininga Jaard oe�ient whih is 3.4% greater than the GGM-SSM and 6.4% greaterthan the ICP-SSM. The di�erene between MDL-SSM and GGM-SSM in thevolume overlaps is learly visible but small enough to suggest the right of existenefor the GGM-SSM, espeially onsidering that the usage of surfaes is arguablefor the reasons formulated in setion 1. Moreover, the left-out observations in theexperiment series for the generalization ability of the MDL-SSM method have beenpart of the orrespondene loalisation step, thus, the values of the generalizationability might be over-estimated. The analysis of the generalization ability forthe banana training data set measured by point distane metris shows that theGGM-SSM outperforms the ICP-SSM; the ICP-SSM fails to model shapes featuringa rather extreme onvexity.In order to ompute a GGM-SSM of high quality, partiular attention has tobe paid to the hoie of parameters in the EM-ICP registration whih have to beadapted to the problem at hand. As demonstrated in setion 3.2.3, good results



78 Chapter 4. Evaluation of the GGM-SSMare obtained for a �nal standard deviation whih lies in the same range as theaverage point distanes in the observations. A reasonable hoie for the redutionfator seems to lie between 0.7 and 0.9 whih led to good results in the experimentsperformed in the framework of this thesis. The number of GGM-SSM iterations iskept as small as possible to redue omputational ost.From the evaluation results, it an be onluded that the GGM-SSM methodis apable to model di�erent kinds of shapes with high preision. Due to the prob-abilisti modeling of orrespondene, the GGM-SSM outperforms the ICP-SSMfor observations with irregular shape di�erenes. The GGM-SSM does not needsurfae information and is well suited to model non-spherial topologies as well asoupled strutures in one uni�ed variability model. Therefore, the GGM-SSM is�t for shape analysis of various types of anatomies whih makes it very �exibleregarding potential appliation domains.



Chapter 5Using the GGM-SSM as a Priorfor Segmentation
Contents5.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805.2 The GGM-SSM in Impliit Funtion Segmentation . . . . . 825.3 Evaluation on Kidney CT Images . . . . . . . . . . . . . . . . 915.4 Multiple Shape Class Segmentation . . . . . . . . . . . . . . 975.5 Disussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108Segmentation algorithms play a major role in medial image analysis. However,due to typial medial image harateristis as poor ontrasts, grey value inhomo-geneities, ontour gaps, and noise the automati segmentation of many anatomialstrutures remains a hallenge. Low-level algorithms as region growing, thresholdingor simple edge-detetion are often bound to fail or require heavy user interation tolead to aeptable segmentation results in 3D images. In order to overome theseproblems, a very popular approah is to employ models whih inorporate a prioriknowledge about mean and variane of shape or grey levels of the struture of inter-est. These models serve to onstrain the resulting segmentation ontour to probableshapes as de�ned by the underlying training data set. The onept of shape priorsin segmentation methods has been analysed in setion 2.4.In this hapter, a framework is developed for the integration of the GGM-SSM re-ated in hapter 3 as a shape prior for kidney segmentation. In this new method,prior shape knowledge represented by the GGM-SSM is ombined with prior infor-mation about typial grey value intensity distributions inside and outside the organto be segmented. The hapter is strutured as follows: First an overview is givenabout the employment of intensity distribution knowledge in medial image segmen-tation, and the initial plaement problem is explained in setion 5.1. In setion 5.2,a sound mathematial framework is developed whih integrates the GGM-SSM intoan impliit level set sheme, and the method is evaluated on the segmentation ofthe kidney from CT images. In setion 5.4, the level set framework is extended tomultiple-objet segmentation, and the algorithm is applied to hip joint segmenta-tion. The hapter is onluded with setion 5.5 where the approah of ombiningan expliitly represented SSM and an impliitly represented segmentation ontouris disussed.



80 Chapter 5. Using the GGM-SSM as a Prior for Segmentation5.1 Initialization5.1.1 Distribution Models for Prior Intensity KnowledgeBeside the prior knowledge about the shape, knowledge-based segmentation methodsoften integrate information about the grey value appearane of the organ whih areextrated from a training data set. Classial segmentation tehniques using SSMsmostly rely on edge-detetion [Cootes 1992, Székely 1996, Staib 1996, Wang 2000℄.Reent methods propose the utilization of a priori knowledge about intensity infor-mation on its own [Nain 2007, Andreopoulos 2008℄ or in ombination with boundarydetetion [Huang 2004℄ in order to exploit available image information whih gen-erally leads to methods that are more robust and e�etive.In point-based SSMs, a widely-used method is to generate loal appearane models.The �rst loal appearane model was presented by Cootes et al. [Cootes 1993℄ whoproposed to sample intensity information around eah landmark in normal dire-tion. This is done for all observations in the training data set in order to determinemean value and prinipal modes of variation of grey value appearane over the or-responding landmarks. During segmentation, the intensity model pro�les of eahSSM landmark are ompared to the urrent point pro�le samples of the deformedSSM in the image in order to optimize the �t. The loal appearane models rangefrom simple Gaussian intensity pro�le models and Gaussian gradient pro�le models[Cootes 1994℄ to non-linear intensity pro�le models [de Brujine 2002℄ and histogramregion models [Brunelli 2001, Freedman 2005℄.A loal appearane model as desribed here is not immediately usable for our GGM-SSM as one-to-one orrespondenes over the observations are needed in order to ex-trat statistial knowledge about the grey values at one spei� point of the model.Therefore, a global appearane model is employed whih means that a priori knowl-edge about the intensity distributions in the regions inside and outside the organhas to be extrated. In general, an intensity distribution model onsists of twoprobability density funtions whih model the ourrene of grey values inside (pin)and outside (pout) the organ. A straightforward method is to sample the grey val-ues of organ pixels x in the training data set and ompute a mean grey value µ aswell as a standard deviation σg. Then the probability of a voxel grey value g(x)to our inside the organ is estimated with pin(g) = 1√
2πσg

exp(− (µ−g)2

2σg
). Then,

pout(g) = 1 − pin(g) ould diretly estimate the probability of a voxel grey value
g(x) to our outside the organ. However, for most soft tissue organs neither theorgan tissue nor the surrounding tissue belong to only one tissue lass and addition-ally, noise has to be taken into aount. Therefore, a lassi�ation using a mixtureof Gaussians should lead to a more reliable model of intensity distributions. Thus,we take advantage of a pattern lassi�ation tehnique introdued by Duda andHart [Duda 1973℄ whih is based on the so-alled kernel density approximation toestimate the point distribution funtion of a random variable. This non-parametrimethod was �rst proposed by Parzen [Parzen 1962℄ in order to solve problems inthe �eld of time series analysis. In short, the method works as follows: For a givenrandom sample X = {x1, ..., xn} the value of the underlying but unknown probabil-ity density funtion p(x) is sought. Using a kernel or window funtion ϕ : Rd → R
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Figure 5.1: Estimated grey value density funtions for the inside (green) and theoutside (red) region of the kidney using a Parzen window approah.with the properties ϕ(u) > 0 and ∫ ϕ(u)du = 1, it an be approximated
p̂(x) =

1

n

n∑

i=1

1

hd
ϕ

(
x− xi

h

)

.The parameter h de�nes the width of the window and is generally hosen withrespet to the size of the sample. A widely-used example for the window funtion isthe Gaussian kernel ϕgauss(x) = 1√
2π

exp(−1
2x

2). The hoie of window funtion ϕand width h determines the smoothing e�et on the estimated probability densityfuntion. In order to estimate the grey value density distributions for the inside ofan organ as well as for its bakground, the intensities Gin and Gout are sampledaround the surfae of the organ:
Gin = {g(x)|x inside organ and lose to boundary}
Gout = {g(x)|x outside organ and lose to boundary}In order to avoid the in�uene of to partial volume e�ets and segmentation inau-raies, the sampling is done at a ertain distane from the original organ boundary[Shmidt-Rihberg 2009℄. For an example of the sampling and the resulting greyvalue density distributions see �gure 5.1.5.1.2 Initial Plaement ProblemThe initial plaement of any template in the image plays an important role regardingthe quality of the segmentation result. Therefore, the initial loation, transforma-tion and deformation of the GGM-SSM has to be determined arefully. A positiontoo far away from the organ region or an initial deformation too di�erent from theorgan shape in the image augments the risk of �nding a loal minimum whih is notonsistent with an aeptable segmentation. Aside from manual intervention whihyields good results but is time-onsuming [de Bruijne 2003℄, several authors suggesta series of onseutive morphologial operations [Soler 2000, Lin 2006℄. Other ap-proahes rely on objet reognition [Brejl 2000℄ or a priori knowledge about typial



82 Chapter 5. Using the GGM-SSM as a Prior for Segmentationpositions of the sought organ in the CT volume [Heimann 2006℄ or ombine a prioriknowledge with morphologial operations [Tsaagan 2002℄. While these approaheswork well for spei�ed organs, they annot be generalized for other segmentationtasks. In order to ome up with a generalizable solution, de Brujine and Nielsenproposed an automati initialization of the template employing shape partile �l-tering [de Bruijne 2004℄ for 2D segmentation. A similar approah applied to 3Dsegmentation based on a global-searh in the image was proposed by Heimann et al.[Heimann 2007b℄. The algorithm uses the prinipal ideas of evolutionary program-ming [Fogel 1966℄ and evolutional strategies [Shwefel 1995℄ in order to determinethe optimal plaement of the model. The algorithm onsists of the following steps:1. A random set of normally distributed a�ne transformations Tk and deforma-tions Ωk is generated with k = [1, ..., N ].2. By applying Ωk and Tk to the mean shape of the model, a random populationof shapes R = {S1, ..., SN} is built.3. The best quali�ed (or �ttest) individuals R̂k of the random population areseleted.4. For eah R̂k, the transformation T̂k as well as the deformation Ω̂k are modi�edrandomly and again applied to the mean shape of the model to generate a new(better) population of shapes.5. This is iterated until a good initial position and a good initial mean shapedeformation are found.The quality of plaement is measured by omparing model-spei� features to thefeatures in the image. For an example of a random shape population generated forthe GGM-SSM of the kidney please refer to �gure 5.2.For our experiments, the means of the normal distributions for the transformation aswell as for the deformation equal zero. The standard deviation for p(T ) is determinedheuristially while the standard deviations for p(Ω) = {ω1, ..., ωn} are the standarddeviations {λ1, ..., λn} of the GGM-SSM as omputed in setion 3.5.2. The model-spei� features evaluated in order to measure the �tness depend on probabilityof points lying on the boundary of the organ. This is measured by the sum ofdistanes between GGM-SSM points and the nearest voxel with high image gradientmagnitude whih reliably led to good initial plaement results. For an example, see�gure 5.3.5.2 The GGM-SSM in Impliit Funtion SegmentationIn this setion, a method is developed for integrating the GGM-SSM into an impliitsegmentation sheme. An impliit segmentation sheme has several advantages overan expliit one: First, no remeshing algorithms need to be implemented. Moreover,it is easy to integrate regional statistis as e.g. grey value distribution models and�nally, they are very �exible topologially. A omprehensive review about the ad-vantages of level set methods in medial image segmentation an be found in the



5.2 The GGM-SSM in Impliit Funtion Segmentation 83

Figure 5.2: Five examples of a random population of shapes generated for the GGM-SSM of the kidney in a CT image. The pink ontour belongs to the randomly de-formed mean shape whih serves as input for the next iteration.

