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i
To Emmi and Evi

"Die gefährli
hste aller Weltans
hauungen ist die Weltans
hauung der Leute,wel
he die Welt nie anges
haut haben."(The most dangerous of all world-views is the one of people who have never viewedthe world.) Zuges
hrieben: Alexander von Humboldt
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Abstra
tThis thesis 
enters on the development of a point-based statisti
al shape modelrelying on 
orresponden
e probabilities in a sound mathemati
al framework. Furtherfo
us lies on the integration of the model into a segmentation method where anovel approa
h is taken by 
ombining an expli
itly represented shape prior with animpli
itly represented segmentation 
ontour.In medi
al image analysis, the notion of shape is re
ognized as an important fea-ture to distinguish and analyse anatomi
al stru
tures. The modeling of shape reali-zed by the 
on
ept of statisti
al shape models 
onstitutes a powerful tool to fa
ilitatethe solutions to analysis, segmentation and re
onstru
tion problems. A statisti
alshape model tries to optimally represent a set of segmented shape observations ofany given organ via a mean shape and a variability model. A fundamental 
hallengein doing statisti
s on shapes lies in the determination of 
orresponden
es betweenthe shape observations. The prevailing assumption of one-to-one point 
orrespon-den
es seems arguable due to un
ertainties of the shape surfa
e representations aswell as the general di�
ulty of pinpointing exa
t 
orresponden
es.In this thesis, the following solution to the point 
orresponden
e problem isderived: For all point pairs, a 
orresponden
e probability is 
omputed whi
h amountsto representing the shape surfa
es by Mixtures of Gaussians. This approa
h allowsto formulate the model 
omputation in a generative framework where the shapeobservations are interpreted as randomly generated by the model. Based on that, the
omputation of the model is then treated as an optimization problem. An algorithmis proposed to optimize for model parameters and observation parameters througha single maximum a posteriori 
riterion whi
h leads to a mathemati
ally sound anduni�ed framework.The method is evaluated and validated in a series of experiments on syntheti
and real data. To do so, adequate performan
e measures and metri
s are de�nedbased on whi
h the quality of the new model is 
ompared to the qualities of a
lassi
al point-based model and of an established surfa
e-based model that bothrely on one-to-one 
orresponden
es.A segmentation algorithm is developed whi
h employs the a priori shape know-ledge inherent in the statisti
al shape model to 
onstrain the segmentation 
ontourto probable shapes. An impli
it segmentation s
heme is 
hosen instead of an ex-pli
it one, whi
h is bene�
ial regarding topologi
al �exibility and implementationalissues. The mathemati
ally sound probabilisti
 shape model enables the 
hallengingintegration of an expli
it shape prior into an impli
it segmentation s
heme in anelegant formulation. A maximum a posteriori estimation is developed of a level setfun
tion whose zero level set best separates the organ from the ba
kground under ashape 
onstraint introdu
ed by the model. This leads to an energy fun
tional whi
his minimized with respe
t to the level set using an Euler-Lagrangian equation. Sin-
e both the model and the impli
itly de�ned 
ontour are well suited to representmulti-obje
t shapes, an extension of the algorithm to multi-obje
t segmentationis developed whi
h is integrated into the same probabilisti
 framework. The novelmethod is evaluated on kidney and hipjoint segmentation.
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ZusammenfassungEin probabilistis
hes Frameworkfür punktbasierte Formmodellierungin der medizinis
hen BildanalyseDie vorliegende Doktorarbeit konzentriert si
h auf die Entwi
klung eines auf Kor-respondenzwahrs
heinli
hkeiten beruhenden punktbasierten statistis
hen Formmo-dells in einem mathematis
h fundierten und ges
hlossenen Framework. Ein weitererS
hwerpunkt liegt in der Integration des entwi
kelten Modells in eine Segmentie-rungsmethode. Hier wird ein neuartiger Ansatz vorgestellt, in wel
hem explizit de�-niertes Formwissen mit einer implizit de�nierten Segmentierungskontur kombiniertwird.In der medizinis
hen Bildanalyse gilt der Begri� der Form als wi
htiges Merkmalfür die Erkennung und die Analyse anatomis
her Stukturen. Die Formmodellierungmittels des Konzeptes der statistis
hen Formmodelle verkörpert ein mä
htiges Werk-zeug, wel
hes zu Lösungen für Analyse-, Segmentierungs- und Rekonstruktionspro-bleme beiträgt. Ein statistis
hes Formmodell versu
ht, einen Satz von segmentiertenFormbeoba
htungen eines gegebenen Organs optimal dur
h eine mittlere Form undein Variabilitätsmodell zu repräsentieren. Eine groÿe Herausforderung für jegli
henstatistis
hen Ansatz stellt hierbei die Bestimmung von Korrespondenzen zwis
henden Formen dar. Die übli
he Annahme von 1-zu-1 Korrespondenzen ist problema-tis
h aufgrund der Unsi
herheiten die Genauigkeit der Segmentierung betre�end alsau
h aufgrund der allgemeinen S
hwierigkeit, exakte Korrespondenzen zu lokalisie-ren.In dieser Arbeit wird als Lösung für das Punkt-Korrespondenzproblem eine Kor-respondenzwahrs
heinli
hkeit für alle Punktepaare bere
hnet. Dies bedeutet, daÿdie Formober�ä
hen dur
h Gauÿ's
he Mis
hverteilungen repräsentiert werden. DieseHerangehensweise erlaubt eine Formulierung der Modellbere
hnung in einem gene-rativen Rahmen, in dem die Beoba
htungen als zufällig dur
h das Modell generier-te Sti
hproben interpretiert werden. Darauf aufbauend wird die Modellbere
hnungals Optimierungsproblem behandelt. Es wird ein Algorithmus zur Bere
hnung derModell- und Beoba
htungsparameter in einem einzigen Maximum-A-Posteriori Kri-terium vorges
hlagen. Dies führt zu einem mathematis
h fundierten und ges
hlos-senen Framework.Die Methode wird in einer Experimentserie an synthetis
hen und realen Datenevaluiert und validiert. Dafür werden adäquate Leistungsmaÿe und Metriken de�-niert, anhand derer die Qualität des neuen Modells mit den Qualitäten eines klas-sis
hen punktbasierten Modells und eines etablierten ober�ä
henbasierten Modells,die beide auf 1-zu-1 Korrespondenzen beruhen, vergli
hen wird.Es wird ein Segmentierungsalgorithmus entwi
kelt, wel
her das im Modell ent-haltene Vorwissen über die Formen einsetzt, um die Segmentierungskontur auf wahr-s
heinli
he Formen zu bes
hränken. Statt eines expliziten wird ein impliziter Seg-mentierungsansatz gewählt, da dieser in Bezug auf topologis
he Flexibilität und



viiiImplementierungsfragen Vorteile aufweist. Das mathematis
h fundierte probabili-stis
he Formmodell ermögli
ht auf elegante Weise die anspru
hsvolle Integrierungvon explizit repräsentiertem Vorwissen über die Form in einen impliziten Segmentie-rungansatz. Es wird eine Maximum-A-Posteriori S
hätzung einer Levelsetfunktionso formuliert, daÿ das zugehörige Zero-Levelset das zu segmentierende Organ un-ter Einbeziehung der Formbes
hränkung, die dur
h das Modell gegeben ist, optimalvom Hintergrund trennt. Dies führt zu einem Energiefunktional, wel
hes unter Nut-zung der Euler-Lagrange-Glei
hung in Ri
htung der Levelsetfunktion di�erenziertwird. Da sowohl das Modell als au
h der Segmentierungsansatz gut geeignet sind fürdie Bes
hreibung von Formen, die aus mehreren Objekten bestehen, wird eine Er-weiterung des Algorithmus zu einer Multi-Objekt-Segmentierung entwi
kelt und indie glei
he probabilistis
he Formulierung integriert. Der Segmentierungalgorithmuswird an Nierendaten und Hüftgelenkdaten evaluiert.
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Chapter 1Introdu
tion
Contents1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Obje
tives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 Stru
ture of Manus
ript . . . . . . . . . . . . . . . . . . . . . 31.4 List of Publi
ations . . . . . . . . . . . . . . . . . . . . . . . . 61.1 MotivationSin
e the dis
overy of X-rays in 1895, many di�erent imaging te
hniques have beendeveloped whi
h gain visual a

ess to the interior of a 
losed body without opening it.Nowadays, these te
hniques are widely used in health-
are and biomedi
al resear
hand 
onstitute a substantial part of the 
lini
al pra
ti
e. In order to fa
ilitate theinterpretation of the generated body images, a multitude of medi
al image analysingmethods has been realized whi
h support the physi
ians in the �elds of diagnosti
s,surgi
al planning and image guided surgery as well as medi
al resear
h. With theprogress of image a
quisition te
hniques, the modeling of anatomi
al stru
tures in3D or even 4D has be
ome an important 
omponent in medi
al image 
omputing asthese models o�er an additional perspe
tive for the surgeons and are used for model-based analysis, segmentation and 
lassi�
ation problems. A popular approa
h forshape modeling is 
onstituted by statisti
al methods whi
h aim to represent an or-gan by statisti
al shape models. As opposed to a single 3D model or an atlas of anorgan whi
h are only (typi
al) shape examples, a statisti
al shape model representsa set 
ontaining segmented organs by a mean shape and a variability model. Hen
e,statisti
al shape models in
orporate a priori shape knowledge drawn from many or-gan examples. Espe
ially for segmentation problems, the appli
ation of statisti
alshape models has been proven to be very su

essful for a wide range of anatomi
alstru
tures in CT, MR and ultrasound images.The idea of doing statisti
s on shapes �rst leads to the problem of distin
tly de�ningthe 
on
ept of a shape. A well known de�nition proposed by the mathemati
ian D.G. Kendall in 1984 reads as follows: "Shape is all the geometri
al information thatremains when lo
ation, s
ale and rotational e�e
ts are �ltered out from an obje
t"[Kendall 1984℄. However, when dealing with anatomi
al stru
tures, a more �exiblede�nition is needed whi
h also re
ognizes deformable obje
ts based on their shapes.Therefore, at least e�e
ts like �exion and shearing have to be integrated. This meansthat the shape analysis methods are applied only after an a�ne alignment of therespe
tive deformable obje
ts.



2 Chapter 1. Introdu
tionThe 
hara
teristi
s of a statisti
al shape model essentially depend on the repre-sentation of the shape surfa
e. Basi
ally, a surfa
e 
an be seen as a boundarywhi
h separates geometri
al regions in 3D. Mostly, it is represented expli
itly usingmeshes or point 
louds or impli
itly based on distan
e fun
tions. In order to 
om-pute a surfa
e representation for a binary obje
t, a sampling of the isosurfa
e hasto be performed. The sampling is a 
ru
ial step whi
h - together with the imagingte
hnique - determines the detailedness of the resulting surfa
e model.A fundamental problem for the 
omputation of statisti
al shape models is the de-termination of 
orresponden
es between the observations. In order to quantitativelyanalyse shape di�eren
es, a method is needed to lo
ate a 
orresponding point lo-
ation on one shape for a given point lo
ation on another shape. Obviously, thesolution to this problem always depends on the shape representation. Most 
urrentmethods rely on surfa
e-based representations and work with one-to-one 
orrespon-den
es. They do not 
onsider the un
ertainties neither of the segmentations nor ofthe sampling output nor of the registration results. Moreover, even for the utopian
ase of perfe
t segmentation and 
ontinuous surfa
e representation, 
orresponden
edetermination is never non-ambiguous but for reprodu
ible prominent landmark lo-
ations.The motivation of this thesis is to develop an alternative statisti
al shape modelwhi
h takes into a

ount the un
ertainties of the whole s
ene and to investigatemethods of applying this model for automati
 segmentation. Most 
urrent algo-rithms 
ompute the mean shape and variability model on a step-by-step basis.Therefore, a spe
i�
 goal of this thesis is to realize the model 
omputation in asound mathemati
al framework.1.2 Obje
tivesFollowing the motivation phrased in the previous se
tion, we argue that when seg-menting anatomi
al stru
tures in noisy image data, the sampled surfa
e points onlyrepresent probable surfa
e lo
ations and not ne
essarily the exa
t "true" shape sur-fa
e. Besides, the 
hoi
e of sampling method signi�
antly in�uen
es the statisti
alanalysis of the shapes. For instan
e, when the same binary obje
t is sampled twi
ewith di�erent resolutions, the resulting surfa
e representations will not be identi-
al whi
h makes the determination of exa
t 
orresponden
es impossible. Moreover,even for theoreti
ally perfe
tly 
ontinuous surfa
es, a unique and reprodu
ible de-termination of 
orresponden
es is an open problem. It even be
omes impossible ifone of the surfa
es features a shape detail that the other one la
ks. For an illus-tration, imagine a re
onstru
ted head of the sphinx 
ontaining a nose, and thenimagine the 
hallenge of determining a 
orresponding point for the tip of that noseon the original sphinx head. It is desirable to expli
itly model the un
ertainties ofthe s
ene. In order to 
ome up with a realisti
 modeling of a surfa
e based on thesampled points, the goal is to investigate the possibilities of representing the shapesin a probabilisti
 framework where ea
h sampled surfa
e point is drawn from a 3Dprobability density fun
tion (typi
ally a Gaussian).Most algorithms in the state-of-the-art approa
h the problem of model 
omputation



1.3 Stru
ture of Manus
ript 3based on a set of segmented organ shapes for whi
h the best statisti
al shape modelmust be 
omputed. In order to develop a theoreti
al foundation of the algorithm itmight be of interest to adopt an alternative view on the problem of model 
ompu-tation. The fo
us of this thesis lies on the development of a statisti
al shape modelbased on 
orresponden
e probabilities in a sound mathemati
al framework and itsappli
ation in medi
al image segmentation.These demands lead mainly to the following three obje
tives:
• Development of a probabilisti
 framework to 
ompute a generativestatisti
al shape model based on 
orresponden
e probabilities: The�rst problem ta
kled is the 
omputation of a generative statisti
al shape modelthat optimally represents the shapes in a training data set. The aim is to de-sign a point-based parametri
 model whi
h allows the modeling of variabilityfor ea
h point. This might help physi
ians to physi
ally interprete the de-formations. The fo
us lies on the development of a generative probabilisti
framework whi
h in
ludes all variables needed to des
ribe the s
ene. Ad-ditionally, the framework has to integrate a solution to the 
orresponden
eproblem.
• Development of a deformable model segmentation in a probabilisti
framework: A major problem in medi
al image pro
essing is the automati
segmentation of anatomi
al stru
tures. Therefore, the se
ond problem to bedealt with is the integration of the generative statisti
al shape model into anautomati
 segmentation s
heme. The obje
tive is to develop a sound mathe-mati
al formulation whi
h is based on the same probabilisti
 assumptions asthe framework for the 
omputation of the statisti
al shape model. It is in-tended to develop a segmentation algorithm whi
h enables the segmentationof obje
ts with non-spheri
al topology as well as multiple-obje
t shapes.
• Evaluation and validation with respe
t to existing methods: A mainadvantage of working with point-based shape representation is the simpli
ityof the resulting model with respe
t to its power. On the other hand, surfa
e-based models generally feature better quality measures than point-based mod-els. However, the quality of the surfa
e information they use depends on imagequality and on the segmentation method (whi
h is often based on points drawnby experts). In order to pla
e the new method in the state-of-the-art, it is 
ru-
ial to evaluate the quality of the probabilisti
 model in 
omparison with otherstatisti
al shape models, investigate appli
ations like 
lassi�
ation methodsand expose advantages and limits of the new model. Se
ondly, an evaluationof the segmentation method on di�erent real data segmentation problems isneeded in order to identify the strengths of the method with respe
t to thestate-of-the-art.1.3 Stru
ture of Manus
riptThis thesis is organized pursuing these motivation and obje
tives as follows:Chapter 2 provides information about the state-of-the-art in statisti
al shape



4 Chapter 1. Introdu
tionanalysis. Chapter 3, 4 and 5 
ontain the main 
ontributions regarding thedevelopment and appli
ation of a new statisti
al shape model and a new level setsegmentation method relying on the model. Chapter 6 
on
ludes the manus
ript.In the following, a 
ondensed summary is given for ea
h 
hapter.In Chapter 2 the ba
kground information needed about 
urrent methods instatisti
al shape analysis is summarized. It begins with a des
ription of thestate-of-the-art regarding the use and types of statisti
al shape models. Thenthe point 
orresponden
e problem is 
overed in detail before di�erent methodsfor the 
omputation of statisti
al shape models and their appli
ations are presented.In Chapter 3 an approa
h to the problem of designing a generative statisti-
al shape model is developed [Hufnagel 2007b, Hufnagel 2008b℄. First, a solutionto the point 
orresponden
e problem is derived by representing the shapes byMixtures of Gaussians. Following that, a sound and uni�ed framework is developedfor the 
omputation of model parameters and observation parameters as well asnuisan
e parameters, and a maximum a posteriori estimation is formulated whi
hleads to a global 
riterion. Expli
it formulas are derived for its optimization withrespe
t to all parameters. Finally, pra
ti
al aspe
ts of the implementation andadaptions of the algorithm for spe
ial 
ases are dis
ussed.In Chapter 4 an evaluation and validation of the generative Gaussian Mix-ture statisti
al shape model as developed in this thesis is performed. First, the
hoi
e of performan
e measures is established. Then, the performan
e of the newstatisti
al shape model is 
ompared to the performan
e of a 
lassi
al point-basedstatisti
al shape model based on the iterative 
losest points registration and theprin
ipal 
omponent analysis [Hufnagel 2009a℄. Furthermore, the performan
eof the new statisti
al shape model in 
omparison with a surfa
e-based statisti
alshape model whi
h is 
omputed by the minimum-des
ription-length approa
h isevaluated. The evaluation is done on syntheti
 and real data. Di�erent examples
overing 
onvex and non-
onvex as well as spheri
 and non-spheri
 shape data are
hosen.In Chapter 5 an automati
 segmentation algorithm is developed whi
h em-ploys the a priori shape knowledge inherent in the new statisti
al shape model.After explaining the bene�ts of employing a non-parametri
 segmentation 
ontourinstead of a parametri
 one, the problem of integrating an expli
itly representedstatisti
al shape model into an impli
it segmentation s
heme is ta
kled. To ourknowledge, very few works 
onsidered that option. The problem is solved bydeveloping a novel maximum a posteriori estimation of the segmentation 
ontourwhi
h is optimized based on the image information as well as on the statisti
alshape model information. Here, the respe
tive steps whi
h �nally lead to a soundprobabilisti
 segmentation s
heme are explained elaborately. It is demonstratedin detail how to optimally exploit the image information to guide the evolution ofthe 
ontour, and the implemented te
hniques to determine an initial positioning ofthe segmentation 
ontour are presented. As the model is based on 
orresponden
e



1.3 Stru
ture of Manus
ript 5probabilities instead of one-to-one 
orresponden
es, the modeling and segmentationof non-spheri
 and multi-obje
t stru
tures is possible. Consequently, an extensionof the algorithm to multi-obje
t segmentation is developed whi
h is integrated inthe same framework by adapting the 
orresponden
e 
riterion. Experiments aredesigned and 
ondu
ted in order to validate the segmentation method on kidneydata and on hip joint data. Finally, the results are 
riti
ally dis
ussed, and theadvantages and limits of this segmentation method are revealed. Part of this
hapter is published in [Hufnagel 2009
℄.In Chapter 6 the 
ontributions of this thesis are dis
ussed and perspe
tivesfor future work are given.Appendix A 
ontains the mathemati
al ba
kground and detailed explana-tions for some of the derivations in the manus
ript.
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Chapter 2Current Methods in Statisti
alShape Analysis
Contents2.1 Shape Modeling in Medi
al Imaging . . . . . . . . . . . . . . 92.2 The Corresponden
e Problem . . . . . . . . . . . . . . . . . . 122.3 Computation of Statisti
al Shape Models . . . . . . . . . . . 172.4 Segmentation Using Shape Priors . . . . . . . . . . . . . . . 212.5 Dis
ussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26The extra
tion of information out of 2D or 3D images often relies on the dete
-tion, re
ognition and interpretation of shapes and shape variabilities. This dire
tlyinvolves the (mathemati
al) representation of shapes as well as methods to a

ountfor and measure the morphologi
al di�eren
es. Even though in 
lini
al routine shapeanalysis is frequently done by viewing the images alone, there is a wide range of ap-pli
ations where automati
al methods with formalized metri
s are needed for overalldata interpretation and shape statisti
s. This 
hapter is dedi
ated to the des
riptionof these methods and is divided as follows: First, the importan
e of shape modelingin medi
al image analysis is outlined and the 
on
ept of statisti
al shape modelsand their representations are dis
ussed in se
tion 2.1. Following that, we expandon the fundamental problem of determining 
orresponden
es between shapes andon several methods of solution (se
tion 2.2) whi
h dire
tly leads us to dis
uss theasso
iated statisti
al shape models in se
tion 2.3. Se
tion 2.4 explores the bene�tsof statisti
al shape models for medi
al image segmentation and dis
usses expli
itlyand impli
itly represented shape priors.2.1 Shape Modeling in Medi
al ImagingShape models are used for a wide range of medi
al imaging problems like segmenta-tion, re
onstru
tion or shape analysis. In this se
tion, a 
ondensed overview aboutthe domain of shape analysis te
hniques in nowadays medi
al resear
h is given (se
-tion 2.1.1) and then the subje
t of doing statisti
s on di�erent shape representationsis introdu
ed (se
tion 2.1.2).2.1.1 Shape AnalysisThe thorough analysis of organ morphology is driven by the hope of better under-standing organ shape 
hara
teristi
s and how diseases might a�e
t them. The idea



10 Chapter 2. Current Methods in Statisti
al Shape Analysisis to �nd information based on the shape deformation or shape di�eren
es whi
heventually help in the diagnosti
s, espe
ially in the neuroimaging 
ommunity. Themodeling of shape and the measuring of morphologi
al 
hanges in shape instan
esis also of great interest for the dis
rimination between healthy and pathologi
alanatomi
al stru
tures. An intuitive approa
h for dete
ting shape di�eren
e is themeasurement of the global shape volume, however, this feature is often not signi�-
ant with respe
t to the studied disease. This has been shown for example by Geriget al. [Gerig 2001℄ based on the dete
tion of group di�eren
es in hippo
ampal shapesin s
hizophrenia. Results of higher signi�
an
e are often obtained by performing alo
al shape analysis. A wide range of approa
hes exists in the literature whi
h 
anbe roughly 
ategorized a

ording to the (shape) features 
hosen to do the statisti
son. In the following, an overview of developments in that �eld is given by means ofexemplarily sele
ted publi
ations.Early methods proposed to analyse and 
ompare the transformation �elds obtainedwhen registering an organ to a template, whi
h is used e.g. in the work of Davatzikoset al. [Davatzikos 1996℄ who analyse the morphology of the 
orpus 
allosum. A sim-ilar idea is applied in the work of Boisvert et al. [Boisvert 2008℄ who model spineshape deformation by a ve
tor of rigid transformations. First e�orts in mathemat-i
ally 
apturing morphology 
hanges by doing statisti
s on anatomi
al landmarkswere undertaken by F.L. Bookstein [Bookstein 1986, Bookstein 1991℄. The 
on
eptof statisti
al shape analysis based on landmarks and pseudo-landmarks was takenon by Dryden and Mardia [Dryden 1993℄ for the dete
tion of gender related di�er-en
es in monkey 
rania and by Bookstein [Bookstein 1997℄ for the dete
tion of braindi�eren
es in s
hizophrenia patients. In both approa
hes, the shape variations aremeasured based on Pro
rustes or Riemannian distan
es. Another shape analysismethod is based on a medial shape des
ription to model lo
al and global 
hangesas e.g. used by Styner et al. [Styner 2003b℄ who analyse the hippo
ampus shapeof s
hizophrenia patients. In several works the shapes are represented by distan
efun
tions whose feature ve
tors are used as input for a learning algorithm, e.g. inthe work of Golland et al. [Golland 2001℄ who 
ompute a 
lassi�er for healthy andpathologi
al hippo
ampal shapes in s
hizophrenia or in the work of Kodipaka et al.[Kodipaka 2007℄ whose Kernel Fisher dis
riminant distinguishes between 
ontrolsand epilepti
s by analysing the shape of the temporal lobe or in the work of Tsai etal. [Tsai 2005℄ who propose an EM formulation to automati
ally label lung shapesrepresented by level set fun
tions to belong to the normal or the emphysema shape
lass. In the work of Peter et al. [Peter 2006a℄, shapes are represented by a GaussianMixture Model on the landmarks, and the shape di�eren
es (here of 
orpus 
allosumshapes) are measured using geodesi
 distan
es under the Fisher-Rao metri
.Naturally, all of these approa
hes have their strengths and weaknesses. The 
hoi
eof feature suited as input for the statisti
al analysis depends on the representationof the shapes as well as on the demands of the appli
ation. The work done in theframework of this thesis 
on
entrates on the 
ategory of shape analysis based onpoint representations sin
e statisti
s on points are easily interpretable and have aphysi
al signi�
an
e. The general 
on
ept however is not ne
essarily 
on�ned tothat 
ategory.



2.1 Shape Modeling in Medi
al Imaging 112.1.2 Doing Statisti
s on ShapesCommonly, a shape 
lass 
an be des
ribed by one typi
al shape example of therespe
tive organ. However, this approa
h is neither spe
i�
 nor mathemati
ally a
-
urate. In order to reliably des
ribe a shape 
lass, we need to statisti
ally evaluatethe shapes of as many observations of the organ as possible. This is usually done infour steps: First, a training data set whi
h 
ontains segmented observations of therespe
tive organ has to be provided. Next, the observations have to be aligned in a
ommon referen
e frame in order to eliminate pose variations. Then, a mean shapewhi
h optimally represents all aligned observations 
an be 
omputed. Finally, avariability model a

ounting for the shape di�eren
es is determined. The variability
ontains information about how mu
h and in whi
h way the mean shape 
an bedeformed while still representing a plausible anatomi
al stru
ture.In the state-of-the-art, shape models 
ontaining a mean shape and a variabilitymodel are referred to as statisti
al shape models (SSMs). The methods implement-ing the alignment as well as the statisti
al methods used for the 
omputation ofmean shape and variability model depend on the representation of the observations.An intuitive and widely-used method is to 
ompute SSMs on observations repre-sented by (triangulated) points whi
h are distributed over the surfa
e of the shapes.These so-
alled point distribution models (PDMs) are either based on anatomi
allandmarks [Huysmans 2005℄, on pseudo-landmarks that are strategi
ally distributedover the observations' surfa
es (e.g. [Frangi 2001, Rajamani 2004℄) or on points re-
onstru
ted from impli
it surfa
es (e.g. [Kohlberger 2009℄) or on a 
ombination ofthese. Point-based shape samples represented by a number of N points in 3D areusually des
ribed by a shape ve
tor Sk ∈ R
3×N 
ontaining the point 
oordinates.The alignment to a 
ommon referen
e frame is often performed by a mesh-to-meshregistration over the shape ve
tors. The statisti
 evaluation then uses the alignedshape ve
tors as input for 
omputation of mean shape and variability model.For these steps, a notion of 
orresponden
e has to be de�ned. A 
ommon approa
his to assume and determine one-to-one point 
orresponden
es over all observations.In that 
ase, the 
oordinates of 
orresponding points are sorted in 
orrespondingentry positions in the shape ve
tors so that for all shape pairs Sk and Sl the i-thelement Sk(i) 
orresponds to Sl(i) for all i = 1, ..., 3N . The 
omputation of themean shape is then straight forward with M̄ = 1

n

∑n
k=1 Sk for a number of n obser-vations. The subsequent 
omputation of variation modes is usually a

omplishedby a prin
ipal 
omponent analysis (PCA) on all observations and the mean shape.The variation modes ∈ R

3N are pairwise orthogonal and span the shape spa
e of theSSM. Mathemati
ally, the representation of a random shape M in the shape spa
espanned by the variation modes 
an be formulated using a linear model:
M = M̄ + Pbwhere the matrix R ∈ R

N×N ′ with 0 < N ′ ≤ N 
ontains the variation modes inits rows and the ve
tor b ∈ R
N 
ontains the 
oe�
ients whi
h 
ontrol the extentof deformation. The variation modes are ranked a

ording to their varian
e. Forthe usage of an SSM, 
ommonly only the largest modes of variation are taken intoa

ount.



12 Chapter 2. Current Methods in Statisti
al Shape AnalysisThe employment of the PCA is not 
on�ned to point representations but 
an beemployed to other appli
ations where the shape properties are en
oded in a featureve
tor. Early methods in
lude the representation of shapes by spheri
al harmon-i
s (SPHARM) whi
h parameterize the surfa
e by a mapping on the unit sphere[Bre
hbühler 1995, Székely 1996℄ or by Fourier surfa
es whi
h employ an ellipti
Fourier de
omposition of the boundary and use the Fourier 
oe�
ients as featureve
tors [Staib 1996, Floreby 1998℄. The statisti
s are thus done in parameter spa
e.Re
ently, the representation of SSMs in impli
it frameworks has be
ome of interestas level set based segmentation is explored more deeply. Here, the observations inthe training data set are often represented by signed distan
e maps. The align-ment of the observations and the subsequent statisti
s are then done dire
tly on thedistan
e maps whi
h are used as feature ve
tors with individual voxels being theve
tor 
omponents. The variability models 
an simply be 
omputed by a prin
ipal
omponent analysis [Leventon 2000a℄ or by using more 
hallenging methods whi
hfor example a

ount for lo
al variations as well [Rousson 2002℄. Another strategyrepresents the surfa
es by medial models whi
h 
onsist of a 
enterline and ve
torsstret
hing from there to the organ surfa
e [Pizer 1999, Styner 2001℄. Here, 
orre-sponden
e between shapes are de�ned on the medial manifold. For 
omputing thevariability of manifold-valued data, a prin
ipal geodesi
 analysis is introdu
ed whi
his a dire
t generalization of prin
ipal 
omponent analysis.It has to be kept in mind that the PCA is done under the assumption that theshape ve
tors are samples of a random variable under a normal distribution. Thisis only the 
ase if the shape di�eren
es in the training data set are normally dis-tributed whi
h is di�
ult to establish. Another theoreti
al problem o

urs as thedimensions of the shape representation nearly always ex
eed the number of availabesamples. Besides, the PCA is optimal in a least-square sense and therefore sensitiveto outliers and lastly, all shapes have to be represented by feature ve
tors of equallengths. Nevertheless, the employment of the PCA for SSM 
omputation has beenproven to 
ome to a

eptable results and is su

essfully applied in pra
ti
e. Analternative for non-normally distributed data is o�ered by the so-
alled independent
omponent analysis (ICA) [Hyvärinen 2001℄. The ICA de
orrelates the 
omponentsby maximizing their statisti
al independen
e. Another interesting approa
h is todo a prin
ipal fa
tor analysis (PFA) whi
h leads to variation modes that are moreeasily interpretable in medi
al sense [Ballester 2005, Reyes 2009℄. However, thesemethods have the disadvantage that the variation modes 
annot be ranked easilywhi
h poses a problem for dimensionality redu
tion.2.2 The Corresponden
e ProblemA fundamental problem when 
omputing statisti
al shape models is the determina-tion of 
orresponden
es between the observations in the training data set. Mathe-mati
ally, this problem does not have a unique solution and depends heavily on thede�nition of 'shape' as well as on its representation. For shapes represented as 
on-tours in 2D, usually landmarks are determined manually by �rst 
hoosing exposedfeatures as landmarks, for example the �ngertips of a hand as well as the points



2.2 The Corresponden
e Problem 13between the �ngers, and by then adding a �xed number of equidistant landmarksbetween these. In that way, the 
orresponden
es from one labeled shape to the nextequally labeled one is straightforward and uniquely de�ned. In 3D, however, a man-ual determination of 
orresponden
e is hardly feasible as it is very time-
onsumingin general. In parti
ular, the pinpointing of exa
t 
orresponden
es without relyingon 
lear anatomi
al landmarks on 3D surfa
es is an impossible task. In order toautomatize the dete
tion of landmarks, several methods extra
t shape features su
has high surfa
e 
urvatures (e.g. [Benayoun 1994℄). Mostly however, automati
 de-termination of 
orresponden
es is done by performing a registration of model andobservation. Obviously, the solutions to the 
orresponden
e problem highly de-pend on the shape representations. For meshes, a straightforward approa
h is to
ompute a similarity transformation found by least-square point distan
e minimiz-ers. For non-linear registration, often spline-based deformations are used. Anotherapproa
h is the mat
hing of an atlas or template mesh to all observations in thetraining data set. The warped meshes have to be relaxed in order to �t the observa-tions. This 
an be done for example by using a Markov random �eld regularizationas proposed by Paulsen and Hilger [Paulsen 2003℄ or by employing a spring-massmodel based on the surfa
e point set and the 
onne
ting edges as realized by Lorenzand Krahnstöver [Lorenz 2000℄. A method for volumetri
 representations is to 
om-pute a volumetri
 atlas with manually added surfa
e landmarks and then registerthe atlas to volumetri
ally represented observations. The warped landmarks thendetermine the 
orresponden
es.In this se
tion, two popular methods for 
orresponden
e determinations are de-s
ribed based on di�erent shape representations whi
h play a role in the remainderof this thesis: First, the 
lassi
al Iterative Closest Points (ICP) registration algo-rithm that �nds one-to-one 
orresponden
es between two unstru
tured point setsis explained. Then, an alternative approa
h to 
orresponden
e determination usingspheri
al harmoni
s surfa
es parameterization is presented. Here, the 
orrespon-den
es are 
omputed by a registration between the parameterizations of the shapes.As an example for methods whi
h solve the 
orresponden
e problem in a group-wise optimization approa
h together with the SSM 
omputation the maximum de-s
ription length (MDL) approa
h is summarized in se
tion 2.3. A 
omprehensive
omparison of di�erent solutions to the 
orresponden
e problem 
an be found in[Styner 2003
℄.2.2.1 Iterative Closest Point AlgorithmThe Iterative Closest Point algorithm is an e�
ient method used for registrationof 2D and 3D shapes as �rst shown and elaborately explained 1992 in [Besl 1992℄.The ICP registration is an interesting approa
h as it 
an be used for di�erent rep-resentations of geometri
 data like point sets, triangle sets, and impli
it or expli
itsurfa
es. It is applied to registration problems where the point 
orresponden
es arenot known in advan
e. The ICP algorithm o�ers many re
ognized advantages asit does not need prepro
essing or lo
al feature extra
tions in normal appli
ations,it is suited for parallel ar
hite
tures and it 
an handle average noise. Following, asimple de�nition of the ICP algorithm and its appli
ation to point 
loud registration
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al Shape Analysisis given.Let S be a set of Ns points si whi
h des
ribe the observation and M be a set of Nmpointsmj whi
h des
ribe the model. The ICP algorithm will mat
h ea
h observationpoint si with one of the model points. Based on those mat
hes, a transformation Tis sought whi
h registers the observation with the model. The 
losest point operator
CP is de�ned as a distan
e metri


CP (si,M) = min
mj∈M

‖mj − si‖.We use mi
j = CP (si,M) where mi

j is the 
losest point in M to a given s
ene point
si. The ICP algorithm 
omputing T is implemented as follows:1. T (0) = T k is 
hosen as initial estimate of the transformation T .2. Repeat for k iterations or until 
onvergen
e:

• Compute the 
losest point mi
j ∈ M in the model for ea
h observationpoint si ∈ S. The 
olle
tion of resulting point pairs (si,m

i
j) is 
alled setof 
orresponden
es C with

Ck−1 = ∪Ns

i=1{si, CP (T k−1 ⋆ si,M)}.

