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Italian Summary

L’argomento principale della Tesi è l’ottimizzazione della compliance di strutture ela-
stiche sottili. Il problema consiste nel determinare le conf gurazioni più resistenti,
quando una quantità inf nitesimale di materiale elastico, sottoposta ad una forza f s-

sata, viene conf nata in un intorno sottile di un piano o di una retta. La resistenza al carico
può essere misurata valutando un funzionale di forma, la compliance, sulla conf gurazione del
materiale elastico.

In particolare, trattiamo il caso in cui la regione di disegno è un f lo sottile, rappresentato da
un cilindro con sezione trasversale inf nitesima. Lo studio è motivato da problemi di carattere
ingegneristico: la facilità di fabbricazione e trasporto legate al loro ridotto peso, rendono le
strutture sottili molto convenienti per le applicazioni.

L’approccio che adottiamo trae ispirazione da alcuni recenti lavori in collaborazione tra
G. Bouchitté, I. Fragalà e P. Seppecher, in cui gli autori affrontano il caso di piastre sottili
[G. BOUCHITTÉ, I. FRAGALÀ, P. SEPPECHER: Structural optimization of thin plates: the
three dimensional approach. Arch. Rat. Mech. Anal. (2011)]. Il caso di sbarre sottili non si
presenta affatto come una variante tecnica del precedente, a causa della differenza sostanziale
nei passaggi al limite 3d-1d e 3d-2d, cioè da 3 a 1 e da 3 a 2 dimensioni.

Lo studio di conf gurazioni ottimali ci ha condotto ad affrontare un altro interessante pro-
blema variazionale: in regime di pura torsione, stabilire se si verif chino o meno fenomeni di
omogeneizzazione nei f li sottili risulta essere equivalente a risolvere un problema non standard
di frontiera libera nel piano. Oltre al legame con il problema di ottimizzazione della complian-
ce, questo problema variazionale ha un interesse matematico di per sé. Uno degli strumenti che
possono essere usati per affrontare il problema è la teoria delle derivate di forma per minimi di
funzionali integrali. La teoria delle derivate di forma è un campo molto studiato (vedi e.g. la
monograf a di A. Henrot e M.Pierre Variations et Optimisation de Formes. Une Analyse Géo-
métrique, Springer Berlin (2005), e i riferimenti ivi contenute), ma l’approccio che proponiamo
è nuovo e si basa su ipotesi più deboli di quelle classiche.

La Tesi è organizzata come segue.
Nella prima parte sono raccolte le nozioni prelimirari: nel Capitolo 1 richiamiamo i princi-

pali strumenti matematici di Analisi Convessa, Teoria Geometrica della Misura e Γ-convergenza
che utilizziamo nella Tesi, successivamente presentiamo elementi della teoria dell’Elasticità Li-
neare, necessari per comprendere i termini del problema principale. La seconda parte (Capitoli

V



2 e 3) è dedicata allo studio della ottimizzazione della compliance in f li sottili. La terza parte
(Capitoli 4 e 5) è dedicata ai già citati problemi correlati. Per una più agevole lettura della Tesi,
le dimostrazioni tecniche, solitamente riguardanti lemmi ausiliari o semplici asserzioni, sono
raccolte alla f ne dei capitoli, nella Sezione Appendix. I problemi aperti e i possibili sviluppi
sono presentati nella Sezione Perspectives.

I capitoli corrispondono ai seguenti articoli, che sono stati scritti durante questi tre anni di
Dottorato:

- (Capitoli 2 e 3) G. BOUCHITTÉ, I. FRAGALÀ, I. LUCARDESI, P. SEPPECHER: Optimal
Thin Torsion Rods and Cheeger Sets, SIAM J. Math. Anal., 44, 483-512, (2012).

- (Capitoli 2 e 3) I. LUCARDESI: Optimal design in thin rods, in preparazione.

- (Capitolo 4) J. ALIBERT, G. BOUCHITTÉ, I. FRAGALÀ, I. LUCARDESI: A non standard
free boundary problem arising in shape optimization of thin torsion rods, in stampa su
Interfaces and Free Boundaries (2012).

- (Capitolo 5) G. BOUCHITTÉ, I. FRAGALÀ, I. LUCARDESI: Shape derivatives for mini-
ma of integral functionals, in preparazione.

Illustriamo ora gli argomenti più nel dettaglio.

[Capitolo 2] Sia Q una regione di disegno in R
3 sottoposta ad un carico esterno f ssato F ∈

H−1(Q;R3). Dato un materiale elastico isotropo che occupa una certa regione Ω ⊂ Q, la
sua resistenza al carico, nell’ipotesi di piccoli spostamenti, può essere misurata calcolando un
funzionale di forma, la compliance

C (Ω) := sup
{
〈F,u〉R3 −

∫

Ω
j(e(u))dx : u ∈ H1(Q;R3)

}
, (1)

dove e(u) indica la parte simmetrica del gradiente ∇u, e j : R3×3
sym → R è il potenziale di strain,

isotropo e strettamente convesso, def nito come

j(z) :=
λ
2
tr2(z)+η |z|2 , (2)

con λ ,µ > 0 i coeff cienti di Lamé del materiale.
La compliance è proporzionale al lavoro fatto dal carico per portare la struttura all’equilibrio.
In particolare, minore è la compliance e maggiore è la resistenza.
Chiaramente, aff nchè C (Ω) sia f nito, il carico deve avere supporto contenuto in Ω, inoltre
deve essere bilanciato, i.e.

〈F,u〉R3 = 0 , se e(u) = 0 .

In queste ipotesi, uno spostamento ottimale u esiste e soddisfa C (Ω) = 1
2〈F,u〉R3 .

Nella Tesi studiamo il problema di determinare le conf gurazioni di materiale elastico più
resistenti, cioè che minimizzino la compliance, quando la regione di disegno è un dominio
sottile. Inoltre, allo stesso tempo, facciamo tendere a zero il rapporto tra il volume del materiale
elastico e la regione di disegno.
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Per struttura “sottile” intendiamo che una o due dimensioni spaziali sono molto più piccole
delle altre. Nella Tesi consideriamo il caso di f lo, ovvero un corpo continuo approssimabile da
un insieme unidimensionale.

Il modello matematico è il seguente: il f lo è un solido tridimensionale che occupa il volume
generato da un dominio piano, chiamato sezione trasversale, che varia perpendicolarmente ad
una curva, l’asse, a cui appartiene il suo baricentro; inoltre il diametro della sezione trasversale
è molto più piccolo della lunghezza dell’asse. Ci restringiamo al caso particolare di f li retti,
in cui l’asse è un segmento I e la sezione trasversale è un dominio limitato piano D, costante
lungo l’asse: rappresentiamo una tale struttura come un cilindro della forma

Qδ := δD× I , (3)

con D⊂ R
2 un dominio aperto limitato, I un intervallo chiuso e limitato e δ > 0 un parametro

inf nitesimo che rappresenta il rapporto tra il diametro della sezione e la lunghezza dell’asse.
La letteratura riguardo ai f li sottili è molto vasta: la teoria classica è stata sviluppata da

Eulero, Bernoulli, Navier, Saint Venant, Timoshenko, Vlassov; negli ultimi anni, grazie a nuo-
vi metodi numerici, questi problemi hanno incontrato un rinnovato interesse, e costituiscono
un ampio campo della matematica applicata (ci limitiamo a citare [73, 78, 80, 86]). Per una
trattazione completa, rimandiamo al libro di Trabucho e Viaño [95] e i riferimenti ivi contenuti.

Il problema che trattiamo, e di conseguenza l’approccio che adottiamo per la risoluzione,
trae ispirazione da un lavoro recente di G. Bouchitté, I. Fragalà e P. Seppecher [19], in cui gli
autori hanno studiato il problema di ottimizzazione della compliance nel caso in cui la regione
di disegno può essere approssimata da un insieme bidimensionale, più precisamente il caso di
piastre sottili, descritte da una famiglia di cilindri della forma

Qδ := D×δ I ,

con spessore inf nitesimo δ .
Nel seguito tratteremo il caso di insiemi sottili Qδ def niti come in (3). Per trovare la

conf gurazione più “leggera” e “robusta”, minimizziamo la compliance C (Ω) al variare dei
sottoinsiemi Ω ⊂ Qδ con volume f ssato m, cioè studiamo

inf
{

C (Ω) : Ω ⊂ Qδ ,
|Ω|
|Qδ |

= m
}

(4)

nel doppio passaggio al limite per δ → 0 e m→ 0 .
Se includiamo il vincolo di volume nel funzionale costo attraverso un moltiplicatore di Lagrange
k ∈ R, i problemi variazionali (4) assumono la forma

φδ (k) := inf
Ω⊂Qδ

{
C

δ (Ω)+ k
|Ω|
|Qδ |

}
, (5)

con
C

δ (Ω) := sup
{
〈Fδ , ũ〉

R
3 −

∫

Ω
j(e(ũ))dx : ũ ∈ H1(Qδ ,R

3)

}
. (6)

Qui Fδ è un riscalamento opportuno del carico F , scelto in modo tale che nel passaggio al li-
mite l’estremo inferiore in (5) resti f nito. La scelta del riscalamento Fδ dipende dalle ipotesi
fatte sul tipo di carichi applicati. In letteratura è consuetudine distinguere tra i casi di esten-
sione, f essione e torsione: nella Tesi concentriamo la nostra attenzione sui carichi per i quali
il contributo della f essione e della torsione possono essere disaccoppiati in modo opportuno, e
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scegliamo due diversi riscalamenti per le due componenti: grosso modo, consideriamo carichi
F della forma F =G+H , in cui la f essione dipende solo dal carico verticale H . Il caso generale
è diff cile da trattare, a causa dell’interazione tra queste componenti del carico.

Nel Capitolo 2 eseguiamo il primo passaggio al limite, studiando il comportamento asinto-
tico del problema (5) per δ → 0+: questo corrisponde a cercare le conf gurazioni più robuste
in un f lo, quando il rapporto tra il volume del materiale e della regione di disegno sottile è
f ssato. Il primo passo consiste nel riformulare i problemi variazionali φδ (k) sul dominio f sso
Q := D× I, invece che sui cilindri sottili Qδ . Dopo un opportuno cambiamento di variabile
per gli spostamenti e un opportuno riscalamento delle forze, possiamo riscrivere i problemi (5)
come

φδ (k) = inf
ω⊂Q

{
C

δ (ω)+ k |ω |
}

, (7)

con
C

δ (ω) := sup
{
1
δ
〈G,u〉

R
3 + 〈H,u〉

R
3 −

∫

Ω
j(eδ (u))dx : u ∈ H1(Qδ ,R

3)

}
, (8)

dove eδ : H1(Q;R3)→ L2(Q;R3×3
sym ) è l’operatore def nito da

eδ
αβ (u) := δ−2eαβ (u) , eδ

α3(u) := δ−1eα3(u) , eδ
33(u) := e33(u) ,

come consuetudine nella letteratura della riduzione di dimensione 3d− 1d. Lo studio asinto-
tico di φδ (k) si basa sul confronto con i “problemi f ttizi”, cioè le loro formulazioni rilassate
in L∞(Q; [0,1]). Infatti è ben noto che i problemi di minimo (7) sono in generale mal posti:
l’esistenza di un dominio ottimale non è garantita, ma potrebbe verif carsi un fenomeno di
omogeneizzazione (vedi [2]). È quindi necessario ampliare la classe di materiali ammissibili,
passando dai materiali “reali”, rappresentati di funzioni caratteristiche, ai materiali “compositi”,
rappresentati da dansità a valori in [0,1]. A questo scopo introduciamo la famiglia di problemi
variazionali

φ̃δ (k) := inf
{

C̃
δ
(θ)+ k

∫

Q
θ dx : θ ∈ L∞(Q; [0,1])

}
, (9)

dove C̃
δ
(θ) indica l’estensione naturale della compliance C δ (ω) a L∞(Q; [0,1]):

C̃
δ
(θ) := sup

{ 1
δ
〈G,u〉

R
3 + 〈H,u〉

R
3 −

∫

Q
j(eδ (u))θ dx : u ∈ H1(Q;R3)

}
. (10)

Sfruttando alcune delicate proprietà di compattezza ricavate da opportune varianti della disu-
guaglianza di Korn (vedi Sezione 1.5) e tecniche di Γ-convergenza (vedi Sezione 1.3), determi-
niamo il comportamento asintotico di φ̃δ (k) nel limite per δ → 0+: la successione di problemi
f ttizi tende ad un problema variazionale posto sulle densità, avente la stessa struttura (termine
di compliance con penalizzazione di volume). Più precisamente, il problema limite è dato da

φ(k) := inf
{

C
lim(θ)+ k

∫

Q
θ dx : θ ∈ L∞(Q; [0,1])

}
, (11)

dove C lim è il Γ-limite della successione C̃ δ per δ → 0+ rispetto alla convergenza debole * in
L∞(Q; [0,1]). Sfruttando una stima cruciale per il funzionale di compliance rilassato, stabilita in
[19, Proposition 2.8], deduciamo che φδ (k) e φ̃δ (k) hanno lo stesso comportamento asintotico,
cioè limδ→0+ φδ (k) = φ(k).
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Osserviamo che il processo di riduzione di dimensione è fatto senza alcuna ipotesi topologi-
ca sull’insieme Ω occupato dal materiale. Pertanto non rientra nella vasta letteratura sull’analisi
3d−1d.

È naturale chiedersi se φ(k) ammetta o meno una soluzione classica (i.e. una densità a valori
in {0,1}): questo corrisponde a chiedersi se il problema di compliance sotto vincolo di volume,
in un f lo, ammetta come soluzione un materiale reale piuttosto che un materiale composito.
La riformulazione di φ(k) come problema variazionale sugli spostamenti e come problema
variazionale sugli sforzi, ci permette di dare condizioni necessarie e suff cienti di ottimalità.
Queste formulazioni alternative mostrano che il problema (11) può essere risolto sezione per
sezione; inoltre, sfruttando le condizioni di ottimalità, la domanda circa l’esistenza di soluzioni
reali può essere riformulata in modo più semplice, cioè può essere messa in relazione con
l’esistenza di soluzioni “speciali” per un problema di frontiera libera. Una descrizione più
dettagliata e un’analisi approfondita del problema sono rimandate al Capitolo 4.

Nel Capitolo 3 eseguiamo il secondo passaggio al limite, studiando il comportamento asin-
totico del problema (11) per k→ +∞: ricordiamo che un valore grande per k corrisponde a
considerare un piccolo riempimento relativo

∫
Q dθ/|Q| . Mostriamo che la successione φ(k) è

asintoticamente equivalente a
√
2k, e determiniamo il limite m del rapporto φ(k)/

√
2k. Tale

limite è ancora un problema variazionale, il cui costo ha la stessa struttura (termine di com-
pliance più termine di volume), ma è posto sullo spazio M+(Q) delle misure positive su R

3,
con supporto compatto contenuto in Q:

m := inf
{

C
lim(µ)+

1
2

∫
dµ : µ ∈ M

+(Q)
}
; (12)

con C
lim(µ) l’estensione della compliance limite C

lim(θ) alla classe M+(Q). La nuova impo-
stazione del problema sulle misure è abbastanza naturale: il problema limite descrive infatti i
fenomeni di concentrazione che possono aver luogo in insiemi di dimensione inferiore.

Sfruttando la formulazione duale di m, forniamo una caratterizzazione variazionale alter-
nativa delle misure ottimali. In generale la soluzione di m non è unica ed è diff cile da deter-
minare esplicitamente. Tuttavia, se consideriamo dei carichi particolari, riusciamo a risolvere
m completamente o, almeno, a dare un’informazione precisa sul supporto delle sue soluzioni.
I fenomeni di concentrazione corrispondenti sono discussi nell’ultima parte del Capitolo 3, e
possono essere riassunti come segue.

Se il carico è di pura torsione e D è convesso, la soluzione di m è unica e può essere deter-
minata esplicitamente come una misura concentrata sezione per sezione sul bordo dell’insieme
di Cheeger di D. Ricordiamo che, sotto l’ipotesi di D convesso, il suo insieme di Cheeger è
l’unico punto di minimo per il rapporto perimetro/area tra tutti i sottinsiemi misurabili di D
(vedi Sezione 1.4.3 nei Preliminaries):

inf
E⊂D ,11E∈BV (R2)

∫
R
2 |∇11E |
|E| . (13)

Il problema puramente geometrico (13) (che può essere formulato nel caso più generale in cui
D sottoinsieme è un sottoinsieme connesso del piano) è noto come problema di Cheeger, e negli
ultimi anni ha attratto l’attenzione di molti autori (vedi [3, 24, 30, 31, 56, 59, 60, 71]). Per
quanto sappiamo, f nora non esiste alcun risultato e dimostrazione di questa caratterizzazione
di f li sottili in regime di torsione in termini di insiemi di Cheeger. Sottolineiamo che tale
caratterizzazione è valida solo in regime di pura torsione.
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Per carichi più generali, a causa dell’interazione tra energie di trazione, f essione e torsione,
otteniamo un modello più complicato. Forniamo alcuni esempi per cui il problema variazionale
(12) può essere risolto esplicitamente, e presentiamo alcuni casi in cui le sue soluzioni risultano
essere collegate ad interessanti varianti del problema di Cheeger, di seguito riportate. È facile
verif care che la formulazione rilassata del problema classico di Cheeger (13) è

inf
{∫

D
|Du| : u ∈ BV0(D) ,

∫

D
u= 1

}
. (14)

La prima variante che entra in gioco è una sorta di perturbazione con un termine di traslazione:

inf
{∫

D
|Du+q| : u ∈ BV0(D) ,

∫

D
u=C(q)

}
, (15)

con q un campo vettoriale f ssato; la seconda variante è invece una versione pesata:

inf
{∫

D
α |Du| : u ∈ BV0(D),

∫

D
u= 1

}
, (16)

dove α è una funzione non negativa in D. Osserviamo che il problema (16) è stato affrontato
qualche anno fa da Ionescu e Lachand-Robert: in [69] gli autori hanno studiato il caso in cui sia
l’integrale da minimizzare che l’integrale nel vincolo sono pesati.

Nel Capitolo 4 affrontiamo la domanda naturale riguardo al problema variazionale φ(k) in
(11):

Il problema φ(k) ammette una soluzione θ a valori in {0,1}? (17)

Ricordiamo che φ(k) è stato ottenuto passando al limite per δ → 0+ nel problema di ottimiz-
zazione di compliance (7): poiché si tratta di un problema variazionale posto sulle densità in
L∞(Q; [0,1]), una risposta affermativa alla domanda (17) signif cherebbe che il disegno otti-
male in f li sottili ammette una soluzione classica, che può essere identif cata con un insieme,
piuttosto che con un materiale composito.

Esaminiamo il caso di pura torsione: in questo caso la domanda può essere riformulata in
modo più semplice. Poiché, come già osservato, φ(k) può essere risolto sezione per sezione,
dopo un opportuno cambiamento di variabile e passaggio al problema duale, siamo portati a
studiare il seguente problema variazionale:

m(s) := inf
{∫

R2
ϕ(∇u) : u ∈H1

c (D) ,
∫

R2
u= s

}
, (18)

dove s è un parametro reale proporzionale a k, ϕ è l’integrando convesso ma non strettamente
convesso

ϕ(y) :=





|y|2
2 + 1

2 se |y| ≥ 1

|y| se |y|< 1 ,

e H1
c (D) è lo spazio delle funzioni H1 che sono costanti fuori da D (se D è semplicemente

connesso, H1
c (D) coincide con l’usuale spazio di Sobolev H1

0 (D)).
La domanda (17) risulta essere equivalente alla domanda seguente:

Il problema m(s) ammette una soluzione u tale che |∇u| ∈ {0}∪ (1,+∞) q.o. in D? (19)
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Più precisamente, data una soluzione u per m(s) e una soluzione θ per φ(k), la regione in cui ∇u
è zero corrisponde all’assenza di materiale (cioè θ = 0), la regione in cui |∇u|> 1 alla presenza
di materiale (cioè θ = 1) e la regione intermedia corrisponde alla regione di omogeneizzazione.
In altre parole, lo studio di m(s) consente di valutare, nel problema di ottimizzazione della com-
pliance, l’inf uenza della geometria della sezione D e del riempimento relativo s sulla presenza
di regioni di omogeneizzazione.

I risultati principali del Capitolo 4 riguardano lo studio della domanda (19) in relazione alla
geometria del dominio D e riguardo al valore del parametro s.

Diciamo che u è una soluzione speciale per m(s) se minimizza (18) e soddisfa |∇u| ∈ {0}∪
(1,+∞) q.o. in D, inoltre chiamiamo plateau di u, e lo indichiamo con Ω(u), l’insieme {∇u=
0} meno la componente connessa illimitata di R2 \D (in cui u≡ 0).

Se D è un disco o un anello, attraverso conti espliciti e sfruttando le condizioni di ottimalità,
mostriamo che m(s) ammette una soluzione speciale, e non ci sono altre soluzioni.
Mostriamo inoltre che i dischi e gli anelli non sono gli unici domini per i quali m(s) ammette
una soluzione speciale. A questo proposito, è opportuno confrontare i nostri risultati con quelli
ottenuti da Murat e Tartar in [F. MURAT, L. TARTAR: Calcul des variations et homogénéisation.
Homogenization methods: theory and applications in physics (Bráu-sans-Nappe, 1983), 319-
369, Collect. Dir. Etudes Rech. Elec. France 5, Eyrolles, Paris (1985)], riguardo al problema di
massimizzare la rigidità torsionale di una sbarra con sezione trasversale f ssata, e costituita da
due materiali elastici in proporzioni f ssate. Il problema variazionale corrispondente è piuttosto
simile al nostro, ma coinvolge un integrando differenziabile: risulta che non possono esistere
soluzioni classiche (i.e. senza regioni di omogeneizzazione) a meno che la sezione trasversale D
non sia un disco. Nel nostro caso l’integrando ϕ è non-differenziabile in zero e la conclusione va
in una direzione del tutto opposta: dimostriamo che esiste un dominio non circolare D con bordo
analitico tale che, per qualche s, il problema m(s) ammette una soluzione speciale. Inoltre tale
soluzione ha plateau convesso con bordo analitico. Per ottenere questo risultato, usiamo come
strumento chiave la relazione tra m(s) e il problema di Cheeger.

Osserviamo che il ruolo cruciale dell’insieme di Cheeger di D nello studio del problema
asintotico di m(s) in (18) per s → 0+ è già emerso nello studio asintotico del problema di
ottimizzazione di compliance φ(k) in (11) per k→+∞: infatti il parametro s è proporzionale a
1√
k
, quindi piccoli valori di s corrispondono a grandi valori di k.

Mostriamo che se esiste una soluzione speciale u, allora essa risolve un problema non standard
di frontiera libera con un ostacolo sul gradiente:





−∆u= λ , |∇u|> 1 in D\Ω(u)
|∇u|= 1 su Γ(u)
u= ci su γi ,

(20)

dove Γ(u) := ∂Ω(u)∩D è la frontiera libera e γi denotano le differenti componenti connesse di
Γ(u).
Supponendo che D sia semplicemente connesso e che esista una soluzione speciale u con
frontiera libera regolare, dimostriamo alcune proprietà qualitative del plateau:

- ogni componente connessa di D\Ω(u) deve toccare ∂D;

- sotto opportune ipotesi, il plateau Ω(u) deve essere convesso;

- se D non è insieme di Cheeger di se stesso, il plateau Ω(u) non può essere contenuto in
modo compatto in D per coeff cienti di riempimento arbitrariamente piccoli.
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La richiesta a priori di frontiera libera liscia è necessaria per poter applicare la teoria delle P-
functions (cf. [93]). Lo studio della regolarità della frontiera libera rappresenta una prospettiva
interessante e stimolante (vedi [27, 28, 85]): un primo risultato ottenuto in questa direzione
riguarda la f nitezza del perimetro del plateau.

Ottenere una caratterizzazione completa dei domini D per i quali esiste una soluzione spe-
ciale per m(s) è un problema molto complicato, che rimane al momento aperto: a questo propo-
sito crediamo che, almeno nel caso in cui D sia convesso, l’esistenza di una soluzione speciale
sia legata alla regolarità di ∂D, e al fatto che D coincida o meno con il suo insieme di Cheeger.
Osserviamo che quest’ultimo criterio escluderebbe l’esistenza di soluzioni speciali nel caso in
cui D sia un quadrato. Questa ipotesi sembra essere confermata da risultati numerici ottenuti in
[72] per un problema molto simile, in cui sono osservate regioni di omogeneizzazione.
Più precisamente, se D non è insieme di Cheeger di se stesso, ci aspettiamo che qualche com-
ponente connessa Ω0 ⊂ {u ≡ 0} del plateau tocchi il bordo in un intorno dei punti di curvatura
più elevata, cioè gli angoli. Per provare la congettura, abbiamo cercato di sfruttare le derivate
di forma. Infatti, se f ssiamo il parametro s, possiamo interpretare m(s) come un funzionale
di forma J(D), che dipende dal dominio D come segue: includendo il vincolo di volume nel
funzionale, risolvere m(s) su D risulta essere equivalente a studiare

J(D) =− inf
{∫

D
[ϕ(∇u)−λu] dx : u ∈ H1

0 (D)
}

, (21)

con λ = m′(s).
Chiaramente il funzionale di forma J(·) è stazionario sui domini D′ ⊂ D che contengono D \
Ω0. Inoltre, il segno della derivata di forma può fornire utili informazioni: se consideriamo
piccole deformazioni interne di D, localizzate su qualche curva γ ⊂ ∂D, una derivata non nulla
implicherebbe che Ω0 non tocca tale porzione di bordo γ .

[Capitolo 5]
La teoria delle derivate di forma è un ambito molto studiato, con molte applicazioni in

problemi variazionali e di disegno ottimo. La sua origine su può individuare nella prima metà
del secolo scorso, con il lavoro pionieristico di Hadamard [66], seguito da Schiffer e Garabedian
[61, 89]. Negli anni ‘70, sono stati compiuti alcuni importanti progressi da Céa, Murat, e Simon
[32, 81, 90]. Dagli anni ‘90 in poi il rinnovato interesse per la teoria è stato in parte motivato
dall’impulso dato dagli strumenti dell’Analisi Numerica nella ricerca di forme ottimali. Per una
presentazione completa, facciamo riferimento alla recente monograf a [67] di Henrot e Pierre
(vedi anche i libri [47, 91]) e, senza pretesa di completezza, ai lavori [23, 44, 46, 63, 64, 83].

A causa della mancanza di differenziabilità di ϕ nell’origine, il calcolo della derivata di
forma del funzionalel J introdotto in (21) non rientra nella letteratura sopra citata. Abbiamo
quindi cercato di sviluppare un nuovo metodo, che si applica a funzionali convessi più generali
e in dimensione superiore. Consideriamo funzionali di forma del tipo

J(Ω) :=− inf
{∫

Ω

[
f (∇u)+g(u)

]
dx : u ∈W 1,p

0 (Ω)

}
, (22)

al variare di Ω tra i sottoinsiemi aperti limitati di Rn con frontiera Lipschitziana, con f :Rn→R

e g :R→R due integrandi f ssati, che supponiamo essere continui, convessi e soddisfacenti una
condizione di crescita, di ordine p e q rispettivamente. Analogamente consideriamo il problema
di Neumann, in cui non si richiede nessuna condizione al contorno per le funzioni ammissibili
in (22).
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Dato un campo vettoriale V di classe C1(Rn;Rn), consideriamo la famiglia a un parametro
di domini che sono ottenuti come deformazioni di Ω con velocità iniziale V , cioè poniamo

Ωε :=
{
x+ εV (x) : x ∈ Ω

}
, ε > 0 .

Per def nizione, la derivata di forma di J in Ω nella direzione V , se esiste, è data dal limite

J′(Ω,V ) := lim
ε→0+

J(Ωε)− J(Ω)

ε
. (23)

L’approccio che adottiamo per studiare la derivata di forma (23) è diverso da quello classi-
camente utilizzato in letteratura, e sembra avere un duplice interesse: da una parte permette di
ottenere la derivata di forma per integrandi più generali f e g; d’altra parte conduce alla scoperta
di una nuova condizione di ottimalità per le soluzioni del problema (22).

Prima di presentare i risultati, richiamiamo brevemente l’approccio abitualmente utilizzato
per il calcolo di J′(Ω,V ), per evidenziare i differenti punti di vista.

Classicamente, l’oggetto di studio nella teoria delle derivate di forma è la differenziabilità
in ε = 0+ di funzioni della forma

I(ε) :=
∫

Ωε
ψ(ε ,x)dx , (24)

con Ωε l’immagine di un insieme misurabile Ω attraverso una famiglia a un parametro di dif-
feomorf smi bi-Lipschitziani Ψε . In particolare, la derivata di forma del minimo di un funzio-
nale integrale può essere trattata come un caso particolare di (24): infatti, se si considera una
soluzione uε del problema di minimo J(Ωε) e si pone

ψ(ε ,x) :=−[
f (∇uε (x))+g(uε (x))] , (25)

allora risulta J(Ωε) = I(ε).
La differenziabilità in ε = 0+ della mappa I(ε) e la formula della derivata destra sono

dimostrate in [67] sotto opportune ipotesi di regolarità per l’integrando ψ . Più precisamente, si
considerano i casi seguenti: ψ(ε , ·) def nita su tutto R

n con

ψ(ε , ·) ∈ L1(Rn) , ε 7→ ψ(ε , ·) derivabile in 0 , ψ(0, ·) ∈W 1,1(Rn) , (26)

oppure ψ(ε , ·) def nita solo in Ωε con

ψ(ε ,Ψε(·)) ∈ L1(Ω) , ε 7→ ψ(ε ,Ψε(·)) derivabile in 0 , P(ψ(0, ·)) ∈W 1,1(Rn) ,
(27)

con P : L1(Ω)→ L1(Rn) un operatore di estensione lineare e continuo.
Al f ne di includere in questa impostazione i funzionali integrali di tipo (22), bisogna ve-

rif care che una delle condizioni (26) o (27) sia soddisfatta, con ψ(ε ,x) dato da (25). Questa
verif ca deve essere fatta caso per caso, in quanto dipende dalla scelta di f e g. Inoltre, seguendo
questo procedimento, è necessario calcolare la derivata

u′ :=
d
dε
uε
∣∣
ε=0+ , (28)

che tipicamente richiede l’utilizzo dell’equazione di Eulero-Lagrange soddisfatta da uε .
Inf ne, per ottenere teoremi di struttura e risultati di rappresentazione per derivate di forma

come integrali sul bordo ∂Ω, sono necessarie ulteriori ipotesi di regolarità sull’integrando ψ ,
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sul dominio Ω e sulle deformazioni Ψε . Per una trattazione dettagliata facciamo riferimento a
[67].

Il nostro approccio si basa invece sull’uso dell’Analisi Convessa, più precisamente sulla
formulazione duale di J(Ω), che nel caso Dirichlet è data da

J∗(Ω)= inf
{∫

Ω
[ f ∗(σ)+g∗(divσ)]dx : σ ∈ Lp′(Ω;Rn) , divσ ∈ Lq′(Ω)

}

dove f ∗ e g∗ indicano le coniugate di Fenchel di f e g. Nel caso Neumann i campi ammissibili
σ soddisfano la condizione aggiuntiva di traccia normale nulla σ ·n= 0 su ∂Ω.

La nostra strategia consiste nello sfruttare rispettivamente la formulazione primale J(Ω) e
la formulazione duale J∗(Ω) per ottenere stime dal basso e dall’alto per il rapporto incrementale

qε(V ) :=
J(Ωε)− J(Ω)

ε
=
J∗(Ωε)− J∗(Ω)

ε
.

Tali stime dal basso e dall’alto assumono rispettivamente la forma

liminf
ε→0+

qε(V )≥ inf
σ∈S ∗

sup
u∈S

∫

Ω
A(u,σ) : DV dx (29)

e
limsup

ε→0+
qε(V )≤ sup

u∈S

inf
σ∈S ∗

∫

Ω
A(u,σ) : DV dx (30)

dove S e S ∗ indicano l’insieme di soluzioni di J(Ω) e J∗(Ω) rispettivamente, e A(u,σ) è il
campo di tensori def nito sullo spazio prodotto S ×S ∗ come

A(u,σ) := ∇u⊗σ − [ f (∇u)+g(u)] I (31)

(con I la matrice identità). Poiché l’inf-sup nel membro destro di (29) è maggiore o uguale al
sup-inf nel membro sinistro di (30), concludiamo che essi coincidono, e quindi che il limite
per ε → 0+ di qε (V ), cioè la derivata di forma J′(Ω,V ), esiste. Se indichiamo con (u⋆,σ ⋆) ∈
S ×S ∗ un elemento in cui il valore del sup-inf o dell’inf-sup è raggiunto, vale

J′(Ω,V ) =
∫

Ω
A(u⋆,σ ⋆) : DV dx . (32)

Sotto ulteriori ipotesi, la derivata di forma può essere riformulata come forma lineare in V , più
precisamente come un integrale di bordo che dipende linearmente dalla componente normale
di V su ∂Ω. Le ipotesi aggiuntive di regolarità sono necessarie per affermare che una coppia
ottimale (u⋆,σ ⋆) in (32) non dipende dal campo di deformazione V , e per poter applicare le
formule di integrazione per parti che richiedono una nozione debole di traccia (vedi [6, 7, 34,
35]).

Sottolineiamo che, come conseguenza delle stime sopra descritte per qε(V ), otteniamo
una nuova condizione necessaria di ottimalità per il problema variazionale J(Ω). Sorpren-
dentemente, mediante variazioni orizzontali, sfruttando il fatto che i qε (V ) sono nulli per ogni
V ∈C1

0(Ω,Rn), le nostre stime danno come ulteriore risultato l’informazione che degli opportu-
ni tensori della forma (31) sono a divergenza nulla. In particolare, se f è Gateaux-differenziabile
eccetto al più nell’origine, risulta che per ogni u ∈ S vale

div
(

∇u⊗∇ f (∇u)− [ f (∇u)+g(u)] I
)
= 0 (33)
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nel senso delle distribuzioni.
Sorprendentemente, per quanto ne sappiamo, la condizione (33) sembra essere f no ad ora

sconosciuta, eccetto che nel caso scalare n = 1, in cui si riduce alla legge di conservazio-
ne (o integrale primo dell’equazione di Eulero) seguente, soddisfatta da estremali regolari di
Lagrangiane lisce:

u′ f ′(u′)− [ f (u′)+g(u)] = c ,
(vedi e.g. [25, Proposition 1.13]).

Sottolineiamo che, seguendo questa strategia, non abbiamo mai utilizzato la derivata u′
def nita in (28), in particolare non abbiamo bisogno della validità dell’equazione di Eulero-
Lagrange per i punti di minimo (circa le condizioni necessarie per la sua validità, facciamo
riferimento ai recenti lavori [10, 45], e i riferimenti ivi contenute). Possiamo quindi trattare
anche funzionali integrali i cui punti di minimo soddisfano solo una disuguaglianza variazio-
nale. Osserviamo che il problema (21), posto sulla sezione trasversale di un f lo, rientra in
questa classe di problemi: la condizione di ottimalità soddisfatta dagli elementi di S non è
un’equazione di Eulero-Lagrange, ma solo una disuguaglianza variazionale. Lo studio della de-
rivata prima di forma per (21) non ci ha permesso di verif care la congettura riguardo al plateau,
poiché abbiamo ottenuto derivata nulla.

I possibili sviluppi nell’ambito delle derivate di forma per minimi di funzionali integrali
vanno in diverse direzioni. Il primo aspetto che sarebbe interessante approfondire è la linearità
di J′ rispetto al campo di deformazione V : abbiamo ottenuto condizioni suff cienti che garan-
tiscono tale proprietà e vorremmo determinarne anche di necessarie. In generale, ad esempio
nell’ambito di non unicità delle soluzioni, crediamo che la linearità sia una condizione troppo
forte: più precisamente, la nostra congettura è che J′ sia della forma

J′(Ω,V ) =
∫

∂Ω
α(x)(V ·n)+H

n−1(x)+
∫

∂Ω
β (x)(V ·n)+H

n−1(x) ,

con α , β due densità opportune in L∞(∂Ω) che potrebbero dipendere dai dati del problema
di minimo J(Ω), e (V · n)± pari alla parte positiva e negativa del prodotto scalare V · n sul
bordo. In particolare, ci aspettiamo che J′ sia lineare rispetto a deformazioni puramente interne
o puramente esterne.

Un altro problema interessante è studiare le derivate di forma di ordine superiore. In questa
direzione abbiamo applicato lo stesso approccio per il calcolo della derivata seconda J′′(Ω,V ),
supponendo maggiore regolarità sul dominio Ω e sugli integrandi f e g. Sfruttando ancora le
formulazioni primale e duale di J(Ω), riusciamo a limitare dall’alto e dal basso il liminf e il
limsup della successione

rε(V ) := 2
[J(Ωε)− J(Ω)− εJ′(Ω,V )]

ε2
, ε > 0 ,

ed otteniamo la formula di rappresentazione

J′′(Ω,V ) =

∫

∂Ω
(V ·n)2

[
∂u
∂n

(∇2u∇2 f (∇u)n) ·n+ (
∇u ·∇ f (∇u)− f (∇u)

)
H∂Ω

]
dH n−1+

− inf
v∈H1(Ω)

Tr(v)=−V ·∇u

{∫

Ω
(∇2 f (∇u)∇v) ·∇v+g′′(u)v2

}
,

(34)
con H∂Ω la curvatura media di ∂Ω.
Osserviamo che per il momento la (34) è stata ottenuta solo nel caso regolare e la sua estensione
a integrandi più generali sarà oggetto dei prossimi studi. Prevediamo che i risultati riguardo alla
derivata di forma di ordine 2 possano dare informazioni circa la curvatura del bordo del plateau.
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French Summary

Le sujet principal de la Thèse est l’ optimisation de la compliance des structures élas-
tiques minces. Le problème consiste en déterminer la conf guration la plus résistante,
lorsqu’une quantité inf nitésimale de matériau élastique est soumis à une force f xée et

est conf née dans une région de volume inf nitésimal.
La résistance au chargement peut être mesurée en calculant une fonctionnelle de forme,

la compliance, dans laquelle la forme représente le volume occupé par le matériau élastique.
Donc nous sommes conduits à étudier un problème de minimisation d’une fonctionnelle de
forme, sous une contrainte appropriée.

Nous nous intéresserons plus particulièrement au cas où la région de design est un f l f n,
representé par un cylindre de section transverse inf nitésimale.

L’étude est motivée par des problèmes d’ingénierie: les structures minces sont très intéres-
santes d’un point de vue pratique.

La stratégie utilisée tire son inspiration des travaux récents par I. Fragalà, G. Bouchitté et
P. Seppecher, dans lesquels les auteurs considèrent des plaques élastiques [G. BOUCHITTÉ,
I. FRAGALÀ, P. SEPPECHER: Structural optimization of thin plates: the three dimensional
approach. Arch. Rat. Mech. Anal. (2011)]. Cependant il faut souligner que le cas du cylindre
est loin de se résumer à une variante technique du cas des plaques. Comme nous le verrons en
effet, le modèle limite obtenu dans l’analyse asymptotique 3d-1d est plus riche et subtile que
celui correspondant à une analyse asymptotique 3d-2d.

L’étude des conf gurations optimales pour le modèle limite obtenu nous a conduit à une
problématique nouvelle: l’existence de vraies forme optimales (donc sans apparition de struc-
tures composites) pour une barre en régime de pure torsion est liée à l’existence de solutions
pour un problème non standard de frontière libre dans le plan. Ce problème représente un
challenge et nous nous contenterons de donner quelques premiers résultats et perspectives. Par
ailleurs, en liaison avec ce problème, nous développerons une stratégie nouvelle pour carac-
tériser dérivée de forme pour le minimum d’une fonctionnelle intégrale. La théorie de dérivées
de forme est un sujet très largement étudié (voir e.g. la monographie de A. Henrot et M.Pierre
Variations et Optimisation de Formes. Une Analyse Géométrique, Springer Berlin (2005), et les
références qui sont y contenues), mais les techniques classiques qui y sont utilisées s’appuient
sur des hypothèses de régularité non vérif ées dans notre cas.

L’organisation de la Thèse est la suivante.
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Dans la première partie sont réunis les préliminaires: dans le Chapitre 1 nous rappellons
les principaux outils mathématiques d’Analyse Convexe, Théorie Géometrique de la Mesure
et Γ-convergence que nous utiliserons dans la Thèse; ensuite nous donnons un aperçu de la
théorie de l’Élasticité Linéaire, qui motive l’étude du problème principal. La deuxième partie
(Chapitres 2 et 3) est dédiée à l’étude de l’optimisation de la compliance lorsque le domaine
de design est un cylindre de section inf nitésimale. Dans la troisième partie (Chapitres 4 et
5) nous dénveloppons les deux derniers problèmes mentionnés ci-dessus (problème à frontière
libre et dérivée de forme). Lorsque nécessaire, les démonstrations les plus techniques sont
renvoyées dans un Appendice en f n de Chapitre. Quelques problèmes ouverts et perspectives
seront parfois présentés dans un paragraphe dédié.

La thèse englobe les résultats présentés dans les papiers suivants (écrits au cours de ces trois
années de Doctorat):

- (Chapitres 2 et 3) G. BOUCHITTÉ, I. FRAGALÀ, I. LUCARDESI, P. SEPPECHER: Opti-
mal Thin Torsion Rods and Cheeger Sets, SIAM J. Math. Anal., 44, 483-512, (2012).

- (Chapitres 2 et 3) I. LUCARDESI: Optimal design in thin rods, en préparation.

- (Chapitre 4) J. ALIBERT, G. BOUCHITTÉ, I. FRAGALÀ, I. LUCARDESI: A non standard
free boundary problem arising in shape optimization of thin torsion rods, à apparaître en
Interfaces and Free Boundaries (2012).

- (Chapitre 5) G. BOUCHITTÉ, I. FRAGALÀ, I. LUCARDESI: Shape derivatives for min-
ima of integral functionals, en préparation.

Dans ce qui suit, nous décrivons plus en détail le contenu des différents chapitres.

[Chapitre 2] On considère une région de design Q dans R3 soumis à un chargement extérieur
donné que nous représentons par une distribution vectorielle F ∈H−1(Q;R3). La résistance à un
tel chargement d’ un matériau élastique isotrope occupant une certaine région Ω ⊂ Q peut être
évaluée en calculant sa compliance. Sous l’hypothèse de petits déplacements, cette compliance
est donnée par la fonctionnelle de forme suivante:

C (Ω) := sup
{
〈F,u〉R3 −

∫

Ω
j(e(u))dx : u ∈ H1(Q;R3)

}
, (1)

où, comme il est habituel en Éasticité Lineaire, e(u) dénote la partie symétrique du gradient ∇u,
et le potentiel de strain j : R3×3

sym → R , supposé isotrope, est strictement convexe et est du type

j(z) :=
λ
2
tr2(z)+η |z|2 , (2)

où λ ,µ > 0 sont les coéff cients de Lamé du matériau.
La valeur de C (Ω) est proportionnelle au travail des forces extérieures nécessaire pour amener
la structure jusqu’à l’équilibre. En particulier, plus la compliance est petite, plus la résistance
est élevée.
Clairement, af n que C (Ω) reste bornée, le chargement F doit avoir son support contenu dans Ω;
de plus, en l’absence d’encastrement ou de déplacement imposé sur une partie de la structure,
il est nécessaire que F soit équilibrée, i.e.

〈F,u〉R3 = 0 , lorsque e(u) = 0 .
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Sous cette condition, un déplacement optimal u existe et satisfait l’égalité: C (Ω) = 1
2〈F,u〉R3 .

Dans la Thèse nous étudions le problème de trouver les conf gurations de matériau élastique
les plus robustes, i.e. qui minimisent la compliance, lorsque la région de design est un domaine
mince. En outre, nous nous intéresserons au cas où le rapport entre le volume du matériau
élastique et le volume de la région de design est inf nitésimal.

En disant “mince” nous entendons que une ou deux dimensions spatiales du corps sont
beaucoup plus petites que les autres. Ces structures particulières sont très importantes dans
les problèmes d’ingéniérie: leur petit poids et leur maniabilité les rendent très intéressantes
pour les applications pratiques. Ici nous considérerons le cas d’une structure f laire dans lequel
l’approximation choisie réxulte d’une analyse asymptotique 3d-1d.

La façon mathématique pour décrire un f l est la suivante: un f l est une structure tridi-
mensionnelle qui occupe le volume engendré par un domaine connexe planaire, appelé section
transversale, avec centroïd qui varie perpendiculairement à une courbe, appelée axe; de plus le
diamètre de la section transversale est beaucoup plus petit que la longueur de l’axe. En parti-
culier nous nous occupons des f ls droits, dans lequels l’axe est une ligne droite I et la section
transversale est un domaine borné plain D, constant le long de l’axe: nous répresentons cettes
structures comme des cylindres du type

Qδ := δD× I , (3)

étant D ⊂ R
2 un domaine ouvert borné, I un interval fermé borné et δ > 0 un paramètre in-

f nitésimal qui répresent le petit rapport entre le diamètre de la section et la longueur.
La littérature sur les f ls minces est très vaste: la thèorie classique a été developpée par Euler,

Bernoulli, Navier, Saint Venant, Timoshenko, Vlassov; dans les dernières années, grâce aux
nouvelles techniques numériques, ces problèmes ont eu un regain d’intérêt et sont désormais un
large domaine de mathématique appliquée (nous nous limitons à méntionner [73, 78, 80, 86]).
Pour un aperçu complet sur ce sujet, nous renvoyons à l’ouvrage de référence par Trabucho et
Viaño [95] et les références qui sont y contenues.

Le problème que nous traitons, et par conséquent l’approche que nous adoptons pour le ré-
soudre, puise son inspiration dans un ouvrage récent de G. Bouchitté, I. Fragalà et P. Seppecher
[19], dans lequel les auteurs ont étudié le problème d’optimisation de compliance lorsque la
région de design peut être approchée par un ensemble à deux dimensions, plus précisément, ils
ont considéré le cas de plaques minces, décrites par une famille de cylindres de la forme

Qδ := D×δ I ,

ayant une épaisseur inf nitésimale δ .
Dans ce qui suit nous traitons avec des ensembles minces Qδ déf ni selon (3). Af n de

trouver les conf gurations les plus légeres et plus robustes, nous minimisons la compliance
C (Ω) parmi les sous-ensembles Ω de Qδ avec volume prescrit égal à m, i.e. nous étudions

inf
{

C (Ω) : Ω ⊂ Qδ ,
|Ω|
|Qδ |

= m
}

, (4)

et nous procédons à la double limite pour δ → 0 et m→ 0 .
Si nous rajoutons la contrainte de volume dans le coût au moyen d’un multiplicateur de La-
grange k ∈ R, les problèmes variationnels (4) à l’étude prennent la forme

φδ (k) := inf
Ω⊂Qδ

{
C

δ (Ω)+ k
|Ω|
|Qδ |

}
, (5)
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étant
C

δ (Ω) := sup
{
〈Fδ , ũ〉

R
3 −

∫

Ω
j(e(ũ))dx : ũ ∈H1(Qδ ,R

3)

}
. (6)

Ici Fδ est une mise à l’échelle appropriée du chargement F , choisie de telle sorte que dans le
passage à la limite l’inf mum reste f ni. La choix de l’échelle Fδ dépend des hypothèses faites
sur le genre de forces appliquées. Dans la littérature il est d’usage de distinguer entre les cas de
extension, f exion et torsion: dans la Thèse nous concentrons notre attention sur les chargements
pour lesquels les contributions de la f exion et de la torsion peuvent être découplées de façon
appropriée, et nous choisissons deux échelles différentes pour ces deux composantes: grosso
modo, nous considérons que les forces F de la forme F = G+H , lorsque la f exion ne dépend
que de la composante verticale H . Le cas général est diff cile à traiter, en raison de l’interaction
entre ces contributions de la force.

Dans le Chapitre 2 nous faisons le premier passage à la limite, i.e. nous étudions le com-
portement asymptotique de problème (5) lorsque δ → 0+: il s’agit de chercher la conf guration
la plus robuste dans un ensemble f laire, en gardant f xé le rapport entre le volume du matériau
et le volume de la région mince de design.

La première étape de l’étude consiste à reformuler les problèmes variationnels φδ (k) sur le
domaine f xe Q := D× I, au lieu des cylindres minces Qδ . Après un changement de variables
approprié pour les déplacements et une mise à l’échelle adaptée au chargement, les problèmes
(5) peuvent être réécrits comme

φδ (k) = inf
ω⊂Q

{
C

δ (ω)+ k |ω |
}

, (7)

étant

C
δ (ω) := sup

{
1
δ
〈G,u〉

R
3 + 〈H,u〉

R
3 −

∫

Ω
j(eδ (u))dx : u ∈ H1(Qδ ,R

3)

}
, (8)

où eδ : H1(Q;R3)→ L2(Q;R3×3
sym ) est l’opérateur déf ni par

eδ
αβ (u) := δ−2eαβ (u) , eδ

α3(u) := δ−1eα3(u) , eδ
33(u) := e33(u) ,

comme il est d’usage dans la littérature sur la réduction de dimension 3d−1d . L’étude asymp-
totique de φδ (k) est basée sur la comparaison avec les “problèmes f ctifs”, c’est-à-dire les for-
mulations rélaxées dans L∞(Q; [0,1]). En effet, il est bien connu que les problèmes de inf mum
(7) sont en général mal posés, en raison de l’apparition de phénomènes d’homogénéisation qui
empêchent l’existence d’un domaine optimal (voir [2]). Ainsi, nous avons besoin d’étendre la
classe de matériaux admissibles, passant de “vrais” matériaux, représentés par des fonctions
caractéristiques, aux matériaux “composites”, représentés par des densités à valeurs dans [0,1].
Dans ce but, nous introduisons la famille des problèmes variationnels

φ̃δ (k) := inf
{

C̃
δ
(θ)+ k

∫

Q
θ dx : θ ∈ L∞(Q; [0,1])

}
, (9)

oú C̃
δ
(θ) représente l’extension naturelle de la compliance C δ (ω) à L∞(Q; [0,1]):

C̃
δ
(θ) := sup

{ 1
δ
〈G,u〉

R
3 + 〈H,u〉

R
3 −

∫

Q
j(eδ (u))θ dx : u ∈ H1(Q;R3)

}
. (10)
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En exploitant certaines propriétés délicates de compacité provenantes des variantes de l’inégalité
de Korn (voir la Section 1.5) et techniques de Γ-convergence (voir la Section 1.3), nous déter-
minons le comportement limite de φ̃δ (k) pour δ → 0+: la suite des problèmes f ctifs tend vers
une limite φ(k), ce qui est ecore un problème variationnel posé sur les densités, avec la même
structure: un terme de compliance avec une pénalisation de volume. Plus précisément, φ(k) se
lit

φ(k) := inf
{

C
lim(θ)+ k

∫

Q
θ dx : θ ∈ L∞(Q; [0,1])

}
, (11)

oú C lim est la Γ-limite de la suite C̃ δ pour δ → 0+ par rapport à la convergence faible * dans
L∞(Q; [0,1]). Exploitant une estimation cruciale pour la fonctionnelle de compliance relaxée,
établie dans [19, Proposition 2.8], on déduit que φδ (k) et φ̃δ (k) ont le même comportement
asymptotique, c’est-à-dire limδ→0+ φδ (k) = φ(k).

Nous rappelons que le processus de réduction de dimension est effectué sans faire aucune
hypothèse topologique sur l’ensemble Ω occupé par le matériau. Par conséquent, il n’est pas
couvert par la littérature très vaste sur l’analyse 3d−1d.

À ce point il est naturel de se demander si φ(k) admet une solution classique (i.e. une den-
sité à valeurs dans {0,1}): cela correspond à se demander si le problème de compliance sous
contrainte de volume, dans un ensemble f laire, admet comme solution un matériau réel plutôt
qu’un composite. Fournir des reformulations de φ(k) en tant que un problème variationnel pour
les déplacements, et comme un problème variationnel pour les tenseurs de stress, nous permet
de donner des conditions d’optimalité nécessaires et suff santes. Ces formulations alternatives
révèlent que le problème (11) peut être résolu section par section; en outre, en exploitant le sys-
tème d’optimalité, la question de l’existence de vrais solutions peut être reformulée de manière
plus aisée, et elle peut être reliée à l’existence de solutions “spéciaux” d’un certain problème à
frontière libre. Une description plus détaillée et une analyse plus approfondie du problème est
reportée au Chapitre 4.

Dans le Chapitre 3, nous faisons le deuxième passage à la limite, c’est-à-dire que nous
étudions le comportement asymptotique du problème (11) quand k→+∞: nous rappelons que
considérer grandes valeurs de k revient à considérer petits “taux de remplissage”

∫
Q dθ/|Q| .

Nous montrons que la suite φ(k) est asymptotiquement équivalente à
√
2k , et nous déterminons

la limite m du rapport φ(k)/
√
2k . Cette limite est encore un problème variationnel, dont le coût

a la même structure (terme de compliance plus terme de volume), mais il est posé dans l’espace
M+(Q) des mesures positives sur R3 à support compact dans Q :

m := inf
{

C
lim(µ)+

1
2

∫
dµ : µ ∈ M

+(Q)
}
; (12)

où C
lim(µ) est l’extension naturelle de la compliance limite C

lim(θ) à la classe M+(Q). Le
nouveau cadre est tout à fait naturel, puisque le problème limite décrit des phénomènes de
concentration qui peuvent survenir dans des parties de dimension inférieure.

En exploitant la formulation duale de m nous fournissons une caractérisation variationnelle
alternative des mesures optimales. Il s’avère que, en général, la solution n’est pas unique et
elle est diff cile à déterminer explicitement. Néanmoins, lors de l’examen des chargements
particuliers, nous pouvons résoudre m complètement, ou, au moins, donner des informations
précises sur le support de ses solutions. Les phénomènes de concentration correspondantes sont
discutés dans la dernière partie du Chapitre 3, et peuvent être résumées comme suit.
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Lorsque le chargement est purement de torsion et D est convexe, la solution de m se
révèle être unique et peut être déterminée explicitement comme une mesure concentrée, sec-
tion par section, sur le bord de ce qu’on appelle l’ensemble de Cheeger de D. On rappelle que,
sous l’hypothèse de D convexe, son ensemble de Cheeger est l’unique minimum du quotient
périmètre / surface parmi tous les sous-ensembles mesurables de D (voir la section 1.4.3 dans
les Préliminaires):

inf
E⊂D ,11E∈BV(R2)

∫
R
2 |∇11E |
|E| . (13)

Le problème purement géométrique (13) (qui peut être déf ni de façon plus générale lorsque D
est un sous-ensemble connexe du plan) est connu comme problème de Cheeger, et ces dernières
années a attiré l’attention de nombreux auteurs (voir [3, 24, 30, 31, 56, 59, 60, 71]). Au meilleur
de nos connaissances, jusqu’à présent, il n’y avait aucun énoncé et preuve de cette caractérisa-
tion géométrique de “barres de torsion” optimales légeres en termes d’ensembles de Cheeger.
Nous soulignons que cette caractérisation est valable uniquement en régime de pure torsion.
Pour chargements plus généraux, en raison de l’interaction entre les énergies de f exion, de
torsion et de stretching, nous obtenons un modèle plus compliqué. Nous donnons quelques
exemples pour lesquels le problème variationnel (12) peut être résolu explicitement, et nous
présentons quelques cas où ses solutions se révèlent être liées à des variantes intéressantes du
problème de Cheeger. Il est facile de voir que la formulation relaxée du problème classique de
Cheeger (13) est

inf
{∫

D
|Du| : u ∈ BV0(D) ,

∫

D
u= 1

}
. (14)

La première variante qui entre en jeu est une sorte de perturbation avec un terme de translation:

inf
{∫

D
|Du+q| : u ∈ BV0(D) ,

∫

D
u=C(q)

}
, (15)

q étant un champ de vecteurs f xé; alors que la seconde variante est une version pondérée:

inf
{∫

D
α |Du| : u ∈ BV0(D),

∫

D
u= 1

}
, (16)

α étant une fonction non négative dans D. Nous rappelons que le problème (16) a été traité
il y a quelques années par Ionescu et Lachand-Robert: dans [69], les auteurs, motivés par
des applications à la modélisation des glissements de terrain, étudient le cas où l’integrande à
minimiser ainsi que la contrainte sont pondérées.

Dans le Chapitre 4 nous affrontons la question naturelle suivante, qui vient du problème
variationnel φ(k) en (11):

Est-ce que le problème φ(k) admet une solution θ à valeurs dans {0,1}? (17)

Nous rappelons que φ(k) a été obtenu par passage à la limite lorsque δ → 0+ dans le problème
d’optimisation de compliance (7): puisqu’il s’agit d’un problème variationnel établi sur les
densitées L∞(Q, [0,1]) , une réponse aff rmative à la question (17) signif erait que le design
optimal des f ls minces admet une solution classique, qui peut être identif ée avec un ensemble
plutôt qu’un composite.

Nous concentrons notre attention sur le régime de pure torsion: dans ce cas, la question
peut être reformulée de manière plus aisée. Comme on a déjà remarqué, φ(k) peut être résolu
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section par section, donc, après un changement de variable approprié et passage à un problème
dual, nous sommes amenés à étudier le problème variationnel suivant sur le plan:

m(s) := inf
{∫

R2
ϕ(∇u) : u ∈ H1

c (D) ,
∫

R2
u= s

}
, (18)

où s est un paramétre réel proportionnel à k, ϕ est l’intégrande convexe mais pas strictement-
convexe suivante

ϕ(y) :=





|y|2
2 + 1

2 if |y| ≥ 1

|y| if |y|< 1 ,

et H1
c (D) désigne l’espace des fonctions dans H1 qui sont constantes en dehors de D (si D est

simplement connexe, H1
c (D) coïncide avec l’habituel espace de Sobolev H1

0 (D)).
La question (17) est équivalente à la suivante:

Est-ce que le problème m(s) admet une solution u telle que |∇u| ∈ {0}∪ (1,+∞) p.p. dans D?
(19)

Plus précisément, étant donné une solution u pour m(s) et une solution θ pour φ(k) , la région
où ∇u s’annule correspond à l’absence de matériau (c’est-à-dire θ = 0), la région |∇u|> 1 à la
présence de matériau (c’est-à-dire θ = 1) et la région intermédiaire correspond à la région de
homogénéisation. En d’autres termes, l’étude dem(s) peut être appliquée à établir l’inf uence de
la forme de la section et du taux de remplissage sur la présence des régions de homogénéisation
dans les barres de torsion minces optimales.

Les résultats principaux du Chapitre 4 concernent l’étude de la question (19) en relation avec la
géométrie du domaine D et aussi avec la valeur du paramètre s .

Nous disons que u est une solution spéciale pour m(s) si elle minimise (18) et satisfait
|∇u| ∈ {0} ∪ (1,+∞) p.p. dans D, en outre nous appellons plateau de u, et on le note Ω(u),
l’ensemble {∇u= 0} moins la composante connexe illimitée de R2 \D (où u≡ 0).

Lorsque D est une boule ou un anneau, par des calculs explicites et exploitant les conditions
d’optimalité, nous montrons que m(s) admet une solution spéciale, et il n’y a pas d’autre solu-
tion.
Ensuite, on montre que les boules et les anneaux ne sont pas les seules domaines pour lesquels
m(s) admet une solution spéciale. À cet égard, il est intéressant de comparer nos résultats
avec ceux obtenus par Murat et Tartar dans [F. MURAT, L. TARTAR: Calcul des variations et
homogénéisation. Homogenization methods: theory and applications in physics (Bráu-sans-
Nappe, 1983), 319-369, Collect. Dir. Etudes Rech. Elec. France 5, Eyrolles, Paris (1985)], sur
le problème de maximiser la rigidité de torsion d’une barre avec section donnée et composée
par deux matériaux élastiques avec proportions f xes. Le problème variationnel correspondant
est tout à fait similaire au nôtre, sauf qu’il s’agit d’une intégrande différentiable, et les solutions
classiques (i.e. designs optimals sans région de homogénéisation) ne peuvent pas exister à
moins que la section transversale D est un disque.

Dans notre cas, l’intégrande ϕ est non dérivable en zéro et la conclusion est dans une di-
rection tout à fait opposée: nous prouvons qu’il existe un domaine non circulaire D avec bord
analytique, tel que, pour certains s, le problème m(s) admet une solution spéciale. En outre,
cette solution présente un plateau convexe avec une frontière analytique. Pour atteindre ce
résultat, nous utilisons comme outil essentiel la relation entre m(s) et le problème de Cheeger.

On remarque que le rôle crucial joué par l’ensemble de Cheeger de D , dans l’étude du
comportement asymptotique de m(s) en (18) quand s→ 0+, a déjà émergé dans l’asymptotique
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du problème de optimisation de la compliance φ(k) en (11) quand k→+∞: en fait le paramètre
s est proportionnel à 1√

k
, de sorte que les petites valeurs de s correspondent aux grandes valeurs

de k .
Après avoir donné quelques propriétés élémentaires sur le signe et le support de solutions
généraux, nous obtenons des informations sur les propriétés qualitatives des solutions spéci-
aux, lorsque elles existent. Cela revient à étudier un problème non standard de frontière libre
avec un obstacle sur le gradient:





−∆u= λ , |∇u|> 1 dans D\Ω(u)
|∇u|= 1 sur Γ(u)
u= ci sur γi ,

(20)

où Γ(u) := ∂Ω(u)∩D est la frontière libre et γi dénotent les différentes composantes connexes
de Γ(u).
Enf n, en supposant que D est simplement connexe, et qu’il existe une solution spéciale u avec
une frontière libre lisse, nous démontrons des propriétés qualitatives du plateau:

- chaque composante connexe de D\Ω(u) doit toucher le bord ∂D;

- sous des hypothèses convenables, le plateau Ω(u) doit être convexe;

- si D n’est pas ensemble de Cheeger de lui-même, le plateau Ω(u) ne peut pas être contenu
de façon compacte dans D pour taux de remplissage arbitrairement petits.

