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Remerciements
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Ma reconnaissance va également à ces experts reconnus, du monde de la reconstruction, de l’imagerie

ou encore de l’optimisation, et qui m’ont fait l’honneur d’évaluer ma recherche à l’aune de la communauté
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Chapter 1

Introduction

1.1 Overview

This work addresses the reconstruction of X-ray tomographic acquisitions in the clinical context of in-

terventional procedures. Interventional radiology refers to minimally-invasive procedures, that consist

in inserting and manipulating medical tools under image guidance through the vascular system of the

patient to the pathology location, where the tools are used to deliver the treatment. Image guidance of in-

terventional procedures was historically carried out through two-dimensional real-time projective images

acquired in low-dose X-rays with C-arm systems. Current C-arm systems present both the advantages

of a tomographic tool –since the rotation of the C-arm gantry around the patient allows for collecting a

data set of X-ray measurements for a large amount of angles– and of a facilitated patient access. Because

the clinical routine commonly involves enhancement of the blood vessels through intraarterial injection

of a contrast agent, rotational angiography provides a three-dimensional visualization of the vasculature,

that has proven to be of great help for improving the management of the medical gesture.

Tomographic reconstruction is computed analytically through filtered backprojection whose dis-

cretization defines sampling requirements that are central to this work. In particular, a rapid acquisition

is needed to guarantee data consistency between the projection data and hence, feasibility of the three-

dimensional reconstruction. A sampling trade-off is defined for rotational angiography, that is not as

favourable as the one defined for diagnostic imaging with CT scanners because of the low framerate of the

detector (responsible for uniform subsampling) and the mechanical constraints that are inherent to the

current C-arm systems (rotation speed not high enough to avoid patient motion, which results in limited

range subsampling), thus remaining the main limitations to more use of tomography in image-guided

therapy.

Although the visualization of the densest structures (e.g. bones, contrast-enhanced vessels) is suf-

ficient for the current clinical practice with the framerate delivered by C-arm systems, efforts for the

visualization of the soft tissues are underway. In addition, the angiographic data are frequently corrupted

by physiological motions (e.g. cardiac motion, respiratory motion) resulting in reconstruction artifacts

that may hamper the medical interpretation. Considering more specifically the case of cyclic motions, a

widespread approach in the diagnostic imaging of dynamic data with CT scanners consists in performing

multiple rotations and selecting one subset of consistent views corresponding to the same phase of the

motion cycle, for which filtered backprojection reconstruction is feasible. With C-arm systems, however,

one single rotation is performed only, resulting in poorly sampled phases.

In this work, we rely on compressed sensing [18] –a recent mathematical theory that makes more

efficient use of the collected samples and that met considerable impact in the statistics and signal

communities– to propose original iterative reconstructions that are adapted to rotational angiography.

The compressed sensing theory defines assumptions under which the recovery of subsampled data is

possible through the minimization of a least-square data fidelity term that is combined with sparse con-

straints expressed as ℓ1-penalties. Although the compressed sensing assumptions are not strictly valid for

X-ray tomography, the theory was illustrated with exact reconstruction of a piecewise constant phantom

from poorly angularly sampled data that simulated the X-ray sampling process. This opened tremendous

perspectives for X-ray tomography. Numerous reconstruction algorithms based on compressed sensing

have been recently proposed in the literature. To this purpose, three-dimensional reconstruction is cast

as an optimization problem that is handled by transform-domain sparsity wherein sparser signals allow
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for significant mitigation of the subsampling artifacts compared to conventional analytical reconstruction

techniques. Thus the compressed sensing reconstruction of the coronary arteries based on the minimiza-

tion of the image ℓ1-norm was proposed for cardiac angiography [58]. Motivated by the desire to reduce

dose, iterative reconstruction based on total variation minimization was proposed for tomosynthesis [124].

To reconstruct dynamic data, a particularly attractive approach is the PICCS algorithm [26] that uses a

sparse constraint based on a prior image –that may be the static filtered backprojection reconstruction–,

so that the reconstruction, schematically, determines motionless areas from the complete acquisition,

while motion-blurred areas are determined from reconstruction of well-identified subsampled motion

phases only. This strategy, however, is not applicable to intraarterial contrast injection.

In the present work, we propose an application of the compressed sensing theory and a generalization

of the PICCS algorithm that are adapted to rotational angiography with intraarterial injection. An

iterative implementation based on filtered backprojection (iFBP) is developed, that allows for efficient

computation of the least-square solution. The algorithmic framework relies on an iterative proximal

splitting scheme [28], in which the minimization of the least-square fidelity term of iFBP is alternated

with a proximal operator that allows for incorporating a series of ℓ1 or ℓ2 penalties into the reconstruction

process. This approach is derived for single and multiple sparse penalties. Observing that compressed

sensing is not reduced to ℓ1-norm minimization, a homotopy continuation strategy is investigated, that

presents relationship with orthogonal matching pursuit [39].

The evaluation of the compressed sensing reconstructions developed in this work is performed on

both simulated and clinical data with focus on injected datasets: severe streak artifacts may arise, that

originate from subsampled temporal variations of the contrast-enhanced vessels. The application to a

selection of clinical abdominal and cerebral datasets suggests a domain of applicability:

• clinical cases of subtracted reconstruction, contrast-enhanced reconstruction, and reconstruction

with a limited range, for which a static reconstruction is proposed;

• clinical cases of digital subtraction rotational angiography, small pulsatile displacements of the

contrast-enhanced vessels and contrast variations, for which a dynamic reconstruction is proposed.

The reconstruction results outperform current analytical reconstruction and clearly demonstrate the

interest of using compressed sensing with homotopy in rotational angiography.

1.2 Publications

Most relevant results of this work can be found in the following publications:

Conference publications (with review committee)

• H. Langet, A. Reshef, C. Riddell, Y. Trousset, A. Tenenhaus, E. Lahalle, G. Fleury, N. Paragios.

Nonlinear diffusion constraints for reconstructing subsampled rotational angiography

data. Proceedings of the 12th International Meeting on Fully Three-dimensional Image Recon-

struction in Radiology and Nuclear Medicine (Fully3D’2013), 4 pp., Lake Tahoe, California, 16-21

June 2013.

• H. Langet, C. Riddell, Y. Trousset, A. Tenenhaus, E. Lahalle, G. Fleury, N. Paragios. Compressed

Sensing Dynamic Reconstruction in Rotational Angiography. Medical Image Computing

and Computer Assisted Intervention (MICCAI’2012), 8 pp., Nice, France, 1-5 October 2012.

• H. Langet, C. Riddell, Y. Trousset, A. Tenenhaus, E. Lahalle, G. Fleury, N. Paragios. Compressed

sensing subtracted rotational angiography with multiple sparse penalty. Proceedings of

the 9th International Symposium on Biomedical Imaging (ISBI’2012), 8 pp., Barcelona, Spain, 2-5

May 2012.
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• H. Langet, C. Riddell, Y. Trousset, A. Tenenhaus, E. Lahalle, G. Fleury, N. Paragios. Compressed

Sensing Based 3D Tomographic Reconstruction for Rotational Angiography. Medical

Image Computing and Computer Assisted Intervention (MICCAI’2011), 8 pp., Toronto, Canada,

18-22 September 2011.

• H. Langet, C. Riddell, Y. Trousset, E. Lahalle, A. Tenenhaus, G. Fleury, N. Paragios. Sparsity

constraints and dedicated acquisition protocols for improved Digital Subtraction Rota-

tional Angiography. Proceedings of the 11th International Meeting on Fully Three-dimensional

Image Reconstruction in Radiology and Nuclear Medicine (Fully3D’2011), 4 pp., Potsdam, Ger-

many, 11-15 July 2011.

Invited talks

• H. Langet, C. Riddell, A. Tenenhaus, Y. Trousset, E. Lahalle, G. Fleury, N. Paragios. Three-

dimensional tomographic reconstruction with ℓ1-minimization strategy for rotational

angiography. 20th International Conference on Computational Statistics (COMPSTAT’2012),

Limassol, Cyprus, 27-31 August 2012.

Patents

• H. Langet, C. Riddell, for General Electric Company. Tomographic reconstruction of an

object in motion, EP2469471A1 / US20120163532, 27 June 2012.





Chapter 2

X-Ray Computed Tomography

X-ray computed tomography (CT) is a technique that measures the density distribution of the human

body through X-ray measurements. To this aim, the body is virtually carved into thin two-dimensional

(2D) cross-sectional slices1. The rotation of the imaging system around the patient allows for collecting

a data set of X-ray measurements for a large amount of angles, from which recovery of the density

distribution is feasible.

Tomographic reconstruction is an inverse problem for which an analytical formulation exists through

the inversion of the 2D Radon transform, that is presented in Sec. 2.1 together with its discretization

and associated sampling requirements that are central to this work. Since early experimental X-ray

imaging (Roentgen, 1895), radiological systems have benefited from steady technological progresses. We

introduce in Sec. 2.2 the physics underlying X-ray interactions with biological tissues. X-ray detection

for diagnostic imaging is presented in Sec. 2.3 through the technical characteristics of the X-ray CT

scanner.

2.1 Mathematical basis of tomography

The purpose of this section is to introduce the mathematical concepts and tools that underlie tomo-

graphic reconstruction. Let us describe an image as the function of two spatial variables describing some

physical property of an object. Computed tomography is an indirect imaging technique: there is access

to the function through its integrals over straight lines. An inverse operator is therefore required to

determine the image from the set of integrals. This is achieved by the inversion of the Radon transform

in parallel-beam geometry. For more details on the concepts and mathematical demonstrations we refer

the interested readers to [63, 94].

2.1.1 Radon transform in two dimensions

Let us consider a 2D Cartesian coordinate system where O denotes the origin, −→x the positive x-axis

unit vector and −→y the positive y-axis unit vector. Let us denote f a function where f(M) = f(x, y)

is the value of some physical property at point M of coordinates (x, y). It has a finite support Ω, i.e.

f(x, y) = 0 for points (x, y) that are located outside the reconstruction field of view, that is usually a

circle of diameter D.

We introduce the coordinate system (−→u ,−→v ) that is defined by rotating (−→x ,−→y ) at angle φ with respect
to the positive x-axis, such that

{
u = x cosφ+ y sinφ

v = −x sinφ+ y cosφ
.

As illustrated in Fig. 2.1, we define a parallel-beam geometry as the set of lines DPB(u, φ) that are
parametrized by:

{
u ∈ ]−∞,+∞[

φ ∈ [0, π[
.

The Radon transform of function f , that is denoted [Rf ], is defined as the complete collection of line

integrals over the parallel-beam geometry [107]. The projection of f at angle φ, that is denoted pφ(u),

1Hence, the term ‘tomography’ which is formed from the Greek roots ‘tomos’ (slice) and ‘graphein’ (write).
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is thus expressed as

pPB,φ(u) = [Rf ](u, φ)

=

∫

M∈DPB(u,φ)

f(M)dM

=

∫ +∞

−∞

f(u cosφ− v sinφ, u sinφ+ v cosφ)dv

(2.1)

The projection of point (x0, y0) is described by the parametric curve u(φ) = x0 cosφ+ y0 sinφ, i.e. a

sinusoidal curve in the (u, φ)-diagram. This diagram is thus called sinogram, that is the standard way of

displaying the Radon transform of an image. Figure 2.2 shows an image and its sinogram: the projection

data consist of the sampled superimposition of all sinusoids, each one weighted by value f(x, y).

Figure 2.1: Coordinate systems in parallel-beam geometry.

2.1.2 Radon transform inversion

The inversion of the Radon transform is easily understood in the context of Fourier analysis.

2.1.2.1 Projection-slice theorem

Let us define F1DRf the one-dimensional (1D) Fourier transform of the Radon transform along u as:

[F1DRf ](ku, φ) =

∫ +∞

−∞

pPB,φ(u)e
−i2πkuudu

Let us now introduce F2Df the 2D Fourier transform of the function f by writing:

[F2Df ](kx, ky) =

∫ +∞

−∞

∫ +∞

−∞

f(x, y)e−i2π(kxx+kyy)dxdy
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(a) (b)

Figure 2.2: (a) Imaged object and (b) its sinogram.

The projection-slice theorem states that the 1D Fourier transform of [Rf ] is equal to the 2D Fourier

transform of f according to

[F1DRf ](ku, φ) = [F2Df ](kx, ky) with

{
kx = ku cosφ

ky = ku sinφ
(2.2)

It follows immediately from Eq. (2.2) that there is a one-to-one correspondence between the Radon

transform and the 2D Fourier transform and that the Radon transform completely describes any function

f through the polar sampling of its 2D Fourier transform.

Spatial domain f(x, y)

Radon domain

[Rf ](u, φ)

Fourier domain

[F2Df ](kx, ky)

2D Radon transform 2D Fourier transform

Radial 1D Fourier transform

Figure 2.3: Relationship between spatial, Fourier and Radon domains.

2.1.2.2 Filtered backprojection (FBP)

Function f can be recovered from its Fourier transform by the inverse Fourier transform:

f(x, y) =

∫ +∞

−∞

∫ +∞

−∞

[F2Df ](kx, ky)e
i2π(kxx+kyy)dkxdky

By applying the change of variables from Cartesian coordinates (kx, ky) into polar coordinates (ku, φ),

it follows that:

f(x, y) =

∫ 2π

0

∫ +∞

0

[F2Df ](ku cosφ, ku sinφ)e
i2πku(x cosφ+y sinφ)kudkudφ
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Relying on the projection-slice theorem given in Eq. (2.2), [F2Df ](ku cosφ, ku sinφ) can be replaced with

[F1DRf ](ku, φ). Finally, by symmetry of trigonometric functions and symmetry of the Radon transform

the integration in φ can be limited to half of the angular domain. Provided that u = x cosφ + y sinφ,

we obtain:

f(x, y) =

∫ 2π

0

[∫ +∞

0

[F1DRf ](ku, φ)e
i2πku(x cosφ+y sinφ)kudku

]

dφ

=

∫ π

0

[∫ +∞

−∞

[F1DRf ](ku, φ)|ku|ei2πkuudku

]

dφ

=

∫ π

0

[pPB,φ ∗ h](u)dφ

, (2.3)

where h(u) is the ramp filter defined by the frequency response |ku|. This inversion formula has thus
two steps:

• a 1D filtering of the Radon transform with the so-called ramp filter;

• a simple integration over φ that is called backprojection and corresponds to the adjoint oper-

ator of the Radon transform.

2.1.3 Discretization and sampling requirements

Digital systems are only able to collect discrete measurements. Up to now, we assumed for the simplicity

of the mathematical analysis that continuous measurements are gathered and we presented an integral-

form solution. The numerical implementation of FBP however requires the discretization of the inversion

formula.

2.1.3.1 Shannon-Nyquist criterion

Mathematically, a 2D function that is spatially sampled at rate
1

∆x
along the x-axis and

1

∆y
along the

y-axis is modelled as the product of the continuous function and the 2D Dirac comb δ [113] of spatial

periods ∆x and ∆y:

fs(x, y) = f(x, y)
+∞∑

i=−∞

+∞∑

j=−∞

δ(x− i∆x, y − j∆y).

As a result, the spectrum of fs(x, y) is a periodisation of the spectrum of f(x, y): it consists of the

original spectrum of which have been added its replicas at sampling frequency and associated harmonics.

If the shifted spectral patterns overlap, in a process called aliasing, they become indistinguishable from

one another. To recover an estimate of the measured signal that is as close as possible to the original

one, none of the replicated frequencies should overlap. Let us assume f is band-limited of maximum

frequencies kmaxx and kmaxy . All else being equal, the well-known Shannon-Nyquist sampling criterion

states that, to avoid frequency aliasing, it is desirable to gather the measurements at a rate above the

critical shift that is defined as twice the spectrum upper bound:

1

∆x
≥ 2kmaxx

1

∆y
≥ 2kmaxy .

(2.4)

Data collection at a rate below the Shannon-Nyquist criterion, where aliasing occurs, is referred to as

subsampling.

2.1.3.2 Sampling requirements

In tomography, the sampling of the Fourier domain is on a polar grid instead of a Cartesian grid. A

polar coordinate system can be described both in terms of radial and tangential directions:



2.1. MATHEMATICAL BASIS OF TOMOGRAPHY 9

• The radial direction defines the number of measurements (or bins) that are collected per angle.

The sampling requirements for the radial direction define the spatial sampling and can be assessed

following the Shannon-Nyquist theory;

• The tangential direction defines the number of angles (or integral lines) that are collected. The

sampling requirements for the tangential direction define the angular sampling. We shall see that

the Shannon-Nyquist theory is not as helpful for determining the required number of angles.

Radial sampling requirement Function f has a finite support, and hence its spectrum has no

upper bound. However, it is not the full spectrum that is measured, but instead its convolution with

a rectangular window that models the data collection system. Thus, the maximum achievable spatial

frequency kmaxu along u can be shown to depend on the resolution ∆u of the data collection system. Let

us approximate the response of a measurement bin by the rectangular window function
1

∆u
rect∆u:

1

∆u
rect∆u(u) =







1 if u ∈
[−∆u

2
,
∆u

2

]

0 otherwise
.

The measurement at bin u, denoted pφ(u), corresponds to the convolution of the Radon transform pφ

with the window function
1

∆u
rect∆u, that is evaluated at position u∆u:

pφ(u) =

[
1

∆u
rect∆u ∗pφ

]

(v)

∣
∣
∣
∣
v=u∆u

It follows that the magnitude of the spectral pattern that is replicated by sampling is attenuated by the

sinc function:

[Fpφ](ku) =
1

∆u

∑

k

sinc

(

π

(

ξ − k

∆u

)

∆u

)

· [Fpφ]
(

ξ − k

∆u

)
∣
∣
∣
∣
∣
ξ=

ku
∆u

,

and consequently, the maximum achievable frequency can be assumed to be the first zero-crossing point

of the sinc function. Since the sampling in ku is polar, the sampling in kx (φ = 0◦) and ky (φ = 90◦)

admits the same upper-bound. It follows from Eq. (2.4) that

∆x = ∆y = ∆u. (2.5)

Hadamard introduced the concept of ill-posed problem to define problems that result in unstable

solutions. A problem is said to be well-posed if

1. its solution exists,

2. its solution is unique,

3. it is well-conditioned, i.e. small differences in the projection data yield slight differences in the

solution,

while a problem that is not well-posed is said to be ill-posed. Tomographic reconstruction implies

frequency amplification by the ramp filter. As ∆u tends to zero to sample higher frequencies and

increase the spatial resolution of the discretized solution, the spectral amplification tends to +∞, thus

violating Hadamard’s property of a well-conditioned problem (point 3). In practice, a low-pass filter is

used to band-limit the ramp filtering. The frequency representation of the ramp filter with a rectangular

window function is provided in Fig. 2.4(a). The rectangular window provides relatively high resolution

but also noise amplification, and introduces the so-called Gibbs oscillations. Both issues are classically

handled with apodization functions (e.g. Hanning, Hamming, Shepp-Logan, Butterworth, · · · ) that
provide a continuous transition between the ramp amplification and the band-limited windowing.
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(a) (b)

Figure 2.4: Band-limited ramp filter: (a) frequency response, (b) impulse response.

Angular sampling requirement Let us assume that the tangential direction of the 2D Fourier

domain is sampled by N integral lines that are uniformly spaced at constant angular interval ∆φ over

180◦. Considering the star pattern formed by all the integral lines that go through the origin of the

image, we observe that the density of the tangential sampling decreases with distance from center, and

hence is non-uniform. To avoid aliasing, it would be desirable to consider a maximal angular interval

so that, in particular, the Shannon-Nyquist sampling criterion is satisfied for adjacent samples at the

periphery of the support of f :

∆φ =
2∆u

D
.

It follows that

N =
πD

2∆u
. (2.6)

The angular patterns that are associated to full sampling and to uniform subsampling are schemat-

ically represented in Fig. 2.5(a) and in Fig. 2.5(b) respectively. In practice, the theoretical angular

Scan start Scan end Scan start Scan end

(a) (b)

Figure 2.5: Angular sampling patterns. (a) Full sampling. (b) Uniform subsampling.

sampling criterion exposed in Eq. (2.6) is not used as it may lead to an unnecessary high number of

angles. To illustrate why it is so, Fig. 2.6 compares the reconstruction obtained from 64 lines and 256
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(a) (b) (c)

Figure 2.6: Impact of the number of integral lines and bins on FBP reconstruction. (a) Imaged object.

(b) FBP reconstruction from 64 integral lines that are equiangularly spaced over 180◦ and 256 bins in

parallel geometry. (c) FBP reconstruction from 256 integral lines that are equiangularly spaced over

180◦ and 64 bins in parallel geometry.

bins, that is shown in Fig. 2.6(b) with the reconstruction obtained from 256 lines and 64 bins, that is

shown in Fig. 2.6(c). Compared to the original image that is shown as reference in Fig. 2.6(a), Fig. 2.6(b)

presents many high resolution details despite the fact that it was obtained with an angular sampling

far less favourable than the theoretical criterion, while a severe loss of spectral content is observed in

Fig. 2.6(c), that cannot be compensated by the high angular sampling. The number of lines N is rather

determined empirically and depends on the application: CT scanners thus use about 500 lines that are

decreased to 150 lines with C-arm systems.

Filtered backprojection yields an artifact-free reconstruction only if the set of measurements is infinite.

To illustrate the effect of angular subsampling on the quality of the reconstruction, we simulated the

acquisition of subsampled projection data from the imaged object that was displayed in Fig. 2.6(a).

We sampled the image spectrum with 32 equiangularly spaced integral lines over 180◦. As a result,

artifacts that typically consist of a set of intense straight lines become clearly visible with impact over

the entire image, as shown in Fig. 2.7(a). These streaks emanate from high-contrast structures and go

across the full image with angular directions that correspond to missing angles. The streak pattern is

emphasized in Fig. 2.7(b) that corresponds to the difference between the Fig. 2.7(a) and Fig. 2.6(a).

The impulse response of the band-limited ramp filter that is illustrated in Fig. 2.4(b) presents negative

components around the central positive peaks. When the set of measurements is infinite, the positive

and negative contributions compensate each other during backprojection. When the number of integral

lines is decreased, non-compensation of the positive and negative contributions results in non-localized

streak artifacts.

2.1.3.3 Angular range requirements

So far, we explored the sampling requirements assuming a rotation over 180◦. In this case, the discretized

backprojection formula is:

f(xi, yi) =
π

N

∑

n

p̃PB,φn
(xi cosφn + yi sinφn). (2.7)

Let us now consider the case where the object is not static during the 180◦ rotation so that the projections

do not correspond to the same object depending on the angle and are thus called ‘inconsistent’. If we

sort the projections into M subsets Em of consistent projections, each subset defines a new angular



12 CHAPTER 2. X-RAY COMPUTED TOMOGRAPHY

(a) (b)

Figure 2.7: Angular subsampling and streak artifacts. (a) FBP reconstruction from 32 integral lines that

are equiangularly spaced over 180◦ in parallel geometry. (b) Difference between image (a) and the image

object previously displayed in Fig. 2.6(a).

sampling pattern. Two typical cases are illustrated on Fig. 2.8: the limited angle sampling pattern

in Fig. 2.8(a) and a more general non-uniform sampling pattern in Fig. 2.8(b). The Nyquist critical

frequency no longer applies although locally the problem can be considered uniform and analysed again

with the Shannon-Nyquist criterion. We can define the reconstruction over a subset of projections as:

fm(xi, yi) =
π

N

∑

n∈Em

p̃PB,φn
(xi cosφn + yi sinφn), (2.8)

so that:

f(xi, yi) =
∑

m

fm(xi, yi). (2.9)

Note that we could as well define:

fm(xi, yi) =
π

Card {Em}
∑

n∈Em

p̃PB,φn
(xi cosφn + yi sinφn), (2.10)

where Card {Em} refers to the cardinal of Em, so that:

f(xi, yi) =
π

N

∑

m

Card {Em} fm(xi, yi). (2.11)

In the following, we quickly show that, with filtered backprojection (FBP), it is not advantageous

to reconstruct consistent data over a limited range, but instead that less artifacts are seen when re-

constructing inconsistent data over the full 180◦ range. We simulated the acquisition in parallel-beam

geometry of 300 equiangularly spaced integral lines over 180◦ of an object that is seen in two different

phases during the scan. The object is made of a moving structure of contrast 5000 over a static back-

ground of value 1000. Phase 1 that is shown in Fig. 2.9(a) is imaged from 0 to 120◦, while phase 2

that is shown in Fig. 2.9(b) is imaged from 120 to 180◦. The partial reconstructions for phase 1 that is

shown in Fig. 2.9(c) and phase 2 that is shown Fig. 2.9(d) have all their structures severely affected by

the restricted angular coverage. We observe empirically that it may be desirable to neglect the phase

dependency, and thus implicitly assume that the object of interest remains stationary during the acquisi-

tion of the measurements and apply classical FBP. Since backprojection is an integration process, static

FBP reconstruction that is given in Fig. 2.9(e) corresponds to the sum of all the partial reconstructions.
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Angular sector

Scan start Scan end Scan start Scan end

(a) (b)

Figure 2.8: (a) Limited angle sampling subset. (b) Nonuniform subsampling subset.

The positive and negative contributions among neighbouring lines are combined, and no artifacts appear

in the final reconstruction. When inconsistencies occur between the measurements, the reconstruction

process is no longer able to properly combine the positive and negative contributions and artifacts result.

Thus, the sampling artifacts of the static background in phase 1 are compensated by the complementary

artifacts in phase 2, while the sampling artifacts of the moving structure do not compensate each other

so that the entire image is deteriorated. In the following, we refer to these artifacts asmotion artifacts.

(a) (b) (c) (d) (e)

Figure 2.9: Impact of angular coverage on FBP reconstruction. (a) Phase 1 and (b) phase 2 of an imaged

object with background of value 1000 and moving structures of contrast 5000 - value range: 0 to 3000.

Simulation of a parallel-beam sinogram with 300 equiangularly spaced integral lines over 180◦ such that

the imaged object is seen in phase 1 over the 200 first angles, while in phase 2 over the last 100 angles.

Partial FBP reconstructions: (c) phase 1 and (d) phase 2. (e) static FBP reconstruction.

To study the dependency of motion artifacts with respect to the imaged object and the angular

sampling pattern, we simulated the acquisition in parallel-beam geometry of 300 equiangularly spaced

integral lines over 180◦ of measurements for two two-phase objects with a static background of value

1000:

• the object that is displayed in Fig. 2.10(a) contains a large structure of contrast 100, that is affected

by a uniform periodic displacement during data collection as illustrated in Fig. 2.10(b);

• the object that is displayed in Fig. 2.11(a) contains a small structure of contrast 5000, that is

affected by either a uniform periodic displacement in Fig. 2.11(b), a nonuniform periodic displace-

ment in Fig. 2.11(c) or a sudden contrast change in Fig. 2.11(d) during data collection.

When the magnitude of the temporal variation (i.e. intensity change) is low, the inconsistencies within

the scan are small and yield a reconstruction that is deteriorated by localized mild blurring as shown in

Fig. 2.10(c). When the magnitude of the temporal variation is large, the larger inconsistencies within
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the scan yield a reconstruction that is deteriorated by strong streaks as illustrated in Fig. 2.11(e),

Fig. 2.11(f) and Fig. 2.11(g). With regard to Fig. 2.11(e), Fig. 2.11(f) shows that the severity of the

spectral subsampling strongly depends on the angular sampling pattern associated to the time-points.

In particular, nonuniform subsampling results in more prominent artifacts than uniform subsampling.

(a) (b) (c)

Figure 2.10: Motion artifacts with low contrast structures (a) Imaged object with background of value

1000 and moving structures of contrast 100 - display range: 900 to 1110. Simulation of a parallel-beam

sinogram with 300 equiangularly spaced integral lines over 180◦. Uniform periodic displacement of the

moving structure: (b) sinogram; (c) static FBP reconstruction.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 2.11: Motion artifacts with high contrast structures and dependency with respect to sampling.

(a) Imaged object with background of value 1000 and moving structures of contrast 5000 - display range:

0 to 2000. Simulation of a parallel-beam sinogram with 300 equiangularly spaced integral lines over 180◦.

Uniform periodic displacement of the moving structure: (b) sinogram; (e) static FBP reconstruction.

Nonuniform periodic displacement of the moving structure: (c) sinogram; (f) static FBP reconstruction.

Sudden intensity change: (d) sinogram (g) static FBP reconstruction.
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2.2 Formation of the X-ray measurements

We have shown how to determine the 2D function of a physical property from its integral measurements.

We now focus on attenuation of biological tissues to X-rays that is the property measured by the medical

devices we shall consider further on. This section aims at providing some elements of the X-ray physics,

that are necessary to understand the image formation process. We refer the interested readers to [37]

for more details on the underlying physical principles of X-rays.

2.2.1 Production of X-rays

As schematically illustrated in Fig. 2.12(a), the main components of a Coolidge X-ray tube (Coolidge,

1913) comprise:

• an evacuated chamber that maintains a high vacuum and across which a high voltage (in kV)

can be applied. X-rays are emitted out of the chamber through a thin window;

• a cathode that is housed in the evacuated chamber and that emits thermally-excited electrons by

heating a metal filament (e.g. tungsten);

• a metal anode (also called target) that is housed in the evacuated chamber and that converts

electrons into X-ray photons, while being able to quickly dissipate the large amount of generated

heat. The material and the design of the anode are essential features for the tube efficiency and

lifespan;

• an envelope that houses and protects all parts. The common materials used for manufacturing

for envelopes are glass, metal or ceramic.

(a) (b)

Figure 2.12: (a) Schematic representation of the elements of an X-ray tube [1]. (b) Photograph of an

X-ray tube (GE Healthcare, Chalfont St. Giles, UK).

A displacement of charges from the cathode to the metal anode is induced through the application of

a difference of potential that can go up to 150 kV. The electrical charge, i.e. the number of electrons that

pass from the cathode to the anode, is proportional to the X-ray tube current (in mAs). The application

of a high-voltage yields an increase of the kinetic energy of electrons and hence their acceleration. When

the electronic beam hits the anode, the electrons lose their energy through complex interactions with

the nuclei of the tungsten atoms. Among all these interactions, three effects predominate: (a) heat

dissipation, (b) Bremsstrahlung emission and (c) characteristic radiation.
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Heat dissipation Minor interactions such as a collision with an orbital electron of the nucleus yield a

transfer of energy to this secondary electron, and is eventually dissipated into heat. Studies have shown

that the major part of the electron energy (at least 99%) is converted into heat. Consequently, one of

the main concern in the design of the X-ray tube anode is thermal dissipation (i.e. cooling) of the anode.

