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par

Sha Zhu

A Bayesian Approach for Inverse
Problems in Synthetic Aperture Radar

Imaging

Soutenue le 23 Oct. 2012 devant la Commission d’examen:

Mm. Hong Sun (Rapporteur)
M. Emmanuel Trouve (Rapporteur)
M. Ken Sauer (Rapporteur)
M. Ali Mohammad-Djafari (Directeur de thèse)
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Une approche bayésienne pour les problèmes inverses en imagerie

Radar à synthèse d’ouverture

Résumé

L’imagerie Radar à Synthèse d’Ouverture (RSO) est une technique bien connue dans les
domaines de télédétection, de surveillance aérienne, de géologie et de cartographie. Obtenir
des images de haute résolution malgré la présence de bruit, tout en prenant en compte les
caractéristiques des cibles dans la scène observée, les différents incertitudes de mesure et les
erreurs resultantes de la modélisation, devient un axe de recherche très important.

Les méthodes classiques, souvent fondées sur i) la modélisation simplifiée de la scène ; ii)
la linéarisation de la modélisation directe (relations mathématiques liant les signaux reçus,
les signaux transmis et les cibles) simplifiée ; et iii) l’utilisation de méthodes d’inversion sim-
plifiées comme la Transformée de Fourier Inverse (TFI) rapide, produisent des images avec une
résolution spatiale faible, peu robustes au bruit et peu quantifiables (effets des lobes secondaires
et bruit du speckle).

Dans cette thèse, nous proposons d’utiliser une approche bayésienne pour l’inversion. Elle
permettrais de surmonter les inconvénients mentionnés des méthodes classiques, afin d’obtenir
des images stables de haute résolution ainsi qu’une estimation plus précise des paramètres liés
à la reconnaissance de cibles se trouvant dans la scène observée.

L’approche proposée est destinée aux problèmes inverses de l’imagerie RSO mono-, bi-, et
multi- statique ainsi que l’imagerie des cibles à micromouvement. Les a priori appropriées de
modélisation permettant d’améliorer les caractéristiques des cibles pour des scènes de diverses
natures seront présentées. Des méthodes d’estimation rapides et efficaces utilistant des a priori

simples ou hiérarchiques seront développées. Le problème de l’estimation des hyperparameters
sera également traité dans le cadre bayésin. Les résultats relatifs aux données synthétiques,
expérimentales et réelles démontrent l’efficacité de l’approche proposée.

Mots-clefs : inférence bayésienne, problèmes inverses, imagerie RSO, estimation de
paramètres, micromouvement.

Abstract

Synthetic Aperture Radar (SAR) imaging is a well-known technique in the domain of
remote sensing, aerospace surveillance, geography and mapping. To obtain images of high
resolution under noise, taking into account of the characteristics of targets in the observed
scene, the different uncertainties of measure and the modeling errors becomes very important.

Conventional imaging methods are based on i) over-simplified scene models, ii) a simplified
linear forward modeling (mathematical relations between the transmitted signals, the received
signals and the targets) and iii) using a very simplified Inverse Fast Fourier Transform (IFFT)
to do the inversion, resulting in low resolution and noisy images with unsuppressed speckles
and high side lobe artifacts.

In this thesis, we propose to use a Bayesian approach to SAR imaging, which overcomes
many drawbacks of classical methods and brings higher resolution, more stable images and
more accurate parameter estimation for target recognition.

The proposed unifying approach is used for inverse problems in Mono-, Bi- and Multi-static
SAR imaging, as well as for micromotion target imaging. Appropriate priors for modeling dif-
ferent target scenes in terms of target features enhancement during imaging are proposed.
Fast and effective estimation methods with simple and hierarchical priors are developed. The
problem of hyperparameter estimation is also handled in this Bayesian approach framework.
Results on both synthetic and real data demonstrate the effectiveness of the proposed ap-
proach.

Keywords : Bayesian inference, inverse problems, SAR imaging, parameter estimation, mi-
cromotion.
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ρr range resolution
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t
′
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Ω integration area of reflected signals
A

′

scale factor accounting for propagation attenuation
up radar line of sight
δ(·) δ function
rθ(up) Radon transform of f(x, y) along the radar line of light θ
g(t, θ) received signal at angle θ
S(ω) spectra of the transmitted signals
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r = (x, y)T space position vector
k = (kx, ky) wavenumber vector
θtr angle of radar line of light for transmitter
θcr angle of radar line of light for receiver
τtc(x, y, θtc) time delay between transmitter and target
τcr(x, y, θcr) time delay between target and receiver

G(ω, θtc, θcr)
the spectra of the received signals at transmitted angle θtc and
received angle θcr

ϑ
parameter vector to be estimated, containing target position,
amplitude of micromotion, rotation frequency, etc.

fm micromotion frequency
rm micromotion range
ϕ micromotion phase
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1
Introduction

1.1 Problem Motivation

1.1.1 Inverse problems and main characteristics

The way to observe the world, in most cases, is from reasons to results, i.e., from
sources to observation. In mathematics, this kind of problem is named ”Forward prob-
lem” and the relation between the observations and the sources is called ”Forward
modeling”. If we denote the source as f and the observable quantity as g, then we can
write:

g = Hf (1.1)

where H represents the Forward operator.

Note by F the space of all possible f ∈ F and g ∈ G, in such a way that G is the
image of the operator H. Then we can discuss in details about Forward problems and
Inverse problems and their corresponding difficulties via the notions of well-posedness
and ill-posedness of a problem.

According to the definitions of well-posed mathematical problems proposed by
French Mathematician J. Hadamard [Had23], a problem is called well-posed if the fol-
lowing three conditions are satisfied: existence, uniqueness and stability.

Forward problems in physics, by construction, are well posed except the case of
chaotic or unstable systems. As illustrated in Figure 1.1, for a non-chaotic and stable
system, the solution forcibly:

– exists (∀ f ∈ F , ∃ g = Hf.),
– is unique (∀ f ∈ F , ∃ only one g = Hf.)
– and stable (∀ f1 and f2 such that ‖∆f‖22 = ‖f2 − f1‖22 < ǫ, ∃ g1 = Hf1, g2 =
Hf2, such that ‖∆g‖22 = ‖g2 − g1‖22 < ς, and when ǫ → 0, then ς → 0).
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f

g
H

f1 f2

g1
g2

o

Figure 1.1: Forward problem: compute the model response g ∈ G (data) given a physical
Forward model H. Forward problems are in general well-posed.

F

G

H
-1
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Ker{H}

f1 f2

g1
g2

o

g* No solution for this

g1 and  g2 are very close 

Possible solutions

f1 and  f2 are very far 

if exists

Figure 1.2: Inverse problem: infer about the physical model from the data. When the
forward operator H is given, the inverse problem is to find a solution for a given data
g. Inverse problems are in general ill-posed.

However, Inverse problems, in general, are ill-posed [LC91, MD09a, Idi08, Wan07].
As illustrated in Figure 1.2, we can see that:

– The given data g may not belong to the range of the forward operator, so a solution
for this data may not exist: in Figure 1.2, data g∗ has not a solution;

– The solution may not be unique: all the f ∈ Ker{H} have the same data point 0.
So,

if g1 has a solution f1, all f = f1 + ker{H} are also solutions;
if Ker{H} = 0, then the solution is unique;

– The solution may not be stable in the sense that the inverse operator when exists
may not be continuous: two very close data g1 and g2 may result in two very far
solutions f1 and f2.

To further explain this, we take a general imaging system as an example. We rep-
resent the errors (including measurement noise and modeling errors) as ǫ which usually
comes from inner thermal noise and environmental noise [Sko70], then we establish a
forward and an inverse model, respectively:
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– Forward problem: from a given target scene f , the forward model H and the
errors ǫ, we get the echo data g, as illustrated in Figure 1.3. For a linear time
invariant system, this becomes a typical convolution problem;

 

Figure 1.3: Forward model.

– Inverse problem: from observed data g and the forward model H (unknown

or partly known), we get an estimate f̂ of the target scene f , as illustrated in
Figure 1.4:

inversiong
f
Ù

H g
Ù

Figure 1.4: Inverse and estimation of the forward model output.

When f̂ is computed, we can also estimate ĝ = Hf̂ .

When the problem is ill-posed, a strict inverse operator H−1 may not exist or when
exists may not be unique or when exists and is unique, it may be too sensitive to small
changes in the data ∆g (errors or noise).

In that case
‖∆g‖2

2

‖g‖2
2

and
‖∆f ‖2

2

‖f ‖2
2

are related by the condition number cond(H) of the

operator H . If the operator H is ill-posed (or ill-conditioned in the finite dimensional
case), then cond(H) may be large and small changes in the data may result in huge
changes in the solution. Using the notation of this figure, ‖∆g‖22 = ‖g − ĝ‖22 may be

very small but ‖∆f‖22 = ‖f − f̂‖22 may be very large.

1.1.2 General factors of Synthetic Aperture Radar

Radar is acronym for RAdio Detection And Ranging, which is an active microwave
imaging system using electromagnetic waves to determine the range, altitude, direction,
or speed of interested targets. For its capability of observation and detection under
long-distance, whole orientation, all weather and all day conditions, radar plays a very
important role in military ground space surveillance and earth observation.

In 1951, Wiley firstly found that by making use of the Doppler shift of received
echo signals, the resolution of side-looking radar was improved [Sko01]. This signifi-
cant discovery led to the birth of Synthetic Aperture Radar (SAR) [Kov76]. The most
noticeable advantage of SAR is the capability of generating high resolution images, in
both two directions of range (the direction of wave propagation) and cross-range (or
named azimuth, the direction of senor flight path). Because SAR imageries contain fine
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structures of the target scene and provide abundant information of underlying features
of interest, high resolution SAR images are vital to the performances of Auto Target
Recognition (ATR) [TCYS12, LDQL11, HZF+11, DFW+10, LLZ10, ZXT05].

Generally speaking, the frequency of radar transmitted pulses, the beam pattern
of radar antenna, the geometry of SAR system and the relative motion between radar
and target compose the most important factors of SAR [Whi05]. By selecting different
frequency band of radar, radar wave propagation and reflection characteristics of target
will be changed; By controlling the direction of antenna beam, the illumination area
as well as the integration angle of imaging will be different; By constituting different
location positions of radar transmitter and receiver(s), not only the orientation of target
scattering but also the imaging area will be changed; Finally, the relative motion between
target and sensor affects the accuracy of quadratic phase compensation and thus brings
difficulties in the case of its complicated form.

SAR was early designed as Mono-static, where radar receiver and transmitter are
collocated. However, as a high power transmitter is easily to be detected by counter,
Bi- and Multi-static SAR systems become a developing trend [Sul04, WG91]. Especially
with recent development of space-borne techniques, satellite distributed SAR presents
important potentials: it takes advantage of the passive multi radar in observation, broad-
ening the observation range, improving its resolution and decreasing the probability of
detection and recognition.

The relative motion between target and sensor is another concerned issue. For most
stationary scenes, the motion of the sensor platform is known thus it can be compensated
completely. Nevertheless, for moving targets, especially for non-corporative targets with
complex motion, the imaging process becomes intractable. Thus, SAR Ground Moving
Target Indication (SAR-GMTI) attracts great research interests. An expected radar
can undertake the compound task to monitor a ground area, indicate and track moving
targets and finally produce high resolution imageries of moving targets for classifica-
tion. However, unlike maneuvering artificial targets, the micromotion (such as rotation,
vibration, sinusoidal motion, etc.) target imaging becomes extremely difficult.

Many researches have been conducted to improve the resolution of SAR in both
hardware development and data processing techniques. The items and the subjects we
present are between the most important parts of the research on radar and SAR imaging
in many French, European, American and other international research institutions, such
as ONERA in France, European Aerospace Agency and NASA in USA.

In military field, SAR has been widely applied in air traffic control, nautical radars to
locate landmarks and other ships, aircraft anti-collision systems, ocean-surveillance sys-
tems, outer-space surveillance systems, meteorological precipitation monitoring, altime-
try and flight-control systems, target-locating systems and ground-penetrating radar
geological observations.

In civil field, SAR is also considered as a mature technique. It is widely used for
remote sensing for environmental earth observation, climate prediction and interfero-
metrical analysis. So from the social point of view, any real methodological and techno-
logical progress will have great impact for environmental as well as for economical cost
reduction aspects in environmental observation and surveys.
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1.1.3 SAR principle

A typical process of radar scattering can be described as: radar mounted on a plat-
form (airplane or satellite) sends electromagnetic waves to ground targets and collects
radar pulses with a receiving antenna. The received signals are called radar echoes,
which contain abundant information about the target scattering characteristics, the
spatial position, etc.

Resolution and synthetic aperture technique

The spatial resolution is defined as the least distance for discriminating two close
targets, which in SAR imagery can be divided into two directions: range resolution
and azimuth resolution. Generally they are defined as the width of pulse response at
half-power points for a point target of two directions, respectively.

SAR users attempt to obtain high resolution images. As real aperture radar, on
range direction SAR obtain High Range Resolution Profile (HRRP) by transmitting
high frequency pulses and followed by pulse compression process; However, on azimuth
direction, SAR is greatly different from conventional radar: it obtains a high azimuth
resolution by sending coherently pulses and accumulating them along its flight path.
By using quadratic phase compensation, the amplitudes and phases of backscattering
echoes become coherent (called full phase coherent), which are received by antenna co-
herently. In this way, an equivalent large antenna (synthetic aperture) is formed, as
illustrated in Figure 1.5.

La

SAR Antenna

Flight Path

Ground TrackRadar Beam

Ground Swath

Incident Angle

Azimuth

in 

Range

Depression Angle

Figure 1.5: SAR principle.
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– Range resolution
The range resolution of SAR (after matched filtering) is [CM06].

ρr =
c

2B sin θin
(1.2)

where B is the bandwidth of transmitted pulses, c is the velocity of propagation of
wave and θin is the incident angle of radar waves. The complementary angle of θin
is named as the depression angle. Normally, under far filed condition, where the
distance between radar and target is very far, the depression angle can be omitted.
In this case, the range resolution can be approximated as ρr =

c
2B

.

– Azimuth resolution
The theoretical azimuth resolution of SAR is

ρa =
La

2
(1.3)

where La is the length of antenna in azimuth direction. Thus the azimuth resolu-
tion doesn’t change with the distance of radar and the target.

As we can see, by increasing the bandwidth of the transmitted signal or the accu-
mulated angle, SAR resolution can be improved. However, this way is limited by the
hardware complexity and real observation conditions. Therefore, how to improve SAR
resolution with limited bandwidth and angle becomes very important.

SAR working mode

In the previous analysis, we have seen that SAR uses the relative movement between
radar antenna and target to form a huge synthetic aperture. Along the flight path, at
each point of observation, radar beam formed in the direction of the antenna, emanates
an area on the ground and collects the reflected signals. Along the direction of the
movement of radar platform, there comes an illuminating strip on the ground which is
called the ground swath.

Depending on different shapes of the ground swath, SAR system can be mainly
divided into two distinct working modes: Stripmap and Spotlight [Sul04] 1 as illustrated
in Figure 1.6:

1. In stripmap mode SAR (StripSAR), the squint angle between the beam direc-
tion and the flight path (assuming as a line) keeps the same. A stripmap on the
ground which is parallel to the flight path can be observed continuously. StripSAR
is mainly used for large area imaging, which doesn’t require a very high resolution.

2. In spotlight mode SAR (SpotSAR), however, at each observation point of the
synthetic aperture, transmitter antenna is adjusted to the same region so that the
antenna is steered to illuminate a single spot of terrain continuously. Comparing
to StripSAR, SpotSAR has a longer illumination time towards the target scene
and obtain an increased azimuth resolution.

In this thesis, we consider SpotSAR for its capability of high resolution.

1. There also exists another mode of ScanSAR which is not included in our discussion.
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a) StripSAR b) SpotSAR

Figure 1.6: Strip and Spot SAR.

SAR geometry

When radar transmitter and receiver are located in the same place, this geometry is
named as Mono-static.

Instead, when radar transmitter and the receiver are located separately, this geome-
try is named as Bi-static. When there are more than one receivers and all the distances
between antennas are pretty larger than themselves dimensions, this is called Multi-
static. Obviously, a Multi-static radar can be decomposed into a set of several (the
number equals that of receivers) Bi-static transmitter-receiver pairs.

1.1.4 Link to inverse problems

As we have discussed above, the forward model of the SAR system is then to generate
echo signal g for the target with scattering coefficients f based on the forward operator
H of the system under some observation noise ǫ as shown in Figure 1.3. g, f and H are
all complex. Then, the problem of SAR imaging is to recover the scattering coefficients
f of the target from the echo g, which is usually an ill-posed inverse problem. This work
concerns such an inverse problem of SAR imaging to recover the scattering coefficients
f from the partial noisy observation g under a Bayesian framework.
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1.2 State of the Art

1.2.1 A historical overview of inverse problems

Inverse problems arise from indirect observations of interests, which were firstly
studied in mathematics and now have been widely applied for earth physics, life science,
finance science and computer science [MD09a].

The historical overview of inverse problems can be mainly divided into three stages:

1. 1902-1960. Hadamard firstly proposed the notions of well-posedness and ill-
posedness [Had23]. In this stage, for the reason lacking of efficient tools of in-
version and proper applications, research was mainly focusing on theoretical level
of mathematics.

2. 1960s-1980s. Propelled by the urgent requirements of applications in engineering
fields as graphics, remote sensing, medical science, inverse problems started being
studied broadly. The typical applications such as Computed Tomography (CT) for
medical imaging, parameters estimation in remote sensing and signal reconstruc-
tion in optics were developed. Particularly the regularization theory proposed by
Tikhonov marked a breakthrough in theory [TAJ77]. From then on, regularization
methods became being treated as the main tool for inverse problems.

3. 1980s-now. Regularization methods and their corresponding optimization comput-
ing algorithms were widely used. Research in recent thirty years mainly focused
on solutions to discrete ill-posed problems and all the optimization methods such
as gradient methods [FM99, BC95, Wu01], conjugate gradient methods [GN92],
singular value decomposition (SVD) methods [Cha82], support vector machine
(SVM) methods [VGS96, SYCS10], etc. Bayesian methods recently are more high-
lighted [MDZDF10, MD12, FRB+03, ASB03, XXZ+11, HHM12, FN05, LCW04,
TB03, MD03, SLM02, QD01, Lut90, SSD99]. A link between Maximum A Poste-
riori (MAP) estimation and the regularization methods helped the introduction of
the Bayesian methods to be well accepted in applied mathematics and engineering
communities. At this period, it combines the knowledge of computing science,
applied mathematics and statistics, being considered as one of the most exciting
cross-disciplinaries.

1.2.2 An overview of conventional SAR imaging algorithms

SAR echo generation can be represented by firstly the product of the target scat-
tering coefficients (reflectivity) and antenna pattern in range direction, and then the
convolution with two pulse response functions. The objective of SAR imaging is to
reconstruct the target scattering coefficients from echo data. SAR echoes can be con-
sidered as the output of a two dimensional linear system. The input of the system is
target reflectivity.

There have been a large number of algorithms proposed for SAR imaging. These
algorithms process either in the time domain, i.e., Polar Format Algorithms (PFA) and
Back-Projection Algorithm (BPA), or in the frequency domain, i.e., Range-Doppler
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algorithm (RDA) and Chirp-Scaling Algorithm (CSA).

RDA [BXW05, Bam92] and CSA [CGM95b, CW05, RRB+94] involve only the Fast
Fourier Transform (FFT) and complex multiplication. Thus they have advantages of
fast processing, high efficiency and easiness for implementation in the frequency do-
main. However, FFT-based methods lead to a limited resolution which is decided by
the bandwidth of transmitter and the integration angle. In corresponding to Fourier’s
point of view, SAR imaging system is a band-pass filter and the system response func-
tion is assigned to be zero when out of the cut-off frequency. The comparatively large
approximation processing in frequency domain decreases the accuracy of imaging and
results in serious side lobe artifacts [PEPC10].

In order to overcome the drawbacks of performing FFT directly, PFA was devel-
oped [CGM95b]. PFA can be considered as an application of the projection-slice theo-
rem and normally used in SpotSAR. It demodulates the received echoes with reference
to the relative reference center (in general is the center of the scene), then saves the
demodulated data in the frequency domain in the polar coordinate format, followed by
the 2-D non-uniform interpolation processing and finally performs the 2D Inverse FFT
(IFFT) on the interpolation results to get the focused SAR image. PFA well solves the
problem of spectrum aliasing. However, it has two drawbacks: first of all, 2D interpola-
tion processing leads to the comparatively complex implementation, large computation
and low efficiency; secondly, the assumption of plane wave limits its use only for far
distance and small area imaging.

Another important projection method is BPA [DFW+10, Yeg99, MR96, MML99,
BB00, UHS03, CHS06]. BPA has no limitations on integration angle or flight path, so
it can be used in Bi- and Multi-static SAR imaging [HBCW01].

1.2.3 An overview of improving SAR resolution techniques

The recognition performance is mainly determined by the quality of information
provided in radar images.

However, during the process of image acquisition, due to the effects of the motion blur
(motion of targets), the noise introduced by imaging process and the spectrum overlap
of the image caused by the sub-sampling, the resolution of the resulting SAR images
is decreased. In addition, the SAR images suffer from so called speckle noise lying in
most of the coherent imaging systems. In particular, the received echo is affected by the
random phase fluctuation within the resolution cell, which also introduce the observation
noise.

Based on SAR principle, SAR resolution can be improved by the increased band-
width or synthetic aperture. However, this way is limited by the hardware cost and the
real condition. In response to the contradictions, signal processing technique becomes
an alternative way.

There are mainly two categories of methods to improve SAR resolution [SK10c]:

1. Methods by compensating non-ideal factors to reach theoretical resolu-
tion
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A nature thinking to reach the theoretical value of resolution is to compensate non
coherent signals to realize the coherent integration at different scattering points.
The non coherent signals are due to all kinds of non-ideal factors which include
complex relative motion [SK10c, SK10a, XWB05], phase center drift of anten-
nas [MMJ07, XPX04, JK08], system random noise, inhomogeneous propagating
medium [Bel08, JZ07, DS08] and other noises.

All these methods are trying to recover image’s spectrum to the cut-off frequency
corresponding to the diffraction limit frequency. However, these methods cause
information loss beyond the cut-off frequency. The effects as low resolution, side
lobe artifacts and speckles of SAR images are inevitable.

2. Methods by spectral estimation, bandwidth extrapolation and regular-
ization to surpass theoretical resolution

It is essential a parameters estimation problem for SAR imaging that aims to es-
timate scattering coefficients of targets. There are in general two categories of
parameter estimations approaches: parametric and non-parametric. After neces-
sary pre-processing, non-parametric methods treat the SAR imaging as to estimate
the power spectral density of signal. Classical SAR imaging methods fall into the
family of the non-parametric method. Comparing to non-parametric methods,
parametric methods parameterize the imaging model and try to estimate these
model parameters which usually provide higher resolution.

Spectral estimation method

Spectral estimation method is one of the most conventional superresolution meth-
ods [ZXQ+10]. Parametric spectral estimation method normally bring high accu-
racy. However, there are two drawbacks: i) The errors of judging may affect the
result seriously as the performance depends on the matching degree. However, it
is difficult to judge the order of the model; ii) Large computation and the difficulty
to search in global also limit its application [PEPC10].

Band Width Extrapolation (BWE) method

BWE method is another important method which does not assume the parametric
model of radar target echo, instead, they use the observed data to infer/estimate
non-observed frequency band or aperture, realizing virtual bandwidth and/or aper-
ture extension. Comparing to spectral estimation method, BWE method is non-
parametric thus achieves better robustness. However, there exists the limitation
of the extrapolated bandwidth and/or aperture, which is normally considered as
two times of the original and high SNR is also needed.

