ON THE CLOSURE OF MASS BALANCE MODELS FOR TUMOR GROWTH, Mathematical Models and Methods in Applied Sciences, vol.12, issue.05, p.737, 2002. ,
DOI : 10.1142/S0218202502001878
Continuous and Discrete Mathematical Models of Tumor-induced Angiogenesis, Bulletin of Mathematical Biology, vol.60, issue.5, pp.857-899, 1998. ,
DOI : 10.1006/bulm.1998.0042
Vascular network remodeling via vessel cooption, regression and growth in tumors, Journal of Theoretical Biology, vol.241, issue.4, pp.903-918, 2006. ,
DOI : 10.1016/j.jtbi.2006.01.022
A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy, Journal of Theoretical Biology, vol.260, issue.4, pp.545-562, 2009. ,
DOI : 10.1016/j.jtbi.2009.06.026
URL : https://hal.archives-ouvertes.fr/inria-00440447
Pharmacokinetics in drug development: advances and applications, 2011. ,
Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drugresistant cancer, Cancer research, vol.60, issue.7, p.1878, 2000. ,
Growth of nonnecrotic tumors in the presence and absence of inhibitors, Mathematical Biosciences, vol.130, issue.2, pp.151-181, 1995. ,
DOI : 10.1016/0025-5564(94)00117-3
Model-Based Prediction of Phase III Overall Survival in Colorectal Cancer on the Basis of Phase II Tumor Dynamics, Journal of Clinical Oncology, vol.27, issue.25, pp.4103-4108, 2009. ,
DOI : 10.1200/JCO.2008.21.0807
Effects of sunitinib on tumor hemodynamics and delivery of chemotherapy, International Journal of Cancer, vol.10, issue.6, pp.1293-1300, 2009. ,
DOI : 10.1002/ijc.24019
Bevacizumab-Induced Transient Remodeling of the Vasculature in Neuroblastoma Xenografts Results in Improved Delivery and Efficacy of Systemically Administered Chemotherapy, Clinical Cancer Research, vol.13, issue.13, pp.3942-3950, 2007. ,
DOI : 10.1158/1078-0432.CCR-07-0278
Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999), Mathematical Biosciences, vol.191, issue.2, pp.159-184, 1999. ,
DOI : 10.1016/j.mbs.2004.06.003
Role of angiogenesis in tumor growth and metastasis, 2002. ,
Combination of Antiangiogenic Therapy With Other Anticancer Therapies: Results, Challenges, and Open Questions, Journal of Clinical Oncology, vol.23, issue.6, p.1295, 2005. ,
DOI : 10.1200/JCO.2005.10.022
The search for synergy: a critical review from a response surface perspective, Pharmacological Reviews, vol.47, issue.2, p.331, 1995. ,
Models for the Growth of a Solid Tumor by Diffusion, Studies in Applied Mathematics, vol.9, issue.4, pp.317-340, 1972. ,
DOI : 10.1002/sapm1972514317
A mathematical model to study the effects of drugs administration on tumor growth dynamics, Mathematical Biosciences, vol.200, issue.2, pp.127-151, 2006. ,
DOI : 10.1016/j.mbs.2005.12.028
Mathematical modeling of tumor-induced angiogenesis, Journal of Mathematical Biology, vol.49, issue.2, pp.111-187, 2004. ,
DOI : 10.1007/s00285-003-0262-2
Endostatin: An Endogenous Inhibitor of Angiogenesis and Tumor Growth, Cell, vol.88, issue.2, pp.277-285, 1997. ,
DOI : 10.1016/S0092-8674(00)81848-6
Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a lewis lung carcinoma, Cell, vol.79, issue.2, pp.315-328, 1994. ,
DOI : 10.1016/0092-8674(94)90200-3
Hypoxia signalling in cancer and approaches to enforce tumour regression, Nature, vol.9, issue.7092, pp.437-443, 2006. ,
DOI : 10.1038/nature04871
A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies, Theoretical Biology and Medical Modelling, vol.3, issue.7, 2006. ,
URL : https://hal.archives-ouvertes.fr/hal-00756367
et al, in press. A tumor growth inhibition model for low-grade glioma treated with chemotherapy of radiotherapy, Clininical Cancer Research ,
A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents, Journal of Theoretical Biology, vol.243, issue.4, pp.532-541, 2006. ,
DOI : 10.1016/j.jtbi.2006.07.013
URL : https://hal.archives-ouvertes.fr/hal-00428053
A model of vascular tumour growth in mice combining longitudinal tumour size data with histological biomarkers, European Journal of Cancer, vol.47, issue.3, pp.479-490, 2011. ,
DOI : 10.1016/j.ejca.2010.10.003
URL : https://hal.archives-ouvertes.fr/inria-00539594
Chemotherapy may be delivered based on an integrated view of tumour dynamics, IET Systems Biology, vol.3, issue.3, 2009. ,
DOI : 10.1049/iet-syb.2008.0104
URL : https://hal.archives-ouvertes.fr/hal-00756359
Predicting the active doses in humans from animal studies: A novel approach in oncology, European Journal of Cancer, vol.43, issue.12, pp.1862-1868, 2007. ,
DOI : 10.1016/j.ejca.2007.05.011
Bevacizumab plus Oxaliplatin-Based Regimens for the Treatment of Colorectal Cancer, Onkologie, vol.32, issue.7, p.431, 2009. ,
DOI : 10.1159/000218354
Predictive Pharmacokinetic-Pharmacodynamic Modeling of Tumor Growth Kinetics in Xenograft Models after Administration of Anticancer Agents, Cancer Research, vol.64, issue.3, p.1094, 2004. ,
DOI : 10.1158/0008-5472.CAN-03-2524
