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Abstract

This thesis centers on the development of a point-based statistical shape model
relying on correspondence probabilities in a sound mathematical framework. Further
focus lies on the integration of the model into a segmentation method where a
novel approach is taken by combining an explicitly represented shape prior with an
implicitly represented segmentation contour.

In medical image analysis, the notion of shape is recognized as an important fea-
ture to distinguish and analyse anatomical structures. The modeling of shape reali-
zed by the concept of statistical shape models constitutes a powerful tool to facilitate
the solutions to analysis, segmentation and reconstruction problems. A statistical
shape model tries to optimally represent a set of segmented shape observations of
any given organ via a mean shape and a variability model. A fundamental challenge
in doing statistics on shapes lies in the determination of correspondences between
the shape observations. The prevailing assumption of one-to-one point correspon-
dences seems arguable due to uncertainties of the shape surface representations as
well as the general difficulty of pinpointing exact correspondences.

In this thesis, the following solution to the point correspondence problem is
derived: For all point pairs, a correspondence probability is computed which amounts
to representing the shape surfaces by Mixtures of Gaussians. This approach allows
to formulate the model computation in a generative framework where the shape
observations are interpreted as randomly generated by the model. Based on that, the
computation of the model is then treated as an optimization problem. An algorithm
is proposed to optimize for model parameters and observation parameters through
a single maximum a posteriori criterion which leads to a mathematically sound and
unified framework.

The method is evaluated and validated in a series of experiments on synthetic
and real data. To do so, adequate performance measures and metrics are defined
based on which the quality of the new model is compared to the qualities of a
classical point-based model and of an established surface-based model that both
rely on one-to-one correspondences.

A segmentation algorithm is developed which employs the a priori shape know-
ledge inherent in the statistical shape model to constrain the segmentation contour
to probable shapes. An implicit segmentation scheme is chosen instead of an ex-
plicit one, which is beneficial regarding topological flexibility and implementational
issues. The mathematically sound probabilistic shape model enables the challenging
integration of an explicit shape prior into an implicit segmentation scheme in an
elegant formulation. A maximum a posteriori estimation is developed of a level set
function whose zero level set best separates the organ from the background under a
shape constraint introduced by the model. This leads to an energy functional which
is minimized with respect to the level set using an Euler-Lagrangian equation. Sin-
ce both the model and the implicitly defined contour are well suited to represent
multi-object shapes, an extension of the algorithm to multi-object segmentation
is developed which is integrated into the same probabilistic framework. The novel
method is evaluated on kidney and hipjoint segmentation.






Zusammenfassung

Ein probabilistisches Framework
tiir punktbasierte Formmodellierung
in der medizinischen Bildanalyse

Die vorliegende Doktorarbeit konzentriert sich auf die Entwicklung eines auf Kor-
respondenzwahrscheinlichkeiten beruhenden punktbasierten statistischen Formmo-
dells in einem mathematisch fundierten und geschlossenen Framework. FEin weiterer
Schwerpunkt liegt in der Integration des entwickelten Modells in eine Segmentie-
rungsmethode. Hier wird ein neuartiger Ansatz vorgestellt, in welchem explizit defi-
niertes Formwissen mit einer implizit definierten Segmentierungskontur kombiniert
wird.

In der medizinischen Bildanalyse gilt der Begriff der Form als wichtiges Merkmal
fiir die Erkennung und die Analyse anatomischer Stukturen. Die Formmodellierung
mittels des Konzeptes der statistischen Formmodelle verkorpert ein méachtiges Werk-
zeug, welches zu Losungen fiir Analyse-, Segmentierungs- und Rekonstruktionspro-
bleme beitrégt. Ein statistisches Formmodell versucht, einen Satz von segmentierten
Formbeobachtungen eines gegebenen Organs optimal durch eine mittlere Form und
ein Variabilitdtsmodell zu représentieren. Eine grofe Herausforderung fiir jeglichen
statistischen Ansatz stellt hierbei die Bestimmung von Korrespondenzen zwischen
den Formen dar. Die iibliche Annahme von 1-zu-1 Korrespondenzen ist problema-
tisch aufgrund der Unsicherheiten die Genauigkeit der Segmentierung betreffend als
auch aufgrund der allgemeinen Schwierigkeit, exakte Korrespondenzen zu lokalisie-
ren.

In dieser Arbeit wird als Losung fiir das Punkt-Korrespondenzproblem eine Kor-
respondenzwahrscheinlichkeit fiir alle Punktepaare berechnet. Dies bedeutet, daf
die Formoberflichen durch Gauf’sche Mischverteilungen reprasentiert werden. Diese
Herangehensweise erlaubt eine Formulierung der Modellberechnung in einem gene-
rativen Rahmen, in dem die Beobachtungen als zuféllig durch das Modell generier-
te Stichproben interpretiert werden. Darauf aufbauend wird die Modellberechnung
als Optimierungsproblem behandelt. Es wird ein Algorithmus zur Berechnung der
Modell- und Beobachtungsparameter in einem einzigen Maximum-A-Posteriori Kri-
terium vorgeschlagen. Dies fiihrt zu einem mathematisch fundierten und geschlos-
senen Framework.

Die Methode wird in einer Experimentserie an synthetischen und realen Daten
evaluiert und validiert. Dafiir werden adédquate Leistungsmafie und Metriken defi-
niert, anhand derer die Qualitdt des neuen Modells mit den Qualititen eines klas-
sischen punktbasierten Modells und eines etablierten oberflichenbasierten Modells,
die beide auf 1-zu-1 Korrespondenzen beruhen, verglichen wird.

Es wird ein Segmentierungsalgorithmus entwickelt, welcher das im Modell ent-
haltene Vorwissen iiber die Formen einsetzt, um die Segmentierungskontur auf wahr-
scheinliche Formen zu beschrinken. Statt eines expliziten wird ein impliziter Seg-
mentierungsansatz gewéhlt, da dieser in Bezug auf topologische Flexibilitdt und
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Implementierungsfragen Vorteile aufweist. Das mathematisch fundierte probabili-
stische Formmodell ermoglicht auf elegante Weise die anspruchsvolle Integrierung
von explizit représentiertem Vorwissen iiber die Form in einen impliziten Segmentie-
rungansatz. Es wird eine Maximum-A-Posteriori Schitzung einer Levelsetfunktion
so formuliert, daf das zugehorige Zero-Levelset das zu segmentierende Organ un-
ter Einbeziehung der Formbeschrinkung, die durch das Modell gegeben ist, optimal
vom Hintergrund trennt. Dies fiihrt zu einem Energiefunktional, welches unter Nut-
zung der Euler-Lagrange-Gleichung in Richtung der Levelsetfunktion differenziert
wird. Da sowohl das Modell als auch der Segmentierungsansatz gut geeignet sind fiir
die Beschreibung von Formen, die aus mehreren Objekten bestehen, wird eine Er-
weiterung des Algorithmus zu einer Multi-Objekt-Segmentierung entwickelt und in
die gleiche probabilistische Formulierung integriert. Der Segmentierungalgorithmus
wird an Nierendaten und Hiiftgelenkdaten evaluiert.



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . .. 1
1.2 Objectives . . . . . . . 2
1.3 Structure of Manuscript . . . . . . . .. ... Lo 3
1.4 List of Publications . . . . . . . . . . .. ... ... .. ... 6

2 Current Methods in Statistical Shape Analysis 9
2.1 Shape Modeling in Medical Imaging . . . . . . ... ... ... ... 9
2.1.1 Shape Analysis . . . . . . . . ... 9
2.1.2 Doing Statistics on Shapes . . . . . .. . ... ... ... 11

2.2 The Correspondence Problem . . . . . . . ... ... ... . ..... 12
2.2.1 Iterative Closest Point Algorithm . . . . .. ... ... .. .. 13
2.2.2  Spherical Harmonic Description . . . . . . .. .. .. ... .. 15

2.3 Computation of Statistical Shape Models . . . . . . ... ... ... 17
2.3.1 Active Shape Models . . . . . . . .. ... L. 17
2.3.2  SSM Based on Minimum Description Length . . . . . .. .. 18

2.4  Segmentation Using Shape Priors . . . . . . ... .. ... ... ... 21
2.4.1 Deformable Models . . . . . ... ... ... L. 22
2.4.2  Explicitly Represented Shape Priors . . . . . .. .. ... .. 24
2.4.3 Implicitly Represented Shape Priors . . . .. ... ... ... 25

2.5 Discussion . . . . ... 26
3 A Generative Gaussian Mixture Statistical Shape Model 27
3.1 Motivation . . . . . .. 27
3.2 Expectation Maximization - ICP Algorithm . . . . . ... ... ... 29
3.2.1 Algorithm . . . . .. ... o 29
3.2.2  Generalization to Affine Transformation . . . . . . . ... .. 32
3.2.3 EM-ICP Multi-Scaling . . . . .. ... ... ... ... ... . 33

3.3 The Unified Framework . . . . . ... .. ... ... ... ... ... 37
3.3.1 The Generative Model . . . . . . ... .. ... ... ... .. 37
3.3.2  Optimization of Parameters through a Single MAP Criterion 38

3.4 Computation of the Observation Parameters . . . . . . . . . . .. .. 42
3.4.1 Transformation . . . . . . ... ..o 42
3.4.2 Deformation Coefficients . . . . . .. . .. ... ... ... .. 44

3.5 Computation of the Model Parameters . . . . . . .. ... ... ... 45
3.5.1 Mean Shape . . . . . . ... 45
3.5.2  Standard Deviation . . . . . . .. ... 45
3.5.3 Variation Modes . . . . . . ... .o 46

3.6 Practical Aspects . . . . . ... 49
3.6.1 Initialization and Control of the Parameters . . . . . . . . .. 49

3.6.2  Solving for the Initial Variation Modes . . . . . . . .. .. .. 49



CONTENTS

3.7 Extension of the Criterion for Non-Convex Structures. . . . . . . .. 50
3.7.1 Integration of Normals . . . . . . ... .. ... ... ..... 51
3.7.2 Estimating Normals for Unstructured Point Clouds . . . . . . 52

3.8 Discussion . . . . . ..o e 52

Evaluation of the GGM-SSM 55

4.1 Performance Measures . . . . . . .. ... 95
4.1.1 Assessing SSM Quality . . . . .. ... o0 55
4.1.2 Distance Measures . . . . . . . . ... ... o8

4.2 Comparison to an ICP-SSM . . . . . .. ... ... ... ... .. .. 59
4.2.1 Synthetic Data . . . . .. ... 0 0L 59
4.2.2 Brain Structure MR: Putamen . . . . .. . ... ... .. 66

4.3 Comparison to ICP-SSM and MDL-SSM . . . . .. .. ... ... .. 69

4.4 Unsupervised Classification . . . . . .. ... . ... ... .. .... 74

4.5 Discussion . . . . ... 75

Using the GGM-SSM as a Prior for Segmentation 79

5.1 [Imitialization . . . . . ... ..o 80
5.1.1 Distribution Models for Prior Intensity Knowledge . . . . .. 80
5.1.2 Imitial Placement Problem . . . . . . . .. ... ... ... .. 81

5.2 The GGM-SSM in Implicit Function Segmentation . . . . ... . .. 82
5.2.1 Segmentation Using Level Sets . . . . . ... ... ... ... 83
5.2.2  MAP Estimation on the Level Sets . . . . .. .. .. ... .. 85
5.2.3 Derivation of the Energy Functional . . . . ... .. ... .. 87
5.2.4  Optimization of the Energy Functional . . . . . . . .. .. .. 90

5.3 Evaluation on Kidney CT Images . . . . . . . . ... ... ... ... 91
5.3.1 Segmentation Experiment . . . . .. . .. ... ... ... 93
5.3.2 The Role of the Parameters . . . . . . .. .. ... ... ... 96

5.4 Multiple Shape Class Segmentation . . . . . . . ... ... ... ... 97
5.4.1 Development of the Algorithm . . . . . ... ... ... ... 98
5.4.2 Experimental Evaluation on Hip Joint CTs . . . . . .. . .. 101

5.0 Discussion . . . . . ..o 108

Conclusion 111

6.1 Contributions . . . . .. ... 111
6.1.1 Model Computation . . . .. .. ... ... ... .. ... 111
6.1.2  Segmentation . . . . .. ... L 113

6.2 Perspectives . . . . . ... 115
6.2.1 Parameters . . . . . . ... .. 115
6.2.2 Application . . . . ... oL 115
6.2.3 Related Work . . . . . . . ... 116

6.2.4 Other . . . . . 116



CONTENTS xi
A Mathematical Background 119
A.1 Mathematical Prepositions . . . . . . . . . ... ... L. 119
A.2 The ICP as a specific case of the EM-ICP . . . ... ... ... ... 121
A.3 Mathematical Derivations Chapter 3 . . . . . . . .. .. . ... ... 121
A.4 Mathematical Derivations Chapter 5 . . . . . . ... ... ... ... 124
A.4.1 Divergence Calculus . . . . ... ... ... 124

A.4.2 Helpful Derivations . . . . . ... ... ... ... 125
Abbreviations and Acronyms 126
Bibliography 127



xii CONTENTS




CHAPTER 1

Introduction

Contents
1.1 Motivation . . . . . . . . i i i i i i it i e e e e e e e e
1.2 Objectives . . . . . . ¢ v v v i e e e e e e e e e e e e e e e e e e
1.3 Structure of Manuscript . . .. ... ... ... ... ...,
1.4 List of Publications . . ... ... ................

S W -

1.1 Motivation

Since the discovery of X-rays in 1895, many different imaging techniques have been
developed which gain visual access to the interior of a closed body without opening it.
Nowadays, these techniques are widely used in health-care and biomedical research
and constitute a substantial part of the clinical practice. In order to facilitate the
interpretation of the generated body images, a multitude of medical image analysing
methods has been realized which support the physicians in the fields of diagnostics,
surgical planning and image guided surgery as well as medical research. With the
progress of image acquisition techniques, the modeling of anatomical structures in
3D or even 4D has become an important component in medical image computing as
these models offer an additional perspective for the surgeons and are used for model-
based analysis, segmentation and classification problems. A popular approach for
shape modeling is constituted by statistical methods which aim to represent an or-
gan by statistical shape models. As opposed to a single 3D model or an atlas of an
organ which are only (typical) shape examples, a statistical shape model represents
a set containing segmented organs by a mean shape and a variability model. Hence,
statistical shape models incorporate a priori shape knowledge drawn from many or-
gan examples. Especially for segmentation problems, the application of statistical
shape models has been proven to be very successful for a wide range of anatomical
structures in CT, MR and ultrasound images.

The idea of doing statistics on shapes first leads to the problem of distinctly defining
the concept of a shape. A well known definition proposed by the mathematician D.
G. Kendall in 1984 reads as follows: "Shape is all the geometrical information that
remains when location, scale and rotational effects are filtered out from an object"
|Kendall 1984|. However, when dealing with anatomical structures, a more flexible
definition is needed which also recognizes deformable objects based on their shapes.
Therefore, at least effects like flexion and shearing have to be integrated. This means
that the shape analysis methods are applied only after an affine alignment of the
respective deformable objects.
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The characteristics of a statistical shape model essentially depend on the repre-
sentation of the shape surface. Basically, a surface can be seen as a boundary
which separates geometrical regions in 3D. Mostly, it is represented explicitly using
meshes or point clouds or implicitly based on distance functions. In order to com-
pute a surface representation for a binary object, a sampling of the isosurface has
to be performed. The sampling is a crucial step which - together with the imaging
technique - determines the detailedness of the resulting surface model.

A fundamental problem for the computation of statistical shape models is the de-
termination of correspondences between the observations. In order to quantitatively
analyse shape differences, a method is needed to locate a corresponding point lo-
cation on one shape for a given point location on another shape. Obviously, the
solution to this problem always depends on the shape representation. Most current
methods rely on surface-based representations and work with one-to-one correspon-
dences. They do not consider the uncertainties neither of the segmentations nor of
the sampling output nor of the registration results. Moreover, even for the utopian
case of perfect segmentation and continuous surface representation, correspondence
determination is never non-ambiguous but for reproducible prominent landmark lo-
cations.

The motivation of this thesis is to develop an alternative statistical shape model
which takes into account the uncertainties of the whole scene and to investigate
methods of applying this model for automatic segmentation. Most current algo-
rithms compute the mean shape and variability model on a step-by-step basis.
Therefore, a specific goal of this thesis is to realize the model computation in a
sound mathematical framework.

1.2 Objectives

Following the motivation phrased in the previous section, we argue that when seg-
menting anatomical structures in noisy image data, the sampled surface points only
represent probable surface locations and not necessarily the exact "true" shape sur-
face. Besides, the choice of sampling method significantly influences the statistical
analysis of the shapes. For instance, when the same binary object is sampled twice
with different resolutions, the resulting surface representations will not be identi-
cal which makes the determination of exact correspondences impossible. Moreover,
even for theoretically perfectly continuous surfaces, a unique and reproducible de-
termination of correspondences is an open problem. It even becomes impossible if
one of the surfaces features a shape detail that the other one lacks. For an illus-
tration, imagine a reconstructed head of the sphinx containing a nose, and then
imagine the challenge of determining a corresponding point for the tip of that nose
on the original sphinx head. It is desirable to explicitly model the uncertainties of
the scene. In order to come up with a realistic modeling of a surface based on the
sampled points, the goal is to investigate the possibilities of representing the shapes
in a probabilistic framework where each sampled surface point is drawn from a 3D
probability density function (typically a Gaussian).

Most algorithms in the state-of-the-art approach the problem of model computation
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based on a set of segmented organ shapes for which the best statistical shape model
must be computed. In order to develop a theoretical foundation of the algorithm it
might be of interest to adopt an alternative view on the problem of model compu-
tation. The focus of this thesis lies on the development of a statistical shape model
based on correspondence probabilities in a sound mathematical framework and its
application in medical image segmentation.

These demands lead mainly to the following three objectives:

e Development of a probabilistic framework to compute a generative
statistical shape model based on correspondence probabilities: The
first problem tackled is the computation of a generative statistical shape model
that optimally represents the shapes in a training data set. The aim is to de-
sign a point-based parametric model which allows the modeling of variability
for each point. This might help physicians to physically interprete the de-
formations. The focus lies on the development of a generative probabilistic
framework which includes all variables needed to describe the scene. Ad-
ditionally, the framework has to integrate a solution to the correspondence
problem.

e Development of a deformable model segmentation in a probabilistic
framework: A major problem in medical image processing is the automatic
segmentation of anatomical structures. Therefore, the second problem to be
dealt with is the integration of the generative statistical shape model into an
automatic segmentation scheme. The objective is to develop a sound mathe-
matical formulation which is based on the same probabilistic assumptions as
the framework for the computation of the statistical shape model. It is in-
tended to develop a segmentation algorithm which enables the segmentation
of objects with non-spherical topology as well as multiple-object shapes.

e Evaluation and validation with respect to existing methods: A main
advantage of working with point-based shape representation is the simplicity
of the resulting model with respect to its power. On the other hand, surface-
based models generally feature better quality measures than point-based mod-
els. However, the quality of the surface information they use depends on image
quality and on the segmentation method (which is often based on points drawn
by experts). In order to place the new method in the state-of-the-art, it is cru-
cial to evaluate the quality of the probabilistic model in comparison with other
statistical shape models, investigate applications like classification methods
and expose advantages and limits of the new model. Secondly, an evaluation
of the segmentation method on different real data segmentation problems is
needed in order to identify the strengths of the method with respect to the
state-of-the-art.

1.3 Structure of Manuscript

This thesis is organized pursuing these motivation and objectives as follows:
Chapter 2 provides information about the state-of-the-art in statistical shape
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analysis. Chapter 3, 4 and 5 contain the main contributions regarding the
development and application of a new statistical shape model and a new level set
segmentation method relying on the model. Chapter 6 concludes the manuscript.
In the following, a condensed summary is given for each chapter.

In Chapter 2 the background information needed about current methods in
statistical shape analysis is summarized. It begins with a description of the
state-of-the-art regarding the use and types of statistical shape models. Then
the point correspondence problem is covered in detail before different methods
for the computation of statistical shape models and their applications are presented.

In Chapter 3 an approach to the problem of designing a generative statisti-
cal shape model is developed [Hufnagel 2007b, Hufnagel 2008b|. First, a solution
to the point correspondence problem is derived by representing the shapes by
Mixtures of Gaussians. Following that, a sound and unified framework is developed
for the computation of model parameters and observation parameters as well as
nuisance parameters, and a maximum a posteriori estimation is formulated which
leads to a global criterion. Explicit formulas are derived for its optimization with
respect to all parameters. Finally, practical aspects of the implementation and
adaptions of the algorithm for special cases are discussed.

In Chapter 4 an evaluation and validation of the generative Gaussian Mix-
ture statistical shape model as developed in this thesis is performed. First, the
choice of performance measures is established. Then, the performance of the new
statistical shape model is compared to the performance of a classical point-based
statistical shape model based on the iterative closest points registration and the
principal component analysis [Hufnagel 2009a]. Furthermore, the performance
of the new statistical shape model in comparison with a surface-based statistical
shape model which is computed by the minimum-description-length approach is
evaluated. The evaluation is done on synthetic and real data. Different examples
covering convex and non-convex as well as spheric and non-spheric shape data are
chosen.

In Chapter 5 an automatic segmentation algorithm is developed which em-
ploys the a priori shape knowledge inherent in the new statistical shape model.
After explaining the benefits of employing a non-parametric segmentation contour
instead of a parametric one, the problem of integrating an explicitly represented
statistical shape model into an implicit segmentation scheme is tackled. To our
knowledge, very few works considered that option. The problem is solved by
developing a novel maximum a posteriori estimation of the segmentation contour
which is optimized based on the image information as well as on the statistical
shape model information. Here, the respective steps which finally lead to a sound
probabilistic segmentation scheme are explained elaborately. It is demonstrated
in detail how to optimally exploit the image information to guide the evolution of
the contour, and the implemented techniques to determine an initial positioning of
the segmentation contour are presented. As the model is based on correspondence
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probabilities instead of one-to-one correspondences, the modeling and segmentation
of non-spheric and multi-object structures is possible. Consequently, an extension
of the algorithm to multi-object segmentation is developed which is integrated in
the same framework by adapting the correspondence criterion. Experiments are
designed and conducted in order to validate the segmentation method on kidney
data and on hip joint data. Finally, the results are critically discussed, and the
advantages and limits of this segmentation method are revealed. Part of this
chapter is published in [Hufnagel 2009c].

In Chapter 6 the contributions of this thesis are discussed and perspectives
for future work are given.

Appendix A contains the mathematical background and detailed explana-
tions for some of the derivations in the manuscript.
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The extraction of information out of 2D or 3D images often relies on the detec-
tion, recognition and interpretation of shapes and shape variabilities. This directly
involves the (mathematical) representation of shapes as well as methods to account
for and measure the morphological differences. Even though in clinical routine shape
analysis is frequently done by viewing the images alone, there is a wide range of ap-
plications where automatical methods with formalized metrics are needed for overall
data interpretation and shape statistics. This chapter is dedicated to the description
of these methods and is divided as follows: First, the importance of shape modeling
in medical image analysis is outlined and the concept of statistical shape models
and their representations are discussed in section 2.1. Following that, we expand
on the fundamental problem of determining correspondences between shapes and
on several methods of solution (section 2.2) which directly leads us to discuss the
associated statistical shape models in section 2.3. Section 2.4 explores the benefits
of statistical shape models for medical image segmentation and discusses explicitly
and implicitly represented shape priors.

2.1 Shape Modeling in Medical Imaging

Shape models are used for a wide range of medical imaging problems like segmenta-
tion, reconstruction or shape analysis. In this section, a condensed overview about
the domain of shape analysis techniques in nowadays medical research is given (sec-
tion 2.1.1) and then the subject of doing statistics on different shape representations
is introduced (section 2.1.2).

2.1.1 Shape Analysis

The thorough analysis of organ morphology is driven by the hope of better under-
standing organ shape characteristics and how diseases might affect them. The idea
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is to find information based on the shape deformation or shape differences which
eventually help in the diagnostics, especially in the neuroimaging community. The
modeling of shape and the measuring of morphological changes in shape instances
is also of great interest for the discrimination between healthy and pathological
anatomical structures. An intuitive approach for detecting shape difference is the
measurement of the global shape volume, however, this feature is often not signifi-
cant with respect to the studied disease. This has been shown for example by Gerig
et al. [Gerig 2001] based on the detection of group differences in hippocampal shapes
in schizophrenia. Results of higher significance are often obtained by performing a
local shape analysis. A wide range of approaches exists in the literature which can
be roughly categorized according to the (shape) features chosen to do the statistics
on. In the following, an overview of developments in that field is given by means of
exemplarily selected publications.

Early methods proposed to analyse and compare the transformation fields obtained
when registering an organ to a template, which is used e.g. in the work of Davatzikos
et al. [Davatzikos 1996] who analyse the morphology of the corpus callosum. A sim-
ilar idea is applied in the work of Boisvert et al. |Boisvert 2008] who model spine
shape deformation by a vector of rigid transformations. First efforts in mathemat-
ically capturing morphology changes by doing statistics on anatomical landmarks
were undertaken by F.L. Bookstein [Bookstein 1986, Bookstein 1991|. The concept
of statistical shape analysis based on landmarks and pseudo-landmarks was taken
on by Dryden and Mardia [Dryden 1993] for the detection of gender related differ-
ences in monkey crania and by Bookstein [Bookstein 1997] for the detection of brain
differences in schizophrenia patients. In both approaches, the shape variations are
measured based on Procrustes or Riemannian distances. Another shape analysis
method is based on a medial shape description to model local and global changes
as e.g. used by Styner et al. [Styner 2003b| who analyse the hippocampus shape
of schizophrenia patients. In several works the shapes are represented by distance
functions whose feature vectors are used as input for a learning algorithm, e.g. in
the work of Golland et al. |Golland 2001] who compute a classifier for healthy and
pathological hippocampal shapes in schizophrenia or in the work of Kodipaka et al.
|Kodipaka 2007| whose Kernel Fisher discriminant distinguishes between controls
and epileptics by analysing the shape of the temporal lobe or in the work of Tsai et
al. [Tsai 2005] who propose an EM formulation to automatically label lung shapes
represented by level set functions to belong to the normal or the emphysema shape
class. In the work of Peter et al. [Peter 2006a], shapes are represented by a Gaussian
Mixture Model on the landmarks, and the shape differences (here of corpus callosum
shapes) are measured using geodesic distances under the Fisher-Rao metric.
Naturally, all of these approaches have their strengths and weaknesses. The choice
of feature suited as input for the statistical analysis depends on the representation
of the shapes as well as on the demands of the application. The work done in the
framework of this thesis concentrates on the category of shape analysis based on
point representations since statistics on points are easily interpretable and have a
physical significance. The general concept however is not necessarily confined to
that category.
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2.1.2 Doing Statistics on Shapes

Commonly, a shape class can be described by one typical shape example of the
respective organ. However, this approach is neither specific nor mathematically ac-
curate. In order to reliably describe a shape class, we need to statistically evaluate
the shapes of as many observations of the organ as possible. This is usually done in
four steps: First, a training data set which contains segmented observations of the
respective organ has to be provided. Next, the observations have to be aligned in a
common reference frame in order to eliminate pose variations. Then, a mean shape
which optimally represents all aligned observations can be computed. Finally, a
variability model accounting for the shape differences is determined. The variability
contains information about how much and in which way the mean shape can be
deformed while still representing a plausible anatomical structure.