Regularization method

Regularization method originates from the solution for inverse problems. As
SAR imaging problem can be formulated as an inverse problem which is ill-
posed [CB09, Shk04b, Shk04a, Shk10a], the prior knowledge is required to reg-
ularize the results [Sko08, Ric05, JwE+96, Sou99].

Regularization methods often use a linear parameter estimation model, or dif-
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ferential equations with variational constraints. The quadratic function of the
unknown quantities leads to Tikhonov regularization [TAJ77, TA63], which fi-
nally involves a computationally straightforward optimization problem. However,
useful features in the resulting imagery such as edges are badly suppressed. To
address these drawbacks, [ÇK01, Çet01, SÇMS09] proposed a non-quadratic reg-
ularization method to SAR imaging in terms of improving resolution. With the
proposed method, target features can be enhanced including point features (such
as positions of point scatters) and region features (such as shapes of targets).
However, how to determine regularized parameters is still an open problem. An
efficient way to get the optimal and automatically estimated model parameters is
herein needed.

Compressive Sensing (CS) method

Sparse signal representation and CS are emerging techniques for improving SAR
resolution [Shk04b, Shk04a, RT07, VV09, BMK10b]. The sparsity in SAR images
or in the frequency domain are explored to get the sparse representation of the
signal. The computation load of parameter estimation can be herein significantly
decreased [Don92, DH01, Don06b, Don06a, DET06, CRT06b, CRT06a, CRT08].
In addition, by using CS for SAR imaging, the resolution can be improved with less
data [OC12, WLJW11, SÇMS11, ZXQ+10, TALDM10, Shk10a, Shk10b, VcFW08,
YYSH09]. However, all these methods depend on the accuracy of the model and
require high SNR.

Over current research, by exploiting appropriate prior models as well as utilizing
prior information has become a new develop trend to improve SAR resolution. A
novel approach is needed for combining the information of observed data and the
prior knowledge of the target scene and the noise, to bring a distinct solution to
SAR imaging.

1.2.4 Challenges for SAR imaging

Taking an overview of the current research on SAR imaging, we can see that the
technology has been advanced significantly but the problem still has not been solved
radically.

Conventional SAR imaging methods are usually based on:

1. Point scattering model as target scene modeling;

2. Simplified linear forward model linking the received signal to the target reflectivity
and the transmitted radar signal;

3. The use of a very simplified way for inversion such as Inverse Fast Fourier Trans-
form (IFFT).

These three drawbacks result in low resolution, noisy, unstable and not quantitatively
useable images, with unsuppressed speckles and high side lobe artifacts.

In practice, complicated target scenes, low SNR (ratio between signal power and
noise power), complex relative motion between radar and target and non-ideal sensing

31



1.3.1 - Bayesian inference

ways, making the existed SAR imaging methods be seriously challenged.

1. Complicated target scene

Besides point targets, more complicated target scenes include extended targets,
multi targets, or multi target features should be considered. Complicated target
scenes might be continuous mountains, large populated areas, or shores and lakes,
which not only make imaging very difficult but also make feature extraction and
target recognition even harder.

2. Low SNR in practice

In practice, the long distance between SAR and the target results in a low SNR of
observed signals. For example, echoes of the satellite-borne SAR targets are usu-
ally submerged in background clutters, which leads to the decrease of the image
resolution or even blur.

3. Complex relative motion between radar and target

SAR uses relative motion between target-radar based on coherent integration to
obtain high resolution in azimuth dimension. However, the complex relative mo-
tion between them impedes the coherent integration.

4. Non-ideal sensing ways

Conventional imaging methods are based on an ideal sensing way, which do uni-
form sampling in spatial-, time- and frequency-domains. However, in terms of
realizing certain objective (for example to decrease the data sampling rate and the
data volume), the non-ideal sensing way becomes a new trend of radar sensing.
The most representative ways include sparse spatial frequency sampling, random
sampling, CS, etc.

Hence, challenges to conventional SAR imaging methods demand for new solutions.
It is necessary to study the SAR imaging problem with a distinct inversion framework
i) to fully exploit and use the prior information of target scene; ii) to establish the
appropriate physical model as well as the mathematical model and iii) to design the
inversion as well as the corresponding fast computation algorithms, so as to obtain a
satisfying solution.

1.3 Bayesian Inference for SAR Imaging

1.3.1 Bayesian inference

Comparing to the deterministic regularization methods which give only regularized
solutions but do not handle the error and uncertainties, the Bayesian inference is a
natural approach to handle the inverse problems by providing not only a regularized
solution but also its remaining uncertainties by taking into account of the uncertain-
ties and errors due to the measurement system and additional noise [MD06a, MD09a,
PEPC10, FBR+00].
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The basic idea of Bayesian approach is to combine the information in a probabilistic
way, which comes from the forward model H , the observed data through the likelihood
p(g|f) and the prior knowledge through the prior probability law p(f). The Bayesian
rule then combines these two terms to obtain the posterior law p(f |g) from which we
can infer the unknown f .

Thus by defining uncertainties by probability criteria, it provides a more efficient tool
to automatically obtain the optimal model parameter and makes the estimation problem
to be solved more reasonably. By jointly using Bayesian and regularization techniques
for incorporating the prior knowledge, the resolution can be effectively improved [FBS02,
DeG98, PEPC10, GBM94, GBM94].

1.3.2 Advantages of Bayesian inference for SAR imaging

Generally speaking, under the Bayesian inference framework, the problem of SAR
imaging can benefit in the following three aspects:

– Accounting for the uncertainties in the forward model through the likelihood
p(g|f);

– Accounting for prior knowledge about the unknown scene f through p(f);
– Combining the information contents of p(g|f) and p(f) through the Bayes rule.

Bayesian methods based on appropriate prior modeling, can effectively compensate
for the lack of complete information in the data about the unknowns, which usually
gives a satisfactory solution [MD03, SLM02, VV09].

1. Regularization method can get a stable solution of the inverse problem through
regularization constraints, but the difficulty in determining the regularization pa-
rameter affects the inversion performance. Interpreting the regularization methods
as the MAP estimation can give more tools for the determination of the regular-
ization terms and parameters. Bayesian framework provides the flexility for differ-
ent priors, starting from simple separable Gaussian models to Markovian and to
the very sophisticated hierarchical models. Through appropriate prior modeling,
high-resolution SAR images of the target and meanwhile the enhancement of the
multiple features of target features can be achieved.

2. Radar target scattering in high frequencies can be well approximated as a sum of
several individual scatterers, which provides an important basis for using sparse
signal representation. Compared with traditional CS SAR imaging methods, the
advantages of the Bayesian CS (BCS) approach is, being able to model noise and
error, so a more sparse representation of the target can be obtained. BCS ap-
proach can also be used for moving target imaging, realizing the joint estimation
of motion and scattering parameters.

[MD12] proposed a Bayesian approach with prior laws enforcing sparsity for in-
verse problems and source separation, with emphasis on sparsity analysis. In
[ZMDW+12], we proposed a signal representation approach for micromotion tar-
get imaging based on a Bayesian framework. Our proposed research, to a certain
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degree, has some in common with finding solutions to inverse problems by employ-
ing CS in imaging. Sparse recovery algorithm, the core of CS, can be viewed as a
solution to the ill-posed CS problem by using sparse prior information. However,
the objective of our proposed research is to establish a unifying framework for
exploiting various prior information including sparse priors.

3. The conventional SAR imaging method is sensitive to noise. The Bayesian ap-
proach can not only estimate the unknown target, but also jointly estimate the
noise. Thus it has the characteristic of being not sensitive to model noise. There-
fore, it is stable in conditions of low SNR compared to conventional imaging meth-
ods, suppressing the noise and background clutter while imaging.

[Jin12] exploited a heavy-tailed t distribution for data noise modeling, with a cer-
tain degree of robustness. [XXZ+11] studied the Bayesian estimation problem
for Inverse SAR (ISAR) imaging. [AA10] proposed two Bayesian multiscale ap-
proaches in terms of suppressing speckles during SAR imaging. A generalized
autogressive (conditional heteroscedasticity) model was developed.

In summary, comparing with the limitations of existing SAR imaging theory and
technical bottlenecks, Bayesian approach provides a fundamentally different way to ad-
dress the new challenges.

1.3.3 Main steps of Bayesian inference for SAR imaging

To solve the problem of SAR imaging, the mains steps of Bayesian approach in-
clude: the forward modeling, the prior modeling, obtaining the posterior expression
and an estimation criterion, and finally proposing appropriate Bayesian computation
algorithms.

Thus, how to establish the forward model for different situations, how to assign ap-
propriate priors for target scenes and how to implement Bayesian computation, become
very important for Bayesian approach. These issues are going to be addressed in this
thesis.

1.4 Organization and Main Contributions of the Thesis

1.4.1 Organization

This thesis is organized as following:

Part I, including Chapter 2 and Chapter 3, presents the different forward
modeling problems as well as the classical and proposed inversion methods.

In Chapter 2 we establish the forward model of SAR imaging. Firstly, based on some
assumptions of radar scattering, we present target modeling. Then, we derive SAR echo
model based on a tomographic SpotSAR model. For different geometries of Mono-, Bi-
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and Multi- static SAR, a general linear inverse problem focusing on Fourier Synthesis
(FS) is presented.

In Chapter 3, we study the Bayesian approach to inverse problems, with emphasis on
assigning prior models and hyperparameter estimation. Firstly, we study two classes of
priors for modeling the unknown complex target reflectivity scene: separable priors and
Markovian priors, in corresponding to point targets and homogeneous extended targets
with edges, respectively. Then we consider the hierarchial models with hidden variables.
For practical reasons we also need to consider the estimation of the hyperparameters.
In summary we consider different criteria and different corresponding approximations
and computational algorithms, such as MAP, Joint MAP (JMAP), Marginalization and
Variational Bayesian Approximation (VBA) methods.

Part II, including chapter 4 and chapter 5, presents the proposed ap-
proach for inverse problems in different SAR imaging systems.

In Chapter 4, we consider Mono- and Bi-static SAR imaging and present the in-
version results with proposed Bayesian methods. In particular, two typical SAR target
scenes of separable point targets and homogeneous extended targets, are assigned with
appropriate priors studied in Chapter 3. We analyze the effect of different priors on SAR
image reconstruction performance. Then, we apply our proposed estimation methods
to different data sets. Numerical simulation and experimental results demonstrate the
efficiency of the proposed method.

In Chapter 5, we consider Multi-static SAR imaging where we have more than one
data sets. We study the problem with application in distributed satellite SAR. In or-
der to cope with the reconstruction problem with multi data sets of multi-frequencies
and multi-static, we propose three different fusion schemes. Through comparison, the
proposed Bayesian joint fusion and reconstruction method has the best performance,
realizing inversion based on multi data sets from the same observed target scene. Com-
paring to classical data-level fusion methods, the proposed Bayesian fusion method takes
the advantage of incorporating the prior information of the original target.

Part III as Chapter 6, addresses the problem of SAR micromotion target
imaging.

In chapter 6, we consider the problem of micromotion target imaging. Instead of
dealing with the tough issue of the ambiguity of radar, we formulate the problem as
a parameter estimation problem. CS technique is used to find the most sparse rep-
resentation of the unknown target. We propose an efficient Bayesian approach with
sparsity-enforcing priors. A VBA approach is proposed for the hierarchical estimation
of the unknowns, the hidden variables and the hyperparameters of the problem.

Finally, in Chapter 7, we draw conclusions of our work and point out the perspectives.
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1.4.2 Main contributions

In this thesis, we try to overcome the drawbacks of conventional SAR imaging meth-
ods by:

1. More various target reflectivity modeling;

2. More realistic forward modeling counting for uncertainties;

3. More efficient inversion methods based on regularization and the Bayesian infer-
ence approach.

The combination of these three ingredients result in high-resolution, more stable to
noise and more precise images as well as more accurate parameter estimation. The final
aim is to improve the performance for various tasks of SAR-ATR and SAR-GMTI. The
contributions of this thesis mainly include:

1. We systematically elaborated a mathematical forward model of SAR imaging with
different geometries and target motions.

a) We analyzed the characteristics of two typical radar target scenes.

b) We derived the SAR echo model for Mono-, Bi- and Multi-static SAR.

c) We established a unifying Fourier Synthesis model for these three geome-
tries.

d) We established a micromotion model for SAR targets experiencing rotation,
where the SAR imaging problem becomes a nonlinear problem and conventional
imaging method fails.

2. We proposed a Bayesian approach for different SAR imaging problems.

a) We proposed the following priors: Three simple priors of Separable Gen-
eralized Gaussian (SGG), Separable Cauchy (SC) and Generalized Gauss-Markov
(GGM); Priors with hyperparameters and hierarchical models: Generalized Gaus-
sian prior, Sparse Gaussian prior, Total Variation (TV) prior and Student-t prior.
We also analyzed the effects of different priors on inversion.

b) We developed different algorithmic solutions for different estimators, in-
cluding MAP, JMAP, Marginalization and VBA.

c) We studied the problem of data fusion arising in Multi-static SAR and
proposed a Bayesian joint fusion and inversion method with comparison to other
two different fusion methods.

d) We firstly addressed the problem of micromotion target imaging by propos-
ing a Bayesian CS (BCS) method for micromotion target imaging and parameter
estimation.

3. We demonstrated the performance of the proposed approach through experiments
on synthetic, experimental and real data. With comparison to conventional SAR
imaging methods and regularization methods, the results demonstrated the effec-
tiveness and feasibility of the proposed Bayesian approach.
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2
Forward Modeling: from Scene to Data

2.1 Introduction

The objective of this chapter is to present the forward modeling of SAR imaging.

SAR observation system relies on emitting electromagnetic waves to a target and
measuring its response. To solve the problem of SAR imaging, first of all we need to
establish the forward model linking the target and received signals.

Firstly, we present the target scene modeling. Several assumptions on radar scatter-
ing center theory are presented. Then, we give a brief presentation of SAR target scene
model.

Then, we focus on the echo modeling, where we start from the simple case of radar
echo signal generation towards point target scene. In the following, we derive SAR echo
modeling, with several factors considered: the geometry of transmitter-object-receiver,
the form of radar transmitted pulses, antenna beam pattern and characteristics of radar
target scattering.

In SpotSAR within a small observing angle, SAR imaging can be explained by the
tomographic model. Based on the projection-slice theorem, we establish the forward
model of echo generation.

Finally, we conclude our model as a very general case and get the relation of forward
modeling under a linear assumption.

The chapter is organized as following: in Section 2.2, target modeling is presented,
with several assumptions of radar scattering given in Section 2.3. Then, radar echo
modeling and SAR echo modeling are derived. Based on SpotSAR model, the obser-
vation model for three different geometries: Mono- (Section 2.4), Bi- and Multi-static
SAR (Section 2.5) are established. The problem of Fourier Synthesis (FS) is presented
in Section 2.6 and the general model is presented in Section 2.7.
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2.2 SAR Target Modeling

Radar is closely related to radar target characteristics [HYX05]. The final aim of
radar is to obtain the information of targets, which include not only the motion and
trajectory information, but also the geometric shape and physical parameters.

The coherent characteristic makes the differences of SAR image structure and data
processing method compared to optical imaging [CW05]. In order to achieve a better
performance of the image reconstruction, a explicit model of target scene should be set
on SAR imaging principle.

2.2.1 Assumptions on radar scattering

Definition 1. Radar Cross Section (RCS) is a physical characterization of radar target
scattering ability against the irradiation of electromagnetic wave. Based on the point of
view of electromagnetic scattering theory [BSU87, Kno85], the electromagnetic scattering
energy of radar target can be expressed as the product of the equivalent area of the target
and the incident power density, which is based on the assumptions of the irradiation of
plane electromagnetic wave and the isotropic target scattering.

It is difficult to strictly analyze and calculate the pulse response of the target, which
needs more knowledge about the electromagnetic theory which does not belong to the
range of our study in this thesis. Our work is mainly based on the optical Geometric
Theory Diffraction (GTD) theory and the backscattering theory. For simplicity, we
make the following assumptions:

1. Far field condition

Assume the far filed condition, where the distance of target is far enough (infinite).
With far field condition, the incident wave is approximately to be the plane wave,
then RCS is independent to the distance.

2. Backscattering model

Based on GTD, when target size is larger than wavelength of incident wave, the
backscattering of the target can be considered as composed by several separate
scattering centers. Thus the pulse response of the target (the reflectivity distribu-
tion function) is approximately modeled by the scattering model.

3. Neglecting the multi-path scattering and shielding effect between scatterers

Each scatter center is assumed to be separately of scattering and the effect of
multi-scattering and shielding effect is neglected.

4. Within a small radar viewing angle, the location and the amplitude of scattering
centers remain invariant to some extent.

Strictly speaking, the scattering characteristic of the target is related to the direc-
tion of radar sight. For example, there is a strong back specular reflection when
the plate fuselage is vertical to the radar Line Of Sight (LOS), while at the other
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angles of small deviation angle the specular reflection turns to a different direction
and will not be received by the radar. which is slowly changed with the variation
of the angle and is also related to the radar wavelength. B.Bhanu depicts the
invariance of scatterer location and magnitude for MSTAR images [IBG98].

These four assumptions form the basis of our analysis. In this thesis, we consider
the ideal scattering center model, i.e., the location and the complex amplitude of RCS is
not changed with the frequency or azimuth angle, while the phase is linearly dependent
on frequency and is sine (cosine) on azimuth angular.

2.2.2 Target scene modeling

SAR imaging scene is the area of the illumination on the ground scatterers by the
radar beam. Considering that a SAR system illuminates a scene which is composed by
the background and targets, herein, the received echo including the part from targets
which is called as “radar echo signal”, as well as the part from background which is called
as “clutter signal”. As a result, the obtained SAR image is also made of background
and interested targets.

We may distinguish between “background”, “physical target” and “equivalent scat-
tering target” and for each case we may give appropriate models. However, we more
often have the knowledge of a whole scene. In this thesis, we only consider the target
scene with zero background to concentrate on the recovery of scattering coefficients.
focus on scene modeling instead of discriminating each part. The probabilistic charac-
teristic of scene models may need a statistical chart.

Physical target model

Based on electromagnetic theory, according to the relative size of the radar target
to the wavelength of radar transmitted wave as well as the resolutions of SAR systems,
radar targets can be divided into two types: point targets and extended targets.

A single point target is a target having small dimensions compared to the angular
and range resolution of the radar. Point target refers to the target which is composed
of a single dominant (or a small number of) isolated scattering point(s).

Extended target refers to the target which is a collection of a large number of scat-
tering points. It is normally presented by the weak scattering homogeneous area.

Scattering centers model

According radar scattering theory, at high frequencies, the total electromagnetic
scattering of the radar target can be considered as the scattering from several separate
scattering centers. The equivalent scattering centers contain much physical structure
information of the target.

An increasing research interest is focused on the sparsity of SAR target, which lie
in two aspects: in one hand, image itself with the majority data representing clutter,
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shadow, which is approximately dealt as zero when comparing with targets; in the
other, parameters of parametric model representing unknown target or data in transform
domain, are comparatively larger at target’s edges and other signatures than those in
corresponding to clutter and shadow regions, thus parameters representing interested
regions have sparsity.

In this thesis, we mainly consider two kinds of target scenes, illustrated in Figure
2.1.

Figure 2.1: SAR target models: (a) Point targets where the point sources are isolated
very far from each other; (b) Extended targets where the point sources are close to be
grouped in compact regions but localized through different resolution cells.

2.3 SAR Echo Modeling

2.3.1 Radar echo generation

As we have discussed, RCS is used to describe the scattering function of target,
which reflect the interaction between the scene, the transmitted signal and the received
signal. We denote RCS by σ, the value of which depends on the frequency of the
radar transmitter, the direction of the transmitted and the received antenna(s) and the
physical scattering characteristics of the target, including the material, the shape, the
roughness, etc. SAR imaging process from SAR echo is essentially to estimate target
scattering coefficients.

We begin with the relationship in the time domain. Assume the transmitted signal
is s(t) and the received signal is g(t). In real physical problems, both the knowns and
unknowns are continuous. However, for the first step of the analysis, we start from a
very simple case with a scene effectively composed by several point scatterers.

When radar illuminates the interested region in the target scene, for each scatterer,
we receive the reflected signal. Thus, the total received signals should be the sum of the
reflected signals from all the effective scatterers. For each scatterer, we have:

g(t) = σ · s(t− τ) (2.1)
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where τ denotes the time delay, given by

τ =
2R

c
(2.2)

where R is the distance of the radar transmitter (receiver) and the scatterer, and c is
the propagation velocity of wave.

Assume there are N scatterers in the observed region of the target scene and the
interaction function RCS of ith scatterer in the observed scene is denoted by σi, i =
1, ...N , herein the received signal can be given by

g(t) =
N∑

i=1

σi s(t− τi) =
N∑

i=1

σi s(t−
2Ri

c
) (2.3)

where σi is the scattering coefficients of the ith scatterer which are usually complex. As
illustrated in Figure 2.2, considering the 2D cartesian coordinates (x, y), sensor locates
at the position (xr, yr), and scatterers locate at the position (xm, yn) with RCS denoted
by σmn, m = 1, . . . , lx, n = 1, . . . , ly

,m n 

( , )r rx y

x

y

o

( )s t

( , )m nx y

Figure 2.2: Geometry of radar.

we have

g(t) =

ly∑

n=1

lx∑

m=1

σmns(t− τmn) =

ly∑

n=1

lx∑

m=1

σmns(t−
2

c

√
(xr − x2

m) + (yr − yn)2) (2.4)

where σmn is non-zero when there is a scatterer at the position (xm, xn) or zero when
there is none of the scatterers.

In real practice, the target is composed by the continuous regions instead of the
discrete scatterers. Herein the integration should take place of the sum operation:

g(t) =

∫∫
f(x, y)s(t− τ(x, y)) dx dy (2.5)
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the function f(x, y) can be physically interpreted as the electromagnetic reluctivities due
to all scattering centers in the scene, denoting the unknown function to be estimated.
g(t) is the sum of all the reflected signals, named as ”echo”, denoting the known data
that has been observed. Until now, the problem becomes: with the observed echo data
g(t), trying to reconstruct the reflectivities of the original target f(x, y).

2.3.2 SAR echo modeling

We consider a SpotSAR geometry [CGM+95a, Fit88, JwE+96, MJOJ83]. In such a
geometry of data collection, the x−y coordinate is centered on the footprint of the target
illuminated by a radar beam from a moving radar. The radar beam, as operating in
spotlight mode, is continuously pointed at the ground patch with a constant depression
angle.

Here the radar return yields a projectional view of the target provided that the
phase front of the radio waves have no significant curvature, i.e., satisfying the far field
condition. For simplicity, the depression angle is omitted. In this way, we get the ground
plane geometry of SpotSAR [Fit88, CGM+95a, CGM+95a, MJOJ83, Sou92].

As illustrated in Figure 2.3, in a cartesian coordinate (x, y), the original is set as
the center of the target. Radar traverses the flight path from the range of −L to L
with different positions over dimension y. For each position of the radar, there forms a
viewing (azimuth) angle θ between radar light direction up and the axis x.

Without loss of generality, we adopt the classical assumption of “Stop-and-Go”: the
sensor and scattering target are assumed to be stationary during the time interval during
which the pulse watches over the target [FL99]. For a pulsed system, assume that the
pulses are transmitted at times t

′

. This time scale along the range direction is called
“fast time”; in the opposite, the timescale t on which the antenna moves along azimuth
direction is called “slow time”, because the range timescale, corresponding to the velocity
of sensor, normally moves much slower than azimuth timescale, corresponding to the
velocity of wave propagation. Thus, with “Stop-and-Go” assumption, radar is provided
to stop over each pulse interval.

