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Résumé.

Cette thèse traite des domaines suivant en Apprentissage Automatique: la théorie des Ban-
dits, l’Apprentissage statistique et l’Apprentissage par renforcement. Son fil rouge est l’étude
de plusieurs notions d’adaptation, d’un point de vue non asymptotique : à un environnement
ou à un adversaire dans la partie I, à la structure d’un signal dans la partie II, à la structure
de récompenses ou à un modèle des états du monde dans la partie III.

Tout d’abord nous dérivons une analyse non asymptotique d’un algorithme de bandit
à plusieurs bras utilisant la divergence de Kullback-Leibler. Celle-ci permet d’atteindre,
dans le cas de distributions à support fini, la borne inférieure de performance asymptotique
dépendante des distributions de probabilité connue pour ce problème. Puis, pour un bandit
avec un adversaire possiblement adaptatif, nous introduisons des modèles dépendants de
l’histoire et traduisant une possible faiblesse de l’adversaire et montrons comment en tirer
parti pour concevoir des algorithmes adaptatifs à cette faiblesse.

Nous contribuons au problème de la régression en montrant l’utilité des projections aléa-
toires, à la fois sur le plan théorique et pratique, lorsque l’espace d’hypothèses considéré est de
dimension grande, voire infinie. Nous utilisons également des opérateurs d’échantillonnage
aléatoires dans le cadre de la reconstruction parcimonieuse lorsque la base est loin d’être
orthogonale.

Enfin, nous combinons la partie I et II : pour fournir une analyse non-asymptotique
d’algorithmes d’apprentissage par renforcement; puis, en amont du cadre des Processus Dé-
cisionnel de Markov, pour discuter du problème pratique du choix d’un bon modèle d’états.





Abstract.

This thesis studies the following topics in Machine Learning: Bandit theory, Statistical learn-
ing and Reinforcement learning. The common underlying thread is the non-asymptotic study
of various notions of adaptation: to an environment or an opponent in part I about bandit
theory, to the structure of a signal in part II about statistical theory, to the structure of states
and rewards or to some state-model of the world in part III about reinforcement learning.

First we derive a non-asymptotic analysis of a Kullback-Leibler-based algorithm for the
stochastic multi-armed bandit that enables to match, in the case of distributions with finite
support, the asymptotic distribution-dependent lower bound known for this problem. Now
for a multi-armed bandit with a possibly adaptive opponent, we introduce history-based
models to catch some weakness of the opponent, and show how one can benefit from such
models to design algorithms adaptive to this weakness.

Then we contribute to the regression setting and show how the use of random matrices
can be beneficial both theoretically and numerically when the considered hypothesis space
has a large, possibly infinite, dimension. We also use random matrices in the sparse recovery
setting to build sensing operators that allow for recovery when the basis is far from being
orthogonal.

Finally we combine part I and II to first provide a non-asymptotic analysis of reinforce-
ment learning algorithms such as Bellman-residual minimization and a version of Least-
squares temporal-difference that uses random projections and then, upstream of the Markov
Decision Problem setting, discuss the practical problem of choosing a good model of states.





Foreword: To the layman reader.

One difficult exercise in research is to explain what we are actually doing to, say, “the guy in
the street”, i.e. someone who is not an expert of the field and maybe not even a scientist. In
this introductory chapter, we try to explain and motivate what this thesis is about.

Mathematics, Computer Science, and “Informatics”.

This thesis lies somewhere at the frontier between two very exciting domains. The first one
is Mathematics, the second one is Informatics. Beyond the very naive separation between
these two domains saying that Mathematics are interested in theorems8 and proofs and that
Informatics are interested in computers, algorithms and complexity (that is roughly speaking
time and memory performance of algorithms), it is generally not so obvious to tell what is
what, especially since these two first definitions are quite narrow.

Here, I intentionally use the word “Informatics” rather than the more common word “Com-
puter science”. The reason is that “Computer science” is a misleading word, as suggests the
following quote attributed to Edsger Dijkstra: “Computer science is no more about com-

puters than astronomy is about telescopes.” The french translation of Computer Science is
“Informatique” and thus conveys a different meaning: that this is a science interested in in-
formation, or better said the information conveys by some objects, and not only in computers
or algorithms. Moreover the word Informatics already exists, although being generally used
in combination with other words, like in Bio-informatics.

More precisely, what I call “Informatics” here studies 1) how information is created or
processed, 2) how information is transferred or altered between objects and 3) how to manage
the objects of interest and retrieve information from them. For instance from a conventional
Computer Science perspective, this is well handled by the abstract notion of a computer
program that manages memory cells (bits) thanks to computer instructions written in some
programming language and that produces a so-called trace - like a text, an image or the
solution to an equation. Thus the study of programming languages and of semantics, a
specific field of theoretical computer science, are clearly important in order to understand
Informatics. But now the word Computer Science is not only misleading but also restrictive,
as the previous example can be seen as the result of applying Informatics to some specific
objects that are here memory cells (bits), while Informatics apply to more generic objects of
interest and are thus much broader than what Computer Science suggests. Let us consider
some random examples:

8In all this section, words in italics are technical
words. There are not assumed to be known and their

precise meaning should not prevent the reader from
understanding the global message.
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• For instance, let us consider that we apply Informatics to objects that are theorems.
Then how we create information corresponds to the analysis of axioms, that are the
basic statements assumed to be true and used as a starting point for reasoning. How
information is transferred corresponds to the ways we combine theorems and make
proofs: that is basic logic or inference. Now how we retrieve information from theorems
is linked to deeper notions of logic that involve technical things like λ-calculus and
decidability, with some famous difficulties pointed out by Godël in the 30’s.

• For a more applied example, let us consider the result of applying Informatics to objects
like proteins. This opens a very exciting field of research, directly linked with Biology.
Indeed studying how proteins are created is one main question underlying genomics

(before translation of DNA) and part of proteomics (after). Then the way they interacts
with each other is studied by proteomics. Finally fields like e.g. Virology or Pharmacy
study how one can manipulate them in order to build specific biological functions.
More generally, applying Informatics to other “biological units” like neurons, cells or
ecosystems, etc. results in the development of a new very active field of research called
“Bioinformatics”.

• For a last example, let us assume that the objects we consider are the rights of people,
that is one important aspect of Law. Then one can use Informatics in order to study
the creation of laws, the interaction between the rights by means of contracts and then
the effects of the modifications of laws on the behavior of people. The study of such a
complex dynamical system that consists of many interacting objects of different types
- people, contracts, ownership, etc. - is definitely not easy.

What informatics bring Of course the benefit of Informatics here is the power of for-
malization, together with the development of powerful tools coming from Graph or Domain

theory for instance, and the possibility to derive proofs, which is why the frontier between
Mathematics is fuzzy. Actually it is even not important to tell what is what, if Informatics
are a sub-field of Mathematics or if Mathematics are a sub-field of Informatics, the important
thing is that Informatics enable us to analyze, understand and proof properties that concern
a large diversity of topics, especially the not formalized one, and is thus a very helpful tool
for the growth of precise knowledge.

The informatics of “learning” Now in this thesis, we are interested in the vague notion
of learning. In order to apply Informatics to such a notion, we need some underlying object
of interest. One way is to consider “data” or maybe sensors. Actually the underlying object
of interest does not matter here since the notion of learning is itself a bit fuzzy. What is
interesting is that with such objects, we roughly recover various aspects of the very broad
field of research that is naturally called “Machine learning”, and that is directly relevant to
this thesis (the following words in italics refer to some key words in Machine Learning): For
instance understanding how data is created or acquired is immediately identified as sampling
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or sensing, and detecting structure in the data is the object of clustering, coding theory,
or graphical models. The way data is altered and retrieved is addressed by problems like
regression or denoising. Finally what happens when we manage the data, or act on sensors
lies under the scope of what is called active, sequential and reinforcement learning.

Machine Learning, Artificial Intelligence and Statistical Theory.

As the last paragraph suggests, at a high level this work is interested in learning and more
precisely in designing machines that can learn. For that reason, it is under the scope of
Machine Learning, a field of research that is directly linked to the better known framework
of Artificial Intelligence, and at the same time of Statistical Theory.

Artificial intelligence is challenging The difference with Artificial Intelligence, if there
any, is that in Machine Learning, we want to design a machine that learns something, which
means that the goal is given beforehand, and is fixed during all the learning process. On the
other hand in Artificial Intelligence, we also would like the machine to be able to adapt on
the fly to a change of the initial goal, thus to detect when we ask for a different goal, and
to reuse, while continuing to learn, its past knowledge to target a new goal; this also means
that we may want to measure how close is a new goal from previously identified goals. This
is far more challenging than the questions classically addressed by Machine learning, and,
naturally, a large amount of questions in this setting have not been answered so far. That
said, this definition of Artificial Intelligence is only one amongst many (see Legg and Hutter
(2007)), and some people may consider this distinction perhaps less relevant.

Statistical theory is exciting Machine Learning is also linked to Statistical Theory, for
this field of research studies what can be deduced from observations. We will focus on de-
signing and studying decision mechanisms for a machine, that we call decision algorithms.
These algorithms form the “brain” of the machine and we need mathematical tools in order
to design an analyze them carefully. More precisely, from a mathematical point of view, I
here consider Machine Learning as being exactly non-asymptotic statistical theory, i.e. un-
derstanding what can be deduced when we are only allowed to get finitely many observations.
Since there are many important things to understand from a non-asymptotic point of view,
this second aspect of Machine Learning makes it a tremendously interesting field of research.

Reinforcement learning.

One important step towards addressing the challenge of Artificial Intelligence comes, to my
mind, from the sub-field of Machine Learning called Reinforcement Learning, that enables
to formalize many aspects of this challenge and to design algorithms that are theoretically
sound. Reinforcement learning is based on three important notions: states, actions, and
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rewards. The states and the rewards are determined by the environment, while the learning
machine tries to choose the best actions in some sense.

Figure 1: A set of states, and an example of a current state in orange.

States More precisely, in this setting, the relevant pieces of information about the machine
at some time t are gathered into something called a state. A state is for instance the position
of a robot in a room, or the configuration of the board at some instant at chess. There is
generally a set of possible states (see Figure 1), and we can only be in one state at a time,
that we call here the current state. For the sake of simplicity, the set of possible states - here
the shape of the room, or the set of all possible board configurations - is generally assumed
to be known, as well as the current state - thus we know our current position, or the current
configuration. But in some practical applications, these two assumptions may be too strong,
and one has to either deduce its own position if the set of states is known but not the current
state, or even worse to infer a sensible set of states. The first situation typically appears
when the robot is in a maze.

Actions and rewards The machine interacts with some environment by outputting ac-

tions and by receiving some rewards from the environment each time it plays an action;
the reward measures the quality of the action. For the robot, the actions are typically go
north/west/south/est, and a reward can be 3ml of oil if it moves towards a goal, 1ml if it
moves almost towards it, an nothing else. An action for chess is for instance push pion D2 to
D3, and a typical reward for an action can be: 1 if your action do mat, −1 if your opponent
do mat right after your action, and 0 for all other situations.

W E

N

Figure 2: A current state, with 3 possible actions: W/N/E

The effect of playing one action is to move from the current state to another one. Note
that a change of state can only appear when an action is played - this is actually a good
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property for a state, and also that in general playing one action in some state may lead the
machine to the very same state, in which case there is no move.

The environment The way a reward is given to a machine when it plays some action a

in a state s is a property of the environment. This is the structure of rewards. Similary, the
way we move from one state s to another one s′ after playing some action a is also a property
of the environment. We call it the structure of transitions between states. See figure 3 for
an example of such structures.

N N

N N

E
E

E E

1 0

0 2

3

1

0

1

Figure 3: A possible structure of transition in red, and structure of rewards in blue.

Best actions Now, when the machine plays a sequence of actions, it moves at each time-
step from one state to another and receives for each output action some reward. It thus
receives a sequence of rewards that depends on the sequence of actions played as well as the
initial state. We measure the quality of a sequence of actions by the sum of these rewards.

The goal of the machine is to learn, for each initial state, one right sequence of actions
to choose in order to receive the highest sum of reward when playing the chosen sequence of
actions. This is generally not easy especially when the structure of rewards and of transitions
are not known in advance.

This Ph.D. dissertation is about the theory of Reinforcement Learning, with the goal to
provide theoretically sound and numerically efficient decision-algorithms for that setting. Let
us now give more practical applications for this important field of research.

Reinforcement learning: what for?

When discussing with people about your Ph.D., you are almost always asked, what is the real
application of your thesis in the real-world? What is it for? Here I give some possible answers
to this difficult and important question. When we talk about Reinforcement Learning, one
naturally thinks about robots, which is indeed one direct application, although it also sounds
like science fiction, fantasy, utopia etc. But actually, applications of Reinforcement Learning
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go far beyond this scope, and I now present some of them that I consider to be important,
maybe from the most obvious to the most surprising one.

Robot control on Mars. In this decision-making scenario, a planetary rover must explore
a number of sites during a period of time without stopping to establish communication with
Earth (Bernstein and Zilberstein (2001)). Using only information about its resource levels,
and about the goals of the mission (rewards), the rover must decide which activities to perform
and when to move from one site to the next (actions). Here the states gather information like
the time remaining in the day, the current site and the successful activities performed in this
site. Limited resources and non-deterministic action effects make the problem nontrivial.

Board game player. In this problem, the learning agent must learn how to play to some
board game, like chess, backgammon or go. One example of action is for instance to move
a pion at chess. The learning agent classically receives at the end of each game against an
opponent a reward 1 if it wins, −1 it if loses, and 0 else. For instance, thanks to reinforce-
ment learning, there exist now algorithms that can defeat all human beings at backgammon
(Tesauro (1995)), achieve international level at chess (Baxter et al. (2001)) and some other
games. The current challenge of the community is the game of Go. Indeed, for this game,
if some algorithms do achieve national level on a small board 9× 9, computers reach a level
that is still way below the level of professional go-players on the full board 19 × 19. See
Coulom (2007), Gelly and Silver (2007) for interesting research on this topic.

Elevator group control. In this setting, a system of elevators is controlled using a group
of reinforcement learning algorithms, with one learning algorithm per elevator, and the goal
is to minimize the waiting time of people when they call for a lifter. The team of elevators
receives a global reward signal which appears noisy to each agent due to the effects of the
actions of the other agents, the random nature of the arrivals and the incomplete observation
of the state. This has been studied in Crites and Barto (1996) and tested in practice. Despite
the difficulty of the task, the system was able to predict after few weeks of learning how to
place elevators appropriately, anticipating some interesting features like where and when rush
hours may occur.

Hydraulic Stock gestion. We consider a power supply system, like EDF for instance,
based on thermo-hydraulic electricity production. In this problem, we need to produce pre-
cisely as much electricity as the consumer demand, using either hydraulic stocks, which is
cheap but limited or thermic complexes, which is expensive but less limited in order to pro-
duce electricity. Our goal is to determine whether it is better to use the water stock now, or
to keep it for a possible high consummation demand in the future. Thus, we need to manage
the hydraulic stock in an efficient manner in order to maintain low costs while producing the
amount of electricity required. See Aïd et al. (2003) for some application.
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Web advertisement. Displaying advertisements on a web page is one direct application
of the sub-field of reinforcement learning known as Bandit games named after slot machines
in casinos, see chapter 1. In this problem, the learner has to decide which ad to display,
amongst a given set that corresponds to the possible actions, on a web-page in order to
maximize the probability that the Internet surfer clicks on it. This problem suscited many
works in the community, see Lu et al. (2010),chun Wang et al. (2005), or Chakrabarti et al.
(2008) for sparse examples.

Drug-allocation strategies. In this setting, a physician must find what is the best drug
amongst many possible to administrate to a patient infected with some disease in order to
cure him. This seemingly easy problem is actually old (Thompson (1933)) and is the one
that led to the development Bandit game theory. Powerful algorithms have been designed to
handle such problems thanks to the theory developed over years. In chapter 4, we consider
natural extensions of this setting to adaptive viruses. Indeed, designing medical treatments
for patients infected by adaptive viruses such that the Human Immunodeficiency Virus (HIV)
is challenging due to their ability to mutate into new viral strains that become, with time,
resistant to a specific drug Ernst et al. (2006).

Orientation at school. A less obvious application of reinforcement learning that is not
currently addressed up to my knowledge is its use for orientation at school. In this problem,
the goal is to find the subjects that maximize the probability of success of a student. This
not only depends on marks and social environment, but also on the motivation of a student
for a specific subject as well as on hidden variables. This goal is quite challenging for at least
three reasons. First, the subjects typically evolve from one year to another one: a subject
that is taught at a low level at school, e.g. maths at elementary school, is generally very low
correlated with what is taught at a much higher level, e.g. maths at university. Thus, it is
difficult to have a long term prediction. Also, the skills of the individual evolve with time,
previous experience and training, personal events, etc. Finally, at the beginning of school, a
student has access to various subjects, yet taught at a very low level. But after a student has
discarded some subject by making choices, at high school or university, he/she has generally
no easy opportunity to train again in another domain.

Thus we only have an approximate evaluation of the future success or failure of one
student. But there is hope: One one hand, there are not so many possible choices - about
a few hundreds for all possible outputs of the education system. On the other hand, for
one student, we can have precise evolution of his success thanks to marks (but we also have
to take into account other variables, like personal motivation). Moreover, there is a huge
number of students that can give direct or indirect feedback after school about their degree
of happiness or success. Thus we can probably exploit this three remarks to provide, thanks
to machine learning, better orientation advices to students as well as precise modifications
of the education system to improve success at school and right after school.
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Economy and politics. Finally, let us consider the problem of ruling a state with the help
of reinforcement learning. Thus, in this problem, we are the government. Our goal, from a
country-wise perspective, is to manage the resources of all the country while maximizing the
“happiness” of people.

By managing the resources, e we will consider that we have a given budget each year, and
that we are allowed to modify the resources allocated to each class of business. We can use
either a coarse notion of class, like “culture”, “education’,”industry‘, etc. or we can use a very
fine notion class, like “companies of more than 15 people that produce vehicles and respect
the chart number 12345 on eco-friendly production line”. The two extreme situations are
the following one: on the one hand we consider just 1 class corresponding to all companies,
institutes and organisms, in which case we do not manage resources at all. On the other
hand we consider that each company is one class, which results in something like 105 or 106

many classes for a standard country. In this case, we control the resources of all companies.
Of course between these two extremes, there is a trade off, and specific levels of details that
enable to maximize the long term happiness of people and resources of the country. Finding
an optimal categorization for resource allocation is not easy and can benefit from machine
learning.

Now about the happiness, we consider that each individual has a specific objective - that
may be not explicit - and that the more he/she succeeds, the happier. Note that the goal
of a specific individual may be very different from the goal of the government, and of other
individuals. The goal of two individuals can be for instance incoherent, which means that
there exists no way to satisfy both. But although the goal of a specific individual is not
known, we can have access to a rough estimation of the degree of happiness of people, simply
by frequently asking to a small sample of the population how well one likes his/her job,
salary, life, etc.

Due to the poor information we have, the possibility that people may change their goal,
and the fact that the actions we take (allocation of resources) have only indirect effect on
people, this task is highly difficult. Yet it seems that machine learning can provide important
insights and be beneficial to this challenging problem. Up to my knowledge, I am not aware
of the use of machine learning in that way for any current government.

Some challenges of reinforcement learning

In order to give more motivation to this thesis, we now consider the following possible artificial
intelligence system - this is only one example amongst many. It already addresses a variety of
challenging questions from the general agenda of Artificial Intelligence that goes far beyond
what can answer up-to-date research and enables us to put reinforcement learning in context,
enlightening some of, what I believe are, the major future challenges in the field.
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Get observations from sensors. Let us consider an agent evolving in some real or virtual
world. This agent has a bunch of sensors, like for instance sensors for temperature or pressure
on your skin, one cell of your retina, etc. We will also consider without loss of generality that
the sensing frequency is upper bounded, and thus that the time t = 1, 2, ... is discrete. Each
sensor s ∈ S outputs at time t ∈ N a real value os,t that we assume to be in [0, 1], and that we
call an observation. Now, since at some time step t0, we may not be able to memorize all past
observations (os,t)s∈S,t6t0 , we focus on the most recent part, say the last τ observation steps,
and compress the remaining part. We thus introduce the object Ot0 = (os,t)s∈S,t0−τ+16t6t0

that we call the matrix of observations at time t0, and consists of all the observations from
the time step t = t0 − τ + 1 to the current time step t0, and the object Ct0−τ that consists
of the compression of the past observations not received after time step t0 − τ . At the next
time step t0 + 1, the observation matrix Ot0+1 consists of almost the same elements of Ot0 :
it contains all the observations from time step t0 − τ + 2 to t0, only the observations at time
step t0 − τ + 1 are dropped and observations at time step t0 + 1 are added. Now our goal
will be to apply reinforcement learning, thus we need for that purpose states, actions, and
rewards.

Build states from observations. We begin by identifying “states”. A good property for
a state is that it should not change if the agent does not do any action. Unfortunately,
the observations may be subject to modifications independent from the learner actions, at
any time step. One possible way to build states is to separate the observations into two
parts, one part that is almost fixed when the learner does not perform any action, and a
second one that evolves according to some unknown dynamic and that we will consider as
a perturbation. For instance, consider you look at some scene, where someone is walking.
Then the moving person will be considered as a perturbation, and you may not want to
consider its complex behavior to define your current state, but you will prefer to define your
state by the non-moving part, i.e. the background. This tells you for instance where you are.
One way to perform such a decomposition is to apply a technique known as low-rank matrix

decomposition (see Candés et al. (2009)) to the observation matrix Ot0 . This composition
results in two objects, one with “low-rank” that roughly corresponds to the non moving part,
we write it St0 , and a second perturbation part, that we write Pt0 . Note that provided we do
not perform any action, one may also want to consider that the data corresponding to St0
for various t0 is generated according to some underlying process in a similar way - we say
identically and independently distributed or i.i.d. - and thus apply a universal code encoder
that generates a symbol st0 that is a compressed representation of the observations and thus
can play the role of an internal state. Note that in practice, it may be better to consider the
data is generated by different i.i.d. signals mixed together, and thus try to learn a partition of
the observations into several i.i.d signals that is the most effective in terms of coding theory.
On the other, the perturbation part Pt0 can be seen hand as a complex process, that may
be interesting to understand, but evolves according to its own complex dynamic. Thus it is
natural to consider this perturbation as something “else”, different than states. We can say
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this defines generally an other agent.

Learn transitions between states. Now that we have a notion of states, we need to
understand the way we jump from one state to another one when we perform some action.
In other terms, we need to learn the transition probabilities of the state structure. Indeed,
performing some action will create a modification of the signal received, and thus of St for
some t > t0. Of course this modification may also appear in the perturbation signal Pt for
some t > t0 as well, but it does not concerns our states then. We can learn the transition
probabilities using standard reinforcement learning algorithms, provided the states are built
such that they have some (Markov) property. Note that there may be in practice a possible
delay between the time when the decision to perform some action is taken and the time when
it is really performed, and also some so-called trembling hand effect which is an additional
difficulty that is seldom considered from a theoretical perspective. A trembling hand effect
is just the fact that we choose one action but instead another one is performed.

Identify reward signals. So far, we have not talked about rewards. But in order to apply
the reinforcement learning theory and algorithms, we need to identify some reward signal.
Fortunately, there are actually many ways to identify such a signal. We present here three
ways that enable to define plenty of possible reward functions.

One direct way in order to identify a reward function is to look at the observations
received from sensors and consider that one or several of our sensors provide(s) us with a
reward signal. Our goal is thus to identify such a signal, since a reward signal has some
specific structure. For instance, let us consider we have a set of energy sensors E ⊂ S, and
say that each sensor e ∈ E measures the energy level of some source of energy like a battery.
Now consider that when we perform one action a we use some energy corresponding to the
source measured by e, and thus e decays; when the energy level is 0, we can no longer perform
action a. Each time we play this action, the decay is roughly the same, and thus it should
be able to automatically identify this signal as being a negative reward. Identifying which
sensor(s) provides us with rewards seem not to be a well studied problem. It seems there are
ways to infer detect signals satisfying “good” reward properties, although this is a bit tedious
since there is not always a ground truth. Now once a reward signal is identified, one may
want to use this knowledge and thus redefine states accordingly, which shows that reward
identification problem creates a variety of not theoretically-dressed interesting questions.

Another way to identify rewards is to look at the perturbation signal, for we may con-
sider this corresponds to the observation of some other agent that evolves in the world, and
tries to achieve some goal. The problem that consists in inferring a reward function from
the observation of an agent has received some interest, and is known as Inverse reinforce-
ment learning (see Ng and Russell (2000), Ramachandran and Amir (2007), Abdeslam et al.
(2011)). However this a really challenging problem that is not completely formalized and
thus known results are pretty weak.

Finally, there is at least a third way to define a reward function. The idea is that
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some actions may enable to better understand the world and thus build more accurate and
compressed internal representation than others. This compression progress can be quantified
and measured, and thus can be used as a reward signal. It corresponds to the notion of
intrinsically motivated rewards that is for instance developed in Schmidhuber (2009).

Solve a reinforcement learning problem. Now that we have identified states, tran-
sitions, and that we can consider some reward function, we can learn how to act almost
optimally with respect to this reward function and this representation of the world.

More precisely, we can use the formalism of Markov Decision Process (MDP) and then use
all the known literature of reinforcement learning to solve this problem (see for instance Auer
and Ortner (2006), Boyan (1999), Lazaric et al. (2010a), Scherrer (2010)). Note, however,
that we here have to deal with an approximate MDP due to the identification of states and
rewards; fortunately, extending the notion MDP to other setting is a problem that receives
increasing interest (see for instance Chakraborty and Stone (2010)).

Target many goals. Finally, in this red-line example, as it is the case in practice, we have
the choice to target many different goals, i.e. problems defined by one reward function, either
inferred from an other agent, identified from our sensors, or defined internally. Thus we need
to have a decision procedure to select which goal to follow, at a high level. For instance,
some problems may be learned quickly, others may more difficult but may also help to solve
a lot of other problems, and we generally do not know in advance the intrinsic complexity
of a problem. Thus this question is challenging (this is actually A.I.) and goes beyond the
scope of classical reinforcement learning.

Of course, one way to address this question would be to reduce the problem to reinforce-
ment learning by introducing an additional high level reward, but it is difficult to say one
kind of meta-reward is well-suited and thus, this is now a philosophical question. From a
philosophical point of view, we may consider at least three different (very) high level goals.

• “I do not want to die”. Due to energy consumption, the agent has to act in order to get
energy and thus avoid that its energy falls to zero. Note that since performing some
action that is immediately energy consuming may increase its lifetime on the long run,
this goal may lead to not trivial behaviors. The first naive goal is thus to maximize the
lifetime of the agent.

• “I want the world to remember me”. Since actions have effect in the future, and some
may have effect in the long run, this means that the lifetime of the learner is lower than
the time during which it has an impact on the environment, that we call the “impact”
time. Thus, it makes sense to try to maximize its impact time. This is the second goal.
Note that trying to have a long life may be an interesting sub-goal in order to have
enough time to perform high-impact actions. Note also that, if we consider the set of
all actors, i.e. all agents that may act on the environment, an other natural sub-goal
in order to maximize its impact time is to perform some action that directly makes the
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other agents modify their behavior. Indeed, this way, the initial agent still has some
indirect impact on the environment.

• “I want to promote life”. Since there is a priori no reason why the agent should be
considered differently than other agents, it makes sense to consider the set of all agent
as being one big agent including the agent itself. In this case, the natural goal of the
agent is to maximize the life expectancy of the big agent, i.e. act in order to make
sure that there will be still agents in the future able to act on the environment. For
instance, this can be done by performing actions that may bring energy to other agents
in the future. This is somehow linked to the first two goals but we here just care about
the big agent, not really about which part of the agent survives longer.

Which one of these three goal is “better” is highly debatable, but it is clear that none of
those are easily achievable, even for human beings, and that we will surely have to wait one
or several other decades in order to be able to formalize these questions for machines. Thus
we are not going to address this question in this thesis, nor the many others that surround
this general example, but we instead focus on the reinforcement learning part for which a lot
has to be understood, and leave them for a future work.
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Roadmap

Before starting the main matter of this Ph.D. dissertation, we now propose a general
roadmap in order to help the impatient reader. It is summarized in figure 4 below.

Ch01

Ch02

Ch03

Ch04

Ch05

Ch06 Ch07

Ch08

Ch09

Ch10

Ch11

Figure 4: General reading roadmap for this Ph.D dissertation

Figure 4 reads as follows. The entry points of these dissertation are indicated by the two
input arrows. These are (obviously) chapter 1 and also chapter 5 as they correspond to two
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general surveys that present the background material needed to understand the setup and
context of the questions addressed in this Ph.D. dissertation.

Now the chapters of this dissertation are gathered into three main parts. Each part is
indicated by a rectangular box on the figure. In each part, we suggest starting to read the
first chapter of the part - these are respectively chapter 1, 5 and 9 - and then follow the
proposed natural ordering of the chapters. Since one may also want to jump directly to a
specific contribution, and also for clarity purpose, we indicate the structure of dependency
between chapters via wires.

The meaning of a wire starting from chapter n and going to chapter m is that chapter m
uses some concepts that are presented or explained with more details in chapter n. Moreover,
the darker the wire, the stronger the dependency. Thus for instance according to figure 4, it
is strongly advised to read chapter 1 before reading chapter 4, and similarly chapter 6 before
chapter 10. On the other hand, chapter 3 makes use of some concepts of chapter 5, but only
very scarcely.

Interestingly, one can see from the figure that the concepts of chapter 5 are used in all
other chapters, making this chapter seemingly the most important. Actually this can be
understood since this short chapter gathers most of the statistical tools used here and there
in the other chapters. It is thus important because of technical details, but actually does not
provide as much intuition about the rest of this dissertation as chapter 1 for instance. This
is also the reason why the wires going out from chapter 5 are lighter.

Finally, we do not report in this figure the important fact that part III can be seen as the
result of combining the concepts that underlie part I and part II.



Contributions.

Cette section est l’occasion de présenter un résumé des différentes contributions de cette
thèse dans les domaines de recherche des jeux de bandit, de l’apprentissage statistique et de
l’apprentissage par renforcement.

Partie I.

La première partie se concentre sur le cadre des Bandits, cadre à la fois fondamental pour
comprendre l’apprentissage par renforcement et également intéressant en lui-même.

Le monde des bandits: Exploration et Exploitation.

Le chapitre 1 présente une revue (non exhaustive) de la littérature incroyablement vaste
concernant les bandits. Nous présentons ensuite trois contributions à la théorie des Bandits,
depuis le cadre le plus standard des bandits dits stochastiques au cadre plus ambitieux des
bandits adverses, jusqu’au cadre difficile des bandits adaptatifs que nous introduisons dans
le chapitre 4.

Chapitre 2: Bandits à plusieurs bras utilisant la divergence de Kullback-Leibler.
Le chapitre 2 concerne le problème des bandits à plusieurs bras dits stochastiques. Son but
est de fournir une analyse, à la fois en temps fini et dépendante de la distribution de lois
sur chaque bras, d’un algorithme que nous prouvons être optimal en un certain sens, ce qui
répond à une question ouverte il y a longtemps par les travaux de Lai and Robbins (1985)
et plus tard de Burnetas and Katehakis (1996).

Nous analysons le cadre des bandits à plusieurs bras stochastiques et plus précisément
l’écart qui apparaît entre, d’une part, les bornes asymptotiques qui furent prouvées dans
Lai and Robbins (1985) puis dans Burnetas and Katehakis (1996) et qui font apparaître la
divergence de Kullback-Leibler entre les distributions des bras, et, d’autre part, les bornes
non-asymptotiques qui furent prouvées pour des algorithmes du type UCB dans Auer et al.
(2002) puis plus tard dans Audibert et al. (2009), Audibert and Bubeck (2010), Auer and
Ortner (2010) etc. et qui font apparaître seulement le premier ou le deuxième moment des
distributions de chaque bras.

Les premières bornes atteignent la borne inférieure asymptotique de performance, mais
sont seulement asymptotiques et ne concernent que des classes de distributions spécifiques
(certaines distributions paramétrées de dimension finie), tandis que les secondes sont non-
asymptotiques et concernent des distributions arbitraires (de support inclus dans [0, 1]), mais
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malheureusement ne permettent pas d’atteindre la borne inférieure asymptotique. De plus,
comme cela est mentionné dans les études expérimentales menées par Filippi (2010) ou Honda
and Takemura (2010a), les algorithmes utilisant la divergence de Kullback-Leibler atteignent
des performances significativement meilleures que celles des algorithmes du type UCB.

Nous comblons partiellement cet écart en étudiant un algorithme utilisant la divergence
de Kullback-Leibler pour le problème des bandits stochastiques à plusieurs bras dans le cas de
distributions à support fini (i.e. avec un nombre fini d’atomes), dont le regret asymptotique
correspond à la borne inférieure de Burnetas and Katehakis (1996), et dont on fournit une
analyse non asymptotique.

Chapitre 3: Algorithmes de bandit pour l’apprentissage en ligne dans des envi-
ronnements adverses Lipschitz.
Le chapitre 3 s’attaque au problème de bandit dit adverse, en information complète, lorsque
un grand ensemble de bras est considéré, ainsi qu’à ses applications à l’apprentissage en
ligne. Nous dérivons, sous certaines hypothèses géométriques et topologiques faibles, des
bornes de performance pour un algorithme ainsi qu’un schéma d’approximation numérique
efficace utilisant des techniques de Population Monte-Carlo.

Puisque le cadre de l’information complète permet de traiter un grand nombre de bras,
nous abandonnons l’hypothèse d’un ensemble fini de bras A au profit d’un sous-ensemble de
R
d, ce qui permet d’appliquer les bandits au problème de l’apprentissage en ligne lorsque

l’environnement est un adversaire. Pour de grands ensembles, il faut supposer une cer-
taine régularité des fonctions de récompense afin de contrôler le terme regret. La difficulté
principale, cependant, est de fournir une implémentation numérique efficace, ce qui requiert
généralement de faire des approximations de l’algorithme théorique naturel.

Ici nous considérons le problème de l’apprentissage en ligne face à un environnement
adverse lorsque les fonctions de récompense choisies par l’adversaire sont supposées être
Lipschitz. Ce cadre étend des travaux précédents sur l’apprentissage en ligne dans un cadre
linéaire (cf. Dani et al. (2008a), Abernethy et al. (2008b), Cesa-Bianchi and Lugosi (2009),
Kakade et al. (2008)) ou convexe (cf. Zinkevich (2003), Hazan et al. (2006)). Nous étudions
une classe d’algorithmes dont le regret cumulé est borné supérieurement par Õ(

√
dT ln(λ)),

où d est la dimension de l’espace de recherche, T est l’horizon temporel, et λ est la constante
de Lipschitz.

Nous discutons la question importante de fournir une implémentation numérique efficace
et utilisons des méthodes particulaires dans ce but. Notons qu’un travail récent de Narayanan
and Rakhlin (2010) montre qu’avec l’hypothèse plus forte de fonctions de récompenses con-
vexes, la méthode d’échantillonnage particulaire peut être légèrement simplifiée (en utilisant
un échantillonneur de Gibbs pour les mesures log-concaves) en conservant un algorithme à la
fois sain et numérique efficace. Les applications que l’on considère regroupent des problèmes
d’apprentissage supervisé en ligne en information complète ainsi qu’en information partielle
(bandits), pour une large classe de régresseur/classificateurs comme par exemples les réseaux
de neurones.
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Chapitre 4: Bandits adaptatifs: vers la meilleure strategie dépendant de l’historique
Dans le chapitre 4, nous considérons le cas d’un problème de bandits multi-armé en infor-
mation partielle lorsque l’environnement est possiblement adaptatif à l’apprenant, sans être
forcément le pire environnement possible. Nous introduisons une définition de regret perme-
ttant de capturer une telle notion, et nous montrons comment un algorithme peut bénéficier
de cette notion et ainsi être adaptatif en un certain sens à la complexité de l’adversaire.

La raison pour ne pas considérer uniquement le pire adversaire est qu’en pratique, un
algorithme n’affrontera pas nécessairement un tel adversaire, et qu’un algorithme conçu
uniquement pour le pire cas ne profitera pas nécessairement des faiblesses de l’adversaire.
Concevoir des algorithmes adaptatifs à la faiblesse de l’adversaire est un défi.

Nous introduisons ici un modèle de contraintes Θ, fondé sur des classes d’équivalence de
l’historique commun (i.e. l’information partagée par le joueur et l’adversaire), qui définit
deux scenarii d’apprentissage: (1) L’adversaire est contraint, i.e. il fournit des récompenses
qui sont des fonctions stochastiques des classes d’équivalence définies par un modèle θ∗ ∈ Θ,
et l’on mesure le regret par rapport à la meilleure stratégie dépendante de l’historique. (2)
L’adversaire est arbitraire, et l’on mesure le regret par rapport à la meilleure stratégie parmi
toutes les fonctions allant des classes vers les actions (i.e. la meilleure stratégie basée sur les
classes d’historique) pour le meilleur modèle dans Θ. Ceci permet de considérer des modèles
d’adversaires (cas 1) ou de stratégies (cas 2) incluant ceux à mémoire finie, périodiques, les
bandits stochastiques standards et bien d’autres situations.

Lorsque Θ = {θ}, i.e. un seul modèle est considéré, nous dérivons des algorithmes
numériquement efficaces dont le regret (au temps T) est finement borné par Õ(

√
TAC),

où C est le nombre de classes de θ. A présent, lorsque plusieurs modèles sont disponibles,
tous les algorithmes connus atteignant une bonne borne O(

√
T ) sont malheureusement non

numériquement efficaces et s’étendent difficilement à un grand nombre de modèles |Θ|. Notre
contribution ici est de fournir des algorithmes numériquement efficace ayant un regret borné
par T 2/3C1/3 log(|Θ|)1/2.

Partie II.

Après la première partie consacrée à quelques variations autour du problème des bandits, que
l’on peut voir comme un problème purement en ligne en comparaison du problème général de
l’apprentissage par renforcement, nous étudions dans une deuxième partie quelques questions
importantes liées à l’apprentissage par lot, c’est à dire lorsque on nous donne un ensemble et
non un flux de données.

L’apprentissage par lot: Randomisation et Échantillonnage.

Le chapitre 5 présente un aperçu général des outils de théorie statistique que l’on regroupe ici
pour des raisons de clarté, puisque la plupart des théorèmes qui y sont présentés sont utilisés
ici et là dans ce manuscrit de thèse.
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Chapitre 6: Régression linéaire utilisant les projections aléatoires.
Dans le chapitre 6, on s’intéresse à l’utilisation de matrices aléatoires dans le cadre de la
régression en design aléatoire. Si les outils nécessaires pour établir les bornes de perfor-
mance des estimateurs proposés ont été popularisés assez récemment en raison des nombreux
développements pratiques et théoriques auxquels a mené le sujet des matrices aléatoires au
cours des dernières années, il est intéressant de réaliser que l’idée d’utiliser les projections
aléatoires, ou les représentations aléatoires telles qu’elles sont nommées dans Sutton (1996),
est déjà ancienne dans des domaines davantage appliqués, tels que la robotique ou la synthèse
de texture par exemple, ce qui donne plus de motivation pour les comprendre. Par exemple,
Richard Sutton étudiait expérimentalement les effets de la randomisation dans les réseaux
de neurones déjà dans Sutton and Whitehead (1993), et mentionne que le Perceptron de
Rosenblatt en 1962 était originellement utilisé avec une couche initiale de randomisation afin
d’améliorer les performances.

Nous étudions une méthode de régression qui construit, à partir d’un espace de fonction
F donné de grande dimension (possiblement infinie), par exemple L2([0, 1]

d;R), un sous
espace GP ⊂ F de dimension finie P généré aléatoirement. GP est défini comme l’espace
linéaire engendré par P éléments aléatoires, eux même obtenus par combinaison linéaire de
fonctions de base de F pondérées par des coefficients aléatoires gaussiens iid. Nous présentons
une motivation pratique pour utiliser cette approche, détaillons le lien que partagent ces
projections aléatoires avec la théorie des RKHS et des objets Gaussiens, établissons, en
design déterministe et également aléatoire, des bornes sur l’erreur d’approximation lorsque
l’on cherche la meilleure fonction de régression dans GP au lieu de F , et dérivons des bornes
d’excès de risque pour un algorithme de régression spécifique (régression par moindre carrés
dans l’espace GP ). Ce papier mets l’accent sur la motivation pour étudier de telles méthodes,
ainsi l’analyse développée reste simple à des fins de meilleure explicitation, et laisse la place
à de futures extensions et améliorations.

Chapitre 7: Échantillonnage Brownien pour la reconstruction de fonctions parci-
monieuses.
Dans le chapitre 7, nous considérons une autre utilisation des matrices aléatoires de manière
plus traditionnelle, en lien avec le problème de reconstruction d’une fonction parcimonieuse.
Spécifiquement, nous montrons comment l’utilisation d’opérateurs d’intégration aléatoires
permet de relâcher des hypothèses classiques de (quasi) orthogonalité du dictionnaire sous-
jacent, en transformant le problème de reconstruction en un simple problème d’intégration.

Le chapitre précédent montrait le bénéfice qu’il y a à utiliser les matrices aléatoires pour
s’attaquer au problème de prédire aussi bien qu’une fonction cible inconnue. Ici, nous nous
intéressons au problème de reconstruction, où le but est de reconstruire le paramètre de
décomposition de la fonction inconnue. Ce problème est généralement plus difficile puisque
reconstruire ce paramètre entraîne naturellement une faible erreur de prédiction par rapport
à la fonction cible.

Plus précisément, nous considérons le problème de reconstruction du paramètre de dé-
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composition α ∈ R
K d’une fonction f supposée parcimonieuse dans une famille de fonctions

connue {ϕk}16k6K (i.e. le nombre de composantes non nulles du vecteur α est petit par rap-
port au nombre total de composantesK) , à partir d’évaluations bruitées de f sur un ensemble
bien choisi de points d’échantillonnage. Nous introduisons un processus de randomisation
supplémentaire, appelé Brownian sensing, reposant sur le calcul d’intégrales stochastiques,
ce qui génère une matrice d’échantillonnage Gaussienne pour laquelle on démontre de bonnes
propriétés de reconstruction, indépendamment du nombre de point N et lorsque les fonctions
de bases sont arbitrairement non orthogonales. Sous l’hypothèse que f est Hölder d’exposant
au moins 1/2, on propose un estimateur α̂ du paramètre tel que ‖α − α̂‖2 = O(‖η‖2/

√
N),

où η est le bruit d’observation. La méthode utilise un ensemble de points uniformément
distribués selon une courbe de dimension un sélectionnée en fonction des fonctions de base.
Nous rapportons des résultats d’expérience numérique qui illustrent notre méthode.

Chapitre 8: Apprentissage multi-vue: Complexité versus Consensus.
Enfin dans le chapitre 8, bien qu’un peu déconnecté du reste de ce manuscrit, nous analysons
la complexité de Rademacher d’un problème dit d’apprentissage multi-vue.

Nous considérons le problème de la classification multi-vue semi-supervisée, où chaque
vue est supposée correspondre à un Espace de Hilbert à Noyau Reproduisant. Nous étudions
un algorithme utilisant des méthodes de co-régularisation utilisant des termes de pénalité
supplémentaires reflétant des propriétés de continuité et de consensus entre les vues. Ce
travail fournit à la fois une borne supérieure et inférieure explicite sur la complexité de
Rademacher de la classe d’apprenant correspondant, pour un nombre arbitraire de vues.
Nous montrons également le comportement asymptotique des bornes lorsque le terme de co-
régularisation augmente, rendant ainsi explicite la dépendance entre la consistance entre vues
et la réduction de l’espace de recherche. Nous appliquons cet algorithme à plusieurs exemples
jouets incluant un nouvel exemple non trivial. Enfin, nous prenons parti pour une méthode
de sélection de paramètres basée sur une notion de stabilité inspirée par le clustering et des
arguments de localisation. Nous fournissons des bornes explicites sur la variance de la classe
et proposons un algorithme de sélection.

Partie III.

Dans la dernière partie, nous combinons le monde des bandits et de l’apprentissage par lot,
afin de s’attaquer à des problèmes d’apprentissage par renforcement.

Vers le monde réel(?): Modélisation et Planification.

Les trois derniers chapitres traitent trois questions différentes en apprentissage par renforce-
ment, liés aux Processus Décisionnels de Markov (PDM).
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Chapitre 9: Analyse en temps fini de l’algorithme de minimisation du résidu de
Bellman.
Dans le chapitre 9, on analyse la minimisation du résidu de Bellman: il s’agit d’un algorithme
naturel dans le cadre des PDM actualisés lorsque l’on a recours à un modèle génératif, i.e. que
l’on peut échantillonner n’importe quand une action à partir de n’importe quel état, par
opposition au cadre où on ne peut qu’échantillonner une action à partir de l’état courant.

Nous considérons l’approche par minimisation du résidu de Bellman pour résoudre des
problèmes décisionnels de Markov actualisés, où l’on suppose qu’un modèle génératif de la
dynamique et des récompense est disponible. A chaque étape d’itération sur la politique,
une approximation de la fonction valeur de la politique courante est obtenue en minimisant
un résidu de Bellman empirique défini sur un ensemble de n états tirés de manière i.i.d à
partir d’une distribution µ, des récompenses immédiates et des états suivants échantillonnés
à partir du modèle. Notre résultat principal est une borne de généralisation pour le résidu
de Bellman dans des espaces d’approximation linéaires. En particulier, nous démontrons
que le résidu de Bellman empirique approche le vrai résidu de Bellman (quadratique) en
norme-µ avec une vitesse en O(1/

√
n). Ce résultat implique que minimiser le résidu de

Bellman empirique est en effet une approche bien fondée pour la minimisation du vrai résidu
de Bellman, ce qui garantit une bonne approximation de la fonction valeur pour chaque
politique. Enfin, nous dérivons des bornes de performance pour l’algorithme d’itération sur
les politiques approché résultant de cette méthode, en terme du nombre d’échantillons n et
d’une mesure de complexité indiquant la capacité de l’espace de fonctions à approcher les
fonctions valeurs successives.

Chapitre 10: Différences temporelles par moindre carrés avec projections aléa-
toires.
Dans le chapitre 10, nous analysons une version d’un algorithme appelé différences tem-
porelles par moindre carrés, où l’on utilise des projections aléatoires telles que présentées
dans le chapitre 6, dans le but de tirer parti de la réduction de dimension. Cet algorithme est
conçu pour des PDM actualisés lorsque l’on n’a pas accès à un modèle génératif et donc que
l’on est donc forcé d’échantillonner depuis l’état courant, en suivant une seule trajectoire. Il
est intéressant de constater que, du point de vue de la théorie statistique de l’apprentissage,
le problème d’estimation de la fonction valeur correspondant à cet algorithme peut être vu
comme un problème de régression en design Markovien, où la fonction cible ne peut être
échantillonnée directement comme d’ordinaire, mais est définie au contraire comme point
fixe de l’opérateur de Bellman que l’on doit estimer.

Nous considérons le problème d’apprentissage par renforcement dans des espaces de
grande dimension lorsque le nombre de fonctions de base est plus grand que le nombre
d’échantillons. En particulier, nous étudions l’algorithme de différence temporelle par moin-
dre carrés (LSTD) lorsque un espace de petite dimension est généré par projection aléatoire à
partir d’un espace de grande dimension. Nous fournissons une analyse théorique complète de
l’algorithme LSTD avec projections aléatoires et dérivons des bornes de performance pour cet
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algorithme. Nous montrons également comment l’erreur de LSTD avec projections aléatoires
se propage à travers les itérations d’un algorithme d’itération sur la politique et fournissons
une borne de performance pour l’algorithme d’itération sur les politiques par moindre carré
(LSPI) correspondant.

Chapitre 11: Sélectionner la représentation des états en apprentissage par ren-
forcement.
Enfin le chapitre 11 pose quelques pierres vers la solution au problème important de sélec-
tionner un modèle d’états pour l’apprentissage par renforcement. En effet, en pratique, il
peut être difficile de définir une bonne notion d’états, et il peut donc y avoir ainsi plusieurs
modélisations possibles. Nous construisons notre analyse au-dessus de l’algorithme UCRL2
conçu pour des PDMs non actualisés, et considérons un cadre philosophiquement relié au
chapitre 4 qui traite la question difficile des bandits adaptatifs.

Dans ce chapitre, plusieurs modèles (fonctions allant des observations passées vers un
ensemble fini) d’observations sont donnés, et l’on sait que pour au moins un de ces modèles,
la dynamique résultante est en effet Markovienne. Sans connaître ni lequel de ces modèles
est le bon, ni quelles sont les caractéristiques probabilistes du PDM résultant, le but est
d’obtenir autant de récompenses que la politique optimale du bon modèle (ou du meilleur
modèle, s’il y en a plusieurs). Nous proposons un algorithme qui atteint cet objectif, avec un
regret de l’ordre T 2/3 où T est l’horizon temporel.





Part I

The World of Bandits: Exploration and

Exploitation.





3

In this first part, we focus on the setting of Bandits that is both fundamental in order to
understand Reinforcement learning and interesting by itself.

Why the setting of Bandits is important. Artificial Intelligence is interested in de-
signing artificial agents that evolve in an environment. These agents sequentially observe the
environment through sensors, learn, adapt, and take decisions, i.e. output actions.

The setting of Reinforcement Learning is a way to formalize what we mean by agent, by
making decisions, and what the agent should learn; in this setting, it is assumed that the agent
receives a reward to the action he/she has output, that is a real value. The reward measures
the quality of this action. The basic goal of the agent is to learn how to output actions so as
to maximize the sum of received rewards. Note that decisions are taken sequentially at each
time step, and the environment and reward functions may evolve with time.

An informal definition of the multi-armed Bandit setting is that a learning agent is facing
a bandit, i.e. a casino slot machine with a finite set of arms A. At each time step t the learner
can pull one arm at ∈ A , and with each arm a ∈ A is associated an unknown and fixed
probability law νa on the output rewards. Thus the learner receives one reward distributed
according to νat after he/she chooses at. The game is repeated T times and the goal is to
maximize the sum of received rewards up to time T .

The first reason to study bandits is that it can be seen as a base stone to understand an
important notion in reinforcement learning known as Markov Decision Processes (MDP). In
a nutshell (see Part III for more precise definition), a MDP models the environment thanks
to states, and from any state, when an action is chosen, we move to another state according
to a generally not known transition kernel. The reward function is a function of the states
and actions, which means that the agent not only has to learn which action to output, but
better learn a strategy, i.e. a decision rule that defines which action to output in which state.
The goal is now to output a strategy that is optimal, i.e. that enables to receive the maximal
sum of rewards whatever the initial state. Now a bandit can be seen as a MDP with only
one looping state, thus studying this first problem in details, which is already not that easy,
is an important tool towards solving the MDP problem: one idea is to decompose a MDP
into different bandit problems and then combine them in a careful way.

The second reason to study bandits is that even more than fifty years after it was formally
introduced by Robbins (1952), there are still many fruitful extensions one may consider to the
original setting for practical purpose, together with many practical and theoretical opened
questions that go much beyond the setting of reinforcement learning. Actually one can say
that a real theory of bandits has emerged from these developments, with its own difficult
questions and its own real-life applications.

Contributions. We present in Chapter 1 a general (not exhaustive) survey of the incredibly
huge literature about bandits. Then we present three contributions to the bandit theory, from
the most standard setting of so-called stochastic bandits to the more challenging setting of
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adversarial bandits and then to the difficult case of adaptive bandits that we introduce in
the last chapter.

Chapter 2 is about the stochastic multi-armed bandit problem and aims at providing a
finite-time distribution-dependent analysis of an algorithm that we prove to be optimal in
some sense, which fills a gap opened long ago in Lai and Robbins (1985) and later in Burnetas
and Katehakis (1996).

In Chapter 3, we are interested in the so-called adversarial bandit problem when a large
set of arms is considered, and in its application to online learning. We prove performance
bounds for an algorithm under some weak geometrical and topological condition on the
problem, together with a numerically efficient approximation scheme that uses Population
Monte-Carlo technique.

Finally in Chapter 4, we consider the case of a bandit problem when the environment
is considered to be possibly adaptive to the learner, but may be different from the worst
possible environment. We introduce a definition of regret that enables to capture such a
notion, and show how an algorithm can benefit from this notion and be adaptive in some
sense to the complexity of the opponent.



Chapter 1

Multi-armed Bandit Games.

This introductory chapter is about a sequential decision problem called Bandits, named
after the casino slots machines. We first introduce the setting and present a general
overview of the standard results and algorithms, then we present many fruitful extensions
of the initial setting together with pointers to the corresponding works. In the third part
we consider the general class of decision makers known as Exponentially-weighted
forecasters, for which we give some geometrical interpretation. Finally, we briefly discuss
the limitations of bandits and show the need to consider other settings.
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4 Limitations of the bandit setting . . . . . . . . . . . . . . . . . . . . . 35

1 The standard stochastic multi-armed Bandit setting

In this section, we detail the original bandit problem, which enables to fix some notation,
define the notion of regret and present the main algorithms that solve this problem.
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Origin. The term bandit refers to the name of casino slot machines: the player uses a
coin, then pulls the arm of the machine and receives a random amount of money (reward).
Since there is only one arm (action), this is also called a one-armed bandit problem. The
multi-armed bandit problem corresponds to the case when the player faces a machine with a
finite number of arms, or equivalently a finite number of machines with one arm, and selects
sequentially, by using one coin at each time step the arm with which he/she wants to play.
Then the player receives the corresponding random reward and the goal is to earn as much
money as possible.

Motivation. The historical motivation for this setting directly comes from medical trials,
as introduced in Thompson (1933) for the comparison between two treatments, and then
in Thompson (1935) for the more general case of finitely-many treatments. In this prob-
lem, there is a set A of drugs available in order to cure one specific disease. Patients come
sequentially and it is assumed that each drug acts in the same way on each patient (i.i.d. as-
sumption). The success of a drug on a patient is modeled by a Bernoulli random variable
whose parameter depends only on the drug. Since each trial involves a human, we want to
make as few mistakes as possible while focusing as soon as possible on the best drug.

1.1 Setting

More precisely, this problem has been formalized quite a long time ago by Robbins in Robbins
(1952). In its original formulation, one considers a finite set A of A many arms. Each arm
corresponds to a source of random variables independent and identically distributed (i.i.d.)
according to an unknown probability distribution over the unit interval [0, 1].

The game is sequential and goes as follows: at each round t > 1, the player first picks an
arm At ∈ A and then receives a stochastic payoff Yt drawn at random according to νAt , and
only gets to see the payoff Yt. We then define the cumulative reward of the forecaster up to

time T to be
T∑

t=1

Yt .

The goal of the forecaster is to maximize its expected cumulative reward up to the time
horizon T . The forecaster may or may not know in advance the horizon. When the forecaster
does not know in advance this horizon, we say the strategy is anytime.

Regret definition. For each arm a ∈ A, we denote by µa the expectation of its associated
distribution νa and we let a⋆ be any optimal arm, i.e., a⋆ ∈ argmax

a∈A
µa .

We write µ⋆ as a short-hand notation for the largest expectation µa⋆ and denote the gap of
the expected payoff µa of an arm a ∈ A to µ⋆ as ∆a = µ⋆ − µa. In addition, the number of
times each arm a ∈ A is pulled between the rounds 1 and T is referred to as NT (a),

NT (a)
def
=

T∑

t=1

I{At=a} .
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Stochastic multi-armed bandit

Unknown parameters: |A| unknown probability distributions on [0, 1]

Known parameters: the set of arms A, the number of rounds T

For each round t = 1, 2, . . . , T

(1) the learner chooses At ∈ A according to its own strategy.

(2) the learner incurs and observes the reward Yt
i.i.d.∼ νAt independently from

the past given At.

Figure 1.1: The stochastic multi-armed bandit game.

Now the quality of a decision strategy is evaluated via the notion of regret that we define
precisely now.

Definition 1.1 (Expected regret) The expected regret, or just the regret, at round T > 1

is defined as

RT
def
= E

[
Tµ⋆ −

T∑

t=1

Yt

]
= E

[
Tµ⋆ −

T∑

t=1

µAt

]
=
∑

a∈A
∆a E

[
NT (a)

]
, (1.1)

where we used the tower rule for the first equality. Note that the expectation is with respect

to the random draws of the rewards according to the distribution νAt and also to the possible

auxiliary randomization to which the decision-making strategy is resorting.

The meaning of this definition is that we measure the regret of the forecaster for not
playing optimally. Indeed, the strategy of the oracle, i.e. when all the distributions are
known, would be to constantly select the arm with the highest mean reward. Thus, in order
to measure the performance of a specific forecaster, we compare its mean cumulative reward
to the mean cumulative reward of the oracle strategy.

Lower bounds. It is important to know what kind of regret is possible to reach. For that
purpose, we are interested in lower bounds on the expected regret for the best decision-maker.
We consider two kind of bounds:

(1) Distribution-free lower bounds, i.e. bounds that do not make appear quantities specific
to the law of the arms. They are important in order to known what are the best
performances one can hope for in the worst case, or uniformly over the classes of
distributions.

(2) Distribution-dependent lower bounds, i.e. bounds that makes appear quantities that
depend on the law of of the arms. They are important in order to know what are the
best performances one can hope for one bandit problem.
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In the case of distribution-free lower bounds (also called minimax lower bound), we have
the following result from Auer (2003).

Theorem 1.1 (Minimax regret lower bound) Let sup represents the supremum taken

over all stochastic bandits with support in [0, 1] and inf the infimum taken over all forecasters,

then the following holds true:

inf supRT >
1

20

√
TA

Now in order to introduce distribution-dependent lower bounds, let us first remind some
useful notion from information theory.

Kullback-Leibler divergence. We denote by P([0, 1]) the set of probability distributions
over [0, 1]. For two elements ν, κ ∈ P([0, 1]), we write ν ≪ κ when ν is absolutely continuous
with respect to κ and denote in this case by dν/dκ the density of ν with respect to κ. We
recall that the Kullback-Leibler divergence between ν and κ is defined as

K(ν, κ) =





∫

[0,1]

dν
dκ

log
dν
dκ

dκ if ν ≪ κ;

+∞ otherwise.

(1.2)

We first state the following Theorem, adapted from Lai and Robbins (1985) for the case
when all the distributions are Bernoulli distributions:

Theorem 1.2 (Regret lower bound for Bernoulli distributions) Let us consider a con-

sistent forecaster, i.e. such that for any stochastic bandit, for any suboptimal arm a and any

β > 0, E(NT (a)) = o(T β). Then for any stochastic bandit with Bernoulli distributions, all

different from a Dirac distribution at 1, the following holds true:

lim inf
T→∞

RT

log T
>
∑

a:∆a>0

∆a

K(B(µa),B(µ⋆))
,

where B(p) stands for a Bernoulli distribution with parameter p.

Actually Lai and Robbins (1985) showed a slightly more general result that holds for all
one-dimensional parametric distributions. However, the main extension has been performed
in Burnetas and Katehakis (1996), in which the authors consider the case when the unknown
distribution belongs to a known finite-dimensional parametric class of distributions P . We
introduce for that purpose the following quantity:

Kinf(νa, µ
⋆) = inf

{
K(νa, ν) ; ν ∈ P with mean µ > µ⋆

}
,

with the convention that Kinf(νa, µ
⋆) = 0 if the set {ν ∈ P ;µ > µ⋆} is empty.
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Theorem 1.3 (Distribution-dependent regret lower bound) Let us consider a set of

probability distributions P ⊂ P([0, 1]) and a forecaster consistent with P. Then for any

stochastic bandit with distributions in P, the following holds true:

lim inf
T→∞

RT

log(T )
>
∑

a:∆a>0

∆a

Kinf(νa, µ⋆)
.

The intuition for this improvement comes from the goal that we want to achieve in bandit
problems; it is not detecting whether a distribution is optimal or not (for this goal, the
relevant quantity would be K(νa, ν

⋆)), but rather achieving the optimal rate of reward µ⋆,
i.e. one needs to measure how close νa is to any distribution ν ∈ P whose expectation is at
least µ⋆.

Let us also provide some additional intuition to explain why the right notion of closeness
is a Kullback-Leibler-like divergence instead of other notions such as the Hellinger or Wasser-
stein distance. This comes from the proof where by definition of the regret it is enough to
look at E(NT (a)) for each suboptimal arm a. For such an arm, we build a modified bandit
problem where the distribution νa ∈ P is replaced with a distribution ν⋆a ∈ P that has a mean
bigger than µ⋆ and satisfies νa ≪ ν⋆a , while other distributions remain the same. Now in this
transported problem, a is the unique best arm, thus since we consider consistent algorithms,
all the other arms are pulled o(T β) times for every β, and thus N ′

T (a), the number of pulls of
arm a in the modified problem, is small with small probability w.r.t. ν⋆a . We then naturally
control the number of pulls of arm a in the original problem by making use of a transport
equation. The following one is used

E{Xi}i6n∼ν⋆af({Xi}i6n) = E{Xi}i6n∼νaf({Xi}i6n) exp
(
− nK̂n(νa, ν

⋆
a)
)
,

for some positive function f , where K̂n(νa, ν
⋆
a)

def
=

1

n

n∑

i=1

log
dνa
dν⋆a

(Xi) is the empirical Kullback-

Leibler divergence between the initial and the transported distribution and asymptotically
converges to K(νa, ν

⋆
a). Due to this transportation cost, we loose a little, but still it can be

shown that NT (a) 6
log(T )

K(νa,ν⋆a)
asymptotically happens with vanishing probability. This gives

an explanation for the final term, since ν⋆a can then be chosen such that K(νa, ν
⋆
a) is arbitrarily

close to Kinf(νa, µ
⋆). We refer to Burnetas and Katehakis (1996) for specific details.

1.2 Historical algorithms

In this section, we now present some important historical algorithms that are designed in
order to achieve performances that tempt to match the lower bounds on the expected-regret.

Asymptotically optimal strategies. In their seminal paper, Lai and Robbins (1985) pro-
vided an algorithm based on the Kullback-Leibler divergence that was proved to be asymp-
totically optimal for the case of some one-dimensional parametric distributions. This work
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has been extended by Burnetas and Katehakis (1996) to an algorithm based on Kinf ; this is
still asymptotically optimal since the number of pulls of any sub-optimal arm a satisfies

E
[
NT (a)

]
6

(
1

Kinf(νa, µ⋆)
+ o(1)

)
log(T ) .

The result holds for finite-dimensional parametric distributions under some assumptions,
e.g., the distributions having a finite and known support or belonging to a set of Gaussian
distributions with known variance. Recently Honda and Takemura (2010a) extended this
asymptotic result to the case of arbitrary distributions P with support in [0, 1] and such

that µ⋆ < 1; the key ingredient in this case is that Kinf(νa, µ
⋆) is equal to Kmin(νa, µ

⋆)
def
=

infν∈P:E(ν)>µ∗ K(νa, ν). Unfortunately, all these results provide asymptotic bounds only.

The Upper confidence bound (UCB) algorithm. The upper confidence bound (UCB)
algorithm has been introduced by Auer et al. (2002), together with some important variants
like UCB2, and enables to get non-asymptotic upper bounds. The main idea of the algorithm
is detailed in Figure 1.2 and is to select at time t the arm a corresponding to the best empirical
mean µ̂a,Nt(a) penalized by some quantity δa(t). This quantity is typically a high probability
upper confidence bound on the mean µa of arm a, thus justifying the name of the procedure,
and is given by results from concentration inequalities.

Parameters : Penalty unctions δa : N× N → R for all a ∈ A
Initialization: Pull each arm of A once

For rounds t+ 1, where t > |A|,

– compute for each arm a ∈ A the quantity

Bt+1,Nt(a)(a) = µ̂a,Nt(a) + δa(t+ 1, Nt(a))

where µ̂a,Nt(a) =
1

Nt(a)

∑

s6t:As=a

Ys ;

– in case of a tie, pick an arm with largest value of µ̂a,Nt(a);

– pull any arm At+1 ∈ argmax
a∈A

Bt+1,Nt(a)(a) .

Figure 1.2: The UCB-strategy.

The penalties δa of the initial algorithm UCB1 by Auer et al. (2002) are based on Hoeffd-
ing’s inequality. A refined analysis have been performed in the same paper with the goal to
get closer to the asymptotic distribution-dependent lower bound obtained by combination of
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the result of Lai and Robbins (1985) together with Pinsker’s inequality. Later in Audibert
et al. (2009), Bernstein type inequalities with empirical variance estimate are used instead
of Hoeffding’s inequality. Finally, in Audibert and Bubeck (2010), another penalty is used
with the goal to match the distribution-free lower bounds.

In order to give more intuition about these algorithms, we now provide a simple proof of

the UCB algorithm, that corresponds to using the (non-optimal) penalty δa(t, s) =
√

3 log(t)
2s

.
The other results follow by some refinements using different penalties and are mentioned
after.

We first need to introduce some notations. We consider the filtration (Ft), where for all
t > 1, the σ–algebra Ft is generated by A1, Y1, . . ., At, Yt. In particular, At+1 and thus all
Nt+1(a) are Ft–measurable. We denote by τa,1 the deterministic round at which a was pulled
for the first time and by τa,2, τa,3, . . . the rounds t > |A| + 1 at which a was then played;
since for all k > 2,

τa,k = min
{
t > |A|+ 1 : Nt(a) = k

}
,

we see that
{
τa,k = t

}
is Ft−1–measurable. Therefore, for each k > 1, the random variable

τa,k is a (predictable) stopping time. Hence, by Chow and Teicher 1988, Section 5.3, the
random variables X̃a,k = Yτa,k , where k = 1, 2, . . . are independent and identically distributed
according to νa.

Then we define the empirical mean of arm a as µ̃a,s =
1

s

s∑

k=1

X̃a,k

Theorem 1.4 (Distribution-dependent regret bounds for UCB) In the stochastic multi-

armed bandit game, the UCB algorithm strategy satisfies the following performance bound.

RT 6
∑

a;∆a>0

[
6

∆a

log(T ) + ∆a
π2

3

]

Proof: Hoeffding’s inequality state that for s i.i.d. random variables Xi ∈ [0, 1] with mean
µ, we have

P
(1
s

s∑

i=1

Xi − µ > ε
)
6 e−2sε2 and P

(1
s

s∑

i=1

Xi − µ 6 −ε
)
6 e−2sε2 .

Thus, by application of this inequality to the random variables {X̃a,k}k=1..s, we deduce that
by definition of the penalization,

P
(
µ̃a,s + δa(t, s) 6 µa

)
6 t−3 and P

(
µ̃a,s − δa(t, s) > µa

)
6 t−3 .

Let us consider at time t the following event for a given arm a and a⋆,
{
µa⋆ − δa⋆(t, Nt−1(a

⋆))
(a)

6 µ̃a⋆,Nt−1(a⋆) and µ̃a,Nt−1(a)

(b)

6 µa + δa(t, Nt−1(a))

}
. (1.3)
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Then if a is a suboptimal arm chosen at time t, then it means thatBt,Nt−1(a)(a) > Bt,Nt−1(a⋆)(a
⋆)

for any optimal arm a⋆. Thus, we deduce from (1.3) that µa + 2δa(t, Nt−1(a)) > µa⋆ , i.e.
Nt−1(a) 6

6 log(t)
∆2

a
.

Let us consider some integer u. We have:

NT (a) 6 u+
T∑

t=u+1

I
{
at = a ∩Nt−1(a) > u

}

6 u+
T∑

t=u+1

I
{
Bt,Nt−1(a)(a) > Bt,Nt−1(a⋆)(a

⋆) ∩Nt−1(a) > u
}
.

Now, {Bt,Nt−1(a)(a) > Bt,Nt−1(a⋆)(a
⋆)} implies that either Nt−1(a) 6

6 log(t)
∆2

a
or (1.3) is false.

Thus, we set u = 6 log(t)
∆2

a
and deduce that either (a) or (b) is false. Since each of this event

happens with probability less than t−3, we deduce that by taking a union bound and the
expectation in the previous expression, we get:

E(NT (a)) 6
6 log(T )

∆2
a

+
T∑

t=u+1

[ t∑

s=u+1

t−3 +
t∑

s=1

t−3
]

6
6 log(T )

∆2
a

+
π2

3
.

�

We now detail the penalty functions δa that corresponds to the algorithm called UCB-α,
UCB-V introduced in Audibert et al. (2009) and MOSS introduced in Audibert and Bubeck
(2010). An upper bound on the pseudo-regret of these algorithms has been derived both
for the distribution-free and distribution dependent case; they are gathered in the next two
theorems. Note that if the MOSS algorithm nicely fills the gap with the distribution-free
asymptotic bound, whereas UCB-α and UCB-V do not, there is still a gap between the
proposed distribution-dependent bounds and the distribution-dependent asymptotic lower
bounds. Also, in the following formulation, it has to know the time horizon T .

Theorem 1.5 (Distribution-dependent regret bounds for UCB strategies) In the stochas-

tic multi-armed bandit game, the UCB algorithm strategies satisfy the following performance

bounds.

Let c1(α) = 1 + 4
log(α/2+1/2)

(α+1
α−1

)2. Then provided α > 1, UCB-α satisfies:

RT 6
∑

a;∆a>0

2α

∆a

log(T ) + ∆ac1(α) .

Let c2(α) = 2 + 12
log(α+1)

(α+1
α−1

)2. Then provided α > 1, UCB-V satisfies:

RT 6
∑

a;∆a>0

8α(
σ2(a)

∆a

+ 2) log(T ) + ∆ac2(α) .
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Upper Confidence Bound (UCB) algorithms

Parameter: α > 0

For the arm a, define the quantity δa(t, 0) = ∞, and for s > 1:

UCB penalty: δa(t, s) =

√
α log(t)

2s

UCB-V penalty: δa(t, s) =

√
2αVs(a) log(t)

s + 3α log t
s

MOSS penalty: δa(t, s) =

√
max(log( T

sA
),0)

s

Figure 1.3: Upper Confidence Bound algorithms

Let ∆ = mina;∆a>0 ∆a. Then MOSS satisfies:

RT 6
23A

∆
log
(
max(

110T∆2

K
, 104)

)
.

Theorem 1.6 (Distribution-free regret bounds for UCB) In the stochastic multi-armed

bandit game, the UCB algorithm strategies satisfy the following performance bounds.

Provided that α > 1, UCB-α satisfies:

RT 6
√
TA(2α log(T ) + c1(α)) .

Provided that α > 1, UCB-V satisfies:

RT 6
√
TA(24α log(T ) + c2(α)) .

Finally, MOSS satisfies:

RT 6 24
√
TA .

Kullback-Leibler Divergence based algorithms. In order to match the distribution-
dependent lower bounds, we reanalyze in Chapter 2 the algorithm introduced by Lai and
Robbins (1985) and later extended by Burnetas and Katehakis (1996) for which only asymp-
totic analysis was provided, and we thus provide a finite-time analysis for this algorithm.

The main idea is to focus on the empirical distribution itself instead of the empirical mean
only, and use Kullback-Leibler divergence to compute an estimate of the distance to the best
distribution.

This algorithm is detailed in Figure 1.4 and makes use of the empirical distribution of the

first s rewards from νa, ν̂a,s =
1

s

s∑

k=1

δX̃a,k
, instead of µ̂a,s.
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Parameters : A non-decreasing function f : N → R

Initialization: Pull each arm of A once

For rounds t+ 1, where t > |A|,

– compute for each arm a ∈ A the quantity

B+
a,t = max

{
q ∈ [0, 1] : Nt(a) Kinf

(
ν̂a,Nt(a), q

)
6 f(t)

}
,

where ν̂a,Nt(a) =
1

Nt(a)

∑

s6t:As=a

δYs ;

– in case of a tie, pick an arm with largest value of µ̂a,Nt(a);

– pull any arm At+1 ∈ argmax
a∈A

B+
a,t .

Figure 1.4: The strategy Kinf .

The upper bound on the regret has been derived in the important case of distributions
with a discrete support with finitely many points (see Chapter 2 for the precise statement).
This result includes the special case of Bernoulli distributions and can also be extended to the
case of one-dimensional exponential families. Note that the bound matches the corresponding
asymptotic lower bound already derived in Burnetas and Katehakis (1996).

Theorem 1.7 (Regret bound for the Kinf-strategy) Assume that ν⋆ is finitely supported

with support denoted by S⋆ and expectation µ⋆ ∈ (0, 1) and that all all distributions νa are

finitely supported. The expected regret of the Kinf-strategy, run with f(t) = log t, satisfies for

any ε > 0

RT 6
∑

a:∆a>0

∆a

[
(1 + ε) log T

Kinf(νa, µ⋆)
+ ca(ε) +

1

ε2
log

(
1

1− µ∗ + ε

) T∑

k=1

(k + 1)|S
⋆| e−kε

2

]
,

where ca(ε) is an explicit constant.

2 Many extensions to the Bandit setting

The simple multi-armed bandit problem has been extended in many ways since its introduc-
tion by Robbins (1952). These extensions may concern different features of the bandit game,
which sometimes involve specific analysis and theory. We now present these features, and
then most of the known extensions to the stochastic multi-armed bandit setting according to
those features.
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For convenience, the general multi-armed bandit game is defined in figure 1.5. Let t refer
to the time and A to the set of actions. We write At ⊂ A the set of available actions at time
t and rt for the reward function provided by the environment at time t. At a high level, the
game consists of choosing a sequence of actions at indexed by the time t in an online way, i.e.
sequentially with time, according to observations received from the environment at each time
step. The goal is to maximize some objective function that depends on the reward functions
rt sequentially defined by the environment.

General multi-armed bandit game

At time t, simultaneously:

• the learner chooses action at ∈ At ⊂ A.

• the environment defines a reward function rt : A → R
+.

then the learner outputs at, sees an information it(rt, at) from the environment,

and receives (but may not see) a reward rt(at).

Figure 1.5: General multi-armed bandit game

Let us first present briefly the different features. We then detail each feature, providing
motivations, algorithms and known results for most of them.

• The power of the environment: it refers to the way the environment is allowed to evolve.
In the standard setting, the environment is considered to be a fix set A of sources of
i.i.d. random variables. Now some natural extensions to the standard setting consider
the case where the sources of i.i.d random variables are no longer fixed but may evolve
with time. The way the source are allowed to evolve leads to different bandit settings
(see the paragraphs about Adversarial bandits, Oblivious bandits, Restless bandits and
Cooperative bandits below).

• The information received: it refers to the information received by the learner after
playing arm at. In the standard setting, this information is rt(at) and is thus equaled
to the received reward. In the case when we are only allowed to passively received
information, natural extensions to this so-called Partial information setting include the
settings of Full information, Side information and Trembling hand information. Now
if we are able to actively grasp the information we want, other settings include the
Label-efficient game, Budgeted learning and Slates bandit. Note again that this is not
an assumption on the reward given to the learner, but only the information received
about the reward function rt.

• The topological structure of actions and rewards: it refers to the structure of the arms
and of reward functions. In the standard setting, we consider a finite set of arms, and
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uncorrelated reward functions. However in a lot of practical applications, the reward
received after playing a specific arm gives some information on the value of the reward
function on some other arms. This is particularly useful in order to deal with a large
number of arms, including continuous set of arms, and different assumptions lead to
very different settings. See paragraphs on Multi-armed bandit, Many-armed bandit,
Convex bandit, Linear bandit, Lipschitz bandit and Topological bandit below.

• The availability of actions: it refers to the set of possible actions the learner is allowed
to select an action from. In the standard setting, all actions are available at each
time steps, thus we call this an awake bandit setting, however in many applications,
it appears that not all actions are available at each time step but only a subset At of
A. This leads to important extensions on bandits. See Sleeping bandits, and Mortal
bandits.

• The regret definition: it refers to the definition of the measure of performance, i.e.
the regret. In the standard setting, we simply consider the cumulative pseudo-regret
with respect to best constant strategy in hindsight. Many other assumptions may
be considered, see paragraphs about External and Internal regret, Switching regret,
Constrained regret, Simple, Maximum and Discounted regret below.

2.1 Power of the environment

If we consider the bandit problem from a game theoretical perspective, the hypothesis that
the environment consists of A different fixed sources of i.i.d. random variables may appear as
an arbitrary restriction on the power of the environment, that is seldom justified in practical
situations such as games where the environment is a learner itself. This is the reason why
people have considered different assumptions, and considered so-called non-stochastic ban-
dits. However, allowing for a more powerful environment will generally make the standard
notion of regret less justified, to the point that it may be preferable to consider the prob-
lem from a Reinforcement Learning (RL) perspective. We leave this philosophical point for
Section 4 where we highlight some intrinsic limitations to the bandit approach, and we here
focus on some variations around the standard stochastic bandit problem.