In the state-of-the-art, shape models containing a mean shape and a variability
model are referred to as statistical shape models (SSMs). The methods implement-
ing the alignment as well as the statistical methods used for the computation of
mean shape and variability model depend on the representation of the observations.
An intuitive and widely-used method is to compute SSMs on observations repre-
sented by (triangulated) points which are distributed over the surface of the shapes.
These so-called point distribution models (PDMs) are either based on anatomical
landmarks [Huysmans 2005|, on pseudo-landmarks that are strategically distributed
over the observations’ surfaces (e.g. [Frangi 2001, Rajamani 2004]) or on points re-
constructed from implicit surfaces (e.g. [Kohlberger 2009]) or on a combination of
these. Point-based shape samples represented by a number of N points in 3D are
usually described by a shape vector Sy € R3*¥Y containing the point coordinates.
The alignment to a common reference frame is often performed by a mesh-to-mesh
registration over the shape vectors. The statistic evaluation then uses the aligned
shape vectors as input for computation of mean shape and variability model.

For these steps, a notion of correspondence has to be defined. A common approach
is to assume and determine one-to-one point correspondences over all observations.
In that case, the coordinates of corresponding points are sorted in corresponding
entry positions in the shape vectors so that for all shape pairs S, and S; the i-th
element Sk (7) corresponds to S;(7) for all ¢ = 1,...,3N. The computation of the
mean shape is then straight forward with M = % > p—1 Sk for a number of n obser-
vations. The subsequent computation of variation modes is usually accomplished
by a principal component analysis (PCA) on all observations and the mean shape.
The variation modes € R3V
SSM. Mathematically, the representation of a random shape M in the shape space
spanned by the variation modes can be formulated using a linear model:

are pairwise orthogonal and span the shape space of the

M = M + Pb

where the matrix R € RV*N with 0 < N’ < N contains the variation modes in
its rows and the vector b € R contains the coefficients which control the extent
of deformation. The variation modes are ranked according to their variance. For
the usage of an SSM, commonly only the largest modes of variation are taken into
account.
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The employment of the PCA is not confined to point representations but can be
employed to other applications where the shape properties are encoded in a feature
vector. Karly methods include the representation of shapes by spherical harmon-
ics (SPHARM) which parameterize the surface by a mapping on the unit sphere
[Brechbiihler 1995, Székely 1996| or by Fourier surfaces which employ an elliptic
Fourier decomposition of the boundary and use the Fourier coefficients as feature
vectors [Staib 1996, Floreby 1998|. The statistics are thus done in parameter space.
Recently, the representation of SSMs in implicit frameworks has become of interest
as level set based segmentation is explored more deeply. Here, the observations in
the training data set are often represented by signed distance maps. The align-
ment of the observations and the subsequent statistics are then done directly on the
distance maps which are used as feature vectors with individual voxels being the
vector components. The variability models can simply be computed by a principal
component analysis [Leventon 2000a] or by using more challenging methods which
for example account for local variations as well [Rousson 2002|. Another strategy
represents the surfaces by medial models which consist of a centerline and vectors
stretching from there to the organ surface |Pizer 1999, Styner 2001|. Here, corre-
spondence between shapes are defined on the medial manifold. For computing the
variability of manifold-valued data, a principal geodesic analysis is introduced which
is a direct generalization of principal component analysis.

It has to be kept in mind that the PCA is done under the assumption that the
shape vectors are samples of a random variable under a normal distribution. This
is only the case if the shape differences in the training data set are normally dis-
tributed which is difficult to establish. Another theoretical problem occurs as the
dimensions of the shape representation nearly always exceed the number of availabe
samples. Besides, the PCA is optimal in a least-square sense and therefore sensitive
to outliers and lastly, all shapes have to be represented by feature vectors of equal
lengths. Nevertheless, the employment of the PCA for SSM computation has been
proven to come to acceptable results and is successfully applied in practice. An
alternative for non-normally distributed data is offered by the so-called independent
component analysis (ICA) [Hyvéirinen 2001]. The ICA decorrelates the components
by maximizing their statistical independence. Another interesting approach is to
do a principal factor analysis (PFA) which leads to variation modes that are more
easily interpretable in medical sense [Ballester 2005, Reyes 2009]. However, these
methods have the disadvantage that the variation modes cannot be ranked easily
which poses a problem for dimensionality reduction.

2.2 The Correspondence Problem

A fundamental problem when computing statistical shape models is the determina-
tion of correspondences between the observations in the training data set. Mathe-
matically, this problem does not have a unique solution and depends heavily on the
definition of ’shape’ as well as on its representation. For shapes represented as con-
tours in 2D, usually landmarks are determined manually by first choosing exposed
features as landmarks, for example the fingertips of a hand as well as the points
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between the fingers, and by then adding a fixed number of equidistant landmarks
between these. In that way, the correspondences from one labeled shape to the next
equally labeled one is straightforward and uniquely defined. In 3D, however, a man-
ual determination of correspondence is hardly feasible as it is very time-consuming
in general. In particular, the pinpointing of exact correspondences without relying
on clear anatomical landmarks on 3D surfaces is an impossible task. In order to
automatize the detection of landmarks, several methods extract shape features such
as high surface curvatures (e.g. [Benayoun 1994|). Mostly however, automatic de-
termination of correspondences is done by performing a registration of model and
observation. Obviously, the solutions to the correspondence problem highly de-
pend on the shape representations. For meshes, a straightforward approach is to
compute a similarity transformation found by least-square point distance minimiz-
ers. For non-linear registration, often spline-based deformations are used. Another
approach is the matching of an atlas or template mesh to all observations in the
training data set. The warped meshes have to be relaxed in order to fit the observa-
tions. This can be done for example by using a Markov random field regularization
as proposed by Paulsen and Hilger [Paulsen 2003] or by employing a spring-mass
model based on the surface point set and the connecting edges as realized by Lorenz
and Krahnstover |Lorenz 2000|. A method for volumetric representations is to com-
pute a volumetric atlas with manually added surface landmarks and then register
the atlas to volumetrically represented observations. The warped landmarks then
determine the correspondences.

In this section, two popular methods for correspondence determinations are de-
scribed based on different shape representations which play a role in the remainder
of this thesis: First, the classical Iterative Closest Points (ICP) registration algo-
rithm that finds one-to-one correspondences between two unstructured point sets
is explained. Then, an alternative approach to correspondence determination using
spherical harmonics surfaces parameterization is presented. Here, the correspon-
dences are computed by a registration between the parameterizations of the shapes.
As an example for methods which solve the correspondence problem in a group-
wise optimization approach together with the SSM computation the maximum de-
scription length (MDL) approach is summarized in section 2.3. A comprehensive
comparison of different solutions to the correspondence problem can be found in
[Styner 2003c].

2.2.1 Iterative Closest Point Algorithm

The Iterative Closest Point algorithm is an efficient method used for registration
of 2D and 3D shapes as first shown and elaborately explained 1992 in [Besl 1992].
The ICP registration is an interesting approach as it can be used for different rep-
resentations of geometric data like point sets, triangle sets, and implicit or explicit
surfaces. It is applied to registration problems where the point correspondences are
not known in advance. The ICP algorithm offers many recognized advantages as
it does not need preprocessing or local feature extractions in normal applications,
it is suited for parallel architectures and it can handle average noise. Following, a
simple definition of the ICP algorithm and its application to point cloud registration
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is given.

Let S be a set of Ng points s; which describe the observation and M be a set of N,,
points m; which describe the model. The ICP algorithm will match each observation
point s; with one of the model points. Based on those matches, a transformation T'
is sought which registers the observation with the model. The closest point operator
CP is defined as a distance metric

CP(si, M) = min [lm; — si|.
J

We use m; = CP(s;, M) where m; is the closest point in M to a given scene point

s;. The ICP algorithm computing 7" is implemented as follows:
1. T = T* is chosen as initial estimate of the transformation 7.
2. Repeat for k iterations or until convergence:

e Compute the closest point mz € M in the model for each observation
point s; € S. The collection of resulting point pairs (s,,mz) is called set
of correspondences C with

Ck—l = Uiisl{si, CP(Tk_l * Si, M)}

e Compute 7% that minimizes the mean square error between all point
pairs in C.

For a rigid registration, the application of T to S looks like this
Tx*s; = Rs;+t Vi

with the rotation matrix R € R3%3 and the translation vector ¢t € R3. The minimiza-
tion of the error between all point pairs in C' is computed using the Least Squares
criterion:

1
T = argmin—ZHm;—T*siHQ
T Noim

N

1 i 2
= argmin — m: — Rs; — t||°.
guin 5 3 s s =

The ICP algorithm converges always monotonically to the nearest local minimum
where “nearest” is meant in the sense of a mean-square distance metric.

As main disadvantage it must be noted that the ICP is susceptible to gross statis-
tical outliers. Several approaches deal with this problem by e.g. proposing robust
estimators |Zhang 1994, Masuda 1996]. Moreover, as any method minimizing a
non-convex cost function, the ICP lacks robustness with respect to the initial trans-
formation because of local minima. This problem has been tackled by the work
of Rangarajan et al. who use multiple weighted matches based on Gaussian weight
|[Rangarajan 1997b| and based on Mutual Information [Rangarajan 1999].
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Figure 2.1: A correspondence problem: One shape features two bumps, the other
only one. How can we determine correspondences between the two?

Overall, the ICP algorithm and its derivatives work well for a lot of registration prob-
lems. However, the determination of one-to-one correspondences between unstruc-
tured point sets is difficult when e.g. one shape features a certain structure detail
and the other one does not, see figure 2.1. Moreover, in the absence of (anatomical)
landmarks, the determination of correspondence depends heavily on the sampling
of the shape. To overcome this problem, the Expectation Maximization - Iterative
Closest Points (EM-ICP) algorithm introduces correspondence probabilities instead
of exact correspondences. This concept is explored in section 3.2.

2.2.2 Spherical Harmonic Description

The use of spherical harmonics for statistical shape modeling was introduced by
Brechbiihler et al. in 1995 [Brechbiihler 1995] in order to approximate one-to-one
corresponding points on different entities containing inclusions and protrusions. As
opposed to the use of a torus parameter space using Fourier descriptors as proposed
in [Staib 1992], the SPHARM surface description maps the observation surfaces
into a spherical two-coordinate space, so it can only be considered for shapes with
spherical topology which applies for most anatomical structures. If the mapping
includes an optimization of the distribution of nodes on the sphere, correspondences
can then be established directly by the parametric description.

Surface objects with spherical topology can be parameterized by two polar variables,
the longitude 6 = |0, ..., 27| and the latitude ¢ = [0, ..., 7]. Two vertices have to be
selected as the poles for this process. The latitude should grow smoothly from 0 at
the north pole to 7 at the south pole. The longitude on the other hand is a cyclic
parameter. Let x, y and z denote Cartesian object space coordinates. The function
which specifies the mapping of the coordinates from the unit sphere on the surface
is specified with

(0, )
U(97¢) = y(ev(b)
z(0,9)

where v(¢, ) runs over the whole surface object.
These coordinate functions could be parameterized by various basis functions as e.g.
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B-splines or wavelets. The SPHARM algorithm makes use of spherical harmonics
as they offer the advantage of hierarchical shape representation which finally facili-
tates the correspondence determination |Brechbiihler 1995]. Typically, the following
truncated series expansion is used:

R r
v(,6) =Y Y0, 9)

r=0 —r

where Y, denotes the function of degree r and order m with Y, : [0, 27]x [0, 7] — C.
A complete definition can be found in e.g. |Bronstein 2000|. The shape descriptor
coefficients ¢ are 3D vectors with components (z,y, z). Formally, the coefficients
are computed by the inner product of function v and the basis function

ol = /7r /27r v(0,)Y, (0, $)d sin 6d6. (2.1)
o Jo

Eventually, each shape surface Sy is uniquely described by a set of descriptor coef-
ficients C, = ¢},..

Due to the hierarchical shape representation, in practice the level of shape details
which are modeled depends on the maximal degree R in the spherical harmonics.
The parameterization for degree 1 maps the surface to an ellipsoid. In order to de-
termine shape point correspondences by parameterization to a sphere, the mapping
between surface and sphere must be bijective which is described in this case by

x sin @ cos ¢
y | = | sinfsing¢
z cos 6

Furthermore it must be continuous so that neighbouring points on the shape surface
are mapped to neighbouring locations on the sphere. The mapping function should
be topology-preserving, and distortions which inevitably appear when mapping a
surface facet to a spherical square should be minimal. This is done by solving the
surface parameterization as a constrained optimization problem with respect to the
optimal coordinates for all surface points |Brechbiihler 1995|. Another problem oc-
curs as the coefficients obtained by approximating equation (2.1) depend on the
rotation of the surface in space. Thus, for the determination of correspondences
between different shape observations, a rotation of all observations to a canonical
position in parameter space is needed. This can be done using the spherical har-
monics of degree 1 by rotating the parameter space so that the north pole (where
6 = 0) is positioned at one end of the shortest main axis of the ellipsoid, and the
point where the Greenwich meridian (¢ = 0) crosses the equator (where § = 7/2)
is positioned at one end of the longest main axis.

The statistics on the shapes are now done by evaluation of the shape descriptors. The
mean shape then is described by the spherical harmonics using the set of averaged
shape descriptor coefficients C' = % Zév C}, and the principal component analysis is
done using the covariance matrix 25 >, (Cx, — C)(Cj, — C)T. A point distribution
model can than be generated directly by linear mapping [Kelemen 1999].
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While the SPHARM parameterization is capable to smoothly represent high levels
of shape details, it suffers from the fact that for shapes featuring rotational sym-
metry in the spherical harmonics of degree 1 the mapping to the canonical position
in parameter space is not unique. Therefore, the correspondence determination for
such shapes becomes inappropriate as shown in a study on e.g. femoral heads by
Styner et al. [Styner 2003c].

2.3 Computation of Statistical Shape Models

In order to compute a SSM, a sufficiently large training data set with segmented
organ observations is needed. Obviously, the training data set should only contain
shapes conforming to the shape class which is modeled, that is, for a SSM of normal
organ variability, only healthy patient data is permitted. Each observation has to
be segmented accurately. This is mostly done manually or semi-automatically by
medical experts who delineate the organ contours slice by slice in medical images.
Some organs can be segmented also in 3D under the support of automatic techniques
like volume growing of thresholding. For binary segmentation, the conversion to
a surface representation is typically performed by the Marching Cubes algorithm
[Lorensen 1987|. The first step is commonly the alignment of the observation in
a reference coordinate system. Then, a mean shape and a variability model are
computed such as to optimally represent the shapes in the training data set. Here,
the accurate detection of correspondence between the shapes plays an important role
regarding the quality of the final SSM. The resulting SSM produces new plausible
shapes or represents unknown shape observations of the same organ in different
patients or under different conditions.

In this chapter, the computation of two widely-used point distribution models is
summarized: Section 2.3.1 describes the classical Active Shape Models (ASM) while
section 2.3.2 presents a method to build ASMs using gradient descent optimization
of the maximum description length.

2.3.1 Active Shape Models

With the introduction of the "Active Contour Models’ (ASMs) or 'Snakes’ in 1988
by Kass et al. first attempts were made to integrate a priori knowledge into the
segmentation process by forcing the segmentation contour to comply to a certain
amount of smoothness |Kass 1988]. The technique makes use of an iterative energy
minimization where only local shape constraints are applied. Cootes et al. adopted
an iterative approach but instead of applying a simple snake contour, they devel-
oped a point distribution model or "Active Shape Model” to incorporate a priori
knowledge about the shape |[Cootes 1992, Cootes 1995]. When applying the ASM
to segmentation, they use global shape constraints.

Let us describe the N observations Si in the training data set by meshes consist-
ing of ny, points sz; € R3. Furthermore, let us assume that n, = n Vk and that
the points with the same index ¢ correspond. The set of observations can then be
aligned by translation, rotation and anisotropic scaling so that the least squared
differences between all corresponding points is minimized. This is done by an affine
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transformation Tj. For an example see figure 2.2(a). If the alignment is omitted, the
variation in size and pose are included in the final variability model. The points m;
of the mean shape M are then computed by averaging over all aligned corresponding
observation points m; = % Zévzl T}, * si;. For an illustration see figure 2.2(b). In
order to compute the variability model, a principal components analysis (PCA) is
performed. Under the assumption of dealing with normally distributed data sam-
ples, the PCA determines a linear transformation which transforms the data into a
coordinate system where the axes (= eigenvectors) lie in the same direction as the
greatest correlations in the data. By transforming the data into the new coordi-
nate system, the correlations of the original data set become uncorrelated. Thus,
the new axes lie in the directions of the greatest variance of the transformed data
set. Hence, the data is represented in a system where its similarities and differences
can be seen clearly which makes the PCA a well-suited tool in the description of
shape variability. The N actual eigenvectors v, and associated eigenvalues A\, are
computed by e.g. doing a diagonalisation on the covariance matrix with elements
covjj = Zg:l(ski_j\?l_i)l(skj _mj)T, s0 v, € R3™ which amounts to one 3D eigenvector vy,
per mean shape point m;, see figure 2.2(c). A plausible new instance of the shape
class can now be modeled by

N
M=M+ prvp (2.2)
p=1

where w, € R are the deformation coefficients which are typically constrained to
wp < 3)p in order to only generate plausible shapes. Furthermore, a shape analysis
can be done by interpreting the deformations according to the eigenmodes with the
greatest eigenvalue (see figure 2.2(d,e,f)).

In order to better adapt the ASM to segmentation, Cootes et al. proposed the Active
Appearance Models (AAMs) which incorporate a priori knowledge not only about
the shape but also about mean and variation of the image intensities (appearance
or texture). This principle can be adapted in a simplified manner to all point
distribution models given that the original image data is still available. Basically, the
grey value appearances around each point si; in the training data set are evaluated
by sampling the pixel information on either side of the contour in normal direction.
Then a local statistical appearance model is constructed with mean profile and
associated variability. During the image search along the normal, the quality of
the current profile around the model points is assessed with respect to the local
appearance model.

2.3.2 SSM Based on Minimum Description Length

While the SPHARM model as well as the ASM determine correspondences individ-
ually for each observation, other methods propose to assign correspondences across
all observations at the same time. This approach is driven by the idea that the
best correspondences are those which lead to the optimal SSM given the training
data set. In order to find these, the corresponding points have to be moved indi-
vidually over the surfaces of the observations until the best positions for all points
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Figure 2.2: ASM example. a) Aligned observations of a training data set. Each of
the 5 observations is represented by 10 points in 2D and depicted in another colour.
b) Mean shape point cloud depicted by red dots. c) azes of first eigenmode depicted
for each of the corresponding points. d) Mean shape M of point distribution model.
e.f) Mean shape deformed according to first eigenmode M — 3\vy and M + 3\vy.
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are found. The first to introduce this approach were Kotcheff et al. who use the
determinant of the covariance matrix as objective function for the computation of
2D SSMs |Kotcheff 1998]. By minimizing the determinant of the covariance matrix,
they explicitly favor compact models which means low eigenvalues and few eigen-
vectors. Davies et al. take up on that idea but propose another objective function
in order to find a sound theoretical foundation as well as to ensure convergence
[Davies 2002¢|. Their key principle is to favour the simplest solution out of all sat-
isfying ones (following the principle of Occam’s razor). Furthermore, they define
the model quality over three parameters, the compactness, the generalization abil-
ity and the specificity. A model is more compact than another if it codes the same
variability information in less components. A great generalization ability means
that the model is able to describe unknown possible instances of the shape class.
A specific model only represents valid instances of the shape class. The method of
Davies et al. introduces the application of the minimum description length (MDL)
as measure for the simplicity of the SSM. Under the MDL approach, the final SSM
optimally balances complexity and the quality of fit between model and observa-
tions. Originally, the MDL is a concept used in information theory for the optimal
coding of messages. While the MDL framework is mathematically sound and leads
to very good results [Davies 2002a, Styner 2003b|, the objective function is complex
and computationally expensive. Several approaches have been proposed to reduce
the complexity. Heimann et al. employ a simplified MDL cost function introduced
in [Thodberg 2003] and use a gradient descent optimization to minimize it. They
can show that their approach is faster and less likely to converge to local minima
than previous approaches [Heimann 2005]. In this section, the principal concept of
their algorithm is explained and the mesh parameterization as well as the optimal
determination of correspondences used in their framework are outlined. The algo-
rithm is constrained to SSMs of organs with spherical topology.

The cost function F' which is based on the MDL of the resulting SSM is defined as

= . 1+ log(Ap/ceur)  for Ap > cour

F = ;L,, with L, = { Ao for A < cous (2.3)
where )\, denotes the squareroot of the eigenvalues of the covariance matrix. The
parameter cq is a cutoff constant which describes the expected noise in the training
data.
Regarding the mesh parameterization, a mapping of all surfaces to the unit sphere
is performed. The mapping has to assign for every point on the surface of the mesh
a unique position on the sphere. The problem of mesh parameterization is that of
mapping a piecewise linear surface with a discrete representation onto a continuous
spherical surface. In contrast to Davies et al. who use initial diffusion mapping,
Heimann et al. create a conformal mapping that focuses on preserving angles. The
function L maps each point s; of the surface S to the unit sphere which results in
a spherical parameterization of S. The mapping function is defined as L : § — R3
with |L(s;)| = 1 for all points s;. The initialization is done by mapping each s; to
the position on the sphere corresponding to its normal vector. The optimal map-
ping is found by minimizing the string energy of the mesh as defined by Gu et al.
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who propose a variational method which can find a unique mapping between any
two genus zero manifolds [Gu 2003|. Basically, two steps are executed: First, a
barycentric mapping is performed which positions each point s; at the center of its
neighbouring points. Next, a conformal mapping is obtained by taking into account
the angles between edges of the mesh for the parameterization. The mathematical
proof of correctness of this approach is given in [Gotsman 2003].

After obtaining a conformal mapping Lj for each surface observation S, correspon-
dences across the training data set are determined by mapping a set of spherical
coordinates to each Si. Subsequently, the optimal correspondences and therefore
the optimal positions of all points on the surfaces have to be determined. To do so,
Heimann et al. choose to modify the individual parameterizations Ly, for all surfaces:
In short, the corresponding landmarks of all observations are cleared of the mean
and then stored in a matrix B’. By employing a singular value decomposition to
B = \/%B’, the eigenvectors and eigenvalues A, for the system of corresponding
landmarks can be computed. This means that the ), in the cost function in equa-
tion (2.3) can be expressed in dependence of the singular values of B. Eventually,
the cost function is minimized with respect to the elements of B by solving % =0.

This derivation leads to a change for the individual landmark positions as shown in
|Ericsson 2003] as it yields a 3D gradient for every landmark. In order to convert
the gradients into optimal kernel movements (A, Ag), m is computed by

OF  OF by
(D0, p)  Oby; D10, )

where the surface gradients % are estimated by finite differences.

It has to be taken into account that when moving one landmark, the adjacent
landmarks should be affected in a similar manner depending on their closeness.
Therefore, a truncated Gaussian function is defined with

—(30)2
oz o) = exp(g—;;—%g—) for x < 30
(@,0) 0 for x > 30

where x denotes the distance between the specific landmark and the center of
the kernel and o controls the size of the kernel. If a point at position x is
moved by (A6, A¢), all other points are affected by c(x,0)(A0, Ap). This re-
parameterization is done iteratively over all landmarks and all observations. For
a detailed derivation of this algorithm as well as an evaluation please refer to
|[Heimann 2005, Heimann 2007c|.

Note that this approach only makes sense for mesh representations of surfaces but

not for point cloud representations.

2.4 Segmentation Using Shape Priors

The goal of a segmentation process is the partitioning of an image into regions which
are homogeneous regarding a certain number of characteristics. The multitude of
image-based segmentation techniques can be roughly categorized into region-based,
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edge-based, and clustering methods. Region-based methods search for pixels amidst
an area which fulfill a similarity criterion. A typical example are region-growing
techniques which basically use a manually selected seed voxel and then automat-
ically extract all voxels connected to the seed or connected to already extracted
voxels featuring the same gray value [Haralick 1985]. Region-based methods are
usually sensitive to noise and image-inhomogeneities. FEdge-based methods detect
contours which are defined by abrupt gray value changes in the image. For digital
images, filtering masks (e.g. Prewitt, Sobel, Laplace) are used in order to compute
the gradient images of first or second order. A disadvantage of edge-based methods
is the fact that the resulting edges are often disconnected and consecutive bound-
ary finding methods have to be employed. A widely-used clustering method is the
thresholding segmentation which is a straightforward but often not very efficient
technique where the pixels of an image are classified simply by determining if their
gray value lies above or below an appointed threshold |[Sahoo 1988]. The same idea
applies to watershed approaches where the different gray levels are interpreted as
topographic surfaces [Vincent 1991]. For multi-spectral image data, cluster-analysis
methods are employed where the voxels are represented by feature vectors of higher
dimensionality [Handels 2009|. Elaborate overview of these categories of segmenta-
tion techniques are given in |Gonzalez 2002].

Medical images tend to feature noise, contour gaps, intensity inhomogeneities and
low contrasts. This is due to several problems: First, image acquisition systems
yield relatively low signal to noise ratio. Secondly, soft tissue boundaries do not
necessarily feature clear gradients (see figure 2.3(a)) and there is often a tissue vari-
ability in the same organ across patients (see figure 2.3(c,d)). Another problem are
image artifacts due to patient motion or limited acquisition time which reduce the
information content of the data (see figure 2.3(b)). Generally, methods which work
on image information alone like region growing or thresholding or edge-filtering are
sensitive to these characteristics. Furthermore, they are prone to errors under typi-
cal shortcomings of medical images like sampling artifacts and spatial alias effects.
In order to robustify the segmentation process, an effective and popular approach
is to employ models which incorporate a priori information about the structure to
be segmented.

The concept of deformable models is explained in section 2.4.1, and the most impor-
tant aspects of explicit and implicit shape priors are summarized in sections 2.4.2
and 2.4.3.

2.4.1 Deformable Models

A substantial part of segmentation methods nowadays is based on the concept of
deformable models which was originally introduced for use in computer vision by Ter-
zopoulos et al. [Terzopoulos 1986]. Since the work about Snakes (Active Contours)
published in 1988 by Kass et al. |Kass 1988], deformable models are effectively used
for segmentation, reconstructing, visualization and matching problems in 2D and
3D and have successfully been applied to a wide range of organs. A deformable
model is usually represented by a contour or a surface. The deformation of the
model is governed by means of energy minimization where the energy functional ba-
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.. o).

Figure 2.3: Medical images. a) Kidneys in noisy CT data. b) Femur and hipbone
CTs featuring contour gaps and low resolution. c),d) Bladder CTs featuring intensity
inhomogeneities due to contrast agent and different filling levels.

sically consists of one term which controls the resulting shape (internal energy) and
one term which attracts the contour toward the boundary in the image (external

energy):

E(C) = Fint + Fegt.

In a physical interpretation, deformable models are elastic bodies which respond
in a natural way to the influence of external forces. The deforming forces are de-
termined by image data like edges or textures as well as by smoothness conditions
or a priori knowledge about the shape and location of the respective anatomical
structures. The prior shape information renders the algorithm more robust and
accurate [McInerney 1996]. A deformable model is usually initialized in an ap-
proximative manner around a region of interest. Then, it evolves from this initial
rough solution to automatically improve the fit to the boundary of the region to
be detected. Deformable models are able to model the complexity and sometimes
significant variabilities of anatomical structures. For a thorough survey which fo-
cuses on the topological, geometrical and evolutional aspects of deformable models
see |Montagnat 2001].