Vascular Normalization by Vascular Endothelial Growth Factor Receptor 2 Blockade Induces a Pressure Gradient Across the Vasculature and Improves Drug Penetration in Tumors, Cancer Research, vol.64, issue.11, p.3731, 2004. ,
DOI : 10.1158/0008-5472.CAN-04-0074
Elucidation of Relationship Between Tumor Size and Survival in Non-Small-Cell Lung Cancer Patients Can Aid Early Decision Making in Clinical Drug Development, Clinical Pharmacology & Therapeutics, vol.24, issue.2, pp.167-174, 2009. ,
DOI : 10.1093/jnci/92.3.205
Simulating non-small cell lung cancer with a multiscale agent-based model, Theoretical Biology and Medical Modelling, vol.4, issue.1, p.50, 2007. ,
DOI : 10.1186/1742-4682-4-50
Emergent vascular network inhomogeneities and resulting blood flow patterns in a growing tumor, Journal of Theoretical Biology, vol.250, issue.2, pp.257-280, 2008. ,
DOI : 10.1016/j.jtbi.2007.09.031
Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method, Bulletin of Mathematical Biology, vol.67, issue.2, pp.211-259, 2005. ,
DOI : 10.1016/j.bulm.2004.08.001
A Multiple Scale Model for Tumor Growth, Multiscale Modeling & Simulation, vol.3, issue.2, p.440, 2005. ,
DOI : 10.1137/040603760
Mathematical models of the VEGF receptor and its role in cancer therapy, Journal of The Royal Society Interface, vol.4, issue.13, p.283, 2007. ,
DOI : 10.1098/rsif.2006.0170
Physicochemical modelling of cell signalling pathways, Nature Cell Biology, vol.121, issue.11, pp.1195-1203, 2006. ,
DOI : 10.1038/ncb1497
Tools for kinetic modeling of biochemical networks, Nature Biotechnology, vol.13, issue.6, pp.667-672, 2006. ,
DOI : 10.1038/nbt0606-667
Continuous and Discrete Mathematical Models of Tumor-induced Angiogenesis, Bulletin of Mathematical Biology, vol.60, issue.5, pp.60-857, 1998. ,
DOI : 10.1006/bulm.1998.0042
A history of the study of solid tumour growth: the contribution of mathematical modelling, Bulletin of Mathematical Biology, pp.66-1039, 2004. ,
Iyengar, and others, Emergent properties of networks of biological signaling pathways, Science, pp.283-381, 1999. ,
Vascular network remodeling via vessel cooption, regression and growth in tumors, Journal of Theoretical Biology, vol.241, issue.4, pp.903-918, 2006. ,
DOI : 10.1016/j.jtbi.2006.01.022
A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy, Journal of Theoretical Biology, vol.260, issue.4, pp.260-545, 2009. ,
DOI : 10.1016/j.jtbi.2009.06.026
URL : https://hal.archives-ouvertes.fr/inria-00440447
Modelling methodology in physiopathology, Progress in Biophysics and Molecular Biology, vol.97, issue.1, pp.97-125, 2008. ,
DOI : 10.1016/j.pbiomolbio.2007.10.005
URL : https://hal.archives-ouvertes.fr/hal-00859345
Growth of nonnecrotic tumors in the presence and absence of inhibitors, Mathematical Biosciences, vol.130, issue.2, pp.151-181, 1995. ,
DOI : 10.1016/0025-5564(94)00117-3
Angiogenesis in cancer and other diseases, pp.249-257, 2000. ,
The role of VEGF receptors in angiogenesis; complex partnerships, Cellular and molecular life sciences, pp.601-615, 2006. ,
EGF???ERBB signalling: towards the systems level, Nature Reviews Molecular Cell Biology, vol.96, issue.7, pp.505-516, 2006. ,
DOI : 10.1038/nrm1962
VEGF-receptor signal transduction , Trends in biochemical sciences, pp.488-494, 2003. ,
F e r r a r o ,N .B e n -C h e t r i t ,M .S e l a ,B .R i b b a ,Z .K a ma n dY . Yarden, Combining epitope-distinct antibodies to HER2: cooperative inhibitory effects on invasive growth, Oncogene, pp.30-1631, 2010. ,
Molecular basis for sunitinib efficacy and future clinical development, Nature Reviews Drug Discovery, vol.24, issue.9, pp.734-745, 2007. ,
DOI : 10.1038/nrd2380
VEGF and the quest for tumour angiogenesis factors, Nature Reviews Cancer, vol.120, issue.10, pp.795-803, 2002. ,
DOI : 10.1038/nrc909
Vascular Endothelial Growth Factor: Basic Science and Clinical Progress, Endocrine Reviews, vol.25, issue.4, pp.581-611, 2004. ,
DOI : 10.1210/er.2003-0027
Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy, Biochemical and biophysical research communications, pp.326-335, 2005. ,
Tumor angiogenesis factor, Cancer Research, vol.34, 1974. ,
New perspectives in clinical oncology from angiogenesis research, European Journal of Cancer, vol.32, issue.14, pp.32-2534, 1990. ,
DOI : 10.1016/S0959-8049(96)00423-6
Systems biology of vascular endothelial growth factors,M i crocirculation, pp.715-738, 2008. ,
Combination of Antiangiogenic Therapy With Other Anticancer Therapies: Results, Challenges, and Open Questions, Journal of Clinical Oncology, vol.23, issue.6, pp.23-1295, 2005. ,
DOI : 10.1200/JCO.2005.10.022
Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3-kinase/Akt signal transduction pathway, Journal of Biological Chemistry, pp.273-30336, 1998. ,
Simulation of biological cell sorting using a two-dimensional extended Potts model, Physical Review Letters, vol.69, issue.13, pp.69-2013, 1992. ,