• Compute T k that minimizes the mean square error between all pointpairs in C.For a rigid registration, the appli
ation of T to S looks like this
T ⋆ si = Rsi + t ∀iwith the rotation matrix R ∈ R

3x3 and the translation ve
tor t ∈ R
3. The minimiza-tion of the error between all point pairs in C is 
omputed using the Least Squares
riterion:

T = argmin
T

1

Ns

Ns∑

i=1

‖mi
j − T ⋆ si‖

2

= argmin
R,t

1

Ns

Ns∑

i=1

‖mi
j −Rsi − t‖

2.The ICP algorithm 
onverges always monotoni
ally to the nearest lo
al minimumwhere �nearest� is meant in the sense of a mean-square distan
e metri
.As main disadvantage it must be noted that the ICP is sus
eptible to gross statis-ti
al outliers. Several approa
hes deal with this problem by e.g. proposing robustestimators [Zhang 1994, Masuda 1996℄. Moreover, as any method minimizing anon-
onvex 
ost fun
tion, the ICP la
ks robustness with respe
t to the initial trans-formation be
ause of lo
al minima. This problem has been ta
kled by the workof Rangarajan et al. who use multiple weighted mat
hes based on Gaussian weight[Rangarajan 1997b℄ and based on Mutual Information [Rangarajan 1999℄.
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Figure 2.1: A 
orresponden
e problem: One shape features two bumps, the otheronly one. How 
an we determine 
orresponden
es between the two?Overall, the ICP algorithm and its derivatives work well for a lot of registration prob-lems. However, the determination of one-to-one 
orresponden
es between unstru
-tured point sets is di�
ult when e.g. one shape features a 
ertain stru
ture detailand the other one does not, see �gure 2.1. Moreover, in the absen
e of (anatomi
al)landmarks, the determination of 
orresponden
e depends heavily on the samplingof the shape. To over
ome this problem, the Expe
tation Maximization - IterativeClosest Points (EM-ICP) algorithm introdu
es 
orresponden
e probabilities insteadof exa
t 
orresponden
es. This 
on
ept is explored in se
tion 3.2.2.2.2 Spheri
al Harmoni
 Des
riptionThe use of spheri
al harmoni
s for statisti
al shape modeling was introdu
ed byBre
hbühler et al. in 1995 [Bre
hbühler 1995℄ in order to approximate one-to-one
orresponding points on di�erent entities 
ontaining in
lusions and protrusions. Asopposed to the use of a torus parameter spa
e using Fourier des
riptors as proposedin [Staib 1992℄, the SPHARM surfa
e des
ription maps the observation surfa
esinto a spheri
al two-
oordinate spa
e, so it 
an only be 
onsidered for shapes withspheri
al topology whi
h applies for most anatomi
al stru
tures. If the mappingin
ludes an optimization of the distribution of nodes on the sphere, 
orresponden
es
an then be established dire
tly by the parametri
 des
ription.Surfa
e obje
ts with spheri
al topology 
an be parameterized by two polar variables,the longitude θ = [0, ..., 2π] and the latitude φ = [0, ..., π]. Two verti
es have to besele
ted as the poles for this pro
ess. The latitude should grow smoothly from 0 atthe north pole to π at the south pole. The longitude on the other hand is a 
y
li
parameter. Let x, y and z denote Cartesian obje
t spa
e 
oordinates. The fun
tionwhi
h spe
i�es the mapping of the 
oordinates from the unit sphere on the surfa
eis spe
i�ed with
v(θ, φ) =





x(θ, φ)
y(θ, φ)
z(θ, φ)



 .where v(φ, θ) runs over the whole surfa
e obje
t.These 
oordinate fun
tions 
ould be parameterized by various basis fun
tions as e.g.
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al Shape AnalysisB-splines or wavelets. The SPHARM algorithm makes use of spheri
al harmoni
sas they o�er the advantage of hierar
hi
al shape representation whi
h �nally fa
ili-tates the 
orresponden
e determination [Bre
hbühler 1995℄. Typi
ally, the followingtrun
ated series expansion is used:
v(θ, φ) =

R∑

r=0

r∑

−r

cmr Y
m
r (θ, φ)where Y m

r denotes the fun
tion of degree r and orderm with Y m
r : [0, 2π]×[0, π] → C.A 
omplete de�nition 
an be found in e.g. [Bronstein 2000℄. The shape des
riptor
oe�
ients cmr are 3D ve
tors with 
omponents (x, y, z). Formally, the 
oe�
ientsare 
omputed by the inner produ
t of fun
tion v and the basis fun
tion

cmr =

∫ π

0

∫ 2π

0
v(θ, φ)Y m

r (θ, φ)dφ sin θdθ. (2.1)Eventually, ea
h shape surfa
e Sk is uniquely des
ribed by a set of des
riptor 
oef-�
ients Ck = cmk,r.Due to the hierar
hi
al shape representation, in pra
ti
e the level of shape detailswhi
h are modeled depends on the maximal degree R in the spheri
al harmoni
s.The parameterization for degree 1 maps the surfa
e to an ellipsoid. In order to de-termine shape point 
orresponden
es by parameterization to a sphere, the mappingbetween surfa
e and sphere must be bije
tive whi
h is des
ribed in this 
ase by




x
y
z



 =





sin θ cos φ
sin θ sinφ

cos θ



 .Furthermore it must be 
ontinuous so that neighbouring points on the shape surfa
eare mapped to neighbouring lo
ations on the sphere. The mapping fun
tion shouldbe topology-preserving, and distortions whi
h inevitably appear when mapping asurfa
e fa
et to a spheri
al square should be minimal. This is done by solving thesurfa
e parameterization as a 
onstrained optimization problem with respe
t to theoptimal 
oordinates for all surfa
e points [Bre
hbühler 1995℄. Another problem o
-
urs as the 
oe�
ients obtained by approximating equation (2.1) depend on therotation of the surfa
e in spa
e. Thus, for the determination of 
orresponden
esbetween di�erent shape observations, a rotation of all observations to a 
anoni
alposition in parameter spa
e is needed. This 
an be done using the spheri
al har-moni
s of degree 1 by rotating the parameter spa
e so that the north pole (where
θ = 0) is positioned at one end of the shortest main axis of the ellipsoid, and thepoint where the Greenwi
h meridian (φ = 0) 
rosses the equator (where θ = π/2)is positioned at one end of the longest main axis.The statisti
s on the shapes are now done by evaluation of the shape des
riptors. Themean shape then is des
ribed by the spheri
al harmoni
s using the set of averagedshape des
riptor 
oe�
ients C̄ = 1

N

∑N
k Ck and the prin
ipal 
omponent analysis isdone using the 
ovarian
e matrix 1

N−1

∑

k(Ck − C̄)(Ck − C̄)T . A point distributionmodel 
an than be generated dire
tly by linear mapping [Kelemen 1999℄.



2.3 Computation of Statisti
al Shape Models 17While the SPHARM parameterization is 
apable to smoothly represent high levelsof shape details, it su�ers from the fa
t that for shapes featuring rotational sym-metry in the spheri
al harmoni
s of degree 1 the mapping to the 
anoni
al positionin parameter spa
e is not unique. Therefore, the 
orresponden
e determination forsu
h shapes be
omes inappropriate as shown in a study on e.g. femoral heads byStyner et al. [Styner 2003
℄.2.3 Computation of Statisti
al Shape ModelsIn order to 
ompute a SSM, a su�
iently large training data set with segmentedorgan observations is needed. Obviously, the training data set should only 
ontainshapes 
onforming to the shape 
lass whi
h is modeled, that is, for a SSM of normalorgan variability, only healthy patient data is permitted. Ea
h observation has tobe segmented a

urately. This is mostly done manually or semi-automati
ally bymedi
al experts who delineate the organ 
ontours sli
e by sli
e in medi
al images.Some organs 
an be segmented also in 3D under the support of automati
 te
hniqueslike volume growing of thresholding. For binary segmentation, the 
onversion toa surfa
e representation is typi
ally performed by the Mar
hing Cubes algorithm[Lorensen 1987℄. The �rst step is 
ommonly the alignment of the observation ina referen
e 
oordinate system. Then, a mean shape and a variability model are
omputed su
h as to optimally represent the shapes in the training data set. Here,the a

urate dete
tion of 
orresponden
e between the shapes plays an important roleregarding the quality of the �nal SSM. The resulting SSM produ
es new plausibleshapes or represents unknown shape observations of the same organ in di�erentpatients or under di�erent 
onditions.In this 
hapter, the 
omputation of two widely-used point distribution models issummarized: Se
tion 2.3.1 des
ribes the 
lassi
al A
tive Shape Models (ASM) whilese
tion 2.3.2 presents a method to build ASMs using gradient des
ent optimizationof the maximum des
ription length.2.3.1 A
tive Shape ModelsWith the introdu
tion of the 'A
tive Contour Models' (ASMs) or 'Snakes' in 1988by Kass et al. �rst attempts were made to integrate a priori knowledge into thesegmentation pro
ess by for
ing the segmentation 
ontour to 
omply to a 
ertainamount of smoothness [Kass 1988℄. The te
hnique makes use of an iterative energyminimization where only lo
al shape 
onstraints are applied. Cootes et al. adoptedan iterative approa
h but instead of applying a simple snake 
ontour, they devel-oped a point distribution model or 'A
tive Shape Model' to in
orporate a prioriknowledge about the shape [Cootes 1992, Cootes 1995℄. When applying the ASMto segmentation, they use global shape 
onstraints.Let us des
ribe the N observations Sk in the training data set by meshes 
onsist-ing of nk points ski ∈ R
3. Furthermore, let us assume that nk = n ∀k and thatthe points with the same index i 
orrespond. The set of observations 
an then bealigned by translation, rotation and anisotropi
 s
aling so that the least squareddi�eren
es between all 
orresponding points is minimized. This is done by an a�ne
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al Shape Analysistransformation Tk. For an example see �gure 2.2(a). If the alignment is omitted, thevariation in size and pose are in
luded in the �nal variability model. The points m̄iof the mean shape M̄ are then 
omputed by averaging over all aligned 
orrespondingobservation points m̄i = 1
N

∑N
k=1 Tk ⋆ ski. For an illustration see �gure 2.2(b). Inorder to 
ompute the variability model, a prin
ipal 
omponents analysis (PCA) isperformed. Under the assumption of dealing with normally distributed data sam-ples, the PCA determines a linear transformation whi
h transforms the data into a
oordinate system where the axes (= eigenve
tors) lie in the same dire
tion as thegreatest 
orrelations in the data. By transforming the data into the new 
oordi-nate system, the 
orrelations of the original data set be
ome un
orrelated. Thus,the new axes lie in the dire
tions of the greatest varian
e of the transformed dataset. Hen
e, the data is represented in a system where its similarities and di�eren
es
an be seen 
learly whi
h makes the PCA a well-suited tool in the des
ription ofshape variability. The N a
tual eigenve
tors vp and asso
iated eigenvalues λp are
omputed by e.g. doing a diagonalisation on the 
ovarian
e matrix with elements

covij =
PN

k=1
(ski−m̄i)(skj−m̄j)

T

N−1 , so vp ∈ R
3n whi
h amounts to one 3D eigenve
tor vipper mean shape point m̄i, see �gure 2.2(
). A plausible new instan
e of the shape
lass 
an now be modeled by

M = M̄ +

N∑

p=1

ωpvp (2.2)where ωp ∈ R are the deformation 
oe�
ients whi
h are typi
ally 
onstrained to
ωp ≤ 3λp in order to only generate plausible shapes. Furthermore, a shape analysis
an be done by interpreting the deformations a

ording to the eigenmodes with thegreatest eigenvalue (see �gure 2.2(d,e,f)).In order to better adapt the ASM to segmentation, Cootes et al. proposed the A
tiveAppearan
e Models (AAMs) whi
h in
orporate a priori knowledge not only aboutthe shape but also about mean and variation of the image intensities (appearan
eor texture). This prin
iple 
an be adapted in a simpli�ed manner to all pointdistribution models given that the original image data is still available. Basi
ally, thegrey value appearan
es around ea
h point ski in the training data set are evaluatedby sampling the pixel information on either side of the 
ontour in normal dire
tion.Then a lo
al statisti
al appearan
e model is 
onstru
ted with mean pro�le andasso
iated variability. During the image sear
h along the normal, the quality ofthe 
urrent pro�le around the model points is assessed with respe
t to the lo
alappearan
e model.2.3.2 SSM Based on Minimum Des
ription LengthWhile the SPHARM model as well as the ASM determine 
orresponden
es individ-ually for ea
h observation, other methods propose to assign 
orresponden
es a
rossall observations at the same time. This approa
h is driven by the idea that thebest 
orresponden
es are those whi
h lead to the optimal SSM given the trainingdata set. In order to �nd these, the 
orresponding points have to be moved indi-vidually over the surfa
es of the observations until the best positions for all points



2.3 Computation of Statisti
al Shape Models 19

a) d)
b) e)


) f)Figure 2.2: ASM example. a) Aligned observations of a training data set. Ea
h ofthe 5 observations is represented by 10 points in 2D and depi
ted in another 
olour.b) Mean shape point 
loud depi
ted by red dots. 
) axes of �rst eigenmode depi
tedfor ea
h of the 
orresponding points. d) Mean shape M̄ of point distribution model.e,f) Mean shape deformed a

ording to �rst eigenmode M̄ − 3λv1 and M̄ + 3λv1.



20 Chapter 2. Current Methods in Statisti
al Shape Analysisare found. The �rst to introdu
e this approa
h were Kot
he� et al. who use thedeterminant of the 
ovarian
e matrix as obje
tive fun
tion for the 
omputation of2D SSMs [Kot
he� 1998℄. By minimizing the determinant of the 
ovarian
e matrix,they expli
itly favor 
ompa
t models whi
h means low eigenvalues and few eigen-ve
tors. Davies et al. take up on that idea but propose another obje
tive fun
tionin order to �nd a sound theoreti
al foundation as well as to ensure 
onvergen
e[Davies 2002
℄. Their key prin
iple is to favour the simplest solution out of all sat-isfying ones (following the prin
iple of O

am's razor). Furthermore, they de�nethe model quality over three parameters, the 
ompa
tness, the generalization abil-ity and the spe
i�
ity. A model is more 
ompa
t than another if it 
odes the samevariability information in less 
omponents. A great generalization ability meansthat the model is able to des
ribe unknown possible instan
es of the shape 
lass.A spe
i�
 model only represents valid instan
es of the shape 
lass. The method ofDavies et al. introdu
es the appli
ation of the minimum des
ription length (MDL)as measure for the simpli
ity of the SSM. Under the MDL approa
h, the �nal SSMoptimally balan
es 
omplexity and the quality of �t between model and observa-tions. Originally, the MDL is a 
on
ept used in information theory for the optimal
oding of messages. While the MDL framework is mathemati
ally sound and leadsto very good results [Davies 2002a, Styner 2003b℄, the obje
tive fun
tion is 
omplexand 
omputationally expensive. Several approa
hes have been proposed to redu
ethe 
omplexity. Heimann et al. employ a simpli�ed MDL 
ost fun
tion introdu
edin [Thodberg 2003℄ and use a gradient des
ent optimization to minimize it. They
an show that their approa
h is faster and less likely to 
onverge to lo
al minimathan previous approa
hes [Heimann 2005℄. In this se
tion, the prin
ipal 
on
ept oftheir algorithm is explained and the mesh parameterization as well as the optimaldetermination of 
orresponden
es used in their framework are outlined. The algo-rithm is 
onstrained to SSMs of organs with spheri
al topology.The 
ost fun
tion F whi
h is based on the MDL of the resulting SSM is de�ned as
F =

n∑

p=1

Lp with Lp =

{
1 + log(λp/ccut) for λp ≥ ccut

λp/ccut for λp < ccut
(2.3)where λp denotes the squareroot of the eigenvalues of the 
ovarian
e matrix. Theparameter ccut is a 
uto� 
onstant whi
h des
ribes the expe
ted noise in the trainingdata.Regarding the mesh parameterization, a mapping of all surfa
es to the unit sphereis performed. The mapping has to assign for every point on the surfa
e of the mesha unique position on the sphere. The problem of mesh parameterization is that ofmapping a pie
ewise linear surfa
e with a dis
rete representation onto a 
ontinuousspheri
al surfa
e. In 
ontrast to Davies et al. who use initial di�usion mapping,Heimann et al. 
reate a 
onformal mapping that fo
uses on preserving angles. Thefun
tion L maps ea
h point si of the surfa
e S to the unit sphere whi
h results ina spheri
al parameterization of S. The mapping fun
tion is de�ned as L : S → R

3with |L(si)| = 1 for all points si. The initialization is done by mapping ea
h si tothe position on the sphere 
orresponding to its normal ve
tor. The optimal map-ping is found by minimizing the string energy of the mesh as de�ned by Gu et al.
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h 
an �nd a unique mapping between anytwo genus zero manifolds [Gu 2003℄. Basi
ally, two steps are exe
uted: First, abary
entri
 mapping is performed whi
h positions ea
h point si at the 
enter of itsneighbouring points. Next, a 
onformal mapping is obtained by taking into a

ountthe angles between edges of the mesh for the parameterization. The mathemati
alproof of 
orre
tness of this approa
h is given in [Gotsman 2003℄.After obtaining a 
onformal mapping Lk for ea
h surfa
e observation Sk, 
orrespon-den
es a
ross the training data set are determined by mapping a set of spheri
al
oordinates to ea
h Sk. Subsequently, the optimal 
orresponden
es and thereforethe optimal positions of all points on the surfa
es have to be determined. To do so,Heimann et al. 
hoose to modify the individual parameterizations Lk for all surfa
es:In short, the 
orresponding landmarks of all observations are 
leared of the meanand then stored in a matrix B′. By employing a singular value de
omposition to
B = 1√

n−1
B′, the eigenve
tors and eigenvalues λp for the system of 
orrespondinglandmarks 
an be 
omputed. This means that the λp in the 
ost fun
tion in equa-tion (2.3) 
an be expressed in dependen
e of the singular values of B. Eventually,the 
ost fun
tion is minimized with respe
t to the elements of B by solving ∂F

∂bij
= 0.This derivation leads to a 
hange for the individual landmark positions as shown in[Eri
sson 2003℄ as it yields a 3D gradient for every landmark. In order to 
onvertthe gradients into optimal kernel movements (△θ,△φ), ∂F

∂(△θ,△φ) is 
omputed by
∂F

∂(△θ,△φ)
=

∂F

∂bij

∂bij
∂(△θ,△φ)where the surfa
e gradients ∂bij

∂(△θ,△φ) are estimated by �nite di�eren
es.It has to be taken into a

ount that when moving one landmark, the adja
entlandmarks should be a�e
ted in a similar manner depending on their 
loseness.Therefore, a trun
ated Gaussian fun
tion is de�ned with
c(x, σ) =

{

exp(−x2

2σ2 −
−(3σ)2

2σ2 ) for x < 3σ
0 for x ≥ 3σwhere x denotes the distan
e between the spe
i�
 landmark and the 
enter ofthe kernel and σ 
ontrols the size of the kernel. If a point at position x ismoved by (△θ,△φ), all other points are a�e
ted by c(x, σ)(△θ,△φ). This re-parameterization is done iteratively over all landmarks and all observations. Fora detailed derivation of this algorithm as well as an evaluation please refer to[Heimann 2005, Heimann 2007
℄.Note that this approa
h only makes sense for mesh representations of surfa
es butnot for point 
loud representations.2.4 Segmentation Using Shape PriorsThe goal of a segmentation pro
ess is the partitioning of an image into regions whi
hare homogeneous regarding a 
ertain number of 
hara
teristi
s. The multitude ofimage-based segmentation te
hniques 
an be roughly 
ategorized into region-based,
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al Shape Analysisedge-based, and 
lustering methods. Region-based methods sear
h for pixels amidstan area whi
h ful�ll a similarity 
riterion. A typi
al example are region-growingte
hniques whi
h basi
ally use a manually sele
ted seed voxel and then automat-i
ally extra
t all voxels 
onne
ted to the seed or 
onne
ted to already extra
tedvoxels featuring the same gray value [Harali
k 1985℄. Region-based methods areusually sensitive to noise and image-inhomogeneities. Edge-based methods dete
t
ontours whi
h are de�ned by abrupt gray value 
hanges in the image. For digitalimages, �ltering masks (e.g. Prewitt, Sobel, Lapla
e) are used in order to 
omputethe gradient images of �rst or se
ond order. A disadvantage of edge-based methodsis the fa
t that the resulting edges are often dis
onne
ted and 
onse
utive bound-ary �nding methods have to be employed. A widely-used 
lustering method is thethresholding segmentation whi
h is a straightforward but often not very e�
ientte
hnique where the pixels of an image are 
lassi�ed simply by determining if theirgray value lies above or below an appointed threshold [Sahoo 1988℄. The same ideaapplies to watershed approa
hes where the di�erent gray levels are interpreted astopographi
 surfa
es [Vin
ent 1991℄. For multi-spe
tral image data, 
luster-analysismethods are employed where the voxels are represented by feature ve
tors of higherdimensionality [Handels 2009℄. Elaborate overview of these 
ategories of segmenta-tion te
hniques are given in [Gonzalez 2002℄.Medi
al images tend to feature noise, 
ontour gaps, intensity inhomogeneities andlow 
ontrasts. This is due to several problems: First, image a
quisition systemsyield relatively low signal to noise ratio. Se
ondly, soft tissue boundaries do notne
essarily feature 
lear gradients (see �gure 2.3(a)) and there is often a tissue vari-ability in the same organ a
ross patients (see �gure 2.3(
,d)). Another problem areimage artifa
ts due to patient motion or limited a
quisition time whi
h redu
e theinformation 
ontent of the data (see �gure 2.3(b)). Generally, methods whi
h workon image information alone like region growing or thresholding or edge-�ltering aresensitive to these 
hara
teristi
s. Furthermore, they are prone to errors under typi-
al short
omings of medi
al images like sampling artifa
ts and spatial alias e�e
ts.In order to robustify the segmentation pro
ess, an e�e
tive and popular approa
his to employ models whi
h in
orporate a priori information about the stru
ture tobe segmented.The 
on
ept of deformable models is explained in se
tion 2.4.1, and the most impor-tant aspe
ts of expli
it and impli
it shape priors are summarized in se
tions 2.4.2and 2.4.3.2.4.1 Deformable ModelsA substantial part of segmentation methods nowadays is based on the 
on
ept ofdeformable models whi
h was originally introdu
ed for use in 
omputer vision by Ter-zopoulos et al. [Terzopoulos 1986℄. Sin
e the work about Snakes (A
tive Contours)published in 1988 by Kass et al. [Kass 1988℄, deformable models are e�e
tively usedfor segmentation, re
onstru
ting, visualization and mat
hing problems in 2D and3D and have su

essfully been applied to a wide range of organs. A deformablemodel is usually represented by a 
ontour or a surfa
e. The deformation of themodel is governed by means of energy minimization where the energy fun
tional ba-
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a) b)

) d)Figure 2.3: Medi
al images. a) Kidneys in noisy CT data. b) Femur and hipboneCTs featuring 
ontour gaps and low resolution. 
),d) Bladder CTs featuring intensityinhomogeneities due to 
ontrast agent and di�erent �lling levels.si
ally 
onsists of one term whi
h 
ontrols the resulting shape (internal energy) andone term whi
h attra
ts the 
ontour toward the boundary in the image (externalenergy):

E(C) = Eint + Eext.In a physi
al interpretation, deformable models are elasti
 bodies whi
h respondin a natural way to the in�uen
e of external for
es. The deforming for
es are de-termined by image data like edges or textures as well as by smoothness 
onditionsor a priori knowledge about the shape and lo
ation of the respe
tive anatomi
alstru
tures. The prior shape information renders the algorithm more robust anda

urate [M
Inerney 1996℄. A deformable model is usually initialized in an ap-proximative manner around a region of interest. Then, it evolves from this initialrough solution to automati
ally improve the �t to the boundary of the region tobe dete
ted. Deformable models are able to model the 
omplexity and sometimessigni�
ant variabilities of anatomi
al stru
tures. For a thorough survey whi
h fo-
uses on the topologi
al, geometri
al and evolutional aspe
ts of deformable modelssee [Montagnat 2001℄.In the last years, the integration of a priori information about the shape has provento be a very e�
ient approa
h whi
h led to a multitude of robust automati
 seg-mentation te
hniques for various medi
al appli
ations. The key idea is to 
onstrainthe segmentation to plausible shapes. Mostly, statisti
al shape models (SSM) areemployed. The di�erent shape prior models 
an be divided into the following twomain approa
hes: the parametri
 models whi
h evolve 
orresponding the Eulerian
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al Shape Analysisformulation (se
tion 2.4.2) and the impli
it models whi
h evolve 
orresponding tothe Lagrangian formulation (se
tion 2.4.3). In order to demonstrate the varietyof segmentation methods whi
h bene�t from prior knowledge about the shape,a brief survey is given about some of the most popular appli
ations: Expli
itlyrepresented SSMs have been su

essfully employed e.g. for pelvi
 bone segmen-tation [Seebass 2003, Lame
ker 2004℄, for hipjoint segmentation [Kainmüller 2009℄and for (s
olioti
) vertebrae segmentation [Benameur 2003, Pekar 2001℄. Further-more, SSMs are frequently used for soft tissue segmentation as e.g. for liver seg-mentation from CT data [Lame
ker 2003, Heimann 2007a℄ or for segmentationof aorti
 aneurysms from CT data [de Brujine 2002℄. Other authors use im-pli
it SSM for CT kidney segmentation [Tsaagan 2002℄. Right from the start,SSMs were dis
overed to be bene�
ial in the segmentation of 
ardia
 stru
-tures as the left ventri
le [Staib 1996, Kaus 2004, Shang 2004℄ or the whole heart[Lötjönen 2004, Lorenz 2006℄. Moreover, the use of SSMs is a widespread methodin brain segmentation on MR images, e.g. by SPHARM modeling [Székely 1996℄,m-rep modeling [Pizer 2003℄ or expli
it modeling [Zhao 2005a℄.2.4.2 Expli
itly Represented Shape PriorsWith the presentation of the A
tive Shape Models (ASM) in 1992, Cootes and Tay-lor introdu
ed a method to use expli
itly represented point distribution models asshape priors for segmentation tasks [Cootes 1992℄. The de�nition and mathemati
alformulations of su
h statisti
al shape models are given in se
tion 2.3. In short, thesegmentation te
hniques using the ASM method work as follows: First, the modelis pla
ed in the image. This initial pla
ement favorably 
lose to the stru
ture tobe segmented is often done manually. Next, for ea
h model point a movement issuggested along its normal toward a position lying 
loser to the 
ontour of the ob-je
t to be segmented. Commonly, for ea
h point a 
andidate 
ontour position isdetermined by evaluating the neighbouring voxels in dire
tion of the 
ontour nor-mal. The 
andidate quality of positions depends on boundary-based and/or regionbased features. For their appearan
e models, Cootes propose to use the normalized�rst derivatives of the pro�les [Cootes 2001a℄. Brejl et al. make use of a 
ombina-tion of grey values and grey value gradients [Brejl 2000℄. Other appearan
e modelsin
lude region-based features like the texture inside the shape [Cootes 2001b℄ or the
reation of histograms on inside and outside regions [Broadhurst 2006℄. Eventually,the optimal 
hoi
e of appearan
e model depends on the image modality as well asthe anatomi
al stru
ture to be segmented as shown for example in [Heimann 2008℄.After determining a 
andidate position for ea
h point, the model is transformedand deformed to optimally approximate the 
andidate points. The deformation is
onstrained to lie in the model variability spa
e. These updates of the model areiterated until the moving distan
e of model points falls under a 
ertain threshold.A detailed explanation of the algorithm is given in [Cootes 2004℄.The prin
ipal idea of ASM segmentation still forms the basis for numerous seg-mentation methods employing statisti
al shape models nowadays. However, thelimits pla
ed on the model parameters ensuring that the segmentation 
ontour
an only adapt to shapes whi
h are probable regarding the underlying train-
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onstraining for many segmentation tasks. This is mainlydue to the fa
t that the number of training observations is usually too small torepresent all probable shape variabilities. To lighten the 
onstraint, several au-thors proposed segmentation algorithms whi
h balan
e between prior shape knowl-edge introdu
ed by the SSM and image information. These algorithms rangefrom using the 
onverged SSM as initialization for additional re�nement steps[Cootes 1996, Pekar 2001, Shang 2004℄ to employing a deformable mesh whose in-ternal energy is minimized with the distan
e to the 
losest allowed model defor-mation [Weese 2001, Tsaagan 2002, Kaus 2003, Heimann 2007b℄. A good overviewover these algorithms has re
ently been published by Heimann and Meinzer[Heimann 2009℄.2.4.3 Impli
itly Represented Shape PriorsLevel sets methods des
ribe 
ontours or surfa
es impli
itly as the zero level set ofa higher dimensional fun
tion. Opposite to parametri
 deformable models, theyo�er the advantage to be topologi
ally �exible and are thus able to model highly
omplex anatomi
al stru
tures like blood vessels or 
orti
al surfa
es. As the origi-nal level sets are not resistant to weak 
ontour edges and su�er from a signi�
antnumeri
al dissipation, nowadays higher order, hybrid, and adaptive te
hniques areused (e.g.[Delingette 2001, Losasso 2006℄) whi
h are unfortunately less e�
ient andmore di�
ult to implement than parametri
 models. The idea of using level sets forsurfa
e modeling was �rst proposed by Osher and Sethian [Osher 1988℄ and laterused for medi
al image segmentation e.g. by Malladi et al. who use front propaga-tion on stoma
h and artery tree stru
tures [Malladi 1995℄ and Leventon et al. whoadditionally employ intensity and 
urvature priors for segmenting 
orpora 
allosa[Leventon 2000b℄ and by Ciofolo and Barillot who use 
ompetitive level sets forbrain segmentation [Ciofolo 2005℄. A thorough study about the nature of level setmethods 
an be found in Sethian [Sethian 1999℄, while Osher and Paragios as wellas Cremers and Deri
he present elaborate overviews about appli
ations of level setmethods in the �eld of 
omputer vision [Osher 2003, Cremers 2007℄.In 2000, Leventon et al. proposed a segmentation algorithm where the statisti
s onsurfa
es are made dire
tly on level-set fun
tions [Leventon 2000a℄. Sin
e then, theidea of modeling a priori shape knowledge using level sets has gained in importan
e.Given a training data set of surfa
es, the statisti
al shape prior is generated as fol-lows: The N surfa
e observations k in the training data set are embedded as zerolevel sets of the higher dimensional fun
tions φk whi
h are 
ommonly represented bysigned distan
e fun
tions. The mean fun
tion φ̄ is 
omputed by φ̄ = 1
N