Bremsstrahlung emission The charge and mass of the nucleus are much greater than those of an

electron. The corresponding energy barrier does not allow penetration in the nucleus, and the electron

is consequently scattered from its initial trajectory. This deviation induces a release of kinetic energy

(inelastic scattering) and the emission of a (Bremsstrahlung) X-ray photon. The energy of an X-ray

photon is given by E = q · U where U denotes the voltage and q refers to the electric elementary

charge: if U is set equal to 100 kV then E is equal to 100 keV, given that 1 eV is approximately equal

to 1.6 · 10−19 J. The amount of transferred energy varies such that Bremsstrahlung emission yields a

continuous X-ray spectrum (in orange in Fig. 2.13), which is bounded by:

• low energy cut-off Emin below which X-ray photons are so heavily attenuated that their energy can

be considered negligible;

• high energy cut-off Emax at the operating peak voltage. It corresponds to the maximal energy that

an electron can transfer.

Characteristic radiation A collision with an electron of the inner shell of the nucleus can ionize the

target atom, i.e. eject this secondary electron and leave a vacancy behind. Since this is an unstable state,

the vacancy is eventually filled by an outer shell electron. This induces the emission of a quantized photon

characteristic of the target material. The associated energy EC corresponds to the energy difference

between the outer shell (EOS) and the inner shell (EIS): EC = EOS − EIS . These radiations have a

quantization that depends on the atomic number (i.e. the chemical structure) of the target material and

result in characteristic peaks in the X-ray spectrum (in blue in Fig. 2.13).

Figure 2.13: Spectrum emitted by the X-ray tube for visualization of biological tissues with an operating

voltage of 150 kV and a tungsten target. The continuous spectrum of Bremsstrahlung emission is plotted

in orange, while radiations characteristic of the target material are superimposed in blue.
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2.2.2 Interactions of X-rays with Biological Tissues

At the atomic scale, interactions between X-rays and the biological tissues they penetrate mainly consist

of collisions between the incident X-ray photons and the electrons surrounding the nuclei of the atoms

of the tissue and result in the attenuation of the initial beam. Four independent electronic interactions

exist:

• elastic scattering that occurs for very low photon energies and contributes only slightly to attenu-

ation (less than 1%);

• photoelectric effect in which a collision with an inner shell electron of a material leaves a vacancy

that may be refilled while producing a quantized X-ray photon with an energy that depends on

the atomic number;

• inelastic scattering or Compton effect in which a collision with an outer shell electron of the tissue

nucleus results in the transfer of a fraction of the photon energy only to the electron. A photon

with the fraction of the energy retained is emitted in a deflected direction.

• pair production that is not relevant with the energies considered in X-ray CT.

Only the photoelectric and Compton effects significantly contribute to the attenuation, i.e. to the

formation of the radiological contrast. The fraction of the X-ray beam that is absorbed by multiple

collisions per unit thickness of material is a fundamental property of a material, that is described by

linear attenuation coefficient µ. Its value basically depends on photon energy and accounts for

material density and mean atomic number. In particular, biological tissues having a low atomic number

emit photons of low energy, that are easily attenuated.

Assuming a monoenergetic X-ray beam of energy E and intensity I0,E , the transmitted intensity

through a uniform tissue follows an exponential decrease. The measured intensity corresponds to the

integration of the transmitted intensity along line D that connects the source to the measurement point:

IE = I0,E · exp
{

−
∫

M∈D

µE(M)dM

}

. (2.12)

Typical µE values are given in the first column of Tab. 2.1 for an energy E = 100 keV. They decrease

as the X-ray energy increases, and hence the radiological contrast as well. For instance, the linear

attenuation of water is found to decrease from 1.84 ·10−1 cm−1 at 80 keV to 1.51 ·10−1 cm−1 at 150 keV.
The X-ray measurement is transformed into a density measurement by taking the log-transform of the

ratio of the transmitted intensity given by Eq. (2.12) and the incident intensity I0,E . The integration of

the linear attenuation coefficients along D is directly related to the density measurement:
∫

M∈D

µE(M)dM = ln
I0,E
IE

. (2.13)

Angiography Blood vessels have attenuation coefficients that are comparable to those of the sur-

rounding structures. It is possible to selectively introduce contrast-enhancement agents into the vessels

to modify their µ-values. This medical imaging technique is called angiography2 and consists in inject-

ing a radiopaque solution within the vessels, thus enhancing the blood flow. Provided that µC refers

to the enhanced linear attenuation coefficient, while µB refers to the non-enhanced linear attenuation

coefficient, the ‘contrast’ intensity IC that is measured after injection of the contrast agent, is simply:

IC = I0 · exp
{

−
∫

M∈D

µC(M)dM

}

= I0 · exp
{

−
∫

M∈D

µC(M)− µB(M)dM −
∫

M∈D

µB(M)dM

}

= IB · exp
{

−
∫

M∈Dvessel

µC(M)− µB(M)dM

}

(2.14)

2The word angiography comes from the Greek words angeion which means ‘vessel’, and graphein which means ‘to write’.
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where IB is the intensity measured before contrast agent is injected and Dvessel determines the segment
of the X-ray beam that goes through the blood vessel. Since a lower X-ray tube voltage yields stronger

contrast enhancement for a given injection of contrast medium, a compromise is set between the quantity

of contrast medium and the voltage to optimize the contrast enhancement.

Beam hardening We have seen that the X-ray beam emitted by the tube is polyenergetic. The energy

spectrum ω modifies Eq. (2.12):

Iω =

∫

E∈ω

{

I0,E · exp
{

−
∫

M∈D

µE(M)dM

}

dE

}

. (2.15)

The body tissues then act as a filter. Low energies (also called soft energies) are more attenuated than

high energies (also called hard energies). This effect is known as beam hardening. Consequently, the

log-transform is no longer linearly related to the linear attenuation coefficients of the encountered tissues,

but instead:

ln

∫

E∈ω
I0,EdE

Iω
= gω

[∫

M∈D

µω(M)dM

]

. (2.16)

where gω captures the non-linearity of the measurement process and µω is a tissue attenuation for a

given spectrum ω rather than a single energy. Note that the non-linearity is stronger if the spectrum

is wider. The X-ray beam is generally filtered or ‘hardened’ directly out of the tube by placing a thin

metal sheets (of aluminum, copper or brass), so that lower energies are preferentially filtered out and

the beam becomes near monoenergetic so that remaining non-linearities can be estimated and corrected

by calibrating the system.

2.3 CT for diagnostic imaging with scanners

An X-ray CT scanner such as the GE Lightspeed (GE Healthcare, Chalfont St. Giles, UK) of which a

photograph is shown in Fig. 2.14 consists of a closed gantry holding the imaging system (X-ray tube,

detector and high-voltage generator) that is continuously rotating around the patient, while the latter is

translated perpendicularly, so that a large amount of projection data is acquired. From this acquisition,

a volume of (2D) cross-sectional slices of the human body of some thickness is reconstructed. The

mathematics presented in Sec. 2.1 describe the ‘ideal’ tomographic case, while Sec. 2.2 described the

formation of the X-ray measurements. This section aims at detailing key aspects of the design of an

industrial X-ray CT scanner that minimizes data corruption inherent to the X-ray physics, and collect

data so that the sampling requirements are satisfied and an FBP-type reconstruction is applicable. We

discuss in particular the design of key hardware components and reconstruction algorithms that are used

in practice, as well as their performances.

2.3.1 Detector

All modern X-ray CT scanners are equipped with solid-state crystal detectors that are made from a

variety of solid materials with high atomic numbers and high densities (e.g. cadmium tungstate, cesium

iodide). They work on the scintillation principle, i.e. the crystal detector element fluoresces when hit by

an X-ray photon and a photodiode that is attached to the crystal and affixed to a circuit board converts

the photon energy into electrical energy. The key characteristics of a detector cell are:

• a high absorption efficiency (98% for solid-state crystal detectors);

• a fast decay time (30 ns for GemstoneTM the scintillator recently developed by GE Healthcare);

• a low electronic noise;

• an analog to digital conversion over 24 bits.
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Figure 2.14: Photograph of a GE Lightspeed (GE Healthcare, Chalfont St. Giles, UK).

To shorten the data collection time, all measurements of a given angle are acquired simultaneously.

the detector cells with their read-out electronics are packed into a long and narrow curvilinear array.

The length must accommodate all patient sizes without missing samples at a given angle (e.g. avoid

truncation).

2.3.1.1 Scatter

Simultaneous acquisition results in cross-talk due to the fact that a photon that is scattered away from

one detector cell is measured by another. These cross-measurements yield contrast loss. To reduce

scatter and prevent contrast reduction, an anti-scatter collimator3 is placed ahead of the detector,

that is 1D or 2D array of parallel lead strips that are focused towards the X-ray source. Thus, most of

the scattered photons that have trajectories not belonging to a source to detector line are intercepted

and absorbed by the grid. Because a part of the non-scattered X-ray photons is also intercepted by the

grid, its use is accompanied with an increased dose exposure. In a complementary approach for reducing

scatter radiation, as well as patient dose exposure and dynamic range, the X-ray tube of CT scanners is

equipped with an additional bowtie beam shaping filter that maintains a more uniform X-ray field

at the detector. It consists in compensating for the variable path length of the patient across the imaged

field of view (FoV): the filter thickness increases from the center to the outer edge, which significantly

reduces the dose to external parts of the patient. It results in an overall improvement in HU accuracy,

low-contrast detectability and imaging dose. Different filter designs allow for imaging different regions

of the body.

2.3.1.2 Dose

In practice, projection data are corrupted by quantum noise due to the limited number of X-ray

photons that are recorded at the detector to form a measurement. As the flux tends toward zero, the log-

transform in Eq. 2.12 becomes unreliable. Quantum noise approximately follows a Poisson distribution.

Consequently, the signal-to-noise ratio (SNR) is proportional to the square root of the X-ray dose. To

decrease noise, the intensity and/or the voltage of the X-ray tube must be increased, and hence the

dose exposure to the patient. This is not desirable because X-rays are ionizing radiations. Although

technical progress allowed for steadily reducing dose with no loss in image quality, efforts continue to

further decrease the risk for the patient of developing an X-ray-induced cancer.

3Anti-scatter collimator is also referred to as ‘grid’ or ‘septa’.
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2.3.1.3 CT image display

The reconstructed volume is discretized with (e.g. 512×512×h where h is the number of slices considered)
anisotropic volume elements (voxels) with equal, squared-shape cross-sections, that are confounded with

the (e.g. 512 × 512) picture elements (pixels) of a given cross-section with submillimetric resolution.

Because of the integration within the X-ray CT detector, the resolution in the longitudinal direction was

historically not as good as in the transversal direction and varied from 1 to 10mm, depending on the

slice thickness, but now voxels tend to become isotropic.

Multi-planar visualization Modern scanners deliver a set of contiguous slices that form a volume

that can be displayed using planes perpendicular to an arbitrary axis. There are three special axes that

are illustrated in Fig. 2.15, thus resulting in axial, coronal, or sagittal visualizations of the volume.

Reconstruction is performed over planes orthogonal to the tomographic rotation axis, visualization in

oblique planes is called multi-planar reformatting.

Figure 2.15: Radiologic terminology and conventions. Axial planes run from the cranial end to the caudal

end. Coronal planes run from the ventral side to the dorsal side. Sagittal planes runs from the left side

to the right side or vice-versa. In radiology, by convention structures are observed from the caudal end

up with the patient in front of the observer and hence, left structures of the body are represented on the

right side in axial planes (and vice-versa).

Hounsfield units For a given X-ray spectrum ω, the value of the attenuation coefficient computed

in tomography is quantized with value f that is expressed in Hounsfield unit (HU). By convention, the

linear attenuation of a tissue is normalized relatively to the one of water and the scale is adjusted so

that the value corresponding to air fair is equal to -1000HU according to:

f(M) = 1000 ·
(

µω(M)

µω,water
− 1

)

. (2.17)
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Note that by definition fwater = 0HU. This normalization makes the reconstructed value less dependent

from the energy value or spectrum, and independent from the reconstructed voxel size. An estimate of

the Hounsfield units for materials of clinical interest, that was computed at 100 keV, is given in Tab. 2.1.

Material
Linear attenuation

Hounsfield unit
coefficients (in cm−1)

Titanium 1.23 6200

Cortical bone 3.56 ·10−1 1080

Whole blood 1.80 ·10−1 50

Lung 1.78 ·10−1 40

Muscle 1.78 ·10−1 40

Brain (grey and white matter) 1.77 ·10−1 35

Water 1.71 ·10−1 0

Adipose tissue 1.60 ·10−1 -65

Air 1.86 ·10−4 -1000

Table 2.1: Linear attenuation coefficients at 100 keV (source: NIST tables of X-ray mass attenuation

coefficient) and corresponding Hounsfield units for different materials.

Note that with C-arm systems and in the following of this work shifted Hounsfield units (fair = 0HU)

are used by convention.

Dynamic range The reconstructed images is displayed using a scale of 28 gray levels, while recon-

structed values can go up to 12 or even over 16 bits in presence of metal or concentrated iodinated

contrast media. Rather than scaling the original dynamic range down to 8 bits, windowing is used,

that consists in interactively displaying Hounsfield units in a limited-range window that is adjusted to

modify the image dynamic so that the visualization of a certain type of tissues is enhanced:

• window level (WL) sets the mean HU of the displayed window;

• window width (WW) sets the HU range coverage;

Gray level Gmin = 0 is set to all pixels of HU below fmin = WL− WW

2
while Gmax = 255 is set to all

pixels of HU above fmax =WL+
WW

2
. A wide window is chosen to display tissues largely differing in

density, while a narrow window is chosen to visualize small contrasts, as illustrated in Fig. 2.16(a) and

Fig. 2.16(b) respectively.

2.3.2 Single-slice CT

To collect projection data, the detector of CT scanners originally consisted of a 1D array of cells arranged

in a curvilinear configuration, so as to acquire a single (2D) cross-sectional slice of the human body.

2.3.2.1 Data discretization and sampling requirements

Current CT scanners use a design that appeared with the third generation of CT scanners [43]. It only

involves the rotation of the imaging chain. At each angular position considered, a set of fan-beam lines is

simultaneously collected. These are lines that diverge from a single X-ray source to cover the entire field

of view of the detector. The filtered backprojection algorithm that we presented in the previous section

assumes that the projection data are collected in parallel-beam geometry. Consequently, it must be

adapted to handle the fan-beam geometry. To this purpose, a coordinate transformation from fan-beam

geometry to parallel-beam geometry is introduced. A description of the fan-beam geometry is provided
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(a) (b)

Figure 2.16: Illustration of the windowing principle to modify the dynamic of the displayed image. (a) A

wide window is chosen to display tissues largely differing in density: WL = 35HU and WW = 2000HU.

(b) A narrow window is chosen to visualize small contrasts: WL = 35HU and WW = 100HU

Figure 2.17: Coordinate systems in fan-beam geometry with a circular detector.
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in Fig. 2.17. Let us assume the X-ray lines come from a source S at distance dSOD from the center of

rotation located at the origin O of the coordinate system. Each divergent line, denoted DFB(β, γ), is

determined by two parameters:

• the angle β that locates the X-ray source on its circular trajectory: β is defined as the angle between

the center line of the fan and the y-axis;

• the angle γ that identifies the position of a particular ray within the fan with respect to the center

line.

Let us denote pFB,β(γ) the line integral of f along divergent line DFB(β, γ), that is:

pFB,β(γ) =

∫

M∈DFB(β,γ)

f(M)dM. (2.18)

The divergent line DFB(β, γ) also belongs to the set of parallel lines, previously denoted DPB(u, φ),

whose coordinates are given by the following coordinate transformation:

{
φ = β + γ

u = dSOD · sin γ
. (2.19)

The change of variable in Eq. (2.19) shows that if β ∈ [0, 2π], all measurements γ will sample interval
[0, 2π], while if β ∈ [0, π], detector bin γ = −Γ samples [−Γ, π − Γ], bin γ = 0 samples [0, π] and bin

γ = Γ samples [Γ, π + Γ]. Thus sufficient condition for sampling [0, π] for all γ is that β ∈ [−Γ, π + Γ].

It does not provide a one-to-one correspondence with parallel-beam measurements since some points

are sampled twice while others are sampled only once. In practice the 2π coverage is preferred since it

provides a uniform double sampling of the parallel-beam geometry.

Figure 2.18: Short scan. Sinogram measurement plotted in the (β,γ) domain.
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A first reconstruction strategy consists in estimating the equivalent parallel-beam data from the data

collected in fan-beam geometry in a process known as ‘rebinning’ [65]. Assuming fan-beam measure-

ments are available at projection line DFB(β, γ), the corresponding parallel-beam measurement must be

computed from the mathematical equality

pPB,φ(u) = pFB,β(γ).

Uniform discretization in (β, γ) is not uniform in (u, φ), thus requiring projection data resampling through

interpolation in the (u, φ)-space, of which we do not give details here, but for which we suggest that the

interested reader refers to [104]. The filtered backprojection reconstruction in parallel-beam geometry

is then simply applied to the rebinned data. However, because of the interpolation step, rebinning

methods have to be performed on the complete projection data set, and thereby cannot be applied in

a sequential manner during the acquisition, which may be computationally unattractive. In addition,

linear interpolation does not fully preserve the high-frequency content of the original fan-beam projection

yielding a loss in spatial resolution. In all cases, interpolation requires a large number of views, that is

an angular sampling similar to the detector sampling in u because u is proportional to γ. For a limited

number of views, interpolation is not adequate.

2.3.2.2 Filtered backprojection of fan-beam data

A second reconstruction strategy consists in providing an implementation of the Radon inversion formula

that is appropriate for fan-beam geometry and that can be interpreted as a weighted filtered backprojec-

tion. For parallel projections, the reconstruction formula that was derived in Eq. (2.3) can be modified

to include all projections over 2π:

f(x, y) =
1

2

∫ 2π

0

[pPB,φ ∗ h](u)dφ (2.20)

Roughly speaking, corrective terms for the fan-beam geometry are introduced in the filtered backprojec-

tion algorithm [68] by applying the change of variables from parallel-beam geometry (u, φ) into fan-beam

geometry (β, γ):

f(x, y) =
1

2

∫ 2π+Γ

−Γ

[

1

w(x, y, β)
2 ·

[
p′FB,β ∗ g

]
(γ)

]

dβ (2.21)

This leads to the following three-step algorithm:

1. Weight the current view pFB,β(γ) with dSOD cos γ:

p′FB,β(γ) = (dSOD cos γ) · pFB,β(γ);

2. Filter the view by convolving the weighted view with the modified ramp kernel

of impulse response:

g(γ) =

(
γ

sin γ

)2

· h(γ);

3. Perform a backprojection of the filtered views, that is weighted with the

squared inverse of distance w defined as the distance from the point to be

reconstructed to the source

w(x, y, β) =

√

(dSOD + x sinβ − y cosβ)
2
+ (x cosβ + y sinβ)

2

We have presented in Sec. 2.1.3 a theoretical sampling requirement for tomographic systems. However,

in practice, images obtained with CT scanners always present subtle subsampling streak artifacts.
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2.3.3 Multislice CT

With a single slice CT the complete data set necessary for reconstruction of a given slice is acquired

in fan-beam geometry, then the table is translated to scan the next slice and the process is repeated.

Imaging of the whole body in this slice-by-slice manner requires long examination time for a patient and

limited patient throughput. Increasing the volumetric coverage, i.e. acquiring more slices per second can

be achieved with multislice and helical scanning approaches.

As for single-slice imaging, it is natural to collect each parallel line integral separately, this holds for

three-dimensional (3D) objects that are scanned slice by slice. CT scanners allowing for the acquisition

of multiple slices simultaneously (commonly 4, 8, and 16 rows) using adjacent detector arrays have been

commercially available for twenty years. This scanning was developed to take full advantage of the

development of new detectors made as a 2D array of detector elements, as the 3D equivalent of fan-beam

scanning. The increased width of the detector allows for collecting several fan-beam projections at once,

forming a cone in a so-called cone-beam (CB) geometry.

To improve the scanning time, current conventional CT scanners rely on helical-scan geometry [112].

Helical CT is a system in which the source-detectors system rotate around the patient, while the table on

which the patient lies is continuously moved orthogonally to the plane of rotation. Thus the trajectory

of the source relative to the patient describes a helical orbit. The principle of the helical acquisition

is illustrated in Fig. 2.19. When the number of detector slices is small, all the projection lines can be

assumed to be parallel to the central plane and fan-beam geometry is still relevant. Reconstruction

methods rely on data rebinning for a particular reconstruction plane in the virtual equivalent projection

data into parallel geometry using linear or cubic interpolation between data measured at the same

angle but at different axial positions. Direct reconstruction of helical scans is beyond the scope of this

presentation. The key point is that methods have been devised to adapt the FBP algorithm to helical

data. Specific artifacts that are seen in helical FBP reconstruction are the so-called ‘windmill’ artifacts

that are due to the sampling pattern.

Figure 2.19: Helical CT.

2.3.4 Imaging fast moving objects

Helical CT scanners can acquire the complete projection data set related to the entire body in the range of

1-5 seconds. When imaging fast moving data, abrupt changes that may occur between the measurements

result in motion artifacts as discussed in Sec. 2.1.3. An overview of the strategies that are commonly

employed for reducing these artifacts is provided by Bonnet et al. [14].

2.3.4.1 Cardiac CT

In cardiac CT, the primary goal is not to capture all beats of the beating heart, but to freeze one phase.

It is thus, still, a static problem and both high temporal and spatial resolution are required, so that

cardiac motion does not significantly deteriorate the image quality.

High spatial resolution of moving structures can only be achieved if data collection is fast enough to

avoid motion artifact in an attempt to ‘freeze the motion’ during acquisition. Ultra-fast systems such
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as multislice CT can provide complete organ coverage in a single sub-second rotation, opening up the

possibilities of functional imaging such as perfusion studies. In modern CT scanners, a 360◦ acquisition

of projection data can be achieved in 0.3 seconds. Short scan reconstruction only requires slightly

more than 180◦. Multibeam field emission [83] have been proposed. Dual CT scanners further reduce

the minimum rotation to 90◦ by mounting two X-ray sources and two detectors simultaneously. The

temporal resolution achieved on the dual source CT that has been recently commercialized by Siemens

is claimed to be 83ms. With technical development, the temporal resolution of multislice CT offered by

manufacturers has improved from 250 ms on 4-slice scanners to 180 ms on 64-row scanners such as GE

HD750. As the cone angle is increased to allow larger regions of interest to be imaged, the scatter-to-

primary ratio increases significantly, which may yield image quality degradation if not handled properly.

Cone-beam artifacts can be tolerated up to 16 rows, but with increasing number of rows, improved

algorithms are employed, that take the CB geometry into account. To further reduce the scanning time,

the width of the detector can be increased up to 128, 256 and even 320 rows. Thus, Toshiba Aquilion

ONE that is equipped with a detector of 320 rows allows for dealing with imaging the entire volume

in one single orbit of the CT gantry in which line integrals through all parts of the body have to be

processed simultaneously.

Very fast variations within the heart lead to motion artifacts that prevent diagnostic studies and

require more sophisticated clinical protocols. An essential part of cardiac imaging is to obtain a low

and regular patient’s heart rate to reduce the requirement for a high temporal resolution. The use

of β-blockers is advocated to lower the heart rate to less than 65-70 beats per minute and to make

the rhythm more regular. With advances in CT scanner technology, the heart rate range over which

diagnostic studies can be obtained will likely increase. A widespread approach known as ‘gating’ and

developed since the 1980s [2] has exploited the repeatability of the cardiac cycle to select one subset

of consistent views corresponding to the same phase of the cycle and for which FBP reconstruction is

feasible. To ensure that sufficient line integrals are acquired, a time window (gating window) is placed

around the reconstructed phase time point. The width of this window is responsible for the temporal

resolution of the system. The selection of a subset of consistent projections is done via external models

that play the role of spatio-temporal indicator for the cardiac function. The electrocardiogram (ECG

signal) gives information about the periodicity and offers the possibility to correlate retrospectively or

prospectively –when the CT scanner acquisition is synchronized with the ECG– the views with a selected

cardiac phase [86]. Because radiation dose is a significant issue in X-ray imaging, prospective gating is

favoured rather than retrospective gating. In the prospective mode, a single phase of the cardiac cycle is

imaged during multiple rotations and the data acquisition is triggered at a predetermined time window

of the cycle using the ECG signal. In practice, data are frequently acquired while modulating the tube

current: the peak current is used within a temporal window chosen out of the periods of significant

motion, while outside this window the current is reduced, since the projection data are unlikely to be

used for reconstruction.

2.3.4.2 Perfusion CT

Intravenous injection is performed to enhance the vascular structures in diagnostic imaging. After

injection, the contrast medium circulates in the body, regulated by the cardiovascular system, and in

particular rapidly diffuses to the brain. This results in contrast-enhanced vessels and parenchyma.

Images of perfusion indexes are produced by calculating contrast uptake curves for each pixel over the

whole acquisition time interval. Two problems arise [7]:

• for a short injection, the peak time-enhancement curve has a quick initial increase followed by a

short peak and then quick decrease. A short injection duration (i.e. low volume or high injection

rate) yields an earlier arterial peak and parenchymal enhancement. It requires a short scan delay.

A fast injection would be better suited to a fast scan but requires more precise scan timing. Short-

lasting contrast enhancement may be missed.
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• a long scan duration requires a long contrast injection to maintain full enhancement during the

acquisition: a prematurely terminated injection may yield insufficient contrast enhancement, while

too long an injection may result in undesirable tissue contrast enhancement. When contrast medium

is injected at a constant rate for a long injection, a typical enhancement profile for long-injection

duration consists of a rapid initial rise, gradual increase, peak, and gradual decline. Patient motion

may deteriorate the data. If the patient moves during the scan, an inaccurate result is produced

since the contrast uptake curve no longer represents the true contrast uptake at the same location.

Motion correction is relatively simple in the case of brain perfusion, since a rigid registration can be

performed over all reconstructed images to ensure proper location registration. The problem is much

more complex when dealing with body organ perfusion since the motion is non-rigid. Perfusion over

large volumes such as the liver is therefore a work-in-progress. Fast scan speed and coverage with

multislice CT allow for a complete acquisition in the clinical routine in less than 10 seconds and facilitate

acquisition at multiple precisely defined phases of contrast enhancement and may improve the detection

and characterization of lesions in various organs. Optimization of phase-specific contrast enhancement in

an organ is however complex and would require higher performance of the CT scanners than the current

state-of-the-art.

2.3.4.3 Software temporal management

The technological progress to speed up the data acquisition of CT scanners or increase its coverage

allow for neglecting the motion effects in most of the diagnostic applications of CT scanners. However,

in spite of these advances in fast CT, it is impossible to remove all motion artifacts: among others,

it has been shown that scanning time less than 50ms are not adequate to resolve respiratory-induced

motions of the pulmonary vessels [110] and results in intra-slice inconsistencies. So far, we considered CT

hardware improvements only. Software solutions have received considerable attention in the academic

research. Motion-compensated reconstruction methods mostly rely on an initial subsampled motion-

free reconstruction. The analysis and extraction of parameters of cardiac shape and function allows for

exploiting all the projective measurements so that one may achieve both better SNR and reduced motion

artifacts. In this way, the advantages of both gated and ungated methods are kept. Common strategies

rely on modeling the motion (e.g. with parametric models or dense vector fields) so that each phase can

be deduced from a reference one by the motion model. A general review of 3D modeling for functional

analysis of cardiac images in different modalities is given by Frangi et al. [49]. Motion estimation is a

challenging estimation problem though. Due to their high complexity, the introduction of the motion

models in the reconstruction is not a trivial task and is still an active area of research. It has been shown

by Desbat et al. [38] that deformations that preserve the acquisition line geometry, i.e. maintain the

acquisition X-rays as straight lines, can be analytically compensated by redefining a virtual trajectory of

the source. However, elastic deformations associated to the cardiac motion transform straight lines into

curves and thereby do not satisfy the linearity preservation requirement. In another work from Taguchi

et al. [131], an approximate algorithm was shown to provide significant reduction of the motion artifacts

due to non-rigid motions within the imaged object, but could not deal with the arbitrary non-rigid

deformations associated to the cardiac motion. However, due to the complexity of the cardiac motion,

3D model-based approaches lack of robustness and rigorous clinical validation and until now very few

industrial applications have followed4.

4There exists for instance only one product of software post-processing for coronary reconstruction at GE Healthcare.



Chapter 3

X-ray interventional imaging

Medical imaging has known great technological advances over the past decades to become a powerful

tool for the current clinical practice. On one hand, diagnostic imaging techniques have facilitated the

detection, characterization and follow-up of many pathologies. On the other hand, interventional ra-

diology (IR) that involves minimally-invasive clinical procedures has developed tremendously. In these

procedures, medical devices are inserted and manipulated under image guidance through the vascular

system to the pathology location, where they are used to deliver the treatment. The very first image-

guided intervention (a percutaneous vascular catheterization) was proposed by Seldinger in 1952 [118].

Contributions to the field of IR include the works of Dotter (percutaneous revascularization, 1964) [42],

Grüntzig (percutaneous angioplasty, 1977) [55] and Cato (chemoembolisation, 1981). The use of IR as

therapeutic care for cardiac, vascular or oncological purposes has never stopped from increasing since

then.

C-arm systems, that are designed for real-time guidance (2D projective images with low-dose X-rays,

also known as fluoroscopy) of interventional procedures, deliver tomographic images as well. The in-

troduction of 3D visualization of the vascular anatomy [5] and adjacent structures through X-ray CT

for interventional procedures has allowed for evaluating ambiguous anatomies and position accuracy of

interventional tools, and even detecting haemorrhage. The specificities of C-arm systems with respect to

X-ray CT scanners are discussed in Sec. 3.1. In order to better understand the sampling requirements

that are associated to interventional data, this chapter gives a rapid overview of current angiographic

procedures in Sec. 3.2; the focus is then put on embolisation procedures that consist in inducting vas-

cular occlusion by introducing an embolic agent into a vessel through a selectively placed catheter for

therapeutic purposes in the brain and in the liver in Sec. 3.3. For both cases, the temporal variations as

well as the resulting image quality are discussed in Sec. 3.4.

3.1 CT for interventional imaging with C-arm systems

Although closed gantry CT scanners are the modality of choice for diagnostic volumetric imaging [70],

they are only rarely used during minimally-invasive interventional treatments due to the ring structure

which restricts the access to the patient during the procedure. C-arm systems on the other hand were

developed to provide real-time 2D X-ray images of the patient for procedure guidance and hence designed

as an open structure to give the medical team full access to the patient. A C-arm unit is designed such

that all components within the system are carefully optimized to provide an image quality matching the

clinical needs of an intervention and improve the ease of use. The key components are:

• the mechanical gantry and the table on which the patient lies;

• the X-ray imaging chain;

• the monitors that are carried by telescopic arms and used to display the images in real-time;

• and the workstation that is used to store and manipulate the images.