DOI : 10.1103/PhysRevLett.69.2013
A computational model on the modulation of mitogen-activated protein kinase (MAPK) and Akt pathways in heregulininduced ErbB signalling, Biochemical Journal, pp.373-451, 2003. ,
Analysis of Mechanistic Pathway Models in Drug Discovery: p38 Pathway, Biotechnology Progress, vol.24, issue.1, pp.96-109, 2008. ,
DOI : 10.1021/bp070084g
Ultrasensitivity in the mitogen-activated protein kinase cascade., Proceedings of the National Academy of Sciences, p.93, 1996. ,
DOI : 10.1073/pnas.93.19.10078
MAP kinases and cell migration, Journal of Cell Science, vol.117, issue.20, p.117, 2004. ,
DOI : 10.1242/jcs.01481
URL : http://jcs.biologists.org/cgi/content/short/117/20/4619
Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy, Nature Medicine, vol.7, issue.9, pp.987-989, 2001. ,
DOI : 10.1038/nm0901-987
Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy, Science, vol.307, issue.5706, pp.307-58, 2005. ,
DOI : 10.1126/science.1104819
Computational systems biology, Nature, vol.14, issue.6912, pp.206-210, 2002. ,
DOI : 10.1038/35002125
Cancer robustness: Tumour tactics, Nature, vol.426, issue.6963, pp.426-125, 2003. ,
DOI : 10.1038/426125a
Using process diagrams for the graphical representation of biological networks, Nature Biotechnology, vol.33, issue.8, pp.961-966, 2005. ,
DOI : 10.1016/S1478-5382(03)02370-9
Dynamics of tumor growth and combination of anti-angiogenic and cytotoxic therapies, Physics in Medicine and Biology, vol.52, issue.13, pp.3665-3677, 2007. ,
DOI : 10.1088/0031-9155/52/13/001
Quantification of Short Term Signaling by the Epidermal Growth Factor Receptor, Journal of Biological Chemistry, vol.274, issue.42, pp.274-30169, 1999. ,
DOI : 10.1074/jbc.274.42.30169
Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades, European Journal of Biochemistry, vol.235, issue.6, pp.1583-1588, 2001. ,
DOI : 10.1046/j.1432-1327.2000.01197.x
Endothelial cell migration during angiogenesis,C i r c u lation research, p.782, 2007. ,
Flow correlated percolation during vascular remodeling in growing tumors, Physical review letters, pp.96-58104, 2006. ,
Combination of antiangiogenesis with chemotherapy for more effective cancer treatment, Molecular Cancer Therapeutics, vol.7, issue.12, 2008. ,
DOI : 10.1158/1535-7163.MCT-08-0715
Mathematical modeling of tumor-induced angiogenesis, Journal of Mathematical Biology, vol.49, issue.2, pp.49-111, 2004. ,
DOI : 10.1007/s00285-003-0262-2
In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors, pp.9-327, 2003. ,
Target-based therapies in breast cancer: current status and future perspectives, Endocrine Related Cancer, vol.16, issue.3, pp.16-675, 2009. ,
DOI : 10.1677/ERC-08-0208
Mendes and others, Minimum information requested in the annotation of biochemical models (MIRIAM), Nature biotechnology, pp.23-1509, 2005. ,
VEGF receptor signalling ??? in control of vascular function, Nature Reviews Molecular Cell Biology, vol.99, issue.5, pp.357-371, 2006. ,
DOI : 10.1038/nrm1911
Role of cell cycle in mediating sensitivity to radiotherapy, International Journal of Radiation Oncology*Biology*Physics, vol.59, issue.4, pp.59-928, 2004. ,
DOI : 10.1016/j.ijrobp.2004.03.005
Vascular endothelial growth factor receptors: Molecular mechanisms of activation and therapeutic potentials, Experimental Eye Research, vol.83, issue.5, pp.1005-1016, 2006. ,
DOI : 10.1016/j.exer.2006.03.019
A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents, Journal of Theoretical Biology, vol.243, issue.4, pp.243-532, 2006. ,
DOI : 10.1016/j.jtbi.2006.07.013
URL : https://hal.archives-ouvertes.fr/hal-00428053
Chemotherapy may be delivered based on an integrated view of tumour dynamics,I E TS y s tems, Biology, vol.3, p.180, 2009. ,
A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies, Theoretical Biology and Medical Modelling, vol.3, 2006. ,
URL : https://hal.archives-ouvertes.fr/hal-00756367
Mathematical modeling of cancer progression and response to chemotherapy, Expert Review of Anticancer Therapy, vol.6, issue.10, pp.1361-1376, 2006. ,
DOI : 10.1586/14737140.6.10.1361
Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors, Nature Biotechnology, vol.20, issue.4, pp.20-370, 2002. ,
DOI : 10.1038/nbt0402-370
A multiscale hybrid approach for vasculogenesis and related potential blocking therapies, Progress in Biophysics and Molecular Biology, vol.106, issue.2, pp.450-462, 2011. ,
DOI : 10.1016/j.pbiomolbio.2011.01.004
Design of clinical trials of radiation combined with antiangiogenic therapy, The oncologist, p.465, 2007. ,
Differential Roles of Vascular Endothelial Growth Factor Receptor-1 and Receptor-2 in Angiogenesis, BMB Reports, vol.39, issue.5, pp.39-469, 2006. ,
DOI : 10.5483/BMBRep.2006.39.5.469
Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis, Experimental cell research, pp.312-549, 2006. ,
