D. Ambrosi and L. Preziosi, ON THE CLOSURE OF MASS BALANCE MODELS FOR TUMOR GROWTH, Mathematical Models and Methods in Applied Sciences, vol.12, issue.05, p.737, 2002.
DOI : 10.1142/S0218202502001878

A. Anderson and M. Chaplain, Continuous and Discrete Mathematical Models of Tumor-induced Angiogenesis, Bulletin of Mathematical Biology, vol.60, issue.5, pp.857-899, 1998.
DOI : 10.1006/bulm.1998.0042

K. Bartha and H. Rieger, Vascular network remodeling via vessel cooption, regression and growth in tumors, Journal of Theoretical Biology, vol.241, issue.4, pp.903-918, 2006.
DOI : 10.1016/j.jtbi.2006.01.022

F. Billy, B. Ribba, O. Saut, H. Morre-trouilhet, T. Colin et al., A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy, Journal of Theoretical Biology, vol.260, issue.4, pp.545-562, 2009.
DOI : 10.1016/j.jtbi.2009.06.026

URL : https://hal.archives-ouvertes.fr/inria-00440447

P. Bonate and D. Howard, Pharmacokinetics in drug development: advances and applications, 2011.

T. Browder, C. Butterfield, B. Kräling, B. Shi, B. Marshall et al., Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drugresistant cancer, Cancer research, vol.60, issue.7, p.1878, 2000.

H. Byrne and M. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors, Mathematical Biosciences, vol.130, issue.2, pp.151-181, 1995.
DOI : 10.1016/0025-5564(94)00117-3

L. Claret, P. Girard, P. Hoff, E. Van-cutsem, K. Zuideveld et al., Model-Based Prediction of Phase III Overall Survival in Colorectal Cancer on the Basis of Phase II Tumor Dynamics, Journal of Clinical Oncology, vol.27, issue.25, pp.4103-4108, 2009.
DOI : 10.1200/JCO.2008.21.0807

M. Czabanka, M. Vinci, F. Heppner, A. Ullrich, and P. Vajkoczy, Effects of sunitinib on tumor hemodynamics and delivery of chemotherapy, International Journal of Cancer, vol.10, issue.6, pp.1293-1300, 2009.
DOI : 10.1002/ijc.24019

P. Dickson, J. Hamner, T. Sims, C. Fraga, C. Ng et al., Bevacizumab-Induced Transient Remodeling of the Vasculature in Neuroblastoma Xenografts Results in Improved Delivery and Efficacy of Systemically Administered Chemotherapy, Clinical Cancer Research, vol.13, issue.13, pp.3942-3950, 2007.
DOI : 10.1158/1078-0432.CCR-07-0278

A. Onofrio and A. Gandolfi, Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999), Mathematical Biosciences, vol.191, issue.2, pp.159-184, 1999.
DOI : 10.1016/j.mbs.2004.06.003

J. Folkman, Role of angiogenesis in tumor growth and metastasis, 2002.

G. Gasparini, R. Longo, M. Fanelli, and B. Teicher, Combination of Antiangiogenic Therapy With Other Anticancer Therapies: Results, Challenges, and Open Questions, Journal of Clinical Oncology, vol.23, issue.6, p.1295, 2005.
DOI : 10.1200/JCO.2005.10.022

W. Greco, G. Bravo, and J. Parsons, The search for synergy: a critical review from a response surface perspective, Pharmacological Reviews, vol.47, issue.2, p.331, 1995.

H. Greenspan, Models for the Growth of a Solid Tumor by Diffusion, Studies in Applied Mathematics, vol.9, issue.4, pp.317-340, 1972.
DOI : 10.1002/sapm1972514317

P. Magni, M. Simeoni, I. Poggesi, M. Rocchetti, and G. De-nicolao, A mathematical model to study the effects of drugs administration on tumor growth dynamics, Mathematical Biosciences, vol.200, issue.2, pp.127-151, 2006.
DOI : 10.1016/j.mbs.2005.12.028

N. Mantzaris, S. Webb, and H. Othmer, Mathematical modeling of tumor-induced angiogenesis, Journal of Mathematical Biology, vol.49, issue.2, pp.111-187, 2004.
DOI : 10.1007/s00285-003-0262-2

O. Reilly, M. Boehm, T. Shing, Y. Fukai, N. Vasios et al., Endostatin: An Endogenous Inhibitor of Angiogenesis and Tumor Growth, Cell, vol.88, issue.2, pp.277-285, 1997.
DOI : 10.1016/S0092-8674(00)81848-6

O. Reilly, M. Holmgren, L. Shing, Y. Chen, C. Rosenthal et al., Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a lewis lung carcinoma, Cell, vol.79, issue.2, pp.315-328, 1994.
DOI : 10.1016/0092-8674(94)90200-3

J. Pouysségur, F. Dayan, and N. Mazure, Hypoxia signalling in cancer and approaches to enforce tumour regression, Nature, vol.9, issue.7092, pp.437-443, 2006.
DOI : 10.1038/nature04871

B. Ribba, T. Colin, and S. Schnell, A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies, Theoretical Biology and Medical Modelling, vol.3, issue.7, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00756367

B. Ribba, et al, in press. A tumor growth inhibition model for low-grade glioma treated with chemotherapy of radiotherapy, Clininical Cancer Research

B. Ribba, O. Saut, T. Colin, D. Bresch, E. Grenier et al., A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents, Journal of Theoretical Biology, vol.243, issue.4, pp.532-541, 2006.
DOI : 10.1016/j.jtbi.2006.07.013

URL : https://hal.archives-ouvertes.fr/hal-00428053

B. Ribba, E. Watkin, M. Tod, P. Girard, E. Grenier et al., A model of vascular tumour growth in mice combining longitudinal tumour size data with histological biomarkers, European Journal of Cancer, vol.47, issue.3, pp.479-490, 2011.
DOI : 10.1016/j.ejca.2010.10.003

URL : https://hal.archives-ouvertes.fr/inria-00539594

B. Ribba, B. You, M. Tod, P. Girard, B. Tranchand et al., Chemotherapy may be delivered based on an integrated view of tumour dynamics, IET Systems Biology, vol.3, issue.3, 2009.
DOI : 10.1049/iet-syb.2008.0104

URL : https://hal.archives-ouvertes.fr/hal-00756359

M. Rocchetti, M. Simeoni, E. Pesenti, G. De-nicolao, and I. Poggesi, Predicting the active doses in humans from animal studies: A novel approach in oncology, European Journal of Cancer, vol.43, issue.12, pp.1862-1868, 2007.
DOI : 10.1016/j.ejca.2007.05.011

W. Scheithauer and W. Schmiegel, Bevacizumab plus Oxaliplatin-Based Regimens for the Treatment of Colorectal Cancer, Onkologie, vol.32, issue.7, p.431, 2009.
DOI : 10.1159/000218354

M. Simeoni, P. Magni, C. Cammia, G. De-nicolao, V. Croci et al., Predictive Pharmacokinetic-Pharmacodynamic Modeling of Tumor Growth Kinetics in Xenograft Models after Administration of Anticancer Agents, Cancer Research, vol.64, issue.3, p.1094, 2004.
DOI : 10.1158/0008-5472.CAN-03-2524

