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Foreword

This thesis is divided into two parts. Chapter 2 to 7 concern bandits games and their extensions

while Chapter 8 and 9 discuss new results on clustering. Each chapter can be read independently

of others, introducing inevitably some redundancy. The organization is as follows:

• Chapter 1 is a short presentation (in French) of the contributions of this thesis.

• Chapter 2 is an introduction to the bandit theory. It presents the basic theoretical results

with (for some of them) improved constants and/or simpler proofs. In this chapter we also

review extensions of the basic multi-armed bandit game and highlight the contributions

of this thesis to some of them.

• Chapter 3 presents two new algorithms for the multi-armed bandit game, MOSS (Min-

imax Optimal Strategy for the Stochastic case) and INF (Implicitly Normalized Fore-

caster). We prove that both algorithms are minimax optimal (up to a constant factor),

solving a decade-long open problem. We also apply INF to other games (full infor-

mation, label efficient, bandit label efficient, tracking the best expert), and improve the

minimax rates for the regret whenever it is possible.

• Chapter 4 presents a new algorithm for the X -armed bandit problem, HOO (Hierarchical

Optimistic Optimization). We prove that, for metric spaces X with a well defined (sort

of) metric dimension, HOO is minimax optimal (up to a logarithmic factor). We also

prove, under weaker assumptions than any previous works, that it is possible to attain a

regret of order
√
n no matter the ambient dimension.

• Chapter 5 deals with the extension of bandits to the problem of planning in discounted

and stochastic environments. We present a new algorithm, OLOP (Open Loop Optimistic

Planning), and prove its minimax optimality (up to a logarithmic factor). We also show

that OLOP attains much faster rate whenever the number of optimal sequences of actions

is small.

• Chapter 6 introduces a new type of regret: the simple regret. In this chapter we study

the links between the cumulative and simple regret and analyze the minimax rate for the

simple regret.

• Chapter 7 further the study of the simple regret and proposes two new algorithms, SR

(Successive Rejects) and UCB-E (Upper Confidence Bound Exploration). We prove that

both algorithms have an optimal distribution-dependent rate of convergence to 0 for the

simple regret up to a logarithmic factor.

• Chapter 8 presents a statistical view on clustering and introduces a new algorithm, NNC

(Nearest Neighbor Clustering), which is the first provable algorithm to be asymptotically

consistent for (almost) any objective function.

• Chapter 9 studies the ability of stability methods to select the number of clusters. In

particular we consider the k-means algorithm and propose a new analysis of a non-trivial

initialization scheme.





Contents

Acknowledgements – Remerciements 3

Foreword 5

Chapitre 1. Introduction 11

1. Les jeux de bandits 11

2. Les fondations du clustering 16

Part 1. Bandits Games 19

Chapter 2. Multi-Armed Bandits 21

1. Bandits problems 21

2. Upper bounds on the cumulative regret 25

3. Lower Bounds 38

4. Extensions 43

Chapter 3. Minimax Policies for Bandits Games 49

1. Introduction 49

2. The implicitly normalized forecaster 53

3. The full information (FI) game 56

4. The limited feedback games 57

5. Tracking the best expert in the bandit game 60

6. Gains vs losses, unsigned games vs signed games 61

7. Stochastic bandit game 61

8. General regret bound 62

9. Proofs 67

Chapter 4. X -Armed Bandits 81

1. Introduction 81

2. Problem setup 84

3. The Hierarchical Optimistic Optimization (HOO) strategy 85

4. Main results 89

5. Discussion 97

6. Proofs 99

Chapter 5. Open-Loop Optimistic Planning 115

1. Introduction 115

2. Minimax optimality 118

3. OLOP (Open Loop Optimistic Planning) 120

4. Discussion 122

5. Proofs 124

Chapter 6. Pure Exploration in Multi-Armed Bandits 133



8 CHAPTER 0. CONTENTS

1. Introduction 133

2. Problem setup, notation 135

3. The smaller the cumulative regret, the larger the simple regret 136

4. Upper bounds on the simple regret 140

5. Conclusions: Comparison of the bounds, simulation study 145

6. Pure exploration for X–armed bandits 146

7. Technical Proofs 149

Chapter 7. Pure Exploration in Multi-Armed Bandits II 159

1. Introduction 159

2. Problem setup 160

3. Highly exploring policy based on upper confidence bounds 162

4. Successive Rejects algorithm 164

5. Lower bound 166

6. Experiments 170

7. Conclusion 171

8. Proofs 173

Part 2. Clustering Foundations 177

Chapter 8. Nearest Neighbor Clustering: A Baseline Method for Consistent Clustering with

Arbitrary Objective Functions 179

1. Introduction 180

2. General (In)Consistency Results 181

3. Nearest Neighbor Clustering—General Theory 184

4. Nearest Neighbor Clustering with Popular Clustering Objective Functions 187

5. Relation to Previous Work 192

6. Discussion 196

7. Proofs 198

Chapter 9. How the initialization affects the stability of the k-means algorithm 215

1. Introduction 215

2. Notation and assumptions 217

3. The level sets approach 218

4. Towards more general results: the geometry of the solution space of k-means 221

5. An initialization algorithm and its analysis 223

6. Simulations 228

7. Conclusions and outlook 231

Part 3. Additional material and bibliography 233

Chapter 10. Statistical background 235

1. Concentration Inequalities 235

2. Information Theory 236

3. Probability Theory Lemma 237

Bibliography 239







CHAPITRE 1

Introduction

Ce travail de thèse s’inscrit dans le domaine du machine learning et concerne plus parti-

culièrement les sous-catégories de l’optimisation stochastique, du online learning et du cluste-

ring. Ces sous-domaines existent depuis plusieurs décennies mais ils ont tous reçu un éclairage

différent au cours de ces dernières années. Notamment, les jeux de bandits offrent aujourd’hui

un cadre commun pour l’optimisation stochastique et l’online learning. Ce point de vue conduit

à de nombreuses extensions du jeu de base. C’est sur l’étude mathématique de ces jeux que se

concentre la première partie de cette thèse. La seconde partie est quant à elle dédiée au clustering

et plus particulièrement à deux notions importantes : la consistance asymptotique des algorithmes

et la stabilité comme méthode de sélection de modèles.

Ce premier chapitre est l’occasion de présenter brièvement le contexte des deux parties qui

constituent le corps de la thèse ainsi que de résumer les contributions des différents chapitres.

Contents

1. Les jeux de bandits 11

1.1. Vitesses minimax du jeu du bandit et de ses variantes 12

1.2. Le jeu du bandit stochastique avec une infinité de bras 13

1.3. Le problème de la planification 14

1.4. Regret simple 14

2. Les fondations du clustering 16

2.1. Des algorithmes consistants 16

2.2. La stabilité : une méthode de sélection de modèles 16

1. Les jeux de bandits

Le jeu du bandit a une longue histoire, il a été introduit pour la première fois par Robbins

[1952] dans un contexte stochastique puis par Auer et al. [2003] comme un jeu contre un adver-

saire malicieux. Les deux versions sont décrites en détails dans le Chapitre 2 et on les rappelle

brièvement ici dans les figures 1 et 2. Le Chapitre 2 est aussi l’occasion de rappeler les résultats

de base et d’en donner une version légèrement améliorée dans la majorité des cas (soit au niveau

des constantes soit au niveau de la preuve).

Comme nous allons le voir tout au long de cette thèse, le jeu du bandit et ses variantes

modélisent de nombreux problèmes concrets en mathématiques appliquées. On peut citer par

exemple le placement de bandeaux publicitaires sur une page internet, la construction d’une in-

telligence artificielle pour le jeu de Go ou encore la recherche efficace d’une fréquence de com-

munication pour un dialogue entre téléphones mobiles. Dans la suite nous mettrons l’accent sur

l’analyse mathématique rigoureuse des différents jeux mais sans perdre de vue les applications

concrètes. Ainsi les problèmes réels donnent naissance à des questions mathématiques dont les
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Paramètres : nombre de bras (ou actions) K ; nombre de tours n avec n > K > 2.

A chaque tour t = 1, 2, . . . , n;
(1) le joueur choisit It ∈ {1, . . . ,K}, éventuellement à l’aide d’une randomisation externe ;

(2) simultanément l’adversaire choisit un vecteur de gains gt = (g1,t, . . . , gK,t) ∈ [0, 1]K ;

(3) le joueur reçoit la récompense gIt,t (sans voir la récompense des autres bras).

But : Maximiser les gains cumulés. De manière (presque) équivalente on cherche à minimiser le regret

(cumulé)Rn = max
i∈{1,...,K}

n∑

t=1

gi,t −
n∑

t=1

gIt,t. Un objectif moins ambitieux est de minimiser le pseudo-

regret (cumulé) Rn = max
i∈{1,...,K}

E

n∑

t=1

gi,t − E

n∑

t=1

gIt,t.

FIG. 1: Jeu du bandit.

Paramètres connus : nombre de bras K ; nombre de tours n avec n > K > 2 ;

Paramètres inconnus : K distributions de probabilités ν1, . . . , νK sur [0, 1] (ayant pour moyennes

µ1, . . . , µK).

A chaque tour t = 1, 2, . . . , n;
(1) le joueur choisit It ∈ {1, . . . ,K} ;

(2) l’environnement tire la récompense Yt ∼ νIt
indépendamment du passé étant donné It.

But : Maximiser en moyenne les gains cumulés. De manière équivalente on cherche à minimiser le

pseudo-regret (cumulé) Rn = E

n∑

t=1

max
i∈{1,...,K}

µi − µIt
.

FIG. 2: Jeu du bandit stochastique.

réponses (le plus souvent sous la forme d’algorithmes) doivent en retour aider à la résolution du

problème intial. Cette association à double sens entre mathématiques et problématiques réelles est

au cœur de cette thèse et a guidé le choix de la majorité des sujets considérés.

1.1. Vitesses minimax du jeu du bandit et de ses variantes. Une problématique classique

en statistiques est d’obtenir des vitesses minimax exactes pour différents types de regrets. Concer-

nant le jeu du bandit on cherche à caractériser la quantité

inf supRn

où inf représente l’infimum par rapport aux stratégies du joueur et sup le supremum par rapport

aux stratégies de l’adversaire (ou par rapport au choix des probabilités dans le cas du jeu stochas-

tique). On sait depuis Auer et al. [1995] que cette quantité est plus petite que
√

2nK log(K) et

plus grande que 1
20

√
nK (pour les deux types de jeu). Ainsi la vitesse minimax n’était connue

qu’à un facteur logarithmique près, y compris dans le cas du jeu stochastique.

Dans le Chapitre 3 on propose deux nouveaux algorithmes, MOSS (Minimax Optimal Strategy

for the Stochastic case) pour le cas stochastique et INF (Implicitly Normalized Forecaster) pour le

jeu général, chacun d’eux atteignant un pseudo-regret de l’ordre de
√
nK (à une constante près),
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Jeux de prédiction :

Paramètres : nombre de bras (ou actions) K ; nombre de tours n avec n > K > 2.

A chaque tour t = 1, 2, . . . , n;
(1) le joueur choisit It ∈ {1, . . . ,K}, éventuellement à l’aide d’une randomisation externe ;

(2) simultanément l’adversaire choisit un vecteur de gains gt = (g1,t, . . . , gK,t) ∈ [0, 1]K ;

(3) Le joueur reçoit le gain gIt,t (sans forcement l’observer). Il observe

– le vecteur de gains (g1,t, . . . , gK,t) dans le jeu à information complète,

– le vecteur de gains (g1,t, . . . , gK,t) si il le demande en sachant qu’il n’est pas autorisé

à le demander plus de m fois pour un entier 1 6 m 6 n fixé. C’est le jeu du label

efficient,

– seulement gIt,t dans le jeu du bandit,

– seulement gIt,t si il le demande en sachant qu’il n’est pas autorisé à le demander plus

de m fois pour un entier 1 6 m 6 n fixé. C’est le jeu du bandit label efficient,

But : Minimiser le regret (cumulé)Rn = max
i∈{1,...,K}

n∑

t=1

gi,t −
n∑

t=1

gIt,t ou le pseudo-regret (cu-

mulé) Rn = max
i∈{1,...,K}

E

n∑

t=1

gi,t − E

n∑

t=1

gIt,t.

FIG. 3: Quatre jeux de prédiction.

donnant ainsi la réponse à un problème ouvert depuis plus d’une décennie.

Le Chapitre 3 est aussi l’occasion de discuter différentes variantes du jeu du bandit étudiées

dans Cesa-Bianchi et al. [1997], Auer [2002], Cesa-Bianchi et al. [2005] et Allenberg et al. [2006].

On les rappelle ici brièvement avec la Figure 3. Pour l’ensemble de ces nouveaux jeux (à l’excep-

tion du jeu à information complète) nous améliorons les vitesses minimax connues grâce à l’algo-

rithme INF et à un nouveau type d’analyse unifiée des différents jeux. Les résultats obtenus sont

résumés dans la table 1 (où le jeu du bandit indifférent correspond à un jeu de bandit classique

où l’adversaire doit choisir sa suite de vecteurs de gains avant que le jeu ne commence). Dans ce

même chapitre on considère aussi un regret plus général où on ne se compare pas au meilleur bras

mais à la meilleure stratégie qui change S fois de bras, où 0 6 S 6 n est un entier fixé. Pour ce

regret aussi on améliore les vitesses minimax par rapport à l’état de l’art.

1.2. Le jeu du bandit stochastique avec une infinité de bras. Une limitation majeure des

jeux décrits dans la section précédente est l’hypothèse, a priori bénigne, n > K. Autrement

dit on suppose qu’il y a au moins autant de tours de jeu que de bras, et même significativement

plus pour que les résultats deviennent intéressants. Cette hypothèse est évidemment indispensable

quand on ne possède aucune connaissance a priori sur le comportement des bras puisqu’il faut

au moins pouvoir tester chacun d’eux. Cependant dans de nombreux problèmes pratiques il existe

une certaine structure sur les bras, une information sur l’un peut donner des informations sur les

bras ”proches”. Dans le Chapitre 4 on montre que sous des hypothèses convenable il est en fait

possible de gérer une infinité de bras, i.e., d’avoir un pseudo-regret sous linéaire (en le nombre

de tours) sans tester chaque bras. Plus précisément on s’intéresse au jeu du bandit stochastique

avec un espace mesurable de bras X et tel que l’ensemble des probabilités sur les bras possède

une structure interne qui contraint la forme de la fonction moyenne (la fonction qui associe à
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inf supRn inf sup ERn Rn

Borne inf. Borne sup. Borne inf. Borne inf. Borne sup.

Information Complète
√
n logK

√
n logK

√
n logK

√
n logK

√
n log(Kδ−1)

Label Efficient n
√

logK
m n

√
logK
m n

√
logK
m n

√
log K

m
n

√
log(Kδ−1)

m

Bandit Indifférent
√
nK

√
nK

√
nK

√
nK

√
nK log(δ−1)

Bandit
√
nK

√
nK

√
nK

√
nK log K

√
nK

log K
log(Kδ−1)

Bandit Label Efficient n

√
K

m
n

√
K log K

m
n

√
K

m log K
log(Kδ−1)

TAB. 1: En rouge les résultat où nous améliorons par rapport à l’état de l’art. Ces bornes sont toutes

à une constante près. Les bornes de la dernière colonne sont vraies avec probabilité au moins 1−δ.

chaque bras sa récompense moyenne). Ces conditions s’appliquent par exemple au cas d’un espace

métrique compactX et aux fonctions moyennes 1-Lipschitz par rapport à cette métrique. Ce travail

fait suite à une série de papiers sur les bandits stochastiques avec infinité de bras. En particulier

on généralise les résultats de Kleinberg [2004], Auer et al. [2007], Kleinberg et al. [2008a]. Plus

précisément :

(i): On propose le premier algorithme pratique pouvant s’adapter à (presque) n’importe

quel espace : HOO (Hierarchical Optimistic Optimization).

(ii): On montre que HOO atteint la vitesse minimax (à un terme logarithmique près) dans

de nombreux cas, par exemple si X = RD muni de la norme euclidienne et que l’on

considère les fonctions moyennes 1-Lipschitz. La vitesse minimax dans ce cas est n
D+1
D+2

(à un terme logarithmique près).

(iii): On définit une nouvelle notion de dimension de la fonction moyenne, la near-optimality

dimension, et on montre que le regret de HOO sur une fonction moyenne de dimension

near-opt d est en fait n
d+1
d+2 . En particulier pour le bon choix de la métrique on montre que

dans beaucoup de cas intéressant d = 0 quelle que soit la dimension ambiante.

(iv): On montre que seul le comportement de la fonction moyenne au voisinage de son

maximum est important pour obtenir les vitesses ci-dessus.

1.3. Le problème de la planification. Le bandit stochastique avec infinité de bras couvre un

champ très large d’applications. En particulier il inclut le problème classique de la planification

où le statisticien doit préparer un plan d’actions en ayant seulement une expérience limitée de

son environnement. Dans le Chapitre 5 on développe cette correspondance et on introduit l’algo-

rithme OLOP (Open Loop Optimistic Planning), dérivé de l’algorithme HOO du Chapitre 4. Cela

nous permet d’obtenir le premier algorithme minimax optimal dans le cas d’un environnement

stochastique avec récompenses actualisées.

1.4. Regret simple. Les deux derniers chapitres de la première partie concernent à nouveau

le jeu du bandit stochastique avec un nombre fini de bras, mais vu sous un angle différent. Dans

le jeu classique le joueur doit à la fois chercher quel bras a la meilleure récompense moyenne et

dans le même temps exploiter le bras qu’il pense être le meilleur afin de minimiser son regret.

Dans les chapitres 6 et 7 on s’affranchit de cette seconde contrainte et l’unique objectif du joueur
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Paramètres connus : nombre de bras K ; nombre de tours n avec n > K > 2 ;

Paramètres inconnus : K distributions de probabilités ν1, . . . , νK sur [0, 1] (ayant pour moyennes

µ1, . . . , µK).

A chaque tour t = 1, 2, . . . , n;
(1) le joueur choisit It ∈ {1, . . . ,K} ;

(2) l’environnement tire la récompense Yt ∼ νIt
indépendamment du passé étant donné It.

A la fin du tour n le joueur choisit Jn ∈ {1, . . . ,K}.
But : Minimiser le regret simple rn = max

i∈{1,...,K}
µi − µJn

.

FIG. 4: Regret simple pour le jeu du bandit stochastique.

devient la découverte du meilleur bras. On introduit un nouveau type de regret, le regret simple,

qui permet de formaliser cette idée. Le jeu correspondant est décrit dans la Figure 4. On peut noter

que ce problème correspond tout simplement à l’optimisation d’une fonction stochastique sur un

domaine discret.

La motivation initiale pour ce travail provient de considérations sur les problèmes réels que

modélise le jeu du bandit. Par exemple dans la construction d’une intelligence artificielle pour le

jeu de Go on cherche un algorithme qui étant donné une position du Goban (i.e., du plateau de

jeu) va donner le meilleur coup à jouer. Pour ce faire on suppose que l’algorithme peut estimer

(avec un bruit) la valeur d’un coup et qu’il dispose d’un nombre fini d’estimations. Ainsi durant le

temps imparti il peut tester les différentes options pour essayer de trouver la meilleure. Clairement

dans ce cas utiliser un algorithme minimisant le regret cumulé n’a pas de sens et seul le regret

simple est à prendre en considération. Pourtant l’une des meilleurs I.A. actuelle est basée sur un

algorithme pour le jeu du bandit classique, voir Gelly et al. [2006]. C’est dans ce contexte que se

place le Chapitre 6 où l’on étudie les liens entre le regret simple et le regret cumulé. Le résultat

principal est une borne inférieure sur les performances en terme de regret simple étant données

celles du regret cumulé. Essentiellement le résultat peut s’énoncer sous la forme

(1.1) ∀ν1, . . . , νK , ∃ C > 0 : Ern > exp(−C Rn).

Autrement dit, meilleur est le regret cumulé, moins bon sera le regret simple. Ce résultat est vrai

dans un sens distribution-dependent, c’est à dire quand on autorise les bornes à dépendre des dis-

tributions de probabilités sur les bras (ici sous la forme de la constante C). On montre aussi dans

le Chapitre 6 qu’il est facile d’obtenir des algorithmes minimax optimaux pour le regret simple

(du moins à un facteur logarithmique près), y compris pour des algorithmes ayant une vitesse de

convergence (du regret simple vers 0) sous optimal en distribution-dependent.

Motivés par ces résultats on développe dans le Chapitre 7 deux nouveaux algorithmes spécialement

conçus pour minimiser le regret simple, SR (Successive Rejects) et UCB-E (Upper Confidence

Bound Exploration). On étudie leurs vitesses de convergence distribution-dependent et on prouve

l’optimalité de ces dernières à un facteur logarithmique près. En particulier, cette analyse nous

permet de prouver que pour trouver le meilleur bras, il faut un nombre de tours de jeu de l’ordre

de
∑

i 1/∆
2
i , où la somme se fait sur les indices i sous-optimaux et ∆i = max16j6K µj − µi

représente la sous-optimalité du bras i. Ce résultat généralise le fait bien connu qu’il faut de l’ordre
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de 1/∆2 tirages pour differencier les moyennes de deux distributions de probabilitiés ayant un

écart de ∆ entre leurs moyennes.

2. Les fondations du clustering

Le clustering peut être défini informellement comme la recherche de ”groupes” dans un en-

semble de données. En général on cherche des groupes ayant un ou plusieurs des attributs suivants.

– Les groupes permettent une représentation compréhensible par un être humain des données.

– Les groupes permettent de découvrir des catégories de données ”similaires” dans notre en-

semble.

– La création de ces groupes est une étape de traitement préliminaire de l’ensemble des

données pour ensuite utiliser un algorithme directement sur les groupes plutôt que sur les

données brut. On veut alors que ces groupes améliorent l’efficacité de l’algorithme.

Cette liste n’est pas exhaustive, mais elle est suffisante pour se rendre compte qu’un traitement

théorique unifié du clustering est une tâche ardu.

2.1. Des algorithmes consistants. Dans le Chapitre 8 on adopte un point de vue dérivé de

l’apprentissage statistique. On se donne les éléments suivants : un ensemble mesurable X muni

d’une distribution de probabilité inconnue P, un ensemble de données {X1, . . . , Xn} tirées i.i.d

selon P, un ensemble de fonctions F ⊂ {1, . . . ,K}X représentant les types de groupes qu’on

s’autorise, et une fonction de qualité Q : F → R+ qui dépend de P. Le but est alors de construire

un ensemble de groupes fn ∈ F qui optimise notre fonction de qualité Q. Suivant la stratégie

classique de l’apprentissage statistique, on construit un estimateur Qn de Q avec notre ensemble

de données et on choisit fn qui optimise Qn (éventuellement sur un sous-ensemble Fn ⊂ F). On

se pose alors la question naturelle de la convergence de Q(fn) vers le véritable optimum de Q.

Notre première contribution est un théorème très général qui donne des conditions suffisantes

sur Qn,Fn, Q,F et P pour que la procédure décrite précédemment soit (faiblement) consistante,

i.e., Q(fn) converge (en probabilité) vers l’optimum de Q. Les résultats classiques de l’apprentis-

sage statistique ne peuvent pas s’appliquer pour obtenir ce résultat, notamment car on doit autoriser

des fonctions de qualitésQ qui ne s’écrivent pas comme des espérances (i.e.,Q(f) = E(Ω(f,X)))

ainsi que des estimateurs biaisés de Q (i.e., EQn 6= Q). En effet ces conditions sont la normes

plutôt que l’exception dans les travaux sur le clustering. De plus nous autorisons Fn a dépendre

des données. Ces hypothèses rendent les techniques classiques, tel que l’étape de symétrisation,

plus difficiles à appliquer.

A partir de ce théorème nous dérivons un nouvel algorithme, NNC (Nearest Neighbor Clus-

tering), qui peut être vu comme un équivalent de la méthode des plus proches voisins dans le

contexte non-supervisé du clustering, et pour lequel nous prouvons sa consistance sur de nom-

breuses fonctions objectifs classiques, telles que k-means, Ratio Cut, Normalized Cut, etc.

2.2. La stabilité : une méthode de sélection de modèles. Dans le Chapitre 9 nous abordons

une question complètement différente, comment choisir le nombre de groupes K que contient

notre ensemble de données ? Pour simplifier la discussion nous nous plaçons dans un cas où on

veut utiliser l’algorithme k-means pour construire les groupes. De plus, afin d’avoir une notion du

”bon” nombre de groupes, on supposera que nos données sont générées par une mixture de Gaus-

siennes (sur Rd) suffisamment ecartées. Dans ces conditions, il a été suggéré expérimentalement

la procédure suivante : générer plusieurs ensembles de données et lancer l’algorithme k-means

avec différents K. On choisit alors le nombre K pour lequel les résultats de k-means sont les plus
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stables.

Cette procédure a été étudiée dans un cadre idéal dans une serie de papiers, [Ben-David et al.,

2006, 2007, Shamir and Tishby, 2008a, Ben-David and von Luxburg, 2008, Shamir and Tishby,

2008b,c]. D’une manière générale la conclusion de ces travaux est que la stabilité ne peut pas fonc-

tionner comme méthode de sélection du nombre de groupes (dans un cadre idéal et asymptotique).

Dans le Chapitre 9 nous nous plaçons dans le cadre ”réel”, et considérons l’algorithme k-

means avec sa particularité de tomber dans des extremas locaux de la fonction objectif. Dans

une première partie nous prouvons (partiellement) que la méthode de stabilité fonctionne, du mo-

ment que l’on initialise correctement l’algorithme. La seconde partie est dédiée à l’analyse d’une

méthode non-triviale d’initialisation, PRUNED MINDIAM, pour laquelle nous prouvons qu’elle

satisfait nos conditions pour que la méthode de stabilité fonctionne.





Part 1

Bandits Games





CHAPTER 2

Multi-Armed Bandits

This chapter is meant to be an introduction to the bandit theory. We introduce the multi-

armed bandit problem in both stochastic and adversarial settings. We present different motivating

examples as well as the basic theoretical results. For some of them we propose a statement with

improved constants and/or simpler proofs. At the end of the chapter we discuss possible extensions

of this classical problem and highlight the contributions of this thesis to some of them.
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1. Bandits problems

The term bandit refers to the usual name of a Casino’s slot machine (”one-armed bandit”).

In a multi-armed bandit problem a player (or a forecaster) is facing a finite number of slot ma-

chines (or arms). He allocates sequentially his coins (one at time) on different machines and earns

some money (its reward) depending on the machine he selected. His goal is simply to earn as

much money as possible. As we will see below, the most important feature of this model is the

assumption on the slot machines’ reward generation process.

1.1. Stochastic multi-armed bandit. In its original formulation, Robbins [1952], each arm

corresponds to an unknown probability distribution on [0, 1]. At each time step t ∈ N the fore-

caster selects (or pulls) one arm It, and then he receives a reward Yt sampled from the distribution

corresponding to the selected arm and independently from the past given that arm. The forecaster’s

goal is to maximize the sum of rewards
∑n

t=1 Yt where n ∈ N is the time horizon. The forecaster

does not necessarily know in advance the time horizon and in that case we say that his strategy is

anytime.
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Known parameters: number of arms K; number of rounds n with n > K > 2.

Unknown parameters: K probability distributions ν1, . . . , νK on [0, 1].

For each round t = 1, 2, . . . , n

(1) the forecaster chooses It ∈ {1, . . . ,K};
(2) the environment draws the reward Yt ∼ νIt

independently from the past given It.

Goal: Maximize the cumulative gain
∑n

t=1 Yt.

Figure 1: Stochastic multi-armed bandit game.

If the distributions were known, one would always pull the arm with the highest mean reward

in order to maximize the cumulative rewards. To analyze the behavior of a forecaster we compare

its performance with this optimal strategy. In other terms we study the regret of the forecaster

for not playing optimally. Let K > 2 be the number of arms and for i ∈ {1, . . . ,K} we note

νi the probability distribution of arm i and µi its mean. We also set µ∗ = maxi∈{1,...,K} µi and

i∗ ∈ argmaxi∈{1,...,K} µi. Then the cumulative pseudo-regret (this terminology will be explained

in Section 1.2) of the forecaster is:

(2.1) Rn = nµ∗ − E

n∑

t=1

µIt

where the expectation is taken with respect to the random drawing of the rewards (which influence

the sequence I1, . . . , In). It represents the average regret of the forecaster with respect to the best

arm on average. In the following we refer to this problem as the stochastic multi-armed bandit, see

Figure 1 for a summary.

The historical motivation for this model was given by medical trials, Thompson [1933]. The

setting is as follows. A set of K drugs is at disposal to cure one disease, and patients are sequen-

tially presented without any side information. We assume that the effectiveness of each drug is the

same for any patient. More formally the actual success of a drug on a patient is a Bernoulli random

variable whose parameter depends solely on the drug. The objective is to maximize the number

of healed patients, or more precisely to perform almost as well as the best drug. In particular we

do not want to use suboptimal treatments too often but rather focus as soon as possible on the best

treatment. Thus a trade-off appears between the exploration of the different drugs to estimate their

performance and the exploitation of the results we have obtained so far to be the more efficient.

This is in fact one of the basic motivation for the stochastic multi-armed bandit game, it is the

simplest model in which an exploration/exploitation dilemma appears.

1.2. Adversarial multi-armed bandit. To motivate the adversarial bandit let us consider

again the initial example of gambling on slot machines. We assume now that we are in rigged

casino, where the owner (called the adversary) sets for each i ∈ {1, . . . ,K} the sequence of gains

(gi,t)16t6n ∈ [0, 1]n for slot machine i. Note that it is not in the interest of the owner to simply

set all the gains to zero, since in that case one will eventually go to another casino! Now recall

that a forecaster selects sequentially one arm It ∈ {1, . . . ,K} at each time step 1 6 t 6 n and

observes (and earns) the gain gIt,t. Is it still possible to be competitive in such setting ? As a first

step, and by analogy with the stochastic case, one considers the best single arm in hindsight and
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seek for a forecaster which earns almost as much rewards as this arm. More precisely we define

the cumulative regret of the forecaster as:

(2.2) Rn = max
i∈{1,...,K}

n∑

t=1

gi,t −
n∑

t=1

gIt,t.

In the particular example of the rigged casino we say that the adversary is oblivious, because

the opponent’s strategy (represented by the sequence of gains) is oblivious to our actions. In a

more general framework, the adversary may depend on our actions, in that case the adversary is

non-oblivious. For instance the Casino’s owner may look at the forecaster’s strategy to design even

more evil sequences of gains. See Figure 2 for a summary of the general problem. Note that for a

non-oblivious adversary the interpretation of the regret is tricky and may be seen as unnatural. In

particular we can not evaluate the cumulative gain that we would have obtained by playing a single

arm for the n rounds since the only information available on the adversary is the sequence of gain

vectors that was produced against the forecaster’s strategy. Thus the regret can only be computed

on this sequence of gains.

In this setting the goal is to obtain bounds in high probability or in expectation (with respect

to both eventual randomization of the forecaster and the adversary) on the regret for any opponent.

In the case of a non-oblivious opponent this is not an easy task, and we usually bound first the

pseudo-regret:

(2.3) Rn = max
i∈{1,...,K}

E

n∑

t=1

gi,t − E

n∑

t=1

gIt,t.

which compares the forecaster’s average regret with respect to the best arm arm on average. Re-

mark that the randomization of the adversary is not very important since we ask for bounds which

hold for any opponent. However, by allowing this randomization, we recover the stochastic ban-

dit as a special case of the adversarial bandit, in particular for stochastic bandits equations (2.1)

and (2.3) coincide. On the other hand it is fundamental to allow randomization for the forecaster.

Indeed, given a deterministic forecaster, the oblivious adversary defined as follows
{

if It 6= 1, g1,t = 1 and gi,t = 0 for all i 6= 1;

if It = 1, g2,t = 1 and gi,t = 0 for all i 6= 2;

impose Rn > n/2. Note that this adversary is allowed (and oblivious) because the forecaster’s

strategy is deterministic.

1.3. Modern motivating examples. While the historical motivation for bandits was medical

trials, it has been realized in the past decades that bandits games model a number of more so-

phisticated and relevant applications. We describe here six examples, ranging from theoretical to

applied, where bandits algorithms have been used or are currently under investigation. Note that

most of these examples are better modeled by extensions of the basic game, see Section 4.

(1) Online learning with expert advice and limited feedback: The traditional statistical

point of view on learning is the following. The learner (or forecaster) has access to a

data set (ξt)16t6n ∈ Ξn and has to output a prediction fn ∈ F where F is a class

of functions usually defined by computational and statistical modeling considerations.

This prediction is evaluated by a loss function L : F → R+, and the forecaster’s goal

is to minimize the expected loss. A common example fitting in this framework is the



24 CHAPTER 2. MULTI-ARMED BANDITS

Known parameters: number of arms K; number of rounds n with n > K > 2.

For each round t = 1, 2, . . . , n

(1) the forecaster chooses It ∈ {1, . . . ,K}, eventually with the help of an external randomiza-

tion;

(2) simultaneously the adversary selects a gain vector gt = (g1,t, . . . , gK,t) ∈ [0, 1]K , eventually

with the help of an external randomization;

(3) the forecaster receives (and observes) the reward gIt,t. He does not observe the gains of the

other arms.

Goal: Maximize the cumulative gain
∑n

t=1 gIt,t.

Figure 2: Adversarial multi-armed bandit game.

one of pattern classification, where the forecaster faces pairs ξi = (Xi, Yi) ∈ X × Y ,

drawn i.i.d. from an unknown probability distribution P. A prediction is a classifier,

that is, F ⊂ YX and the loss of a classifier is the expected number of mistakes, that

is, L(f) = P(f(X) 6= Y ). A limitation of this viewpoint is that the data set is fixed

once and for all. This assumption is not valid for many of the modern problems in

statistics. Indeed, whether we consider the Internet network, consumer data sets, or

financial market, a common feature emerges: the data are dynamic and continuously

evolving. The online learning model addresses this issue. Here the forecaster faces the

data sequentially, and at each time step a prediction has to be made. This prediction

incurs an instant loss given by a function ℓ : F × Ξ → R+. More precisely at time step

t ∈ N the learner already observed ξ1, . . . , ξt−1 and made the predictions f1, . . . , ft−1.

Then the learner makes the prediction ft, receives a new data point ξt and suffers the loss

ℓ(ft, ξt). Thus the cumulative loss of the forecaster after n steps is Ln =
∑n

t=1 ℓ(ft, ξt).

One sub-model of this framework has attracted a lot of attention in the last years,

namely the one of online learning with expert advice: A set of K experts are playing the

online learning game described above and the forecaster selects at each time step which

expert’s prediction to follow, based on its past experience with the different experts. This

problem is now very well understood, see Cesa-Bianchi and Lugosi [2006]. One inter-

esting and challenging extension is the model of online learning with limited feedback.

Here the learner only observes the suffered loss ℓ(ft, ξt) rather than the data point ξt.

This model can be viewed as a bandit game, where the set of experts correspond to the

set of arms.

(2) Black-box stochastic optimization: Consider an algorithm with a parameter to tune,

and whose performance can easily be evaluated. Assume that either the algorithm has

some internal stochasticity, or that it can only be evaluated with an additional noise. By

viewing this problem as a stochastic bandit game, where the set of arms corresponds

to the set of possible parameter values, we obtain strategies to automatically tune the

parameter over time. We refer the reader to Chapter 4 for more details on this approach.

(3) Ads placement on a web-page: With the pay-per-click model, each click on an ad

proposed by a search engine earns some revenue. As users arrive, the search engine can

display ads sequentially in order to maximize the total revenue. This problem can be cast

as a bandit game, with the set of arms being the set of ads and each user corresponds

to a time step. Recent works to apply bandits in this framework include Pandey et al.
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[2007b], Pandey et al. [2007a], Liu and Zhao [2008] and Chakrabarti et al. [2009], see

also Section 4.3 for the bandit with side information and the references therein.

(4) Packets routing: Consider a network represented by a graph in which one has to send

a sequence of packets from one vertex to another. For each packet one chooses a path

through the graph and suffers a certain delay. Depending on the traffic, the delays on

the edges may change and the only information available is the delay on the path chosen

at a given time step. The goal is to minimize the total delay for the sequence of pack-

ets. This problem can be cast as a bandit game, with the set of arms being the set of

paths between the two vertices and each packet corresponds to a time step. Many works

have been done for this particular problem, including Awerbuch and Kleinberg [2004],

McMahan and Blum [2004], György et al. [2007], see also the references in Section 4.1

for combinatorial bandits and linear bandit optimization.

(5) Tree-search: A recent successful application of bandits algorithms is the MoGo program

of Gelly et al. [2006] which plays computer Go at a world-class level. With a Monte-

Carlo method to evaluate the value of a position it is possible to see the Go problem as a

hierarchy of bandits. The authors address this problem with the UCT strategy of Kocsis

and Szepesvari [2006] which is derived from the UCB strategy, see Section 2.2.

(6) Channel allocation for cellphones: During a communication between two cellphones,

the operator may change the channel several times. Here the set of arms corresponds to

the set of possible channels and a time step represents a time interval where the channel is

fixed. Opportunistic communication systems rely on the same idea and has been recently

studied in the more general framework of partially observable Markov decision process

in Zhao et al. [2005], Liu and Zhao [2008], Filippi et al. [2009].

2. Upper bounds on the cumulative regret

In this section we propose different forecasters both for the stochastic and adversarial bandit

game. We analyze the performance of the algorithms by proving upper bounds on their regrets. In

fact, we prove three different type of bounds, (i) on the pseudo-regret, (ii) on the expected regret,

and (iii) bounds on the regret which hold with high probability. The weakest statement and also

the easier to obtain is (i). In sections 2.1 and 2.2 we focus on this quantity. Then in Section 2.3 we

show how to extend these results to (ii) and (iii).

2.1. Pseudo-regret in adversarial bandits. As we said in Section 1.2, it is necessary to

consider randomized forecaster to obtain non-trivial guarantee on the cumulative regret in the

adversarial bandit game. We describe here the randomized forecaster Exp3 of Auer et al. [2003]

which is based on two fundamental ideas. The first one is that, despite the fact that only the gain

for one arm is observed, it is still possible to build an unbiased estimator of the gain for any arm

with a simple trick. Namely, if the next arm It to be played is drawn from a probability distribution

pt = (p1,t, . . . , pK,t), then g̃i,t =
gi,t
pi,t

1It=i is an unbiased estimator (with respect to the drawing

of It) of gi,t. The second idea, which goes back to Littlestone and Warmuth [1994], is to use an

exponential reweighting of the cumulative estimated gain to define the new probability distribution

over the arm.

In recent works, Cesa-Bianchi and Lugosi [2006], this strategy has been described in a loss

setting, that is instead of maximizing the cumulative gain the goal is to minimize the cumulative

loss. With a linear transformation on the rewards we can reduce a gain game to a loss game and
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Exp3 (Exponential weights algorithm for Exploration and Exploitation) without mixing:

Parameter: a non-increasing sequence of real numbers (ηt)t∈N.

Let p1 be the uniform distribution over {1, . . . ,K}.
For each round t = 1, 2, . . . , n

(1) Draw an arm It from the probability distribution pt.

(2) Compute the estimated loss for each arm: ℓ̃i,t =
1−gi,t
pi,t

1It=i and update the estimated

cumulative loss: L̃i,t =
∑t

s=1 ℓ̃i,s.
(3) Compute the new probability distribution over the arms pt+1 = (p1,t+1, . . . , pK,t+1)

where:

pi,t+1 =
exp

(
−ηtL̃i,t

)

∑K
k=1 exp

(
−ηtL̃k,t

) .

Figure 3: Exp3 forecaster.

use the Exp3 strategy for losses. This way we obtain better bounds in terms of the constants 1.

Moreover this modification has an other advantage, in the initial formulation the authors had to

consider a mixture of exponential weights with the uniform distribution on the set of arms, but as

it was already noted in Stoltz [2005], this mixing is not necessary to have bounds on the pseudo-

regret when Exp3 is working on losses 2. Thus we can focus here on Exp3 without mixing, see

Figure 3.

We provide two different bounds. In (2.5) we assume that the forecaster does not know the

number of rounds n, that is we consider the anytime version of the algorithm. On the other hand,

in (2.4) we prove that we can achieve a better constant with the knowledge of the time horizon.

Moreover, we improve these constants with respect to previous results. In Auer et al. [2003]

equation (2.4) was proved with a constant 2
√
e− 1 for the algorithm with mixing and gains, while

in Stoltz [2005] the constant was 2
√

2 without mixing and with losses. Here we provide a constant√
2 for the algorithm without mixing and working with linear transformations of the gains.

THEOREM 2.1 (Pseudo-regret of Exp3). Exp3 without mixing and with ηt = η =
√

2 logK
nK

satisfies:

(2.4) Rn 6
√

2nK logK.

On the other hand with ηt =
√

2 logK
tK it satisfies:

(2.5) Rn 6
3√
2

√
nK logK.

PROOF. We will prove that for any non-increasing sequence (ηt)t∈N, Exp3 without mixing

satisfies:

(2.6) Rn 6
K

2

n∑

t=1

ηt +
logK

ηn
.

1The technical reason is that when Exp3 works on losses, it uses the exponential function on negative real numbers

where it enjoys a simple upper bound by a quadratic function, namely exp(x) 6 1 + x + x2/2.
2The mixing is necessary when working with gains to ensure that Exp3 is working with the exponential function on the

interval [0, 1], where it can also be easily bounded by a quadratic function, namely exp(x) 6 1 + x + x2.
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Equation (2.4) then trivially follows from (2.6). On the other hand for (2.5) we use (2.6) and

n∑

t=1

1√
t

6

∫ n

0

1√
t
dt = 2

√
n.

We provide now a proof of (2.6) in five steps.

First step: Useful equalities.

The following equalities can be verified very easily:

(2.7)

Ei∼pt ℓ̃i,t = 1−gIt,t; EIt∼pt ℓ̃i,t = 1−gi,t; Ei∼pt ℓ̃
2
i,t =

(1− gIt,t)2
pIt,t

; EIt∼pt
1

pIt,t
= K.

In particular this implies

(2.8)

n∑

t=1

gk,t −
n∑

t=1

gIt,t =

n∑

t=1

Ei∼pt ℓ̃i,t −
n∑

t=1

EIt∼pt ℓ̃k,t.

The key step in the proof is now to consider log-moment of ℓ̃i,t:

(2.9) Ei∼pt ℓ̃i,t =
1

ηt
log Ei∼pt exp

(
−ηt(ℓ̃i,t − Ek∼pt ℓ̃k,t)

)
− 1

ηt
log Ei∼pt exp

(
−ηtℓ̃i,t

)
.

In the next two steps we study the two terms of the right hand side in (2.9).

Second step: Study of the first term in (2.9).