In such a way, the reflectivity function f(x, y) can be physically interpreted as the
scattering filed at (x, y) due to an illumination from radar at a given observing angle θ.
Thus, along the given range direction at angle θ, for each point scatterers with positions
denoted by up, we get the echo observation model.

g(t, θ) =

∫∫
f(x, y)s(t− τ(x, y, θ))dxdy (2.6)

where τ(x, y, θ) denotes the time delay of different positions of radar transmitter.

Let the radar transmit a linear frequency modulated pulse signal which is commonly
used in SAR,

s(t) =

{
expj(νct+αct2), |t| ≤ T

2

0, otherwise
(2.7)

where νc is the carrier frequency, αc is the chirp ratio. For the point at up = (x, y), the

46



SAR Echo Modeling

pu

 

( , )x y

x

y

( , )r rx y

0

2 2

0 r rR x y !

2 2( ) ( )r rR x x y y ! " !
L!

L ( , )g t  
!

Figure 2.3: Ground plane geometry of SpotSAR.

return signal is

g1(t, x, y) = A
′ · f(x, y)s(t− τ) (2.8)

where A
′

is a scale factor accounting for propagation attenuation and other effects and

τ =
2R

c
, R =

√
(x− xr)2 + (y − yr)2 (2.9)

where R is the distance between radar and the target. τ is the round travel time (time
delay), (xr, yr) is the position of the radar at time t. Conditioned on the far field so
that the size of target is not too large, one can use Fresnel approximation to write

R ≈ R0 + x cos θ + y sin θ +

√
x2 + y2

2R0

(2.10)

where θ is the angle of radar line of light (azimuth angle), cos θ = xr

R0

, sin θ = yr
R0

and

R0 =
√

x2
r + y2r . On the condition of far field, R0 >>

√
x2 + y2, R can further be

approximated by
R ≈ R0 + x cos θ + y sin θ (2.11)

Then, the received signal from the entire target can be modeled as integral

g(t, θ) = A
′

∫∫

Ω

f(x, y)s(t− 2R0

c
− 2(x cos θ + y sin θ)

c
) dx dy (2.12)
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where Ω is the integration area of reflected signals. The first step of Dechirp is pulse
compression with respect to fast time t

′

or to mix with the reference signal which is
delayed in phase and quadrature versions of transmitted FM chirp,

exp{−j(νc(t− τ0) + αc(t− τ0)
2)}

where the τ0 =
2R0

c
and it gives

g̃(t, θ) =

∫∫
f(x, y) exp

{
jνc(2t−

2(x cos θ + y sin θ)

c
− 2τ0)

}

· exp
{
αc

(
((t− τ0)

2 + (t− τ0 −
2(x cos θ + y sin θ)

c
)2)

)}

· exp
{
j

[
4αc(x cos θ + y sin θ)2

c2
− 2(x cos θ + y sin θ)

c
(νc + 2αc(t− τ0))

]}
dx dy

(2.13)

The first term is centered on the carrier frequency νc and the second term is not, so a
signal after low-pass filtering and mixing with the reference signal, becomes

˜̃g(t, θ) =

∫∫
f(x, y) exp{j 4αc(x cos θ + y sin θ)2

c2
}

· exp{−j
2(x cos θ + y sin θ)

c
(νc + 2αc(t− τ0))} dx dy

(2.14)

the quadratic phase term can be removed through some operations, e.g., interpolation or
motion compensation which is not discussed here and gives the following approximation

ğ(t, θ) =

∫∫
f(x, y) exp{−j

2(νc + 2αc(t− τ0))

c
(x cos θ + y sin θ)} dx dy (2.15)

It can be seen that the processed signal ğ(θ, t) is the Fourier transform of a pro-

jection of target along a direction θ with the spatial frequency k = 2(νc+2αc(t−τ0))
c

,
−T
2

+ 2(R+L)
c

≤ t ≤ −T
2

+ 2(R−L)
c

.

2.3.3 Projection-slice theorem

Munson [MJOJ83] pointed out that in SpotSAR mode, the reconstruction methods
were fundamentally similar to that of Computed Tomography (CT) reconstruction. The
returned signal at a moment in time is proportional to the sum of all reflections along
contours equidistant from the antennas.

The approximation of echo signal Equation (2.15) after some preprocessing opera-
tions can be also expressed as

ğ(t, θ) =

∫

up

∫∫

x,y

f(x, y)δ(up − x cos θ − y sin θ) exp{−j
2k

c
up} dx dy dup (2.16)

where δ(·) is the δ function and let

rθ(up) =

∫∫

Ω

f(x, y)δ(up − x cos θ − y sin θ) dx dy (2.17)
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g(t, θ) is then

ğ(t, θ) =

∫ L

−L

rθ(up)s(t−
2R0

c
− 2up

c
) dup (2.18)

where rθ(up) is actually the Radon transform of f(x, y) along the radar line of light θ.

Let

F (X, Y ) =

∫∫
f(x, y) exp{−j(xX + yY )} dx dy (2.19)

and the inverse Fourier transform is given by

f(x, y) =
1

4π2

∫∫
F (X, Y ) exp{j(xX + yY )} dX dY (2.20)

The projection of f(x, y) at angle θ is formally given by

rθ(up) =

∫∫
f(x, y)δ(up − x cos θ − y sin θ) dx dy (2.21)

The 1D Fourier transform of rθ(up) with respect to up is given by

Rθ(Up) =

∫
rθ(up) exp{−jupUp} dup (2.22)

Thus, the projection-slice theorem can be stated by

Rθ(Up) = F (Up cos θ, Up sin θ) (2.23)

Thus, Equation (2.15) is
ğ(t, θ) = Rθ(Up) (2.24)

From the Equation (2.23) and Equation (2.24), Equation (2.24) can be written in
the wavenumber-domain as

G(k, θ) =

∫∫
f(x, y) exp{−j(kxx+ kyy)} dx dy (2.25)

where kx = Up cos θ and ky = Up sin θ.

These relations are described in Figure 2.3, from which we find that the received
data is corresponding to the straight line segment with the angle θ. Actually for the
whole integration angle, we get the signal support in the wavenumber domain. We can
then recognize a FT equation between the spectrum of the received signal and the 2D
FT of the scene in Equation (2.25).

In above, we derived the echo observation model for SpotSAR in terms of Fourier
projection slice theorem. However, there are obvious differences between tomographic
imaging and SpotSAR [MJOJ83]: for example, in spotSAR, the line integral involved in
the projection is taken perpendicular to the direction in which the radio waves travel;
and the most striking differences is that SpotSAR data are necessarily narrow-band.

Actually, the transform domain data (signal support) is related to the bandwidth of
the radar as well as the observation (azimuth) angle, and is also related to the different
geometries of SAR. In the following, we will try to establish a general forward model
for different geometries: Mono-, Bi- and Multi-static, and then analyze the different
presentation of signal support in the Fourier domain.
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2.3.3 - Projection-slice theorem

2.4 Mono-Static SAR

As discussed above, in the Mono-static SAR, we define:
– r = (x, y)T a space coordinate (x, y) with r = |r| =

√
x2 + y2;

– k = (kx, ky) the corresponding Fourier space coordinates of space coordinates

(x, y): k = |k| =
√
kx

2 + ky
2;

– ν the frequency;

– θ the azimuth angle and R its distance between radar and the target;

– g(t, θ) the received signal in time domain;
– G(ω, θ) the spectra of received signals in frequency domain.

The Mono-static SAR geometry is illustrated in Figure 2.4, with the origin still
placed in the center of the target. The figure is similar to the one in the previous
section. However, we redo this without the projection part to be more focused on its
geometry and try to analyze the corresponding Fourier domain data support.

( , )f x y

( , )g t 

 

Figure 2.4: Mono-static SAR geometry: Transmitter and Receiver are collocated.

In the time domain, following the same procedures of radar echo generation, we have

g(t, θ) =

∫∫
f(x, y)s(t− τ(x, y, θ)) dx dy (2.26)

then we have the spectra of the received signals

G(ω, θ) = S(ω)

∫∫
f(x, y) exp{−jωτ(x, y, θ)} dx dy (2.27)
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Mono-Static SAR

where S(ω) represents the spectra of the transmitted signals. We represent received
signals in the wavenumber domain (phase history domain), we have the time delay

τ(x, y, θ) =
2R

c
=

2

ω
R× k (2.28)

Use the vectors defined above, it can also be written as

τ(x, y, θ) =
2

ω
rTk =

2

ω
(kxx+ kyy) (2.29)

The spectra of the received signals

G(ω, θ) = S(ω)

∫∫
f(x, y) exp {−j2(kxx+ kyy)} dx dy (2.30)

Assume S(ω) to be constant in a bandwidth ∆ω so can be omitted, we obtain Equa-
tion (2.25).

Till now, we get the relation between the spectra of the received signal and Fourier
Transform of the target. To further examine this, we observe it in the wavenumber
domain. The received data

kxx+ kyy = r(kx cos θ + ky sin θ) = k(x cos θ + y sin θ) (2.31)

as illustrated in Figure 2.5, is corresponding to the straight line segment with the az-
imuth angle θ. Then for the whole integration angle, we get the signal support in the
wavenumber domain.
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Figure 2.5: Mono-static SAR signal support.

As we can see, for Mono-static SAR, in the typical Fourier domain sampling, the
transform domain data in a SAR system are restricted to lie in a small annulus segment.
The sample in the radial dimension is proportional to the signal bandwidth, the inner
and outer edges that are determined by the frequency content of the transmitted chirp;
while the samples in the angle dimension is proportional to the coherent angle, or to
say, the pulse numbers of the coherent processing interval.

In all, in the Fourier domain, radial band is limited by the finite bandwidth of the
transmitted pulse and the angular band is limited by the finite viewing angle of the
radar. The support of the signal in the Fourier domain, affects the image’s resolution.

If we can get a greater diversity in either frequency or the angular, or both, we can
try to get a higher resolution. A perfect case is to get the support for the high frequency
in the whole band and the whole angle.
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2.3.3 - Projection-slice theorem

2.5 Bi-, Multi-Static SAR

Now, we consider Bi-static SAR geometry model [Sou92, Sou91], where radar trans-
mitter and receiver are located separately. With the same assumptions in Mono-static
case, as illustrated in Figure 2.6, the location of radar transmitter location is fixed, while
the receiver moves around a circular trajectory of radius r, assuming that compensa-
tions have been done, at this time the geometry can be viewed as an ideal turntable
model [BXW05]. In the spatial two-dimension coordinate plane, we parameterize the
position of radar transmitter by angle θtc, denoting the angle of radar line of light for
transmitter. Similarly, we have θcr denoting the angle of the receiver position.

y

x

r
( , )f x y

( , , )tc crg t  

u

cr 

Radar

Transmitter

Radar

Receiver

tc 

Figure 2.6: Bi- and Multi-static SAR geometry: Transmitter and Receiver(s) are sepa-
rately located.

If we change the positions of receiver(s) along the circular trajectory, for each position
of the receiver, the geometry turns into the Bi-static case; if there are more than one
receivers, the geometry turns into the Multi-static case.

Again, the relation between the transmitted signal s(t) and the received signal g(t)
reflected from target f(x, y) can be written as

g(t, θtc, θcr) =

∫∫
f(x, y)s(t− τtc(x, y, θtc)− τcr(x, y, θcr)) dx dy (2.32)

where τtc(x, y, θtc) represents the time delay between the transmitted signal and the
target and τcr(x, y, θcr) represents the time delay between the target and the received
signal.
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Bi-, Multi-Static SAR

The wavenumber vector of the transmitter and the receiver are given as [Fel09]:

ktc =

(
k cos θtc
k sin θtc

)
kcr =

(
k cos θcr
k sin θcr

)
(2.33)

If we follow the same form of the position vector of a scatter point r = (x, y)T , we
can write the delay for the transmitter and the receiver, respectively:

τtc(x, y, θtc) =
1

ω
rTktc =

k

ω
(cos θtcx+ sin θtcy) (2.34)

τcr(x, y, θcr) =
1

ω
rTkcr =

k

ω
(cos θcrx+ sin θcry) (2.35)

The total delay becomes:

τtc + τcr =
k

ω
{(cos θtc + cos θcr)x+ (sin θtc + sin θcr)y)} (2.36)

and get

k =

[
kx
ky

]
=

[
k(cos θtc + cos θcr)
k(sin θtc + sin θcr)

]
, |k| = k =

ω

c
(2.37)

We can then follow the same process to get the spectra of the received signal, but
this time, the relation between (kx, ky) and (θtc, θcr) becomes different.

As illustrated in Figure 2.7, for each sampling of radar received signal at a spatial
position of the angle θcr, the received signal over the target, corresponds to a sample
point in the wavenumber domain (kx, ky); when position of the radar receiver changes,
the position of the received data in the wavenumber domain accordingly changes. For
the angle accumulation over the whole coherent processing interval, we get a new signal
support.
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Figure 2.7: Bi-static and Multi-static SAR signal support.

In summary, in all three cases, the spectrum of each received signal G(ω, θ) at a
given angle θ in the Mono-static case and G(ω, θtc, θcr) at a given angle of transmitter-
receiver (θtc, θcr) in the Bi-static and Multi-static cases, give some information in the
Fourier domain (kx, ky) on a segment of a straight line. The length of the segment line
depends on the bandwidth of the transmitted signal and its orientation on the geometry
of transmitter-object-receiver. Thus structure and topology of those points form the
support of the signal in the Fourier domain, which depend on the bandwidth of the
transmitted signal and the relative positions of transmitter-receiver respected to the
target, and the resolution is affected by the relative position between the transmitters
and receivers.
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2.3.3 - Projection-slice theorem

2.6 SAR Imaging as Fourier Synthesis (FS)

Mathematically speaking, after some simplification [CB09], the problem of SAR
imaging becomes the Fourier Synthesis (FS) [ZMD10, MD03] which consists of estimat-
ing an unknown target f(x, y) from the partial and truncated information of its Fourier
Transform (FT) F (kx, ky). To focus our discussion on a general inversion method we
present the relation between the FT of the observed signals and the 2D spatial FT of
the scene by the following:

G(kx, ky) = M(kx, ky)F (kx, ky) + ǫ(kx, ky) (2.38)

where

F (kx, ky) =

∫∫
f(x, y) exp−j(kxx+ kyy) dx dy. (2.39)

where ǫ(kx, ky) is the observation noise from measure process, k =
√
k2
x + k2

y = 2π/ν is
the wave number, in the wavenumber domain, F (kx, ky) is the FT of f(x, y), G(kx, ky) is
of the FT the observed data and M(kx, ky) is a binary valued function which is equal to
one on the points where we have the data and zero elsewhere. In factM(kx, ky) is related
to the radar frequency and measurement system geometries, illustrated in Figure 2.8.
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Figure 2.8: Fourier Synthesis formulation of SAR imaging.

2.7 General Forward Modeling

Real received signals are discrete version of the continuous signal g(t, θtc, θcr).
G(ω, θtc, θcr) is then computed using Discrete Fourier Transform (DFT) giving values of
F (kx, ky) and then G(kx, ky) on a finite number of points in the Fourier domain. Arrange
all these values in a vector g. Discretize the space of the scene into pixels and arrange
all the pixel values in a vector f . Then, knowing that the relation between g and f is a
DFT which is a linear operation, we can describe it through a matrix H (DFT matrix).
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Then, we can write

g = H f + ǫ (2.40)

where ǫ represents additive observation noise [Sko70, Weh87, ÇKCn03]. The relation
between 2D spectra G(kx, ky) of the demodulated received signals and the 2D scattering
coefficients of the unknown target f(x, y) is a limited support of FT.

2.8 Conclusions

In this chapter, we first established forward models of SAR imaging. Several assump-
tions on radar scattering center theory were made. Based on these assumptions, radar
echo modeling was derived. According to the projection-slice theorem, a tomographic
SpotSAR model was discussed. In the following, the mathematical forward models were
established for different SAR geometries. Thus, the SAR imaging is then an ill-posed
inversion problem to estimate reflectivities from partial observation of the scattering
field. Solving this kind of problem, we need to incorporate prior information to obtain
an accurate estimation.
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3
Inversion: from Data to Scene

3.1 Introduction

The objective of this chapter is to develop a Bayesian estimation approach based on
the forward model which is established in Chapter 2.

Upon the validity of the forward model, the inverse problem becomes to reconstruct
the original target f using the observed data g. When this inversion is done, we can
also compute ĝ = Hf̂ which can be compared to the observed data and the difference
‖∆g‖22 = ‖g − ĝ‖22 can give us an indication about the goodness of the inversion.
However, we must be careful that ‖∆g‖22 is a necessary measure to the goodness of the
inversion but not sufficient. In fact small value of ‖∆g‖22 may not necessarily result in

small value of ‖∆f‖22 = ‖f − f̂‖22 due to the ill-posedness of the problem.

In 2D, we denote the data g as G(kx, ky) andM(kx, ky), the estimation of the original

target f as f̂(x, y) and Ĝ(kx, ky) as the prediction of the data in the Fourier domain
particularly on those points where we do not have any data.

G(kx, ky),M(kx, ky) −→ Inversion −→ f̂(x, y) −→ Ĝ(kx, ky)

For different geometries of SAR, the mathematical model for forward modeling and
inversion can be illustrated as the following:

– Mono-, or Bi-static SAR

f(x, y) → F (kx, ky) → M(kx, ky), G(kx, ky) → Reconstruction → f̂(x, y)

Original
target

Forward modeling Inversion
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– Multi-static SAR

f(x, y) → F (kx, ky) → M1(kx, ky) G1(kx, ky)
M2(kx, ky) G2(kx, ky)

→ Data Fusion
and Reconstruction

→ f̂(x, y)

Original
target

Forward modeling Fusion and inversion

For the simplest case as Mono- or Bi-static, the objective is to find an optimal
reconstruction (will be studied in Chapter 4); while for a more complicated case as
multi-static, the objective becomes data fusion for obtaining super-resolution images
(will be studied in Chapter 5). In this chapter, we focus on the Bayesian approach.

The chapter is organized as follows:

Firstly, in Section 3.2, we give a brief introduction of the classical inversion methods
for SAR imaging. Then, aiming at pushing further their limitations, we propose the
Bayesian inference methods in Section 3.3. We present a detailed description of the
Bayesian approach with different target prior modeling: simple and hierarchical priors.
We also consider the hyperparameters estimation using either joint MAP (JMAP), the
marginalization and the variational Bayesian approximation (VBA).

For the inference, in Section 3.4, first of all, we propose separable priors for scenes
consisting of point sources and then Markovian priors for scenes consisting of homo-
geneous regions. For Gaussian prior and Sparse Gaussian prior, we consider the hy-
perparameters estimation in a marginalization framework. For Total Variation (TV)
Markovian prior, we propose a hierarchical Bayesian estimation method.

3.2 Classical Inversion Methods

There are many inversion methods for inverse problems [Ger74, Jon86, ÇK01,
MD06b, MD06a, MDDF09], such as analytical methods, parametric methods as least
square and generalized inversion and regularization methods. For our case where
the problem is to estimate an image from the partial knowledge of its Fourier
domain, the oldest and also the simplest one is the Gerchberg-Papoulis iterative
method [Ger74, Pap75, MBM08, PK08] which imposes some constraint on the solu-
tion (band limited) in an iterative way. However, when the data are too incomplete,
the results depend strongly on the type of constraints (prior knowledge of the band and
positivity). Even if, this method may work in some cases, in general, we may need to
include more prior information on the solution to obtain a satisfactory result.
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Classical Inversion Methods

3.2.1 Analytical methods

One simple classical method for SAR imaging is to use the Inverse Fast Fourier
Transform (IFFT) [Bri88, CS00]. The inversion is given as:

f̂(x, y) = IFFT{G(kx, ky)M(kx, ky)} (3.1)

the equation above turns to be

f̂(x, y) = IFFT{G(kx, ky)} (3.2)

if we could obtain M(kx, ky) = 1 in the full wavenumber domain on a cartesian grid.

Unfortunately, due to the limitation of the bandwidth and the integration angle,
the Fourier domain is never complete and the inversion becomes an ill-posed problem.
The classical IFFT methods assume all the unobserved data (the values of G(kx, ky) on
those points where M(kx, ky) = 0) to be zero. Through zero-filling extrapolation and
interpolation to a rectangular Cartesian grid, FFT-based methods propose a classical
solution.

As can been seen, the solution to the problem of g = Hf + ǫ depends on the
properties of the forward model H . Indeed, in the forward model H is an approximate
2D Fourier transform, denoting by H t the conjugate transpose of H . The IFFT method
is equivalent to:

f̂ ≈ H tg (3.3)

In the general case of a linear operation, the Least Square (LS) solution is given by

f̂ = argmin
f

‖g −Hf‖22 = (H tH)−1H tg (3.4)

if H tH is invertible. In the complete data Fourier Synthesis case (column exponential
basis of the system response function are orthogonal), the matrix H is the FT matrix
and we have H tH = I. This explains that the solution f̂ = H tg would be exact for
that case, but for the incomplete data situation H tH 6= I.

3.2.2 Regularization methods

Besides the analytical method [DJ02], regularization theory has been playing a very
important role for solving inverse problems in SAR imaging [ÇK01]. Regularization
method is based on the prior information of the unknown object, trying to “restore” the
original information as much as possible.

One of the most successful regularization methods consists in minimizing of a com-
pound criterion as [MD06b]:

f̂ = argmin
f

{J(f)} (3.5)

with
J(f) = △1(g,Hf) + λ△2 (f ,f 0) (3.6)

where △1 and △2 are two distances. △1 is a measure of adequacy of the data g to
the output of the forward model Hf , for example for LS △1 = ‖g − Hf‖22. △2 is a
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3.2.2 - Regularization methods

criterion to be chosen to translate some prior knowledge or to enforce some properties of
the desired solution, for example the smoothness △2 = ‖Df‖22 where D is a derivative
operator.

Other choices are possible for both parts △1 and △2. λ is a regularization parameter
which has to be chosen in such a way to obtain a good balance between the two terms.
f 0 is the default solution.

A classical case is when △1 and △2 are both quadratic:

J(f) = ‖g −Hf‖22 + λ‖f − f 0‖22 (3.7)

where we can have an analytic expression for the solution

f̂ = f 0 + (H tH + λI)−1H t(g −Hf 0) (3.8)

When f 0 = 0, then we have f̂ = (H tH + λI)−1H tg; and when λ = 0, we obtain the

LS solution f̂ = (H tH)−1H tg of Equation (3.4).

The main advantage of the regularized solution when λ > 0 is that H tH + λI will
be always better conditioned that H tH and thus the regularized solution will be more
stable.

There are many other distances and in particular l1 for example

J(f) = ‖g −Hf‖22 + λ‖f‖1 (3.9)

but unfortunately in these cases there is no more analytic expression for the solution.

However, even in the case of quadratic criterion where we have analytical expression,
in practical applications a gradient based algorithm is used to obtain the solution. The
main steps of such a algorithm is given below:

1. f (0) = 0,

2. f (k+1) = f (k) + α(k)d(k) until convergency,
where d(k) may be any descent direction, for example the opposite of the gradient:
d(k) = 2H t(g −Hf (k))− 2λf (k),

3. α(k) is the step which can be constant or evaluated at each iteration.

There are many different methods to obtain satisfactory α(k) which also insure the
convergency of the algorithm [NW99, BT09, SMW05].