Figure 5.3: Automati initial plaement. Example of the result of the automatievolutionary algorithm: original mean shape of the GGM-SSM (yellow) and �nalbest �t (white).work of Cremers et al. [Cremers 2007℄. As the GGM-SSM is based on a MAPestimation and is omputed by a global riterion, the integration into an impliitsegmentation framework an be realized in a losed mathematial form.This hapter is organized as follows: In setion 5.2.1, the mathematial bakgroundof level set methods and their appliation to impliit segmentation is summarized.The development of the MAP estimation and its solution by an energy funtional ispresented in setion 5.2.2. Setions 5.2.3 and 5.2.4 are dediated to the derivationand optimization of the energy funtional.5.2.1 Segmentation Using Level SetsAs explained in the setion about deformable models (setion 2.4.1), the segmenta-tion problem in the variational framework is formulated as the minimization of anenergy funtional E(Γ) with respet to the ontour Γ. The key idea is to move theontour in diretion of the negative energy gradient −∂E(Γ)
∂Γ . In impliit funtionsegmentation, ommonly the ontour is embedded as the zero level set of a higher
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Figure 5.4: Embedding level set funtion. a) Contour in 2D. b) The same ontourembedded in the higher dimensional funtion φ(x) ∈ R
3 as zero level set at φ(x) = 0.dimensional funtion over the image spae φ : Ω→ R:

Γ = {x ∈ Ω|φ(x) = 0},see �gure 5.4. Most ommonly, the front propagation of the ontour is realizedby evolving the embedding funtion φ using level set methods [Dervieux 1979,Osher 1988, Malladi 1995℄. Instead of minimizing the funtional de�ned on thespae of ontours diretly as done e.g. by Caselles et al. [Caselles 1993℄, several au-thors propose to embed E(Γ) into the variational framework desribed by E(φ) inorder to searh for the level set funtion φ̂ whose zero level set best desribes theorgan boundary [Zhao 1996, Chan 2001℄:
φ̂(x)







> 0 ∀x outside the organ
= 0 ∀x on the boundary
< 0 ∀x inside the organIn that ase, E(φ) an be minimized using the Euler-Lagrangian equation
∂φ

∂t
= −

∂E(φ)

∂φwhere the arti�ial time t > 0 is introdued for parameterizing the desent diretion.We solve the derivation by omputing the gradient desent
φt+1 = φt − h

∂E(φ)

∂φwith h > 0 as the step size.In the literature of medial image analysis, impliit funtion segmentation has beenapplied e�iently e.g. to the detetion of a fetus in ultrasound images [Caselles 1997℄,of the femur in MR images [Leventon 2000a℄, of the orpus allosum in MR images[Leventon 2000a℄, of glioma in MR images [Droske 2001℄, of the left ventrile inardia MR images [Tsai 2003℄, of the prostate of pelvi MR images [Tsai 2003℄,of lateral brain ventriles in MR images [Rousson 2004℄ and of the liver in four-dimensional CT images [Shmidt-Rihberg 2009℄.



5.2 The GGM-SSM in Impliit Funtion Segmentation 855.2.2 MAP Estimation on the Level SetsAs shown in the work of Paragios and Derihe [Paragios 2002℄, the segmentationproblem an be formulated in a probabilisti framework where the a posteriori prob-ability p(P(X)|I) of an optimal partitioning P(X) given the image I is maximized.Based on this priniple, in this thesis a maximum a posteriori estimation is devel-oped of a level set funtion φ whose zero level set best separates the organ from thebakground under a shape onstraint introdued by the GGM-SSM. This leads to auni�ed statistial framework whih is presented in detail in this setion.Given a shape represented as a set of points with model parameters Θ in our GGM-SSM, we �rst model the probability of a surfae with respet to that shape. Thisamounts to speifying the probability of a funtion φ whose zero level set is theobjet boundary knowing the GGM-SSM deformation parameters Q = {T,Ω} (Themodel parameters are detailed in setion 3.4). This is the �rst step. For the nextstep, we work with the following image formation model: The intensity is assumedto follow a law pin for the voxels inside the objet and a law pout for the voxelsoutside the objet. Given this generative model, the segmentation is the inverseproblem: The MAP method onsists of estimating the most probable parameters φand Q given the observation of an image I : X → R. Hene, the level set funtion
φ is evolved suh that p(φ,Q|I) is maximized:

MAP = argmax p(φ,Q|I) = argmax
p(I|φ,Q)p(φ|Q)p(Q)

p(I)
.The shape prior does not add any information when the zero level set of φ is known,so I and Q are onditionally independent events p(I|Q,φ) = p(I|φ), and we anwrite

p(φ,Q|I) = p(φ, T,Ω|I) =
p(I|φ)p(φ|T,Ω)p(T,Ω)

p(I)
.The probability p(I) is onstant for a given image. Besides, the probability of thetransformation p(T ) is assumed to be independent and uniform, so we derive thefollowing energy funtional:

E(φ,Q) = −α log(p(I|φ)) − τ log(p(φ|Q)) − κ log(p(Ω)) (5.1)with introdued weights α, κ, τ ∈ R to normalize the sale of the distributions. The�rst term of equation (5.1) desribes the region-based energy with objet spei�priors whih are given by the normalized grey value distributions pin inside the organand pout outside the organ as found in the training data set whih leads to
log(p(I|φ)) = −

∫

X
(1−Hǫ(φ(x))) log pin(I(x))dx −

∫

X
Hǫ(φ(x)) log pout(I(x))dx.The funtion Hǫ(φ(x)) is a ontinuous approximation of the Heaviside funtionwhih is lose to one outside the objet and lose to zero inside the objet. The
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Figure 5.5: Regularization of the Heaviside funtion (top) using equation (5.2) andthe assoiated delta funtion δǫ with support ǫ = 1.regularization of H are hosen as proposed in [Zhao 1996℄:
Hǫ(φ) =







1 if φ(x) > ǫ
0 if φ(x) < −ǫ
1
2

[

1 + φ(x)
ǫ + 1

π sin(πφ(x)
ǫ )

] if |φ(x)| ≤ ǫ
(5.2)For an illustration of the approximated urve see �gure 5.5.The seond term represents the front propagation of φ guided by the GGM-SSM whih models all points x as a mixture of Gaussian measurements of the(transformed) model points mj. Following our EM-ICP priniple introdued insetion 3.2, the probability of a point x modeled by the GGM-SSM given Q is thenormalized sum of orrespondene probabilities of x and all mj and equals

p(x|Q) = pΘ =
1

Nm

Nm∑

j=1

exp(−
|x− T ⋆ mj|

2

2σ2
Θ

).In the following, pΘ denotes the probability given by a GGM-SSM with modelparameters Θ = {M̄ , vp, λp, n} whih means that Θ is �xed. The probability of apoint x with respet to the model desribed by Θ then depends on the observationparameters Q = {T,Ω}. The parameters are used as de�ned in setion 3.3.1.



5.2 The GGM-SSM in Impliit Funtion Segmentation 87For a ontour Γ desribing the zero level set of φ, the log of the probability isomputed by log(p(φ|Q)) = log(
∏

x∈Γ p(x|Q)) =
∫

x∈Γ log p(x|Q)dx. The integrationover the whole length of the ontour is then expressed by
log(p(φ|Q)) =

∫

X
δǫ(φ(x))|∇φ(x)| log pΘdx, (5.3)with δǫ(φ(x)) having a small support > 0. Then a normalization is added over thelength whih leads to log(p′(φ|Q)) = log(p(φ|Q)p(φ|l0)) =

∫

X δǫ(φ(x))|∇φ(x)|
(log pΘ − β)dx with β = 1

l0
∈ R where l0 ontrols the normalization of the length.For pΘ = const this equation is generalized to the lassial smoothing term
∫

X
δǫ(φ(x))|∇φ(x)|dxas used by Chan and Vese [Chan 2001℄.The de�nition of the third term in the energy funtional p(Ω) is given by the max-imum likelihood estimation for the observation parameter Ω given the model, seeequation (3.8) in setion 3.3.1.5.2.3 Derivation of the Energy FuntionalIn this setion, the minimization of the energy funtional of equation (5.1) is de-rived with respet to the level set funtion φ. For some preliminaries onerningmathematial rules used in this setion, please refer to setion A.4.5.2.3.1 The Intensity TermsThe di�erentiation of the intensity terms with respet to the level set funtion φ isquite easy as ∂

∂φHǫ(φ) = δǫ(φ):
∂

∂φ
log(p(I|φ)) =

∫

X
δǫ(φ) log pin(x|µ1, σ1)dx−

∫

X
δǫ(φ) log pout(x|µ2, σ2)dx (5.4)5.2.3.2 The Shape Prior TermThe di�erentiation of the shape prior term EΘ(φ) = log(p(φ|Q)) as formulated inequation (5.3) with respet to φ is a bit triky. For one thing, we have to deal withthe derivative of the Dira distribution δ′ǫ. The solution is based on the prinipleof diretional derivatives and integration by parts. The aim is to determine thedi�erential oe�ient of EΘ(φ), so we �rst introdue the funtion α : X → R. Inorder to ompute

EΘ(φ+ ηα) =

∫

X
log pΘδǫ(φ+ ηα)|∇φ + η∇α|dx.