Adversarial bandits. The use of the word “adversarial” in the literature on bandit theory
is a bit fuzzy. People generally refer to adversarial bandit to any case of bandit problem in the
case when the rewards of the arms do not come from a fix distribution, but from a distribution
evolving with time, and possibly adaptive to the learner. This means that in full generality
the opponent is allowed to do virtually anything. Now in order to prevent confusion, we will
talk of oblivious bandit when the opponent is not adaptive and of adversarial bandit when
it is explicitly adaptive.

In order to prevent the opponent from learning our strategy, another class of algorithms
has been introduced that differs from the deterministic UCB-based algorithms. Indeed being
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deterministic against an adaptive opponent can lead to arbitrary bad performance. These
algorithms are random algorithms in the sense that they define at each time step a probability
distribution over the arms, then sample an arm according to this distribution and pull it.

Many definitions of regret can be considered for this setting. The most direct extension
of the definition of the regret from the stochastic bandit setting is the cumulative regret with
respect to the best constant strategy in hindsight, and is called the External regret.

Definition 1.2 (External regret) The external regret for the adversarial bandit setting is

defined by

RT = max
a∈A

E

( T∑

t=1

rt(a)
)
− E

( T∑

t=1

rt(at)
)
,

where the expectation is taken w.r.t. the possible randomization of the algorithm.

Note that in this definition, rt(a) is a shorthand for r(h<t, a), where h<t is the history of
actions and rewards previously played up to time t. Thus we do not compare the cumulative
reward obtained by the learner to the cumulative reward that would have been obtained by
a player playing constantly the same action (and thus producing a different history h̃<t). On
the other hand, we keep the same history ht in both terms of the difference, which is the
meaning of the words “in hindsight”.

The Exp3 algorithm (see Figure 1.6 in Section 3) introduced by Auer et al. (1995) manages
to guarantee regret bounds of order O(

√
AT log(A)) with respect to the best constant action

in hindsight.
Note that it makes sense to define a regret reflecting the changes of the law of the rewards

in the adversarial case. For instance, one may want to compete against the best sequence of
actions instead of the best constant one. However, in this general case, it may be impossible
(see Ryabko and Hutter (2008)) to learn the best sequence of actions to play. Now under
certain conditions, we show in Chapter 4 how it is possible to achieve low regret against the
best sequence of actions in hindsight.

Oblivious bandits. The setting of oblivious bandits considers the case when the rewards
come from a distribution possibly evolving with time, but independently on the learner.
Equivalently, one may consider that the rewards rt(a) for all time-step t and actions a are
defined beforehand, i.e. before the beginning of the game. This means that the opponent is
allowed to do anything but adapt to the learner.

In such a setting, the previous definition of (external) regret for the adversarial setting
has clear interpretation, which gives an important motivation. Moreover, there are practical
cases for which it is natural to consider that the environment is not adapting to our strategy,
like in the stock market, provided that we trade sufficiently small amounts of money.

The Exp3 algorithm of Auer et al. (1995) also applies to this setting and give an upper
bound of order O(

√
AT log(A)). The main difference with the adversarial case is when
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we want to consider a regret in high probability instead of a regret in expectation. The
Exp3 algorithm has to be modified to guarantee high probability bounds in the adversarial
case, by mixing the proposed probability distribution with a uniform distribution in order to
guarantee sufficient exploration, while its genuine version is suitable for the oblivious case.

Restless bandits. The restless bandit is an attempt to compete with the changes in the
law of the rewards in the oblivious case. Indeed one may consider that the probability laws
on each arm evolves according to some internal (non observed) state structure. See Guha
et al. (2007b) or Guha et al. (2007a) for further details.

One practical motivation for this setting is when we want to transmit some information
on a canal, and that it is shared with other users. This has been studied extensively in Guha
et al. (2007a) or Filippi (2010) for instance.

The regret that people consider for this setting is a strong notion. Actually, the com-
parison class considers the best sequence of actions and not just the best constant strategy,
which is far more challenging. In Filippi (2010), it is proved that one may achieve a regret
of order O

(
(log T )1/3T 2/3

)
.

Cooperative bandits. Finally, an interesting feature that receives now increasing atten-
tion is that the opponent may not always be a foe. This appears for instance in so-called
cooperative games, where the opponent and the player try to agree on some strategy. In such
a setting, the opponent may try to help the learner get the minimal regret, but the opponent
may not be fully cooperative due for instance to incomplete or noisy information received
about the learner or the game. Thus it has a certain (unknown) degree of friendliness, and
we want to be adaptive to this degree.

A practical motivation for this setting appears for instance in Brain Computer Interfaces
(BCI), where the learner is an algorithm that observes the brain activity of a human (oppo-
nent). The human wants to cooperate with the learner in order to define meaningful symbols
that he will use in order to pilot tasks using his mind only. Thus in this problem, the learner
has to consider the environment as friendly, but since the human has no precise knowledge of
the algorithm, he/she thus makes mistakes, even if he/she tries to be as friendly as possible.

This setting shares some links with the teaching theory Zilles et al. (2011) if we consider
the viewpoint of the environment (teacher), and also with what is called learning with priv-
ileged information Pechyony et al. (2010), Vapnik and Vashist (2009) from the point of view
of the learner. However, to the best of our knowledge, the results for this setting are quite
limited.

2.2 Information received

So far, we have considered that the information given to the learner at time t is the reward
of the selected action only, i.e. rt(at); this corresponds to the so-called partial information
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setting. We present now other settings for which it(rt, at), the information received by the
learner at time t after playing action at, may be different from rt(at).

2.2.1 Passive information retrieval

In the case of passive information retrieval, i.e. when the learner does not choose the infor-
mation received, we can consider the following settings.

Full Information. The full information setting corresponds to the case when the infor-
mation given to the learner at time t is the reward of all actions, i.e. rt(a) for all a ∈ A, and
not only the reward of the action chosen.

In the case of stochastic multi-armed bandit with finite arms with full information, there
is no information retrieval challenge, thus for that reason the full information setting is
generally considered in an adversarial setting, and/or when the set of arms is large, like for
instance a convex subset of Rd.

Since we receive more information than in the case of the partial information setting,
it is not surprising that the upper and lower bounds on the regret for the partial and full
information setting significantly differ. Indeed in the case of the adversarial multi-armed
bandit setting with full information, it can be shown that the lower bound on the cumulative
pseudo-regret is of order O(

√
T logA) (see Cesa-Bianchi et al. (1993)), instead of O(

√
TA)

in the Partial information setting (see Auer et al. (1995)); for that reason, the factor
√

A
logA

is called the price for information in Dani et al. (2008a).
The weighted majority algorithm, introduced by Littlestone and Warmuth (1989), is the

main tool to get a matching upper bound in the adversarial setting, and is better known as
the Hedge algorithm, which is a variant introduced in Auer et al. (1995).

Side information. The side information setting (aka Contextual bandits) corresponds to
the case when the information given at each round is the reward of the selected action at
together with some other information xt ∈ X . We compare the forecaster to the best fixed
hypothesis h : X → A in a class H. See for instance chun Wang et al. (2005), Lu et al. (2010)
or Lazaric and Munos (2009) for further details.

The motivation comes from the fact that in many practical problems, we have additional
information on the information received. For instance, in the web-advertisement problem,
where the goal is to select one add at ∈ A to display on a web-page, we know for instance
what other information is displayed on the web-page, or some features about the human
being surfing on this page thanks to cookies, or navigation history; one naturally wants to
use this knowledge in order to adapt ones strategy to the human being.

Classical measures of the complexity include the Vapnik-Chervonenkis (VC) dimension
and the Littlestone dimension of the class H. In (Lazaric and Munos, 2009, p.9), there
is a nice summary of the known results on the performance (regret) for this setting when
considering different assumptions.
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Trembling hand information. This setting corresponds to the case when the information
given at each round is not the reward of the action at proposed by the learner, but the reward
of a different action that is chosen by a third player. See Maillard and Munos (2011) and
Chapter 4. In game theory, this is called a trembling hand effect.

A theoretical motivation for this apparently strange setting comes from the problem of
learning using learner advices, instead of experts, for which a meta algorithm considers many
learners in a partial information setting: at time t, each learner l proposes an action alt, but
after seeing the propositions the meta algorithm proposes a′t instead, and get the reward
rt(a

′
t). Then the meta algorithm gives this information to each of the subordinate learners

that are thus facing a bandit problem in the trembling hand information setting.
The corresponding notion of regret measures the performance of the algorithm that pro-

poses at time t the distribution pt but in the game where the action at ∼ qt is played instead.
Without any further assumption on the learners, the performance depends on the ratios be-
tween the probability pt(a

′
t) of choosing arm a′t defined by the learner, and the probability

qt(a
′
t) of choosing arm a′t defined by the meta player. See Chapter 4 for further details as

well as regret bounds.

2.2.2 Active information retrieval

In the case of active information retrieval, i.e. when we allow the learner to actively grasp
information, we can consider at least the three following settings.

Label-efficient game. In this game, we consider that asking to see information is costly,
which is motivated by practical implementations, and thus at each round, the forecaster
chooses whether to see the reward(s) or not. We refer for instance to Cesa-Bianchi et al.
(2005) or Allenberg et al. (2006) for important works in this domain.

In such a setting, we compare the cumulative reward of the algorithm to the cumulative

reward of the best of A experts. The regret is of order O(
√

TA log(A)
m

), where m is the average
number of experts whose reward is revealed per round. Note that a value of m equal to A
(resp. 1) corresponds to the full information (resp. partial information) setting. In the more
general case when the learner can not choose to see the reward(s) more than m times over

the T rounds i.e m =
m

T
, the label-efficient regret is typically bounded by O(T

√
A log(A)

m
).

Budgeted learning. A closely related problem is called budgeted learning. In this setting,
it is assumed that each information revealed is costly, with cost ct(a) at time t for arm a,
and that additionally we have a total budget B that is limited.

One motivation comes from clinical trials, where each arm corresponds to one treatment,
different treatments have different cost and we only have a limited budget to treat a patient.
Thus, since some treatments may be very expensive, we do not want to use them too much
unless they are very efficient.
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However, it seems that there is little work on the problem for general costs functions, and
most of the works only consider the case when ct(a) = 1, see for instance Guha and Munagala
(2007), while it would seem natural to consider different costs for different actions, or the
more general case when ct is only revealed at time t but otherwise arbitrary.

Slates bandit. In this setting, the learner is allowed to choose not only one but p > 1

arm per round. At each round the learner selects the set of p arms for which information is
asked. This assumption modifies a lot the original bandit problem. It has been studied in
Kale et al. (2010) and is a special case of the more general online linear optimization with
bandit feedback problem (see Awerbuch and Kleinberg (2008) or Bartlett et al. (2008) for
instance).

2.3 Topological structure

The information that the learner can infer about the all set of rewards {rt(a)}a,t depends
not only on the information effectively received by the learner, but also on what we call the
topological structure of the problem, that basically states how far is some rs(a) from rt(b) for
any s, t, a, b. Such assumptions on the problem may drastically change the achievable regret
bounds.

Multi-armed bandit. The multi-armed bandit problem corresponds to the case when the
set of arms A is finite, as considered from the beginning of this chapter. This situation
naturally appears in a lot of problems, when we consider a production chain for instance. In
this setting, there is generally no a priori relation between the rewards of arm a and rewards
of arm b, except if we assume some correlation structure.

The multi-armed bandit problem with dependent arms has been addressed for instance
in Pandey et al. (2007). They give a theoretical optimal policy and then provide a feasible
algorithm that selects clusters of correlated arm before choosing one arm in this cluster.

Many-armed bandit. In this setting, we consider that the number or arms A is greater
than the possible number of experiments and possibly infinite.

Typical applications for this setting include for instance labor markets, when a worker
has many opportunities for jobs, or path planning in which the learner has to decide between
a route that has proved to be efficient in the past (exploitation), or a known route that has
not been explored many times (sampling), or a new route that has never been tried before
(discovery).

A classical assumption in this context is that the distributions of rewards belong to a
known parametric class, see Berry et al. (1997) and Poland (2008), and that the forecaster
has a prior on the parameters of the arms. However in Wang et al. (2008), the authors make
the weaker assumption that each arm has a probability εβ of being ε-optimal, and then derive
tight bounds depending on β.
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Convex bandits. In this setting, we consider that the set of actions A is a (compact)
convex subset of Rd, and that the reward functions given by the opponent are convex.

In online convex optimization rt is assumed to be a convex (Zinkevich (2003), Narayanan
and Rakhlin (2010)) or σ-strongly convex (Hazan et al. (2006)) function of a. The resulting
upper bounds are of order C

√
T and C2σ−1 ln(T ), where C is a bound on the gradient of

the functions, which implicitly depends on the space dimension. Other extensions have been
considered in Bartlett et al. (2007), Shalev-Shwartz (2007), Flaxman et al. (2005) and a
minimax lower bound analysis in the full information case is provided in Abernethy et al.
(2008a). These results hold in a bandit information setting where either the value or the
gradient of the function is revealed.

Linear bandits. In this setting, we consider the case when the functions rt are linear,i.e.
rt(a) = Lt · at for some Lt ∈ R

d. This setting has recently received increasing interest due
to the link with practical applications, see e.g. Dani et al. (2008a), Abernethy et al. (2008b),
Cesa-Bianchi and Lugosi (2009), Kakade et al. (2008) in the adversarial case, Auer (2003),
Dani et al. (2008b) in the stochastic case, and also Auer (2003), Awerbuch and Kleinberg
(2008), Abernethy et al. (2008b), Dani et al. (2008b), Rusmevichientong and Tsitsiklis (2010).

The resulting upper and lower bounds on the regret are, up to logarithmic factors, of order√
dT in the case of full information, d3/2

√
T in the case of bandit information Abernethy et al.

(2008b), and d
√
T in the good cases, seeDani et al. (2008a) for details.

Lipschitz bandits. In this setting, we consider the weaker assumption that the reward
function are Lipschitz functions with constant λ. This has been considered in Kleinberg
et al. (2008), Bubeck et al. (2008) for the stochastic bandit setting, and in Maillard and
Munos (2010b) for the adversarial setting. See also Chapter 3.

One motivation for this setting is that the assumption that the reward functions are
convex is often too strong in practice. The weaker Lipschitz assumption enables to apply the
bandit setting to non-convex problems, like for instance online regression with non convex
regression functions (e.g. feed-forward neuron-networks).

The regret bound in the partial information setting is Õ(λ
d

d+2T
d+1
d+2 ) where d is the pseudo-

dimension of problem, defined for instance in Bubeck et al. (2008). In the full information
adversarial bandit setting one can derive a bound of order

√
dT ln(λdT ) that is achieved

by some variant of an exponentially weighted forecaster, see details in Maillard and Munos
(2010b) and chapter 3.

Metric bandits. Finally in the stochastic setting, we can even relax the Lipschitz assump-
tion. In Bubeck et al. (2008), it is only assumed that the set of arms A is a metric space
and that the mean-payoff function that maps each arm to the average payoff one receives
by pulling this arm is weakly Lipschitz around its maximum (see Bubeck et al. (2008) for
precise definition). The regret bounds in this case scales with the near-optimality dimension
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d′ of the mean-payoff function as Õ(T
d′+1
d′+2 ). Note that d′ is typically much smaller than the

ambient dimension d.

2.4 Availability of actions

So far, we have assumed that all actions a ∈ A are available at each time step. In many
practical situations it appears that only a subset At ⊂ A is available at time t. This may
happen for example in the case when the arms correspond to experts and that one expert is
not available at some point. This modifies the standard definition of the regret as well as the
standard algorithms and analysis.

Sleeping bandits. The sleeping bandit setting considers the case when an expert a is awake
from time to time, say when t ∈ I(a) ⊂ {1, . . . , T}. See Kleinberg et al. (2008) and Kanade
et al. (2009). Three main situations are considered, Deterministic availability, Stochastic
availability and Adversarial availability, according to whether I(a) is defined deterministically,
chosen according to some distribution, or depending on the learner.

In Kanade et al. (2009), the authors propose a (tractable) algorithm that achieve a regret
bounded by O((TA)4/5 log(T )) in the case of stochastic availability.

One may note that this problem can be recast in the setting of classical (all awake) bandits
by considering that one arm in the modified problem is one permutation of the arms of the
initial problem, which leads to a standard bandit problem with A! all awake many arms.
Thus there exist algorithms that achieve

√
T log(A!) regret bounds, but unfortunately, due

to the transformation considered, the final algorithm is not tractable. Thus the major issue
in this setting is to address the tractability problem. Actually, it is still an open question to
know if one can design tractable algorithms with performance of order Õ(

√
T ).

Mortal bandits. A special case of sleeping bandits is when we assume that each expert
can only be awake for a total amount of time that is bounded, and then dies, see Chakrabarti
et al. (2008). This case is for instance motivated by web-advertisement, where the goal is to
display one add amongst many possible with the goal to have the displayed add clicked and
where in practice, a publicist will sign a contract selling some amount of d(a) displays for
the add a. Thus after the add a has been displayed d(a)-many times, it can not be displayed
more, which motivates this setting. Due to the mortality of arms, deciding when to display
an add or not becomes a quite complicated task.

2.5 Other regret definitions

Finally the definition of the regret may also vary.

External and Internal regret. The notion of internal regret (see Foster and Vohra
(1996)) compares the loss of an online algorithm to the loss of a modified algorithm that
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consistently replaces one action by another, and has been also considered in many works
Hart and Mas-Colell (2000), Stoltz (2005), Cesa-Bianchi and Lugosi (2003), Foster and Vohra
(1999). In Blum and Mansour (2005), the authors propose a way to convert any external
regret minimization algorithm into an algorithm minimizing an extended notion of inter-
nal regret, using the so-called modifications rules that are functions h, a → b, where h is a
possible history, and a and b are actions.

Best switching strategy regret. In Auer et al. (2003), the authors extend the class
of comparison strategies to piecewise constant strategies with at most S switches. The
corresponding Exp3S (aka ShiftBand) algorithm achieves a regret of order

√
TSA log(T 3A),

provided that T is large enough.

Best constrained strategy regret. In Maillard and Munos (2011), we consider general
classes of strategies that are defined as mappings from equivalence classes of histories to
actions, based on some equivalence relation ϕ (see Chapter 4). With this notion, we can
define a corresponding regret with respect to the best such strategy. For instance, using the
trivial equivalence relation such that all histories belong to the same class, we recover the
standard notion of regret, but such a definition captures more expressive notions of regret,
from classical regret to the regret w.r.t. the best (possibly switching at each time step)
strategy in hindsight.

A lower bound on the regret is of order
√
TAC where C is the complexity of the opponent,

defined as the number of classes of equivalence of histories he uses.
We develop in Chapter 4 efficient algorithms that match this lower bound in the case when

the model ϕ⋆ of the opponent is known and with bound of order (TA)2/3C1/3 log(|Φ|)1/2 in
the case it is unknown and we use a finite set Φ of possible models.

Simple, Maximum and Discounted regret. In some problems, we may not be inter-
ested in the cumulative regret, but in some other notion. For instance, in the setting of online
learning, we only care about the final proposed action aT at time T , whatever the actions pre-
viously taken. The corresponding notion of regret measures the performance E(r(aT )−r(a⋆))
at final time T , as opposed to the cumulative sum over all time steps, and is also known as
the simple regret, see Bubeck et al. (2009).

More generally, one may want to consider a discounted cumulative regret, with discount
factor γ ∈ [0, 1], where the cumulative performance is now

T∑

t=1

γT−trt(at),

which enables to both recover the cumulative regret (with γ = 1) and the simple regret
(with γ = 0). One may also want to consider the performance criterion to be the maximal
instantaneous regret along all time steps, i.e. max16t6T E(r(at)− r(a⋆)).
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Beyond regret. Finally, let us mention that in Rakhlin et al. (2010), the authors study
a very general notion of regret that generalizes all previously defined notions. Their goal
is to study the notion of regret from a minimax point of view and not from an algorithmic
point of view. They define a nice notion of sequential complexity and show how a control
of this complexity may lead to a tight control on the corresponding notion of regret. They
derive minimax optimal bounds accordingly, although these derivations, as pointed out in
the article, do not lead to numerically efficient algorithms. Despite this numerical problem,
I believe this opens a very nice area of research for the future of bandit theory.

Conclusion. The previous classification of the bandit literature is already big, but unfor-
tunately can not handle the huge variety of problem variations around the standard bandit
problem - there are actually several thousands publications about bandits (!). For instance, I
did not talk about Bayesian approaches to the bandit problem, with probabilistic procedures
such that the now famous Gittins’ indices, see Whittle (1980), Gittins et al. (1989).

3 Exponentially-weighted decision-makers

In this section, we now focus on a class of algorithms known as exponentially-weighted
decision-makers (aka exponentially-weighted forecasters). These algorithms was initially de-
signed to handle the setting of adversarial bandits and thus are robust to an arbitrary bad
opponent in some sense. We here explain this phenomenon first in the partial information
setting, and then provide exact computation of the performance bound in the case of full
information. Finally we show that one can also design a similar algorithm that achieves a
good performance within the setting of stochastic bandits, which was not expected according
to popular belief.

First of all, we introduce the notion of exponential families that plays an important role
in the interpretation of exponentially-weighted forecasters.

3.1 Exponential families

In this section, we write P(A) the set of probability distributions on the set A.

Definition 1.3 (Exponential families) The exponential family generated by the set of

functions (Fk)k6K and the reference measure ν0 on the set A is

E((Fk)k6K ; ν0) =
{
νθ ∈ P(A) ; νθ(a) = exp

( K∑

k=1

θkFk(a)− z(θ)
)
, θ ∈ R

K

}
,

where z(θ)
def
= log

∫

A
exp(

K∑

k=1

θkFk(a))ν0(da) is the normalization function of the exponential

family. The vector θ is called the vector of canonical parameters.
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An interesting property of exponential families is the following straightforward identity:

K(νθ1 , νθ2) = 〈θ1 − θ2,Ea∼νθ1 (F (a))〉 − z(θ1) + z(θ2) , (1.4)

where F (a) ∈ R
K is the vector with kth component Fk(a). In particular, the vector

Ea∼νθ1 (F (a)) is called the vector of dual (or expectation) parameters. It is equal to the
vector z′(θ1).

Let us remind also that in the general case, i.e. not only for the special case of exponential
families, the Kullback-Leibler divergence can always be written in its variational form as

K(ν1, ν2) = sup
{∫ 1

0

ϕdν1 − log

∫
eϕdν2 ; ϕ ∈ Cb([0, 1])

}
,

where Cb([0, 1]) is the set of continuous and bounded functions on [0, 1].

3.2 Adversarial rewards with partial information

In the adversarial setting with partial information, at each round t the learner pulls one arm
at and only gets to see the reward of the chosen arm. The following algorithm described in
Figure 1.6 enables to guarantee high performance bounds.

Parameters: Increasing sequence {ηt}16t6T For all t = 1..T ,

• Define the losses

l̃s(a)
def
=

1− rs(a)

ps(a)
I[as = a] .

• Define the distribution

pt,ηt(a)
def
=

exp(−ηt
∑t−1

s=1 l̃s(a))∑
b exp(−ηt

∑t−1
s=1 l̃s(b))

.

• Select the arm at ∼ pt,ηt .

Figure 1.6: The Exp3 algorithm

An interesting point of view is to consider that the probability distributions pt,ηt defined
at each round t by the Exp3 algorithm belong to the same (random) exponential family
E((l̃s)16s6T , ν0); we introduce the parameter

θt = θt(ηt)
def
= (−ηt, . . . ,−ηt, 0, . . . , 0) ∈ R

T ,
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with t− 1 non zero values, and we get the rewriting

pt,ηt(a) = pθt(a) = exp
( T∑

s=1

θtl̃s(a)− z(θt))
)
,

where z(θ) = log(
∑

a∈A
exp

( T∑

s=1

θl̃s(a)
)
) is the normalization function of the exponential family.

Note that since θ1 = 0 ∈ R
T , pθ1 is the uniform distribution; we rewrite it U for convenience.

Now by direct application of equation (1.4) we have the property that:

1

ηt
K(pθ1 , pθt) + Ea∼U(

t−1∑

s=1

l̃s(a)) =
z(0)− z(θt)

−ηt
,

which justifies the introduction of the function Φt(η)
def
= z(0)−z(θt(η))

−η .

Before deriving the upper bound on the regret of the Exp3 algorithm, we need the follow-
ing second order Taylor approximation, which is the the key stone of the proof of the next
theorem, see also insights from Section 2 of chapter 5 about PAC-analysis.

Lemma 1.1 Let X be a positive random variable, and MX(−η) = EXe
−ηX be its moment

generating function. Then for all η > 0:

log(MX(−η)) 6 −ηE(X) +
η2

2
E(X2) .

Proof: This directly follows by definition of MX , together with the fact that for all x > 0,
then e−x 6 1− x+ x2/2, and log(x) 6 x− 1. �

Theorem 1.8 (Regret bound for Exp3 ) Provided that for all t, ηt > ηt+1, then the fol-

lowing holds true:

RT 6
log(A)

ηT
+
A

2

T∑

t=1

ηt.

Proof: The proof is divided in five steps.
Step 1. Rewrite the regret term to make appear the decision probability pt. Since

Ea∼pt,ηt l̃t(a) = 1− rt(at) and Eat∼pt,ηt l̃t(a) = 1− rt(a), we deduce that for all a ∈ A:

T∑

t=1

rt(a)− rt(at) =
T∑

t=1

Ea∼pt,ηt l̃t(a)−
T∑

t=1

Eat∼pt,ηt l̃t(a) .

Step 2. Since we are interested in the random variable X = l̃t(a), where a is distributed
according to pt,ηt , conditionally on the other random variables, we introduce M(η; l̃t) the
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moment-generating function of X, i.e. M(η; l̃t) = EX(e
ηX) = Ea∼pt,ηt (e

ηl̃t(a)). Since X is a
positive random variable, Lemma 1.1 applies; we deduce that

Ea∼pt,ηt (l̃t(a)) 6 − 1

ηt
log(M(−ηt; l̃t)) +

ηt
2
Ea∼pt,ηt (l̃t(a)

2) .

Step 3. In order to compute the term log(M(−ηt; l̃t)), we use the definition of the
probability distribution pt,ηt in terms of exponential family; we have

log(M(−ηt; l̃t)) = log

(∑
a∈A e

−∑t
s=1 ηt l̃s(a)

∑
a∈A e

−∑t−1
s=1 ηt l̃s(a)

)
= z(θt(ηt))− z(θt(ηt−1)) .

Thus, by definition of the function Φt, we deduce that:

T∑

t=1

Ea∼pt,ηt (l̃t(a)) 6
T∑

t=1

Φt−1(ηt)− Φt(ηt) +
T∑

t=1

ηt
2
Ea∼pt,ηt (l̃t(a)

2) . (1.5)

Step 4. We bound each term.
First, since the reward function is bounded by 1 we have:

Ea∼pt,ηt (l̃t(a)
2) 6

1

pt(at)
.

Then, since Φ0(η1) = 0, we can rewrite the first sum on the left hand of equation (1.5) as

T∑

t=1

Φt−1(ηt)− Φt(ηt) = −ΦT (ηT ) +
T−1∑

t=1

Φt(ηt+1)− Φt(ηt) .

Now using the fact that the sum of positive terms is bigger than any of its term, −ΦT (ηT )

is bounded for all a ∈ A by:

−ΦT (ηT ) =
log(A)

ηT
− 1

ηT
log
(∑

b

exp(−
T∑

t=1

ηT l̃t(b))
)

6
log(A)

ηT
+

T∑

t=1

l̃t(a) .

Now in order to take care of the remaining term, we look at Φt(ηt+1) − Φt(ηt). Since
the sequence (ηt)t is by assumption decreasing with t, it suffices to show that for all t, the
function Φt is non decreasing ; by definition of Φt and then by application of equation (1.4)
we have

Φ′
t(η) =

1

η2
[ 〈z′(θt(η), θ′t(η)〉 η + z(0)− z(θt(η)]

=
1

η2
[−Ea∼pt,η

( t−1∑

s=1

l̃s(a)
)
η + z(0)− z(θt(η))]

=
1

η2
K(pt,η, U) > 0 .
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Step 5. We conclude by taking the expectation over all the remaining random variables,
noticing that E( 1

pt(at)
) = A ; we get:

RT = E(
T∑

t=1

Ea∼pt(l̃t(a))−
T∑

t=1

Eat∼pt(l̃t(a))) 6
log(A)

ηT
+
A

2

T∑

t=1

ηt .

�

Of course there are many extensions to this simple algorithm and analysis. For instance
one may get regret bounds not only in expectation but also in high probability, see the
algorithm Exp3.P by Auer et al. (2003), or may also want to replace Hoeffding’s Lemma
with the following Bernstein version,

log(MX(−η)) 6 (e−η − 1)E(X) ,

and get the corresponding regret bound that maybe useful in the case when one the optimal
arm has rewards very closed to 1. Following Peter Bartlett, we state it here for the simple
case when ηt = η for all t:

RT 6
log(A)

1− e−η
+ (

η

1− e−η
− 1)(T −max

a∈A

T∑

t=1

rt(a)) .

3.3 Adversarial rewards with full information

In the adversarial setting with full information, we now assume that there is a set of (un-
known) reward functions (rt)16t6T defined before the game. At the end of each round t, we
observe the full function rt. The following Hedge algorithm enables to achieve high perfor-
mance bounds in the worst case scenario. Note that here the set A does not need to be finite.
In the case A is finite, the reference measure ν0 is simply the counting measure, while in the
general case it is chosen so that ν0(A) < ∞. However in the later case, the following algo-
rithm is only theoretical for it may not be possible to sample exactly from the distributions
proposed pt. This is discussed for instance in Narayanan and Rakhlin (2010) and in Maillard
and Munos (2010b).

A regret analysis similar to the partial information setting can be done for this algorithm,
and using standard tools from convex analysis, we can extend both algorithm and analysis
to provide very powerful results for online prediction that we do not report here (see for
instance Bartlett et al. (2007), Stoltz (2005)). Note, however, that the optimal value for the
parameter η = ηt is still an opened question, as explained for instance in chapter 3 of Stoltz
(2011), where it is shown that a data-dependent value for η exhibits much better behavior in
practice than the standard data-independent optimal value (yet with no theoretical analysis).

The following theorem shows another nice property of this algorithm. and was mentioned
in Narayanan and Rakhlin (2010). Here, we derive this result using exponential families.
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Parameter: η > 0, reference measure ν0
For all t = 1..T ,

• Define the distribution

pt(a) =
exp(−η

∑t−1
s=1 rs(a))∫

A exp(−η
∑t−1

s=1 rs(b))ν0(db)
.

• Select the arm at ∼ pt,η.

Figure 1.7: The Hedge algorithm

Theorem 1.9 (Full information performance bound for Hedge) Let A be a random

variable with distribution q, and consider the algorithm Hedge. Then we have the following

equality,

E[
T∑

t=1

rt(at)−
T∑

t=1

rt(A)] = η−1(K(q, p1)−K(q, pT+1)) + η−1

T∑

t=1

K(pt, pt+1).

Proof: We write pt = pθt(η) and thus see pt as a member of the exponential family generated
by (rt)t6T , with parameter

θt(η) = (−η, . . . ,−η, 0, . . . , 0) ∈ R
T .

By direct application of equation (1.4), we have that

K(pθt(η), pθt+1(η)) = ηEa∼pθt(η)(rt(a))− z(θt(η)) + z(θt+1(η)) ,

thus we deduce that

T∑

t=1

Ea∼pθt(η)(rt(a)) =
1

η

T∑

t=1

K(pθt(η), pθt+1(η)) +
1

η
[z(θ1(η))− z(θT+1(η))] .

Now by definition of the normalization function z, we have for all a ∈ A,

z(θ1(η))− z(θT+1(η)) = log

(
pθT+1(η)(a)

pθ1(η)(a)

)
+ η

T∑

s=1

rs(a) .

Thus, by taking the expectation over q and reorganizing the terms, we get:

Ea∼q
( T∑

s=1

rs(a)
)
=

1

η
[K(q, pθ1(η))−K(q, pθT+1(η))] +

1

η
[z(θ1(η))− z(θT+1(η))] ,



3. Exponentially-weighted decision-makers 31

which concludes the proof. �

This Theorem is interesting especially since it provides an equality and not only an in-
equality on the performance of the algorithm, also due to presence of the target distribution
q. For instance, the external regret corresponds to the case when q is a Dirac distribution. In
a more general case, this result is the basis used in Narayanan and Rakhlin (2010) in order to
prove a regret bound for this algorithm when the reward functions are assumed to be linear.
See chapter 3 for an analysis of this algorithm in the case when the reward functions are
assumed to be only Lipschitz.

3.4 Stochastic rewards with partial information

The exponentially weighted algorithms have been introduced to handle the adversarial bandit
setting, which fundamentally differs from the stochastic bandit setting, and thus it is generally
thought that they are not suitable for the stochastic setting. However, it appears that,
interestingly enough, one can actually define such an algorithm using exponential weights to
get high performance bounds in the stochastic setting as well. This is what we show in the
following analysis, where we introduce the algorithm that we call the exponentially weighted
stochastic algorithm, or simply EwS.

For all t = 1..T ,

• Define the empirical gaps

∆̂a,t
def
= max

a′∈A
µ̂a′,Nt(a′) − µ̂a,Nt(a) .

• Define the distribution

pt(a)
def
=

exp(−2Nt−1(a)∆̂
2
a,t−1)∑

b∈A exp(−2Nt−1(b)∆̂2
b,t−1)

.

• Select the arm at ∼ pt.

Figure 1.8: The exponentially weighted stochastic (EwS) algorithm

Theorem 1.10 (Regret bound for EwS) For all ca > 0, the expected number of times the

Exponentially-weighted stochastic algorithm (EwS) pulls arm a satisfies

E
[
NT (a)

]
6

(1 + ca)
2 log(T )

2∆2
a

+
1

|A| + 1 + C(ca) ,
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where

C(ca) 6
4(1 + ca)

2

c2a∆
2
a

[
1 +

32|A|(1 + ca)
2

c2a∆
2
a

]
.

Note that the constant C(ca) in the above Theorem is not optimized and a more careful
analysis may lead to better constants. The interesting part is the leading term that depends
on log(T ). Indeed, Pinsker’s inequality entails that the lower bound K(νa, ν

⋆) > 2∆2
a is an

optimal (first-order) approximation and thus the asymptotic behavior
log(T )

2∆2
a

is the right

dependency. Note also that by optimizing over ca, we get exactly the leading term log(T )
2∆2

a

(with constant 1) and a second order term O(log(T )2/3).
Proof: Step 1. First, using the definition of the initialization step, for all u > 0 we have

E
[
NT (a)

]
6 u+ E

( T∑

t=1

I{
At=a and Nt−1(a)>u

}
)

6 u+
1

|A| + E

(T−1∑

t=1

I{
At+1=a and Nt(a)>u

}
)
.

Then, we also have the following inclusion of events
{
µ⋆ − ε 6 max

a∈A
µ̂a,Nt(a)

}
∩
{
∆̂a,t 6

∆a

1 + c

}
⊆
{
µ̂a,Nt(a) − µa >

c∆a

1 + c
− ε
}
.

Indeed, on the first event, we have that
∆a

1 + c
> ∆a − ε+ µa − µ̂a,Nt(a). Therefore, we deduce

that

E
[
NT (a)

]
6 u+

1

|A| +
T−1∑

t=1

P

{
µ⋆ − ε > max

a∈A
µ̂a,Nt(a) and Nt(a) > u and At+1 = a

}

+
T−1∑

t=1

P

{
µ̂a,Nt(a) − µa >

c∆a

1 + c
− ε and At+1 = a and Nt(a) > u

}

+
T−1∑

t=1

P

{
∆̂a,t >

∆a

1 + c
and At+1 = a and Nt(a) > u

}
. (1.6)

Step 2. The third sum in (1.6) is handled by definition of the algorithm, since by
definition of pt+1, we have that

P

{
At+1 = a | ∆̂a,t >

∆a

1 + c
and Nt(a) > u

}
6 exp(−2u

( ∆a

1 + c

)2
) ;

now by choosing u
def
= (1+c)2 log(T )

2∆2
a

we deduce that

T−1∑

t=0

P

{
∆̂a,t >

∆a

1 + c
and At+1 = a and Nt(a) > u

}
6 T exp

(
−2(1 + c)2 log(T )

2∆2
a

( ∆a

1 + c

)2)

6 1 .
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Step 3. The second sum in (1.6), can be rewritten using the notations of Section 1.2.
By introducing the stopping times τa,k and the random variables X̃a,k = Yτa,k , then on the
event

{
Nt(a) = k

}
, we have the rewriting

µ̂a,Nt(a) = µ̃a,k where µ̃a,k =
1

k

k∑

j=1

X̃a,j .

Using these notations, we resort to Hoeffding’s inequality, whose application is legitimate
since ε < c∆a

1+c
; the second sum in (1.6) is bounded by

T−1∑

t=1

P

{
µ̂a,Nt(a) − µa >

c∆a

1 + c
− ε and At+1 = a

}
=

∑

k>1

P

{
µ̃a,k − µa >

c∆a

1 + c
− ε
}

6
∑

k>1

exp
(
−2k(

c∆a

1 + c
− ε)2

)
.

Step 4. The first term in (1.6). We define Q = p2/εq and introduce for all 1 6 k 6 T

and 1 6 q 6 Q the three following events

Et,k =
{
µ⋆ − ε > max

a∈A
µ̂a,Nt(a) and Nt(a

⋆) = k
}
, Ek,q =

{
µ⋆ − µ̃a⋆,k ∈

(
qε
2
, (q+1)ε

2

]}
,

and finally Et,k,q = Et,k ∩ Ek,q; the first term in (1.6) is thus bounded by

T−1∑

t=1

P

{
µ⋆ − ε > max

a∈A
µ̂a,Nt(a) and At+1 = a

}
=

Q∑

q=1

T−1∑

k=1

E

{T−1∑

t=1

I{
Et,k,q and At+1=a

}
}

=

Q∑

q=1

T−1∑

k=1

T−1∑

m=0

P

{T−1∑

t=1

I{
Et,k,q and At+1=a

} > m
}
,

where we used the fact the term under the expectation sign is a positive random variable in
the last line. We focus on the probability term; using the stopping times introduce in step
3, we get

P

{T−1∑

t=1

I{
Et,k,q and At+1=a

} > m
}

=
∑

(sk,l)l6m

P

{ m⋂

l=1

{
Esk,l,k,q and τa⋆,k = sk,l and Ask,l+1 = a

}}

= P(Ek,q)
∑

(sk,l)l6m

P

{ m⋂

l=1

{
Esk,l,k and τa⋆,k = sk,l and Ask,l+1 = a

}
|Ek,q

}
.

We now apply the chain rule P

{ m⋂

l=1

Bl

}
=

m∏

i=1

P

{
Bi |

i−1⋂

l=1

Bl

}
first to the events

Bl
def
=
{
Esk,l,k and τa⋆,k = sk,l and Ask,l+1 = a

}
,
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and then to the elements of each Bl; we get

P

{
Bi |

i−1⋂

l=1

Bl ∩ Ek,q
}

= P

{
Ask,i+1 = a |

i−1⋂

l=1

Bl and Esk,i,k and τa⋆,k = sk,i

}
×

P

{
τa⋆,k = sk,i and Esk,i,k |

i−1⋂

l=1

Bl ∩ Ek,q
}
.

Finally under the event
{i−1⋂

l=1

Bl and Esk,i,k and τa⋆,k = sk,i

}
, we have the property that

∆̂a⋆,sk,i 6 µ⋆ − ε− µ̃a⋆,k 6 (q + 1)ε/2− ε . Thus for all i 6 m we get, by definition of the
algorithm,

psk,i(a
⋆) >

1

|A| exp(−2Nsk,i(a
⋆)∆̂2

a,sk,i
) >

1

|A| exp(−2k((q − 1)ε/2)2) .

So far we have proved that
T−1∑

m=1

P

{T−1∑

t=1

I{
Et,k,q and At+1=a

} > m
}

6

T−1∑

m=1

P(Ek,q)(1−
1

|A| exp(−2k((q − 1)ε/2)2))m ×

∑

(sk,l)l6m

m∏

i=1

P

{
τa⋆,k = sk,i and Esk,i,k |

i−1⋂

l=1

Bl and Ek,q

}
,

where the last sum in this expression is upper-bounded by 1, and where the term P(Ek,q) is
bounded by exp(−2k(qε/2)2) by application of Hoeffding’s inequality.

Thus, all in all, we get the following inequalities
T−1∑

t=1

P

{
µ⋆ − ε > max

a∈A
µ̂a,Nt(a) and At+1 = a

}
6 |A|

Q∑

q=1

T−1∑

k=1

exp(−2k(qε/2)2) exp(2k((q − 1)ε/2)2)

6
|A|

(1− exp (−ε2/2))(1− exp (−ε2))
.

Step 5. We conclude by combining the three sums of equation (1.6) together.

E
[
NT (a)

]
6

(1 + c)2 log(T )

2∆2
a

+
1

|A|+1+
1

1− exp
(
−2( c∆a

1+c
− ε)2

)+ |A|
(1− exp (−ε2/2))(1− exp (−ε2)) .

Then, since this is valid for all ε < c∆a

1+c
, by setting ε

def
= c∆a

2(1+c)
and by using the fact that

for all u > 0 one has e−u 6 1− u+ u2/2, and 1− e−u > u/2 for u ∈ [0, 1], we deduce that

E
[
NT (a)

]
6

(1 + c)2 log(T )

2∆2
a

+
1

|A| + 1 +
1

( c∆a

1+c
− ε)2

+
8|A|
ε4

6
(1 + c)2 log(T )

2∆2
a

+
1

|A| + 1 +
4(1 + c)2

c2∆2
a

[
1 +

32|A|(1 + c)2

c2∆2
a

]
.

�
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4 Limitations of the bandit setting

In this section, we wonder to which extent the bandit approach may be used to handle quite
difficult problems, when the player is not facing a set of arms with fix laws, but evolving
laws.

A puzzling example. Actually, let us consider the following adversarial bandit problem
with two actions A = {0, 1} suggested by Peter Auer, and defined by a simple automaton
with two states, deterministic transitions and rewards. More precisely, if action at is played
at time t, then we define rt(at) = r(at, at−1), where r is defined by r(0, 0) = 1/3, r(1, 0) = 0,
r(0, 1) = 2/3 and finally r(1, 1) = 1/2. It is summarized in Figure 1.9.

Figure 1.9: A puzzling example.

For such an opponent, the optimal constant strategy in the sense of minimizing (external)
regret in hindsight is to play 0, since 1/3 > 0, and 2/3 > 1/2. But on the other hand, the
constant strategy that always plays 1 achieves higher cumulative reward. Thus minimizing
the regret in hindsight differs from maximizing the cumulative reward. What does that mean
?

First, note that even worse, we can build similar examples for which the constant strat-
egy that maximizes the cumulative reward actually maximizes the regret, and the constant
strategy that minimizes the regret also minimizes the cumulative reward. Thus, everything
seems to go wrong.

Failure of the bandit approach. Let us try to understand which appropriate notion of
regret would enable to maximize the cumulative reward. Actually, it appears that learning
in hindsight corresponds to learning with a horizon (or look-ahead) 1. Indeed, at time t, we
consider the history h<t and try to figure out which action may lead to maximal cumulative
reward from this point, but we do not look the consequences if we had played a different
action at time t − 1. In the previous example, this is what prevents us to play constantly
action 1, since we need to consider a horizon of at least 3 to figure out that constantly playing
1 is better than 0. Thus, in order to maximize the cumulative reward in such a problem, we
need to consider other definition than the regret in hindsight, which means that the notion
of bandit itself is not suitable for such a goal. What we can do is to see this problem from a



36 Chapter 1. Multi-armed Bandit Games.

reinforcement learning perspective, for which the time horizon is greater than one (depending
on the discount factor λ). Such an approach would solve our problem. This shows a limitation
of the bandit approach, and at the same time that regret in hindsight may not be always a
good thing. But this is not the end of the story.

Failure of the reinforcement learning approach. Even worse, one could think that
such a problem will not appear with a reinforcement learning point of view. Actually, it
is easy to build a similar problem for which we need a look-ahead horizon n to learn that
action 1 gives higher cumulative reward than action 0. More precisely, we can choose the
rewards so that after we have played one 0, playing a sequence of ones of length s for any
s < n always gives lower cumulative reward than playing anything else for the same amount
of time. This means that, since we need to choose action 0 at some point, i.e. explore, to be
consistent, we will experience the seemingly worst strategy for a possible long term, thus an
algorithm has to be fairly confident about the required horizon: you have to accept playing
for n−1 steps an action that gives a low immediate reward before seeing the benefit of such a
strategy. Without prior knowledge of the required look-ahead, we need to consider an infinite
look-ahead; note that considering a discounted reinforcement learning does not help much
and only undiscounted reinforcement learning can handle such an issue in general, which is
a hard setting.

This remark raises the philosophical question to know whether it is always good to try
to maximize the cumulative reward at the price of experiencing very bad regret (i.e. in
hindsight). Indeed finding the strategy that provides the best cumulative reward whatsoever
is difficult and may not be possible in the general case since there are classes of opponent
that are just not learnable (see Ryabko and Hutter (2008)), whereas on the other hand, all
classes are learnable from a bandit perspective, i.e. when we consider the regret in hindsight,
making use of algorithms such as Exp3. A better approach would be to build an algorithm
that is adaptive to the smallest look-ahead that makes a given problem learnable, but such a
difficult question is not currently addressed, for there are plenty of other questions to answer
before, like for instance in the case of discounted reinforcement learning setting.



Chapter 2

A Finite-Time Analysis of Multi-armed

Bandits Problems with Kullback-Leibler

Divergences.

In this chapter, we analyze the stochastic multi-armed bandit setting and more precisely the
gap that appears between, on the one hand, the distribution-dependent asymptotic bounds
that were derived in Lai and Robbins (1985) and later in Burnetas and Katehakis (1996),
which makes appear the Kullback-Leibler divergence between distributions of arms, and, on
the other hand, the distribution-dependent non-asymptotic bounds that were derived for
UCB-like algorithms in Auer et al. (2002) and later in Audibert et al. (2009),Audibert and
Bubeck (2010) or Auer and Ortner (2010), which that makes appear only first or second
moments of the distributions of arms.

The former bounds match the asymptotic lower bound, but are only asymptotic and
until recently only hold for specific classes of distributions like finite-dimensional parametric
distributions - the asymptotic result has been generalized in Honda and Takemura (2010a) for
arbitrary classes of distributions; while the later bounds using the UCB algorithms are non-
asymptotic and hold for arbitrary distributions (with support included in [0, 1]). Moreover,
as mentioned in experimental studies by Filippi (2010),Honda and Takemura (2010a) or
Garivier and Cappé (2011), the Kullback-Leibler-based algorithms experimentally achieve
significantly better performance than the UCB-like algorithms. Unfortunately these bounds
do not match the asymptotic lower bounds.

We partially fill this gap by considering a Kullback-Leibler-based algorithm for the stochas-
tic multi-armed bandit problem in the case of distributions with finite support, whose asymp-
totic regret matches the lower bound of Burnetas and Katehakis (1996), and by providing a
finite-time analysis of this algorithm.

This work is a joint work with Gilles Stoltz 1, with whom it is very pleasant to work, and
has been accepted for publication in the 24th annual Conference On Learning Theory (COLT

2011), see Maillard et al. (2011). I also wish to thank Peter Auer for insightful discussions
while he visited the SequeL Team, and Daniil Ryabko for regular discussions about this work.

1École normale supérieure, Paris & HEC, Paris
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1 Introduction

The stochastic multi-armed bandit problem, introduced by Robbins (1952), formalizes the
problem of decision-making under uncertainty, and illustrates the fundamental tradeoff that
appears between exploration, i.e., making decisions in order to improve the knowledge of the
environment, and exploitation, i.e., maximizing the payoff.

Setting. In this chapter, we consider a multi-armed bandit problem with finitely many
arms indexed by A, for which each arm a ∈ A is associated with an unknown and fixed
probability distribution νa over [0, 1]. The game is sequential and goes as follows: at each
round t > 1, the player first picks an arm At ∈ A and then receives a stochastic payoff Yt
drawn at random according to νAt . He only gets to see the payoff Yt.

For each arm a ∈ A, we denote by µa the expectation of its associated distribution νa
and we let a⋆ be any optimal arm, i.e., a⋆ ∈ argmax

a∈A
µa .

We write µ⋆ as a short-hand notation for the largest expectation µa⋆ and denote the gap of
the expected payoff µa of an arm a ∈ A to µ⋆ as ∆a = µ⋆ − µa. In addition, the number of
times each arm a ∈ A is pulled between the rounds 1 and T is referred to as NT (a),

NT (a)
def
=

T∑

t=1

I{At=a} .
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The quality of a strategy will be evaluated through the standard notion of expected regret,
which we recall now. The expected regret (or simply regret) at round T > 1 is defined as

RT
def
= E

[
Tµ⋆ −

T∑

t=1

Yt

]
= E

[
Tµ⋆ −

T∑

t=1

µAt

]
=
∑

a∈A
∆a E

[
NT (a)

]
, (2.1)

where we used the tower rule for the first equality. Note that the expectation is with re-
spect to the random draws of the Yt according to the νAt and also to the possible auxiliary
randomizations that the decision-making strategy is resorting to.

The regret measures the cumulative loss resulting from pulling sub-optimal arms, and
thus quantifies the amount of exploration required by an algorithm in order to find a best
arm, since, as (2.1) indicates, the regret scales with the expected number of pulls of sub-
optimal arms. Since the formulation of the problem by Robbins (1952) the regret has been
a popular criterion for assessing the quality of a strategy.

Known lower bounds. Lai and Robbins (1985) showed that for some (one-dimensional)
parametric classes of distributions, any consistent strategy (i.e., any strategy not pulling sub-
optimal arms more than in a polynomial number of rounds) will despite all asymptotically
pull in expectation any sub-optimal arm a at least

E
[
NT (a)

]
>

(
1

K(νa, ν⋆)
+ o(1)

)
log(T )

times, where K(νa, ν
⋆) is the Kullback-Leibler (KL) divergence between νa and ν⋆; it measures

how close distributions νa and ν⋆ are from a theoretical information perspective.
Later, Burnetas and Katehakis (1996) extended this result to some classes of multi-

dimensional parametric distributions and proved the following generic lower bound: for a
given family P of possible distributions over the arms,

E
[
NT (a)

]
>

(
1

Kinf(νa, µ⋆)
+ o(1)

)
log(T ) , where Kinf(νa, µ

⋆)
def
= inf

ν∈P:E(ν)>µ∗
K(νa, ν) ,

with the notation E(ν) for the expectation of a distribution ν. The intuition behind this
improvement is to be related to the goal that we want to achieve in bandit problems; it is
not detecting whether a distribution is optimal or not (for this goal, the relevant quantity
would be K(νa, ν

⋆)), but rather achieving the optimal rate of reward µ⋆ (i.e., one needs to
measure how close νa is to any distribution ν ∈ P whose expectation is at least µ⋆).

Known upper bounds. Lai and Robbins (1985) provided an algorithm based on the
KL divergence, which has been extended by Burnetas and Katehakis (1996) to an algorithm
based on Kinf ; it is asymptotically optimal since the number of pulls of any sub-optimal arm
a satisfies

E
[
NT (a)

]
6

(
1

Kinf(νa, µ⋆)
+ o(1)

)
log(T ) .
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This result holds for finite-dimensional parametric distributions under some assumptions, e.g.,
the distributions having a finite and known support or belonging to a set of Gaussian distribu-
tions with known variance. Recently Honda and Takemura (2010a) extended this asymptotic
result to the case of distributions P with support in [0, 1] and such that µ∗ < 1; the key

ingredient in this case is that Kinf(νa, µ
⋆) is equal to Kmin(νa, µ

⋆)
def
= infν∈P:E(ν)>µ∗ K(νa, ν).

Motivation. All the results mentioned above provide asymptotic bounds only. However,
any algorithm is only used for a finite number of rounds and it is thus essential to provide a
finite-time analysis of its performance. Auer et al. (2002) initiated this work by providing an
algorithm (UCB1) based on a Chernoff-Hoeffding bound; it pulls any sub-optimal arm, till
any time T , at most (8/∆2

a) log T + 1 + π2/3 times, in expectation. Although this yields a
logarithmic regret, the multiplicative constant depends on the gap ∆2

a = (µ⋆ − µa)
2 but not

on Kinf(νa, µ
⋆), which can be seen to be larger than ∆2

a/2 by Pinsker’s inequality; that is,
this non-asymptotic bound does not have the right dependence in the distributions. (How
much is gained of course depends on the specific families of distributions at hand.) Audibert
et al. (2009) provided an algorithm (UCB-V) that takes into account the empirical variance
of the arms and exhibited a strategy such that E

[
NT (a)

]
6 10(σ2

a/∆
2
a + 2/∆a) log T for any

time T (where σ2
a is the variance of arm a); it improves over UCB1 in case of arms with small

variance. Other variants include the MOSS algorithm by Audibert and Bubeck (2010) and
Improved UCB by Auer and Ortner (2010).

However, all these algorithms only rely on one moment (for UCB1) or two moments (for
UCB-V) of the empirical distributions of the obtained rewards; they do not fully exploit the
empirical distributions. As a consequence, the resulting bounds are expressed in terms of
the means µa and variances σ2

a of the sub-optimal arms and not in terms of the quantity
Kinf(νa, µ

⋆) appearing in the lower bounds. The numerical experiments reported in Filippi
(2010) confirm that these algorithms are less efficient than those based on Kinf .

Our contribution. In this work we analyze a Kinf-based algorithm inspired by the ones
studied in Lai and Robbins (1985), Burnetas and Katehakis (1996), Filippi (2010); it indeed
takes into account the full empirical distribution of the observed rewards. The analysis is
performed (with explicit bounds) in the case of Bernoulli distributions over the arms. Less
explicit but finite-time bounds are obtained in the case of finitely supported distributions
(whose supports do not need to be known in advance). Finally, we pave the way for handling
the case of general finite-dimensional parametric distributions. These results improve on
the ones by Burnetas and Katehakis (1996), Honda and Takemura (2010a) since finite-time
bounds (implying their asymptotic results) are obtained; and on Auer et al. (2002), Audibert
et al. (2009) as the dependency of the main term scales with Kinf(νa, µ

⋆). The proposed Kinf-
based algorithm is also more natural and more appealing than the one presented in Honda
and Takemura (2010a).

Recent related works. Since our initial submission of the present work, we got aware of
two papers that tackle problems similar to ours. First, a revised version of Honda and Take-
mura (2010b, personal communication) obtains finite-time regret bounds (with prohibitively
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large constants) for a randomized (less natural) strategy in the case of distributions with finite
supports (also not known in advance). Second, another paper at this conference (Garivier and
Cappé, 2011) also deals with the K–strategy which we study in Theorem 2.1; they however
do not obtain second-order terms in closed forms as we do and later extend their strategy to
exponential families of distributions (while we extend our strategy to the case of distributions
with finite supports). On the other hand, they show how the K–strategy can be extended
in a straightforward manner to guarantee bounds with respect to the family of all bounded
distributions on a known interval; these bounds are suboptimal but improve on the ones of
UCB-type algorithms except maybe for UCB-V.

2 Definitions and tools

Let X be a Polish space; in the next sections, we will consider X = {0, 1} or X = [0, 1]. We
denote by P(X ) the set of probability distributions over X and equip P(X ) with the distance
d induced by the norm ‖ · ‖ defined by ‖ν‖ = supf∈L

∣∣∫
X f dν

∣∣, where L is the set of Lipschitz
functions over X , taking values in [−1, 1] and with Lipschitz constant smaller than 1.

Kullback-Leibler divergence: For two elements ν, κ ∈ P(X ), we write ν ≪ κ when ν is
absolutely continuous with respect to κ and denote in this case by dν/dκ the density of ν
with respect to κ. We recall that the Kullback-Leibler divergence between ν and κ is defined
as

K(ν, κ) =

∫

[0,1]

dν
dκ

log
dν
dκ

dκ if ν ≪ κ; and K(ν, κ) = +∞ otherwise. (2.2)

Empirical distribution: We consider a sequence X1, X2, . . . of random variables taking
values in X , independent and identically distributed according to a distribution ν. For all
integers t > 1, we denote the empirical distribution corresponding to the first t elements of
the sequence by

ν̂t =
1

t

t∑

s=1

δXt .

Non-asymptotic Sanov’s Lemma: The following lemma follows from a straightforward
adaptation of Dinwoodie (1992, Theorem 2.1 and comments on page 372). Details of the
proof are provided in the appendix.

Lemma 2.1 Let C be an open convex subset of P(X ) such that Λ(C) = inf
κ∈C

K(κ, ν) <∞ .

Then, for all t > 1, one has the property that

Pν

{
ν̂t ∈ C

}
6 e−tΛ(C) ,

where C is the closure of C.
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This lemma should be thought of as a deviation inequality. The empirical distribution
converges (in distribution) to ν. Now, if (and only if) ν is not in the closure of C, then
Λ(C) > 0 and the lemma indicates how unlikely it is that ν̂t is in this set C not containing the
limit ν. The probability of interest decreases at a geometric rate, which depends on Λ(C).

3 Finite-time analysis for Bernoulli distributions

In this section, we start with the case of Bernoulli distributions. Although this case is a
special case of the general results of Section 4, we provide here a complete and self-contained
analysis of this case, where, in addition, we are able to provide closed forms for all the terms
in the regret bound. Note however that the resulting bound is slightly worse than what could
be derived from the general case (for which more sophisticated tools are used). This result
is mainly provided as a warm-up.

3.1 Reminder of some useful results for Bernoulli distributions

We denote by B the subset of P
(
[0, 1]

)
formed by the Bernoulli distributions; it corresponds

to B = P
(
{0, 1}

)
. A generic element of B will be denoted by β(p), where p ∈ [0, 1] is the

probability mass put on 1. We consider a sequence X1, X2, . . . of independent and identically
distributed random variables, with common distribution β(p); for the sake of clarity we will
index, in this subsection only, all probabilities and expectations with p.

For all integers t > 1, we denote by p̂t =
1

t

t∑

s=1

Xt the empirical average of the first t

elements of the sequence.
The lemma below follows from an adaptation of Garivier and Leonardi (2010, Proposi-

tion 2). The details of the adaptation (and simplification) can be found in the appendix.

Lemma 2.2 For all p ∈ [0, 1], all ε > 1, and all t > 1,

Pp

(
t⋃

s=1

{
s K
(
β
(
p̂s
)
, β(p)

)
> ε

})
6 2e

⌈
ε log t

⌉
e−ε .

In particular, for all random variables Nt taking values in {1, . . . , t},

Pp

{
Nt K

(
β
(
p̂Nt

)
, β(p)

)
> ε

}
6 2e

⌈
ε log t

⌉
e−ε .

Another immediate fact about Bernoulli distributions is that for all p ∈ (0, 1), the map-
pings K · ,p : q ∈ (0, 1) 7→ K

(
β(p), β(q)

)
and Kp, · : q ∈ [0, 1] 7→ K

(
β(q), β(p)

)
are continuous

and take finite values. In particular, we have, for instance, that for all ε > 0 and p ∈ (0, 1),
the set {

q ∈ [0, 1] : K
(
β(p), β(q)

)
6 ε
}
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is a closed interval containing p. This property still holds when p ∈ {0, 1}, as in this case,
the interval is reduced to {p}.

3.2 Strategy and analysis

We consider the so-called K–strategy of Figure 2.1, which was already considered in the
literature, see Burnetas and Katehakis (1996), Filippi (2010). The numerical computation
of the quantities B+

a,t is straightforward (by convexity of K in its second argument, by using
iterative methods) and is detailed therein.

Parameters : A non-decreasing function f : N → R

Initialization: Pull each arm of A once

For rounds t+ 1, where t > |A|,

– compute for each arm a ∈ A the quantity

B+
a,t = max

{
q ∈ [0, 1] : Nt(a) K

(
β
(
µ̂a,Nt(a)

)
, β(q)

)
6 f(t)

}
,

where µ̂a,Nt(a) =
1

Nt(a)

∑

s6t:As=a

Ys ;

– in case of a tie, pick an arm with largest value of µ̂a,Nt(a);

– pull any arm At+1 ∈ argmax
a∈A

B+
a,t .

Figure 2.1: The K–strategy.

Before proceeding, we denote by σ2
a = µa(1 − µa) the variance of each arm a ∈ A (and

take the short-hand notation σ⋆,2 for the variance of an optimal arm).

Theorem 2.1 (Regret bound for the K-strategy) When µ⋆ ∈ (0, 1), for all non-decreasing

functions f : N → R+ such that f(1) > 1, the expected regret RT of the strategy of Figure 2.1

is upper bounded by the infimum, as the (ca)a∈A describe (0,+∞), of the quantities

∑

a∈A
∆a

(
(1 + ca) f(T )

K
(
β(µa), β(µ⋆)

) + 4e
T−1∑

t=|A|

⌈
f(t) log t

⌉
e−f(t) +

(1 + ca)
2

8 c2a∆
2
a min

{
σ4
a, σ

⋆,4
}I{µa∈(0,1)} + 3

)
.

For µ⋆ = 0, its regret is null. For µ⋆ = 1, it satisfies RT 6 2
(
|A| − 1

)
.

A possible choice for the function f is f(t) = log
(
(et) log3(et)

)
, which is non decreasing,

satisfies f(1) > 1, and is such that the second term in the sum above is bounded (by a
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basic result about so-called Bertrand’s series). Now, as the constants ca in the bound are
parameters of the analysis (and not of the strategy), they can be optimized. For instance,
with the choice of f(t) mentioned above, taking each ca proportional to (log T )−1/3 (up to a
multiplicative constant that depends on the distributions νa) entails the regret bound

∑

a∈A
∆a

log T

K
(
β(µa), β(µ⋆)

) + εT ,

where it is easy to give an explicit and closed-form expression of εT ; in this conference version,
we only indicate that εT is of order of (log T )2/3 but we do not know whether the order of
magnitude of this second-order term is optimal.

Proof: We first deal with the case where µ⋆ 6∈ {0, 1} and introduce an additional notation.
In view of the remark at the end of Section 3.1, for all arms a and rounds t, we let B−

a,t be
the element in [0, 1] such that

{
q ∈ [0, 1] : Nt(a) K

(
β
(
µ̂a,Nt(a)

)
, β(q)

)
6 f(t)

}
=
[
B−
a,t, B

+
a,t

]
. (2.3)

As (2.1) indicates, it suffices to bound NT (a) for all suboptimal arms a, i.e., for all arms such
that µa < µ⋆. We will assume in addition that µa > 0 (and we also have µa 6 µ⋆ < 1); the
case where µa = 0 will be handled separately.

Step 1: A decomposition of the events of interest. For t > |A|, when At+1 = a,
we have in particular, by definition of the strategy, that B+

a,t > B+
a⋆,t. On the event

{
At+1 = a

}
∩
{
µ⋆ ∈

[
B−
a⋆,t, B

+
a⋆,t

]}
∩
{
µa ∈

[
B−
a,t, B

+
a,t

]}
,

we therefore have, on the one hand, µ⋆ 6 B+
a⋆,t 6 B+

a,t and on the other hand, B−
a,t 6 µa 6 µ⋆,

that is, the considered event is included in
{
µ⋆ ∈

[
B−
a,t, B

+
a,t

]}
. We thus proved that

{
At+1 = a

}
⊆
{
µ⋆ 6∈

[
B−
a⋆,t, B

+
a⋆,t

]}
∪
{
µa 6∈

[
B−
a,t, B

+
a,t

]}
∪
{
µ⋆ ∈

[
B−
a,t, B

+
a,t

]}
.

Going back to the definition (2.3), we get in particular the inclusion

{
At+1 = a

}
⊆

{
Nt(a

⋆) K
(
β
(
µ̂a⋆,Nt(a⋆)

)
, β(µ⋆)

)
> f(t)

}

∪
{
Nt(a) K

(
β
(
µ̂a,Nt(a)

)
, β(µa)

)
> f(t)

}

∪
({

Nt(a) K
(
β
(
µ̂a,Nt(a)

)
, β(µ⋆)

)
6 f(t)

}
∩
{
At+1 = a

}
)
.

Step 2: Bounding the probabilities of two elements of the decomposition. We
consider the filtration (Ft), where for all t > 1, the σ–algebra Ft is generated by A1, Y1, . . .,
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At, Yt. In particular, At+1 and thus all Nt+1(a) are Ft–measurable. We denote by τa,1 the
deterministic round at which a was pulled for the first time and by τa,2, τa,3, . . . the rounds
t > |A|+ 1 at which a was then played; since for all k > 2,

τa,k = min
{
t > |A|+ 1 : Nt(a) = k

}
,

we see that
{
τa,k = t

}
is Ft−1–measurable. Therefore, for each k > 1, the random variable τa,k

is a (predictable) stopping time. Hence, by a well-known fact in probability theory (see, e.g.,
Chow and Teicher 1988, Section 5.3), the random variables X̃a,k = Yτa,k , where k = 1, 2, . . .

are independent and identically distributed according to νa. Since on
{
Nt(a) = k

}
, we have

the rewriting

µ̂a,Nt(a) = µ̃a,k where µ̃a,k =
1

k

k∑

j=1

X̃a,j ,

and since for t > |A| + 1, one has Nt(a) > 1 with probability 1, we can apply the second
statement in Lemma 2.2 and get, for all t > |A|+ 1,

P

{
Nt(a) K

(
β
(
µ̂a,Nt(a)

)
, β(µa)

)
> f(t)

}
6 2e

⌈
f(t) log t

⌉
e−f(t) .

A similar argument shows that for all t > |A|+ 1,

P

{
Nt(a

⋆) K
(
β
(
µ̂a⋆,Nt(a⋆)

)
, β(µ⋆)

)
> f(t)

}
6 2e

⌈
f(t) log t

⌉
e−f(t) .

Step 3: Rewriting the remaining terms. We therefore proved that

E
[
NT (a)

]
6 1 + 4e

T−1∑

t=|A|

⌈
f(t) log t

⌉
e−f(t) +

T−1∑

t=|A|
P

({
Nt(a) K

(
β
(
µ̂a,Nt(a)

)
, β(µ⋆)

)
6 f(t)

}
∩
{
At+1 = a

}
)

and deal now with the last sum. Since f is non decreasing, it is bounded by

T−1∑

t=|A|
P

(
Kt ∩

{
At+1 = a

})
where Kt =

{
Nt(a) K

(
β
(
µ̂a,Nt(a)

)
, β(µ⋆)

)
6 f(T )

}
.

Now,
T−1∑

t=|A|
P

(
Kt ∩

{
At+1 = a

})
= E



T−1∑

t=|A|
I{

At+1=a
}IKt


 = E

[∑

k>2

I{
τa,k6T

}IKτa,k−1

]
.

We note that, since Nτa,k−1(a) = k − 1, we have that

Kτa,k−1 =

{
(k − 1) K

(
β
(
µ̃a,k−1

)
, β(µ⋆)

)
6 f(T )

}
.
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All in all, since τa,k 6 T implies k 6 T − |A| + 1 (since each arm is played at least once
during the first |A| rounds), we have

E


∑

k>2

I{
τa,k6T

}IKτa,k−1


 6 E



T−|A|+1∑

k=2

IKτa,k−1


 =

T−|A|+1∑

k=2

P

{
(k−1) K

(
β
(
µ̃a,k−1

)
, β(µ⋆)

)
6 f(T )

}
.

(2.4)

Step 4: Bounding the probabilities of the latter sum via Sanov’s lemma. For

each γ > 0, we define the convex open set Cγ =
{
β(q) ∈ B : K

(
β(q), β(µ⋆)

)
< γ

}
, which is a

non-empty set (since µ⋆ < 1); by continuity of the mapping K · ,µ⋆ defined after the statement

of Lemma 2.2 when µ⋆ ∈ (0, 1), its closure equals Cγ =
{
β(q) ∈ B : K

(
β(q), β(µ⋆)

)
6 γ

}
.

In addition, since µa ∈ (0, 1), we have that K
(
β(q), β(µa)

)
< ∞ for all q ∈ [0, 1]. In

particular, for all γ > 0, the condition Λ
(
Cγ
)
< ∞ of Lemma 2.7 is satisfied. Denoting this

value by

θa(γ) = inf

{
K
(
β(q), β(µa)

)
: β(q) ∈ B such that K

(
β(q), β(µ⋆)

)
6 γ

}
,

we get by the indicated lemma that for all k > 1,

P

{
K
(
β
(
µ̃a,k

)
, β(µ⋆)

)
6 γ

}
= P

{
β
(
µ̃a,k

)
∈ Cγ

}
6 e−k θa(γ) .

Now, since (an open neighborhood of) β(µa) is not included in Cγ as soon as 0 < γ <

K
(
β(µa), β(µ

⋆)
)
, we have that θa(γ) > 0 for such values of γ. To apply the obtained

inequality to the last sum in (2.4), we fix a constant ca > 0 and denote by k0 the following

upper integer part, k0 =

⌈
(1 + ca) f(T )

K
(
β(µa), β(µ⋆)

)
⌉
, so that f(T )/k 6 K

(
β(µa), β(µ

⋆)
)
/(1 + ca) <

K
(
β(µa), β(µ

⋆)
)

for k > k0, hence,

T−|A|+1∑

k=2

P

{
(k − 1) K

(
β
(
µ̃a,k−1

)
, β(µ⋆)

)
6 f(T )

}
6

T∑

k=1

P

{
K
(
β
(
µ̃a,k

)
, β(µ⋆)

)
6
f(T )

k

}

6 k0 − 1 +
T∑

k=k0

exp
(
−k θa

(
f(T )/k

))
.

Since θa is a non-increasing function,

T∑

k=k0

exp
(
−k θa

(
f(T )/k

))
6

T∑

k=k0

exp
(
−k θa

(
K
(
β(µa), β(µ

⋆)
)
/(1 + ca)

))

6 Γa(ca) exp
(
−k0 θa

(
K
(
β(µa), β(µ

⋆)
)
/(1 + ca)

))
6 Γa(ca),
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where Γa(ca) =
[
1− exp

(
−θa

(
K
(
β(µa), β(µ

⋆)
)
/(1 + ca)

))]−1

.

Putting all pieces together, we thus proved so far that

E
[
NT (a)

]
6 1 +

(1 + ca) f(T )

K
(
β(µa), β(µ⋆)

) + 4e
T−1∑

t=|A|

⌈
f(t) log t

⌉
e−f(t) + Γa(ca)

and it only remains to deal with Γa(ca).

Step 5: Getting an upper bound in closed form for Γa(ca). We will make repeated
uses of Pinsker’s inequality: for p, q ∈ [0, 1], one has K

(
β(p), β(q)

)
> 2 (p− q)2 .

In what follows, we use the short-hand notation Θa = θa
(
K
(
β(µa), β(µ

⋆)
)
/(1 + ca)

)
and

therefore need to upper bound 1/
(
1−e−Θa

)
. Since for all u > 0, one has e−u 6 1−u+u2/2, we

get Γa(ca) 6
1

Θa

(
1−Θa/2

) 6
2

Θa

for Θa 6 1, and Γa(ca) 6
1

1− e−1
6 2 for Θa > 1. It thus

only remains to lower bound Θa in the case when it is smaller than 1.
By the continuity properties of the Kullback-Leibler divergence, the infimum in the defi-

nition of θa is always achieved; we therefore let µ̃ be an element in [0, 1] such that

Θa = K
(
β(µ̃), β(µa)

)
and K

(
β(µ̃), β(µ⋆)

)
=

K
(
β(µa), β(µ

⋆)
)

1 + c
;

it is easy to see that we have the ordering µa < µ̃ < µ⋆. By Pinsker’s inequality, Θa >

2
(
µ̃ − µa

)2
and we now lower bound the latter quantity. We use the short-hand notation

f(p) = K
(
β(p), β(µ⋆)

)
and note that the thus defined mapping f is convex and differentiable

on (0, 1); its derivative equals

f ′(p) = log
1− µ⋆

µ⋆
+ log

p

1− p

for all p ∈ (0, 1) and is therefore non positive for p 6 µ⋆. By the indicated convexity of f ,
using a subgradient inequality, we get f

(
µ̃
)
− f(µa) > f ′(µa)

(
µ̃ − µa

)
, which entails, since

f ′(µa) < 0,

µ̃− µa >
f
(
µ̃
)
− f(µa)

f ′(µa)
=

ca
1 + ca

f(µa)

−f ′(µa)
, (2.5)

where the equality follows from the fact that by definition of µ, we have f
(
µ̃
)
= f(µa)/(1+ca).

Now, since f ′ is differentiable as well on (0, 1) and takes the value 0 at µ⋆, a Taylor’s equality
entails that there exists a ξ ∈ (µa, µ

⋆) such that

−f ′(µa) = f ′(µ⋆)− f ′(µa) = f ′′(ξ)
(
µ⋆ − µa) where f ′′(ξ) =

1

ξ
+

1

1− ξ
=

1

ξ(1− ξ)
.

Therefore, by convexity of τ 7→ τ(1− τ), we get that

1

−f ′(µa)
>

min
{
µa(1− µa), µ

⋆(1− µ⋆)
}

µ⋆ − µa
.
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Substituting this into (2.5) and using again Pinsker’s inequality to lower bound f(µa), we
have proved

µ̃− µa > 2
ca

1 + ca

(
µ⋆ − µa

)
min

{
µa(1− µa), µ

⋆(1− µ⋆)
}
.

Putting all pieces together, we thus proved that

Γa(ca) 6 2 max





(1 + ca)
2

8 c2a
(
µ⋆ − µa

)2 (
min

{
µa(1− µa), µ⋆(1− µ⋆)

})2 , 1





;

bounding the maximum of the two quantities by their sum concludes the main part of the
proof.

Step 6: For µ⋆ ∈ {0, 1} and/or µa = 0. When µ⋆ = 1, then µ̂a⋆,Nt(a⋆) = 1 for all
t > |A| + 1, so that B+

a⋆,t = 1 for all t > |A| + 1. Thus, the arm a is played after round
t > |A|+1 only if B+

a,t = 1 and µ̂a,Nt(a) = 1 (in view of the tie-breaking rule of the considered
strategy). But this means that a is played as long as it gets payoffs equal to 1 and is stopped
being played when it receives the payoff 0 for the first time. Hence, in this case, we have that
the sum of payoffs equals at least T −2

(
|A|−1) and the regret RT = E[Tµ⋆− (Y1+ . . .+Yt)]

is therefore bounded by 2
(
|A| − 1).

When µ⋆ = 0, a Dirac mass over 0 is associated with all arms and the regret of all
strategies is equal to 0.

We consider now the case µ⋆ ∈ (0, 1) and µa = 0, for which the first three steps go
through; only in the upper bound of step 4 we used the fact that µa > 0. But in this case,
we have a deterministic bound on (2.4). Indeed, since K

(
β(0), β(µ⋆)

)
= − log µ⋆, we have

kK
(
β(0), β(µ⋆)

)
6 f(T ) if and only if

k 6
f(T )

− log µ⋆
=

f(T )

K
(
β(µa), β(µ⋆)

) ,

which improves on the general bound exhibited in step 4. �

Remark 1 Note that Step 5 in the proof is specifically designed to provide an upper bound
on Γa(ca) in the case of Bernoulli distributions. In the general case, getting such an explicit
bound seems more involved.

4 A finite-time analysis in the case of distributions with
finite support

Before stating and proving our main result, Theorem 2.2, we introduce the quantity Kinf and
list some of its properties.
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4.1 Some useful properties of Kinf and its level sets

We now introduce the key quantity in order to generalize the previous algorithm to handle
the case of distributions with finite support. To that end, we introduce PF

(
[0, 1]

)
, the subset

of P
(
[0, 1]

)
that consists of distributions with finite support.

Definition 2.1 For all distributions ν ∈ PF
(
[0, 1]

)
and µ ∈ [0, 1), we define

Kinf(ν, µ) = inf
{
K(ν, ν ′) : ν ′ ∈ PF

(
[0, 1]

)
s.t. E(ν ′) > µ

}
,

where E(ν ′) =
∫
[0,1]

x dν ′(x) denotes the expectation of the distribution ν ′.

We now remind some useful properties of Kinf . Honda and Takemura (2010b, Lemma 6)
can be reformulated in our context as follows.

Lemma 2.3 For all ν ∈ PF
(
[0, 1]

)
, the mapping Kinf(ν, · ) is continuous and non decreasing

in its argument µ ∈ [0, 1). Moreover, the mapping Kinf( · , µ) is lower semi-continuous on

PF
(
[0, 1]

)
for all µ ∈ [0, 1).

The next two lemmas bound the variation of Kinf , respectively in its first and second
arguments. (For clarity, we denote the expectations with respect to ν by Eν .) Their proofs
are both deferred to the appendix. We denote by ‖ · ‖1 the ℓ1–norm on P

(
[0, 1]

)
and recall

that the ℓ1–norm of ν − ν ′ corresponds to twice the distance in variation between ν and ν ′.