In the last years, the integration of a priori information about the shape has proven
to be a very efficient approach which led to a multitude of robust automatic seg-
mentation techniques for various medical applications. The key idea is to constrain
the segmentation to plausible shapes. Mostly, statistical shape models (SSM) are
employed. The different shape prior models can be divided into the following two
main approaches: the parametric models which evolve corresponding the Eulerian
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formulation (section 2.4.2) and the implicit models which evolve corresponding to
the Lagrangian formulation (section 2.4.3). In order to demonstrate the variety
of segmentation methods which benefit from prior knowledge about the shape,
a brief survey is given about some of the most popular applications: Explicitly
represented SSMs have been successfully employed e.g. for pelvic bone segmen-
tation |Seebass 2003, Lamecker 2004|, for hipjoint segmentation |Kainmiiller 2009]
and for (scoliotic) vertebrae segmentation [Benameur 2003, Pekar 2001]. Further-
more, SSMs are frequently used for soft tissue segmentation as e.g. for liver seg-
mentation from CT data |[Lamecker 2003, Heimann 2007a] or for segmentation
of aortic aneurysms from CT data [de Brujine 2002|. Other authors use im-
plicit SSM for CT kidney segmentation |[Tsaagan 2002|. Right from the start,
SSMs were discovered to be beneficial in the segmentation of cardiac struc-
tures as the left ventricle [Staib 1996, Kaus 2004, Shang 2004] or the whole heart
|Lotjonen 2004, Lorenz 2006]. Moreover, the use of SSMs is a widespread method
in brain segmentation on MR images, e.g. by SPHARM modeling [Székely 1996],
m-rep modeling [Pizer 2003] or explicit modeling [Zhao 2005a].

2.4.2 Explicitly Represented Shape Priors

With the presentation of the Active Shape Models (ASM) in 1992, Cootes and Tay-
lor introduced a method to use explicitly represented point distribution models as
shape priors for segmentation tasks [Cootes 1992|. The definition and mathematical
formulations of such statistical shape models are given in section 2.3. In short, the
segmentation techniques using the ASM method work as follows: First, the model
is placed in the image. This initial placement favorably close to the structure to
be segmented is often done manually. Next, for each model point a movement is
suggested along its normal toward a position lying closer to the contour of the ob-
ject to be segmented. Commonly, for each point a candidate contour position is
determined by evaluating the neighbouring voxels in direction of the contour nor-
mal. The candidate quality of positions depends on boundary-based and/or region
based features. For their appearance models, Cootes propose to use the normalized
first derivatives of the profiles [Cootes 2001a|. Brejl et al. make use of a combina-
tion of grey values and grey value gradients [Brejl 2000]. Other appearance models
include region-based features like the texture inside the shape [Cootes 2001b] or the
creation of histograms on inside and outside regions |[Broadhurst 2006]. Eventually,
the optimal choice of appearance model depends on the image modality as well as
the anatomical structure to be segmented as shown for example in [Heimann 2008|.
After determining a candidate position for each point, the model is transformed
and deformed to optimally approximate the candidate points. The deformation is
constrained to lie in the model variability space. These updates of the model are
iterated until the moving distance of model points falls under a certain threshold.
A detailed explanation of the algorithm is given in [Cootes 2004].

The principal idea of ASM segmentation still forms the basis for numerous seg-
mentation methods employing statistical shape models nowadays. However, the
limits placed on the model parameters ensuring that the segmentation contour
can only adapt to shapes which are probable regarding the underlying train-
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ing data set are too constraining for many segmentation tasks. This is mainly
due to the fact that the number of training observations is usually too small to
represent all probable shape variabilities. To lighten the constraint, several au-
thors proposed segmentation algorithms which balance between prior shape knowl-
edge introduced by the SSM and image information. These algorithms range
from using the converged SSM as initialization for additional refinement steps
[Cootes 1996, Pekar 2001, Shang 2004| to employing a deformable mesh whose in-
ternal energy is minimized with the distance to the closest allowed model defor-
mation [Weese 2001, Tsaagan 2002, Kaus 2003, Heimann 2007b|. A good overview
over these algorithms has recently been published by Heimann and Meinzer
[Heimann 2009].

2.4.3 Implicitly Represented Shape Priors

Level sets methods describe contours or surfaces implicitly as the zero level set of
a higher dimensional function. Opposite to parametric deformable models, they
offer the advantage to be topologically flexible and are thus able to model highly
complex anatomical structures like blood vessels or cortical surfaces. As the origi-
nal level sets are not resistant to weak contour edges and suffer from a significant
numerical dissipation, nowadays higher order, hybrid, and adaptive techniques are
used (e.g.|Delingette 2001, Losasso 2006]) which are unfortunately less efficient and
more difficult to implement than parametric models. The idea of using level sets for
surface modeling was first proposed by Osher and Sethian [Osher 1988| and later
used for medical image segmentation e.g. by Malladi et al. who use front propaga-
tion on stomach and artery tree structures [Malladi 1995] and Leventon et al. who
additionally employ intensity and curvature priors for segmenting corpora callosa
|Leventon 2000b| and by Ciofolo and Barillot who use competitive level sets for
brain segmentation [Ciofolo 2005]. A thorough study about the nature of level set
methods can be found in Sethian |Sethian 1999|, while Osher and Paragios as well
as Cremers and Deriche present elaborate overviews about applications of level set
methods in the field of computer vision [Osher 2003, Cremers 2007|.

In 2000, Leventon et al. proposed a segmentation algorithm where the statistics on
surfaces are made directly on level-set functions |Leventon 2000a|. Since then, the
idea of modeling a priori shape knowledge using level sets has gained in importance.
Given a training data set of surfaces, the statistical shape prior is generated as fol-
lows: The N surface observations k£ in the training data set are embedded as zero
level sets of the higher dimensional functions ¢ which are commonly represented by
signed distance functions. The mean function ¢ is computed by ¢ = % Zévzl ¢, and
the variability model is determined by a principal component analysis done directly
on the distance functions. In general, the level set segmentation is computed by a
maximum a posteriori (MAP) estimation where the level set function is evolved to
converge towards the boundary of the organ to be segmented. The evolution of the
level set is controlled by the optimization of an energy functional which is based
on the image information as well as on the statistical shape prior and additionally
integrates a regularization term. This method was adapted by Tsai et al. who fo-
cused on efficiency and robustness of the algorithm |Tsai 2003] as well as by Rousson



26 Chapter 2. Current Methods in Statistical Shape Analysis

et al. who propose variational integrations of the shape prior [Rousson 2004|. In
[Cremers 2006|, Cremers extended the approach by dynamical priors for tracking
problems.

Though, for the statistics done on the distance maps, it has to be kept in mind
that the space of signed distance functions is not linear which means that a linear
combination of signed distance functions does not necessarily correspond to a signed
distance function. Besides, the principal components of implicit shape models de-
scribe the variability of the distance maps but not the variation of the embedded
contours. Therefore, understanding the variability information on distance func-
tions is not obvious so that it seems difficult to exploit the variability model for a
physical modeling of the shape variability.

2.5 Discussion

This chapter illuminates the important role which statistical shape models play in
medical imaging. Especially segmentation problems become better posed by the
employment of prior shape information in the form of SSMs. Away from being a
complete review on this subject, this chapter is an attempt to highlight the main
approaches and to lay the ground for further research in this area.

Even though SSMs have been part of the state-of-the-art for more than fifteen years,
new refined SSM methods emerge every year, and several open questions remain.
Especially the correspondence problem has not been solved satisfactorily in our eyes
as the assumption of one-to-one correspondences on 3D surfaces seems too strong.
Furthermore, most algorithms which compute SSMs employ step by step techniques
by first determining correspondence, aligning the observations, computing the mean
shape and finally computing the variability model. This is an intuitive technique
but not a sound mathematical framework. As the mean shape and the variation
modes should optimally represent the whole scene of observations, a global approach
seems to be favorable where the determination of correspondence, the alignment as
well as the computation of mean shape and variability are unified in one global cost
function. By doing so, a theoretical convergence could be ensured. The work in
this thesis will demonstrate how a statistical shape model based on correspondence
probabilities can be computed in a sound mathematical scheme.

Regarding the employment of SSMs in segmentation algorithms, two independent
domains were asserted: One group of methods is based exclusively on explicit rep-
resentation of SSMs and segmentation contours while the other group only uses
implicit SSMs and formulates implicit segmentation schemes. Naturally, both ap-
proaches feature different strengths and suffer from different weaknesses. This raises
the question if and how the strict separation of the two domains could be opened
in order to develop a segmentation algorithm which benefits from the advantages
of both. In this thesis, it will be shown how a combination of explicit and implicit
modeling could be realized which might open new insights on that matter.
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Statistical shape models are a valuable tool in medical image analysis and are
efficiently used in classification, recognition, reconstruction and segmentation meth-
ods. The models incorporate statistical knowledge mainly about the expected shape
and shape variability. The collection of that knowledge is done by statistically evalu-
ating the shape information of a number of observations of the respective structure.
To do so, the fundamental problem of determining proper correspondence between
the observations has to be solved. The solution of the correspondence problem as
well as the method of model computation depends on the representation of the
shapes. In this chapter, a generative method for the computation of a parametric
3D statistical shape model for point-based shape representations is developed. A
probabilistic modeling is chosen instead of a deterministic one and the shapes are
represented by mixtures of Gaussians. The computation of the Gaussian Mixture
SSM is formulated in a generative framework.

3.1 Motivation

Most methods in the state-of-the-art compute the parameters needed for the SSM
in a step-by-step manner: First, the observations are aligned in a common refer-
ence frame. Then, the mean shape is computed and finally, the variability model is
determined. While usually leading to good results, the mathematical foundation is
unclear and no convergence can be ensured. In order to create a sound mathemat-
ical framework, this work proposes to compute a generative model and unify the
computation of all parameters which take part in the SSM computation into one
global criterion.
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Furthermore, as discussed in section 2.2, one of the central difficulties of analyzing
different organ shapes in a statistical manner is the identification of correspondences
between the points of the shapes. As the manual identification of landmarks is not
an acceptable option in 3D, several preprocessing techniques were developed in the
literature to automatically find exact one-to-one correspondences between surfaces
which are represented by meshes as in [Lorenz 2000, Bookstein 1996, Styner 2003a,
Vos 2004] to just name a few. A popular method is to optimize the correspon-
dences and the registration transformation at the same time as does the Iterative
Closest Points (ICP) algorithm [Besl 1992| for point clouds as explained in section
2.2.1. More elaborate methods directly combine the search of correspondences and
of the SSM for a given training data set as proposed in [Zhao 2005b, Chui 2003]
or the Minimum Description Length (MDL) approach to statistical shape model-
ing [Davies 2002¢, Heimann 2005]. The MDL is used to optimize the distribution
of points on the surfaces of the observations in the training data set when de-
termining the best SSM. For unstructured point sets, the MDL approach is not
suited to compute a SSM because it needs an explicit surface information. An-
other interesting approach proposes an entropy based criterion to find shape cor-
respondences, but requires implicit surface representations [Cates 2006|. Other ap-
proaches combine the search for correspondences with shape based classification
[Tsai 2005, Kodipaka 2007| or with shape analysis [Peter 2006b]. However, these
methods are not easily adaptable to multiple observations of unstructured point
sets as they either depend on underlying surface information or fix the number of
points representing the surface. The approach in [Chui 2004]| for unstructured point
sets focuses only on the mean shape. In all cases, enforcing exact correspondences
for surfaces represented by unstructured point sets leads to variability modes that
not only represent the organ shape variations but also artificial variations whose
importance is linked to the local sampling of the surface points.

We argue that when segmenting anatomical structures in noisy image data, the
extracted surfaces (points) only represent probable surface locations. Therefore,
a method for shape analysis should better rely on probabilistic point locations as
presented with the rigid EM-ICP registration in [Granger 2002]. Accordingly, we
propose to solve the correspondence problem by describing the observations as noisy
measurements of the model. This amounts to representing the shapes by mixtures
of Gaussians which are centered on the model surface points. The shapes are then
aligned by maximizing the correspondence probability between all possible point
pairs. It should be noted that the SoftAssign algorithm |Rangarajan 1997a] has a
probabilistic formulation which is closely related but differs in that it gives the same
role to the model and the observations. This is justified for a pair-wise registration
but not for a group-wise model to observation registration, which is needed for the
SSM computation.

This chapter is structured as follows: In section 3.2, an affine version of the EM-
ICP registration algorithm is derived in order to establish a probabilistic framework
for computing correspondence probabilities between the observations. Following in
section 3.3, the generative Gaussian Mixture statistical shape model (GGM-SSM) is
developed, and a maximum a posteriori framework is proposed to compute all model
parameters and observation parameters at once. The solutions for optimizing the
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associated global criterion with respect to the observation and model parameters are
derived in sections 3.4 and 3.5. The integration of normals as additional information
into the global criterion is realized in section 3.7. We conclude this chapter with a
discussion about the characteristics of the new model (section 3.8).

3.2 Expectation Maximization - ICP Algorithm

In MR or CT medical imaging, the accuracy of the anatomical representation de-
pends on the slice thickness as well as the resolution in the plane. Even with a
very high spatial resolution, partial volume effects will occur, so it has to be pointed
out that the resulting image always remains an estimation of the true anatomical
structure. Due to the recording techniques, there is always a certain amount of
incertitude regarding the extracted image information.

For the computation of a SSM, a training data set containing segmented observa-
tions has to be created. The observations are mostly generated in a process which
comprises two steps: First, an automatic, semi-automatic or manual segmentation
of the respective structure is performed which results in a set of 2D binary images or
one binary volume. Next, a surface extracting algorithm is applied. For both steps,
a multitude of well researched and problem-adapted methods exists, nevertheless,
the resulting segmentation will always be an estimation of the true structure surface.
Concerning the correspondence problem, this means that the process of determining
homologies between extracted surfaces relies on information which is not necessarily
correct. Furthermore, one-to-one correspondences pose a problem for observations
which feature distinctive shape detail differences as shown in figure 3.1. For these
reasons, it is advantageous to use correspondence probabilities instead of exact cor-
respondences. The EM-ICP algorithm is a convenient method to find those.

In this section, an affine extension for the Expectation Maximization - Iterative
Closest Point registration is derived which tackles the correspondence problem by
determining correspondence probabilities instead of one-to-one correspondences. The
rigid EM-ICP was first introduced in 2002 by Granger and Pennec and proved to
be robust, precise, and fast [Granger 2002|. As the aim is to model the shape vari-
ations which remain after pose, scaling and shearing variations are eliminated, an
algorithm is needed which does an affine alignment of the shapes.

3.2.1 Algorithm

The EM-ICP algorithm determines the registration transformation 7' that best
matches a model point set M € R3Nm onto an observation point set S € R3Vs
with N, and Ny describing the number of points of the model and the observation
respectively. The focus lies on the probability of an observation point s; to be a
measure of a transformed model point T'xm;. In that way, the point s; is described
as a displaced and noisy version of point m;. Now all scene points are considered as
being conditionally independent. If the point s; corresponds exactly to the model
point m;, the measurement process can be modeled by the Gaussian probability
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Figure 3.1: A correspondence problem: One shape features two bumps, the other
only one. How can we determine correspondences between the two? The approach
used here establishes correspondence probabilities between all points representing the
shape surfaces.

S Detail

Figure 3.2: The scene S is regarded as a set of noised measurements of the trans-
formed model T'x M. The detail shows a 2D projection of the Mahalanobis distances
with respect to the point T xm;. The probability of scene point s; giwen T' and m;
is calculated as shown in equation (3.1).

Figure 3.3: Mizture of Gaussians describe likelihood of point s; with respect to several
model points m;.
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distribution
1 1 T w1
p(silm;, T) = —s— exp(—i(si —Txmy)" X7 (si —T*my)) (3.1)
(2m)2|%;]2

where X; represents the noise as the covariance of m;. For an illustration see figure
3.2.
However, the observation point s; can in fact be a measure of any of the model
points as illustrated in figure 3.3. It is assumed that a prior: all m; are equally

probable for being matches to s;. Since M consists of N, model points m;, the
probability distribution model of the spatial location of s; is the mixture

p(si|M,T) Zp silm;,T) (3.2)

Unfortunately, even under the assumptlon that all scene point measurements are
independent, no closed form solution exists for the maximization of p(S|M,T). A
solution is to model the unknown correspondences H € RNs*Nm as random hid-
den variables and to maximize the log-likelihood of the complete data distribution
p(S,H|M,T) efficiently using the EM algorithm. We denote E(H;;) as the ex-
pectation of point s; being an observation of point 7' % m; (with the constraint
Z;V’" E(H;;) = 1) and compute the expectation of the log-likelihood with

E(logp(S,H|M,T)) =N ZZE ij)log p(silm;, T). (3.3)
In the following, uniform priors on H are assumed.

In the expectation step, T is fixed and logp(S,H|M,T) is estimated to
compute the expectation of correspondence F(H ):

exp(—p(si, T *m;))
> exp(—p(si, T my))
with pu(si, Txmy) = 5(si — T xmy) .57 (si = T xmy).

P(Hy; = 1) = E(Hj;) =

In the maximization step, E(H) is fixed and the estimated likelihood is
maximized with respect to 7. For this purpose, constants and normalizing factors
of equation (3.3) do not have to be taken into account. Hence, the EM-ICP
criterion C'gps to be optimized takes the following form:

Cpm (T, E) ZZE ij) (50 = THmy) ST (s — T wmy). (3.4)
Without loss of generality, it is assumed from now on a homogeneous and isotropic

Gaussian noise with variance o2 in order to simplify the equations. The transfor-
mation is then found by

T:argirpnin ZZE ii)llsi — T % my]|. (3.5)
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We see that the elements of E(H) serve as weighting factors. The solution of this
least-squares estimation for a rigid transformation 7" can be seen in [Granger 2002].

3.2.2 Generalization to Affine Transformation

When dealing with an affine transformation 7; s, a point m; is transformed by T}, ¢
as follows: T,pr xm; = Am; + t with the transforming matrix A € R3%3 and the
translation vector ¢+ € R3. In order to find the best translation ¢, equation (3.4) is
differentiated with respect to t, and we obtain

N

dCEu(t) L .
—a = _2;(22: S — A%:mj ZE(H“) — Nit)

i

knowing Zj\fm E(H;;) =1 Yi. Thus, at the optimum we find

1 N 1 Nm N
= D si—Ax D my ) E(Hy). (3.6)
S B S ] B

We see that # aligns the barycentre 5 = NLS Ef\fs s; and the pseudo barycentre m =

NLSZ;V’” m; ZZNS E(H;j;) of the two point clouds S and M. Using “barycentre”
coordinates s’; = s; — § and m’; = m; — m allows us to simplify the criterion into

Ns N,
1 S m

CJ/E‘M(TvE) = ﬁ E E E(Hij)(slfsli—28'iTAm'j+m'jATAm'j). (37)
(]

Next, C'y/(T) is differentiated with respect to the affine transformation matrix A:

OCE(A) 2 O I T | 2 QoA T
/ / /! /!
—r - —;;;E(Hij)simj +;Zi:zj:E(Hij)Amjmj

2
= ;(—I‘ + AT)
with T, T € R3*3.
We solve for A with

AY =T A=T7"1

If Y is singular (det(Y) = 0), the pseudo-inverse T has to be determined instead
of the inverse Y~!. From an implementational point of view, it is advantageous
to always determine the pseudo-inverse. As Y is symmetric, the pseudo-inverse is
computed using the Jacobi method for eigenvalue decomposition. For details see
section A.1.

The resulting transformation 7' is applied to the points of the target cloud M before
the next Expectation step. The two EM-steps are alternated until |Cp (T, E)® —
Cem(T,E)=Y| < €. A mathematical proof of convergence for the EM algorithm
is provided in [Dempster 1977].
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3.2.3 EM-ICP Multi-Scaling

In order to robustify the computation of the affine transformation, an iterative multi-
scale scheme is implemented. Here, the variance o2 controlling the correspondence
probabilities between shapes (as formulated in equations (3.1) and (3.2)) is used as
a scale parameter. In his thesis, S. Granger analysed the influence of the variance on
the convergence of the rigid EM-ICP algorithm |Granger 2003|. The results suggest
that the algorithm should be started with a large variance to guarantee the robust-
ness and that the final variance should be in the range of the real noise variance in
order to ensure the most accurate results. A large variance makes sure that shape
positions and rotations of source and target are aligned. A low variance makes sure
that the shape details of source and target are aligned. This is implemented as
follows: We start the EM-ICP registration with sigma ogq¢ in the first iteration.
In each following iteration i, the sigma value is reduced to o; = r-factor® - ogqrt
where the reduction factor is a scalar with 0 < r-factor < 1. Its value has to be
chosen carefully as a fast decrease of the multi-scale variance o2 could easily freeze
the model in local minima. The same applies for the choice of the initial o-value.
If the sigma is chosen too small, the EM-ICP behaves like the ICP registration
algorithm which means that always only one point, the closest neighbour, is fixed
as corresponding point. For mathematical proof please refer to appendix A.2. If
sigma is chosen too great, the source tends to shrink to the barycentre of the target.
Eventually, the choice of sigma depends on the data at hand and is determined
heuristically so far. In order to illustrate the influence of sigma and reduction factor
in the multiscale-scheme, we examine an example: The affine EM-ICP is employed
to register two kidneys represented by around 3000 points each. The value of ogqt
is set to 12, the registration is iterated 100 times. In the first registration, no multi-
scaling is performed. In the second registration, a multi-scaling is performed with
a reduction factor r-factor—=0.97. The algorithm with multi-scaling comes to better
results as without as illustrated in figures 3.4 and 3.5.

We then test the behaviour of the affine EM-ICP on a synthetic registration problem.
Our data consists of a segmented kidney S which is represented by N = 10466 sur-
face points s; and has a size of about T0mm x40mm x 120mm. We generate a second
kidney St by deforming S with a synthetic transformation Tsypnen: ST = Tsynin x S.
Subsequently, both point sets are decimated to S¢ and S% using a decimation al-
gorithm which is based on the technique presented in [Schroeder 1992|. Here, the
points are splitted and moved during decimation. By choosing different decimation
parameters (different number or triangles, different point priority queues) for S and
St, it is ensured that the number of common conserved points (exact correspon-
dences) between S? and S:‘ﬁ is less than 15%, so real conditions - where no exact
one-to-one correspondences can be determined - are simulated. Moreover, the num-
ber of points differs. In the following experiments, S% and S:‘ﬁ are represented by
around 510 points.

In order to quantify the accuracy of registration, we define a distance measure as
the normalized sum of distances between all corresponding points s; and s7; of the
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(a) & iterations. (b) 20 iterations. (c) 100 iterations.

Figure 3.4: Affine EM-ICP registration on two kidney point clouds, source in green
and target in purple. The variance is set to 12 and remains constant for the whole
registration process.

(a) & iterations. (b) 20 iterations. (c) 100 iterations.

Figure 3.5: Affine EM-ICP registration on two kidney point clouds, source in green
and target in purple. The variance is set to 12 for the first iteration and is then
reduced with a reduction factor of 0,97 in each new iteration.
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original, non-decimated, kidneys:

2 1 Al 2
d (S, ST) = N_S Z HSZ — STJ;” .
=1

We chose this distance measure instead of comparing the computed transforma-
tion with the original one since Euclidean point distances are easier to interprete
than matrix coefficient differences. In summary, the experiments are conducted by
performing the following steps:

1. Choosing Tyns, to generate St.

2. Decimation of S and Sy resulting in S% and S:‘ﬁ.

3. Registration of S and S¢ using the affine EM-ICP.
4. Applying the resulting transformation T..s to St.
5. Computing the distance between S and Tcs * S7.

We tested for similarity and affine T’,,,4,. The similarity transformation represents
a rotation with rot, = 20°, rot, = 10°, and rot, = 5°, a scaling of scale, = 1.1,
scale, = 0.9, and scale, = 1, and a displacement of disp, = 10mm, disp, = 10mm,
and disp, = 10mm. No shearing is applied. We start the registration with ogqrt =
8mm and used a reduction factor of r-factor=0.9. The algorithm converged after
30 iteration and resulted in a distance of d(S, St) = 0.5mm. The result is shown in
figure 3.6.

The affine transformation has a high shearing effect with

1 0 00
0.1 1 00
Tsynthooffine = | 007 002 1 0
0 0 01
Again, the registration is started with ogq+r = 8mm but in this experiment,

the reduction factor is varied with r-factor = {0.5 0.85 0.90 0.95}. Figure 3.8
shows the influence of the reduction factor on the convergence rate for the affine
Tsynth- The final surface distances are in the range of d(S, St) = 0.35mm for the
tested r-factors {0.85 0.90 0.95}. A r-factor of 0.5 however leads to a distance of
d(S,St) = 0.46mm since the algorithm freezes in a local minimum for that case.
For a result example of the affine transformation experiments see figure 3.7.

We could establish that the affine EM-ICP registration results in a typical
distance of d(S,Tyes * S7) < 0.5mm for our data set under the tested transforma-
tions. This value lies in the same range as the average distance of one point in S
to its closest neighbour (0.74mm). Typically, 30 iterations sufficed for the kidney
registration in this set-up. The EM-ICP needs no previous rigid registration for the
affine case.
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(a) (b)

Figure 3.6: The original objects S (pink) and their transformed versions St (green)
(a) before registration with d(S,St) = 51, 7mm and (b) after registration with
d(S, Tyes * ST) = 0.5mm. For the EM-ICP, the kidneys were decimated from 10466
to around 510 points, we chose an initial sigma of 8mm, 30 iterations and a reducing
factor of 0.9 (which leads to a final sigma of 0.38mm).

(a) (b)

Figure 3.7: The original objects S (pink) and their transformed versions St (green)
(a) before registration with d(S,St) = 40,3mm and (b) after registration with
d(S, Tyes*ST) = 0.35mm. For the EM-ICP, the kidneys were decimated from 10466
to around 510 points, we chose an initial sigma of 8mm, 30 iterations and a reducing
factor of 0.9 (which leads to a final sigma of 0.38mm,).
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Figure 3.8: Convergence of EM-ICP in affine kidney registration. The EM-ICP
criterion values are plotted with respect to the number of iterations for three different
reduction factors (r-factor). The final surface distance were all in the range of
~ 0.3bmm. A reduction factor of 0.5 however leads to a distance of 0.46mm since
the algorithm freezes in a local minimum for that case.
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3.3 The Unified Framework

In the probabilistic approach, the aim is to compute a generative model which op-
timally fits the given data set. We realize this by developing a global and unique
criterion which is optimized iteratively with respect to all model and all observa-
tion parameters. The optimization is done through a single maximum a posteriori
(MAP) criterion and leads to very efficient and closed-form solutions for (almost) all
parameters without the need for one-to-one correspondences as is usually required
by the principal component analysis. The registration transformations which are
needed to match the model on the observations are computed using an affine ver-
sion of the Expectation Maximization - Iterative Closest Point (EM-ICP) algorithm
which is based on probabilistic correspondences and which proved to be robust and
fast. By relying on correspondence probabilities, the generative statistical shape
model representing the training data set is modeled as a mixture of Gaussians.

In section 3.3.1, the generative model parameters and observation parameters are
presented and integrated in a unified framework. In section 3.3.2, the global criterion
obtained by the MAP estimation is developed.

3.3.1 The Generative Model

We assume a training data set of segmented organs which contains N observations
Si. The observations are represented by point clouds with respectively Nj points
in 3D, so that S, € R3V. We want to determine a generative statistical shape
model which best represents the given observations. Here, the observations are
interpreted as randomly generated by the model: The scene Si is seen as a set
of noised measurement of the model. The model itself is modeled as a random
variable described by a Gaussian distribution.

In order to avoid homology assumptions, the approach is based on correspon-
dence probabilities. In the following, the involved parameters are presented in detail.

Generative Gaussian Mixture SSM Parameters O:
The GGM-SSM is explicitly defined by the following 4 model parameters
© = {M,vp, \p,n}:

o M € R3Vm: Mean shape of the model parameterized by a point cloud of N,
points m; € R3.

° v, € R3Nm - ¢ variation modes represented by N,, 3D vectors Upj-

e )\, € R: n associated standard deviations A, € R which describe - similar to
the classical eigenvalues of the Principal Component Analysis - the impact of
the variation modes.

e n: Number of variation modes (n < N).

Observation Parameters Q:
From the parameters © of a given structure, the shape variations of that structure
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can be generated by

N
M:]\_4+prvp, N <n
p=1

with w, € R being the deformation coefficients Q = {wy, ..., wy } of the current shape
(observation parameter) along the modes vy, ..., v, (model parameter). The proba-
bility of obtaining a random deformed model M depends on the probability of the
deformation coefficient parameters given ©. We model the deformation coefficients
distribution as Gaussian:

n n 2

p(118) = p(@10) = [[pe4)0) = om0 | -3 55 | 69
p=1 p=17"P

where the standard deviation A, is a model parameter.