R. Tong, Y. Boucher, S. Kozin, F. Winkler, D. Hicklin et al., Vascular Normalization by Vascular Endothelial Growth Factor Receptor 2 Blockade Induces a Pressure Gradient Across the Vasculature and Improves Drug Penetration in Tumors, Cancer Research, vol.64, issue.11, p.3731, 2004.
DOI : 10.1158/0008-5472.CAN-04-0074

Y. Wang, C. Sung, C. Dartois, R. Ramchandani, B. Booth et al., Elucidation of Relationship Between Tumor Size and Survival in Non-Small-Cell Lung Cancer Patients Can Aid Early Decision Making in Clinical Drug Development, Clinical Pharmacology & Therapeutics, vol.24, issue.2, pp.167-174, 2009.
DOI : 10.1093/jnci/92.3.205

Y. Wang, L. Zhang, J. Sagotsky, T. S. , and D. , Simulating non-small cell lung cancer with a multiscale agent-based model, Theoretical Biology and Medical Modelling, vol.4, issue.1, p.50, 2007.
DOI : 10.1186/1742-4682-4-50

M. Welter, K. Bartha, and H. Rieger, Emergent vascular network inhomogeneities and resulting blood flow patterns in a growing tumor, Journal of Theoretical Biology, vol.250, issue.2, pp.257-280, 2008.
DOI : 10.1016/j.jtbi.2007.09.031

X. Zheng, S. Wise, and V. Cristini, Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method, Bulletin of Mathematical Biology, vol.67, issue.2, pp.211-259, 2005.
DOI : 10.1016/j.bulm.2004.08.001

T. Alarcón, H. M. Byrne, and P. K. Maini, A Multiple Scale Model for Tumor Growth, Multiscale Modeling & Simulation, vol.3, issue.2, p.440, 2005.
DOI : 10.1137/040603760

T. Alarcón and K. M. Page, Mathematical models of the VEGF receptor and its role in cancer therapy, Journal of The Royal Society Interface, vol.4, issue.13, p.283, 2007.
DOI : 10.1098/rsif.2006.0170

B. B. Aldridge, J. M. Burke, D. A. Lauffenburger, and P. K. Sorger, Physicochemical modelling of cell signalling pathways, Nature Cell Biology, vol.121, issue.11, pp.1195-1203, 2006.
DOI : 10.1038/ncb1497

R. Alves, F. Antunes, and A. Salvador, Tools for kinetic modeling of biochemical networks, Nature Biotechnology, vol.13, issue.6, pp.667-672, 2006.
DOI : 10.1038/nbt0606-667

A. R. Anderson and M. A. Chaplain, Continuous and Discrete Mathematical Models of Tumor-induced Angiogenesis, Bulletin of Mathematical Biology, vol.60, issue.5, pp.60-857, 1998.
DOI : 10.1006/bulm.1998.0042

R. P. Araujo and D. L. Mcelwain, A history of the study of solid tumour growth: the contribution of mathematical modelling, Bulletin of Mathematical Biology, pp.66-1039, 2004.

U. S. Bhalla and R. , Iyengar, and others, Emergent properties of networks of biological signaling pathways, Science, pp.283-381, 1999.

K. Bartha and H. Rieger, Vascular network remodeling via vessel cooption, regression and growth in tumors, Journal of Theoretical Biology, vol.241, issue.4, pp.903-918, 2006.
DOI : 10.1016/j.jtbi.2006.01.022

F. Billy, B. Ribba, O. Saut, H. Morre-trouilhet, T. Colin et al., A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy, Journal of Theoretical Biology, vol.260, issue.4, pp.260-545, 2009.
DOI : 10.1016/j.jtbi.2009.06.026

URL : https://hal.archives-ouvertes.fr/inria-00440447

J. P. Boissel, B. Ribba, E. Grenier, G. Chapuisat, and M. Dronne, Modelling methodology in physiopathology, Progress in Biophysics and Molecular Biology, vol.97, issue.1, pp.97-125, 2008.
DOI : 10.1016/j.pbiomolbio.2007.10.005

URL : https://hal.archives-ouvertes.fr/hal-00859345

H. M. Byrne and M. A. , Growth of nonnecrotic tumors in the presence and absence of inhibitors, Mathematical Biosciences, vol.130, issue.2, pp.151-181, 1995.
DOI : 10.1016/0025-5564(94)00117-3

P. Carmeliet and R. K. Jain, Angiogenesis in cancer and other diseases, pp.249-257, 2000.

S. Cebe-suarez, A. Zehnder-fjällman, and K. Ballmer-hofer, The role of VEGF receptors in angiogenesis; complex partnerships, Cellular and molecular life sciences, pp.601-615, 2006.

A. Citri and Y. Yarden, EGF???ERBB signalling: towards the systems level, Nature Reviews Molecular Cell Biology, vol.96, issue.7, pp.505-516, 2006.
DOI : 10.1038/nrm1962

M. J. Cross, J. Dixelius, T. Matsumoto, and L. Claesson-welsh, VEGF-receptor signal transduction , Trends in biochemical sciences, pp.488-494, 2003.

A. E-m-d-e, C. R. P-r-a-d-e-e-p, and D. A. , F e r r a r o ,N .B e n -C h e t r i t ,M .S e l a ,B .R i b b a ,Z .K a ma n dY . Yarden, Combining epitope-distinct antibodies to HER2: cooperative inhibitory effects on invasive growth, Oncogene, pp.30-1631, 2010.

S. Faivre, G. Demetri, W. Sargent, and E. Raymond, Molecular basis for sunitinib efficacy and future clinical development, Nature Reviews Drug Discovery, vol.24, issue.9, pp.734-745, 2007.
DOI : 10.1038/nrd2380

N. Ferrara, VEGF and the quest for tumour angiogenesis factors, Nature Reviews Cancer, vol.120, issue.10, pp.795-803, 2002.
DOI : 10.1038/nrc909

N. Ferrara, Vascular Endothelial Growth Factor: Basic Science and Clinical Progress, Endocrine Reviews, vol.25, issue.4, pp.581-611, 2004.
DOI : 10.1210/er.2003-0027

N. Ferrara, K. J. Hillan, and W. Novotny, Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy, Biochemical and biophysical research communications, pp.326-335, 2005.

J. Folkman, Tumor angiogenesis factor, Cancer Research, vol.34, 1974.

J. Folkman, New perspectives in clinical oncology from angiogenesis research, European Journal of Cancer, vol.32, issue.14, pp.32-2534, 1990.
DOI : 10.1016/S0959-8049(96)00423-6

F. M. Gabhann and A. S. Popel, Systems biology of vascular endothelial growth factors,M i crocirculation, pp.715-738, 2008.

G. Gasparini, R. Longo, M. Fanelli, and B. A. Teicher, Combination of Antiangiogenic Therapy With Other Anticancer Therapies: Results, Challenges, and Open Questions, Journal of Clinical Oncology, vol.23, issue.6, pp.23-1295, 2005.
DOI : 10.1200/JCO.2005.10.022

H. P. Gerber, A. Mcmurtrey, J. Kowalski, M. Yan, B. A. Keyt et al., Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3-kinase/Akt signal transduction pathway, Journal of Biological Chemistry, pp.273-30336, 1998.

