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Résumé

Cette thèse aborde le calcul de l'opérateur LASSO (Least Absolute Shrinkage and
Selection Operator), ainsi que des problématiques qui lui sont associées, dans le
domaine de la régression. Cet opérateur a suscité une attention croissante depuis
son introduction par Robert Tibshirani en 1996, par sa capacité à produire ou
identi�er des modèles linéaires parcimonieux à partir d'observations bruitées, la
parcimonie signi�ant que seules quelques unes parmi de nombreuses variables
explicatives apparaissent dans le modèle proposé. Cette sélection est produite
par l'ajout à la méthode des moindres-carrés d'une contrainte ou pénalisation sur
la somme des valeurs absolues des coe�cients linéaires, également appelée norme
l1 du vecteur de coe�cients.

Après un rappel des motivations, principes et problématiques de la régres-
sion, des estimateurs linéaires, de la méthode des moindres-carrés, de la sélec-
tion de modèle et de la régularisation, les deux formulations équivalentes du
LASSO � contrainte ou régularisée � sont présentées; elles dé�nissent toutes deux
un problème de calcul non trivial pour associer un estimateur à un ensemble
d'observations et un paramètre de sélection. Un bref historique des algorithmes
résolvant ce problème est dressé, et les deux approches permettant de gérer la
non-di�erentiabilité de la norme l1 sont présentées, ainsi que l'équivalence de ces
problèmes avec un programme quadratique.

La seconde partie se concentre sur l'aspect pratique des algorithmes de résolu-
tion du LASSO. L'un d'eux, proposé par Michael Osborne en 2000, est reformulé.
Cette reformulation consiste à donner une dé�nition et explication générales de
la méthode d'ensemble actif, qui généralise l'algorithme du simplex à la pro-
grammation convexe, puis à la spéci�er progressivement pour la programmation
LASSO, et à adresser les questions d'optimisation des calculs algébriques. Bien
que décrivant essentiellement le même algorithme que celui de Michael Osborne,
la présentation qui en est faite ici a l'ambition d'en exposer clairement les mécan-
ismes, et utilise des variables di�érentes. Outre le fait d'aider à mieux comprendre
cet algorithme visiblement sous-estimé, l'angle par lequel il est présenté éclaire le
fait � nouveau � que la même méthode s'applique naturellement à la formulation
régularisée du LASSO, et non uniquement à la formulation contrainte. La popu-
laire méthode par homotopie (ou LAR-LASSO, ou LARS) est ensuite présentée
comme une dérivation de la méthode d'ensemble actif, amenant une formulation
alternative et quelque peu simpli�ée de cet algorithme qui fournit les solutions du
LASSO pour chaque valeur de son paramètre. Il est montré que, contrairement
aux résultats d'une étude récente de Jerome H. Friedman, des implémentations de
ces algorithmes suivant ces reformulations sont plus e�caces en terme de temps
de calcul qu'une méthode de descente par coordonées.

La troisième partie étudie dans quelles mesures ces trois algorithmes (ensem-
ble actif, homotopie, et descente par coordonnées) peuvent gérer certains cas
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particuliers, et peuvent être appliqués à des extensions du LASSO ou d'autres
problèmes similaires. Les cas particuliers incluent les dégénérescences, comme
la présence de variables lineairement dépendantes, ou la sélection/désélection si-
multanée de variables. Cette dernière problématique, qui était délaissée dans
les travaux précédents, est ici expliquée plus largement et une solution simple et
e�cace y est apportée. Une autre cas particulier est la sélection LASSO à par-
tir d'un nombre très large, voire in�ni de variables, cas pour lequel la méthode
d'ensemble actif présente un avantage majeur. Une des extensions du LASSO
est sa transposition dans un cadre d'apprentissage en ligne, où il est désirable
ou nécessaire de résoudre le problème sur un ensemble d'observations qui évolue
dans le temps. A nouveau, la �exibilité limitée de la méthode par homotopie la
disquali�e au pro�t des deux autres. Une autre extension est l'utilisation de la
pénalisation l1 sur d'autres fonction coûts que la norme l2 du résidu, ou en associ-
ation avec d'autres pénalisations, et il est rappelé ou établi dans quelles mesures
et de quelle façon chaque algorithme peut être transposé à ces problèmes.



Active Set Algorithms for the LASSO





Abstract

This thesis disserts on the computation of the Least Absolute Shrinkage and Se-
lection Operator (LASSO) and derivate problems, in regression analysis. This
operator has drawn increasing attention since its introduction by Robert Tib-
shirani in 1996, for its ability to provide or recover sparse linear models from
noisy observations, sparsity meaning that only a few of possibly many explaining
variables are selected to appear in the model. The selection is a result of adding
to the least-squares method a constraint or minimization on the sum of absolute
values of the linear coe�cients, otherwise called the l1 norm of the coe�cient
vector.

After recounting the motivations, principles and problematics of regression
analysis, linear estimators, least-squares minimization, model selection, and reg-
ularization, the two equivalent formulations of the LASSO � constrained or reg-
ularized � are presented, that both de�ne a non-trivial computation problem to
associate an estimator to a set of observations and a selection parameter. A
brief history of algorithms for solving these problems is given, as well as the two
possible approaches for handling the non di�erentiability of the l1 norm, and the
equivalence to a quadratic program is explained.

The second part focuses on practical algorithms for solving the LASSO. An
algorithm proposed in 2000 by Michael Osborne is reformulated. This reformu-
lation consists in giving a general de�nition and explanation of the active set
method, that generalizes the simplex algorithm to convex programming, then
specifying it to the LASSO program, and separately addressing linear algebra
optimizations. Although it describes the same algorithm in essence, the presen-
tation given here aims at exhibiting clearly its mechanisms, and uses di�erent
variables. In addition to helping understand and use this algorithm that seemed
to be underrated, the alternative view taken here brings light on the possibility
and advantages, not foreseen by the authors, to use the method for the regularized
(and more practical) problem, as well as for the constrained one. The popular
homotopy (or LAR-LASSO) method is then derived from this active set method,
yelding also an alternative and somewhat simpli�ed view of this algorithm that
can compute the operator for all values of its parameter (LASSO path). Practical
implementations following these formulations are shown to be the most e�cient
methods of LASSO-path computation, contrasting with a recent study of Jerome
H. Friedman suggesting that a coordinate descent method improves by far the
state-of-the-art results of homotopy, in terms of speed.

The third part examines how these three algorithms (active set, homotopy,
and coordinate descent) can handle some limit cases, and can be applied to
extended problems. The limit cases include degeneracies, like duplicated or lin-
early dependent variables, or simultaneous selections/deselections of variables.
The latter issue, that was dismissed in previous works, is explained and given a
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simple solution. Another limit case is the use of a very large, possibly in�nite
number of variables to select from, where the active set method presents a major
advantage over the homotopy. A �rst extension to the LASSO is its transposition
in online learning settings, where it is necessary or desirable to solve for a grow-
ing or changing observation set. Again, the lack of �exibility of the homotopy
method discards it in pro�t of the other two. The second extension is the use
of l1 penalization with other loss function than the squared residual, or together
with other penalization terms, and we summarize or state to which extent and
how each algorithm can be transposed for these problems.
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Rapport concernant le manuscrit de thèse de Manuel LOTH intitulé 

« algorithmes d�Ensemble Actif pour le LASSO » 

 
 
 
 
 
Le travail de M. Loth porte sur les méthodes d�apprentissage de représentations 
parcimonieuses de la famille LASSO (Least Absolute Shrinkage Operator). Ces méthodes 
devenues populaires en quelques années, pour la sélection de caractéristiques, ont suscité de 
très nombreux travaux en statistique, apprentissage et traitement du signal. 
Dans son manuscrit, M. Loth propose de réexaminer certains des algorithmes développés 
pour le LASSO qui sont restés un peu dans l�ombre d�autres méthodes. Il en donne une 
reformulation qui lui sert de base ensuite pour proposer des adaptations et extensions de ces 
algorithmes. 
 
Le chapitre 1 introduit, dans le cadre général de la régression, le LASSO, et donne une 
historique des travaux marquants dans le domaine, notamment  la formulation initiale de 
Tibshirani en 96, les travaux de Osborne en 2000 qui serviront de base pour cette thèse et 
l�algorithme de descente par coordonnée de Friedman en 2007. Il donne ensuite une 
reformulation de la définition du LASSO qui étend légèrement la définition originale en 
considérant, un espace de caractéristiques plus général, une normalisation des paramètres ou 
des caractéristiques, un nombre éventuellement infini de caractéristiques. 
 
Le chapitre 2 décrit le c�ur du travail qui consiste à adapter une méthode d�ensemble actif 
pour le problème du LASSO. M. Loth commence par présenter une méthode générale 
d�optimisation par ensemble actif. Il caractérise la solution LASSO dans le cas d�un ensemble 
actif optimal puis dérive un algorithme d�optimisation dans le cas d�une fonction convexe. Il 
montre ensuite comment l�algorithme peut s�adapter au LASSO. Une seconde contribution 
consiste à montrer l�équivalence entre les formulations contraintes et régularisées du LASSO. 
Par la suite, c�est cette version régularisée qui sera principalement utilisée dans la thèse. La 
troisième contribution est la dérivation de l�algorithme d�Osborne dit « homotopy method » à 
partir d�une formulation par ensemble actif. Cette reformulation conduit à un algorithme 
relativement simple. La complexité des deux algorithmes est analysée et une implémentation 
utilisant des décompositions matricielles est présentée. Le comportement de trois méthodes 
(ensemble actif, homotopie et descente par coordonnée qui sert de référence) est illustré sur 
un exemple. 
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Le chapitre trois présente trois contributions principales : l�analyse de cas de dégénérescences 
du LASSO, le cas d�un nombre infini de caractéristiques et l�extension à l�apprentissage en 
ligne des trois algorithmes précédents. 
Les cas de dégénérescence étudiés concernent l�existence de solutions multiples (plusieurs 
sous-ensembles de caractéristiques peuvent être solution du LASSO), et uniquement dans le 
cas de la méthode par homotopie, la violation simultanée de plusieurs contraintes. 
Pour les solutions multiples, M. Loth montre que la solution LASSO est unique sauf quand il 
existe des dépendances affines entre caractéristiques. Pour le cas de violation simultanée, il 
propose de combiner la méthode par homotopie et la méthode par ensemble actif. 
Une seconde contribution concerne l�expression et l�implémentation des algorithmes LASSO 
dans le cas d�un nombre infini de caractéristiques. M. Loth énumère les problèmes pratiques 
rencontrés. Il décrit brièvement sa méthode « ECON » développée pour des caractéristiques 
définies comme des fonctions paramétriques et donc potentiellement non dénombrables. Il 
expose des solutions pratiques développées dans ce cadre, comme l�approximation du chemin 
de régularisation ou encore une fois la combinaison méthode par homotopie � méthode 
d�ensemble actif. Il complète cette description par deux méthodes d�optimisation pratiques 
qui remplacent l�optimisation fine usuelle en apprentissage par une série d�estimations moins 
précises qui peuvent être obtenues par échantillonnage adaptatif des exemples ou par 
gradients multiples. La dernière contribution concerne l�apprentissage séquentiel. M. Loth 
propose une adaptation des algorithmes LASSO en exploitant une idée similaire aux 
moindres carrés récursifs. 
Finalement, quelques expériences sont effectuées avec l�algorithme ECON sur des petits 
exemples de classification et un exemple de régression. 
 
 
M. Loth a réalisé un travail de bonne qualité. Il a obtenu des résultats originaux, qui ont 
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Introduction

The domain of this thesis is Machine Learning, and more speci�cally supervised

learning. Machine learning (see (Alpaydin, 2005) or (Cornuéjols and Miclet,
2010)(french) for recent overviews) emerged as a �eld in the 1980's following the
�rst workshop on the subject. According to one of its founders Tom M. Mitchell
(Mitchell, 2006), the �eld seeks to answer the question

How can we build computer systems that automatically improve
with experience, and what are the fundamental laws that govern all
learning processes?

Supervised learning is the most common and exemplary setting, in which
experience consists in a set or sequence of input/output pairs, and the task is to
predict a subsequent output given the sole input. Performance is then assessed
by some measure of di�erence between the predicted and real outputs. Many
topics of interest for machine learning, especially in this supervised setting, have
a lot in common with problems studied long before the advent of programmable
computing machines, in the �eld of statistics. The focus in statistics was, and
still is, not so much on prediction as on modelization of the relation between
the two variables. The term Statistical Learning captures well the intersection
of both approaches, that is, practical and algorithmic aspects of statistics, or
statistically-grounded methods of learning. A review can be found in the book
�The Elements of Statistical Learning� (Hastie et al., 2008).

The learning task is referred to as regression when the output is continuous
(belongs to a continuous set, typically R), and the model, or prediction function,
can be estimated by a continuous function of the inputs. Statistical laws, as well
as computational considerations, motivate the search of a model among linear
combinations of the input's features. These features can be the original, natural
attributes of the object of study, for example the heights of both parents for
predicting the height of their o�spring, when it is reasonable to assume a linear
relationship. They can also be arti�cial features, that typically quantify a notion
of proximity of the input from a �xed point: the inputs are re-described in terms
of how much they are close to a list of reference points. The number of such
features can be large and, combined with an appropriate measure of closeness,
this permits a simple linear combination of these features to correspond to a more
complicated function of the original features.

Whether natural or arti�cial, the features may be unnecessarily numerous. A
natural feature can have no correlation at all with the output, and perturb the
evaluation of a prediction function. When evaluating a nonlinear relationship by
the means of arti�cial features, they should be numerous to enlarge the choice of
models, but this greater modelling power can bring computational issues, and also
encourages traditional methods to �t the observations too closely (over�tting);
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this is not desirable because these observations are usually corrupted by noise,
and the prediction should be able to generalize from a few observations rather
than simply reproducing them. Dedicated extensions to a method in order to
ensure this generalization property is referred to as regularization.

Associated to this most common class of linear models is the simple, practical,
and well grounded method of least-squares, that chooses as a model the one
minimizing the squared residual, that is the sum of squares of the di�erences
between the observed outputs and the corresponding predictions of the model.
The least-squares model can be identi�ed by a straightforward computation, in
which a square matrix of size the number of features must be inverted.

A regularized extension to least-squares was proposed in (Tibshirani, 1997) as
the Least Absolute Shrinkage and Selection Operator (LASSO), that minimizes
the squared residual under an additional constraint on the amplitude of the
linear coe�cients of the model: the sum of their absolute values (ℓ1 − norm of
the coe�cient vector) must be lower than a given threshold. This constraint has
a selection e�ect: it limits the number of nonzero coe�cients. This selection
property is pro�table by itself, for simply identifying the relevant variables, or
easing computations, and preventing over�tting. Also, this speci�c constraint
presents two advantages over the somewhat more natural constraint of limiting
explicitly the number of non zero features (ℓ0-norm): it is better in terms of
generalization, and its computation is easier, the ℓ0 regularization yielding a
combinatorial complexity.

However, computing a LASSO model is not as straightforward as for the
simple least-squares model. Indeed, it mixes continuous and discrete concepts:
minimization of the residual over the linear coe�cients, and selection of fea-
tures. Therefore, di�erent algorithms have been proposed for solving the LASSO
problem. An elegant publication (Efron et al., 2004) has popularized the LAR-
LASSO algorithm, that is able to compute the solutions for all possible values
of the constraint; the LASSO itself, as well as the use of the same constraint
over di�erent operators than least-squares, has since become widely popular in
both applications and research. Research, however, did not focus much on the
algorithmical aspect of the problem, mostly taking as a base the LAR-LASSO
algorithm as it was formulated. Noticeable exceptions are the propositions of
dedicated gradient-based methods (Kim et al., 2007), and coordinate-descent al-
gorithms (Friedman et al., 2010). The �rst kind does not possess the appealing
simplicity of the LAR-LASSO, that facilitates its understanding, implementa-
tion, analysis, or robustness. However, they seem to perform better in large scale
problems, given a proper, optimized implementation. The coordinate-descent
approach presents both aspects: simplicity and scalable e�ciency. It was ini-
tially proposed in (Fu, 1998), soon after the LASSO itself, but the interest for
it grew only recently, after a generalization and nice presentation in (Friedman
et al., 2010). The same phenomenon actually happened for the LAR-LASSO,
that was a larger-perspective presentation of the homotopy algorithm previously
presented in (Osborne et al., 2000a).
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One aspect of this thesis is to provide a somewhat similar renewal presenta-
tion of a second algorithm proposed in (Osborne et al., 2000a), denoted as �an
active set method�. Several misunderstandings surround this algorithm: it is the
same idea that was behind one of the algorithms proposed in Tibshirani's orig-
inal paper, but the adaptation was di�erent and suboptimal. In most reviews
of LASSO algorithms, the active set method is not mentioned, or wrongfully ex-
plained or analyzed. The authors themselves appear not to have fully foreseen
the settings to which the method can be applied. Yet the algorithm is simple,
e�cient, and appears to be more �exible and robust than the homotopy / LAR-
LASSO algorithm. Therefore, we try to present it here in what seems to us to be
the simplest formulation. We will try to rely on as few existing frameworks and
theories as possible, to provide a standalone understanding of both the problems
and algorithms. We also re-explain the homotopy algorithm in the same fashion,
as well as the coordinate descent method.

Such simpli�ed presentations do not simply help the understanding and im-
plemention, possibly to a broader audience. It permits to give a clearer view
of the problematics, that is fruitful in several ways. The relation between the
homotopy and the active set method appears more distinctly and allows their
combination for handling special cases that were previously ignored or coarsely
tackled. Far from being exotic situations, these cases happen in practise, and
their proper handling is necessary to provide �black-boxed� implementations of
the algorithms.

The derivation of the active set method for an alternative formulation of the
LASSO appears naturally as a simpler algorithm, whereas it used to be thought
to be more complex. The variables involved when translating the conceptual
method to speci�c algorithms give simpler and more e�cient implementations.

More generally, the simpli�ed point of view that we try to take on the sub-
ject allows us to by-pass existing and popular frameworks like kernel methods:
rather than considering such existing methods and juxtaposing questions of ker-
nel choice, feature selection, multiple kernels, we propose to simply apply the
LASSO to an in�nite set of features, that may also correspond to an in�nite
number of kernel functions, without relying on these in�nities to be reduced to
�niteness by kernel properties. Enlighted intuition and experimental evidences
agree on the fact that approximation in the face of in�nity can give, in the present
case, better results than �nite reductions.

This thesis is thus focused on the sole LASSO, (not on similar regression op-
erators), presented together with its context and motivations in chapter one. It
concentrates on the algorithmic aspects of its computation, through the presen-
tation in chapter two of the three algorithms that qualify as active set algorithms:
they solve successively the LASSO on a reduced set of variables, the others being
set as constant. Special cases and extensions of these algorithms and the LASSO
itself are the object of the third and last chapter.
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General notations

Throughout this thesis, the following notation conventions will be used:

• a vector in Rn is denoted by a lowercase bold letter and its components by
the same regular-sized letter with a subscript, e.g.

v =






v1
...
vn




 ;

• a bold uppercase letter denotes a matrix: M;

• the transpose of a matrix or vector is denoted by vT;

• for the set of functions from a set A to a set B, we mostly use the arrow
notation, and occasionally the exponential one:

f : A→ B ⇐⇒ f ∈ BA ;

• given a set A, 2A denotes the set of its subsets:

2A = {B | B ⊂ A} ;

• minimize(a,b) ∈ 2A×B f(a, b), slightly abusively, means that a minimization
is performed over all possible subsets a of A, each member of which is
associated to all possible values b of B, the abusive part being that, strictly
speaking, a subset of A×B can contain identical members of A, associated
to di�erent values of B. For example, if A = {a1, a2}, B = {1, 2}, we
consider

∅,
{(a1, 1)}, {(a1, 2)}, {(a2, 1)}, {(a2, 2)}
{(a1, 1), (a2, 1)}, {(a1, 1), (a2, 2)}, {(a1, 2), (a2, 1)}, {(a1, 2), (a2, 2)}

but not {(a1, 2), (a1, 1)}, and note them as a couple (a, b) where a is a
subset, and b is an associated vector:

(a = {a1, a2}, b = (2, 2))

• maxx ∈ X (f(x))<a = max x ∈ X
f(x)<a

f(x) maximizes f while ignoring value

larger than a, and similar notations are used for minimizations and other
conditions; when no value of x meets the condition, the result is considered
to be null ; by convention, a null value is ignored in all comparisons, e.g.
max(null , 2) = 2, and it can be veri�ed that no null value can be propa-
gated up to being involved in an arithmetic operation, in the algorithms
presented in this thesis;
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• (y∗, x∗) ∈ min, arg minx f(x) ⇐⇒
{

x∗ ∈ argminx f(x)

y∗ = f(x∗)

• where it may not cause confusion, S ∪ {x} can be simply noted as S + x.





Chapter 1

The LASSO

The Least Absolute Shrinkage Operator (LASSO) was proposed in (Tibshirani,
1996) as a technique for linear regression. Linear regression is itself a speci�c
technique of regression, and this thesis focuses on techniques for computing this
operator. This introductory chapter precises this hierarchy of problems with their
settings, motivations and notations. Particular attention is given to the LASSO
itself and algorithms for solving it, techniques for handling the ℓ1-norm, and a
generalized de�nition of the LASSO.

1.1 Regression

Regression [analysis] is generally de�ned as the task of studying the relationship
between a real dependent variable and one or more independent variables.

The reference to dependency is mostly a way of de�ning the task as modelling
the former as a function of the others, that is study the distribution of one variable
conditioned on the others, and does not necessarily imply statistical assumptions.
The independent variables are commonly referred to as the predictors, and the
dependent one as the response.

The reference to multiple predictors can be thought as an inheritance of this
domain's history and relationship to experiment. Typically, p di�erent measure-
ments are conducted on n objects of a group or one object in n di�erent states,
and a regression task consists in modelling the dependency of one of the p vari-
ables on one or more of the others. However, once a problem has been chosen,
one might as well see the predictors as one variable.

A general and formal de�nition of the regression problem can be:

De�nition 1. Let Z = (X,Y ) be a random variable in some product set X×Y,
with X ∈ X and Y ∈ Y. Regression analysis consists in studying the conditional

distribution P (Y |X) based on a �nite number of observations (xi, yi)i=1,...,n and

prior assumptions.

Throughout this chapter, we will be using as an illustrating example an an-
alytically de�ned variable of the same nature as the object of study in (Galton,
1886). This article was the �rst to study the phenomenon of regression towards

the mean, that consists in the tendency of o�-springs to exhibit a lower deviation
from the mean than their genitors on a given quanti�able property. The term
regression thus originally referred to the general form of the relationship between
these two variables, and the work in (Galton, 1886) consisted in its closer and
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numerical analysis. The expression regression analysis was later applied to more
general studies of the same nature, independently of any notion of regression in
the results. In the Machine Learning community, the sole word regression is gen-
erally used and refers to the cases where X = R, whereas the term classi�cation

is used when X is �nite, which brings speci�c problematics and solutions.
The precise case analyzed in (Galton, 1886) was the relationship between

the physical height of 930 adult human subjects (Y ) and the average height of
their two parents (X), after a preliminary scaling for the feminine subjects. The
marginal distributions P (X) and P (Y ) are similar in both shape and mean, and,
as one can expect, more or less Gaussian, indicating � not surprisingly � that, in
the absence of extraneous evolutions, the distribution of human height is stable
throughout the generations. Yet the results suggest that although X and Y

are approximately jointly Gaussian, their correlation coe�cient is strictly and
signi�cantly lower than 1. Such a variable Z = (X,Y ) would be characterized
by a bivariate Gaussian distribution

P (Z = z) ∝ exp

(

−1

2
(z− µ)TΣ−1(z− µ)

)

, (1.1)

where

z =

(
x

y

)

,µ =

(
µ

µ

)

,Σ =

(
σ2 ρσ2

ρσ2 σ2

)

,

µ being the theoretical mean height of a human being, σ the theoretical standard
deviation from this mean, and ρ < 1 characterizing the regression phenomenon
(in the original meaning of the term). In scalar notations, eq. (1.1) can be
written

P (X = x, Y = y) ∝ exp

(

−1

2

(x−µ
σ

)2
+
(y−µ

σ

)2 − 2ρ (x−µ)(y−µ)
σ2

1− ρ2

)

(1.2)

Figure 1.1 shows arti�cial data obtained by drawing samples from such a
distribution. This reproduces observations similar to that of the ones analyzed
by Galton, by assuming that such a perfectly de�ned simple model is underly-
ing the heights of human beings. Naturally, the height of a human being is not
generated by an abstract random process based on a continuous parametric distri-
bution, and the very concepts of random, distribution, or continuity do not have
a physical reality. But nor are they arbitrary simpli�cations that empirically �t
the observations of natural phenomena, but rather are emerging at macroscopic
levels from simple interactions at microscopic levels, in a consistent way, and fol-
lowing coherent theories. Without disserting much further on that point, let us
give an example of a fundamental law that enlightens the relationship between
natural observations and theoretical concepts and models:

Let us consider n multiple independent binary events, represented by a num-
ber Xi being −1 or +1, for i = 1, . . ., n, and their aggregation at a higher level by
summing these numbers, and scaling by n, obtaining a number Y = 1

n

∑

i=1 nXi.
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This mathematical setting, although it does not model something in particular,
can be related, from its simplicity, to some physical reality, for example at a
quantic level. The binary alternative for Xi's hardly quali�es as random, or can
be considered as primal randomness: the process is simply not observable closer
than noting the frequencies of its results. To the 2n possible situations corre-
spond 2n possible rational values for Y , occurring increasingly frequently as they
are closer to zero. The view of the mind of taking n to in�nity produces the
switches from Q to R, �niteness to continuity, case enumerations and frequencies
to probabilities and distributions, all of which are theoretical but yield useful
tools and theories of simpler form to manipulate quantities that are originally
discrete. The theoretical continuous distribution of Y obtained in the limit is the
standard normal distribution.

Once the probability notions have been established, the convergence to a
normal distribution can be proven to be a general law by the central limit theorem,
stating that the mean of a set of variables having �nite mean and variance and
verifying one of several weaker conditions tends to be normally distributed as
the number of variables increases. This law is self-reproducing, self-reinforcing:
the mean of many approximately normal variables tends even more to normality.
This explains the ubiquity of this distribution for variables observed in nature
or economics, and therefore an informal version of this theorem, stating that
when a variable is determined by many factors, it is well modelled by a normal
distribution, is often used, as we did for arti�cially reproducing the height data.

So the quasi-equivalence between generating data from a relatively simple ar-
ti�cial model, and the actual generative process beyond real-world observations,
is well grounded, from this property that simple organization often emerges at
macroscopic levels from numerous interactions at lower levels.

The task of an experimenter is to identify such a model or some of its charac-
teristics, from the sole observations, and also some assumptions and restrictions
on the type of possible models.

1.1.1 Estimating the conditional mean

The response Y is generally a real number, and the study of P (Y |X) often
concentrates on its expected value E(Y |X), which is a function f : X → R.
This study mostly consists in providing an estimation of this function given the
observations, as close as possible to the real value and if possible converging
to it as the number of observations goes to in�nity. Such an estimator is part
of a general model describing (X,Y ). The problem of regression is often stated,
especially in machine learning, as approximating a function f from noisy samples.
Two formulations of this task can be made:

De�nition 2. Let X,Y be joint random variables in X×R, and (xi, yi)i=1,...,n n

independent observations.

Let f(x) = E(Y |X = x). Find an estimator f̂ ∈ RX close to f .
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Figure 1.1: Arti�cial data, simulating the height data of (Galton, 1886)
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De�nition 3. Let (xi, yi)i=1,...,n be n noisy observations of a function f : X → R

(yi = f(xi) + ε).

Find an estimator f̂ close to f .

The second de�nition is a convenient, simple formulation, when no explicit
assumption or strict analysis needs or can be done, and a practical point of view
is taken. It is not wrong or oversimplifying the problem, but can be misleading
if taken too literally. The term noise somewhat implies that y is deterministi-
cally generated from x, and the data presents additional noise, coming from a
measurement process or unobserved variables. This is not erroneous in the sense
that a model can be written as:

Y = E(Y |X) + (Y − E (Y |X)) , (1.3)

thus decomposing Y into a deterministic function of X and a random expression
where, hopefully, the dependence on X is null, limited or of a simple form. It is
null indeed when (X,Y ) is normal, and for the height example, eq. (1.3) gives

Y = µ+ ρ(X − µ) + ε where ε ∼ N (0, (1− ρ2)σ2) , (1.4)

and the decomposition is fruitful, with a linear deterministic term and a normal
random term independent of X and Y . The word noise may not be well suited,
but the concept behind it of aggregating the randomness into a single variable Z
that takes a simple form is generally much useful. However, the risks of sticking
to this angle and forgetting the whole statistical model are twofold:

• considering that f can be an arbitrary function, or restraining its possible
values by considerations that are detached from its inner statistical nature,

• neglecting the random part by wrongfully assuming a result as simple as
eq. (1.4).

These risks are limited; in particular, the ubiquity of normal distributions makes
the assumption of a normal �noise� with constant variance often justi�ed. Never-
theless, they should be considered when designing or using estimator-computing
algorithms. In the following, we take the general approach of the problem by def-
inition (3), and discuss the need and form of choices, assumptions, restrictions,
prior knowledge, regularization, all of which can be more or less derived from the
statistical nature of the problem, and more or less arbitrary.

1.1.1.1 Choosing an estimator

Let us qualify as compatible an estimator from which the data could have been
generated. When X is not countable, it is not possible to get several observations
of Y for all values of X, and regardless of the �countable� number of observa-
tions, there is an in�nity of compatible models. Hence it is needed, independently
of the data, to make more or less arbitrary choices in the form of rules and/or
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assumptions to associate one model to a set of observations. Naturally, this is
also valid when X is countable and even in the limiting case of a singleton where
the problem becomes the estimation of a scalar µ = E(Y ). Strictly speaking,
any estimation of µ is compatible with any data, and µ̂ can be chosen arbitrarily,
that is without deriving it from any assumption or statement, or by maximum
likelihood, or maximum a posteriori, based on some assumptions on the distri-
bution of Y and the distribution of µ. However, regardless of the assumptions,
a scalar estimator can be tested for consistency and bias, which give a formal
meaning to the expression close to . The sample mean µ̂ = 1

n

∑n
i=1 yi can be

proven to be an unbiased and �strongly� consistent estimator of µ, meaning the
following:

∀n, E (µ̂− µ) = 0 (no bias)

P
(

lim
n→∞

(µ̂− µ) = 0
)

= 1 (strong consistency)

When, for example, X = R, and without any further assumption, the problem
of �nding an estimator for E (Y |X) is equivalent to a continuum of independent
scalar problems, one for each possible value of X, and each of these problems
have a probability one to have no observation at all. Then the closeness of f̂ to f

requires arbitrary choices, reasonable assumptions, or explicit knowledge about
f , to be formalized. Whatever form they take, they are prior considerations inde-
pendent of the observations and result in de�ning a procedure (or operator) that
maps these observations to one single model. This operator ultimately consists in
more or less direct computations, and is generally de�ned by a numerical problem
to be solved. Note that parts of an operator can be of an arbitrary nature (not
derived from precise and valid prior knowledge about the process) but subject
to analysis and validation under di�erent assumptions. In other words, an op-
erator can be designed either explicitly for working under precise assumptions,
or from more practical considerations and statistical intuitions, possibly followed
by analyzes of its validity for di�erent families of problems.

1.1.2 Practical models

Indeed, a non-statistical criterion for guiding the choice of a model plays a strong
role: it must be parametric �de�ned by a certain number of discrete or continuous
parameters� in order to be manipulated at all, and must have a su�ciently simple
form for the operator to be computed, and also for the practical use of the model
afterwards.

Parameterizing f̂ necessarily restricts the space of possible models, and goes
with the assumption that f belongs to this space or its neighbourhood. Its
simplicity can take various forms and have di�erent e�ects on the size of the
model space, the complexity of computations, and its validity. The most common
way of parameterizing is to use as a parameter a vector of real numbers, that
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gives both expressiveness to the model, and possibilities of control and analysis
over it.

The classical approach to regression is to de�ne a parametric model that is
reasonable in both terms of computational feasibility and capacity to approx-
imate f , and de�ne a measure to minimize, that reasonably approximates the
discrepancy between f̂ and f , from the observations. The measure to minimize
is referred to as a loss function, and together with the choice of the model space,
it implies or is implied by a choice of which kinds of relationship can be well
modelled.

This leads to the following more precise de�nition of the regression problem:

De�nition 4 (parametric regression by optimization).
Let f : X → R be an unknown function, and O = (xi, yi)i=1,...,n n observations

generated by yi = f(xi) + ε, where ε is a random variable.

Let f̂ : Ω×X → R be a parametric estimator, f̂β = f̂(β, ·) an estimator with

�xed parameter β, and L : 2X×R×Ω → R a loss function that approximates the

discrepancy between f and a parametric estimator from the observations.

minimize
β ∈ Ω

L(O,β) (1.5)

1.1.3 Linear regression

The practical side of this choice of model restrictions does matter much, and
especially did in early days of the domain when computing resources were limited.
That is one reason for the popularity of linear models, in which

X = Rm

Ω = Rm

f̂β(x) = xTβ = β1x1 + . . .+ βmxm

A linear function usually includes a bias term, as βm+1 in

f̂β(x) = xTβ = β1x1 + . . .+ βmxm + βm+1 ,

to overcome the restriction f̂(0) = 0, thus adding a degree of freedom. However,
it is equivalent to adding a dimension to X that shows a constant value, for
example 1. Consider for example an initial predictor set X0 = Rk. It can be
mapped to Rk×{1} ⊂ Rk+1, and by taking m = k+1 and using the form de�ned
above, we get

f̂β(x) = xTβ = β1x1 + . . .+ βkxk + βm+1 .

Let us then, given the possibility of this pretreatment, limit the linear models to
the bias-free, dot-product form. Not only is it convenient in terms of notations,
but it also helps explaining, deriving, and implementing computations and algo-
rithms. In this linear case, the parameter β may be referred to as a coe�cient

vector.
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Another reason for using linear models, besides their simplicity, is that they
are justi�ed for a vast number of problems of interest. A lot of objects of mea-
surement and experiment found in nature are known to exhibit such linear rela-
tionships, or quasi-linear ones. This remark yields two important general points.