We use the inequalities log x 6 x− 1 and exp(−x)− 1 + x 6 x2/2, ∀x > 0:

log Ei∼pt exp
(
−ηt(ℓ̃i,t − Ek∼pt ℓ̃k,t)

)
= log Ei∼pt exp

(
−ηtℓ̃i,t

)
+ ηtEk∼pt ℓ̃k,t

6 Ei∼pt
(
exp

(
−ηtℓ̃i,t

)
− 1 + ηtℓ̃i,t

)

6 Ei∼ptη
2
t ℓ̃

2
i,t/2

6
η2
t

2pIt,t
(2.10)

where the last step comes from the third equality in (2.7).

Third step: Study of the second term in (2.9).

Let L̃i,0 = 0, Φ0(η) = 0 and Φt(η) = 1
η log 1

K

∑K
i=1 exp

(
−ηL̃i,t

)
. Then by definition of pt we

have:

− 1

ηt
log Ei∼pt exp

(
−ηtℓ̃i,t

)
= − 1

ηt
log

∑K
i=1 exp

(
−ηtL̃i,t

)

∑K
i=1 exp

(
−ηtL̃i,t−1

)

= Φt−1(ηt)− Φt(ηt).(2.11)

Fourth step: Summing.

Putting together (2.8), (2.9), (2.10) and (2.11) we obtain

n∑

t=1

gk,t −
n∑

t=1

gIt,t 6

n∑

t=1

ηt
2pIt,t

+

n∑

t=1

Φt−1(ηt)− Φt(ηt)−
n∑

t=1

EIt∼pt ℓ̃k,t.
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The first term is easy to bound in expectation since by the tower rule and the last equality in (2.7)

we have:

E

n∑

t=1

ηt
2pIt,t

= E

n∑

t=1

EIt∼pt
ηt

2pIt,t
=
K

2

n∑

t=1

ηt.

For the second term we start with an Abel transformation:

n∑

t=1

(Φt−1(ηt)− Φt(ηt)) =

n−1∑

t=1

(Φt(ηt+1)− Φt(ηt))− Φn(ηn)

since Φ0(η1) = 0. Remark that

−Φn(ηn) =
logK

ηn
− 1

ηn
log

(
K∑

i=1

exp
(
−ηnL̃i,n

))
6

logK

ηn
− 1

ηn
log
(
exp

(
−ηnL̃k,n

))

=
logK

ηn
+

n∑

t=1

ℓ̃k,t.

Thus

E

(
n∑

t=1

gk,t −
n∑

t=1

gIt,t

)
6
K

2

n∑

t=1

ηt +
logK

ηn
+ E

n−1∑

t=1

Φt(ηt+1)− Φt(ηt).

To conclude the proof we show that Φ′
t(η) > 0 and thus since ηt+1 6 ηt we obtain Φt(ηt+1) −

Φt(ηt) 6 0. Let π be the uniform distribution over {1, . . . ,K} and pηi,t =
exp (−ηeLi,t)

PK
k=1 exp (−ηeLk,t)

, then:

Φ′
t(η) = − 1

η2
log

(
1

K

K∑

i=1

exp
(
−ηL̃i,t

))
− 1

η

∑K
i=1 L̃i,t exp

(
−ηL̃i,t

)

∑K
i=1 exp

(
−ηL̃i,t

)

=
1

η2

1
∑K

i=1 exp
(
−ηL̃i,t

)
K∑

i=1

exp
(
−ηL̃i,t

)
×
(
−ηL̃i,t − log

(
1

K

K∑

i=1

exp
(
−ηL̃i,t

)))

=
1

η2

K∑

i=1

pηi,t log(Kpηi,t)

=
1

η2
KL(pηt , π) > 0.

�

2.2. Pseudo-regret in stochastic bandits. In this section, we describe a simple modification

proposed by Audibert et al. [2009] of the UCB1 policy of Auer et al. [2002], and the UCB-V pol-

icy of Audibert et al. [2009]. The main idea for both strategies is to measure the performance of

each arm by an index, and at each round, the forecaster chooses the arm having the highest index

(see Figure 4). This index is meant to be an upper confidence bound on the mean reward which

holds with high probability. This idea can be traced back to Agrawal [1995a]. For instance the fact

that UCB’s index is a high probability bound on the true mean is a consequence of Theorem 10.1.

For UCB-V it follows from Theorem 10.3. We only present the results for the anytime formulation

of both strategies, see Audibert et al. [2009] for UCB with known time horizon.

To describe properly the strategies in Figure 4 we need to introduce a few notations. It is

common for stochastic bandits games to introduce the random variable Xi,s which represents the

gain obtained while pulling arm i for the sth time. In particular the law ofXi,s is νi. We recall that
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UCB (Upper Confidence Bound), UCB-V (Upper Confidence Bound with Variance):

Parameter: exploration rate α > 0.

For an arm i, define its index Bi,s,t by

UCB index: Bi,s,t = µ̂i,s +

√
α log(t)

s
,

UCB-V index: Bi,s,t = µ̂i,s +

√
2αVi,s log(t)

s
+ 3α

log(t)

s
.

for s, t > 1 and Bi,0,t = +∞.

At time t, draw an arm maximizing Bi,Ti(t−1),t.

Figure 4: UCB and UCB-V policies.

µi is the mean of νi and we denote by σ2
i its variance. Now let µ̂i,s = 1

s

∑s
t=1Xi,t (respectively

Vi,s = 1
s

∑s
t=1(Xi,t− µ̂i,s)2) be the empirical mean (respectively the empirical variance) of arm i

after s pulls of this arm. Let Ti(s) =
∑s

t=1 1It=i denote the number of times we have drawn arm i

on the first s rounds. To state the results we define the suboptimality of an arm i as ∆i = µ∗ − µi.
Thus the pseudo-regret can be written as:

(2.12) Rn =
K∑

i=1

∆iETi(n).

We propose two different bounds on the pseudo-regret of UCB. Equation (2.13) is a distribution-

dependent bound while (2.14) is a distribution-free bound. In the former we have a logarithmic

dependency on the number of rounds while in the latter it worsens to the square root of the number

of rounds. As we will see in Section 3, this is not artificial and both bounds are almost optimal.

Note that we improve the analysis of UCB with respect to previous works. Indeed we prove that

we can take α > 1/2, while in Audibert et al. [2009] they had to use α > 1 (and the proof tech-

nique of Auer et al. [2002] also only works for α > 1). The technical idea to obtain this improved

result is actually borrowed from Audibert et al. [2009] 3.

THEOREM 2.2 (Pseudo-regret of UCB). In the stochastic bandit game, UCB with α > 1/2

satisfies: 4

(2.13) Rn 6
∑

i:∆i>0

4α

∆i
log(n) + ∆i

(
1 +

4

log(α+ 1/2)

(
α+ 1/2

α− 1/2

)2
)
,

and

(2.14) Rn 6

√√√√nK

(
4α log n+ 1 +

4

log(α+ 1/2)

(
α+ 1/2

α− 1/2

)2
)
.

3In fact one can propose another improvement of the analysis and show that the leading constant is of order of (1/
√

2+√
α)2 rather than 4α. To do this one has to introduce an additional free variable c 6 1 as a multiplicative factor of the

confidence term in (2.17). However this makes the final bound less readable and does not improve the constant in the

interesting regime where α tends to 1/2.
4Note that the additive constant is not optimized, see Audibert et al. [2009] for ideas to improve the analysis for that

matter.
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PROOF. Both proofs of (2.13) and (2.14) rely on bounding the expected number of pulls for a

suboptimal arm. More precisely, in the first three steps of the proof we shall focus on proving that,

for any i such that ∆i > 0,

(2.15) ETi(n) 6
4α log(n)

∆2
i

+ 1 +
4

log(α+ 1/2)

(
α+ 1/2

α− 1/2

)2

.

For ease of notations we introduce β = 1
α+1/2 and u = ⌈4α logn

∆2
i
⌉. Note that with these notations,

up to rounding, (2.15) is equivalent to ETi(n) 6 u+ 4
log(1/β)(2βα−1)2

.

First step.

We show that if It = i, then it means that one the three following equations is true:

Bi∗,Ti∗ (t−1),t 6 µ∗,(2.16)

or

µ̂i,Ti(t−1) > µi +

√
α log t

Ti(t− 1)
,(2.17)

or

Ti(t− 1) <
4α log n

∆2
i

.(2.18)

Indeed, let us assume that the three equations are false, then we have:

Bi∗,Ti(t−1),t > µ∗ = µi + ∆i > µi + 2

√
α log t

Ti(t− 1)
> µ̂i,Ti(t−1) +

√
α log t

Ti(t− 1)
= Bi,Ti(t−1),t,

which implies in particular that It 6= i.

Second step.

Here we bound the probability that (2.16) or (2.17) hold true. We use a peeling argument together

with Hoeffding’s maximal inequality. We recall that the latter is an easy consequence of Hoeffding-

Azuma inequality for martingales (see Theorem 10.1) which states that for centered i.i.d random

variables X1, X2, . . . , and for any x > 0, t > 1,

P

(
∃s ∈ {1, . . . , t},

s∑

t=1

Xt > x

)
6 exp

(
−2x2

t

)
.

Now note that

P((2.16) is true) 6 P

(
∃s ∈ {1, . . . , t} : µ̂i∗,s +

√
α log t

s
6 µ∗

)

= P

(
∃s ∈ {1, . . . , t} :

s∑

ℓ=1

(Xi∗,ℓ − µ∗) 6 −
√
αs log(t)

)
.

We apply the peeling argument with a geometric grid over the time interval [1, t]. More precisely,

since β ∈ (0, 1), we note that if s ∈ {1, . . . , t} then ∃ j ∈
{

0, . . . , log t
log 1/β

}
: βj+1t < s 6 βjt.

Thus we get

P((2.16) is true) 6

log t
log 1/β∑

j=0

P

(
∃s : βj+1t < s 6 βjt,

s∑

ℓ=1

(Xi∗,ℓ − µ∗) 6 −
√
αs log(t)

)
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6

log t
log 1/β∑

j=0

P

(
∃s : βj+1t < s 6 βjt,

s∑

ℓ=1

(Xi∗,ℓ − µ∗) 6 −
√
αβj+1t log(t)

)
.

To bound this last term we use Hoeffding’s maximal inequality, which finally gives:

P((2.16) is true) 6

log t
log 1/β∑

j=0

exp

(
−2(

√
βj+1tα log t)2

βjt

)
6

(
log t

log 1/β
+ 1

)
1

t2βα
.

Using the same arguments, one can prove

P((2.17) is true) 6

(
log t

log 1/β
+ 1

)
1

t2βα
.

Third step.

Using the first step we obtain:

ETi(n) = E

n∑

t=1

1It=i 6 u+ E

n∑

t=u+1

1It=i and (2.18) is false

6 u+ E

n∑

t=u+1

1(2.16) or (2.17) is true

= u+

n∑

t=u+1

P((2.16) is true) + P((2.17) is true).

Now using the second step we get:

n∑

t=u+1

P((2.16) is true) + P((2.17) is true) 6 2
n∑

t=u+1

(
log t

log 1/β
+ 1

)
1

t2βα

6 2

∫ +∞

1

(
log t

log 1/β
+ 1

)
1

t2βc2α
dt

6
4

log(1/β)(2βα− 1)2
,

where we used a simple integration by parts for the last inequality. This concludes the proof of

(2.15).

Fourth step.

Using (2.12) and (2.15) we directly obtain (2.13). On the other hand for (2.14) we write:

Rn =
∑

i:∆i>0

∆i

√
ETi(n)

√
ETi(n)

6
∑

i:∆i>0

√
ETi(n)

√

4α log(n) + 1 +
4

log(α+ 1/2)

(
α+ 1/2

α− 1/2

)2

6 K

√
1

K

∑

i:∆i>0

ETi(n)

√

4α log(n) + 1 +
4

log(α+ 1/2)

(
α+ 1/2

α− 1/2

)2
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6

√√√√nK

(
4α log(n) + 1 +

4

log(α+ 1/2)

(
α+ 1/2

α− 1/2

)2
)
,

where we used the concavity of the square root for the second step and
∑K

i=1 Ti(n) = n for the

last step. �

THEOREM 2.3 (Pseudo-regret of UCB-V). In the stochastic bandit game, UCB-V with α > 1

satisfies: 5

(2.19) Rn 6 8α
∑

i:∆i>0

(
σ2
i

∆i
+ 2

)
log(n) + ∆i

(
2 +

12

log(α+ 1)

(
α+ 1

α− 1

)2
)
.

PROOF. The proof follows the same scheme than the one of Theorem 2.2.

First step.

We show that if It = i, then it means that one the four following equations is true:

Bi∗,Ti∗ (t−1),t 6 µ∗,(2.20)

or

µ̂i,Ti(t−1) > µi +

√
2αVi,Ti(t−1) log t

Ti(t− 1)
+ 3α

log t

Ti(t− 1)
,(2.21)

or

Vi,Ti(t−1) > σ2
i + ∆i/2,(2.22)

or

Ti(t− 1) <
8α(σ2

i + 2∆i) logn

∆2
i

.(2.23)

Indeed, let us assume that the four equations are false. We start with the following computations:
√

2αVi,Ti(t−1) log t

Ti(t− 1)
+ 3α

log t

Ti(t− 1)
6

√
2σ2

i + ∆i

2σ2
i + 4∆i

∆i

2
+

3∆i

4σ2
i + 8∆i

∆i

2
6

∆i

2
,

where we used x+ 1−x2

2 6 1 for the last inequality. Then we have:

Bi∗,Ti(t−1),t > µ∗ = µi + ∆i > µi + 2

(√
2αVi,Ti(t−1) log t

Ti(t− 1)
+ 3α

log t

Ti(t− 1)

)

> µ̂i,Ti(t−1) +

√
2αVi,Ti(t−1) log t

Ti(t− 1)
+ 3α

log t

Ti(t− 1)

= Bi,Ti(t−1),t,

which implies in particular that It 6= i.

Second step.

Using the same reasoning than in the second step of the proof of Theorem 2.2, with an empirical

5In the context of UCB-V it is interesting to see the influence of the range of the rewards. More precisely, if all rewards

gi,t are in [0, b] and if one uses the upper confidence bound sequence Bi,s,t = bµi,s +

q

2αVi,s log(t)

s
+ 3bα log(t)

s
, then

one can easily prove that the leading constant in the bound becomes
σ2

i

∆i
+ 2b.
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Bernstein bound (see Theorem 10.3) instead of Hoeffding-Azuma, we obtain for any β ∈ (0, 1):

P((2.20) or (2.21) is true) 6

(
log t

log 1/β
+ 1

)
6

tβα
.

Now we want to prove that

P((2.22) is true and (2.23) is false) 6
1

nα
.

First note that

t∑

s=1

(Xi,s − µi)2 − (Xi,s − µ̂i,t)2 =

t∑

s=1

(µ̂i,t − µi)(2Xi,t − µi − µ̂i,t) = (µi − µ̂i,t)2 > 0.

Thus we have

P(Vi,Ti(t−1) > σ2
i + ∆i/2) 6 P



Ti(t−1)∑

s=1

(Xi,s − µi)2 > σ2
i + ∆i/2


 .

Moreover note that Var((Xi,t − µi)2) 6 σ2
i . Hence, using a maximal Bernstein’s inequality (see

Theorem 10.2 and the remark at the beginning of the second step in the proof of Theorem 2.2), we

obtain, with the notation u =
8α(σ2

i+2∆i) logn

∆2
i

,

P((2.22) is true and (2.23) is false) 6 P

(
∃ℓ ∈ {u, . . . , t} :

ℓ∑

s=1

(Xi,s − µi)2 > σ2
i + ∆i/2

)

6 exp

(
− u(∆i/2)2

2σ2
i + ∆i/3

)

6
1

nα
.

Third step.

Mimicking step three of the proof of Theorem 2.2, we obtain (with β = 2
α+1 )

ETi(n) 6 u+
n∑

t=u+1

P((2.20) or (2.21) is true) + P((2.22) is true and (2.23) is false)

6 u+
1

nα−1
+

n∑

t=1

(
log t

log 1/β
+ 1

)
6

tβα

6 u+ 1 +
12

(βα− 1)2 log(1/β)
,

which ends the proof.

�

2.3. High probability and expected regret bounds. High probability bounds are interesting

for both stochastic and adversarial bandits. However for the former there exists only partial results,

see Audibert et al. [2009]. In this thesis we only deal with the latter. In particular in this section

we show how one can obtain a forecaster for the adversarial bandit game with high probability

guarantee on its regret.
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Exp3.P:

Parameters: η ∈ R+, γ, β ∈ [0, 1].

Let p1 be the uniform distribution over {1, . . . ,K}.
For each round t = 1, 2, . . . , n

(1) Draw an arm It from the probability distribution pt.

(2) Compute the estimated loss for each arm: g̃i,t =
gi,t1It=i+β

pi,t
and update the estimated

cumulative loss: G̃i,t =
∑t

s=1 g̃i,s.
(3) Compute the new probability distribution over the arms pt+1 = (p1,t+1, . . . , pK,t+1)

where:

pi,t+1 = (1− γ)
exp

(
−ηG̃i,t

)

∑K
k=1 exp

(
−ηG̃k,t

) +
γ

K
.

Figure 5: Exp3.P forecaster.

Let us consider the Exp3 strategy defined in Section 2.1. This forecaster works with an esti-

mate of the cumulative gain for each arm and this estimate is unbiased. However from the form of

the estimate, one can immediately see that no interesting high probability bounds can be derived.

This is obviously a trouble when one wants to get high probability bounds on the regret. One way

to deal with it is to modify the estimate, and in particular to introduce a bias which permits to

derive high probability statement on the estimate. More precisely, we want now an estimate of the

cumulative gain which is, with high probability, an upper bound on the true cumulative gain. This

goal is achieved with g̃i,t =
gi,t1It=i+β

pi,t
as is shown with the next lemma.

LEMMA 2.1. Let g̃i,t =
gi,t1It=i+β

pi,t
with β 6 1. Then with probability at least 1− δ:

n∑

t=1

gi,t 6

n∑

t=1

g̃i,t +
log(δ−1)

β
.

PROOF. Let Et be the expectation resulting from It ∼ pt. Since exp(x) 6 1 + x + x2 for

x 6 1, we have for β 6 1

Et exp

(
βgi,t − β

gi,t1It=i + β

pi,t

)

6

{
1 + Et

(
βgi,t − β

gi,t1It=i
pi,t

)
+ Et

(
βgi,t − β

gi,t1It=i
pi,t

)2
}

exp

(
− β2

pi,t

)

6

{
1 + β2

g2
i,t

pi,t

}
exp

(
− β2

pi,t

)

61,

where the last inequality uses 1 + u 6 exp(u). As a consequence, we have

E exp

(
β

n∑

t=1

gi,t − β
n∑

t=1

gi,t1It=i + β

pi,t

)
6 1.
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Moreover Markov’s inequality implies P
(
X > log(δ−1)

)
6 δEeX and thus with probability at

least 1− δ
β

n∑

t=1

gi,t − β
n∑

t=1

gi,t1It=i + β

pi,t
6 log(δ−1).

�

We describe in Figure 5 the strategy corresponding to these new estimates, which is called

Exp3.P and was introduced by Auer et al. [2003]. Remark that here we directly work on the gains

rather than on the modification into losses as in Section 2.1. Moreover we add a mixing with the

uniform distribution 6. Note that for sake of simplicity we also focus on the version with known

time horizon, anytime results can easily be derived with the same techniques than in the proof of

Theorem 2.1

We propose two different bounds. In (2.24) the algorithm needs to have the confidence level

δ as a parameter. This is the usual type of bounds for Exp3.P. We slightly improve the constant

with respect to Theorem 6.10 of Cesa-Bianchi and Lugosi [2006] which already improved the

dependency on n with respect to the original result of Auer et al. [2003]. On the other hand (2.25)

is a new type of bound, where the algorithm satisfies a high probability bound for any confidence

level. This property will be particularly important to derive good bounds on the expected regret.

THEOREM 2.4 (High probability bound for Exp3.P). Let δ ∈ (0, 1). With β =

√
log(Kδ−1)

nK ,

η = 0.95

√
log(K)
nK and γ = 1.05

√
K log(K)

n , Exp3.P satisfies with probability at least 1− δ:

(2.24) Rn 6 5.15
√
nK log(Kδ−1).

On the other hand with β =

√
log(K)
nK , η = 0.95

√
log(K)
nK and γ = 1.05

√
K log(K)

n , Exp3.P satisfies

with probability at least 1− δ:

(2.25) Rn 6

√
nK

log(K)
log(δ−1) + 5.15

√
nK log(K).

PROOF. We will prove that if γ 6 1/2 and (1 + β)Kη 6 γ then Exp3.P satisfies with

probability at least 1− δ:

(2.26) Rn 6 βnK + γn+ (1 + β)ηKn+
log(Kδ−1)

β
+

logK

η
.

We provide a proof of (2.26) in three steps.

First step: Notations and simple equalities.

One can immediately see that Ei∼pt g̃i,t = gIt,t + βK and thus:

(2.27)

n∑

t=1

gk,t −
n∑

t=1

gIt,t = βnK +
n∑

t=1

gk,t −
n∑

t=1

Ei∼pt g̃i,t.

6The technical reason is that in terms of losses one would need a lower bound on the true cumulative loss which would

then be negative in some cases, thus Exp3.P would use the exponential function on all the reals (rather than just the

negative reals) where it does not enjoy a simple upper bound in term of a quadratic function. Now since we work with

gains and upper bounds on the gains we use the exponential on the positive reals and we need to mix the exponential

weights with the uniform distribution to ensure that in fact we use the exponential in the interval [0, 1].
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The key step is again to consider the log-moment of g̃i,t. However because of the mixing we

need to introduce a few more notations. Let U = (1/K, . . . , 1/K) be the uniform distribution

over the arms and wt = pt−U
1−γ be the distribution induced by Exp3.P at time t without the mixing.

Then we have:

−Ei∼pt g̃i,t = −(1− γ)Ei∼wt g̃i,t − γEi∼U g̃i,t

= (1− γ)
{

1

η
log Ei∼wt exp (η(g̃i,t − Ek∼wt g̃k,t))−

1

η
log Ei∼wt exp (ηg̃i,t)

}
(2.28)

−γEi∼U g̃i,t.

Second step: Study of the first term in (2.28).

We use the inequalities log x 6 x − 1 and exp(x) 6 1 + x + x2, ∀x 6 1 as well as the fact that

ηg̃i,t 6 1 since (1 + β)ηK 6 γ:

log Ei∼wt exp (η(g̃i,t − Ek∼pt g̃k,t)) = log Ei∼wt exp (ηg̃i,t)− ηEk∼pt g̃k,t
6 Ei∼wt (exp (ηg̃i,t)− 1− ηg̃i,t)
6 Ei∼wtη

2g̃2
i,t

6
1 + β

1− γ η
2
K∑

i=1

g̃i,t,(2.29)

where we used
wi,t
pi,t

6 1
1−γ for the last step.

Third step: Summing.

Set G̃i,0 = 0. Remark that wt = (w1,t, . . . , wK,t) with

(2.30) wi,t =
exp

(
−ηG̃i,t−1

)

∑K
k=1 exp

(
−ηG̃k,t−1

) .

Then plugging (2.29) in (2.28) and summing we obtain (with (2.30) too):

−
n∑

t=1

Ei∼pt g̃i,t 6 (1 + β)η
n∑

t=1

K∑

i=1

g̃i,t −
1− γ
η

n∑

t=1

log

(
K∑

i=1

wi,t exp (ηg̃i,t)

)

= (1 + β)η
n∑

t=1

K∑

i=1

g̃i,t −
1− γ
η

log

(
n∏

t=1

∑K
i=1 exp(ηG̃i,t)∑K
i=1 exp(ηG̃i,t−1)

)

6 (1 + β)ηKmax
j
G̃j,n +

logK

η
− 1− γ

η
log

(
n∑

t=1

exp(ηG̃i,n)

)

6 −(1− γ − (1 + β)ηK) max
j
G̃j,n +

log(K)

η

6 −(1− γ − (1 + β)ηK) max
j

n∑

t=1

gj,t +
log(Kδ−1)

β
+

log(K)

η
,

where the last inequality comes from Lemma 2.1 and an union bound as well as the fact γ − (1 +

β)ηK 6 1 which is a consequence of (1 + β)ηK 6 γ 6 1/2. Putting together this last inequality
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and (2.27) we obtain:

Rn 6 βnK + γn+ (1 + β)ηKn+
log(Kδ−1)

β
+

log(K)

η
,

which is the announced result.

(2.24) is then proved as follow. First, it is trivial if n > 5.15
√
nK log(Kδ−1) and thus in the

following we assume that this is not the case. In particular it implies γ 6 0.21 and β 6 0.1 and

thus we have (1 + β)ηK 6 γ 6 1/2. Using (2.26) now directly yields the claimed bound. The

same argument can be used to derive (2.25). �

We discuss now expected regret bounds. As the cautious reader may already have observed, in

the oblivious case, a uniform (over all oblivious adversaries) bound on the pseudo-regret implies

the same bound on the expected regret. This follows from noting that the expected regret against an

oblivious adversary is smaller than the maximal pseudo-regret against deterministic adversaries.

In the stochastic case, the following proposition allow to generalize theorems 2.2 and 2.3 to the

expected regret.

PROPOSITION 2.1. For a given δ > 0, let I =
{
i ∈ {1, . . . ,K} : ∆i 6 δ

}
be the set of

arms “δ-close” to the optimal ones, and J = {1, . . . ,K} \ I the remaining set of arms. In the

stochastic bandit game, we have

ERn −Rn 6

√
n log |I|

2
+
∑

i∈J

1

2∆i
exp(−n∆2

i ).

In particular when there exists a unique arm i∗ such that ∆i∗ = 0, we have

ERn −Rn 6
∑

i6=i∗

1

2∆i
.

PROOF. Let W
(1)
n = maxi∈I

∑n
t=1 gi,t −

∑n
t=1 gi∗,t and W

(2)
n = maxi∈{1,...,K}

∑n
t=1 gi,t −

maxi∈I
∑n

t=1 gi,t. We have ERn −Rn = EW
(1)
n + EW

(2)
n . First we prove that

(2.31) EW (1)
n 6

√
n log |I|

2
.

Let λ > 0, then by Jensen’s and Hoeffding’s inequalities, we have:

E max
i∈I

n∑

t=1

gi,t 6 E
1

λ
log
∑

i∈I
exp

(
λ

n∑

t=1

gi,t

)

6
1

λ
log
∑

i∈I
E

n∏

t=1

exp(λgi,t)

=
1

λ
log
∑

i∈I

n∏

t=1

E exp(λgi,t)

6
1

λ
log
∑

i∈I

n∏

t=1

exp(λEgi,t) exp(λ2/8)

6
logK

λ
+ max

i∈I
E

n∑

t=1

gi,t +
λn

8
.

Taking λ = 2
√

2 logK
n ends the proof of (2.31).



38 CHAPTER 2. MULTI-ARMED BANDITS

Now, thanks to Hoeffding’s inequality (see Theorem 10.1) and by using
∫ +∞
x exp(−u2)du 6

1
2x exp(−x2) for any x > 0, we have

EW (2)
n =

∫ +∞

0
P(W (2)

n > t)dt

6
∑

i∈J

∫ +∞

0
P

(
n∑

t=1

gi,t −max
j∈I

n∑

t=1

gj,t > t

)
dt

6
∑

i∈J

∫ +∞

0
P

(
n∑

t=1

gi,t −
n∑

t=1

gi∗,t > t

)
dt

6
∑

i∈J

∫ +∞

0
exp

(
−(t+ n∆i)

2

n

)
dt

6
∑

i∈J

1

2∆i
exp(−n∆2

i ),

which concludes the proof. �

In the case of a non-oblivious adversary the gain vector gt at time t is dependent of the past

actions of the forecaster. This makes the proofs more intricate and to get bounds on the expected

regret we first prove high probability bounds. Following the method proposed in Audibert and

Bubeck [2009b], see Chapter 3, we derive a bound on the expected regret of Exp3.P using (2.25).

THEOREM 2.5 (Expected regret of Exp3.P). With β =

√
log(K)
nK , η = 0.95

√
log(K)
nK and

γ = 1.05

√
K log(K)

n , Exp3.P satisfies

(2.32) ERn 6 5.15
√
nK log(K) +

√
nK

log(K)
.

PROOF. One needs to integrate the deviations in (2.25) using the formula EW 6
∫ 1
0

1
δP(W >

log(δ−1))dδ for W a real-valued random variable. In particular here taking W =

√
log(K)
nK (Rn −

5.15
√
nK log(K)) yields EW 6 1 which is equivalent to (2.32). �

3. Lower Bounds

It is natural to ask whether the guarantees that we have obtained in Section 2 are optimal. We

propose here two different lower bounds on the pseudo-regret of any forecaster. Theorem 2.6 be-

low, essentialy extracted from Auer et al. [2003], shows that up to a logarithmic factor the bounds

(2.4), (2.5) and (2.13) are minimax optimal. In Audibert and Bubeck [2009a] the authors bridge

this long open logarithmic gap between upper and lower bounds and propose a new forecaster

which enjoys a
√
nK pseudo-regret, matching the lower bound of Theorem 2.6, see Chapter 3 for

more details. On the other hand, Theorem 2.7, extracted from Lai and Robbins [1985], shows that

the bounds (2.13) and (2.19) are essentially optimal up to a constant multiplicative factor.

Both proofs are based on information theoretic tools, more precisely the Kullback-Leibler

divergence, see Appendix A, Section 2 for definitions and properties.
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THEOREM 2.6 (Minimax lower bound). Let sup represents the supremum taken over all sto-

chastic bandits and inf the infimum taken over all forecasters, then the following holds true:

(2.33) inf supRn >
1

20

√
nK,

and

(2.34) sup
n,K

inf supRn√
nK

>
1

4
.

We present here a slightly simplified proof with respect to the version in Cesa-Bianchi and Lu-

gosi [2006]. The main ideas remain the same but we introduce the empirical distribution of plays

over the arm which compress the useful information of all rounds into one quantity. By doing

carefully the last optimization step in the proof we also get the new bound (2.34) which improves

the constant in the asymptotic regime. Since the exact dependency on n andK is known, Audibert

and Bubeck [2009a], the next step is to catch the best asymptotical constant for inf supRn/
√
nK.

Thus (2.34) may be of interest for future work.

The general proof idea goes as follow. Since at least one arm is pulled less than n/K times,

for this arm one can not differentiate between a Bernoulli of parameter 1/2 and 1/2 +
√
K/n.

Thus if all arms are Bernoulli of parameter 1/2 but one with parameter 1/2 +
√
K/n, then the

forecaster should incur a regret of order n
√
K/n =

√
nK. To formalize this idea we use the

Kullback-Leibler divergence, and in particular Pinsker’s inequality to compare the behavior of a

given forecaster on the null bandit (where all arms are Bernoulli of parameter 1/2) and the same

bandit where we raise by ε the parameter of one arm.

We prove a lemma which will be useful on its own to derive lower bounds in other contexts.

The proof of Theorem 2.6 then follows by a careful optimization over ε.

LEMMA 2.2. Let ε ∈ [0, 1). For any i ∈ {1, . . . ,K} let Ei be the expectation under the

bandit with all arms being Bernoulli of parameter 1−ε
2 but arm i has parameter 1+ε

2 . Then for any

forecaster the following holds true:

sup
i=1,...,K

Ei

n∑

t=1

(gi,t − gIt,t) > nε

(
1− 1

K
−
√
ε log

(
1 + ε

1− ε

)√
n

2K

)
.

PROOF. We provide a proof in five steps by lower bounding 1
K

∑K
i=1 Ei

∑n
t=1(gi,t − gIt,t).

This will imply the statement of the lemma since a sup is larger than a mean.

First step: Empirical distribution of plays.

Until the fifth step we consider a deterministic forecaster, that is he does not have access to an

external randomization. Let qn = (q1,n, . . . , qK,n) be the empirical distribution of plays over the

arms defined by:

qi,n =
Ti(n)

n
.

Let Jn be drawn according to qn. We note Pi the law of Jn under the bandit with all arms being

Bernoulli of parameter 1−ε
2 but arm i has parameter 1+ε

2 (we call it the i-th bandit). Remark that
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we have Pi(Jn = j) = EiTj(n)/n, hence,

Ei

n∑

t=1

(gi,t − gIt,t) = εn
∑

j 6=i
Pi(Jn = j) = εn(1− Pi(Jn = i))

which implies

(2.35)
1

K

K∑

i=1

Ei

n∑

t=1

(gi,t − gIt,t) = εn

(
1− 1

K

K∑

i=1

Pi(Jn = i)

)
.

Second step: Pinsker’s inequality.

Let P0 be the law of Jn under the bandit with all arms being Bernoulli of parameter 1−ε
2 (we

call it the 0-th bandit). Then Lemma 10.2 directly gives:

Pi(Jn = i) 6 P0(Jn = i) +

√
1

2
KL(P0,Pi).

Hence

(2.36)
1

K

K∑

i=1

Pi(Jn = i) 6
1

K
+

1

K

K∑

i=1

√
1

2
KL(P0,Pi).

Third step: Computation of KL(P0,Pi) with the Chain rule for Kullback-Leibler divergence.

Remark that since the forecaster is deterministic, the sequence of rewards Wn = (Y1, . . . , Yn) ∈
{0, 1}n received by the algorithm uniquely determines the empirical distribution of plays qn, in

particular the law of Jn conditionnaly toWn is the same for any bandit. Thus if for i ∈ {0, . . . ,K}
we note Pni the law of Wn under the i-th bandit then one can easily prove, with Lemma 10.4 for

instance, that

(2.37) KL(P0,Pi) 6 KL(Pn0 ,P
n
i ).

Now we use Lemma 10.4 iteratively to introduce the laws Pti ofWt = (Y1, . . . , Yt). More precisely

we have:

KL(Pn0 ,P
n
i )

= KL(P1
0,P

1
i ) +

n∑

t=2

∑

wt−1

Pt−1
0 (wt−1)KL(Pt0(.|wt−1),P

t
i(.|wt−1))

= KL(P1
0,P

1
i ) +

n∑

t=2





∑

wt−1:It=i

Pt−1
0 (wt−1)KL

(
1− ε

2
,
1 + ε

2

)

+
∑

wt−1:It 6=i
Pt−1

0 (wt−1)KL

(
1 + ε

2
,
1 + ε

2

)


= KL

(
1− ε

2
,
1 + ε

2

)
E0Ti(n).(2.38)
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Fourth step: Conclusion for deterministic forecasters with the concavity of the square root.

By using that the square root is concave and combining (2.37) and (2.38) we deduce:

1

K

K∑

i=1

√
KL(P0,Pi) 6

√√√√ 1

K

K∑

i=1

KL(P0,Pi)

6

√√√√ 1

K

K∑

i=1

KL

(
1− ε

2
,
1 + ε

2

)
E0Ti(n)

=

√
n

K
KL

(
1− ε

2
,
1 + ε

2

)
.(2.39)

To conclude the proof for deterministic forecaster one needs to plug in (2.36) and (2.39) in

(2.35) along with the following simple computations:

KL

(
1− ε

2
,
1 + ε

2

)
= (1− ε)/2 log

(
1− ε
1 + ε

)
+ (1 + ε)/2 log

(
1 + ε

1− ε

)

= ε log

(
1 + ε

1− ε

)
.

Fifth step: Fubini’s Theorem to handle non-deterministic forecasters.

Now let us consider a randomized forecaster. Denote by Ereward,i the expectation with respect

to the reward generation process of the i-th bandit, Erand the expectation with respect to the

randomization of the strategy and Ei the expectation with respect to both processes. Then one has

(thanks to Fubini’s Theorem)

1

K

K∑

i=1

Ei

n∑

t=1

(gi,t − gIt,t) = Erand
1

K

K∑

i=1

Ereward,i

n∑

t=1

(gi,t − gIt,t).

Now remark that if we fix the realization of the forecaster’s randomization then the results of the

previous steps apply and in particular we can lower bound 1
K

∑K
i=1 Ereward,i

∑n
t=1(gi,t− gIt,t) as

before. �

The next theorem gives a distribution-dependent lower bound for the stochastic bandit game.

We provide a statement less general than the original version of Lai and Robbins [1985] but it suits

our purposes. The proof follows the exact same lines than the original. Moreover Lemma 10.3

enables us to compare Theorem 2.7 with (2.13) and (2.19).

THEOREM 2.7 (Distribution-dependent lower bound in the stochastic bandit game). Let us

consider a forecaster such that for any stochastic bandit, any arm i such that ∆i > 0 and any

a > 0, we have ETi(n) = o(na). Then for any stochastic bandit with Bernoulli distributions, all

different from a Dirac distribution at 1, the following holds true:

lim inf
n→+∞

Rn
log n

>
∑

i:∆i>0

∆i

KL(µi, µ∗)
.

PROOF. We provide a proof in three steps.
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First step: Notations.

Without loss of generality let us assume that arm 1 is optimal and arm 2 is suboptimal, that is

µ2 < µ1 < 1. Let ε > 0. Since x 7→ KL(µ2, x) is continuous one can find µ′2 ∈ (µ1, 1) such that

(2.40) KL(µ2, µ
′
2) 6 (1 + ε)KL(µ2, µ1).

We note E′,P′ when we integrate with respect to the modified bandit where the parameter of arm

2 is replaced by µ′2. We want to compare the behavior of the forecaster on the initial and modified

bandits. In particular we prove that with a fair probability the forecaster can not distinguish be-

tween the two problems. Then using the fact that we have a good forecaster (by hypothesis in the

Theorem) we know that the algorithm does not make too much mistakes on the modified bandit

where arm 2 is optimal, in other words we have a lower bound on the number of times the optimal

arm is played. This reasoning implies a lower bound on the number of times arm 2 is played in the

initial problem.

To complete this program we introduce a few notations. Recall that X2,1, . . . , X2,n is the

sequence of random variables obtained while pulling arm 2. For s ∈ {1, . . . , n}, let

K̂Ls =

s∑

t=1

log

(
µ2X2,t + (1− µ2)(1−X2,t)

µ′2X2,t + (1− µ′2)(1−X2,t)

)
.

In particular note that with respect to the initial bandit, K̂LT2(n) is the (non re-normalized) empiri-

cal estimation of KL(µ2, µ
′
2) at time n since in that case (Xs) is i.i.d from a Bernoulli of parameter

µ2. An other important property is that for any event A one has:

(2.41) P′(A) = E 1A exp
(
−K̂LT2(n)

)
.

Now to control the link between the behavior of the forecaster on the initial and modified

bandits we introduce the event:

(2.42) Cn =

{
T2(n) <

1− ε
KL(µ2, µ′2)

log(n) and K̂LT2(n) 6 (1− ε/2) log(n)

}
.

Second step: P(Cn) = o(1).

By (2.41) and (2.42) one has:

P′(Cn) = E 1Cn exp
(
−K̂LT2(n)

)
> exp (−(1− ε/2) log(n)) P(Cn),

which implies by (2.42) and Markov’s inequality:

P(Cn) 6 n(1−ε/2)P′(Cn) 6 n(1−ε/2)P′
(
T2(n) <

1− ε
KL(µ2, µ′2)

log(n)

)
6 n(1−ε/2) E′(n− T2(n))

n− 1−ε
KL(µ2,µ′2)

log(n)
.

Now remark that in the modified bandit arm 2 is the unique optimal arm, thus our assumption that

for any bandit, any suboptimal arm i, any a > 0, one has ETi(n) = o(na) implies that

P(Cn) 6 n(1−ε/2) E′(n− T2(n))

n− 1−ε
KL(µ2,µ′2)

log(n)
= o(1).

Third step: P

(
T2(n) < 1−ε

KL(µ2,µ′2)
log(n)

)
= o(1).
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Remark that

P(Cn)

> P


T2(n) <

1− ε
KL(µ2, µ′2)

log(n) and max
16s6 1−ε

KL(µ2,µ
′
2)

log(n)
K̂Ls 6 (1− ε/2) log(n)




= P

(
T2(n) <

1− ε
KL(µ2, µ′2)

log(n)

and
KL(µ2, µ

′
2)

(1− ε) log(n)
max

16s6
(1−ε) log(n)

KL(µ2,µ
′
2)

K̂Ls 6
1− ε/2
1− ε KL(µ2, µ

′
2)


 .(2.43)

Now using Lemma 10.5 since KL(µ2, µ
′
2) > 0 and the fact that

1−ε/2
1−ε > 1 we deduce that

lim
n→+∞

P


 KL(µ2, µ

′
2)

(1− ε) log(n)
max

16s6
(1−ε) log(n)

KL(µ2,µ
′
2)

K̂Ls 6
1− ε/2
1− ε KL(µ2, µ

′
2)


 = 1,

and thus by the result of the second step and (2.43):

P

(
T2(n) <

1− ε
KL(µ2, µ′2)

log(n)

)
= o(1).

Now using (2.40) we obtain:

ET2(n) > (1 + o(1))
1− ε
1 + ε

log(n)

KL(µ2, µ1)

which concludes the proof by (2.12). �

4. Extensions

In this section, we discuss some basic extensions of the multi-armed bandit problem, both in

stochastic and adversarial settings. Some of the concrete applications that motivate these exten-

sions were presented in Section 1.3. An exhaustive list of extensions is beyond the scope of this

introduction. We only cite papers introducing each specific extension (in the bandit context) and

papers with state of the art results.

4.1. Large set of arms. In this section we consider works which investigate the consequences

of enlarging the set of arms. At each time step the forecaster chooses an arm in a (possibly con-

tinuous) set X . We still evaluate the performance of a forecaster through its regret with respect to

the best single arm. In the multi-armed bandit problem, one has X = {1, . . . ,K} and the number

of rounds is larger than the number of arms. Here we want to consider much larger sets X which

enjoy some internal structure. More precisely, in the stochastic version we assume some regularity

on the mean reward function (defined over X ) and for the adversarial version we constraint the

choice of the rewards for the adversary.

Stochastic setting.

• X -Armed Bandits, Bubeck et al. [2009c]. To have a gentle start let us consider a more

restrictive framework than the one described in Chapter 4 but which shall be enough

to convey the idea of an X -armed bandit. Let us assume that X is a metric space and

that the mean reward function f (which maps arms to the average gain one receives by

pulling this arm) is 1-Lipschitz. In Kleinberg et al. [2008a] the authors defines a notion
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of intrinsic dimension d of f (which we call near-optimality dimension) and prove that

one can obtain a pseudo-regret of order n
d+1
d+2 . In Chapter 4 we extend this result to

more general spaces than metric and we weaken the Lipschitz assumption. Moreover we

exhibit the minimax rate for the regret and show that our algorithm attains it.