F. Graner and J. A. Glazier, Simulation of biological cell sorting using a two-dimensional extended Potts model, Physical Review Letters, vol.69, issue.13, pp.69-2013, 1992.
DOI : 10.1103/PhysRevLett.69.2013

M. Hatakeyama, S. Kimura, T. Naka, T. Kawasaki, N. Yumoto et al., A computational model on the modulation of mitogen-activated protein kinase (MAPK) and Akt pathways in heregulininduced ErbB signalling, Biochemical Journal, pp.373-451, 2003.

B. S. Hendriks, F. Hua, and J. R. Chabot, Analysis of Mechanistic Pathway Models in Drug Discovery: p38 Pathway, Biotechnology Progress, vol.24, issue.1, pp.96-109, 2008.
DOI : 10.1021/bp070084g

C. Y. Huang and J. E. Ferrell, Ultrasensitivity in the mitogen-activated protein kinase cascade., Proceedings of the National Academy of Sciences, p.93, 1996.
DOI : 10.1073/pnas.93.19.10078

C. Huang, K. Jacobsonand, and M. D. Schaller, MAP kinases and cell migration, Journal of Cell Science, vol.117, issue.20, p.117, 2004.
DOI : 10.1242/jcs.01481

URL : http://jcs.biologists.org/cgi/content/short/117/20/4619

R. Jain, Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy, Nature Medicine, vol.7, issue.9, pp.987-989, 2001.
DOI : 10.1038/nm0901-987

R. Jain, Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy, Science, vol.307, issue.5706, pp.307-58, 2005.
DOI : 10.1126/science.1104819

H. Kitano, Computational systems biology, Nature, vol.14, issue.6912, pp.206-210, 2002.
DOI : 10.1038/35002125

H. Kitano, Cancer robustness: Tumour tactics, Nature, vol.426, issue.6963, pp.426-125, 2003.
DOI : 10.1038/426125a

H. Kitano, A. Funahashi, Y. Matsuoka, and K. Oda, Using process diagrams for the graphical representation of biological networks, Nature Biotechnology, vol.33, issue.8, pp.961-966, 2005.
DOI : 10.1016/S1478-5382(03)02370-9

M. Kohandel, M. Kardar, M. Milosevic, and S. Sivaloganathan, Dynamics of tumor growth and combination of anti-angiogenic and cytotoxic therapies, Physics in Medicine and Biology, vol.52, issue.13, pp.3665-3677, 2007.
DOI : 10.1088/0031-9155/52/13/001

B. N. Kholodenko, O. V. Demin, G. Moehren, and J. B. Hoek, Quantification of Short Term Signaling by the Epidermal Growth Factor Receptor, Journal of Biological Chemistry, vol.274, issue.42, pp.274-30169, 1999.
DOI : 10.1074/jbc.274.42.30169

B. N. Kholodenko, Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades, European Journal of Biochemistry, vol.235, issue.6, pp.1583-1588, 2001.
DOI : 10.1046/j.1432-1327.2000.01197.x

L. Lamalice, F. L. Boeuf, and J. Huot, Endothelial cell migration during angiogenesis,C i r c u lation research, p.782, 2007.

D. S. Lee, H. Rieger, and K. Bartha, Flow correlated percolation during vascular remodeling in growing tumors, Physical review letters, pp.96-58104, 2006.

J. Ma and D. J. Waxman, Combination of antiangiogenesis with chemotherapy for more effective cancer treatment, Molecular Cancer Therapeutics, vol.7, issue.12, 2008.
DOI : 10.1158/1535-7163.MCT-08-0715

N. V. Mantzaris, S. Webband, and H. G. Othmer, Mathematical modeling of tumor-induced angiogenesis, Journal of Mathematical Biology, vol.49, issue.2, pp.49-111, 2004.
DOI : 10.1007/s00285-003-0262-2

D. B. Mendel, A. D. Laird, X. Xin, S. G. Louie, J. G. Christensen et al., In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors, pp.9-327, 2003.

N. Normanno, A. Morabito, A. De-luca, M. C. Piccirillo, M. Gallo et al., Target-based therapies in breast cancer: current status and future perspectives, Endocrine Related Cancer, vol.16, issue.3, pp.16-675, 2009.
DOI : 10.1677/ERC-08-0208

N. , L. Novere, A. Finney, M. Hucka, U. S. Bhalla et al., Mendes and others, Minimum information requested in the annotation of biochemical models (MIRIAM), Nature biotechnology, pp.23-1509, 2005.

A. K. Olsson, A. Dimberg, J. Kreuger, and L. Claesson-welsh, VEGF receptor signalling ??? in control of vascular function, Nature Reviews Molecular Cell Biology, vol.99, issue.5, pp.357-371, 2006.
DOI : 10.1038/nrm1911

T. Pawlik and K. Keyomarsi, Role of cell cycle in mediating sensitivity to radiotherapy, International Journal of Radiation Oncology*Biology*Physics, vol.59, issue.4, pp.59-928, 2004.
DOI : 10.1016/j.ijrobp.2004.03.005

N. Rahimi, Vascular endothelial growth factor receptors: Molecular mechanisms of activation and therapeutic potentials, Experimental Eye Research, vol.83, issue.5, pp.1005-1016, 2006.
DOI : 10.1016/j.exer.2006.03.019

B. Ribba, O. Saut, T. Colin, D. Bresch, E. Grenier et al., A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents, Journal of Theoretical Biology, vol.243, issue.4, pp.243-532, 2006.
DOI : 10.1016/j.jtbi.2006.07.013

URL : https://hal.archives-ouvertes.fr/hal-00428053

B. Ribba, B. You, M. Tod, P. Girard, B. Tranchand et al., Chemotherapy may be delivered based on an integrated view of tumour dynamics,I E TS y s tems, Biology, vol.3, p.180, 2009.

B. Ribba, T. Colin, and S. Schnell, A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies, Theoretical Biology and Medical Modelling, vol.3, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00756367

S. Sanga, J. P. Sinek, H. B. Frieboes, M. Ferrari, J. P. Fruehauf et al., Mathematical modeling of cancer progression and response to chemotherapy, Expert Review of Anticancer Therapy, vol.6, issue.10, pp.1361-1376, 2006.
DOI : 10.1586/14737140.6.10.1361

B. Schoeberl, C. Eichler-jonsson, E. D. Gilles, and G. Muller, Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors, Nature Biotechnology, vol.20, issue.4, pp.20-370, 2002.
DOI : 10.1038/nbt0402-370

M. Scianna, L. Munaron, and L. Preziosi, A multiscale hybrid approach for vasculogenesis and related potential blocking therapies, Progress in Biophysics and Molecular Biology, vol.106, issue.2, pp.450-462, 2011.
DOI : 10.1016/j.pbiomolbio.2011.01.004

S. Senan and E. F. Smit, Design of clinical trials of radiation combined with antiangiogenic therapy, The oncologist, p.465, 2007.

M. Shibuya, Differential Roles of Vascular Endothelial Growth Factor Receptor-1 and Receptor-2 in Angiogenesis, BMB Reports, vol.39, issue.5, pp.39-469, 2006.
DOI : 10.5483/BMBRep.2006.39.5.469

M. Shibuya and L. Claesson-welsh, Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis, Experimental cell research, pp.312-549, 2006.