∑N
k=1 φk andthe variability model is determined by a prin
ipal 
omponent analysis done dire
tlyon the distan
e fun
tions. In general, the level set segmentation is 
omputed by amaximum a posteriori (MAP) estimation where the level set fun
tion is evolved to
onverge towards the boundary of the organ to be segmented. The evolution of thelevel set is 
ontrolled by the optimization of an energy fun
tional whi
h is basedon the image information as well as on the statisti
al shape prior and additionallyintegrates a regularization term. This method was adapted by Tsai et al. who fo-
used on e�
ien
y and robustness of the algorithm [Tsai 2003℄ as well as by Rousson
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al Shape Analysiset al. who propose variational integrations of the shape prior [Rousson 2004℄. In[Cremers 2006℄, Cremers extended the approa
h by dynami
al priors for tra
kingproblems.Though, for the statisti
s done on the distan
e maps, it has to be kept in mindthat the spa
e of signed distan
e fun
tions is not linear whi
h means that a linear
ombination of signed distan
e fun
tions does not ne
essarily 
orrespond to a signeddistan
e fun
tion. Besides, the prin
ipal 
omponents of impli
it shape models de-s
ribe the variability of the distan
e maps but not the variation of the embedded
ontours. Therefore, understanding the variability information on distan
e fun
-tions is not obvious so that it seems di�
ult to exploit the variability model for aphysi
al modeling of the shape variability.2.5 Dis
ussionThis 
hapter illuminates the important role whi
h statisti
al shape models play inmedi
al imaging. Espe
ially segmentation problems be
ome better posed by theemployment of prior shape information in the form of SSMs. Away from being a
omplete review on this subje
t, this 
hapter is an attempt to highlight the mainapproa
hes and to lay the ground for further resear
h in this area.Even though SSMs have been part of the state-of-the-art for more than �fteen years,new re�ned SSM methods emerge every year, and several open questions remain.Espe
ially the 
orresponden
e problem has not been solved satisfa
torily in our eyesas the assumption of one-to-one 
orresponden
es on 3D surfa
es seems too strong.Furthermore, most algorithms whi
h 
ompute SSMs employ step by step te
hniquesby �rst determining 
orresponden
e, aligning the observations, 
omputing the meanshape and �nally 
omputing the variability model. This is an intuitive te
hniquebut not a sound mathemati
al framework. As the mean shape and the variationmodes should optimally represent the whole s
ene of observations, a global approa
hseems to be favorable where the determination of 
orresponden
e, the alignment aswell as the 
omputation of mean shape and variability are uni�ed in one global 
ostfun
tion. By doing so, a theoreti
al 
onvergen
e 
ould be ensured. The work inthis thesis will demonstrate how a statisti
al shape model based on 
orresponden
eprobabilities 
an be 
omputed in a sound mathemati
al s
heme.Regarding the employment of SSMs in segmentation algorithms, two independentdomains were asserted: One group of methods is based ex
lusively on expli
it rep-resentation of SSMs and segmentation 
ontours while the other group only usesimpli
it SSMs and formulates impli
it segmentation s
hemes. Naturally, both ap-proa
hes feature di�erent strengths and su�er from di�erent weaknesses. This raisesthe question if and how the stri
t separation of the two domains 
ould be openedin order to develop a segmentation algorithm whi
h bene�ts from the advantagesof both. In this thesis, it will be shown how a 
ombination of expli
it and impli
itmodeling 
ould be realized whi
h might open new insights on that matter.
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tures . . . 503.8 Dis
ussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Statisti
al shape models are a valuable tool in medi
al image analysis and aree�
iently used in 
lassi�
ation, re
ognition, re
onstru
tion and segmentation meth-ods. The models in
orporate statisti
al knowledge mainly about the expe
ted shapeand shape variability. The 
olle
tion of that knowledge is done by statisti
ally evalu-ating the shape information of a number of observations of the respe
tive stru
ture.To do so, the fundamental problem of determining proper 
orresponden
e betweenthe observations has to be solved. The solution of the 
orresponden
e problem aswell as the method of model 
omputation depends on the representation of theshapes. In this 
hapter, a generative method for the 
omputation of a parametri
3D statisti
al shape model for point-based shape representations is developed. Aprobabilisti
 modeling is 
hosen instead of a deterministi
 one and the shapes arerepresented by mixtures of Gaussians. The 
omputation of the Gaussian MixtureSSM is formulated in a generative framework.3.1 MotivationMost methods in the state-of-the-art 
ompute the parameters needed for the SSMin a step-by-step manner: First, the observations are aligned in a 
ommon refer-en
e frame. Then, the mean shape is 
omputed and �nally, the variability model isdetermined. While usually leading to good results, the mathemati
al foundation isun
lear and no 
onvergen
e 
an be ensured. In order to 
reate a sound mathemat-i
al framework, this work proposes to 
ompute a generative model and unify the
omputation of all parameters whi
h take part in the SSM 
omputation into oneglobal 
riterion.
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al Shape ModelFurthermore, as dis
ussed in se
tion 2.2, one of the 
entral di�
ulties of analyzingdi�erent organ shapes in a statisti
al manner is the identi�
ation of 
orresponden
esbetween the points of the shapes. As the manual identi�
ation of landmarks is notan a

eptable option in 3D, several prepro
essing te
hniques were developed in theliterature to automati
ally �nd exa
t one-to-one 
orresponden
es between surfa
eswhi
h are represented by meshes as in [Lorenz 2000, Bookstein 1996, Styner 2003a,Vos 2004℄ to just name a few. A popular method is to optimize the 
orrespon-den
es and the registration transformation at the same time as does the IterativeClosest Points (ICP) algorithm [Besl 1992℄ for point 
louds as explained in se
tion2.2.1. More elaborate methods dire
tly 
ombine the sear
h of 
orresponden
es andof the SSM for a given training data set as proposed in [Zhao 2005b, Chui 2003℄or the Minimum Des
ription Length (MDL) approa
h to statisti
al shape model-ing [Davies 2002
, Heimann 2005℄. The MDL is used to optimize the distributionof points on the surfa
es of the observations in the training data set when de-termining the best SSM. For unstru
tured point sets, the MDL approa
h is notsuited to 
ompute a SSM be
ause it needs an expli
it surfa
e information. An-other interesting approa
h proposes an entropy based 
riterion to �nd shape 
or-responden
es, but requires impli
it surfa
e representations [Cates 2006℄. Other ap-proa
hes 
ombine the sear
h for 
orresponden
es with shape based 
lassi�
ation[Tsai 2005, Kodipaka 2007℄ or with shape analysis [Peter 2006b℄. However, thesemethods are not easily adaptable to multiple observations of unstru
tured pointsets as they either depend on underlying surfa
e information or �x the number ofpoints representing the surfa
e. The approa
h in [Chui 2004℄ for unstru
tured pointsets fo
uses only on the mean shape. In all 
ases, enfor
ing exa
t 
orresponden
esfor surfa
es represented by unstru
tured point sets leads to variability modes thatnot only represent the organ shape variations but also arti�
ial variations whoseimportan
e is linked to the lo
al sampling of the surfa
e points.We argue that when segmenting anatomi
al stru
tures in noisy image data, theextra
ted surfa
es (points) only represent probable surfa
e lo
ations. Therefore,a method for shape analysis should better rely on probabilisti
 point lo
ations aspresented with the rigid EM-ICP registration in [Granger 2002℄. A

ordingly, wepropose to solve the 
orresponden
e problem by des
ribing the observations as noisymeasurements of the model. This amounts to representing the shapes by mixturesof Gaussians whi
h are 
entered on the model surfa
e points. The shapes are thenaligned by maximizing the 
orresponden
e probability between all possible pointpairs. It should be noted that the SoftAssign algorithm [Rangarajan 1997a℄ has aprobabilisti
 formulation whi
h is 
losely related but di�ers in that it gives the samerole to the model and the observations. This is justi�ed for a pair-wise registrationbut not for a group-wise model to observation registration, whi
h is needed for theSSM 
omputation.This 
hapter is stru
tured as follows: In se
tion 3.2, an a�ne version of the EM-ICP registration algorithm is derived in order to establish a probabilisti
 frameworkfor 
omputing 
orresponden
e probabilities between the observations. Following inse
tion 3.3, the generative Gaussian Mixture statisti
al shape model (GGM-SSM) isdeveloped, and a maximum a posteriori framework is proposed to 
ompute all modelparameters and observation parameters at on
e. The solutions for optimizing the
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iated global 
riterion with respe
t to the observation and model parameters arederived in se
tions 3.4 and 3.5. The integration of normals as additional informationinto the global 
riterion is realized in se
tion 3.7. We 
on
lude this 
hapter with adis
ussion about the 
hara
teristi
s of the new model (se
tion 3.8).3.2 Expe
tation Maximization - ICP AlgorithmIn MR or CT medi
al imaging, the a

ura
y of the anatomi
al representation de-pends on the sli
e thi
kness as well as the resolution in the plane. Even with avery high spatial resolution, partial volume e�e
ts will o

ur, so it has to be pointedout that the resulting image always remains an estimation of the true anatomi
alstru
ture. Due to the re
ording te
hniques, there is always a 
ertain amount ofin
ertitude regarding the extra
ted image information.For the 
omputation of a SSM, a training data set 
ontaining segmented observa-tions has to be 
reated. The observations are mostly generated in a pro
ess whi
h
omprises two steps: First, an automati
, semi-automati
 or manual segmentationof the respe
tive stru
ture is performed whi
h results in a set of 2D binary images orone binary volume. Next, a surfa
e extra
ting algorithm is applied. For both steps,a multitude of well resear
hed and problem-adapted methods exists, nevertheless,the resulting segmentation will always be an estimation of the true stru
ture surfa
e.Con
erning the 
orresponden
e problem, this means that the pro
ess of determininghomologies between extra
ted surfa
es relies on information whi
h is not ne
essarily
orre
t. Furthermore, one-to-one 
orresponden
es pose a problem for observationswhi
h feature distin
tive shape detail di�eren
es as shown in �gure 3.1. For thesereasons, it is advantageous to use 
orresponden
e probabilities instead of exa
t 
or-responden
es. The EM-ICP algorithm is a 
onvenient method to �nd those.In this se
tion, an a�ne extension for the Expe
tation Maximization - IterativeClosest Point registration is derived whi
h ta
kles the 
orresponden
e problem bydetermining 
orresponden
e probabilities instead of one-to-one 
orresponden
es. Therigid EM-ICP was �rst introdu
ed in 2002 by Granger and Penne
 and proved tobe robust, pre
ise, and fast [Granger 2002℄. As the aim is to model the shape vari-ations whi
h remain after pose, s
aling and shearing variations are eliminated, analgorithm is needed whi
h does an a�ne alignment of the shapes.3.2.1 AlgorithmThe EM-ICP algorithm determines the registration transformation T that bestmat
hes a model point set M ∈ R
3Nm onto an observation point set S ∈ R

3Nswith Nm and Ns des
ribing the number of points of the model and the observationrespe
tively. The fo
us lies on the probability of an observation point si to be ameasure of a transformed model point T ⋆mj . In that way, the point si is des
ribedas a displa
ed and noisy version of point mj. Now all s
ene points are 
onsidered asbeing 
onditionally independent. If the point si 
orresponds exa
tly to the modelpoint mj , the measurement pro
ess 
an be modeled by the Gaussian probability
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orresponden
e problem: One shape features two bumps, the otheronly one. How 
an we determine 
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es between the two? The approa
hused here establishes 
orresponden
e probabilities between all points representing theshape surfa
es.
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tion of the Mahalanobis distan
eswith respe
t to the point T ⋆ mj . The probability of s
ene point si given T and mjis 
al
ulated as shown in equation (3.1).
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T*m3siFigure 3.3: Mixture of Gaussians des
ribe likelihood of point si with respe
t to severalmodel points mj .
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p(si|mj, T ) =

1

(2π)
3

2 |Σj |
1

2

exp(−
1

2
(si − T ⋆ mj)

T .Σ−1
j (si − T ⋆ mj)) (3.1)where Σj represents the noise as the 
ovarian
e of mj. For an illustration see �gure3.2.However, the observation point si 
an in fa
t be a measure of any of the modelpoints as illustrated in �gure 3.3. It is assumed that a priori all mi are equallyprobable for being mat
hes to si. Sin
e M 
onsists of Nm model points mj, theprobability distribution model of the spatial lo
ation of si is the mixture

p(si|M,T ) =
1

Nm

Nm∑

j=1

p(si|mj , T ). (3.2)Unfortunately, even under the assumption that all s
ene point measurements areindependent, no 
losed form solution exists for the maximization of p(S|M,T ). Asolution is to model the unknown 
orresponden
es H ∈ R
Ns×Nm as random hid-den variables and to maximize the log-likelihood of the 
omplete data distribution

p(S,H|M,T ) e�
iently using the EM algorithm. We denote E(Hij) as the ex-pe
tation of point si being an observation of point T ⋆ mj (with the 
onstraint
∑Nm

j E(Hij) = 1) and 
ompute the expe
tation of the log-likelihood with
E(log p(S,H|M,T )) =

1

Nm

Ns∑

i

Nm∑

j

E(Hij) log p(si|mj, T ). (3.3)In the following, uniform priors on H are assumed.In the expe
tation step, T is �xed and log p(S,H|M,T ) is estimated to
ompute the expe
tation of 
orresponden
e E(H):
P (Hij = 1) = E(Hij) =

exp(−µ(si, T ⋆ mj))
∑

k exp(−µ(si, T ⋆ mk))with µ(si, T ⋆ mj) = 1
2(si − T ⋆ mj)

T .Σ−1
j (si − T ⋆ mj).In the maximization step, E(H) is �xed and the estimated likelihood ismaximized with respe
t to T . For this purpose, 
onstants and normalizing fa
torsof equation (3.3) do not have to be taken into a

ount. Hen
e, the EM-ICP
riterion CEM to be optimized takes the following form:

CEM (T,E) =

Ns∑

i

Nm∑

j

E(Hij)(si − T ⋆ mj)
T Σ−1

j (si − T ⋆ mj). (3.4)Without loss of generality, it is assumed from now on a homogeneous and isotropi
Gaussian noise with varian
e σ2 in order to simplify the equations. The transfor-mation is then found by
T̂ = argmin

T

1

σ2

Ns∑

i

Nm∑

j

E(Hij)‖si − T ⋆ mj‖
2. (3.5)
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al Shape ModelWe see that the elements of E(H) serve as weighting fa
tors. The solution of thisleast-squares estimation for a rigid transformation T 
an be seen in [Granger 2002℄.3.2.2 Generalization to A�ne TransformationWhen dealing with an a�ne transformation Taff , a point mj is transformed by Taffas follows: Taff ⋆ mj = Amj + t with the transforming matrix A ∈ R
3x3 and thetranslation ve
tor t ∈ R

3. In order to �nd the best translation t, equation (3.4) isdi�erentiated with respe
t to t, and we obtain
∂CEM(t)

∂t
= −2

1

σ2
(

Ns∑

i

si −A
Nm∑

j

mj

Nm∑

i

E(Hij)−Nst)knowing ∑Nm

j E(Hij) = 1 ∀i. Thus, at the optimum we �nd
t̂ =

1

Ns

Ns∑

i

si −A
1

Ns

Nm∑

j

mj

Ns∑

i

E(Hij). (3.6)We see that t̂ aligns the bary
entre s̄ = 1
Ns

∑Ns

i si and the pseudo bary
entre m̃ =
1

Ns

∑Nm

j mj
∑Ns

i E(Hij) of the two point 
louds S and M . Using �bary
entre�
oordinates s′i = si − s̄ and m′
j = mj − m̃ allows us to simplify the 
riterion into

C ′
EM (T,E) =

1

σ2

Ns∑

i

Nm∑

j

E(Hij)(s
′T
i s

′
i − 2s′Ti Am

′
j +m′

jA
TAm′

j). (3.7)Next, C ′
EM(T ) is di�erentiated with respe
t to the a�ne transformation matrix A:

∂C ′
EM (A)

∂A
= −

2

σ2

Ns∑

i

Nm∑

j

E(Hij)s
′
im

′T
j +

2

σ2

Ns∑

i

Nm∑

j

E(Hij)Am
′
jm

′T
j

=
2

σ2
(−Γ +AΥ)with Υ,Γ ∈ R

3×3.We solve for A with
AΥ = Γ⇔ A = ΓΥ−1.If Υ is singular (det(Υ) = 0), the pseudo-inverse Υ+ has to be determined insteadof the inverse Υ−1. From an implementational point of view, it is advantageousto always determine the pseudo-inverse. As Υ is symmetri
, the pseudo-inverse is
omputed using the Ja
obi method for eigenvalue de
omposition. For details seese
tion A.1.The resulting transformation T is applied to the points of the target 
loudM beforethe next Expe
tation step. The two EM-steps are alternated until |CEM(T,E)(i) −

CEM(T,E)(i−1)| < ǫ. A mathemati
al proof of 
onvergen
e for the EM algorithmis provided in [Dempster 1977℄.
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alingIn order to robustify the 
omputation of the a�ne transformation, an iterative multi-s
ale s
heme is implemented. Here, the varian
e σ2 
ontrolling the 
orresponden
eprobabilities between shapes (as formulated in equations (3.1) and (3.2)) is used asa s
ale parameter. In his thesis, S. Granger analysed the in�uen
e of the varian
e onthe 
onvergen
e of the rigid EM-ICP algorithm [Granger 2003℄. The results suggestthat the algorithm should be started with a large varian
e to guarantee the robust-ness and that the �nal varian
e should be in the range of the real noise varian
e inorder to ensure the most a

urate results. A large varian
e makes sure that shapepositions and rotations of sour
e and target are aligned. A low varian
e makes surethat the shape details of sour
e and target are aligned. This is implemented asfollows: We start the EM-ICP registration with sigma σstart in the �rst iteration.In ea
h following iteration it, the sigma value is redu
ed to σit = r-fa
torit · σstartwhere the redu
tion fa
tor is a s
alar with 0 < r-fa
tor < 1. Its value has to be
hosen 
arefully as a fast de
rease of the multi-s
ale varian
e σ2 
ould easily freezethe model in lo
al minima. The same applies for the 
hoi
e of the initial σ-value.If the sigma is 
hosen too small, the EM-ICP behaves like the ICP registrationalgorithm whi
h means that always only one point, the 
losest neighbour, is �xedas 
orresponding point. For mathemati
al proof please refer to appendix A.2. Ifsigma is 
hosen too great, the sour
e tends to shrink to the bary
entre of the target.Eventually, the 
hoi
e of sigma depends on the data at hand and is determinedheuristi
ally so far. In order to illustrate the in�uen
e of sigma and redu
tion fa
torin the multis
ale-s
heme, we examine an example: The a�ne EM-ICP is employedto register two kidneys represented by around 3000 points ea
h. The value of σstartis set to 12, the registration is iterated 100 times. In the �rst registration, no multi-s
aling is performed. In the se
ond registration, a multi-s
aling is performed witha redu
tion fa
tor r-fa
tor=0.97. The algorithm with multi-s
aling 
omes to betterresults as without as illustrated in �gures 3.4 and 3.5.We then test the behaviour of the a�ne EM-ICP on a syntheti
 registration problem.Our data 
onsists of a segmented kidney S whi
h is represented by N = 10466 sur-fa
e points si and has a size of about 70mm×40mm×120mm. We generate a se
ondkidney ST by deforming S with a syntheti
 transformation Tsynth: ST = Tsynth ⋆ S.Subsequently, both point sets are de
imated to Sd and Sd
T using a de
imation al-gorithm whi
h is based on the te
hnique presented in [S
hroeder 1992℄. Here, thepoints are splitted and moved during de
imation. By 
hoosing di�erent de
imationparameters (di�erent number or triangles, di�erent point priority queues) for S and

ST , it is ensured that the number of 
ommon 
onserved points (exa
t 
orrespon-den
es) between Sd and Sd
T is less than 15%, so real 
onditions - where no exa
tone-to-one 
orresponden
es 
an be determined - are simulated. Moreover, the num-ber of points di�ers. In the following experiments, Sd and Sd

T are represented byaround 510 points.In order to quantify the a

ura
y of registration, we de�ne a distan
e measure asthe normalized sum of distan
es between all 
orresponding points si and sT,i of the
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(a) 5 iterations. (b) 20 iterations. (
) 100 iterations.Figure 3.4: A�ne EM-ICP registration on two kidney point 
louds, sour
e in greenand target in purple. The varian
e is set to 12 and remains 
onstant for the wholeregistration pro
ess.
(a) 5 iterations. (b) 20 iterations. (
) 100 iterations.Figure 3.5: A�ne EM-ICP registration on two kidney point 
louds, sour
e in greenand target in purple. The varian
e is set to 12 for the �rst iteration and is thenredu
ed with a redu
tion fa
tor of 0,97 in ea
h new iteration.



3.2 Expe
tation Maximization - ICP Algorithm 35original, non-de
imated, kidneys:
d2(S, ST ) =

1

NS

NS∑

i=1

‖si − sT,i‖
2.We 
hose this distan
e measure instead of 
omparing the 
omputed transforma-tion with the original one sin
e Eu
lidean point distan
es are easier to interpretethan matrix 
oe�
ient di�eren
es. In summary, the experiments are 
ondu
ted byperforming the following steps:1. Choosing Tsynth to generate ST .2. De
imation of S and ST resulting in Sd and Sd

T .3. Registration of Sd and Sd
T using the a�ne EM-ICP.4. Applying the resulting transformation Tres to ST .5. Computing the distan
e between S and Tres ⋆ ST .We tested for similarity and a�ne Tsynth. The similarity transformation representsa rotation with rotx = 20◦, roty = 10◦, and rotz = 5◦, a s
aling of scalex = 1.1,

scaley = 0.9, and scalez = 1, and a displa
ement of dispx = 10mm, dispy = 10mm,and dispz = 10mm. No shearing is applied. We start the registration with σstart =
8mm and used a redu
tion fa
tor of r-fa
tor=0.9. The algorithm 
onverged after30 iteration and resulted in a distan
e of d(S, ST ) = 0.5mm. The result is shown in�gure 3.6.The a�ne transformation has a high shearing e�e
t with

Tsynth,affine =







1 0 0 0
0.1 1 0 0
0.07 0.02 1 0
0 0 0 1






.Again, the registration is started with σstart = 8mm but in this experiment,the redu
tion fa
tor is varied with r-fa
tor = {0.5 0.85 0.90 0.95}. Figure 3.8shows the in�uen
e of the redu
tion fa
tor on the 
onvergen
e rate for the a�ne

Tsynth. The �nal surfa
e distan
es are in the range of d(S, ST ) = 0.35mm for thetested r-fa
tors {0.85 0.90 0.95}. A r-fa
tor of 0.5 however leads to a distan
e of
d(S, ST ) = 0.46mm sin
e the algorithm freezes in a lo
al minimum for that 
ase.For a result example of the a�ne transformation experiments see �gure 3.7.We 
ould establish that the a�ne EM-ICP registration results in a typi
aldistan
e of d(S, Tres ⋆ ST ) ≤ 0.5mm for our data set under the tested transforma-tions. This value lies in the same range as the average distan
e of one point in Sto its 
losest neighbour (0.74mm). Typi
ally, 30 iterations su�
ed for the kidneyregistration in this set-up. The EM-ICP needs no previous rigid registration for thea�ne 
ase.
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(a) (b)Figure 3.6: The original obje
ts S (pink) and their transformed versions ST (green)(a) before registration with d(S, ST ) = 51, 7mm and (b) after registration with

d(S, Tres ⋆ ST ) = 0.5mm. For the EM-ICP, the kidneys were de
imated from 10466to around 510 points, we 
hose an initial sigma of 8mm, 30 iterations and a redu
ingfa
tor of 0.9 (whi
h leads to a �nal sigma of 0.38mm).
(a) (b)Figure 3.7: The original obje
ts S (pink) and their transformed versions ST (green)(a) before registration with d(S, ST ) = 40, 3mm and (b) after registration with

d(S, Tres ⋆ST ) = 0.35mm. For the EM-ICP, the kidneys were de
imated from 10466to around 510 points, we 
hose an initial sigma of 8mm, 30 iterations and a redu
ingfa
tor of 0.9 (whi
h leads to a �nal sigma of 0.38mm).
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Figure 3.8: Convergen
e of EM-ICP in a�ne kidney registration. The EM-ICP
riterion values are plotted with respe
t to the number of iterations for three di�erentredu
tion fa
tors (r-fa
tor). The �nal surfa
e distan
e were all in the range of
≈ 0.35mm. A redu
tion fa
tor of 0.5 however leads to a distan
e of 0.46mm sin
ethe algorithm freezes in a lo
al minimum for that 
ase.



3.3 The Uni�ed Framework 373.3 The Uni�ed FrameworkIn the probabilisti
 approa
h, the aim is to 
ompute a generative model whi
h op-timally �ts the given data set. We realize this by developing a global and unique
riterion whi
h is optimized iteratively with respe
t to all model and all observa-tion parameters. The optimization is done through a single maximum a posteriori(MAP) 
riterion and leads to very e�
ient and 
losed-form solutions for (almost) allparameters without the need for one-to-one 
orresponden
es as is usually requiredby the prin
ipal 
omponent analysis. The registration transformations whi
h areneeded to mat
h the model on the observations are 
omputed using an a�ne ver-sion of the Expe
tation Maximization - Iterative Closest Point (EM-ICP) algorithmwhi
h is based on probabilisti
 
orresponden
es and whi
h proved to be robust andfast. By relying on 
orresponden
e probabilities, the generative statisti
al shapemodel representing the training data set is modeled as a mixture of Gaussians.In se
tion 3.3.1, the generative model parameters and observation parameters arepresented and integrated in a uni�ed framework. In se
tion 3.3.2, the global 
riterionobtained by the MAP estimation is developed.3.3.1 The Generative ModelWe assume a training data set of segmented organs whi
h 
ontains N observations
Sk. The observations are represented by point 
louds with respe
tively Nk pointsin 3D, so that Sk ∈ R

3Nk . We want to determine a generative statisti
al shapemodel whi
h best represents the given observations. Here, the observations areinterpreted as randomly generated by the model: The s
ene Sk is seen as a setof noised measurement of the model. The model itself is modeled as a randomvariable des
ribed by a Gaussian distribution.In order to avoid homology assumptions, the approa
h is based on 
orrespon-den
e probabilities. In the following, the involved parameters are presented in detail.Generative Gaussian Mixture SSM Parameters Θ:The GGM-SSM is expli
itly de�ned by the following 4 model parameters
Θ = {M̄, vp, λp, n}:
• M̄ ∈ R

3Nm : Mean shape of the model parameterized by a point 
loud of Nmpoints mj ∈ R
3.

• vp ∈ R
3Nm : n variation modes represented by Nm 3D ve
tors vpj.