There is no one-fit-for-all system and C-arms come in many flavours. Mobile C-arms (see Fig.3.1(a)) are

the smallest systems and are mostly used in invasive surgery at specific steps of a procedure and moved

away otherwise. They can be shared between several operating rooms. The counterpart to mobility



30 CHAPTER 3. X-RAY INTERVENTIONAL IMAGING

is limited capabilities; in particular, they rarely feature computed tomography. For minimally invasive

vascular procedures, fixed-room systems are used, such as the GE Innova 4100 which was used to acquire

some of the data presented in this manuscript and of which a photograph is given in Fig. 3.2. It is a floor-

mounted system. Biplane systems (see Fig.3.1(b)), such as the IGS 630, provide two simultaneous image

chains by adding a ceiling-mounted system to the floor-mounted one. Ceiling C-arms are mounted on rails

to translate them in and out of the operating field. The latest designs combine features and image quality

of a fixed room with increased mobility. For instance, the Siemens Artis Zeego (see Fig.3.1(c)) is a robot-

mounted C-arm which is fixed and floor mounted, but powerful enough to move the C-arm away when

needed. The GE IGS 730 (see Fig.3.1(d)) is also a robot-mounted C-arm, where the robot is equipped

with wheels and laser guidance so as to provide the mobility of a mobile unit within the operating room

with millimetre precision in the repositioning. On ‘fixed’ systems, computed tomography has become

essential, but still comes second in terms of requirements with respect to fluoroscopy. This section thus

aims at highlighting the key differences that make C-arm systems different and less performing than CT

scanners for tomographic reconstruction.

(a) (b)

(c) (d)

Figure 3.1: C-arm systems: (a) mobile C-arm (GE Healthcare, Chalfont St. Giles, UK); (b) biplane sys-

tem (GE Healthcare, Chalfont St. Giles, UK); (c) Artis zeego (Siemens Healthcare, Erlangen, Germany);

(d) GE IGS 730 (GE Healthcare, Chalfont St. Giles, UK).
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Figure 3.2: Photograph of an Innova system (GE Healthcare, Chalfont St. Giles, UK). Elements of the

imaging system and their articulations.

3.1.1 Characteristics of the C-arm acquisition

For interventional procedure guidance, interventional imaging involves several intraarterial injections

that enhance the blood vessels and allow the clinician to manipulate the interventional tools through the

patient’s arterial system.

3.1.1.1 Mechanical considerations

The design of an angiographic system aims at fullfilling the specificities of the interventional context: (a)

an easy positioning with space to work around and (b) a large freedom of movement, allowing acquisition

of X-ray images (views) with various angles. The products manufactured by GE Healthcare thus benefits

from various degrees of freedom. The imaging system can be oriented along three degrees of freedom

through a LC architecture illustrated in Fig. 3.2:

• The L-arm holds the C-arm and can be rotated along one (L) axis, while the C-arm that holds the

X-ray tube and detector can be rotated about two axes:

– the CRAnial/CAUdal angle that describes rotation of the C-arm in the patient’s sagittal

plane;

– the LAO/RAO: the Left (respectively Right) Anterior Oblique angle that describes rotation

of the C-arm in the patient’s axial plane;

• Fixed-room C-arms are isocentered: all rotations are made with respect to a common point, the

isocenter O. Therefore the table is made with three additional degrees of freedom in translation so

that the anatomy of interest can be put into the X-ray beam;

• Finally, the detector is equipped with a lift that modifies the source to detector distance dSID,

which changes the image-chain magnification, or equivalently, the size of the field of view.

3.1.1.2 Flat-panel detector

Three types of X-ray detectors have been used in angiography systems:

• phosphor and fluorescent screens that were historically used by the very first angiography systems1;

1The term ‘fluoroscopy’ that denotes the resulting 2D X-ray images comes from there.
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• image intensifiers;

• and digital flat panels that equip current products such as the IGS 540.

Until ten years ago, angiography systems relied on an image intensifier which consists of an electronic

device that converts X-ray photons into electrons to form the digital image by photoelectric effect. Its

introduction provided a far better dynamic range than fluorescent screens. Still, images suffered from

distortions, and the field of view was limited to a disk. The progress made in the development of

sensor systems lead to the replacement of image intensifiers by digital flat-panel detectors that provide

distortion-free images, higher dynamic range and enable fast digital read-out with a maximum of 50 fps

for IGS systems. Thanks to their higher DQE (detector quantum efficiency), digital flat-panels enable

dose reduction or image quality improvements. The size of GE detectors depends on the imaged anatomy:

• in cardiac imaging a small 20 cm× 20 cm square panel is enough;

• biplane systems for neuroradiology use two medium 30 cm× 30 cm square panels;

• while for peripheral imaging (extremities, abdomen) a large 40 cm×40 cm square panel is preferred.

Rectangular panels of 30 cm× 40 cm are proposed instead by Siemens or Philips. The working principle

of GE’s detector is schematically illustrated in Fig. 3.3(a). X-ray photons are converted into visible

photons by a crystalline cesium iodide (CsI) scintillator. These visible photons are in turn converted into

electrons using an amorphous silicon (a-Si) photodiode to form a digital image by photoelectric effect.

(a) (b) (c)

Figure 3.3: (a) Schematic representation of the layers that compound the sensor used in flat-panel

detectors. The detector is based on a crystalline CsI scintillator and an a-Si diode. Active readout

matrix includes readout electronics based on a small thin-film transistor. (b) Photograph of the flat

panel detector of Innova 4100 with its packaging. (c) Photograph of the flat panel detector of Innova

4100.

3.1.1.3 Collimation

Patient radiation exposure concerns are crucial in X-ray imaging. In interventional procedures, it is also

crucial to monitor clinician scatter exposure. Protective rules enable lower scatter radiation exposure:

the clinician wears protective clothing and ideally supervises the scanning procedure from the control

room or at least stands behind a protection glass panel. Restraining the FoV that is provided by the

source-detector system so that only a region of interest (RoI) is imaged enables both dose and scatter
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reduction. Thereby, it seems very reasonable to limit the dose exposure to the anatomical volume that

need to be imaged only. A collimator is used to restrict the X-ray beam to a specific FoV: blades that

are opaque to radiation are placed on top of the X-ray tube. They can be translated to frame the

target region, the complementary regions being shielded by the blades. To further reduce scatter in the

measurements, a removable 2D grid is placed ahead of the flat detector.

3.1.2 Tomography with C-arm systems

A sequence of views (scan or spin) can be generated by a single rotation of the C-arm in the axial plane,

where the angle LAO/RAO varies from −100◦ to +100◦, while CRA/CAU and SID are kept constant

(CRA/CAU is generally set equal to zero). The rotation over 200◦ is called short-scan by opposition

to a full 360◦ rotation as in conventional CT. Figure 3.4 shows a few views from a rotational scan: each

view corresponds to a particular position of the C-arm imaging system and, thus, illustrates a particular

(2D) point of view on the (3D) imaged object.

Figure 3.4: Example of rotational scan. Each view corresponds to a particular position of the C-arm.

Vertical arrow: number of slices. Horizontal arrow: axial field of view.

3.1.2.1 Rotation speed and frame rate

The frame rate of the system depends on the design of the read-out electronic of the detector: it is limited

to 30 fps with Innova systems and to 50 fps with IGS systems. The choice of the rotation speed depends

on the clinical protocol. The C-arm gantry is used at maximal rotation speed (40◦/s with Innova and

IGS systems) for acquisition with injection of a contrast agent. The acquisition at 30 fps and 40◦/s thus

delivers a scan of about 150 views with an acquisition time of about 5 seconds since the gantry can only

rotate over 200◦. On the other hand, the rotation of the gantry is kept slow for non-angiographic exam

(10◦/s with Innova systems, 16◦/s with IGS systems) in order to maximize the amount of views within

the scan. Acquisitions at 30 fps and 10◦/s and acquisitions at 50 fps and 16◦/s thus deliver scans of

about 600 views. Both Innova and IGS systems are equipped with an intermediate rotation speed (20◦/s

with Innova systems, 28◦/s with IGS systems). A reminder of these rotation speeds is given in Tab.3.1.
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3.1.2.2 Cone-beam X-ray transform

With a square flat-panel detector, the projection lines belong to a cone. The CB projection transform

pCB,β(u
′, v′) associates to any point M of the imaged FoV the integral projection of function f along

line DCB(u′, v′, β) as illustrated in Fig. 3.5:

pCB,β(u
′, v′) =

∫

M∈DCB(u′,v′,β)

f(M)dM. (3.1)

Figure 3.5: Coordinate systems in cone-beam geometry.

3.1.2.3 Projection matrix

Projection matrices model the set of line integrals defined by the geometry of acquisition. It is a four-

dimensional (4D) space, while the set associated to the detector plane is a 3D space. Thus, the projection

transform 3DX is described via a 3 × 4 projection matrix [46] considering three different coordinate

systems: (a) the real world referential, (b) the X-ray source referential, and (c) the detector referential.

Figure 3.6 illustrates the different coordinate systems and necessary transforms to geometrically model

a cone-beam projection. Let us denote (x′S , y
′
S , z

′
S) the absolute position of source S, and respectively

(x′M , y′M , z′M ) the absolute position of point M of the imaged FoV, in the 3D world coordinate system.

Let us assumeM of coordinates (xM , yM , zM ) in the X-ray source referential is projected on the detector

at the position in the (2D) detector referential that is given by the coordinates (u′, v′).

Intrinsic parameters The intrinsic parameters characterize the projective X-ray process. They are

independent from the X-ray source point of view and encode for:

• the magnification induced by the projection process, that is associated with the relative position

of the source with respect to the detector α = dSID;

• the detector orientation which corresponds to the (orthogonal) projection of the X-ray source

(uS , vS).
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Detector

Optical axis

α = dSID

X-ray source S

(uS , vS)

u′

v′

Real world

referential
O

xy

z x′
y′

z′

M

Figure 3.6: Cone-beam geometry. Ideal acquisition: x, z, x′, y′ and u′ belong to the same plane and z′,

v′ and y are aligned.

The coordinates of the projection of M on the detector can be written as a linear mapping between

homogeneous coordinates:




su′

sv′

s



 =





α 0 uS

0 α vS
0 0 1



 ·





xM

yM
zM



 (3.2)

From this equation, we observe that the magnification factor is modulated by coordinate s = zM that

characterizes point M location along the optical axis so that local magnification takes value α
s
.

Extrinsic parameters The extrinsic parameters identify the transformation between the X-ray source

referential and the real world referential. Using the extrinsic source parameters, it is straightforward to

find the relation between the absolute coordinates of point M and its relative coordinates in the X-ray

source referential. The rigid transformation between the two referentials is the combination of:

• a 3D rotation matrix that encodes for the orientation of the X-ray source;

• a 3D translation vector that encodes for the position of the source within the 3D real world

coordinate system. The origin of the system is set arbitrarily. For CT, it is fixed at the isocenter

(i.e. the center of rotation).

In the ideal case, the trajectory of the C-arm is circular (i.e. the source rotates around the z-axis only).

Hence, the coordinates of the points that belong to line DCB(u′, v′, β) are defined by:





xM

yM
zM



 =





cosβ sinβ 0 0

0 0 −1 0

− sinβ cosβ 0 dSOD



 ·







x′M
y′M
z′M
1







(3.3)
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With these notations, the projection matrix is the product of the matrix of the intrinsic parameters

that is given in Eq. 3.2 with the matrix of the extrinsic parameters that is given in Eq. 3.3. The

projection operator is completely described by the set of projection matrices, where one matrix encodes

for the geometry of a view (i.e. for a given angle):





su′

sv′

s



 =





p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34



 ·







x′M
y′M
z′M
1







. (3.4)

Since the trajectory of the C-arm deviates from the ideal circular orbit, coefficients pij are directly

estimated. The computation of a CB reprojection or backprojection with these matrices is described in

[109].

3.1.3 Cone-beam reconstruction

One of the main issue of CB reconstruction with C-arm is that the source trajectory is limited to a

circle. This configuration does not allow for exact reconstruction, meaning that there will always be

an error independently from the amount of views and from the detector resolution. Tuy [139] proved

that exact reconstruction is feasible in cone-beam geometry for slices that are crossed by the trajectory

of the X-ray source. Smith [128] then proved that this condition is not only sufficient, but necessary.

In 1984, Feldkamp, Davis and Kress published the so-called Feldkamp algorithm (FDK) method [47], a

practical FBP algorithm for cone-beam geometry. Although many variants and alternatives [62] to the

original FDK method have been suggested, FDK algorithm is still the standard reconstruction for all

C-arm systems. In comparison to a regular FBP implementation, FDK requires only slight modifications

of the filtering and backprojection steps. In the central slice, the FDK algorithm reduces to FBP for the

fan-beam geometry and therefore FDK produces exact reconstruction in this transaxial slice, that is the

only one crossed by the source trajectory.

3.1.3.1 Fan-beam reconstruction for flat detectors

The reconstruction results of fan-beam geometry with a flat detector is a preliminary task for understand-

ing the Feldkamp algorithm. In Sec. 2.3.2 we assumed the projection data to be sampled in equiangular

intervals on a circular detector. However, C-arm systems use equidistant pixels on a flat detector. Similar

to the case of equiangular fan beams, a coordinate transformation can be applied to the FBP integral

between the fan-beam parameters (β, u′), where u′ refers to the abscissa of the projection of M on the

flat detector, and their parallel-beam equivalent (φ, u). As seen in Fig. 3.7, the relation is:







φ = β + γ = β + tan−1
u′

dSID

u = u′ cos γ =
u′dSID

√

d2SID + u′2

,

The resulting FBP algorithm then becomes:

f(x, y) =
1

2

∫ 2π

0

[

1

w(x, y, β)
2 ·

[
p′FB,β ∗ h

]
(u′).

]

dβ. (3.5)

This leads to the following three-step algorithm:
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1. Weight projection pFB,β(u
′) according to the magnification factor cos γ =

dSID
√

d2SID + u′2
:

p′FB,β(u
′) = cos γ · pFB,β(u′);

2. Filter the projection by convolving the weighted projection with the ramp

kernel;

3. Perform a backprojection of the filtered projection, that is weighted with the

ratio between projection onto the optical axis and the source center distance

dSID:

w(x, y, β) =
(dSID + x sinβ − y cosβ)

dSID
.

Figure 3.7: Coordinate systems in fan-beam geometry with a flat detector.

3.1.3.2 Cone-beam reconstruction for flat detectors

Cone-beam reconstruction is carried out through the FDK algorithm that is defined as:

f(x, y, z) =
1

2

∫ 2π

0

[

1

w(x, y, β)
2 ·

[
p′CB,β ∗ g

]
(u′, v′).

]

dβ (3.6)

Like the reconstruction approach in fan-beam geometry, the FDK algorithm requires three successive

steps:

1. Weight a projection according to its position within the 3D cone, that corresponds to the cosine

of the angle between the considered projection measurement and the central ray of the current
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projection:

p′CB,β(u
′, v′) =




dSID

√

d2SID + u′2 + v′2



 · pCB,β(u′, v′);

2. Filter the weighted view along the horizontal detector lines with the ramp kernel;

3. Perform a weighted backprojection of the filtered projections along the cone with the same weighting

factor w(x, y, β) that was used in the 2D fan beam case.

Note that similarly to the reconstruction in fan-beam geometry (see Sec. 2.3.2.1), instead of using FDK

algorithm, a rebinning approach adapted to cone-beam reconstruction can be used. A set of virtual

parallel X-ray beams with different angles for different detector rows is generated from rebinning of

cone-beam data.

3.1.3.3 Short-scan algorithm

With C-arm systems, it is not possible to rotate the X-ray tube and the detector around the patient

by a full 360◦. A partial rotation over 180◦ plus twice the fan angle Γ provides sufficient information

for reconstruction of the data but also introduces some redundancy. As shown in Sec. 2.3.2.1, the

reconstruction algorithm has to be adapted to incorporate the short-scan geometry. A classic design

consists in zeroing the data in a triangle of the (β, γ)-diagram plotted in Fig. 2.18, but it introduces

sharp edges between non-redundant and redundant data. These edges are enhanced by the filtering with

the ramp filter and lead to strong artifacts in the reconstruction. To smooth this discontinuity, Parker’s

weights [99] that rely on a Parker window function as defined in Eq. 3.7 are used:

wβ(γ) =







sin2
(
π

2
· β

Γ− γ

)

if 0 ≤ β ≤ Γ− 2γ

1 if Γ− 2γ ≤ β ≤ π − 2γ

sin2
(
π

2
· 2π + 2Γ− β

Γ + γ

)

if π − 2γ ≤ β < π + Γ

. (3.7)

The Parker’s weights are applied to an entire column prior to ramp filtering to incorporate the short-scan

geometry into the FDK reconstruction.

3.1.4 C-arm CT image quality

Image quality can be defined in terms of artifacts, noise, temporal and spatial resolution, as well

as contrast resolution. However, image quality is not determined by the features of the detector array

only, but also by the nature of the imaged data and the variables selected by the operator. The image

quality is qualitatively assessed by visual inspection focusing on both the depiction of anatomic structures

of clinical interest and the introduction of artifacts by the reconstruction process. A summary of the

performance of current C-arm systems for the tomographic reconstruction is based on the examination

of its most significant parameters is given in Tab. 3.1.

3.1.4.1 Artifacts

We have introduced in Sec. 2.1.3 the subsampling and motion streak artifacts. Because of the wide

variety of artifacts that may be encountered in X-ray CT imaging, there exists no standard definition of

what is an artifact. However, for the needs of this manuscript, we will define an artifact as any content

that is created by the reconstruction process and that does not represent the distribution of the object

being imaged except noise, i.e. any defect in the image that cannot be removed by increasing the dose.

Artifacts originate from insufficient correction of the physical effects that we just described and sum up

with the sampling artifacts described in Sec. 2.1.3. It is thus not always obvious to identify the root cause
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of an artifact and one issue might be actually hidden by another, so that correcting for one artifact only

reveals another one. In the following we shall only address correction of subsampling artifacts. Because

the maximum rotation speed (40◦ per second) will never meet that of a CT scanner (superior to 1000◦

per second), the temporal resolution is not better than 4 seconds. Image quality is thus degraded by

motion artifacts as we shall discuss in Sec. 3.4.2.

3.1.4.2 Low contrast visualization

Contrast resolution is affected by the higher scatter-to-primary ratio and by the sampling limitations.

As the cone angle is increased, the scatter-to-primary ratio increases: thus, the ratio goes from 14%

for a cone angle of about 0.5◦ to greater than 120% for a cone angle of 7◦ [127]. This is illustrated in

Fig. 3.8. The limitations of the anti-scatter device of C-arm systems (see Sec. 3.1.1.2) leave a significant

contribution of the scatter within the data [57]. Efficient scatter suppression and additional correction

procedures are essential for C-arm CT to achieve CT-like image quality. Scatter correction approaches

include measurement techniques that require additional hardware, software models that operate directly

on the projection data [147], and hybrid approaches [126, 149]. Iterative approaches appear promising

to obtain further improvements beyond state-of-the art scatter correction methods [74]. In addition,

(a) (b)

Figure 3.8: (a) Standard reconstruction. (b) Scatter reduction through cone angle reduction.

subsampling due to limited framerate and CB circular trajectory [3] degrade low contrast detection

through the mecanism illustrated in Sec. 2.1.3. Another issue is data truncation. The maximum size of

a flat panel detector is 40 cm. Given a system magnification of about 1.65, the maximum FoV is limited

to 24 cm. Thus, in most of the examinations, the object of interest is only partially exposed and is said

to be truncated. The reconstructed RoI is composed of voxels that are observed by each source position.

Truncation introduces a strong cupping that is compensated by data extrapolation at truncated edges.

This correction leaves a residual cupping that alters the visualization of small contrast as illustrated in

Fig. 3.9. To summarize, strategies to optimize low contrast detection involve:

• small vertical cone angle to decrease scatter;

• scatter subtraction after measurement under the blades;

• slow rotation with large horizontal cone angle that enables avoiding truncation to decrease sub-

sampling artifacts.

A comparative evaluation of C-arm CT image quality that is shown in Fig. 3.10(a) with respect to image

quality with CT scanners that is shown in Fig. 3.10(b) emphasizes that differentiation of the brain soft
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(a) (b)

Figure 3.9: (a) Standard reconstruction. (b) Truncation correction.

tissues is easier due to higher contrast resolution. The contrast resolution for Innova is evaluated in

Fig. 3.10(c).

3.1.4.3 Vessel visualization

Vessel visualization requires a high spatial resolution, that can be much better with C-arm systems

(voxel size of about 0.2mm) than with CT scanner (voxel size up to 0.6mm). However, the flat panel

scintillator suffers from greater lag (afterglow), which results in a slower response than the CT ceramic

detectors [57] and limits the frame rate. Special read-out techniques such as pixel binning can be applied

to increase the speed. It consists in combining the outputs of neighboring pixels of the detector into

one single reading: for instance, 2 × 2 binning implies that a total of 2 × 2 neighboring pixels are read

together. In return, spatial resolution is reduced since pixel binning modifies the effective pixel size.

Taking full advantage of the high spatial resolution of digital flat panels would lead to low detector

framerate, which would restrict its clinical use to some high-contrast applications only. C-arm systems

equipped with flat-panel detectors provide better spatial resolution but still lower dose efficiency (and

thus lower contrast resolution) when compared to conventional CT systems.

To summarize, strategies to image vessels involve:

• intraarterial injection providing high contrast;

• fast rotation to limit injection time;

• small (truncated) FoV to avoid pixel binning.

Cross-sections are not very informative for the visualization of tubular structures such as the blood

vessels. Maximum intensity projection (MIP) images that were first developed for use in nuclear

medicine by Wallis et al. [143], are produced by simulating the projection –generally in parallel-beam

geometry– of the voxel that has the maximum intensity only. By changing the angle of the simulated

beam, a series of 2D MIP images can be generated. Maximum intensity projection is particularly adapted

to the visualization of the enhanced vessels and has been shown to be quite robust to subsampling artifacts

that may deteriorate the original volume. An example of MIP representation is provided in the second

row of Fig. 3.13. Another suitable alternative to cross-section visualization is volume rendering (VR).

It is a 3D rendering of the contrast-enhanced vessels only. It is the visualization of choice for faithfully

representing small vessel abnormalities such as aneurysms [5] as can be seen in Fig. 3.14.

Obviously, it is currently impossible to provide low contrast detection of the soft tissues while injecting

vessels with a single acquisition on a C-arm system.
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(a) (b) (c)

Figure 3.10: The comparative evaluation of three-dimensional reconstructions of neurological data from

(a) a C-arm system and (b) a CT scanner showing axial slices illustrates superior image quality achieved

with the CT scanner. In particular, differentiation of the brain soft tissues is easier due to higher contrast

resolution. (c) Contrast resolution with a C-arm system.

Parameters Innova systems IGS systems

Frame rate 30 fps 50 fps

Rotation Speed 10◦/ - 20◦/s - 40◦/s 16◦/s - 28◦/s - 40◦/s

Acquisition time 20 s - 10 s - 5 s 12.5 s - 7 s - 5 s

Amount of views 600 - 300 - 150 600 - 350 - 200

Angular coverage 200◦ 200◦

Table 3.1: Performance of C-arm systems.

Reference for visual comparison of clinical data In numerical simulations, we can judge the image

quality by comparing it with a ground-truth that is provided by the numerical phantom. When dealing

with clinical data, there exists no ground-truth. In this work, a reference reconstruction technique is

chosen, from which establish the advantages of our algorithms. Note, however, that there are other

approaches to determine the quality of a reconstruction algorithm, e.g. task-based metrics [50] or visual

quality assessment by experts.

Normalized root mean square deviation The convergence behaviour and quality of the final so-

lution were monitored in numerical simulations through the calculation of a similarity measure for each

reconstruction result. In this work, we report on the normalized root mean square deviation (RMSD)

measure dr between a given reconstruction result f and the ground-truth f̃ over several RoIs of Kr pixels

in the background structures, that emphasizes the importance of a few large errors. It is mathematically

defined as:

dr =

√
√
√
√
√

∑Kr

k=1

(

(f)k − (f̃)k

)2

∑Kr

k=1 (f̃)k
2 .

RMSD may not be the best indication for image quality. Note that other measures exist, although not

used in this work. They emphasize other aspects of image quality, such as:

• the normalized mean absolute deviation, that emphasizes the importance of many small errors;
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• or the structural similarity index (SSIM), that emphasizes the degradation of structural information

[144].

3.2 Angiographic procedures

The standard clinical interventional workflow that is summarized in Fig. 3.11 involves (a) a pre-procedural

evaluation step that relies on diagnostic imaging in order to decide and plan the intervention, (b) the

intervention by itself that is performed under local or general anaesthesia and X-ray C-arm guidance,

and (c) a post-procedural diagnostic imaging step in order to evaluate the success of the intervention.

Pre-procedural

evaluation

Arterial access
Selective

catheterization

Therapy

delivery

Post-procedural

imaging

Diagnostic imaging

Interventional imaging

Diagnostic imaging

Figure 3.11: Overview of the standard interventional workflow.

3.2.1 Arterial angiography

Intravenous injection of a contrast medium can be carried out by trained dedicated paramedical

personnel. Intraarterial injection, such as in the femoral artery, presents a risk of haemorrhage and

can only be performed by interventional radiologists, which is today a dedicated medical speciality. A

system of guidewires and catheters are introduced within the arterial system and vessel enhancement is

obtained through the injection of iodinated contrast agents. This technique allows for local enhancement

of vessels with higher contrast than intravenous injection.

To operate within the arterial system, access to the blood vessels is performed most frequently through

the femoral artery. The access technique begins with placing a radiopaque marker (such as a clamp) at

the point of maximal arterial pulse and making a small incision through which a needle is then introduced.

Once the needle tip is entered into the artery, a guidewire is slightly advanced. Fluoroscopic guidance

ensures the proper positioning of the guidewire. The needle is then removed and the interventional tools

(such as a catheter which is a long, thin, flexible and hollow plastic tube) can be introduced safely over

the guidewire. The guidewire is pushed through the arterial system under fluoroscopic guidance until

the pathology location is reached. Then, the interventional tools are delivered over the wire.

3.2.2 Digital subtraction angiography

Depending on the injection point and the amount of dye, selective parts of the vasculature can be imaged

to provide to the physician a ‘road-map’ showing the guidewire to help guidance. However, it might be

difficult to separate the vascular structures from surrounding bones or dense devices such as coils. To

suppress the background structures, views are acquired under the same angle using the principle of

digital subtraction angiography (DSA) [17]. The first view, called mask and shown in Fig. 3.12(a), is

acquired without injection, while all other views, called contrast and of which an example is given in

Fig. 3.12(b), are acquired after vessel contrast enhancement. All structures but the vessels are removed

by digital log-subtraction of the mask from the contrast views as shown in Fig. 3.12(c). A major cause

of image quality degradation in subtracted protocols is the motion that may occur between acquisition

of the mask and the contrast scans.
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(a) (b) (c)

Figure 3.12: Fluoroscopic 2D views for digital subtraction angiography. (a) Mask 2D view. (b) Contrast

2D view. (c) Corresponding subtracted 2D view.

With the progresses of X-ray flat panels, tomographic acquisition (scan) of 2D X-ray projection

views has become standard to reconstruct a 3D model of the injected vessels in their environment. The

principles of DSA also applies in 3D: a mask scan and a contrast scan are acquired in a single protocol.

From these scans, one can reconstruct three different volumes consisting of:

• the mask volume of bones, tissues and devices that represents the vessel context alone as illustrated

in Fig. 3.13(a);

• the contrast volume that displays the vessels and their context as illustrated in Fig. 3.13(b);

• the subtracted volume that displays the vessels alone as illustrated in Fig. 3.13(c).

To reconstruct a satisfying subtracted volume, the mask and contrast scans are acquired with identical

parameters, which allows the straightforward removal of the redundant background structures within

the projections so that they do not interfere with the reconstruction of the vessels.

3.3 Clinical use of rotational angiography for embolization

The focus of this thesis is put on embolisation procedures for therapeutic purposes in the brain and in

the liver.

3.3.1 Cerebral Aneurysm embolisation

Rotational angiography is particularly useful for visualizing vessel stenoses, aneurysms and arteriovenous

malformations (AVM)2. Here we look at the specificities of aneurysm imaging in order to highlight the

impact of sampling.

An aneurysm is a vascular pathology in which an abnormal dilation develops in an artery because the

wall of the vessel is weak: a normal artery wall is made up of three layers, while the structural support of

the muscular layer is absent in a pathological artery. This most often results in a saccular aneurysm as

illustrated in Fig. 3.14. When located in the brain, a widening aneurysm may compress the surrounding

nerves and brain tissues, accompanied with different symptoms such as nerve paralysis, severe headache,

pain as well as nausea [16]. Note however that 90% of the cerebral aneurysms are present without any

symptoms. The rupture of a cerebral aneurysm is usually sudden. The resulting bleeding may damage

2Arteriovenous malformations refer to abnormal connections between arteries and veins
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(a) (b) (c)

Figure 3.13: Digital subtraction rotational angiography reconstruction. First row: transaxial slice.

Second row: MIP visualization. (a) Mask volume. (b) Contrast volume. (c) Subtracted volume

the cerebral structures, leading to a haemorrhagic stroke or even death. Cerebral aneurysms commonly

develop in a ring of arteries that is called the Circle of Willis and sits at the base of the brain: about 85%

of cerebral aneurysms occur in the connections that form the anterior half part of the Circle of Willis,

among which the internal carotid arteries and their major branches that supply the anterior and middle

sections of the brain.

Figure 3.14: Example of saccular aneurysm (volume rendering).

To decide on whether or not the aneurysm must be treated, the risk of rupture must be evaluated.
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The growth and rupture of an aneurysm can be explained mechanically and pathologically on the basis

of wall structure and blood flow. However, the most significant predictors of the risk of rupture are still

unclear. For unruptured cerebral aneurysm, the predictors that are used in the clinical practice are the

size and location of the aneurysm. Several studies [31] have shown that smaller aneurysms present a

lower risk of rupture. Particular locations in the brain have been shown to be more likely to rupture,

regardless of the size of the aneurysm. Note that around 90% of the cerebral aneurysms are less than

10mm in diameter.

Endovascular coils can be used to occlude the aneurysm so that the blood flow is no longer directed

to the aneurysm. This technique is an alternative to surgical clipping, that is associated with a shorter

recovery time. It is adapted to aneurysms that present a ‘narrow neck’. A catheter is advanced to

the location of the aneurysm. Once the catheter is inside the aneurysm, detachable small, soft metal

(generally platinium) coils [56] are inserted through the catheter to fill the aneurysm sac. Note that

the coil size has to be adapted to the size of the aneurysm sac. The coils initiate a healing reaction,

also known as clotting or thrombotic reaction, that helps block the flow of blood into the aneurysm,

preventing it from further rupturing or leaking. Depending on the morphology, a stent can be deployed

in order to prevent coil herniation3.