Lemma 2.4 For all µ ∈ (0, 1) and for all ν, ν ′ ∈ PF
(
[0, 1]

)
, the following holds true.

– In the case when Eν

[
(1−µ)/(1−X)

]
> 1, then Kinf(ν, µ)−Kinf(ν

′, µ) 6Mν,µ ‖ν−ν ′‖1 ,
for some constant Mν,µ > 0.

– In the case when Eν

[
(1 − µ)/(1 − X)

]
6 1, the fact that Kinf(ν, µ) − Kinf(ν

′, µ) >

αKinf(ν, µ) for some α ∈ (0, 1) entails that

‖ν − ν ′‖1 >
1− µ

(2/α)
(
(2/α)− 1

) .

Lemma 2.5 We have that for any ν ∈ PF
(
[0, 1]

)
, provided that µ > µ − ε > E(ν), the

following inequalities hold true:

ε/(1− µ) > Kinf(ν, µ)−Kinf(ν, µ− ε) > 2ε2

Moreover, the first inequality is also valid when E(ν) > µ > µ− ε or µ > E(ν) > µ− ε.
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Level sets of Kinf : For each γ > 0 and µ ∈ (0, 1), we consider the set

Cµ,γ =
{
ν ′ ∈ PF

(
[0, 1]

)
: Kinf(ν

′, µ) < γ
}

=
{
ν ′ ∈ PF

(
[0, 1]

)
: ∃ ν ′µ ∈ PF

(
[0, 1]

)
s.t. E

(
ν ′µ
)
> µ and K

(
ν ′, ν ′µ

)
< γ

}
.

We detail a property in the following lemma, whose proof is also deferred to the appendix.

Lemma 2.6 For all γ > 0 and µ ∈ (0, 1), the set Cµ,γ is a non-empty open convex set.

Moreover,

Cµ,γ ⊇
{
ν ′ ∈ PF

(
[0, 1]

)
: Kinf(ν

′, µ) 6 γ
}
.

4.2 The Kinf–strategy and a general performance guarantee

For each arm a ∈ A and round t with Nt(a) > 0, we denote by ν̂a,Nt(a) the empirical
distribution of the payoffs obtained till round t when picking arm a, that is,

ν̂a,Nt(a) =
1

Nt(a)

∑

s6t:As=a

δYs ,

where for all x ∈ [0, 1], we denote by δx the Dirac mass on x. We define the corresponding
empirical averages as

µ̂a⋆,Nt(a⋆) = E
(
ν̂a⋆,Nt(a⋆)

)
=

1

Nt(a)

∑

s6t:As=a

Ys .

We then consider the Kinf–strategy defined in Figure 2.2. Note that the use of maxima in the
definitions of the B+

a,t is justified by Lemma 2.3.
As explained in Honda and Takemura (2010b), the computation of the quantities Kinf can

be done efficiently in this case, i.e., when we consider only distributions with finite supports.
This is because in the computation of Kinf , it is sufficient to consider only distributions with
the same support as the empirical distributions (up to one point). Note that the knowledge
of the support of the distributions associated with the arms is not required.

Theorem 2.2 (Regret bound for the Kinf-strategy) Assume that ν⋆ is finitely supported,

with expectation µ⋆ ∈ (0, 1) and with support denoted by S⋆. Let a ∈ A be a suboptimal arm

such that µa > 0 and νa is finitely supported. Then, for all ca > 0 and all

0 < ε < min

{
∆a,

ca/2

1 + ca
(1− µ⋆)Kinf(νa, µ

⋆)

}
,

the expected number of times the Kinf–strategy, run with f(t) = log t, pulls arm a satisfies

E
[
NT (a)

]
6 1+

(1 + ca) log T

Kinf(νa, µ⋆)
+

1

1− e−Θa(ca,ε)
+

1

ε2
log

(
1

1− µ∗ + ε

) T∑

k=1

(k+1)|S
⋆| e−kε

2

+
1

(∆a − ε)2
,
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Parameters : A non-decreasing function f : N → R

Initialization: Pull each arm of A once

For rounds t+ 1, where t > |A|,

– compute for each arm a ∈ A the quantity

B+
a,t = max

{
q ∈ [0, 1] : Nt(a) Kinf

(
ν̂a,Nt(a), q

)
6 f(t)

}
,

where ν̂a,Nt(a) =
1

Nt(a)

∑

s6t:As=a

δYs ;

– in case of a tie, pick an arm with largest value of µ̂a,Nt(a);

– pull any arm At+1 ∈ argmax
a∈A

B+
a,t .

Figure 2.2: The strategy Kinf .

where

Θa(ca, ε) = θa

(
log T

k0
+

ε

1− µ⋆

)
with k0 =

⌈
(1 + ca) log T

Kinf(νa, µ⋆)

⌉
.

and for all γ > 0,

θa(γ) = inf
{
K(ν ′, νa) : ν ′ s.t. Kinf(ν

′, µ⋆) < γ
}
.

As a corollary, we get (by taking some common value for all ca) that for all c > 0,

RT 6
∑

a∈A
∆a

(1 + c) log T

Kinf(νa, µ⋆)
+ h(c) ,

where h(c) <∞ is a function of c (and of the distributions associated with the arms), which is
however independent of T . As a consequence, we recover the asymptotic results of Burnetas
and Katehakis (1996), Honda and Takemura (2010a), i.e., the guarantee that

lim sup
T→∞

RT

log T
6
∑

a∈A

∆a

Kinf(νa, µ⋆)
.

Of course, a sharper optimization can be performed by carefully choosing the constants
ca, that are parameters of the analysis; similarly to the comments after the statement of
Theorem 2.1, we would then get a dominant term with a constant factor 1 instead of 1 + c

as above, plus an additional second-order term. Details are left to a journal version of this
work.
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Proof: By arguments similar to the ones used in the first step of the proof of Theorem 2.1,
we have

{
At+1 = a

}
⊆
{
µ⋆ − ε < µ̂a,Nt(a)

}
∪
{
µ⋆ − ε > B+

a⋆,t

}
∪
{
µ⋆ − ε ∈

[
µ̂a,Nt(a), B

+
a,t

]}
;

indeed, on the event
{
At+1 = a

}
∩
{
µ⋆ − ε > µ̂a,Nt(a)

}
∩
{
µ⋆ − ε 6 B+

a⋆,t

}
,

we have, µ̂a,Nt(a) 6 µ⋆ − ε 6 B+
a⋆,t 6 B+

a,t (where the last inequality is by definition of the
strategy). Before proceeding, we note that

{
µ⋆ − ε ∈

[
µ̂a,Nt(a), B

+
a,t

]}
⊆
{
Nt(a) Kinf

(
ν̂a,Nt(a), µ

⋆ − ε
)
6 f(t)

}
,

since Kinf is a non-decreasing function in its second argument and Kinf

(
ν, E(ν)

)
= 0 for all

distributions ν. Therefore,

E
[
NT (a)

]
6 1 +

T−1∑

t=|A|
P

{
µ⋆ − ε < µ̂a,Nt(a) and At+1 = a

}
+

T−1∑

t=|A|
P

{
µ⋆ − ε > B+

a⋆,t

}

+
T−1∑

t=|A|
P

{
Nt(a) Kinf

(
ν̂a,Nt(a), µ

⋆ − ε
)
6 f(t) and At+1 = a

}
;

now, the two sums with the events “and At+1 = a” can be rewritten by using the stop-
ping times τa,k introduced in the proof of Theorem 2.1; more precisely, by mimicking the
transformations performed in its step 3, we get the simpler bound

E
[
NT (a)

]
6 1 +

T−|A|+1∑

k=2

P

{
µ⋆ − ε < µ̃a,k−1

}
+

T−1∑

t=|A|
P

{
µ⋆ − ε > B+

a⋆,t

}

+

T−|A|+1∑

k=2

P

{
(k − 1) Kinf

(
ν̃a,k−1, µ

⋆ − ε
)
6 f(t)

}
, (2.6)

where the ν̃a,s and µ̃a,s are respectively the empirical distributions and empirical expectations
computed on the first s elements of the sequence of the random variables X̃a,j = Yτa,j , which
are i.i.d. according to νa.

Step 1: The first sum in (2.6) is bounded by resorting to Hoeffding’s inequality, whose
application is legitimate since µ⋆ − µa − ε > 0;

T−|A|+1∑

k=2

P

{
µ⋆ − ε < µ̃a,k−1

}
=

T−|A|∑

k=1

P

{
µ⋆ − µa − ε < µ̃a,k − µa

}

6

T−|A|∑

k=1

e−2k(µ⋆−µa−ε)2 6
1

1− e−2(µ⋆−µa−ε)2 6
1

(µ⋆ − µa − ε)2
,
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where we used for the last inequality the general upper bounds provided at the beginning of
step 5 in the proof of Theorem 2.1.

Step 2: The second sum in (2.6) is bounded by first using the definition of B+
a⋆,t,

then, decomposing the event depending on the values taken by Nt(a
⋆); and finally using the

fact that on
{
Nt(a

⋆) = k
}
, we have the rewriting ν̂a,Nt(a) = ν̃a,k and µ̂a,Nt(a) = µ̃a,k ; more

precisely,

T−1∑

t=|A|
P

{
µ⋆ − ε > B+

a⋆,t

}
6

T−1∑

t=|A|
P

{
Nt(a

⋆) Kinf

(
ν̂a⋆,Nt(a⋆), µ

⋆ − ε
)
> f(t)

}

=
T−1∑

t=|A|

t∑

k=1

P

{
Nt(a

⋆) = k and k Kinf

(
ν̃a⋆,k, µ

⋆ − ε
)
> f(t)

}

6

T∑

k=1

T−1∑

t=|A|
P

{
k Kinf

(
ν̃a⋆,k, µ

⋆ − ε
)
> f(t)

}
.

Since f = log is increasing, we can rewrite the bound, using a Fubini-Tonelli argument, as

T−1∑

t=|A|
P

{
µ⋆ − ε > B+

a⋆,t

}
6

T∑

k=1

T−1∑

t=|A|
P

{
f−1
(
kKinf

(
ν̃a⋆,k, µ

⋆ − ε
))

> t

}

6

T∑

k=1

E

[
f−1
(
kKinf

(
ν̃a⋆,k, µ

⋆ − ε
))

I{Kinf(ν̃a⋆,k, µ
⋆−ε)>0

}
]
.

Now, Honda and Takemura (2010a, Lemma 13) indicates that, since µ⋆ − ε ∈ [0, 1),

sup
ν∈PF ([0,1])

Kinf

(
ν, µ⋆ − ε

)
6 log

(
1/(1− µ⋆ + ε)

) def
= Kmax ;

we define Q = Kmax/ε
2 and introduce the following sets (Vq)16q6Q:

Vq =
{
ν ∈ PF

(
[0, 1]

)
: (q − 1)ε2 < Kinf

(
ν, µ∗ − ε) 6 qε2

}
.

A peeling argument (and by using that f−1 = exp is increasing as well) entails, for all
k > 1,

E

[
f−1
(
kKinf

(
ν̃a⋆,k, µ

⋆ − ε
))

I{Kinf(ν̃a⋆,k, µ
⋆−ε)>0

}
]

(2.7)

=

Q∑

q=1

E

[
f−1
(
kKinf

(
ν̃a⋆,k, µ

⋆ − ε
))

I{
ν̃a⋆,k∈Vq

}
]

6

Q∑

q=1

P
{
ν̃a⋆,k ∈ Vq

}
f−1(kqε2) 6

Q∑

q=1

P

{
Kinf

(
ν̃a⋆,k, µ

⋆ − ε
)
> (q − 1)ε2

}
f−1(kqε2) ,(2.8)
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where we used the definition of Vq to obtain each of the two inequalities. Now, by Lemma 2.5,
when E

(
ν̃a⋆,k

)
< µ⋆ − ε, which is satisfied whenever Kinf

(
ν̃a⋆,k, µ

⋆ − ε
)
> 0, we have

Kinf

(
ν̃a⋆,k, µ

⋆ − ε
)
6 Kinf

(
ν̃a⋆,k, µ

⋆
)
− 2ε2 6 K

(
ν̃a⋆,k, ν

⋆
)
− 2ε2 ,

where the last inequality is by mere definition of Kinf . Therefore,

P

{
Kinf

(
ν̃a⋆,k, µ

⋆ − ε
)
> (q − 1)ε2

}
6 P

{
K
(
ν̃a⋆,k, ν

⋆
)
> (q + 1)ε2

}
.

We note that for all k > 1, P

{
K
(
ν̃a⋆,k, ν

⋆
)
> (q + 1)ε2

}
6 (k + 1)|S

⋆| e−k(q+1)ε2 ,

where we recall that S⋆ denotes the finite support of ν⋆ and where we applied Corollary 2.1
of the appendix. Now, (2.8) then yields, via the choice f = log and thus f−1 = exp, that

E

[
f−1
(
kKinf

(
ν̃a⋆,k, µ

⋆ − ε
))

I{Kinf(ν̃a⋆,k, µ
⋆−ε)>0

}
]
6

Q∑

q=1

(k + 1)|S
⋆| e−k(q+1)ε2ekqε

2

︸ ︷︷ ︸
=Q (k+1)|S⋆| e−kε2

.

Substituting the value of Q, we therefore have proved that

T−1∑

t=|A|
P

{
µ⋆ − ε > B+

a⋆,t

}
6

1

ε2
log

(
1

1− µ∗ + ε

) T∑

k=1

(k + 1)|S
⋆| e−kε

2

.

Step 3: The third sum in (2.6) is first upper bounded by Lemma 2.5, which states
that

Kinf

(
ν̃a,k−1, µ

⋆
)
− ε/(1− µ⋆) 6 Kinf

(
ν̃a,k−1, µ

⋆ − ε
)

for all k > 1, and by using f(t) 6 f(T ); this gives

T−|A|∑

k=1

P

{
k Kinf

(
ν̃a,k, µ

⋆ − ε
)
6 f(t)

}

6

T−|A|∑

k=1

P

{
k Kinf

(
ν̃a,k, µ

⋆
)
6 f(T ) +

k ε

1− µ⋆

}
=

T−|A|∑

k=1

P

{
ν̃a,k ∈ Cµ⋆,γk

}
,

where γk = f(T )/k + ε/(1− µ⋆) and where the set Cµ⋆,γk was defined in Section 4.1. For all
γ > 0, we then introduce

θa(γ) = inf
{
K(ν ′, νa) : ν ′ ∈ Cµ⋆,γ

}
= inf

{
K(ν ′, νa) : ν ′ ∈ Cµ⋆,γ

}
,

(where the second equality follows from the lower semi-continuity of K) and aim at bounding

P

{
ν̃a,k ∈ Cµ⋆,γ

}
.
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As shown in Section 4.1, the set Cµ⋆,γ is a non-empty open convex set. If we prove that
θa(γ) is finite for all γ > 0, then all the conditions will be required to apply Lemma 2.1 and
get the upper bound

T−|A|∑

k=1

P

{
ν̃a,k ∈ Cµ⋆,γk

}
6

T−|A|∑

k=1

e−k θa(γk) .

To that end, we use the fact that νa is finitely supported. Now, either the probability of
interest is null and we are done; or, it is not null, which implies that there exists a possible
value of ν̃a,k that is in Cµ⋆,γ; since this value is a distribution with a support included in
the one of νa, it is absolutely continuous with respect to νa and hence, the Kullback-Leibler
divergence between this value and νa is finite; in particular, θa(γ) is finite.

Finally, we bound the θa(γk) for values of k larger than k0 =

⌈
(1 + ca) f(T )

Kinf(νa, µ⋆)

⌉
;

we have that for all k > k0, in view of the bound put on ε,

γk 6 γk0 =
f(T )

k0
+

ε

1− µ⋆
<

Kinf(νa, µ
⋆)

1 + ca
+

ca/2

1 + ca
Kinf(νa, µ

⋆) =
1 + ca/2

1 + ca
Kinf(νa, µ

⋆) . (2.9)

Since θa is non increasing, we have

T−|A|∑

k=1

e−k θa(γk) 6 k0 − 1 +

T−|A|∑

k=k0

e−k θa(γk0 ) 6 k0 − 1 +
1

1− e−Θa(ca,ε)
,

provided that the quantity Θa(ca, ε) = θa
(
γk0
)

is positive, which we prove now.
Indeed for all ν ′ ∈ Cµ⋆,γk0 , we have by definition and by (2.9) that

Kinf(ν
′, µ⋆)−Kinf(νa, µ

⋆) < γk0 −Kinf(νa, µ
⋆) < −

(
(ca/2)

/
(1 + ca)

)
Kinf(νa, µ

⋆) .

Now, in the case where Eνa

[
(1− µ⋆)/(1−X)

]
> 1, we have, first by application of Pinsker’s

inequality and then by Lemma 2.4, that

K
(
ν ′, νa

)
>

‖ν ′ − νa‖21
2

>
1

2M2
νa,µ⋆

(
Kinf(νa, µ

⋆)−Kinf(ν
′, µ⋆)

)2
>

c2a
(
Kinf(νa, µ

⋆)
)2

8 (1 + ca)2M2
νa,µ⋆

;

since, again by Pinsker’s inequality, Kinf(νa, µ
⋆) > (µa − µ⋆)2/2 > 0, we have exhibited a

lower bound independent of ν ′ in this case. In the case where Eνa

[
(1− µ⋆)/(1−X)

]
6 1, we

apply the second part of Lemma 2.4, with αa = (ca/2)/(1 + ca), and get

K
(
ν ′, νa

)
>

‖ν ′ − νa‖21
2

>
1

2

(
1− µ⋆

(2/αa)
(
(2/αa)− 1

)
)2

> 0 .

Thus, in both cases we found a positive lower bound independent of ν ′, so that the infimum
over ν ′ ∈ Cµ⋆,γk0 of the quantities Kinf(ν

′, µ⋆), which precisely equals θa
(
γk0
)
, is also positive.

This concludes the proof. �
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Conclusion. We provided a finite-time analysis of the (asymptotically optimal) Kinf–strategy

in the case of finitely supported distributions. One could think that the extension to the case of

general distributions is straightforward. However this extension appears somewhat difficult (at least

when using the current definition of Kinf) for the following reasons: (1) Step 2 in the proof uses

the method of types, that would require some extension of Sanov’s non-asymptotic Theorem to this

case. (2) Step 3 requires to have both θa(γ) < ∞ for all γ > 0 and θa(γ) > 0 for γ < Kinf(νa, µ
⋆),

which does not seem to be always the case for general distributions. Exploring other directions

for such extensions is left for future work; for instance, histogram-based approximations of general

distributions could be considered.

5 Technical details

A conference version of this chapter was published in the Proceedings of the Twenty-Fourth

Annual Conference on Learning Theory (COLT’11); this appendix details some material
which was alluded at in this conference version but could not be published therein because
of the page limit.

5.1 Proof of Lemma 2.2

We only provide it for the convenience of the readers since it is similar to the one presented
in Garivier and Leonardi (2010, Proposition 2) or in Garivier and Cappé (2011); it was
however somewhat simplified by noting that the proof technique used leads to a maximal in-
equality, as stated in Lemma 2.2, and not only to an inequality for a self-normalized average,
as stated in the original reference.

Proof: The result is straightforward in the cases p = 0 or p = 1, since then, p̂s = p almost
surely; in the rest of the proof, we therefore only consider the case where p ∈ (0, 1).

It suffices to show the first bound stated in the lemma, since the second one follows by a
decomposition of the probability space according to the values of Nt. Actually, we will show

Pp

(
t⋃

s=1

{
s K
(
β
(
p̂s
)
, β(p)

)
> ε and p̂s > p

})
6 e

⌈
ε log t

⌉
e−ε ,

and the desired result will follow by symmetry and a union bound.
Step 1: A martingale. For all λ > 0, we consider the log-Laplace transform

ψp(λ) = logEp
[
eλX1

]
= log

(
(1− p) + p eλ

)
,

with which we define the martingale

Ws(λ) = exp
(
λ(X1 + . . .+Xs)− s ψp(λ)

)
.
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Step 2: A peeling argument. We introduce t0 = 1 and tk = ⌊γk⌋, for some γ > 1 that
will be defined by the analysis. We also denote by K =

⌈
(log t)/(log γ)

⌉
an upper bound on

the number of elements in the peeling.
We also note that by continuity of the Kullback-Leibler divergence in the case of Bernoulli

distributions, for all ε > 0, there exists a unique element pε ∈ (p, 1) such that K
(
β(qε), β(p)

)
=

ε; this element satisfies that

K
(
β(q), β(p)

)
> ε and q > p entails q > pε .

Denoting by εk = ε/tk, a union bound using the described peeling then yields

Pp

(
t⋃

s=1

{
s K
(
β
(
p̂s
)
, β(p)

)
> ε and p̂s > p

})

6

K∑

k=1

Pp




tk⋃

s=tk−1

{
s K
(
β
(
p̂s
)
, β(p)

)
> ε and p̂s > p

}


6

K∑

k=1

Pp




tk⋃

s=tk−1

{
K
(
β
(
p̂s
)
, β(p)

)
>

ε

tk
and p̂s > p

}


=
K∑

k=1

Pp




tk⋃

s=tk−1

{
p̂s > pεk

}

 =

K∑

k=1

Pp




tk⋃

s=tk−1

{
X1 + . . .+Xs − s pεk > 0

}



Now, the variational formula for Kullback-Leibler divergences shows that for all k, there
exists a λk such that

εk = K
(
β(pεk), β(p)

)
= λk pεk − ψp(λk) ;

actually, a straightforward calculation shows that λk = log
(
pεk(1− p

)
− log

(
p(1− pεk)

)
> 0

is a suitable value. Thus,

K∑

k=1

Pp




tk⋃

s=tk−1

{
X1 + . . .+Xs − s pεk > 0

}



=
K∑

k=1

Pp




tk⋃

s=tk−1

{
exp
(
λk(X1 + . . .+Xs)− λks pεk

)
> 1
}



=
K∑

k=1

Pp




tk⋃

s=tk−1

{
exp
(
λk(X1 + . . .+Xs)− s ψp(λk)

)
> es εk

}



6

K∑

k=1

Pp




tk⋃

s=tk−1

{
Ws(λk) > etk−1εk

}



6

K∑

k=1

e−tk−1 εk = Ke−ε/γ ,
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where in the last step, we resorted to Doob’s maximal inequality.
Step 3: Choosing γ. The obtained bound equals, by substituting the value of K and

by choosing γ = ε/(ε− 1),

Ke−ε/γ =
⌈
(log t)/(log γ)

⌉
e−ε+1 =

⌈
log t

log
(
ε/(ε− 1)

)
⌉
e−ε+1 ;

the proof is concluded by noting that ε > 1 7−→ log
(
ε/(ε − 1)

)
− 1/ε is decreasing (its

derivative is negative), with limit 0 at +∞. �

5.2 Details of the adaptation leading to Lemma 2.1

The exact statement of Dinwoodie (1992, Theorem 2.1 and comments on page 372) is the
following.

Lemma 2.7 [Non-asymptotic Sanov’s lemma] Let C be an open convex subset of P(X ) such

that

Λ(C) = inf
κ∈C

K(κ, ν) <∞ .

Then, for all t > 1,

Pν

{
ν̂t ∈ C

}
6 e−tΛ(C) .

We show how it entails Lemma 2.1. Let C be an open convex subset of P(X ) and let C
be its closure. We denote by

Cδ =
{
ν ∈ C : d(ν, C) < δ

}

the δ–open neighborhood of C, we have C ⊆ Cδ for all δ > 0. Therefore, by the lemma above,
since Λ(Cδ) 6 Λ(C) <∞,

Pν

{
ν̂t ∈ C

}
6 Pν

{
ν̂t ∈ Cδ

}
6 e−tΛ(Cδ) .

We pick for each integer n > 1 an element κn such that Λ
(
C1/n

)
= K(κn, ν) − 1/n; by

Dinwoodie (1992, proof of Proposition 1.1), the sequence of the κn admits a converging
subsequence κϕ(n), whose limit point κ∞ belongs to C and which satisfies

K(κ∞, ν) 6 lim inf
n→∞

K(κn, ν) = lim inf
δ→0

Λ
(
Cδ
)
.

Therefore, by taking limits in the above inequality, we have proved the desired inequality,

Pν

{
ν̂t ∈ C

}
6 e−tK(κ∞,ν) 6 e−tΛ(C) .
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5.3 Useful properties of Kinf and its level sets

Proof of Lemma 2.4: We resort to the formulation of Kinf in terms of a convex opti-
mization problem as introduced in Honda and Takemura (2010b); more precisely, it is shown
therein that

Kinf(ν, µ) = max

{
Eν

[
log
(
1 + λ(µ−X)

)]
: λ ∈

[
0, 1/(1− µ)

]}
(2.10)

(where X denotes a random variable distributed according to ν), as well as the following
alternative. The optimal value λν of the parameter λ indexing the set is equal to 1/(1− µ)

if and only if Eν
[
(1− µ)/(1−X)

]
6 1, and lies in

[
0, 1/(1− µ)

)
if Eν

[
(1− µ)/(1−X)

]
> 1.

For all λ ∈
[
0, 1/(1− µ)

]
, we now introduce the function

ϕλ : x ∈ [0, 1] 7−→ log
(
1 + λ(µ− x)

)
,

which is always continuous on [0, 1); we note also that it is continuous and finite at x = 1

when λ < 1/(1− µ). In the latter case, ϕλ is bounded; since it is decreasing, it is easy to get
a uniform bound: for all x,

∣∣ϕλ(x)
∣∣ 6

∣∣ϕλ(0)
∣∣+
∣∣ϕλ(1)

∣∣ = log
1 + λµ

1 + λ(µ− 1)
def
= Mλ .

It then follows that for all λ ∈
[
0, 1/(1− µ)

)
,

Eν

[
ϕλ(X)

]
− Eν′

[
ϕλ(X)

]
6Mλ ‖ν − ν ′‖1 . (2.11)

In the case when λν < 1/(1− µ), we have from the variational formulation (2.10) that

Kinf(ν, µ)−Kinf(ν
′, µ) 6 Eν

[
ϕλν (X)

]
− Eν′

[
ϕλν (X)

]
6Mλν ‖ν − ν ′‖1 .

Thus, the constant Mν,µ in the statement of the lemma corresponds to our quantity Mλν in
this case.

We now consider the case where λν = 1/(1 − µ). By (2.11) and variational formula-
tion (2.10), we have that for all λ ∈

[
0, 1/(1− µ)

)
,

Kinf(ν, µ)−Kinf(ν
′, µ) 6 Kinf(ν, µ)− Eν′

[
ϕλ(X)

]

=
(
Kinf(ν, µ)− Eν

[
ϕλ(X)

])
+
(
Eν

[
ϕλ(X)

]
− Eν′

[
ϕλ(X)

])
.

The second difference is bounded according to (2.11); the first difference is bounded by
concavity of λ < 1/(1− µ) 7→ ϕλ(x), for all x:

Eν

[
ϕλ(X)

]
>
(
1− λ(1− µ)

)
Eν

[
ϕ0(X)

]
+ λ(1− µ)Eν

[
ϕ0(X)

]

= λ(1− µ)Eν
[
ϕ1/(1−µ)(X)

]
= λ(1− µ)Kinf(ν, µ) ,
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since ϕ0 is the null function and λν = 1/(1− µ). Putting all pieces together, we have proved
that for all λ ∈

[
0, 1/(1− µ)

)
,

Kinf(ν, µ)−Kinf(ν
′, µ) 6

(
1− λ(1− µ)

)
Kinf(ν, µ) +Mλ ‖ν − ν ′‖1 . (2.12)

We recall that by assumption, Kinf(ν, µ) − Kinf(ν
′, µ) > αKinf(ν, µ) with α ∈ (0, 1), so that

the choice λ = (1− α/2)/(1− µ), which indeed lies in
(
0, 1/(1− µ)

)
, is such that

Mλ = log

(
1 +

λ

1 + λ(µ− 1)

)
= log

(
1 +

λ

α/2

)
6

2λ

α
,

so that (2.12) entails

αKinf(ν, µ) 6
α

2
Kinf(ν, µ) +

2λ

α
‖ν − ν ′‖1 ,

and finally

‖ν − ν ′‖1 >
α2

4λ
=
α2(1− µ)

1− α/2
=

1− µ

(2/α)
(
(2/α)− 1

) ;

which concludes the proof. �

Proof of Lemma 2.5: In Honda and Takemura (2010b) it is shown that in this case,
Kinf(ν, µ) is differentiable in µ ∈ (E(ν), 1) with

1

1− µ
>

∂

∂µ
Kinf(ν, µ) >

µ− E(ν)

µ(1− µ)
. (2.13)

We apply this result to the rewriting

Kinf(ν, µ)−Kinf(ν, µ− ε) =

∫ µ

µ−ε

∂

∂µ
Kinf(ν, u) du ,

which already gives one part of the bound. For the lower bound, we note that by assumption
−E(ν) > −(µ − ε) and that u(1 − u) 6 1/4 (since we consider distributions with support
included in [0, 1]); so that, for all u,

u− E(ν)

u(1− u)
> 4
(
u− (µ− ε)

)
.

Integrating the bound concludes the main part of the proof.
Now, to see that the first inequality in the statement is always valid, we need to consider

the case when E(ν) > µ, for which the statement is trivial since then Kinf(ν, µ) = 0, and the
case when µ > E(ν) > µ − ε. But in the latter case, it is shown in Honda and Takemura
(2010b, Lemma 6, case 2) that

Kinf(ν, µ) 6
µ− E(ν)

1− µ
,

which concludes the proof. �
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Proof of Lemma 2.6: First, Cµ(γ) is non empty as it always contains δµ, the Dirac mass
on µ.

The fact that Cµ(γ) is convex follows from the convexity of K in the pair of probability
distributions that it takes as an argument. Indeed, for all α ∈ [0, 1], ν ′, ν ′′ ∈ Cµ(γ), denoting
by ν ′µ, ν

′′
µ some distributions such that the defining conditions in Cµ(γ) are satisfied, we have

that
E
(
αν ′µ + (1− α)ν ′′µ

)
> µ

and

K
(
αν ′ + (1− α)ν ′′, αν ′µ + (1− α)ν ′′µ

)
6 αK

(
ν ′, ν ′µ

)
+ (1− α)K

(
ν ′′, ν ′′µ

)
< γ .

We prove that Cµ(γ) is an open set. With each ν ′ ∈ Cµ(γ), we associate a distribution ν ′µ
satisfying the defining constraints in Cµ(γ); by choosing

α =
1− µ

/
E
(
ν ′µ
)

2
∈ (0, 1/2),

we have that the open set formed by the

(1− α) ν ′ + α ν ′′, ν ′′ ∈ B(ν ′, 1)

is contained in Cµ,γ, where B(ν ′, 1) denotes the ball with center ν ′ and radius 1 in the norm
‖ · ‖ over P(X ). Indeed, we have on the one hand,

E
(
(1− α) ν ′µ + α ν ′′

)
> (1− α)E

(
ν ′µ
)
>

(
1− 1− µ

/
E
(
ν ′µ
)

2

)
E
(
ν ′µ
)
=
E
(
ν ′µ
)
+ µ

2
> µ ,

and on the other hand, by convexity of the Kullback-Leibler divergence,

K
(
(1− α) ν ′ + α ν ′′, (1− α) ν ′µ + α ν ′′

)
6 (1− α)K

(
ν ′, ν ′µ

)
< (1− α)γ .

To prove the desired inclusion, we first note that in the case of PF
(
[0, 1]

)
, Honda and

Takemura (2010b) show that one has the rewriting

Kinf(ν, µ) = min
{
K(ν, ν ′) : ν ′ ∈ PF

(
[0, 1]

)
s.t. E(ν ′) > µ

}
;

in particular, the infimum is achieved with this new formulation. Hence,

Cµ,γ =
{
ν ′ ∈ PF

(
[0, 1]

)
: ∃ ν ′µ ∈ PF

(
[0, 1]

)
s.t. E

(
ν ′µ
)
> µ and K

(
ν ′, ν ′µ

)
< γ

}
.

Also, an element of the set of interest is therefore a ν ′ ∈ PF
(
[0, 1]

)
such that Kinf(ν

′, µ) 6 γ,
that is, such that there exists ν ′µ ∈ P

(
[0, 1]

)
with E

(
ν ′µ
)
> µ and K

(
ν ′, ν ′µ

)
6 γ. Now, the

distributions

ν ′n =

(
1− 1

n

)
ν ′ +

1

n
δ1 , thanks to the ν ′µ,n =

(
1− 1

n

)
ν ′µ +

1

n
δ1 ,

all belong to Cγ, as, similarly to the above argument,

E
(
ν ′n
)
> µ+

1− µ

n
> µ and K

(
ν ′n, ν

′
µ,n

)
6

(
1− 1

n

)
K
(
ν ′, ν ′µ

)
< γ .

In addition, we have by construction that the ν ′n converge to ν ′, hence, ν ′ ∈ Cγ. �
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5.4 The method of types

Let X1, X2, . . . be a sequence of random variables that are i.i.d. according to a distribution
denoted by ν. In this subsection, we will index all probabilities and expectations by ν.

For all k >, we denote by Ek the set of possible values (the so-called types) of the empirical
distribution

ν̂k =
k∑

j=1

δXj
.

If ν has a finite support denoted by S, then the cardinality |Ek| of Ek is bounded by (k+1)|S|.

Lemma 2.8 In the case where ν has a finite support, for all k > 1 and κ ∈ Ek,

Pν

{
ν̂k = κ

}
6 e−kK(κ,ν) .

Corollary 2.1 In the case where ν has a finite support, for all k > 1, all γ > 0,

P

{
K
(
ν̂k, ν

)
> γ

}
=
∑

κ∈Ek
I{K(κ,ν)>γ} Pν

{
ν̂k = κ

}

6
∑

κ∈Ek
I{K(κ,ν)>γ} e

−kK(κ,ν) 6 |Ek| e−kγ 6 (k + 1)|S| e−kγ .



Chapter 3

Bandit Algorithms for Online Learning

in Adversarial Lipschitz Environments.

In this chapter, we now leave the stochastic multi-armed bandit problem and turn to the
setting of multi-armed bandit with adversarial environment but full information. Since the
setting of full information enables to deal with a large set of arms, we drop the assumption
that the set of arms A is finite, and consider it is some subset of Rd, which enables to address
the problem of online learning in an adversarial environment. For such large sets, one has
to assume some regularity on the reward functions in order to control the regret term. The
main difficulty, however, is to derive efficient numerical implementations for such settings,
which generally requires to make approximations of a theoretical algorithm.

Here we consider the problem of online learning in an adversarial environment when the
reward functions chosen by the adversary are assumed to be Lipschitz. This setting extends
previous works on linear (see Dani et al. (2008a), Abernethy et al. (2008b), Cesa-Bianchi and
Lugosi (2009), Kakade et al. (2008)) and convex (see Zinkevich (2003), Hazan et al. (2006))
online learning. We provide a class of algorithms with cumulative regret upper bounded by
Õ(
√
dT ln(λ)) where d is the dimension of the search space, T the time horizon, and λ the

Lipschitz constant. We discuss the major issue of deriving efficient numerical implementations
and makes use of particle methods for this purpose. Applications include online supervised
learning problems for both full and partial (bandit) information settings, for a large class of
non-linear regressors/classifiers, such as neural networks.

This work has been published in the proceedings of the 21st European Conference on

Machine Learning (ECML 2010), see Maillard and Munos (2010b) for details.
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Introduction

The adversarial online learning problem is defined as a repeated game between an agent (the
learner) and an opponent, where at each round t, simultaneously the agent chooses an action
(or decision, or arm, or state) θt ∈ Θ (where Θ is a subset of Rd) and the opponent chooses
a reward function ft : Θ 7→ [0, 1]. The agent receives the reward ft(θt). In this chapter we
will consider different assumptions about the amount of information received by the agent at
each round. In the full information case, the full reward function ft is revealed to the agent
after each round, whereas in the case of bandit information only the reward corresponding
to its own choice ft(θt) is provided.

The goal of the agent is to allocate its actions (θt)16t6T in order to maximize the sum of

obtained rewards FT
def
=
∑T

t=1 ft(θt) up to time T and its performance is assessed in terms

of the best constant strategy θ ∈ Θ on the same reward functions, i.e. FT (θ)
def
=
∑T

t=1 ft(θ).
Defining the cumulative regret:

RT (θ)
def
= FT (θ)− FT ,

with respect to (w.r.t.) a strategy θ, the agent aims at minimizing RT (θ) for all θ ∈ Θ.
In this work we consider the case when the functions ft are Lipschitz w.r.t. the decision

variable θ (with Lipschitz constant upper bounded by λ).

Previous results. Several works on adversarial online learning include the case of finite
action spaces (the so-called learning from experts Cesa-Bianchi and Lugosi (2006) and the
multi-armed bandit problem Auer et al. (1995, 2003)), countably infinite action spaces Poland
(2008), and the case of continuous action spaces, where many works have considered strong
assumptions on the reward functions, i.e. linearity or convexity.

In the online linear optimization (see e.g. Dani et al. (2008a), Abernethy et al. (2008b),
Cesa-Bianchi and Lugosi (2009), Kakade et al. (2008) in the adversarial case and Auer (2003),
Dani et al. (2008b) in the stochastic case) where the functions ft are linear, the resulting
upper- and lower-bounds on the regret are of order (up to logarithmic factors)

√
dT in the

case of full information and d3/2
√
T in the case of bandit information Abernethy et al. (2008b)

(and in good cases d
√
T Dani et al. (2008a)). In online convex optimization ft is assumed

to be convex Zinkevich (2003) or σ-strongly convex Hazan et al. (2006), and the resulting
upper bounds are of order C

√
T and C2σ−1 ln(T ) (where C is a bound on the gradient of
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the functions, which implicitly depends on the space dimension). Other extensions have
been considered in Bartlett et al. (2007), Shalev-Shwartz (2007), Flaxman et al. (2005) and
a minimax lower bound analysis in the full information case in Abernethy et al. (2008a).
These results hold in bandit information settings where either the value or the gradient of
the function is revealed.

To our knowledge, the weaker Lipschitz assumption that we consider here has not been
studied in the adversarial optimization literature. However, in the stochastic bandit setting
(where noisy evaluations of a fixed function are revealed), the Lipschitz assumption has been
previously considered in Kleinberg et al. (2008), Bubeck et al. (2008), see the discussion in
Section 2.3.

Motivations. In many applications (such as the problem of matching ads to web-page
contents on the Internet) it is important to be able to consider both large action spaces and
general reward functions. The continuous space problem appears naturally in online learning,
where a decision point is a classifier in a parametric space of dimension d. Since many non-
linear non-convex classifiers/regressors have shown success (such as neural-networks, support
vector machines, matching pursuits), we wish to extend the results of online learning to those
non-linear non-convex cases. In this work we consider a Lipschitz assumption (illustrated in
the case of neural network architectures) which is much weaker than linearity or convexity.

Contribution. We start in Section 1 by describing a general continuous version of the Ex-
ponentially Weighted Forecaster and state (Theorem 3.1) an upper bound on the cumulative
regret of O(

√
dT ln(dλT )) under a non-trivial geometrical property of the action space. The

algorithm requires, as a sub-routine, being able to sample actions according to continuous
distributions, which may be impossible to do perfectly well in general.

To address the issue of sampling, we may use different sampling techniques, such as
uniform grids, random or quasi-random grids, or use adaptive methods such as Monte-Carlo
Markov chains (MCMC) or Population Monte-Carlo (PMC).

However, since any sampling technique introduces a sampling bias (compared to an ideal
sampling from the continuous distribution), this also impacts the resulting performance of the
method in terms of regret. This shows a tradeoff between regret and numerical complexity,
which is illustrated by numerical experiments in Section 1.3 where PMC techniques are
compared to sampling from uniform grids.

Then in Section 2 we describe several applications to learning problems. In the full infor-
mation setting (when the desired outputs are revealed after each round), the case of regression
is described in Section 2.1 and the case of classification in Section 2.2. Then Section 2.3 con-
siders a classification problem in a bandit setting (i.e. when only the information of whether
the prediction is correct or not is revealed). In the later case, we show that the expected num-
ber of mistakes does not exceed that of the best classifier by more than O(

√
dTK ln(dλT )),

where K is the number of labels. We detail a possible PMC implementation in this case.
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Environments.

We believe that the work reported in this chapter provides arguments that the use of
MCMC, PMC, and other adaptive sampling techniques is a promising direction for designing
numerically efficient algorithms for online learning in adversarial Lipschitz environments.

1 Adversarial learning with full information

We consider a search space Θ ⊂ R
d equipped with the Lebesgue measure µ. We write

µ(Θ) =
∫
Θ
1. We assume that all reward functions ft have values in [0, 1] and are Lipschitz

w.r.t. some norm || · || (e.g. L1, L2, or L∞) with a Lipschitz constant upper bounded by
λ > 0, i.e. for all t > 1 and θ1, θ2 ∈ Θ,

|ft(θ1)− ft(θ2)| 6 λ||θ1 − θ2||.

1.1 The ALF strategy

We consider the natural extension of the EWF (Exponentially Weighted Forecaster) algo-
rithm Littlestone and Warmuth (1989), Cesa-Bianchi et al. (1997), Cesa-Bianchi and Lugosi
(2006) to the continuous action setting. Figure 3.1 describes this ALF strategy (for Adver-
sarial Lipschitz Full-information environment).

Initialization: Set w1(θ) = 1 for all θ ∈ Θ.

For each round t = 1, 2, . . . , T

(1) Simultaneously the adversary chooses the reward function ft : Θ 7→ [0, 1],

and the learner chooses θt
iid∼ pt, where pt(θ)

def
=

wt(θ)∫
Θwt(θ)dθ

,

(2) The learner incurs the reward ft(θt),

(3) The reward function ft is revealed to the learner. The weight function

wt is updated as:

wt+1(θ)
def
= wt(θ)e

ηft(θ), for all θ ∈ Θ

Figure 3.1: Adversarial Lipschitz learning algorithm in a Full-information setting (ALF
strategy)

At each time step, the forecaster samples θt from a probability distribution pt
def
= wt∫

Θ wt
with

wt being the weight function defined according to the previously observed reward functions
(fs)s<t. The function ft is then revealed and the weight function is updated. We have
wt+1(θ) = exp(ηFt(θ)), and η is a parameter of the algorithm.
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Geometric considerations: The performance of the algorithm depends on the geometry
of the space Θ ⊂ R

d (relatively to the chosen norm), and since we want to derive bounds as
a function of the dimension d, we now define classes of domains ((Θd)d>0 indexed by their
dimension) with similar geometrical properties.

Definition 3.1 For the class of domains (Θd)d>1, we define κ(d) > 1:

κ(d)
def
= sup

θ∈Θd,r>0

min
[
µ
(
B(θ, r)

)
, µ(Θd)

]

µ
(
B(θ, r) ∩Θd

) (3.1)

Assumption A1 There exists κ > 0 such that κ(d) 6 κd, for all d > 1, and there exists
κ′ > 0 and α > 0 such that µ(B(θ, r)

)
> (r/(κ′dα))d for all r > 0, d > 1, and θ ∈ R

d.
The first part of this assumption says that κ(d) scales at most exponentially with the

dimension. This is reasonable if we consider domains with similar geometries (i.e. whenever
the “angles” of the domains do not go to zero when the dimension d increases). For example,
in the domains Θd = [0, 1]d, this assumption holds with κ = 2 for any usual norm (L1,L2

and L∞). The second part of the assumption about the volume of d-balls is a property of
the norms and holds naturally for any usual norm: for example, κ′ = 1/2, α = 0 for L∞, and
κ′ =

√
π/(

√
2e), α = 3/2 for any norm Lp, p > 1, since for Lp norms, µ(B(θ, r)) > (2r)d/d!

and from Stirling formula, d! ∼
√
2πd(d/e)d, thus µ(B(θ, r)) >

(
r/(

√
2π
2e
d3/2)

)d
.

Remark 2 Notice that Assumption A1 makes explicit the required geometry of the domain

in order to derive tight regret bounds.

We now provide upper-bounds for the ALF strategy on the worst expected regret (i.e.
supθ∈Θ ERT (θ)) and high probability bounds on the worst regret supθ∈ΘRT (θ).

Theorem 3.1 (Regret bound for the ALF strategy) Under Assumption A1, for any η 6

1, the expected (w.r.t. the internal randomization of the algorithm) cumulative regret of the

ALF strategy is bounded as:

sup
θ∈Θ

ERT (θ) 6 Tη +
1

η

[
d ln(cdαηλT ) + ln(µ(Θ))

]
, (3.2)

whenever (dαηλT )dµ(Θ) > 1, where c
def
= 2κmax(κ′, 1) is a constant (which depends on the

geometry of Θ and the considered norm). Under the same assumptions, with probability 1−β,

sup
θ∈Θ

RT (θ) 6 Tη +
1

η

[
d ln(cdαηλT ) + ln(µ(Θ))

]
+
√

2T ln(β−1). (3.3)

We deduce that for the choice η =
(
d
T
ln(cdαλT )

)1/2
, when η 6 1 and assuming µ(Θ) = 1, we

have:

sup
θ∈Θ

ERT (θ) 6 2
√
dT ln(cdαλT ),

and a similar bound holds in high probability.
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The proof is given in Appendix 4. Note that the parameter η of the algorithm depends
very mildly on the (unknown) Lipschitz constant λ. Actually even if λ was totally unknown,

the choice η =
(
d
T
ln(cdαT )

)1/2
would yield a bound supθ∈Θ ERT (θ) = O(

√
dT ln(dT ) lnλ)

which is still logarithmic in λ (instead of linear in the case of the discretization) and enables
to consider classes of functions for which λ may be large (and unknown).

Anytime algorithm. Like in the discrete version of EWF (see e.g. Auer et al. (2000),
Stoltz (2005), Cesa-Bianchi and Lugosi (2006)) this algorithms may easily be extended to
an anytime algorithm (i.e. providing similar performance even when the time horizon T

is not known in advance) by considering a decreasing coefficient ηt =
(
d
2t
ln(cdαλt)

)1/2
in

the definition of the weight function wt. We refer to Stoltz (2005) for a description of the
methodology.

The issue of sampling. In order to implement the ALF strategy detailed in Figure 3.1
one should be able to sample θt from the continuous distribution pt. However it is in general
impossible to sample perfectly from arbitrary continuous distributions pt, thus we need to
resort to approximate sampling techniques, such as based on uniform grids, random or quasi-
random grids, or adaptive methods such as Monte-Carlo Markov Chain (MCMC) methods
or population Monte-Carlo (PMC) methods. If we write pNt the distribution from which the
samples are actually generated, where N stands for the computational resources (e.g. the
number of grid points if we use a grid) used to generate the samples, then the expected
regret ERT (θ) will suffer an additional term of at most

∑T
t=1 |

∫
Θ
ptft−

∫
Θ
pNt ft|. This shows

a tradeoff between the regret (low when N is large, i.e. pNt is close to pt) and numerical
complexity and memory requirement (which scales with N). In the next two sub-sections we
discuss sampling techniques based on fixed grids and adaptive PMC methods, respectively.

1.2 Uniform grid over the unit hypercube

A first approach consists in setting a uniform grid (say with N grid points) before the learning
starts and consider the naive approximation of pt by sampling at each round one point of the
grid, since in that case the distribution has finite support and the sampling is easy.

Actually, in the case when the domain Θ is the unit hypercube [0, 1]d, we can easily
do the analysis of an Exponentially Weighted Forecaster (EWF) playing on the grid and
shows that the total expected regret is small provided that N is large enough. Indeed,

let ΘN
def
= {θ1, . . . , θN} be a uniform grid of resolution h > 0, i.e. such that for any θ ∈ Θ,

min16i6N ||θ−θi|| 6 h. This means that at each round t, we select the action θIt ∈ ΘN , where

It
iid∼ pNt with pNt the distribution on {1, . . . , N} defined by pNt (i)

def
= wt(i)/

∑N
j=1wt(j), where

the weights are defined as wt(i)
def
= eηFt−1(θi) for some appropriate constant η =

√
2 lnN/T .

The usual analysis of EWF implies that the regret relatively to any point of the grid is
upper bounded as: sup16i6N ERT (θi) 6

√
2T lnN .
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Now, since we consider the unit hypercube Θ = [0, 1]d, and under the assumption
that the functions ft are λ-Lipschitz with respect to L∞-norm, we have that FT (θ) 6

min16i6N FT (θi) + λTh. We deduce that the expected regret relatively to any θ ∈ Θ is
bounded as supθ∈Θ ERT (θ) 6

√
2T lnN + λTh.

Setting N = h−d with the optimal choice of h in the previous bound (up to a logarithmic

term) h = 1
λ

√
d/T gives the upper bound on the regret: supθ∈Θ ERT = O(

√
dT ln(λ

√
T )).

However this discretized EWF algorithm suffers from severe limitations from a practical
point of view:

1. The choice of the best resolution h of the grid depends crucially on the knowledge of
the Lipschitz constant λ and has an important impact on the regret bound. However,
usually λ is not known exaclty (but an upper-bound may be available, e.g. in the case
of neural networks discussed below). If we choose h irrespective of λ (e.g. h =

√
d/T )

then the resulting bound on the regret will be of order O(λ
√
dT ) which is much worst

in terms of λ than its optimal order
√
lnλ.

2. The number of grid points (which determines the memory requirement and the nu-
merical complexity of the EWF algorithm) scales exponentially with the dimension
d.

Notice that instead of using a uniform grid, one may resort to the use of random (or quasi-
random) grids with a given number of points N , which would scale better in high dimensions.
However all those method are non-adaptive in the sense that the position of the grid point do
not adapt to the actual reward functions ft observed through time. We would like to sample
points according to an “adaptive discretization” that would allocate more points where the
cumulative reward function Ft is high. In the next sub-section we consider the ALF strategy
where we use adaptive sampling techniques such as MCMC and PMC which are designed for
sampling from (possibly high dimensional) continuous distributions.

1.3 A Population Monte-Carlo sampling technique

The idea of sampling techniques such as Metropolis-Hasting (MH) or other MCMC (Monte-
Carlo Markov Chain) methods (see e.g. Gilks et al. (1996), Andrieu et al. (2003)) is to
build a Markov chain that has pt as its equilibrium distribution, and starting from an initial
distribution, iterates its transition kernel K times so as to approximate pt. Note that the
rate of convergence of the distribution towards pt is exponential with K (see e.g. Levin et al.
(2008)): δ(k) 6 (2ε)k/τ(ε), where δ(k) is the total variation distance between pt and the
distribution at step k, and τ(ε) = min{k; δ(k) 6 ε} is the so called mixing time of the
Markov Chain (ε < 1/2).

Thus sampling θt ∼ pt only requires being able to compute wt(θ) at a finite number of
points K (the number of transitions of the corresponding Markov chain needed to approxi-
mate the stationary distribution pt). This is possible whenever the reward functions ft can
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be stored by using a finite amount of information, which is the case in the applications to
learning, described in the next section.

However, using MCMC at each time step to sample from a distribution pt which is similar
to the previous one pt−1 (since the cumulative functions Ft do not change much from one
iteration to the next) is a waste of MC transitions. The exponential decay of δ(k) depends on
the mixing time τ(ε) which depends on both the target distribution and the transition kernel,
and can be reduced when considering efficient methods based on interacting particles systems.
The population Monte-Carlo (PMC) method (see e.g. Douc et al. (2007)) approximates pt
by a population of N particles (x1:Nt,k ) which evolve (during 1 6 k 6 K rounds) according to
a transition/selection scheme:

• At round k, the transition step generates a successor population x̃1:Nt,k
iid∼ gt,k(x

1:N
t,k−1, ·)

according to a transition kernel gt,k(·, ·). Then likelihood ratios are defined as w1:N
t,k =

pt(x̃1:Nt,k )

g(x1:Nt,k−1,x̃
1:N
t,k )

,

• The selection step resamples N particles xit,k = x̃Iit,k for 1 6 i 6 N where the selection
indices (Ii)16i6N are drawn (with replacement) from the set {1 . . . N} according to a
multinomial distribution with parameters (wit,k)16i6N

At round K, one particle (out of N) is selected uniformly randomly, which defines the
sample θt ∼ pNt that is returned by the sampling technique. Some properties of this approch
is that the proposed sample tends to an unbiased independent sample of pt (when either N
or K → ∞). We do not provide additional implementation details about this method here
since this is not the goal of this chapter, but we refer the interested reader to Douc et al.
(2007) for discussion about the choice of good kernels gt,k and automatic tuning methods of
the parameter K and number of particles N . Note that in Douc et al. (2007), the authors
prove a Central Limit Theorem showing that the term

√
N(
∫
Θ
ptf−

∫
Θ
pNt f) is asymptotically

gaussian with explicit variance depending on the previous parameters (that we do not report
here for it would require additional specific notations), thus giving the speed of convergence
towards 0. We also refer to Del Moral (2004) for known theoretical results of the general
PMC theory.

When using this sampling techniques in the ALF strategy, since the distribution pt+1

does not differ much from pt, we can initialize the particles at round t+ 1 with the particles

obtained at the previous round t at the last step of the PMC sampling: xit+1,1
def
= xit,K , for

1 6 i 6 N . In the numerical experiments reported in the next sub-section, this enabled
to reduce drastically the number of rounds K per time step (less than 5 in all experiments
below).

Let us remark that, since the publication of this work, it was proved in Narayanan and
Rakhlin (2010) that in the special case when the functions are moreover assumed to be convex,
then only one step of MCMC method is sufficient to get a control on the approximation error
induced by the sampling scheme. This is due to new results about so-called randomized
interior point method by Narayanan (2009).
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Figure 3.2: Regret as a function of N , for dimensions d = 2 (left figure) and 20 (right figure).
In both figures, the top curve represents the grid sampling and the bottom curve the PMC
sampling

Figure 3.3: Regret as a function of the CPU time used for sampling, for dimensions d = 2

(left figure) and 20 (right figure). Again, in both figures, the top curve represents the grid
sampling and the bottom curve the PMC sampling.

1.4 Numerical experiments

For illustation, let us consider the problem defined by: Θ = [0, 1]d, ft(θ) = (1−||θ−θt||/
√
d)3

where θt = t/T (1, . . . , 1)′. The optimal θ∗ (i.e. argmaxθ FT (θ)) is 1/2 (1, . . . , 1)′. Figure 3.2
plots the expected regret supθ∈Θ ERT (θ) (with T = 100, averaged over 10 experiments)
as a function of the parameter N (number of sampling points/particles) for two sampling
methods: the random grid mentioned in the end of Section 1.2 and the PMC method. We
considered two values of the space dimension: d = 2 and d = 20. Note that the uniform
discretization technique is not applicable in the case of dimension d = 20 (because of the
curse of dimensionality). We used K = 5 steps and used a Gaussian centered kernel gt,k of
variance σ2 = 0.1 for the PMC method.

Since the complexity of sampling from a PMC method with N particles and from a grid
of N points is not the same, in order to compare the performance of the two methods both
in terms of regret and runtime, we plot in Figure 3.3 the regret as a function of the CPU
time required to do the sampling, for different values of N .
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As expected, the PMC method is more efficient since its allocation of points (particles)
depends on the cumulative rewards Ft (it thus may be considered as an adaptive algorithm).

2 Applications to learning problems

2.1 Online regression

Consider an online adversarial regression problem defined as follows: at each round t, an
opponent selects a couple (xt, yt) where xt ∈ X and yt ∈ Y ⊂ R, and shows the input xt
to the learner. The learner selects a regression function gt ∈ G and predicts ŷt = gt(xt).
Then the output yt is revealed and the learner incurs the reward (or equivalently a loss)
l(ŷt, yt) ∈ [0, 1].

Since the true output is revealed, it is possible to evaluate the reward of any g ∈ G, which
corresponds to the full information case.

Now, consider a parametric space G = {gθ, θ ∈ Θ ⊂ R
d} of regression functions, and

assume that the mapping θ 7→ l(gθ(x), y) is Lipschitz w.r.t. θ with a uniform (over x ∈
X , y ∈ Y) Lipschitz constant λ <∞. This happens for example when X and Y are compact
domains, the regression θ 7→ gθ is Lipschitz, and the loss function (u, v) 7→ l(u, v) is also
Lipschitz w.r.t. its first variable (such as for e.g. L1 or L2 loss functions) on compact domains.

The online learning problem consists in selecting at each round t a parameter θt ∈ Θ such

as to optimize the accuracy of the prediction of yt with gθt(xt). If we define ft(θ)
def
= l(gθ(x), y),

then applying the ALF strategy described previously (changing rewards into losses by using
the transformation u 7→ 1 − u), we obtain directly that the expected cumulative loss of the
ALF strategy is almost as small as that of the best regression function in G, in the sense
that:

E

[ T∑

t=1

lt

]
− inf

g∈G
E

[ T∑

t=1

l(g(xt), yt)
]
6 2
√
dT ln(dαλT ),

where lt
def
= l(gθt(xt), yt). To illustrate, consider a feedforward neural network (NN) Bishop

(2006) with parameter space Θ (the set of weights of the network) and one hidden layer. Let
n and m be the number of input (respectively hidden) neurons. Thus if x ∈ X ⊂ R

n is the

input of the NN, a possible NN architecture would produce the output: gθ(x)
def
= θo · σ(x)

with σ(x) ∈ R
m and σ(x)l

def
= σ(θil · x) (where σ is the sigmoid function) is the output of the

l-th hidden neuron. Here θ = (θi, θo) ∈ Θ ⊂ R
d the set of (input, output) weights (thus here

d = n×m+m).
The Lipschitz constant of the mapping θ 7→ gθ(x) is upper bounded by the quantity

supx∈X ,θ∈Θ ||x||∞||θ||∞, thus assuming that the domains X , Y , and Θ are compacts, the
assumption that θ 7→ l(gθ(x), y) is uniformly (over X ,Y) Lipschitz w.r.t. θ holds e.g. for L1

or L2 loss functions, and the previous result applies.
Now, as discussed above about the practical aspects of the ALF strategy, in this online

regression problem, the knowledge of the past input-output pairs (xs, ys)s<t enables to com-
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pute the weight wt(θ) = exp(η
∑t−1

s=1 l(gθ(xs), ys)) for any θ ∈ Θ, and thus enables to use a
PMC algorithm to sample θt from the distribution pt. Up to our knowledge, we believe this is
a first regret bound analysis of online learning for non-linear NN regression, in an adversarial
setting.

2.2 Online classification

Now consider the problem of online classification (i.e. when the set of labels Y is finite). Here
we can no longer make the assumption that the classifier’s prediction gθ(x) ∈ Y is Lipschitz
w.r.t. the parameter θ (and neither that the loss function l(y, y′) = I{y=y′} is Lipschitz w.r.t.
its first variable). One way to circumvent this problem is to consider a class G = {gθ, θ ∈ Θ}
of stochastic classifiers, so that gθ(y|x) represents the probability of predicting label y given
input x. The ALF strategy would apply as follows: at round t, the algorithms chooses θt ∈ Θ

and samples the prediction ŷt from the distribution gθt(·|xt).
When the label yt is revealed, the loss function ft(θ)

def
= gθ(yt|xt) for all classifiers gθ

may be computed. Thus assuming that the mapping θ 7→ gθ(y|x) is Lipschitz w.r.t. θ with
uniform (over X × Y) Lipschitz constant λ, then Theorem 3.1 applies, and we have that

sup
g∈G

E

{
T∑

t=1

g(yt|xt)
}

︸ ︷︷ ︸
Exp. nb. of correct

predictions of best classifier

− E

{
T∑

t=1

gθt(yt|xt)
}

︸ ︷︷ ︸
Exp. nb. of correct

predictions of ALF algo.

6 2
√
dT ln(cdαλT )

which says that the expected number of good predictions of the ALF strategy is almost as
good as that of the best classifier in G. An example of such parametric regression setting is
the case of neural networks (parameterized by θ) where the activation of the output neurons
(one for each label y of Y), up to some renormalization, define the probability distribution
gθ(y|x).

2.3 Online classification with bandit information

In the previous section, the information revealed by the opponent enables to compute the
reward (or loss) function ft(θ) for all θ ∈ Θ. In the bandit information case considered now
only the reward ft(θt) of the selected action is revealed. Under our Lipschitz assumption
on the functions, the knowledge of ft at a point θt reveals very few information about ft
elsewhere. Thus we cannot expect to derive tight regret bounds in general. However we can
obtain interesting bounds in the case when the reward function ft may actually be coded by
a finite amount of information. We illustrate this setting on the online classification problem
described in Section 2.2 but with the difference that the true label yt ∈ Y = {1, . . . , K} is

not revealed at each round: the only available information is Zt
def
= I{ŷt=yt}, i.e. whether the

prediction ŷt is correct or not. An example of applications is the problem of web advertisement
systems, where the user’s click is the only received feedback.
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Initialization: Set w1(θ) = 1 for all θ ∈ Θ.

For each round t = 1, 2, . . . , T

(1) The adversary chooses (xt, yt) ∈ X × Y and shows xt to the learner,

(2) The learner chooses θt ∼ pt, where pt(θ)
def
=

wt(θ)∫
Θwt(θ)dθ

, and predicts

ŷt ∼ qt,θt , where qt,θ(y)
def
= (1− γ)gθt(y|xt) + γ

K ,

(3) The learner sees the (bandit) information Zt
def
= Iŷt=yt , from which he

defines f̃t(θ)
def
= gθ(ŷt|xt)

qt(ŷt)
Zt, where qt(y)

def
=
∫
Θ pt(θ)qt,θ(y)dθ, for any y ∈

Y.

(4) The weight function wt is updated according to wt+1(θ) =

wt(θ)e
ηf̃t(θ), for all θ ∈ Θ.

Figure 3.4: The Adversarial Lipschitz Bandit Classifier (ALBC algo)

Again, we consider a parametric family of stochastic classifiers G = {gθ, θ ∈ Θ}, where
gθ(y|x) corresponds to the probability of selecting y ∈ Y given the input x. Now, in each
round, a classifier gθt is selected (by sampling θt ∼ pt) and a prediction ŷt is made. However,
in this bandit setting, the feedback information Zt = I{ŷt=yt} does not enable to evaluate

the performance ft(θ)
def
= gθ(yt|xt) of any classifiers gθ, θ ∈ Θ. Instead, we randomize the

prediction by considering a mixture distribution between gθt and the uniform distribution:

ŷt ∼ qt,θt , where qt,θ is the distribution over the labels Y defined by qt,θ(y)
def
= (1−γ)gθ(y|xt)+

γ
K
.

This idea is close to the Exp4 algorithm in Auer et al. (2003). Given the information Zt,

we build an estimate f̃t(θ) of the performance ft(θ) of any classifiers gθ: f̃t(θ)
def
= gθ(ŷt|xt)

qt(ŷt)
Zt,

where qt(y)
def
= Eθ∼pt [qt,θ(y)], for any y ∈ Y . This estimate is unbiased since:

Eθt,ŷt f̃t(θ) =

∫

Θ

pt(θ
′)
∑

y∈Y

qt,θ′(y)gθ(y|xt)
qt(y)

I{y=yt}dθ
′

=

∫

Θ

pt(θ
′)
qt,θ′(y)gθ(yt|xt)

qt(yt)
dθ′=gθ(yt|xt)=ft(θ)

Figure 3.4 describes this Adversarial Lipschitz Bandit Classifier (ALBC) algorithm. The
next result assesses the expected performance of the ALBC algorithm

∑T
t=1 I{ŷt=yt} in com-

parison with the expected performance of the best classifier g ∈ G, in terms of number of
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correct predictions. Define the regret:

RT (θ)
def
=

T∑

t=1

gθ(yt|xt)− E

[ T∑

t=1

I{ŷt=yt}
]
.

The ALBC algorithm has a regret supθ∈Θ ERT (θ) 6 4
√
KdT ln(cdαλT ) (the proof follows

the same lines as the proof of ALF strategy combined with EXP4 ideas). Notice that like
in the multi-armed bandit problem, in this bandit setting, the regret suffers from an addi-
tional factor K per round (i.e.

√
T is replaced by

√
KT in the bound), compared to the full

information case.

A practical algorithm. A practical implementation of the ALBC algorithm requires being
able to sample θt from pt. The key difference with the technique detailed in Section 1.3 is that
in the ALBC algorithm, the functions f̃t(θ) depend on qt(ŷt) which is not directly known.
However a refined MCMC or PMC algorithm is possible: at round t, assume that we have

kept in memory the information: H<t
def
= {(xs, ŷs, Zs, qs(ŷs))s<t}.

We now show that (1) this is possible, and (2) this is sufficient for sampling θt ∼ pt. We
prove (1) recursively by showing that from H<t we are able to calculate qt(ŷt) (the other
pieces of information xt, ŷt, and Zt are available at the end of round t). Thus we only need
to prove that from H<t, we can sample θt ∼ pt and compute qt(ŷt). But since qt(ŷt) is the
expectation of qt,θ(ŷt) for θ ∼ pt, we may consider a MCMC or PMC method where the same
Markov chain (having pt as stationnary distribution) or particle population serves for both
sampling θt ∼ pt and estimating qt(ŷt). Finally, this is possible since the pointwise evaluation
of wt (thus of pt up to a renormalization constant) only depends on information in H<t.

3 Conclusion

We have considered the adversarial online learning framework in the case of Lipschitz func-
tions. In the full information case, the bound shows the same rate

√
dT as for linear functions.

This enables to derive similar performance bounds for online regression and classification,
thus extending previous results to non-linear parametric approximation, such as neural net-
works. Our main contribution was to consider a continuous extension of the EWF algorithm
(ALF strategy) for which we provide geometrical conditions for sound regret analysis, and
discuss the use of different approximation schemes and especially the use of a PMC sampling
method compared to non adaptive sampling methods. We provided experiments showing the
benefit of using a PMC sampling method for minimizing regret under computational time
constraint compared to naive random grid.

We applied this result to derive bounds for (full information) regression and classification
online learning problems and (bandit information) K-classes classification problems where
the revealed information is the correctness of the prediction. We derived a regret bound on
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the expected number of mistakes of order
√
dTK, and illustrate the case of a Neural Networks

architecture.

4 Proof of Theorem 3.1 (ALF strategy)

We start by following the usual proof for exponentially weighted forecasting. Define Wt
def
=∫

Θ
wt. For any t ∈ {1, . . . , T}, we have:

Wt+1

Wt

=

∫
Θ
exp(ηFt)∫

Θ
exp(ηFt−1)

=

∫

Θ

pt(θ) exp(ηft(θ)).

Since exp(u) 6 1+u+u2 for u 6 1, then, whenever η 6 1, we have
Wt+1

Wt

6 1+η
∫
Θ
ptft+

η2
∫
Θ
ptf

2
t . Moreover, since W1 = µ(Θ), we get:

ln(WT+1) 6 η
T∑

t=1

∫

Θ

ptft + Tη2 + ln(µ(Θ)). (3.4)

Let us write h(θ)
def
= exp(ηFT (θ)), and h∗

def
= maxx∈Θ h(θ). We have that

|h(θ1)− h(θ2)| 6 η|FT (θ1)− FT (θ2)|h∗
6 ηλTh∗||θ1 − θ2||, (3.5)

since the function FT is λT -Lipschitz. Let θ∗ be any point of maximum of h, and define

π(θ)
def
= max(0, 1− ηλT ||θ − θ∗||). Then for all θ ∈ Θ,

h(θ) > h∗π(θ). (3.6)

Indeed, this holds for any θ /∈ B(θ∗, 1/(ηλT )) where B(θ, r) is the ball {x′, ||x−x′|| 6 r},
since in that case, π(θ) = 0. Now if there were some θ ∈ B(θ∗, 1/(ηλT )) such that h(θ) <
h∗π(θ), then we would have: h(θ∗) − h(θ) > ηλTh∗||x − x∗||, which would contradict the
Lipschitz property (3.5) of h.

Notice that π is a pyramid function with base B(θ∗, 1/(ηλT )) and height 1. We now state
a Lemma that will enable us to derive a lower bound on

∫
Θ
π.

Lemma 3.1 For any θ∗ ∈ Θ, r > 0, let π be the function defined by π(θ)
def
= max(0, 1−||x−

x∗||/r). Then: ∫

Θ

π >
1

(d+ 1)κ(d)
min

[
µ
(
B(θ∗, r)), µ(Θ)

]
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Proof:
∫

Θ

π =

∫

RD

Iθ∈Θ∩B(θ∗,r)(1−
||θ∗ − θ||

r
)µ(dθ)

=

∫

RD

Iθ∈Θ∩B(θ∗,r)

∫ 1

0

I||θ∗−θ||6αrdαµ(dθ)

=

∫ 1

0

∫

RD

Iθ∈Θ∩B(θ∗,αr)µ(dθ)dα

=

∫ 1

0

µ(Θ ∩ B(θ∗, αr))dα

Now, using the definition of κ(d) from (3.1),
∫

Θ

π >

∫ 1

0

1

κ(d)
min[αdµ(B(θ∗, r)), µ(Θ)]dα

We deduce that if µ(Θ) > µ(B(θ∗, r)) then
∫
Θ
π >

µ(B(θ∗,r))
(d+1)κ(d)

. And otherwise, ∃α0 < 1

such that µ(Θ) = αd0µ(B(θ∗, r)) thus we have
∫
Θ
π >

µ(Θ)
κ(d)

(1 − α0 +
α0

d+1
) > µ(Θ)

(d+1)κ(d)
and the

Lemma is proved. �

We apply this Lemma with the π function and r = 1/ηλT to obtain:
∫

Θ

π >
1

(d+ 1)κ(d)
min

[
µ
(
B(θ∗,

1

ηλT
)), µ(Θ)

]

Now using (3.6) together with the previous bound combined with Assumption A1 (i.e.
κ(d) 6 κd and µ

(
B(θ∗, r)

)
> (r/(κ′dα)d), we derive the lower bound:
∫

Θ

h > h∗ min
[ 1

(cdαηλT )d
,
µ(Θ)

cd
]
.

where we set c = 2κmax(κ′, 1).
From its definition, WT+1 =

∫
Θ
h, thus

ln(WT+1) > ηmax
θ∈Θ

FT (θ)− ln

(
max

[
(cdαηλT )d,

cd

µ(Θ)

])
,

which, together with (3.4) yields:

sup
θ∈Θ

FT (θ)−
T∑

t=1

∫

Θ

ptft 6 Tη +
1

η
max

[
d ln(cdαηλT ) + ln(µ(Θ)), d ln c

]
.

Since
∫
Θ
ptft = Et[ft(θt)], where Et denotes the expectation w.r.t. the choice of θt ∼ pt,

we deduce that the expected regret (w.r.t. the internal randomization of the learner) of any
θ ∈ Θ is bounded according to:

ERT (θ) 6 Tη +
1

η
(d ln(cdαηλT ) + ln(µ(Θ))),
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whenever d ln(dαηλT ) > − ln(µ(Θ)).
Now, for the high probability result, if we introduce Yt =

∫
Θ
ptft − ft(θt) and F<t the

σ-algebra generated by the past random decisions, then E[Yt|F<t] = 0, thus Y1, ..., YT is a
martingale difference sequence, and since ft ∈ [0, 1], |Yt| 6 1 a.s., using Hoeffding-Azuma’s
inequality (see e.g. Devroye et al. (1996)), we obtain that with probability at least 1− β,

T∑

t=1

∫

Θ

ptft 6 FT +
√

2T ln(β−1),

which enables to deduce (3.3).



Chapter 4

Adaptive Bandits: Towards the Best

History-dependent Strategy.

In this chapter, we now consider the setting of multi-armed bandit with an adversarial en-
vironment and partial information. We consider that we have a multi-armed bandit game,
thus that the environment is a possibly adaptive (but not necessarily the meanest) opponent,
with the goal to design efficient algorithms for this setting. The reason not to consider only
the meanest opponent is because in practice, an algorithm will not necessarily face such a
bad opponent, but may also face weaker opponents. Now an algorithm designed only for
the worst case may not achieve optimal performance in this setting, and it is a challenging
question to design algorithms that are adaptive to the weakness of the opponent.

More precisely, we introduce models Θ of constraints based on equivalence classes on the
common history (information shared by the player and the opponent) which define two learn-
ing scenarios: (1) The opponent is constrained, i.e. he provides rewards that are stochastic
functions of equivalence classes defined by some model θ∗ ∈ Θ. The regret is measured with
respect to (w.r.t.) the best history-dependent strategy. (2) The opponent is arbitrary and
we measure the regret w.r.t. the best strategy among all mappings from classes to actions
(i.e. the best history-class-based strategy) for the best model in Θ. This allows to model
opponents (case 1) or strategies (case 2) which handles finite memory, periodicity, standard
stochastic bandits and other situations.

When Θ = {θ}, i.e. only one model is considered, we derive tractable algorithms achieving
a tight regret (at time T) bounded by Õ(

√
TAC), where C is the number of classes of θ. Now,

when many models are available, all known algorithms achieving a nice regret O(
√
T ) are

unfortunately not tractable and scale poorly with the number of models |Θ|. Our contribution
here is to provide tractable algorithms with regret bounded by (TA)2/3C1/3 log(|Θ|)1/2.

This work has been published in the proceedings of the 14th international conference on

Artificial Intelligence and Statistics (AI&Stats 2011), see Maillard and Munos (2011). It also
has to be related to chapter 11 where a similar notion of models is introduced but in the
more general setting of reinforcement learning.
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1 Introduction

Designing medical treatments for patients infected by the Human Immunodeficiency Virus
(HIV) is challenging due to the ability of the HIV to mutate into new viral strains that
become, with time, resistant to a specific drug Ernst et al. (2006). Thus we need to alternate
between drugs. The standard formalism of stochastic bandits (see Robbins (1952)) used for
designing medical treatment strategies models each possible drug as an arm (action) and
the immediate efficiency of the drug as a reward. In this setting, the rewards are assumed
to be i.i.d., thus the optimal strategy is constant in time. However in the case of adapting
viruses, like the HIV, no constant strategy (i.e., a strategy that constantly uses the same
drug) is good on the long term. We thus need to design new algorithms (together with new
performance criteria) to handle a larger class of strategies that may depend on the whole
treatment history (i.e., past actions and rewards).

More formally, we consider a sequential decision making problem with rewards provided
by a possibly adaptive opponent. The general game is defined as follows: At each time-step
t, the decision-maker (or player, or agent) selects an action at ∈ A (where A is a set of
A = |A| possible actions), and simultaneously the opponent (or adversary or environment)
chooses a reward function rt : A 7→ [0, 1]. The agent receives the reward rt(at). In this paper
we consider the so-called bandit information setting where the agent only sees the rewards
of the chosen action, and not the other rewards provided by the opponent. The goal of the
agent is to maximize the cumulative sum of the rewards received, i.e. choose a sequence of
actions (at)t6T that maximizes

∑T
t=1 rt(at).

Motivating Example In order to better understand our goal, consider the following very
simple problem for which no standard bandit algorithm achieves good cumulative rewards.

The set of actions is A = {a, b}, and the opponent is defined by: r(a) = 1 and r(b) = 0

if the last action of the player is b, and r(a) = 0 and r(b) = 1 if the last action is a. Finally
r(a) = r(b) = 1 for the first action.



1. Introduction 81

In that game, playing a constant action a (or b) yields a cumulative reward of T/2 at time
T . On the other hand, a player that would switch its actions at each round would obtain
a total rewards of T , which is optimal. Although this opponent is very simple, the loss of
using any usual multi-armed bandit algorithm (such as UCB Auer et al. (2002) and EXP3
Auer et al. (2003)) instead of this simple switching strategy is linear in T .

Adaptive Opponents In this paper, we consider the setting when the opponent is adap-

tive, in the sense that the reward functions can be arbitrary measurable functions of the past
common history, where by common history we mean all the observed rewards (rs(as))s<t and
actions (as)s<t played before current time t. We write h<t or simply h the common history
up to time t, so we can write rt(a) = r(h<t, a).

Due to the motivating example, we naturally want to compare to the best history-
dependent strategy against the adaptive opponent, and introduce a more challenging notion
of regret (see Section 2.1) than usual for that purpose. Since this may be not possible without
assumptions on the opponent or the comparison strategies (see Ryabko and Hutter (2008)),
we consider some model of constraints, and thus we want to adapt to a class Θ of possible
constraints. The question is: can we adapt to the (unknown) model of constraints of the
opponent?

Adversarial Bandits In Literature A first approach when considering adversarial ban-
dits providing arbitrary rewards (when no constraint is put on the complexity of the adver-
sary) is to assess the performance of the player in terms of the best strategy that is constant
in time (best constant action), which defines the external regret Auer et al. (2003), Freund
and Schapire (1995). However, since this approach does not consider limitations on the
strategy of the opponent w.r.t. the history, it can only give partial answer to the question of
adaptivity to the best possible history-dependent strategy against a given opponent.