The �rst one somewhat rephrases what was already mentioned but can help
getting a clear view of the problematics. A regression experiment includes a �rst
phase of identifying the general shape of the expected relation between X and Y ,
and more generally gather as much prior knowledge about it as possible, through
the design of a parametric model. This restriction allows meaningful inferences
from the �nite number of samples. A second phase consists in the design of
the loss function, in which another type of prior knowledge or assumptions must
be accounted for: the joint distribution of (X,Y ), or in other terms where and
how does randomness occur. This knowledge allows to approximate correctly
the discrepancy between a model and f through randomized (or, from a di�erent
angle, noisy) samples. The third phase consists in having, choosing, or designing
computational methods for minimizing the loss function. The feasibility of this
phase is a necessary condition that interferes with the �rst two.

The second point raised by the fact that linear models are both simple to
manipulate and often accurate, is that the two constraints involved in the de-
signs of the estimators and loss, although of di�erent natures and sometimes
con�icting, are essentially compatible. The reason for this was mentioned above:
the phenomena that the experimenter may study are always the results of simple
interactions, and the simplicity is known to remain or emerge at higher levels of
organization / observation, as exempli�ed by the Central Limit Theorem. In the
height example, the function f was linear, as the result of (X,Y ) being normally
distributed, and more generally, linearity and normality are two interdependent
natural forms of organization, that persist or emerge through additive processes.

1.1.3.1 Extended linear regression

Linear estimators are thus both simple to manipulate and optimize, and appropri-
ate for many situations. Moreover, as will be illustrated below, their advantages
in terms of optimizing the loss function is not related to their linearity in the
predictor. The important property is the linearity in the optimized parameter β.
Hence an estimator quali�es as linear from this sole property, and can proceed
to arbitrary transformations of the predictor before a linear combination by the
coe�cient vector. These transformations are usually called feature functions, as
they can be viewed as an alternative way to characterize predictors, by mapping
them from the original description set X to a new one, Rp, on which a straight
linear estimator is used: an extended linear estimator f̂ is de�ned by a set of
feature functions

φ1, . . ., φp : X → R,
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forming a mapping function

φ : X → F = Rp

x 7→ φ(x) = (φ1(x), . . ., φp(x))
T

and parameterized by a coe�cient vector β ∈ Rp:

f̂β : X → R

x 7→ φ(x)Tβ

The set F = Rp into which predictors are mapped is referred to as the feature

space.
This extension has considerable advantages:

• it is inclusive of the �rst case of straight linear estimators;

• by de�nition, it can model nonlinear relationships between X and Y ;

• it can be applied to discrete data likes trees, diagrams, subsets;

• it can map the predictors into a large feature set, onto which a good linear
estimator is more likely to be found.

The �rst point, if needed, can be clari�ed by the fact that in the case X = Rm,
the mapping can be an identity, with φ(x) = x, that is � with x = (x1, . . ., xm)T

�

φi(x) = xi, for i = 1, . . .,m .

An example of the second point is the polynomial estimators. Polynomial
functions are of a simple nature and likely to appear in the relationship between
two variables. If X = R2 and one restricts to a degree of three, the feature
functions are 1, x1, x2, x3, x

2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3, x1x2x3.

The third point echoes what was mentioned at the beginning of this chapter
about the usual de�nition of regression analysis: although it is said to study the
relationship between one response variable and one or several predictor variables,
the latter might as well be considered as one single predictor. If they are m

scalars, they form one multivariate variable (vector) in Rm, and more generally,
a predictor variable need not be scalar or vector but can be of any nature, as long
as the relationship can be analyzed, and in particular an estimator can be de�ned
from X to Y. The nature of Y is more critical, and we will keep concentrating
here on Y = R, although other cases are possible, like function spaces (functional
regression), or discrete sets (classi�cation).

The last point is closely related to the second one. The example of polynomi-
als illustrates that the feature mapping shatters X = R2 into a richer space R11.
This space is redundant for predictors, for they are fully described by components
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2,3 and 4 (x1, x2 and x3), but de�nes a much richer function space for linear esti-
mators. The initial space of linear functions over X is embedded in that of linear
functions over F , as a very �small� fraction. Ultimately, there always exists one
linear estimator that exactly matches all observations if p = n (assuming the
observations are linearly independent in F), and there exists an in�nity of them
for p > n. In the similar problem of linear classi�cation, that aims at linearly
separating two groups of data, this property was thoroughly studied in (Cover,
1965), and formulated by Covers' theorem:

Theorem 1.1.1. A complex pattern-classi�cation problem, cast in a high-dimensional

space non-linearly, is more likely to be linearly separable than in a low-dimensional

space, provided that the space is not densely populated.

A popular way of featurization consists in using kernel functions. Such kernel

methods include Gaussian process regression methods (GP), that use prior distri-
butions and Bayesian inference, and support vector machines (SVM) that extend
an optimal-separating-plane algorithm to such feature spaces. These methods
are parameterized by a Mercer kernel function k : X 2 → R, i.e. such that there
exists a mapping function φ such that

∀(x, x′) ∈ X 2, φ(x)Tφ(x′) = k(x, x′) (1.6)

Although it is not necessarily the case, φ can generally be de�ned as associating a
di�erent feature function to every point of X , yielding the following set of feature
functions:

D = {φ : X → R, x 7→ φ(x) = k(c, x) | c ∈ X}

This set is isomorphic to X , hence usually in�nite, which makes the feature
space in�nite-dimensional and the set of linear estimators over it very rich. This
richness is relative, however, because it is de�ned, and biased, by the choice
of a single kernel function. The mapping function φ, previously de�ned by
φ(x) = (φ1(x), . . ., φm(x))T for a �nite set of m features, now maps x to a
point with as many attributes as there are points in X , that could be noted
φ(x) = (. . .k(x, c). . .)c ∈ X , and can be seen as a function k(x, ·). The obvious
drawback is that linear estimators are sums of in�nitely many terms, which is not
practical. The workaround is to de�ne an estimator of which the computation
involves only a �nite number of dot products such as that in eq. (1.6), generally
between observation and prediction points. This allows not to operate actual
computations in the feature space, and necessarily implies that the result itself
is not in�nite-dimensional, that is only a �nite subset of the features (those ap-
pearing in the dot products) is actually considered � which is desirable to obtain
a practical estimator. This selection among the in�nite number of features is
preliminary, in the sense that it does not take the values of the observations into
account. It is based on the representer theorem (SVM), or on conditioning on
the observations (GP). Extensive reviews of GP and SVM �and related� methods
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can be found in, respectively, (Rasmussen and Williams, 2006) and (Scholkopf
and Smola, 2001).

With great power of expression comes great responsibilities of selecting the
right model; that is, by considering a rich function space for possible estimators,
�nding one close to the real mean E (Y |X), or, with a more practical point of
view, that predicts well at unobserved points, can become a harder task. In par-
ticular, when the number of features is greater than the number of observations,
an in�nity of estimators associate the exact observed responses yi to the observed
predictors xi, and uncarefully designed loss functions or procedures may select or
tend to one of those, �tting exactly the observations without taking the random
term into consideration (over�tting). More generally, when a linear estimator is
used, based on well grounded statistical considerations, like in the height exam-
ple, the loss function can be well de�ned, on the same considerations, and yield a
correct estimator, but the same loss applied to an arti�cially rich function space
can yield erroneous results.

1.1.4 Loss functions

This well-de�ned loss function for straight linear regression is the squared resid-
ual, yielding the method of least-squares. The method was actually designed �rst,
empirically, by Carl Friedrich Gauss, before its optimality for linear estimators
was proven through the Gauss-Markov theorem. This theorem states that the
least-squares estimator has the lowest possible variance among unbiased linear
estimators of a linear function. Let us give here an intuitive derivation of the
method and explanation of its optimality.

Lets us �rst consider the estimation of the mean µ of a simple scalar random
variable Y . We know that the empirical mean µ̄ = 1

n

∑n
i=1 yi is a good estimator,

being unbiased and strongly consistent. µ and µ̄ can be alternatively de�ned from
the following:

The mean is the minimizer of the variance.

This means that if a variable m is de�ned as a �candidate� mean, and one
considers the variance of Y around m with V (m) = E

(
(Y −m)2

)
, we have

µ = argmin
m

V (m)

i.e.

E (Y ) = argmin
m

E
(
(Y −m)2

)

and similarly,

µ̄ = argmin
m

V̄ (m)
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i.e.

1

n

n∑

i=1

yi = argmin
m

1

n

n∑

i=1

(yi −m)2

This can be shown easily and allows to de�ne this estimator as the unique mini-
mizer of a quadratic �loss� function.

In the regression setting, the Gauss-Markov assumption is that there exists a
coe�cient β such that the �error� or �noise� term de�ned for a realization (Xi, Yi)

of (X,Y ) by

εi = Yi −Xi
Tβ

veri�es







E (εi) = 0

E
(
ε2i
)
= σ2 <∞

E (εiεj) = 0

It essentially means that (X,Y ) can be seen as drawn by �rst sampling X, then
obtaining Y by the sum of the linear term and a noise term independent of X.
This independency implies, informally, that each observation can be transformed,
somewhat concentrated, into an observation of that scalar noise term, and that
the estimation of β can be concentrated on the estimation of the mean of ε (zero),
by the following:

let β̂ be a candidate value for the unknown parameter β, and let us write

β̂ = β +∆β

0 = argmin
m

E
(
(ε−m)2

)

=⇒ 0 = argmin
m

E
(

(Y −XTβ −m)2
)

=⇒ 0 = argmin
∆β

E
(

(Y −XTβ −XT∆β)
2
)

=⇒ β = argmin
β̂

E
(

(Y −XTβ̂)2
)

and similarly, the fact that

ε̄ = argmin
m

1

n

∑

i

εi
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is a good estimator of 0 implies the same properties for

β̄ = argmin
β

1

n

∑

i

(yi − xi
Tβ)2

= argmin
β

∑

i

(yi − xi
Tβ)2

= argmin
β

‖y −XTβ‖22 (vector notation) (1.7)

as the convergence of the latter is directly linked to the convergence of ε̄ to
0.

The solution of the least-squares equation (1.7) is given by zeroing the gra-
dient of the squared residual wrt. β:

∇β̄‖y −XTβ̄‖22 = 0 ⇐⇒ X(y −Xβ̄
T
) = 0

⇐⇒ Xy = XXTβ̄

⇐⇒ β̄ =
(

XXT

)−1
Xy (1.8)

XXT is referred to as the Gram matrix of the observations, that concentrates the
n observations of X into a p×p matrix of correlation between the p parameters.
The term correlation is taken here in its largest acceptance, but can be applied
more formally when the parameter is taken as a random variable, as in Gaussian
process methods. It is positive-de�nite, thus invertible and allowing the solution
1.8, if p ≥ n � after removing possible degeneracies (linear dependencies) in the
set of features.

A typical example of a valid Gauss-Markov assumption is when it is derived
from a normality assumption such as the one in the height example. We have
seen in eq. (1.4) that under the joint-normality assumption, Y is linear in X

with an error term that is normal with a �xed variance.
The above explanation was intended to give an intuition, but the Gauss-

Markov theorem can be proven more formally by showing that the least-squares es-
timator has the lowest variance among unbiased linear estimators. The bias and
variance are de�ned here on the estimated parameter with respect to the ran-
domness of the observation set, through the following decomposition:

E
(

‖f̂ − f‖22
)

︸ ︷︷ ︸

MSE

= ‖E
(

f̂
)

− f‖22
︸ ︷︷ ︸

bias

+E
(

‖f̂ − E
(

f̂
)

‖22
)

︸ ︷︷ ︸

variance

(1.9)

where the mean squared error (MSE) expresses the expected distance between
the estimator and the true function, the bias is minimized if the estimator can and
does, in expectation, get close to the true value, and the variance expresses how
far the estimator can get from its expected value depending on the observations.
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If the linearity assumption of f is valid and f̂ is linear, it is biased only if
its expectation does not match f , although it could. Conversely, if a linear es-
timator is as good as possible in terms of expected value, but f is not linear,
the bias expresses the distance between the true function and the set of linear
estimators. If the true function is not known to be linear in the original descrip-
tion space of X, then mapping it to a higher-dimensional feature space and using
a least-squares linear estimator reduces the bias because the linearity assump-
tion becomes more valid, and even totally valid for su�ciently large and regular
spaces. But the capacity to estimate well f by a linear function comes at the
price of an increased variance of the estimator, from the following simple fact:
a greater number of scalar parameters to estimate requires more observations to
be well estimated; if the number of observations m is lower than the dimension
of the feature set p, the least-squares parameter is not even properly de�ned, as
there is an in�nity of parameters, isomorphic to Rn−p, that minimize the squared
residual. Even if one is chosen among them from one criterion or an other, it
yields a residual of 0, that is the estimator �ts exactly the observations.

Hence, when f is not known to be linear in a small number of known features,
a �blind� use of, or projection into, a high-dimensional feature space, and the use
of a least-squares linear estimator, although asymptotically correct, is not a good
choice, because a large number of observations is needed, and an estimator based
on too few samples is �biased� (in the general meaning of the term) towards
over�tting. Thus, additional assumptions or restrictions are needed to guide
the estimator to more plausible solutions, introducing a bias for the bene�t of
a lower variance. This approach is often referred to as regularization of the
least-squaresloss function.

1.1.5 Regularization

The term regularization can be used when some form of regularity is required for
the estimator, in addition to an initial criterion � in the case discussed here, being
linear and minimizing the squared residual. The �rst well-de�ned and powerful
form of regularization appeared with ridge regression. The initial motivation was
twofold: reduce instability in the algebraic computations of least-squares, and
reduce the mean squared error, as explained above, by introducing a small bias
in the hope of a substantially lower variance. The latter point was addressed
partly empirically and partly from intuitions driven by theory, and both yielded
the solution of adding a small diagonal term to the Gram matrix in the least-
squares formula:

β̄ =
(

XXT + λI
)−1

Xy , (1.10)

The method and its numerous properties were then stated and analyzed formally
in (Hoerl and Kennard, 1970a) by its two independent authors.
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For one of the authors, eq. (1.10) came as a result of bounding the parameter
by imposing the following constraint:

∑

i

βi ≤ t (1.11)

for some hyper-parameter t. The regularization e�ect is twofold, or can be seen
from two points of view: it prevents low eigen values of the Gram matrix and
a�erent computational issues, which is a regularization of the matrix itself, and,
somewhat equivalently, it prevents big variations in the function, which restricts
the space of possible estimators to �smooth� ones, which is a regularization of
the estimators.

The derivation of eq. (1.10) from eq. (1.11) will not be recalled here, but
another equivalence can be seen in a few lines:

β̄ =
(

XXT + λI
)−1

Xy ⇐⇒ XXTβ̄ −Xy + λβ̄ = 0

⇐⇒ −X(y −XTβ̄) + λβ̄ = 0

and by integration

β̄ =
(

XXT + λI
)−1

Xy ⇐⇒ β̄ = argmin
β

1

2
‖y −XTβ‖22 +

1

2
λ‖β‖22

This results in a formulation where the loss function itself is regularized to
achieve a trade-o� between the minimization of the residual and that of the ℓ2

norm of the coe�cient. Thus there are equivalent formulations of a constrained

least-squares problem

minimize
β

‖y −XTβ‖22 subject to ‖β‖22 ≤ t (1.12)

and a regularized least-squares problem

minimize
β

‖y −XTβ‖22 + λ‖β‖22 (1.13)

with solution

β =
(

XXT + λI
)−1

Xy (1.14)

1.2 The Least Absolute Shrinkage Operator

Another way to regularization consists in variable selection, that is computing the
least-squares estimator on only a subset of the variables, quali�ed as active. The
original motivation was not so much to �nd a better bias-variance compromise,
as to provide a simpler model, best suited for interpretation or manual computa-
tions, avoiding the unnecessary use of variables with a small contribution, that
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can be assimilated to noise. The problem of �nding the best subset of a given
size k in the sense of minimizing the squared residual or a similar loss function is
known to be NP-complete, that is all possible subsets must be considered and the
corresponding estimators computed. This aspect and the motivations correspond
to the setting of straight linear regression, where the number of original, natural
predictors is already relatively small.

In this framework, the research �rst concentrated on �nding alternative cri-
teria to least-squares for choosing the best subset. A noticeable result was Colin
Mallows' Cp criterion in (Mallows, 1973), that is in essence a normality test on
the residual. Using such a criterion yields a good bias, resulting in the following
regularization procedure:

• enlarge the set of possible estimators, from the unique least-squares one to
the partial least-squares on all subset of variables;

• choose among them from a criterion that, unlike the least-squares, takes
the noise into consideration and is not biased towards over�tting.

This procedure crosses two di�erent criteria by a �rst selection based on one,
followed by a choice based on another one.

The e�ect of variable selection in itself on over�tting can be understood by the
following: if a variable is used that is only negligibly correlated to the response,
this variable is as much correlated to the noise as to the mean response, and
will be �used� as such by the least-squaresprocedure. Thus the presence of such
variables gives degrees of freedom to the least-squares to �t the noise. When
they are numerous, the simple fact of bounding the number of selected variables
and select among them by the least-squares criterion can prevent over�tting. We
have mentioned that best-subset problem is NP-complete, and that is why some
alternative but similar selection procedures were developed.

The �rst noteworthy one, called stepwise regression, consists in selecting or
eliminating variables in a sequential greedy fashion, that is by considering the
immediate, local e�ect of these actions. It was �rst designed and used by many
practitioners, the �rst written account appearing in (Draper and Smith, 1966).
The natural way to proceed when only a few variables need be eliminated is
through backward elimination: starting from the full least-squares solution, one
estimates the contribution of each variable by some statistical test and removes
the least important one. The partial least-squares solution is then computed
on the reduced set and the operation repeated. The opposite procedure, called
forward selection, consists in starting from the null solution and sequentially
select the most locally important variable, locally referring to the sequence of
steps, that is these steps design a sequence of estimators f̂i, each step selecting
the most useful variable to reduce the current remaining residual y − f̂i(x). In
this case the least-squares criterion itself can be used, the contribution of each
variable to the squared residual being assessed by the derivative of the latter
with respect to the formers. This approach can be quali�ed as greedy, because
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the addition of the most locally useful variables is not equivalent to the most
useful set of variables, especially given that these variables are not considered for
removal along the sequence. This method is satisfying when a few variables need
be selected, since no great drift (discrepancy between local and global bene�t)
can occur in a few steps. These two approaches can however, given their greedy
nature, give unoptimal results when a good and sparse estimator is to be found
in a middle range of number of active variables, like 20 to 80 out of 100.

Another alternative to best-subset selection was proposed in (Tibshirani,
1996). It consists in replacing a constraint on the number of active variables
by a constraint on the sum of the absolute value of the coe�cients. This expres-
sion is usually referred to as the ℓ1 norm of the coe�cient vector. The constraint,
added to the least-squarescriterion, gives the following Least Absolute Shrinkage
and Selection Operator (LASSO):

minimize
β

n∑

i=1

yi − xi
Tβ subject to

m∑

i=1

|βi| ≤ t

or equivalently

minimize
β

‖y −XTβ‖22 subject to ‖βi‖1 ≤ t (1.15)

The term operator is generally used to designate a function of which the
value cannot be obtained by straightforward computation, from an analytical
formula, but requires an algorithmic approach. This is the case here, since an
estimator is a function of the observations and possibly of some parameters, that
has an analytical formulation like (1.8) in the least-squares case, or (1.14) for
ridge regression, but no closed-form expression of the LASSO estimator can be
given.

A motivation for bounding the ℓ1-norm is that the number of nonzero co-
e�cients, which is the bounded variable in best subset selection, is sometimes
referred to as the ℓ0-norm. Although not a true norm, it is the limit of ℓα-norm
when α tends to zero : for a vector v of Rn,

n∑

i=1

1vi 6=0 = lim
α→0

n∑

i=1

|vi|α ,

where 1a equals one when assertion a is true and zero when it is false.

The ℓ1-norm is the closest norm to ℓ0 to be convex, thus making an interest-
ing substitute that combines sparsity properties and computational feasibility.
The relations between the norms, and the sparsity and convexity properties are
illustrated in �gures 1.2 and 1.3.
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Figure 1.2: Di�erent ℓq-norms in R2, for q = 1/5, 1/2, 1, 2; ℓ1 is the �rst convex
one (with q increasing), and also the last one with an �angular� property of
presenting vertices where one or several attributes are zero.
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0

Figure 1.3: Interaction of the ℓ2-norm of the residual (loss) and ℓ1-norm of the
coe�cient, in the coe�cient-space view.
Their convexities (assuming the loss is strictly convex) make both the minimizer
of the loss under the ℓ1-norm constraint, and the minimizer of the norm under
the quadratic loss constraint, unique and lying on the surfaces of the constraints,
as long as one does not include the centre of the other. This reciprocal unicity
de�nes a bijection between corresponding values of t and C. The point βt/C

is the common solution to both problems of this example. Given the angular
property of the ℓ1-norm, the smaller the constraint t, the more likely βt/C is to
lie on one of its vertices.
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The closeness of ℓ1 and ℓ0 regularizations can be studied through the ability
of ℓ1-regularized estimators to recover the non-zero variables in a sparse model
to which noise was added. In (Donoho and Stodden, 2006), through geometri-
cal analysis and experimental illustration, a phase transition phenomenon was
identi�ed between settings for which this recovery is e�cient, and complemen-
tary settings for which the ℓ0 minimization remains a hard (combinatorial) task.
The settings on which this transition is identi�ed are the sparsity of the original
model (or signal), and the number of observations, both relatively to the number
of variables to select from. A subsequent work in (Xu et al., 2010) showed ℓ1/2

regularization to be a good compromise between the recovery property of ℓ0 and
the feasibility of ℓ1, as the recovery improves only slightly for q < 1/2, while ℓ1/2

regularization remains reasonably feasible, by an algorithm they proposed in (Xu
et al., 2010), that solves a sequence of re-weighted ℓ1-regularized problems (the
penalization factors w in the LASSO de�nition given in section 1.2.2 are updated
at each step).

1.2.1 Algorithms for solving the LASSO

Problems similar to the LASSO were studied before, like least-squares under
linear constraints or quadratic programming. Hence, together with the de�nition
of the problem, two algorithms were proposed in (Tibshirani, 1996) that were
derived from methods de�ned for these problems. The �rst one was adapted
from the Non-Negative Least-Squares (NNLS) method de�ned in (Lawson and
Hanson, 1974), that solves, as its name suggests least-squares problems under
non-negativity constraints, and equivalently under arbitrary linear constraints.
The adaptation is somewhat confusing; it is based on the statement that the
number of constraints induced by the ℓ1-norm one is 2p (if p is the number
of variables), that is the variables of the NNLS are all possible subsets of the
regression variables. The second proposition, that is said to be a completely
di�erent approach, is to formulate the LASSO as a quadratic program (QP) and
use standard QP algorithms. The summary of these two methods is that one has
p variables and 2p constraints, whereas the second has 2p variables and 2p + 1

constraints. The derivations of algorithms made throughout chapter 2 should
clarify that the application of NNLS to the LASSO is more straightforward and
involves only p or 2p variables.

The following noticeable proposition of LASSO algorithms was made in (Os-
borne et al., 2000a), and the �rst method is actually equivalent to a proper
adaptation of NNLS to the LASSO, as will be shown in chapter 2; this algo-
rithm was called the active set method. The second one, called the homotopy

method, allows to compute the LASSO estimators for all meaningful values of
the constraint parameter t, with little extra cost.

The third important publication was (Efron et al., 2004), in which the connec-
tion between an improved form of forward selection, forward stagewise regression,
and the homotopy method is made, through the LARS algorithm. This caused a
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growing interest in the LASSO, and the LARS algorithm is now usually known,
used and cited for its LASSO modi�cation, which is essentially the homotopy
method, and the homotopy method known as the LARS algorithm.

One of the reasons for the success of the LARS formulation is probably that
it addresses the alternative regularized formulation of the LASSO. Indeed, just as
for ridge regression, there is an equivalence between eq. (1.15) and the following:

minimize
β

‖y −XTβ‖22 + λ‖βi‖1 (1.16)

The equivalence between the problems (1.16) and (1.15) is often mentioned in
the literature about the LASSO, but � as it seems � never explicited, that is given
a proof and/or a characterization of the relation between the two regularization
parameters. The two problems are even sometimes said to be simply �closely
related� rather than equivalent. This equivalence cannot be derived as simply as
was done for ridge regression in section 1.1.5, but can be seen as a rather simple
application of Lagrange multipliers for convex optimization. However, rather
than exposing this here, we characterize this relation in sectionsec:t-lambda,
after the value of λ associated to a given t emerges from the derivation of an
algorithm made in section 2.2.2.

An alternative approach for solving the LASSO appeared in (Fu, 1998), and
under di�erent forms in other publications, but raised a real interest only recently
after it was presented and generalized in (Friedman et al., 2007). It consists in
using a simple and general optimization technique used by practitioners but sub-
ject of only a few theoretical publications, and generally referred to as coordinate

descent. The algorithm is explained in section 2.5, and further discussed.
The active set method and the equivalent NNLS algorithm did not raise

a great interest for various reasons, among which a misunderstanding of the
problems equivalence, and the fact that it addresses the constrained formulation
(1.15). The next chapter aims at giving a general form of this algorithm and
applying it to the LASSO as simply and clearly as possible. A prior step made in
the following is to explicit the relation of the LASSO to quadratic programming,
and more generally how the ℓ1 norm of the coe�cient can be translated to be
handled more easily. Prior to this, let us reformulate and generalize the LASSO
problem.

1.2.2 Extended de�nition

The �rst reformulation concerns the distinction between straight linear regres-
sion on measured variables and extended linear regression in a feature space. As
pointed out, no such distinction need be done, and we take the following ap-
proach: the predictor X belongs to a set X that need not be speci�ed or be of a
numerical nature, and is described by p numerical features obtained from a set of
feature functions σ = {φ1, . . ., φp} ⊂ RX . In other words, no distinction is made
between natural measurements or characteristics, and mathematical functions
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applied to them; they are all feature functions from X to R. The value of x ∈ X
in the feature space is given by

φ(x) = (φ1(x), . . ., φp(x))
T ,

and the descriptions of the n observations of X are aggregated in

X =





| |
φ(x1) . . . φ(xn)

| |



 =






� φ1(x) �
...

� φp(x) �




 =






φ1(x1) . . . φ1(xn)
...

...
φp(x1) . . . φp(xn)






The second change made in the de�nition of the LASSO is related to a point
not mentioned before: the normalization of the features. Indeed, when selecting
features by penalizing their coe�cients, it is natural to ensure that these coef-
�cients are comparable, in the sense that they have similar ranges of e�ect on
the estimator. This means normalizing the features, that is scaling them by the
inverse of their norm:

φ← 1

‖φ‖2
φ

The exact norm of a feature is not generally accessible; it is given by

‖φ‖22 =
∫

X
φ(X)2 dX ,

which implies having an analytical form of φ, being able to integrate its square,
and knowing the probability distribution of X. Hence the following empirical
estimation may be used:

‖φ‖22 ≈ ‖φ(x)‖22 =
n∑

i=1

φ(xi)
2

This estimation is even justi�ed in itself by the fact that the e�ects of each
feature to the observations are compared, thus they should be normalized with
respect to these observations. Yet an argument for using the real norm or a closer
approximation is that the e�ects on unobserved points should and can be taken
into account to limit the variance. Another point is that one does not necessarily
want a �fair� comparison of features, but may a priori favourize or penalize them
di�erently, from a prior belief that some have better generalization properties.
Whatever form of normalization is chosen and di�erentiated penalization is made,
it is worth including it explicitly in the de�nition of the LASSO, rather than just
mentioning the need or possibility of a prior rescaling of the features. It can
be shown straightforwardly that scaling a feature by a division is equivalent to
multiply its coe�cient in the penalization term, by the same factor. Thus we
add to the de�nition of a LASSO problem a penalization factor w associated to
each feature.
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A third change, made possible by using a notion of feature functions rather
than variables, acknowledges the fact that since a selection of a �nite number of
features is operated by the ℓ1 constraint, there is no need to restrict to a �nite
number of �candidate� features, which is implied by using the matricial form of
(1.15) or (1.16). Problems may occur in the feasibility of algorithms in non-�nite
cases, but this does not a�ect a proper de�nition of the operator, which is the
following, with the three di�erences that were just mentioned:

De�nition: LASSO Given

• n observations (xi, yi)1≤i≤n of joint variables (X,Y ) ∈ X×R,

• a set of feature functions D ⊂ RX ,

• a feature penalization function w : D → R+,

• a constraint t ∈ R+ or a regularization parameter λ ∈ R+,

the LASSO associates to the observations an estimator de�ned as a linear

combination of features from D that minimizes the squared residual subject to a

weighted ℓ1-norm constraint on the linear coe�cient vector:

minimize
(σ,β)∈2D×R

‖y −Xσ
Tβ‖22 subject to ‖β‖wσ ,≤ t , (1.17)

or the squared residual with a corresponding additive regularization term:

minimize
(σ,β)∈2D×R

‖y −Xσ
Tβ‖22 + λ‖β‖wσ , (1.18)

where σ, referred to as the active set, is a �nite subset of features, arbitrarily

ordered: σ = {φ1, . . ., φk} ⊂ D, β is an associated coe�cient vector, of which no

component is zero,

x =






x1
...

xn




 , y =






y1
...

yn




 , wσ =






w(φ1)
...

w(φn)




 ,

Xσ =






� φ1(x) �
...

� φk(x) �




 =






φ1(x1) . . . φ1(xn)
...

...

φk(x1) . . . φk(xn)




 ,

and ‖·‖w denotes a weighted ℓ1 norm:

‖v‖w =
∑

i

wi|vi|
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1.2.3 LASSO programming

The speci�city of the ℓ1 norm, that gives both its selection property and the im-
possibility to derive a closed-form solution to the LASSO, is its non-di�erentiability
at points where a coe�cient is zero. However, if a coe�cient is constrained to
have a given sign, the ℓ1 norm is di�erentiable with respect to that coe�cient,
or, equivalently, the derivative with respect to a coe�cient is de�ned everywhere
but at points where this coe�cient is zero:

βi ≥ 0 =⇒ ∂‖β‖w
∂βi

= wi

∂‖β‖w
∂βi

=







wi if βi > 0

unde�ned if βi = 0

−wi if βi < 0

This gives two equivalent ways of handling this norm. The �rst can be called
the positivity trick and consists in doubling the set of features by adding the
negative counterpart of each of them:

D ← D ∪ {−φ |φ ∈ D}

This allows to impose a positivity constraint on the coe�cients, since −βφ can be
replaced by β(−φ). Under this positivity condition, the ℓ1 norm can be written
as a simple linear expression:

‖β‖w =
∑

i

wi|βi| =
∑

i

wiβi = wTβ

Whence, the ℓ1 norm constraint can be decomposed into positivity constraints
and what we shall call an oblique constraint:

β ≥ 0 (1.19)

wTβ ≤ t (1.20)

at the price of doubling the set of features. This results in a quadratic program:
minimize a quadratic function function of β under linear constraints. However, a
direct application of a general QP solver is not a good solution, for two reasons:

• there is a unique oblique constraint, and rather than de�ning an additional
slack variable, it can be handled explicitly, as will be seen in section 2.1;

• the number of variables (features) is only arti�cially doubled, and an algo-
rithm can easily factorize the computations regarding one feature and its
negative counterpart.
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An alternative and equivalent way of handling the ℓ1 norm is by monitoring

the coe�cients signs: a feature may be selected together with a condition on
the sign of its coe�cient, that allows to di�erentiate ‖β‖w. When an algorithm
is navigating in the coe�cient space in search of an optimal solution, it should
then monitor the signs assumptions, to unselect a feature when it is violating
the assumption under which it was selected. This sign monitoring view is more
cumbersome and related to characteristics of an algorithm. Therefore, we shall
use the positivity trick in the following chapter, that exposes the principles of
the active set method and its application, from the general case to LASSO pro-
grams. The sign monitoring view will be used when exposing the precise and
implementable active set and homotopy algorithms for the LASSO.





Chapter 2

Active set Algorithms

In this chapter, we derive the general active set descent method and its applica-
tion to LASSO, in either constrained or regularized formulation, and derive from
there the homotopy method. Although these two methods have already been
presented in the literature, even twice for the second one, this chapter yields sev-
eral contributions. The �rst one is to give a simple and very general formulation
of the active set method, that is surprisingly absent from the literature. This for-
mulation yields a clear and simple application to the LASSO, that may be more
easily understood than those of (Osborne et al., 2000a) and (Osborne et al.,
2000b). One evidence of this is that the authors themselves did not realize that
the method applies directly to the regularized formulation of the LASSO, and
proposed instead to repeatedly switch from the regularized to the constrained
formulations, proceeding each time to a whole run of their algorithm before ad-
justing the constraint. Our formulation makes it clear that the active set method
applies, even more naturally, to the regularized version, and results in an even
simpler algorithm. This chapter also clari�es the equivalence relation between
the two LASSO formulations, which can be derived from the general duality the-
ory, but appears here in a practical and natural fashion, for the speci�c case of
the LASSO. The presentation of the homotopy method is also original by being
derived from the active set descent method, and using di�erent variables, aiming
at a simpler understanding and formulation of the algorithm. These two points
also allow to handle a degenerative case, which is made in the following chapter.

2.1 Solving the constrained problem on a given active

set

The selection property of the constraint is naturally the source of both bene�ts
and di�culties of ℓ1 regularization. If this part of the problem is left aside, that is
if the active set of a LASSO solution � that we may refer to as an optimal active
set� is assumed to be known, the remaining task reduces to the straightforward
computation of minimizing a quadratic function under a linear constraint.

The algorithms presented in this chapter proceed by repeatedly performing
this computation for successive active sets that are either assumed to be opti-
mal. The sequences of active sets are constructed by successive inclusions and
removals of one element, following considerations of �respectively� su�ciency

and necessity/feasibility.
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In this section, we detail this computation of a linearly constrained least-
squares problem, from which the notions of feasibility and optimality appear
naturally. This step also involves a Lagrange multiplier that leads to the reg-
ularized version of the problem and enlightens the relation between these two
formulations.