Nous remarquons que la condition de frontière libre regulière que nous avons considérée
a priori est nécessaire af n d’appliquer la théorie de P-fonctions (voir [93]). L’étude de la
régularité de la frontière libre est une perspective intéressante et stimulante (voir [27, 28, 85]):
un premier résultat obtenu dans cette direction concerne la f nitude du périmètre du plateau.

Nous soulignons que réussir à caractériser complètement les domaines D dans lesquels il
existe une solution spéciale pour m(s), semble être un problème très diff cile, qui reste à ce jour
ouvert: à cet égard, nous croions que, au moins quand D est convexe, l’existence de solutions
spéciaux est liée à la régularité de ∂D, et aussi au fait que D coïncide ou pas avec son ensemble
de Cheeger. Notons que ce critère exclurait l’existence d’une solution spéciale dans le cas où
D est un carré. Cette hypothése semble être conf rmée par les résultats numériques effectués
dans [72] pour un problème très similaire, dans lequel des régions de homogénéisation sont
observées.
Si D n’est pas un ensemble de Cheeger de lui-même, nous nous attendons que une certaine
composante connexe Ω0 ⊂ {u≡ 0} du plateau touche la frontière dans un voisinage des points
de courbure supérieur, c’est-à-dire des coins. Af n de prouver la conjecture, nous avons essayé
d’exploiter les dérivés de forme. En fait, si nous f xons le paramètre s, nous pouvons interpréter
m(s) comme une fonctionnelle de forme J(D), qui dépende du domaine D comme suit: en
rajoutant la contrainte de volume dans la fonctionnelle, la résolution m(s) sur D s’avère être
équivalente à étudier

J(D) =− inf
{∫

D
[ϕ(∇u)−λu] dx : u ∈ H1

0 (D)
}

, (21)

avec λ = m′(s).
Clairement la fonctionnelle de forme J(·) est stationnaire dans les domaines D′ ⊂ D qui conti-
ennent D\Ω0. Par ailleurs, le signe de la dérivée de forme peut donner des informations utiles:
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si on considère des petites déformations internes de D, localisées sur une partie γ du bord, une
dérivée de forme différente de zéro implique que Ω0 ne touche pas cette partie γ .

[Chapitre 5]
La théorie des dérivées de forme est un sujet largement étudié, avec de nombreuses appli-

cations dans les problèmes variationnels et le design optimal. Sa origine peut être retracée à la
première moitié du dernier siècle, avec le travail pionnier par Hadamard [66], suivi par Schiffer
et Garabedian [61, 89]. Ensuite, des progrès importants ont été faits dans les années septante
par Céa, Murat, et Simon [32, 81, 90]. Depuis les années nonante, les nombreuses contribu-
tions fournies par différents auteurs sont témoin d’un intérêt renouvelé, en partie motivé par
l’impulsion donnée par le développement de l’analyse numérique dans la recherche de optimi-
sation de forme. Nous nous référons à la récente monographie [67] par Henrot et Pierre comme
un texte de référence (voir aussi les livres [47, 91]), et, sans aucune tentative d’exhaustivité,
d’oeuvres représentatives [23, 44, 46, 63, 64, 83].

En raison de l’absence de différentiabilité de ϕ à l’origine, le calcul de la dérivée de forme
de la fonctionnelle J en (21) n’est pas couvert par la littérature citée ci-dessus. Par conséquent,
nous avons essayé de développer une nouvelle méthode, qui s’applique également aux fonc-
tionnelles convexes plus généraux et en dimension supérieure. En fait, nous considérons les
fonctionnelles de forme du type

J(Ω) :=− inf
{∫

Ω

[
f (∇u)+g(u)

]
dx : u ∈W 1,p

0 (Ω)

}
. (22)

Ici, Ω varie entre les sous-ensembles ouverts bornés de Rn avec bord Lipschitzien, f : Rn → R

et g : R → R sont intégrandes données, qui sont supposées être continues, convexes, et satis-
faisantes autres hypothèses de régularité et conditions de croissance, d’ordre p et q respective-
ment. De la même façon, nous pouvons traiter aussi le problème de Neumann, dans lequel
aucune condition au bord est prescrite pour les fonctions admissibles dans (22).

Étant donné un champ de vecteurs V de classeC1(Rn;Rn), nous considérons la famille à un
paramètre de domaines qui sont obtenus comme des déformations de Ω avec V comme vitesse
initiale: nous posons

Ωε :=
{
x+ εV (x) : x ∈ Ω

}
, ε > 0 .

Par déf nition, la dérivée de forme de J en Ω dans la diréction V , si elle existe, est donnée par
la limite

J′(Ω,V ) := lim
ε→0+

J(Ωε)− J(Ω)

ε
. (23)

L’approche que nous adoptons af n d’étudier la dérivée de forme (23) est différente de celle
habituellement utilisée dans la littérature, et semble avoir un double intérêt: d’une part elle per-
met d’obtenir la dérivée de forme pour intégrandes f et g plus généraux, d’autre part, ainsi que
la dérivée de forme, elle conduit à découvrir une nouvelle condition d’optimalité des solutions
au problème (22).

Avant de décrire les résultats, rappelons brièvement l’approche habituelle pour le calcul de
J′(Ω,V ), af n d’éclairer la différence de point de vue.

Classiquement, l’objet d’étude dans la théorie des dérivées de forme est la différentiabilité
en ε = 0+ des fonctions du type

I(ε) :=
∫

Ωε
ψ(ε ,x)dx , (24)
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étant Ωε l’image d’un ensemble mesurable Ω via une famille de difféomorphismes bi-Lipschitz
Ψε à un paramètre. En particulier, les dérivées de forme pour les minima de fonctionnelles
intégrales peuvent être traitées comme un cas particulier de (24): si on prend une solution uε du
problème de inf mum J(Ωε) et on choisit

ψ(ε ,x) :=−[
f (∇uε(x))+g(uε (x))] , (25)

alors on a J(Ωε) = I(ε).
La différentiabilité en ε = 0+ de la fonction I(ε), avec la formule de la dérivée à droite, sont

prouvées dans [67] en supposant des hypothèses de régularité appropriées sur l’integrande ψ .
Plus précisément, les situations suivantes sont considerées: soit ψ(ε , ·) est déf nie sur Rn avec

ψ(ε , ·) ∈ L1(Rn) , ε 7→ ψ(ε , ·) derivable en 0 , ψ(0, ·) ∈W 1,1(Rn) , (26)

ou ψ(ε , ·) est déf nie seulement dans Ωε avec

ψ(ε ,Ψε(·)) ∈ L1(Ω) , ε 7→ ψ(ε ,Ψε(·)) derivable en 0 , P(ψ(0, ·)) ∈W 1,1(Rn) ,
(27)

étant P : L1(Ω)→ L1(Rn) un opérateur d’extension linéaire et continu.
Af n d’inclure dans ce cadre les minima des fonctionnelles intégrales du type (22), il faut

vérif er que l’une des conditions (26) ou (27) est valable, lorsque ψ(ε ,x) est pris comme en
(25). Ce contrôle doit être fait cas par cas, en fonction du choix de f et g. En particulier, dans
ce processus, on doit calculer la dérivée

u′ :=
d
dε
uε
∣∣
ε=0+ , (28)

ce qui généralement nécessite d’exploiter l’équation d’Euler-Lagrange satisfaite par uε .
Ensuite, d’autres hypothèses de régularité sur l’integrande ψ , sur le domaine Ω et sur les

déformations Ψε , sont nécessaires af n d’obtenir des théorèmes de structure et des résultats de
représentation pour les dérivées de forme, qui conduisent à exprimer eux comme des intégrales
sur le bord ∂Ω . Pour une présentation détaillée, nous nous référons à [67].

En dépit, notre approche repose sur l’utilisation de l’Analyse Convexe, et plus spécif que-
ment de la formulation duale de J(Ω), ce qui dans le cas Dirichlet est

J∗(Ω)= inf
{∫

Ω
[ f ∗(σ)+g∗(divσ)]dx : σ ∈ Lp′(Ω;Rn) , divσ ∈ Lq′(Ω)

}

où f ∗ et g∗ désignent les conjuguées de Fenchel de f et g. Dans le cas Neumann les champs
admissibles σ satisfont à la condition supplémentaire de trace normale σ ·n= 0 sur ∂Ω.

Notre stratégie consiste à exploiter respectivement la formulation primale J(Ω) et la formu-
lation duale J∗(Ω) af n d’obtenir des minorants and majorants pour le quotient

qε(V ) :=
J(Ωε)− J(Ω)

ε
=
J∗(Ωε)− J∗(Ω)

ε
.

Ces bornes prennent respectivement la forme

liminf
ε→0+

qε(V )≥ inf
σ∈S ∗ supu∈S

∫

Ω
A(u,σ) : DV dx (29)

et
limsup

ε→0+
qε(V )≤ sup

u∈S

inf
σ∈S ∗

∫

Ω
A(u,σ) : DV dx (30)
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où S et S ∗ désignent l’ensemble des solutions de J(Ω) et J∗(Ω), et A(u,σ) est le tenseur
déf ni sur l’espace produit S ×S ∗ par

A(u,σ) := ∇u⊗σ − [ f (∇u)+g(u)] I (31)

(étant I la matrice identité).
Comme le inf-sup dans le terme à droite de (29) est supérieure ou égale au sup-inf dans

le terme à droite de (30), nous concluons qu’ils sont égaux et que la limite de qε(V ) pour
ε → 0+, c’est-à-dire la dérivée de forme J′(Ω,V ), existe. En désignant par (u⋆,σ ⋆) ∈ S ×S ∗

un élément où la valeur du sup-inf ou inf-sup est atteinte, on a

J′(Ω,V ) =
∫

Ω
A(u⋆,σ ⋆) : DV dx . (32)

Sous des hypothèses de régularité supplémentaires, la dérivée de forme peut être reformulée
aussi comme une forme linéaire de V , c’est-à-dire comme un intégral sur le bord qui dépend
linéairement de la composante normale de V sur ∂Ω . Les hypothèses de régularité supplémen-
taires sont nécessaires af n de dire qu’un couple optimal (u⋆,σ ⋆) dans (32) ne dépend pas du
champ de déformation V , et pour réaliser les formules d’intégration par parties qui exigent des
notions faibles de trace (voir [6, 7, 34, 35]).

Nous insistons sur le fait que, par conséquent aux bornes écrites ci-dessus pour qε(V ),
on découvre une nouvelle condition nécessaire d’optimalité pour les problèmes variationnels
classiques à l’étude. En fait, en faisant des variations horizontales (un peu dans le même esprit
de [58]), c’est-à-dire en exploitant le fait que qε(V ) est zéro pour tout V ∈ C1

0(Ω,Rn), nos
bornes donnent comme sous-produit l’information que des tenseurs appropriés du type (31)
se révèlent à divergence nulle. En particulier, dans le cas où f est Gateaux-dérivable sauf au
plus à l’origine, le résultat est simplement que l’égalité suivante est vérif ée dans le sens des
distributions pour tout u ∈ S :

div
(

∇u⊗∇ f (∇u)− [ f (∇u)+g(u)] I
)
= 0 . (33)

Dans une certaine mesure étonnamment, autant que nous le sachions, la condition (33)
semble être jusqu’à présent inconnue, à l’exception du cas scalaire n= 1, alors qu’elle se réduit
à la loi de conservation (ou intégrale première de l’équation d’Euler) suivante, satisfaite par les
extrémales lisses des Lagrangiens régulières:

u′ f ′(u′)− [ f (u′)+g(u)] = c ,

voir e.g. [25, Proposition 1.13].
Nous soulignons que, dans nôtre stratégie, nous n’avons jamais fait usage de la dérivée

u′ déf nie en (28), en particulier nous n’avons pas besoin de la validité de l’équation d’Euler-
Lagrange pour les minimiseurs (sur les conditions requises pour sa validité, nous nous référons
aux papiers récents [10, 45], et les références y citées). Ainsi nous pouvons traiter aussi
des fonctionnelles intégrales dont les minima satisfont seulement une inéquation variation-
nelle. Nous rappelons que le problème (21), posé sur la section transversale, appartient à cette
catégorie de problèmes: la condition d’optimalité satisfaite par des éléments de S n’est pas
une équation d’Euler-Lagrange, mais simplement une inéquation variationnelle. L’étude de la
dérivée de forme de premier ordre pour (21) ne nous permet pas d’obtenir la conjecture sur le
plateau, puisque nous obtenons une dérivée nulle.
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Les perspectives dans l’étude des dérivées de forme pour les minima de fonctionnelles inté-
grales vont dans des directions différentes. Le premier aspect à examiner est la linéarité de J′ par
rapport au champ de déformation V : nous avons fourni des conditions suff santes qui garantis-
sent une telle propriété, et nous aimerions également de déterminer celles qui sont nécessaires.
Nous croyons que, en général, par exemple dans le cadre des solutions non-uniques, la linéarité
est une condition trop forte: plus précisément notre conjecture est que J′ est de la forme

J′(Ω,V ) =
∫

∂Ω
α(x)(V ·n)+H

n−1(x)+
∫

∂Ω
β (x)(V ·n)+H

n−1(x) ,

α , β étant deux densités appropriées dans L∞(∂Ω) qui peuvent dépendre des données du prob-
lème de inf mum J(Ω), et (V ·n)± désignant la partie positive et négative du produit scalaireV ·n
sur le bord. En particulier, nous nous attendons que J′ est linéaire par rapport aux déformations
purement internes ou aux déformations purement extérieures.

Un autre problème intéressant est d’étudier les dérivées de forme d’ordre supérieur. Dans
cette direction, nous avons appliqué la même approche pour calculer la dérivée seconde de
forme J′′(Ω,V ), en supposant plus de régularité sur le domaine Ω et sur les intégrandes f et g.
Encore une fois, en exploitant les formulations primale et duale de J(Ω), nous pouvons trouver
un minorant et un majorant pour les liminf et limsup de la suite

rε(V ) := 2
[J(Ωε)− J(Ω)− εJ′(Ω,V )]

ε2
, ε > 0 ,

et nous arrivons à la formule de représentation

J′′(Ω,V ) =

∫

∂Ω
(V ·n)2

[
∂u
∂n

(∇2u∇2 f (∇u)n) ·n+ (
∇u ·∇ f (∇u)− f (∇u)

)
H∂Ω

]
dH n−1+

− inf
v∈H1(Ω)

Tr(v)=−V ·∇u

{∫

Ω
(∇2 f (∇u)∇v) ·∇v+g′′(u)v2

}
,

(34)
où H∂Ω désigne la courbure moyenne de ∂Ω.
Nous rappelons que, jusqu’à présent, la formule (34) a été obtenue seulement dans le cas lisse,
et sa extension à une intégrande plus générale est un sujet délicat qui pourrait être développé
ci-après. Nous prévoyons que les résultats concernants la dérivée seconde de forme peuvent
donner quelques informations sur la courbure de la frontière du plateau.
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Introduction

THE main topic of the Thesis is optimization of the compliance of thin elastic struc-
tures. The problem consists in finding the most robust configurations, when an
infinitesimal amount of elastic material is subjected to a fixed force, and con-

tained within a region having infinitesimal volume. The resistance to a load can be mea-
sured by computing a shape functional, the compliance, in which the shape represents
the volume occupied by the elastic material. Thus we are led to study a minimization
problem of a shape functional, under suitable constraints.

In particular, we treat the case in which the design region is a thin rod, represented
by a cylinder with infinitesimal cross section. The study finds its motivation in engi-
neering problems: thin structures are very convenient to be used in practical applica-
tions.

The approach we adopt draws inspiration from some recent works by I. Fragalà,
G. Bouchitté and P. Seppecher, in which the authors deal with the case of thin elastic
plates [G. BOUCHITTÉ, I. FRAGALÀ, P. SEPPECHER: Structural optimization of thin
plates: the three dimensional approach. Arch. Rat. Mech. Anal. (2011)]. We point out
that these two problems are not merely technical variants one of the other, due to the
substantial difference between the limit passages 3d-1d and 3d-2d, namely from 3 to 1
and from 3 to 2 dimensions.

The study of optimal configurations led us to face another interesting variational
problem: actually to establish whether homogenization phenomena occur in bars in
pure torsion regime turns out to be equivalent to solve a nonstandard free boundary
problem in the plane. This new problem is very challenging and, besides the link with
torsion rods, it has mathematical interest in itself. One of the tools which can be em-
ployed to attack the problem is shape derivative for minima of integral functionals.
The theory of shape derivatives is a widely studied topic (see e.g. the monograph by A.
Henrot and M.Pierre Variations et Optimisation de Formes. Une Analyse Géométrique,
Springer Berlin (2005), and the references therein), but the approach we propose in new
and relies on assumptions which are weaker that the classical ones.

The Thesis is organized as follows. In the first part we gather the preliminaries:
in Chapter 1 we recall the main mathematical tools of Convex Analysis, Geometric
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Measure Theory and Γ-convergence that we use in the Thesis, then we summarize the
theory of linear elasticity, which motivates the study of the main problem. The second
part (Chapters 2 and 3) is devoted to the study of the compliance optimization problem
in thin rods. The third part (Chapters 4 and 5) is dedicated to the above mentioned
related problems. When needed, the more technical proofs, usually concerning aux-
iliary lemmas or easy to prove statements, are postponed to the end of the Chapters,
in the Appendix. The open problems and the possible advances are gathered in the
Perspectives.

The chapters correspond to the following papers that have been written in these three
years of PhD:

- (Chapters 2 and 3) G. BOUCHITTÉ, I. FRAGALÀ, I. LUCARDESI, P. SEPPECHER:
Optimal Thin Torsion Rods and Cheeger Sets, SIAM J. Math. Anal., 44, 483-512,
(2012).

- (Chapters 2 and 3) I. LUCARDESI: Optimal design in thin rods, in preparation.

- (Chapter 4) J. ALIBERT, G. BOUCHITTÉ, I. FRAGALÀ, I. LUCARDESI: A non
standard free boundary problem arising in shape optimization of thin torsion rods,
to appear in Interfaces and Free Boundaries (2012).

- (Chapter 5) G. BOUCHITTÉ, I. FRAGALÀ, I. LUCARDESI: Shape derivatives for
minima of integral functionals, in preparation.

Let us describe the contents more in details.

[Chapter 2] LetQ be a design region inR3 subject to a fixed external load F ∈H−1(Q;R3).
Given an isotropic elastic material that occupies a certain region Ω ⊂ Q, its resistance
to the load, in the framework of small displacements, can be measured by computing a
shape functional, the compliance:

C (Ω) := sup
{
〈F,u〉

R3−
∫
Ω
j(e(u))dx : u ∈ H1(Q;R3)

}
, (1)

where, as usual in linear elasticity, e(u) denotes the symmetric part of the gradient ∇u,
and the strain potential j : R3×3

sym → R , assumed to be isotropic, is strictly convex and
has the form

j(z) :=
λ
2
tr2(z)+η|z|2 , (2)

λ ,μ > 0 being the Lamé coefficients of the material.
The compliance is proportional to the work done by the load in order to bring the
structure to equilibrium. In particular the smaller is the compliance, the higher is the
resistance.
Clearly, in order that C (Ω) remains finite, the load must have support contained into
Ω, moreover it has to be balanced, i.e.

〈F,u〉R3 = 0 , whenever e(u) = 0 .
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Under this condition, an optimal displacement u exists and satisfies C (Ω) = 1
2〈F,u〉R3.

In the Thesis we study the problem of finding the most robust configurations of elas-
tic material, i.e. minimizing the compliance, when the design region is a thin domain.
Moreover, at the same time, we let the ratio between the volume of the elastic material
and the volume of the design region tend to zero.

By “thin” we mean that one or two spatial dimensions of the body are much smaller
with respect to the others. This particular solids are very important in engineering
problems: their small weight and ease of manufactoring and transport make them very
convenient to be used in practical applications. Here we consider the case in which the
continuum body can be approximated by a one dimensional set, namely it is a rod.

The mathematical way of describing a rod is the following one: a rod is a three-
dimensional solid occupying the volume generated by a planar connected domain,
called the cross section, with centroid varying perpendicularly to a spatial curve, the
axis; moreover the diameter of the cross section is much smaller than the lenght of the
axis. The particular case we deal with is a straight rod, in which the axis is a straight
line segment I and the cross section is a planar bounded domain D, constant along the
axis: we represent such a structure by a cylinder of the form

Qδ := δD× I , (3)

with D⊂R2 an open bounded domain, I a closed bounded interval and δ > 0 a vanish-
ing parameter describing the small ratio between the diameter of the cross section and
the length.

The literature about thin rods is very extensive: the classical theory has been de-
veloped by Euler, Bernoulli, Navier, Saint Venant, Timoshenko, Vlassov; in the last
years, due to new numerical techniques, these problems have had renewed interest, and
new design methods are now a wide field of applied mathematics (we limit ourselves
to mention [73, 78, 80, 86]). For a complete overview about this topic, we refer to the
reference book by Trabucho and Viaño [95] and the references therein.

The problem we treat, and consequently the approach we adopt to solve it, draws
its inspiration from a recent work by G. Bouchitté, I. Fragalà and P. Seppecher [19], in
which the authors studied the compliance optimization problem when the design region
can be approximated by a two dimensional set, more precisely they studied the case of
thin plates, described by a family of cylinders of the form

Qδ := D×δ I ,

having infinitesimal thickness δ .
In what follows we deal with thin sets Qδ defined according to (3). In order to find

the lightest and more robust configurations, we minimize the compliance C (Ω) over
the subsets Ω⊂ Qδ with prescribed volume m, namely we study

inf
{
C (Ω) : Ω⊂ Qδ ,

|Ω|
|Qδ |

= m
}

, (4)

and then we perform the double limit as δ → 0 and m→ 0 .
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If we enclose the volume constraint in the cost through a Lagrange multiplier k ∈ R,
the variational problems (4) under study take the form

φδ (k) := inf
Ω⊂Qδ

{
C

δ (Ω)+ k
|Ω|
|Qδ |

}
, (5)

with
C

δ (Ω) := sup
{
〈Fδ , ũ〉

R
3−

∫
Ω
j(e(ũ))dx : ũ ∈ H1(Qδ ,R

3)

}
. (6)

Here Fδ is a suitable scaling of the load F , chosen so that in the limit process the
infimum remains finite. The choice of the scaling Fδ depends on the assumptions made
on the type of applied loads. In the literature it is customary to distinguish between the
stretching, bending and the torsion cases : in the Thesis we focus our attention on
the loads for which the contribution of bending and torsion may be decoupled in a
suitable way, and we choose two different scalings for these two components: roughly
speaking, we consider loads F of the form F = G+H, where the bending depends
only on a vertical load H. The general case is difficult to handle, due to the interplay
between these contributions of the charging.

In Chapter 2 we perform the first passage to the limit, namely we study the asymp-
totic behavior of problem (5) as δ → 0+ : this corresponds to look for the most robust
configuration in a rod-like set, keeping the ratio between the volume of material and the
volume of the thin design region fixed. The first step in the study is to reformulate the
variational problems φδ (k) on the fixed domainQ :=D×I, instead of the thin cylinders
Qδ . After a suitable change of variables for the displacements and a suitable scaling
for the load, problems (5) can be rewritten as

φδ (k) = inf
ω⊂Q

{
C

δ (ω)+ k |ω|
}

, (7)

with

C
δ (ω) := sup

{
1
δ
〈G,u〉

R
3 + 〈H,u〉

R
3−

∫
Ω
j(eδ (u))dx : u ∈ H1(Qδ ,R

3)

}
, (8)

where eδ :H1(Q;R3)→ L2(Q;R3×3
sym ) is the operator defined by

eδαβ (u) := δ−2eαβ (u) , eδα3(u) := δ−1eα3(u) , eδ33(u) := e33(u) ,

as it is usual in the literature on 3d−1d dimension reduction. The asymptotical study
of φδ (k) is based on the comparison with the “fictitious counterpart”, namely their
relaxed formulation in L∞(Q; [0,1]). Indeed it is well known that the infimum problems
(7) are in general ill-posed, due to occurrence of homogenization phenomena which
prevent the existence of an optimal domain (see [2]). Thus we need to enlarge the class
of admissible materials, passing from “real” materials, represented by characteristic
functions, to “composite” materials, represented by densities with values in [0,1]. To
this aim we introduce the family of variational problems

φ̃ δ (k) := inf
{
C̃

δ
(θ)+ k

∫
Q
θ dx : θ ∈ L∞(Q; [0,1])

}
, (9)
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where C̃
δ
(θ) denotes the natural extension of the compliance C δ (ω) to L∞(Q; [0,1]):

C̃
δ
(θ) := sup

{ 1
δ
〈G,u〉

R
3 + 〈H,u〉

R
3−

∫
Q
j(eδ (u))θ dx : u ∈ H1(Q;R3)

}
. (10)

Exploiting some delicate compactness properties derived from variants of the Korn
inequality (see Section 1.5) and Γ-convergence techniques (see Section 1.3), we deter-
mine the limit behavior of φ̃ δ (k) as δ → 0+: the sequence of fictitious problems tends
to a limit φ(k) which is still a variational problem posed on densities, with the same
structure: a compliance term with a volume penalization. More precisely, φ(k) reads

φ(k) := inf
{
C

lim(θ)+ k
∫
Q
θ dx : θ ∈ L∞(Q; [0,1])

}
, (11)

where C lim is the Γ-limit of the sequence C̃ δ as δ → 0+ with respect to the weak *
convergence in L∞(Q; [0,1]). Exploiting a crucial bound for the relaxed functional of
the compliance, established in [19, Proposition 2.8], we deduce that φδ (k) and φ̃ δ (k)
have the same asymptotic, that is limδ→0+ φδ (k) = φ(k).

We point out that the dimension reduction process is performed without making
any topological assumption on the set Ω occupied by the material. Therefore, it is not
covered by the very extensive literature on 3d−1d analysis.

At this point it is natural to ask whether φ(k) admits a classical solution (i.e. a
density with values in {0,1}): this corresponds to ask whether the compliance problem
under volume constraint, in a rod-like set, admits as solution a real material rather
that a composite. Providing reformulations of φ(k) both as a variational problem for
twist displacements fields, and as a variational problem for stress tensors, allows us
to give necessary and sufficient optimality conditions. These alternative formulations
reveal that problem (11) can be solved section by section; moreover, by exploiting the
optimality system, the question about the existence of real solutions can be rephrased
in an easier way, namely it can be related to the existence of “special” solutions to a
certain free boundary problem. A more detailed description and a deeper analysis of
the problem is postponed to Chapter 4.

In Chapter 3 we perform the second limit process, namely we study the asymptotic
behavior of problem (11) as k→ +∞: we point out that considering large values of k
means considering small “filling ratios”

∫
Qdθ/|Q|. We show that the sequence φ(k)

is asymptotically equivalent to
√
2k, and we determine that the limit m of the ratio

φ(k)/
√
2k. Such limit is again a variational problem, whose cost has the same structure

(compliance term plus volume term), but it is set in the space M+(Q) of positive
measures on R3, compactly supported in Q:

m := inf
{
C

lim(μ)+
1
2

∫
dμ : μ ∈M+(Q)

}
; (12)

here C lim(μ) is the natural extension of the limit compliance C lim(θ) to the class
M+(Q). The new setting is quite natural, since the limit problem describes concen-
tration phenomena that may occur in lower dimensional parts. Finding a solution μ
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for problem m gives us relevant informations: indeed optimal measures describe the
optimal configurations of material in a rod-like set in the vanishing volume limit.

By exploiting the dual formulation of m, we provide an alternative variational char-
acterization of such optimal measures. It turns out that in general the solution is not
unique and it is difficult to be determined explicitly. Nevertheless, when considering
particular loads, we are able to solve m completely or, at least, to have precise infor-
mation about the support of its solutions. The corresponding concentration phenomena
are discussed in the last part of Chapter 3, and can be summarized as follows.

When the load is purely torsional and D is convex, the solution of m turns out to be
unique and can be explicitly determined as a measure concentrated section by section on
the boundary of the so called Cheeger set of D. Let us recall that, under the assumption
thatD is convex, its Cheeger set is the unique minimizer for the quotient perimeter/area
among all the measurable subsets of D (see Section 1.4.3 in the Preliminaries):

inf
E⊂D ,11E∈BV (R2)

∫
R
2 |∇11E |
|E| . (13)

The purely geometric problem (13) (which can be set more generally when D is any
connected subset of the plane) is known as Cheeger problem, and in recent years has
captured the attention of many authors (see [3, 24, 30, 31, 56, 59, 60, 71]). To the best
of our knowledge, until now there was no rigorous statement and proof for this geo-
metric characterization of optimal “light” torsion rods in terms of Cheeger sets. Let us
emphasize that such characterization is valid only in pure torsion.
For more general loads, due to the interplay between the bending, twisting and stretch-
ing energies, we obtain a more complicated model. We provide some examples for
which the variational problem (12) can be solved explicitly, and we present some cases
in which its solutions turn out to be linked to interesting variants of the Cheeger prob-
lem. Moreover, some numerical experiences have been done in order to describe quali-
tatively such solutions. Let us mention these variants of the Cheeger problem. It is easy
to see that the relaxed formulation of the classical Cheeger problem (13) reads

inf
{∫

D
|Du| : u ∈ BV0(D) ,

∫
D
u= 1

}
. (14)

The first variant that comes into play is a sort of perturbation with a translation term:

inf
{∫

D
|Du+q| : u ∈ BV0(D) ,

∫
D
u=C(q)

}
, (15)

q being a fixed vector field; while the second variant is a weighted version:

inf
{∫

D
α|Du| : u ∈ BV0(D),

∫
D
u= 1

}
, (16)

α being a non negative function in D. We point out that problem (16) has been treated
some years ago by Ionescu and Lachand-Robert: in [69] the authors, motivated by ap-
plications to landslides modeling, study the case in which both the integral to minimize
and the integral in the constraint are weighted.
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In Chapter 4 we face the following natural question about the variational problem
φ(k) in (11):

Does problem φ(k) admit a solution θ taking values into {0,1}? (17)

We recall that φ(k) was obtained by passing to the limit as δ → 0+ in the compli-
ance optimization problem (7): since it is a variational problem set over densities in
L∞(Q; [0,1]), an affirmative answer to question (17) would mean that the optimal de-
sign of thin rods admits a classical solution, which may be identified with a set rather
than a composite.

We focus our attention to the pure torsion regime: in this case the question can be
rephrased in an easier way. Since, as already noticed, φ(k) can be solved section by
section, after a suitable change of variable and passage to a dual problem, we are led to
study the following planar variational problem:

m(s) := inf
{∫

R2
ϕ(∇u) : u ∈ H1

c (D) ,
∫
R2

u= s
}
, (18)

where s is a real parameter proportional to k, ϕ is the convex but non-strictly convex
integrand

ϕ(y) :=

{ |y|2
2 + 1

2 if |y| ≥ 1

|y| if |y|< 1 ,

and H1
c (D) denotes the space ofH1 functions that are constant outsideD (if D is simply

connected, it coincides with the usual Sobolev space H1
0 (D)).

It turns out that question (17) is equivalent to the following one:

Does problem m(s) admit a solution u such that |∇u| ∈ {0}∪ (1,+∞) a.e. in D?
(19)

More precisely, given a solution u for m(s) and a solution θ for φ(k), the region in
which ∇u vanishes corresponds to absence of material (namely θ = 0), the region
|∇u|> 1 to the presence of material (namely θ = 1) and the intermediate region corre-
sponds to the homogenization region. In other words, the study of m(s) can be applied
to study the influence of the section’s shape and of the filling ratio on the presence of
homogenization regions in optimal thin torsion rods.

The main results of Chapter 4 concern the study of question (19) in relation with the
geometry of the domain D and also with the value of the parameter s.

We say that u is a special solution to m(s) if it minimizes (18) and satisfies |∇u| ∈
{0}∪ (1,+∞) a.e. in D, moreover we call the plateau of u, and we denote it by Ω(u),
the set {∇u= 0} minus the unbounded connected component of R2 \D (where u≡ 0).

When D is a ball or a ring, through explicit computations and exploiting the optimality
conditions, we show that m(s) admits a special solution, and there is no other solution.
Next we show that balls and rings are not the unique domains for which m(s) admits a
special solution. In this respect, it is worth to compare our results with those obtained
by Murat and Tartar in [F. MURAT, L. TARTAR: Calcul des variations et homogénéisa-
tion. Homogenization methods: theory and applications in physics (Bráu-sans-Nappe,
1983), 319-369, Collect. Dir. Etudes Rech. Elec. France 5, Eyrolles, Paris (1985)],
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about the problem of maximizing the torsional rigidity of a bar with a given cross-
section made by two linearly elastic materials in fixed proportions. The corresponding
variational problem is quite similar to ours, except that it involves a differentiable in-
tegrand, and classical solutions (i.e. optimal designs with no homogenization regions)
cannot exist unless the cross-section D is a disk. In our case the integrand ϕ is non-
differentiable at zero and the conclusion goes in a quite opposite direction: we prove
that there exists a non circular domain D with analytic boundary such that, for some s,
problem m(s) admits a special solution. Moreover this solution has a convex plateau
with analytic boundary. To achieve this result, we use as a key tool the relationship
between m(s) and the Cheeger problem.

We remark that the crucial role played by the Cheeger set of D in the study of the
asymptotic behavior of m(s) in (18) as s→ 0+ already emerged in the asymptotics of
the optimal compliance problem φ(k) in (11) as k→ +∞: indeed the parameter s is
proportional 1√

k
, so that small values of s correspond to large values of k.

After providing some elementary properties on the sign and the support of generic
solutions, we derive some information on qualitative properties of special solutions,
when the latter exist. This amounts to study a nonstandard free boundary problem with
an obstacle on the gradient:⎧⎪⎨⎪⎩

−Δu= λ , |∇u|> 1 in D\Ω(u)
|∇u|= 1 on Γ(u)
u= ci on γi ,

(20)

where Γ(u) := ∂Ω(u)∩D is the free boundary and γi denote the different connected
components of Γ(u).
Finally, assuming that D is simply connected, and that there exists a special solution u
with a smooth free boundary, we prove some qualitative properties of the plateau:

- each connected component of D\Ω(u) must touch ∂D;

- under suitable assumptions, the plateau Ω(u) must be convex;

- when D is not Cheeger set of itself, the plateau Ω(u) cannot be compactly con-
tained into D for arbitrarily small filling ratios.

We remark that the a priori requirement of smooth free boundary is needed in order
to apply the theory of P-functions (see [93]). The study of the regularity of the free
boundary is an interesting and challenging perspective (see [27, 28, 85]): a first result
obtained in this direction concerns the finiteness of the perimeter of the plateau.

We point out that achieving a complete characterization of domains D where a spe-
cial solution to m(s) exists seems to be a very challenging problem, which remains by
now open: in this respect we believe that, at least when D is convex, the existence of
special solutions is likely related to the regularity of ∂D, and also to whether or not
D coincides with its Cheeger set. Let us notice that the latter criterium would exclude
the existence of a special solution in the case when D is a square. This guess seems to
be confirmed by the numerical results performed in [72] for a very similar problem, in
which homogenization regions are observed.

8



Contents

When D is not Cheeger set of itself, we expect that some connected component Ω0 ⊂
{u≡ 0} of the plateau touches the boundary in a neighborhood of the points of higher
curvature, namely the corners. In order to prove the conjecture, we tried to exploit shape
derivatives. Actually, if we fix the parameter s, we can interpret m(s) as a shape func-
tional J(D), depending on the domain D as follows: enclosing the volume constraint in
the functional, solving m(s) over D turns out to be equivalent to study

J(D) =− inf
{∫

D
[ϕ(∇u)−λu] dx : u ∈ H1

0 (D)
}

, (21)

with λ = m′(s).
Clearly the shape functional J(·) is stationary over the domains D′ ⊂ D containing
D \Ω0. Moreover, the sign of the shape derivative may give useful information: if we
consider small inner deformations of D, localized on some part γ of the boundary, a
nonzero shape derivative would imply that Ω0 does not touch such portion γ .
[Chapter 5]

The theory of shape derivatives is a widely studied topic, with many applications in
variational problems and optimal design. Its origin can be traced back to the first half
of the last century, with the pioneering work by Hadamard [66], followed by Schiffer
and Garabedian [61, 89]. Afterwards, some important advances came in the seventies
by Céa, Murat, and Simon [32,81,90]. From the nineties forth, the many contributions
given by different authors are witness of a renewed interest, partly motivated by the
impulse given by the development of the field of numerical analysis in the research of
optimal shapes. We refer to the recent monograph [67] by Henrot-Pierre as a reference
text (see also the books [47, 91]), and, without any attempt of completeness, to the
representative works [23, 44, 46, 63, 64, 83].

Due to the lack of differentiability of ϕ at the origin, the computation of the shape
derivative of the functional J in (21) is not covered by the above quoted literature.
Therefore, we tried to develop a newmethod, which applies also to more general convex
functionals and in higher dimension. In fact, we consider shape functionals of the kind

J(Ω) :=− inf
{∫

Ω

[
f (∇u)+g(u)

]
dx : u ∈W 1,p

0 (Ω)

}
. (22)

Here Ω varies among the open bounded subsets of Rn with Lipschitz boundary, while
f : Rn→ R and g : R→ R are given integrands, which are assumed to be continuous,
convex, and to satisfy further regularity assumptions and growth conditions, of order p
and q respectively. In a similar way, we can deal also with the Neumann problem, in
which no boundary condition is prescribed for the admissible functions in (22).

Given a vector field V in C1(Rn;Rn), we consider the one-parameter family of do-
mains which are obtained as deformations of Ω with V as initial velocity, that is we
set

Ωε :=
{
x+ εV (x) : x ∈Ω

}
, ε > 0 .

By definition, the shape derivative of J at Ω in direction V , if it exists, is given by the
limit

J′(Ω,V ) := lim
ε→0+

J(Ωε)− J(Ω)

ε
. (23)

9
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The approach we adopt in order to study the shape derivative (23) is different from
the one usually employed in the literature, and seems to have a twofold interest: on one
hand it allows to obtain the shape derivative for more general integrands f and g; on
the other hand, along with the shape derivative, it leads to discover a new optimality
condition for solutions to problem (22).

Before describing the results, let us briefly recall the habitual approach to the com-
putation of J′(Ω,V), in order to enlighten the difference of perspective.

Classically, the object of study in theory of shape derivatives is the differentiability
at ε = 0+ of functions of the form

I(ε) :=
∫
Ωε

ψ(ε,x)dx , (24)

being Ωε the image of a measurable set Ω via a one-parameter family of bi-Lipschitz
diffeomorphismsΨε . In particular, shape derivatives for minima of integral functionals
can be dealt as a special case of (24): namely, letting uε be a solution to the infimum
problem J(Ωε) and choosing

ψ(ε,x) :=−[ f (∇uε(x))+g(uε(x))] , (25)

there holds J(Ωε) = I(ε).
The differentiability at ε = 0+ of the map I(ε), along with the formula for its right

derivative, is proved in [67] assuming suitable regularity hypotheses on the integrand
ψ . More precisely, the following situations are considered: either ψ(ε, ·) is defined on
the whole of Rn with

ψ(ε, ·) ∈ L1(Rn) , ε 
→ ψ(ε, ·) derivable at 0 , ψ(0, ·) ∈W 1,1(Rn) , (26)

or ψ(ε, ·) is defined just in Ωε with

ψ(ε,Ψε(·))∈ L1(Ω) , ε 
→ψ(ε,Ψε(·)) derivable at 0 , P(ψ(0, ·))∈W1,1(Rn) ,
(27)

being P : L1(Ω)→ L1(Rn) some linear continuous extension operator .
In order to include into this setting minima of integral functionals like (22), one has

to check that one of the conditions (26) or (27) hold true, when ψ(ε,x) is taken as in
(2.39). This check has to be done case by case, according to the choice of f and g. In
particular, in this process one has to compute the derivative

u′ :=
d
dε

uε
∣∣
ε=0+ , (28)

which typically requires to exploit the Euler-Lagrange equation satisfied by uε .
Subsequently, further regularity assumptions on the integrand ψ , on the domain Ω

and on the deformations Ψε , are necessary in order to obtain structure theorems and
representation results for shape derivatives, which lead to express them as boundary
integrals over ∂Ω. We refer to [67] for a detailed presentation.

In spite, our approach relies on the use of Convex Analysis, and more specifically
of the dual formulation of J(Ω), which in the Dirichlet case reads

J∗(Ω)= inf
{∫

Ω
[ f ∗(σ)+g∗(divσ)]dx : σ ∈ Lp′(Ω;Rn) , divσ ∈ Lq′(Ω)

}
10
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where f ∗ and g∗ denote the Fenchel conjugates of f and g. In the Neumann case the
admissible fields σ satisfy the additional condition on the normal trace σ ·n= 0 on ∂Ω.

Our strategy consists in exploiting respectively the primal formulation J(Ω) and the
dual formulation J∗(Ω) in order to obtain lower and upper bounds for the quotient

qε(V ) :=
J(Ωε)− J(Ω)

ε
=

J∗(Ωε)− J∗(Ω)

ε
.

Such lower and upper bounds take respectively the form

liminf
ε→0+

qε(V )≥ inf
σ∈S ∗

sup
u∈S

∫
Ω
A(u,σ) : DV dx (29)

and
limsup
ε→0+

qε(V )≤ sup
u∈S

inf
σ∈S ∗

∫
Ω
A(u,σ) : DV dx (30)

where S and S ∗ denote the set of solutions to J(Ω) and J∗(Ω), and A(u,σ) is the
tensor defined on the product spaceS ×S ∗ by

A(u,σ) := ∇u⊗σ − [ f (∇u)+g(u)] I (31)

(being I the identity matrix). Since the inf-sup at the r.h.s. of (29) is larger than or
equal to the sup-inf at the r.h.s. of (30), we conclude that they agree, and that the
limit as ε → 0+ of qε(V ), namely the shape derivative J′(Ω,V), exists. Denoting by
(u�,σ�) ∈ S ×S ∗ an element where the value of the sup-inf or inf-sup is attained,
there holds

J′(Ω,V) =
∫
Ω
A(u�,σ�) : DV dx . (32)

Under additional regularity assumptions, the shape derivative can be recast also as a
linear form in V , namely as a boundary integral depending linearly on the normal com-
ponent of V on ∂Ω. The additional regularity assumptions are necessary in order to
state that an optimal pair (u�,σ�) in (32) does not depend on the deformation field V ,
and in order to perform integration by parts formulas involving weak notions of trace
(see [6, 7, 34, 35]).

Let us emphasize that, as a consequence of the above described bounds for qε(V ),
we discover a new necessary condition of optimality for the classical variational prob-
lems under study. Actually, by making horizontal variations (somewhat in the same
spirit of [58]), namely by exploiting the vanishing of qε(V ) for all V ∈C1

0(Ω,Rn), our
bounds give as a by-product the information that suitable tensors of the type (31) turn
out to be divergence-free. In particular, in case f is Gateaux-differentiable except at
most at the origin, the outcome is simply that the following equality holds in the sense
of distributions for every u ∈S :

div
(
∇u⊗∇ f (∇u)− [ f (∇u)+g(u)] I

)
= 0 . (33)

To some extent surprisingly, as far as we are aware, condition (33) seems to be until
now undiscovered, except from the scalar case n= 1, when it reduces to the following
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conservation law or first integral of the Euler equation, satisfied by smooth extremals
of smooth Lagrangians:

u′ f ′(u′)− [ f (u′)+g(u)] = c ,

see e.g. [25, Proposition 1.13].
Let us stress that, along this way, we never make use of the derivative function u′

in (28), and in particular we do not need the validity of the Euler-Lagrange equation
for minimizers (about the conditions required for its validity, we refer to the recent
papers [10, 45], and references therein). Thus may deal also with integral functionals
whose minima satisfy just a variational inequality. We point out that problem (21),
settled on the bar cross-section, enters into this class of problems: for such a functional
J(·), the shape derivative cannot be computed by using the classical approach, since the
optimality condition satisfied by elements ofS is not an Euler-Lagrange equation, but
merely a variational inequality. Our approach allows to encompass this difficulty, as our
existence and representation results for the shape derivative can be applied, despite the
lackness of regularity of the integrand ϕ at the origin. The study of the first order shape
derivative for (21) didn’t allow us to obtain the conjecture about the plateau, since we
obtain a zero derivative.

The perspectives in the study of shape derivatives for minima of integral functionals
go in various directions. The first aspect to be investigated is the linearity of J′ with
respect to the deformation field V : we have provided sufficient conditions that ensure
such a property, and we would like to determine also necessary ones. We believe that
in general, for example in the framework of non uniqueness of solutions, linearity is a
too strong requirement: more precisely our conjecture is that J′ is of the form

J′(Ω,V ) =
∫
∂Ω

α(x)(V ·n)+H n−1(x)+
∫
∂Ω

β (x)(V ·n)+H n−1(x) ,

α, β being two suitable densities in L∞(∂Ω) that might depend on the data of the infi-
mum problem J(Ω), and (V · n)± denoting the positive and negative part of the scalar
product V · n on the boundary. In particular, we expect J′ to be linear with respect to
purely inner deformations or purely outer deformations.

Another interesting problem is to study higher order shape derivatives. In this direc-
tion we have applied the same approach to compute the second order shape derivative
J′′(Ω,V), assuming higher regularity on the domain Ω and on the integrands f and g.
Again exploiting the primal and dual formulations of J(Ω), we are able to bound from
above and below the liminf and limsup of the sequence

rε(V ) := 2
[J(Ωε)− J(Ω)− εJ′(Ω,V)]

ε2
, ε > 0 ,

and we arrive at the representation formula

J′′(Ω,V ) =

∫
∂Ω

(V ·n)2
[
∂u
∂n

(∇2u∇2 f (∇u)n) ·n+(
∇u ·∇ f (∇u)− f (∇u)

)
H∂Ω

]
dH n−1+

− inf
v∈H1(Ω)

Tr(v)=−V ·∇u

{∫
Ω
(∇2 f (∇u)∇v) ·∇v+g′′(u)v2

}
,

(34)
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where H∂Ω denotes the mean curvature of ∂Ω.
We point out that by now (34) has been obtained just in the smooth case, and its exten-
sion to more general integrand is a delicate topic which could be developed hereafter.
We foresee that the results concerning the second order shape derivative might give
some information about the curvature of the plateau’s boundary.
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Notation

Throughout the Thesis we adopt the following conventions.

We let the Greek indices α and β run from 1 to 2, the Latin indices i and j run from
1 to 3, and as usual we omit to indicate the sum over repeated indices.

Given a matrix M ∈ Rn×n with components Mi j, we denote by MT the transpose
matrix Mji, moreover we decompose M as the sum of its symmetric part and skew-
symmetric part:

M =Msym+Ma , with Msym :=
1
2
(M+MT ) , Ma :=

1
2
(M−MT ) .

We denote by SO(3) the space of rotations in R
3 and by Sym the space of second

order symmetric tensors. Given two vectors a,b in Rn and two matrices B and C in
Rn×n, we use the standard notation a · b and A : B to denote their Euclidean scalar
products, namely

a ·b :=
n

∑
i=1

aibi , A : B := tr(AT B) =
n

∑
i, j=1

Ai jBi j ,

where tr denotes the trace. We denote by a⊗b the matrix (a⊗b)i j := aib j, and by I the
identity matrix. Given a tensor field A∈C1(Rn;Rn×n), by divAwe mean its divergence
with respect to lines, namely

(divA)i :=
n

∑
j=1

∂ jAi j .

For every measurable set A ⊂ R
n we denote by |A| its Lebesgue measure, namely

|A| := ∫
A 1dx.

Given a set A⊂ Rn, we define two characteristic functions: 11A, which equals 1 in
A and 0 outside, and χA, which equals 0 in A and +∞ outside. We denote by Int(A) the
interior of the set A, and by A its closure.

Given a ∈ Rn we denote by δa the Dirac mass at x= a.
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We denote byCb and byC0 the space of continuous functions which are bounded or
compactly supported respectively.

Given an open bounded domain Ω ⊂ Rn with Lipschitz boundary, we denote by
Lip(Ω) the space of Lipschitz functions on Ω.

Given A⊂ Rn, we recall that a function f : A→ Rn is called locally Lipschitz if for
every compact subset K ⊂ A there exists a positive constantCk such that

| f (x)− f (y)| ≤CK|x− y| ∀x,y ∈ K .

Given 1 ≤ p≤+∞ we denote by p′ its conjugate exponent, defined as usual by the
equality 1/p+1/p′ = 1.

In the integrals, unless otherwise indicated, integration is made with respect to the
n-dimensional Lebesgue measure. Furthermore, in all the circumstances when no con-
fusion may arise, we omit to indicate the integration variable.

Whenever we consider Lp-spaces overΩ and over ∂Ω, they are intended the former
with respect to the n-dimensional Lebesgue measure overΩ, and the latter with respect
to the (n−1)-dimensional Hausdorff measure over ∂Ω.

We write any x ∈ R
3 as (x′,x3) ∈ R

2×R .
Derivation of functions depending only on x3 will be denoted by a prime.
For every compact set Q⊂ R3 of the form Q= D× I, where I is a closed bounded

interval and D is an open, bounded, connected subset of R2 with a Lipschitz boundary,
we denote by D ′(Q) the subset of distributions on R3 whose support is contained in
Q. These distributions are in duality with C ∞(Q), the space of restrictions to Q of
functions in C ∞(R3), and 〈T,ϕ〉

R
3 represents the duality bracket.

For any T ∈ D ′(Q), we denote by [[T ]] ∈ D ′(R) the 1d distribution obtained by
“averaging” T with respect to the cross section variable. It is defined by the identity

〈[[T ]],ϕ〉R := 〈T,ϕ〉
R
3 ∀ϕ = ϕ(x3) ∈ C ∞

0 (R) .

In the followingH1(Q) denotes the space of restrictions toQ of elements of the Sobolev
space H1(R3), equipped with the usual norm ‖u‖2H1(Q) =

∫
Q(|u|2+ |∇u|2). Notice that,

by the boundary regularity assumed on D, it coincides with the usual Sobolev space
H1(D× I). The dual space, denoted by H−1(Q), can be identified to the subspace of
distributions T ∈ D ′(Q) verifying the inequality |〈T,ϕ〉| ≤ C‖ϕ‖H1(Q) for every ϕ ∈
H1(Q), being C a suitable constant. Similar conventions will be adopted for functions
or distributions on D or on I. It is easy to check that [[T ]] belongs to H−1(I) whenever
T ∈ H−1(Q).

We recall that in dimension 1, a distribution S ∈ D ′(I) satisfying 〈S,1〉R = 0 has a
unique primitive belonging to D ′(I), that we denote by P0(S). In the general case,
given S ∈D ′(I), we denote byP(S) the primitiveP(S) :=P0(S−〈S,1〉R).

When we add a subscript m to a functional space, we are considering the subspace
of its elements which have zero integral mean.

In the particular case of H2
m(I) we require that also the distributional derivative has

zero integral mean, i.e.

H2
m(I) :=

{
ζ ∈ H2(I) :

∫
I
ζ =

∫
I
ζ ′ = 0

}
. (35)

Further notations will be specified if necessary throughout the Thesis.
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CHAPTER1
Preliminaries

This Chapter is devoted to recall the main mathematical tools used in this Thesis. In
the first part we collect the usual techniques adopted in the Calculus of Variations,
such as Convex Analysis, Γ-convergence and Geometric Measure Theory. Beside these
classical fields, we introduce two other topics: Cheeger problem and Korn inequalities.
In the second part we summarize some facts in linear elasticity and introduce the com-
pliance functional.

1.1 Convex Analysis and Duality Methods

Convex Analysis provides powerful techniques for studying optimization problems.
Let us recall the definitions and the main results. For this Section we refer to [11, 12,
40, 41, 52].

Let us briefly fix some notations and recall elementary definitions.
Let X be a normed vector space and let X∗ be its topological dual. We denote by

〈·, ·〉 the duality product. We endow X with the strong topology induced by the norm,
and X∗ with the weak * topology. In case we consider different topologies, such as the
weak one in X , it will be specified.

Given F : X → R∪{+∞}, we define the domain of F domF as the set of points
x ∈ X where F(x) is finite, namely

domF = {x ∈ X : F(x)<+∞} ,
and the epigraph of F epi(F) as the subspace of X×R

epi(F) = {(x, t) ∈ X ×R : F(x)≤ t} .

17



Chapter 1. Preliminaries

We say that F is

- proper if it is not identically +∞ ;

- convex if epi(F) is a convex subset of X ×R ;

- lower semicontinuous if epi(F) is a closed subset of X×R ;

- upper semicontinuous if −F is lower semicontinuous.

It is well known that the convexity and lower semicontinuity can also be character-
ized as follows:

- F is convex if and only if

F(tx+(1− t)y))≤ tF(x)+(1− t)F(y) , ∀x,y ∈ X , ∀t ∈ [0,1] ;

- F is lower semicontinuous if and only if for every t ∈R the sublevel {F(x)≤ t} is
closed in X , or equivalently if and only if for every x ∈ X and for every sequence
xh ∈ X converging to x, there holds

F(x)≤ liminf
h→∞

F(xh) .

We remark that lower semicontinuity can be defined also for the weak topology: in this
case the sequential characterization is in general a weaker property, which becomes
equivalent in case X , endowed with the weak topology, satisfies the First Axiom of
Countability.

In the sequel we may write simply l.s.c. instead of lower semicontinuous and, sim-
ilarly, u.s.c. instead of upper semicontinuous.

Proposition 1.1.1. Let F : X → R∪{+∞} be convex and proper, then the following
implications hold true:

(i) if supU F < +∞ for some U open subset of X, then F is continuous and locally
Lipschitz in all Int(domF) ;

(ii) F is l.s.c. with respect to the strong topology if and only if F is l.s.c. with respect
to the weak topology.

1.1.1 Fenchel conjugate

Given a proper function F : X→R∪{+∞}, we define its Fenchel conjugate F∗ : X∗ →
R∪{+∞} as

F∗(x∗) := sup
x∈X
{〈x∗,x〉−F(x)} .

Similarly, if F∗ is proper, we introduce the biconjugate F∗∗ : X → R∪{+∞} as
F∗∗(x) := sup

x∗∈X∗
{〈x,x∗〉−F∗(x∗)} .

Theorem 1.1.1. Let F : X →R∪{+∞} be a proper function. Then
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(i) F∗ is convex and lower semicontinuous with respect to the weak* topology of X∗ ;

(ii) the Fenchel inequality holds true:

F(x)+F∗(x∗)≥ 〈x∗,x〉 ∀x ∈ X , x∗ ∈ X∗ ;

(iii) F ≥ G =⇒ F∗ ≤ G∗ ;

(iv) for every λ > 0 (λF)∗(λx∗) = λF∗(x∗/λ ) , for every x∗ ∈ X∗ ;

(v) if F is convex, then F is l.s.c. in x0 if and only if F∗ is proper and F∗∗(x0) =
F(x0) ;

(vi) the biconjugate satisfies F∗∗ ≤F, and equality holds true if and only if F is convex
and lower semicontinuous.

We can reformulate (vi) saying that F∗∗ is the greatest convex and l.s.c. function
majorized by F , in particular, when F is convex, it coincides with the l.s.c. envelope of
F (see Definition 1.3.2).

Example 1.1.1. Let F : X → R be defined as F(x) = 1
p‖x‖pX . If 1< p<+∞, then

F∗(X∗) =
1
p′
‖x∗‖p′X∗ ,

where p′ satisfies 1/p+1/p′ = 1 . If instead p= 1 the Fenchel conjugate is given by

F∗(x∗) = χB∗ ,

where B∗ := {x∗ ∈ X∗ : ‖x∗‖X∗ ≤ 1}.
Proof. Let us consider the case 1< p< 1. For every x∗ ∈ X∗, by definition there holds

F∗(x∗) = sup
x∈X

{
〈x∗,x〉− 1

p
‖x‖pX

}
= sup

t∈R
sup
‖x‖X=1

{
t〈x∗,x〉− |t|

p

p

}
= sup

t∈R+

{
t‖x∗‖X∗ − t p

p

}
=

1
p′
‖x∗‖p′X∗ .

Let us now consider the case p= 1: for every x∗ ∈ X∗ there holds

F∗(x∗) = sup
x∈X
{〈x∗,x〉−‖x‖X}= sup

t∈R+
sup
‖x‖X=1

{t〈x∗,x〉− t}

= sup
t∈R+

t(‖x∗‖X∗ −1) =
{

0 if ‖x∗‖X∗ ≤ 1
+∞ otherwise

.

�

We say that F admits an affine minorant if there exists x∗0 ∈ X∗ and c ∈ R such that

〈x∗0,x〉− c≤ F(x) ∀x ∈ X . (1.1)

We remark that F satisfies (1.1) if and only if F∗(x∗0)≤ c. As an immediate consequence
we infer that a proper, l.s.c. and convex function always admits an affine minorant (see
(v) in Theorem 1.1.1).
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1.1.2 Subgradients

Let F : X → R∪{+∞} be a proper function. We say that x∗ ∈ X∗ is a subgradient for
F at x if there holds

〈x∗,y− x〉+F(x)≤ F(y) ∀y ∈ X .

We denote by ∂F(x) the possibly empty set of subgradients at x, and call it the subdif-
ferential of F at x. If ∂F(x) �= /0 we say that F is subdifferentiable at the point x.

In the next theorems we collect the properties of subgradients and subdifferentials.

Theorem 1.1.2. The following facts are equivalent:

(i) x∗ ∈ ∂F(x) ;

(ii) x ∈ ∂F∗(x∗) ;

(iii) the Fenchel equality holds true:

F(x)+F∗(x∗) = 〈x∗,x〉 .

Example 1.1.2. Let f : Rn→ R be a convex radial function of the form f (z) = ϕ(|z|).
Then

f ∗(z∗) = ϕ∗(|z∗|) ,
moreover

z∗ ∈ ∂ f (z) ⇐⇒ z∗ = t
z
|z| , with t ∈ ∂φ(|z|) .

Proof. Let us compute the Fenchel conjugate of f :

f ∗(z∗) = sup
z
{〈z∗,z〉− f (z)}= sup

z
{〈z∗,z〉−φ(|z|)}= sup

t∈R

{〈
z∗, t

z∗

|z∗|
〉
−φ(t)

}
= sup

t∈R
{|z∗| t−φ(t)}= φ∗(|z∗|) .

In particular, if z realizes the supremum, namely z ∈ ∂ f ∗(z∗), then it is of the form
z= t z∗

|z∗| with t ∈ ∂φ∗(|z∗|). Similarly there holds

z∗ ∈ ∂ f (z) ⇐⇒ z∗ = t
z
|z| , with t ∈ ∂φ(|z|) . (1.2)

�

Theorem 1.1.3. The subdifferential satisfies the following properties:

(i) for every x∈ X, ∂F(x) is convex and closed with respect to to the weak * topology
in X∗ ;

(ii) if F is convex and continuous in x ∈ X, then ∂F(x) is a nonempty and weakly *
compact subset of X∗ ;
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Proof. (i) Let us fix x ∈ X such that F(x) < +∞. In view of property (ii) of Theorem
1.1.1 and by definition of subdifferential, there holds

∂F(x) = {x∗ ∈ X∗ : F(x)+F∗(x∗)≤ 〈x∗,x〉}
= {x∗ ∈ X∗ : F∗(x∗)−〈x∗,x〉 ≤ −F(x)} .

Since by Theorem 1.1.1 (i) the map x∗ 
→ F∗(x∗)− 〈x∗,x〉 is convex and l.s.c. with
respect to the weak * topology of X∗, we infer that the sublevel corresponding to−F(x)
is convex and weak * closed.

(ii) (cf. [41, Proposition 2.1.2]). Since F is finite and continuous at x, we infer that
Intepi(F) ⊂ X ×R is a nonempty convex set. By the Hahn-Banach theorem, we can
separate Intepi(F) and (x,F(x)) ∈ X×R with a closed hyperplane: there exist ξ ∈ X∗
and λ ∈ R such that

〈ξ ,x〉+λ t < 〈ξ ,x〉+λF(x) , ∀(x, t) ∈ Intepi(F) .

Clearly λ < 0 (it is enough to evaluate the expression above in (x, t) = (x,F(x)+1)).
Since epi(F) ⊂ epi(F) = Intepi(F) (this last equality follows by convexity of the set),
the separation inequality above becomes weaker in all the epigraph:

〈ξ ,x〉− |λ |t ≤ 〈ξ ,x〉− |λ |F(x) , ∀(x, t) ∈ epi(F) . (1.3)

If in (1.3) we consider t = F(x) and we divide by |λ | the expression, we obtain

〈|λ |−1ξ ,x− x〉 ≤ F(x)−F(x) , ∀x ∈ X ,

that is |λ |−1ξ ∈ ∂F(x).
Since F is finite, continuous in a neighborhood of x and convex, by Proposition

1.1.1 it is locally Lipschitz in all X , in particular there exist a constant L > 0 and a
neighborhoodU of x such that

|F(x)−F(x)| ≤ L‖x− x‖X , ∀x ∈U .

On the other hand, if x∗ is an arbitrary element ∂F(x), we obtain

|F(x)−F(x)| ≥ F(x)−F(x)≥ 〈|λ |−1 x∗,x− x〉 , ∀x ∈U ,

hence we conclude that ‖x∗‖X∗ ≤ L, thus ∂F(x) is bounded. By Banach-Alaoglu theo-
rem, we conclude that ∂F(x) is weakly* compact in X∗. �

Let us recall the definition of one-sided directional derivative and Gâteaux differen-
tiability:

- for every x ∈ X and every direction v ∈ X , the one-sided directional derivative of
F at x in direction v is the following limit, if it exists:

F ′+(x,v) = lim
h→0+

F(x+ tv)−F(x)
h

.
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- we say that F is Gâteaux differentiabile at x if there exists x∗ ∈ X∗ such that

∀y ∈ X lim
t→0

F(x+ ty)−F(x)
t

= 〈x∗,y〉 ,

in this case x∗ is called the Gâteaux derivative and is denoted by F ′G(x).