(a) (b) (c)

Figure 3.15: Coil embolisation of an aneurysm. (a) A catheter is advanced to the location of the

aneurysm. (b) Detachable coils are inserted through the catheter. (c) Coils completely fill the aneurysm

sac so that the blood flow can no longer be directed to the aneurysm.

Aneurysm imaging requires a high spatial resolution as shown in Fig. 3.14 where it is fundamental

to visualize the two vessels that must not get occluded by the treatment. Contrast dilution within large

aneurysm is incomplete and yields artifacts. Post-procedure imaging must assess that blood does not

penetrate the metal-filled aneurysm any more. In cerebral imaging, patient motion is either negligible if

the acquisition is made short enough or may be compensated through a rigid registration. Consequently,

cerebral vessel imaging was the first application of DSRA. In particular, several works [11, 60, 4] demon-

strated the feasibility of DSRA for endovascular treatment of intracranial aneurysms, in particular for

planning the treatment, i.e. finding a working view, and performing accurate measurements, as well as

its superiority with respect to DSA. In particular, ‘roadmapping’ that consists in combining the 3D vas-

culature of Fig. 3.16(b) with the fluoroscopy of Fig. 3.16(a) and resulting in the merged image presented

in Fig. 3.16(c) facilitates guidance of the procedure.

3.3.2 Transarterial chemoembolisation (TACE)

Hepatocellular carcinoma (HCC) is the most common liver cancer and has a poor prognosis. Surgical

resection is the treatment of choice for patients with well-preserved hepatic function. For the treatment

3Coil herniation is a complication in which the coil goes out of the aneurysm into the parent artery.
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(a) (b) (c)

Figure 3.16: Roadmapping by merging 3D with fluoroscopy. (a) Fluoroscopy. (b) 3D vasculature. (c)

Fluoroscopy merged with 3D.

of unresectable tumours, transarterial chemoembolisation can be used. It is a procedure that involves

intraarterial chemotherapeutic drug delivery directly into a tumour through its feeding blood vessels.

The intervention causes the tumour necrosis but also has a synergistic effect because embolic agents

that are injected via the catheter subsequently block the supplying vessel (ischemia), thus decreasing

the tumour supply in nutriments. The key advantages of transarterial chemoembolisation compared to

systemic chemotherapies is the high local concentration (pharmacological studies indicate a 10- to 50-fold

increase) of chemotherapeutic drug to be in contact with the tumour for a prolonged time, that maximizes

the cell necrosis while minimizing the systemic toxicity. The efficacy of transarterial chemoembolisation

to treat liver tumours was assessed by two randomized trials [114]. The normal liver parenchyma gets

a dual blood supply from

• the portal vein that contributes up to 75-80% of hepatic blood flow,

• the hepatic artery that contributes the remaining 20-25% [116, 93],

Some tumours such as HCC receive their blood supply primarily from the hepatic artery, with limited

supply from the portal vein. Consequently, hepatic artery embolisation causes more ischemia to the liver

tumour while the remaining normal hepatic parenchyma obtains sufficient oxygenation from the portal

venous blood supply to preserve the liver function.

The standard hepatic vascular anatomy is quite complex as can be seen in the schematic representation

given in Fig. 3.18. It is primordial to identify the main vessels that specifically supply the tumour, that

are referred to as ‘feeder vessels’. This is however not an easy task because:

• there is a large variability of the hepatic vascular anatomies from one individual to another: a

patient may have only one, or two and even three hepatic arteries and the vascular territory of

hepatic arteries can vary from small (subsegmental) to large (lobar) distribution, which makes

difficult the accurate segmental localization of the tumour;

• it is essential to determine whether a collateral blood supply is present, since selective angiography

of individual collateral vessels, which is tedious and time-consuming, must be performed to ensure

success of the treatment;

• non-hepatic arteries that originate from the hepatic artery must be identified to prevent complica-

tions such as infarction of other organs.

A catheter is conducted to the branch of the hepatic artery supplying the tumour. To confirm the vascular

anatomy and place the catheter tip in the feeder vessel (‘superselective catheterization’), rotational
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(a) (b)

Figure 3.17: Three-dimensional imaging for selective chemoembolisation of a liver tumour. (a) Zoomed

DSA image. Feeder 1 looks quite easy to catheterize, but it is less clear from which vessel exactly feeder

2 originates. Another concern is the position of the catheter during the chemoembolisation in order to

avoid the cystic artery which cannot be identified in the DSA. (b) 3D reconstruction of the anatomy

allows for visualization of the cystic artery that is originated from feeder 2. Feeder 2 is branching in

a purely anterior direction, which can be seen and understood only from the 3D image. Another key

information is that the catheter should be advanced beyond feeder 2 (and not placed in the main vessel)

before injection in order not to embolize the cystic artery.

angiography is performed. After which, the treatment can be applied: the chemotherapeutic drug is

either emulsified with a iodinated radioopaque oil (Lipiodol by Guerbet) or delivered with calibrated

drug-eluting beads as embolic agents, the exact ratio between both substances being adjusted depending

on the size and vascularity of the target tumour. The emulsion is concentrated within the liver tumor

rather than the surrounding healthy hepatic parenchyma. An interval of several months between each

chemoembolisation is necessary for preventing tumour regrowth, while preserving the liver function.

Providing a 3D reconstruction of the liver arterial system removes the anatomical ambiguities and

guides superselective catheterization with more accuracy. This is illustrated in the clinical case that is

displayed in Fig. 3.17. In particular, the cystic artery often originates off the right hepatic artery and may

be missed in a 2D visualization. Arterial angiography is also used for imaging the contrast uptake of the

tissues within the liver (liver parenchyma). The interest of rotational angiography for abdominal imaging

was demonstrated by clinical studies: a study on 240 hepatic arterial interventions led by Wallace et

al. [142] and a study on 49 patients with hepatocellular carcinoma undergoing chemoembolisation led

by Kakeda et al. [69] showed that in 41% of the cases and respectively, in 81% of the cases, rotational

angiography had impact on patient management. Subtraction of the soft tissues is less important in 3D

and is difficult due to respiration. It can be performed under general anaesthesia allowing subtraction of

embolised vessels to assess the success of the procedure, that is generally demonstrated by post-procedural

CT imaging as illustrated in Fig. 3.19.

3.4 Sampling issues in rotational angiography

We have exposed in Sec. 2.1.3 the sampling requirements for tomographic reconstruction. Rotational

angiography, however, does not meet these requirements and yields volumes that are deteriorated by

sampling artifacts.
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Figure 3.18: Vascular anatomy of the hepatic artery.

(a) (b)

Figure 3.19: (a) Innova 3D image performed during the procedure. (b) Embolisation results (indicated

by orange arrows) are demonstrated by post-procedural CT image.
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3.4.1 C-arm system sampling rate

Rotational angiography defines a set of projections that must ideally fully sample the volume. To

minimise contrast use, the rotation of the C-arm has to be as fast as possible, i.e. 40◦ per second. The

acquisition frame rate of C-arm systems is limited to 30 fps with Innova systems and respectively 50 fps

with IGS systems, thus restricting the angular sampling to 150 and respectively 250 views. Consequently,

image quality associated to angiographic data is deteriorated by streak artifacts that weakly affect the

visualization of contrast-enhanced vessels, but may hide low constrast, resulting in a poor soft tissue

depiction as illustrated in Fig. 3.20. In addition, the circular trajectory of the gantry implies CB artifacts.

Correcting for the subsampling artifacts would be overall appreciated for all clinical cases considered in

Figure 3.20: Example of subsampling artifacts with Innova providing 150 views at 30 fps. Transaxial

slice. HU range: 0 to 2400. Soft tissue depiction is deteriorated by streak artifacts due to the limited

framerate of the C-arm system. The streaks mainly originate from the high-intense structures such as

bones and contrast-enhanced vessels.

interventional radiology. It would provide, in particular, straightforward improvements in neuroradiology

where collected data are not much affected by motion, but the limited sampling of dense structures (e.g.

vessels, coils, metal implants) may generate strong streak artifacts that prevent accurate depiction of the

soft-tissues.

3.4.2 Dynamic data issues

We have discussed in Sec. 2.3 the requirements for imaging dynamic data with CT scanners, so that

no motion artifacts arise during reconstruction. Because physiological times, e.g. heart beat (about 1

second) or breathing time (range from 3 to 5 seconds) are of the same order of magnitude as the gantry

rotation speed of C-arm systems (5 seconds for a 200◦ rotation at 40◦ per second), cardiac and respiratory

motions can affect the performance of rotational angiography. In particular, DSRA is more challenging

than DSA, since motion occurring during the protocol (i.e. any of the two scans) would hamper both the

reconstruction and the subtraction tasks. The current clinical practice, based on FDK can only ignore

motion as the best way to maximize image quality, as was illustrated in Sec. 2.1.3. The relevance of this

static assumption however strongly depends on the location of the interventional application:

• in neuroradiology, FDK performs well enough for clinical use [5]: potential displacements of the

vessels are very small and localized, and the resulting deterioration is not significant enough to

impair the medical interpretation;
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• in abdominal imaging, respiratory and cardiac-induced motions frequently arise [140, 132] and

image quality may be considerably deteriorated by mild motion blur and strong vessel streak

artifacts;

• in cardiac imaging, although not addressed in this work, the temporal variations introduced by the

cardiac motion are so important that no static reconstruction is feasible [12, 58, 96].

Contrast variations may arise for all the anatomies.

3.4.2.1 Sampling problems associated with motion

Respiratory motion Respiratory motion affects all the deformable structures in the thorax and ab-

domen (typically 1 to 2 cycles within a scan of 150 views). Figure 3.21 provides a visual comparison of

the FDK reconstruction of the same anatomy in the absence of motion (first row of Fig. 3.21) and in

the presence of motion (second row of Fig. 3.21). General anaesthesia ensures patient immobility and

allow controlled breath hold, but many interventional procedures are carried out under local anaesthesia

only and sedation. To prevent the effect of respiration, the patient is asked to hold his breath during the

scanning procedure. Breath hold on a voluntary basis is rendered difficult by sedation and respiratory

motion within the scan is often observed in practice. Because only one to two respiratory cycles can

be observed within a scan, it is not possible to determine subsampled phases from the acquisition. Our

approach casts the reconstruction of dynamic data as a sampling problem that involves the identification

of several phases. In this manuscript, we therefore do not deal with the correction of patient motion,

including respiratory motion.

Vessel motion Cardiac motion induces small pulsatile displacements of the vascular structures (about

5 cycles within a scan of 150 views), even in organs such as the brain or the liver. When imaging an

anatomy that is subject to such motions, it is generally no longer possible to collect uniformly sampled

data in time (see Fig. 2.8(b)). Multiple acquisitions synchronized with an ECG would collect uniformly

sampled data (see Fig. 2.5(b)), but this is mechanically too demanding (prospective and adaptation of

the speed of the gantry to the acquisition).

Contrast variations Besides motion issues, another drawback of lengthy scan times that is specific to

angiography is the need for a longer contrast injection to obtain a sufficient and constant enhancement of

the blood vessels that are located inside the field of view throughout data acquisition. Contrast variations

that arise while scanning yield severe artifacts in the reconstruction. We can distinguish two sources of

contrast variations:

• ideally the system is set up with an automated contrast injector that injects the contrast agent

at a predefined time point ahead of the scanning. This delay time between the contrast injection

and the acquisition is required to fully enhance the blood vessels. Improper synchronization of the

injection leads to early or delayed opacification, i.e. the blood vessels appear fully enhanced

over a limited angular sector only as illustrated in Fig. 2.8(a);

• in addition, the inadequate injection of the contrast results in incomplete dilution of the contrast

dye by the incident blood flow, usually in large vascular structures. The contrast-enhancement

varies during the scan. The sampling of fully enhanced blood vessels is cyclic and coarse and

non-uniform, similarly to the sampling that is associated to small displacement of the vessels, as

shown in Fig. 2.8(b).

Although opacification is a continuous process, we will assume it can be modelled as a binary process of

two states ‘opacified’/‘nonopacified’.
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(a) (b) (c)

Figure 3.21: Effect of respiration on the performance of standard FDK reconstruction. Transaxial slice

of a swine abdominal anatomy. First row: FDK reconstruction from a free-motion scan. Second row:

FDK reconstruction from a scan acquired during free breathing. (a) Transaxial view. (b) Coronal view.

(c) Sagittal view.

3.4.2.2 Temporal management

The variations encountered in rotational angiography are so challenging that they cannot usually be

corrected for through the motion compensation approaches that were described for CT scanners in

Sec. 2.3.4.3. The study of the scan as a temporal sequence is very complex, since the perceived temporal

variations within the scan have various causes. To illustrate this discussion, let us analyse a real rotational

scan of which a few views were presented in Fig. 3.4. From one 2D view to another, the perceived

variations that are due to:

• the motion of the imaging system that is completely described by the projection matrices;

• the magnification of the 3D real object caused by the cone-beam geometry. As explained in 3.1.2

the magnification factor depends on the relative positions of the X-ray source, the imaged object

and the detector. Measurements consequently depend on the depth of the imaged structure. Thus,

we cannot directly correlate the magnitude of the projected motion in the 2D view to the magnitude

of the real 3D motion, since two structures are not affected with the same magnification factor;

• the projection of the three-dimensional motion that affects anatomical structures that are located

within the field of view. Because of the projective operation, one dimension of the real motion is lost.

However the motion component along the vertical z-axis can be observed in the two-dimensional
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(a) (b)

Figure 3.22: Example of artifacts due to small displacements of contrast-enhanced vessels. (a) Transaxial

slice is deteriorated by motion streak artifacts. (b) MIP image is more robust to motion streaks.

(a) (b)

Figure 3.23: Delayed opacification. (a) View corresponding to the beginning of the acquisition. The

vessels within the orange rectangle are empty. (b) View corresponding to the end of the acquisition. The

vessels within the orange rectangle are filled with contrast.

representation of the measurements of Fig. 3.25(a), while the motion component along the in-

plane y-axis can be observed in the sinogram representation of the measurements of Fig. 3.25(b),

Fig. 3.25(c) and Fig. 3.25(d);

• the contrast variations in the injected vessels that are located within the field of view.

Let us assume we can decompose the scan into two layers: (a) a first layer that corresponds to the

projection of a static background, and (b) a second layer that corresponds to the projection of moving

objects (e.g. catheter, organs) with motions of different magnitudes and natures. The perception of the

motion is related to the temporal resolution: the higher the frame rate is, the better the motion can be

understood, because the temporal resolution is high, and thus the variations between two consecutive

views are small.
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(a) (b)

(c) (d)

Figure 3.24: Example of artifacts caused by contrast enhancement variations. Delayed opacification:

(a) transaxial slice, (b) coronal slice. Incomplete dilution: (c) transaxial slice, (d) coronal slice.

In order to extract the temporal signal that is associated to the vertical component of the catheter

motion, we tracked the position along the z-axis of two particular points of the tip (end point and point

of inflexion) and plotted this signal in Fig. 3.26. Note that the axial component of the catheter motion

is somehow visible in the sinogram representations of the projection data: it results in oscillation in

Fig. 3.25(b), Fig. 3.25(c) and Fig. 3.25(d).

To explicitly address the temporal variations within the projection data, a classical approach consists

in selecting subsets of views from which reconstruction via classical algorithms is feasible. Each time

point defines a subset of projections that must ideally fully sample the volume at this particular time

point [105]. Since one single rotation is performed only, such an approach presents the main drawback

to eliminate a large amount of data and thus to lose an amount of information which is non negligible

given the small number of cardiac cycles that are available during a rotational acquisition. Furthermore,

synchronization with an ECG is not standard with current C-arm systems and is not applicable to

contrast variations, respiratory motion or patient motion of the patient, that are observed with C-arm

systems.
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(a) (b) (c) (d)

Figure 3.25: Angiography data. (a) 2D view. (b), (c) and (d) Sinogram views that correspond to different

horizontal lines of (a) and where oscillations due to the variations in contrast can be seen.

Figure 3.26: Evaluation of the dynamic of the motion in a scan. Manual identification of the temporal

signal that is associated to the motion of the catheter.



Chapter 4

Compressed sensing-based iterative

reconstruction

We presented in Sec. 2.1.3 a discretization of the inverse Radon transform. As an alternative, iterative

strategies translate the tomographic problem into a discrete problem. Then a density mapping is esti-

mated, that fits the projection data by optimizing a function called criterion or cost function (e.g. a

quadratic data fidelity term).

Because the obtained solution may not be uniquely determined by the data, the optimized criterion

has to be combined with penalties. In particular, the recent developments of the compressed sensing (CS)

theory highlight the importance of sparse penalties for handling subsampled data. These penalties are

incorporated within a least-square approach through proximal algorithms. Based on the previous works

of [20, 28, 106], we propose in this chapter a unified framework for the reconstruction of angiographic

data. Note that even though weighted least-square terms can be used to model physical degradations

and noise, we shall focus our discussion on subsampling only.

4.1 Penalized weighted least square (PWLS)

At this stage, it is useful to define the discrete notations and model we will use in the rest of this

manuscript. Let us denote f ∈ R
K the vector that is associated with the imaged object, where K is

the number of voxels in the 3D space. Coefficient (f)k describes the linear attenuation at voxel k. Let

us denote p ∈ R
J×N the vector that refers to the full set of measurements, where N is the number of

angular positions that are considered by the acquisition and J the number of measurements collected

by the 2D detector array at each angle. Coefficient (p)jn represents the log intensity (see Sec. 2.2.2) at

pixel j of the detector at angle φn.

4.1.1 Fidelity term

The relationship between the projection operator and the imaged object is linear. Let us then denote

R ∈ R
J×N × R

K the projection matrix that models the rotational CB acquisition of p from f , where

the coefficient (r)k,jn represents the contribution of voxel k to the measure detected at pixel j at angle

φn. Hence, a column of R refers to a given voxel, while a row refers to a given measurement. Let us

denote RT the transpose operator of R, in other words, the backprojection operator. The tomographic

reconstruction problem consists in calculating an estimation f̃ ∈ R
K of f knowing p and R, i.e. solving

the system of linear equations:

Rf = p. (4.1)

Note that this formalism is valid for all geometries (parallel-beam, fan-beam and cone-beam) and for all

sampling patterns (truncated, uniformly subsampled and nonuniformly subsampled). When projection

data are limited in angular range, the system of linear equations of Eq. (4.1) contains fewer equations

than unknowns: it is then said underdetermined. On the other hand, it is said overdetermined (or

fully sampled) if there are more (independent) equations than unknowns. For exact reconstruction of f ,

critical sampling requires as many equations as unknowns. To further improve the reconstruction model,

it is necessary to incorporate physical degradations (e.g. beam hardening [35]) or noise [134, 108]. Here,

however, we will not put forth any model for these nonidealities.
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A traditional approach for solving systems of equations such as Eq. (4.1) consists in approximating

f by the best fit in the least-square sense, i.e. to find the solution that minimizes the ℓ2-norm of the

difference between the forward projections and the projection data. It was generalized by Herman [64]

who introduced a positive-definite matrix W for integration of noise information in the reconstruction

model, that is consistent with Bayesian estimation assuming zero-mean Gaussian noise of covariance

W−1:

f̃QW
= argmin

f∈RK

{ 1

2
‖Rf − p‖22,W

︸ ︷︷ ︸

= QW (f)

}

, (4.2)

where ‖Rf − p‖22,W = (Rf − p)
T
W (Rf − p). Provided that vector f is initialized f (0) = 0, the obtained

estimate is referred to as the weighted least-square solution of minimum norm that we denote f∗ and

implies inversion of the singular values of R. The explicit solution of Eq. (4.2) is known as the generalized

inverse or pseudo-inverse:

f∗ = (RTWR)
−1

RTWp. (4.3)

Note that if f∗ is such that Rf∗ = p then this solution does not depend on W . Equation 4.3 requires

inverting large size matrices and may be intractable in practice. Because the functional that is minimized

in Eq. (4.2) is quadratic, the computation of f∗ can be handled by gradient descent iterative algorithm:

Gradient descent

Initialisation i = 0

f (0) = 0

Algorithm i ≥ 1

f (i) = f (i−1) − τ (i−1)

= ∇QW (f (i−1))
︷ ︸︸ ︷

RTW (Rf (i−1) − p)

= (I− τ (i−1)RTWR)
︸ ︷︷ ︸

convergence condition

f (i−1) + τ (i−1)RTWp
. (4.4)

where I refers to the identity operator and τ (i) > 0 to the gradient step at iteration

i.

The estimate at iteration i+ 1, f (i+1), is modified by the addition of the discrete weighted backpro-

jection of the difference between the measurement vector and projection data associated with estimate

f (i), that is scaled by τ (i). The convergence rate of such an algorithm depends on the norm of operator

RTWR and the value of step τ (i), that is allowed to change at every iteration. The simplest solution

consists in choosing constant τ (i) = τ that must be such that ‖I− τRTWR‖2 < 1, but convergence can

generally be made faster by using an adaptive gradient step. In the particular case W = I (zero-mean

constant variance Gaussian noise) the gradient descent is referred to as the well-known Landweber algo-

rithm. In [101], the convergence rate of the Landweber algorithm has been shown not to be the same for

all frequencies, and that in particular low frequencies are recovered faster than high frequencies, hence

resulting in a slow convergence rate. A faster alternative to the gradient descent is the conjugate gradient

method [30, 72] that replaces the gradient direction ∇Q(f (i−1)) with conjugate descent directions α such

that 〈α(i)|RTWRα(j)〉 = 0 ∀j < i.

4.1.2 Penalty term

We have seen in Sec. 2.1.3 that matrix RTWR is not well-conditioned. The problem is sensitive to

noise: for small singular values, noise is large with respect to signal. To improve problem conditioning,
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apodization can be expressed through (smooth) regularization of Eq. (4.2) [136]:

(

f̃QW+‖Af‖22

)

λ
= argmin

f∈RK

{
QW (f) + λ‖Af‖22

}
, (4.5)

where λ sets the relative importance of the regularization with respect to the fidelity term and A is the

gradient at a chosen order α, i.e. A = ∇α. It leads to a trade-off between an unbiased (i.e. a perfect fit

to the projection data) but noisy solution and a smooth but biased solution. Note that the impact of the

constraint now heavily depends upon the choice of W . The minimization of Eq. (4.5) is carried out using

a descent algorithm, similarly to the minimization of Eq. (4.2). To further constraint the reconstruction

problem, it may be desirable to introduce penalties that are convex but not differentiable. In that case,

however, accelerated gradient descent techniques are no longer applicable.

4.2 Proximal algorithms for PWLS

In this section, let us consider the unconstrained minimization problem:

(

f̃QW+χ

)

λ
= argmin

f∈RK

{QW (f) + λ · χ(f)}, (4.6)

where χ is a convex but not necessarily differentiable functional with penalty weight λ. To solve Eq. (4.6),

Combettes et al. [28] propose to split the optimization process so that QW and χ are individually

minimized. The minimization of QW is thus handled by a gradient descent iteration as described in

Sec. 4.1, while the minimization of χ requires introducing new tools.

4.2.1 Proximal Splitting

Let us denote by projιE (f) the projection operator onto convex set E ⊂ R
K . It corresponds by definition

to the unique minimum of the minimization problem

projιE (f) ≡ argmin
g∈RK

{

ιE(g) +
1

2
‖g − f‖22

}

, (4.7)

where ιE refers to the indicator function:

ιE(f) =

{
0 if f ∈ E

+∞ otherwise
.

In particular, let us denote by ι+ the indicator function:

ι+(f) =

{
0 iff ∈ R

K
+

+∞ otherwise
,

where RK
+ is defined as the convex set of positive images.

When replacing ιE by λ·χ, let us denote by proxλχ (f) the proximal operator that allows for extending
the notion of projection operator:

proxλχ (f) ≡ argmin
g∈RK

{

χ(g) +
1

2λ
‖g − f‖22

}

. (4.8)

The forward-backward proximal algorithm builds a sequence of solutions that converges to the min-

imum of Eq. (4.6) by splitting the minimization into an explicit gradient step for minimizing the data

fidelity term and an implicit step applying the constraint through the corresponding proximal operator:
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Forward-backward algorithm

Initialisation i = 0

f (0) = 0

Algorithm i ≥ 1

f (i) = proxτλχ
︸ ︷︷ ︸

implicit step

(f (i−1) − τ∇QW (f (i−1))
︸ ︷︷ ︸

explicit gradient step

). (4.9)

Fast variants of the forward-backward proximal algorithm, that rely on accelerated gradient methods

in the spirit of Nesterov’s work in [95] are applied to solve problems of the form given in Eq. (4.6) at

marginal extra computational cost compared to the forward-backward algorithm. Let us briefly present

FISTA (Fast Iterative Shrinkage Thresholding Algorithm) that was developed by Beck et al. in [8] and

that consists in maintaining two variables instead of one at each iteration.

FISTA

Initialisation i = 0
f (0) = 0

g(0) = 0

t(0) = 1

Algorithm i ≥ 1







f (i) = proxτλχ

(

g(i−1) − τ∇QW (g(i−1))
)

t(i) =
1 +

√

1 + 4t(i−1)
2

2

g(i) = f (i) +
t(i−1) − 1

t(i)

(

f (i) − f (i−1)
)

. (4.10)

Such an approach brings the conjugate gradient like super-linear convergence to ℓ1-norm penalty.

Unlike the simple proximal scheme, there are no convergence guarantees on the sequence of iterates

generated by FISTA but has proven to be quite reliable in practice. A monotone variant of FISTA,

called MFISTA has been introduced in [8].

4.2.2 Proximal operator computation

One of the key aspect of proximal splitting is that the proximal operator can be computed either directly

or at a reduced computational cost. In the following, we present the computation of some proximal

operators that are associated with ℓ2-norm and ℓ1-norm penalties.

4.2.2.1 ℓ2-norm penalty

Let us consider a ℓ2-norm penalty, i.e. χ(f) = ‖Af‖22, where A is a linear operator. The corresponding

proximal operator is defined as:

proxλχ (f) ≡ argmin
g∈RK

{

‖Ag‖22 +
1

2λ
‖g − f‖22

}

=
(
I + λATA

)−1
f. (4.11)

This solution can be computed with all gradient techniques for least-squares, that were described in

Sec. 4.1.
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4.2.2.2 ℓ1-norm penalty

Let us consider a ℓ1-norm penalty, i.e. χ(f) = ‖Af‖1, where A is a linear operator. The corresponding

proximal operator is defined as:

proxλχ (f) ≡ argmin
g∈RK

{

‖Ag‖1 +
1

2λ
‖g − f‖22

}

. (4.12)

With ℓ1-norm, optimization is said to be non-smooth because the gradient of the functional does not

exist at the minimum. Depending on the constraint, proximal operator can be computed directly by

thresholding or using iterative schemes. We list the key proximal operators we shall use further on,

following the presentation of [20, 106].

Image thresholding The proximity operator that is associated to the image ℓ1-norm (A = I) is the

soft-thresholding operator Sλ(f) of threshold λ. Soft-thresholding here can be seen either as a denoising,

a compressing or a segmenting step that does not modify the image appearance above the given threshold.

proxλχ (f) = Sλ(f) =







f + λ if f ≤ −λ
0 if −λ < f < λ

f − λ if f ≥ λ

(4.13)

Wavelet thresholding Let us denote Aw an orthonormal wavelet transform. Among all wavelet

transforms, let us cite Haar transform, which is the first and the simplest discrete wavelet transform,

or orthogonal Daubechies transform [32]. The proximal operator associated to the wavelet ℓ1-norm

(A = Aw) is similarly defined as the soft-thresholding operator in the wavelet domain EAw
[33], which

can be decomposed into wavelet transform Aw, followed by a soft-thresholding operation and inverse

wavelet transform A−1w :

proxχ (f) = A−1w [Sλ (Aw(f))] . (4.14)

Total variation (TV) penalty To enforce the piecewise constant nature of an image (i.e. to preserve

the edges and smooth out other areas), a common approach that was pioneered by Rudin et al. [115]

relies on minimizing the anisotropic total variation (TV), that is defined for a smooth image as

TV(f) = ‖∇f‖1 =
K−1∑

k=0

|(∇f)k|. (4.15)

Chambolle [21] proposed a dual approach to transform the minimisation of Eq. (4.12) for A = ∇ into a

differentiable problem. In such an approach, the ℓ1-norm is cast as solution of:

‖Af‖1 = argmax
h∈A∗(RK)
‖h‖

∞
≤1

〈Af |h〉 = argmax
h∈A∗(RK)
‖h‖

∞
≤1

〈f |A∗h〉 (4.16)

where A∗ denotes the adjoint operator. The TV proximal operator is consequently given by:

proxλχ (f) = argmax
h∈∇∗(RK)
‖h‖

∞
≤1

{

argmin
g∈RK

{
1

2
‖g − (f − λ∇∗h) ‖22 −

1

2
‖f − λ∇∗h‖22

}}

, (4.17)

where ∇∗ corresponds to the opposite of the divergence operator − div. To solve Eq. (4.17), it is

possible to use a fixed point iteration method [21] or a proximal splitting method [8]. An alternative

implementation of the minimisation of Eq. (4.12) for A = ∇ is the digital TV filter of Chan et al. [22],

that relies on both lagged fixed-point iteration method and regularization |∇u|ǫ =
√

|∇u|2 + ǫ2 with

ǫ > 0 and consists in linearizing the TV minimization at each iteration.
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Nonlinear anisotropic diffusion The proximal formalism covers all standard image processing oper-

ations that are solution of a least-square based variational approach that are mainly used for smoothing

and segmentation purposes. In particular, we shall investigate the use of nonlinear anisotropic diffusion

[6] in replacement of the TV penalty:

proxλχ (f) = argmin
g∈RK

{
1

4
‖ϕ(‖∇g‖22)‖

2

2 +
1

2λ
‖g − f‖22

}

, (4.18)

where ϕ is a real function that locally modulates the diffusion process.

4.2.3 Multiple criterion

So far, we considered that the penalization term captures a single penalty. Let us now consider that it

is expressed as a linear combination of penalties.

Indicator functions Let us first consider the particular case of a multiple criterion that is a combi-

nation of indicator functions:

χ(f) =

C∑

c=1

ιEc(f), (4.19)

where Ec ⊂ R
K . Minimization of Eq. (4.19) is carried out through successive activation of each convex

set:

f (i) =

C∏

c=1

projιEc (f
(i−1)). (4.20)

This process is known as projection onto convex sets (POCS) [146]. Many reconstruction algorithms

derive from POCS, among which the well-known algebraic reconstruction technique (ART) [54]

that converts the least-square data fitting term into a set of penalties, one per measurement.