• λp ∈ R: n asso
iated standard deviations λp ∈ R whi
h des
ribe - similar tothe 
lassi
al eigenvalues of the Prin
ipal Component Analysis - the impa
t ofthe variation modes.
• n: Number of variation modes (n ≤ N).Observation Parameters Q:From the parameters Θ of a given stru
ture, the shape variations of that stru
ture
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an be generated by
M = M̄ +

N∑

p=1

ωpvp, N ≤ nwith ωp ∈ R being the deformation 
oe�
ients Ω = {ω1, ..., ωn} of the 
urrent shape(observation parameter) along the modes v1, ..., vn (model parameter). The proba-bility of obtaining a random deformed model M depends on the probability of thedeformation 
oe�
ient parameters given Θ. We model the deformation 
oe�
ientsdistribution as Gaussian:
p(M |Θ) = p(Ω|Θ) =

n∏

p=1

p(ωp|Θ) =
1

(2π)n/2
∏n

p=1 λp
exp



−
n∑

p=1

ω2
p

2λ2
p



 (3.8)where the standard deviation λp is a model parameter.In the framework of the GGM-SSM 
omputation for a training data set 
ontainingthe observations Sk, the deformation 
oe�
ients are denoted ωkp a

ording to the
Sk they belong to.The se
ond observation parameter are the registration transformations whi
h posi-tion our system in spa
e by aligning the model shape with ea
h of the observations.Ea
h transformation is asso
iated with one observation Sk, they are denoted as
Tk = {Ak ∈ R

3×3, tk ∈ R
3} with rotational or a�ne matrix Ak ∈ R

3×3 and transla-tion tk. In order to 
ompute the transformation whi
h maximizes the 
orresponden
eprobability between the model and a observation, the Expe
tation Maximization It-erative Closest Points registration algorithm whi
h is explained in detail in se
tion3.2 is employed. The hidden variable in the Expe
tation Maximization algorithm isthe 
orresponden
e probability matrix Ekij ∈ R
Nk×Nm . Its elements at position ijdes
ribe the 
orresponden
e probability for observation point si with model point

mj.Applying the transformation Tk to a model point mj is written as
Tk ⋆ mj = Akmj + tk.The instantiated and pla
ed model Mk is then determined by applying the trans-formation to all model points mj whi
h is denoted as

M = Tk ⋆ M. (3.9)We summarize the observation parameters as Q = {Ωk, Tk}.The uni�ed framework of the parameters and their spe
i�
 relations are illustratedin the diagram shown in �gure 3.9.3.3.2 Optimization of Parameters through a Single MAP CriterionAs des
ribed in se
tion 3.3.1, the approa
h deals with two sets of parameters:1. Model parameters: Θ = {M̄, vp, λp, n}.
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Mk = M̄ +
∑N

p=1 ωkpvp

p(Mk|Θ) = 1
(2π)n/2

Qn
p=1

λp
exp

(

−
∑n

p=1

ω2

kp

2λ2
p

)

Deformation of the Model
with rotational or a�ne matrix Ak and translation tkTk = {Ak ∈ R3×3, tk ∈ R3}

Geometri
al transformation Tk

Model Θ

λp ∈ R: n asso
iated standard deviations
n: Number of variation modes (n ≤ N)vp ∈ R3Nm : n variation modes 
omposed of Nm 3D ve
tors vpj

M̄ ∈ R
3Nm : Mean shape of the model 
omposed of Nm 3D points

Pla
ement in spa
e
Ek ∈ RNk×Nm

∑

j Ekij = 1

Sampling
M

′
k = Tk ⋆ Mk Corresponden
e probability Ek

ski = Tk ⋆ mj +N(0, σ) with probability Ekij

Shape Variability Parameter Ωea
h asso
iated with a vp and Sk

ωkp : n deformation 
oe�
ients,

Figure 3.9: Uni�ed framework for GGM-SSM 
omputation. The model parameters,the observation parameters and their respe
tive relations are illustrated.
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al Shape Model2. Observation parameters: Qk = {Ωk, Tk} and asso
iated nuisan
e parame-ters (hidden variables) Ek.In order to develop a framework to 
ompute these parameters for a given trainingdata set S, the aim is to �nd the parameters Θ and Q whi
h most probably generatedthat s
ene. The likelihood fun
tion is given by (Q,Θ) 7→ p(S|Q,Θ). We �rstapproa
h the situation from the view point of its use, that is, it is assumed thatthe model parameters in Θ are known. We are interested in the sear
h for theparameters linked to the shape observations: Q = {Qk}. The model is modeled as arandom variable with a Gaussian distribution whi
h means that a prior distributionover (Q,Θ) exists whi
h is not uniform sin
e p(Q,Θ) 6= constant. In order to takeinto a

ount the prior that the model is providing on the observation parameters,a maximum a posteriori estimation should be optimized instead of a maximumlikelihood estimation of Q and Θ. The posterior distribution of (Q,Θ) is then
(Q,Θ) 7→ p(Q,Θ|S). In the MAP estimation, Bayes' theorem is used whi
h leadsto MAP = −

N∑

k=1

log(p(Qk,Θ|Sk)) = −

N∑

k=1

log

(
p(Sk|Qk,Θ)p(Qk|Θ)p(Θ)

p(Sk)

)

. (3.10)The probability of the observations p(Sk) does not depend on the model parameters
Θ and p(Θ) does not play a role with Θ known. Hen
e, the MAP estimation 
an besimpli�ed and the global 
riterion integrating our uni�ed framework is the following:

C(Q,Θ) = −

N∑

k=1



log(p(Sk|Qk,Θ)
︸ ︷︷ ︸ML estimate + log(p(Qk|Θ))

︸ ︷︷ ︸Prior 

 .The �rst term des
ribes a maximum likelihood (ML) estimation with p(Sk|Qk,Θ) =
p(Sk|Tk,Ωk,Θ), whi
h gives

p(Sk|Qk,Θ) =

Nk∏

i=1

1

Nm

Nm∑

j=1

p(ski|mkj, Tk) with mkj = m̄j +

n∑

p=1

ωkpvpj.As a given s
ene point ski is modeled as a noisy measurement of a (transformed)model point mj, the probability of the observed point is given by
p(ski|mj , Tk) =

1

(2π)
3

2σ
exp(−

1

2σ2
(ski − Tk ⋆ mj)

T .(ski − Tk ⋆ mj)). (3.11)The se
ond term of C(Q,Θ) (the prior) depends on the probability of the deforma-tion 
oe�
ients ωkp as des
ribed in equation (3.8).
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omplete 
riterion we thus we �nd
C(Q,Θ) = −

N∑

k=1

Nk∑

i=1

log




1

Nm

Nm∑

j=1

1

(2π)
3

2σ
exp

(

−
‖ski − Tk ⋆ mkj‖

2

2σ2

)




+
N∑

k=1



log((2π)n/2) + log(
n∑

p=1

λp) +
n∑

p=1

ω2
kp

2λ2
p



 (3.12)
= α(n) + β(Nm)− ζ(σ) +

N∑

k=1

Ck(Qk,Θ).The number of variation modes is not optimized but a �xed number is assumed.The number Nm of points in the model is �xed and a multi-varian
e s
heme isemployed. Hen
e, α(n) =
∑

k log((2π)n/2), β(Nm) =
∑

k Nk log(Nm) and ζ(σ) =

NNk log
(

(2π)−
3

2σ−1
) be
ome 
onstants.Our 
riterion thus simpli�es to Cglobal(Q,Θ) =

∑N
k=1Ck(Qk,Θ) with

Ck(Qk,Θ) =

n∑

p=1

(

log(λp) +
ω2

kp

2λ2
p

)

−

Nk∑

i=1

log





Nm∑

j=1

exp

(

−
‖ski − Tk ⋆ mkj‖

2

2σ2

)


 .(3.13)The �rst term is responsible for maximizing the probability of deformation whilethe se
ond term tries to minimize the point distan
es of model and observations.The global 
riterion of equation (3.13) in
orporates the uni�ed framework for themodel 
omputation. By optimizing it alternately with respe
t to the operands in
{Q,Θ}, we are able to determine all parameters we are interested in.Some terms will re
ur in the di�erent optimizations as the derivative of the se
ondterm of the global 
riterion is always performed in the same manner. We willintrodu
e the following notations for simpli�
ation reasons: The derivative of anarbitrary fun
tion ξ

ξkij(Tk,Ωk, M̄ , vp, λp) = log

Nm∑

j=1

exp

(

−
‖ski − Tk ⋆ mkj‖

2

2σ2

)with respe
t to one of the fun
tion's parameters (let's say x) is
∂ξkij

∂x
= −

Nm∑

j=1

γkij
(ski − Tk ⋆ mkj)

T

σ2

∂(ski − Tk ⋆ mkj)

∂xwith
γkij =

exp
(

−
‖ski−Tk⋆mkj‖2

2σ2

)

∑Nm

l=1 exp
(

−‖ski−Tk⋆mkl‖2

2σ2

) . (3.14)
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al Shape ModelThe details of this derivative 
an be found in appendix A.3.Note that the variable γkij is equal to the elements Ekij of the expe
tation matrixwhi
h means that the derivatives of all parameters are weighted by the 
orrespon-den
e probabilities of all ski and mj.3.4 Computation of the Observation ParametersIn this se
tion, the alternated optimizations of the observation parameters {Tk,Ωk}with �xed and known model parameters Θ = {M̄ , vp, λp, n} are des
ribed in detail.3.4.1 TransformationWe optimize the global 
riterion (equation (3.13)) with respe
t to the spatialtransformation Tk, so Ωk and Θ are �xed. Here, the 
on
ept of the a�ne EM-ICPregistration des
ribed elaborately in se
tion 3.2 is used where the 
orresponden
eprobabilities Ekij are modeled as hidden variables.1. The Expe
tation Step:In the expe
tation step, the transformation Tk is �xed. We 
ompute the expe
tan
yof the log-likelihood of the 
omplete data distribution and derive
Ekij = γkij =

exp
(

−
‖ski−Tk⋆mkj‖2

2σ2

)

∑Nm

l=1 exp
(

−‖ski−Tk⋆mkl‖2

2σ2

) , (3.15)
ompare equation (3.14).2. The Maximization Step:In the maximization step, the 
orresponden
e probabilities Ek are �xed, andthe transformations Tk have to be determined. Therefore, the global 
riterion isoptimized �rst with respe
t to the translation tk and next with respe
t to the a�neregistration matrix Ak.Optimization with respe
t to the translationWe optimize the 
riterion with respe
t to the translation tk. For the derivative ofthe se
ond term, the general derivative des
ribed in equation (3.14) is employed:
∂Ck(Qk,Θ)

∂tk
= +

Nk∑

i=1

Nm∑

j=1

γkij
(ski − Tk ⋆ mkj)

T

σ2

∂(ski − Tk ⋆ mkj)

∂tkwith
∂(ski − Tk ⋆ mkj)

∂tk
=

∂

∂tk
(ski − tk −Ak(m̄j +

n∑

p=1

ωkpvpj
)) = −I3×3.
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∂tk

= 0, we �nd
1

σ2

Nk∑

i=1

Nm∑

j=1

γkij(ski − tk −Ak(m̄j +

n∑

p=1

ωkpvpj)) = 0whi
h gives expli
itly the transformation
tk = s̃k −Ak



 ˜̄mj +

n∑

p=1

ωkpṽp)



 . (3.16)with̃
sk =

1

Nk

Nk∑

i=1

ski, ˜̄mj =
1

Nk

Nm∑

j=1

m̄j

Nk∑

i=1

γkij and ṽp =
1

Nk

Nk∑

i=1

γkijvpj.This is no more than the superposition of weighted bary
entres with weights a bitmore 
omplex than usual sin
e the model bary
entre in
ludes a 
orre
tion for themodes.Optimization with respe
t to the a�ne matrixIn order to optimize the 
riterion with respe
t to the a�ne matrix Ak, thetranslation tk is repla
ed as found above (equation (3.16)), so the implementationof the whole transformation derivative be
omes simpler. The points of the shapesare now expressed with respe
t to their bary
entres and we set
s′ki = ski − s̃k and m′

kj = m̄j − ˜̄mj +

n∑

p=1

ωkp(vpj − ṽp).The �rst term of the global 
riterion in equation (3.13) does not 
ontain transfor-mation parameters, so we 
an rewrite our 
riterion to
C ′

k(Qk,Θ) = 
onst− N∑

k=1

Nk∑

i=1

log





Nm∑

j=1

exp

(

−
‖s′ki −Akm

′
kj‖

2

2σ2

)

 .Then the derivative of C ′
k(Qk,Θ) is solved with respe
t to Ak. Here, the derivativeform shown in equation (A.2) is used whi
h simply is:

∂C ′
k(Qk,Θ)

∂Ak
= −

Nk∑

i=1

Nm∑

j=1

γkij
∂

∂Ak

‖s′ki −Akm
′
kj‖

2

2σ2
= 0and whi
h �nally leads to a matrix equation in the form of

Ak

Nk∑

i=1

Nm∑

j=1

γkijm
′
kjm

′T
kj =

Nk∑

i=1

Nm∑

j=1

γkijs
′
kim

′T
kj

⇔ AkΥk = Ψk, Υk,Ψk ∈ R
3×3.
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al Shape Model(The detailed derivation 
an be found in appendix A.3.) The elements of Υk and
Ψk in row r and 
olumn s are determined by

υ[r][s] =

Nk∑

i=1

Nm∑

j=1

γkij m
′
kj[r] m

′
kj[s]and

ψ[r][s] =

Nk∑

i=1

Nm∑

j=1

γkij s
′
ki[r] m

′
kj[s].where m′

kj[s] denotes the entry of ve
tor m′
kj at position s.Hen
e, the 
omputation of the transformation 
an be e�
iently done in a 
losed-form solution by solving a 3× 3 equation system.3.4.2 Deformation Coe�
ientsIn order to 
ompute the deformation 
oe�
ients Ω = {Ωk}, the global 
riterion(equation (3.13)) is optimized with respe
t to the deformation 
oe�
ients Ωk. Thetransformations Tk and the model parameters Θ are �xed. For the derivative ofthe se
ond term of the 
riterion, again the general derivative des
ribed in equation(3.14) is employed. For details please see appendix A.3. We �nally �nd

∂Ck(Qk,Θ)

∂ωkp
=
ωkp

λ2
p

−
1

σ2

Nk∑

i=1

Nm∑

j=1

γkij(ski − T ⋆ mkj)
TAkvpj = 0.In order to simplify, let us introdu
e the real values dkp and gkqp (with gkqp = gkpq):

dkp =

Nk∑

i=1

Nm∑

j=1

γkij(ski − tk −Akm̄j)
TAkvpjand

gkqp =

Nk∑

i=1

Nm∑

j=1

γkijv
T
qjA

T
kAkvpj.Thus, the system whi
h has to be solved for the optimal ωkp is (for all p):

σ2

λ2
p

ωkp − dkp +

n∑

q=1

ωkqgkqp = 0.We solve this equation with respe
t to all ωkp at a time by swit
hing to a matrixnotation where all ωkp are sorted in ve
tor Ωk ∈ R
n, all dkp are sorted in ve
tor

~dk ∈ R
n and all gkpq are sorted in the symmetri
 matrix Gk ∈ R

n×n:
0 = σ2







1
λ2

1

0. . .
0 1

λ2
n







Ωk − ~dk +GkΩk.

⇔ (Gk +Rnn)Ωk = ~dk (3.17)
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1 , ..., λ−2

n ). In order to 
ompute the ωkp, for ea
h kthe matrix Gk and the ve
tor ~dk have to be evaluated. In the implementation, thelinear equation system is solved using a LU de
omposition of (Gk +Rnn).3.5 Computation of the Model ParametersFor the 
omputation of all model parameters, we assume the observation parameters
Qk = {Ωk, Tk} to be �xed and known and optimize the global 
riterion of equation(3.13) with respe
t to the parameters in Θ with Θ = {M̄ , vp, λp}.3.5.1 Mean ShapeWe optimize the global 
riterion (equation (3.13)) with respe
t to the mean shape M̄ ,so the standard deviation λp, the variation modes vp and the observation parameters
Qk are �xed. We evaluate the derivative for ea
h mean shape point m̄j. The �rstterm of the global 
riterion in equation (3.13) does not 
ontain any mj, so we
on
entrate on the se
ond term. Using the general derivative presented in equation(3.14), we dire
tly �nd

∂Cglobal(Q,Θ)

m̄j
= +

N∑

k=1

Nk∑

i=1

γkij
(ski − Tk ⋆ mkj)

T

σ2

∂(ski − Tk ⋆ mkj)

∂m̄j
= 0.We �nally solve for mj by

m̄j =

(
N∑

k=1

Nk∑

i=1

γkijA
T
kAk

)−1 N∑

k=1

Nk∑

i=1

γkijA
T
k (ski − tk −Ak

n∑

p=1

ωkpvpj) (3.18)whi
h is derived in detail in appendix A.3. We see that the mean shape pointsare 
omputed as the average of all observation points whi
h are weighted by theirrespe
tive 
orresponden
e probabilities γkij .3.5.2 Standard DeviationWe optimize the global 
riterion (equation (3.13)) with respe
t to the standarddeviation λp, so M̄, vp and Qk are �xed. The derivative in this 
ase is quite easy:
∂Cglobal(Q,Θ)

∂λp
=

N∑

k=1

(

1

λp
−
ω2

kp

λ3
p

)

= 0

⇔ λ2
p =

1

N

N∑

k=1

ω2
kp. (3.19)This is 
onsistent with the ML estimation of the standard deviation based on anormal distribution.
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al Shape Model3.5.3 Variation ModesWe optimize the global 
riterion (equation (3.13)) with respe
t to the variationmodes vp, so all λp, M̄ and Qk are �xed. As we are working with a matrix notation,we �rst de�ne the matrix V ∈ R
3Nm×n 
ontaining the variation modes vp ∈ R

3Nmin its 
olumns. The 
omputation of the variation modes is 
omplex, for one as ishas to be made sure that the resulting ve
tors are orthogonal to ea
h other:
vT
p vq = δpq =

{
1 if p = q
0 if p 6= qwhi
h leads to the 
onstraint

V TV = In×n.In order to integrate this 
onstraint into the optimization, we employ Lagrangemultipliers. This means that a new variable Z ∈ R
n×n is introdu
ed with a Lagrangefun
tion Λ where

∂Λ

∂Z
= 0 ⇔ V TV = In×nand our global 
riterion is extended to

Λ = Cglobal +
1

2
tr
(
Z(V TV − In×n)

)
. (3.20)We di�erentiate the two terms independently and point-wise. Here, vjp ∈ R

3 denotethe elements of vp whi
h model the variation of model point mj . We begin with thederivative of Cglobal. :
∂Cglobal

∂~vjp
= −

1

σ2

N∑

k=1

Nk∑

i=1

γkij(ski − Tk ⋆ mkj)
T ωkpAkIn order to simplify the notation for 
larity purposes, in the following we denote

∂Cglobal

∂~vjp
=

n∑

q=1

Bpqj~vjq − ~qjpwith
~qjp =

1

σ2

N∑

k=1

Nk∑

i=1

γkij(ski − tk −Akm̄j)
T ωkpAk, qjp ∈ R

3and
Bpqj =

1

σ2

N∑

k=1

Nk∑

i=1

γkijωkqωkpA
T
kAk, Bpqj ∈ R

3×3 ∀j.Di�erentiating the Lagrange multiplier with respe
t to ~vjp gives
∂

∂~vjp

1

2
tr
(
Z(V TV − In×n)

)
=

∂

∂~vjp

1

2
tr
(
ZV TV

)

=
n∑

q=1

1

2
(zqp + zpq)~vjq with zqp = zpq.
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∂Λ

∂~vjp
=

n∑

q=1

zqp~vjq +
n∑

q=1

Bpqj~vjq − ~qjp. (3.21)In the rigid 
ase, Ak is a rotation matrix - and thus orthonormal - so it holds
AT

kAk = I3×3. The matrix Bpqj 
an then be written as the identity matrix multipliedby a s
alar: Bpqj = bpqjI3×3 with bpqj = 1
σ2

∑N
k=1

∑Nk

i=1 γkijωkqωkp. Hen
e we 
ansimplify the solution of ∂Λ
∂~vjp

= 0 to a ve
tor summation:
n∑

q=1

(zqpI3×3 + bpqjI3×3)~vjq = ~qjp ⇔

n∑

q=1

~vjq(zqp + bpqj) = ~qjp (3.22)This equation 
annot be extended to a matrix notation in order to 
ompute all ~vjp atthe same time be
ause we deal with a di�erent bpqj for ea
h point j, thus, B wouldbe a tensor. Therefore, we approa
h the problem regarding ea
h band [V ]{j} ∈ R
3×nof matrix V ∈ R

3Nm×n separately with
[V ]{j} = [~vj1, ..., ~vjq, ..., ~vjn].There are Nm bands [V ]{j}.Now we 
an write equation (3.22) in a matrix notation
[V ]{j} (Bj + Z) = [Q]{j}.with the matrix Bj ∈ R

n×n holding the bpqj and the matrix [Q]{j} ∈ R
3×n holdingthe ~qjp. The 
omputation of ea
h band [V ]{j} is then realized in an iterativemanner as follows:1.) If Z is known we 
an 
ompute V : [V ]{j} = [Q]{j} (Bj + Z)−1 .2.) If all [V ]{j} are known, we 
an determine Z: [V ]{j}Z = [Q]{j} − [V ]{j}Bj ∀j.For readability reasons, we set [Q]{j} − [V ]{j}Bj = [Q̃]{j}. Looking at all jsimultaneously, we �nd the following matrix equation

V Z = Q̃.with V ∈ R
3Nm×n, Z ∈ R

n×n and Q̃ ∈ R
3Nm×n.For the implementation, we add two steps. First, we for
e the V resulting fromstep 1.) to be orthonormal. To do so, we apply �rst a singular value de
omposition

V = USRT with U ∈ R
3Nm×n, S ∈ R

n×n and R ∈ R
n×n. Then we repla
e V withits orthonormal parts V ← URT .Next, we want Z to be symmetri
. Hen
e, instead of 
omputing Z = V T Q̃ we
ompute

Z =
1

2

(

V T Q̃+ (V T Q̃)T
)

.Finally, the optimization of the global 
riterion with respe
t to ~vjp is done as follows:We iterate
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al Shape Model1. Compute Q̃ with bands [Q̃]{j} = [Q]{j} − [V ]{j}Bj.2. Compute Z̃ = V T Q̃ and Z = 1
2(Z̃ + Z̃T ).3. Update V band per band: [V ]{j} = [Q]{j} (Bj + Z)−1.4. Modify V = USRT to be orthonormal: V ← URT .until ‖V t+1 − V t‖2 ≤ ǫ.In the a�ne 
ase, it holds AT

kAk 6= I3×3, so the solution to ∂Λ
∂~vjp

= 0 is abit more 
umbersome as Bpqj is not a diagonal matrix anymore and not sparse.In the following, the general approa
h is explained. For all j and all p we want tosolve
n∑

q=1

(zqpI3×3 +Bpqj)~vjq = ~qjp ⇔

n∑

q=1

B̃pqj~vjq = ~qjp. (3.23)For a matrix notation, we arrange the elements of the variation modes vp in theve
tors [V̂ ]{j} ∈ R
3n with

[V̂ ]{j} =











~vj1...
~vjq...
~vjn











.

Then we arrange the matri
es B̂pqj in [Bj ]pq ∈ R
3n×3n:

[Bj ]pq =











B̂11j . . . B̂1qj . . . B̂1nj... . . . ... . . . ...
B̂p1j . . . B̂pqj . . . B̂pnj... . . . ... . . . ...
B̂n1j . . . B̂nqj . . . B̂nnj











,

so we obtain the following linear system to solve:
[Bj]pq[V̂ ]{j} = [Q̂]{j}Again we realize the 
omputation iteratively by solving alternately for Z and for

V . In pra
ti
e, after a �rst rough alignment of the observations, the values of
AT

kAk 
ome 
lose to the identity matrix, so the rigid variant of the variation mode
omputation 
an be employed whi
h is faster.



3.6 Pra
ti
al Aspe
ts 493.6 Pra
ti
al Aspe
ts3.6.1 Initialization and Control of the ParametersAs the 
omputation of the observation parameters is based on known model param-eters Θ = {M̄, vp, λp}, the mean shape M̄ is initialized with one of the observations
Sk in the given data set, preferably with a typi
al shape. Next, by applying the EM-ICP registration, the resulting 
orresponden
e probabilities between M̄ and ea
h Skare evaluated, and �virtual� one-to-one 
orresponden
es are determined. We intro-du
e the virtual 
orresponding points s̆kj for ea
h mj and ea
h Sk by evaluating themean position of the probabilisti
 
orresponden
es:

s̆kj =

Ns∑

i

E(Hkij
)

∑

iE(Hkij
)
(T−1

k ⋆ sik). (3.24)The s̆kj represent probable sampling points of an unknown underlying surfa
e ofobservation Sk. We 
ompute a set of s̆kj for ea
h Sk. The resulting sets of assumedexa
t 
orresponden
es (T ⋆mj, s̆kj) are then used as input for the Prin
ipal Compo-nents Analysis to 
ompute the initial eigenve
tors vp and the initial eigenvalues λp.For a detailed explanation of the 
omputation see se
tion 3.6.2. The observationparameters Q = {T,Ω} are initialized with Ak = I3×3 and tk = (0, 0, 0) for all k forthe transformation and with ωkp = 0 for all k and all p.In order to test for the sensibility of our SSM 
omputation with respe
t to the initialmean shape, we 
ompared the mean shape results whi
h are obtained when usingdissimilar initial mean shapes M1 and M2. We established that M1 
an be gen-erated based on the SSM found with M2 with statisti
ally very small deformation
oe�
ients ω1p: M1 = M2 +
∑

p ω1p~vp with ω1p << λ2p [Hufnagel 2007b℄.As the aim is to �nd a good balan
e between 
omplexity and simpli
ity of the model,the dimension of the variation mode ve
tor spa
e is redu
ed during the iterated 
om-putation of the parameters. If the standard deviation λp be
omes �too small�, theasso
iated variation modes vp are no longer taken into a

ount. This does s
ar
elyin�uen
e the 
onvergen
e rate of the global 
riterion as shown in �gure 3.10.3.6.2 Solving for the Initial Variation ModesA training data set 
ontaining N observations Sk with a �xed number Nm of virtual
orresponding points is 
leared of the mean and then stored in the matrix B ∈
R

3Nm×N . In order to 
ompute the prin
ipal 
omponents, the asso
iated 
ovarian
ematrix is built with Cov(B) = BBT ∈ R
3Nm×3Nm , and a eigenvalue de
ompositionis performed:

BBT = ESETwhere S ∈ R
3Nm×3Nm is a diagonal matrix whi
h 
ontains the eigenvalues of BBTand E ∈ R

3Nm×3Nm is an orthogonal matrix 
ontaining the asso
iated eigenve
tors.However, for representing an organ like e.g. the kidney with a reasonable amountof details, at least Nm = 3000 points (if evenly distributed) are ne
essary, thus,
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Figure 3.10: Global 
riterion values of SSM 
omputation for syntheti
 ellipsoid dataset as illustrated in se
tion 4.2.1.1. Sin
e variation modes whose standard devia-tion falls below a 
ertain threshold are dis
arded, the number n of variation modesdiminishes from 10 to 7 during 
omputation.the system to solve be
omes very large with Cov(B) ∈ R
9000×9000 and is not sparse.Therefore, we apply an alternative solution to the standard eigenvalue de
ompositionand employ the Singular Value De
omposition (SVD) of B:

B = UΣV T (3.25)with U being an orthogonal matrix U ∈ R
3Nm×3Nm , V T being the transpose of theorthogonal matrix V ∈ R

N×N and Σ being a diagonal matrix Σ ∈ R
mxn with thesingular values σi on the diagonal. Now we use these 
omponents to represent BBTresulting in

BBT = UΣV TV ΣTUT = UΣΣTUT = ESET . (3.26)We see that U holds the sought eigenve
tors of the big system as U = E while ΣΣThold the eigenvalues of the 
ovarian
e matrix. Using the singular value de
ompo-sition means that we never need the spa
e 3Nm × 3Nm to 
ompute the 
ovarian
ematrix. Moreover, the SVD is numeri
ally more stable than the eigenvalue de-
omposition and therefore more a

urate if the 
ovarian
e matrix is ill-
onditioned[Kalman 1996℄. For a detailed derivation of eigenvalue and singular value de
ompo-sition please refer to se
tion A.1.3.7 Extension of the Criterion for Non-Convex Stru
-turesThe EM-ICP algorithm works very well for shapes whi
h are 
onvex. Con
ave shapeshowever pose a problem as points whi
h lie 
lose to one another do not ne
essarilybelong to the same part of the shape. However, their 
orresponden
e probabilitywill be high a

ording to the EM-ICP. For an example see �gure 3.11 whi
h showsthe left ventri
le of the heart and an illustrative syntheti
 stru
ture.
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a) b)Figure 3.11: Non-
onvex stru
tures. a) The left ventri
le of the heart is an examplefor a non-
onvex organ stru
ture (Image 
ourtesy of Dennis Säring [Säring 2009℄).b) Syntheti
 examples: Points whi
h lie 
lose to one another do not ne
essarilybelong to the same part of one shape. More information than the Mahalanobis dis-tan
e is needed in order to determine the 
orre
t 
orresponden
e for point mj in thisillustrated 
ase.3.7.1 Integration of NormalsFor non-
onvex shapes, an additional information is needed about the shape along-side the Mahalanobis distan
es used in the EM-ICP. When looking at the �gure3.11, what easily 
omes to mind is the distin
tion of the dire
tion the surfa
e isfa
ing. Therefore, the normal information is integrated into the global 
riterion toobtain small probabilities of 
orresponden
e between points whi
h feature normalsshowing in very di�erent dire
tions.Let us denote the normalized normal belonging to point si as ηsi and the normalizednormal belonging to point mj as ηmj . We 
ould now either measure the di�eren
ebetween the normals by analysing the angle between them or just by using the Eu-
lidean norm ‖ηsi− ηmj‖. Before 
omparing the normals, the transformation T hasto be applied to the normal ve
tor. This is done by multiplying the inverted andtransposed transformation matrix with the normal ve
tor. The translation is notneeded: T ⋆ ηmj = (A−1)T ηmj . Next, a renormalization of the normal is done, so inour 
ase T ⋆ ηmj =
(A−1)T ηmj

|(A−1)T ηmj | . A small di�eren
e means high probability, so we ex-tend the term of the EM-ICP given in equation (3.11) to obtain the 
orresponden
eprobability of point si with respe
t to the transformed point mj by
p(si|T,mj) =

1

const
exp(−

‖si − T ⋆ mj‖
2

2σ2
) exp(−

‖ηsi − T ⋆ ηmj‖

2σ2
η

).The 
orresponden
e probability relying on additional (normal) information betweentwo points 
an be dire
tly integrated in the global 
riterion. The elements of theexpe
tation matrix and therefore the values γkij in the derivatives simply 
hange to
γη

kij =
exp(−

‖ski−Tk⋆mkj‖2

2σ2 −
‖ηski−Tk⋆ηmkj‖

2σ2
η

)

∑Nm

l=1 exp
(

−‖ski−Tk⋆mkl‖2

2σ2 −
‖ηski−Tk⋆ηmkj‖

2σ2
η

) .
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al Shape ModelOnly the 
omputation of the transformation matrix be
omes more 
ompli
ated asthe derivative of the normal term has to be taken into a

ount.3.7.2 Estimating Normals for Unstru
tured Point CloudsThe 
omputation of normal ve
tors for a 
ontinuous surfa
e is straightforward. How-ever, the 
omputation of normals for a non-oriented unstru
tured point 
loud provesto be more di�
ult as no 
onne
tivities between the points exist. Therefore, addi-tional information as 
onne
tivity or tangential planes have to be estimated.Often, numeri
al te
hniques as �rst proposed in [Hoppe 1992℄ and then extendedin e.g. [Pauly 2003, Mitra 2004℄ are used. Basi
ally, for ea
h point in the point
loud a normal is estimated by �rst 
omputing a tangential plane whi
h is obtainedby applying the Least-Squares method to the k nearest neighbours. The normalis then 
omputed as the ve
tor perpendi
ular to that plane. Another main ap-proa
h is a 
ombinatorial one based on Voronoi/Delaunay properties as proposedby [Amenta 1999℄ for noise-free data and then extended by e.g. [Dey 2004℄ to noisydata.An interesting approa
h 
omputes the normals in a probabilisti
 framework as shownin [Granger 2003℄. It is based on the aspe
t that the spa
e of normals forms a di�er-ential manifold analogous to a sphere. The 
omputation of normals for an unstru
-tured point 
loud is then done following a rigorous mathemati
al notion on randomnormal statisti
s [Penne
 1996℄. The probability for a normal ~ns at point s knowingthe position of a neighbouring point si at distan
e d is given by p(~ns|s, si) = p(|φ|, d)with φ being the angle between the normal and the segment ssi. For an illustrationsee �gure 3.12. This probability is synthesized by a tensor formulation and �nallyleads to the following algorithm for 
omputing all normals of a point 
loud:For ea
h point si:
• Determine a number of 
losest neighbours sj using a kD-tree.
• Compute the tensor T =

∑

j exp(−4a2|sisj|)
sisj

|sisj |(
sisj

|sisj |)
T where a2 representsthe angular dispersion of the normal for a distan
e of 1mm.

• Determine eigenve
tors and eigenvalues of T .
• Normal ~nsi

equals eigenve
tor with greatest eigenvalue.Another feasible approa
h for establishing normal information is to exploit imageinformation of the observations if available. For organs whose grey values at theboundary 
learly di�er from those of the ba
kground, a gradient image is 
omputed.Following that, a normal is automati
ally estimated for ea
h point of the observationbased on the gradient information. An example is illustrated for the approximationof normals for the left ventri
le in an MR image, see �gure 3.13.3.8 Dis
ussionIn this 
hapter, a novel algorithm was developed to 
ompute a generative GaussianMixture statisti
al shape model whi
h is based on a sound mathemati
al framework.
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s

d φ

~ns

siFigure 3.12: The most probable normal dire
tion for point s is 
omputed knowingthe positions of the neighbours si.