In the framework of the GGM-SSM computation for a training data set containing
the observations S, the deformation coefficients are denoted wy, according to the
Sy they belong to.

The second observation parameter are the registration transformations which posi-
tion our system in space by aligning the model shape with each of the observations.
Each transformation is associated with one observation Sj, they are denoted as
Ty, = {Ap € R3*3 t;, € R3} with rotational or affine matrix 4; € R3*3 and transla-
tion tg. In order to compute the transformation which maximizes the correspondence
probability between the model and a observation, the Expectation Maximization It-
erative Closest Points registration algorithm which is explained in detail in section
3.2 is employed. The hidden variable in the Expectation Maximization algorithm is
the correspondence probability matrix Fy;; € RNeXNm - Ttg elements at position ij
describe the correspondence probability for observation point s; with model point
mj.

Applying the transformation 7}, to a model point m; is written as

Ty *mj = Akmj + tg.

The instantiated and placed model M} is then determined by applying the trans-
formation to all model points m; which is denoted as

M =T, M. (3.9)

We summarize the observation parameters as Q = {Q, Tk }.
The unified framework of the parameters and their specific relations are illustrated
in the diagram shown in figure 3.9.

3.3.2 Optimization of Parameters through a Single M AP Criterion

As described in section 3.3.1, the approach deals with two sets of parameters:

1. Model parameters: © = {M,v,, \p,n}.
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Model ©

M € R3*Nm: Mean shape of the model composed of N,,, 3D points
vp € R3NVm ¢ p variation modes composed of N, 3D vectors vy,
Ap € R: n associated standard deviations

n: Number of variation modes (n < N)

Shape Variability Parameter (2

wgp © 1 deformation coefficients,

each associated with a v, and S,

V

Deformation of the Model

My = M + Z;\Ll WkpUp

_ 1 n wzp
P(M418) = eyt oxp (- 5 )

Geometrical transformation 7},

e —— Ty = {Ak S R3X3,tk S RB}

with rotational or affine matrix A; and translation ¢

V

Placement in space

]QZTk*Mk

Correspondence probability FEj

< EkERN’“XNm

> Brij =1

V

Sampling

ski = T *mj + N(0,0) with probability Ej;;

Figure 3.9: Unified framework for GGM-SSM computation. The model parameters,
the observation parameters and their respective relations are illustrated.
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2. Observation parameters: Qy = {0, T} and associated nuisance parame-
ters (hidden variables) E.

In order to develop a framework to compute these parameters for a given training
data set S, the aim is to find the parameters © and ) which most probably generated
that scene. The likelihood function is given by (Q,0) — p(S|Q,0). We first
approach the situation from the view point of its use, that is, it is assumed that
the model parameters in © are known. We are interested in the search for the
parameters linked to the shape observations: @@ = {Qy}. The model is modeled as a
random variable with a Gaussian distribution which means that a prior distribution
over (@, ©) exists which is not uniform since p(@,©) # constant. In order to take
into account the prior that the model is providing on the observation parameters,
a maximum a posteriori estimation should be optimized instead of a maximum
likelihood estimation of @ and ©. The posterior distribution of (Q,©) is then
(Q,0) — p(Q,0]S). In the MAP estimation, Bayes’ theorem is used which leads
to

N N
MAP = = "log(p(Qr, OS) = — Y _log <p(5k|Qk’ (Zzgi?k'@)p(@)

) . (3.10)
k=1 k=1

The probability of the observations p(Sy) does not depend on the model parameters
© and p(0O) does not play a role with © known. Hence, the MAP estimation can be
simplified and the global criterion integrating our unified framework is the following:

N
C(Q,0) ==Y | log(p(Sk|Qk, ©) +log(p(Q4]0))

k=1 ML estimate Prior

The first term describes a maximum likelihood (ML) estimation with p(Sk|Q, ©) =
p(Sk|Tk, U, ©), which gives

N N, n
1 . _
p(SklQk, ©) =] N > p(skilmag, Te) with myg; = m; + > wipvy.
i=1" "™ j=1 p=1

As a given scene point sg; is modeled as a noisy measurement of a (transformed)
model point m;, the probability of the observed point is given by

1 1
57— exp(—5— (ski—Tk*mj)T.(ski — T} % mj)). (3.11)
)50- 20

p(skilmy, Tx) =
2T

The second term of C(Q, ©) (the prior) depends on the probability of the deforma-
tion coefficients wy,, as described in equation (3.8).
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For the complete criterion we thus we find

£(0.6) S o [ L5 < sk —Tk*mij?)
) = - 0g N 3 exp | — 2
k=1 i=1 Ny j=1 (2m)20 20
N n n
+ log((2m)"/?) +1og(d_ Ap) + Z e (3.12)
k=1 p=1

N
= a(n) + B(Nm) — C(0) + > Ci(Qr, 0).
k=1

The number of variation modes is not optimized but a fixed number is assumed.
The number N,, of points in the model is fixed and a multi-variance scheme is

employed. Hence, a(n) = >, log((2m)"/?), B(Nm) = 3 Nxlog(Ny,) and ((0) =
N N log <(27r)_%a_1) become constants.

Our criterion thus simplifies to Cgiopa (@, 0) = Zi\;l Cr(Qg, ©) with

n

i — 1 1k
Cr(Qx, ©) = Z (log()\ 2)\2> Zlog Zexp (_HSk 2’;; M | >

p=1

(3.13)

The first term is responsible for maximizing the probability of deformation while
the second term tries to minimize the point distances of model and observations.
The global criterion of equation (3.13) incorporates the unified framework for the
model computation. By optimizing it alternately with respect to the operands in
{Q, O}, we are able to determine all parameters we are interested in.

Some terms will recur in the different optimizations as the derivative of the second
term of the global criterion is always performed in the same manner. We will
introduce the following notations for simplification reasons: The derivative of an
arbitrary function ¢

Ny
~ <_||3ki_Tk*mkj||2>

202

with respect to one of the function’s parameters (let’s say x) is

Non
aﬁmg B (ki — T *x mygi) T O(spi — Thy + M)
n Z Vkij 02 Ox

with

Spi—Tpxmy ;||
eXp <_|| ki 21;2 k]” )

i = )
ki ZN'm (_ ||3ki—Tk*mkl||2>

202

(3.14)
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The details of this derivative can be found in appendix A.3.

Note that the variable 7y;; is equal to the elements FEj;; of the expectation matrix
which means that the derivatives of all parameters are weighted by the correspon-
dence probabilities of all sz; and m;.

3.4 Computation of the Observation Parameters

In this section, the alternated optimizations of the observation parameters {7}, Qx}
with fixed and known model parameters © = {M,v,, A\p,n} are described in detail.

3.4.1 Transformation

We optimize the global criterion (equation (3.13)) with respect to the spatial
transformation T}, so €, and © are fixed. Here, the concept of the affine EM-ICP
registration described elaborately in section 3.2 is used where the correspondence
probabilities Ej;; are modeled as hidden variables.

1. The Expectation Step:
In the expectation step, the transformation 7}, is fixed. We compute the expectancy
of the log-likelihood of the complete data distribution and derive

llshi =Tk 112

g l|s g = Tixmua 12\’
2127 exp <_ZT

(3.15)

compare equation (3.14).

2. The Maximization Step:

In the maximization step, the correspondence probabilities FEj are fixed, and
the transformations T} have to be determined. Therefore, the global criterion is
optimized first with respect to the translation ¢; and next with respect to the affine
registration matrix Ag.

Optimization with respect to the translation
We optimize the criterion with respect to the translation t;. For the derivative of
the second term, the general derivative described in equation (3.14) is employed:

Ni Nm T
8Ck(Qk,@) N (Skz —Tk*mkj) 8(Sk2 —Tk*mkj)

with

8(Ski — Tk * mkj) 0 _ =
Bty = 8—tk(3ki —t — Ag(m; + ;::lwkpvm)) = ~Isxs-
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Solving for %Q:’Q) =0, we find

Nk Nm n
2 Z D wwig(srs =t — Ag(img + ) wipvpg)) =0
i=1 j=1 p=1

which gives explicitly the transformation

n
th= 8k — Ag [ Ty + > wipby) | - (3.16)
p=1

with
LM | N N LM
=N Z; Skis My = - 2; m; z; Yhijand Ty = 0 Z; VrijUpj-
1= J1= 1= 1=

This is no more than the superposition of weighted barycentres with weights a bit
more complex than usual since the model barycentre includes a correction for the
modes.

Optimization with respect to the affine matriz

In order to optimize the criterion with respect to the affine matrix Ag, the
translation ¢ is replaced as found above (equation (3.16)), so the implementation
of the whole transformation derivative becomes simpler. The points of the shapes
are now expressed with respect to their barycentres and we set

/ ~ _ ~
S = Ski — Sk and My = My — myj + Zwkp(vpj — Up).

The first term of the global criterion in equation (3.13) does not contain transfor-
mation parameters, so we can rewrite our criterion to

N Ng 3/-—A m/' 2
C;Q(Qk, = const — Zzlog ZeXp< | ki 201; ky”)

k=11=1

Then the derivative of C(Qy, ©) is solved with respect to Aj. Here, the derivative
form shown in equation (A.2) is used which simply is:

N Np,
9C;(Qk, ©) B iz I8 — Akm;cj”2 —0
0AL Vkij aA 202 N
=1 j=1
and which finally leads to a matrix equation in the form of
Nk, N, Nk N,
Ak DD i = DY s
i=1 j=1 i=1 j=1

S AT =V, Y,V € R3*3.
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(The detailed derivation can be found in appendix A.3.) The elements of T} and
U, in row r and column s are determined by

Nk Nm,
olrl[s] = Y > iy migslr] misls]
i=1 j=1
and
N Npm
r)s) =D 0 Akig shilr] mils).
i=1 j=1
where mj ;[s] denotes the entry of vector mj; at position s.
Hence, the computation of the transformation can be efficiently done in a closed-
form solution by solving a 3 x 3 equation system.

3.4.2 Deformation Coefficients

In order to compute the deformation coefficients Q = {4}, the global criterion
(equation (3.13)) is optimized with respect to the deformation coefficients ;. The
transformations 7 and the model parameters © are fixed. For the derivative of
the second term of the criterion, again the general derivative described in equation
(3.14) is employed. For details please see appendix A.3. We finally find

N N,
0CH(Qr:0) _ whp 1 gAR
T owey )\_2;, o2 D i (ki — T xmg) " Agvy; = 0.
P P i=1 j=1

In order to simplify, let us introduce the real values dy, and grqp (With grep = gipq):

Nk Nm
— \T
dyp = Z Z Viij (Ski — te — Apmj)" Agvp;
i=1 j=1
and
Nk Nm
T AT
Gkqp = Z Z 'Vkijvquk Akvpj-
i=1 j=1

Thus, the system which has to be solved for the optimal wy,, is (for all p):

2

n
g
ﬁwkp — dkp + Z Wkq9kqp = 0.

We solve this equation with respect to all wy, at a time by switching to a matrix
notation where all wy, are sorted in vector ; € R", all dy, are sorted in vector
dy, € R™ and all gy, are sorted in the symmetric matrix Gj, € R™*™:

1
X 0 .
0=oc? Q. — dy, + Gy
0 1
)\2

< (Gr+ Run) O = d_;g (3.17)
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with matrix R, = a2diag()\1_2, s A7 2). In order to compute the Wgp, for each k
the matrix G and the vector cfk have to be evaluated. In the implementation, the
linear equation system is solved using a LU decomposition of (G + Ry,).

3.5 Computation of the Model Parameters

For the computation of all model parameters, we assume the observation parameters
Qr = {Qk, T} } to be fixed and known and optimize the global criterion of equation
(3.13) with respect to the parameters in © with © = {M, vy, A\, }.

3.5.1 Mean Shape

We optimize the global criterion (equation (3.13)) with respect to the mean shape M,
so the standard deviation ), the variation modes v, and the observation parameters
Q. are fixed. We evaluate the derivative for each mean shape point m;. The first
term of the global criterion in equation (3.13) does not contain any m;, so we
concentrate on the second term. Using the general derivative presented in equation
(3.14), we directly find

N N .

9C10ba1(Q, O) Spi — T % myi)T O(spi — T *x M

oot @0) _ | 5 gy ST xmiglT St “Tixms) _
k=1 i=1 g mj

We finally solve for m; by

N Ng 1N N
- (ZZVkijA{Ak> ZZ’YkZJAk Ski — tk _Akzwkpvp] (3.18)

k=11i=1 k=1 1i=1

which is derived in detail in appendix A.3. We see that the mean shape points
are computed as the average of all observation points which are weighted by their
respective correspondence probabilities ;.

3.5.2 Standard Deviation

We optimize the global criterion (equation (3.13)) with respect to the standard
deviation \j, so M, v, and @y, are fixed. The derivative in this case is quite easy:

0Cun(@0) _ 5~ (1 k) _,
OAp o\ A

N
1
& A= ~ > Wi, (3.19)
k=1

This is consistent with the ML estimation of the standard deviation based on a
normal distribution.
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3.5.3 Variation Modes

We optimize the global criterion (equation (3.13)) with respect to the variation
modes vy, so all A, M and @, are fixed. As we are working with a matrix notation,
we first define the matrix V € R3Vm*" containing the variation modes v, € R3Vm
in its columns. The computation of the variation modes is complex, for one as is
has to be made sure that the resulting vectors are orthogonal to each other:

T _s _J 1 ifp=gq
v”vq_é”q_{o if p#gq

which leads to the constraint
VIV = Lisn.

In order to integrate this constraint into the optimization, we employ Lagrange
multipliers. This means that a new variable Z € R™*™ is introduced with a Lagrange
function A where

OA
— = VIV = Ly
0z~ < "
and our global criterion is extended to
1
A = Coiobat + 5tr (Z(WVTV = Iixn)) - (3.20)

We differentiate the two terms independently and point-wise. Here, vj, € R3 denote
the elements of v, which model the variation of model point m;. We begin with the
derivative of Cyiopar- :

N N
anlobal - 1 T A
— I == Vieij (Ski — T * Migj)” wiepAg
ov; o2
Jp k=11i=1

In order to simplify the notation for clarity purposes, in the following we denote

n
86’global o B i
= = Z paiViq — djp
q=1

avjp

with
N N

QJ;D - 2 szykz] Skz tk — Akm]) wkpAky Tip c ]R3
k=1 1i=1

and
N Ng

3x3
BPQJ 0_2 kzl E;'WczgwkqwkpAk A, quj € R** Vj.
i

Differentiating the Lagrange multiplier with respect to v, gives

21 o 9
Em tr (ZOVTV = Lixn)) = av]p 5t (2VTV)

1
Z 9 (2qp + 2pq)Ujq With zgp = 2pq.
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We now summarize the derivative to

OA

avjp

n n
= Z ZgpUjq + Z BypejUiq — Gjp- (3.21)
q=1 q=1

In the rigid case, Aj is a rotation matrix - and thus orthonormal - so it holds
A;{Ak = I3x3. The matrix Bj4; can then be Writ]tven as ]E[he identity matrix multiplied
by a scalar: Bjgj = bpgjl3x3 with bpg; = U% Yok 2o VkijWrkqwkp. Hence we can
simplify the solution of aBTA = 0 to a vector summation:

Jp

n

n
Z (2gpl3x3 + bpgjlsxs) Ujg = Tjp & Zﬁjq(qu + bpgj) = jp (3.22)
q=1 q=1

This equation cannot be extended to a matrix notation in order to compute all 7, at
the same time because we deal with a different b,,; for each point j, thus, B would
be a tensor. Therefore, we approach the problem regarding each band [V] ) € R3x7
of matrix V € R3VmXn geparately with

[V]{j} = [27]'1, ceny 5jq, ey ﬁjn].

There are Ny, bands [V];-

Now we can write equation (3.22) in a matrix notation

V] (B + 2) = [Ql -

with the matrix B; € R"*" holding the by,; and the matrix [Q];, € R3*™ holding
the @jp. The computation of each band [V]{; is then realized in an iterative
manner as follows:

1.) If Z is known we can compute V: [V];y = [Q](; (Bj + A

2.) If all [V];y are known, we can determine Z: [V]13Z = [Q]; — [V By V.
For readability reasons, we set [Qly;y — [V];3B; = [@]{j}. Looking at all j
simultaneously, we find the following matrix equation

VZ=Q.

with V e R3VNmxn 7 ¢ R"*" and Q € R3Nmxn,

For the implementation, we add two steps. First, we force the V resulting from
step 1.) to be orthonormal. To do so, we apply first a singular value decomposition
V = USR" with U € R¥VNm>*n G ¢ R"*" and R € R™ ™. Then we replace V with
its orthonormal parts V « URT.

Next, we want Z to be symmetric. Hence, instead of computing Z = VIQ we
compute

7= % (VG + Q).

Finally, the optimization of the global criterion with respect to v, is done as follows:
We iterate



48 Chapter 3. A Generative Gaussian Mixture Statistical Shape Model

1. Compute Q with bands [Q](;; = [Ql;; — V{3 B;-

2. Compute Z = V'@ and Z = §(Z + Z7).

3. Update V band per band: [V];y = [Qlgy (Bj + z)~ .
4. Modify V = USR” to be orthonormal: V « UR”.

until [V — V]2 <e.

In the affine case, it holds A;{Ak # I3x3, so the solution to O — ) is a

IUjp
bit more cumbersome as Bjq; is not a diagonal matrix anymore and not sparse.
In the following, the general approach is explained. For all j and all p we want to
solve

n n
Z (2gpl3x3 + Bpgj) Ujg = Qjp < Z ByejUiq = djp- (3.23)
q=1 q=1

For a matrix notation, we arrange the elements of the variation modes v, in the
vectors [V];3 € R¥ with

Vigy =1 i
Tin

Then we arrange the matrices quj in [Bj]pq c R3nx3n.

Bllj quj Blnj
(Bilog=| Bpj - Bpgj - Bpnj |
Bos o Buw . Bung

so we obtain the following linear system to solve:

[Bj]pq[v]{j} = [Q]{j}

Again we realize the computation iteratively by solving alternately for Z and for
V. In practice, after a first rough alignment of the observations, the values of
A%Ak come close to the identity matrix, so the rigid variant of the variation mode
computation can be employed which is faster.
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3.6 Practical Aspects

3.6.1 Initialization and Control of the Parameters

As the computation of the observation parameters is based on known model param-
eters © = {M, v, A}, the mean shape M is initialized with one of the observations
Sk in the given data set, preferably with a typical shape. Next, by applying the EM-
ICP registration, the resulting correspondence probabilities between M and each S},
are evaluated, and “virtual“ one-to-one correspondences are determined. We intro-
duce the virtual corresponding points §j; for each m; and each S, by evaluating the
mean position of the probabilistic correspondences:

(T " % si).- (3.24)

ZZEHk)

The §3; represent probable sampling points of an unknown underlying surface of
observation Si. We compute a set of 55, for each Sj. The resulting sets of assumed
exact correspondences (T'xmj, 51;) are then used as input for the Principal Compo-
nents Analysis to compute the initial eigenvectors v, and the initial eigenvalues \,.
For a detailed explanation of the computation see section 3.6.2. The observation
parameters @ = {T,Q} are initialized with Ay = I3x3 and ¢, = (0,0,0) for all &k for
the transformation and with wy, = 0 for all k£ and all p.

In order to test for the sensibility of our SSM computation with respect to the initial
mean shape, we compared the mean shape results which are obtained when using
dissimilar initial mean shapes M; and Ms. We established that M; can be gen-
erated based on the SSM found with My with statistically very small deformation
coefficients wy,: My = My + Zp wiplpy with wy, << Agp [Hufnagel 2007b].

As the aim is to find a good balance between complexity and simplicity of the model,
the dimension of the variation mode vector space is reduced during the iterated com-
putation of the parameters. If the standard deviation A\, becomes “too small”, the
associated variation modes v, are no longer taken into account. This does scarcely
influence the convergence rate of the global criterion as shown in figure 3.10.

3.6.2 Solving for the Initial Variation Modes

A training data set containing IV observations Sj with a fixed number N,, of virtual
corresponding points is cleared of the mean and then stored in the matrix B €
R3Nm >N Tn order to compute the principal components, the associated covariance
matrix is built with Cov(B) = BBT € R3m*3Nm and a eigenvalue decomposition
is performed:

BBT = ESET

where S € R3Vm*3Nm i5 3 diagonal matrix which contains the eigenvalues of BBT
and E € R3Nm*3Nm ig an orthogonal matrix containing the associated eigenvectors.
However, for representing an organ like e.g. the kidney with a reasonable amount
of details, at least N,,, = 3000 points (if evenly distributed) are necessary, thus,
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Figure 3.10: Global criterion values of SSM computation for synthetic ellipsoid data
set as illustrated in section 4.2.1.1. Since variation modes whose standard devia-
tion falls below a certain threshold are discarded, the number n of variation modes
diminishes from 10 to 7 during computation.

€ R9000x9000 311 is not sparse.

the system to solve becomes very large with C'ov(B)
Therefore, we apply an alternative solution to the standard eigenvalue decomposition

and employ the Singular Value Decomposition (SVD) of B:
B=UxvT (3.25)

with U being an orthogonal matrix U € R3Vm>*3Nm /T heing the transpose of the
orthogonal matrix V€ RV¥*N and ¥ being a diagonal matrix ¥ € R™*" with the
singular values o; on the diagonal. Now we use these components to represent BBT
resulting in

BBT =uxvTvTuT =usx?u? = ESET. (3.26)

We see that U holds the sought eigenvectors of the big system as U = F while X7
hold the eigenvalues of the covariance matrix. Using the singular value decompo-
sition means that we never need the space 3N,, x 3N,, to compute the covariance
matrix. Moreover, the SVD is numerically more stable than the eigenvalue de-
composition and therefore more accurate if the covariance matrix is ill-conditioned
[Kalman 1996|. For a detailed derivation of eigenvalue and singular value decompo-
sition please refer to section A.1.

3.7 Extension of the Criterion for Non-Convex Struc-
tures

The EM-ICP algorithm works very well for shapes which are convex. Concave shapes
however pose a problem as points which lie close to one another do not necessarily
belong to the same part of the shape. However, their correspondence probability
will be high according to the EM-ICP. For an example see figure 3.11 which shows
the left ventricle of the heart and an illustrative synthetic structure.
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Figure 3.11: Non-convex structures. a) The left ventricle of the heart is an example
for a non-convez organ structure (Image courtesy of Dennis Sdring [Saring 2009]).
b) Synthetic examples: Points which lie close to one another do not necessarily
belong to the same part of one shape. More information than the Mahalanobis dis-
tance is needed in order to determine the correct correspondence for point m; in this
Wllustrated case.

3.7.1 Integration of Normals

For non-convex shapes, an additional information is needed about the shape along-
side the Mahalanobis distances used in the EM-ICP. When looking at the figure
3.11, what easily comes to mind is the distinction of the direction the surface is
facing. Therefore, the normal information is integrated into the global criterion to
obtain small probabilities of correspondence between points which feature normals
showing in very different directions.

Let us denote the normalized normal belonging to point s; as 7, and the normalized
normal belonging to point m; as 7,,;. We could now either measure the difference
between the normals by analysing the angle between them or just by using the Eu-
clidean norm ||ng — 7m;||. Before comparing the normals, the transformation 7" has
to be applied to the normal vector. This is done by multiplying the inverted and
transposed transformation matrix with the normal vector. The translation is not
needed: T'x 1, = (A_l)Tnmj. Next, a renormalization of the normal is done, so in

—1\T .
our case 1'% 1)y,; = &,1;7#:;'. A small difference means high probability, so we ex-

tend the term of the EM-ICP given in equation (3.11) to obtain the correspondence
probability of point s; with respect to the transformed point m; by

||5i—T*mj||2 ||773i_T*77mj||
202 ) exp( 203 )

exp(

AT m.) =
plsiTmy) = —

The correspondence probability relying on additional (normal) information between
two points can be directly integrated in the global criterion. The elements of the
expectation matrix and therefore the values vy;; in the derivatives simply change to

lski=Termus 1> mski =Tr i |
exp(— 202 B 2072, )

Zi\inlz exp (_ llski—Trxmul|2 ||Wski—Tk*nmkj||) '

/—
Tkij =

202 2072,
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Only the computation of the transformation matrix becomes more complicated as
the derivative of the normal term has to be taken into account.

3.7.2 Estimating Normals for Unstructured Point Clouds

The computation of normal vectors for a continuous surface is straightforward. How-
ever, the computation of normals for a non-oriented unstructured point cloud proves
to be more difficult as no connectivities between the points exist. Therefore, addi-
tional information as connectivity or tangential planes have to be estimated.
Often, numerical techniques as first proposed in [Hoppe 1992 and then extended
in e.g. [Pauly 2003, Mitra 2004| are used. Basically, for each point in the point
cloud a normal is estimated by first computing a tangential plane which is obtained
by applying the Least-Squares method to the k nearest neighbours. The normal
is then computed as the vector perpendicular to that plane. Another main ap-
proach is a combinatorial one based on Voronoi/Delaunay properties as proposed
by [Amenta 1999] for noise-free data and then extended by e.g. [Dey 2004] to noisy
data.

An interesting approach computes the normals in a probabilistic framework as shown
in [Granger 2003|. It is based on the aspect that the space of normals forms a differ-
ential manifold analogous to a sphere. The computation of normals for an unstruc-
tured point cloud is then done following a rigorous mathematical notion on random
normal statistics [Pennec 1996|. The probability for a normal 7i5 at point s knowing
the position of a neighbouring point s; at distance d is given by p(7is|s, s;) = p(|], d)
with ¢ being the angle between the normal and the segment ss;. For an illustration
see figure 3.12. This probability is synthesized by a tensor formulation and finally
leads to the following algorithm for computing all normals of a point cloud:

For each point s;:

e Determine a number of closest neighbours s; using a kD-tree.

SiSj ( S»L‘S]‘
|sis;] \sis;l
the angular dispersion of the normal for a distance of 1mm.

)T where a? represents

e Compute the tensor 7'= ), exp(—4a?|s;s;|)

e Determine eigenvectors and eigenvalues of T'.
e Normal 77,5, equals eigenvector with greatest eigenvalue.

Another feasible approach for establishing normal information is to exploit image
information of the observations if available. For organs whose grey values at the
boundary clearly differ from those of the background, a gradient image is computed.
Following that, a normal is automatically estimated for each point of the observation
based on the gradient information. An example is illustrated for the approximation
of normals for the left ventricle in an MR image, see figure 3.13.

3.8 Discussion

In this chapter, a novel algorithm was developed to compute a generative Gaussian
Mixture statistical shape model which is based on a sound mathematical framework.
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Si S

Figure 3.12: The most probable normal direction for point s is computed knowing
the positions of the neighbours s;.

Figure 3.13: Estimation of normals using image information.

The computation of the SSM is realized as an optimization problem: An algorithm
is proposed to optimize for model parameters and observation parameters through
a single maximum a posteriori criterion which led to a mathematically sound and
unified framework. Closed form solutions were effectually derived for optimizing the
associated criterion alternately for almost all parameters. From a theoretical point
of view, a very powerful feature of the method is that we are optimizing a unique
criterion. Thus, theoretically the convergence is ensured. In practice, the conver-
gence rate has to be adapted to the problem at hand as e.g. a too fast decrease of
the multi-scale variance ¢ might freeze the model in local minima. As opposed
to most approaches in the literature, no principal component analysis is employed.
SSM computation methods which rely on one-to-one correspondences and perform
a PCA on the associated covariance matrix compute a number of eigenmodes which
model both shape variation and noise. In order to discard the noise-related vari-
ations from the final variability model, eigenmodes with small eigenvalues are not
taken into account. This is largely an heuristic method. In contrast, in the pre-
sented GGM-SSM the variation modes only model the shape variation as the noise
is represented separately through the Gaussian Mixture.