Predictive Pharmacokinetic-Pharmacodynamic Modeling of Tumor Growth Kinetics in Xenograft Models after Administration of Anticancer Agents, Cancer Research, vol.64, issue.3, p.1094, 2004. ,
DOI : 10.1158/0008-5472.CAN-03-2524
The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions, Clinical Science, vol.109, issue.3, pp.227-241, 2005. ,
DOI : 10.1042/CS20040370
Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors, Cancer research, p.3731, 2004. ,
Proliferation-dependent cytotoxicity of anticancer agents: a review, Cancer Research, vol.35, p.2619, 1975. ,
The phosphatidylinositol 3-Kinase???AKT pathway in human cancer, Nature Reviews Cancer, vol.2, issue.7, p.489, 2002. ,
DOI : 10.1038/nrc839
Simulating non-small cell lung cancer w i t ham u l t i s c a l ea g e n t -b a s e dm o d e l, Theoretical Biology and Medical Modelling, p.50, 2007. ,
Frontiers: Identification of Critical Molecular Components in a Multiscale Cancer Model Based on the Integration of Monte Carlo, Frontiers in Computational Physiology And Medicine, 2011. ,
Emergent vascular network inhomogeneities and resulting blood flow patterns in a growing tumor, Journal of Theoretical Biology, vol.250, issue.2, pp.257-280, 2008. ,
DOI : 10.1016/j.jtbi.2007.09.031
Kozin, and others, Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer, Nature medicine, pp.10-145, 2004. ,
Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation Role of oxygenation, angiopoietin-1, and matrix metalloproteinases, Cancer Cell, vol.6, pp.553-563, 2004. ,
Nonlinear simulation of tumor necrosis, neovascularization and tissue invasion via an adaptive finite-element/level-set method, Bulletin of mathematical biology, pp.67-211, 2005. ,
A computational study of the development of epithelial acini: Ii. necessary conditions for structure and lumen stability, Science, vol.9, pp.177-182, 1987. ,
Recent advances in systemic therapy: Advances in systemic therapy for HER2-positive metastatic breast cancer, Breast Cancer Research, vol.113, issue.suppl 3, p.207, 2009. ,
DOI : 10.1002/cncr.23836
Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, mcf-10, Cancer research, issue.18, p.506075, 1990. ,
Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells., Proceedings of the National Academy of Sciences, p.899064, 1992. ,
DOI : 10.1073/pnas.89.19.9064
ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini, Nature Cell Biology, vol.3, issue.9, p.785, 2001. ,
DOI : 10.1038/ncb0901-785
The Role of Apoptosis in Creating and Maintaining Luminal Space within Normal and Oncogene-Expressing Mammary Acini, Cell, vol.111, issue.1, pp.29-40, 2002. ,
DOI : 10.1016/S0092-8674(02)01001-2
Simulating Properties of In Vitro Epithelial Cell Morphogenesis, PLoS Computational Biology, vol.217, issue.10, p.129, 2006. ,
DOI : 10.1371/journal.pcbi.0020129.sg006
A computational approach to resolve cell level contributions to early glandular epithelial cancer progression, BMC Systems Biology, vol.3, issue.1, p.122, 2009. ,
DOI : 10.1186/1752-0509-3-122
Linking Changes in Epithelial Morphogenesis to Cancer Mutations Using Computational Modeling, PLoS Computational Biology, vol.11, issue.13, p.1000900, 2010. ,
DOI : 10.1371/journal.pcbi.1000900.s005
Phenotypic transition maps of 3D breast acini obtained by imaging-guided agent-based modeling, Integrative Biology, vol.6, issue.Pt 2, pp.408-421, 2011. ,
DOI : 10.1039/c0ib00092b
Simulation of biological cell sorting using a two-dimensional extended Potts model, Physical Review Letters, vol.69, issue.13, pp.2013-2016, 1992. ,
DOI : 10.1103/PhysRevLett.69.2013
Simulation of the differential adhesion driven rearrangement of biological cells, Physical Review E, vol.47, issue.3, p.2128, 1993. ,
DOI : 10.1103/PhysRevE.47.2128
Individual-based approaches to birth and death in avascu1ar tumors, Mathematical and Computer Modelling, vol.37, issue.11, pp.1163-1175, 2003. ,
DOI : 10.1016/S0895-7177(03)00128-6
3D Multi-Cell Simulation of Tumor Growth and Angiogenesis, PLoS ONE, vol.56, issue.10, p.7190, 2009. ,
DOI : 10.1371/journal.pone.0007190.s003
The cellular potts model in biomedicine. Single-Cell-Based Models in Biology and Medicine, pp.137-150, 2007. ,
VirtualLeaf: An Open-Source Framework for Cell-Based Modeling of Plant Tissue Growth and Development, PLANT PHYSIOLOGY, vol.155, issue.2, pp.656-666, 2011. ,
DOI : 10.1104/pp.110.167619
COMPUCELL, a multi-model framework for simulation of morphogenesis, Bioinformatics, vol.20, issue.7, p.201129, 2004. ,
DOI : 10.1093/bioinformatics/bth050
A Framework for Three-Dimensional Simulation of Morphogenesis, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.2, issue.4, pp.273-288, 2005. ,
DOI : 10.1109/TCBB.2005.46
Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures, Methods, vol.30, issue.3, pp.256-268, 2003. ,
DOI : 10.1016/S1046-2023(03)00032-X