Figure 3.13: Estimation of normals using image information.The 
omputation of the SSM is realized as an optimization problem: An algorithmis proposed to optimize for model parameters and observation parameters througha single maximum a posteriori 
riterion whi
h led to a mathemati
ally sound anduni�ed framework. Closed form solutions were e�e
tually derived for optimizing theasso
iated 
riterion alternately for almost all parameters. From a theoreti
al pointof view, a very powerful feature of the method is that we are optimizing a unique
riterion. Thus, theoreti
ally the 
onvergen
e is ensured. In pra
ti
e, the 
onver-gen
e rate has to be adapted to the problem at hand as e.g. a too fast de
rease ofthe multi-s
ale varian
e σ2 might freeze the model in lo
al minima. As opposedto most approa
hes in the literature, no prin
ipal 
omponent analysis is employed.SSM 
omputation methods whi
h rely on one-to-one 
orresponden
es and performa PCA on the asso
iated 
ovarian
e matrix 
ompute a number of eigenmodes whi
hmodel both shape variation and noise. In order to dis
ard the noise-related vari-ations from the �nal variability model, eigenmodes with small eigenvalues are nottaken into a

ount. This is largely an heuristi
 method. In 
ontrast, in the pre-sented GGM-SSM the variation modes only model the shape variation as the noiseis represented separately through the Gaussian Mixture.Furthermore, the GGM-SSM does not need one-to-one point 
orresponden
es butrelies solely on point 
orresponden
e probabilities for the 
omputation of mean shapeand variation modes. Therefore, elaborate prepro
essing of the observations in thedata set to establish 
orresponden
es be
omes obsolete, no questionable 
orrespon-den
es between point 
louds representing surfa
es are assumed, and the numberof points in the observation shapes may vary. The approa
h 
an be used for non-
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al Shape Modelspheri
al surfa
es and 
an be adapted to appli
ations on data sets with di�erenttopologies as the 
onne
tivity between points does not play a role.At the moment, all points of the observations are equally in
luded into the 
ompu-tation of the model. However, the 
orresponding matrix 
omputed by the EM-ICPregistration 
ontains information about the probability for ea
h point of an obser-vation to 
orrespond to any of the points of the model. For future appli
ations, aweighting of the in�uen
e of observation points on the �nal result might be inter-esting, e.g. in order to redu
e the in�uen
e of outliers. The same applies to pointsets whi
h are not evenly distributed over the estimated surfa
e. In that 
ase, re-gions 
ontaining relatively many points exert a higher amount of impa
t on the
omputation of the registration transformation than regions with fewer points. Thisbehaviour is very helpful when shape details should be modeled but for other 
asesit might not be desirable and 
ould be balan
ed by assigning a weight to ea
h point.A main advantage of working with point-based shape representation is the simpli
ityof the resulting model with respe
t to its power. In the literature however, rathersurfa
e-based models are applied as the surfa
e o�ers additional information aboutthe boundary of the shape. Here it has to be kept in mind that the quality ofthe surfa
e information they use depends on image quality and on the segmenta-tion method. In order to expose advantages and limits of the new model 
omparedto state-of-the-art models, its performan
e has to be 
ompared to other statisti
alshape models for di�erent kinds of appli
ation. An elaborate evaluation is performedin 
hapter 4.
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Contents4.1 Performan
e Measures . . . . . . . . . . . . . . . . . . . . . . 554.2 Comparison to an ICP-SSM . . . . . . . . . . . . . . . . . . . 594.3 Comparison to ICP-SSM and MDL-SSM . . . . . . . . . . . 694.4 Unsupervised Classi�
ation . . . . . . . . . . . . . . . . . . . 744.5 Dis
ussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75In this 
hapter, the GGM-SSM method is submitted to an extensive evaluation.The aim is to quantitatively 
ompare its performan
e to other SSM methods inthe literature and to gather knowledge about its behaviour and 
hara
teristi
s fordi�erent types of shapes. In se
tion 4.1, the performan
e measures whi
h are 
om-monly used to assess the quality of SSMs are presented and dis
ussed, and severaldistan
e metri
s that are suited for point-based SSMs are introdu
ed. Followingthat, the performan
es of the GGM-SSM and a 
lassi
al ASM method for unstru
-tured point sets are 
ompared on di�erent syntheti
 and real training data in se
tion4.2. Se
tion 4.3 is dedi
ated to an evaluation of the GGM-SSM in 
omparison toa MDL-based approa
h. In se
tion 4.4 it is demonstrated on a real data examplehow the GGM-SSM 
an be used for automati
 shape 
lassi�
ation. This 
hapteris 
on
luded with a 
riti
al 
onsideration of the advantages and weaknesses of thedeveloped model (se
tion 4.5).4.1 Performan
e Measures4.1.1 Assessing SSM QualityIn order to assess the quality of a given statisti
al shape model, an obje
-tive performan
e measure is needed. The measures introdu
ed in the PhD the-sis of R.H. Davies in 2002 have be
ome a 
ommon standard in the 
ommunity[Davies 2002b, Styner 2003
, Heimann 2005℄. A good SSM is expe
ted to1. be able to model formerly unseen shapes of the same shape 
lass.2. only deform to plausible shapes when deformed in the shape spa
e spannedby the variation modes and 
onstrained by the standard deviations.The �rst requirement is 
alled generalization ability. The generalization ability in-di
ates how well a SSM is able to mat
h new - that is unknown - shapes. This isimportant e.g. when using the SSM to segmentation problems. The generalization



56 Chapter 4. Evaluation of the GGM-SSMability is tested in a series of leave-one-out experiments where it is analysed how
losely the SSM mat
hes an unseen observation. This is done in two steps: First, theoptimal a�ne transformation is 
omputed to align the shapes in spa
e. Se
ondly,the optimal deformation 
oe�
ients are determined and used to deform the alignedSSM in order to optimize the mat
hing. Finally, the distan
e of the deformed SSMto the left-out observation is measured.The se
ond requirement is 
alled spe
i�
ity. The spe
i�
ity indi
ates if the modeledvariability in the SSM a
tually is a variability found in the training data set. Inother words, the model should not be able to generate illegal shapes. For estimatingthe spe
i�
ity, a high number of random shapes has to be generated by submittingthe mean shape of the SSM to random deformations in the shape spa
e spannedby the variation modes. Therefore, random deformation 
oe�
ients are generatedunder a uniform distribution with zero mean and varian
es equal to the squaredstandard deviation of the respe
tive SSM. Then, the distan
e of the random shapesto the respe
tive most similar observation in the training data set is measured.In pra
ti
e, these performan
e measures quantify the quality of a SSM in termsof 
orresponden
e evaluation. This sometimes poses a problem for several reasons:First, usually no ground-truth shape 
orresponden
es are availabe for medi
al im-age obje
ts. Se
ondly, the measures depend on the point distribution on the shapes.Due to di�erent SSM methods, the points representing the �nal SSMs will not bepositioned at the same lo
ations. Therefore, the variability model will not 
ap-ture the same shape variations. This problem is ampli�ed when 
omparing SSMsbased on di�erent numbers of points as a SSM with a greater number of points isnaturally able to model more variation. These and other short
omings of the per-forman
e measures were re
ently addressed in the work of Eri
sson and Karlssonwho propose manually set ground-truth 
orresponden
e measures [Eri
sson 2007℄in an attempt to remedy the problems. They generate syntheti
 examples whi
hdemonstrate 
learly that better performan
e measures do not ne
essarily mean bet-ter SSM. Espe
ially for 
ases where one SSM models more variability - e.g. on ahigher detail level - than a se
ond SSM, the spe
i�
ity measure does not re�e
t thebetter quality of the �rst SSM.To exemplify, let us regard a data set where some of the observations feature anose-like shape and other do not (�gure 4.1(a)). Let us assume that SSM 1 is ableto 
apture this detail in one of its variation modes but SSM 2 fails to do so (�g-ure 4.1(b,
)). During the test series for spe
i�
ity, SSM 1 will probably produ
eseveral shapes with noses (e.g. shown in �gure 4.1(d)) - as these exist in the shapespa
e spanned by its variation modes - whereas SSM 2 will not. Instead, SSM 2will produ
e shapes with less variability (e.g. shown in �gure 4.1(e)). Naturally, thedistan
es of the deformed mean shapes with prominent shape details to the obser-vations in the training data set are greater than those of the shapes generated bySSM 2 as illustrated in �gure 4.1(f,g). Therefore, we deem the performan
e measure'spe
i�
ity' to be not very well suited for measuring the quality of a SSM regardingshape details whi
h do not o

ur in all observations. Generally, it has to be kept inmind that the realisti
 quality of a SSM always depends on its �eld of appli
ation.For example, a SSM that is very well suited for segmentation tasks does not ne
es-sarily perform well in 
lassi�
ation tasks.
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a)
b)


)
d) e)

f) g)Figure 4.1: In
oherent spe
i�
ity example in 2D. a) Some observation examples ofthe training data set. b) SSM 1, the variability of the prominent feature in thetraining data set is 
aptured. 
) SSM 2 fails to 
apture the prominent feature in thetraining data set. d) Deformed mean shape in shape spa
e spanned by the variationmodes of SSM 1. e) Deformed mean shape in shape spa
e spanned by the variationmodes of SSM 2. f) Distan
e of deformed mean shape of SSM 1 to observations intraining data set is measured. The Hausdor� distan
e is great due to the prominentfeature. g) Distan
e of deformed mean shape of SSM 1 to observations in trainingdata set is measured. The Hausdor� distan
e is smaller than the one of SSM 1.



58 Chapter 4. Evaluation of the GGM-SSMIn the following experiments, the generalization ability and - for the sake of 
om-pleteness - also the spe
i�
ity measures are evaluated.4.1.2 Distan
e MeasuresAmetri
 suited to evaluate the performan
e measures of a SSM obviously depends onthe representation of the shapes. As in this work the shape surfa
es are representedby point 
louds, the distan
es are 
omputed based on point 
oordinates. In orderto quantify the distan
e between two shapes S and M , an intuitive measure is theaveraged Eu
lidian distan
e between all 
orresponding points:
d2

CP (S,M) =
1

NS

NS∑

i=1

‖si −mi‖
2with NS being the number of points of S andM . However, in the GGM-SSM no one-to-one 
orresponden
es are 
omputed. Hen
e, the distan
e d from an observation Skwith Nk points ski to the deformed mean shape Mdef with Nm points mj is de�nedas the square root of the normalized sum of squared di�eren
es (SSD) with

d2(Sk,Mdef ) =
1

Nk

Nk∑

i=1

‖ski −mki‖
2where mki = arg minmj

‖ski−mj‖. This distan
e measure is not symmetri
, hen
e,we also 
ompute
d2(Mdef , Sk) =

1

Nm

Nm∑

j=1

‖skj −mj‖
2where skj = arg minski

‖ski − mj‖. In addition, the maximum distan
e
dmax(Sk,Mdef ) is 
omputed as the maximal minimal distan
e found from Sk toMdeffor ‖ski −mki‖ with mki = arg minmj

‖ski −mj‖ and respe
tively dmax(Mdef , Sk).The Hausdor� distan
e is then
H(Sk,Mdef ) = max (dmax(Sk,Mdef ), dmax(Mdef , Sk)) .This symmetri
 measure is espe
ially useful for evaluating SSMs on data sets wheresome observations feature di�erent shape details than others.Obviously, the measures de�ned above depend on the 
loseness of points after the�tting whi
h does not ne
essarily always represent the a
tual shape similarity. Forexample, di�erent distributions of landmarks over the estimated surfa
e of the obser-vations might a�e
t the results. A more independent method would be to measurethe volume overlaps between the �tted shapes. However, as the GGM-SSM is basedon unstru
tured point sets, a binary representation 
an only be approximated forea
h shape. This is done when 
omparing the GGM performan
e to the perfor-man
e of an MDL-based SSM in se
tion 4.3. Here, the Ja

ard 
oe�
ient is usedto 
ompute the symmetri
 overlap of shape volumes A and B:

CT =
|A ∩B|

|A ∪B|
.



4.2 Comparison to an ICP-SSM 59It has to be kept in mind however that the Ja

ard 
oe�
ient does not re�e
t wellif shape details - whi
h do not 
ontribute mu
h to the overall volume - are modeledor not.For 
omputing the distan
es between a SSM and a given observation, �rst the meanshape of the SSM is aligned with the observation. Then, the optimal deformation
oe�
ients have to be 
omputed. For the GGM-SSM, this is done by optimizingequation (3.13) with respe
t to the deformation 
oe�
ients ωp. Here, k = 1 and
S1 equals the observation in question. The resulting 
oe�
ients are used to deformthe aligned SSM in order to optimize the mat
hing. Finally, the distan
e of thedeformed SSM to the observation is measured.4.2 Comparison to an ICP-SSMIn this se
tion the performan
e of the GGM-SSM is evaluated in 
omparion with an-other SSM whi
h is also based on unstru
tured point sets. As opposed to the GGM-SSM, the hen
eforward 
alled ICP-SSM relies on one-to-one 
orresponden
es. It isbased on the 
lassi
al ASM approa
h applied to unstru
tured point sets representedby varied numbers of points. The ICP-SSM is 
omputed as follows:1. The observations in the training data set are aligned with an initial meanshape employing a�ne Iterative Closest Points (ICP) registrations. (For thealgorithm see se
tion 2.2.1.) The ICP mat
hes the observations and determines
orresponden
es simultaneously. The 
orresponden
es are expli
itely given bythe nearest neighbour for ea
h point.2. The mean shape is 
omputed on the aligned observations. Registration andmean shape 
omputation are iterated. For the data sets used in pra
ti
e wefound that after 2 or 3 iterations, the mean shape does not 
hange signi�
antlyanymore.3. A prin
ipal 
omponent analysis is performed on the aligned data set to de-termine the eigenmodes and the eigenvalues. Here, a SVD is applied on the
ovarian
e matrix 
leared of the mean.The 
omputation of a distan
e between ICP-SSM and a given observation followsthe same pro
edure as explained for the GGM-SSM in se
tion 4.1.2. Here, thedeformation 
oe�
ients ωp are 
omputed by solving the linear system of equation(2.2) where M equals the observation in question.The performan
es of the two SSM 
omputations are evaluated on three di�erentsyntheti
 data sets in se
tions 4.2.1 and 4.3 and on a real data set 
ontaining brainstru
tures in se
tion 4.2.2.4.2.1 Syntheti
 Data4.2.1.1 EllipsoidsThe determination of 
orresponden
es between unstru
tured point sets is espe
iallydi�
ult when one shape features a 
ertain stru
ture detail and the other one does
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a)

b)

)

d)
1 2 1 2

ICP EM−ICPFigure 4.2: a) Observation examples of a syntheti
 training data set featuring twodistin
tive shape 
lasses (ellipsoids with bump and ellipsoids without bumps). b,
)Results of a SSM built on exa
t 
orresponden
es (ICP-SSM)(b) and of a SSM built on
orresponden
e probabilities (GGM-SSM)(
) for the training data. For both SSMs,the mean shape (middle), and the mean shape deformed with respe
t to the �rsteigenmode (M̄−3λ1~v1 (left) and M̄+3λ1~v1 (right)) are depi
ted. d) One-to-one 
or-responden
e versus 
orresponden
e probabilities. Left: ICP registration, ea
h pointon 
ontour 1 
orresponds to the 
losest point on 
ontour 2. Right: EM-ICP regis-tration, ea
h point on 
ontour 1 
orresponds with a 
ertain probability to all pointson 
ontour 2.



4.2 Comparison to an ICP-SSM 61Table 4.1: Ellipsoid shape results. Shape distan
es found in generalization experi-ments (leave-one-out tests) with ICP-SSM approa
h and with GGM-SSM approa
h.The distan
es and asso
iated standard deviations are given in cm.ICP-SSM GGM-SSMmean distan
e target to sour
e 0.207 ± 0.048 0.139 ± 0.032mean distan
e sour
e to target 0.214 ± 0.058 0.125 ± 0.030maximal distan
e target to sour
e 0.431 ± 0.036 0.415 ± 0.042maximal distan
e sour
e to target 0.567 ± 0.186 0.380 ± 0.044Table 4.2: Ellipsoid shape spe
i�
ity results on 100 random shapes found with ICP-SSM approa
h and with GGM-SSM approa
h. The average distan
e from the ran-domly deformed mean to the respe
tive 
losest observation is measured. The dis-tan
es and asso
iated standard deviations are given in cm.ICP-SSM GGM-SSMaverage distan
e 0.102 ± 0.003 0.160 ± 0.022not. For an experimental evaluation, a training data set is generated 
ontaining twodistin
tive shape 
lasses. The data set 
onsisted of 9 ellipsoids featuring a bumpand 9 ellipsoids without bump. Their sizes as well as the bump sizes and their 3Drotations in spa
e varied. For several observation examples, see �gure 4.2(a). Thelong axes measure around 70mm. The observations are represented by 276 − 337points respe
tively, and the point distan
es average 0.24mm. The GGM-SSM aswell as the ICP-SSM are 
omputed for these data. For the 
omputation of theGGM-SSM, the following parameters were 
hosen: σstart = 0.5mm, redu
tionfa
tor = 0.7, 7 iterations (EM-ICP multi-s
aling) with 15 SSM iterations. For theICP-SSM, the ICP is iterated 40 times. Then the tests for generalization ability areperformed in a series of leave-one-out experiments. The spe
i�
ity for both modelswas tested using 100 randomly generated shapes.Results: The respe
tive mean shapes and deformations a

ording to the�rst mode of variation for the GGM-SSM as well as the ICP-SSM are illustrated in�gure 4.2(b,
). Clearly, the GGM-SSM models the bump of the ellipsoids in its �rstmode of variation while the ICP-SSM fails to do so. Quantitatively, this is ba
kedup by the results obtained in the evaluation of the performan
e measures. Thevalues of the generalization ability are depi
ted in table 4.1 for both SSMs. Themean distan
es of the left-out observation to the respe
tive �tted SSM are about
35% smaller for the GGM-SSM (0.139cm and 0.125cm) than for the ICP-SSM(0.207cm and 0.214cm). Also the 
omparatively great Hausdor� distan
es indi
atethat the ICP-SSM is not able to su

essfully model the bump on the ellipsoidshapes.The results for the spe
i�
ity are depi
ted in table 4.2. The average distan
es of therandomly deformed GGM-SSM mean shape to the respe
tively 
losest observationin the training data set are a bit higher than the average distan
es of the ICP-SSM.As a visual inspe
tion as well as the generalization ability values strongly indi
atethe superior performan
e of the GGM-SSM on the given data, these spe
i�
ity
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Figure 4.3: Four observation examples of a syntheti
 training data set featuring bagelshapes, shown from above and from the side.results 
orroborate the problems 
on
erning the spe
i�
ity measure as dis
ussed inse
tion 4.1.1.The GGM-SSM based on the EM-ICP models the whole data set, it is able torepresent the ellipsoids featuring a bump and those without as that deformationinformation is in
luded in its variability model. The SSM based on the ICP howeveris not able to model the bump. This is due to the fa
t that the ICP only takes intoa

ount the 
losest point when sear
hing for 
orresponden
e. Thus, the points ontop of the bump are not ne
essarily involved in the registration pro
ess and do not
ontribute to the variability model. The EM-ICP, on the other hand, analyzes the
orresponden
e probability of all points, therefore, also the points on top of thebump are taken into a

ount. These two 
on
epts are illustrated in �gure 4.2(d).4.2.1.2 Bagel ShapesAnother interesting problem regarding statisti
al shape models are shapes featuringnon-spheri
al surfa
es. Here, the aim is to evaluate the performan
e of theGGM-SSM on shapes with genus 1 topology. In the 
ase of a simple ring torus, thesurfa
e 
an be 
reated in Eu
lidean spa
e by revolving a 
ir
le about an axis in itsplane. Non-spheri
al shapes 
annot be modeled by all 
urrent SSM 
omputationmethods, e.g. the SPHARM and the MDL approa
hes (se
tion 2) work ex
lusivelyfor spheri
al topologies.For the generation of the data set, the rotation axes did not ne
essarily lie in aplane. Furthermore, the inner and outer radii from observation to observation arevaried whi
h means that our bagel shapes are not radially symmetri
. For someobservation examples see �gure 4.3. A syntheti
 data set was generated 
ontaining15 observations. The observations are represented by 332 − 512 points, theirbounding boxes measure about 1500 × 1500 × 500mm3 and the point distan
esaverage 82mm. The GGM-SSM as well as the ICP-SSM are 
omputed for thesedata. For the 
omputation of the GGM-SSM, the following parameters were 
hosen:



4.2 Comparison to an ICP-SSM 63Table 4.3: Torus shape generalization results. Shape distan
es found in general-ization experiments with ICP-SSM approa
h and with GGM-SSM approa
h. Thedistan
es and asso
iated standard deviations are given in mm.ICP-SSM GGM-SSMmean distan
e target to sour
e 41.47 ± 6.42 31.08 ± 15.01mean distan
e sour
e to target 38.25 ± 5.18 29.34 ± 12.68maximal distan
e target to sour
e 87.73 ± 11.10 77.83 ± 31.09maximal distan
e sour
e to target 109.05 ± 35.14 75.04 ± 25.36Table 4.4: Torus shape spe
i�
ity results on 500 random shapes found with ICP-SSM approa
h and with GGM-SSM approa
h. The distan
es and asso
iated standarddeviations are given in mm. ICP-SSM GGM-SSMaverage distan
e 45.95 ± 2.52 33.82 ± 5.47

σstart = 100mm, redu
tion fa
tor = 0.9, 5 iterations (EM-ICP multi-s
aling) with15 SSM iterations. Then the tests for generalization ability were performed in aseries of leave-one-out experiments. The spe
i�
ity for both models was testedusing 500 randomly generated shapes.Results: The mean shape as well as the deformations a

ording to the �rsttwo variation modes of GGM-SSM and ICP-SSM are displayed in �gure 4.4.As 
an be seen, the �rst variation mode prin
ipally models the thi
kness of thebagel while the se
ond variation mode mainly model its �exion. The quantitativeevaluation results for the generalization ability are shown in table 4.3. The valuesshow a better generalization ability for the GGM-SSM than for the ICP-SSM asthe mean distan
es are more than 30% smaller. The Hausdor� distan
es showthat apparently the GGM-SSM (75.04mm) 
aptured more shape variation thanthe ICP-SSM (109.05mm). An illustration is shown in �gure 4.5. The �exion inthe bagels seems to lead to erroneous 
orresponden
es in the ICP-SSM. Looking
loser at the leave-one-out series, it 
ould be established that espe
ially the bagelshapes of whi
h the axes do not lie in planes are mat
hed better by the GGM-SSM.This is illustrated in �gure 4.6 with an example. The results for the spe
i�
ityevaluation are depi
ted in table 4.4. The spe
i�
ity values are a little better for theGGM-SSM than for the ICP-SSM.
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a)
b)

)
d)Figure 4.4: SSM results for bagel data set. GGM-SSM (a,
) and ICP-SSM (b,d)deformations to �rst (a,b)and se
ond (b,
) variation mode: Mean shape (middle),and mean shape deformed a

ording to variation modes, left: M̄ − 3λp~vp and right:

M̄ + 3λp~vp.
a) b)Figure 4.5: S
hemati
 illustration of modeled amount of �exion. Deformations a
-
ording to se
ond variation mode for ICP-SSM (a) and GGM-SSM (b). A higheramount of �exion seems to be modeled by the GGM-SSM.
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a) b) 
)Figure 4.6: Generalization ability example for one left-out observation with highamount of �exion. a) Left-out observation featuring high amount of �exion. b)Fitting result of ICP-SSM. 
) Fitting result of GGM-SSM. The left-out observationis 
oloured in red with low opa
ity, the results of ICP-SSM and GGM-SSM are
oloured in blue.
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a) b)Figure 4.7: CT-images with segmented putamen in a 2D (a) and 3D (b) view.4.2.2 Brain Stru
ture MR: PutamenIn this se
tion, the performan
e of the GGM-SSM on brain stru
ture data isevaluated. The data has been 
olle
ted in the framework of a study on handdystonia and the possible in�uen
e of this disease on the shape of the putamen, astru
ture belonging to the basal ganglia situated 
lose to the 
audate nu
leus. TheMR images as well as the segmentations of the putamen were kindly provided by theH�pital La Pitié-Salpêtrière, Paris, Fran
e. An example of left and right putamenis shown in �gure 4.7. The MR images 
ontain 255 × 255 × 105 voxels of size
0.94mm× 0.94mm× 1.50mm. The training data set for this experiment 
onsists of
N = 20 left segmented putamens (approximately of size 20mm × 20mm × 40mm)whi
h are represented by min 994 and max 1673 point. Some observation examplesare shown in �gure 4.8(a). The 
omputation of a SSM for the putamen data mightbe useful either for segmentation purposes or for an analysis of the shape variabilityin patient and 
ontrol groups.The GGM-SSM as well as the ICP-SSM are 
omputed for these data and thentested for generalization ability in a series of leave-one-out experiments. Thespe
i�
ity for both models was tested using 500 randomly generated shapes.For the 
omputation of the GGM-SSM, the following parameters were 
hosen:
σstart = 4mm, redu
tion fa
tor = 0.85, 10 iterations (EM-ICP multi-s
aling) with5 SSM iterations. For the ICP-SSM, the ICP is iterated 50 times. Most of theparameter values were found in an heuristi
 way.Results: The resulting mean shapes and deformations a

ording to the �rsttwo variation modes are shown in �gure 4.8(b,
) for the GGM-SSM and in �gure4.8(d,e) for the ICP-SSM. The mean shapes of both approa
hes resemble. However,the �rst and se
ond variation mode of the GGM-SSM model more shape detailsthan the �rst and se
ond eigenmodes of the ICP-SSM. This visual impression is
on�rmed by the values found for the generalization ability as depi
ted in table 4.5.The generalization ability is 
omputed in dependen
e of the number n of variationmodes used. The results for the �rst n = 5, n = 10 and n = 18 variation modesare shown. Obviously, the number of variation modes 
ontrols the a

ura
y of thedeformed SSM. The GGM-SSM performed better for all 
ases with a mean distan
e
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es found in generalization experiments with the ICP-SSMapproa
h and with GGM-SSM approa
h. The generalization ability was tested forthe �rst n = 5, n = 10 and n = 18 variation modes. The distan
es and asso
iatedstandard deviations are given in mm. ICP-SSM GGM-SSM5 variation modesaverage mean distan
e + std dev. in mm 0.634 ± 0.090 0.512 ± 0.083average maximal distan
e + std. dev. in mm 4.478 ± 0.927 2.929 ± 0.57610 variation modesaverage mean distan
e + std. dev. in mm 0.623 ± 0.099 0.490 ± 0.088average maximal distan
e + std. dev. in mm 4.449 ± 0.909 2.496 ± 0.44518 variation modesaverage mean distan
e + std. dev. in mm 0.610 ± 0.089 0.471 ± 0.076average maximal distan
e + std. dev. in mm 4.388 ± 0.930 2.559 ± 0.563Table 4.6: Shape distan
es found in spe
i�
ity experiments (500 random shapes)with ICP-SSM approa
h and with GGM-SSM approa
h using 18 eigenmodes.ICP-SSM GGM-SSMaverage mean distan
e + std. dev. in mm 0.515 ± 0.117 0.463 ± 0.052of 0.471 for the GGM-SSM and a mean distan
e of 0.610mm for the ICP-SSMunder the use of 18 variation modes. It is interesting to see that the performan
edi�eren
e between the two SSMs in
reased a little with a higher number of variationmodes. The mean distan
e de
rease regarding the 
ase of n = 5 variation modesand the 
ase of n = 18 variation modes is about 5% using the SSM-ICP and about
8% using the GGM-SSM. Commonly, the variation modes with great standarddeviations model the obvious variabilities as e.g. thi
kness or torsion in spa
e whilethe variation modes with smaller standard deviations model the shape details.The Hausdor� distan
e in the GGM-SSM is more than 40% (nearly 2mm) smallerthan the Hausdor� distan
e of the ICP-SSM. This result again indi
ates that theGGM-SSM is better able to 
apture shape details than the ICP-SSM. The resultsfor the spe
i�
ity evaluation are depi
ted in table 4.6. The spe
i�
ity values are alittle better for the GGM-SSM than for the ICP-SSM.



68 Chapter 4. Evaluation of the GGM-SSM
a)
b)

)
d)
e)Figure 4.8: Real training data set featuring the putamen. a): Observation exam-ples. b)/
): GGM-SSM. d)/e): ICP-SSM. Mean shapes (middle) and mean shapesdeformed with respe
t to the �rst (b,d) and se
ond (
,e) variation mode. Left:

M̄ − 3λ ~v1,2 and right:M̄ + 3λ ~v1,2. The regions in 
ir
les mark shape details whi
hare represented by the GGM-SSM and whi
h are not modeled by the ICP-SSM.



4.3 Comparison to ICP-SSM and MDL-SSM 694.3 Comparison to ICP-SSM and MDL-SSMIn this se
tion, the performan
e of the GGM-SSM is evaluated in 
omparison to aSSM whose 
omputation is based on the minimization of a Maximum-Des
ription-Length (MDL). This SSM method is explained in detail in se
tion 2.3.2. Basi
ally,the MDL is used to optimize the distribution of 
orresponding points on the surfa
esof the observations in the training data set. Here, the best point distributions or 
or-responden
es yield the best SSM in terms of simpli
ity. One key step in 
omputing aMDL-SSM is the movement of points on the surfa
es of the respe
tive observations.Hen
e, as it needs expli
it surfa
e information, the MDL approa
h is not suited to
ompute a SSM for unstru
tured point sets. Nevertheless, an interesting prospe
t isto 
ontrast the performan
e of the ICP-SSM and the GGM-SSM with a MDL-SSMto point out the di�eren
es in the approa
hes and to position our method in thestate-of-the-art. In order to be able to use the MDL-method, a training data setof observations with surfa
es represented by triangulated points has to be generated.Data Set: Unlike the GGM-SSM, the MDL-method 
an only be applied fordata with spheri
al topologies. The obje
tive is to test both approa
hes as wellas the ICP-SSM on non-
onvex shapes whi
h 
an be 
hallenging, e.g. as pointslying 
lose do not ne
essarily belong to the same part of the shape. Moreover,points with similar normal ve
tor dire
tion do not ne
essarily lie 
lose to ea
hother. A syntheti
 data set is generated 
ontaining 15 observations shaped likebananas, see �gure 4.9. The observations are represented by triangulated meshes.In order to obtain meaningful results, the variability in the training data set ishigh: The 
urvature of the banana as well as the size, thi
kness and orientationin spa
e 
hange from observation to observation. The sizes of their boundingboxes measure around 480 × 720 × 260mm3. The number of points range fromminimum 386 points to maximum 642 points. The point distan
es average 29.3mm.Set-Up: The MDL-SSM experiments on this data were performed by To-bias Heimann of the German Can
er Resear
h Center (Department of Medi
al andBiologi
al Informati
s) who kindly provided his evaluation results for this se
tion.The alignment of observations is done using a generalized Pro
rustes analysis insimilarity mode. The �nal number of points is set to 648.For the 
omputation of the GGM-SSM, the following parameters were 
hosen:
σstart = 15 − 50mm (dependent on the observation shape), redu
tion fa
tor
= 0.7 − 0.9, 10 iterations (EM-ICP multi-s
aling) with 5 SSM iterations. For theICP-SSM, the ICP is iterated 50 times. Most of the parameter values were foundin an heuristi
 way. The mean shapes of the GGM-SSM as well as of the ICP-SSM
ontain 446 points whi
h is 200 points less than used by the MDL-SSM.For determining the performan
e measures in these experiments, the average pointdistan
es as introdu
ed in se
tion 4.2 are only a well-suited metri
 when SSMs withequal numbers of points and similar point distributions are 
ompared. This is notthe 
ase when 
omparing the MDL-SSM to the GGM-SSM as the MDL methodmoves the points over the surfa
es and 
an add any number of points. Therefore,in the experiments the Ja

ard 
oe�
ient (or Tanimoto 
oe�
ient) is used as
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Figure 4.9: Syntheti
 training data set: Non-
onvex banana shapes with 15 observa-tions represented by triangulated meshes.
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e metri
 instead of the point distan
es. To do so, a binary representationhas to be approximated for all observations as well as for ea
h deformed SSM. Forthe GGM-SSM a well as the ICP-SSM this is done by keeping the edges of thetriangles in the initial mean shape for the representation of the �nal mean shapeand its deformations. As the GGM-SSM is based on unstru
tured point sets, thispro
edure 
ould theoreti
ally lead to 
ontorsions of the mesh but this was not the
ase in the experiments.The generalization ability is evaluated in a series of leave-one-out tests. Thedistan
es were measured in dependen
e of the number n of employed variationmodes ranging from n = 0 to n = 13. For the spe
i�
ity, 500 random shapesare generated. Due to the high 
omputational time when generating the binaryvolume representation, the alignment of ea
h randomly deformed mean shape withall observations is omitted. Instead, all observations are aligned on
e with theundeformed mean shape. That way, for ea
h randomly deformed mean shape, onlyone binary representation has to be 
omputed and 
ompared to the observations.Results: The mean shapes and the deformations a

ording to �rst, se
ondand third mode of variation are depi
ted for the ICP-SSM and the GGM-SSM in�gures 4.10 and 4.11. The �rst three variation modes roughly represent similarvariabilities. However, it is noti
eable that the GGM-SSM variability model isstrongly fo
used on the region of the banana tips whereas the ICP-SSM rathermodels global variation of the banana shapes. The values resulting from the testingseries of the generalization ability are illustrated in �gure 4.12 for ICP-SSM, GGM-SSM and MDL-SSM methods. The volume overlap between left-out observationand �tted SSM is used as distan
e metri
. Regarding these values, the experimentsrevealed that the MDL-SSM has a higher generalization ability with an averageJa

ard 
oe�
ient of 0.92 than the GGM-SSM (Ja

ard 
oe�
ient = 0.88) and theICP-SSM (Ja

ard 
oe�
ient = 0.86). As - 
ontrary to point-based methods - theMDL-SSM method makes use of the observation surfa
es as additional information,this result is not surprising. In parti
ular, it has to be kept in mind that theMDL-SSM approa
h optimizes the distribution of 
orresponding points over theobservation surfa
es whi
h is one of its great strengths. The GGM-SSM methodhowever uses the initial point lo
ations. Regarding the banana shapes, the pointdistribution at the banana tips is more dense than on the banana 
orpus. Usingthe GGM-SSM, this leads to a more detailed modeling of the banana tip regions.Unfortunately, a volume overlap metri
 does not ne
essarily re�e
t if shape detailsare well modeled.Besides, the following bias in the MDL-SSM generalization ability values has tobe 
onsidered: For SSMs where the 
orresponden
es are des
ribed by monotonousparameterization fun
tions the parameterization of the left-out fun
tion is unknown.To solve this problem, the left-out shape is normally in
luded in the 
orresponden
elo
alisation. This pro
edure �nally leads to an over-estimated generalization ability[Eri
sson 2007℄.The spe
i�
ity values are illustrated in �gure 4.13. Here, the GGM-SSM and theMDL-SSM obtained very similar overlap values while the ICP-SSM obtained valuesa little higher.
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a)
b)

)Figure 4.10: GGM-SSM for the banana shape data set. Mean shapes (middle) andmean shapes deformed a

ording to the �rst (a), se
ond (b) and third (
) variationmode.

d)
e)
f)Figure 4.11: ICP-SSM for the banana shape data set. Mean shapes (middle) andmean shapes deformed a

ording to the �rst (a), se
ond (b) and third (
) variationmode.
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Figure 4.12: Generalization ability. The generalization ability was tested in leave-one-out tests for the banana shapes. Here, the average overlap between deformedmean shape and left-out observation is presented for the MDL-SSM, the GGM-SSMand the ICP-SSM.