• Many Armed Bandits, Berry et al. [1997]. In this context the forecaster is facing a

countably infinite number of arms with Bernoulli’s distributions. The usual assumption

in this context is that the forecaster has a prior on the parameters of the arms. However

this assumption was recently weakened in Wang et al. [2009], where the authors assume

that each arm has a probability of order εβ to be ε optimal. The authors then derive regret

bounds which depend on the parameter β.

Adversarial setting.

• Combinatorial Bandits, Cesa-Bianchi and Lugosi [2009]. In this setting the set of arms

is a subset of the hypercube,X ⊂ {0, 1}d, and the adversary chooses a vector ḡt ∈ [0, 1]d.

The gain of an arm x ∈ X is then defined as the inner product ḡTt x. Let |X | = K and

B = maxx∈X ||x||1. The authors propose an algorithm achieving in most cases (see

Theorem 1, Cesa-Bianchi and Lugosi [2009], for the details) a pseudo-regret of order

B
√
nd log(K). Remark that one could use naively the Exp3 strategy to get a pseudo-

regret of orderB
√
nK log(K). However we would like to handle very largeK (typically

K is exponential in d). Thus the former bound is much more interesting. An example

of particular importance which fits in this framework is the online shortest path problem

described in Section 1.3.

• Bandit Linear Optimization, Awerbuch and Kleinberg [2004]. This problem can be

viewed as a generalization of Combinatorial Bandits (though it was considered first).

Here the set of arms is a compact and convex set X ⊂ Rd, and the adversary chooses

ḡt ∈ Rd so that the reward of arm x ∈ X is ḡTt x ∈ [−1, 1]. In Abernethy et al. [2008] the

authors propose a computationally efficient algorithm achieving a pseudo-regret of order

poly(d)
√
n log n. In the particular case of X being the unit euclidean ball the bound

is actually d
√
n log n, and a matching lower bound (up to a logarithmic term in n) is

proposed in Dani et al. [2008]. Note that this problem has also been considered in a

stochastic setting, see e.g., Dani et al. [2008], Abbasi-Yadkori [2009] and Rusmevichien-

tong and Tsitsiklis [2009].

4.2. Different notions of regret. The behavior of the forecaster in the classical multi-armed

bandit problem is guided by its goal of minimizing the cumulative regret. By defining different

notions of regret one can dramaticaly change the type of optimal behavior for the forecaster. We

present here a few other notions of regret which has been recently studied.

Stochastic setting.

• Simple Regret, Bubeck et al. [2009a]. In Chapter 6 we introduce a new notion of regret

for the classical multi-armed bandit problem, called simple regret. We ask the forecaster

to output an arm Jn based on the information collected during the n rounds of plays of

a classical stochastic bandit game. We evaluate the performance of the forecaster only

through the arm Jn, more precisely we consider the simple regret rn = µ∗−µJn . That is,

during the n rounds of plays the forecaster is not constrained by the goal of maximizing

his cumulative gain and can explore ”freely” the set of arms to find the best one. We

argue in chapters 6 and 7 that this kind of regret is very relevant in many applications of
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bandits algorithms and we propose an almost complete analysis both in terms of upper

and lower bounds.

• Active Learning Regret, Antos et al. [2008]. Here one models a situation where we want

to estimate well the mean of all arms. More precisely the forecaster aims at minimizing

the objective function maxi∈{1,...,K} E(µi − µ̂i,Ti(n))
2 with the notations of Section 2.2.

The regret on a particular bandit problem is then defined as the difference between the

best objective value one can obtain with a static allocation strategy (that is Ti(n) is not

a random variable but is fixed beforehand) and the actual value achieved by the fore-

caster. The authors propose an algorithm achieving an expected regret of order n−3/2

and conjecture that this rate is optimal.

• Max Regret, Streeter and Smith [2006a]. In this setting one aims at maximizing the

maximal reward obtained at the end of the n rounds. The regret is then defined as the

difference between the maximal reward one could have obtained by pulling only the best

single arm and the maximal reward actually obtained. In Streeter and Smith [2006b] the

authors propose a forecaster with a vanishing expected regret as the number of rounds

tends to infinity.

Adversarial setting.

• Tracking the best expert regret, Auer [2002]. In the traditional cumulative regret we

compare the forecaster to the best fixed arm in hindsight. For some cases, bounds on this

regret are rather weak statement and we would like to be able to track the best arm at

different rounds. The tracking the best expert regret compares the gain of our strategy

with the gain of the best switching strategy allowed to switch S times between different

arms. For S = 0 we recover the classical regret, and for S > 0 we get a stronger notion

of regret. The best known bound was of order
√
nKS log(nK), Auer [2002], and in

Chapter 3 we improve it to

√
nKS log(nKS ).

• Expert Regret, Auer et al. [2003]. Here we assume that, in addition to a classical multi-

armed bandit problem we have a set of N experts which give an advice on the arm to

be played at each round. The expert regret is then defined with respect to the best single

expert in hindsight. In Auer et al. [2003] the authors propose an algorithm, Exp4, which

achieves an expert regret of order
√
nK logN , whereas using naively the Exp3 strategy

on the set of experts would have a regret of order
√
nN logN . Thus, in this framework

we can be competitive even with an exponentially large (with respect to the number of

rounds) number of experts.

• Internal Regret, Foster and Vohra [1997]. Here we study the regret of not having played

arm j instead of arm i. More precisely the internal regret is the maximum such regret over

the pair (i, j). This notion of regret is particularly important in the context of Game The-

ory, because of its link with the convergence to correlated equilibria, see Cesa-Bianchi

and Lugosi [2006]. In Stoltz [2005] the author proposes an algorithm achieving an inter-

nal regret of order
√
nK logK.

4.3. Additional rules. While the multi-armed bandit problem could potentially be applied

in a variety of domains, it suffers from lack of flexibility. For most real life applications a ban-

dit problem comes with some additional constraints or some prior knowledge. In this section we

present works which investige bandits problems with these additional features.

Stochastic setting.
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• Restless Bandits, Whittle [1988]. In its general formulation this problem considers a sto-

chastic multi-armed bandit where the distributions on the arms are changing over time.

By constraining the evolution process of the distributions one can compete with the strat-

egy playing the best arm at each single time step (on the contrary to the adversarial bandit

where we only compare to the best fixed arm). Recent works for this problem include

Garivier and Moulines [2008], Slivkins and Upfal [2008].

• Sleeping Experts, Kleinberg et al. [2008b], Mortal Bandits, Chakrabarti et al. [2009].

Theses works consider the case where the set of arms is varying over time. In the former

there exists a fixed set of arms but they are not all available at all rounds, the regret is

then defined with respect to a strategy pulling the best available arm at each time step. In

the latter each arm has a given budget and is replaced by a new arm once this budget is

exhausted. Assuming a prior distribution on the arm generation process one can define

the maximal average gain per round that any strategy can obtain in the asymptotic regime,

which in turns allow to define a notion of regret.

Adversarial setting.

• Full Information (FI) Game, Cesa-Bianchi et al. [1997]. Historically the adversarial

bandit is an extension of the full information game. Here at the end of each round the

adversary reveals the full gain vector gt rather than only the gain of the arm choosed by

the forecaster in the bandit game. In this setting the best expected regret one can obtain

is of order
√
n logK, see Chapter 3 for details.

• Label Efficient (LE) Game, Cesa-Bianchi et al. [2005], Allenberg et al. [2006]. This is

an extension for both the full information (FI) game and the adversarial bandit. At each

round the forecaster can ask to see the reward(s) with the global constraint that he can

not ask it more than m times over the n rounds. In Chapter 3 we improve the expected

regret upper bound for the LE-FI game to n
√

logK
m (it was previously known for the

pseudo-regret, Cesa-Bianchi et al. [2005]) as well as the pseudo-regret bound for the LE

bandit game to n
√

K
m , see Chapter 3 for details.

• Side Information, Wang et al. [2005]. In this setting at each round we are given an

additional information x ∈ X . The game goes as usually, but we compare the forecaster

to the best fixed hypothesis h : X → {1, . . . ,K} in a class H. In Ben-David et al.

[2009] the authors show that one can achieve a regret bound of order
√
nLdim(H) where

Ldim(H) is the Littlestone dimension of H. In Lazaric and Munos [2009] it is proved

that if one makes a stochastic assumption on the side information (rather than adversarial

as in Ben-David et al. [2009]), then one can replace the Littlestone dimension by the

usual Vapnik-Chervonenkis dimension (which can be significantly smaller).

4.4. Planning, Reinforcement Learning. In most cases, by combining some of the previous

extensions, we obtain a Reinforcement Learning (RL) problem, see e.g., Sutton and Barto [1998]

and Kakade [2003]. The most commonly used model in RL is the Markov Decision Process

(MDP), which can be seen as a stochastic restless bandit with side information where the evolution

of the distributions is determined by our actions. More precisely, at each time step the forecaster

receives a state information xt and chooses an action at among the set {1, . . . ,K}. The forecaster

then receives a reward rt drawn from a probability distribution depending on both at and xt and

moves to a next state xt+1 (which is also generated from a probability distribution depending on

both at and xt). The forecaster’s goal is to maximize his discounted sum of rewards
∑+∞

t=1 γ
trt

where γ ∈ (0, 1) is a discount factor. One can then compute his regret with respect to an optimal
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strategy (which is a map between states and actions with highest expected discounted sum of

rewards from each state). Obviously in this setting one has to give some flexibility to the forecaster

to have a chance to find the optimal policy. The most simple assumption is that he can play several

sequences of actions, each time re-starting at the initial state x1.

In Chapter 5, we propose a new approach to this problem. We consider a weaker notion of

regret than the one which compares to the optimal policy. In control terminology, we compare

ourselves to the optimal open-loop policy (a mapping from time to actions rather than from states

to actions). In this context we propose new bounds, and prove in particular the minimax optimality

of our strategy OLOP (Open Loop Optimistic Planning).





CHAPTER 3

Minimax Policies for Bandits Games

This chapter deals with four classical prediction games, namely full information, bandit and

label efficient (full information or bandit) games as well as four different notions of regret: pseudo-

regret, expected regret, high probability regret and tracking the best expert regret. We introduce a

new forecaster, INF (Implicitly Normalized Forecaster) based on an arbitrary function ψ for which

we propose a unified analysis of its pseudo-regret in the four games we consider. In particular, for

ψ(x) = exp(ηx) + γ
K , INF reduces to the classical exponentially weighted average forecaster

and our analysis of the pseudo-regret recovers known results while for the expected regret we

slightly tighten the bounds. On the other hand with ψ(x) =
( η
−x
)q

+ γ
K , which defines a new

forecaster, we are able to remove the extraneous logarithmic factor in the pseudo-regret bounds

for bandits games, and thus fill in a long open gap in the characterization of the minimax rate for

the pseudo-regret in the bandit game.

We also consider the stochastic bandit game, and prove that an appropriate modification of the

upper confidence bound policy UCB1 (Auer et al., 2002) achieves the distribution-free optimal

rate while still having a distribution-dependent rate logarithmic in the number of plays.
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This chapter is a joint work with Jean-Yves Audibert. It is based on the extended version

Audibert and Bubeck [2009b] (currently under submission) of Audibert and Bubeck [2009a] which

appeared in the proceedings of the 22nd Annual Conference on Learning Theory.

1. Introduction

We consider a general prediction game where at each stage, a forecaster (or decision maker)

chooses one action (or arm), and receives a reward from it. Then the forecaster receives a feedback

about the rewards which he can use to make his choice at the next stage. His goal is to maximize his

cumulative gain. In the simplest version, after choosing an arm the forecaster observes the rewards

for all arms, this is the so called full information game. Another classical example is the bandit
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The prediction games:

Parameters: the number of arms (or actions) K and the number of rounds n with n > K > 2.

For each round t = 1, 2, . . . , n

(1) The forecaster chooses an arm It ∈ {1, . . . ,K}, possibly with the help of an external

randomization.

(2) Simultaneously the adversary chooses a gain vector gt = (g1,t, . . . , gK,t) ∈ [0, 1]K

(see Section 6 for loss games or signed games).

(3) The forecaster receives the gain gIt,t (without systematically observing it). He ob-

serves

– the reward vector (g1,t, . . . , gK,t) in the full information game,

– the reward vector (g1,t, . . . , gK,t) if he asks for it with the global constraint that

he is not allowed to ask it more than m times for some fixed integer number

1 6 m 6 n. This prediction game is the label efficient game,

– only gIt,t in the bandit game,

– only his obtained reward gIt,t if he asks for it with the global constraint that

he is not allowed to ask it more than m times for some fixed integer number

1 6 m 6 n. This prediction game is the bandit label efficient game.

Goal : The forecaster tries to maximize his cumulative gain
∑n

t=1 gIt,t.

Figure 1: The four prediction games considered in this work.

game, described in Chapter 2, where the forecaster only observes the reward of the arm he has

chosen. In its original version, Robbins [1952], this game was considered in a stochastic setting,

i.e., the nature draws the rewards from a fixed product-distribution. Later it was considered in the

game-theoretic framework, Auer et al. [1995], where there is an adversary choosing the rewards

on the arms. A classical extension of these games is the label efficient setting, Cesa-Bianchi et al.

[2005] ,where you can ask for the feedback only a limited number of times. These four games are

described more precisely in Figure 1.

A natural way to assess the performance of a forecaster in these games is to compute his regret

with respect to the best action in hindsight (see Section 5 for a more general regret in which we

compare to the best switching strategy having a fixed number of action-switches):

Rn = max
i=1,...,K

n∑

t=1

(
gi,t − gIt,t

)
.

A lot of attention has been drawn by the exact characterization of the minimax expected regret in

the different games we have described. More precisely for a given game, let us write sup for the

supremum over all allowed adversaries and inf for the infimum over all forecaster strategies for

this game. We are interested in the quantity:

inf sup ERn,

where the expectation is with respect to the possible randomization of the forecaster and the ad-

versary. Another related quantity which can be easier to handle is the pseudo-regret:

Rn = max
i=1,...,K

E

n∑

t=1

(
gi,t − gIt,t

)
.
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Despite numerous works, there were still several logarithmic gaps between upper and lower bounds

on the minimax rate, namely:

(1)
√

log(K) (respectively
√

log(n)) gap for the minimax pseudo-regret (respectively ex-

pected regret) in the bandit game as well as the label efficient bandit game.

(2)
√

log(n)/ log(K) gap for the minimax expected regret in the label efficient full infor-

mation game,

To be more precise, we hereafter provide known results relative to these gaps. For sake of

completeness we also provide the results for the full information (respectively F.I. label efficient)

where there is no gap for the expected regret (respectively for the pseudo-regret). Apart from

the full information game, the bounds are usually proved on the pseudo-regret. Another type of

bounds which are not reproduced here are the high probability bounds on the regret. Usually in

this case the parameters of the algorithm depends on the confidence level δ that we want to obtain.

Thus to derive bounds on the expected regret we can not integrate the deviations but rather we have

to take δ of order 1/n, which leads to the gaps involving log(n). Note also that in the following

theorems we provide the parameters used in the corresponding papers.

THEOREM 3.1. We consider here the full information game. The exponentially weighted av-

erage forecaster with η =
√

8 logK/n satisfies

sup ERn 6
√

(n/2) logK.

Besides we have

sup
n,K

inf sup
ERn√

(n/2) logK
> 1.

The upper bound comes from the analysis in Cesa-Bianchi [1999], while the lower bound is

due to Cesa-Bianchi et al. [1997].

THEOREM 3.2 (Cesa-Bianchi et al., 2005). We consider here the label efficient full information

game. The label efficient exponentially weighted average forecaster with ε = m/n and η =√
2m logK
n satisfies

supRn 6 n

√
2 logK

m
.

Besides we have for all n > m > 14.6 log(K − 1):

inf supRn > 0.1n

√
log(K − 1)

m
.1

THEOREM 3.3 (Auer et al., 1995). We consider here the bandit game. The EXP3 policy with

η =
√

2 logK
nK and γ = min

(
1,
√

K logK
(e−1)n

)
satisfies

supRn 6 2
√

(e− 1)nK logK.

Besides we have

inf supRn >
1

20

√
nK.

THEOREM 3.4 (Allenberg et al., 2006). We consider here the label efficient bandit game. The

GREEN forecaster with ε = m/n, η = 2
n

√
m logK
K and γ = 1

K(m+2) satisfies

supRn 6 4n

√
K logK

m
+
n(K logK + 2)

m
+
n log(m+ 2)

m
.

1This bound does not give any information in the case K = 2. However one can modify the proof and replace Fano’s

lemma by the version of Birgé (2006), leading to a bound in log(K) instead of log(K − 1).
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inf supRn inf sup ERn H.P. bound on Rn

Lower bound Upper bound Lower bound Upper bound Upper bound

Full Information
√
n logK

√
n logK

√
n logK

√
n logK

√
n log(Kδ−1)

Label Efficient n
√

logK
m n

√
logK
m n

√
logK
m n

√
log K

m
n

√
log(Kδ−1)

m

Oblivious Bandit2
√
nK

√
nK

√
nK

√
nK

√
nK log(δ−1)

General Bandit
√
nK

√
nK

√
nK

√
nK log K

√
nK

log K
log(Kδ−1)

L.E. Bandit n

√
K

m
n

√
K log K

m
n

√
K

m log K
log(Kδ−1)

Table 1: Bounds on the pseudo-regret, expected regret and high probability bounds on

the regret. In bold red, the cells in which we improve the best known bound. The high

probability bounds improve upon previous works because the proposed algorithms do

not depend on the confidence level δ.

Contributions of this work. We propose a new forecaster, INF (Implicitely Normalized Fore-

caster), for which we propose a unified analysis of its pseudo-regret in the four games we con-

sider. The analysis is original (it avoids the traditional but scope-limiting argument based on the

simplification of a sum of logarithms of ratios), and leads to the following new results:

(1) We fill in the long open gap of Theorem 3.3 and prove that INF with ψ(x) =
( η
−x
)q

+ γ
K

has a pseudo-regret of order
√
nK (for well chosen parameters η, γ and q).

(2) With a careful analysis, we derive high probability bounds on the regret in each games

with algorithms independent of the confidence level. In particular, we can do this for the

well-known exponentially weighted average forecaster which corresponds in our setting

toψ(x) = exp(ηx)+ γ
K . For the bandit game (respectively label efficient full information

and label efficient bandit), this allows us to derive a bound of order
√
nK logK on the

expected regret (respectively n
√

logK
m and n

√
K logK
m ) instead of the known

√
nK log n

(respectively n
√

logn
m and n

√
K logn
m ). In the label efficient full information, this bridges

the gap between the upper bound and the lower bound. We also conjecture that this

is the true rate for the expected regret in the bandit and label efficient bandit games

against a non-oblivous adversary2. Table 1 recaps the bounds for the pseudo-regret and

the expected regret in the different games we consider.

(3) We prove a regret bound of order

√
nKS log(nKS ) when we compare ourselves to a

strategy allowed to switch S times between arms while the best known bound was√
nKS log(nK), Auer [2002].

We also consider the stochastic bandit game where we prove with a modification of UCB1,

Auer et al. [2002], that it is possible to attain the optimal distribution-free rate
√
nK as well as the

logarithmic distribution-dependent rate.

Outline.

2We say that an adversary is oblivious if its choices of the rewards do not depend on the past draws and obtained

rewards.
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(1) In Section 2 we describe a new class of forecasters for prediction games. Then we present

two particular forecasters, Exp INF (which coincides with the exponentially weighted

average forecaster) and Poly INF (a new forecaster), for which we propose two general

theorems bounding their regret. A more general statement on the regret of any forecaster

in the class we consider can be found in Section 8.

(2) In Section 3 we prove that our forecasters and analysis recover the known results for the

full information game.

(3) Section 4 contains the main contributions of this chapter, namely all the regret bounds

for the limited feedback games.

(4) In Section 5 we consider a stronger notion of regret, when we compare ourselves to a

strategy allowed to switch between arms a fixed number of times.

(5) Section 6 shows how to generalize our results when one considers losses rather than

gains, or signed games.

(6) Section 7 considers a framework fundamentally different from the previous sections,

namely the stochastic multi-armed bandit problem. There we propose a new forecaster,

MOSS, for which we prove an optimal distribution-free rate as well as a logarithmic

distribution-dependent rate.

(7) Finally Section 9 contains most of the proofs.

2. The implicitly normalized forecaster

In this section, we define a new class of randomized policies for the general prediction game.

Let us consider a continuously differentiable function ψ : R∗
− → R∗

+ satisfying

(3.1) ψ′ > 0, lim
x→−∞

ψ(x) < 1/K, lim
x→0

ψ(x) > 1.

LEMMA 3.1. There exists a continuously differentiable function C : RK
+ → R satisfying for

any x = (x1, . . . , xK) ∈ RK
+ ,

(3.2) max
i=1,...,K

xi < C(x) 6 max
i=1,...,K

xi − ψ−1 (1/K) ,

and

(3.3)

K∑

i=1

ψ(xi − C(x)) = 1.

PROOF. Consider a fixed x = (x1, . . . , xK). The decreasing function ϕ : c 7→∑K
i=1 ψ(xi−c)

satisfies

lim
c→ max

i=1,...,K
xi
ϕ(c) > 1 and lim

c→+∞
ϕ(c) < 1.

From the intermediate value theorem, there is a unique C(x) satisfying ϕ(C(x)) = 1. From the

implicit function theorem, the mapping x 7→ C(x) is continuously differentiable. �

The implicitly normalized forecaster (INF) is defined in Figure 2. Equality (3.3) makes the

fourth step in Figure 2 legitimate. From (3.2), C(Vt) is roughly equal to maxi=1,...,K Vi,t. Recall

that Vi,t is an estimate of the cumulative gains for arm i. This means that INF chooses the prob-

ability assigned to arm i as a function of the (estimated) regret. Note that, in spirit, it is similar

to the traditional weighted average forecaster, see e.g. Section 2.1 of Cesa-Bianchi and Lugosi

[2006], where the probabilities are proportional to a function of the difference between the (esti-

mated) cumulative reward of arm i and the cumulative reward of the policy, which should be, for

a well-performing policy, of order C(Vt). However, the normalization by division (that weighted
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INF (Implicitly Normalized Forecaster):

Parameters:

• the continuously differentiable function ψ : R∗
− → R∗

+ satisfying (3.1)

• the estimates vi,t of gi,t based on the (drawn arms and) observed rewards at time t
(and before time t)

Let p1 be the uniform distribution over {1, . . . ,K}.
For each round t = 1, 2, . . . ,

(1) Draw an arm It from the probability distribution pt.
(2) Use the observed reward(s) to build the estimate vt = (v1,t, . . . , vK,t) of

(g1,t, . . . , gK,t) and let: Vt =
∑t

s=1 vs = (V1,t, . . . , VK,t).
(3) Compute the normalization constant Ct = C(Vt).
(4) Compute the new probability distribution pt+1 = (p1,t+1, . . . , pK,t+1) where

pi,t+1 = ψ(Vi,t − Ct).

Figure 2: The proposed policy for the general prediction game.

average forecasters perform) is fundamentally different from the normalization by shift of the real

axis (that INF performs). Nonetheless, we can recover exactly the exponentially weighted average

forecaster of Cesa-Bianchi and Lugosi [2006] because of the special relation of the exponential

with the addition and the multiplication.

• Let ψ(x) = exp(ηx) + γ
K with η > 0 and γ ∈ [0, 1). Then conditions (3.1) are clearly

satisfied and equation (3.3) is equivalent to

exp(−ηC(x)) =
1− γ

∑K
i=1 exp(ηxi)

,

which implies

pi,t+1 = (1− γ) exp(ηVi,t)∑K
j=1 exp(ηVi,t)

+
γ

K
.

In other words, for the full information case (label efficient or not), we recover the expo-

nentially weighted average forecaster (with γ = 0) while for the bandit game we recover

EXP3. For the bandit label efficient game, it does not give us the GREEN policy proposed

in Allenberg et al. [2006] but rather the straightforward modification of the exponentially

weighted average forecaster to this game. Theorem 3.5 below gives a unified view on

this algorithm for these four games. In particular, we recover all the upper bounds (up to

constant factors) of Theorems 3.1, 3.2, 3.3 and 3.4. In the following, we will refer to this

algorithm as the “exponentially weighted average forecaster” whatever the game is.

• Another fruitful choice of the function ψ is ψ(x) =
(

η
−x

)q
+ γ

K with q > 1, η > 0 and

γ ∈ [0, 1). Obviously, it also satisfies conditions (3.1). We will refer to this strategy as

the “polynomial INF”. Here the (normalizing) function C has no closed form expression

(this is a consequence of Abel’s impossibility theorem). Actually this remark holds in

general, hence the name of the general policy. However this does not lead to a major

computational issue since, in the interval given by (3.2), C(x) is the unique solution of

ϕ(c) = 1, where ϕ : c 7→ ∑K
i=1 ψ(xi − c) is a decreasing function. We will prove that
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the polynomial INF forecaster generates nicer probability updates than the exponentially

weighted average forecasteras as, for bandits games (label efficient or not), it allows to

remove the extraneous logK factor in the pseudo-regret bound.

Our main contribution is a uniform treatment of the Implicitly Normalized Forecaster for dif-

ferent functions ψ and different estimates of the gains gi,t, hence for different prediction games.

The general statement, Theorem 3.20, can be found in Section 8. The proof starts with an Abel

transformation and consequently is ”orthogonal” to the usual argument. Then we use a Taylor-

Lagrange expansion and technical arguments to control the residual terms, see Section 8 for the

details. We propose here the specialization of Theorem 3.20 to the two functions we discussed

above.

THEOREM 3.5 (General regret bound for Exp INF). Let ψ(x) = exp(ηx) + γ
K with η > 0

and γ ∈ [0, 1). Let (vi,t)16i6K, 16t6n be a sequence of nonnegative real numbers,

Bt = max
16i<j6K

|vi,t − vj,t|, and B = max
t
Bt.

If γ = 0 then INF satisfies:

(3.4) max
16i6K

n∑

t=1

vi,t −
n∑

t=1

K∑

i=1

pi,tvi,t 6
logK

η
+
η

2
exp(2ηB)

n∑

t=1

B2
t .

Moreover if

(3.5)
γ

K
>
η exp(2Bη) [1 + exp(2Bη)]

2
max
i,t

pi,tvi,t,

then INF satisfies:

(3.6) max
16i6K

n∑

t=1

vi,t −
n∑

t=1

K∑

i=1

pi,tvi,t 6
1

η
log

(
K

1− γ

)
+

γ

1− γ
n∑

t=1

K∑

i=1

pi,tvi,t.

In the above Theorem, it is always trivial to upper bound the right hand side of (3.4) and (3.6).

Thus, to derive concrete bounds from it, most of the work lies in relating the left hand side with

the different notions of regret we consider. Note that in the case of the pseudo-regret this task

is also trivial. On the other hand for high probability regret bounds, we will use concentration

inequalities on top of (3.4) and (3.6). Expected regret bounds are then obtained by integration of

the high probability bounds.

THEOREM 3.6 (General regret bound for Poly INF). Let ψ(x) =
(

η
−x

)q
+ γ

K with q > 1, η >

0 and γ ∈ [0, 1). Let (vi,t)16i6K, 16t6n be a sequence of nonnegative real numbers,

Bt = max
16i<j6K

|vi,t − vj,t|, and B = max
t
Bt.

If γ = 0 then INF satisfies:

(3.7) max
16i6K

n∑

t=1

vi,t −
n∑

t=1

K∑

i=1

pi,tvi,t 6
q

q − 1
ηK1/q +

q

2η
exp

(
2
q + 1

η
B

) n∑

t=1

B2
t .

Moreover if vi,t = ct
pi,t

1i=It where ct is a random variable independent of everything else, and

such that Ect 6 1, ∃c > 0 : ct ∈ [0, c] and qη/c > ( (q−1)K
γ )(q−1)/q, then

E

(
max

16i6K

n∑

t=1

vi,t −
n∑

t=1

K∑

i=1

pi,tvi,t

)
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6
1

1− γ

{
γn+

q

q − 1
ηK

1
q +

γn

(q − 1)K

(
(q − 1)cKµ2(1 + µ2)

2γη

)q}
,(3.8)

where

µ = exp

{
(q + 1)c

η

(
K

γ

)(q−1)/q
(

1− c

qη

(
(q − 1)K

γ

)(q−1)/q
)−q}

.

Note that (3.8) is weaker than its counterpart (3.6) in the sense that it holds only in expectation.

In fact, as we will see in the proof of Theorem 3.15, one can also prove a bound of the same form

without the expectation. However, the general statement is less readable, hence we decided to

provide here only the bound in expectation.

3. The full information (FI) game

The purpose of this section is to show how to use the Implicitly Normalized Forecaster in order

to recover known minimax bounds (up to constant factors) in the full information game. In this

section, we set vi,t = gi,t, which is possible since the rewards for all arms are observed in the full

information setting. The proofs of Theorem 3.7 and Theorem 3.8 trivially follows from Theorem

3.5 and Theorem 3.6. We start with ψ(x) = exp(ηx) for which INF reduces to the exponentially

weighted average forecaster.

THEOREM 3.7 (Exponentially weighted average forecaster in the FI game). Let ψ(x) =

exp(ηx) with η > 0. Let vi,t = gi,t. Then in the full information game, INF satisfies:

(3.9) max
16i6K

n∑

i=1

gi,t −
n∑

t=1

K∑

i=1

pi,tgi,t 6
logK

η
+ exp(2η)

ηn

2
.

In particular with η =
√

logK
n we get

ERn 6
√

5n logK

REMARK 3.1. This result has to be compared with Corollary 2.2 of Cesa-Bianchi and Lugosi

[2006] which derives the bound
logK
η + ηn

2 from a more general theorem which can apply to other

forecasters. Moreover it is proved in Theorem 2.2 of Cesa-Bianchi and Lugosi [2006] that the

optimal bound is
logK
η + ηn

8 (there the proof is specifically tailored to the exponential). While our

bound has the same shape (η has to be thought as small, that is exp(2η) is close to 1), it does not

capture the best constant. It seems to be the price for having a general Theorem applying to a

large class of forecasters and various games.

Now we consider a new algorithm for the FI game, that is INF with ψ(x) =
(

η
−x

)q
.

THEOREM 3.8 (Polynomial INF in the FI game). Let ψ(x) =
( η
−x
)q

with η > 0 and q > 1.

Let vi,t = gi,t. Then in the full information game, INF satisfies:

(3.10) max
16i6K

n∑

i=1

gi,t −
n∑

t=1

K∑

i=1

pi,tgi,t 6
q

q − 1
ηK1/q + exp

(4q

η

)qn
2η
.

In particular with q = 3 logK and η = 1.8
√
n logK we get

ERn 6 7
√
n logK.

REMARK 3.2. By using the Hoeffding-Azuma inequality, see Theorem 10.1, one can derive

high probability bounds from (3.9) and (3.10): for instance, from (3.10), for any δ > 0, with
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probability at least 1− δ, the polynomial INF satisfies:

Rn 6
q

q − 1
ηK1/q + exp

(4q

η

)qn
2η

+

√
n log(δ−1)

2
.

4. The limited feedback games

4.1. Label efficient game (LE).

4.1.1. Soft constraint on the number of queried reward vectors. As in Section 3, the purpose

of this section is to show how to use the Implicitly Normalized Forecaster in order to recover

known minimax bounds (up to constant factors) in a slight modification of the LE game.

Let us consider the following policy. At each round, we draw a Bernoulli random variable Zt,

with parameter ε = m/n, to decide whether we ask for the gains or not. Note that we do not fulfill

exactly the requirement of the game as we might ask a bit more than m reward vectors. We do so

in order to avoid technical details and focus on the main argument of the proof. The exact problem

will be addressed in Section 4.1.2, where, in addition, we will prove bounds on the expected regret

ERn instead of just the pseudo-regret Rn.

In this section, the estimate of gi,t is vi,t =
gi,t
ε Zt, which is observable since the rewards at

time t for all arms are observed when Zt = 1.

THEOREM 3.9 (Exponentially weighted average forecaster in the LE game). Let ψ(x) =

exp(ηx) with η =
√
m logK
n . Let vi,t =

gi,t
ε Zt with ε = m

n . Then in the (soft) LE game, INF

satisfies:

Rn 6 n

√
5 logK

m
.

A similar result can be proved for the INF forecaster with ψ(x) =
( η
−x
)q

, η > 0 and q of

order logK. We do not state it since we will prove a stronger result in the next section.

4.1.2. Hard constraint on the number of queried reward vectors. The goal of this section

is to push the idea that by using appropriate high probability bounds, one can control the ex-

pected regret ERn = E maxi=1,...,K
∑n

t=1

(
gi,t − gIt,t

)
instead of just the pseudo-regret Rn =

maxi=1,...,K E
∑n

t=1

(
gi,t − gIt,t

)
. Most previous works have obtained results for Rn. These re-

sults are interesting for oblivious opponents, that is when the adversary’s choices of the rewards

do not depend on the past draws and obtained rewards, since in this case a uniform (over all

oblivious adversaries) bound on the pseudo-regret Rn implies the same bound on the expected

regret ERn. This follows from noting that the expected regret against an oblivious adversary is

smaller than the maximal pseudo-regret over deterministic adversaries. For non-oblivious oppo-

nents, upper bounds on Rn are rather weak statements and high probability bounds on Rn or

bounds on ERn are desirable. In Auer [2002], Cesa-Bianchi and Lugosi [2006], high probability

bounds on Rn have been given. Unfortunately, the policies proposed there are depending on the

confidence level of the bound. As a consequence, the resulting best bound on ERn, obtained by

choosing the policies with confidence level parameter of order 1/n, has an extraneous log n term.

Specifically, from Theorem 6.2 of Cesa-Bianchi and Lugosi [2006], one can immediately derive

ERn 6 8n

√
log(4K)+log(n)

m + 1. The theorems of this section essentially show that the log n term

can be removed.

As in Section 4.1.1, we still use a draw of a Bernoulli random variable Zt to decide whether we

ask for the gains or not. The difference is that, if
∑t−1

s=1 Zs > m, we do not ask for the gains (as we

are not allowed to do so). To avoid that this last constraint interferes in the analysis, the parameter
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of the Bernoulli random variable is set to ε = 3m
4n and the probability of the event

∑n
t=1 Zt > m

is upper bounded. The estimate of gi,t remains vi,t =
gi,t
ε Zt.

THEOREM 3.10 (Exponentially weighted average forecaster in the LE game). Let ψ(x) =

exp(ηx) with η =
√
m logK
n . Let vi,t =

gi,t
ε Zt with ε = 3m

4n . Then in the LE game, for any δ > 0,

with probability at least 1− δ, INF satisfies:

Rn 6 2n

√
logK

m
+ n

√
27 log(2Kδ−1)

m
,

and

ERn 6 8n

√
log(6K)

m
.

THEOREM 3.11 (Polynomial INF in the LE game). Let ψ(x) =
( η
−x
)q

with q = 3 log(6K)

and η = 2n

√
log(6K)
m . Let vi,t =

gi,t
ε Zt with ε = 3m

4n . Then in the LE game, for any δ > 0, with

probability at least 1− δ, INF satisfies:

Rn 6 5n

√
logK

m
+ n

√
27 log(2Kδ−1)

m
,

and

ERn 6 11n

√
log(6K)

m
.

4.2. Bandit game. This section is cut into two parts. In the first one, from Theorem 3.5 and

Theorem 3.6, we derive upper bounds on Rn = maxi=1,...,K E
∑n

t=1

(
gi,t − gIt,t

)
. To bound

ERn = E maxi=1,...,K
∑n

t=1

(
gi,t − gIt,t

)
, we will then use high probability bounds on top of the

use of these theorems. Since this makes the proofs more intricate, we have chosen to provide the

less general results, but easier to obtain, in Section 4.2.1 and the more general ones in Section

4.2.2.

The main results here are that, by using the INF with a polynomial function ψ, we obtain an

upper bound of order
√
nK for Rn, which imply a bound of order

√
nK on ERn for oblivious

adversaries (see the reasoning at the beginning of Section 4.1.2). In the general case (containing the

non-oblivious opponent), we show an upper bound of order
√
nK logK on ERn. We conjecture

that this bound cannot be improved, that is the opponent may take advantage of the past to make

the player pay a regret with the extra logarithmic factor (see Remark 3.3).

4.2.1. Bounds on the pseudo-regret. In this section, the estimate of gi,t is vi,t =
gi,t
pi,t

1It=i,

which is observable since the reward gIt,t is revealed at time t.

THEOREM 3.12 (Exponentially weighted average forecaster in the bandit game). Let ψ(x) =

exp(ηx) + γ
K with γ = min

(
1
2 ,

√
K log(2K)

n

)
and η =

√
log(2K)

9nK . Let vi,t =
gi,t
pi,t

1It=i. Then in

the bandit game, INF satisfies:

Rn 6
√

20nK log(2K).

THEOREM 3.13 (Polynomial INF in the bandit game). Let ψ(x) =
( η
−x
)q

+ γ
K with γ =√

K/n, η = 3
√
n and q = 2. Let vi,t =

gi,t
pi,t

1It=i. Then in the bandit game, INF satisfies:

Rn 6 10
√
nK.

We have arbitrarily chosen q = 2 to provide an explicit upper bound. More generally, it is

easy to check that for any real number q > 1, we obtain the convergence rate
√
nK, provided that

γ and η are respectively taken of order
√
K/n and

√
nK/K1/q.
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4.2.2. High probability bounds and bounds on the expected regret. Theorems 3.12 and 3.13

provide upper bounds onRn = maxi=1,...,K E
∑n

t=1

(
gi,t−gIt,t

)
. To bound ERn = E maxi=1,...,K

∑n
t=1

(
gi,t−

gIt,t
)
, we will use high probability bounds. First we need to modify the estimates of gi,t by con-

sidering vi,t =
gi,t
pi,t

1It=i +
β
pi,t

with 0 < β 6 1, as was proposed in Auer [2002]3.

THEOREM 3.14 (Exponentially weighted average forecaster in the bandit game). Let ψ(x) =

exp(ηx) + γ
K with γ = min

(
1
2 ,

√
2K log(2K)

n

)
and η =

√
log(2K)

8nK . Let vi,t =
gi,t
pi,t

1It=i + β
pi,t

with β =

√
log(2K)
nK . Then in the bandit game, for any δ > 0, with probability at least 1− δ, INF

satisfies:

Rn 6 7
√
nK log(2K) +

√
nK

log(2K)
log(δ−1),

and

ERn 6 8
√
nK log(2K).

This theorem is similar to Theorem 6.10 of Cesa-Bianchi and Lugosi [2006]. The main dif-

ference here is that the high probability bound holds for any confidence level, and not only for

a confidence level depending on the algorithm. As a consequence, our algorithm, unlike the one

proposed in previous works, satisfies both a high probability bound and an expected regret bound

of order
√
nK log(K).

THEOREM 3.15 (Polynomial INF in the bandit game). Let ψ(x) =
( η
−x
)q

+ γ
K with γ =

√
K
n ,

η = 3
√
n and q = 2. Let vi,t =

gi,t
pi,t

1It=i +
β
pi,t

with β =
√

1
nK . Then in the bandit game, against

an oblivious adversary, for any δ > 0, with probability at least 1− δ, INF satisfies:

(3.11) Rn 6 10.7
√
nK + 1.5

√
nK log(δ−1),

and

ERn 6 12.2
√
nK.

Moreover in the general case (containing the non-oblivious opponent), with β =

√
log(2K)
nK , it

satisfies with probability at least 1− δ,

(3.12) Rn 6 8.6
√
nK + 2.1

√
nK log(2K) + 1.5

√
nK

log(2K)
log(δ−1)

and

ERn 6 10
√
nK + 2.1

√
nK log(2K).

REMARK 3.3. We conjecture that the bound
√
nK logK on ERn cannot be improved in the

general case containing the non-oblivious opponent. Here is the main argument to support our

conjecture. Consider an adversary choosing all rewards to be equal to one until time n/2 (say n is

even to simplify). Then, let k̂ denote the arm for which the estimate Vi,n/2 =
∑

16t6n/2
gi,t
pi,t

1It=i

of the cumulative reward of arm i is the smallest. After time n/2, all rewards are chosen to be

equal to zero except for arm k̂ for which the rewards are still chosen to be equal to 1. Since it can

be proved that maxi∈{1,...,K} Vi,n/2−minj∈{1,...,K} Vj,n/2 > c
√
nK logK for some small enough

c > 0, it seems that the INF algorithm achieving a bound of order
√
nK on ERn in the oblivious

3The technical reason for this modification, which may appear surprising as it introduces a bias in the estimate of gi,t,
is that it allows to have high probability upper bounds with the correct rate on the difference

Pn
t=1 gi,t −

Pn
t=1 vi,t. A

second reason for this modification (but useless for this particular section) is that it allows to track the best expert (see

Section 5).
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setting will suffer an expected regret of order at least
√
nK logK. While this does not prove the

conjecture as one can design other algorithms, it makes the conjecture likely to hold.

4.3. Label efficient and bandit game (LE bandit). We consider the following policy. At

each round, we draw a Bernoulli random variable Zt, with parameter ε = m/n, to decide whether

the gain of the chosen arm is revealed or not. Note that we do not fulfil exactly the requirement

of the game as we might ask a bit more than m rewards (but, as was argued in Section 4.1.2, this

is just a technical detail that requires some extra computations to be taken into account). In this

section, the estimate of gi,t is vi,t = gi,t
1It=i

pi,t
Zt
ε .

THEOREM 3.16 (Exponentially weighted average forecaster in the LE bandit game). Let

ψ(x) = exp(ηx) + γ
K with γ = min

(
1
2 ,

√
K log(2K)

m

)
and η = 1

n

√
m log(2K)

9K . Let vi,t =

gi,t
1It=i

pi,t
Zt
ε with ε = m

n . Then in the LE bandit game, INF satisfies:

Rn 6 n

√
20K log(2K)

m
.

THEOREM 3.17 (Polynomial INF in the LE bandit game). Let ψ(x) =
( η
−x
)q

+ γ
K with

γ =
√

K
m , η = 3n

K1/q

√
K
m and q = 2. Let vi,t = gi,t

1It=i

pi,t
Zt
ε with ε = m

n . Then in the LE bandit

game, INF satisfies:

Rn 6 10n

√
K

m
.

5. Tracking the best expert in the bandit game

In the previous sections, the cumulative gain of the forecaster was compared to the cumula-

tive gain of the best single expert. Here, it will be compared to more flexible strategies that are

allowed to switch actions. We will use the same algorithms as in Section 4.2.2, but with different

parameters. We thus use

vi,t = gi,t
1It=i

pi,t
+

β

pi,t
,

with 0 < β 6 1. The β term introduces a bias in the estimate of gi,t, that constrains the differences

maxi=1,...,K Vi,t−minj=1,...,K Vj,t to be relatively small. This is the key property in order to track

the best switching strategy, provided that the number of switches is not too large. A switching

strategy is defined by a vector (i1, . . . , in) ∈ {1, . . . ,K}n. Its size is defined by

S(i1, . . . , in) =
n−1∑

t=1

1it+1 6=it ,

and its cumulative gain is

G(i1,...,in) =

n∑

t=1

git,t.