88 Chapter 5. Using the GGM-SSM as a Prior for Segmentationwith η → 0, we use the Taylor development for a linearization of the delta distribu-tion δepsilon at point (φ+ ηα) and write
EΘ(φ+ ηα) =

∫

X
log pΘ

(
δǫ(φ) + ηδ′ǫ(φ)α

)
|∇φ+ η∇α|dx.Using the equation |∇φ + η∇α| = |∇φ| + η∇φT ∇α

|∇φ| + O(η2) whih is derived fromthe binomial series in equation (A.7) allows to write EΘ(φ+ ηα) as a sum of EΘ(φ)and additional terms:
EΘ(φ+ ηα) =

∫

X
log pΘ

(
δǫ(φ) + ηδ′ǫ(φ)α

)
(

|∇φ|+ η
∇φT∇α

|∇φ|
+O(η2)

) (5.5)
= EΘ(φ) + η

∫

X
log pΘ δ′ǫ · α|∇φ|+ η

∫

X
log pΘ δǫ(φ)

∇φT∇α

|∇φ|
+O(η2).We reformulate the last term of this equation using the produt rule of the divergeneas stated in equations (A.5) and (A.6). We set ∇g = ∇α and V = log pΘ δǫ(φ) ∇φ
|∇φ| .Assuming that there are no objets outside the image, after several derivations weobtain

∫

X
< ∇g , V >= −

∫

X
g · div(V )whih is

∫

X
δǫ(φ) log pΘ

∇φT∇α

|∇φ|
= −

∫

X
α · div(δǫ(φ) log pΘ

∇φ

|∇φ|
).With this information, we an rewrite equation (5.5) and obtain

EΘ(φ+ ηα) = EΘ(φ) + η

∫

X
log pΘ δ′ǫ · α|∇φ| − η

∫

X
α · div

(

δǫ(φ) log pΘ
∇φ

|∇φ|

)

.(5.6)We solve the last term by again using the produt rule for the divergene stated inequation (A.5). This time we set g = δǫ(φ) and V = log p ∇φ
|∇φ| . This leads to

∫

X
div

(

δǫ(φ) log pΘ
∇φ

|∇φ|

)

=

∫

X
δǫ(φ) · div

(

log pΘ
∇φ

|∇φ|

)

+

∫

X
< ∇(δǫ(φ)), log pΘ

∇φ

|∇φ|
> .The gradient of δǫ(φ) is omputed following equation (A.6):

∇δǫ(φ) =






∂δǫ(φ)
∂x

∂δǫ(φ)
∂y

∂δǫ(φ)
∂z




 =






δ′ǫ(φ)∂φ
∂x

δ′ǫ(φ)∂φ
∂y

δ′ǫ(φ)∂φ
∂z




 = δ′ǫ(φ)∇φ,
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a) b)Figure 5.6: Illustration of the GGM-SSM onstraint on the segmentation ontour.The GGM-SSM is represented by a white ontour slie. a) Log-probability of orre-spondene for image points x in spae. b) Gradient magnitude of log-probability forimage points x.By inserting this into equation (5.6), we get rid of the δ′ǫ(φ) terms, so the equationsimpli�es to
EΘ(φ+ νη) = EΘ(φ)− η

∫

X
αδǫ(φ) · div

(

log pΘ
∇φ

|∇φ|

)

.In order to ompute the gradient of EΘ, we now employ the produt rule of equation(A.4), setting g = log p and V = ∇φ
|∇φ| , whih �nally leads to

∇EΘ(φ) = −δǫ(φ) · div

(

log pΘ
∇φ

|∇φ|

)

= −δǫ(φ) log pΘ div

(
∇φ

|∇φ|

)

− δǫ(φ) < ∇(log pΘ),
∇φ

|∇φ|
> . (5.7)The onstraints of the GGM-SSM on the level set propagation are twofold. Thesalar produt < ∇(log pΘ), ∇φ

|∇φ| > ensures that the zero level set is atively drawntowards the SSM shape. The values of ∇(log pΘ) = ∇(log p(x|Q)) obviously dependon the distane of points x to the GGM-SSM shape. A 2D example is illustrated in�gure 5.6(b). The urvature term log pΘ div
(

∇φ
|∇φ|

) ensures that the smoothness fa-tor has more in�uene on the zero level set evolution at loations of low GGM-SSMprobability than at loations with high GGM-SSM probability. This is illustratedin �gure 5.6(a). Hene, we use a prior whose ontour is length minimizing. Thevariane σ2
Θ of the probability distribution pΘ is a sensitive parameter and has tobe arefully adapted to the problem at hand.



90 Chapter 5. Using the GGM-SSM as a Prior for Segmentation5.2.4 Optimization of the Energy FuntionalThe derivatives of the energy funtional terms derived in the last setion are summedup and written in the gradient desent funtion as
∂φ

∂t
= δǫ(φ)

(

−α1 log(pin) + α2 log(pout)− τ < ∇(log pΘ),
∇φ

|∇φ|
>

+div

(
∇φ

|∇φ|

)

(β − τ log pΘ )

)

. (5.8)The minimization of the energy funtional in equation (5.1) is then done by al-ternating the gradient deent for the embedding funtion φ with an update of theparameters T and Ω. The update serves to �t the GGM-SSM to the urrent zerolevel set.The gradient desent is solved by a time-step proedure. In eah step, the term
< ∇(log pΘ), ∇φ

|∇φ| > has to be updated, thus we need to ompute
∇(log pΘ) = ∂

∂x log
(
∑

j exp(−
|x−T⋆mj |2

2σ2 )
)

. This is simply done by repetitively em-ploying the hain rule whih leads to the following expliit GGM-SSM term:
< ∇(log pΘ),

∇φ

|∇φ|
>=




1

(
∑

j exp(−
|x−T⋆mj |2

2σ2 )
)

∑

j

[

exp(−
|x− T ⋆ mj |

2

2σ2
)
T ⋆ mj − x

σ2

]




T

∇φ

|∇φ|
.In order to �t the GGM-SSM to the urrent zero level set, the optimal trans-formation T and the optimal deformation oe�ients Ω have to be found. Thetransformation T is omputed by

∂E(φ, T,Ω)

∂T
=

∂

∂T

∫

X
δǫ(φ(x))|∇φ(x)| log




1

Nm

Nm∑

j=1

exp(−
|x− T ⋆ mj|

2

σ2
Θ

)



 dx = 0with �xed φ and Ω. It suggests itself to make use of the global riterion developedfor the GGM-SSM omputation in setion 3.3.2, equation (3.13). The number ofobservations is set to one with k = 1, and the only observation S1 is representedby the zero level set of the urrent φ. The a�ne EM-ICP registration is employedto register the SSM to the zero level set: First the orrespondene probabilitiesbetween the zero level set and the points of the SSM are established in theexpetation step and then T is omputed in the maximization step as explained insetion 3.4.1. Here, the zero level set is represented by all voxels of the level setfuntion where it holds δǫ 6= 0. The implementation is done e�iently employingsparse �elds.Subsequently, the level set funtion φ and the transformation T are �xed and thedeformation oe�ients Ω are omputed whih solve ∂E(φ,Ω,T )
∂Ω = 0. This leads to



5.3 Evaluation on Kidney CT Images 91a matrix formulation in a losed form solution as explained in setion 3.4.2 andshown in equation (3.17).In summary, our impliit segmentation algorithm using the GGM-SSM isimplemented as shown in pseudoode 5.1Algorithm 5.1 Pseudoode of impliit segmentation using the GGM-SSM priorPlae GGM-SSM automatially in image (employing the evolutionary algorithmintrodued in setion 5.1.2);Generate initial φ based on GGM-SSM;for t = 0 to MAXITER doCompute φ̃ aording to equation (5.8);Update level set: φt+1 ← φt + φ̃;Compute GGM-SSM parameters T,Ω (optimizing equation (3.13) with k = 1and S1 represented by the zero level set of φt+1);Update GGM-SSM: M t+1 = T ⋆ (M̄ +
∑

p ωpvp);end for5.3 Evaluation on Kidney CT ImagesIn an experimental evaluation, the level set segmentation framework is applied tothe segmentation of the left kidney in noisy CT images impaired by breathing arte-fats. The kidneys are a typial organ at risk for aner radiotherapy in the upperabdomen. They are exposed to irradiation during the treatment of malignant tu-mor types like arinoma of the ervix or arinoma of the panreas. Thus, anexat segmentation of the kidney helps to redue the possible harm to a minimum.Fully automati kidney segmentation is not an easy task as the grey value intensitydi�erenes between the kidney and neighbouring organs as the liver and spleen arevery small. Moreover, the grey value intensities inside the individual kidney volumesare not very homogeneous whih is partly due to the big kidney vessels whih aredarker than the organ itself and partly due to the poor quality of the abdominal CTimages. For an example of the kidney images see �gure 5.7.Most algorithms for (semi-)automati kidney segmentation from mostly low reso-lution CT images onsist of two steps: First, for automati initialization, a regionin the image is seleted where the probability of kidney tissue appearane is high.Seond, a loal searh algorithm is employed in order to detet the kidney ontour.Reently published methods using deformable models inlude the ombination ofgrey level appearane of the target with statistial information about the shape[Tsaagan 2002℄ or the training of a non-parametri histogram estimate speifyingthe kidney loation [Broadhurst 2006℄. Another method proposes the onatenationof di�erent image proessing operations as region growing and landmark determi-nations [Lin 2006℄. Looking at the evaluations, all of those methods lead to volumeoverlaps around 0.88 (where it is not lear whih measuring oe�ients were used)and an average surfae distane of 1mm [Broadhurst 2006℄ and respetively around1 voxel with resolution 0.63×0.63×10mm3 [Tsaagan 2002℄ between the results and
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Figure 5.7: Examples of abdominal CT images inluding the kidney.