Figure 4.13: Spe
i�
ity. The spe
i�
ity was tested for the banana shapes using 500testing shapes. Here, the average overlap between randomly deformed mean shapeand 
losest observation is presented for the MDL-SSM, the GGM-SSM and the ICP-SSM. The random deformation followed a natural distribution with σ equal to thestandard deviations of the respe
tive model.
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a) b) 
)Figure 4.14: Generalization ability example for a rather extreme left-out torus ob-servation. a) Left-out observation. b) Fitting result of ICP-SSM. 
) Fitting result ofGGM-SSM. The left-out observation is 
oloured in red with low opa
ity, the resultsof ICP-SSM and GGM-SSM are 
oloured in blue.Table 4.7: Banana shape generalization results. Shape distan
es found in general-ization experiments with ICP-SSM approa
h and with GGM-SSM approa
h. Thedistan
es and asso
iated standard deviations are given in mm.ICP-SSM GGM-SSMmean distan
e target to sour
e in mm 15.75 ± 2.28 16.48 ± 3.24mean distan
e sour
e to target in mm 26.35 ± 12.78 17.81 ± 2.75maximal distan
e target to sour
e in mm 36.23 ± 4.60 53.78 ± 7.33maximal distan
e sour
e to target in mm 83.87 ± 54.58 43.81 ± 8.41Overall, it 
ould be established that the GGM-SSM and the ICP-SSM obtaingeneralization ability values whi
h lie in the same order as those of the MDL-SSMfor the given data set. Moreover, the GGM-SSM performed better than theICP-SSM. This is again due to the fa
t that shape details are easily lost for theICP-SSM. This is demonstrated with an example of a rather extreme left-outobservation in �gure 4.14. The ICP-SSM adapts very well to the 
orpus of thebanana but fails to deform into its tip. Yet, the variability model of the GGM-SSMis able to represent the tip region of the banana. This behaviour is 
on�rmed by anevaluation of the generalization ability under a point distan
e metri
 (as introdu
edin se
tion 4.1.2 and as used for the experiments in se
tion 4.2.1). The valuesfor ICP-SSM and GGM-SSM whi
h are depi
ted in table 4.7 indi
ate that theGGM-SSM performs better. This be
omes 
lear espe
ially regarding the Hausdor�distan
es as the GGM-SSM obtains a Hausdor� distan
e of 53, 78mm whi
h is 37%smaller than the Hausdor� distan
e of the ICP-SSM (83, 87mm).4.4 Unsupervised Classi�
ationIn this se
tion the GGM-SSM is applied to a 
lassi�
ation problem. This 
an bedone dire
tly by exploiting the observation parameters 
omputed during the GGM-SSM 
omputation. Here, the �nal deformation 
oe�
ients ωkp represent the amountof variation for the respe
tive observation Sk a

ording to ea
h variation mode vp.
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ussion 75Therefore, information about shape 
hara
teristi
s 
an be gained by evaluating thedeformation 
oe�
ients [Hufnagel 2007b℄. In SSM methods where the deformation
oe�
ients are not 
omputed during optimization of the model, their determinationis less straightforward.In an experimental evaluation, the deformation 
oe�
ients dire
tly serve as a 
las-si�
ation measure regarding the shape of the observations Sk. To do so, featureve
tors ωk = (ωk1, ωk2, ..., ωkn) are formed and then used as input for a k-means
lustering. This approa
h is tested on the syntheti
 data set of ellipsoids as used inse
tion 4.2.1.1. The data set 
onsists of two shape 
lasses as it 
ontains ellipsoidswith and without 'bump' as 
an be seen exemplarily in �gure 4.2(a). An averageRand index [Rand 1971℄ of 0.95 is employed for the k-means 
lustering. The result-ing two 
lasses 
oin
ide with the 'bump' and 'without bump' 
lasses, see �gure 4.15for an example of the values of the 2D feature ve
tors (ωk1, ωk2).Tame approa
h is applied to 
lassify the putamen data set as presented in se
tion4.2.2. As the data was gathered in a study about hand dystonia, a relation ofshape and disease might exist. In order to analyse the shapes, the data is testedfor statisti
ally signi�
ant shape di�eren
es between dystonia patients and 
ontrolgroup after a�ne normalizations. Again feature ve
tors ωk = (ωk1, ωk2, ..., ωkn) areformed and used as input for a k-means 
lustering. In this 
ase, no two distin
tshape 
lasses were found (see �gure 4.16 for the values of the 2D feature ve
tors
(ωk1, ωk2)). This 
on�rms the presumption of the 
on
erned physi
ians.4.5 Dis
ussionAn a

urate and robust modeling of variability is an important feature of a SSM,parti
ularly when it is employed to the segmentation of anatomi
al stru
tures forradiotherapy or surgery planning where the pre
ision must be high. In order to learnabout the qualities of the GGM-SSM as well as its standing in the state-of-the-art,the evaluation has been divided into two experiments: The �rst part was aimedat an analysis of the GGM-SSM performan
e in 
omparison to another SSM forunstru
tured point sets (ICP-SSM). The se
ond part of the evaluation investigatedthe GGM-SSM performan
e in 
omparison to a well established method whi
h usessurfa
e information (MDL-SSM).A prin
ipal di�eren
e between the ICP-SSM and the GGM-SSM is the inter-pretation of 
orresponden
e. While the ICP-SSM is based on one-to-one point
orresponden
es, the GGM-SSM implements a probabilisti
 
orresponden
e 
on
eptwhi
h allows to take into a

ount all points of all shapes. This is advantageous onthe one hand as all shape details are integrated into the variability model. On theother hand, the approa
h is less sensitive to possible outliers. By evaluating thegeneralization ability values of GGM-SSM and ICP-SSM for the syntheti
 data setof ellipsoid shapes, it 
ould be established that shape details whi
h are not 
apturedvery well by the ICP-SSM are e�e
tively 
aptured and modeled by the GGM-SSM.This is espe
ially the 
ase for training data where not all observations feature thesame shape details. Furthermore, when testing both SSMs on shape data witha global variation in its �exion angle, the generalization ability values indi
ate
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Figure 4.15: 2D deformation 
oe�
ient feature ve
tors (ωk1, ωk2) for the �rst twoeigenmodes of the ellipsoid data set. Observations 'with bump' are represented bydiamonds, observation 'without bump' are represented by stars.
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Figure 4.16: 2D deformation 
oe�
ient feature ve
tors (ωk1, ωk2) for the �rst twoeigenmodes of the putamen data set. 'Control' observations are represented as dia-monds and 'patient' as stars.



4.5 Dis
ussion 77that the ICP-SSM did not model well the variability of �exion. The performan
emeasures of GGM-SSM and ICP-SSM in the experimental evaluation on real braindata show a similar pi
ture. The GGM-SSM is better able to 
apture shape detailswhi
h 
an be observed by a visual inspe
tion of the prin
ipal variations modeledby the variability models and whi
h is also re�e
ted in the generalization abilityvalues. Still, the ICP-SSM faster and easier to handle than the GGM-SSM as lessparameters have to be estimated beforehand. The relatively high 
omputationaltime of the GGM-SSM is mainly due to the 
ostly update of variation modes whi
hinvolves several matrix multipli
ations with matri
es ∈ R
3Nm×n with number ofmean shape points Nm and number of variation modes n. However, the analysis ofshape in medi
al pra
ti
e is generally no time sensitive matter.As argued in se
tion 4.1.1, we doubt the meaningfulness of spe
i�
ity valuesregarding the quality of a SSM. These doubts were 
on�rmed by the resultsobtained for the SSMs in the ellipsoid data set. Here, the generalization ability aswell as visual inspe
tion 
learly indi
ate a superior performan
e of the GGM-SSM,but still the ICP-SSM obtain better spe
i�
ity values.The se
ond part of the evaluation serves to position the GGM-SSM in thestate-of-the-art by outlining its advantages and weaknesses 
ompared to thewell-a

epted surfa
e-based MDL-SSM method. The MDL-SSM approa
h makesuse of surfa
e information for the modeling of the training data set. During SSM
omputation, points are added and moved over the observation surfa
es in order to�nd optimal 
orresponden
es. Therefore, the MDL-SSM is more �exible than theGGM-SSM as the results do not depend on the original point distribution in theobservation meshes. Yet, it has to be kept in mind that the MDL-SSM is expli
itlyde�ned on surfa
e representations for spheri
al topologies. Hen
e, it 
annot beemployed for the evaluation on the bagel shape training data but a training data setwith banana-shaped observations was designed. As the training data set 
ontainsobservations with very non-
onvex shapes, we deem the obtained results of theMDL-SSM as well as the GGM-SSM to be quite good. In the generalization abilityexperiments, the MDL-SSM performed better than the GGM-SSM by obtaininga Ja

ard 
oe�
ient whi
h is 3.4% greater than the GGM-SSM and 6.4% greaterthan the ICP-SSM. The di�eren
e between MDL-SSM and GGM-SSM in thevolume overlaps is 
learly visible but small enough to suggest the right of existen
efor the GGM-SSM, espe
ially 
onsidering that the usage of surfa
es is arguablefor the reasons formulated in se
tion 1. Moreover, the left-out observations in theexperiment series for the generalization ability of the MDL-SSM method have beenpart of the 
orresponden
e lo
alisation step, thus, the values of the generalizationability might be over-estimated. The analysis of the generalization ability forthe banana training data set measured by point distan
e metri
s shows that theGGM-SSM outperforms the ICP-SSM; the ICP-SSM fails to model shapes featuringa rather extreme 
onvexity.In order to 
ompute a GGM-SSM of high quality, parti
ular attention has tobe paid to the 
hoi
e of parameters in the EM-ICP registration whi
h have to beadapted to the problem at hand. As demonstrated in se
tion 3.2.3, good results



78 Chapter 4. Evaluation of the GGM-SSMare obtained for a �nal standard deviation whi
h lies in the same range as theaverage point distan
es in the observations. A reasonable 
hoi
e for the redu
tionfa
tor seems to lie between 0.7 and 0.9 whi
h led to good results in the experimentsperformed in the framework of this thesis. The number of GGM-SSM iterations iskept as small as possible to redu
e 
omputational 
ost.From the evaluation results, it 
an be 
on
luded that the GGM-SSM methodis 
apable to model di�erent kinds of shapes with high pre
ision. Due to the prob-abilisti
 modeling of 
orresponden
e, the GGM-SSM outperforms the ICP-SSMfor observations with irregular shape di�eren
es. The GGM-SSM does not needsurfa
e information and is well suited to model non-spheri
al topologies as well as
oupled stru
tures in one uni�ed variability model. Therefore, the GGM-SSM is�t for shape analysis of various types of anatomies whi
h makes it very �exibleregarding potential appli
ation domains.
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tion Segmentation . . . . . 825.3 Evaluation on Kidney CT Images . . . . . . . . . . . . . . . . 915.4 Multiple Shape Class Segmentation . . . . . . . . . . . . . . 975.5 Dis
ussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108Segmentation algorithms play a major role in medi
al image analysis. However,due to typi
al medi
al image 
hara
teristi
s as poor 
ontrasts, grey value inhomo-geneities, 
ontour gaps, and noise the automati
 segmentation of many anatomi
alstru
tures remains a 
hallenge. Low-level algorithms as region growing, thresholdingor simple edge-dete
tion are often bound to fail or require heavy user intera
tion tolead to a

eptable segmentation results in 3D images. In order to over
ome theseproblems, a very popular approa
h is to employ models whi
h in
orporate a prioriknowledge about mean and varian
e of shape or grey levels of the stru
ture of inter-est. These models serve to 
onstrain the resulting segmentation 
ontour to probableshapes as de�ned by the underlying training data set. The 
on
ept of shape priorsin segmentation methods has been analysed in se
tion 2.4.In this 
hapter, a framework is developed for the integration of the GGM-SSM 
re-ated in 
hapter 3 as a shape prior for kidney segmentation. In this new method,prior shape knowledge represented by the GGM-SSM is 
ombined with prior infor-mation about typi
al grey value intensity distributions inside and outside the organto be segmented. The 
hapter is stru
tured as follows: First an overview is givenabout the employment of intensity distribution knowledge in medi
al image segmen-tation, and the initial pla
ement problem is explained in se
tion 5.1. In se
tion 5.2,a sound mathemati
al framework is developed whi
h integrates the GGM-SSM intoan impli
it level set s
heme, and the method is evaluated on the segmentation ofthe kidney from CT images. In se
tion 5.4, the level set framework is extended tomultiple-obje
t segmentation, and the algorithm is applied to hip joint segmenta-tion. The 
hapter is 
on
luded with se
tion 5.5 where the approa
h of 
ombiningan expli
itly represented SSM and an impli
itly represented segmentation 
ontouris dis
ussed.



80 Chapter 5. Using the GGM-SSM as a Prior for Segmentation5.1 Initialization5.1.1 Distribution Models for Prior Intensity KnowledgeBeside the prior knowledge about the shape, knowledge-based segmentation methodsoften integrate information about the grey value appearan
e of the organ whi
h areextra
ted from a training data set. Classi
al segmentation te
hniques using SSMsmostly rely on edge-dete
tion [Cootes 1992, Székely 1996, Staib 1996, Wang 2000℄.Re
ent methods propose the utilization of a priori knowledge about intensity infor-mation on its own [Nain 2007, Andreopoulos 2008℄ or in 
ombination with boundarydete
tion [Huang 2004℄ in order to exploit available image information whi
h gen-erally leads to methods that are more robust and e�e
tive.In point-based SSMs, a widely-used method is to generate lo
al appearan
e models.The �rst lo
al appearan
e model was presented by Cootes et al. [Cootes 1993℄ whoproposed to sample intensity information around ea
h landmark in normal dire
-tion. This is done for all observations in the training data set in order to determinemean value and prin
ipal modes of variation of grey value appearan
e over the 
or-responding landmarks. During segmentation, the intensity model pro�les of ea
hSSM landmark are 
ompared to the 
urrent point pro�le samples of the deformedSSM in the image in order to optimize the �t. The lo
al appearan
e models rangefrom simple Gaussian intensity pro�le models and Gaussian gradient pro�le models[Cootes 1994℄ to non-linear intensity pro�le models [de Brujine 2002℄ and histogramregion models [Brunelli 2001, Freedman 2005℄.A lo
al appearan
e model as des
ribed here is not immediately usable for our GGM-SSM as one-to-one 
orresponden
es over the observations are needed in order to ex-tra
t statisti
al knowledge about the grey values at one spe
i�
 point of the model.Therefore, a global appearan
e model is employed whi
h means that a priori knowl-edge about the intensity distributions in the regions inside and outside the organhas to be extra
ted. In general, an intensity distribution model 
onsists of twoprobability density fun
tions whi
h model the o

urren
e of grey values inside (pin)and outside (pout) the organ. A straightforward method is to sample the grey val-ues of organ pixels x in the training data set and 
ompute a mean grey value µ aswell as a standard deviation σg. Then the probability of a voxel grey value g(x)to o

ur inside the organ is estimated with pin(g) = 1√
2πσg

exp(− (µ−g)2

2σg
). Then,

pout(g) = 1 − pin(g) 
ould dire
tly estimate the probability of a voxel grey value
g(x) to o

ur outside the organ. However, for most soft tissue organs neither theorgan tissue nor the surrounding tissue belong to only one tissue 
lass and addition-ally, noise has to be taken into a

ount. Therefore, a 
lassi�
ation using a mixtureof Gaussians should lead to a more reliable model of intensity distributions. Thus,we take advantage of a pattern 
lassi�
ation te
hnique introdu
ed by Duda andHart [Duda 1973℄ whi
h is based on the so-
alled kernel density approximation toestimate the point distribution fun
tion of a random variable. This non-parametri
method was �rst proposed by Parzen [Parzen 1962℄ in order to solve problems inthe �eld of time series analysis. In short, the method works as follows: For a givenrandom sample X = {x1, ..., xn} the value of the underlying but unknown probabil-ity density fun
tion p(x) is sought. Using a kernel or window fun
tion ϕ : Rd → R
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Figure 5.1: Estimated grey value density fun
tions for the inside (green) and theoutside (red) region of the kidney using a Parzen window approa
h.with the properties ϕ(u) > 0 and ∫ ϕ(u)du = 1, it 
an be approximated
p̂(x) =

1

n

n∑

i=1

1

hd
ϕ

(
x− xi

h

)

.The parameter h de�nes the width of the window and is generally 
hosen withrespe
t to the size of the sample. A widely-used example for the window fun
tion isthe Gaussian kernel ϕgauss(x) = 1√
2π

exp(−1
2x

2). The 
hoi
e of window fun
tion ϕand width h determines the smoothing e�e
t on the estimated probability densityfun
tion. In order to estimate the grey value density distributions for the inside ofan organ as well as for its ba
kground, the intensities Gin and Gout are sampledaround the surfa
e of the organ:
Gin = {g(x)|x inside organ and 
lose to boundary}
Gout = {g(x)|x outside organ and 
lose to boundary}In order to avoid the in�uen
e of to partial volume e�e
ts and segmentation ina

u-ra
ies, the sampling is done at a 
ertain distan
e from the original organ boundary[S
hmidt-Ri
hberg 2009℄. For an example of the sampling and the resulting greyvalue density distributions see �gure 5.1.5.1.2 Initial Pla
ement ProblemThe initial pla
ement of any template in the image plays an important role regardingthe quality of the segmentation result. Therefore, the initial lo
ation, transforma-tion and deformation of the GGM-SSM has to be determined 
arefully. A positiontoo far away from the organ region or an initial deformation too di�erent from theorgan shape in the image augments the risk of �nding a lo
al minimum whi
h is not
onsistent with an a

eptable segmentation. Aside from manual intervention whi
hyields good results but is time-
onsuming [de Bruijne 2003℄, several authors suggesta series of 
onse
utive morphologi
al operations [Soler 2000, Lin 2006℄. Other ap-proa
hes rely on obje
t re
ognition [Brejl 2000℄ or a priori knowledge about typi
al



82 Chapter 5. Using the GGM-SSM as a Prior for Segmentationpositions of the sought organ in the CT volume [Heimann 2006℄ or 
ombine a prioriknowledge with morphologi
al operations [Tsaagan 2002℄. While these approa
heswork well for spe
i�ed organs, they 
annot be generalized for other segmentationtasks. In order to 
ome up with a generalizable solution, de Brujine and Nielsenproposed an automati
 initialization of the template employing shape parti
le �l-tering [de Bruijne 2004℄ for 2D segmentation. A similar approa
h applied to 3Dsegmentation based on a global-sear
h in the image was proposed by Heimann et al.[Heimann 2007b℄. The algorithm uses the prin
ipal ideas of evolutionary program-ming [Fogel 1966℄ and evolutional strategies [S
hwefel 1995℄ in order to determinethe optimal pla
ement of the model. The algorithm 
onsists of the following steps:1. A random set of normally distributed a�ne transformations Tk and deforma-tions Ωk is generated with k = [1, ..., N ].2. By applying Ωk and Tk to the mean shape of the model, a random populationof shapes R = {S1, ..., SN} is built.3. The best quali�ed (or �ttest) individuals R̂k of the random population aresele
ted.4. For ea
h R̂k, the transformation T̂k as well as the deformation Ω̂k are modi�edrandomly and again applied to the mean shape of the model to generate a new(better) population of shapes.5. This is iterated until a good initial position and a good initial mean shapedeformation are found.The quality of pla
ement is measured by 
omparing model-spe
i�
 features to thefeatures in the image. For an example of a random shape population generated forthe GGM-SSM of the kidney please refer to �gure 5.2.For our experiments, the means of the normal distributions for the transformation aswell as for the deformation equal zero. The standard deviation for p(T ) is determinedheuristi
ally while the standard deviations for p(Ω) = {ω1, ..., ωn} are the standarddeviations {λ1, ..., λn} of the GGM-SSM as 
omputed in se
tion 3.5.2. The model-spe
i�
 features evaluated in order to measure the �tness depend on probabilityof points lying on the boundary of the organ. This is measured by the sum ofdistan
es between GGM-SSM points and the nearest voxel with high image gradientmagnitude whi
h reliably led to good initial pla
ement results. For an example, see�gure 5.3.5.2 The GGM-SSM in Impli
it Fun
tion SegmentationIn this se
tion, a method is developed for integrating the GGM-SSM into an impli
itsegmentation s
heme. An impli
it segmentation s
heme has several advantages overan expli
it one: First, no remeshing algorithms need to be implemented. Moreover,it is easy to integrate regional statisti
s as e.g. grey value distribution models and�nally, they are very �exible topologi
ally. A 
omprehensive review about the ad-vantages of level set methods in medi
al image segmentation 
an be found in the
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Figure 5.2: Five examples of a random population of shapes generated for the GGM-SSM of the kidney in a CT image. The pink 
ontour belongs to the randomly de-formed mean shape whi
h serves as input for the next iteration.

Figure 5.3: Automati
 initial pla
ement. Example of the result of the automati
evolutionary algorithm: original mean shape of the GGM-SSM (yellow) and �nalbest �t (white).work of Cremers et al. [Cremers 2007℄. As the GGM-SSM is based on a MAPestimation and is 
omputed by a global 
riterion, the integration into an impli
itsegmentation framework 
an be realized in a 
losed mathemati
al form.This 
hapter is organized as follows: In se
tion 5.2.1, the mathemati
al ba
kgroundof level set methods and their appli
ation to impli
it segmentation is summarized.The development of the MAP estimation and its solution by an energy fun
tional ispresented in se
tion 5.2.2. Se
tions 5.2.3 and 5.2.4 are dedi
ated to the derivationand optimization of the energy fun
tional.5.2.1 Segmentation Using Level SetsAs explained in the se
tion about deformable models (se
tion 2.4.1), the segmenta-tion problem in the variational framework is formulated as the minimization of anenergy fun
tional E(Γ) with respe
t to the 
ontour Γ. The key idea is to move the
ontour in dire
tion of the negative energy gradient −∂E(Γ)
∂Γ . In impli
it fun
tionsegmentation, 
ommonly the 
ontour is embedded as the zero level set of a higher
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a) x

y b) zero−level−set

x
y

z

Figure 5.4: Embedding level set fun
tion. a) Contour in 2D. b) The same 
ontourembedded in the higher dimensional fun
tion φ(x) ∈ R
3 as zero level set at φ(x) = 0.dimensional fun
tion over the image spa
e φ : Ω→ R:

Γ = {x ∈ Ω|φ(x) = 0},see �gure 5.4. Most 
ommonly, the front propagation of the 
ontour is realizedby evolving the embedding fun
tion φ using level set methods [Dervieux 1979,Osher 1988, Malladi 1995℄. Instead of minimizing the fun
tional de�ned on thespa
e of 
ontours dire
tly as done e.g. by Caselles et al. [Caselles 1993℄, several au-thors propose to embed E(Γ) into the variational framework des
ribed by E(φ) inorder to sear
h for the level set fun
tion φ̂ whose zero level set best des
ribes theorgan boundary [Zhao 1996, Chan 2001℄:
φ̂(x)







> 0 ∀x outside the organ
= 0 ∀x on the boundary
< 0 ∀x inside the organIn that 
ase, E(φ) 
an be minimized using the Euler-Lagrangian equation
∂φ

∂t
= −

∂E(φ)

∂φwhere the arti�
ial time t > 0 is introdu
ed for parameterizing the des
ent dire
tion.We solve the derivation by 
omputing the gradient des
ent
φt+1 = φt − h

∂E(φ)

∂φwith h > 0 as the step size.In the literature of medi
al image analysis, impli
it fun
tion segmentation has beenapplied e�
iently e.g. to the dete
tion of a fetus in ultrasound images [Caselles 1997℄,of the femur in MR images [Leventon 2000a℄, of the 
orpus 
allosum in MR images[Leventon 2000a℄, of glioma in MR images [Droske 2001℄, of the left ventri
le in
ardia
 MR images [Tsai 2003℄, of the prostate of pelvi
 MR images [Tsai 2003℄,of lateral brain ventri
les in MR images [Rousson 2004℄ and of the liver in four-dimensional CT images [S
hmidt-Ri
hberg 2009℄.
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tion Segmentation 855.2.2 MAP Estimation on the Level SetsAs shown in the work of Paragios and Deri
he [Paragios 2002℄, the segmentationproblem 
an be formulated in a probabilisti
 framework where the a posteriori prob-ability p(P(X)|I) of an optimal partitioning P(X) given the image I is maximized.Based on this prin
iple, in this thesis a maximum a posteriori estimation is devel-oped of a level set fun
tion φ whose zero level set best separates the organ from theba
kground under a shape 
onstraint introdu
ed by the GGM-SSM. This leads to auni�ed statisti
al framework whi
h is presented in detail in this se
tion.Given a shape represented as a set of points with model parameters Θ in our GGM-SSM, we �rst model the probability of a surfa
e with respe
t to that shape. Thisamounts to spe
ifying the probability of a fun
tion φ whose zero level set is theobje
t boundary knowing the GGM-SSM deformation parameters Q = {T,Ω} (Themodel parameters are detailed in se
tion 3.4). This is the �rst step. For the nextstep, we work with the following image formation model: The intensity is assumedto follow a law pin for the voxels inside the obje
t and a law pout for the voxelsoutside the obje
t. Given this generative model, the segmentation is the inverseproblem: The MAP method 
onsists of estimating the most probable parameters φand Q given the observation of an image I : X → R. Hen
e, the level set fun
tion
φ is evolved su
h that p(φ,Q|I) is maximized:

MAP = argmax p(φ,Q|I) = argmax
p(I|φ,Q)p(φ|Q)p(Q)

p(I)
.The shape prior does not add any information when the zero level set of φ is known,so I and Q are 
onditionally independent events p(I|Q,φ) = p(I|φ), and we 
anwrite

p(φ,Q|I) = p(φ, T,Ω|I) =
p(I|φ)p(φ|T,Ω)p(T,Ω)

p(I)
.The probability p(I) is 
onstant for a given image. Besides, the probability of thetransformation p(T ) is assumed to be independent and uniform, so we derive thefollowing energy fun
tional:

E(φ,Q) = −α log(p(I|φ)) − τ log(p(φ|Q)) − κ log(p(Ω)) (5.1)with introdu
ed weights α, κ, τ ∈ R to normalize the s
ale of the distributions. The�rst term of equation (5.1) des
ribes the region-based energy with obje
t spe
i�
priors whi
h are given by the normalized grey value distributions pin inside the organand pout outside the organ as found in the training data set whi
h leads to
log(p(I|φ)) = −

∫

X
(1−Hǫ(φ(x))) log pin(I(x))dx −

∫

X
Hǫ(φ(x)) log pout(I(x))dx.The fun
tion Hǫ(φ(x)) is a 
ontinuous approximation of the Heaviside fun
tionwhi
h is 
lose to one outside the obje
t and 
lose to zero inside the obje
t. The
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Figure 5.5: Regularization of the Heaviside fun
tion (top) using equation (5.2) andthe asso
iated delta fun
tion δǫ with support ǫ = 1.regularization of H are 
hosen as proposed in [Zhao 1996℄:
Hǫ(φ) =







1 if φ(x) > ǫ
0 if φ(x) < −ǫ
1
2

[

1 + φ(x)
ǫ + 1

π sin(πφ(x)
ǫ )

] if |φ(x)| ≤ ǫ
(5.2)For an illustration of the approximated 
urve see �gure 5.5.The se
ond term represents the front propagation of φ guided by the GGM-SSM whi
h models all points x as a mixture of Gaussian measurements of the(transformed) model points mj. Following our EM-ICP prin
iple introdu
ed inse
tion 3.2, the probability of a point x modeled by the GGM-SSM given Q is thenormalized sum of 
orresponden
e probabilities of x and all mj and equals

p(x|Q) = pΘ =
1

Nm

Nm∑

j=1

exp(−
|x− T ⋆ mj|

2

2σ2
Θ

).In the following, pΘ denotes the probability given by a GGM-SSM with modelparameters Θ = {M̄ , vp, λp, n} whi
h means that Θ is �xed. The probability of apoint x with respe
t to the model des
ribed by Θ then depends on the observationparameters Q = {T,Ω}. The parameters are used as de�ned in se
tion 3.3.1.
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tion Segmentation 87For a 
ontour Γ des
ribing the zero level set of φ, the log of the probability is
omputed by log(p(φ|Q)) = log(
∏

x∈Γ p(x|Q)) =
∫

x∈Γ log p(x|Q)dx. The integrationover the whole length of the 
ontour is then expressed by
log(p(φ|Q)) =

∫

X
δǫ(φ(x))|∇φ(x)| log pΘdx, (5.3)with δǫ(φ(x)) having a small support > 0. Then a normalization is added over thelength whi
h leads to log(p′(φ|Q)) = log(p(φ|Q)p(φ|l0)) =

∫

X δǫ(φ(x))|∇φ(x)|
(log pΘ − β)dx with β = 1

l0
∈ R where l0 
ontrols the normalization of the length.For pΘ = const this equation is generalized to the 
lassi
al smoothing term
∫

X
δǫ(φ(x))|∇φ(x)|dxas used by Chan and Vese [Chan 2001℄.The de�nition of the third term in the energy fun
tional p(Ω) is given by the max-imum likelihood estimation for the observation parameter Ω given the model, seeequation (3.8) in se
tion 3.3.1.5.2.3 Derivation of the Energy Fun
tionalIn this se
tion, the minimization of the energy fun
tional of equation (5.1) is de-rived with respe
t to the level set fun
tion φ. For some preliminaries 
on
erningmathemati
al rules used in this se
tion, please refer to se
tion A.4.5.2.3.1 The Intensity TermsThe di�erentiation of the intensity terms with respe
t to the level set fun
tion φ isquite easy as ∂

∂φHǫ(φ) = δǫ(φ):
∂

∂φ
log(p(I|φ)) =

∫

X
δǫ(φ) log pin(x|µ1, σ1)dx−

∫

X
δǫ(φ) log pout(x|µ2, σ2)dx (5.4)5.2.3.2 The Shape Prior TermThe di�erentiation of the shape prior term EΘ(φ) = log(p(φ|Q)) as formulated inequation (5.3) with respe
t to φ is a bit tri
ky. For one thing, we have to deal withthe derivative of the Dira
 distribution δ′ǫ. The solution is based on the prin
ipleof dire
tional derivatives and integration by parts. The aim is to determine thedi�erential 
oe�
ient of EΘ(φ), so we �rst introdu
e the fun
tion α : X → R. Inorder to 
ompute

EΘ(φ+ ηα) =

∫

X
log pΘδǫ(φ+ ηα)|∇φ + η∇α|dx.