M. Simeoni, P. Magni, C. Cammia, G. De-nicolao, V. Croci et al., Predictive Pharmacokinetic-Pharmacodynamic Modeling of Tumor Growth Kinetics in Xenograft Models after Administration of Anticancer Agents, Cancer Research, vol.64, issue.3, p.1094, 2004.
DOI : 10.1158/0008-5472.CAN-03-2524

H. Takahashi and M. Shibuya, The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions, Clinical Science, vol.109, issue.3, pp.227-241, 2005.
DOI : 10.1042/CS20040370

R. T. Tong, Y. Boucher, S. V. Kozin, F. Winkler, D. J. Hicklin et al., Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors, Cancer research, p.3731, 2004.

F. Valeriote and L. Van-putten, Proliferation-dependent cytotoxicity of anticancer agents: a review, Cancer Research, vol.35, p.2619, 1975.

I. Vivanco and C. L. Sawyers, The phosphatidylinositol 3-Kinase???AKT pathway in human cancer, Nature Reviews Cancer, vol.2, issue.7, p.489, 2002.
DOI : 10.1038/nrc839

Y. Wang, L. Zhang, J. Sagotsky, and T. S. Deisboeck, Simulating non-small cell lung cancer w i t ham u l t i s c a l ea g e n t -b a s e dm o d e l, Theoretical Biology and Medical Modelling, p.50, 2007.

Z. Wang, V. Bordas, and T. Deisboeck, Frontiers: Identification of Critical Molecular Components in a Multiscale Cancer Model Based on the Integration of Monte Carlo, Frontiers in Computational Physiology And Medicine, 2011.

M. Welter, K. Bartha, and H. Rieger, Emergent vascular network inhomogeneities and resulting blood flow patterns in a growing tumor, Journal of Theoretical Biology, vol.250, issue.2, pp.257-280, 2008.
DOI : 10.1016/j.jtbi.2007.09.031

C. G. Willett, Y. Boucher, F. Di-tomaso, D. G. Duda, L. L. Munn et al., Kozin, and others, Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer, Nature medicine, pp.10-145, 2004.

F. Winkler, S. V. Kozin, R. T. Tong, S. S. Chae, M. F. Booth et al., Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation Role of oxygenation, angiopoietin-1, and matrix metalloproteinases, Cancer Cell, vol.6, pp.553-563, 2004.

X. Zheng, S. Wise, and V. Cristini, Nonlinear simulation of tumor necrosis, neovascularization and tissue invasion via an adaptive finite-element/level-set method, Bulletin of mathematical biology, pp.67-211, 2005.

. Mcguire, A computational study of the development of epithelial acini: Ii. necessary conditions for structure and lumen stability, Science, vol.9, pp.177-182, 1987.

P. Morrow, F. Zambrana, and F. Esteva, Recent advances in systemic therapy: Advances in systemic therapy for HER2-positive metastatic breast cancer, Breast Cancer Research, vol.113, issue.suppl 3, p.207, 2009.
DOI : 10.1002/cncr.23836

H. D. Soule, T. M. Maloney, S. R. Wolman, W. D. Peterson, R. Brenz et al., Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, mcf-10, Cancer research, issue.18, p.506075, 1990.

O. W. Petersen, L. Rønnov-jessen, A. R. Howlett, and M. J. Bissell, Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells., Proceedings of the National Academy of Sciences, p.899064, 1992.
DOI : 10.1073/pnas.89.19.9064

S. K. Muthuswamy, D. Li, S. Lelievre, M. J. Bissell, and J. S. Brugge, ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini, Nature Cell Biology, vol.3, issue.9, p.785, 2001.
DOI : 10.1038/ncb0901-785

J. Debnath, K. R. Mills, N. L. Collins, M. J. Reginato, S. K. Muthuswamy et al., The Role of Apoptosis in Creating and Maintaining Luminal Space within Normal and Oncogene-Expressing Mammary Acini, Cell, vol.111, issue.1, pp.29-40, 2002.
DOI : 10.1016/S0092-8674(02)01001-2

M. R. Grant, K. E. Mostov, T. D. Tlsty, and C. A. Hunt, Simulating Properties of In Vitro Epithelial Cell Morphogenesis, PLoS Computational Biology, vol.217, issue.10, p.129, 2006.
DOI : 10.1371/journal.pcbi.0020129.sg006

S. H. Kim, J. Debnath, K. Mostov, S. Park, and C. A. Hunt, A computational approach to resolve cell level contributions to early glandular epithelial cancer progression, BMC Systems Biology, vol.3, issue.1, p.122, 2009.
DOI : 10.1186/1752-0509-3-122

K. A. Rejniak, S. E. Wang, N. S. Bryce, H. Chang, B. Parvin et al., Linking Changes in Epithelial Morphogenesis to Cancer Mutations Using Computational Modeling, PLoS Computational Biology, vol.11, issue.13, p.1000900, 2010.
DOI : 10.1371/journal.pcbi.1000900.s005

J. Tang, H. Enderling, S. Becker-weimann, C. Pham, A. Polyzos et al., Phenotypic transition maps of 3D breast acini obtained by imaging-guided agent-based modeling, Integrative Biology, vol.6, issue.Pt 2, pp.408-421, 2011.
DOI : 10.1039/c0ib00092b

F. Graner and J. A. Glazier, Simulation of biological cell sorting using a two-dimensional extended Potts model, Physical Review Letters, vol.69, issue.13, pp.2013-2016, 1992.
DOI : 10.1103/PhysRevLett.69.2013

J. A. Glazier and F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells, Physical Review E, vol.47, issue.3, p.2128, 1993.
DOI : 10.1103/PhysRevE.47.2128

D. Drasdo and S. Höhme, Individual-based approaches to birth and death in avascu1ar tumors, Mathematical and Computer Modelling, vol.37, issue.11, pp.1163-1175, 2003.
DOI : 10.1016/S0895-7177(03)00128-6

A. Shirinifard, J. S. Gens, B. L. Zaitlen, N. J. Pop?awski, M. Swat et al., 3D Multi-Cell Simulation of Tumor Growth and Angiogenesis, PLoS ONE, vol.56, issue.10, p.7190, 2009.
DOI : 10.1371/journal.pone.0007190.s003

N. J. Savill and R. M. Merks, The cellular potts model in biomedicine. Single-Cell-Based Models in Biology and Medicine, pp.137-150, 2007.

R. M. Merks, M. Guravage, D. Inzé, and G. T. Beemster, VirtualLeaf: An Open-Source Framework for Cell-Based Modeling of Plant Tissue Growth and Development, PLANT PHYSIOLOGY, vol.155, issue.2, pp.656-666, 2011.
DOI : 10.1104/pp.110.167619

J. Izaguirre, R. Chaturvedi, C. Huang, T. Cickovski, J. Coffland et al., COMPUCELL, a multi-model framework for simulation of morphogenesis, Bioinformatics, vol.20, issue.7, p.201129, 2004.
DOI : 10.1093/bioinformatics/bth050

T. M. Cickovski, C. Huang, R. Chaturvedi, T. Glimm, H. G. Hentschel et al., A Framework for Three-Dimensional Simulation of Morphogenesis, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.2, issue.4, pp.273-288, 2005.
DOI : 10.1109/TCBB.2005.46

J. Debnath, S. K. Muthuswamy, and J. S. Brugge, Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures, Methods, vol.30, issue.3, pp.256-268, 2003.
DOI : 10.1016/S1046-2023(03)00032-X