5.3 Evaluation on Kidney CT Images 93the gold standard. All papers report failure of their method for some ases whihwere mainly aounted for to poor quality of the automati loation initialization.5.3.1 Segmentation ExperimentKidney GGM-SSM: Our training data set onsists of 16 CT images of theabdominal region whih were taken from healthy live liver donors. The data setas well as the assoiated segmentations of the left kidney were kindly provided bythe Department of Computer Siene, UNC, Chapel Hill. The segmentations wereperformed by medial students. The size of the images is 512 × 512 × (32 − 52)voxels with resolution 0.98 × 0.98 × (2.9 − 5.0)mm3 where the kidney measuresabout 75 × 60 × 100mm3. The GGM-SSM for the kidney is built using a trainingdata set of 10 segmented observations. For some observation examples see �gure5.8. The segmentation method is then tested on the remaining 6 kidneys. Foromputing the GGM-SSM, the global riterion (equation (3.13)) is optimized aselaborated in setion 3. The algorithm multi-sale parameters (desribed in setion3.6) are set to σ = 20mm, redution fator = 0.9, number of iterations = 20. Theresulting kidney GGM-SSM an be seen in �gure 5.9 where the mean shape andthe deformations aording to the �rst and seond modes of variation are depited.Distribution Model: For our appliation on the estimation of pin and
pout, the Parzen window approah desribed in setion 5.1.1 is employed. Theintensities around the kidney surfaes of our training data set whih are oded bythe Houns�eld sale are sampled. A Gaussian kernel and a width of h = 5 are used,see �gure 5.1.Set-Up: In order to evaluate the in�uene of the shape prior term, the results ofour algorithm are ompared with the results of the segmentation algorithm proposedby Shmidt-Rihberg et al. who use a very similar energy funtional but without ashape prior term [Shmidt-Rihberg 2009℄. Eah data set is segmented one withthe level set segmentation without shape priors as proposed by Shmidt-Rihberget al. and one with the GGM-SSM prior information integrated in the level setsegmentation as developed in setion 5.2. The algorithm is implemented as shownin pseudoode 5.1. For the segmentation, the weights are set to α1 = 1, α2 = 1,
κ = 1, β = 0 and τ = {0.1, 0.2}. In most ases, the algorithm onverged after 150iterations. For both methods, the same distribution model is used. For an exampleof the GGM-SSM deformation during the segmentation steps please see �gure 5.10.Results: The results are ompared to the gold standard segmentations byevaluating the Jaard oe�ient, the Die oe�ient and the Hausdor� distane,see table 5.1. Both level set frameworks using a-priori information on the greylevel intensities yields good segmentation results overall. The SSM onstraint onthe level set evolution yields even better results in all ases. The advantage ofadding the prior shape information an be seen distintly for patient 2 where theHausdor� distane diminished from 9.95mm to 5.0mm and for patient 6 where theHausdor� distane diminished from 12.57mm to 7.68mm. This is due to the fat
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Figure 5.8: Examples of surfae representations of segmented kidneys in the trainingdata set.
d)

b) a) )
e)Figure 5.9: GGM-SSM omputed for a training data set of 10 segmented kidneys.(a) shows the mean shape, (b-e) show the mean shape deformed with respet to �rstand seond mode of variation: M̄ − λ1v1, M̄ + λ1v1, M̄ − λ2v2, M̄ + λ2v2.
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a) b) )Figure 5.10: GGM-SSM during segmentation a) The GGM-SSM is plaed in theimage. b) The GGM-SSM is automatially initialized to its starting position. )The GGM-SSM deforms under the optimization of the global riterion.
only LS LS + SSMD(A,B) 0.93 0.93Pat1 J(A,B) 0.88 0.87H(A,B) 8.66 6.40D(A,B) 0.91 0.93Pat 2 J(A,B) 0.83 0.88H(A,B) 9.94 5.0D(A,B) 0.89 0.91Pat 3 J(A,B) 0.81 0.84H(A,B) 5.83 5.10D(A,B) 0.88 0.89Pat 4 J(A,B) 0.78 0.80H(A,B) 8.01 6.40D(A,B) 0.92 0.92Pat 5 J(A,B) 0.86 0.86H(A,B) 4.58 4.24D(A,B) 0.84 0.86Pat 6 J(A,B) 0.73 0.75H(A,B) 12.57 7.68Table 5.1: Segmentation Results for six di�erent data sets. Left: Level set segmenta-tion without GGM-SSM shape prior as done with the algorithm of Shmidt-Rihberget al. [Shmidt-Rihberg 2009℄. Right: Level set segmentation using the GGM-SSMshape prior as developed in setion 5.2.2. D(A,B): Die oe�ient. J(A,B): Jaardoe�ient. H(A,B): Hausdor� distane in mm.
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a) b)Figure 5.11: Segmentation Results on a kidney in CT data, sagittal slie. Theblue ontour is the gold standard segmentation. Image (a) shows the initial ontourin yellow and the ontour after applying the automati evolutionary algorithm asdesribed in setion 5.1.2 in white. Image (b) shows the result of the unonstrained(red) and the result of the SSM onstrained (green) level set segmentation. The redontour leaked into the adjaent organ (liver).that the evolving zero level is attrated by neighbouring organs with similar greyvalue intensities as the kidney. The Hausdor� distane an be seen as an indiatorfor the leakage risk. This leakage an be suessfully prevented by integrating theSSM prior on shape probabilities. As an example, the e�et on patient 2 is shownin �gure 5.11(b).5.3.2 The Role of the ParametersAs our energy funtional in equation (5.1) is derived by a MAP explanation, intheory all oe�ients should be equal to 1. Expanding on this probabilisti anal-ogy, the traditional oe�ients of the variational methods (as e.g. in [Chan 2001℄or [Rousson 2004℄) an be seen as powering fators whih �atten or peak the den-sity distributions. Conerning the GGM-SSM term (equation (5.3)), the standarddeviation σΘ ontrols the mathing of the GGM-SSM to the zero level set. Thismeans that in pratie, σΘ should have values around 5mm to guarantee a suess-ful mathing for the problem at hand as this is the mean point distane in the model.However, the value of σΘ also ontrols the stritness of the spatial onstraint, sothe introdution of the oe�ients τ, β and α is neessary in order to position thein�uene of the SSM with respet to the other terms. What is more, β an be equalto 0 beause the smoothness term div
(

∇φ
|∇φ|

) is also governed by τ as an be seen inequation (5.8). Moreover, employing −τ log pΘ as weight has the advantage of usinga distane-dependent smoothing term. Figure 5.12(a) shows the in�uene of thehoie of σΘ for the Hausdor� distanes obtained in the segmentation experimentswith α = 1, β = 0 and τ = 0.1. These parameters lead to satisfying results for allkidneys exept kidney 1. The optimal values for σΘ are similar for all kidneys andshould not exeed 5mm in this ase.
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Figure 5.12: Hausdor� distanes. a) shows the Hausdor� distanes of the segmen-tation results under parameters α = 1, β = 0 and τ = 0.1 for all kidneys withrespet to σΘ. b) illustrates the relation between the parameters τ and σΘ and theirin�uene on the resulting Hausdor� distanes.The relation between the parameters τ and σΘ are illustrated in �gure 5.12(b) wherethe Hausdor� distanes for two kidney segmentations are plotted with respet to
σΘ for di�erent values of τ . For a smaller τ the optimal σΘ beomes smaller as wellwhih results in a left shift of the urve. This is due to the fat that a smaller σΘas well as a greater τ result in a striter onstraint of the level set front propaga-tion. However, the best result for the Hausdor� distane remains the same for bothhoies of τ .5.4 Multiple Shape Class SegmentationOn the grounds that shape, size and loation of neighbouring anatomial struturesin�uene eah other diretly and indiretly, a thriving strategy is the extension ofthe region of interest for the segmentation to adjaent strutures. The integrationof these geometri relation information about adjoining strutures as a priori knowl-edge renders a segmentation algorithm a lot more robust. This idea an be exploitedfor example in an attempt to simplify segmentation proesses for low-ontrastedstrutures as shown e.g. by Palm et al. who use a balloon model oupled to a SSM



98 Chapter 5. Using the GGM-SSM as a Prior for Segmentationto �nd the voal ord and utilize the results to �nd the glottis next [Palm 2001℄.Costa et al. present a oupled segmentation framework employing an expliitly rep-resented SSM of the prostate for segmenting the bladder and prostate simultaneously[Costa 2007℄. In [Zeng 1999℄, the segmentation of the ortex from 3D MR images isperformed by a oupled surfae propagation. This is realized by oupling the seg-mentation results of two adjaent borders of the ortex by verifying that the distanebetween the borders does not exeed a ertain interval. Pitiot et al. enhane thisidea by onstruting deformable models for di�erent brain strutures and regulatingthe assoiated segmentations by a distane map whih determines ertain distanevalues that have to hold between the strutures [Pitiot 2005℄. In another approah,Ciofolo et al. model the distanes between brain struture ontours as a fuzzy vari-able so to avoid overlapping between ontours of di�erent level sets [Ciofolo 2005℄.A very interesting method is proposed by Tsai et al. who employ multiple signeddistane funtions as impliit representations of multiple shape lasses within theimage [Tsai 2004℄. By doing a PCA on these funtions they then obtain a ouplingbetween the multiple shapes within the image and hene e�etively apture theo-variations among the neighbouring strutures. Impliit funtion segmentation istopologially �exible and therefore well suited to segment non-spherial topologiesas well as objets ontaining multiple shape lasses. As our GGM-SSM prior is ableto model non-spherial anatomies and also anatomies onsisting of more than onestruture, our aim is to extend the segmentation algorithm presented in setion 5.2for suh kind of segmentation. Setion 5.4.1 is dediated to the mathematial adap-tion of the GGM-SSM to multiple objet modeling and its integration into the timestep proedure of the segmentation sheme. In setion 5.4.2, �rst experiments aredone on aetabulum and femoral head data whih feature a non-spheri anatomyand onsist of two non-onneted strutures.5.4.1 Development of the Algorithm5.4.1.1 Extension of the GGM-SSM to Multiple StruturesFor the segmentation of more than one shape lass, the shape prior has to representa training data set of multiple-struture observations. In order to model multiplestrutures using only one GGM-SSM, an overlap between strutures belonging todi�erent shape lasses has to be avoided. Therefore, the EM-ICP registration usedfor aligning the model with the observations has to be adapted to that task. Toreap: for one struture, the orrespondene probability between an observationpoint ski and a model point mj reads:
γijk =

exp
(

−
‖ski−Tk⋆mkj‖2

2σ2

)

∑Nm

l=1 exp
(

−‖ski−Tk⋆mkl‖2

2σ2

)as explained in setion 3.3.2. On the one hand, the objetive is to ompute onetransformation whih transforms two or more strutures together in order to keeptheir spatial relationship. On the other hand, an overlap of strutures of di�erenttypes has to be avoided to guaranty a good modeling. To do so, it has to be made
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a) b) L = 1 L = 1

L = 2 L = 2

) L = 1 L = 1

L = 2 L = 2

correspondence probability = 0 d) L = 1

L = 2

Figure 5.13: EM-ICP for multiple struture observations. a) Observations onsistingof two strutures. b) Strutures are labeled L = 1 and L = 2. ) Points belonging tostrutures with di�erent labels have a orrespondene probability of zero. d) Alignedobservations.sure that the orrespondene probability γijk = 0 if points mj and ski belong todi�erent strutures. This is done by labeling the points ongruently over the wholetraining data set and then omputing
γijk =