Regularization methods generally try to balance the fidelity to data and prior knowl-
edge to obtain a stable solution. The main problems of regularization methods include:
determination of the regularization parameter, the arguments of choosing two distances
which are manually decided depending on personal experience and quantification of the
uncertainties associated with the obtained solutions. In the next section, we will see
these inadequacies can be overcome by the Bayesian estimation framework.
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Bayesian Approach

3.3 Bayesian Approach

3.3.1 Bayesian estimation

From an ideal point of view, the Bayesian framework is based on the forward model
g = Hf + ǫ, where g is the observed data. Due to not only the measurement noise
but also the fact that the forward model is finitely exact and comprises uncertainty, we
have to account for these uncertainties. This can be done through a probabilistic model
p(g|f) which is also called the likelihood. The next step is to translate our incomplete
prior knowledge on f through a prior probability law p(f).

From a methodological view, the Bayesian framework is based on the sum and prod-
uct rule of the probability theory:

p(A,B) = p(A|B) p(B) = p(B|A) p(A) (3.10)

So p(A|B) = p(B|A) p(A)/p(B), where A is the assumption and B is the observed
data under the assumption. If we assume that all the probability laws have probability
densities, we have:

p(f |g) = p(g|f) p(f)/p(g) (3.11)

where p(g) =
∫
p(g|f)p(f) df

In classical statical methods, we only use p(g|f), for example the Maximum Likeli-
hood (ML):

f̂ML = argmax
f

p(g|f) (3.12)

In the Bayesian approach, the main step is the use of the prior p(f) and the use of the
posterior p(f |g). So it is important to assign p(f) properly.

For this, we may make two important remarks [Fér06]:

– It is almost impossible that, in a real physical problem, we have no information
about the observed target or the observation procedure.

– It is almost impossible that, in a real physical problem, the prior information of
the target can be exactly represented by one certain probability distribution.

The first point shows that, in most problems, it is possible to decide for a family of
prior laws for specific class of targets. The second point shows that we can not probably
fix the parameters of this prior law a priori. However these parameters can be estimated
either from a set of training targets or even a posteriori from the observed data.

The Bayesian estimation framework can be summarized as follows:

1. Prior modeling

Assign the prior probability distributions p(g|f) and p(f) to translate our knowl-
edge about the data g given f (forward model and the errors ǫ) and the unknown
image f .

2. Compute the posterior probability law

Once p(g|f) and p(f) are assigned, we can use them through the Bayesian rule
to find p(f |g)

p(f |g) ∝ p(g|f)p(f) (3.13)
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which contains all the information coming from the data via p(g|f) and from a
priori p(f).

3. Use this posterior probability law to infer the unknown f .

To make the choice of the estimator, there are two simple options:

1. Maximum A Posterior (MAP)

For the Maximum A Posterior (MAP) estimation:

f̂ = argmax
f

{p(f |g)} = argmin
f

{J(f)}

where J(f) = − ln p(g|f)− ln p(f) (3.14)

2. Posterior Mean (PM)

For the Posterior Mean (PM):

f̂ =

∫
f p(f |g) df . (3.15)

The computation of the MAP solution needs an optimization algorithm and the PM
solution needs an integration algorithm.

When the error term ǫ is assumed to be centered, white, Gaussian with given variance
σ2
ǫ :

p(g|f) ∝ exp

{
− 1

2σ2
ǫ

‖g −Hf‖22
}

(3.16)

From aforementioned analysis, we could see that within the Bayesian framework,
three steps are very important:

1. Forward modeling of SAR imaging which describes the relation between the un-
known scene f and the measurement data g via p(g|f) which is called likelihood;

2. Prior modeling p(f) of the target scene depends on the way that we model the
scene.

3. Computing the posterior p(f |g) and the choice of an estimator MAP or PM to

obtain the reconstruction f̂ .

In this thesis, we work on these three points, with the emphasis of prior modeling and
computation. The objective of the former is to discover the effectiveness of different prior
models of radar targets and the performances on Bayesian inversion, while the latter is
to propose effective computation tools for complex prior models with hyperparameter
estimation and hidden variables.

3.3.2 Prior modeling

As discussed above, the introduction of additional prior information or constraints
on scattering coefficients f could turn an ill-posed inverse problem to be regularized.
Moreover, promising target prior modeling can not only suppress the noise thus reserve
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target information, but also realize the local control on reconstruction, such as edge
and/or texture preserving, which enhances the target features for recognition. Our
work originated from this motivation, trying to find prior information taking account
for different scattering characteristics and preserving desired features in imaging.

The key of the Bayesian inversion methods of SAR imaging is to design some prior
distribution to model some prior information of scattering coefficients and to recover the
scattering coefficients under the Bayesian principle. Sparsity and local continuity are
considered as general characteristics in SAR imaging. In the following, we will model
these prior information by choosing different probabilistic distributions.

1) Sparsity

Radar target at high frequencies can be treated as the composition of several scat-
tering centers, which provides the possibility of SAR imaging via sparse prior represen-
tation. The back scattering of dominant scatterers is comparatively higher than others
whose values are nearly zeros, i.e., the reflectivity field of the target f(x, y) at few loca-
tions is of high value while at other majority locations is near zero. This means that the
distribution of the values of f(x, y) has a great peak near to zero while having heavy
tails. The heavy tailed probability distributions can be used to describe radar target
composed mainly by dominant scattering point reflectors.

2) Local continuality

For radar target scenes composed by extended reflectivity homogenous regions, the
function f(x, y) can be modeled by a piecewise smooth function. Markovian models pro-
vide appropriate tools for such a statistic description of an image. By using Markovian
models and their variants, we impose smoothness on the magnitudes of the reconstructed
complex-valued field reflectivities f and preserve edge as well.

Based on the analysis of composition about two typical radar target scenes, here we
propose three different prior models:

1) Separable Generalized Gaussian (SGG)

p(f) ∝ exp

{
−γ

∑

j

|fj|β
}

∝ exp
{
−γ ‖f‖ββ

}
(3.17)

where 1 ≤ β ≤ 2 and |fj| is the magnitude (or absolute value) of the complex value fj,

‖f‖ββ =
∑

j |fj|β. By using this prior, the MAP criterion to be optimized becomes

J(f) =
1

σ2
ǫ

‖g − Hf‖22 + γ
∑

j

|fj|β (3.18)

SGG family actually includes Laplace distribution when β = 1, Gaussian distribution
when β = 2 and when 1 ≤ β < 2, it can be used for representing sparse signals or images.
One can also use 0 < β ≤ 1 but in this case the criterion is no more convex.

Hence, this prior is appropriate to targets composed of point scatter models (such as
the small size metallic reflectors). When there are amount of reflectors in the observed
scene, β could be taken nearly to be 2; by contrast, when there are only few reflectors,

63



3.3.2 - Prior modeling

β should be adjusted closely to 1 but always > 1 to have a strict convex criterion.

2) Separable Cauchy (SC)

p(f) ∝
∏

j

γ√
1 + |fj|2

∝ exp

{
−γ

2

∑

j

ln(1 + |fj|2)
}

(3.19)

Employing this prior, we get:

J(f) =
1

σ2
ǫ

‖g − Hf‖22 + γ
∑

j

ln(1 + |fj|2) (3.20)

Cauchy distribution has also been used for sparse signals, due to its longer tails than
the Gaussian.

Thus this prior could also be used for point targets, in particular for modeling those
reflectors of high amplitudes.

3) Generalized Gauss Markov (GGM)

p(f) ∝ exp

{
−γ1

∑

j

|fj|β1 − γ2
∑

j

||fj| − |fj−1||β2

}
(3.21)

where 1 ≤ β1, β2 ≤ 2. By using this prior, we have:

J(f) =
1

σ2
ǫ

‖g − Hf‖22 + γ1 ‖f‖β1

β1
+ γ2 ‖D|f |‖β2

β2
(3.22)

where Q(f) = ‖g − Hf‖22 again represents the LS criterion, and D = Toeplitz([−1, 1])
is the first order discrete derivative matrix which is a Toeplitz matrix. We may remark
that γ1 = 0 and β1, β2 = 2 result in the classical Tikhonov regularization term Ω(f) =
‖D|f |‖22.

Herein, this prior is proper to those targets having comparatively large sizes or com-
posed by homogeneous regions.

4) Generalized Markov (GM)

p(‖f‖) ∝ exp

{
−γ

∑

j

φ(|fj| − |fj−1|)
}

(3.23)

where φ(.) is a positive function which represents the potential function of Markov field,
which can be chosen, for example, between the following possibilities:

φ(t) =
{
t2, |t|β, ln(1− |t|2)

}
(3.24)

and many other convex or non convex functions. With these priors, we obtain:

J(f) =
1

σ2
ǫ

‖g −Hf‖22 + γ
∑

j

φ(|fj| − |fj−1|). (3.25)
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This prior is proper to those targets having comparatively large sizes or composed
by homogeneous regions.

3.3.3 Hyperparameters estimation

To obtain p(f |g), the probability laws p(g|f) and p(f) are needed. But these prob-
ability laws depend on some parameters which may not be known a priori. We may
want to estimate them too from the data. For this we may also assign a prior p(θ) to
translate our prior knowledge about them and then obtain the expression of the joint
posterior law:

p(f ,θ |g ) = p(g |f , θ1) p(f |θ2 ) p(θ)

p(g)
(3.26)

where θ = (θ1,θ2) is the hyperparameters depending on different situations:
– θ1 = σ2

ǫ is the variance of the noise in Equation (3.16),
– θ2 = γ is for example the parameter of the prior in Equation (5.10), Equa-
tion (3.19) or Equation (3.23),

– θ2 = (γ1, γ2) in the prior in Equation (3.21).

The problem of hyperparameter estimation along with the estimation of the unknown
f is addressed by many researchers [IG93, Idi01, MD09b, MD09a]. Mainly three great
families of methods exist:

1. Joint MAP

Given the expression of p(f ,θ|g), we may try to define the Joint MAP (JMAP)
solution:

(f̂ , θ̂) = arg max
(f ,θ)

{p(f ,θ|g)} = arg min
(f ,θ)

{− ln p(f ,θ|g)}

= arg min
(f ,θ)

{− ln p(g|f ,θ1)− ln p(f |θ2)− ln p(θ)} (3.27)

The existence of a unique maximum and the unimodality of the p(f ,θ|g) has to
be verified by appropriate choice of the priors p(θ1) and p(θ2).

However, the joint optimization may not always be easy to realize. Then, in
general, one can use an iterative alternate optimization algorithm as follows:





f̂
(k+1)

= argmin
θ

{− ln p(f ,θ(k)|g)}

θ̂
(k+1)

= argmin
θ

{− ln p(f̂
(k+1)

,θ|g)}
(3.28)

Concerning the expression of p(θ) = p(θ1)p(θ2), we use the conjugate priors when
possible, for example Inverse Gamma for the variances σ2

ǫ .

2. Marginalization
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3.3.3 - Hyperparameters estimation

Bayesian framework provides the possibility to compute the marginal posterior
laws of θ by first writing the expression of p(f ,θ|g), then integrating f to obtain
p(θ|g),

p(θ|g) =
∫

p(f ,θ|g) df (3.29)

and then obtain θ̂ first and use them for the computation of the linear parts f

using p(f |g, θ̂). We may mention for example:

θ̂ = argmax
θ

p(θ|g) −→ f̂ = argmax
f

p(f |g, θ̂) (3.30)

We may note that
p(θ|g) ∝ p(g|θ)p(θ), (3.31)

where

p(g|θ) =
∫

p(g|f ,θ1) p(f |θ2) df (3.32)

and where p(g|θ) is the classical likelihood or the evidence of the model. The
classical ML method for estimating θ is

θ̂ML = argmax
θ

p(g|θ). (3.33)

The following scheme θ̂ML = argmax
θ

p(g|θ) −→ f̂ = argmax
f

p(f |g, θ̂ML) is used

classically and called Type II likelihood method [Bis06]. Unfortunately, getting an
analytical expression for p(g|θ) is not always possible. This fact has conducted
many researchers to propose the algorithms such as Expectation Maximization
(EM) or stochastic versions of it (SEM) to obtain the θ̂MV . The same kind of
algorithms have also been used to obtain θ in Equation (3.30).

3. Variational Bayesian Approximations (VBA)

We may do better than JMAP than using p(f ,θ|g). However, the full Bayesian
inference using this joint posterior law is usually intractable and an approximation
method is required. Variational Bayesian Approximation (VBA) approximates this
joint posterior law by a separable one q(f ,θ|g) = q1(f)q2(θ) using the Kullback-
Leibler divergence as the criterion and then use q1(f) and q2(θ) to make inference
about f and θ, separately.

In our case, the joint posterior law of all the unknowns p(f ,θ) (the unknown
target, hidden variables and hyperparameters) is approximated by a separable
probability law via the variational Bayesian principle. It involves in finding a
distribution q(f ,θ) = q1(f)q2(θ) which is computed flexibly but approximate to
the true posterior distribution. It is achieved by minimizing the Kullback-Leibler
divergence between the q(f ,θ) and the p(f ,θ|g) [Bis06],

KL(q(f ,θ|p(f ,θ|g)) =
∫∫

q(f ,θ) log
q(f ,θ)

p(f ,θ|g) df dθ (3.34)

It can be showed that

KL(q1, q2|p) =< ln q1 >q1 + < ln q2 >q2 − < ln p >q1 − < ln p >q2 (3.35)
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where < · >q means the expected value with respect to q.

Unfortunately, the solution can not be obtained in a direct way but can be obtained
by an alternative optimization:

q1 ∝ exp(− < ln p(f ,θ|g) >q2)
q2 ∝ exp(− < ln p(f ,θ|g) >q1)

(3.36)

The expressions and computations becomes much easier when p(f ,θ|g) is chosen
to be in an exponential family with conjugate priors [MD12].

In general then, we obtain an iterative algorithm, where at each iteration, the
parameters of q1 and q2 are updated. Finally, when the final expressions of q1(f)
and q2(θ) are obtained, we can use them to obtain estimates for f and θ.

3.3.4 Summary of Bayesian computation

For different prior models, we summarize the Bayesian computation as following:

1. Simple optimization of p(f |θ, g) for MAP when θ is assumed to be known or has
been determined before, is illustrated in Figure 3.1;

MAP Simple Optimization

Algorithm
( | , )p f g f

!

Figure 3.1: MAP computation.

2. Joint optimization of p(f ,θ|g) for joint MAP when the estimation of hyperpa-
rameters are needed (unsupervised techniques), is illustrated in Figure 3.2;

Joint MAP Joint Optimization( , | )p f gq
f
Ù

q
Ù

Figure 3.2: Joint MAP computation.

3. Marginalization of p(f ,θ|g) with respect to f to obtain p(θ|g)
and then its optimization to obtain θ̂

and finally its utilization in the expression of p(f , θ̂|g) or p(f |θ̂, g) to obtain

f̂ , is illustrated in Figure 3.3;

4. Variational Bayesian approximation (VBA) of the joint p(f ,θ|g) by a separa-
ble q(f ,θ|g) = q1(f) q2(θ), and then using them for estimation, is illustrated in
Figure 3.4;
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3.4.1 - Simple priors with MAP estimation

Marginalization
Marginalization

( | )p gq q:
( , | )p f gq ( | , )f p f gq

Ù

:q
Ù

f
Ù

Figure 3.3: Marginalization computation.

VBA
Variational Bayesian

Approximation

f
 

!
 ( , | )p f g 

1( )q f

2 ( )q  

Figure 3.4: VBA computation.

3.4 Inference with Different Priors

3.4.1 Simple priors with MAP estimation

The Bayesian framework permits us a flexible framework by incorporating different
priors. We firstly consider three prior models which are defined in section 3.3.2 and
make a brief discussion of the estimation for each prior model.

1. Separable Generalized Gaussian (SGG)

p(f) ∝ exp{−γ
∑

j

|fj|β} (3.37)

with 1 ≤ β ≤ 2. β = 2 corresponds to the Gaussian model while β = 1 is the
classic l1 sparse model.

When considering Gaussian priors (β = 2 ), the posterior law becomes Gaussian
too and all the estimators (MAP and PM) become the same and ‖f‖22 = f tf ,
where (·)∗ is the conjugate transpose and |fj|2 = f ∗

j fj, f
∗
j denotes the conjugate

of complex value fj . We can then have exact expression of the posterior:

p(f |g) = N (f̂ , Σ̂) (3.38)

where Σ̂ = (H tH + λI)
−1

with λ = γσ2
ǫ

and where

f̂ = argmax
f

p(f |g) = argmax
f

J(f) (3.39)

f̂ = (H tH + λI)−1H tg =
1

σ2
ǫ

Σ̂H t, with Σ̂ = σ2
ǫ (H

tH + λI)−1 (3.40)
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If we can compute Σ̂, then we can use it as a measure of remaining uncertainty.
For example, we can use the diagonal elements of δ̂j = Σ̂jj to put error based on

the solution f̂ . However in practical application these computations may become
too expensive.

When considering 0 < β ≤ 1, the term ‖f‖ββ is non continuous, the objective
function with respect to f

J(f) = ‖g −Hf‖22 + λ
∑

j

|fj|β

≈ ‖g −Hf‖22 + λ
∑

j

(|fj|2 + ζ|)β/2
(3.41)

where the value of ζ is a small value, saying 10−10.We adopt the gradient descent
to optimize Equation (3.41) with respect to f , the gradient is

∇J = 2H tHf − 2H tg + λβΛ(f)f (3.42)

where

Λ(f) = diag
[
(|fj|2 + ζ)β/2−1

]
(3.43)

The computation process is listed in Algorithm 1.

Algorithm 1 Reconstruction with Generalized Gaussian distribution

Input: g, the maximum number iterations Niter

Output: the reconstructed image f̂ , λ.
1: Initialize f (0)by IFFT method
2: for k = 1 to Niter do

3: f̂
(k)

= argminf J(f ,Λ(f (k−1)))

4: Λ(f (k)) = diag
[
(|fk−1

j |2 + ζ)β/2−1
]

5: if ‖f̂ (k) − f̂
(k−1)‖22/f̂

(k−1) ≤ ε then
6: Break;
7: end if
8: end for

2. Separable Cauchy (SC)

p(f) ∝
∏

j

γ√
1 + |fj|2

∝ exp{−γ

2

∑

j

ln(1 + |fj|2)} (3.44)

For SC prior, there is no known exact expression for the posterior law. However
the MAP solution can still be computed by appropriate optimization algorithm.
In this case, we must be careful about the convergency of the gradient based op-
timization algorithms.
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3. Generalized Gauss-Markov (GGM)

p(f) ∝ exp{−γ1
∑

j

|fj|β1 − γ2
∑

j

||fj| − |fj−1||β2} (3.45)

If 1 < β1, β2 ≤ 2, then the criterion is convex and we can again use gradient based
methods. A special attention has to be paid to the values of γ1 , γ2, β1 and β2.
Their proper choice is not an easy task. In general we fix β1 = β2 = 1.1, then γ1
and γ2 can be determined either by cross validation or in a Bayesian framework
by assigning to them inverse Gamma priors.

3.4.2 Gaussian prior with hyperparameters estimation

We consider the case for exploring the hyperparameters estimation and begin with
considering a simple Gaussian prior model. The case of linear models and Gaussian
priors is interesting because many steps of the Bayesian computation can be done ana-
lytically.

p(f |σ2
f ) = N (f |0, σ2

fI) (3.46)

which allows us easily computing the posterior probability p(f |g) and the evidence of
model p(g|θ). Combining with the Gaussian likelihood

p(g|f , σ2
ǫ ) = N (g|Hf , σ2

ǫI) (3.47)

gives the posterior probability of f

p(f |g, σ2
ǫ , σ

2
f ) = N (f |µ̂f , Σ̂f ) (3.48)

with
µ̂f = σ−2

ǫ Σ̂fH
tg (3.49)

Σ̂f = (σ−2
f I + σ−2

ǫ H tH)−1 (3.50)

It is noteworthy that σ2
ǫ/σ

2
f can be interpreted as the regularization parameter λ in the

regularization model Equation 3.7. But there is a big difference of Bayesian and regu-
larization parameters: a fully Bayesian treatment of the model is capable of automatic
determination of these parameters σ2

ǫ , σ
2
f . For this we can assign them Inverse Gamma

priors and try to estimate them either jointly with f or first estimate them using the
ML and then use them for the inversion step.

The evidence of the model in such a simple case is

p(g|σ2
ǫ , σ

2
f ) =

(
1

2πσ2
ǫ

)M
2

(
1
σ2

f

)N
2 |σ−2

f I + σ−2
ǫ H tH|− 1

2 exp{−‖g−Hµ
f
‖2
2

2σ2
ǫ

− ‖µ
f
‖2
2

2σ2

f

} (3.51)

Taking the logarithms of evidence of the model yields the log-marginal likelihood

ln p(g|σ2
ǫ , σ

2
f ) = −N

2
ln σ2

f −
M

2
ln σ2

ǫ

− 1

2σ2
ǫ

‖g −Hµf‖22 −
1

2σ2
f

µt
fµf −

1

2
ln |σ−2

f I + σ−2
ǫ H tH| − N

2
ln(2π)

(3.52)
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Denoted by γi the N greatest eigenvalues of the matrix σ−2
ǫ H tH , the Equation (3.52)

can be well approximated by [Tip01, ZMDLM11]:

ln p(g|σ2
ǫ , σ

2
f ) = −N

2
ln σ2

f −
M

2
ln σ2

ǫ

− 1

2σ2
ǫ

‖g −Hµf‖22 −
1

2σ2
f

µt
fµf −

1

2

M∑

i=1

ln(σ−2
f + γi)−

N

2
ln(2π)

(3.53)

Setting the derivatives of the marginal likelihood with respect to σ2
ǫ , σ

2
f to zeros gives

σ2
ǫ =

‖g −Hµf‖22
N − γ

(3.54)

σ2
f =

µt
fµf

γ
(3.55)

with γ =
∑N

i=1
γi

γi+σ−2

f

. Note the estimations of σ2
ǫ , σ

2
f depend on the estimation µf of f

which itself depends on σ2
ǫ , σ

2
f . Herein we adopt an iterative procedural that estimates

f given by Equation 3.49 holding the σ2
ǫ , σ

2
f fixed and then finds σ2

ǫ , σ
2
f by fixing µf .

This process is repeated until convergence.

This scheme is summarized as following:

g
Equation(3.49)
Equation(3.50)

µ̂f

Equation(3.54)
Equation(3.55)

σ̂ǫ
2

σ̂2
f

- -
-

-

6 6

r

r

The main computational cost in this approach is the computation of N greatest
eigne values of the matrix σ2

ǫH
tH . For some particular case of the inverse problems we

can use the structure of H tH to obtain this computation fast.

3.4.3 Sparse Gaussian prior with hyperparameters estimation

We also propose a sparse Gaussian prior as the one used usually in the Sparse
Bayesian Learning (SBL) framework [Tip01], which is

p(f |Σ) =
N∏

j=1

N (fj|0, σ2
j ) (3.56)

with Σ = diag(σ2
1, . . . , σ

2
M), which gives the possibility to account for some non-

stationarity in the image by having different variances σ2
j for each pixel.