88 Chapter 5. Using the GGM-SSM as a Prior for Segmentationwith η → 0, we use the Taylor development for a linearization of the delta distribu-tion δepsilon at point (φ+ ηα) and write
EΘ(φ+ ηα) =

∫

X
log pΘ

(
δǫ(φ) + ηδ′ǫ(φ)α

)
|∇φ+ η∇α|dx.Using the equation |∇φ + η∇α| = |∇φ| + η∇φT ∇α

|∇φ| + O(η2) whi
h is derived fromthe binomial series in equation (A.7) allows to write EΘ(φ+ ηα) as a sum of EΘ(φ)and additional terms:
EΘ(φ+ ηα) =

∫

X
log pΘ

(
δǫ(φ) + ηδ′ǫ(φ)α

)
(

|∇φ|+ η
∇φT∇α

|∇φ|
+O(η2)

) (5.5)
= EΘ(φ) + η

∫

X
log pΘ δ′ǫ · α|∇φ|+ η

∫

X
log pΘ δǫ(φ)

∇φT∇α

|∇φ|
+O(η2).We reformulate the last term of this equation using the produ
t rule of the divergen
eas stated in equations (A.5) and (A.6). We set ∇g = ∇α and V = log pΘ δǫ(φ) ∇φ
|∇φ| .Assuming that there are no obje
ts outside the image, after several derivations weobtain

∫

X
< ∇g , V >= −

∫

X
g · div(V )whi
h is

∫

X
δǫ(φ) log pΘ

∇φT∇α

|∇φ|
= −

∫

X
α · div(δǫ(φ) log pΘ

∇φ

|∇φ|
).With this information, we 
an rewrite equation (5.5) and obtain

EΘ(φ+ ηα) = EΘ(φ) + η

∫

X
log pΘ δ′ǫ · α|∇φ| − η

∫

X
α · div

(

δǫ(φ) log pΘ
∇φ

|∇φ|

)

.(5.6)We solve the last term by again using the produ
t rule for the divergen
e stated inequation (A.5). This time we set g = δǫ(φ) and V = log p ∇φ
|∇φ| . This leads to

∫

X
div

(

δǫ(φ) log pΘ
∇φ

|∇φ|

)

=

∫

X
δǫ(φ) · div

(

log pΘ
∇φ

|∇φ|

)

+

∫

X
< ∇(δǫ(φ)), log pΘ

∇φ

|∇φ|
> .The gradient of δǫ(φ) is 
omputed following equation (A.6):

∇δǫ(φ) =






∂δǫ(φ)
∂x

∂δǫ(φ)
∂y

∂δǫ(φ)
∂z




 =






δ′ǫ(φ)∂φ
∂x

δ′ǫ(φ)∂φ
∂y

δ′ǫ(φ)∂φ
∂z




 = δ′ǫ(φ)∇φ,
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a) b)Figure 5.6: Illustration of the GGM-SSM 
onstraint on the segmentation 
ontour.The GGM-SSM is represented by a white 
ontour sli
e. a) Log-probability of 
orre-sponden
e for image points x in spa
e. b) Gradient magnitude of log-probability forimage points x.By inserting this into equation (5.6), we get rid of the δ′ǫ(φ) terms, so the equationsimpli�es to
EΘ(φ+ νη) = EΘ(φ)− η

∫

X
αδǫ(φ) · div

(

log pΘ
∇φ

|∇φ|

)

.In order to 
ompute the gradient of EΘ, we now employ the produ
t rule of equation(A.4), setting g = log p and V = ∇φ
|∇φ| , whi
h �nally leads to

∇EΘ(φ) = −δǫ(φ) · div

(

log pΘ
∇φ

|∇φ|

)

= −δǫ(φ) log pΘ div

(
∇φ

|∇φ|

)

− δǫ(φ) < ∇(log pΘ),
∇φ

|∇φ|
> . (5.7)The 
onstraints of the GGM-SSM on the level set propagation are twofold. Thes
alar produ
t < ∇(log pΘ), ∇φ

|∇φ| > ensures that the zero level set is a
tively drawntowards the SSM shape. The values of ∇(log pΘ) = ∇(log p(x|Q)) obviously dependon the distan
e of points x to the GGM-SSM shape. A 2D example is illustrated in�gure 5.6(b). The 
urvature term log pΘ div
(

∇φ
|∇φ|

) ensures that the smoothness fa
-tor has more in�uen
e on the zero level set evolution at lo
ations of low GGM-SSMprobability than at lo
ations with high GGM-SSM probability. This is illustratedin �gure 5.6(a). Hen
e, we use a prior whose 
ontour is length minimizing. Thevarian
e σ2
Θ of the probability distribution pΘ is a sensitive parameter and has tobe 
arefully adapted to the problem at hand.
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tionalThe derivatives of the energy fun
tional terms derived in the last se
tion are summedup and written in the gradient des
ent fun
tion as
∂φ

∂t
= δǫ(φ)

(

−α1 log(pin) + α2 log(pout)− τ < ∇(log pΘ),
∇φ

|∇φ|
>

+div

(
∇φ

|∇φ|

)

(β − τ log pΘ )

)

. (5.8)The minimization of the energy fun
tional in equation (5.1) is then done by al-ternating the gradient de
ent for the embedding fun
tion φ with an update of theparameters T and Ω. The update serves to �t the GGM-SSM to the 
urrent zerolevel set.The gradient des
ent is solved by a time-step pro
edure. In ea
h step, the term
< ∇(log pΘ), ∇φ

|∇φ| > has to be updated, thus we need to 
ompute
∇(log pΘ) = ∂

∂x log
(
∑

j exp(−
|x−T⋆mj |2

2σ2 )
)

. This is simply done by repetitively em-ploying the 
hain rule whi
h leads to the following expli
it GGM-SSM term:
< ∇(log pΘ),

∇φ

|∇φ|
>=




1

(
∑

j exp(−
|x−T⋆mj |2

2σ2 )
)

∑

j

[

exp(−
|x− T ⋆ mj |

2

2σ2
)
T ⋆ mj − x

σ2

]




T

∇φ

|∇φ|
.In order to �t the GGM-SSM to the 
urrent zero level set, the optimal trans-formation T and the optimal deformation 
oe�
ients Ω have to be found. Thetransformation T is 
omputed by

∂E(φ, T,Ω)

∂T
=

∂

∂T

∫

X
δǫ(φ(x))|∇φ(x)| log




1

Nm

Nm∑

j=1

exp(−
|x− T ⋆ mj|

2

σ2
Θ

)



 dx = 0with �xed φ and Ω. It suggests itself to make use of the global 
riterion developedfor the GGM-SSM 
omputation in se
tion 3.3.2, equation (3.13). The number ofobservations is set to one with k = 1, and the only observation S1 is representedby the zero level set of the 
urrent φ. The a�ne EM-ICP registration is employedto register the SSM to the zero level set: First the 
orresponden
e probabilitiesbetween the zero level set and the points of the SSM are established in theexpe
tation step and then T is 
omputed in the maximization step as explained inse
tion 3.4.1. Here, the zero level set is represented by all voxels of the level setfun
tion where it holds δǫ 6= 0. The implementation is done e�
iently employingsparse �elds.Subsequently, the level set fun
tion φ and the transformation T are �xed and thedeformation 
oe�
ients Ω are 
omputed whi
h solve ∂E(φ,Ω,T )
∂Ω = 0. This leads to
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losed form solution as explained in se
tion 3.4.2 andshown in equation (3.17).In summary, our impli
it segmentation algorithm using the GGM-SSM isimplemented as shown in pseudo
ode 5.1Algorithm 5.1 Pseudo
ode of impli
it segmentation using the GGM-SSM priorPla
e GGM-SSM automati
ally in image (employing the evolutionary algorithmintrodu
ed in se
tion 5.1.2);Generate initial φ based on GGM-SSM;for t = 0 to MAXITER doCompute φ̃ a

ording to equation (5.8);Update level set: φt+1 ← φt + φ̃;Compute GGM-SSM parameters T,Ω (optimizing equation (3.13) with k = 1and S1 represented by the zero level set of φt+1);Update GGM-SSM: M t+1 = T ⋆ (M̄ +
∑

p ωpvp);end for5.3 Evaluation on Kidney CT ImagesIn an experimental evaluation, the level set segmentation framework is applied tothe segmentation of the left kidney in noisy CT images impaired by breathing arte-fa
ts. The kidneys are a typi
al organ at risk for 
an
er radiotherapy in the upperabdomen. They are exposed to irradiation during the treatment of malignant tu-mor types like 
ar
inoma of the 
ervix or 
ar
inoma of the pan
reas. Thus, anexa
t segmentation of the kidney helps to redu
e the possible harm to a minimum.Fully automati
 kidney segmentation is not an easy task as the grey value intensitydi�eren
es between the kidney and neighbouring organs as the liver and spleen arevery small. Moreover, the grey value intensities inside the individual kidney volumesare not very homogeneous whi
h is partly due to the big kidney vessels whi
h aredarker than the organ itself and partly due to the poor quality of the abdominal CTimages. For an example of the kidney images see �gure 5.7.Most algorithms for (semi-)automati
 kidney segmentation from mostly low reso-lution CT images 
onsist of two steps: First, for automati
 initialization, a regionin the image is sele
ted where the probability of kidney tissue appearan
e is high.Se
ond, a lo
al sear
h algorithm is employed in order to dete
t the kidney 
ontour.Re
ently published methods using deformable models in
lude the 
ombination ofgrey level appearan
e of the target with statisti
al information about the shape[Tsaagan 2002℄ or the training of a non-parametri
 histogram estimate spe
ifyingthe kidney lo
ation [Broadhurst 2006℄. Another method proposes the 
on
atenationof di�erent image pro
essing operations as region growing and landmark determi-nations [Lin 2006℄. Looking at the evaluations, all of those methods lead to volumeoverlaps around 0.88 (where it is not 
lear whi
h measuring 
oe�
ients were used)and an average surfa
e distan
e of 1mm [Broadhurst 2006℄ and respe
tively around1 voxel with resolution 0.63×0.63×10mm3 [Tsaagan 2002℄ between the results and
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Figure 5.7: Examples of abdominal CT images in
luding the kidney.



5.3 Evaluation on Kidney CT Images 93the gold standard. All papers report failure of their method for some 
ases whi
hwere mainly a

ounted for to poor quality of the automati
 lo
ation initialization.5.3.1 Segmentation ExperimentKidney GGM-SSM: Our training data set 
onsists of 16 CT images of theabdominal region whi
h were taken from healthy live liver donors. The data setas well as the asso
iated segmentations of the left kidney were kindly provided bythe Department of Computer S
ien
e, UNC, Chapel Hill. The segmentations wereperformed by medi
al students. The size of the images is 512 × 512 × (32 − 52)voxels with resolution 0.98 × 0.98 × (2.9 − 5.0)mm3 where the kidney measuresabout 75 × 60 × 100mm3. The GGM-SSM for the kidney is built using a trainingdata set of 10 segmented observations. For some observation examples see �gure5.8. The segmentation method is then tested on the remaining 6 kidneys. For
omputing the GGM-SSM, the global 
riterion (equation (3.13)) is optimized aselaborated in se
tion 3. The algorithm multi-s
ale parameters (des
ribed in se
tion3.6) are set to σ = 20mm, redu
tion fa
tor = 0.9, number of iterations = 20. Theresulting kidney GGM-SSM 
an be seen in �gure 5.9 where the mean shape andthe deformations a

ording to the �rst and se
ond modes of variation are depi
ted.Distribution Model: For our appli
ation on the estimation of pin and
pout, the Parzen window approa
h des
ribed in se
tion 5.1.1 is employed. Theintensities around the kidney surfa
es of our training data set whi
h are 
oded bythe Houns�eld s
ale are sampled. A Gaussian kernel and a width of h = 5 are used,see �gure 5.1.Set-Up: In order to evaluate the in�uen
e of the shape prior term, the results ofour algorithm are 
ompared with the results of the segmentation algorithm proposedby S
hmidt-Ri
hberg et al. who use a very similar energy fun
tional but without ashape prior term [S
hmidt-Ri
hberg 2009℄. Ea
h data set is segmented on
e withthe level set segmentation without shape priors as proposed by S
hmidt-Ri
hberget al. and on
e with the GGM-SSM prior information integrated in the level setsegmentation as developed in se
tion 5.2. The algorithm is implemented as shownin pseudo
ode 5.1. For the segmentation, the weights are set to α1 = 1, α2 = 1,
κ = 1, β = 0 and τ = {0.1, 0.2}. In most 
ases, the algorithm 
onverged after 150iterations. For both methods, the same distribution model is used. For an exampleof the GGM-SSM deformation during the segmentation steps please see �gure 5.10.Results: The results are 
ompared to the gold standard segmentations byevaluating the Ja

ard 
oe�
ient, the Di
e 
oe�
ient and the Hausdor� distan
e,see table 5.1. Both level set frameworks using a-priori information on the greylevel intensities yields good segmentation results overall. The SSM 
onstraint onthe level set evolution yields even better results in all 
ases. The advantage ofadding the prior shape information 
an be seen distin
tly for patient 2 where theHausdor� distan
e diminished from 9.95mm to 5.0mm and for patient 6 where theHausdor� distan
e diminished from 12.57mm to 7.68mm. This is due to the fa
t
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Figure 5.8: Examples of surfa
e representations of segmented kidneys in the trainingdata set.
d)

b) a) 
)
e)Figure 5.9: GGM-SSM 
omputed for a training data set of 10 segmented kidneys.(a) shows the mean shape, (b-e) show the mean shape deformed with respe
t to �rstand se
ond mode of variation: M̄ − λ1v1, M̄ + λ1v1, M̄ − λ2v2, M̄ + λ2v2.
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a) b) 
)Figure 5.10: GGM-SSM during segmentation a) The GGM-SSM is pla
ed in theimage. b) The GGM-SSM is automati
ally initialized to its starting position. 
)The GGM-SSM deforms under the optimization of the global 
riterion.
only LS LS + SSMD(A,B) 0.93 0.93Pat1 J(A,B) 0.88 0.87H(A,B) 8.66 6.40D(A,B) 0.91 0.93Pat 2 J(A,B) 0.83 0.88H(A,B) 9.94 5.0D(A,B) 0.89 0.91Pat 3 J(A,B) 0.81 0.84H(A,B) 5.83 5.10D(A,B) 0.88 0.89Pat 4 J(A,B) 0.78 0.80H(A,B) 8.01 6.40D(A,B) 0.92 0.92Pat 5 J(A,B) 0.86 0.86H(A,B) 4.58 4.24D(A,B) 0.84 0.86Pat 6 J(A,B) 0.73 0.75H(A,B) 12.57 7.68Table 5.1: Segmentation Results for six di�erent data sets. Left: Level set segmenta-tion without GGM-SSM shape prior as done with the algorithm of S
hmidt-Ri
hberget al. [S
hmidt-Ri
hberg 2009℄. Right: Level set segmentation using the GGM-SSMshape prior as developed in se
tion 5.2.2. D(A,B): Di
e 
oe�
ient. J(A,B): Ja

ard
oe�
ient. H(A,B): Hausdor� distan
e in mm.
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a) b)Figure 5.11: Segmentation Results on a kidney in CT data, sagittal sli
e. Theblue 
ontour is the gold standard segmentation. Image (a) shows the initial 
ontourin yellow and the 
ontour after applying the automati
 evolutionary algorithm asdes
ribed in se
tion 5.1.2 in white. Image (b) shows the result of the un
onstrained(red) and the result of the SSM 
onstrained (green) level set segmentation. The red
ontour leaked into the adja
ent organ (liver).that the evolving zero level is attra
ted by neighbouring organs with similar greyvalue intensities as the kidney. The Hausdor� distan
e 
an be seen as an indi
atorfor the leakage risk. This leakage 
an be su

essfully prevented by integrating theSSM prior on shape probabilities. As an example, the e�e
t on patient 2 is shownin �gure 5.11(b).5.3.2 The Role of the ParametersAs our energy fun
tional in equation (5.1) is derived by a MAP explanation, intheory all 
oe�
ients should be equal to 1. Expanding on this probabilisti
 anal-ogy, the traditional 
oe�
ients of the variational methods (as e.g. in [Chan 2001℄or [Rousson 2004℄) 
an be seen as powering fa
tors whi
h �atten or peak the den-sity distributions. Con
erning the GGM-SSM term (equation (5.3)), the standarddeviation σΘ 
ontrols the mat
hing of the GGM-SSM to the zero level set. Thismeans that in pra
ti
e, σΘ should have values around 5mm to guarantee a su

ess-ful mat
hing for the problem at hand as this is the mean point distan
e in the model.However, the value of σΘ also 
ontrols the stri
tness of the spatial 
onstraint, sothe introdu
tion of the 
oe�
ients τ, β and α is ne
essary in order to position thein�uen
e of the SSM with respe
t to the other terms. What is more, β 
an be equalto 0 be
ause the smoothness term div
(

∇φ
|∇φ|

) is also governed by τ as 
an be seen inequation (5.8). Moreover, employing −τ log pΘ as weight has the advantage of usinga distan
e-dependent smoothing term. Figure 5.12(a) shows the in�uen
e of the
hoi
e of σΘ for the Hausdor� distan
es obtained in the segmentation experimentswith α = 1, β = 0 and τ = 0.1. These parameters lead to satisfying results for allkidneys ex
ept kidney 1. The optimal values for σΘ are similar for all kidneys andshould not ex
eed 5mm in this 
ase.
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Figure 5.12: Hausdor� distan
es. a) shows the Hausdor� distan
es of the segmen-tation results under parameters α = 1, β = 0 and τ = 0.1 for all kidneys withrespe
t to σΘ. b) illustrates the relation between the parameters τ and σΘ and theirin�uen
e on the resulting Hausdor� distan
es.The relation between the parameters τ and σΘ are illustrated in �gure 5.12(b) wherethe Hausdor� distan
es for two kidney segmentations are plotted with respe
t to
σΘ for di�erent values of τ . For a smaller τ the optimal σΘ be
omes smaller as wellwhi
h results in a left shift of the 
urve. This is due to the fa
t that a smaller σΘas well as a greater τ result in a stri
ter 
onstraint of the level set front propaga-tion. However, the best result for the Hausdor� distan
e remains the same for both
hoi
es of τ .5.4 Multiple Shape Class SegmentationOn the grounds that shape, size and lo
ation of neighbouring anatomi
al stru
turesin�uen
e ea
h other dire
tly and indire
tly, a thriving strategy is the extension ofthe region of interest for the segmentation to adja
ent stru
tures. The integrationof these geometri
 relation information about adjoining stru
tures as a priori knowl-edge renders a segmentation algorithm a lot more robust. This idea 
an be exploitedfor example in an attempt to simplify segmentation pro
esses for low-
ontrastedstru
tures as shown e.g. by Palm et al. who use a balloon model 
oupled to a SSM
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al 
ord and utilize the results to �nd the glottis next [Palm 2001℄.Costa et al. present a 
oupled segmentation framework employing an expli
itly rep-resented SSM of the prostate for segmenting the bladder and prostate simultaneously[Costa 2007℄. In [Zeng 1999℄, the segmentation of the 
ortex from 3D MR images isperformed by a 
oupled surfa
e propagation. This is realized by 
oupling the seg-mentation results of two adja
ent borders of the 
ortex by verifying that the distan
ebetween the borders does not ex
eed a 
ertain interval. Pitiot et al. enhan
e thisidea by 
onstru
ting deformable models for di�erent brain stru
tures and regulatingthe asso
iated segmentations by a distan
e map whi
h determines 
ertain distan
evalues that have to hold between the stru
tures [Pitiot 2005℄. In another approa
h,Ciofolo et al. model the distan
es between brain stru
ture 
ontours as a fuzzy vari-able so to avoid overlapping between 
ontours of di�erent level sets [Ciofolo 2005℄.A very interesting method is proposed by Tsai et al. who employ multiple signeddistan
e fun
tions as impli
it representations of multiple shape 
lasses within theimage [Tsai 2004℄. By doing a PCA on these fun
tions they then obtain a 
ouplingbetween the multiple shapes within the image and hen
e e�e
tively 
apture the
o-variations among the neighbouring stru
tures. Impli
it fun
tion segmentation istopologi
ally �exible and therefore well suited to segment non-spheri
al topologiesas well as obje
ts 
ontaining multiple shape 
lasses. As our GGM-SSM prior is ableto model non-spheri
al anatomies and also anatomies 
onsisting of more than onestru
ture, our aim is to extend the segmentation algorithm presented in se
tion 5.2for su
h kind of segmentation. Se
tion 5.4.1 is dedi
ated to the mathemati
al adap-tion of the GGM-SSM to multiple obje
t modeling and its integration into the timestep pro
edure of the segmentation s
heme. In se
tion 5.4.2, �rst experiments aredone on a
etabulum and femoral head data whi
h feature a non-spheri
 anatomyand 
onsist of two non-
onne
ted stru
tures.5.4.1 Development of the Algorithm5.4.1.1 Extension of the GGM-SSM to Multiple Stru
turesFor the segmentation of more than one shape 
lass, the shape prior has to representa training data set of multiple-stru
ture observations. In order to model multiplestru
tures using only one GGM-SSM, an overlap between stru
tures belonging todi�erent shape 
lasses has to be avoided. Therefore, the EM-ICP registration usedfor aligning the model with the observations has to be adapted to that task. Tore
ap: for one stru
ture, the 
orresponden
e probability between an observationpoint ski and a model point mj reads:
γijk =

exp
(

−
‖ski−Tk⋆mkj‖2

2σ2

)

∑Nm

l=1 exp
(

−‖ski−Tk⋆mkl‖2

2σ2

)as explained in se
tion 3.3.2. On the one hand, the obje
tive is to 
ompute onetransformation whi
h transforms two or more stru
tures together in order to keeptheir spatial relationship. On the other hand, an overlap of stru
tures of di�erenttypes has to be avoided to guaranty a good modeling. To do so, it has to be made
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a) b) L = 1 L = 1

L = 2 L = 2


) L = 1 L = 1

L = 2 L = 2

correspondence probability = 0 d) L = 1

L = 2

Figure 5.13: EM-ICP for multiple stru
ture observations. a) Observations 
onsistingof two stru
tures. b) Stru
tures are labeled L = 1 and L = 2. 
) Points belonging tostru
tures with di�erent labels have a 
orresponden
e probability of zero. d) Alignedobservations.sure that the 
orresponden
e probability γijk = 0 if points mj and ski belong todi�erent stru
tures. This is done by labeling the points 
ongruently over the wholetraining data set and then 
omputing
γijk =







0 if L(mj) 6= L(ski)

exp

„

− ‖ski−Tk⋆mkj‖
2

2σ2

«

PNm
l=1

exp

„

− ‖ski−Tk⋆mkl‖
2

2σ2

« else
(5.9)with L = {1, 2, ...} being the label of the respe
tive stru
tures. For an illustrationsee �gure 5.13. Using the labeled 
orresponden
e matrix in the EM-ICP registrationhas the e�e
t that only point pairs belonging to the same shape 
lass guide the reg-istration. The resulting transformation then tries to align the respe
tive stru
tureswithout 
ausing an overlap inside the observation.5.4.1.2 Extension of the Segmentation Method to Multiple Stru
turesThe goal is to extend the segmentation algorithm des
ribed in se
tion 5.2 (equation(5.1)) for multiple-stru
ture observations. As explained above, only one GGM-SSMis used to model the multiple-stru
ture shape. However, a separate level setfun
tion φL is de�ned for ea
h stru
ture. This is done for two reasons: First, itallows us to de�ne grey value probabilities pL

in and pL
out for ea
h stru
ture. Se
ondly,additional anatomi
al 
onstraints 
an be de�ned as for example in 
ase of di�erentshape stru
tures lying 
lose to ea
h other, it is of great interest to prevent separatestru
tures from merging. The evolution of ea
h level set fun
tion is 
omputedby a separate gradient des
ent using the formulation of equation (5.8). Here, the
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h gradient des
ent are represented by the respe
tive stru
turesof the GGM-SSM. Importantly, the update of the GGM-SSM is done with respe
tto all zero level sets with φall = min{φ1, φ2, ...}, and this step therefore links theevolution of the separate level sets.The implementation of the multiple-stru
ture segmentation is presented in pseu-do
ode 5.2.Algorithm 5.2 Pseudo
ode of impli
it two shape 
lass segmentation using theGGM-SSM priorPla
e GGM-SSM automati
ally in image (employing the evolutionary algorithmintrodu
ed in se
tion 5.1.2);Generate initial φ1 and φ2 based on GGM-SSM;Set d as minimal allowed distan
e between the two level sets;for t = 0 to MAXITER doCompute φ̃1 a

ording to equation (5.11);Update level set;{Apply 
onstraint:}
φt+1

1 =

{
φt

1 + 0 if φt
2(x) < d

φt
1 + φ̃1 else ;Compute φ̃2 a

ording to equation (5.11);Update level set;{Apply 
onstraint:}

φt+1
2 =

{
φt

2 + 0 if φt+1
1 (x) < d

φt
2 + φ̃2 else ;Form one 
ontour: φt+1 = min{φt+1

1 , φt+1
2 };Compute GGM-SSM parameters T,Ω (optimizing equation (3.13) with k = 1and S1 represented by the zero level set of φt+1);Update GGM-SSM: M t+1 = T ⋆ (M̄ +
∑

p ωpvp);end forThe Boundary Term:For organs whose grey value intensity di�ers signi�
antly from the ba
kground's asis the 
ase e.g. for bones, the gradient information in the image 
ould be interestingto be exploited for the segmentation. To do so, an edge term is added to theenergy fun
tional des
ribed in equation (5.1) whi
h serves to a
tively draw the zerolevel set towards organ boundaries. Based on the Geodesi
 A
tive Region modelproposed by Paragios and Deri
he [Paragios 2002℄, an energy fun
tional based onthe boundary term 
an be introdu
ed by
Eboundary(φ) =

∫

X
δǫg(I)|∇φ|dXwhere

g(I) =
1

1 + |∇(Gσ ∗ I)|
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ally de
reasing fun
tion (in our 
ase a Gaussian fun
-tion). The derivative of the boundary term with respe
t to the level set fun
tion
φ is 
omplex. It is 
omputed analogously to the derivative of the shape prior aselaborated in se
tion 5.2.3. This �nally results in

∇Eboundary(φ) = −δǫ(φ)g div

(
∇φ

|∇φ|

)

− δǫ(φ) < ∇g,
∇φ

|∇φ|
> . (5.10)This term is integrated into the gradient des
ent of equation (5.8) whi
h leads tothe extended gradient des
ent

∂φ

∂t
= δǫ(φ)

(

−α1 log(pin) + α2 log(pout)− τ < ∇(log pΘ),
∇φ

|∇φ|
>

−η < ∇g,
∇φ

|∇φ|
> +div

(
∇φ

|∇φ|

)

(β − τ log pΘ − ηg )

)

. (5.11)with η ∈ R as the asso
iated weight.The integration of the boundary term is also advantageous when segmentating twoor more neighbouring stru
tures simultaneously as the leakage risk might be redu
ed.5.4.2 Experimental Evaluation on Hip Joint CTsA �rst experimental evaluation is done on hip arti
ulation data. These are wellsuited for our needs as they feature two shape 
lasses (a
etabulum and femoralhead) as well as a non-spheri
al topology sin
e the is
hium and the pubis bone forma ring. The intensity within the bones is not 
onstant as the interior 
onsists oftrabe
ular bone whereas the outer shell is a 
ompa
t 
orti
al bone. This intensityvariation is a drawba
k for thresholding te
hniques. Moreover, the edges might beblurred by artifa
ts whi
h deteriorates the a

ura
y of region growing methods.Besides, a 
onsiderable amount of noise or blurring often adds to the 
ompli
ations.Espe
ially the tiny spa
e between the femoral head and the a
etabulum poses aproblem be
ause automati
 segmentation methods have di�
ulties to re
ognize theadjoining edges as two di�erent units [Westin 1998℄.The CT data set used in this experiment 
onsists of 11 images of the hip joint withresolutions around 0.71 × 0.71 × 4mm and size 512 × 512 × (57 − 78) voxels. Theresolution in z-dire
tion is not high enough to allow a reliable manual dete
tion ofthe gap between femoral head and a
etabulum in many of the images. Therefore,the medi
al experts who segmented the training data set 
hose to augment theresolution in z-dire
tion for a better estimation of the gap. These sampled imagesthen feature resolutions around 1 × 1 × 1mm and size 256 × 256 × (228 − 312)voxels, see examples in �gure 5.14. For ea
h data set one manual segmentationwas done by a medi
al expert. For the evaluation, we are interested in modelingthe region of the hip arti
ulation as well as the region with the non-spheri
altopology. Therefore, the observations are 
lipped to the region of interest. Inorder to do a 
ongruent 
lipping over all observations, the anatomi
al landmarkson the bones are used as referen
e (see �gure 5.15): The femur is 
lipped by ahorizontal plane 
utting 1mm below the tro
hanter minor. The hip bone is 
lipped



102 Chapter 5. Using the GGM-SSM as a Prior for Segmentation

Figure 5.14: Hip joint CTs: These images belong to the observations whi
h form thetraining data set.

Figure 5.15: Frontal view of the hipbone and anatomi
al landmarks. 1-Promontorium, 2-Spina ilia
a anterior superior, 3-Spina ilia
a anterior inferior,4-Eminentia iliopubi
o, 5-Symphyse, 6-Tro
hanter minor.

Figure 5.16: Hip joint observations. These examples from the training data set arelabeled to separate femur and hip bone stru
ture.
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d)

b) a) 
)
e)Figure 5.17: GGM-SSM for the hip joint. a) Mean shape. Deformation along the�rst (b,
) and se
ond (d,e) variation mode whi
h mainly a�e
t the bulging of thefemoral head, the torsion and size of the is
hium as well as the CCD angle.by a horizontal plane 
utting 5mm above the spina ilia
a anterior inferior. Theresults for some of the observations are depi
ted in �gure 5.16. The observationsare represented by around 7000 points (minimum 6544 points, maximum 7408points). In a prepro
essing step, a labeling of all observations to distinguish hipbone and femoral head is done where the femoral head is labeled with L = 1 andthe a
etabulum is labeled with L = 2. The GGM-SSM for the hip arti
ulation isbuilt using a training data set of 8 observations and the segmentation method isthen exemplarily tested on the remaining 3 hip joints.Hip joint GGM-SSM: For generating the GGM-SSM, �rst the bary
entresof all observations are aligned. Subsequently, the global 
riterion (equation (3.13))is optimized as elaborated in se
tion 3. The algorithm multi-s
ale parameters (asintrodu
ed in se
tion 3.6) are set to σ = 10mm, redu
tion fa
tor = 0.9, number ofiterations = 15. The resulting hip joint GGM-SSM 
an be seen in �gure 5.17 wherethe mean shape and the deformations a

ording to the �rst and se
ond modes ofvariation are depi
ted.Distribution Model: For our appli
ation on the estimation of pin and
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a) b)

) d)Figure 5.18: Estimated grey value density fun
tions for the inside (green) and theoutside (red) region of the 
lipped femur (a,
) and hipbone (b,d) using a Parzenwindow approa
h.

pout, again the Parzen window approa
h des
ribed in se
tion 5.1.1 is used. Theintensities are sampled around the bone surfa
es of our training data set whi
h are
oded by the Houns�eld s
ale. A Gaussian kernel and a width of h = 5 are used,see �gure 5.4.2. The intensity distributions for the inside and the outside of thebones greatly overlap espe
ially for the femoral head due to the 
olour of the bonemarrow whi
h resembles the ba
kground. This means that the information value ofthe grey value distribution prior for the segmentation is redu
ed.Set-Up: For the segmentation, the weights are set to α1 = 0.5, α2 = 0.5,
κ = 1, β = 0 and τ = {0.5, 0.8}. The 
artilage between a
etabulum and femoralhead measures at its thi
kest point around 4mm (and less in elderly people) and islow-
ontrasted in the images, so this region is very di�
ult to segment based onintensity distribution information alone. In order to a
tively draw the zero level settowards the bone boundaries, we additionally employ the boundary term and setthe boundary weight to η = 0.3. The fun
tion g is Gaussian with σ = 7mm. Thealgorithm is iterated 200 times.Results: For testing purposes, �rst we try to segment the hip arti
ulationusing the level set segmentation without shape prior employing the algorithm asproposed by S
hmidt-Ri
hberg et al. [S
hmidt-Ri
hberg 2009℄. As the grey valuesof the bone marrow greatly resemble the ba
kground in some regions, this leads tonon-satisfying results as the segmentation 
ontour sometimes looses its 
onne
tivity.An example for this behaviour is shown in �gure 5.19(a) and (b). By integrating
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a)

b) 
)Figure 5.19: Problemati
 region for segmentation. Figure a) shows a zoom on theis
hium stru
ture of the hip bone where the grey value intensities of bone marrowand ba
kground resemble and no 
lear boundary 
an be seen. b) Segmentation resultof level set segmentation without shape prior. 
) Segmentation result of level setsegmentation with shape prior.Table 5.2: Segmentation results. The table shows the mean surfa
e distan
e and theHausdor� distan
e of the �nal deformed SSM and the manual segmentation in mm.Pat. 1 Pat. 2 Pat. 3Femur Hipbone Femur Hipbone Femur Hipbonemean dist. in mm 3.0 2.9 3.5 3.0 2.1 3.1Hausdor� dist. in mm 11.6 12.5 15.8 16.8 16.4 14.3the shape prior, these problems 
ould be avoided (see �gure 5.19(
)). Two resultexamples with a 
lose-up on the arti
ulation region are shown in �gure 5.20. Theshape prior was able to su

essfully model the non-spheri
al topology formed bythe pubi
 bone and is
hium (see �gure 5.21(d))Be
ause of the femoral marrow, the zero level set of the impli
it fun
tion sometimes
reates holes inside the femoral stru
ture. Therefore, instead of the Di
e 
oe�
ient,the surfa
e distan
e between the deformed GGM-SSM and the expert segmentationis used to asses the evaluation results. These are depi
ted in table 5.2. The meandistan
e measures around 3mm whi
h seems to be a

eptable with regard to the lowquality of the data. The distan
es are illustrated for the hipbone and the femoralhead in �gure 5.21(a) and (b). It be
omes 
lear for patient 2 that the border ofthe a
etabulum posed a problem for the segmentation algorithm. This might bedue to the fa
t that the 
ontrast in that region is very low whi
h is shown in �gure5.21(
). Even for the expert, this region must have been very di�
ult to dete
t. Inorder to validate the results further, inter-individual variability evaluations shouldbe performed in a series with several medi
al experts.Overall, the results obtained in this experiment indi
ate that the method is wellsuited for two shape 
lass segmentation.
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a) b)

) d)Figure 5.20: Segmentation results. The images show a view on the segmentationon patient 1 (a,
) and patient 2 (b,d). The initial segmentation is shown in yellow(above) whereas the results are shown in green (below).
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a)

b)