In Auer et al. (2003), the authors extend the class of comparison strategies to piecewise
constant strategies with at most S switches. The corresponding Exp3S (aka ShiftBand)
algorithm achieves a regret of order

√
TSA log(T 3A), provided that T is large enough. How-

ever, against the opponent described in the previous section, the best strategy would need
to switch S = T/2 times, thus this algorithm still suffers a linear regret compared to the
optimal strategy.

The notion of internal regret (see Foster and Vohra (1996)), which compares the loss of an
online algorithm to the loss of a modified algorithm that consistently replaces one action by
another, has been also considered in many works Hart and Mas-Colell (2000), Stoltz (2005),
Cesa-Bianchi and Lugosi (2003), Foster and Vohra (1999). Following the work of Lehrer and
Rosenberg (2003), in Blum and Mansour (2005) the authors propose a way to convert any
external regret minimization algorithm into an algorithm minimizing an extended notion of
internal regret, using the so-called modifications rules that are functions h, a → b, where h
is the history, and a and b are actions, see also Blum and Mansour (2007). This enables to
compare the actions selected by the algorithm to an alternative sequence and thus to assess



82 Chapter 4. Adaptive Bandits.

the performance of the algorithm to other slightly perturbed algorithm. Assuming that the
opponent’s strategy can be described with the modification rules, then we might also see
the corresponding modified regret minimization algorithm as adaptive to the opponent, in
some sense. However, the proposed algorithm uses exponentially many internal variables and
will not provide tight performance bounds in terms of regret w.r.t. the best history-based
strategy, that we consider in Section 2.1.

On a more theoretical aspect, the work by Ryabko and Hutter (2008) addresses the learn-
ability problem in reactive environments (adaptive opponents). The authors introduce the
notion of value-stable and recoverable environments, and show that environments satisfying
such mild conditions are learnable. This also means that it is not possible to obtain sublinear
regret w.r.t. the best strategy against any arbitrary opponent: we need to consider limitations
of the opponent. Note also that the main proof of the paper by Ryabko and Hutter (2008)
is constructive, but unfortunately the would-be corresponding player is not implementable.

Tractability Since bandit algorithms are the base stone for Reinforcement Learning (RL)
algorithms, it is thus important if not crucial to consider numerically efficient algorithms. The
question of adaptability is not trivial because of tractability: Although the works of Blum
and Mansour (2005) and Ryabko and Hutter (2008) already provide adaptive algorithms,
none of them would be tractable in our setting (even with only one θ). Moreover, for a pool
of possible behaviors Θ of the opponent (see Section 3), we define the Θ-regret w.r.t. the best
possible strategy for the best model θ ∈ Θ. We then show (in Section 3) that our problem
can be seen as a special instance of sleeping bandits. The best regret bounds known with
tractable algorithms would be of order Õ((TCΘ)

4/5) (see Kanade et al. (2009)) whereas there
exists a non-tractable algorithm achieving Õ(

√
TCΘ), where CΘ =

∑
θ∈ΘCθ and Cθ is the

complexity of model θ. If the regret of the second algorithm nicely scales with the time
horizon T , both of them provide loose bounds for large |Θ|. So the question is: can we design
tractable algorithms that can adapt to a large pool of models of constraints?

Our Contribution The main contribution of this paper is a new way of considering ad-
versarial opponents. For some equivalence relation Φ on histories, we write [h]Φ for the
equivalence class of the history h w.r.t. Φ. We introduce Φ-constrained opponents that
are such that the reward functions only depend on the equivalence classes of history, i.e.
rt(a) = r([h<t], a). Similarly, one can consider classes of strategies of the form H/Φ 7→ A,
where H/Φ is the set of equivalence classes of histories. Interestingly, such equivalence rela-
tions were also introduced in Hutter (2009), with the goal to build relevant equivalence rela-
tions for Reinforcement Learning. The author provides useful insights, but no performance
analysis. Our model of constraints, although seemingly simple, has two main advantages:
(1) the notion of Φ-regret (see Section 2) captures the regret w.r.t. such strategies and is
expressive enough to handle many kinds of situations (like finite memory, periodicity, etc)
and thus enables to define opponents that can be anything from the worst possible (fully
adversarial), to a simple stochastic multi-armed bandit. (2) such a model leads to simple
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and efficient algorithms that are built directly from standard algorithms, and yet achieve
significantly good performances.

The introductory Section 2 starts with a single model and provides algorithms with ex-
pected regret w.r.t. the optimal history-based strategy bounded by O(

√
TAC logA), where

C is a measure of the complexity (number of equivalence classes of H/Φ) of the opponent,
and a lower bound Ω(

√
TAC). This applies to the switching opponent described in the in-

troduction. The complexity of those algorithms is C times the complexity of the standard
algorithms they are built from (namely UCB and Exp3), as opposed to the complexity of
order AC for algorithms that would be derived directly from Blum and Mansour (2005) in
our setting. Note also that for the special case of a Φ-constrained opponent with a known
model Φ, one can consider a RL point of view instead, and apply algorithms such as Ortner
(2009).

Our main contribution in this paper is to consider the more challenging situation where
we have a pool of possible models Θ. In this case, we provide tractable algorithms with Θ-
regret of order (see Section 3). (TA)2/3(Cθ∗ log(T ))1/3 log(|Θ|)1/2 when the opponent belongs
to the pool (i.e. θ∗ ∈ Θ, in which case we compare the performance to that of the optimal
history-based strategy), and T 2/3(AC log(A))1/3 log(|Θ|)1/2 where C = maxθ Cθ, when it does
not (in which case we compare to the best H/Φθ-history-class-based strategy for the best
model θ ∈ Θ).

We finally report numerical experiments in Section 4 which compares standards algo-
rithms for bandits (from stochastic to adversarial) (UCB, MOSS, EXP3, ShiftBand) to the
algorithms proposed here.

2 Preliminary results

2.1 Model of constrained opponents

Let H be the set of all histories, i.e. sequences of action played and information received. Let
Φ : H → Y be a given function mapping histories to an abstract space Y , and let H/Φ denote
the class of equivalence of histories w.r.t. the relation h1 ∼ h2 if and only if Φ(h1) = Φ(h2).
We write also [h]Φ (or [h] when there is no ambiguity) for the equivalence class of h.

Based on an equivalence-class Φ, one can define Φ-constrained opponents, which are
intuitively the opponents that are Φ-classwise stochastic:

Definition 4.1 (Φ-constrained opponent) A Φ-constrained opponent is a function f :

H/Φ → ∆(A), where ∆(A) is the set of distribution over the set A, taking values in [0, 1]

(i.e. we assume that all rewards belongs to the interval [0, 1]).

Examples: Definition 4.1 covers many situations:

• When Φ(h) = 1 for all h ∈ H, then H/Φ consists of only one class, and Definition 4.1
reduces to a stochastic multi-armed bandit.
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• When Φm : H → Am is Φm(h) = a1...am, where a1, ..., am are the last sequence of
m actions, this corresponds to opponents with finite short-term memory of length
m. In this case, there are |A|m equivalence classes. The example of the introduction
corresponds to this case with m = 1.

• When Φ : H → {0, ...,m− 1} is defined by Φ(h) = |h| mod m, where |h| is the length
of the history in term of number of time steps, it corresponds to reward functions that
come from time-periodic distributions. Here, there are m different classes.

Regret Against The Best History-class-based Strategy: If we consider a Φ-constrained
opponent, then one can define for each class c ∈ H/Φ, and action a ∈ A the expected reward
µc(a) = E[r(c, a)]. We define the expected history-class-based regret for the equivalence class
defined by Φ, also called stochastic Φ-regret, as:

RΦ
T = E

( T∑

t=1

max
a∈A

µ[h<t](a)− µ[h<t](at))
)
, (4.1)

where (at)t6T is the sequence of actions played, h<t is the history observed by the player
up to time t, and maxa µ[h<t](a) is the best action, which respect to the expected rewards
provided by the opponent, given the history-class [h<t].

Now, for an arbitrary adversary and an equivalence class Φ, one can define a (non-
stochastic) regret w.r.t. the best H/Φ-history-class-based strategy, also called adversarial

Φ-regret,

R̃Φ
T = sup

g:H/Φ→A
E

( T∑

t=1

[
rt(g([h<t]))− rt(at)

])
, (4.2)

where g([h<t]) is the action that a strategy g would play given the history-class [h<t] activated
at time t, where g belongs to the set of strategies that are constant per H/Φ-history-class,
i.e. mappings H/Φ → A.

In both cases, the expectation is w.r.t. all sources of randomness: the possible internal
randomization of the player, and the possible random rewards provided by the opponent.

Note that by definition the Φ-regret is always bigger than the external regret (i.e. w.r.t. the
best constant action), and that in the case when Φ defines only one class, those two notions
of regret reduce to their usual definitions in stochastic and adversarial bandits, respectively.

2.2 Upper bounds on the Φ-regret

In the case we play against a constrained opponent, we observe from the definition of the
Φ-regret (4.1) that if we introduce RT (c) = E

[∑T
t=1

(
maxa µ[h<t](a) − µc(at)

)
I[h<t]=c

]
for a

class c ∈ H/Φ, then RΦ
T =

∑
c∈H/ΦRT (c). This enables us to use usual stochastic bandit

algorithms, such as UCB Auer et al. (2002), per history-class, and the resulting behavior will
enable to minimize the stochastic Φ-regret.
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Similarly, if we consider an arbitrary opponent, and an equivalence class Φ, by using
usual adversarial bandit algorithms, such as Exp3 Auer et al. (2003), per history-class, one
can minimize the per-class regret E

[∑T
t=1

(
rt(g(c))− rt(at)

)
I[h<t]=c

]
w.r.t. any constant-per-

class strategy g, thus minimizing the adversarial Φ-regret R̃Φ
T .

The two corresponding algorithms, called respectively Φ-UCB and Φ-EXP3, are described
in Figure 4.1 (α and η are parameters) and we report the regret upper-bounds in the next
result.

Theorem 4.1 (Φ-regret performance bounds) In the case of a Φ-constrained opponent,

using the Φ-UCB algorithm with parameter α > 1/2, we have the distribution-dependent

bound:

RΦ
T 6

∑

c∈H/Φ;E(NT (c))>0

∑

a∈A;∆c(a)>0

4α log(T )

∆c(a)
+ ∆c(a)cα

where NT (c) =
∑T

t=1 I[h<t]=c, the per-class gaps ∆c(a)
def
= supb∈A µc(b) − µc(a), and the con-

stant cα = 1 + 4
log(α+1/2)

(α+1/2
α−1/2

)2. We also have a distribution-free bound (i.e. which does not

depend on the gaps):

RΦ
T 6

√
TAC

(
4α log(T ) + cα

)

where C = |{c ∈ |H/Φ|;E(NT (c)) > 0}| is the number of classes that may be activated.

Now, in the case of an arbitrary opponent, using Φ-Exp3 algorithm, we have:

R̃Φ
T 6

3√
2

√
TCA log(A).

The proof of these statements is reported in the supplementary material and directly
derives from the analysis detailed in Bubeck (2010) and the previous remarks. Note that one
can use other bandit algorithms (such as UCB-V Audibert et al. (2009), MOSS Audibert
and Bubeck (2009)) and derive straightforwardly the corresponding result for the Φ-regret.

2.3 Lower bounds on the Φ-regret

We now derive lower bounds on the Φ-regret to show that the previous upper bounds are
tight.

Intuitively, on each class c, one may suffer a regret of order
√
NT (c)A, where NT (c) is

the number of times class c is visited. Now, since the way classes are “visited” depends
on the structure of the game and the strategy of both the player and the opponent, those
classes cannot be controlled by the player only. Thus we show that there always exist an
environment such that whatever the strategy of the player is, a particular opponent will lead
to visit all history-classes uniformly in expectation.
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For each round t = 1, 2, . . . , T

(1) Define µ̂t,c(a) =
1

Nt−1(c,a)
F c
t−1(a), where F c

t (a) =
∑t

s=1 rs(a)I[h<s]=cIas=a

and Nt(c, a) =
∑t

s=1 I[h<s]=cIas=a.

(2) Define µ̃t,c(a) = µ̂t,c(a) +
√

α log(Nt(c))
Nt−1(c,a)

.

(3) Compute ct = Φ(h<t).

(4) Play at ∈ argmaxa∈A µ̃t,ct(a).

Initialization: Define ∀a ∈ A ξ1(a) =
1
A

For each round t = 1, 2, . . . , T

(1) Play at ∼ ξt, observe rt(at).

(2) Define l̃t(c, a) =
1−rt(at)
ξt(a)

Iat=aIc=[h<t].

(3) Define wct+1(a) = exp(−η
∑t

s=1 l̃s(c, a)).

(4) Compute ct+1 = Φ(h<t+1).

(5) Define ξt+1(a) =
w

ct+1
t+1 (a)

∑
a w

ct+1
t+1 (a)

.

Figure 4.1: Φ-UCB (top) and Φ-Exp3 (down)

We consider here, for a given class function Φ, players that may depend on Φ and oppo-
nents that may depend both on Φ and on the player. Then we consider the worst opponent
for the best player over the worst class-function Φ of given complexity (expressed in terms
of number of classes C of H/Φ). The following result easily follows from Bubeck (2010).

Theorem 4.2 (Φ-regret lower bound) Let sup represents the supremum taken over all Φ-

constrained opponents and inf the infimum over all players, then the stochastic Φ-regret is

lower-bounded as:

sup
Φ;|H/Φ|=C

inf
algo

sup
Φ−opp

RΦ
T >

1

20

√
TAC.

Let sup represents the supremum taken over all possible opponents, then the adversarial

Φ-regret is lower-bounded as:

sup
Φ;|H/Φ|=C

inf
algo

sup
opp

R̃Φ
T >

1

20

√
TAC.



3. Playing against an opponent using a pool of models 87

3 Playing against an opponent using a pool of models

After this introductory section, we now turn to the main challenge of this paper. When
playing against a given opponent, its model of constraints Φ may not be known. It is thus
natural to consider several equivalence relations defined by a pool of class functions (models)
ΦΘ = (Φθ)θ∈Θ, and that the opponent plays with some model induced by some Φ∗. We
consider two cases: either Φ∗ = Φθ∗ ∈ ΦΘ, i.e. the opponent is a Φθ∗-constrained opponent
with θ∗ ∈ Θ, or the opponent is arbitrary, and we will compare our performance to that of
the best model in Θ.

We define accordingly two notions of regret: If we consider a Φ∗-constrained opponent,
where Φ∗ ∈ ΦΘ, then one can define the so-called stochastic ΦΘ-regret as:

RΘ
T = E

( T∑

t=1

max
a∈A

µ[h<t]∗(a)− µ[h<t]∗(at))
)
. (4.3)

where [h<t]∗ is the history-class used by the opponent.
Now, for an arbitrary opponent and a pool of equivalence classes ΦΘ, we define a re-

gret w.r.t. the best H/Φθ-history-class-based strategy for the best model θ ∈ Θ, also called
adversarial ΦΘ-regret:

R̃Θ
T = sup

θ∈Θ
sup

g:H/Φθ→A
E

( T∑

t=1

[
rt(g([h<t]θ))− rt(at)

])
, (4.4)

where the class [h<t]θ corresponds to the model θ.

Tractability This problem can be seen as a Sleeping bandits (Kleinberg et al. (2008),
Kanade et al. (2009)) with stochastic availability and adversarial rewards. Indeed, by con-
sidering each class c in each model θ, we get a total of CΘ =

∑
θ∈ΘCθ experts. Now

at each time step, only one class per model is awake, and thus the best awake expert
changes with time. Recasting this problem in a usual bandit setting where the best ex-
pert is constant over time requires considering the CΘ! possible rankings (see Kleinberg
et al. (2008)), each ranking being now seen as an expert. Running Exp4 algorithm on
top of this new experts would give a sleeping-bandit regret (and thus a ΦΘ-regret) of or-
der O(

√
TA log(CΘ!)) = O(

√
TACΘ log(CΘ)). Unfortunately this algorithm is intractable

and the bound is very loose when the number of models is large. In Kanade et al. (2009),
they proposed a (tractable) algorithm that would achieve in our setting a regret bounded by
O((TCΘ)

4/5 log(T )).
We now describe tractable algorithms with regret upper-bounded byO((TA)2/3 log(|Θ|)1/2)

for both the stochastic and adversarial ΦΘ-regret, which improves upon previous bounds for
our setting.
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EXP4/UCB And EXP4/EXP3 Algorithms: A natural approach is to consider each
model θ ∈ Θ as one expert defined by a equivalence function Φθ and then run the Exp4
meta-algorithm (see Auer et al. (2003)) to select an action based on the recommendations
of all experts. More precisely, at each time t, the meta algorithm plays at according to a
distribution qt(·) =

∑
θ pt(θ)ξ

θ
t (·) which is a mixture of distributions ξθt that each expert θ

assigns to each action, weighted by a distribution pt(θ) over the set of experts Θ. Figure 4.2
describes the Exp4 algorithm (see Auer et al. (2003)) using a mixing parameter γ > 0.

Initialization: Define ∀θ ∈ Θ, p1(θ) =
1
|Θ| .

For each round t = 1, 2, . . . , T ,

(1) Define qt(a) = (1− γ)
∑

θ∈Θ pt(θ)ξ
θ
t (a) +

γ
A .

(2) Draw at ∼ qt, and observe rt(at).

(3) Define l̃t(a) =
1−rt(at)
qt(a)

Iat=a.

(4) Define gt(θ) =
∑

a ξ
θ
t (a)l̃t(a).

(5) Define wt+1(θ) = exp(−γ
∑t

s=1 gt(θ)/A).

(6) Define pt+1(θ) =
wt+1(θ)∑
θ wt+1(θ)

.

Figure 4.2: The Exp4 meta algorithm

In Auer et al. (2003) the authors relate the performance of the meta algorithm to that of
any individual expert (see Theorem 7.1 in Auer et al. (2003)). However, it is not obvious to
build an algorithm for each individual expert Φθ that will minimize its Φθ-regret. Indeed, the
actions played by the meta algorithm differ from the ones that would have been played by
each specific expert θ. This means that for each expert, not only we have a limited (bandit)
information w.r.t. the reward function, but also each expert does not see the reward of its

recommended action. This results in individual expert algorithms with poorer regret bounds
than in the single model case described in the previous section (for which one observes the
reward of the chosen action).

We provide two algorithms based respectively on UCB and Exp3, that may be used by
each individual expert θ:

• Φθ-UCB is defined as before (see Figure 4.1), except that instead of step (4) we define
ξθt as a Dirac distribution at the recommended action argmaxa∈A µ̃t,ct(a).

• Φθ-Exp3 is defined as before (see Figure 4.1), except that in step (1), no action is
drawn from ξt (since the meta algorithm chooses at ∼ qt), and step (2) is replaced by:
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l̃t(c, a) = 1−rt(at)
qt(a)

Iat=aIc=[h<t]θ (i.e. we re-weight by using the probability qt(a) of the

meta algorithm instead of the probability ξθt (a) of the individual expert θ).

Regret bounds (proved in Appendix 5.1.1,5.1.2) of the meta algorithm Exp4 combined
respectively with individual algorithms UCB and Exp3 (called respectively Exp4/UCB and
Exp4/Exp3) are given below.

Theorem 4.3 (ΦΘ-regret performance bounds) Assume that we consider a Φ∗-constrained

opponent with Φ∗ ∈ ΦΘ, then the stochastic ΦΘ-regret of Exp4/UCB is bounded as:

RΘ
T = O

(
(TA)2/3(C log(T ))1/3 log(|Θ|)1/2

)
,

where C = |H/Φ∗| is the number of classes of the model Φ∗ of the opponent. Now, for any

opponent, the adversarial ΦΘ-regret of Exp4/Exp3 is bounded as

R̃Θ
T = O

(
T 2/3(AC log(A))1/3 log(|Θ|)1/2

)
,

where C = maxθ∈Θ |H/Φθ| is the maximum number of classes for models θ ∈ Θ.

Note that, like in EXP4, we obtain a logarithmic dependence on |Θ| since playing an
action that has been chosen from a mixture of the probability distributions (over actions) of
all models yields a reward which provides information about all the models.

4 Experiments

We illustrate our approach with three different adaptive opponents and compare the results
of standard algorithms to the algorithms described here using two measures of performance:
the Φ-regret, and the external regret.

We consider only two actions A = {a, b}, and fix the time horizon at T = 500. The
three considered opponents have finite short-term memory of length m = 0, 1, 2 respectively,
i.e. are Φm-constrained opponents in the sense of Definition 4.1. More precisely, the reward
distributions are Bernoulli, and the opponents are

• O0 is a simple stochastic bandit (no memory). We choose µ(a) = 0.4 and µ(b) = 0.7

• O1 provides a mean reward 0.8 when the action changes at each step, and 0.3 otherwise,

• O2 provides a mean reward 0.8 when the action changes every two steps and 0.3 oth-
erwise.

Each plot of Figure 4.3 corresponds to one opponent (O0 is left, O1 right, and O2 is
bottom). In each plot, we represent the external regret (cyan) and Φ-regret (red) obtained
for several algorithms. From left to right, the first four algorithms are UCB, MOSS, Exp3
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Figure 4.3: Regret w.r.t. the best history-dependent strategy (red) and best constant strategy
(cyan) for 3 opponents. All experiments have been averaged over 50 trials.

and ShiftBand. The next four correspond respectively to Φ1-UCB, Φ2-UCB, Φ1-Exp3, and
Φ2-Exp3 algorithms (i.e. versions of UCB and Exp3 with memory of length 1 and 2). Note
that Φ0-UCB (resp. Exp3) is just UCB (resp. Exp3). The last two algorithms correspond to
the Exp4/UCB (resp. Exp4/Exp3), i.e. meta algorithm Exp4 run on top of Φm-UCB (resp
Φm-Exp3) algorithms, for m = 0, 1, 2) as defined in Section 3.

The last two algorithms do not know the model of constraint corresponding to the op-
ponent they are facing and still, they clearly outperform other standard algorithms (with
frankly negative external regret) for the two adapting opponents (second and third). This
clear improvement appears also when the model considered by the algorithm is more complex
than that of the opponent (e.g. Φ2-UCB facing opponent 1). On the other hand, the reverse
is false (Φ1-UCB and Φ1-Exp facing opponent 2) since a algorithm using a piece of history
of length 1 cannot play well against an opponent with memory 2.

Future work

We do not know whether in the case of a pool of models ΦΘ, there exist tractable algo-
rithms with ΦΘ-regret better that T 2/3 with log dependency w.r.t. |Θ|. Here we have used
a meta Exp4 algorithm, but we could have used other meta algorithms using a mixture
qt(a) =

∑
θ pt(θ)ξ

θ
t (a) (where the pt are internal weights of the meta algorithm). However,

when computing the approximation term of the best model θ∗ by models θ ∈ Θ (see the
supplementary material), it seems that the ΦΘ-regret cannot be strongly reduced without
making further assumptions on the structure of the game, since in general the mixture dis-
tribution qt may not converge to the distribution ξθt proposed by the best model θ ∈ Θ. This
question remains open.
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5 Technical details

We first remind the result of Auer et al. (2003) relating the cumulative reward of the Exp4
algorithm to the one of the best expert on top of which it is run. We have:

Lemma 4.1 For any γ ∈ (0, 1], for any family of experts which includes the uniform expert,

one has

max
θ

T∑

t=1

Ea∼ξθt rt(a)− Ea1,...,aT

( T∑

t=1

rt(at)
)

6 (e− 1)γT +
A log(|Θ|)

γ
.

In our case, since the ξθt are not fixed in advance but are random variables, we can not
apply the original result of Auer et al. (2003) for fixed expert advises, but need to adapt it.
The proof of the following adapttion easily follows from the original proof of Theorem 7.1 in
Auer et al. (2003):

Lemma 4.2 For any γ ∈ (0, 1], for any family of experts which includes the uniform expert

such that all expert advices are adapted to the filtration of the past, one has

max
θ

T∑

t=1

Ea1,...,at−1

(
Ea∼ξθt rt(a)

)
− Ea1,...,aT

( T∑

t=1

rt(at)
)

6 (e− 1)γT +
A log(|Θ|)

γ
.

Proof: Indeed, by construction of the algorithm, the beginning of the original proof from
Auer et al. (2003) applies and gives

T∑

t=1

rt(at) > (1− γ)
T∑

t=1

Ea∼ξθt r̃t(a)−
A log(|Θ|)

γ
− (e− 2)

γ

A

T∑

t=1

∑

a∈A
r̃t(a),

where we introduce the notation r̃t(a)
def
= rt(at)

qt(a)
Iat=a.

Now, we use the fact that ξθt (a) is adapted to the filtration of the past F t−1 together with
the property that E(r̃t(a)|F t−1) = E(rt(a)|F t−1) to deduce successively that

E

(
Ea∼ξθt r̃t(a)

)
= E

(∑

a∈A
E(r̃t(a)ξ

θ
t (a)|F t−1)

)

= E

(∑

a∈A
E(r̃t(a)|F t−1)ξθt (a)

)

= E

(∑

a∈A
E(rt(a)|F t−1)ξθt (a)

)

= E

(∑

a∈A
E(rt(a)ξ

θ
t (a)|F t−1)

)

= E

(
Ea∼ξθt rt(a)

)
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On the other hand, since by assumption the uniform expert belongs to the set of considered
experts, we also have

1

A
E

( T∑

t=1

∑

a∈A
r̃t(a)

)
=

T∑

t=1

E
(
Ea∼U(A)rt(a)

)
6 max

θ

T∑

t=1

E
(
Ea∼ξθt rt(a)

)
,

where U(A) denotes the uniform distribution over the set of actions A. This concludes the
proof. �

5.1 The rebel-bandit setting

We now introduce the setting of Rebel bandits that may have its own interest. It will be
used to compute the model-based regret of the Exp4 algorithm. In this setting, we consider
that at time t the player θ proposes a distribution of probability ξθt over the arms, but he
actually receives the reward corresponding to an action drawn from another distribution, qt,
the distribution of probability proposed by the meta algorithm.

Following (4.4), we define the best model of the pool:

θ∗ = argmax
θ∈Θ

sup
g:H/Φ→A

E

( T∑

t=1

[
rt(g([h<t]θ))− rt(at)

])
.

We then define for any class c ∈ H/Φθ∗ , the action a∗c
def
= argmaxa µc(a) that corresponds to

the best history-class-based strategy. Thus we can also write a∗t = a∗[h<t]θ∗
. We now analyze

the (Φ-constrained) Exp3 and UCB algorithms in this setting and bound the corresponding
rebel-regret:

Definition 4.2 (Rebel regret) The Rebel-regret of the algorithm that proposes at time t the

distribution ξθt but in the game where the action at ∼ qt is played instead is:

Rq
T (θ) =

T∑

t=1

Ea1,..,at−1

(
rt(a

∗
[h<t]θ∗

)− Ea∼ξθt (rt(a))
)
.

5.1.1 Φ-Exp3 in the rebel-bandit setting

We now consider using Exp4 on top of Φ-contrained algorithms. We first use the experts
Φθ-Exp3 for θ ∈ Θ with a slight modification on the definition of the function l̃t(c, a). Indeed
since the action at are drawn according to the meta algorithm and not Φθ-Exp3, we redefine
l̃t(c, a) =

1−rt(a)
qt(a)

Iat=aI[h<t]θ=c so as to get unbiased estimate of rt(a) for all a. We now provide
a bound on the Rebel-regret of the Φ∗-Exp3 algorithm.
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Theorem 4.4 (Rebel regret bound for Exp3 ) The Φθ∗-Exp3 algorithm in the Rebel ban-

dit setting where qt(a) > δ for all a, and choosing the parameter ηθ
tθc(i)

=
√

δ log(A)
i

satisfies

Rq
T (θ

∗) 6 2

√
TC logA

δ

Proof: The proof is in six steps and mainly follows the proof in Section 2.1 of Bubeck (2010)
that provides a bound on the regret of Exp3 algorithm.

Since we only consider the model θ∗, we will simply refer to it as θ and also write ct for
[h<t]θ∗ to avoid cumbersome notations.

Step 1. Rewrite the regret term to make appear the actions at chosen by the meta
algorithm at time t. By definition of l̃θt (cθ, a) we have Eat∼qt(l̃

θ
t (ct, a)) = 1 − rt(a), thus we

get:

Rq
T (θ

∗) =
T∑

t=1

Ea1,..,at−1

[
Eat∼qt(Ea∼ξθt (l̃

θ
t (ct, a)))− l̃θt (ct, a

∗
ct)
]
.

Step 2. Decompose the term Ea∼ξθt (l̃
θ
t (ct, a)) in order to use the definition of ξθt . Indeed,

for ϕ(x)
def
= 1

ηθt
logEa∼ξθt exp(x), following the technique described in Section 2.1 of Bubeck

(2010), we have:

Ea∼ξθt (l̃
θ
t (ct, a)) = ϕ

(
− ηθt (l̃

θ
t (ct, a)− Eb∼ξθt (l̃

θ
t (ct, b)))

)
− ϕ(−ηθt l̃θt (ct, a)) (4.5)

Now using the fact that log x 6 x − 1 and exp(−x) − 1 + x 6 x2, ∀x > 0, the first term on

the right hand of (4.5) is bounded by: ηθt
2
Ea∼ξθt (l̃

θ
t (ct, a)

2)

Thus, considering that ξθt (a) =
exp(−ηθt

∑t−1
s=1 l̃

θ
s(ct,a))∑

a exp(−ηθt
∑t−1

s=1 l̃
θ
s(ct,a)

, we can introduce the quantity

Ψθ
t (η, c) =

1

η
log
( 1
A

∑

a

exp
(
− η

t∑

s=1

l̃θs(c, a)
))
,

so that the second right term of equation(4.5) can be written Ψθ
t−1(η

θ
t , ct)−Ψθ

t (η
θ
t , ct). Thus

we deduce that:

Rq
T (θ

∗) 6

T∑

t=1

Ea1,..,at−1

[
Eat∼qt(

ηθt
2
(1− rt(at))

2 ξ
θ
t (at)

q2t (at)
)

+Eat

(
Ψθ
t−1(η

θ
t , ct)−Ψθ

t (η
θ
t , ct)

)
− Eat l̃

θ
t (ct, a

∗
ct)
]
, (4.6)

where we have replace l̃θt (ct, a) by its definition.
Step 3. Now we consider the first term in the right hand side of previous equation, which

is bounded by:

Eat∼qt((1− rt(at))
2 ξ

θ
t (at)

q2t (at)
) 6

∑

a

ξθt (a)

qt(a)
6

1

δ
.
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Step 4. Introduce the equivalence classes. We now consider the second term defined with

Ψ functions. Let us introduce the notations N θ
t (c)

def
=

t∑

s=1

Ic=[h<s]θ for the number of times

when the class c is activated up to time t and then tθc(i)
def
= min{t;N θ

t (c) = i}. Thus we can
write:

∑

θ

T∑

t=1

(Ψθ
t−1(η

θ
t , [h<t]θ)−Ψθ

t (η
θ
t , [h<t]θ)) =

∑

θ

∑

c∈θ

Nθ
T (c)∑

i=1

Ψθ
tθc(i)−1(η

θ
tθc(i)

, c)−Ψθ
tθc(i)

(ηθtθc(i), c)

=
∑

θ

∑

c∈θ

(Nθ
T (c)−1∑

i=1

(Ψθ
tθc(i)

(ηθtθc(i)+1, c)−Ψθ
tθc(i)

(ηθtθc(i), c))
)
−Ψθ

tθc(N
θ
T (c))(η

θ
tθc(N

θ
T (c)), c).

Now, by definition of Ψθ
t , we also have for any given a = aθ

∗
c (we remind that θ = θ∗):

−Ψθ
tθc(N

θ
T (c))(η

θ
tθc(N

θ
T (c)), c) =

logA

ηθ
tθc(N

θ
T (c))

− 1

ηθ
tθc(N

θ
T (c))

log(
1

A

∑

a

exp(−ηθtθc(Nθ
T (c))

tθc(N
θ
T (c))∑

s=1

l̃θs(c, a)))

6
logA

ηθ
tθc(N

θ
T (c))

+

tθc(N
θ
T (c))∑

s=1

l̃θs(c, a) .

In particular, we can use the optimal action a∗c when c = [h<t]θ∗ .
Step 5. Remark that Ψθ

t (·, c) is increasing for all θ, c. Indeed, we can show that

∂

∂η
Ψθ(η, c) =

1

η2
KL(pηt,c, π),

where π is the uniform distribution over the arms, and pηt,c(a) =
exp(−η∑t−1

s=1 l̃
θ
s(ct,a))∑

a exp(−η∑t−1
s=1 l̃

θ
s(ct,a)

.

Step 6. Now since ηθ
tθc(i)

6 ηθ
tθc(i)+1

, and Ψθ
tθc(i)

(·, c) is increasing, we combine the results of
each step to deduce that:

Rq
T (θ

∗) 6 E

(∑

c

Nθ
T (c)∑

i=1

ηθ
tθc(i)

2δ
+

logA

ηθ
tθc(N

θ
T (c))

)
.

Since we choose ηθ
tθc(i)

=
√

δ log(A)
i

, we get:

Rq
T (θ

∗) 6 2E
(∑

c

√
N θ
T (c) logA

δ

)
6 2

√
TC logA

δ
.

�

We now combine Lemma 4.2 and Theorem 4.4 using Exp4 meta algorithm with δ = γ
A

to
get the final bound:
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Theorem 4.5 For any opponent, the adversarial ΦΘ-regret of Exp4/Exp3 is bounded as

R̃Θ
T = O(T 2/3(AC log(A))1/3 log(|Θ|)1/2),

where C = maxθ∈Θ |H/Φθ| is the maximum number of classes for models θ ∈ Θ.

Proof: Indeed we can apply Theorem 4.4 using Exp4 meta algorithm with δ = γ
A
. We get:

R̃Θ
T =

T∑

t=1

Ea1,...,at−1(rt(a
∗
[h<t]θ∗

)− Eat∼qtrt(at))

6 Rq
T (θ

∗) + (e− 1)γT +
A log(|Θ|)

γ

6 2

√
TAC logA

γ
+ 2γT +

A log(|Θ|)
γ

.

We thus choose γ = (AC log(A))1/3 log(|Θ|)1/2
(4T )1/3

to conclude. �

5.1.2 Φ-UCB in the rebel-bandit setting

Similarly, a bound on the Rebel-regret of the Φ∗-UCB algorithm can be derived assuming
that we consider a Φ∗-constrained opponent with Φ∗ = Φθ∗ ∈ ΦΘ.

Theorem 4.6 (Rebel regret bound for UCB) The Φθ∗-UCB algorithm in the Rebel ban-

dit setting where qt(a) > δ for all a, and provided α > 1/2, satisfies

Rq
T (θ

∗) 6
∑

c∈H/Φ∗

∑

a 6=a∗c

∆c(a)
[2α log(T )

∆c(a)2δ
+

√
πδ∆c(a)2

32α log T
+cα

]

We also have the distribution-free bound:

Rq
T (θ

∗) 6
√
TC∗A

√√√√4α log(T )

δ
+ cα +

√
πδ

32α log(T )
.

This enables us to deduce the first part of Theorem 4.3, following the same method as
Theorem 4.5 but for the stochastic ΦΘ-regret of Exp4/UCB.
Proof: We write bt the action proposed by the Φ-UCB algorithm at time t, and at the
action effectively played according to distribution qt. We introduce the notations: NT (c) =∑T

t=1 I[h<t]=c, then tc(i) = min{t;Nt(c) = i} and for all a ∈ A, NT (c, a) =
∑T

t=1 I[h<t]=cIat=a.
The proof mainly follows the lines of Bubeck (2010). Note that by definition, we want to
bound the following term:

Rq
T (θ

∗) =
∑

c

∑

a

∆c(a)E(

Nθ
T (c)∑

i=1

Ibt=a) (4.7)
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Step one. Decompose the event bt = a. Let us consider a time t for which [h<t] = c.
Then let us consider a sub-optimal arm a such that ∆c(a) > 0. Thus it appears that bt = a

if one of the following conditions holds:

(1) µ̃t,c(ac) 6 µc(ac)

(2) µ̃t,c(a) > µc(a)

(3) ∆c(a) < 2
√

α log T
Nθ

t−1(c,a)

Indeed, otherwise we would have

µ̃c(ac) > µc(ac) = µc(a) + ∆c(a)

> µc(a) + 2

√
α logNt(c)

Nt−1(c, a)
> µ̃c(a).

Thus we introduce the quantity uc(a) =
4α log T
∆c(a)2

, and deduce that:

E
(N

θ
T (c)∑

i=1

Ibt=a

)
6 E

(N
θ
T (c)∑

i=1

I(1)or(2)orNθ
t−1(c,a)<uc(a)

)
.

Step 2. Now since N θ
. (c, a) is an increasing function of time (note though, that it does

not increase by one each time bt is proposed...), we can define the stopping time τc(a) =

min{t;N θ
t (c, a) > uc(a)}, or equivalently the stopping instant ic(a) = min{i;N θ

tθc(i)
(c, a) >

uc(a)}. Thus we deduce that:

E
(N

θ
T (c)∑

i=1

Ibt=a

)
6 E(ic(a)) + E

( Nθ
T (c)∑

i=ic(a)+1

I(1)or(2)

)
(4.8)

Now we can bound the second term of (4.8) by a constant depending only on α, by an easy
peeling argument (we refer to Section 2.2 of Bubeck (2010)):

E
( Nθ

T (c)∑

i=ic(a)+1

I(1)or(2)

)
6 2E

( Nθ
T (c)∑

i=ic(a)+1

( log i

log 1/β
+ 1
) 1

i2βα

)
(4.9)

where β = 1
α+1/2

.
Then, we also have, by integration by parts:

2E
( Nθ

T (c)∑

i=ic(a)+1

( log i

log 1/β
+ 1
) 1

i2βα

)
6 2

∫ ∞

1

( log t

log 1/β
+ 1
) 1

t2βα
dt 6

4

log(1/β)(2βα− 1)2
.
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Step 3. Thus we focus on the first term E(ic(a)) of (4.8). Since we know that qt(a) > δ

for all a, t, we thus deduce that:

E(ic(a)) =
∞∑

l=0

P(ic(a) > l) 6 l0 +
∞∑

l=l0

P
(
∀j 6 l; N θ

tθc(j)
(c, a) < uc(a)

)

6 l0 +
∞∑

l=l0

P
(
∀j 6 l;

j∑

i=1

Ia
tθc (i)

=a − qtθc(i)(a) < uc(a)− δj
)
.

Now by property of martingale difference sequences, we deduce by setting l0 = p
uc(a)
δ

q,
that:

E(ic(a)) 6 l0 +
∞∑

l=l0

exp(−2(l − l0)
2δ2l)

6 l0 +
∞∑

l=l0

exp(−(l − l0)
2

2σ2
),

where we introduced the quantity σ2 = 1
4δ2l0

. Thus we deduce that:

E(ic(a) 6 p
uc(a)

δ
q+

√
π

8

√
δ

uc(a)
. (4.10)

Step 4. Finally, by combining (4.9), (4.10) with (4.8) and (4.7), we deduce the following
distribution-dependent bound on the rebel regret:

Rq
T (θ

∗) 6
∑

c∈H/Φ∗

∑

a 6=a∗c

∆c(a)
[2α log(T )

∆c(a)2δ
+

√
πδ∆c(a)2

32α log T
+cα

]
,

where cα = 1 + 4
log(α+1/2)

(α+1/2
α−1/2

)2. We deduce the distribution-free bound by the same argu-

ment as for Theorem 4.8, remarking that
√

π
8

√
δ∆c(a)2

4α log T
6
√

π
32α log(T )

= c′α. �

This enables us to deduce the following Theorem, that we prove using the same method
as that of Theorem 4.5 but for the stochastic ΦΘ-regret of Exp4/UCB.

Theorem 4.7 Assume that we consider a Φ∗-constrained opponent with Φ∗ ∈ ΦΘ, then the

stochastic ΦΘ-regret of Exp4/UCB is bounded as:

RΘ
T = O

(
(TA)2/3(C log(T ))1/3 log(|Θ|)1/2

)
,

where C = |H/Φ∗| is the number of classes of the model Φ∗ of the opponent.
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5.2 Playing against an opponent using a known model

In this section, we provide the sanity-check proofs corresponding to the case when the model
of the opponent ϕ⋆ is known by the learner.

5.2.1 Regret upper bounds against the best history-class-based strategy

Theorem 4.8 In the case of a Φ-constrained opponent, using the Φ-UCB algorithm with

parameter α > 1/2, we have the distribution-dependent bound:

RΦ
T 6

∑

c∈H/Φ;E(NT (c))>0

∑

a∈A;∆c(a)>0

4α log(T )

∆c(a)
+ ∆c(a)cα

where NT (c) =
∑T

t=1 I[h<t]=c, the per-class gaps ∆c(a)
def
= µc(a

∗
c) − µc(a), and the constant

cα = 1+ 4
log(α+1/2)

(α+1/2
α−1/2

)2. We also have a distribution-free bound (i.e. which does not depend

on the gaps):

RΦ
T 6

√
TAC

(
4α log(T ) + cα

)

where C = |{c ∈ |H/Φ|;E(NT (c)) > 0}| is the number of classes that may be activated during

the run.

Now, in the case of an arbitrary opponent, using Φ-Exp3 algorithm, we have:

R̃Φ
T 6

3√
2

√
TCA log(A).

Proof: Φ-UCB: The distribution-dependent bound for Φ-UCB is a direct application of

the result of Bubeck (2010) for the algorithm UCB about τa(t)
def
=
∑t

s=1 Ias=a where at is
played by UCB, that states that E(τa(t)) 6

4α log(t)
∆2

c(a)
+ cα. Indeed, we use the fact that

RΦ
T =

∑
c∈H/ΦRT (c) and thus remark that when a class c is visited, then we play according

to a UCB algorithm for this class.
Thus, for the distribution-free bound, we have:

RΦ
T =

∑

c

∑

a

∆c(a)E(τa(NT (c)))

6
∑

c

∑

a

√
E(τa(NT (c)))

√
4α log(T ) + cα

6
∑

c

√
E(NT (c))

√
A
√
4α log(T ) + cα

6

√
TCA

√
4α log(T ) + cα,

where we used that
∑

a τa(s) = s for all s, and
∑

cNT (c) = T , and the Cauchy-Schwartz
inequality twice.
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Φ-Exp3: The bound for Φ-Exp3 follows from the bound of the anytime version of the
Exp3 algorithm. Indeed we have

R̃Φ
T 6

∑

c

E(
A

2

NT (c)∑

i=1

ηci +
log(A)

ηcNT (c)

) ,

we deduce the bound by setting ηci =
√

2 logA
Ai

. �

5.2.2 Lower bounds on the regret

Theorem 4.9 Let sup represents the supremum taken over all Φ-constrained opponents and

inf the infimum over all forecasters, then the stochastic Φ-regret is lower-bounded as:

sup
Φ;|H/Φ|=C

inf
algo

sup
Φ−opp

RΦ
T >

1

20

√
TAC.

Now, let sup represents the supremum taken over all possible opponents and inf the infimum

over all forecasters, then the adversarial Φ-regret is lower-bounded as:

sup
Φ;|H/Φ|=C

inf
algo

sup
opp

R̃Φ
T >

1

20

√
TAC.

Proof: Let us fix the horizon T and the number of classes C. We consider the opponent
defined using the specific class-function Φ such that each class c is periodically visited every
C time steps, thus T/C times. Note that T = T

C
C and that this is intuitively the opponent

that makes the algorithm switch between classes the most.
Now we define more precisely the rewards output by the opponent. Let us consider the

stochastic bandits such that for each class c, one arm ac is a Bernoulli B((1 + εc)/2), and all
others are B((1− εc)/2).

Then by application of Lemma 2.2 in Bubeck (2010), for εc of order
√

A
s
, we have in the

Bandit information setting the following inequality:

sup
{ac}c

s∑

t=1

µc(ac)− µc(at) > sεc

(
1− 1

A
−
√
sεc
2A

log(
1 + εc
1− εc

)
)
.

Thus with the notations NT (c)
def
=

T∑

t=1

Ic=[h<t] for the number of times when class c is

activated up to time t and then tc(i)
def
= min{t;Nt(c) > i}, we deduce that:

sup
{ac}c

∑

c

T∑

t=1

(µc(ac)− µc(at))Ic=[h<t] =
∑

c

sup
ac

NT (c)∑

i=1

(µc(ac)− µc(atc(i)))

>
∑

c

NT (c)εc

(
1− 1

A
−
√
εc log(

1 + εc
1− εc

)

√
NT (c)

2A

)
.
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Since the ac are chosen by the opponent such that each class is visited exactly NT (c) =

T/C times, then we deduce that the Φ-pseudo-regret is lower-bounded as:

sup
{ac}c

∑

c

T∑

t=1

(µc(ac)− µc(at))Ic=[h<t] >
∑

c

T

C
εc

(
1− 1

A
−
√
εc log(

1 + εc
1− εc

)

√
T

2AC

)
.

Thus, after some tedious computations to optimize εc, we finally get a lower bound of order:
1
20

∑
c

√
T
C
A = 1

20

√
TAC. Note that this is valid only if εc ∼

√
A

NT (c)
is small (less than 1),

i.e. if the number of classes C is smaller than a constant times T
A

(and if this not the case,
the lower bound becomes obviously of order T ).

The second part of the Theorem can be proved using the same construction. �

5.3 Approximation error of the models

The following result sheds light on a specific term that appears to be an approximation term
of the true model θ∗ by other models θ.

Theorem 4.10 (Approximation error of bandit models) For any (pt(θ))t,θ ∈ [0, 1], thus

for any meta algorithm run on top of Exp3 algorithm and defined with qt(a) =
∑

θ pt(θ)ξ
θ
t (a)

and decreasing coefficient ηθt , the following holds true:

R̃Θ
T 6 E

(∑

θ

∑

c∈θ

Nθ
T (c)∑

i=1

ηθ
tθc(i)

A

2
ptθc(i)(θ) +

∑

θ

∑

c∈θ

logA

ηθ
tθc(N

θ
T (c))

+
∑

θ

∑

c∈θ
inf
aθc

Nθ
T (c)∑

i=1

(rtθc(i)(a
∗
[h

<tθc (i)
])− rtθc(i)(a

θ
c))ptθc(i)(θ)

)
.

The term on the second line is actually a mixture of approximation errors of each model, and
it seems it can not be reduced without further assumption on the quality of the models.

Proof: The proof is in four steps.

Step 1. Rewrite the regret to make appear the probabilities ξθt (a). We first introduce:

RT =
T∑

t=1

rt(a[h<t]∗)− rt(at)

=
∑

θ

T∑

t=1

Eat∼qt(
rt(at)pt(θ)

qt(at)
Iat=a[h<t]∗

)− rt(at)ξ
θ
t (at)pt(θ)

qt(at)
.
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Now we have: l̃θt (cθ, a) = (1− rt(a))
pt(θ)
qt(a)

Iat=aIcθ=[h<t]θ , thus taking the expectation over at
for each time t, we have:

R̃T =
T∑

t=1

Ear(rt(a[h<t]∗ − rt(at))

=
∑

θ

T∑

t=1

Eat

( pt(θ)
qt(at)

Iat=a[h<t]∗
− l̃θt ([h<t]θ, a[h<t]∗))

)

+
∑

θ

T∑

t=1

Eat

(
Ea∼ξθt (l̃

θ
t ([h<t]θ, a))−

pt(θ)ξ
θ
t (at)

qt(at)

)
.

We can simplify the above expression since Eat(
pt(θ)
qt(at)

Iat=a[h<t]∗
) = Eat(

pt(θ)ξθt (at)

qt(at)
) = pt(θ).

Step 2. Decompose the term Ea∼ξθt (l̃
θ
t ([h<t]θ, a)) in order to use the definition of ξθt .

Indeed, one can upper bound this term by

Ea∼ξθt (l̃
θ
t ([h<t]θ, a)) 6

ηθt
2
Ea∼ξθt (l̃

θ
t ([h<t]θ, a)

2)− 1

ηθt
log(

∑

a

exp(−ηθt l̃θt ([h<t]θ, a)ξθt (a))).

Thus, since by definition we have that ξθt (a) =
exp(−ηθt

∑t−1
s=1 l̃

θ
s([h<t]θ,a))∑

a exp(−ηθt
∑t−1

s=1 l̃
θ
s([h<t]θ,a)

, we can introduce

the quantity Ψθ
t (η, c) = 1

η
log( 1

A

∑
a exp(−η

∑t
s=1 l̃

θ
s(c, a))) so that the previous regret term

writes:

R̃T 6
∑

θ

T∑

t=1

Eat(
ηθt
2
(1− rt(at))

2p
2
t (θ)ξ

θ
t (at)

q2t (at)
)

+
∑

θ

( T∑

t=1

Eat(Ψ
θ
t−1(η

θ
t , [h<t]θ)−Ψθ

t (η
θ
t , [h<t]θ))− Eat(l̃

θ
t ([h<t]θ, a[h<t]∗))

)
.

Step 3. Introduce the equivalence classes. We now consider the term in the right hand
side of the above equation defined with Ψ functions. Note that we do not change the bound
on the term R̃T by considering the sum over the θ such that pt(θ) > 0.

Let us introduce the following notations N θ
t (c) =

t∑

s=1

Ic=[h<s]θIps(θ)>0 and then similarly

tθc(i) = min{t;N θ
t (c) = i}. Thus we can write:

∑
θ

∑T
t=1(Ψ

θ
t−1(η

θ
t , [h<t]θ)−Ψθ

t (η
θ
t , [h<t]θ))Ipt(θ)>0

=
∑

θ

∑
c∈θ
∑Nθ

T (c)
i=1 Ψθ

tθc(i)−1
(ηθ
tθc(i)

, c)−Ψθ
tθc(i)

(ηθ
tθc(i)

, c)

=
∑

θ

∑
c∈θ
∑Nθ

T (c)−1
i=1 (Ψθ

tθc(i)
(ηθ
tθc(i)+1

, c)−Ψθ
tθc(i)

(ηθ
tθc(i)

, c)

−Ψθ
tθc(N

θ
T (c))

(ηθ
tθc(N

θ
T (c))

, c).
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Now, by definition of Ψθ
t , for any given a = aθc we have

−Ψθ
tθc(N

θ
T (c))(η

θ
tθc(N

θ
T (c)), c) =

logA

η
− 1

η
log
( 1
A

∑

a

exp
(
− η

tθc(N
θ
T (c))∑

s=1

l̃θs(c, a)
))

6
logA

η
+

tθc(N
θ
T (c))∑

s=1

l̃θs(c, a) ,

where η is a shorthand notation for ηθ
tθc(N

θ
T (c))

.

Step 4. Now since ηθ
tθc(i)

6 ηθ
tθc(i)+1

and Ψθ
tθc(i)

(·, c) is increasing for all θ, c, we deduce from
the previous equations that:

R̃T 6
∑

θ

∑

c∈θ

Nθ
T (c)∑

i=1

∑

a

ηθ
tθc(i)

2

p2
tθc(i)

(θ)ξθ
tθc(i)

(a)

qtθc(i)(a)
+
∑

θ

∑

c∈θ

logA

ηθ
tθc(N

θ
T (c))

+
∑

θ

∑

c∈θ
inf
aθc

tθc(N
θ
T (c))∑

t=1

Eat(l̃
θ
t (c, a

θ
c)− l̃θt (c, a[h<t]∗)).

Now we conclude by taking the expectation, seeing that ptθc(i)(θ)ξtθc(i) 6 qtθc(i)(a), and that
by definition Eat(l̃

θ
t (c, a

θ
c)) = (1− rt(a

θ
c))pt(θ)Ic=[h<t]θ . �



Part II

The Batch World: Randomization and

Sampling.
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After this first part where we studied some variations of the bandit problem, which can be
seen as a pure online problem when compared to the general reinforcement learning problem,
we now turn to the study of some important questions that concern so-called batch learning,
i.e. when we are given a batch of data instead of a stream of data.

Why studying batch learning is important for sequential learning. First studying
batch learning is interesting by itself, actually almost all Machine Learning is about batch
data, and it involves important notions such as regression, sampling or learning complexity.
This is also useful for the study of the sequential learning setting, which is maybe less
obvious. The general reason here is that since learning with a given batch data is easier
than learning while sequentially acquiring data - the notion of regret actually measures the
gap of performance - then it makes sense to first study the fundamental questions of batch
learning before developing similar tools for the sequential learning problem. Note also that
studying batch learning is a priori not sufficient since major questions such as for instance the
exploration-exploitation tradeoff, which is fundamental in sequential learning, do not appear
in batch learning.

One example of transfer of knowledge from batch to sequential learning is that the precise
understanding of a regression problem with random design is a natural first step before
addressing one challenging task of reinforcement learning that makes use of regression with
Markov design, see Lazaric et al. (2010a). Another includes an extension of concentration
inequalities to their self-normalized version, that we showed to be useful in the bandit setting,
see chapter 2, and a recent successful idea considers empirical complexity for batch data such
as the Rademacher complexity that has been extended to the case of sequential learning, see
Rakhlin et al. (2010), in order to derive a control on the empirical process similar to batch
theory.

Now, there are of course plenty of important concepts coming from statistical theory for
batch data that still need to be understood from a sequential point of view - data driven
penalties, local CLT, Sanov’s theorem, PAC analysis, transport - and this opens a wide
avenue of research in order to develop the corresponding concepts for non-asymptotic theory
of sequential learning.

Contributions. In Chapter 5, we present a general survey of tools coming from statistical
theory that we gather here for the sake of clarity, since most of the theorems presented in
this chapter are used here and there in this Ph.D. dissertation.

In Chapter 6, we are interested in the use of random matrices in a setting of regression
with random design. Interestingly, if the tools needed to assess performance bounds of the
proposed estimators have only been popularized quite recently due to the many theoretical
and practical developments that the topic of random matrices has lead to in the last few years,
we realized that such idea of using random projections, or random representations as they
are called in Sutton (1996), have been used for long in more applied settings, like robotics,
or texture synthesis for instance, which gives additional motivation for understanding them.
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For instance, Richard Sutton already studied experimentally the effect of randomization in
neural networks in Sutton and Whitehead (1993) and also highlighted that the 1962 Rosen-
blatt’s perceptron was originally used with a pre-randomization layer in order to improve
performance.

In Chapter 7, we consider another use of random matrices in a more traditional way linked
with the problem of recovery of a sparse function. Specifically, we show how the use of random
integral operators enables to relax the traditional assumptions of (almost) orthogonality of
the underlying dictionary, turning the recovery problem into a simple integration problem.

Finally in Chapter 8, although slightly disconnected with the rest of this manuscript, we
analyze the Rademacher complexity of a problem known as multi-view learning.



Chapter 5

Statistical Learning.

In this chapter, we present theorems and results coming from different areas of statistical
learning theory that we either use in some chapters of this thesis or that we just consider to
be important for the current and future development of bandit and reinforcement learning
theory. We think it is more convenient to have such theorems and pointers gathered in a
dedicated chapter rather than spread here and there.

Contents
1 The concentration of measure phenomenon . . . . . . . . . . . . . . . 107

1.1 Concentration inequalities for i.i.d. sequences . . . . . . . . . . . . . . . 107

1.2 Concentration inequalities for decision processes . . . . . . . . . . . . . . 112

1.3 Random matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

1.4 Talagrand’s generic chaining . . . . . . . . . . . . . . . . . . . . . . . . . 115

2 Probably-Approximately-Correct analysis . . . . . . . . . . . . . . . . 116

2.1 Abc of Pac-analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

2.2 Pac-analysis of regression . . . . . . . . . . . . . . . . . . . . . . . . . . 118

1 The concentration of measure phenomenon

The concentration of measure phenomenon Ledoux (2001), and its implementation in terms
of concentration inequalities is certainly the most useful tool of the last decade in order to
prove performance bounds of algorithms in machine learning. It enables to derive results not
only asymptotically, but also for a finite amount of data.

We present in this section different types of inequalities. First we consider concentration
inequalities for a single random identically distributed (i.i.d.) process, then we consider more
refined results useful for decision processes, which include results for martingales. We finally
quickly present some results about random matrices.

1.1 Concentration inequalities for i.i.d. sequences

Hoeffding’s inequality The following simple Lemma relates the logarithm of the moment
generating function of a bounded random variable to its expectation (see Hoeffding (1963)).
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Lemma 5.1 (Hoeffding’s lemma) Let X be real random variable that is almost surely

contained in the interval [a, b]. Then for all λ ∈ R,

log(E(exp(λX))) 6 λE(X) +
λ2(b− a)2

8

This lemma is at the core of many useful results, like the better known inequality from
Hoeffding (1963), that can be seen as a non asymptotic law of large numbers.

Theorem 5.1 (Hoeffding’s inequality) Let {Xi}16i6n be real centered independent ran-

dom variables, such that for all i 6 n, Xi ∈ [ai, bi] almost surely. Then for any ε > 0, we

have

P(
n∑

i=1

Xi > ε) 6 exp
(
− 2ε2∑n

i=1(bi − ai)2

)

This theorem is of practical interest since it gives a bound of the mean of random vari-
ables that only depends on the support of the unknown law, which explains the tremendous
amount of results that directly use this inequality. Note thus, that it is natural to ask to
which extent the bound provided by Hoeffding’s inequality is tight. For instance, the fol-
lowing Bernstein’s inequality (approximation of Bennett’s inequality) may be applied when
additional information is known about the variance of the law, and is generally tighter than
Hoeffding when the variance is small, see Bernstein (1924).

Theorem 5.2 (Bernstein’s inequality) Let {Xi}16i6n be independent real valued random

variables and assume that there exist two positive numbers vn and dn such that:

n∑

i=1

E(X2
i ) 6 vn and ∀r ∈ N; r > 3,

n∑

i=1

E[(Xi)
r
+] 6

r!

2
vnd

r−2
n .

Let Sn
def
=

n∑

i=1

(Xi − E(Xi)), then for any x > 0, we have

P(Sn >
√
2vnx+ dnx) 6 exp(−x).

Note also that historically, other inequalities was proved by Sergei Bernstein, and then
were rediscovered several times in various forms. Thus, Chernoff’s bound, Hoeffding’s in-
equality and Azuma’s inequality are in fact special cases of original Bernstein’s inequalities.
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Orlicz norms A convenient way to understand the previous result, is to consider that
the knowledge of the variance gives control on the tails of the distribution of the random
variable. More generally, such a control can be understood by means of Orlicz spaces and
Orlicz’ norms.

Definition 5.1 (Orlicz’ space) A Young-Orlicz modulus is a convex increasing function

ψ from [0,∞) onto [0,∞) (thus ψ(0) = 0 and ψ(x) → ∞ when x → ∞). Let (X, τ, µ) be

a measure space and ψ be a Young-Orlicz modulus. Denote by Lψ(X, τ, µ) the space of all

real-valued measurable functions f onto X such that

||f ||ψ := inf{c > 0 : Eµ(ψ(|f(X)|/c)) 6 1} <∞.

Then Lψ(X, τ, µ), the set of all the equivalence classes of functions in Lψ(X, τ, µ) for the

almost everywhere equality, is called an Orlicz’ space.

Note that there are others equivalent definitions of Orlicz norms, see Pollard (1990). A
specific Young-Orlicz modulus is the following one ψα(x) := exp(xα) − 1, α > 1. Note that
we have L∞ ⊂ Lψ′

α
⊂ Lψα ⊂ L2 for all α, α′ 6 α. This modulus has the following interesting

property (see Pollard (1990)) that is directly related to a control on the tail probabilities:

Proposition 5.1 Let X be a real-valued random variable. Then the following statements

are equivalent:

• ∃c > 0; ||X||ψα 6 c.

• ∃c1, c2; ∀t > 0, P(|X| > t) 6 c1 exp
(
− ( t

c2
)α
)
.

Moreover if ||X||ψα 6 c, then the second line holds with c1 = 2 and c2 = c.

Indeed such a proposition shows that controlling a ψα-Orlicz norm provides a very precise
behavior on the deviation of X, and thus enables to get concentration results for sums of
random variables more precise than Bernstein type inequalities. This result is actually more
general, see Pollard (1990) for very nice results around this notion.

Sanov’s theorem Now, in order to even better understand the tightness of the Hoeffding’s
inequality, one may want to get bounds that depend on the law of the random variable itself,
and not only on features such as its support, its variance or its α-orlicz norm. Such a result
has been developed for instance in Sanov (1957) and is known as Sanov’s Theorem. See also
Csiszár (1984), Dembo and Zeitouni (1998) for important refinements. First, the following
asymptotic statement gives the precise distribution-dependent quantity that should appear
in the previous inequalities. Let us write ν a distribution probability and ν̂n be the empirical
distribution defined using n samples i.i.d. from ν.
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Theorem 5.3 (Sanov’s theorem) Let D be a set of distributions over a space X , endowed

with the topology of narrow convergence. We have

lim inf
n

1

n
logP(ν̂n ∈ D̊) > −Λν(D̊)

lim sup
n

1

n
logP(ν̂n ∈ D̄) 6 −Λν(D̄)

where Λν(A)
def
= infν′∈AK(ν ′, ν) and K(ν ′, ν) is the Kullback-Leibler divergence between the

distributions ν ′ and ν.

Non-asymptotic behavior In order to relate this quantity to the Hoeffding’s bound, we
need the non-asymptotic behavior counterpart of the previous inequality. In the case of
convex set of distributions, we have this result by Dinwoodie (1992). See also Csiszár (1984)
for a more general result on so-called almost completely convex sets.

Theorem 5.4 (Non asymptotic Sanov’s theorem for convex sets) Let D be a convex

set of distributions over a space X . Then, we have, for all n > 0,

P(ν̂n ∈ D̊) 6 exp(−nΛν(D̊)) .

Unfortunately, this result do not generalize nicely to the case of non-convex sets of distri-
butions. In the general case, without any convexity assumption on D ⊂ M([0, 1]), we only
have the following result, specified from Dembo and Zeitouni (1998) for distributions with
support included in [0, 1].

Theorem 5.5 (General non asymptotic Sanov’s theorem) We have, for all n > 0,

P(ν̂n ∈ D) 6 inf
{
M(M([0, 1]), δ)e−nΛν(Dδ) ; δ > 0

}

where M([0, 1]) is the set of probability measures on [0, 1], M(A, δ) is the minimal number

of balls of radius δ that covers the set A and Dδ = {ν ′ ∈ M([0, 1]); dlevy(ν
′,D) > δ} is the

enlargement of the the set D for the levy distance.

Pinsker’s inequality Sanov’s theorem gives the precise asymptotic behavior that should
appear in the case of Hoeffding’s inequality. This behavior makes appear the Kullback-
Leibler divergence as a fundamental underlying quantity while Hoeffding’s inequality only
considers the mean; let us focus on a distribution ν with support included in [0, 1], mean
µ and empirical mean µ̂n and distribution ν̂n. We have on the one hand by Hoeffding’s
inequality, for all δ > 0

P(µ̂t > µ+ δ) 6 exp(−t2δ2),
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and on the other hand by the non-asymptotic Sanov’s theorem

P(ν̂t ∈ D+(µ+ δ)) 6 exp(−tΛν(D+(µ+ δ))) ,

where D+(x)
def
= {ν ′; ν ′ has mean µ′ higher than x} is the convex set defined such that

P(µ̂t > µ+ δ) = P(ν̂t ∈ D+(µ+ δ)) .

In order to link 2δ2 to the quantity Λν(D+(µ + δ)) that makes use of the Kullback-Leibler
divergence, and thus understand how tight is Hoeffding’s inequality, we now we make use of
Pinsker’s inequality (see e.g. Cover and Thomas (1991)).

Lemma 5.2 (Pinsker’s inequality) For all distributions ν, ν ′, then

K(ν, ν ′) >
||ν − ν ′||2TV

2
,

where ||ν − ν ′||TV is the total variation norm between ν and ν ′.

Note that there is a real gap between the two quantities involved in Pinsker’s inequality.
Indeed let us mention the following improved bound, due to Fedotov et al. (2003)

KL(ν||ν ′) > ||ν − ν ′||2TV
2

+
||ν − ν ′||4TV

36
+

||ν − ν ′||6TV
270

+
24∑

k=4

ck||ν − ν ′||2kTV ,

where all the ck are positive explicit optimal terms, i.e. we can not extend this bound to
higher order polynomials with all positive monomes.

Now in our case we simply combine the above inequality together with the following
simple remark for distributions with support in [0, 1].

Lemma 5.3 In the case when ν and ν ′ have support included in [0, 1], then we have the

inequality ||ν − ν ′||TV > 2|µ− µ′|.

Proof: Indeed, it can be shown that ||ν−ν ′||TV = 2(ν(A)−ν ′(A)), where A = {x : ν(x)
ν′(x) > 1}.

Then, since x ∈ [0, 1], we also have that ν(A)−ν ′(A) =
∫
A
ν(x)−ν ′(x) >

∫
A
x(ν(x)−ν ′(x))+∫

A
x(ν(x) − ν ′(x)), where the second term is negative by definition of A. Thus we deduce

that ||ν − ν ′||TV > 2(µ− µ′), and we conclude by symmetry. �

Note that in general, for a given set of distributions D, lower bounding the term Λν(D)

may be a difficult task. Let us refer the interested reader to some useful insights coming from
Geometrical information theory (see Amari and Nagaoka (2000)), as well as from Transport
theory (see Gozlan and Léonard (2010)) that precisely addresses such questions, as well as
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many other extensions. In our case where D = D+(µ + δ), a lower bound simply follows by
the previous inequalities:

Λν(D+(µ+ δ)) = inf{KL(ν ′||ν); ν ′ s.t.µ′ > µ+ δ}

> inf{(2|µ
′ − µ|)2
2

; ν ′ s.t.µ′ > µ+ δ}

> 2δ2 +
4δ4

9
+

26δ6

270
+

24∑

k=4

ck(2δ)
2k > 2δ2 ,

which shows more precisely in which sense we can say that the Hoeffding’s inequality is not
tight.

1.2 Concentration inequalities for decision processes

Maximal and self-normalized inequalities Concentration inequalities are nice but we
may often want a more uniform result over the number of samples. Instead of using a naive
union bound that is generally suboptimal, we can instead resort to so-called maximal inequal-
ities. For instance the following bound is derived from Azuma’s inequality for martingales,
see Azuma (1967).

Theorem 5.6 (Maximal Hoeffding’s inequality) Let {Xi}16i>n be a sequence of non-

negative independent random variables Xi ∈ [0, 1], P-a.s. with mean µ. Then for all x > 0,

P( sup
16k6n

∑k
i=1Xi − k√

n
> x) 6 e−2x2 .

Note that here, the term after the supremum is normalized by
√
n whereas it would seem

more natural to have a normalization by a factor
√
k instead. This is exactly the purpose of

self-normalized inequalities, which can be seen as a stronger notion. In Garivier and Leonardi
(2010), the author proposed such self-normalized inequalities, we only report one simplified
version here.

Let Fn the σ-field of the past (so that for k > n, Xk is independent from Fn) and let us
consider a predictable sequence (εi)i>1 of Bernoulli variables (i.e. such that for all i > 0, εi
is Fi−1-measurable).

We further introduce the following notations:

Sk =
k∑

i=1

Xiεi, Mk =
k∑

i=1

µiεi, Nk =
k∑

i=1

εi .

Theorem 5.7 (Self-Normalized Hoeffding’s inequality) For all x > 0, for all η > 0,

P( sup
16k6n

Sk −Mk√
Nk

> x) 6 p
log(n)

log(1 + η)
qe−2x2(1− η2

16
) .
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The idea of the proof is to consider a cylinder of high probability around the trajectory
of the empirical process, which enables to replace the naive union bound over all possible
instants by a peeling argument, and thus get a rate similar to the non-maximal inequality up
to a logarithmic factor. Other tight results can be found in Garivier (2011) and are related
to the law of the Iterated logarithm.

Interestingly, another consequence of the analysis developed in Garivier and Leonardi
(2010) is that one can prove the following inequality in the case of Bernoulli random variables

Lemma 5.4 For all p ∈ [0, 1], all ε > 1, and all k > 1,

Pp

{
Nk K

(
β
(
p̂Nk

)
, β(p)

)
> ε

}
6 2e

⌈
ε log k

⌉
e−ε .

where p̂Nk
= Sk

Nk
and β(p) is the law of a Bernoulli random variable with parameter p.

Concentration inequalities for martingales We now detail some important results for
concentration of martingales sequences.

Following the important work of Bercu and Touati (2008), where some refinements of the
following results can be found, let us consider (Mn), a locally square integrable real martingale
adapted to a filtration F = (Fn) with M0 = 0. The predictable quadratic variation and the
total quadratic variation of (Mn) are respectively given by

〈M〉n =
n∑

k=1

E[∆M2
k |Fk−1] and [M ]n =

n∑

k=1

∆M2
k

where ∆Mn =Mn −Mn−1. The celebrated Azuma–Hoeffding inequality is as follows.

Theorem 5.8 (Azuma–Hoeffding’s inequality) Let (Mn) be a locally square integrable

real martingale such that, for each 1 6 k 6 n, ak 6 ∆Mk 6 bk a.s. for some constants

ak < bk. Then, for all x > 0,

P (|Mn| > x) 6 2 exp
(
− 2x2∑n

k=1(bk − ak)2

)
.

The next result is from (Freedman, 1975, Th. 1.6).

Theorem 5.9 (Freedman’s inequality) Let (Mn) be a locally square integrable real mar-

tingale such that, for each 1 6 k 6 n, |∆Mk| 6 c a.s. for some constant c > 0. Then, for all

x, y > 0,

P(Mn > x, 〈M〉n 6 y) 6 exp
(
− x2

2(y + cx)

)
.

Under some additional assumption, we have the following more useful result:
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Theorem 5.10 (De la Peña’s inequality) If (Mn) is locally square integrable and condi-

tionally symmetric which means that for n > 1, the conditional distribution of ∆Mn given

Fn−1 is symmetric, then ∀x, y > 0,

P(Mn > x, [M ]n 6 y) 6 exp
(
−x

2

2y

)

Now if N ∈ N is a finite stopping time, we want to give a a concentration inequality for the
self-normalized martingale MN/

√
〈M〉N . However, it is well-known that this is not possible

in general (see De la Peña (1999), de la Peña et al. (2004)). Fortunately, the fact that no
concentration result applies does not prevent us with getting some useful result. Actually, it
is proved in Delattre and Gaiffas (2010) that one can have the following general result (which
is not a concentration result):

Theorem 5.11 (Gaiffas’ inequality) Let v and x be positive numbers and let N be a finite

stopping time. Assume that M0 = 0 and that

∆Mn = sn−1εn ,

where (sn)n>0 and (εn)n>0 are Fn-adapted sequences with

E(εn|Fn−1) = 0 and |εn| 6 b almost surely for any n > 1 .

Then we have the property that

P(|MN | >
√
VNc1b

√
x+ c2 log

(
log
( v
VN

∨ VN
v

)
∨ e
)
6 c(1 + eb

2

)e−x

where c, c1, c2 are explicit numerical constants and Vn is defined by Vn
def
=

n∑

i=1

s2k−1 .

1.3 Random matrices

We now provide some useful results about random matrices. The first interesting one is given
by the following constructive version of the Johnson-Lindenstrauss Lemma (see Dasgupta
and Gupta (2003)). Then we detail results about the behavior of singular values of random
matrices that are of special interest when solving linear systems.

Johnson-Lindenstrauss Lemma Let A be a P × F matrix of iid Gaussian N (0, 1/P )

entries. Then the following lemma states that the random (with respect to the choice of the
matrix A) variable ||Au||2 concentrates around its expectation ||u||2 when P is large.

Lemma 5.5 For any vector u in R
F and any ε ∈ (0, 1), we have

P

(
||Au||2 > (1 + ε)||u||2

)
6 e−P (ε2/4−ε3/6) ,

P

(
||Au||2 6 (1− ε)||u||2

)
6 e−P (ε2/4−ε3/6) .
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The proof directly uses concentration inequalities like Cramér (1938) large deviation The-
orem, and may be found e.g. in Achlioptas (2003). Note that the gaussianity is not needed
here as only sub-gaussianity is used, and this is also true for other distributions including for
instance:

• ± Rademacher distributions which takes values ±1/
√
P with equal probability 1/2,

• Distribution taking values ±
√
3/P with probability 1/6 and 0 with probability 2/3

which produces sparser matrices.

Singular values The asymptotic behavior of the singular values of Random matrices was
studied long ago, and very precise a deep results have been found, see Wigner (1958),
Marčenko and Pastur (1967), Tao et al. (2010) for instance.

A first useful non-asymptotic property of random matrices is the following result by Edel-
man (1988) that gives a lower bound of the smallest singular value of A (i.e. the eigenvalue
of

√
ATA), which is of direct interest when considering existence or stability property of least

squares estimates.

Theorem 5.12 (Smallest singular value of Gaussian matrices) Let A be an n × n

random matrix whose entries are independent standard normal random variables. Then for

every n and fixed ε > 0 one has the following non-asymptotic bound:

P(smin(A) 6 εn−1/2) 6 ε.

Actually one can prove more general results including results for the largest eigenvalue.
We refer to Rudelson and Vershynin (2010) for further developments on this topic. The
following result holds for arbitrary sub-gaussian matrix, see Rudelson and Vershynin (2008a):

Theorem 5.13 (Smallest singular value of rectangular random matrices) Let A be

an N×n random matrix whose entries are independent and identically distributed subgaussian

random variables with zero mean and unit variance. Then for all ε > 0,

P(smin(A) 6 ε(
√
N −

√
n− 1)) 6 (Cε)N−n+1 + cN

where C > 0 and c ∈ (0, 1) depend only on the subgaussian moment of the entries.

1.4 Talagrand’s generic chaining

In order to go beyond the control of a sole random variable, we now quickly describe so-called
Talagrand’s generic chaining, see Talagrand (2005). Let X be random variable, and F be a
class of functions, centered w.r.t. the law of X. Chaining enables to bound the supremum of
the empirical sums over the class F , once we have introduced the distance d such that the
following holds true:

P

(
|

n∑

i=1

(f1(Xi)− f2(Xi))| > td(f1, f2)
)
6 2 exp (−t2/2).
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Note that for bounded functions, an application of Hoeffding’s lemma shows that d(f1, f2) is
typically of order

√
n. Now, using this distance d, we have the following property:

E

(
sup
f∈F

1

n

n∑

i=1

f(Xi)
)

= O(
1

n

∫ ∞

0

√
log(N (ε,F , d))dε)

where N (ε,F , d) is covering number of the class F with balls of radius ε.
See also Audibert and Bousquet (2007) for a nice survey of related results including results

in high probability. For instance let us use the standard notations Pnf
def
=

1

n

n∑

i=1

f(Xi) and

Pf = E(f(X)). Then we have the following result that holds with probability higher than
1− δ:

sup
f∈F

{Pf − Pnf} 6 C
( 1√

n
E

∫ ∞

0

√
log(N (ε,F , dn))dε+

√
log(δ−1)

n

)

where C is some numerical constant and dn(f1, f2)
def
=
√
Pn(f1 − f2)2.

There are of course plenty of other results including the use of Rademacher complexities,
Bernstein type inequalities, control in other useful norms such as the empirical sup norm,
small ball estimates...etc

2 Probably-Approximately-Correct analysis

In this section, we present tools from Probably Approximately Correct (PAC) analysis, which
can be seen as an alternative to analysis based on concentration inequalities. This approach
has been popularized over the last few years as it leads to tighter results than concentra-
tion inequalities based approach as well as simpler proofs. The small disadvantage of these
methods is that we need to sample according to a specific (Gibbs) distribution, which may
be hard to do in general, but important progress have been made also in this direction; see
Narayanan and Rakhlin (2010) for instance when the potential function is convex. Although
we do not explicitly make use of these tools in this Ph.D. thesis (but note they are related
to the exponentially weighted forecaster presented in chapter 1), we believe they are very
important for the development of future Bandit and Reinforcement Learning theory.

2.1 Abc of Pac-analysis

Let us first introduce the following notations, for a given real-valued function f :

E
+f(X)

def
= logE exp(f(X)) and E

−f(X)
def
= − logE exp(−f(X)) .

Note that E+f(X) = −E
−(−f(X)). The following immediate property justifies the notation:
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Lemma 5.6 (Structural property) For a given real-valued function f , we have

E
−f(X) 6 Ef(X) 6 E

+f(X) ,

Moreover, if ∀x 0 6 f(x) 6 b, then we have

E
+f(X)− eb − 1− b

b2
Ef 2(X) 6 Ef(X) 6 E

−f(X) +
1

2
Ef 2(X) ,

where the right hand side inequality holds for non-negative unbounded f as well.