Theorem 1.1.4. Let F : X→R∪{+∞} be a convex proper function, and let x∈ domF.
Then

(i) for every v ∈ X
F ′+(x,v) = sup

x∗∈∂F(x)
〈x∗,v〉 ;

(ii) if F is Gâteaux differentiabile at x, then ∂F(x) = {F ′G(x)}. Conversely, if F is
continuous at x and ∂F(x) = {x∗}, then F is Gâteaux differentiabile at x and
F ′G(x) = x∗ .

1.1.3 Optimization problems

In this paragraph we recall two key results concerning optimization problems: in Propo-
sition 1.1.2 we state a standard duality procedure and in Theorem 1.1.3 we recall a
minimax principle.

Before stating the results, let us recall two useful lemmas that show the behavior of
Fenchel conjugation when summing or composing functions.

Lemma 1.1.1. Let F,G : X → R∪{+∞} be two convex functions which admit a point
in domF ∩domG at which F is continuous. Then

(F+G)∗(x∗) = inf
x∗1+x∗2=x∗

{F∗(x∗1)+G∗(x∗2)} .

Moreover, if the left and right hand sides are both finite, the infimum in the right hand
side is achieved.

We recall the definition of adjoint operator: given A : X → Y a linear operator
between normed spaces, the adjoint operator A∗ is a linear function from X∗ to Y ∗,
uniquely defined by

〈A∗y∗,x〉= 〈y∗,Ax〉 ∀x ∈ X , y∗ ∈ Y ∗ .

Lemma 1.1.2. Let X and Y be two Banach spaces and let be given the following func-
tions:

- A : X → Y a linear operator with dense domain D(A) ;

- Ψ : Y → R∪{+∞} a convex l.s.c. function, which is continuous at a point σ0 :=
Au0, with u0 ∈ D(A) ;

- F : X →R∪{+∞} the composition function given by

F(u) :=
{

Ψ(Au) if u ∈ D(A)
+∞ otherwise

.
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Then the Fenchel conjugate of the composition F is given by

F∗( f ) = inf{Ψ∗(σ) : σ ∈ Y ∗ , A∗σ = f} .
Moreover, if both sides are finite, the infimum in the right hand side is achieved.

By combining Lemma 1.1.1 and 1.1.2 one can easily prove the following duality
result (cf. [12, Proposition 14]).

Proposition 1.1.2. Let X and Y be two Banach spaces and let be given the following
functions

- A : X →Y a linear operator with dense domain D(A) ;

- Φ : X → R∪{+∞} a convex function;

- Ψ :Y →R∪{+∞} a convex and l.s.c. function, which is continuous at some point
Au0, with u0 ∈ D(A) ;

then
− inf

u∈X

{
Ψ(Au)+Φ(u)

}
= inf

σ∈Y ∗
{
Ψ∗(σ)+Φ∗(−A∗σ)

}
, (1.4)

where the infimum on the right hand side is achieved.
Furthermore, a pair (u,σ) is optimal for the left hand side and right hand side of

(4.1.2) respectively, if and only if it satisfies the relations σ ∈ ∂Ψ(Au) and −A∗σ ∈
∂Φ(u).

We now recall a minimax theorem (cf. [40]). A proof of this result can be found
in [53].

Proposition 1.1.3. Let A and B be nonempty convex subsets of two locally convex
topological vector spaces, and let B be compact. Assume that L : A ×B → R is
such that for every b ∈ B, L(·,b) is convex, and for every a ∈ A , L(a, ·) is upper
semicontinuous and concave. Then, if the quantity

γ := inf
a∈A

sup
b∈B

L(a,b)

is finite, we have γ = supb∈B infa∈A L(a,b), and there exists b� ∈B such that infa∈A L(a,b�)=
γ . If in addition A is compact and, for every b ∈B, L(·,b) is lower semicontinuous,
there exists a� ∈A such that L(a�,b�) = γ .

1.2 Functionals over Lp spaces

In this Section we collect the results concerning the well-posedness and the sequential
lower semicontinuity of integral functionals defined over Lp spaces. More precisely,
we consider functionals of the form

Lp(Ω;Rm) � z 
→
∫
Ω
f (x,z(x))dx ,

or
Lp(Ω;Rm)×Lq(Ω;Rd) � (z,u) 
→

∫
Ω
g(x,z(x),u(x))dx ,
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with 1≤ p,q<+∞ and

f : Ω×R
m→ [−∞,+∞] , g : Ω×R

m×R
d→ [−∞,+∞]

two L n×B measurable functions (namely measurable with respect to the σ -algebra
generated by the products of subsets of Ω and Borel subsets of Rm or Rm×d respec-
tively). In this Section Ω will denote a Lebesgue measurable subset of Rn with finite
measure.

For the proofs and for the analogous results for the case p,q= +∞, we refer to the
book [57, Chapters 6 and 7].

For brevity of notation, in what follows, we simply write I f to denote the integral
functional

Lp(Ω;Rm) � z 
→ I f (z) :=
∫
Ω
f (x,z(x))dx .

We say that I f is well-posed in Lp(Ω;Rm) if for every v ∈ Lp(Ω;Rm)∫
Ω
f−(x,v(x))dx<+∞ .

Analogous notations will be adopted for Ig.

1.2.1 Integral functionals with integrand f (x,z)

Theorem 1.2.1. (Well-posedness) Let 1≤ p<+∞ and let f :Ω×R
m→ [−∞,+∞] be

aL n×B measurable function. Then I f is well-posed in Lp(Ω;Rm) if and only if there
exists a nonnegative function γ ∈ L1(Ω) and a constant C > 0 such that

f (x,z)≥−C|z|p− γ(x)

for a.e. x ∈Ω and for every z ∈ Rm.

We say that two functions f1, f2 :Ω×Rm→ [−∞,+∞] are equivalent integrands in
the Lp sense if for every v ∈Cb(Ω;Rm) we have

f1(x,v(x)) = f2(x,v(x)) L n−a.e. x ∈Ω .

Clearly, for equivalent integrands there holds∫
Ω
f1(x,v(x))dx=

∫
Ω
f2(x,v(x))dx

whenever the integrals are defined.

Theorem 1.2.2. (Strong lower semicontinuity) Let 1≤ p<+∞ and let f : Ω×Rm→
(−∞,+∞] be a L n×B measurable function. Assume that the functional I f is well-
posed in Lp(Ω;Rm). Then If is lower semicontinuous with respect to the strong topol-
ogy in Lp(Ω;Rm) if and only if (up to equivalent integrands) f (x, ·) is lower semicon-
tinuous in Rm for a.e. x ∈Ω.
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Corollary 1.2.1. (Strong continuity) Let 1≤ p<+∞ and let f : Ω×Rm→ [−∞,+∞]
be a L n×B measurable function. Assume that there exists a nonnegative function
γ ∈ L1(Ω) and a constant C > 0 such that

| f (x,z)| ≤C|z|p+ γ(x)

for a.e. x ∈Ω and for every z ∈Rm, then the functional I f is continuous with respect to
the strong convergence in Lp(Ω;Rm) if and only if f (x, ·) is continuous in Rm for a.e.
x ∈Ω.

Theorem 1.2.3. (Weak lower semicontinuity) Let 1 ≤ p < +∞ and let f : Ω×Rm→
(−∞,+∞] be aL n×B-measurable function.

Assume that f (x, ·) is lower semicontinuous inRm for a.e. x∈Ω and assume that the
functional I f is well-posed in Lp(Ω;Rm). Then If is sequentially lower semicontinuous
with respect to the weak convergence in Lp(Ω;Rm) if and only if the two following
conditions hold true:

(i) f (x, ·) is convex in Rm for a.e. x ∈Ω,

(ii) there exist two functions a ∈ L1(Ω) and b ∈ Lp′(Ω;Rm) such that

f (x,z)≥ a(x)+b(x) · z ,
for a.e. x ∈Ω and for every z ∈ R

m.

1.2.2 Integral functionals with integrand g(x,u,z)

Theorem 1.2.4. (Well-posedness)
Let 1 ≤ p,q < +∞ and let g : Ω×Rm ×Rd → [−∞,+∞] be L n ×B-measurable.
Then Ig is well-posed in Lp(Ω;Rm)×Lq(Ω;Rd) if and only if there exist a nonnegative
function ω ∈ L1(Ω) and a constant C > 0 such that

g(x,u,z)≥−C(|u|q+ |z|p)−ω(x) ,

for a.e. x ∈Ω and for every (z,u) ∈ Rm×Rd.

Theorem 1.2.5. (Strong-strong lower semicontinuity)
Let 1 ≤ p,q < +∞ and let g : Ω×Rm×Rd → (−∞,+∞] be L n×B-measurable.
Assume that Ig is well-posed in Lp(Ω;Rm)×Lq(Ω;Rd). Then Ig is sequentially lower
semicontinuous with respect to the (strong-strong) convergence in Lp(Ω;Rm)×Lq(Ω;Rd)
if and only if (up to equivalent integrands) f (x, ·, ·) is lower semicontinuous in Rm×Rd

for a.e. x ∈Ω.

Theorem 1.2.6. (Weak-strong lower semicontinuity)
Let 1 ≤ p,q < +∞ and let g : Ω×Rm×Rd → (−∞,+∞] be L n×B-measurable.
Assume that g(x, ·, ·) is lower semicontinuous in Rm×Rd for a.e. x ∈ Ω, Ig is well-
posed in Lp(Ω;Rm)×Lq(Ω;Rd) and there exists z0 ∈ Lp(Ω;Rm) such that∫

Ω
g(x,z0(x),u(x))dx<+∞
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for every u ∈ Lq(Ω;Rd).
Then Ig is sequentially lower semicontinuous with respect to the (weak-strong) con-
vergence in Lp(Ω;Rm)× Lq(Ω;Rd) if and only if (up to equivalent integrands) the
following conditions hold true:

(i) g(x, ·,u) is convex in Rm for a.e. x ∈Ω and for every u ∈ Rd;

(ii) there exist a constant C > 0 and two functions α ∈ L1(Ω), β : Ω×Rd → Rm

L n×B measurable such that

g(x,z,u)≥ α(x)+β (x,u) · z−C|u|q ,
for a.e. x ∈Ω and for every (z,u) ∈ R

m×Rd;

(iii) there exist a constant C1 > 0 and a function b1 ∈ L1(Ω) such that

|β (x,u)|p′ ≤C1|u|q+b1(x)

for a.e. x ∈Ω and for every u ∈ Lq(Ω;Rd).

1.2.3 Fenchel conjugates for integral functionals

In this paragraph we present the results concerning the Fenchel transform in the class
of integral functionals. In turns out that, under suitable assumptions, the Fenchel con-
jugate, the subgradients and the subdifferential are related to the Fenchel conjugate, the
subgradients and the subdifferential of the integrand.

In what follows Ω denotes an open bounded domain of Rn, 1 ≤ p ≤ +∞ and p′
satisfies 1/p+1/p′ = 1 .

Proposition 1.2.1. Let f : Ω×Rm→ R be l.s.c. and convex with respect to the second
variable, and assume that there exist v,v∗ ∈ L∞(Ω;Rm) such that∫

Ω
| f (x,v(x))|dx<+∞ ,

∫
Ω
| f ∗(x,v∗(x))|dx<+∞ , (1.5)

f ∗ being the Fenchel conjugate with respect to the second variable.
Then for every v∗ ∈ Lp′(Ω;Rm) and v ∈ Lp(Ω;Rm) there hold

(I f )∗(v∗) =
∫
Ω
f ∗(x,v∗(x))dx

and
∂ I f (v) =

{
v∗ ∈ Lp′(Ω;Rm) : v∗(x) ∈ ∂ f (x,v(x)) a.e. in Ω

}
. (1.6)

The proof can be found in [52, Theorem 2 and Corollary 3 of Section 3 in Chapter
II]. We remark that assumption 1.5 is readily satisfied when f does not depend on
x ∈Ω and is proper: indeed by lower semicontinuity and convexity of f , in view of (v)
in Theorem 1.1.1, we infer that also f ∗ is proper.

Proposition 1.2.2. Let f : Rm → R be a continuous, convex and finite function. If
v ∈ L∞(Ω;Rm), then every vector field v∗ ∈ ∂ f (v) belongs to L∞(Ω;Rm).
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Proof. Let v∈ L∞(Ω;Rm) and let v∗ ∈ ∂ f (v). In view of characterization (1.6) we infer
that for a.e. x ∈Ω

v∗(x) ∈ ∂ f (v(x)) ,
moreover, without loss of generality, we may assume that |v(x)| ≤ ‖v‖∞ .

For such points we deduce a uniform bound for |v∗(x)|. We recall that, by definition
of subdifferential, v∗ satisfies

v∗(x) · (ξ −v(x))≤ f (ξ )− f (v(x)) ∀ξ ∈ R
m . (1.7)

Let us fix a real parameter r > 0. Exploiting the property (1.7) we conclude

|v∗(x)|= sup
|η|≤1

v∗(x) ·η =
1
r

sup
|η|≤r

v∗(x) ·η

=
1
r

sup
|ξ−v(x)|≤r

v∗(x) · (ξ −v(x))≤ 1
r
[ f (ξ )− f (v(x))]

≤ 2
r
‖ f‖L∞(B) ,

with B the ball centered in the origin with radius (‖v‖∞+ r). �

1.3 Γ-convergence

Γ-convergence theory was introduced by De Giorgi in the seventies, and it is a powerful
and adaptable instrument in the Calculus of Variations: under suitable assumptions, it
permits to characterize the asymptotic behavior of families of infimum problems, more
precisely it lets to establish a link between the minima (minimizers) of a sequence of
functionals and the minimum (resp. minimizers) of the limit functional.
The general theory develops in the framework of topological spaces, but here we present
just the case of metric or metrizable spaces, such as Lp spaces or bounded subsets of
Sobolev spaces, endowed with the weak convergence. For the proofs of the follow-
ing results and for a complete description of the theory, we refer to the book by Dal
Maso [43].

1.3.1 Definition and first properties

In what follows X will be a metric space.

Definition 1.3.1. Given a sequence Fh : X → R∪ {+∞}, we define its Γ-liminf and
Γ-limsup as the following functions from X to R∪{+∞}:

(Γ- liminfFh)(x) = inf
xh→x

liminf
h→∞

Fh(xh) ,

(Γ- limsupFh)(x) = inf
xh→x

limsup
h→∞

Fh(xh) .

Moreover, if there exists F : X → R∪{+∞} such that

F = (Γ- liminfFh) = (Γ- limsupFh) ,

we say that the sequence Fh Γ-converges to the Γ-limit F, and we write Fh
Γ→ F .
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Clearly Γ- liminfFh ≤ Γ- limsupFh, then the sequence Fh Γ-converges to F if and
only if

Γ- limsupFh ≤ F ≤ Γ- liminfFh .

Given a sequence Fh, in order to verify that a certain function F is the Γ-limit one
can exploit the following, more tractable, characterization.

Theorem 1.3.1. The sequence Fh Γ-converges to F if and only if

(i) for every x ∈ X and for every sequence xh ∈ X converging to x there holds

F(x)≤ liminf
h

Fh(xh) ;

(ii) for every x ∈ X there exists a sequence xh ∈ X (called recovery sequence) con-
verging to x such that

F(x)≥ limsup
h

Fh(xh) .

We remark that Theorem 1.3.1 is still valid if we replace (ii) by one of the following
equivalent conditions:

(ii)′ for every x ∈ X there exists a sequence xh converging to x such that

F(x) = lim
h

Fh(xh) .

(ii) ′′ for every x ∈ X and for every ε > 0 there exists a sequence xh converging to x
such that

F(x)≥ limsup
h

Fh(xh)− ε .

It is easy to show that Γ-convergence is independent from the other kinds of conver-
gence, such as uniform or punctual convergence, moreover it is not stable under sum.
Nevertheless it satisfies the following properties:

- the uniform convergence to a continuous function implies the Γ-convergence;

- the Γ-convergence is stable under perturbation by continuous funcions, namely
there holds

Fh
Γ−→ F , G continuous =⇒ (Fh+G) Γ−→ (F+G) .

- a sort of viceversa holds true: if a sequence of equicoercive functions Fh satisfies

min(Fh+G)−→min(F+G) , for h→ ∞ ,

for every G continuous and bounded from below, then

Fh
Γ−→ F .
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1.3.2 Relaxation

The next results show that the natural framework of Γ-convergence theory is the class
of lower semicontinuous functions.

We recall that a function F : X →R∪{+∞} is (sequentially) lower semicontinuous
if for every x ∈ X

F(x)≤ liminf
h→∞

F(xh)

for every sequence xh→ x in X .

Definition 1.3.2. For every function F : X → R∪{+∞} we define the lower semicon-
tinuous envelope (or relaxed function) Sc−F of F as

(Sc−F)(x) := sup{G(x) | G lsc , G≤ F} .
This procedure is known as relaxation.
Since the supremum of l.s.c. functions is l.s.c., the function Sc−F is l.s.c., moreover

it is the greatest function with such a property among functions majorized by F .

Proposition 1.3.1. The functions Γ- liminfh→∞Fh and Γ- limsuph→∞Fh are lsc on X .
In particular, if the Γ-limit exists, it is lsc.

Proposition 1.3.2. The following equalities hold true:

Γ- liminfFh = Γ- liminfSc−Fh , Γ- limsupFh = Γ- limsupSc−Fh .

In particular, Fh Γ-converges to F if and only if Sc−Fh Γ-converges to F .

The importance of lower semicontinuity enlightened in the next proposition.

Proposition 1.3.3. Let F : X → R∪{+∞}, then
(i) every cluster point of a minimizing sequence F (if it exists) is a minimizer for

Sc− f ;

(ii) if F is coercive, then Sc−F admits a minimum and

inf
X

F =min
X

Sc−F .

1.3.3 Convergence of minima and minimizers

Under suitable assumptions of coercivity, the Γ-convergence of a sequence Fh to a limit
F implies the convergence of minima of Fh to the minimum of F . Moreover, if F has
only one minimum point, a sequence of minimizers for Fh converges to such point.

We recall that F : X → R∪ {+∞} is coercive if for every t ∈ R the sublevel set
{F ≤ t} is precompact (namely its closure is compact in X ).

We say that a sequence Fh is equicoercive in X if for every t ∈ R there exists a
compact set Kt ⊂ X such that {Fh ≤ t} ⊆ Kt for every h ∈ N .

An interesting characterization is given in [43, Theorem 7.7]: a sequence Fh is
equicoercive if and only if there exists a coercive and lsc function ψ : X → R∪{+∞}
such that Fh ≥ ψ in X for every h ∈ N .

Let us recall the main results about the convergence of minima and minimizers of
Γ-convergent sequences.
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Theorem 1.3.2. Assume that the sequence Fh : X → R∪{+∞} Γ-converges to a func-
tion F : X → R∪{+∞}. For every h ∈ N, let xh ∈ Argmin(Fh). If xh→ x in X, then
x ∈ Argmin(F), moreover

F(x) = lim
h→∞

Fh(xh) .

We say that x ∈ X is an ε-minimizer for a function f if ε ≥ 0 and

f (x) ∈ [inf
X

f , inf
X

f + ε] .

Theorem 1.3.2 is still valid if we consider a sequence xh of εh-minimizers, εh being an
infinitesimal sequence of positive parameters.

Moreover the thesis holds true even if x is a cluster point of the sequence xh: it is a
minimizer for F and

F(x) = limsup
h→∞

Fh(xh) .

Theorem 1.3.3. Let Fh : X → R∪{+∞} be an equicoercive sequence Γ-converging to
a function F �≡ +∞. For every h ∈ N , let xh be a minimizer (or an εh-minimizer, with
εh infinitesimal sequence of positive parameters) for Fh. Then

∃xhk → x , x ∈ Argmin(F) ,

F(x) = lim
h→∞

Fh(xh) .

Corollary 1.3.1. Let Fh : X →R∪{+∞} be an equicoercive sequence Γ-converging to
a function F �≡+∞ having only one minimizer, namely Argmin(F) = {x0}. Then every
sequence of minimizers (or εh-minimizers) for Fh verify

xh→ x0 ,

F(x0) = lim
h→∞

Fh(xh) .

1.3.4 Compactness and metrizability

In order to complete the overview on Γ-convergence, we present two properties of
compactness and metrizability of the functions from X to R∪{+∞} , with respect to to
Γ-convergence.

Proposition 1.3.4. In a metric separable space every sequence Fh admits a Γ-converging
subsequence.

The Γ-convergence, considered over the family S (X) of lower semicontinuous
functions, in general is not induced by a topology, unless the space X is locally com-
pact. Such assumption can be removed if we consider the subclass Sψ(X) := {G :
X →R∪{+∞} | G lsc , G≥ ψ} , where ψ : X → [0,+∞] is a coercive and lsc function
(cf [43, Corollary 10.23]).
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1.3.5 Mosco-convergence

We conclude the Section by presenting an other variational convergence, introduced by
Mosco in [79].

Definition 1.3.3. Let X be a Banach space. We say that a sequence Fh : X→R∪{+∞}
Mosco-converges to a function F : X → R∪{+∞} if and only if

(i) for every x ∈ X and for every sequence xh ∈ X weakly converging to x there holds

F(x)≤ liminf
h

Fh(xh) ;

(ii) for every x ∈ X there exists a sequence xh ∈ X strongly converging to x such that

F(x)≥ limsup
h

Fh(xh) .

In this case we write Fh
M→ F . Clearly, Mosco-convergence is weaker than Γ-

convergence with respect to the weak topology: indeed condition (ii) provides the
existence of a recovery sequence converging with respect to the strong topology on
X , giving as a direct consequence the convergence with respect to the weak topology
on X .

MoreoverMosco-convergence is stable when passing to the Fenchel conjugates (see
e.g. [8, Theorem 1.3]).

Theorem 1.3.4. Let X be a reflexive, separable, Banach space and let Fh ,F : X →
R∪{+∞} be proper, convex and lower semicontinuous functions. Then

Fh
M→ F ⇐⇒ F∗h

M→ F∗ ,

where F∗h and F∗ are the Fenchel conjugates of Fh and F respectively.

Another interesting characterization of Mosco-convergence is the following:

Proposition 1.3.5. Let X be a reflexive, Banach space and let Fh ,F : X → R∪{+∞}
be proper, convex and lower semicontinuous functions. Then Fh

M→ F if and only if

(i) for every x ∈ X and for every sequence xh ∈ X weakly converging to x there holds

F(x)≤ liminf
h

Fh(xh) ;

(ii) for every x∗ ∈ X∗ and for every sequence x∗h ∈ X∗ weakly converging to x∗ there
holds

F∗(x∗)≤ liminf
h

F∗h (x
∗
h) .

1.4 Some topics in Geometric Measure Theory

In the first part of the Section we recall some standard definitions and statements about
the functions with bounded variations (see [5,54]). Then we pass to present some weak
notions of trace (see [6, 7, 34, 35]).

Finally we introduce a variational problem in the plane: the Cheeger problem.
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1.4.1 Functions of Bounded Variations

Let Ω denote an open bounded subset of Rn.

Definition 1.4.1. A function u ∈ L1(Ω) has bounded variation in Ω if its distributional
derivative is a finite Radon measure in Ω, i.e. if∫

Ω
u∇φ dx=−

∫
Ω
φ dDu ∀φ ∈C∞

0 (Ω) ,

for some Rn-valued measure Du in Ω . The vector space of all functions with bounded
variation in Ω is denoted by BV (Ω) .

Given u ∈ L1
loc(Ω) we define its variation as

V (u,Ω) := sup
{∫

Ω
u divφ dx : φ ∈C1

0(Ω;Rn) , ‖φ‖∞ ≤ 1
}

.

Proposition 1.4.1. A function u ∈ L1(Ω) is in BV (Ω) if and only if V (u,Ω)<+∞ . In
addition V (u,Ω) coincides with the total variation |Du|(Ω) and the map u 
→ |Du|(Ω)
is lower semicontinuous in BV (Ω) with respect to the L1

loc topology.

In view of Proposition 1.4.1, sometimes we will call the total variation |Du| simply
variation. We notice that the space BV endowed with the norm

‖u‖BV := ‖u‖L1(Ω) + |Du|(Ω)

is a Banach space.

We now introduce a particular class of BV functions: the characteristic functions of
sets of finite perimeter.

Definition 1.4.2. An L n-measurable subset E ⊂ Rn has finite perimeter in Ω if the
characteristic function 11E is an element of BV (Ω) . In this case the perimeter of E is
defined as the variation of 11E as a BV function, namely

Per(E,Ω) := sup
{∫

E
divφ dx : φ ∈C1

0(Ω;Rn) , ‖φ‖∞ ≤ 1
}

.

For a complete overview on this topic we refer to [5, 54].
Let us conclude by recalling a BV version of the coarea formula.

Theorem 1.4.1. For any open set Ω⊂ Rn and u ∈ L1
loc(Ω) one has

V (u,Ω) =

∫ +∞

−∞
Per({x ∈Ω : u(x)> t},Ω)dt .

In particular, if u ∈ BV (Ω), the superlevel set {u > t} has finite perimeter in Ω for
L 1-a.e. t ∈ R. Moreover, for every Borel set B⊂Ω, there holds

|Du|(B) =
∫ +∞

−∞
|D11{u>t}|(B)dt , Du(B) =

∫ +∞

−∞
D11{u>t}(B)dt .
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1.4.2 Traces

In this paragraph Ω is an open bounded domain of Rn with Lipschitz boundary.
If v ∈W 1,p(Ω), we denote by Tr(v) its trace on ∂Ω. We recall that v 
→ Tr(v) is a

bounded linear operator from W 1,p(Ω) to Lp(∂Ω), and it can be characterized via the
divergence theorem∫

∂Ω
Tr(v)ϕ niH n−1 =

∫
Ω
v∂iϕ dx+

∫
Ω
ϕ d(Div) ∀ϕ ∈C1(Ω) , (1.8)

where n is the unit outward normal to the boundary ∂Ω. Moreover, Tr(v) can be com-
puted as

Tr(v)(x0) = lim
r,ρ→0+

−
∫
C−r,ρ (x0)

v forH n−1-a.e. x0 ∈ ∂Ω,

whereC−r,ρ(x0) denotes the inner cylindrical neighborhood

C−r,ρ(x0) := {y ∈Ω : y= x− tn(x0) , x ∈ Bρ(x0)∩∂Ω , t ∈ (0,r)} . (1.9)

In particular, in case v ∈W 1,p(Ω)∩C0(Ω), Tr(v) coincides with the restriction of v to
∂Ω.

We remark that a similar notion of trace extends to functions v ∈ BV (Ω) (cf. [5]); in
this case Tr is a bounded linear operator from BV (Ω) to L1(∂Ω).

Finally, let us recall the definition of normal trace for vector fields in the class

X∞(Ω;Rn) :=
{
Ψ ∈ L∞(Ω;Rn) : divΨ ∈ L∞(Ω)

}
.

Equipped with the norm ‖Ψ‖X∞ := ‖Ψ‖∞ + ‖divΨ‖∞, X∞(Ω;Rn) is a Banach space.
The following definition and properties of the normal trace of elements belonging to
X∞ is in fact valid in the larger space of L∞ vector fields whose divergence is a measure
with finite total variation (cf. [6, 35]). For every Ψ ∈ X∞(Ω;Rn), there exists a unique
function [Ψ ·n]∂Ω ∈ L∞(∂Ω) such that∫

∂Ω
[Ψ ·n]∂Ωϕ dH n−1 =

∫
Ω
Ψ ·∇ϕ dx+

∫
Ω
ϕ divΨdx ∀ϕ ∈C1(Ω) . (1.10)

The normal trace operator Ψ 
→ [Ψ · n]∂Ω from X∞(Ω;Rn) to L∞(∂Ω) is linear and
bounded. Moreover, we recall from [7, Proposition 2.2] that, if ∂Ω is piecewise C1,
[Ψ ·n]∂Ω can be computed as

[Ψ ·n]∂Ω(x0) = lim
r,ρ→0+

−
∫
C−r,ρ (x0)

Ψ · ñ forH n−1-a.e. x0 ∈ ∂Ω , (1.11)

being ñ the following extension of n toC−r,ρ(x0)

ñ(y) := n(x) if y= x− tn(x0) . (1.12)

In the next Lemma we collect some preliminary facts about boundary traces, con-
cerning functions belonging to BV or X∞.
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Lemma 1.4.1. Given an open bounded domain Ω ⊂ Rn with boundary piecewise C1,
let v and Ψ be respectively a scalar function and a vector field defined defined on Ω
which are both L∞ and BV. Denote by C−r,ρ and ñ the cylinder and the extension of the
unit outer normal defined in (2.93) and (1.12). Then the following equalities hold true
atH n−1-a.e. x0 ∈ ∂Ω:

Tr(v)(x0)n(x0) = [vn]∂Ω(x0) ; (1.13)

lim
r,ρ→0+

−
∫
C−r,ρ (x0)

∣∣∣Ψ(x)−Tr(Ψ)(x0)
∣∣∣= 0; (1.14)

lim
r,ρ→0+

−
∫
C−r,ρ (x0)

∣∣∣Ψ(x) · ñ(x)−Tr(Ψ)(x0) ·n(x0)
∣∣∣= 0 . (1.15)

Proof. Let v∈ BV (Ω)∩L∞(Ω). As an element of BV (Ω), v has a trace Tr(v)∈ L1(∂Ω)
and the product Tr(v)n is characterized in a functional way by (1.8). On the other hand,
as an element of X∞(Ω), v has a normal trace [vn]∂Ω ∈ L∞(∂Ω), which is characterized
by (5.7). By comparing the two characterizations (1.8) and (5.7) we infer that, for every
test function ϕ ∈C1(Ω), it holds∫

∂Ω
Tr(v)ϕ ndH n−1 =

∫
∂Ω

[vn]∂Ωϕ dH n−1 ,

which implies the validity of (1.13)H n−1-a.e. on ∂Ω.
The proof of (1.14) can be found in [54, Section 5.3].
Finally, in order to prove (1.15), we claim that, if x0 ∈ ∂Ω is a Lebesgue point for

n ∈ L∞(∂Ω), there holds

lim
r,ρ→0+

−
∫
C−r,ρ (x0)

|ñ(x)−n(x0)|= 0 , (1.16)

Once proved this claim, (1.15) follows easily. Indeed, by adding and subtracting
suitable terms to the integrand in (1.15), we obtain:

−
∫
C−r,ρ (x0)

∣∣∣Ψ(x) · ñ(x)−Tr(Ψ)(x0) ·n(x0)
∣∣∣

≤−
∫
C−r,ρ (x0)

∣∣∣Ψ(x) · ñ(x)−Ψ(x) ·n(x0)
∣∣∣+−∫

C−r,ρ (x0)

∣∣∣Ψ(x) ·n(x0)−Tr(Ψ)(x0) ·n(x0)
∣∣∣

≤ ‖Ψ‖L∞(Ω;Rn)−
∫
C−r,ρ (x0)

|ñ(x)−n(x0)|+−
∫
C−r,ρ (x0)

∣∣∣Ψ(x)−Tr(Ψ)(x0)
∣∣∣

and the two integrals in the last line are infinitesimal as r,ρ tend to zero forH n−1-a.e.
x0 ∈ ∂Ω, respectively thanks to (1.16) and (1.14).

Let us go back to the proof of (1.16). Without loss of generality, we may assume that
n(x0) = (0,0, . . . ,1) and that, in a neighborhood of x0, the boundary ∂Ω is the graph of
a C1 function h : A→ R, for some open set A⊂ Rn−1. More precisely, denoting by x′
the first n−1 variables of a point x ∈ Rn, we can write

Bρ(x0)∩∂Ω= {(x′,h(x′)) : x′ ∈ Aρ(x0)}
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for some open set Aρ(x0)⊂ Rn−1, and

C−r,ρ(x0) = {(x′,h(x′)− t) : x′ ∈ Aρ(x0) , t ∈ (0,r)} .
We recall that by definition of the extension ñ, there holds

ñ(x′,h(x′)− t) = n(x′,h(x′)) ∀x′ ∈ Aρ(x0) .

Hence, by applying the area formula, we infer

−
∫
C−r,ρ (x0)

|ñ(x)−n(x0)|=−
∫
Aρ (x0)×(0,r)

|ñ(x′,h(x′)− t)−n(x0)|dx′ dt

=−
∫
Aρ (x0)×(0,r)

|n(x′,h(x′))−n(x0)|dx′ dt

≤−
∫
Aρ (x0)×(0,r)

|n(x′,h(x′))−n(x0)|
√

1+ |Dh|2(x′)dx′ dt

=
H n−1(Bρ(x0)∩∂Ω)

L n−1(Aρ(x0))
−
∫
Bρ (x0)∩∂Ω

|n(x)−n(x0)|dH n−1

≤C −
∫
Bρ (x0)∩∂Ω

|n(x)−n(x0)|dH n−1 ,

and the last integral is infinitesimal as ρ → 0+, since by assumption x0 is a Lebesgue
point for n.

�

In particular, in case Ψ ∈ X∞(Ω;Rn)∩C0(Ω;Rn), the normal trace operator applied
to Ψ agrees with the normal component of the pointwise trace:

[Ψ ·n]∂Ω(x0) =Ψ(x0) ·n(x0) ∀x0 ∈ ∂Ω .

In the sequel, we also use the notation X∞(Ω;Rn×n) and X∞(Ω) to denote respectively
the class of tensors A with rows in X∞(Ω;Rn), and the class of scalar functions ψ with
ψI ∈ X∞(Ω;Rn×n). Accordingly, we indicate by [An]∂Ω and [ψ n]∂Ω the normal traces
of A and ψI intended row by row as in (5.7).

1.4.3 Cheeger problem

Given a nonempty open bounded set E of R2, we call Cheeger constant the quantity

hE :=min
A⊂E
|∂A|
|A| , (1.17)

where the minimum is taken over all the nonempty subsets of E with finite perimeter.
A Cheeger set of E is any set A which minimizes (1.17). If E itself is a minimizer, we
say that it is Cheeger set of itself.

Problem (1.17) can be relaxed as follows: the Cheeger constant can also be recast
as

hE = inf
{∫

E
|∇v| : v ∈ BV0(E) ,

∫
E
v= 1

}
. (1.18)

35



Chapter 1. Preliminaries

In the last years, such minimization problem has captured the attention of many
authors (see for instance [3,4,24,30,31,56,59,60,87]). Here we limit ourselves to state
the results that will be used later.

Finding a Cheeger set is in general a difficult task, moreover it might be not unique
(see e.g. Figure 1.1).

E

CE

Figure 1.1: An example of non uniqueness: the shaded sets and each component are Cheeger
sets of E.

In the particular case of convex sets, there exists only one Cheeger set, that can be
characterized explicitly, hence we may speak of the Cheeger set of E and denote it by
CE .

It is well known that a Cheeger set touches the boundary, more precisely the contact
is tangential (at the regular points of ∂E). Roughly speaking, a Cheeger set occupies
almost all the set E (in order to maximize the denominator of (1.17)), avoiding the
parts of the boundary where the curvature is higher (in order to minimize the numerator
of (1.17)). For example, if E is a square CE can be obtained from E “rounding the
corners”, see Figure 1.2.

E

CE

Figure 1.2: The Cheeger set of the square.

Let us now focus our attention to the study of Cheeger sets of themselves. A disk,
an ellipse or an annulus are examples of such sets, namely that satisfy E =CE .

An important notion for characterizing the Cheeger sets of themselves is calibra-
bility. We say that E is calibrable if there exists a calibration, namely a field σ ∈
L2(E;R2) such that

−divσ = hE in E , ‖σ‖L∞(E) ≤ 1 , [σ ·nE ] =−1 H
1-a.e. on ∂E .

Here [σ ·nE ] is meant as the weak notion of the trace of the normal component of σ
on ∂E , defined according to [7, Theorem 3.5] (see also [6, Theorem 1.2] for the same
definition in case ∂E is Lipschitz).
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E = CE

E = CE

E = CE

Figure 1.3: Three examples of Cheeger sets of themselves.

The easiest example of calibrable set is the disk. Let Br denote the disk of radius r
and centered in the origin, then the vector field σ(x) = −x

r is a calibration: indeed the
vector field belongs to L2(Br;R2) and satisfies

−divσ =
2
r
=
|∂Br|
|Br| in Br ,

‖σ‖L∞(Br) ≤ 1 in Br ,

σ ·n ∂Br =−x
r
· x|x| ∂Br =−1 on ∂Br .

Proposition 1.4.2. There holds

E is calibrable =⇒ E is Cheeger set of itself . (1.19)

Proof. Let σ be a calibration associated to E. With an integration by parts we infer

hE =
1
|E|

∫
E
(−divσ)dx=− 1

|E|
∫
∂E

[σ ·nE ]dH n−1 =
|∂E|
|E| .

�

If in addition we require that E is convex the existence of a calibration turns out to
be also a necessary condition, moreover calibrability can be characterized in two other
equivalent ways.

Proposition 1.4.3. Let E be a convex set. Then the following properties are equivalent:

(i) E is calibrable ,

(ii) E is Cheeger set of itself,

(iii) the mean curvature H∂E of the boundary ∂E satisfies

‖H∂E‖L∞(∂E) ≤
|∂E|
|E| ,

iv) the function u= 11E solves

−div
(

Du
|Du|

)
= hEu in R

2 .
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Proof. See [71, Theorem 2] for the proof of the equivalence between (ii) and (iii),
and [9, Theorem 4] and [4, Proposition 2] for the other implications. �

Remark 1.4.1. We point out that in Proposition 4.2.2 we will show that, also under the
weaker assumption of E simply connected, (i) and (ii) of Proposition 1.19 are equiv-
alent. Moreover we remark that condition (iv) is in general (namely without any as-
sumption on E) stronger that property (i) of calibrability (see [9, Lemma 3]).

1.5 Korn inequalities

Korn inequality asserts the control of the L2 norm of the gradient of a vector field by
the L2 norm just of the symmetric part of this gradient, under certain conditions. The
literature about this topic is very rich: there are different proofs, generalizations to
surfaces and estimates of the best constants. The result turns out to be very useful in
many fields of Mechanics, as hydrodynamics, statistical physics (see for example [51])
and especially linearized elasticity. In this paragraph we list (and prove) Korn inequality
and some interesting variants, that will be a key tool for the study of the compliance
optimization problem.

Before stating the results, let us recall some standard inequalities. LetΩ be an open,
bounded, connected subset of Rn with Lipschitz boundary Γ. Then

- v ∈ L2(Ω) ⇒ v ∈ H−1(Ω) , ∂iv ∈ H−1(Ω) , i≤ 1≤ n .

- (Lemma of Lions) If v ∈D ′(Ω) , then

v ∈ H−1(Ω) , ∂iv ∈ H−1(Ω) , i≤ 1≤ n ⇒ v ∈ L2(Ω) .

- (Poincaré-Wirtinger inequality) For every 1 ≤ p ≤ +∞ there exists a constant
Cp > 0 such that

‖u− ū‖Lp(Ω) ≤Cp‖∇u‖Lp(Ω;Rn) , where ū :=−
∫
Ω
u .

Let us recall the definition of the symmetric gradient: given v ∈ H1(Ω;Rn), we
denote by e(v) the symmetric gradient of v, namely

e(v) :=
1
2
(
∇v+∇vT

)
.

Clearly e(v) ∈ L2(Ω;Rn×n
sym ). Let us recall the definition of L2 norm of tensors:

‖e(v)‖L2(Ω;Rn×n
sym ) =

(
n

∑
i, j=1
‖ei j(v)‖2L2(Ω)

)1/2

.

When there is no ambiguity, we will simply write ‖·‖H1 and ‖·‖2L, omitting the domain
Ω and the codomain Rn or Rn×n

sym .
We are now ready to enounce Korn theorem (cf. [37] and [50]). From now on we

fix the dimension n= 3, nevertheless the following results can also be stated in higher
dimension.
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Theorem 1.5.1. The following facts hold true:
(a) Korn inequality without boundary conditions: there exists a constant C = C(Ω)
such that

‖v‖2H1 ≤C
(‖v‖2L2 +‖e(v)‖2L2

) ∀v ∈ H1(Ω;R3) ;

(b) Korn inequality with boundary conditions: let Γ0 be a measurable subset of the
boundary Γ such that H2(Γ0)> 0 , then there exists a constant C =C(Ω,Γ0) such that

‖v‖2H1 ≤C‖e(v)‖2L2 ∀v ∈ H1(Ω;R3) vanishing on Γ0 .

Proof. The proof will follow from several steps.
(i) The space

E(Ω) := {v ∈ L2(Ω;R3) : ei j(v) ∈ L2(Ω) ∀ i, j} (1.20)

equipped with the norm
‖v‖2E := ‖v‖2L2 +‖e(v)‖2L2

is a Hilbert space.
The function ‖·‖E is a norm, since it is the sum of a norm and a seminorm. Furthermore
it is induced by a scalar product. Then, to prove the claim, it is sufficient to show that
E is complete, i.e. avery Cauchy sequence converges.
Let {vk}k ⊂ E(Ω) be a Cauchy sequence, then

∀ε > 0 ∃ k̄ : ∀h,k≥ k̄ ‖vh− vk‖E < ε .

In particular {vki }k and {ei j(vk)}k are Cauchy sequences in L2(Ω) , for all i, j . Since L2

is complete, we obtain
vki

L2→ vi , ei j(vk)
L2→ ei j ,

for k→ ∞ , for some vi ,ei j ∈ L2(Ω) .

We now show that ei j(v) = ei j , and conclude that vk E→ v . Let ϕ be a test function in
D ′(Ω) : ∫

Ω
ei j(vk)ϕ dx=−1

2

∫
Ω

(
vki ∂ jϕ+ vkj ∂iϕ

)
dx .

Finally, considering the convergence of left/right hand sides, we get∫
Ω
ei jϕ dx=−1

2

∫
Ω

(
vi ∂ jϕ+ v j ∂iϕ

)
dx ,

that is ei j = ei j(v) .

(ii) The two spaces E(Ω) and H1(Ω;R3) coincide.
The inclusion⊇ is trivial.
Let now v∈E(Ω) , then v∈ L2(Ω;R3) and ∂iv j ∈H−1(Ω) .Moreover ∂k∂iv j ∈H−1(Ω) :
in fact

∂k∂iv j =
∂
∂k

ei j(v)+
∂
∂ j

ei,k(v)− ∂
∂i

e j,k(v) ∈ H−1(Ω) ,

since ei j(v) ∈ L2(Ω) .

By Lions’ Lemma, we conclude that ∂iv j ∈ L2(Ω) , then v ∈ H1(Ω) .
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(iii) Korn inequality without boundary conditions.
We consider the inclusion map

ι :
(
H1(Ω;R3) ,‖ · ‖H1

) −→ (E(Ω) ,‖ · ‖E) .
By definition

‖v‖2E = ‖v‖2L2 +‖e(v)‖2L2 ≤ ‖v‖2L2 +
3

∑
i, j=1
‖∂iv j‖2L2 +‖∂ jvi‖2L2 ≤ 2‖v‖2H1 ,

i.e. ι is (obviously linear) continuous and injective. Thanks to the previous point, we
have also that ι is surjective. The open mapping theorem implies then that ι−1 is also
continuous, implying (a).
(iv) The seminorm | · | defined by

|v| := ‖e(v)‖L2

is a norm over the space

V(Ω) := {v ∈ H1(Ω;R3) : v= 0 on Γ0 } whenH 2(Γ0)> 0 .

Let v ∈ V(Ω) such that |v|= 0 . We have to show that v is the zero field.
In the step (ii) we have shown that ∂ j∂kvi ∈ D ′(Ω) . Imposing the condition on the
seminorm, we obtain that all these derivatives are 0 in D ′. Since Ω is a connected
domain, each vi is a polynomial of degree less or equal one:

∃ci ,bi j ∈ R : vi(x) = ci+
3

∑
i=1

bi jx j ∀ j = 1,2,3 , ∀x ∈Ω .

In other words, there exists a matrix B and a vector c such that v(x) = c+Bx .Moreover
ei j(v) = 0 implies that B is skewsymmetric, then there exists a vector b such that v(x) =
c+b∧x . Such a vector field vanishes everywhere or (aut aut) on a negligible set. Since
Γ0 is not negligible, v has to be identically zero.
(v) Korn inequality with boundary conditions.
Assume on the contrary that the claim is false. Then there exists a sequence {vk}k ∈
V(Ω) such that

‖vk‖H1 ≡ 1 ∀k , ‖e(vk)‖→ 0 as k→ ∞ .

Since {vk}k is bounded in L2(Ω;R3), there exists a subsequence (not relabeled) con-
verging strongly L2. This implies that {vk}k is a Cauchy sequence in E(Ω) and, by (iii),
also in H1(Ω;R3) .
SinceV(Ω) is complete, as a closed subspace of H1(Ω;R3) , there exists v∈V(Ω) such

that vk H1→ v and ‖e(v)‖= limk ‖e(vk)‖= 0 . By the step (iv) we conlude that v= 0, and
this is absurd. �

Remark 1.5.1. In the proof of step (ii) we have shown that each partial derivative of
∇u is a linear combination of partial derivatives of ∇symu, in other words we can say
that ∇ ∇u are linear combinations of ∇ ∇symu.
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1.5. Korn inequalities

Remark 1.5.2. The key point in general Korn inequalities, for functions belonging to
other subspaces of H1, is to show the step (iv) for the subspace considered.

Remark 1.5.3. The inequalities remain true if we consider Lp norms, 1 < p < ∞ ,
instead of L2 ones.

Let us recall the definition of the subspace R(Ω) of H1(Ω;R3) of rigid motions:

R(Ω)= {u∈H1(Q;R3) : e(u)= 0}= {r∈H1(Ω;R3) : ∃a,b∈R3 : r(x)= a+b∧x} .
(1.21)

The next Theorem is a version of Korn inequality in the quotient spaceH1(Ω;R3)/R(Ω)
(cf. [50] and [38]). For brevity of notation, just for this Section, we denote it by Ḣ1,
and by v̇ a generic element, namely a class of equivalence.

Theorem 1.5.2. There exists a constant Ċ > 0 such that

‖v̇‖Ḣ1 ≤ Ċ‖e(v̇)‖L2 ∀ v̇ ∈ Ḣ1(Ω;R3) .

Proof. The Ḣ1 norm is defined as usual as

‖v̇‖Ḣ1 := inf
r∈R
‖v+ r‖H1 .

Thanks to the previous theorem, we have

‖v̇‖Ḣ1 ≤C
(
‖e(v)‖L2 + inf

r∈R
‖v+ r‖L2

)
.

Therefore it’s enough to show that

inf
r∈R
‖v+ r‖L2 ≤C‖e(v)‖L2 ,

for some constantC.
In the following we will denote by C a generic constant, that might be different from
line to line.
Let P be the operator of orthogonal projection (orthogonal with respect to the L2 scalar
product) from L2(Ω;R3) to R(Ω), then

inf
r∈R
‖v+ r‖2L2 = ‖v−Pv‖2L2 .

Replacing v by v
‖v−Pv‖2

L2
, we only have to show that

‖e(v)‖L2 ≥C ∀v : ‖v−Pv‖L2 = 1 .

Assume on the contrary that the claim is false. Then we can find a sequence {vk}k such
that

‖e(vk)‖L2→ ∞ , ‖vk−Pvk‖ ≡ 1 .

If we consider wk := vk−Pvk we easily find the absurd. �

41



Chapter 1. Preliminaries

Corollary 1.5.1. There exists C > 0 such that for any v ∈ H1(Ω;R3)∫
Ω
|v−Pv|2dx≤C

∫
Ω
|e(v)|2dx ,

where P is the orthogonal projection operator from L2(Ω;R3) to R(Ω).

Let us now pass to some non-standard variants of the Korn inequality.
The first one is a skew-symmetric version (cf. [86], [51] and [94]).
We recall that, given u ∈ H1(Ω;R3), we denote with ∇au the skew symmetric part

of the gradient, i.e.
∇au=

1
2
(
∇u−∇uT

)
= ∇u− e(u) .

Proposition 1.5.1. For any domain Ω of R3 there exists a constant K = K(Ω) such
that, for all u ∈ H1(Ω;R3) ,∥∥∥∥∇au−

(
−
∫
Ω
∇au

)∥∥∥∥
L2
≤ K ‖e(u)‖L2 ,

or equivalently ∥∥∥∥curlu−(−∫Ω curlu
)∥∥∥∥

L2
≤ K ‖e(u)‖L2 ,

where curlu denotes the vector field associated to the skew symmetric part of the gra-
dient ∇au:

∇au ·a= 2curlu∧a ∀a ∈ R
3 .

It turns out that the constant is

K(Ω) = sup
{
‖∇au‖L2 : u ∈ H1(Ω;R3) , −

∫
Ω
∇au= 0 , ‖e(u)‖L2 = 1

}
. (1.22)

Proof. Let A be a tensor field in L2(Ω;R3×3), u be a vector field in L2(Ω;R3), φ ∈
H1(Ω) and ψ ∈ L2(Ω) .
There hold the following estimates (see [94]):

(i) ‖∇u‖H−1 ≤ ‖u‖L2;

(ii) ‖curlA‖H−1 ≤ ‖A‖L2;

(iii) ‖φ −−∫Ωφ‖H1 ≤C1‖∇φ‖L2;

(iv) ‖ψ−−∫Ωψ‖L2 ≤C1 ‖∇ψ‖H−1 ;
where curlA is defined as the unique tensor field such that (curlA) ·a= curl(AT ·a) for
all a ∈ R

3. Consider w := curlu, then ∇(curlu) is a linear combination of the elements
of e(u) and curle(u) = ∇w. Using the properties above we conclude that∥∥∥∥w−−∫Ωw

∥∥∥∥
L2
≤C‖∇w‖H−1 ≤C‖curle(u)‖H−1 ≤C‖e(u)‖L2 .

The proof of the representation formula (1.22) can be found in [86]. �
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1.5. Korn inequalities

Corollary 1.5.2. If −∫Ω curlu= 0 then

‖∇u‖L2 ≤C‖e(u‖L2 .

If in addition −∫Ω u= 0, then
‖u‖H1 ≤C‖e(u)‖L2 .

Proof. The proof follows by Theorem 1.5.1 and Poincaré-Wirtinger inequality. �

Proposition 1.5.2. Let D be a bounded planar domain D⊂R2 with Lipschitz boundary,
and let ψ ∈ H1

0 (D) such that
∫
Dψ dx′ �= 0. There exists positive constants C = C(D)

such that, for every v ∈ H1
m(D;R2), it holds

‖v‖L2(D;R2) ≤C
(
‖e(v)‖L2(D;R2×2

sym ) +
∣∣∣∫

D
(∇ψ ∧ v)dx′

∣∣∣) (1.23)

‖
∫
D
(∇ψ ∧ v)dx′ − curlv‖L2(D) ≤C‖e(v)‖L2(D;R2×2

sym ) . (1.24)

Proof. To prove (4.25), we argue by contradiction: assume there exists a sequence
vn ∈ H1

m(D;R2), with∫
D
|vn|2dx′ = 1 ∀n , lim

n

∫
D
|e(vn)|2dx′ = 0 , lim

n

∫
D
(∇ψ ∧ vn)dx′ = 0 .

By the first two conditions above and the Korn inequality on D, possibly passing to a
subsequence, we deduce that vn converges strongly in L2(D;R2). Its limit v is a rigid
motion with zero integral mean, hence it is of the form v= λ (−x2,x1) for some constant
λ ∈ R. Then

0= lim
n

∫
D
(∇ψ ∧ vn)dx′ = λ

∫
D
x′ ·∇ψ dx′ =−2λ

∫
D
ψ dx′ ,

where the last equality follows integrating by parts and recalling that ψ ∈H1
0 (D). Thus,

since
∫
Dψ dx′ �= 0, it must be λ = 0. This implies v = 0, that is vn → 0 strongly in

L2(D;R2), against the assumption ‖vn‖L2(D;R2) = 1 for every n.

In order to show (1.24), up to replacing v by

v+
∫
D(∇ψ ∧ v)dx′
2
∫
Dψ dx′

(−x2,x1) ,

it is not restrictive to assume that
∫
D(∇ψ ∧ v)dx′ = 0. Again by contradiction, let

vn ∈ H1
m(D;R2) be a sequence such that∫

D
|curlvn|2dx′ = 1 ∀n , lim

n

∫
D
|e(vn)|2dx′ = 0 ,

∫
D
(∇ψ ∧ vn)dx′ = 0 ∀n .

By (4.25) and Korn inequality, we infer that vn converges strongly to 0 in H1
m(D;R2),

which implies in particular that curlvn converges strongly to 0 in L2(D), against the
assumption ‖curlvn‖L2(D) = 1 for every n. �
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Finally let us state the last variant of Korn inequality, introduced byMonneau, Murat
and Sili in [77].

Proposition 1.5.3. Let Ω be a cylinder of the form D× I, with D an open bounded
planar domain with Lipshcitz boundary, and I a closed interval. Then, for any z ∈
H1(Q;R3), it holds∥∥z3−|D|−1 ([[z3]]− xα [[zα ]]′

)∥∥
H−1(I;L2(D))≤C

(
‖eαβ (z)‖L2(Q;R2×2

sym ) +‖eα3(z)‖L2(Q;R2)

)
.

1.6 Linear Elasticity

In this Section we summarize some facts in linear elasticity, which lie beyond the for-
mulation of the main problem.

In §1.6.1 and §1.6.2 we derive the origin of the compliance problem presented in
(1), recalling the theory of linear elasticity for isotropic homogeneous elastic bodies.
For these two sections we refer to the books [36, 65].

Then, in §1.6.3 we introduce thin elastic structures, the rods, that are object of
the thesis. Finally, in §1.6.4, we gather the properties of the density j , introduced in
(2), and present other densities that will play a crucial role in the dimension reduction
process.

1.6.1 Linear elasticity

A continuum deformable body can take many different shapes or configurations de-
pending on the loading applied to it. We choose one of these configurations to be
the reference configuration of the body and label it Ω . The reference configuration
provides a convenient fixed state of the body to which other configurations can be com-
pared, in order to evaluate their deformation. We identify a particle with its position in
Ω. The deformed configuration occupied by the body is described in terms of a defor-
mation mapping function ϕ , that maps the reference position of every particle x ∈Ω to
its position y in the deformed configuration:

y= ϕ(x) .

The displacement of a particle from its initial position x to its final position y is
given by

u(x) = ϕ(x)− x .

In order to satisfy the condition that particles are not destroyed or created, the de-
formation ϕ must be a one-to-one mapping. Moreover we require that the mapping
preserves the local orientation, thus det∇ϕ > 0 .

The deformation gradient ∇ϕ provides a measure for the deformation of the neigh-
borhood of the particle. In view of polar decomposition, the deformation gradient ad-
mits a unique decomposition ∇ϕ = RU = VR , where R is a rotation, while U and V
are symmetric positive-definite tensors, that represent the shape-change and are called,
respectively, the right and left stretch tensor.
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1.6. Linear Elasticity

Another measure of strain is provided by the Cauchy-Green strain tensor C :=
(∇ϕ)T (∇ϕ) . It is easy to verify that C , being the square of U , is a symmetric, posi-
tive definite tensor. For ν1 and ν2 unit vectors, the scalar product (Cν1) · ν1 gives the
square of the stretch λ in the direction of ν1 in x, that is the per cent elongation of a line
element that, prior deformation, was in the ν1 direction at x , while the scalar product
(Cν2) ·ν1 is related to the shear between the directions ν1 and ν2 at x , i.e. it measures
the change in angle between two line elements directed, prior the deformation, as ν1
and ν2 respectively.

A further measure of strain is provided by the infinitesimal strain tensor e(u), which
is the symmetric part of ∇u

e(u) :=
1
2
(∇u+∇uT ) .

The tensor e(u) is related to the deformation gradient ∇ϕ and to the Cauchy-Green
tensorC via the following equalities:

e(u) =
1
2
(∇ϕ+∇ϕT )− I =

1
2
(C− I)− 1

2
(∇uT∇u) .

Notice that for small deformations

e(u) =
1
2
(C− I)+O(|∇u|2) ,

so we can conclude that for small |∇u| , e(u) differs fromC by a constant factor and an
offset.

The forces acting on a continuum can be divided into two kinds:
• body forces, which are forces acting at a distance, such as gravity and electro-

magnetic fields; they are given in terms of a density field f of body force per unit
volume;

• surface forces, which result from the interaction of the body with its closest sur-
roundings; they are defined in terms of a surface density field of force per unit
area g , called the traction field.

The external load on the body in the configuration ϕ(Ω) is the couple ( f ,g) , where
f is the body force defined on ϕ(Ω) and g is the external traction field defined on
∂ (ϕ(Ω)) .

If we consider a part P of the body and a point y ∈ ∂P ∩ Int(ϕ(Ω)) the surface
force t depends on y and on the surface ∂P . The theory of classical continuum me-
chanics is based on the assumption, known as Cauchy Postulate, that the traction field
depends pointwise on the outward unit normal n to the surface in y. Cauchy’s Theorem
states that the dependence of the traction vector t on n is linear, that is there exists a
second order tensor T such that

t(y,n) = T (y)n .

The balance laws for linear and angular momentum, written for an arbitrary open
subset of ϕ(Ω) , lead to the following local equilibrium equations{

divT (y)+ f (y) = 0
TT (y) = T (y)

∀y ∈ ϕ(Ω) .
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The set of balance equations must be accompanied by the constitutive relation on T that
describes the response of the material to the deformation. A continuum body is said to
be elastic if the Cauchy stress is a function

T (y) = T̂ (∇ϕ,x) . (1.25)

The function T̂ is called response function. A body is called homogeneous if the re-
sponse function does not depend on x explicitly.

Constitutive relations cannot be arbitrarily chosen, in particular they must fulfill the
Principle of frame indifference: a tensor must be the same physical object with respect
to all frames of reference. This requirement for the response function T̂ is equivalent to

T̂ (RB) = RT̂ (B)RT .

for all R in SO(3) and for all B with detB> 0 .
An elastic body is said to be isotropic if for all R in SO(3)

T̂ (BR) = T̂ (B) ∀B with detB> 0 ,

which means that if the body is rotated and then undergoes a deformation, no experi-
ment can reveal the prerotation.

It can be easily verified that frame indifference for an isotropic elastic body requires
that the response function T̂ must be isotropic, that is

T̂ (RBRT ) = RT̂ (B)RT

for all R in SO(3) and for all B with detB> 0 .
The linearization of the constitutive equation T = T̂ (∇ϕ) for small displacements

from the reference configuration leads to

T̂ (∇ϕ) = T̂ (I+∇u) = T̂ (I)+DT̂(I)[∇u]+o(∇u) . (1.26)

The linear transformation
C := DT̂ (I) (1.27)

maps the space of second order tensors onto the space of symmetric tensors Sym, and
the fourth order tensor C is called elasticity tensor.

Neglecting infinitesimal terms of higher order, by combining (1.25), (1.26) and
(1.27), the constitutive relation can be written as

T = T0+C[∇u] ,

where T0 = T̂ (I) represents the residual stress, i.e. the stress in the reference configu-
ration. We suppose that the residual stress is zero.

If we decompose ∇u into the sum of its symmetric part e(u) and its skew part ∇au ,
for the linearity of C , there holds

T = C[∇u] = C[e(u)]+C[∇au] .

It can be proved that C is a linear function from Sym to Sym, hence C[∇u] depends
only on e(u) , namely

T = C[e(u)] ,
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thus C is a linear function from Sym to Sym. It follows that the cartesian components
of the elasticity tensor have the following index symmetries

Cijkl = Cjikl = Cijlk ,

which are known as minor symmetries.
For an isotropic linear elastic body it is easy to show that the elasticity tensor C is

an isotropic fourth order tensor.
Then C admits the following representation,

C[S] = α0(S)I+α1(S)S+α2(S)S2 ,

for all S ∈ Sym, where αi are functions of the principal invariants of S .
Since S 
→ C[S] is a linear function, the coefficient α2 is zero, α1 is constant and

α0 = c0trS+ c1 , for some constants ci .
Thus, for all second order tensors S ∈ Sym,

C[S] = λ trS+2μ S .

The linearized Elastostatics equations are⎧⎪⎨⎪⎩
−divC[e(u)] = f in Ω ,

C[e(u)]n= g in ΓN ,

u= u0 in ΓD ,

(1.28)

where ΓD and ΓN are subset of ∂Ω such that ΓD∩ΓN = /0 and ΓD∪ΓN = ∂Ω , u0 ang
g are the prescribed fields on the boundary.

IfH 2(ΓD) = 0 the problem is called pure traction problem, ifH 2(ΓN) = 0 pure
displacement problem.

1.6.2 The Compliance

Let us consider an homogeneous isotropic elastic isotropic occupying the volume Ω⊂
R3 , subject to the external forces of volume and surface with densities f and g respec-
tively. Assuming to be in the framework of small displacements, we are let to study the
system (1.28). The problem can be solved in a weak sense as follows (see [36]).

Let us introduce the space of admissible displacements

V(Ω) := {u ∈ H1(Ω;R3) : u= u0 on ΓD} .
Clearly, in the case of pure traction,V(Ω) is simplyH1(Ω;R3) . Recalling thatC[∇u] =
λ tr(e(u))I+2μe(u) , a displacement u ∈ V(Ω) is a solution to (1.28) if and only if∫
Ω
(λ tr(e(u)) tr(e(v))+2μe(u) : e(v))dx=

∫
Ω
f ·vdx+

∫
ΓN

g·vdH n−1 ∀v∈V (Ω) .