The regret of a forecaster with respect to the best switching strategy with S switches is then given

by:

RSn = max
(i1,...,in):S(i1,...,in)6S

G(i1,...,in) −
n∑

t=1

gIt,t.

THEOREM 3.18 (INF for tracking the best expert in the bandit game). Let s = S log
(
enK
S

)
+

log(2K) with e = exp(1) and the natural convention S log(enK/S) = 0 for S = 0. Let vi,t =

gi,t
1It=i

pi,t
+ β

pi,t
with β = 2

√
s
nK . Let ψ(x) = exp(ηx) + γ

K with γ = min
(

1
2 ,
√

Ks
n

)
and
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η =
√

s
20nK . Then in the bandit game, for any 0 6 S 6 n− 1, for any δ > 0, with probability at

least 1− δ, INF satisfies:

RSn 6 9
√
nKs+

√
nK

s
log(δ−1),

and

ERSn 6 10
√
nKs.

Note that for S = 0, we have RSn = Rn, and we recover (up to a constant) the result of

Theorem 3.14.

REMARK 3.4. Up to constant factors, the same bounds as the ones of Theorem 3.18 can be

obtained (via a tedious proof not requiring new arguments than the ones presented in this work)

for the INF forecaster using ψ(x) = c1
K

(√
snK
−x

)c3s
+ c2

√
s
nK , with s = S log

(
enK
S

)
+ log(2K)

and appropriate constants c1, c2 and c3.

6. Gains vs losses, unsigned games vs signed games

To simplify, we have considered so far that the rewards were in [0, 1]. Here is a trivial argu-

ment which shows how to transfer our analysis to loss games (i.e., games with only non-positive

rewards), and more generally to signed games (i.e., games in which the rewards can be positive

and negative). If the rewards, denoted now g′i,t, are in some interval [a, b] potentially containing

zero, we set gi,t =
g′i,t−a
b−a ∈ [0, 1]. Then we can apply our analysis to:

max
i∈{1,...,K}

n∑

t=1

gi,t −
n∑

t=1

gIt,t =
1

b− a

(
max

i∈{1,...,K}

n∑

t=1

g′i,t −
n∑

t=1

g′It,t

)
.

Note that a less straightforward analysis can be done by looking at the INF algorithm directly

applied to the observed rewards (and not to the renormalized rewards). In this case, as it was

already noted in Remark 6.5 of Cesa-Bianchi and Lugosi [2006], the behavior of the algorithm

may be very different for loss and gain games. However it can be proved that our analysis still

holds up to constants factors (one has to go over the proofs and make appropriate modifications).

7. Stochastic bandit game

By considering the deterministic case when the rewards are gi,t = 1 if i = 1 and gi,t = 0

otherwise, it can be proved that the INF policies considered in Theorem 3.12 and Theorem 3.13

have a pseudo-regret lower bounded by
√
nK. In this simple setting, and more generally in most

of the stochastic multi-armed bandit problems, one would like to suffer a much smaller regret.

We recall that in the stochastic bandit considered in this section, the adversary samples the

reward gi,t i.i.d from a fixed distribution νi on [0, 1] for each arm i. The suboptimality of an arm

i is then measured by ∆i = maxj=1,...,K µj − µi where µi is the mean of νi. We provide now a

strategy achieving a
√
nK regret in the worst case, and a much smaller regret as soon as the ∆i of

the suboptimal arms are much larger than
√
K/n.

Let µ̂i,s be the empirical mean of arm i after s draws of this arm. Let Ti(t) denote the number

of times we have drawn arm i on the first t rounds. In this section, we propose a policy, called

MOSS (Minimax Optimal Strategy in the Stochastic case), inspired by the UCB1 policy (Auer

et al., 2002). As in UCB1, each arm has an index measuring its performance, and at each round,

we choose the arm having the highest index. The only difference with UCB1 is to use log
(
n
Ks

)

instead of log(t) at time t (see Figure 3). As a consequence, an arm that has been drawn more than

n/K times has an index equal to the empirical mean of the rewards obtained from the arm, and
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when it has been drawn close to n/K times, the logarithmic term is much smaller than the one of

UCB1, implying less exploration of this already intensively drawn arm.

MOSS (Minimax Optimal Strategy in the Stochastic case):

For an arm i, define its index Bi,s by

Bi,s = µ̂i,s +

√
max

(
log( n

Ks) , 0
)

s
.

for s > 1 and Bi,0 = +∞.

At time t, draw an arm maximizing Bi,Ti(t−1).

Figure 3: The proposed policy for the stochastic bandit game.

THEOREM 3.19. Introduce ∆ = min
i∈{1,...,K}:∆i>0

∆i. MOSS satisfies

(3.13) Rn 6
23K

∆
log

(
max

(
110n∆2

K
, 104

))
,

and

(3.14) ERn 6 25
√
nK.

Besides, if there exists a unique arm with ∆i = 0, we also have

(3.15) ERn 6
23K

∆
log

(
max

(
140n∆2

K
, 104

))
.

The distribution-dependent bounds Inequalities (3.13) and (3.15) show the desired logarithmic

dependence in n, while the distribution-free regret bound (3.14) has the minimax rate
√
nK.

REMARK 3.5. The uniqueness of the optimal arm is really needed to have the logarithmic

(in n) bound on the expected regret. This can be easily seen by considering a two-armed bandit

in which both reward distributions are identical (and non degenerated). In this case, the pseudo-

regret is equal to zero while the expected regret is of order
√
n. This reveals a fundamental differ-

ence between the expected regret and the pseudo-regret.

REMARK 3.6. A careful tuning of the constants in front and inside the logarithmic term of

Bi,s and of the thresholds used in the proof leads to smaller numerical constants in the previous

theorem, and in particular to sup ERn 6 6
√
nK. However, it makes the proof more intricate. So

we will only prove (3.13).

8. General regret bound

THEOREM 3.20 (General regret bound for INF). For any nonnegative real numbers vi,t, where

i ∈ {1, . . . ,K} and t ∈ N∗, we still use vt = (v1,t, . . . , vK,t) and Vt =
∑t

s=1 vt. Define

[Vt−1, Vt] = {λVt−1 + (1− λ)Vt : λ ∈ [0, 1]}. Let

Bt = max
16i<j6K

|vi,t − vj,t|,

ρ = max
16t6n

max
v,w∈[Vt−1,Vt], 16i6K

ψ′(vi − C(v))

ψ′(wi − C(w))
,
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and

At = min

(
B2
t

K∑

i=1

ψ′ ◦ ψ−1(pi,t), (1 + ρ2)

K∑

i=1

ψ′ ◦ ψ−1(pi,t)v
2
i,t

)
.

Then the INF forecaster based on ψ satisfies:

(3.16)
(

max
16i6K

Vi,n

)
−

n∑

t=1

K∑

i=1

pi,tvi,t 6 −
K∑

i=1

(
pi,n+1ψ

−1(pi,n+1) +

∫ 1/K

pi,n+1

ψ−1(u)du

)
+
ρ2

2

n∑

t=1

At.

PROOF. In the following we set V0 = 0 ∈ RK
+ and C0 = C(V0). The proof is divided into

four steps.

First step: Rewriting
∑n

t=1

∑K
i=1 pi,tvi,t.

We start with a simple Abel transformation:

n∑

t=1

K∑

i=1

pi,tvi,t =

n∑

t=1

K∑

i=1

pi,t(Vi,t − Vi,t−1)

=
K∑

i=1

pi,n+1Vi,n +
K∑

i=1

n∑

t=1

Vi,t(pi,t − pi,t+1)

=

K∑

i=1

pi,n+1

(
ψ−1(pi,n+1) + Cn

)
+

K∑

i=1

n∑

t=1

(ψ−1(pi,t+1) + Ct)(pi,t − pi,t+1)

= Cn +
K∑

i=1

pi,n+1ψ
−1(pi,n+1) +

K∑

i=1

n∑

t=1

ψ−1(pi,t+1)(pi,t − pi,t+1)

where the last step comes from the fact that
∑K

i=1 pi,t = 1.

Second step: A Taylor-Lagrange expansion.

For x ∈ [0, 1] we define f(x) =
∫ x
0 ψ

−1(u)du. Remark that f ′(x) = ψ−1(x) and f ′′(x) =

1/ψ′(ψ−1(x)). Then by the Taylor-Lagrange formula, we know that for any i, there exists p̃i,t+1 ∈
[pi,t, pi,t+1] (with the convention [a, b] = [b, a] when a > b) such that

f(pi,t) = f(pi,t+1) + (pi,t − pi,t+1)f
′(pi,t+1) +

(pi,t − pi,t+1)
2

2
f ′′(p̃i,t+1),

or, in other words:

(pi,t − pi,t+1)ψ
−1(pi,t+1) =

∫ pi,t

pi,t+1

ψ−1(u)du− (pi,t − pi,t+1)
2

2ψ′(ψ−1(p̃i,t+1))
.

Now by summing over t the first term on the right hand side becomes
∫ 1/K
pi,n+1

ψ−1(u)du.

Moreover, since x → ψ(x − C(x)) is continuous, there exists W (i,t) ∈ [Vt, Vt+1] ⊂ RK such

that ψ
(
W

(i,t)
i − C(W (i,t))

)
= p̃i,t+1. Thus we have

K∑

i=1

n∑

t=1

ψ−1(pi,t+1)(pi,t− pi,t+1) =

K∑

i=1

∫ 1/K

pi,n+1

ψ−1(u)du−
K∑

i=1

n∑

t=1

(pi,t − pi,t+1)
2

2ψ′
(
W

(i,t)
i − C(W (i,t))

) .
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From the equality obtained in the first step, it gives

Cn −
n∑

t=1

K∑

i=1

pi,tvi,t 6 −
K∑

i=1

(
pi,n+1ψ

−1(pi,n+1) +

∫ 1/K

pi,n+1

ψ−1(u)du

)

+
K∑

i=1

n∑

t=1

(pi,t − pi,t+1)
2

2ψ′
(
W

(i,t)
i − C(W (i,t))

) .

Third step: The mean value theorem to compute (pi,t+1 − pi,t)2.

It is now convenient to consider the functions fi and hi defined for any x ∈ RK
+ by

fi(x) = ψ(xi − C(x)) and hi(x) = ψ′(xi − C(x)).

We are going to bound pi,t+1 − pi,t = fi(Vt)− fi(Vt−1) by using the mean value theorem. To do

so we need to compute the gradient of fi. First, we have

∂fi
∂xj

(x) =

(
1i=j −

∂C

∂xj
(x)

)
hi(x).

Now, by definition of C, we have
∑K

k=1 fk(x) = 1 and thus
∑K

k=1
∂fk
∂xj

(x) = 0, which implies

∂C

∂xj
(x) =

hj(x)∑K
k=1 hk(x)

and
∂fi
∂xj

(x) =

(
1i=j −

hj(x)∑K
k=1 hk(x)

)
hi(x).

Now the mean value theorem says that there exists V (i,t) ∈ [Vt−1, Vt] such that

fi(Vt)− fi(Vt−1) =
K∑

j=1

vj,t
∂fi
∂xj

(V (i,t)).

Thus we have

(pi,t − pi,t+1)
2 =




K∑

j=1

vj,t

(
1i=j −

hj(V
(i,t))

∑K
k=1 hk(V

(i,t))

)
hi(V

(i,t))




2

= hi(V
(i,t))2

(
vi,t −

∑K
j=1 vj,thj(V

(i,t))
∑K

k=1 hk(V
(i,t))

)2

.

Fourth step: An almost variance term.

We introduce ρ = maxv,w∈[Vt−1,Vt], 16t6n, 16i6K
hi(v)
hi(w) . Thus we have

K∑

i=1

n∑

t=1

(pi,t − pi,t+1)
2

2ψ′
(
W

(i,t)
i − C(W (i,t))

) =
K∑

i=1

n∑

t=1

hi(V
(i,t))2

2hi(W (i,t))

(
vi,t −

∑K
j=1 vj,thj(V

(i,t))
∑K

k=1 hk(V
(i,t))

)2

6
ρ2

2

n∑

t=1

K∑

i=1

hi(Vt−1)

(
vi,t −

∑K
j=1 vj,thj(V

(i,t))
∑K

k=1 hk(V
(i,t))

)2

.

Now we need to control the term

(
vi,t −

PK
j=1 vj,thj(V

(i,t))
PK
k=1 hk(V

(i,t))

)2

. Remark that since the function

ψ is increasing we know that hi(x) > 0,∀x. Now since ∀i, j |vi,t − vj,t| 6 Bt, we can simply

bound this last term by B2
t . A different bound can be obtained by using (a− b)2 6 a2 + b2 when
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a and b have the same sign:
(
vi,t −

∑K
j=1 vj,thj(V

(i,t))
∑K

k=1 hk(V
(i,t))

)2

6 v2
i,t +

(∑K
j=1 vj,thj(V

(i,t))
∑K

k=1 hk(V
(i,t))

)2

6 v2
i,t +

∑K
j=1 v

2
j,thj(V

(i,t))
∑K

k=1 hk(V
(i,t))

6 v2
i,t + ρ2

∑K
j=1 v

2
j,thj(Vt−1)

∑K
k=1 hk(Vt−1)

where the first inequality comes from the fact that both terms are nonnegative and the second

inequality comes from Jensen’s inequality. As a consequence, we have

K∑

i=1

hi(Vt−1)

(
vi,t −

∑K
j=1 vj,thj(V

(i,t))
∑K

k=1 hk(V
(i,t))

)2

6

K∑

i=1

hi(Vt−1)v
2
i,t + ρ2

K∑

j=1

hj(Vt−1)v
2
j,t

6 (1 + ρ2)

K∑

i=1

hi(Vt−1)v
2
i,t

We have so far proved

(3.17)

Cn −
n∑

t=1

K∑

i=1

pi,tvi,t 6 −
K∑

i=1

(
pi,n+1ψ

−1(pi,n+1) +

∫ 1/K

pi,n+1

ψ−1(u)du

)
+
ρ2

2

n∑

t=1

At

The announced result is then obtained by using Inequality (3.2). �

LEMMA 3.2. Let ψ be a convex function satisfying (3.1) and assume that there exists B > 0

such that ∀i, j, t |vi,t − vj,t| 6 B. Then:

ρ = max
16t6n

max
v,w∈[Vt−1,Vt], 16i6K

ψ′(vi − C(v))

ψ′(wi − C(w))
6 sup

x∈(−∞,ψ−1(1)]

exp

(
B
ψ′′

ψ′ (x)

)
.

PROOF. Let hi(x) = ψ′(xi − C(x)),mi(x) = ψ′′(xi − C(x)). For α ∈ [0, 1] we note

ϕ(α) = log {hi(Vt−1 + α(Vt − Vt−1))} .
Remark that we should rather note this function ϕi,t(α) but for sake of simplicity we omit this

dependency. With these notations we have ρ = maxα,β∈[0,1]; 16t6n, 16i6K exp(ϕ(α) − ϕ(β)).

By the mean value theorem for any α, β ∈ [0, 1] there exists ξ ∈ [0, 1] such that ϕ(α) − ϕ(β) =

(α−β)ϕ′(ξ). Now with the calculus done in the third step of the proof of Theorem 3.20 and using

the notations hi := hi(Vt−1 + ξ(Vt − Vt−1)), mi := mi(Vt−1 + ξ(Vt − Vt−1)) we obtain

ϕ′(ξ) =

K∑

j=1

(Vj,t − Vj,t−1)

(
1i=j −

hj∑K
k=1 hk

)
mi

hi
=

K∑

j=1

(vi,t − vj,t)hj∑K
k=1 hk

mi

hi
.

Thus we get

|ϕ′(ξ)| 6 max
16i,j6K

|vi,t − vj,t| sup
v∈[Vt−1,Vt]

ψ′′

ψ′ (vi − C(v)) .

Moreover, using that x→ ψ(x−C(x)) is continuous we know that there exists p̃i,t+1 ∈ [pi,t, pi,t+1]

such that p̃i,t+1 = ψ(vi−C(v)) and thus vi−C(v) = ψ−1(p̃i,t+1). This concludes the proof. �

LEMMA 3.3. Let ψ be a function satisfying (3.1) and assume that there exists c > 0 such that

0 6 vi,t 6 c
pi,t

1i=It . We also assume that ψ′/ψ is a nondecreasing function and that there exists
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a > 1 such that ψ
(
x+ c

ψ(x)

)
6 aψ(x). Then:

ρ 6 sup
x∈(−∞,ψ−1(1)]

exp

(
ac

ψ′′

ψ × ψ′ (x)

)
.

PROOF. We extract from the previous proof that ρ 6 maxξ∈[0,1]; 16t6n, 16i6K exp(|ϕ′(ξ)|)
where

ϕ′(ξ) =
K∑

j=1

(vi,t − vj,t)hj∑K
k=1 hk

mi

hi
.

Note that, since the functions ψ and ψ′/ψ are nondecreasing, the function ψ is convex, hence

ψ′′ > 0 and mi > 0 . Now using our assumption on vi,t and since pi,t = fi(Vt−1), if i 6= It we

have:

|ϕ′(ξ)| =
c

hIt
fIt (Vt−1)
∑K

k=1 hk

mi

hi
.

Noticing that for any x, y in R∗
−,

ψ′

ψ
(x)×ψ′′

ψ′ (y)

ψ′(x)+ψ′(y) 6
ψ′′(y)

ψ′(y)ψ(y) , we obtain

|ϕ′(ξ)| 6 c
fIt(Vt−1 + ξ(Vt − Vt−1))

fIt(Vt−1)

mi

hi × fi
where we note fi := fi(Vt−1 + ξ(Vt − Vt−1)).

On the other hand if i = It then

|ϕ′(ξ)| 6 c

fi(Vt−1)

mi

hi
.

To finish we only have to prove that fIt(Vt−1 + ξ(Vt − Vt−1)) 6 afIt(Vt−1). Since ψ is

increasing it is enough to prove that fIt(Vt) 6 afIt(Vt−1) which is equivalent to

ψ(VIt,t−1 + vIt,t − Ct) 6 aψ(VIt,t−1 − Ct−1).

Since 0 6 vi,t 6 c
pi,t

1i=It and C is an increasing function in each of its argument it is enough to

prove

ψ

(
VIt,t−1 − Ct−1 +

c

ψ(VIt,t−1 − Ct−1)

)
6 aψ(VIt,t−1 − Ct−1)

which is true by hypothesis on ψ. �

LEMMA 3.4. Let ψ be a function satisfying (3.1) and assume that vi,t =
gi,t1i=It+β

pi,t
with

gi,t ∈ [0, 1] and pi,t > γ/K. We also assume that ψ′/ψ is a nondecreasing function and that there

exists a > 1 such that ψ
(
x+ 1+β

ψ(x)

)
6 aψ(x). Then:

ρ 6 sup
x∈(−∞,ψ−1(1)]

exp

(
a

ψ′′

ψ × ψ′ (x) +
βK

γ

ψ′′

ψ′

)
.

PROOF. We extract from the previous proof that ρ 6 maxξ∈[0,1]; 16t6n, 16i6K exp(|ϕ′(ξ)|)
where

ϕ′(ξ) =

K∑

j=1

(vi,t − vj,t)hj∑K
k=1 hk

mi

hi

=
K∑

j=1

(
gi,t
pi,t

1i=It − gj,t
pj,t

1j=It

)
hj

∑K
k=1 hk

mi

hi
+

K∑

j=1

(
β
pi,t
− β

pj,t

)
hj

∑K
k=1 hk

mi

hi
.
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For the second term we can apply the same reasoning than for Lemma 3.2 to bound it by

supx∈(−∞,ψ−1(1)]
βK
γ

ψ′′

ψ′ (x) while for the first term we can use the proof of Lemma 3.3 to bound

it by supx∈(−∞,ψ−1(1)] a
ψ′′

ψ×ψ′ (x) which ends the proof. �

9. Proofs

Proof of Theorem 3.5. We make use of Theorem 3.20 and start with straightforward computations

to bound the first sum in (3.16). We have ψ−1(x) = 1
η log(x− γ/K) which admits as a primitive∫

ψ−1(u)du = 1
η [(u− γ/K) log(u− γ/K)− u]. Thus one immediately gets

−
∫ 1/K

pi,n+1

ψ−1(u)du− pi,n+1ψ
−1(pi,n+1)

=
1

η

(
1

K
− 1− γ

K
log

(
1− γ
K

)
− pi,n+1 −

γ

K
log
(
pi,n+1 −

γ

K

))
.

Summing over i proves that

−
K∑

i=1

(
pi,n+1ψ

−1(pi,n+1) +

∫ 1/K

pi,n+1

ψ−1(u)du

)
=

1− γ
η

log

(
K

1− γ

)
− γ

K

K∑

i=1

ψ−1(pi,n+1).

With the notations of Theorem 3.20, we need now to bound ρ and At. For the former we use

Lemma 3.2 which directly shows:

ρ 6 exp(ηB).

For the latter we distinguish two cases. If γ = 0 we use

At 6 B2
t

K∑

i=1

ψ′ ◦ ψ−1(pi,t) = ηB2
t ,

which concludes the proof of (3.4). On the other hand if γ > 0 we use

At 6 (1 + ρ2)

K∑

i=1

ψ′ ◦ ψ−1(pi,t)v
2
i,t 6 (1 + ρ2)η

K∑

i=1

pi,tv
2
i,t.

Now recall that, as seen in (3.17), Theorem 3.20 holds with the maximum replaced by Cn. Thus,

if (3.5) is satisfied we have the following bound

Cn −
n∑

t=1

K∑

i=1

pi,tvi,t

6
1− γ
η

log

(
K

1− γ

)
− γ

K

K∑

i=1

(
n∑

t=1

vi,t − Cn
)

+
η exp(2Bη) [1 + exp(2Bη)]

2

n∑

t=1

K∑

i=1

pi,tv
2
i,t

6
1− γ
η

log

(
K

1− γ

)
+ γCn,

which concludes the proof of (3.6) by using Inequality (3.2).

Proof of Theorem 3.6. We make use of Theorem 3.20 and start with straightforward computations

to bound the first sum in (3.16). We have ψ−1(x) = −η(x−γ/K)−1/q which admits as a primitive
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∫
ψ−1(u)du = −η

1−1/q (u− γ/K)1−1/q. Thus one immediately gets

∫ 1/K

pi,n+1

(−ψ−1)(u)du 6
η

1− 1/q

1

K1−1/q
− η(pi,n+1 − γ/K)1−1/q

and

pi,n+1(−ψ−1)(pi,n+1) = − γ
K
ψ−1(pi,n+1) + η(pi,n+1 − γ/K)1−1/q.

Summing over i proves that

−
K∑

i=1

(
pi,n+1ψ

−1(pi,n+1) +

∫ 1/K

pi,n+1

ψ−1(u)du

)
6

q

q − 1
ηK1/q − γ

K

K∑

i=1

ψ−1(pi,n+1).

With the notations of Theorem 3.20, we need now to bound ρ and At. First we deal with the case

γ = 0. Lemma 3.2 implies ρ 6 exp(B(q + 1)/η) since we have ψ′′

ψ′ (x) = q+1
−x = q+1

η ψ(x)1/q.

The proof of (3.7) is concluded by ψ′ = q
ηψ

(q+1)/q, and

At 6 B2
t

K∑

i=1

ψ′ ◦ ψ−1(pi,t) = B2
t

K∑

i=1

q

η
p
(q+1)/q
i,t 6

q

η
B2
t .

Unfortunately the case γ > 0 is much more intricate. In this case we consider a specific form for

the estimates vi,t, see the assumptions in Theorem 3.6. We start by using lemma 3.3 to prove that

ρ 6 µ. First we have ψ′′

ψ′ = q+1
η (ψ − γ/K)1/q 6

q+1
η ψ1/q. Besides, for any a > b > c we have

a
b 6 a−c

b−c and thus for any x < 0, we have

ψ
(
x+ c

ψ(x)

)

ψ(x)
6
ψ
(
x+ c

ψ(x)

)
− γ

K

ψ(x)− γ
K

=

(
1− c

−xψ(x)

)−q
6

(
1− c

qη

(
(q − 1)K

γ

)(q−1)/q
)−q

.

Thus lemma 3.3 gives us

(3.18) ρ 6 exp

{
(q + 1)c

η

(
K

γ

)(q−1)/q
(

1− c

qη

(
(q − 1)K

γ

)(q−1)/q
)−q}

= µ.

Next we use ψ′ = q
η (ψ − γ/K)(q+1)/q and the form of vi,t to get

At 6 (1 + ρ2)

K∑

i=1

ψ′ ◦ ψ−1(pi,t)v
2
i,t 6

q(1 + µ2)

η

K∑

i=1

p
(q+1)/q
i,t v2

i,t 6
q(1 + µ2)

η

K∑

i=1

p
1/q
i,t vi,tct.

We note Et for the expectation with respect to ct and the random draw of It from pt. Using that

ct 6 c, Etvi,t 6 1 and Hölder’s inequality, we obtain

EAt 6
qc(1 + µ2)

η
E

K∑

i=1

p
1/q
i,t Etvi,t 6

qc(1 + µ2)

η
E

(
K∑

i=1

(Etvi,t)
q/(q−1)

)(q−1)/q

6
qc(1 + µ2)

η
E

(
K∑

i=1

Etvi,t

)(q−1)/q

.

Now recall that, as seen in (3.17), Theorem 3.20 holds with the maximum replaced by Cn, thus

we have

Cn −
n∑

t=1

K∑

i=1

pi,tvi,t 6
q

q − 1
ηK1/q + γCn +

ρ2

2

n∑

t=1

At −
n∑

t=1

K∑

i=1

vi,t.
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By taking the expectation we obtain

E

(
Cn −

n∑

t=1

K∑

i=1

pi,tvi,t

)

6
q

q − 1
ηK1/q + γECn + E

n∑

t=1


qcµ

2(1 + µ2)

2η

(
K∑

i=1

Etvi,t

)(q−1)/q

−
K∑

i=1

Etvi,t




6
q

q − 1
ηK1/q + γECn + nmax

u>0

(
qcµ2(1 + µ2)

2η
u
q−1
q − γ

K
u

)

6
q

q − 1
ηK1/q + γECn +

γn

(q − 1)K

(
(q − 1)cKµ2(1 + µ2)

2γη

)q
.

The proof of (3.8) is concluded by using Inequality (3.2).

Proof of Theorem 3.9. We make use of (3.4). Since we have Bt 6 Zt/ε and vi,t =
gi,t
ε Zt, we

obtain
(

max
16i6K

n∑

t=1

gi,t
Zt
ε

)
−

n∑

t=1

K∑

i=1

pi,tgi,t
Zt
ε

6
logK

η
+

exp(2η/ε)η

2ε2

n∑

t=1

Zt,

hence, by taking the expectation of both sides,

Rn =

(
max

16i6K
E

n∑

t=1

gi,t
Zt
ε

)
− E

n∑

t=1

K∑

i=1

pi,tgi,t
Zt
ε

6
logK

η
+

exp(2η/ε)nη

2ε
.

Straightforward computations conclude the proof.

Proof of Theorem 3.10. We start by noting that, since Rn 6 n, the result is trivial for δ 6

2K exp(−m/27) so that we consider hereafter that δ > 2K exp(−m/27), or equivalently
log(2Kδ−1)

m 6
1
27 .

From (10.3), we have

(3.19) P

( n∑

t=1

Zt > m

)
6 exp

(
− m2/16

3m/2 +m/6

)
6 exp

(
−m

27

)
6
δ

4

So with probability 1− δ/4, we have
∑n

t=1 Zt 6 m, so that the rewards received by the forecaster

are equal to the rewards which would receive the forecaster that uses Zt to decide whether he asks

for the gains or not, whatever
∑t−1

s=1 Zs is. This will enable us to use (3.4) (which holds with

probability one).

From the concentration of martingales with bounded differences, see Theorem 10.1, with prob-

ability at least 1− δ/4, we also have

(3.20) −
n∑

t=1

gIt,t 6 −
n∑

t=1

K∑

k=1

pk,tgk,t +

√
n log(4δ−1)

2
.

From Theorem 10.2, if η exp(2ηε−1) 6 2ε (which will be true for our particular η, see below), for

a fixed i ∈ {1, . . . ,K}, with probability at least 1− δ/(2K), we have

n∑

t=1

(
gi,t −

η exp(2ηε−1)

2ε
−

K∑

k=1

pk,tgk,t

)(
1− Zt

ε

)
6 2

√
2n log(2Kδ−1)

ε
+

2 log(2Kδ−1)

3ε
.
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From the union bound, we obtain that with probability at least 1− δ/2, we have

(3.21)

max
i=1,...,K

n∑

t=1

(
gi,t−

η exp(2ηε−1)

2ε
−

K∑

k=1

pk,tgk,t

)(
1−Zt

ε

)
6 2

√
2n log(2Kδ−1)

ε
+

2 log(2Kδ−1)

3ε

By combining (3.20) and (3.21), we obtain that with probability at least 1− 3δ/4,

max
i=1,...,K

n∑

t=1

gi,t −
n∑

t=1

gIt,t 6

√
n log(4δ−1)

2
+ max
i=1,...,K

n∑

t=1

gi,t −
n∑

t=1

K∑

k=1

pk,tgk,t

6

√
n log(4δ−1)

2
+ max
i=1,...,K

n∑

t=1

gi,t
Zt
ε
−

n∑

t=1

K∑

k=1

pk,tgk,t
Zt
ε

+
n∑

t=1

η exp(2ηε−1)

2ε

(
1− Zt

ε

)
+ 2

√
2n log(2Kδ−1)

ε
+

2 log(2Kδ−1)

3ε

Now, by using (3.19) and (3.4), with probability at least 1− δ, we have

max
i=1,...,K

n∑

t=1

gi,t −
n∑

t=1

gIt,t 6

√
n log(4δ−1)

2
+

logK

η
+
nη exp(2ηε−1)

2ε

+ 2n

√
8 log(2Kδ−1)

3m
+

8n log(2Kδ−1)

9m
,

hence, from the inequalities m 6 n, K > 2 and
log(2Kδ−1)

m 6 1
27 ,

max
i=1,...,K

n∑

t=1

gi,t −
n∑

t=1

gIt,t 6 n

√
27 log(2Kδ−1)

m
+

logK

η
+

2ηn2 exp(8ηn/(3m))

3m
.

The inequality for η =
√
m logK
n is then obtained by noticing that the result needs to be proved

only for (2 +
√

27)
√

(logK)/m < 1. This inequality is used to bound the exponential term

(and in particular to check η exp(2ηε−1) 6 2ε). The second inequality is obtained by inte-

grating the deviations using the standard formula EW 6
∫ 1
0

1
δP(W > log(δ−1))dδ with W =

m
27n2

{
max

(
0, Rn − 2n

√
logK
m

)}2
− log(2K).

Proof of Theorem 3.11. The proof goes exactly like for Theorem 3.10. Using (3.7), one can prove

that for any q > 1, with probability at least 1− δ, INF satisfies:

Rn 6
q

q − 1
ηK1/q + exp

(16qn

3mη

)2qn2

3mη
+ n

√
27 log(2Kδ−1)

m
.

Proof of Theorem 3.12. One simply need to note that for γ > 3Kη, (3.5) is satisfied (since

B = K/γ), and thus (3.6) rewrites

max
16i6K

n∑

t=1

gi,t
pi,t

1It=i −
n∑

t=1

gIt,t 6
1

η
log

(
K

1− γ

)
+

γ

1− γn.

By taking the expectation, one can see that the same bound holds for Rn. The numerical ap-

plication is proved by noticing that the bound is trivial for
√

20K log(2K) >
√
n, whereas for√

20K log(2K) <
√
n, it uses 1− γ > 1− (20)−1/2 and straightforward computations.
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Proof of Theorem 3.13. The inequality is trivial when
√
K/n > 1/10. So we now con-

sider that
√
K/n < 1/10 and apply (3.8). For the chosen values of q, η and γ, we have

1
η (

K
γ )(q−1)/q = 1

3(Kn )1/4 6 1
3
√

10
, hence µ 6 2.1, and, Rn 6 9/0.9

√
nK.

Proof of Theorem 3.14. Note that for γ > 3Kη(1+2β), (3.5) is satisfied (sinceB = (1+β)K/γ),

and thus (3.6) rewrites

max
16i6K

n∑

t=1

gi,t1It=i + β

pi,t
−

n∑

t=1

gIt,t − βnK 6
γ

1− γ (n+ βnK) +
1

η
log

(
K

1− γ

)
.

Let Et be the expectation resulting from It ∼ pt. Since exp(x) 6 1 + x + x2 for x 6 1, we

have for β 6 1 and a fixed i

Et exp

(
βgi,t − β

gi,t1It=i + β

pi,t

)

6

{
1 + Et

(
βgi,t − β

gi,t1It=i
pi,t

)
+ Et

(
βgi,t − β

gi,t1It=i
pi,t

)2
}

exp

(
− β2

pi,t

)

6

{
1 + β2

g2
i,t

pi,t

}
exp

(
− β2

pi,t

)

61,

where the last inequality uses 1 + u 6 exp(u). As a consequence, we have

E exp

(
β

n∑

t=1

gi,t − β
n∑

t=1

gi,t1It=i + β

pi,t

)
6 1.

Moreover Markov’s inequality implies P
(
X > log(δ−1)

)
6 δEeX and thus with probability at

least 1− δ/K

(3.22) β
n∑

t=1

gi,t − β
n∑

t=1

gi,t1It=i + β

pi,t
6 log(Kδ−1).

From a union bound, this implies that with probability at least 1− δ, we have

(3.23) max
16i6K

( n∑

t=1

gi,t −
n∑

t=1

gi,t1It=i + β

pi,t

)
6

log(Kδ−1)

β
.

Thus we get, with probability at least 1− δ,

Rn 6
(γ + βK)n

1− γ +
1

η
log

(
K

1− γ

)
+

1

β
log

(
K

δ

)
.

The numerical application is proved by noticing that the bound is trivial for
√
K log(2K)/n >

1/7, whereas for
√
K log(2K)/n < 1/7, it uses 1 − γ > 1 −

√
2/7 and straightforward com-

putations. The inequality on ERn is then obtained by integrating the deviations using EW 6∫ 1
0

1
δP(W > log(δ−1))dδ for W a real-valued random variable.

Proof of Theorem 3.15. Actually we prove the following result. For η > 0, q > 1 and γ ∈ (0, 1)

such that qη > (1 + β)
( (q−1)K

γ

)(q−1)/q
. Introduce

µ̃ = exp

{
2(q + 1)K

ηγ

[( γ
K

)1/q
(

1− 1 + β

qη

(
(q − 1)K

γ

)(q−1)/q
)−q

+ β

]}
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and

ζ =
qµ̃(1 + µ̃)(1 + 2β)

2η
.

We assume ζqKq−1 6 γq−1. Then in the bandit game, for any δ > 0 and any i ∈ {1, . . . ,K},
with probability at least 1− δ, INF satisfies:

n∑

t=1

gi,t −
n∑

t=1

gIt,t 6
1

1− γ

{
(γ + βK)n+

qηK
1
q

q − 1
+
γn(1 + βq+1K)

(q − 1)K

(
(q − 1)Kζ

qγ

)q}

+
1

1− γ

{√
2nmax (γ,Kζ2) log(2δ−1) +

2 log(2δ−1)

3

}
+

log(2δ−1)

β
.(3.24)

Besides, for any δ > 0, with probability at least 1− δ, INF satisfies:

Rn 6
1

1− γ

{
(γ + βK)n+

qηK
1
q

q − 1
+
γn(1 + βq+1K)

(q − 1)K

(
(q − 1)Kζ

qγ

)q}

+
1

1− γ

{√
2nmax (γ,Kζ2) log(2δ−1) +

2 log(2δ−1)

3

}
+

log(2Kδ−1)

β
,(3.25)

The starting point of the proof is similar to the one of Theorem 3.6. We make use of Theorem

3.20 (and its notations) and straightforward computations to obtain, since vi,t =
gi,t
pi,t

1It=i +
β
pi,t

,

Cn −
n∑

t=1

gIt,t − βnK 6
q

q − 1
ηK1/q + γ

(
Cn −

1

K

n∑

t=1

K∑

i=1

gi,t1It=i + β

pi,t

)

+
qρ2(1 + ρ2)

2η

n∑

t=1

K∑

i=1

gi,t(1 + 2β)1It=i + β2

p
(q−1)/q
i,t

,(3.26)

where we used (gi,t1It=i + β)2 6 gi,t(1 + 2β)1It=i + β2 for the last equation. Now note that for

any a > b > c > 0 we have a
b 6 a−c

b−c and thus for any x < 0, we have

ψ
(
x+ 1+β

ψ(x)

)

ψ(x)
6
ψ
(
x+ 1+β

ψ(x)

)
− γ

K

ψ(x)− γ
K

=

(
1− 1 + β

−xψ(x)

)−q
6

(
1− 1 + β

qη

(
(q − 1)K

γ

) q−1
q

)−q

.

Besides we have ψ′′

ψ′ = q+1
η (ψ − γ/K)1/q 6

q+1
η ψ1/q, and thus lemma 3.4 gives us

(3.27) ρ2
6 exp

{
2(q + 1)K

ηγ

[( γ
K

)1/q
(

1− 1 + β

qη

(
(q − 1)K

γ

)(q−1)/q
)−q

+ β

]}
= µ̃.

Let us introduce ζ = qeµ(1+eµ)(1+2β)
2η , and Gk,n =

∑n
t=1 gk,t for a fixed k ∈ {1, . . . ,K},

D1 = Cn −Gk,n,

Xt =

K∑

i=1

(
ζgi,tp

1/q
i,t −

γ

K
gi,t

)(
1It=i

pi,t
− 1

)
,

D2 =

n∑

t=1

Xt,

S1 =
n∑

t=1

K∑

i=1

(
ζgi,tp

1/q
i,t −

γ

K
gi,t

)
,
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and

S2 =

n∑

t=1

K∑

i=1

(
ζ

β2

1 + 2β
p
1/q
i,t −

γ

K
β

)
1

pi,t
.

Plugging (3.27) into (3.26), we obtain

(1− γ)
(
D1 +Gk,n

)
−

n∑

t=1

gIt,t 6 βnK +
q

q − 1
ηK1/q +D2 + S1 + S2.(3.28)

We will now provide high probability bounds for D1 and D2, and upper bounds with probability

one for S1 and S2. Hereafter, we consider a confidence level δ > 0.

Lower bound on D1: By using Inequality (3.2), we have D1 >
∑n

t=1
gk,t1It=k+β

pk,t
− Gk,n. From

the argument which lead to (3.22), we have with probability at least 1− δ/2, we have

(3.29) βGk,n − β
n∑

t=1

gk,t1It=k + β

pk,t
6 log(2δ−1),

hence

D1 > − log(2δ−1)

β
.

Upper bound on D2: To apply the Bernstein inequality given in Theorem 10.2, we need to upper

bound |Xt| and EtX
2
t , where Et still denotes the expectation resulting from It ∼ pt. Since we

have

(3.30) Xt =
ζgIt,tp

1/q
It,t
− γ

K gIt,t

pIt,t
−

K∑

i=1

(
ζgi,tp

1/q
i,t −

γ

K
gi,t

)
,

we have Xt 6 ζ
(
K
γ

)(q−1)/q
+ γ 6 1 + γ and Xt > −1− ζ∑K

i=1 p
1/q
i,t > −1− ζK(q−1)/q > −2,

where we have used Hölder’s inequality and
∑K

i=1 pi,t = 1. Therefore, we have |Xt| 6 2.

From (3.30) and the inequalities γ < 1 6 K, ζK(q−1)/q 6 γ(q−1)/q, we have

EX2
t = VarXt 6 E

(
ζgIt,tp

1/q
It,t
− γ

K gIt,t

pIt,t

)2

6

K∑

i=1

(
ζp

1/q
i,t − γ

K

)2

pi,t

6 K max
γ
K

6u61

(
ζu1/q − γ

K

)2

u

= Kmax

{
K

γ

(
ζ
( γ
K

)1/q
− γ

K

)2

,
(
ζ − γ

K

)2
}

= Kmax
{ γ
K
, ζ2
}
.

Theorem 10.2 implies that with probability at least 1− δ/2, we have

D2 =
n∑

t=1

Xt 6
√

2nmax(γ,Kζ2) log(2δ−1) +
2 log(2δ−1)

3
.

Upper bound on S1: Following the same arguments as in the proof of (3.8), that is essentially

Hölder’s inequality followed by an optimization with respect to the value of
∑n

i=1 gi,t, we have

S1 =

n∑

t=1

K∑

i=1

(
ζgi,tp

1/q
i,t −

γ

K
gi,t

)
6 nmax

u>0

(
ζu

q−1
q − γ

K
u

)
=

γn

(q − 1)K

(
(q − 1)Kζ

qγ

)q
.
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Upper bound on S2: We have

S2 6 βnKmax
u>0

(
ζ

β

1 + 2β
u
q−1
q − γ

K
u

)
=

γβn

q − 1

(
(q − 1)Kζβ

(1 + 2β)qγ

)q
6
γβq+1n

q − 1

(
(q − 1)Kζ

qγ

)q
.

Putting the previous bounds into (3.28), we get the first inequality of the theorem. The second

inequality is obtained by replacing (3.29) by

β max
k=1,...,K

Gk,n 6 β max
k=1,...,K

n∑

t=1

gk,t1It=k + β

pk,t
+ log(2Kδ−1) 6 βCn + log(2Kδ−1),

which, from a union bound, also holds with probability at least 1− δ/2.

The numerical application (3.12) is proved by using 2
√

log(2δ−1) 6 1 + log(2δ−1) as well

as noticing that the bound is trivial for 10.7
√
nK > n, whereas for 10.7

√
nK < n, one can

successively check that γ =
√
K/n 6 1/10.7, β =

√
log(2K)/nK 6 1/4.2, µ̃ 6 2.92 and

ζ 6 5.63/
√
n, which leads to the desired result after straightforward computations. The same rea-

sonning leads to (3.11). The inequalities on ERn are then obtained by integrating the deviations

using EW 6
∫ 1
0

1
δP(W > log(δ−1))dδ for W a real-valued random variable.

Proofs of Theorem 3.16 and Theorem 3.17. The proof of Theorem 3.16 goes exactly like for

Theorem 3.12, for γε > 3Kη we have

Rn 6
1

η
log

(
K

1− γ

)
+

γ

1− γn.

The proof of Theorem 3.17 is also trivial.