Opinion: Building epithelial architecture: insights from three-dimensional culture models, Nature Reviews Molecular Cell Biology, vol.3, issue.7, pp.531-537, 2002. ,
DOI : 10.1038/nrm859
Combining epitope-distinct antibodies to HER2: cooperative inhibitory effects on invasive growth, Oncogene, vol.66, issue.14, pp.301631-1642, 2010. ,
DOI : 10.1038/onc.2010.547
URL : https://hal.archives-ouvertes.fr/hal-00756354
A cell-centered approach to developmental biology, Physica A: Statistical Mechanics and its Applications, pp.113-130, 2005. ,
DOI : 10.1016/j.physa.2004.12.028
Modeling Morphogenesis and Oncogenesis in Three-Dimensional Breast Epithelial Cultures, Annual Review of Pathology: Mechanisms of Disease, vol.3, issue.1, pp.313-339, 2008. ,
DOI : 10.1146/annurev.pathmechdis.3.121806.151526
A Computational Study of the Development of Epithelial Acini: I.??Sufficient Conditions for the Formation of a Hollow Structure, Bulletin of Mathematical Biology, vol.95, issue.1, pp.677-712, 2008. ,
DOI : 10.1007/s11538-007-9274-1
A Computational Study of the Development of Epithelial Acini: II.??Necessary Conditions for Structure and Lumen Stability, Bulletin of Mathematical Biology, vol.17, issue.1, pp.1450-1479, 2008. ,
DOI : 10.1007/s11538-008-9308-3
A cellular automaton model for tumour growth in inhomogeneous environment, Journal of Theoretical Biology, vol.225, issue.2, pp.257-274, 2003. ,
DOI : 10.1016/S0022-5193(03)00244-3
A Multiple Scale Model for Tumor Growth, Multiscale Modeling & Simulation, vol.3, issue.2, p.440, 2005. ,
DOI : 10.1137/040603760
Physicochemical modelling of cell signalling pathways, Nature Cell Biology, vol.121, issue.11, pp.1195-1203, 2006. ,
DOI : 10.1038/ncb1497
Tools for kinetic modeling of biochemical networks, Nature Biotechnology, vol.13, issue.6, pp.667-672, 2006. ,
DOI : 10.1038/nbt0606-667
A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion, Mathematical Medicine and Biology, vol.22, issue.2, pp.163-186, 2005. ,
DOI : 10.1093/imammb/dqi005
Mathematical Modelling of Tumour Invasion and Metastasis, Journal of Theoretical Medicine, vol.2, issue.2, pp.129-154, 2000. ,
DOI : 10.1080/10273660008833042
Microenvironmental Independence Associated with Tumor Progression, Cancer Research, vol.69, issue.22, p.698797, 2009. ,
DOI : 10.1158/0008-5472.CAN-09-0437
Tumor Morphology and Phenotypic Evolution Driven by Selective Pressure from the Microenvironment, Cell, vol.127, issue.5, pp.905-915, 2006. ,
DOI : 10.1016/j.cell.2006.09.042
A computer algorithm describing the process of vessel formation and maturation, and its use for predicting the effects of anti-angiogenic and anti-maturation therapy on vascular tumor growth, Angiogenesis, vol.5, issue.3, pp.203-214, 2002. ,
DOI : 10.1023/A:1023841921971
Angiogenesis: Tumorigenesis and the angiogenic switch, Nature Reviews Cancer, vol.3, issue.6, pp.401-410, 2003. ,
DOI : 10.1038/nrc1093
A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy, Journal of Theoretical Biology, vol.260, issue.4, pp.545-562, 2009. ,
DOI : 10.1016/j.jtbi.2009.06.026
URL : https://hal.archives-ouvertes.fr/inria-00440447
Putting tumours in context, Nature Reviews Cancer, vol.1, issue.1, p.46, 2001. ,
DOI : 10.1038/35094059
The role of cell-cell interactions in a two-phase model for avascular tumour growth, Journal of Mathematical Biology, vol.45, issue.2, pp.125-152, 2002. ,
DOI : 10.1007/s002850200149
Growth of nonnecrotic tumors in the presence and absence of inhibitors, Mathematical Biosciences, vol.130, issue.2, pp.151-181, 1995. ,
DOI : 10.1016/0025-5564(94)00117-3
Growth of necrotic tumors in the presence and absence of inhibitors, Mathematical Biosciences, vol.135, issue.2, pp.187-216, 1996. ,
DOI : 10.1016/0025-5564(96)00023-5
Avascular growth, angiogenesis and vascular growth in solid tumours: The mathematical modelling of the stages of tumour development, Mathematical and Computer Modelling, vol.23, issue.6, pp.47-87, 1996. ,
DOI : 10.1016/0895-7177(96)00019-2
Multiscale Mathematical Modeling of Vascular Tumor Growth, Multiscale Cancer Modeling, vol.34, p.253, 2010. ,
DOI : 10.1201/b10407-14
MATHEMATICAL MODELING OF TUMOR-INDUCED ANGIOGENESIS, Annual Review of Biomedical Engineering, vol.8, issue.1, pp.233-257, 2006. ,
DOI : 10.1146/annurev.bioeng.8.061505.095807
A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor, Mathematical Medicine and Biology, vol.10, issue.3, pp.149-168, 1993. ,
DOI : 10.1093/imammb/10.3.149
Randomized Trial of Dose-Dense Versus Conventionally Scheduled and Sequential Versus Concurrent Combination Chemotherapy as Postoperative Adjuvant Treatment of Node-Positive Primary Breast Cancer: First Report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741, Journal of Clinical Oncology, vol.21, issue.8, pp.1431-1439, 2003. ,
DOI : 10.1200/JCO.2003.09.081