(1.29)
In Propositions 1.6.1 and 1.6.2 we show that the weak solutions coincide with the

minimizers of the energy functional

J(u) :=
1
2
A(u,u)−L(u) ,
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where
A(u,v) :=

∫
Ω
λ tr(e(u)) tr(e(v))+2μ e(u) : e(u)dx (1.30)

is the “quadratic” part, and

L(u) :=
∫
Ω
f ·udx+

∫
ΓN

g ·udσ (1.31)

is the linear part.
Indeed the Euler-Lagrange equation of J turns out to be exactly (1.29) and, con-

versely, since J is convex, the critical points of J are minimizers.
In what follows we assume for simplicity that u0 = 0 .

Proposition 1.6.1. (displacement-traction case)
If H 2(ΓD)> 0 the functional J admits a unique minimizer, and the linearized system
(1.28) has a unique solution in H1(Ω;Rn) satisfying the boundary conditions.

Proof. Since λ ,μ > 0 we obtain

A(u,u) =
∫
Ω
λ (tr(e(u))2)dx+2μ ‖e(u)‖2L2(Ω;R3×3) ≥ 2μ ‖e(u)‖2L2(Ω;R3×3) .

Thanks to Korn inequality with boundary condition (see Theorem 1.5.1), we have that
J is coercive. Moreover it is (strictly) convex and continuous, hence l.s.c. with re-
spect to the weak topology of H1(Ω;Rn). Considering a minimizing sequence, being J
proper, we may take a converging subsequence, and the limit point u turns out to be a
minimizer. This minimizer is of course a critical point, then it satisfies Euler-Lagrange
equation. Conversely, by convexity, every critical point of J must be a minimizer.
Finally let us prove uniqueness: assume that there exist u1 ,u2 minimizers for J , then
the following implications hold true:

J(u1) = J(u2) ⇒ A(u1−u2,v) = A(u1,v)−A(u2,v) = 0 ∀v ∈V
⇒ A(u1−u2,u1−u2) = 0 ⇒ 0≥ ‖u1−u2‖2H1 ,

that is u1 = u2 . �

We underline that the proof could also be done using Lax-Milgram theorem, since
A(·, ·) is a bilinear, strictly coercive and continuous form.

In order to obtain the same result in the pure traction case, we have to impose an
additional assumption on the loads: we have to require that they are balanced, namely∫

Ω
f ·udx+

∫
∂Ω

g ·udσ = 0 whenever u ∈ R(Ω) ,

where R(Ω) denotes the space of rigid motions (see definition (1.21))

R(Ω) := {u∈H1(Ω;R3) : e(u)= 0}= {u∈H1(Ω;R3) : ∃a,b∈R3 st u= a+b∧x} .
Proposition 1.6.2. (pure traction case)
Assume ΓD = /0 and that f ,g are balanced. Then (1.28) admits a unique solution in the
quotient space H1(Ω;Rn)/R(Ω) .
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Proof. Thanks to the hypothesis of balanced forces, for every u ∈ H1(Ω;Rn) and r ∈
R(Ω) there holds

J(u) = J(u+ r) .

Then
inf
H1

J = inf
H1/R

J .

Theorem 1.5.2 states that ‖e(·)‖L2 is an equivalent norm in H1(Ω;Rn)/R(Ω) . Follow-
ing the same steps done for Proposition 1.6.1, we can conclude the proof. �

We remark that also the viceversa holds true: if the load is not balanced, it is easy to
find a sequence of displacements un such that, for every n , e(un) = 0 and J(un)→+∞
as n→+∞ .

Let us reformulate the minimization problem J , in the case of pure traction, in a
more readable way. Enclosing the volume and surface contributions of the external
loads in a unique term F ∈ H−1(R3;R3) (balanced load), the linear part (1.31) reads

L(u) = 〈F,u〉
R
3 .

Moreover, if we introduce the strain potential j : R3×3
sym → R

j(z) :=
λ
2
(tr(z))2+η|z|2 , (1.32)

the quadratic term A(u,u) reads

A(u,u) =
∫
Ω
j(e(u))dx .

Hence we are led to study the minimization problem

inf
{
−〈F,u〉

R
3 +

∫
Ω
j(e(u))dx : u ∈ H1(R3;R3)

}
,

or, equivalently, its opposite, namely

C (Ω) := sup
{
〈F,u〉

R
3−

∫
Ω
j(e(u))dx : u ∈ H1(R3;R3)

}
. (1.33)

The latter functional (2.1), corresponding to the opposite of the energy, is called the
compliance of Ω .

In Chapters 2 and 3 we will deal with a problem involving the compliance under a
volume constraint: the study will be confined in a fixed region Q of the space, called
design region. If we consider Ω varying among the subsets of Q, we can consider as
external loads the vector fields F ∈ H−1(Q;R3) such that

〈F,u〉
R
3 = 0 whenever e(u) = 0 .

Under a suitable scaling, the design region represents the three dimensional approxi-
mation of a thin rod, as we illustrate in the next paragraph.
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Q

FΩ

Figure 1.4: A design region Q subject to an external load F and an elastic material occupying
a subset Ω⊂ Q .

1.6.3 Thin elastic structures: rods

In this paragraph we introduce the class of thin elastic structures, focusing our attention
on rods.
The classical study of compliance optimization in thin structures has been developed
by Euler, Bernoulli, Navier, Saint Venant, Timoshenko, Vlassov. Due to new numerical
techniques, these problems have had in the last years renewed interest, and new design
methods are now a wide field of applied mathematics. For a complete overview about
this topic, we refer to the reference book by Trabucho and Viaño [95] and the references
therein.

By “thin” we mean that one or two spatial dimensions of the body are much smaller
with respect to the others. This particular solids are very important in engineering
problems: their small weight and ease of manufactoring and transport make them very
convenient to be used in practical applications. When the continuum body can be ap-
proximated by a two dimensional surface, the structure is a plate or a shell, if instead
it can be approximated by a one dimensional set, it is a rod. In this second group, we
include a great variety of structural elements commonly used in applications, such as
usual rods, beams, bars, cables, axes, arches, pipelines, rails, antennae, and so on.

δ

δ

Figure 1.5: Two examples of thin elastic structures: a plate and a rod, with infinitesimal thick-
ness and cross section.

The mathematical way of describing a rod is the following: it is a three-dimensional
solid occupying the volume generated by a planar connected domain, called the cross
section, with centroid varying perpendicularly to a spatial curve, the axis; moreover the
diameter of the cross section is much smaller than the length of the axis. The particular
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case we deal with is a straight rod, in which the axis is a straight line segment I and the
cross section is a planar bounded domain D, constant along the axis: we represent such
a structure by a cylinder of the form

Qδ := δD× I ,

with D⊂R
2 an open bounded domain, I a closed bounded interval and δ > 0 a vanish-

ing parameter describing the small ratio between the diameter of the cross section and
the length.

D

I

Figure 1.6: A straight cylinder of the form Q=D× I .

1.6.4 Strain potentials

We conclude the Section by gathering the properties of the strain potential j introduced
in (1.32), and of other densities, which play a crucial role in the dimension reduction
process.

Let us recall the definition: the strain potential j : R3×3
sym → R , assumed to be

isotropic, has the form

j(z) :=
λ
2
(tr(z))2+η|z|2 , (1.34)

where λ and μ are the Lamé coefficients, assumed to satisfy λ ,η > 0 , so that j is
strictly convex, coercive and homogeneous of degree 2.

Let us introduce two other density energies, which come out in the asymptotics of
the compliance problems in thin rods, in the dimension reduction process:

- the reduced potential j : R3→ R

j(y) := inf
A∈R2×2

sym

j

⎛⎜⎝ y1
A y2

y1 y2 y3

⎞⎟⎠ ; (1.35)

- the modified stored energy density j0 : R3×3
sym → R

j0 := sup{z ·ξ − j∗(ξ ) : ξ ∈ R
3×3
sym , det(ξ ) = 0} . (1.36)

We denote by j0 the 2d reduced counterpart of j0 , defined as in (1.35) with j replaced
by j0 .
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In Lemma 1.6.1 and Lemma 1.6.2 we collect the properties of j and j0 respectively.

For every ξ ∈ R3 , let us denote by E0ξ the symmetric matrix

E0ξ :=
1
2

3

∑
i=1

ξi(ei⊗ e3+ e3⊗ ei) . (1.37)

Lemma 1.6.1. The reduced potential j is coercive, homogeneous of degree 2 and j =
j∗∗ . Moreover it satisfies the following properties

(i) j(y) = 2η ∑α |yα |2+(Y/2)|y3|2 , with Y := η 3λ+2η
λ+η ;

(ii) j∗(ξ ) = 1
8η |ξ ′|2+ 1

2Y ξ
2
3 ;

(iii) j∗(E0ξ ) = j∗(ξ ) .

Proof. Let us prove (i). If we represent an arbitrary A ∈ R2×2 as

A=

(
a b
b c

)
, a,b,c ∈ R ,

then j(y) reads

inf
{

λ
2
(a+ c+ y3)2+η(a2+2b2+ c2+2y2α + y23) : a,b,c ∈ R

}
.

With an easy computation we infer that the infimum is attained for

a= c=− λ
2(λ +η)

y3 , b= 0 ,

and j(y) agrees with the expression in (i).
In view of this formulation, it is clear that j is coercive, continuous, homogeneous of
degree 2 and convex, in particular j = j∗∗ .

Let us prove (ii). By definition of Fenchel transform, exploiting the representation
(i), we infer

j∗(ξ ) = sup
y∈R3
{y ·ξ − j(y)}

= sup
y′∈R2

{
y′ ·ξ ′ −2η|y′|2}+ sup

y3∈R

{
y3ξ3− Y

2
y23

}
= 4η sup

y′∈R2

{
y′ · ξ

′

4η
− |y

′|2
2

}
+Y sup

y3∈R

{
y3

ξ3
Y
− y23

2

}
=

1
8η
|ξ ′|2+ 1

2Y
ξ 2
3 ,

where in the last equality we have used the fact
(| · |2/2)∗= | · |2/2 (see Example 1.1.1).
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Let us prove (iii). Let us represent the generic symmetric matrix B as

B=

⎛⎜⎝ b1
B′ b2

b1 b2 b3

⎞⎟⎠ ,

with B′ ∈ R2×2
sym and let us denote by b the vector with components bi . Exploiting the

definition of Fenchel transform, we infer
j∗(E0ξ ) = sup

{
B : E0ξ − j(B) : B ∈ R

3×3
sym

}
= sup

{
b ·ξ − (λ/2)(tr(B′)+b3)2−η(|B′|2+2b2α +b3) : B′ ∈ R

2×2
sym ,b ∈ R

3} .

It is clear that the latter supremum is attained for diagonal matrices B′, hence, denoting
by d1 and d2 the generic elements of a diagonal matrix, we obtain
j∗(E0ξ ) =sup

{
bαξα −2ηb2α : bα ∈ R

}
+ sup

{
b3ξ3− (λ/2)(d1+d2+b3)2−η(d2

1 +d2
2 +b23) : B′ ∈ R

2×2
sym ,b ∈ R

3} .

With an easy computation we infer that the supremum is attained for

bα =
ξα
4η

, d1 = d2 =− λ
2(λ +η)

b3 , b3 =
ξ3
Y

,

and j∗(E0ξ ) equals j∗(ξ ) in view of (ii). �

Lemma 1.6.2. The function j0 satisfies j0 ≤ j , is coercive and homogeneous of degree
2 . Moreover, the following algebraic identity holds

j0(y) = j(y) ∀y ∈ R
3 . (1.38)

Proof. Definition (1.36) implies immediately the inequality j0 ≤ j and also the 2-
homogeneity of j0 , since j , and hence j∗ , are 2-homogeneous.

We now prove the coercivity of j0 : for a fixed z∈R3×3
sym , we consider ξ :=αλ1(z)(ez⊗

ez) , where λ1(z) is the largest (in modulus) eigenvalue of z , ez is a corresponding eigen-
vector of norm 1 and α is an arbitrary constant. Since the tensor ξ is degenerate, by
definition of j0 it holds

j0(z)≥ sup
α
{αλ1(z)z · (ez⊗ ez)− j∗(αλ1(z)ez⊗ ez)} .

Thanks to the 2-homogeneity of j∗ , we obtain

j0(z)≥ |λ1(z)|2 sup
α
{α−α2 sup

‖e‖=1
j∗(e⊗ e)}= |λ1(z)|2

4c
≥ ‖z‖

2

12c
,

where the constant c := sup‖e‖=1{ j∗(e⊗ e)} is clearly strictly positive and finite.
We finally prove (1.38). Applying the identity (iii) in Lemma 1.6.1 to j and to j0

we infer, for every y ∈ R3:
j0(y) = sup

{
y ·ξ − j∗0(E0ξ ) : ξ ∈ R

3} , j(y) = sup
{
y ·ξ − j∗(E0ξ ) : ξ ∈ R

3} ,

where E0ξ is defined in (1.37). Then (1.38) follows since j∗0(E0ξ ) = j∗(E0ξ ) for all
ξ ∈ R3 . Actually, j∗0 and j∗ agree on the class of degenerated tensors, see [13, Lemma
3.1]. �
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CHAPTER2
Optimal design in thin rods: the small cross

section limit

Given a design region Q ⊂ R3 subject to an external force F ∈ H−1(Q;R3), the resis-
tance to the load of an isotropic elastic material that occupies a certain volume Ω⊂ Q,
can be measured by computing a shape functional, the compliance (see §1.6.2 for more
details):

C (Ω) := sup
{
〈F,u〉R3−

∫
Ω
j(e(u))dx : u ∈ H1(Q;R3)

}
. (2.1)

Here, as usual in linear elasticity, e(u) denotes the symmetric part of the gradient ∇u,
and the strain potential j : R3×3

sym → R , assumed to be isotropic, is strictly convex and
has the form

j(z) :=
λ
2
tr2(z)+η|z|2 , (2.2)

λ ,μ > 0 being the Lamé coefficients of the material.
Clearly, in order that C (Ω) remains finite, the load must have support contained into
Ω, moreover it has to be balanced, i.e.

〈F,u〉R3 = 0 , whenever e(u) = 0 . (2.3)

Under this condition, an optimal displacement u exists and satisfies C (Ω) = 1
2〈F,u〉R3.

The compliance is proportional to the work done by the load F in order to bring the
structure to equilibrium. In particular the smaller is the compliance, the higher is the
resistance. Therefore finding the most robust configurations of a prescribed amount of
material requires minimizing the shape functional C (Ω) under a volume constraint:

inf{C (Ω) : Ω⊂ Q , |Ω|= m} . (2.4)
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It is well known that this variational problem is in general ill-posed due to the homoge-
nization phenomena which prevent the existence of an optimal domain (see [2]), so that
relaxed solutions must be sought under the form of densities with values in [0,1] .

In this Chapter we study the problem of finding the most robust configurations of
elastic material, i.e. minimizing the compliance, when the design region tends to a thin
set, keeping the ratio between the volume of material and the volume of the design
region fixed.

Here we consider as thin structure the rods (see §1.6.3), that we represent as cylin-
ders of the form

Qδ := δD× I , (2.5)

with D ⊂ R2 an open bounded domain, I a closed bounded interval and δ > 0 a van-
ishing parameter describing the small ratio between the diameter of the cross section
and the length. The problem we treat, and consequently the approach we adopt to
solve it, draws its inspiration from a recent work by G. Bouchitté, I. Fragalà and P.
Seppecher [19], in which the authors studied the compliance optimization problem set
in thin plates, described by a family of cylinders of the form

Qδ := D×δ I ,

having infinitesimal thickness δ .
If we consider as design region the thin cylinder Qδ in (2.5) and enclose the volume
constraint in the cost through a Lagrange multiplier k ∈ R, the variational problems
(2.4) under study take the form

φδ (k) := inf
Ω⊂Qδ

{
C

δ (Ω)+ k
|Ω|
|Qδ |

}
, (2.6)

with
C

δ (Ω) := sup
{
〈Fδ , ũ〉

R
3−

∫
Ω
j(e(ũ))dx : ũ ∈ H1(Qδ ,R

3)

}
, (2.7)

where Fδ is a suitable scaling of the load F , chosen so that in the limit process the
infimum remains finite. The choice of the scaling Fδ depends on the assumptions
made on the type of applied loads.

In this Chapter we study the asymptotic behavior of the sequence φδ (k) defined in
(2.6) as δ → 0+, namely the compliance optimization problem in a rod-like set, under
volume constraint. In Chapter 3 we will perform a second passage to the limit, as
k→ +∞: as already said in the Introduction, this corresponds to consider small filling
ratios.

We point out that the dimension reduction process, from 3 to 1 dimension, is per-
formed without any topological assumption on the set Ω occupied by the material.
Therefore, it is not covered by the very extensive literature on 3d− 1d analysis (we
limit ourselves to mentioning [73, 78, 80, 86, 95] and references therein).

The Chapter is organized as follows.
In Section 2.1 we set up all the preliminaries, concerning in particular twist displace-
ment fields, Bernoulli-Navier fields and the admissible loads under consideration.
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In Section 2.2 we state the main result (Theorem 2.2.1): we determine the limit φ(k)
as δ → 0+ of the sequence φδ (k) under the form of a convex, well-posed problem for
material densities θ ∈ L∞(Q; [0,1]) .
In Section 2.3 we prove Theorem 2.2.1: the asymptotical study of φδ (k) is based on
the comparison with the “fictitious counterpart”, namely their relaxed formulation in
all L∞(Q; [0,1]). Indeed, as already observed, the the infimum problems (7) are in
general ill-posed, so that we need to enlarge the class of admissible materials, passing
from “real” materials, represented by characteristic functions, to “composite”materials,
represented by densities with values in [0,1]. The proof is based upon some delicate
compactness properties derived from variants of the Korn inequality (see the Section
1.5), Γ-convergence techniques (see Section 1.3) and a crucial bound for the relaxed
functional of the compliance, established in [19, Proposition 2.8].
In Section 2.4 we give alternative formulations of φ(k) and a system of optimality
conditions. Finally we face the question about the existence of a classical solution
(i.e. a density with values in {0,1}) for φ(k): this corresponds to ask whether the
compliance problem under volume constraint, in a rod-like set, admits as solution a
real material rather that a composite. A deeper analysis of the problem is postponed to
Chapter 4.
In the Appendix are gathered the proofs of two auxiliary lemmas.

2.1 Preliminaries

We recall that the design region under study is a right cylinder of the form Q := D×
I, where I = [−1/2,1/2] and D is an open, bounded, connected subset of R2 with
Lipschitz boundary. Without loss of generality we may assume |D|= 1, so that |Q|= 1.
Finally, we chose the coordinate axes so that

∫
D xα dx′ = 0.

Let us now introduce the classes of displacement fields and fix the admissible loads.

2.1.1 Displacement fields

As usual, by rigid motion we mean the space

R(Q) :=
{
r ∈ H1(Q;R3) : e(r) = 0

}
namely vector fields of the form r(x) = a+b∧ x, with a, b ∈ R

3.
We define the space of Bernoulli-Navier fields

BN(Q) :=
{
u ∈ H1(Q;R3) : ei j(u) = 0 ∀(i, j) �= (3,3)

}
and the space

TW (Q) :=
{
v= (vα ,v3)∈H1(Q;R2)×L2(I;H1

m(D)) : eαβ (v)= 0 ∀α,β ∈ {1,2}
}
.

It is easy to check that, up to subtracting a rigid motion, any u ∈ BN(Q) admits the
following representation:

u(x) = (ζ1(x3),ζ2(x3),ζ3(x3)− xαζ ′α(x3)) for some (ζα ,ζ3) ∈ (H2
m(I))

2×H1
m(I) .
(2.8)
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Similarly, up to subtracting a Bernoulli-Navier field, any v ∈ TW (Q) can be written as
a twist field, namely a displacement of the form

v(x) = (−x2c(x3),x1c(x3),w(x)) for some c ∈ H1
m(I) , w ∈ L2(I;H1

m(D)) . (2.9)

We remark that, up to rigid motions, any v ∈ TW (Q) can be written as v= u+ v, with
u as in (2.8) and v as in (2.9), and the decomposition is unique.

We notice that the third component w of a field belonging to TW (Q) is not neces-
sarily in H1(Q); nevertheless, using the representation (2.9), we see that

(e13(v),e23(v)) =
1
2
(
c′(x3)(−x2,x1)+∇x′w

) ∈ L2(Q;R2) . (2.10)

Finally, exploiting Korn inequality and Poincaré-Wirtinger inequality, it is easy to
show that the quotients BN(Q)/R(Q) and TW (Q)/BN(Q), endowed with the norms
‖e33(·)‖L2(Ω) and (‖e1,3(·)‖2L2(Q) +‖e2,3(·)‖2L2(Q))

1/2 respectively, are Banach spaces.

2.1.2 Admissible loads

In the literature it is customary to distinguish between the stretching, bending and the
torsion loads. Let us recall the definitions and fix some notations.

Let F ∈ H−1(Q;R3) be an external load. In the asymptotic procedure, it turns out
that the load F enters in the limit problem with its resultant and momentum averaged
on the sections. In particular, the normal component of the load to the section gives the
average axial load [[F3]] , while the component lying on the section gives the average
shear force [[F1]]e1+[[F2]]e2 (for the definitions of the averages [[·]] we refer to §Nota-
tions). Similarly, the normal and planar components of the average of the momentum
[[x∧F]] give the torsion

mF := [[x1F2− x2F1]] ∈ H−1(I;R) (2.11)

and the average bending moment

m(b)
F := ([[x2F3− x3F2]]; [[−x1F3+ x3F1]]) ∈ H−1(I;R2) , (2.12)

respectively.
We now fix the type of exterior loads F we consider.
With any Σ ∈ L2(Q;R3×3

sym ), that we extend to zero over R3 \Q, we associate the
distribution divΣ. As an element of H−1(Q;R3), it is characterized by

〈divΣ,u〉
R
3 =−

∫
Q
Σ ·∇u=−

∫
Q
Σ · e(u) ∀u ∈ H1(Q;R3) . (2.13)

Definition 2.1.1. We say that F ∈ H−1(Q;R3) is an admissible load if it satisfies the
following conditions:

(h1) there exists Σ ∈ L2(Q;R3×3
sym ) such that F = divΣ in D ′(R3;R3) ;

(h2) either F3 = ∂1Σ13+∂2Σ23 or
{

F3 = ∂3Σ33

[[Fα ]] = 0
;
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(h3) the set {x∈Q : dist(x,spt(F))< δ} has vanishing Lebesgue measure as δ → 0 .

Remark 2.1.1. Assumption (h1) is equivalent to require that the load is balanced,
namely it satisfies

〈F,u〉
R
3 = 0 whenever e(u) = 0 .

Indeed, as already observed in (2.3), this condition is necessary in order that the com-
pliance remains finite.

Assumption (h3) is needed to ensure that the load can be supported by a small
amount of material. From a technical point of view, (h3) enables us to apply Proposition
2.8 in [19]. This condition on the topological support of F is satisfied for instance when
spt(F) is a 2-rectifiable set, and in particular in the standard case when F is applied at
the boundary of Q.

In order to better understand the condition (h2), let us compute the resultant of the
forces on the sections, the torque and the bending momentum for a load F that admits
the divergence representation (h1).
Let Σ ∈ L2(Q;R3×3

sym ) be associated to F . Hence, according to the definitions (2.11) and
(2.12), we obtain that the components of the average resultant read

[[Fi]] = [[∂1Σi1+∂2Σi2]]+ [[∂3Σi3]] = [[∂3Σi3]] , (2.14)

the normal component of the average momentum [[x∧F]] equals
mF = [[x1F2− x2F1]]

= [[x1∂1Σ21+∂2Σ22− x2(∂1Σ11+∂2Σ12)]]+ [[x1∂3Σ23− x2∂3Σ13]]

= [[x1∂1Σ21− x2∂2Σ12]]+ [[x1∂2Σ22]]− [[x2∂1Σ11]]+ [[x1∂3Σ23− x2∂3Σ13]]

= [[x1∂3Σ23− x2∂3Σ13]] , (2.15)

and the planar component of [[x∧F]] is given by

mb
F = ([[x2F3− x3F2]]; [[−x1F3+ x3F1]])

= (−x3[[F2]];x3[[F1]])+([[x2F3]]; [[−x1F3]])
= (−x3[[F2]];x3[[F1]])+([[x2(∂1Σ31+∂2Σ32)]]; [[−x1(∂1Σ31+∂2Σ32)]])+

+([[x2∂3Σ33]];−[[x1∂3Σ33]]) ,
(2.16)

where we have used the symmetry of the tensor Σ and the fact that, for every distribution
T ∈D ′(Q), the average [[T ]], being an element of D ′(I), satisfies

〈[[∂αT ]],ϕ(x3)〉R =−〈T,∂αϕ(x3)〉R3 = 0 ∀ϕ ∈D(I) .
In view of (2.14)-(2.16), we see that all the quantities above do not depend on Σαβ ;
moreover we notice that imposing (h2) we require that either the bending moment does
not depend on Σ33, or it depends only on Σ33.

We decompose an admissible load F as the sum F = G+H of two loads belonging
to H−1(Q;R3) defined as follows:

G := divΣG with (ΣG)i j =

{
Σi j if (i, j) �= (3,3)
0 if (i, j) = (3,3)

(2.17)
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H := divΣH with (ΣH)i j =

{
0 if (i, j) �= (3,3)
Σ33 if (i, j) = (3,3)

, (2.18)

where Σ ∈ L2(Q;R3×3
sym ) is associated to F as in (h1).

In view of condition (h2), the admissible loads satisfy

either

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F = G
H = 0
mF = mG

m(b)
F = m(b)

G

or

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Fα = Gα , [[Gα ]] = 0
F3 = H3

mF = mG

m(b)
F = m(b)

H

In Section 2.2 we will consider two different scalings for the two componentsG and
H. We point out that the first case, corresponding to H = 0, has been presented in the
paper [17].

The properties of the action of an admissible load over the displacements are sum-
marized in the next proposition.

Proposition 2.1.1. Let F be a load satisfying (h1), and let F = G+H with G and H
defined in (2.17) and (2.18) respectively. Then the following facts hold:

(i) the loads F,G and H are balanced, namely they do not act on rigid motions;

(ii) G does not act on Bernoulli-Navier displacements, whereas it acts on TW (Q)
being an element of H−1(Q;R2)× L2(I;H−1(D)). More precisely, for any v ∈
TW (Q), there holds

〈G,v〉
R
3 = 〈mG,c〉R+ 〈G3,w〉R3 , (2.19)

where c and w are associated to v according to (2.9)

(iii) the action of H on any Bernoulli-Navier displacement u is

〈H,u〉
R
3 =−〈Hα ,ζ ′α〉R+ 〈H3,ζ3〉R , (2.20)

where ζi are associated to u according to (2.8), and Hi ∈ H−1(I) are defined by

Hα := [[xαH3]] , H3 := [[H3]] . (2.21)

Proof. (i) By definition (h1), (2.17) and (2.18), F , G and H are defined as the diver-
gence of suitable L2 tensors in the sense of distributions. In view of (2.13) it is then
clear that they vanish on rigid motions.

(ii) Let ΣG ∈ L2(Q;R3×3
sym ) be associated to G according to (2.17). By (2.13), since

(ΣG)33 = 0, we infer that G vanishes on Bernoulli-Navier displacements. On the other
hand, the action of G on TW (Q) is well-defined through the equality

〈G,v〉
R
3 =−2〈Σα3,eα3(v)〉R3 (2.22)

for every v ∈ TW (Q).
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The right hand side of (2.22) makes sense as a scalar product in L2(Q;R2) thanks
to (2.10). In particular, by taking v = (0,0,v3), one can see that G3 ∈ L2(I;H−1(D)).
Finally, writing v using the representation (2.9), equality (2.22) can be rewritten under
the form (2.19).

(iii) Let u be a Bernoulli-Navier displacement. Since by (i) H vanishes on rigid
motions, and by definition Hα = 0, there holds

〈H,u〉
R
3 = 〈H3,ζ3− xαζ ′α〉R3 ,

where ζi are associated to u according to (2.8). By construction, the functions ζi depend
only on x3, then we infer

〈H,u〉
R
3 =−〈[[xαH3]],ζ ′α〉R+ 〈[[H3]],ζ3〉R ,

that gives (2.20), thanks to definition (2.21) of Hi. �

Remark 2.1.2. Notice that, from the definition (2.11) of mG and the assumption (2.17)
on G, it follows that 〈mG,1〉R = 0. Indeed,

〈mG,1〉R = 〈[[x1G2−x2G1]],1〉R= 〈x1G2−x2G1,1〉R3 = 〈∂1Σ21,x1〉R3−〈∂2Σ12,x2〉R3 = 0 ,

where the last equality holds since Σ is symmetric.
Similarly, since H3 = ∂3Σ33, there holds 〈H3,1〉R = 0.

2.1.3 Examples of admissible loads

Let us introduce some examples of admissible loads: in the first ones we present some
interesting choices for G, and in the last one a family of possible H.

In Chapter 3 we will analyze the behavior of optimal configurations when the design
region is subject to these particular loads.

Example 2.1.1. (Component G horizontal and concentrated on the “top and bottom
faces” D×{±1/2})
For ρ ∈ BV (I) and ψ ∈ H1

0 (D), consider the horizontal load

(G1,G2) = ρ ′(x3)(−∂2ψ(x′),∂1ψ(x′)) , G3 = 0 . (2.23)

Assumption (2.17) is readily satisfied by taking

Σαβ = Σ33 = 0 and (Σ13,Σ23) = ρ(x3)(−∂2ψ(x′),∂1ψ(x′)) .

Hence G is an admissible load provided (h3) holds, which happens as soon as ρ is
piecewise constant. In particular, the choice ρ(x3) = 11I(x3) corresponds to applying
a horizontal surface force on the top and bottom faces of the cylinder Q. Moreover, in
this case, the average momentum of (G1,G2) is given by

mG =

(∫
D
x′ ·∇x′ψ(x′)dx′

)
(δ−1/2−δ1/2)(x3) .

By varying the choice of ψ , for every c ∈ R we can construct a load G such that{
mG = c(δ−1/2−δ1/2)(x3) ,
G3 = 0 .

(2.24)
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Let us give an explicit example (see Figure 2.1): if D is a circular disk of radius R
and we take ψ(x′) = R2−|x′|2

2 , we obtain the classical boundary load in torsion problem,
that is

(G1,G2) = (δ1/2−δ−1/2)(x3)(−x2,x1) ,
having average momentum

mG =
πR4

2
(δ1/2−δ−1/2)(x3) .

Figure 2.1: Torsion load concentrated on the top and bottom faces of Q, with Q having circular
section.

Example 2.1.2. (Component G horizontal and concentrated on the “lateral surface”
∂D× I)
Denote by τ∂D the unit tangent vector at ∂D. For any η ∈ L2

m(I), the following hori-
zontal load supported on ∂D× I is admissible:

(G1,G2) = η(x3)(−∂211D(x′),∂111D(x′)) = η(x3)τ∂D(x′)H 1 ∂D , G3 = 0 . (2.25)

In order to check assumption (2.17), we choose ψ ∈ H1
0 (D) such that

∫
Dψ = |D|, and

we decompose G as G′+G′′, being

(G′1,G
′
2) := η(x3)(−∂2ψ(x′),∂1ψ(x′)) , G′3 = 0 ,

and G′′ := G−G′. Since the class of loads satisfying (2.17) is a linear space, it is
enough to show that both G′ and G′′ belong to it.

Since η ∈ L2
m(I) it admits a unique primitive ρ ∈ H1(I) such that η = ρ ′ (see No-

tation). Hence G′ can be written in the form (2.23) and, according to Example 2.1.1, is
admissible.

Concerning G′′, we may rewrite it as

(G′′1,G
′′
2) = η(x3)(g1(x′),g2(x′)) , G′′3 = 0 ,

where (g1,g2) := (−∂2(11D−ψ),∂1(11D−ψ)). Since by construction (g1,g2) is a
balanced load in H−1(D;R2), there exists a solution σ ∈ L2(D;R2×2

sym ) to the equation
divσ = (g1,g2). Then condition (2.17) is satisfied by taking

Σαβ = η(x3)σαβ (x′) and Σα3 = 0 .
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We notice that in this example the average momentum is absolutely continuous with
respect to the Lebesgue measure, more precisely

mG =−2|D|η(x3) . (2.26)

An example is given in Figure 2.2.

Figure 2.2: An example of torsion load concentrated on the lateral surface of Q, defined ac-
cording to Example 2.1.2, with η(x3) := 11[0,1/2](x3)−11[−1/2,0](x3).

Example 2.1.3. (Component G concentrated on the whole boundary of Q)
Let h ∈ L2

m(∂D) , and let ψ ∈ H1(D) be the solution of the two-dimensional Neumann
problem {

Δφ = 0 in D ,

∂νφ = h on ∂D .

The following load, which is supported on the whole boundary of Q and in particular
is purely vertical on its lateral surface, is admissible:

(G1,G2) = (δ−1/2−δ1/2)(x3)∇x′φ(x′) , G3 =−hH 1 ∂D . (2.27)

Indeed, the condition (2.17) is satisfied by taking

Σαβ = 0 and Σα3 = 11Q(x)∂αφ(x′) .

In this case the average momentum of (G1,G2) is given by

mG =

(∫
D
∇x′φ · (−x2,x1)dx′

)
(δ−1/2−δ1/2)(x3) . (2.28)

An example is represented in Figure 2.3.

Example 2.1.4. (Component H concentrated on the top and bottom faces D×{±1/2})
Let f ∈ L2(R2;R2). Then the following load is admissible:

Hα = 0 , H3 = f (x′)(δ−1/2−δ1/2)(x3) . (2.29)

Indeed, condition (2.18) is satisfied by considering

Σi j = 0 if (i, j) �= (3,3) and Σ33 = f (x′)11Q .

The admissible load is vertical and concentrates on the top and bottom faces of the
cylinder Q.
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Chapter 2. Optimal design in thin rods: the small cross section limit

Figure 2.3: An example of load concentrated on the whole boundary of Q, defined according
to Example 2.1.3, with D = [0,1]2, h = 1 on {1}× [0,1] and [0,1]×{1}, while h = −1 on
{0}× [0,1] and [0,1]×{0}.

In particular, if we take

f (x′) =
aα∫
D x2α

xα +
b
|D| , (2.30)

with aα and b arbitrary real constants, we obtain a load F such that{
Hα = [[xαH3]] = aα (δ−1/2−δ1/2)(x3) ,
H3 = [[F3]] = b(δ−1/2−δ1/2)(x3) .

(2.31)

In Figure 2.4 we show an example of the trivial case in which aα = 0.

Figure 2.4: An example of vertical load concentrated on the top and bottom faces of Q, defined
according to Example 2.1.4, with aα = 0.

Other admissible loads can be obtained by combining G and H introduced above,
provided that the resulting load G+H satisfies assumption (h2).

2.2 The main result

In this Section we present the asymptotical analysis of the family of variational prob-
lems φδ (k) introduced in (2.6), as δ → 0+ and the parameter k is kept fix. The proofs
are postponed to the next Section.

In order to perform the asymptotics as δ → 0+, it is convenient to reformulate the
variational problems (2.6) on the fixed domain Q instead of the thin cylinder Qδ =
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δD× I. This operation corresponds to chose a suitable change of variables for the
displacements and a suitable scaling for the loads.

Given an admissible load F and its decomposition F = G+H defined according to
(2.17) and (2.18), we consider the following scaling Fδ := Gδ +Hδ : for every x ∈ Qδ
we set

Gδ (x) := (δ−1G1,δ−1G2,δ−2G3)(δ−1x′,x3) , (2.32)
Hδ (x) := (0,0,δ−1H3)(δ−1x′,x3) . (2.33)

In what follows we deal with both the components G and H, implicitly meaning
that one of the conditions of (h2) holds true. We remark that all the following results
are valid also without such assumption.

Further, let us introduce the operator eδ : H1(Q;R3)→ L2(Q;R3×3
sym ) defined by

eδαβ (u) := δ−2eαβ (u) , eδα3(u) := δ−1eα3(u) , eδ33(u) := e33(u) , (2.34)

as it is usual in the literature on 3d−1d dimension reduction.

Lemma 2.2.1. Let Gδ and Hδ be defined as in (2.32)-(2.33), then problem φδ (k) de-
fined in (2.6) reads

φδ (k) = inf
{
C

δ (ω)+ k|ω| : ω ⊂ Q
}

, (2.35)

where

C
δ (ω) := sup

{ 1
δ
〈G,u〉

R
3 + 〈H,u〉

R
3−

∫
ω
j(eδ (u))dx : u ∈ H1(Q;R3)

}
. (2.36)

Proof. In order to rewrite the variational problem C δ over the subsets of the fixed
domain Q, we need to establish a suitable change of variables for the displacements:
given ũ ∈ H1(Qδ ;R3), we can rewrite it as

ũ(x) = (δ−2u1,δ−2u2,δ−1u3)(δ−1x′,x3) in Qδ (2.37)

for some u ∈ H1(Q;R3).
The change of variables induces a 1-1 correspondence between the subsets of Qδ

and the subsets of Q: every Ω⊂ Qδ is associated to a unique ω ⊂ Q such that

Ω= {(δx′,x3) : x′ ∈ ω} , (2.38)

e.g. see Figure 2.5.
Exploiting the scalings (2.32) and (2.33) and recalling that j is 2-homogeneous, it

is easy to prove that for every ũ ∈ H1(Qδ ;R3) there holds

〈Hδ , ũ〉
R
3−

∫
Ω
j(e(ũ))dx=

1
δ
〈G,u〉

R
3 + 〈H,u〉

R
3−

∫
ω
j(eδ (u))dx , (2.39)

where u associated to ũ according to (2.37).
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Hence we can rewrite the functional C δ (Ω) as a shape functional posed on a subset
of the fixed domain Q:

C
δ (Ω) = sup

{ 1
δ
〈G,u〉

R
3 + 〈H,u〉

R
3−

∫
ω
j(eδ (u))dx : u ∈ H1(Q;R3)

}
, (2.40)

withω ⊂Q satisfying (2.38). Sinceω is uniquely determined, we denote the expression
above as C δ (ω). Therefore we conclude that problem φδ (k) defined in (2.6) reads

φδ (k) = inf
{
C

δ (ω)+ k|ω| : ω ⊂ Q
}

,

since |Ω|/|Qδ |= |ω|/|Q| and Q is assumed to have volume 1. �

�

Figure 2.5: For every Ω⊂Qδ there exists a unique ω ⊂Q such that Ω= {(δx′,x3) : x′ ∈ ω}.

In order to write the limit problem as δ → 0+, we need to introduce the reduced
potential j :R3→ R, presented in (1.35). Let us recall the definition:

j(y) := inf
A∈R2×2

j

⎛⎜⎝ y1
A y2

y1 y2 y3

⎞⎟⎠ . (2.41)

In view of Lemma 1.6.1, there holds

j(y) = 2η∑
α
|yα |2+(Y/2)|z3|2 ,

where Y = η 3λ+2η
λ+η is the Young modulus.

The behavior of the optimal design problem (2.35) in the dimension reduction pro-
cess, i.e. in the limit δ → 0+, is described by the following Theorem.

Theorem 2.2.1. For every k ∈R, as δ → 0+ the sequence φδ (k) in (2.35) converges to
the following limit:

φ(k) := inf
{
C

lim(θ)+ k
∫
Q
θ dx : θ ∈ L∞(Q; [0,1])

}
, (2.42)

where

C
lim(θ) := sup

{
〈G,v〉

R
3+〈H,u〉

R
3−

∫
Q
j(e13(v),e23(v),e33(u))θ dx : v∈ TW, u∈BN

}
.

(2.43)

66



2.3. The proof of the main result

Moreover, if ωδ is a sequence of minima for φδ (k) then, up to subsequences, 11ωδ
∗
⇀ θ

and θ is optimal for φ(k), i.e. φ(k) = C lim(θ)+ k
∫
θ dx .

The next Section is entirely devoted to the proof of Theorem 2.2.1. It is based on
the idea of considering the “fictitious counterpart” of problem (2.35), namely

φ̃ δ (k) := inf
{
C̃

δ
(θ)+ k

∫
Q
θ dx : θ ∈ L∞(Q; [0,1])

}
, (2.44)

where C̃
δ
(θ) denotes the natural extension of the compliance C δ (ω) to L∞(Q; [0,1]):

C̃
δ
(θ) := sup

{ 1
δ
〈G,u〉

R
3 + 〈H,u〉

R
3−

∫
Q
j(eδ (u))θ dx : u ∈ H1(Q;R3)

}
. (2.45)

Indeed, it is well known that the variational problem (2.36), and hence (2.35), is
in general ill-posed, due to homogenization phenomena that prevent the existence of
minimizers, so that we need to enlarge the class of admissible materials, passing from
“real” materials, represented by characteristic functions, to “composite” materials, rep-
resented by densities with values in [0,1].

2.3 The proof of the main result

This Section is devoted to the proof of Theorem 2.2.1. For sake of clearness, we divide
the proof in three parts. In Part I we establish some delicate compactness properties
which are preliminary to Part II, where we show that the sequence φ̃ δ (k) converges to
the limit problem φ(k) given by (2.42). We conclude by showing in Part III that the
sequences φδ (k) and φ̃ δ (k) have the same asymptotics.

2.3.1 Part I: compactness

We begin with a key lemma that enlightens the role of conditions (h1), (2.17) and (2.18),
that we required for the admissibility of the load F = G+H.

Lemma 2.3.1. Let θ ∈ L∞(Q; [0,1]) such that infQθ > 0, and let F = G+H be an
admissible load. Assume that uδ ∈C∞(Q;R3) is a sequence satisfying

inf
δ

{ 1
δ
〈G,uδ 〉

R
3 + 〈H,uδ 〉

R
3−

∫
Q
j(eδ (uδ ))θ dx

}
>−∞ , (2.46)

then eδ (uδ ) is bounded in L2(Q;R3×3
sym ) .

Proof. Since F =G+H is an admissible load,G andH satisfy (2.17) and (2.18). Then,
letting Σ ∈ L2(Q;R3×3

sym ) be associated to F as in (h1), the following estimates hold true:

1
δ
〈G,uδ 〉

R
3 =−δ 〈Σαβ ,eδαβ (u

δ )〉
R
3−2〈Σα3,eδα3(u

δ )〉
R
3 ≤C1‖eδ (uδ )‖L2(Q;R3×3

sym ) ,

〈H,uδ 〉
R
3 =−〈Σ33,e33(uδ )〉R3 =−〈Σ33,eδ33(u

δ )〉
R
3 ≤C2‖eδ (uδ )‖L2(Q;R3×3

sym ) ,

for some positive constantsC1 and C2.
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On the other hand, since j is coercive and by assumption infQ θ > 0 we infer∫
Q
j(eδ (uδ ))θ dx≥C3‖eδ (uδ )‖2L2(Q;R3×3

sym )
,

for some positive constantC3. Finally, exploiting the hypothesis that the infimum (2.46)
is a finite constantC4, and combining the estimates found, we conclude that

C3‖eδ (uδ )‖2L2(Q;R3×3
sym
≤
∫
Q
j(eδ (uδ ))θ dx≤ 1

δ
〈G,uδ 〉

R
3 + 〈H,uδ 〉

R
3−C4 ≤

≤ (C1+C2)‖eδ (uδ )‖L2(Q;R3×3
sym )−C4 .

Hence ‖eδ (uδ )‖L2(Q;R3×3
sym ) is uniformly bounded. �

In view of Lemma 2.3.1, we are led to establish compactness properties for se-
quences uδ such that the L2-norm of eδ (uδ ) is uniformly bounded.

Before stating these compactness properties, which are summarized in the next
proposition, we need to introduce a shape potential ψD associated to the section D,
defined as the unique solution of

−ΔψD = 2 , ψD ∈ H1
0 (D).

Some properties of this function, well known in classical torsion theory, are recalled in
Lemma 2.3.3.

Lemma 2.3.2. Let uδ ∈C∞(Q;R3) be a sequence such that∫
Q
uδ dx=

∫
Q
ψD curluδ dx= 0 ∀δ . (2.47)

If eδ (uδ ) is bounded in L2(Q;R3×3
sym ), then, up to subsequences,

(i) there exists u ∈ BN(Q) such that lim
δ→0

uδ = u weakly in L2(Q;R3) , moreover u is
of the form (2.8);

(ii) setting

vδα := δ−1(uδ −u)α −δ−1|D|−1[[uδ −u]]α
vδ3 := δ−1(uδ −u)3−δ−1|D|−1

(
[[uδ −u]]3− xα [[uδ −u]]′α

)
,

there exist c ∈ H1
m(I) and w ∈ L2(I;H1

m(D)) such that

lim
δ→0

(vδ1 ,v
δ
2 ) = c(x3)(−x2,x1) weakly in L2(Q;R2)

lim
δ→0

vδ3 = w weakly in H−1(I;L2(D)) ;

(iii) the weak limits χi := lim
δ→0

eδi3(u
δ ) in L2(Q) are given by

(χ1,χ2) =
1
2 (c

′(x3)(−x2,x1)+∇x′w)
χ3 = e33(u) .
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For the proof of Proposition 2.3.2 we need some preliminary lemmas.

Lemma 2.3.3. The potential ψD is positive in D. Moreover, setting

γ :=
∫
D
|∇ψD|2dx′ = 2

∫
D
ψD dx

′ , (2.48)

there hold

inf
{∫

D
|∇ψ|2dx′ : ψ ∈ C ∞

0 (D) ,
∫
D
ψ dx′ = 1

}
= 4γ−1 (2.49)

and
inf

{∫
D
|(−x2,x1)+∇w|2dx′ : w ∈ H1(D)

}
= γ . (2.50)

Proof. See Appendix.

Lemma 2.3.4. Let uδ be a sequence inC ∞(Q;R3) with eδ (uδ ) bounded in L2(Q;R3×3
sym )

and such that, for every δ , it holds:∫
Q
ψD curlx′(uδ1 ,u

δ
2 )dx= 0 . (2.51)

Then the sequence
cδ (x3) :=

1
2δ

∫
D

(
∇ψD ∧ (uδ1 ,uδ2 )

)
dx′ , (2.52)

turns out to be bounded in H1(I).

Proof. See Appendix.

We can now give the

Proof of Proposition 2.3.2
For convenience, the proof is divided into several steps.

Step 1. The sequence
∫
Q curluδ dx is bounded in R3.

A version of the Korn inequality (see (28) in [86]) states that the skew symmetric
part ∇au of the gradient satisfies∫

Q

∣∣∣∇au−
( 1
|Q|

∫
∇au

)∣∣∣2 dx≤C
∫
Q
|e(u)|2dx ∀u ∈ H1(Q;R3) . (2.53)

We apply such inequality to

ũδ := uδ − 1
2
bδ ∧ x , with bδ :=

1
|Q|

∫
Q
curluδ dx .

By definition
∫
Q curl ũδ dx = 0 and e(ũδ ) = e(uδ ), moreover by assumption e(uδ ) is

bounded in L2(Q;R3×3
sym ), then by (2.53) we deduce that

‖curl ũδ‖L2(Q:R3) ≤C . (2.54)
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We now exploit the hypothesis (2.47): since curluδ = curl ũδ +bδ , for every δ we have∫
Q
ψD curl ũ

δ dx+bδ
∫
D
ψD dx′ = 0 ,

that is, recalling the definition (2.48) of γ ,

γ
2
bδ =−

∫
Q
ψD curl ũ

δ dx .

Thanks to (2.54) the right hand side is bounded , then we conclude that bδ is bounded
in R3.

Step 2. The sequence uδ is bounded in H1(Q;R3) and any weak limit belongs to
BN(Q).

Applying the Korn inequality (2.53) to the sequence uδ and taking into account that∫
Q curluδ dx is bounded as shown in Step 1, we deduce that the L2-norm of∇uδ remains
bounded. Since we also know that

∫
Q uδ dx = 0, the Poincaré-Wirtinger inequality

ensures that the sequence uδ is bounded, and hence weakly precompact, in H1(Q;R3).
Again by the L2-boundedness of eδ (uδ ), any weak L2-limit u of uδ satisfies ei j(u) = 0
for all (i, j) �= (3,3), and hence it belongs to BN(Q). Moreover, we observe that the
two integral conditions (2.47) hold also for the limit u , then one can easily deduce that
the Bernoulli-Navier field u is of the form (2.8).

Finally, taking the weak L2-limit of the sequence e33(uδ ), one obtains immediately
that χ3 it agrees with e33(u).

Step 3. The sequence vδα is bounded in L2(Q;R2).
Let us apply Lemma 1.5.2 to the sequence vδα(·,x3) for fixed x3 (notice that vδα(·,x3)

is indeed inH1
m(D;R2)). By taking into account that eαβ (u)= 0 and

∫
D(∇ψD∧(u1,u2))dx′=

0 (since u is of the form (2.8)), we deduce∫
D
|(vδ1 ,vδ2 )|2dx′ ≤C

[ 1
δ 2

∫
D
|eαβ (uδ )|2dx′+

∣∣∣ 1δ
∫
D

(
∇ψD∧(uδ1 ,uδ2 )

)
dx′

∣∣∣2] for a.e. x3 ∈ I .

Then, integrating with respect to x3 over I, we get∫
Q
|(vδ1 ,vδ2 )|2dx≤C

[
δ 2

∫
Q
|eδαβ (u

δ )|2dx+
∫
I
|2cδ (x3)|2dx3

]
,

where the sequence cδ is associated to the sequence uδ according to formula (2.52).
Since the sequence uδ satisfies eδ (uδ ) bounded in L2(Q;R3×3

sym ) and condition (2.51),
Lemma 2.3.4 allows to conclude that vδα is bounded in L2(Q;R2).

Step 4. Any weak limit of (vδ1 ,v
δ
2 ) is of the form c(x3)(−x2,x1), for some c ∈ L2

m(I).
Since eδ (uδ ) is bounded in L2(Q;R3×3

sym ), there exists a positive constantC such that
‖eαβ (vδ )‖L2(Q;R2×2

sym ) ≤Cδ . Therefore any weak limit v = (v1,v2) satisfies eαβ (v) = 0,
and hence it is of the form (v1,v2) = c(x3)(−x2,x1)+ (d1(x3),d2(x3)) for some c and
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dα in L2(I). Since by their definition vδα satisfy [[vδα ]] = 0, we have also [[vα ]] = 0, so
that dα = 0. It remains to prove that c has zero integral mean. Set

ωδ :=
1
2δ

(
∂1uδ2 −∂2uδ1

)
=

1
2
(
∂1vδ2 −∂2vδ1

)
.

We observe that, since by assumption
∫
QψD curluδ dx= 0, the functions ωδ satisfy∫

Q
ψD ωδ dx= 0 ∀δ . (2.55)

Since limδ→0ωδ = c(x3) in D ′(Q), and since by definition the sequence ωδ remains
bounded in L2(I;H−1(D)), we have also limδ→0ωδ = c weakly in L2(I;H−1(D)). In
particular, taking as a test functionψD , passing to the limit as δ→ 0 in (2.55), we obtain∫
I c(x3)dx3 = 0.

Step 5. The distributional derivative of c is given by c′(x3) = ∂1χ2−∂2χ1.
Since (vδ1 ,v

δ
2 ) converges to (v1,v2) weakly in L2(Q;R2), it holds

lim
δ→0

∂3ωδ = ∂3
[1
2
(
∂1v2−∂2v1

)]
= c′(x3) in D ′(Q) .

On the other hand, since

∂3ωδ =
1
δ
[
∂1e23(uδ )−∂2e13(uδ )

]− 1
2δ

(
∂1∂2uδ3 −∂2∂1uδ3

)
= ∂1eδ23(u

δ )−∂2eδ13(u
δ ) ,

it also holds
lim
δ→0

∂3ωδ = ∂1χ2−∂2χ1 in D ′(Q) .

It follows that ∂1χ2−∂2χ1 = c′(x3) in D ′(Q).

Step 6. The function c belongs to H1
m(I).

Let us fix ϕ ∈ C ∞
0 (I), and ψ ∈ C ∞

0 (D) with
∫
Dψ dx′ = 1. We have

〈∂1χ2−∂2χ1,ϕ(x3)ψ(x′)〉
R
3 =

∫
Q
(χ1∂2ψ−χ2∂1ψ)ϕ dx≤ 1

2

(∫
Q
|χ |2 dx+

∫
D
|∇ψ|2dx′

∫
I
ϕ2 dx3

)
.

(2.56)
By Step 5, we know that

〈∂1χ2−∂2χ1,ϕ(x3)ψ(x′)〉
R
3 =

∫
I
c′(x3)ϕ(x3)dx3 , (2.57)

Combining (2.56) and (2.57), we obtain∫
I
c′(x3)ϕ(x3)dx3− 1

2

∫
D
|∇ψ|2dx′

∫
I
ϕ2 dx3 ≤ 1

2

∫
Q
|χ |2 dx .

By the Fenchel inequality, this implies∫
I
|c′(x3)|2dx3 ≤

(∫
D
|∇ψ|2(x′)dx′

)(∫
Q
|χ |2 dx

)
.
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Passing to the infimum over all the functions ψ in C ∞
0 (D) with

∫
Dψ dx′ = 1, and ap-

plying (2.49) in Lemma 2.3.3, we obtain∫
I
|c′(x3)|2dx3 ≤ 4γ−1

∫
Q
|χ |2dx ,

where γ is the positive constant defined in (2.48).

Step 7. The sequence vδ3 converges weakly in H−1(I;L2(D)) to some limit w.
A partial Korn’s inequality proved in [77] states that, for any z∈H1(Q;R3), it holds∥∥z3−|D|−1 ([[z3]]− xα [[zα ]]′

)∥∥
H−1(I;L2(D))≤C

(
‖eαβ (z)‖L2(Q;R2×2

sym ) +‖eα3(z)‖L2(Q;R2)

)
.

Applying this inequality to the sequence zδ := δ−1(uδ−u), since by assumption eδ (uδ )
is bounded in L2(Q;R3×3

sym ) and u∈BN(Q), we deduce that vδ3 is bounded inH−1(I;L2(D)).
Therefore there exists w such that lim

δ→0
vδ3 = w weakly in H−1(I;L2(D)). Notice that,

since D(Q)⊂ H1
0 (I;L2(D)), the convergence holds also in D ′(Q).

Step 8. It holds (χ1,χ2)=
1
2
(
c′(x3)(−x2,x1)+∇x′w

)
in L2(Q;R2) and w∈ L2(I;H1

m(D)).
Since

uδα = uα +δvδα + |D|−1[[uδ −u]]α
uδ3 = u3+δvδ3 + |D|−1

(
[[uδ −u]]3− xα [[uδ −u]]′α

)
,

we have eδα3(u
δ )= eα3(vδ ). We know by assumption that limδ→0 eδα3(u

δ )= χα weakly
in L2(Q), and by Steps 4 and 7 that limδ→0(e13(vδ ),e23(vδ )) = 1

2
(
c′(x3)(−x2,x1)+

∇x′w
)
in D ′(Q;R2). We infer that the equality (χ1,χ2) =

1
2
(
c′(x3)(−x2,x1)+∇x′w

)
holds in D ′(Q;R2). This implies that ∇x′w ∈ L2(Q;R2) (because χα ∈ L2(Q) and by
Step 6 c′ ∈ L2(I)), and that the same equality remains true in L2(Q;R2).

Finally we notice that by construction [[vδ3 ]] = 0 for each δ , so that also [[w]] = 0.
Therefore, applying Poincaré-Wirtinger inequality section by section we infer that w ∈
L2(I;H1

m(D)). �

2.3.2 Part II: asymptotics of fictitious problems

Theorem 2.3.1. As δ → 0+, the sequence C̃ δ defined in (2.45) Γ-converges, with re-
spect to the weak * topology of L∞(Q; [0,1]), to the limit compliance C lim defined in
(2.43). In particular, for every fixed k ∈ R, the sequence φ̃ δ (k) defined in (2.44) tends
to the limit problem φ(k) given by (2.42), as δ → 0+.

Proof. By definition of Γ-convergence, the statement means that the so-called Γ-liminf
and Γ-limsup inequalities hold:

inf
{
liminfC̃

δ
(θδ ) : θδ ∗⇀θ

}
≥ C lim(θ) (2.58)

inf
{
limsupC̃

δ
(θδ ) : θδ ∗⇀θ

}
≤ C lim(θ) . (2.59)
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Proof of (2.58). Consider an arbitrary sequence θδ ∗⇀θ . Let (vk,uk)∈ TW (Q)×BN(Q)
be a sequence such that

C
lim(θ) = lim

k

{
〈G,vk〉R3 + 〈H,uk〉R3−

∫
Q
j(e13(vk),e23(vk),e33(uk))θ dx

}
.

If we find a sequence uδk ∈ H1(Q;R3) such that, for every fixed k and as δ → 0+,

1
δ
〈G,uδk 〉R3 −→ 〈G,vk〉R3 , 〈H,uδk 〉R3 −→ 〈H,uk〉R3 , (2.60)

j(eδ (uδk ))
L1−→ j(e13(vk),e23(vk),e33(uk)) , (2.61)

we have finished: indeed in this case there holds∫
Q
j(eδ (uδk ))θ

δ dx−→
∫
Q
j(e13(vk),e23(vk),e33(uk))θ dx as δ → 0+

since it is the product of a sequence that converges strongly in L1 and a sequence that
converges weakly * in L∞, hence we conclude that

Clim(θ) = lim
k

lim
δ

{
1
δ
〈G,uδk 〉R3 + 〈H,uδk 〉R3−

∫
Q
j(eδ (uδk ))θ

δ dx
}
≤ liminf

δ
C̃

δ
(θδ ) .

We now build a suitable sequence uδk , in terms of uk and vk. Set

uδk := uk+δvk+δ 2wk ,

with

wk(x) :=

⎧⎪⎪⎨⎪⎪⎩
C [x1ζ ′k,3(x3)+

x22−x21
2 ζ ′′k,1(x3)− x1x2ζ ′′k,2(x3) ]

C [x2ζ ′k,3(x3)+
x21−x22

2 ζ ′′k,2(x3)− x1x2ζ ′′k,1(x3) ]
0

,

whereC :=− λ
2(λ+η) and ζk,i are associated to uk according to (2.8).

For a fixed k, it is easy to prove that (2.60) holds true. We now pass to the property
(2.61): since vk ∈ TW (Q), uk ∈ BN(Q) we obtain that

eδ (uδk ) =
(

eαβ (wk) eα3(vk)+δeα3(wk)

eα3(vk)+δeα3(wk) e33(uk)+δe33(vk)+δ 2e33(wk)

)
,

moreover a direct computation gives

eαβ (wk) =

(
Ce33(uk) 0

0 Ce33(uk)

)
.

Keeping k fixed and passing to the limit as δ → 0, we obtain

eδ (uδk )→
⎛⎝Ce33(uk) 0 e13(vk)

0 Ce33(uk) e23(vk)
e13(vk) e23(vk) e33(uk)

⎞⎠ a.e. in Q ,
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and then, by dominated convergence,

j(eδ (uδk ))
L1−→ j

⎛⎝Ce33(uk) 0 e13(vk)
0 Ce33(uk) e23(vk)

e13(vk) e23(vk) e33(uk)

⎞⎠ . (2.62)

Writing explicitly the limit in (2.62) we conclude the proof of (2.61): by definition of
j, the limit equals

j

⎛⎝ 0 0 e13(vk)
0 0 e23(vk)

e13(vk) e23(vk) 0

⎞⎠+ j

⎛⎝Ce33(uk) 0 0
0 Ce33(uk) 0
0 0 e33(uk)

⎞⎠
= 2η(eα3(vk))2+

[
λ
2
(2C+1)2+η(2C2+1)

]
(e33(uk))2= j(e13(vk),e23(vk),e33(uk)) ,

where the last equality follows from the choice of the constantC.

Proof of (2.59). For every fixed θ ∈ L∞(Q; [0,1]), we have to find a recovery se-
quence θδ ∗⇀θ such that limsupδ C̃

δ
(θδ ) ≤ C lim(θ). Let us first show that, under the

assumption infQ θ > 0, we are done simply by taking θδ ≡ θ . Let uδ be a sequence of
functions satisfying

limsup
δ
C̃

δ
(θ) = lim

δ→0

{ 1
δ
〈G,uδ 〉

R
3 + 〈H,uδ 〉

R
3−

∫
Q
j(eδ (uδ ))θ dx

}
. (2.63)

Since we may assume with no loss of generality that limsupδ C̃
δ
(θδ )>−∞, and since

by assumption θ is bounded from below, we are in a position to apply Lemma 2.3.1 and
deduce that the sequence eδ (uδ ) is bounded in L2(Q;R3×3

sym ). Hence, up to subtracting
from uδ the rigid motion aδ +bδ ∧ x, with

aδ :=
1
|Q|

∫
Q
uδ dx , bδ :=

1
2|Q|

∫
Q
ψD curlu

δ dx ,

the sequence uδ satisfies the hypotheses of Lemma 2.3.2.
Let c, w and u be associated to the sequence uδ as in Lemma 2.3.2, and let v :=

(−c(x3)x2,c(x3)x1,w) ∈ TW (Q). Then by applying the property (iii) of Lemma 2.3.2
we infer

lim
δ→0

1
δ
〈G,uδ 〉

R
3 =− lim

δ→0
δ 〈Σαβ ,eδαβ (u

δ )〉
R
3−2 lim

δ→0
〈Σα3,eδα3(u

δ )〉
R
3

=−2〈Σα3,eα3(v)〉R3 = 〈G,v〉
R
3, (2.64)

lim
δ→0
〈H,uδ 〉

R
3 =− lim

δ→0
〈Σ33,eδ33(u

δ )〉
R
3 =−〈Σ33,e33(u)〉R3 = 〈H,u〉

R
3 . (2.65)

We now turn attention to estimate from below
∫
Q j(eδ (uδ ))θ dx. We claim that

liminf
δ→0

∫
Q
j(eδ (uδ ))θ dx≥

∫
Q
j(e13(v),e23(v),e33(u))θ dx . (2.66)

74



2.3. The proof of the main result

Indeed, for every ξ ∈ R3, let us denote by E0ξ the symmetric matrix

E0ξ :=
1
2

3

∑
i=1

ξi(ei⊗ e3+ e3⊗ ei) . (2.67)

The Fenchel inequality and the weak L2-convergence of eδi3(u
δ ) expressed in (iii) of

Lemma 2.3.2 yield

liminf
δ

∫
Q
j(eδ (uδ ))θ dx ≥ liminf

δ

{∫
Q
eδ (uδ ) : E0ξ θ dx−

∫
Q
j∗(E0ξ )θ dx

}
=
∫
Q
(e13(v),e23(v),e33(u)) ·ξ θ dx−

∫
Q
j∗(E0ξ )θ dx

for every ξ ∈ L2(Q;R3) .
By using the definition of j, one can easily check (see Lemma 1.6.1) that

j ∗(ξ ) = j∗(E0ξ ) ∀ξ ∈ R
3 . (2.68)

Such identity and the arbitrariness of ξ ∈ L2(Q;R3) in the previous inequality yield

liminf
δ

∫
Q
j(eδ (uδ ))θ dx≥ sup

ξ

{∫
Q
(e13(v),e23(v),e33(u)) ·ξ θ dx−

∫
Q
j ∗(ξ )θ dx

}
.