Similar to the derivation of the simple case of Gaussian prior, the posterior proba-
bility of f is

p(f |g, σ2
ǫ ,Σ) = N (f |µ̂f , Σ̂f ) (3.57)
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3.4.4 - Total Variation (TV) prior and hierarchial Bayesian estimation

with
µ̂f = σ−2

ǫ Σ̂fH
tg (3.58)

Σ̂f = (A+ σ−2
ǫ H tH)−1 (3.59)

with A = Σ−1 = diag(σ−2
1 , . . . , σ−2

N ). The evidence of the model is

p(g|σ2
ǫ ,Σ) = (2π)−M/2|σ2

ǫ +HA−1H|−1/2 exp{−1

2
gt(σ2

ǫ +HA−1H)−1g} (3.60)

Maximizing this evidence of the model gives the estimation of σ2
ǫ and Σ2

i

σ2
i =

|µi|2
γi

, i = 1, 2, . . . , N (3.61)

σ2
ǫ =

‖g −Hµf‖22
N −∑

i γi
(3.62)

with
γi = 1− (Σ̂

−1

f )ii/σ
2
i . (3.63)

This scheme is summarized as following:

g
Equation(3.58)
Equation(3.59)

µ̂f

Equation(3.61)
Equation(3.62)

σ̂2
i

σ̂2
ǫ

- -
-

-

6 6

r

r

Here the main computational cost is also the computation of γi in Equation (3.63)
which has to be done at each iteration.

3.4.4 Total Variation (TV) prior and hierarchial Bayesian es-
timation

In this section, We consider a special case of Generalized Gauss Markov distribution
with β1 = 0 and β2 = 1, which is so-called Total Variation (TV) prior. The Total-
Variation-based method pioneered by Rudin et al. [ROF92] has been widely used in real-
value image reconstruction and denoising, etc. [BMK08, CEPY05, DTR10] and achieved
good performance. Intrinsically, TV is the l1 norm of derivatives with replacement of l2
norm and has been proved more appropriate for image reconstruction. It can preserve
the edges while enhance the smoothness of the region. In the point of view of Markov
Random Field (MRF), TV prior is a special case of the more general MRF. We extend
the classic TV prior to the MRF model being not limited to the first-order derivatives.

In this section, we consider the Bayesian approach with TV prior. Again assuming
the noise to be Gaussian, we have:

p(g|f , β) ∝ βM/2 exp(−β

2
‖g −Hf‖22) (3.64)
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Here, we consider a TV prior for f for its capability of strengthening the smoothness
of the region and preserve the edge. This prior has been widely used in the community
of image processing and computer vision but not much attention in the community of
SAR. Similar to [BMK08], the revised TV prior adapted to SAR image reconstruction:

p(f) ∝ αN/2 exp{−α

2
TV(f)} (3.65)

where the TV prior is given by

TV(f) =
∑

j

√
∆h

j (f) + ∆v
j (f) (3.66)

where ∆h
j (f), and ∆v

j (f) are the horizonal and vertical first order differentiate operators,
respectively.

∆h
i (f) = ||fi| − |fli ||

∆v
i (f) = ||fi| − |fai ||

We can further rewrite it as

p(f) ∝ αN/2 exp(−α

2

∑

i

(|fj| − |fj−1|)2

= αN/2 exp(−α

2
‖D|f |‖22)

(3.67)

where D is a N × N high-pass filter matrix which are used to impose smoothness
constraints on the image estimate. For TV prior with the first-order differentiation
operator in 1D case, it is given by

D =




1 0 . . . 0
−1 1 . . . 0
0 −1 1 . . .
...

...
. . .

...
0 . . . −1 1




(3.68)

We also take a conjugate prior on hyperparameters α, β as Gamma distribution,
which are, respectively

p(α|a0, b0) =
ba0

Γ(a0)
αa0−1 exp(−b0α) (3.69)

p(β) =
dc00
Γ(c0)

βc0−1 exp(−d0β) (3.70)

The posterior on {f , α, β} is

p(f , α, β|g) ∝ p(g|f , β)p(f |α)p(α)p(β) (3.71)

We here concentrate on the JMAP estimation of {f , α, β}, i.e.,

{f̂ , α̂, β̂} = arg max
(f ,α,β)

{ln p(f , α, β|g)}

= arg min
(f ,α,β)

{J(f , α, β)}
(3.72)
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where the objective function

J(f , α, β) =
β

2
‖g −Hf‖22 +

α

2
‖D|f |‖22

− (
M

2
+ c0 − 1) ln β + d0β

− (
N

2
+ a0 − 1) lnα + b0α

(3.73)

We adopt a coordinate-descent method to optimize J that basically optimizes one
of variables f , α, β while fixing the others iteratively.

Optimize f in complex domain

The radar scattering coefficients are usually complex. We rewrite Equation (3.65) as

p(f) ∝ αM/2 exp(−α

2

∑

i

(|fi| − |fi−1|))

= αM/2 exp(−α

2
‖D|f |‖22)

= αM/2 exp(−α

2
‖22DSf‖22)

(3.74)

where

S = diag([exp(−js1), exp(−js2), . . . , exp(−jsN)]), s = [s1, s2, . . . , sN ] (3.75)

and
sj = φ(fj), ∀j (3.76)

where φ(fj) is the phase of fj. However, f̂
(k)

in Step 3 is not immediately obtained
since the regularization term ‖D|f |‖22 is non-differentiable and nonlinear, therefore we
adopt a majority-minimization (MM) method to optimize. For brevity, the superscript
k and the term irrelative to f will be dropped off.

f̂ = argmin
f

J(f) = argmin
f

‖g −Hf‖22 + λ‖DSf‖22 (3.77)

where λ = α/β.

Instead of optimizing J(f) in Equation (3.77) directly, we iteratively minimize its
so-called majority function J̃(f |f (k)) such at [BMK08]

J(f) ≤ J̃(f |f (k)), ∀f
J(f (k)) = J̃(f (k)|f (k))

(3.78)

where f (k) is the estimation at the iteration k. It can be easily shown that the function

J̃(f |f (k)) = ‖g −Hf‖22

+
λ

2

∑

j

{
‖[DSf ]j‖22

2‖[D|f (k)|]j‖22
+

1

2
‖[D|f (k)|]j‖22

}
(3.79)
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is the Majority function which satisfies the conditions Equation (3.78), where [x]j de-
notes the jth element of x and

J̃(f |f (k)) = ‖g −Hf‖22 +
λ

4
[DSf ]

′

W [DSf ] (3.80)

where
W = diag(1/‖[D|f (k)|]j‖22, j = 1, 2, . . . , N). (3.81)

Equation (3.80) is an iterative weighted least square problem which can be solved by
the conjugated gradient descent method avoiding the inverse operation of a large-scale
matrix with the gradients

▽f J̃(f |f
(k)) = −2H

′

(g −Hf) +
λ

2
[DS]

′

W [DSf ] (3.82)

Algorithm 2 Majorization-Minimization algorithm

Input: g, λ, the maximum number iterations Niter

Output: the reconstructed image f

1: Initialize f (0) by IFT method
2: for k = 1 to Niter do
3: Compute sj = φ(fj);
4: Minimize the equation 3.41 using gradient descent method

5: if

∥∥∥∥|̂f
(k)| − |f̂ (k−1)|

∥∥∥∥
2

2

/‖f̂ (k−1)‖22 ≤ ε then

6: Break;
7: end if
8: end for

3.5 Conclusions

In this chapter, a Bayesian inference methodology for SAR imaging was proposed.
The deficiencies of classical inversion methods were analyzed. The statical probability
distribution functions for two kinds of typical SAR target scenes were presented. Simple
priors as well as the hierarchical priors with hyperparameters were then appropriately
proposed. Different estimation approaches as MAP, Joint MAP, the marginalization
and VBA were presented. Then, proposed different priors and estimation methods
were implemented respectively: firstly MAP estimation with three simple priors, then
hyperparameters estimation of the marginalization with a simple Gaussian prior and a
sparse Gaussian prior and finally a hierarchical Bayesian method with a generalized TV
prior. A coordinate-descent optimization method was developed for TV estimation.
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Part II

Applications to Different SAR
Imaging Systems
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4
Bayesian Approach for Mono- and Bi-static

SAR Imaging

4.1 Introduction

The objective of this chapter is to apply the proposed Bayesian approach for Mono-
and Bi-Static SAR imaging.

In the process of SAR imaging, there are many degradation factors leading to the
decrease of the resolution of imaging system. Aiming at improving the resolution of
SAR images, technologies on hardware data processing have been developed. Conven-
tional Mono-static SpotSAR imaging can acquire high resolution for its long integration
time. However, as the transmitter and the receiver are collocated, radar itself is easily
being detected by counter. Recently, the emergence of Bi-static SAR [GPSG10, MM07]
provides a possibility to improve the resolution as well as to decrease the probability of
detection, playing a very important role in space surveillance.

From the mathematical point of view, for Mono- or Bi-static SAR imaging, we need
to handle the ill-posed problem by using one data set to reconstruct the unknown target
scene. By applying probability distributions to different quantities, we can then use the
framework of estimation in the Bayesian sense [MD09a].

Bayesian approach supplies a flexible framework by utilizing prior information as well
as the inference tools to any unknown quantities [Idi08]. In the sense of the application,
different priors are closely linked to features of interest, while the powerful inference
tools for parameters or hyperparameters of the model bring a more accurate solution,
thus the resolution of SAR images can be improved, useful features can be well enhanced
and finally a recognition-oriented SAR imaging can be realized.

According to the inversion approach proposed in Chapter 3, this chapter will be
organized as follows:
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CHAPTER 4. BAYESIAN APPROACH FOR MONO- AND BI-STATIC SAR
IMAGING

In Section 4.2, experiments for MAP estimation with simple priors are conducted.

In Section 4.3, experiments for marginalization with hyperparameters estimation are
conducted.

In Section 4.4, experiments for Total Variation (TV) prior and hierarchical Bayesian
estimation are implemented.

Experimental results demonstrate the feasibility of the proposed approach.

4.2 Simple Priors with MAP Estimation

Figure 4.1 summarizes the proposed Bayesian approach for SAR imaging:

Inversion Results

Estimated image

Bayesian Inversion and Modeling

Prior term

Degration 

estimation

Data term

(likelihood)

MAP estimation

(optimization)

Forward modeling

Observed data

Original target

Degration

model

Target Scene 1

(sparse scatterers)

Target Scene 2

(Homogeneous 

regions)

 

,
tc cr

  

Noise 

model

SAR

system 

model

SGG

GGM

X X

 

SC

Figure 4.1: Graphic model of forward modeling and Bayesian inversion.

1. In the left bloc the forward model and prior information on the target are de-
scribed.

2. In the middle bloc, the two main steps of the Bayesian approach which are ob-
tention of likelihood and prior terms are summarized. In this section, we limited
ourselves to simple priors with MAP estimation when the hyperparameters were
given.

3. In order to demonstrate the performances of our proposed method, we define the
relative distance errors to evaluate the reconstructed results.

For synthetic data, where it is possible for us to know the original f , we use the
following criterion

Relative distance(f , f̂) =

∥∥∥|f | − |f̂ |
∥∥∥
2

2

‖f‖22
(4.1)

where f̂ is the estimated term. This criterion represents the reconstruction error
to measure the performance of the reconstructions in simulation.
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Simple Priors with MAP Estimation

For real data, we do not know the original f . One solution in this case is to use
the following scheme in Figure 1.4, and compare ĝ = Hf̂ with g using

Relative distance(g, ĝ) =

∥∥∥|g| − |ĝ|
∥∥∥
2

2

‖g‖22
(4.2)

which is a normalized residual error.

In the next section, we will demonstrate the capabilities of the proposed Bayesian
approach with several experiments. As usual we are interested in point scatterers along
with homogeneous regions in a SAR image. The synthetic scenes are generated to simu-
late metallic point scatterers or manmade homogeneous targets. Real scenes composed
by more complicated targets will also be used to verify the performance of the proposed
method.

4.2.1 Results with synthetic data

We give simulated results on two synthetic target scenes f(x, y): point targets and
extended targets. We simulate different target scenes with the combination of these two
kinds of targets. The relation between the Fourier transform of the measured data and
the unknown target scene is modeled by a 2D spatial FT. The inverse problem becomes
then a FS problem which depends on the geometry of the data acquisition. Only the
set of locations in the Fourier space are different. Based on this, we propose the steps
of generating synthetic data as following:

1. We first generate the synthetic target with scattering coefficients f(x, y) with
magnitude 1 . For complex coefficients f(x, y), the phase is generated randomly
with uniform distribution in [−π, π]

2. We do Fourier Transform on f(x, y) to obtain its spectral data F (kx, ky);

3. We define a binary function M(kx, ky) representing the sampling in the wavenum-
ber domain under different observations and geometries. M1(kx, ky),M2(kx, ky)
are used for simulating data support with two bands of radar transmitter and
different observation angles;

4. Then we get observed wavenumber data through G(kx, ky) = M(kx, ky)F (kx, ky).

5. The additive complex gaussian noised ǫ(kx, ky) is generated based on the SNR
and is added to G(kx, ky). Our aim turns to reconstruct the original target f(x, y)
from its partial observed data G(kx, ky).

Here we apply the proposed method in experiments with various synthetic and real
target scenes and compare them with those of the conventional IFFT-based imaging
methods and the classical regularization methods to demonstrate achieved improvements
in performance.

Experiment 1: Target 1/Target 2

We start with two simple targets. Figure 4.2 shows the two targets. Target 1,
illustrated in the first row, represents a target composed of regions; while Target 2 in
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4.2.1 - Results with synthetic data

the second row, represents a target composed of strong scatterers. The first column
shows the two synthetic targets which are the magnitude of f(x, y), i.e., |f(x, y)|. The
second column shows the magnitude of Fourier Transform, the third column shows the
masks which are corresponding to the different observation geometry and the generated
data are shown in the fourth column.
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Figure 4.2: Two simulated targets and generated complex data sets, magnitude dis-
played in reverse video: a) Original Targets: Target 1 and Target 2; b) Fourier Trans-
form; c) Masks; d) Observed data.

We can see that, Target 1, is more realistic to a scene composed by homogeneous
regions. And the reason we choose such a special geometry for Target 2 is actually for
simulating the experimental scene which will be given in the next chapter. The masks
represents datasets with different geometry and bandwith.

Results Analysis

Figure 4.3 shows the reconstructed results for the two targets (the first row for
Target 1 and the second row for Target 2) with complex scattering coefficients. Com-
paring with different inversion methods, those from regularization methods as well as
the proposed Bayesian methods with different priors are better than those from classical
deterministic imaging methods. The improvement comes from the introduction of the
prior information.

If we examine the results in the first row in Figure 4.3, we could find for Target 1, the
inversion results based on the proposed Bayesian method using the GGM prior is better
than those obtained using other priors. while comparing results in the second row, we
could find that for Target 2 which has the typical scattering characteristics of isolated
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a) IFFT b) QR c) SGG d) SC e) GGM

Figure 4.3: Reconstructed results on simulated complex data, magnitude displayed with
the first row on data set 1 and the second row on data set 2 displaying in reverse
video: a) Inverse Fast Fourier Transform (IFFT); b) Quadratic Regularization (QR);
c) Separable Generalized Gaussian (SGG); d) Separable Cauchy (SC); e) Generalized
Gaussian Markov (GGM).

points, results based on the proposed Bayesian method using the SGG prior(β = 1)
perform better than those using other priors.

The Table 4.1 presents the results for the targets with complex values. For Target 1
under SNR of 30dB and 20dB, the proposed Bayesian method with GGM prior present
the best performance. For Target 2, the proposed Bayesian method with SGG prior is
always the best under different SNR of 30dB, 20dB, 10dB and 5dB.

The proposed Bayesian method shows a comparatively strong robustness. From the
analysis, we can see that in order to obtain a good reconstruction results, for targets of
dominant scattering structures, sparse distributions can be chosen for prior modeling;
In contrast, for targets containing several regions, smoothen priors could be used for
enhancing the region features of the targets.

Table 4.1: Statistical results of reconstructed relative distance errors on two targets
(Target 1/Target 2) with complex scattering coefficients

.

SNR 30dB 20dB 10dB 5dB
IFFT 0.86/0.87 0.89/0.90 0.94/0.92 0.94/0.94
QR 0.84/0.86 0.86/0.90 0.89/0.92 0.89/0.94
SGG 0.83/0.82 0.85/0.84 0.88/0.85 0.93/0.90
SC 0.86/0.84 0.86/0.86 0.87/0.85 0.91/0.92

GGM 0.82/0.83 0.84/0.85 0.88/0.85 0.88/0.92
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4.2.2 - Results with real data

4.2.2 Results with real data

To be more realistic, we now perform the experiments on data collected in MSTAR
(Moving and Stationary Target Acquisition and Recognition program) public target
data set.

Real data description

The data set was collected in September of 1995 at the Redstone Arsenal, Huntsville,
AL by the Sandia National Laboratory (SNL) SAR sensor platform. The collection was
jointly sponsored by DARPA and Air Force Research Laboratory as part of the MSTAR
program. SNL used an X-band SAR sensor in one foot resolution spotlight mode 1.

The MSTAR dataset consists of SAR images of various ground military vehicles
including T72 tanks, BMP2 tanks and BTR70 armed personnel carriers as well as the
standard SLICY targets. These images were taken at X band, at 17◦ and 15◦ depression
angles respectively and evenly spaced (in about 5◦) in Azimuth(aspect angle) to cover
360◦ [CKC02, WW09]. The parameters of MSTAR target is illustrated in Table 4.2.

Phase history data generation

We take the SLICY data (HB14957.015) and T72 data (HB03333.015) for the exper-
iment. The original targets of slicy and T72 tank are shown in Figure 4.4 2. The data
sets we get are complex-valued SAR images, with 54× 54 and 128× 128 for SLICY and
T72, respectively. We perform operations of FFT, remove zeroes and windows on the
images data and get the phase history data as in [CKC02]. We then apply our method
with the phase history data.

The magnitudes of the phase history data on the two targets are shown in Figure 4.5.

Table 4.2: MSTAR public targets

Targets Target Description

SLICY
Multiple simple geometric shaped static
target

CAD Model November ’96 Imagery: TBD
in Jan ’97

T72 T-72 Tank
3 replicate targets: each collected at 15
& 17 degree dep. angles and full aspect
coverage

Results on MSTAR

Figure 4.6 illustrates the experimental results on MSTAR, with the first and the
second row showing reconstructed results on the standard Slicy data and T72 Tank,

1. Data from https://www.sdms.afrl.af.mil/index.php?collection=mstar&page=targets
2. Pictures from http://www.wagenman.org/thesis/MSTAR/MT 15 45/15 deg/col2/scene1/slicy/target.htm,

http://www.army-technology.com/projects/t72/
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a) Slicy b) T72

Figure 4.4: The original target: a) Target chip for Slicy at 15◦; b) T72 tank at 15◦.
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(a) Slicy (b) T72

Figure 4.5: The magnitude of phase history data displaying in reverse video
: (a) Slicy; (b) T72.

respectively.

We again use the relative distance error defined in Equation (4.2) to evaluate the re-
constructed results. Table 4.3 illustrates the comparative reconstruction errors of IFFT,
QR and the proposed MAP method with priors of SGG, SC and GGM, respectively.

4.2.3 Analysis and discussions

Figure 4.6 shows the inversion results based on the real data of MSTAR. Because
of non-zero background clutters as well as the specific distributed regions, the recon-
struction of these targets are not sharp and clear as the previous scene. It is shown
that bright artifacts that are noticeable around strong reflectors in the focused images.
However, the resultant reconstructed images remain in good agreement with the true
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Figure 4.6: Reconstructed results, with first row on Slicy data and the second row on
MSTAR data (complex values), magnitude displayed in reverse video: a) Inverse Fast
Fourier Transform (IFFT); b) Quadratic Regularization (QR); c) Separable Generalized
Gaussian (SGG); d) Separable Cauchy (SC); e) Generalized Gaussian Markov (GGM).

Table 4.3: Statistical results of reconstructed relative distance error on two real targets
(SLICY and T72 Tank)

IFFT QR SGG SC GGM
SLICY 0.32 0.31 0.29 0. 30 0.32

T72 Tank 0.35 0.34 0.32 0.31 0.30

image.

Table 4.3 presents the relative distance error of inversion results. From it, we can see
that by making use of the prior information of targets to do inversion, not only certain
characteristics of targets can be well enhanced (or preserved), but also the robustness
of inversion results on targets under low SNR can be firmly strengthened.

Figure 4.7 illustrates that for the distribution of SGG, reconstruction errors on Target
2 change with different values of regularized parameters λ and β, from which we could
see the effectiveness of the sparse priors for this kind of targets. Figure 4.8 illustrates for
Cauchy distribution, reconstruction errors on Target 2 changing with different values of
parameter λ.

Based on the above analysis, we can see that with an appropriate prior, a better
estimation result can be get. For the target scene mainly composed of point sources
(representing small size metallic targets, for example), it is moderate to utilize the SGG
or SC prior, which could enhance features specially as strong scattering points; instead,
for the scene mainly incorporating regions (representing comparatively large targets or
scene), it is nearly perfect to employ the GGM prior which could smoothen regions as
well as preserving edges.
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Figure 4.7: Different reconstruction errors with parameters λ and β in prior SGG.

4.3 JMAP for Hyperparameters Estimation

In the section above, we have investigated Bayesian method by assuming that the
parameters of the distributions are know. But this is unreal in practical. The parameters
are generally unknown so it is necessary to do estimation as well. Bayesian method pro-
vides an efficient way to jointly estimate the target and the hyperparameters. Figure 4.9
illustrates the JMAP process of this estimation method based on alternate optimization
of p(f ,θ|g).

Figure 4.10 shows the marginalization steps:

We apply the marginalization algorithm as illustrated in Figure 4.10 for two Gaus-
sian priors proposed in the section 3.4.2. In the following section, we will show some
experiments based on:

1. Gaussian prior when we estimate σ2
ǫ and σ2

f ,

2. Sparse Gaussian prior when we estimate σ2
ǫ and σ2

i ,

and compare the marginalization estimation results.
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Figure 4.8: Different reconstruction errors with the parameterλ in prior SC.
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Figure 4.9: Jointly estimate the target and the hyperparameters.

4.3.1 Results with synthetic data

In this section, we conduct experiments on synthetic data to validate our proposed
method. Data generation steps are defined as the same in Section 4.2.1, as illustrated
in Figure 4.2.

Figure 4.11 shows the Bayesian reconstructed results f̂(x, y) obtained with the pro-
posed two priors for the target of complex-valued data. Table 4.4 lists the relative
distance error of the inversion results for the targets of complex data.

4.3.2 Results with real data

We now also perform the experiments on real data on MASTAR data set. As be-
fore, two targets (Slicy and T72) are used. The reconstruction results are shown in
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Figure 4.10: Marginalization with hyperparameters.
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Figure 4.11: Synthetic data (complex values), magnitude displayed in reverse video: a)
Original targets and Bayesian reconstructed results with different priors with hyperpa-
rameter estimation; b) Gaussian Prior; c) Sparse Gaussian Prior.

Table 4.4: Statistical results of reconstructed relative distance error on the two synthetic
targets of complex values with Bayesian methods

Gaussian Sparse Gaussian
Target 1 0.88 0.73
Target 2 0.70 0.68

Figure 4.12, with the first row and the second row of Slicy and T72, respectively.

We again use the relative distance defined in Equation (4.2) to evaluate the recon-

89



4.3.3 - Analysis and discussions

structed results. Table 4.5 illustrates the relative distance error of reconstruction with
the proposed marginalization method. Again, the results demonstrate the effectiveness
of the proposed method with Gaussian and especially with Sparse Gaussian prior.
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Figure 4.12: Bayesian reconstructed results with different priors with hyperparameters
estimation, magnitude displayed in reverse video: a) Gaussian prior; b) Sparse Gaussian
prior.

Table 4.5: Statistical results of reconstructed relative distance error on two realistic
targets (SLICY and T72 Tank)

Gaussian Sparse Gaussian
SLICY 0.21 0.20

T72 Tank 0.40 0.34

4.3.3 Analysis and discussions

Results based on simulated data is shown in Figure 4.11, with the first row and the
second row showing the results on Target 1 and Target 2, respectively. From them, we
can see with the proposed method, real target scene can be reconstructed accurately.
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Results based on real data is shown in Figure 4.12 also demonstrate the success of
the proposed method. Thanking the introduction of the prior information, as well as
the marginalization inference, hyperparameter estimation can be implemented at the
same time.