0 if L(mj) 6= L(ski)

exp

„

− ‖ski−Tk⋆mkj‖
2

2σ2

«

PNm
l=1

exp

„

− ‖ski−Tk⋆mkl‖
2

2σ2

« else
(5.9)with L = {1, 2, ...} being the label of the respetive strutures. For an illustrationsee �gure 5.13. Using the labeled orrespondene matrix in the EM-ICP registrationhas the e�et that only point pairs belonging to the same shape lass guide the reg-istration. The resulting transformation then tries to align the respetive strutureswithout ausing an overlap inside the observation.5.4.1.2 Extension of the Segmentation Method to Multiple StruturesThe goal is to extend the segmentation algorithm desribed in setion 5.2 (equation(5.1)) for multiple-struture observations. As explained above, only one GGM-SSMis used to model the multiple-struture shape. However, a separate level setfuntion φL is de�ned for eah struture. This is done for two reasons: First, itallows us to de�ne grey value probabilities pL

in and pL
out for eah struture. Seondly,additional anatomial onstraints an be de�ned as for example in ase of di�erentshape strutures lying lose to eah other, it is of great interest to prevent separatestrutures from merging. The evolution of eah level set funtion is omputedby a separate gradient desent using the formulation of equation (5.8). Here, the



100 Chapter 5. Using the GGM-SSM as a Prior for Segmentationshape priors in eah gradient desent are represented by the respetive struturesof the GGM-SSM. Importantly, the update of the GGM-SSM is done with respetto all zero level sets with φall = min{φ1, φ2, ...}, and this step therefore links theevolution of the separate level sets.The implementation of the multiple-struture segmentation is presented in pseu-doode 5.2.Algorithm 5.2 Pseudoode of impliit two shape lass segmentation using theGGM-SSM priorPlae GGM-SSM automatially in image (employing the evolutionary algorithmintrodued in setion 5.1.2);Generate initial φ1 and φ2 based on GGM-SSM;Set d as minimal allowed distane between the two level sets;for t = 0 to MAXITER doCompute φ̃1 aording to equation (5.11);Update level set;{Apply onstraint:}
φt+1

1 =

{
φt

1 + 0 if φt
2(x) < d

φt
1 + φ̃1 else ;Compute φ̃2 aording to equation (5.11);Update level set;{Apply onstraint:}

φt+1
2 =

{
φt

2 + 0 if φt+1
1 (x) < d

φt
2 + φ̃2 else ;Form one ontour: φt+1 = min{φt+1

1 , φt+1
2 };Compute GGM-SSM parameters T,Ω (optimizing equation (3.13) with k = 1and S1 represented by the zero level set of φt+1);Update GGM-SSM: M t+1 = T ⋆ (M̄ +
∑

p ωpvp);end forThe Boundary Term:For organs whose grey value intensity di�ers signi�antly from the bakground's asis the ase e.g. for bones, the gradient information in the image ould be interestingto be exploited for the segmentation. To do so, an edge term is added to theenergy funtional desribed in equation (5.1) whih serves to atively draw the zerolevel set towards organ boundaries. Based on the Geodesi Ative Region modelproposed by Paragios and Derihe [Paragios 2002℄, an energy funtional based onthe boundary term an be introdued by
Eboundary(φ) =

∫

X
δǫg(I)|∇φ|dXwhere

g(I) =
1

1 + |∇(Gσ ∗ I)|



5.4 Multiple Shape Class Segmentation 101with Gσ being a monotonially dereasing funtion (in our ase a Gaussian fun-tion). The derivative of the boundary term with respet to the level set funtion
φ is omplex. It is omputed analogously to the derivative of the shape prior aselaborated in setion 5.2.3. This �nally results in

∇Eboundary(φ) = −δǫ(φ)g div

(
∇φ

|∇φ|

)

− δǫ(φ) < ∇g,
∇φ

|∇φ|
> . (5.10)This term is integrated into the gradient desent of equation (5.8) whih leads tothe extended gradient desent

∂φ

∂t
= δǫ(φ)

(

−α1 log(pin) + α2 log(pout)− τ < ∇(log pΘ),
∇φ

|∇φ|
>

−η < ∇g,
∇φ

|∇φ|
> +div

(
∇φ

|∇φ|

)

(β − τ log pΘ − ηg )

)

. (5.11)with η ∈ R as the assoiated weight.The integration of the boundary term is also advantageous when segmentating twoor more neighbouring strutures simultaneously as the leakage risk might be redued.5.4.2 Experimental Evaluation on Hip Joint CTsA �rst experimental evaluation is done on hip artiulation data. These are wellsuited for our needs as they feature two shape lasses (aetabulum and femoralhead) as well as a non-spherial topology sine the ishium and the pubis bone forma ring. The intensity within the bones is not onstant as the interior onsists oftrabeular bone whereas the outer shell is a ompat ortial bone. This intensityvariation is a drawbak for thresholding tehniques. Moreover, the edges might beblurred by artifats whih deteriorates the auray of region growing methods.Besides, a onsiderable amount of noise or blurring often adds to the ompliations.Espeially the tiny spae between the femoral head and the aetabulum poses aproblem beause automati segmentation methods have di�ulties to reognize theadjoining edges as two di�erent units [Westin 1998℄.The CT data set used in this experiment onsists of 11 images of the hip joint withresolutions around 0.71 × 0.71 × 4mm and size 512 × 512 × (57 − 78) voxels. Theresolution in z-diretion is not high enough to allow a reliable manual detetion ofthe gap between femoral head and aetabulum in many of the images. Therefore,the medial experts who segmented the training data set hose to augment theresolution in z-diretion for a better estimation of the gap. These sampled imagesthen feature resolutions around 1 × 1 × 1mm and size 256 × 256 × (228 − 312)voxels, see examples in �gure 5.14. For eah data set one manual segmentationwas done by a medial expert. For the evaluation, we are interested in modelingthe region of the hip artiulation as well as the region with the non-spherialtopology. Therefore, the observations are lipped to the region of interest. Inorder to do a ongruent lipping over all observations, the anatomial landmarkson the bones are used as referene (see �gure 5.15): The femur is lipped by ahorizontal plane utting 1mm below the trohanter minor. The hip bone is lipped
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Figure 5.14: Hip joint CTs: These images belong to the observations whih form thetraining data set.

Figure 5.15: Frontal view of the hipbone and anatomial landmarks. 1-Promontorium, 2-Spina iliaa anterior superior, 3-Spina iliaa anterior inferior,4-Eminentia iliopubio, 5-Symphyse, 6-Trohanter minor.

Figure 5.16: Hip joint observations. These examples from the training data set arelabeled to separate femur and hip bone struture.
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d)

b) a) )
e)Figure 5.17: GGM-SSM for the hip joint. a) Mean shape. Deformation along the�rst (b,) and seond (d,e) variation mode whih mainly a�et the bulging of thefemoral head, the torsion and size of the ishium as well as the CCD angle.by a horizontal plane utting 5mm above the spina iliaa anterior inferior. Theresults for some of the observations are depited in �gure 5.16. The observationsare represented by around 7000 points (minimum 6544 points, maximum 7408points). In a preproessing step, a labeling of all observations to distinguish hipbone and femoral head is done where the femoral head is labeled with L = 1 andthe aetabulum is labeled with L = 2. The GGM-SSM for the hip artiulation isbuilt using a training data set of 8 observations and the segmentation method isthen exemplarily tested on the remaining 3 hip joints.Hip joint GGM-SSM: For generating the GGM-SSM, �rst the baryentresof all observations are aligned. Subsequently, the global riterion (equation (3.13))is optimized as elaborated in setion 3. The algorithm multi-sale parameters (asintrodued in setion 3.6) are set to σ = 10mm, redution fator = 0.9, number ofiterations = 15. The resulting hip joint GGM-SSM an be seen in �gure 5.17 wherethe mean shape and the deformations aording to the �rst and seond modes ofvariation are depited.Distribution Model: For our appliation on the estimation of pin and
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a) b)
) d)Figure 5.18: Estimated grey value density funtions for the inside (green) and theoutside (red) region of the lipped femur (a,) and hipbone (b,d) using a Parzenwindow approah.

pout, again the Parzen window approah desribed in setion 5.1.1 is used. Theintensities are sampled around the bone surfaes of our training data set whih areoded by the Houns�eld sale. A Gaussian kernel and a width of h = 5 are used,see �gure 5.4.2. The intensity distributions for the inside and the outside of thebones greatly overlap espeially for the femoral head due to the olour of the bonemarrow whih resembles the bakground. This means that the information value ofthe grey value distribution prior for the segmentation is redued.Set-Up: For the segmentation, the weights are set to α1 = 0.5, α2 = 0.5,
κ = 1, β = 0 and τ = {0.5, 0.8}. The artilage between aetabulum and femoralhead measures at its thikest point around 4mm (and less in elderly people) and islow-ontrasted in the images, so this region is very di�ult to segment based onintensity distribution information alone. In order to atively draw the zero level settowards the bone boundaries, we additionally employ the boundary term and setthe boundary weight to η = 0.3. The funtion g is Gaussian with σ = 7mm. Thealgorithm is iterated 200 times.Results: For testing purposes, �rst we try to segment the hip artiulationusing the level set segmentation without shape prior employing the algorithm asproposed by Shmidt-Rihberg et al. [Shmidt-Rihberg 2009℄. As the grey valuesof the bone marrow greatly resemble the bakground in some regions, this leads tonon-satisfying results as the segmentation ontour sometimes looses its onnetivity.An example for this behaviour is shown in �gure 5.19(a) and (b). By integrating
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a)

b) )Figure 5.19: Problemati region for segmentation. Figure a) shows a zoom on theishium struture of the hip bone where the grey value intensities of bone marrowand bakground resemble and no lear boundary an be seen. b) Segmentation resultof level set segmentation without shape prior. ) Segmentation result of level setsegmentation with shape prior.Table 5.2: Segmentation results. The table shows the mean surfae distane and theHausdor� distane of the �nal deformed SSM and the manual segmentation in mm.Pat. 1 Pat. 2 Pat. 3Femur Hipbone Femur Hipbone Femur Hipbonemean dist. in mm 3.0 2.9 3.5 3.0 2.1 3.1Hausdor� dist. in mm 11.6 12.5 15.8 16.8 16.4 14.3the shape prior, these problems ould be avoided (see �gure 5.19()). Two resultexamples with a lose-up on the artiulation region are shown in �gure 5.20. Theshape prior was able to suessfully model the non-spherial topology formed bythe pubi bone and ishium (see �gure 5.21(d))Beause of the femoral marrow, the zero level set of the impliit funtion sometimesreates holes inside the femoral struture. Therefore, instead of the Die oe�ient,the surfae distane between the deformed GGM-SSM and the expert segmentationis used to asses the evaluation results. These are depited in table 5.2. The meandistane measures around 3mm whih seems to be aeptable with regard to the lowquality of the data. The distanes are illustrated for the hipbone and the femoralhead in �gure 5.21(a) and (b). It beomes lear for patient 2 that the border ofthe aetabulum posed a problem for the segmentation algorithm. This might bedue to the fat that the ontrast in that region is very low whih is shown in �gure5.21(). Even for the expert, this region must have been very di�ult to detet. Inorder to validate the results further, inter-individual variability evaluations shouldbe performed in a series with several medial experts.Overall, the results obtained in this experiment indiate that the method is wellsuited for two shape lass segmentation.
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a) b)
) d)Figure 5.20: Segmentation results. The images show a view on the segmentationon patient 1 (a,) and patient 2 (b,d). The initial segmentation is shown in yellow(above) whereas the results are shown in green (below).
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a)

b)
) d)Figure 5.21: Segmentation Results. a) Surfae distanes between gold standard anddeformed GGM-SSM after segmentation for the hipbones of patient 1, patient 2,patient 3. b) Surfae distanes between gold standard and deformed GGM-SSM aftersegmentation for the femoral heads of patient 1, patient 2, patient 3. ) Cut throughthe aetabulum of patient 2 in CT image. The yellow ellipse marks the region withlow ontrast whih the segmentation method did not detet well as seen in image (),middle hipbone. d) Deformed GGM-SSM (white points) during the segmentation ofthe hipbone (in purple).