By passing to the supremum over ξ ∈ L2(Q;R3) under the sign of integral (see e.g. [16,
Lemma A.2]), and taking into account that j = j ∗∗, we get the required inequality
(2.66).

From (2.63), (2.64), (2.65) and (2.66), recalling the expression (2.43) of C lim(θ), it
follows that limsupδ C̃

δ
(θδ )≤C lim(θ). It remains to get rid of the additional assump-

tion infQθ > 0. This can be done via a standard density argument. Indeed, for any θ we
may find a sequence θh with infQ θh > 0 such that θh ∗⇀θ . Then, since the left hand
side of (2.59) (usually called Γ− limsupC̃

δ
(θ)), is weakly * lower semicontinuous,

and C lim(θ) is weakly * continuous, we obtain

(Γ− limsup
δ
C̃

δ
)(θ)≤ liminf

h
(Γ− limsup

δ
C̃

δ
)(θh)≤ lim

h
C

lim(θh) = C
lim(θ) .

The convergence of φ̃ δ (k) to φ(k) follows immediately by well-known properties
of Γ-convergence.

�

2.3.3 Part III: back to the initial problems

In order to obtain the asymptotics of the original problem φδ (k) defined in (2.35), we
will bound them both from above and below in terms of suitable fictitious problems
which admit the same limit. This technique has been used in [17, Section 3] and for the
benefit of the reader we recall the main steps.
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An important role in the proof is played by the modified stored energy density j0 :
R3×3

sym →R, introduced in (1.36). Let us recall the definition:

j0(z) := sup{z ·ξ − j∗(ξ ) : ξ ∈ R
3×3
sym , det(ξ ) = 0} . (2.69)

Heuristically, the condition detξ = 0 appearing in (2.69) corresponds to the degeneracy
of stress tensors occurring when the material concentrates on low-dimensional sets (see
[13, 15, 19] for more details, and also [2] for the explicit computation of j∗0).

The main properties of j0 are summarized in Lemma 1.6.2.

Proof of Theorem 2.2.1
Step 1: upper and lower bounds for φδ (k)
We first remark that, for every k, there holds

φδ (k) = inf
{
C

δ
(θ)+ k

∫
Q
θ : θ ∈ L∞(Q; [0,1])

}
,

C
δ being the lower semicontinuous envelope, in the weak * topology of L∞(Q; [0,1]),

of the functional which is defined as in (2.36) if θ is the characteristic function of a
set ω , and +∞ otherwise. Then, by the weak * lower semicontinuity of the fictitious
compliance defined in (2.45), we immediately obtain the inequality

C̃
δ
(θ)≤ C δ

(θ) ∀θ ∈ L∞(Q; [0,1]) ,

and hence the following lower bound for φδ (k):

φ̃ δ (k)≤ φδ (k) . (2.70)

On the other hand, let us introduce another sequence of fictitious problems:

φ̃ δ
0 (k) := inf

{
C̃

δ
0 (θ)+ k

∫
Q
θ dx : θ ∈ L∞(Q; [0,1])

}
. (2.71)

associated to the fictitious compliance

C̃
δ
0 (θ) := sup

{ 1
δ
〈G,u〉

R
3 + 〈F,u〉

R
3−

∫
Q
j0(eδ (u))θ dx : u ∈ H1(Q;R3)

}
, (2.72)

with j0 defined in (2.69).
Under the assumption (h3) on the load, by applying [19, Proposition 2.8], we deduce

the following crucial estimate:

C̃
δ
0 (θ)≤ C δ

(θ) ∀θ ∈ L∞(Q; [0,1]) .

Consequently, as a counterpart to 2.70, we obtain the upper bound

φδ (k)≤ φ̃ δ
0 (k) . (2.73)

Step 2: limit of the upper bound φ̃ δ
0 (k)

76



2.4. Equivalent formulations of Φ(k) and optimality conditions

We first prove that the sequence C̃
δ
0 (θ) defined in (2.72) Γ-converges, in the weak

* topology of L∞(Q; [0,1]), to the limit compliance C lim(θ) defined by (2.43). Indeed
the proof of Theorem 2.3.1 is still valid replacing j by j0, and gives the Γ-convergence
result for C̃

δ
0 (θ): the estimate j0 ≤ j gives the Γ-liminf inequality, and the coercivity,

2-homogeneity and the equality j = j0 ensure the Γ-limsup inequality. We recall that
the properties of j0 are gathered in Lemma 1.6.2.

As a consequence the fictitious problems φ̃ δ
0 (k) defined in (2.71) converge to φ(k).

Step 3: limit of φδ (k)

By combining the estimates (2.70) and (2.73), and the convergence results obtained
in Theorem 2.3.1 and Step 2, we infer that also the sequence φδ (k) converges to φ(k)
as δ → 0+.

Let ωδ ⊂ Q be a sequence of domains such that φδ (k) = C δ (ωδ )+ k|ωδ |+o(1).
Since we know that the sequences φ̃ δ (k) and φδ (k) have the same limit as δ → 0,
we deduce that φ̃ δ (k) = C̃

δ
(11ωδ )+ k

∫
Q 11ωδ dx+ o(1). Since by Theorem 2.3.1 the

sequence C̃
δ
(θ)+k

∫
Qθ dx Γ-converges to C lim(θ)+k

∫
Q θ dx in the the weak * topol-

ogy L∞(Q; [0,1]), any cluster �

2.4 Equivalent formulations of Φ(k) and optimality conditions

We conclude the Chapter by writing alternative formulations of C lim(θ) and φ(k), in a
primal and dual form, see Proposition 2.4.1 and Theorem 2.4.1 respectively. The dual
formulation is a key tool in the second passage to the limit, that we examine in Chapter
3.

The last subsection is devoted to the natural question whether the density formu-
lation of φ(k) admits a classical solution (i.e. a density with values in {0,1}) or not:
deriving a system of optimality conditions, the question can be rephrased in a very sim-
ple way. A more detailed description and a deeper analysis of the problem is postponed
to Chapter 4.

2.4.1 Equivalent formulations

Exploiting the characterizations (2.8) and (2.9) of the spaces BN(Q) and TW (Q), and
the action of G and H over these spaces (see Proposition 2.1.1) we obtain the following
representation:

Proposition 2.4.1. The limit compliance C lim(θ) defined in (2.43) and the limit func-
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tion φ(k) defined in (2.42) can be rewritten respectively as

C
lim(θ) =sup

{
〈mG,c〉R+ 〈G3,w〉R3 + 〈Hi,ξi〉R+

−
∫
Q

[
η
2
∣∣c′(x3)(−x2,x1)+∇x′w

∣∣2+ Y
2
∣∣ξ ′3(x3)+ xαξ ′α(x3)

∣∣2]θ dx
}
,

(2.74)

φ(k) =sup
{
〈G,v〉

R
3 + 〈H,u〉

R
3−

∫
Q

[
j(e13(v),e23(v),e33(u))− k

]
+
dx :

v ∈ TW (Q) , u ∈ BN(Q)
}

(2.75)

=sup
{
〈mG,c〉R+ 〈G3,w〉R3 + 〈Hi,ξi〉R+

−
∫
Q

[
η
2
∣∣c′(x3)(−x2,x1)+∇x′w

∣∣2+ Y
2
∣∣ξ ′3(x3)+ xαξ ′α(x3)

∣∣2− k
]
+

dx
}
,

(2.76)

where mG and Hi are defined in (2.11) and (2.21), and the supremum in (2.74) and
(2.75) is taken over the set{

c ∈ H1
m(I) ,w ∈ L2(I;H1

m(D)) , ξi ∈ H1
m(I)

}
.

Proof. We first prove (2.74).
As shown in Proposition 2.1.1 the action of H on any Bernoulli-Navier field u is

given by
〈H,u〉

R
3 =−〈Hα ,ζ ′α〉R+ 〈H3,ζ3〉R , (2.77)

with ζα ∈ H2
m(I) and ζ3 ∈ H1

m(I) associated to u as in (2.8). It is easy to prove that
the space of derivatives of functions belonging to H2

m(I), defined in (35), equals H1
m(I).

Then we can rewrite (2.77) as

〈Hα ,ξα〉R+ 〈H3,ζ3〉R ,

for some ξα ∈ H1
m(I).

Similarly e33(u) reads
ζ ′3− xαζ ′′α = ζ ′3+ xαξ ′α .

By combining these results with the action of G over a field in TW (Q), expressed in
(2.19), and recalling the definition (2.43) of C lim(θ) we obtain (2.74).

Let us prove (2.75). Let X = L∞(Q; [0,1]) endowed with the weak * topology, and
Y = H1(Q;R3)×H1(Q;R3) endowed with the weak topology. On the product space
X×Y we consider, for a fixed k ∈ R, the Lagrangian

Lk(θ ,(v,u)) :=

⎧⎪⎪⎨⎪⎪⎩
〈G,v〉

R
3 + 〈H,u〉

R
3−

∫
Q

[
j
(
e13(v),e23(v),e33(u))− k

]
θ dx

if (v,u) ∈ TW (Q)×BN(Q)
−∞ otherwise .
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Since Lk(θ ,(v,u)) is convex in θ on the compact space X and concave in (v,u) on
Y , the equality infX supYL = supY infXL holds by a standard commutation argument,
see for instance [92, Proposition A.8], and gives (2.75).

Similarly, formulation (2.76) can be derived from (2.75) exploiting the formulation
(2.74) of C lim(θ). �

Before stating Theorem 2.4.1, we need some preliminary definitions and results.

Lemma 2.4.1. The Fenchel conjugate [ j(·)− k]∗+(ξ ) coincides with

ψk(ξ ) :=

⎧⎨⎩ j∗(ξ )+ k if j∗(ξ )≥ k

2
√

k j∗(ξ ) if j∗(ξ )≤ k
. (2.78)

Proof. Let us introduce the auxiliary function

gk(ξ ) :=

{
j∗(ξ )+ k i f ξ �= 0
0 otherwise

. (2.79)

By definition of Fenchel conjugate, we have

g∗k(y) = sup
ξ∈R3
{ξ · y−gk(ξ )}= sup{sup

ξ �=0
{ξ · y− j∗(ξ )}− k,0}

=sup{ j∗∗(y)− k,0}= [ j∗∗(y)− k]+ = [ j(y)− k]+ ,

where the last equality follows by convexity of j .
By applying again the Fenchel transform, we obtain

g∗∗k (ξ ) = [ j(·)− k]∗+(ξ ) ,

namely [ j(·)− k]∗+(ξ ) coincides with the convex envelope of gk.
A direct computation (cf. [19, Lemma 4.4]) gives g∗∗k (ξ ) = ψk(ξ )

�

We recall that, in view of Lemma 1.6.1, there holds

j∗(ξ ) =
1
8η
|ξ ′|2+ 1

2Y
ξ 2
3 . (2.80)

Lemma 2.4.2. Let σ ∈ L2(Q;R3), and F = G+H be an admissible load. Then∫
Q
σ · (e1,3(v),e2,3(v),e3,3(u))dx= 〈G,v〉R3 + 〈H,u〉R ∀(v,u) ∈ TW (Q)×BN(Q)

(2.81)
if and only if ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂1σ1+∂2σ2 =−2G3 ,

[[x1σ2− x2σ1]] =−2P0(mG) ,

[[σ3]] =−P0(H3) ,

[[xασ3]] =−P(Hα) ,

(2.82)

in the sense of distributions.
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Proof. The left and right hand side of (2.81) do not change if we subtract to v∈ TW (Q)
any Bernoulli-Navier field and to u ∈ BN(Q) any rigid motion (see Proposition 2.1.1),
then without loss of generality we can consider v and u of the form (2.9) and (2.8)
respectively. Exploiting this representation and Proposition 2.1.1, with a direct compu-
tation we obtain that (2.81) is equivalent to the following system:

1
2
〈(σ1,σ2),∇x′w〉R3 = 〈G3,w〉R3 ∀w ∈ L2(I;H1

m(D)) , (2.83)

1
2
〈[[− x2σ1+ x1σ2]],c′〉R = 〈mG,c〉R ∀c ∈ H1

m(I) , (2.84)

〈[[σ3]],ζ ′〉R = 〈H3,ζ 〉R ∀ζ ∈ H1
m(I) , (2.85)

〈[[xασ3]],η ′′〉R = 〈Hα ,η ′〉R ∀η ∈ H2
m(I) . (2.86)

It is easy to prove that (2.83) is equivalent to the first condition of (2.82) in H−1(Q).
As already observed in Remark 2.1.2, 〈mG,1〉R = 〈H3,1〉R = 0, hence (see Nota-

tion) mG and H3 admit a unique primitive in D ′(I), denoted byP0(mG) andP0(H3)
respectively. This implies that (2.84) and (2.85) are equivalent to the second and third
conditions of (2.82).

It remains us to deal with (2.86). As already observed in the proof of Proposition
2.4.1, there holds {

η ′ : η ∈ H2
m(I)

}
= H1

m(I) ,

then we can replace condition (2.86) by

〈[[xασ3]],ξ ′〉R = 〈Hα ,ξ 〉R ∀ξ ∈ H1
m(I) . (2.87)

By the arbitrariness of ξ ∈ H1
m(I) we obtain that ([[xασ3]])

′+Hα is a constant distribu-
tion over I, i.e. there exists λ ∈ R such that

([[xασ3]])
′+Hα = λ11I .

If we test the distribution above against 1 we obtain that λ = 〈Hα ,1〉R, that is
([[xασ3]])

′ =−(Hα −〈Hα ,1〉R
)
. (2.88)

This concludes the proof, indeed (2.88) is equivalent to

[[xασ3]] =−P0
(
Hα −〈Hα ,1〉R

)
=−P(Hα) .

�

We now write problems φ(k) and C lim(θ) in dual form.

Theorem 2.4.1. For every θ ∈ L∞(Q; [0,1]) and every k∈R, problems (2.42) and (2.43)
admit respectively the dual formulations

φ(k) = inf
σ∈L2(Q;R3)

{∫
Q
ψk(σ)dx : ∂1σ1+∂2σ2 =−2G3 , [[x1σ2− x2σ1]] =−2P0(mG) ,

[[σ3]] =−P0(H3) , [[xασ3]] =−P(Hα)
}

(2.89)
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and

C
lim(θ) = inf

σ∈L2(Q;R3)

{∫
Q
θ−1 j∗(σ)dx : ∂1σ1+∂2σ2 =−2G3 ,

[[x1σ2− x2σ1]] =−2P0(mG) ,

[[σ3]] =−P0(H3) , [[xασ3]] =−P(Hα)
}
.

(2.90)

Proof. The proof is based on a standard convex duality result, presented in the Intro-
duction: Lemma 1.1.2.

Let us consider problem C lim(θ). Let X = TW (Q)× BN(Q) , Y = L2(Q;R3) ,
A(v,u)= (e13(v),e23(v),e33(u)) ,Φ(v,u)=−〈G,v〉

R
3−〈H,u〉

R
3 , andΨ(y)=

∫
Q j(y)θ dx,

then we are in a position to apply Lemma 1.1.2. The left hand side of (4.1.2) equals the
primal formulation of C lim(θ), introduced in (2.43).

We now turn our attention to the right hand side of (4.1.2).
By definition of Fenchel conjugate, recalling that j is 2-homogeneous, we obtain

Ψ∗(σ) = sup
y∈L2(Q;R3)

{∫
Q
σ · y−

∫
Q
j(y)θ dx

}
=

∫
Q
θ−1 j∗(σ)dx .

On the other hand, since

〈−A∗σ ,(v,u)〉X∗,X =−〈σ ,A(v,u)〉Y∗,Y =−〈σ ,(e13(v),e23(v),e33(u))〉R3 ,

we infer

φ∗(−A∗σ) = sup
(v,u)∈X

{〈G,v〉
R
3 + 〈H,u〉

R
3−〈σ ,(e13(v),e23(v),e33(u))〉R3}

=

{
0 if 〈σ ,(e13(v),e23(v),e33(u))〉R3 = 〈G,v〉

R
3 + 〈H,u〉

R
3 ∀(v,u) ∈ X

+∞ otherwise
.

Since we are interested in the lower value of φ∗(−A∗σ), we look for optimal fields σ
such that∫

Q
σ · (e13(v),e23(v),e33(u)) = 〈G,v〉R3 + 〈H,u〉

R
3 ∀(v,u) ∈ TW (Q)×BN(Q) ,

or equivalently, in view of Lemma 2.4.2, such that

∂1σ1+∂2σ2=−2G3 , [[x1σ2−x2σ1]] =−2P0(mG) , [[σ3]] =−P0(H3) , [[xασ3]] =−P(Hα) ,

in the sense of distributions. This concludes the proof of (2.90).
Similarly, by applying Lemma 1.1.2 with X , Y , A and Φ as above, and Ψ(y) =∫

Q[ j(y)− k]+ dx, one obtains the dual form (2.89), exploiting Lemma 2.4.1. �
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2.4.2 Link with the classical torsion problem

The constraints that appear in the dual formulation (2.89) of φ(k) reveal that the limit
optimization problem can be solved section by section. More precisely, φ(k) can be
rewritten as

φ(k) =
∫
I
Λk

(
G3,P0(mG),P0(H3),P(Hα)

)
dx3 , (2.91)

where, for every r ∈ H−1(D), t ∈ R, s := (s0,s1,s2) ∈ R3, we set

Λk(r, t,s) := inf
σ∈L2(D;R3)

{∫
D
ψk(σ)dx′ : divx′(σ1,σ2) =−2r, [[x1σ2− x2σ1]] =−2t,

[[σ3]] =−s0, [[xασ3]] =−sα
}
.

(2.92)

We recall that, in view of assumption (h2), we are just considering the case in which
either r = 0 or si = 0.

This way of computing φ(k) enlightens the link with the classical torsion problem.
Actually, the compliance of a cylindrical rod of section E ⊂ D under a torque t is
classically written as

inf
σ ′∈L2(D;R2)

{∫
D

1
8η
|σ ′|2 dx′ : divx′ σ ′ = 0, [[x1σ2− x2σ1]] =−2t , sptσ ′ ⊂ E

}
,

(2.93)
where we have used the notation σ ′ := (σ1,σ2).

The optimization of such compliance with respect to the domain E under the volume
constraint |E|= m reads

inf
σ ′∈L2(D;R2)

{∫
D

1
8η
|σ ′|2 dx′ : divx′ σ ′ = 0, [[x1σ2− x2σ1]] =−2t , |sptσ ′| ≤ m

}
.

Introducing a Lagrange multiplier k, one is reduced to solve

inf
σ ′∈L2(D;R2)

{∫
D

1
8η
|σ ′|2dx′+ k|sptσ ′| : divx′ σ ′ = 0, [[x1σ2− x2σ1]] =−2t

}
= inf

σ ′∈L2(D;R2)

{∫
D
gk(σ1,σ2,0)dx′ : divx′(σ1,σ2) = 0, [[x1σ2− x2σ1]] =−2t

}
,

being gk the function defined in (2.79). As already shown in the proof of Lemma
2.4.1, the convex envelope g∗k equals [ j(·)− k]∗+, hence the relaxed formulation of the
latter problem is nothing else than Λk(0, t,0). This concordance is somehow surprising,
since formulation (2.93) is valid only for cylindrical rods (or rods with slowly varying
section) whereas, in the formulation (2.6) of our initial optimization problems φδ (k),
no topological constraint is imposed on the admissible domains Ω ⊂ δD× I. What
can be inferred from this comparison is that optimal thin torsion rods searched in a
very large class without imposing any geometrical restriction are in fact not sensibly
different from the nearly cylindrical ones treated in the classical theory.
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2.4.3 Optimality conditions

We say that (θ , v, u, σ) ∈ L∞(Q; [0,1])×TW (Q)×BN(Q)×L2(Q;R3) is optimal for
φ(k) if

(·) θ is optimal for φ(k) in its primal formulation (2.42);

(·) the couple (v, u) is optimal for φ(k) and C lim(θ) in their primal formulations,
given by (2.75) and (2.43) respectively;

(·) σ is optimal for φ(k) and C lim(θ) in their dual formulations, given by (2.89) and
(2.90) respectively.

By comparing the primal and dual formulations, we derive the following optimality
conditions.

Theorem 2.4.2. A vector (θ , v, u, σ) ∈ L∞(Q; [0,1])×TW (Q)×BN(Q)×L2(Q;R3)
is optimal for φ(k) if and only if it satisfies the following system:

∂1σ1+∂2σ2 =−2G3 , [[x1σ2− x2σ1]] =−2P0(mG) (2.94)
[[σ3]] =−P0(H3) , [[xασ3]] =−P(Hα) (2.95)
σ = θ j ′(e13(v),e23(v),e33(u)) (2.96)
σ ∈ ∂ [ j− k]+(e13(v),e23(v),e33(u)) (2.97)
θ [ j(e13(v),e23(v),e33(u))− k] = [ j(e13(v),e23(v),e33(u))− k]+ (2.98)

Proof. We recall that a vector field σ ∈ L2(Q;R3) is admissible for (2.89) if and only
if ∫

Q
σ · (e13(v),e23(v),e33(u)) = 〈G,v〉R3 + 〈H,u〉

R
3 ∀(v,u) ∈ TW (Q)×BN(Q) ,

(2.99)
i.e., in view of Lemma 2.4.2, if and only if (2.94) and (2.95) hold true.

Assume that (θ ,v ,u, σ) is optimal for φ(k). Since σ is optimal for the dual form
(2.90) of C lim(θ), necessarily it must vanish on the set {θ = 0}. Then, using (2.99) and
the equivalence between the primal and the dual forms (2.43) and (2.90) of C lim(θ),
we obtain:

0 =
∫
Q

{
σ · (e13(v),e23(v),e33(u))−θ j(e13(v),e23(v),e33(u))−θ −1 j ∗(σ)

}
dx

=

∫
Q∩{θ>0}

{
θ −1σ · (e13(v),e23(v),e33(u))− j(e13(v),e23(v),e33(u))− j ∗(θ −1σ)

}
θ dx ,

which yields (2.96) thanks to the Fenchel inequality.
Similarly, again using (2.99), the equivalence between (2.75) and (2.89) implies:∫

Q

{
σ ·(e13(v),e23(v),e33(u))− [ j−k]+(e13(v),e23(v),e33(u))− [ j−k]∗+(σ)

}
dx= 0 ,

which yields (2.97) thanks to the Fenchel inequality.
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Finally, the equivalence between (2.42) and (2.75) implies:∫
Q

{(
j(e13(v),e23(v),e33(u))− k

)
θ − [ j− k

]
+
(e13(v),e23(v),e33(u))

}
dx= 0 ,

which yields (2.98) since the integrand is non positive.

Viceversa, assume that (θ , v, u, σ) satisfy the optimality conditions (2.94)-(2.95)-
(2.96)-(2.97)-(2.98).

By admissibility of σ for C lim(θ) in its dual form (2.90), we have

〈G,v〉
R
3 + 〈H,u〉

R
3−

∫
Q
j(e13(v),e23(v),e33(u))θ dx

≤ sup
{
〈G,v〉

R
3 + 〈H,u〉

R
3−

∫
Q
j(e13(v),e23(v),e33(u))θ dx : v ∈ TW (Q) , u ∈ BN(Q)

}
= C lim(θ) = inf

{∫
Q
θ −1 j ∗(σ)dx : σ ∈ L2(Q;R2) , such that (2.99)

}
≤

∫
Q
θ −1 j ∗(σ)dx .

Using (2.99) one sees that, thanks to (2.96), the first and the last term in the above chain
of inequalities agree. Hence (v,u) and σ are optimal respectively for the primal and the
dual forms (2.43) and (2.90) of C lim(θ).

Similarly, since σ is admissible for problem (2.89), we infer

〈G,v〉
R
3 + 〈H,u〉

R
3−

∫
Q

[
j− k

]
+
(e13(v),e23(v),e33(u))dx

≤ sup
{
〈G,v〉

R
3 + 〈H,u〉

R
3−

∫
Q
[ j(e13(v),e23(v),e33(u))− k

]
+
dx : v ∈ TW, u ∈ BN

}
= φ(k) = inf

{∫
Q
ψk(σ)dx : σ ∈ L2(Q;R2) , such that (2.99)

}
≤

∫
Q
ψk(σ)dx=

∫
Q

[
j− k

]∗
+
(σ)dx .

Using (2.99) one sees that, thanks to (2.97), the first and the last term in the above chain
of inequalities agree. Hence (v,u) and σ are optimal respectively for problems (2.75)
and (2.89).

It remains to check that θ is optimal for problem (2.42). Indeed we have

C
lim(θ)+ k

∫
Q
θ dx= 〈G,v〉

R
3 + 〈H,u〉

R
3−

∫
Q

(
j(e13(v),e23(v),e33(u))− k

)
θ dx

= 〈G,v〉
R
3 + 〈H,u〉

R
3−

∫
Q
[ j− k

]
+
(e13(v),e23(v),e33(u))dx= φ(k) ,

where in the first equality we have used the already proved optimality of (v, u) for the
primal form (2.43) of C lim(θ), in the second equality the optimality condition (2.98),
and finally in the third equality the already proved optimality of (v, u) for problem
(2.75). �

Finally we rewrite the optimality condition (2.97), clarifying the relationship be-
tween an optimal σ and an optimal couple (v,u).
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Lemma 2.4.3. let (θ , v, u, σ) be optimal for φ(k), then we can rewrite the optimality
condition (2.97) as

σ =

⎧⎪⎨⎪⎩
0 if j(e)< k ,
t(4ηe′, Ye3) , with t ∈ [0,1] if j(e) = k ,
(4ηe′, Ye3) if j(e)> k ,

(2.100)

with
e := (e13(v),e23(v),e33(u)) .

Proof. In view of (2.97), by definition of subdifferential, there holds

〈σ ,e〉
R
3 = [ j(·)− k]+(e)+ [ j(·)− k]∗+(σ) . (2.101)

Letting σ̃ :=
(
σ ′/
√
4η,σ3/

√
Y
)
and ẽ :=

(√
4ηe′,

√
Ye3

)
an easy computation gives

〈σ ,e〉
R
3 = 〈σ̃ , ẽ〉

R
3 , j(e) =

|ẽ|2
2

, [ j(·)− k]∗+(σ) =
[ | · |2

2
− k

]∗
+

(σ̃) .

Hence equality (2.101) reads

σ̃ ∈ ∂
[ | · |2

2
− k

]
+

(ẽ) . (2.102)

Let us introduce the radial function ϕ(s) :=
[
s2
2 − k

]
+
. By combining Lemma (1.1.2)

and (2.102), we infer
σ̃ = t

ẽ
|ẽ| , with t ∈ ∂ϕ(|ẽ|) .

The subdifferential of ϕ(s) is almost everywhere a point, and for s =
√
2k it is the

interval [0,
√
2k]. An easy calculation shows that

σ̃ =

⎧⎪⎨⎪⎩
0 if |ẽ|<√2k ,
tẽ , with t ∈ [0,1] if |ẽ|=√2k ,
ẽ if |ẽ|>√2k .

and recalling the definition of σ̃ and ẽ in terms of σ and e we obtain the thesis. �

2.4.4 Looking for classical solutions for Φ(k)

It is interesting to ask whether, via the optimality system, it is possible to establish that
problem φ(k) in the density formulation (2.42) admits a classical solution, represented
by an optimal density with values into {0,1}.

If (θ ,v,u,σ) ∈ L∞(Q; [0,1])×TW (Q)×BN(Q)×L2(Q;R2) is an optimal vector,
the optimality condition (2.98) reveals that θ is a characteristic function provided the
level set

{ j(e13(v),e23(v),e33(u)) = k}
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(or equivalently, in view of (2.78), when the set where ψk(σ) = 2(k j∗(σ))1/2), has zero
Lebesgue measure.

If we consider the particular case of pure torsion regime, namely when [[Fα ]] =
F3 = 0 or equivalently [[Gα ]] = G3 = H = 0, looking at problem (2.89) one sees that
σ is optimal if and only if σ = (σ1,σ2,0) and σ(·,x3) solves for a.e. x3 the following
section problem for t =P0(mG):

αk(t) := inf
{∫

D
ψk(σ1,σ2,0)dx′ : σ ′ ∈ L2(D;R2) , divx′ σ ′= 0, [[x1σ2−x2σ1]] =−2t

}
,

(2.103)
where we have used the notation σ ′ := (σ1,σ2).

In view of (2.78) and (2.80), we remark that

ψk(ξ1,ξ2,0) :=

⎧⎨⎩
1
8η |ξ ′|2+ k if |ξ ′| ≥ √8ηk√

k
2η |ξ ′| if |ξ ′| ≤ √8ηk

,

where we have used the notation ξ ′ := (ξ1,ξ2). Moreover, we notice that αk(t) =
kα1

( t√
k

)
.

The constraint of divergence free in (2.103) implies that we can write any admissible
σ ′ as a rotated gradient: since σ ′ vanished in R2 \D and divx′ σ ′ = 0, there exists
u ∈ H1(R2) such that ∇u = 0 in R2 \D and σ ′ = (−∂2u,∂1u). Let us introduce the
space H1

c (D) := {u ∈ H1(R2) : ∇u= 0 in R2 \D} . Hence we are led to set

s :=
t√
k

(2.104)

and to study the solutions u of the following minimization problem

α(s) := inf
{∫

D
ψ1(∇u,0)dx′ : u ∈ H1

c (D) ,
∫
R
2
udx′ = s

}
. (2.105)

−√8η √
8η

Ψ1(|ξ′|)

Figure 2.6: The function ψ1, evaluated in the points of the form (ξ1,ξ2,0), is a radial function
depending on |ξ ′|.

In view of Lemma 2.4.3 (considering k = 1 and |σ | = |∇u|), we infer that the ho-
mogenization region corresponds to the set

{0< |∇u|<
√

8η} , (2.106)
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where the integrand ψ1 is not strictly convex (see Figure 4.1). Hence asking whether
φ(k) admits a classical solution or not, in the case of pure torsion loads, is equivalent to
determine if there exists a solution u for which this set in (2.106) is Lebesgue negligible.

More precisely, in view of Lemma 2.4.3 and optimality condition (2.96), we infer
that the optimal density θ and a solution u for α(s) satisfy

{θ = 0}= {|∇u|= 0} , {θ = 1}= {|∇u| ≥
√

8η} , {θ ∈ (0,1)}= {|∇u| ∈ (0,
√

8η)} ,
as represented in Figure 2.7.

θ = 1, |∇u| ≥ 1

θ = 0, ∇u = 0

θ, |∇u| ∈ (0, 1)

θ = 1, |∇u| ≥ 1

θ = 0, ∇u = 0

Figure 2.7: On the left the case of presence of homogenization region, on the right the case of
classic solution.

We point out that, for a very similar problem, when D is a square, some numeri-
cal experiments seem to predict the existence of a homogenization region of nonzero
measure [72].

This problem will be the subject of Chapter 4.

2.5 Appendix

Proof of Lemma 2.3.3.
The positivity of ψD is a consequence of the maximum principle.
A minimizing sequence ψn for the variational problem in (2.49) converges weakly

in H1
0 (D) to a function ψ ∈ H1

0 (D) which solves the Euler equation −Δψ = 2λ in D,
for some λ ∈ R. Thus ψ = λψD , and∫

D
|∇ψ |2dx′ = 2λ

∫
D
ψ dx′ = 2λ = 2

(∫
D
ψD dx

′
)−1

= 4γ−1 .

If w is a solution to (2.50), the Euler equation gives

div
(
((−x2,x1)+∇w)11D

)
= 0 in D ′(R2) .

Hence there exists a functionψ ∈H1(R2) such that ((−x2,x1)+∇w)11D=(∂2ψ,−∂1ψ)
in R2 and ψ = 0 in R2 \D. This implies that ψ solves −Δψ = 2 in D and vanishes on
∂D, so that ψ D= ψD . �

Proof of Lemma 2.3.4.
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Let us first estimate the integral mean of cδ defined in (2.52). Exploiting the hy-
pothesis (2.51) and recalling that

∫
DψD(x′)dx′ = γ/2 (see (2.48)), we have:∣∣∣∫

I
cδ (x3)dx3

∣∣∣2 =
∣∣∣2γ

∫
Q
ψD(x

′)cδ (x3)dx− 1
γδ

∫
Q
ψD(x

′)curlx′(uδ1 ,u
δ
2 )dx

∣∣∣2
=

4
γ2
∣∣∣∫

Q
ψD(x

′)
[
cδ (x3)− 1

2δ
curlx′(uδ1 ,u

δ
2 )
]
dx
∣∣∣2

≤C
∫
Q

∣∣cδ (x3)− 1
2δ

curlx′(uδ1 ,u
δ
2 )
∣∣2 dx , (2.107)

where, in the last line, we have applied the Cauchy-Schwartz inequality. In order to
estimate the integral (5.116), we now apply (1.24) in Lemma 1.5.2 with ψ = ψD to the
field v = uδα(·,x3)− [[uδα ]](x3) (which belongs to H1

m(D;R2)). Since subtracting from
uδα its mean [[uδα ]] does not affect the expressions of the functions cδ (x3) , curlx′(uδ1 ,u

δ
2 )

and eαβ (uδ ), we obtain∫
Q

∣∣cδ (x3)− 1
2δ

curlx′(uδ1 ,u
δ
2 )
∣∣2dx≤ C

δ 2

∫
Q

∣∣eαβ (uδ1 ,u
δ
2 )
∣∣2dx . (2.108)

Combining (5.116) and (2.108), thanks to the L2-boundedness of eδ (uδ ), we conclude∣∣∣∫
I
cδ (x3)dx3

∣∣∣2 ≤Cδ 2 . (2.109)

We now turn to estimate the derivative of cδ . We have:

(cδ )′(x3) =
∫
D
(∇ψD ∧ eδα3(u

δ ))dx′ − 1
2δ

∫
D
(∇ψD ∧∇x′uδ3 )dx

′ .

Nowwe notice that the second integral vanishes: indeed, integrating by parts and taking
into account that ψD vanishes on ∂D, we get∫

D
(∇ψD ∧∇x′uδ3 )dx

′ = 0 .

Therefore
(cδ )′(x3) =

∫
D
(∇ψD ∧ eδα3(u

δ ))dx′ .

So we obtain the inequality∣∣(cδ )′(x3)∣∣2 ≤ ∫
D
|∇ψD|2 dx′

∫
D
|eδα3(u

δ )|2dx′ ,

and, integrating over I,∫
I

∣∣(cδ )′(x3)∣∣2 dx3 ≤ ∫
D
|∇ψD|2dx′

∫
Q
|eδα3(u

δ )|2dx . (2.110)

Combining (2.109) and (2.110), we conclude that cδ is bounded in H1(I).
�
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CHAPTER3
Optimal design in thin rods: the small volume

fraction limit

In this Chapter we investigate the behavior of optimal configurations of the compliance
optimization problem introduced in (5), when the total amount of material becomes
infinitesimal.

As said in the Introduction, this corresponds to study the asymptotics as k→ +∞
of φ(k), where φ(k) has been introduced in (3.1), as the limit of the sequence φδ (k) as
δ → 0+ (see Theorem 2.2.1).

Let us recall the definition:

φ(k) := inf
{
C

lim(θ)+ k
∫
Q
θ dx : θ ∈ L∞(Q; [0,1])

}
, (3.1)

where

C
lim(θ) := sup

{
〈G,v〉

R
3+〈H,u〉

R
3−

∫
Q
j(e13(v),e23(v),e33(u))θ dx : v∈ TW, u∈BN

}
.

(3.2)
The Chapter is divided in two parts. We first study the variational convergence, as

k→ +∞, of problems φ(k) suitably rescaled (see Theorem 3.1.1). Their limit takes
the form of a minimization problem over the class of positive measures on Q. The
optimal measures represent the limit of optimal density distributions for φ(k): they
describe where it is convenient to put the material in an optimal way, when the amount
of relative volume becomes infinitesimal.

In the second part of the Chapter, Section 3.3, we present some examples of concen-
tration phenomena, described explicitly, which occur considering particular admissible
loads, already introduced in paragraph 2.1.3.
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Chapter 3. Optimal design in thin rods: the small volume fraction limit

3.1 The main results

Let us begin by extending the limit compliance C lim(θ) given by (3.2) to the class
M+(Q) of positive measures μ on R3 compactly supported in Q by setting

C
lim(μ) := sup

{
〈G,v〉

R
3+〈H,u〉

R
3−

∫
Q
j
(
e13(v),e23(v),e33(u)

)
dμ :

v ∈ TW (Q)∩C∞(Q;R3) , u ∈ BN(Q)∩C ∞(Q;R3)
}
.

(3.3)

We point out that in dual form C lim(μ) reads

C
lim(μ) = infξ∈L2

μ(Q;R3)

{∫
Q j ∗(ξ ) dμ : divx′(ξ ′μ) =−2G3

[[x1(ξ2μ)− x2(ξ1μ)]] =−2P0(mG),

[[ξ3μ]] =−P0(H3) , [[xα(ξ3μ)]] =−P(Hα) }
(3.4)

(this follows by applying Lemma 1.1.2 in a similar way as repeatedly done in the pre-
vious Chapter).

Using definition (3.3), the limit problem φ(k) in (3.1) can be rewritten as

φ(k) = inf
{
C

lim(μ)+ k
∫

dμ : μ = θ dx , θ ∈ L∞(Q; [0,1])
}

=
√
2k inf

{
C

lim(μ)+
1
2

∫
dμ : μ = θ dx , θ ∈ L∞(Q; [0,

√
2k])

}
,

(3.5)

where the second equality is obtained multiplying μ by
√
2k (for k > 0).

Thus, in view of (3.5), the natural candidate to be the limit problem of φ(k)√
2k as

k→+∞ is the following minimization problem, set onM+(Q):

m := inf
{
C

lim(μ)+
1
2

∫
dμ : μ ∈M+(Q)

}
. (3.6)

In the next proposition, we give a useful reformulation of m as a maximization
problem for a linear form under constraint, which in turn admits a pretty tractable dual
form. Recall that η > 0 is the second Lamé parameter in our elastic potential ( j(z) =
(λ/2)(trz)2+η|z|2).

Proposition 3.1.1. Any optimal measure μ in (3.6) satisfies

C
lim(μ) =

1
2

∫
dμ =

m
2
, (3.7)

and m agrees with the following supremum:

sup
v∈TW (Q)

{
〈G,v〉

R
3 : ‖ j(e13(v),e23(v),e33(u))‖L∞(Q) ≤

1
2

}
, (3.8)

or alternatively with the minimum of the dual problem

min
σ∈M (Q;R3)

{∫
|σ | : ∂1σ1+∂2σ2 =− G3√η

, [[x1σ2− x2σ1]] =−P0(mG)√η
,

[[σ3]] =−P0(H3)√
Y

, [[xασ3]] =−P(Hα)√
Y

}
.

(3.9)
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3.1. The main results

We are now ready to establish that, as expected, m is the limit problem of φ(k)√
2k as

k→ +∞. Actually Theorem 3.1.1 below shows that such convergence holds true in
the variational sense, namely not only for the values of the infima, but also for the
corresponding solutions.

Theorem 3.1.1. (i) For k > 0, the map k 
→ φ(k)√
2k

is nonincreasing and, as k→ +∞,
it converges decreasingly to m.

(ii) if θk is a solution to the density formulation (3.1) of φ(k), up to subsequences θk
converges weakly * in L∞(Q; [0,1]) to a solution μ of problem (3.6).

By the convergence statement (ii) in Theorem 3.1.1, in order to understand which
kind of concentration phenomenon occurs for small amounts of material, one needs to
answer the following question: what can be said about solutions μ to problem (3.6)?
We would like to write explicitly, or at least characterize, such solutions.

In this direction, let us first show that optimal measures μ are strictly related to
solutions σ to the dual problem (3.9). More precisely, we have:

Proposition 3.1.2. If σ is optimal for problem (3.9), then μ := |σ | is optimal for prob-
lem (3.6). Conversely, if μ is optimal for problem (3.6), and ξ is optimal for the dual
form (3.4) of C lim(μ), then |ξ |= 2

√
η μ-a.e., and σ := ξ

2√η μ is optimal for problem
(3.9).

Hence, if we determine a solution σ of the dual problem (3.9), we can solve the
primal problem m, simply by taking μ := |σ | (and viceversa). The advantage is that the
dual formulation sometimes happens to be more tractable than the primal one.

We notice that the constraints imposed on the admissible measures σ in the mini-
mization problem (3.9) of m only involve the behavior of σ(·,x3) for each fixed x3 ∈ I,
this reveals that the problem can be solved section by section:

m=
∫
I
m
(
− G3√η

,−P0(mG)√η
,−P0(H3)√

Y
,−P(H1)√

Y
,−P(H2)√

Y

)
dx3 , (3.10)

with m defined as

m(r(x′), t,s0,s1,s2) := inf
σ∈M (D;R3)

{∫
D
|σ | : div(σ1,σ2) = r(x′) ,

∫
D
(x1σ2− x2σ1) = t ,∫

D
σ3 = s0 ,

∫
D
xασ3 = sα

}
(3.11)

for any r(x′) ∈ H−1(D) and t,si arbitrary real constants.
We recall that, in view of (h2), in our case there holds either r = 0 or si = 0.

In Section 3.3 we will deal with problem (3.11) considering the loads introduced
in paragraph 2.1.3, and determine the concentration phenomena that occur for small
amounts of material, characterizing the behavior on the sections of the design region.
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Chapter 3. Optimal design in thin rods: the small volume fraction limit

3.2 The proofs of the main results

In this Section are gathered the proofs of the results stated in Section 3.1, which are
quite technical.

Let us begin with the proof of of Proposition 3.1.1, useful for the demonstration of
Theorem 3.1.1.
Proof of Proposition 3.1.1 Let m0 denote the supremum in (3.8). For every t ∈ R+,
by the definition (3.3) of C lim(μ) and the same inf-sup commutation argument already
used in the proof of Proposition 2.4.1, we infer:

inf
μ

{
C

lim(μ) :
∫

dμ ≤ t
}

= sup
(v,u)

inf
μ

{
〈G,v〉

R
3 + 〈H,u〉

R
3−

∫
Q
j(e13(v),e23(v),e33(u))dμ :

∫
dμ ≤ t

}
= sup

(v,u)

{
〈G,v〉

R
3 + 〈H,u〉

R
3− t

∥∥ j(e13(v),e23(v),e33(u))‖L∞(Q)

}
=

m2
0

2t
,

where the last equality follows by writing v = sv0, with s ∈ R and v0 admissible for
problem (3.8), and optimizing in the real variable s.

Then, since by the definition (3.6) of m we have

m= inf
t∈R+

{
C

lim(μ)+
t
2

:
∫

dμ ≤ t
}
= inf

t∈R+

(m2
0

2t
+

t
2

)
,

and since the function t 
→
(

m2
0

2t +
t
2

)
attains its minimum on R+ at t = m0, we deduce

that the equality m= m0 holds and that any optimal measure μ satisfies (3.7).
The dual form (3.9) of problem (3.8) follows from Lemma 1.1.2, applied with

X := (TW ×BN)∩ (C ∞
0 (Q;R3))2, Y := C0(Q;R3), A(v,u) := (e13(v),e23(v),e33(u)),

Φ(v,u) :=−〈G,v〉
R
3−〈H,u〉

R
3, and Ψ(y) = 0 if ‖ j(y)‖∞ ≤ 1/2, and +∞ otherwise. �

We can now give the proof of the main result: Theorem 3.1.1.
Proof of Theorem 3.1.1We divide the proof into several steps.

Proof of (i)
The second equality in (3.5) shows that the map k 
→ φ(k)√

2k
is nonincreasing and

satisfies the inequality φ(k)√
2k
≥ m. In order to show that it converges to m as k→ +∞,

we exploit the formulation of φ(k) given in (2.75), in which we insert the change of
variable (ṽ, ũ) = (v,u)/

√
2k. We obtain

φ(k)√
2k

= sup
(v,u)∈TW×BN

{
〈G,v〉

R
3+〈H,u〉

R
3−
√
2k

∫
Q

[
j
(
e13(v),e23(v),e33(u)

)− 1
2
]
+
dx
}
.

Let (vk,uk) be fields in (TW ×BN)∩ (C ∞(Q;R3))2 such that

limsup
k→+∞

φ(k)√
2k

= lim
k→+∞

{
〈G,vk〉R3+〈H,uk〉R3−

√
2k

∫
Q

[
j
(
e13(vk),e23(vk),e33(uk)

)− 1
2
]
+
dx
}
.
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3.2. The proofs of the main results

By using the coercivity of [ j(z)−k]+, the inequality φ(k)≥ 0, and the assumption that
F and G are admissible loads, we may find positive constants C1 , C2 , C3 and C4 such
that

C1‖(e13(vk),e23(vk))‖2L2(Q;R2) +C2‖e33(uk)‖2L2(Q)

≤
√
2k
∫
Q

[
j
(
e13(vk),e23(vk),e33(uk)

)− 1
2
]
+
dx≤ 〈G,vk〉R3 + 〈H,uk〉R3

≤C3‖(e13(vk),e23(vk))‖L2(Q;R2) +C4‖e33(uk)‖L2(Q) .

We deduce that ‖eα3(vk)‖L2(Q) and ‖e33(uk)‖L2(Q) are bounded. We claim that this
property implies that, up to subsequences,

(a) there exists v∈ TW (Q) such that limk vk = vweakly inH1(Q;R2)×L2(I;H1
m(D))

and limk eα3(vk) = eα3(v) weakly in L2(Q) ;

(b) there exists u∈BN(Q) such that limk uk = uweakly inH1(Q;R3) and limk e33(uk)=
e33(u) weakly in L2(Q) .

If we prove the claim we are done: by lower semicontinuity we obtain∫
Q
[ j̄(e13(v),e23(v),e33(u))−1/2]+dx≤ liminf

k

∫
Q
[ j̄(e13(vk),e23(vk),e33(uk)−1/2]+ dx= 0 ,

and hence
j̄(e13(v),e23(v),e33(u))≤ 1

2
a.e. in Q ,

i.e. the couple (v,u) is admissible in the definition (3.8) of m0. Then we conclude that

lim
k→+∞

φ(k)√
2k
≤ lim

k→+∞
(〈G,vk〉R3 + 〈H,uk〉R3) = 〈G,v〉

R
3 + 〈H,u〉

R
3 ≤ m0 = m .

Proof of (a)
Since (e13(vk),e23(vk)) is bounded in L2(Q;R2), there exists a positive constant C

such that

C ≥
∫
Q
|c′k(x3)(−x2,x1)+∇x′wk|2dx

≥ inf
{∫

D
|(−x2,x1)+∇w|2 dx′ : w ∈ H1(D)

}
·
∫
I
|c′k(x3)|2dx3

= γ
∫
I
|c′k(x3)|2dx3 ,

where ck and wk are associated to vk according to (2.9), and γ is the positive constant
introduced in Lemma 2.3.3. By applying the Poincaré-Wirtinger inequality, we obtain
that ck is uniformly bounded in H1

m(I).
By difference, it is also clear that ∇x′wk is uniformly bounded in L2(Q;R2) , hence wk
is uniformly bounded in L2(I;H1

m(D)) .
Let c and w be the weak limits of ck and wk inH1

m(I) and L2(I;H1
m(D)) respectively, and

set v := (−c(x3)x2,c(x3)x1,w). Then v ∈ TW (Q) and limk eα3(vk) = eα3(v) weakly in
L2(Q) .
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Chapter 3. Optimal design in thin rods: the small volume fraction limit

Proof of (b)
Using the representation (2.8) of BN(Q), we can write

uk(x) =
(
ζk,1(x3), ζk,2(x3), ζk,3(x3)− xαζ ′k,α(x3)

)
,

for some ζk,α ∈ H2
m(I) and ζk,3 ∈ H1

m(I) .
Exploiting the boundedness of ‖e33(uk)‖L2(Q), the Hölder inequality and the hy-

pothesis
∫
D xα = 0 we infer that

C0‖ζ ′k,3‖2L2(I) +Cα‖ζ ′′k,α‖2L2(I)−2C12‖ζ ′′k,1‖L2(I)‖ζ ′′k,2‖L2(I) ≤C , (3.12)

where
C0 := |D| , Cα :=

∫
D
x2α dx′ , C12 :=

∣∣∣∣∫D x1x2 dx′
∣∣∣∣

andC is a positive constant.
An immediate consequence is the estimate

C1‖ζ ′′k,1‖2L2(I) +C2‖ζ ′′k,2‖2L2(I)−2C12‖ζ ′′k,1‖L2(I)‖ζ ′′k,2‖L2(I) ≤C . (3.13)

If we prove that ‖ζ ′′k,α‖L2(I) are uniformly bounded we have finished: combining (3.12)
and (3.13) we obtain that also ‖ζ ′k,3‖L2(I) is uniformly bounded. Hence, since (ζk,α ,ζk,3)∈
(H2

m(I))2×H1
m(I), by applying Poincaré-Wirtinger inequality, we infer that ζk,i weak

converge in H1(Q), up to subsequences, to some ζi belonging to the same spaces.
Moreover, if we call u the field associated to ζi according to (2.8), we have that limk e33(uk)=
e33(u) weakly in L2(Q) .

From (3.13) is clear that either ‖ζ ′′k,1‖L2(I) and ‖ζ ′′k,2‖L2(I) are both uniformly bounded,
or both unbounded. Assume by contradiction that there exists a subsequence (not rela-
beled) such that

lim
k
‖ζ ′′k,1‖L2(I) = +∞ , lim

k
‖ζ ′′k,2‖L2(I) = +∞

and let

lk :=
‖ζ ′′k,1‖L2(I)

‖ζ ′′k,2‖L2(I)
.

Dividing (3.13) by ‖ζ ′′k,2‖2L2(I) and passing to the limit as k → +∞, we obtain that
limsupk lk < +∞. Let l be an accumulation point of the sequence lk. Again, dividing
(3.13) by ‖ζ ′′k,2‖2L2(I) and passing to the limit as k→ +∞ (subsequence not relabeled),
we obtain

C1l2−2C12l+C2 ≤ 0 ,

that is absurd. Indeed the expression above is always strictly positive: it is continuous
with respect to l and, since

|C12|2 =
∣∣∣∣∫D x1x2 dx′

∣∣∣∣2 ≤C
(∫

D
|x1x2|dx′

)2
<

(∫
D
x21 dx

′
)(∫

D
x22 dx

′
)
=C1C2

withC a constant depending on D, it has complex solutions.
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3.2. The proofs of the main results

Proof of (ii)
If θk is an optimal density for φ(k), setting μk :=

√
2kθk dx one has

φ(k)√
2k

= C
lim(μk)+

1
2

∫
dμk .

Since C lim(μk)≥ 0 and since by monotonicity φ(k)√
2k
≤ φ(1), the above equation implies

that the integral
∫
dμk remains uniformly bounded. Then up to a subsequence there

exists μ such that μk
∗
⇀μ . By using item (i) already proved, the weak * semicontinuity

of the map μ 
→ C lim(μ), and the definition (3.6) of m, we obtain

m= lim
k→+∞

φ(k)√
2k

= lim
k→+∞

{
C

lim(μk)+
1
2

∫
dμk

}
≥ C lim(μ)+

1
2

∫
dμ ≥ m .

Hence μ is a solution to problem (3.1.1). �

We conclude with the proof of Proposition 3.1.2, that enlightens the relationship
between the solutions of primal and dual formulations of m.
Proof of Proposition 3.1.2

Let σ be optimal for the dual problem (3.9), and set μ := |σ | . Then we have
∣∣∣dσdμ ∣∣∣=

1 μ-a.e. and ∫
dμ = m . (3.14)

Moreover, since σ is admissible in (3.9) (see also Lemma 2.4.2), there hold

〈G,v〉
R
3 = 2

√
η〈σα ,eα3(v)〉R3 ∀v ∈ TW (Q)∩C∞(Q;R3) (3.15)

and
〈H,u〉

R
3 =
√
Y 〈σ3,e33(u)〉R3 ∀u ∈ BN(Q)∩C∞(Q;R3) . (3.16)

For brevity of notation, let us denote by x the vectorial function

x(v,u) := (2
√
ηeα3(v),

√
Ye33(u)) .

Then we get

C
lim(μ) = sup

{
〈σ ,x〉

R
3− 1

2

∫
Q
|x|2 dμ : x= x(v,u)(v,u) ∈ TW (Q)×BN(Q)

}
= sup

{∫
Q

(
dσ
dμ
· x− 1

2
|x|2

)
dμ : x= x(v,u)(v,u) ∈ TW (Q)×BN(Q)

}
≤ 1

2

∫
Q

∣∣∣∣dσdμ
∣∣∣∣2 dμ =

1
2

∫
dμ . (3.17)

In view of the inequalities (3.14) and (3.17) we conclude that

C
lim(μ)+

1
2

∫
dμ ≤

∫
dμ ≤ m ,

then μ is optimal for the problem (3.1.1) .
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Conversely, assume that μ is optimal for the problem (3.1.1), and let ξ be optimal
for the dual form (3.4) of C lim(μ), that is∫

Q
j∗(ξ )dμ = C

lim(μ) . (3.18)

Set σ :=
(

ξ ′ μ
2√η ,

ξ 3 μ√
Y

)
, and notice that it is admissible for problem (3.9). If we prove

that ∣∣∣∣∣
(

ξ
′

2√η
,

ξ 3√
Y

)∣∣∣∣∣≤ 1 μ−a.e. (3.19)

we are done: indeed in this case σ is optimal for (3.9) because∫
|σ |=

∫ ∣∣∣∣dσ
d μ

∣∣∣∣ dμ ≤ ∫
dμ = m .

Let us prove (3.19). By (3.18), if (vk,uk) is a minimizing sequence for C lim(μ), one
has∫
Q
j ∗(ξ )dμ =C

lim(μ)= lim
k

{
〈G,vk〉R3+〈H,uk〉R3−

∫
Q
j
(
e13(vk),e23(vk),e33(uk)

)
dμ

}
.

(3.20)
For every k, by (3.15), (3.16) and the definition of σ , it holds

〈G,vk〉R3 + 〈H,uk〉R3 =
∫
Q
ξ · (e13(vk),e23(vk),e33(uk)) dμ . (3.21)

Now, by arguing in a similar way as in the proof of Proposition 3.1.1 (see also [14,
Corollary 2.4]) , we observe that the minimizing sequence (vk,uk) can be chosen so
that j(e13(vk),e23(vk),e33(uk))≤ 1

2 on Q.
Denote by χ a cluster point of (e13(vk),e23(vk),e33(uk)

)
in L2

μ(Q;R3). Then we have

j(χ)≤ 1
2

μ-a.e. (3.22)

and
liminf

k

∫
Q
j
(
e13(vk),e23(vk),e33(uk)

)
dμ ≥

∫
Q
j
(
χ)dμ . (3.23)

By (3.20), (3.21) and (3.23), we obtain the following converse Fenchel inequality∫
Q
j ∗(ξ )dμ ≤

∫
Q
ξ ·χ dμ−

∫
Q
j
(
χ)dμ .

Hence
ξ = j ′(χ) = (4ηχ1,4ηχ2,Yχ3) , (3.24)

where the second equality follows by recalling the explicit form of j.
In turn, (3.24) gives (3.19) in view of (3.22):∣∣∣∣∣

(
ξ
′

2√η
,

ξ 3√
Y

)∣∣∣∣∣
2

=
∣∣∣(2√η χ ′ ,

√
Y χ3)

∣∣∣2 = 2 j(χ)≤ 1 μ−a.e.

�
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3.3. Concentration phenomena

3.3 Concentration phenomena

We conclude the Chapter by studying the behavior of optimal configurations for small
filling ratios, considering the loads introduced in paragraph 2.1.3.

Thanks to Proposition 3.1.1, in order to determine optimal measures μ for problem
(3.6), one is reduced to study the solutions σ to the dual problem (3.9), more precisely
there holds μ = |σ |. Moreover, in view of (3.11), σ solves, section by section, an
infimum problem of the form

m(r(x′), t,s0,s1,s2) := inf
σ∈M (D;R3)

{∫
D
|σ | : div(σ1,σ2) = r(x′) ,

∫
D
(x1σ2− x2σ1) = t ,∫

D
σ3 = s0 ,

∫
D
xασ3 = sα

}
(3.25)

with r(x′) ∈ H−1(D) and t,si ∈ R depending on the components G and H of the load.
For some choices of the loads, problem (3.25) is pretty tractable since some of the

parameters {r, t,si} vanish.
In what follows, when there is no ambiguity, we omit the parameters that vanish in

the argument of m, and we assume for simplicity η = 1.
First, in §3.3.1, we present the case of pure torsion loads with null vertical compo-

nent, namely the case r= si = 0 in (3.25): it turns out that, when the cross section D of
the rod is a convex set, the material distribution tends to concentrate, section by section,
near the boundary of its Cheeger set. Let us recall that, under the assumption that D is
convex, its Cheeger set is the unique solution to the problem

inf
E⊂D,11E∈BV (R2)

∫
R2 |∇11E |
|E| (3.26)

(for more details about the Cheeger problem, see paragraph 1.4.3).
In §3.3.2 we deal with pure vertical loads H, namely the case r = t = 0 in (3.25):

it turns out that the material distribution tends to concentrate, section by section, near
some portions of the lateral surface of the design region.

Finally, in §3.3.3 and §3.3.4, we study the cases si = 0 and r = 0 respectively: here
the optimal measures can’t be characterized explicitly, nevertheless the study brings
into play two interesting variants of the Cheeger problem for D.

3.3.1 The case r = si = 0

Theorem 3.3.1. Assume that G3 = H = 0 and that D is convex. Denote by C the
Cheeger set of D. Then the unique solution to problem (3.9) is

σ :=
1

2
√
η
MG(x3)⊗ 1

|C|τ∂C(x
′)H 1 ∂C , (3.27)

and hence the unique solution μ to problem (3.6) is

μ =
1
2
|P0(mG)(x3)|⊗ 1

|C|H
1�∂C . (3.28)
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Chapter 3. Optimal design in thin rods: the small volume fraction limit

We remark that to the best of our knowledge, until now there was no rigorous state-
ment and proof for this geometric characterization of optimal “light” torsion rods in
terms of Cheeger sets. Let us emphasize that such characterization is valid only in pure
torsion.
Proof of Theorem 3.3.1 By assumption G3 = H = 0, then problem (3.9) reads

min
σ∈M (Q;R2)

{∫
Q
|(σ1,σ2)| : ∂1σ1+∂2σ2 = 0 , [[x1σ2− x2σ1]] =−P0(mG)

}
.

Since the constraints depend only on x3, solutions can be searched under the form

σ = γ(x3)⊗ν(x′) with γ ∈M (I) and ν ∈M (D;R2) .

It is easy to show that, up to constant multiples, the optimalmeasures (γ,ν) are uniquely
determined respectively by

γ(x3) =
P0(mG)

2
and ν solution of

m(0,−2,0,0,0) = inf
ν∈M (D;R2)

{∫
D
|ν| : divν = 0 ,

∫
D
(x1dν2− x2 dν1) =−2

}
.

Since D is simply connected, the condition of zero divergence implies that any admis-
sible ν is of the form ν = (−D2u,D1u), for some u in the space BV0(D) of bounded
variation functions which vanish identically outsideD. So that problemm(0,−2,0,0,0)
can be rewritten as

m(0,−2,0,0,0) =min
{∫

D
|Du| : u ∈ BV0(D) ,

∫
D
u= 1

}
.

This is precisely the relaxed formulation of problem (3.26) (see 1.18), and in the convex
framework has a unique solution u= |C|−111C, whereC is the Cheeger set of D. Hence
the unique solution σ of (3.9) is

σ =
1
2
P0(mG)(x3)⊗ 1

|C| τ∂C(x
′)H 1�∂C ,

namely (3.27), in particular the optimal measure μ is given by (3.28). �

In view of this result, if we consider G as in (2.24) of Example 2.1.1, with c= 2|C|,
we obtain

μ = 11I(x3)⊗H 1�∂C(x′) , (3.29)

and its support is represented in Figure 3.1.

3.3.2 The case r = t = 0

Let us now consider the case in which both G3 and P0(mG) vanish, as it happens if
G ≡ 0. As an example, let us consider a design region having as section D the square
[−1,1]2. A similar procedure can be performed also for general geometries.
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3.3. Concentration phenomena

Figure 3.1: The support of μ in the case G3 = H = 0, mG = c(δ−1/2− δ1/2), the section D
being the square.

Before stating the result, let us introduce a family of subsets of the section D, de-
pending on a triple of parameters s= (s0,s1,s2). For every s ∈ R3 \{0}, we define the
setsM+(s) and M−(s) according to the scheme (3.30): let us associate to the parameter
si the symbol + if si =max j |s j|, the symbol − if −si = max j |s j|, and the symbol 0 if
|si|<max j |s j| .

The cases not included in (3.30), corresponding to the opposite signature of the
triples (s0,s1,s2), can be deduced by interchanging the role of M+ and M−.