2.1.1 Optimality of an active set

Let us decompose the optimization problem into the sub-problem of �nding an
optimal active set and that of computing its coe�cient vector.

In the following,

• we refer to a problem reduced on a given subset of features as a restricted

problem (restricted least-squares(RLS), restricted LASSO), and to the orig-
inal problem as the full one;

• a coe�cient is quali�ed as feasible if it satis�es constraints that were ignored
in its computation and tested afterwards.

De�nition 5. A necessary active set is one on which the restricted LASSO zeroes

none of the coe�cients, i.e. presents no selection property.

De�nition 6. A su�cient active set is one on which the restricted LASSO

achieves an optimal loss (the same as the full LASSO), i.e. solving the restricted

LASSO yields a full LASSO solution.

Property 1. An active set is optimal if and only if it is necessary and su�cient.

Proof. This property is a trivial rewriting of the de�nition of a LASSO solution,
given the following property that may be worth noting: given a LASSO problem
on a set D of features, and a solution s = (σ,β), any feature that is not in σ can
be removed from D without a�ecting s being a solution of the new problem.

Property 2. On a necessary active set σ, the solution of the restricted linearly

constrained least-squares

minimize
β∈R|σ|

‖y −Xσ
Tβ‖22 s.t. wTβ ≤ t

(in which the positivity constraint is dropped) does satisfy the positivity constraint

β ≥ 0

(it is feasible).

Proof. If the minimizer of the loss on the linear constraint plane lies outside the
positivity simplex (the positivity, that was not imposed, is not veri�ed), and since
the loss is convex, the minimizer on this simplex (with positivity constraints, i.e.
the restricted LASSO solution) lies on its boundary, thus some components have
a zero value, and the active is not necessary.
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It should be noted that, although � by de�nition � a su�cient active set
contains (is a superset of) an optimal active set, a necessary active set need not
be a subset of an optimal one. The necessity of an active set only means that all
of its features are necessary (that is selected) in the restricted LASSO solution.

2.1.2 The computation step

Let us then assume the optimality of a given active set σ. This allows to discard
the inactive features and just consider the corresponding feature matrix and
penalization vector, that we shall just note X and w. This also allows, by
property 2, to discard the positivity constraint, leaving only the oblique one.
Positivity can be tested afterwards to assess the assumed su�ciency of the active
set. Hence we reduce (1.17) to

minimize ‖y −XTβ‖2 (2.1)

subject to wTβ ≤ t (2.2)

If the constraint (2.2) is active, that is if the unconstrained solution of (2.1)
violates it, then, by simple convexity arguments, the optimizer lies on the bound-
ary of the constraint, and the problem is equivalent to

minimize ‖y −XTβ‖2 (2.3)

subject to wTβ = t (2.4)

Let us solve this simpli�ed problem, regardless of the actual activity of the
constraint, since its possible inactivity will appear in this computation.

(2.4) de�nes an hyperplane on which we must minimize the convex and dif-
ferentiable loss function. This is a simple problem of which the unique solution
is characterized by the fact that the isosurface of the loss is tangent to the hy-
perplane at this solution point, that is the gradient of the loss is normal to the
plane. Instead of the gradient, we might consider its opposite, to have a direc-
tion that minimizes the loss, and might also halve it to simplify the equations.
The normality of this negative half gradient to the plane can be expressed as its
collinearity to the vector w, which is by de�nition normal to the plane. Thus β
is the unique solution of (2.3)(2.4) if and only if there exists a multiplier λ ∈ R

such that

−1

2
∇β‖y −XTβ‖22 = λw (2.5)

where the value of the constant factor to the gradient does not a�ect the validity
of the statement, and a value of −1

2 simpli�es further expressions:

(2.5) ⇐⇒ X(y −XTβ) = λw

(2.5) ⇐⇒ β = (XXT)−1(Xy − λw)
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which can be noted

(2.5) ⇐⇒ β = (XXT)−1Xy
︸ ︷︷ ︸

β∗

−λ (XXT)−1w)
︸ ︷︷ ︸

∆β

(2.6)

where β∗ is the unconstrained solution of (2.3), and ∆β can be seen as a regu-
larization direction.

The value of λ can be obtained by substituting β in (2.4):

wT(β∗ − λ∆β) = t

λ =
wTβ∗ − t

wT∆β
(2.7)

(2.6) and (2.7) transform � for a �xed, known, active set � the constraint
parameter t into a regularization parameter λ, that quanti�es how much the
constraint takes the solution away from the unconstrained one β∗, along a linear
direction. λ is a decreasing function of t, as appears trivially in a geometri-
cal representation (a larger feasible region gets closer to the exterior point β∗),
and appears analytically in (2.7) from the fact that the denominator wT∆β is
equal to wT(XXT)−1w and (XXT)−1 being positive-de�nite, this denominator
is positive, whence the factor of t is negative.

Since the computation that was just described involves more or less explicitly
that of the unconstrained solution β∗, the assumption that the constraint is
active can be checked by verifying that its ℓ1-norm wTβ∗ is greater than t. This
is equivalent to λ being positive. If it is negative, the constraint is inactive, and
the solution is the restricted least-squares β∗ corresponding to λ = 0.

This gives the following general solution of the LASSO, given an optimal
active set σ:







β = β∗ − λ∆β

β∗ = (XσXσ
T)−1Xσy

∆β = (XσXσ
T)−1wσ

λ = max(0, wσ
Tβ∗−t

wσ
T∆β

)

Figure 2.1 gives a geometrical illustration of this computation of a solution on
an optimal active set. Figure 2.2 illustrates the case where the assumed feasibility
(positivity of the coe�cients) is not ful�lled, thus indicating that the optimizer
lies on a reduced active set.

2.2 The active set descent method

The simplex algorithm ((Dantzig et al., 1954)) for solving linear programs, despite
a worst-case exponential complexity, has proven remarkably e�cient in practice,
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and easy to implement. The same principles have been applied to quadratic
programming with similar results, in di�erent settings and formulations. These
algorithms are usually referred to as the family of active set methods. Their
main common principle is to solve a minimization problem subject to constraints
by repeatedly solving sub-problems de�ned by a set of active constraints and
updating this set. An exposition of the most general forms of these algorithms
can be found in (Nocedal and Wright, 2000).

It should be �rst clari�ed that the term active set refers here to the more
general concept of constraints activity, as opposed to variable/feature activity.
However, these concepts usually coincide in practice, as will be seen below.

Regarding the plural form in methods, it usually refers, as in (Nocedal and
Wright, 2000), to the derivation of the same method for di�erent settings, like
convex or inde�nite QP, or for di�erent formulations (primal, dual, primal�dual).
It is also legitimate to consider the two other algorithms studied here (homotopy
and cyclical coordinate descent) as active set methods, since they do update a set
of active features/constraints; there is, at least, a possibility of confusion about
which methods may be included in this category.

We focus here on the general primal active set method for convex program-
ming. We start by giving its most simple and general form, that is for convex
but not necessarily quadratic programming. Surprisingly, no such exposition was
found in existing literature, and although it may not be of direct practical use,
it gives the core of the algorithm, which allows to understand and derive it more
easily. We then specify it for the case of convex quadratic programs without cov-
ering all aspects in details, and present its application to the more speci�c and
simple case of LASSO. In order to clarify the taxonomy of algorithms, we refer to
this primal method for convex programming, as the Active Set Descent (ASD)
method.

2.2.1 The active set descent method for convex programming

The general idea of the method is to follow a path on the surface of the constraint
polytope that corresponds to a sequence of adjacent active sets (a constraint is
activated or inactivated at each step), and on which the objective function is
monotonically decreasing to its minimum. The changes in the active set are
determined by considerations of su�ciency and necessity of the active set.

Let us �rst de�ne the problem using, for clarity, the classical notations of
optimization, in which x, or its components xi, are the variables on which a
function is optimized; they will correspond to the coe�cient β when applying to
regression, and should not be confused with the predictors. Let f be a strictly
convex function over Rm. We consider the problem of minimizing f under linear
inequality and equality constraints over its argument:
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Figure 2.1: Geometrical representation of the computation of a solution on a
known, or assumed, optimal active set {+φ1,+φ2}.
r is the residual y −XTβ.

1© the constraint polytope,

2© wTβ is its linearization, β1 and β2 being assumed/known to be positive
(eq. (2.4)),

3© β∗ is the least-squares solution (eq. (2.3)) with features φ1 and φ2,

4© an isocurve of the squared residual, C being the smallest value for which it
reaches the constraint polytope,

5© w is normal to the constraint

6© −1
2∇β‖r‖22 is normal to the isocurve, hence collinear with w (eq. (2.5)),

7© deriving (2.5)) gives the solution of (2.3)(2.4) as a translation of β∗ along
a regularization direction ∆β.
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Figure 2.2: From an assumed optimal active set {+φ1,+φ2}, disagreement of the
regularized least-square with the sign hypothesis, indicating a better solution β−

on the reduced active set {+φ1}.
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min
x

f(x) (2.8)

s.t.







gi
Tx ≥ ai, i = 1, . . .ng

hi
Tx = bi, i = 1, . . .nh

li
Tx ≤ ci, i = 1, . . .nl

(2.9)

By adding and changing variables, this problem can be reformulated in an
extended canonical form that simpli�es solving algorithms, in which inequality
constraints become positivity constraints. However, this reformulation will not
be necessary in the problems studied in this chapter, therefore we do not detail
this transformation.

Let us formalize the generalized de�nition of an active set by the following:
An inequality constraint is quali�ed as violated if it is not satis�ed, active if

equality holds, and inactive when a strict inequality holds. Similarly, an equality
constraint is either violated or active. The active set associated to a point x with
respect to a set of constraints can be de�ned as the set of all active constraints,
or that of all inactive constraints. These two de�nitions are equally worth in
the following, because only feasible points will be considered (no constraint is
violated), and an active set serves as an indication of which ones are active and
which ones are not. We do not actually mention active sets in the remaining of
this subsection, but simply the possibility of distinguishing between active and
inactive constraints.

The algorithm consists in making a variable x form a descent path by the
following rules:

1. all constraints that are active (equality holds) are temporarily �xed as
active and become forced equalities;

2. all inactive constraints are disregarded to compute a minimizer only subject
to the active (equality) constraints, toward which x is moved up to the �rst
point where a constraint is activated, if any;

3. when an optimal and feasible point w.r.t. these forced constraints has been
reached, improve, if possible, by inactivating one of them.

In rule 3, the constraint is more precisely considered as inactive, or made
potentially inactive: although no change is made in x � leaving the constraint
active � the equality is not �xed anymore, which leads to its actual inactivation
by rule 1. It should also be noted that equality constraints cannot be inactivated,
since they can only be active or violated. The formal sketch of the method is
given in Algorithm 1.

The convergence of this algorithm is ensured by the descent property: the
objective function is decreasing at each inactivation or activation of a constraint,
and stopping only at a local minimum which is also global from the convexity of
f . As for the simplex algorithm, a cycle can occur and prevent convergence only
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Algorithm 1 active set descent method for convex programming
Inactivation consists in allowing an inequality constraint to hold strictly (inactive) rather

than being forced into an equality (active constraints) in line 4

Input: convex function f , linear equality and inequality constraints
Output: a minimizer of f subject to the constraints

1: x← feasible point:
all constraints are satis�ed, and either inactive (strict inequality) or ac-

tive (equality)
2: loop

3: repeat

4: �nd a minimizer x̄ of f subject to the active constraints
5: move x linearly towards x̄

(
x← x+ γ(x̄− x), γ going from 0 to 1

)

up to the �rst activation of an inactive constraint.
6: until no new activation
7: if inactivating an active constraint yields an improvement then
8: consider it inactive
9: else

10: return x

11: end if

12: end loop

in some degenerate cases where a constraint inactivation yields an immediate
activation of at least two other constraints, leading to successive activations and
inactivations without decreasing in f , possibly looping. Most of the analyses and
workarounds made on the simplex algorithm, (see (Dantzig, 1998) for a review),
like the lexicographic method, can be transposed to the active set method. If no
such unproductive inactivation occurs, there can be no cycle, since this can only
happen on a sequence where f is not decreasing, meaning a sequence containing
only constraint activations, and a constraint cannot be activated twice without
being inactivated in between.

The number of steps is guaranteed to be less than the number of possible
active sets, since each time one is considered, f is minimized over it, hence all
subsequent steps, where f is necessarily lower, necessarily involves di�erent active
sets.

2.2.1.1 Case of a di�erentiable objective function

A practical implementation of the method is made easier by the di�erentiability
of the objective function f and by the reformulation of the problem in a canonical
form.

The di�erentiability of f , or more precisely its sub-di�erentiability, allows to
determine if inactivating a constraint can decrease f , and is of great help for the
step of minimizing it under the active constraints.
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The reformulation consists in associating an additional slack variable to each
inequality constraint, so that they are equivalent to their associated variable be-
ing positive, and then rewrite x as a (linear) function of these new variables, so
that each variable is associated to a (positivity) constraint. Up to some mainte-
nance of the rewriting of x, the problem is then equivalent to one of canonical

form

minimize f(x)

subject to

{
Ax = b

x ≥ 0

in which inactivating a constraint is equivalent to activating a variable. This
form allows to de�ne the active set, as previously, as the set of active variables.

The operation of minimizing f under the active constraints (i.e. over the ac-
tive variables) can be handled in di�erent ways for the native equalities Ax = b

(Lagrange multipliers or variable elimination), and by direct elimination for the
activated constraints, that amounts to zeroing a variable. In all cases, the con-
strained minimization is equivalent to the simple minimization of an alternative
or reformulated function (the Lagrangian or the rewriting with eliminated vari-
ables) that we refer to as f̄σ.

In the step of taking x to x̄ up to the �rst activation of an inactive constraint,
one must now monitor which active variable becomes inactive (is zeroed) �rst, on
the way from x to x̄. xi being an active variable (i ∈ σ), let γi be the translation
factor that zeroes xi:

xi + γi(x̄i − xi) = 0

i.e.

γi =
x̄i − xi

xi

The �rst zeroing on the way from x to x̄ translates to the lowest among those
that lie in [0, 1]:

γ = argmin
i ∈ σ

(
x̄i − xi

xi

)

∈ [0,1]

The step where constraints are considered for inactivation now consists in
�nding an inactive variable xi with respect to which the derivative of f̄σ∪{i} is
negative (thus lessening f̄ when getting a positive coe�cient). As for the simplex
algorithm, the greedy strategy of activating the one having the most negative
derivative is generally a good choice.

The resulting speci�cation of algorithm 1 for di�erentiable canonical convex
programs is given in algorithm 2.
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Algorithm 2 active set descent for di�erentiable canonical convex programming

De�nition: For any set σ of inactive constraints (active set), let f̄σ be a
function such that argmin f̄σ = argmin f s.t. all active constraints (initial
ones and those induced by σ), using Lagrange multipliers or variable elimi-
nation.
Input: di�erentiable convex function f , linear equality constraints, and non-
negativity constraints on certain variables
Output: a minimizer of f subject to the constraints

1: x← feasible point (usually 0 or an informed guess)
2: σ ← {i |xi > 0}
3: loop

4: repeat

5: x̄← argmina f̄σ(a)

6: (γ, i)← min, argmini ∈ σ

(
xi

xi−x̄i

)

≥0
7: if γ ≤ 1 then

8: x← x+ γ(x̄− x)

9: σ ← σ \ {i}
10: end if

11: until γ ≥ 1

12: x← x̄

13: i← argmini /∈ σ
∂f̄σ+i(x)

∂xi

14: if ∂f̄σ+i(x)
∂xi

< 0 then

15: σ ← σ ∪ {i}
16: else

17: return x

18: end if

19: end loop
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2.2.2 active set descent for the LASSO

Let us �rst reproduce in Algorithm 3 the sketch of the NNLS algorithm � men-
tioned in section 1.2.1 � as published in (Lawson and Hanson, 1974), so that
the reader can verify that it matches the active set descent applied to least-
squares with non-negativity constraints. Thus the task of deriving ASD for the
LASSO problem is equivalent to that in (Tibshirani, 1996) of deriving NNLS for
the same problem, and to the derivation of the active set method in (Osborne
et al., 2000a), although ours and (Osborne et al., 2000a) give a di�erent result
than (Tibshirani, 1996), and ours gives a di�erent insight of the method, and
di�erent further adaptations, compared to (Osborne et al., 2000a).

Algorithm 3 NNLS algorithm as given in (Lawson and Hanson, 1974)

As shown in the previous chapter, the LASSO program, when transformed
by the positivity trick, is indeed a convex quadratic program in canonical form,
except for the single oblique inequality, and with the property that a variable
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and its opposite are mutually exclusive and can be handled by pair.

Subsection 2.1.2 gives the minimization step that can be plugged in active set
descent. The technique of assuming that the LASSO is active (βleast-squares 6=βLASSO)
to cast the inequalities ‖β‖w ≤ t or wTβ ≤ t into equalities, which was used at
this minimization level, can alternatively be used at the main-loop level of the
algorithm: activity/equality is assumed from the start, and this assumption can
be checked after convergence from the sign of the last Lagrange multiplier, its
negativity showing that βLASSO = βleast-squares.

2.2.2.1 Plugging the LASSO program in the active set descent method

Let us switch back to the regression notations. To ease the transitions, let us
�rst assume a �nite set of features D = {φ1, . . ., φm}, extended by their opposites
{−φ1, . . .,−φm}, de�ne an active set by a list of integer indices σ ⊂ {1, . . .,m}∪
{−1, . . .,−m} and note φ−i = −φi. Let us note X the full predictor matrix, and
Xσ its restrictions to the active set, and use the same subscript notation for β
and w. For example,

X(4,−2) =

(
� φ4 �
� −φ2 �

)

.

The penalization w(φ) is always positive, thus it remains the same for +φ

and −φ. Therefore, the restriction of w to the active set ignores the signs in σ:

w(4,−2) =

(
w4

w2

)

Concerning β, its restriction to σ is the object the algorithm is building,
and there is an extension of βσ to β � when returning a solution, rather than
a restriction: given a sparse solution, e.g. βσ = (9, 8)T with σ = (4,−2), the
complete solution vector is β = (0,−8, 0, 9, . . . , 0, . . .)T.

The function to be minimized in the constrained formulation of the LASSO
is

f(β) = ‖y −XTβ‖22 .

The same function constrained to an active set σ is

fσ(βσ) = ‖y −Xσ
Tβσ‖22 .

We have seen in section 2.1.2 that the minimizer of the latter subject to the
additional constraint wσ

Tβσ ≤ t is characterized by the tangency equation (2.5);
this implies that it is also the unique minimizer of the corresponding Lagrangian
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Λ:

(2.5) : −1

2
∇βσ

fσ(βσ) = λwσ

⇐⇒ 1

2
∇βσ

fσ(βσ) + λwσ = 0

⇐⇒ ∇βσ

[
1

2
fσ(βσ) + λwσ

Tβσ

]

= 0

⇐⇒ βσ ∈ argmin
β

[
1

2
fσ(β) + λwσ

Tβ

]

︸ ︷︷ ︸

Λ(β)

This gives us the function needed for the algorithm: f̄σ = Λ, of which the
gradient is

∇βσ
f̄σ(βσ) = −Xσ(y −Xσ

Tβσ) + λwσ .

Its zeroing is equivalent to the correlation of all features being equal to λ times
their penalization:

−Xσ(y −Xσ
Tβσ) + λwσ = 0 ⇐⇒ ∀φ ∈ σ, φT(y −Xσ

Tβσ) = λw(φ)

but a complication may seem to arise in the fact that the Lagrange multiplier
is dependent on the active set: when testing if activating a feature yields a better
solution, the function to minimize should be that associated to the augmented
set ∂f̄σ+i

∂βi
= 1

2
∂f
∂βi

+ λσ+iwi. Unfortunately, the Lagrange multiplier λσ+i is not
known, and although its computation is possible, it amounts to solving a least-
squares problem, which is not desirable. Fortunately, the following property
holds:

Property 3. In order to test if the activation of a feature φi, a surrogate func-

tion f̃σ+i(βσ+i) = 1
2‖y −Xσ+i

Tβσ+i‖22 + λσwσ+i
Tβσ+i, that just �potentially�

activates φi, but keeps the current Lagrange multiplier, can be used.

Proof. This is a direct application of the Kuhn-Tucker conditions (introduced
in (Kuhn and Tucker, 1951), see e.g. (Nocedal and Wright, 2000) or (Nash and
Sofer, 1996)), that are both su�cient and necessary for a convex objective func-
tion. However, to follow the purpose of giving in this thesis a �standalone�
understanding of the concepts, the proof is given for this special case involving
a single Lagrange multiplier.

When no improvement is obtained from this augmented set, f̃σ+i, the min-
imizer on both sets is the same, which is characterized by the correlation of
features from σ being equal to λσ. Therefore, f̃σ is a valid function for minimiz-
ing over σ + i, and its gradient with respect to βi is positive. This means that,
by opposition, a feature can be activated on the basis of the associated gradient
being non-positive:

∂f̃σ+i

∂βi
≤ 0 ⇒ argmin

β

fσ+i(β) s.t. w
Tβ ≤ argmin

β

fσ(β) s.t. wσ
Tβ (2.10)
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We then show that a positive gradient on f̃σ+i implies that the restricted
LASSO minimizer on σ is also the restricted LASSO minimizer on σ+ i. Let β1

be this minimizer. If, when extending the active set with feature φi, the gradient
of the extended function f̃σ+i wrt. βi is positive, β1 remains the minimizer,
noting β2 the LASSO solution on σ + i, it satis�es

‖y −Xσ+i
Tβ2‖22 + λσwσ+i

Tβ2 ≥ ‖y −Xσ+i
Tβ1‖22 + λσwσ+i

Tβ1

Being a LASSO solution, it satis�es the positivity constraint:

wσ+i
Tβ2 = ‖β2‖w ,

hence

‖y −Xσ+i
Tβ2‖22 − ‖y −Xσ+i

Tβ1‖22 ≥ +λσ(‖β1‖w − ‖β2‖w) .

We have assumed the LASSO constraint ‖β‖w ≤ t to be active, that is, for the
LASSO solution, and for all restricted LASSO solutions, ‖β1‖w = t, the second
term is thus zero, whence,

‖y −Xσ+i
Tβ2‖22 = ‖y −Xσ+i

Tβ1‖22

and β1 is a restricted LASSO solution on σ + i. Thus,

∂f̃σ+i

∂βi
> 0 ⇒ argmin

β

fσ+i(β) s.t. w
Tβ = argmin

β

fσ(β) s.t. wσ
Tβ (2.11)

This speci�cation of Algorithm 2 to the LASSO problems is formalized in
Algorithm 4.

In line 16 of the algorithm, where inactive features are considered for acti-
vation, the minimum is taken over the doubled set that includes the negative
features. This is the only point where the doubling may induce a computational
cost. However, a feature φi and −φi can be considered at the same time, as the
sign of φi(y−Xσ

Tβσ) determines which of them gives the lowest value: following
the simple equality

min(a− b, a− (−b)) = a− |b| ,

line 16 can be replaced by

i = argmin
i ∈ {1,...,m}\σ

[g(i) = λiwi − |φi(y −Xσ
Tβσ)|]

and the sign of the selected feature is that of φi(y −Xσ
Tβσ). This makes the

doubling of the feature set more virtual, as it now only appears through the
use of negative signs in σ, which can equally be seen as discriminating φi's and
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Algorithm 4 active set descent for the linear LASSO (predictors ∈ Rp)
This is a direct application of Algorithm 2 after turning the LASSO into a QP
problem by the positivity trick.

Input: response vector y ∈ Rn, predictor matrix X =





� φ1 �
...

� φp �




 ∈ Rn×p, penalization vector w ∈ R

p
+, constraint t ∈ R+

Output: LASSOc(X,y,w, t) = argminβ ∈ Rp ‖y −XTβ‖22 s.t. ‖β‖w ≤ t

De�nition: I = {−p, . . .,−1, 1, . . ., p}, φ−i = −φi

1: β ← feasible point (‖β‖w ≤ t, usually 0 or an informed guess)
2: σ ← {sign(βi)i |βi 6=0}
3: loop

4: repeat

5: β∗ ← (XσXσ
T)−1Xσy

6: ∆β ← (XσXσ
T)−1wσ

7: λ← wTβ∗−t
wT∆β

8: β̄ ← β∗ − λ∆β

9: (γ, i)← min, argmini ∈ σ

(
βi

βi−β̄i

)

≥0
10: if γ ≤ 1 then

11: βσ ← βσ + γ(β̄ − βσ)

12: σ ← σ \ {i}
13: end if

14: until γ ≥ 1

15: βσ ← β̄

16: i← argmini ∈ I\σ[g(i) = λwi − φi
T(y −Xσ

Tβσ)]

17: if g(i) < 0 then

18: σ ← σ ∪ {i}
19: else

20: return β

21: end if

22: end loop
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(−φi)'s, or as accounting for the sign of βi's. One might �nd it more convenient
to explicitly switch back to the sign-monitoring view when de�ning a practical
algorithm. This means handling the signs in β rather than in σ, and the emer-
gence of the sign vector sign(β) in some expressions. More precisely, this sign
can be systematically associated to wσ, forming the gradient of the weighted
ℓ1-norm:

∂‖β‖w
∂βi

= wi sign(βi) .

An other noteworthy point is that the algorithm is more easily stated and
implemented by using and storing explicitly the gradient that we note θ and can
be thought of as a weighted sign vector, or a signed penalization vector:

θσ = ∇βσ
‖βσ‖wσ (2.12)

=
(
wi sign(βi)

)

i ∈ σ
(2.13)

The algorithm 5 uses this alternative formulation. It also abandons references
to a �nite, indexed set of features: the set D of possible features is arbitrary, and
these features apply to an arbitrary initial input set X , σ represents a �nite
subset of D, with no consideration on its actual representation. Given a feature
φ, φ denotes the vector (φ(x1), ·, φ(xn))T corresponding to a row of X, and βφ
denotes the coe�cient associated to φ when it is active.

2.2.2.2 Contribution with respect to the active set algorithm of (Os-

borne et al., 2000a)

Both formulations Alg. 4 and Alg. 5 are essentially the descent method presented
in (Osborne et al., 2000a; Osborne et al., 2000b). In the latter, it is said to be
a standard active set method of which �the interest lies in the treatment of the
active constraint�. This basically refers to the way the special shape of the ℓ1-
norm constraint is handled. We have explained the two possible approaches
(positivity trick or sign monitoring) in section 1.2.3. The authors of (Osborne
et al., 2000a; Osborne et al., 2000b) chose the sign-compliance method whereas
we chose to use the positivity trick throughout this chapter. Another di�erence is
that we do not include a side element of the algorithm of (Osborne et al., 2000a)
which is the possible direct activation of −φ after the inactivation of a feature φ.
This is a minor point of the algorithm that can slightly � on empirical evidences
� improve the convergence time, but we wish to present, as clearly as possible,
the core of this method.

Another contribution of this section is naturally to formulate the method in
the larger setting of the LASSO problem that includes penalization factors and
an arbitrary set of features.

But more importantly, the motivation of the present formulation and expla-
nations is to make them as simple and natural as possible. We have taken a
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Algorithm 5 active set descent for the featurized constrained LASSO (arbitrary
feature set)
Sign monitoring is used, rather than positivity trick as in Algorithm 4.

Input: input vector x ∈ X n, response vector y ∈ Rn, feature dictionary
D ⊂ RX , penalization function w : D → R+, constraint t ∈ R+

Output: LASSOc(x,y,D,w, t) = argmin(σ,β)∈2D×R ‖y −
Xσ

Tβ‖22 s.t. ‖β‖wσ ,≤ t

De�nition: For a feature function φ ∈ D, the bold notation denotes the
application of φ to the input vector x: φ = φ(x) = (φ(x1), . . ., φ(xn))

T.
1: σ ← {},X← [],θ ← ()

2: loop

3: repeat

4: β∗ ← (XXT)−1Xy

5: ∆β ← (XXT)−1θ

6: λ← θTβ∗−t

θT
∆β

7: β̄ ← β∗ − λ∆β

8: (γ, φ)← min, argminφ ∈ σ

(
βφ

βφ−β̄φ

)

≥0
9: if γ ≤ 1 then

10: β ← β + γ(β̄ − β)

11: σ ← σ \ {φ}
12: shrink X,β,θ accordingly
13: end if

14: until γ ≥ 1

15: β ← β̄

16: φ← argminφ ∈ D[g(φ) = λw(φ)− |φT(y −XTβ)|]
17: if g(φ) < 0 then

18: σ ← σ ∪ {φ}
19: extend X by row φ, β by 0, and θ by w(φ) sign(φ(y −XTβ))

20: else

21: return (σ,β)

22: end if

23: end loop
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somewhat di�erent angle, trying to rely on simple notions with the least refer-
ences to general results like the general theories of Lagrange multipliers, dual-
ity, and Kuhn-Tucker conditions. We also left aside technical points or issues.
One of them is the possibility, and bene�ts, of handling the successive least-
squares problems by updating a decomposition of the Gramian matrix XσXσ

T,
that we discuss in section 2.4.1.

This, we hope, should give the reader a more intuitive view on the LASSO
problem and the active set descent algorithm, and clarify some points like the
relations between the constraint t, the multiplier λ and the active set σ. In
the following, we look further into these relations and the equivalence of the
constrained and regularized versions of the LASSO, before deriving the active
set descent for the latter. This derivation is the main bene�t of our exposition
of the active set descent method, since its idea and validity arise naturally from
it, whereas it did not appear to the authors of (Osborne et al., 2000a) or their
readers.

2.2.2.3 On the equivalence between the constrained and regularized

formulations of the LASSO

We have seen that given an optimal active set σ∗, the solution β(t)of the LASSO
with constraint t is of the form

β(t) = β∗
σ∗ − λσ∗∆βσ∗

where all terms depend on σ∗, but only λ depends �linearly� on t: λ = wTβ∗−t
wT∆β

.

β∗ is the unconstrained restricted least-squares on σ∗, ∆β is a regularization
direction, and λ can be seen as translating the constraint t into how much β(t)

is �taken away� from β∗ in that direction (see Fig. 2.1).
We have also seen that β(t) is the minimizer of the Lagrangian

1

2
‖y −Xσ∗

Tβ‖22 + λσ∗wσ∗
Tβ

which, given the feasibility of σ∗, is equal to

1

2
‖y −Xσ∗

Tβ‖22 + λσ∗‖β‖wσ∗

σ∗ being optimal, by de�nition, a lower squared residual cannot be achieved
�while staying within the constraint� by extending it. Hence β(t) is the minimizer
of this Lagrangian over the whole set D, and

argmin
(σ,β) ∈ 2D×R

‖β‖wσ≤t

‖y −Xσ
Tβ‖22 = argmin

(σ,β) ∈ 2D×R

1

2
‖y −Xσ

Tβ‖22 + λ(t)‖β‖wσ (2.14)
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where

λ(t) =
θT(Xσ∗Xσ∗

T)−1Xσ∗y − t

θT(Xσ∗Xσ∗
T)−1θ

, (2.15)

σ∗ is an optimal active set, and θ is the penalized sign vector of the solution (see
Eq. 2.12).

This establishes the equivalence of the constrained and regularized formula-
tions of the LASSO. The inter-dependencies between the de�nition of the problem
and parts of its solution (θ and σ∗) seem cumbersome, but we are just interested
in showing that for each value of t, there exists a positive regularization parame-
ter λ for which the two problems admit the same solution. We are also interested
in characterizing the relation between the two parameters, rather than having a
computable expression of one as a function of the other.

Before examining the properties of λ(t), let us consider how the problem
itself and its solution behave as functions of t. It is trivial to note that, from the
convexity of the objective, the solution evolves continuously with t.

Another trivial result is that if D is �nite, so is the number of possible active
sets, which implies that optimal active set remain optimal on a whole nonempty
interval of the parameter.

The limit values of t are

• t0 = 0 for which the only admissible solution is σ = ∅ (i.e. β = 0),

• tLS for which the constraint �rst reaches an unconstrained least-squares so-
lution.

Thus the problem path for t going between these values yields a continuous
path of solutions, de�ned on successive active sets. On an interval for which the
optimal active set is constant, the expression (2.15) for λ indicates that λ evolves
linearly with t. Moreover, it is decreasing in t, as previously mentioned, from the
positive-de�niteness of (XXT)−1.

The continuity of the problems and solutions of the constrained form and the
similar continuity of the regularized form induce that λ is necessarily continuous
in t. Thus λ is a continuous, decreasing, piecewise linear function of t, of which
an example can be seen in �gure 2.3.

The limit values of λ are

• λLS = 0 for which the problem is an unconstrained least-squares,

• λ0 beyond which the constraint dominates the objective and the solution
is σ = ∅.

Contrary to the bound tLS that cannot be computed independently of the
corresponding solution, λ0 corresponds to the known, trivial solution σ = ∅, and
can be computed a priori from the following.
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Figure 2.3: An example of the continuous, decreasing, and piecewise linear rela-
tion between the parameters λ and t of equivalent constrained and regularized
forms of a LASSO problem.

∅ is an optimal active set if and only if no feature activation can decrease the
objective, which in terms of derivatives gives

∀φ ∈ D, φT(y − 0)± λwφ ≥ 0 ,

and the smallest value of λ such that this is veri�ed is

λ0 = max
φ ∈ D

|φTy|
wφ

Another interesting point to note about the path of parameters in between
their limit values is about the break points where the active set changes. From
the continuity of the solutions, a change occurs from the coe�cient of a feature at-
taining zero, or becoming nonzero. In both cases, the active set is changed by only
one element (except for degenerate cases that will be discussed in section 3.1),
and the change is closely related to the conditions for activation/inactivation in
the active set procedure. This consideration leads to the homotopy algorithm
presented in section 2.3.