Proof of Theorem 3.18. We prove that for any η > 0 and γ ∈ (0, 1) such that γ > 3Kη(1 + 2β)

and γρ̃ < Kβ with ρ̃ = 1+Kβ
1−γ exp

(
(1 + β)Kηγ

)
, INF satisfies:

RSn 6
(γ + βK)n

1− γ +
1

η
log

(
K

1− γ

)
+

1

β
log

(
K

δ

)

+ S

{
1

β
log

(
enK

S

)
− 1

η
log

(
β

ρ̃
− γ

K

)
+ ρ̃

}
,

First note that, as we have already seen in the proof of Theorem 3.14, (3.6) gives
(

max
16i6K

Vi,n

)
−

n∑

t=1

gIt,t 6
(γ + βK)n

1− γ +
1

η
log

(
K

1− γ

)
.

Let ξt = maxi=1,...,K Vi,t −minj=1,...,K Vj,t and ξ = maxt=1,...,n ξt. Consider a fixed switching

strategy (i1, . . . , in) ∈ {1, . . . ,K}n, and let V(i1,...,in) =
∑n

t=1 vit,t. One can easily check that

max
16i6K

Vi,n > V(i1,...,in) − ξS(i1, . . . , in).

Let M =
∑S

j=0

(
n−1
j

)
K(K − 1)j be the number of switching strategies of size not larger than S.

The argument which leads to (3.22) can be used to prove that with probability at least 1 − δ/M ,

we have

βG(i1,...,in) − βV(i1,...,in) 6 log(Mδ−1).

By putting the three previous inequalities together, we obtain that with probability at least 1−δ/M ,

G(i1,...,in) −
n∑

t=1

gIt,t 6
(γ + βK)n

1− γ +
1

η
log

(
K

1− γ

)
+ ξS(i1, . . . , in) +

1

β
log

(
M

δ

)
.
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From a union bound, with probability at least 1− δ, we have

max
(i1,...,in):S(i1,...,in)6S

G(i1,...,in) −
n∑

t=1

gIt,t 6
(γ + βK)n

1− γ +
1

η
log

(
K

1− γ

)
+

1

β
log

(
M

δ

)
+ Sξ,

which is the desired result up to appropriate upper bounds on M and ξ. We have

M =
S∑

j=0

(
n− 1

j

)
K(K − 1)j 6 KS+1

S∑

j=0

(
n− 1

j

)
6 KS+1

(
en

S

)S
,

where the second inequality comes from Sauer’s lemma. Now, by contradiction, we will prove

(3.31) ξ 6 ρ̃− 1

η
log

(
β

ρ̃
− γ

K

)
.

To this end, we start by bounding Ct − Ct−1. By the mean value theorem, with the notations of

the third step of the proof of Theorem 3.20, there exists W ∈ [Vt−1, Vt] such that

Ct − Ct−1 = C(Vt)− C(Vt−1)

=
K∑

i=1

∂C

∂xi
(W )(Vi,t − Vi,t−1)

=

K∑

i=1

hi(W )
∑K

j=1 hj(W )

gi,t1It=i + β

fi(Vi,t−1)

=
1

∑K
j=1 η(fj(W )− γ/K)

K∑

i=1

ηhi(W )
gi,t1It=i + β

hi(Vi,t−1) + ηγ/K

6
1

1− γ
K∑

i=1

hi(W )
1It=i + β

hi(Vt−1)
6

ρ

1− γ
K∑

i=1

(1It=i + β) = ρ
1 +Kβ

1− γ .

From Lemma 3.2, we have ρ 6 exp
(
(1+β)Kηγ

)
, henceCt−Ct−1 6 exp

(
(1+β)Kηγ

)1+Kβ
1−γ = ρ̃.

If (3.31) does not hold, then from Lemma 3.1, there exist T ∈ {1, . . . , n} and ℓ ∈ {1, . . . ,K} such

thatCT−1−Vℓ,T−1 6 ρ̃−ψ−1(β/ρ̃) andCT−Vℓ,T > ρ̃−ψ−1(β/ρ̃) (note that we haveC0−Vℓ,0 =

−ψ−1(1/K) 6 ρ̃ − ψ−1(β/ρ̃) since Kβ 6 ρ̃). In particular, we have ψ(Vℓ,T − CT + ρ̃) < β
eρ ,

hence

Vℓ,T − Vℓ,T−1 >
β

pℓ,T
=

β

ψ(Vℓ,T−1 − CT−1)
>

β

ψ(Vℓ,T − CT + ρ̃)
> ρ̃ > CT − CT−1,

which contradicts the inequality CT−1 − Vℓ,T−1 < CT − Vℓ,T . This ends the proof of (3.31), and

consequently of the first inequality of the theorem.

The numerical application given in the second inequality is proved by noticing that the bound

is trivial for 9
√
Ks >

√
n, whereas for 9

√
Ks <

√
n, it uses 1 − γ > 8/9, ρ̃ 6

√
3, β 6 2

9 ,
1
η log

(
K

1−γ
)

6
√

20 log(2K), 1
β(1−γ) log

(
K
δ

)
6 9

16 log(Kδ−1), Seρ
1−γ 6 S

9

√
nK/s, − 1

η log
(β

eρ −
γ
K

)
6 3S log

(
enK
S

)√
nK
s and straightforward computations. The last inequality follows by inte-

grating the deviations.

Proof of Theorem 3.19. We may assume µ1 > . . . > µK . Using the trivial equality
∑K

i=1 ETi(n) =

n, we have

Rn = max
i=1,...,K

E

n∑

t=1

(
gi,t − gIt,t

)
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= n
(

max
i=1,...,K

Egi,t

)
−

n∑

t=1

EgIt,t

= n
(

max
i=1,...,K

µi

)
−

n∑

t=1

EµIt

= n
(

max
i=1,...,K

µi

)
− E

n∑

t=1

µIt

=

( K∑

i=1

ETi(n)

)(
max

i=1,...,K
µi

)
− E

K∑

i=1

µiTi(n) =

K∑

i=1

∆iETi(n).

First step: Decoupling the arms. For an arm k0, we trivially have
∑K

k=1 ∆kTk(n) 6 n∆k0 +∑K
k=k0+1 ∆kTk(n). Let ∆K+1 = +∞, zk = µ1 − ∆k

2 for k0 < k 6 K + 1 and zk0 = +∞.

Let Z = min16s6nB1,s and Wj,k = 1Z∈[zj+1,zj)(∆k −∆k0)Tk(n). By using E
∑k0

k=1 Tk(n) =

n− E
∑K

k=k0+1 Tk(n), we get

Rn = E

K∑

k=1

∆kTk(n) 6 n∆k0 + E

K∑

k=k0+1

(∆k −∆k0)Tk(n).

We have

(3.32)

K∑

k=k0+1

(∆k −∆k0)Tk(n) =
K∑

k=k0+1

K∑

j=k0

Wj,k =
K∑

j=k0

j∑

k=k0+1

Wj,k +
K∑

j=k0

K∑

k=j+1

Wj,k.

An Abel transformation takes care of the first sum of (3.32):

(3.33)

K∑

j=k0

j∑

k=k0+1

Wj,k 6

K∑

j=k0

1Z∈[zj+1,zj)n(∆j −∆k0) = n

K∑

j=k0+1

1Z<zj (∆j −∆j−1).

To bound the second sum of (3.32), we introduce the stopping times τk = min{t : Bk,t < zk}
and remark that, by definition of MOSS, we have {Z > zk} ⊂ {Tk(n) 6 τk}, since once we have

pulled τk times arm k its index will always be lower than the index of arm 1. This implies

(3.34)

K∑

j=k0

K∑

k=j+1

Wj,k =

K∑

k=k0+1

k−1∑

j=k0

Wj,k =

K∑

k=k0+1

1Z>zk∆kTk(n) 6

K∑

k=k0+1

τk∆k.

Combining (3.32), (3.33) and (3.34) and taking the expectation, we get

(3.35) Rn 6 n∆k0 +

K∑

k=k0+1

∆kEτk + n

K∑

k=k0+1

P(Z < zk)(∆k −∆k−1).

Let δ0 =
√

75K
n and set k0 such that ∆k0 6 δ0 < ∆k0+1. If k0 = K, we trivially have

Rn 6 nδ0 6
√

75nK so that (3.13) holds trivially. In the following, we thus consider k0 < K.

Second step: Bounding Eτk for k0 + 1 6 k 6 K.

Let log+(x) = max(log(x), 0). For ℓ0 ∈ N, we have

Eτk − ℓ0 =

+∞∑

ℓ=0

P(τk > ℓ)− ℓ0(3.36)
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6

+∞∑

ℓ=ℓ0

P(τk > ℓ) =

+∞∑

ℓ=ℓ0

P(∀t 6 ℓ, Bk,t > zk)

6

+∞∑

ℓ=ℓ0

P

(
µ̂k,ℓ − µk >

∆k

2
−
√

log+ (n/Kℓ)

ℓ

)
.

Now let us take ℓ0 = ⌈7 log
(
n
K∆2

k

)
/∆2

k⌉ with ⌈x⌉ the smallest integer larger than x. For ℓ > ℓ0,

since k > k0, we have

log+

( n

Kℓ

)
6 log+

(
n

Kℓ0

)
6 log+

(
n∆2

k

7K

)
6
ℓ0∆

2
k

7
6
ℓ∆2

k

7
,

hence ∆k
2 −

√
log+(n/(Kℓ))

ℓ > c∆k, with c = 1
2 − 1√

7
. Therefore, by using Hoeffding’s inequality

and (3.36), we get

Eτk − ℓ0 6

+∞∑

ℓ=ℓ0

P (µ̂k,ℓ − µk > c∆k)

6

+∞∑

ℓ=ℓ0

exp
(
−2ℓ(c∆k)

2
)

=
exp

(
−2ℓ0(c∆k)

2
)

1− exp (−2(c∆k)2)
6

exp(−14c2 log(75))

1− exp
(
−2c2∆2

k

) ,(3.37)

where the last inequality uses ℓ0∆
2
k > 7 log(75). Plugging the value of ℓ0, we obtain

∆kEτk 6 ∆k

(
1 +

7 log
(
n
K∆2

k

)

∆2
k

)
+

∆k exp(−14c2 log(75))

1− exp
(
−2c2∆2

k

)

6 1 + 7
log
(
n
K∆2

k

)

∆k
+

exp(−14c2 log(75))

2c2(1− c2)∆k
,(3.38)

where the last step uses that, since 1− exp(−x) > x− x2/2 for any x > 0, we have

1

1− exp
(
−2c2∆2

k

) 6
1

2c2∆2
k − 2c4∆4

k

6
1

2c2∆2
k(1− c2)

Third step: Bounding n
∑K

k=k0+1 P(Z < zk)(∆k −∆k−1).

Let Xt denote the reward obtained by arm 1 when it is drawn for the t-th time. The ran-

dom variables X1, X2, . . . are i.i.d. so that we have the maximal inequality [Hoeffding, 1963,

Inequality (2.17)]: for any x > 0 and m > 1,

P

(
∃s ∈ {1, . . . ,m},

s∑

t=1

(µ1 −Xt) > x

)
6 exp

(
−2x2

m

)
.

Since zk = µ1 −∆k/2 and since u 7→ P (Z < µ1 − u/2) is a nonincreasing function, we have

(3.39)

K∑

k=k0+1

P(Z < zk)(∆k −∆k−1) 6 ∆k0+1P(Z < zk0+1) +

∫ 1

∆k0+1

P

(
Z < µ1 −

u

2

)
du.

We will now concentrate on upper bounding P
(
Z < µ1 − u

2

)
for a fixed u ∈ [δ0, 1]. Let f(u) =

8 log
(√

n
Ku
)
/u2. We have

P

(
Z < µ1 −

1

2
u

)
= P

(
∃1 6 s 6 n :

s∑

t=1

(µ1 −Xt) >

√
s log+

( n

Ks

)
+
su

2

)
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6 P

(
∃1 6 s 6 f(u) :

s∑

t=1

(µ1 −Xt) >

√
s log+

( n

Ks

))

+ P

(
∃f(u) < s 6 n :

s∑

t=1

(µ1 −Xt) >
su

2

)
.

For the first term, we use a peeling argument with a geometric grid of the form 1
2ℓ+1 f(u) 6 s 6

1
2ℓ
f(u). The numerical constant in δ0 ensures that f(u) 6 n/K, which implies that for any

s 6 f(u), log+

(
n
Ks

)
= log

(
n
Ks

)
. We have

P

(
∃1 6 s 6 f(u) :

s∑

t=1

(µ1 −Xt) >

√
s log

( n

Ks

))

6

+∞∑

ℓ=0

P

(
∃ 1

2ℓ+1
f(u) 6 s 6

1

2ℓ
f(u) :

s∑

t=1

(µ1 −Xt) >

√
f(u)

2ℓ+1
log

(
n2ℓ

Kf(u)

))

6

+∞∑

ℓ=0

exp


−2

f(u) 1
2ℓ+1 log

(
n2ℓ

Kf(u)

)

f(u) 1
2ℓ


 =

+∞∑

ℓ=0

Kf(u)

n

1

2ℓ
=

16K

nu2
log

(√
n

K
u

)
.

For the second term we also use a peeling argument but with a geometric grid of the form 2ℓf(u) 6

s 6 2ℓ+1f(u):

P

(
∃s ∈ ⌈f(u)⌉, . . . , n} :

s∑

t=1

(µ1 −Xt) >
su

2

)

6

+∞∑

ℓ=0

P

(
∃2ℓf(u) 6 s 6 2ℓ+1f(u) :

s∑

t=1

(µ1 −Xt) > 2ℓ−1f(u)u

)

6

+∞∑

ℓ=0

exp

(
−2

(
2ℓ−1f(u)u

)2

f(u)2ℓ+1

)

=
+∞∑

ℓ=0

exp
(
−2ℓf(u)u2/4

)

6

+∞∑

ℓ=0

exp
(
−(ℓ+ 1)f(u)u2/4

)
=

1

exp (f(u)u2/4)− 1
=

1

nu2/K − 1
.

Putting together the last three computations, we obtain

P

(
Z < µ1 −

1

2
u

)
6

16K

nu2
log

(√
n

K
u

)
+

1

nu2/K − 1
.

Plugging this into (3.39) gives

K∑

k=k0+1

P(Z < zk)(∆k −∆k−1)

6
16K

n∆k0+1
log

(√
n

K
∆k0+1

)
+

∆k0+1

n∆2
k0+1/K − 1

+

[
−16K

nu
log

(
e

√
n

K
u

)
+

√
K

4n
log

(√ n
Ku− 1√
n
Ku+ 1

)]1

∆k0+1
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6
16K

n∆k0+1
log

(
en∆2

k0+1

K

)
+

∆k0+1

n∆2
k0+1/K − 1

+

√
K

4n
log

(√ n
K∆k0+1 + 1√
n
K∆k0+1 − 1

)

6
16K

n∆k0+1
log

(
en∆2

k0+1

K

)
+

(
75

74
+

√
75√

75− 1

)
K

n∆k0+1

where the penultimate inequality uses ∆k0+1 >

√
75K
n and log(1 + x) 6 x for any x > 0.

Gathering the results of the three steps, we get

Rn 6 n∆k0 +

K∑

k=k0+1

(
1 + 7

log
(
n
K∆2

k

)

∆k
+

exp(−14c2 log(75))

2c2(1− c2)∆k

)

+
16K

∆k0+1
log

(
en∆2

k0+1

K

)
+

(
75

74
+

√
75√

75− 1

)
K

∆k0+1

6 n∆k0 +K + (16 + 7)K
log
(
n
K∆2

k0+1

)

∆k0+1
+ (16 + 16)

K

∆k0+1

6 nδ01∆6δ0 + 23K
log
(
n
K∆2

k0+1

)

∆k0+1
+

33K

∆k0+1

6 23K
log
(
n
K max(∆, δ0)

2
)

max(∆, δ0)
+

108K

max(∆, δ0)

6 23K
log
(

110n
K max(∆, δ0)

2
)

max(∆, δ0)
,

which implies (3.13) and also Rn 6 24
√
nK. Since Proposition 2.1 implies ERn −Rn 6

√
nK,

we have proved (3.14). For (3.15), Proposition 2.1 also implies

ERn −Rn 6 min

(
K

2∆
,

√
nK

2

)
6

K
√

75

2 max(∆, δ0)
,

which implies

ERn 6 23K
log
(

133n
K max(∆, δ0)

2
)

max(∆, δ0)
.





CHAPTER 4

X -Armed Bandits

We consider a generalization of stochastic bandits where the set of arms, X , is allowed to be

a generic measurable space and the mean-payoff function is “locally Lipschitz” with respect to a

dissimilarity function that is known to the decision maker. Under this condition we construct an

arm selection policy whose regret improves upon previous results for a large class of problems.

In particular, our results imply that if X is the unit hypercube in a Euclidean space and the mean-

payoff function has a finite number of global maxima around which the behavior of the function

is locally Hölder with a known exponent, then the expected regret is bounded up to a logarithmic

factor by
√
n, i.e., the rate of the growth of the regret is independent of the dimension of the space.

We also prove the minimax optimality of our algorithm when the dissimilarity is a metric.
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This chapter is a joint work with Rémi Munos, Gilles Stoltz and Csaba Szepesvari. It is

based on the extended version Bubeck et al. [2009d] (currently under submission) of Bubeck et al.

[2009c] which appeared in Advances in Neural Information Processing Systems 22.

1. Introduction

In the classical stochastic bandit problem, described in Chapter 2, a gambler tries to maximize

his revenue by sequentially playing one of a finite number of slot machines that are associated

with initially unknown (and potentially different) payoff distributions [Robbins, 1952]. Assuming
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old-fashioned slot machines, the gambler pulls the arms of the machines one by one in a sequen-

tial manner, simultaneously learning about the machines’ payoff-distributions and gaining actual

monetary reward. Thus, in order to maximize his gain, the gambler must choose the next arm by

taking into consideration both the urgency of gaining reward (“exploitation”) and acquiring new

information (“exploration”).

Maximizing the total cumulative payoff is equivalent to minimizing the (total) regret, i.e.,

minimizing the difference between the total cumulative payoff of the gambler and the one of

another clairvoyant gambler who chooses the arm with the best mean-payoff in every round. The

quality of the gambler’s strategy can be characterized as the rate of growth of his expected regret

with time. In particular, if this rate of growth is sublinear, the gambler in the long run plays as well

as the clairvoyant gambler. In this case the gambler’s strategy is called Hannan consistent.

Bandit problems have been studied in the Bayesian framework [Gittins, 1989], as well as in

the frequentist parametric [Lai and Robbins, 1985, Agrawal, 1995a] and non-parametric settings

[Auer et al., 2002], and even in non-stochastic scenarios Auer et al. [2003], Cesa-Bianchi and

Lugosi [2006]. While in the Bayesian-case the question is how to play optimally (i.e., the problem

is really a computational problem), in the frequentist case the question is how to achieve low rate

of growth of the regret in the lack of prior information, i.e., it is a statistical question. In this

chapter we consider the stochastic, frequentist, non-parametric setting.

Although the first papers studied bandits with a finite number of arms, researchers have soon

realized that bandits with infinitely many arms are also interesting, as well as practically sig-

nificant. One particularly important case is when the arms are identified by a finite number of

continuous-valued parameters, resulting in online optimization problems over continuous finite-

dimensional spaces. Such problems are ubiquitous to operations research and control. Examples

are “pricing a new product with uncertain demand in order to maximize revenue, controlling the

transmission power of a wireless communication system in a noisy channel to maximize the num-

ber of bits transmitted per unit of power, and calibrating the temperature or levels of other inputs

to a reaction so as to maximize the yield of a chemical process” [Cope, 2004]. Other examples

are optimizing parameters of schedules, rotational systems, traffic networks or online parameter

tuning of numerical methods. During the last decades numerous authors have investigated such

“continuum-armed” bandit problems [Agrawal, 1995b, Kleinberg, 2004, Auer et al., 2007, Klein-

berg et al., 2008a, Cope, 2004]. A special case of interest, which forms a bridge between the case

of a finite number of arms and the continuum-armed setting, is formed by bandit linear optimiza-

tion, see [Dani et al., 2008] and the references therein.

In many of the above-mentioned problems, however, the natural domain of some of the op-

timization parameters is a discrete set, while other parameters are still continuous-valued. For

example, in the pricing problem different product lines could also be tested while tuning the price,

or in the case of transmission power control different protocols could be tested while optimiz-

ing the power. In other problems, such as in online sequential search, the parameter-vector to be

optimized is an infinite sequence over a finite alphabet [Coquelin and Munos, 2007].

The motivation for this chapter is to handle all these various cases in a unified framework.

More precisely, we consider a general setting that allows us to study bandits with almost no re-

striction on the set of arms. In particular, we allow the set of arms to be an arbitrary measurable

space. Since we allow non-denumerable sets, we shall assume that the gambler has some knowl-

edge about the behavior of the mean-payoff function (in terms of its local regularity around its

maxima, roughly speaking). This is because when the set of arms is uncountably infinite and ab-

solutely no assumptions are made on the payoff function, it is impossible to construct a strategy

that simultaneously achieves sublinear regret for all bandits problems. When the set of arms is a
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continuous metric space previous works have assumed either the global smoothness of the payoff

function [Agrawal, 1995b, Kleinberg, 2004, Kleinberg et al., 2008a, Cope, 2004] or local smooth-

ness in the vicinity of the maxima Auer et al. [2007]. These smoothness assumptions are indeed

reasonable in many practical problems of interest.

In this chapter, we assume that there exists a dissimilarity function that constraints the behavior

of the mean-payoff function. In particular, the dissimilarity function is assumed to locally set a

bound on the decrease of the mean-payoff function at each of its global maxima. We also assume

that the decision maker can construct a recursive covering of the space of arms in such a way that

the diameters of the sets in the covering shrink at a known geometric rate when measured with this

dissimilarity.

Our work generalizes and improves previous works on continuum-armed bandits. Kleinberg

[2004] and Auer et al. [2007] focused on one-dimensional problems. Recently, Kleinberg et al.

[2008a] considered generic metric spaces assuming that the mean-payoff function is Lipschitz

with respect to the (known) metric of the space. They proposed a novel algorithm that achieves

essentially the best possible regret in a minimax sense with respect to these environments. The

goal of this chapter is to further these works in a number of ways:

(i): we allow the set of arms to be a generic measurable space;

(ii): we propose a practical algorithm motivated by the recent successful tree-based op-

timization algorithms Kocsis and Szepesvari [2006], Gelly et al. [2006], Coquelin and

Munos [2007];

(iii): we show that the algorithm is able to exploit higher order of smoothness.

In particular, as we shall argue in Section 5, (i) improves upon the results of Auer et al. [2007],

while (i), (ii) and (iii) improve upon the work of Kleinberg et al. [2008a]. Compared to Kleinberg

et al. [2008a], our work represents an improvement in the fact that just like Auer et al. [2007] we

make use of the local properties of the mean-payoff function around the maxima only and do not

assume a global property, such as Lipschitzness in the whole space. This allows us to obtain a

regret which scales as Õ
(√
n
)

1 when, e.g., the space is the unit hypercube and the mean-payoff

function is locally Hölder continuous with known exponent in the neighborhood of any global

maximum (these global maxima being finite in number) and bounded away from the maxima out-

side of these neighborhoods. Thus, we get the desirable property that the rate of growth of the

regret is independent of the dimensionality of the input space. We also prove a minimax lower

bound that matches our upper bound up to logarithmic factors, showing that the performance of

our algorithm is essentially unimprovable in a minimax sense. Besides these theoretical advances,

the algorithm is anytime and easy to implement. Since it is based on ideas that have proved to be

efficient in search and planning [Gelly and Silver, 2007, 2008, Schadd et al., 2008, Chaslot et al.,

2008, Finnsson and Bjornsson, 2008], we expect it to perform equally well in practice and to make

a significant impact on how online global optimization is performed.

Outline.

(1) In Section 2 we formalize the X–armed bandit problem.

(2) In Section 3 we describe the basic strategy proposed, called HOO (hierarchical optimistic

optimization).

(3) We present the main results in Section 4. We start by specifying and explaining our as-

sumptions (Section 4.1) under which various regret bounds are proved. Then we prove

1We write un = eO(vn) when un = O(vn) up to a logarithmic factor.
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a distribution-dependent bound for the basic version of HOO (Section 4.2). A prob-

lem with the basic algorithm is that its computational cost increases quadratically with

the number of time steps. Assuming the knowledge of the horizon, we thus propose a

computationally more efficient variant of the basic algorithm, called truncated HOO and

prove that it enjoys a regret bound identical to the one of the basic version (Section 4.3)

while its computational complexity is only log-linear in the number of time steps. The

first set of assumptions constrains the mean-payoff function everywhere. A second set

of assumptions is therefore presented that puts constraints on the mean-payoff function

only in a small vicinity of its global maxima; we then propose another algorithm, called

local HOO, which is proven to enjoy a regret again essentially similar to the one of the

basic version (Section 4.4). Finally, we prove the minimax optimality of HOO in metric

spaces (Section 4.5).

(4) In Section 5 we compare the results of this chaper with previous works.

2. Problem setup

A stochastic bandit problem B is a pair B = (X ,M), where X is a measurable space of arms

and M determines the distribution of rewards associated with each arm. We say that M is a bandit

environment on X . Formally, M is an mapping X → M1(R), where M1(R) is the space of

probability distributions over the reals. The distribution assigned to arm x ∈ X is denoted by Mx.

We require that for each arm x ∈ X , the distribution Mx admits a first-order moment; we then

denote by f(x) its expectation (“mean payoff”),

f(x) =

∫
y dMx(y) .

The mean-payoff function f thus defined is assumed to be measurable. For simplicity, we shall

also assume that all Mx have bounded supports, included in some fixed bounded interval2, say, the

unit interval [0, 1]. Then, f also takes bounded values, in [0, 1].

A decision maker (the gambler of the introduction) that interacts with a stochastic bandit

problem B plays a game at discrete time steps according to the following rules. In the first round

the decision maker can select an arm X1 ∈ X and receives a reward Y1 drawn at random from

MX1 . In round n > 1 the decision maker can select an arm Xn ∈ X based on the information

available up to time n, i.e., (X1, Y1, . . . , Xn−1, Yn−1), and receives a reward Yn drawn fromMXn ,

independently of (X1, Y1, . . . , Xn−1, Yn−1) givenXn. Note that a decision maker may randomize

his choice, but can only use information available up to the point in time when the choice is made.

Formally, a strategy of the decision maker in this game (“bandit strategy”) can be described

by an infinite sequence of measurable mappings, ϕ = (ϕ1, ϕ2, . . .), where ϕn maps the space of

past observations,

Hn =
(
X × [0, 1]

)n−1
,

to the space of probability measures over X . By convention, ϕ1 does not take any argument. A

strategy is called deterministic if for every n, ϕn is a Dirac distribution.

The goal of the decision maker is to maximize his expected cumulative reward. Equivalently,

the goal can be expressed as minimizing the expected cumulative regret, which is defined as fol-

lows. Let

f∗ = sup
x∈X

f(x)

2More generally, our results would also hold when the tails of the reward distributions are uniformly sub-Gaussian.
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be the best expected payoff in a single round. At round n, the cumulative regret of a decision

maker playing B is

Rn = n f∗ −
n∑

t=1

f(Xt) .

Note that this definition differs from the ones in Chapter 2 and 3. Indeed, in stochastic bandits

games the distinction between regret and pseudo-regret is rather unnatural. From now we shall

call E[Rn] the expected regret (rather than the pseudo-regret) and focus on this quantity.

REMARK 4.1. As it is argued in Chapter 6, in many real-world problems, the decision maker

is not interested in his cumulative regret but rather in its simple regret. The latter can be defined

as follows. After n rounds of play in a stochastic bandit problem B, the decision maker is asked to

make a recommendation Zn ∈ X based on the n obtained rewards Y1, . . . , Yn. The simple regret

of this recommendation equals

rn = f∗ − f(Zn) .

In this chaper we focus on the cumulative regret Rn, but all the results can be readily extended to

the simple regret by considering the recommendation Zn = XTn , where Tn is drawn uniformly at

random in {1, . . . , n}. Indeed, in this case,

E
[
rn
]

6
E
[
Rn
]

n
.

3. The Hierarchical Optimistic Optimization (HOO) strategy

The HOO strategy (cf. Algorithm 1) incrementally builds an estimate of the mean-payoff func-

tion f over X . The core idea (as in previous works) is to estimate f precisely around its maxima,

while estimating it loosely in other parts of the space X . To implement this idea, HOO maintains a

binary tree whose nodes are associated with measurable regions of the arm-space X such that the

regions associated with nodes deeper in the tree (further away from the root) represent increasingly

smaller subsets of X . The tree is built in an incremental manner. At each node of the tree, HOO

stores some statistics based on the information received in previous rounds. In particular, HOO

keeps track of the number of times a node was traversed up to round n and the corresponding

empirical average of the rewards received so far. Based on these, HOO assigns an optimistic es-

timate (denoted by B) to the maximum mean-payoff associated with each node. These estimates

are then used to select the next node to “play”. This is done by traversing the tree, beginning

from the root, and always following the node with the highest B–value (cf. lines 4–14 of Algo-

rithm 1). Once a node is selected, a point in the region associated with it is chosen (line 16) and is

sent to the environment. Based on the point selected and the received reward, the tree is updated

(lines 18–33).

The tree of coverings which HOO needs to receive as an input is an infinite binary tree whose

nodes are associated with subsets of X . The nodes in this tree are indexed by pairs of integers

(h, i); node (h, i) is located at depth h > 0 from the root. The range of the second index, i,

associated with nodes at depth h is restricted by 1 6 i 6 2h. Thus, the root node is denoted by

(0, 1). By convention, (h + 1, 2i − 1) and (h + 1, 2i) are used to refer to the two children of the

node (h, i). Let Ph,i ⊂ X be the region associated with node (h, i). By assumption, these regions

are measurable and must satisfy the constraints

P0,1 = X ,(4.1a)

Ph,i = Ph+1,2i−1 ∪ Ph+1,2i , for all h > 0 and 1 6 i 6 2h.(4.1b)
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As a corollary, the regions Ph,i at any level h > 0 cover the space X ,

X =

2h⋃

i=1

Ph,i ,

explaining the term “tree of coverings”.

In the algorithm listing the recursive computation of the B–values (lines 28–33) makes a local

copy of the tree; of course, this part of the algorithm could be implemented in various other ways.

Other arbitrary choices in the algorithm as shown here are how tie breaking in the node selection

part is done (lines 9–12), or how a point in the region associated with the selected node is chosen

(line 16). We note in passing that implementing these differently would not change our results.

To facilitate the formal study of the algorithm, we shall need some more notation. In particular,

we shall introduce time-indexed versions (Tn, (Hn, In), Xn, Yn, µ̂h,i(n), etc.) of the quantities

used by the algorithm. The convention used is that the indexation by n is used to indicate the value

taken at the end of the n–th round.

In particular, Tn is used to denote the finite subtree stored by the algorithm at the end of round

n. Thus, the initial tree is T0 = {(0, 1)} and it is expanded round after round as

Tn = Tn−1 ∪ {(Hn, In)} ,
where (Hn, In) is the node selected in line 16. We call (Hn, In) the node played in round n. We

useXn to denote the point selected by HOO in the region associated with the node played in round

n, while Yn denotes the received reward.

Node selection works by comparing B–values and always choosing the node with the highest

B–value. The B–value, Bh,i(n), at node (h, i) by the end of round n is an estimated upper bound

on the mean-payoff function at node (h, i). To define it we first need to introduce the average of

the rewards received in rounds when some descendant of node (h, i) was chosen (by convention,

each node is a descendant of itself):

µ̂h,i(n) =
1

Th,i(n)

n∑

t=1

Yt I{(Ht,It)∈C(h,i)} .

Here, C(h, i) denotes the set of all descendants of a node (h, i) in the infinite tree,

C(h, i) =
{
(h, i)

}
∪ C(h+ 1, 2i− 1) ∪ C(h+ 1, 2i) ,

and Th,i(n) is the number of times a descendant of (h, i) is played up to and including round n,

that is,

Th,i(n) =

n∑

t=1

I{(Ht,It)∈C(h,i)} .

A key quantity determining Bh,i(n) is Uh,i(n), an initial estimate of the maximum of the mean-

payoff function in the region Ph,i associated with node (h, i):

(4.2) Uh,i(n) =





µ̂h,i(n) +

√
2 lnn

Th,i(n)
+ ν1ρ

h, if Th,i(n) > 0;

+∞, otherwise.

In the expression corresponding to the case Th,i(n) > 0, the first term added to the average of

rewards accounts for the uncertainty arising from the randomness of the rewards that the average

is based on, while the second term, ν1ρ
h, accounts for the maximum possible variation of the

mean-payoff function over the region Ph,i. The actual bound on the maxima used in HOO is
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Algorithm 1 The HOO strategy

Parameters: Two real numbers ν1 > 0 and ρ ∈ (0, 1), a sequence (Ph,i)h>0,16i62h of subsets

of X satisfying the conditions (4.1a) and (4.1b).

Auxiliary function LEAF(T ): outputs a leaf of T .

Initialization: T =
{
(0, 1)

}
and B1,2 = B2,2 = +∞.

1: for n = 1, 2, . . . do ⊲ Strategy HOO in round n > 1
2: (h, i)← (0, 1) ⊲ Start at the root

3: P ← {(h, i)} ⊲ P stores the path traversed in the tree

4: while (h, i) ∈ T do ⊲ Search the tree T
5: if Bh+1,2i−1 > Bh+1,2i then ⊲ Select the “more promising” child

6: (h, i)← (h+ 1, 2i− 1)
7: else if Bh+1,2i−1 < Bh+1,2i then

8: (h, i)← (h+ 1, 2i)
9: else ⊲ Tie-breaking rule

10: Z ∼ Ber(0.5) ⊲ e.g., choose a child at random

11: (h, i)← (h+ 1, 2i− Z)
12: end if

13: P ← P ∪ {(h, i)}
14: end while

15: (H, I)← (h, i) ⊲ The selected node

16: Choose arm X in PH,I and play it ⊲ Arbitrary selection of an arm

17: Receive corresponding reward Y
18: T ← T ∪ {(H, I)} ⊲ Extend the tree

19: for all (h, i) ∈ P do ⊲ Update the statistics T and µ̂ stored in the path

20: Th,i ← Th,i + 1 ⊲ Increment the counter of node (h, i)
21: µ̂h,i ←

(
1− 1/Th,i

)
µ̂h,i + Y/Th,i ⊲ Update the mean µ̂h,i of node (h, i)

22: end for

23: for all (h, i) ∈ T do ⊲ Update the statistics U stored in the tree

24: Uh,i ← µ̂h,i +
√

(2 lnn)/Th,i + ν1ρ
h ⊲ Update the U–value of node (h, i)

25: end for

26: BH+1,2I−1 ← +∞ ⊲ B–values of the children of the new leaf

27: BH+1,2I ← +∞
28: T ′ ← T ⊲ Local copy of the current tree T
29: while T ′ 6=

{
(0, 1)

}
do ⊲ Backward computation of the B–values

30: (h, i)← LEAF(T ′) ⊲ Take any remaining leaf

31: Bh,i ← min
{
Uh,i, max

{
Bh+1,2i−1, Bh+1,2i

}}
⊲ Backward computation

32: T ′ ← T ′ \
{
(h, i)

}
⊲ Drop updated leaf (h, i)

33: end while

34: end for

defined recursively by

Bh,i(n) =





min
{
Uh,i(n), max

{
Bh+1,2i−1(n), Bh+1,2i(n)

}}
, if (h, i) ∈ Tn;

+∞, otherwise.

The role of Bh,i(n) is to put a tight, optimistic, high-probability upper bound on the best mean-

payoff that can be achieved in the region Ph,i. By assumption, Ph,i = Ph+1,2i−1 ∪ Ph+1,2i.

Thus, assuming that Bh+1,2i−1(n) (resp., Bh+1,2i(n)) is a valid upper bound for region Ph+1,2i−1

(resp., Ph+1,2i), we see that max
{
Bh+1,2i−1(n), Bh+1,2i(n)

}
must be a valid upper bound for
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h,i
B

B
h+1,2i−1

B
h+1,2i

(H  ,I  )n n

Followed path

Pulled point Xn

Selected node

Figure 1: Illustration of the node selection procedure in round n. The tree represents Tn. In the

illustration, Bh+1,2i−1(n − 1) > Bh+1,2i(n − 1), therefore, the selected path included the node

(h+ 1, 2i− 1) rather than the node (h+ 1, 2i).

region Ph,i. Since Uh,i(n) is another valid upper bound for region Ph,i, we get a tighter upper

bound by taking the minimum of these bounds.

Obviously, for leafs (h, i) of the tree Tn, one has Bh,i(n) = Uh,i(n), while close to the root

one may expect that Bh,i(n) < Uh,i(n); that is, the upper bounds close to the root are expected to

be less biased than the ones associated with nodes farther away from the root.

Note that at the beginning of round n, the algorithm uses Bh,i(n − 1) to select the node

(Hn, In) to be played (since Bh,i(n) will only be available at the end of round n). It does so

by following a path from the root node to an inner node with only one child or a leaf and finally

considering a child (Hn, In) of the latter; at each node of the path, the child with highest B–value

is chosen, till the node (Hn, In) with infinite B–value is reached.

Illustrations. Figure 1 illustrates the computation done by HOO in round n, as well as the corre-

spondence between the nodes of the tree constructed by the algorithm and their associated regions.

Figure 2 shows trees built by running HOO for a specific environment.

Computational complexity. At the end of round n, the size of the active tree Tn is at most n,

making the storage requirements of HOO linear in n. In addition, the statistics and B–values of

all nodes in the active tree need to be updated, which thus takes time O(n). HOO runs in time

O(n) at each round n, making the algorithm’s total running time up to round n quadratic in n. In

Section 4.3 we modify HOO so that if the time horizon n0 is known in advance, the total running

time is O(n0 lnn0), while the modified algorithm will be shown to enjoy essentially the same

regret bound as the original version.
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Figure 2: The trees (bottom figures) built by HOO after 1,000 (left) and 10,000 (right)

rounds. The mean-payoff function (shown in the top part of the figure) is x ∈ [0, 1] 7−→
1/2
(
sin(13x) sin(27x) + 1

)
; the corresponding payoffs are Bernoulli-distributed. The inputs of

HOO are as follows: the tree of coverings is formed by all dyadic intervals, ν1 = 1 and ρ = 1/2.

The tie-breaking rule is to choose a child at random (as shown in the Algorithm 1), while the points

in X to be played are chosen as the centers of the dyadic intervals. Note that the tree is extensively

refined where the mean-payoff function is near-optimal, while it is much less developed in other

regions.

4. Main results

We start by describing and commenting the assumptions that we need to analyze the regret of

HOO. This is followed by stating the first upper bound, followed by some improvements on the

basic algorithm. The section is finished by the statement of our results on the minimax optimality

of HOO.

4.1. Assumptions. The main assumption will concern the “smoothness” of the mean-payoff

function. However, somewhat unconventionally, we shall use a notion of smoothness that is built

around dissimilarity functions rather than distances, allowing us to deal with function classes of

highly different smoothness orders in a unified manner. Before stating our smoothness assump-

tions, we define the notion of a dissimilarity function and some associated concepts.

DEFINITION 4.1 (Dissimilarity). A dissimilarity ℓ overX is a non-negative mapping ℓ : X 2 →
R satisfying ℓ(x, x) = 0 for all x ∈ X .

Given a dissimilarity ℓ, the diameter of a subset A of X as measured by ℓ is defined by

diam(A) = sup
x,y∈A

ℓ(x, y) ,

while the ℓ–open ball of X with radius ε > 0 and center x ∈ X is defined by

B(x, ε) = { y ∈ X : ℓ(x, y) < ε } .
Note that the dissimilarity ℓ will be mostly used in the theoretical analysis of HOO; however, by

carefully choosing the parameters of HOO (the tree of coverings and the real numbers ν1 > 0 and

ρ < 1) for the (set of) two assumptions below to be satisfied, the user of the algorithm effectively

chooses a dissimilarity. He however does not have to construct it explicitly.
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Assumptions Given the parameters of HOO, that is, the real numbers ν1 > 0 and ρ ∈ (0, 1)

and the tree of coverings (Ph,i), there exists a dissimilarity function ℓ such that the following two

assumptions are satisfied.

A1. There exists ν2 > 0 such that for all integers h > 0,

(a) diam(Ph,i) 6 ν1ρ
h for all i = 1, . . . , 2h;

(b) for all i = 1, . . . , 2h, there exists x◦h,i ∈ Ph,i such that

Bh,i def
= B

(
x◦h,i, ν2ρ

h
)
⊂ Ph,i ;

(c) Bh,i ∩ Bh,j = ∅ for all 1 6 i < j 6 2h.

A2. The mean-payoff function f satisfies that for all x, y ∈ X ,

(4.3) f∗ − f(y) 6 f∗ − f(x) + max
{
f∗ − f(x), ℓ(x, y)

}
.

Assumption A1 ensures that the regions in the tree of coverings (Ph,i) shrink exactly at a

geometric rate. The following example shows how to satisfy A1 when the domain X is a D–

dimensional hyper-rectangle and the dissimilarity is some positive power of the Euclidean (or

supremum) norm.

EXAMPLE 4.1. Assume that X is a D-dimension hyper-rectangle and consider the dissimi-

larity ℓ(x, y) = b‖x − y‖a2, where a > 0 and b > 0 are real numbers and ‖ · ‖2 is the Euclidean

norm. Define the tree of coverings (Ph,i) in the following inductive way: let P0,1 = X . Given a

node Ph,i, let Ph+1,2i−1 and Ph+1,2i be obtained from the hyper-rectangle Ph,i by splitting it in

the middle along its longest side (ties can be broken arbitrarily).

We now argue that Assumption A1 is satisfied. With no loss of generality we take X = [0, 1]D.

Then, for all integers u > 0 and 0 6 k 6 D − 1,

diam(PuD+k,1) = b

(
1

2u

√
D − 3

4
k

)a
6 b

(√
D

2u

)a
.

It is now easy to see that Assumption A1 is satisfied for the indicated dissimilarity, e.g., with the

choice of the parameters ρ = 2−a/D and ν1 = b
(
2
√
D
)a

for HOO, and the value ν2 = b/2a.

EXAMPLE 4.2. In the same setting, with the same tree of coverings (Ph,i) over X = [0, 1]D,

but now with the dissimilarity ℓ(x, y) = b‖x − y‖a∞, we get that for all integers u > 0 and

0 6 k 6 D − 1,

diam(PuD+k,1) = b

(
1

2u

)a
.

This time, Assumption A1 is satisfied, e.g., with the choice of the parameters ρ = 2−a/D and

ν1 = b 2a for HOO, and the value ν2 = b/2a.