Proof: The proof of the first line is direct by application of Jensen’s inequality, the proof of
the second line comes from a Taylor expansion of exp, see for instance Lemma 3.3 of Auer
et al. (1995) for details. �

The two following inequalities correspond to Lemma 4.2 in Audibert and Catoni (2010b):

Lemma 5.7 For a given real-valued function of two variables g, we have

E
+
x∼νE

−
y∼ν′g(x, y) 6 E

−
y∼ν′E

+
x∼νg(x, y) ,

Ex∼νE
−
y∼ν′g(x, y) 6 E

−
y∼ν′Ex∼νg(x, y) .

After presenting the properties of E+ and of E−, we now present the two key formulas
that are used in PAC analysis:

Lemma 5.8 (Key PAC formulas) Let Cb(X ) be the set of continuous and bounded func-

tions on X . The two formulas hold:

• (Variational formula) For any distributions ν, ν ′ ∈ P(X ), then

K(ν, ν ′) = sup{Eν(f(X))− E
+
ν′(f(X)); f ∈ Cb(X )} ,

• (Entropy formula) For any function f ∈ Cb(X ),and distribution ν ′ ∈ P(X ), then

E
+
ν′f(X) = sup

ν∈P(X )

{Eνf(X)−K(ν, ν ′)} .

Note that these formulas are generally used with X being a function space F . Note also that
the entropy formula is generally written in the following equivalent form:

exp{ sup
ν∈P(X )

{Eνf(X)−K(ν, ν ′)}} = Eν′(exp(f(X)) .

The core of PAC analysis is finally given by the following immediate property:

Lemma 5.9 Let X be some real-valued random variable. We have the property that whenever

E
+X 6 0, then for all δ > 0, with probability higher than 1− δ, it holds that

X 6 log(δ−1) .
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Interestingly, the equivalent of Hoeffding’s and Bernstein’s inequality can be derived as
well for the PAC analysis. The following results are adapted from Alquier (2008):

Lemma 5.10 (PAC Hoeffding’s inequality) For every a ∈ (0, 1), positive function f

and n i.i.d. samples {Xi}i6n ∼ PX , we have the property that

E
+
X

( 1
n

n∑

i=1

ϕa(f(Xi))− ϕa(EXf(X))
)
= 0

where ϕa(t) = n log(1− t
n
∧ a).

Lemma 5.11 (PAC Bernstein’s inequality) For every positive function f bounded by b

and n i.i.d. samples {Xi}i6n ∼ PX , we have the property that

E
+
X

(
EXf(X)− 1

n

n∑

i=1

f(Xi)−
σ2

n
g(
2b

n
)
)
6 0

where σ2 = E(f 2(X)) and g(x)
def
= exp(x)−1−x

x2
.

2.2 Pac-analysis of regression

In order to motivate the benefit of PAC analysis, we now give a short application to regression,
re-deriving one of the results proved in Audibert and Catoni (2010b) for which we hope we
provide additional intuition. It is here striking to note the simplicity of the proof as well as
the generality and tightness of the bound derived using such technique.

Setting. We consider a regression model of the form Y = f ⋆(X) + η where Z = (X, Y )

follows a low P , f ⋆ ∈ F and η is a centered noise independent from Z. For some positive
real-valued loss function l, we introduce l(f, Z) ∈ R

+ the prediction loss of a function f ∈ F
for the random variable Z, and then for f, f ′ ∈ F , the prediction gap between f and f ′

∆(f, f ′)
def
= l(f, Z)− l(f ′, Z).

The goal, given an i.i.d {Zi}i6N sample from P is to build some probability distribution
π̂ such that the quantity ∆(f̂ , f ⋆) where f̂ ∼ π̂ is minimal with high P × π̂-probability.

Assumptions. We report here the two following assumptions from Audibert and Catoni
(2010b):

• (A) There exists some η ∈ (0, 1) and a known λ such that for all f ∈ F ,

1

1 + η
E
+
Zλ∆(f, f ⋆) 6 EZλ∆(f, f ⋆) 6

1

1− η
E

−
Zλ∆(f, f ⋆)

This assumption corresponds to a moment assumption (as suggests Lemma 5.6 above);
for the square loss l(f, Z) = (Y − f(X))2, Lemma 3.4 of Audibert and Catoni (2010b)
shows that it is satisfied whenever F has finite L∞-diameter and if ∃A > 0 such that
the quantity E

{
exp

(
A−1|Y − f ⋆(X)|

)
|X = x

}
is uniformly bounded over X .
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• (B) There exists a known probability distribution π, and positive constants D, c such
that for every 0 < α < β,

E
−
f∼πβEZ∆(f, f ⋆)− E

−
f∼παEZ∆(f, f ⋆) 6 D log(

cβ

α
) .

From Lemma 3.3 of Audibert and Catoni (2010b) this assumptions holds for the square
loss, and F being a linear space of dimension d, with π being the uniform distribution
on F , c = 1 and D = d

2
.

Algorithm. The main idea is the use of a Gibbs distribution. For a reference measure π
on F , and some function ξ : F → R, we define π−ξ to be the distribution with density w.r.t.
π:

dπ−ξ
dπ

(f) =
exp(−ξ(f))∫

exp(−ξ(f ′))π(df ′)
.

Note that this naturally involves E
− as can be seen from the relation

log(
dπ−ξ
dπ

(f)) = E
−
π ξ(f)− ξ(f) .

Note also that since E
+
π−ξ
ξ(f) = log(π(F)) + E

−
π (ξ(f)), we naturally have for all δ ∈ (0, 1):

Pπ−ξ

(
ξ(f)) 6 log(π(F)) + E

−
π ξ(f) + log(1/δ)

)
> 1− δ .

We consider from now on that the π̂ is the specific Gibbs distribution defined using
ξ(f) = −nλPnl(f, Z) where λ is the constant of hypothesis (A), which is also the same as

with ξ(f)
def
= −nλPn∆(f, f ⋆). We introduce for symmetry reasons the Gibbs distribution π0

defined using ξ(f)
def
= −nλ0EZ∆(f, f ⋆) for some constant λ0 that has to be tuned.

Theorem 5.14 (PAC risk bounds for regression) Under the two previous assumptions,

the random estimate f̂ ∼ π̂ satisfies for all 0 < λ0 < (1 − η)λ with P × π̂-probability higher

than 1− δ

EZ∆(f̂ , f ⋆) 6
1

n[(1− η)λ− λ0]

[
D log

(c(1 + η)λ

λ0

)
+ 2 log(2/δ)

]
.

Proof: Step 1. Empirical and expected gap. We have the property that for a fixed f ,
E
−
Z(nPn∆(f, f ⋆)) = nE−

Z∆(f, f ⋆), which successively entails that

E
−
Z

[
nλPn∆(f, f ⋆)− nE−

Zλ∆(f, f ⋆)
]
= 0 ,

then E
+
Z

[
nE−

Zλ∆(f, f ⋆)− nλPn∆(f, f ⋆)
]
= 0 ,

then E
+
(Z,f)∼P×π0

[
nE−

Zλ∆(f, f ⋆)− nλPn∆(f, f ⋆)
]
= 0 ,

where we used in the second line that E
+
Z(−f) = −E

−(f), and in the third line that π0 is a
distribution that does not dependent on the random variable Z.
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Step 2. The benefit of using a Gibbs measure. Now we can not use this formula
for our distribution π̂ since it depends on the sample explicitly. In order to overcome this,
we remark that when π0 << π̂, then the previous formula can be rewritten

E
+

(Z,f̂)∼P×π̂
[
nE−

Zλ∆(f̂ , f ⋆)− nλPn∆(f̂ , f ⋆) + log
dπ0
dπ̂

(f̂)
]
= 0 .

and in the general case the equality becomes an inequality.
Thus this simple remark together with the definition of the Gibbs measure prove that

E
+

(Z,f̂)∼P×π̂
(
V (Z, f̂)

)
6 0, i.e. that V (Z, f̂) 6 log(1/δ) with P × π̂-probability higher than

1− δ, where we introduced for convenience the quantity

V (Z, f̂)
def
= [nE−

Zλ∆(f̂ , f ⋆)− nλPn∆(f̂ , f ⋆)] + [nPnλ∆(f̂ , f ⋆)− E
−
π nλPn∆(f, f ⋆)]

+[E−
π nλ0EZ∆(f, f ⋆)− nλ0EZ∆(f̂ , f ⋆)] ,

which further simplifies into

V (Z, f̂) = [nE−
Zλ∆(f̂ , f ⋆)− E

−
π nλPn∆(f, f ⋆)] + [E−

π nλ0EZ∆(f, f ⋆)− nλ0EZ∆(f̂ , f ⋆)] .

Step 3. Cleaning the bound. Now we can further remove the last occurrence of Pn in
V (Z, f̂) by noticing that since E

+
ZE

−
π nλPn∆(f, f ⋆) 6 E

−
πE

+
ZnλPn∆(f, f ⋆), and since the two

terms of this inequality do not depend on f̂ , then we further have E
+

Z,f̂
[E−

π nλPn∆(f, f ⋆)] 6

E
−
π nE

+
Zλ∆(f, f ⋆). Thus by application of Lemma 5.9, we deduce that with P× π̂-probability

higher than 1− δ, then V2(Z, f̂) 6 log(1/δ), where we introduced

V2(Z, f̂)
def
= E

−
π nλPn∆(f, f ⋆)− E

−
π nE

+
Zλ∆(f, f ⋆) .

Thus, combining the bound on V (Z, f̂) together with the bound on V2(Z, f̂) with a union
bound, so far we have proved that with P × π̂-probability higher than 1− δ,

nE−
Zλ∆(f̂ , f ⋆)− nλ0EZ∆(f̂ , f ⋆) 6 E

−
π nE

+
Zλ∆(f, f ⋆)− E

−
π nλ0EZ∆(f, f ⋆) + 2 log(2/δ) .

Step 4. Applying assumptions (A) and (B). Now, by applying assumption (A), we
conclude that with P × π̂-probability higher than 1− δ,

[n(1− η)λ− nλ0]EZ∆(f̂ , f ⋆) 6 E
−
π n(1 + η)λEZ∆(f, f ⋆)− E

−
π nλ0EZ∆(f, f ⋆) + 2 log(2/δ) ,

and then by applying assumption (B), we deduce the following final result that holds for all
0 < λ0 < (1− η)λ:

n[(1− η)λ− λ0]EZ∆(f̂ , f ⋆) 6 D log
(c(1 + η)λ

λ0

)
+ 2 log(2/δ) .

�
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Of course, PAC analysis can be combined with tools like generic chaining (see Audibert
and Bousquet (2007)), and can also be used for model selection and more generally for what
is called model aggregation (see Dalalyan and Tsybakov (2008)). Moreover, as suggests the
use of exponentially weighted forecasters for bandits, see chapter 1, there are indeed strong
links between PAC analysis and bandit theory. Such links begin to be studied, see Seldin
et al. (2011a,b) for important introductory work on this subject and will be developed in a
near future.





Chapter 6

Linear Regression with Random

Projections.

We investigate a method for regression that makes use of a randomly generated subspace
GP ⊂ F (of finite dimension P ) of a given large (possibly infinite) dimensional function
space F , e.g. L2([0, 1]

d;R). GP is defined as the span of P random features that are linear
combinations of a basis functions of F weighted by random Gaussian i.i.d. coefficients. We
show practical motivation for the use of this approach, detail the link that this random
projections method shares with RKHS and Gaussian objects theory and prove, both in
deterministic and random design, approximation error bounds when searching for the best
regression function in GP rather than in F and derive excess risk bounds for a specific
regression algorithm (least squares regression in GP ). This chapter stresses the motivation
to study such methods, thus the analysis developed is kept simple for explanations purpose
and leaves room for future developments.

The work presented here corresponds to two articles published in the proceedings of the
23rd and 24th conferences on advances in Neural Information Processing Systems (NIPS),
see Maillard and Munos (2009), Maillard and Munos (2010a) and one under review in the
Journal of Machine Learning Research (JMLR). I would like to thank here Pierre Chainais
and Olivier Degris for interesting pointers to the literature in image processing and applied
reinforcement learning.
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1 Introduction

We consider a standard regression problem. Thus let us introduce X an input space, and
Y = R the real line. We denote by P an unknown probability distribution over the product

space Z = X × R and by PX its first marginal, i.e. dPX (x) =

∫

R

P(x, dy). In order for

this quantity to be well defined we assume that X is a Polish space (i.e., metric, complete,
separable), see (Dudley, 1989, Th. 10.2.2.). Finally, let L2,PX (X ;R) be the space of real-
valued functions on X that are squared integrable with respect to (w.r.t.) PX , equipped with
the quadratic norm

‖f‖PX
def
=

√∫

X
f 2(x)dPX (x) .

In this chapter, we consider that P has some structure corresponding to a model of
regression with random design; there exists a (unknown) function f ⋆ : X → R such that if
(xn, yn)n6N ∈ X × R are independently and identically distributed (i.i.d.) according to P ,
then one can write

yn = f ⋆(xn) + ηn ,
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where ηn is a centered noise, independent from PX , introduced for notational convenience.
In terms of random variables, we will often simply write Y = f ⋆(X) + η where (X, Y ) ∼ P .

Let F ⊂ L2,PX (X ;R) be some given class of functions. The goal of the statistician is to
build, from the observations only, a regression function f̂ ∈ F that is closed to the so-called
target function f ⋆, in the sense that it has a low excess risk R(f)−R(f ⋆), where the risk of
any f ∈ L2,PX (X ;R) is defined as

R(f)
def
=

∫

X×R

(y − f(x))2dP(x, y)

Similarly, we introduce the empirical risk of a function f to be

RN(f)
def
=

1

N

N∑

n=1

[yn − f(xn)]
2 .

and we define the empirical norm of f as ‖ f ‖N def
=

√√√√ 1

N

N∑

n=1

f(xn)2 .

Function spaces and penalization. In this work, we consider that F is an infinite
dimensional space that is generated by the span over a denumerable family of functions
{ϕi}i>1 of L2,PX (X ;R): We call the {ϕi}i>1 the initial features and thus refer to F as to the
initial feature space:

F def
= {fα(x) def

=
∑

i>1

αiϕi(x), ‖α‖ <∞}.

Examples of initial features include Fourier basis, multi-resolution basis such as wavelets,
and also less explicit features coming from a preliminary dictionary learning process.

In the sequel, for the sake of simplicity we focus our attention to the case when the target
function f ⋆ = fα⋆ belongs to the space F , in which case the excess risk of a function f can be
written as R(f)−R(f ⋆) = ‖f−f ⋆‖PX . Since F is an infinite dimensional space, empirical risk
minimization in F defined by argmin

f∈F
RN(f) is certainly subject to overfitting. Traditional

methods to circumvent this problem consider penalization techniques, i.e. one searches for a
function that satisfies

f̂ = argmin
f∈F

RN(f) + pen(f),

where typical examples of penalization include pen(f) = λ‖f‖pp for p = 1 or 2, where λ is a
parameter and usual choices for the norm are ℓ2 (ridge-regression Tikhonov (1963)) and ℓ1
(LASSO Tibshirani (1994)).

Motivation. In this chapter we follow a complementary approach introduced in Maillard
and Munos (2009) for finite dimensional space, called Compressed Least Squares Regression,
and extended in Maillard and Munos (2010a), which considers generating randomly a space
GP ∈ F of finite dimension P and then returning an empirical estimate in GP . The empiri-
cal risk minimizer in GP , i.e. argming∈GP

RN(g) is a natural candidate, but other choices of
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estimates are possible, based on traditional literature on regression when P < N (penaliza-
tion, projection, PAC-Bayesian estimates...) The generation of the space GP makes use of
random matrices, that have already demonstrated their benefit in different settings (see for
instance Zhao and Zhang (2009) about spectral clustering or Dasgupta and Freund (2008)
about manifold learning).

Our goal is first to give some intuition about this method by providing approximation
error and simple excess risk bounds (which may not be the tightest possible ones as explained
in Section 4.2) for the proposed method, and also by providing links to other standards
approaches, in order to encourage research in that direction, which, as showed in the next
section, has already been used in several applications.

Outline of the chapter.
In Section 2, we quickly present the method and give practical motivation for investigating

this approach. In Section 3, we give a short overview of Gaussian objects theory (subsec-
tion 3.1), which enables us to show how to relate the choice of the initial features {ϕi}i>1 to
the construction of standard function spaces via Gaussian objects (subsection 3.2), and we
finally state a useful version of the Johnson-Lindenstrauss Lemma for our setting (subsec-
tion 3.3).

In Section 4, we describe a typical algorithm (subsection 4.1), and then provide some quick
survey of classical results in regression while discussing the validity of their assumptions in
our setting (subsection 4.2). Then our main results are stated in subsection 4.3, where we
provide bounds on approximation error of the random space GP in the framework of regression
with deterministic and random designs, and in subsection 4.4, where we derive excess risk
bounds for some specific estimate.

Section 5 provide some discussion about existing results and finally appendix 6 contains
the proofs.

2 Summary of the method

From now on, we assume that the set of features {ϕi}i>1 are continuous and satisfy the
assumption that,

sup
x∈X

‖ϕ(x)‖2 <∞, where ϕ(x)
def
= (ϕi(x))i>1 ∈ l2 and ‖ϕ(x)‖2 def

=
∑

i>1

ϕi(x)
2.

Let us introduce a set of P random features (ψp)16p6P defined as linear combinations of
the initial features {ϕi}1>1 weighted by random coefficients:

ψp(x)
def
=
∑

i>1

Ap,iϕi(x), for 1 6 p 6 P (6.1)

where the (infinitely many) coefficients Ap,i are drawn i.i.d. from a centered distribution
(e.g. Gaussian) with variance 1/P . Then let us define GP to be the (random) vector space
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spanned by those features, i.e.

GP def
= {gβ(x) def

=
P∑

p=1

βpψp(x), β ∈ R
P}.

From now on, PG will refer to the law of the Gaussian variables, Pη to the law of the
observation noise and PY to the law of the observations. Remember also that PX refers to
the law of the inputs.

One may naturally wish to build an estimate gβ̂ in the linear space GP . For instance in

the case of deterministic design, if we consider the ordinary least squares estimate, i.e. β̂ =

argminβ∈RP RN(gβ), then we can derive the following result (see Section 4.4 for a similar
result with random design):

Theorem 6.1 (Deterministic design) Assuming that the random variable Y is such that

|Y | 6 B, then for all P > 1, for all δ ∈ (0, 1) there exists an event of PY × PG-probability
larger than 1 − δ such that on this event, the excess risk of the least squares estimate gβ̂ is

bounded as

‖gβ̂ − f ⋆‖2N 6
12 log(8N/δ)

P
‖α⋆‖2 1

N

N∑

n=1

‖ϕ(xn)‖2 + κB2P + log(2/δ)

N
(6.2)

for some numerical constant κ > 0.

Example: Let us consider as an example the features {ϕi}i>1 to be a set of functions
defined by rescaling and translation of a mother one-dimensional hat function (illustrated in
Figure 6.1, middle column) and defined precisely in paragraph 3.2.2. Then in this case we
can show that

‖α⋆‖2 1
N

N∑

n=1

‖ϕ(xn)‖2 6
1

2
‖f ⋆‖2H1 ,

where H1 = H1([0, 1]) is the Sobolev space of order 1. Thus we deduce that the excess risk
is bounded as ‖gβ̂ − f ⋆‖2N = O(

B‖f⋆‖H1 log(N/δ)√
N

) for P of the order
√
N .

Similarly, the analysis given in paragraph 3.2.1 below shows that when the features {ϕi}i>1

are wavelets rescaled by a factor σi = σj,l = 2−js for some real number s > 1/2, where j, l
are the scale and position index corresponding to the ith element of the family, and that the
mother wavelet enables to generate the Besov space Bs,2,2([0, 1]) (see paragraph 3.2.1), then
for some constant c,

‖α⋆‖2 1
N

N∑

n=1

‖ϕ(xn)‖2 6
c

1− 2−2s+1
‖f ⋆‖2s,2,2 ,

Thus the excess risk in this case is bounded as ‖gβ̂ − f ⋆‖2N = O(B‖f⋆‖s,2,2 log(N/δ)√
N

).
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2.1 Comments

The second term in the bound (6.2) is a usual estimation error term in regression, while
the first term comes from the additional approximation error of the space GP w.r.t. F . It
involves the norm of the parameter α⋆, and also the norm ‖ϕ(x)‖ at the sample points.

The nice aspects of this result:

• The weak dependency of this bound with the dimension of the initial space F . This
appears implicitly in the terms ‖α⋆‖2 and 1

N

∑N
n=1 ‖ϕ(xn)‖2, and we will show that for

a large class of function spaces, these terms can be bounded by a function of the norm
of f ⋆ only.

• The result does not require any specific smoothness assumptions on the initial features
{ϕi}i>1; by optimizing over P , we get a rate of order N−1/2 that corresponds to the
minimax rates under such assumptions up to logarithmic factors.

• Because the choice of the subspace GP within which we perform the least-squares es-
timate is random, we avoid (with high probability) degenerated situations where the
target function f ⋆ cannot be well approximated with functions in GP . Indeed, in meth-
ods that consider a given (deterministic) finite-dimensional space G of the big space
F (like linear approximation using a predefined set of wavelets), it is often possible
to find a target function f ⋆ such that infg∈GP

‖f ⋆ − g‖N is large. Whereas using this
method, the random choice of GP implies that for any f ⋆ ∈ F , the approximation error
infg∈GP

‖f ⋆− g‖N can be controlled (by the first term of the bound (6.2)) in high prob-
ability. See section 5.2 for an illustration of this property. Thus the results we obtain
compete with non-linear approximation (Barron et al., 2008) or kernel ridge regression
(Caponnetto and De Vito, 2007).

• In terms of numerical complexity, this approach is more efficient than non-linear regres-
sion and kernel ridge regression. Indeed, once the random space has been generated,
we simply solve a least squares estimate in a low-dimensional space. The computation
of the Gram matrix involves performing random projections (which can be computed
efficiently for several choices of the random coefficients Ap,i, see Liberty et al. (2008),
Ailon and Chazelle (2006), Sarlos (2006) and many other references therein). Numerical
aspects of the algorithms are described in Section 5.4.

Possible improvements: As mentioned previously we do not make specific assump-
tions about the initial features {ϕi}i>1. However, considering smoothness assumptions on
the features would enable to derive a better approximation error term (first term of the
bound (6.2)); typically with a Sobolev assumption or order s, we would get a term of order
P−2s instead of P−1. For simplicity of the presentation, we do not consider such assumptions
here and report the general results.

The log(N) factor may be seen as unwanted and one would like to remove it. However,
this term comes from a variant of the Johnson-Lindenstrauss lemma combined with a union
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bound, and it seems difficult to remove it, unless the dimension of F is small (we can then
use covers) which is non interesting for our purpose.

Possible extensions of the random projection method. It seems natural to consider
other constructions than the use of i.i.d. Gaussian random coefficients. For instance we may
consider Gaussian variables with variance σ2

i /P different for each i instead of homeoscedastic
variables, which is actually equivalent to considering the features {ϕ′

i}i>1 with ϕ′
i = σiϕi

instead.
Although in this work we develop results using Gaussian random variables, such method

will essentially work similarly for matrices with sub-Gaussian entries as well.
A more important modification of the method would be to consider, like for data-driven

penalization techniques, a data-dependent construction of the random space GP , i.e. using
a data-driven distribution for the random variable Ap,i instead of a Gaussian distribution.
However such modification will not work for the method developed in this chapter and would
require a different analysis.

Illustration. In order to illustrate the method, we show in figure 6.1 three examples of
initial features {ϕi} (top row) and random features {ψp} (bottom row). The first family of
features is the basis of wavelet Haar functions. The second one consists of multi-resolution hat
functions (see paragraph 3.2.2) and the last one shows multi-resolution Gaussian functions.
For example, in the case of multi-resolution hat functions (middle column), the corresponding
(random features) are Brownian motions. The linear regression with random projections
approach described here simply consists in performing least-squares regression using the set
of randomly generated features {ψp}16p6P (e.g. Brownian motions).

Figure 6.1: Three representative of initial features ϕ (top row) and a sample of a corre-
sponding random feature ψ (bottom row). The initial set of features are (respectively) Haar
functions (left), multi-resolution hat functions (middle) and multi-resolution Gaussian func-
tions (right).
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2.2 Motivation from practice

We conclude this introduction with some additional motivation to study such objects coming
from practical applications. Let us remind that the use of random projections is well-known
in many domains and applications, with different names according to the corresponding field,
and the corresponding random objects are widely studied and used. Our contribution is their
analysis in a regression setting.

For instance, in Sutton and Whitehead (1993) the authors mentioned such constructions
under the name random representation as a tool for value function approximation in practical
implementations of reinforcement learning algorithms, and demonstrated the benefit of such
methods. They also pointed out that such representations were already used in 1962 in
Rosenblatt’s perceptron as a preprocessing layer. See also Sutton (1996) for other comments
concerning the practical benefit of “random collapsing” methods.

Another example in image processing, when the initial features are chosen to be a wavelet
(rescaled) system, the corresponding random features {ψp}16p6P are special cases of Random
Wavelet Series, that are well studied in signal processing and mathematical physics (see Aubry
and Jaffard (2002), Durand (2008) for a study of the law of the spectrum of singularities of
these series).

Noise model and texture generation: The construction of Gaussian objects (see para-
graph 3.2.1) is highly flexible and enables to do automatic noise-texture generation easily,
as explained in Deguy and Benassi (2001). In their paper, the authors show that with the
appropriate choice of the wavelet functions and when using rescaling coefficients of the form
σj,l = 2−js with scale index j an position index l (see paragraph 3.2.1), where s is not a
constant but is now a function of j and l, we can generate fractional Brownian motions,
multi-scale fractional Brownian motions, and more generally what is called intermittent lo-
cally self-similar Gaussian processes.

In particular, for image texture generation they introduce a class of functions called mor-

phlets that enables to perform approximations of intermittent locally self-similar Gaussian
processes. These approximations are both numerically very efficient and have visually im-
perceptible differences to the targetted images. The authors also allow other distributions
than the Gaussian for the random variables ξ (which thus does not fit the theory presented
here), and use this additional flexibility to produce an impressive texture generator.

Figure 6.2 illustrates an example performed on some simple texture model1 where an
image of size 512 × 512 is generated (two-dimensional Brownian sheet with Hurst index
H = 1.1) (left) and then subsampled at 32 × 32 (middle), which provides the data samples
for generating a regression function (right) using random features (generated from the symlets
as initial features, in the simplest model when s is constant).

1The authors wish to thank Pierre Chainais for
performing experimental study of random projection

methods applied to image processing, and for provid-
ing us with interesting pointers to related works.
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Figure 6.2: Example of an initial large texture (left), subsampled (middle), and possible
recovery using regression with random projections (right)

3 Gaussian objects

We now describe some tools of Gaussian object theory that would be useful in later analysis
of the method. Each random feature ψp built from equation (6.1), when the coefficients are
Gaussian, qualifies as a Gaussian object. It is thus natural to study some important features
of Gaussian objects.

3.1 Reminder of Gaussian objects theory

In all this section, S will refer to a vector space, S ′ to its topological dual, and (·, ·) to its
duality product.

Definition 6.1 (Gaussian objects) A random variable W ∈ S is called a Gaussian object

if for all ν ∈ S ′, (ν,W ) is a Gaussian (real-valued) variable. We further call any a ∈ S to be

an expectation of W if

∀ν ∈ S ′ , E(ν,W ) = (ν, a) <∞ ,

and any K : S ′ → S to be a covariance operator of W if

∀ν, ν ′ ∈ S ′ , Cov((ν,W )(ν ′,W )) = (ν,Kν ′) <∞ ,

where Cov refer to the correlation between two real-valued random variables.

Whenever there exist such a and K, we say that W follows the law N (a,K). Moreover,

W is called a centered Gaussian object if a = 0.

Kernel space. We only provide a brief introduction to this notion and refer the interested
reader to Lifshits (1995) or Janson (1997) for refinements.
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Let I ′ : S ′ → L2(S,N (0, K)) be the canonical injection from the space of continuous
linear functionals S ′ to the space of measurable linear functionals

L2(S;R,N (0, K)) =
{
z : S → R,EW∼N (0,K)|z(W )|2 <∞

}
.

endowed with inner product 〈z1, z2〉 = E(z1(W )z2(W )). For any ν ∈ S ′, it is defined by
I ′(ν) = (ν, ·), which belongs to L2(S;R,N (0, K)) since by definition of K we have (ν,Kν) =

E(ν,W )2 <∞.

Then note that the space defined by S ′
N

def
= I ′(S ′), i.e. the closure of the image of S ′ by

I ′ in the sense of L2(S;R,N (0, K)), is a Hilbert space with inner product inherited from
L2(S;R,N (0, K)).

Now under the assumption that I ′ is continuous (see Section 4.1 for practical conditions
ensuring that this is the case), then we define the adjoint I : S ′

N → S of I ′, by duality.
Indeed for any µ ∈ S ′ and z ∈ I ′(S ′), we have by definition that

(µ, Iz) = 〈I ′µ, z〉S′
N
= EW ((µ,W )z(W ))

from which we deduce by continuity that Iz = EW (Wz(W )). For the sake of clarity, this
specifies for instance in the case when S = L2(X ;R), for all x ∈ X as

(Iz)(x) = EW (W (x)z(W )) .

Definition 6.2 (Kernel space) Provided that the mapping I ′ is continuous, then we define

the kernel space of a centered Gaussian object W as K def
= I(I ′(S ′)) ⊂ S.

The kernel space can be built alternatively based on a separable Hilbert space H as follows
(Lifshits, 1995):

Lemma 6.1 (Construction of the Kernel space.) Let J : H → S be an injective linear

mapping such that K = JJ ′, where J ′ is the adjoint operator of J . Then the kernel space of

N (0, K) is K = J(H), endowed with inner product 〈Jh1, Jh2〉H
def
= 〈h1, h2〉H.

We conclude this section with the following Lemma from Lifshits (1995) that enables to
define the expansion of a Gaussian object W .

Lemma 6.2 (Expansion of a Gaussian object) Let (ϕi)i be an orthonormal basis of K
for the inner product 〈·, ·〉K and {ξi i.i.d.∼ N (0, 1)}i>1. Then

∑∞
i=1 ξiϕi is a Gaussian object

following the law N (0, K). It is called an expansion for N (0, K).

Note that from Lemma 6.1, one can build an orthonormal basis (ϕi)i by defining, for
all i > 1, ϕi = Jhi where (hi)i is an orthonormal basis of H and J satisfies conditions of
Lemma 6.1.
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3.2 Interpretation of some function spaces with Gaussian objects
theory

In this section, we precise the link between Gaussian objects theory and reproducing kernel
Hilbert spaces (RKHS) in order to provide more intuition about such objects. Indeed in
many cases, the kernel space of a Gaussian object is RKHS. Note, however, that in general,
depending on the Gaussian object considered, the former space may also be a more general
space (see (Canu et al., 2009) about RKS) when the Hilbert assumption is dropped, therefore,
there is no one-to-one correspondence between RKHS and kernel spaces of Gaussian objects
and it is worth explaining when the two notions coincide. More importantly, this section
shows various examples of classical function spaces, related to the construction of the space
GP for different choices of initial features {ϕi}i>1, which can be useful for applications.

3.2.1 Gaussian objects with a supporting Hilbert space

In this subsection only, we make the assumption that S = H is a Hilbert space and we
introduce {ei}i>1 an orthonormal basis of H. Let us now consider ξi ∼ N (0, 1) i.i.d., and
positive coefficients σi > 0 such that

∑
i σ

2
i < ∞. Since

∑
i σ

2
i < ∞, the Gaussian object

W =
∑

i ξiσiei is well defined and our goal is to identify the kernel of the law of W .
To this aim we identify the functions I ′ and I. Since S is a Hilbert space, then S ′ = S,

thus we consider f =
∑

i ciei ∈ S ′ for some c ∈ l2. For such an f , we deduce that the
injection mapping is given by (I ′f)(g) =

∑
i ci(g, ei), and that we have

‖I ′f‖2S′
N
= E

(
(I ′f,W )2

)
= E

((∑

i>1

σiξici
)2)

=
∑

i>1

σ2
i c

2
i

Moreover, since ‖f‖S = ‖c‖l2 , the continuity of I ′ is insured by the assumption that∑
i σ

2
i <∞. Now one can easily check that the kernel space of the law of W is given by

K =
{
fc =

∑

i>1

ciei ;
∑

i>1

( ci
σi

)2
<∞

}
,

endowed with inner product (fc, fd)K =
∑

i>1
cidi
σ2
i

.

Reproducing Kernel Hilbert Spaces (RKHS): Note that if we now introduce the

functions {ϕi}i>1 defined by ϕi
def
= σiei ∈ H, then we get

K =
{
fα =

∑

i>1

αiϕi ; ‖α‖l2 <∞
}
,

endowed with inner product (fα, fβ)K = 〈α, β〉l2 . If we consider for instance that H ⊂
L2,µ(X ;R) for some reference measure µ, and that {ei}i>1 are orthonormal w.r.t. L2,µ(X ;R),
then K appears to be a RKHS that can be made fully explicit; its kernel is defined by k(x, y) =∑∞

i=1 σ
2
i ei(x)ei(y) , and (σi)i and (ei)i are trivially the eigenvalues and eigenfunctions of the

integral operator Tk : L2,µ(X ) → L2,µ(X ) defined by (Tk(f))(x) =
∫
X k(x, y)f(y)dµ(y).
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Wavelet basis and Besov spaces: In this paragraph, we now apply this contruction to the
case when the {ei}i>1 are chosen to be a wavelet basis of functions defined on X = [0, 1] with
reference measure µ being the Lebesgue measure. Let e be the mother wavelet function, and
let us write ej,l the ith element of the basis, where j ∈ N is a scale index and l ∈ {0, . . . , 2j−1}
is a position index, where we re-index all families indexed by i with the indices j, l. Let us
define the coeficients {σi}i>1 to be exponentially decreasing with the scale index:

σj,l
def
= 2−js for all j > 0 and l ∈ {0, . . . , 2j − 1} ,

where we introduced some positive real number s.
Now assume that for some q ∈ N \ {0} such that q > s, the mother wavelet function e

belongs to Cq(X ), the set of q-times continuously differentiable functions on X , and admits
q vanishing moments. In this case, the (homogeneous) Besov space Bs,2,2([0, 1]d) admits the
following characterization (independent of the choice of the wavelets (Frazier and Jawerth,
1985, Bourdaud, 1995)):

Bs,2,2(X ;µ) =
{
f ∈ L2,µ(X ) ; ‖f‖2s,2,2

def
=

∞∑

j=1

[
22js

2j−1∑

l=0

| 〈f, ej,l〉 |2
]
<∞

}

On the other hand, with the notations above, where in particular ϕj,l = σj,lεj,l, we deduce
that the kernel space of the Gaussian object W =

∑
j,l ξj,lϕj,l (that we call a Scrambled

wavelet), is the space

K =
{
fα =

∑

j,l

αj,lϕj,l ;
∑

j,l

α2
j,l <∞

}
,

and a straightforward computation shows that ‖α‖2l2 = ‖fα‖2s,2,2, and thus K = Bs,2,2(X ;µ).
Moreover, assuming that the mother wavelet is bounded by λ and has compact support [0, 1],
then we have the property that

sup
x∈X

‖ϕ(x)‖2 6 λ2

1− 2−2s+1
.

Note that a similar construction applies to the case when the orthonormal basis {ei}i>1

is chosen to be a Fourier basis of functions, and the coeficients {σi}i>1 are chosen to be of
the form σi = i−s.

3.2.2 Gaussian objects defined by a Carleman expansion

We now no longer assume that the supporting space S is a Hilbert space. In this case, it is
still possible to generate a Gaussian object with kernel space being a RKHS by resorting to
Carleman operators.

A Carleman operator is a linear injective mapping J : H 7→ S (where H is a Hilbert
space) such that J(h)(t) =

∫
Γt(s)h(s)ds where (Γt)t is a collection of functions of H. There
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is a bijection between Carleman operators and the set of RKHSs (Canu et al., 2009, Saitoh,
1988). In particular, J(H) is a RKHS.

A Gaussian object admitting J(H) as a kernel space can be built as follows. By application

of Lemma 6.2, we deduce that K = J(H) endowed with the inner product 〈Jh1, Jh2〉K
def
=

〈h1, h2〉H is the kernel space of N (0, JJ ′). Moreover, if we consider an orthonormal basis
{ei}i>1 of H, an application of Lemma 6.2 shows that the functions {ϕi}i>1 defined by
ϕi = J(ei) form an orthonormal basis of J(H) and are such that the object W =

∑
i>1 ξiϕ

is first a well-defined Gaussian object and then an expansion for the law N (0, JJ ′). We call
this expansion a Carleman expansion. Note that this expansion is bottom-up whereas the
Mercer expansion of a kernel via the spectral Theorem is top-down.

Cameron-Martin space We apply as an example this construction to the case of the
Brownian motion and the Cameron-Martin space.

Let S = C([0, 1]) be the space of continuous real-valued functions of the unit interval.
Then S ′ is the set of signed measures and we can define the dual product by (ν, f) =

∫
[0,1]

fdν.
It is straightforward to check that the Brownian motion indexed by [0, 1] is a Gaussian object
W ∈ S, with a ≡ 0 and K defined by (Kν)(t) =

∫
[0,1]

min(s, t)ν(ds).

Kernel space. We consider the Hilbert space H = L2([0, 1]) and define the mapping
J : H 7→ S by

(Jh)(t) =

∫

[0,t]

h(s)ds ;

simple computations show that (J ′ν)(t) = ν([t, 1]), K = JJ ′ and that J is a Carleman
operator. Therefore, the kernel space K is equal to J(L2([0, 1])), or more explicitly

K =
{
k ∈ H1([0, 1]); k(0) = 0

}
,

where H1([0, 1]) is the Sobolev space of order 1.
Expansion of the Brownian motion. We build a Carleman expansion for the Brow-

nian motion thanks to the Haar basis of L2([0, 1]), whose image by J defines an orthonormal
basis of K; The Haar basis is defined in a wavelet-way via the mother function e(x) =

I[0,1/2[− I[1/2,1[ and the father function e0(x) = I[0,1](x) as the functions (ej,l)j,l∈N for any scale
j > 1 and translation index 0 6 l 6 2j − 1 together with h0, where

ej,l(x)
def
= 2j/2e(2jx− l) ,

An orthonormal basis of the kernel space of the Brownian motion W and an expansion of W
is thus obtained by

W =
∑

j,l>1

ξj,lϕj,l + ξ0ϕ0,

with ϕj,l(x) = Jej,l(x) = 2−j/2Λ(2jx− l) and ϕ0(x) = Je0(x) = x ,

where Λ(x) = xI[0,1/2[ + (1− x)I[1/2,1[ is the mother hat function.
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Bounded energy. Note that the rescaling factor inside ϕj,l naturally appears as 2−j/2,
and not as 2j/2 as usually defined in wavelet-like transformations. Note also that since the
support of the mother function Λ is [0, 1], and also ‖Λ‖∞ 6 1/2, then for any x ∈ [0, 1]d, for
all j there exists at most one l = l(x) such that ϕj,l(x) 6= 0, and we have the property that

‖ϕ(x)‖2 =
∑

j>1

ϕj,l(x)(x)
2 6

∑

j>1

(2−j/2‖Λ‖∞)2 6
1

2
.

Remark 3 This construction can be extended to the dimension d > 1 in at least two ways.

Consider the space S = C([0, 1]d), and the Hilbert space H = L2([0, 1]
d). Then if we define J

to be the volume integral (Jh)(t) =
∫
[0,t]

h(s)ds where [0, t] ⊂ [0, 1]d, this corresponds to the

covariance operator defined by (Kν)(t) =
∫
[0,1]d

Πd
i=1 min(si, ti)ν(ds), i.e. to the Brownian

sheet defined by tensorization of the Brownian motion. The corresponding kernel space in

this case is thus K = J(L2([0, 1]d)), endowed with the norm ‖f‖K = ‖ ∂df
∂x1...∂xd

‖L2([0,1]d). It

corresponds to the Cameron-Martin space (Janson, 1997) of functions having a d-th order

crossed (weak) derivative ∂df
∂x1...∂xd

that belongs to L2([0, 1]d), vanishing on the “left” boundary

(edges containing 0) of the unit d-dimensional cube. A second possible extension is to consider

the isotropic Brownian sheet.

3.3 A Johnson-Lindenstrauss lemma for Gaussian objects

In this section, we derive a version of the Johnson-Lindenstrauss’ lemma that applies to the
case of Gaussian objects.

The original Johnson-Lindenstrauss’ lemma can be stated as follows ; its proof directly
uses concentration inequalities (Cramer’s large deviation Theorem from 1938) and may be
found e.g. in Achlioptas (2003).

Lemma 6.3 Let A be a P × F matrix of i.i.d. Gaussian N (0, 1/P ) entries. Then for any

vector α in R
F , the random (with respect to the choice of the matrix A) variable ‖Aα‖2

concentrates around its expectation ‖α‖2 when P is large: for ε ∈ (0, 1), we have

P

(
‖Aα‖2 > (1 + ε)‖α‖2

)
6 e−P (ε2/4−ε3/6)

P

(
‖Aα‖2 6 (1− ε)‖α‖2

)
6 e−P (ε2/4−ε3/6)

Remark 4 Note that the Gaussianity is not mandatory here, and this is also true for other

distributions, such as:

• Rademacher distributions, i.e. which takes values ±1/
√
P with equal probability 1/2,

• Distribution taking values ±
√
3/P with probability 1/6 and 0 with probability 2/3.
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This Lemma together with the measurability properties of Gaussian objects enable us to
derive the following statement.

Lemma 6.4 Let (xn)n6N be N (deterministic) points of X . Let A : l2(R) 7→ R
P be the

operator defined with i.i.d. Gaussian N (0, 1/P ) variables (Ai,p)i>1,p6P , such that for all α ∈
l2(R), then

(Aα)p =
∑

i>1

αiAi,p .

Let also define ψp =
∑

i>1

Ai,pϕi, fα =
∑

i>1

αiϕi and gβ =
P∑

p=1

βpψp.

Then, A is well-defined and for all P > 1, for all ε ∈ (0, 1), with probability larger than

1− 4Ne−P (ε2/4−ε3/6) w.r.t. the Gaussian random variables,

‖fα − gAα‖2N 6 ε2‖α‖2 1
N

N∑

n=1

‖ϕ(xn)‖2 ,

where we recall that by assumption ϕ(x) = (ϕi(x))i>1 ∈ l2 for all x.

This result is natural in view of concentration inequalities, since we have that for all
x ∈ X , the expectation EPG(gAα(x)) = fα(x) and the variance VPG(gAα(x)) = 1

P
(f 2
α(x) +

‖α‖2‖ϕ(x)‖2). See the Appendix for the full proof.
Note also that a natural idea in order to derive generalization bounds would be to derive

a similar result uniformly over X instead of a union bound over the samples. However, while
such extension would be possible for finite dimensional spaces F (by resorting to covers)
these kind of results are not possible in the general case, since F is typically big.

4 Regression with random subspaces

In this section, we describe the construction of the random subspace GP ⊂ F defined as
the span of the random features (ψp)p6P generated from the initial features (ϕi)i>1. This
method was originally described in Maillard and Munos (2009) for the case when F is of
finite dimension, and we extend it here to the non-obvious case of infinite dimensional spaces
F , which relies on the fact that the randomly generated features (ψp)p6P are well-defined
Gaussian objects.

The next subsection is devoted to the analysis of the approximation power of the random
features space. We first give a survey of existing results on regression together with the
standard hypothesis under which they hold in section 4.2, then we describe in section 4.4 an
algorithm that builds the proposed regression function and provide excess risk bounds for
this algorithm.
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4.1 Construction of random subspaces

Assumption on initial features. In this chapter we assume that the set of features (ϕi)i>1

are continuous and satisfy the assumption that,

sup
x∈X

‖ϕ(x)‖2 <∞, where ‖ϕ(x)‖2 def
=
∑

i>1

ϕi(x)
2. (6.3)

Note that all examples in Section 3 satisfy this condition.

Random features. The random subspace GP is generated by building a set of P random

features (ψp)16p6P defined as linear combinations of the initial features {ϕi}1>1 weighted by
random coefficients:

ψp(x)
def
=
∑

i>1

Ap,iϕi(x), for 1 6 p 6 P

where the (infinitely many) coefficients Ap,i are drawn i.i.d. from a centered distribution with
variance 1/P . Here we explicitly choose a Gaussian distribution N (0, 1/P ). Such a definition
of the features ψp as an infinite sum of random variable is not obvious (this is an expansion of
a Gaussian object) and we refer to the Section 3 for elements of theory about Gaussian objects
and Lemma 6.2 for the expansion of a Gaussian object. It is shown that under Assumption
(6.3), the random features are well defined. Actually, they are random samples of a centered
Gaussian process indexed by the space X with covariance structure given by 1

P
〈ϕ(x), ϕ(x′)〉,

where we used the notation 〈u, v〉 =
∑

i uivi for two square-summable sequences u and v.
Indeed, EAp [ψp(x)] = 0, and

CovAp(ψp(x), ψp(x
′)) = EAp [ψp(x)ψp(x

′)] =
1

P

∑

i>1

ϕi(x)ϕi(x
′) =

1

P
〈ϕ(x), ϕ(x′)〉

The continuity of the initial features (ϕi) guarantees that there exists a continuous version
of the process ψp which is thus a Gaussian process.

Random subspace. We finally define GP ⊂ F to be the (random) vector space spanned
by those features, i.e.

GP def
= {gβ(x) def

=
P∑

p=1

βpψp(x), β ∈ R
P}.

We now want to compute a high probability bound on the excess risk of an estimator built
using the random space GP . To this aim, we first quickly review known results in regression
and see what kind of estimator can be considered and what results can be applied. Then
we compute a high probability bound on the approximation error of the considered random
space w.r.t. to initial space F . Finally, we combine both bounds in order to derive a bound
on the excess risk of the proposed estimate.
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4.2 Reminder of results on regression

Review of some results for regression For the sake of completeness, we now review
other existing results in regression that may or may not apply in our setting. Indeed it seems
natural to apply existing results for regression to the space GP . For that purpose, we focus
on the randomness coming from the data points only, and not from the Gaussian entries. We
will thus consider in this subsection only a space G that is the span over a deterministic set
of P functions {ψp}p6P , and for a convex subset Θ ⊂ R

P , we write

GΘ = {gθ ∈ G; θ ∈ Θ} .

Similarly, we write g⋆ = argmin
g∈G

R(g) and g⋆Θ = argmin
g∈GΘ

R(g). Examples of well studied esti-

mates are:

• ĝols = argming∈G RN(g), the ordinary least-squares (ols) estimate

• ĝerm = argming∈GΘ
RN(g) the empirical risk minimizer (erm), which coincides with the

ols when Θ = R
P .

• ĝridge = argming∈G RN(g) + λ‖θ‖, ĝlasso = argming∈G RN(g) + λ‖θ‖1.

We also introduce for convenience gB, the truncation at level ±B of some g ∈ G to be defined

by gB(x)
def
= TB[g(x)], where TB(u)

def
=

{
u if |u| 6 B,

B sign(u) otherwise.
There are at least 9 different theorems that one may want to apply in our setting. Since

those theorems hold under some assumptions, we list them now. Unfortunately, as we will
see, these assumptions are usually slightly too strong to apply in our setting, and thus we
will need to build our own analysis instead.

Assumptions Let us list the following assumptions.

• Noise assumptions: (for some constants B,B1, σ, ξ)
(N1) |Y | 6 B1,
(N2) supx∈X E(Y |X = x) 6 B,
(N3) supx∈X V(Y |X = x) 6 σ2,
(N4) ∀k > 3 supx∈X E(|Y |k|X = x) 6 σ2k!ξk−2 .

• Moment assumptions: (for some constants σ, a,M)
(M1) supx∈X E([Y − g⋆Θ(X)]2|X = x) 6 σ2,
(M2) supx∈X E(exp[a|Y − g⋆Θ(X)|]|X = x) 6M ,
(M3) ∃g0 ∈ GΘ supx∈X E(exp[a|Y − g0(X)|]|X = x) 6M .

• Function space assumptions for G: (for some constant D)
(G1) supg1,g2∈GΘ

‖g1 − g2‖∞ 6 D,
(G2) ∃g0 ∈ GΘ, known, such that ‖g0 − g⋆Θ‖∞ 6 D .
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• Dictionary assumptions:
(D1) L = max

16p6P
‖ψp‖∞ <∞,

(D2) L = supx∈X ‖ψ(x)‖2 <∞,
(D3) esssup‖ψ(X)‖2 6 L,

(D4) L = inf
{ψ′

p}p6P

sup
θ∈Rd−{0}

‖∑P
p=1 θpψ

′
p‖∞

‖θ‖∞
< ∞ where the infimum is over all orthonor-

mal basis of G w.r.t. to L2,PX (X ;R) .

• Orthogonality assumptions:
(O1) {ψp}p6P is an orthonormal basis of G w.r.t. to L2,PX (X ;R),
(O2) det(Ψ) > 0 , where Ψ = E(ψ(X)ψ(X)T ) is the Gram matrix.

• Parameter space assumptions:
(P1) supθ∈Θ ‖θ‖∞ <∞,
(P2) ‖θ⋆‖1 6 S where θ⋆ is such that gθ⋆ = g⋆Θ and S is known,
(P3) supθ∈Θ ‖θ‖2 6 1 .

Theorem 6.2 (Györfi et al. (2002)) Let Θ = R
P . Under assumption (N2) and (N3), the

truncated estimator ĝL = TL(ĝ
ols) satisfies

ER(ĝL)−R(f (reg)) 6 8[R(g∗)−R(f (reg))] + κ
(σ2 ∨ B2)P log(N)

N

where κ is some numerical constant and f (reg)(x)
def
= E(Y |X = x).

Theorem 6.3 (Catoni (2004)) Let Θ ⊂ R
P . Under assumption (M3), (G1) and (O2),

there exists constants C1, C2 > 0 (depending only on a, M and D) such that with probability

1− δ, provided that

{
g ∈ G ; RN(g) 6 RN(ĝ

ols) + C1
P

N

}
⊂ GΘ ,

then the ordinary least squares estimate satisfies

R(ĝols)−R(g⋆Θ) 6 C2

P + log(δ−1) + log(det Ψ̂
detΨ

)

N
.

where Ψ̂ = 1
N

∑N
i=1 ψ(Xi)ψ(Xi)

T is the empirical Gram matrix.

Theorem 6.4 (Audibert and Catoni (2010a) from Alquier (2008)) Let Θ = R
P . Un-

der assumption (N1) and (G2), there exists a randomized estimate ĝ that only depends on

g0, L, C, such that for all δ > 0, with probability larger than 1 − δ w.r.t. all sources of ran-

domness,

R(ĝ)−R(g⋆) 6 κ(B2
1 +D2)

P log(3ν−1
min) + log(log(N)δ−1)

N
.

where κ does not depend on P and N , and νmin is the smallest eigenvalue of Ψ.



4. Regression with random subspaces 141

Theorem 6.5 (Koltchinskii (2006)) Let Θ ⊂ R
P . Under assumption (N1), (D3) and

(P3), ĝ
erm satisfies, for any δ > 0 with probability higher than 1− δ,

R(ĝerm)−R(g⋆Θ) 6 κ(B1 + L)2
rank(Ψ) + log(δ−1)

N
.

where κ is some constant.

Theorem 6.6 (Birgé and Massart (1998)) Let Θ ⊂ R
P . Under assumption (M3), (G1)

and (D4), for all δ > 0 with probability higher than 1− δ,

R(ĝerm)−R(g⋆Θ) 6 κ(a−2 +D2)
P log(2 + (L2/N) ∧ (N/P )) + log(δ−1)

N
.

where κ is some constant depending only on M .

Theorem 6.7 (Tsybakov (2003)) Let Θ = R
P . Under assumption (N2), (N3) and (O1),

the projection estimate ĝproj satisfies

E(R(ĝproj))−R(g⋆) 6
(σ2 +B2)P

N

Theorem 6.8 (Caponnetto and De Vito (2007)) Under assumption (M2) and (D2), for

all δ > 0 for λ = PL2 log2(δ−1)/N 6 νmin, with probability higher than 1− δ,

R(ĝridge)−R(g⋆Θ) 6 κ(a−2 +
λL2‖θ⋆‖2 log2(δ−1)

νmin

)
P log2(δ−1)

N
.

where κ is some constant depending only on M .

Theorem 6.9 (Alquier and Lounici (2010)) Let Θ = R
P and define for all α ∈ (0, 1)

the prior πα(J) = α|J|
∑N

i=0 α
i

(
P
|J |
)−1

for all J ⊂ 2P . Under assumption (N2), (N3), (N4), (D1)

and (P2), by setting λ = N
2C

where

C
def
= max{64σ2 + (2B + L(2S +

1

N
))2, 64[ξ + 2B + L(2S +

1

N
)]L(2S +

1

N
)} ,

the randomized aggregate estimator ĝ defined in Alquier and Lounici (2010) based on prior

πα satisfies, for any δ > 0 with probability higher than 1− δ,

R(ĝ)−R(g⋆Θ) 6 C
S⋆ log( (S+c)eNP

αS⋆ ) + log(2δ−1/(1− α))

N
+

3L2

N2
,

where S⋆ = ‖θ⋆‖0.
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Theorem 6.10 (Audibert and Catoni (2010a)) Let Θ ⊂ R
P . Under assumption (M1),

(G1) and (P1) so that one can define the uniform probability distribution over Θ, there exists a

random estimator ĝ (drawn according to a Gibbs distribution π̂) that satisfies, with probability

higher than 1− δ w.r.t. all source of randomness,

R(ĝ)−R(g⋆Θ) 6 (2σ +D)2
16.6P + 12.5 log(2δ−1)

N
.

Note that Theorem 6.2 and Theorem 6.7 provide a result in expectation only, which is
not enough for our purpose, since we need high probability bounds on the excess risk in order
to be able to handle the randomness of the space GP .

Assumptions satisfied by the random space GP We now discuss the assumptions that
are satisfied in our setting where G is a random space GP built from the random features
{ψp}p6P , in terms of assumptions on the underlying initial space F .

• The noise assumptions (N) do not concern G.

• The moment assumptions (M) are not restrictive. By combining similar assumptions
on F , the results on approximation error of Section 4.3 can be shown to hold (with
different constants).

• Assumptions (P ) are generally too strong. For (P1), the reason is that there is no high
probability link between ‖Aα‖∞ and ‖α‖ for usual norms. Now even if α⋆ is sparse
or has low l1-norm, this does not imply this is the case for β⋆ = argminβ∈RP R(gβ) or
Aα⋆ in general, thus (P2) cannot be assumed either. Finally (P3) may be assumed in
some case. Let us assume that we know that ‖α⋆‖2 6 1. Then ‖Aα⋆‖2 6 1 + ε with
high probability, thus it is enough to consider the space GP (Θ) with parameter space
Θ = {β; ‖β‖2 6 (1 + ε)}, and thus Aα⋆ ∈ Θ with high probability.

• Assumptions (G) are strong assumptions. The reason is that it is difficult to relate the
vector coefficient β⋆ or even Aα⋆ to the vector coefficient α⋆ of f ⋆ = fα⋆ in l∞ norm.
Thus even if we know some f0 close to f ⋆ in l∞-norm, this does not imply that we can
build a function g0 close to g⋆ = gβ⋆ .

• Assumptions (D) will not be valid a.s. w.r.t. the law of the Gaussian variables. The
assumptions (D1) and (D4) are difficult to satisfy since they concern ‖.‖∞. For assump-
tion (D2) and (D3), we have the property that for each x, ‖ψ(x)‖22 is close to ‖ϕ(x)‖22
with high probability. However, we need here a uniform result over x ∈ X which seems
difficult to get since the space F is actually big (not of finite dimension).

• Assumptions (O), which are typically strong assumptions for specific features ϕ appear
to be almost satisfied. The reason is due to the covariance structure of the random
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features. Indeed whatever the distribution PX (independent of PG), we have that
〈ψp, ψq〉 concentrates around

EPG〈ψp, ψq〉 =
1

P
‖
∑

i>1

ϕi‖2PX δp,q ,

where δp,q is the Kronecker symbol between p and q. Thus the orthogonality assumption
is satisfied with high probability. Note that the knowledge of PX is still needed in order
to rescale the features and obtain orthonormality. Similar argument shows that (O2)

is also valid.

As a consequence, only Theorems 6.2 and 6.7 would apply safely, but unfortunately these
Theorems do not give results in high probability.

In the next two sections, we derive similar results but in high probability with assumptions
that corresponds to our setting. We provide a hand-made Theorem that makes use of the
technique introduced in Györfi et al. (2002) and that can be applied without too restrictive
assumptions, although not being optimal in terms of constant and logarithmic factors.

4.3 Approximation power of random spaces

We assume that f ⋆ = fα⋆ ∈ F .

Theorem 6.11 (Approximation error with deterministic design) For all P > 1, for

all δ ∈ (0, 1) there exists an event of PG-probability higher than 1− δ such that on this event,

inf
g∈GP

‖f ⋆ − g‖2N 6 12
log(4N/δ)

P
‖α⋆‖2 1

N

N∑

n=1

‖ϕ(xn)‖2 .

Theorem 6.12 (Approximation error with random design) Under assumption (N2)

then for all P > 1, for all δ ∈ (0, 1), the following bound holds with PG-probability higher

than 1− δ:

inf
g∈GP

‖f ⋆ − TB(g)‖2PX 6 25
‖α⋆‖2 supx ‖ϕ(x)‖2

P

(
1 +

1

2
log
(P log(8P/γ2δ)

18γ2δ

))
,

where γ
def
= 1

B
‖α⋆‖ supx ‖ϕ(x)‖ and TB is the truncation operator at level B.

The result is not trivial because of the randomness of the space GP . Thus in order to keep
the explanation simple, the proof (detailed in the Appendix) makes use of Hoeffding’s Lemma
only, which relies on the bounded assumption of the features (which can be seen either as a
nice assumption, since it is simple and easy to check, or as a too strong assumption for some
cases). Note that this result can be further refined by making use, for instance, of moment
assumptions on the feature space instead.
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4.4 Excess risk of random spaces

In this section, we analyze the excess risk of the random projection method. Thus for a
proposed random estimate ĝ, we are interested in bounding R(ĝ)−R(f ⋆) in high probability
with respect to any source of randomness.

4.4.1 Regression algorithm.

From now on we consider the estimate ĝ to be the least-squares estimate gβ̂ ∈ GP that is the
function in GP with minimal empirical error, i.e.

gβ̂ = arg min
gβ∈GP

RN(gβ), (6.4)

and is the solution of a least-squares regression problem, i.e. β̂ = Ψ†Y ∈ R
P with matrix-

wise notations, where Y ∈ R
N is here the vector of observations (not to be confused with

the random variable Y that shares the same notation), Ψ is the N × P -matrix composed of

the elements: Ψn,p
def
= ψp(xn), and Ψ† is the Moore-Penrose pseudo-inverse2 of Ψ. The final

prediction function ĝ(x) is the truncation (at level ±B) of gβ̂, i.e. ĝ(x)
def
= TB[gβ̂(x)].

In the next subsection, we provide excess risk bounds w.r.t. f ⋆ in GP .

4.4.2 Regression with deterministic design

Theorem 6.13 Under assumption (N1), then for all P > 1, for all δ ∈ (0, 1) there exists an

event of PY ×PG-probability higher than 1− δ such that on this event, the excess risk of the

estimator gβ̂ is bounded as

‖f ⋆ − gβ̂‖2N 6
12 log(8N/δ)

P
‖α⋆‖2 1

N

N∑

n=1

‖ϕ(xn)‖2 + κB2
1

P + log(2/δ)

N
,

for some numerical constant κ > 0.

Note that from this theorem, we deduce (without further assumptions on the features
{ϕi}i>1) that for instance for the choice P =

√
N

log(N/δ)
then

‖f ⋆ − gβ̂‖2N 6 κ′
[
‖α⋆‖2 1

N

N∑

n=1

‖ϕ(xn)‖2
√

log(N/δ)

N
+

log(1/δ)

N

]

for some positive constant κ′. Note also that whenever an upper-bound on the square terms
‖α⋆‖2 1

N

∑N
n=1 ‖ϕ(xn)‖2 is known, this can be used in the definition of P in order to improve

this bound.
2In the full rank case when N > P , Ψ† =

(ΨTΨ)−1ΨT
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4.4.3 Regression with random design

In the regression problem with random design, the analysis of the excess risk of a given
method is not straightforward, since the assumptions to apply standard techniques may not
be satisfied without further knowledge on the structure of the features. In a general case, we
can use the techniques introduced in Györfi et al. (2002), which yields to the following (not
optimal) result:

Theorem 6.14 Under assumption (N1) and (N2), provided that N log(N) > 4
P

(thus when-

ever min(N,P ) > 2), then with PG × P-probability at least 1− δ,

R(TB(gβ̂))−R(f ⋆) 6 κ
[ log(12N/δ)

P
‖α⋆‖2 sup

x∈X
‖ϕ(x)‖2+max{B2

1 , B
2}P + P log(N) + log(3/δ)

N

]
.

for some positive constant κ.

Let us now provide some intuition about the proof of this result. We first start by
explaining what does not work. A natural idea in order to derive this result would be to
consider the following decomposition:

R(TB(gβ̂))−R(f ⋆) 6 [R(TB(g
⋆
B))−R(f ⋆)] + [R(TB(gβ̂))−R(TB(g

⋆
B))] .

where g⋆B ∈ argmin
g∈G

R(TB(g))−R(f ⋆) .

Indeed the first term is controlled with high PG-probability by Theorem 6.12, and since
R(gβ̂) − R(g⋆B) 6 R(gβ̂) − R(g⋆), the second term is controlled for each fixed ωG ∈ ΩG
with high P-probability by standard Theorems for regression, provided that we can relate
R(TB(gβ̂)) − R(TB(g

⋆
B)) to R(gβ̂) − R(g⋆B). Thus by doing the same careful analysis of the

events involved, this should lead to the desired result.
However, the difficulty lies first in ensuring that the conditions of application of standard

Theorems are satisfied with high PG-probability and then in relating the excess risk of the
truncated function to that of the non-truncated ones, since it is not true in general that
R(TB(gβ̂)) − R(TB(g

⋆
B)) 6 R(gβ̂) − R(g⋆B). Thus we resort to a different decomposition in

order to derive our results. The sketch of proof of Theorem 6.14 actually consists in applying
the following lemma.

Lemma 6.5 The following decomposition holds for all C > 0

‖TB(gβ̂)− f ⋆‖2PX 6 C‖f ⋆ − gβ̃‖2N + C‖gβ̃ − gβ̂‖2N + sup
g∈G

(
‖f ⋆ − TB(g)‖2PX − C‖f ⋆ − TB(g)‖2N

)
,

where gβ̃ = Π‖.‖N (f
⋆,G) and gβ̂ = Π‖.‖N (Y,G) are the projections of the target function f ⋆

and observation Y onto the random linear space G with respect to the empirical norm ‖.‖N .

We then call the first term ‖f ⋆−gβ̃‖2N an approximation error term, the second ‖gβ̃−gβ̂‖2N
a noise error term and the third one supg∈G

(
‖f ⋆−TB(g)‖2PX −C‖f ⋆−TB(g)‖2N

)
an estimation

error term.
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In order to prove Theorem 6.14, we then control each of these terms: We apply Lemma 6.11
to the first term, Lemma 6.6 below to the second term and finally Theorem 11.2 of Györfi
et al. (2002) to the last term with C = 8, and the result follows by gathering all the bounds.

Let us now explain the contribution to each of the three terms in details.

Approximation error term The first term, ‖f ⋆ − gβ̃‖2N , is an approximation error term
in empirical norm, it contains the number of projections as well as the norm of the target
function. This term plays the role of the approximation term that exists for regression with
penalization by a factor λ‖f‖2. This term is controlled by application of Theorem 6.11 con-
ditionally on the random samples, and then w.r.t. all source of randomness by independence
of the Gaussian random variables with the random samples.

Noise error term The second term, ‖gβ̃ − gβ̂‖2N , is an error term due to the observation

noise η. This term classically decreases at speed Dσ2

N
where σ2 is the variance of the noise

and D is related to the log entropy of the space of function G considered. Without any more
assumption, we only know that this is a linear space of dimension P , so this term finally
behaves like Pσ2

N
, but note that this dependency with P may be improved depending on the

knowledge about the functions ψ (for instance, if G is included in a Sobolev space of order
s, we would have P 1/2s instead).

Lemma 6.6 Under assumption (N1), then for each realization of the Gaussian variables,

with P-probability higher than 1− δ, the following holds true:

‖gβ̃ − gβ̂‖2N 6 6B2
1

1616P + 200 log(6/δ) + log(3/δ)

N
.

Note that we may consider different assumptions on the noise term. Here we considered
only that the noise is upper-bounded as ‖η‖∞ 6 B1, but another possible assumption is that
the noise has finite variance σ2 or that the tail of the distribution of the noise behaves nicely,
e.g., that ‖η‖ψα 6 B, where ψα is the Orlicz norm or order α, with α = 1 or 2.

Estimation error term The third term, supg∈GP
(‖f ⋆ − TB(g)‖2PX − ‖f ⋆ − TB(g)‖2N), is

an estimation error term due to finiteness of the data. This term also depends on the log
entropy of the space of functions, thus the same remark applies to the dependency with P

as for the noise error term. We bound the third term by applying Theorem 11.2 of Györfi
et al. (2002) to the class of functions G0 = {f ⋆ − TB(g), g ∈ GP}, for fixed random Gaussian
variables. Note that for all f ∈ G0, ‖f‖∞ 6 2B. The precise result of Györfi et al. (2002) is
the following :

Theorem 6.15 Let F be a class of functions f : Rd → R bounded in absolute value by B.

Let ε > 0. Then

P(sup
f∈F

‖f‖PX − 2‖f‖N > ε) 6 3E(N (

√
2

24
ε,F , ‖.‖2N)) exp(−

Nε2

288B2
).
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We now have the following lemma whose proof is given in the Appendix:

Lemma 6.7 Assuming that N log(N) > 4
P
, then for each realization of the Gaussian vari-

ables, with P-probability higher than 1− δ, the following holds true:

sup
g∈GP

‖f ⋆ − TB(g)‖2PX − 8‖f ⋆ − TB(g)‖2N 6 (24B)2
4 log(3/δ) + 2P log(N)

N
.

5 Discussion

5.1 Non-linear approximation

In the work (Barron et al., 2008), the authors provide excess risk bounds for greedy algo-
rithms (i.e. in a non-linear approximation setting). The precise result they derive in their
Theorem 3.1 is reported now, using the notations of section 4.2:

Theorem 6.16 (Barron et al. (2008)) Consider spaces {GP}P>1 generated respectively by

the span of features {ep}p6P with increasing dimension P (thus Θ = R
P for each P ). For

each GP we compute a corresponding greedy empirical estimate ĝP ∈ GP provided by some

algorithm (see Barron et al. (2008)), then we define P̂ = argmin ‖y − TB1 f̂P‖2N + κP log(N)
N

for some constant κ, and finally define ĝ = TB1(ĝP̂ ), and fix some P0.

Under assumption (N1), there exists κ0 depending only on B1 and a where P0 = xNay

such that if κ > κ0, then for all P > 0 and for all functions gθ in GP0, the estimator ĝ satisfies

ER(ĝ)−R(f (reg)) 6 2[R(gθ)−R(f (reg))] + 8
‖θ‖21
P

+ C
P logN

N
,

where the constant C only depends on κ, B1 and a.

The bound is thus similar to that of Theorem 6.14 in Section 4.4. One difference is that
this bound contains the l1 norm of the coefficients θ∗ while the l2 norm of the coefficients α⋆

appears in our setting. We leave as an open question to understand whether this difference
is a consequence of the non-linear aspect of their approximation or if it results from the
different assumptions made about the approximation spaces, in terms of rate of decrease of
the coefficients.

The main difference is actually about the tractability of the proposed estimator, since it
relies on greedy estimation that is computationally heavy while on the other hand, random
projection is cheap (see Subsection 5.4).

5.2 Adaptivity

Randomization enables to define approximation spaces such that the approximation error
(either in expectation or in high probability on the choice of the random space) is controlled,
whatever the measure P used to assess the performance is (which is specially interesting in the
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regression setting where P is unknown). As mentioned in the introduction, because the choice
of the subspace GP within which we perform the least-squares estimate is random, we avoid
(with high probability) degenerated situations where the target function f ⋆ cannot be well
approximated with functions in GP . Indeed, in methods that consider a given (deterministic)
finite-dimensional space G of the big space F (like linear approximation using a predefined
set of wavelets), it is often possible to find a target function f ⋆ such that infg∈GP

‖f ⋆−g‖N is
large, whereas using this method, the random choice of GP implies that for any f ⋆ ∈ F , the
approximation error infg∈GP

‖f ⋆−g‖N can be controlled (by the first term of the bound (6.2))
in high probability. We now illustrate this property on a simple example.

Example Let us consider a very peaky (a spot) distribution P . Regular linear approx-
imation, say with wavelets (see e.g. DeVore (1997)), will most probably miss the specific
characteristics of f ⋆ at the spot, since the first wavelets have large support. On the con-
trary, the random features {ψp}p6P that are functions that contain (random combinations
of) all wavelets, will be able to detect correlations between the data and some high frequency
wavelets, and thus discover relevant features of f ⋆ at the spot. This is illustrated in the
numerical experiment below.

Here P is a very peaky Gaussian distribution and f ⋆ is a 1-dimensional periodic function.
We consider as initial features (ϕi)i>1 the set of hat functions defined in Section 3.2.2. Fig-
ure 5.2 shows the target function f ⋆, the distribution P , and the data (xn, yn)16n6100 (left
plots). The middle plots represents the least-squares estimate ĝ using P = 40 scrambled ob-
jects (ψp)16p640 (here Brownian motions). The right plots shows the least-squares estimate
using the initial features (ϕi)16i640. The top figures represent a high level view of the whole
domain [0, 1]. No method is able to learn f ⋆ on the whole space (this is normal since the
available data are only generated from a peaky distribution). The bottom figures shows a
zoom [0.45, 0.51] around the data. Least-squares regression using scrambled objects is able
to learn the structure of f ⋆ in terms of the measure P .

5.3 Other related work

In Rahimi and Recht (2008, 2007), the authors consider, for a given parameterized function
Φ : X ×Θ → R bounded by 1, and a probability measure µ over Θ, the space F of functions
f(x) =

∫
Θ
α(θ)Φ(x, θ)dθ such that ‖f‖µ = supθ |α(θ)µ(θ)

| < ∞. They show that this is a

dense subset of the RKHS with kernel k(x, y) =
∫
Θ
µ(θ)Φ(x, θ)Φ(y, θ)dθ, and that if f ∈ F ,

then with high probability over (θp)p6P
i.i.d∼ µ, there exist coefficients (cp)p6P such that

f̂(x) =
∑P

p=1 cpΦ(x, θp) satisfies ‖f̂ − f‖22 6 O(‖f‖µ√
P
). The method is analogous to the

construction of the empirical estimates gAα ∈ GP of function fα ∈ K in our setting. Indeed
we may formally identify Φ(x, θp) with ψp(x) =

∑
iAp,iϕi(x), θp with the sequence (Ap,i)i,

and the distribution µ with the distribution of this infinite sequence. However, in our setting
we do not require the condition supx,θ Φ(x, θ) 6 1 to hold and the fact that Θ is a set of
infinite sequences makes the identification tedious without the Gaussian random functions
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Figure 6.3: LS estimate of f ⋆ using N = 100 data generated from a peaky distribution P
(left plots), using 40 Brownian motions (ψp) (middle plots) and 40 hat functions (ϕi) (right
plots). The bottom row shows a zoom around the data.

theory used here. Anyway, we believe that this link provides a better mutual understanding
of both approaches (i.e. Rahimi and Recht (2008) and this work).

5.4 Tractability

In practice, in order to build the least-squares estimate, one needs to compute the values of the
random features (ψp)16p6P at the data points (xn)16n6N , i.e. the matrix Ψ = (ψp(xn))p6P,n6N .
Moreover, due to finite memory and precision of computers, numerical implementations can
only handle a finite number F of initial features (ϕi)16i6F .

Approximation error Using a finite F introduces an additional approximation (squared)
error term in the final excess risk bounds. This additional error (due to the numerical
approximation) is of order O(F− 2s

d ) for a wavelet basis adapted to Hs([0, 1]d) and can be
made arbitrarily small, e.g. o(N−1/2), whenever the depth of the wavelet dyadic-tree is bigger
than logN

d
. Our main concern is thus about efficient computation.

Numerical complexity In Maillard and Munos (2009) it was mentioned that the com-
putation of Ψ, which makes use of the random matrix A = (Ap,i)p6P,i6F , has a complexity
O(FPN).

In the multi-resolution schemes described now, provided that the mother function has
compact support (such as the hat functions), we can significantly speed up the computation
of the matrix Ψ by using a tree-based lazy expansion, i.e. where the expansion of the random
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features (ψp)p6P is built only when needed for the evaluation at the points (xn)n. Note that in
the specific case of wavelets, we can even think to combine random projection with tools like
fast wavelet transform which would be even faster (which we do not do here for simplicity).

Example: Consider the example of the scrambled wavelets. In dimension 1, using a
wavelet dyadic-tree of depth H (i.e. F = 2H+1), the numerical cost for computing Ψ is
O(HPN) (using one tree per random feature). Now, in dimension d the classical extension
of one-dimensional wavelets uses a family of 2d−1 wavelets, thus requires 2d−1 trees each one
having 2dH nodes. While the resulting number of initial features F is of order 2d(H+1), thanks
to the lazy evaluation (notice that one never computes all the initial features), one needs to
expand at most one path of length H per training point, and the resulting complexity to
compute Ψ is O(2dHPN). Thus the method is linear with N and reduces the amount of
computation by an exponential factor (from 2dH to 2dH).

Note that one may alternatively use the so-called sparse-grids instead of wavelet trees,
which have been introduced by Griebel and Zenger (see Zenger (1990), Bungartz and Griebel
(2004)). The main result is that one can reduce significantly the total number of features
to F = O(2HHd) (while preserving a good approximation for sufficiently smooth functions).
Similar lazy evaluation techniques can be applied to sparse-grids.

Thus, using P = O(
√
N) random features, we deduce that the complexity of building

the matrix Ψ is at most O(2dN3/2 logN). Then in order to solve the least squares system,
one has to compute ΨTΨ, that has cost at most O(P 2N), and then solve the system by
inversion, which has numerical cost O(P 2.376) by Coppersmith and Winograd (1987). Thus,
with P = O(

√
N), the overall cost of the algorithm is O(2dN3/2 logN + N2) without fancy

computations designed for random matrices, and the numerical complexity to make a new
prediction is O(2dN1/2 log(N)).
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6 Technical details

6.1 Proof of Lemma 6.4

Proof: Step 1. First, we derive a result similar to Lemma 6.3 that holds for dot products,
by polarisation of the Euclidean norm. The precise statement for our purpose is the following
one.

Lemma 6.8 Let A be a P × F matrix of i.i.d. elements drawn from one of the previously

defined distributions. Let (un)16n6N and v be N + 1 vectors of RF .
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Then for any ε ∈ (0, 1), with probability at least 1− 4Ne−P (ε2/4−ε3/6), simultaneoulsy for

all n 6 N ,

|Aun · Av − un · v| 6 ε‖un‖ ‖v‖ .

We apply Lemma 6.3 to any couple of vectors u + w and u− w, where u and w are vectors
of norm 1. By polarisation, we have that

4Au · Aw = ‖Au+ Aw‖2 − ‖Au− Aw‖2
6 (1 + ε)‖u+ w‖2 − (1− ε)‖u− w‖2
= 4u · w + ε(‖u+ w‖2 + ‖u− w‖2)
= 4u · w + 2ε(‖u‖2 + ‖w‖2) = 4u · w + 4ε

fails with probability 2e−P (ε2/4−ε3/6) (we applied the previous lemma twice at line 2).
Thus for each n 6 N , we have with same probability:

Aun · Av 6 un · v + ε‖un‖ ‖v‖.

Now the symmetric inequality holds with the same probability, and using a union bound for
considering all (un)n6N , we have that

|Aun · Av − un · v| 6 ε‖un‖ ‖v‖,

holds for all n 6 N , with probability 1− 4Ne−P (ε2/4−ε3/6).
Step 2. We now extend this Lemma to the case of infinite sequences. This is made

possible thanks to the measurability properties of Gaussian Objects. Indeed, for any given
F , Lemma 6.8 applies to the two truncated sequences αF = (α1, . . . , αF ) and ϕF (xn) =

(ϕ1(xn), . . . , ϕF (xn)); this gives that for all n simultaneoulsy,

|
F∑

i=1

αiϕi(xn)−
1

P

P∑

p=1

( F∑

i=1

ξi,pαi
)( F∑

i=1

ξi,pϕi(xn)
)
| 6 ε ‖αF‖ ‖ϕF (xn)‖

happens with probability higher than 1 − 4Ne−P (ε2/4−ε3/6), where we introduced ξi,p
def
=√

PAi,p ∼ N (0, 1) in order to avoid confusion with the section on Gaussian objects. Now
by the assumption that α ∈ l2(R) and ϕ(x) ∈ l2(R) for all x, then the Gaussian objects∑∞

i=1 ξi,pαi and
∑∞

i=1 ξi,pϕi(xn) are well-defined square integrable random variables. Thus,
taking the limit of the above inequality when F tends to ∞ yields that with same probability,
for all n 6 N

|fα(xn)− gAα(xn)| 6 ε ‖α‖ ‖ϕ(xn)‖ .