L. E. Brien, M. M. Zegers, and K. E. Mostov, Opinion: Building epithelial architecture: insights from three-dimensional culture models, Nature Reviews Molecular Cell Biology, vol.3, issue.7, pp.531-537, 2002.
DOI : 10.1038/nrm859

A. Emde, . Pradeep, N. Da-ferraro, M. Ben-chetrit, B. Sela et al., Combining epitope-distinct antibodies to HER2: cooperative inhibitory effects on invasive growth, Oncogene, vol.66, issue.14, pp.301631-1642, 2010.
DOI : 10.1038/onc.2010.547

URL : https://hal.archives-ouvertes.fr/hal-00756354

R. M. Merks and J. A. Glazier, A cell-centered approach to developmental biology, Physica A: Statistical Mechanics and its Applications, pp.113-130, 2005.
DOI : 10.1016/j.physa.2004.12.028

C. Hebner, V. M. Weaver, and J. Debnath, Modeling Morphogenesis and Oncogenesis in Three-Dimensional Breast Epithelial Cultures, Annual Review of Pathology: Mechanisms of Disease, vol.3, issue.1, pp.313-339, 2008.
DOI : 10.1146/annurev.pathmechdis.3.121806.151526

K. A. Rejniak and A. R. Anderson, A Computational Study of the Development of Epithelial Acini: I.??Sufficient Conditions for the Formation of a Hollow Structure, Bulletin of Mathematical Biology, vol.95, issue.1, pp.677-712, 2008.
DOI : 10.1007/s11538-007-9274-1

K. A. Rejniak and A. R. Anderson, A Computational Study of the Development of Epithelial Acini: II.??Necessary Conditions for Structure and Lumen Stability, Bulletin of Mathematical Biology, vol.17, issue.1, pp.1450-1479, 2008.
DOI : 10.1007/s11538-008-9308-3

T. Alarcón, H. Byrne, and P. Maini, A cellular automaton model for tumour growth in inhomogeneous environment, Journal of Theoretical Biology, vol.225, issue.2, pp.257-274, 2003.
DOI : 10.1016/S0022-5193(03)00244-3

T. Alarcón, H. Byrne, and P. Maini, A Multiple Scale Model for Tumor Growth, Multiscale Modeling & Simulation, vol.3, issue.2, p.440, 2005.
DOI : 10.1137/040603760

B. Aldridge, J. Burke, D. Lauffenburger, and P. Sorger, Physicochemical modelling of cell signalling pathways, Nature Cell Biology, vol.121, issue.11, pp.1195-1203, 2006.
DOI : 10.1038/ncb1497

R. Alves, F. Antunes, and A. Salvador, Tools for kinetic modeling of biochemical networks, Nature Biotechnology, vol.13, issue.6, pp.667-672, 2006.
DOI : 10.1038/nbt0606-667

A. Anderson, A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion, Mathematical Medicine and Biology, vol.22, issue.2, pp.163-186, 2005.
DOI : 10.1093/imammb/dqi005

A. Anderson, M. Chaplain, E. Newman, R. Steele, and A. Thompson, Mathematical Modelling of Tumour Invasion and Metastasis, Journal of Theoretical Medicine, vol.2, issue.2, pp.129-154, 2000.
DOI : 10.1080/10273660008833042

A. Anderson, M. Hassanein, K. Branch, J. Lu, N. Lobdell et al., Microenvironmental Independence Associated with Tumor Progression, Cancer Research, vol.69, issue.22, p.698797, 2009.
DOI : 10.1158/0008-5472.CAN-09-0437

A. Anderson, A. Weaver, P. Cummings, and V. Quaranta, Tumor Morphology and Phenotypic Evolution Driven by Selective Pressure from the Microenvironment, Cell, vol.127, issue.5, pp.905-915, 2006.
DOI : 10.1016/j.cell.2006.09.042

L. Arakelyan, V. Vainstein, and Z. Agur, A computer algorithm describing the process of vessel formation and maturation, and its use for predicting the effects of anti-angiogenic and anti-maturation therapy on vascular tumor growth, Angiogenesis, vol.5, issue.3, pp.203-214, 2002.
DOI : 10.1023/A:1023841921971

B. Bergers, G. Benjamin, and L. , Angiogenesis: Tumorigenesis and the angiogenic switch, Nature Reviews Cancer, vol.3, issue.6, pp.401-410, 2003.
DOI : 10.1038/nrc1093

F. Billy, B. Ribba, O. Saut, H. Morre-trouilhet, T. Colin et al., A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy, Journal of Theoretical Biology, vol.260, issue.4, pp.545-562, 2009.
DOI : 10.1016/j.jtbi.2009.06.026

URL : https://hal.archives-ouvertes.fr/inria-00440447

M. Bissell and D. Radisky, Putting tumours in context, Nature Reviews Cancer, vol.1, issue.1, p.46, 2001.
DOI : 10.1038/35094059

C. Breward, H. Byrne, L. , and C. , The role of cell-cell interactions in a two-phase model for avascular tumour growth, Journal of Mathematical Biology, vol.45, issue.2, pp.125-152, 2002.
DOI : 10.1007/s002850200149

H. Byrne and M. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors, Mathematical Biosciences, vol.130, issue.2, pp.151-181, 1995.
DOI : 10.1016/0025-5564(94)00117-3

H. Byrne and M. Chaplain, Growth of necrotic tumors in the presence and absence of inhibitors, Mathematical Biosciences, vol.135, issue.2, pp.187-216, 1996.
DOI : 10.1016/0025-5564(96)00023-5

M. Chaplain, Avascular growth, angiogenesis and vascular growth in solid tumours: The mathematical modelling of the stages of tumour development, Mathematical and Computer Modelling, vol.23, issue.6, pp.47-87, 1996.
DOI : 10.1016/0895-7177(96)00019-2

M. Chaplain, P. Macklin, S. Mcdougall, A. Anderson, V. Cristini et al., Multiscale Mathematical Modeling of Vascular Tumor Growth, Multiscale Cancer Modeling, vol.34, p.253, 2010.
DOI : 10.1201/b10407-14

M. Chaplain, S. Mcdougall, A. , and A. , MATHEMATICAL MODELING OF TUMOR-INDUCED ANGIOGENESIS, Annual Review of Biomedical Engineering, vol.8, issue.1, pp.233-257, 2006.
DOI : 10.1146/annurev.bioeng.8.061505.095807

M. Chaplain and A. Stuart, A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor, Mathematical Medicine and Biology, vol.10, issue.3, pp.149-168, 1993.
DOI : 10.1093/imammb/10.3.149

M. Citron, D. Berry, C. Cirrincione, C. Hudis, E. Winer et al., Randomized Trial of Dose-Dense Versus Conventionally Scheduled and Sequential Versus Concurrent Combination Chemotherapy as Postoperative Adjuvant Treatment of Node-Positive Primary Breast Cancer: First Report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741, Journal of Clinical Oncology, vol.21, issue.8, pp.1431-1439, 2003.
DOI : 10.1200/JCO.2003.09.081

B. Claret, L. Girard, P. Hoff, P. Van-cutsem, E. Zuideveld et al., Model-Based Prediction of Phase III Overall Survival in Colorectal Cancer on the Basis of Phase II Tumor Dynamics, Journal of Clinical Oncology, vol.27, issue.25, pp.274103-4108, 2009.
DOI : 10.1200/JCO.2008.21.0807