4.4 TV Prior and Hierarchical Bayesian Estimation

Fig. 4.13 show the graphic model with TV prior and the corresponding estimation
process.
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Figure 4.13: Jointly estimate the target and the hyperparameters with TV prior.

4.4.1 Results with synthetic data

Again we first demonstrate the proposed method on synthetic data. As shown
in Figure 4.14, the steps of the data generation are done as before, where we first
create the original targets f(x, y) and its Fourier Transform F (kx, ky) in wavenum-
ber domain, and then define the mask M(kx, ky) which gives the partial observa-
tion in the frequency domain. Finally the observation G(kx, ky) is generated by

G(kx, ky) = F (kx, ky)M(kx, ky) + ǫ(kx, ky). Our goal is to reconstruct f̂(x, y) from
the noisy and partial observation G(kx, ky). The first row is the targets of real values
and the second is the targets of complex values.

The simulated targets are specially chosen as the scene composed of homogeneous
regions, in order to accurately verify the proposed method.
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4.4.2 - Results with real data

Figure 4.15 shows the reconstructed images of targets of complex values with Inverse
Fast Fourier Transform (IFFT) and the proposed Bayesian TV method (BTV) with two
different operators D formed by two filters respectively.

d1 =




0 −1 0
−1 4 −1
0 −1 0


 (4.3)

d2 =

[
−1 1
1 −1

]
(4.4)

Table 4.6 lists the relative distance error of reconstructions. In each column, com-
paring the three results from IFFT, BTV-d1 and BTV-d2, we can clearly see that under
the same SNR, the reconstruction results from TV priors are better than that from the
conditional method of IFFT; while in each row, comparing results from each method,
we can find the results from TV priors are robust even under low SNR.

Table 4.6: Relative distance error of reconstruction on synthetic complex data

SNR 30dB 20dB 10dB 5dB
IFFT 0.84 0.85 0.88 0.90

BTV-d1 0.82 0.83 0.87 0.89
BTV-d2 0.83 0.83 0.87 0.89

4.4.2 Results with real data

Figure 4.17 shows the reconstructed results based on public real SAR data, of which
the first, the second rows are from Sandia, Isleta Lake, Isleta Pueblo, New Mexico and
the third row are from MSTAR of T72 respectively. Since the data is already an image,
we turn it into the complex phase domain as real received echoes. The steps are done as
before. Figure 4.16 illustrates the frequency magnitude of two parts of the lake, named
as lake 1 and lake 2.

It shows that with the TV prior, the region features of the objects are smoothed,
e.g., the dark areas, while the edges are preserved and enhanced, e.g., the white lines in
the images in the second row. The noise is suppressed greatly. Table 4.7 lists the relative
distance error of reconstructions, which shows the BTV-d1 brings a better performance
for reconstruction. The reason is that the filter d1 considers more neighbor pixels than
the filter d2.

Table 4.7: Relative distance error of reconstruction on real data

IFFT BTV-d1 BTV-d2
Lake 1 0.89 0.82 0.82
Lake 2 0.79 0.76 0.77
T72 0.84 0.80 0.81
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4.4.3 Analysis and discussions

From the results on both synthetic and real data, it is shown that the region can
be smoothed while the edges can be preserved and enhanced with TV prior. The main
reason is that TV prior is a sparse prior with l1 on spatial difference to model the edges in
images. So for the region targets, we can use the proposed TV prior to enhance the edge
features in a SAR image. The proposed method with feature enhanced images can well
benefit the following tasks, such as SAR image interpretation and target recognition.
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Figure 4.14: Synthetic data (complex values), magnitude displayed in reverse video.

4.5 Conclusions

In this chapter, we applied the proposed Bayesian approach to Mono- and Bi-static
SAR imaging. A detailed modeling of the data acquisition process was simulated. Then
several experiments were conducted on both synthetic and real data. The results demon-
strated the feasibility of the proposed method, with the advantages as following: i)
bringing high resolution to the images; ii) enhancing interested target features while
imaging; iii) adaptively estimating the hyperparameters while imaging; iv) improving
the robustness of the optimal estimation as the solution to the inverse problem.

From the sense of target recognition, Bayesian SAR imaging method is distinct from
conventional methods which consider radar imaging and feature extraction as indepen-
dent processes. With assigning appropriate priors, it offers a promising solution in
improving target recognition capability for real SAR systems.

It is to be noted that the content and results of this chapter are mainly from the
papers [ZMDLM11, ZMLW12].
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Figure 4.15: Reconstruction results of the targets of complex values with IFFT and the
proposed method versus different SNR, magnitude displayed in reverse video

: a) 5 dB; b) 10dB; c) 20 dB; d) 30dB.
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Figure 4.16: Frequency magnitude of Isleta lake: a) Lake 1; b) Lake 2.
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a) IFFT b) BTV-d1 c) BTV-d2

Figure 4.17: Real data reconstruction (complex values), magnitude displayed: a) IFFT;
b) BTV-d1; c) BTV-d2.
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5
Bayesian Approach for Multi-static SAR

Imaging

5.1 Introduction

The objective of this chapter is to apply the proposed Bayesian approach to Multi-
static SAR imaging.

Theoretically speaking, the proposed method in the previous chapter can also be
applied to Multi-static case, which needs to make use of more than one data set to do
data fusion and inversion.

Multi-static SAR has been paid more and more attention for its importance in coop-
erative surveillance. One important application is the satellite-borne space distribution
SAR [WG07, FG02, CB09]. In essence, it is an ill-posed problem of image reconstruc-
tion from multi observations over the same target to obtain a high resolution image.
However, real measurements are corrupted by noise. Meanwhile, the reconstructed im-
ages by conventional methods suffer from artifacts. There is then a need for developing
appropriate inversion and data fusion methods.

Many methods have been developed for multi-static or multi-frequency SAR data
fusion. Statistically based fusion methods present distinct potentials for uncertainties
arising from information incompleteness [YMTP12, Zha04, Li07]. [Bro03] demonstrated
the benefits for classification by employing a Bayesian approach on multiple-view data
at different incoherent views. [OTM+03, OTM+01, CTC+04] discussed the benefits
of fused SAR images for feature extraction and target detection. [LHYS07] proposed
an innovative multi-to-multi image fusion method against noise. [SLP01] proposed a
Bayesian approach on sensor image fusion and [CTC+04, HP11] specially studied the
fusion strategies on SAR images. In this chapter, we propose a Bayesian fusion method
to explore the abundant information contained in echo data [MD03]..
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CHAPTER 5. BAYESIAN APPROACH FOR MULTI-STATIC SAR IMAGING

This chapter is organized as follows: in Section 5.2 we introduce the application
background of the distributed satellite multi-static SAR, analyzing the drawbacks of
traditional fusion methods; in Section 5.3, we propose three different fusion schemes; in
Section 5.4, we conduct the experiments on both simulated and real data to demonstrate
the performance of the proposed method; in Section 5.5, we draw conclusions of this
chapter.

5.2 Distributed Satellite Multi-Static SAR

Recently, SAR techniques show its potential in the configurations of multi-static
passive SAR system. Current typical spaceborne distributed satellite SAR systems
such as Techsat21 system [BMLM00] in USA, Cartwheel system in France [Mas01] and
TanDEM-X system in Germany [GA07] have played important roles in remote sens-
ing, detection and military surveillance. Different from Mono-static SAR, at the lowest
points of passive receivers, Multi-static SAR could obtain a promising resolution at
each direction of forward looking, down looking and back looking with the movement
of receivers. These characteristics strengthen imaging regions, which could bring appli-
cations in new fields [GA07, WHB06, GD02]. [KFHM03] presents a typical distributed
satellites SAR system, with main parameters given in Table 5.1.

Table 5.1: System main measurement parameters

Main satellite position /km 35850
Small satellites position /km 400

Radar transmitter wavelength /cm 3.1
Range resolution /m 3

Cross range resolution /m 3

By utilizing its distributed characteristics, the range resolution and cross range res-
olution of the main satellite could be improved. For a given ground target area, based
on the simultaneous observations from satellites at different slant angles and pitch an-
gles, making coherent integration of received echoes spectra to synthesize a wide spectra
and then doing reconstruction. This coherent processing method yields an assumption
that the received echo signals from each position could be completely coherent for the
distances between satellites are very small and the whole antennas compose an effective
large antenna. However, in practice, the received signals at each receiving antenna may
be interfered by the scattering signals. This is mainly due to received signals from dif-
ferent channels can never be completely coherent integrating; and partly due to adding
bandwidth resulting in additive thermal noise at the receiver, which decreases the SNR
of SAR images [ZBXH07].

Besides, instead of using phase information, barely making use of amplitude infor-
mation, a class of incoherent processing for distributed satellites is formed, which is
implemented by incoherently combination of multiple channels, or by multi-look tech-
nique within one channel. The former doesn’t decrease resolution of the single channel,
however, the latter does. And image registration is required for both before amplitudes
adding.
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Multi-Static SAR Imaging as a Data Fusion Problem

We conclude the challenges of conventional methods are:

1. When the received echoes of multiple satellites receivers are considered as echoes
from one satellite at different time, the resolution of the fusion is then affected by
the phase compensation error. Supposing that the phase compensation has been
done, conventional imaging methods based on IFFT [CGM95b] will also lead to
the loss of information and the low resolution.

2. By making use of multi spectral images to do data level fusion, the fused im-
ages suffer from color distortion and data (bands) dependency of different satel-
lites [PVG98, SFM+02, Zha10]. Moreover, this method neglects consideration
on distributed geometries and can not be considered as an effective estimation
method for uncertainties.

At the same time, in reality, significantly affected by the noise and clutters from
background, the resolution of a distributed satellites SAR image decreases severely,
which also suppresses the information in the image of fusion.

5.3 Multi-Static SAR Imaging as a Data Fusion Problem

5.3.1 Different data fusion schemes

Distributed satellites SAR is made of multiple channels and each channel could be
viewed as a separate Bi-static SAR system. Thus for each channel, we consider the
forward model of Bi-static SAR.

To handle the multichannel data processing characteristics in distributed satellites
SAR systems, we propose three fusion schemes [MDZDF10].

Method 1: separate inversion followed by image fusion

Implementing inversion in the frequency domain for each set of data separately and
then doing fusion in the spatial domain:

We first do inversion in the frequency domain for each set of data separately to get
multi images, and then do incoherent processing to do spatial fusion.

This method is summarized as follows:

G1(kx, ky)
M1(kx, ky)

− Inversion − f̂1(x, y)

|
G2(kx, ky)
M2(u, v)

− Inversion − f̂2(x, y)

−→ Fusion −→ f̂(x, y) −→ Ĝ(kx, ky)

which means that: we use each data set to do image reconstruction independently and
then combine the results to obtain final results. We have to notice that the images in
the fusion step need registration. Then, the inversion can be safely operated as image
reconstruction with one data set.
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5.3.2 - Bayesian data fusion

Method 2: data fusion followed by inversion

Implementing fusion in the frequency domain and then doing inversion in the spatial
domain:

By coherent processing method, we first do fusion in the frequency domain and then
based on the fused data to get the final image. This algorithm needs compensation
for time delay and makes use of the overlap spectra to realize multi channel coherent
adding.

The core problem is how to realize coherent adding in the frequency do-
main [MDDF09].

This method can be summarized as follows:

G1(kx, ky)
M1(kx, ky)

−
|

G2(kx, ky)
M2(kx, ky)

−
−→ G(kx, ky)

M(kx, ky)
−→ Inversion −→ f̂(x, y) −→ Ĝ(kx, ky)

To get data fusion of G1(kx, ky) and G2(kx, ky), we use mean value of common regions
and use them individually in other independent regions:

G(kx, ky) =





(G1(kx, ky) +G2(kx, ky))/2 (kx, ky) ∈ M1(kx, ky)
⋂

M2(kx, ky)

G1(kx, ky) (kx, ky ∈ M1(kx, ky)

G2(kx, ky)) (kx, ky) ∈ M2(kx, ky)

Method 3: joint data fusion and inversion

Implementing joint fusion and inversion:

G1(kx, ky)
M1(kx, ky)

−
|

G2(kx, ky)
M2(kx, ky)

−
−→

Fusion
and

Inversion
−→ f̂(x, y) −→

−Ĝ1(kx, ky)
|
−Ĝ2(kx, ky)

5.3.2 Bayesian data fusion

By utilizing two data sets simultaneously, we do joint fusion and inversion. Assuming
that we have two data set G1(kx, ky) and G2(kx, ky), the objective is to get the original
target f(x, y). Accordingly, the forward model can be written as

{
g1 = H1f + ǫ1
g2 = H2f + ǫ2

(5.1)

which can be directly solved by

p(f |g1, g2 ) ∝ p(g1 |f) p(g2 f) p(f) (5.2)
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Suppose ǫ1 and ǫ2 are i. i. d. Gaussian white noise, with given variances σǫ
2
1 and

σǫ
2
2, we have

p(f |g1, g2 ) ∝ exp[−J(f)] (5.3)

where
J(f) = 1

σ2
ǫ1

‖g1 −H1f‖22 + 1
σ2
ǫ2

‖g2 −H2f‖22 − ln p(f) (5.4)

by which to find the optimal estimation of f . The expression of the solution depends
on the choice of p(f). For the Gaussian prior p(f) ∝ exp(− 1

σ2

f

‖f‖22), we obtain:

− ln p(f) =
1

σ2
f

‖f‖22 (5.5)

and in this case there is an analytic solution which can be obtained by equating to zero
the gradient of the J(f):

∇J(f) = − 2

σ2
ǫ1

H t
1(g1 −H1f)−

2

σ2
ǫ2

H t
2(g2 −H2f) +

2

σ2
f

f (5.6)

which results in

f = (
1

σ2
ǫ1

H t
1H1 +

1

σ2
ǫ2

H t
2H2 +

1

σ2
f

I)−1(
1

σ2
ǫ1

H t
1g1 +

1

σ2
ǫ2

H t
2g2) (5.7)

One great difficulty in this fusion inversion method is the estimation of the hyperpa-
rameters σǫ1

2, σǫ2
2 and σ2

f .

This can be done if we assign them Inverse Gamma (IG) priors





p(σ2
ǫ1
) = IG(σ2

ǫ1
|α1, β1)

p(σ2
ǫ2
) = IG(σ2

ǫ2
|α2, β2)

p(σ2
f ) = IG(σ2

f |αf , βf )

(5.8)

and then considering the posterior p(f ,θ|g) and then using either a JMAP or a VBA
method.

The expression of the criterion of JMAP is obtained by

(f̂ , θ̂) = argmax
f ,θ

p(f ,θ|g) (5.9)

by alternate optimization with respect to f , then to each of the three variables of
θ = (σ2

ǫ1
, σ2

ǫ2
, σ2

f ).

Data fusion with Separable Generalized Gaussian Distribution

To exploit the sparsity of scene, we adopt the Separable Gaussian Distribution to
model the prior distribution of the target complex reflectivity.

p(f) ∝ exp

{
−γ

∑

j

|fj|β
}

∝ exp
{
−γ ‖f‖ β

β

}
(5.10)
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In this case, the gradient of the J(f) becomes

∇J(f) = − 2

σ2
ǫ1

H t
1(g1 −H1f)−

2

σ2
ǫ2

H t
2(g2 −H2f) +

2

σ2
f

βΛ(f)f (5.11)

where
Λ(f) = diag

[
(|fj|2 + ζ)β/2−1

]
(5.12)

5.4 Experiments and Analysis

5.4.1 Results with synthetic data

Simulation 1: complex data of (Target 1/Target 2)

In this section, we consider Target 1 and Target 2 with complex reflectivity. Fig-
ure 5.1 show the reconstruction results of Target 1 from the two partial frequency ob-
servation separately. The fusion results are shown in Figure 5.2. Figure 5.3 show the
reconstruction results of Target 2 from the two partial frequency observation separately.
The fusion results are shown in Figure 5.4.
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Figure 5.1: Reconstruction results for two different geometries and bandwidths observed
data on Target 1 (complex values), magnitude displayed in reverse video.
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Figure 5.2: Fusion results on Target 1 (complex values), magnitude displayed in reverse
video: a) Method 1: separate inversion and fusion; b) Method 2: data fusion and
inversion; c) Method 3: joint data fusion and inversion.
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Figure 5.3: Reconstruction results for two different geometries and bandwidths observed
data on Target 2 (complex values), magnitude displayed in reverse video.

Simulation results analysis

Based on the fusion results, we can see that all three fusion methods have improved
the resolution. Reconstructed target images looking clearer and easier to interpret.
Among them, with method 3, the Bayesian joint fusion and reconstruction method, the
result shows certain distinct features. The resolution is also improved.

Table 5.2 illustrates the relative distance for reconstruction results with different
fusion methods. The proposed Bayesian method with the least relative reconstruction
errors, has the best performance compared with the other two methods.
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Figure 5.4: Fusion results on Target 2 (complex values), magnitude displayed in reverse
video: a) Method 1: separate inversion and fusion; b) Method 2: data fusion and
inversion; c) Method 3: joint data fusion and inversion.

Table 5.2: Comparison of reconstruction performances of three methods on two complex-
valued targets.

Fusion methods Target 1 Target 2
Method 1 (I → F ) 0.89 0.69
Method 2 (F → I) 0.54 0.59
Method 3 (F & I) 0.51 0.54

5.4.2 Results with experimental data

The proposed method has been applied on the experimental data of the French
Aerospace Lab. The measurement is done with the stepped frequency signal. There
are three target compositions, for each composition, using two full polarization radar
bandwidth observed data to do inversion [Far08].

Measurement system description

The measurement system mainly consists of:

– A vector network analyzer;
– A positioning system for moving the receiving antenna on a circular arc;
– Antenna polarization horizontal and vertical of the transmitter and receiver;
– A set of four spheres constituting the measured scene.

Figure 5.5 [Far08] illustrates the imaging geometry. Table 5.3 presents the measure-
ment parameters.

Results analysis

Figure 5.6 illustrates the inversion results on real data measurements. In the first
row, three different original targets made of 1 sphere, 2 and 4 spheres are presented. In
the second, the third and the fourth rows, the inversion results of three original targets
are presented, using Band 1, Band 2 and Band 1& Band 2 with the proposed Bayesian
method (Method 3), respectively.
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Figure 5.5: Real data imaging geometry.

Table 5.3: Experimental measurement parameters

Observed target
three target compositions
(1,2,4 spheres)

Transmitter
position

The fixed position of transmitter
The emission axis passes through the center stage
0 with an elevation angle of 35o to the plan (Xb,
Yb) and 60o to the Plan (Zb, Xb).

Receiver position
The receiver moves in the (Xb, Yb) on a circular
path of 5m.

Transmitter
bandwidth

BF1=(1.16-1.98)GHz, VV polarization
BF2=(1.47-1.68)GHz, VV polarization

Comparing the results of both simulated and real data, we can see that:

1. Method 1, using multi images inverted in the frequency domain to do data-level
fusion, has the problem of data dependency, the fused result is not satisfying;

2. Method 2, using a simple combination of the spectrum data, whose performance is
affected by the average result; meanwhile, for neglecting the unknown information
in the frequency domain, the resolution of reconstruction is limited.

3. Method 3, using a joint fusion and reconstruction, has the best reconstruction per-
formance. The advantages of the proposed methods include: based on Bayesian
inference, by combining all observations to supply a unique and optimal estima-
tion, the more accurate results can be obtained. Thanks to the prior information
introduced by the proposed inversion method takeing into account of features of
the target as as well as the system imaging geometry into the forward modeling.
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5.5 Conclusions

Based on the Bayesian MAP estimation, three data fusion and inversion methods
for distributed satellite SAR were proposed. Through comparing results on simulated
and real data, the Bayesian joint fusion and reconstruction method performed better
than the other two methods. An optimal estimation based on different frequency bands
was realized. Problems of target information loss as well as the data bands depen-
dency caused by conventional methods were avoided. The proposed method showed the
application potential in distributed SAR systems.

The content and experimental results of this chapter are also in papers [MDZDF10,
MDDF09].
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Figure 5.6: Results on real data (complex values), magnitude displayed in reverse video.
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Part III

Application to SAR Micromotion
Target Imaging
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6
Bayesian Approach for SAR Micro-Motion

Target Imaging

6.1 Introduction

In the previous chapters, we have studied the problem of SAR imaging for different
geometries. The problem is considered as a linear inverse problem of Fourier Synthesis
(FS). Then, we combine our knowledge of the unknown target scene with observed data
and solve the imaging problem in a Bayesian framework.

All the targets above are considered as stationary. For a moving target, unfortu-
nately, the problem becomes to be more complicated. Although there exists a well
known technique of SAR Ground Moving Target Indication (SAR-GMTI) for the air-
and spaceborne radar, which takes advantage of the movement of the target and sensor
by defocusing and/or displacement induced by target motions. However, it no longer
works for the situation that the target experiences non-uniform accelerating translation,
especially for more complex motions such as rotation, vibration, sinusoidal motion and
rocking (named as micromotion) [DWQ+09].

Micromotion results in complicated nonlinear phase histories on SAR echo. Unfor-
tunately the classical imaging methods can not handle it any more. The effects induced
by micromotion on SAR images include gray strip, disordered lines, ghost points, fences,
blurred lines, displaced points, etc., making it more difficult to be interpreted.

In this chapter, we consider the problem of micromotion target imaging as a signal
sparse representation problem. We adopt a parametric model and propose a Bayesian
approach for the solution.

This chapter is organized as follows. In Section 6.2 we analyze the micromotion effect
on SAR imaging, and give an overview of current research on SAR micromotion tar-
get imaging. Based on the analysis, we propose a BCS (Bayesian Compressive Sensing)
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method to solve this problem. To do this, firstly, in 6.4 we establish the SAR echo model
on micromotion target. In Section 6.5.1 we review the different sparse modeling and op-
timization criteria. In particular, l1 regularization approach conducts us to the Bayesian
approach which is developed in Section 6.5.2. We propose two priors as Separable Gen-
eralized Gaussian prior and Student-t prior. In Section 6.6 we carry out simulations and
analyze the performance of the proposed approach. Finally in Section 6.7, we draw our
conclusions.

6.2 Micromotion Effect on SAR Imaging

6.2.1 Definition of micromotion

In nature, micromotion widely spreads in variety forms, such as the movement of
human’s body, the swing of legs, the vibration of a bridge, etc.; in the military context,
such as the rotating antenna in air defense positions, a large fan for the air-conditioned
vehicle engine, rotating windmills, wheels, vibrated bumps of a moving vehicle, swing
ships, rotation antenna of ship-borne radar, the rotor with the rotation high-speed of he-
licopter, etc. [TSQ+10]. All these non-uniformly accelerated motion of targets or target
components (such as vibration and rotation) are commonly referred as micromotion.

Definition 2. Micromotion is a collective definition referred to slightly back and forth
movement or the movement of the target or target component along the cross direction
relatively to radar

For a single scattering target, micromotion presents in its back and forth movement;
For multiple scattering target, micromotion presents in its non-rigid movement. Non-
rigid body motion refers to the relative motion between the constituent parts of a target,
such as vibration and rotation of parts. Back and forth is a broader concept than cyclical,
may contain more than one periodic component. In addition, although this definition
excludes the simple accelerated motion, yet accelerated motion can be viewed as the
combination components of translation and micromotion [Den11].