The second assumption, A2, concerns the environment; when Assumption A2 is satisfied, we

say that f is weakly Lipschitz with respect to (w.r.t.) ℓ. The choice of this terminology follows

from the fact that if f is 1–Lipschitz w.r.t. ℓ, i.e., for all x, y ∈ X , one has |f(x)−f(y)| 6 ℓ(x, y),

then it is also weakly Lipschitz w.r.t. ℓ.

On the other hand, weak Lipschitzness is a milder requirement. It implies local (one-sided)

1–Lipschitzness at any global maximum, since at any arm x∗ such that f(x∗) = f∗, the criterion

(4.3) rewrites to f(x∗)− f(y) 6 ℓ(x∗, y). In the vicinity of other arms x, the constraint is milder

as the arm x gets worse (as f∗ − f(x) increases) since the condition (4.3) rewrites to

∀ y ∈ X , f(x)− f(y) 6 max
{
f∗ − f(x), ℓ(x, y)

}
.
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Figure 3: Illustration of the property of weak Lipschitzness.

Here is another interpretation of these two facts; it will be useful when considering local

assumptions in Section 4.4 (a weaker set of assumptions). First, concerning the behavior around

global maxima, Assumption A2 implies that for any set A ⊂ X with supx∈A f(x) = f∗,

(4.4) f∗ − inf
x∈A

f(x) 6 diam(A).

Second, it can be seen that Assumption A2 is equivalent3 to the following property: for all x ∈ X
and ε > 0,

(4.5) B
(
x, f∗ − f(x) + ε

)
⊂ X

2
(
f∗−f(x)

)
+ε

where

Xε =
{
x ∈ X : f(x) > f∗ − ε

}

denotes the set of ε–optimal arms. This second property essentially states that there is no sud-

den and large drop in the mean-payoff function (note that this property can be satisfied even for

discontinuous functions).

Figure 3 presents an illustration of the two properties discussed above.

Before stating our main results, we provide a straightforward, though useful consequence of

Assumptions A1 and A2, which should be seen as an intuitive justification for the third term in

(4.2).

For all nodes (h, i), let

f∗h,i = sup
x∈Ph,i

f(x) and ∆h,i = f∗ − f∗h,i .

∆h,i is called the suboptimality factor of node (h, i). Depending whether it is positive or not, a

node (h, i) is called suboptimal (∆h,i > 0) or optimal (∆h,i = 0).

LEMMA 4.1. Under Assumptions A1 and A2, if the suboptimality factor ∆h,i of a region Ph,i
is bounded by cν1ρ

h for some c > 0, then all arms in Ph,i are max{2c, c+ 1} ν1ρ
h–optimal, that

is,

Ph,i ⊂ Xmax{2c,c+1} ν1ρh .

PROOF. For all δ > 0, we denote by x∗h,i(δ) an element of Ph,i such that

f
(
x∗h,i(δ)

)
> f∗h,i − δ = f∗ −∆h,i − δ .

3That Assumption A2 implies (4.5) is immediate; for the converse, it suffices to consider, for each y ∈ X , the sequence

εn =
“

ℓ(x, y) −
`

f∗ − f(x)
´

”

+
+ 1/n ,

where ( · )+ denotes the nonnegative part.



92 CHAPTER 4. X -ARMED BANDITS

By the weak Lipschitz property (Assumption A2), it then follows that for all y ∈ Ph,i,

f∗ − f(y) 6 f∗ − f
(
x∗h,i(δ)

)
+ max

{
f∗ − f

(
x∗h,i(δ)

)
, ℓ
(
x∗h,i(δ), y

)}

6 ∆h,i + δ + max
{
∆h,i + δ, diamPh,i

}
.

Letting δ → 0 and substituting the bounds on the suboptimality and on the diameter of Ph,i
(Assumption A1) concludes the proof. �

4.2. Upper bound for the regret of HOO. Auer et al. [Auer et al., 2007, Assumption 2]

observed that the regret of a continuum-armed bandit algorithm should depend on how fast the

volumes of the sets of ε–optimal arms shrink as ε → 0. Here, we capture this by defining a

new notion, the near-optimality dimension of the mean-payoff function. The connection between

these concepts, as well as with the zooming dimension defined by Kleinberg et al. [2008a], will be

further discussed in Section 5. We start by recalling the definition of packing numbers.

DEFINITION 4.2 (Packing number). The ε–packing number N (X , ℓ, ε) of X w.r.t. the dis-

similarity ℓ is the size of the largest packing of X with disjoint ℓ–open balls of radius ε. That

is, N (X , ℓ, ε) is the largest integer k such that there exists k disjoint ℓ–open balls with radius ε

contained in X .

We now define the c–near-optimality dimension, which characterizes the size of the sets Xcε
as a function of ε. It can be seen as some growth rate in ε of the metric entropy (measured in terms

of ℓ and with packing numbers rather than covering numbers) of the set of cε–optimal arms.

DEFINITION 4.3 (Near-optimality dimension). For c > 0 the c–near-optimality dimension of

f w.r.t. ℓ equals

max

{
0, lim sup

ε→0

ln N
(
Xcε, ℓ, ε

)

ln
(
ε−1
)

}
.

The following example shows that using a dissimilarity (rather than a metric, for instance)

may sometimes allow for a significant reduction of the near-optimality dimension.

EXAMPLE 4.3. LetX = [0, 1]D and let f : [0, 1]D → [0, 1] be defined by f(x) = 1−‖x‖a for

some a > 1 and some norm ‖·‖ on RD. Consider the dissimilarity ℓ defined by ℓ(x, y) = ‖x−y‖a.

We shall see in Example 4.4 that f is weakly Lipschitz w.r.t. ℓ (in a sense however slightly weaker

than the one given by (4.4) and (4.5) but sufficiently strong to ensure a result similar to the one of

the main result, Theorem 4.1 below). Here we claim that the c–near-optimality dimension (for any

c > 0) of f w.r.t. ℓ is 0. On the other hand, the c–near-optimality dimension (for any c > 0) of f

w.r.t. the dissimilarity ℓ′ defined, for 0 < b < a, by ℓ′(x, y) = ‖x− y‖b is (1/b− 1/a)D > 0. In

particular, when a > 1 and b = 1, the c–near-optimality dimension is (1− 1/a)D.

PROOF. (sketch) Fix c > 0. The set Xcε is the ‖ · ‖–ball with center 0 and radius

(cε)1/a, that is, the ℓ–ball with center 0 and radius cε. Its ε–packing number w.r.t. ℓ

is bounded by a constant depending only on D, c and a; hence, the value 0 for the

near-optimality dimension w.r.t. the dissimilarity ℓ.

In case of ℓ′, we are interested in the packing number of the ‖ · ‖–ball with center

0 and radius (cε)1/a w.r.t. ℓ′–balls. The latter is of the order of

(
(cε)1/a

ε1/b

)D

= cD/a
(
ε−1
)(1/b−1/a)D

;

hence, the value (1/b − 1/a)D for the near-optimality dimension in the case of the

dissimilarity ℓ′.
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Note that in all these cases the c–near-optimality dimension of f is independent of

the value of c. �

We can now state our first main result. The proof is presented in Section 6.1.

THEOREM 4.1 (Regret bound for HOO). Consider HOO tuned with parameters such that As-

sumptions A1 and A2 hold for some dissimilarity ℓ. Let d be the 4ν1/ν2–near-optimality dimension

of the mean-payoff function f w.r.t. ℓ. Then, for all d′ > d, there exists a constant γ such that for

all n > 1,

E
[
Rn
]

6 γ n(d′+1)/(d′+2)
(
lnn

)1/(d′+2)
.

Note that if d is infinite, then the bound is vacuous. The constant γ in the theorem depends on

d′ and on all other parameters of HOO and of the assumptions, as well as on the bandit environment

M . The next section will exhibit a refined upper bound with a more explicit value of γ in terms of

all these parameters.

REMARK 4.2. The tuning of the parameters of HOO is critical for the assumptions to be

satisfied, thus to achieve a good regret; given some environment, one should select the parameters

of HOO such that the near-optimality dimension of the mean-payoff function is minimized. In the

lack of knowledge of the mean-payoff function This might be difficult to achieve. Thus, ideally,

these parameters should be selected adaptively based on the observation of some preliminary

sample. For now, the investigation of this possibility is left for future work.

4.3. Improving the running time when the time horizon is known. A deficiency of the

basic HOO algorithm is that its computational complexity scales quadratically with the number

of time steps. In this section we propose a simple modification to HOO that achieves essentially

the same regret as HOO and whose computational complexity scales only log-linearly with the

number of time steps. The needed amount of memory is still linear. We work out the case when

the time horizon, n0, is known in advance. The case of unknown horizon can be dealt with by

resorting to the doubling trick.

We consider two modifications to the algorithm described in Section 3. First, the quantities

Uh,i(n) of (4.2) are redefined by replacing the factor lnn by lnn0, that is, now

Uh,i(n) = µ̂h,i(n) +

√
2 lnn0

Th,i(n)
+ ν1ρ

h .

(This results in a policy exploring somewhat more uniformly the arms.) The definition of the B–

values in terms of the Uh,i(n) is unchanged. A pleasant consequence of the above modification

is that the B–value of a given node changes only when this node is part of a path selected by

the algorithm. Thus at each round n, only the nodes along the chosen path need to be updated

according to the obtained reward.

However, and this is the reason for the second modification, in the basic algorithm, a path at

round n may be of length linear in n (because the tree could have a depth linear in n). This is why

we also truncate the trees Tn at a depth Dn0 of the order of lnn0. More precisely, the algorithm

now selects the node (Hn, In) to pull at round n by following a path in the tree Tn−1, starting from

the root and choosing at each node the child with the highest B–value (with the new definition

above using lnn0), and stopping either when it encounters a node which has not been expanded

before or a node at depth equal to

Dn0 =

⌈
(lnn0)/2− ln(1/ν1)

ln(1/ρ)

⌉
.
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(It is assumed that n0 > 1/ν2
1 so thatDn0 > 1.) Note that since no child of a node (Dn0 , i) located

at depth Dn0 will ever be explored, its B–value at round n 6 n0 simply equals UDn0 ,i
(n).

We call this modified version of HOO the truncated HOO algorithm. The computational

complexity of updating all B–values at each round n is of the order of Dn0 and thus of the order

of lnn0. The total computational complexity up to round n0 is therefore of the order of n0 lnn0,

as claimed in the introduction of this section.

As the next theorem indicates this new procedure enjoys almost the same cumulative regret

bound as the basic HOO algorithm.

THEOREM 4.2 (Upper bound on the regret of truncated HOO). Fix a horizon n0 such that

Dn0 > 1. Then, the regret bound of Theorem 4.1 still holds true at round n0 for truncated HOO

up to an additional additive 4
√
n0 factor.

4.4. Local assumptions. In this section we weaken somewhat the weak Lipschitz assump-

tion and require it only to hold locally around the maximum. For the sake of simplicity and to

derive exact constants we also state in a more explicit way the assumption on the near-optimality

dimension. We then propose a simple and efficient adaptation of the HOO algorithm suited for

this context.

4.4.1. Modified set of assumptions.

Assumptions Given the parameters of (the adaption of) HOO, that is, the real numbers ν1 > 0

and ρ ∈ (0, 1) and the tree of coverings (Ph,i), there exists a dissimilarity function ℓ such that

Assumption A1 (for some ν2 > 0) as well as the following two assumptions hold.

A2’. There exists ε0 > 0 such that for all optimal subsets A ⊂ X (i.e., supx∈A f(x) = f∗)

with diameter diam(A) 6 ε0,

f∗ − inf
x∈A

f(x) 6 diam(A) .

Further, there exists L > 0 such that for all x ∈ Xε0 and ε ∈ [0, ε0],

B
(
x, f∗ − f(x) + ε

)
⊂ X

L
(
2(f∗−f(x))+ε

) .

A3. There exist C > 0 and d > 0 such that for all ε 6 ε0,

N
(
Xcε, ℓ, ε

)
6 Cε−d ,

where c = 4Lν1/ν2.

When f satisfies Assumption A2’, we say that f is ε0–locally L–weakly Lipschitz w.r.t. ℓ.

Note that this assumption was obtained by weakening the characterizations (4.4) and (4.5) of weak

Lipschitzness.

Assumption A3 is not a real assumption but merely a reformulation of the definition of near

optimality (with the small added ingredient that the limit can be achieved, see the second step of

the proof of Theorem 4.1 in Section 6.1).

EXAMPLE 4.4. We consider again the domain X and function f studied in Example 4.3 and

prove (as announced beforehand) that f is ε0–locally 2a−1–weakly Lipschitz w.r.t. the dissimilarity

ℓ defined by ℓ(x, y) = ‖x− y‖a; which, in fact, holds for all ε0.

PROOF. Note that x∗ = (0, . . . , 0) is such that f∗ = 1 = f(x∗). Therefore, for

all x ∈ X ,

f∗ − f(x) = ‖x‖a = ℓ(x∗, x) ,

which yields the first part of Assumption A2’. To prove that the second part is true for

L = 2a−1 and with no constraint on the considered ε, we first note that since a > 1, it
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holds by convexity that (u+ v)a 6 2a−1(ua + va) for all u, v ∈ R. Now, for all ε > 0

and y ∈ B
(
x, ‖x‖a + ε

)
, i.e., y such that ℓ(x, y) = ‖x− y‖a 6 ‖x‖a + ε,

f∗ − f(y) = ‖y‖a 6
(
‖x‖ + ‖x − y‖

)a
6 2a−1

(
‖x‖a + ‖x − y‖a

)
6 2a−1

(
2‖x‖a + ε

)
,

which concludes the proof of the second part of A2’. �

4.4.2. Modified HOO algorithm. We now describe the proposed modifications to the basic

HOO algorithm.

We first consider, as a building block, the algorithm called z–HOO, which takes an integer z

as an additional parameter to the ones of HOO. Algorithm z–HOO works as follows: it never plays

any node with depth smaller or equal to z − 1 and starts directly the selection of a new node at

depth z. To do so, it first picks the node at depth z with the best B–value, chooses a path and then

proceeds as the basic HOO algorithm. Note in particular that the initialization of this algorithm

consists (in the first 2z rounds) in playing once each of the 2z nodes located at depth z in the tree

(since by definition a node that has not been played yet has a B–value equal to +∞). We note in

passing that when z = 0, algorithm z–HOO coincides with the basic HOO algorithm.

Algorithm local HOO employs the doubling trick in conjunction with consecutive instances

of z–HOO. It works as follows. The integers r > 1 will index different regimes. The r–th regime

starts at round 2r − 1 and ends when the next regime starts; it thus lasts for 2r rounds. At the

beginning of regime r, a fresh copy of zr–HOO, where zr = ⌈log2 r⌉, is initialized and is then

used throughout the regime.

Note that each fresh start needs to pull at least once each of the 2zr nodes located at depth

zr (the number of these nodes is ≈ r). However, since round r lasts for 2r time steps (which is

exponentially larger than the number of nodes to explore), the time spent on the initialization of

zr–HOO in any regime r is greatly outnumbered by the time spent in the rest of the regime.

In the rest of this section, we propose first an upper bound on the regret of z–HOO (with exact

and explicit constants). This result will play a key role in proving a bound on the performance of

local HOO.

4.4.3. Adaptation of the regret bound. In the following we write h0 for the smallest integer

such that

2ν1ρ
h0 < ε0

and consider the algorithm z–HOO, where z > h0. In particular, when z = 0 is chosen, the

obtained bound is the same as the one of Theorem 4.1, except that the constants are given in

analytic forms.

THEOREM 4.3 (Regret bound for z–HOO). Consider z–HOO tuned with parameters ν1 and ρ

such that Assumptions A1, A2’ and A3 hold for some dissimilarity ℓ and the values ν2, L, ε0, C, d.

If, in addition, z > h0 and n > 2 is large enough so that

z 6
1

d+ 2

ln(4Lν1n)− ln(γ lnn)

ln(1/ρ)
,

where

γ =
4CLν1ν

−d
2

(1/ρ)d+1 − 1

(
16

ν2
1ρ

2
+ 9

)
,

then the following bound holds for the expected regret of z–HOO:

E
[
Rn
]

6

(
1 +

1

ρd+2

)(
4Lν1n

)(d+1)/(d+2)
(γ lnn)1/(d+2) +

(
2z − 1

)(8 lnn

ν2
1ρ

2z
+ 4

)
.
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The proof, which is a modification of the proof to Theorem 4.1, can be found in Section 6.3

of the Appendix. The main complication arises because the weakened assumptions do not allow

one to reason about the smoothness at an arbitrary scale; this is essentially due to the threshold

ε0 used in the formulation of the assumptions. This is why in the proposed variant of HOO we

discard nodes located too close to the root (at depth smaller than h0 − 1). Note that in the bound

the second term arises from playing in regions corresponding to the descendants of “poor” nodes

located at level z. In particular, this term disappears when z = 0, in which case we get a bound on

the regret of HOO provided that 2ν1 < ε0 holds.

EXAMPLE 4.5. We consider again the setting of Examples 4.2, 4.3, and 4.4. The domain is

X = [0, 1]D and the mean-payoff function f is defined by f(x) = 1 − ‖x‖2∞. We assume that

HOO is run with parameters ρ = (1/4)1/D and ν1 = 4. We already proved that Assumptions A1,

A2’ and A3 are satisfied with the dissimilarity ℓ(x, y) = ‖x − y‖2∞, the constants ν2 = 1/4,

L = 2, d = 0, and4 C = 128D/2, as well as any ε0 > 0 (that is, with h0 = 0). Thus, resorting to

Theorem 4.3 (applied with z = 0), we obtain

γ =
32× 128D/2

41/D − 1

(
42/D + 9

)

and get

E
[
Rn
]

6
(
1 + 42/D

)√
32γ n lnn =

√
exp
(
O(D)

)
n lnn .

Under the prescribed assumptions, the rate of convergence is of order
√
n no matter the ambient

dimension D. Although the rate is independent of D, the latter impacts the performance through

the multiplicative factor in front of the rate, which is exponential in D. This is, however, not an

artifact of our analysis, since it is natural that exploration in a D–dimensional space comes at

a cost exponential in D. (The exploration performed by HOO combines an initial global search,

which is bound to be exponential in D, and a local optimization, whose regret is of the order of√
n.)

THEOREM 4.4 (Regret bound for local HOO). Consider local HOO and assume that its pa-

rameters are tuned such that Assumptions A1, A2’ and A3 hold for some dissimilarity ℓ. Then the

expected regret of local HOO is bounded (in a distribution-dependent sense) as follows,

E
[
Rn
]

= Õ
(
n(d+1)/(d+2)

)
.

4.5. Minimax optimality in metric spaces. In this section we provide two theorems showing

the minimax optimality of HOO in metric spaces. The notion of packing dimension is key.

DEFINITION 4.4 (Packing dimension). The ℓ–packing dimension of a set X (w.r.t. a dissimi-

larity ℓ) is defined as

lim sup
ε→0

lnN (X , ℓ, ε)
ln(ε−1)

.

For instance, it is easy to see that whenever ℓ is a norm, compact subsets of RD with non-

empty interiors have a packing dimension of D.

Let FX ,ℓ be the class of all bandit environments on X with a weak Lipschitz mean-payoff

function (i.e., satisfying Assumption A2). For the sake of clarity, we now denote, for a bandit

4To compute C, one can first note that 4Lν1/ν2 = 128; the question at hand for Assumption A3 to be satisfied is

therefore to upper bound the number of balls of radius
√

ε (w.r.t. the supremum norm ‖ · ‖∞) that can be packed in a

ball of radius
√

128ε, giving rise to the bound C 6
√

128
D

.
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strategy ϕ and a bandit environment M on X , the expectation of the cumulative regret of ϕ over

M at time n by EM
[
Rn(ϕ)

]
.

The following theorem provides a uniform upper bound on the regret of HOO over this class of

environments. (The constant γ appearing in the statement depends only on X , ν1, ρ, ℓ, ν2, D
′.)

THEOREM 4.5 (Uniform upper bound on the regret of HOO). Assume that X has a finite ℓ–

packing dimension D and that the parameters of HOO are such that A1 is satisfied. Then, for all

D′ > D there exists a constant γ such that for all n > 1,

sup
M∈FX ,ℓ

EM
[
Rn(HOO)

]
6 γ n(D′+1)/(D′+2)

(
lnn

)1/(D′+2)
.

The next result shows that in the case of metric spaces this upper bound is optimal up to a

multiplicative logarithmic factor. Note that if X is a large enough compact subset of RD with non-

empty interior and the dissimilarity ℓ is some norm of RD, then the assumption of the following

theorem is satisfied.

THEOREM 4.6 (Uniform lower bound). Consider a set X equipped with a dissimilarity ℓ that

is a metric. Assume that there exists some constant c ∈ (0, 1] such that for all ε 6 1, the packing

numbers satisfy N (X , ℓ, ε) > c ε−D > 2. Then, there exist two constants N(c,D) and γ(c,D)

depending only on c and D such that for all bandit strategies ϕ and all n > N(c,D),

sup
M∈FX ,ℓ

EM
[
Rn(ϕ)

]
> γ(c,D) n(D+1)/(D+2) .

The reader interested in the explicit expressions of N(c,D) and γ(c,D) is referred to the last

lines of the proof of the theorem in the Appendix.

5. Discussion

In this section we would like to shed some light on the results of the previous sections. In

particular we generalize the situation of Example 4.5, discuss the regret that we can obtain, and

compare it with what could be obtained by previous works.

5.1. Example. EquipX = [0, 1]D with a norm ‖ · ‖ and assume that the mean-payoff function

f is locally equivalent to a Hölder continuous function with degree α ∈ [0,∞) around any global

maximum x∗ of f (these maxima being in addition assumed to be in finite number); that is,

f(x∗)− f(x) = Θ
(
‖x− x∗‖α

)
as x→ x∗.

This means that there exist c1, c2, δ > 0 such that for all x satisfying ‖x− x∗‖ 6 δ,

c2‖x− x∗‖α 6 f(x∗)− f(x) 6 c1‖x− x∗‖α .
In particular, one can check that Assumption A2’ is satisfied for the dissimilarity defined by

ℓc,β(x, y) = c‖x − y‖β , where β 6 α (and c > c1 when β = α). We further assume that

HOO is run with parameters ν1 and ρ and a tree of dyadic partitions such that Assumption A1 is

satisfied as well (see Examples 4.1 and 4.2 for explicit values of these parameters in the case of

the Euclidean or the supremum norms over the unit cube). The following statements can then be

formulated on the expected regret of HOO.

• Known smoothness: If we know the true smoothness of f around its maxima, then we

set β = α and c > c1. This choice ℓc1,α of a dissimilarity is such that f is locally weak-

Lipschitz with respect to it and the near-optimality dimension is d = 0 (cf. Example 4.3).

Theorem 4.4 thus implies that the expected regret of local HOO is Õ(
√
n), i.e., the rate

of the bound is independent of the dimension D.
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• Smoothness underestimated: Here, we assume that the true smoothness of f around

its maxima is unknown and that it is underestimated by choosing β < α (and some c).

Then f is still locally weak-Lipschitz with respect to the dissimilarity ℓc,β and the near-

optimality dimension is d = D(1/β−1/α), as shown in Example 4.3; the regret of HOO

is Õ
(
n(d+1)/(d+2)

)
.

• Smoothness overestimated: Now, if the true smoothness is overestimated by choosing

β > α or α = β and c < c1, then the assumption of weak Lipschitzness is violated

and we are unable to provide any guarantee on the behavior of HOO. The latter, when

used with an overestimated smoothness parameter, may lack exploration and exploit too

heavily from the beginning. As a consequence, it may get stuck in some local optimum

of f , missing the global one(s) for a very long time (possibly indefinitely). Such a be-

havior is illustrated in the example provided in Coquelin and Munos [2007] and showing

the possible problematic behavior of the closely related algorithm UCT of Kocsis and

Szepesvari [2006]. UCT is an example of an algorithm overestimating the smoothness of

the function; this is because the B–values of UCT are defined similarly to the ones of the

HOO algorithm but without the third term in the definition (4.2) of the U–values. This

corresponds to an assumed infinite degree of smoothness (that is, to a locally constant

mean-payoff function).

5.2. Relation to previous works. Several works [Agrawal, 1995b, Kleinberg, 2004, Cope,

2004, Auer et al., 2007, Kleinberg et al., 2008a] have considered continuum-armed bandits in

Euclidean or, more generally, normed or metric spaces and provided upper and lower bounds on

the regret for given classes of environments.

• Cope [2004] derived a Õ(
√
n) bound on the regret for compact and convex subsets of Rd

and mean-payoff functions with a unique minimum and second-order smoothness.

• Kleinberg [2004] considered mean-payoff functions f on the real line that are Hölder

continuous with degree 0 < α 6 1. The derived regret bound is Θ
(
n(α+1)/(α+2)

)
.

• Auer et al. [2007] extended the analysis to classes of functions with only a local Hölder

assumption around the maxima, where the allowed smoothness degree is also larger:

α ∈ [0,∞). They derived the regret bound

Θ
(
n

1+α−αβ
1+2α−αβ

)
,

where the parameter β is such that the Lebesgue measure of ε–optimal arm is O(εβ).

• Another setting is the one of Kleinberg et al. [2008a], who considered a metric space

(X , ℓ) and assumed that f is Lipschitz w.r.t. ℓ. The obtained regret bound is Õ
(
n(d+1)/(d+2)

)
,

where d is the zooming dimension. The latter is defined similarly to our near-optimality

dimension, except firstly, that covering numbers instead of packing numbers are used and

secondly, that sets of the formXε\Xε/2 are considered instead of theXcε. When (X , ℓ) is

a metric space, covering and packing numbers are within a constant factor to each other,

and therefore, one may prove that the zooming and near-optimality dimensions are also

equal.

Our main contribution compared to Kleinberg et al. [2008a] is that our weak Lipschitz assumption,

which is substantially weaker than the global Lipschitz condition imposed in Kleinberg et al.

[2008a], enables our algorithm to work better in some common situations; for instance, when

the mean-payoff function is locally smoothn with a smoothness order larger than 1.
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For an illustration, consider again the example of Section 5.1. The result of Auer et al. [2007]

shows that for D = 1, the regret is Θ(
√
n) (since here β = 1/α, with the notation above). Our

result extends the
√
n rate of the regret bound to any dimension D.

Now, we compare this result with the bounds that result from Kleinberg et al. [2008a]. The

case when α 6 1 lead to identical rates; however, this is no longer the case when α > 1. Multiple

issues arise indeed in the latter case. First, the analysis of Kleinberg et al. [2008a] assumes globally

Lipschitz functions with respect to the chosen metric. Now, a function that is globally Lipschitz

w.r.t. ℓα is constant; furthermore, in this case, ℓα is not even a metric, while the results of Kleinberg

et al. [2008a] rely crucially on the use of a metric.

To avoid these issues one may attempt a fall-back to (say) the Euclidean metric, so that the

requirement that f is Lipschitz with respect to the metric is satisfied. The zooming dimension

then becomes (1 − 1/α)D (see Example 4.3), while the regret bound of Kleinberg et al. be-

comes Õ
(
n(D(α−1)+α)/(D(α−1)+2α)

)
. Note that this regret is strictly worse than Õ(

√
n) and in

fact becomes closer to the slow rate Õ
(
n(D+1)/(D+2)

)
as α→∞.

6. Proofs

6.1. Proof of Theorem 4.1 (main upper bound on the regret of HOO). We begin with

three lemmas. The proofs of Lemmas 4.3 and 4.4 rely on concentration-of-measure techniques,

while the one of Lemma 4.2 follows from a simple case study. Let us fix some path (0, 1), (1, i∗1),
(2, i∗2), . . . of optimal nodes, starting from the root. That is, denoting i∗0 = 1, we mean that for all

j > 1, the suboptimality of (j, i∗j ) equals ∆j,i∗j
= 0 and (j, i∗j ) is a child of (j − 1, i∗j−1).

LEMMA 4.2. Let (h, i) be a suboptimal node. Let 0 6 k 6 h − 1 be the largest depth such

that (k, i∗k) is on the path from the root (0, 1) to (h, i). Then for all integers u > 0, we have

E
[
Th,i(n)

]
6 u+

n∑

t=u+1

P

{[
Us,i∗s (t) 6 f∗ for some s ∈ {k + 1, . . . , t− 1}

]

or
[
Th,i(t) > u and Uh,i(t) > f∗

]}
.

PROOF. Consider a given round t ∈ {1, . . . , n}. If (Ht, It) ∈ C(h, i), then this is be-

cause the child (k + 1, i′) of (k, i∗k) on the path to (h, i) had a better B–value than its brother

(k + 1, i∗k+1). Since by definition, B–values can only increase on a chosen path, this entails that

Bk+1,i∗k+1
6 Bk+1,i′(t) 6 Bh,i(t). This is turns implies, again by definition of the B–values, that

Bk+1,i∗k+1
(t) 6 Uh,i(t). Thus,

{
(Ht, It) ∈ C(h, i)

}
⊂
{
Uh,i(t) > Bk+1,i∗k+1

(t)
}
⊂
{
Uh,i(t) > f∗

}
∪
{
Bk+1,i∗k+1

(t) 6 f∗
}
.

But, once again by definition of B–values,
{
Bk+1,i∗k+1

(t) 6 f∗
}
⊂
{
Uk+1,i∗k+1

(t) 6 f∗
}
∪
{
Bk+2,i∗k+2

(t) 6 f∗
}
,

and the argument can be iterated. Since up to round t no more than t nodes have been played

(including the suboptimal node (h, i)), we know that (t, i∗t ) has not been played so far and thus

has a B–value equal to +∞. (Some of the previous optimal nodes could also have had an infinite

U–value, if not played so far.) We thus have proved the inclusion

(4.6){
(Ht, It) ∈ C(h, i)

}
⊂
{
Uh,i(t) > f∗

}
∪
({
Uk+1,i∗k+1

(t) 6 f∗
}
∪ . . .∪

{
Ut−1,i∗t−1

(t) 6 f∗
})

.
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Now, for any integer u > 0 it holds that

Th,i(n) =

n∑

t=1

I{(Ht,It)∈C(h,i), Th,i(t)6u} +

n∑

t=1

I{(Ht,It)∈C(h,i), Th,i(t)>u}

6 u+

n∑

t=u+1

I{(Ht,It)∈C(h,i), Th,i(t)>u} ,

where we used for the inequality the fact that the quantities Th,i(t) are constant from t to t + 1,

except when (Ht, It) ∈ C(h, i), in which case, they increase by 1; therefore, on the one hand, at

most u of the Th,i(t) can be smaller than u and on the other hand, Th,i(t) > u can only happen if

t > u. Using (4.6) and then taking expectations yields the result. �

LEMMA 4.3. Let Assumptions A1 and A2 hold. Then, for all optimal nodes (h, i) and for all

integers n > 1,

P
{
Uh,i(n) 6 f∗

}
6 n−3 .

PROOF. On the event that (h, i) was not played during the first n rounds, one has, by conven-

tion, Uh,i(n) = +∞. In the sequel, we therefore restrict our attention to the event
{
Th,i(n) > 1

}
.

Lemma 4.1 with c = 0 ensures that f∗ − f(x) 6 ν1ρ
h for all arms x ∈ Ph,i. Hence,

n∑

t=1

(
f(Xt) + ν1ρ

h − f∗
)

I{(Ht,It)∈C(h,i)} > 0

and therefore,

P
{
Uh,i(n) 6 f∗ and Th,i(n) > 1

}

= P

{
µ̂h,i(n) +

√
2 lnn

Th,i(n)
+ ν1ρ

h
6 f∗ and Th,i(n) > 1

}

= P

{
Th,i(n) µ̂h,i(n) + Th,i(n)

(
ν1ρ

h − f∗
)

6 −
√

2Th,i(n) lnn and Th,i(n) > 1

}

6 P

{
n∑

t=1

(
Yt − f(Xt)

)
I{(Ht,It)∈C(h,i)} +

n∑

t=1

(
f(Xt) + ν1ρ

h − f∗
)
I{(Ht,It)∈C(h,i)}

6 −
√

2Th,i(n) lnn and Th,i(n) > 1

}

6 P

{
n∑

t=1

(
f(Xt)− Yt

)
I{(Ht,It)∈C(h,i)} >

√
2Th,i(n) lnn and Th,i(n) > 1

}
.

We take care of the last term with a union bound and the Hoeffding-Azuma inequality for martin-

gale differences, see Theorem 10.1.

To do this in a rigorous manner, we need to define a sequence of (random) stopping times

when arms in C(h, i) were pulled:

Tj = min
{
t : Th,i(t) = j

}
, j = 1, 2, . . . .

Note that 1 6 T1 < T2 < . . ., hence it holds that Tj > j. We denote by X̃j = XTj the j–th arm

pulled in the region corresponding to C(h, i). Its associated corresponding reward equals Ỹj = YTj
and

P

{
n∑

t=1

(
f(Xt)− Yt

)
I{(Ht,It)∈C(h,i)} >

√
2Th,i(n) lnn and Th,i(n) > 1

}
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= P





Th,i(n)∑

j=1

(
f
(
X̃j

)
− Ỹj

)
>

√
2Th,i(n) lnn and Th,i(n) > 1





6

n∑

t=1

P





t∑

j=1

(
f
(
X̃j

)
− Ỹj

)
>
√

2 t lnn



 ,

where we used a union bound to get the last inequality.

We claim that

Zt =
t∑

j=1

(
f(X̃j)− Ỹj

)

is a martingale (with respect to the filtration it generates). This follows, via optional skipping (see

[Doob, 1953, Chapter VII, Theorem 2.3]), from the facts that

n∑

t=1

(
f(Xt)− Yt

)
I{(Ht,It)∈C(h,i)}

is a martingale w.r.t. the filtration Ft = σ(X1, Y1, . . . , Xt, Yt) and that the events {Tj = k} ∈
Fk−1 for all k > j.

Applying the Hoeffding-Azuma inequality for martingale differences (see Theorem 10.1), us-

ing the boundedness of the ranges of the induced martingale difference sequence, we then get, for

each t > 1,

P





t∑

j=1

(
f
(
X̃j

)
− Ỹj

)
>
√

2 t lnn



 6 exp


−

2
(√

2 t lnn
)2

t


 = n−4 ,

which concludes the proof. �

LEMMA 4.4. For all integers t 6 n, for all suboptimal nodes (h, i) such that ∆h,i > ν1ρ
h,

and for all integers u > 1 such that

u >
8 lnn

(∆h,i − ν1ρh)2
,

one has

P
{
Uh,i(t) > f∗ and Th,i(t) > u

}
6 t n−4 .

PROOF. The u mentioned in the statement of the lemma are such that

∆h,i − ν1ρ
h

2
>

√
2 lnn

u
, thus

√
2 ln t

u
+ ν1ρ

h
6

∆h,i + ν1ρ
h

2
.

Therefore,

P
{
Uh,i(t) > f∗ and Th,i(t) > u

}

= P

{
µ̂h,i(t) +

√
2 ln t

Th,i(t)
+ ν1ρ

h > f∗h,i + ∆h,i and Th,i(t) > u

}

6 P

{
µ̂h,i(t) > f∗h,i +

∆h,i − ν1ρ
h

2
and Th,i(t) > u

}

6 P

{
Th,i(t)

(
µ̂h,i(t)− f∗h,i

)
>

∆h,i − ν1ρ
h

2
u and Th,i(t) > u

}
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= P

{
t∑

s=1

(
Ys − f∗h,i

)
I{(Hs,Is)∈C(h,i)} >

∆h,i − ν1ρ
h

2
u and Th,i(t) > u

}

6 P

{
t∑

s=1

(
Ys − f(Xs)

)
I{(Hs,Is)∈C(h,i)} >

∆h,i − ν1ρ
h

2
u and Th,i(t) > u

}
.

Now it follows from the same arguments as in the proof of Lemma 4.3 (optional skipping, the

Hoeffding-Azuma inequality, and a union bound) that

P

{
t∑

s=1

(
Ys − f(Xs)

)
I{(Hs,Is)∈C(h,i)} >

∆h,i − ν1ρ
h

2
u and Th,i(t) > u

}

6

t∑

s=u+1

exp

(
−2

s

(
(∆h,i − ν1ρ

h)u

2

)2
)

6 t exp

(
−1

2
u
(
∆h,i − ν1ρ

h
)2
)

6 t n−4 ,

where we used the stated bound on u to obtain the last inequality. �

Combining the results of Lemmas 4.2, 4.3, and 4.4 leads to the following key result bounding

the expected number of visits to descendants of a “poor” node.

LEMMA 4.5. Under Assumptions A1 and A2, for all suboptimal nodes (h, i) with ∆h,i > ν1ρ
h,

we have, for all n > 1,

E[Th,i(n)] 6
8 lnn

(∆h,i − ν1ρh)2
+ 4 .

PROOF. We take u as the upper integer part of (8 lnn)/(∆h,i− ν1ρ
h)2 and use union bounds

to get from Lemma 4.2 the bound

E
[
Th,i(n)

]
6

8 lnn

(∆h,i − ν1ρh)2
+ 1

+
n∑

t=u+1

(
P
{
Th,i(t) > u and Uh,i(t) > f∗

}
+

t−1∑

s=1

P
{
Us,i∗s (t) 6 f∗

}
)
.

Lemmas 4.3 and 4.4 further bound the quantity of interest as

E
[
Th,i(n)

]
6

8 lnn

(∆h,i − ν1ρh)2
+ 1 +

n∑

t=u+1

(
t n−4 +

t−1∑

s=1

t−3

)

and we now use the crude upper bounds

1 +
n∑

t=u+1

(
t n−4 +

t−1∑

s=1

t−3

)
6 1 +

n∑

t=1

(
n−3 + t−2

)
6 2 + π2/6 6 4

to get the proposed statement. �

PROOF. (of Theorem 4.1) First, let us fix d′ > d. The statement will be proven in four steps.

First step. For all h = 0, 1, 2, . . ., denote by Ih the set of those nodes at depth h that are

2ν1ρ
h–optimal, i.e., the nodes (h, i) such that f∗h,i > f∗ − 2ν1ρ

h. (Of course, I0 = {(0, 1)}.)
Then, let I be the union of these sets when h varies. Further, let J be the set of nodes that are not

in I but whose parent is in I. Finally, for h = 1, 2, . . . we denote by Jh the nodes in J that are

located at depth h in the tree (i.e., whose parent is in Ih−1).
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Lemma 4.5 bounds in particular the expected number of times each node (h, i) ∈ Jh is visited.

Since for these nodes ∆h,i > 2ν1ρ
h, we get

E
[
Th,i(n)

]
6

8 lnn

ν2
1ρ

2h
+ 4 .

Second step. We bound the cardinality |Ih| of Ih. We start with the case h > 1. By definition,

when (h, i) ∈ Ih, one has ∆h,i 6 2ν1ρ
h, so that by Lemma 4.1 the inclusion Ph,i ⊂ X4ν1ρh holds.

Since by Assumption A1, the sets Ph,i contain disjoint balls of radius ν2ρ
h, we have that

|Ih| 6 N
(
∪(h,i)∈IhPh,i, ℓ, ν2ρ

h
)

6 N
(
X4ν1ρh , ℓ, ν2ρ

h
)

= N
(
X(4ν1/ν2) ν2ρh , ℓ, ν2ρ

h
)
.

We prove below that there exists a constant C such that for all ε 6 ν2,

(4.7) N
(
X(4ν1/ν2) ε, ℓ, ε

)
6 C ε−d

′
.

Thus we obtain the bound |Ih| 6 C
(
ν2ρ

h
)−d′

for all h > 1. We note that the obtained bound

|Ih| 6 C
(
ν2ρ

h
)−d′

is still valid for h = 0, since |I0| = 1.

It only remains to prove (4.7). Since d′ > d, where d is the near-optimality of f , we have, by

definition, that

lim sup
ε→0

lnN
(
X(4ν1/ν2) ε, ℓ, ε

)

ln
(
ε−1
) 6 d ,

and thus, there exists εd′ > 0 such that for all ε 6 εd′ ,

lnN
(
X(4ν1/ν2) ε, ℓ, ε

)

ln
(
ε−1
) 6 d′ ,

which in turn implies that for all ε 6 εd′ ,

N
(
X(4ν1/ν2) ε, ℓ, ε

)
6 ε−d

′
.

The result is proved with C = 1 if εd′ > ν2. Now, consider the case εd′ < ν2. Given the definition

of packing numbers, it is straightforward that for all ε ∈
[
εd′ , ν2

]
,

N
(
X(4ν1/ν2) ε, ℓ, ε

)
6 ud′

def
= N

(
X , ℓ, εd′

)
;

therefore, for all ε ∈
[
εd′ , ν2

]
,

N
(
X(4ν1/ν2) ε, ℓ, ε

)
6 ud′

νd
′

2

εd′
= Cε−d

′

for the choice C = max
{
1, ud′ ν

d′
2

}
. Because we take the maximum with 1, the stated inequality

also holds for ε 6 ε−d
′
, which concludes the proof of (4.7).

Third step. Let H > 1 be an integer to be chosen later. We partition the nodes of the infinite

tree T into three subsets, T = T 1 ∪ T 2 ∪ T 3, as follows. Let the set T 1 contain the descendants

of the nodes in IH (by convention, a node is considered its own descendant, hence the nodes of

IH are included in T 1); let T 2 = ∪06h<H Ih; and let T 3 contain the descendants of the nodes in

∪16h6H Jh. Thus, T 1 and T 3 are potentially infinite, while T 2 is finite.

We recall that we denote by (Ht, It) the node that was chosen by HOO in round t. From the

definition of the algorithm, each node is played at most once, thus no two such random variables

are equal when t varies. We decompose the regret according to which of the sets T j the nodes

(Ht, It) belong to:

E
[
Rn
]

= E

[
n∑

t=1

(f∗ − f(Xt))

]
= E

[
Rn,1

]
+ E

[
Rn,2

]
+ E

[
Rn,3

]
,
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where Rn,i =
n∑

t=1

(
f∗ − f(Xt)

)
I{(Ht,It)∈T i} , for i = 1, 2, 3.

The contribution from T 1 is easy to bound. By definition any node in IH is 2ν1ρ
H–optimal.

Hence, by Lemma 4.1, the corresponding domain is included in X4ν1ρH . By definition of a tree of

coverings, the domains of the descendants of these nodes are still included in X4ν1ρH . Therefore,

E
[
Rn,1

]
6 4ν1ρ

H n .

For h > 0, consider a node (h, i) ∈ T 2. It belongs to Ih and is therefore 2ν1ρ
h–optimal. By

Lemma 4.1, the corresponding domain is included in X4ν1ρh . By the result of the second step of

this proof and using that each node is played at most once, one gets

E
[
Rn,2

]
6

H−1∑

h=0

4ν1ρ
h |Ih| 6 4Cν1ν

−d′
2

H−1∑

h=0

ρh(1−d
′) .