After having established the equivalence and explicited the relation between
the two formulations of the LASSO, we can examine how the active set de-
scent method can be applied to the regularized LASSO.
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2.2.3 Active set descent for the regularized LASSO

The application of active set descent to the regularized LASSO was considered
by their authors in remark 6 of (Osborne et al., 2000b) that we partially quote
here:

�. . . In principle, our algorithm can also be used to solve [the regu-
larized LASSO]. In this case it would be necessary to �nd that value
of t for which the corresponding Lagrange multiplier is equal to the
smoothing parameter λ in [the regularized LASSO]. This could be
done within a further loop, either by performing a grid search or
using a Newton-Raphson algorithm. . . �

The exposition of the active set descent that was just conducted lets a much
simpler alternative appear, that need not consider the relation between t and λ.
The regularized formulation is a simpler problem of minimizing a strictly convex
function, without an inequality constraint. The same positivity trick makes it
a canonical quadratic program, the only di�erences with the previous problem
being that:

• the objective function is ‖y −XTβ‖22 + λwTβ instead of ‖y −XTβ‖22,

• no oblique inequality is involved.

The new objective is a strictly convex quadratic function and therefore a valid
candidate to the direct application of the corresponding active set descent method,
which gives Algorithm 6, in which, comparing to Algorithm 5, the computa-
tion of λσ at each step is simply replaced by the use of the given parameter
λ. This algorithm was introduced in (Loth and Preux, 2010), under the name
Iso-Regularization Descent. This name was given in contrast with Iso-Constraint

Descent by which we denoted the constrained-LASSO version, that descends on
the surface of the constraint polytope. We abandon these terms, in favour of the
general name of the algorithm (ASD), the regularized form being somehow the
implicit, standard, form of the LASSO.

As we have seen in the previous chapter and in section 2.2.2.3, the regularized
formulation is a more practical one, for the working bounds of its parameter are
known in advance. Moreover, the active set method can be used to solve it,
with an algorithm that is simpler to state and uses less computations; removing
the computations of successive Lagrange multipliers not only decreases execution
time, but also lessens the risks related to arithmetic computational precision.

Consequently, from now on, we abandon the constrained formulation for the
remaining of this thesis, and focus on the regularized problem:

minimize L(σ, β) = ‖y −Xσ
Tβ‖22 + λ‖β‖wσ . (2.16)

This switch is consistent with the evolution of the scienti�c publications on the
LASSO, from its �constrained� formulation by (Tibshirani, 1996), to the growing
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Algorithm 6 active set descent for the regularized LASSO

Input: input vector x ∈ X n, response vector y ∈ Rn, feature dictionary
D ⊂ RX , penalization function w : D → R+, regularization parameter
λ ∈ R+

Output: LASSOr(x,y,D,w, λ) = argmin(σ,β)∈2D×R ‖y−Xσ
Tβ‖22+λ‖β‖wσ

De�nition: For a feature function φ ∈ D, the bold notation denotes the
application of φ to the input vector x: φ = φ(x) = (φ(x1), . . ., φ(xn))

T.
1: σ ← {},X← [],θ ← ()

2: loop

3: repeat

4: β̄ ← (XXT)−1(Xy − λθ)

5: (γ, φ)← min, argminφ ∈ σ

(
βφ

βφ−β̄φ

)

≥0
6: if γ ≤ 1 then

7: β ← β + γ(β̄ − β)

8: σ ← σ \ {φ}
9: shrink X,β,θ accordingly

10: end if

11: until γ ≥ 1

12: β ← β̄

13: φ← argminφ ∈ D[g(i) = λw(φ)− |φ(y −XTβ)|]
14: if g(i) < 0 then

15: σ ← σ ∪ {φ}
16: extend X by row φ, β by 0, and θ by w(φ) sign(φ(y −XTβ))

17: else

18: return (σ,β)

19: end if

20: end loop
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interest for its regularized version and associated algorithms. The breakthrough
in this popularity is the publication in (Efron et al., 2004) of the least angle
regression method (LAR or LARS) that uni�es several feature selection proce-
dures, among which one (LAR-LASSO) that solves the regularized LASSO for all
values of its parameter. This algorithm was initially presented � as the homotopy

method � together with the active set method in (Osborne et al., 2000a; Osborne
et al., 2000b), for the constrained formulation. The transposition to the regular-
ized LASSO is of the same nature as for the active set method: it can be resumed
to working directly on λ rather than computing it as a function of t. We present
this algorithm in the next section, as a derivation of the active set method; this
reformulated presentation aims at the same bene�ts as that of the active set
method: generalization of the LASSO settings, simplicity, and enlightenment of
some possibilities or issues �and their resolutions� of the algorithm.

2.3 The homotopy method

The idea of the homotopy method is to follow the path of solutions de�ned by
the interval [0, λ0] on which the parameter λ is meaningful. This path, discussed
in section 2.2.2.3 is referred to as the regularization path. The name homotopy,
given to this method when introduced in (Osborne et al., 2000a), is a term mostly
used in topology, to designate a continuous deformation between two functions f
and g, that is a continuum of functions hl (evolving continuously with l ∈ [0, 1])
such that h0 = f and h1 = g. LASSO estimators evolve continuously with the
parameter λ, hence the idea of following this homotopy rather than solving single
problems independently.

The intuition of the algorithm can be derived in a natural fashion from the
active set descent algorithm. When a LASSO problem for a given value of λ
has been solved by the latter, together with the solution (σ, βλ = β∗ − λ∆β)

comes the solutions of problems for the whole interval of parameters where the
optimal active set is σ. This interval is de�ned by the fact that the termination
conditions of the algorithm are met, that is:

• βλ is feasible, i.e. matches the sign of θ,

• no inactive feature has a negative derivative on the loss function.

The linearity in λ of the solution and the gradient of the loss makes it easy
to compute the bounds of this interval, and with this computation is determined
which of the feature violates the optimality conditions. We then know that
beyond the bounds of the interval, a supplementary step is required for the
active set method that consists in activating or inactivating the corresponding
feature. The special case of simultaneous violations occurring at a bound will
be addressed in chapter 3, and we begin by expliciting the computation of the
bounds, focusing on the lower bound (we track the evolutions as λ decreases). It
consists in determining :
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• the largest value λ− < λ for which the sign of an active features becomes
zero (thus changes beyond),

• the largest value λ+ < λ for which an inactive feature shows a zero (thus
negative beyond) gradient.

Then the largest value among λ− and λ+ gives the �rst value where the active
set is changing, when decreasing the regularization parameter.

2.3.1 Computing the �rst unfeasibility point

Let λ denote an arbitrary point of the interval, and λ− the closest lower value
beyond which an active feature changes sign.

The solution evolves linearly with λ, following the expression

βλ = β∗ − λ∆β . (2.17)

The point where a coe�cient is zeroed is thus given by

λ−(φ) =
β∗
φ

∆βφ

.

The fact that a coe�cient increases in absolute value with λ decreasing � thus
not changing sign � translates in λ−(φ) being greater than λ. Similarly, for a
newly activated feature, that has a coe�cient zero, λ− is equal to λ. This gives:

λ− = max
φ ∈ σ

(

β∗
φ

∆βφ

)

<λ

. (2.18)

However, it is simpler to discard directly the features that do not change sign
when decreasing λ. For this, it su�ces to consider β∗

φ, which is the ultimate value
of βφ, for λ = 0. A feature must be considered for the next unfeasibility point only
if this ultimate value is unfeasible, i.e. its sign di�ers from θφ. Those features,
and only those, have a value of λ− in [0, λ], and the largest is to be retained.
Another bene�t of this preliminary restriction is that it allows to handle features
that have a zero coe�cient. In normal circumstances, their coe�cient evolve in
a correct direction once they are activated, and they need not be considered,
whence the criterion (< λ) in (2.18). However, in degenerate cases that will be
discussed in the following chapter, such a newly activated feature might need to
be inactivated immediately, its coe�cient evolving in the wrong direction after
the �immediate� activation of another feature. The di�erence between the two
cases is made by the β∗ criterion. Hence the �rst unfeasibility point can be
obtained by

λ− = max
φ ∈ σ

sign(β∗
φ
) 6=sign(θφ)

β∗
φ

∆βφ

. (2.19)



82 Chapter 2. Active set Algorithms

An other possible criterion is simply to discard the features of which the
coe�cient's evolution ∆βφ has an opposite sign as that of θφ, thus the coe�cient
increases in absolute value as λ decreases (eq. (2.17)).

λ− = max
φ ∈ σ

sign(∆βφ
) 6=sign(θφ)

β∗
φ

∆βφ

. (2.20)

This �lter leaves features of which the coe�cient zeroes in (−∞, λ], rather than
features zeroing in [0, λ] for (2.19).

2.3.2 Computing the �rst insu�ciency point

A feature φ can be activated with a positive or negative coe�cient, and it is
again easier to consider separately +φ and −φ (noting s the sign), both with a
positive coe�cient, making the loss di�erentiable, with a derivative equal to

∂L(β)
∂βsφ

= −φT(y −Xσ
Tβ) + sλw(φ)

σ becomes insu�cient when activating a feature can decrease the loss, that
is when its derivative with respect to that feature becomes negative. Again,
since all these derivatives are non-negative in the interval and evolve linearly,
this violation occurs beyond the point λ+ where a derivative is zeroed. For a
given feature sφ, violation occurs at point λ̃s

+ characterized by

−sφT(y −Xσ
Tβ(λ̃s

+)) + λ̃s
+w(φ) = 0 , (2.21)

or equivalently

φT(y −Xσ
Tβ(λ̃s

+))− sλ̃s
+w(φ) = 0 , (2.22)

(2.22) ⇐⇒ φT(y −Xσ
T(β∗ − λ̃s

+∆β))− sλ̃s
+w(φ) = 0

⇐⇒ φT(y −Xσ
Tβ∗)

︸ ︷︷ ︸

r∗

+ λ̃s
+φ

T(Xσ
T∆β)

︸ ︷︷ ︸

∆r

− sλ̃s
+w(φ) = 0

⇐⇒ λ̃s
+ =

φTr∗

sw(φ)− φT∆r

A naive procedure consists in computing both λ̃+
+ and λ̃−

+ for each inactive
feature and retain the greater of those that are less than λ, but the computation
can be simpli�ed by the property that only s∗φ can require activation when

decreasing λ, where s∗ = sign(φTr∗) and activation occurs for λ = φT
r∗

s∗w(φ)−φT
∆r

.
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Proof. By de�nition, if σ is optimal for parameter λ, and φ /∈ σ, both derivatives
are positive:

{ −φTr∗ + λφT∆r + λw(φ) ≥ 0

φTr∗ − λφT∆r + λw(φ) ≥ 0

When decreasing λ, these derivatives evolve linearly to the limit values (for λ = 0)
of −φTr∗ and φTr∗, of which only one has become negative. Hence the positivity
of φTr∗ implies that only +φ requires activation, for λ < λ̃+

+, and its negativity
implies that only −φ requires activation, for λ < λ̃−

+.

This gives

λ+ = max
φ ∈ D−σ

φTr∗

sign(φTr∗)w(φ)− φT∆r

(2.23)

This maximization can be performed over the whole set D, since active fea-
tures always give, by construction of the solution, a zero derivative. This implies
that if φ ∈ σ, φTr∗, as the derivative at λ = 0, is equal to zero, and does not
�compete� in the maximization. This property does not hold in the formulation
of (Efron et al., 2004), where the smallest change in λ is computed, rather than
the new λ itself, which leads to the opposite e�ect of always selecting already
active features if they were to be considered. Although this may seem a minor
point, it is useful when dealing with large feature sets, as will be explained in
chapter 3.

2.3.3 Jumping to the next break point

With these two formulae (2.19,2.23), given the solution (σ,β) for parameter λ,
we can compute the parameter λ′ down to which σ remains optimal, and also
which condition is violated beyond it, and the corresponding new active set. We
can then consider the interval on which this new set is optimal, by updating
the vectors related to the active set, and repeating the computation of the lower
bound, and iterate until the desired value of λ, or of an other criterion, is reached,
and at most until the unconstrained least square at λ = 0. This procedure can be
used in both directions of the regularization path, with the following corrections
for increasing λ:

• the only sign with which a feature may be activated when increasing λ is
the opposite of that when decreasing λ, from the linearity of the correlation
wrt. λ; thus sign(φTr∗ must be replaced by − sign(φTr∗ in (2.23);

• when computing the zeroing point λ− of a coe�cient in (2.20), we dis-
card coe�cients that do not zero in (−∞, λ], i.e. that zero in [λ,∞), by
the condition sign(∆βφ) 6=sign(θφ). The opposite �lter must be used when
increasing λ, that is sign(∆βφ) = sign(θφ).
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Therefore, the general formula for the �rst unfeasibility and �rst insu�ciency
points are

λ+ = max
φ ∈ D−σ

φTr∗

−sp sign(φTr∗)w(φ)− φT∆r

(2.24)

λ− = max
φ ∈ σ

sp sign(∆βφ
)=sign(θφ)

β∗
φ

∆βφ

(2.25)

where sp is the sign of the evolution of λ that is considered (−1 for λ decreasing).
It is natural, though, since a solution is needed as a starting point, to initiate

the homotopy procedure with λ = ∞ and the corresponding trivial solution of
an empty active set, and iterate in the decreasing direction. The algorithm that
computes the whole regularization path is given in Algorithm 7.

This formulation o�ers the bene�t of giving a directly implementable algo-
rithm with a low number of arithmetic operations. This simpli�es its under-
standing and analyses, and also, naturally, its e�ciency.

Regarding this point, a costly part and source of optimization in these al-
gorithms is the matrix inversion appearing in the computations of β∗ and ∆β.
Contrary to (Osborne et al., 2000a), we treat separately the main algorithm
and the optimization of this part, that somewhat belong to di�erent algorithmic
levels. This optimization is addressed in the section 2.4.1.

2.4 Complexity

Let us, more generally, analyse the complexity of the ASD and homotopy algo-
rithms, as described in algorithms 6 and 7.

The main three tasks repeated in the main loop of both algorithms are:

zeroing identify among the active features the �rst of which the coe�cient is
zeroed when following the descent path (ASD) or decreasing λ (homotopy),

over-correlation identify among the inactive features which one is the most
over-correlated (ASD) or is the �rst to reach equi-correlation when de-
creasing λ (homotopy),

update computing a solution associated to the active set each time it has
changed.

Let us note, as previously,

• n the number of observations,

• p the cardinality of D (number of features, although it may not be �nite),

• k the number of active features at the step of the main loop that we con-
sider.
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Algorithm 7 Homotopy method for the regularized LASSO

Input: input vector x ∈ X n, response vector y ∈ Rn, feature dictionary
D ⊂ RX , penalization function w : D → R+,
Output: For all λ ∈ R+,

LASSOr(x,y,D, w, λ) = argmin(σ,β)∈2D×R ‖y −Xσ
Tβ‖22 + λ‖β‖wσ

De�nition: For a feature function φ ∈ D, the bold notation denotes the
application of φ to the input vector x: φ = φ(x) = (φ(x1), . . ., φ(xn))

T.
1: λ←∞, σ ← {},X← [],θ ← ()

2: loop

3: β∗ ← (XXT)−1Xy

4: ∆β ← (XXT)−1θ

5: r∗ ← y −XTβ∗

6: ∆r ← XT∆β

7: (λ−, φ−)← max, arg max
φ ∈ σ

sign(β∗
φ
) 6=sign(θφ)

β∗
φ

∆βφ

⊲ sec. 2.3.1

8: (λ+, φ+)← max, arg max
φ ∈ D\σ

φTr∗

sign(φTr∗)w(φ)− φT∆r

⊲ sec. 2.3.2

9: λ′ ← max(λ−, λ+, 0)

10: output ∀l ∈ [λ′, λ), LASSOr(x,y,D, w, l)← (σ, β∗ − l∆β)

11: if λ′ = 0 then terminate

12: else if λ′ = λ− then ⊲ inactivation
13: σ ← σ \ {φ−}
14: shrink X,β,θ accordingly
15: else if λ′ = λ+ then ⊲ activation
16: σ ← σ ∪ {φ+}
17: extend X by row φ, β by 0, and θ by sign(φTr∗)w(φ)

18: end if

19: λ← λ′

20: end loop
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The complexity of the zeroing task is O(1) ∗ k = O(k).
The over-correlation task involves the computation, for each inactive feature,

of its correlation to the residual, possibly decomposed into the least-squares resid-
ual and the �delta-residual�. Given the residual, the complexity is then O(n2) ∗
(p − k). k evolving from 0 to the �nal sparsity of the solution, typically small
w.r.t. p, one can simplify this complexity to O(n2p).

The update task, following each change in the active set, involves the extension
or shrinkage of X, β and θ, and the update of the residual, yielding a complexity
of O(n). Most importantly, a least-squares operation is performed to compute β̄
or β∗ and ∆β. An implementation that strictly follows the algorithms as they
are exposed here requires the computation of the Gram product XXT (O(nk2)),
its inversion (O(p2.376) to O(k3), let us consider the latter), and one or two
multiplications with a vector (O(k2)). This gives an overall complexity of O(k3+

nk2) for the update task. However, X is only modi�ed by one row between each
iteration of the main loop, and this allows to reduce this complexity of one
order in k (O(k2+nk)), by using dedicated methods for solving sequential least-
squares problems, as explained in section 2.4.1. With a slight simpli�cation, the
complexity of one iteration of the main loop is thus O(n2p + nk2 + k3). The
simpli�cation lies in the fact that the two algorithms do not perform the same
number of tasks in each iteration:

• the homotopy tests both zeroing and over-correlation once, and performs
one shrinkage or expansion, thus one update;

• the active set descent may perform several zeroings (and consequent shrink-
age and updates) before testing over-correlation and activating the corre-
sponding feature.

Thus, the complexity in n2p+nk2+k3 is exact for the homotopy, but underesti-
mated for the active set descent. However, the number of zeroings in the latter is
inestimable in a similar and related way as the number of iterations of the main
loop needed to converge to the LASSO solution. The problem is the same as
that of the complexity of the simplex algorithm. Therefore, in order to estimate
the complexity of the algorithms, it should simply be noted that it is dominated
by the over-correlation and update tasks (O(n2p) and O(nk2+ k3) respectively),
which are performed an inestimable number of times, that can be studied from
empirical evidences. A noteworthy point preliminary to such a study is that
those two numbers are di�erently related in both algorithms: in the homotopy,
every change in the active set (activation or inactivation) is preceded by an over-
correlation test, whereas in the active set descent, every such test is followed by
an activation.

In order to estimate how these complexities behave in practice, we have thus
run experiments to monitor the number of both tasks needed to reach a LASSO
solution for both algorithms (homotopy and ASD for the regularized LASSO).
The components of X were drawn independently from N (0, 1); y was built by
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a combination f of k of these features, k going from 1 to 0.8max(n, p), with
coe�cients independently drawn from the uniform distribution in [−1, 1], and
a noise term was added to f , drawn independently for each observation from
N (0, 0.01 ∗ ‖f‖22/n). On 100 di�erent such data for each k, we have run the
homotopy algorithm until the LASSO solution included k features, and then
ASD was run with the corresponding value of λ, starting from an empty active
set. The number of over-correlation tests and of active set updates were counted,
and �gure 2.4 shows the average number of tasks required by both algorithms
as a function of the cardinality of the active set of the LASSO solution, for
n = 150, p = 1000, ρ = 0, averaged on 1000 runs. Other settings give similar
results, that is the number of over-correlation tests is consistently lower for ASD
than for homotopy, though not from a great amount, while the number of updates
tends to be the same for both algorithms as k approaches 2n/3, and greater
for ASD beyond. Globally, the number of steps needed to reach a k-sparse
LASSO solution remains in the order of k, which gives both algorithms an overall
approximate complexity of

O(n2pk + nk3 + k4)

to compute a LASSO solution selecting k features out of p on n observations.

2.4.1 Sequential least-squares

As noted in the introduction of this section, although the inverses of the Gram
matrices XXT appear in the exposition of algorithms, actual inversions need
not be done in practice. On the contrary, there are several reasons to compute
solutions by mean of a decomposition of the Gram matrix: numerical stability,
degeneracy detection, and � most of all � a low computational cost for updating
the decomposition when the active set is changed by one element. The princi-
ple of solving linear systems using a matrix decomposition (QR or Cholesky) is
well known and commonly used; the update of such decompositions when the
coe�cient matrix is added a rank one matrix is also documented; let us however
recall those for the Cholesky decomposition, before exposing how to update the
decomposition when a feature (row of Xσ) is added or removed, which we could
not �nd in the literature or Internet and, though not very complex, is worth an
explanation. The choice of Cholesky over QR is motivated by the fact that the
use of the latter in the homotopy algorithm is already explained in (Osborne
et al., 2000a), and also by the possibility it o�ers to handle online learning, as
will be seen in next chapter.

2.4.2 Cholesky decomposition

Using notations that are consistent with the previous ones, letX be a p×nmatrix
and b a vector of length p for which we wish to compute

v = (XXT)−1b (2.26)



88 Chapter 2. Active set Algorithms

40

60

80

100

120

140

160

40 50 60 70 80 90 100 110 120

# 
ta

sk
s

# active features in solution (k)

ASD: overcorrelation tests
ASD: updates

homotopy: overcorrelation tests & updates

Figure 2.4: Average numbers of the most costly tasks required to reach a LASSO
solution, as a function of the cardinality of the solution (k), for random and
unstructured problems.
Number of runs for each k: 100; number of observations: n = 150; number of
features: p = 1000.
For both algorithms, the number of steps remains in the order of k. The most
costly task (for p > n) of over-correlation test (O(n2p)) is performed consis-
tently less in the ASD algorithm, while the update task (O(k2 + nk)) tends to
be performed more often by ASD when the LASSO solution approaches the least-
squares solution.
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or equivalently solve

XXTv = b (2.27)

for v.
The Cholesky decomposition of XXT consists in �nding a lower triangular

matrix L with positive diagonal entries such that

XXT = LLT (2.28)

(2.27) is then equivalent to the system

{
Ly = b

LTv = y
(2.29)

of which the two parts can be e�ciently solved by back substitutions, thanks to
the triangular form of L.

2.4.3 Cholesky rank one update

Let u be a vector of length p. The outer product uuT is a matrix of rank one
to be added to XXT, and we wish to compute the decomposition L′L′T of the
resulting matrix from that of the original one:

L′L′T = LLT + uuT (2.30)

Methods for computing L′ from L can be found in (Gill et al., 1974; Golub
and Saunders, 1969; Seeger, 2008), and are implemented in most algebra pack-
ages/software, but we give an extensive explanation of the common method here,
in order to provide a more readable exposition, that also serves as a documenta-
tion of our implementations that do not rely on these existing packages. In order
to clarify the explanation and without loss of generality, we use an example with
p = 4 and represent only the nonzero parts of the matrices.

Let us �rst note that

and L′ is thus such that
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or equivalently

.

Let us �rst transform u and the �rst column of L (denoted by a), so that
the �rst element of u is zeroed, and the Gramian as well as the positivity of the
diagonal are preserved.

Since

,

we only need to preserve the Gramian of (u|a) (the juxtaposition of u and a as
seen above). A transformation that preserves this product is a rotation, obtained

by multiplying (u|a) by a matrix

(
c −s
s c

)

, with c2 + s2 = 1:

(u|a)
(
c −s
s c

)(
c s

−s c

)

(u|a)T = (u|a)
(
1 0

0 1

)

(u|a)T = (u|a)(u|a)T

This transformation must zero the �rst element u1 of u, hence we must solve

cu1 + sa1 = 0 (2.31)

−su1 + ca1 > 0 (2.32)

c2 + s2 = 1 (2.33)

of which the solution is

c =
a1

√

u21 + a21

s = − u1
√

u21 + a21

Thus, this transformation, referred to as a Givens rotation or Householder

transformation, gives vectors u′ and a′ such that

.
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The same operation can be repeated to zero the �rst element of u′ by rotating
u′ and the second column of L, and so on until u is zeroed and L has been
transformed into the objective matrix L′.

2.4.4 Feature addition

Let us now consider the addition of a feature to the active set in the algorithms
of the previous section, that is the addition of a row uT to the matrix X. The
ordering of features in the active set being arbitrary, we assume this row is added
at the bottom. Let X′ be the augmented matrix:

X′ =







X

uT







,

then

X′X′T =







XXT Xu

uTXT uTu







.

Since only the additional row and column of the Gramian change, only the
corresponding additional row of L need be computed. If we note w the new
bottom-right entry and v the remaining of the new row:

L′ =







L 0

vT w







,

then we have

L′L′T =







LLT Lv

vTLT vTv + w2







.

So v is obtained by solving

Lv = Xu , (2.34)

that is computing Xu, and using back substitutions with L, and w is given by

w =
√

uTu− vTv (2.35)
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2.4.5 Feature subtraction

For the removal of a feature, we cannot assume it has a speci�c position in X,
and will consider an arbitrary position i, and use i = 3 in the illustrations.

When row i is removed from X, the i-th row and i-th column are removed
from XXT, leaving the rest unchanged. Let us again note X′ the truncated
matrix, G′ = X′X′T the new Gramian, and G11,G12,G22 the sub-matrices
delimited by the removed row and column:

L must also be truncated by its i-th row and column; let us similarly name
the sub-matrices of L and L′, as well as the part of the i-th column of L below
the diagonal:

Since G11 must be equal to both L11L11
T and L′

11L
′
11

T, we have

L′
11 = L11 .

Consequently, we also have

L′
21 = L21 ,

because G21 must be equal to both L11L21
T and L11L

′
21

T.
Thus, only L′

22 di�ers from the original L22, and can be computed from
the fact that G22 must be equal to both (li|L22)(li|L22)

T and L′
22L

′
22

T. This
equation is a rank-one update, that can be computed as was explained previously:

is equivalent to

.
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2.5 The coordinate descent method

After having presented the two closely related active set and homotopy methods,
it is useful to mention another one that quali�es as state-of-the-art at the time
of writing this thesis. Contrary to the previous sections, no new contribution
is brought here about this algorithm, and we rather just describe it with the
same notations as the previous ones, in order to discuss, in the chapter 3, the
respective merits of the three algorithms in various settings.

The �rst instance of this method appeared in (Fu, 1998), as the shooting algo-
rithm, where it used as a starting point the unconstrained least-squares solution.
Although unnecessary, this point was often regarded as discarding the algorithm
for overdetermined systems or highly-regularized problems, and, together with
the fact that it was not the main subject of the publication, prevented it to get
the attention it deserved. It gained credit when presented in (Friedman et al.,
2007) for a class of convex problems.

The general principle of coordinate descent is very simple and used in vari-
ous communities on optimization problems. It consists in optimizing a function
with vector input by repeatedly �xing all components but one as constants and
optimizing on the single remaining variable. One typically cycles through the
set of variables, but can also adapt the focus put on di�erent variables, although
an adaptive strategy can easily incur more cost than bene�ts. We present the
basic cycling version, usually referred to as cyclic[al] coordinate descent (CCD).
It can naturally only be applied, as is, on problems with a �nite number of vari-
ables. However, we discuss in section 3.2.1.1, how it may be adapted to cope
with in�nite feature sets.

2.5.1 The one-dimensional LASSO

Let us �rst derive to what amounts solving the LASSO on a single feature φ.
Let β and β′ be its coe�cient, respectively before and after optimization, and

r and r′ the corresponding residuals. We have

r′ = r+ βφ− β′φ

where r+ βφ is the non-variable part of the residual.
The only two possible active sets are {φ} and ∅. Let us assume {φ} is optimal

and compute the corresponding solutionβ̄. If it is feasible we have the solution,
otherwise β′ = 0.

From section 2.1.2, we have

β′ = (φTφ)−1
(

φT(r+ βφ)− λ sign(β′)w(φ)
)

=
φTr+ β‖φ‖22 − λ sign(β′)w(φ)

‖φ‖22

= β +
φTr− λ sign(β′)w(φ)

‖φ‖22
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if this equation has a solution, and β′ = 0 otherwise (in case of sign disagree-
ment). It is useful to normalize the features beforehand � and inversely scale
their penalizations to keep the same problem, so that the expression simpli�es.
In this case we have

β′ =







β + φTr− λw(φ) if β + φTr− λw(φ) ≥ 0

β + φTr+ λw(φ) if β + φTr+ λw(φ) ≤ 0

0 otherwise

or equivalently,

β′ =







β + φTr− λw(φ) if β + φTr ≥ λw(φ)

β + φTr+ λw(φ) if − β − φTr ≥ λw(φ)

0 otherwise

and equivalently, since λw(φ) is positive,

β′ =

{

β + φTr− sign(β + φTr)λw(φ) if |β + φTr| ≥ λw(φ)

0 otherwise

Repeating this one-dimensional optimization by cycling over the dictionary
D gives the algorithm 8.

2.6 Experiments

In order to estimate qualitative and quantitative properties of the three methods
described in this chapter, we have run some experiments that illustrate the evolu-
tion of LASSO estimators for di�erent values of the regularization parameter, the
computational times, and the sequence of solutions computed by each method.

2.6.1 Illustration of LASSO estimators

We �rst illustrate the e�ect of ℓ1 regularization on a problem where the observa-
tions are generated from a smooth function on X = R and Gaussian white noise,
for which the observations and estimators can be visualized.

The generative function is

f(x) =
sin(25x)√
6− 5x

,

and the n observations are added identical independent Gaussian noise:

∀i = 1, . . ., n, yi = f(xi) + 0.1ν, ν ∼ N (0, 1)
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Algorithm 8 Cyclic Coordinate Descent for the regularized LASSO

Input: input vector x ∈ X n, response vector y ∈ Rn, �nite feature dictio-
nary D ⊂ RX , penalization function w : D → R+, regularization parameter
λ ∈ R+

Output: β converges to
LASSOr(x,y,D, w, λ) = argmin(σ,β)∈2D×R ‖y −Xσ

Tβ‖22 + λ‖β‖wσ

1: β ← starting point.
2: r← y −XTβ

3: loop

4: for φ ∈ D do

5: c← βφ + φTr

6: β′ ← if |c| > λw(φ) then c− sign(c)λw(φ) else 0

7: if β′ 6=βφ then

8: r← r− (β′ − βφ)φ

9: βφ ← β′

10: end if

11: end for

12: end loop

The features dictionary is composed by 10000 Gaussian functions with 100

possible centres (c) in [0, 1] and 100 possible bandwidths σ in [0, 1] also, these
two parameters being taken on a uniform grid in [0, 1]2:

φc,σ(x) = exp

(

−
(
x− c

σ

)2
)

.

The common usage, followed here, is, for a fair application of the LASSO, to
normalize the features on the observation set, so that they have equal ℓ2 norms:
given an arbitrary dictionary D,

∀φ ∈ D, φ← 1

‖φ‖2
φ

or equivalently

∀φ ∈ D, w(φ) = ‖φ‖2 .

This ensures that a feature is not selected just from its bigger scale and the
consequent lower coe�cient needed to achieve the same magnitude of e�ect.
The fairness induced by this normalization can be understood by noting that
considering, prior to the knowledge of the observations, a �at, null target y = 0,
the residual when assigning a coe�cient w to any feature φ is then ‖y−wφ‖22 =
w‖φ‖22 = w, hence coe�cients of the same range have a priori similar e�ects on
the residual for all features, and the selection is a�ected only by shape �tting.
An other way of seeing this is that the correlation of a feature φ to the residual r,
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Figure 2.5: LASSO and restricted-least-squares (least-squares on active features)
estimators for di�erent values of λ, for noisy observations of a sinusoidal function,
and 10000 Gaussian features.
The four estimators are, successively, the �rst one with one feature, the �rst to
approximately �t all sinusoidal waves, the closest to the true model, and the �rst
to be noticeably over�tting.

which is the selection criterion, geometrically corresponds to the projection of φ
on r, and equal norms of the features yields a selection of the feature that forms
the least angle with r, hence presents the most similar direction/shape with it.

In �gure 2.5 are plotted the observations and the LASSO estimators for di�er-
ent values of λ, together with the corresponding restricted least-squares estima-
tors, that is the least squares solutions when restricting to the selected features,
i.e. the coe�cient β∗ used in the homotopy and ASD algorithms. It clearly shows
that LASSO estimators should not be used as is, especially for large values of
λ, since the ℓ1 penalization not only has a selection property, but also limit the
range of the coe�cients, thus the ability to signi�cantly reduce the residual. The
restricted-least-squares solution is preferable, and is directly available in the ho-
motopy and ASD algorithms. However, as can be seen in the �gure, for a low
value of λ that selects over�tting features (matching a single or a few points), the
LASSO solution, although still not �reaching� the underlying model, also does
not fully exploits the over�tting features, and may be preferable in this case.
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2.6.2 Speed trials

In (Friedman et al., 2007), experiments were conducted to assess the better results
of the CCDmethod in terms of speed, compared to the homotopy. We reproduced
these experiments with our implementation of the homotopy method, and adding
the new active set method for the regularized formulation.

The settings were the following:

• p features describing n observations were randomly generated from identical
laws N (0, 1), such that the values of one feature are independent from each
other, but the features have an expected population correlation ρ with one
another;

• the response values were generated by assigning exponentially decreasing
coe�cients with alternating signs to these features, and adding Gaussian
noise:

y =

p
∑

i=1

βiφi +N (0, kI)

where βi = (−1)iexp(−(j − 1)/10), and k is chosen so that the signal to
noise ratio equals 0.3.

The time was measured for the three algorithms to compute the LASSO
regularization path. The homotopy computes by nature the precise path, and
the other two were given a sequence of max(n, p) values for λ, using one solution
as a warm start for computing the next one. Contrarily to the experiments
run in (Friedman et al., 2007), all algorithms were here similarly implemented,
in the same programming language (C) by the author, in the same framework,
and the version of the homotopy that has been presented in this thesis uses a
simpli�ed formulation in terms of variables. This explains the di�erent results
obtained here: the absence of matrix operations in the CCD does not compensate
the larger number of steps, in terms of computation speed, as was reported in
the initial experiments. Indeed, CCD is slightly faster only for under-determined
systems (n > p) and uncorrelated features, and signi�cantly slower in other cases.
The ASD algorithm used the same order of time as the homotopy, as could be
expected, but consistently less. The di�erence can be more signi�cant when using
less steps (di�erent values of λ) because, as observed in further section 2.6.3,
ASD can be used to compute only a few actual LASSO solutions, and use the
intermediate tentative estimators that descend to those as surrogates for the
intermediate LASSO solutions.