6.2.2 Effects on SAR imaging

Target micromotion and micro-Doppler are attracting an increasingly wide interest
from the SAR community for providing additional and favorable information of tar-
gets. Micromotion parameters, such as the rotating frequency and radius, record the
attributed information. Thus their estimation is very important for micromotion com-
pensation and focusing in SAR imagery. The estimated results can also be directly used
as features for target recognition.

However, it is a huge challenge for micromotion parameter estimation in SAR, be-
cause i) micromotion-target signals are hard to be separated from stationary-clutter
ones, ii) they are also distributed over multiple range cells (especially for large rotating
radii), i.e. Range Cell Migration (RCM), which is disadvantageous for target energy
integration and iii) they will cause Doppler aliasing in the slow time domain when the
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Conventional Methods for SAR Micromotion Target Imaging

maximum micro-Doppler exceed the Pulse Repetitive Frequency (PRF). It is not practi-
cal to estimate them in the SAR gray image domain because of defocusing, ghost image
and other energy-spread image characteristics induced by target micromotion.

Figure 6.1 [LDQL11] illustrates the different micromotion effect on SAR imaging,
with the presence on the frequency-time plane.

Stationary target

Uniform motion target

Dislocation

Image blur

Micromotion target

t

fa

Dislocation and blur
Ghost image

LFM signal

Figure 6.1: Micromotion effect on SAR imaging (time-frequency plane).

Conventional SAR/GMTI [GLB11, EGM08, GS07, SGC06] technology takes the tar-
get motion as to be uniform or only with radial acceleration and perform the focusing
process with the second order distance model. It can achieve target detection with uni-
form motion in a SAR stationary scene, parameter estimation and re-focusing imaging
of the position and movement.

However, for micromotion targets, due to the more complicated movements than
uniform motion, conventional MTI technology can no longer be used.

6.3 Conventional Methods for SAR Micromotion Target

Imaging

6.3.1 Conventional imaging methods

A few algorithms have been proposed for the estimation of SAR micromotion tar-
gets [TSQ+10, STC98, SK03, Spa05]. All of them manipulate a single range cell and
take micromotion-target azimuthal echoes as Sinusoidal Frequency-Modulated (SFM)
signals. The cyclic spectral density [STC98], a time-frequency method [Spa05] and the
adaptive optimal kernel one [SK03] have been used to estimate the vibrating frequency
of simulated or real SAR targets. Then in [TSQ+10], the wavelet or chirplet decom-
position is used to separate the signal of a rotating radar dish from that of stationary
clutter and then auto correlation is utilized to get its rotating frequency.
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All these methods, however, haven’t addressed the aforementioned three key prob-
lems ever-present in SAR, i.e., clutter, RCM and Doppler aliasing, which hinder their
application in reality. In effect, unlike uniformly moving targets, RCM correction is very
difficult for micromotion ones due to their sinusoidal range history [DWQ+09].

Matched Filter (MF) [TG60] plays an important role in moving target imaging
[WHB06, CB08], which performs a multidimensional reconstruction at every pixel for
every possible velocity of the motion, resulting in a huge space-velocity cube[WHB06].
Worse still, for the fact that each slice of the velocity is estimated independently, it
brings in ambiguous results. To improve this, an adaptive matched filtering method,
called filtered back projection was proposed [CB08]. However, all these methods yield
high computational cost and ambiguity unavoidably caused by the independent estima-
tion. Figure 6.2 illustrates the parameter quantitative (super)cube of MF method for
SAR micromotion target imaging [Den11].
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y

v

 !1 1 1, ,x y v
1 : 

Figure 6.2: Parameter quantitative (super)cube.

For micromotion target imaging, conventional imaging method deals with it simply
by increasing micro-parameters which leads to a huge parameter cube. In addition, the
resolution is limited by high side lobes.

6.3.2 Compressive Sensing (CS) methods

According to Nyquist sampling theorem, the minimum requirement of sampling rate
to accurately reconstruct a signal is twice of its bandwidth. For SAR high resolution
imaging, depending on the classical sampling theory, high sampling rate is obligatorily
needed. However, in large scale problems it may lead to serious computational problems.

Fortunately, by CS [Don92, Don06b, Don06a, CRT06b, CRT06a, CRT08] and sparse
signal representation [SK10b, SK10c, PSZ08, ZWL08], it is possible to reconstruct the
sparse signals accurately from a highly incomplete number of samples [CICB10, DT10,
FL09, ZR11]. [SK10b] proposed a joint spatial reflectivity signal inversion method based
on an over-complete dictionary of target velocities for SAR moving targets imaging.

In this chapter, we focus on the parametric method to solve SAR micromotion target
imaging problem, which circumvents the tough issues mentioned above. The scattering
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center model thus must also include target micromotion parameters. However, higher
dimensions of parameters will bring difficulties to fast and global optimization. Fortu-
nately, we observe a fine sparsity of target due to the increase of the parameter space
dimension.

Thus, based on the fact that typical underlying scenes exhibit sparsity, if we con-
sider the imaging observation system as a transform matrix which turns to be an over-
complete dictionary, the imaging process can be viewed as the sparse signal representa-
tion of observed data by use of this dictionary.

It is noteworthy that CS-based method is sensitive to noise and clutters. In ad-
dition, in the problem of parameter estimation, the valuation of model parameters is
difficult to be determined and normally affects the accuracy. Fortunately, Bayesian ac-
counts for additive noise encountered in the compressed measurement process [XPC12].
Moreover, with Bayesian approach, optimal model parameters can also be automatically
estimated [BMK10a, JYC08, LXC08]. So we can combine CS theory with the Bayesian
method for this parameter estimation problem.

6.3.3 Comprehensive analysis

In summary, the preliminary study of SAR micromotion target imaging has been
carried out, with the research mainly focused on the micro-target separation, time-
frequency analysis and parameter estimation. However, there are still various challenges
for current methods:

1. Target motion model is still relatively simple;

2. Not accounting for noise and clutter;

3. Not considering the micro additional range cell migration;

4. Not considering the situation that multi targets with different motion parameters.

We recast the problem with a parametric model and propose a Bayesian CS (BCS)
method approach to exploit target priors, to account for noise and to estimate the model
parameters based on the sparse signal representation. Figure 6.3 illustrates the frame
of our proposed approach [Den11, ZMDW+12].

The proposed approach for SAR micromotion imaging presents the following advan-
tages:

1. Realizing the joint estimation of motion and scattering parameters estimation;

2. Dealing with missing data;

3. Achieving high resolution imaging with narrow main lobe (super resolution) and
low side lobe;

4. Especially solving the problem of multiple targets within the same range cell.

6.4 Forward Modeling

The forward model in this section directly works on echo domain, with the goal to
establish the measurement model for target with any motion. The proposed observation

115



6.3.3 - Comprehensive analysis
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Figure 6.3: Joint estimation and imaging frame.

model can be viewed as the first class of Fredholm equation. Parameters of micromotion
are combined with scattering centers to form a motion-scattering mixed model. The
objective is to obtain the parametric information of the existence, the movement and
the scattering information.

As illustrated in Figure 6.4, the radar moves at velocity Va. Then for slowtime t it
moves to

y′ = Vat = Rc tan θ ≈ Rcθ. (6.1)

Rc is the vertical distance of the sensor path to the origin of the target scene. We may
see that θ has the similar meaning as slow time t. In real case, Rc is comparatively very
large, while θ is very small.

Considering an arbitrarily moving target, let vector ϑ represent the target micro-
motion parameters, such as the initial position (x, y), velocity, rotation frequency, etc.
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Figure 6.4: Micromotion target imaging geometry: a) The SAR imaging geometry in
slant plane; b) The corresponding configuration in wavenumber space.

Suppose the target moves to (xϑ,θ, yϑ,θ) when radar is located at y′. f (ϑ) is the scattering
coefficient. Thus the distance model of the target is

Rϑ (θ) =
√

(Rc + xϑ,θ)
2 + (y′ + yϑ,θ)

2

≈
√

R2
c + y′2 + xϑ,θ cos θ + yϑ,θ sin θ

. (6.2)

Spotlight SAR echo of the target could be represented in the wavenumber domain
as

s (K, θ;ϑ) = P (K) exp
[
−jK

√
R2

c + y′2
]

· exp [−jK (xϑ,θ cos θ + yϑ,θ sin θ)],

(6.3)

where P (K) is the Fourier transform (FT) of the transmitted signal. Then the total
echoes of all targets are

Stotal (K, θ) =

∫
f (ϑ) s (K, θ;ϑ) dϑ. (6.4)

After range compression and motion compensation, the first two terms of s (·) in
Equation (6.3) disappear, and then the target signal model becomes

G (K, θ) =

∫
f (ϑ) exp [−jK (xϑ,θ cos θ + yϑ,θ sin θ)] dϑ. (6.5)

When the target experiences micromotion, e.g., rotation or vibration, we have

xϑ,θ = x+ rm cos
(
2πfmt+ ϕ0

)
, (6.6)

yϑ,θ = y + rm sin
(
2πfmt+ ϕ0

)
, (6.7)
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where micromotion parameters compose a parameter vector

ϑ ,
(
x, y, rm, fm, ϕ

0
)

(6.8)

and (x, y) is the position of the micromotion center, rm is the micromotion amplitude,
i.e., rotating radius or vibrating amplitude, fm is the micromotion frequency and ϕ0 is
the initial micromotion phase. Substituting Equations (6.6) and (6.7) into (6.5) leads
to

G (K, θ) ≈
∫

f (ϑ) · h (K, θ;ϑ) dϑ, (6.9)

where
h (K, θ;ϑ) , exp (−jK x cos θ − jK y sin θ)

· exp
(
−jK rm cos

(
2πfmRc

Va
tan θ + ϕ0

)) (6.10)

We can clearly see that, Equation (6.10) has an additional exponential component
representing target micromotion, compared with the stationary scattering center model
[SK03].

We now try to discretize Equation (6.10). Without loss of generality, suppose there
are I rotated targets. Then for the ith one, let fi denote the scattering coefficient, ϑi

denote the micromotion parameter, both of which are unknown. The model of Equation
(6.9) can be discretized as

G(K, θ) =
I∑

i=1

fi.h (K, θ;ϑi) + ǫi(K, θ), (6.11)

where noise has been added via ǫi(K, θ). Note K and θ can also be discretized into M
and N values respectively. Therefore Equation (6.11) can be expressed in a matrix form
as

g = Hf + ǫ, (6.12)

where

g = [G(K1, θ1), . . . , G(K1, θN), G(K2, θ1), . . . , G(K2, θN), . . . , G(KM , θ1), . . . , G(KM , θN)]
T (6.13)

is a vector of size MN representing the data,

ǫ = [ǫ(K1, θ1), . . . , ǫ(K1, θN), ǫ(K2, θ1), . . . , ǫ(K2, θN), . . . , ǫ(KM , θ1), . . . , ǫ(KM , θN)]
T (6.14)

is a vector of size MN representing the errors (modeling and measurement),

H =




h(K1, θ1; x1, y1, rm1
, fm1

, ϕ0
1) h(K1, θ1; x1, y1, rm1

, fm1
, ϕ0

2) . . . h(K1, θ1; xNx
, yNy

, rmP
, fQ, ϕ

0
J)

h(K1, θ2; x1, y1, rm1
, fm1

, ϕ0
1) h(K1, θ2; x1, y1, rm1

, fm1
, ϕ0

2) . . . h(K1, θ2; xNx
, yNy

, rmP
, fQ, ϕ

0
J)

...
...

. . .
...

h(KM , θN ; x1, y1, rm1
, fm1

, ϕ0
1) h(KM , θN ; x1, y1, rm1

, fm1
, ϕ0

2) · · · h(KM , θN ; xNx
, yNy

, rmP
, fQ, ϕ

0
J)


 (6.15)

is a matrix of dimensions MN ×NxNyPQJ representing the forward modeling matrix
system and

f = {[A(xnx
, yny

, rmp
, fmq

, ϕ0
j)], nx = 1, . . . , Nx, ny = 1, . . . , Ny, mp = 1, . . . , P, mq = 1, . . . , Q, j = 1, . . . , J} (6.16)

is a vector of size NxNyPQJ of parameters representing targets in the scene. In this
expression A(x

nx
, yny

, rmp
, fmq

, ϕ0
j) is the coefficient at position (x

nx
, yny

) with micromo-
tion frequency fq, micromotion range rp and initial micromotion phase ϕ0

j .

Then, the problem of scattering and micromotion parameter estimation can be for-
mulated as a linear inversion problem subject to sparsity constraints.
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6.5 Bayesian Inversion

6.5.1 Sparse signal representation and deterministic optimiza-
tion

The main idea behind sparse signal representation is, to find the most compact
representation of a signal as a linear combination of a few elements (or atoms), in an
over-complete dictionary [Don06a, BCDH10, DET06, DH01]. Compared with the con-
ventional orthogonal transform representation, this most parsimonious representation of
a signal over a redundant collection of generated basis offers efficient capability of signal
modeling. Finding such a sparse representation of a signal involves solving an optimiza-
tion problem. Mathematically, it can be formulated as follows. For Equation (6.12),
assume g = Hf in absence of noise where g ∈ C

M×1 is a vector of data, H ∈ C
M×N a

matrix whose elements can be considered as an over-complete dictionary as its columns
and f ∈ C

N×1 the corresponding linear coefficients. In particular, M ≪ N leads the
null space of Φ to be non-empty such that there are many different possibilities to rep-
resent g with the elements in H . The problem of sparse representation is then to find
the coefficients f with the most few non-zero elements, i.e., ‖f‖0 is minimized while
g = Hf . Formally,

min
f

‖f‖0 s.t g = Hf (6.17)

where ‖f‖0 is the l0 norm which is the cardinality of f . However, the combinatorial op-
timization problem Equation (6.17) is NP-hard and intractable. A large body of approx-
imation methods are proposed to address this optimization problem, such as greedy pur-
suit [TGS06] based methods like matching pursuit[NV10], or convex-relaxation [Tro06]
based methods that replace the l0 with the l1 norm,

min
f

‖f‖1 s.t g = Hf (6.18)

Candes et al. [CRT06a] show that for K -sparsity signal that only has K non-zero
element in f , the reconstruction of f with M ≥ O(K log(N /K )) [Don06a] measures
can be achieved with high probability by l1 norm minimization. Moreover, to efficiently
reconstruct f , the mapping matrix H should satisfy the Restricted Isometry Property
(RIP) [CRT08, YBZS10] which requires that

(1− δs) ‖f‖22 ≤ ‖Hf‖22 ≤ (1 + δs) ‖f‖22 (6.19)

This RIP of H is connected to the mutual coherence between the atoms of the
dictionary which is defined as

µ(H) = max
i 6=j

| < hi, hj > |
‖hi‖22 ‖hj‖22

(6.20)

where the hi is the ith column of H . Large mutual coherence indicates that two atoms
that are closely related will degrade the reconstruction algorithm. Hence, the dictionary

119



6.5.2 - Bayesian sparse reconstruction

is required to have low coherence so that the submatrix H with K atoms is nearly
orthogonal [DH01].

If the observation g is noisy, the problem of the sparse representation for a noisy
signal can be formulated as

min
f

‖f‖1 s.t ‖g −Hf‖22 ≤ δ, (6.21)

where δ is a noise allowance. Equivalently, the Equation (6.21) can be reformulated to
minimize the following objective function

L(f ;λ) = ‖g −Hf‖22 + λ ‖f‖1, (6.22)

where λ > 0 is the regularization parameter that balances a trade-off between the
reconstruction error and the sparsity of f . The formulation Equation (6.22) can also
be interpreted as the MAP estimation in the Bayesian philosophy as we will see in the
next section.

To this end, the micromotion parameter estimation is now cast as the sparse re-
construction of f associated with the parameter hypothesis at the position of non-zero
elements of f . There are a large number of methods to solve the Equations (6.21) or
(6.22), such as the method of compressive sampling matching pursuit (CoSaMP) pre-
sented in [NT08] which has been widely used for its simplification and effectiveness.
Here, we will compare our proposed method with this method.

6.5.2 Bayesian sparse reconstruction

Even if the sparse representation has originally been introduced as an optimization
problem such as Equations (6.17), (6.18), (6.21), or (6.22), it can also be presented as a
Bayesian MAP estimation problem [MD06a, Tip01]:

f̂ = argmax
f

{p(f |g)} , (6.23)

where

p(f |g) = p(g|f) p(f)
p(g)

∝ p(g|f) p(f), (6.24)

To understand this, firstly let us assume the error ǫ in Equation (6.12) is centered,
Gaussian and white: ǫ ∼ N (ǫ|0, σǫI). It brings us to the expression of the likelihood:

p(g|f) = N (Hf , σǫI) ∝ exp

{
− 1

2vǫ
‖g −Hf‖22

}
(6.25)

Secondly, choose the separable double exponential probability density [Wil95] as the
prior of f :

p(f) ∝ exp

{
−γ

∑

j

|fj|
}
, (6.26)

it is then easy to see that the MAP estimation with this prior becomes

f̂ = argmax
f

{p(f |g)} = argmin
f

{− ln p(f |g)} = argmin
f

{J(f)} (6.27)
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with
J(f) = ‖g −Hf‖22 + λ‖f‖1, withλ = 2vǫ (6.28)

which can be compared to Equation (6.22).

The prior information that the targets are sparsely distributed in the observation
scene can be modeled by the two following probability density functions (PDF) [MD12,
MD11]:

– Generalized Gaussian priors:

p(f) ∝ exp

{
−γ

∑

j

|fj|β
}
, (6.29)

which give the double exponential for β = 1 and Gaussian for β = 2 and are also
more useful for sparse representation with 0 < β < 1. With these priors, the MAP
estimate can be computed by optimizing the following criterion:

J(f) =
1

2σ2
ǫ

‖g −Hf‖22 + γ
∑

j

|fj|β, (6.30)

which can be done with any gradient based algorithm when 1 < β ≤ 2. There
also exist appropriate algorithms for β = 1 and 0 < β < 1. In this thesis, we used
a gradient based algorithm.

– Student-t priors:

p(f |ν) =
∏

j

St(fj|ν) ∝ exp

{
−ν + 1

2

∑

j

log
(
1 + f 2

j /ν
)
}

(6.31)

where

St(fj|ν) =
1√
πν

Γ((ν + 1)/2)

Γ(ν/2)

(
1 + f 2

j /ν
)−(ν+1)/2

. (6.32)

These priors are interesting due to its link to l1 regularization and secondly due to
the mixture of Gaussian representation of the Student-t probability density:

St(fj|ν) =
∫ ∞

0

N (fj|0, 1/τj)G(τj|ν/2, ν/2) dτj (6.33)

which gives the possibility of proposing a hierarchical model via the positive hidden
variables τj: 




p(f |τ ) =
∏
j

p(fj|τj) =
∏
j

N (fj|0, 1/τj)

∝ exp

{
−1

2

∑
j

τjf
2
j

}

p(τj|α, β)= G(τj|α, β) ∝ τ
(α−1)
j exp {−βτj}

with α = β = ν/2

. (6.34)
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6.5.2 - Bayesian sparse reconstruction

Choice of Estimator and Approximations

Using this hierarchical model, we can write the joint prior of f and τ

p(f , τ )=
∏
j

p(fj|τj) p(τj) =
∏
j

N (fj|0, 1/τj) p(τj)

∝ exp

{
−1

2

∑
j

τjf
2
j + (γ − 1) ln τj − βτj

} (6.35)

Then, using the Bayes rule, we obtain:

p(f , τ |g) ∝ p(g|f) p(f , τ ) ∝ exp {−J(f , τ )} (6.36)

where

J(f , τ ) =
1

2vǫ
‖g −Hf‖22 +

∑

j

1

2
τjf

2
j − (α− 1) ln τj + βτj (6.37)

which is summarized as follows:

p(f , τ |g) −→ Joint optimization of
J(f , τ )

−→ f̂

−→ τ̂

f̂ = argmax
f

{p(f |g)} = argmin
f

{− ln p(f |g)} = argmin
f

{J(f)} (6.38)

Joint optimization of this criterion, alternatively with respect to f (with fixed τ )

f̂= argminf {J(f , τ )}

= argminf

{
1
2vǫ

‖g −Hf‖22 +
∑
j

1
2
τjf

2
j

}
(6.39)

and with respect to τ (with fixed f)

τ̂= argminτ {J(f , τ )}

= argminτ

{
∑
j

1
2
τjf

2
j − (α− 1) ln τj + βτj

}
(6.40)

results in the following iterative algorithm:




f̂ = [H ′H + vǫD(τ̂ )]
−1

H ′g = D(τ̂ )H ′ (HD(τ̂ )H ′ + vǫI)
−1

g

τ̂j = φ(f̂ j) =
α

f̂j

2

+β

D(τ̂ ) = diag [1/τ̂j, j = 1, . . . , n]

(6.41)

τ̂−→ [H ′H + σǫD(τ̂ )]
−1

H ′g f̂−→ φ(f̂ j)
τ̂−→

6
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Note that τj is inverse of a variance and we have 1/τj = (f 2
j + β)/α. We can

interpret this as an iterative quadratic regularization inversion followed by the estimates
of variances τj which are used in the next iteration to define the variance matrix D(τ ).
This algorithm is simple to implement. However, we are not sure about its convergency.
To obtain a better solution and at the same time to be able to estimate the variance
of the noise, we propose to use the VBA [SQ05, Bis06, CCPV07] which consists in
approximating the joint posterior by a separable one and then using it to do the inference.

Here we summarize this approach:
– Model for the noise:




p(g|f , vǫ) = N (g|Hf , vǫI), τǫ = 1/vǫ

p(τǫ) = G(τǫ|αǫ0, βǫ0)
(6.42)

– Model for the sparse signal:





p(f |v) = ∏
j

p(fj|vj) =
∏
j

N (fj|0, vj) = N (f |0,V )

V = diag [v] , τj = 1/vj, diag [τ ] = V −1

p(τ ) =
∏
j

G(τj|α0, β0)

(6.43)
– Joint posterior:

p(f , τ , τǫ|g) ∝ p(g|f , τǫ) p(f |τ ) p(τ ) p(τǫ) (6.44)

– VBA: p(f , τ , τǫ|g) is approximated by

q(f , τ , τǫ) = q(f)
∏

j

q(τj) q(τǫ) (6.45)

where




q(f) = N (f |µ̃, Σ̃)

µ̃ = Σ̃H ′g = Ṽ H ′
(
HṼ H ′ + τ̃ǫI

)−1

g

Σ̃ = (τ̃ǫH
′H + Ṽ )−1 = Ṽ − Ṽ H ′

(
HṼ H ′ + τ̃ǫI

)−1

HṼ , with Ṽ = diag [ṽ] ,

(6.46)





q(τǫ) = G(τǫ|α̃ǫ, β̃ǫ)

α̃ǫ = α̃ǫ0 + (n+ 1)/2

β̃ǫ = βǫ0 + 1/2

τ̃ǫ = α̃ǫ/β̃ǫ,

(6.47)
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6.5.2 - Bayesian sparse reconstruction





q(τj) = G(τj|α̃j, β̃j)

α̃j = α00 + 1/2

β̃j = β00+ < f 2
j > /2

ṽj = β̃j/α̃j

(6.48)

and the expressions of the needed expectations are:





< f >= µ̃

< ff ′ >= Σ+ µµ′

< f 2
j >= [Σ]jj + µ2

j

< τ >= τ̃ = α̃τ/β̃τ

< aj >= ãj = α̃j/β̃j

(6.49)

This algorithm can be summarized as follows:

– Initialization: τ̃ǫ = 0.1, Ṽ = diag [τ̃j/τ̃ǫ] with τ̃j = 1

– Iterations:

compute Σ̃ =
[
τ ǫH

′H + Ṽ
]−1

and µ̃ = ΣH ′g

compute < f 2
j >= Σ̃jj + µ̃2

j

compute α̃ǫ, β̃ǫ and so τ̃ǫ = α̃ǫ/β̃ǫ

compute α̃j, β̃j and so τ̃j = α̃j/β̃j

The only difficult and costly part is the estimation of Σ̃ and µ̃. Due to the fact that
we only need µ̃ and Σ̃jj, we propose the following approximation:

– µ̃ is computed through the optimization of J(f) = τ ǫ‖g−Hf‖22+ 1
2

∑
j τjf

2
j with

respect to f ;

– Σ̃jj which is the variance of fj is approximated by the empirical variance of fj
during the iterations of the optimization algorithm.