�
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6.2 Proof of Lemma 6.6

Proof: We can bound the noise term ‖gβ̃ − gβ̂‖2N using a simple Chernoff bound together
with a chaining argument. Indeed, by definition of gβ̃ and gβ̂, if we introduce the noise vector
η defined by η = Y − f , we have

‖gβ̃ − gβ̂‖2N = 〈gβ̃ − gβ̂, η〉N

=
1

N

N∑

i=1

ηi(gβ̃ − gβ̂)(Xi)

6

(
sup
g∈G

1
N

∑N
i=1 ηig(Xi)

‖g‖N

)
‖gβ̃ − gβ̂‖N

6

(
sup
g∈G

1
N

∑N
i=1 ηig(Xi)

‖g‖N

)2
.

Thus, we focus on the set G1 = {g ∈ G; ‖g‖N = 1}. Note that since G1 is a sphere in a space of
dimension P , its ε-packing number in empirical norm is bounded above by M(ε,G1, ‖.‖N) 6
N (ε/2,G1, ‖.‖N) 6 N (ε/2, {g ∈ G; ‖g‖N 6 1}, ‖.‖N) 6 (4

ε
+ 1)P 6 max(5

ε
, 5)P , where N

refers here to the covering number.
We now introduce for convenience the following notation, for fixed Gaussian random

variables and data points (Xi)i=1..n:

ρ(t)
def
= PY

(
∃g ∈ G

1
N

∑N
i=1 ηig(Xi)

‖g‖N
> t
)

= PY

(
∃g ∈ G1 1

N

N∑

i=1

ηig(Xi) > t
)
.

For j = 0...∞, let us consider εj-packings Cj of G1 for the empirical norm ‖.‖N , with C0 =

g0, such that Cj+1 is a refinement of Cj and εj 6 εj−1. Then for a given g ∈ G1, we define gj =

Π(g, Cj) the projection of g into Cj, for the norm ‖g‖N . Thus, g − g0 = (g − gJ) +
J∑

j=1

(gj − gj−1).

Note that since by definition of G1 we have ‖g − g0‖N 6 2, we need to consider ε0 > 2.

Thus if we now introduce real numbers γ and (γj)j>1 such that
J∑

j=1

γj 6 γ, then we have

ρ(γt1 + t2 + t3) 6 P

(
∃g ∈ G1 1

N

N∑

i=1

ηi(g − g0)(Xi) > γt1 + t2

)
+exp(− t

2
3N

2B2
1

)

6 P

(
g ∈ ∃G1 1

N

N∑

i=1

ηi(g − gJ)(Xi) +

J∑

j=1

1

N

N∑

i=1

ηi(gj − gj−1)(Xi) >
J∑

j=1

γjt1 + t2

)
+exp(− t

2
3N

2B2
1

) ,
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where we applied Hoeffding’s inequality in the first line. We further have:

ρ(γt1 + t2 + t3) 6

J∑

j=1

P

(
∃g ∈ G1 1

N

N∑

i=1

ηi(gj − gj−1)(Xi) > t1γj

)

+exp(− t22N

2B2
1ε

2
J

) + exp(−t23N2B2
1)

6 E

J∑

j=1

M(εj,G1, ‖.‖N)M(εj−1,G1, ‖.‖N)P
( 1

N

N∑

i=1

ηi(gj − gj−1)(Xi) > t1γj

)

+exp(− t22N

2B2
1ε

2
J

) + exp(− t
2
3N

2B2
1

) .

Now, note that since εj 6 εj−1, then M(εj−1,G1, ‖.‖N) 6 M(εj,G1, ‖.‖N). Note also that
‖gj−gj−1‖N 6 ηj since Cj is a refinement of Cj−1. Finally, we can bound the packing number
by M(εj,G1, ‖.‖N) 6 Nj = max( 5

εj
, 5)P where P is the dimension of G. Thus we deduce that:

ρ(γt1 + t2 + t3) 6

J∑

j=1

N2
j exp(−

t21Nγ
2
j

2B2
1ε

2
j

) + exp(− t2N

2B2
1ε

2
J

) + exp(− t
2
3N

2B2
1

).

Now, we define γj =
2εjB1

t1

√
2 log(Nj)

N
, t2 = B1εJ

√
2 log(1/δ2)

N
and t3 = B1

√
2 log(1/δ3)

N
, for some

δ2, δ3 ∈ (0, 1]. Thus, we get:

ρ(ηt1 + t2 + t3) 6

J∑

j=1

1

N2
j

+ δ2 + δ3.

Thus, it remains to define εj. Since Nj = max( 5
εj
, 5)P , we define the covering radius εj to be

εj = 2−j5δ1/2P1 (22P − 1)1/2P for some δ1 ∈ (0, 1], which entails that
∑J

j=1
1
N2

j
6 δ1. Now since

εj → 0 when j → ∞, we can make the sum goes to infinity. We deduce that:

ρ(γt1 +B1

√
2 log(1/δ3)

N
) 6 δ1 + δ2 + δ3.
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Now, in order to bound the term γt1 + t2 + t3,we look at the following term:

γt1 = 2
∞∑

j=1

εjB1

√
2 log(Nj)

N

6
20B1√
N

∞∑

j=1

2−j
√

2jP log(2) + log(1/δ1)− log(22P − 1)

6
20B1√
N

∞∑

j=1

2−j
√

2(j − 1)P log(2) + log(2/δ1)

6
20B1√
N

( ∞∑

j=1

2−j
√

2(j − 1)P log(2) +
√
log(2/δ1)

)

6
20B1√
N

(
(1 +

√
2)
√
2P log(2) +

√
log(2/δ1)

)
.

where we use the fact that
∑∞

j=1 2
−j 6 1, and that

∑∞
j=1 2

−j√(j − 1) 6 1 +
√
2.

Using the inequalities
√
a +

√
b +

√
c 6

√
3(a+ b+ c), we thus deduce the following

bound:

γt1 + t2 + t3 6
B1√
N

(
20(1 +

√
2)
√

2P log(2) + 20
√
log(2/δ1) +

√
2 log(1/δ3)

)

6

√
6B1√
N

√
400 log(2)(1 +

√
2)2P + 200 log(2/δ1) + log(1/δ3).

Thus, by setting δ1 = δ2 = δ3 = δ/3, we deduce that with P-probability higher than 1−δ,

sup
g∈GP

1
N

∑N
i=1 εig(Xi)

‖g‖N
6
B1

√
6√

N

√
400 log(2)(1 +

√
2)2P + 200 log(6/δ) + log(3/δ) .

�

6.3 Proof of Lemma 6.7

Proof: Indeed, let us introduce the space of functions G0 = {f ⋆ − TB(g), g ∈ GP}. Then we
have for g ∈ G0, ‖g‖N 6 ‖g‖∞ 6 2B. Thus Theorem 11.2 of Györfi et al. (2002) gives the
following bound:

P( sup
g∈GP

‖f ⋆ − TB(g)‖PX − 2‖f ⋆ − TB(g)‖N > ε) 6 3E(N (

√
2

24
ε,G0, ‖.‖2N)) exp(−

Nε2

288(2B)2
).

Then, since G0 = f ⋆ + TB(GP ), we bound the entropy number by:

N (

√
2

24
ε,G0, ‖.‖2N) 6 N (

√
2

24
ε, TB(GP ), ‖.‖2N) 6 (

2(2B).24√
2ε

+ 1)P .



6. Technical details 155

Thus we deduce that if ε > 24.4B√
2
u, then with probability higher than 1− δ w.r.t P, for fixed

random Gaussian variables,

sup
g∈GP

‖f ⋆ − TB(g)‖PX − 2‖f ⋆ − TB(g)‖N 6 ε = 24B

√
log(3/δ) + P log(

1

u
+ 1)

√
2

N
.

Thus,we consider u = 1
N−1

, and deduce that, provided that N log(N) > 4
P
, then with

probability higher than 1− δ w.r.t P, for fixed random Gaussian variables (i.e. conditionally
on them),

sup
g∈GP

‖f ⋆ − TB(g)‖PX − 2‖f ⋆ − TB(g)‖N 6 24B

√
2 log(3/δ) + P log(N)

N
.

Thus, we deduce that on this event, for all g ∈ GP

‖f ⋆ − TB(g)‖2PX 6 (2‖f ⋆ − TB(g)‖N + 24B

√
2 log(3/δ) + P log(N)

N
)2

6 8‖f ⋆ − TB(g)‖2N + (24B)2
4 log(3/δ) + 2P log(N)

N
.

This gives the following upper bound, that holds with probability higher than 1− δ:

sup
g∈GP

‖f ⋆ − TB(g)‖2PX − 8‖f ⋆ − TB(g)‖2N 6 (24B)2
4 log(3/δ) + 2P log(N)

N

�

6.4 Proof of Theorem 6.11

Proof: Since by assumption f ⋆ = fα⋆ for some α⋆, we have by direct application of Lemma 6.4

inf
g∈G

‖f ⋆ − g‖2N 6 ‖fα⋆ − gAα⋆‖2N .

Now let us define for some N > 1 the quantity ε = εN(δ) that appears in Lemma 6.4,
such that

log(4N/δ)

P
=
ε2

4
− ε3

6
.

Thus, since ε ∈ (0, 1), this means in particular that we have

ε2

3
6 4

log(4N/δ)

P
6 ε2 .

�
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6.5 Proof of Theorem 6.12

Proof: By assumption, we consider that f ⋆ ∈ F . Thus there exists a sequence α⋆ ∈ R
N such

that one can write:
f ⋆ = fα⋆ =

∑

i>1

α⋆iϕi ,

Thus we consider in the sequel one such α⋆. This enables to derive the following upper bound:

inf
g∈G

‖f ⋆ − TL(g)‖2PX 6 ‖fα∗ − TL(gAα∗)‖2PX .

where we applied the gaussian operator A to the sequence α⋆.
Step 1. Applying Johnson-Lindenstrauss’ Lemma. Let us introduce m ghost

samples (X ′
j)j6m i.i.d. according to PX , and thus consider the following associated norm

‖fα∗ − TL(gAα∗)‖2m =
1

m

m∑

j=1

(fα∗ − TL(gAα∗))2(X ′
j) .

We now make explicit the probability spaces corresponding to the different sources of
randomness. Consider the probability space defined over the product sample space ΩX ×ΩG,
where ΩX consists of all the possible realizations of J states X ′

1, . . . , X
′
m drawn i.i.d. from PX ,

and ΩG is the set of all possible realizations of the random elements (Ap,i)16p6P,i>1 (which
define the random feature space GP ).

Let us fix some ωG ∈ ΩG (which defines the random subspace GP (ωG)). Since for all j, we
have that (fα∗ − TL(gAα∗))2(X ′

j) ∈ [0, 4L2] PX -a.s., then Hoeffding’s inequality applies; we
deduce that there exists an event ΩX (ωG) of PX -probability higher than 1− δX such that on
this event

‖fα∗ − TL(gAα∗)‖2PX 6 ‖fα∗ − TL(gAα∗)‖2m + (2L)2
√

log(1/δ)

2m
.

Now by independence between the Gaussian random variables and the sample, the same
inequality is valid on the event

Ω1 = {ωX × ωG;ωG ∈ ΩG, ωX ∈ ΩX (ωG)}

and this event has PX × PG-probability higher than 1− δX .
In order to bound the first term of the right hand side of this inequality, we first notice

that since ‖fα∗‖∞ 6 L, then

‖fα∗ − TL(gAα∗)‖2m 6 ‖fα∗ − gAα∗‖2m ,

then for some fixed ωX ∈ ΩX , that last term is bounded by ε2‖α⋆‖2 supx ‖ϕ(x)‖2 on an event
ΩG(ωX ) of PG-probability higher than 1− 4me−P (ε2/4−ε3/6) by application of Lemma 6.4.

Thus still by independence, the same inequality is valid on the event

Ω2 = {(ωX , ωG);ωX ∈ ΩX , ωG ∈ ΩG(ωX )}
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and this event has PX × PG-probability higher than 1− 4me−P (ε2/4−ε3/6).
Thus, we deduce, by a union bound that for all ε ∈ (0, 1) and m > 1 there exists an event

Ω1∩Ω2 of PX ×PG-probability higher than 1− δX −4me−P (ε2/4−ε3/6) such that on this event,

inf
g∈G

‖f ⋆ − TL(g)‖2PX 6 ε2‖α⋆‖2 sup
x

‖ϕ(x)‖2 + (2L)2
√

log(1/δ)

2m
.

Finally in order to get a bound in high PG-probability only, we introduce for any ωG ∈ ΩG
the event Ω′

X (ωG)
def
= {ωX ∈ ΩX ; (ωX , ωG) ∈ Ω1 × Ω2} and then define for all λ > 0 the event

Λ
def
= {ωG ∈ ΩG;PX (Ω

′
X (ωG)) > 1− λ} .

Using this notation, we deduce that for all ωG ∈ Λ, the following bound holds

inf
g∈GP (ωG)

‖f ⋆ − TL(g)‖2PX 6

∫

Ω′
X (ωG)

inf
g∈GP (ωG)

‖f ⋆ − TL(g)‖2PX dωX

+

∫

Ω′
X (ωG)c

inf
g∈GP (ωG)

‖f ⋆ − TL(g)‖2PX dωX

6 ε2‖α⋆‖2 sup
x

‖ϕ(x)‖2 + (2L)2
√

log(1/δ)

2m
+ (2L)2λ .

Moreover, since PX×G(Ω1 ∩ Ω2) > 1− δX − 4me−P (ε2/4−ε3/6) and on the other side

PX×G(Ω1 ∩ Ω2) =

∫

ΩG

PX (Ω
′
X (ωG))dωG

6

∫

ΩG

IPX (Ω′
X (ωG))>1−λdωG + (1− λ)

∫

ΩG

IPX (Ω′
X (ωG))<1−λdωG

6 PG(Λ) + (1− λ)(1− PG(Λ)) ,

then we deduce that PG(Λ)) > 1− δX+4me−P (ε2/4−ε3/6)

λ
.

Step 2. Tuning the parameters ε. Now let us introduce δG and define for some m > 1

the quantity ε = εm(δG) such that

log(4m/δG)
P

=
ε2

4
− ε3

6
.

Thus, since ε ∈ (0, 1), this means in particular that we have

ε2

3
6 4

log(4m/δG)

P
6 ε2 .

Now by rewriting the bound using δ = δX+δG
λ

, we deduce that for all δ, for all m and λ,
there exists an event of PG-probability higher than 1− δ such that

inf
g∈G

‖f ⋆ − TL(g)‖2PX 6 12
log(8m

λδ
)

P
‖α⋆‖2 sup

x
‖ϕ(x)‖2 + (2L)2

(
√

log( 2
λδ
)

2m
+ λ
)
.
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Step 3. Optimizing over λ and m. Now, it remains to optimize the free parameter
m and λ in this last bound; the optimal value for m is given by

mopt =
P 2L4 log( 2

λδ
)

72‖α‖4 supx ‖ϕ(x)‖4
,

and the corresponding bound is thus

inf
g∈G

‖f ⋆ − TL(g)‖2PX 6 24
‖α⋆‖2 supx ‖ϕ(x)‖2

P

(
1 + log

(PL2
√

log(2/λδ)/λδ

3‖α⋆‖2 supx ‖ϕ(x)‖2
))

+ (2L)2λ .

Now one can take λ
def
= ‖α⋆‖2 supx ‖ϕ(x)‖2

(2L)2P
and deduce the final bound. �

6.6 Proof of Theorem 6.13

Proof: We make use of the following decomposition:

‖f ⋆ − gβ̂‖2N 6 ‖f ⋆ − gβ̃‖2N + ‖gβ̃ − gβ̂‖2N ,

and introduce the sets ΩG that consists of all possible realizations of the random elements
(Ap,i)16p6P,i>1, and ΩY that corresponds to the observation variables Y .

High PY ×PG-probability bound. We again make explicit the probability spaces. For
the first term on right hand side, an application of Theorem 6.11 ensures that there exists
an event Ω′

G ⊂ ΩG of PG-probability higher than 1− δ such that for all ωG ∈ Ω′
G,

‖f ⋆ − gβ̃‖2N 6 12
log(4N/δ)

P
‖α⋆‖2 1

N

N∑

n=1

‖ϕ(xn)‖2 .

Since no random variable Y appears in this term, this is also true on the event

Ω1
def
= {(ωY , ωG) ∈ ΩY × ΩG;ωG ∈ Ω′

G} ,

and Ω1 has PY × PG-probability higher than 1− δ.
For the second term, let us fix some ωG ∈ ΩG. Then Lemma 6.6 below shows that

there exists an event ΩY(ωG) ⊂ ΩG of PY-probability higher than 1 − δ′ such that for all
ωY ∈ ΩY(ωG),

‖gβ̃ − gβ̂‖2N 6 κB2P + log(1/δ′)

N
,

for some numerical constant κ > 0. Thus by independence of the noise term with the
Gaussian variables, we deduce that a similar bound holds on the event

Ω2
def
= {(ωY , ωG) ∈ ΩY × ΩG;ωY ∈ ΩY(ωG)} ,

and that Ω2 has PY ×PG-probability higher than 1−δ′. Thus, we conclude by a simple union
bound in order te get a result in high PY × PG-probability. �
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6.7 Proof of Theorem 6.14

Proof:

Similarly to the proof of Theorem 6.12, we introduce the sets ΩX ,Ωη and ΩG that consist
of all possible realizations of the input, noise and Gaussian random variables. We then define
Ω = ΩX × Ωη × ΩG.

Step 1. High P × PG-probability bound. In order to get a high probability bound,
we use the decomposition given by Lemma 6.5. Now let us consider some fixed ωG ∈ ΩG.
One can apply Lemma 6.6 and Lemma 6.7 below for the noise and estimation term.

Thus when N log(N) > 4
P
, there exists an event Ω1(ωG) of P-probability higher than 1−δ1

and an event Ω2(ωG) of P-probability higher than 1− δ2 such that for all (ωX , ωη) ∈ Ω1(ωG)
we have

‖gβ̃ − gβ̂‖2N 6 6B2 (1616P + 200 log(6/δ) + log(3/δ))

N
,

and for all (ωX , ωη) ∈ Ω2(ωG) we have

sup
g∈GP

‖f ⋆ − TL(g)‖2PX − 8‖f ⋆ − TL(g)‖2N 6 (24L)2
4 log(3/δ) + 2P log(N)

N
.

On the other hand, by application of Theorem 6.11, for any given (ωX , ωη), there exists
an event ΩG(ωX , ωη) ⊂ ΩG of PG-probability higher than 1− δ3 such that on this event

‖f ⋆ − gβ̃‖2N 6 12
log(4N/δ3)

P
‖α⋆‖2 sup

x∈X
‖ϕ(x)‖2 .

Thus by independence of the noise, data points and Gaussian variables, the three previous
inequalities are valid respectively on the events

Ω1 = {(ωX , ωη, ωG) ∈ Ω; (ωX , ωη) ∈ Ω1(ωG)}
Ω2 = {(ωX , ωη, ωG) ∈ Ω; (ωX , ωη) ∈ Ω2(ωG)}

Ω3 = {(ωX , ωη, ωG) ∈ Ω;ωG ∈ ΩG(ωX )}

Moreover Ω1 has P × PG-probability higher than 1 − δ1, Ω2 has P × PG-probability higher
than 1− δ2, and Ω1 has P × PG-probability higher than 1− δ3. We thus conclude by a sim-
ple union bound, and then by some cosmetic simplifications introducing some constant κ. �





Chapter 7

Brownian Sensing for the Recovery of a

Sparse Function.

The previous chapter showed the benefit of using random matrices in order to address the
problem of predicting as well as a target unknown function. In this chapter, we now turn to a
related problem called recovery, where the goal is to recover the parameter of decomposition
of the unknown function. Note that this problem is generally harder since recovering such
parameters implies a law prediction error as well.

We consider the problem of recovering the parameter of decomposition α ∈ R
K of a sparse

function f (i.e. the number of non-zero entries of α is small compared to the number K of
features) on a family of functions {ϕk}16k6K given noisy evaluations of f at a set of well-
chosen sampling points. We introduce an additional randomization process, called Brownian
sensing, based on the computation of stochastic integrals, which produces a Gaussian sens-
ing matrix, for which good recovery properties are proven, independently on the number of
sampling points N , even when the features are arbitrarily non-orthogonal. Under the as-
sumption that f is Hölder continuous with exponent at least 1/2, we provide an estimate α̂
of the parameter such that ‖α− α̂‖2 = O(‖η‖2/

√
N), where η is the observation noise. The

method uses a set of sampling points uniformly distributed along a one-dimensional curve
selected according to the features. We report numerical experiments illustrating our method.

This is a joint work with Alexandra Carpentier, with whom it is pleasant to work. A
paper corresponding to this chapter has been accepted for publication in the 25th conference

on advances in Neural Information Processing Systems (NIPS 2011).

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

2 Relation to existing results . . . . . . . . . . . . . . . . . . . . . . . . . 164

3 The “Brownian sensing” approach . . . . . . . . . . . . . . . . . . . . . 166

3.1 Properties of the transformed objects . . . . . . . . . . . . . . . . . . . . 167

3.2 Main result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

4 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

4.1 Comparison with known results . . . . . . . . . . . . . . . . . . . . . . . 169

4.2 The choice of the curve . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

4.3 Examples of curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170



162 Chapter 7. Brownian Sensing for the Recovery of a Sparse Function.

5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6 Technical details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

1 Introduction

We consider the problem of sensing an unknown function f : X → R (where X ⊂ R
d), where

f belongs to span of a large set of (known) features {ϕk}16k6K of L2(X ):

f(x) =
K∑

k=1

αkϕk(x),

where α ∈ R
K is the unknown parameter, and is assumed to be S-sparse, i.e. that we have

‖α‖0 def
= |{i : αk 6= 0}| 6 S. Our goal is to recover α as accurately as possible.

In the setting considered here we are allowed to select the points {xn}16n6N ∈ X where
the function f is evaluated, which results in the noisy observations

yn = f(xn) + ηn, (7.1)

where ηn is an observation noise term. We further assume that the noise is bounded, i.e.

that ‖η‖22
def
=

N∑

n=1

η2n 6 σ2. We write DN = ({xn, yn}16n6N) the set of observations and we are

interested in situations where N ≪ K, i.e., the number of observations is much smaller than
the number of features ϕk.

The question we wish to address is: how well can we recover α based on a set of N noisy
measurements? Note that whenever the noise is non-zero, the recovery cannot be perfect, so
we wish to express the estimation error ‖α− α̂‖2 in terms of N , where α̂ is our estimate.

The proposed method. We address the problem of sparse recovery by combining the
two ideas:

• Sparse recovery theorems (see Section 2) essentially say that in order to recover a vector
with a small number of measurements, one needs incoherence. The measurement basis,
corresponding to the pointwise evaluations f(xn), should to be incoherent with the
representation basis, corresponding to the one on which the vector α is sparse. Inter-
preting these basis in terms of linear operators, pointwise evaluation of f is equivalent

to measuring f using Dirac masses δxn(f)
def
= f(xn). Since in general the representa-

tion basis {ϕk}16k6K is not incoherent with the measurement basis induced by Dirac
operators, we would like to consider another measurement basis, possibly randomized,
in order that it becomes incoherent with any representation basis.
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• Since we are interested in reconstructing α, and since we assumed that f is linear in α,
we can apply any set of M linear operators {Tm}16m6M to f =

∑
k αkϕk, and consider

the problem transformed by the operators; the parameter α is thus also the solution to
the transformed problem Tm(f) =

∑
k αkTm(ϕk).

Thus, instead of considering the N×K sensing matrix Φ = (δxn(ϕk))k,n, we consider a new
M×K sensing matrix A = (Tm(ϕk))k,m, where the operators {Tm}16m6M enforce incoherence
between bases. Provided that we can estimate Tm(f) with the data set DN , we will be able to
recover α. The Brownian sensing approach followed here uses stochastic integral operators
{Tm}16m6M , which makes the measurement basis incoherent with any representation basis,
and generates a sensing matrix A which is Gaussian (with i.i.d. rows).

The proposed algorithm (detailed in Section 3) recovers α by solving the system Aα ≈ b̂

by l1 minimization1, where b̂ ∈ R
M is an estimate, based on the noisy observations yn, of the

vector b ∈ R
M whose components are bm = Tmf .

Contribution: Our contribution is a sparse recovery result for arbitrary non-orthonormal

functional basis {ϕk}k6K of a Hölder continuous function f . Theorem 7.4 states that our
estimate α̂ satisfies ‖α − α̂‖2 = O(‖η‖2/

√
N) with high probability whatever N , under the

assumption that the noise η is globally bounded, such as in Candés and Romberg (2007),
Rauhut (2010). This result is obtained by combining two contributions:

• We show that when the sensing matrix A is Gaussian, i.e. when each row of the matrix
is drawn i.i.d. from a Gaussian distribution, orthonormality is not required for sparse
recovery. This result, stated in Proposition 7.1 (and used in Step 1 of the proof of
Theorem 7.4), is a consequence of Theorem 3.1 of Foucart and Lai (2009).

• The sensing matrix A is made Gaussian by choosing the operators Tm to be stochas-

tic integrals: Tmf
def
= 1√

M

∫
C fdB

m, where Bm are Brownian motions, and C is a 1-
dimensional curve of X appropriately chosen according to the functions {ϕk}k6K (see
the discussion in Section 4). We call A the Brownian sensing matrix.

We have the property that the recovery property using the Brownian sensing matrix A

only depends on the number of Brownian motions M used in the stochastic integrals and not
on the number of sampled points N . Note that M can be chosen arbitrarily large as it is not
linked with the limited amount of data, but M affects the overall computational complexity
of the method. The number of sample N appears in the quality of estimation of b only, and
this is where the assumption that f is Hölder continuous comes into the picture.

Outline: In Section 2, we survey the large body of existing results about sparse recovery
and relate our contribution to this literature. In Section 3, we explain in detail the Brownian
sensing recovery method sketched above and state our main result in Theorem 7.4.

In Section 4, we first discuss our result and compare it with existing work. Then we
comment on the choice and influence of the sampling domain C on the recovery performance.

1where the approximation sign ≈ refers to a mini-
mization problem under a constraint coming from the

observation noise.
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Finally in Section 5, we report numerical experiments illustrating the recovery properties
of the Brownian sensing method, and the benefit of the latter compared to a straightforward
application of compressed sensing when there is noise and very few sampling points.

2 Relation to existing results

A standard approach in order to recover α2 is to consider the N ×K matrix Φ = (ϕk(xn))k,n,
and solve the system Φα̂ ≈ y where y is the vector with components yn. Since N ≪ K this
is an ill-posed problem. Under the sparsity assumption, a successful idea is first to replace
the initial problem with the well-defined problem of minimizing the ℓ0 norm of α under the
constraint that Φα̂ ≈ y, and then, since this problem is NP-hard, use convex relaxation of
the ℓ0 norm by replacing it with the ℓ1 norm. We then need to ensure that the relaxation
provides the same solution as the initial problem making use of the ℓ0 norm. The literature
on this problem is huge (see Candés and Romberg (2007), Donoho (2006), Donoho and Stark
(1989), Tibshirani (1994), Zhao and Yu (2006), Candés and Tao (2007), Koltchinskii (2009)
for examples of papers that initiated this field of research).

Generally, we can decompose the reconstruction problem into two distinct sub-problems.
The first sub-problem (a) is to state conditions on the matrix Φ ensuring that the recovery
is possible and derive results for the estimation error under such conditions:

The first important condition is the Restricted Isometry Property (RIP), introduced in
Candés et al. (2006a), from which we can derive the following recovery result stated in Candés
et al. (2006b):

Theorem 7.1 (Candés & al, 2006) Let δS be the restricted isometry constant of Φ√
N

, de-

fined as δS = sup{|‖
Φ√
N
a‖2

‖a‖2 − 1|; ‖a‖0 6 S}. Then if δ3S + δ4S < 2, for every S-sparse vector

α ∈ R
K, the solution α̂ to the ℓ1-minimization problem min{‖a‖1; a satisfies ‖Φa−y‖22 6 σ2}

satisfies

‖α̂− α‖22 6
CSσ

2

N
,

where CS depends only on δ4S.

Additional recent results on that property are to be found in Candès (2008).
Apart from the historical RIP, many other conditions emerged from works reporting the

practical difficulty to have the RIP satisfied, and thus weaker conditions ensuring recon-
struction were derived. See van de Geer and Buhlmann (2009) for a precise survey of such
conditions. A weaker condition for recovery is the compatibility condition which leads to the
following result from van de Geer (2007):

Theorem 7.2 (Van de Geer & Buhlmann, 2009) Assuming that the compatibility con-

dition is satisfied, i.e. for a set S of indices of cardinality S and a constant L,

2Note that reconstructing α is a more challenging
and different goal than having a good approximation

of the function f itself, as studied e.g. in Dalalyan
and Tsybakov (2009).
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C(L,S) = min
{S‖ Φ√

N
α‖22

‖αS‖21
, α satisfies ‖αSc‖1 6 L‖αS‖1

}
> 0,

then for every S-sparse vector α ∈ R
K, the solution α̂ to the ℓ1-minimization problem

min{‖α‖1;α satisfies ‖αSc‖1 6 L‖αS‖1} satisfies for C a numerical constant:

‖α̂− α‖22 6
C

C(L,S)2
σ2 log(K)

N
.

The second sub-problem (b) of the global reconstruction problem is to provide the user
with a simple way to efficiently sample the space in order to build a matrix Φ such that
the conditions for recovery are fulfilled, at least with high probability. This can be difficult
in practice since it involves understanding the geometry of high dimensional objects. For
instance, to the best of our knowledge, there is no result explaining how to sample the space
so that the corresponding sensing matrix Φ satisfies the nice recovery properties needed by
the previous theorems, for a general family of features {ϕk}k6K .

However, it is proven in Rauhut (2010) that under some hypotheses on the functional
basis, we are able to recover the strong RIP property for the matrix Φ with high probability.
This result, combined with a recovery result, is stated as follows:

Theorem 7.3 (Rauhut, 2010) Assume that {ϕk}k6K is an orthonormal basis of functions

under a measure ν, bounded by a constant Cϕ, and that we build DN by sampling f at

random according to ν. Assume also that the noise is bounded ‖η‖2 6 σ. If N
log(N)

>

c0C
2
ϕS log(S)2 log(K) and N > c1C

2
ϕS log(p−1), then with probability at least 1− p, for every

S-sparse vector α ∈ R
K, the solution α̂ to the ℓ1-minimization problem min{‖a‖1; a satisfies ‖Aa−

y‖22 6 σ2} satisfies

‖α̂− α‖22 6
c2σ

2

N
,

where c0, c1 and c2 are some numerical constants.

In order to prove this theorem, the author of Rauhut (2010) showed that by sampling
the points i.i.d. from ν, then with with high probability the resulting matrix Φ is RIP. The
strong point of this Theorem is that we do not need to check conditions on the matrix Φ to
guarantee that it is RIP, which is in practice infeasible. But the weakness of the result is that
the initial basis has to be orthonormal and bounded under the given measure ν in order to get
the RIP satisfied: the two conditions ensure incoherence with Dirac observation basis. The
specific case of an unbounded basis i.e., Legendre Polynomial basis, has been considered in
Rauhut and Ward (2010), but to the best of our knowledge, the problem of designing a general

sampling strategy such that the resulting sensing matrix possesses nice recovery properties
in the case of non-orthonormal basis remains unaddressed. Our contribution considers this
case and is described in the following section.
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3 The “Brownian sensing” approach

A need for incoherence. When the representation and observation basis are not inco-
herent, the sensing matrix Φ does not possess a nice recovery property. A natural idea is to
change the observation basis by introducing a set of M linear operators {Tm}m6M acting on

the functions {ϕk}k6K . We have Tm(f) =
K∑

k=1

αkTm(ϕk) for all 1 6 m 6 M and our goal is

to define the operators {Tm}m6M in order that the sensing matrix (Tm(ϕk))m,k enjoys a nice
recovery property, whatever the representation basis {ϕk}k6K .

The Brownian sensing operators. We now consider linear operators defined by stochas-
tic integrals on a 1-dimensional curve C of X . First, we need to select a curve C ⊂ X of
length l, such that the covariance matrix VC, defined by its elements (VC)i,j =

∫
C ϕiϕj (for

1 6 i, j 6 K), is invertible. We will discuss the existence of a such a curve later in Section 4.
Then, we define the linear operators {Tm}16m6M as stochastic integrals over the curve C:

Tm(g)
def
= 1√

M

∫
C gdB

m, where {Bm}m6M are M independent Brownian motions defined on C.
Note that up to an appropriate speed-preserving parametrization g : [0, l] → X of C, we

can work with the corresponding induced family {ψk}k6K , where ψk = ϕk ◦ g, instead of the
family {ϕk}k6K .

The sensing method. With the choice of the linear operators {Tm}m6M defined above,
the parameter α ∈ R

K now satisfies the following equation

Aα = b , (7.2)

where b ∈ R
M is defined by its components bm

def
= Tm(f) =

1√
M

∫
C f(x)dB

m(x) and the so-

called Brownian sensing matrix A (of size M ×K) has elements Am,k
def
= Tm(ϕk). Note that

we do not require sampling f in order to compute the elements of A. Thus, the samples
only serve for estimating b and for this purpose, we sample f at points {xn}16n6N regularly
chosen along the curve C.

In general, for a curve C parametrized with speed-preserving parametrization g : [0, l] → X
of C, we have xn = g( n

N
l) and the resulting estimate b̂ ∈ R

M of b is defined with components:

b̂m =
1√
M

N−1∑

n=0

yn(B
m(xn+1)− Bm(xn)) . (7.3)

Note that in the special case when X = C = [0, 1], we simply have xn = n
N

.
The final step of the proposed method is to apply standard recovery techniques (e.g.,

l1 minimization or Lasso) to compute α̂ for the system (7.2) where b is perturbed by the

so-called sensing noise ε
def
= b− b̂ (estimation error of the stochastic integrals).
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3.1 Properties of the transformed objects
We now give two properties of the Brownian sensing matrix A and the sensing noise ε = b− b̂ .

Brownian sensing matrix. By definition of the stochastic integral operators {Tm}m6M ,
the sensing matrix A = (Tm(ϕk))m,k is a centered Gaussian matrix, with

Cov(Am,k, Am,k′) =
1

M

∫

C
ϕk(x)ϕk′(x)dx .

Moreover by independence of the Brownian motions, each row Am,· is i.i.d. from a centered
Gaussian distribution N(0, 1

M
VC), where VC is the K × K covariance matrix of the basis,

defined by its elements Vk,k′ =
∫
C ϕk(x)ϕk′(x)dx.

Thanks to this nice structure, we can prove that A possesses a property similar to RIP
(in the sense of Foucart and Lai (2009)) whenever M is large enough:

Proposition 7.1 For p > 0 and any integer t > 0, when M > C′
4
(t log(K/t) + log 1/p)),

with C ′ being a universal constant (defined in Rudelson and Vershynin (2008b), Baraniuk

et al. (2008)), then with probability at least 1− p, for all t−sparse vectors x ∈ R
K,

1

2
νmin,C‖x‖2 6 ‖Ax‖2 6

3

2
νmax,C‖x‖2,

where νmax,C and νmin,C are respectively the largest and smallest eigenvalues of V
1/2
C .

Sensing noise. In order to state our main result, we need a bound on ‖ε‖22. We consider
the simplest deterministic sensing design where we choose the sensing points to be uniformly
distributed along the curve C3.

Proposition 7.2 Assume that ‖η‖22 6 σ2 and that f is (L, β)-Hölder, i.e.

∀(x, y) ∈ X 2, |f(x)− f(y)| 6 L|x− y|β ,

then for any p ∈ (0, 1], with probability at least 1 − p, we have the following bound on the

sensing noise ε = b− b̂ computed on the curve C of length l:

‖ε‖22 6
σ̃2(N,M, p)

N
,

where

σ̃2(N,M, p)
def
= 2

( L2l2β

N2β−1
+ σ2

)(
1 + 2

log(1/p)

M
+ 4

√
log(1/p)

M

)
.

Remark 5 The bound on the sensing noise ‖ε‖22 contains two contributions: an approxima-

tion error term which comes from the approximation of a stochastic integral with N points and

that scales with L2l2β/N2β, and the observation noise term of order σ2/N . The observation

noise term (when σ2 > 0) dominates the approximation error term whenever β > 1/2.
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Input: a curve C of length l such that VC is invertible. Parameters N and M .

• Select N uniform samples {xn}16n6N along the curve C,

• Generate M Brownian motions {Bm}16m6M along C.

• Compute the Brownian sensing matrix A ∈ R
M×K

(i.e. Am,k =
1√
M

∫
C ϕk(x)dB

m(x)).

• Compute the estimate b̂ ∈ R
M

(i.e. b̂m = 1√
M

∑N−1
n=0 yn(B

m(xn+1)−Bm(xn))).

• Find α̂, solution to

min
a

{
‖a‖1 such that ‖Aa− b̂‖22 6

σ̃2(N,M, p)

N

}
.

Figure 7.1: The Brownian sensing approach using a uniform sampling along the curve C.

3.2 Main result.
In this section, we state our main recovery result for the Brownian sensing method, described
in Figure 7.1, using a uniform sampling method along a one-dimensional curve C ⊂ X ⊂ R

d.
The proof of the following theorem can be found in the supplementary material.

Theorem 7.4 (Main result) Assume that f is (L, β)-Hölder on X and that VC is invert-

ible. Let us write the condition number κC = νmax,C/νmin,C, where νmax,C and νmin,C are

respectively the largest and smallest eigenvalues of V
1/2
C . Write r =

[
(3κC − 1)( 1

4
√
2−1

)
]2

. For

any p ∈ (0, 1], let M > 4c(4Sr log( K
4Sr

) + log 1/p) (where c is a universal constant defined

in Rudelson and Vershynin (2008b), Baraniuk et al. (2008)). Then, with probability at least

1 − 3p, the solution α̂ obtained by the Brownian sensing approach described in Figure 7.1,

satisfies

‖α̂− α‖22 6 C
( κ4C
maxk

∫
C ϕ

2
k

) σ̃2(N,M, p)

N
,

where C is a numerical constant and σ̃(N,M, p) is defined in Proposition 7.2.

Note that a similar result (not reported here) can be proven in the case of i.i.d. sub-
Gaussian noise, instead of a noise with bounded ℓ2 norm considered here.

3Note that other deterministic, random, or low-
discrepancy sequence could be used here.
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4 Discussion.

In this section we discuss the differences with previous results, especially with the work
Rauhut (2010) recalled in Theorem 7.3. We then comment on the choice of the curve C and
illustrate examples of such curves for different bases.

4.1 Comparison with known results

The order of the bound. Concerning the scaling of the estimation error in terms of the
number of sensing points N , Theorem 7.3 of Rauhut (2010) (reminded in Section 2) states
that when N is large enough (i.e., N = Ω(S log(K))), we can build an estimate α̂ such that
‖α̂ − α‖22 = O(σ

2

N
). In comparison, our bound shows that ‖α̂ − α‖22 = O(L

2l2β

N2β + σ2

N
) for any

values of N . Thus, provided that the function f has a Hölder exponent β > 1/2, we obtain
the same rate as in Theorem 7.3.

A weak assumption about the basis. Note that our recovery performance scales with
the condition number κC of VC as well as the length l of the curve C. However, concerning
the hypothesis on the functions {ϕk}k6K , we only assume that the covariance matrix VC is
invertible on the curve C, which enables to handle arbitrarily non-orthonormal bases. This
means that the orthogonality condition on the basis functions is not a crucial requirement
to deduce sparse recovery properties. To the best of our knowledge, this is an improvement
over previously known results (such as the work of Rauhut (2010)). Note however that if κC
or l are too high, then the bound becomes loose. Also the computational complexity of the
Brownian sensing increases when κC is large, since it is necessary to take a large M , i.e. to
simulate more Brownian motions in that case.

A result that holds without any conditions on the number of sampling points.
Theorem 7.4 requires a constraint on the number of Brownian motions M (i.e., that M =

Ω(S logK)) and not on the number of sampling points N (as in Rauhut (2010), see Theorem
7.3). This is interesting in practical situations when we do not know the value of S, as we do
not have to assume a lower-bound on N to deduce the estimation error result. This is due
to the fact that the Brownian sensing matrix A only depends on the computation of the M
stochastic integrals of the K functions ϕk, and does not depend on the samples. The bound
shows that we should take M as large as possible. However, M impacts the numerical cost
of the method. This implies in practice a trade-off between a large M for a good estimation
of α and a low M for low numerical cost.

4.2 The choice of the curve

Why sampling along a 1-dimensional curve C instead of sampling over the whole
space X? In a bounded space X of dimension 1, both approaches are identical. But
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in dimension d > 1, following the Brownian sensing approach while sampling over the
whole space would require generating M Brownian sheets (extension of Brownian motions
to d > 1 dimensions) over X , and then building the M × K matrix A with elements
Am,k =

∫
X ϕk(t1, ...td)dB

m
1 (t1)...dB

m
d (td). Assuming that the covariance matrix VX is invert-

ible, this Brownian sensing matrix is also Gaussian and enjoys the same recovery properties
as in the one-dimensional case. However, in this case, estimating the stochastic integrals
bm =

∫
X fdB

m using sensing points along a (d-dimensional) grid would provide an estima-

tion error ε = b− b̂ that scales poorly with d since we integrate over a d dimensional space.
This explains our choice of selecting a 1-dimensional curve C instead of the whole space X
and sampling N points along the curve. This choice provides indeed a better estimation of b
which is defined by a 1-dimensional stochastic integrals over C. Note that the only require-
ment for the choice of the curve C is that the covariance matrix VC defined along this curve
should be invertible.

In addition, in some specific applications the sampling process can be very constrained by
physical systems and sampling uniformly in all the domain is typically costly. For example in
some medical experiments, e.g., scanner or I.R.M., it is only possible to sample along straight
lines.

What the parameters of the curve tell us on a basis. In the result of Theorem 7.4,
the length l of the curve C as well as the condition number κC = νmax,C/νmin,C are essential
characteristics of the efficiency of the method. It is important to note that those two variables
are actually related. Indeed, it may not be possible to find a short curve C such that κC is
small. For instance in the case where the basis functions have compact support, if the curve
C does not pass through the support of all functions, VC will not be invertible. Any function
whose support does not intersect with the curve would indeed be an eigenvector of VC with a
0 eigenvalue. This indicates that the method will not work well in the case of a very localized
basis {ϕk}k6K (e.g. wavelets with compact support), since the curve would have to cover the
whole domain and thus l will be very large. On the other hand, the situation may be much
nicer when the basis is not localized, as in the case of a Fourier basis. We show in the next
subsection that in a d-dimensional Fourier basis, it is possible to find a curve C (actually a
segment) such that the basis is orthonormal along the chosen line (i.e. κC = 1).

4.3 Examples of curves

For illustration, we exhibit three cases for which one can easily derive a curve C such that
VC is invertible. The method described in the previous section will work with the following
examples.

X is a segment of R: In this case, we simply take C = X , and the sparse recovery is
possible whenever the functions {ϕk}k6K are linearly independent in L2.
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Coordinate functions: Consider the case when the basis are the coordinate functions
ϕk(t1, ...td) = tk. Then we can define the parametrization of the curve C by setting g(t) =
α(t)(t, t2, . . . , td), where α(t) is the solution to a differential equation such that ‖g′(t)‖2 = 1

(which implies that for any function h,
∫
h ◦ g =

∫
C h). The corresponding functions ψk(t) =

α(t)tk are linearly independent, since the only functions α(t) such that the {ψk}k6K are not
linearly independent are functions that are 0 almost everywhere, which would contradict the
definition of α(t). Thus VC is invertible.

Fourier basis: Let us now consider the Fourier basis in R
d with frequency T :

ϕn1,...,nd
(t1, .., td) =

∏

j

exp
(
− 2iπnjtj

T

)
,

where nj ∈ {0, ..., T − 1} and tj ∈ [0, 1]. Note that this basis is orthonormal under the
uniform distribution on [0, 1]d. In this case we define g by g(t) = λ(t 1

T d−1 , t
T

T d−1 , ..., t
T d−1

T d−1 )

with λ =
√

1−T−2

1−T−2d (so that ‖g′(t)‖2 = 1), thus we deduce that:

ψn1,...,nd
(t) = exp

(
−

2iπtλ
∑

j njT
j−1

T d
)
.

Since nk ∈ {0, ..., T − 1}, the mapping that associates
∑

j njT
j−1 to (n1, . . . , nd) is a

bijection from {0, . . . , T − 1}d to {0, . . . , T d − 1}. Thus we can identify the family (ψn1,...,nd
)

with the one dimensional Fourier basis with frequency T d

λ
, which means that the condition

number ρ = 1 for this curve. Therefore, for a d-dimensional function f , sparse in the Fourier
basis, it is sufficient to sample along the curve induced by g to ensure that VC is invertible.

5 Numerical Experiments

In this section, we illustrate the method of Brownian sensing in dimension one. We consider
a non-orthonormal family {ϕk}k6K of K = 100 functions of L2([0, 2π]) defined by ϕk(t) =
cos(tk)+cos(t(k+1))√

2π
. In the experiments, we use a function f whose decomposition is 3-sparse

and which is (10, 1)-Hölder, and we consider a bounded observation noise η, with different
noise levels, where the noise level is defined by σ2 =

∑N
n=1 η

2
n.

In Figure 7.2, the plain curve represents the recovery performance, i.e., the mean squared
error of Brownian sensing that is minimizing ‖a‖1 under the constraint that ‖Aa − b̂‖2 6

1.95
√

2(100/N + 2) using M = 100 Brownian motions and a regular grid of N points, as a
function of N4. The dashed curve represents the mean squared error of a regular l1 minimiza-
tion of ‖a‖1 under the constraint that ‖Φa− y‖22 6 σ2 (as described e.g. in Rauhut (2010)),
where the N samples are drawn uniformly randomly over the domain. The three different
graphics correspond to different values of the noise level σ2 (from left to right 0, 0.5 and 1).
Note that the results are averaged over 5000 trials.

4We assume that we know a loose bound on the
noise level, here σ2 6 2, and we take p = 0.01.
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Figure 7.2: Mean squared estimation error using Brownian sensing (plain curve) and a direct
l1-minimization solving Φα ≈ y (dashed line), for different noise level (σ2 = 0, σ2 = 0.5,
σ2 = 1), plotted as a function of the number of sample points N .

Figure 7.2 illustrates that, as expected, Brownian sensing outperforms the method de-
scribed in Rauhut (2010) for noisy measurements5. Note also that the method described in
Rauhut (2010) recovers the sparse vector when there is no noise, and that Brownian sensing
in this case has a smoother dependency w.r.t. N . Note that this improvement comes from the
fact that we use the Hölder regularity of the function: Compressed sensing may outperform
Brownian sensing for arbitrarily non regular functions.

Conclusion

In this chapter, we have introduced a so-called Brownian sensing approach, as a way to
sample an unknown function which has a sparse representation on a given non-orthonormal
basis. Our approach differs from previous attempts to apply compressed sensing in the fact
that we build a “Brownian sensing” matrix A based on a set of Brownian motions, which
is independent of the function f . This enables us to guarantee nice recovery properties of
A. The function evaluations are used to estimate the right hand side term b (stochastic
integrals). In dimension d we proposed to sample the function along a well-chosen curve,
i.e. such that the corresponding covariance matrix is invertible. We provided competitive
reconstruction error rates of order O(‖η‖2/

√
N) when the observation noise η is bounded

and f is assumed to be Hölder continuous with exponent at least 1/2. We believe that the
Hölder assumption is not strictly required (the smoothness of f is assumed to derive nice
estimations of the stochastic integrals only), and future works will consider weakening this
assumption, possibly by considering randomized sampling designs.

5Note however that there is no theoretical guar-
antee that the method described in Rauhut (2010)
works here since the functions are not orthonormal.
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6 Technical details

Proof of Proposition 7.1

First, we prove a very short Lemma describing some properties of the matrix A.

Lemma 7.1 Let us consider M independent Brownian motions (B1, ..., BM) on X , and de-

fine the M ×K matrix A with elements

Am,k =
1√
M

(∫

C
ϕk(x)dB

m(x)
)
.

Then A is a centered Gaussian matrix where each row Am,· is i.i.d. from N (0, 1
M
VC), where VC

is the K×K covariance matrix of the basis, defined by its elements Vk,k′ =
∫
C ϕk(x)ϕk′(x)dx.

Proof: Indeed, from the definition of stochastic integrals, each Am,k ∼ N (0, 1
M

∫
C ϕ

2
k(x)dx),

and Cov(Am,k, Am,k′) = 1
M

∫
C ϕk(x)ϕk′(x)dx. Thus each row Am,· ∼ N (0, 1

M
VC) and are

independent by independence of the Brownian motions. Additionally, we have

E[(ATA)k,k′ ] = E

[ 1

M

M∑

m=1

Am,kAm,k′
]
= Vk,k′,C.

�

Now let us define B = AV
−1/2
C . Since each row of A is an independent draw of N (0, VC),

then each row of B is an independent draw of N (0, I). Thus B is a matrix with elements
i.i.d. from N (0, 1). We thus can use the following result (as stated in Fornasier and Rauhut
(to appear), see also Rudelson and Vershynin (2008b), Baraniuk et al. (2008)):

Theorem 7.5 For p′ > 0 and any integer t > 0, when M > C ′δ−2(t log(K/t) + log 1/p′)),
with C ′ being a universal constant, see Rudelson and Vershynin (2008b), Baraniuk et al.

(2008), then with probability at least 1− p′, there exists δt 6 δ (δt is the RIP constant of B

for t-sparse vectors) such that for all t−sparse vectors x ∈ R
K,

(1− δt)‖x‖2 6 ‖Bx‖2 6 (1 + δt)‖x‖2.

Since VC is symmetric, it is possible to write VC = UDUT with U an orthogonal matrix and
D a diagonal matrix with the eigenvalues of V as diagonal elements (SVD decomposition).
Thus, V 1/2 = UD1/2UT where D1/2 is the diagonal matrix with the square roots of the
diagonal elements of D (i.e., the eigenvalues of V 1/2

C ).
Note that if U is an orthogonal matrix, BU is also RIP with the same constant as B

(see Donoho (2006) for the preservation of the RIP property to a change of orthonormal
basis). Applying this and Theorem 7.5 with δ = 1/2 for 2t-sparse vectors, we have that
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whenever M > 4C ′(2t log(K/2t) + log 1/p′), the RIP constant δ2t satisfies δ2t 6 1/2, i.e. for
all 2t−sparse vectors x,

1

2
‖x‖2 6 ‖BUx‖2 6

3

2
‖x‖2.

Now if we consider a 2t−sparse vector x, then D1/2x is also 2t−sparse with same support
as x, and we also have that νmin,C‖x‖2 6 ‖D1/2x‖2 6 νmax,C‖x‖2. Thus the matrix BUD1/2

satisfies
νmin,C
2

‖x‖2 6 ‖BUD1/2x‖2 6
3νmax,C

2
‖x‖2.

As mentioned before, the preservation of the RIP property to a change of orthonormal
base (see Donoho (2006)) can be applied with U and thus as A = BV 1/2 = BUD1/2UT to
obtain:

1

2
νmin,C‖x‖2 6 ‖Ax‖2 6

3

2
νmax,C‖x‖2.

Proof of Proposition 7.2

We prove here without loss of generality (because of we can always parametrize the curve)
the result for X = [0, l]. Let us recall that f is (L, β)-Hölder and that we write σ = ‖η‖2.
The estimation error εm = bm− b̂m, given the samples (xn, yn)n, follows a centered Gaussian
distribution (w.r.t. the choice of the Brownian Bm) with variance

V(εm) = V

(
1√
M

(∫ l

0

f(x)dBm(x)−
N−1∑

n=0

yn(B
m
xn+1

− Bm
xn)
))

=
1

M
V

(∫ l

0

(
f(x)−

∑

n

(f(l
(n+ 1)

N
) + ηn)Ix∈[l n

N
;l

(n+1)
N

]

)
dBm(x)

)

=
1

M

∫ l

0

(
f(x)−

∑

n

(f(l
n

N
) + ηn)Ix∈[l n

N
;l

(n+1)
N

]

)2
dx

=
1

M

∑

n

∫ l
(n+1)

N

l n
N

(f(x)− f(l
n

N
)− ηn)

2dx

6
1

MN

∑

n

(
Llβ

Nβ
+ |ηn|)2dx

=
2

MN

( L2l2β

N2β−1
+
∑

n

|ηn|2
)

6
2

MN

( L2l2β

N2β−1
+ σ2

)
.

We now wish to apply Bernstein’s inequality in order to bound ‖ε‖2 in high probability.
We recall the following result (see e.g. Bennett (1962)):
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Theorem 7.6 (Bernstein’s inequality) Let (X1, ....XM) be independent real valued ran-

dom variables and assume that there exist two positive numbers v and d such that:
∑M

m=1 E(X
2
m) 6

v and for all integers r > 3,
M∑

m=1

E[(Xm)
r
+] 6

r!

2
vdr−2.

Let S =
∑M

m=1(Xm−E(Xm)), then for any x > 0, we have P(S >
√
2vx+dx) 6 exp(−x).

Let us check that the assumptions for applying Bernstein’s inequality hold with the choice
v = 8M(V(εm))

2 and d = 2V(εm). Indeed, since the εm are i.i.d. centered Gaussian, by
writing Xm = ε2m, we have Xm > 0 and for any integer r > 2, E(Xr

m) = (V(εm))
r (2r)!
2rr!

. This
gives

∑M
m=1 E[X

2
m] = 3M(V(εm))

2 6 v, and for r > 3,

M∑

m=1

E[Xr
m] =M(V(εm))

r (2r)!

2rr!
6M(V(εm))

r × 2rr! 6
r!

2
vdr−2.

We thus apply Bernstein’s inequality (and recall that V(εm) 6 2
MN

(
L2l2β

N2β−1 +σ
2
)
) to obtain

that with probability at least 1− p,

‖ε‖22 6 2
(L2l2β

N2β
+
σ2

N

)(
1 + 4

√
log(1/p)

M
+ 2

log(1/p)

M

)
.

Proof of Theorem 7.4

Following Foucart and Lai (2009), we define αt > 0 (respectively βt > 0) as the maximal
(resp. minimal) values such that for all x ∈ R

K which are t−sparse,

αt‖x‖2 6 ‖Ax‖2 6 βt‖x‖2. (7.4)

We now define γt =
βt
αt

and use Theorem 3.1 of Foucart and Lai (2009) applied to sparse
vectors, in the case of ℓ1 minimization, reminded below:

Theorem 7.7 (Foucart, Lai) For any integer S > 0, for t > S, whenever γ2t − 1 6

4(
√
2− 1)

√
t
S
, the solution α̂ to the ℓ1-minimization problem

min ‖a‖1, under the constraint ‖Aa− b‖22 6 ‖ε‖22,

satisfies ‖α− α̂‖2 6 D2‖ε‖2
β2S

, where D2 is a constant which depends on γ2t, S and t defined in

Foucart and Lai (2009).

In order to apply this results, we now provide conditions such that (7.4) holds, as well as
an upper bound on the noise ‖ε2‖, and a lower bound on β2S.
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Step 1. Recovery Condition: We recall the results of Proposition 7.1 and have
that (7.4) holds with α2t > 1

2
νmin,C and β2t 6 3

2
νmax,C with probability 1 − p′ as long as

M > C′
4
(t log(K/t) + log 1/p′)). Thus γ2t 6 3

νmax,C
νmin,C

= 3κC.

A sufficient condition for (7.7) is that 3κC − 1 6 4(
√
2− 1)

√
t
S
.

By defining r =
[
(3κC − 1)( 1

4
√
2−1

)
]2

(note that r only depends on VC), condition (7.7)
holds whenever t > Sr, thus with probability 1− p′, whenever

M > 4C ′(2⌈Sr⌉ log K

2Sr
+ log 1/p′

)
. (7.5)

Note that this condition holds when the number of Brownian motions M (which can be
chosen arbitrarily) is large enough (and does not depend on the number of observations N).

Step 2. Upper bound on ‖ε2‖: This is the result of Proposition 7.2.
Step 3. Lower bound on β2S In order to apply Theorem 7.7, we now provide a lower

bound on β2S.

Lemma 7.2 If

M > C ′ log 1/u, (7.6)

then with probability 1− u we have: β2S > 1
2

√
maxk

∫
C ϕ

2
k.

Proof: Let us define i = argmaxk
∫
C ϕ

2
k(x)dx. Let us now consider the 1−sparse vector a

such that ai = 1 and ak = 0 otherwise. We have: (Aa)m =
∫
C ϕi(x)dB

m(x). So each (Aa)m
is a sample drawn independently from N (0,

∫
C ϕ

2
i (x)dx).

By applying Theorem 7.5, with S = K = 1 and δ = 1/2, when M > C ′ log 1/u, then with
probability 1− u,

1

2

√∫

C
ϕ2
i (x)dx‖a‖2 6 ‖Aa‖2 6

3

2

√∫

C
ϕ2
i (x)dx‖a‖2.

And since β2S is the minimal constant such that for every 2S−sparse vector x (in partic-
ular for a) we have ‖Ax‖2 6 β2S‖x‖2, we deduce that

β2S >
1

2

√∫

C
ϕ2
i (x)dx =

1

2

√
max
k

∫

C
ϕ2
k(x)dx.

�

We now apply Theorem 7.7 and deduce that when M satisfies (7.5) (which implies that
(7.6) also holds) using Lemma 7.2, with probability 1− p′ − u,

‖α̂− α‖2 6
2D2σ̃(N,M, p)

√
N
√

maxk
∫
C ϕ

2
k

(7.7)
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Thus from Proposition 7.2, with probability 1− p− p′ − u,

‖α̂− α‖22 6
8D2

2

(
L2

N2β−1 l
2β + σ2

)
(1 + c(p,M))

N(maxk
∫
C ϕ

2
k)

,

and from Foucart and Lai (2009), we deduce that if we are able to recover 4S−sparse vectors,
i.e., if M > 4C ′(4Sr log K

4Sr
+ log 1/p′

)
then D2 6 Cκ2C where C can be loosely bounded by

90, see Foucart and Lai (2009) (note that this numerical constant can be greatly improved).
The result follows with the choice p = p′ = u.





Chapter 8

Multiview Learning: Complexity versus

Agreement.

In this chapter, we consider the problem of semi-supervised multiview classification, where
we assume that each view corresponds to a Reproducing Kernel Hilbert Space. We study an
algorithm based on co-regularization methods with extra penalty terms reflecting smoothness
and general agreement properties. This work provides both an explicit upper and lower bound
on the Rademacher complexity of the corresponding class of learners for an arbitrary large
number of views. We also give asymptotic behavior of the bounds when the co-regularization
term increases, making explicit the relation between consistency of the views and reduction of
the search space. We apply this algorithm to some toy examples including a new challenging
dataset. Finally, we advocate for a stability-based parameter selection inspired by clustering
and localization arguments, give explicit bounds on the variance of the class and propose a
selection algorithm.

This work was done while I was in the Master “Maths, Vision et Apprentissage” (MVA)
of ENS-Cachan, and is joint work with Nicolas Vayatis. It has been published in the pro-
ceedings of the 20th international conference on Algorithmic Learning Theory (ALT 2009),
see Maillard and Vayatis (2009). Although this work is not fully connected with the rest of
this Ph.D dissertation, note that the study of Rademacher complexities is very important
in statistical learning in order to control the deviations of the empirical process indexed by
a family of functions. Now in sequential learning, the corresponding notion has only been
popularized very recently in a work that paves the way for important future research, see
Rakhlin et al. (2010)). Thus understanding (local) Rademacher complexities and concepts
around is clearly important for the development of sequential learning theory.
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1 Introduction

We consider a classification problem in which each object to be classified may have many
possible representations. For instance, movie classification can be based on the title only,
on the analysis of the audio signal, or of some pattern analysis of some images... Now each
distinct representation of an object will correspond to a different view (or representation
space) for which a class of classifiers will be chosen, and we consider we have V many
different views with V ≥ 2, each of them begin a reproducing kernel Hilbert space (RKHS).

In the sequel, we assume that the learner knows how to represent objects in each repre-
sentation space. This means that for each object, and for each representation space denoted
by Xv for v ∈ {1, . . . , V }, she can build a point x(v) ∈ Xv representing this data. We write

x = (x(1), ..., x(V )) for the resulting point living in the product space
V∏

v=1

Xv which accounts

for the multiple views of the object. Now, we consider the setting in which there is a large
amount of objects and that most of them is likely to be remain unlabeled.

Multiview learning relies on two main assumptions: (1) The predictors in each view must
agree on the majority of labels. (2) Each view is considered to be independent from the
others, conditionally on labeled data. This second assumption is actually the one motivating
most of the work on the multiview setting: we want to provide theoretical justification to
the heuristic idea that (2) allows for high-performance results since two compatible classifiers
trained in independent views are unlikely to agree on a mislabeled item. Following up on
the early work of Blum and Mitchell (1998) on learning from both labeled and unlabeled
data, several authors have developed a number of exciting achievements on this topic (see
Blum and Chawla (2001), Sridharan and Kakade (2008), Weston et al. (2005), Zhou et al.
(2003), Chapelle et al. (2006)). In florina Balcan and Blum (2005), the authors propose a
nice theoretical PAC-model for semi-supervised learning where multiview learning appears as
a special case. Then in Rosenberg and Bartlett (2007), these results are applied to a simple
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two-view learning problem and explicit bounds on the Rademacher complexity of the class of
predictors are computed. The issue which was tackled was to explain how consistency between
views affects the performance. More recently, another general framework has been presented
in Rosenberg (2008), very similar to this work. The RKHS (and kernels) of each view are tied
together to compute the general kernel associated to the corresponding objective function,
which then enables one to apply standard RKHS techniques. For instance, this gives an
indirect alternative proof for the Rademacher complexity bound of Theorem 8.1. We consider
a slightly less general objective function, with separate smoothness and agreement terms, that
potentially enables more “interpretation” of the results, which is important when designing
new parameter selection methods. Note that the full multiple view setting has also been
considered in the work of Brefeld et al. (2006) for the specific co-RLS objective function,
where the authors focused on the time complexity to find a closed form solution, and no
Rademacher complexity analysis was provided. Finally, some local results were mentioned
in Rosenberg (2008), Sindhwani and Rosenberg (2008), but the L2-diameter analysis (see
Theorem 8.3) has not been considered so far in any concurrent work for this setting, and
goes beyond anything considered in Rosenberg and Bartlett (2007).

This chapter is organized as follows: in Section 2 we introduce our framework and define
the objective function. The Section 3 is devoted to our result on the Rademacher complexity
control. The main theorem is stated in section 3.2 together with its proof. Section 3.3 deals
with the asymptotic behavior of the bounds. Then Section 4 shows some experiments on
three toy examples. Finally, Section 5 details a stability-based selection procedure as well as
a bound on the L2 local diameter of our class of functions.

2 Setup for multiview semi-supervised learning

Our approach follows the popular method of penalized empirical risk minimization in RKHS,
which leads to computable data-dependent terms of the objective function. Now, designing
such a function is the frontier between science and art. The nature of the problem described
in the introduction leads to different sources of penalization which we describe in this sec-
tion. Namely, coming from semi-supervised learning, where part of the data is unlabeled, a
smoothness penalization takes care of the structure (manifold) depicted by the data, as in
Belkin et al. (2005). For the multiview setting (see Blum and Mitchell (1998)) we use another
penalization - an agreement term - since two representations of the same object have to be
given the same label.

We assume that each view is a RKHS, and write F (v) for the v-th view of functions on
X v with value in Y , the label set. Note that the label set is the same for all views. For
simplicity, we will assume that Y = [−1, 1]. We consider both smoothness and agreement
terms in the same objective function since we deal with both ideas. This is an important
improvement on the work of Sindhwani et al. (2005) where objective functions with only one
of each term (and corresponding algorithms) are considered. The goal we pursue here is of



182 Chapter 8. Multiview Learning: Complexity versus Agreement.

unifying algorithms instead of comparing them. In this section, we provide the notations and
definitions of the penalty terms involved.

2.1 Semi-supervised regularization

The aim of semi-supervised learning is to work with data a part of which is labeled and
the other part unlabeled. This setup is situated between classification and clustering theory.
Specifically, the labeling provides a clue to design an objective function which is generally
the main problem of clustering (where there is no labeling, and thus no objective truth), and
the unlabeled part drives us throw the path of structure detection in the data, for instance
by considering the data points depict a specific manifold. In the sequel, we will consider a
batch of n i.i.d. data points, sampled according to a distribution P, l of which are labeled,
and the remaining u = n− l are unlabeled. We index with i ∈ {1, . . . , l} the labeled points
(xi)i6l together with their label (yi)i6l, and with i ∈ {l + 1, . . . , l + u} the unlabeled points
(xi)l<i6l+u. We shall use exponents v for the representation in each view and indices i for the
corresponding data point. Thus, each xi is the representation in all views xi = (x

(1)
i , ..., x

(V )
i ).

We express the search for structure with a Smoothness term. A natural choice is the
one using the graph-Laplacian, as explained for instance in Kondor and Lafferty (2002),
Smola and Kondor (2003), Belkin et al. (2004), Ando and Zhang (2007), and where different
operators based on this notion are used. The idea underneath the use of the graph-Laplacian
is to consider that the data points depict a manifold (see Belkin et al. (2005)), and thus
the graph-Laplacian can be seen as a discrete version of the Laplace-Beltrami differential
operator. Assuming we have for each view v a similarity graph given by its adjacency matrix
W (v), then the (unnormalized) graph-Laplacian is defined as L(v) = D(v) −W (v), where D(v)

is the diagonal matrix D
(v)
i,i =

∑
jW

(v)
i,j . Other interesting choices are the symmetrical or

random walk normalized graph-Laplacian. We intuitively want that each function f (v) ∈ Fv

be smooth w.r.t similarity structures in all views. Thus, here we will use a global smoothness
operator based on the weighted average graph-Laplacian L =

∑V
v=1 αvL

(v) with weights α
summing to 1.

Definition 8.1 For f = (f (1), ..., f (V )) ∈∏V
v=1 F (v), we define:

Smoothness(f) =
V∑

v=1

γv f(v)T L f(v), where

• γ = (γ1, ..γV ) > 0 meaning that each component is positive.

• L is defined based on L(v), the graph-Laplacian corresponding to the vth view: L =∑V
v=1 αvL

(v) with
∑V

v=1 αv = 1.

• f(v) is the vector (f (v)(x
(v)
1 ), ..., f (v)(x

(v)
l+u))

T .
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2.2 Learning with RKHS

The main term of the objective function is the loss, which quantifies the classification errors
on labeled points. This term has been widely studied along the past decade, and led to
interesting theory involving convex risk minimization and ϕ-risks (see Bartlett et al. (2003)
for a survey).

Classical losses for binary classification are for instance the square loss L(u, y) = (u−y)2,
with y a label, the hinge loss L(u, yi) = max(0, 1 − uyi) or the logit loss L(u, yi) = log(1 +

e−uyi). Based on this loss for one-view classifier, we define the loss of a multiview classifier

f with the one of each f (v) in each view. More precisely:

Definition 8.2 For f = (f (1), . . . , f (V )) ∈
V∏

v=1

F (v) and a sample (xi, yi)16i6l, we define the

loss of the multiview classifier f to be

Loss(f) =
1

l

l∑

i=1

L(f, xi, yi),

where we allow for various definitions for L(f, x, y), like for instance

L(f, x, y) def
=

1

V

V∑

v=1

L(f (v)(x(v)), y) or L(f, x, y) def
= L( 1

V

V∑

v=1

f (v)(x(v)), y) .

The choice of the loss will have an impact on the design of algorithm but our analysis
covers a wide variety of possible losses. In the experiments, we use the square loss for one-view
classifier, and the first definition for L(f, x, y).

We now introduce real-valued decision functions, that are defined to be functions ϕ of

the form x 7→ 1

V

V∑

v=1

f (v)(x(v)) where f (v) : X (v) → Y is a classifier. We assume that each

predictor f (v) lives in an RKHS F (v) with kernel K(v) and associated representation function
kv(., .). Thanks to the representer theorem (see Schölkopf et al. (2001)), we will be able to
restrict only to functions f (v) ∈ Lv = span{kv(x(v)i , .)}l+ui=1 ⊂ F (v). We also denote by F the
product space of the views F (v) and by L ⊂ F the product space of the spans. With each
view comes a natural norm (the norm of the rkhs) which is interpreted as a measure of the
complexity of the functions. We denote it by ||.||v for the v-th view. Complexity penalization
in RKHS has been studied for instance in Steinwart et al. (2006) or Blanchard et al. (2008).

The complexity term for the multi-function f ∈ F is thus stated according to the following
definition:

Definition 8.3 For f = (f (1), ..., f (V )), we define:

Complexity(f) =
V∑

v=1

λv||f (v)||2v
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where λ ∈ R
V is a positive vector.

2.3 Multiple view co-regularization

The multiview setting comes with the need for compatibility between different views, since
all representations of the same object must share the same label. Thus, it is natural to
think that since there is a restriction on the search space, multiview learning will provide
good generalization results, and indeed this is the case in numerical experiments (e.g. Belkin
et al. (2005)). The work of Rosenberg and Bartlett (2007) and Sindhwani et al. (2005) aims
at giving theoretical explanation and better understanding for this phenomenon. Our work
follows the same red-line, generalizing and continuing this work.

The need for compatibility between the f (v) is conveyed by a so called Agreement term.
First, for a number of V = 2 views, we can think of a term like

∑n
i=1[f

(1)(x
(1)
i )− f (2)(x

(2)
i )]2,

with a l2 penalty when giving two different labels to the same object. Note that here this
penalty is mainly guided by convenience and easy matrix-wise formulation. We can also
split this term between labeled and unlabeled points with some weights. Now, extending the
notions presented in Sindhwani et al. (2005), and generalizing this to V views, we propose
the following definition:

Definition 8.4 For f = (f (1), ..., f (V )) ∈∏V
v=1 F (v), we define:

Agreement(f) = CL(f) + CU(f) ,

with CL(f) =
∑

v1 6=v2
cLv1,v2

l∑

i=1

[f (v1)(x
(v1)
i )− f (v2)(x

(v2)
i )]2 ,

and CU(f) =
∑

v1 6=v2
cUv1,v2

l+u∑

i=l+1

[f (v1)(x
(v1)
i )− f (v2)(x

(v2)
i )]2 .

For normalization purpose, we assume that the positive coefficients cLv1,v2 , c
U
v1,v2

are 0 whenever
their value do not modify CL(f) or CU(f) (for instance when f (v1)(x(v1)) = f (v2)(x(v2)) P-
a.s.), and that cL = (cLv1,v2)v1,v2 , c

U = (cUv1,v2)v1,v2 are symmetric semi-definite positive. So
as to avoid cumbersome terms in the proof, we also introduce when v, w ∈ {1, .., V } the
block-diagonal matrix Cv,w with diagonal blocks (cLv,w)i=1..l and (cUv,w)i=l+1..l+u, and then C ∈
R
nV (V−1)×nV (V−1) the block-diagonal matrix with blocks (Cv,w)v,w.

2.4 Compound complexity penalties

The objective function and its associated minimization problem we consider in this work is
finally written as:
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• Compute:

f∗ = argmin
f∈F

{
Loss(f) + Complexity(f)

+ Smoothness(f) + Agreement(f)
}

(8.1)

• Output: ϕ =
1

V

V∑

v=1

f∗(v)

This will be our minimization algorithm for multiple-view semi-supervised learning in this
work. We note throughout this chapter θ = (α, λ, γ, C) to refer to all the parameters appear-
ing in the objective function.

The existence of a representer theorem for this setting comes from the fact that for any
fix f (2), ..., f (V ) ∈ ΠV

v=2F (v), f ∗(1) minimizes a loss function of the form

cf (2),...,f (V )(f(x
(1)
1 ), y1, ..., f(x

(1)
n ), yn) + gf (2),...,f (V )(||f ||1)

w.r.t. f . Thus the representer theorem (see Schölkopf et al. (2001)) says that f (1) ∈ L1,
and we can iteratively apply the same argument to each component of f ∗, leading eventually
to f ∗ ∈ L. See also Sindhwani and Rosenberg (2008) for the construction of one RKHS
combining all the views.

Note that for specific choices of the parameters, we recover the former problems studied
in previous papers:

• when γ and C are 0, i.e. when the Smoothness and Agreement terms disappear, then
we recover Regularized Least Squares (RLS) in RKHS,

• when only γ = 0, then we have a Co-Regularized Least Squares (co-RLS) problem (see
Sindhwani et al. (2005)),

• when Agreement is nonzero but diagonal (meaning cL and cU are diagonal), we obtain
the formulation of the co-laplacian method (such as co-laplacian RLS and co-laplacian
SVM, see Sindhwani et al. (2005)) ; indeed here, the predictors f (v) are decoupled, and
thus the problem 8.1 amounts to solving for each v:

f (v)∗ = argmin
f (v)∈F(v)

Loss(f (v)) + λv||f (v)||2v + γvf
(v)TLf(v) .

Our first purpose in this chapter is to generalize both the work of Sindhwani et al. (2005)
and Rosenberg and Bartlett (2007), by taking into account all penalty terms simultaneously
and considering arbitrary many views.
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3 Empirical complexity bound

This section is devoted to the control of the Rademacher complexity for our problem. We
define our class of functions in subsection 3.1, then we state our main theorem in subsection
3.2, which is a bound on the Rademacher complexity of this class, together with its proof.
The last subsection studies asymptotic behavior of the bounds.

We first state the following assumption from Rosenberg and Bartlett (2007), which is
satisfied for instance by the square loss. This assumption enables to reduce the search space
and to perform computations.

Assumption A1: We suppose that the loss functional satisfies Loss(0, ..., 0) 6 1 where
(0, ..., 0) is the multi-predictor with constant output 0.

This is true for instance, for the functional defined with the square loss. Indeed ∀i yi ∈
[−1, 1], we have Loss(0, .., 0) = 1

l

∑l
i=1

1
V

∑V
v=1 y

2
i 6 1.

3.1 Preliminaries

We now recall the definition of the Rademacher complexity for a class of functions, that is a
useful empirical quantity in order to derive an excess risk bounds for the empirical minimizer
of a loss function over a class of functions (Boucheron et al. (2005)), like the decision function
ϕ.

Definition 8.5 (Rademacher complexity) The Rademacher complexity of a class G for

a sample (x1, ...xn) is

Rn(G) = Eσ

[
sup
g∈G

∣∣∣∣∣
2

n

n∑

i=1

σig(xi)

∣∣∣∣∣

]

where (σi)i6n are Rademacher i.i.d. random variables defined by

P(σi = 1) = P(σi = −1) =
1

2
.

In our case, the final predictor ϕ is just a combination of the predictors f (v) on each view.
Under assumption A1, ϕ belongs to the class J = J (θ, 1) defined by:

J (θ, r) =

{
x→ 1

V

V∑

v=1

f (v)(x(v)) : (f (1), .., f (V )) ∈ H(θ, r)

}

where H(θ, r) is the class of multi-predictors f , with total penalty bounded by r:

H(θ, r) = {f ∈ L : Complexity(f) + Smoothness(f)+ Agreement(f) 6 r}
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3.2 Explicit Rademacher complexity bound

Before stating the main theorem of this section, we need to introduce some matrix notations.

Block-wise notations First Idn is the identity of Rn and 0u,l is the zero matrix of size
u × l. Since we have matrices and vectors corresponding to each view, we use a block-wise
notation. Roughly speaking, each block will denote one view. Thus, for any given n1, n2 and
a matrix A(v) ∈ R

n1×n2 , we write A for the block-diagonal matrix with blocks A(v), v = 1..V

(of size n1V × n2V ), and similarly A the block-row matrix of size n1V × n2. Now suppose
we want to multiply block-wise each block A(v) by the v-th component of a vector λ ∈ R

v.
To do that we introduce λ̃ the block-diagonal matrix of size n1V × n1V with blocks λvIdn1 .
Since it is generally clear that we want to multiply the v-th block with the v-th component,
we forget the n1 in the notations. This allows us to focus on one view.