) d)Figure 5.21: Segmentation Results. a) Surfa
e distan
es between gold standard anddeformed GGM-SSM after segmentation for the hipbones of patient 1, patient 2,patient 3. b) Surfa
e distan
es between gold standard and deformed GGM-SSM aftersegmentation for the femoral heads of patient 1, patient 2, patient 3. 
) Cut throughthe a
etabulum of patient 2 in CT image. The yellow ellipse marks the region withlow 
ontrast whi
h the segmentation method did not dete
t well as seen in image (
),middle hipbone. d) Deformed GGM-SSM (white points) during the segmentation ofthe hipbone (in purple).
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ussionA novel algorithm for automati
 segmentation of anatomi
al stru
tures wasproposed. The segmentation s
heme 
ouples an expli
itly represented SSM withan impli
itly represented segmentation 
ontour. This approa
h is new to ourknowledge of the literature on this subje
t and opens new insights on how to takethe best of both worlds. Impli
it segmentation methods o�er several advantagesover expli
it ones as no remeshing algorithms are needed, the integration of regionalstatisti
s is straightforward and �nally, they are very �exible to di�erent topologies.Furthermore, an impli
it formulation of the segmentation allows to easily takeadvantage of the 
apabilities presented by the GGM-SSM: It is able to modelnon-spheri
al and multiply-
onne
ted obje
ts as well as several obje
ts at on
e.Parametri
 deformable models are not well suited for su
h segmentation tasks.The evolving 
ontour of impli
it models, however, is able to split and mergenaturally and allows the simultaneous dete
tion of several obje
ts. In order to putthe impli
it representation within a uni�ed statisti
al framework, a maximum aposteriori estimation of a level set was developed. The MAP explanation leads to atwo-phase formulation whi
h is optimized based on the image information as wellas the GGM-SSM information about probable shapes. This approa
h is re�nedfurther by integrating prior knowledge about grey value distributions inside andoutside the organ in order to robustify against intensity inhomogeneities a
rosspatients as well as inside the respe
tive stru
tures.Segmentation experiments on kidney CTs impaired by breathing artefa
tsdemonstrated the e�
ien
y of the new algorithm. Adaptive weights ensure thatthe SSM 
onstraint is optimally exploited. The results show that the new methodworks well and improves for some 
ases the approa
h of using an un
onstrainedlevel set segmentation. Espe
ially when the intensity patterns of the organs 
loseby are similar to the organ of interest, the level set segmentation 
an leak andprodu
e erroneous results. The leakage problem of level set algorithms 
an be seenin di�erent segmentation tasks su
h as the prostate. The proposed algorithm o�ersa solution to this problem by in
luding the SSMs in a probabilisti
 framework su
hthat they bring robustness to the segmentation pro
ess.The method is then extended to multiple-stru
ture segmentation by intro-du
ing a level set fun
tion for ea
h stru
ture. The shape prior information howeveris modeled by a single GGM-SSM for all stru
tures simultaneously. During segmen-tation, the evolution of the di�erent level set fun
tions is linked and 
onstrained bythe multiple-shape GGM-SSM. Furthermore, by integrating a boundary term intothe energy fun
tional, the method is adapted to bone segmentation.First experiments on hip arti
ulation data indi
ate that the method is well suitedfor modeling and segmenting multiple obje
ts at on
e and also shows that theGGM-SSM is able to be employed as a shape prior for non-spheri
al anatomies asshown on the example of is
hium and pubi
 bone. Inherently, impli
it segmentationte
hniques are sensitive to the initial pla
ement. This problem gets worse forsegmentation of stru
tures lying 
lose-by whose intensities are 
lose. In 
ase of the
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ussion 109hipbone arti
ulation segmentation, the grey value distributions from femoral headand hip bone are very similar (see �gure 5.4.2). This means that the segmentationwill fail if the automati
 initial pla
ement positions the initial femoral stru
tureinside the hip stru
ture or vi
e versa. Therefore, the initial pla
ement has to be
ontrolled 
arefully.Even from a low number of samples a prior on the probabilities 
an be ex-tra
ted so that no huge training data set is ne
essary. From a theoreti
al point ofview, a very powerful feature of this method is that a unique 
riterion is optimized.However, the pra
ti
al 
onvergen
e rate has to be investigated more 
arefully as itdepends on the 
hoi
e of weights in the fun
tional as well as the varian
e σ2
Θ whi
h
ontrols the probability of o

urren
e with respe
t to the SSM. In the 
ase of anorgan shape whi
h di�ers greatly from the shapes in the training data set for theSSM, a great sigma is needed in order to not 
onstrain the 
ontour evolution toomu
h (as e.g. for Pat. 1, �gure 5.12(a)), so σΘ is momentarily used somewhat asintera
tive parameter whi
h is not the optimal solution. Furthermore, the MAPformulation 
ould be re�ned by integrating a priori knowledge about the expe
tedvolume V0 whi
h is given by the probability p(φ|V0) where V0 
an be determinedby evaluating the training data set.Con
erning the method for multiple-stru
ture segmentation, the implementation is
urrently done using one energy fun
tional for ea
h 
ontour. This approa
h 
ouldbe improved by formulating a single energy fun
tional 
ontaining all independentlevel set fun
tions as parameters. The obligatory 
onstraint whi
h forbids anoverlap of the independent 
ontours 
ould then be integrated as side 
ondition.Overall, to 
onsolidate the results of multiple-stru
ture segmentation, a moreelaborate evaluation on a bigger data set is needed.
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Chapter 6Con
lusion
Contents6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1116.2 Perspe
tives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115Statisti
al shape models play an important role in medi
al image analysis, and awide range of methods well adapted to various appli
ations exists in the literature.The emphasis of this thesis however was not so mu
h to propose a 
onvenient SSMto solve a spe
i�
 pra
ti
al problem but to investigate the possibilities of a novelapproa
h to SSM 
omputation. The fo
us of this manus
ript is twofold: First, anovel SSM method was developed in a probabilisti
 framework. Then, by takingadvantage of the parti
ular 
hara
teristi
s of the probabilisti
 SSM, it was integratedinto an impli
it segmentation s
heme. Both parts were formulated on a soundtheoreti
al foundation and feature new views on well-known problems.In this 
hapter, the 
ontributions developed in the 
ourse of this manus
ript arereviewed and an outlook on possible future resear
h on the subje
t is given.6.1 Contributions6.1.1 Model ComputationAs a �rst step on the path to a novel SSM 
omputation method, an a�ne extensionof the Expe
tation Maximization - Iterative Closest Point registration algorithmwas proposed whi
h dire
tly yields a solution to the fundamental 
orresponden
eproblem. Here, the observations are represented by unstru
tured point 
louds, andea
h observation point is modeled as a noised measurement of the model points.This approa
h a
tually amounts to representing the surfa
e of the shapes by amixture of Gaussians. The probabilisti
 
on
ept o�ers an intuitive and 
oherent wayto determine 
orresponden
es between smooth organ surfa
es as well as betweenshapes where not all observations feature the same prominent shape details. Itshould be noted that the SoftAssign algorithm [Rangarajan 1997a℄ o�ers a relatedprobabilisti
 formulation but is only justi�ed for a pair-wise registration, not for thegroup-wise model to observation registration whi
h is required for building the SSM.The introdu
tion of probabilisti
 
orresponden
es gives way to a large 
ontribu-tion of this thesis whi
h is the development of a sound mathemati
al framework forSSM 
omputation presented in 
hapter 3 and [Hufnagel 2007b, Hufnagel 2008b℄.To realize this, the SSM problem has been viewed from the new angle of generative
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lusionmodels: Given a set of observations, it has been sought for the model whi
h mostprobably generated those observations. As the model itself is modeled as a randomvariable des
ribed by a Gaussian distribution, a maximum a posteriori estimationof the whole s
ene has been formulated. Here, observation and model parameterswere uni�ed in one global 
riterion whi
h has not been done before to the author'sknowledge. It 
ould be shown that the optimization of the 
riterion led to 
losedform solutions for all parameters ex
ept the variation modes whi
h are e�
ientlysolved for iteratively. Sin
e the SSM 
omputation is done by optimizing a global
riterion, a theoreti
al 
onvergen
e of the algorithm is ensured. Furthermore, in
ontrast to methods using the prin
ipal 
omponent analysis, the variation modesof the SSM presented here only model the shape variation and not the noisewhi
h is represented separately through the Gaussian Mixture. This implies apossible answer to modeling the un
ertainties inherent to surfa
e representations ofsegmented organs.
Apart from the methodologi
al 
ontributions, the GGM-SSM resulting from thenew 
omputation algorithm itself signi�
antly adds to the state-of-the-art. A mainadvantage is the simpli
ity of the point-based SSM with respe
t to its power. Theappli
ation to an arbitrary training data set is straightforward sin
e no prepro
ess-ing to establish 
orresponden
es is needed, and the point numbers from observationto observation as well as the point density may vary. As the 
onne
tivity betweenpoints does not play a role, the GGM-SSM is very �exible to di�erent kinds of topolo-gies and therefore well-suited to model non-spheri
al or multiply-
onne
ted obje
tsas well as several obje
ts at on
e. The superior quality of the GGM-SSM 
omparedto a 
lassi
al point-based SSM 
omputed under the use of the iterative 
losest pointalgorithm and a prin
ipal 
omponent analysis (ICP-SSM) 
ould be demonstrated onsyntheti
 and real data sets as presented in 
hapter 4 and [Hufnagel 2009a℄. Whilethe ICP-SSM is a faster method, the GGM-SSM reliably su

eeded in 
apturingshape details as well as extreme shape variations whi
h were lost for the ICP-SSM.Throughout this thesis, the 
on�den
e in surfa
e information for SSM 
omputationis 
onsidered arguable as these are only approximations of the true surfa
es. Never-theless, in pra
ti
e surfa
e-based SSMs obtain useful results. In order to pla
e thenew approa
h in the literature, a 
omparison of a MDL-SSM and the GGM-SSMwas performed on a syntheti
 data set whi
h proved to be a di�
ult endeavour as a
omparable metri
 had to be de�ned. Finally, the results were evaluated using theJa

ard 
oe�
ient for whi
h surfa
es had to be approximated for the GGM-SSM re-sults. The experiments showed that the GGM-SSM almost rea
hed the performan
eof the MDL-SSM. The di�eren
e is probably due to the fa
t that in the MDL-SSMpoints are allowed to freely move over the surfa
es so that the results do not dependon the original point distribution in the observation meshes. Unlike the GGM-SSMhowever, the MDL-approa
h is 
onstrained to surfa
e representations for spheri
altopologies.
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ant 
ontribution of this thesis lies in the development of a novelsegmentation algorithm as presented in 
hapter 5 and [Hufnagel 2009
℄. The algo-rithm integrates an expli
itly represented shape prior into an impli
it segmentations
heme.Most impli
it segmentation s
hemes whi
h make use of shape priors do statisti
son signed distan
e maps whi
h do not 
onstitute a linear spa
e. Furthermore,the prin
ipal 
omponents of impli
it shape models des
ribe the variability ofthe distan
e maps but not the variation of the embedded 
ontours. Therefore,understanding the variability information on distan
e fun
tions is not obvious.In 
ontrast, the variability model of a parametri
 SSM en
odes the variation forea
h point of the model whi
h allows a dire
t physi
al interpretation of the shapevariability.The obje
tive in this work was to exploit the advantages o�ered by impli
it segmen-tation methods without relinquishing the bene�ts given by expli
itly representedSSMs. Sin
e the GGM-SSM was formulated in maximum a posteriori explanationand is 
omputed in a probabilisti
 formulation, its integration into an impli
itsegmentation framework 
ould be realized quite elegantly: A maximum a posterioriestimation of a level set fun
tion whose zero level set best separates the organfrom the ba
kground was formulated under a shape 
onstraint introdu
ed by theGGM-SSM. This led to an energy fun
tional whi
h was optimized in a two-phaseformulation alternating a gradient des
ent with respe
t to the embedding levelset fun
tion and the GGM-SSM deformations. The 
oupling between point-basedstatisti
al shape models and level sets is new to our knowledge of the literatureand opens new insights on how to take the best of both worlds. From a theoreti
alpoint of view, a very powerful feature of the method is that a unique 
riterion isoptimized, thus, the 
onvergen
e is ensured. Due to the impli
it formulation ofthe approa
h, new a priori knowledge or 
onstraints 
an be taken into a

ountas needed for spe
i�
 appli
ations. This was exemplarily demonstrated by theintegration of a boundary term into the energy fun
tional.As demonstrated further, the segmentation method 
ould be adapted tomultiple-obje
t segmentation in a straightforward manner. The shape and lo
ationrelations of an anatomi
al stru
ture with regard to their neighbouring stru
turesare interesting information to be used as a-priori knowledge in a segmentationpro
ess in order to render the result more robust. For the segmentation algorithm,a separate level set fun
tion was de�ned for ea
h obje
t. Their spatial evolutionsduring segmentation were then linked and 
onstrained by a single GGM-SSM whi
hmodels all involved obje
ts in one shape prior. This 
onstitutes another s
ienti�

ontribution not yet published elsewhere.Evaluations on kidney data showed that the integration of the shape prior intothe level set segmentation o�ers a solution to the typi
al impli
it segmentationproblem of leakage and su
h brings robustness to the segmentation pro
ess. A �rstevaluation on hip arti
ulation data indi
ated the well-posedness of the new method
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lusionto multiple-obje
t segmentation and segmentation of obje
ts featuring non-spheri
altopology.
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tives 1156.2 Perspe
tives6.2.1 ParametersThe role of the adjustable parameters in both the SSM method and the segmen-tation method should be subje
t to further resear
h. Up to now, the parametervalues are determined largely heuristi
ally whi
h is not an optimal approa
h.SSM Computation: Sin
e the EM-ICP registration is implemented in amulti-s
ale framework, the three parameters 'initial varian
e', 'redu
tion fa
tor'and 'number of iterations' (or �nal varian
e respe
tively) have to be �xed be-forehand. The experiments 
ondu
ted during the resear
h for this thesis suggestthat a good 
hoi
e for the �nal varian
e is a value whi
h lies in the order of thesquared average point distan
e of the observations. The 
hoi
e for the initialvarian
e depends on the shape di�eren
es in the training data set. In general, aslower redu
tion of varian
e redu
es the risk of freezing in a lo
al minimum duringoptimization. However, in pra
ti
e a reasonable balan
e between 
omputationaltime and that risk has to be found. In theory, these parameters 
ould be modeledin a probabilisti
 formulation. By doing so, the EM-ICP parameters might be
omepart of the optimization pro
ess in the SSM 
omputation and be integrated into themaximum a posteriori estimation presented in 
hapter 3 as additional observationparameters.Segmentation: In the segmentation methods, weighting 
oe�
ients are em-ployed to 
ontrol the in�uen
e of the di�erent terms in the energy fun
tional aspresented in 
hapter 5. As the energy fun
tional is derived by a MAP explanation,in theory all 
oe�
ients should be equal to 1. Expanding on this probabilisti
analogy, the traditional 
oe�
ients of the variational methods 
an be seen aspowering fa
tors whi
h �atten or peak the density distributions. While the free
hoi
e of weights renders the algorithm �exible to di�erent segmentation demands,it also requires a 
ertain user-intera
tion whi
h should be redu
ed. This 
ould bedone by evaluating the in�uen
e of ea
h term and espe
ially the relations betweendi�erent terms on a set of standard segmentation problems. For example, theexperiments 
ondu
ted in the 
ourse of this thesis suggest that a smoothing termbe
omes obsolete if the SSM term is weighted noti
eably.Furthermore, it would be of interest to investigate an approa
h were the weightsare no longer represented by s
alars but by spatial fun
tions. This would allowan adaption of the impa
t of the respe
tive terms to lo
al image 
hara
teristi
s.Needless to say, the task of de�ning good weights would be
ome even more 
omplexbut it 
ould make sense to try for 
ertain spe
i�
 appli
ations.6.2.2 Appli
ationThe segmentation method presented in the 
ourse of this thesis joins the advantagesof expli
itly represented shape priors and the advantages of impli
it segmentations
hemes. The algorithm is therefore very �exible to di�erent kinds of segmenta-tion problems. Espe
ially multiple-obje
t segmentation is of interest as not many
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lusionapproa
hes exist in that domain. Possible appli
ations are the segmentation oflung and other organs at risk supporting the radiotherapy planning for lung tu-mors. Typi
ally, the lung movement during inspiration and expiration in�uen
esthe movement and deformations of the organs lying 
lose by as for example theliver. The new segmentation method o�ers an easy integration of regional statisti
s.The grey value distributions of the lung and the grey value distributions of the liver
ould be sampled and modeled separately. The shape prior on the other hand 
ould
omprise the lung and the liver in a single GGM-SSM. By adjusting the in�uen
eof the respe
tive terms in the energy fun
tional, the segmentation pro
ess 
an beadapted to the demands of the spe
i�
 patient's images. For example in imagesfeaturing noise or low 
ontrasts, the shape prior term weights 
ould be turned upwith respe
t to the weights of the image information term, so a robust segmentationshould be possible. First experiments are 
urrently done in 
ooperation with thegroup around J. Ehrhardt from the University Medi
al Center Hamburg-Eppendorf.6.2.3 Related WorkFor further resear
h in shape modeling it would be worthwhile to study the mathe-mati
al relations of the Gaussian mixture model proposed here and the 
on
ept ofanother generative statisti
al model without one-to-one 
orresponden
es as re
entlyproposed by Durrleman et al. [Durrleman 2009℄. Similarly to the method presentedin this thesis, they interprete the shape observations as randomly generated bythe model and formulate the model 
omputation in a maximum a posterioriexplanation. However in their approa
h, the similarity of shapes is measured by adistan
e on 
urrents that does not assume any type of point 
orresponden
es.Con
erning the segmentation algorithm, an interesting approa
h was proposedby Raviv et al. [Raviv 2009℄ whi
h is also developed in a probabilisti
 framework.An energy fun
tional similar to the one presented in this thesis is optimized for theimpli
itly represented segmentation 
ontour. However, their approa
h is designedfor group-wise segmentation and 
hooses a generative method where the unknownsegmentation 
ontours are interpreted as randomly generated by the shape prior.As a novelty, the shape prior (des
ribed by an atlas) is integrated as an additionalunknown parameter whi
h is inferred from the data set through an alternating opti-mization of the fun
tional. This idea 
ould be extended by repla
ing the impli
itlyrepresented atlas with an expli
itly represented SSM whi
h o�ers a physi
ally inter-pretable variability model. As the GGM-SSM already is 
omputed in a probabilisti
formulation in a generative method, the extension of the segmentation algorithmpresented here to a generative segmentation algorithm should be quite dire
t.6.2.4 OtherIn 
hapter 4, the problems of the SSM performan
e measure 'spe
i�
ity' were illus-trated. In general, a fair 
omparison of di�erent SSM methods is di�
ult. First, thequality of SSMs is strongly related to the quality of 
orresponden
e determination.However, no gold standards for 
orresponden
es exist. Se
ondly, the 
omparison of
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tives 117SSMs based on di�erent representations is a 
hallenge as most metri
s will inher-ently favor one or the other SSM. In the 
ase shown in this thesis, a surfa
e-basedSSM was 
ompared to the point-based GGM-SSM. As a volume overlap metri
 wasdeemed to be more meaningful than point distan
es in the respe
tive experiments,a surfa
e had to be approximated for the GGM-SSM. Naturally, the a

ura
y of thebinary representation then depended on the quality of the approximated surfa
eswhi
h means that the evaluation results have to be taken with a pin
h of salt.An interesting approa
h to ta
kle the problem of �nding a 
orresponden
e-independent ben
hmark has re
ently been proposed by Munsell et al. who introdu
ea ground truth SSM [Munsell 2008℄ for 2D evaluation. The proposed ben
hmark�rst generates a syntheti
 training data set by randomly sampling a given SSM thatde�nes a ground-truth shape spa
e. The quality of a new SSM 
omputed on thetraining data set is evaluated by 
omparing its shape spa
e against the ground-truthshape spa
e. An extension of the algorithm to 3D SSMs should be straightforward.Furthermore, the approa
h 
ould be extended to a general framework whi
h alsoallows an equitable 
omparison of SSMs based on di�erent representations.
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Appendix AMathemati
al Ba
kground
A.1 Mathemati
al PrepositionsSingular Value De
omposition (SVD)Any real matrix A ∈ R

m×n 
an be de
omposed into
A = UΣV Twith U being an orthogonal matrix U ∈ R

m×m, V T being the transpose of theorthogonal matrix V ∈ R
n×n and Σ being a diagonal matrix Σ ∈ R

m×n with thesingular values σi on the diagonal in des
ending order σ1 ≥ σ2 ≥ ... ≥ σmin(m,n).This singular values are all non-negative.However, the number of non-zero values in Σ is less or equal than min(m,n). Forthe following let us assume n < m. By arranging the information given by the SVDin the optimal way we 
an save a lot of disk spa
e by redu
ing the matrix dimensionsto
A = Ũ Σ̃Ṽ Twith Ũ ∈ R

m×n, Ṽ ∈ R
n×n and Σ̃ ∈ R

n×n.The singular values and asso
iated pairs of singular ve
tors u and v of a matrix Asatisfy
Avi = σiuiand
ATui = σivi.In a geometri
 sense this means that for every re
tangular matrix we 
an �ndan orthogonal basis V of whi
h ea
h i-th ve
tor vi is mapped to a non-negativemultipli
ative of the i-th ve
tor of a orthogonal basis U (if n > m it is Avi = 0 for

i > m).The singular values σi of a matrix A are the square roots of the eigenvalues of ATA.Eigenvalue De
omposition Using the Ja
obi MethodA real symmetri
 matrix A ∈ R
n×n has always real eigenvalues and orthogo-nal eigenve
tors. A 
an then be written as
A = USUT
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al Ba
kgroundwhere S ∈ R
n×n is a diagonal matrix whi
h 
ontains the eigenvalues of A on itsdiagonal, and U ∈ R

n×n is 
omposed of the eigenve
tors of A and is thereforeorthogonal. This formulation of A is 
alled spe
tral or eigen de
omposition.In order to 
al
ulate the pseudoinverse A+ for a symmetri
 matrix, we 
an use theeigenvalue de
omposition instead of the SVD as
AA+A = USUTUS+UTUSUT

= USUTUS+SUT

= USUTUUT

= USUT

= A.The Ja
obi method is an iterative algorithm for �nding all eigenpairs for a symmetri
matrix A ∈ R
n×n. For small matri
es, the Ja
obi method gives uniformly a

urateresults 
omparable to the QR algorithm. The algorithm determines the sequen
e oforthogonal matri
es U1, U2, ..., Un and the sequen
e S0, S1, ... as follows:

S0 = A

Sk = UT
k Sk−1Uk.The sequen
e U1, U2, ..., Un is 
onstru
ted in a way that

lim
k→∞

Sk = S = diag(λ1, λ2, ..., λn)with λ1, λ2, ..., λn being the eigenvalues of A.The algorithm generates
Sn = UT

n U
T
n−1...U

T
1 AU1U2...Un.As all Uk are orthogonal, we 
an write

A = U1U2...UnSnU
T
n U

T
n−1...U

T
1 .For n → ∞ we obtain Sn = S, and hen
e U = U1U2...Un represents the matrix ofeigenve
tors of A whi
h gives the eigenvalue de
omposition

A = USUT .In pra
ti
e, the algorithm is stopped when the o�-diagonal elements of S are 
loseto zero.The eigenvalue de
omposition using the Ja
obi method 
an also be appliedto the 
omputation of the pseudo-inverse A+ of the real symmetri
 matrix A.
A+ = US+UT .The 
omputation of S+ 
an be done dire
tly by repla
ing every non-zero entry in Swith its re
ipro
al and then transposing the resulting matrix.
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i�
 
ase of the EM-ICP 121A.2 The ICP as a spe
i�
 
ase of the EM-ICPWe want to take a 
loser look at the 
omputation of the expe
tation of the 
orrespon-den
e probabilities as de�ned in equation (3.15). This formulation is numeri
allyunstable, so we reformulate it to
EHij

=
exp(−µ(si, T ⋆ mj))

∑

k exp(−µ(si, T ⋆ mk))

=
1

1 +
∑

k 6=j exp(µ(si, T ⋆ mj)− µ(si, T ⋆ mk))
. (A.1)If we assume homogeneous and isotropi
 Gaussian noise with the varian
e σ2, equa-tion (A.1) 
an be written as

EHij
=

1

1 +
∑

k 6=j exp
(

(si−T⋆mj)2−(si−T⋆mk)2

2σ2

) =
1

1 +
∑

k 6=j rijk
.

lim
σ2→0

rijk =

{
0 if (si − T ⋆ mj)

2 < (si − T ⋆ mk)
2

+∞ if (si − T ⋆ mj)
2 > (si − T ⋆ mk)

2 .We see that
lim

σ2→0
EHij

=

{
1 if (si − T ⋆ mj)

2 < (si − T ⋆ mk)
2

0 if (si − T ⋆ mj)
2 > (si − T ⋆ mk)

2so the expe
tation value for the 
orresponden
e between two points si and mj is 1if and only if mj is the 
losest point to si. For all other points mk with k 6= j theexpe
tation value of the 
orresponden
e be
omes 0. This shows that the EM-ICPalgorithm behaves like the ICP algorithm for small varian
es.A.3 Mathemati
al Derivations Chapter 3Derivative of the Se
ond Term for the Global CriterionBy optimizing the global 
riterion in equation (3.13) alternately with respe
tto the operands in {Q,Θ}, we are able to determine all parameters we areinterested in. As some terms re
ur in the di�erent optimizations, we will introdu
ethe following notations for simpli�
ation reasons:The derivative of the se
ond term of the global 
riterion is always performed in thesame manner. We will demonstrate the appli
ation of 
hain and produ
t rule andthen name the resulting terms. The derivative of
ξkij(Tk,Ωk, M̄ , vp, λp) = log

Nm∑

j=1

exp

(

−
‖ski − Tk ⋆ mkj‖

2

2σ2

)
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al Ba
kgroundwith respe
t to one of the fun
tion's parameters (let's say x) is found as follows:
∂ξ(x)

∂x
= log(u(x))

=
1

u(x)

∂u(x)

∂x
,

u(x) =

Nm∑

j=1

exp

(

−
‖ski − Tk ⋆ mkj‖

2

2σ2

)

.

∂u(x)

∂x
=

Nm∑

j=1

exp(f(x))
∂f(x)

∂x
, (A.2)

f(x) = −
‖ski − Tk ⋆ mkj‖

2

2σ2
.

∂f(x)

∂x
= −

∂

∂x

(ski − Tk ⋆ mkj)
T (ski − Tk ⋆ mkj)

2σ2

= −
(ski − Tk ⋆ mkj)

T

σ2

∂(ski − Tk ⋆ mkj)

∂xSo we �nd the re
urring derivative with
∂ξ

∂x
= −

Nm∑

j=1

exp
(

−
‖ski−Tk⋆mkj‖2

2σ2

)

∑Nm

l=1 exp
(

−‖ski−Tk⋆mkl‖2

2σ2

)
(ski − Tk ⋆ mkj)

T

σ2

∂(ski − Tk ⋆ mkj)

∂x
.By denoting the weight introdu
ed by the 
orresponden
e probabilities with

γijk =
exp

(

−
‖ski−Tk⋆mkj‖2

2σ2

)

∑Nm

l=1 exp
(

−‖ski−Tk⋆mkl‖2

2σ2

)the derivative is simply written as
∂ξ

∂x
= −

Nm∑

j=1

γkij
(ski − Tk ⋆ mkj)

T

σ2

∂(ski − Tk ⋆ mkj)

∂x
. (A.3)

Optimization with Respe
t to the A�ne MatrixWe have to solve the derivative of the 
riterion C ′
k(Qk,Θ) with respe
t to

Ak. Here, we use the derivative form shown in equation (A.2) and hen
edi�erentiate f(x) with respe
t to Ak:
∂C ′

k(Qk,Θ)

∂Ak
= −

Nk∑

i=1

Nm∑

j=1

γkij
∂

∂Ak

‖s′ki −Akm
′
kj‖

2

2σ2
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∂

∂Ak
‖siki −Akm

′
kj‖

2 =
∂

∂Ak
(s′ki −Akm

′
kj)

T (s′ki −Akm
′
kj)

=
∂

∂Ak
(s

′T
ki s

′
ki − s

′T
kiAkm

′
kj − (Akm

′
kj)

T s′ki − (Akm
′
kj)

TAkm
′
kj)

=
∂

∂Ak
(s

′T
ki s

′
ki − s

′T
kiAkm

′
kj − s

′T
kiAkm

′
kj +m

′T
kjA

T
kAkm

′
kj).Setting the derivative to zero, we �nd

∂C ′
k(Qk,Θ)

∂Ak
= 0

⇔ Ak

Nk∑

i=1

Nm∑

j=1

γkijm
′
kjm

′T
kj =

Nk∑

i=1

Nm∑

j=1

γkijs
′
kim

′T
kj

⇔ AkΥk = Ψk, Υk,Ψk ∈ R
3×3.

Optimization with Respe
t to the Deformation Coe�
ientsFor the derivative of the se
ond term of the 
riterion, again the general derivativedes
ribed in equation (A.3) is employed:
∂Ck(Qk,Θ)

∂ωkp
=

ωkp

λ2
p

+

Nk∑

i=1

Nm∑

j=1

γkij
(ski − Tk ⋆ mkj)

T

σ2

∂(ski − Tk ⋆ mkj)

∂ωkp

=
ωkp

λ2
p

+

Nk∑

i=1

Nm∑

j=1

γkij
(ski − Tk ⋆ mkj)

T

σ2

∂(ski − tk −Akmkj)

∂ωkp
.As we know mkj = m̄j +

∑n
q=1 ωkqvqj we di�erentiate

∂(ski − tk −Akmkj)

∂ωkp
=

∂

∂ωkp
(ski − tk −Ak(m̄j +

n∑

q=1

ωkqvqj))

= −Akvpj.and �nally �nd
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λ2
p

−
1
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Nk∑

i=1

Nm∑

j=1

γkij(ski − T ⋆ mkj)
TAkvpj.Setting ∂Ck(Qk,Θ)

∂ωkp
= 0 leaves us with the following three 
omponents:

0 =
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ωkp −

Nk∑
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T
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al Ba
kgroundThe solution of this equation with respe
t to all ωkp is then done by swit
hing to amatrix notation.A.4 Mathemati
al Derivations Chapter 5In this se
tion we present some mathemati
al rules whi
h were used for the deriva-tives of the energy terms in se
tion 5.2.3.A.4.1 Divergen
e Cal
ulusWe denote div(V ) as the divergen
e of the 
ontinuously di�erentiable ve
tor �eld
V . The divergen
e in the 3D Eu
lidian spa
e is de�ned as the s
alar valued fun
tion

div(V ) =
∂Vx

∂x
+
∂Vy

∂y
+
∂Vz

∂z
.The result is invariant under orthogonal transformations.For several derivative steps in se
tion 5.2.3, we need the following produ
t rule:

div(g · V ) = g · div(V )+ < ∇g , V > (A.4)or in integral form
∫

Ω
div(g · V ) =

∫

Ω
g · div(V ) +

∫

Ω
< ∇g , V > . (A.5)We denote ∇g as the gradient of the s
alar �eld g. ∇g is a ve
tor �eld with ea
hve
tor pointing in the dire
tion of the steepest slope. The steeper the slope, thelonger the asso
iated ve
tor.

∇g =









∂g
∂x1

∂g
∂x2...
∂g

∂xn









.We also know that the integral of the divergen
e of a ve
tor �eld equals the proje
-tion of that �eld on the normal ve
tors n at the edge (the integral of the surfa
eboundary):
∫

Ω
div(g · V ) =

∫

∂Ω
< g · V , n > dn.This means that

∫

Ω
g · div(V ) +

∫

Ω
< ∇g , V >=

∫

∂Ω
< g · V , n > dn. (A.6)Besides, assuming that there are no obje
ts outside the image, we know that

∫

∂Ω < g · V , n > dn = 0 whi
h leaves us in that 
ases with
∫

Ω
g · div(V ) = −

∫

Ω
< ∇g , V > .
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al Derivations Chapter 5 125A.4.2 Helpful DerivationsThis derivation is used for the di�erentiation of the shape prior term in se
tion 5.2.3.
|x+ ηy| =

√

(x+ ηy)2

=
√

|x|2 + 2ηxT y + η2|y|2

= |x|

√

1 + 2η
xT y

|x|2
+ η2

|y|2

|x|2

= |x|(1 + η
xT y

|x|2
+O(η2))

= |x|+ η
xT y

|x|
+O(η2). (A.7)The transfer from line 3 to line 4 makes use of a binomial series.
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