We remark that, depending on the sign of si and whether they satisfy max |si| or not,
the sets M± can be the empty set, the entire square D, one of the segments of ∂D, or
one of the corners of the square {(i, j)}i, j∈{±1}.
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Chapter 3. Optimal design in thin rods: the small volume fraction limit

s0 s1 s2 M+ M−

+ 0 0 D /0

0 + 0 {+1}× [−1,1] {−1}× [−1,1]

0 0 + [−1,1]×{+1} [−1,1]×{−1}

+ + 0 {+1}× [−1,1] /0

+ − 0 {−1}× [−1,1] /0

+ 0 + [−1,1]×{+1} /0

+ 0 − [−1,1]×{−1} /0

0 + + {(1,1)} {(−1,−1)}

0 + − {(−1,1)} {(1,−1)}

+ + + {(1,1)} /0

+ − + {(−1,1)} /0

+ − − {(−1,−1)} /0

+ + − {(1,−1)} /0

(3.30)
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Proposition 3.3.1. Assume that G ≡ 0 and D is the square [−1,1]2. Hence a solution
μ to problem (3.6) is of the form

μ = |ρopt|(x′,x3) ,
where ρopt ∈M (Q) satisfies, for a.e. x3 ∈ I, the following system:⎧⎪⎪⎨⎪⎪⎩

∫
D |ρopt |=maxi=0...2 |si(x3)| ,∫
Dρopt = s0(x3) ,∫
D xαρopt = sα(x3) ,

(3.31)

with
s(x3) :=

(
−P0(H3)√

Y
,−P(H1)√

Y
,−P(H2)√

Y

)
.

Moreover the support of an optimal measure satisfies

sptρopt
± ⊆M±(s(x3)) ,

M±(s) being the subsets of the section D introduced in (3.30).

Proof. Since G≡ 0, problem (3.10) reads

m=
∫
I
m
(
0,0,−P0(H3)√

Y
,−P(H1)√

Y
,−P(H2)√

Y

)
dx3 .

It is easy to prove that m(s1,s2,s3) is an infimum problem over scalar measures:

m(s) = inf
ρ∈M (D)

{∫
D
|ρ | :

∫
D
ρ = s0 ,

∫
D
xαρ = sα

}
. (3.32)

Hence every solution μ for m is of the form

μ = |ρopt|(x′,x3) ,

with ρopt(·,x3) optimal for m
(
−P0(H3)√

Y ,−P(H1)√
Y ,−P(H2)√

Y

)
.

Let us characterize the solutions ρopt of m(s).
To this aim we write the dual problem:

m∗(s∗0,s
∗
1,s
∗
2) = sup

s∈R3
{s · s∗−m(s)}

=− inf
s∈R3

inf
{∫
|ρ |− s · s∗ : ρ ∈M (D) ,

∫
ρ = s0 ,

∫
xαρ = sα

}
=− inf

ρ∈M (D)

{∫
D
(|ρ |− (s∗0+ s∗αxα)ρ)

}
= χK(D) , (3.33)

with K(D) defined as the following convex set:

K(D) := {s∗ ∈ R
3 : |s∗0+ xαs∗α | ≤ 1 ∀(x1,x2) ∈ D} .
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Chapter 3. Optimal design in thin rods: the small volume fraction limit

It is easy to prove that, in the case of the square D= [−1,1]2, the set K(D) is given by{
s∗ ∈ R

3 : ∑ |s∗i | ≤ 1
}
.

As a consequence we infer that m reads

m(s) = sup
s∗∈R3
{s · s∗−m∗(s∗)}= sup

s∗∈K
{s · s∗}=max{|si|} , (3.34)

in particular an optimal measure ρopt is characterized by (3.31).
In order to deduce information about the support of the positive and negative part of

ρopt we compare m and m∗: by the Fenchel equality, formula (4.2) and formula (3.34),
we infer that for every s∗ ∈ ∂m(s)∫

D
|ρopt |= s · s∗ =

∫
D
(s∗0+ xαs∗α)ρopt ,

that is ∫
D
|ρopt |− (s∗0+ xαs∗α)ρopt = 0 .

Then we have a precise information on the support of ρ +
opt and ρ −opt :{

sptρ +
opt ⊆ {x′ ∈ D : s∗0+ xαs∗α = 1} ,

sptρ −opt ⊆ {x′ ∈ D : s∗0+ xαs∗α =−1} .

By the arbitrariness of s∗ ∈ ∂m(s) we obtain

sptρopt
± ⊆M±(s) := ∩s∗∈∂m(s){x′ ∈ D : s∗0+ xαs∗α =±1} . (3.35)

We conclude by characterizing the sets M±. By definition, ∂m(s) reads

∂m(s) = {s∗ ∈ R
3 : s · s∗ =max{|si|} , ∑ |s∗i | ≤ 1} ,

and it can be characterized explicitly. Since ∂m(s) it is invariant under multiplication
by positive constant, namely

∂m(αs) = ∂m(s) ∀α > 0 ,

we give its expression for s such that m(s) = 1. Let ξ and ζ denote two arbitrary
constants with modulus less than 1, then

∂m(±1,ξ ,ζ ) = {(±1,0,0)} ,
∂m(±1,±1,ξ ) = {(±α,±β ,0)}α+β=1 , α,β≥0 ,

∂m(±1,±1,±1) = {(±α,±β ,±γ)}α+β+γ=1 , α,β ,γ≥0 ,

and analogous expressions hold true exchanging the roles of si.
By combining these computations with (3.35) we obtain the representation (3.30) of
M±(s): depending on the sign of si and whether they satisfy max |si| or not, the sets
M± in which concentrates every optimal ρopt

± can be the empty set, the entire square
D, one of the segments of ∂D, or one of the corners of the square {(i, j)}i, j∈{±1}.
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�

We remark that Example 2.1.4 falls into this category of problem. Let us consider
the particular case introduced in (2.30): in view of (2.31) we obtain that{

P0(H3) = b11I(x3) ,
P(Hα) = aα11I(x3) .

Hence any optimal measure μ is of the form

μ = 11I(x3)⊗|ρopt|(x′)
with ρopt solution for m(s) with

s0 =− b√
Y
, sα =− aα√

Y
.

The subset of the boundary in which μ concentrates depends on the values of the pa-
rameters aα and b, according to the scheme in table (3.30). Some particular choices are
represented in Figure 3.2 and 3.3.

Figure 3.2: In Example 2.1.4, con-
sidering the choice a2 = b = 0 and
a1 = −√Y in the definition (2.30)
of f , a particular solution is μ =
H 2�{±1}×[−1/4,1/4]×[−1/2,1/2]

Figure 3.3: In Example 2.1.4, considering
the choice a1 = b =

√
Y and a2 = −

√
Y

in the definition (2.30) of f , a particular
solution is
μ =H 1�{1}×{−1}×[−1/2,1/2]

Remark 3.3.1. In general the solution μ of problem (3.6) is not uniquely determined,
unless its support is localized, section by section, in a single point of ∂D (see table
(3.30)).

Moreover, we remark that in view of (3.30) it is clear that there is no superposition
of solutions: a solution of problem m(s) might not be the superposition of solutions of
problems m(s0,0,0), m(0,s1,0) and m(0,0,s2), since its support must satisfy stricter
constraints.

3.3.3 The case si = 0

Let us consider the case in which H = 0 and G is the admissible load introduced in
Example 2.1.3: the a load concentrated on the whole boundary of Q and, according to
(2.27) and (2.28), satisfies {

G3 =−hH 1 ∂D
mG = ch(δ−1/2−δ1/2)(x3)

(3.36)
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Chapter 3. Optimal design in thin rods: the small volume fraction limit

with h ∈ L2
m(∂D) and ch a constant depending on h (see (2.28) for the exact definition).

In the next proposition we see that the characterization of an optimal measure μ for
problem (3.9) brings into play a variant of the Cheeger problem.

Proposition 3.3.2. Assume that G satisfies (3.36) and that D is simply connected.
Hence a solution μ for problem (3.9) is of the form

μ = 11I(x3)⊗|Du+q|(x′) , (3.37)

where q ∈ L2(D) satisfies q · τ ∂D= h and u is a solution for

min
{∫
|Du+q| : u ∈ BV0(D) ,

∫
D
u=C(q,h)

}
, (3.38)

C(q,h) being a suitable constant depending just on q and h.

Proof. In view of (3.36) and since H ≡ 0, an optimal measure μ is of the form

μ = 11I(x3)⊗|σ |(x′) ,
with σ = (σ1,σ2) solution of

m(hH 1�∂D,−ch) = inf
σ∈M (D;R2)

{∫
D
|σ | : ∂1σ1+∂2σ2 = hH ∂D,∫

D
(x1 dσ2− x2 dσ1) =−ch

}
.

(3.39)

Since D is simply connected, any admissible σ can be written ad σ = (−∂2u,∂1u) for
some u in the space BV (D) of bounded variation functions such that{

∂τu= h on ∂D ,∫
D x′ ·Du=−ch .

(3.40)

Hence we can reformulate problem (3.39) as

inf
{∫

D
|Du| : u ∈ BV (D) , ∂τu= h on ∂D ,

∫
D
x′ ·Du=−ch

}
. (3.41)

Let us fix a primitive P of h, that is

P ∈ H1(D) , ∇P · τ�∂D= h .

Let u ∈ BV (D) be admissible for problem (3.41), then ∂τu = ∂τP on ∂D, that is
(u−P)�∂D= c(u) for some constant c(u) ∈ R. An easy computation leads∫

D
u=

1
2

∫
∂D

ux′ ·n− 1
2

∫
D
x′ ·Du=

1
2

∫
∂D

(P+ c(u))x′ ·n+ ch
2

=
1
2

∫
∂D

P(x′ ·n)+ c(u)
2

∫
∂D

x′ ·n+ ch
2

.
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Let us now consider ũ := u−P− c(u): exploiting the properties of u, P and the defini-
tion of c(u) we infer⎧⎪⎪⎨⎪⎪⎩

ũ ∈ BV0(D) ,
Dũ= Du−∇P ,∫
D ũ=

(1
2
∫
∂DP(x′ ·n)− ∫

DP
)
+ ch

2 + c(u)
(1
2
∫
∂D x′ ·n−|D|) .

(3.42)

Integrating by parts it is easy to show that

1
2

∫
∂D

x′ ·n= |D| , (3.43)

hence
∫
D ũ does not depend on the constant c(u). In view of (3.42) and (3.43), we can

rewrite problem (3.41) as follows:

min
{∫
|Du+∇P| : u ∈ BV0(D) ,

∫
D
u=C(P,h)

}
, (3.44)

C(P,h) :=
1
2

∫
∂D

P(x′ ·n)−
∫
D
P+

ch
2

.

Finally, denoting by q := ∇P we obtain the formulation (3.38). �

In this case problem (3.9) amounts to solve a “modified” Cheeger problem: in (3.38)
the admissible functions are the same appearing in the classical version of Cheeger
problem, while the functional to minimize is perturbed by the vector field q.

3.3.4 The case r = 0

In this last paragraph we focus our attention on the case in which the parameter r
appearing in (3.9) vanishes. An explicit example is given by taking the componentG as
in Example (2.1.1) and the component H as in Example (2.1.4). Let us recall the data
of such a problem: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

G3 = 0
mG = c11I(x3)
P0(H3) = b11I(x3) ,
P(Hα) = aα11I(x3) .

As already noticed a solution μ for problem (3.6) is of the form

μ = 11I(x3)⊗|σ |(x′) ,
with σ(x′) solving problem m(0,−c,−b,−a1,−a2).

In view of the properties found in §3.3.1 and §3.3.2, in which we studiedm(0,−c,0,0,0)
and m(0,0,−b,−aa,−a2) respectively, we expect that a solution μ for problem (3.6),
section by section, is linked with some variant of the Cheeger problem.

If in addition we consider D simply connected, exploiting the assumption r = 0 we
infer that σ = (−D2u,D1u,ρ), with (u,ρ) optimal for problem

inf
{∫

D
|(Du,ρ)| : u ∈ BV0(D) ,

∫
D
u=

c
2
, ρ ∈M (D) ,

∫
D
ρ = b ,

∫
D
xαρ = aα

}
.
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Chapter 3. Optimal design in thin rods: the small volume fraction limit

In the Proposition 3.3.3 we characterize an optimal couple (Du,ρ), enlightening the
role of the Cheeger problem.

Before stating the result, let us introduce some useful notations and preliminary
lemmas.

For every t ∈ R, s ∈ R3 let us define m(t,s) as the following infimum problem:

inf
{∫

D
|(Du,ρ)| : u ∈ BV0(D) ,

∫
D
u= t , ρ ∈M (D) ,

∫
D
ρ = s0 ,

∫
D
xαρ = sα

}
,

(3.45)
we underline that it is a reparametrization of the usual problem m introduced in (3.11),
considering t/2 instead of t.

Let K(D) be the convex subset of R4

K(D) := {(λ ,s∗)∈R×R3 : ∃σ ∈ L2(D;R2) st −divσ = λ , |σ |2+|s∗0+xα s∗α |2≤ 1 inD} .
Finally, for every s∗ ∈ R3 such that |s∗0 + xαs∗α | ≤ 1 we denote by αs∗ the positive
function

αs∗(x′) :=
√

1−|s∗0+ xαs∗α |2 , (3.46)

defined in D.

Lemma 3.3.1. For every (λ ,s∗) ∈ R×R3, the dual problem m∗(λ ,s∗) reads

m∗(λ ,s∗) = χK(D) .

Moreover the convex set K(D) can be represented as the union of intervals as follows

K(D) =
⋃

{s∗:|s∗0+xα s∗α |≤1}
[−λ (s∗),λ(s∗)]×{s∗} ,

with λ (s∗) defined as

λ (s∗) := sup{λ : ∃σ ∈ L2(D;R2) st −divσ = λ , |σ | ≤ αs∗(x′) a.e. in D} . (3.47)

Proof. By definition of Fenchel transform, the dual problem of m reads

m∗(λ ,s∗) = sup
(t,s)
{tλ + s · s∗−m(t,s)}

= sup
(u,ρ)

{∫
D
uλ +

∫
D
(s∗0+ sαx∗α)ρ−

∫
D
|(Du,ρ)|

}
.

Hence m∗(λ ,s∗) = 0 if the couple (λ ,s∗) satisfies∫
D
|(Du,ρ)|−

∫
D
[λu+(s∗o+ xαs∗α)ρ ]≥ 0 ∀(u,ρ) ∈ BV0(D)×M (D) (3.48)

and +∞ otherwise. Exploiting the definition of total variation, it is easy to show that
the set of (λ ,s∗) satisfying (4.64) is given by K(D). The alternative characterization of
K(D) can be easily deduced by considering the sections of such convex set for every
fixed s∗. �
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Lemma 3.3.2. The variational problem (3.47) admits the following dual formulation:

inf
{∫

D
αs∗ |Dw| : w ∈ BV0(D),

∫
D
w= 1

}
, (3.49)

where αs∗ is the non negative function defined in (3.46).

Problem (3.49) is a version of the relaxed formulation of the Cheeger problemwith a
weigh α that varies in D. This variant of the Cheeger problem has been treated recently
by Ionescu and Lachand-Robert in [69]: in the paper the authors present the case in
which both the integral to minimize and the integral in the constraint are weighted;
their study is motivated by applications to landslides modeling.

Proof of Lemma 3.3.2. For every p ∈ R, let us consider the infimum problem

f (p) := inf
{∫

D
ϕ(Aw) : w ∈ BV0(D),

∫
D
w= p

}
.

with ϕ the convex function ϕ(z) := αs∗ |z| (we recall that αs∗ is assumed to be positive)
and Aw := Dw. In particular problem (3.47) equals f (1). An easy computation gives

f ∗(p∗) = inf
{∫

D
ϕ∗(σ) : −A∗σ = p∗

}
.

Since Aw= Dw we have A∗σ = divσ , moreover ϕ∗(z∗) = χ|z∗|≤αs∗ . Hence

f ∗(p∗) =
{

0 if ∃σ : −divσ = p∗, |σ | ≤ α
+∞ otherwise

By definition of Fenchel transform we infer

f (p) = sup
p∗
{p p∗ − f ∗(p∗)}= sup{p p∗ : ∃σ : −divσ = p∗, |σ | ≤ α} . (3.50)

Recalling that (3.47) equals f (1), formula (3.50) with p= 1 gives (3.49). �

Proposition 3.3.3. Let (λ ,s∗) ∈ ∂m(t,s). Then an optimal couple (Du,ρ) for problem
m(t,s) defined in (3.45) satisfies

(i) −div
(
αs∗(x′) Du

|Du|
)
= λ ;

(ii) the singular part ρs of ρ with respect to |Du| concentrates on the straight lines
{s∗0+ xαs∗α =±1} ;

(iii) the absolutely continuous part ρa of ρ with resect to |Du| satisfies

ρa =
s∗0+ xαs∗α
αs∗(x′)

|Du| .
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Proof. It is easy to prove that (u,ρ) is an optimal couple for problem m(t,s) defined in
(3.45) if and only if there exists (λ ,s∗) ∈ ∂m(t,s) such that∫

D
|(Du,ρ)|=

∫
D
σ ·dDu+

∫
D
(s∗0+ xαs∗α)dρ , (3.51)

with σ associated to λ according to the definition of K(D), namely such that{ −divσ = λ in D
|σ | ≤ αs∗(x′) in D

(3.52)

Let us decompose the measures |Du| and ρ as follows:

ρ = ρs+ρa , with ρa << |Du| , ρs⊥|Du| .
θ :=

dρa
d|Du| ,

v :=
dDu
d|Du| .

In view of (3.51), it is clear that that ρs concentrates on the straight lines {s∗0+ xαs∗α =
±1}. Let us consider the absolutely continuous part. Using the notation above, the
integrand in the left hand side of (3.51) reads

|(Du,ρ)|=
√

1+θ2 d|Du| . (3.53)

Recalling that |(σ ,s∗0+ xαs∗α)| ≤ 1, the condition (3.51) implies that

(σ ,s∗0+ xαs∗α) =
(Du,ρ)
|(Du,ρ)| .

In view of (3.53) we obtain

σ =
v√

1+θ2
, s∗0+ xαs∗α =

θ√
1+θ2

.

that is
σ = αs∗(x′)

dDu
|dDu| , θ =

s∗0+ xαs∗α
αs∗(x′)

.

Hence, recalling that σ satisfies (3.52), we conclude that

−div
(
αs∗(x′)

Du
|Du|

)
= λ .

�
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CHAPTER4
A nonstandard free boundary problem arising in

the shape optimization of thin torsion rods

In this Chapter we face the question that raised in §2.4.4, about the existence of classical
solutions for the compliance optimization problem in thin torsion rods:

Does problem φ(k) admit a solution θ taking values into {0,1} ? (4.1)

As we already noticed, problem φ(k) in (2.42) can be solved section by section (see
(2.91)) and, in pure torsion regime, turns out to be linked to the following variational
problem set in the plane.

Let D be a bounded and connected domain in R2 , let s be a real parameter, and
consider the variational problem

m(s) := inf
{∫

R
2
ϕ(∇u) : u ∈ H1

c (D) ,
∫
R
2
u= s

}
, (4.2)

where
H1

c (D) :=
{
u ∈ H1(R2) : ∇u= 0 on R

2 \D}
and the integrand ϕ :R2→R is the following convex but non-strictly convex function:

ϕ(y) :=

{ |y|2
2 + 1

2 if |y| ≥ 1

|y| if |y|< 1 .
(4.3)

Notice that functions in H1
c (D) must vanish identically on the unique unbounded

connected component of R2 \D; in particular, if D is simply connected, functions in
H1

c (D) are elements of the usual Sobolev space H1
0 (D), extended to zero out of D.
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−1 1

ϕ(|y|)

Figure 4.1: The integrand ϕ is a radial function, convex but non-strictly convex in the ball of
radius 1.

More generally, if D= D0 \∪ki=1Di, where Di (i= 0,1, . . . ,k) are Jordan domains with
mutually disjoint boundaries, functions in H1

c (D) are extensions to zero of elements of
H1

0 (D0) which are constant on each Di for i= 1, . . . ,k.

Definition 4.0.1. We say that u is a special solution to m(s) if it minimizes (4.2) and
satisfies the following constraint on the gradient:

|∇u| ∈ {0} ∪ (1,+∞) a.e. in D .

Below and throughout the Chapter, we adopt the following notation: if u is a special
solution to problem m(s), we call the plateau of u, and we denote it by Ω(u), the set
{∇u = 0} minus the unbounded connected component of R2 \D (where u ≡ 0). The
set Γ(u) := ∂Ω(u)∩D will be called the free boundary of u (see Figure 4.2).

D \ Ω(u)

u = 0

∇u = 0

∇u = 0

∇u = 0

|∇u| > 1

Figure 4.2: Behavior of special solutions.

In this framework, considering D as the cross section of a rod and s suitably cho-
sen according to (2.104) (we recall that s is proportional to 1/

√
k), question (4.1) is

equivalent to ask

Does problem m(s) admit a special solution? (4.4)

More precisely, given θ a solution for φ(k) on a fixed section and u a solution for m(s),
the following relations hold true:

Ω(u) = {θ = 0} , {|∇u|> 1}= {θ = 1} , {|∇u| ∈ (0,1)}= {θ ∈ (0,1)} ,
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in particular if u is not special, namely if |∇u| falls into the region of non-strict convex-
ity of ϕ , homogenization phenomena occur.

In the light of the above discussion, the results presented in the next Sections can
be applied to study the influence of the section’s shape and of the filling ratio on the
presence of homogenization regions in optimal thin torsion rods.

Let us emphasize that no precedent exists in this direction within the study of op-
timal thin plates. Indeed in that case the limit model obtained starting from three-
dimensional elasticity through a 3d-2d dimension reduction process always admits
classical “set” solutions, under the form of sandwich-like structures ( [19], see also
[14]).

The Chapter is organized as follows. In Section 4.1 we find necessary and sufficient
optimality conditions, we deduce some consequences on the behavior of solutions to
m(s) (including a uniqueness criterion), and we studym(s) as a function of s. In Section
4.2 we give some preliminary results about Cheeger sets.
In Section 4.3 we prove the existence and uniqueness of special solutions to m(s) when
D is a ball or a ring.
In Section 4.4 we prove the existence of special solutions to m(s) for some domain D,
different from those considered in Section 4.3.
In Section 4.5 we obtain qualitative properties of solutions and of special solutions.
In Section 4.6 we present some open problems and possible advances.

4.1 Existence, uniqueness, optimality conditions, and dependence on
the parameter s .

The contents of this section are organized as follows: in §4.1.1 we study the minimiza-
tion problem m(s) in its primal formulation (4.2): we prove the existence of solutions,
and a necessary and sufficient condition for optimality; in §4.1.2 we give the dual form
of problem m(s), we derive the corresponding optimality conditions and some of their
consequences; in §4.1.3 we show some properties of m(s) seen as a function of the
parameter s.

4.1.1 Primal problem

We begin by establishing the existence of minimizers for m(s), and their characteriza-
tion as solutions to a variational inequality.

Proposition 4.1.1. For every s ∈R, the infimum m(s) is achieved in H1
c (D). A function

u ∈ H1
c (D) is optimal if and only if∫
{∇u=0}

|∇v|+
∫
{∇u�=0}

〈∇ϕ(∇u),∇v〉 ≥ 0 ∀v ∈ H1
c (D) :

∫
R
2
v= 0 .

Proof. We observe that, since functions in H1
c (D) vanish in the unbounded connected

component of R2\D, by Poincaré inequality there exists a positive constantC such that

‖u‖H1(R2) ≤C‖∇u‖L2(R2) ∀u ∈ H1
c (D) .
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Combined with the coercivity of ϕ (in fact ϕ(y) ≥ |y|22 ), this ensures that every min-
imizing sequence for problem m(s) is weakly relatively compact in H1(R2). Clearly
any cluster point belongs to H1

c (D). On the other hand, by the convexity of ϕ , the in-
tegral functional Iϕ(u) :=

∫
R
2 ϕ(∇u) is weakly lower semicontinuous on H1(R2) (see

Theorem 1.2.3). Therefore the existence of at least one solution follows from the direct
method of Calculus of Variations. Considering all the variations compatible with the
integral constraint, it is straightforward to check that a minimizer u is characterized by
the variational inequality δ Iϕ(u,v) ≥ 0 for all v ∈ H1

c (D) such that
∫
R
2 v= 0. Here the

directional derivative δ Iϕ(u,v) is given by

δ Iϕ(u,v) = lim
ε→0+

1
ε
[
Iϕ(u+ εv)− Iϕ(u)

]
=

∫
{∇u=0}

|∇v|+
∫
{∇u�=0}

〈∇ϕ(∇u),∇v〉 .

�

4.1.2 Dual problem

We are going to explicit the dual formulation of problem m(s). An easy computation
shows that the Fenchel conjugate of ϕ is given by

ϕ∗(ξ ) =

{
1
2 |ξ |2− 1

2 if |ξ |> 1

0 if |ξ | ≤ 1 .
(4.5)

−1 1

ϕ∗(ξ)

Figure 4.3: The Fenchel conjugate ϕ is a radial function, convex but non-strictly convex in the
ball of raius 1.

Moreover let us introduce, for every λ ∈ R, the class of vector fields

Sλ (D) :=
{
σ ∈ L2(R2;R2) : spt(σ)⊆ D ,

∫
R
2
σ ·∇u= λ

∫
R
2
u ∀u ∈ H1

c (D)
}
.

(4.6)
By taking as test functions u in (4.6) elements of H1

0 (D) extended to zero out of D,
one can see that every σ ∈ Sλ (D) satisfies the condition −divσ = λ in D. In the
special case when D is simply connected, all functions u ∈ H1

c (D) are of this type, so
thatSλ (D) can be characterized as

Sλ (D) =
{
σ ∈ L2(R2;R2) : spt(σ)⊆ D , −divσ = λ in D

}
. (4.7)
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More in general, if D=D0 \∪ki=1Di, where Di (i= 0,1, . . . ,k) are Jordan domains with
mutually disjoint boundaries, one has

Sλ (D) =
{
.σ ∈ L2(R2;R2) : spt(σ)⊆ D ,

−divσ = λ in D ,
∫
∂Di

σ ·n(i) =−λ |Di| ∀i = 1, . . . ,k
}
,

being n(i) the unit outer normal to ∂Di.

Lemma 4.1.1. The map s 
→ m(s) is a convex even function on R, whose Fenchel con-
jugate is given by

m∗(λ ) =min
{∫

R
2
ϕ∗(σ) : σ ∈Sλ (D)

}
. (4.8)

Proof. Recalling definition (4.2), since the integrand ϕ is convex and even, we obtain
immediately that the map s 
→ m(s) is a convex even function on R. Its Fenchel conju-
gate is given by

m∗(λ ) = sup
s∈R

{
λ s−m(s)

}
= sup

u∈H1
c (D)

{
λ
∫
R
2
u−

∫
R
2
ϕ(∇u)

}
∀λ ∈ R . (4.9)

By seeing the constant λ as an element of the dual space of H1
c (D), we may rewrite

(4.9) as the Fenchel conjugate of a composition:

m∗(λ ) =
(
Iϕ ◦A

)∗
(λ ) ,

where Iϕ : L2(R2;R2)→R is the integral functional Iϕ(y) =
∫
R
2 ϕ(y), and A :H1

c (D)→
L2(R2;R2) is the gradient mapping Au = ∇u. Then, since Iϕ is convex continuous
whereas A is a bounded linear operator, by Lemma 1.1.2, we have

m∗(λ ) =min
{
(Iϕ)∗(σ) : σ ∈ L2(R2;R2) , spt(σ)⊆ D , A∗σ = λ

}
.

The above equality entails (4.8), by taking into account that (Iϕ)∗= Iϕ∗ (see Proposition
1.2.1), and by observing that A∗σ = λ holds if and only if σ belongs to the subset
Sλ (D) given in (4.6).

�

We can now give the optimality conditions which characterize solutions to problems
m(s) and m∗(λ ).

Proposition 4.1.2. Let s,λ ∈ R, u ∈ H1
c (D), and σ ∈ L2(R2;R2). There holds the

following equivalence

(i)

⎧⎪⎨⎪⎩
u solution to m(s)
σ solution to m∗(λ )
λ ∈ ∂m(s) .

⇐⇒ (ii)

⎧⎪⎪⎨⎪⎪⎩
∫
R
2
u= s

σ ∈Sλ (D)
σ ∈ ∂ϕ(∇u) a.e.
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Proof. [(i) ⇒ (ii)] Let s,λ ,u,σ satisfy (i). In particular, since by definition u and
σ are admissible in problems (4.2) and (4.8) respectively, they satisfy

∫
R
2 u = s and

σ ∈Sλ (D). Thus we only have to show that σ ∈ ∂ϕ(∇u) a.e. Since λ ∈ ∂m(s), the
Fenchel equality is satisfied

m(s)+m∗(λ ) = sλ ,

that is, thanks to the optimality of u and σ in (4.2) and (4.8),∫
R
2
ϕ(∇u)+

∫
R
2
ϕ∗(σ) = sλ = λ

∫
R
2
u=

∫
R
2
∇u ·σ , (4.10)

which implies σ ∈ ∂ϕ(∇u) a.e.
[(ii) ⇒ (i)] Let s,λ ,u,σ satisfy (ii). By the first two conditions in (ii), u and σ

are admissible in problems (4.2) and (4.8) respectively. Moreover, the third condition
σ ∈ ∂ϕ(∇u) a.e. implies that (4.10) holds. Hence∫

R
2
ϕ∗(σ) = λ s−

∫
R
2
ϕ(∇u)≤ λ s−m(s)≤ m∗(λ ) . (4.11)

Therefore, σ is a solution to m∗(λ ), and all the inequalities in (4.11) hold with equality
sign. This implies that u is a solution to m(s) and that λ ∈ ∂m(s). �

Let us examine more in detail the condition σ ∈ ∂ϕ(∇u) a.e., appearing in Propo-
sition 4.1.2. The convex integrand ϕ is differentiable at every y �= 0, whereas its sub-
differential at 0 is given by ∂ϕ(0) = {|y| ≤ 1}. Therefore, the inclusion σ ∈ ∂ϕ(∇u)
always holds true on R2 \D, where σ = 0 and ∇u = 0. On the other hand, in view of
the structure of the subdifferential of radial functions explained in Example 1.1.2, we
infer that the same inclusion can be rewritten more explicitly on the different regions
of D as ⎧⎪⎪⎨⎪⎪⎩

σ = ∇u on
{
x ∈ D : |∇u(x)|> 1

}
σ = ∇u

|∇u| on
{
x ∈ D : 0< |∇u(x)| ≤ 1

}
|σ | ≤ 1 on

{
x ∈ D : |∇u(x)|= 0

}
.

(4.12)

These equalities have several implications, which are listed in the next corollaries.
First of all, the region where solutions u to problem m(s) satisfy the condition |∇u|> 1
turns out to be uniquely determined by s, together with the value of ∇u on it. More
precisely we have:

Corollary 4.1.1. There exist a measurable subset Qs of D and a functionψs ∈ L2(Qs;R2)
such that, for any solution u to problemm(s) and any solution σ to problemm∗(λ ), with
λ ∈ ∂m(s), it holds

{|∇u|> 1}= {|σ |> 1}= Qs and ∇u= σ = ψs a.e. on Qs , (4.13)

where the first equality is intended up to Lebesgue negligible sets.
Moreover, Qs = Qt and ψs = ψt whenever ∂m(s)∩∂m(t) �= /0.
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Proof. It is enough to observe that the equalities in (4.55) hold true, choosing λ ∈
∂m(s), an arbitrary solution u to problem m(s), and an arbitrary solution σ to problem
m∗(λ ): it follows that the sets where {|∇u| > 1} and {|σ |> 1}, and the values of ∇u
and σ on them, only depend on s. Moreover, such sets and values agree as soon as there
exists some λ ∈ ∂m(s)∩∂m(t). �

From Corollary 4.1.1 we derive the following uniqueness criterion:

Corollary 4.1.2. If there exists a special solution to problem m(s), then there is no
other solution.

Proof. Let u be a special solution to m(s), and let ũ be another solution. From (4.13)
we infer

m(s) =
∫
{0<|∇ũ|≤1}

|∇ũ|+
∫
{|∇ũ|>1}

ϕ(∇ũ) =
∫
{0<|∇ũ|≤1}

|∇ũ|+
∫
Qs

ϕ(ψs)

=

∫
{0<|∇ũ|≤1}

|∇ũ|+
∫
R
2
ϕ(∇u) =

∫
{0<|∇ũ|≤1}

|∇ũ|+m(s) ,

hence the set {0 < |∇ũ| ≤ 1} is Lebesgue negligible. Then ∇ũ = ∇u a.e., i.e. the two
solutions u and ũ coincide a.e. up to an additive constant. As elements of H1

c (D), they
are both compactly supported, hence the additive constant is zero. �

As a further consequence of the equalities in (4.55), we get some information on
the gradient of special solutions on their free boundary:

Corollary 4.1.3. If u is a special solution for m(s) with a smooth free boundary Γ(u),
it holds

|∇u|= 1 on Γ(u) . (4.14)

Proof. If σ is a solution to problem m∗(λ ), with λ ∈ ∂m(s), by Proposition 4.1.2 we
know that σ ∈Sλ (D) and σ ∈ ∂ϕ(∇u) a.e. The former condition implies−divσ = λ
in D, the latter implies that |σ |> 1 or |σ | ≤ 1 according to whether |∇u|> 1 or ∇u= 0
(see (4.55) above). We deduce that∣∣σ ·nΓ(u)∣∣= 1 on Γ(u) ,

where nΓ(u) denotes the unit normal to Γ(u), pointing outsideΩ(u). This implies (4.14)
since

|σ ·nΓ(u)|= |∇u ·nΓ(u)|= |∇u| on Γ(u) .

�

115



Chapter 4. A nonstandard free boundary problem arising in the shape
optimization of thin torsion rods

4.1.3 Properties of the map s 
→ m(s)

Below we derive several properties of m(s), seen as a function of the real parameter s.
Firstly we give some bounds on it, and we determine its asymptotic behavior as s→ 0+
and s→+∞. To that aim we introduce two constants, τD and kD , through the following
variational problems set on the space H1

c (D):

τD := inf
{∫

R
2
|∇u|2 : u ∈ H1

c (D) ,
∫
R
2
u= 1

}
(4.15)

kD := inf
{∫

R
2
|∇u| : u ∈ H1

c (D) ,
∫
R
2
u= 1

}
(4.16)

When D is simply connected, the constants τD and kD are related to classical variational
problems.

More precisely, solving problem (4.15) allows to determine the torsional rigidity
of a cylinder with cross section D; indeed the Saint-Venant torsional stiffness of D,
namely the Dirichlet energy of the unique solution u∈H1

0 (D) to the equation−Δu= 2,
is given precisely by 4

τD
.

On the other hand, the relaxation of problem (4.16) in the space of BV functions,
leads to the theory of Cheeger sets; the relationship between the constant kD and the
Cheeger constant of D will be discussed more in detail in Section 4.2.

Proposition 4.1.3. The function m(s) satisfies the following bounds:

max
{
kD |s|,τD

s2

2

}
≤ m(s) ≤ 1

2
(
τD s

2+ |D|) .
Furthermore, it holds

lim
s→0+

m(s)
s

= kD , lim
s→+∞

m(s)
s2

=
τD

2
. (4.17)

Proof. The function ϕ defined by (4.3) satisfies the inequalities 1
2 |y|2≤ϕ(y)≤ 1

2(|y|2+
1). Therefore, by homogeneity, we are led to:

1
2
τD s

2 ≤ m(s) ≤ 1
2
(
τD s

2+ |D|) ,
which implies the second equality in (4.17).

On the other hand, since ϕ(y) ≥ |y|, it holds m(s)≥ kD|s|, thus liminfs→0+
m(s)
s ≥

kD .
Let u ∈ H1

c (D) such that
∫
R
2 u = 1 and s > 0. Since su is admissible for m(s) and

ϕ(s∇u)≤ s2 |∇u|2 on the set {|∇u|> 1
s}, we have

m(s)
s
≤ 1

s

∫
R
2
ϕ(s∇u) ≤

∫
{|∇u|≤ 1

s }
|∇u|+ s

∫
{|∇u|> 1

s }
|∇u|2.

Thus limsups→0+
m(s)
s ≤ ∫

R
2 |∇u| and the first equality in (4.17) follows by taking the

infimum with respect to u over H1
c (D).

�
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We now turn attention to the differentiability properties of m(s). Proposition 4.1.4
below shows in particular that, for any s > 0, the condition λ ∈ ∂m(s) appearing in
Proposition 4.1.2 turns out to determine λ uniquely, whereas this is not the case when
s= 0.

Proposition 4.1.4. (i) At every s> 0, m(s) is differentiable, and

m′(s) =
1
s

[
m(s)+

∫
Qs

(1
2
|ψs|2− 1

2
)]

, (4.18)

where Qs and ψs are defined according to Corollary 4.1.1.
(ii) The subdifferential of m at the origin is given by

∂m(0) = [−kD ,kD] ,

where kD is the constant defined in (4.16).

Remark 4.1.1. As a consequence of statement (ii) and of the convexity of m, we have
that m′(s)≥ kD for all positive s and the map s 
→m(s) is strictly increasing on (0,+∞).

Proof. (i) Let s > 0 be fixed, and let λ ∈ ∂m(s). If σ is a solution to m∗(λ ), by using
the expressions of m∗(λ ) and ϕ∗ given respectively by Lemma 4.1.1 and by (4.5), the
Fenchel equality reads

λ s= m(s)+m∗(λ ) = m(s)+
∫
R
2
ϕ∗(σ) = m(s)+

∫
{|σ |>1}

(1
2
|σ |2− 1

2
)
.

In view of Corollary 4.1.1, we conclude that λ is uniquely determined by the equality

λ s= m(s)+
∫
Qs

(1
2
|ψs|2− 1

2
)
.

Then ∂m(s) = {λ}, that is m′(s) = λ .

(ii) Since m is a convex even function, ∂m(0) is a bounded closed interval of the
form [−c,c], for some positive constant c. Moreover, c agrees with the right derivative

m′+(0) := lim
s→0+

m(s)−m(0)
s

.

Since m(0) = 0, by using the first equality in (4.17), we conclude that

m′+(0) = lim
s→0+

m(s)
s

= kD .

�

Thanks to Proposition 4.1.4, we deduce that no special solutions can exist for s
ranging in some open interval unless the map s 
→ m(s) is strictly convex on it.
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Proposition 4.1.5. Assume that the map s 
→ m(s) is affine on some interval [a,b] ⊂
{s ≥ 0}. Then, for any s ∈ (a,b], problem m(s) does not admit a special solution.
Moreover, if a = 0, for any s ∈ [0,b] any solution u to m(s) satisfies |∇u| ≤ 1 a.e., and
it holds m(s) = kD s.

Proof. We recall that the sets Qs and ψs are defined as in Corollary 4.1.1.
Let us assume that for some s ∈ [a,b] problem m(s) admits a special solution, so

that m(s) =
∫
Qs

ϕ(ψs), and let us show that necessarily s = a. By the assumption that
m is affine on [a,b], it follows that m′(s) = m′(t) for any other t ∈ [a,b]. Therefore,
in view of the last assertion of Corollary 4.1.1, for any t ∈ [a,b] it holds Qt = Qs and
ψt = ψs. Thus, denoting by ut a solution to m(t), we have

m(t) =
∫
{|∇ut |≤1}

|∇ut|+
∫
Qt

ϕ(ψt) =
∫
{|∇ut |≤1}

|∇ut |+
∫
Qs

ϕ(ψs)

=
∫
{|∇ut |≤1}

|∇ut|+m(s) .

In particular this implies m(t) ≥ m(s) and in turn, since m is strictly increasing, that
t ≥ s. By the arbitrariness of t ∈ [a,b], we conclude that s= a.

In the special case when a = 0, we get Qs = Q0 , for any s ∈ [0,b]. Clearly the
equalitym(0) = 0 implies |Q0|= 0. Therefore it holds |Qs|= 0 for any s ∈ [0,b], which
means that any solution u to problem m(s) satisfies |∇u| ≤ 1 and ϕ(∇u) = |∇u| a.e.,
hence the conclusion.

�

4.2 Link with the Cheeger problem

Recall that the Cheeger constant of a bounded and connected domain D is defined by

hD := inf
A⊂D
|∂A|
|A| , (4.19)

where the infimum is taken over all the subsets A of D with finite perimeter (for a more
detailed overview about the Cheeger problem see §1.4.3).

In this section we present some related properties which shed some light on the link
between the Cheeger constant hD and the minimization problem m(s).

We point out that the fact that the Cheeger problem comes into play is not surpris-
ing: indeed the role of Cheeger sets already emerged in the study of the compliance
optimization problem for vanishing filling ratios, in a rod-like set (see Theorem 3.3.1),
namely in the limit of φ(k) as k→+∞, moreover, since s is proportional to 1/

√
k (see

(2.104)), large values of k correspond to small values of s.
The first result in this direction is the relationship between hD and the constant kD

defined in (4.16):

Proposition 4.2.1. The constants hD and kD defined respectively in (4.19) and (4.16)
satisfy the inequality hD ≥ kD, with equality in case D is simply connected.
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Proof. The Cheeger constant introduced in (4.19) can also be recast as

hD = inf
{∫

D
|∇v| : v ∈ H1

0 (D) ,
∫
R
2
v= 1

}
. (4.20)

Then the statement follows by comparing (4.16) and (4.20). Indeed the space of exten-
sions to zero of functions in H1

0 (D) is included into H1
c (D), and coincides with it if D

is simply connected. �

Remark 4.2.1. The above statement can be generalized to the case when D = D0 \
∪ki=1Di, being Di (i = 0,1, . . . ,k) Jordan domains with mutually disjoint boundaries.
Indeed, thanks to the inclusionsH1

0 (D)⊂H1
c (D)⊂H1

0 (D0), there holds hD ≥ kD ≥ hD0
.

Moreover, the equality kD = hD0
holds as soon as there exists a Cheeger set C for D0

such that

∂C ∩
( k⋃

i=1
Di

)
= /0 , (4.21)

and also the equality hD = kD holds if in addition( k⋃
i=1

Di

)
⊂ (D0 \C) . (4.22)

Indeed, conditions (4.21) and (4.22) ensure respectively that the function 11C/|C| be-
longs not only to H1

0 (D0) but also to H1
c (D) and to H1

0 (D). For instance, in Figure 4.4
below, the set D0 is taken as a square, the grey region represents its Cheeger set, and
conditions (4.21) and (4.22) are satisfied if the holes Di are chosen respectively as in
the left and in the right pictures.

D0

Dj

Dk

Di D0Di

Figure 4.4: About conditions (4.21) and (4.22).

By combining Proposition 4.2.1 with Proposition 4.1.4 (ii) we obtain that, when D
is simply connected, there holds

∂m(0) = [−hD,hD] . (4.23)

This identity allows to obtain Proposition 4.2.2 below, that will be exploited in Section
4.4. Though it is already known in the literature (see in particular [9,62,71]), we prefer
to be self-contained and give a new proof of it, based on (4.23).
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We need to introduce some definitions. Let Ω⊂R2 be a bounded and connected set
with finite perimeter. We say that Ω is a Cheeger set of itself if

hΩ =
|∂Ω|
|Ω| .

Some examples of Cheeger sets of themselves are the ball, the ellipse and the annulus.
We say thatΩ is calibrable if there exists a calibration, namely a field σ ∈ L2(Ω;R2)

such that

−divσ = hΩ in Ω , ‖σ‖L∞(Ω) ≤ 1 , [σ ·nΩ] =−1 H
1-a.e. on ∂Ω .

Here [σ · nΩ] is meant as the weak notion of the trace of the normal component of
σ on ∂Ω, defined according to (5.7) (see also [7, Theorem 3.5] and [6, Theorem 1.2]
for the same definition in case ∂Ω is Lipschitz).

Proposition 4.2.2. Let Ω be a bounded and simply connected set with finite perimeter.
Then

Ω is Cheeger set of itself ⇐⇒ Ω is calibrable . (4.24)
Remark 4.2.2. Under the additional assumption that Ω is convex, it is known that each
of the two equivalent conditions in (4.24) holds true if and only if the mean curvature
of ∂Ω satisfies the uniform estimate ‖H∂Ω‖L∞(∂Ω) ≤ |∂Ω||Ω| , see [71].

Proof. Assume that Ω is calibrable, and let σ be a calibration. Integrating over Ω
the equality −divσ = hΩ, by the generalized divergence theorem (5.7) (see also [7,
Theorem 3.5]), since [σ ·nΩ] =−1H 1-a.e. on ∂Ω, we get hΩ = |∂Ω|/|Ω|.

Conversely, assume that hΩ = |∂Ω|/|Ω|. For every s ∈R, let m(s) be the variational
problem defined as in (4.2), settled on the domain D=Ω. Using the equality m(0) = 0
and Lemma 4.1.1, we obtain

∂m(0) =
{
λ : m∗(λ ) = 0

}
=
{
λ : ∃σ ∈Sλ (Ω) ,

∫
R
2
ϕ∗(σ) = 0

}
.

By recalling the expression of Fenchel conjugate of ϕ in (4.5), and the characterization
ofSλ (Ω) holding when Ω simply connected (cf. (4.7)), it follows

∂m(0) =
{
λ : ∃σ ∈ L2(R2;R2) , spt(σ)⊆Ω , −divσ = λ in Ω , ‖σ‖L∞(Ω) ≤ 1

}
.

(4.25)
On the other hand, by (4.23), we know that ∂m(0) = [−hΩ ,hΩ], that is

hΩ =max{λ ∈ R : λ ∈ ∂m(0)} . (4.26)

By combining (4.25) and (4.26), we infer that there exists σ ∈ L2(R2;R2) such that

spt(σ)⊆Ω , −divσ = hΩ in Ω , ‖σ‖L∞(Ω) ≤ 1 .

We claim that the restriction of such a field σ to Ω is a calibration for Ω (so that Ω is
calibrable). We only have to show that [σ · nΩ] = −1H 1-a.e. on ∂Ω . By integrating
again over Ω the equality −divσ = hΩ, we obtain∫

∂Ω
[σ ·nΩ]dH 1 =

∫
Ω
divσ =−hΩ|Ω|=−|∂Ω|.
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Since ‖σ‖L∞(Ω) ≤ 1, the above equality implies [σ · nΩ] = −1 H 1-a.e. on ∂Ω as re-
quired.

�

4.3 Existence and uniqueness of special solutions on a ball or a ring

In this section we show that, when D is a ball or a ring, problem m(s) has a unique
solution, which is a special one and has a circular plateau.

Proposition 4.3.1. Let R > 0 and let D = BR(0) be the ball of radius R centered at
the origin. Then, for every s ∈ R, problem m(s) admits a unique solution u, which is a
special solution. More precisely: if s = 0 then u ≡ 0; if s > 0, there exists r ∈ (0,R),
uniquely determined by the values of s and R, such that

u(x) =

⎧⎪⎨⎪⎩
R2−(|x|2∨ r2)

2r
if |x|< R

0 otherwise .

(4.27)

|x|

u(|x|)

r R0

Figure 4.5: The special solution u given by Proposition 4.3.1.

Proof. If s = 0 the function u ≡ 0 is clearly the unique solution to m(0), and it is a
special one. Assume s> 0. We begin by defining r as the unique number in the interval
(0,R) such that f (r) = s, where f is the map

f (t) :=
π
4

(
R4

t
− t3

)
+

∀t ∈ (0,R) .

Notice that r is well-defined because f is strictly decreasing from (0,R) onto (0,+∞).
Using (4.27), the relation f (r) = s and an integration by parts, it is straightforward to
check that

∫
R
2 u= s. Moreover, u belongs to H1

c (D) since its gradient over R2 is given
by

∇u(x) =

⎧⎨⎩−
x
r

if |x| ∈ [r,R ]

0 otherwise .
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Hence u is admissible for problem m(s). For every v ∈ H1
c (D) with

∫
R
2 v= 0, it holds∫

{∇u=0}
|∇v|+

∫
{∇u �=0}

〈∇ϕ(∇u),∇v〉 ≥
∫
{|x|<r}

|∇v|−
∫
{r<|x|<R}

〈x
r
,∇v〉

=

∫
{|x|<r}

(
|∇v|+ 〈x

r
,∇v〉

)
≥ 0 .

Hence Proposition 4.1.1 implies that u is a solution to problem m(s). It is a special
solution as |∇u| = | xr | > 1 on the subset {r < |x| < R}. Finally, uniqueness follows
from Corollary 4.1.2. �

Remark 4.3.1. With the same proof technique of Proposition 4.3.1, one can show that a
similar result is valid also whenD=

⋃
i Bi is the countable union of a family of pairwise

disjoint balls Bi of radii Ri. Again, for every s ∈ R problem m(s) admits a unique
solution, which is a special one. More precisely: if s = 0 the solution is identically
zero; if s > 0 there exists r ∈ (0,supi Ri), uniquely determined by the values of s and
the radii Ri, such that on balls whose radius is smaller than r, the solution is identically
zero, while on balls with a larger radius, it is of the form (4.27), with R = Ri. The
critical radius r is the unique number in (0,supi Ri) such that f (r) = s, where

f (t) =
π
4 ∑i

(
R4
i
t
− t3

)
+

∀t ∈ (0,sup
i

Ri) .

Proposition 4.3.2. Let R2 > R1 > 0, and let D := {x ∈ R2 : R1 < |x| < R2}. Then,
for every s ∈ R, problem m(s) admits a unique solution u, which is a special solution.
More precisely: if s= 0 then u≡ 0; if s> 0, there exists a unique r ∈ (0,R2), uniquely
determined by the values of s and the radii R1,R2, such that

u(x) =

⎧⎪⎨⎪⎩
R2
2−

(|x|2∨ (R1∨ r)2
)

2r
if |x|< R2

0 otherwise .

(4.28)

Proof. If s = 0 the function u ≡ 0 is clearly the unique solution to m(0), and it is a
special one. For s> 0, we define r as the unique number in the interval (0,R) such that
f (r) = s, where f is the map

f (t) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π
4

(
R4
2−R4

1
t

)
if t ∈ (0,R1)

π
4

(
R4
2− t4

t

)
if t ∈ [R1,R2) .

Notice that r is well-defined since the map f is strictly decreasing from (0,R2) onto
(0,+∞). Using the definition of r and an integration by parts, it is straightforward
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|x|

u(|x|)

R1r R20 |x|

u(|x|)

R1r R20

Figure 4.6: The special solution u given by Proposition 4.3.2, respectively when R1 < r < R2
on the left, and when 0< r < R1 on the right.

to obtain that
∫
R
2 u = s. Moreover, u belongs to H1

c (D) since it is constant on each
connected component of R2 \D:

u≡ R2
2− (R1∨ r)2

2r
if |x| ≤ R1 and u≡ 0 if |x| ≥ R2 .

Hence u is admissible for problem m(s). Let us show that it is optimal. We distinguish
the two cases when s < f (R1) or s ≥ f (R1), which correspond respectively to r ∈
(R1,R2) or r ∈ (0,R1].

If r ∈ (R1,R2), u coincides with the function defined in (4.27), with R = R2. The
optimality of u for problem m(s) set on the ball BR2(0) implies the optimality also for
problem m(s) set on D, because of the inclusion H1

c (D)⊂ H1
c (BR2(0)).

If r ∈ (0,R1], we apply Proposition 4.1.1: for every v ∈ H1
c (D) with

∫
R
2 v = 0 it

holds ∫
{∇u=0}

|∇v|+
∫
{∇u �=0}

〈∇ϕ(∇u),∇v〉=
∫
R
2
〈−x

r
,∇v〉= 2

r

∫
R
2
v= 0 ,

where we have used the fact the gradient of u is given by

∇u(x) =

⎧⎨⎩−
x
r

if |x| ∈ (R1,R2)

0 otherwise ,

Thus u is a special solution, and uniqueness follows again from Corollary 4.1.2.
�

Remark 4.3.2. If in Proposition 4.3.2 we consider the case s> f (R1), when the solu-
tion ū is given by (4.28) for a suitable r ∈ (0,R1) (see the above proof and Figure 4.6 at
right), then the inequality |∇u(x)| > 1 turns out to be strict up to |x| = R1. This shows
that, for a special solution, the equality (4.14) satisfied on the free boundary (lying in
open set D) is in general false on ∂Ω(u)∩∂D.
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4.4 Existence of special solutions for some other domain D

By exploiting the results of Sections 4.1 and 4.2, we are going to prove that there exists
some domain D, different from a ball, where problem m(s) admits a special solution,
see Theorem 4.4.1 below for a precise statement. To achieve this result, we use as a key
tool the relationship between m(s) and the Cheeger problem.

Let us remark that the proof of Theorem 4.4.1, and in particular the construction of
the vector field σ therein, has some similarity with results contained in [81, Sections
4-5].

Theorem 4.4.1. There exists an open bounded simply connected set D, different from a
ball, such that problemm(s) admits a special solution u for some s∈R\{0}. Moreover,
both D and the plateau of u have analytic boundary, and the latter is convex.

Proof. Let us construct an open bounded simply connected set D with analytic bound-
ary, and

– a function u ∈ H1
0 (D) with⎧⎪⎪⎨⎪⎪⎩

∫
D
u= s , for some s ∈ R\{0}

∇u= 0 in a convex set Ω⊂ D
|∇u|> 1 in D\Ω ,

(4.29)

– a field σ ∈ L2(D;R2) with⎧⎪⎨⎪⎩
−divσ = λ in D , for some λ ∈ R

|σ | ≤ 1 in Ω
σ = ∇u in D\Ω .

(4.30)

We recall that, since D is simply connected, functions in H1
c (D) are extensions to

zero of elements in H1
0 (D), and Sλ (D) is given by (4.7). Then u and σ (extended to

zero out of D), satisfy conditions (ii) in Proposition 4.1.2. Since |∇u| ∈ {0}∪ (1,+∞),
we conclude that u is a special solution to problem m(s) (settled on D).

The construction is divided into 3 steps.
Step 1. We choose a bounded convex set Ω, with analytic boundary, whose cur-

vature satisfies the strict inequality ‖H‖L∞(∂Ω) <
|∂Ω|
|Ω| . In view of Remark 4.2.2, there

exists a calibration for Ω, namely a vector field σ1 ∈ L2(Ω;R2) such that

−divσ1= hΩ inΩ , ‖σ1‖L∞(Ω)≤ 1 inΩ , [σ1 ·nΩ] =−1 H
1−a.e. on ∂Ω .

Step 2. Since ∂Ω is analytic, Cauchy-Kowalevskaya Theorem ensures the exis-
tence of an analytic solution v in a neighborhood V of ∂Ω to the initial value problem{ −Δv= hΩ in V ,

v= 1 , −vn = 1 on ∂Ω ,
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Ω

σ1

Figure 4.7: Construction of the convex set Ω and the vector field σ1 in Step 1.

being n the unit outer normal to ∂Ω. We claim that, up to choosing a smaller neighbor-
hood V , if we set U := V \Ω, it holds

v≤ 1 in U (4.31)

and
|∇v|> 1 in U . (4.32)

Indeed, (4.31) follows straightforward from the condition vn < 0 on ∂Ω. In order to
prove (4.32), we exploit the equation −Δv = hΩ , which may be rewritten pointwise on
∂Ω as

−(H∂Ω vn+ vnn) = hΩ on ∂Ω ,

being H∂Ω the (signed) curvature of ∂Ω. By construction, we have

|∇v|= 1 , vn =−1, |H∂Ω|< hΩ on ∂Ω .

Then (4.32) follows from the inequality

∂n(|∇v|2) = 2vnvnn = −2vnn = −2(H∂Ω−hΩ) > 0 on ∂Ω .

Next we choose t0 > 0, independent of y ∈ ∂Ω, such that the map

t 
→ φy(t) := v(y+ tn(y))

is well-defined and satisfies the inequality φ ′y(t)< 0 on [0, t0]. Then, for some ε0 > 0,

max
y∈∂Ω

φy(t0) = 1− ε0 < 1 .

Therefore, if we fix ε ∈ (0,ε0), it holds:

∀y ∈ ∂Ω , ∃ty ∈ [0, t0] : φy(ty) = 1− ε .

We set γ := {y+ tyn(y) : y ∈ ∂Ω}, so that γ = ∂D, with

D :=Ω∪{1− ε ≤ v≤ 1
}
.

Finally we define

v := v− (1− ε) and σ2 = ∇v on D\Ω .
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∂D

∂Ω

V

Figure 4.8: Construction of the set D in Step 2.

Notice in particular that σ2 satisfies

−divσ2 =−Δv= hΩ in D\Ω , [σ2 ·nΩ] =−1 H
1− a.e. on ∂Ω .

Step 3. We set

u :=
{

ε in Ω
v in D\Ω , σ :=

{
σ1 in Ω
σ2 in D\Ω ,

where Ω and σ1 have been defined in Step 1, while D, v and σ2 have been defined in
Step 2.

It is easy to check that, by construction, u and σ verify respectively (4.29) and
(4.30).

So, as claimed at the beginning of the proof, u is a special solution to m(s). More-
over, the plateau Ω was chosen to be convex with analytic boundary. And also ∂D is
analytic by the implicit function Theorem for analytic functions (see e.g. [96]): indeed,
γ is a level set of an analytic function whose gradient is nonzero along γ (because of
(4.32) and since γ ⊂U ).

�

Remark 4.4.1. It is worth to compare our results with those obtained by Murat and
Tartar in [82], about the problem of maximizing the torsional rigidity of a bar with a
given cross-section made by two linearly elastic materials in fixed proportions. The
corresponding variational problem is quite similar to ours, except that it involves a
differentiable integrand, and classical solutions (i.e. optimal designs with no homog-
enization regions) cannot exist unless the cross-section D is a disk. In our case the
integrand ϕ is non-differentiable at zero and the conclusion goes in a quite opposite
direction.

4.5 Some qualitative properties of solutions and special solutions

In this Section we present some qualitative properties of solutions and special solutions
for problem m(s). Finally, in §4.5.1, we state a first result of regularity for the free
boundary, more precisely concerning its perimeter.
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We first state two results which concern arbitrary solutions to problem m(s), and
more precisely their sign (Proposition 4.5.1) and their support (Proposition 4.5.2).

Proposition 4.5.1. For every s ∈ R
+, any solution u to m(s) satisfies the inequality

u≥ 0 a.e.

Proof. The unique solution to m(0) is identically zero. Let s> 0 and let u be a solution
to m(s). We set u+ :=max{u,0} and s̃ :=

∫
R
2 u+. Then

m(s) =
∫
R
2
ϕ(∇u)≥

∫
R
2
ϕ(∇u+)≥ m(s̃) .

Since s̃ ≥ s and m is strictly increasing (recall Remark 4.1.1), we infer that s = s̃, and
hence that the set {u< 0} is Lebesgue negligible. �

Proposition 4.5.2. Let s be positive and sufficiently small. Then any solution u to
problem m(s) satisfies

spt(u)∩∂D �= /0 . (4.33)

Proof. Assume that (4.33) is false for some s> 0. Then spt(u)⊂⊂ D and, letting

uλ (x) := λ u
( x
λ
) ∀x ∈ R

2 , ∀λ > 0 ,

by continuity we have also spt(uλ ) ⊂⊂ D for λ close to 1. Accordingly, the function
uλ is admissible for problem m(λ 3 s), whence we deduce

m(λ 3 s)≤
∫
R
2
ϕ(∇uλ ) = λ 2

∫
R
2
ϕ(∇u) = λ 2m(s) . (4.34)

Therefore the function g(λ ) = m(λ 3 s)−λ 2m(s) achieves a local maximum at λ = 1,
and g′(1) = 0. It follows that 3m′(s) = 2m(s). Thus, by applying Remark 4.1.1, we find
m(s)≥ 3

2 kD , which is not possible for s small. �

We now turn our attention to investigate qualitative properties of special solutions,
under the assumption that D is simply connected. The corresponding simplified formu-
lation of m(s), that we consider from now on, reads

m(s) = inf
{∫

D
ϕ(∇u) : u ∈ H1

0 (D) ,
∫
D
u= s

}
. (4.35)

The search for special solutions to problem (4.35) leads to study a nonstandard free
boundary value problem. Indeed, by Proposition 4.1.2, (4.55), and Corollary 4.1.3, if
u is a special solution to m(s) with plateau Ω(u) and free boundary Γ(u), there exist
constants λ (=m′(s)) and ci ∈ R such that⎧⎪⎨⎪⎩

−Δu= λ , |∇u|> 1 in D\Ω(u)
|∇u|= 1 on Γ(u)
u= ci on γi ,

(4.36)
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|∇u| = 1

|∇u| = 1

u ≡ cj

u ≡ ck

D \ Ω(u)

D

u = 0

u ≡ ci

|∇u| > 1

−�u = λ

Figure 4.9: The free boundary value problem (4.36).

where γi denote the different connected components of Γ(u) (see Figure 4.9).
A full understanding of problem (4.36) seems to be a quite challenging task. To

the best of our knowledge, it is not directly covered by the extensive literature on free
boundary problems (see [27–29, 85]). In particular, the available regularity results for
free boundaries do not allow to obtain a priori the smoothness of Γ(u). This is the
reason why the results hereafter are stated under such smoothness assumption.

The key tool in the study of qualitative properties for special solution is the method
of P-functions in dimension 2 (see [93] for the details). The main idea is the following:
given a bounded planar domain A and a smooth solution u for the partial differential
equation

Δu+ f (u) = 0 in A , (4.37)

construct a suitable auxiliary function, called P-function

P= g(u)|∇u|2+h(u) (4.38)

that satisfies a maximum principle. A direct computation leads to the following equality
(cf. [93, formula (5.17)]):

ΔP+Lα
∂αP
|∇u|2 = g(logg)′′|∇u|4+[(h′ −2 f g)′ − f g′]|∇u|2+ 1

g
(h′ − f g)(h′ −2 f g) ,

(4.39)
where Lα is defined as

Lα =− 1
g
[∂αP−2(h′ − f g)∂αu] . (4.40)

Let us recall the main statement, [93, Lemma 5.1].