Model-Based Prediction of Phase III Overall Survival in Colorectal Cancer on the Basis of Phase II Tumor Dynamics, Journal of Clinical Oncology, vol.27, issue.25, pp.274103-4108, 2009. ,
DOI : 10.1200/JCO.2008.21.0807
Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching, Journal of Mathematical Biology, vol.67, issue.4-5, pp.723-763, 2009. ,
DOI : 10.1007/s00285-008-0215-x
Nonlinear simulation of tumor growth, Journal of Mathematical Biology, vol.46, issue.3, pp.191-224, 2003. ,
DOI : 10.1007/s00285-002-0174-6
Effects of sunitinib on tumor hemodynamics and delivery of chemotherapy, International Journal of Cancer, vol.10, issue.6, pp.1293-1300, 2009. ,
DOI : 10.1002/ijc.24019
The Role of Apoptosis in Creating and Maintaining Luminal Space within Normal and Oncogene-Expressing Mammary Acini, Cell, vol.111, issue.1, pp.29-40, 2002. ,
DOI : 10.1016/S0092-8674(02)01001-2
Modeling of self-organized avascular tumor growth with a hybrid cellular automaton, In silico biology, vol.2, issue.3, pp.393-406, 2002. ,
Individual-based approaches to birth and death in avascu1ar tumors, Mathematical and Computer Modelling, vol.37, issue.11, pp.1163-1175, 2003. ,
DOI : 10.1016/S0895-7177(03)00128-6
: monolayers and spheroids, Physical Biology, vol.2, issue.3, p.133, 2005. ,
DOI : 10.1088/1478-3975/2/3/001
VEGF and the quest for tumour angiogenesis factors, Nature Reviews Cancer, vol.120, issue.10, pp.795-803, 2002. ,
DOI : 10.1038/nrc909
Role of angiogenesis in tumor growth and metastasis, pp.15-18, 2002. ,
Angiogenesis, Annual Review of Medicine, vol.57, issue.1, pp.1-18, 2006. ,
DOI : 10.1146/annurev.med.57.121304.131306
Model of Chemotherapy-Induced Myelosuppression With Parameter Consistency Across Drugs, Journal of Clinical Oncology, vol.20, issue.24, pp.204713-4721, 2002. ,
DOI : 10.1200/JCO.2002.02.140
Simulation of the differential adhesion driven rearrangement of biological cells, Physical Review E, vol.47, issue.3, p.2128, 1993. ,
DOI : 10.1103/PhysRevE.47.2128
Efficacy of Weekly Docetaxel and Bevacizumab in Mesenchymal Chondrosarcoma: A New Theranostic Method Combining Xenografted Biopsies with a Mathematical Model, Cancer Research, vol.68, issue.21, p.689033, 2008. ,
DOI : 10.1158/0008-5472.CAN-08-1723
Simulation of biological cell sorting using a two-dimensional extended Potts model, Physical Review Letters, vol.69, issue.13, pp.692013-2016, 1992. ,
DOI : 10.1103/PhysRevLett.69.2013
Simulating Properties of In Vitro Epithelial Cell Morphogenesis, PLoS Computational Biology, vol.217, issue.10, p.129, 2006. ,
DOI : 10.1371/journal.pcbi.0020129.sg006
Models for the Growth of a Solid Tumor by Diffusion, Studies in Applied Mathematics, vol.9, issue.4, pp.317-340, 1972. ,
DOI : 10.1002/sapm1972514317
On the growth and stability of cell cultures and solid tumors, Journal of Theoretical Biology, vol.56, issue.1, pp.229-242, 1976. ,
DOI : 10.1016/S0022-5193(76)80054-9
Cancer Metastasis: Building a Framework, Cell, vol.127, issue.4, pp.679-695, 2006. ,
DOI : 10.1016/j.cell.2006.11.001
Tumor development under angiogenic signaling : a dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Research, issue.19, p.594770, 1999. ,
Patterns and Emerging Mechanisms of the Angiogenic Switch during Tumorigenesis, Cell, vol.86, issue.3, pp.353-364, 1996. ,
DOI : 10.1016/S0092-8674(00)80108-7
The hallmarks of cancer. cell, pp.57-70, 2000. ,
Hallmarks of Cancer: The Next Generation, Cell, vol.144, issue.5, pp.646-674, 2011. ,
DOI : 10.1016/j.cell.2011.02.013
Regulation of In Situ to Invasive Breast Carcinoma Transition, Cancer Cell, vol.13, issue.5, pp.394-406, 2008. ,
DOI : 10.1016/j.ccr.2008.03.007
The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models, Bioinformatics, vol.19, issue.4, pp.524-531, 2003. ,
DOI : 10.1093/bioinformatics/btg015
Determinants of tumor blood flow : a review, Cancer research, vol.48, issue.10, pp.2641-2658, 1988. ,
Normalizing tumor vasculature with anti-angiogenic therapy : a new paradigm for combination therapy, Nature Medicine, vol.7, issue.9, pp.987-989, 2001. ,
DOI : 10.1038/nm0901-987
Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy, Science, vol.307, issue.5706, p.30758, 2005. ,
DOI : 10.1126/science.1104819
A Multiscale Model for Avascular Tumor Growth, Biophysical Journal, vol.89, issue.6, pp.3884-3894, 2005. ,
DOI : 10.1529/biophysj.105.060640
A computational approach to resolve cell level contributions to early glandular epithelial cancer progression, BMC Systems Biology, vol.3, issue.1, p.122, 2009. ,
DOI : 10.1186/1752-0509-3-122
CANCER: The Metastasis Cascade, Science, vol.321, issue.5897, pp.1785-1787, 2008. ,
DOI : 10.1126/science.1164853
Dynamics of Tumor Growth, British Journal of Cancer, vol.18, issue.3, p.490, 1964. ,
DOI : 10.1038/bjc.1964.55
The Systems Biology Graphical Notation, Nature Biotechnology, vol.267, issue.8, pp.27735-741, 2009. ,
DOI : 10.1038/nbt.1558