2.6.3 LASSO path and descent paths

The homotopy algorithm computes the LASSO regularization path, that is, all
LASSO solutions corresponding to meaningful values of λ (maxφ ∈ D φTy to 0).
ASD and CCD converge to one LASSO solution, for a given value of λ, by
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Table 2.1: Speed trial experiments with the same settings as in (Friedman et al.,
2007).

The running times, in seconds, are averaged over 10 runs. All
methods and trials were implemented in C in similar fashions.

n p Method Population correlation between features
0 0.1 0.2 0.5 0.9 0.95

100 1000 homotopy 0.13 0.12 0.13 0.14 0.14 0.14
ASD 0.09 0.09 0.09 0.10 0.10 0.10
CCD 0.21 0.21 0.24 0.46 1.21 2.64

5000 homotopy 0.63 0.65 0.62 0.67 0.62 0.60
ASD 0.53 0.56 0.54 0.59 0.54 0.54
CCD 1.39 1.39 1.54 2.32 7.39 8.53

20000 homotopy 2.39 3.06 2.69 3.22 3.30 3.36
ASD 2.06 2.56 2.25 2.68 2.76 2.85
CCD 5.38 7.22 6.06 11.14 37.24 47.07

1000 100 homotopy 0.22 0.22 0.22 0.22 0.20 0.16
ASD 0.19 0.19 0.19 0.19 0.17 0.13
CCD 0.18 0.23 0.30 0.65 1.62 2.13

5000 homotopy 0.71 0.70 0.70 0.70 0.70 1.05
ASD 0.67 0.67 0.67 0.66 0.65 0.97
CCD 0.61 0.75 0.91 1.44 4.31 8.07

following a descent path of estimators. In the absence of an a priori knowledge
of a good value of λ, the latter two algorithms must thus be run successively
for a selected number of di�erent values, and can use one result as a warm start
for the next run. It is interesting to characterize empirically the intermediate
estimators that converge to each LASSO solution in this case. This was done
on two problems: one with fully random features and responses, and the other
using the sinusoidal model with Gaussian features as used in section 2.6.1.

When comparing the resulting LASSO path and descent paths, by plotting
the squared residual against the coe�cient's ℓ1-norm, as shown in �gure 2.6,
one can see that the CCD descent path is signi�cantly di�erent from the LASSO
path: intermediate estimators immediately achieve a residual comparable to that
of the LASSO, but with a high ℓ1-norm and large number of active features, and
then the latter two are progressively decreased. The descent paths of ASD are
much more similar to the LASSO path, by decreasing almost proportionally both
the residual's ℓ2-norm and the coe�cient's ℓ1-norm. This seems to indicate that,
even when only a few true LASSO solutions are computed by this algorithm,
the intermediate estimators built when converging to those may be considered
as valid candidates: one can choose among them by, for example, monitoring the
residual on a validation set, and then either use the selected one as is, as the
regression estimator, or deduce from it a good ℓ1 constraint before computing
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the true corresponding LASSO estimator. In order to look further into this
potential validity of ASD intermediate estimators, we also plotted, in addition
to the LASSO elements that are the residual's ℓ2-norm and the coe�cient's ℓ1-
norm, the quantities that are the initial motivation to the LASSO: the number
of active features (ℓ0 constraint) against the least squared residual achieved with
these selected features. As can be seen in the right part of �gure 2.6, the results
validate the intuition, since the intermediate estimators of ASD are even better
than the LASSO ones with regard to this criterion: for an equal number of
selected features, they consistently yield lower residuals then LASSO solutions.
This is true even when directly running ASD for a single, very low value of the
regularization parameter, which can raise the idea of a new algorithm, that is both
very simple and somewhat peculiar, consisting in one run of ASD for a LASSO
problem with a regularization parameter λ equal to zero. Thus no real LASSO
solution is computed, but the descent path that leads to the (unconstrained)
least-squares may yield, from empirical evidences, better estimators in terms of
combined sparsity and low residuals.

2.6.3.1 The Non-Negative Forward Stepwise Algorithm

When �xing λ to zero, the resulting algorithm consists in repeatedly activating
the most correlated feature and computing the � unregularized � least-squares es-
timators on the active features, just as done by the Forward Stepwise (FS) al-
gorithm, but with the following additional step: when the sign of a feature's
coe�cient changes, it is inactivated. More precisely, the �rst feature of which
the coe�cient is zeroed when moving linearly from an estimator to the next is
inactivated, and the least-squares recomputed on the reduced active set. It is
thus a Forward Stepwise algorithm that also operates deselection of features on
a somewhat natural basis: when a feature changes sign, it can be interpreted as
not participating to the estimator in the same way it did when being selected,
and it is natural to inactivate it.

However, a few experiments can show that such inactivations occur very rarely
in practice, and the non-negative version of Forward Stepwise does not give signif-
icantly di�erent results than the original version. The FS procedure does indeed
produce itself better estimators than the LASSO in terms of ℓ0 regularization,
but ℓ1 regularization is not simply a computable surrogate to ℓ0 regularization.
It also o�ers better generalization properties, because it limits both the number
of active features and the range of their coe�cients; that is why a LASSO estima-
tor has a lower amplitude than the observations (see �g. 2.5), which makes it �t
the general shape of the data rather than individual points. That is why the ℓ0

penalty and FS have good selection properties but a limited regularization e�ect,
i.e. a tend top over-�t the data quickly. Despite the quasi-equivalence to the
regular FS algorithm and the poor generalization qualities, we give a sketch of
the ASD algorithm in the limit case λ = 0 in Algorithm 9, under the name Non-

Negative Forward Selection, for instructional purpose. �Non-Negative� accounts
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for the fact that a feature is � greedily � selected, but only while its coe�cient
remains non-negative, in the positivity-trick view, or keeps its original sign, in
the equivalent sign-monitoring view.

Algorithm 9 Non-Negative Forward Stepwise
Features are sequentially selected on the basis of their correlation to the restricted
least-squares being the highest (classical Forward Stepwise procedure), and are
also unselected when their coe�cient is zeroed while going linearly from an es-
timator to the next one. It is equivalent to solving the normal, unregularized
least-squares problem by ASD. In practice, deselections occur very rarely and do
not signi�cantly change the results from those of the regular Forward Stepwise
algorithm.

Input: input vector x ∈ X n, response vector y ∈ Rn, feature dictionary
D ⊂ RX , penalization function w : D → R+.
Output: A sequence of linear estimators with decreasing residual's ℓ2-norm,
that are the least-squares estimators on a globally increasing number of se-
lected features.
De�nition: For a feature function φ ∈ D, the bold notation denotes the
application of φ to the input vector x: φ = φ(x) = (φ(x1), . . ., φ(xn))

T.
1: σ ← {},X← [],β ← ()

2: repeat

3: repeat

4: β̄ ← (XXT)−1Xy

5: (γ, φ)← min, argminφ ∈ σ

(
βφ

βφ−β̄φ

)

≥0
6: if γ ≤ 1 then

7: β ← β + γ(β̄ − β)

8: σ ← σ \ {φ}
9: shrink X,β accordingly

10: end if

11: until γ ≥ 1

12: β ← β̄

13: output/consider (σ,β)

14: φ← argmaxφ ∈ D |φ(y −XTβ|/w(φ)
15: σ ← σ ∪ {φ}
16: extend X by row φ, β by 0

17: until |σ| = n or satisfying estimator found
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Figure 2.6: Characterization of the sequence of estimators generated by the ho-
motopy, active set descent, and cyclical coordinate descent algorithms, on the
sinusoidal problem illustrated in �gure 2.5.
On the left are plotted the values minimized by the LASSO: the squared residual
against the ℓ1-norm of the coe�cient. The homotopy gives the LASSO solutions
for every value of λ (from λmax ≈ 34 to 0.05λmax here), while ASD and CCD
compute k LASSO solutions and produce intermediate descent points that are
LASSO-suboptimal (k = 5, 2, 1 from top to bottom). The intermediate points of
ASD do not deviate much from LASSO optimality, contrary to the CCD points.
On the right are plotted the feature-selection characteristics of the estimators
of homotopy and ASD: the squared residual of the least-squares estimators on
the selected features, against the number of selected features. The results show
that the ASD intermediate steps are not only close to LASSO solutions, but even
more relevant, in terms of feature selection. Figure 2.8 shows the bottom-right
plot (k = 1) with a logarithmic scale, on which it can be seen that the restricted
least-squares is consistently lower for ASD steps compared to LASSO solutions.
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Figure 2.7: Characterization of the sequence of estimators generated by the ho-
motopy, active set descent, and cyclical coordinate descent algorithms, on the
speed trials problem of section 2.6.2, with n = 200 and p = 10000.
On the left are plotted the values minimized by the LASSO: the squared residual
against the ℓ1-norm of the coe�cient. The homotopy gives the LASSO solutions
for every value of λ (from λmax ≈ 1430 to 0.05λmax here), while ASD and CCD
compute k LASSO solutions and produce intermediate descent points that are
LASSO-suboptimal (k = 5, 2, 1 from top to bottom). The intermediate points of
ASD do not deviate much from LASSO optimality, contrary to the CCD points.
On the right are plotted the feature-selection characteristics of the estimators of
homotopy and ASD: the squared residual of the least-squares estimators on the
selected features, against the number of selected features. The results show that
the ASD intermediate steps are not only close to LASSO solutions, but even more
relevant, in terms of feature selection. This phenomenon is more pronounced on
this arti�cial, randomized problem than on the more realistic sinusoidal problem
of �gure 2.6.
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Figure 2.8: The bottom-right plot of �gure 2.6 with logarithmic scale.
The homotopy algorithm computes all LASSO solutions, while ASD descends to
the LASSO solution for λ = 0.05λmax. However, the descent steps of ASD yields
consistently better estimators in terms of features selection: the least-squares
estimators on active features have lower residuals, for equal numbers of features.





Chapter 3

Beyond the Simple LASSO

In chapter 2, the new derivation and adaptation of the active set descent to both
forms of the LASSO, as well as the rewriting of the homotopy, were conducted,
similarly to the previous expositions of these algorithms, under some regularity
assumptions, and for classical settings.

By regularity, we mean we have assumed that no special case occurs that
yields ambiguity in the choices of features to activate/inactivate, multiplicity of
solutions, or failure of some computations, like the inversion of the Gram matrix.
Such degenerating cases are discussed in section 3.1.

Settings are classical in several ways. Although we have given a feature-
oriented de�nition of the LASSO that handles inputs from an arbitrary set and
predictors in the form of an arbitrary set of features, we have not yet analyzed
to which extent, and at the price of which tailoring, these algorithms can handle
the particular setting of an in�nite feature set. This is the object of section 3.2.

The data were also considered to be given and treated in a batch fashion, that
is they are all given at once and the solution is computed by treating them as a
whole. Several situations require, or bene�t from treating the data in sequence,
whether through online learning where the data is received and treated as a
stream, or more generally sequential learning, in which the experimenter may
also face a sequence of similar or related problems. These settings are addressed
in section 3.3.

Finally, we focused on the LASSO, given both the simplicity and frequent
relevance of the squared-residual loss, and the practical aspect and relevance of
the ℓ1 regularization for inducing/recovering sparsity. However, alternative loss
functions are more and more commonly used, as well as extensions of the simple
ℓ1 regularization, that take into account speci�c properties of the data or induce
additional properties of the estimator. Some of these alternatives are considered
in section 3.4.

In this chapter is studied to what extent, and in which manner, the three
algorithms given in chapter 2 (ASD, homotopy, CCD, all three for the regularized
formulation) can handle and adapt to these situations and alternative problems.

For these discussions and analyses of the algorithms, it is simpler, rather than
considering a penalization factor w(φ) for each feature φ, to scale them by this
factor, with the following substitution:

D′ = { φ

w(φ)
|φ ∈ D}
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Thus, given an estimator de�ned with the original features:

f̂(x) =
∑

φ ∈ D

βφφ(x) ,

its equivalent with the scaled features is

f̂(x) =
∑

φ ∈ D

w(φ)βφ
︸ ︷︷ ︸

β′
φ

φ(x)

w(φ)
,

and the � simple unweighted � ℓ1-norm of the new coe�cient β′ is

‖β′‖1 =
∑

φ ∈ D′

|w(φ)βφ| =
∑

φ ∈ D′

w(φ)|βφ| = ‖β‖w

Hence, a LASSO problem with penalization factors can be transformed into an
equivalent classical LASSO problem using unweighted ℓ1-norm. Although penal-
ization factors are more convenient than feature scaling for the implementation
and to understand their e�ects, we may switch to the simple ℓ1-norm view to
clarify the explanations. One of the consequences is that the optimality condi-
tions (zeroing of the gradient for active features, and its positivity for inactive
features), translates into the correlation of a feature with the residual being equal,
respectively greater than λ, rather than λw(φ), and we may designate the three
possible states of a feature with respect to a current estimator as the following:







|φTr| < λ under-correlation,

|φTr| = λ equi-correlation,

|φTr| > λ over-correlation.

3.1 Degeneracies

A degeneracy or degenerate case is a general term for referring to a situation
that has a probability zero of happening under �normal� circumstances, and is
frequently assumed not to happen. For example, if X is an n×p matrix with
n ≥ p, the assumption that XXT is invertible is not true if X is not full rank,
that is, for example, one of its p rows is a linear combination of some other rows.
If the entries of X are drawn randomly following, for example, independent iden-
tical uniform distributions over some interval, this event has a probability zero;
however, arti�cial data may cause such situation, and, of course, the probability
zero is a theoretical concept and becomes nonzero with the implementation on a
computer, that uses discrete storage of numbers.

The two sources of degeneracies in the LASSO are:

• the existence of multiple solutions,

• the simultaneous violations of constraints in the homotopy method.
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These two problems were not thoroughly studied in existing literature, or tackled
by mentioning their low likeliness and/or �brute force� detection and workarounds.
However, they can arise in practise, and simpler and more integrated treatments
can be derived, as we show in the following, where we give a closer look at these
cases.

3.1.1 Multiple solutions

In order to analyse the conditions and characteristics of multiple solutions, let
us start by recalling the existence and continuity of the LASSO path. From this
fact, the existence of two distinct solutions implies that the path splits at some
point, into two branches. We can discard the case where one of the branches
corresponds to a break point (activation or inactivation of a feature) whereas
the other branch incurs no change in the active set. Indeed, the coe�cients
and correlations evolve monotonically (linearly) on the path (i.e. wrt. λ), and
(in)activations can andmust occur at the points where they reach their bounds as
de�ned by the constraints: inactivation when a feature's coe�cient reaches zero,
and activation when a feature's correlation reaches ±λ; not proceeding them
necessarily violates a constraint, and anticipating them (e.g. activation before
equi-correlation) is necessarily suboptimal. Hence there can be an alternative
only between two activations/inactivations, one �covering� for the other, that is,
proceeding to any of them prevents the other's violation to occur. Hence, the
possibility of multiple solutions occurs at such a break point, and when several
features reach their bound for status change at the exact same point in the path.

Before characterizing alternative choices at a break point, let us state a gen-
eral result on distinct solutions. As pointed out in (Osborne et al., 2000b) (the-
orem 1), convexity arguments lead to the fact that if two distinct solutions exist,
any of their convex combinations is also a solution. We establish the following
theorem that gives a stronger statement:

Theorem 3.1.1. If (σ1,β1) and (σ2,β2) are two solutions to a LASSO problem,

the corresponding estimators are equal on all observed inputs.

Proof. Let us �rst point out that features that are active in both estimators
necessarily share the same sign for their coe�cients, as this sign must agree with
that of the features' correlation to the residual.

Let σ = σ1 ∪ σ2 be the smallest su�cient feature dictionary to de�ne the
two solutions, and let us switch from the sparse notation (σi,βi) to the more
classical one where β1 and β2 gather the coe�cients on the whole dictionary σ,
including zeroes. Let r1 and r2 be the residual vectors corresponding to the two
estimators, de�ned by

ri = y −Xσ
Tβi, i ∈ {1, 2}

Let ρ ∈ (0, 1) be a mixing coe�cient, and ρ̄ = 1− ρ.
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β1, β2, and ρβ1 + ρ̄β2 are all minimizers of the LASSO objective function,
which implies there exists C such that

‖r1‖22 + λ‖β1‖1 = C (3.1)

‖r2‖22 + λ‖β2‖1 = C (3.2)

‖y − ρXσ
Tβi − ρ̄Xσ

Tβi‖22 + λ‖ρβ1 + ρ̄β2‖1 = C . (3.3)

Since the coe�cients of a feature share the same sign in both estimators �
and their a�ne combinations, and letting s be the vector of these signs,

‖ρβ1 + ρ̄β2‖1 = (ρβ1 + ρ̄β2)
T
s (3.4)

= ρβ1
Ts+ ρ̄β2

Ts (3.5)

= ‖ρβ1‖1 + ‖ρ̄β2‖1 , (3.6)

and (3.3) is equivalent to

‖y − ρXσ
Tβi − ρ̄Xσ

Tβi‖22 + ρλ‖β1‖1 + ρ̄λ‖β2‖1 = C . (3.7)

ρ and ρ̄ summing to one, the �rst term can be rewritten so as to obtain

‖ρr1 + ρ̄r2‖22 + ρλ‖β1‖1 + ρ̄λ‖β2‖1 = C . (3.8)

Developing the �rst term gives

ρ2‖r1‖22 + ρ̄2‖r2‖22 + 2ρρ̄r1
Tr2 + ρλ‖β1‖1 + ρ̄λ‖β2‖1 = C . (3.9)

The equality ρρ̄ = ρ− ρ2 = ρ̄− ρ̄2 allows to rewrite to

ρ2‖r1‖22 + ρ̄2‖r2‖22 + 2ρρ̄r1
Tr2 + ρ2λ‖β1‖1 + ρ̄2λ‖β2‖1 + ρρ̄λ‖β1‖1 + ρρ̄λ‖β2‖1 = C ,

(3.10)

and

ρ2(‖r1‖22 + λ‖β1‖1) + ρ̄2(‖r2‖22 + λ‖β2‖1) + 2ρρ̄r1
Tr2 + ρρ̄λ‖β1‖1 + ρρ̄λ‖β2‖1 = C ,

(3.11)

i.e.

ρ2C + ρ̄2C + 2ρρ̄r1
Tr2 + ρρ̄(λ‖β1‖1 + λ‖β2‖1) = C . (3.12)

Substituting for λ‖β2‖1 and λ‖β2‖1 from (3.1) and (3.2) gives

ρ2C + ρ̄2C + 2ρρ̄r1
Tr2 + ρρ̄(C − ‖r1‖22 + C − ‖r2‖22) = C , (3.13)

and

(ρ2 + ρ̄2 + 2ρρ̄)C + 2ρρ̄r1
Tr2 − ρρ̄(‖r1‖22 + ‖r2‖22) = C , (3.14)
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C − ρρ̄(‖r1‖22 + ‖r2‖22 − r1
Tr2) = C , (3.15)

and �nally

‖r1 − r2‖22 = 0 , (3.16)

which implies

r1 = r2 (3.17)

The equality of residuals naturally implies equality of estimations at observed
points:

Xσ
Tβ1 = Xσ

Tβ2 (3.18)

The following corollary implies that even if some features in the dictionary
are linear combinations of one another (meaning matrix XD has low rank for
a �nite dictionary), a LASSO problem has a unique solution if none of these
combinations are a�ne:

Corollary 3.1.2. Let λ be a value of the regularization parameter for which a

unique solution f̂ of the LASSO uses k features σ = {φ1, . . ., φk}, and beyond

which (parameter λ+ γ) a new feature must be activated.

Let f̂a and f̂b be two candidate solutions, activating two distinct features φa

and φb:

f̂(x) =
k∑

i=1

βiφi (3.19)

f̂a(x) =

k∑

i=1

βiφi + γ(

k∑

i=1

βa
i φi + βaφa) (3.20)

f̂b(x) =
k∑

i=1

βiφi + γ(
k∑

i=1

βb
iφi + βbφb) (3.21)

f̂a and f̂b are both solution to the LASSO with parameter λ+ γ only if φa (resp.

φb), is an a�ne combination of the previously active features and φb (resp. φa)

or their opposite :

∃αa
1, . . ., α

a
k, α

a
b ∈ R, ∃sa1, . . ., sak, sab ∈ {−1,+1},

{

φa =
∑k

i=1 α
a
i (s

a
iφi) + αa

b (s
a
bφb)

∑k
i=1 α

a
i + αa

b = 1

∃αb
1, . . ., α

b
k, α

b
a ∈ R, ∃sb1, . . ., sbk, sba ∈ {−1,+1},

{

φb =
∑k

i=1 α
b
i (s

b
iφi) + αb

a(s
b
aφa)

∑k
i=1 α

b
i + αb

a = 1
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Proof. Let us suppose f̂a and f̂b are both solutions.
φa being a linear combination (on the observed points) of features from σ ∪

{φb} is a direct consequence of the equality of the estimators that results from
theorem 3.1.1:

k∑

i=1

βiφi + γ(

k∑

i=1

βa
i φi + βaφa) =

k∑

i=1

βiφi + γ(
k∑

i=1

βb
iφi + βbφb)

k∑

i=1

βa
i φi + βaφa =

k∑

i=1

βb
iφi + βbφb

φa =
k∑

i=1

βb
i − βa

i

βa
φi +

βb
βa

φb

Let ∆β = βb − βa, thus noting

φa =
k∑

i=1

∆βi
βa

φi +
βb
βa

φb . (3.22)

Equivalently,

φb =
k∑

i=1

−∆βi
βb

φi +
βa
βb

φa . (3.23)

The equality of residuals that results from theorem 3.1.1 implies that f̂a and
f̂b must also have equal ℓ1-norms of coe�cients, in order to achieve equal LASSO
losses:

k∑

i=1

|βi + γβa
i |+ γ|βa| =

k∑

i=1

|βi + γβb
i |+ γ|βb| (3.24)

The interval that we consider for the regularization parameter (λ+γ ∈ [λ, λ′])
is such that the active set does not change, which implies in particular that the
linear coe�cients in the solutions do not change signs :

∀γ ∈ [0, λ′ − λ], ∀i ∈ {1, k}, sign(βi) = sign(βi + γβa
i ) = sign(βi + γβb

i )

which implies that the absolute value of all coe�cients of (φi)i ∈ {1,k} can be
written as

|βi + γβa
i | = (βi + γβa

i ) sign(βi)

= βi sign(βi) + γβa
i sign(βi)

= |βi|+ γβa
i sign(βi)
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and

|βi + γβb
i | = (βi + γβb

i ) sign(βi)

= βi sign(βi) + γβb
i sign(βi)

= |βi|+ γβb
i sign(βi)

Hence equation (3.24) is equivalent to

k∑

i=1

|βi|+ γβa
i sign(βi) + γ|βa| =

k∑

i=1

|βi|+ γβb
i sign(βi) + γ|βb|

and

k∑

i=1

βa
i sign(βi) + |βa| =

k∑

i=1

βb
i sign(βi) + |βb|

i.e.

|βa| =
k∑

i=1

∆βi sign(βi) + |βb|

This necessary condition for f̂a and f̂b to be both solutions also implies the
a�nities of (3.22) and (3.23):

k∑

i=1

∆βi
|βa|

sign(βi) +
|βb|
|βa|

= 1

i.e.

k∑

i=1

∆βi
βa

sign(βaβi) +
βb
βa

sign(βaβb) = 1

in addition to (3.22) that can be rewritten as

φa =
k∑

i=1

∆βi
βa

sign(βaβi) sign(βi)φi +
βb
βa

sign(βaβb) sign(βaβb)φb

and conversely for φb vis-à-vis φa.

We have thus shown that, even if the number of features is greater than the
number of observations, or more generally some features are linearly dependent
regarding their values on the observations, the ℓ1 penalty gives a second criterion
that distinguishes between them, yielding a unique LASSO solution, unless the
linear dependence is a�ne, which means that assigning the same coe�cient to
one of these features or to the equivalent combination of the others incurs the
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same cost in the coe�cient's ℓ1 norm and also the same decrease in the residual.
However, this also means that the two options are really equivalent, and the choice
can be made arbitrarily. This means no change for the Active Set method, that
activates any over-correlated feature, and activating any of a group of a�nely
dependent ones makes them all equi-correlated; thus once an arbitrary choice is
made, the problem is solved because the other options are discarded. Greater
caution is needed for the homotopy method. In the formulations of (Osborne
et al., 2000a) and (Efron et al., 2004), each step consists in computing the smallest
step size in decreasing λ such that an inactive features becomes equi-correlated
or an active feature is zeroed, and the equi-correlation point is computed for both
possible signs of activation. If, taking the simplest example, a feature appears
twice in the dictionary, once one of its occurrence is activated, the other one
follows its clone, that is they both remain equi-correlated as long as the �rst
one is active. This means that the second one will constantly candidate for
immediate activation, although it should not. In our formulation, the next value
of λ is computed rather than the change in its value. The resulting formula
gives a value of zero, meaning no activation is required before the end of the
regularization path, for all those �passively equi-correlated� features.

We have thus shown that when several features are zeroed or reach equi-
correlation at the same point of the regularization path, the possibility that
this gives way to distinct alternative solutions is unlikely, i.e. a degenerate case
even if |D| > n, and these solutions are equivalent. One can arbitrarily choose
between them, and the algorithms as stated in the previous chapter need not be
changed, since the unchosen features become and remain equi-correlated without
being activated, and both algorithms track over-correlation rather than equi-

correlation.
The other possibilities when two features reach equi-correlation at the same

point are :

• the activation of one of them is su�cient because the incurred change of
direction prevents the other from becoming over-correlated,

• the activation of both is necessary.

More generally, when an arbitrary number of equi-correlations/zeroings occur si-
multaneously, the problem arises of �nding which subset of activations/inactivations
emerges beyond this point.

3.1.2 Simultaneous status changes

This issue does not exist for the active set method, since it operates for a given
value of λ, independently of what happens at di�erent values. If λ presents a
simultaneous-status-change singularity, this is not a problem in itself: all features
that are equi-correlated and have a zero coe�cient can be considered either active
or inactive �the second option being preferred�, regardless of sign disagreements
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or over-correlations that may occur beyond λ depending on their status. The
problem exists for the homotopy method, which is based on computing when
and how the solution changes with λ, and the �how� part is a�ected.

One can conjecture that no special care is actually needed to address the
problem, i.e. one could follow the algorithm with arbitrary choices of features to
activate/inactivate, followed by steps of size zero for λ. This is indeed the case
when two features reach equi-correlation at once:

• if both features are necessary beyond, this will appear by simply activating
any of them, compute the new regularization direction, along which the
other feature necessarily becomes over-correlated, which results in its acti-
vation in the next step, and the optimal activation set being reached (both
features activated), the algorithm goes its way beyond λ with no further
complication;

• if one �dominates� the other, i.e. activating it extinguishes the need for the
other, which translates by the correlation of the latter decreasing again, it is
either activated �rst in which case the optimal activation set is reached, or
the dominated one is activated �rst, which necessarily results in the dom-
inant one's over-correlation and activation, and the new direction must
then give the wrong sign to the dominated feature, resulting in its inac-
tivation; the last fact is ensured because by de�nition/construction, an
unnecessary feature gets a negative (or non-compliant) sign in the for-
mula β = β∗ − λ∆β, as explained in the derivation of the active set de-
scent method: a feature is unnecessary (inactive in the LASSO solution) if
and only if the loss is lessen by a negative coe�cient, i.e. by violating the
positivity constraint.

However, it is not sure, and di�cult to establish, if this generalizes to a larger
number of simultaneous equi-correlations. For example, the following cycle may
occur with four features φ1, φ2, φ3, φ4:

φ1 → activate φ2

φ1, φ2→ inactivate φ1

φ2 → activate φ3

φ2, φ3→ inactivate φ2

φ3 → activate φ4

φ3, φ4→ inactivate φ3

φ4 → activate φ1

φ4, φ1→ inactivate φ4

. . . →

and if the optimal activation set is {φ1, φ3}, it is never reached. In the lack of
a proof that such a cycle cannot happen, strategies that provably do not cycle
must be considered.
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Let us �rst note that the problem involves only the set C of features that are
equi-correlated and have a zero coe�cient, whether they were active for greater
values of λ and are zeroed at λ, or were inactive and become equi-correlated.
The other � active or inactive � features can be left aside, since we are looking
for the active set in the immediate neighbourhood of λ, that can be considered
su�ciently close so that no other feature may be zeroed or over-correlated.

Hence, a �rst possibility is to identify the whole set C, and do an exhaustive
search over its subsets for the one that incurs sign-compliant coe�cients for its
members and no over-correlation for the unselected ones. This seems a reasonable
solution, since it is extremely unlikely that C is big. However, this may still occur
with an ill-de�ned dataset, and is of combinatorial complexity; moreover, this
method is a bit tedious to incorporate in the algorithm.

In remark 8 of (Osborne et al., 2000a), it is suggested that if such a cycle is
detected, one can get past this singular point of the regularization path by setting
t (resp. λ) to a slightly greater (resp. lower) value, then switch to the descent
method for solving for that new point, and then switch back to homotopy when
�back on track�. In (Efron et al., 2004), the solution of adding a jitter to the y

values is proposed. More generally, small random perturbations of the problem
data can break the singularity without sensibly a�ecting its solution. Such a
perturbation is also one of the possible workarounds for the similar cycling prob-
lem that occurs in linear programming. An elegant and e�cient exact method
was derived from it in (Wolfe, 1963), that uses symbolic perturbations that need
not be quanti�ed. Let us follow this approach of symbolically perturbing the
data, and hopefully even �nd that the symbolic expression of the perturbation
term can be dropped and simply leave a well-formed rule for selecting among
simultaneous candidates for activation.

3.1.2.1 Breaking the tie

Rather than perturbing the response y, one can change the penalizations of the
features, or equivalently scale these features. This involves less entities, that
are also more related to the problem: |C| features rather than n observations.
A slight increase in the penalization of all candidate features delays their equi-
correlations. A single scale of the penalizations by a common factor γ > 1

has a probability one to break the tie: the evolution of correlations with λ is
linear, the scale of penalizations results in a scale of the slopes, and if they are
di�erent for each feature, the tie is broken. Let us however protect against a new
singularity (equal slopes) by allowing di�erent scales for each feature: we scale
the penalization of each candidate feature φ by (1 + εφ).

For all features φ of C, let us increase the penalization by scaling θφ (their
signed penalization) by (1 + εφ) > 1, and get

φT(r∗ + λ∆r) < λ((1 + εφ)θφ)

Equi-correlation is thus delayed to a further point, that is a lower value of λ. Let
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λ− δφ be this point. We are looking for the closest one, that is the least δφ. δφ
is given by

φT(r∗ + (λ− δφ)∆r) = (λ− δφ)(1 + εφ)θφ

φT(r∗ + λ∆r)− δφφ
T∆r = λθφ + εφλθφ − δφ(1 + εφ)θφ

−δφφT∆r = εφλθφ − δφ(1 + εφ)θφ

δφ((1 + εφ)θφ − φT∆r) = εφλθφ

δφ =
εφλ

1− φT
∆r

θφ
+ εφ

Let us see to what amounts minimizing this value over C:

argmin
φ ∈ C

δφ = argmin
φ ∈ C

εφλ

1− φT
∆r

θφ
+ εφ

= argmin
φ ∈ C

εφ

1− φT
∆r

θφ
+ εφ

= argmax
φ ∈ C

1− φT
∆r

θφ
+ εφ

εφ

= argmax
φ ∈ C

1

εφ

(

1− φT∆r

θφ

)

+ 1

= argmax
φ ∈ C

1

εφ

(

1− φT∆r

θφ

)

The least perturbation, or at least the simplest one, consists in using the
same value ε for all features. In this case, and for any positive value of ε, the

�rst feature to require activation is the one minimizing φT
∆r

θφ
. Should there be

multiple minimizers, the tie is broken by using di�erent additional penalizations
εφ. These terms can be considered as arbitrary close to zero and to each other,
as long as they break the tie by yielding a unique maximizer of

1

εφ

(

1− φT∆r

θφ

)

This means that an arbitrary choice can be made, on the basis of its additional
penalization being slightly lower than the others'. Without expliciting them, one
can state that all (εφ)φ ∈ C terms are di�erent, but su�ciently close to each other

so that the factor (1− φT
∆r

θφ
) is always dominant:

argmax
φ ∈ C

1

εφ

(

1− φT∆r

θφ

)

= argmax
φ ∈ C

(

1− φT∆r

θφ

)
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but in case of equality on that factor, the a priori ordering induced by ε·'s breaks
the tie.

This gives an interesting �rst rule where the perturbation terms can be
dropped: in case several features are simultaneously on the edge of over-correlation,

the one with largest �growth rate� (argmaxφ ∈ C
φT

∆r

θφ
) should be activated, using

an arbitrary (but �xed) ordering as a second criterion if there are several of them.
Unfortunately, the same simpli�cation can not be applied to track the zeroing

of features from C. When using actual perturbations, once activated, a feature's
coe�cient is modi�ed with di�erent successive rates, as others get activated, and
may get zeroed and inactivated at some point. This point cannot be monitored
without keeping an account of the successive modi�cation rates and lengths, that
depend on the various problem parameters and the perturbations.

Hence, the method has to be applied literally. However, as for the �rst
method, explicitly constructing C before applying the perturbations can be te-
dious, and there is a simpler way to get past the singularity, with a symbolic
change in the parameter that results in simple rules.

3.1.2.2 Method switching

This simpler solution consists in following the proposition of (Osborne et al.,
2000a) to switch from the homotopy to the active set method for a slightly lower
value of λ. The interesting point is that this switch need not be explicit by
actually decreasing λ and calling a di�erent algorithm.

Let ε be the quantity by which λ is decreased. The �rst step of the active
set method is to consider going from the starting point β∗ − λ∆β to the new
candidate solution β∗− (λ− ε)∆β, and stop when a feature is zeroed. This stop
is immediate, and since the direction is the one followed in the last step of the
homotopy, all features that were zeroed violate the sign constraint if continuing
in that direction, and thus are all inactivated.