V. Cristini, X. Li, J. Lowengrub, and S. Wise, Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching, Journal of Mathematical Biology, vol.67, issue.4-5, pp.723-763, 2009.
DOI : 10.1007/s00285-008-0215-x

V. Cristini, J. Lowengrub, and Q. Nie, Nonlinear simulation of tumor growth, Journal of Mathematical Biology, vol.46, issue.3, pp.191-224, 2003.
DOI : 10.1007/s00285-002-0174-6

M. Czabanka, M. Vinci, F. Heppner, A. Ullrich, and P. Vajkoczy, Effects of sunitinib on tumor hemodynamics and delivery of chemotherapy, International Journal of Cancer, vol.10, issue.6, pp.1293-1300, 2009.
DOI : 10.1002/ijc.24019

J. Debnath, K. Mills, N. Collins, M. Reginato, S. Muthuswamy et al., The Role of Apoptosis in Creating and Maintaining Luminal Space within Normal and Oncogene-Expressing Mammary Acini, Cell, vol.111, issue.1, pp.29-40, 2002.
DOI : 10.1016/S0092-8674(02)01001-2

S. Dormann and A. Deutsch, Modeling of self-organized avascular tumor growth with a hybrid cellular automaton, In silico biology, vol.2, issue.3, pp.393-406, 2002.

D. Drasdo and S. Höhme, Individual-based approaches to birth and death in avascu1ar tumors, Mathematical and Computer Modelling, vol.37, issue.11, pp.1163-1175, 2003.
DOI : 10.1016/S0895-7177(03)00128-6

D. Drasdo and S. Höhme, : monolayers and spheroids, Physical Biology, vol.2, issue.3, p.133, 2005.
DOI : 10.1088/1478-3975/2/3/001

N. Ferrara, VEGF and the quest for tumour angiogenesis factors, Nature Reviews Cancer, vol.120, issue.10, pp.795-803, 2002.
DOI : 10.1038/nrc909

J. Folkman, Role of angiogenesis in tumor growth and metastasis, pp.15-18, 2002.

J. Folkman, Angiogenesis, Annual Review of Medicine, vol.57, issue.1, pp.1-18, 2006.
DOI : 10.1146/annurev.med.57.121304.131306

L. Friberg, A. Henningsson, H. Maas, L. Nguyen, and M. Karlsson, Model of Chemotherapy-Induced Myelosuppression With Parameter Consistency Across Drugs, Journal of Clinical Oncology, vol.20, issue.24, pp.204713-4721, 2002.
DOI : 10.1200/JCO.2002.02.140

J. Glazier and F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells, Physical Review E, vol.47, issue.3, p.2128, 1993.
DOI : 10.1103/PhysRevE.47.2128

B. Gorelik, I. Ziv, R. Shohat, M. Wick, W. Hankins et al., Efficacy of Weekly Docetaxel and Bevacizumab in Mesenchymal Chondrosarcoma: A New Theranostic Method Combining Xenografted Biopsies with a Mathematical Model, Cancer Research, vol.68, issue.21, p.689033, 2008.
DOI : 10.1158/0008-5472.CAN-08-1723

F. Graner and J. Glazier, Simulation of biological cell sorting using a two-dimensional extended Potts model, Physical Review Letters, vol.69, issue.13, pp.692013-2016, 1992.
DOI : 10.1103/PhysRevLett.69.2013

M. Grant, K. Mostov, T. Tlsty, and C. Hunt, Simulating Properties of In Vitro Epithelial Cell Morphogenesis, PLoS Computational Biology, vol.217, issue.10, p.129, 2006.
DOI : 10.1371/journal.pcbi.0020129.sg006

H. Greenspan, Models for the Growth of a Solid Tumor by Diffusion, Studies in Applied Mathematics, vol.9, issue.4, pp.317-340, 1972.
DOI : 10.1002/sapm1972514317

H. Greenspan, On the growth and stability of cell cultures and solid tumors, Journal of Theoretical Biology, vol.56, issue.1, pp.229-242, 1976.
DOI : 10.1016/S0022-5193(76)80054-9

G. Gupta and J. Massagué, Cancer Metastasis: Building a Framework, Cell, vol.127, issue.4, pp.679-695, 2006.
DOI : 10.1016/j.cell.2006.11.001

P. Hahnfeldt, D. Panigrahy, J. Folkman, and L. Hlatky, Tumor development under angiogenic signaling : a dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Research, issue.19, p.594770, 1999.

D. Hanahan and J. Folkman, Patterns and Emerging Mechanisms of the Angiogenic Switch during Tumorigenesis, Cell, vol.86, issue.3, pp.353-364, 1996.
DOI : 10.1016/S0092-8674(00)80108-7

D. Hanahan and R. Weinberg, The hallmarks of cancer. cell, pp.57-70, 2000.

D. Bibliographie-hanahan and R. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, issue.5, pp.646-674, 2011.
DOI : 10.1016/j.cell.2011.02.013

M. Hu, J. Yao, D. Carroll, S. Weremowicz, H. Chen et al., Regulation of In Situ to Invasive Breast Carcinoma Transition, Cancer Cell, vol.13, issue.5, pp.394-406, 2008.
DOI : 10.1016/j.ccr.2008.03.007

M. Hucka, A. Finney, H. Sauro, H. Bolouri, J. Doyle et al., The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models, Bioinformatics, vol.19, issue.4, pp.524-531, 2003.
DOI : 10.1093/bioinformatics/btg015

R. Jain, Determinants of tumor blood flow : a review, Cancer research, vol.48, issue.10, pp.2641-2658, 1988.

R. Jain, Normalizing tumor vasculature with anti-angiogenic therapy : a new paradigm for combination therapy, Nature Medicine, vol.7, issue.9, pp.987-989, 2001.
DOI : 10.1038/nm0901-987

R. Jain, Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy, Science, vol.307, issue.5706, p.30758, 2005.
DOI : 10.1126/science.1104819

Y. Jiang, J. Pjesivac-grbovic, C. Cantrell, and J. Freyer, A Multiscale Model for Avascular Tumor Growth, Biophysical Journal, vol.89, issue.6, pp.3884-3894, 2005.
DOI : 10.1529/biophysj.105.060640

S. Kim, J. Debnath, K. Mostov, S. Park, and C. Hunt, A computational approach to resolve cell level contributions to early glandular epithelial cancer progression, BMC Systems Biology, vol.3, issue.1, p.122, 2009.
DOI : 10.1186/1752-0509-3-122

C. Klein, CANCER: The Metastasis Cascade, Science, vol.321, issue.5897, pp.1785-1787, 2008.
DOI : 10.1126/science.1164853

A. Laird, Dynamics of Tumor Growth, British Journal of Cancer, vol.18, issue.3, p.490, 1964.
DOI : 10.1038/bjc.1964.55

L. Novère, N. Hucka, M. Mi, H. Moodie, S. Schreiber et al., The Systems Biology Graphical Notation, Nature Biotechnology, vol.267, issue.8, pp.27735-741, 2009.
DOI : 10.1038/nbt.1558

D. Lombardi, A. Iollo, T. Colin, and O. Saut, Inverse problems in tumor growth modeling by means of semiempirical eigenfunctions, Mathematical Models and Methods in Applied Sciences, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00664723

J. Lowengrub, H. Frieboes, F. Jin, Y. Chuang, X. Li et al., Nonlinear modelling of cancer: bridging the gap between cells and tumours, Nonlinearity, vol.23, issue.1, p.1, 2010.
DOI : 10.1088/0951-7715/23/1/R01

B. Ma, J. Li, S. Reed, K. Guo, P. Gallo et al., Pharmacodynamicmediated effects of the angiogenesis inhibitor su5416 on the tumor disposition of temozolomide in subcutaneous and intracerebral glioma xenograft models, Journal of Pharmacology and Experimental Therapeutics, issue.3, pp.305833-839, 2003.