Furthermore, the GGM-SSM does not need one-to-one point correspondences but
relies solely on point correspondence probabilities for the computation of mean shape
and variation modes. Therefore, elaborate preprocessing of the observations in the
data set to establish correspondences becomes obsolete, no questionable correspon-
dences between point clouds representing surfaces are assumed, and the number
of points in the observation shapes may vary. The approach can be used for non-
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spherical surfaces and can be adapted to applications on data sets with different
topologies as the connectivity between points does not play a role.

At the moment, all points of the observations are equally included into the compu-
tation of the model. However, the corresponding matrix computed by the EM-ICP
registration contains information about the probability for each point of an obser-
vation to correspond to any of the points of the model. For future applications, a
weighting of the influence of observation points on the final result might be inter-
esting, e.g. in order to reduce the influence of outliers. The same applies to point
sets which are not evenly distributed over the estimated surface. In that case, re-
gions containing relatively many points exert a higher amount of impact on the
computation of the registration transformation than regions with fewer points. This
behaviour is very helpful when shape details should be modeled but for other cases
it might not be desirable and could be balanced by assigning a weight to each point.
A main advantage of working with point-based shape representation is the simplicity
of the resulting model with respect to its power. In the literature however, rather
surface-based models are applied as the surface offers additional information about
the boundary of the shape. Here it has to be kept in mind that the quality of
the surface information they use depends on image quality and on the segmenta-
tion method. In order to expose advantages and limits of the new model compared
to state-of-the-art models, its performance has to be compared to other statistical
shape models for different kinds of application. An elaborate evaluation is performed
in chapter 4.
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In this chapter, the GGM-SSM method is submitted to an extensive evaluation.
The aim is to quantitatively compare its performance to other SSM methods in
the literature and to gather knowledge about its behaviour and characteristics for
different types of shapes. In section 4.1, the performance measures which are com-
monly used to assess the quality of SSMs are presented and discussed, and several
distance metrics that are suited for point-based SSMs are introduced. Following
that, the performances of the GGM-SSM and a classical ASM method for unstruc-
tured point sets are compared on different synthetic and real training data in section
4.2. Section 4.3 is dedicated to an evaluation of the GGM-SSM in comparison to
a MDL-based approach. In section 4.4 it is demonstrated on a real data example
how the GGM-SSM can be used for automatic shape classification. This chapter
is concluded with a critical consideration of the advantages and weaknesses of the
developed model (section 4.5).

4.1 Performance Measures

4.1.1 Assessing SSM Quality

In order to assess the quality of a given statistical shape model, an objec-
tive performance measure is needed. The measures introduced in the PhD the-
sis of R.H. Davies in 2002 have become a common standard in the community
[Davies 2002b, Styner 2003¢, Heimann 2005]. A good SSM is expected to

1. be able to model formerly unseen shapes of the same shape class.

2. only deform to plausible shapes when deformed in the shape space spanned
by the variation modes and constrained by the standard deviations.

The first requirement is called generalization ability. The generalization ability in-
dicates how well a SSM is able to match new - that is unknown - shapes. This is
important e.g. when using the SSM to segmentation problems. The generalization
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ability is tested in a series of leave-one-out experiments where it is analysed how
closely the SSM matches an unseen observation. This is done in two steps: First, the
optimal affine transformation is computed to align the shapes in space. Secondly,
the optimal deformation coefficients are determined and used to deform the aligned
SSM in order to optimize the matching. Finally, the distance of the deformed SSM
to the left-out observation is measured.

The second requirement is called specificity. The specificity indicates if the modeled
variability in the SSM actually is a variability found in the training data set. In
other words, the model should not be able to generate illegal shapes. For estimating
the specificity, a high number of random shapes has to be generated by submitting
the mean shape of the SSM to random deformations in the shape space spanned
by the variation modes. Therefore, random deformation coefficients are generated
under a uniform distribution with zero mean and variances equal to the squared
standard deviation of the respective SSM. Then, the distance of the random shapes
to the respective most similar observation in the training data set is measured.

In practice, these performance measures quantify the quality of a SSM in terms
of correspondence evaluation. This sometimes poses a problem for several reasons:
First, usually no ground-truth shape correspondences are availabe for medical im-
age objects. Secondly, the measures depend on the point distribution on the shapes.
Due to different SSM methods, the points representing the final SSMs will not be
positioned at the same locations. Therefore, the variability model will not cap-
ture the same shape variations. This problem is amplified when comparing SSMs
based on different numbers of points as a SSM with a greater number of points is
naturally able to model more variation. These and other shortcomings of the per-
formance measures were recently addressed in the work of Ericsson and Karlsson
who propose manually set ground-truth correspondence measures |[Ericsson 2007]
in an attempt to remedy the problems. They generate synthetic examples which
demonstrate clearly that better performance measures do not necessarily mean bet-
ter SSM. Especially for cases where one SSM models more variability - e.g. on a
higher detail level - than a second SSM, the specificity measure does not reflect the
better quality of the first SSM.

To exemplify, let us regard a data set where some of the observations feature a
nose-like shape and other do not (figure 4.1(a)). Let us assume that SSM 1 is able
to capture this detail in one of its variation modes but SSM 2 fails to do so (fig-
ure 4.1(b,c)). During the test series for specificity, SSM 1 will probably produce
several shapes with noses (e.g. shown in figure 4.1(d)) - as these exist in the shape
space spanned by its variation modes - whereas SSM 2 will not. Instead, SSM 2
will produce shapes with less variability (e.g. shown in figure 4.1(e)). Naturally, the
distances of the deformed mean shapes with prominent shape details to the obser-
vations in the training data set are greater than those of the shapes generated by
SSM 2 as illustrated in figure 4.1(f,g). Therefore, we deem the performance measure
‘specificity’ to be not very well suited for measuring the quality of a SSM regarding
shape details which do not occur in all observations. Generally, it has to be kept in
mind that the realistic quality of a SSM always depends on its field of application.
For example, a SSM that is very well suited for segmentation tasks does not neces-
sarily perform well in classification tasks.
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f)

Figure 4.1: Incoherent specificity example in 2D. a) Some observation examples of
the training data set. b) SSM 1, the variability of the prominent feature in the
training data set is captured. ¢) SSM 2 fails to capture the prominent feature in the
training data set. d) Deformed mean shape in shape space spanned by the variation
modes of SSM 1. e) Deformed mean shape in shape space spanned by the variation
modes of SSM 2. f) Distance of deformed mean shape of SSM 1 to observations in
training data set is measured. The Hausdorff distance is great due to the prominent
feature. g) Distance of deformed mean shape of SSM 1 to observations in training
data set is measured. The Hausdorff distance is smaller than the one of SSM 1.
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In the following experiments, the generalization ability and - for the sake of com-
pleteness - also the specificity measures are evaluated.

4.1.2 Distance Measures

A metric suited to evaluate the performance measures of a SSM obviously depends on
the representation of the shapes. As in this work the shape surfaces are represented
by point clouds, the distances are computed based on point coordinates. In order
to quantify the distance between two shapes S and M, an intuitive measure is the
averaged Euclidian distance between all corresponding points:

N,
d? SA{—J—S s
op(S, M) = NSZ”SZ mg||
i=1

with Ng being the number of points of S and M. However, in the GGM-SSM no one-
to-one correspondences are computed. Hence, the distance d from an observation S
with IV points s; to the deformed mean shape Mg.r with Ny, points my; is defined
as the square root of the normalized sum of squared differences (SSD) with

1 o
d*(Sk, Maey) = N, > llski — mgil?
i=1

where my; = argmin,,, ||sg; —myl|. This distance measure is not symmetric, hence,
we also compute

N,
1 m

dz(MdefaSk) =N Z sk _mj||2
m j=1

where sp; = argming, |[sg; — m;||. In addition, the maximum distance
dmaz (Sky Mgey) is computed as the maximal minimal distance found from Sy to Mg s
for ||sg; — mui|| with my; = argmin,,, [|sg; — m;|| and respectively dpaz(Maes, Sk)-
The Hausdorff distance is then

H(Sk, Mdef) = max (dmax(ska Mdef)a dma:c(Mdefa Sk)) .

This symmetric measure is especially useful for evaluating SSMs on data sets where
some observations feature different shape details than others.

Obviously, the measures defined above depend on the closeness of points after the
fitting which does not necessarily always represent the actual shape similarity. For
example, different distributions of landmarks over the estimated surface of the obser-
vations might affect the results. A more independent method would be to measure
the volume overlaps between the fitted shapes. However, as the GGM-SSM is based
on unstructured point sets, a binary representation can only be approximated for
each shape. This is done when comparing the GGM performance to the perfor-
mance of an MDL-based SSM in section 4.3. Here, the Jaccard coefficient is used
to compute the symmetric overlap of shape volumes A and B:

B |AN B

@“wAuBy
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It has to be kept in mind however that the Jaccard coefficient does not reflect well
if shape details - which do not contribute much to the overall volume - are modeled
or not.

For computing the distances between a SSM and a given observation, first the mean
shape of the SSM is aligned with the observation. Then, the optimal deformation
coefficients have to be computed. For the GGM-SSM, this is done by optimizing
equation (3.13) with respect to the deformation coefficients w,. Here, & = 1 and
S1 equals the observation in question. The resulting coefficients are used to deform
the aligned SSM in order to optimize the matching. Finally, the distance of the
deformed SSM to the observation is measured.

4.2 Comparison to an ICP-SSM

In this section the performance of the GGM-SSM is evaluated in comparion with an-
other SSM which is also based on unstructured point sets. As opposed to the GGM-
SSM, the henceforward called ICP-SSM relies on one-to-one correspondences. It is
based on the classical ASM approach applied to unstructured point sets represented
by varied numbers of points. The ICP-SSM is computed as follows:

1. The observations in the training data set are aligned with an initial mean
shape employing affine Iterative Closest Points (ICP) registrations. (For the
algorithm see section 2.2.1.) The ICP matches the observations and determines
correspondences simultaneously. The correspondences are explicitely given by
the nearest neighbour for each point.

2. The mean shape is computed on the aligned observations. Registration and
mean shape computation are iterated. For the data sets used in practice we
found that after 2 or 3 iterations, the mean shape does not change significantly
anymore.

3. A principal component analysis is performed on the aligned data set to de-
termine the eigenmodes and the eigenvalues. Here, a SVD is applied on the
covariance matrix cleared of the mean.

The computation of a distance between ICP-SSM and a given observation follows
the same procedure as explained for the GGM-SSM in section 4.1.2. Here, the
deformation coefficients w, are computed by solving the linear system of equation
(2.2) where M equals the observation in question.

The performances of the two SSM computations are evaluated on three different
synthetic data sets in sections 4.2.1 and 4.3 and on a real data set containing brain
structures in section 4.2.2.

4.2.1 Synthetic Data
4.2.1.1 Ellipsoids

The determination of correspondences between unstructured point sets is especially
difficult when one shape features a certain structure detail and the other one does
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Figure 4.2: a) Observation examples of a synthetic training data set featuring two
distinctive shape classes (ellipsoids with bump and ellipsoids without bumps). b,c)
Results of a SSM built on ezact correspondences (ICP-SSM)(b) and of a SSM built on
correspondence probabilities (GGM-SSM)(c) for the training data. For both SSMs,
the mean shape (middle), and the mean shape deformed with respect to the first
eigenmode (M —3X\17y (left) and M +3\7 (right)) are depicted. d) One-to-one cor-
respondence versus correspondence probabilities. Left: ICP registration, each point
on contour 1 corresponds to the closest point on contour 2. Right: EM-ICP regis-
tration, each point on contour 1 corresponds with a certain probability to all points
on contour 2.
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Table 4.1: Ellipsoid shape results. Shape distances found in generalization ezperi-
ments (leave-one-out tests) with ICP-SSM approach and with GGM-SSM approach.
The distances and associated standard deviations are given in cm.
ICP-SSM GGM-SSM
mean distance target to source 0.207 £0.048 | 0.139 £ 0.032
mean distance source to target 0.214 £ 0.058 | 0.125 £ 0.030
maximal distance target to source | 0.431 +0.036 | 0.415 &£ 0.042
maximal distance source to target | 0.567 +0.186 | 0.380 £ 0.044

Table 4.2: Ellipsoid shape specificity results on 100 random shapes found with [CP-
SSM approach and with GGM-SSM approach. The average distance from the ran-
domly deformed mean to the respective closest observation is measured. The dis-
tances and associated standard deviations are given in cm.

ICP-SSM GGM-SSM
average distance | 0.102 4+ 0.003 | 0.160 =+ 0.022

not. For an experimental evaluation, a training data set is generated containing two
distinctive shape classes. The data set consisted of 9 ellipsoids featuring a bump
and 9 ellipsoids without bump. Their sizes as well as the bump sizes and their 3D
rotations in space varied. For several observation examples, see figure 4.2(a). The
long axes measure around 70mm. The observations are represented by 276 — 337
points respectively, and the point distances average 0.24mm. The GGM-SSM as
well as the ICP-SSM are computed for these data. For the computation of the
GGM-SSM, the following parameters were chosen: oy = 0.5mm, reduction
factor = 0.7, 7 iterations (EM-ICP multi-scaling) with 15 SSM iterations. For the
ICP-SSM, the ICP is iterated 40 times. Then the tests for generalization ability are
performed in a series of leave-one-out experiments. The specificity for both models
was tested using 100 randomly generated shapes.

Results: The respective mean shapes and deformations according to the
first mode of variation for the GGM-SSM as well as the ICP-SSM are illustrated in
figure 4.2(b,c). Clearly, the GGM-SSM models the bump of the ellipsoids in its first
mode of variation while the ICP-SSM fails to do so. Quantitatively, this is backed
up by the results obtained in the evaluation of the performance measures. The
values of the generalization ability are depicted in table 4.1 for both SSMs. The
mean distances of the left-out observation to the respective fitted SSM are about
35% smaller for the GGM-SSM (0.139cm and 0.125¢m) than for the ICP-SSM
(0.207c¢m and 0.214cm). Also the comparatively great Hausdorff distances indicate
that the ICP-SSM is not able to successfully model the bump on the ellipsoid
shapes.

The results for the specificity are depicted in table 4.2. The average distances of the
randomly deformed GGM-SSM mean shape to the respectively closest observation
in the training data set are a bit higher than the average distances of the ICP-SSM.
As a visual inspection as well as the generalization ability values strongly indicate
the superior performance of the GGM-SSM on the given data, these specificity
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Figure 4.3: Four observation examples of a synthetic training data set featuring bagel
shapes, shown from above and from the side.

results corroborate the problems concerning the specificity measure as discussed in
section 4.1.1.

The GGM-SSM based on the EM-ICP models the whole data set, it is able to
represent the ellipsoids featuring a bump and those without as that deformation
information is included in its variability model. The SSM based on the ICP however
is not able to model the bump. This is due to the fact that the ICP only takes into
account the closest point when searching for correspondence. Thus, the points on
top of the bump are not necessarily involved in the registration process and do not
contribute to the variability model. The EM-ICP, on the other hand, analyzes the
correspondence probability of all points, therefore, also the points on top of the
bump are taken into account. These two concepts are illustrated in figure 4.2(d).

4.2.1.2 Bagel Shapes

Another interesting problem regarding statistical shape models are shapes featuring
non-spherical surfaces. Here, the aim is to evaluate the performance of the
GGM-SSM on shapes with genus 1 topology. In the case of a simple ring torus, the
surface can be created in Euclidean space by revolving a circle about an axis in its
plane. Non-spherical shapes cannot be modeled by all current SSM computation
methods, e.g. the SPHARM and the MDL approaches (section 2) work exclusively
for spherical topologies.

For the generation of the data set, the rotation axes did not necessarily lie in a
plane. Furthermore, the inner and outer radii from observation to observation are
varied which means that our bagel shapes are not radially symmetric. For some
observation examples see figure 4.3. A synthetic data set was generated containing
15 observations. The observations are represented by 332 — 512 points, their
bounding boxes measure about 1500 x 1500 x 500mm?3 and the point distances
average 82mm. The GGM-SSM as well as the ICP-SSM are computed for these
data. For the computation of the GGM-SSM, the following parameters were chosen:
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Table 4.3: Torus shape generalization results. Shape distances found in general-
ization experiments with ICP-SSM approach and with GGM-SSM approach. The
distances and associated standard deviations are given in mm.

ICP-SSM GGM-SSM

mean distance target to source 41.47+£6.42 | 31.08 £ 15.01
mean distance source to target 38.25 £5.18 | 29.34 £12.68
maximal distance target to source | 87.73 £11.10 | 77.83 £ 31.09
maximal distance source to target | 109.05 £ 35.14 | 75.04 £ 25.36

Table 4.4: Torus shape specificity results on 500 random shapes found with [CP-
SSM approach and with GGM-SSM approach. The distances and associated standard
deviations are given in mm.

ICP-SSM GGM-SSM
average distance | 45.95 & 2.52 | 33.82 £ 5.47

Ostart = 100mm, reduction factor = 0.9, 5 iterations (EM-ICP multi-scaling) with
15 SSM iterations. Then the tests for generalization ability were performed in a
series of leave-one-out experiments. The specificity for both models was tested
using 500 randomly generated shapes.

Results: 'The mean shape as well as the deformations according to the first
two variation modes of GGM-SSM and ICP-SSM are displayed in figure 4.4.
As can be seen, the first variation mode principally models the thickness of the
bagel while the second variation mode mainly model its flexion. The quantitative
evaluation results for the generalization ability are shown in table 4.3. The values
show a better generalization ability for the GGM-SSM than for the ICP-SSM as
the mean distances are more than 30% smaller. The Hausdorff distances show
that apparently the GGM-SSM (75.04mm) captured more shape variation than
the ICP-SSM (109.05mm). An illustration is shown in figure 4.5. The flexion in
the bagels seems to lead to erroneous correspondences in the ICP-SSM. Looking
closer at the leave-one-out series, it could be established that especially the bagel
shapes of which the axes do not lie in planes are matched better by the GGM-SSM.
This is illustrated in figure 4.6 with an example. The results for the specificity
evaluation are depicted in table 4.4. The specificity values are a little better for the
GGM-SSM than for the ICP-SSM.
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Figure 4.4: SSM results for bagel data set. GGM-SSM (a,c) and ICP-SSM (b,d)
deformations to first (a,b)and second (b,c) variation mode: Mean shape (middle),

and mean shape deformed according to variation modes, left: M — 3\, and right:
M + 3\, 0.

Figure 4.5: Schematic illustration of modeled amount of flexion. Deformations ac-

cording to second variation mode for ICP-SSM (a) and GGM-SSM (b). A higher
amount of flexion seems to be modeled by the GGM-SSM.
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Figure 4.6: Generalization ability example for one left-out observation with high
amount of flexion. a) Left-out observation featuring high amount of flexion. b)
Fitting result of ICP-SSM. ¢) Fitting result of GGM-SSM. The left-out observation

s coloured in red with low opacity, the results of ICP-SSM and GGM-SSM are
coloured in blue.
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Figure 4.7: CT-images with segmented putamen in a 2D (a) and 3D (b) view.

4.2.2 Brain Structure MR: Putamen

In this section, the performance of the GGM-SSM on brain structure data is
evaluated. The data has been collected in the framework of a study on hand
dystonia and the possible influence of this disease on the shape of the putamen, a
structure belonging to the basal ganglia situated close to the caudate nucleus. The
MR images as well as the segmentations of the putamen were kindly provided by the
Hopital La Pitié-Salpétriére, Paris, France. An example of left and right putamen
is shown in figure 4.7. The MR images contain 255 x 255 x 105 voxels of size
0.94mm x 0.94mm x 1.50mm. The training data set for this experiment consists of
N = 20 left segmented putamens (approximately of size 20mm x 20mm x 40mm)
which are represented by min 994 and max 1673 point. Some observation examples
are shown in figure 4.8(a). The computation of a SSM for the putamen data might
be useful either for segmentation purposes or for an analysis of the shape variability
in patient and control groups.

The GGM-SSM as well as the ICP-SSM are computed for these data and then
tested for generalization ability in a series of leave-one-out experiments. The
specificity for both models was tested using 500 randomly generated shapes.
For the computation of the GGM-SSM, the following parameters were chosen:
Ostart = 4mm, reduction factor = 0.85, 10 iterations (EM-ICP multi-scaling) with
5 SSM iterations. For the ICP-SSM, the ICP is iterated 50 times. Most of the
parameter values were found in an heuristic way.

Results: The resulting mean shapes and deformations according to the first
two variation modes are shown in figure 4.8(b,c) for the GGM-SSM and in figure
4.8(d,e) for the ICP-SSM. The mean shapes of both approaches resemble. However,
the first and second variation mode of the GGM-SSM model more shape details
than the first and second eigenmodes of the ICP-SSM. This visual impression is
confirmed by the values found for the generalization ability as depicted in table 4.5.
The generalization ability is computed in dependence of the number n of variation
modes used. The results for the first n = 5, n = 10 and n = 18 variation modes
are shown. Obviously, the number of variation modes controls the accuracy of the
deformed SSM. The GGM-SSM performed better for all cases with a mean distance
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Table 4.5: Shape distances found in generalization experiments with the I1CP-SSM
approach and with GGM-SSM approach. The generalization ability was tested for
the first n = 5, n = 10 and n = 18 variation modes. The distances and associated

standard deviations are given in mm.

ICP-SSM GGM-SSM

5 variation modes

average mean distance + std dev. in mm 0.634 £ 0.090 | 0.512 £ 0.083
average maximal distance + std. dev. in mm | 4.478 £ 0.927 | 2.929 £ 0.576
10 variation modes

average mean distance + std. dev. in mm 0.623 +0.099 | 0.490 £ 0.088
average maximal distance + std. dev. in mm | 4.449 £ 0.909 | 2.496 £ 0.445
18 variation modes

average mean distance + std. dev. in mm 0.610 £0.089 | 0.471 £0.076
average maximal distance + std. dev. in mm | 4.388 £ 0.930 | 2.559 £ 0.563

Table 4.6: Shape distances found in specificity experiments (500 random shapes)

with ICP-SSM approach and with GGM-SSM approach using 18 eigenmodes.
ICP-SSM GGM-SSM
average mean distance + std. dev. in mm | 0.515 +0.117 | 0.463 £ 0.052

of 0.471 for the GGM-SSM and a mean distance of 0.610mm for the ICP-SSM
under the use of 18 variation modes. It is interesting to see that the performance
difference between the two SSMs increased a little with a higher number of variation
modes. The mean distance decrease regarding the case of n = 5 variation modes
and the case of n = 18 variation modes is about 5% using the SSM-ICP and about
8% using the GGM-SSM. Commonly, the variation modes with great standard
deviations model the obvious variabilities as e.g. thickness or torsion in space while
the variation modes with smaller standard deviations model the shape details.
The Hausdorff distance in the GGM-SSM is more than 40% (nearly 2mm) smaller
than the Hausdorff distance of the ICP-SSM. This result again indicates that the
GGM-SSM is better able to capture shape details than the ICP-SSM. The results
for the specificity evaluation are depicted in table 4.6. The specificity values are a
little better for the GGM-SSM than for the ICP-SSM.
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Figure 4.8: Real training data set featuring the putamen. a): Observation exam-
ples. b)/c): GGM-SSM. d)/e): ICP-SSM. Mean shapes (middle) and mean shapes
deformed with respect to the first (b,d) and second (c,e) variation mode. Left:
M — 3\vie and right:M + 3\via. The regions in circles mark shape details which
are represented by the GGM-SSM and which are not modeled by the ICP-SSM.
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4.3 Comparison to ICP-SSM and MDL-SSM

In this section, the performance of the GGM-SSM is evaluated in comparison to a
SSM whose computation is based on the minimization of a Maximum-Description-
Length (MDL). This SSM method is explained in detail in section 2.3.2. Basically,
the MDL is used to optimize the distribution of corresponding points on the surfaces
of the observations in the training data set. Here, the best point distributions or cor-
respondences yield the best SSM in terms of simplicity. One key step in computing a
MDL-SSM is the movement of points on the surfaces of the respective observations.
Hence, as it needs explicit surface information, the MDL approach is not suited to
compute a SSM for unstructured point sets. Nevertheless, an interesting prospect is
to contrast the performance of the ICP-SSM and the GGM-SSM with a MDL-SSM
to point out the differences in the approaches and to position our method in the
state-of-the-art. In order to be able to use the MDL-method, a training data set
of observations with surfaces represented by triangulated points has to be generated.

Data Set: Unlike the GGM-SSM, the MDL-method can only be applied for
data with spherical topologies. The objective is to test both approaches as well
as the ICP-SSM on non-convex shapes which can be challenging, e.g. as points
lying close do not necessarily belong to the same part of the shape. Moreover,
points with similar normal vector direction do not necessarily lie close to each
other. A synthetic data set is generated containing 15 observations shaped like
bananas, see figure 4.9. The observations are represented by triangulated meshes.
In order to obtain meaningful results, the variability in the training data set is
high: The curvature of the banana as well as the size, thickness and orientation
in space change from observation to observation. The sizes of their bounding
boxes measure around 480 x 720 x 260mm?. The number of points range from
minimum 386 points to maximum 642 points. The point distances average 29.3mm.

Set-Up: The MDL-SSM experiments on this data were performed by To-
bias Heimann of the German Cancer Research Center (Department of Medical and
Biological Informatics) who kindly provided his evaluation results for this section.
The alignment of observations is done using a generalized Procrustes analysis in
similarity mode. The final number of points is set to 648.

For the computation of the GGM-SSM, the following parameters were chosen:
Ostart = 15 — B0mm (dependent on the observation shape), reduction factor
= 0.7 — 0.9, 10 iterations (EM-ICP multi-scaling) with 5 SSM iterations. For the
ICP-SSM, the ICP is iterated 50 times. Most of the parameter values were found
in an heuristic way. The mean shapes of the GGM-SSM as well as of the ICP-SSM
contain 446 points which is 200 points less than used by the MDL-SSM.

For determining the performance measures in these experiments, the average point
distances as introduced in section 4.2 are only a well-suited metric when SSMs with
equal numbers of points and similar point distributions are compared. This is not
the case when comparing the MDL-SSM to the GGM-SSM as the MDL method
moves the points over the surfaces and can add any number of points. Therefore,
in the experiments the Jaccard coefficient (or Tanimoto coefficient) is used as
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Figure 4.9: Synthetic training data set: Non-convez banana shapes with 15 observa-
tions represented by triangulated meshes
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distance metric instead of the point distances. To do so, a binary representation
has to be approximated for all observations as well as for each deformed SSM. For
the GGM-SSM a well as the ICP-SSM this is done by keeping the edges of the
triangles in the initial mean shape for the representation of the final mean shape
and its deformations. As the GGM-SSM is based on unstructured point sets, this
procedure could theoretically lead to contorsions of the mesh but this was not the
case in the experiments.

The generalization ability is evaluated in a series of leave-one-out tests. The
distances were measured in dependence of the number n of employed variation
modes ranging from n = 0 to n = 13. For the specificity, 500 random shapes
are generated. Due to the high computational time when generating the binary
volume representation, the alignment of each randomly deformed mean shape with
all observations is omitted. Instead, all observations are aligned once with the
undeformed mean shape. That way, for each randomly deformed mean shape, only
one binary representation has to be computed and compared to the observations.