108 Chapter 5. Using the GGM-SSM as a Prior for Segmentation5.5 DisussionA novel algorithm for automati segmentation of anatomial strutures wasproposed. The segmentation sheme ouples an expliitly represented SSM withan impliitly represented segmentation ontour. This approah is new to ourknowledge of the literature on this subjet and opens new insights on how to takethe best of both worlds. Impliit segmentation methods o�er several advantagesover expliit ones as no remeshing algorithms are needed, the integration of regionalstatistis is straightforward and �nally, they are very �exible to di�erent topologies.Furthermore, an impliit formulation of the segmentation allows to easily takeadvantage of the apabilities presented by the GGM-SSM: It is able to modelnon-spherial and multiply-onneted objets as well as several objets at one.Parametri deformable models are not well suited for suh segmentation tasks.The evolving ontour of impliit models, however, is able to split and mergenaturally and allows the simultaneous detetion of several objets. In order to putthe impliit representation within a uni�ed statistial framework, a maximum aposteriori estimation of a level set was developed. The MAP explanation leads to atwo-phase formulation whih is optimized based on the image information as wellas the GGM-SSM information about probable shapes. This approah is re�nedfurther by integrating prior knowledge about grey value distributions inside andoutside the organ in order to robustify against intensity inhomogeneities arosspatients as well as inside the respetive strutures.Segmentation experiments on kidney CTs impaired by breathing artefatsdemonstrated the e�ieny of the new algorithm. Adaptive weights ensure thatthe SSM onstraint is optimally exploited. The results show that the new methodworks well and improves for some ases the approah of using an unonstrainedlevel set segmentation. Espeially when the intensity patterns of the organs loseby are similar to the organ of interest, the level set segmentation an leak andprodue erroneous results. The leakage problem of level set algorithms an be seenin di�erent segmentation tasks suh as the prostate. The proposed algorithm o�ersa solution to this problem by inluding the SSMs in a probabilisti framework suhthat they bring robustness to the segmentation proess.The method is then extended to multiple-struture segmentation by intro-duing a level set funtion for eah struture. The shape prior information howeveris modeled by a single GGM-SSM for all strutures simultaneously. During segmen-tation, the evolution of the di�erent level set funtions is linked and onstrained bythe multiple-shape GGM-SSM. Furthermore, by integrating a boundary term intothe energy funtional, the method is adapted to bone segmentation.First experiments on hip artiulation data indiate that the method is well suitedfor modeling and segmenting multiple objets at one and also shows that theGGM-SSM is able to be employed as a shape prior for non-spherial anatomies asshown on the example of ishium and pubi bone. Inherently, impliit segmentationtehniques are sensitive to the initial plaement. This problem gets worse forsegmentation of strutures lying lose-by whose intensities are lose. In ase of the



5.5 Disussion 109hipbone artiulation segmentation, the grey value distributions from femoral headand hip bone are very similar (see �gure 5.4.2). This means that the segmentationwill fail if the automati initial plaement positions the initial femoral strutureinside the hip struture or vie versa. Therefore, the initial plaement has to beontrolled arefully.Even from a low number of samples a prior on the probabilities an be ex-trated so that no huge training data set is neessary. From a theoretial point ofview, a very powerful feature of this method is that a unique riterion is optimized.However, the pratial onvergene rate has to be investigated more arefully as itdepends on the hoie of weights in the funtional as well as the variane σ2
Θ whihontrols the probability of ourrene with respet to the SSM. In the ase of anorgan shape whih di�ers greatly from the shapes in the training data set for theSSM, a great sigma is needed in order to not onstrain the ontour evolution toomuh (as e.g. for Pat. 1, �gure 5.12(a)), so σΘ is momentarily used somewhat asinterative parameter whih is not the optimal solution. Furthermore, the MAPformulation ould be re�ned by integrating a priori knowledge about the expetedvolume V0 whih is given by the probability p(φ|V0) where V0 an be determinedby evaluating the training data set.Conerning the method for multiple-struture segmentation, the implementation isurrently done using one energy funtional for eah ontour. This approah ouldbe improved by formulating a single energy funtional ontaining all independentlevel set funtions as parameters. The obligatory onstraint whih forbids anoverlap of the independent ontours ould then be integrated as side ondition.Overall, to onsolidate the results of multiple-struture segmentation, a moreelaborate evaluation on a bigger data set is needed.
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Chapter 6Conlusion
Contents6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1116.2 Perspetives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115Statistial shape models play an important role in medial image analysis, and awide range of methods well adapted to various appliations exists in the literature.The emphasis of this thesis however was not so muh to propose a onvenient SSMto solve a spei� pratial problem but to investigate the possibilities of a novelapproah to SSM omputation. The fous of this manusript is twofold: First, anovel SSM method was developed in a probabilisti framework. Then, by takingadvantage of the partiular harateristis of the probabilisti SSM, it was integratedinto an impliit segmentation sheme. Both parts were formulated on a soundtheoretial foundation and feature new views on well-known problems.In this hapter, the ontributions developed in the ourse of this manusript arereviewed and an outlook on possible future researh on the subjet is given.6.1 Contributions6.1.1 Model ComputationAs a �rst step on the path to a novel SSM omputation method, an a�ne extensionof the Expetation Maximization - Iterative Closest Point registration algorithmwas proposed whih diretly yields a solution to the fundamental orrespondeneproblem. Here, the observations are represented by unstrutured point louds, andeah observation point is modeled as a noised measurement of the model points.This approah atually amounts to representing the surfae of the shapes by amixture of Gaussians. The probabilisti onept o�ers an intuitive and oherent wayto determine orrespondenes between smooth organ surfaes as well as betweenshapes where not all observations feature the same prominent shape details. Itshould be noted that the SoftAssign algorithm [Rangarajan 1997a℄ o�ers a relatedprobabilisti formulation but is only justi�ed for a pair-wise registration, not for thegroup-wise model to observation registration whih is required for building the SSM.The introdution of probabilisti orrespondenes gives way to a large ontribu-tion of this thesis whih is the development of a sound mathematial framework forSSM omputation presented in hapter 3 and [Hufnagel 2007b, Hufnagel 2008b℄.To realize this, the SSM problem has been viewed from the new angle of generative



112 Chapter 6. Conlusionmodels: Given a set of observations, it has been sought for the model whih mostprobably generated those observations. As the model itself is modeled as a randomvariable desribed by a Gaussian distribution, a maximum a posteriori estimationof the whole sene has been formulated. Here, observation and model parameterswere uni�ed in one global riterion whih has not been done before to the author'sknowledge. It ould be shown that the optimization of the riterion led to losedform solutions for all parameters exept the variation modes whih are e�ientlysolved for iteratively. Sine the SSM omputation is done by optimizing a globalriterion, a theoretial onvergene of the algorithm is ensured. Furthermore, inontrast to methods using the prinipal omponent analysis, the variation modesof the SSM presented here only model the shape variation and not the noisewhih is represented separately through the Gaussian Mixture. This implies apossible answer to modeling the unertainties inherent to surfae representations ofsegmented organs.
Apart from the methodologial ontributions, the GGM-SSM resulting from thenew omputation algorithm itself signi�antly adds to the state-of-the-art. A mainadvantage is the simpliity of the point-based SSM with respet to its power. Theappliation to an arbitrary training data set is straightforward sine no preproess-ing to establish orrespondenes is needed, and the point numbers from observationto observation as well as the point density may vary. As the onnetivity betweenpoints does not play a role, the GGM-SSM is very �exible to di�erent kinds of topolo-gies and therefore well-suited to model non-spherial or multiply-onneted objetsas well as several objets at one. The superior quality of the GGM-SSM omparedto a lassial point-based SSM omputed under the use of the iterative losest pointalgorithm and a prinipal omponent analysis (ICP-SSM) ould be demonstrated onsyntheti and real data sets as presented in hapter 4 and [Hufnagel 2009a℄. Whilethe ICP-SSM is a faster method, the GGM-SSM reliably sueeded in apturingshape details as well as extreme shape variations whih were lost for the ICP-SSM.Throughout this thesis, the on�dene in surfae information for SSM omputationis onsidered arguable as these are only approximations of the true surfaes. Never-theless, in pratie surfae-based SSMs obtain useful results. In order to plae thenew approah in the literature, a omparison of a MDL-SSM and the GGM-SSMwas performed on a syntheti data set whih proved to be a di�ult endeavour as aomparable metri had to be de�ned. Finally, the results were evaluated using theJaard oe�ient for whih surfaes had to be approximated for the GGM-SSM re-sults. The experiments showed that the GGM-SSM almost reahed the performaneof the MDL-SSM. The di�erene is probably due to the fat that in the MDL-SSMpoints are allowed to freely move over the surfaes so that the results do not dependon the original point distribution in the observation meshes. Unlike the GGM-SSMhowever, the MDL-approah is onstrained to surfae representations for spherialtopologies.