We finish by bounding the contribution from T 3. We first remark that since the parent of any

element (h, i) ∈ Jh is in Ih−1, by Lemma 4.1 again, we have that Ph,i ⊂ X4ν1ρh−1 . We now use

the first step of this proof to get

E
[
Rn,3

]
6

H∑

h=1

4ν1ρ
h−1

∑

i : (h,i)∈Jh
E
[
Th,i(n)

]
6

H∑

h=1

4ν1ρ
h−1 |Jh|

(
8 lnn

ν2
1ρ

2h
+ 4

)
.

Now, it follows from the fact that the parent of Jh is in Ih−1 that |Jh| 6 2|Ih−1| when h > 1.

Substituting this and the bound on |Ih−1| obtained in the second step of this proof, we get

E
[
Rn,3

]
6

H∑

h=1

4ν1ρ
h−1

(
2C
(
ν2ρ

h−1
)−d′)

(
8 lnn

ν2
1ρ

2h
+ 4

)

6 8Cν1ν
−d′
2

H∑

h=1

ρh(1−d
′)+d′−1

(
8 lnn

ν2
1ρ

2h
+ 4

)
.

Fourth step. Putting the obtained bounds together, we get

E
[
Rn
]

6 4ν1ρ
H n+ 4Cν1ν

−d′
2

H−1∑

h=0

ρh(1−d
′) + 8Cν1ν

−d′
2

H∑

h=1

ρh(1−d
′)+d′−1

(
8 lnn

ν2
1ρ

2h
+ 4

)

= O

(
nρH + (lnn)

H∑

h=1

ρ−h(1+d
′)

)
= O

(
nρH + ρ−H(1+d′) lnn

)
(4.8)

(recall that ρ < 1). Note that all constants hidden in the O symbol only depend on ν1, ν2, ρ and

d′.
Now, by choosing H such that ρ−H(d′+2) is of the order of n/ lnn, that is, ρH is of the order

of (n/ lnn)−1/(d′+2), we get the desired result, namely,

E
[
Rn
]

= O
(
n(d′+1)/(d′+2) (lnn)1/(d

′+2)
)
.

�

6.2. Proof of Theorem 4.2 (regret bound for truncated HOO). The proof follows from an

adaptation of the proof of Theorem 4.1 and of its associated lemmas; for the sake of clarity and

precision, we explicitly state the adaptations of the latter.
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Adaptations of the lemmas. Remember that Dn0 denotes the maximum depth of the tree,

given horizon n0. The adaptation of Lemma 4.2 is done as follows. Let (h, i) be a suboptimal

node with h 6 Dn0 and let 0 6 k 6 h−1 be the largest depth such that (k, i∗k) is on the path from

the root (0, 1) to (h, i). Then, for all integers u > 0, one has

E
[
Th,i(n0)

]
6 u+

n0∑

t=u+1

P

{[
Us,i∗s (t) 6 f∗ for some s with k + 1 6 s 6 min{Dn0 , n0}

]

or
[
Th,i(t) > u and Uh,i(t) > f∗

]}
.

As for Lemma 4.3, its straightforward adaptation states that under Assumptions A1 and A2,

for all optimal nodes (h, i) with h 6 Dn0 and for all integers 1 6 t 6 n0,

P
{
Uh,i(t) 6 f∗

}
6 t (n0)

−4
6 (n0)

3 .

Similarly, the same changes yield from Lemma 4.4 the following result for truncated HOO.

For all integers t 6 n0, for all suboptimal nodes (h, i) such that h 6 Dn0 and ∆h,i > ν1ρ
h, and

for all integers u > 1 such that

u >
8 lnn0

(∆h,i − ν1ρh)2
,

one has

P
{
Uh,i(t) > f∗ and Th,i(t) > u

}
6 t (n0)

−4 .

Combining these three results (using the same methodology as in the proof of Lemma 4.5)

shows that under Assumptions A1 and A2, for all suboptimal nodes (h, i) such that h 6 Dn0 and

∆h,i > ν1ρ
h, one has

E[Th,i(n0)] 6
8 lnn0

(∆h,i − ν1ρh)2
+ 1 +

n0∑

t=u+1


t (n0)

4 +

min{Dn0 ,n0}∑

s=1

(n0)
−3




6
8 lnn0

(∆h,i − ν1ρh)2
+ 3 .

(We thus even improve slightly the bound of Lemma 4.5.)

Adaptation of the proof of Theorem 4.1. The main change here comes from the fact that

trees are cut at the depth Dn0 . As a consequence, the sets Ih, I, J , and Jh are defined only by

referring to nodes of depth smaller than Dn0 . All steps of the proof can then be repeated, except

the third step; there, while the bounds on the regret resulting from nodes of T 1 and T 3 go through

without any changes (as these sets were constructed by considering all descendants of some base

nodes), the bound on the regret Rn,2 associated with the nodes T 2 calls for a modified proof since

at this stage we used the property that each node is played at most once. But this is not true

anymore for nodes (h, i) located at depth Dn0 , which can be played several times. Therefore the

proof is modified as follows.

Consider a node at depth h = Dn0 . Then, by definition of Dn0 ,

h > Dn0 =
(lnn0)/2− ln(1/ν1)

ln(1/ρ)
, that is, ν1 ρ

h
6

1√
n0

.

Since the considered nodes are 2ν1ρ
Dn0 –optimal, the corresponding domains are 4ν1ρ

Dn0 –optimal

by Lemma 4.1, thus also 4/
√
n0–optimal. The instantaneous regret incurred when playing any of

these nodes is therefore bounded by 4/
√
n0; and the associated cumulative regret (over n0 rounds)
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can be bounded by 4
√
n0. In conclusion, with the notations of Theorem 4.1, we get the new bound

E
[
Rn,2

]
6

H−1∑

h=0

4ν1ρ
h |Ih|+ 4

√
n0 6 4

√
n0 + 4Cν1ν

−d′
2

H−1∑

h=0

ρh(1−d
′) .

The rest of the proof goes through and only this additional additive factor of 4
√
n0 is suffered in

the final regret bound. (The additional factor can be included in the O notation.)

6.3. Proof of Theorem 4.3 (regret bound for z–HOO). We start with the following equiv-

alent of Lemma 4.1 in this new local context. Remember that h0 is the smallest integer such

that

2ν1ρ
h0 < ε0 .

LEMMA 4.6. Under Assumptions A1 and A2’, for all h > h0, if the suboptimality factor ∆h,i

of a region Ph,i is bounded by cν1ρ
h for some c ∈ [0, 2], then all arms in Ph,i are Lmax{2c, c+

1 } ν1ρ
h–optimal, that is,

Ph,i ⊂ XLmax{2c, c+1}ν1ρh .

When c = 0, i.e., the node (h, i) is optimal, the bound improves to

Ph,i ⊂ Xν1ρh .
PROOF. We first deal with the general case of c ∈ [0, 2]. By the hypothesis on the subopti-

mality of Ph,i, for all δ > 0, there exists an element x ∈ Xcν1ρh+δ ∩ Ph,i. If δ is small enough,

e.g., δ ∈
(
0, ε0 − 2ν1ρ

h0
]
, then this element satisfies x ∈ Xε0 . Let y ∈ Ph,i. By Assumption A1,

ℓ(x, y) 6 diam(Ph,i) 6 ν1ρ
h, which entails, by denoting ε = max

{
0, ν1ρ

h − (f∗ − f(x))
}

,

ℓ(x, y) 6 ν1ρ
h

6 f∗ − f(x) + ε , that is, y ∈ B
(
x, f∗ − f(x) + ε

)
.

Since x ∈ Xε0 and ε 6 ν1ρ
h 6 ν1ρ

h0 < ε0, the second part of Assumption A2’ then yields

y ∈ B
(
x, f∗ − f(x) + ε

)
⊂ X

L
(
2(f∗−f(x))+ε

) .

It follows from the definition of ε that f∗ − f(x) + ε = max
{
f∗ − f(x), ν1ρ

h
}

, and this implies

y ∈ B
(
x, f∗ − f(x) + ε

)
⊂ X

L
(
f∗−f(x)+max{f∗−f(x), ν1ρh}

) .

But x ∈ Xcν1ρh+δ, i.e., f∗ − f(x) 6 cν1ρ
h + δ, we thus have proved

y ∈ X
L
(
max{2c, c+1}ν1ρh+2δ

) .

In conclusion, Ph,i ⊂ XLmax{2c, c+1}ν1ρh+2Lδ for all sufficiently small δ > 0. Letting δ → 0

concludes the proof.

In the case of c = 0, we resort to the first part of Assumption A2’, which can be applied since

diam(Ph,i) 6 ν1ρ
h 6 ε0 as already noted above, and can exactly be restated as indicating that for

all y ∈ Ph,i,
f∗ − f(y) 6 diam(Ph,i) 6 ν1ρ

h ;

that is, Ph,i ⊂ Xν1ρh . �

We now provide an adaptation of Lemma 4.5 (actually based on adaptations of Lemmas 4.2

and 4.3), providing the same bound under slightly more restrictive conditions.

LEMMA 4.7. Consider a depth z > h0. Under Assumptions A1 and A2’, the algorithm z–

HOO satisfies that for all n > 1 and all suboptimal nodes (h, i) with ∆h,i > ν1ρ
h and h > z,

E
[
Th,i(n)

]
6

8 lnn

(∆h,i − ν1ρh)2
+ 4 .
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PROOF. We consider some path (z, i∗z), (z + 1, i∗z+1), . . . of optimal nodes, starting at depth

z. We distinguish two cases, depending on whether there exists z 6 k′ 6 h − 1 such that

(h, i) ∈ C(k′, i∗k′) or not.

In the first case, we denote k′ the largest such k. The argument of Lemma 4.2 can be used

without any change and shows that for all integers u > 0,

E
[
Th,i(n)

]
6 u+

n∑

t=u+1

P

{[
Us,i∗s (t) 6 f∗ for some s ∈ {k + 1, . . . , t− 1}

]

or
[
Th,i(t) > u and Uh,i(t) > f∗

]}
.

In the second case, we denote by (z, ih) the ancestor of (h, i) located at depth z. By definition

of z–HOO, (Ht, It) ∈ C(h, i) at some round t > 1 only if Bz,i∗z(t) 6 Bz,ih(t) and since B–values

can only increase on a chosen path, (Ht, It) ∈ C(h, i) can only happen if Bz,i∗z(t) 6 Bh,i(t).

Repeating again the argument of Lemma 4.2, we get that for all integers u > 0,

E
[
Th,i(n)

]
6 u+

n∑

t=u+1

P

{[
Us,i∗s (t) 6 f∗ for some s ∈ {z, . . . , t− 1}

]

or
[
Th,i(t) > u and Uh,i(t) > f∗

]}
.

Now, notice that Lemma 4.4 is valid without any assumption. On the other hand, with the

modified assumptions, Lemma 4.3 is still true but only for optimal nodes (h, i) with h > h0.

Indeed, the only point in its proof where the assumptions were used was in the fourth line, when

applying Lemma 4.1; here, Lemma 4.6 with c = 0 provides the needed guarantee.

The proof is concluded with the same computations as in the proof of Lemma 4.5. �

PROOF. (of Theorem 4.3) We simply follow the four steps in the proof of Theorem 4.1 with

some slight adjustments. In particular, for h > z, we use the sets of nodes Ih and Jh defined

therein.

First step. Lemma 4.7 bounds the expected number of times each node (h, i) ∈ Jh is visited.

Since for these nodes ∆h,i > 2ν1ρ
h, we get

E
[
Th,i(n)

]
6

8 lnn

ν2
1ρ

2h
+ 4 .

Second step. We bound here the cardinality |Ih|. By Lemma 4.6 with c = 2, when (h, i) ∈ Ih
and h > z, one has Ph,i ⊂ X4Lν1ρh .

Now, by Assumption A1 and by using the same argument than in the second step of the proof

of Theorem 4.1,

|Ih| 6 N
(
X(4Lν1/ν2) ν2ρh , ℓ, ν2ρ

h
)
.

Assumption A3 can be applied since ν2ρ
h 6 2ν1ρ

h 6 2ν1ρ
h0 6 ε0 and yields the inequality

|Ih| 6 C
(
ν2ρ

h
)−d

.

Third step. We consider some integer H > z to be defined by the analysis in the fourth step.

We define a partition of the nodes located at a depth equal to or larger than z; more precisely,

• T 1 contains the nodes of IH and their descendants,

• T 2 =
⋃

z6h6H−1

Ih,

• T 3 contains the nodes
⋃

z+16h6H

Jh and their descendants,



108 CHAPTER 4. X -ARMED BANDITS

• T 4 is formed by the nodes (z, i) located at depth z not belonging to Iz , i.e., such that

∆z,i > 2ν1ρ
z , and their descendants.

As in the proof of Theorem 4.1 we denote by Rn,i the regret resulting from the selection of nodes

in T i, for i ∈ {1, 2, 3, 4}.
Lemma 4.6 with c = 2 yields the bound E

[
Rn,1

]
6 4Lν1ρ

Hn, where we crudely bounded by

n the number of times that nodes in T 1 were played. Using that by definition each node of T 2 can

be played only once, we get

E
[
Rn,2

]
6

H−1∑

h=z

(
4Lν1ρ

h
)
|Ih| 6 4CLν1ν

−d
2

H−1∑

h=z

ρh(1−d) .

As for Rn,3, we also use here that nodes in T 3 belong to some Jh, with z+1 6 h 6 H; in partic-

ular, they are the child of some element of Ih−1 and as such, firstly, they are 4Lν1ρ
h−1–optimal

(by Lemma 4.6) and secondly, their number is bounded by |Jh| 6 2|Ih−1| 6 2C
(
ν2ρ

h−1
)−d

.

Thus,

E
[
Rn,3

]
6

H∑

h=z+1

(
4Lν1ρ

h−1
) ∑

i:(h,i)∈Jh
E
[
Th,i(n)

]
6 8CLν1ν

−d
2

H∑

h=z+1

ρ(h−1)(1−d)
(

8 lnn

ν2
1ρ

2h
+ 4

)
,

where we used the bound of Lemma 4.7. Finally, for T 4, we use that it contains at most 2z − 1

nodes, each of them being associated with a regret controlled by Lemma 4.7; therefore,

E
[
Rn,4

]
6
(
2z − 1

)(8 lnn

ν2
1ρ

2z
+ 4

)
.

Fourth step. Putting things together, we have proved that

E
[
Rn
]

6 4Lν1ρ
Hn+ E

[
Rn,2

]
+ E

[
Rn,3

]
+
(
2z − 1

)(8 lnn

ν2
1ρ

2z
+ 4

)
,

where (using that ρ < 1 in the second inequality)

E
[
Rn,2

]
+ E

[
Rn,3

]

6 4CLν1ν
−d
2

H−1∑

h=z

ρh(1−d) + 8CLν1ν
−d
2

H∑

h=z+1

ρ(h−1)(1−d)
(

8 lnn

ν2
1ρ

2h
+ 4

)

= 4CLν1ν
−d
2

H−1∑

h=z

ρh(1−d) + 8CLν1ν
−d
2

H−1∑

h=z

ρh(1−d)
(

8 lnn

ν2
1ρ

2ρ2h
+ 4

)

6 4CLν1ν
−d
2

H−1∑

h=z

ρh(1−d)
1

ρ2h
+ 8CLν1ν

−d
2

H−1∑

h=z

ρh(1−d)
(

8 lnn

ν2
1ρ

2ρ2h
+

4

ρ2h

)

= CLν1ν
−d
2

(
H−1∑

h=z

ρ−h(1+d)
)(

36 +
64

ν2
1ρ

2
lnn

)
.

Denoting

γ =
4CLν1ν

−d
2

(1/ρ)d+1 − 1

(
16

ν2
1ρ

2
+ 9

)
,

it follows that for n > 2

E
[
Rn,2

]
+ E

[
Rn,3

]
6 γ ρ−H(d+1) lnn .
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It remains to define the parameter H > z. In particular, we propose to choose it such that the

terms

4Lν1ρ
Hn and ρ−H(d+1) lnn

are balanced. To this end, let H be the smallest integer k such that 4Lν1ρ
kn 6 γρ−k(d+1) lnn; in

particular,

ρH 6

(
γ lnn

4Lν1n

)1/(d+2)

and

4Lν1ρ
H−1n > γρ−(H−1)(d+1) lnn , implying γ ρ−H(d+1) lnn 6 4Lν1ρ

Hn ρ−(d+2) .

Note from the inequality that this H is such that

H >
1

d+ 2

ln(4Lν1n)− ln(γ lnn)

ln(1/ρ)

and thus this H satisfies H > z in view of the assumption of the theorem indicating that n is large

enough. The final bound on the regret is then

E
[
Rn
]

6 4Lν1ρ
Hn+ γ ρ−H(d+1) lnn+

(
2z − 1

)(8 lnn

ν2
1ρ

2z
+ 4

)

6

(
1 +

1

ρd+2

)
4Lν1ρ

Hn+
(
2z − 1

)(8 lnn

ν2
1ρ

2z
+ 4

)

6

(
1 +

1

ρd+2

)
4Lν1n

(
γ lnn

4Lν1n

)1/(d+2)

+
(
2z − 1

)(8 lnn

ν2
1ρ

2z
+ 4

)

=

(
1 +

1

ρd+2

)(
4Lν1n

)(d+1)/(d+2)
(γ lnn)1/(d+2) +

(
2z − 1

)(8 lnn

ν2
1ρ

2z
+ 4

)
.

This concludes the proof. �

6.4. Proof of Theorem 4.4 (regret bound for local HOO).

PROOF. We use the notation of the proof of Theorem 4.3. Let r0 be a positive integer such

that for r > r0, one has

zr
def
= ⌈log2 r⌉ > h0 and zr 6

1

d+ 2

ln(4Lν12
r)− ln(γ ln 2r)

ln(1/ρ)
;

we can therefore apply the result of Theorem 4.3 in regimes indexed by r > r0. For previous

regimes, we simply upper bound the regret by the number of rounds, that is, 2r0 − 2 6 2r0 . For

round n, we denote by rn the index of the regime where n lies in (regime rn = ⌊log2(n + 1)⌋).
Since regime rn terminates at round 2rn+1 − 2, we have

E
[
Rn
]

6 E
[
R2rn+1−2

]

6 2r0 +

rn∑

r=r0

(
1 +

1

ρd+2

)(
4Lν12

r
)(d+1)/(d+2)

(γ ln 2r)1/(d+2) +
(
2zr − 1

)(8 ln 2r

ν2
1ρ

2zr
+ 4

)

6 2r0 + C1 (lnn)

rn∑

r=r0

(
2(d+1)/(d+2)

)r
+
(
2/ρ2

)zr

6 2r0 + C2 (lnn)

((
2(d+1)/(d+2)

)rn
+ rn

(
2/ρ2

)zrn
)

= (lnn)2 O
(
n(d+1)/(d+2)

)
,
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where C1, C2 > 0 denote some constants depending only on the parameters but not on n. Note

that for the last equality we used that the first term in the sum of the two terms that depend on n

dominates the second term. �

6.5. Proof of Theorem 4.5 (uniform upper bound on the regret of HOO against the class

of all weak Lipschitz environments). Equations (4.4) and (4.5), which follow from Assump-

tion A2, show that Assumption A2’ is satisfied for L = 2 and all ε0 > 0. We take, for instance,

ε0 = 3ν1. Moreover, since X has a packing dimension of D, all environments have a near-

optimality dimension less than D. In particular, for all D′ > D (as shown in the second step

of the proof of Theorem 4.1 in Section 6.1), there exists a constant C (depending only on ℓ, X ,

ε0 = 3ν1, ν2, and D′) such that Assumption A3 is satisfied. We can therefore take h0 = 0 and

apply Theorem 4.3 with z = 0 andM ∈ FX ,ℓ; the fact that all the quantities involved in the bound

depend only on X , ℓ, ν2, D′, and the parameters of HOO, but not on a particular environment in

F , concludes the proof.

6.6. Proof of Theorem 4.6 (minimax lower bound in metric spaces). LetK > 2 an integer

to be defined later. We provide first an overview of the proof. Here, we exhibit a set A of envi-

ronments for the {1, . . . ,K +1}–armed bandit problem and a subset F ′ ⊂ FX ,ℓ which satisfy the

following properties.

(i): The setA contains “difficult” environments for the {1, . . . ,K+1}–armed bandit prob-

lem.

(ii): For any strategy ϕ(X ) suited to the X–armed bandit problem, one can construct a

strategy ψ(K+1) for the {1, . . . ,K + 1}–armed bandit problem such that

∀ M ∈ F ′, ∃ ν ∈ A, EM
[
Rn(ϕ

(X ))
]

= Eν
[
Rn(ψ

(K+1))
]
.

We now provide the details.

PROOF. We only deal with the case of deterministic strategies. The extension to randomized

strategies can be done using Fubini’s theorem (by integrating also w.r.t. the auxiliary randomiza-

tions used).

First step. Let η ∈ (0, 1/2) be a real number and K > 2 be an integer, both to be defined

during the course of the analysis. The setA only containsK elements, denoted by ν1, . . . , νK and

given by product distributions. For 1 6 j 6 K, the distribution νj is obtained as the product of

the νji when i ∈ {1, . . . ,K + 1} and where

νji =

{
Ber(1/2), if i 6= j;

Ber(1/2 + η), if i = j.

Rephrasing Lemma 2.2 in the context of this chapter we obtain:

LEMMA 4.8. For all strategies ψ(K+1) for the {1, . . . ,K + 1}–armed bandit (where K > 2),

one has

max
j=1,...,K

Eνj
[
Rn(ψ

(K+1))
]

> nη

(
1− 1

K
− η
√

4 ln(4/3)

√
n

K

)
.

Second step. We now need to construct F ′ such that item (ii) is satisfied. We assume that

K is such that X contains K disjoint balls with radius η. (We shall quantify later in this proof a

suitable value of K.) Denoting by x1, . . . , xK the corresponding centers, these disjoint balls are

then B(x1, η), . . . , B(xK , η).



6. PROOFS 111

With each of these balls we now associate a bandit environment over X , in the following way.

For all x∗ ∈ X , we introduce a mapping gx∗,η on X defined by

gx∗,η(x) = max
{
0, η − ℓ(x, x∗)

}

for all x ∈ X . This mapping is used to define an environment Mx∗,η over X , as follows. For all

x ∈ X ,

Mx∗,η(x) = Ber

(
1

2
+ gx∗,η(x)

)
.

Let fx∗,η be the corresponding mean-payoff function; its values equal

fx∗,η(x) =
1

2
+ max

{
0, η − ℓ(x, x∗)

}

for all x ∈ X . Note that the mean payoff is maximized at x = x∗ (with value 1/2 + η) and is

minimal for all points lying outside B(x∗, η), with value 1/2. In addition, that ℓ is a metric entails

that these mean-payoff functions are 1–Lipschitz and thus are also weakly Lipschitz. (This is the

only point in the proof where we use that ℓ is a metric.) In conclusion, we consider

F ′ =
{
Mx1,η, . . . , MxK ,η

}
⊂ FX ,ℓ .

Third step. We describe how to associate with each (deterministic) strategy ϕ(X ) on X a

(random) strategy ψ(K+1) on the finite set of arms {1, . . . ,K + 1}. Each of these strategies is

indeed given by a sequence of mappings,

ϕ
(X )
1 , ϕ

(X )
2 , . . . and ψ

(K+1)
1 , ψ

(K+1)
2 , . . .

where for t > 1, the mappingsϕ
(X )
t andψ

(K+1)
t should only depend on the past up to the beginning

of round t. Since the strategy ϕ(X ) is deterministic, the mapping ϕ
(X )
t takes only into account the

past rewards Y1, . . . , Yt−1 and is therefore a mapping [0, 1]t−1 → X . (In particular, ϕ
(X )
1 equals a

constant.)

We use the notations I ′t and Y ′
t for, respectively, the arms pulled and the rewards obtained by

the strategy ψ(K+1) at each round t. The arms I ′t are drawn at random according to the distributions

ψ
(K+1)
t

(
I ′1, . . . , I

′
t−1, Y

′
1 , . . . , Y

′
t−1

)
,

which we now define. (Actually, they will depend on the obtained payoffs Y ′
1 , . . . , Y

′
t−1 only.) To

do that, we need yet another mapping T that links elements in X to probability distributions over

{1, . . . ,K + 1}. Denoting by δk the Dirac probability on k ∈ {1, . . . ,K + 1}, the mapping T is

defined as

T (x) =





δK+1 , if x 6∈
⋃

j=1,...,K

B(xj , η);

(
1− ℓ(x, xj)

η

)
δj +

ℓ(x, xj)

η
δK+1 , if x ∈ B(xj , η) for some j ∈ {1, . . . ,K},

for all x ∈ X . Note that this definition is legitimate because the balls B(xj , η) are disjoint when j

varies between 1 and K.

Finally, ψ(K+1) is defined as follows. For all t > 1,

ψ
(K+1)
t

(
I ′1, . . . , I

′
t−1, Y

′
1 , . . . , Y

′
t−1

)
= ψ

(K+1)
t

(
Y ′

1 , . . . , Y
′
t−1

)
= T

(
ϕ

(X )
t

(
Y ′

1 , . . . , Y
′
t−1

))
.

Before we proceed, we study the distribution of the reward Y ′ obtained under νi (for i ∈
{1, . . . ,K}) by the choice of a random arm I ′ drawn according to T (x), for some x ∈ X . Since

Y ′ can only take the values 0 or 1, its distribution is a Bernoulli distribution whose parameter µi(x)

we compute now. The computation is based on the fact that under νi, the Bernoulli distribution
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corresponding to arm j has 1/2 as an expectation, except if j = i, in which case it is 1/2 + η.

Thus, for all x ∈ X ,

µi(x) =





1/2 , if x 6∈ B(xi, η);(
1− ℓ(x, xi)

η

) (
1

2
+ η

)
+
ℓ(x, xi)

η

1

2
=

1

2
+ η − ℓ(x, xi) , if x ∈ B(xi, η).

That is, µi = fxi,η on X .

Fourth step. We now prove that the distributions of the regrets of ϕ(X ) under Mxj ,η and of

ψ(K+1) under νj are equal for all j = 1, . . . ,K. On the one hand, the expectations of rewards

associated with the best arms equal 1/2 + η under the two environments. On the other hand, one

can prove by induction that the sequences Y1, Y2, . . . and Y ′
1 , Y

′
2 , . . . have the same distribution.

(In the argument below, conditioning by empty sequences means no conditioning. This will be the

case only for t = 1.)

For all t > 1, we denote

X ′
t = ϕ

(X )
t

(
Y ′

1 , . . . , Y
′
t−1

)
.

Under νj and given Y ′
1 , . . . , Y

′
t−1, the distribution of Y ′

t is obtained by definition as the two-step

random draw of I ′t ∼ T (X ′
t) and then, conditionally on this first draw, Y ′

t ∼ νj
I′t

. By the above

results, the distribution of Y ′
t is thus a Bernoulli distribution with parameter µj(X

′
t).

At the same time, under Mxj ,η and given Y1, . . . , Yt−1, the choice of

Xt = ϕ
(X )
t

(
Y1, . . . , Yt−1

)

yields a reward Yt distributed according to Mxj ,η(Xt), that is, by definition and with the notations

above, a Bernoulli distribution with parameter fxj ,η(Xt) = µj(Xt).

The argument is concluded by induction and by using the fact that rewards are drawn indepen-

dently in each round.

Fifth step. We summarize what we proved so far. For η ∈ (0, 1/2), provided that there exist

K > 2 disjoint balls B(xj , η) in X , we could construct, for all strategies ϕ(X ) for the X–armed

bandit problem, a strategy ψ(K+1) for the {1, . . . ,K + 1}–armed bandit problem such that, for all

j = 1, . . . ,K and all n > 1,

EMxj,η

[
Rn(ϕ

(X ))
]

= Eνj
[
Rn(ψ

(K+1))
]
.

But by the assumption on the packing dimension, there exists c > 0 such that for all η < 1/2,

the choice of Kη = ⌈c η−D⌉ > 2 guarantees the existence of such Kη disjoint balls. Substituting

this value, and using the results of the first and fourth steps of the proof, we get

max
j=1,...,Kη

EMxj,η

[
Rn(ϕ

(X ))
]

= max
j=1,...,Kη

Eνj
[
Rn(ψ

(K+1))
]

> nη

(
1− 1

Kη
− η
√

4 ln(4/3)

√
n

Kη

)
.

The proof is concluded by noting that

• the left-hand side is smaller than the maximal regret w.r.t. all weak-Lipschitz environ-

ments;

• the right-hand side can be lower bounded and then optimized over η < 1/2 in the fol-

lowing way.

By definition of Kη and the fact that it is larger than 2, one has

nη

(
1− 1

Kη
− η
√

4 ln(4/3)

√
n

Kη

)
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> nη

(
1− 1

2
− η
√

4 ln(4/3)

√
n

cη−D

)
= nη

(
1

2
− C η1+D/2√n

)

where C =
√(

4 ln(4/3)
) /

c. We can optimize the final lower bound over η ∈ [0, 1/2].

To that end, we choose, for instance, η such that C η1+D/2√n = 1/4, that is,

η =

(
1

4C
√
n

)1/(1+D/2)

=

(
1

4C

)1/(1+D/2)

n−1/(D+2) .

This gives the lower bound

1

4

(
1

4C

)1/(1+D/2)

n1−1/(D+2) =
1

4

(
1

4C

)1/(1+D/2)

︸ ︷︷ ︸
= γ(c,D)

n(D+1)/(D+2) .

To ensure that this choice of η is valid we need to show that η 6 1/2. Since the latter requirement

is equivalent to

n >

(
2

(
1

4C

)1/(1+D/2)
)D+2

,

it suffices to choose the right-hand side to be N(c,D); we then get that η 6 1/2 indeed holds for

all n > N(c,D), thus concluding the proof of the theorem. �





CHAPTER 5

Open-Loop Optimistic Planning

We consider the problem of planning in a stochastic and discounted environment with a limited

numerical budget. More precisely, we investigate strategies exploring the set of possible sequences

of actions, so that, once all available numerical resources (e.g. CPU time, number of calls to a

generative model) have been used, one returns a recommendation on the best possible immediate

action (or sequence of actions) to follow based on this exploration. The performance of a strategy

is assessed in terms of its simple regret, that is the loss in performance resulting from choosing the

recommended action instead of an optimal one. We first provide a minimax lower bound for this

problem, and show that a uniform planning strategy matches this minimax rate (up to a logarithmic

factor). Then we propose a UCB (Upper Confidence Bounds)-based planning algorithm, called

OLOP (Open-Loop Optimistic Planning), which is also minimax optimal, and prove that it enjoys

much faster rates when there is a small proportion of near-optimal sequences of actions. Finally, we

compare our results with the regret bounds one can derive for our setting with bandits algorithms

designed for an infinite number of arms.
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This chapter is a joint work with Rémi Munos. It is based on the paper Bubeck and Munos

[2010] published in the proceedings of the 23rd Annual Conference on Learning Theory.

1. Introduction

We consider the problem of planning in general stochastic and discounted environments. More

precisely, the decision making problem consists in an exploration phase followed by a recommen-

dation. First, the agent explores freely the set of possible sequences of actions, using a finite

budget of n actions. Then the agent makes a recommendation on the first action a(n) (or sequence

of actions) to play. This decision making problem is described precisely in Figure 1. The goal of

the agent is to find the best way to explore its environment (first phase) so that, once the available
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Exploration in a stochastic and discounted environment.

Parameters available to the agent: discount factor γ ∈ (0, 1), number of actions K, number of

rounds n.

Parameters unknown to the agent: the reward distributions ν(a), a ∈ A∗.

For each episode m > 1; for each moment in the episode t > 1;

(1) If n actions have already been performed then the agent outputs an action (or a se-

quence) a(n) and the game stops.

(2) The agent chooses an action amt ∈ A.

(3) The environment draws Y m
t ∼ ν(am1:t) and the agent receives the reward γtY m

t .

(4) The agent decides to either move the next moment t+ 1 in the episode or to reset to

its initial position and move the next episode m+ 1.

Goal: maximize the value of the recommended action (or sequence): V (a(n)) (see (5.1) for

the definition of the value of an action).

Figure 1: Exploration in a stochastic and discounted environment.

resources have been used, he is able to make the best possible recommendation on the action to

play in the environment.

During the exploration of the environment, the agent iteratively selects sequences of actions

and receives a reward after each action. More precisely, at time step t during the mth sequence,

the agent played am1:t = am1 . . . amt ∈ At and receives a discounted reward γtY m
t where γ ∈ (0, 1)

is the discount factor. We make a stochastic assumption on the generating process for the reward:

given am1:t, Yt is drawn from a probability distribution ν(am1:t) on [0, 1]. Given a ∈ At, we write

µ(a) for the mean of the probability ν(a).

The performance of the recommended action a(n) ∈ A (or sequence, in which case a(n) ∈
Ah) is assessed in terms of the so-called simple regret rn, which is the performance loss resulting

from choosing this sequence and then following an optimal path instead of following an optimal

path from the beginning:

rn = V − V (a(n)),

where V (a(n)) is the (discounted) value of the action (or sequence) a(n), defined for any finite

sequence of actions a ∈ Ah as:

(5.1) V (a) = sup
u∈A∞:u1:h=a

∑

t>1

γtµ(u1:t),

and V is the optimal value, that is the maximum expected sum of discounted rewards one may

obtain (i.e. the sup in (5.1) is taken over all sequences in A∞).

Note that this simple regret criterion will be extensively studied in the context of multi-armed

bandit in Chapter 6 and Chapter 7.

An important application of this framework concerns the problem of planning in Markov De-

cision Processes (MDPs) with very large state spaces. We assume that the agent possesses a

generative model which enables to generate a reward and a transition from any state-action to a

next state, according to the underlying reward and transition model of the MDP. In this context,

we propose to use the generative model to perform a planning from the current state (using a finite
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budget of n calls to a generative model) to generate a near-optimal action a(n) and then apply

a(n) in the real environment. This action modifies the environment and the planning procedure

is repeated from the next state to select the next action and so on. From each state, the planning

consists in the exploration of the set of possible sequences of actions as described in Figure 1,

where the generative model is used to generate the rewards.

Note that, using control terminology, the setting described above (from a given state) is called

“open-loop” planning, because the class of considered policies (i.e. sequences of actions) are only

function of time (and not of the underlying resulting states). This open-loop planning is in general

sub-optimal compared to the optimal (closed-loop) policy (mapping from states to actions). How-

ever, here, while the planning is open-loop (i.e. we do not take into consideration the subsequent

states in the planning), the resulting policy is closed-loop (since the chosen action depends on the

current state).

This approach to MDPs has already been investigated as an alternative to usual dynamic pro-

gramming approaches (which approximate the optimal value function to design a near optimal

policy) to circumvent the computational complexity issues. For example, Kearns et al. describe a

sparse sampling method that uses a finite amount of computational resources to build a look-ahead

tree from the current state, and returns a near-optimal action with high probability.

Another field of application is POMDPs (Partially Observable Markov Decision Problems),

where from the current belief state an open-loop plan may be built to select a near-optimal imme-

diate action (see e.g. Yu et al. [2005], Hsu et al. [2007]). Note that, in these problems, it is very

common to have a limited budget of computational resources (CPU time, memory, number of calls

to the generative model, ...) to select the action to perform in the real environment, and we aim at

making an efficient use of the available resources to perform the open-loop planning.

Moreover, in many situations, the generation of state-transitions is computationally expensive,

thus it is critical to make the best possible use of the available number of calls to the model to

output the action. For instance, an important problem in waste-water treatment concerns the con-

trol of a biochemical process for anaerobic digestion. The chemical reactions involve hundreds of

different bacteria and the simplest models of the dynamics already involve dozens of variables (for

example, the well-known model called ADM1 Batstone et al. [2002] contains 32 state variables)

and their simulation is numerically heavy. Because of the curse of dimensionality, it is impossi-

ble to compute an optimal policy for such model. The methodology described above aims at a

less ambitious goal, and search for a closed-loop policy which is open-loop optimal at each time

step. While this policy is suboptimal, it is also a more reasonable target in terms of computational

complexity. The strategy considered here proposes to use the model to simulate transitions and

perform a complete open-loop planning at each time step.

The main contribution of this chapter is the analysis of an adaptive exploration strategy of the

search space, called Open-Loop Optimistic Planning (OLOP), which is based on the “optimism

in the face of uncertainty” principle, i.e. where the most promising sequences of actions are ex-

plored first. The idea of optimistic planning has already been investigated in the simple case of

deterministic environments, Hren and Munos [2008]. Here we consider the non-trivial extension

of this optimistic approach to planning in stochastic environments. For that purpose, upper confi-

dence bounds (UCBs) are assigned to all sequences of actions, and the exploration expands further

the sequences with highest UCB. The idea of selecting actions based on UCBs comes from the

multi-armed bandits literature, see Lai and Robbins [1985], Auer et al. [2002]. Planning under

uncertainty using UCBs has been considered previously in Chang et al. [2007] (the so-called UCB

sampling) and in Kocsis and Szepesvari [2006], where the resulting algorithm, UCT (UCB applied
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to Trees), has been successfully applied to the large scale tree search problem of computer-go, see

Gelly et al. [2006]. However, its regret analysis shows that UCT may perform very poorly because

of overly-optimistic assumptions in the design of the bounds, see Coquelin and Munos [2007].

This work is close in spirit to BAST (Bandit Algorithm for Smooth Trees), Coquelin and Munos

[2007], the Zooming Algorithm, Kleinberg et al. [2008a] and the strategy HOO described in Chap-

ter 4. Like in these previous works, the performance bounds of OLOP are expressed in terms of a

measure of the proportion of near-optimal paths.

However, as we shall discuss in Section 4, these previous algorithms fail to obtain minimax

guarantees for our problem. Indeed, a particularity of our planning problem is that the value of a

sequence of action is defined as the sum of discounted rewards along the path, thus the rewards

obtained along any sequence provides information, not only about that specific sequence, but also

about any other sequence sharing the same initial actions. OLOP is designed to use this property

as efficiently as possible, to derive tight upper-bounds on the value of each sequence of actions.

Note that our results does not compare with traditional regret bounds for MDPs, such as the

ones proposed in Auer et al. [2009]. Indeed, in this case one compares to the optimal closed-loop

policy, and the resulting regret usually depends on the size of the state space (as well as on other

parameters of the MDP).

Outline. We exhibit in Section 2 the minimax rate (up to a logarithmic factor) for the simple regret

in discounted and stochastic environments: both lower and upper bounds are provided. Then in

Section 3 we describe the OLOP strategy, and show that if there is a small proportion of near-

optimal sequences of actions, then faster rates than minimax can be derived. In Section 4 we

compare our results with previous works and present several open questions. Finally Section 5

gathers the proofs.

Notations To shorten the equations we use several standard notations over alphabets. We collect

them here: A0 = {∅}, A∗ is the set of finite words over A (including the null word ∅), for a ∈ A∗

we note h(a) the integer such that a ∈ Ah(a), aAh = {ab, b ∈ Ah}, for a ∈ Ah and h′ > h we

note a1:h′ = a∅ . . . ∅ and a1:0 = ∅.

2. Minimax optimality

In this section we derive a lower bound on the simple regret (in the worst case) of any agent,

and propose a simple (uniform) forecaster which attains this optimal minimax rate (up to a loga-

rithmic factor). The main purpose of the section on the uniform planning is to show explicitly the

special concentrations property that our model enjoys.

2.1. Minimax lower bound. We propose here a new lower bound, whose proof can be found

in Appendix 5.1 and which is based on the technique developed in Auer et al. [2003]. Note that

this lower bound is not a particular case of the ones derived in Kleinberg et al. [2008a] or Bubeck

et al. [2009c] in a more general framework, as we shall see in Section 4.

THEOREM 5.1. Any agent satisfies:

sup
ν

Ern =





Ω

((
logn
n

) log 1/γ
logK

)
if γ
√
K > 1,

Ω

(√
logn
n

)
if γ
√
K 6 1.
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2.2. Uniform Planning. To start gently, let us consider first (and informally) a naive version

of the uniform planning. One can choose a depth H , uniformly test all sequences of actions in

AH (with (n/H)/KH samples for each sequence), and then return the empirical best sequence.

Cutting the sequences at depth H implies an error of order γH , and relying on empirical estimates

with (n/H)/KH samples adds an error of order

√
HKH

n , leading to a simple regret bounded as

O

(
γH +

√
HKH

n

)
. Optimizing over H yields an upper bound on the simple regret of the naive

uniform planning of order:

(5.2) O

((
log n

n

) log 1/γ
logK+2 log 1/γ

)
,

which does not match the lower bound. The cautious reader probably understands why this ver-

sion of uniform planning is suboptimal. Indeed we do not use the fact that any sequence of actions

of the form ab gives information on the sequences ac. Hence, the concentration of the empirical

mean for short sequences of actions is much faster than for long sequences. This is the critical

property which enables us to fasten the rates with respect to traditional methods, see Section 4 for

more discussion on this.

We describe now the good version of uniform planning. Let H ∈ N be the largest integer

such that HKH 6 n. Then the procedure goes as follows: For each sequence of actions a ∈ AH ,

the uniform planning allocates one episode (of length H) to estimate the value of the sequence a,

that is it receives Y a
t ∼ ν(a1:t), 1 6 t 6 H (drawn independently). At the end of the allocation

procedure, it computes for all a ∈ Ah, h 6 H , the empirical average reward of the sequence a:

µ̂(a) =
1

KH−h
∑

b∈AH :b1:h=a

Y b
h .

(obtained with KH−h samples.) Then, for all a ∈ AH , it computes the empirical value of the

sequence a:

V̂ (a) =

H∑

t=1

γtµ̂(a1:t).

It outputs a(n) ∈ A defined as the first action of the sequence arg maxa∈AH V̂ (a) (ties break

arbitrarily).

This version of uniform planning makes a much better use of the reward samples than the

naive version. Indeed, for any sequence a ∈ Ah, it collects the rewards Y b
h received for sequences

b ∈ aAH−h to estimate µ(a). Since |aAH−h| = KH−h, we obtain an estimation error for µ(a)

of order
√
Kh−H . Then, thanks to the discounting, the estimation error for V (a), with a ∈ AH ,

is of order K−H/2∑H
h=1(γ

√
K)h. On the other hand, the approximation error for cutting the

sequences at depth H is still of order γH . Thus, since H is the largest depth (given n and K)

at which we can explore once each node, we obtain the following behavior: When K is large,

precisely γ
√
K > 1, then H is small and the estimation error is of order γH , resulting in a simple

regret of order n−(log 1/γ)/ logK . On the other hand, if γ is small, precisely γ
√
K < 1, then the

depth H becomes less important, and the estimation error is of order K−H/2, resulting in a simple

regret of order n−1/2. This reasoning is made precise in Appendix 5.2 (supplementary material

section), where we prove the following Theorem.
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THEOREM 5.2. The (good) uniform planning satisfies:

Ern 6





O

(√
log n

(
logn
n

) log 1/γ
logK

)
if γ
√
K > 1,

O

(
(logn)2√

n

)
if γ
√
K = 1,

O

(
logn√
n

)
if γ
√
K < 1.