Results: The mean shapes and the deformations according to first, second
and third mode of variation are depicted for the ICP-SSM and the GGM-SSM in
figures 4.10 and 4.11. The first three variation modes roughly represent similar
variabilities. However, it is noticeable that the GGM-SSM variability model is
strongly focused on the region of the banana tips whereas the ICP-SSM rather
models global variation of the banana shapes. The values resulting from the testing
series of the generalization ability are illustrated in figure 4.12 for ICP-SSM, GGM-
SSM and MDL-SSM methods. The volume overlap between left-out observation
and fitted SSM is used as distance metric. Regarding these values, the experiments
revealed that the MDL-SSM has a higher generalization ability with an average
Jaccard coefficient of 0.92 than the GGM-SSM (Jaccard coefficient = 0.88) and the
ICP-SSM (Jaccard coefficient = 0.86). As - contrary to point-based methods - the
MDL-SSM method makes use of the observation surfaces as additional information,
this result is not surprising. In particular, it has to be kept in mind that the
MDL-SSM approach optimizes the distribution of corresponding points over the
observation surfaces which is one of its great strengths. The GGM-SSM method
however uses the initial point locations. Regarding the banana shapes, the point
distribution at the banana tips is more dense than on the banana corpus. Using
the GGM-SSM, this leads to a more detailed modeling of the banana tip regions.
Unfortunately, a volume overlap metric does not necessarily reflect if shape details
are well modeled.

Besides, the following bias in the MDL-SSM generalization ability values has to
be considered: For SSMs where the correspondences are described by monotonous
parameterization functions the parameterization of the left-out function is unknown.
To solve this problem, the left-out shape is normally included in the correspondence
localisation. This procedure finally leads to an over-estimated generalization ability
|Ericsson 2007].

The specificity values are illustrated in figure 4.13. Here, the GGM-SSM and the
MDL-SSM obtained very similar overlap values while the ICP-SSM obtained values
a little higher.
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Figure 4.10: GGM-SSM for the banana shape data set. Mean shapes (middle) and
mean shapes deformed according to the first (a), second (b) and third (c) variation
mode.
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Figure 4.11: ICP-SSM for the banana shape data set. Mean shapes (middle) and
mean shapes deformed according to the first (a), second (b) and third (c) variation
mode.
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Figure 4.12: Generalization ability. The generalization ability was tested in leave-

one-out tests for the banana shapes. Here, the average overlap between deformed
mean shape and left-out observation is presented for the MDL-SSM, the GGM-SSM
and the ICP-SSM.
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Figure 4.13: Specificity. The specificity was tested for the banana shapes using 500
testing shapes. Here, the average overlap between randomly deformed mean shape
and closest observation is presented for the MDL-SSM, the GGM-SSM and the ICP-
SSM. The random deformation followed a natural distribution with o equal to the
standard deviations of the respective model.
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a) b) c)

Figure 4.14: Generalization ability example for a rather extreme left-out torus ob-
servation. a) Left-out observation. b) Fitting result of ICP-SSM. ¢) Fitting result of
GGM-SSM. The left-out observation is coloured in red with low opacity, the results
of ICP-SSM and GGM-SSM are coloured in blue.

Table 4.7: Banana shape generalization results. Shape distances found in general-
1zation experiments with ICP-SSM approach and with GGM-SSM approach. The
distances and associated standard deviations are given in mm.

ICP-SSM GGM-SSM
mean distance target to source in mm 15.75 £2.28 | 16.48 £ 3.24
mean distance source to target in mm 26.35 £12.78 | 17.81 £2.75
maximal distance target to source in mm | 36.23 £4.60 | 53.78 £7.33
maximal distance source to target in mm | 83.87 £ 54.58 | 43.81 + 8.41

Overall, it could be established that the GGM-SSM and the ICP-SSM obtain
generalization ability values which lie in the same order as those of the MDL-SSM
for the given data set. Moreover, the GGM-SSM performed better than the
ICP-SSM. This is again due to the fact that shape details are easily lost for the
ICP-SSM. This is demonstrated with an example of a rather extreme left-out
observation in figure 4.14. The ICP-SSM adapts very well to the corpus of the
banana but fails to deform into its tip. Yet, the variability model of the GGM-SSM
is able to represent the tip region of the banana. This behaviour is confirmed by an
evaluation of the generalization ability under a point distance metric (as introduced
in section 4.1.2 and as used for the experiments in section 4.2.1). The values
for ICP-SSM and GGM-SSM which are depicted in table 4.7 indicate that the
GGM-SSM performs better. This becomes clear especially regarding the Hausdorff
distances as the GGM-SSM obtains a Hausdorff distance of 53, 78mm which is 37%
smaller than the Hausdorff distance of the ICP-SSM (83, 87mm).

4.4 Unsupervised Classification

In this section the GGM-SSM is applied to a classification problem. This can be
done directly by exploiting the observation parameters computed during the GGM-
SSM computation. Here, the final deformation coefficients wy,, represent the amount
of variation for the respective observation S} according to each variation mode wv,,.
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Therefore, information about shape characteristics can be gained by evaluating the
deformation coefficients [Hufnagel 2007b]. In SSM methods where the deformation
coefficients are not computed during optimization of the model, their determination
is less straightforward.

In an experimental evaluation, the deformation coefficients directly serve as a clas-
sification measure regarding the shape of the observations Si. To do so, feature
vectors wy = (wg1, Wk2, ..., Wkn) are formed and then used as input for a k-means
clustering. This approach is tested on the synthetic data set of ellipsoids as used in
section 4.2.1.1. The data set consists of two shape classes as it contains ellipsoids
with and without 'bump’ as can be seen exemplarily in figure 4.2(a). An average
Rand index [Rand 1971] of 0.95 is employed for the k-means clustering. The result-
ing two classes coincide with the 'bump’ and ’without bump’ classes, see figure 4.15
for an example of the values of the 2D feature vectors (wg1,wg2)-

Tame approach is applied to classify the putamen data set as presented in section
4.2.2. As the data was gathered in a study about hand dystonia, a relation of
shape and disease might exist. In order to analyse the shapes, the data is tested
for statistically significant shape differences between dystonia patients and control
group after affine normalizations. Again feature vectors wy = (Wg1, W2, ..., Wkn ) are
formed and used as input for a k-means clustering. In this case, no two distinct
shape classes were found (see figure 4.16 for the values of the 2D feature vectors
(wk1,wg2)). This confirms the presumption of the concerned physicians.

4.5 Discussion

An accurate and robust modeling of variability is an important feature of a SSM,
particularly when it is employed to the segmentation of anatomical structures for
radiotherapy or surgery planning where the precision must be high. In order to learn
about the qualities of the GGM-SSM as well as its standing in the state-of-the-art,
the evaluation has been divided into two experiments: The first part was aimed
at an analysis of the GGM-SSM performance in comparison to another SSM for
unstructured point sets (ICP-SSM). The second part of the evaluation investigated
the GGM-SSM performance in comparison to a well established method which uses
surface information (MDL-SSM).

A principal difference between the ICP-SSM and the GGM-SSM is the inter-
pretation of correspondence. While the ICP-SSM is based on one-to-one point
correspondences, the GGM-SSM implements a probabilistic correspondence concept
which allows to take into account all points of all shapes. This is advantageous on
the one hand as all shape details are integrated into the variability model. On the
other hand, the approach is less sensitive to possible outliers. By evaluating the
generalization ability values of GGM-SSM and ICP-SSM for the synthetic data set
of ellipsoid shapes, it could be established that shape details which are not captured
very well by the ICP-SSM are effectively captured and modeled by the GGM-SSM.
This is especially the case for training data where not all observations feature the
same shape details. Furthermore, when testing both SSMs on shape data with
a global variation in its flexion angle, the generalization ability values indicate
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Figure 4.15: 2D deformation coefficient feature vectors (wgy,wga) for the first two
eigenmodes of the ellipsoid data set. Observations ‘with bump’ are represented by
diamonds, observation ‘without bump’ are represented by stars.
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Figure 4.16: 2D deformation coefficient feature vectors (wygi,wis2) for the first two
etgenmodes of the putamen data set. 'Control’ observations are represented as dia-
monds and 'patient’ as stars.
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that the ICP-SSM did not model well the variability of flexion. The performance
measures of GGM-SSM and ICP-SSM in the experimental evaluation on real brain
data show a similar picture. The GGM-SSM is better able to capture shape details
which can be observed by a visual inspection of the principal variations modeled
by the variability models and which is also reflected in the generalization ability
values. Still, the ICP-SSM faster and easier to handle than the GGM-SSM as less
parameters have to be estimated beforehand. The relatively high computational
time of the GGM-SSM is mainly due to the costly update of variation modes which
involves several matrix multiplications with matrices € R3¥m*" with number of
mean shape points NV, and number of variation modes n. However, the analysis of
shape in medical practice is generally no time sensitive matter.

As argued in section 4.1.1, we doubt the meaningfulness of specificity values
regarding the quality of a SSM. These doubts were confirmed by the results
obtained for the SSMs in the ellipsoid data set. Here, the generalization ability as
well as visual inspection clearly indicate a superior performance of the GGM-SSM,
but still the ICP-SSM obtain better specificity values.

The second part of the evaluation serves to position the GGM-SSM in the
state-of-the-art by outlining its advantages and weaknesses compared to the
well-accepted surface-based MDL-SSM method. The MDL-SSM approach makes
use of surface information for the modeling of the training data set. During SSM
computation, points are added and moved over the observation surfaces in order to
find optimal correspondences. Therefore, the MDL-SSM is more flexible than the
GGM-SSM as the results do not depend on the original point distribution in the
observation meshes. Yet, it has to be kept in mind that the MDL-SSM is explicitly
defined on surface representations for spherical topologies. Hence, it cannot be
employed for the evaluation on the bagel shape training data but a training data set
with banana-shaped observations was designed. As the training data set contains
observations with very non-convex shapes, we deem the obtained results of the
MDL-SSM as well as the GGM-SSM to be quite good. In the generalization ability
experiments, the MDL-SSM performed better than the GGM-SSM by obtaining
a Jaccard coefficient which is 3.4% greater than the GGM-SSM and 6.4% greater
than the ICP-SSM. The difference between MDL-SSM and GGM-SSM in the
volume overlaps is clearly visible but small enough to suggest the right of existence
for the GGM-SSM, especially considering that the usage of surfaces is arguable
for the reasons formulated in section 1. Moreover, the left-out observations in the
experiment series for the generalization ability of the MDL-SSM method have been
part of the correspondence localisation step, thus, the values of the generalization
ability might be over-estimated. The analysis of the generalization ability for
the banana training data set measured by point distance metrics shows that the
GGM-SSM outperforms the ICP-SSM; the ICP-SSM fails to model shapes featuring
a rather extreme convexity.

In order to compute a GGM-SSM of high quality, particular attention has to
be paid to the choice of parameters in the EM-ICP registration which have to be
adapted to the problem at hand. As demonstrated in section 3.2.3, good results
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are obtained for a final standard deviation which lies in the same range as the
average point distances in the observations. A reasonable choice for the reduction
factor seems to lie between 0.7 and 0.9 which led to good results in the experiments
performed in the framework of this thesis. The number of GGM-SSM iterations is
kept as small as possible to reduce computational cost.

From the evaluation results, it can be concluded that the GGM-SSM method
is capable to model different kinds of shapes with high precision. Due to the prob-
abilistic modeling of correspondence, the GGM-SSM outperforms the ICP-SSM
for observations with irregular shape differences. The GGM-SSM does not need
surface information and is well suited to model non-spherical topologies as well as
coupled structures in one unified variability model. Therefore, the GGM-SSM is
fit for shape analysis of various types of anatomies which makes it very flexible
regarding potential application domains.



CHAPTER b5

Using the GGM-SSM as a Prior
for Segmentation

Contents
5.1 Imitialization . . ... .... ... .. ... . 0000, 80
5.2 The GGM-SSM in Implicit Function Segmentation . . . . . 82
5.3 Evaluation on Kidney CT Images . . . . . ... ... ..... 91
5.4 Multiple Shape Class Segmentation . ... .......... 97
5.5 DiScussion . . . . . . v v vttt i e e e e e e e e e e 108

Segmentation algorithms play a major role in medical image analysis. However,

due to typical medical image characteristics as poor contrasts, grey value inhomo-
geneities, contour gaps, and noise the automatic segmentation of many anatomical
structures remains a challenge. Low-level algorithms as region growing, thresholding
or simple edge-detection are often bound to fail or require heavy user interaction to
lead to acceptable segmentation results in 3D images. In order to overcome these
problems, a very popular approach is to employ models which incorporate a priori
knowledge about mean and variance of shape or grey levels of the structure of inter-
est. These models serve to constrain the resulting segmentation contour to probable
shapes as defined by the underlying training data set. The concept of shape priors
in segmentation methods has been analysed in section 2.4.
In this chapter, a framework is developed for the integration of the GGM-SSM cre-
ated in chapter 3 as a shape prior for kidney segmentation. In this new method,
prior shape knowledge represented by the GGM-SSM is combined with prior infor-
mation about typical grey value intensity distributions inside and outside the organ
to be segmented. The chapter is structured as follows: First an overview is given
about the employment of intensity distribution knowledge in medical image segmen-
tation, and the initial placement problem is explained in section 5.1. In section 5.2,
a sound mathematical framework is developed which integrates the GGM-SSM into
an implicit level set scheme, and the method is evaluated on the segmentation of
the kidney from CT images. In section 5.4, the level set framework is extended to
multiple-object segmentation, and the algorithm is applied to hip joint segmenta-
tion. The chapter is concluded with section 5.5 where the approach of combining
an explicitly represented SSM and an implicitly represented segmentation contour
is discussed.
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5.1 Initialization

5.1.1 Distribution Models for Prior Intensity Knowledge

Beside the prior knowledge about the shape, knowledge-based segmentation methods
often integrate information about the grey value appearance of the organ which are
extracted from a training data set. Classical segmentation techniques using SSMs
mostly rely on edge-detection [Cootes 1992, Székely 1996, Staib 1996, Wang 2000].
Recent methods propose the utilization of a priori knowledge about intensity infor-
mation on its own [Nain 2007, Andreopoulos 2008] or in combination with boundary
detection [Huang 2004]| in order to exploit available image information which gen-
erally leads to methods that are more robust and effective.

In point-based SSMs, a widely-used method is to generate local appearance models.
The first local appearance model was presented by Cootes et al. [Cootes 1993] who
proposed to sample intensity information around each landmark in normal direc-
tion. This is done for all observations in the training data set in order to determine
mean value and principal modes of variation of grey value appearance over the cor-
responding landmarks. During segmentation, the intensity model profiles of each
SSM landmark are compared to the current point profile samples of the deformed
SSM in the image in order to optimize the fit. The local appearance models range
from simple Gaussian intensity profile models and Gaussian gradient profile models
|Cootes 1994] to non-linear intensity profile models [de Brujine 2002| and histogram
region models [Brunelli 2001, Freedman 2005].

A local appearance model as described here is not immediately usable for our GGM-
SSM as one-to-one correspondences over the observations are needed in order to ex-
tract statistical knowledge about the grey values at one specific point of the model.
Therefore, a global appearance model is employed which means that a priori knowl-
edge about the intensity distributions in the regions inside and outside the organ
has to be extracted. In general, an intensity distribution model consists of two
probability density functions which model the occurrence of grey values inside (p;,)
and outside (poyt) the organ. A straightforward method is to sample the grey val-
ues of organ pixels x in the training data set and compute a mean grey value p as
well as a standard deviation o,. Then the probability of a voxel grey value g(x)

2
to occur inside the organ is estimated with p;,(g) = 2}m exp(—(“z_oi) ). Then,
g9

Pout(9) = 1 — pin(g) could directly estimate the probability of a voxel grey value
g(x) to occur outside the organ. However, for most soft tissue organs neither the
organ tissue nor the surrounding tissue belong to only one tissue class and addition-
ally, noise has to be taken into account. Therefore, a classification using a mixture
of Gaussians should lead to a more reliable model of intensity distributions. Thus,
we take advantage of a pattern classification technique introduced by Duda and
Hart [Duda 1973] which is based on the so-called kernel density approximation to
estimate the point distribution function of a random variable. This non-parametric
method was first proposed by Parzen [Parzen 1962] in order to solve problems in
the field of time series analysis. In short, the method works as follows: For a given
random sample X = {x1,...,x,} the value of the underlying but unknown probabil-
ity density function p(z) is sought. Using a kernel or window function ¢ : R — R
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Figure 5.1: FEstimated grey value density functions for the inside (green) and the
outside (red) region of the kidney using a Parzen window approach.

with the properties ¢(u) > 0 and [ ¢p(u)du = 1, it can be approximated

~ _1 "1 T — x;
p(x)—ﬁg:lﬁ@( h )

The parameter h defines the width of the window and is generally chosen with
respect to the size of the sample. A widely-used example for the window function is
the Gaussian kernel pgquss(2) = \/%—W exp(—%aﬂ). The choice of window function ¢
and width h determines the smoothing effect on the estimated probability density
function. In order to estimate the grey value density distributions for the inside of
an organ as well as for its background, the intensities G;, and G,y are sampled

around the surface of the organ:

Gin = {g(z)]z inside organ and close to boundary}

Gout = {g(z)|x outside organ and close to boundary}

In order to avoid the influence of to partial volume effects and segmentation inaccu-
racies, the sampling is done at a certain distance from the original organ boundary
[Schmidt-Richberg 2009]. For an example of the sampling and the resulting grey
value density distributions see figure 5.1.

5.1.2 Initial Placement Problem

The initial placement of any template in the image plays an important role regarding
the quality of the segmentation result. Therefore, the initial location, transforma-
tion and deformation of the GGM-SSM has to be determined carefully. A position
too far away from the organ region or an initial deformation too different from the
organ shape in the image augments the risk of finding a local minimum which is not
consistent with an acceptable segmentation. Aside from manual intervention which
yields good results but is time-consuming |de Bruijne 2003|, several authors suggest
a series of consecutive morphological operations [Soler 2000, Lin 2006]. Other ap-
proaches rely on object recognition [Brejl 2000] or a priori knowledge about typical
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positions of the sought organ in the CT volume |Heimann 2006] or combine a priori
knowledge with morphological operations [Tsaagan 2002]. While these approaches
work well for specified organs, they cannot be generalized for other segmentation
tasks. In order to come up with a generalizable solution, de Brujine and Nielsen
proposed an automatic initialization of the template employing shape particle fil-
tering |de Bruijne 2004| for 2D segmentation. A similar approach applied to 3D
segmentation based on a global-search in the image was proposed by Heimann et al.
|[Heimann 2007b]. The algorithm uses the principal ideas of evolutionary program-
ming |[Fogel 1966] and evolutional strategies [Schwefel 1995] in order to determine
the optimal placement of the model. The algorithm consists of the following steps:

1. A random set of normally distributed affine transformations T} and deforma-
tions € is generated with k = [1, ..., N].

2. By applying Q. and T} to the mean shape of the model, a random population
of shapes R = {51, ..., Sy} is built.

3. The best qualified (or fittest) individuals Ry, of the random population are
selected.

4. For each }?k, the transformation Tk as well as the deformation Qk are modified
randomly and again applied to the mean shape of the model to generate a new
(better) population of shapes.

5. This is iterated until a good initial position and a good initial mean shape
deformation are found.

The quality of placement is measured by comparing model-specific features to the
features in the image. For an example of a random shape population generated for
the GGM-SSM of the kidney please refer to figure 5.2.

For our experiments, the means of the normal distributions for the transformation as
well as for the deformation equal zero. The standard deviation for p(T") is determined
heuristically while the standard deviations for p(Q) = {w1,...,w,} are the standard
deviations {A1, ..., \,} of the GGM-SSM as computed in section 3.5.2. The model-
specific features evaluated in order to measure the fitness depend on probability
of points lying on the boundary of the organ. This is measured by the sum of
distances between GGM-SSM points and the nearest voxel with high image gradient
magnitude which reliably led to good initial placement results. For an example, see
figure 5.3.

5.2 The GGM-SSM in Implicit Function Segmentation

In this section, a method is developed for integrating the GGM-SSM into an implicit
segmentation scheme. An implicit segmentation scheme has several advantages over
an explicit one: First, no remeshing algorithms need to be implemented. Moreover,
it is easy to integrate regional statistics as e.g. grey value distribution models and
finally, they are very flexible topologically. A comprehensive review about the ad-
vantages of level set methods in medical image segmentation can be found in the
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Figure 5.2: Five examples of a random population of shapes generated for the GGM-
SSM of the kidney in a CT image. The pink contour belongs to the randomly de-
formed mean shape which serves as input for the next iteration.

Figure 5.3: Automatic initial placement. FEzxample of the result of the automatic
evolutionary algorithm: original mean shape of the GGM-SSM (yellow) and final
best fit (white).

work of Cremers et al. [Cremers 2007|. As the GGM-SSM is based on a MAP
estimation and is computed by a global criterion, the integration into an implicit
segmentation framework can be realized in a closed mathematical form.

This chapter is organized as follows: In section 5.2.1, the mathematical background
of level set methods and their application to implicit segmentation is summarized.
The development of the MAP estimation and its solution by an energy functional is
presented in section 5.2.2. Sections 5.2.3 and 5.2.4 are dedicated to the derivation
and optimization of the energy functional.

5.2.1 Segmentation Using Level Sets

As explained in the section about deformable models (section 2.4.1), the segmenta-
tion problem in the variational framework is formulated as the minimization of an
energy functional E(T") with respect to the contour I'. The key idea is to move the
contour in direction of the negative energy gradient —821@). In implicit function
segmentation, commonly the contour is embedded as the zero level set of a higher
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) ~&— zero-level-set

Figure 5.4: Embedding level set function. a) Contour in 2D. b) The same contour
embedded in the higher dimensional function ¢(x) € R? as zero level set at ¢(x) = 0.

dimensional function over the image space ¢ : 2 — R:
I'={z € Qf¢(x) = 0},

see figure 5.4. Most commonly, the front propagation of the contour is realized
by evolving the embedding function ¢ using level set methods [Dervieux 1979,
Osher 1988, Malladi 1995]|. Instead of minimizing the functional defined on the
space of contours directly as done e.g. by Caselles et al. [Caselles 1993|, several au-
thors propose to embed E(T') into the variational framework described by E(¢) in
order to search for the level set function qg whose zero level set best describes the
organ boundary [Zhao 1996, Chan 2001]:

R >0 Vzx outside the organ
¢(x) =0 Vz on the boundary
< 0 Vz inside the organ

In that case, F(¢) can be minimized using the Euler-Lagrangian equation

09 _ OE(9)
ot 0¢

where the artificial time ¢ > 0 is introduced for parameterizing the descent direction.
We solve the derivation by computing the gradient descent

t+1 _ ot 9E(9)
=Ty
with h > 0 as the step size.

In the literature of medical image analysis, implicit function segmentation has been
applied efficiently e.g. to the detection of a fetus in ultrasound images [Caselles 1997],
of the femur in MR images |Leventon 2000a|, of the corpus callosum in MR images
[Leventon 2000al, of glioma in MR images [Droske 2001]|, of the left ventricle in
cardiac MR images [Tsai 2003], of the prostate of pelvic MR images [Tsai 2003],
of lateral brain ventricles in MR images [Rousson 2004| and of the liver in four-
dimensional CT images [Schmidt-Richberg 2009].
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5.2.2 MAP Estimation on the Level Sets

As shown in the work of Paragios and Deriche |Paragios 2002, the segmentation
problem can be formulated in a probabilistic framework where the a posteriori prob-
ability p(P(X)|I) of an optimal partitioning P(X) given the image I is maximized.
Based on this principle, in this thesis a maximum a posteriori estimation is devel-
oped of a level set function ¢ whose zero level set best separates the organ from the
background under a shape constraint introduced by the GGM-SSM. This leads to a
unified statistical framework which is presented in detail in this section.

Given a shape represented as a set of points with model parameters © in our GGM-
SSM, we first model the probability of a surface with respect to that shape. This
amounts to specifying the probability of a function ¢ whose zero level set is the
object boundary knowing the GGM-SSM deformation parameters @ = {T,Q} (The
model parameters are detailed in section 3.4). This is the first step. For the next
step, we work with the following image formation model: The intensity is assumed
to follow a law p;, for the voxels inside the object and a law pg,; for the voxels
outside the object. Given this generative model, the segmentation is the inverse
problem: The MAP method consists of estimating the most probable parameters ¢
and @ given the observation of an image I : X — R. Hence, the level set function
¢ is evolved such that p(¢, Q|I) is maximized:

MAP = argmax p(¢, Q|I) = argmax pUlé, Q)p(j(?!@)p(@).

(

The shape prior does not add any information when the zero level set of ¢ is known,
so I and @ are conditionally independent events p(I|Q,¢) = p(I|¢), and we can
write

p1o)p(AIT, D)p(T, &)

p(¢7Q’I) - p((ﬁ,T,Q‘I): p(])

The probability p(I) is constant for a given image. Besides, the probability of the
transformation p(7') is assumed to be independent and uniform, so we derive the
following energy functional:

E(¢,Q) = —alog(p(l|¢)) — 7log(p(¢|Q)) — rlog(p(€2)) (5.1)

with introduced weights «, k, 7 € R to normalize the scale of the distributions. The
first term of equation (5.1) describes the region-based energy with object specific
priors which are given by the normalized grey value distributions p;, inside the organ
and pyy: outside the organ as found in the training data set which leads to

log(p(1]9)) = —/X(l—He(¢($)))10gpm(1($))d$—/XHe(¢($))10gpout(1($))d$-

The function H(¢(z)) is a continuous approximation of the Heaviside function
which is close to one outside the object and close to zero inside the object. The
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H(X)

Figure 5.5: Regularization of the Heaviside function (top) using equation (5.2) and
the associated delta function 6. with support e = 1.

regularization of H are chosen as proposed in [Zhao 1996]:

if p(z) > €
if p(x) < —e
[ 1422 4 Lsin(ZED)] i ()| < e

€

o~ O =

For an illustration of the approximated curve see figure 5.5.

The second term represents the front propagation of ¢ guided by the GGM-
SSM which models all points z as a mixture of Gaussian measurements of the
(transformed) model points m;. Following our EM-ICP principle introduced in
section 3.2, the probability of a point z modeled by the GGM-SSM given (@ is the
normalized sum of correspondence probabilities of z and all m; and equals

_|x—T*mj|2

1
p(lQ) =po = 5~ >_exp( )-
m i

20’(29
In the following, pg denotes the probability given by a GGM-SSM with model
parameters © = {M,v,, Ay, n} which means that © is fixed. The probability of a

point z with respect to the model described by © then depends on the observation
parameters Q = {T,Q2}. The parameters are used as defined in section 3.3.1.
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For a contour I' describing the zero level set of ¢, the log of the probability is

computed by log(p(¢|Q)) = log([],cr p(#]Q)) = [, log p(#|Q)dxz. The integration
over the whole length of the contour is then expressed by

log(p(9]Q)) = /X 5.(6(x)) V()| log ped, (5.3)

with 0¢(¢(x)) having a small support > 0. Then a normalization is added over the

length which leads to log(p'(¢|Q)) = log(p(¢|Q)p(P|lo)) fX x))|Vo(x)
(log pe — B)dx with 5 = % € R where [y controls the normahzatlon of the length.
For pg = const this equation is generalized to the classical smoothing term

/ 5((2)) |V ()| da

as used by Chan and Vese [Chan 2001].

The definition of the third term in the energy functional p(2) is given by the max-
imum likelihood estimation for the observation parameter ) given the model, see
equation (3.8) in section 3.3.1.

5.2.3 Derivation of the Energy Functional

In this section, the minimization of the energy functional of equation (5.1) is de-
rived with respect to the level set function ¢. For some preliminaries concerning
mathematical rules used in this section, please refer to section A .4.

5.2.3.1 The Intensity Terms

The differentiation of the intensity terms with respect to the level set function ¢ is
quite easy as %He(gb) = 0.(9):

0
57 lox((119)) =

/Xée(qb)logpm(xlm,ol)d:r—/ 0c(®) 108 Pout (|12, o) dx (5.4)

X

5.2.3.2 The Shape Prior Term

The differentiation of the shape prior term Eg(¢) = log(p(¢|Q)) as formulated in
equation (5.3) with respect to ¢ is a bit tricky. For one thing, we have to deal with
the derivative of the Dirac distribution ¢.. The solution is based on the principle
of directional derivatives and integration by parts. The aim is to determine the
differential coefficient of Eg(¢), so we first introduce the function @ : X — R. In
order to compute

Eo(¢ +na) = /X log pede(¢ +na)|Ve + nValdz.
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with 7 — 0, we use the Taylor development for a linearization of the delta distribu-
tion depsilon at point (¢ + na) and write

Eo(¢+na) = /X logpe (5.(6) + n8.(6)a) |Vé + nValds.