6.1 Contributions 1136.1.2 SegmentationAnother signi�ant ontribution of this thesis lies in the development of a novelsegmentation algorithm as presented in hapter 5 and [Hufnagel 2009℄. The algo-rithm integrates an expliitly represented shape prior into an impliit segmentationsheme.Most impliit segmentation shemes whih make use of shape priors do statistison signed distane maps whih do not onstitute a linear spae. Furthermore,the prinipal omponents of impliit shape models desribe the variability ofthe distane maps but not the variation of the embedded ontours. Therefore,understanding the variability information on distane funtions is not obvious.In ontrast, the variability model of a parametri SSM enodes the variation foreah point of the model whih allows a diret physial interpretation of the shapevariability.The objetive in this work was to exploit the advantages o�ered by impliit segmen-tation methods without relinquishing the bene�ts given by expliitly representedSSMs. Sine the GGM-SSM was formulated in maximum a posteriori explanationand is omputed in a probabilisti formulation, its integration into an impliitsegmentation framework ould be realized quite elegantly: A maximum a posterioriestimation of a level set funtion whose zero level set best separates the organfrom the bakground was formulated under a shape onstraint introdued by theGGM-SSM. This led to an energy funtional whih was optimized in a two-phaseformulation alternating a gradient desent with respet to the embedding levelset funtion and the GGM-SSM deformations. The oupling between point-basedstatistial shape models and level sets is new to our knowledge of the literatureand opens new insights on how to take the best of both worlds. From a theoretialpoint of view, a very powerful feature of the method is that a unique riterion isoptimized, thus, the onvergene is ensured. Due to the impliit formulation ofthe approah, new a priori knowledge or onstraints an be taken into aountas needed for spei� appliations. This was exemplarily demonstrated by theintegration of a boundary term into the energy funtional.As demonstrated further, the segmentation method ould be adapted tomultiple-objet segmentation in a straightforward manner. The shape and loationrelations of an anatomial struture with regard to their neighbouring struturesare interesting information to be used as a-priori knowledge in a segmentationproess in order to render the result more robust. For the segmentation algorithm,a separate level set funtion was de�ned for eah objet. Their spatial evolutionsduring segmentation were then linked and onstrained by a single GGM-SSM whihmodels all involved objets in one shape prior. This onstitutes another sienti�ontribution not yet published elsewhere.Evaluations on kidney data showed that the integration of the shape prior intothe level set segmentation o�ers a solution to the typial impliit segmentationproblem of leakage and suh brings robustness to the segmentation proess. A �rstevaluation on hip artiulation data indiated the well-posedness of the new method



114 Chapter 6. Conlusionto multiple-objet segmentation and segmentation of objets featuring non-spherialtopology.



6.2 Perspetives 1156.2 Perspetives6.2.1 ParametersThe role of the adjustable parameters in both the SSM method and the segmen-tation method should be subjet to further researh. Up to now, the parametervalues are determined largely heuristially whih is not an optimal approah.SSM Computation: Sine the EM-ICP registration is implemented in amulti-sale framework, the three parameters 'initial variane', 'redution fator'and 'number of iterations' (or �nal variane respetively) have to be �xed be-forehand. The experiments onduted during the researh for this thesis suggestthat a good hoie for the �nal variane is a value whih lies in the order of thesquared average point distane of the observations. The hoie for the initialvariane depends on the shape di�erenes in the training data set. In general, aslower redution of variane redues the risk of freezing in a loal minimum duringoptimization. However, in pratie a reasonable balane between omputationaltime and that risk has to be found. In theory, these parameters ould be modeledin a probabilisti formulation. By doing so, the EM-ICP parameters might beomepart of the optimization proess in the SSM omputation and be integrated into themaximum a posteriori estimation presented in hapter 3 as additional observationparameters.Segmentation: In the segmentation methods, weighting oe�ients are em-ployed to ontrol the in�uene of the di�erent terms in the energy funtional aspresented in hapter 5. As the energy funtional is derived by a MAP explanation,in theory all oe�ients should be equal to 1. Expanding on this probabilistianalogy, the traditional oe�ients of the variational methods an be seen aspowering fators whih �atten or peak the density distributions. While the freehoie of weights renders the algorithm �exible to di�erent segmentation demands,it also requires a ertain user-interation whih should be redued. This ould bedone by evaluating the in�uene of eah term and espeially the relations betweendi�erent terms on a set of standard segmentation problems. For example, theexperiments onduted in the ourse of this thesis suggest that a smoothing termbeomes obsolete if the SSM term is weighted notieably.Furthermore, it would be of interest to investigate an approah were the weightsare no longer represented by salars but by spatial funtions. This would allowan adaption of the impat of the respetive terms to loal image harateristis.Needless to say, the task of de�ning good weights would beome even more omplexbut it ould make sense to try for ertain spei� appliations.6.2.2 AppliationThe segmentation method presented in the ourse of this thesis joins the advantagesof expliitly represented shape priors and the advantages of impliit segmentationshemes. The algorithm is therefore very �exible to di�erent kinds of segmenta-tion problems. Espeially multiple-objet segmentation is of interest as not many



116 Chapter 6. Conlusionapproahes exist in that domain. Possible appliations are the segmentation oflung and other organs at risk supporting the radiotherapy planning for lung tu-mors. Typially, the lung movement during inspiration and expiration in�uenesthe movement and deformations of the organs lying lose by as for example theliver. The new segmentation method o�ers an easy integration of regional statistis.The grey value distributions of the lung and the grey value distributions of the liverould be sampled and modeled separately. The shape prior on the other hand ouldomprise the lung and the liver in a single GGM-SSM. By adjusting the in�ueneof the respetive terms in the energy funtional, the segmentation proess an beadapted to the demands of the spei� patient's images. For example in imagesfeaturing noise or low ontrasts, the shape prior term weights ould be turned upwith respet to the weights of the image information term, so a robust segmentationshould be possible. First experiments are urrently done in ooperation with thegroup around J. Ehrhardt from the University Medial Center Hamburg-Eppendorf.6.2.3 Related WorkFor further researh in shape modeling it would be worthwhile to study the mathe-matial relations of the Gaussian mixture model proposed here and the onept ofanother generative statistial model without one-to-one orrespondenes as reentlyproposed by Durrleman et al. [Durrleman 2009℄. Similarly to the method presentedin this thesis, they interprete the shape observations as randomly generated bythe model and formulate the model omputation in a maximum a posterioriexplanation. However in their approah, the similarity of shapes is measured by adistane on urrents that does not assume any type of point orrespondenes.Conerning the segmentation algorithm, an interesting approah was proposedby Raviv et al. [Raviv 2009℄ whih is also developed in a probabilisti framework.An energy funtional similar to the one presented in this thesis is optimized for theimpliitly represented segmentation ontour. However, their approah is designedfor group-wise segmentation and hooses a generative method where the unknownsegmentation ontours are interpreted as randomly generated by the shape prior.As a novelty, the shape prior (desribed by an atlas) is integrated as an additionalunknown parameter whih is inferred from the data set through an alternating opti-mization of the funtional. This idea ould be extended by replaing the impliitlyrepresented atlas with an expliitly represented SSM whih o�ers a physially inter-pretable variability model. As the GGM-SSM already is omputed in a probabilistiformulation in a generative method, the extension of the segmentation algorithmpresented here to a generative segmentation algorithm should be quite diret.6.2.4 OtherIn hapter 4, the problems of the SSM performane measure 'spei�ity' were illus-trated. In general, a fair omparison of di�erent SSM methods is di�ult. First, thequality of SSMs is strongly related to the quality of orrespondene determination.However, no gold standards for orrespondenes exist. Seondly, the omparison of



6.2 Perspetives 117SSMs based on di�erent representations is a hallenge as most metris will inher-ently favor one or the other SSM. In the ase shown in this thesis, a surfae-basedSSM was ompared to the point-based GGM-SSM. As a volume overlap metri wasdeemed to be more meaningful than point distanes in the respetive experiments,a surfae had to be approximated for the GGM-SSM. Naturally, the auray of thebinary representation then depended on the quality of the approximated surfaeswhih means that the evaluation results have to be taken with a pinh of salt.An interesting approah to takle the problem of �nding a orrespondene-independent benhmark has reently been proposed by Munsell et al. who introduea ground truth SSM [Munsell 2008℄ for 2D evaluation. The proposed benhmark�rst generates a syntheti training data set by randomly sampling a given SSM thatde�nes a ground-truth shape spae. The quality of a new SSM omputed on thetraining data set is evaluated by omparing its shape spae against the ground-truthshape spae. An extension of the algorithm to 3D SSMs should be straightforward.Furthermore, the approah ould be extended to a general framework whih alsoallows an equitable omparison of SSMs based on di�erent representations.
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Appendix AMathematial Bakground
A.1 Mathematial PrepositionsSingular Value Deomposition (SVD)Any real matrix A ∈ R

m×n an be deomposed into
A = UΣV Twith U being an orthogonal matrix U ∈ R

m×m, V T being the transpose of theorthogonal matrix V ∈ R
n×n and Σ being a diagonal matrix Σ ∈ R

m×n with thesingular values σi on the diagonal in desending order σ1 ≥ σ2 ≥ ... ≥ σmin(m,n).This singular values are all non-negative.However, the number of non-zero values in Σ is less or equal than min(m,n). Forthe following let us assume n < m. By arranging the information given by the SVDin the optimal way we an save a lot of disk spae by reduing the matrix dimensionsto
A = Ũ Σ̃Ṽ Twith Ũ ∈ R

m×n, Ṽ ∈ R
n×n and Σ̃ ∈ R

n×n.The singular values and assoiated pairs of singular vetors u and v of a matrix Asatisfy
Avi = σiuiand
ATui = σivi.In a geometri sense this means that for every retangular matrix we an �ndan orthogonal basis V of whih eah i-th vetor vi is mapped to a non-negativemultipliative of the i-th vetor of a orthogonal basis U (if n > m it is Avi = 0 for

i > m).The singular values σi of a matrix A are the square roots of the eigenvalues of ATA.Eigenvalue Deomposition Using the Jaobi MethodA real symmetri matrix A ∈ R
n×n has always real eigenvalues and orthogo-nal eigenvetors. A an then be written as
A = USUT



120 Chapter A. Mathematial Bakgroundwhere S ∈ R
n×n is a diagonal matrix whih ontains the eigenvalues of A on itsdiagonal, and U ∈ R

n×n is omposed of the eigenvetors of A and is thereforeorthogonal. This formulation of A is alled spetral or eigen deomposition.In order to alulate the pseudoinverse A+ for a symmetri matrix, we an use theeigenvalue deomposition instead of the SVD as
AA+A = USUTUS+UTUSUT

= USUTUS+SUT

= USUTUUT

= USUT

= A.The Jaobi method is an iterative algorithm for �nding all eigenpairs for a symmetrimatrix A ∈ R
n×n. For small matries, the Jaobi method gives uniformly aurateresults omparable to the QR algorithm. The algorithm determines the sequene oforthogonal matries U1, U2, ..., Un and the sequene S0, S1, ... as follows:

S0 = A

Sk = UT
k Sk−1Uk.The sequene U1, U2, ..., Un is onstruted in a way that

lim
k→∞

Sk = S = diag(λ1, λ2, ..., λn)with λ1, λ2, ..., λn being the eigenvalues of A.The algorithm generates
Sn = UT

n U
T
n−1...U

T
1 AU1U2...Un.As all Uk are orthogonal, we an write

A = U1U2...UnSnU
T
n U

T
n−1...U

T
1 .For n → ∞ we obtain Sn = S, and hene U = U1U2...Un represents the matrix ofeigenvetors of A whih gives the eigenvalue deomposition

A = USUT .In pratie, the algorithm is stopped when the o�-diagonal elements of S are loseto zero.The eigenvalue deomposition using the Jaobi method an also be appliedto the omputation of the pseudo-inverse A+ of the real symmetri matrix A.
A+ = US+UT .The omputation of S+ an be done diretly by replaing every non-zero entry in Swith its reiproal and then transposing the resulting matrix.