P. Macklin, S. Mcdougall, A. Anderson, M. Chaplain, V. Cristini et al., Multiscale modelling and nonlinear simulation of vascular tumour growth, Journal of Mathematical Biology, vol.67, issue.2, pp.765-798, 2009.
DOI : 10.1007/s00285-008-0216-9

N. Mantzaris, S. Webb, and H. Othmer, Mathematical modeling of tumor-induced angiogenesis, Journal of Mathematical Biology, vol.49, issue.2, pp.111-187, 2004.
DOI : 10.1007/s00285-003-0262-2

H. Matsuno, L. Chen, and S. Miyano, Petri Net Based Descriptions for Systematic Understanding of Biological Pathways, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol.89, issue.11, pp.893166-3174, 2006.
DOI : 10.1093/ietfec/e89-a.11.3166

D. Mcelwain and L. Morris, Apoptosis as a volume loss mechanism in mathematical models of solid tumor growth, Mathematical Biosciences, vol.39, issue.1-2, pp.147-157, 1978.
DOI : 10.1016/0025-5564(78)90033-0

D. Mcelwain and P. Ponzo, A model for the growth of a solid tumor with non-uniform oxygen consumption, Mathematical Biosciences, vol.35, issue.3-4, pp.3-4267, 1977.
DOI : 10.1016/0025-5564(77)90028-1

A. Miller, B. Hoogstraten, M. Staquet, and A. Winkler, Reporting results of cancer treatment, Cancer, vol.11, issue.1, pp.207-214, 1981.
DOI : 10.1002/1097-0142(19810101)47:1<207::AID-CNCR2820470134>3.0.CO;2-6

P. Morrow, F. Zambrana, and F. Esteva, Recent advances in systemic therapy: Advances in systemic therapy for HER2-positive metastatic breast cancer, Breast Cancer Research, vol.113, issue.suppl 3, p.207, 2009.
DOI : 10.1002/cncr.23836

S. Muthuswamy, D. Li, S. Lelievre, M. Bissell, and J. Brugge, ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini, Nature Cell Biology, vol.3, issue.9, p.785, 2001.
DOI : 10.1038/ncb0901-785

R. Nahta and F. Esteva, Herceptin : mechanisms of action and resistance . Cancer letters, pp.123-138, 2006.

L. Norton, A gompertzian model of human breast cancer growth, Cancer research, vol.4824, issue.1, p.7067, 1988.

B. Norton and L. , Theoretical Concepts and the Emerging Role of Taxanes in Adjuvant Therapy, The Oncologist, vol.6, issue.90003, pp.30-35, 2001.
DOI : 10.1634/theoncologist.6-suppl_3-30

L. Norton, R. Simon, H. Brereton, B. , and A. , Predicting the course of Gompertzian growth, Nature, vol.25, issue.5586, 1976.
DOI : 10.1038/264542a0

O. Brien, L. Zegers, M. Mostov, and K. , Opinion: Building epithelial architecture: insights from three-dimensional culture models, Nature Reviews Molecular Cell Biology, vol.3, issue.7, pp.531-537, 2002.
DOI : 10.1038/nrm859

M. Oken, R. Creech, D. Tormey, J. Horton, T. Davis et al., Toxicity and response criteria of the Eastern Cooperative Oncology Group, AMERICAN JOURNAL OF CLINICAL ONCOLOGY, vol.5, issue.6, p.649, 1982.
DOI : 10.1097/00000421-198212000-00014

M. Owen, T. Alarcón, P. Maini, and H. Byrne, Angiogenesis and vascular remodelling in normal and cancerous tissues, Journal of Mathematical Biology, vol.235, issue.2, pp.689-721, 2009.
DOI : 10.1007/s00285-008-0213-z

T. Pawlik and K. Keyomarsi, Role of cell cycle in mediating sensitivity to radiotherapy, International Journal of Radiation Oncology*Biology*Physics, vol.59, issue.4, pp.928-942, 2004.
DOI : 10.1016/j.ijrobp.2004.03.005

H. Perfahl, H. Byrne, T. Chen, V. Estrella, T. Alarcón et al., Multiscale Modelling of Vascular Tumour Growth in 3D: The Roles of Domain Size and Boundary Conditions, PLoS ONE, vol.5, issue.S1, p.14790, 2011.
DOI : 10.1371/journal.pone.0014790.s008

O. Petersen, L. Rønnov-jessen, A. Howlett, and M. Bissell, Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells., Proceedings of the National Academy of Sciences, p.899064, 1992.
DOI : 10.1073/pnas.89.19.9064

L. Pickering, S. Rudman, P. Ross, L. , and M. , Targeted therapy in colorectal carcinoma: more than a theory, Colorectal Disease, vol.23, issue.3, pp.209-218, 2008.
DOI : 10.1097/01.cco.0000168535.25330.6a

C. Please, G. Pettet, and D. Mcelwain, A new approach to modelling the formation of necrotic regions in tumours, Applied Mathematics Letters, vol.11, issue.3, pp.89-94, 1998.
DOI : 10.1016/S0893-9659(98)00038-X

C. Please, G. Pettet, and D. Mcelwain, AVASCULAR TUMOUR DYNAMICS AND NECROSIS, Mathematical Models and Methods in Applied Sciences, vol.09, issue.04, pp.569-580, 1999.
DOI : 10.1142/S0218202599000294

B. Ramis-conde, I. Chaplain, M. Anderson, A. Drasdo, and D. , Multi-scale modelling of cancer cell intravasation: the role of cadherins in metastasis, Physical Biology, vol.6, issue.1, p.16008, 2009.
DOI : 10.1088/1478-3975/6/1/016008

I. Ramis-conde, D. Drasdo, A. Anderson, and M. Chaplain, Modeling the Influence of the E-Cadherin-??-Catenin Pathway in Cancer Cell Invasion: A Multiscale Approach, Biophysical Journal, vol.95, issue.1, pp.155-165, 2008.
DOI : 10.1529/biophysj.107.114678

K. Rejniak and A. Anderson, State of the art in computational modelling of cancer. Mathematical medicine and biology : a journal of the IMA, 2011.