Using the equation |V¢ + nVa| = |V¢| + nvl(@rd?a + O(n?) which is derived from

the binomial series in equation (A.7) allows to write Eg(¢ + na) as a sum of Fg(¢)

and additional terms:

Vo 'Va
Vo

= Ee(¢)+77/Xlogpe 5, - a| Vgl +77/X10gp@ 0e()

Bo(o-+10) = [ logre (8.()+u8.(0)a) <|V¢|+77 +o<n2>) (5.5)

VolVa
Vo
We reformulate the last term of this equation using the product rule of the divergence
as stated in equations (A.5) and (A.6). We set Vg = Va and V = log pg (55((;5)%.

Assuming that there are no objects outside the image, after several derivations we
obtain

/ <Vg,V>:—/ g - div(V)
b's X

which is

Vo 'Va

/X d¢(¢) log pe W

=— /X a - div(6e(¢) log pe o

ol

With this information, we can rewrite equation (5.5) and obtain

Eo(¢+na) = Eo(9) +77/X10gp® o - a|Ve| _n/XOé'diU <5E(¢) log e Igj;)

(5.6)

We solve the last term by again using the product rule for the divergence stated in
equation (A.5). This time we set g = 0.(¢) and V = logp %. This leads to

. Vo
/Xdzv <6E(¢) log pe !Wﬂ)

[ 36y aiv (togpe 5 ) + [ < V@) ogre 5>

The gradient of d.(¢) is computed following equation (A.6):

25 5.(6) 2

Vi) = | 2 | = [ d@® | =nwve
ado |\ )32
0z € 0z
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Figure 5.6: Illustration of the GGM-SSM constraint on the segmentation contour.
The GGM-SSM 1is represented by a white contour slice. a) Log-probability of corre-
spondence for image points x in space. b) Gradient magnitude of log-probability for
1mage points x.

By inserting this into equation (5.6), we get rid of the §.(¢) terms, so the equation
simplifies to

mate) w vo
Fo(6-+v1) = Ba(@) ~ 1 [ ab(0) div (oo T5-).

In order to compute the gradient of E@ we now employ the product rule of equation
(A.4), setting g =logp and V = W which finally leads to

VEo(d) = —6.(0)- div (10gpe ‘gf;,)

= —4(¢)logpe div <’VZ‘> de(9) < V(logpe), ’V<Z5‘ >. (5.7)

The constraints of the GGM-SSM on the level set propagation are twofold. The
scalar product < V(log pe), % > ensures that the zero level set is actively drawn
towards the SSM shape. The values of V(log pe) = V(log p(x|Q)) obviously depend
on the distance of points x to the GGM-SSM shape. A 2D example is illustrated in
figure 5.6(b). The curvature term log pe div (%) ensures that the smoothness fac-
tor has more influence on the zero level set evolution at locations of low GGM-SSM
probability than at locations with high GGM-SSM probability. This is illustrated
in figure 5.6(a). Hence, we use a prior whose contour is length minimizing. The
variance aé of the probability distribution pg is a sensitive parameter and has to
be carefully adapted to the problem at hand.
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5.2.4 Optimization of the Energy Functional

The derivatives of the energy functional terms derived in the last section are summed
up and written in the gradient descent function as

09

3 = de(9) <—a1 log(pin) + a210g(pout) — 7 < V(log pe), |ng5|

+div <|gz|> (8 — 7log po )) . (5.8)

The minimization of the energy functional in equation (5.1) is then done by al-
ternating the gradient decent for the embedding function ¢ with an update of the
parameters 7" and €. The update serves to fit the GGM-SSM to the current zero
level set.

The gradient descent is solved by a time-step procedure. In each step, the term
< V(logpe), % > has to be updated, thus we need to compute

|z —T%m ;|2 )

V(logpe) = £ log (X exp(— 22l
ploying the chain rule which leads to the following explicit GGM-SSM term:

) . This is simply done by repetitively em-

< V(lo
( gp@) ‘v(m
T
1 [ |t — T *m;|> Txmj—x Vo
: exp(— ) .
(Zj exp(_\x—ig:mgP ) Zj: 252 ) V4|

In order to fit the GGM-SSM to the current zero level set, the optimal trans-
formation 7" and the optimal deformation coefficients  have to be found. The
transformation 7" is computed by

OE (¢, T, 0 -T
PR 2 | sewpIve) o Zexp = ;mJU dz =0

with fixed ¢ and Q. It suggests itself to make use of the global criterion developed
for the GGM-SSM computation in section 3.3.2, equation (3.13). The number of
observations is set to one with kK = 1, and the only observation S is represented
by the zero level set of the current ¢. The affine EM-ICP registration is employed
to register the SSM to the zero level set: First the correspondence probabilities
between the zero level set and the points of the SSM are established in the
expectation step and then T is computed in the maximization step as explained in
section 3.4.1. Here, the zero level set is represented by all voxels of the level set
function where it holds §. # 0. The implementation is done efficiently employing
sparse fields.

Subsequently, the level set function ¢ and the transformation T' are fixed and the
deformation coefficients {2 are computed which solve % = 0. This leads to
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a matrix formulation in a closed form solution as explained in section 3.4.2 and
shown in equation (3.17).

In summary, our implicit segmentation algorithm using the GGM-SSM is
implemented as shown in pseudocode 5.1

Algorithm 5.1 Pseudocode of implicit segmentation using the GGM-SSM prior

Place GGM-SSM automatically in image (employing the evolutionary algorithm
introduced in section 5.1.2);
Generate initial ¢ based on GGM-SSM;
for t =0 to MAXITER do
Compute ¢ according to equation (5.8);
Update level set: ¢'t! — ¢t + o
Compute GGM-SSM parameters T, §) (optimizing equation (3.13) with k =1
and S; represented by the zero level set of ¢'*1);
Update GGM-SSM: M =T % (M + Y wpvy);
end for

5.3 Evaluation on Kidney CT Images

In an experimental evaluation, the level set segmentation framework is applied to
the segmentation of the left kidney in noisy CT images impaired by breathing arte-
facts. The kidneys are a typical organ at risk for cancer radiotherapy in the upper
abdomen. They are exposed to irradiation during the treatment of malignant tu-
mor types like carcinoma of the cervix or carcinoma of the pancreas. Thus, an
exact segmentation of the kidney helps to reduce the possible harm to a minimum.
Fully automatic kidney segmentation is not an easy task as the grey value intensity
differences between the kidney and neighbouring organs as the liver and spleen are
very small. Moreover, the grey value intensities inside the individual kidney volumes
are not very homogeneous which is partly due to the big kidney vessels which are
darker than the organ itself and partly due to the poor quality of the abdominal CT
images. For an example of the kidney images see figure 5.7.

Most algorithms for (semi-)automatic kidney segmentation from mostly low reso-
lution CT images consist of two steps: First, for automatic initialization, a region
in the image is selected where the probability of kidney tissue appearance is high.
Second, a local search algorithm is employed in order to detect the kidney contour.
Recently published methods using deformable models include the combination of
grey level appearance of the target with statistical information about the shape
|Tsaagan 2002| or the training of a non-parametric histogram estimate specifying
the kidney location |[Broadhurst 2006]. Another method proposes the concatenation
of different image processing operations as region growing and landmark determi-
nations [Lin 2006]. Looking at the evaluations, all of those methods lead to volume
overlaps around 0.88 (where it is not clear which measuring coefficients were used)
and an average surface distance of 1mm [Broadhurst 2006| and respectively around
1 voxel with resolution 0.63 x 0.63 x 10mm? [Tsaagan 2002] between the results and
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Figure 5.7: Examples of abdominal CT images including the kidney.
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the gold standard. All papers report failure of their method for some cases which
were mainly accounted for to poor quality of the automatic location initialization.

5.3.1 Segmentation Experiment

Kidney GGM-SSM: Our training data set consists of 16 CT images of the
abdominal region which were taken from healthy live liver donors. The data set
as well as the associated segmentations of the left kidney were kindly provided by
the Department of Computer Science, UNC, Chapel Hill. The segmentations were
performed by medical students. The size of the images is 512 x 512 x (32 — 52)
voxels with resolution 0.98 x 0.98 x (2.9 — 5.0)mm?3 where the kidney measures
about 75 x 60 x 100mm3. The GGM-SSM for the kidney is built using a training
data set of 10 segmented observations. For some observation examples see figure
5.8. The segmentation method is then tested on the remaining 6 kidneys. For
computing the GGM-SSM, the global criterion (equation (3.13)) is optimized as
elaborated in section 3. The algorithm multi-scale parameters (described in section
3.6) are set to o = 20mm, reduction factor = 0.9, number of iterations = 20. The
resulting kidney GGM-SSM can be seen in figure 5.9 where the mean shape and
the deformations according to the first and second modes of variation are depicted.

Distribution Model: For our application on the estimation of p;, and
Pout, the Parzen window approach described in section 5.1.1 is employed. The
intensities around the kidney surfaces of our training data set which are coded by
the Hounsfield scale are sampled. A Gaussian kernel and a width of A = 5 are used,
see figure 5.1.

Set-Up: In order to evaluate the influence of the shape prior term, the results of
our algorithm are compared with the results of the segmentation algorithm proposed
by Schmidt-Richberg et al. who use a very similar energy functional but without a
shape prior term [Schmidt-Richberg 2009]. Each data set is segmented once with
the level set segmentation without shape priors as proposed by Schmidt-Richberg
et al. and once with the GGM-SSM prior information integrated in the level set
segmentation as developed in section 5.2. The algorithm is implemented as shown
in pseudocode 5.1. For the segmentation, the weights are set to a3 = 1, g = 1,
k=1,0=0and 7 = {0.1,0.2}. In most cases, the algorithm converged after 150
iterations. For both methods, the same distribution model is used. For an example
of the GGM-SSM deformation during the segmentation steps please see figure 5.10.

Results: The results are compared to the gold standard segmentations by
evaluating the Jaccard coefficient, the Dice coefficient and the Hausdorff distance,
see table 5.1. Both level set frameworks using a-priori information on the grey
level intensities yields good segmentation results overall. The SSM constraint on
the level set evolution yields even better results in all cases. The advantage of
adding the prior shape information can be seen distinctly for patient 2 where the
Hausdorff distance diminished from 9.95mm to 5.0mm and for patient 6 where the
Hausdorff distance diminished from 12.57mm to 7.68mm. This is due to the fact
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X N X

Figure 5.8: Ezamples of surface representations of segmented kidneys in the training
data set.

e)

Figure 5.9: GGM-SSM computed for a training data set of 10 segmented kidneys.
(a) shows the mean shape, (b-e) show the mean shape deformed with respect to first
and second mode of variation: M — A\jvi, M + Mvy, M — Aovs, M + Aavs.
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b) c)

Figure 5.10: GGM-SSM during segmentation a) The GGM-SSM is placed in the
image. b) The GGM-SSM is automatically initialized to its starting position. c)
The GGM-SSM deforms under the optimization of the global criterion.

only LS | LS + SSM
D(A,B) 0.93 0.93
Patl | J(A,B) 0.88 0.87
H(A,B) 8.66 6.40
D(A,B) 0.91 0.93
Pat 2 | J(A,B) 0.83 0.88
H(A,B) 9.94 5.0
D(A,B) 0.89 0.91
Pat 3 | J(A,B) 0.81 0.84
H(A,B) 5.83 5.10
D(A,B) 0.88 0.89
Pat 4 | J(A,B) 0.78 0.80
H(A,B) 8.01 6.40
D(A,B) 0.92 0.92
Pat 5 | J(A,B) 0.86 0.86
H(A,B) 4.58 4.24
D(A,B) 0.84 0.86
Pat 6 | J(A,B) 0.73 0.75
H(A,B) 12.57 7.68

Table 5.1: Segmentation Results for siz different data sets. Left: Level set segmenta-
tion without GGM-SSM shape prior as done with the algorithm of Schmidt-Richberg
et al. [Schmidt-Richberg 2009]. Right: Level set segmentation using the GGM-SSM
shape prior as developed in section 5.2.2. D(A,B): Dice coefficient. J(A,B): Jaccard
coefficient. H(A,B): Hausdorff distance in mm.
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a) b)

Figure 5.11: Segmentation Results on a kidney in CT data, sagittal slice. The
blue contour is the gold standard segmentation. Image (a) shows the initial contour
in yellow and the contour after applying the automatic evolutionary algorithm as
described in section 5.1.2 in white. Image (b) shows the result of the unconstrained
(red) and the result of the SSM constrained (green) level set segmentation. The red
contour leaked into the adjacent organ (liver).

that the evolving zero level is attracted by neighbouring organs with similar grey
value intensities as the kidney. The Hausdorff distance can be seen as an indicator
for the leakage risk. This leakage can be successfully prevented by integrating the
SSM prior on shape probabilities. As an example, the effect on patient 2 is shown
in figure 5.11(b).

5.3.2 The Role of the Parameters

As our energy functional in equation (5.1) is derived by a MAP explanation, in
theory all coefficients should be equal to 1. Expanding on this probabilistic anal-
ogy, the traditional coefficients of the variational methods (as e.g. in [Chan 2001]
or [Rousson 2004]) can be seen as powering factors which flatten or peak the den-
sity distributions. Concerning the GGM-SSM term (equation (5.3)), the standard
deviation og controls the matching of the GGM-SSM to the zero level set. This
means that in practice, og should have values around 5mm to guarantee a success-
ful matching for the problem at hand as this is the mean point distance in the model.
However, the value of og also controls the strictness of the spatial constraint, so
the introduction of the coefficients 7, 8 and « is necessary in order to position the
influence of the SSM with respect to the other terms. What is more, § can be equal

to 0 because the smoothness term div (%) is also governed by 7 as can be seen in

equation (5.8). Moreover, employing —7 log pg as weight has the advantage of using
a distance-dependent smoothing term. Figure 5.12(a) shows the influence of the
choice of og for the Hausdorff distances obtained in the segmentation experiments
with « = 1, = 0 and 7 = 0.1. These parameters lead to satisfying results for all
kidneys except kidney 1. The optimal values for og are similar for all kidneys and
should not exceed 5mm in this case.
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Figure 5.12: Hausdorff distances. a) shows the Hausdorff distances of the segmen-
tation results under parameters o« = 1, § = 0 and 7 = 0.1 for all kidneys with
respect to og. b) illustrates the relation between the parameters T and og and their
influence on the resulting Hausdorff distances.

The relation between the parameters 7 and og are illustrated in figure 5.12(b) where
the Hausdorff distances for two kidney segmentations are plotted with respect to
oo for different values of 7. For a smaller 7 the optimal og becomes smaller as well
which results in a left shift of the curve. This is due to the fact that a smaller og
as well as a greater 7 result in a stricter constraint of the level set front propaga-
tion. However, the best result for the Hausdorff distance remains the same for both
choices of 7.

5.4 Multiple Shape Class Segmentation

On the grounds that shape, size and location of neighbouring anatomical structures
influence each other directly and indirectly, a thriving strategy is the extension of
the region of interest for the segmentation to adjacent structures. The integration
of these geometric relation information about adjoining structures as a priori knowl-
edge renders a segmentation algorithm a lot more robust. This idea can be exploited
for example in an attempt to simplify segmentation processes for low-contrasted
structures as shown e.g. by Palm et al. who use a balloon model coupled to a SSM
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to find the vocal cord and utilize the results to find the glottis next |[Palm 2001].
Costa et al. present a coupled segmentation framework employing an explicitly rep-
resented SSM of the prostate for segmenting the bladder and prostate simultaneously
[Costa 2007]. In [Zeng 1999], the segmentation of the cortex from 3D MR images is
performed by a coupled surface propagation. This is realized by coupling the seg-
mentation results of two adjacent borders of the cortex by verifying that the distance
between the borders does not exceed a certain interval. Pitiot et al. enhance this
idea by constructing deformable models for different brain structures and regulating
the associated segmentations by a distance map which determines certain distance
values that have to hold between the structures [Pitiot 2005]. In another approach,
Ciofolo et al. model the distances between brain structure contours as a fuzzy vari-
able so to avoid overlapping between contours of different level sets |Ciofolo 2005].
A very interesting method is proposed by Tsai et al. who employ multiple signed
distance functions as implicit representations of multiple shape classes within the
image [Tsai 2004]. By doing a PCA on these functions they then obtain a coupling
between the multiple shapes within the image and hence effectively capture the
co-variations among the neighbouring structures. Implicit function segmentation is
topologically flexible and therefore well suited to segment non-spherical topologies
as well as objects containing multiple shape classes. As our GGM-SSM prior is able
to model non-spherical anatomies and also anatomies consisting of more than one
structure, our aim is to extend the segmentation algorithm presented in section 5.2
for such kind of segmentation. Section 5.4.1 is dedicated to the mathematical adap-
tion of the GGM-SSM to multiple object modeling and its integration into the time
step procedure of the segmentation scheme. In section 5.4.2, first experiments are
done on acetabulum and femoral head data which feature a non-spheric anatomy
and consist of two non-connected structures.

5.4.1 Development of the Algorithm
5.4.1.1 Extension of the GGM-SSM to Multiple Structures

For the segmentation of more than one shape class, the shape prior has to represent
a training data set of multiple-structure observations. In order to model multiple
structures using only one GGM-SSM, an overlap between structures belonging to
different shape classes has to be avoided. Therefore, the EM-ICP registration used
for aligning the model with the observations has to be adapted to that task. To
recap: for one structure, the correspondence probability between an observation
point sg; and a model point m; reads:

i—Txmy; ||
exp (_”skz 21; mk]” )
e =
i ZNm exp [ — ll8ki —Thrmp |2
=1 p 202

as explained in section 3.3.2. On the one hand, the objective is to compute one
transformation which transforms two or more structures together in order to keep
their spatial relationship. On the other hand, an overlap of structures of different
types has to be avoided to guaranty a good modeling. To do so, it has to be made
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Figure 5.13: EM-ICP for multiple structure observations. a) Observations consisting
of two structures. b) Structures are labeled L =1 and L = 2. ¢) Points belonging to
structures with different labels have a correspondence probability of zero. d) Aligned
observations.

sure that the correspondence probability 7;;, = 0 if points m; and sg; belong to
different structures. This is done by labeling the points congruently over the whole
training data set and then computing

0 if L(m;) # L(ski)
||Ski7Tk*mkj“2
Yijk = xp{ — 202 (59)
3 else
Nm exp (_ ll8gi =T xmer )
1=1 302

with L = {1,2,...} being the label of the respective structures. For an illustration
see figure 5.13. Using the labeled correspondence matrix in the EM-ICP registration
has the effect that only point pairs belonging to the same shape class guide the reg-
istration. The resulting transformation then tries to align the respective structures
without causing an overlap inside the observation.

5.4.1.2 Extension of the Segmentation Method to Multiple Structures

The goal is to extend the segmentation algorithm described in section 5.2 (equation
(5.1)) for multiple-structure observations. As explained above, only one GGM-SSM
is used to model the multiple-structure shape. However, a separate level set
function ¢r, is defined for each structure. This is done for two reasons: First, it
allows us to define grey value probabilities p% and p%,, for each structure. Secondly,
additional anatomical constraints can be defined as for example in case of different
shape structures lying close to each other, it is of great interest to prevent separate
structures from merging. The evolution of each level set function is computed
by a separate gradient descent using the formulation of equation (5.8). Here, the
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shape priors in each gradient descent are represented by the respective structures
of the GGM-SSM. Importantly, the update of the GGM-SSM is done with respect
to all zero level sets with ¢u; = min{¢1, ¢, ...}, and this step therefore links the
evolution of the separate level sets.

The implementation of the multiple-structure segmentation is presented in pseu-
docode 5.2.

Algorithm 5.2 Pseudocode of implicit two shape class segmentation using the
GGM-SSM prior
Place GGM-SSM automatically in image (employing the evolutionary algorithm
introduced in section 5.1.2);
Generate initial ¢ and ¢9 based on GGM-SSM;
Set d as minimal allowed distance between the two level sets;
for t =0 to MAXITER do
Compute <;~51 according to equation (5.11);
Update level set;
{Apply constraint:}

t+1:{ ¢1+0 if gh(x) <d

1 L + @1 else ’

Compute ¢o according to equation (5.11);
Update level set;
{Apply constraint: }
oL :{ ¢:2+q if it (x) < d :

@5+ ¢ else '
Form one contour: ¢+t = min{@ttt sLH1;
Compute GGM-SSM parameters T, §) (optimizing equation (3.13) with k =1
and S; represented by the zero level set of ¢'*1);
Update GGM-SSM: M =T« (M + Y, wpvy);

end for

The Boundary Term:

For organs whose grey value intensity differs significantly from the background’s as
is the case e.g. for bones, the gradient information in the image could be interesting
to be exploited for the segmentation. To do so, an edge term is added to the
energy functional described in equation (5.1) which serves to actively draw the zero
level set towards organ boundaries. Based on the Geodesic Active Region model
proposed by Paragios and Deriche [Paragios 2002, an energy functional based on
the boundary term can be introduced by

Eboundary(qb) :/X569(1)|v¢|dX

where

1
1+ IV(Gy* 1)

9(1)
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with G, being a monotonically decreasing function (in our case a Gaussian func-
tion). The derivative of the boundary term with respect to the level set function
¢ is complex. It is computed analogously to the derivative of the shape prior as
elaborated in section 5.2.3. This finally results in

(Vo
VE‘boundary(qb) = _5€(¢)g div <W> - 5e(¢) <V
This term is integrated into the gradient descent of equation (5.8) which leads to
the extended gradient descent

o¢
ot

Vo

AV
= 0c(0) <—a1 log(pin) + a210g(pout) — 7 < V(log pe), % >

Vo (Vo
—n < Vg, = > +div (—
V¢l V¢l

with n € R as the associated weight.
The integration of the boundary term is also advantageous when segmentating two
or more neighbouring structures simultaneously as the leakage risk might be reduced.

)@ riogpe—ng)). G

5.4.2 Experimental Evaluation on Hip Joint CTs

A first experimental evaluation is done on hip articulation data. These are well
suited for our needs as they feature two shape classes (acetabulum and femoral
head) as well as a non-spherical topology since the ischium and the pubis bone form
a ring. The intensity within the bones is not constant as the interior consists of
trabecular bone whereas the outer shell is a compact cortical bone. This intensity
variation is a drawback for thresholding techniques. Moreover, the edges might be
blurred by artifacts which deteriorates the accuracy of region growing methods.
Besides, a considerable amount of noise or blurring often adds to the complications.
Especially the tiny space between the femoral head and the acetabulum poses a
problem because automatic segmentation methods have difficulties to recognize the
adjoining edges as two different units [Westin 1998|.

The CT data set used in this experiment consists of 11 images of the hip joint with
resolutions around 0.71 x 0.71 x 4mm and size 512 x 512 x (57 — 78) voxels. The
resolution in z-direction is not high enough to allow a reliable manual detection of
the gap between femoral head and acetabulum in many of the images. Therefore,
the medical experts who segmented the training data set chose to augment the
resolution in z-direction for a better estimation of the gap. These sampled images
then feature resolutions around 1 x 1 x lmm and size 256 x 256 x (228 — 312)
voxels, see examples in figure 5.14. For each data set one manual segmentation
was done by a medical expert. For the evaluation, we are interested in modeling
the region of the hip articulation as well as the region with the non-spherical
topology. Therefore, the observations are clipped to the region of interest. In
order to do a congruent clipping over all observations, the anatomical landmarks
on the bones are used as reference (see figure 5.15): The femur is clipped by a
horizontal plane cutting 1mm below the trochanter minor. The hip bone is clipped
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Figure 5.14: Hip joint C'Ts: These images belong to the observations which form the
training data set.

B

Figure 5.15:  Frontal wview of the hipbone and anatomical landmarks. 1-
Promontorium, 2-Spina iliaca anterior superior, 3-Spina iliaca anterior inferior,
4-Eminentia iliopubico, 5-Symphyse, 6-Trochanter minor.

Figure 5.16: Hip joint observations. These examples from the training data set are
labeled to separate femur and hip bone structure.
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Figure 5.17: GGM-SSM for the hip joint. a) Mean shape. Deformation along the
first (b,c) and second (d,e) variation mode which mainly affect the bulging of the
femoral head, the torsion and size of the ischium as well as the CCD angle.

by a horizontal plane cutting 5mm above the spina iliaca anterior inferior. The
results for some of the observations are depicted in figure 5.16. The observations
are represented by around 7000 points (minimum 6544 points, maximum 7408
points). In a preprocessing step, a labeling of all observations to distinguish hip
bone and femoral head is done where the femoral head is labeled with L = 1 and
the acetabulum is labeled with L = 2. The GGM-SSM for the hip articulation is
built using a training data set of 8 observations and the segmentation method is
then exemplarily tested on the remaining 3 hip joints.

Hip joint GGM-SSM: For generating the GGM-SSM, first the barycentres
of all observations are aligned. Subsequently, the global criterion (equation (3.13))
is optimized as elaborated in section 3. The algorithm multi-scale parameters (as
introduced in section 3.6) are set to o = 10mm, reduction factor = 0.9, number of
iterations = 15. The resulting hip joint GGM-SSM can be seen in figure 5.17 where
the mean shape and the deformations according to the first and second modes of
variation are depicted.

Distribution Model: For our application on the estimation of p;, and
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Figure 5.18: Estimated grey value density functions for the inside (green) and the
outside (red) region of the clipped femur (a,c) and hipbone (b,d) using a Parzen
window approach.

Dout, again the Parzen window approach described in section 5.1.1 is used. The
intensities are sampled around the bone surfaces of our training data set which are
coded by the Hounsfield scale. A Gaussian kernel and a width of h = 5 are used,
see figure 5.4.2. The intensity distributions for the inside and the outside of the
bones greatly overlap especially for the femoral head due to the colour of the bone
marrow which resembles the background. This means that the information value of
the grey value distribution prior for the segmentation is reduced.

Set-Up: For the segmentation, the weights are set to a; = 0.5, as = 0.5,
k=1, 0=0and 7 = {0.5,0.8}. The cartilage between acetabulum and femoral
head measures at its thickest point around 4mm (and less in elderly people) and is
low-contrasted in the images, so this region is very difficult to segment based on
intensity distribution information alone. In order to actively draw the zero level set
towards the bone boundaries, we additionally employ the boundary term and set
the boundary weight to n = 0.3. The function g is Gaussian with ¢ = 7mm. The
algorithm is iterated 200 times.

Results: For testing purposes, first we try to segment the hip articulation
using the level set segmentation without shape prior employing the algorithm as
proposed by Schmidt-Richberg et al. [Schmidt-Richberg 2009]|. As the grey values
of the bone marrow greatly resemble the background in some regions, this leads to
non-satisfying results as the segmentation contour sometimes looses its connectivity.
An example for this behaviour is shown in figure 5.19(a) and (b). By integrating
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b)

Figure 5.19: Problematic region for segmentation. Figure a) shows a zoom on the
1schium structure of the hip bone where the grey value intensities of bone marrow
and background resemble and no clear boundary can be seen. b) Segmentation result
of level set segmentation without shape prior. c¢) Segmentation result of level set
segmentation with shape prior.

Table 5.2: Segmentation results. The table shows the mean surface distance and the
Hausdorff distance of the final deformed SSM and the manual segmentation in mm.