Image thresholding with positivity Let us combine the image ℓ1-norm with the projection on the

convex set of positive images, which is separable with respect to the image domain:

χ(f) = λ · ‖f‖1 + ι+(f). (4.21)

Because the image ℓ1-norm is also separable, it has been shown in [106] that the resulting proximal

operator is simply defined by:

proxχ (f) = projι+ ◦Sλ(f) =
{

f − λ if f ≥ λ

0 otherwise
. (4.22)

Note, however, that this direct computation of the proximal operator does not hold for arbitrary penalty

χ and arbitrary convex set E ⊂ R
K .

Generic case Let us now consider the following multiple criterion:

λ · χ(f) =
C∑

c=1

λc · χc(f) (4.23)

The minimization of the proximal operator associated to Eq. (4.23) can be achieved by the paral-

lel Dykstra-like proximal algorithm [28], that is given in pseudocode hereafter, provided that

proxλcχc
(f) is available and

∑C
c=1 λc = 1.
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Parallel Dykstra-like proximal algorithm

Initialisation i′ = 0
v(0) = u

g
(0)
1 = v(0)

...

g
(0)
C = v(0)

Algorithm i′ ≥ 1












h
(i′)
1 = proxτχ1

g
(i′−1)
1

...

h
(i′)
C = proxτχC

g
(i′−1)
C

v(i
′) =

C∑

c=1

λc · h(i
′)

c







g
(i′)
1 = v(i

′) + g
(i′−1)
1 − h

(i′)
1

...

g
(i′)
C = v(i

′) + g
(i′−1)
C − h

(i′)
C

(4.24)

4.3 Compressed sensing (CS)

Let us now shortly recall the sampling theory discussed in Sec. 2.1.3: the Shannon-Nyquist criterion

provides a sufficient sampling condition for accurate reconstruction, but not a necessary one. If further

restrictions are imposed on the signal, then less stringent conditions may be sufficient.

4.3.1 Sparse optimization

The recent developments of the mathematical theory of CS provides a sub-Nyquist sampling criterion

that basically depends on signal sparsity: intuitively, the sparser a signal is, the fewer data samples

should be required to obtain an accurate reconstruction.

ℓ0-pseudo norm penalty The ‘best’ measure for sparsity is arguably defined as the ℓ0-pseudo norm

of f which corresponds to the cardinality of the support of f in some transform domain. A signal f is

said S-sparse if there exists a domain in which the signal f of size K can be expressed with S non-zero

coefficients only (such that S ≪ K):

S = Card{(Af)k 6= 0|1≤k≤K} ≡ ‖Af‖0 (4.25)

where Card{·} refers to the cardinal of a set and ‖ · ‖0 denotes the ℓ0-pseudo norm. Recovery of f is

obtained by identifying the sparsest solution among the solutions of the system of equations presented

in Eq. (4.1) through resolution of the combinatorial optimization problem:

f̃CS−ℓ0 = argmin
f∈RK

‖Af‖0 s.t. Rf = p. (4.26)

Unfortunately, ℓ0-minimization is not a convex optimization problem, and the problem described in

Eq. (4.26) is computationally intractable, except for some particular cases.
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Sparse norm penalties The ℓ0-pseudo norm is fortunately not the only norm that promotes sparsity.

The ability of a norm to promote sparsity is related to the geometry of the unit ball which is associated

to the norm. This is illustrated in Fig. 4.1 that displays a space with two degrees of freedom, in which the

collection of measurements that satisfy Eq. (4.1) is described as a line, and that compares the minimum

ℓ2-norm solution to the minimum ℓ1-norm solution. The unit ball that is associated to the ℓ2-norm is

isotropic and does not favor any specific direction of the space as shown in Fig. 4.1(a). The minimum

ℓ2-norm solution is obtained by taking the circle around the origin that is tangent to the solution line.

Large coefficients are therefore penalized more heavily and the solution is generally not sparse. On the

other hand, the unit ball that is associated to the ℓ1-norm is anisotropic: it is a square with singular

points due to the discontinuities of the ℓ1-constraint, that are located along the axis of the coordinate

system, as shown in Fig. 4.1(b). The minimum ℓ1-norm solution happens to intersect the line at one of

those points. Because, it has only one coordinate different from zero, it is sparser than the minimum

ℓ2-norm solution. Many small coefficients tend to carry a larger penalty than a few large coefficients

and are consequently suppressed. Note that when focusing on the cardinality of the solution only, no

side information about the patterns of relevant (non-zero) coefficients is provided. As an alternative, it

is possible to consider a structured sparsity to simultaneously select all variables forming a group. Such

an approach requires penalizing other functions than the cardinality of the support or regularizing by

other norms as suggested in [66].

0
p = Rf

‖f‖2 = 1

0
p = Rf

‖f‖1 = 1

Figure 4.1: Geometric interpretation of the ℓ1 and ℓ2 norms. (a) ℓ1 ball: the anisotropy of the ℓ1 ball

favors sparse solution. (b) ℓ2 ball: minimizing the ℓ2 norm generally does not allow for recovery of sparse

solutions.

Candès theorem As shown by Candès et al. in [18], CS states that if a signal can be made sparse

or compressible in some transform domain that is incoherent with the space in which the sampling is

performed, then it is possible to reconstruct the signal accurately from fewer samples. Exact recovery of

f is obtained by solving Eq. (4.26). In [18], a simple way is proposed to make the problem described in

Eq. (4.26) tractable, that consists in casting the sparse estimation as a convex optimization problem by

replacing the ℓ0-pseudo norm by a ℓ1-norm:

f̃CS−ℓ1 = argmin
f∈RK

‖Af‖1 s.t. Rf = p. (4.27)

The key result of the CS theory is that the ℓ1-minimizer of Eq. (4.27) is unique, and leads to the

sparsest solution, i.e. solutions of Eq. (4.26) and Eq. (4.27) are equivalent. An upper bound Smax for
the maximum level of sparsity for which exact reconstruction can be achieved is proposed in [18] under

the following assumptions:

• a sparse representation of the solution in a known transform domain exists;

• the sampling is random;
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• matrix R obeys the restricted isometry property (RIP) for δ2S <
√
2− 1 [19] where δS denotes the

isometry constant of R, that is defined as the smallest number such that for all S-sparse vectors:

(1− δS) · ‖f‖22 ≤ ‖Rf‖22 ≤ (1 + δS) · ‖f‖22.

Interestingly, Candès et al. [18] illustrate the CS theory by showing that the exact reconstruction of

the Shepp-Logan phantom test image –which is a piecewise constant image– is achievable from a few

amount of integral lines only through minimization of the image TV even though the random sampling

and RIP property are not verified for R. This result opened tremendous perspectives for image quality

improvement in tomography.

4.3.2 Greedy algorithms for ℓ0-pseudo norm minimization

Some works propose a heuristic approach known as Orthogonal Matching Pursuit (OMP) to build the CS-

solution f̃CS. Orthogonal matching pursuit belongs to the iterative greedy methods that build a sequence

of locally optimal optimizations to determine a globally optimal solution. The major advantage of this

type of approach is that it admits simple, fast implementations [88, 100, 87, 138].

An intuitive illustration that OMP recovers the image support in tomography is provided in Fig. 4.2.

It is based on thresholding the structure having the highest intensities in the reconstructed image and then

apply R to these structures to subtract their contribution to the real measurements. The thresholding also

removes the subsampling pattern that is associated to the thresholded structures, and hence recovers

lower intensity structures that were previously hidden by the artifacts. By iteratively repeating this

procedure, it is possible to recover all the structures of a sparse image. This approach was proposed for

MR images in [45]. A similar procedure was proposed by Donoho et al. [39], called Stagewise Orthogonal

Matching Pursuit (StOMP). Let us index by support Ω in the image domain, the restricted application

of the (back-)projection operator to Ω. In StOMP, a number of iterations or stages is fixed a priori.

At each stage s, an estimate of the reconstruction support is selected, that is best correlated with the

residual Rf (s−1) − p, this support is then merged with the previously estimated support Ωs−1 to form

the updated support Ωs. StOMP finally performs least-square reconstruction on the limited optimal

support Ω = Ωs:

f̃StOMP = argmin
f∈Ω

{
1

2
‖RΩf − p‖22,W

}

. (4.28)

Note that when the data are not sparse, Ω tends to the entire space, and hence this approach results in

the standard least-square reconstruction.

4.3.3 Basis pursuit

The minimization of Eq. (4.27) is known in the literature as basis pursuit (BP)[24] and remains a preferred

method to promote sparsity even though ℓ1 penalized solutions are not always sparse, they need not be

unique in general, and they need not lead to the sparsest solution. One of the main advantages of BP

is that it enjoys rigorous proofs of exact reconstruction under quite general circumstances. Note that

penalizations by ℓp-norms with p < 1 have also been proposed, but are non-convex problems, for which

finding global minimizers is more tedious.

Optimization methods adapted for solving the BP problem described by Eq. (4.27) have been a focus

of research interest before CS was first introduced. Traditional optimization tools rely on a necessary

and sufficient optimality criterion that is valid for differentiable functionals only. Because the ℓ1-norm

is not differentiable, the approaches that are developed in the literature for solving Eq. (4.27) include:

• regularization of the ℓ1-norm so that it becomes differentiable [22] but it breaks to some extent the

capacity of the penalty to induce sparsity;
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Illustration of OMP principle. (a) Sparse phantom. (b) FDK reconstruction from 10 views.

(c) Detected components after thresholding. (d) FDK reconstruction of the residual. (e) Detected

components after thresholding. (f) Final reconstruction: sum of (c) and (e).
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• casting of the BP problem in a standard linear program which is convex and tractable. It is then

solved using general purposed solvers such as simplex and interior point methods [15, 72] for small

scale problems and proximal algorithms for large scale problems. An alternative linearisation is

proposed in [48];

• subgradient descent that can be used as soon as a subgradient can be computed efficiently [120].

This last strategy is widely applicable, has low running time complexity per iterations, but has low

convergence rate and ususally yields non-sparse solutions.

These criteria are also robust with respect to noise: basis pursuit (BP) will still recover a good

approximation f̃ to f if Eq. (4.27) is casted as an ℓ1-minimization with a quadratic inequality constraint:

f∗ = argmin
f∈RK

‖Af‖1 s.t. QW (f) ≤ ǫ, (4.29)

where ǫ is a nonnegative parameters.

The minimization carried out by Eq. (4.29) is closely related to the Least Absolute Shrinkage and

Selection Operator (LASSO) that was extensively studied by the Statistics community[135, 44] and that

consists in a quadratic optimization with a ℓ1 inequality constraint:

f∗ = argmin
f∈RK

QW (f) s.t. ‖Af‖1 ≤ η (4.30)

where η is another nonnegative parameters. Note that there exist in general no direct correspondence

between parameters ǫ and η, except for some special cases. Therefore algorithms that are specific for

solving one of the two formulations in Eq. (4.29) and Eq. (4.30) may not be used directly for solving the

other.

There exists an equivalent non-constrained formulation of Eq. (4.29) and Eq. (4.30) that is a ℓ1-

regularized least square:

f∗ = argmin
f∈RK

{QW (f) + λ‖Af‖1} (4.31)

where λ governs the degree of sparsity of the minimizer. All formulations easily integrate multiple sparsity

constraints into the reconstruction through a penalization that is expressed as a linear combination of

C regularization terms as described in Eq. (4.23). It can be solved using a nonlinear conjugate gradient

descent algorithm with backtracking line search [85]. In this manuscript, we rather rely on proximal

splitting methods of Sec. 4.2.

f∗ = argmin
f∈RK

{

QW (f) +

C∑

c=1

λc‖Acf‖1
}

(4.32)

4.3.4 Homotopy for ℓ1

Although shown to perform more efficiently than BP in certain circumstances [40], OMP fails to find

the sparsest solution in others where ℓ1-minimization succeeds and does not offer in general the strong

theoretical guarantees that are attached to ℓ1-minimization. In [138], Tropp provides a sufficient condi-

tion under which both OMP and BP can recover the optimal representation of an exactly sparse signal.

Moreover, he proves that OMP may be able to recover the support from the optimal representation even

when the signal is not perfectly sparse, which is the case of natural signals. A parallel can be established

between OMP approaches and homotopy approaches, of which some bridging elements are discussed in

[41]. The key idea behind homotopy is that when varying the regularization hyperparameter λ over

(0,+∞), the family of solutions (f̃ℓ1)λ of Eq. (4.31) is defined as the regularization path. Efron et al.

[44] show that there exists a series of values λ1, · · · , λs, with 0 = λS < · · · < λ1 = λmax, such that the

regularization path is a piecewise linear function of λ:

(f̃ℓ1)λ =
λs − λ

λs − λs+1
(f̃ℓ1)λs+1

+
λ− λs+1

λs − λs+1
(f̃ℓ1)λs

, λs+1 ≥ λ ≥ λs, s = 1, · · · , S,
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where (f̃ℓ1)λs
is solution of Eq. (4.31) when λ = λs . To compute the regularization path, homotopy

methods were developed by varying the regularization parameter λ from large to small values [97, 44]

and proved to be as efficient as greedy stepwise algorithms such as OMP when the solution is very sparse.

The number of stages S is a key parameter. It is shown to be equal to the sparsity of the target solution

for some special cases in [41]. If the intermediate solutions are cheap to compute, then they provide

a sequence of convenient estimations for initialization to the next problem. In practice, they are only

approximated, making them cheaper to compute. Provided that an approximate solution is obtained at

the end of each stage, the recent work of Xiao et al. [145] demonstrates that for large-scale problems,

the number of stages can be much smaller than the sparsity the target solution and ensures convergence

of the process provided that each problem is solved with sufficient precision and hyperparameter λ is

geometrically decreased.

4.4 Reconstruction for subsampled data in rotational angiogra-

phy

Compressed sensing was applied to tomographic, divergent beam problems for the first time by Sidky

et al. in [121, 123] that proposed for accurately solving constrained TV-minimization. As discussed

by Theriault et al. in [133], we must emphasize that straightforward application of the mathematical

conditions introduced by the CS framework is not possible in rotational angiography, since it is very chal-

lenging, if not impossible, to design a data acquisition method that completely satisfies the mathematical

conditions required by the CS theory (see Sec. 4.3).

In this manuscript, we focus on the empirical application of the CS method without pursuing the

mathematical rigor of the CS theory itself. In particular, we relax the assumption that is used to establish

CS upper bound Smax on whether the data are randomly sampled. This is a key difference when applying
CS to X-ray imaging with respect to MRI [84, 141]. On one hand, sampling in MRI imaging is a special

case of the CS theory: the sampled linear combinations are simply Fourier coefficients and to some extent,

a subset of coefficients can be selected. On the other hand, the angular sampling of the spectral domain

is imposed by the X-ray CT system. In the context of subsampled X-ray data, sampling issues have been

shown to be dealt with through original approaches. Motivated by the desire to reduce dose, Sidky et al.

proposed an iterative reconstruction for tomosynthesis [124] and high resolution image reconstruction

[125]. Based on this approach, many works propose to filter out streaks assuming that the object image

is sparse in a certain domain.

Note that the validity of compressed sensing is established with least square data fit only. State-of-

the art CS reconstructions mostly rely on an adaptive steepest variant of POCS known as ASD-POCS

[121, 123] or ART [58]. The proximal splitting we presented in Sec. 4.2 actually covers a wide range of

published reconstruction algorithms as well as all the algorithms used in this work. Sparse assumptions

are generally not valid for clinical images, so that only sparse approximation of the reconstruction problem

solution can be obtained. Object sparsity in the image domain was mainly promoted for angiography

[79, 58]. Most works focused on piecewise constant assumption because it relies on total variation (TV)

[103, 129, 9, 27, 111, 122], for which efficient minimization algorithms have been proposed [21, 8]. Medical

images are only approximately piecewise constant, which yields ‘patchy’ artifacts and unnatural image

appearance. Sparsity of the image wavelet transform may be clinically more acceptable, but it has not

been proven to be efficient enough alone and is then often used jointly with TV [84, 85].

4.4.1 Compressed sensing with iterative FBP

In this work, we focus on iterative FBP (iFBP), that is referred to as iFDK for the particular case of

CB geometry.
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4.4.2 Iterative FBP

Mathematically, iterative FBP consists in minimizing functional QW defined in Eq. (4.2) where matrix

W is replaced by the ramp filter D that was introduced in Sec. 2.1.2.2 and is positive and diagonal in

the Fourier domain:

f̃iFBP = argmin
f∈RK

{

‖Rf − p‖22,D
}

(4.33)

The iterative scheme of iFBP is described by Eq. (4.4) with W = D and keeping the gradient step τ

constant over all iterations, i.e. τ (i) = τ . The solution at iteration i, f (i), is modified by the addition of

the discrete FBP of the difference between the measurement vector and projection data associated with

the present estimate, that is scaled by τ .

When the problem is well-determined, matrix RTDR is close to the identity operator and a constant

step τ ≈ 1 provides fast convergence. The kernel of the projection matrix, denoted Ker(R), is reduced

to singleton {0} and f̃ = f∗ is the unique solution. For underdetermined problem with truncation, it

has been used in conjunction to an ℓ2-norm regularization to improve the reconstruction of truncated

area. Iterative FDK has also been proposed for correcting for CB artifacts but it has not been shown to

converge quickly in that case.

This work however aims at solving the reconstruction problem in the underdetermined case where

the measurements are severely subsampled and consequently, the dimension of p is small with respect

to the dimension of f . In this case, matrix RTDR is not equal to the identity. Gradient methods may

require a smaller step τ ≪ 1. The dimension of Ker(R) is far greater than 1 and f̃ is restricted to an

affine subspace of RK , that does not enable complete determination of f . Hence, there exists an infinity

of solutions that are compatible with Eq. (4.1) and can be decomposed as follows:

f̃ = f∗ + f⊥, (4.34)

where f⊥ ∈ Ker(R) refers to the component of f that is unobservable with respect to the acquisition

sampling. By construction, the unobservable component of initialization f (0) is preserved. In particular,

f∗ sets to zero the unobserved spectral coefficients, which results in subsampling streak artifacts similar

to the ones described in Sec. 2.1.3 for the FBP reconstruction. From there it is clear that all images that

satisfy Eq. (4.34) are not necessarily relevant from a physical point of view, with impact on image quality.

To reduce the magnitude of f⊥, which can be interpreted as the error image made of the complementary

streak artifacts, the selection of a clinically relevant solutions is carried out through the introduction of

constraints. This criterion can be minimized with proximal algorithms.

The imaged densities are naturally positive values. Consequently, a positivity constraint can be

introduced at a negligible computational cost. The minimization process identifies a positive image that

best fits the projection data [77]:

f̃iFBP+ = argmin
f∈RK

{QD(f) + ι+(f)}. (4.35)

The FBP and iFBP reconstructions yield similar results only if the tomographic problem is well

determined –in other words, if the sampling rate is high. In the underdetermined case, FBP recon-

struction result does not satisfy Eq. (4.34). To illustrate this point, we compared the FDK and iFDK

reconstructions of clinical data with different subsampling factors. Figure 4.3 shows the reconstruction

results on an axial slice that presents air, soft-tissues and bones. To enhance the display of the angular

subsampling artifacts, we set WL=1000HU and WW=2000HU. For the sampling rate of current C-arm

systems (minimum 150 views), FDK and iFDK that are compared in Fig. 4.3(a)) appear very similar,

iFDK providing however a slightly higher resolution. When the number of views is reduced as shown in

Fig. 4.3(b) for a subsampling factor of 2 to (d) for a subsampling factor of 8, standard FDK contains

high-frequency –and hence streak artifacts– due to the ramp. On the other hand, iFDK reconstruction

better preserved the information at coarse scales, but lost most high-frequencies such as edges. This

difference between FDK and iFDK is significant at very low sampling rates (Fig. 4.3(d)). Some intensity
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profiles through the axial slice of Fig. 4.3 are plotted in Fig. 4.4. We observe that the subsampled iFDK

profile is closer than the subsampled FDK profile (Fig. 4.4(b)) to the two profiles obtained with 150

views (Fig. 4.4(a)). This demonstrates a higher robustness of the iFDK reconstruction with respect to

the FDK reconstruction.

(a) (b) (c) (d)

Figure 4.3: Visual comparison of (top row) FDK and (bottom row) iFDK+ with regard to the sampling

rate. WL=1000HU - WW=2000HU. (a) Full scan (about 150 views). (b) Subsampling factor: 2. (c)

Subsampling factor: 4. (d) Subsampling factor: 8.

4.4.3 Iterative FBP with an image ℓ1-norm penalty

Considering the contrast-enhanced vessels that cover only a small fraction of the subtracted volume,

the notion of sparsity is straightforward, as illustrated by the MIP representation in Fig. 4.5(1.a). The

few amount of non-zero voxels (61% of the voxels have values below 100HU) is confirmed by the study

of the intensity histogram which is displayed Fig. 4.5(1.b). The first clinical application of rotational

angiography with C-arm systems relied on this feature to propose a reconstruction of the subtracted 3D

vessels for neuro-interventional radiology with no reconstruction of the background structure that were

removed by digital subtraction within the projections. Non-subtracted volumes and even subtracted vol-

ume containing not only the contrast-enhanced vessels, but also perfused structures such as parenchyma

cannot, in general, be assumed sparse in the image domain as it is formulated in Eq. (4.25). Thus, to

address the reconstruction of the coronary arteries, Hansis et al. [58] suppress the background structures

via a morphological top-hat filter prior to the reconstruction. A closer look at the intensity histogram

calculated from reconstructed angiographic data and displayed in Fig. 4.5.(2) demonstrates a hierarchical

sparsity with respect to the intensity level (1.4% of the voxels with value above 2000HU while about

76% with value between 900 and 1600HU) due to the selective contrast-injection into the vessels. In

the following, we describe this feature of angiographic data as ‘sparse vessels over a non-sparse

background’.

As discussed in Sec. 2.1.3, subsampling introduces a pattern of positive and negative streaks in

the reconstruction. When dealing with subtracted data, ‘dark’ streaks mostly take negative values and

hence, it is possible to enforce the positivity of the solution in order to mitigate the global artifact pattern.

Because the background level is generally not equal to zero, negative streaks result in abnormally lower,
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(a)

(b)

Figure 4.4: Comparison of FDK and iFDK+ with regard to the sampling rate. Intensity profile curves

drawn through the axial slice presented in Fig. 4.3 for (a) the full scan (about 150 views) (b) a subsampling

factor equal to 8. Reconstruction using FDK is plotted in blue, while reconstruction using iFDK+ is

plotted in red.
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(1.a) (1.b)

(2.a) (2.b)

Figure 4.5: Sparsity in the image domain. (1) Subtracted data that describe sparse contrast-enhanced

vessels. (2) Non-subtracted data that describe sparse contrast-enhanced vessels over non-sparse back-

ground. (a) MIP representation of a reconstructed volume from an angiographic acquisition. (b) Intensity

histogram calculated from the volume: intensities between 0 and 4000HU are classified into 256 bins.
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yet not necessarily negative, pixel intensities. Although still relevant from a physical point of view, the

positivity constraint, no longer provides effective artifact reduction.

Combining the image ℓ1-norm with the positivity constraint (cf. Sec. 4.2) promotes sparsity by

removing at each iteration all structures whose intensity is lower than threshold λτ , a process that we

refer to as soft background subtraction in the following of this manuscript. From the image processing

point of view, it can be interpreted as an intensity-based segmentation task. Considering the case of a

sparse image that only contains vessels, there is no strictly positive λ value that may not remove some

part of the vessels, and thus biase the reconstruction result. Consequently, CS-sbs approach proposed in

[77] defines a set of S decreasing λsbs values:

Λsbs =
{

λ
(s)
sbs|s = 1, · · · , S

}

such that λ
(1)
sbs ≥ · · · ≥ λ

(S)
sbs = 0,

and solving the sequence defined by the S corresponding ℓ1-regularized problems that are of the form:

(

f̃χsbs

)

λsbs

= argmin
f∈RK

{

QD(f) + λsbs‖f‖1 + ι+(f)
︸ ︷︷ ︸

= λsbs · χsbs(f)

}

, (4.36)

while initializing the computation of
(

f̃χsbs

)

λ
(s)
sbs

, i.e. minimization of Eq. (4.36) at stage s with the

solution computed at the previous stage
(

f̃χsbs

)

λ
(s−1)
sbs

.

The minimization at λsbs = λ
(s)
sbs identifies a sparse approximation in the image space that best fits

the data with a level of sparsity that is proportional to λ
(s)
sbs. In practice, the iteration described by

Eq. (4.36) results in a standard FBP reconstruction that is scaled by τ and segmented with threshold

τλ
(s)
sbs. Thus, CS− sbs is compatible with the streak-free reconstruction of sparse structures first (e.g.

high-intensity vessels), while the non-sparse background is progressively reintroduced as λ
(s)
sbs tends to

zero. We observed convergence of the global algorithm when solving each problem described by Eq. (4.36)

with one iteration and using a simple linear decrease of λ
(s)
sbs providing:

• λ
(1)
sbs is initialized equal to 90% of the maximum value of the FDK reconstruction,

• while λ
(S)
sbs ≥ 0 is chosen as small as desired.

4.4.4 Iterative FBP with TV penalty

Assuming the most relevant information in the images is provided by the edges, the image can be

sparsified by applying a discrete gradient operation. This is illustrated in Fig. 4.6 that displays the

gradient image of a slice and the corresponding intensity histogram.

Minimizing TV has been extensively studied in tomographic reconstruction for the correction of

subsampling artifacts [111, 123, 103]. These methods show streak artifact reduction, but at the expense

of an overall change in the image appearance, that may not be clinically acceptable. Considering a

coarse-to-fine approach, we propose in CS-tv to solve a sequence of S ℓ1-regularized problems where the

constraint is the combination of a constraint on the image gradient ℓ1-norm ‖∇f‖1 with the positivity
constraint on the image domain:

(

f̃χtv

)

λtv

= argmin
f∈RK

{

QD(f) + λtv‖∇f‖1 + ι+(f)
︸ ︷︷ ︸

= λtv · χtv(f)

}

, (4.37)

while initializing the computation of
(

f̃χtv

)

λ
(s)
tv

, i.e. minimization of Eq. (4.37) at stage s with the

solution computed at the previous stage
(

f̃χtv

)

λ
(s−1)
tv

. The minimization at λtv = λ
(s)
tv identifies a
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(a) (b)

Figure 4.6: Sparsity in the gradient domain. (a) Gradient image of a C-arm CT slice. (b) Corresponding

intensity histogram.

piecewise-constant approximation that best fits the data with a level of sparsity that is proportional to

λ
(s)
tv . Total variation minimization as described in Sec. 4.2.2.2. Because computing the gradient of an

image is a high-pass filtering operation, the gradient transform can be considered as computing some sort

of fine-scale wavelet transform (without computing coarser scales). Performing CS− tv is compatible

with the reconstruction of rough piecewise constant approximation first, since strong λ
(s)
tv value forces the

reconstruction result to have smaller total variation (i.e. only very intense structures or large background

area are kept), while the fine-scale information is progressively reintroduced as λ
(s)
tv is decreased. We

observed convergence of the global algorithm when solving each problem with one iteration and using a

simple linear decrease of λ
(s)
tv providing:

• λ
(1)
tv is initialized so that only coarse structures are kept from FDK reconstruction,

• while λ
(S)
tv is either set equal to 0 (i.e. the final solution is unbiased) or tuned so that most of the

fine details remain (i.e. the final solution is slightly regularized).

4.4.5 Iterative FBP with wavelet ℓ1-norm penalty

The use of wavelet was previously investigated for tomographic reconstruction in MRI by Lustig et al. in

[84, 85]. The exploitation of such sparsifying transforms was motivated by the success of image compres-

sion that relies on such transforms to reduce data redundancy by encoding the few significant coefficients

and storing them, for later decoding and reconstruction with little or no visual loss of information.

Each wavelet coefficient carries both spatial position and spatial frequency information. In particular,

coarse-scale wavelet coefficients determine the low resolution image components, while fine-scale wavelet

coefficients determine the high resolution components. Note that the recovery of coarse-scale wavelet

coefficients requires less angles (see Sec. 2.1.3). Koff et al. have shown in [73] that, to some extent,

medical images are compressible, and hence a wavelet transform can be applied without loss of crucial

information.

Image compression using Daubechies 9/7 wavelet transform, that is used in JPEG 2000 –one of the

most well-known image compression standards–, is illustrated in Fig. 4.7: no visual difference is percep-

tible between the original reference image and its compression through removal of 90% of the coefficients

of the first detail subband, while only slight deteriorations appear for its compression through removal

of 90% of the coefficients of the first two detail subbands. Considering a coarse-to-fine approach, we pro-
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pose in CS-w to solve a sequence of S ℓ1-regularized problems where the constraint is the combination

of a constraint on the image wavelet transform ℓ1-norm ‖Ψwf‖1, where Ψw denotes a discrete wavelet

transform, with the positivity constraint on the image domain:

(

f̃χw

)

λw

= argmin
f∈RK

{

QD(f) + λw‖Ψwf‖1 + ι+(f)
︸ ︷︷ ︸

= λw · χw(f)

}

, (4.38)

while initializing the computation of
(

f̃χw

)

λ
(s)
w

, i.e. minimization of Eq. (4.38) at stage s with the

solution computed at the previous stage
(

f̃χw

)

λ
(s−1)
w

.

(a) (b) (c)

Figure 4.7: Sparsity in the wavelet domain (Daubechies 9/7). (a) Reference image. (b) Compression via

removal of 90% of the coefficients of the first detail subband. (c) Compression via removal of 90% of the

coefficients of the two first detail subbands.

The image wavelet transform Ψw can be for instance Haar transform or orthogonal Daubechies

transform. As given in Sec. 4.2, the proximal operator is soft-thresholding in the wavelet domain [89,

23]. The minimization at λw = λ
(s)
w identifies a compressible (in the sense of the wavelet transform)

approximation that best fits the data with a level of sparsity in the wavelet domain that is proportional

to λ
(s)
w . Note that in medical imaging, standard decomposition is limited to a few subbands only, since

compression above three levels of fine-scale subbands raises both legal and diagnostic issues. We observed

convergence of the global algorithm when solving each problem with one iteration and using a simple

linear decrease of λ
(s)
w providing:

• λ
(1)
w is initialized so that 90% of the coefficients in the detail subbands are set to zero in the wavelet

transform of FDK reconstruction,

• while λ
(S)
w is either set equal to 0 (i.e. the final solution is unbiased) or tuned so that 10% of the

coefficients in the detail subbands are set to zero in the wavelet transform of FDK reconstruction

(i.e. the final solution is regularized).