The new unconstrained minimizer β∗− (λ− ε)∆β on the shrunk active set is
then computed. Note that it cannot incur new violations, if ε is su�ciently small
so as not to deviate enough from the starting point to zero features that are not
in C. Thus, in the following, only the newly activated features may be zeroed.
For this second step, and in the following ones when no more zeroing occurs, an
over-correlated feature must be found and activated. Again, only features from C
must be considered, assuming ε is su�ciently small. Over-correlation is de�ned
by

φ

θφ

T(

y −XT(β∗ − (λ− ε)∆β)
)

> λ− ε

that is

φ

θφ

T(

y −XT(β∗ − λ∆β)
)

− φ

θφ

T

XTε∆β > λ− ε .
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All features from C being equi-correlated, this is equivalent to

− φ

θφ

T

XTε∆β > −ε ,

and

1− φ

θφ

T

XT∆β > 0 . (3.25)

Not surprisingly, activating the most over-correlated feature gives the same cri-
terion as in the previous tie-breaking method:

activate argmax
φ ∈ C

(

1− φT∆r

θφ

)

However, let us not use this criterion, but rather a more practical one, since
any over-correlated feature may be chosen. Multiplying inequation (3.25) by
|θφ| = sign(θφ)θφ, we get

sign(θφ)(θφ − φTXT∆β) > 0 ,

and we may use as a tie-breaking rule

activate argmax
φ ∈ C

sign(θφ)(θφ − φT∆r) ,

which is also a greatest-overcorrelation rule, but comparing the correlation c to
λw rather than c/w to λ. The practical aspect is that, in the homotopy algorithm,
the features that reach equi-correlation simultaneously are the members of

argmax
φ ∈ D

φTr∗

θφ − φT∆r

where by de�nition (see (2.23)), θφ = sign(φTr∗)w(φ), hence sign(θ) = sign(φTr∗).
Multiplying the numerator and denominator by sign(θ), the expression becomes

|φTr∗|
sign(θ)(θφ − φT∆r)

,

Since this expression, which gives the next value of λ, must be positive, it is equal
to

|φTr∗|
|θφ − φT∆r|

,

Whence � assuming for the moment that no zeroing is involved � when the
next-activation rule

argmax
φ ∈ D

φTr∗

sign(φTr∗)w(φ)− φT∆r
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gives several candidates, selecting the one with the largest absolute denominator
and continuing the algorithm as is, corresponds to slightly decreasing λ and
applying the Active Set method, without the need to specify this slight decrease.
Note that choosing the largest absolute denominator is equivalent to choosing
the lowest absolute numerator.

Concerning the zeroings, at each change of the active set, the new tentative
solution is β∗−(λ−ε)∆β. By construction, and continuity, for all active features
coming from C, therefore with a coe�cient zero for ε = 0, the coe�cient is ε∆β.
Contrarily to the previous method where these coe�cients were added a term at
each new active set, this one resets them at each step with this simple expression.
This allows to monitor the zeroings: each time a feature is activated, the active set
method takes a linear move from the previous solution to the new one, stopping
at the �rst point where a feature is zeroed, inactivating it, and iterates until no
zeroing occurs. Let ∆β be the regularization direction of the new solution, and
∆β′ that of the previous one. The coe�cient of an active feature φ from C is
taken from previous to its new value by

βφ = ε∆βφ
′ + γ(ε∆βφ − ε∆βφ

′)

with γ going from 0 to 1, and a zeroing occurs for

γ = − ∆βφ
′

(∆βφ −∆βφ
′)
.

Therefore the �rst one occurs for

argmin
φ ∈ σ∩C

(

− ∆βφ
′

(∆βφ −∆βφ
′)

)

∈ [0,1]

= argmax
φ ∈ σ∩C

(
∆βφ

′

(∆βφ −∆βφ
′)

)

∈ [−1,0]

= argmin
φ ∈ σ∩C

(
(∆βφ −∆βφ

′)

∆βφ
′

)

∈ (−∞,−1]

= argmin
φ ∈ σ∩C

(
∆βφ

∆βφ
′ − 1

)

∈ (−∞,−1]

= argmin
φ ∈ σ∩C

(
∆βφ

∆βφ
′

)

∈ (−∞,0]

= argmax
φ ∈ σ∩C

(
∆βφ

′

∆βφ

)

∈ (−∞,0)

= argmax
φ ∈ σ∩C

(
∆βφ

′

∆βφ

)

∈ (−∞,0)

The motivation of the interval conditions
()

∈ [0,1]
and its derivations is to restrict

to zeroings that occur in between a solution and the next one, in the regular active
set descent method. However, the features considered here are the members of

argmax
φ ∈ σ

sign(β∗
φ
) 6=sign(θφ)

(

β∗
φ

∆βφ

)

≥0
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which, given the positivity of the ratio, verify

sign(∆βφ) 6=sign(θφ)

sign(∆βφ) 6=sign(∆βφ
′) .

Thus it is not needed to consider this restriction.
Let us now note that in the Active Set method, when several zeroings occur

simultaneously, as is the case in the �rst step of the homotopy/ASD switch, they
may all be zeroed at once as mentioned above, but it is also valid to zero them
one by one in an arbitrary order, computing the new ∆β each time, and stopping
when this direction does not incur any more zeroing. No cycle can occur since
only zeroings are involved, and as soon as none happens anymore, it is legitimate
to switch to the part of activating over-correlated features. Hence, in the �rst
step of the switch, the criterion de�ned above, although it is not relevant because
the coe�cient are zero and not ε∆β, is not wrong because any order is correct.

These considerations and derivation of rules yield the fact that simply adding
proper tie-breaking rules to the homotopy method is equivalent to the switch to
Active Set method. The resulting method is sketched in Algorithm 10. It gives
a priority to inactivation when a zeroing and an equi-correlation occur simulta-
neously, and priorities inside those two status changes are de�ned by the rules
derived above. Hence, when simultaneous equi-correlations and zeroings occur,
the algorithm proceeds to a sequence of inactivations and activations while λ re-
mains unchanged (all candidates require to be activated at the current value) until
all involved features agree with their status, that is the regularization direction
associated to the active set does not make any inactive feature over-correlated,
nor any active feature having a wrong coe�cient sign. The sequence is guaran-
teed to converge because it corresponds to the Active Set method sequence, that
repeats the following:

• while some features are zeroed following the current direction, inactivate
the �rst one in the ASD method at λ− ε, given by the tie-breaking rule,

• if there are features requiring immediate activation, i.e. that would be over-
correlated at λ − ε, activate one of them, more speci�cally the most over-
correlated in the sense argmax |correlation| − (λ− ε)penalization,

The switch to and from the ASD method is seamless; it is needed only when a
tie occurs and solely consists in using the tie breaking rules.

We have thus shown that, even if the number of features is greater than the
number of observations, or more generally some features are linearly dependent
regarding their values on the observations, the ℓ1 penalty gives a second criterion
that distinguishes between them, yielding a unique LASSO solution, unless the
linear dependence is a�ne, which means that assigning the same coe�cient to
one of these features or to the equivalent combination of the others incurs the
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Algorithm 10 Cycle-safe homotopy method for the regularized LASSO

Input: input vector x ∈ X n, response vector y ∈ Rn, feature dictionary
D ⊂ RX , penalization function w : D → R+

Output: For all λ ∈ R+,

LASSOr(x,y,D, w, λ) = argmin(σ,β)∈2D×R ‖y −Xσ
Tβ‖22 + λ‖β‖wσ

De�nition: For a feature function φ ∈ D, the bold notation denotes the
application of φ to the input vector x: φ = φ(x) = (φ(x1), . . ., φ(xn))

T.
1: λ←∞, σ ← {},X← [],θ ← ()

2: loop

3: β∗ ← (XXT)−1Xy

4: ∆′

β ←∆β

5: ∆β ← (XXT)−1θ

6: r∗ ← y −XTβ∗

7: ∆r ← XT∆β

8: (λ−, φ−)← max, arg max
φ ∈ σ

sign(β∗
φ
) 6=sign(θφ)

β∗
φ

∆βφ

, break tie on max
∆′

βφ

∆βφ

9: (λ+, φ+)← max, arg max
φ ∈ D\σ

φTr∗

sign(φTr∗)w(φ)− φT∆r

, break tie on min |φTr∗|

10: λ′ ← max(λ−, λ+, 0)

11: output ∀l ∈ [λ′, λ), LASSOr(x,y,D, w, l) = (σ, β∗ − l∆β)

12: if λ′ = 0 then terminate

13: else if λ′ = λ− then

14: σ ← σ \ {φ−}
15: shrink X,β,θ accordingly
16: else if λ′ = λ+ then

17: σ ← σ ∪ {φ+}
18: extend X by row φ, β by 0, and θ by sign(φTr∗)w(φ)

19: end if

20: λ← λ′

21: end loop
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same cost in the coe�cient's ℓ1 norm and also the same decrease in the residual.
However, this also means that the two options are really equivalent, and the choice
can be made arbitrarily; this arbitrary choice is well handled by the Active Set
and homotopy methods, but the CCD method uses all the a�nely dependent
features, splitting the needed coe�cient between them.

The even more unlikely possibility of more than two simultaneous calls for
activation or inactivation, of which a subset must be ful�lled, emerging from their
interactions, does neither require any speci�c care in the Active Set method, but
needs additional rules in the homotopy method to yield the same sequence of
activations/inactivations as if a switch to the Active Set method was performed
in a neighbouring value of λ. As unlikely as the situation may be, there is some
comfort in having the insurance of handling it correctly, especially given the
simplicity of the resulting adjustments. It is even more useful if this degeneracy
is made less unlikely by the setting that we discuss in the following section, that
is when the dictionary of features D is very large, possibly not �nite.

3.2 Very large feature sets

As just mentioned, one of the consequences of using very large feature sets
(D ≫ n) is the increased likeliness of the degeneracies that were just discussed.
That point is now well handled by our two algorithms. However, other questions
arise with a large size of D. No fundamental change is to be expected from using
an in�nite but countable set, by which we mean the problem is still well posed,
its solutions exist and share the same properties whether D is �nite or countable.
The potential issues are of practical nature: repeatedly considering an in�nite
number of features for activation may be problematic. Using non-countable fea-
ture sets is a greater breakthrough in the nature of the problem of which we
will discuss the consequences for the di�erent algorithms, before addressing the
practical problem of using �nite resources to select from in�nitely many options.

3.2.1 Non-countable sets

The �rst considerations to make regarding the non-countability of D are about
the very existence of solutions, and the preservation of the sparsity property of
the ℓ1 penalty. This point was addressed in (Rosset et al., 2007), with a positive
answer, under mild assumptions. This result is not surprising given the following
simple arguments:

• regardless of the nature of D, an in�nite regularization parameter (λ =∞)
necessarily de�nes σ = ∅ as the unique LASSO minimizer;

• there exist over�tting estimators that yield a residual of 0, using at most n
active features, among which some have a minimal coe�cient's ℓ1 norm, and
are necessarily the minimizers of the squared residual under the correspond-
ing constraint, because any additional active feature is a linear combination
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of these n initial ones, and if activating it lessens the ℓ1 norm, this lessening
being linear, the loss decreases as long as more weight is assigned to that
feature, up until another feature is zeroed, which contradicts the hypothesis
that the initial solution was optimal among n-features estimators.

• the continuity and convexity properties are not a�ected by the nature of
D, which implies the existence of a regularization path between this zero
solution and each of these least-ℓ1-norm, over�tting estimators.

3.2.1.1 De�ning algorithms for arbitrary feature dictionaries

Regarding the feasibility of algorithms in this setting, a �rst step was done by
de�ning the LASSO problem for arbitrary feature sets, in the �rst chapter, and
writing the ASD and homotopy methods consequently, in the second chapter.
This was a matter of notations, and simply illustrates that the nature of D does
not a�ect the essence of the homotopy and ASD methods. The CCD method,
however, was presented in the common setting assuming a �nite set, because it
does rely on this assumption. However, it can be adapted to cope with arbi-
trary feature sets. The initial and simplest formulation of cycling through all
features and updating their coe�cients can be extended to di�erent schemes.
In (Friedman et al., 2010), it is mentioned that concentrating the updates on
the active set yields a considerable speedup. Indeed, the cycling updates can
be performed over the ��nite� active set, and the remaining, inactive, features
only need to be checked for overcorrelation and subsequently activated. Rather
than testing/activating them through a lexicographic enumeration, it is possible
to repeatedly consider the whole set D and the correlation function from D to R,
pick any over-correlated feature, and activate it with the CCD update. In this
respect, the algorithm is not much di�erent from the Active Set Descent method,
as the main task is to track inactive over-correlated features and activate them,
until none can be found or, in the CCD case, over-correlations become negligible.
The main di�erence between the methods lies in the simpler updates of the CCD.
Regarding the common activation part, the same arguments apply to favourize
the activation of the most over-correlated features. This yields an alternative
version of the CCD method, sketched in algorithm 11, that we call an Active Set
Coordinate Descent (ASCD), to emphasize the fact that it takes into account the
existence of an active set that is sparse with respect to the whole feature set, and
cycles only on that active set. It is consistent with the de�nition of the LASSO
given in Chapter 1, by not assuming a �nite feature dictionary. It alternates
between one cycle over the active set, and the activation of one new feature, but
di�erent schemes can be used, since both tasks can be considered as independent,
and thus di�erent frequencies in their alternation can be considered.

This algorithm, however, still bears the inconvenient, previously mentioned,
of not dealing properly with a�ne dependencies in the feature set, and the prac-
titioner should ensure avoiding such dependencies when designing in�nite feature
sets.
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Algorithm 11 Active Set Coordinate Descent for the regularized LASSO

Input: input vector x ∈ X n, response vector y ∈ Rn, �nite feature dictio-
nary D ⊂ RX , penalization function w : D → R+, regularization parameter
λ ∈ R+

Output: (σ,β) converges to
LASSOr(x,y,D, w, λ) = argmin(σ,β)∈2D×R ‖y −Xσ

Tβ‖22 + λ‖β‖wσ

1: (σ,β)← starting point.
2: r← y −Xσ

Tβ

3: loop

4: for φ ∈ σ do

5: c← βφ + φTr

6: if |c| > λw(φ) then

7: βφ ← c− sign(c)λw(φ)

8: else

9: σ ← σ \ {φ}
10: end if

11: update residual r
12: end for

13: c, φ← max, arg maxφ ∈ D | φ
T
r

w(φ) |
14: σ ← σ ∪ {φ}
15: βφ ← φTr− sign(φTr)λw(φ)

16: r← r− βφφ

17: end loop
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The three algorithms now share the property of including a maximization
task over D, which is well de�ned for any set, but may not be practically feasible
if D is not �nite. In (Rosset et al., 2007), an example is given and experimented
for which this optimization can be performed for the homotopy algorithm. It
consists in the set of quadratic polynomials

{φ : [0, 1]→ [0, 1], x 7→ (x− a)2 | a ∈ [0, 1]}

for which it can be shown that the LASSO solutions can only activate features of
which the knot a coincides with an observation point xi. Thus, the optimization
over D can concentrate on the corresponding �nite subset. However, it can be
argued that such a priori discarding, of a similar nature as the RKHS case of
support vector machines, simply reveals that the real expressive power of D is
not in adequacy with its apparent richness, and that it is a somewhat arti�cial,
unnecessary, in�ation of the �nite feature set

{
φ : [0, 1]→ [0, 1], x 7→ (x− a)2 | a ∈ {x1, . . ., xn}

}
.

When D is in�nite and cannot be restricted beforehand to a �nite subset, it o�ers
a genuine rich choice that is to be determined from the data and the regular-
ization, but this comes at the price of having to perform an optimization over a
non-countable set. Before discussing the consequences and workarounds, let us
give some examples of such sets and relate them to commonly used parametric
regression estimators.

3.2.1.2 General-purpose in�nite feature sets for low-parametric re-

gression

Two common families of features, that are de�ned on X = Rm and do not re�ect
strong prior assumptions on the model, are

• Gaussian radial basis functions (RBF):

φΣ,c : Rm → [0, 1]

x 7→ 1√
(2π)m|Σ|

exp
(

−1
2(x− c)TΣ−1(x− c)

)
;

• logistic perceptrons:

φw,b : Rm → [0, 1]

x 7→ 1
1+exp(wTx+b)

.

The RBF features are useful because they are based on a well-formed measure
of closeness between a centre c and the input x. It is well-formed because, as
mentioned in chapter 1, the Gaussian function is ubiquitous in nature and has nice
mathematical properties, mostly for the same reasons. They are parameterized
by the values noted in subscript in their de�nition: a centre c and a covariance
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matrix Σ. A classical way to use them in regression consists in the experimenter
selecting a set of these features beforehand or through repeated trials, by choosing
the parameters, and then performing a �possibly regularized� least-squares on
this �nite set. The most classical and less informative way to select the features
is to use a grid of centres in the input sets, and a �xed diagonal covariance
matrix such that the bandwidth of the features match the mesh spaces of the
grid. Another is to use the input observed points as centres, and also a �xed
covariance matrix. The use of this common matrix Σ gives k(x,x′) = φΣ,x′(x)

the reproducing kernel property and justi�es the choice of the observed inputs
as centres. In the general case, several di�erent covariance matrix / bandwidths
may naturally be used together. These approaches can be quali�ed as parametric.
The term of parametric regression and its counterpart non-parametric regression

are sometimes given di�erent meanings depending on the scienti�c community,
authors, or context, and it is worth trying to clarify this taxonomy.

One usual understanding of these terms is that parametric regression consists
in de�ning the estimator independently of the observations �but depending on
the nature of the data� by an expression in which a �xed number of numerical
variables (the parameters) are to be de�ned from the observations, and methods
in which more than the prede�ned numerical parameters is determined by the
observations quali�es as non-parametric. In other words, parametric regression
designates the most parametric settings in which there is a strict separation be-
tween de�ning the structure before the observations and �tting the �xed number
of parameters from these observations. In this view, kernel methods like Gaus-
sian Processes are considered non-parametric, because the number of features
as well as the features themselves (k(x1, ·), . . ., k(xn, ·)) are determined by the
the observations. It should be noted, however, that the in�uence of the data on
the structure is limited, by the fact that it is automatic, straightforward, and
most importantly taking into account only the predictor variable. Such methods
actually incorporate a distinct intermediate step between choosing the structure
given the nature of the data, and �tting the parameters given the observations.
The last step takes into account the empirical joint distribution between X and
Y , the relation between these two being the core information to extract, whereas
the additional intermediate step simply, but fruitfully, adapts the structure to the
marginal distribution of X. The structure is still strongly de�ned beforehand by
the choice of the kernel, and the observations are still processed to �t numerical
parameters, but kernel methods can be quali�ed as non-parametric, in this �rst
understanding of the term.

Another de�nition of non-parametric regression is in some sense the opposite
of the �rst one. It is probably more legitimate, having a clear and simple de�-
nition and being included in the more general concept of non-parametric statis-
tics. Rather than de�ning as parametric the most parametric methods and non-
parametric the other ones, it simply �and logically� de�nes as non-parametric
regression the methods in which no parameter is de�ned, and the observations are
used �as is� for the estimator to make a prediction, rather than being processed,
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compiled, into such parameters. Only a few practical estimators are genuinely
non-parametric, according to this de�nition, and consist in interpolating between
the observations or using weighted averages of the observed responses. However,
kernel methods present a strong similarity to those: in order to de�ne the estima-
tor, they do �and must� store all observations, or more precisely the associated
features k(xi, ·), and this can be thought of as the main point of the de�nition.
Thus, even if the coe�cients to these features are computed in the very same way
as the parameters of parametric regression, kernels methods may also be thought
as non-parametric in this respect.

Given the coexistence of di�erent de�nitions, both subject to interpretation,
we advocate the use of the term low-parametric regression for methods that do
compute parameters such as linear coe�cients, but in which the structure (includ-
ing the number of these parameters, and nonlinear parameters) is also, more or
less, de�ned from the observations. Let us also, in order to classify more precisely
among these methods, identify the main components that de�ne a parametric es-
timator: assuming Y = R, a parametric regression method ultimately de�nes a
function X → R of which the only variable is the input for which a response is to
be predicted. It does so by de�ning a general operator, in which other variables
are to be de�ned either by the experimenter (hyper-parameters), or from the
observations, either from their marginal distributions (super-parameters), or the
joint one (parameters). These three types of parameters can be either structural
(e.g. number of features), or numerical/symbolical. A �rst point of comparison
between methods is how much the general operator is restrictive by itself, or how
much expressiveness is given, to be tighten by the choice of parameters. A sec-
ond point is how the parameters are distributed among hyper, super, and simple
ones, giving an idea of how low-parametric they are.

In (Loth et al., 2009), we proposed the use of the homotopy method over
in�nite feature sets. The method, named ECON for equi-correlation networks,
uses as a feature dictionary a parametric space of feature functions, two natural
examples being the set of all logistic perceptrons (named ECONN for N eural
N etworks)

D = {x 7→ 1

1 + exp(wTx+ b)
|w ∈ Rm, b ∈ R} ,

and the set of all Gaussian features (ECORBF)

D = {x 7→ 1
√

|Σ|
exp

(

−1

2
(x− c)TΣ−1(x− c)

)

| c ∈ Rm,Σ ∈ Rm×m} .

The consequences of such a choice for D and the practical aspects are discussed
in sections 3.2.1.4 and 3.2.2. We may however mention here a few �rst simpli�ca-
tions that ease the task of selection among these. Firstly, the possible values for
the features parameters may be restricted to speci�c intervals: for the Gaussian
features, the range of meaningful values for the centres and bandwidths can be
derived from the range of the observations, and, provided that the inputs are
normalized, the weights of perceptron can safely be constrained in some interval.
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Secondly, allowing a total freedom for the covariance matrix Σ may incur more
di�culties than bene�ts. A dimensionality of O(m×m) for D may complicate
the search over it while not bringing much improvement other than a capacity
to over-�t the data. Hence one may restrict D to the family of Gaussian features
with diagonal covariance matrix, that is

Σ =






σ2
1 0

. . .

0 σ2
m






which gives

D = {x 7→ 1

‖σ‖2
exp

(

−1

2

m∑

i=1

(
xi − ci
σi

)2
)

| c ∈ Rm,σ ∈ Rm} .

One may even reduce the number of covariance parameters to one, with Σ = σ2I,
that is σ1 = . . . = σm = σ, which we may call an isovariant RBF and gives

D = {x 7→ 1

σ
√
m

exp

(

−‖x− c‖22
2σ2

)

| c ∈ Rm, σ ∈ R} .

The last simpli�cation is common in RBF regression, since most of the methods,
by necessity or for practicality, allow only one or a few possible values for the
shape of the features, as hyper-parameters; in the absence of a prior knowledge,
an uninformative symmetric shape is a natural choice, after normalizing the
observations in each dimension, and leaves a single hyper-parameter to be set for
the range of the features.

This is the case in classical RBF regression, where a �xed number of iso-
variant RBF are de�ned, of which the centres span the input space, generally
in a grid form. A simple least-squares regression is then performed on these
features. Kernel methods like Gaussian processes ((Rasmussen and Williams,
2006)) or Support Vectors algorithms ((Smola and Schölkopf, 2004)) rely on the
transformation of the input space into the feature space by one kernel. This
results in the use of n identical features in terms of shape, centred (in the case
of a Gaussian kernel) on each observation. The use of multiple kernels, of which
the combination adapts to the learning data, has been proposed in (Lanckriet
et al., 2004), (Bach et al., 2004), (Qiu and Lane, 2005), or (Bach, 2008). In these
methods, the di�erent kernels are structured together, either by being combined
into a sum of which the coe�cients are learnt, or consisting in the decomposition
of one original kernel. These works place themselves in the kernel framework,
and ultimately select a unique kernel function that forms the regression features
by being applied to each observed input.

In contrast with these grid and kernel approaches, the simple application of
the LASSO to a parameterized space of features leaves the most parameters to
be really determined from the observations, in an integrated way (the choice
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Table 3.1: Comparison of di�erent regression methods in terms of parameters.

The three approaches share the same initial framework of modelling the data
by a linear combination of Gaussian features, and di�er in the way the es-
timator is determined from the data. Hyper-parameters must be set inde-
pendently of the method itself, by knowledge or validation methods. Super-
parameters are determined by the form of the observations data, with-
out taking into account the X/Y relationship. Parameters �t the data.

Structural Numerical

Fixed radial basis functions networks

hyper-parameters number of features centres, covariance matrices
super-parameters � �
parameters � linear coe�cients
Gaussian kernel methods

hyper-parameters � covariance matrix
super-parameters number of features centres
parameters � linear coe�cients
ECORBF

hyper-parameters � regularization trade-o� λ, co-
variance matrix form

super-parameters � �
parameters number of features centres, covariance matrices

elements, linear coe�cients

or optimization of the features or kernel is not separated from the computation
of the linear coe�cients). Table 3.1 summarizes the di�erent natures of the
parameters in methods that all compute an estimator in the form of a linear
combination of Gaussian features. The idea behind making no initial restrictions
on the features other than, e.g. the Gaussian family, and letting all parameters
�t the observations, is that the ℓ1-norm penalization could be su�cient to both
select a subset of features and prevent over�tting the observations, which are
correlated tasks. In other words, there should be no need to restrict the space of
estimators beforehand by hyper-parameters, since the ℓ1 selection is more �tted
to the data, while the sole sparsity of this selection should prevent over�tting by
itself.

An other point of comparison can be made with the feed-forward arti�cial
neural networks (ANN). In their simple form of one hidden layer, they provide
estimators that are linear combinations of perceptron features as de�ned at the
beginning of this section. The method takes a somewhat similar approach as
ECON, by optimizing together, and from the data, the linear and nonlinear pa-
rameters. The classical ANN approach �xes the number k of features (hidden
units) and proceeds to a global optimization over these parameters, by following
stochastic gradient directions over them. This optimization is thus performed on
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a space of dimension k(m + 1) + k. The ECONN approach replaces the hyper-
parameter k by the equivalent regularization parameter λ, and an important
di�erence is that, by following the regularization path, a sequence of estima-
tors for di�erent values of λ is produced, among which an informed choice can
be made. However, the main di�erence between the two approaches lies in the
dimensionality of the optimizations: a global optimization over the O(km) pa-
rameters is replaced by a sequence of optimizations over the O(m+1) parameters
of one feature.

3.2.1.3 Biasing the regularization path

As was just mentioned, the sole ℓ1 or ℓ0 penalization is able to prevent or limit
over�tting, because the most e�ective way to reduce the residual with such a
constraint is to select features that �t the global shape of the observations. A
gradual relaxation of the constraint by following the regularization path thus
produces a sequence of estimators, that models more and more precisely the ob-
servations. Provided that the model and the noise (or expectation and variance)
have distinct scales, a reasonable model is likely to be found at some point in
this sequence. However, sparsity in itself is not a direct, well-formed measure or
criterion for model recovery.

The normalization of the features, explained and motivated in section 2.6.1,
ensures a somewhat fair selection among features, based on shape-�tting. How-
ever, this also means that a feature with a small support on X (e.g. a Gaussian
with small bandwidth σ), might be selected rapidly on the regularization path,
if it happens to �t the observations especially well on this support. Whence, it
should be pro�table to introduce an additional criterion of regularity and gener-
alization property. Such a criterion is the preference for large-support features:
a feature that has signi�cant values on a large number of observations cannot
�t a noise that consists in independent variations from point to point. Thus if
the features are penalized with respect to such a criterion, it should reinforce the
property of the regularization path to to go from model �tting to noise �tting.
In �gure 2.5, one can see that on the sinusoidal problem of section 2.6.1, the �rst
feature selected by the normalized LASSO (that is, features are simply normal-
ized), though �tting the general shape of the model, does not cover the widest
sinusoidal wave, but the narrowest, because the shapes of the Gaussian and the
observations are closer on this region. The next few steps successively match the
other waves, then a second phase, adjusts more precisely to the overall shape,
before small support variations, corresponding to the noise, are �tted. Intuitively
and empirically, the last two phases tend to overlap, as small adjustments of a
smooth estimator and local noise �tting must have the same value in terms of
residual reduction and coe�cient cost.

In order to bias the regularization path towards an overall decrease in the
support of selected features, it su�ces, in the case of Gaussian features, to use
penalization factors that decreases with the size of the support. This size is
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properly expressed by the square root of the determinant of the covariance matrix
Σ, that is

∏m
i=1 σi in the diagonal case, and σ in the isovariant case; let us simply

denote σ =
√

det(Σ) in the general case. The penalization function can thus be
set to

w(φc,Σ)∝ 1/σ

after normalization, or to

w(φc,Σ)∝‖φc,Σ‖2/σ

for handling both the normalization and the di�erentiated penalization.
If one wants to emphasize penalization of features with very small supports,

that is of the order of the density of the observation points, and in the absence
of a knowledge or regularity of this density, a reasonable choice seems to be a
logarithmic penalization function:

w(φc,Σ)∝
1

log(1 + σ)
,

which makes the �favourization� (inverse of penalization) decrease regularly as
σ decreases for most values, and decrease more and more rapidly as σ tends to
zero.

Figures 3.1 and 3.2 display the same plots as �gure 2.5, when using those
penalizations functions. The �rst feature to be selected in both cases has a very
large bandwidth, and almost corresponds to a linear least-squares (on X ). For the
1/σ penalization, the �rst estimator to cover all waves of the sinusoidal function
is also the best one in terms of true loss, and in the 1/ log(1 + σ) case, it is
almost optimal. This is a major di�erence with the case of simple normalization,
for which the very �rst steps immediately cover the global shape, and are followed
by a long phase of adjustments, that are subject to corruption by noise-�tting
elements. The precise behaviour of the three penalization options can be seen
in �gure 3.3, that shows the evolution of the squared residual (empirical loss)
and a �true� loss (with respect to the unnoisy values), with the number of steps
of the homotopy (i.e. the number of break points on the regularization path).
The di�erentiated-penalizations paths yield better estimators, and exhibit clearly
distinct phases for model-�tting and noise-�tting: each drop in the empirical loss
corresponds to the �rst �t of one wave, and is followed by adjustments, before
the next region is treated. Hence, once the last region is covered, the estimator is
already optimal or quasi-optimal, and the remaining steps �t the noise. This last
phase is easily detectable from the empirical loss, as starting from or near after
the last drop. Also, the range in which satisfyingly good estimators are found
is large (steps 135 to 225 for 1/σ penalization), whereas the optimal estimator
for normalized features appears and deteriorates very quickly, and does not leave
clear evidences on the empirical loss. A �nal observation on these paths is that
the bene�ts of di�erentiated penalizations comes at the price of a larger number
of steps, and the 1/ log(1 + σ) option, although it does not yield the expected
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Figure 3.1: LASSO and restricted-least-squares estimators for di�erent values of
λ, for noisy observations of a sinusoidal function, and 10000 Gaussian features,
with features penalizations inversely proportional to their bandwidth σ.
The four estimators are, successively, the �rst one with one feature, the �rst to
approximately �t all sinusoidal waves, the closest to the true model (the latter
two being the same here), and the �rst to be noticeably over�tting.

improvement in terms of delaying over�tting, gives quite similar results as 1/σ

with twice less steps.

3.2.1.4 Optimizations over in�nite sets

A strict optimization of a continuous is naturally not feasible in �nite time by
deterministic computing machines, and one has to rely on approximate optimiza-
tions. The consequences on the three algorithms are of di�erent natures, the ho-
motopy method being more a�ected than the others. Indeed, the maximization
is a mandatory part of the algorithm, at each step: the exact regularization path
is followed, and assumed to have been correctly followed when determining the
next break point, meaning the exact maximizer over φ of

φTr∗

sign(φTr∗)w(φ)− φT∆r
(3.26)



132 Chapter 3. Beyond the Simple LASSO

Figure 3.2: LASSO and restricted-least-squares estimators for di�erent values of
λ, for noisy observations of a sinusoidal function, and 10000 Gaussian features,
with features penalizations inversely proportional to log(1 + σ).
The four estimators are, successively, the �rst one with one feature, the �rst to
approximately �t all sinusoidal waves, the closest to the true model, and the �rst
to be noticeably over�tting.
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Figure 3.3: For the sinusoidal problem of �gures 2.5, 3.1 and 3.2, corresponding to
di�erent feature penalizations, plot of the squared residual between the restricted-
least-squares estimator and, respectively, the noisy outputs (empirical loss) and
the model (true loss), against each step of the regularization path.
The bandwidth favourizations do achieve better true losses, at the price of a
larger number of steps. Most importantly, an optimal or quasi-optimal estimator
is obtained just at the end of the �rst phase that �ts each wave of the model,
which can be detected from the evolution of the empirical loss.



134 Chapter 3. Beyond the Simple LASSO

must be found. If it fails to be activated, it becomes, by de�nition, over-
correlated. The expression (3.26), that gives the value of λ at which equi-
correlation will occur, is then not relevant to detect, in subsequent steps, that a
feature was missed and is now over-correlated. Hence a �rst adaptation of the
homotopy algorithm, when an in�nite dictionary and approximate optimization
is used, consists in explicitly detecting over-correlated features (|φTr| > λw(φ))
in the optimization process. Secondly, one must choose what to do with such
features, in order to get back on the regularization path. One possibility, adopted
in (Loth et al., 2009) consists in adapting the problem to the solution, by making
the feature not over-correlated, by means of tuning its penalization:

if |φTr| > λw(φ) then w(φ)← φT
r

λ

This makes the feature equi-correlated, thus making the current solution valid
for the distorted problem. If it were not activated, it could evolve in both ways,
becoming over-correlated or under-correlated, and in principle, in the second case,
it need not be activated. However, it is simpler to activate it, and let the second
case translate into its coe�cient taking the wrong sign, and its inactivation.
This activation is immediate, meaning λ is unchanged: contrarily to the normal
case where one computes for which value of λ a feature is entering the solution,
this is a correction to the LASSO solution for the current value of λ. Thus the
algorithm either activates an over-correlated feature or, if none is found, moves
on the regularization path up to the point where a feature enters or leaves the
LASSO solution.