Theorem 4.5.1. Let u be a C3(A) solution of (4.37) in the planar domain A. If g(u)
and h(u) are chosen so that the quadratic form in (4.39) is positive semidefinite, then
the corresponding P-function defined in (4.38) is constant or assumes its maximum on
∂A or at a critical point of u .
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Remark 4.5.1. Let us recall that in our case, assuming to deal with a smooth special
solution u, the function f is constant and equals λ , while A is an open bounded subset
of D\Ω(u) .

The easiest example of P-function satisfying Theorem 4.5.1 is

P= |∇u|2+2λu ,

indeed in this case the right hand side of (4.39) is identically zero.

Proposition 4.5.3. Assume that problem m(s) admits a special solution u, with Γ(u)
smooth. Then each connected component of D\Ω(u) meets the boundary ∂D.

Proof. Assume by contradiction that there exists a connected component A of D\Ω(u)
such that A⊂⊂ D. Then ∂A= ∪γi, where γi are some of the connected components of
Γ(u). Then (cf. (4.36)), there exist constants λ (=m′(s)) and ci ∈ R such that{ −Δu= λ , |∇u|> 1 in A

u= ci , |∇u|= 1 on γi .

By standard regularity theory, u is smooth enough in order to apply Theorem 4.5.1.
By taking by taking therein f (u) = λ , g(u) = 1 , and h(u) = 0 , we obtain that the right
hand side of (4.39) is positive and equals 2λ 2, thus we deduce that the P-function

P(x) := |∇u|2 , x ∈ A ,

is either constant in A or it attains its maximum on ∂A. In both cases, since we know
that |∇u| ≥ 1 in A, we infer that

|∇u| ≡ 1 in A . (4.41)

We now consider another P-function,

P̃(x) := |∇u|2+λu , x ∈ A .

From (4.41) we obtain
ΔP̃=−λ 2 =−(m′(s))2 < 0 (4.42)

(for the last inequality recall (4.18)). On the other hand, equality (4.39) applied now
with f (u) = λ , g(u) = 1 and h(u) = λu , shows that

ΔP̃+Lα
∂αP
|∇u|2 = 0

and recalling the definition (4.40) of Lα we infer

ΔP̃=−Lα
∂αP
|∇u|2 =

|∇P̃|2
|∇u|2 ≥ 0 ,

and this is in contradiction with (4.42). �

Proposition 4.5.4. Let D be a convex set with a smooth boundary, and assume that
problem m(s) admits a special solution u, with Ω(u) connected, Ω(u)⊂⊂ D, and Γ(u)
smooth. Then Ω is convex.
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Proof. By applying Proposition 4.5.3, we obtain that Γ(u) is connected (otherwise,
some connected component of D \Ω(u) would be compactly contained into D). Then
(cf. (4.36)), there exist constants λ (=m′(s)) and c ∈ R such that{ −Δu= λ , |∇u|> 1 in D\Ω(u)

u= c , |∇u|= 1 on Γ(u) .

In order to prove that Ω(u) is convex, we follow the approach adopted in [70] (see
also [68]): we consider the P-function

P(x) := |∇u|2+2λu ∀x ∈ D\Ω(u) .

As already noticed in Remark 4.5.1, the quadratic function defined in (4.39) is positive
semidefinite. Moreover, by standard regularity theory, u is smooth enough in order to
apply Theorem 4.5.1. Since by assumption u has no critical points inD\Ω(u), we infer
that one of the following facts occurs:

(a) P is constant;

(b) P attains its maximum on ∂D;

(c) P attains its maximum on Γ(u).

Let us exclude the first two possibilities.
If P is constant, it holds

0= Pn = 2(ununn+λun) =−2(unn+λ ) on Γ(u) . (4.43)

On the other hand, since by assumption Γ(u) is smooth, the equation Δu+λ = 0 can
be rewritten pointwise on Γ(u) as

HΓun+unn+λ =−HΓ+unn+λ = 0 on Γ(u) , (4.44)

where we have denoted by HΓ the mean curvature of Γ(u). Combining (4.43) and
(4.44), we deduce that HΓ ≡ 0 on Γ(u), a contradiction.

If P attains its maximum at some point x0 ∈ ∂D, since ∂D is smooth we may apply
Hopf’s boundary point lemma to infer that either P is constant or Pn(x0) > 0 (here
n stands for the unit outer normal to ∂D). Since we have already excluded the first
possibility, let us show that also the second one leads to a contradiction. We have

0< Pn(x0) = 2un(x0)unn(x0)+2λun(x0) =−2(un(x0))2H∂D(x0) , (4.45)

where the last equality follows by exploiting the pde Δu+λ = 0 on ∂D. In particular,
(4.45) implies H∂D(x0)< 0, against the convexity of D.

We conclude that (c) holds true, namely P assumes its maximum on Γ(u). Since P
is constant on Γ(u), every point of the free boundary is a maximum point. Then, thanks
to the smoothness of Γ(u), Hopf’s lemma applies and yields

0> Pn = 2ununn+2λun =−2HΓ on Γ(u) .

Hence Ω(u) is convex. �
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Proposition 4.5.5. Assume that D is not Cheeger set of itself, and let sε be an infinites-
imal sequence of positive numbers. Then problem m(sε) cannot admit for every ε a
special solution uε with Ω(uε)⊂⊂ D and Γ(uε) smooth.

Proof. Set for brevity Ωε :=Ω(uε) and Γε := Γ(uε). Assume by contradiction Ωε ⊂⊂
D and Γε smooth. We set λε = m′(sε), and we take an optimal field σε ∈Sλε (D) for
the dual problem m∗(λε). By Proposition 4.1.2 and (4.55), σε satisfies⎧⎪⎨⎪⎩

−divσε = λε in D
|σε | ≤ 1 in Ωε

σε = ∇uε in D\Ωε .

By Corollary 4.1.3 and the regularity assumed on Γε , we infer that |σε · nΓε | equals 1
and has constant sign on Γε . Integrating on Ωε the equation −divσε = λε , we obtain
σε ·nΓε =−sgn(λε) =−1 and

λε =
|Γε |
|Ωε | . (4.46)

Since λε =m′(sε), by using (5.48), the continuity from the right of the right deriva-
tive s 
→ m′+(s) as s→ 0+, Proposition 4.1.4 and Proposition 4.2.1, we get

lim
ε→0

λε = hD. (4.47)

Moreover, we have

|D\Ωε| ≤
∫
D\Ωε
|∇uε |2 =

∫
D\Ωε

∇uε ·σε =

∫
D
∇uε ·σε = sε ·λε .

In view of (4.47), we infer that limε→0 |D\Ωε |= 0, which is equivalent to limε→0 11Ωε =
11D in L1(D). By using the lower semicontinuity of the perimeter with respect to the
L1-convergence (cf. [5, Proposition 3.38]), and (5.48), we obtain

|∂D| ≤ liminf
ε→0

|Γε |= lim
ε→0

λε |Ωε |= hD|D| ,

hence D is Cheeger set of itself, against the assumption. �

4.5.1 Regularity of the free boundary

Given a spacial solution u, we decompose its plateau Ω(u) as the union of two sets:
Ω(u) =Ω0(u)∪Ω+(u), with

Ω0(u) := {x ∈Ω(u) : u(x) = 0} , Ω+(u) := {x ∈Ω(u) : u(x)> 0} . (4.48)

In the next proposition we establish that some connected components of Γ(u) have
finite perimeter. This result is the first step in studying the regularity of the free bound-
ary.

Proposition 4.5.6. Let s > 0 and assume that problem m(s) admits a special solution
u. Then
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(i) if Ω+(u) is connected, it has finite perimeter;

(ii) Ω0(u) has finite perimeter.

Proof. Let us first consider D simply connected. We notice that the volume constraint
appearing in problem m(s) can be enclosed in the functional through a Lagrange mul-
tiplier: more precisely, if u is optimal for m(s) in the class H1

0 (D)∩{v :
∫
D v= s}, then

it is a solution to the following minimization problem for λ = m′(s):

inf
v∈H1

0 (D)

∫
D
[ϕ(∇v)−λv] . (4.49)

We prove (i) and (ii) exploiting the optimality of u in (4.49), by comparing it with a
suitable test function uε ∈ H1

0 (D).

Proof of (i). We observe that, since Ω+(u) is connected and u is a special solution,
setting M :=maxDu, there holds Ω+(u) = {x ∈ D : u(x) =M}.

For every ε ∈ (0,M), we consider the function uε := min{u,M− ε}. Since uε is
admissible for problem (4.49), by the optimality of u we have∫

D
[ϕ(∇u)−λu]≤

∫
D
[ϕ(∇uε)−λuε ] ,

that is ∫
D
[ϕ(∇u)−ϕ(∇uε)]≤ λ

∫
D
[u−uε ]

or equivalently ∫
{M−ε<u≤M}

ϕ(∇u)≤ λ
∫
{M−ε<u≤M}

[u− (M− ε)] . (4.50)

The right hand side of (4.50) can be bounded above as

λ
∫
{M−ε<u≤M}

[u− (M− ε)]≤ λ |D|ε .

The left hand side of (4.50), since u is a special solution, can be bounded below as∫
{M−ε<u≤M}

ϕ(∇u) =
1
2

∫
{M−ε<u≤M}

|∇u|2 ≥ 1
2

∫
{M−ε<u≤M}

|∇u| .

Combining the two bounds above with (4.50), we obtain

1
ε

∫
{M−ε<u≤M}

|∇u| ≤C , (4.51)

for some positive constant C independent of ε . By the coarea formula (see Theorem
1.4.1), we can rewrite (5.54) as

1
ε

∫ M

M−ε
Per({u> t})dt ≤C .
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Then there exists a sequence tn↗M such that Per({u> tn}) ≤C. Since 11{u>tn} con-
verge to 11Ω+(u) in L1, by the lower semicontinuity of the perimeter with respect to the
L1-convergence, we infer

Per(Ω+(u))≤C .

Proof of (ii). For every ε ∈ (0,M), we consider the function uε := max{u− ε,0}.
Since uε is admissible for problem (4.49), by the optimality of u we have∫

D
[ϕ(∇u)−λu]≤

∫
D
[ϕ(∇uε)−λuε ] ,

that is ∫
D
[ϕ(∇u)−ϕ(∇uε)]≤ λ

∫
D
[u−uε ]

or equivalently ∫
{0≤u<ε}

ϕ(∇u)≤ λ
∫
{0≤u<ε}

u+ ελ |{u≥ ε}| . (4.52)

The right hand side of (4.52) can be bounded above as

ελ |{0≤ u< ε}|+ ελ |{u≥ ε}| ≤Cε .

The left hand side of (4.52), since u is a special solution, can be bounded below as∫
{0≤u<ε}

ϕ(∇u) =
1
2

∫
{0≤u<ε}

|∇u|2 ≥ 1
2

∫
{0≤u<ε}

|∇u| .

Combining the two bounds above with (4.52), we obtain
1
ε

∫
{0≤u<ε}

|∇u| ≤C , (4.53)

for some positive constantC independent of ε .
As already done in the previous case, we can conclude the proof by applying the

coarea formula: indeed we can rewrite (4.53) as
1
ε

∫ ε

0
Per({u> t})dt ≤C ,

then there exists a sequence tn↘ 0 such that Per({u> tn})≤C. Finally, since 11{u>tn}
converge to 11Ω0(u) in L1, by the lower semicontinuity of the perimeter with respect to
the L1-convergence, we infer

Per(Ω0(u))≤C .

In The general case, if D is connected but not simply connected, a similar proof
applies: it is enough to replace D with

D̃ := {A⊂ R
2 : A⊃ D , A simply connected} ,

and considering as test functions

v ∈ H1
0 (D̃)∩{∇v= 0 in D̃\D} .

�
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Remark 4.5.2. In view of Proposition 4.5.6 we infer that if Ω+(u) is connected, then
the free boundary Γ(u) = ∂Ω0(u)∪∂Ω+(u) has finite perimeter. We point out that the
statement (i) can be rephrased in a more general way: if we write the plateau as Ω(u) =
∪l{u≡ cl} for some constants cl , the connected component associated to M :=maxl cl
(if it exists) has finite perimeter.

4.6 Perspectives and conjectures

We conclude the Chapter by presenting the open problems and the possible perspectives
of the work.

The perspectives are the following:

- study the regularity of the free boundary and of a special solution;

- find examples of domains that do not admit a special solution;

- characterize the domains D that admit a special solution.

We point out that proving of disproving the existence of a special solution remains
open even for simple geometries of D.

In this respect we believe that, at least when D is convex, the existence of special
solutions is likely related to the regularity of ∂D, and also to whether or notD coincides
with its Cheeger set.

For instance, when D is a square, in view of Propositions 4.5.3 and 4.5.4, it cannot
happen that a special solution has the white regions in Figure 4.10 as plateau. Actu-
ally, having in mind Proposition 4.5.5, at least for small s the set where a solution u
is constant may be expected to be shaped as the white region in Figure 4.11; but on
its complement, the green region, it is difficult to guess whether |∇u| > 1, or some
homogenization phenomenon occurs. Some numerical results performed in [72] for a
very similar problem, in which homogenization regions are observed, seem to suggest
that in the square there is no special solution.

Figure 4.10: Impossible plateaus for a special solution on the square.

In order to better understand the behavior of solutions, for example in the square, we
explored two different fields: numerics and shape derivatives. In the next paragraphs
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Figure 4.11: A possible plateau for a special solution on the square.

we are going to illustrate these techniques: we believe that they are interesting points
that could be developed hereafter. We underline that in Chapter 5 we will face the shape
derivative problem, in a more general framework.

4.6.1 Some numerics

For simplicity, leu us consider D simply connected.
In view of Theorem 1.1.2, we can rephrase the optimality conditions stated in

Proposition 4.1.2, interchanging the role of the solutions of the primal problem m(s)
and the dual problem m∗(λ ): let s,λ ∈ R, u ∈ H1

0 (D), and σ ∈ L2(D;R2), then the
following equivalence holds true:

(i)

⎧⎪⎨⎪⎩
u solution to m(s)
σ solution to m∗(λ )
λ ∈ ∂m(s) .

⇐⇒ (ii)

⎧⎪⎪⎨⎪⎪⎩
∫
R
2
u= s

−divσ = λ a.e. in D
∇u ∈ ∂ϕ∗(σ) a.e. in D

(4.54)

The Fenchel conjugate ϕ∗ is differentiable at every ξ such that |ξ | �= 1, whereas its
subdifferential at |ξ |= 1 is a segment. More precisely the condition ∇u ∈ ∂ϕ∗(σ) can
be rewritten more explicitly as

∇u=

⎧⎪⎨⎪⎩
0 if |σ |< 1
τσ if |σ |= 1 , for some τ ∈ [0,1]
σ if |σ |> 1 .

(4.55)

Definition 4.6.1. Given λ > 0 and s ∈ ∂m∗(λ ), we say that a couple w := (u,σ) ∈
H1

0 (D)×L2(D;R2) is an optimal couple if u is optimal for m(s) and σ is optimal for
m∗(λ ).

In view of (4.54), we infer that an optimal couple is characterized by{
0= divσ +λ
0 ∈ ∂ϕ∗(σ)−∇u .

We remark that the right hand side of the second equation is a convex closed set, in
general not a singleton:

∂ϕ∗(σ)−∇u= {τσ −∇u : τ ∈ [0,1]} . (4.56)

135



Chapter 4. A nonstandard free boundary problem arising in the shape
optimization of thin torsion rods

We want to see the optimal couple as a stationary solution (as t→+∞) of the following
evolution equation: {

∂tw ∈ Aw
w(0) = w0 ,

(4.57)

with w := (u,σ) ∈ H1
0 (D)×L2(D;R2) and A : D(A) ⊂ X → X the operator defined as

follows:
A : (u,σ) 
→ (−divσ −λ ,∂ϕ∗(σ)−∇u) , (4.58)

with

D(A) := H1
0 (D)×{σ ∈ L2(D;R2) : divσ ∈ L2(D)} , X := L2(D)×L2(D;R2) ,

X being endowed with the usual norm ‖(u,σ)‖2X := ‖u‖2L2(D) +‖σ‖2L2(D;R2)
.

We remark that the operator A is a maximal monotone operator of X (see the Ap-
pendix for the definition of maximal monotone operator and the proof of the claim).
Clearly, if problem (4.57) admits a stationary solutionw(t) = (u(t),σ(t))→w= (u,v),
then (u,v) is an optimal couple, associated to the parameters s and λ satisfying s ∈
∂m∗(λ ). Thus, a numerical search of stationary solutions for (4.57), may give informa-
tion about the behavior of solutions for m(s).

A possible choice in the numeric procedure is to consider instead of (4.57) the
following evolution equation (see e.g. [22, 84, 88] for the motivations){

∂tw= A0w
w(0) = w0 ,

(4.59)

where A0w is the projection of 0 ∈ X over the closed convex set Aw. The element of
minimal norm A0w can be computed explicitly and problem (4.59) reads{

∂tu=−divσ −λ
∂tσ = τ(∇u,σ)σ −∇u ,

(4.60)

where the right hand side of the second equation is the element of minimal norm in the
set ∇u−∂ϕ∗(σ) (see (4.56)). The coefficient τ is given by

τ(∇u,σ) =

⎧⎪⎨⎪⎩
0 if |σ |< 1
α(∇u ·σ) if |σ |= 1
1 if |σ |> 1 ,

(4.61)

with

α(t) =

⎧⎪⎨⎪⎩
0 if t ≤ 0
t if 0< t < 1
1 if t ≥ 1 .

(4.62)

The equation under study should be a suitable approximation of system (4.60), because
of the singularity of the subdifferential of ϕ∗.

The study in this direction is still a work in progress. Here we limit ourselves to list
some possible approximations for the problem and some natural choices for the initial
data:
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- make ϕ∗ smooth (at least C2) in a neighborhood of 1 of the form (1− ε,1+ ε),
and let ε tend to 0;

- approximate the coefficient τ introduced in (4.61) with

τε(∇u,σ) =

⎧⎪⎨⎪⎩
0 if |σ | ≤ 1− ε( |σ |−(1−ε)

2ε

)
α(∇u ·σ) if 1− ε ≤ |σ | ≤ 1+ ε

1 if |σ | ≥ 1+ ε ,

α being defined in (4.62), and then let ε tend to 0;

- consider as initial datum (u0,σ0) := (0,0) or (u0,σ0) := (λ2 uD, λ2 ∇uD), with uD
the unique solution in H1

0 (D) of

−Δu= 2 ∈ D .

For example, if D is the ball of radius 1 centered in the origin, then uD = 1−|x|2
2 .

We remark that we can exploit the properties found for the solutions in order to
verify the compatibility of the computational results. For example, if we consider λ
inferior to the Cheeger constant we know that the unique solution is the zero one (see
(4.23)).

For completeness we present some results obtained by prof. Cédric Galusinski (Uni-
versité du Sud Toulon et du Var, Laboratoire Imath), who implemented a similar model,
trying to detect homogenization regions for different geometries of D. We gratefully
acknowledge professor Galusinski for the permission to show the pictures above.

In the figures above the blue region region represents the plateau, the green one
the homogenization region and the red one the region in which the gradient exceeds
1 in modulus. This seems to confirm the presence of homogenization phenomena,
moreover it suggests that the modulus of the gradient of a solution is greater that 1 in a
neighborhood of concave parts of ∂D, while it is smaller that 1 near the convex parts.
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4.6.2 Shape derivatives

Let us consider the case D simply connected. If we fix the parameter s, we can inter-
pret m(s) as a shape functional, depending on the domain D as follows: enclosing the
volume constraint in the functional, solving m(s) over D turns out to be equivalent to
study

J(D) =− inf
{∫

D
[ϕ(∇u)−λu] dx : u ∈ H1

0 (D)
}

, (4.63)

with λ = m′(s).
Let assume that u is a solution for J(D) and let us recall the definition of Ω0(u)

(already introduced in (4.48)): it is the connected component of the plateau associated
to the zero level set, namely Ω0(u) = {x ∈ Ω(u) : u(x) = 0} . Our conjecture is that
Ω0(u) contains the neighborhoods of the points of ∂D with higher curvature, namely
the corners of the boundary (see for example Figure 4.11 for the square). Clearly, in
this case the functional is stationary over the domains D′ such that

D\Ω0(u)⊂ D′ ⊂ D .

A qualitative example is shown in Figure 4.12. Thus we expect that the shape derivative
(for the proper definition see Chapter 5), if it exists, equals zero with respect to small
deformations in such direction. Moreover, the sign of the shape derivative may give
useful information: if we consider small inner deformations of D, localized in a part
of the boundary, a nonzero shape derivative implies that Ω0(u) does not touch such
portion of ∂D.

D0 := D \ {u ≡ 0}

D
D′

V

Figure 4.12: If the white region represents the plateau, inner deformations in the direction V
do not change the value of the shape functional J(·) .

The next Chapter is entirely devoted to the study of shape derivatives of minima
of integral functionals of the form (4.63), with more general convex integrands and in
higher dimension.

4.7 Appendix

Let us breafly recall the definition of maximal monotone operator (see [22, 88] for a
complete reference).
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Definition 4.7.1. Let X be a Hilbert space. An operator is a multivalued mapping A
from X intoP(X). We call D(A) := {x ∈ X : A(x) �= /0} the domain of A. We identify
an operator with its graph G(A) := {(x,y) : x ∈ D(A) , y ∈ A(x)} ⊂ X×X.

Definition 4.7.2. An operator A is monotone if for every x1 , x2 ∈ D(A)

〈A(x2)−A(x1),x2− x1〉 ≥ 0 ,

or more precisely if for every (x1,y1) , (x2,y2) ∈ G(A)

〈y2− y1,x2− x1〉 ≥ 0 .

An operator is maximal monotone if it is monotone and is maximal in the set of mono-
tone operators of X, ordered by the inclusion of graphs in X ×X.

We cite an useful example of maximalmonotone operator (see [22, Example 2.3.4.]):

Lemma 4.7.1. Let ψ be a proper lower semicontinuous convex function on X, then ∂ψ
is a maximal monotone operator of X.

Proposition 4.7.1. The operator A in (4.58) is maximal monotone of X.

Proof. Let K : X → R be defined as

K(u,σ) :=
∫
D
[σ ·∇u−ϕ∗(σ)−λu] , (4.64)

and let H : D(H)⊂ X →R be the following function

H(u, p) := sup
σ∈L2(D;R2)

{∫
D
p ·σ +K(u,σ)

}
.

We remark that H is a proper convex lower semicontinuous function of X . Moreover,
in view of the definition (4.64) of K, we can rewrite H as

H(u, p) = sup
σ∈L2(D;R2)

{∫
D
p ·σ +∇u ·σ −ϕ∗(σ)−λu

}
= sup

σ∈L2(D;R2)

{∫
D
(p+∇u) ·σ −ϕ∗(σ)

}
−
∫
D
λu

=

{ ∫
Dϕ(∇u+ p)−λu if u ∈ H1

0 (D)
+∞ otherwise .

Then the domain of H is D(H) = H1
0 (D)×L2(D;R2)⊂ X .
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We compute the Fenchel conjugate of H:

H∗( f ,q) = sup
(u,p)∈D(H)

{∫
D
f u+ p ·q−ϕ(∇u+ p)+λu

}

= sup
u∈H1

0 (D)

{
sup

p∈L2(D;R2)

∫
D
[(∇u+ p) ·q−ϕ(∇u+ p)](divq+ f +λ )u

}

=
∫
D
ϕ∗(q)+ sup

u∈H1
0 (D)

∫
D
(divq+ f +λ )u

=

{ ∫
Dϕ∗(q) if divq=− f −λ
+∞ otherwise .

In particular we obtain that the domain of H∗ is D(H∗) = L2(D)×L2
div(D;R2).

By comparing the explicit formulations of H and H∗, we obtain the following char-
acterization of the subdifferential of H: ( f ,q) ∈ ∂H(u, p) if and only if

u ∈ H1
0 (D) , f =−divq−λ , H(u, p)+H∗( f ,q) =

∫
D
f u+ p ·q

⇐⇒ u ∈ H1
0 (D) , f =−divq−λ ,

∫
D
ϕ(∇u+ p)−λu+ϕ∗(q) =

∫
D
f u+ p ·q

⇐⇒ u ∈ H1
0 (D) , f =−divq−λ ,

∫
D
ϕ(∇u+ p)+ϕ∗(q) =

∫
D
(∇u+ p) ·q

⇐⇒ u ∈ H1
0 (D) , f =−divq−λ , ∇u+ p ∈ ∂ϕ∗(q)

⇐⇒ u ∈ H1
0 (D) , f =−divq−λ , p ∈ −∇u+∂ϕ∗(q) .

Then we can conclude that

((u,q),( f , p))∈ G(A) ⇐⇒ ((u, p),( f ,q))∈ G(∂H) , (4.65)

where G(·) denotes the graph of an operator, according to Definition 4.7.1.
By Lemma 4.7.1, since H is a proper lower semicontinuous convex function, we

have that ∂H is a maximal monotone operator of X . Then we can easily conclude that
also A is a maximal monotone operator of X . Let l : X → X be the map between G(A)
and G(∂H), given by the correspondence in (4.65): it is a bijection, more precisely it
is an isometry. We begin by proving the monotonicity of A, verifying the definition: let
((ui,qi),( fi, pi)) =: (xi,yi) ∈ G(A), for i= 1,2, and l(xi,yi) =: (x̃i, ỹi) ∈ G(∂H), then

〈y2− y1,x2− x1〉
= ( f2− f1)(u2−u1)+(q2−q1) · (p2− p1)

= 〈ỹ2− ỹ1, x̃2− x̃1〉 ≥ 0 ,

where the last inequality follows by monotonicity of ∂H. We conclude showing maxi-
mality. Let B be another monotone operator of X such that G(A) ⊂ G(B). Then there
holds also the inclusion l(G(A)) ⊂ l(G(B)). Since l is a bijection, its image is all the
set G(∂H), then we have

G(∂H) = l(G(A))⊂ l(G(B)) . (4.66)
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We have shown that the relation l preserves monotonicity, than also the operator asso-
ciated to l(G(B)) is monotone. By maximality of ∂H, we obtain that the inclusion in
(4.66) is an equality. Hence, by applying l−1, we conclude that G(A) = G(B), that is A
is maximal. �
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CHAPTER5
Shape derivatives for minima of integral

functionals

In this Chapter we deal with the shape derivative of functionals which are obtained
by minimizing a classical integral of the Calculus of Variations, under Dirichlet or
Neumann conditions. Namely, we consider the functionals of domain defined by

JD(Ω) :=− inf
{∫

Ω

[
f (∇u)+g(u)

]
dx : u ∈W 1,p

0 (Ω)

}
(5.1)

JN(Ω) :=− inf
{∫

Ω

[
f (∇u)+g(u)

]
dx : u ∈W 1,p(Ω)

}
. (5.2)

Here Ω varies among the open bounded subsets of Rn, f : Rn→ R and g : R→ R are
continuous and convex integrands, which satisfy growth conditions of order p and q
respectively, specified later on.

In the sequel, the notation J(Ω) is adopted for brevity in all the statements which
apply indistinctively in the Dirichlet and Neumann cases.

Given a vector field V in C1(Rn;Rn), we consider the one-parameter family of do-
mains which are obtained as deformations of Ω with V as initial velocity, that is we
set

Ωε :=
{
x+ εV (x) : x ∈Ω

}
, ε > 0 . (5.3)

By definition, the shape derivative of J at Ω in direction V , if it exists, is given by
the limit

J′(Ω,V ) := lim
ε→0+

J(Ωε)− J(Ω)

ε
. (5.4)

The approach we adopt in order to study the shape derivative (5.4) is different from
the one usually employed in the literature, and seems to have a twofold interest: on one
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hand it allows to obtain the shape derivative for more general integrands f and g (see
Theorem 5.2.1); on the other hand, along with the shape derivative, it leads to discover
a new optimality condition for solutions to problems (5.1)-(5.2) (see Theorem 5.2.2).

The classical approach is based upon the a priori knowledge, for every ε > 0, of
a minimizer uε for problem J(Ωε), satisfying a suitable Euler-Lagrange equation (see
the Introduction and the monograph [67] for more details about the classical approach,
and see the recent papers [10, 45] and references therein about the conditions required
for the validity of the Euler-Lagrange equation).

In spite, our approach relies on the use of Convex Analysis, and more specifically
of the dual formulation of J(Ω), which in the Dirichlet and Neumann cases reads re-
spectively

J∗D(Ω) = inf
{∫

Ω
[ f ∗(σ)+g∗(divσ)]dx : σ ∈ Lp′(Ω;Rn) , divσ ∈ Lq′(Ω)

}
, (5.5)

J∗N(Ω) = inf
{∫

Ω
[ f ∗(σ)+g∗(divσ)]dx : σ ∈ Lp′(Ω;Rn), divσ ∈ Lq′(Ω) ,

σ ·n= 0 on ∂Ω
} (5.6)

where f ∗ and g∗ denote the Fenchel conjugates of f and g, while σ · n is the normal
trace of σ on ∂Ω intended in the sense of distributions (see Lemma 5.1.2).

Our study is motivated by the problem that we introduced in §4.6.2, that raised in
the shape optimization of thin rods in pure torsion regime, settled on the bar cross-
section: we dealt with a variational problem of the form (5.1), with Ω ⊂ R2 an open
bounded simply connected domain, and f ,g the following convex functions

f (y) :=

{ |y|2
2 + 1

2 if |y| ≥ 1

|y| if |y|< 1
, g(y) =−λy (λ ∈ R).

Due to the lackness of regularity of f at the origin, the solutions of the associated
functional J(Ω) do not satisfy an Euler-Lagrange equation, but merely a variational
inequality (see Proposition 4.1.1), hence the shape derivative cannot be computed by
using the classical approach.

The Chapter is organized as follows.
In Section 5.1 we introduce the preliminary material: we fix the main notation, the
standing assumptions, and the basic lemmata concerning the functionals under study.
In Section 5.2 we state our main results, which are proved in Section 5.3: we show the
shape derivative J′(Ω,V) exists (see Theorem 5.2.1) and, under additional regularity
assumptions, can be also recast as a linear form inV (see Corollary 5.2.1); moreover we
discover a new necessary condition of optimality for the classical variational problems
under study (Theorem 5.2.2).
In the Appendix of Section 5.3 we present an alternative proof of the existence of
J′(Ω,V ), for inner variations (that is V ·n≤ 0 on ∂Ω).
Finally, in Section 5.4 we present the possible advances, with particular attention to the
second order shape derivative.
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5.1 Preliminaries

5.1.1 Notation

Firstly, let us recall that throughout the Chapter the notation J(Ω) is adopted each time
it can be intended indistinctly as in (5.1) or as in (5.2). Similarly, J∗(Ω) is meant either
as in (5.5) or as in (5.6).

Only when required, we shall distinguish between the Dirichlet and the Neumann
cases, indicated respectively as (D) and (N) in the sequel.

For brevity, we denote by W (Ω) the domain of admissible functions for J(Ω)

(namelyW 1,p
0 (Ω) in case (D) andW 1,p(Ω) in case (N)), and by X(Ω;Rn) the domains

of admissible vector fields for J∗(Ω) (namely the space of Lp′ vector fields with diver-
gence in Lq′ in case (D), with the additional condition σ ·n= 0 on the boundary in case
(N)).

Moreover, we define the subsetsS ofW (Ω) andS ∗ of X(Ω;Rn) by

S :=
{

solutions to J(Ω)
}

and S
∗ :=

{
solutions to J∗(Ω)

}
.

Given V ∈ C1(Rn;Rn) and ε > 0, we denote by Ψε : Rn → Rn the bi-Lipschitz
diffeomorphism

Ψε(x) := x+ εV (x) .

Finally we introduce the functional space

X∞(Ω;Rn) :=
{
Ψ ∈ L∞(Ω;Rn) : divΨ ∈ L∞(Ω)

}
.

For every Ψ ∈ X∞(Ω;Rn), the normal trace [Ψ · n]∂Ω is well defined (cf. [6, 35]) in the
following weak sense:∫

∂Ω
[Ψ ·n]∂Ωϕ dH n−1 =

∫
Ω
Ψ ·∇ϕ dx+

∫
Ω
ϕ divΨdx ∀ϕ ∈C1(Ω) , (5.7)

moreover [Ψ · n]∂Ω ∈ L∞(∂Ω) . In the sequel, we also use the notation X∞(Ω;Rn×n)
and X∞(Ω) to denote respectively the class of tensors A with rows in X∞(Ω;Rn), and
the class of scalar functions ψ with ψI ∈ X∞(Ω;Rn×n). Accordingly, we indicate by
[An]∂Ω and [ψ n]∂Ω the normal traces of A and ψI intended row by row as in (5.7).

The properties the functional space X∞ and of traces of its elements are gathered in
§1.4.2.

5.1.2 Standing assumptions

Throughout the Chapter, we work under the following hypotheses, which will be re-
ferred to as standing assumptions:

(H1) Ω is an open bounded connected set with a Lipschitz boundary, with unit outer
normal n;

(H2) V is a vector field inC1(Rn;Rn);
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(H3) f : Rn→ R and g : R→ R are convex, continuous functions such that g(0) = 0
and ⎧⎨⎩ α(|z|p−1)≤ f (z)≤ β (|z|p+1) ∀z ∈ Rn

γ(|v|p−1)≤ g(v)≤ δ (|v|q+1) ∀v ∈ R .
(5.8)

Here α,β ,γ are positive constants, while the exponents p, q are assumed to satisfy

1< p<+∞ ,

{
q= p∗ := np

n−p if p< n
1< q<+∞ if p≥ n .

In the Dirichlet case, the lower bound for g in (5.8) can be relaxed to

− γ(|v|+1)≤ g(v) ∀v ∈ R . (5.9)

Notice that a positive constant γ such that (5.9) holds true exists for any real valued
continuous convex function g, as it admits an affine minorant (see §1.1.1).

When further assumptions on f and g are needed, they will be specified in each
statement.

5.1.3 Basic lemmata on integral functionals

Lemma 5.1.1. Under the standing assumptions on f and g, let I f and Ig be defined
respectively on Lp(Ω;Rn) and Lq(Ω) by

If (z) :=
∫
Ω
f (z) and Ig(v) :=

∫
Ω
g(v) . (5.10)

Then:

(i) the functionals I f (z) and Ig(u) are convex, finite, strongly continuous and weakly
l.s.c. respectively on Lp(Ω;Rn) and Lq(Ω);

(ii) the functional I f (∇u)+ Ig(u) is convex, finite, weakly coercive and weakly l.s.c.
on W (Ω);

(iii) the setsS andS ∗ of solutions to J(Ω) and J∗(Ω) are nonempty.

Proof. (i) Since f and g are convex and continuous they admit an affine minorant,
namely there exist a,b ∈ Rn and α,β ∈ R such that

a+b · z≤ f (z) , α+βu≤ g(u) (5.11)

for every z∈Rm, u∈R. Recalling that q> 1, condition (5.11), together with the growth
condition (H3) from above, implies that f and g satisfy

| f (z)| ≤C(|z|p+1) , |g(u)| ≤C′(|u|q+1) . (5.12)

By combining (5.11), (5.12) and the properties of continuity and convexity of the inte-
grands f and g, in view of Corollary 1.2.1 and Theorem 1.2.3, we infer that I f and Ig
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are both convex, finite, continuous with respect to the strong topology and lower semi-
continuous with respect to the weak topology in the functional spaces Lp(Ω;Rn) and
Lq(Ω) respectively.

(ii) Clearly, by convexity and growth assumption of the integrands, the functional
I f + Ig is finite and convex in Lp(Ω;Rn)×Lq(Ω).

Let us prove the coercivity: we have to show that every sublevel

Kt := {u ∈W (Ω;Rn) : I f (∇u)+ Ig(u)≤ t}
is contained in a weakly compact set. In what follows C and C′ denote positive con-
stants, that may be different from line to line.

Let u ∈ Kt : in view of the growth conditions from below we infer

C′(‖u‖pW 1,p−1)≤C(‖∇u‖pLp +‖u‖pLp−1)≤ I f (∇u)+ Ig(u)≤ t in case (N)
C′(‖u‖pW 1,p0

−‖u‖W 1,p
0

)≤C(‖∇u‖pLp−‖u‖Lp−1)≤ I f (∇u)+ Ig(u)≤ t in case (D)

where, for the Dirichlet case (D), we have used the fact that ‖∇u‖Lp is an equivalent
norm inW 1,p

0 (Ω;Rn).
Hence every sublevel Kt is contained in some bounded set ofW (Ω), in particular its

closure is weakly compact.
Exploiting the semicontinuity found in (i) for I f and Ig separately found in (i) we

obtain the lower semicontinuity in W (Ω): let {uk}k be a weakly convergent sequence
inW (Ω), that is

∇uk
Lp
⇀ ∇u , uk

Lp→ u ,

for some u ∈W (Ω); then in view of (i) we conclude that

I f (∇u)+ Ig(u)≤ liminf
k

I f (∇uk)+ liminf
k

Ig(uk)≤ liminf
k

(I f (∇uk)+ Ig(uk)) ,

(iii) By combining the finiteness, the weak coercivity and weak lower semicontinu-
ity of I f + Ig inW (Ω) we obtain the existence of a solution for problem J(Ω), namely
S �= /0. The existence of at least one solution for the dual problem follows by the
equality J(Ω) = J∗(Ω) (that we will prove in Lemma 5.1.2) and the duality Proposition
1.1.2. �

Lemma 5.1.2. Under the standing assumptions, there holds

J(Ω) = J∗(Ω) . (5.13)

Moreover, if u ∈W (Ω) and σ ∈ X(Ω;Rn), there holds the following equivalence:

(i)
{

u ∈S
σ ∈S ∗ ⇐⇒ (ii)

{
σ ∈ ∂ f (∇u) a.e. in Ω
divσ ∈ ∂g(u) a.e. in Ω

.

Proof. In order to prove the equality (5.13), we apply a standard Convex Analysis
result, which is enclosed in §1.1.3 for convenience of the reader (cf. Proposition 1.1.2).
Introducing the Banach spaces X :=W (Ω), Y := Lp(Ω;Rn)×Lq(Ω), the function Φ :
X → R identically zero, the function Ψ : Y → R defined by Ψ(z,u) := I f (z)+ Ig(u),
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and the linear operator A : X → Y defined by A(u) := (∇u,u), we can rewrite the shape
functional J(Ω) as

J(Ω) =− inf
u∈X
{Ψ(Au)+Φ(u)} .

In view of Lemma 5.1.1 (i), we infer thatΨ is convex, finite and sequentially continuous
on Y . Finally, if u0 ≡ 0, it holds Φ(u0) < +∞ and Ψ is continuous at A(u0). Then
Proposition 1.1.2 applies and gives

J(Ω) = inf
(σ ,τ)∈Y∗

{Ψ∗(σ ,τ)+Φ∗(−A∗(σ ,τ))} . (5.14)

Let us compute the Fenchel conjugates Ψ∗, Φ∗ and the adjoint operator A∗.
From Proposition 5.3.4 and Proposition 1.2.1 we obtain that, for every (σ ,τ)∈Y ∗=

Lp′(Ω;Rn)×Lq′(Ω), there holds

Ψ∗(σ ,τ) = (I f )∗(σ)+(Ig)∗(τ) = I f ∗(σ)+ Ig∗(τ) .

Since Φ≡ 0, its Fenchel conjugate Φ∗ is 0 at 0 and +∞ otherwise.
As an element of X∗, A∗(σ ,τ) is characterized by its action on the elements of X :

since

〈A∗(σ ,τ),u〉X∗,X = 〈(σ ,τ),A(u)〉Y∗,Y = 〈τ,u〉Lq′ ,Lq + 〈σ ,∇u〉Lp′ ,Lp

=

∫
Ω
τ u+σ ·∇u ,

we infer that A∗(σ ,τ)= 0 if and only if τ = divσ (with the additional condition σ ·n= 0
in the sense of distributions on the boundary in case (N)). Hence we can rewrite (5.14)
as

inf
{∫

Ω
f ∗(σ)+g∗(divσ) : σ ∈ Lp′(Ω;Rn) , divσ ∈ Lq′(Ω)

}
,

in case (D) and

inf
{∫

Ω
f ∗(σ)+g∗(divσ) : σ ∈ Lp′(Ω;Rn) , divσ ∈ Lq′(Ω) , σ ·n= 0

}
,

in case (N). We conclude that (5.13) holds.
Finally, let us check the equivalence between conditions (i) and (ii). By Proposition

1.1.2, we infer that condition (i) holds true if and only if (divσ ,σ) ∈ ∂Ψ(A(u)). In
view of Proposition 5.3.4, there holds

∂Ψ(A(u)) = ∂Ψ(u,∇u) = ∂ I f (∇u)×∂ Ig(u) ,

and hence, by Proposition 1.2.1, we have (divσ ,σ)∈ ∂Ψ(A(u)) if and only if condition
(ii) holds true.

�

We now endow W (Ω) and X(Ω;Rn) respectively with the following convergence,
which in both cases will be simply called weak convergence:

uε
W 1,p
⇀ u0 , (5.15)

σε
Lp′
⇀ σ0 , divσε

Lq′
⇀ divσ0 . (5.16)
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Lemma 5.1.3. Under the standing assumptions, the sets S and S ∗ are weakly com-
pact respectively in W (Ω) and X(Ω;Rn).

Proof. Let uk be a sequence of elements in S . By the coercivity statement in Lemma
5.1.1 (ii), the sequence is bounded in W (Ω), hence it admits a subsequence which
converges in the weak W 1,p-topology to some u ∈W (Ω). By the l.s.c. statement in
Lemma 5.1.1 (ii), we infer that also the limit function u belongs toS .

Let us consider the setS ∗. In view of Lemma 5.1.2, we can writeS ∗ as

S
∗ = {σ ∈ X(Ω;Rn) : σ ∈ ∂ f (u0) a.e. , divσ ∈ ∂g(u0) a.e.} , (5.17)

with u0 arbitrarily chosen inS .
Recalling that the functionals I f and Ig defined in (5.10) are convex and strongly

continuous on Lp(Ω;Rn) and Lq(Ω;Rn) (see Lemma 5.1.1 (i)), we can apply Theorem
1.1.3 (ii) and infer that ∂ f (∇u0) and ∂g(u0) are weakly compact sets respectively in
Lp′(Ω;Rn) and in Lq′(Ω). Hence, exploiting the characterization (5.17) and taking into
account that the constraint τ = divσ is weakly closed, we conclude that S ∗ is weakly
compact in X(Ω;Rn).

�

5.2 Main results

We begin by introducing the following crucial

Definition 5.2.1. For any (u,σ) ∈S ×S ∗, we set

A(u,σ) := ∇u⊗σ − [ f (∇u)+g(u)] I ,

Remark 5.2.1. (i) Thanks to the growth conditions (5.8) satisfied by f and g, it is
easy to check that A(u,σ) ∈ L1(Ω;Rn×n).

(ii) By using the Fenchel equality satisfied by u and σ (cf. Lemma 5.1.2), the tensor
A(u,σ) can be rewritten as

A(u,σ) := ∇u⊗σ +[ f ∗(σ)+g∗(divσ)−∇u ·σ −udivσ ] I .

(iii) In case f is Gateaux differentiable except at most in the origin, the optimality
condition σ ∈ ∂ f (∇u) holding for all (u,σ)∈S ×S ∗ determines uniquely σ (as
∇ f (∇u)) in the set {∇u �= 0}. Therefore in this case the tensor A(u,σ) turns out
to be independent of σ , and as such it will be simply denoted by A(u). Namely,
when f is Gateaux differentiable except at most in the origin, for any u ∈S we
set

A(u) := ∇u⊗∇ f (∇u)− [ f (∇u)+g(u)] I . (5.18)

We are now in a position to state our main results.
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Theorem 5.2.1. (existence of the shape derivative)
Under the standing assumptions, the shape derivative of the functional J(·) at Ω in

direction V defined according to (5.4) exists. Actually, for every V ∈C1(Rn;Rn), the
following inf-sup and sup-inf agree and are equal to J′(Ω,V ):

J′(Ω,V ) = sup
u∈S

inf
σ∈S ∗

∫
Ω
A(u,σ) : DV = inf

σ∈S ∗
sup
u∈S

∫
Ω
A(u,σ) : DV . (5.19)

Moreover, there exists a saddle point (u�,σ�) ∈S ×S ∗ at which the inf-sup and sup-
inf above are attained.

Remark 5.2.2. In general, equality (5.19) does not allow to conclude thatV 
→ J′(Ω,V )
is a linear form, since a priori the pair (u�,σ�) depends on V . However, the linearity
of the shape derivative in V can be asserted in one of the following situations:

– when both primal and dual problems have a unique solution (as in this case both
S andS ∗ are singletons);

– when the primal problem has a unique solution u, and f is Gateaux differentiable
except at most at the origin (as in this case S is a singleton, and the tensor A depends
only on u ).

In particular, in the latter case we are going to see that, under some additional reg-
ularity assumptions on u, the shape derivative can also be recast as a boundary integral
depending linearly on the normal component of V on the boundary, see Corollary 5.2.1
below.

As a by-product of Theorem 5.2.1, we obtain the following result of independent
interest:

Theorem 5.2.2. (necessary conditions for optimality)
Under the standing assumptions, there holds:
(i) For every u ∈S , there exists σ̂ = σ̂(u) ∈S ∗ such that

divA(u, σ̂) = 0 in D ′(Ω;Rn) . (5.20)

In particular, in case f is Gateaux differentiable except at most at the origin, for every
u ∈S there holds

divA(u) = 0 in D ′(Ω;Rn) . (5.21)

(ii) For every σ ∈S ∗, there exists û= û(σ) ∈S such that

divA(û,σ) = 0 in D ′(Ω;Rn) . (5.22)

Remark 5.2.3. We underline that in case f is Gateaux-differentiable except at most at
the origin, in view of (5.18) in Remark 5.2.1 (iii), the property (5.20) implies that for
every u ∈S

div
(
∇u⊗∇ f (∇u)− [ f (∇u)+g(u)] I

)
= 0 (5.23)

in the sense of distributions. To some extent surprisingly, as far as we are aware, con-
dition (5.23) seems to be until now undiscovered, except from the scalar case n = 1,
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when it reduces to the following conservation law or first integral of the Euler equation,
satisfied by smooth extremals of smooth Lagrangians:

u′ f ′(u′)− [ f (u′)+g(u)] = c ,

see e.g. [25, Proposition 1.13].

Thanks to equality (5.21) in Theorem 5.2.2, when ū satisfies suitable regularity
assumptions as specified below, the associated tensor A(u) turns out to admit a normal
trace on the boundary, which can also be characterized in terms of the energy density:

Proposition 5.2.1. (boundary trace of the tensor A)
Under the standing assumptions, suppose in addition that f is Gateaux differen-

tiable except at most at the origin, and let u ∈S .
If u belongs to Lip(Ω), then A(u) belongs to X∞(Ω;Rn×n), and as such it admits a

normal trace on the boundary [A(u)n]∂Ω ∈ L∞(∂Ω;Rn).
If in addition ∂Ω is piecewise C1, ∇u ∈ BV (Ω), and the field ∇ f (∇u), which is

defined on the set Ωu := {∇u �= 0}, can be extended to a field ζ (u) defined on Ω, such
that {

ζ (u) ∈ BV (Ω;Rn) in case (D)

ζ (u) ∈ BV (Ω;Rn), with Tr(ζ (u)) ·n= 0 on ∂Ω in case (N) ,
(5.24)

then

[A(u)n]∂Ω =

{
Tr
(
∇u ·ζ (u)− f (∇u)

)
n= Tr

(
f ∗(ζ (u))

)
n in case (D)

Tr
(
f (∇u)+g(u)

)
n in case (N) .

(5.25)

Remark 5.2.4. We point out that the existence of a vector field ζ (u) satisfying (5.24)
is guaranteed for instance in one of the following situations:

∂Ωu is Lipschitz and ∇ f (∇u) ∈ BV (Ωu) (5.26)

there exists σ ∈S ∗ ∩BV (Ω;Rn) . (5.27)

Indeed, in case (5.26) it is enough to define ζ (u) = 0 outside Ωu (see [5, Corollary
3.89]), whereas in case (5.27) one can take ζ (u) = σ (see Remark 5.2.1 (iii)).

As a consequence of Theorem 5.2.1 and Proposition 5.2.1, we obtain:

Corollary 5.2.1. (shape derivative as a linear form on the boundary)
Under the standing assumptions, suppose in addition that f is Gateaux differen-

tiable except at most at the origin, and assume that problem J(Ω) admits a unique
solution u, with u ∈ Lip(Ω). Then the shape derivative given by (5.19) can be identi-
fied with the following linear form

J′(Ω,V) =
∫
∂Ω

[A(u)n]∂Ω ·V dH n−1 . (5.28)
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If in addition ∂Ω is piecewise C1, ∇u ∈ BV (Ω;Rn), and the field ∇ f (∇u) can be ex-
tended to a field ζ (u) as in (5.24), then

J′(Ω,V ) =

⎧⎪⎨⎪⎩
∫
∂Ω

Tr
(
f ∗(ζ (u))

)
(V ·n)dH n−1 in case (D)∫

∂Ω
Tr
(
f (∇u)+g(u)

)
(V ·n)dH n−1 in case (N) .

Remark 5.2.5. Let us point out that the Lipschitz regularity of solutions to classical
problems in the Calculus of Variations is a delicate matter which is currently object
of investigation by several Authors. It is beyond of the scopes of our present study to
discuss the conditions on f and g which yield Lipschitz solutions to J(Ω) as assumed
in Proposition 5.2.1 and Corollary 5.2.1: without any attempt of giving a complete
bibliographical list, we refer the interested reader to the papers [33, 55, 74, 76] (and
references therein) for both local and global regularity results.

Remark 5.2.6. We remark that the study of the first order shape derivative doesn’t
allow us to obtain any further information about the behavior of the solutions for the
problem m(s) introduced in Chapter 4. As explained in §4.6.2, given a solution u for
the primal problem, in order to better understand its behavior we can study the first
order shape derivative of the functional in (4.63) with respect to inner deformations of
the set D\{|∇u|= 0}. In view of (4.55), a solution σ for the dual problem satisfies

|σ |= 1 on ∂{|∇u|= 0}∩D , on ∂{0< |∇u| ≤ 1}∩D , and on ∂{|∇u|> 1}∩D .

In case u is a special solution, the second set above is the empty set. The integrand ϕ
in (4.3) is Gateaux differentiable except at the origin, moreover we assume that the free
boundary is smooth, then we are in a position to apply Corollary 5.2.1. Recalling that
the Fenchel conjugate ϕ∗ in in (4.5) vanishes in the ball of radius 1 , we infer that the
first order shape derivative in (5.28) vanishes. Thus we cannot exclude or confirm the
presence of homogenization regions.

5.3 Proofs

In order to prove the results stated in the previous section, we carry over a thorough
analysis of the asymptotic behavior as ε → 0+ of the sequence

qε(V ) :=
J(Ωε)− J(Ω)

ε
=

J∗(Ωε)− J∗(Ω)

ε
, (5.29)

where the domains Ωε are deformations of Ω through V as in (5.3), and the second
equality is due to Lemma 5.1.2.

More precisely, we proceed as follows: first we rewrite J(Ωε) and J∗(Ωε) as min-
imum problems for integral functionals set over the fixed domain Ω (Lemma 5.3.1)
and we study the asymptotic behavior of their solutions (Proposition 5.3.1); as a conse-
quence, we are able to provide a lower bound and an upper bound for qε(V ) (Proposi-
tions 5.4.1 and 5.3.3); afterwards, by exploiting these bounds, we prove Theorem 5.2.1
and, finally, all the other results stated in Section 5.2.
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5.3. Proofs

The proofs of the upper and lower bound are based on a Γ-convergence technique.
In the Appendix we show an alternative proof: it requires additional assumptions on
the growth condition (H3), nevertheless the more direct approach can be better applied
for second order shape derivatives (see §5.4.1).

For every ε > 0, let Eε and Hε be the functionals defined respectively onW (Ω) and
X(Ω;Rn) by

Eε(u) :=
∫
Ω
[ f (DΨ−Tε ∇u)+g(u)] |detDΨε | , (5.30)

Hε(σ) :=
∫
Ω
[ f ∗(|detDΨε |−1DΨεσ)+g∗(|detDΨε |−1 divσ)] |detDΨε | .(5.31)

In terms of these functionals, we can rewrite the minimization problems under study
as follows:

Lemma 5.3.1. Under the standing assumptions, for every ε > 0 there holds

J(Ωε) =− inf
{
Eε(u) : u ∈W (Ω)

}
, (5.32)

J∗(Ωε) = inf
{
Hε(σ) : σ ∈ X(Ω;Rn)

}
. (5.33)

Proof. Let ε > 0 be fixed. Functions ũ ∈W (Ωε) are in 1-1 correspondence with func-
tions u ∈W (Ω) through the equality ũ= u◦Ψ−1ε in Ωε ; moreover, via change of vari-
ables, there holds∫

Ωε
[ f (∇ũ)+g(ũ)] =

∫
Ω
[ f (DΨ−Tε ∇u)+g(u)]|detDΨε | . (5.34)

Passing to the infimum over ũ ∈W (Ωε) in the l.h.s. and over u ∈W (Ω) at the r.h.s., we
obtain (5.32).

For brevity, in the remaining of the proof we set

βε := |detDΨε | fε(x,z) := f (DΨ−Tε z)βε , gε(x,v) := g(v)βε .

Then, in view of (5.30) and (5.32), the functional J(Ωε) reads

J(Ωε) =− inf
{∫

Ω
[ fε(x,∇u)+gε(x,u)] : u ∈W (Ω)

}
.

Moreover, by arguing in the same way as already done in the proof of Lemma 5.1.2,
we obtain that the dual form of J(Ωε) is given by

J∗(Ωε) = inf
{∫

Ω
[ f ∗ε (x,σ)+g∗ε(x,divσ)] : σ ∈ X(Ω;Rn)

}
. (5.35)

Here f ∗ε and g∗ε denote the Fenchel conjugates of f and g, performed with respect to the
second variable. Their computation gives:

f ∗ε (x,z
∗) = sup

z∈Rn

{
z · z∗− f (DΨ−Tε z)βε

}
= βε f ∗(β−1ε DΨε z∗) ,

g∗ε(x,v
∗) = sup

v∈R
{vv∗ −g(v)βε}= βε g∗(β−1ε v∗) .

Hence, recalling definition (5.31), we obtain (5.33). �
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Chapter 5. Shape derivatives for minima of integral functionals

Now, we study the asymptotic behavior as ε→ 0 of solutions to problems (5.32) and
(5.33). To that aim, we introduce the limit functionals defined onW (Ω) and X(Ω;Rn)
by

E(u) :=
∫
Ω
[ f (∇u)+g(u)] , (5.36)

H(σ) :=
∫
Ω
[ f ∗(σ)+g∗(divσ)] . (5.37)

We recall thatW (Ω) and X(Ω;Rn) are endowed with the weak convergence defined in
(5.15)-(5.16).

Proposition 5.3.1. (asymptotic behavior of minimizers)
(i) On the space W (Ω) endowed with the weak convergence, the sequence Eε in

(5.30) is equicoercive and, as ε → 0, it Γ-converges to the functional E in (5.36). In
particular, every sequence uε such that uε ∈ Argmin(Eε) admits a subsequence which
converges weakly in W (Ω) to some u0 ∈ Argmin(E).

(ii) On the space X(Ω;Rn) endowed with the weak convergence, the sequence Hε in
(5.31) is equicoercive and, as ε → 0, it Γ-converges to the functional H in (5.37). In
particular, every sequence σε such that σε ∈ Argmin(Hε) admits a subsequence which
converges weakly in X(Ω;Rn) to some σ0 ∈ Argmin(H).

Proof. (i) The equicoercivity of the family of functionals Eε can be easily obtained by
exploiting the growth assumptions (H3) on f and g, the uniform boundedness from
below of the positive coefficients βε , and the uniform control on the L∞ norm of the
tensors DΨ−Tε . Let us prove the Γ-convergence statement for Eε . By definition of
Γ-convergence, we have to show that the so-called Γ-liminf and Γ-limsup inequalities
hold, namely:

inf
{
liminfEε(uε) : uε

W 1,p
⇀ u

}
≥ E(u) , (5.38)

inf
{
limsupEε(uε) : uε

W 1,p
⇀ u

}
≤ E(u) . (5.39)

Let us prove (5.38). Consider an arbitrary sequence uε which converges weakly
to u in W (Ω). We observe that the sequence DΨ−Tε ∇uε converges to ∇u weakly in
Lp(Ω;Rn), and that βε converges to 1 uniformly in Ω. Hence, exploiting the weak
lower semicontinuity of I f and Ig in Lp(Ω;Rn) and Lq(Ω) respectively (cf. Lemma
5.1.1 (i)), we infer that

E(u)≤ liminf
ε

∫
Ω
f (DΨ−Tε ∇uε)βε + liminf

ε

∫
Ω
g(uε)βε dx≤ liminf

ε
Eε(uε) ,

which implies (5.38).

Let us prove (5.39). For every fixed u ∈W (Ω) we have to find a recovery sequence,
namely a sequence uε which converges weakly to u inW (Ω) and satisfies

E(u)≥ limsup
ε

Eε(uε) . (5.40)
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We claim that the sequence uε ≡ u for every ε > 0 satisfies (5.40). Indeed, since
DΨ−Tε ∇u converges strongly to ∇u in Lp(Ω;Rn), by exploiting Lemma 5.1.1 (i) we
obtain :

E(u) = lim
ε→0

∫
Ω
f (DΨ−Tε ∇u)βε + lim

ε→0

∫
Ω
g(u)βε ≥ limsup

ε
Eε(u) .

Finally, the compactness of a minimizing sequence is a well-known consequence of
Γ-convergence (see Theorem 1.3.3).

(ii) The equicoercivity of the sequence Hε can be easily obtained by exploiting the
uniform boundedness from below of the positive coefficients βε , the uniform control
on the L∞ norm of the tensors DΨ−Tε , and the following growth conditions, holding for
some positive constants a,b as a consequence of the standing assumption (H3):

f ∗(z∗)≥ a(|z∗|p′ −1) ∀z∗ ∈ R
n ,

g∗(v∗)≥ b(|v∗|q′ −1) ∀v∗ ∈ R .

Let us prove the Γ-convergence statement for Hε . We observe that the Γ-convergence
of the functionals Eε to E proved at item (i) above can be restated on the product space{

(u,∇u) : u ∈ Lq(Ω) ,∇u ∈ Lp(Ω;Rn)
}

(5.41)

(endowed with the product of the weak Lq and weak Lp convergences), which in fact
can be identified with the space of functions u in W (Ω) (endowed with the weak con-
vergence defined in (5.15)). Moreover, such Γ-convergence can be strengthened into a
Mosco-convergence (see [79]), because we have exhibited a recovery sequence which
converges in the strong topology. Since the Mosco-convergence is stable when pass-
ing to the Fenchel conjugates (see §1.3.5), we deduce that the functionals E∗ε Mosco-
converge (and hence Γ-converge) to the functional E∗. We conclude by noticing that
the dual of the product space in (5.41) (endowed with the product of the weak Lq′ and
weak Lp′ convergences) is precisely X(Ω;Rn) (endowed with the weak convergence in
(5.16)), and on such space Hε and H agree respectively with the Fenchel conjugates E∗ε
and E∗. Finally, the compactness of a minimizing sequence follows again as a conse-
quence of Γ-convergence.

�

Proposition 5.3.2. (lower bound) Under the standing assumptions, it holds

liminf
ε→0+

qε(V )≥ inf
σ∈S ∗

sup
u∈S

∫
Ω
A(u,σ) : DV . (5.42)

Proof. In order to prove (5.42) it is enough to show that

liminf
ε→0+

qε(V )≥ sup
u∈S

∫
Ω
A(u,σ0) : DV (5.43)

for some σ0 ∈S ∗.
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In order to bound qε(V ) from below, we observe that, by Lemma 5.1.2 and Lemma
5.3.1, there holds

qε(V ) =
J∗(Ωε)− J(Ω)

ε
=

infHε + infE
ε

, (5.44)

being Hε and E the functionals defined respectively in (5.31) and (5.36). In view of
(5.44), letting σε ∈ Argmin(Hε) and u ∈ Argmin(E) =S , qε(V ) reads

qε(V ) =
1
ε

[∫
Ω
[ f ∗(β−1ε DΨεσε)+g∗(β−1ε divσε)]βε +

∫
Ω
[ f (∇u)+g(u)]

]
.

Taking into account that the coefficient βε is (strictly) positive everywhere, by applying
the Fenchel inequality we obtain

qε(V )≥ 1
ε

[∫
Ω
[(DΨεσε) ·∇u+udivσε ]−

∫
Ω
[ f (∇u)+g(u)](βε−1)

]
. (5.45)

Recalling that DΨε = I+ εDV , an integration by parts gives∫
Ω
[(DΨεσε) ·∇u+udivσε ] = ε

∫
Ω
(DVσε) ·∇u . (5.46)

By combining (5.45) and (5.46), we obtain

qε(V )≥
∫
Ω
[(DVσε) ·∇u]−

∫
Ω
[ f (∇u)+g(u)]

(βε−1)
ε

. (5.47)

We recall that βε = 1+ε divV+ε2mε for somemε ∈C0(Ω) such that supε ‖mε‖L∞(Ω)≤
C for some positive constantC. Therefore,

βε −1
ε
→ divV uniformly . (5.48)

In view of Proposition 5.3.1 (ii), up to subsequences there holds

σε
Lp′
⇀ σ0 (5.49)

for some σ0 ∈ Argmin(H) = S ∗. We remark that a priori σε and σ0 depend on V .
Thanks to (5.48) and (5.49), by passing to the limit as ε → 0+ in (5.47), we conclude
that

liminf
ε→0+

qε(V )≥
∫
Ω
[(DVσ0) ·∇u]−

∫
Ω
[ f (∇u)+g(u)]divV =

∫
Ω
A(u,σ0) : DV .