Pat. 1 Pat. 2 Pat. 3
Femur | Hipbone | Femur | Hipbone | Femur | Hipbone
mean dist. in mm 3.0 2.9 3.5 3.0 2.1 3.1
Hausdorff dist. in mm | 11.6 12.5 15.8 16.8 16.4 14.3

the shape prior, these problems could be avoided (see figure 5.19(c)). Two result
examples with a close-up on the articulation region are shown in figure 5.20. The
shape prior was able to successfully model the non-spherical topology formed by
the pubic bone and ischium (see figure 5.21(d))

Because of the femoral marrow, the zero level set of the implicit function sometimes
creates holes inside the femoral structure. Therefore, instead of the Dice coefficient,
the surface distance between the deformed GGM-SSM and the expert segmentation
is used to asses the evaluation results. These are depicted in table 5.2. The mean
distance measures around 3mm which seems to be acceptable with regard to the low
quality of the data. The distances are illustrated for the hipbone and the femoral
head in figure 5.21(a) and (b). It becomes clear for patient 2 that the border of
the acetabulum posed a problem for the segmentation algorithm. This might be
due to the fact that the contrast in that region is very low which is shown in figure
5.21(c). Even for the expert, this region must have been very difficult to detect. In
order to validate the results further, inter-individual variability evaluations should
be performed in a series with several medical experts.

Overall, the results obtained in this experiment indicate that the method is well
suited for two shape class segmentation.
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Figure 5.20: Segmentation results. The images show a view on the segmentation
on patient 1 (a,c) and patient 2 (b,d). The initial segmentation is shown in yellow
(above) whereas the results are shown in green (below).
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)

Figure 5.21: Segmentation Results. a) Surface distances between gold standard and
deformed GGM-SSM after segmentation for the hipbones of patient 1, patient 2,
patient 3. b) Surface distances between gold standard and deformed GGM-SSM after
segmentation for the femoral heads of patient 1, patient 2, patient 3. ¢) Cut through
the acetabulum of patient 2 in C'T image. The yellow ellipse marks the region with
low contrast which the segmentation method did not detect well as seen in image (c),
middle hipbone. d) Deformed GGM-SSM (white points) during the segmentation of
the hipbone (in purple).

d)
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5.5 Discussion

A novel algorithm for automatic segmentation of anatomical structures was
proposed. The segmentation scheme couples an explicitly represented SSM with
an implicitly represented segmentation contour. This approach is new to our
knowledge of the literature on this subject and opens new insights on how to take
the best of both worlds. Implicit segmentation methods offer several advantages
over explicit ones as no remeshing algorithms are needed, the integration of regional
statistics is straightforward and finally, they are very flexible to different topologies.
Furthermore, an implicit formulation of the segmentation allows to easily take
advantage of the capabilities presented by the GGM-SSM: It is able to model
non-spherical and multiply-connected objects as well as several objects at once.
Parametric deformable models are not well suited for such segmentation tasks.
The evolving contour of implicit models, however, is able to split and merge
naturally and allows the simultaneous detection of several objects. In order to put
the implicit representation within a unified statistical framework, a maximum a
posteriori estimation of a level set was developed. The MAP explanation leads to a
two-phase formulation which is optimized based on the image information as well
as the GGM-SSM information about probable shapes. This approach is refined
further by integrating prior knowledge about grey value distributions inside and
outside the organ in order to robustify against intensity inhomogeneities across
patients as well as inside the respective structures.

Segmentation experiments on kidney CTs impaired by breathing artefacts
demonstrated the efficiency of the new algorithm. Adaptive weights ensure that
the SSM constraint is optimally exploited. The results show that the new method
works well and improves for some cases the approach of using an unconstrained
level set segmentation. Especially when the intensity patterns of the organs close
by are similar to the organ of interest, the level set segmentation can leak and
produce erroneous results. The leakage problem of level set algorithms can be seen
in different segmentation tasks such as the prostate. The proposed algorithm offers
a solution to this problem by including the SSMs in a probabilistic framework such
that they bring robustness to the segmentation process.

The method is then extended to multiple-structure segmentation by intro-
ducing a level set function for each structure. The shape prior information however
is modeled by a single GGM-SSM for all structures simultaneously. During segmen-
tation, the evolution of the different level set functions is linked and constrained by
the multiple-shape GGM-SSM. Furthermore, by integrating a boundary term into
the energy functional, the method is adapted to bone segmentation.

First experiments on hip articulation data indicate that the method is well suited
for modeling and segmenting multiple objects at once and also shows that the
GGM-SSM is able to be employed as a shape prior for non-spherical anatomies as
shown on the example of ischium and pubic bone. Inherently, implicit segmentation
techniques are sensitive to the initial placement. This problem gets worse for
segmentation of structures lying close-by whose intensities are close. In case of the
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hipbone articulation segmentation, the grey value distributions from femoral head
and hip bone are very similar (see figure 5.4.2). This means that the segmentation
will fail if the automatic initial placement positions the initial femoral structure
inside the hip structure or vice versa. Therefore, the initial placement has to be
controlled carefully.

Even from a low number of samples a prior on the probabilities can be ex-
tracted so that no huge training data set is necessary. From a theoretical point of
view, a very powerful feature of this method is that a unique criterion is optimized.
However, the practical convergence rate has to be investigated more carefully as it
depends on the choice of weights in the functional as well as the variance 02@ which
controls the probability of occurrence with respect to the SSM. In the case of an
organ shape which differs greatly from the shapes in the training data set for the
SSM, a great sigma is needed in order to not constrain the contour evolution too
much (as e.g. for Pat. 1, figure 5.12(a)), so og is momentarily used somewhat as
interactive parameter which is not the optimal solution. Furthermore, the MAP
formulation could be refined by integrating a priori knowledge about the expected
volume Vj which is given by the probability p(¢|Vy) where Vj can be determined
by evaluating the training data set.

Concerning the method for multiple-structure segmentation, the implementation is
currently done using one energy functional for each contour. This approach could
be improved by formulating a single energy functional containing all independent
level set functions as parameters. The obligatory constraint which forbids an
overlap of the independent contours could then be integrated as side condition.
Overall, to consolidate the results of multiple-structure segmentation, a more
elaborate evaluation on a bigger data set is needed.
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Statistical shape models play an important role in medical image analysis, and a
wide range of methods well adapted to various applications exists in the literature.
The emphasis of this thesis however was not so much to propose a convenient SSM
to solve a specific practical problem but to investigate the possibilities of a novel
approach to SSM computation. The focus of this manuscript is twofold: First, a
novel SSM method was developed in a probabilistic framework. Then, by taking
advantage of the particular characteristics of the probabilistic SSM, it was integrated
into an implicit segmentation scheme. Both parts were formulated on a sound
theoretical foundation and feature new views on well-known problems.

In this chapter, the contributions developed in the course of this manuscript are
reviewed and an outlook on possible future research on the subject is given.

6.1 Contributions

6.1.1 Model Computation

As a first step on the path to a novel SSM computation method, an affine extension
of the Expectation Maximization - Iterative Closest Point registration algorithm
was proposed which directly yields a solution to the fundamental correspondence
problem. Here, the observations are represented by unstructured point clouds, and
each observation point is modeled as a noised measurement of the model points.
This approach actually amounts to representing the surface of the shapes by a
mixture of Gaussians. The probabilistic concept offers an intuitive and coherent way
to determine correspondences between smooth organ surfaces as well as between
shapes where not all observations feature the same prominent shape details. It
should be noted that the SoftAssign algorithm |Rangarajan 1997a| offers a related
probabilistic formulation but is only justified for a pair-wise registration, not for the
group-wise model to observation registration which is required for building the SSM.

The introduction of probabilistic correspondences gives way to a large contribu-
tion of this thesis which is the development of a sound mathematical framework for
SSM computation presented in chapter 3 and [Hufnagel 2007b, Hufnagel 2008b].
To realize this, the SSM problem has been viewed from the new angle of generative
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models: Given a set of observations, it has been sought for the model which most
probably generated those observations. As the model itself is modeled as a random
variable described by a Gaussian distribution, a maximum a posteriori estimation
of the whole scene has been formulated. Here, observation and model parameters
were unified in one global criterion which has not been done before to the author’s
knowledge. It could be shown that the optimization of the criterion led to closed
form solutions for all parameters except the variation modes which are efficiently
solved for iteratively. Since the SSM computation is done by optimizing a global
criterion, a theoretical convergence of the algorithm is ensured. Furthermore, in
contrast to methods using the principal component analysis, the variation modes
of the SSM presented here only model the shape variation and not the noise
which is represented separately through the Gaussian Mixture. This implies a
possible answer to modeling the uncertainties inherent to surface representations of
segmented organs.

Apart from the methodological contributions, the GGM-SSM resulting from the
new computation algorithm itself significantly adds to the state-of-the-art. A main
advantage is the simplicity of the point-based SSM with respect to its power. The
application to an arbitrary training data set is straightforward since no preprocess-
ing to establish correspondences is needed, and the point numbers from observation
to observation as well as the point density may vary. As the connectivity between
points does not play a role, the GGM-SSM is very flexible to different kinds of topolo-
gies and therefore well-suited to model non-spherical or multiply-connected objects
as well as several objects at once. The superior quality of the GGM-SSM compared
to a classical point-based SSM computed under the use of the iterative closest point
algorithm and a principal component analysis (ICP-SSM) could be demonstrated on
synthetic and real data sets as presented in chapter 4 and [Hufnagel 2009a]. While
the ICP-SSM is a faster method, the GGM-SSM reliably succeeded in capturing
shape details as well as extreme shape variations which were lost for the ICP-SSM.
Throughout this thesis, the confidence in surface information for SSM computation
is considered arguable as these are only approximations of the true surfaces. Never-
theless, in practice surface-based SSMs obtain useful results. In order to place the
new approach in the literature, a comparison of a MDL-SSM and the GGM-SSM
was performed on a synthetic data set which proved to be a difficult endeavour as a
comparable metric had to be defined. Finally, the results were evaluated using the
Jaccard coefficient for which surfaces had to be approximated for the GGM-SSM re-
sults. The experiments showed that the GGM-SSM almost reached the performance
of the MDL-SSM. The difference is probably due to the fact that in the MDL-SSM
points are allowed to freely move over the surfaces so that the results do not depend
on the original point distribution in the observation meshes. Unlike the GGM-SSM
however, the MDL-approach is constrained to surface representations for spherical
topologies.
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6.1.2 Segmentation

Another significant contribution of this thesis lies in the development of a novel
segmentation algorithm as presented in chapter 5 and [Hufnagel 2009¢|. The algo-
rithm integrates an explicitly represented shape prior into an implicit segmentation
scheme.

Most implicit segmentation schemes which make use of shape priors do statistics
on signed distance maps which do not constitute a linear space. Furthermore,
the principal components of implicit shape models describe the variability of
the distance maps but not the variation of the embedded contours. Therefore,
understanding the variability information on distance functions is not obvious.
In contrast, the variability model of a parametric SSM encodes the variation for
each point of the model which allows a direct physical interpretation of the shape
variability.

The objective in this work was to exploit the advantages offered by implicit segmen-
tation methods without relinquishing the benefits given by explicitly represented
SSMs. Since the GGM-SSM was formulated in maximum a posteriori explanation
and is computed in a probabilistic formulation, its integration into an implicit
segmentation framework could be realized quite elegantly: A maximum a posteriori
estimation of a level set function whose zero level set best separates the organ
from the background was formulated under a shape constraint introduced by the
GGM-SSM. This led to an energy functional which was optimized in a two-phase
formulation alternating a gradient descent with respect to the embedding level
set function and the GGM-SSM deformations. The coupling between point-based
statistical shape models and level sets is new to our knowledge of the literature
and opens new insights on how to take the best of both worlds. From a theoretical
point of view, a very powerful feature of the method is that a unique criterion is
optimized, thus, the convergence is ensured. Due to the implicit formulation of
the approach, new a priori knowledge or constraints can be taken into account
as needed for specific applications. This was exemplarily demonstrated by the
integration of a boundary term into the energy functional.

As demonstrated further, the segmentation method could be adapted to
multiple-object segmentation in a straightforward manner. The shape and location
relations of an anatomical structure with regard to their neighbouring structures
are interesting information to be used as a-priori knowledge in a segmentation
process in order to render the result more robust. For the segmentation algorithm,
a separate level set function was defined for each object. Their spatial evolutions
during segmentation were then linked and constrained by a single GGM-SSM which
models all involved objects in one shape prior. This constitutes another scientific
contribution not yet published elsewhere.

Evaluations on kidney data showed that the integration of the shape prior into
the level set segmentation offers a solution to the typical implicit segmentation
problem of leakage and such brings robustness to the segmentation process. A first
evaluation on hip articulation data indicated the well-posedness of the new method
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to multiple-object segmentation and segmentation of objects featuring non-spherical
topology.
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6.2 Perspectives

6.2.1 Parameters

The role of the adjustable parameters in both the SSM method and the segmen-
tation method should be subject to further research. Up to now, the parameter
values are determined largely heuristically which is not an optimal approach.

SSM Computation: Since the EM-ICP registration is implemented in a
multi-scale framework, the three parameters ’initial variance’, 'reduction factor’
and 'number of iterations’ (or final variance respectively) have to be fixed be-
forehand. The experiments conducted during the research for this thesis suggest
that a good choice for the final variance is a value which lies in the order of the
squared average point distance of the observations. The choice for the initial
variance depends on the shape differences in the training data set. In general, a
slower reduction of variance reduces the risk of freezing in a local minimum during
optimization. However, in practice a reasonable balance between computational
time and that risk has to be found. In theory, these parameters could be modeled
in a probabilistic formulation. By doing so, the EM-ICP parameters might become
part of the optimization process in the SSM computation and be integrated into the
maximum a posteriori estimation presented in chapter 3 as additional observation
parameters.

Segmentation: In the segmentation methods, weighting coefficients are em-
ployed to control the influence of the different terms in the energy functional as
presented in chapter 5. As the energy functional is derived by a MAP explanation,
in theory all coefficients should be equal to 1. Expanding on this probabilistic
analogy, the traditional coefficients of the variational methods can be seen as
powering factors which flatten or peak the density distributions. While the free
choice of weights renders the algorithm flexible to different segmentation demands,
it also requires a certain user-interaction which should be reduced. This could be
done by evaluating the influence of each term and especially the relations between
different terms on a set of standard segmentation problems. For example, the
experiments conducted in the course of this thesis suggest that a smoothing term
becomes obsolete if the SSM term is weighted noticeably.

Furthermore, it would be of interest to investigate an approach were the weights
are no longer represented by scalars but by spatial functions. This would allow
an adaption of the impact of the respective terms to local image characteristics.
Needless to say, the task of defining good weights would become even more complex
but it could make sense to try for certain specific applications.

6.2.2 Application

The segmentation method presented in the course of this thesis joins the advantages
of explicitly represented shape priors and the advantages of implicit segmentation
schemes. The algorithm is therefore very flexible to different kinds of segmenta-
tion problems. Especially multiple-object segmentation is of interest as not many
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approaches exist in that domain. Possible applications are the segmentation of
lung and other organs at risk supporting the radiotherapy planning for lung tu-
mors. Typically, the lung movement during inspiration and expiration influences
the movement and deformations of the organs lying close by as for example the
liver. The new segmentation method offers an easy integration of regional statistics.
The grey value distributions of the lung and the grey value distributions of the liver
could be sampled and modeled separately. The shape prior on the other hand could
comprise the lung and the liver in a single GGM-SSM. By adjusting the influence
of the respective terms in the energy functional, the segmentation process can be
adapted to the demands of the specific patient’s images. For example in images
featuring noise or low contrasts, the shape prior term weights could be turned up
with respect to the weights of the image information term, so a robust segmentation
should be possible. First experiments are currently done in cooperation with the
group around J. Ehrhardt from the University Medical Center Hamburg-Eppendorf.

6.2.3 Related Work

For further research in shape modeling it would be worthwhile to study the mathe-
matical relations of the Gaussian mixture model proposed here and the concept of
another generative statistical model without one-to-one correspondences as recently
proposed by Durrleman et al. [Durrleman 2009|. Similarly to the method presented
in this thesis, they interprete the shape observations as randomly generated by
the model and formulate the model computation in a maximum a posteriori
explanation. However in their approach, the similarity of shapes is measured by a
distance on currents that does not assume any type of point correspondences.

Concerning the segmentation algorithm, an interesting approach was proposed
by Raviv et al. |[Raviv 2009] which is also developed in a probabilistic framework.
An energy functional similar to the one presented in this thesis is optimized for the
implicitly represented segmentation contour. However, their approach is designed
for group-wise segmentation and chooses a generative method where the unknown
segmentation contours are interpreted as randomly generated by the shape prior.
As a novelty, the shape prior (described by an atlas) is integrated as an additional
unknown parameter which is inferred from the data set through an alternating opti-
mization of the functional. This idea could be extended by replacing the implicitly
represented atlas with an explicitly represented SSM which offers a physically inter-
pretable variability model. As the GGM-SSM already is computed in a probabilistic
formulation in a generative method, the extension of the segmentation algorithm
presented here to a generative segmentation algorithm should be quite direct.

6.2.4 Other

In chapter 4, the problems of the SSM performance measure 'specificity’ were illus-
trated. In general, a fair comparison of different SSM methods is difficult. First, the
quality of SSMs is strongly related to the quality of correspondence determination.
However, no gold standards for correspondences exist. Secondly, the comparison of
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SSMs based on different representations is a challenge as most metrics will inher-
ently favor one or the other SSM. In the case shown in this thesis, a surface-based
SSM was compared to the point-based GGM-SSM. As a volume overlap metric was
deemed to be more meaningful than point distances in the respective experiments,
a surface had to be approximated for the GGM-SSM. Naturally, the accuracy of the
binary representation then depended on the quality of the approximated surfaces
which means that the evaluation results have to be taken with a pinch of salt.

An interesting approach to tackle the problem of finding a correspondence-
independent benchmark has recently been proposed by Munsell et al. who introduce
a ground truth SSM [Munsell 2008| for 2D evaluation. The proposed benchmark
first generates a synthetic training data set by randomly sampling a given SSM that
defines a ground-truth shape space. The quality of a new SSM computed on the
training data set is evaluated by comparing its shape space against the ground-truth
shape space. An extension of the algorithm to 3D SSMs should be straightforward.
Furthermore, the approach could be extended to a general framework which also
allows an equitable comparison of SSMs based on different representations.
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APPENDIX A

Mathematical Background

A.1 Mathematical Prepositions

Singular Value Decomposition (SVD)

Rmxn

Any real matrix A € can be decomposed into

A=UxvT

with U being an orthogonal matrix U € R”™ ™ V7T heing the transpose of the
orthogonal matrix V' € R™ ™ and ¥ being a diagonal matrix ¥ € R™*" with the
singular values o; on the diagonal in descending order o1 > 02 > ... > Opin(mn)-
This singular values are all non-negative.
However, the number of non-zero values in ¥ is less or equal than min(m,n). For
the following let us assume n < m. By arranging the information given by the SVD
in the optimal way we can save a lot of disk space by reducing the matrix dimensions
to

A=U0xvt
with U € R™*" V € R™" and ¥ € R"™*™.
The singular values and associated pairs of singular vectors u and v of a matrix A
satisfy

A'Ui = O;U;
and

ATU,Z' = 0;V;.

In a geometric sense this means that for every rectangular matrix we can find
an orthogonal basis V' of which each ¢-th vector v; is mapped to a non-negative
multiplicative of the i-th vector of a orthogonal basis U (if n > m it is Av; = 0 for
i>m).

The singular values o; of a matrix A are the square roots of the eigenvalues of AT A.

Eigenvalue Decomposition Using the Jacobi Method

A real symmetric matrix A € R™™ has always real eigenvalues and orthogo-
nal eigenvectors. A can then be written as

A=USU"
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where S € R™ " is a diagonal matrix which contains the eigenvalues of A on its
diagonal, and U € R™ "™ is composed of the eigenvectors of A and is therefore
orthogonal. This formulation of A is called spectral or eigen decomposition.

In order to calculate the pseudoinverse A* for a symmetric matrix, we can use the
eigenvalue decomposition instead of the SVD as

AATA = vUsvTustutusu”
Uvsvtustsu®
vsvutuu”

Usut

= A

The Jacobi method is an iterative algorithm for finding all eigenpairs for a symmetric
matrix A € R™". For small matrices, the Jacobi method gives uniformly accurate
results comparable to the QR algorithm. The algorithm determines the sequence of
orthogonal matrices Uy, Us, ..., U,, and the sequence Sy, St, ... as follows:

So = A
Sy = ULSi_1U;.
The sequence Uy, Us, ..., U, is constructed in a way that

lim Sk =5= dz'ag()\l, )\2, ceey )\n)

k—o0

with A1, Ag, ..., A, being the eigenvalues of A.
The algorithm generates

S, =Uvrul | .Ul AULU,..U,.
As all Uy, are orthogonal, we can write
A=UU,..U, S, UrUr . UL,

For n — oo we obtain S,, = S, and hence U = U;U,...U,, represents the matrix of
eigenvectors of A which gives the eigenvalue decomposition

A=USU"T.

In practice, the algorithm is stopped when the off-diagonal elements of S are close
to zero.

The eigenvalue decomposition using the Jacobi method can also be applied
to the computation of the pseudo-inverse AT of the real symmetric matrix A.

At =Ustu”.

The computation of ST can be done directly by replacing every non-zero entry in S
with its reciprocal and then transposing the resulting matrix.
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A.2 The ICP as a specific case of the EM-ICP

We want to take a closer look at the computation of the expectation of the correspon-
dence probabilities as defined in equation (3.15). This formulation is numerically
unstable, so we reformulate it to

b _exp(=p(si, T xmy))
Hid S exp(—p(si, T xmy,))

1
= . Al
L+ kg exp(p(si, T xmy) — p(si, T my)) (A1)

If we assume homogeneous and isotropic Gaussian noise with the variance o2, equa-
tion (A.1) can be written as

E L !
H;j = ) _ - = .
o1+ 2kstj €TP <(S’_T*ma)Z;§SZ_T*m’“)2> 1+ sy Tigh
Hm 70 = 0 if (si—Txmj)* < (s;i —T xmy)?
a2—0 ik = —+00 Zf (Si — T*mj)2 > (Si — T*mk)2
We see that
. B 1 Zf (si—T*mj)2 <(Si—T*mk)2
Jim By = { 0 if (si—Txmy)? > (si — T xmy)’

so the expectation value for the correspondence between two points s; and m; is 1
if and only if m; is the closest point to s;. For all other points my, with k& # j the
expectation value of the correspondence becomes 0. This shows that the EM-ICP
algorithm behaves like the ICP algorithm for small variances.

A.3 Mathematical Derivations Chapter 3

Derivative of the Second Term for the Global Criterion

By optimizing the global criterion in equation (3.13) alternately with respect
to the operands in {Q,0}, we are able to determine all parameters we are
interested in. As some terms recur in the different optimizations, we will introduce
the following notations for simplification reasons:

The derivative of the second term of the global criterion is always performed in the
same manner. We will demonstrate the application of chain and product rule and
then name the resulting terms. The derivative of

Ny
~ sk = T+ g |)?
202
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with respect to one of the function’s parameters (let’s say x) is found as follows:

9¢(x)
=1
2~ log(u(x)
1 Ou(w)
~ wu(x) Oz
S ki = T x
u(z) = Z exp | — 552 .
7j=1
N,
du(x) Of(x)
= A2
e ;exp(f(x)) T (A2)
[[5ki — Tp * |
af({L') _ _2 (Ski — Tk * mkj)T(Ski — Tk * mkj)
Ox ox 202
_ (ki = Texmug)T Oswi — T > muy)
o? Ox
So we find the recurring derivative with
|81 =T x|
8§ . N exXp <_ - 227 = ) (Ski — Tk *mkj)T a(s;ﬂ — Tk *mkj)
ox = Zl:”ll exp (_ ||3ki—§lg;mkl”2> o2 Ox
By denoting the weight introduced by the correspondence probabilities with
exp <_ ||Ski—€1;*mkj||2)
Vijk = _
le\f:’”{ exp (_ |E% g;;mleQ)
the derivative is simply written as
N’UL
6 sk = T xmug)™ O(spi — Tho x mug) (A3)
Ox = Vi o2 Ox ’ '

Optimization with Respect to the Affine Matrix

We have to solve the derivative of the criterion C}(Qf,®) with respect to
Aj. Here, we use the derivative form shown in equation (A.2) and hence
differentiate f(z) with respect to Ay:
N N’UL
9C(@Qr,©)  _ —iZ’Y“ 0 lIski — Axmig
0Ay, "9 Ay, 202

I

i=1 j=1
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0 0
aA ||S'L]“ Akmz‘]H2 = 814 (skz Ak‘m;c_])T(s;m - Ak‘m;cj)
0
= DA, (Slgskz Skz Akmky (Akm;fj)Ts;fi - (Akm;cj)TAkm;cj)

0 / / ,
T / T / T AT !
OA, (55 s} — 815 Ay — S Axm + my; A Agmy ;).

Setting the derivative to zero, we find

0Ay,
N Npm Ni Np,

= Akzzfmﬂmkjmky ZZWUSMka
=1 j=1 =1 j=1

S AT =V, Y,V € R3*3,

Optimization with Respect to the Deformation Coefficients

For the derivative of the second term of the criterion, again the general derivative
described in equation (A.3) is employed:

N Npm,
aCk(Qk,(a) B @ —|—Zk2’yk(8kl Tk*mkj)T a(SkZ —Tk*mkj)
- )
8wkp )\12) p et J o2 8wkp

N Npm,

wkp k Skz Tk * mkj)T a(s;ﬂ — tk — Akmkj)

+ Z Z’Wﬂ] o2 aWkp .
=1 j=1

— m . n . 1 1
As we know my; = m; + Zq:l WrqVq; we differentiate

O(Sgi — g — Akmkj) 0 _ "
= i t, — A i E ;
Owpp Owyp (55 = s =1 “ratai)
= —Apvy;

and finally find

0CL(Qr0) wip 1 ch

=— — = i (ski — T % mp) T Apvp,.

8wkp )\12) 0_2 Zz:;jz::lfykm( ki kj) kUpj

Setting M = 0 leaves us with the following three components:
0_2 Nk N

— \T

0 = )\_%wkp - Z Z Vrij(Ski — th — Armng)” Agvp,
=1 j=1
Nk Nm

+ Z Wkq Z Z VkijVqs Ak Akvp]

=1 j=1
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The solution of this equation with respect to all wy,), is then done by switching to a
matrix notation.

A.4 Mathematical Derivations Chapter 5

In this section we present some mathematical rules which were used for the deriva-
tives of the energy terms in section 5.2.3.

A.4.1 Divergence Calculus
We denote div(V') as the divergence of the continuously differentiable vector field
V. The divergence in the 3D Euclidian space is defined as the scalar valued function
ov, ov, 0JV,
div(V') = -4 .
w(V) ox + dy + 0z

The result is invariant under orthogonal transformations.
For several derivative steps in section 5.2.3, we need the following product rule:

div(g-V)=g-div(V)+ < Vg,V > (A4)

or in integral form

/Qdiv(g-V):/Qg-dz’v(V)—l—/Q<Vg,V>. (A.5)

We denote Vg as the gradient of the scalar field g. Vg is a vector field with each
vector pointing in the direction of the steepest slope. The steeper the slope, the
longer the associated vector.

Vg =
9
OTn

We also know that the integral of the divergence of a vector field equals the projec-
tion of that field on the normal vectors n at the edge (the integral of the surface
boundary):

/div(g-V):/ <g-V ,n>dn.
Q o9
This means that
/g~dz’v(V)+/<Vg,V>:/ <g-V,n>dn. (A.6)
Q Q o9

Besides, assuming that there are no objects outside the image, we know that
faﬂ < g-V ,n>dn =0 which leaves us in that cases with

/g'div(V)z—/<Vg,V>.
Q Q
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A.4.2 Helpful Derivations

This derivation is used for the differentiation of the shape prior term in section 5.2.3.

lz+ny| = (w+ny)2
= !w\2+2nxTy+n2!y\2

2
= |z +277—+772 ]
|z

= [zl +?7W +0(n*))

T
= |z| +nm +0(n?). (A7)

The transfer from line 3 to line 4 makes use of a binomial series.
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