K. Rejniak, S. Wang, N. Bryce, H. Chang, B. Parvin et al., Linking Changes in Epithelial Morphogenesis to Cancer Mutations Using Computational Modeling, PLoS Computational Biology, vol.11, issue.13, p.1000900, 2010.
DOI : 10.1371/journal.pcbi.1000900.s005

B. Ribba, T. Colin, and S. Schnell, A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies, Theoretical Biology and Medical Modelling, vol.3, issue.1, p.7, 2006.
DOI : 10.1186/1742-4682-3-7

URL : https://hal.archives-ouvertes.fr/hal-00756367

B. Ribba, G. Kaloshi, M. Peyre, D. Ricard, V. Calvez et al., A Tumor Growth Inhibition Model for Low-Grade Glioma Treated with Chemotherapy or Radiotherapy, Clinical Cancer Research, vol.18, issue.18, 2012.
DOI : 10.1158/1078-0432.CCR-12-0084

URL : https://hal.archives-ouvertes.fr/hal-00744626

B. Ribba, E. Watkin, M. Tod, P. Girard, E. Grenier et al., A model of vascular tumour growth in mice combining longitudinal tumour size data with histological biomarkers, European Journal of Cancer, vol.47, issue.3, pp.47479-490, 2011.
DOI : 10.1016/j.ejca.2010.10.003

URL : https://hal.archives-ouvertes.fr/inria-00539594

M. Rocchetti, M. Simeoni, E. Pesenti, G. De-nicolao, and I. Poggesi, Predicting the active doses in humans from animal studies: A novel approach in oncology, European Journal of Cancer, vol.43, issue.12, pp.431862-1868, 2007.
DOI : 10.1016/j.ejca.2007.05.011

T. Roose, S. Chapman, and P. Maini, Mathematical Models of Avascular Tumor Growth, SIAM Review, vol.49, issue.2, pp.179-208, 2007.
DOI : 10.1137/S0036144504446291

R. Schlatter, K. Schmich, I. Vizcarra, P. Scheurich, T. Sauter et al., ON/OFF and Beyond - A Boolean Model of Apoptosis, PLoS Computational Biology, vol.122, issue.12, p.1000595, 2009.
DOI : 10.1371/journal.pcbi.1000595.s007

B. Schoeberl, B. Eichler-jonsson, C. Gilles, E. Muller, and G. , Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors, Nature Biotechnology, vol.20, issue.4, pp.370-375, 2002.
DOI : 10.1038/nbt0402-370

J. Sherratt and M. Chaplain, A new mathematical model for avascular tumour growth, Journal of Mathematical Biology, vol.43, issue.4, pp.291-312, 2001.
DOI : 10.1007/s002850100088

R. Shymko and L. Glass, Cellular and geometric control of tissue growth and mitotic instability, Journal of Theoretical Biology, vol.63, issue.2, pp.355-374, 1976.
DOI : 10.1016/0022-5193(76)90039-4

M. Simeoni, P. Magni, C. Cammia, G. De-nicolao, V. Croci et al., Predictive Pharmacokinetic-Pharmacodynamic Modeling of Tumor Growth Kinetics in Xenograft Models after Administration of Anticancer Agents, Cancer Research, vol.64, issue.3, p.1094, 2004.
DOI : 10.1158/0008-5472.CAN-03-2524

R. Simon and L. Norton, The Norton???Simon hypothesis: designing more effective and less toxic chemotherapeutic regimens, Nature Clinical Practice Oncology, vol.10, issue.8, pp.406-407, 2006.
DOI : 10.1038/ncponc0560

L. Simpson-herren and H. Lloyd, Kinetic parameters and growth curves for experimental tumor systems, Cancer chemotherapy reports. Part, vol.1, issue.3, p.54143, 1970.

D. Slamon, G. Clark, S. Wong, W. Levin, A. Ullrich et al., A computational study of the development of epithelial acini : Ii. necessary conditions for structure and lumen stability, Science, vol.9, pp.177-182, 1987.

H. Soule, T. Maloney, S. Wolman, W. Peterson, R. Brenz et al., Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, mcf-10, Cancer research, issue.18, p.506075, 1990.

E. Stott, N. Britton, J. Glazier, and M. Zajac, Stochastic simulation of benign avascular tumour growth using the Potts model, Mathematical and Computer Modelling, vol.30, issue.5-6, pp.183-198, 1999.
DOI : 10.1016/S0895-7177(99)00156-9

P. Sullivan and S. Salmon, Kinetics of tumor growth and regression in IgG multiple myeloma, Journal of Clinical Investigation, vol.51, issue.7, p.511697, 1972.
DOI : 10.1172/JCI106971

R. Sutherland, B. Sordat, J. Bamat, H. Gabbert, B. Bourrat et al., Oxygenation and differentiation in multicellular spheroids of human colon carcinoma, Cancer research, issue.10, p.465320, 1986.

B. Tang, J. Enderling, H. Becker-weimann, S. Pham, C. Polyzos et al., Phenotypic transition maps of 3D breast acini obtained by imaging-guided agent-based modeling, Integrative Biology, vol.6, issue.Pt 2, pp.408-421, 2011.
DOI : 10.1039/c0ib00092b

L. Tham, L. Wang, R. Soo, S. Lee, H. Lee et al., A Pharmacodynamic Model for the Time Course of Tumor Shrinkage by Gemcitabine + Carboplatin in Non-Small Cell Lung Cancer Patients, Clinical Cancer Research, vol.14, issue.13, pp.144213-4218, 2008.
DOI : 10.1158/1078-0432.CCR-07-4754

P. Therasse, S. Arbuck, E. Eisenhauer, J. Wanders, R. Kaplan et al., New Guidelines to Evaluate the Response to Treatment in Solid Tumors, JNCI: Journal of the National Cancer Institute, vol.92, issue.3, pp.92205-216, 2000.
DOI : 10.1093/jnci/92.3.205

S. Turner and J. Sherratt, Intercellular Adhesion and Cancer Invasion: A Discrete Simulation Using the Extended Potts Model, Journal of Theoretical Biology, vol.216, issue.1, pp.85-100, 2002.
DOI : 10.1006/jtbi.2001.2522

M. Valenzuela and T. Julian, Ductal Carcinoma In Situ: Biology, Diagnosis, and New Therapies, Clinical Cancer Updates, vol.1, issue.1, pp.16-21, 2007.
DOI : 10.3816/CCU.2007.n.003

F. Valeriote and L. Van-putten, Proliferation-dependent cytotoxicity of anticancer agents : a review, Cancer Research, vol.35, issue.10, p.2619, 1975.

Y. Wang, C. Sung, C. Dartois, R. Ramchandani, B. Booth et al., Elucidation of Relationship Between Tumor Size and Survival in Non-Small-Cell Lung Cancer Patients Can Aid Early Decision Making in Clinical Drug Development, Clinical Pharmacology & Therapeutics, vol.24, issue.2, pp.167-174, 2009.
DOI : 10.1093/jnci/92.3.205

J. Ward and J. King, Mathematical modelling of avascular-tumour growth, Mathematical Medicine and Biology, vol.14, issue.1, pp.39-69, 1997.
DOI : 10.1093/imammb/14.1.39

J. Ward and J. King, Mathematical modelling of avascular-tumour growth II: modelling growth saturation, Mathematical Medicine and Biology, vol.16, issue.2, pp.171-211, 1999.
DOI : 10.1093/imammb/16.2.171

S. Wilhelm, C. Carter, M. Lynch, T. Lowinger, J. Dumas et al., Discovery and development of sorafenib: a multikinase inhibitor for treating cancer, Nature Reviews Drug Discovery, vol.47, issue.10, pp.835-844, 2006.
DOI : 10.1038/nrd2130

L. Zhang, M. Pfister, and B. Meibohm, Concepts and Challenges in Quantitative Pharmacology and Model-Based Drug Development, The AAPS Journal, vol.10, issue.4, pp.552-559, 2008.
DOI : 10.1208/s12248-008-9062-3

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2628212