Inverse problems in tumor growth modeling by means of semiempirical eigenfunctions, Mathematical Models and Methods in Applied Sciences, 2012. ,
URL : https://hal.archives-ouvertes.fr/hal-00664723
Nonlinear modelling of cancer: bridging the gap between cells and tumours, Nonlinearity, vol.23, issue.1, p.1, 2010. ,
DOI : 10.1088/0951-7715/23/1/R01
Pharmacodynamicmediated effects of the angiogenesis inhibitor su5416 on the tumor disposition of temozolomide in subcutaneous and intracerebral glioma xenograft models, Journal of Pharmacology and Experimental Therapeutics, issue.3, pp.305833-839, 2003. ,
Multiscale modelling and nonlinear simulation of vascular tumour growth, Journal of Mathematical Biology, vol.67, issue.2, pp.765-798, 2009. ,
DOI : 10.1007/s00285-008-0216-9
Mathematical modeling of tumor-induced angiogenesis, Journal of Mathematical Biology, vol.49, issue.2, pp.111-187, 2004. ,
DOI : 10.1007/s00285-003-0262-2
Petri Net Based Descriptions for Systematic Understanding of Biological Pathways, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol.89, issue.11, pp.893166-3174, 2006. ,
DOI : 10.1093/ietfec/e89-a.11.3166
Apoptosis as a volume loss mechanism in mathematical models of solid tumor growth, Mathematical Biosciences, vol.39, issue.1-2, pp.147-157, 1978. ,
DOI : 10.1016/0025-5564(78)90033-0
A model for the growth of a solid tumor with non-uniform oxygen consumption, Mathematical Biosciences, vol.35, issue.3-4, pp.3-4267, 1977. ,
DOI : 10.1016/0025-5564(77)90028-1
Reporting results of cancer treatment, Cancer, vol.11, issue.1, pp.207-214, 1981. ,
DOI : 10.1002/1097-0142(19810101)47:1<207::AID-CNCR2820470134>3.0.CO;2-6
Recent advances in systemic therapy: Advances in systemic therapy for HER2-positive metastatic breast cancer, Breast Cancer Research, vol.113, issue.suppl 3, p.207, 2009. ,
DOI : 10.1002/cncr.23836
ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini, Nature Cell Biology, vol.3, issue.9, p.785, 2001. ,
DOI : 10.1038/ncb0901-785
Herceptin : mechanisms of action and resistance . Cancer letters, pp.123-138, 2006. ,
A gompertzian model of human breast cancer growth, Cancer research, vol.4824, issue.1, p.7067, 1988. ,
Theoretical Concepts and the Emerging Role of Taxanes in Adjuvant Therapy, The Oncologist, vol.6, issue.90003, pp.30-35, 2001. ,
DOI : 10.1634/theoncologist.6-suppl_3-30
Predicting the course of Gompertzian growth, Nature, vol.25, issue.5586, 1976. ,
DOI : 10.1038/264542a0
Opinion: Building epithelial architecture: insights from three-dimensional culture models, Nature Reviews Molecular Cell Biology, vol.3, issue.7, pp.531-537, 2002. ,
DOI : 10.1038/nrm859
Toxicity and response criteria of the Eastern Cooperative Oncology Group, AMERICAN JOURNAL OF CLINICAL ONCOLOGY, vol.5, issue.6, p.649, 1982. ,
DOI : 10.1097/00000421-198212000-00014
Angiogenesis and vascular remodelling in normal and cancerous tissues, Journal of Mathematical Biology, vol.235, issue.2, pp.689-721, 2009. ,
DOI : 10.1007/s00285-008-0213-z
Role of cell cycle in mediating sensitivity to radiotherapy, International Journal of Radiation Oncology*Biology*Physics, vol.59, issue.4, pp.928-942, 2004. ,
DOI : 10.1016/j.ijrobp.2004.03.005
Multiscale Modelling of Vascular Tumour Growth in 3D: The Roles of Domain Size and Boundary Conditions, PLoS ONE, vol.5, issue.S1, p.14790, 2011. ,
DOI : 10.1371/journal.pone.0014790.s008
Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells., Proceedings of the National Academy of Sciences, p.899064, 1992. ,
DOI : 10.1073/pnas.89.19.9064
Targeted therapy in colorectal carcinoma: more than a theory, Colorectal Disease, vol.23, issue.3, pp.209-218, 2008. ,
DOI : 10.1097/01.cco.0000168535.25330.6a
A new approach to modelling the formation of necrotic regions in tumours, Applied Mathematics Letters, vol.11, issue.3, pp.89-94, 1998. ,
DOI : 10.1016/S0893-9659(98)00038-X
AVASCULAR TUMOUR DYNAMICS AND NECROSIS, Mathematical Models and Methods in Applied Sciences, vol.09, issue.04, pp.569-580, 1999. ,
DOI : 10.1142/S0218202599000294
Multi-scale modelling of cancer cell intravasation: the role of cadherins in metastasis, Physical Biology, vol.6, issue.1, p.16008, 2009. ,
DOI : 10.1088/1478-3975/6/1/016008
Modeling the Influence of the E-Cadherin-??-Catenin Pathway in Cancer Cell Invasion: A Multiscale Approach, Biophysical Journal, vol.95, issue.1, pp.155-165, 2008. ,
DOI : 10.1529/biophysj.107.114678
State of the art in computational modelling of cancer. Mathematical medicine and biology : a journal of the IMA, 2011. ,
Linking Changes in Epithelial Morphogenesis to Cancer Mutations Using Computational Modeling, PLoS Computational Biology, vol.11, issue.13, p.1000900, 2010. ,
DOI : 10.1371/journal.pcbi.1000900.s005
A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies, Theoretical Biology and Medical Modelling, vol.3, issue.1, p.7, 2006. ,
DOI : 10.1186/1742-4682-3-7