4.5 Numerical simulations with uniform subsampling

To establish the behaviour of the CS reconstruction algorithms and, in particular, to evaluate the image

quality that can be achieved with respect to a ground-truth, we built a numerical phantom with simulated

contrast-enhanced vessels by adding a disk pattern (with intensities from 1500 to 6000HU) to a 512 ×
512 head phantom cross-section where background structures are valued between 1000 and 2000HU.

Figure 4.8 presents the phantom (Fig. 4.8(a)) and zoomed details with different windowings that focus



74 CHAPTER 4. COMPRESSED SENSING-BASED ITERATIVE RECONSTRUCTION

(a) (b) (c)

Figure 4.8: 2D numerical static phantom. (a) Full slice. HU range: 340 to 1900. (b) Detail of the

injected vessels. HU range: 850 to 1230. (c) Detail of the soft-tissues. HU range: 600 to 1200.

either on the injected vessels (Fig. 4.8(b)) or the background structures (Fig. 4.8(c)). We simulated the

rotational acquisition of projection data in parallel geometry by integrating the density of the phantom

along parallel lines. Note that the effect of photon statistics was not simulated but could be added for

more realism.

4.5.1 Homotopy vs. regularization

We simulated the acquisition of projection data with 150 equiangularly distributed views over 180◦. We

carried out regularized reconstructions with TV minimization and thresholding in the wavelet domain.

To generate these reconstructions, we used penalized iFBP for hyperparameters λw and λtv fixed values.

In addition, we performed reconstruction with homotopy with soft background subtraction, TV mini-

mization and thresholding in the wavelet domain. Reconstruction settings are indicated in Tab. 4.1 and

Tab. 4.2.

Parameter Value

τ 0.9

S 25 backgrounds

I 1 iteration / background

Table 4.1: Generic parameters common to all iFBP-derived algorithms.

Figure 4.9(a) shows the reconstruction result for iFBP+. It serves as reference to which compare

regularized and homotopy reconstructions. Although minor streaks that originated from the high-intense

structures (e.g. simulated contrast-enhanced vessels and skull bone) are visible near the periphery of the

skull as highlighted by the detail images, the entire image is relatively free of streak artifacts.

Regularization There are interesting observations that one can make regarding the regularized re-

constructions. The reconstruction results shown in Fig. 4.9(b) and in Fig. 4.9(d) correspond to the

minimization of a functional that enforces sparsity, TV for experiment n◦2 and respectively wavelet

ℓ1-norm for experiment n◦4. Sparse penalization removed the thin streak artifacts but at the expense

of a significant change in the image appearance: total variation resulted in a piece-wise constant image

with a cartoon look that may not be acceptable for clinical purpose, while thresholding in the wavelet
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domain yielded local artifacts. Such results do not fit the projection data, but are instead the regular-

ized approximation with a level of sparsity that is given by the regularization hyperparameter that best

fits the data. We then attributed a weaker weight to the sparse penalization. This corresponds to the

reconstruction results with TV penalty in experiment n◦3, that is shown in Fig. 4.9(c), and with wavelet

ℓ1-norm penalty in experiment n◦5, that is shown in Fig. 4.9(e). These reconstructions appear very close

to the iFBP+ reconstruction, and hence the sparse penalization did not have a significant impact on

image quality. Consequently, there is a trade-off between sparse regularization and fidelity to the data.

Finding the best trade-off is not a trivial task, in particular because it generally depends on the imaged

structures.

(a) (a) (b) (c) (d)

Figure 4.9: Reconstruction results with positivity and with regularization strategies. First row: recon-

structed image. Second row: zoomed detail with HU range from 850 to 1230. Third row: zoomed detail

with HU range from 600 to 1200. Reconstruction result of: (a) experiment n◦1. (b) experiment n◦2. (c)

experiment n◦3. (d) experiment n◦4. (e) experiment n◦5.

Homotopy The previous study of the iFBP+ reconstruction shown in Fig. 4.9(a) made clear that we

are trying to extract more information from relatively finely sampled data. Consequently, the impact

of CS is expected to be small. Nevertheless, the use of different sparsity constraints with homotopy, of

which the resulting images are compared in Fig. 4.10, provided some visible advantages over iFBP+ and

the regularized reconstructions. CS-sbs yielded a non-biased reconstruction that is shown in Fig. 4.10a.

A careful study of the top detail image indicates an orientation change of the streaks that are visible

below the skull and that originated from the contrast-enhanced vessels in Figure 4.9(a). The latter were

corrected by applying soft background subtraction. The subsampling streaks we now observe were more

likely caused by the skull, given their orientation. We used CS-tv and CS-w to generate non-biased

(experiments n◦7 and n◦9) and TV and wavelet penalties (experiments n◦8 and n◦10) reconstructions.

The quality of these reconstructions is compared in Fig. 4.10b and Fig. 4.10c for TV, and in Fig. 4.10d and

Fig. 4.10e for wavelet. These figures indicate that homotopy reconstructions are superior to regularized
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Experiment Algorithm Regularization Homotopy Final RMSD value

n◦1 iFBP+ 0.074

n◦2 CS-tv λtv = 10 0.059

n◦3 CS-tv λtv = 1 0.065

n◦4 CS-w λw = 10 0.098

n◦5 CS-w λw = 1 0.065

n◦6 CS-sbs λ
(s)
sbs = 3000 to 0 0.066

n◦7 CS-tv λ
(s)
tv = 3000 to 0 0.058

n◦8 CS-tv λ
(s)
tv = 3000 to 1 0.057

n◦9 CS-w λ
(s)
w = 3000 to 0 0.069

n◦10 CS-w λ
(s)
w = 3000 to 1 0.068

Table 4.2: Parameters of the sparsity constraint and RMSD values.

reconstructions, since mitigation of the streak artifacts is achieved without introducing unrealistic patches

or wavelet decoding artifacts. These observations are confirmed by lower RMSD values, provided in Table

4.2. Note that non-biased CS-w did not correct for the subsampling streaks which were corrected by CS-

sbs, but rather for high frequency streaks, regardless of their origin. Visual inspection of the numerical

simulations would lead us to favor CS-tv that targets a slight regularized fit to the data, rather than

an unbiased fit. In addition, note that the importance of a obtaining a regularized solution should be

reinforced by the presence of noise in the clinical data, a parameter that we did not simulate here.

4.5.2 Homotopy reconstruction for a low uniform sampling rate

We simulated the acquisition of projection data delivering 30 equiangularly distributed views over 180◦.

Existing regularization strategies result in a trade-off between a fitting term and a penalty. With 150

views, in the presence of very dense structures (e.g. metal implants, contrast-enhanced vessels), we

showed that the CS methodology allows for a more important mitigation of the streak artifacts than

regularization, while preserving FBP-like appearance. When dealing with strongly subsampled data, our

first aim is to get a solution that fits the projection data as much as possible. This suggests turning

to CS reconstruction that targets an unbiased fit to the subsampled data. We thus carried out CS

reconstructions relying on a homotopy strategy with soft background subtraction, TV minimization and

thresholding in the wavelet domain. Reconstruction settings are indicated in Tab. 4.3 and in Tab. 4.4.

Parameter Value

τ 0.3

S 25 backgrounds

I 4 iterations / background

Table 4.3: Generic parameters of iFBP-derived algorithms.

Figure 4.11 compares CS reconstruction results relying on different spatial sparsity assumptions.

Subsampling resulted in an iFBP+ reconstruction (Fig. 4.11(a)) that was deteriorated by a rotating

pattern of streaks, of which the strongest ones come from the injected vessels and the bony structures.

Soft background subtraction (SBS) corrected for streak artifacts coming from highly intense structures,
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(a) (b) (c) (d) (e)

Figure 4.10: Reconstruction results with homotopy strategies. First row: reconstructed image. Second

row: zoomed detail with HU range from 850 to 1230. Third row: zoomed detail with HU range from

600 to 1200. Reconstruction result of: (a) experiment n◦6. (b) experiment n◦7. (c) experiment n◦8. (d)

experiment n◦9. (e) experiment n◦10.

Experiment Algorithm CS hyperparameter

n◦1 iFBP+

n◦2 CS-sbs λ
(s)
sbs = 3000 to 0

n◦3 CS-tv λ
(s)
tv = 1000 to 0

n◦4 CS-w λ
(s)
w = 1000 to 0

Table 4.4: Parameters of the sparsity constraint.

while preserving high frequency information from FBP reconstruction. However, we notice that in the

region of air, at an intensity level inferior to the one of the soft-tissues, we get a reconstruction that is

similar to standard ℓ2 reconstruction. We also notice that the cerebellum appears not as resolved that in

FBP reconstruction. CS-tv corrected for streak artifacts and recovered the bony structures better than

CS-sbs. However, despite the use of a homotopy strategy, it still resulted in a patchy appearance which

would not be acceptable for the clinical practice.

We monitored the convergence for both CS-sbs and CS-tv. Curves of log dr with respect to the number

of iterations over the whole image are plotted in Fig. 4.12. CS-sbs and CS-tv achieved a discrepancy

level that is below the one of iFBP+, whose convergence is shown as a black dashed line. It reflects the

successful mitigation of streak artifacts by both sparsity constraints.
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1

2

1

2

(a) (b) (c) (d)

Figure 4.11: Subsampled reconstructions. First row: reconstructed image. Second row: zoomed detail

on injected vessels. Third row: zoomed detail on soft tissues. (a) iFBP+ reconstruction. (b) CS-sbs

reconstruction. (c) CS-tv reconstruction. (d) CS-w reconstruction.

4.5.3 Extension to non-ℓ1-norm constraints

Let us now replace TV minimization with anisotropic diffusion in a proximal splitting scheme with

iFBP and homotopy. Figure 4.13 shows the reconstructed image. The reconstruction is very close to

CS reconstruction using TV: high contrasts are preserved, while low contrasts tend to form piece-wise

constant regions. Small differences can be observed, although it is difficult to decide which operator

between TV and anisotropic diffusion yields the best reconstruction result. This result is particularly

interesting since it demonstrates that a reconstruction strategy that neither uses random measurements

nor relies on the minimization of a ℓ1-norm can provide to some extent the expected benefits of CS [75].

4.6 Uniform subsampling with clinical data

In this study, we investigate the tomographic reconstruction from 150 views only, since it is the least

favourable sampling case that can be met in clinical practice. Clinical data are acquired on an Innova

4100 C-arm system (GE Healthcare, Chalfont St. Giles, UK). The system records equiangular cone-beam

2D views at 30 frames/s during an approximately 200 ◦ rotation at 40 ◦/s delivering 150 views in total.

Reconstruction settings are indicated in Tab. 4.5.
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Figure 4.12: Convergence curves computed on the reconstructions displayed in Fig. 4.11.

Parameter Value

τ 0.95

S 20 backgrounds

I 1 iteration / background

Volume size 2563 voxels

Table 4.5: Generic parameters of iFDK-derived algorithms.

4.6.1 Subtracted data

The first dataset we study is a DSRA exam of cerebral vessels. A subtracted scan was provided by

subtraction of the mask scan from the contrast scan. Figure 4.14 displays a slice from reconstruction of

the full subtracted scan, in which sparse contrast-enhanced vessels and non-sparse perfused tissues (grey

areas surrounding the vessels) also referred to as parenchyma are visible. In this example, one sees that

the subtracted volume does not contain sparse areas only, which shows the importance of an unbiased

reconstruction. FDK reconstruction of Fig. 4.14a presented streak artifacts that are issued from the

vessels and are more prominent at the periphery. Both the positivity constraint (Fig. 4.14b) and SBS

(Fig. 4.14c) promoted sparsity of the reconstructed structures, thus reducing streak artifacts with respect

to FDK reconstruction. Roughly speaking, two steps can be identified in the streak removal mechanism

that is implemented in iFBP+:

• the positivity constraint removes negative streaks;

• while iFDK back-forward projection step removes the complementary positive streaks.
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1

2

1

2

(a) (b) (c)

Figure 4.13: iFBP with anisotropic diffusion. The strength of anisotropy is defined by the full width at

half maximum (fwhm). First row: reconstructed image. Second row: zoomed detail on injected vessels.

Third row: zoomed detail on soft tissues. (a) Reconstruction with fwhm = 10. (b) Reconstruction with

fwhm = 1. (c) Reconstruction with fwhm = 10 to 1.

On the other hand, visual analysis of the respective slices showed that iFDK+ reconstruction en-

hanced high-frequency information, which yields a noisy visual appearance. This effect disappeared

using CS− sbs reconstruction, that then compares favourably with FDK reconstruction. To confirm

this visual appreciation, we computed the mean and standard deviation in a region of interest of 930

voxels within these perfused tissues and found 116 ±142HU in Fig. 4.14b for positivity and 96 ±55HU
in Fig. 4.14c for SBS, a twofold Signal-to-Noise-Ratio (SNR) increase for CS− sbs over iFDK+ (1.8 vs.

0.8). Comparison of profile curves drawn in Fig. 4.15 through vessels revealed no differences in terms

of resolution. It is however obvious that less intensity variations in the background structures were

introduced by using CS− sbs. Hence, soft background subtraction (SBS) provided to a certain extent

the expected benefits of the CS theory: reduced streaks. Such gains would otherwise be achievable only

by increasing the number of projections, which was not possible in these clinical settings, rather than

increasing the X-Ray dose of each projection image.

4.6.2 Non subtracted data

In a second study we consider a clinical dataset which is a scan of about 150 views of slightly opacified

carotid arteries. The presence of a tooth metallic implant in the imaged data results in strong horizontal

streaks. Soft tissues show small streaks coming from the bones.

Figure 4.16 compares iFDK+ after S = 5 and S = 20 iterations, of which an axial slice is displayed
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(a) (b) (c)

Figure 4.14: Visual comparison between FDK, positivity constraint and SBS in the subtracted case. HU

range: 550 to 1050. (a) FDK reconstruction. (b) iFDK+ reconstruction. (c) CS− sbs reconstruction.

Figure 4.15: Intensity profile curves through the slice shown in Fig. 4.14.

in Fig. 4.16a and Fig. 4.16b respectively, to CS− sbs that is displayed in Fig. 4.16c. Considering the

positivity constraint only, we observed that the removal of the cone-beam artifact could not be obtained

after 5 iterations. After 20 iterations, the streaks were removed both by positivity and SBS.

Computation of the mean and standard deviation in a volume of interest of 4000 voxels located in

the soft tissues between the jaws and posterior to the teeth gave 803± 60HU for Fig. 4.16a, 787± 88HU
for Fig. 4.16b and 775± 49HU for Fig. 4.16c. SBS had the highest SNR (15.8 vs. 13.4 and 8.9), despite

the 20 iterations. We attribute this SNR improvement to the reduction of intensity of smaller streaks in

the soft tissues. Similar observations can be made in the sagital views (visual comparison of iFDK+ in

Fig. 4.17a with respect to CS-sbs in Fig. 4.17b) and in the coronal views (visual comparison of iFDK+

in Fig. 4.17c with respect to CS-sbs in Fig. 4.17d). Profile curves through the bony structures of the

axial slice presented in Fig. 4.16 are plotted in Fig. 4.18a, while those through the bony structures of the

sagittal slice presented in Fig. 4.17 are plotted in Fig. 4.18b. Their study confirmed the smoothing of the

background structures without loss of resolution. It also indicated a possibly slightly higher resolution

for the positivity constraint after 20 iterations, although possibly linked to the strong noise increase.

On the other hand, peak values over the profiles were not systematically higher in Fig. 4.16b than in

Fig. 4.16c.
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(a) (b) (c)

Figure 4.16: Visual comparison between positivity constraint and SBS in the non-subtracted case. Axial

view. HU range: 550 to 1050. (a) iFDK+ reconstruction – 5 iterations. (b) iFDK+ reconstruction – 20

iterations. (c) CS− sbs reconstruction – 20 iterations.

(a) (b)

(c) (d)

Figure 4.17: Visual comparison between positivity constraint and SBS in the non-subtracted case. HU

range: 550 to 1050. Sagittal view: (a) iFDK+ reconstruction – 5 iterations, (b) CS− sbs reconstruction

– 20 iterations. Coronal view: (c) iFDK+ reconstruction – 5 iterations, (d) CS− sbs reconstruction –

20 iterations.

4.6.3 Cone-beam subsampling

In the previous clinical case, streaks were corrected despite the low number of views. This implicitly

assume that the streaks would not have been visible with an acquisition at a higher frame rate. In
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(a) (b)

Figure 4.18: Intensity profile curves for comparison of positivity constraint and SBS in the non-subtracted

case: (a) through the axial slices shown in Fig. 4.16, (b) through the sagittal slices shown in Fig. 4.17.

the following, we consider a clinical non-injected acquisition of 600 views of the head and provide CS

reconstruction with homotopy of those 600 views as well as subsets of the views so as to recreate uniform

subsampling. Figure 4.19 demonstrates that two types of streaks remain at 600 views:

• so-called metal artifacts which correspond to data that are corrupted by very high noise due to the

density metal,

• CB artifacts since the circular orbit does not fully sample the objects whatever the number of

views.

Only the CB artifacts get corrected by CS. In addition, it is shown in Fig. 4.20 that streaks originated

from an object outside the FoV, that appear for low sampling rates, cannot get corrected by CS. In

Fig. 4.21 and Fig. 4.22, the CB artifact (horizontal black streak) is always corrected by CS whatever

the number of views. The correction obtained with the TV penalty is however superior to the one with

SBS at very low number of views. In particular, we observe that sinuses are blurred with SBS (at the

air-tissue interface), while their resolution is preserved with TV as we observed on the simulated data.

This can also be seen in Fig. 4.23 where reconstruction with TV yields, in particular, better depiction

of the alveolar structures of the temporal bone than SBS.
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(a) (b) (c) (d)

Figure 4.19: CS reconstruction and metal artifacts. HU range: 750 to 1350. First row: iFDK+ recon-

struction. Second row: CS− sbs reconstruction. Third row: CS− tv reconstruction. Sampling rate: (a)

600 views. (b) 150 views. (c) 75 views.
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(a) (b) (c) (d)

Figure 4.20: CS reconstruction and sampling artifacts originated from an object outside the FoV. HU

range: 950 to 1200. First row: iFDK+ reconstruction. Second row: CS− sbs reconstruction. Third row:

CS− tv reconstruction. Sampling rate: (a) 600 views. (b) 150 views. (c) 75 views.
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(a) (b) (c) (d)

Figure 4.21: CS reconstruction and CB artifacts (1). HU range: 750 to 1350. First row: iFDK+

reconstruction. Second row: CS− sbs reconstruction. Third row: CS− tv reconstruction. Sampling

rate: (a) 600 views. (b) 150 views. (c) 75 views.
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(a) (b) (c) (d)

Figure 4.22: CS reconstruction and CB artifacts (2). HU range: 500 to 1700. First row: iFDK+

reconstruction. Second row: CS− sbs reconstruction. Third row: CS− tv reconstruction. Sampling

rate: (a) 600 views. (b) 150 views. (c) 75 views.
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(a) (b) (c) (d)

Figure 4.23: CS reconstruction and image quality. HU range: 500 to 1700. First row: iFDK+ recon-

struction. Second row: CS− sbs reconstruction. Third row: CS− tv reconstruction. Sampling rate: (a)

600 views. (b) 150 views. (c) 75 views.
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4.7 Limited range subsampling with clinical data

We now consider the case of data that are corrupted by contrast variations in the injected vessels, the

acquisition pattern associated to a phase is reduced to a limited angle. As discussed in Sec. 2.1.3, FDK

reconstruction of limited range data is strongly artifacted and should be avoided by reconstructing a full

range of inconsistent data instead. Here we challenge this strategy by applying the ℓ1-penalized iFDK

with homotopy to projection data with limited angular coverage.

4.7.1 Subtracted data

We consider the same DSRA exam of cerebral vessels that was used for producing the reconstruction

results presented in Fig. 4.14. During the acquisition of the contrast scan, the right vertebral artery (RVA)

did not appear opacified during the first half of the rotation. Figure 4.24 focuses on RVA subtracted

reconstruction (note that RVA is the most left vessel in the slices). RVA late opacification resulted

in a FDK reconstruction (Fig. 4.24(a)) that was deteriorated by horizontal streaks due to the lack of

opacification in the lateral views. In addition, the RVA measured intensity (peak: 4540HU) was half that

of the left vertebral artery (LVA, peak: 9929HU) which was seen fully opacified during the whole scan.

The constrained iFDK reconstructions (Fig. 4.24(b) for positivity and Fig. 4.24(c) for SBS) recovered the

RVA from the subset of fully opacified projections (75 views from 100 to 200◦) both in terms of shape

and intensity (RVA peak: 7541HU with positivity and 9697HU with SBS) as confirmed by intensity

profile drawn in Fig. 4.25.

RVA
LVA

(a) (b) (c)

Figure 4.24: Reconstruction results in the subtracted case (HU range: -1000 to 6000). (a) FDK recon-

struction of 150 views over 0−200 ◦. Reconstruction of 75 views over 100−200 ◦: (b) f̃iFDK+ reconstruc-

tion, and (c) f̃CS−sbs reconstruction.

4.7.2 Non subtracted data

Application on non-subtracted data is shown in Fig. 4.26. The same slice as in Fig. 4.24 was reconstructed

without subtraction. Besides what we already noted in the subtracted case (Fig. 4.24(a)), the non-

subtracted FDK reconstruction (Fig. 4.26(a)) showed that the horizontal and vertical black streaks

associated to the RVA hid the underlying tissues. Limitating FDK reconstruction to the second half

of the scan (Fig. 4.26(b)) yielded no visual improvement of the RVA while degrading both LVA and

background. On the contrary CS-sbs (Fig. 4.26(c)) recovered both arteries, as in the subtracted case.

None of these solutions is entirely satisfactory because they do not recover the non-sparse background

which can only be reconstructed from the entire scan.
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Figure 4.25: Profile curve through the slice shown in Fig. 4.24.

RVA
LVA

(a) (b) (c)

Figure 4.26: Non subtracted RVA (HU range: 0 to 2400). (a) FDK reconstruction of 150 views over

0−200 ◦. (b) FDK reconstruction of 75 views over 100−200 ◦. (c) CS-sbs reconstruction of 75 views over
100−200 ◦.
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4.8 Discussion

We proposed in this study algorithms that enable the generation of reconstruction results mitigating

cone beam aliasing artifacts with a relatively low computational cost. Another key aspect in tomographic

reconstruction is noise management. To take noise into account, the computation of the fidelity term

has often been handled differently to the least-square approach:

• multiplicative ART (MART) relies on an entropic criterion [54];

• statistical reconstructions with Poisson laws are based on the maximization of the log-posterior

probability (maximum a posteriori or MAP) among which the expectation-maximization (EM)

algorithm [36, 119, 35].

The validity of CS is established with the least square data fit only. The generation of sparse solutions

with other data fit criterion has been explored in [137, 130, 106] and is beyond the scope of this work.

Our approach is applicable to any tomographic dataset to provide to a certain extent the expected

benefits of compressed sensing theory: reduced streaks. Such gains would otherwise be achievable only

by increasing the number of projections, which is not possible in these clinical settings, rather than

increasing the X-Ray dose of each projection image. The linear decrease of the soft background subtrac-

tion threshold provided superior reconstruction of the non-sparse background of sparse high-intensity

structures, resulting in more uniform tissue depiction when affected by streaks from either teeth, bones

or opacified vessels, at equal resolution. It has been shown to efficiently mitigate subsampling streaks

due to high-intense structures, but it is less efficient when dealing with artifacts originating from soft

tissues. In addition, it is not symmetrical: it preserves positive peaks (i.e. the contrast-enhanced vessels)

but not the negative ones (air-soft tissue interface). The best reconstruction was obtained using TV with

homotopy. Total variation is symmetrical and has been proven to remove streak artifacts efficiently, but

at the expense of a patchy look. It is better than SBS for very low number of views. Note that streaks

originating from metal or objects outside the FoV cannot be removed.

We used a very simple approach for the thresholding of wavelet coefficients and observed that re-

construction results are corrupted by compression artifacts. When the sampling is more pronounced,

thresholing of the wavelet transform is not able to deal with severe streaking artifacts: in particular, it

captures the vessels, but is not able to discriminate streaks from other structures (while TV does), and

hence is not applicable to less favourable subsampled problem. However, we are aware this implementa-

tion is surely not optimal and more complex approach such as translation invariant wavelet frame [90]

or tree frame1[71] could be considered for some improvements.

With limited range, none of the proposed CS approaches recovers the background, only a full 180◦

reconstruction can restore it. This is the subject of the next chapter.

1Noticing that the coefficient of a given scale is likely to be greater than the coefficient of the same orientation in the
same spatial location at finer scales, if a coefficient is set to zero, its descendens at finer scales are also set to zero.





Chapter 5

Reconstruction of dynamic data

The generic reconstruction framework that we discussed in the previous section finds an important

application in dynamic imaging. We formulated in Sec. 2.1.3.3 the problem of dynamic data acquisition

with C-arm systems as a time-sequential sampling problem, where only one view can be taken at a time

and the time interval between successive views is related to their angular interval. The reconstruction

artifacts that arise due to this insufficient acquisition rate are then clearly identified as subsampling

artifacts. This chapter aims at extending the proposed reconstruction framework for the correction of

motion artifacts in rotational angiography, assuming that the support of the temporal variations is sparse

in both the spatial and the temporal domains. Redundancy within time series is exploited either for

imaging moving objects or for imaging objects whose contrast is rapidly changing, such as in dynamic

contrast uptake studies, and contrast angiography.

5.1 Dynamic problem statement

To begin this chapter, let us shortly introduce the notations that are useful for describing the reconstruc-

tion of dynamic data. Let us describe a dynamic object by set of volumes fdyn ∈ R
K×M , where volume

fm ∈ R
K refers to a given phase of the object among M possible phases:

fdyn =






f0
...

fM−1




 .

Coefficient (fm)k is the linear attenuation at voxel k in volume fm. The temporal variations encountered

Scan start Scan end

f0

f1

f0

Figure 5.1: Dynamic data acquisition model: the temporal variations encountered during the acquisition

within a 2-phase object are modelled as a succession of phase f0 (in light gray) and phase f1 (in dark

gray).

within fdyn during the acquisition correspond to a set of phases fm. The key point in this context of

C-arm imaging is that the time series is sampled by a unique acquisition mode of N angular positions,

for instance in the 2-phase case illustrated in Fig. 5.1:

t = {f0, f0, f0, f0, f1, f1, f0, f0, f1, f1, · · · } .
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We split measurement vector p into M subsets so that vector pm ∈ R
J×Nm contains the Nm projections

at the angular positions assigned to phase fm only. For simplicity of notation, we define measurement

vector pdyn such that:

pdyn =






p0
...

pM−1




 .

Let us then denote Rm ∈ R
J×Nm × R

K the subset of projection matrices from R relating phase fm to

subset pm (i.e. such that pm = Rmfm) and Rdyn the block-diagonal matrix such that:

Rdyn =






R0

. . .

RM−1




 .

With these notations, the dynamic reconstruction problem can be written:

pm = Rmfm
pdyn = Rdynfdyn

. (5.1)

Phase-wise FBP reconstruction f̃dyn,FBP ∈ R
K×M is obtained by phase backprojection RT

dyn of the

filtered projections:

f̃dyn,FBP = RT
dynDpdyn, (5.2)

or minimization of the least-square criterion:

argmin
fdyn∈RK×M

{
1

2
‖Rdynfdyn − pdyn‖22,D

}

︸ ︷︷ ︸

= Qdyn(fdyn)

≡
M−1∑

m=0

argmin
fm∈RK

{
1

2
‖Rmfm − pm‖22,D

}

︸ ︷︷ ︸

= Qm(fm)

(5.3)

while static FBP reconstruction f̃static,FBP ∈ R
K corresponds to the weighted sum of the phase-wise

FBP reconstructions:

f̃static,FBP = RTDp =

M−1∑

m=0

wmf̃m,FBP, (5.4)

where wm =
π

N
· Card {Em} as defined in Sec. 2.1.3.

5.2 Motion in rotational angiography

In this section, we give an overview of the reconstruction strategies that have been previously proposed

in the literature for the management of motion in rotational angiography.

5.2.1 Motion compensation

It is possible to reduce the number of unknowns of the linear system given in Eq. (5.1) by modelling the

motion between phases. Let us denote Tm : RK 7→ R
K the time-dependent transformation that models

the deformation of phase fr that is arbitrarily chosen as reference into phase fm and T −1m its inverse.

With these notations, let us denote T : RK 7→ R
K×M the transformation operator such that:

fdyn = T fr =






T0fr
...

TM−1fr




 .
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Parametric models are employed to address global deformations with a small number of degrees of

freedom. To compensate for rigid body motion, Lin et al. proposed in [81] an iterative method that

estimates the centroid of the imaged object from CB projections. To compensate for the respiratory

motion, Lu et al. [82] proposed to rescale the projection data by means of scaling parameters that are

derived by tracking markers or fiducial points and then apply standard FBP, while Crawford et al. [29]

rather developed a dedicated algorithm that incorporates a magnification model into the reconstruction.

To address local displacements of the vessels that are deformable structures, non-linear (dense) models

are favoured. In particular, Blondel et al. [13] proposed a motion-compensated reconstruction of the

coronary arteries for C-arm CT. The approach consists in generating a 3D model of the artery centrelines,

from which a 4D motion vector field is estimated; the vector field is then used to modify the projection

matrices. It has also been successfully applied to the reconstruction of coronary stents [102]. The

estimation of the 4D models relies on the detection of the arteries within the 2D projections, that are

then tracked over the acquisition. This method cannot be generalized to other anatomies where the

vasculature is either too complex, as in the brain, or too attenuated by the surrounding structures as in

the liver.

We have seen in Sec. 2.3.4.3 that it is generally not possible to incorporate motion models into the

analytical reconstruction formulas. Reconstruction strategies rather handle motion compensation than

phase-wise reconstruction post-processing. Let us assume that local correction is a valid approximation

in tomography, that is to say motion compensation can be incorporated within the backprojection step

by shifting the voxel to be reconstructed according to the motion displacement field. It follows that

motion-compensated reconstruction is the weighted sum of the deformed phase-wise FBP reconstructions

[117, 80]:

f̃static,FBP+T = f̃r,FBP+T ≃
M−1∑

m=0

wmT −1m f̃m,FBP. (5.5)

Such a local correction does not handle the global artifacts that remains in other regions [80], i.e. regions

that are static but still suffer from the artifacts that are generated by the moving structures. An iterative

strategy is thus preferred to incorporate the motion model, that yields a reconstruction with superior

motion artefacts correction [79].