Finally, by the arbitrariness of u ∈S , we obtain (5.43).
�

Proposition 5.3.3. (upper bound)
Under the standing assumptions, it holds

limsup
ε→0+

qε(V )≤ sup
u∈S

inf
σ∈S ∗

∫
Ω
A(u,σ) : DV . (5.50)
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Proof. In order to prove (5.93), it is enough to show that

limsup
ε→0+

qε(V )≤ inf
σ∈S ∗

∫
Ω
A(u0,σ) : DV , (5.51)

for some u0 ∈S .
In order to bound qε(V ) from above, we observe that, by Lemma 5.1.2 and Lemma

5.3.1, there holds

qε(V ) =
J(Ωε)− J∗(Ω)

ε
=
− infEε − infH

ε
, (5.52)

being Eε and H the functionals defined respectively in (5.30) and (5.37). In view of
(5.52), letting uε ∈ Argmin(Eε) and σ ∈ Argmin(H) =S ∗, qε(V ) reads

qε(V ) =
1
ε

[
−
∫
Ω

[
f (Dψ−Tε ∇uε)+g(uε)

]
βε −

∫
Ω
[ f ∗(σ)+g∗(divσ)]

]
. (5.53)

Taking into account that the coefficient βε is (strictly) positive everywhere, by ap-
plying the Fenchel inequality we obtain∫
Ω

[
f (Dψ−Tε ∇uε) +g(uε)] βε ≥

∫
Ω

[
(DΨ−1ε σ) ·∇uε +divσuε− f ∗(σ)−g∗(divσ)

]
βε

=

∫
Ω
[σ ·∇uε +uε divσ − f ∗(σ)−g∗(divσ)]+

+ ε
∫
Ω
[(σ ·∇uε +uε divσ − f ∗(σ)−g∗(divσ))divV − (DVσ) ·∇uε]+

+ ε2
∫
Ω
[aε ·∇uε +αε uε −mε( f ∗(σ)+g∗(divσ))] (5.54)

where we have used the following asymptotic expansions of βε and DΨ−1ε in terms of
ε

βε = 1+ ε divV + ε2mε , DΨ−1ε = I− εDV + ε2Mε ,

for some mε ∈C(R) and Mε ∈C(Rn;Rn×n), and we have denoted by aε and αε the the
vector field and the scalar function defined by

aε := mεσ −divV DV σ +Mεσ − εmεDVσ + ε divV Mεσ + ε2mεMεσ ,

αε := mε divσ .

We remark that

sup
ε
‖mε‖L∞(Ω)≤C , sup

ε
‖Mε‖L∞(Ω)≤C , sup

ε
‖aε‖Lp′(Ω;Rn)≤C , sup

ε
‖αε‖Lq′(Ω)≤C .

(5.55)
Then, by combining (5.53) and (5.54), and recalling that∫

Ω
σ ·∇uε +uε divσ = 0 ,

we infer

qε(V )≤
∫
Ω
[ f ∗(σ)+g∗(divσ)]divV+

∫
Ω
[(DV σ) ·∇uε−(σ ·∇uε+uε divσ)divV ]−εCε ,

(5.56)
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being
Cε :=

∫
Ω
[aε ·∇uε +αε uε−mε( f ∗(σ)+g∗(divσ))] .

By Proposition 5.3.1 (i), up to subsequences there holds

uε
W 1,p(Ω)
⇀ u0 (5.57)

for some u0 ∈ Argmin(E) =S . We remark that a priori u0 and uε depend on V .
Exploiting (5.55) and (5.57), we infer that the sequenceCε is bounded. Then, pass-

ing to the limit as ε → 0+ in (5.56), we conclude that

limsup
ε→0+

qε(V )≤
∫
Ω
[ f ∗(σ)+g∗(divσ)]divV+

∫
Ω
[(DVσ) ·∇u0−(σ ·∇u0+u0 divσ)divV ] .

(5.58)
Since u0 ∈S and σ ∈S ∗, we can rewrite the r.h.s. of (5.58) as∫

Ω
[(DVσ) ·∇u0− ( f (∇u0)+g(u0))divV ]dx=

∫
Ω
A(u0,σ) : DV .

Finally, by the arbitrariness of σ ∈S ∗, we obtain (5.51).
�

Proof of Theorem 5.2.1.
By combining the lower and upper bounds obtained in Propositions 5.4.1 and 5.3.3,

we infer

inf
σ∈S ∗

sup
u∈S

∫
Ω
A(u,σ) :DV ≤ liminf

ε→0+
qε(V )≤ limsup

ε→0+
qε(V )≤ sup

u∈S
inf

σ∈S ∗

∫
Ω
A(u,σ) :DV .

(5.59)
Since the sup-inf at the r.h.s. of (5.59) is always lower than or equal to the inf-sup at
the l.h.s., we infer that all the inequalities in (5.59) are actually equalities; in particular,
the sequence qε(V ) converges as ε → 0+, and its limit provides the shape derivative
J′(Ω,V ), namely

J′(Ω,V) = sup
u∈S

inf
σ∈S ∗

∫
Ω
A(u,σ) : DV = inf

σ∈S ∗
sup
u∈S

∫
Ω
A(u,σ) : DV .

Now, we observe that the functionals σ 
→ ∫
ΩA(u,σ) : DV and u 
→ ∫

ΩA(u,σ) : DV
are linearly affine (see respectively Definition 5.2.1 and Remark 5.2.1 (ii)), and hence
weakly continuous respectively onW (Ω) and X(Ω;Rn). Moreover, the setsS ⊂W (Ω)
andS ∗ ⊂ X(Ω;Rn) are weakly compact (see Lemma 5.1.3). Therefore, by Proposition
1.1.3, the sup-inf or inf-sup above is attained at some optimal pair (u�,σ�) ∈S ×S ∗,
which a priori depends on V .

�

Proof of Theorem 5.2.2.
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(i) Let V be a deformation field in C∞
0 (Ω;Rn). Clearly, since V is compactly sup-

ported into Ω, for every ε small enough the deformed domain Ωε in (5.3) coincides
with Ω, so that

J′(Ω,V) = 0 . (5.60)

Let us fix u ∈S and define Lu :C∞
0 (Ω;Rn)×S ∗ →R as

Lu(V,σ) :=−
∫
Ω
A(u,σ) : DV . (5.61)

By (5.60) and Theorem 5.2.1, we get

sup
σ∈S ∗

Lu(V,σ)=− inf
σ∈S ∗

∫
Ω
A(u,σ) :DV ≥− sup

u∈S
inf

σ∈S ∗

∫
Ω
A(u,σ) :DV =−J′(Ω,V)= 0 ;

then, by the arbitrariness of V ∈C∞
0 (Ω;Rn), we deduce that

inf
V∈C∞

0 (Ω;Rn)
sup

σ∈S ∗
Lu(V,σ)≥ 0 .

By taking V ≡ 0, we see that the inf-sup above is in fact zero.
Since by Lemma 5.1.3 the set S ∗ is convex and weakly compact in X(Ω;Rn),

Lu(·,σ) is convex, Lu(V, ·) is concave and weakly upper semicontinuous, Proposition
1.1.3 applies and gives

0= inf
V∈C∞

0 (Ω;Rn)
sup

σ∈S ∗
Lu(V,σ) = sup

σ∈S ∗
inf

V∈C∞
0
Lu(V,σ) ;

moreover, there exists σ̂ ∈S ∗, depending on u, such that

inf
V∈C∞

0 (Ω;Rn)
Lu(V, σ̂) = 0 . (5.62)

Since Lu(·, σ̂) is linear, the equality (5.62) implies

Lu(V, σ̂) = 0 ∀V ∈C∞
0 (Ω;Rn) . (5.63)

Finally, recalling the definition (5.61) of Lu, condition (5.63) can be written as∫
Ω
A(u, σ̂) : DV = 0 ∀V ∈C∞

0 (Ω;Rn) ,

namely σ̂ satisfies (5.20).
(ii) We argue in a similar way as already done for the proof of statement (i). Let us

fix σ ∈S ∗ and define Lσ :C∞
0 (Ω;Rn)×S → R as

Lσ (V,u) :=
∫
Ω
A(u,σ) : DV . (5.64)

As above, considering deformationsV compactly supported into Ω gives J′(Ω,V) = 0,
so that by applying Theorem 5.2.1 we obtain

sup
u∈S

Lσ (V,u)≥ inf
σ∈S ∗

sup
u∈S

∫
Ω
A(u,σ) : DV = J′(Ω,V) = 0 .
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By the arbitrariness of V ∈C∞
0 (Ω;Rn) we infer

inf
V∈C∞

0 (Ω;Rn)
sup
u∈S

Lσ (V,u)≥ 0 .

By taking V ≡ 0, we see that the inf-sup above is in fact zero.
Since by Lemma 5.1.3 the setS is convex and weakly compact inW (Ω), Lσ (·,u) is

convex, Lσ (V, ·) is concave and weakly upper semicontinuous, Proposition 1.1.3 applies
and gives

0= inf
V∈C∞

0 (Ω;Rn)
sup
u∈S

Lσ (V,u) = sup
u∈S

inf
V∈C∞

0
Lσ (V,u) ;

moreover, there exists û ∈S , depending on σ , such that

inf
V∈C∞

0 (Ω;Rn)
L(V, û) = 0 . (5.65)

Since Lσ (·, û) is linear, the equality (5.65) implies

Lσ (V, û) = 0 ∀V ∈C∞
0 (Ω;Rn) . (5.66)

Finally, recalling the definition (5.64) of Lσ , condition (5.66) can be written as∫
Ω
A(û,σ) : DV = 0 ∀V ∈C∞

0 (Ω;Rn) ,

namely û satisfies (5.22).
�

We now turn attention to the proof of Proposition 5.2.1.
Proof of Proposition 5.2.1.
Let us assume that u∈ Lip(Ω). Using also the growth conditions (5.8) satisfied by f

and g, we see that A(u) is in L∞(Ω;Rn×n). Taking into account (5.21), we infer that A(u)
belongs to X∞(Ω;Rn×n). As such, it admits a normal trace [A(u)n]∂Ω ∈ L∞(∂Ω;Rn).

Now, assume that ∂Ω is piecewise C1, that ∇u ∈ BV (Ω), and that ∇ f (∇u) can be
extended to a field ζ (u) as in (5.24). Let us define

aD(u) := ∇u ·∇ f (u)− f (∇u) = ∇u ·ζ (u)− f (∇u) ,
aN(u) :=− f (∇u)−g(u) .

We remark that, by the Fenchel equality, aD(u) = f ∗(ζ (u)) in Ω.
In the sequel, the notation a(u) is adopted for brevity in all the assertions which

apply indistinctly for aD(u) and aN(u).
From the assumption u∈Lip(Ω) and the growth conditions (5.8), we see that a(u)∈

L∞(Ω). We claim that a(u) ∈ BV (Ω). Indeed, under the standing assumptions f and
g are locally Lipschitz, and the composition of a locally Lipschitz with a BV function
is still BV , so that f (∇u) and g(u) are in BV . Moreover, the product of two functions
which are in L∞∩BV remains in L∞∩BV , so that the scalar product ∇u ·ζ (u) is in BV .
Then the claim is proved. In particular, the tensor a(u)I is an element of X∞(Ω;Rn×n),
and consequently its normal trace [a(u)I n]∂Ω is well defined. Moreover, according
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to equality (1.13) in Lemma 1.4.1, it can be identified with the trace of a(u) as a BV
function, namely

Tr(a(u))n= [a(u)I n]∂Ω H
n−1-a.e. on ∂Ω . (5.67)

In view of (5.67), in order to obtain (5.25) it is enough to show that

[A(u)n−aD(u)I n]∂Ω = 0 in case (D) ,
[A(u)n−aN(u)I n]∂Ω = 0 in case (N) ,

namely[(
∇u⊗∇ f (∇u)−g(u)I−∇u ·∇ f (∇u)I

)
n
]
∂Ω = 0 in case (D) , (5.68)

[∇u⊗∇ f (∇u)n]∂Ω = 0 in case (N) . (5.69)

Let us first treat the Dirichlet case. Since by assumption ∂Ω is piecewise C1, we
can exploit the pointwise characterization (1.11) of the normal trace and rewrite (5.68)
as

lim
r,ρ→0+

−
∫
C−r,ρ (x0)

[
(∇ f (∇u) · ñ)∇u−g(u)ñ−(∇u·∇ f (∇u))ñ

]
= 0 forH n−1-a.e. x0 ∈ ∂Ω .

Recalling that g(u) is a continuous function which vanishes on ∂Ω, we have

lim
r,ρ→0+

−
∫
C−r,ρ (x0)

[g(u) ñ] = 0 forH n−1-a.e. x0 ∈ ∂Ω ,

and we are finally reduced to check that

lim
r,ρ→0+

−
∫
C−r,ρ (x0)

[
(∇ f (∇u) · ñ)∇u− (∇u ·∇ f (∇u))ñ

]
= 0 forH n−1-a.e. x0 ∈ ∂Ω .

Setting Pñ(∇u) := ∇u− (∇u · ñ)ñ, we have∣∣∣∣−∫C−r,ρ (x0) [(∇ f (∇u) · ñ)∇u− (∇u ·∇ f (∇u))ñ
]∣∣∣∣

=

∣∣∣∣−∫C−r,ρ (x0) [(∇ f (∇u) · ñ)Pñ(∇u)− (Pñ(∇u) ·∇ f (∇u))ñ
]∣∣∣∣

≤ 2‖σ‖L∞−
∫
C−r,ρ (x0)

|Pñ(∇u)|

where σ is any element of S ∗ (notice that σ = ∇ f (∇u) on {∇u �= 0} and σ is in
L∞(Ω;Rn); the latter assertion follows straightforward from the assumption∇u∈ L∞(Ω;Rn)
and Lemma 5.1.2 (ii)).

Now we observe that, since by assumption u= 0 on ∂Ω and ∇u ∈ BV (Ω;Rn), the
trace Tr(∇u) is normal to ∂Ω, that is

Tr(∇u) = (Tr(∇u) ·n)n H n−1− a.e. on ∂Ω . (5.70)
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In fact, thanks to the assumption that ∂Ω is piecewise C1, the equality (5.70) can be
proved by an approximation argument, which can be found for instance in [48, Propo-
sition 1.4 and Section 2] (see also [49, Theorem 2.3], where the same result is proved
in a more general framework, allowing in particular piecewiseC1 boundaries).

In view of (5.70), forH n−1−a.e. x0 ∈ ∂Ω we have

−
∫
C−r,ρ (x0)

|Pñ(∇u)| ≤ −
∫
C−r,ρ (x0)

∣∣∇u(x)−Tr(∇u)(x0)
∣∣+ ∣∣ (Tr(∇u)(x0) ·n(x0))n(x0)− (∇u(x) · ñ(x))ñ(x)∣∣

≤−
∫
C−r,ρ (x0)

∣∣∇u(x)−Tr(∇u)(x0)
∣∣+ ∣∣Tr(∇u)(x0) ·n(x0)−∇u(x) · ñ(x)∣∣+‖∇u‖L∞

∣∣n(x0)− ñ(x)
∣∣ .

By Lemma 1.4.1 (precisely, using (1.14), (1.15) and (1.16)), we infer that

lim
r,ρ→0+

−
∫
C−r,ρ (x0)

|Pñ(∇u)|= 0 ,

and the proof of (5.68) is achieved.

Let us now consider the Neumann case. In view of the pointwise characterization
(1.11) of the normal trace, we can rewrite (5.69) as

lim
r,ρ→0+

−
∫
C−r,ρ (x0)

(∇ f (∇u) · ñ)∇u= 0 forH n−1-a.e. x0 ∈ ∂Ω .

Exploiting the boundedness of ∇u we infer∣∣∣∣ lim
r,ρ→0+

−
∫
C−r,ρ (x0)

(∇ f (∇u) · ñ)∇u
∣∣∣∣≤‖∇u‖L∞ lim

r,ρ→0+
−
∫
C−r,ρ (x0)

|ζ (u) · ñ| forH n−1-a.e. x0 ∈ ∂Ω .

Since by assumption ζ (u) satisfies

Tr(ζ (u)) ·n= 0 H
n−1-a.e. on ∂Ω , (5.71)

using (5.71) and (1.15), we conclude that

lim
r,ρ→0+

−
∫
C−r,ρ (x0)

|ζ (u) · ñ|= lim
r,ρ→0+

−
∫
C−r,ρ (x0)

|ζ (u) · ñ−Tr(ζ (u))(x0) ·n(x0)|= 0 ,

and the proof of (5.69) is achieved.
�

Proof of Corollary 5.2.1. Let u ∈ Lip(Ω) be the unique solution to problem J(Ω).
Since f is Gateaux differentiable except at most at the origin, the tensor A(u) is uniquely
determined as in (5.18). By applying Theorem 5.2.1 and recalling thatS is a singleton,
we infer that

J′(Ω,V) =
∫
Ω
A(u) : DV .

By Proposition 5.2.1, A(u) belongs to X∞(Ω;Rn×n). More precisely, in view of (5.21)
in Theorem 5.2.2, A(u) is divergence free in the sense of distributions. Hence, by
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applying the generalized divergence theorem introduced in formula (5.7), we obtain
(5.28), namely

J′(Ω,V) =
∫
∂Ω

[A(u)n]∂Ω ·V dH n−1 .

Finally, if in addition ∂Ω is piecewise C1, ∇u ∈ BV (Ω), and ∇ f (∇u) can be extended
to a field ζ (u) as in (5.24), we are in a position to apply the second part of Proposition
5.2.1, and the explicit expressions (5.25) of the normal traces give the result. �

5.3.1 Appendix

Proposition 5.3.4. Let X and Y be two Banach spaces and let h : X×Y →R be a finite
function of the form

h(x,y) = h1(x)+h2(y) .
For every (x∗,y∗) ∈ X∗×Y ∗, the Fenchel conjugate of h is

h∗(x∗,y∗) = h∗1(x
∗)+h∗2(y

∗) , (5.72)

and for every (x,y) ∈ X×Y the subdifferential reads

∂h(x,y) = ∂h1(x)×∂h2(y) , (5.73)

as a subset of X∗×Y ∗.

Proof. The assertion (5.72) follows easily by the definition of h, indeed

h∗(x∗,y∗) = sup
(x,y)∈X×Y

{(x∗,y∗) · (x,y)−h(x,y)}= sup
(x,y)∈X×Y

{x∗ · x+ y∗ · y−h1(x)−h2(y)}

= sup
x∈X
{x∗ · x−h1(x)}+ sup

y∈Y
{y∗ · y−h2(y)}= h∗1(x∗)+h∗2(y∗) .

Let us now compute the subdifferential:

∂h(x,y) = {(x∗,y∗) ∈ X∗ ×Y ∗ : h∗(x∗,y∗)+h(x,y) = (x∗,y∗) · (x,y)}
= {(x∗,y∗) ∈ X∗ ×Y ∗ : [h∗1(x

∗)+h1(x)− x∗ · x]+ [h∗2(y
∗)+h2(y)− y∗ · y] = 0} .

(5.74)

This set clearly contains the product ∂h1(x)× ∂h2(y). Conversely, by the Fenchel
inequality, for every (x,y) ∈ X×Y and (x∗,y∗) ∈ X∗ ×Y ∗, there hold

h∗1(x∗)+h1(x)− x∗ · x≥ 0 , (5.75)
h∗2(y

∗)+h2(y)− y∗ · y≥ 0 . (5.76)

Hence a couple (x∗,y∗) ∈ X∗ ×Y ∗ belongs to the set (5.74) if and only if it satisfies
(5.75) and (5.76) with the equality sign, that is x∗ ∈ ∂h1(x) and y∗ ∈ ∂h2(y). �

We now give two alternative proofs of the lower and upper bounds for the sequence
qε(V ), stated in Propositions 5.4.1 and 5.3.3 respectively. We underline that the proof
of 5.3.3 requires the assumption on the growth condition (5.8) for both the Dirichlet and
Neumann case, nevertheless the more direct approach can be better applied for second
order shape derivatives (see §5.4.1).
In what follows f ′+ denotes the one sided directional derivative, introduced in §1.1.2.
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Proposition 5.3.5. Under the standing assumptions, let u ∈S , and let w be an arbi-
trary admissible function for J(Ω). Then

liminf
ε→0+

qε(V )≥−
∫
Ω

[
( f (∇u)+g(u)) divV + f ′+(∇u,−DVT ∇u+∇w)+g′+(u,w)

]
.

(5.77)
As a consequence, it holds

liminf
ε→0+

qε(V )≥ sup
u∈S

inf
σ∈S∗

∫
Ω
A(u,σ) : DV . (5.78)

Proof. Since u is a solution to J(Ω), we may rewrite J(Ω) as

J(Ω) =−
∫
Ω
[ f (∇u)+g(u)]dx . (5.79)

In order to bound J(Ωε) from below, let us fix an arbitrary function w ∈W (Ω), and let
us set Ψε(x) := x+ εV (x). Then the function uε := (u+ εw)◦Ψ−1ε belongs toW (Ωε)
and is admissible for problem J(Ωε). Hence,

J(Ωε)≥−
∫
Ωε
[ f (∇uε)+g(uε)] . (5.80)

Via the change of variables y=Ψε(x), we get

−
∫
Ωε
[ f (∇uε)+g(uε)] =−

∫
Ω
[ f (DΨ−Tε (∇u+ ε∇w)))+g(u+ εw)]|detDΨε | .

(5.81)
We now study the asymptotics as ε → 0+ of the r.h.s. of (5.81). To that aim, we

claim that DΨ−Tε and detDΨε can be expanded respectively as

DΨ−Tε = I− ε(DVT )+ ε2Mε , (5.82)

det(DΨε) = 1+ ε(divV )+ ε2mε , (5.83)

where the functions Mε ∈C(Rn;Rn×n) and mε ∈C(Rn) are uniformly bounded in L∞

(that is, they satisfy the estimates supε ‖Mε‖L∞ ≤ C and supε ‖mε‖L∞ ≤ C for some
constantsC > 0 independent of ε). In particular, for ε small, (5.83) yields |detDΨε |=
detDΨε .

To prove the claim, we write

DΨ−Tε = (I+ εDV )−T = (I− εDV + ε2DV 2− ε3DV 3+ . . .)T

= I− εDVT + ε2(DVT )2

(
∞

∑
k=0

(−ε)k(DVT )k

)
.

Since V is assumed to be of classC1, and ε is a small parameter, the series of matrices
appearing in the last term converges, and we obtain (5.82).

By writing the characteristic polynomial of a matrix B as

det(B−λ I) = (−λ )n+a1(B)(−λ )n−1+ . . .+an(B) ,
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where the first invariant a1 is the trace, we infer

det(I+εDV )= 1+a1(DV )ε+ . . .+an(DV )εn= 1+(divV )ε+

(
n

∑
k=2

εk−2ak(DV )

)
ε2 .

Since V is assumed to be of classC1, and the coefficients ak(DV ) are sum and products
of elements of DV , we obtain (5.83).

In view of (5.82) and (5.83), we can rewrite the r.h.s. of (5.81) as

−
∫
Ω

[
f (∇u+ ε(−DVT∇u+∇w)+ ε2zε)+g(u+ εw)

]
(1+ ε divV + ε2mε) , (5.84)

where
zε :=Mε∇u−DVT∇w+ εMε∇w .

From (5.79), (5.80), (5.81), and (5.84), it follows that the quotient qε(V ) satisfies the
lower bound

qε(V )≥
7

∑
h=1

Ihε , (5.85)

where the seven integral terms Ihε are given by:

I1ε =− ε
∫
Ω

[
f (∇u+ ε(−DVT∇u+∇w)+ ε2zε)mε

]
,

I2ε =− ε
∫
Ω

[
g(u+ εw)mε

]
,

I3ε =−
∫
Ω

[
f (∇u− εDVT∇u+ ε2zε) divV

]
,

I4ε =−
∫
Ω

[
g(u+ εw) divV

]
,

I5ε =− ε−1
∫
Ω

[
f (∇u+ ε(−DVT∇u+∇w))− f (∇u)

]
,

I6ε =− ε−1
∫
Ω

[
f (∇u+ ε(−DVT∇u+∇w)+ ε2zε)− f (∇u+ ε(−DVT∇u+∇w))

]
,

I7ε =− ε−1
∫
Ω

[
g(u+ εw)−g(u)

]
.

Let us study separately the asymptotics as ε→ 0+ of each term Ihε . We first observe
that

lim
ε→0+

I1ε = lim
ε→0+

I2ε = 0 . (5.86)

Indeed, by exploiting the growth conditions (5.8), and the uniform boundedness of mε
and Mε , we obtain∣∣∣∣∫Ω f (∇u+ ε(−DVT∇u+ ε∇w)+ ε2zε)mε

∣∣∣∣≤C
(
1+‖∇u‖pLp(Ω;Rn)

)
≤C

and∣∣∣∣∫Ωg(u+ εw)mε

∣∣∣∣≤C
∫
Ω
|g(u+ εw)| ≤C(1+‖u‖qLq(Ω)

)≤C(1+‖∇u‖qLp(Ω;Rn))≤C ,
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whereC denotes a positive constant that may be different in each inequality.
Next, we consider terms I3ε and I4ε . Under the standing assumptions, the functionals

Lp(Ω;Rn) � z 
→
∫
Ω

[
f (z) divV

]
and Lp(Ω) � v 
→

∫
Ω

[
g(v) divV

]
are sequentially continuous with respect to the strong topology (cf. [57, Theorem 6.51]).
By the uniform boundedness of mε and Mε , we have

∇u− εDVT∇u+ ε2zε
Lp−→ ∇u and u+ εw Lp−→ u .

Hence we obtain

lim
ε→0+

I3ε =−
∫
Ω

[
f (∇u) divV

]
and lim

ε→0+
I4ε =−

∫
Ω

[
g(u) divV

]
. (5.87)

Finally, in order to deal with the terms I5ε , I6ε , and I7ε , we recall that, under the
standing assumptions, there exists a constantC > 0 such that

| f (z1)− f (z2)| ≤C
(
1+ |z1|p−1+ |z2|p−1

) |z1− z2| ∀z1,z2 ∈ Rn

|g(v1)−g(v2)| ≤C
(
1+ |v1|q−1+ |v2|q−1

) |v1− v2| ∀u1,u2 ∈ R

(see [57, Proposition 4.64]). Then we can apply the dominated convergence Theorem
and pass to the limit under the integral sign, which yields

lim
ε→0+

I5ε =−
∫
Ω
f ′+(∇u,−DVT ∇u+∇w) (5.88)

lim
ε→0+

I6ε =−
∫
Ω
g′+(u,w) (5.89)

lim
ε→0+

I7ε = 0 . (5.90)

By combining (5.85) with (5.86), (5.87), (5.88), (5.89), and (5.90), we obtain (5.77).
Let us now prove (5.78). By the arbitrariness of u ∈S , it is enough to show that

liminf
ε→0+

qε(V )≥ inf
σ∈S ∗

∫
Ω
A(u,σ) : DV . (5.91)

Hence, if we denote byB := ∂ f (∇u)×∂g(u), we can rewrite (5.77) as

liminf
ε→0

qε(V )≥ sup
w∈W (Ω)

∫
Ω

inf
(σ ,τ)∈B

[σ · (DVT∇u−∇w)− τw− ( f (∇u)+g(u))I : DV ] .

Now we observe that, since B is convex, the infimum over (σ ,τ) ∈B can be passed
outside the sign of integral [21, Theorem 1]. Next, by Proposition 1.1.3, such infimum
can be exchanged with the supremum over w ∈W (Ω), thus obtaining an inf-sup in
which the infimum is attained at some (σ0,τ0), thanks to the weak compactness of B
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in Lp′(Ω;Rn)×Lq′(Ω) (by Theorem 1.1.3 (ii), Proposition 5.3.4 and Proposition 1.2.1).
Thus we get:

liminf
ε→0

qε(V ) ≥ inf
(σ ,τ)∈B

sup
w∈W (Ω)

∫
Ω
[σ · (DVT∇u−∇w)− τw− ( f (∇u)+g(u))I : DV ] .

= sup
w∈W (Ω)

∫
Ω
[σ0 · (DVT∇u−∇w)− τ0w− ( f (∇u)+g(u))I :DV ] .

At this point we observe that a necessary condition for the finiteness of the last supre-
mum over w ∈W (Ω) is the condition divσ0 = τ0, and we end up with

liminf
ε→0

qε(V ) ≥
∫
Ω
[σ0⊗∇u− ( f (∇u)+g(u))I] : DV

=

∫
Ω
A(u,σ0) :DV ≥ inf

σ∈S ∗

∫
Ω
A(u,σ) : DV ,

which proves (5.91). �

Proposition 5.3.6. Let assume that f and g satisfy (H1)-(H3) in §5.1.2. Let σ ∈S ∗,
and let η be an arbitrary admissible vector field for J∗(Ω). Then

limsup
ε→0+

qε(V )≤
∫
Ω
[( f ∗(σ)+g∗(σ)) divV ]+

+

∫
Ω
[( f ∗)′+(σ ,DVσ −divVσ +η)+(g∗)′+(divσ ,divη−divV divσ)] .

(5.92)

As a consequence, it holds

limsup
ε→0+

qε(V )≤ inf
σ∈S∗

sup
u∈S

∫
Ω
A(u,σ) : DV . (5.93)

Proof. Since σ ∈S ∗, in view of Lemma 5.1.2 we may rewrite J(Ω) in dual form as

J∗(Ω) =

∫
Ω
[ f ∗(σ)+g∗(divσ)] . (5.94)

In order to bound J(Ωε) from above, we first rewrite it as a variational problem in
which the domain of integration is kept fix and the integrand depends on the parameter
ε . Namely, with a change of variables we get:

J(Ωε) =− inf
{∫

Ω
fε(x,∇u)+gε(x,u)] : u ∈W 1,p(Ω)

}
,

with

fε(x,z) := f (DΨ−Tε z)|detDΨε |(x) , (5.95)
gε(x,u) := g(u)|detDΨε |(x) . (5.96)
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Then, by arguing in the same way as already done in the proof of Lemma 5.1.2, we
obtain that the dual form of J(Ωε) is given in case (D) by

J∗(Ωε) = inf
{∫

Ω
[ f ∗ε (x,σ)+g∗ε(x,divσ)]dx : σ ∈ Lp′(Ω;Rn) , divσ ∈ Lq′(Ω))

}
,

(5.97)
and in case (N) by the same expression with the addition of the condition σ ·n= 0 on
∂Ω. Here f ∗ε and g∗ε denote the Fenchel conjugates of f and g, performed with respect
to the second variable. Their computation gives:

f ∗ε (x,z
∗) = sup

z∈Rn

{
z · z∗− f (DΨ−Tε z)|detDΨε |

}
= |detDΨε | f ∗(|detDΨε |−1DΨε z∗) ,

g∗ε(x,u
∗) = sup

u∈R
{uu∗ −g(u)|detDΨε |}= |detDΨε |g∗(|detDΨε |−1u∗) .

Recalling that DΨε = I+ εDV , we have

|detDΨε |= 1+ ε divV + ε2mε , |detDΨε |−1 = 1− ε divV + ε2m̃ε ,

where mε , m̃ε ∈C(Rn) are such that supε ‖mε‖L∞ ≤C and supε ‖m̃ε‖L∞ ≤C for some
constantC > 0.

Let now η be admissible for J∗(Ω). Then, since the vector fields σε := σ + εη are
admissible for the dual form J∗(Ωε) in (5.97), we obtain the following estimate:

qε(V )≤ 1
ε

[∫
Ω
[ f ∗ε (σ + εη)+g∗ε(divσ + ε divη)]dx−

∫
Ω
[ f ∗(σ)+g∗(divσ)]dx

]
=

8

∑
h=1

I∗hε , (5.98)

where the eight terms I∗hε are given by:

I∗1ε = ε
∫
Ω
f ∗(|detDΨε |−1DΨε(σ + εη))mε ,

I∗2ε = ε
∫
Ω
g∗(|detDΨε |−1(divσ +divεη))mε ,

I∗3ε =

∫
Ω
f ∗(|detDΨε |−1DΨε(σ + εη)) divV ,

I∗4ε =

∫
Ω
g∗(|detDΨε |−1(divσ + ε divη)) divV ,

I∗5ε = ε−1
∫
Ω
[ f ∗(σ + ε(DVσ −divVσ +η))− f ∗(σ)] ,

I∗6ε = ε−1
∫
Ω
[ f ∗(|detDΨε |−1DΨε(σ + εη))− f ∗(σ + ε(η−divVσ))],

I∗7ε = ε−1
∫
Ω
[g∗(divσ + ε(divη−divV divσ))−g∗(divσ)] ,

I∗8ε = ε−1
∫
Ω
[g∗(|detDΨε |−1(divσ + ε divη))−g∗(divσ + ε(divη−divV divσ))] .
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Let us study separately the asymptotics as ε → 0+ of each term I∗hε .
Exploiting the growth assumptions (5.8) for f and g we deduce that{

c1|z∗|p′ − c2 ≤ f ∗(z∗)≤ c3(1+ |z∗|p′)
c4|u∗|q′2− c5 ≤ g∗(u∗)≤ c6(1+ |u∗|q′1)

, (5.99)

for every z∗ ∈ Rn, u∗ ∈ R, and for some constants ci > 0. Moreover, by convexity, we
also infer that

| f ∗(z∗1)− f ∗(z∗2)| ≤C(1+ |z∗1|p
′−1+ |z∗2|p

′−1)|z∗1− z∗2| ∀z∗1,z∗2 ∈ Rn

|g∗(u∗1)−g∗(u∗2)| ≤C(1+ |u∗1|q
′−1+ |u∗2|q

′−1)|u∗1−u∗2| ∀u∗1,u∗2 ∈ R
, (5.100)

for some constantC > 0 (see [57, Proposition 4.64]).
In view of (5.99) and (5.100), as already done for the lower bound, we obtain

lim
ε→0+

I∗1ε = lim
ε→0+

I∗2ε = 0 , (5.101)

lim
ε→0+

I∗3ε =
∫
Ω
f ∗(σ)divV , (5.102)

lim
ε→0+

I∗4ε =
∫
Ω
g∗(divσ)divV , (5.103)

lim
ε→0+

I∗5ε =

∫
Ω
( f ∗)′+(σ ,DVσ −divVσ +η) , (5.104)

lim
ε→0+

I∗7ε =

∫
Ω
(g∗)′+(divσ ,divη−divV divσ) , (5.105)

lim
ε→0+

I∗6ε = lim
ε→0+

I∗8ε = 0 . (5.106)

Hence, by combining (5.98) with (5.101)-(5.106), we conclude that (5.92) holds.
Let us now prove (5.93). By the arbitrariness of σ ∈S ∗, it is enough to show that

limsup
ε→0+

qε(V )≤ sup
u∈S

∫
Ω
A(u,σ) : DV . (5.107)

We setB∗ := ∂ f ∗(σ)×∂g∗(divσ). Then we can rewrite (5.92) as

limsup
ε→0+

qε(V )≤ inf
η∈X(Ω;Rn)

∫
Ω

sup
(z,u)∈B∗

[
( f ∗(σ)+g∗(σ))I :DV

+z · (DVσ −divVσ +η)+u(divη−divV divσ)
]
.

Then, we proceed in a similar way as already done to prove statement (i). Namely we
observe that, by the convexity of B∗, the supremum over (z,u) ∈ B∗ can be passed
outside the sign of integral [21, Theorem 1]. Moreover, by Proposition 1.1.3, such
supremum can be exchanged with the infimum over η ∈ X(Ω;Rn), thus obtaining sup-
inf in which the supremum is attained at some (z0,u0), thanks to the weak compactness
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ofB∗ in Lp(Ω;Rn)×Lq(Ω). Thus we get:

limsup
ε→0+

qε(V ) ≤ sup
(z,u)∈B∗

inf
η∈X(Ω;Rn)∗

∫
Ω

[
( f ∗(σ)+g∗(σ))I : DV

+z · (DVσ −divVσ +η)+u(divη−divV divσ)
]

= inf
η∈X(Ω;Rn)

∫
Ω

[
( f ∗(σ)+g∗(σ))I :DV

+z0 · (DVσ −divVσ +η)+u0(divη−divV divσ)
]
.

Since a necessary condition for the finiteness of the last infimum over η ∈ X(Ω;Rn) is
the condition ∇u0 = z0, we end up with

limsup
ε→0+

qε(V ) ≤
∫
Ω

[
( f ∗(σ)+g∗(σ))I : DV +∇u0 · (DVσ −divVσ)−u0 divV divσ

]
=

∫
Ω

[
σ ⊗∇u0+

(
f ∗(σ)+g∗(σ)−∇u0 ·σ −u0 divσ

)
I
]
: DV

=
∫
Ω
A(u0,σ) : DV ≤ sup

u∈S

∫
Ω
A(u,σ) : DV ,

which proves (5.107). �

5.4 Perspectives

The perspectives in the study of shape derivatives for minima of integral functionals
go in various directions. The first aspect to be investigated is the linearity of J′ with
respect to the deformation field V , as already pointed out in Remark 5.2.2: we have
provided sufficient conditions that ensure such a property (see 5.2.1), and we would
like to determine also necessary ones. We believe that in general, for example in the
framework of non uniqueness of solutions, linearity is a too strong requirement: more
precisely our conjecture is that J′ is of the form

J′(Ω,V ) =
∫
∂Ω

α(x)(V ·n)+H n−1(x)+
∫
∂Ω

β (x)(V ·n)+H n−1(x) ,

α, β being two suitable densities in L∞(∂Ω) that might depend on the data of the infi-
mum problem J(Ω), and (V · n)± denoting the positive and negative part of the scalar
product V · n on the boundary. In particular, we expect J′ to be linear with respect to
purely inner deformations or purely outer deformations.

Another interesting problem is to study higher order shape derivatives. In this direc-
tion we have applied the same approach to compute the second order shape derivative
J′′(Ω,V), assuming higher regularity on the domain Ω and on the integrands f and g,
and considering inner variations. Again exploiting the primal and dual formulations
of J(Ω), we are able to bound from above and below the liminf and limsup of the
sequence

rε(V ) := 2
[J(Ωε)− J(Ω)− εJ′(Ω,V)]

ε2
, ε > 0 . (5.108)
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We point out that by now the study is carried out in the smooth case, for inner variations
and Dirichlet boundary conditions. The result we obtain agrees with the classical result
(see e.g. the examples in [67, paragraph 5.9.6]), but the approach is new. Its extension
to more general integrand is a delicate topic which could be developed hereafter.

5.4.1 Second order shape derivative

For this paragraph we consider the Dirichlet problem

J(Ω) =− inf
{∫

Ω
f (∇u)+g(u)dx : u ∈ H1

0 (D)
}

,

over a domain Ω with boundary ∂Ω ∈C2, with regular integrand.
Here we consider inner deformations, namely obtained via diffeomorphisms asso-

ciated to a vector field V such that

V ·n≤ 0 on∂Ω , (5.109)

moreover we assume
V =Vnn on ∂Ω . (5.110)

The second order shape derivative, it if exists, coincides with

J′′(Ω,V ) = lim
ε→0+

rε(V ) . (5.111)

Theorem 5.4.1. Under the standing assumptions, suppose in addition that ∂Ω ∈ C2,
f and g are strictly convex of class C2, and that both primal problem (5.1) and dual
problem (5.5) admit a unique solution of classC2 u and σ respectively. Then the second
order shape derivative of the functional J(·) at Ω in direction V satisfying (5.109)-
(5.110) exists, and is given by

=
∫
∂Ω

(V ·n)2
[
∂u
∂n

(∇2u∇2 f (∇u)n) ·n+(
∇u ·∇ f (∇u)− f (∇u)

)
H∂Ω

]
+

− inf
v∈H1(Ω)

Tr(v)=−V ·∇u

{∫
Ω
(∇2 f (∇u)∇v) ·∇v+g′′(u)v2

}

=
∫
∂Ω

(V ·n)2
[
∂u
∂n

(∇2u∇2 f (∇u)n) ·n+ f ∗(σ)H∂Ω

]
+

+ inf
ζ∈L2(Rn;Rn)

{∫
Ω
(∇2 f ∗(σ)ζ ) ·ζ +(g∗)′′(divσ)(divζ )2+2

∫
∂Ω

∂u
∂n

(V ·n)(ζ ·n)
}
,

where H∂Ω denotes the mean curvature of ∂Ω, and σ is the unique solution to the dual
problem J∗(Ω) in (5.5).

Using respectively the first and the second expression above for rε(V ), we find a
lower bound for liminf

ε→0+
rε(V ) and an upper bound for limsup

ε→0+
rε(V ). As these bounds

agree, the result follows.
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Proposition 5.4.1. (lower bound)
Under the same assumptions of Theorem 5.4.1, it holds

liminf
ε→0+

rε(V ) ≥
∫
∂Ω

(V ·n)2
[
∂u
∂n

(∇2u∇2 f (∇u)n) ·n+(
∇u ·∇ f (∇u)− f (∇u)

)
H∂Ω

]
+

− inf
v∈H1(Ω)

Tr(v)=−V ·∇u

{∫
Ω
(∇2 f (∇u)∇v) ·∇v+g′′(u)v2

}
.

(5.112)

Proof. Let u ∈H1
0 (Ω) be optimal for J(Ω), and let v be an arbitrary element of H1

0 (Ω).
Then we have

J(Ω) =−
∫
Ω
[ f (∇u)+g(u)] ,

and, setting as usual Ψε(x) = x+ εV (x),

J(Ωε)≥−
∫
Ω

[
f (DΨ−Tε (∇u+ ε∇v))+g(u+ εv)

] |detDΨε | .

Moreover, we recall that

J′(Ω,V ) =−
∫
Ω
div

(
A(u)V

)
=−

∫
Ω
A(u) : Dv

=
∫
Ω
− [ f (∇u)+g(u)]divV +(DV ∇ f (∇u)) ·∇u .

Therefore, by exploiting the first expression for rε(V ) in (5.108), we have

liminf
ε→0+

rε(V )≥ liminf
ε→0+

2
ε2

[
−
∫
Ω

[
f (DΨ−Tε (∇u+ ε∇v))+g(u+ εv)

] |detDΨε |+

+

∫
Ω
f (∇u)+g(u)dx+ ε

∫
Ω
[ f (∇u)+g(u)]divV − (DV ∇ f (∇u)) ·∇u

]
.

Similarly as already done for the first derivative, we can write Dψ−Tε and detDψε
as

DΨ−Tε = I− εDVT + ε2(DVT )2+ ε3Mε ,

detDΨε = 1+ ε divV + ε2a2(DV )+ ε3mε ,

where the functions Mε ∈C(Rn;Rn×n) and mε ∈C(Rn) are uniformly bounded in L∞,
and the scalar function a2(DV ) is the second invariant of the matrix DV :

a2(DV ) =
1
2
(divVI−DVT ) : DV , (5.113)

In particular, for ε small enough, detDΨε > 0, so that |detDΨε |= detDΨε .
By using the above expansions DΨ−Tε and detDΨε , exploiting the regularity hy-

pothesis made on f and g, and recalling that, since ∇ f (∇u) = σ and divσ = g′(u),∫
Ω
∇ f (∇u) ·∇v=−

∫
Ω
g′(u)v ,
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we obtain

liminf
ε→0+

rε(V )(Ω)≥

liminf
ε→0+

2
ε2

{
−
∫
Ω

[
f (∇u)+ εσ · (∇v−DVT∇u)+ ε2σ · ((DVT )2∇u−DVT∇v)+

+
ε2

2
(∇2 f (∇u)(∇v−DVT∇u)) · (∇v−DVT∇u)+

+g(u)+ εg′(u)v+
ε2

2
g′′(u)v2

]
(1+divVε+a2(DV )ε2+mεε3)+

+

∫
Ω
[ f (∇u)+g(u)] (1+ ε divV )− ε

∫
Ω
(DV σ) ·∇u

}
.

=−
∫
Ω
2 [ f (∇u)+g(u)]a2(DV )+2divVσ · (∇v−DVT∇u)+2divVg′(u)v+

−
∫

2σ · ((DVT )2∇u−DVT∇v)+

−
∫
(∇2 f (∇u)(∇v−DVT∇u)) · (∇v−DVT∇u)+g′′(u)v2 .

We remark that a minimizing sequence for the infimum problem over v∈H1
0 (Ω)which

appears in the lower bound for J′′V (Ω) is uniformly bounded in H1
0 (Ω).

We have thus obtained

liminf
ε→0+

rε(V )≥ (I)+(II) , (5.114)

with

(I)=
∫
Ω
−2 [ f (∇u)+g(u)]a2(DV )+2((divVDV−DV 2)σ) ·∇u−(DV FDVT∇u) ·∇u ;

(II)=
∫
Ω
2(DV σ+F DVT∇u) ·∇v−(F∇v) ·∇v−g′′(u)v2−2divVσ ·∇v−2divVg′(u)v .

Here and below we have set for brevity F := ∇2 f (∇u).

We now study separately terms (I) and (II).
Recalling the expression (5.113) of a2(DV ), the integrand of term (I) can be rewrit-

ten as

−( f (∇u)+g(u))(divVI−DVT ) :DV+2 [∇u⊗ (divV −DV )σ ] :DV−[∇u⊗ (FDVT∇u)
]
:DV .

Then, integrating by parts, we infer

(I) =
∫
Ω
B(u) : DV =

∫
∂Ω

(B(u)n) ·V −
∫
Ω
divB(u) ·V , (5.115)

with

B(u) :=−( f (∇u)+g(u))(divVI−DVT )+2∇u⊗(divV −DV )σ−∇u⊗(F DVT∇u) .
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Let us compute the boundary term in (5.115). By using the identity

divV − (DV n) ·n= div∂ΩV = H∂ΩVn .

and the assumption V = Vnn on ∂Ω, we get that the following equality holds true on
∂Ω: :

B(u)n ·V =− f (∇u)V 2
n H+2

∂u
∂n

Vn(divVσ ·n− (DV σ) ·n−Vn

(
∂u
∂n

)2
(FDVT n) ·n ,

Let us now compute the divergence term in (5.115). By using the elementary identities
(where α is a scalar, a,b vector fields and C a matrix),

div(αC) = α divC+C∇α ,

div(a⊗b) = adivb+DaTb ,

div(Ca) = div(CT ) ·a+C : (Da)T .

and the equalities

∇(g(u)) = g′(u)∇u= (divσ)∇u
div(divVI−DVT ) = 0 ,

∇2uF = DσT .

we obtain

divB(u) =divσ divV∇u+divσDVT∇u−2∇u (DV :DσT )−∇udiv(FDVT∇u)+
+divV∇2u σ +DVT∇2u σ −2∇2uDV σ −DσT DVT∇u .

Then we have

(I) =
∫
∂Ω

[
− f (∇u)V 2

n H+2
∂u
∂n

Vn(divVσ ·n− (DV σ) ·n)−Vn

(
∂u
∂n

)2
(FDVT n) ·n

]
+

−
∫
Ω

[
divσ divV∇u+divσDVT∇u−2∇u (DV : DσT )−∇udiv(FDVT∇u)

] ·V+
−
∫
Ω

[
divV∇2u σ +DVT∇2u σ −2∇2uDV σ −DσT DVT∇u

] ·V .

Let us now pass to term (II). Integrating by parts and recalling that an admissible
function v vanishes on the boundary ∂Ω, we infer∫

Ω
[divV divσ v+divVσ ·∇v] =−

∫
Ω
v∇(divV ) ·σ ,∫

Ω
(DV σ) ·∇v=−

∫
Ω

[
div(DVT ) ·σ+DV : DσT ] v ,∫

Ω
(FDVT ∇u) ·∇v=−

∫
Ω
v div(FDVT∇u) .

By combining these results and recalling that∇(divσ) = div(DσT ), we can rewrite (II)
as

(II) =−
∫
Ω
(F∇v) ·∇v−

∫
Ω
g′′(u)v2−2

∫
Ω

[
DV : DσT +div(FDVT∇u)

]
v .
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Now we can write every admissible function v ∈ H1
0 (Ω) as

v= ṽ+V ·∇u ,

with ṽ ∈ H1(Ω) such that T (ṽ) =−V ·∇u. After this substitution, term (II) reads

(II) = (a)+(b)+(c) ,

with

(a) :=−
∫
Ω
(F∇ṽ) ·∇ṽ−

∫
Ω
g′′(u)ṽ2 ,

(b) :=−
∫
Ω

[
F∇(V ·∇u)

]
·∇(V ·∇u)−

∫
Ω
g′′(u)(V ·∇u)2+

−2
∫
Ω

[
DV : DσT +div(FDVT∇u)

]
(V ·∇u) ,

(c) :=−2
∫
Ω

[
DV : DσT +div(FDVT∇u)

]
ṽ−2

∫
Ω
(F∇ṽ) ·∇(V ·∇u)−2

∫
Ω
g′′(u)ṽ(V ·∇u) .

Integrating by parts we can simplify some of the integrals appearing in (b) and (c):

∫
Ω

[
F∇(V ·∇u)

] ·∇(V ·∇u) =
∫
∂Ω

[
V 2
n
∂u
∂n

(F∇2un) ·n+Vn

(
∂u
∂n

)2
(FDVT n) ·n

]
+

−
∫
Ω

[
div(DσT ) ·V +DV : DσT +div(FDVT∇u)

]
(V ·∇u) ,∫

Ω
g′′(u)(V ·∇u)2 =

∫
Ω
(V ·∇u)V ·∇(g′(u)) =

∫
Ω
(V ·∇u)V ·∇(divσ) ,∫

Ω
(F∇ṽ) ·∇(V ·∇u) =−

∫
∂Ω

[
V 2
n
∂u
∂n

(F∇2un) ·n+Vn

(
∂u
∂n

)2
(FDVT n) ·n

]
+

−
∫
Ω
ṽ
[
div(FDVT ∇u)+V ·div(DσT )+DσT : DV

]
,∫

Ω
g′′(u)(V ·∇u)ṽ=

∫
Ω
ṽV ·∇(divσ) .

By the above computations and exploiting the identity∇(divσ) = div(DσT ), we obtain

(II) =(a)+
∫
∂Ω

[
V 2
n
∂u
∂n

(F∇2un) ·n+Vn

(
∂u
∂n

)2
(FDVT n) ·n

]
−
∫
Ω

[
DV : DσT +div(FDVT∇u)

]
(V ·∇u) .
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We conclude that

(I)+(II) =
∫
∂Ω

V 2
n
[∂u
∂n

(F∇2un) ·n− f (∇u)H
]
+2

∂u
∂n

Vn [divVσ ·n− (DV σ) ·n]

−
∫
Ω
(F∇ṽ) ·∇ṽ−

∫
Ω
g′′(u)ṽ2

+
∫
Ω
(DV : DσT )(V ·∇u)−

∫
Ω
divσ divV (∇u ·V )−

∫
Ω
divσ(DVT ∇u) ·V

−
∫
Ω
(∇2u σ) · (divV V )−

∫
Ω
(∇2u σ) · (DVV )

+2
∫
Ω
(∇2uV ) · (DV σ)+

∫
Ω
(DσT DVT∇u) ·V .

Finally, by adding up and subtracting the boundary integral

∫
∂Ω

∂u
∂n

Vnσ ·n [divV − (DV n) ·n] dH n−1 ,

we can rewrite (I)+(II) as

(I)+(II) =
∫
∂Ω

V 2
n

[
∂u
∂n

(F∇2u n) ·n− f (∇u)H
]
−
∫
Ω
(F∇ṽ) ·∇ṽ−

∫
Ω
g′′(u)ṽ2+R ,

(5.116)
with

R :=−
∫
∂Ω

∂u
∂n

Vnσ ·n [divV − (DV n) ·n]+2
∫
∂Ω

∂u
∂n

Vn [divVσ ·n− (DV σ) ·n]

+
∫
Ω
(DV : DσT )(V ·∇u)−

∫
Ω
divσ divV (∇u ·V )−

∫
Ω
divσ (DVT∇u) ·V

−
∫
Ω
(∇2u σ) · (divV V )−

∫
Ω
(∇2u σ) · (DVV )

+2
∫
Ω
(∇2uV ) · (DV σ)+

∫
Ω
(DσV ) · (DVT ∇u) .

We claim that

R = 0 . (5.117)

Once proved the claim, the proof is achieved: it is enough to combine (5.114), (5.116)
and (5.117), and recall that ṽ is an arbitrary element of H1(Ω) with T (ṽ) =−V ·∇u.

We now prove (5.117). In order to simplify the expression of R we carry over
suitable integration by parts: adopting for the sake of clearness the notation of sum

176



5.4. Perspectives

over repeated indices, we have

∫
Ω
(∇2u σ) · (divVV ) =

∫
∂Ω

∂u
∂n

Vnσ ·n divV −
∫
Ω
divσ divV (∇u ·V )+

−
∫
Ω
(∇u ·V )σ ·∇(divV )−

∫
Ω
divV (DV σ) ·∇u ,∫

Ω
(∇2u σ) · (DVV ) =

∫
∂Ω

∂u
∂n

Vn (σ ·n)(DV n) ·n−
∫
Ω
divσ (DVV ) ·∇u+

−
∫
Ω
∂iu σ j(∂ j∂kVi)Vk−

∫
Ω
(DVT ∇u) · (DV σ) ,∫

Ω
(∇2uV ) · (DV σ) =

∫
∂Ω

∂u
∂n

Vn(DV σ) ·n−
∫
Ω
(DVT ∇u) · (DV σ)+

−
∫
Ω
(∇u ·V )σ ·∇(divV )−

∫
Ω
(∇u ·V )(Dσ : DVT ) ,∫

Ω
(DσV ) · (DVT ∇u) =

∫
∂Ω

∂u
∂n

Vn(DV σ) ·n−
∫
Ω
divV σ · (DVT ∇u)+

−
∫
Ω
(∂ j∂iVk)∂kuVjσ i−

∫
Ω
(∇2uV ) · (DV σ) .

Exploiting these computations we conclude that

R =−
∫
∂Ω

∂u
∂n

Vnσ ·n [divV − (DV n) ·n]+2
∫
∂Ω

∂u
∂n

Vn [divVσ ·n− (DV σ) ·n]+

+

∫
Ω
(DV : DσT )(V ·∇u)−

∫
Ω
divσ divV (∇u ·V )−

∫
Ω
divσ(DVT∇u) ·V+

−
∫
∂Ω

∂u
∂n

Vnσ ·n divV +
∫
Ω
divσ divV (∇u ·V )+

+

∫
Ω
(∇u ·V )σ ·∇(divV )+

∫
Ω
divV (DV σ) ·∇u+

−
∫
∂Ω

∂u
∂n

Vnσ ·n(DV n) ·n+
∫
Ω
divσ (DVV ) ·∇u+

+

∫
Ω
∂iu σ j(∂ j∂kVi)Vk+

∫
Ω
(DVT ∇u) · (DV σ)+

+

∫
∂Ω

∂u
∂n

Vn(DV σ) ·n−
∫
Ω
(DVT ∇u) · (DV σ)+

−
∫
Ω
(∇u ·V )σ ·∇(divV )−

∫
Ω
(∇u ·V )(Dσ : DVT )+

+

∫
∂Ω

∂u
∂n

Vn(DV σ) ·n−
∫
Ω
divV σ · (DVT ∇u)−

∫
Ω
(∂ j∂iVk)∂kuVjσ i

=0 .

�

Proposition 5.4.2. (upper bound)
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Under the same assumptions of Theorem 5.4.1, it holds

limsup
ε→0+

rε(V )≤
∫
∂Ω

(V ·n)2
[
∂u
∂n

(∇2u∇2 f (∇u)n) ·n+ f ∗(σ)H∂Ω

]
+

+ inf
ζ∈L2(Rn;Rn)

{∫
Ω
(∇2 f ∗(σ)ζ ) ·ζ +(g∗)′′(divσ)(divζ )2+2

∫
∂Ω

∂u
∂n

(V ·n)(ζ ·n)
}
.

(5.118)

Prior to the proof of Proposition 5.4.2, we recall from [67, Chapter 5] the following
results:

Lemma 5.4.1. Assume that ∂Ω is Lipschitz, and h ∈W 1,1(Rn). Then

d
dε

∫
Ωε

h ∣∣
ε=0+

=

∫
∂Ω

hV ·ndH n−1 .

Lemma 5.4.2. Assume that ∂Ω ∈C2, and h ∈W 2,1(Rn). Then

d2

dε2
∫
Ωε

h ∣∣
ε=0+

=
∫
∂Ω

(V ·n)2(∂nh+hH∂Ω
)
dH n−1 .

Proof of Proposition 5.4.2.
Let σ be an optimal field for J∗(Ω), and let ζ be an arbitrary element of L2(Rn;Rn).

Since for every ε > 0 the vector field σ + εζ is admissible for J∗(Ωε), by using the
second expression for rε(V ) in (5.108) we get

rε(V )≤ 2
ε2
[∫

Ωε

[
f ∗(σ + εζ )+g∗(divσ + ε divζ )

]−∫
Ω

[
f ∗(σ)+g∗(divσ)

]
+

− ε
∫
∂Ω

f ∗(σ)V ·n
]
.

Exploiting the Gateaux differentiability of f ∗, the convexity of f ∗ and the L2-
boundedness of ζ , we infer that limsupε→0+ rε(V ) is majorized by

limsup
ε→0+

1
ε2

[∫
Ωε

( f ∗(σ)+g∗(divσ))−
∫
Ω
( f ∗(σ)+g∗(divσ))− ε

∫
∂Ω

f ∗(σ)V ·ndH n−1
]

+2limsup
ε→0+

1
ε

∫
Ωε

[
∇ f ∗(σ) ·ζ +(g∗)′ (divσ)divζ

]
+ limsup

ε→0+

∫
Ωε

[
(∇2 f ∗(σ)ζ ) ·ζ +(g∗)′′ (divσ)(divζ )2

]
.

We are now going to study separately each of the three limits in the r.h.s. of the above
inequality, that we denote for brevity by L1 , L2 and L3. We recall that the following
equalities hold in Ω:

f ∗(σ) = ∇u ·∇ f (∇u)− f (∇u) and g∗(divσ) = ug′(u)−g(u) (5.119)
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In particular, since g∗(divσ) = 0 on ∂Ω, we have∫
∂Ω

g∗(divσ)V ·ndH n−1 = 0 .

By subtracting from L1 the above vanishing integral, we see that L1 is the second or-
der derivative of the shape functional

∫
Ωε

h, with h = ( f ∗(σ)+ g∗(divσ)). Thus, by
applying Lemma 5.4.2, we obtain

L1 =

∫
∂Ω

(V ·n)2 [∂n( f ∗(σ)+g∗(divσ))+( f ∗(σ)+g∗(divσ))H] dH n−1 .

By exploiting (5.119), it is straightforward to check that the following equalities hold
on ∂Ω:

∇( f ∗(σ)) = ∇2u∇2 f (∇u)∇u
∇(g∗(divσ)) = 0
g∗(divσ) = 0 .

Hence

L1 =
∫
∂Ω

(V ·n)2[ ∂u
∂n

(∇2u∇2 f (∇u)n) ·n+ f ∗(σ)H∂Ω
]
dH n−1 .

Let us consider L2. Since ∇ f ∗(σ) = ∇u and (g∗)′(divσ) = u in Ω, recalling that u= 0
on ∂Ω, we get ∫

Ω

[
∇ f ∗(σ) ·ζ +(g∗)′(divσ)divζ

]
= 0 ,

By subtracting from L2 the above vanishing integral, we see that L2 the first order
derivative of the shape functional

∫
Ωε

h, with h=∇ f ∗(σ) ·ζ +(g∗)′(divσ)divζ . Thus,
by Lemma 5.4.1, we obtain

L2 = 2
∫
∂Ω

∂u
∂n

(V ·n)(ζ ·n)dH n−1 .

Finally, passing to the limit as ε → 0 in the third term, we have

L3 =
∫
Ω

[
(∇2 f ∗(σ)ζ ) ·ζ +(g∗)′′ (divσ)(divζ )2

]
.

Combining the the results obtained for L1, L2, and L3, and recalling the arbitrariness of
ζ in L2(Rn;Rn), the result follows. �

Proof of Theorem 5.4.1 By combining the results of Proposition 5.4.2 and Propo-
sition 5.4.1, we obtain a lower and upper bound for the sequence rε(V ) in (5.108). If
we show that they coincide, the proof is achieved.

In view of the Fenchel equality, since σ ∈ ∂ f (∇u), we infer that the first term of
(5.112) and the first term of (5.118) agree.

By applying the standard duality Proposition 1.1.2 with X = H1(Ω), Y = L2(Ω), A
the gradient operator,

Ψ(z) =
(
∇2 f (∇u)z

) · z , Φ(v) =
{

g′′(u)v2 if Tr(v) =−V ·∇u ,
+∞ otherwise ,
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we obtain

− inf
v∈H1(Ω)

Tr(v)=−V ·∇u

{∫
Ω
(∇2 f (∇u)∇v) ·∇v+g′′(u)v2

}

= inf
ζ∈L2(Rn;Rn)

{
1
4

∫
Ω
((∇2 f (∇u))−1ζ ) ·ζ +(g′′)−1(u)(divζ )2+

∫
∂Ω

∂u
∂n

(V ·n)(ζ ·n)
}
,

(5.120)

Finally, recalling that for strictly convex functions there hold (see [52, Proposition 10,
Chapter II,2]

(∇2 f (∇u))−1 = ∇2 f ∗(σ) ,
(g′′)−1(u) = (g∗)′′(divσ) ,

and considering 2ζ instead of ζ as admissible functions in the right hand side of
(5.120), we conclude that the minus infimum appearing in (5.112) coincide with the
infimum appearing in (5.118), and this concludes the proof. �
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