URL : https://hal.archives-ouvertes.fr/hal-00756367
A Tumor Growth Inhibition Model for Low-Grade Glioma Treated with Chemotherapy or Radiotherapy, Clinical Cancer Research, vol.18, issue.18, 2012. ,
DOI : 10.1158/1078-0432.CCR-12-0084
URL : https://hal.archives-ouvertes.fr/hal-00744626
A model of vascular tumour growth in mice combining longitudinal tumour size data with histological biomarkers, European Journal of Cancer, vol.47, issue.3, pp.47479-490, 2011. ,
DOI : 10.1016/j.ejca.2010.10.003
URL : https://hal.archives-ouvertes.fr/inria-00539594
Predicting the active doses in humans from animal studies: A novel approach in oncology, European Journal of Cancer, vol.43, issue.12, pp.431862-1868, 2007. ,
DOI : 10.1016/j.ejca.2007.05.011
Mathematical Models of Avascular Tumor Growth, SIAM Review, vol.49, issue.2, pp.179-208, 2007. ,
DOI : 10.1137/S0036144504446291
ON/OFF and Beyond - A Boolean Model of Apoptosis, PLoS Computational Biology, vol.122, issue.12, p.1000595, 2009. ,
DOI : 10.1371/journal.pcbi.1000595.s007
Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors, Nature Biotechnology, vol.20, issue.4, pp.370-375, 2002. ,
DOI : 10.1038/nbt0402-370
A new mathematical model for avascular tumour growth, Journal of Mathematical Biology, vol.43, issue.4, pp.291-312, 2001. ,
DOI : 10.1007/s002850100088
Cellular and geometric control of tissue growth and mitotic instability, Journal of Theoretical Biology, vol.63, issue.2, pp.355-374, 1976. ,
DOI : 10.1016/0022-5193(76)90039-4
Predictive Pharmacokinetic-Pharmacodynamic Modeling of Tumor Growth Kinetics in Xenograft Models after Administration of Anticancer Agents, Cancer Research, vol.64, issue.3, p.1094, 2004. ,
DOI : 10.1158/0008-5472.CAN-03-2524
The Norton???Simon hypothesis: designing more effective and less toxic chemotherapeutic regimens, Nature Clinical Practice Oncology, vol.10, issue.8, pp.406-407, 2006. ,
DOI : 10.1038/ncponc0560
Kinetic parameters and growth curves for experimental tumor systems, Cancer chemotherapy reports. Part, vol.1, issue.3, p.54143, 1970. ,
A computational study of the development of epithelial acini : Ii. necessary conditions for structure and lumen stability, Science, vol.9, pp.177-182, 1987. ,
Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, mcf-10, Cancer research, issue.18, p.506075, 1990. ,
Stochastic simulation of benign avascular tumour growth using the Potts model, Mathematical and Computer Modelling, vol.30, issue.5-6, pp.183-198, 1999. ,
DOI : 10.1016/S0895-7177(99)00156-9
Kinetics of tumor growth and regression in IgG multiple myeloma, Journal of Clinical Investigation, vol.51, issue.7, p.511697, 1972. ,
DOI : 10.1172/JCI106971
Oxygenation and differentiation in multicellular spheroids of human colon carcinoma, Cancer research, issue.10, p.465320, 1986. ,
Phenotypic transition maps of 3D breast acini obtained by imaging-guided agent-based modeling, Integrative Biology, vol.6, issue.Pt 2, pp.408-421, 2011. ,
DOI : 10.1039/c0ib00092b
A Pharmacodynamic Model for the Time Course of Tumor Shrinkage by Gemcitabine + Carboplatin in Non-Small Cell Lung Cancer Patients, Clinical Cancer Research, vol.14, issue.13, pp.144213-4218, 2008. ,
DOI : 10.1158/1078-0432.CCR-07-4754
New Guidelines to Evaluate the Response to Treatment in Solid Tumors, JNCI: Journal of the National Cancer Institute, vol.92, issue.3, pp.92205-216, 2000. ,
DOI : 10.1093/jnci/92.3.205
Intercellular Adhesion and Cancer Invasion: A Discrete Simulation Using the Extended Potts Model, Journal of Theoretical Biology, vol.216, issue.1, pp.85-100, 2002. ,
DOI : 10.1006/jtbi.2001.2522
Ductal Carcinoma In Situ: Biology, Diagnosis, and New Therapies, Clinical Cancer Updates, vol.1, issue.1, pp.16-21, 2007. ,
DOI : 10.3816/CCU.2007.n.003
Proliferation-dependent cytotoxicity of anticancer agents : a review, Cancer Research, vol.35, issue.10, p.2619, 1975. ,
Elucidation of Relationship Between Tumor Size and Survival in Non-Small-Cell Lung Cancer Patients Can Aid Early Decision Making in Clinical Drug Development, Clinical Pharmacology & Therapeutics, vol.24, issue.2, pp.167-174, 2009. ,
DOI : 10.1093/jnci/92.3.205
Mathematical modelling of avascular-tumour growth, Mathematical Medicine and Biology, vol.14, issue.1, pp.39-69, 1997. ,
DOI : 10.1093/imammb/14.1.39
Mathematical modelling of avascular-tumour growth II: modelling growth saturation, Mathematical Medicine and Biology, vol.16, issue.2, pp.171-211, 1999. ,
DOI : 10.1093/imammb/16.2.171
Discovery and development of sorafenib: a multikinase inhibitor for treating cancer, Nature Reviews Drug Discovery, vol.47, issue.10, pp.835-844, 2006. ,
DOI : 10.1038/nrd2130
Concepts and Challenges in Quantitative Pharmacology and Model-Based Drug Development, The AAPS Journal, vol.10, issue.4, pp.552-559, 2008. ,
DOI : 10.1208/s12248-008-9062-3
URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2628212