The level of complexity of current motion models is however not adequate for addressing standard

C-arm imaging marred by accidental motion artifacts or contrast flow variations. More importantly,

as illustrated in Fig. 5.2, the perfect knowledge of the motion does not necessarily induce sufficient

angular sampling of the object and hence, does not guarantee the feasibility of the reconstruction. In

this toy example, the 2D phantom of Fig. 5.2(a) is simulated in rotation at the same speed as the

system gantry acquiring measurements in parallel geometry. The FBP reconstruction from the motion

corrupted projection data set of Fig. 5.2(b) yields the artifacted volume shown in Fig. 5.2(c), while the

motion-compensated reconstruction is the FBP reconstruction of a single sinogram profile as illustrated

in Fig. 5.2(d). It is obvious that perfect knowledge of the motion does not improve the angular range

and hence, does not enable the tomographic reconstruction of the original phantom.

5.2.2 Motion reconstruction

Compressed sensing reconstructions have been investigated for dynamic reconstruction in cardiac imaging

[58, 59] and radiotherapy [9]. We have shown in Sec. 4.7 that, except for the particular case of subtracted

data, the CS reconstruction of uniformly subsampled volumes does not recover the background structures.

Consequently, a CS phase-wise strategy solely relying on spatial penalties generally does not allow for

reconstructing dynamic data. Sparsity must be expressed in terms of both spatial and temporal penalties.

The temporal sparsity is illustrated on the angiographic sequence that we presented in Sec. 3.4.2.2, of

which we display a zoomed detail of the position of the catheter for two different time-points in Fig. 5.8(a),

as well as the sinogram of the difference in Fig. 5.8(b). Temporal sparsity, that is applicable even in

absence of a motion model, was explored with CS, yielding a sparse approximation to the solution through
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(a) (b)

(c) (d)

Figure 5.2: Toy example. (a) 2D numerical phantom. (b) Simulation of the sinogram acquired in parallel

geometry with 150 integral lines while the phantom is rotating at the same speed as the system gantry.

(c) FBP reconstruction. (d) Motion-compensated reconstruction.
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spatial constraints (typically wavelets or total variation filtering) and temporal redundancy [122, 26, 67]

and temporal sparsity in the Fourier domain considering periodic variations for cardiac MRI [85].

Because the temporal variations within the anatomy are localized, the motion and contrast variations

of the contrast-enhanced vessels in rotational angiography can be described by means of a two-layer

model:

• a static background that is common to all phases fm;

• a dynamic layer that contains structures in motion and occluding the background. The support of

the moving structures is specific to each phase fm. This layer is sparse.

The collected views thus correspond to the projection of the moving structures superimposed on the

projection of the static background. The key idea consists in identifying and differently reconstructing

the voxels of each layer:

• voxels that belong to the static background are reconstructed from all the measurements (i.e. the

full scan);

• while voxels that belong to the dynamic layer are reconstructed from measurements of a single

phase.

Two cases can be considered:

• the layers can be separated in the projection domain: given a segmentation of the moving ob-

jects in the 2D views, it would be possible to suppress the projection associated to these objects

and to perform a reconstruction of the background only. This strategy requires explicit vessel

segmentation;

• the layers superimposition is lost in the projection domain and the redundancy of the static struc-

tures is used instead: provided an estimation of the background, it would be possible to detect the

moving structures by subtracting the reprojection of the background from the projection data.

Redundancy of the background structures is similar to video compression (e.g. MPEG-1), that uses key

frames of a video sequence to encode for the (sparse) differences of all frames with respect those key

frames, possibly relying on motion estimation to reduce sparsity even further.

5.2.2.1 Layer separation in the projection domain

Non-linear identification of the support of the moving structures directly in the 2D views was proposed

in the auto-adaptative phase-correlated (AAPC) reconstruction that was developed by Bergner et al.

[10] in the clinical context of radiotherapy. In this approach, the motion field between two projections is

computed through an optical flow algorithm. Optical flow techniques rely on a local intensity conservation

postulate (i.e. assumption that intensity remains constant from one view to the other), an assumption

that is not valid with (projective) X-ray images. The optical flow algorithm used in AAPC relies on a

global intensity conservation postulate instead (i.e. assumption that the sum of all intensities remains

constant from one view to the other). However its use is limited to non-truncated data. In the case of

truncated data, the measurements also include attenuations from objects out of the imaged FoV, that

may not be the same for all angles. The velocity change of direction is detected so that a pixel is said

static if its velocity has a direction quasi-constant in a given observation window (to take the rotation of

the acquisition system into account). In this way, each pixel having a velocity with a non-null component

along the acquisition system rotation axis is considered in motion. For more robustness with respect

to noise, only the most important magnitudes are kept. It is a suitable criterion for cyclically moving

objects. Based on this segmentation, each pixel in a view is estimated as being either motionless or

motion-affected and is assigned a weight. Pixels that are assigned too low a weight are dynamically

compensated by interpolating the gaps within the backprojection integral with trapezoids using the high

weight values. Standard FBP reconstruction is finally performed.
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5.2.2.2 Redundancy of the background

Generally we do not have an external estimate of the background. Therefore we have to estimate the

background directly from the data set. In particular, in the case of sequences with numerous and strong

artifacts, obtaining a reference image is as difficult as segmenting the sequence, in particular in the case of

noisy sequences. A simple idea is to compute a prior image, which has been investigated in the following

works.

Mc Kinnon-Bates (MKB) An iterative method that aims at mitigating motion artifacts is the two-

step algorithm algorithm that was proposed by McKinnon and Bates [91], referred to as MKB. The

static FBP reconstruction f̃FBP is produced, then forward-projected at the same angles as those of the

original projection data in order to generate a set of views that is contaminated with the motion artifacts.

The difference due to the motion is enhanced by subtraction of the computed views from the original

projection data, then reconstructed for each phase using phase-wise FBP. The difference images are

added to static FBP to generate the final phase-wise reconstruction:

f̃m,MKB = f̃static,FBP +RT
mD(pm −Rmf̃m,FBP) (5.6)

In the static regions, the final phase-correlated images differ little from static FBP (nominal zero values),

while in regions where motion is present, the final reconstruction more closely resembles the phase-wise

FBP. One limitation of the MKB algorithm is that, although it provides an efficient means of mitigating

the streaks that are caused by static structures, it cannot remove the streak artifacts of moving structures

so that corrected cardiac CT is not clinically acceptable. Another limitation of the MKB algorithm is

that the noise in the corrected images is then primarily determined by the subsampled phases. Thus,

the final image has a lower contrast-to-noise ratio (CNR). Some refinements for noise suppression have

been proposed by Garden et al.[51]. A final limitation is the presence of truncation artifacts due to the

forward-projection operation for which Zheng et al. proposed data interpolation [148]. The McKinnon-

Bates (MKB) algorithm was successfully used to correct for streaking artifacts due to the respiratory

motion in lung data for image-guided radiation therapy[78].

Highly constrained backprojection (HYPR) Mistretta et al. [92] proposed for DSA or digital

subtraction rotational angiography (DSRA) an empirical approach, called HighlY constrained back-

PRojection (HYPR). It uses a so-called ‘composite image’ that is actually a static FBP reconstruction

f̃static,FBP to constrain the frame-wise reconstructions. To this aim, the composite image is forward-

projected, then backprojected. Backprojection of the projection is related to a given phase. Note that

there is no use of the ramp filter so as not to enhance high frequencies that would make the weighting

explodes. Each view is assigned a weighted image that is defined as the ratio projection over projection

of the composite image. The motion compensated image is defined as the product of the prior image

by the weighting map. HYPR is claimed to work for the reconstruction of vascular structures, but lacks

rigorous mathematical background.

Prior image constrained compressed sensing (PICCS) Formalizing the FBP static reconstruc-

tion used in MKB to the more general idea of a prior image –estimation of the static background

structures–, jointly with ℓ1-norm minimization that allows for discriminating the static support from

the varying support, the Prior Image Constrained Compressed Sensing (PICCS) algorithm has been

proposed by Chen et al. [26, 133, 25] to pool together inherently incoherent information, and recover

the dynamic variations that affected the data. This approach is particularly seducing since it relies on

using a temporal constraint based on a prior image (that may be the static reconstruction), so that

the optimization process, schematically, determines motionless areas from the complete data set, while

motion-blurred areas are determined from subsampled reconstruction similar to what is done in MKB.

With respect to MKB, PICCS allows for the easy incorporation of additional prior information into the
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optimization process, and hence the proposed approach includes total variation minimization for mit-

igating appearance of subsampling streak artifacts in the reconstruction results. A comparative study

demonstrated significantly higher quality using the PICCS algorithm [9]. Though this idea of compar-

ing a reference image with the current image is very intuitive, it is not always clinically applicable. In

particular, we have seen in Sec. 3.2 that with intraarterial contrast injection, motion blur is not the only

degradation present in the standard FBP static reconstruction: any part of the image may be degraded

by intense streaks due to the presence of inconsistent high-intensity vessel projections in the data, making

the static reconstruction a poor estimation of the background structures. In this work, we shall propose

a generalization of the PICCS algorithm that is adapted to rotational angiography with intraarterial

injection.

5.3 Compressed sensing for digital subtraction rotational an-

giography

We have seen that CS enables a more efficient use of the collected samples. It also suggests to redesign

the acquisition protocol. Let us explore this aspect of CS in the particular case of DSRA.

5.3.1 Acquisition protocols

Let us consider a protocol that collects N equiangularly spaced views for the contrast and mask volumes.

Homogeneous protocol To reconstruct a satisfying subtracted volume, the mask and contrast scans

are currently collected with the homogeneous protocol that is schematized in Fig. 5.3(b). In this protocol,

the trajectories of the mask and the contrast scans sample the same set of angular positions:

ΦC = ΦM = {φn = n ·∆φ | n = 0 · · ·N − 1} (5.7)

The acquisition with identical parameters allows for the straightforward removal of redundant background

structures and their associated streaks as shown in Fig. 5.4(a). Filtered backprojections of the mask and

the contrast suffer from the same undersampling artifacts and the same noise level. They cannot be

combined a posteriori to either reduce noise or artifacts because vessel streaks would then propagate into

the mask volume.

Heterogeneous protocol Langet et al. [76] proposed a novel acquisition protocol for DSRA that

is schematized in Fig. 5.3(b) and in which each scan samples two sets of interleaved angular positions

defined by:
{

ΦM = {φn = n ·∆φ | n = 0 · · ·N − 1}
ΦC = {φn = n ·∆φ+ δ | n = 0 · · ·N − 1} (5.8)

where δ =]0,∆φ[ is the angular shift. Acquiring heterogeneous scans allows for increasing angular

sampling and therefore image quality of the non-opacified structures through a simple average operation

(since they are sampled more often). In particular, with δ = 0.5∆φ, background structures are sampled

with 2N equiangular-spaced views, whereas the vessels are sampled with N equiangular-spaced views

as illustrated in Fig. 5.5(c) with respect to Fig. 5.5(a) and Fig. 5.5(b). However, as can be seen in in

Fig. 5.5(c), vessel streaks cannot be removed. In addition, when subtracting the two volumes, the streak

artifacts corresponding to the nonopacified structures are amplified as shown in Fig. 5.4(b), therefore

considerably altering the reconstruction of the subtracted volume.

Alternative protocols Sampling improvement could be achieved by acquiring the mask with twice

as many frames as the opacified. Mask projections are thus acquired at all opacified angles and at all
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intermediate angles: 





ΦM =

{

φn = n · ∆φ

2
| n = 0 · · · 2N − 1

}

ΦC = {φn = n ·∆φ | n = 0 · · ·N − 1}
This however would increase the total dose by 50%. On the other hand, such a method seems to offer the

possibility of 2D subtraction since there would exist a mask image for each opacified image. However,

C-arm CT systems are operated in 3D at their maximum frame rate. Therefore, in order to double

the number of frames of the mask scan, the mask rotation speed must be divided by two. If mask and

opacified rotation speeds differ, there is no guaranty that it will be possible to acquire a mask image at

the exact same positions as the opacified one. Therefore, 2D subtraction is not guaranteed in practice.

The same goals could be achieved through the use of a prior examination obtained from a separate

protocol possibly with another modality such as CT or MRI, from which a high-resolution mask can be

computed. The fundamental difference with our approach is that registration is required when using a

prior examination, which is a difficult problem in itself, whereas we assume here acquisition with a single

protocol fast enough so that the patient can be maintained still so that registration is not necessary.

fMfC

Scan start Scan end

fM

fC

Scan start Scan end

(a) (b)

Figure 5.3: DSRA acquisition protocol design. The mask angular sampling pattern is plotted with

dashed gray arrows, while the contrast angular sampling pattern is plotted with dashed black arrows.

(a) Homogeneous acquisition: contrast and mask scans sample the same set of equiangularly spaced

positions. (b) Heterogeneous acquisition with δ = 0.5∆φ: contrast and mask scans sample two sets of

equiangularly spaced interleaved positions.

5.3.2 Two-phase CS reconstruction algorithm

Clearly DSRA is a particular case of dynamic rotational angiography, in which the collected data encode

for two phases:

• the mask phase fM ∈ R
K that is imaged without vessel enhancement;

• the contrast phase fC ∈ R
K that is imaged while the vascular structures in the FoV are fully

opacified.

Let us denote fS ∈ R
K the subtracted volume that is obtained by subtraction of the mask from the

contrast volume:

fS = fC − fM .

Using this dynamic interpretation, we define:

fdsra =

(
fC
fM

)

,

and the reconstruction problem now fits in Eq. (5.1) with standard iFBP reconstruction computed in

Eq. (5.3).
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(a) (b)

Figure 5.4: Impact of the acquisition protocol on the subtracted volume (N = 75 views). (a) FDK recon-

struction for the homogeneous protocol: the redundant background structures and the associated streaks

are removed. (b) FDK reconstruction for a heterogeneous protocol (δ = 0.5∆φ): streaks associated to

the background structures cannot be removed. Vessel streaks remain with both protocols.

(a) (b) (c)

Figure 5.5: Background sampling improvement with a heterogeneous protocol: each scan samples

N = 75 views and angular shift δ = 0.5∆φ. (a) FDK reconstruction of the mask volume. (b) FDK

reconstruction of the contrast volume. (c) A posteriori combination of the mask and the contrast volumes:

the background sampling is doubled, but vessel streaks remain.
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Temporal penalty Assuming that the contrast-enhanced vessels that are contained within the sub-

tracted volume fS are naturally sparse structures (see Sec. 4.4), we address the DSRA reconstruction by

promoting sparsity of fS or, symmetrically, redundancy of the nonopacified structures captured in both

the mask and the contrast scans, whatever the acquisition protocol. To mix background information

from the contrast and the mask without losing vessel quantification, we define an orthonormal temporal

transform Ht such that fS is an isolated component of product Htf . Hence, Ht is defined as the operator

associated with the 1D Haar wavelet transform:

Ht =

(1

2

1

2
1 −1

)

It follows:

Htfdsra =

(fC + fM
2
fS

)

.

Subtracted volume fS is captured by the detail subband of the Haar wavelet transform. Thus, CSt
reconstruction can be handled as a joint iterative reconstruction of the contrast and the mask volume,

while maintaining a sparse constraint of their coupling through Ht. Moreover, positivity of all three

volumes fM , fC and fS is ensured.

(

f̃dsra,χt

)

λt

= argmin
fdsra∈RK×2

{

Qdsra(fdsra) + ι+(fdsra) + λt‖fS‖1 + ι+(fS)
︸ ︷︷ ︸

= λt · χt(fdsra)

}

, (5.9)

where Qdsra(fdsra) is the data fidelity term as in Eq. (5.3). As presented in Sec. 4.2.2, the proximal

operator of χt(fS) is soft background subtraction. Since the sparsity assumption on the subtracted

volume is valid, a regularization strategy is proposed and λt is assigned a fixed value. Reconstructing

a sparse subtracted volume implies it cannot contain streaks. As a consequence, these streaks are also

removed from the mask and opacified volumes. Such an approach eliminates the need for identical

sampling of the mask and the contrast scans.

Spatial penalty The maximal sampling that can be achieved for fC and fM cannot exceed the com-

bination of the mask and the contrast sampling, which may still result in a subsampled problem. To

remove streaks from the contrast volume and prevent the transfer of vessel-related information (including

streaks) into the mask, since both volumes are not sparse, we penalize both the mask and the contrast

volumes ℓ1-norms using a spatial sparsity constraint. Here we propose to combine the temporal sparsity

constraint with soft background subtraction, and thus CSsbs+t reconstruction problem can be constrained

with the following penalty:

(

f̃dsra,χsbs+χt

)

λsbs,λt

= argmin
fdsra∈RK×2

{Qdsra(fdsra) + λsbs · χsbs(fdsra) + +λt · χt(fdsra)} (5.10)

A set of decreasing λ
(s)
sbs values, as described in Sec. 4.36, is used. Note that any proximal operator

proxχA
that promotes spatial sparsity of the data can replace SBS (e.g. TV minimization with A = ∇):

(

f̃dsra,χA+χt

)

λA,λt

= argmin
fdsra∈RK×2

{Qdsra(fdsra) + λA · χA(fdsra) + λt · χt(fdsra)} (5.11)

5.3.2.1 Reconstruction results

The following investigates image quality of subtracted rotational angiography by using heterogeneous

scans with adequate sparsity-based reconstruction.
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Study on Simulated Data For our simulation, we used a 512 × 512 cerebral CT cross-section as

mask image. We simulated the contrast image by adding to the mask synthetic disks that represent

opacification. The values vary from 2000 to 3000HU for the simulated injected vessels and around

1200HU for the simulated parenchyma, while soft tissue values (around 1000HU) and bone values

(around 2000HU) are those of the original CT slice. We produced interleaved mask and contrast scans

in parallel geometry from 150 integral lines that are equiangularly spaced over 180◦ with angular shift

δ = 0.6◦ for the contrast scan. We compare the reconstruction quality of the background structures in

Fig. 5.6. Standard reconstruction of the mask with a double sampling (300 views) is shown in Fig. 5.6a

as reference: its streak level is the lowest level that can be achieved with the approach we developed

(dr = 9HU). Subsampled standard reconstruction (150 views) yields streak artifacts that, in particular,

makes cerebral sulci visualization difficult, as shown in Fig.5.6b. This degradation was confirmed by

RMSD value dr = 25HU (see Sec. 3.1.4.3 for RMSD definition). The contrast image (see Fig.5.6c)

presents additional streaks due to the injected vessels. Figure 5.6d displays mask reconstruction penalized

by the temporal constraint χt(fdsra) only with weight λt = 5. It allows for removing the background

streaks and for recovering a background resolution similar to the reference one. Nevertheless, we notice

that a small amount of the highest contrasted structures (i.e. the injected vessels) is transferred from

the contrast to the mask, and so do the very thin associated vessel streaks, which affect the whole

image (dr = 15HU) and are well visible near the skull bone on the right of the image. Such a transfer

is not observed for lower opacification contrasts (e.g. parenchyma). Vessel marks and streaks are not

visible anymore in Fig.5.6e that was produced with CSsbs+t while using a spatiotemporal penalty. Streak

level was dr = 11HU, which confirms the effective image quality improvement. True vessel intensity is

recovered, which would not be the case if we simply computed the average reconstruction of the mask

and the contrast volume. For all reconstructions, sparsity of the subtracted volume (not shown here) is

preserved by construction: it perfectly fits the sparsity model, an assumption which will no longer hold

for real data.

Study on Clinical Data In DSRA routine, the C-arm system records projections at 30 frames/s

during an approximately 200 ◦ rotation at 40 ◦/s delivering 150 views in total. Since there exists no

clinical protocols with interleaved scans, we built an interleaved acquisition pattern with 75 views for

each scan by taking one view every two views with a shift of one view when starting the contrast scan

as illustrated in Fig.5.3(b). Figure 5.7 compares standard reconstruction (iFDK+, displayed in the first

row) and CSsbs+t (displayed in the second row). Similarly to previous simulations, our algorithm yields

significantly fewer streaks than standard reconstruction at half sampling in clinical data as well. The

resulting resolution improvement is best seen in the petrous part of the left temporal bone (right side of

the slice, detail zoomed in Fig.5.7b) that contains the inner ear: thin details such as tympanic cavity,

canals, and sutures are more accurate. Computation of the mean and standard deviation in a region

of interest of 900 voxels within soft tissues confirms these observations: 1308 ±243HU is found for

standard reconstruction, while 1077 ±166HU is found for our reconstruction, which corresponds to a

20% Signal-to-Noise-Ratio (SNR) increase (6.5 vs. 5.4). Note that 1116 ±112HU corresponding to a

SNR value of 10.0 is found for standard reconstruction with 150 views (not shown here). Looking at the

subtracted volume shown in Fig.5.7c, we notice that even if our approach yields sparser structures than

standard reconstruction at half sampling, the whole volume is not sparse, which limits the background

mix between the mask and the contrast volumes.

5.3.3 Discussion

The results that were obtained on both simulated and clinical data showed that our approach outperforms

standard reconstruction in terms of background restoration and streak removal. Moreover, this quality

improvement is performed at a reasonable cost of 20 iterations and a small change in the acquisition

protocol so that both scans sample interleaved angular positions. Vessels reconstruction with a prior of

sparsity is not a new idea, and it is being used for reconstructing sparse structures. Our strategy takes
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(a) (b) (c) (d) (e)

Figure 5.6: DSRA reconstruction from simulated data. HU range: 1020 to 1100. (a) Mask iFBP+

reconstruction with double sampling (300 views). (b) Mask iFBP+ reconstruction. (c) Contrast iFBP+

reconstruction with simulated parenchyma and injected vessels. (d) Mask CSt reconstruction with λt =

5HU. (e) Mask CSsbs+t reconstruction with λt = 5HU.

advantage of a sparse prior, despite the fact that the two scans corresponds to different objects and that

neither the mask nor the opacified volumes are sparse, but only their difference, to improve the 3D image

quality of the mask, opacified and subtracted volumes. The improvements in image quality have been

investigated for subtracted cerebral data that contain vessels only. It would be more challenging to apply

the CS approach to abdominal data, since motion is more likely to occur between both acquisitions. The

validation of the CS approach in the case of subtraction that contains parenchyma as well is still a

work-in-progress, that requires more validation.

This example is simple, since two phases are considered only, there is no overlap between phases,

no error in phase identification and there are two rotations instead of one only. As we shall see in the

following, motion reconstruction is more challenging.

5.4 Compressed sensing for motion reconstruction

We have seen that, with intraarterial contrast injection, any part of the static FBP reconstruction may

be degraded by intense streaks due to the presence of inconsistent high-intensity vessel projections in

the data, making the static reconstruction a poor prior image in PICCS algorithm proposed by Chen et

al. [26]. CS-sbs reconstruction that we detailed in Sec. 4.4.3 could mitigate subsampling artifacts while

preserving the overall aspect of FDK reconstructions, a point of importance for the clinical practice.

However, this strategy is not applicable to removing streaks due to incoherent static data and thus

cannot provide an improved prior image. We therefore adapt our framework to the reconstruction of a

series of volumes based on combining the SBS spatial constraint to a temporal constraint that enforces

the sparsity of the difference between time points. This contribution is applied to two types of temporal
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(a) (b) (c)

Figure 5.7: DSRA reconstruction from clinical data. First line: Mask iFDK+ reconstruction with

spatial positivity constraint. Second line: Mask CSsbs+t reconstruction with λt = 5HU. (a) Axial slice

(HU range: 250 to 5350). (b) Detail of the petrous part of the left temporal bone in (a). (c) Subtraction

image for an axial slice higher in the brain (HU range: -500 to 1500).

inconsistencies within injected vessels of the abdominal regions:

• small displacements induced by the blood flow pulsatility,

• and contrast flow variability during the scan due to delayed opacification.

5.4.1 Multiphase CS reconstruction algorithm

CS-sbs enables the independent reconstruction of each phase so that the sampling of the static background

structures is significantly reduced. To recover full sampling of the background we have to take inter-phase

correlations into account:
(

f̃dyn,χA+χt

)

λA,λt

= argmin
fdyn∈RK×M

{

Qdyn(fdyn) + λA · χA(fdyn) + λt · χt(fdyn)
}

, (5.12)

where the penalization term λt ·χt(fdyn) describes the temporal sparsity of the data. Spatial sparsity can
be enforced through soft-background subtraction or total variation minimization as previously presented.

In PICCS [26], temporal sparsity is handled by assuming sparsity of the difference to a prior image

fP . Such an approach can be nested within a proximal splitting algorithm with a penalty that is defined

as:

χt(fdyn) =
M−1∑

m=0

‖fm − fP ‖1. (5.13)
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(a) (b)

Figure 5.8: Sparsity in the temporal domain. (a) Zoomed detail of the MIP representation for two time

points with small displacement of a sparse structure over a static background. The position of the object

in the MIP corresponding to time point 1 (top image) is displayed in orange and reported into the MIP

corresponding to time point 2 (bottom image). (b) Corresponding intensity histogram.

We denote CS-piccs the reconstruction algorithm that uses a prior image chosen equal to the static

FBP reconstruction as in [26]: fP = f̃static,FBP, and SBS. Note that with this definition the prior

image corresponds to the weighted mean calculated from all time-point FBP reconstructions as given in

Eq. (5.4). Using proximal operators, we can use a larger class of filtering penalties to solve the dynamic

problem. Thus, sparsity of the difference to the prior image can be replaced by sparsity of the difference

to the weighted mean:

χt(fdyn) =

M−1∑

m=0

∥
∥
∥
∥
∥
fm −

M−1∑

m′=0

wm′fm′

∥
∥
∥
∥
∥
1

. (5.14)

In the following, let us denote CS-sbs+t the reconstruction algorithm in which we use the temporal

sparsity given by of Eq. (5.14) jointly with the SBS, and CS-wm+tv the reconstruction algorithm in

which we use the same temporal sparsity jointly with TV minimization.

All constraints must be satisfied at once. In absence of a direct expression for the proximal operator

that is associated to CS reconstructions with multiple penalties, we turn to the iterative Dykstra-like

proximal algorithm that was presented in Sec. 4.2.3 using:

• proxχsbs
that is the SBS operator of threshold λsbs or proxχtv

that is TV of weight λtv and is

handled by proximal splitting method such as the fast gradient projection [8];

• and proxχt
. Its direct expression is obtained by rewriting the temporal constraint as:

χt = ‖H(fdyn − fP )‖1,

where H is an orthonormal matrix. For the difference to the weighted mean, fP = 0 while

H projects the temporal intensity at a given voxel into an average component and differential

components that are thresholded. In the case of the prior image, H is set equal to the identity

matrix.

In all our approaches, spatial hyperparameters λsbs and λtv are used with homotopy, while hyperpa-

rameters λt can be assigned a fixed value without introducing a bias because temporal sparsity can be

assumed.
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Figure 5.9: Illustration of the proximal splitting for delayed opacification at stage s, that is the mini-

mization of Eq. (5.12) using temporal sparsity of Eq. (5.14).
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5.4.2 Weighted mean vs. prior image

We evaluated our approach on both simulated and clinical data.

5.4.2.1 Simulation study

In order to establish the performance of the CS reconstructions we simulated angiography data affected

with motion by generating a phantom that consists of several phases of the same object with moving or

varying intensity structures that are realistic with respect to the clinical data. To this aim, we built a

numerical 2D phantom with three phases by adding simulated injected arteries (from 1500 to 6000HU)

to a 512 × 512 abdominal CT cross-section where background structures are valued between 1000 and

2000HU. We simulated the acquisition in parallel geometry delivering 150 views in total of data with:

• a pulsatile motion of a few voxels only, which was generated using a real ECG signal;

• and a motion where each phase is defined by a subset of contiguous projections, resulting in a

limited range sampling.

Projection simulation was carried out so as to mimic a dynamic acquisition: in practice, full scans are

computed for each phase and a subset of views is selected along a given temporal signal.

Parameter Value

τ 0.9

S 200 backgrounds

I 1 iteration / background

CS-sbs λ
(1)
sbs = 3000HU

λ
(S)
sbs = 0HU

CS-piccs λ
(1)
sbs = 3000HU

λ
(S)
sbs = 0HU

λt = 50HU

CS-sbs+t λ
(1)
sbs = 3000HU

λ
(S)
sbs = 0HU

λt = 50HU

Table 5.1: Reconstruction parameters used for comparing temporal penalties.

Figure 5.10 displays two regions of interest (RoI) of the 2D numerical phantom: with static struc-

tures only (Fig. 5.10.(a)) and with simulated dynamic injected vessels over static background for two

phases (Fig. 5.10.(b) and Fig. 5.10.(c)). Figure 5.12 gives comparative assessment of the reconstruction

quality. CS-sbs reconstruction is shown in Fig. 5.12.(a) to restore the temporal resolution of the vessels

without introducing subsampling streaks, but the background is poorly depicted due to the substantial

subsampling of each phase. Comparing to Fig. 5.12.(b), the prior image constraint of CS-piccs improved

the background, while preserving the temporal resolution. A strong streak pattern remains in all RoIs

however, that is a slightly attenuated version of the one present in the prior image (see Fig. 5.11.(a)

and see Fig. 5.11.(b)). The best restoration is thus obtained by CS-sbs+t as shown in Fig. 5.12.(c).

Dealing with the limited range subsampling case whose results are displayed in Fig. 5.13, we observe

that CS-sbs+t presented in Fig. 5.10.(c) outperformed CS-sbs and CS-piccs in the same manner. This
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visual inspection is confirmed by the final RMSD measurements1 dr given in Tab. 5.2 that are divided

by two for the pulsatile case, and are comparable for the successive case. We quantified streak intensity

by measuring the maximum intensity which is not a vessel in the RoI with dynamic injected vessels: for

the pulsatile case, streak intensity decreased from 1872HU for the prior image to 1636HU and 1302HU

for CS-piccs and CS-sbs+t respectively; for the limited-angle case it decreased from 1954HU to 1629HU

and 1406HU.

(a) (b) (c)

Figure 5.10: Zoomed details of the phantom used for comparing temporal penalties. (a) RoI 1 that

contains static structures - HU display range: 800 to 1400. RoI 2 that contains dynamic injected vessels

over static background for (b) phase 1 and (c) phase 2 respectively - HU display range: 100 to 2800.

Figure 5.14 contains the plots of log dr with respect to the number of iterations for two RoIs: one

covering the area with moving vessels displayed in Fig. 5.10.(b) and shown in graph 5.14.(a), the other

covering the background displayed in Fig. 5.10.(a) and shown in graph 5.14.(b). Discrepancy between

the prior image and the reference image over each RoI is shown as a black dashed line. The final

deviations of graph 5.14.(a) reflect the improved recovery of the moving structures with all CS dynamic

reconstructions. In graph 5.14.(b), CS-sbs high deviation reflects poor background recovery. For CS-

piccs, background recovery nears the level of the prior image, but cannot improve it by construction. On

the contrary, CS-sbs+t restores the background below the discrepancy level of the prior image.

No motion Pulsatile motion Successive motion

Static Static CS-sbs+t Static CS-sbs+t

d1 35HU 187HU 68HU 91 HU 85HU

d2 44HU 159HU 71HU 83 HU 83HU

d3 49HU 144HU 73HU 81 HU 80HU

Table 5.2: Results in parallel geometry on a numerical phantom with simulated motions. RMSD values.