A.2 The ICP as a spei� ase of the EM-ICP 121A.2 The ICP as a spei� ase of the EM-ICPWe want to take a loser look at the omputation of the expetation of the orrespon-dene probabilities as de�ned in equation (3.15). This formulation is numeriallyunstable, so we reformulate it to
EHij

=
exp(−µ(si, T ⋆ mj))

∑

k exp(−µ(si, T ⋆ mk))

=
1

1 +
∑

k 6=j exp(µ(si, T ⋆ mj)− µ(si, T ⋆ mk))
. (A.1)If we assume homogeneous and isotropi Gaussian noise with the variane σ2, equa-tion (A.1) an be written as

EHij
=

1

1 +
∑

k 6=j exp
(

(si−T⋆mj)2−(si−T⋆mk)2

2σ2

) =
1

1 +
∑

k 6=j rijk
.

lim
σ2→0

rijk =

{
0 if (si − T ⋆ mj)

2 < (si − T ⋆ mk)
2

+∞ if (si − T ⋆ mj)
2 > (si − T ⋆ mk)

2 .We see that
lim

σ2→0
EHij

=

{
1 if (si − T ⋆ mj)

2 < (si − T ⋆ mk)
2

0 if (si − T ⋆ mj)
2 > (si − T ⋆ mk)

2so the expetation value for the orrespondene between two points si and mj is 1if and only if mj is the losest point to si. For all other points mk with k 6= j theexpetation value of the orrespondene beomes 0. This shows that the EM-ICPalgorithm behaves like the ICP algorithm for small varianes.A.3 Mathematial Derivations Chapter 3Derivative of the Seond Term for the Global CriterionBy optimizing the global riterion in equation (3.13) alternately with respetto the operands in {Q,Θ}, we are able to determine all parameters we areinterested in. As some terms reur in the di�erent optimizations, we will introduethe following notations for simpli�ation reasons:The derivative of the seond term of the global riterion is always performed in thesame manner. We will demonstrate the appliation of hain and produt rule andthen name the resulting terms. The derivative of
ξkij(Tk,Ωk, M̄ , vp, λp) = log

Nm∑

j=1

exp

(

−
‖ski − Tk ⋆ mkj‖

2

2σ2

)



122 Chapter A. Mathematial Bakgroundwith respet to one of the funtion's parameters (let's say x) is found as follows:
∂ξ(x)

∂x
= log(u(x))

=
1

u(x)

∂u(x)

∂x
,

u(x) =

Nm∑

j=1

exp

(

−
‖ski − Tk ⋆ mkj‖

2

2σ2

)

.

∂u(x)

∂x
=

Nm∑

j=1

exp(f(x))
∂f(x)

∂x
, (A.2)

f(x) = −
‖ski − Tk ⋆ mkj‖

2

2σ2
.

∂f(x)

∂x
= −

∂

∂x

(ski − Tk ⋆ mkj)
T (ski − Tk ⋆ mkj)

2σ2

= −
(ski − Tk ⋆ mkj)

T

σ2

∂(ski − Tk ⋆ mkj)

∂xSo we �nd the reurring derivative with
∂ξ

∂x
= −

Nm∑

j=1

exp
(

−
‖ski−Tk⋆mkj‖2

2σ2

)

∑Nm

l=1 exp
(

−‖ski−Tk⋆mkl‖2

2σ2

)
(ski − Tk ⋆ mkj)

T

σ2

∂(ski − Tk ⋆ mkj)

∂x
.By denoting the weight introdued by the orrespondene probabilities with

γijk =
exp

(

−
‖ski−Tk⋆mkj‖2

2σ2

)

∑Nm

l=1 exp
(

−‖ski−Tk⋆mkl‖2

2σ2

)the derivative is simply written as
∂ξ

∂x
= −

Nm∑

j=1

γkij
(ski − Tk ⋆ mkj)

T

σ2

∂(ski − Tk ⋆ mkj)

∂x
. (A.3)

Optimization with Respet to the A�ne MatrixWe have to solve the derivative of the riterion C ′
k(Qk,Θ) with respet to

Ak. Here, we use the derivative form shown in equation (A.2) and henedi�erentiate f(x) with respet to Ak:
∂C ′

k(Qk,Θ)

∂Ak
= −

Nk∑

i=1

Nm∑

j=1

γkij
∂

∂Ak

‖s′ki −Akm
′
kj‖

2

2σ2
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∂

∂Ak
‖siki −Akm

′
kj‖

2 =
∂

∂Ak
(s′ki −Akm

′
kj)

T (s′ki −Akm
′
kj)

=
∂

∂Ak
(s

′T
ki s

′
ki − s

′T
kiAkm

′
kj − (Akm

′
kj)

T s′ki − (Akm
′
kj)

TAkm
′
kj)

=
∂

∂Ak
(s

′T
ki s

′
ki − s

′T
kiAkm

′
kj − s

′T
kiAkm

′
kj +m

′T
kjA

T
kAkm

′
kj).Setting the derivative to zero, we �nd

∂C ′
k(Qk,Θ)

∂Ak
= 0

⇔ Ak

Nk∑

i=1

Nm∑

j=1

γkijm
′
kjm

′T
kj =

Nk∑

i=1

Nm∑

j=1

γkijs
′
kim

′T
kj

⇔ AkΥk = Ψk, Υk,Ψk ∈ R
3×3.

Optimization with Respet to the Deformation Coe�ientsFor the derivative of the seond term of the riterion, again the general derivativedesribed in equation (A.3) is employed:
∂Ck(Qk,Θ)

∂ωkp
=

ωkp

λ2
p

+

Nk∑

i=1

Nm∑

j=1

γkij
(ski − Tk ⋆ mkj)

T

σ2

∂(ski − Tk ⋆ mkj)

∂ωkp

=
ωkp

λ2
p

+

Nk∑

i=1

Nm∑

j=1

γkij
(ski − Tk ⋆ mkj)

T

σ2

∂(ski − tk −Akmkj)

∂ωkp
.As we know mkj = m̄j +

∑n
q=1 ωkqvqj we di�erentiate

∂(ski − tk −Akmkj)

∂ωkp
=

∂

∂ωkp
(ski − tk −Ak(m̄j +

n∑

q=1

ωkqvqj))

= −Akvpj.and �nally �nd
∂Ck(Qk,Θ)

∂ωkp
=
ωkp

λ2
p

−
1

σ2

Nk∑

i=1

Nm∑

j=1

γkij(ski − T ⋆ mkj)
TAkvpj.Setting ∂Ck(Qk,Θ)

∂ωkp
= 0 leaves us with the following three omponents:

0 =
σ2

λ2
p

ωkp −

Nk∑

i=1

Nm∑

j=1

γkij(ski − tk −Akm̄j)
TAkvpj

+

n∑

q=1

ωkq

Nk∑

i=1

Nm∑

j=1

γkijv
T
qjA

T
kAkvpj .



124 Chapter A. Mathematial BakgroundThe solution of this equation with respet to all ωkp is then done by swithing to amatrix notation.A.4 Mathematial Derivations Chapter 5In this setion we present some mathematial rules whih were used for the deriva-tives of the energy terms in setion 5.2.3.A.4.1 Divergene CalulusWe denote div(V ) as the divergene of the ontinuously di�erentiable vetor �eld
V . The divergene in the 3D Eulidian spae is de�ned as the salar valued funtion

div(V ) =
∂Vx

∂x
+
∂Vy

∂y
+
∂Vz

∂z
.The result is invariant under orthogonal transformations.For several derivative steps in setion 5.2.3, we need the following produt rule:

div(g · V ) = g · div(V )+ < ∇g , V > (A.4)or in integral form
∫

Ω
div(g · V ) =

∫

Ω
g · div(V ) +

∫

Ω
< ∇g , V > . (A.5)We denote ∇g as the gradient of the salar �eld g. ∇g is a vetor �eld with eahvetor pointing in the diretion of the steepest slope. The steeper the slope, thelonger the assoiated vetor.

∇g =









∂g
∂x1

∂g
∂x2...
∂g

∂xn









.We also know that the integral of the divergene of a vetor �eld equals the proje-tion of that �eld on the normal vetors n at the edge (the integral of the surfaeboundary):
∫

Ω
div(g · V ) =

∫

∂Ω
< g · V , n > dn.This means that

∫

Ω
g · div(V ) +

∫

Ω
< ∇g , V >=

∫

∂Ω
< g · V , n > dn. (A.6)Besides, assuming that there are no objets outside the image, we know that

∫

∂Ω < g · V , n > dn = 0 whih leaves us in that ases with
∫

Ω
g · div(V ) = −

∫

Ω
< ∇g , V > .



A.4 Mathematial Derivations Chapter 5 125A.4.2 Helpful DerivationsThis derivation is used for the di�erentiation of the shape prior term in setion 5.2.3.
|x+ ηy| =

√

(x+ ηy)2

=
√

|x|2 + 2ηxT y + η2|y|2

= |x|

√

1 + 2η
xT y

|x|2
+ η2

|y|2

|x|2

= |x|(1 + η
xT y

|x|2
+O(η2))

= |x|+ η
xT y

|x|
+O(η2). (A.7)The transfer from line 3 to line 4 makes use of a binomial series.
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