The alteration of penalization for over-correlated features should not a�ect
the result to too great an extent, if the optimization is not too loosely approx-
imated and detections of over-correlations do not occur too late. This can be
understood by noting that this procedure is a soft version of a more radical one
that consists in simply removing such �missed� features from the dictionary. A
reasonably approximated optimization is valid, i.e. exact, for a large subspace of
D, and removing a few points or parts that were wrongfully ignored, leaves an
alternative feature set that is still rich and on which the optimization was exact.
The re-penalization procedure is even less perturbing, because in the presence of
a missed feature, rather than stating it was not part of D, it is simply considered
to be more penalized than others; and the sooner it is detected, the lower it is
over-correlated, and the lower the alteration. A non-countable feature dictionary
is typically continuous in its parameters, as in the examples of Gaussian and per-
ceptron families, and so is the correlation of its features. Hence missing a feature
in the homotopy algorithm yields overcorrelation for a continuous, radial, region
of D, of which the radius tends to grow, if the overcorrelation increases. This
makes this region more and more easy to detect. When it is detected, identifying
the local maximizer of correlation, and activating it after rescaling its penaliza-
tion, will generally make the correlation of its neighbourhood decrease, causing
no further complications to the algorithm.
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The sketch of this adaptation of the homotopy method to approximate opti-
mization is given in Algorithm 12.

Another possibility when encountering an over-correlated feature is naturally
to switch to the active set descent method, which by essence activates over-
correlated features until there are none anymore. The procedure for such a
feature would then be to activate it, compute the non-sign-constrained solution,
and shrink the active set while this solution is not sign-compliant. The resulting
algorithm is described in Algorithm 13. However, considering this algorithm, one
might question its utility with the following argument: we have incorporated an
active set descent procedure to catch up from the drifts of an imperfect, approxi-
mate, homotopy algorithm, but is it really useful, if the active set descent is used,
to mix it with the homotopy? What are the bene�ts of an approximate homo-
topy compared to a simple active set descent? The purpose of the homotopy is to
follow the exact regularization path, including all changes of the active set as λ
decreases, as opposed to the active set descent for which a prede�ned sequence of
λ is chosen, and the solutions are computed using one as a warm start from the
next one. We have seen that, empirically, the number of changes of the active
set are equivalent in both methods. In the regular case of a �nite dictionary,
the homotopy o�ers the advantage that each of these changes of active set corre-
spond to the actual solutions on the regularization path. However, in the in�nite
dictionary case, this advantage, in addition to not presenting a strong practical
interest, is not strictly provided (one drifts from the regularization path if opti-
mization is not exact), and comes at a higher price: in addition to optimizing the
overcorrelation function (when would each feature become over-correlated as λ

decreases), one has to track the current-correlation function to check for already
over-correlated features. In contrast with this, a simple active set descent only
considers the correlation function, and there is no ill consequences of not picking
the most over-correlated feature: the order in which these features are activated
is not mandatory, it is only when there appears to be no more of them that an
error (there are some more over-correlated features) yields an approximate solu-
tion rather than the exact one. This solution is nevertheless a reasonably good
one, and a good warm start for the next one.

3.2.1.5 Nonlinear regularization paths

In addition to the use of an approximate optimization, an other possible con-
sequence of using a continuous feature set is to change the nature of the regu-
larization path. It was shown to be piecewise linear (in the coe�cient's space),
with a �nite number of segments, as a consequence of the �niteness of D. Thus
when D is not �nite, it might occur that the number of segments is in�nite, and
the path can have nonlinear portions, meaning that for some interval of values
of λ, any di�erent value yields a di�erent active set. Thus an hypothetical exact
homotopy algorithm would require an in�nite number of steps. This is not an
issue in practical cases, e.g. when using Gaussian or perceptron families, because
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Algorithm 12 ECON: approximate homotopy method for the regularized
LASSO, with adaptive penalization

Input: input vector x ∈ X n, response vector y ∈ Rn, feature dictionary
D ⊂ RX , penalization function w : D → R+,
Output: For all λ ∈ R+,

L̂ASSOr(x,y,D, w, λ) ≈ argmin(σ,β)∈2D×R ‖y −Xσ
Tβ‖22 + λ‖β‖wσ

1: λ←∞, σ ← {},X← [],θ ← ()

2: loop

3: β∗ ← (XXT)−1Xy

4: ∆′

β ←∆β

5: ∆β ← (XXT)−1θ

6: r∗ ← y −XTβ∗

7: ∆r ← XT∆β

8: r← r∗ + λ∆r

9: (λ−, φ−)← max, arg max
φ ∈ σ

sign(β∗
φ
) 6=sign(θφ)

β∗
φ

∆βφ

, break tie on max
∆′

βφ

∆βφ

10: (λ+, φ+) ≈ max, arg max
φ ∈ D

|φTr|
w(φ)

⊲ approximate maximization

11: if λ+ < λ then (λ+, φ+) ≈ max, arg max
φ ∈ D

φTr∗

sign(φTr∗)w(φ)− φT∆r

12: break tie on min |φTr∗|
13: λ′ ← max(λ−, λ+, 0)

14: output ∀l ∈ [λ′, λ), LASSOr(x,y,D, w, l) ≈ (σ, β∗ − l∆β)

15: if λ′ = 0 then terminate

16: else if λ′ = λ− then

17: σ ← σ \ {φ−}
18: shrink X,β,θ accordingly
19: else if λ′ = λ+ then

20: σ ← σ ∪ {φ+}
21: if λ+ > λ then θ ← φT

r

λ else θ ← sign(φTr∗)w(φ)

22: extend X by row φ, β by 0, and θ by θ

23: end if

24: if λ′ < λ then λ← λ′

25: end loop
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Algorithm 13 Mixed algorithm: approximate homotopy method for the regu-
larized LASSO, with corrections by active set descent.

1: λ←∞, σ ← {},X← [],θ ← ()

2: loop

3: β∗ ← (XXT)−1Xy

4: ∆′

β ←∆β

5: ∆β ← (XXT)−1θ

6: r∗ ← y −XTβ∗

7: ∆r ← XT∆β

8: r← r∗ + λ∆r

9: (cmax, φc) ≈ max, arg max
φ ∈ D

|φTr|
w(φ)

⊲ approximate maximization

10: if cmax > λ then

11: σ ← σ ∪ {φc}
12: extend X by row φc, β by 0, and θ by sign(φc

Tr)w(φc)

13: repeat

14: β̄ ← (XXT)−1(Xy − λθ)

15: (γ, φ)← min, argminφ ∈ σ

(
βφ

βφ−β̄φ

)

+
16: if γ < 1 then

17: β ← β + γ(β̄ − β)

18: σ ← σ \ {φ}
19: shrink X,β,θ accordingly
20: end if

21: until γ ≥ 1

22: else

23: (λ−, φ−)← max, arg max
φ ∈ σ

sign(β∗
φ
) 6=sign(θφ)

β∗
φ

∆βφ

, break tie on max
∆′

βφ

∆βφ

24: (λ+, φ+) ≈ max, arg max
φ ∈ D

φTr∗

sign(φTr∗)w(φ)− φT∆r

25: break tie on min |φTr∗|
26: λ′ ← max(λ−, λ+, 0)

27: ∀l ∈ [λ′, λ), LASSO(x,y,D, l)← (σ, β∗ − l∆β)

28: if λ′ = 0 then terminate

29: else if λ′ = λ− then

30: σ ← σ \ {φ−}
31: shrink X,β,θ accordingly
32: else if λ′ = λ+ then

33: σ ← σ ∪ {φ+}
34: extend X by row φ, β by 0, and θ by sign(φTr∗)w(φ)

35: end if

36: λ← λ′

37: end if

38: end loop
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neighbouring features are similar (φΣ,c(x) or φw,b(x) are continuous w.r.t. their
parameters), and the optimality of one against its neighbours is more than likely
to remain within a certain range of values for λ. This can be thought as the
space of features behaving by zones, that evolve with λ. Once a local optimum
of the function to optimize is activated, this function (the correlation, in the case
of ASD) is decreased for the whole zone, which is then globally discarded for the
next steps. However, it is possible to de�ne an ill-posed problem that yields a
degenerate situation in which any in�nitesimal change in λ yields the inactivation
of a feature in pro�t of one of its immediate neighbour. This is the case in the
following problem:

• n = 2,

• y1 = y2 = 1,

• D is a continuum of features parameterized by θ ∈ [0, 1], for which, when
θ decreases, the direction of a feature tends to that of the target y, while
its ℓ2-norm decreases:

D = {φθ, φθ(x1) = θ, φθ(x2) = θ(1− θ) | θ ∈ [0, 1]}

The problem's data is illustrated in �gure 3.4, in which it can be seen that φ1,
although forming the biggest angle with y, is the most correlated, because of its
greater norm. When activated and given any positive coe�cient β, the target is
changed to y−βφ1, to which the largest correlation is then achieved by another
feature. The activation of the latter disquali�es φ1, for the optimal coe�cient
direction for the two gives a negative sign to φ1, and it is thus immediately
inactivated. The same phenomenon is then repeated, until the two coe�cients are
and remain positive until the least-squares solution. Thus, when discretizing D
by using a �nite sequence for the values of θ, the regularization path successively
includes each feature and discards the previous one, and in the limit where D is
continuous, the active set changes continuously with λ. Figure 3.5 shows the plots
of the coe�cient's ℓ1-norm against λ, on which the linearity of path segments
also appears, for di�erent discretizations of D and for the whole set, for which
the path becomes nonlinear.

3.2.2 Practical optimization

Any optimization procedure over an in�nite set can naturally consider only a
�nite subset of points in practise. In the present case, and especially for param-
eterized RBF, a �rst discretization step that restricts the possible values to a
regular grid on the parameter space can be done harmlessly, if the grid is suf-
�ciently dense. Indeed, the features being continuous in their parameters, one
feature has equivalent relevance as the neighbouring ones, in terms of correla-
tions, which are also continuous in the parameters. This may seem to discard
the above considerations about in�nite feature sets as unuseful. However, a grid
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Figure 3.4: A problem, described in section 3.2.1.5, for which the active set of
the LASSO solution evolves continuously with λ.
φ1, though forming the largest angle with y, has the highest correlation with
it, as seen from its orthogonal projection. It is thus the �rst to be activated,
for λ = 1. As soon as a positive coe�cient ε is given to it, an other feature φ′

becomes more correlated than φ1 to the new residual, thus requiring activation.
With both features activated, the optimal coe�cient has a negative sign for φ1,
which is thus immediately inactivated, and the same phenomenon is repeated,
continuously activating a di�erent feature. The resulting regularization path is
illustrated in �gure 3.5.

discretization that is dense enough leaves a large number of features, that is
exponential in the dimension of the feature space. For example, if the original
space X is Rm and the feature space consists in Gaussian functions with free
centres and free diagonal covariance matrix, there are 2m feature parameters,
and a discretization of 100 points per parameter gives a set of 1002m features,
e.g. 1040 for m = 10. Hence this sole discretization does not allow to apply di-
rectly the exact algorithms on �nite feature sets, and an adaptive, approximate
optimization procedure is needed.

The DIRECT algorithm introduced in (Jones et al., 1993) is such a proce-
dure that both adaptively samples the space and restricts to a given depth of
grid discretization. It simply relies on the function being Lipschitz, without as-
suming a speci�c Lipschitz constant, but rather adapting to the local constants
(by bounding them). Unlike gradient-based algorithm, it does not spend time
on �nely improving local optima, which is not useful in the present case, thus
providing a good compromise between global and local search. Moreover, it does
rely on a general smoothness of the optimized function, but not on its di�eren-
tiability. The two functions optimized by the homotopy and ASD algorithms are
typically continuous in the dictionary's parameters, and di�erentiable everywhere
but at points where the relevant sign for a feature is changing. For example, the
ASD is searching for the (approximately) largest absolute value of correlation,
hence non-di�erentiability occurs when the sign of the correlation changes. The
sketch of the DIRECT algorithm is to start by sampling on a very sparse grid
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Figure 3.5: Regularization paths of the problem described in section 3.2.1.5 and
�gure 3.4, for di�erent discretization levels, and for the whole continuous set of
features.
The plot is the ℓ1-norm of the coe�cient against λ, which is linear in between
changes in the active set. All features are successively activated, up to a certain
point where the two last activated ones remain active until the unregularized
least-squares.



3.2. Very large feature sets 141

and to re�ne this grid adaptively, on the most promising regions, based on a
ratio of the observed values and the size of the gaps, which estimates the local
Lipschitz constant. There are only a few parameters to this algorithm: the maxi-
mum level of discretization, and the maximum number of samples. The former is
not much sensitive, and restricted to powers of three, hence a value of 81 or 243
per dimension is generally a correct choice. The choice of the latter determines
a compromise between the execution time and the chances to reach the global
optimum, or to reach a su�ciently high value. The optimal choice depends on
the complexity of the function, and the consequences of a loose choice depend
on the general algorithm. It is more crucial for the homotopy method to reach
the global optimum with high probability; otherwise the corrections by adaptive
penalizations may produce a consequent drift from the original LASSO prob-
lem, and the corrections by active set descent may become prominent, and the
actual homotopy steps, based on wrong values, may not make sense anymore,
compared to a simple, straight ASD algorithm. As pointed out previously, the
precision of the optimization is less important for the ASD method, of which the
principle is to activate an over-correlated feature, until there is none. The order
of activations can in�uence the number of steps, but it should be noted that
this in�uence is noticeable mostly when a locally suboptimal feature is chosen.
Indeed, it can be intuitively understood, especially in the case of radial features,
that the set of features to be activated consists in relatively independent features,
each contributing to di�erent local parts of the estimator. Activating one does
not greatly in�uence the need for another one, hence the order does not matter
much in between those. On the contrary, the neighbourhood of these features
consists in similar features that are also over-correlated, and the activation of
the �right� � locally most correlated � feature extinguishes the overcorrelation of
these neighbours. A wrong local choice leaves the correct feature over-correlated
and necessitates additional correction steps when the latter is detected. The DI-
RECT procedure typically returns a point that is locally optimal, if not globally.
This is due to the fact that a region is unexplored � possibly wrongfully � only
if the observed values are lower than that observed in other regions, thus the
returned point is the result of a deep local optimization.

Another possible optimizing procedure, that shares the same general prop-
erties adapted to the problem, consists in performing gradient descents with
multiple starting points. The unnecessity of �ne local optimization can be taken
into account by limiting the degree of precision at this level, multiplying starting
points rather than spending e�orts on precise local search. However, this limita-
tion only makes sense if it corresponds to a restriction to a prede�ned grid: it is
not harmful to consistently ignore the very local neighbourhood of a point, but a
simple early stopping of a gradient descent does not prevent subsequent descents
to reach a better neighbouring point and induce a sequence of unuseful inacti-
vations and activations. Thus the descents should go through points of the grid
and stop when the immediate neighbours on this grid have a lower value. The
bene�t of this approach is that both optimized functions (correlation and �next-
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activation�) are di�erentiable (by parts), which does give a useful information on
where (in which direction) to sample next, whereas DIRECT simply re�nes the
grid (in all or arbitrary directions) around promising points. The fact that di�er-
entiability is broken where the most relevant sign of a feature changes does not
cause problems, because this occurs where the optimized function is zeroed, i.e.
at its minimum value, whence the gradients necessarily yields directions that are
opposite to these points. The drawback is that the procedure is not as adaptive
as DIRECT: the parallel or successive gradient descents are all fully performed,
with no concentration of resources in the most attractive regions.

Both of these optimization methods are rather standard. Existing implemen-
tations of DIRECT can be used, and gradient descent methods can be easily
implemented or modi�ed to be based on a preliminary grid discretization. How-
ever, it can be useful to adapt them further to the present problem, that has the
speci�city of needing a sequence of optimizations, performed on a sequence of
functions that are related to each other. As mentioned above, the activation of
a feature does not a�ect much the correlation or closeness-to-activation of other
features that are weakly correlated to that feature. Hence the next optimized
function shares a noticeable resemblance to its predecessor, and the optimization
should take this into account. In the case of DIRECT, a good and simple enough
compromise between re-using the samples locations highly �tted to the previous
function, and restarting the procedure from scratch, is to start from an early
stage of the previous optimization, where for example one third of the points
were sampled, update the values of the new function at these points, and resume
the adaptive sampling from there. In the case of multi-start gradient descents, a
natural use of the previous optimization for the following one consists in adapting
the starting points. They can be set to the points to which they converged in the
previous steps, and when several of them had converged to the same point, they
can be reallocated to regions in need for exploration. Exact ways of choosing
these re-allocations, that are both fruitful and simple, have not been investigated
but can certainly be found.

In order to illustrate the relevance of optimization methods given the proper-
ties of the optimized functions, and to compare the homotopy and ASD methods
on this point, it can be useful to visualize these functions on the illustrative si-
nusoidal problem used throughout this chapter. The evolution of these functions
throughout the �rst activations is plotted in �gure 3.6. The most noticeable
property, apart from those illustrating the above considerations, is that the next-
activation function optimized by the homotopy is peaky around active features.
This function, that we recall here

φTr∗

sign(φTr∗)w(φ)− φT∆r

is actually unde�ned for activated features, since by de�nition, their correlation
with the restricted-least-squares residual (numerator) is zero, its sign is, strictly
speaking, unde�ned, but can be replaced by s = sign(φTr and the denominator
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is then also zero, from the correlation with the LASSO residual being equal
to sλw(φ). By de�nition of this function, it can be considered to be equal to
λ for active features, but there is a break in the continuity of the function at
such a singular point. Both the denominator and numerator tend to zero when
approaching it, which translates, as is usually the case, in the ratio tending to
di�erent values depending on the �direction� of approach, as can be visualized in
�gure 3.7 where a zoom is made on an active feature. The �rst potential resulting
problem is that a ratio of quantities tending to zero, in addition to the versatility
of the ratio's limit, can cause computational-precision issues. The second problem
is that peaky shapes may be neglected by the optimizing procedure, although they
can contain the optimizer. In contrast with this, the simple absolute correlation
function optimized by ASD evolves in a stable manner and does not present
computational singularities, which is an other strong argument in favour of ASD
in the very-large-dictionary setting.

In (Loth et al., 2009), we published the results of experiments on classical
regression and classi�cation datasets, and compared with state-of-the-art meth-
ods. The method that was used was ECON, that is the homotopy applied to a
parameterized space of Gaussian features, the parameters being the centres of
the Gaussian and the elements of a diagonal covariance matrix. The DIRECT al-
gorithm was used for the optimization. Small-bandwidth penalization was used,
but with a penalization function that later appeared to be less pro�table than
those mentioned here: rather than normalizing with respect to the values on the
observations, a �theoretical� normalization was used, dividing by σ, and, most
importantly, the features were then penalized by 1/

√
σ (resulting in a normaliza-

tion/penalization function w(φ) =
√
σ). This penalization function apparently

gives almost the same results as a simple normalization, without the bene�ts of
the σ and log(1 + σ) versions discussed here. Nevertheless, the results were very
satisfying: often better, and always consistent with the best competing methods.
The detailed settings and results are given in 3.5.1.

3.3 Sequential Learning

The algorithms presented in this thesis are designed for the problem setting
exposed in the �rst chapter: one LASSO problem de�ned by a given set of
input/output pairs. This setting where the whole set of data is available at once
to the learning algorithm is referred to as batch learning. However, di�erent
settings may apply, out of necessity or convenience. Data may be collected one
by one, or packet by packet, while the estimator is updated to account for the new
data. This stream of data may correspond to the evolution of a non-stationary
problem. Somewhat similarly, yet di�erently, the experimenter may also face a
sequence of problems that are distinct but related. The �rst and second settings
qualify as online learning. When also considering the last setting, we suggest the
use of the more general term sequential learning. Let us precise in this section
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Figure 3.6: Evolution of the function optimized by the homotopy (top: value
of λ for which a feature reaches equi-correlation) and ASD (bottom: features
correlation), on the sinusoidal function of section 2.6.1.
The two parameters of the features are the centre (x axis) and the bandwidth
(y axis). The big square points the optimizer of the function (next feature to be
activated), and the smaller squares correspond to already active features. The
homotopy functions tend to be peaky around the active features, contrarily to
the correlation function of ASD, that keeps a similar shape, which facilitates an
approximated optimization.
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Figure 3.7: An example of the behaviour of the "next-activation" function op-
timized by the homotopy, in the immediate neighbourhood of an active feature
(circled point).

the motivations and forms of these settings, and how well and in which manner
the LASSO problem and the three algorithms can be adapted to these settings.

3.3.1 Online Learning

There are several motivations for processing the data in an online fashion. The
�rst is when they are actually collected one by one, for example day by day, yet
one needs an estimator before obtaining a complete data set. This estimator
should then be updated along, to account for the new data. There may not even
be such a thing as a complete data set, meaning they simply form a never-ending,
or �unde�ned-ending� stream.

Another motivation is when one can proceed to an active learning process.
Such a process is de�ned by the possibility of choosing the samples, or in�uencing
them. A typical example consists in deterministically choosing a point x of X
and getting a sample of Y |X = x. The main source of information for the choice
of the next sample is, understandably, the estimator built from the previous ones.
For example, if this estimator indicates a large variance of f in some regions of X ,
it is useful to get more samples in these regions. Such an indication is best given
by the estimator than by the raw samples, because these samples of (X,Y ) are
a�ected by the variance of these variables (noise), which the estimator �assuming
it is correct� eliminates (f̂(x) ≈ f(x) = E (()Y |X = x)).

It can also be chosen to process a given data set in an online fashion, so as to
simplify and/or speed up the computation of the estimator. A typical example
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is the case of arti�cial neural networks (ANN) estimators ((Hastie et al., 2008),
chapter 11), for which it is impractical to minimize a loss function in an exact,
straightforward way, but on which following and propagating partial gradient
information for each sample gives good results in reasonable computation time,
possibly by processing each sample several times.

Let us explain, regardless of the underlying motivation, how this computation
can be performed online, in the case of a simple linear least-squares estimator.
It is possible to proceed in the same way as for arti�cial neural networks, that is
by considering the loss y− f̂(x) on the single, current observation, and updating
the coe�cient vector β proportionally to the gradient wrt. this loss, with a small
and decreasing factor. This procedure converges to the least-squares solution
asymptotically, as one repeatedly process each sample. However, we will not focus
on that procedure that does not present as great computational advantages as
in the ANN case. The other option is to compute and maintain the exact least-
squares solution associated to the observed samples. This procedure is given
in chapter 27 of (Lawson and Hanson, 1974), under the name of sequential

accumulation, for the case where the QR decomposition is used to solve the
system. It is better known under the name of recursive least-squares. Let us
explain here the online procedure in general and its application with the use
of the Cholesky decomposition. The least-squares solution is

(
XXT

)−1
Xy, in

which

X =





| |
φ(x1) . . . φ(xn)

| |
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(rows of X correspond to features and columns correspond to observations),
and the modi�cation introduced by a new sample xn+1 is to add the column
φ(xn+1) to X and the vector yn+1φ(xn+1) to Xy. The Gram matrix XXT is
thus modi�ed by the addition of the matrix φ(xn+1)φ(xn+1)

T, which is called a
rank-one update, and it was explained, in chapter 2, how to consequently update
the Cholesky decomposition, and therefore the least-squares solution.

The �rst important di�erence between the LASSO and simple least-squares when
online learning is involved is that the former uses a regularization parameter λ
that needs to be tuned afterwards. This is done by computing the regulariza-
tion path (the exact one for homotopy, or solutions for di�erent values of λ),
and selecting one value from rules or tests like the number of activated features,
cross-validation, or CpMallow test. It is naturally not practical to recompute
this path or set of solutions with each new observation or packet of observations.
A smarter way of proceeding is to start with a few �rst observations and a mid-
range value of λ, loosely optimized from these few data, and update the solution
given the new observations while questioning from time to time the value of λ,
by going back and forth on the regularization path. Thus the LASSO problem
and its solution are repeatedly slightly modi�ed by both given new observations,
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and chosen drifts of λ in order to optimize it on-the-go.
We have seen that the ASD and homotopy methods also rely on the implicit

inversion of XXT � through its decomposition � with the di�erence that X is
composed by the active features. If one of these algorithms has computed the
LASSO solution for {(x1, y1), . . ., (xn, yn)} and a certain λ, and a new sample
(xn+1, yn+1) is presented, the solution can be updated easily if this additional
sample does not change the active set σ, since this solution is

β = (XσXσ
T)−1(Xσy − λwσ) ,

which presents no other di�erence to least-squares than the regularization term
λwσ. However, the active set is naturally bound to change throughout the se-
quence of samples. As seen previously, any such change � unoptimality of the
active set � is characterized by either the unfeasibility (sign noncompliance) of
the new solution, or the overcorrelation of an inactive feature to the new residual.
In that situation, the homotopy method is stucked because it relies on following
the exact path of solutions, and more precisely on σ being the correct active
set for the current λ. The resulting situation when a new sample discards the
active set is identical to that when a feature was forgotten due to an imperfect
optimization. Using a re-weighting of penalizations is not advisable here, since
this partly amounts to modifying the problem to �t the solution, which would
tend in this case to bias the problem towards the �rst observed samples. More-
over, contrary to the case of missed features, new samples can also require some
feature inactivations, in which case an ASD-like procedure is needed. Thus, an
online homotopy method requires corrections by ASD to track the evolution of
the active set through the stream of samples.

The active set descent method adapts more easily to an online setting, since
its principle is to correct one by one the unnecessities or insu�ciencies of the
active set by successive activations and inactivations. The origin of the active
set's unoptimality � a more or less informed starting point, a change in λ, or new
samples � does not matter in the resolution of this unoptimality. The same argu-
ment applies to the cyclical coordinate descent, which constantly and repeatedly
adjusts the coe�cients to each feature, regardless of the origin of their di�erence
to the solution.

Having recalled that, for the ASD and homotopy method as well as for the
simple least-squares, the observed data are essentially compiled into the Gram
matrix XXT � or XσXσ

T � and its decomposition, one should point out an
additional motivation for processing the data online. For the simple least-squares,
if the number of observations n is largely greater than the number of features p,
the p×p Gram matrix requires far less storage space than X itself, and one can
even process a potentially in�nite stream of observations while storing only this
matrix of �xed size, through successive rank-one updates. This also applies to
the LASSO and ASD/homotopy case, with the di�erence that it is not su�cient
to store the Gram matrix of active features. Indeed, in the form presented in
previous chapter, these algorithms need to store at least the whole vector x itself,
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in order to monitor the evolution of the inactive features' correlations. However,
if n is signi�cantly greater than the total number of features (and not only active
ones), it is possible and useful in term of space to actually maintain the full Gram
matrix XDXD

T, of which the entries are the correlations of each feature to each
other, which is a su�cient information for the algorithms. The active set's Gram
matrix is simply an extract of this full matrix, taking the rows and columns
corresponding to the active features. Its Cholesky decomposition, however, is
not such a direct extract, yet the update of this decomposition when a feature
is added requires only the correlations between the active features and the new
one (denoted by Xu in eq. 2.34, which can be found in XDXD

T.

3.3.2 Non-stationary problems

One special case of online learning is when the stream of data corresponds to a
smooth evolution of the random variable (X,Y ) (i.e. of the function y = f(x)).
These non-stationary variables occur for example in economic time series, like
exchange rates of currencies. This is also a typical example of genuinely on-
line data, with no de�nite end, and from which an updated estimator is needed
throughout the series. Assuming that the evolution of the variables is smooth,
that is no abrupt changes occur, one way of handling such data is to consider
that recent observations are more relevant for the current estimator than older
ones, this relevance evolving as smoothly as the relations between the variables.
This can be translated by weighting the observations in the loss function as a
function of their recentness:

L
(

f̂ , (xi, yi)i=1,...,n

)

=
n∑

i=1

(

rn−i(yi − f̂(xi))
)2

i.e.

L(f̂ ,X,y) = ‖R(y −XβT)‖22
whereR is diagonal with Rii = rn−i

where r is a relevance function decreasing with the ancientness n − i. The
Gram matrix XXT is thus replaced by XRXT.

The most common use of such weighted least-squares loss functions is to ac-
count for heteroskedasticity in (X,Y ) (VarY |X is not constant with respect to
X), following the results of (White, 1980). A natural and practical relevance
function consists in an exponential forgetting:

rn−i = γn−i, γ ∈ [0, 1)

Detailed explanations can be found in, e.g. (Hayes, 1996), but the principle is
simple: each new observation is added with a relevance of 1 while the relevance
of all previous observations is multiplied by γ. The consequence on the Gram
matrix is simple: it is also multiplied by the scalar γ, and the procedure is thus
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the same as for the simple recursive least-squares explained in section 3.3.1, with
the only di�erence that the Gram matrix is multiplied by γ before the rank-one
update. Therefore, LASSO penalty and ASD or CCD algorithms can be applied
without problems, if the full Gram matrix can be stored.

3.3.3 Reinforcement Learning

Reinforcement Learning (RL) is a paradigm in which the problems to be solved
can be thought of as sequential regression problems. The precise concepts and no-
tations can be found in e.g. , (Szepesvári, 2010) or in the publications referenced
in this section. To summarize them, an agent is considered, in an environment

with which it interacts by selecting actions at each time step: actions a�ect the
state of the environment. The policy of the agent de�nes the choice of action
given the state of the environment. The learning problem is de�ned by associat-
ing a reward to every state-action pair, and setting the goal of maximizing the
expected sum of rewards (optimal policy).

The most common approach is to manipulate and estimate these sum of re-
wards by learning value functions: functions that, given a policy, associate to
each state (or state-action) the expected sum of rewards to be received when
following this policy, starting from this state. In this approach, two categories of
algorithms can be identi�ed, that form two radical ways of proceeding, interme-
diate schemes being possible:

policy iteration the value function of a �xed policy is learnt, then the policy
is improved thanks to the knowledge of its value, these two steps being
iterated until convergence to the optimal policy;

value iteration improvement and evaluation are conducted simultaneously, state
by state; for each considered state, the policy is locally improved (possi-
bly an expected improvement), and an optimistic estimate of the current
value function is updated; this corresponds to a generalization of dynamic

programming (Bellman, 1957).

The evaluation of a policy, given a su�cient number of state / action / reward
/ next state samples, can be formulated as a regression problem, the response
being the rewards, and the estimators being the di�erence between the value of
the next state and the value of the state. If a linear estimator is computed for the
value function, the corresponding estimator of the expected reward is also linear,
and these estimators can be deduce from each other by this di�erence or addition.
This regression formulation for various settings and algorithms can be found
in (Loth and Preux, 2007). All forms of regression methods can thus be applied
in the policy iteration framework. However, a speci�city of this framework is that
the sequence of regressions problems are closely related, since the improvement
steps do not greatly a�ect the value function. Therefore, it can be pro�table
not to learn each new policy's value from scratch. In this respect, we have
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suggested in (Loth et al., 2007) a method for building successive sparse estimators
of the value functions, based on the LASSO. It uses an intermediate scheme
between policy iteration and value iteration, that consists in collecting a small
number of samples of an improved policy, along a trajectory (real-life or simulated
interactions), and update the value function on these points. For this, the new
estimator is de�ned as the sum of the previous one and a corrective term, and only
this corrective term is to be learnt from the new samples. If a LASSO estimator
is used, each corrective term is based on a relevant selection of features, buts
these selections are performed independently, and the selected features add up
in the global estimator of the value function, throughout the successive steps
that may be numerous: no global, integrated feature selection is performed.
The solution that we proposed to this limitation is to account for the previous
selections through the penalty factors w: all features that appear in the current
estimator of the value function are favourized in the corrective estimator, by
being given a lower penalty factor (a �xed fraction of its original penalty). Thus,
a compromise is automatically made between �tting the corrections and re-using
already selected features: a feature is added only when su�ciently necessary. An
other, related, modi�cation is that, in the regression for the corrective term, when
the global coe�cient of a feature (previous estimator plus correction) is zeroed,
it is inactivated, in both the value function estimator and the LASSO algorithm
of the correction (homotopy). This results in a sequence of estimators that, from
empirical evidences, correctly converge to the optimal value function, and have
a sub-logarithmic rate of feature additions: the number of features stabilizes as
the global estimator improves.

3.4 Alternative loss functions

Throughout this thesis, we have been focusing on the original and simplest form
of ℓ1-penalized regression: the classical squared-residual minimization, penalized
by the ℓ1-norm of the coe�cient. The �rst part is the common basis for re-
gression, due to both its computational simplicity and theoretical justi�cation
under i.i.d. Normal noise assumption. The ℓ1 penalization, as we have seen, is
the closest approximation to best-subset selection (ℓ0 penalization) that o�ers
computational advantages through its convexity. Moreover, it exhibits better
properties in terms of generalization (or model recovering) than ℓ0 penalization
itself.

However, di�erent forms of ℓ1-penalized regression have been proposed and
used, with two types of motivations: robustness, and the speci�c natures of some
problems. Robustness is needed against two forms of disturbances: signi�cantly
non-Gaussian and/or non i.i.d. noise, and outliers, that is samples that fall
far out of the model, due to either errors in the sampling process or �unlucky�
noise. Speci�c properties of the model and estimator can arise in tasks like signal
processing, analysis of grouped variables, or classi�cation.
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These di�erent forms of regression a�ect either the residual-minimizing or
coe�cient-penalization parts. This section considers some of the most common
of these alternatives, and how the ASD, homotopy, and CCDmethods can be used
or adapted in these contexts. Let us, preliminarily, summarize the requirements
of the three methods regarding the loss function:

• as discussed in chapter 2, the requirement for ASD is the convexity of
the optimized function, the ability to compute solutions under active con-
straints (inactive features), and the ability of assessing the bene�t of in-
activating a constraint (activate a feature); the activation of constraints is
monitored by deliberately moving linearly from the minimizer on one active
set to that on the next active set, and tracking the �rst violation;

• the homotopy methods starts on an actual solution of the problem for some
value of a regularization parameter λ, and tracks the �rst of either a con-
straint violation or a bene�t (hence necessity) of a constraint inactivation,
as λ decreases (or increases); thus it requires, for computational ease, that
the solution evolves piecewise linearly with λ; such piecewise linear regular-
ization paths were characterized in (Rosset and Zhu, 2007), giving a clear
view of which problems can be handled by the homotopy method;

• the convergence of coordinate descent methods requires the separability
of the constraint/regularization, that is its being expressed as a sum of
independent penalties on each variable (see e.g. (Luo and Tseng, 1992)).