This is the method we implemented, tested and compared to other classical methods.
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Simulation Results

6.6 Simulation Results

In this section, we conduct several numerical experiments to demonstrate our method
based on the sparse signal representation. The imaging geometry is shown in Figure
6.4. The range R0 from the original to the center of the target is 10 km and the veloc-
ity of the platform Va is 200m/s. The central frequency fc is 10GHz with bandwidth
B = 400MHz associated with the Rayleigh resolution along the range direction 0.375m.
The angular extent of azimuth is 10◦ with cross-range resolution 0.0861m. We gener-
ate the received signal with the parameters and then applied proposed the method to
estimate such parameters. The performance is evaluated by carrying out Monte Carlo
experiments.

6.6.1 Sampling pattern

Based on CS principle, compared to conventional imaging methods, targets can be
recovered with a smaller randomly sampled measures. Figure 6.5 shows that sampling
pattern in the wavenumber domain, the uniform sampling in Figure 6.5a and the ran-
domly sampling in Figure 6.5b.
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a. Uniform sampling b. Random sampling with 500 measures

Figure 6.5: Sampling pattern in wavenumber space: a) The uniform sampling pattern;
b) The random sampling pattern.

6.6.2 Reconstruction when no micromotion

In the first experiment, a scene consisting of three point targets without micromotion
is considered. The three targets parameters are only about positions, with (x̂, ŷ) =
(0, 0), (2, 2), and (4, 4), respectively.

With the randomly sampled measures, Figure 6.6 compares the reconstruction results
between the conventional imaging method of IFFT, the CoSaMP and the proposed
Bayesian method when no micromotion.

The noisy measurement leads to the presence of the artificial scattering centers and
energy loss of true scattering centers. With conventional FFT-based method, results
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6.6.5 - Reconstruction with MF method

can be easily seen with side lobes.

Both the CoSaMP and the proposed Bayesian method come out with clearer images
and are capable of recovering the true position of targets, even with smaller randomly
measures.

6.6.3 Reconstruction when micromotion is present

In the second experiment, a scene consisting of the same geometry of three point tar-
gets undergoing micromotion is considered. The micromotion frequency and micromo-
tion range are different, with values being 0.5, 1, 1 (Hz) and 1, 0.5, 0.5 (m), respectively.
For simplicity, the initial phases are assumed to be zeros. We list the target parameter
vectors here: (x̂, ŷ, r̂, f̂m, φ̂0) = (0, 0, 1, 0.5, 0), (2, 2, 0.5, 1, 0) and (4, 4, 0.5, 1, 0).

In Figure 6.7b, the range profile appears distinctly in a micromotion pattern com-
pared with Figure 6.6b. The presentation of micromotion blurs the reconstruction im-
ages without motion compensation as shown in Figure 6.7a, which is a poor result. The
proposed joint parameter estimation method gains a well-focused image as illustrated
in Figure 6.7d. As can be seen, three targets are reconstructed clearly with an excellent
result. Figure 6.7c illustrates the reconstruction result via the CoSaMP method.

6.6.4 Reconstruction with micromotion and non-micromotion
targets

In the third experiment, a scene consisting of both stationary and micromotion
targets is considered. The objective of this experiment is to show the capability of
reconstruction a mixed scene with both micromotion and non-micromotion targets by
the proposed method. The associated parameters of the two targets are (x̂, ŷ, r̂, f̂m, φ̂0)
=(0,0,0,0,0) and (2,2,0.5,1,0), respectively.

Figure 6.8 shows the recovery results. The conventional IFFT based methods can
not present the exact positions of targets. There are many other residual pixels which
lead to the ambiguity of scatterers. Both CoSaMP and the proposed Bayesian method
can handle this problem and estimate two targets accurately.

6.6.5 Reconstruction with MF method

In the fourth experiment, a scene consisting of two micromotion targets is considered.
We carry out the experiment to show the micromotion parameters volume and their
estimation with MF method. For simplicity, we again consider two micromotion targets
with the same micromotion range 0.5 m and initial phase 0◦ for two targets but the
micromotion frequencies are 0.5 and 1Hz, respectively. The associated parameters of
the two targets are (x̂, ŷ, r̂, f̂m, φ̂0) = (0, 0, 0.5, 0.5, 0) ,(5, 1, 0.5, 1, 0). We adopt the
matched filtering in the 3D range-Azimuth-micromotion frequency space by scanning a
large number of possible scatterer positions and micromotion frequencies, resulting in a
large space-micromotion frequency cube.

126



Simulation Results

Figure 6.9a shows the 3D data cube. Figure 6.9b,c illustrate the two slices after
matched filtering at micromotion frequencies fm = 1Hz and fm = 0.5Hz, respectively. It
is computationally expensive and not well focused being of low resolution. In addition, it
is rather difficult to perform RCM such that the position cannot be estimated accurately.
In contrast, the proposed method can overcome these drawbacks of traditional methods
and yield a more precise estimate.

6.6.6 Reconstruction with closely located micromotion targets

In the fifth experiment, a scene consisting of two very closely micromotion targets
is considered. The objective is to present the performance of the proposed method for
super-resolution imaging.

Two very closely spaced micromotion targets localized at positions of (0, 0)
and (0.25, 0.25), respectively, with micromotion parameters given (x̂, ŷ, r̂, f̂m, φ̂0) =
(0, 0, 1, 0.5, 0) and (0.25, 0.25, 0.5, 1, 0).

Figure 6.10 shows the results. The reconstruction image by IFFT is illustrated in
Figure 6.10a and the corresponding range profile in Figure 6.10b. It shows that the
range profiles of the two targets are overlapped and the conventionally reconstructed
image suffers from high side lobes. Consequently the two targets can not be discrimi-
nated. However, Figure 6.10c, d present an excellent result of CoSaMP and the proposed
Bayesian method. In contrast to the fail of conventional method as IFFT, the results
in Figure 6.10d prove the capability of super-resolution of the proposed method.

6.6.7 Analysis and discussions

To further examine the performance, we implement the simulation of Root Mean
Square (RMS) errors to evaluate the robustness of the proposed method. Figures 6.11
and Figure 6.12 depict the estimation error of RMS versus SNR. The results is obtained
on a scene of two micromotion targets with the following parameters (x̂, ŷ, r̂, f̂m, φ̂0) =
(0, 0, 1, 0.5, 0) and (5, 1, 0, 5, 1, 0).

It is demonstrated that the proposed method can recover the parameters of target
signatures accurately. It can be observed that the RMS decreases sharply as the SNR
increases and arrives at high precision estimations after 0 dB, indicating the robustness
of the method to uncertain, limited and noisy data.

Based on above simulated results, we can see that compared to conventional methods,
the advantages of the proposed method mainly include:

1. Putting the micromotion target imaging and parameter estimation into a unifying
Bayesian parameter estimation framework, which can also handle the hyperpa-
rameter estimation;

2. Breaking through the classic the Rayleigh resolution limit, providing the capability
of super-resolution;

3. Being capable of estimating micromotion parameters from limited observations;

4. Being robust to noise.
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6.7 Conclusions

Based on radar scattering characteristics and CS theory, the problem of SAR imag-
ing can be considered as a high precision estimation problem of target parameters from
finite observations. Then this estimation problem can be solved by sparse signal repre-
sentation on a parametric model. Bayesian approach can be well combined to obtain
the sparsest representation of the target and the optimal estimation. Based on this
idea, in this chapter, we proposed a sparsity-inducing method to estimate the scatter-
ing and micromotion parameters of SAR targets jointly and further formatted it in the
Bayesian framework. It was done by formulating the original nonlinear problem as a
sparse representation problem over an over-complete dictionary. In addition, an effi-
cient VBA method was proposed to account for the hierarchical Bayesian computation.
The proposed method can exactly recover the scattering and micromotion parameters
of targets and even achieve good performance for near spacing targets, as demonstrated
by the simulation results.

Here too, we may remark that the contents and results of this chapter is also reflected
in the paper [ZMDW+12].
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Figure 6.6: Reconstruction results when no micromotion: a) The reconstruction image
by IFFT; b) The corresponding range profile; c) and d) The reconstruction images by
CoSaMP method and the proposed Bayesian method respectively.
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Figure 6.7: Reconstruction results when micromotion is present: a) The reconstruction
image by IFFT; b) The corresponding range profile; c) and d) The reconstruction images
by CoSaMP method and the proposed Bayesian method respectively.
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Figure 6.8: Reconstruction of a scene combined with both micromotion and stationary
targets: a) The reconstruction image by IFFT; b) The corresponding range profile;
c) and d) The reconstruction images by CoSaMP method and the proposed Bayesian
method respectively.
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Figure 6.9: Reconstruction results with MF, CoSaMP, and the proposed Bayesian
method when micromotion is present: a) The 3D space-micromotion frequency data
volume; b) and c) The slices at fm = 1Hz and fm = 0.5Hz, respectively after matched
filtering; d) and e) The reconstruction images by CoSaMP method and the proposed
Bayesian method respectively.
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Figure 6.10: Reconstruction of two close targets when micromotion is present: a) For
two closely localized micromotion targets, reconstruction image by IFFT; b) The corre-
sponding range profile; c) and d) The reconstruction images by CoSaMP method and
the proposed Bayesian method respectively.
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Figure 6.11: Reconstruction RMS: a–c) The root mean square error versus SNR by the
CoSaMP method and the proposed Bayesian method for scattering coefficient, position
in range direction and position in azimuth direction, respectively.
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Figure 6.12: Reconstruction RMS: d–e) The root mean square error versus SNR by
CoSaMP method and the proposed Bayesian method for micromotion frequency and
micromotion range, respectively.
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7.1 Conclusions

In this thesis, we made contributions to Bayesian approach for the ill-posed inverse
problems arising in SAR imaging for different situations. We systemically formulated
the mathematical model for Mono-, Bi-, Multi-static SAR and the micromotion target
imaging. We established a unifying Bayesian framework for various target scenes. We
studied the physical mechanism of SAR imaging, proposed different priors and ana-
lyzed the effects on reconstruction. We solved the problem of SAR micromotion target
parameter estimation. We combined our proposed Bayesian approach with CS theory,
developed the Variational Bayesian Approximation method, realized jointly reflectivity
scene reconstruction and micromotion parameters estimation. We presented efficiently
computing optimization algorithms and the hyperparameters estimation. Experiments
implemented on both synthetic and real data demonstrated the efectiveness of the pro-
posed approach.

In chapter 2, we established a tomographic model for SAR imaging. Traditional
methods dealing with this imaging problem based on the assumption that the Fourier
domain information is complete, which is however an unrealistic assumption. Thus
they have serious drawbacks of low resolution, high side lobe artifacts and not being
robust. We consider two kinds of target modeling : extended targets and point targets.
We analyzed the problem of SAR imaging in a linear case as a Fourier Synthesis (FS)
problem, which constitutes the basis of our inversion approach.

However, we are aware that the FS problem as we modeled is not realistic, because
the original data are not on a rectangular cartesian grid. But we wanted to focus on
an idealized forward model particularly to study different inversion methods and their
relative performance.

In chapter 3, we cast the ill-posed inverse problem of Fourier synthesis (FS) which
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consisted in reconstructing a target from partial knowledge of its Fourier Transform
(FT) in applications of Mono-, Bi- and Multi- static SAR imaging systems in a general
Bayesian framework. The proposed Bayesian approach can conveniently translate our
knowledge about the target to regularize the estimation. We proposed different priors
for simple and complicated target scenes.

1. We proposed three simple priors: separable generalized Gaussian(SGG), separable
Cauchy (SC) and Generalized Gauss-Markov (GGM). SGG or SC performs better
for a scene consisting of point sources, while GGM is better for a scene consisting
of homogeneous regions.

2. We proposed Generalized Gaussian prior and sparse Gaussian prior with hyper-
parameters;

3. We developed a generalized Total Variation (TV) prior which extends the classic
TV with l1 norm of first-order derivative to MRF model.

In particular, we have investigated the sparsity of SAR targets. The appropriate prior
model leads to a stable and coherent reconstruction of the original targets from the
partial observations.

In chapter 4, we applied the proposed approach to Mono- and Bi-static SAR imaging.
Different from existing deterministic imaging methods and regularization methods, the
Bayesian framework provides a flexible tool for estimation and inference. By incorporat-
ing appropriate priors of unknown targets, one can get promising reconstruction results
with enhanced target features of interest. We conducted three groups of experiments:

1. MAP estimation on two typical radar targets on three simple priors;

2. Marginalization with hyperparameter estimation on two Gaussian priors;

3. Hierarchical Bayesian estimation based on a TV prior.

We also implemented the experiments on both synthetic and real data. The results
demonstrated the performance of the proposed methods.

In chapter 5, we applied the proposed approach to Multi-static SAR imaging. We
solved it as a data fusion problem. We proposed three different data fusion schemes and
implemented each on synthetic and experimental data from a reduced-size laboratory
experiment. By comparing the three proposed data fusion schemes, it is shown that the
proposed Bayesian joint data fusion and inversion method had the best performance,
with advantages of being robust to noise and the superresolution.

In chapter 6, we changed the strategy of forward modeling to account for moving
target especially micromotion targets where the relation between the transmitted sig-
nals, the target and the received echo is no longer linear. Then again we proposed a
Bayesian approach based on Compressive Sensing (CS) and Sparse signal representa-
tion. We firstly linearized the forward model as a linear combination of elements with
an over-complete dictionary. It is then essential to find the nonzero coefficients which
are associated with the scattering and micromotion parameters. Since micromotion
targets are sparsely distributed in the observation scene, there are only few nonzero
coefficients. Herein this sparse distribution of coefficients are modeled by Generalized
Gaussian prior and Student-t prior. The proposed Bayesian approach can estimate the
target micromotion and scattering parameters jointly. Simulation results demonstrated
the effectiveness of the proposed approach.
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7.2 Perspectives

7.2.1 Forward modeling and inversion developing perspectives

Bayesian inference is based on appropriate forward modeling, associated errors as
well as uncertainties modeling and target scene prior modeling. For each step, we always
need to propose models to do target scene modeling as well as to describe the interaction
with transmitted signals in general context. Thus, to make an accurate inference, the
hypothesis needs to be reasonable.

Thinking in a Bayesian way, the two main problems of SAR imaging are [MD12]:

– How to predict the data based on hypothesis and forward model?
– How do the observed data support these hypothesis and model?

Around these two basic problems, further research on Bayesian SAR imaging can be
undertaken in the following aspects:

1. Establishing a more realistic scattering model

In this thesis, we have addressed the SAR target imaging based on an ideal scat-
tering model, which is still very simple for real cases. A more realistic model is the
attributed scattering center model, where the amplitude and frequency vary with
different radar light directions. Further work can continue on more complicated
scattering models such as attributed scattering center model (See Appendix A).

2. Modeling background clutters

We have modeled target scenes of both point targets and homogeneous regions
via appropriate priors. However, we didn’t discriminate the clutter effect from
background. Further work can be undertaken on background clutter model-
ing [YSBZ11]. Bayesian approach provides various priors to model clutters. For
example, for the homogeneous background, it can be modeled by Markov models.
For a complicated scene containing background as well as point targets, it can be
modeled by a mixture model.

3. Modeling targets with more complex motion

We have addressed SAR imaging problem for targets experiencing micromotion
of rotation with a constant speed. However, in practice target may experience
irregular movement or dynamic micromotion which even contain a certain degree
of randomness, resulting in disturbances on echo data. Further work can be ex-
tended to a more complex target motion model with any arbitrary motion.

4. Developing hierarchical priors with hidden variables and efficient ap-
proximation methods

Hierarchical priors with hyperparameters and hidden variables provide more re-
alistic descriptions of target scenes and models. However, it is very difficult to
estimate hyperparameters and make approximations. Further work will be con-
tinued on this part.
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7.2.2 - Application perspectives

5. Studying the convergence of algorithms and implementing computa-
tions

The work on the convergence of proposed algorithms will be continued. To improve
the computation speed, further work can be undertaken by the combination of
GPU to accelerate computation for satisfying real application requirements.

7.2.2 Application perspectives

Practically, the proposed Bayesian approach can be employed in the following po-
tential applications:

1. For recognition-oriented Bayesian SAR imaging (Bayesian SAR-ATR)

We aim to develop a recognition-oriented Bayesian SAR imaging framework. In
this framework, the prior knowledge of target scenes will be treated as restriction to
the expected image based on Bayesian inference. SAR images of high resolution
with feature enhancement as well as background suppression will be generated,
which will be beneficial for Auto Target Recognition (ATR).

The proposed Bayesian SAR technique distinctly differs from conventional inver-
sion, imaging and recognition techniques on the following aspects:

(a) The proposed Bayesian SAR imaging method allows us not only obtain an
accurate solution but also have feasibilities of feature-enhancement by prior
modeling. For examle, conventional SAR imaging methods make uniform fo-
cus on target and background. With Bayesian imaging method, by appropri-
ately assigning priors for the target and the background, target features can
be well enhanced while background clutters can be significantly suppressed.
And these steps will be done simultaneously.

(b) Conventional recognition methods treat imaging and feature extraction as
independent procedures [HXS06]. However, with specific prior modeling of
target scene, useful features start to be incorporated during the imaging
process.

The Bayesian SAR-ATR system is illustrated in Figure 7.1.
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Figure 7.1: Bayesian SAR-ATR.

2. For Bayesian joint SAR MicroMotion Target Indication (Bayesian SAR-
MMTI), parameter estimation and imaging

Conventional methods dealing with the problem of SAR/MMTI involve sequential
steps of clutter suppression, detection, RCMC (Range Cell Migration Correction),
signal separation, parameter estimation and imaging. The advantage is that for
each step, the algorithm can be designed serially, which decreases the complexity
of the algorithm. However, the disadvantages are also very obvious:

– Some process are still intractable such as clutter suppression and RCMC;
– The performance of the final detection and imaging is limited by many factors
arising in each step.

In chapter 6, we operated directly on radar echo, formed the micromotion param-
eter as well as the scattering parameters into a mixed motion-scattering model
and turned the problem of detection, parameter estimation and imaging into a
unifying inverse problem framework. The proposed method can obtain the para-
metric, scattering and structure information of targets; meanwhile, it also has the
capability for movement compensation. In such a way, it forms a joint technology
for micromotion target detection, parameter estimation and imaging.

As illustrated in Figure 7.2, in the proposed Bayesian framework, first of all the
full parametric modeling of the radar echo needs to be established, where the
unknown parameters include the scattering reflectivity of the target, the target
motion parameters and the unknown noise/clutter parameters. Then, by intro-
ducing the prior model of the interested target scene, the inverse problem will be
solved with the realization of a joint estimation of the target image and motion
parameters.
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Attributed Scattering Model

Attributed scattering model is based on physical optics and Geometric Theory of
Diffraction (GTD). When the wavelength of incident wave is smaller than the size of
target, then the backscattering of target can be considered the composition of sev-
eral individual scattering centers. For each scattering center, RCS can be represented
as [KM99, PM97]:

E(ν, θ;χ) = A(j
ν

νc
)α exp(−j

4πν

c
(x cos θ+y sin θ))·sin c(2πν

c
Ls sin(θ−θ)) exp(−2πνγ sin θ)

(A.1)
where

– χ = [x, y, α, γ, θ, L,A] represents the parameter set of scattering center;
– ν represents the frequency of the transmitter;
– θ represents the azimuth angle; When B represents the radar system bandwidth, νc
represents the radar center frequency, µ = B/νc represents the relative bandwidth,
θm represents the total integration angle, ν ∈ [νc(1 − µ

2
), νc(1 + µ

2
)] and θ ∈

[− θm
2
, θm

2
].

– c = 3× 108m/sec represents the propagation velocity of light;
– xi and yi represent the positions on axis of the range and azimuth, respectively;
– Ai represents the complex amplitude of scattering center (complex reflectivity
coefficient);

– αi ∈ [−1,−0.5, 0, 0.5, 1] characterizes the frequency dependence of the response,
called frequency influence coefficient;

– γi represents the dependency of local scattering centers on azimuth angle;
– Lsi represents the length of an extended scattering center
– θi represents the azimuth angle for an extended scattering center;
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The frequency influence parameter α is related to the curvature information of the
surface of scattering center. The parameters α and L contain information about the
geometry of the scatters, the combination of which lead to a more accurate discrimi-
nation of the different kinds of scattering structures and a more abundant scattering
characteristics for feature extraction and target recognition.

Model given in Equation (A.1) is called the scattering center model. Based on this
model, we can do the following transform and approximation:

– let νx = ν cosφ and νy = ν sinφ, which turn this model into the cartesian coordi-
nate;

– let (2πν)
c

α ≈ exp(−2πrxνx), where rx is the damping factor;

– doing scale transform ν
′

x = νx/νc, ν
′

y = νy/νc;

– doing translation transform νx = ν
′

x − 1, νy = ν
′

y.

Then the scattering model becomes

E(νx, νy)= A exp(−j 4π
λc
(xνx + yνy)) exp(−2π(rxνx + ryνy))

·sinc(−2πLsνc
c

(sin θ − 2πLs

λc
(νx sin θ − νy cos θ))

(A.2)

where λc is the wavelength corresponding to radar center frequency.

Till now, we can see that the ideal scattering model adopted in this thesis, is a
particularly simple case for the attributed scattering center model.

E(ν, θ) =
n∑

i=1

Ai exp(
−j4πν

c
(xi cos θ + yi sin θ)) (A.3)

where n denotes the number of scattering centers, Ai denotes the amplitude of the ith
scattering center, (xi, yi) denotes the scattering center position, c denotes the propa-
gation velocity of wave, ν is the transmitted frequency of radar and θ is the azimuth
angle.

As we can see, comparing to ideal scattering center model, attributed scattering
center model contains a more explicit physical meaning, thus it can more accurately
describe different types of scattering centers and more finely reflect the real scattering
characteristics of targets.
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[Çet01] M. Çetin : Feature-enhanced Synthetic Aperture Radar imaging. Ph.D.
thesis, University of Boston, 2001.

[CGM+95a] Walter G Carrara, Ron S Goodman, Ronald M Majewski et al. :
Spotlight synthetic aperture radar: signal processing algorithms. Artech
House Boston, 1995.

[CGM95b] W.G. Carrara, R.S. Goodman et R.M. Majewski : Spotlight Syn-
thetic Aperture Radar: Signal Processing Algorithms. Artech House, Nor-
wood, MA, 1995.

[Cha82] T.F. Chan : An improved algorithm for computing the Singular Value
Decomposition. ACM Trans. Math. Software, 8:72–83, 1982.

[CHS06] H.J. Callow, R.E. Hansen et T.O. Saebo : Effect of approximations
in fast factorized backprojection in Synthetic Aperture imaging of spot
regions. In Proc. Oceans, volume 3721, pages 1–6, Boston, USA 2006.

[CICB10] V. Cevher, P. Indyk, L. Carin et R.G. Baraniuk : Sparse signal
recovery and acquisition with graphical models. IEEE Signal Process.
Mag., 27(6):92–103, Nov. 2010.
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