RMSD reference is taken as the reconstruction when no motion occurs during the scan acquisition.

5.4.2.2 Clinical Data

Results on real data are analyzed in Fig. 5.15 and Fig. 5.17 where standard clinical (i.e. static) recon-

struction is compared to CS-piccs. The first dataset is the exam of the renal arteries (cf. Fig.3.25),

in which small displacements of the catheter (intense structure in the axial slices in Fig. 5.15) occur

due to the pulsatile blood flow. We manually splitted the scan into four phases, relying on the vertical

translation of the tip, that is visible on the 2D projections and plotted in Fig. 3.26. The resulting phases

contained 33, 36, 40, and 38 projections respectively. The second dataset is the exam of the cerebral

vessels, that was used in Sec. 4.7.2. During the first half of the scan the right vertebral artery (RVA, most

1RMSD definition is given in Sec. 3.1.4.3.
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(a) (b)

(c) (d)

Figure 5.11: Static reconstructions. Pulsatile case: (a) RoI 1 that contains static structures - HU display

range: 800 to 1400; (b) RoI 2 that contains dynamic injected vessels over static background for phase 1

- HU display range: 100 to 2800. Limited-angle case: (c) RoI 1 that contains static structures; (d) RoI

2 that contains dynamic injected vessels over static background for phase 1.

left vessel in the axial slices in Fig. 5.17) did not appear opacified, while the left vertebral artery (LVA,

most right vessel) was seen fully opacified during the whole scan. We thus splitted the scan into two

phases that contained 72 and 75 projections respectively. Static reconstructions integrate all temporal

variations: the position of the tip is blurred in the first exam (Fig. 5.15.(a)), while the intensity of the

RVA peak is averaged to 9130HU (Fig. 5.17.(a)), that is less than 60% of the LVA peak (15310HU).

In addition, intense streak artifacts degrade the background: the displacements of the catheter yield a

rotating pattern of positive and negative streaks in the first case, while the lack of opacification in the

lateral projections yields horizontal and vertical negative streaks in the second case. CS-sbs+t recon-

struction recovered some temporal resolution since temporal variations are visible in the reconstructed

phases, even though our phase selection was approximate. This is particularly striking when looking at

the associated maximum intensity projection (MIP) given in the second row of Fig. 5.17: the vertical

translation of the catheter is well visible (Fig. 5.15.(b) and (c)); the RVA is only visible during phase 2,

while the LVA is visible in both phases (Fig. 5.17.(b) and (c)). In terms of quantification the RVA peak

was measured to be 1960HU for phase 1 and 12290HU for phase 2, while the LVA peak was measured

to be around 13600HU for both phases. As for the background CS-sbs+t reduced the streaks located

close to the catheter tip (Fig. 5.15.(b) and (c)), and nearly eliminated the horizontal and vertical streaks

of the RVA (Fig. 5.17.(b) and (c)) as confirmed by intensity profiles through the axial slice, that are

plotted in Fig. 5.16 for the pulsatile motion case and in Fig. 5.18 for the limited-angle case.

Temporal Merge The sparsity of the temporal support is applied through a soft-thresholding opera-

tor. This therefore introduces a bias in the coupling between motion phases. Hence, λt tuning results in

a trade-off between background merge and temporal resolution. This trade-off is illustrated in Fig. 5.19:

with λt = 50HU, that is displayed in Fig. 5.19(b), the artifact due to the lack of opacification of RVA

is almost completely removed, but merging of the background is not satisfying compared to the back-
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(a) (b) (c)

Figure 5.12: Comparison of temporal penalties for the pulsatile case. First row: RoI 1 that contains

static structures - HU display range: 800 to 1400. Second and third rows: RoI 2 that contains dynamic

injected vessels over static background for phase 1 and phase 2 respectively - HU display range: 100 to

2800. Reconstruction algorithm: (a) CS-sbs; (b) CS-piccs; (c) CS-sbs+t.



112 CHAPTER 5. RECONSTRUCTION OF DYNAMIC DATA

(a) (b) (c)

Figure 5.13: Comparison of temporal penalties for the limited-angle case. First row: RoI 1 that contains

static structures - HU display range: 800 to 1400. Second row: RoI 2 that contains dynamic injected

vessels over static background for phase 1 - HU display range: 100 to 2800. Reconstruction algorithm:

(a) CS-sbs; (b) CS-piccs; (c) CS-sbs+t.

(a) (b)

Figure 5.14: Convergence curves (RMSD values) for the numerical phantom with pulsatile motion: prior

image (black dashed line), CS-sbs (green circles), CS-piccs (blue triangles) and CS-sbs+t (red squares).

(a) RoI with dynamic injected vessels over static background for phase 1; (b) RoI with static structures.
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(a) (b) (c)

Figure 5.15: Reconstruction results for the pulsatile motion case. Axial slice and MIP representation.

First row: axial slice detail - HU display range: 350 to 1550. Second row: MIP detail - HU display range:

1100 to 4400. Algorithms: (a) static reconstruction. Orange arrow indicates streaks that originate from

the catheter tip; CS-sbs+t for (b) phase 1 and (c) phase 2. (d) and (e) Different parameters.

Figure 5.16: Reconstruction results for the pulsatile motion case. Intensity profile curves drawn through

the axial slices shown in Fig. 5.15: static reconstruction (black dashed line), CS-sbs+t for phase 1 (blue

plain line) and phase 2 (red plain line).
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(a) (b) (c)

Figure 5.17: Clinical data limited-angle case. First row: axial slice detail - HU display range: (1) 350

to 1550 (2) 0 to 2400. Second row: MIP detail - HU display range: (1) 1100 to 4400 (2) 1000 to 9500.

Algorithms: (a) static reconstruction. Orange arrows indicate horizontal and vertical streaks; CS-sbs+t

for (b) phase 1 and (c) phase 2.

Figure 5.18: Reconstruction results for the late opacification case. Intensity profile curves drawn through

the axial slices presented in Fig. 5.17: static reconstruction (black dashed line), CS-sbs+t for phase 1

(blue plain line) and phase 2 (red plain line).
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ground given by FDK reconstruction shown in Fig. 5.19(a), while with λt = 500HU, that is displayed

in Fig. 5.19(c), the artifact is more visible, but at the same time the background depiction is improved

and very close to that of FDK.

(a) (b) (c)

Figure 5.19: Trade-off between background merge and temporal resolution. (a) Static reconstruction.

(b) λt = 50HU. (c) λt = 500HU.

5.4.3 Impact of the spatial penalty

In this section, we consider the same numerical 2D phantom that was used in Sec. 4.5.1. Five different

phases of the phantom were produced by applying a global translation of 1 to 2 pixels along the x-axis

and y-axis to the vessels. A detail of the simulated injected vessels on the slice background is given in

Fig. 5.20 for three different motion phases. We simulated the acquisition in parallel geometry delivering

150 views in total of data with a pulsatile motion that results in a uniform subsampling for each motion

phase.

Parameter Value

τ 0.9

S 25 backgrounds

I 1 iteration / background

Table 5.3: Reconstruction parameters used for evaulating the impact of the spatial penalty.

(a) (b) (c)

Figure 5.20: 2D dynamic numerical phantom. Detail of the injected vessels for (a) phase 1, (b) phase 2

and (c) phase 3. HU range: 850 to 1230.

Figure 5.21 shows static FDK reconstruction as reference for the background quality. Note that

despite the very small displacements of the vessels, the background of our simulation was severely de-
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teriorated. In particular the depiction of the bony structures is pretty poor. Furthermore, because

many structures are not static, the blurred area is important. Figure 5.22 allows for comparative as-

sessment of the reconstruction quality with no spatial constraints, SBS and TV. Each subfigure displays

the reconstructed slice (Fig. 5.22(a)) and two regions of interest (RoIs) of the phantom with a modified

windowing so as to enhance different structures of the image : the dynamic injected vessels over static

background for two phases (Fig. 5.22(b)) and the static soft tissues (Fig. 5.22(c)). The introduction of

the temporal sparsity assumption in the reconstruction, that is shown in the first row of Fig. 5.22, results

in restoration of vessel temporal resolution accompanied by effective artifact reduction (bone depiction).

However, significant streak artifacts remain, that prevent full restoration of the soft tissues. Excellent

reconstruction results were obtained for CS-sbs+t and CS-wm+tv that are displayed in the second and

third row of Fig. 5.22 respectively. Both effectively eliminated the motion artifacts, providing satisfying

temporal resolution and background depiction. Note that the air-tissue interface that was blurred with

static CS-sbs is now finely recovered with CS-sbs+t. It is difficult to conclude on the best approach

between the SBS operator and TV based on the visual inspection of these reconstructions only. That

is why we monitored the convergence of RMSD values2 for both CS-sbs+t and CS-wm+tv. Resulting

log dr curves with respect to the number of iterations over the whole image are plotted in Fig. 5.23.

CS-sbs+t and CS-wm+tv allows for achieving a discrepancy level that is below the one of CS-piccs, of

which convergence is shown as a black dashed line. It reflects the successful mitigation of streak artifacts

by both sparsity constraints.

(a) (b) (c)

Figure 5.21: Static FBP reconstruction of dynamic data. (a) Reconstructed image. (b) Detail of the

vessels. (c) Zoomed detail of the background structures.

2RMSD definition is given in Sec. 3.1.4.3.
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(a) (b) (c)

Figure 5.22: CS reconstruction for dynamic data. First row: reconstructed image. Second and third

row: detail of the vessels for phase 1 and phase 2. Fourth row: zoomed detail of the soft tissues. (a)

CS-wm reconstruction. (b) CS-sbs+t reconstruction. (c) CS-wm+tv reconstruction.
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Figure 5.23: Convergence curves (RMSD values) for the numerical phantom. Reconstructions: CS-piccs

(black dashed line), CS-sbs+t (blue line), CS-wm+tv (red line).
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5.5 CS reconstruction with motion modelling

The weighted mean is computed from different motion phases, thus contains motion artifacts and blur.

No merging is achieved in these areas. It is possible to go beyond simple sparsity and reduce the number

of unknowns of the linear system given in Eq. (5.1) by incorporating a motion model that allows for

describing the correlation between two phases, and thus reconstructing one single volume. The object

of this contribution is to strengthen the proposed temporal constraint of CS-wm by computing a mean

image that accounts for some (i.e. even incomplete) inter-phase motion compensation based upon an a

priori motion knowledge. This is achieved by applying a transformation to deform the reconstruction of

each phase fm to obtain a match with the reconstruction of arbitrarily chosen reference phase fr. Sparsity

of the difference to the motion compensated weighted mean incorporates the motion information and

can still be applied through a proximal operator. It follows CSA+T approach in which the following

functional is minimized:

(

f̃r,χA+χT

)

λA,λT
= argmin

fr∈RK

{

Qdyn(T fr) + λA · χA(T fr) + λT ·
∥
∥
∥
∥
∥
fr −

M−1∑

m=0

wmTmfr

∥
∥
∥
∥
∥
1

︸ ︷︷ ︸

= χT (fr)

}

. (5.15)

We can distinguish two cases:

• the motion model is exact and complete: there is no guarantee that the data are fully sampled, so

CS reconstruction can be applied to correct for remaining subsampling issues in the data;

• the motion model is locally exact but incomplete: the motion model is introduced to improve the

CS constraints.

The ℓ1-norm handles the fact that locally the motion model might not be exact or complete and will not

be used.

5.5.1 Non-rigid registration

The purpose of registration is to find a matching between phase fr and phase fm. The transformation

Tm expressed in Sec. 5.2 can be defined as the identity transformation I of which a dense displacement

field Dm has been added:

Tm = I +Dm.

The estimation of the optimal dense displacement field Dm is carried out through non-rigid registration.

It is calculated through the optimization of a similarity criterion S that is used to estimate the quality

of the registration:

argmin
Ψ

S (Tmfr − fm), (5.16)

where Ψ refers to the optimization strategy that allows for maximizing S.
Deformable registration methods can be generally categorized into two distinct groups:

• feature-based methods [34] that often rely on a preprocessing step to extract a set of salient

features (e.g. points, edges) and establish correspondences on this basis. Since only the extracted

features are used for registration, such methods are computationally very efficient. However, their

performance is limited by the feature extraction;

• voxel-wise methods [150] that consists in maximizing a similarity criterion S based on voxel-wise
attributes (e.g. intensities, distribution of the intensities).

In order to reduce the dimensionality of the problem, a current strategy consists in introducing a sparse

set of control points and a set of interpolation functions that recovers the displacement specific to each
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voxel. Because the displacement of a control point has only local influence on the displacement field,

cubic B-splines are often used as interpolation functions. The number of control points has to be a good

compromise between speed and registration accuracy. That is the reason why a coarse-to-fine approach

is often used in practice.

In this work, we investigated the use on angiographic data of two registration algorithms of which

the basic principles are briefly presented hereafter. We rely on these two algorithms to highlight two key

aspects of a registration algorithm: discriminative attributes and an efficient optimization.

DRAMMS Ou et al. [98] developed the Deformable Registration via Attribute Matching and Mutual-

Saliency weighting (DRAMMS) algorithm: it is an hybrid approach that alleviates the main drawbacks of

both voxel-wise and feature-based approaches, and demonstrates large applicability with high robustness

and accuracy, at the expense of a heavy computation. At each control point, a rich set of attributes

(that was chosen as the multi-scale and multi-orientation Gabor attributes) is extracted then optimally

selected, that allows for establishing strong correspondences between registered images. In addition,

DRAMMS algorithm includes a weighting function called ‘mutual-saliency’ that reduces the impact of

outlier regions by assigning weights that reflect the matching uniqueness between a pairs of voxels.

DROP Glocker et al. [52, 53] proposed the Deformable Registration using Discrete Optimization

(DROP) algorithm: it is a computationally attractive intensity-based deformable registration that con-

sists in recasting the registration problem as a Markov Random Field (MRF). In this context, the

equivalent MRF problem accounts for energy minimization in a graph where nodes correspond to control

points and a set of labels is associated with a set of deformations. Each control point is assigned a

label such that the similarity measure between the source and the target is finally optimal for all voxels.

Note that the optimization procedure is independent from the graph construction, and consequently any

similarity criterion can be used. In this manuscript, because vascular structures cannot be recovered on

the only basis of their intensities, we consider the sum of absolute differences plus the sum of gradient

inner products (SADG) as a suitable similarity criterion:

S (Tmfr − fm) =
1− γ

K

∑

k

|(fm)k − (Tmfr)k)|+
γ

K

∑

k

∣
∣
∣
∣

(∇fm)k
|(∇fm)k|

· (∇Tmfr)k)

|(∇Tmfr)k)|

∣
∣
∣
∣
,

where γ controls the balance between the sum of absolute differences and the sum of gradient inner

products.

5.5.2 Performance of CS reconstructions using a prior deformation field

Reconstructions using a prior deformation field were assessed using a numerical 2D phantom with four

phases by adding simulated injected arteries (from 1500 to 6000HU) to a 512×512 abdominal CT cross-

section where background structures are valued between 1000 and 2000HU. We simulated the acquisition

in parallel geometry delivering 150 views in total of data with a cyclic uniform motion. Reconstruction

settings are given in Tab. 5.4. Here, we chose to rely on SBS to reduce angular streak artifacts, while

estimating the prior deformation field by elastic registration of the phantom phases using DRAMMS

algorithm3. Figure 5.24 shows the deformation field (Fig. 5.24(a)) that was obtained when registering

phase 1 (Fig. 5.24(b)) and phase 3 (Fig. 5.24(c)).

Figure 5.25 shows reconstruction results using the prior deformation field. Application of the defor-

mation field as post-processing to the reconstruction (i.e. elastic deformation of each phase to match the

reference time-point, then computation of a weighted mean) recovers the vessel temporal resolution, but

fails at removing streak artifacts that are associated to the subsampling of the moving structures. Hence

the background of FBP reconstruction in Fig. 5.25(a) and the post-processing strategy in Fig. 5.25(b) are

3Since DRAMMS algorithm is a 3D registration algorithm, the 2D numerical phantom was replicated 20 times to form
a thin volume.
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Parameter Value

S 10 backgrounds

I 1 iteration / background

τ 0.4

proxχA
(·) SBS

λ
(1)
A 3000HU

λ
(S)
A 0HU

T DRAMMS or DROP

λT fixed to 100HU

Table 5.4: Parameter settings for CS reconstructions with a prior deformation field.

(a) (b) (c)

Figure 5.24: Vector image of the deformation field (a) estimated with DRAMMS algorithm between

phase 1 (b) and phase 2 (c). Largest displacements are represented by yellow or orange arrows.

identical. In the particular case of moving soft tissues (low contrasts), for which artifacts are more prone

to be local, the approach may generate satisfying improvements, but such improvements no longer hold

in the case of moving injected vessels (high contrasts). This can be perhaps more intuitively understood

when assimilating streak artifacts to shadows in a photograph. The application of a deformation field

that models the displacement of an object does not affect its shadow. The position of the light source

and mechanism that leads the shadow formation are needed to generate a shadow that corresponds to

the new position of the object. The same reasoning is valid in tomography. Fig. 5.25(c) displays CSA+T
reconstruction result, that allows for mitigation of the streak artifacts. Computation of the RMSD over

the whole slice confirms the significant image quality improvement that is provided by CSA+T approach:

dr = 0.11 is found, which corresponds to about half the value that are found for static FBP reconstruction

(dr = 0.21) and for FBP reconstruction on a single phase (dr = 0.24) that is not shown here.

Let us now consider the same renal exam that was used for producing the reconstruction results

previously presented in Fig. 5.15. Since the registration task proved not being robust for processing

subsampled volumes, in particular because of the prominent streak artifacts, the deformation field used

as prior information in CSA+T reconstruction was calculated by registering previously obtained CS-Psbs

reconstructions. Figure 5.26 shows the deformation field along z-axis that was obtained using DROP

within a RoI centered around the catheter. Results on clinical data are analyzed in Fig. 5.27 where

standard clinical (i.e. static) reconstruction shown in Fig. 5.27(a) is compared to CSA+T reconstruction of
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(a) (b) (c)

Figure 5.25: Reconstruction results with prior deformation field on numerical simulations. (a) Static

reconstruction. (b) Motion correction obtained with post-processing deformation field. (c) CSA+T
reconstruction.

Figure 5.26: Deformation field along z-axis for the catheter motion study.

three phases (Fig. 5.27(b)(c) and (d)). The motion of the catheter is satisfyingly recovered. However, the

interpolation step applies the deformation to each phase introduced some smoothing of the reconstruction.

Because the estimation of the computed deformation field contains many errors, this smoothing tends to

spread the information within all volumes and slices displayed in Fig. 5.27 suffer from inter-slice diffusion

(i.e. diffusion along the z-axis) of the rachis.

5.5.3 Discussion

We proposed a dynamic reconstruction that relies on a CS approach with spatio-temporal constraints.

The evaluation of the algorithm with numerical experiments and two typical angiographic datasets

demonstrated qualitative and quantitative improvements. Limited assumptions were considered:

• high-intensity sparse structures but non-sparse background;

• phase temporal correlation. In order to simplify the presentation, the temporal constraint was

also set equal for all voxels. This is not a requirement: in the case of a delayed opacification,

each voxel could be treated independently, with its own phase selection and associated temporal

constraint and proximal operator;
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(a) (b) (c) (d)

Figure 5.27: Axial slice of the catheter motion study. (a) Static reconstruction. (b)-(d) CSA+T recon-

struction for different phases.

• possible modelling of the vessel displacements through the estimation of the inter-phase

deformation field. With the current implementation, such modelling is however not perfect for the

still background. Future works shall aim at iteratively estimating the inter-phase deformation field.

The computation at each iteration of the reconstruction process is likely to improve the quality of

the reconstruction by refinement. One of the limitations to the introduction of a motion model

into the reconstruction is however that variations in contrast-enhancement cannot be handled

by elastic deformations, and hence, leads errors in the estimation of the deformation field. An

adapted constraint relaxation approach could possibly compensate for the residual motions that

are not modelled;

• similar attributes in the source and the target phases. In rotational angiography, phase-wise

reconstructions account for the angular sampling and hence, artifacts may strongly differ from one

phase to another. Thus, in the particular case of uniformly subsampled phases, the pattern of

streak artifacts that equally deteriorate each phase is rotated from one phase to another. Because

the streak artifacts deteriorate the entire image and have high intensities, it is generally not possible

to perform a robust registration while handling them as outliers. When the phase sampling is very

poor, it is even very likely that the anatomical structures result in less salient attributes than

streaks themselves. Consequently, the estimation of the dense deformation field is a challenging

task with state-of-the-art registration algorithms and a bottle-neck for reconstructions involving

motion modelling. Possible improvements of the registration task include registering the moving

(vascular) structures only [61] instead of registering the entire volume. This would require the

proper segmentation of the contrast-injected vessels. To this aim, it would be possible to use CS

reconstruction that we discussed in the previous chapter since it enables a thresholded segmentation

of the sparse structures and then decrease the threshold level by continuation. Another possible

strategy could consist in using ‘simplified images’ that are free of subsampling streak artifacts

instead of the original ones. Such images could be obtained through a TV-penalized reconstruction

for instance;

• prior phase selection. Reconstructions were obtained in a clinical context with manual phase

selection. For an actual clinical usage, automatic phase selection is a requirement. It is challenging,

but to a lesser degree than motion estimation and modelling.





Chapter 6

Conclusion

6.1 Outcome

This work tackled the reconstruction of tomographic acquisitions that were acquired with C-arm systems

in the context of interventional radiology. It deals more specifically with the correction of motion artifacts,

that originate from the temporal variations of the contrast-enhanced vessels and may severely deteriorate

the overall image quality, and highlights a central aspect of tomography, that is data (angular) sampling.

The sampling trade-off inherent to the interventional context was discussed and shown to depend on

both the C-arm technology, that was originally designed for real-time guidance, and on the angiographic

procedures. Thus, the choice of the rotation speed depends on the clinical protocol: the rotation of the C-

arm gantry is used at maximal speed for injected acquisitions, while kept slow for non-angiographic exam

in order to maximize the sampling. Sampling artifacts specifically induced by C-arm systems involve:

the cone-beam geometry, that results in cone-beam artifacts, and the relatively low detector framerate,

that results in uniform subsampling. This limits the use of three-dimensional imaging in interventional

procedures. On the other hand, better soft tissue depiction would benefit from the high spatial resolution

of C-arm systems, and thus participate to the development of novel clinical applications.

The developments of the compressed sensing theory have shown that least-square minimization com-

bined with sparse constraints expressed as ℓ1-penalties may yield satisfying data recovery in cases where

sampling is not favourable, under well-defined assumptions. Although the compressed sensing assump-

tions are not strictly valid for X-ray tomography, its first application –exact reconstruction of a piece-

wise constant phantom from poorly angularly sampled data that simulated the X-ray sampling process–

opened tremendous perspectives for image quality improvement in X-ray tomography. Reconstructions

of dynamic data based on compressed sensing were proposed in the literature. A particularly seducing

CS approach is the PICCS algorithm that relies on using a sparse constraint based on a prior image

–that may be the static filtered backprojection reconstruction–, so that the reconstruction, schematically,

determines motionless areas from the complete acquisition, while motion-blurred areas are determined

from reconstruction of well-identified subsampled motion phases only. We however observed that the

PICCS algorithm is not applicable to intraarterial contrast injection, since intense streaks due to the

presence of inconsistent contrast-enhanced vessel projections in the data makes the static reconstruction

a poor prior image. In this line, the present work proposed an application of compressed sensing and

a generalization of the PICCS algorithm that are adapted to rotational angiography with intraarterial

injection.

For easily adding a series of ℓ1 or ℓ2 constraints to iterative least-square the proximal splitting

framework that relies on proximal operators was used. An iterative implementation based on filtered

backprojection and proximal splitting was proposed, that allows for computational efficiency. Several

variants of iterative filtered backprojection were derived to deal with sparse penalties:

• soft background subtraction that ensures sparsity of the image ℓ1-norm;

• total variation that ensures sparsity of the gradient ℓ1-norm;

• non linear ℓ2-minimization such as anisotropic filtering.

This work also emphasizes the fact that compressed sensing reconstruction is not reduced to ℓ1-norm

minimization: starting from ℓ1-norm minimization and using a homotopy continuation strategy, relation-
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ship with empirical orthogonal matching pursuit approaches are observed, leading to the key contribution

of this thesis that is the importance of homotopy with respect to regularization.

Compressed sensing reconstruction was applied to well-identified clinical cases with intraarterial in-

jections and resulting sampling issues, where image quality improvement would be welcome. This work

focused more specifically on improvement for both cerebral and abdominal imaging. In a static interven-

tional context, artifact reduction was shown for clinical data in spite of data truncation in the following

identified cases:

• cone-beam artifact correction;

• subtracted reconstruction;

• contrast-enhanced reconstruction;

• limited-angle reconstruction, but with a limited impact because the non-sparse background can

only be reconstructed from the entire scan.

However, streak artifacts originated from metal or objects outside the FoV could not be removed. Further

exploring compressed sensing for the dynamic interventional context, the following improvements were

proposed:

• an original compressed acquisition design for digital subtracted rotational angiography;

• the introduction of an additional temporal sparse penalty within a multiple penalties framework

for combining the compressed sensing reconstruction of sparse structures with the recovery of a

static background with no motion assumption.

6.2 Perspectives

Several directions for future works were identified, that would either be required for industrialization of

this work or extend its clinical applications:

• For an actual clinical usage of the dynamic approach, automatic phase selection from the whole

acquisition is a requirement. It is challenging, but to a lesser degree than motion estimation and

modelling;

• Still for the dynamic approach, the stagewise orthogonal matching can be derived in a temporal and

iterative variant as an alternative to ℓ1-penalization. In addition, the constraint on the temporal

sparsity allows for obtaining partial motion knowledge and consequently for revisiting motion com-

pensated approaches, since the exact and complete knowledge of the motion is no longer required.

The introduction of a motion model was briefly discussed and shown to have potential to either

complement (considering a cardiac motion) or supplement (considering a respiratory motion) the

compressed sensing reconstruction. Further investigations on clinical data are required to evaluate

these preliminary results;

• Future work shall aim at applying the proposed mathematical framework to a larger class of

algorithms and thus associate iterative filtered backprojection with standard image processing

tools that cannot be described through a variational formulation (e.g. bilateral filtering, diffusion

filtering, NL-means);

• This work has potential application to CT (e.g. helical artifact correction, dynamic reconstruc-

tion of cardiac and perfusion data). This implicitly raises the need for comparing the compressed

sensing approach (low angular sampling strategy) with a noise modelling approach that is coupled

with a sparse temporal regularization (dose reduction strategy). As far as noise can be modelled
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through a weighted least-square, the reconstruction framework presented here is still valid. Com-

pressed sensing reconstruction is however no longer suitable for dealing with Poisson models and

consequently alternative approaches must be considered [106, 137].
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Abstract:
Medical imaging has known great advances over the past decades to become a powerful tool for the

clinical practice. It has led to the tremendous growth of interventional radiology, in which medical

devices are inserted and manipulated under image guidance through the vascular system to the

pathology location and then used to deliver the therapy. In these minimally-invasive procedures, X-ray

guidance is carried out with C-arm systems through two-dimensional real-time projective low-dose

images. More recently, three-dimensional visualization via tomographic acquisition has also become

available.

This work tackles tomographic reconstruction in the aforementioned context. More specifically,

it deals with the correction of motion artifacts that originate from the temporal variations of the

contrast-enhanced vessels and thus tackles a central aspect of tomography: data (angular) sampling.

The compressed sensing theory identifies conditions under which subsampled data can be recovered

through the minimization of a least-square data fidelity term combined with sparse constraints.

Relying on this theory, an original reconstruction framework is proposed based on iterative filtered

backprojection, proximal splitting, ℓ1-minimization and homotopy.

This framework is derived for integrating several spatial and temporal penalties. Such a strategy

is shown to outperform the analytical filtered backprojection algorithm that is used in the current

clinical practice by reducing motion and sampling artifacts in well-identified clinical cases, with focus

on cerebral and abdominal imaging. The obtained results emphasize one of the key contributions of this

work, that is the importance of homotopy in addition to regularization, to provide much needed image

quality improvement in the suggested domain of applicability.

Keywords: Tomographic reconstruction, iterative methods, intraarterial angiography, C-arm

systems, compressed sensing, ℓ1-penalization, proximal splitting, homotopy, registration



Échantillonnage et reconstruction de mouvement en radiologie
interventionnelle tridimensionnelle

Résumé :
La pratique clinique a été profondément transformée par l’explosion technologique, ces dernières

décades, des techniques d’imagerie médicale. L’expansion de la radiologie interventionnelle a ainsi rendu

possible des procédures dites “minimalement invasives” au cours desquelles la thérapie est délivrée

directement au niveau de la région pathologique via des micro-outils guidés par imagerie à travers le

système vasculaire. Des systèmes dits “C-arm”, générant une imagerie rayons X planaire temps-réelle en

faible dose, sont utilisés pour le guidage. Ils ont offert plus récemment la possibilité d’une visualisation

tridimensionnelle par le biais d’acquisitions tomographiques.

C’est dans ce contexte de reconstruction tomographique que s’inscrivent ces travaux de thèse. Ils

s’attèlent en particulier à corriger les artefacts de mouvement dus aux variations temporelles des

vaisseaux injectés et se concentrent sur un aspect central de la tomographie, à savoir l’échantillonnage

angulaire. La théorie du compressed sensing identifie les conditions sous lesquelles des données

sous-échantillonnées peuvent tre reconstruites en minimisant une fonctionnelle qui combine un terme

de fidélité quadratique et une contrainte parcimonieuse. S’appuyant sur cette théorie, un formalisme

original de reconstruction est proposé : il repose sur la rétroprojection filtrée itérative, les algorithmes

proximaux, la minimisation de normes ℓ1 et l’homotopie.

Ce formalisme est ensuite dérivé pour intégrer différentes contraintes spatiales et temporelles.

Une telle stratégie s’avère plus performante que la rétroprojection filtrée analytique utilisée dans la

pratique clinique, permettant la réduction d’artefacts de mouvement et d’échantillonnage dans des cas

cliniques bien identifiés de l’imagerie cérébrale et abdominale. Les résultats obtenus soulignent l’une

des principales contributions de ce travail, à savoir : l’importance de l’homotopie, en supplément de la

régularisation, pour améliorer la qualité image, un gain indispensable dans le domaine d’applicabilité

suggéré.

Mots clés : Reconstruction tomographique, méthodes itératives, angiographie intra-artérielle,

systèmes C-arm, compressed sensing, pénalisation ℓ1, algorithmes proximaux, homotopie, recalage