Labeled and unlabeled data We decompose each kernel matrix K according to labeled
and unlabeled data, with first rows KL for the labeled part and the last ones KU for the
unlabeled part. We similarly introduce the projection matrix of labeled data Π; we have

K =

(
KL

KU

)
∈ R

n×n and Π =

(
Idl
0u,l

)
∈ R

nV×l .

Agreement Finally, to handle our agreement term, we need to compare views pairwise. To
do that, we thus introduce a special matrix δ ∈ R

nV (V−1)×nV , block-line defined with blocks

(0 . . . 0 Idn 0 . . . 0 − Idn 0 . . . 0)

with identity matrices at position v1 and v2 6= v1.

Smoothness Finally, the smoothness term directly appears in the Rademacher bound
through the matrix B = (I + λ̃−1γ̃LIK)−1, where LI is the diagonal block matrix with all V
blocks equaled to L. Note that we would have α̃L instead of LI if we have used the graph
Laplacian of each view in the smoothness term instead of the average Laplacian L.

Thanks to the previous notations, we can now state our main theorem, which shows an
explicit upper and lower data-dependent bound for the Rademacher complexity of our class
of functions.

Theorem 8.1 (Rademacher complexity bound) The Rademacher complexity of the class

of decision functions, under assumption A1, is bounded above and below by

1

21/4
2b

V l
6 Rl(J ) 6

2b

V l
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where

b2 = tr(Bλ̃−1ΠKT
L

T
)− tr(J ′T (I +M ′)−1J ′)

with

• B = (I + λ̃−1γ̃LIK)−1 ∈ R
nV×nV

• J ′ =
√
Cδλ̃−1BTKT

L ∈ R
nV (V−1)×l

• M ′ =
√
CδKBλ̃−1δT

√
C ∈ R

nV (V−1)×nV (V−1)

Before stating the proof, let us make some comments. Note that b is explicit, and that
it consists of two terms. The first term only depends on unlabeled data when Smoothness
is null, and contains no co-regularization term. The second term corresponds to the idea
that there is a reduction in complexity of the space. Indeed, in section 3.3, we give some
results about the behavior of b enforcing this idea. Note that the special shape of this bound
1
l

√
tr(κ) that reminds usual Rademacher bounds for balls in RKHS is not pure coincidence

: as pointed out in Sindhwani and Rosenberg (2008), this term is connected to a specific
RKHS-norm induced by the parameters and data on the space. The corresponding kernel
may even be built explicitly and gives an alternative indirect proof to the above theorem,
seeing J as a ball in this RKHS.
Example: if γ = 0, then the b term reduces to

b2 =
V∑

v=1

λ−1
v tr(K

(v)
L,L)− tr(JT (I +M)−1J)

where J is the block-diagonal matrix with blocks
√
Cv1,v2 [λ

−1
v1
K

(v1)
L,LU − λ−1

v2
K

(v2)
L,LU ] and M

the block-diagonal matrix with blocks Cv1,v2 [λ
−1
v1
K(v1) + λ−1

v2
K(v2)] (KL,L and KL,LU are the

sub-matrices of K of respective size l × l and l × (l + u) corresponding to the labeled and
unlabeled points). This mean that in the special case of V = 2 views and when cL is the 0

matrix, we recover exactly the previous known bound of Rosenberg and Bartlett (2007).
We now prove Theorem 8.1. The proof technique is similar to Rosenberg and Bartlett

(2007) and we use it to extend their result in order to cover the compound regularization
penalty in the case of an arbitrary number of views.

Proof: The proof is in five steps. First, we show that under assumption A1, the solution
lives in the space H. Then, we use the representer theorem to have a matrix reformulation of
what this means. Then, in order to compute the Rademacher complexity, we need a matrix
to be invertible, which we obtain by a reformulation using classical invariance properties of
the kernel function. Eventually, we rewrite the Rademacher complexity in terms of the initial
data.

Step 1. Solution Space. First, we reduce the search space to the space of spans over
the kernel matrices involving only the data points, intersected with the space of predictor
with a penalty term upper bounded by 1.
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Lemma 8.1 Under assumption A1, the solution of the minimization problem 8.1 belongs to

the set L ∩H.

Proof: We call Q the functional to be minimized. we can write Q as the sum of two terms:
Q(f) = Loss(f) + Π(f), and moreover for 0 ∈ F , the null multiview predictor, we have
Q(0) = Loss(0), thus under assumption A1, inf Q 6 1. But since all terms of Q are non
negative, the solution is in the set H. Finally, the fact that f ∗ ∈ L is just an application of
the representer theorem which holds for our setting. �

Step 2. Matrix formulation. If f ∈ L ∩ H, then thanks to the representer theorem,
we can write its component in each view f (v) = f

(v)

α(v) =
∑n

i=1 α
(v)
i kv(., x

(v)
i ), with parameter

α(v) ∈ R
n. Thus, after easy computation, a matrix reformulation of f ∈ L ∩H is:

f ∈ {(fα(1) , ..., fα(V )) : αTNα 6 1}

where α ∈ R
nV×1, the data-dependent N square matrix is

N = λ̃K + γ̃Diag
(
K(1)LK(1) . . . K(V )LK(V )

)
+
∑

v1 6=v2
Kv1,v2
C

The notation Diag(v1....vk) is a shortcut for the square matrix with diagonal blocks v1, ..., vk
on the diagonal.

Finally, the last term of N is the following agreement matrix:

Kv1,v2
C =




0
...

K(v1)

...
−K(v2)

...
0




Cv1,v2




0
...

K(v1)

...
−K(v2)

...
0




T

.

With this matrix formulation, our bounding problem can be seen as an optimization
problem under quadratic constraint. Indeed, since H is symmetrical, one can write Rl as:

Rl(J ) = Eσ

[
sup

f∈L∩H

2

lV

l∑

i=1

σi

V∑

v=1

f (v)(x
(v)
i )

]

and this is again Rl(J ) = 2
lV
Eσ supα;αTNα61 α

TKT
Lσ, with σ = (σ1, . . . , σl)

T ∈ R
l×1.

Step 3. Basis change. In order to compute the supremum, we use the following lemma:

Lemma 8.2 If M is a symmetric positive definite (spd) matrix, then

sup
α:αTMα61

vTα = ||M−1/2v||
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Proof: From Karush-Kuhn-Tucker conditions, with dual variable λ > 0, we have : v = 2λMα

and (αTMα − 1)λ = 0. Since M is invertible, we deduce that: 2α = λ−1M−1v and
vTM−1v = 4λ2. Now since M is spd, we have vTM−1v = ||M−1/2v||2. Thus the maxi-
mal value of vTα is reached for 1

2λ
||M−1/2v||2 = ||M−1/2v||. �

However, our matrix N may not have full rank. Thus, we use the eigen decomposition of
K(v): P (v)TK(v)P (v) = Σ(v) where Σ(v) is the diagonal matrix of the m(v) non-zero eigenvalues
of K(v), P (v) is rectangular with size n×m(v) and Σ(v) is m(v)×m(v). Now, Σ(v) is invertible.
We write M =

∑V
v=1m

(v).
In order to use this, we introduce α(v)

// , the projection of the α(v) on the subspace associated

to the rows of the K(v). Note that the quadratic form αTNα is left unchanged under this
projection, which allows us write α(v)

// = P (v)a(v), introducing the vector a(v). We then rewrite
our set in terms of the new parameters:

H = {(fa(1) , ..., fa(V )) : aTTa 6 1}

where T = λ̃Σ + γ̃ΣL̃Σ +
∑V

v1 6=v2=1R
v1,v2
C Rv1,v2 T

C , L̃ = P TLIP ∈ R
M×M and

Rv1,v2
C =




0 0 0 0 0

0 P (v1)T 0 0 0

0 0
. . . 0 0

0 0 0 P (v2)T 0

0 0 0 0 0







0
...

K(v1)

0
...

−K(v2)

...
0




√
Cv1,v2

Step 4. Rademacher complexity bounds. Now, T is invertible. If we split each P (v)

according to the label and unlabeled part to get (P (v)T
L P

(v)T
U )T and introduce W = KT

L
T
P =

P T
L
T
Σ, then using the lemma 8.2 we can write:

Rl(J ) =
2

lV
Eσ||T−1/2W Tσ||

Following the proof of Rosenberg and Bartlett (2007), we now apply the Kahane-Khintchine
inequality to get 1

21/4
2b
lV

6 Rl(J ) 6 2b
lV

, where b2 = Eσ||T−1/2W Tσ||2. But using the definition
of the norm, this term can be also written ||WT−1W TσσT || = tr[WT−1W T ].

Thus, we need to compute the term T−1. To do that, we use the decomposition T =

(A+UUT ) and the following Sherman-Morrison-Woodbury formula, seeGolub and Van Loan
(1996):

Lemma 8.3 Provided that the inverses exist, we have:

(A+ UUT )−1 = A−1 − A−1U(I + UTA−1U)−1UTA−1 .
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Identifying A and U , we find A = λ̃Σ + γ̃ΣL̃Σ = λ̃Σ(I + λ̃−1γ̃L̃Σ). A is invertible since
L̃ is spd, and Σ is invertible and diagonal. On the other hand U = JU

√
C where JU is

of size M × nV (V − 1), defined block-wise [J1,2
U |...|JV,V−1

U ] where Jv,wU is the product of

Diag
(
0 . . .Σ(v1)0 . . .Σ(v2) . . . 0

)
with

(
0 . . . P v10 · · · − P v2 . . .

)T
Step 5. Rademacher bound in terms of the initial data. Now, we can express b

in terms of the initial data by replacing the terms A and U in T−1 with their corresponding
value. Putting this in tr(WT−1W T ), and after some careful but easy computations, we
find the bounds of the Theorem. Indeed, by the previous lemma, b2 = tr(WA−1W T ) −
tr(WA−1U(I+UTA−1U)−1UTA−1W T ). The first term is again, using the definition of A and
W : tr(KT

L
T
P (I + λ̃−1γ̃L̃Σ)−1λ̃−1Σ

−1
ΣP T

L ), which is also tr(P (I + λ̃−1γ̃L̃Σ)−1λ̃−1P T
LK

T
L
T
).

Thus we recognize here the first term of b2 in the Theorem. For the second term, since

UTA−1U =
√
C
T
JTU (I + λ̃−1γ̃L̃Σ)−1λ̃−1Σ

−1
JU

√
C

UTA−1W T =
√
C
T
JTU (I + λ̃−1γ̃L̃Σ)−1λ̃−1Σ

−1
P
T
KT
L ,

we identify these two terms respectively to M ′ and J ′, which concludes the proof. �

3.3 Asymptotics

The expression for b contains the different penalty parameters of the problem, which are
contained in the vector θ = (α, λ, γ, C). We recall that the parameter α appears in the
graph-Laplacian, λ in the Complexity term, γ in the Smoothness term and finally C in the
Agreement term. Note that the number of parameters grows with O(V 2). It is interesting
to understand how the bound on the Rademacher complexity behaves when the parameters
vary.

More agreement reduces space complexity. We are mainly interested in the matrix
C which controls the co-regularization. The second term appearing in the expression of b2

depends on the co-regularization (matrix) parameter C. To see how constraint is the space
when using bigger penalization, we introduce the following ∆(C) = tr(J ′T (I +M ′)−1J ′). In
order to highlight the dependency in C, we can rewrite it (provided C−1 exists) as:

∆(C) = tr(JT1 (C
−1 +M1)

−1J1)

where J1 and M1 are defined likewise J ′ and M ′ but without the matrix C, i.e. J1 =

δλ̃−1BTKT
L and M1 = δKBλ̃−1δT .

One interesting case is thus when the eigenvalues of C increase to +∞, since the term
∆(C) indeed tends to the limit quantity:

∆∞ = tr(KT
L

T
Bλ̃−1δT (δKBλ̃−1δT )−1δλ̃−1BTKT

L ),

which can be rewritten ∆∞ = tr(Bλ̃−1ΠlK
T
L
T
), thus showing that b2 → 0 in this case. Note

that the fact that b decreases as the model gets more constraint is coherent with the intuition
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of multiview learning. Note also that by convention for C, for two identical views v1 and v2,
the corresponding agreement parameter cv1,v2 is 0 and doesn’t participate in the complexity
decrease.

Other parameters. From the previous formula, we deduce that similarly, b2 tends to zero
whenever ||γ||, or ||λ|| → ∞. On the other hand, when the penalty terms go to 0, i.e. when
the constraint on the space vanishes, we have a completely different behavior. Indeed, we
see that if C = 0 then ∆(C) = 0. The case where γ = 0 has been considered by Rosenberg
and Bartlett (2007), and finally, when only λ = 0, b2 has the following expression, provided
every term appearing in its expression is finite and defined:

b2 = tr(ΠT
l L

−1
I γ̃−1Πl)− tr(ΠT

l L
−1
I γ̃−1δT (C−1 + δL−1

I γ̃−1δT )−1δL−1
I γ̃−1Πl)

Note that when both γ and λ tend to 0, the previous bound may tend to ∞ even in simple
cases (ex: C = 0), which is coherent with the intuition and shows that we do not have the
same behavior at all. Note also that the dependency with V is hidden here in the trace.

4 Experiments

We have performed some toy simulations to see the flexibility of this general algorithm and
the results are promising. Based on only very few labeled points, we can always recover
perfect labeling of the data, even on one challenging dataset on which all previous multi-
view algorithms (Co-Laplacian and Co-RLS) performs badly. There is no magic in this and
we briefly describe what happens. For completeness, we first give hints how to solve the
minimization problem in two particular cases: differentiable loss, and hinge loss.

4.1 Implementation

Recall that since a representer theorem holds for our setting, the solutions of the problem 8.1
can be written f (v)(x(v)) =

∑l+u
i=1 α

(v)
i K(v)(x(v), x

(v)
i ) = K

(v)

x(v)
α(v).

Differentiable loss: Suppose that the loss function is differentiable (for example, this
happens for the quadratic loss), then the following theorem gives a solution to 8.1:

Theorem 8.2 (Solution to the multiview learning program) Assuming that the loss

function satisfies ∇α(v)Loss(f (v)) = 2K(v)A(v)α(v), then the solution of the problem 8.1 is

given by the resolution of the linear system, where the α(v) are the unknown vectors.

∀v ∈ 1 . . . V :

Y = [A(v) + λvI + γvLK
(v)]α(v)

+2
V∑

w=1

Cv,w(K
(v)α(v) −K(w)α(w))
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where Yi = yi for 1 6 i 6 l and Yi = 0 for l + 1 6 i 6 l + u.

The proof is a straightforward application of usual algebra and thus is omitted here. The
interested reader may notice that this system nicely contains as a special case the linear
system of Sindhwani et al. (2005). It also immediately turns out that

∑V
v=1 α

(v)
i λv = 0 for all

l + 1 6 i 6 l + u.

Note that we can rewrite this system as Sα = Ỹ where S is an appropriate matrix,
α = (α(1)T , .., α(V )T )T and Ỹ = (Y T , .., Y T )T , which can be solved using classical algebra.
One has to be aware that S a priori enjoys no good properties, it is not positive in general
and may have a very large conditioning number, so naively inverting the system gives highly
unstable results.

Non-differentiable hinge loss: When Loss is not differentiable, an important case is
SVMs (hinge loss), which cannot be solved with the previous linear system. Instead, this
is done classically through linear programming, by introducing the so-called slack variables
(see Bishop (2006)). The reader may want to derive explicitly the kernel associated to the
underlying RKHS and then use classical SVM solvers. We refer for instance to Rosenberg
(2008) to deal with this technical question. A complete derivation is given inBelkin et al.
(2005) when γ = 0.

4.2 Toy examples

We have done some experiments on three toy examples, with only two views and two classes
for simplicity.

• The first one is a classical two moons-two lines data set. This first dataset is easy,
since in the second view the two lines are linearly separable, and in the first view the
two-moons are almost separated.

• The second one is a more complex two spirals-two clouds data set. The complexity is
due to the imbrication of the spirals, and actually, such a dataset has been generated
to force the use of graph-laplacian. Note that one human being can not separate the
two class without the information of the second view.

• The last one is a challenging one cross-two moons data set, which appears to fool the
tested algorithms based on only one of the Smoothness or Agreement term. This is due
to the cross which would be ambiguous with only one example of each class (thus we
give two label examples).

These are depicted in figure 8.1. Since the less labeled object, the more heuristic is the
definition of the “true” classes, in first approximation we refer here to human beings to say
what are the true classes. Of course the definition of what a true class is is a real problem still
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unsolved in the clustering community and we do not pretend here to solve it. In the first two
data sets, a human only needs one label object of each class to recover the classes. For the
last one, because of the cross which yields ambiguity, a human operator needs two objects
in each class in order to remove ambiguity between the classes. Thus, we put exactly this
number of labels point and run different algorithms. Thus the number l of labeled objects is
very small compared to the total amount of data.

We use four different algorithms, all derived from our general algorithm but with differ-
ent missing regularization terms. For each algorithm we use the same loss: the quadratic
loss, which is differentiable. The first one is the classical RLS, for which Smoothness and
Agreement are set to 0. As expected, this algorithm performs badly on all toy examples,
even with appropriate choice of kernels. The second one is a co-RLS, with only Smoothness
set to 0. Then we used a laplacian-based algorithm (co-laplacian), which outperform co-RLS
on the tricky two spirals-two clouds data set, and finally we used the algorithm with none of
the terms set to 0.

Graphical results are provided in figures 8.2,8.4,8.5. For each one, from top-left to right
and down, we have the results of RLS, co-RLS, co-laplacian and the general algorithm (i.e.
with no parameter set to zero). Graphical representation of the data conveys more informa-
tion on the behavior of the algorithm than error rates. We also present a table with error
rates of the different algorithms on the above toy examples. Due to the large number of
parameters (O(V 2)), parameter selection is a tricky problem we address in the next section.
For the experiments, we just tuned the parameters by hand trying to find the best results for
each algorithm. While hand-tuning is surprisingly easy for some algorithms on specific toy
examples (co-RLS for two moons-two lines, co-laplacian for two spirals-two clouds, general
for one cross-two moons), it is quite difficult for others (e.g. co-laplacian for one cross-two
moons), maybe due to numerical implementation, where we mean by difficult that the re-
sults are experimentally unstable w.r.t. a slight change of the parameters. Comparison of
different selection procedures, although interesting by itself, is not the purpose of this work.
And indeed, carrying out specific experiments on various toy as well as real problems for a
fair and complete comparison (especially with recent impressive techniques, as the “slope”
heuristics) goes beyond the scope of this work and should be discussed in a specific one.

Finally, note that the choice of the kernels for each view is important, and we tried to
use well-suited kernels (gaussian for clouds, linear for lines, . . . ).

5 Stability-based parameter selection

In the general algorithm we presented, the number of parameters is O(V 2), so we need a
selection procedure. In the previous results on toy examples, due to this large amount of
parameters and since we artificially put some parameters to 0 to highlight some specific be-
havior, we used hand-tuned parameters. We now try to provide ways for automatic parameter
selection.
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Two moons-two lines

Two spirals-two clouds

One cross-two moons

Figure 8.1: Three toy data sets. Normal points is for unlabeled points, circle for class number
one and cross for class number two. From left to right: Two moons (above)- two lines (below),
with one labeled object in each class. Two spirals-two clouds, with again one labeled object
in each class. One cross-two moons, with two labeled objects in each class
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RLS co-RLS

co-laplacian general

Figure 8.2: Two moons - two lines. For each algorithm (RLS, co-RLS, co-laplacian, general),
the classes learned on the objects projected on each view. Here the co-RLS achieves exact
classification

algo dataset 1 dataset 2 dataset 3
RLS 0.455± 0.035 0.103± 0.024 0.379± 0.026

co-RLS 0.146± 0.071 0.103± 0.024 0.467± 0.025

co-Laplacian 0.242± 0.040 0.001± 0.004 0.510± 0.028

general 0.011± 0.015 0.322± 0.067 0.042± 0.071

Figure 8.3: Empirical misclassification errors for the above algorithms (one set of parameters
per dataset, some possibly put to zero when specified to each algorithm), averaged over 1000
runs.
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RLS co-RLS

co-laplacian general

Figure 8.4: Two spirals - two clouds. For each algorithm (RLS, co-RLS, co-laplacian, general),
the classes learned on the objects projected on each view. Here the co-laplacian achieves exact
classification



198 Chapter 8. Multiview Learning: Complexity versus Agreement.

RLS co-RLS

co-laplacian general

Figure 8.5: One cross - two moons. For each algorithm (RLS, co-RLS, co-laplacian, general),
the classes learned on the objects projected on each view. Here only the general algorithm
achieves exact classification
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5.1 Previous work

The usual idea in supervised classification is to use cross-validation techniques (classically
10-fold). Although widely used, due to an easy implementation, it is generally admitted that
cross-validation suffers from a lack of theory and understanding. This lack tends to be filled
in. We refer for instance to Celisse (2008) for recent work on the theoretical analysis of cross-
validation procedures. Another widely spread idea is to use Bayesian parameter selection
(see Gold et al. (2005)). Standard RKHS hyper-tuning parameters may also been applied to
the kernel underlying the general objective function.

Another approach comes from unsupervised learning theory (see Ben-David et al. (2006),
Ben-David and von Luxburg (2008)). The idea is to work on stability of the clusterings out-
put by the algorithms. This new issue makes use of recent improvements on statistical theory,
coming from the analysis of empirical processes, Talagrand’s work and so-called “small ball
estimates” (see Li and Linde (1999),Berthet and Shi (2001)). Note that some refined bounds
involving margin conditions, now usual in classification (Blanchard et al. (2003),Blanchard
et al. (2008)), begin to be applied successfully (see the results of Sindhwani and Rosenberg
(2008)). In Koltchinskii (2006), the author introduces and develops a stability-based pa-
rameter selection procedures. Based on this work, we promote a stability-based parameter
selection for our setting. As mentioned earlier in this work, comparison of different parameter
selection methods is not the aim of this work.

5.2 Theoretical selection procedure

Let Pn = 1
n

∑n
i=1 δXi

be the empirical measure, and P the true measure. Thus Pnf =
1
n

∑n
i=1 f(Xi) and Pf = E(f(X)). For a general class F of functions, and probability measure

Q, we define FQ(ε) = {f ∈ F ;Qf − inf Qf 6 ε} and then introduce the true ε-optimal ball
F(ε) = FP(ε), and the empirical ε-optimal ball Fn(ε) = FPn(ε), or balls around the Empirical
Risk Minimizer (ERM) and True Risk Minimizer (TRM). For a general class F of functions,
we now assume that we have T : F2 → R

+ such that ∀f, g ∈ F V(f − g) 6 T 2(f, g),
and then introduce the two objects: ∆n(ε) = supf1,f2∈F(ε) |Pn − P |(f1 − f2) and DF(ε) =

supf,g∈F(ε) T (f, g). We refer to the first one as a L1, P -diameter and the second one as a L2, P -
diameter. Lemma 8.4 in Koltchinskii (2006) says that for large enough radii, the empirical
and true quasi-optimal balls around the ERM and TRM are included in each other, or put
differently, that true quasi-optimal balls can be estimated by empirical quasi-optimal balls:

Lemma 8.4 (Koltchinskii) ∀ε > 0, ∀λ < 1, set

Bn(ε, λ) = 2
∆n(ε)

λ
+

log(ε−1)

λn
+

2

λ

√
2 log(ε−1)

n
[D2

F(ε) + 2∆n(ε)],

and rn(ε, λ) = inf{α ∈ [0, 1]; sup
j∈Z;1>λj>α

Bn(ε, λ
j) 6 λ}
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Then with probability larger than 1−
(
2 + ln(rn(ε,λ))

ln(λ)

)
ε,

∀r > rn(ε, λ) F(r) ⊂ Fn(3r/2) and Fn(r) ⊂ F(2r)

Note that in the general case, if the radii are too small, then such inclusions no longer
hold, and the intersection may even be empty.

Having such inclusions means that we can stay around the Erm and yet still be close to
the “true” minimizer of our functional, which is one way to see stability. Using this lemma
on stability, we will simply select the parameter θ inducing the bigger range of quasi-optimal
sets controlled around the ERM, which is a notion of stability, i.e. for a given radius ε of the
true penalized ball, we want to minimize the critical radius rn w.r.t. θ. A side motivating
intuition is that having good stability allows for easy discovery of the minimizer f ∗.

5.3 Empirical selection procedure

The two terms ∆n(ε) and DF(ε) of lemma 8.4 involve the true unknown measure and thus
have to be estimated. We now propose an empirical version of this lemma. Fortunately,
using an empirical estimation of the rn(ε, λ) is possible thanks to the Theorem 3, page 18, in
Koltchinskii (2006), leading to a full data-dependent quantity. Let ∆̂n(ε) = Rn(Fn(ε)) and
D̂Fn(ε) = supf,g∈Fn(ε) Tn(f, g), with T 2

n bounding the empirical variance Vn. The empirical
version of the quantities Bn(ε, λ) and rn(ε, λ) given by Koltchinskii (2006) are:

r̂n(ε, λ) = inf

{
α ∈ [0, 1]; sup

j∈Z;1>λj>α
B̂n(ε, λ

j) 6 λ3

}
,

where

B̂n(ε, λ) =
2c∆̂n(c

′ε)

λ
+ 2D̂Fn(c

′ε)

√
log(ε−1)

λ2n
+

log(ε−1)

λn

and c, c′ > 1 are universal constants.

Application to semi-supervised multiview classification. We now propose to apply
this result to semi-supervised multiview classification. We identify the classes F̂θ,n to be
J (θ, r), and estimate Rn(F̂θ,n(ε)) and D̂F̂n,θ

(ε) for each parameter θ. Note the dependency
w.r.t. θ = (α, λ, γ, C) in the definition. Thus we need to bound the Rademacher complexity of
J (r) and its L2, Pn-Diameter. An analysis of the proof of Theorem 8.1 shows that changing
J = J (1) for J (r) affects the Rademacher bound with a factor

√
r, leading to a bound

2b(θ)
√
r

lV
for the first term. Following the same analysis as for the L1-diameter (or Rademacher

complexity), the next theorem gives us the second bound we need.
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Theorem 8.3 (Empirical local L2 diameter) Under assumption A1, then the empirical

local L2 diameter of the class of decision functions is upper bounded by

D̂J (r) 6
2d
√
r√

lV

where d2 is the largest eigenvalue of (B − JT2 (I +M)−1J2)λ̃
−1Π(KT

L )
T , with J2 =

√
Cδλ̃−1BT .

Note that we here have a dependency with
√
l instead of the l for the Rademacher bound.

We have stated this theorem using the already defined matrices of Theorem 8.1. The proof
consists of three steps. First reducing the supremum problem to a quadratic minimization
problem, then use the change of matrix from N to T as in the proof of Theorem 8.1, and
then rewrite the final solution in terms of the original data and kernel matrices.
Proof: By definition, we have

D̂J (r) = sup
ϕ1,ϕ2∈J (r)

Vl(ϕ1 − ϕ2)
1/2 = sup

ϕ1,ϕ2∈J (r)

(Pl((ϕ1 − ϕ2)
2))1/2 ,

which can be upper-bounded by
[
4
l
supϕ∈J (r)

∑l
i=1 ϕ(xi)

2
]1/2

.

Since ϕ = 1
V

∑V
v=1 f

(v), and f (v)(xi) = K
(v)
i α(v), where K(v)

i is the ith row of the kernel

matrix K(v), we can upper bound D̂J (r)2 by 4
V 2l
αTDα where D ∈ R

nV×nV is the matrix with

block (v, w) equal to
∑l

i=1K
(v)T
i K

(w)
i . Thus we want to solve the following problem, where

D is symmetric: supα;αTNα6r α
TDα. We use the following lemma:

Lemma 8.5 When M is symmetric positive definite and Q is symmetric positive semi-

definite, the quadratic problem :

sup
a;aTMa6r

aTQa

admits as solution λr, where λ is the highest eigenvalue of M−1Q.

One straightforward proof uses duality as in Lemma 8.2.
As before, we can not apply directly this result since the matrix N may not be invertible.

Introducing instead the P , Σ matrices and a variable, of the proof of Theorem 8.1, the
solution of our problem is λr, where λ is the highest eigenvalue of the matrix T−1P

T
DP .

Now, we can see that D is just KeKT with e ∈ R
n×n being the projection matrix with

diagonal blocks Idl and 0u. We use again the Sherman-Morrison-Woodbury formula to rewrite
T−1 with the matrices A and U . Moreover, the eigenvalues of T−1P

T
DP and PT−1P

T
D are

the same, since each P is a changing base matrix.
Thus, we compute the following term:

PA−1P
T
D = PP

T
BPλ̃−1Σ

−1
P TKeKT

= BPλ̃−1IdMP TΠ(KT
L )

T ,
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where with our notation, Pλ̃−1IdMP T reduces to λ̃−1 ∈ R
nV×nV . A similar computation

yields the second term: JT2 (I +M)−1J2λ̃
−1Π(KT

L )
T . �

Eventually, for parameter selection, each θ leads to a radius rθn(ε, λ) > r̂θn(ε, λ) defined
likewise, but with the upper bound on ∆̂n(c

′ε) instead. For maximal stability, we propose to
select the largest range of values for which the lemma still holds, i.e. minimize this quantity
with θ. This leads to the selection procedure summed up below, where each term is explicit.
Note that the supremum and infimum are computable.

• Fix a probability threshold with ε > 0,λ < 1.

• Compute r(θ, n, l, ε, λ), defined by:

inf

{
α ∈ [0, 1]; sup

j∈Z;1>λj>α
B̃n,l(θ, ε, λ

j) 6 λ3

}
,

where the term B̃n,l(ε, λ) is:

2cb(θ)
√
c′ε

lV λ
+

4d(θ)
√
c′ε√

lV

√
log(ε−1)

λ2n
+

log(ε−1)

λn

• Output: θ∗ = argmin
θ∈Θ

r(θ, n, l, ε, λ)

Parameter selection procedure for multiple-view semi-supervised learning.

Conclusion

In this chapter, we have combined different aspects of semi-supervised and multiview learning
into one algorithm for which we provide explicit error bounds. Moreover, we have performed
the analysis for the full multiview learning problem which is a meaningful improvement to
the two-view problem. Besides, we have combined stability concepts from the statistical and
clustering communities to propose a new stability-based parameter selection, which benefits
from recent theoretical developments. Additionally, we provide an explicit stability (L2-
diameter) bound for each parameter, which has not been investigated so far.



Part III

Towards the Real World(?): Modeling

and Planning.
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In this last part, we gather the world of bandits together with the batch world, hopefully
for the better, in order to address some reinforcement learning problems.

Markov Decision Processes, Value function and Bellman operator. In a nutshell
- see Sigaud and Buffet (2008) for an introductory book written in french on this topic -
the standard reinforcement learning (RL) framework (Bertsekas and Tsitsiklis, 1996, Sutton
and Barto, 1998) considers a learning agent that interacts with a stochastic environment and
this interaction is modeled as a discrete-time discounted Markov decision process (MDP).
A discounted MDP is a tuple M = 〈X ,A, r, P, γ〉 where the state space X is a bounded
closed subset of a Euclidean space, A is a finite (|A| <∞) action space, the reward function
r : X × A → R is uniformly bounded by Rmax, the transition kernel P is such that for all
x ∈ X and a ∈ A, P (·|x, a) is a distribution over X , and γ ∈ (0, 1) is a discount factor.

The optimal value function V ∗ is the unique fixed-point of the so-called optimal Bellman

operator T ∗ : B(X ;Vmax
def
= Rmax

1−γ ) → B(X ;Vmax) defined by

(T ∗V )(x) = max
a∈A

[
r(x, a) + γ

∫

X
p(dy|x, a)V (y)

]
. (8.2)

where B(X ;L) is the space of measurable functions with domain X bounded by L <∞.
A deterministic policy π : X → A is a mapping from states to actions. The general

goal of reinforcement learning is to learn a policy that enables to receive maximal discounted
cumulative reward from any given initial state. One possible way do to that is to learn
the optimal value function V ∗, since the greedy policy corresponding to V ∗ is actually the
optimal one in that sense. In the sequel, we focus on this approach.

One traditional idea in order to address this problem is to apply a policy iteration al-
gorithm: Starting from some initial policy, we repeat two steps where we first estimate the
value function V π of the current policy π (see definition in Section 2 of chapter 9) using some
sampling scheme and then improve the current policy based on this estimation.

The difficulty to estimate V π typically depends on whether the space X is finite or not,
and whether we are forced to sample the immediate reward and the next state only by
following a single trajectory from the initial state or whether we can resort to a generative

model that enables to sample the immediate reward and the next state from any desired
state, thus not necessarily the current one. The first case corresponds to chapter 10 while
the second corresponds to chapter 9.

Another way to address this problem is to apply the optimism in face of uncertainty
principle: Starting from some initial policy, we repeat two steps where we first compute,
based on the current samples, a set of plausible optimistic models of MDPs together with the
corresponding optimistic policy - this is possible since all transitions and reward are known
in the optimistic models - and then get new samples by running the optimistic policy. This
is the point of view used in chapter 11 and introduced in Jaksch et al. (2010).

Of course there are plenty of other methods, see (Bertsekas and Tsitsiklis, 1996, Sutton
and Barto, 1998) or more recently Szepesvári (2010) for further details.
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Contributions. The following three contributions all make use of concepts coming from
statistical learning theory as well as from bandit theory, and address a specific reinforcement
learning issue.

In chapter 9, we analyze an algorithm called Bellman residual minimization that is a
natural algorithm in the setting of discounted MDP where we are allowed to resort to a
generative model, i.e. we can sample at any time one action from any possible state, as
opposed to the setting where we can only sample one action from the current state.

In chapter 10, we analyze a version of an algorithm called Least-squares Temporal Differ-
ence, where we make use of random projections as developed in chapter 6, in order to benefit
from dimension reduction. This algorithm is designed for discounted MDP in the case when
we do not have a generative model and thus we are forced to sample actions according to
the current state, following one trajectory. Interestingly, from a statistical learning theory
point of view, the value estimation problem corresponding to this algorithm can be seen as a
regression problem with Markov design, where the target value function can not be sampled
directly, but instead is defined as the fix point of the Bellman operator that we need to
estimate.

Finally in chapter 11, we pave the way towards addressing the important problem of
selecting a model of states for reinforcement learning. Indeed, in practice it may be difficult
to define a good notion of states, and thus there may be different possible modelizations. We
build our analysis on top of the UCRL2 algorithm designed for non-discounted MDPs, and
consider a setting that is philosophically related to the chapter 4 that targets the challenging
question of adaptive bandits.



Chapter 9

Finite-Sample Analysis of the Bellman

Residual Minimization algorithm.

We consider the Bellman residual minimization approach for solving discounted Markov
decision problems, where we assume that a generative model of the dynamics and rewards
is available. At each policy iteration step, an approximation of the value function for the
current policy is obtained by minimizing an empirical Bellman residual defined on a set
of n states drawn i.i.d. from a distribution µ, the immediate rewards, and the next states
sampled from the model. Our main result is a generalization bound for the Bellman residual
in linear approximation spaces. In particular, we prove that the empirical Bellman residual
approaches the true (quadratic) Bellman residual in µ-norm with a rate of order O(1/

√
n).

This result implies that minimizing the empirical residual is indeed a sound approach for
the minimization of the true Bellman residual which guarantees a good approximation of
the value function for each policy. Finally, we derive performance bounds for the resulting
approximate policy iteration algorithm in terms of the number of samples n and a measure
of how well the function space is able to approximate the sequence of value functions.

The work presented in this chapter is a joint work with Alessandro Lazaric and Moham-

mad Ghavamzadeh and has been published in the proceedings of the Asian Conference on

Machine Learning (ACML 2010), see Maillard et al. (2010).
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algorithm.

1 Introduction

In this paper we consider the problem of solving a Markov decision problem (MDP) (Bertsekas
and Shreve, 1978, Puterman, 1994) by means of an approximate policy iteration algorithm
(Bertsekas and Tsitsiklis, 1996, Si et al., 2004, Powell, 2007) with a linear approximation
space F . In particular, we focus on the Bellman residual minimization approach (Schweitzer
and Seidmann, 1985, Baird, 1995, Munos, 2003, Lagoudakis and Parr, 2003, Scherrer, 2010)
when a generative model is available, that is, for any state-action pair it is possible to obtain
the immediate reward and an independent sample of the next state drawn from the transition
distribution.

More in details, at each iteration k, in order to evaluate the current policy πk, we build
an approximation Vk ∈ F of the value function V πk by solving an empirical Bellman residual
minimization problem: Vk = argminf∈F Bn(f), where Bn(f) is the empirical Bellman resid-
ual. The specific definition of Bn is critical since, as observed in several previous works (see
e.g., Sutton and Barto 1998, Lagoudakis and Parr 2003, Antos et al. 2008), the squared tem-
poral difference between successive states (e.g., states obtained following a single trajectory),
gives rise to a biased estimate of the (true) Bellman residual B(f) = ||f − T πf ||2µ. In this
paper, in order to build an unbiased estimate of B(f) we take advantage of the generative
model and build Bn on n states drawn i.i.d. from a given distribution µ, as well as the im-
mediate rewards and two next states independently sampled from the generative model (i.e.,
the double-sampling technique suggested in Sutton and Barto 1998, p. 220).

Motivation. The idea of minimizing the Bellman residual is natural (see e.g., Schweitzer
and Seidmann 1985, Baird 1995) and it is based on the property that for any policy π the
value function V π has a zero residual, i.e., B(V π) = 0. As a result, it is reasonable to expect
that the minimization of the Bellman residual B(f) in a given function space F leads to a
function which is close to the value function. Williams and Baird (1994) and Munos (2007)
proved that indeed the residual ||T πf − f || (in sup-norm and Lp-norms, respectively) of a
function f is related to its distance (in the same norm) to the value function V π, ||V π − f ||.
Thus, minimizing the Bellman residual leads to a small approximation error. However, those
results concern the (true) Bellman residual B(f) but not its empirical estimate Bn(f), which
is the quantity that is actually minimized by real algorithms.

Although it is often believed that the minimization of the empirical residual Bn(f) is
“approximately” equivalent to minimizing the (true) residual B(f), no such result is available
in the literature so far. The closest work in this direction is by Antos et al. (2008), who
provides a finite-sample analysis of a variant of the Bellman-residual minimization, called
Modified Bellman residual, which reduces to Least Squares Temporal Differences (LSTD) in
the case of linear function spaces. A finite sample analysis of LSTD is also reported in Lazaric
et al. (2010c), and a regularized version of those algorithms is described in Farahmand et al.
(2008). However, these works analyze algorithms that are related but different from the
empirical Bellman residual minimization considered here.

Contribution. Our main contribution in this paper is to address this question: does
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minimizing the empirical Bellman residual Bn implies that we also minimize the true Bellman
residual at all states w.r.t. a distribution µ? In other terms, is it possible to control the true
Bellman residual B(f) in terms of the empirical Bellman residual Bn(f)?

We show that the answer to those questions is actually not obvious but is positive. It is
not obvious because we show that the usual generalization results for regression cannot be
trivially adopted in bounding the difference between the true Bellman residual and its em-
pirical counterpart. In fact, in Bellman residual minimization we are not trying to minimize
an empirical distance to a given target function, but we are directly searching for an approx-
imate fixed-point (in F) of an empirical version of the Bellman operator T π. As a result,
it might be possible that a function with very low empirical residual (even possibly zero) at
the sampled states has a large (true) Bellman residual at other states and even at the same
states. However, we show that this problem does not occurs when the empirical Bellman
residual minimizer belongs to a set of controlled sized (e.g. measured in terms of the norm of
its parameter). More precisely, we show that for functions fα ∈ F with bounded parameter
||α||, the difference between B(fα) and Bn(fα) decreases as the number of samples n increases.
Then, we prove that when the number of samples n is large enough, the norm ||α̂|| of the
empirical Bellman residual minimizer fα̂ = argminfα∈F Bn(f) is indeed upper-bounded, pro-
vided that the set of features defining the linear space F are linearly independent under the
distribution µ. Thus we deduce that the Bellman residual B(fα̂) of the empirical Bellman
minimizer fα̂ is bounded by the empirical Bellman residual Bn(fα̂) plus an estimation error
term of order O(1/

√
n). In other terms, we provide a generalization result for the Bellman

residual in linear approximation spaces. This result implies that minimizing the empirical
residual is indeed a sound approach for deriving a good approximation of the value function
for each policy.

The paper is organized as follows. In Section 2 we introduce the notation. Section 3
reports the main contribution of this paper, that is the finite-sample analysis of Bellman
residual minimization for policy evaluation. Finally, in Section 4 we extend the policy eval-
uation result to the whole policy iteration algorithm.

2 Preliminaries

In this section, we introduce the main notations used in the paper. For a measurable space
with domain X , we let S(X ) and B(X ;L) denote the set of probability measures over X
and the space of bounded measurable functions with domain X and bound 0 < L < ∞,
respectively. For a measure µ ∈ S(X ) and a measurable function f : X → R, we define the
ℓ2(µ)-norm of f as ||f ||2µ =

∫
f(x)2µ(dx), the supremum norm of f as ||f ||∞ = supx∈X |f(x)|.

Moreover, for a vector u ∈ R
d, we write its ℓ2-norm as ||u||2 =∑d

i=1 u
2
i .

We consider the standard reinforcement learning (RL) framework (Bertsekas and Tsit-
siklis, 1996, Sutton and Barto, 1998) in which a learning agent interacts with a stochastic
environment and this interaction is modeled as a discrete-time discounted Markov decision
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algorithm.

process (MDP). A discounted MDP is a tuple M = 〈X ,A, r, P, γ〉 where the state space X
is a bounded closed subset of a Euclidean space, A is a finite (|A| < ∞) action space, the
reward function r : X × A → R is uniformly bounded by Rmax, the transition kernel P is
such that for all x ∈ X and a ∈ A, P (·|x, a) is a distribution over X , and γ ∈ (0, 1) is a
discount factor. A deterministic policy π : X → A is a mapping from states to actions.
Under a policy π, the MDP M is reduced to a Markov chain Mπ = 〈X , Rπ, P π, γ〉 with
reward Rπ(x) = r(x, π(x)) and transition kernel P π(·|x) = P (·|x, π(x)).

Value functions. The value function of a policy π, V π, is the unique fixed-point of the
Bellman operator T π : B(X ;Vmax =

Rmax

1−γ ) → B(X ;Vmax) defined by

(T πV )(x) = Rπ(x) + γ

∫

X
P π(dy|x)V (y). (9.1)

We also define the optimal value function V ∗ as the unique fixed-point of the optimal Bellman
operator T ∗ : B(X ;Vmax =

Rmax

1−γ ) → B(X ;Vmax) defined by

(T ∗V )(x) = max
a∈A

[
r(x, a) + γ

∫

X
p(dy|x, a)V (y)

]
. (9.2)

Approximation space. We consider a linear function space F defined as the span of d
basis functions ϕi : X 7→ R, i = 1, . . . , d, i.e.,

F = {fα(·) = ϕ(·)⊤α, α ∈ R
d},

where ϕ(·) =
(
ϕ1(·), . . . , ϕd(·)

)⊤
is the feature vector. We define the Gram matrix G ∈ R

d×d

with respect to a distribution µ ∈ S(X ) as

Gij =

∫

X
ϕi(x)ϕj(x)µ(dx), (9.3)

with i, j = 1, . . . , d. Finally, we write Lmax = supx∈X ||ϕ(x)|| and assume that Lmax <∞.

3 Bellman Residual Minimization for Policy Evaluation

In this section, we consider the Bellman Residual Minimization (BRM) algorithm for the
evaluation of a fixed policy π, using the double sampling technique (see e.g., Sutton and
Barto 1998). We assume that a generative model of the MDP is available, and that for
each state x and action a a call to the generative model returns the reward r(x, a) and two
independent samples drawn from the distribution P (·|x, a).
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3.1 The Empirical Bellman Residual Solution

We build a dataset D = {(Xi, Ri, Yi, Y
′
i )16i6n} where for all i = 1, . . . , n, we sample a state

Xi
iid∼ µ and make a call to the generative model to obtain the reward Ri = r(Xi, π(Xi))

and two independent next-state samples Yi and Y ′
i drawn from P π(·|Xi). The empirical

Bellman residual (EBR) is defined for any f ∈ F as

Bn(f) =
1

n

n∑

i=1

[f(Xi)− γf(Yi)−Ri] [f(Xi)− γf(Y ′
i )−Ri] . (9.4)

The EBR minimizer fα̂ is defined, whenever it exists, as the minimizer of Bn(fα) in F :

fα̂ = arg min
fα∈F

Bn(fα), (9.5)

and α̂ is the parameter of the EBR minimizer. Using matrix notations, by defining the n×d-
matrices Ψ and Ψ′ as Ψij = ϕj(Xi) − γϕj(Yi) and Ψ′

ij = ϕj(Xi) − γϕj(Y
′
i ), Bn(fα) may be

written as

Bn(fα) =
1

n

[
α⊤Ψ⊤Ψ′α−R⊤(Ψ + Ψ′)α +R⊤R

]
,

where R ∈ R
n is the vector of components Ri. Thus, by defining the d × d empirical Gram

matrix A = 1
n
(Ψ⊤Ψ′ + Ψ′⊤Ψ), the d-vector b = 1

n
(Ψ + Ψ′)⊤R, and the constant c = 1

n
R⊤R,

we have

Bn(fα) =
1

2
α⊤Aα− b⊤α + c. (9.6)

Using this notation, the gradient of Bn is ∇αBn(fα) = Aα − b, thus whenever the EBR
minimizer exists, its parameter α̂ is the solution to the linear system Aα = b.

Although the empirical Bellman residual Bn(fα) is a quadratic function of α, with A a
symmetric matrix, A may not be definite positive. A may even possess negative eigenvalues,
thus Bn(fα) may not have any minimizer. However we will see in the next section that when
n is large enough then the EBR minimizer exists and is unique.

3.2 Finite-Sample Analysis

Defining B(f) = ||f − T πf ||2µ the true squared Bellman residual in µ-norm, we have the
property that for any f , Bn(f) is an unbiased estimate of B(f). In fact,

E
Yi,Y ′

i
iid∼Pπ(·|Xi)

[
[f(Xi)− γf(Yi)−Ri] [f(Xi)− γf(Y ′

i )−Ri] |Xi

]
=
[
f(Xi)− T πf(Xi)

]2
,

thus, since Xi
iid∼ µ, it follows that ED[Bn(f)] = B(f).

The main issue is to show that by minimizing the empirical Bellman residual Bn, we actu-
ally obtain a function fα̂ whose (true) residual fα̂−T πfα̂ is small at the states (X1, . . . , Xn)

and at other states measured by µ (i.e., it has a small B). This property would hold if we
could have a generalization result for the Bellman residual, like in the regression setting.
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In regression, generalization bounds for spaces bounded in sup-norm are applied to the
result of the truncation (at a threshold which depends on a sup-norm of the target function)
of the empirical risk minimizer (Györfi et al., 2002). However, this approach does not work
for BRM, because the truncation f̄α̂ of the EBR minimizer fα̂ may amplify the residual (i.e.,
B(f̄α̂) may not be smaller than B(fα̂)). Thus, we follow another direction by considering
spaces of functions F(C) ⊂ F with bounded parameter: F(C) = {fα ∈ F , ||α|| 6 C}, and
provide a generalization bound for Bellman residual for functions fα ∈ F(C) (the proof is in
Section 6).

Lemma 9.1 For any δ > 0, we have that with probability at least 1− δ,

sup
fα∈F(C)

|B(fα)− Bn(fα)| 6 c1

√
2d log(2) + 6 log(8/δ)

n
,

where c1 = 96
√
2[C(1 + γ)Lmax +Rmax]

2.

Unfortunately, this result cannot be immediately applied to the EBR minimizer fα̂ since
we do not have a bound on the norm ||α̂||. In fact, when we solve the minimization problem
(9.5), we do not have any control on the norm of the solution (if it exists) ||α̂||. For instance,
if we consider the case in which two features ϕ1 and ϕ2 are identical, then α1ϕ1 + α2ϕ2 = 0

whenever α1 = −α2, thus ||α|| can be made arbitrarily large without changing the value of fα
simply by playing on the values of α1 and α2. In order to avoid such degenerate situations,
we introduce the following assumption on the linear independence of the features (ϕi)16i6d
w.r.t. the distribution µ.

Assumption The smallest eigenvalue ν of the Gram matrix G (defined in (9.3)) is
strictly positive, i.e., ν > 0. 1

We show in the following that Assumption 3.2 is a sufficient condition to derive a bound
on the norm ||α̂|| for any α̂ solution of the EBR minimization problem. Before moving to
the analysis of the EBR minimizer with linear independent features, we first introduce some
additional notation. Let L(f) = ||(I − γP π)f ||2µ be the quadratic part of B(f), and

Ln(f) =
1

n

n∑

i=1

[f(Xi)− γf(Yi)] [f(Xi)− γf(Y ′
i )] ,

be its empirical version. Thus Ln(fα) = 1
2
α⊤Aα. Now, whenever the EBR minimizer fα̂

exists, since by definition α̂ satisfies Aα̂ = b, we can write

Bn(fα) =
1

2
(α− α̂)⊤A(α− α̂)− 1

2
α̂⊤Aα̂ + c = Ln(fα−α̂)− Ln(fα̂) + c, (9.7)

and deduce that Bn(fα̂) = c− Ln(fα̂) = c− 1
2
b⊤α̂.

1Note that this condition implies the linear inde- pendence of the features in µ-norm.
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Bounding ||α̂||. In order to deduce a bound on the parameter of the EBR minimizer α̂, in

the next three lemmas, we relate ||α|| to respectively L(fα) and Ln(fα). For that purpose,
let us write

Cπ(µ) = (1− γ)||(I − γP π)−1||µ,
which is related to the concentrability coefficient (see e.g., Antos et al. 2008) of the discounted
future state distribution starting from µ and following policy π, i.e., (1−γ)µ(I−γπ)−1 w.r.t. µ.
Note that if the discounted future state distribution is not absolutely continuous w.r.t. µ,
then Cπ(µ) = ∞.

Lemma 9.2 Under Assumption 3.2, for any α ∈ R
d

||α||2 6 1

ν
||fα||2µ 6

Cπ(µ)2

ν(1− γ)2
L(fα).

This indicates that the eigenvalues of the Gram matrix G̃ defined by G̃ij =
∫
X ψiψjdµ, where

ψi = (I − γP π)ϕi, are lower bounded by ξ = ν(1−γ)2
Cπ(µ)2

.

Proof: From the definition that ν is the smallest eigenvalue of G, we have α⊤α 6 1
ν
α⊤Gα =

1
ν
||fα||2µ. Now since (I − γP π) is an invertible operator (the eigenvalues of any stochastic

kernel P π have a modulus less than 1), we have ||fα||2µ 6 ||(I − γP π)−1||2µ||(I − γP π)fα||2µ =(
Cπ(µ)
1−γ

)2L(fα), and the lemma follows. �

This lemma provides a bound on ||α̂|| in terms of L(fα̂). However L(fα̂) is not known,
and we would like to relate it to its empirical counterpart Ln(α̂). The next lemma (the proof
is in Section 6) provides a generalization bound for L, which enables to bound the difference
between L and Ln.

Lemma 9.3 For any δ > 0, we have that with probability at least 1− δ,

∀α ∈ R
d, |L(fα)− Ln(fα)| 6 c2||α||2

√
2d log(2) + log(4/δ)

n
,

where c2 = 96
√
2(1 + γ)2L2

max.

Combining Lemmas 9.2 and 9.3 we deduce that when n is large enough (as a function of
ν and Cπ(µ)), then all the eigenvalues of the empirical Gram matrix A are strictly positive,
and thus the EBR minimizer exists and is unique.

Lemma 9.4 For any δ > 0, whenever n > nπ(ν, δ) =
4c22C

π(µ)4

ν2(1−γ)4 (2d log 2 + log 4/δ), with

probability 1− δ we have for all α ∈ R
d, ||α||2 6 2

ξ
Ln(fα).

We deduce that all the eigenvalues of the empirical Gram matrix A are strictly positive,

and thus the EBR minimizer exists and is unique.
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Proof: From Lemmas 9.2 and 9.3,

||α||2 6 1

ξ
L(fα) 6

1

ξ

(
Ln(fα) + c2||α||2

√
2d log(2) + log(4/δ)

n

)
,

thus whenever c2
√

2d log(2)+log(4/δ)
n

6
ξ
2
, i.e., n > nπ(ν, δ), we have ||α||2 6 2

ξ
Ln(fα). The

claim about the eigenvalues of the empirical Gram matrix simply follows from the statement
of the Lemma, the inequality α⊤α 6 1

χ
α⊤Aα, where χ is the smallest eigenvalue of A, and

the definition of Ln(fα) = 1
2
α⊤Aα. �

From this result we immediately deduce a bound on ||α̂||.
Corollary 9.1 For any δ > 0, whenever n > nπ(ν, δ), with probability 1− δ we have

||α̂|| 6 2

ξ
(1 + γ)LmaxRmax.

Proof: From Lemma 9.4, using Cauchy-Schwarz’s inequality, and recalling the definition of
Ψ in Section 3.1

||α̂||2 6
2

ξ

1

2
b⊤α̂ =

1

ξ

d∑

j=1

(
1

n

n∑

i=1

Ri(Ψi,j +Ψ′
i,j)α̂j

)

6
1

ξ

1

n

n∑

i=1

Rmax

(
2
∣∣∣

d∑

j=1

α̂jϕj(Xi)
∣∣∣+ γ

∣∣∣
d∑

j=1

α̂jϕj(Yi)
∣∣∣+ γ

∣∣∣
d∑

j=1

α̂jϕj(Y
′
i )
∣∣∣
)

6
2

ξ
Rmax||α̂|| sup

x
||ϕ(x)||(1 + γ)

from which the result follows. �

We now state our main result which bounds the Bellman residual of the EBR minimizer.

Theorem 9.1 (Bellman residual of BRM ) For any δ > 0, whenever n > nπ(ν, δ/2),

with probability 1− δ we have

B(fα̂) 6 Bn(fα̂) + c3

√
2d log(2) + 6 log(8/δ)

n
,

where c3 = 96
√
2[2
ξ
(1 + γ)2L2

max + 1]2R2
max.

Proof: When n > nπ(ν, δ), Corollary 9.1 states that ||α̂|| 6 C is bounded and the results
follows from a direct consequence of Lemma 9.1. �

Thus, the true residual B(fα̂) of the EBR minimizer fα̂ is upper-bounded by the empirical
residual Bn(fα̂) plus an estimation error term, which is of order O(1/

√
n). We deduce that

minimizing the empirical residual is indeed a sound method for deriving a function with small
(true) Bellman residual B.
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Remark 1 The obtained estimation error term is of order O(1/
√
n), which is worse than

the estimation error of order O(log n/n) deduced in linear regression with a quadratic loss
(see e.g., Györfi et al. 2002). This is due to the fact that although B(f) is positive for any
f , this is not the case for Bn(f), which may be negative (e.g., think of Bn(V π) which is an
unbiased estimate of B(V π) = 0). Thus the usual argument described in Györfi et al. (2002),
where one would derive

√
B(f) 6 2

√
Bn(f) + O(1/

√
n) does not directly apply here. One

could also think of applying this argument to Ln, since Ln is positive for sufficiently large n.
However, this does not work either, since Ln is the sum of terms which are not individually
positive, independently of the value of n. Therefore, it remains an open question to whether
it is possible to obtain a bound of the form B(fα̂) 6 cBn(fα̂)+O(log n/n) (with an additional
multiplicative factor c > 1). This could be particularly interesting when Bn(fα̂) is small.

Remark 2 The dependence to the dimension d of the function space F is of order L4
max

√
d.

This is due to the fact that we cannot use truncation in this Bellman residual setting (see
the first paragraph of Section 3.2), which would give us an order L2

max

√
d. We use instead

a covering of the function space F(C) (see Theorem 9.2) with C (which itself depends on
Lmax) being a bound on ||α̂||. This explains the additional L2

max factor.

Remark 3 It is interesting to notice that although we derived Corollary 9.1 specifically for
the case of Bellman residual minimization, a similar result can be obtained in the traditional
regression setting. The bound on the norm of α̂ solution of the least-squares problem may be
used to derive an excess risk bound for the empirical risk minimizer in an unbounded space
without truncation, at the price of a weaker dependence on Lmax, as discussed in Remark 2.

3.3 Bellman Residual Minimization and Approximation of V π

We are now interested to relate the Bellman residual of fα̂ to the minimum Bellman residual
in F , i.e., inff∈F B(f), and to the approximation error (in µ-norm) of the value function V π

w.r.t. the function space F , i.e., inff∈F ||V π − f ||µ. In fact, these two quantities are related
since for any function f ∈ F , we have T πf − f = (I − γP π)(V π − f). Thus, by defining

fα̃ = argmin
f∈F

B(f), and fα∗ = argmin
f∈F

||V π − f ||µ,

we have

||V π − fα∗ ||µ 6 ||V π − fα̃||µ 6
Cπ(µ)

1− γ

√
B(fα̃) 6

Cπ(µ)

1− γ

√
B(fα∗). (9.8)

We can now relate both the Bellman residual of fα̂, B(fα̂), and its approximation error,
||V π − fα̂||µ, to the minimum possible Bellman residual in F and the distance between V π

and F .
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Theorem 9.2 (Approximation error of BRM ) For any δ > 0, whenever n > nπ(ν, δ/2),

with probability 1− δ, the Bellman residual of the EBR minimizer fα̂ is bounded as

B(fα̂) 6 inf
f∈F

B(f) + c4

√
2d log(2) + 6 log(16/δ)

n
,

with c4 = (96
√
2+1)[2

ξ
(1+γ)2L2

max+1]2R2
max, and the approximation error of V π is bounded as

||V π−fα̂||2µ 6
(
Cπ(µ)
1−γ

)2B(fα̂). Moreover, since inff∈F B(f) 6 (1+γ||P π||µ)2 inff∈F ||V π−f ||2µ,
we obtain an alternative bound

||V π − fα̂||2µ 6

(
Cπ(µ)

1− γ

)2
(
(1 + γ||P π||µ)2 inf

f∈F
||V π − f ||2µ + c4

√
2d log(2) + 6 log(16/δ)

n

)
.

Proof: From the definition of α̃ (the minimum of B), we have L(fα̃) = 2〈Rπ, (I−γP π)ϕ⊤α̃〉µ.
Thus, from Lemma 9.2, we obtain

||α̃||2 6 1

ξ
L(fα̃) 6

2

ξ
(1 + γ)LmaxRmax||α̃||, thus ||α̃|| 6 2

ξ
(1 + γ)LmaxRmax.

Now using Chernoff Hoeffding’s inequality, we have with probability 1− δ/2,

Bn(fα̃) 6 B(fα̃) +
[2
ξ
(1 + γ)2L2

max + 1
]2
R2

max

√
2 log(2/δ)

n
. (9.9)

We may write

B(fα̂) 6 (B(fα̂)− Bn(fα̂)) + Bn(fα̃) 6 inf
f∈F

B(f) + (B(fα̂)− Bn(fα̂)) + (Bn(fα̃)− B(fα̃)).

The claim follows by applying Theorem 9.1 (with probability δ/2) and (9.9) for the second
and third terms on the right hand, respectively, and a union bound so that both events hold
simultaneously with probability at least 1 − δ. The other inequalities are deduced from the
definition of α̃ and α∗ and (9.8). �

This result means that whenever the space F is such that it contains a function with a
small Bellman residual or that it can well approximate V π, then the residual of the EBR min-
imizer fα̂ is small. In addition, assuming that Cπ(µ) is small, fα̂ is also a good approximation
of the value function V π.
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Input: Function space F , state distribution µ, number of samples n, number

of iterations K

Initialize: Let V0 ∈ B(X ;Vmax) be an arbitrary value function

for k = 1, 2, . . . ,K do

(1) Let πk be the greedy policy w.r.t. Vk−1 (see Eq. 9.13).

(2) Build a new dataset Dk = {(X(k)
i , R

(k)
i , Y

(k)
i , Y

′(k)
i )}ni=1, where X

(k)
i

iid∼
µ, R

(k)
i = r(X

(k)
i , πk(X

(k)
i )), and use the generative model to draw two

independent samples Y
(k)
i and Y

′(k)
i from P πk(·|X(k)

i ).

(3) Let α̂k be the solution to the linear system Akα = bk, where Ak and

bk are defined by (9.10) and (9.11).

(4) Let Vk = fα̂k
.

Return policy πK .

Figure 9.1: The Bellman Residual Minimization Policy Iteration (BRM-PI) algorithm.

4 Bellman Residual Minimization for Policy Iteration

We now move to the full analysis of the policy iteration algorithm where at each itera-
tion k, the policy πk is approximated by the solution of an empirical Bellman residual
minimization. The Bellman Residual Minimization Policy Iteration (BRM-PI) algorithm
is described in Figure 9.1. At each iteration k, BRM-PI generates a new dataset Dk =

{(X(k)
i , R

(k)
i , Y

(k)
i , Y

′(k)
i )}ni=1 where X(k)

i
iid∼ µ, R(k)

i = r(X
(k)
i , πk(X

(k)
i )), and Y (k)

i and Y
′(k)
i are

two independent samples drawn from P πk(·|X(k)
i ). The d× d-matrix Ak and d-vector bk are

defined as

Ak =
1

n
(Ψ⊤

kΨ
′
k +Ψ

′⊤
k Ψk) (9.10)

bk =
1

n
(Ψk +Ψ′

k)
⊤R(k) (9.11)

where (Ψk)ij = ϕj(X
(k)
i )− γϕj(Y

(k)
i ) and (Ψ′

k)ij = ϕj(X
(k)
i )− γϕj(Y

′(k)
i ). Then α̂k is defined

as the solution of
Akα = bk (9.12)

(the next theorem will provide conditions under which this system has a solution), which
defines the approximation Vk = fα̂k

of the current value function V πk . Finally, the approxi-
mation Vk is used to generate the policy πk+1 for the next iteration k + 1

πk+1(x) = argmax
a∈A

[
r(x, a) + γ

∫

X
P (dy|x, a)Vk(y)

]
. (9.13)

Note that in order to compute the expectation we can use the generative model and
replace the expectation by an average over a sufficiently large number of samples. However
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this is not convenient and a usual technique used to avoid computing the expectations for
deriving the greedy policy is to use action-value functions Q instead of value functions V (see
e.g., Watkins 1989, Lagoudakis and Parr 2003, Antos et al. 2008), or functions defined over
post-decision states (Powell, 2007). We do not further develop this point here but we simply
mention that all the finite-sample analysis derived in the previous section for the setting of
value functions can be easily extended to action-value functions.

Now following the analysis of Munos (2003) and Antos et al. (2008), we relate the per-
formance of the policy πK returned by the algorithm to the optimal policy ||V ∗ − V πK ||ρ
(where ρ is a distribution chosen by the user), in terms of the Bellman residuals of the EBR
minimizers fα̂k

at all the iterations k < K of the BRM-PI algorithm. In order to do so, we
make use of the concentrability coefficients, Cρ,µ, defined for any couple of distributions ρ
and µ in Antos et al. (2008) and Munos and Szepesvári (2008) (A refined analysis can be
found in Farahmand et al. (2010)).

Let us also define n(δ) = supπ n
π(νπ, δ) and write Bπ(f) = ||f − T πf ||2µ the Bellman

residual of f under policy π. We can now state the main result which provides a performance
bound for BRM-PI.

Theorem 9.3 (Performance bound of BRM-PI ) For any δ > 0, whenever n > n(δ/K),

with probability 1− δ, the EBR minimizer fα̂k
, where α̂k is the solution of the linear system

(9.12), exists for all iterations 1 6 k < K, thus the BRM-PI algorithm is well defined, and

the performance V πK of the policy πK returned by the algorithm is such that

||V ∗−V πK ||2ρ 6
( 2γ

(1− γ)2

)2
[
Cρ,µ sup

16k<K

(
inf
f∈F

Bπk(f)+ck

√
2d log(2) + 6 log(16K/δ)

n

)
+γKR2

max

]
,

where ck = (96
√
2+1)[ 2

ξk
(1+γ)2L2

max+1]2R2
max, with ξk defined similarly as ξ in Lemma 9.2

for the policy πk. A bound using the distances between the sequence of value functions and F
can be obtained using the fact that inff∈F Bπk(f) 6 (1 + γ||P πk ||µ)2 inff∈F ||V πk − f ||2µ.

Proof: From Antos et al. (2008, Lemma 12) we have

||V ∗ − V πK ||2ρ 6
( 2γ

(1− γ)2
)2(

Cρ,µ max
06k<K

Bπk(fα̂k
) + γKR2

max

)
. (9.14)

Now from Lemma 9.4, we have that at each step k < K, whenever n > n(δ/K) >

nπk(νπk , δ/K), with probability 1 − δ/K, the EBR minimizer fα̂k
exists and from Theo-

rem 9.2, the Bellman residual of fα̂k
is bounded as

Bπk(fα̂k
) 6 inf

f∈F
Bπk(f) + ck

√
2d log(2) + 6 log(16K/δ)

n
,

where we used a union bound that guarantees that these bounds hold for all K iterations. �
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The performance bounds reported in Theorem 9.3 are composed of the sum of three
terms. The first term is an approximation error term, which indicates how well the function
space F is adapted to the problem, either in terms of containing functions with low Bellman
residuals (for the sequence of policies) inff∈F Bπk(f), or in terms of well approximating the
corresponding value functions inff∈F ||V πk − f ||µ. The second term is an estimation error
term, which decreases as O(1/

√
n), and the third term is decreasing exponentially fast with

K, the number of policy iterations.

Remark: In the current description of the BRM-PI algorithm, we regenerate a new dataset
Dk at each policy evaluation step. However, we could generate once for all n samples
(X1, . . . , Xn) and all actions a ∈ A, the corresponding rewards Ri(a) = r(Xi, a) and 2n inde-
pendent next states Yi(a) and Y ′

i (a) sampled from P (·|Xi, a). Then at each iteration k, we
use these samples and build the dataset Dk =

{(
Xi, Ri(πk(Xi)), Yi(πk(Xi)), Y

′
i (πk(Xi)

)}n
i=1

.
This sampling strategy requires generating 2n×|A| samples instead of 2n×K for the previous
method, which is advantageous when |A| 6 K. In terms of performance, this version attains
a similar performance as in Theorem 9.3. The main difference is that at each iteration k,
the target function V πk depends on the samples because the policy πk is greedy w.r.t. the
function fαk−1

learned at the previous iteration. As a result, Lemma 9.1 should be restated
by taking a supremum over all the possible policies that can be generated as greedy policies
of the functions in F . The complexity of this space of policies depends on the number of
actions |A| and the dimension d. Finally, the complexity of the joint space obtained by F
and the space of policies would appear in the final bound which would differ from the one in
Theorem 9.3 only in constant factors.

5 Conclusion and comparison with LSTD

We provided a generalization bound for Bellman residuals and used it to provide performance
bounds for an approximate policy iteration algorithm in which an empirical Bellman residual
minimization is used at each policy evaluation step.

Compared to the LSTD approach analyzed in Lazaric et al. (2010c) we have a poorer
estimation rate of O(1/

√
n) instead of O(1/n) and it is an open question to whether an

improved rate for Bellman residuals can be obtained (see Remark 1). The assumptions are
also different: in this BRM approach we assumed that we have a generative model and
thus performance bounds can be obtained under any sampling distribution µ, whereas since
LSTD only requires the observation of a single trajectory (following a given policy) it can
only provide performance bounds under the stationary distribution of that policy. However
in a policy iteration scheme it is not enough to accurately approximate the current policy
under the stationary distribution since the greedy policy w.r.t. that approximation can be
arbitrarily poor. Thus the performance of BRM are better controlled than that of LSTD,
which is reflected in the fact that the concentrability coefficients C(ρ, µ) (used in Theorem 9.3)
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can be controlled in the BRM approach (such as by choosing a uniform distribution µ) but
not in LSTD unless we make additional (usually strong) assumptions on the stationary
distributions (such as being lower-bounded by a uniform distribution, like in (Munos, 2003)).

6 Technical details

6.1 Proof of Lemma 9.3

Step 1: Introduce the empirical process. Let J (C) be the class of functions induced
by Ln from F(C) defined as

J (C) = {jα : (x, y, z) 7→ (fα(x)− γfα(y))(fα(x)− γfα(z)); ||α||2 6 C}.

Note that this is the product of two linear spaces of dimension d. Furthermore, we can now
rewrite Ln(fα) = Pnjα and L(fα) = Pjα, where Pn is the empirical measure w.r.t. Xi, Yi, Y

′
i

and P is the measure according to which the samples are distributed. As a result both
Ln(fα) and L(fα) are linear w.r.t. jα. Note also that for any (x, y, z) ∈ X 3, |jα(x, y, z)| 6
||α||22(1 + γ)2 supx∈X ||ϕ(x)||22 = C2(1 + γ)2L2

max, using Cauchy-Schwartz’s inequality.

Step 2: Bound the covering number. We want to bound the ε-covering number of the
class of functions J (C) in norm ||.||∞. Since each function jα can be written as jα(x, y, z) =
gα(x, y)gα(x, z), where gα(x, y) =

∑d
i=1 αi(ϕi(x)−γϕi(y)), we can relate the covering number

of J (C) to the covering number of the space of functions gα. Indeed, let us consider an ε-
cover G0 for the space of functions gα such that ||α||2 6 C. Thus for a given α there exists
gα0 ∈ G0 such that ||gα − gα0 || 6 ε. Now, we can build a cover for J (C). We have

|jα(x, y, z)− jα0(x, y, z)| 6 |gα(x, y)gα(x, z)− gα0(x, y)gα(x, z)|
+|gα0(x, y)gα(x, z)− gα0(x, y)gα0(x, z)|

6 ||gα||∞||gα − gα0 ||∞ + ||gα0 ||∞||gα − gα0 ||∞
6 2C(1 + γ)Lmaxε,

which enables us to deduce that

N (ε,J (C), ||.||∞) 6 N
( ε

2C(1 + γ)Lmax

, {gα; ||α||2 6 C}, ||.||∞
)

6 N
( ε

2C(1 + γ)Lmax

, {gα; ||g||n 6 C(1 + γ)Lmax}, ||.||n
)

6

(6C2(1 + γ)2L2
max

ε

)d

where we used the fact that ||g||n 6 ||g||∞ and ||g||n 6 ||α||2(1 + γ)Lmax.
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Step 3: Use chaining technique. Let us consider εl-covers Jl of J (C), for l = 0, . . . ,∞,
with J0 = jα0 . We moreover assume that Jl+1 is a refinement of Jl and that εl+1 6 εl. Then
for a given j ∈ J (C), we define jl = Π(j,Jl) the projection of j into Jl, for the norm ||j||∞.
Thus, j = (j − jL) +

∑L
l=1(jl − jl−1) + j0. Since 0 ∈ J (C), we consider jα0 = 0. Note that

by definition, we need ||j||∞ 6 ε0. Thus we define ε0 = C2(1 + γ)2L2
max.

Moreover, we have for any j ∈ J (C),

|(P − Pn)(j)| 6 |(P − Pn)(j − jL)|+
L∑

l=1

|(P − Pn)(jl − jl−1)| 6 2εL +
L∑

l=1

|(P − Pn)(jl − jl−1)|

We introduce for convenience the following notation: ρ(t) = P(∃f ∈ F(C), |L(fα)−Ln(fα)| >
t). Thus if we now introduce η and (ηl)l6L such that

∑L
l=1 ηl 6 η, then for L large enough

such that 2εL 6 t2, we have:

ρ(ηt1 + t2) 6 P(∃f ∈ F(C), 2εL +
L∑

l=1

|(P − Pn)(jl − jl−1)| >
L∑

l=1

ηlt+ t2)

6

L∑

l=1

P(∃j ∈ J (C), |(P − Pn)(jαl
− jαl−1

)| > ηlt1)

6

L∑

l=1

NlNl−1 sup
j∈J (C)

P(|(P − Pn)(jαl
− jαl−1

)| > ηlt1)

6

L∑

l=1

2N2
l exp(−

nt21η
2
l

2(4εl)2
)

where Nl = N (εl,J (C), ||.||∞), and where the last inequality comes from the fact that

|jαl
(Xi, Yi, Y

′
i )− jαl−1

(Xi, Yi, Y
′
i )− Pjαl

+ Pjαl−1
| 6 2||jαl

− jαl−1
||∞ 6 4||jαl

− jα||∞ 6 4εl.

Step 4: Define the free parameters. Thus, if we define, for all l > 1, ηl
def
= 8εl

t1

√
2 log(Nl)

n
,

then we deduce the following inequality: ρ(ηt1 + t2) 6 2
∑L

l=1N
−2
l .

Now, since Nl 6 (6C
2(1+γ)2L2

max

εl
)d, let εl = 6C2(1 + γ)2L2

max2
−l(δ/2)1/2d(22d − 1)1/2d for
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l > 1. Thus we deduce that
∑L

l=1N
−2
l 6 δ/2. We finally get:

ηt1 + t2 =
L∑

l=1

8εl

√
2 log(Nl)

n
+ 2εL

6 48C2(1 + γ)2L2
max(δ/2)

1/2d(22d − 1)1/2d
L∑

l=1

2−l
√

2 log(Nl)

n
+ 2εL

6
96C2(1 + γ)2L2

max√
n

L∑

l=1

2−l
√
2dl log(2) + log(2/δ)− log(22d − 1) + 2εL

6
96C2(1 + γ)2L2

max√
n

L∑

l=1

2−l
√
2d(l − 1) log(2) + log(4/δ) + 2εL

Thus, when L→ ∞, we get:

ηt1 + t2 6
96C2(1 + γ)2L2

max√
n

∞∑

l=1

2−l
√
2d(l − 1) log(2) + log(4/δ)

We deduce that with probability higher than 1− δ, the following holds true:

sup
f∈F(C)

|L(fα)− Ln(fα)| 6 96C2L2
max(

√
2d log(2)

n
+

√
log(4/δ)

n
)

Then we use the fact that L(fα) = L(f α
||α||

)||α||2 and similarly Ln(fα) = Ln(f α
||α||

)||α||2 to
deduce that with the same probability, for all α,

|L(fα)− Ln(fα)| 6 ||α||2( sup
f∈F(1)

|L(f)− Ln(f)|)

The final results follows by aesthetics simplifications.

6.2 Proof of Lemma 9.1

Step 1: Introduce the empirical process. The proof for Bn follows the same lines as
for Ln using the following class of functions, induced by Bn from F(C) and defined as:

J (C) = {jα : (x, y, z) 7→ (fα(x)− γfα(y) + r(x))(fα(x)− γfα(z) + r(x)); ||α||2 6 C}.

Then we have Bn(fα) = Pnjα and B(fα) = Pjα. Now, we have |jα(Xi, Yi, Y
′
i )| 6 (||α||2(1 +

γ) supx ||ϕ(x)||2 + Rmax)
2 = [C(1 + γ)Lmax + Rmax]

2. Note that the function 0 does not a
priori belongs to J (C), thus we have an additional term to control corresponding to the
decomposition of j = (j − jL) +

∑L
l=1(jl − jl−1) + j0 for some nonzero j0 ∈ J(C).
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Step 2: Bound the covering number. With this new definition of J (C), we have:

N (ε,J (C), ||.||∞) 6
(6(C(1 + γ)Lmax +Rmax)

2

εl

)d

Step 3: Use chaining technique. Then using chaining technique, we get the correspond-
ing upper bound:

ρ(ηt1 + t2 + t3) = P(∃f ∈ F(C)|L(fα)− Ln(fα)| > ηt1 + t2 + t3)

6 2
L∑

l=1

N−2
l + 2 exp(− nt23

2[C(1 + γ)Lmax +R]4
)

where the last term comes from the bound on P(|(P − Pn)(j0) > t3).

Step 4: Define the free parameters. We define εl
def
= 9(C(1+γ)Lmax+R)

22−l(δ/4)1/2d(22d−
1)1/2d for l > 1, set t3 = [C(1+γ)Lmax+R]

2

√
2 log(4/δ)

n
and derive that with probability higher

than 1− δ,

sup
f∈F(C)

|B(fα)− Bn(fα)| 6 96[C(1 + γ)Lmax +R]2(

√
2d log(2)

n
+

√
log(8/δ)

n
)

+[C(1 + γ)Lmax +R]2
√

2 log(4/δ)

n
.

The final result follows after some aesthetics simplifications.





Chapter 10

Least-squares TD with Random

Projections.

We consider the problem of reinforcement learning in high-dimensional spaces when the
number of features is bigger than the number of samples. In particular, we study the least-
squares temporal difference (LSTD) learning algorithm when a space of low dimension is
generated with a random projection from a high-dimensional space. We provide a thorough
theoretical analysis of the LSTD with random projections and derive performance bounds
for the resulting algorithm. We also show how the error of LSTD with random projections is
propagated through the iterations of a policy iteration algorithm and provide a performance
bound for the resulting least-squares policy iteration (LSPI) algorithm.