3.4.1 Alternative penalties

3.4.1.1 Elastic net

Least-squares regression is sensible to outliers. Even if the i.i.d. Normal noise
assumption is veri�ed, a single observation that happens to present a sensibly
larger noise will bias the estimator, if not counter-balanced with a su�cient
number of �normal� observations. The additional ℓ1 penalty does not especially
correct such drawbacks. On the contrary, in the presence of �local� features
that may �t an outlier without a�ecting other points, and in the absence of
a large-bandwidth preference mechanism as exposed in section 3.2.1.3, such an
over�tting feature can be selected preferably to model-�tting ones. A classical
way to encourage smoothness of the estimators and thus lessen the e�ect of
outliers is to penalize the ℓ2-norm of the coe�cient, which associated to least-
squares is often called ridge regression, from (Hoerl and Kennard, 1970b):

minimize
β

‖y −XTβ‖22 + λ‖β‖22 (3.27)

The idea of elastic net, as proposed in (Zou and Hastie, 2005), is to add both
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ℓ2 and ℓ1 penalty terms to the squared-residual loss:

minimize
β

‖y −XTβ‖22 + λ2‖β‖22 + λ1‖β‖1 (3.28)

The two quadratic terms of (3.27) easily combine together, and simple deriva-
tion gives as the unique solution

βridge = (XXT + λ2I)
−1Xy (3.29)

It is proposed in (Zou and Hastie, 2005) to rewrite (3.28) as an equivalent LASSO
problem by the mean of p dummy additional observations, so as to solve it by
directly applying the LAR-LASSO (i.e. homotopy) algorithm, for a �xed set
of values for λ2. However, this reformulation of ridge regression, as a straight
least-squares problem on an augmented observation set, and the equivalent re-
formulation of elastic net as LASSO, though enlightening, is not practical as
it adds unnecessary complexity to the solving algorithm. The authors suggest
to correct this by low-level adjustments taking into account the sparsity of the
augmented observations. We advocate that, should an adaptation of the LASSO
algorithm be made, a simpler solution, resulting in essentially the same algo-
rithm, consists in simply replacing the least-squares loss by the the ridge loss in
the derivations of chapter 2, which ultimately results in replacing the Gram ma-
trix XXT by XXT+λ2I, β∗ becoming the restricted ridge estimator rather than
the restricted least-squares estimator. As mentioned in (Zou and Hastie, 2005),
the change induced in the updates of the Cholesky decomposition is minimal:
when adding a feature, (2.35) is replaced by

w =
√

uTu+ λ2 − vTv

Thus, both the homotopy and ASD easily adapt to the elastic net. However,
ASD presents once again an advantage: using the homotopy requires to solve
successive λ1-regularization paths corresponding to a sequence of values of λ2.
With ASD, it is possible, at any step, to change either λ1 or λ2 (or both), thus
one can, for example, compute the λ1-path for a value of λ2, retain the best value
of λ1 from validation tests and compute the λ2-path for this value, and iterate
then process.

The CCD algorithm naturally also adapts easily to the elastic net.

3.4.1.2 Group Lasso

It is sometimes desirable to select groups of variables rather than individual vari-
ables, or to evaluate the importance of each group in the model. This motivation
lead to the formulation of the group LASSO in (Bakin, 1999), and further devel-
opments in (Yuan and Lin, 2006). The p features of the dictionary are partitioned
in l groups, and rather than the sum of absolute values of the coe�cients, the
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sum of ℓ2-norms of the groups coe�cients is used as a penalty term :

minimize
β

1

2
‖y −XTβ‖22 + λ

l∑

i=1

√
pi‖βi‖2 (3.30)

where βi is the vector of coe�cients of the i-th group of features, and pi is the car-
dinal of group i. The penalty term introduced in trove.nla.gov.au/work/34383173

was, for each group i,
√

βi
TKiβi. The particular case retained here as well as

in (Yuan and Lin, 2006), corresponds to Ki = piI. pi plays the same role as the
penalization factors w in our de�nition of the LASSO: assuming the features are
normalized, values equal to the cardinals of the groups �normalizes� the groups
themselves by cancelling the e�ects of their respective sizes on selection. Dif-
ferent values allow to deliberately favourize or penalize certain groups. Let us
assume that all features are preliminary scaled so as to ensure this fair or biased
group selection, leaving the following simpler form of (3.30):

minimize
β

1

2
‖y −XTβ‖22 + λ

l∑

i=1

‖βi‖2 (3.31)

We can also assume, without loss of generality, that the features are normalized
and the penalty factors equal to one.

Denoting by Xi the sub-matrix of X corresponding to features of group i, the
KKT conditions translate in

{

Xi(y −XTβ) = λ βi

‖βi‖2
for active groups,

|Xi(y −XTβ)| ≤ λ for inactive groups,
(3.32)

which give the necessity and su�ciency conditions to update the active set in
ASD, homotopy, and CCD. When assuming (ASD), or knowing (homotopy) an
optimal active set σ of groups, the remaining of the ℓ2-norm of group coe�cients
does not permit a simple expression of the solution from (3.32). A �rst step of
simpli�cation is to solve by blockwise coordinate descent: solve for one group
while �xing the others' coe�cients, and iterate. i being the group to solve for,
βi veri�es

Xi(y −Xσ
Tβσ) = λ

βi

‖βi‖2
, (3.33)

hence

Xi(y −Xσ−i
Tβσ−i)−Xi

Tβi) = λ
βi

‖βi‖2
, (3.34)

and

βi = (XiXi
T +

λ

‖βi‖2
I)−1Xi(y −Xσ−i

Tβσ−i) (3.35)
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which corresponds to a ridge regression solution, except for the interdependency
between the parameter and and the norm of the solution. The second step of
simpli�cation taken in (Yuan and Lin, 2006) consists in imposing orthonormality
between the features of each group: for each pair of features φ1, φ2 in the same
group,

φ1
Tφ2 = 0

φ1
Tφ1 = φ2

Tφ2 = 1

This is of course a strong assumption, but it simpli�es (3.35) to

βi = (I+
λ

‖βi‖2
I)−1ci (3.36)

=
‖βi‖2
‖βi‖2 + λ

ci , (3.37)

with ci = Xi(y −Xσ−i
Tβσ−i) denoting the correlation vector of features from

group i to the residual from other active groups. The solution is then

βi = (1− λ

‖ci‖2
)ci ,

since it implies

‖βi‖2 = (1− λ

‖ci‖2
)‖ci‖2

= ‖ci‖2 − λ

and

ci =
‖ci‖2
‖ci‖2 − λ

‖βi‖2

hence

‖βi‖2
‖βi‖2 + λ

ci =
‖ci‖2 − λ

‖ci‖2
ci

=
‖ci‖2 − λ

‖ci‖2
‖ci‖2
‖ci‖2 − λ

‖βi‖2

= ‖βi‖2

However, the orthonormality restriction is not needed to solve (3.35) with
a reasonable complexity. We propose the following method: solve for a �guess�
value of ‖βi‖2, correct the guess from the result, and iterate until convergence.
This is possible from the following property: the ridge parameter λ/‖βi‖2, sim-
ilarly as for the t vs. λ relation in the LASSO, corresponds to a constraint on
the ℓ2-norm of the solution, and, for the same reasons as in the LASSO, they are



3.4. Alternative loss functions 155

decreasing with respect to one another. Thus if, making a guess z for ‖βi‖2, the
norm of

β̂i = (XiXi
T +

λ

z
I)−1ci

is largest than z, this norm must be lowered, by increasing the regularization
parameter λ

z , i.e. decreasing z. The largest possible value of ‖βi‖2 is the unreg-
ularized one

zmax = ‖(XiXi
T)−1ci‖2 ,

and successive binary cuts in [0, zmax] yield an exponential rate of convergence to
the solution. The updates of the inverse matrix can be done easily and e�ciently
through its Cholesky decomposition.

The (non-orthonormal) group LASSO can thus be solved by mean of an active
set descent that identi�es the optimal active set of groups, the inner computations
of restricted solutions being conducted by blockwise coordinate descent on the
current active set, and the inner computation of the latter relying on the binary
cuts described above. The question is opened of whether blockwise coordinate
descent is mandatory, or if the ℓ2-norms guesses can be conducted concurrently
on the whole active group set.

It can also be solved by one global blockwise coordinate descent on all groups,
setting βi = 0 when |Xi(y −Xσ−i

Tβσ−i)| ≤ λ, and computing it by the binary
search otherwise. The method given in (Yuan and Lin, 2006) is such a block-
wise descent, with the simpli�ed computation induced by the orthonormality
assumption.

Both the orthonormal and non-orthonormal versions of the problem yield
nonlinear regularization paths, hence the homotopy method can not be used.
However, (Yuan and Lin, 2006) proposes the group LARS algorithm, adapted
from the LAR algorithm of (Efron et al., 2004) (equivalent to the homotopy, or
LAR-LASSO, without inactivations) that computes estimators that are close to
group LASSO estimators, as LAR estimators are close to LASSO estimators.

3.4.2 Alternative residual losses

3.4.2.1 Least Absolute Deviations

The ridge penalization lessens the e�ects of outliers by encouraging smoothness
of the estimator, the coe�cients tending to be of the same range. There is a
somewhat more direct way of preventing these e�ects, by using a di�erent loss
for the residual itself. The simplest alternative is to minimize the ℓ1-norm of the
residual rather than its ℓ2-norm:

minimize
β

‖y −XTβ‖1 =
n∑

i=1

|yi − φ(xi)
T
β| , (3.38)

which is known as least absolute deviations (LAD) regression. It is a best unbiased
linear estimator under the assumption of a Laplacian noise. Figure 3.8 shows the
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Figure 3.8: Density functions of standard Normal and Laplace distributions, that
are the assumed distributions of the noise for, respectively, the least-squares and
least-absolute-deviations estimators.
The latter is less in�uenced by large noise terms, since they are more likely under
Laplace distributions.

density functions of the standard Normal and Laplace distributions, which shows
that large deviations from the mean is by far more likely in Laplace distributions,
and have thus a lower impact when estimating the mean. A LAD estimator can
be computed by iteratively re-weighted least-squares (IRLS), or, more e�ciently,
the problem can be transformed into a linear program (LP), the absolute-value
operator being handled by sign monitoring, in the very same way as the regular-
ization term of the LASSO. Similarly to the LASSO, standard LP algorithms, or
more dedicated adaptations may then be used. In (Armstrong and Frome, 1976)
is given a comparison between the IRLS approach and such an adaptation of the
simplex algorithm. We have mentioned in the introduction of section 2.2 that
active set methods apply to QP the same principles as the simplex algorithm for
LP. Actually, the ASD algorithm as stated in Alg. 1, when applied with a linear
function to be minimized, becomes the exact simplex algorithm. The step of
�nding a minimizer subject to the active constraint is not as well de�ned as for
strictly convex functions, because this minimizer is necessarily asymptotic; nev-
ertheless, the linear move from the current solution to this minimizing direction
is well de�ned, and an inactive constraint is necessarily activated on the way,
unless the problem has no solution.

When adding an ℓ1 regularization term, the problem is still equivalent to a
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linear program, and standard LP algorithms as well as adapted ASD/simplex can
be used. The regularization path is naturally piecewise linear, thus an homotopy
method can be derived from ASD, in the same way the LASSO homotopy was
derived from the LASSO ASD in section 2.3. The resulting algorithm has been
proposed in (Wang et al., 2006), though not from the same derivations.

The essential di�erence introduced in ℓ1 regularization by the use of the LAD
loss is that, in addition to monitoring the sign changes in β, the sign changes in
the residual vector must also be tracked. One way of seeing things is that each
of these sign changes yields a new version of the linear loss function. Therefore,
the CCD algorithm does not cope well with ℓ1-regularized LAD, since at every
change in the coe�cients, which are numerous with CCD, these changes in the
loss function must be monitored.

3.4.2.2 Huber loss

The same principle apply to the use of a Huber loss function. This loss, in-
troduced in (Huber, 1964), combines the LAD properties for outliers and the
least-squares properties for regular samples. It is de�ned, given a positive pa-
rameter δ, by

L(x,y, f̂) =
n∑

i=1

l(xi, yi, f̂) (3.39)

with

l(x, y, f̂) =

{
1
2(y − f̂(x))2 if |y − f̂(x)| ≤ δ

δ(|y − f̂(x)| − δ/2| if |y − f̂(x)| ≥ δ
(3.40)

Each time the residual on an observation (xi, yi) reaches the ±δ barrier, the loss
function is changed, similarly to the LAD loss when the sign of this residual's
changes. One di�erence is that the loss function associated to the current active
set (with respect to both the features and observations constraints) may be either
quadratic or (less likely) linear. Otherwise, the same considerations apply to the
Huber and LAD losses regarding the adaptation of ASD, homotopy, and CCD
algorithms. The homotopy version is explained in (Rosset and Zhu, 2007), with
the mention that the same principles apply to other ℓ1-based loss functions (e.g.
LAD or SVM's hinge loss).

3.4.2.3 Logistic regression

The logistic regression model is designed for classi�cation tasks, where the out-
come Y is one of K classes 1,. . ., K. It assumes a generative model where the
class of a predictor x is drawn from a multinomial distribution with probabilities
(p1(x), . . ., pK(x)), and estimates these probabilities by �tting a linear model to
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their logit :

logit(pi) = log

(
pi

1− pi

)

which amounts to estimating pi by the logistic function of a linear expression:

p̂i =
1

1 + exp(−XTβ)

Maximizing the log-likelihood of the observations with respect to the coe�cient
β can be done (see for example (Hastie et al., 2008), 4.4) by the method of
iteratively re-weighted least-squares.

The IRLS procedure can be used as the inner component of an active set de-
scent when adding an ℓ1 coe�cient penalization, as explained in (Lokhorst, 1999)
and (Lokhorst, 1999). These two publications adapt the version of (Osborne
et al., 2000b), that is for the constrained formulation of the LASSO. However,
the regularized formulation can be handled as easily: as for the LASSO, once an
active set is �xed, the ℓ1-penalty term becomes a simple linear expression that
incorporates without much complication into the (weighted) least-squares, and
even more easily than the equivalent ℓ1 constraint.

The regularization path is nonlinear, whence the homotopy algorithm cannot
be applied. An approximated homotopy method has been presented in (Rosset
and Zhu, 2007) for regularized logistic regression and other nonlinear-path prob-
lems, that consists in approximating the solution path, to identify and converge
to the next change in the active set. However, given the similar if not better
properties of ASD with respect to the homotopy, and the fact that it does not
especially su�er from the non-linearity of the path, ASD seems to be a natural
choice among the two in such cases.

If there is not too much correlation between the features, CCD can be a better
choice, since the notion of linearity does not appear at a single-coordinate level.
(Friedman et al., 2010) extensively presents the application of coordinate descent
to regularized generalized linear models, that is linear models transformed by one
nonlinear function, as the logistic function for logistic regression.

3.5 ECON Experiments

3.5.1 ECON with homotopy and adaptive penalization

In (Loth et al., 2009), our proposal, under the name of ECON, of using the
LASSO with a parametric space of features and using the homotopy method
(algorithm 12), was supported by experimental evidences, already mentioned in
section 3.2.2. We recall that, in order to cope with features that have become
overcorrelated due to the approximate maximization, algorithm 12 consequently
adapts their penalizations so that they become equicorrelated. The detailed
settings and results of these experiments on this �rst ECON algorithm are given
in the following.
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3.5.1.1 Methodology

We compared the performance of ECON with published results on Support Vector
Machine (SVM) (Rätsch et al., 2001), Relevance Vector Machine (RVM) (Tip-
ping, 2001), various boosting algorithms investigated by Rätsch (Rätsch et al.,
2001) and the Kernel Fisher Discriminant (KFD) (Mika et al., 1999) as reported
on the website (Rätsch, web), the kernel basis pursuit (Guigue et al., 2005), and
the LOGREG-LASSO algorithm (Roth, 2004). These published results provide
an interesting basis of comparison; SVM are well-known to perform extremely
well in supervised classi�cation tasks in terms of accuracy, though not being
sparse; RVM is meant to be sparser than SVM; boosting algorithms are known
to perform very well too for supervised classi�cation; KFD was reported as also
very good for classi�cation. In the LARS family which is meant to provide sparse
estimators, kernel basis pursuit and LOGREG-LASSO both perform very well
on classi�cation, and regression tasks. The repository of (Rätsch, web) provides
an interesting base for such experiments, because a fair comparison of algorithms
is delicate task. The study that the repository provides has been conducted with
care and precision, and we have ourselves taken care of following the exact same
settings and measures.

Each dataset was split into a training set and a test-set using the same amount
of data in each set as in the cited publications. 100 such splits were performed
on each dataset, giving 100 di�erent runs on each dataset. This provides perfor-
mance on which statistics may be performed. To cope with the published results,
we compared the mean-square error; its standard deviation provides a measure
of the variability of the precision of predictions.

In the performance reported below on supervised classi�cation, and regression
tasks, we performed a �xed amount of iterations (500), and then retained the
best MSE measured on the test set during these iterations. The results in tables
3.2 and 3.3 are averaged over the 100 training-testing splits.

3.5.1.2 Supervised classi�cation

ECON is essentially a regression algorithm. To deal with supervised binary
classi�cation, we encoded the two classes as ±1; to predict the label of a data,
we consider the sign of the prediction for this data: sign(ŷ(x)).

Table 3.2 presents the results: on 5 datasets out of 10, ECON obtains the
best results in accuracy; ECON improves the best accuracy by 3.5 % on these 5
datasets. On the other 5 datasets, one (Ringnorm) seems to exhibit an anomaly
since there is an order of magnitude between ECON performance and other
algorithms; this dataset does have a training set which is much smaller than
the test set (15 times smaller), but the situation is the same for the Titanic
dataset where ECON performs the best, and Twonorm where the di�erence in
performance is not so large (by far); furthermore, the dimension m of the data is
the same for Ringnorm and Twonorm, so that we conclude that this is also not
the reason for this order of magnitude. So, let alone this anomalous Ringnorm,
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Table 3.2: Comparative results of ECON on classi�cation problems

Dataset m best from (Rätsch, web) RVM LR-LASSO ECON
Banana 2 LPReg-AB: 10.73(0.43) 10.8 10.7(0.5) 10.1(1.9)

Breast-cancer 9 KFD: 24.77(4.63) 29.9 26.1(4.6) 23.3(4.3)

Diabetes 8 KFD: 23.21(1.63) NA 23.5(1.9) 22.7(1.8)

Flare-solar 9 SVM: 32.43(1.82) NA 33.3(1.6) 32.5(1.7)

German 20 SVM: 23.61(2.07) 22.2 23.63(2.3) 23.2(2.1)

Heart 13 SVM: 15.95(3.26) NA 16.0(3.1) 16.2(3.5)

Ringnorm 20 KFD: 1.49(0.12) NA 1.8(0.3) 10.4(3.0)

Thyroid 5 KFD: 4.2(2.07) NA 4.8(2.3) 4.6(2.3)

Titanic 3 SVM: 22.42(1.02) 23.0 22.9(1.2) 22.0(0.8)

Twonorm 20 KFD: 2.61(0.15) NA 2.6(0.2) 2.9(0.4)

on the other 4 datasets on which ECON is not the best, ECON is only beaten by
a small factor; on Thyroid, and Twonorm, the performance of ECON is better
than that of SVM, and of the same order as boosting (please, refer to (Rätsch,
web) for these �gures not reported here).

So despite being an algorithm for regression, and de�nitely not relying on any
principle of margin maximization, ECON obtains �state of the art� performances
on supervised classi�cation problems. Furthermore, ECON provides sparse es-
timators. They are much sparser than those provided by SVM, and a bit less
sparse than those provided by LOGREG-LASSO, and RVM, but more accurate.

In more details, table 3.2 provides the following information about classi�-
cation results on UCI benchmark datasets. For each dataset, we provide the
number m of attributes of the data, and the results of di�erent algorithms. The
column entitled �best from (Rätsch, web)� provides the best results available from
Rätsch's data available on his website (Rätsch, web) and discussed in (Rätsch
et al., 2001; Mika et al., 1999); they compared 7 algorithms: RBF-networks with
a �xed number of Gaussian units, Adaboost, and variants (LPReg-AdaBoost,
QPReg-AdaBoost, AdaBoostReg), SVM, and Kernel Fisher Discriminant; we
only provide the best results among these (highly performing) algorithms. SVM
uses Gaussian kernels. For each algorithm, we provide a pattern of the form
x(y) where x denotes the average MSE, y its standard deviation. The best per-
formance is highlighted with boldface font (there is a peculiarity here that the
results provided in (Rätsch, web) are not always coherent with those provided
in (Roth, 2004); actually, the results provided here show a better accuracy than
the latter reference).

3.5.1.3 Regression problems

For regression problems, we illustrate ECON performance on a few standard
benchmark datasets in this section. Again, we use the same datasets as (Roth,
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Table 3.3: Comparative results of ECON on regression problems.

Dataset P SVM RVM LR-LASSO ECON

Friedman #1 10 2.92/116.2 2.80/59.4 2.84/73.5 2.16/18

Friedman #2 4 4140/110.3 3505/6.9 3808/14.2 4062.46/10

Friedman #3 4 0.0202/106.5 0.0164/11.5 0.0192/16.4 0.0139/24

Abalone 8 4.37/972 4.35/12 4.35/19 4.59/63

Boston Housing 13 8.04 7.46 NA 11.51/87

2004), using the same training, and testing sets. Some results are presented
in table 3.3. We compare the performance of ECON with those published in
(Roth, 2004), concerning the Support Vector Machine, the Relevance Vector
Machine, and the LOGREG-LASSO. For each algorithm, we provide the accuracy
measured on a test set. In the table, boldface font highlights the best performance
for each dataset.

We note the very good performance of ECON on Friedman's F1 and F3
functions. On Abalone, though not the best, ECON performs quite well with
regards to other algorithms. On Boston housing, it is a little bit behind SVM and
RVM, though still very competitive with most other algorithms and published
results.

3.5.1.4 Practical application to photometric solids

In (Loth et al., 2009) are also reported the results of experiments on the practical
problem of simulating light sources of di�erent natures in computer graphics.
The classical procedure consists in characterizing a light source with numerous
measurements sampled in di�erent directions of the light, that form what is
denoted as the photometric solid of the light source. A linear interpolation is
then used for intermediate values in between these samples. As an alternative
to this space and time consuming reconstruction of the light source, we have
proposed to use a model built by the ECON procedure. ECON was able to
provide sparse and accurate models, yielding no distinguishable di�erences in
the resulting scenes (see �g. 3.9), thus providing a more e�cient simulation than
that using interpolation, and a better accuracy than the best alternative based
on arti�cial neural network models. The details of the experiments can be found
in the article.

3.5.2 ECON with ASD

Following the conclusion that ASD is simpler, less perturbed by approximate
optimization, and o�ers a smoother function to optimize than the homotopy
method, ECON was re-implemented with that LASSO algorithm. Experiments
were run on the same problems as in (Loth et al., 2009).
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Figure 3.9: Results of a light source simulation, when using interpolation or an
ECON model.
No visible di�erence appears, while the ECON model lessens the space and time
complexity of the reconstruction.

One of the bene�ts was the ability to use perceptron features, that presented
serious computational stability issues with the homotopy method. This class of
features was de�ned by the following:

In all experiments, the natural features, that is the original attributes of
the data, were used, and one or several feature classes were added to the fea-
ture dictionary. For no clear reason, the procedure of normalizing the features
(∀φ ∈ D,∑x ∈ training set φ(x)

2 = 1) and penalizing them by some measure of their
generalization property (e.g. 1/σ for Gaussian features), did produce hazardeous
results, probably linked to arithmetical precision issues. Therefore, the following
classes of features were used, simply letting the range of their values a�ect the
LASSO selection (the larger

∑

x ∈ training set φ(x)
2, the more likely φ is activated):

• Gaussian-CST (for constant): for a �xed value of σ,

{

x 7→ exp

(

−‖x̄− c‖22
2σ2

)

| c ∈ [0, 1]d
}

.

• Gaussian-ISO (for isovariant):

{

x 7→ exp

(

−‖x̄− c‖22
2σ2

)

| c ∈ [0, 1]d, σ ∈ [0, 4.26)

}

.

• Gaussian-DIAG (for diagonal):

{

x 7→ exp

(

1

2

d∑

i=1

(
x̄i − ci
σi

)2
)

| c ∈ [0, 1]d,σ ∈ [0, 4.26)d

}

.



3.5. ECON Experiments 163

• perceptron:
{

x 7→ 1− 2

(

1 + exp

(

−wTx̄+ b

σ2

))−1

|w ∈ [−1, 1]d, b ∈ [−1, 1], σ ∈ [0, 1]

}

.

• polynomial:
{

x 7→ 1

p
(wTx̄+ b)p |w ∈ [0, 1]d, b ∈ [0, 1], p ∈ [1, 3]

}

.

where d is the dimension of the predictors, x̄ denotes the result of normalization
on x, such that all variables of all training predictors belong to [0, 1].

In all experiments also, results were averaged over 100 di�erent training/test
sets (trials). Letting λmax be the highest correlation to the response y (corre-
sponding to the �rst activated feature), an exponentially decreasing sequence of
values was de�ned for λ:

λ0 = λmax, λ1 = 0.8 ∗ λ0, . . ., λi+1 = 0.8 ∗ λi, . . .

and the least test MSE among this sequence was retained for each trial.

3.5.2.1 Classi�cation

We �rst repeated the classi�cation experiments with the same features as in
(Loth et al., 2009) (in which the same normalization/penalization scheme was
used), that is the Gaussian-DIAG class. The results, reported in table 3.4, were
consistently better, con�rming the adequacy of ASD for handling the in�nite
feature sets of ECON.

dataset min MSE
banana 11.0(0.5)

breast-cancer 23.0(4.0)
diabetis 22.0(1.5)
�are-solar 32.2(1.7)
german 22.7(2.0)
heart 14.1(3.0)

ringnorm 2.9(0.3)
thyroid 4.0(1.9)
titanic 21.8(1.3)
twonorm 2.7(0.2)

Table 3.4: mean minimum prediction errors (percentage), and standard devia-
tions, when using ECON with Gaussian-DIAG features and ASD algorithm. The
results are consistently better than when using the homotopy algorithm, as in
section 3.5.1.2 (table 3.2)
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3.5.2.2 Friedman functions

On the Friedman functions, various classes of features were used, in order to
assess the bene�ts of using di�erent classes, that can be more or less rich.

In addition to the linear (original) features, the �rst experiments used Gaus-
sian features with a common, �xed, bandwidth (Gaussian-CST) of which the
centers were either spread among a grid of more or less �ne resolution, or using
as centers the training predictors (which we refer to as the kernel setting), or let-
ting ECON choose them freely. Except for the last setting, the feature dictionary
D was thus �nite. The common bandwidth was chosen as the one giving the best
results in the kernel setting. The other classes listed in page 160 were then used,
as well as the combination of Gaussian-DIAG, perceptron, and polynomial.

The results reported in table 3.5, show that the richness of Gaussian-DIAG,
with which the bandwidths are set independently for each dimension of each
feature, can be a bene�t as for the functions #1 and #3, or a drawback as
for the function #2. The �rst function has �ve dummy variables that are not
part of the model, hence ECON assigns the largest possible bandwidths in these
dimensions, thus focusing the estimator on the other variables, and the better
results are not surprising. The results on function #2 show that the preference
on large-scale features does not systematically prevent the risk of over�tting, as
was the case in the sinusoidal example and with the Friedman function #3.

The best results are indeed obtained with di�erent feature classes for the three
functions, reproducing the issue of chosing the right kernel in kernel methods.
However, with ECON � and LASSO estimators in general � di�erent classes
can be used together, as in the last settings of these experiments. This gave
results that are always better than the averages of using the classes individually.
In the case of function #3, these mixing even gives better results than with
each separate class. A good general-purpose feature dictionary seems to be the
combination of Gaussian-DIAG and polynomials � and original attributes, which
is not surprising since they present very distinct, hence complementary, shapes,
and correspond to the two mostly used kernels in kernel methods.
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Friedman #1 Friedman #2 Friedman #3
MSE time MSE time MSE(10−2) time

linear 6.11(0.37) 0.0 19785(1165) 0.0 4.18(0.34) 0.0

G
au
ss
ia
n
C
ST

σ 1.0 1.7 0.7
grid 2 6.11(0.37) 1.9 1259(440) 0.1 2.70(0.28) 0.1
grid 3 4.271 1983 1297(441) 0.5 1.15(0.19) 0.8
grid 4 1290(440) 1.9 1.15(0.19) 3.3
grid 5 1286(438) 5.4 1.14(0.19) 9.8
grid 6 1283(436) 12.5 1.14(0.19) 23.4
grid 7 1282(435) 25.6 1.13(0.18) 45.0
grid 8 1280(435) 48.1 1.12(0.18) 81.2
kernel 2.71(0.27) 5.7 1241(425) 1.2 1.12(0.19) 3.4
ECON 2.63(0.30) 24.7 1260(427) 7.4 1.13(0.19) 19.4

E
C
O
N

Gaussian ISO 2.89(0.35) 19.9 2923(603) 6.2 1.37(0.23) 18.2
Gaussian DIAG 0.83(0.20) 65.5 3243(763) 14.2 0.86(0.17) 27.5
Polynomial 2.50(0.28) 36.5 1109(362) 6.9 0.89(0.18) 28.0
Perceptron 2.90(0.49) 18.5 5637(902) 4.8 0.64(0.19) 6.4

G-DIAG+pol 0.89(0.23) 123.6 1886(489) 20.7 0.77(0.15) 36.1
G-DIAG+pol+per 1.12(0.34) 143.6 2773(605) 23.4 0.60(0.12) 38.2

R
ot
h2 SVM 2.92 4140 2.02

RVM 2.80 3505 1.64
LASSO 2.84 3808 1.92

M
A
R
S3 mi=1 0.61(0.26) 14147(1312) 5.10(3.60)

mi=2 0.77(0.49) 2479(1021) 0.61(0.14)
mi=10,4,4 0.86(0.40) 2625(1312) 0.63(0.25)

Table 3.5: mean minimum MSE over 100 trials, and standard deviations, on the
three Friedman functions, using ASD with di�erent features dictionaries.
1 on one experiment
2 from (Roth, 2004)
3 from (Friedman, 1991)





Conclusion

Throughout this thesis, we have re-formulated existing algorithms for solving
the LASSO, following a slightly extended de�nition of this problem. The re-
formulation of the homotopy algorithm, which was acknowledged as the standard
LASSO-solving method, and was responsible for the popularity of this regression
method and ℓ1 regularization in general, has simpli�ed further its description and
actual implementation; this allowed the homotopy to exhibit running times that
are equivalent or better than those of the coordinate descent method, which was
recently believed to run signi�cantly faster. Moreover, it has facilitated the anal-
ysis of degenerate cases where cycles or wrong feature selection may occur, and
their workarounds. These workarounds have been based on deterministic meth-
ods rather than on stochastic perturbations, as was suggested prior to our work,
and ultimately consist in very simple tests. Their derivations was made possible
by exhibiting the familiarity of the homotopy and active set descent methods,
and the possibility of combining them. The active set descent algorithm itself
was given a simple and clear formulation and naming, that should help its un-
derstanding and recognition in the Machine Learning community. One of the
direct bene�ts of this better understanding is its straightforward application to
the regularized formulation of the LASSO, which is the most practical one. Some
advantages over the homotopy method have been shown: a slightly lower com-
putational complexity; more �exibility by not having to follow the regularization
path, which prevents it from degenerative situations and permits to track non-
stationary problems; ability to be applied to loss functions of which the regular-
ization path is not linear. The �exibility, associated to the more regular form of
the function to be optimized over the features, makes it a natural choice when
applying our idea of performing the LASSO over a genuinely in�nite feature set:
the successive approximate optimizations that are then required are simpler, and
imperfect optimizations do not have ill consequences. This simple idea of describ-
ing the observations by a whole multi-dimensional space of feature functions and
letting the sole ℓ1 regularization restrict this redundant description, and its very
satisfying results, illustrates the practical, fresh and somehow candid approach
with which we have tried to consider the problematics of regression.

More precisely, a deliberate choice not to build on the existing and much an-
alyzed and well-grounded reproducing- kernel theories and applications, is at the
origin of this approach. Most certainly, analyses and dissertations on the possible
limitations of the kernel approach should be done. This would allow to assess the
intuition that its combination of expressive power and computational reduction
is in some sense deceiving. Indeed, a renouncement to exact computation while
opting for a simple and integrated solution could be more fruitful than relying
on the well-analyzable kernel methods with additional layers (kernel selection or
multiple kernels). Theoretical analyzes of such re�ned extensions of kernel meth-
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ods, and of the loss induced by approximation in the ECON approach, would
help validate or moderate this intuition.

Other continuations of the present work include a more complete and detailed
application of the active set descent method to alternative ℓ1-regularized loss
functions, of which we have considered a few in chapter three. A full review
and synthesis of the regression settings to which the algorithm applies would be
a valuable contribution. Generalized linear models have been mentioned only
through logistic regression, and a broader review would be needed as well.

The important question of model selection is reduced in the case of the LASSO
to the right choice of the regularization parameter λ, and di�erent ways of decid-
ing this choice should be studied. In the general case, the parallel evolutions of
the LASSO and restricted least-squares solutions seem to potentially give good
indications of a switch from model-�tting to over-�tting. We have witnessed in
some experiments, that the LASSO residual evolves regularly whereas there is
a more noticeable change of behavior for the restricted least-squares when over-
�tting occurs. Both theoretical and extended practical analyses are needed, to
possibly identify a criterion that may be more robust than Cp-Mallow or cross-
validation methods.

In the ECON setting, the di�erentiated penalizations of Gaussian features has
given promising results on simple regression tasks, where the two �tting phases
become distinguishibly separated; theoretical and practical analyses should be
conducted to con�rm this pro�table property.

Finally, applications of the active set descent to sequential learning prob-
lems certainly deserve further attention, especially for �nancial data �ows and �
according to my personal inclinations, in the domain of Reinforcement Learning.
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