The work presented in this chapter is a joint work with Mohammad Ghavamzadeh and
Alessandro Lazaric and has been published in the proceedings of the 24th conference on

advances in Neural Information Processing Systems (NIPS 2010), see Ghavamzadeh et al.
(2010a).
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1 Introduction
Least-squares temporal difference (LSTD) learning Bradtke and Barto (1996), Boyan (1999)
is a widely used reinforcement learning (RL) algorithm for learning the value function V π of a
given policy π. LSTD has been successfully applied to a number of problems especially after
the development of the least-squares policy iteration (LSPI) algorithm Lagoudakis and Parr
(2003), which extends LSTD to control problems by using it in the policy evaluation step of
policy iteration. More precisely, LSTD computes the fixed point of the operator ΠT π, where
T π is the Bellman operator of policy π and Π is the projection operator onto a linear function
space. The choice of the linear function space has a major impact on the accuracy of the
value function estimated by LSTD, and thus, on the quality of the policy learned by LSPI.
The problem of finding the right space, or in other words the problems of feature selection
and discovery, is an important challenge in many areas of machine learning including RL, or
more specifically, linear value function approximation in RL.

To address this issue in RL, many researchers have focused on feature extraction and
learning. Mahadevan Mahadevan (2005) proposed a constructive method for generating
features based on the eigenfunctions of the Laplace-Beltrami operator of the graph built
from observed system trajectories. Menache et al. Menache et al. (2005) presented a method
that starts with a set of features and then tunes both features and the weights using either
gradient descent or the cross-entropy method. Keller et al. Keller et al. (2006) proposed an
algorithm in which the state space is repeatedly projected onto a lower dimensional space
based on the Bellman error and then states are aggregated in this space to define new features.
Finally, Parr et al. Parr et al. (2007) presented a method that iteratively adds features to
a linear approximation architecture such that each new feature is derived from the Bellman
error of the existing set of features.

A more recent approach to feature selection and discovery in value function approximation
in RL is to solve RL in high-dimensional feature spaces. The basic idea here is to use a large
number of features and then exploit the regularities in the problem to solve it efficiently
in this high-dimensional space. Theoretically speaking, increasing the size of the function
space can reduce the approximation error (the distance between the target function and
the space) at the cost of a growth in the estimation error. In practice, in the typical high-
dimensional learning scenario when the number of features is larger than the number of
samples, this often leads to the overfitting problem and poor prediction performance. To
overcome this problem, several approaches have been proposed including regularization. Both
ℓ1 and ℓ2 regularizations have been studied in value function approximation in RL. Farahmand
et al. presented several ℓ2-regularized RL algorithms by adding ℓ2-regularization to LSTD
and modified Bellman residual minimization Farahmand et al. (2008) as well as fitted value
iteration Farahmand et al. (2009), and proved finite-sample performance bounds for their
algorithms. There have also been algorithmic work on adding ℓ1-penalties to the TD Loth
et al. (2007), LSTD Kolter and Ng (2009), and linear programming Petrik et al. (2010)
algorithms.

In this paper, we follow a different approach based on random projections Vempala (2004).
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In particular, we study the performance of LSTD with random projections (LSTD-RP). Given
a high-dimensional linear space F , LSTD-RP learns the value function of a given policy from
a small (relative to the dimension of F) number of samples in a space G of lower dimension
obtained by linear random projection of the features of F . We prove that solving the problem
in the low dimensional random space instead of the original high-dimensional space reduces
the estimation error at the price of a “controlled" increase in the approximation error of
the original space F . We present the LSTD-RP algorithm and discuss its computational
complexity in Section 3. In Section 4, we provide the finite-sample analysis of the algorithm.
Finally in Section 5, we show how the error of LSTD-RP is propagated through the iterations
of LSPI.

2 Preliminaries
For a measurable space with domain X , we let S(X ) and B(X ;L) denote the set of probability
measures over X and the space of measurable functions with domain X and bounded in
absolute value by 0 < L < ∞, respectively. For a measure µ ∈ S(X ) and a measurable
function f : X → R, we define the ℓ2(µ)-norm of f as ||f ||2µ =

∫
f(x)2µ(dx), the supremum

norm of f as ||f ||∞ = supx∈X |f(x)|, and for a set of n states X1, . . . , Xn ∈ X the empirical
norm of f as ||f ||2n = 1

n

∑n
t=1 f(Xt)

2. Moreover, for a vector u ∈ R
n we write its ℓ2-norm as

||u||22 =
∑n

i=1 u
2
i .

We consider the standard RL framework Sutton and Barto (1998) in which a learn-
ing agent interacts with a stochastic environment and this interaction is modeled as a
discrete-time discounted Markov decision process (MDP). A discount MDP is a tuple M =

〈X ,A, r, P, γ〉 where the state space X is a bounded closed subset of a Euclidean space, A is
a finite (|A| <∞) action space, the reward function r : X ×A → R is uniformly bounded by
Rmax, the transition kernel P is such that for all x ∈ X and a ∈ A, P (·|x, a) is a distribution
over X , and γ ∈ (0, 1) is a discount factor. A deterministic policy π : X → A is a mapping
from states to actions. Under a policy π, the MDP M is reduced to a Markov chain Mπ =

〈X , Rπ, P π, γ〉 with reward Rπ(x) = r
(
x, π(x)

)
, transition kernel P π(·|x) = P

(
· |x, π(x)

)
,

and stationary distribution ρπ (if it admits one). The value function of a policy π, V π, is the
unique fixed-point of the Bellman operator T π : B(X ;Vmax = Rmax

1−γ ) → B(X ;Vmax) defined
by (T πV )(x) = Rπ(x) + γ

∫
X P

π(dy|x)V (y). We also define the optimal value function V ∗

as the unique fixed-point of the optimal Bellman operator T ∗ : B(X ;Vmax) → B(X ;Vmax)

defined by (T ∗V )(x) = maxa∈A
[
r(x, a) + γ

∫
X P (dy|x, a)V (y)

]
. Finally, we denote by T the

truncation operator at threshold Vmax, i.e., if |f(x)| > Vmax then T (f)(x) = sgn
(
f(x)

)
Vmax.

To approximate a value function V ∈ B(X ;Vmax), we first define a linear function space
F spanned by the basis functions ϕj ∈ B(X ;L), j = 1, . . . , D, i.e., F = {fα | fα(·) =

ϕ(·)⊤α, α ∈ R
D}, where ϕ(·) =

(
ϕ1(·), . . . , ϕD(·)

)⊤
is the feature vector. We define the

orthogonal projection of V onto the space F w.r.t. norm µ as ΠFV = argminf∈F ||V −
f ||µ. From F we can generate a d-dimensional (d < D) random space G = {gβ | gβ(·) =

Ψ(·)⊤β, β ∈ R
d}, where the feature vector Ψ(·) =

(
ψ1(·), . . . , ψd(·)

)⊤
is defined as Ψ(·) =
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Aϕ(·) with A ∈ R
d×D be a random matrix whose elements are drawn i.i.d. from a suitable

distribution, e.g., Gaussian N (0, 1/d). Similar to the space F , we define the orthogonal
projection of V onto the space G w.r.t. norm µ as ΠGV = argming∈G ||V − g||µ. Finally, for
any function fα ∈ F , we define m(fα) = ||α||2 supx∈X ||ϕ(x)||2.

3 LSTD with Random Projections
The objective of LSTD with random projections (LSTD-RP) is to learn the value function of a
given policy from a small (relative to the dimension of the original space) number of samples
in a low-dimensional linear space defined by a random projection of the high-dimensional
space. We show that solving the problem in the low dimensional space instead of the original
high-dimensional space reduces the estimation error at the price of a “controlled" increase
in the approximation error. In this section, we introduce the notations and the resulting
algorithm, and discuss its computational complexity. In Section 4, we provide the finite-
sample analysis of the algorithm.

We use the linear spaces F and G with dimensions D and d (d < D) as defined in
Section 2. Since in the following the policy is fixed, we drop the dependency of Rπ, P π,
V π, and T π on π and simply use R, P , V , and T . Let {Xt}nt=1 be a sample path (or
trajectory) of size n generated by the Markov chain Mπ, and let v ∈ R

n and r ∈ R
n,

defined as vt = V (Xt) and rt = R(Xt), be the value and reward vectors of this trajectory.
Also, let Ψ = [Ψ(X1)

⊤; . . . ;Ψ(Xn)
⊤] be the feature matrix defined at these n states and

Gn = {Ψβ | β ∈ R
d} ⊂ R

n be the corresponding vector space. We denote by Π̂G : Rn → Gn
the orthogonal projection onto Gn, defined by Π̂Gy = argminz∈Gn

||y − z||n, where ||y||2n =
1
n

∑n
t=1 y

2
t . Similarly, we can define the orthogonal projection onto Fn = {Φα | α ∈ R

D} as

Π̂Fy = argminz∈Fn
||y − z||n, where Φ = [ϕ(X1)

⊤; . . . ;ϕ(Xn)
⊤] is the feature matrix defined

at {Xt}nt=1. Note that for any y ∈ R
n, the orthogonal projections Π̂Gy and Π̂Fy exist and are

unique.
We consider the pathwise-LSTD algorithm introduced in Lazaric et al. (2010a). Pathwise-

LSTD takes a single trajectory {Xt}nt=1 of size n generated by the Markov chain as input
and returns the fixed point of the empirical operator Π̂GT̂ , where T̂ is the pathwise Bellman
operator defined as T̂ y = r + γP̂ y. The operator P̂ : Rn → R

n is defined as (P̂ y)t = yt+1

for 1 6 t < n and (P̂ y)n = 0. As shown in Lazaric et al. (2010a), T̂ is a γ-contraction in ℓ2-
norm, thus together with the non-expansive property of Π̂G, it guarantees the existence and
uniqueness of the pathwise-LSTD fixed point v̂ ∈ R

n, v̂ = Π̂GT̂ v̂. Note that the uniqueness
of v̂ does not imply the uniqueness of the parameter β̂ such that v̂ = Ψβ̂.

Figure 10.1 contains the pseudo-code and the computational cost of the LSTD-RP algo-
rithm. The total computational cost of LSTD-RP is O(d3 + ndD), while the computational
cost of LSTD in the high-dimensional space F is O(D3 + nD2). As we will see, the analysis
of Section 4 suggests that the value of d should be set to O(

√
n). In this case the numerical

complexity of LSTD-RP is O(n3/2D), which is better than O(D3), the cost of LSTD in F
when n < D (the case considered in this paper). Note that the cost of making a prediction
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LSTD-RP
(
D, d, {Xt}nt=1, {R(Xt)}nt=1, ϕ, γ

)
Cost

Compute

• the reward vector rn×1 ; rt = R(Xt) O(n)

• the high-dimensional feature matrix

Φn×D = [ϕ(X1)
⊤; . . . ;ϕ(Xn)

⊤] O(nD)

• the projection matrix Ad×D whose

elements are i.i.d. samples from N (0, 1/d) O(dD)

• the low-dim feature matrix

Ψn×d = [Ψ(X1)
⊤; . . . ;Ψ(Xn)

⊤] ; Ψ(·) = Aϕ(·) O(ndD)

• the matrix P̂Ψ = Ψ′
n×d = [Ψ(X2)

⊤; . . . ;Ψ(Xn)
⊤;0⊤] O(nd)

• Ãd×d = Ψ⊤(Ψ− γΨ′), b̃d×1 = Ψ⊤r O(nd+ nd2) +O(nd)

return either β̂ = Ã−1b̃ or β̂ = Ã+b̃

(Ã+ is the Moore-Penrose pseudo-inverse of Ã) O(d2 + d3)

Figure 10.1: The pseudo-code of the LSTD with random projections (LSTD-RP) algorithm.

is D in LSTD in F and dD in LSTD-RP.

4 Finite-Sample Analysis of LSTD with Random Projec-
tions

In this section, we report the main theoretical results of the paper. In particular, we derive
a performance bound for LSTD-RP in the Markov design setting, i.e., when the LSTD-RP
solution is compared to the true value function only at the states belonging to the trajectory
used by the algorithm (see Section 4 in Lazaric et al. (2010a) for a more detailed discussion).
We then derive a condition on the number of samples to guarantee the uniqueness of the
LSTD-RP solution. Finally, from the Markov design bound we obtain generalization bounds
when the Markov chain has a stationary distribution.

4.1 Markov Design Bound

Theorem 10.1 (Performance bound of LSTD-RP with Markov design) Let F and

G be linear spaces with dimensions D and d (d < D) as defined in Section 2. Let {Xt}nt=1

be a sample path generated by the Markov chain Mπ, and v, v̂ ∈ R
n be the vectors whose

components are the value function and the LSTD-RP solution at {Xt}nt=1. Then for any

δ > 0, whenever d > 15 log(8n/δ), with probability 1 − δ (the randomness is w.r.t. both the
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random sample path and the random projection), v̂ satisfies

||v−v̂||n 6
1√

1− γ2

[
||v − Π̂Fv||n +

√
8 log(8n/δ)

d
m(Π̂Fv)

]
+
γVmaxL

1− γ

√
d

νn

(√
8 log(4d/δ)

n
+

1

n

)
,

(10.1)

where the random variable νn is the smallest strictly positive eigenvalue of the sample-

based Gram matrix 1
n
Ψ⊤Ψ. Note that m(Π̂Fv) = m(fα) with fα be any function in F such

that fα(Xt) = (Π̂Fv)t for 1 6 t 6 n.

Before stating the proof of Theorem 10.1, we need to prove the following lemma.

Lemma 10.1 Let F and G be linear spaces with dimensions D and d (d < D) as defined

in Section 2. Let {Xi}ni=1 be n states and fα ∈ F . Then for any δ > 0, whenever d >

15 log(4n/δ), with probability 1−δ (the randomness is w.r.t. the random projection), we have

inf
g∈G

||fα − g||2n 6
8 log(4n/δ)

d
m(fα)

2. (10.2)

Proof: The proof relies on the application of a variant of Johnson-Lindenstrauss (JL) lemma
which states that the inner-products are approximately preserved by the application of the
random matrix A (see e.g., Proposition 1 in Maillard and Munos (2009)). For any δ > 0,
we set ε2 = 8

d
log(4n/δ). Thus for d > 15 log(4n/δ), we have ε 6 3/4 and as a result

ε2/4 − ε3/6 > ε2/8 and d >
log(4n/δ)
ε2/4−ε3/6 . Thus, from Proposition 1 in Maillard and Munos

(2009), for all 1 6 i 6 n, we have |ϕ(Xi) · α − Aϕ(Xi) · Aα| 6 ε||α||2||ϕ(Xi)||2 6 εm(fα)

with high probability. From this result, we deduce that with probability 1− δ

inf
g∈G

||fα − g||2n 6 ||fα − gAα||2n =
1

n

n∑

i=1

|ϕ(Xi) · α−Aϕ(Xi) ·Aα|2 6
8 log(4n/δ)

d
m(fα)

2.

�Proof: [Proof of Theorem 10.1] For any fixed space G, the performance of the LSTD-RP
solution can be bounded according to Theorem 1 in Lazaric et al. (2010b) as

||v − v̂||n 6
1√

1− γ2
||v − Π̂Gv||n +

γVmaxL

1− γ

√
d

νn

(√8 log(2d/δ′)
n

+
1

n

)
, (10.3)

with probability 1− δ′ (w.r.t. the random sample path). From the triangle inequality, we
have

||v − Π̂Gv||n 6 ||v − Π̂Fv||n + ||Π̂Fv − Π̂Gv||n = ||v − Π̂Fv||n + ||Π̂Fv − Π̂G(Π̂Fv)||n. (10.4)

The equality in Eq. 10.4 comes from the fact that for any vector g ∈ G, we can write
||v − g||2n = ||v − Π̂Fv||2n + ||Π̂Fv − g||2n. Since ||v − Π̂Fv||n is independent of g, we have
arg infg∈G ||v − g||2n = arg infg∈G ||Π̂Fv − g||2n, and thus, Π̂Gv = Π̂G(Π̂Fv). From Lemma 10.1,
if d > 15 log(4n/δ′′), with probability 1− δ′′ (w.r.t. the choice of A), we have

||Π̂Fv − Π̂G(Π̂Fv)||n 6

√
8 log(4n/δ′′)

d
m(Π̂Fv). (10.5)
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We conclude from a union bound argument that Eqs. 10.3 and 10.5 hold simultaneously
with probability at least 1 − δ′ − δ′′. The claim follows by combining Eqs. 10.3–10.5, and
setting δ′ = δ′′ = δ/2. �

Remark 1. Using Theorem 10.1, we can compare the performance of LSTD-RP with
the performance of LSTD directly applied in the high-dimensional space F . Let v̄ be the
LSTD solution in F , then up to constants, logarithmic, and dominated factors, with high
probability, v̄ satisfies

||v − v̄||n 6
1√

1− γ2
||v − Π̂Fv||n +

1

1− γ
O(
√

D/n). (10.6)

By comparing Eqs. 10.1 and 10.6, we notice that 1) the estimation error of v̂ is of order
O(
√
d/n), and thus, is smaller than the estimation error of v̄, which is of order O(

√
D/n),

and 2) the approximation error of v̂ is the approximation error of v̄, ||v − Π̂Fv||n, plus an
additional term that depends on m(Π̂Fv) and decreases with d, the dimensionality of G, with
the rate O(

√
1/d). Hence, LSTD-RP may have a better performance than solving LSTD in F

whenever this additional term is smaller than the gain achieved in the estimation error. Note
that m(Π̂Fv) highly depends on the value function V that is being approximated and the
features of the space F . It is important to carefully tune the value of d as both the estimation
error and the additional approximation error in Eq. 10.1 depend on d. For instance, while
a small value of d significantly reduces the estimation error (and the need for samples), it
may amplify the additional approximation error term, and thus, reduce the advantage of
LSTD-RP over LSTD. We may get an idea on how to select the value of d by optimizing the
bound

d =
m(Π̂Fv)
γVmaxL

√
nνn(1− γ)

1 + γ
. (10.7)

Therefore, when n samples are available the optimal value for d is of the order O(
√
n).

Using the value of d in Eq. 10.7, we can rewrite the bound of Eq. 10.1 as (up to the dominated
term 1/n)

||v − v̂||n 6
1√

1− γ2
||v − Π̂Fv||n +

1

1− γ

√
8 log(8n/δ)

√
γVmaxL m(Π̂Fv)

( 1− γ

nνn(1 + γ)

)1/4
. (10.8)

Using Eqs. 10.6 and 10.8, it would be easier to compare the performance of LSTD-RP
and LSTD in space F , and observe the role of the term m(Π̂Fv). For further discussion on
m(Π̂Fv) refer to Maillard and Munos (2009) and for the case of D = ∞ to Section 4.3 of this
paper.

Remark 2. As discussed in the introduction, when the dimensionality D of F is much
bigger than the number of samples n, the learning algorithms are likely to overfit the data.
In this case, it is reasonable to assume that the target vector v itself belongs to the vector
space Fn. We state this condition using the following assumption:

Assumption (Overfitting). For any set of n points {Xi}ni=1, there exists a function
f ∈ F such that f(Xi) = V (Xi), 1 6 i 6 n .
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Assumption 4.1 is equivalent to require that the rank of the empirical Gram matrices
1
n
Φ⊤Φ to be bigger than n. Note that Assumption 4.1 is likely to hold whenever D ≫ n,

because in this case we can expect that the features to be independent enough on {Xi}ni=1

so that the rank of 1
n
Φ⊤Φ to be bigger than n (e.g., if the features are linearly independent

on the samples, it is sufficient to have D > n). Under Assumption 4.1 we can remove the
empirical approximation error term in Theorem 10.1 and deduce the following result.

Corollary 10.1 Under Assumption 4.1 and the conditions of Theorem 10.1, with probability

1− δ (w.r.t. the random sample path and the random space), v̂ satisfies

||v − v̂||n 6
1√

1− γ2

√
8 log(8n/δ)

d
m(Π̂Fv) +

γVmaxL

1− γ

√
d

νn

(√8 log(4d/δ)

n
+

1

n

)
.

4.2 Uniqueness of the LSTD-RP Solution
While the results in the previous section hold for any Markov chain, in this section we assume
that the Markov chain Mπ admits a stationary distribution ρ and is exponentially fast β-
mixing with parameters β̄, b, κ, i.e., its β-mixing coefficients satisfy βi 6 β̄ exp(−biκ) (see
e.g., Sections 8.2 and 8.3 in Lazaric et al. (2010b) for a more detailed definition of β-mixing
processes). As shown in Lazaric et al. (2010a,b), if ρ exists, it would be possible to derive a
condition for the existence and uniqueness of the LSTD solution depending on the number of
samples and the smallest eigenvalue of the Gram matrix defined according to the stationary
distribution ρ, i.e., G ∈ R

D×D , Gij =
∫
ϕi(x)ϕj(x)ρ(dx). We now discuss the existence and

uniqueness of the LSTD-RP solution. Note that as D increases, the smallest eigenvalue of G
is likely to become smaller and smaller. In fact, the more the features in F , the higher the
chance for some of them to be correlated under ρ, thus leading to an ill-conditioned matrix G.
On the other hand, since d < D, the probability that d independent random combinations of
ϕi lead to highly correlated features ψj is relatively small. In the following we prove that the
smallest eigenvalue of the Gram matrix H ∈ R

d×d , Hij =
∫
ψi(x)ψj(x)ρ(dx) in the random

space G is indeed bigger than the smallest eigenvalue of G with high probability.

Lemma 10.2 Let δ > 0 and F and G be linear spaces with dimensions D and d (d < D)

as defined in Section 2 with D > d + 2
√
2d log(2/δ) + 2 log(2/δ). Let the elements of the

projection matrix A be Gaussian random variables drawn from N (0, 1/d). Let the Markov

chain Mπ admit a stationary distribution ρ. Let G and H be the Gram matrices according to

ρ for the spaces F and G, and ω and χ be their smallest eigenvalues. We have with probability

1− δ (w.r.t. the random space)

χ >
D

d
ω

(
1−

√
d

D
−
√

2 log(2/δ)

D

)2

. (10.9)

Proof: Let β ∈ R
d be the eigenvector associated to the smallest eigenvalue χ of H, from the

definition of the features Ψ of G (H = AGA⊤) and linear algebra, we obtain
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χ||β||22 = β⊤χβ = β⊤Hβ = β⊤AGA⊤β > ω||A⊤β||22 = ω β⊤AA⊤β > ω ξ ||β||22 , (10.10)

where ξ is the smallest eigenvalue of the random matrix AA⊤, or in other words,
√
ξ is

the smallest singular value of the D × d random matrix A⊤, i.e., smin(A
⊤) =

√
ξ. We now

define B =
√
dA. Note that if the elements of A are drawn from the Gaussian distribution

N (0, 1/d), the elements of B are standard Gaussian random variables, and thus, the smallest
eigenvalue of AA⊤, ξ, can be written as ξ = s2min(B

⊤)/d. There has been extensive work on
extreme singular values of random matrices (see e.g., Rudelson and Vershynin (2010)). For
a D × d random matrix with independent standard normal random variables, such as B⊤,
we have with probability 1− δ (see Rudelson and Vershynin (2010) for more details)

smin(B
⊤) >

(√
D −

√
d−

√
2 log(2/δ)

)
. (10.11)

From Eq. 10.11 and the relation between ξ and smin(B
⊤), we obtain

ξ >
D

d

(
1−

√
d

D
−
√

2 log(2/δ)

D

)2

, (10.12)

with probability 1− δ. The claim follows by replacing the bound for ξ from Eq. 10.12 in
Eq. 10.10. �

The result of Lemma 10.2 is for Gaussian random matrices. However, it would be possible
to extend this result using non-asymptotic bounds for the extreme singular values of more
general random matrices Rudelson and Vershynin (2010). Note that in Eq. 10.9, D/d is
always greater than 1 and the term in the parenthesis approaches 1 for large values of D.
Thus, we can conclude that with high probability the smallest eigenvalue χ of the Gram
matrix H of the randomly generated low-dimensional space G is bigger than the smallest
eigenvalue ω of the Gram matrix G of the high-dimensional space F .

Lemma 10.3 Let δ > 0 and F and G be linear spaces with dimensions D and d (d < D)

as defined in Section 2 with D > d + 2
√
2d log(2/δ) + 2 log(2/δ). Let the elements of the

projection matrix A be Gaussian random variables drawn from N (0, 1/d). Let the Markov

chain Mπ admit a stationary distribution ρ. Let G be the Gram matrix according to ρ for

space F and ω be its smallest eigenvalue. Let {Xt}nt=1 be a trajectory of length n generated

by a stationary β-mixing process with stationary distribution ρ. If the number of samples n

satisfies

n >
288L2 d Λ(n, d, δ/2)

ωD
max

{
Λ(n, d, δ/2)

b
, 1

}1/κ
(
1−

√
d

D
−
√

2 log(2/δ)

D

)−2

, (10.13)

where Λ(n, d, δ) = 2(d+1) log n+log e
δ
+log+

(
max{18(6e)2(d+1), β̄}

)
, then with probability

1− δ, the features ψ1, . . . , ψd are linearly independent on the states {Xt}nt=1, i.e., ||gβ||n = 0

implies β = 0, and the smallest eigenvalue νn of the sample-based Gram matrix 1
n
Ψ⊤Ψ

satisifies
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√
νn >

√
ν =

√
ω

2

√
D

d


1−

√
d

D
−

√
2 log(2δ )

D


− 6L

√√√√2Λ(n, d, δ2)

n
max

{
Λ(n, d, δ2)

b
, 1

}1/κ

> 0 .

(10.14)

Proof: The proof follows similar steps as in Lemma 4 in Lazaric et al. (2010b). A sketch of
the proof is available in Ghavamzadeh et al. (2010b). �

By comparing Eq. 10.13 with Eq. 13 in Lazaric et al. (2010b), we can see that the number
of samples needed for the empirical Gram matrix 1

n
Ψ⊤Ψ in G to be invertible with high

probability is less than that for its counterpart 1
n
Φ⊤Φ in the high-dimensional space F .

4.3 Generalization Bound
In this section, we show how Theorem 10.1 can be generalized to the entire state space X
when the Markov chain Mπ has a stationary distribution ρ. We consider the case in which
the samples {Xt}nt=1 are obtained by following a single trajectory in the stationary regime of
Mπ, i.e., when X1 is drawn from ρ. As discussed in Remark 2 of Section 4.1, it is reasonable
to assume that the high-dimensional space F contains functions that are able to perfectly
fit the value function V in any finite number n (n < D) of states {Xt}nt=1, thus we state the
following theorem under Assumption 4.1.

Theorem 10.2 (Generalization error of LSTD-RP with Markov design) Let δ > 0

and F and G be linear spaces with dimensions D and d (d < D) as defined in Section 2 with

d > 15 log(8n/δ). Let {Xt}nt=1 be a path generated by a stationary β-mixing process with

stationary distribution ρ. Let V̂ be the LSTD-RP solution in the random space G. Then

under Assumption 4.1, with probability 1− δ (w.r.t. the random sample path and the random

space),

||V −T (V̂ )||ρ 6
2√

1− γ2

√
8 log(24n/δ)

d
m(ΠFV )+

2γVmaxL

1− γ

√
d

ν

(√8 log(12d/δ)

n
+
1

n

)
+ε , (10.15)

where ν is a lower bound on the eigenvalues of the Gram matrix 1
n
Ψ⊤Ψ defined by Eq. 10.14

and

ε = 24Vmax

√
2Λ(n, d, δ/3)

n
max

{
Λ(n, d, δ/3)

b
, 1

}1/κ

.

with Λ(n, d, δ) defined as in Lemma 10.3. Note that T in Eq. 10.15 is the truncation

operator defined in Section 2.

Proof: The proof is a consequence of applying concentration of measures inequalities for
β-mixing processes and linear spaces (see Corollary 18 in Lazaric et al. (2010b)) on the term
||V − T (V̂ )||n, using the fact that ||V − T (V̂ )||n 6 ||V − V̂ ||n, and using the bound of Corol-
lary 10.1. The bound of Corollary 10.1 and the lower bound on ν, each one holding with
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probability 1−δ′, thus, the statement of the theorem (Eq. 10.15) holds with probability 1−δ
by setting δ = 3δ′. �

Remark 1. An interesting property of the bound in Theorem 10.2 is that the approx-
imation error of V in space F , ||V − ΠFV ||ρ, does not appear and the error of the LSTD
solution in the randomly projected space only depends on the dimensionality d of G and the
number of samples n. However this property is valid only when Assumption 4.1 holds, i.e.,
at most for n 6 D. An interesting case here is when the dimension of F is infinite (D = ∞),
so that the bound is valid for any number of samples n. In Maillard and Munos (2010a), two
approximation spaces F of infinite dimension were constructed based on a multi-resolution
set of features that are rescaled and translated versions of a given mother function. In the
case that the mother function is a wavelet, the resulting features, called scrambled wavelets,
are linear combinations of wavelets at all scales weighted by Gaussian coefficients. As a re-
sults, the corresponding approximation space is a Sobolev space Hs(X ) with smoothness of
order s > p/2, where p is the dimension of the state space X . In this case, for a function
fα ∈ Hs(X ), it is proved that the ℓ2-norm of the parameter α is equal to the norm of the
function in Hs(X ), i.e., ||α||2 = ||fα||Hs(X ). We do not describe those results further and
refer the interested readers to Maillard and Munos (2010a). What is important about the
results of Maillard and Munos (2010a) is that it shows that it is possible to consider infinite
dimensional function spaces for which supx ||ϕ(x)||2 is finite and ||α||2 is expressed in terms
of the norm of fα in F . In such cases, m(ΠFV ) is finite and the bound of Theorem 10.2,
which does not contain any approximation error of V in F , holds for any n. Nonetheless,
further investigation is needed to better understand the role of ||fα||Hs(X ) in the final bound.

Remark 2. As discussed in the introduction, regularization methods have been studied
in solving high-dimensional RL problems. Therefore, it is interesting to compare our results
for LSTD-RP with those reported in Farahmand et al. (2008) for ℓ2-regularized LSTD. Under
Assumption 4.1, when D = ∞, by selecting the features as described in the previous remark
and optimizing the value of d as in Eq. 10.7, we obtain

||V − T (V̂ )||ρ 6 O
(√

||fα||Hs(X ) n
−1/4

)
. (10.16)

Although the setting considered in Farahmand et al. (2008) is different than ours (e.g.,
the samples are i.i.d.), a qualitative comparison of Eq. 10.16 with the bound in Theorem
2 of Farahmand et al. (2008) shows a striking similarity in the performance of the two
algorithms. In fact, they both contain the Sobolev norm of the target function and have a
similar dependency on the number of samples with a convergence rate of O(n−1/4) (when
the smoothness of the Sobolev space in Farahmand et al. (2008) is chosen to be half of
the dimensionality of X ). This similarity asks for further investigation on the difference
between ℓ2-regularized methods and random projections in terms of prediction performance
and computational complexity.
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5 LSPI with Random Projections
In this section, we move from policy evaluation to policy iteration and provide a performance
bound for LSPI with random projections (LSPI-RP), i.e., a policy iteration algorithm that
uses LSTD-RP at each iteration. LSPI-RP starts with an arbitrary initial value function
V−1 ∈ B(X ;Vmax) and its corresponding greedy policy π0. At the first iteration, it approxi-
mates V π0 using LSTD-RP and returns a function V̂0, whose truncated version Ṽ0 = T (V̂0)

is used to build the policy for the second iteration. More precisely, π1 is a greedy policy
w.r.t. Ṽ0. So, at each iteration k, a function V̂k−1 is computed as an approximation to V πk−1 ,
and then truncated, Ṽk−1, and used to build the policy πk.1 Note that in general, the mea-
sure σ ∈ S(X ) used to evaluate the final performance of the LSPI-RP algorithm might be
different from the distribution used to generate samples at each iteration. Moreover, the
LSTD-RP performance bounds require the samples to be collected by following the policy
under evaluation. Thus, we need Assumptions 1-3 in Lazaric et al. (2010b) in order to 1)
define a lower-bounding distribution µ with constant C < ∞, 2) guarantee that with high
probability a unique LSTD-RP solution exists at each iteration, and 3) define the slowest
β-mixing process among all the mixing processes Mπk with 0 6 k < K.

Theorem 10.3 (Performance bound of LSPI-RP) Let δ > 0 and F and G be linear

spaces with dimensions D and d (d < D) as defined in Section 2 with d > 15 log(8Kn/δ).

At each iteration k, we generate a path of size n from the stationary β-mixing process with

stationary distribution ρk−1 = ρπk−1. Let n satisfy the condition in Eq. 10.13 for the slower β-

mixing process. Let V−1 be an arbitrary initial value function, V̂0, . . . , V̂K−1 (Ṽ0, . . . , ṼK−1) be

the sequence of value functions (truncated value functions) generated by LSPI-RP, and πK be

the greedy policy w.r.t. ṼK−1. Then, under Assumption 4.1 and Assumptions 1-3 in Lazaric

et al. (2010b), with probability 1− δ (w.r.t. the random samples and the random spaces), we

have

||V ∗ − V πK ||σ 6
4γ

(1− γ)2

{
(1 + γ)

√
CCσ,µ

[
2Vmax√
1− γ2

√
C

ωµ

√
8 log(24Kn/δ)

d
sup
x∈X

||ϕ(x)||2 (10.17)

+
2γVmaxL

1− γ

√
d

νµ

(√8 log(12Kd/δ)

n
+

1

n

)
+ E

]
+ γ

K−1
2 Rmax

}
,

where Cσ,µ is the concentrability term from Definition 2 in Antos et al. (2008), ωµ is the

smallest eigenvalue of the Gram matrix of space F w.r.t. µ, νµ is ν from Eq. 10.14 in which

ω is replaced by ωµ, and E is ε from Theorem 10.2 written for the slowest β-mixing process.

Proof: The proof follows similar lines as in the proof of Thm. 8 in Lazaric et al. (2010b)
and is available in Ghavamzadeh et al. (2010b). �

1Note that the MDP model is needed to generate
a greedy policy πk. In order to avoid the need for the
model, we can simply move to LSTD-Q with random
projections. Although the analysis of LSTD-RP can

be extended to action-value functions and LSTD-RP-
Q, for simplicity we use value functions in the follow-
ing.
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Remark. The most critical issue about Theorem 10.3 is the validity of Assumptions 1-3
in Lazaric et al. (2010b). It is important to note that Assumption 1 is needed to bound
the performance of LSPI independent from the use of random projections (see Lazaric et al.
(2010b)). On the other hand, Assumption 2 is explicitly related to random projections and
allows us to bound the term m(ΠFV ). In order for this assumption to hold, the features
{ϕj}Dj=1 of the high-dimensional space F should be carefully chosen so as to be linearly
independent w.r.t. µ.

6 Conclusion
Learning in high-dimensional linear spaces is particularly appealing in RL because it allows
to have a very accurate approximation of value functions. Nonetheless, the larger the space,
the higher the need of samples and the risk of overfitting. In this paper, we introduced
an algorithm, called LSTD-RP, in which LSTD is run in a low-dimensional space obtained
by a random projection of the original high-dimensional space. We theoretically analyzed
the performance of LSTD-RP and showed that it solves the problem of overfitting (i.e.,
the estimation error depends on the value of the low dimension) at the cost of a slight
worsening in the approximation accuracy compared to the high-dimensional space. We also
analyzed the performance of LSPI-RP, a policy iteration algorithm that uses LSTD-RP for
policy evaluation. The analysis reported in the paper opens a number of interesting research
directions such as: 1) comparison of LSTD-RP to ℓ2 and ℓ1 regularized approaches, and 2)
a thorough analysis of the case when D = ∞ and the role of ||fα||Hs(X ) in the bound.

7 Technical details

7.1 Uniqueness of the LSTD-RP Solution (Proof of Lemma 3)

Proof: [Proof of Lemma 3 - Sketch] Following similar steps as in Lemma 4 in Lazaric et al.
(2010b) and using Lemma 2, for any β ∈ R

d with probability 1− δ′ − δ′′ we obtain

2||gβ||n + ε >
√
χ||β||2 > ||β||2

√
D ω

d

(
1−

√
d

D
−
√

2 log(2/δ′)

D

)
, (10.18)

where

ε = 12L||β||2

√
2Λ(n, d, δ′′)

n
max

{
Λ(n, d, δ′′)

b
, 1

}1/κ

. (10.19)

Let β be such that ||gβ||n = 0, then if the number of samples n satisfies the condition in
Lemma 3, we may deduce from Eq. 10.18 and 10.19 that β = 0. This indicates that given the
number of samples from Lemma 3, with probability 1−δ′′, the features Ψ1, . . . , Ψd are linearly
independent on the states {Xt}nt=1, and thus, νn > 0. The second statement of the lemma
is obtained by choosing β to be the eigenvector of the Gram matrix 1

n
Ψ⊤Ψ corresponding
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to the smallest eigenvalue νn. For this value of β, we have ||gβ||n =
√
νn||β||. Finally, both

statements of the lemma are obtained by setting δ′ = δ′′ = δ/2. �

7.2 LSPI with Random Projections (Proof of Theorem 3)

We report Assumptions 1-3 in Lazaric et al. (2010b).
Assumption (Lower-bounding distribution)There exist a distribution µ ∈ S(X ) such

that for any policy π that is greedy w.r.t. a function in the truncated space F̃ , µ 6 Cρπ, where
C < ∞ is a constant and ρπ is the stationary distribution of policy π. Furthermore, given
the target distribution σ ∈ S(X ), we assume Cσ,µ < ∞, where Cσ,µ is the concentrability
term from Definition 2 in Antos et al. (2008).

Assumption (Linear independent features) Let µ ∈ S(X ) be the lower-bounding distri-
bution from Assumption 7.2. We assume that the features ϕ(·) of the function space F are
linearly independent w.r.t. µ. In this case, the smallest eigenvalue ωµ of the Gram matrix
Gµ ∈ R

D×D w.r.t. µ is strictly positive.
Assumption (Slower β-mixing process) We assume that there exists a stationary β-

mixing process with parameters β̄, b, κ, such that for any policy π that is greedy w.r.t. a
function in the truncated space F̃ , it is slower than the stationary β-mixing process with
stationary distribution ρπ (with parameters β̄π, bπ, κπ). This means that β̄ is larger and b

and κ are smaller than their counterparts β̄π, bπ, and κπ.
Proof: We first notice that the equality

(I − γP πk)(Ṽk − V πk) = Ṽk − T πk Ṽk

holds component-wise for any x ∈ X . Let εk = (Ṽk−V πk) and ρk be the stationary distribu-
tion of πk. We have

||Ṽk − T πk Ṽk||ρk = ||(I − γP πk)εk||ρk 6 (1 + γ||P πk ||ρk)||εk||ρk = (1 + γ)||εk||ρk ,

where we used the fact that P πk is the transition kernel for policy πk and ρk is its stationary
distribution. From a direct application of Lemma 13 in Munos and Szepesvári (2008) and
the previous inequality, after K iterations we obtain

||V ∗ − V πK ||σ 6
4γ

(1− γ)2

[
(1 + γ) max

06k<K
C1/2
σ,ρk

||εk||ρk + γ
K−1

2 Rmax

]
,

where ||εk||ρk is bounded as in Theorem 2 in the paper. The main issue in the previous bound
is the maximization over the iterations. We first focus on the maximum of the error ||εk||ρk .
The only term in the statement of Theorem 2 explicitly depending on the specific iteration
is the magnitude (notice that the target function at iteration k is V πk)

max
06k<K

m
(
Πk

F(V
πk)
)
= max

06k<K
||αk||2 sup

x∈X
||ϕ(x)||2 , (10.20)
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where Πk
F is the projection operator onto space F w.r.t. ρk and fαk

= Πk
F(V

πk). Since αk is
a random variable we cannot bound its ℓ2-norm directly. Under Assumptions 2 and 3 it is
possible to show that for any fα ∈ F

C||fα||2ρk > ||fα||2µ = ||ϕ(·)α||2µ = α⊤Gµα > ωµ||α||22 ,

where Gµ is the Gram matrix computed w.r.t. distribution µ and ωµ is its smallest eigenvalue.
Here we used the fact that under Assumption 3, Gµ is full rank. As a result, for any iteration
k we have

||αk||22 6
1

ωµ
||fαk

||2µ 6
C

ωµ
||fαk

||2ρk 6
C

ωµ
||fαk

||2∞ .

The function fαk
is the result of a projection w.r.t. norm ρk of V πk , which is bounded by

Vmax. Since Πk
F is a non-expansion in ρk norm, ||fαk

||∞ is upper bounded by Vmax. Thus, the
term in Eq. 10.20 can be bounded by 2

max
06k<K

m(Πk
F(V

πk)) 6

√
C

ωµ
Vmax sup

x∈X
||ϕ(x)||2 .

Now we bound the concentrability term Cσ,ρk . From the definition of the concentrability
term and Assumption 2, we obtain

cσ,ρk(m) = sup
π1,...,πs

∣∣∣∣∣

∣∣∣∣∣
d(µP π1P π1 . . . P πs)

dρk

∣∣∣∣∣

∣∣∣∣∣ 6 C sup
π1,...,πs

∣∣∣∣∣

∣∣∣∣∣
d(µP π1P π1 . . . P πs)

dµ

∣∣∣∣∣

∣∣∣∣∣ = C · cσ,µ(m).

Thus, Cσ,ρk 6 C · Cσ,µ. Putting everything together and reordering we obtain the final
statement. Finally, we discuss about the eigenvalues of the sequence of Gram matrices Gρk

obtained through iterations. By Assumption 2 and the definition of Gµ we have

(Gµ)ij =

∫

X
ϕi(x)ϕj(x)µ(dx) 6 C

∫

X
ϕi(x)ϕj(x)ρk(dx) = C(Gρk)ij .

Let ωµ be the smallest eigenvalue of Gµ, ωk be the smallest eigenvalue of Gρk , and α be the
eigenvector corresponding to ωk. We have

ωµ||α||22 6 α⊤Gµα 6 Cα⊤Gρkα = Cωkα
⊤α = Cωk||α||22 ,

thus, obtaining ωµ 6 Cωk . �

2Note that the remaining term supx∈X ||ϕ(x)||2
does not depend on k and its specific value depends
on the feature space ϕ(·) of F .





Chapter 11

Selecting the State-Representation in

Reinforcement Learning.

In this chapter, we consider the problem of selecting the right state-representation in a
reinforcement learning problem. Several models (functions mapping past observations to a
finite set) of the observations are given, and it is known that for at least one of these models
the resulting state dynamics are indeed Markovian. Without knowing neither which of the
models is the correct one, nor what are the probabilistic characteristics of the resulting MDP,
it is required to obtain as much reward as the optimal policy for the correct model (or for
the best of the correct models, if there are several). We propose an algorithm that achieves
that, with a regret of order T 2/3 where T is the horizon time.

The work presented in this chapter is a joint work with Daniil Ryabko and has been
accepted to the 25th conference on advances in Neural Information Processing Systems
(NIPS 2011).
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1 Introduction

We consider the problem of selecting the right state-representation in an average-reward
reinforcement learning problem. Each state-representation is defined by a model ϕj (to which
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corresponds a state space Sϕj
) and we assume that the number J of available models is finite

and that (at least) one model is a weakly-communicating Markov decision process (MDP).
We do not make any assumption at all about the other models. This problem is considered
in the general reinforcement learning setting, where an agent interacts with an unknown
environment in a single stream of repeated observations, actions and rewards. There are no
“resets,” thus all the learning has to be done online. Our goal is to construct an algorithm that
performs almost as well as the algorithm that knows both which model is a MDP (knows the
“true” model) and the characteristics of this MDP (the transition probabilities and rewards).

Consider some examples that help motivate the problem. The first example is high-level
feature selection. Suppose that the space of histories is huge, such as the space of video
streams or that of game plays. In addition to these data, we also have some high-level
features extracted from it, such as “there is a person present in the video” or “the adversary
(in a game) is aggressive.” We know that most of the features are redundant, but we also
know that some combination of some of the features describes the problem well and exhibits
Markovian dynamics. Given a potentially large number of feature combinations of this kind,
we want to find a policy whose average reward is as good as that of the best policy for
the right combination of features. Another example is bounding the order of an MDP. The
process is known to be k-order Markov, where k is unknown but un upper bound K >> k is
given. The goal is to perform as well as if we knew k. Yet another example is selecting the
right discretization. The environment is an MDP with a continuous state space. We have
several candidate quantizations of the state space, one of which gives an MDP. Again, we
would like to find a policy that is as good as the optimal policy for the right discretization.
This example also opens the way for extensions of the proposed approach: we would like
to be able to treat an infinite set of possible discretization, none of which may be perfectly
Markovian. The present work can be considered the first step in this direction.

It is important to note that we do not make any assumptions on the “wrong” models
(those that do not have Markovian dynamics). Therefore, we are not able to test which
model is Markovian in the classical statistical sense, since in order to do that we would need
a viable alternative hypothesis (such as, the model is not Markov but is K-order Markov).
In fact, the constructed algorithm never “knows” which model is the right one; it is “only”
able to get the same average level of reward as if it knew.

Previous work. This work builds on previous work on learning average-reward MDPs.
Namely, we use in our algorithm as a subroutine the algorithm UCRL2 of Jaksch et al. (2010)
that is designed to provide finite time bounds for undiscounted MDPs. Such a problem has
been pioneered in the reinforcement learning literature by Kearns and Singh (2002) and then
improved in various ways by Brafman and Tennenholtz (2003), Strehl et al. (2006), Tewari
and Bartlett (2007), Jaksch et al. (2010), Bartlett and Tewari (2009); UCRL2 achieves a
regret of the order DT 1/2 in any weakly-communicating MDP with diameter D, with respect
to the best policy for this MDP. The diameter D of a MDP is defined in Jaksch et al. (2010)
as the expected minimum time required to reach any state starting from any other state. A
related result is reported in Bartlett and Tewari (2009), which improves on constants related
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to the characteristics of the MDP.
A similar approach has been considered in Ryabko and Hutter (2008); the difference is

that in that work the probabilistic characteristics of each model are completely known, but
the models are not assumed to be Markovian, and belong to a countably infinite (rather than
finite) set.

The problem we address can be also viewed as a generalization of the bandit problem
(see e.g. Robbins (1952), Lai and Robbins (1985), Auer et al. (2002)): there are finitely
many “arms”, corresponding to the policies used in each model, and one of the arms is the
best, in the sense that the corresponding model is the “true” one. In the usual bandit setting,
the rewards are assumed to be i.i.d. thus one can estimate the mean value of the arms while
switching arbitrarily from one arm to the next (the quality of the estimate only depends on
the number of pulls of each arm). However, in our setting, estimating the average-reward of
a policy requires playing it many times consecutively. This can be seen as a bandit problem
with dependent arms, with complex costs of switching between arms.

Contribution. We show that despite the fact that the true Markov model of states is
unknown and that nothing is assumed on the wrong representations, it is still possible to
derive a finite-time analysis of the regret for this problem. This is stated in Theorem 11.1;
the bound on the regret that we obtain is of order T 2/3.

The intuition is that if the “true” model ϕ∗ is known, but its probabilistic properties
are not, then we still know that there exists an optimal control policy that depends on the
observed state sj∗,t only. Therefore, the optimal rate of rewards can be obtained by a clever
exploration/exploitation strategy, such as UCRL2 algorithm Jaksch et al. (2010). Since we
do not know in advance which model is a MDP, we need to explore them all, for a sufficiently
long time in order to estimate the rate of rewards that one can get using a good policy in
that model.

Outline. In Section 2 we introduce the precise notion of model and set up the notations.
Then we present the proposed algorithm in Section 3; it uses UCRL2 of Jaksch et al. (2010)
as a subroutine and selects the models ϕ according to a penalized empirical criterion. In
Section 4 we discuss some directions for further development. Finally, Section 5 is devoted
to the proof of Theorem 11.1.

2 Notation and definitions
We consider a space of observations O, a space of actions A, and a space of rewards R (all

assumed to be Polish). Moreover, we assume that A is of finite cardinality A
def
= |A| and

that 0 ∈ R ⊂ [0, 1]. The set of histories up to time t for all t ∈ N ∪ {0} will be denoted by

H<t
def
= O × (A×R×O)t−1, and we define the set of all possible histories by H def

=
∞⋃

t=1

H<t.

Environments. For a Polish X , we Denote by P(X ) the set of probability distributions
over X . Define an environment to be a mapping from the set of histories H to the set of
functions that map any action a ∈ A to a probability distribution νa ∈ P(R×O) over the
product space of rewards and observations.
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We consider the problem of reinforcement learning when the learner interacts with some
unknown environment e⋆. The interaction is sequential and goes as follows: first some h<1 =

{o0} is generated according to ι, then at time step t > 0, the learner choses an action at ∈ A
according to the current history h<t ∈ H<t. Then a couple of reward and observations (rt, ot)
is drawn according to the distribution (e⋆(h<t))at ∈ P(R×O). Finally, h<t+1 is defined by
the concatenation of h<t with (at, rt, ot). With these notations, at each time step t > 0, ot−1

is the last observation given to the learner before choosing an action, at is the action output
at this step, and rt is the immediate reward received after playing at.

State representation functions (models). Let S ⊂ N be some finite set; intuitively,
this has to be considered as a set of states. A state representation function ϕ is a function
from the set of histories H to S. For a state representation function ϕ, we will use the
notation Sϕ for its set of states, and st,ϕ := ϕ(h<t).

In the sequel, when we talk about a Markov decision process, it will be assumed to be
weakly communicating, which means that for each pair of states u1, u2 there exists k ∈ N and
a sequence of actions α1, .., αk ∈ A such that P (sk+1,ϕ = u2|s1,ϕ = u1, a1 = α1...ak = αk) > 0.
Having that in mind, we introduce the following definition.

Definition 11.1 We say that an environment e with a state representation function ϕ is

Markov, or, for short, that ϕ is a Markov model (of e), if the process (st,ϕ, at, rt), t ∈ N is a

(weakly communicating) Markov decision process.

For example, consider a state-representation function ϕ that depends only on the last
observation, and that partitions the observation space into finitely many cells. Then an
environment is Markov with this representation function if the probability distribution on
the next cells only depends on the last observed cell and action. Note that there may be
many state-representation functions with which an environment e is Markov.

3 Main results
Given a set Φ = {ϕj; j 6 J} of J state-representation functions (models), one of which
being a Markov model of the unknown environment e⋆, we want to construct a strategy
that performs nearly as well as the best algorithm that knows which ϕj is Markov, and
knows all the probabilistic characteristics (transition probabilities and rewards) of the MDP
corresponding to this model. For that purpose we define the regret of any strategy at time
T , like in Jaksch et al. (2010), Bartlett and Tewari (2009), as

∆(T )
def
= Tρ⋆ −

T∑

t=1

rt ,

where rt are the rewards received when following the proposed strategy and ρ⋆ is the
average optimal value in the best Markov model, i.e., ρ⋆ = limT

1
T
E(
∑T

t=1 rt(π
⋆)) where

rt(π
⋆) are the rewards received when following the optimal policy for the best Markov model.

Note that this definition makes sense since when the MDP is weakly communicating, the
average optimal value of reward does not depend on the initial state. Also, one could replace
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Tρ∗ with the expected sum of rewards obtained in T steps (following the optimal policy) at
the price of an additional O(

√
T ) term.

In the next subsection, we describe an algorithm that achieves a sub-linear regret of order
T 2/3.

3.1 Best Lower Bound (BLB) algorithm

In this section, we introduce the Best-Lower-Bound (BLB) algorithm, described in Fig-
ure 11.1.

The algorithm works in stages of doubling length. Each stage consists in 2 phases: an
exploration and an exploitation phase. In the exploration phase, BLB plays the UCRL2
algorithm on each model (ϕj)16j6J successively, as if each model ϕj was a Markov model, for
a fixed number τi,1,J of rounds. The exploitation part consists in selecting first the model with
highest lower bound, according to the empirical rewards obtained in the previous exploration
phase. This model is initially selected for the same time as in the exploration phase, and then
a test decides to either continue playing this model (if its performance during exploitation
is still above the corresponding lower bound, i.e. if the rewards obtained are still at least as
good as if it was playing the best model). If it does not pass the test, then another model
(with second best lower-bound) is select and played, and so on. Until the exploitation phase
(of fixed length τi,2) finishes and the next stage starts.

The length of stage i is fixed and defined to be τi
def
= 2i. Thus for a total time horizon T ,

the number of stages I(T ) before time T is I(T )
def
= xlog2(T + 1)y. Each stage i (of length

τi) is further decomposed into an exploration (length τi,1) and an exploitation (length τi,2)
phases.

Exploration phase. All the models {ϕj}j6J are played one after another for the same

amount of time τi,1,J
def
=

τi,1
J

. Each episode 1 6 j 6 J consists in running the UCRL2 algo-
rithm using the model of states and transitions induced by the state-representation function
ϕj. Note that UCRL2 does not require the horizon T in advance, but requires a parameter p
in order to ensure a near optimal regret bound with probability higher than 1− p. We define
this parameter p to be δi(δ) in stage i, where

δi(δ)
def
= (2i − (J−1 + 1)22i/3 + 4)−12−i+1δ . (11.1)

The average empirical reward received during each episode is written µ̂i,1(ϕj).
Exploitation phase. We use the empirical rewards µ̂i,1(ϕj) received in the previous

exploration part of stage i together with a confidence bound in order to select the model to
play. Moreover, a model ϕ is no longer run for a fixed period of time (as in the exploration
part of stage i), but for a period τi,2(ϕ) that depends on some test; we first initialize J :=

{1, . . . , J} and then choose

ĵ
def
= argmax

j∈J
µ̂i,1(ϕj)− 2B(i, ϕj, δ) , (11.2)
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Parameters : f, δ

For each stage i > 1 do

Set the total length of stage i to be τi := 2i.

1. Exploration. Set τi,1 = τ
2/3
i . For each j ∈ {1, . . . , J} do

– Run UCRL2 with parameter δi(δ) defined in (11.1) using ϕj during

τi,1,J steps: the state space is assumed to be Sϕj with transition

structure induced by ϕj .

– Compute the corresponding average empirical reward µ̂i,1(ϕj) re-

ceived during this exploration phase.

2. Exploitation. Set τi,2 = τi − τi,1 and initialize J := {1, . . . , J} .
While the current length of the exploitation part is less than τi,2 do

– Select ĵ = argmax
j∈J

µ̂i,1(ϕj)− 2B(i, ϕj , δ) (using (11.3)).

– Run UCRL2 with parameter δi(δ) using ϕĵ : update at each time step

t the current average empirical reward µ̂i,2,t(ϕĵ) from the beginning

of the run. Provided that the length of the current run is larger than

τi,1,J , do the test

µ̂i,2,t(ϕĵ) > µ̂i,1(ϕĵ)− 2B(i, ϕĵ , δ) .

– If the test fails, then stop UCRL2 and set J := J \ {ĵ}. If J = ∅

then set J := {1, . . . , J}.

Figure 11.1: The Best-Lower-Bound selection strategy.
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where we define

B(i, ϕ, δ)
def
= 34f(τi − 1 + τi,1)|Sϕ|

√
A log(

τi,1,J
δi(δ)

)

τi,1,J
, (11.3)

where δ and the function f are parameters of the BLB algorithm. Then UCRL2 is played
using the selected model ϕĵ for the parameter δi(δ). In parallel we test whether the average
empirical reward we receive during this exploitation phase is high enough; at time t, if the
length of the current episode is larger than τ1,i,J , we test if

µ̂i,2,t(ϕĵ) > µ̂i,1(ϕĵ)− 2B(i, ϕĵ, δ). (11.4)

If the test is positive, we keep playing UCRL2 using the same model. Now, if the test fails,
then the model ĵ is discarded (until the end of stage i) i.e. we update J := J \ {ĵ} and we
select a new one according to (11.2). We repeat those steps until the total time τi,2 of the
exploitation phase of stage i is over.

Remark Note that the model selected for exploitation in (11.2) is the one that has the
best lower bound. This is a pessimistic (or robust) selection strategy. We know that if the
right model is selected, then with high probability, this model will be kept during the whole
exploitation phase. If this is not the right model, then either the policy provides good rewards
and we should keep playing it, or it does not, in which case it will not pass the test (11.4)
and will be removed from the set of models that will be exploited in this phase.

3.2 Regret analysis
Theorem 11.1 (Main result) Assume that a finite set of J state-representation functions
Φ is given, and there exists at least one function ϕ⋆ ∈ Φ such that with ϕ⋆ as a state-
representation function the environment is a Markov decision process. If there are several
such models, let ϕ⋆ be the one with the highest average reward of the optimal policy of the
corresponding MDP. Then the regret (with respect to the optimal policy corresponding to ϕ∗)
of the BLB algorithm run with parameter δ, for any horizon T , with probability higher than
1− δ is bounded as follows

∆(T ) 6 cf(T )S
(
AJ log

(
(Jδ)−1

)
log2(T )

)1/2
T 2/3 + c′DS

(
A log(δ−1) log2(T )T

)1/2
+ c(f,D),

(11.5)

for some numerical constants c, c′ and c(f,D). The parameter f(t) can be chosen to be any

increasing function, for instance the choice f(t) := log2 t+ 1, gives c(f,D) 6 2D.

The proof of this result is reported in Section 5.
Remark. Importantly, the algorithm considered here does not know in advance the

diameter D of the true model, nor the time horizon T . Due to this lack of knowledge, it uses
a guess f(t) (e.g. log(t)) on this diameter, which result in the additional regret term c(f,D)

and the additional factor f(T ); knowing D would enable to remove both of them, but this
is a strong assumption. Choosing f(t) := log2 t + 1 gives a bound which is of order T 2/3

in T but is exponential in D; taking f(t) := tε we get a bound of order T 2/3+ε in T but of
polynomial order 1/ε in D.
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4 Discussion and outlook

Intuition. The main idea why this algorithm works is as follows. The “wrong” models
are used during exploitation stages only as long as they are giving rewards that are higher
than the rewards that could be obtained in the “true” model. All the models are explored
sufficiently long so as to be able to estimate the optimal reward level in the true model, and
to learn its policy. Thus, nothing has to be known about the “wrong” models. This is in
stark contrast to the usual situation in mathematical statistics, where to be able to test a
hypothesis about a model (e.g., that the data is generated by a certain model versus some
alternative models), one has to make assumptions about alternative models. This has to be
done in order to make sure that the Type II error is small (the power of the test is large):
that this error is small has to be proven under the alternative. Here, although we are solving
seemingly the same problem, the role of the Type II error is played by the rewards. As long
as the rewards are high we do not care where the model we are using is correct or not. We
only have to ensure that the true model passes the test.

Assumptions. A crucial assumption made in this work is that the “true” model ϕ∗ be-
longs to a known finite set. While passing from a finite to a countably infinite set appears
rather straightforward, getting rid of the assumption that this set contains the true model
seems more difficult. What one would want to obtain in this setting is sub-linear regret with
respect to the performance of the optimal policy in the best model; this, however, seems
difficult without additional assumptions on the probabilistic characteristics of the models.
Another approach not discussed here would be to try to build a good state representation
function, as what is suggested for instance in Hutter (2009). Yet another interesting general-
ization in this direction would be to consider uncountable (possibly parametric but general)
sets of models. This, however, would necessarily require some heavy assumptions on the set
of models.

Regret. The reader familiar with adversarial bandit literature will notice that our bound
of order T 2/3 is worse than T 1/2 that usually appears in this context (see, for example Auer
et al. (1995)). The reason is that our notion of regret is different: in adversarial bandit
literature, the regret is measured with respect to the best choice of the arm for the given

fixed history. In contrast, we measure the regret with respect to the best policy (for knows
the correct model and its parameters) that, in general, would obtain completely different
(from what our algorithm would get) rewards and observations right from the beginning.

Estimating the diameter? As previously mentioned, a possibly large additive constant
c(f,D) appears in the regret since we do not known a bound on the diameter of the MDP in
the “true” model, and use log T instead. Finding a way to properly address this problem by
estimating online the diameter of the MDP is an interesting open question. Let us provide
some intuition concerning this problem. First, we notice that, as reported in Jaksch et al.
(2010), when we compute an optimistic model based on the empirical rewards and transitions
of the true model, the span of the corresponding optimistic value function sp(V̂ +) is always
smaller than the diameter D. This span increases as we get more rewards and transitions
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samples, which gives a natural empirical lower bound on D. However, it seems quite difficult
to compute a tight empirical upper bound on D (or sp(V̂ +)). In Bartlett and Tewari (2009),
the authors derive a regret bound that scales with the span of the true value function sp(V ⋆),
which is also less than D, and can be significantly smaller in some cases. However, since we
do not have the property that sp(V̂ +) 6 sp(V ⋆), we need to introduce an explicit penalization
in order to control the span of the computed optimistic models, and this requires assuming
we know an upper bound B on sp(V ⋆) in order to guarantee a final regret bound scaling with
B. Unfortunately this does not solve the estimation problem of D, which remains an open
question.

5 Proof of Theorem 11.1
In this section, we now detail the proof of Theorem 11.1. The proof is stated in several parts.
First we remind a general confidence bound for the UCRL2 algorithm in the true model.
Then we decompose the regret into the sum of the regret in each stage i. After analyzing the
contribution to the regret in stage i, we then gather all stages and tune the length of each
stage and episode in order to get the final regret bound.

5.1 Upper and Lower confidence bounds
From the analysis of UCRL2 in Jaksch et al. (2010), we have the property that with proba-
bility higher than 1 − δ′, the regret of UCRL2 when run for τ consecutive many steps from
time t1 in the true model ϕ⋆ is upper bounded by

ρ⋆ − 1

τ

t1+τ−1∑

t=t1

rt 6 34D|Sϕ⋆ |
√
A log( τ

δ′ )

τ
, (11.6)

where D is the diameter of the MDP. What is interesting is that this diameter does not
need to be known by the algorithm. Also by carefully looking at the proof of UCRL, it can
be shown that the following bound is also valid with probability higher than 1− δ′:

1

τ

t1+τ−1∑

t=t1

rt − ρ⋆ 6 34D|Sϕ⋆ |
√
A log( τ

δ′ )

τ
.

We now define the following quantity, for every model ϕ, episode length τ and δ′ ∈ (0, 1)

BD(τ, ϕ, δ
′)

def
= 34D|Sϕ|

√
A log( τ

δ′ )

τ
. (11.7)

5.2 Regret of stage i
In this section we analyze the regret of the stage i, which we denote ∆i. Note that since each
stage i 6 I is of length τi = 2i except the last one I that may stop before, we have

∆(T ) =

I(T )∑

i=1

∆i , (11.8)

where I(T ) = xlog2(T + 1)y. We further decompose ∆i = ∆1,i + ∆i,2 into the regret
corresponding to the exploration stage ∆1,i and the regret corresponding to the exploitation
stage ∆i,2.
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τi,1 is the total length of the exploration stage i and τi,2 is the total length of the exploita-

tion stage i. For each model ϕ, we write τi,1,J
def
=

τi,1
J

the number of consecutive steps during
which the UCRL2 algorithm is run with model ϕ in the exploration stage i, and τi,2(ϕ) the
number of consecutive steps during which the UCRL2 algorithm is run with model ϕ in the
exploitation stage i.

Good and Bad models. Let us now introduce the two following sets of models, defined
after the end of the exploration stage, i.e. at time ti.

Gi def
= {ϕ ∈ Φ ; µ̂i,1(ϕ)− 2B(i, ϕ, δ) ≥ µ̂i,1(ϕ

⋆)− 2B(i, ϕ⋆, δ)}\{ϕ∗} ,
Bi def

= {ϕ ∈ Φ ; µ̂i,1(ϕ)− 2B(i, ϕ, δ) < µ̂i,1(ϕ
⋆)− 2B(i, ϕ⋆, δ)} .

With this definition, we have the decomposition Φ = Gi ∪ {ϕ⋆} ∪ Bi.

5.2.1 Regret in the exploration phase

Since in the exploration stage i each model ϕ is run for τi,1,J many steps, the regret for each
model ϕ 6= ϕ⋆ is bounded by τi,1,Jρ⋆. Now the regret for the true model is τi,1,J(ρ⋆− µ̂1(ϕ

⋆)),
thus the total contribution to the regret in the exploration stage i is upper-bounded by

∆i,1 6 τi,1,J(ρ
⋆ − µ̂1(ϕ

⋆)) + (J − 1)τi,1,Jρ
⋆ . (11.9)

5.2.2 Regret in the exploitation phase

By definition, all models in Gi ∪ {ϕ⋆} are selected before any model in Bi is selected.
The good models. Let us consider some ϕ ∈ Gi and an event Ωi under which the

exploitation phase does not reset. The test (equation (11.4)) starts after τi,1,J , thus, since
there is not reset, either τi,2(ϕ) = τi,1,J in which case the contribution to the regret is bounded
by τi,1,Jρ⋆ , or τi,2(ϕ) > τi,1,J , in which case the regret during the (τi,2(ϕ) − 1) steps (where
the test was successful) is bounded by

(τi,2(ϕ)− 1)(ρ⋆ − µ̂i,2,τi,2(ϕ)−1(ϕ)) 6 (τi,2(ϕ)− 1)(ρ⋆ − µ̂i,1(ϕ) + 2B(i, ϕ, δ))

6 (τi,2(ϕ)− 1)(ρ⋆ − µ̂i,1(ϕ
⋆) + 2B(i, ϕ⋆, δ)) ,

and now since in the last step ϕ fails to pass the test, this adds a contribution to the regret
at most ρ⋆.

We deduce that the total contribution to the regret of all the models ϕ ∈ Gi in the
exploitation stages on the event Ωi is bounded by

∆i,2(Gi) 6
∑

ϕ∈G
max{τi,1,Jρ⋆, (τi,2(ϕ)− 1)(ρ⋆ − µ̂i,1(ϕ

⋆) + 2B(i, ϕ⋆, δ)) + ρ⋆} . (11.10)

The true model. First, let us note that since the total regret of the true model during the
exploitation step i is given by τi,2(ϕ

⋆)(ρ⋆ − µ̂i,2,t(ϕ
⋆)) , then the total regret of the exploration

and exploitation stages in episode i on Ωi is bounded by

∆i 6 τi,1,J(ρ
⋆ − µ̂1(ϕ

⋆)) + τi,1,J(J − 1)ρ⋆ + τi,2(ϕ
⋆)(ρ⋆ − µ̂i,2,ti+τi,2(ϕ

⋆)) +
∑

ϕ∈Gi

max{τi,1,Jρ⋆, (τi,2(ϕ)− 1)(ρ⋆ − µ̂i,1(ϕ
⋆) + 2B(i, ϕ⋆, δ)) + ρ⋆}+

∑

ϕ∈Bi

τi,2(ϕ)ρ
⋆ .
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Now from the analysis provided in Jaksch et al. (2010) we know that when we run the
UCRL2 with the true model ϕ⋆ with parameter δi(δ), then there exists an event Ω1,i of
probability at least 1− δi(δ) such that on this event

ρ⋆ − µ̂i,1(ϕ
⋆) 6 BD(τi,1,J , ϕ

⋆, δi(δ)) ,

and similarly there exists an event Ω2,i of probability at least 1 − δi(δ), such that on this
event

ρ⋆ − µ̂i,2,t(ϕ
⋆) 6 BD(τi,2(ϕ

⋆), ϕ⋆, δ1(δ)) .

Now we show that, with high probability, the true model ϕ⋆ passes all the tests (equation
(11.4)) until the end of the episode i, and thus equivalently, with high probability no model
ϕ ∈ Bi is selected, so that

∑

ϕ∈Bi

τi,2(ϕ) = 0.

For the true model, after τ(ϕ⋆, t) > τi,1,J , there remains at most (τi,2 − τi,1,J +1) possible
timesteps where we do the test for the true model ϕ⋆. For each test we need to control
µi,2,t(ϕ

⋆), and the event corresponding to µ̂i,1(ϕ⋆) is shared by all the tests. Thus we deduce
that with probability higher than 1− (τi,2−τi,1,J +2)δi(δ) we have simultaneously on all time
step until the end of exploitation phase of stage i,

µ̂i,2,t(ϕ
⋆)− µ̂i,1(ϕ

⋆) = µ̂i,2,t(ϕ
⋆)− ρ⋆ + ρ⋆ − µ̂i,1(ϕ

⋆)

> −BD(τ(ϕ
⋆, t), ϕ⋆, δi(δ))− BD(τi,1,J , ϕ

⋆, δi(δ))

> −2BD(τi,1,J , ϕ
⋆, δi(δ)) .

Now provided that f(ti) > D, then BD(τi,1,J , ϕ
⋆, δi(δ)) 6 B(i, ϕ⋆, δ) , thus the true model

passes all tests until the end of the exploitation part of stage i on an event Ω3,i of probability

higher than 1− (τi,2 − τi,1,J + 2)δi(δ). Since there is no reset, we can choose Ωi
def
= Ω3,i. Note

that on this event, we thus have
∑

ϕ∈Bi

τi,2(ϕ) = 0.

By using a union bound over the events Ω1,i,Ω2,i and Ω3,i, then we deduce that with
probability higher than 1− (τi,2 − τi,1,J + 4)δi(δ),

∆i 6 τi,1,JBD(τi,1,J , ϕ
⋆, δi(δ))) + [τi,1,J(J − 1) + |Gi|]ρ⋆ + τi,2(ϕ

⋆)BD(τi,2(ϕ
⋆), ϕ⋆, δi(δ))

+
∑

ϕ∈Gi

max{(τi,1,J − 1)ρ⋆, (τi,2(ϕ)− 1)(BD(τi,1,J , ϕ
⋆, δi(δ)) + 2B(i, ϕ⋆, δ)} .

Now using again the fact that f(ti) > D, and after some simplifications, we deduce that

∆i 6 τi,1,JBD(τi,1,J , ϕ
⋆, δi(δ)) + τi,2(ϕ

⋆)BD(τi,2(ϕ
⋆), ϕ⋆, δi(δ))

+
∑

ϕ∈Gi

(τi,2(ϕ)− 1)3B(i, ϕ⋆, δ) + τi,1,J(J + |Gi| − 1)ρ⋆ .

Finally, we use the fact that τBD(τ, ϕ
⋆, δi(δ)) is increasing with τ to deduce the following

rough bound that holds with probability higher than 1− (τi,2 − τi,1,J + 4)δi(δ)

∆i 6 τi,2B(i, ϕ⋆, δ) + τi,2BD(τi,2, ϕ
⋆, δi(δ)) + 2Jτi,1,Jρ

⋆ ,

where we used the fact that τi,2 = τi,2(ϕ
⋆) +

∑

ϕ∈G
τi,2(ϕ) .



252 Chapter 11. State-Representation in RL

5.3 Tuning the parameters of each stage.
We now conclude by tuning the parameters of each stage, i.e. the probabilities δi(δ) and the
length τi, τi,1 and τi,2. The total length of stage i is by definition

τi = τi,1 + τi,2 = τi,1,JJ + τi,2 ,

where τi = 2i . So we set τi,1
def
= τ

2/3
i and then we have τi,2

def
= τi − τ

2/3
i and τi,1,J =

τ
2/3
i

J
.

Now using these values and the definition of the bound B(i, ϕ⋆, δ), and BD(τi,2, ϕ
⋆, δi(δ)), we

deduce with probability higher than 1− (τi,2 − τi,1,J + 4)δi(δ) the following upper bound

∆i 6 34f(ti)S

√
AJ log

( τ
2/3
i

Jδi(δ)

)
τ
2/3
i + 34DS

√
A log

( τi
δi(δ)

)
τi + 2τ

2/3
i ρ⋆ ,

with ti = 2i − 1 + 22i/3 and where we used the fact that
(

J

τ
2/3
i

)1/2
τi,2 6

√
Jτ

2/3
i .

We now define δi(δ) such that δi(δ)
def
= (2i − (J−1 + 1)22i/3 + 4)−12−i+1δ .

Since for the stages i ∈ I0
def
= {i > 1; f(ti) < D}, the regret is bounded by ∆i 6 τiρ

⋆,
then the total cumulative regret of the algorithm is bounded with probability higher than
1− δ (using the defition of the δi(δ)) by

∆(T ) 6
∑

i/∈I0

[34f(ti)S

√
JA log

(28i/3
Jδ

)
+ 2]22i/3 + 34DS

√
A log

(23i
δ

)
2i +

∑

i∈I0
2iρ⋆ .

where ti = 2i − 1 + 22i/3 6 T .
We conclude by using the fact that since I(T ) 6 log2(T +1), then with probability higher

than 1− δ, the following bound on the regret holds

∆(T ) 6 cf(T )S
(
AJ log(Jδ)−1 log2(T )

)1/2
T 2/3 + c′DS

(
A log(δ−1) log2(T )T

)1/2
+ c(f,D) .

for some constant c, c′, and where c(f,D) =
∑

i∈I0 2
iρ⋆. Now for the special choice when

f(T )
def
= log2(T + 1), then i ∈ I0 means 2i + 22i/3 < 2D + 2, thus we must have i < D, and

thus c(f, d) 6 2D.



Chapter 12

Perspectives and Future Work.

In this concluding section, I would like to briefly mention some of the immediate future works
already planned after this PhD thesis. First, there are obviously some natural extensions to
the chapters presented here.

• Following chapter 2 and the work by Garivier and Cappé (2011), it is natural to extend
the use of the Kullback-Leibler divergence in bandit theory to other classes of distri-
butions. This would require techniques coming from transport theory and non trivial
extensions of Sanov’s Theorem.

• It seems natural to extend the ideas developped in chapter 4 and chapter 11 about model
selection or model aggregation in bandit, game theory and reinforcement learning. This
will require developing tools for non-asymptotic hypothesis testing, and is also linked
with code theory as well as random graphs, and definitely opens a large avenue of
research about the question of adaptivity in sequential learning.

• Also it seems natural to apply recent advances from PAC analysis to bandits, and
continue developing this field of research, see chapter 5.

• Chapter 6 studies the use of Gaussian random matrices for regression, that are designed
in a non-adaptive way. It seems natural to extend this idea to data-driven matrix gen-
eration, which would need a more intricate analysis due to the fact that this introduces
a dependency. Of course the same idea, i.e. to use a data-dependent random operator,
applies to chapter 7 as well.

• It would be very nice to apply results for regression with Markov design such as those
developped by Stéphane Gaiffas to the TD algorithm, as it would enable to both gen-
eralize and unify chapter 9 and chapter 10.

Of course there are plenty of other perspectives of research, including studying the effect of
adding a numerical cost to the notion of regret in bandit, addressing the cover-shift problem
in reinforcement learning, working on inverse reinforcement learning as well as topics raised
in the foreword chapter...etc. I would really like to work on the scarcely addressed problem
of cooperative bandits, from a non-asymptotic and adaptive perspective, all the more so
that there is a big practical motivation coming from Brain Machine Interfaces as well as few
theoretical results.
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Finally, better understanding the statistical properties of the empirical processes involved
in regression or in reinforcement learning by means of local central limit theorems and adap-
tive confidence bounds (for instance) is a deep, interesting question that would allow for
much more precise statements than only current first-order analysis. This is left for future
work.

More generally, developing the right theoretical tools that enable to both address such
questions and at the same time can be used in practical algorithms is actually challenging
and needs communication between seemingly distant areas of research, which is difficult.
However I believe that we really need strong ideas both practical and theoretical in order to
succeed in such a task, and thus strong communication as well.



Summary of Scientific Activity.

Here is a brief overview of the research activity during these three years.

Publications. Note that conference papers and journals currently under review do not
appear in this list.

2011

• Finite-Time Analysis of Multi-armed Bandits Problems with Kullback-Leibler
Divergences, Maillard et al. (2011).

• Adaptive bandits: Towards the best history-dependent strategy, Maillard and
Munos (2011).

2010

• Finite-Sample Analysis of Bellman Residual Minimization, Maillard et al.
(2010).

• Scrambled Objects for Least-Squares Regression, Maillard and Munos (2010a).

• LSTD with Random Projections, Ghavamzadeh et al. (2010a).

• Online Learning in Adversarial Lipschitz Environments, Maillard and Munos
(2010b).

2009

• Compressed Least Squares Regression, Maillard and Munos (2009).

• Complexity versus Agreement for Many Views, Maillard and Vayatis (2009).

Broadcast. Finally, as a service to the profession, I created the google group “Prob-
ability and Statistics news” [PS-news:http://groups.google.fr/group/maths-ps-news]
in order to help broadcasting job announcements or conference events related to math-
ematical probability and statistics, like the google group “Machine-Learning news” [ML-
news:http://groups.google.fr/group/ml-news] does successfully for the machine learn-
ing community. The goal is here to provide a tool in order to facilitate inter and intra-
communication for the two strong communities of Probability and of Statistics at a world-
scale level.
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