REMARK 5.1. We do not know whether the
√

log n (respectively (log n)3/2 in the case γ
√
K =

1) gap between the upper and lower bound comes from a suboptimal analysis (either in the upper

or lower bound) or from a suboptimal behavior of the uniform forecaster.

3. OLOP (Open Loop Optimistic Planning)

The uniform planning described in Section 2.2 is a static strategy, it does not adapt to the

rewards received in order to improve its exploration. A stronger strategy could select, at each

round, the next sequence to explore as a function of the previously observed rewards. In particular,

since the value of a sequence is the sum of discounted rewards, one would like to explore more

intensively the sequences starting with actions that already yielded high rewards. In this section we

describe an adaptive exploration strategy, called Open Loop Optimistic Planning (OLOP), which

explores first the most promising sequences, resulting in much stronger guarantees than the one

derived for uniform planning.

OLOP proceeds as follows. It assigns upper confidence bounds (UCBs), called B-values, to

all sequences of actions, and selects at each round a sequence with highest B-value. This idea of

a UCB-based exploration comes from the multi-armed bandits literature, see Auer et al. [2002].

It has already been extended to hierarchical bandits, Chang et al. [2007], Kocsis and Szepesvari

[2006], Coquelin and Munos [2007], and to bandits in metric (or even more general) spaces, Auer

et al. [2007], Kleinberg et al. [2008a], Bubeck et al. [2009c].

Like in these previous works, we express the performance of OLOP in terms of a measure

of the proportion of near-optimal paths. More precisely, we define κc ∈ [1,K] as the branching

factor of the set of sequences in Ah that are c− γh+1

1−γ -optimal, where c is a positive constant, i.e.

(5.3) κc = lim sup
h→∞

∣∣∣∣
{
a ∈ Ah : V (a) > V − c γ

h+1

1− γ

}∣∣∣∣
1/h

.

Intuitively, the set of sequences a ∈ Ah that are γh+1

1−γ -optimal are the sequences for which

the perfect knowledge of the discounted sum of mean rewards
∑h

t=1 γ
tµ(a1:t) is not sufficient to

decide whether a belongs to an optimal path or not, because of the unknown future rewards for

t > h. In the main result, we consider κ2 (rather than κ1) to account for an additional uncertainty

due to the empirical estimation of
∑h

t=1 γ
tµ(a1:t). In Section 4, we discuss the link between κ

and the other measures of the set of near-optimal states introduced in the previously mentioned

works.

3.1. The OLOP algorithm. The OLOP algorithm is described in Figure 2. It makes use of

some B-values assigned to any sequence of actions in AL. At time m = 0, the B-values are

initialized to +∞. Then, after episode m > 1, the B-values are defined as follows: For any

1 6 h 6 L, for any a ∈ Ah, let

Ta(m) =

m∑

s=1

1{as1:h = a}
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Open Loop Optimistic Planning:

Let M be the largest integer such that M⌈logM/(2 log 1/γ)⌉ 6 n. Let L =
⌈logM/(2 log 1/γ)⌉.
For each episode m = 1, 2, . . . ,M ;

(1) The agent computes the B–values at time m− 1 for sequences of actions in AL (see

Section 3.1) and chooses a sequence that maximizes the corresponding B–value:

am ∈ argmax
a∈AL

Ba(m− 1).

(2) The environment draws the sequence of rewards Y m
t ∼ ν(am1:t), t = 1, . . . , L.

Return an action that has been the most played: a(n) = argmaxa∈A Ta(M).

Figure 2: Open Loop Optimistic Planning

be the number of times we played a sequence of actions beginning with a. Now we define the

empirical average of the rewards for the sequence a as:

µ̂a(m) =
1

Ta(m)

m∑

s=1

Y s
h1{as1:h = a},

if Ta(m) > 0, and 0 otherwise. The corresponding upper confidence bound on the value of the

sequence of actions a is by definition:

Ua(m) =
h∑

t=1

γtµ̂a1:t(m) + γt

√
2 logM

Ta1:t(m)
+
γh+1

1− γ ,

if Ta(m) > 0 and +∞ otherwise. Now that we have upper confidence bounds on the value of

many sequences of actions we can sharpen these bounds for the sequences a ∈ AL by defining the

B-values as:

Ba(m) = inf
16h6L

Ua1:h
(m).

At each episode m = 1, 2, . . . ,M , OLOP selects a sequence am ∈ AL with highest B–value,

observes the rewards Y m
t ∼ ν(am1:t), t = 1, . . . , L provided by the environment, and updates the

B–values. At the end of the exploration phase, OLOP returns an action that has been the most

played, i.e. a(n) = argmaxa∈A Ta(M).

3.2. Main result.

THEOREM 5.3 (Main Result). Let κ2 ∈ [1,K] be defined by (5.3). Then, for any κ′ > κ2,

OLOP satisfies:

Ern =





Õ

(
n
− log 1/γ

log κ′

)
if γ
√
κ′ > 1,

Õ

(
n−

1
2

)
if γ
√
κ′ 6 1.

(We say that un = Õ(vn) if there exists α, β > 0 such that un 6 α(log(vn))
βvn)

REMARK 5.2. One can see that the rate proposed for OLOP greatly improves over the uniform

planning whenever there is a small proportion of near-optimal paths (i.e. κ is small). Note that this

does not contradict the lower bound proposed in Theorem 5.1. Indeed κ provides a description
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of the environment ν, and the bounds are expressed in terms of that measure, one says that the

bounds are distribution-dependent. Nonetheless, OLOP does not require the knowledge of κ, thus

one can take the supremum over all κ ∈ [1,K], and see that it simply replaces κ by K, proving

that OLOP is minimax optimal (up to a logarithmic factor).

REMARK 5.3. In the analysis of OLOP, we relate the simple regret to the more traditional

cumulative regret, defined at round n as Rn =
∑M

m=1

(
V − V (am)

)
. Indeed, in the proof of

Theorem 5.3, we first show that rn = Õ
(
Rn
n

)
, and then we bound (in expectation) this last term.

Thus the same bounds apply to ERn with a multiplicative factor of order n. In this chaper, we

focus on the simple regret rather than on the traditional cumulative regret because we believe that

it is a more natural performance criterion for the planning problem considered here. However

note that OLOP is also minimax optimal (up to a logarithmic factor) for the cumulative regret,

since one can also derive lower bounds for this performance criterion using the proof of Theorem

5.1.

REMARK 5.4. One can also see that the analysis carries over to rLn = V−V (argmaxa∈AL Ta(M)),

that is we can bound the simple regret of a sequence of actions in AL rather than only the first

action a(n) ∈ A. Thus, using n actions for the exploration of the environment, one can derive a

plan of length L (of order log n) with the optimality guarantees of Theorem 5.3.

4. Discussion

In this section we compare the performance of OLOP with previous algorithms that can be

adapted to our framework. This discussion is summarized in Figure 3. We also point out several

open questions raised by these comparisons.

Comparison with Zooming Algorithm/HOO: In Kleinberg et al. [2008a] and Bubeck et al.

[2009c], the authors consider a very general version of stochastic bandits, where the set of arms

X is a metric space (or even more general spaces in Bubeck et al. [2009c]). When the underly-

ing mean-payoff function is 1-Lipschitz with respect to the metric (again, weaker assumption are

derived in Bubeck et al. [2009c]), the authors propose two algorithms, respectively the Zooming

Algorithm and HOO, for which they derive performances in terms of either the zooming dimen-

sion or the near-optimality dimension. In a metric space, both of these notions coincide, and the

corresponding dimension d is defined such that the number of balls of diameter ε required to cover

the set of arms that are ε-optimal is of order ε−d. Then, for both algorithms, one obtains a simple

regret of order Õ(n−1/(d+2)) (thanks to Remark 5.3).

Up to minor details, one can see our framework as a A∞-armed bandit problem, where the

mean-payoff function is the sum of discounted rewards. A natural metric ℓ on this space can be

defined as follows: For any a, b ∈ A∞, ℓ(a, b) = γh(a,b)+1

1−γ , where h(a, b) is the maximum depth

t > 0 such that a1:t = b1:t. One can very easily check that the sum of discounted reward is 1-

Lipschitz with respect to that metric, since
∑

t>1 γ
t|µ(a1:t)−µ(b1:t)| =

∑
t>h(a,b)+1 γ

t|µ(a1:t)−
µ(b1:t)| 6 ℓ(a, b). We show now that κ2, defined by (5.3), is closely related to the near-optimality

dimension. Indeed, note that the set aA∞ can be seen as a ball of diameter γ
h(a)+1

1−γ . Thus, from the

definition of κ2, the number of balls of diameter γh+1

1−γ required to cover the set of 2γ
h+1

1−γ -optimal

paths is of order of κh, which implies that the near-optimality dimension is d = log κ
log 1/γ . Thanks to

this result, we can see that applying the Zooming Algorithm or HOO in our setting yield a simple
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regret bounded as:

(5.4) Ern = Õ(n−1/(d+2)) = Õ(n
− log 1/γ

log κ+2 log 1/γ ).

Clearly, this rate is always worse than the ones in Theorem 5.3. In particular, when one takes

the supremum over all κ, we find that (5.4) gives the same rate as the one of naive uniform planning

in (5.2). This was expected since these algorithms do not use the specific shape of the global reward

function (which is the sum of rewards obtained along a sequence) to generalize efficiently across

arms. More precisely, they do not consider the fact that a reward sample observed for an arm (or

sequence) ab provides strong information about any arm in aA∞. Actually, the difference between

HOO and OLOP is the same as the one between the naive uniform planning and the good one (see

Section 2.2).

However, although things are obvious for the case of uniform planning, in the case of OLOP,

it is much more subtle to prove that it is indeed possible to collect enough reward samples along

sequences ab, b ∈ A∗ to deduce a sharp estimation of µ(a). Indeed, for uniform planning, if each

sequence ab, b ∈ Ah is chosen once, then one may estimate µ(a) using Kh reward samples. How-

ever in OLOP, since the exploration is expected to focus on promising sequences rather than being

uniform, it is much harder to control the number of times a sequence a ∈ A∗ has been played.

This difficulty makes the proof of Theorem 5.3 quite intricate compared to the proof of HOO for

instance.

Comparison with UCB-AIR: When one knows that there are many near-optimal sequences of

actions (i.e. when κ is close to K), then one may be convinced that among a certain number of

paths chosen uniformly at random, there exists at least one which is very good with high prob-

ability. This idea is exploited by the UCB-AIR algorithm of Wang et al. [2009], designed for

infinitely many-armed bandits, where at each round one chooses either to sample a new arm (or

sequence in our case) uniformly at random, or to re-sample an arm that has already been explored

(using a UCB-like algorithm to choose which one). The regret bound of Wang et al. [2009] is

expressed in terms of the probability of selecting an ε-optimal sequence when one chooses the

actions uniformly at random. More precisely, the characteristic quantity is β such that this proba-

bility is of order of εβ . Again, one can see that κ2 is closely related to β. Indeed, our assumption

says that the proportion of ε-optimal sequences of actions (with ε = 2γ
h+1

1−γ ) is O(κh), resulting in

κ = Kγβ . Thanks to this result, we can see that applying UCB-AIR in our setting yield a simple

regret bounded as:

Ern =

{
Õ(n−

1
2 ) if κ > Kγ

Õ(n
− 1

1+β ) = Õ(n
− log 1/γ

logK/κ+log 1/γ ) if κ 6 Kγ

As expected, UCB-AIR is very efficient when there is a large proportion of near-optimal paths.

Note that UCB-AIR requires the knowledge of β (or equivalently κ).

Figure 3 shows a comparison of the exponents in the simple regret bounds for OLOP, uniform

planning, UCB-AIR, and Zooming/HOO (in the case Kγ2 > 1). We note that the rate for OLOP

is better than UCB-AIR when there is a small proportion of near-optimal paths (small κ). Uniform

planning is always dominated by OLOP and corresponds to a minimax lower bound for any al-

gorithm. Zooming/HOO are always strictly dominated by OLOP and they do not attain minimax

performances.
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log
1/γlog
K

log
1/γlog
κ

1/γlog
logK/ 1/log+κ γ

1/2

log n
rnlog (bound on     )

OLOP

HOO, Zooming

κKKγ2γ1/1

1/γ
K+
log

log γ1/2log

Uniform

UCB−AIR

Figure 3: Comparison of the exponent rate of the bounds on the simple regret for OLOP, (good)

uniform planning, UCB-AIR, and Zooming/HOO, as a function of κ ∈ [1,K], in the case Kγ2 >
1.

Comparison with deterministic setting: In Hren and Munos [2008], the authors consider a de-

terministic version of our framework, precisely they assume that the rewards are a deterministic

function of the sequence of actions. Remarkably, in the case κγ2 > 1, we obtain the same rate

for the simple regret as Hren and Munos [2008]. Thus, in this case, we can say that planning

in stochastic environments is not harder than planning in deterministic environments (moreover,

note that in deterministic environments there is no distinction between open-loop and closed-loop

planning).

Open questions: We identify four important open questions. (i) Is it possible to attain the per-

formances of UCB-AIR when κ is unknown? (ii) Is it possible to improve OLOP if κ is known?

(iii) Can we combine the advantages of OLOP and UCB-AIR to derive an exploration strategy

with improved rate in intermediate cases (i.e. when 1/γ2 < κ < γK)? (iv) What is a problem-

dependent lower bound (in terms of κ or other measures of the environment) in this framework?

Obviously these problems are closely related, and the current behavior of the bounds suggests

that question (iv) might be tricky. As a side question, note that OLOP requires the knowledge of

the time-horizon n, we do not know whether it is possible to obtain the same guarantees with an

anytime algorithm.

5. Proofs

5.1. Proof of Theorem 5.1. Let ε ∈ [0, 1/2]. For h > 1 and b ∈ Ah we define the envi-

ronment νb as follows. If a /∈ Ah then νb(a) = δ0. If a ∈ Ah \ {b} then νb(a) = Ber
(

1−ε
2

)
.

And finally we set νb(b) = Ber
(

1+ε
2

)
. We also note ν0 the environment such that if a /∈ Ah

(respectively a ∈ Ah) then ν0(a) = δ0 (respectively ν0(a) = Ber
(

1−ε
2

)
). Note that, under νb, for

any a ∈ A \ {b1}, we have V − V (a) = εγh.
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We clearly have

sup
b∈Ah

Eνbrn = sup
b∈Ah

εγhPνb(a(n) 6= b1) > γhε


1− 1

Kh

∑

b∈Ah
Pνb(a(n) = b1)


 .

Now by Pinsker’s inequality we get

Pνb(a(n) = b1) 6 Pν0(a(n) = b1) +

√
1

2
KL (Pν0 ,Pνb).

Note that
1

Kh

∑

b∈Ah
Pν0(a(n) = b1) =

1

K
.

Using the chain rule for Kullback Leibler’s divergence (see the third step of the proof of Lemma

2.2) we obtain

KL (Pν0 ,Pνb) 6 KL

(
1− ε

2
,
1 + ε

2

)
Eν0Tb(n).

Note also that KL
(

1−ε
2 , 1+ε

2

)
6 2ε2

1−ε 6 4ε2 and thus by the concavity of the square root we obtain:

1

Kh

∑

b∈Ah

√
Eν0Tb(n) 6

√
1

Kh

∑

b∈Ah
Eν0Tb(n) 6

√
n

hKh
.

So far we proved:

sup
b∈Ah

Eνbrn > γhε

(
1− 1

K
− ε
√

n

hKh

)
.

Taking ε = 1
4 min(1,

√
hKh/n) yields the lower bound 1

16γ
h min(1,

√
hKh/n). The proof is

concluded by taking h = log(n log(1/γ2)/ log n)/ log(1/γ2) if γ
√
K 6 1 and h = log(n logK/ log n)/ logK

if γ
√
K > 1.

5.2. Proof of Theorem 5.2. First note that, since H is the largest integer such that HKH 6

n, it satisfies:

(5.5)
log n

logK
> H > ⌊ log(n logK/ log n)

logK
⌋.

Let ã = arg maxa∈AH V̂ (a) and a∗ ∈ AH be such that V (a∗) = V . Then we have

Ern = V − E V (a(n))

6 V − E V (ã)

6
γH+1

1− γ +
H∑

h=1

γh(µ(a∗1:h)− Eµ(ã1:h))

6
γH+1

1− γ +
H∑

h=1

γhE(µ̂(a∗1:h)− µ̂(ã1:h)) +
H∑

h=1

γhE (µ̂(ã1:h)− µ(ã1:h)) .

Now remark that

H∑

h=1

γhE(µ̂(a∗1:h)− µ̂(ã1:h)) = E

(
V̂H(a∗)− V̂H(ã)

)
6 0.

Moreover by Hoeffding’s inequality,

E max
a∈Ah

(µ̂(a)− µ(a)) 6

√
logKh

2KH−h .
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Thus we obtain

(5.6) Ern 6
γH+1

1− γ +

√
H logK

2KH

H∑

h=1

(γ
√
K)h.

Now consider the case γ
√
K > 1. We have

√
H logK

2KH

H∑

h=1

(γ
√
K)h = O

(√
H(γ
√
K)H

√
K
H

)
= O(

√
HγH).

Plugging this into (5.6) and using (5.5), we obtain

Ern = O(
√
HγH) = O

(√
log n

(
log n

n

) log 1/γ
logK

)
.

In the case γ
√
K = 1, we have

√
H logK

2KH

H∑

h=1

(γ
√
K)h = O

(
H3/2

√
K
H

)
= O(H3/2γH).

Plugging this into (5.6) and using (5.5), we obtain:

Ern = O(HγH) = O

(
(log n)2√

n

)
.

Finally, for γ
√
K < 1, we have

√
H logK

2KH

H∑

h=1

(γ
√
K)h = O

(√
H

KH

)
.

Plugging this into (5.6) and using (5.5), we obtain:

Ern = O

(√
H

KH

)
= O

(
log n√
n

)
.

5.3. Proof of Theorem 5.3. The proof of Theorem 5.3 is quite subtle. To present it in a gentle

way we adopt a pyramidal proof rather than a pedagogic one. We propose seven lemmas, which

we shall not motivate in depth, but prove in details. The precise architecture of the proof is as

follows: Lemma 5.1 is a preliminary step, it justifies Remark 5.3. Then Lemma 5.2 underlines

the important cases that we have to treat to show that suboptimal arms are not pulled too often.

Lemma 5.3 takes care of one of these cases. Then, from Lemma 5.4 to 5.7, each Lemma builds

on its predecessor. The main result eventually follows from Lemma 5.1 and 5.7 together with a

simple optimization step.

We introduce first a few notations that will be useful. Let 1 6 H 6 L and a∗ ∈ AL such that

∆(a∗) = 0. We define now some useful sets for any 1 6 h 6 H and 0 6 h′ < h;

I0 = {∅}, Ih =

{
a ∈ Ah : ∆(a) 6

2γh+1

1− γ

}
, Jh =

{
a ∈ Ah : a1:h−1 ∈ Ih−1 and a 6∈ Ih

}
.

Note that, from the definition of κ2, we have that for any κ′ > κ2, there exists a constant C

such that for any h > 1,

(5.7) |Ih| 6 Cκ′.



5. PROOFS 127

Now for 1 6 m 6 M , and a ∈ At with t 6 h, write

Pah,h′(m) =

{
b ∈ aAh−t ∩ Jh : Tb(m) >

8

γ2
(h+ 1)2γ2(h′−h) logM + 1

}
.

Finally we also introduce the following random variable:

τah,h′(m) = 1

{
Ta(m− 1) <

8

γ2
(h+ 1)2γ2(h′−h) logM + 1 6 Ta(m)

}
.

LEMMA 5.1. The following holds true,

rn 6
2KγH+1

1− γ +
3K

M

H∑

h=1

∑

a∈Jh

γh

1− γTa(M).

PROOF. Since a(n) ∈ arg maxa∈A Ta(M), we have Ta(n)(M) > M/K, and thus:

M

K

(
V − V (a(n))

)
6

(
V − V (a(n))

)
Ta(n)(M) 6

M∑

m=1

V − V (am).

Hence, we have, rn 6 K
M

∑M
m=1 V − V (am). Now remark that, for any sequence of actions

a ∈ AL, we have either:

• a1:H ∈ IH ; which implies V − V (a) 6
2γH+1

1−γ .

• or there exists 1 6 h 6 H such that a1:h ∈ Jh; which implies V − V (a) 6 V −
V (a1:h−1) + γh

1−γ 6
3γh

1−γ .

Thus we can write:

M∑

m=1

(V − V (am)) =
M∑

m=1

(V − V (am))

(
1{am ∈ IH}+ 1{∃1 6 h 6 H : am1:h ∈ Jh}

)

6
2γH+1

1− γ M + 3
H∑

h=1

∑

a∈Jh

γh

1− γTa(M),

which ends the proof of Lemma 5.1. �

The rest of the proof is devoted to the analysis of the term E
∑

a∈Jh Ta(M). In the stochastic

bandit literature, it is usual to bound the expected number of times a suboptimal action is pulled

by the inverse suboptimality (of this action) squared, see for instance Auer et al. [2002] or Bubeck

et al. [2009c]. Specialized to our setting, this implies a bound on ETa(M), for a ∈ Jh, of order

γ−2h. However, here, we obtain much stronger guarantees, resulting in the faster rates. Namely

we show that E
∑

a∈Jh Ta(M) is of order (κ′)h (rather than (κ′)hγ−2h with previous methods).

The next lemma describes under which circumstances a suboptimal sequence of actions in Jh
can be selected.

LEMMA 5.2. Let 0 6 m 6 M − 1, 1 6 h 6 L and a ∈ Jh. If am+1 ∈ aA∗ then it implies

that one the three following propositions is true:

∃1 6 h′ 6 L : Ua∗
1:h′

(m) < V,(5.8)

or

h∑

t=1

γtµ̂a1:t(m) > V (a) +

h∑

t=1

γt

√
2 logM

Ta1:t(m)
,(5.9)
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or

2

h∑

t=1

γt

√
2 logM

Ta1:t(m)
>
γh+1

1− γ .(5.10)

PROOF. If am+1 ∈ aA∗ then it implies that Ua(m) > inf16h′6L Ua∗
1:h′

(m). That is either

(5.8) is true or

Ua(m) =
h∑

t=1

γtµ̂a1:t(m) + γt

√
2 logM

Ta1:t(m)
+
γh+1

1− γ > V.

In the latter case, if (5.9) is not satisfied, it implies

(5.11) V (a) + 2

h∑

t=1

γt

√
2 logM

Ta1:t(m)
+
γh+1

1− γ > V.

Since a ∈ Jh we have V − V (a)− γh+1

1−γ >
γh+1

1−γ which shows that equation (5.11) implies (5.10)

and ends the proof. �

We show now that both equations (5.8) and (5.9) have a vanishing probability of being satis-

fied.

LEMMA 5.3. The following holds true, for any 1 6 h 6 L and m 6 M ,

P(equation (5.8) or (5.9) is true) 6 m(L+ h)M−4 = Õ(M−3).

PROOF. Since V 6
∑h

t=1 γ
tµ(a∗1:t) + γh+1

1−γ , we have,

P(∃ 1 6 h 6 L : Ua∗1:h(m) 6 V )

6 P

(
∃ 1 6 h 6 L :

h∑

t=1

γt

(
µ̂a∗1:t(m) +

√
2 logM

Ta∗1:t(m)

)
6

h∑

t=1

γtµ(a∗1:t) and Ta∗1:h(m) > 1

)

6 P

(
∃ 1 6 t 6 L : µ̂a∗1:t(m) +

√
2 logM

Ta∗1:t(m)
6 µ(a∗1:t) and Ta∗1:t(m) > 1

)

6

L∑

t=1

P

(
µ̂a∗1:t(m) +

√
2 logM

Ta∗1:t(m)
6 µ(a∗1:t) and Ta∗1:t(m) > 1

)
.

Now we want to apply a concentration inequality to bound this last term. To do it properly we

exhibit a martingale and apply the Hoeffding-Azuma inequality for martingale differences (see

Theorem 10.1). Let

Sj = min{s : Ta∗1:t(s) = j}, j > 1.

If Sj 6 M , we define Ỹj = Y
Sj
t , and otherwise Ỹj is an independent random variable with law

ν(a∗1:t). We clearly have,

P

(
µ̂a∗1:t(m) +

√
2 logM

Ta∗1:t(m)
6 µ(a∗1:t) and Ta∗1:t(m) > 1

)

= P

(
1

Ta∗1:t(m)

Ta∗1:t
(m)∑

j=1

Ỹj +

√
2 logM

Ta∗1:t(m)
6 µ(a∗1:t) and Ta∗1:t(m) > 1

)

6

m∑

u=1

P

(
1

u

u∑

j=1

Ỹj +

√
2 logM

u
6 µ(a∗1:t)

)
.
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Now we have to prove that Ỹj − µ(a∗1:t) is martingale differences sequence. This follows via

an optional skipping argument, see [Doob, 1953, Chapter VII, Theorem 2.3]. Thus we obtain

P(equation (5.8) is true) 6

L∑

t=1

m∑

u=1

exp

(
−2u

2 logM

u

)
= LmM−4.

The same reasoning gives

P(equation (5.9) is true) 6 mhM−4,

which concludes the proof. �

The next lemma proves that, if a sequence of actions has already been pulled enough, then

equation (5.10) is not satisfied, and thus using lemmas 5.2 and 5.3 we deduce that with high

probability this sequence of actions will not be selected anymore. This reasoning is made precise

in Lemma 5.5.

LEMMA 5.4. Let 1 6 h 6 L, a ∈ Jh and 0 6 h′ < h. Then equation (5.10) is not satisfied if

the two following propositions are true:

∀0 6 t 6 h′, Ta1:t(m) >
8

γ2
(h+ 1)2γ2(t−h) logM,(5.12)

and

Ta(m) >
8

γ2
(h+ 1)2γ2(h′−h) logM.(5.13)

PROOF. Assume that (5.12) and (5.13) are true. Then we clearly have:

2
h∑

t=1

γt

√
2 logM

Ta1:t(m)
= 21h′>0

h′∑

t=1

γt

√
2 logM

Ta1:t(m)
+ 2

h∑

t=h′+1

γt

√
2 logM

Ta1:t(m)

6
γh+1

h+ 1
h′ +

γh+1

h+ 1

h∑

t=h′+1

γt−h
′

6
γh+1

h+ 1

(
h′ +

γ

1− γ

)

6
γh+1

1− γ ,

which proves the result. �

LEMMA 5.5. Let 1 6 h 6 L, a ∈ Jh and 0 6 h′ < h. Then τah,h′(m + 1) = 1 implies that

either equation (5.8) or (5.9) is satisfied or the following proposition is true:

(5.14) ∃0 6 t 6 h′ : |Pa1:t
h,h′(m)| < γ2(t−h′).

PROOF. If τah,h′(m+1) = 1 then it means that am+1 ∈ aA∗ and (5.13) is satisfied. By Lemma

5.2 this implies that either (5.8), (5.9) or (5.10) is true and (5.13) is satisfied. Now by Lemma 5.4

this implies that (5.8) is true or (5.9) is true or (5.12) is false. We now prove that if (5.14) is not

satisfied then (5.12) is true, which clearly ends the proof. This follows from: For any 0 6 t 6 h′,

Ta1:t(m) =
∑

b∈a1:tAh−t

Tb(m) > γ2(t−h′) 8

γ2
(h+ 1)2γ2(h′−h) logM =

8

γ2
(h+ 1)2γ2(t−h) logM.

�
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The next lemma is the key step of our proof. Intuitively, using lemmas 5.2 and 5.5, we have

a good control on sequences for which equation (5.14) is satisfied. Note that (5.14) is a property

which depends on sub-sequences of a from length 1 to h′. In the following proof we will iteratively

”drop” all sequences which do not satisfy (5.14) from length t onwards, starting from t = 1. Then,

on the remaining sequences, we can apply Lemma 5.5.

LEMMA 5.6. Let 1 6 h 6 L and 0 6 h′ < h. Then the following holds true,

E|P∅
h,h′(M)| = Õ

(
γ−2h′

1h′>0

h′∑

t=0

(γ2κ′)t + (κ′)hM−2

)
.

PROOF. Let h′ > 1 and 0 6 s 6 h′. We introduce the following random variables:

ma
s = min

(
M,min

{
m > 0 : |Pah,h′(m)| > γ2(s−h′)

})
.

We will prove recursively that,

(5.15) |P∅
h,h′(m)| 6

s∑

t=0

γ2(t−h′)|It|+
∑

a∈Is

∣∣∣∣Pah,h′ \ ∪st=0Pa1:t
h,h′(m

a1:t
t )

∣∣∣∣.

The result is true for s = 0 since I0 = {∅} and by definition of m∅
0,

|P∅
h,h′(m)| 6 γ−2h′ + |P∅

h,h′(m) \ P∅
h,h′(m

∅
0)|.

Now let us assume that the result is true for s < h′. We have:

∑

a∈Is

∣∣∣∣Pah,h′(m) \ ∪st=0Pa1:t
h,h′(m

a1:t
t )

∣∣∣∣ =
∑

a∈Is+1

∣∣∣∣Pah,h′(m) \ ∪st=0Pa1:t
h,h′(m

a1:t
t )

∣∣∣∣

6
∑

a∈Is+1

γ2(s+1−h′) +

∣∣∣∣Pah,h′(m) \ ∪s+1
t=0Pa1:t

h,h′(m
a1:t
t )

∣∣∣∣

= γ2(s+1−h′)|Is+1|+
∑

a∈Is+1

∣∣∣∣Pah,h′(m) \ ∪s+1
t=0Pa1:t

h,h′(m
a1:t
t )

∣∣∣∣,

which ends the proof of (5.15). Thus we proved (by taking s = h′ and m = M ):

|P∅
h,h′(M)| 6

h′∑

t=0

γ2(t−h′)|It|+
∑

a∈Ih′

∣∣∣∣Pah,h′(M) \ ∪s+1
t=0Pa1:t

h,h′(m
a1:t
t )

∣∣∣∣

=
h′∑

t=0

γ2(t−h′)|It|+
∑

a∈Jh

∣∣∣∣Pah,h′(M) \ ∪s+1
t=0Pa1:t

h,h′(m
a1:t
t )

∣∣∣∣

Now, for any a ∈ Jh, let m̃ = max06t6h′ m
a1:t
t . Note that for m > m̃, equation (5.14) is not

satisfied. Thus we have
∣∣∣∣Pah,h′ \ ∪s+1

t=0Pa1:t
h,h′(m

a1:t
t )

∣∣∣∣ =
M−1∑

m= em

τah,h′(m+ 1) =
M−1∑

m=0

τah,h′(m+ 1) 1{(5.14) is not satisfied}

6

M−1∑

m=0

τah,h′(m+ 1) 1{(5.8) or (5.9) is satisfied}.
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where the last inequality results from Lemma 5.5. Hence, we proved:

|P∅
h,h′ | 6

h′∑

t=0

γ2(t−h′)|It|+
M−1∑

m=0

∑

a∈Jh
1{(5.8) or (5.9) is satisfied}.

Taking the expectation, using (5.7) and applying Lemma 5.3 yield the claimed bound for h′ > 1.

Now for h′ = 0 we need a modified version of Lemma 5.5. Indeed in this case one can directly

prove that τah,0(m+1) = 1 implies that either equation (5.8) or (5.9) is satisfied (this follows from

the fact that τah,0(m+ 1) = 1 always imply that (5.12) is true for h′ = 0). Thus we obtain:

|P∅
h,h′ | =

M−1∑

m=0

∑

a∈Jh
τah,0(m+ 1) 6

M−1∑

m=0

∑

a∈Jh
1{(5.8) or (5.9) is satisfied}.

Taking the expectation and applying Lemma 5.3 yield the claimed bound for h′ = 0 and ends the

proof. �

LEMMA 5.7. Let 1 6 h 6 L. The following holds true,

E
∑

a∈Jh
Ta(M) = Õ

(
γ−2h

h∑

h′=1

(γ2κ′)h
′
+ (κ′)h(1 + γ−2hM−2)

)
.

PROOF. We have the following computations:

∑

a∈Jh
Ta(M) =

∑

a∈Jh\P∅
h,h−1

Ta(M) +
h−1∑

h′=1

∑

a∈P∅
h,h′

\P∅
h,h′−1

Ta(M) +
∑

a∈P∅
h,0

Ta(M)

6
8

γ2
(h+ 1)2γ2(h−1−h)|Jh|+

h−1∑

h′=1

8

γ2
(h+ 1)2γ2(h′−1−h) logM |P∅

h,h′ |+M |P∅
h,0|

= Õ

(
(κ′)h + γ−2h

h−1∑

h′=1

γ2h′ |P∅
h,h′ |+M |P∅

h,0|
)
.

Taking the expectation and applying the bound of Lemma 5.6 gives the claimed bound. �

Thus by combining Lemma 5.1 and 5.7 we obtain for κ′γ2 6 1:

Ern = Õ
(
γH + γ−HM−1 + (κ′)Hγ−HM−3

)
,

and for κ′γ2 > 1:

Ern = Õ
(
γH + (κ′γ)HM−1 + (κ′)Hγ−HM−3

)
.

Thus in the case κ′γ2 6 1, taking H = ⌊logM/(2 log 1/γ)⌋ yields the claimed bound; while

for κ′γ2 > 1 we take H = ⌊logM/ log κ′⌋. Note that in both cases we have H 6 L (as it was

required at the beginning of the analysis).





CHAPTER 6

Pure Exploration in Multi-Armed Bandits

We consider the framework of stochastic multi-armed bandit problems and study the possibil-

ities and limitations of forecasters that perform an on-line exploration of the arms. A forecaster is

assessed in terms of its simple regret, a regret notion that captures the fact that exploration is only

constrained by the number of available rounds (not necessarily known in advance), in contrast to

the case when the cumulative regret is considered and when exploitation needs to be performed at

the same time. We believe that this performance criterion is suited to situations when the cost of

pulling an arm is expressed in terms of resources rather than rewards. We discuss the links between

the simple and the cumulative regret. The main result is that the required exploration–exploitation

trade-offs are qualitatively different, in view of a general lower bound on the simple regret in terms

of the cumulative regret.
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This chapter is a joint work with Rémi Munos and Gilles Stoltz. It is based on the extended

version Bubeck et al. [2009b] (currently under submission) of Bubeck et al. [2009a] which ap-

peared in the Proceedings of the 20th International Conference on Algorithmic Learning Theory.

1. Introduction

Learning processes usually face an exploration versus exploitation dilemma, since they have

to get information on the environment (exploration) to be able to take good actions (exploitation).

A key example is the multi-armed bandit problem described in Chapter 2. The usual assessment

criterion of a forecaster is given by its cumulative regret and typical good forecasters, like UCB of

Auer et al. [2002], trade off between exploration and exploitation.
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Our setting is as follows. The forecaster may sample the arms a given number of times n (not

necessarily known in advance) and is then asked to output a recommended arm. He is evaluated

by his simple regret, that is, the difference between the average payoff of the best arm and the

average payoff obtained by his recommendation. The distinguishing feature from the classical

multi-armed bandit problem is that the exploration phase and the evaluation phase are separated.

We now illustrate why this is a natural framework for numerous applications.

Historically, the first occurrence of multi-armed bandit problems was given by medical trials.

In the case of a severe disease, ill patients only are included in the trial and the cost of picking

the wrong treatment is high. It is important to minimize the cumulative regret, since the test and

cure phases coincide. However, for cosmetic products, there exists a test phase separated from the

commercialization phase, and one aims at minimizing the regret of the commercialized product

rather than the cumulative regret in the test phase, which is irrelevant. (Here, several formulæ for a

cream are considered and some quantitative measurement, like skin moisturization, is performed.)

The pure exploration problem addresses the design of strategies making the best possible use

of available numerical resources (e.g., as CPU time) in order to optimize the performance of some

decision-making task. That is, it occurs in situations with a preliminary exploration phase in which

costs are not measured in terms of rewards but rather in terms of resources, that come in limited

budget.

A motivating example concerns recent works on computer-go (e.g., the MoGo program of

Gelly et al. [2006]). A given time, i.e., a given amount of CPU times is given to the player to explore

the possible outcome of sequences of plays and output a final decision. An efficient exploration of

the search space is obtained by considering a hierarchy of forecasters minimizing some cumulative

regret – see, for instance, the UCT strategy of Kocsis and Szepesvari [2006] and the BAST strategy

of Coquelin and Munos [2007]. However, the cumulative regret does not seem to be the right way

to base the strategies on, since the simulation costs are the same for exploring all options, bad and

good ones. This observation was actually the starting point of the notion of simple regret and of

this work.

A final related example is the maximization of some function f , observed with noise. When-

ever evaluating f at a point is costly (e.g., in terms of numerical or financial costs), the issue is to

choose as adequately as possible where to query the value of this function in order to have a good

approximation to the maximum. The pure exploration problem considered here addresses exactly

the design of adaptive exploration strategies making the best use of available resources in order to

make the most precise prediction once all resources are consumed.

As a remark, it also turns out that in all examples considered above, we may impose the further

restriction that the forecaster ignores ahead of time the amount of available resources (time, budget,

or the number of patients to be included) – that is, we seek for anytime performance. We refer the

reader to Chapter 7 for an in-depth study of strategies making use of the time horizon.

We end this introduction with an overview of the literature. The problem of pure exploration

presented above was referred to as “budgeted multi-armed bandit problem” in the open problem

Madani et al. [2004] (where, however, another notion of regret than simple regret is considered).

Schlag [2006] solves the pure exploration problem in a minimax sense for the case of two arms

only and rewards given by probability distributions over [0, 1]. Even-Dar et al. [2002] and Mannor

and Tsitsiklis [2004] consider a related setting where forecasters perform exploration during a

random number of rounds T and aim at identifying an ε–best arm. They study the possibilities

and limitations of policies achieving this goal with overwhelming 1 − δ probability and indicate

in particular upper and lower bounds on (the expectation of) T .
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Parameters: K unknown probability distributions for the rewards of the arms, ν1, . . . , νK .

For each round t = 1, 2, . . . ,

(1) the forecaster chooses It ∈ {1, . . . ,K};
(2) the environment draws the reward Yt for that action (also denoted by XIt,TIt

(t) with the

notation introduced in the text);

(3) the forecaster outputs a recommendation Jt ∈ {1, . . . ,K};
(4) if the environment sends a stopping signal, then the game takes an end; otherwise, the next

round starts.

Figure 1: The anytime pure exploration problem for multi-armed bandits.

2. Problem setup, notation

We consider a sequential decision problem given by stochastic multi-armed bandits. K > 2

arms, denoted by i = 1, . . . ,K, are available and the i–th of them is parameterized by a fixed

(unknown) probability distribution νi over [0, 1], with expectation denoted by µi. At those rounds

when it is pulled, its associated reward is drawn at random according to νi, independently of all

previous rewards. For each arm i and all time rounds n > 1, we denote by Ti(n) the number

of times arm i was pulled from rounds 1 to n, and by Xi,1, Xi,2, . . . , Xi,Ti(n) the sequence of

associated rewards.

The forecaster has to deal simultaneously with two tasks, a primary one and an associated one.

The associated task consists in exploration, i.e., the forecaster should indicate at each round t

the arm It to be pulled, based on past rewards (so that It is a random variable). Then the forecaster

gets to see the associated reward Yt, also denoted by XIt,TIt (t)
with the notation above. The

sequence of random variables (It) is referred to as an allocation strategy.

The primary task is to output at the end of each round t a recommendation Jt to be used in

a one-shot instance if/when the environment sends some stopping signal meaning that the explo-

ration phase is over. The sequence of random variables (Jt) is referred to as a recommendation

strategy. In total, a forecaster is given by an allocation and a recommendation strategy.

Figure 1 summarizes the description of the sequential game and points out that the information

available to the forecaster for choosing It, respectively Jt, is formed by the Xi,s for i = 1, . . . ,K

and s = 1, . . . , Ti(t− 1), respectively, s = 1, . . . , Ti(t). Note that we also allow the forecaster to

use an external randomization in the definition of It and Jt.

As we are only interested in the performances of the recommendation strategy (Jt), we call

this problem the pure exploration problem for multi-armed bandits and evaluate the forecaster

through its simple regret, defined as follows. First, we denote by

µ∗ = µi∗ = max
i=1,...,K

µi

the expectation of the rewards of the best arm i∗ (a best arm, if there are several of them with

same maximal expectation). A useful notation in the sequel is the gap ∆i = µ∗ − µi between the

maximal expected reward and the one of the i–th arm; as well as the minimal gap

∆ = min
i:∆i>0

∆i .
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Now, the simple regret at round n equals the regret on a one-shot instance of the game for the

recommended arm Jn, that is, put more formally,

rn = µ∗ − µJn = ∆Jn .

A quantity of related interest is the cumulative regret at round n, which is defined as

Rn =
n∑

t=1

µ∗ − µIt .

A popular treatment of the multi-armed bandit problems is to construct forecasters ensuring that

ERn = o(n), see Chapter 2. The quantity r′t = µ∗− µIt is sometimes called instantaneous regret.

It differs from the simple regret rt and in particular, Rn = r′1 + . . .+ r′n is in general not equal to

r1 + . . . + rn. Theorem 6.1, among others, will however indicate some connections between rn
and Rn.

Goal and structure of the chapter. We study the links between the simple and the cumula-

tive regret. Intuitively, an efficient allocation strategy for the simple regret should rely on some

exploration–exploitation trade-off. Our main contribution (Theorem 6.1, Section 3) is a lower

bound on the simple regret in terms of the cumulative regret suffered in the exploration phase,

showing that the trade-off involved in the minimization of the simple regret is somewhat different

from the one for the cumulative regret. The full consequences of this result are derived in Chapter

7 where we propose new strategies specifically designed for the simple regret. In this chapter,

and precisely in Sections 4 and 5, we show how, despite all, one can fight against this negative

result. For instance, some strategies designed for the cumulative regret can outperform (for mod-

erate values of n) strategies with exponential rates of convergence for their simple regret. Finally

in Section 6 we briefly investigate the X -armed bandit presented in Chapter 4. In this setting we

use the simple regret as a tool to characterize the topological spaces X for which it is possible to

have a sublinear cumulative regret.

3. The smaller the cumulative regret, the larger the simple regret

It is immediate that for well-chosen recommendation strategies, the simple regret can be upper

bounded in terms of the cumulative regret. For instance, the strategy that at time n recommends

arm i with probability Ti(n)/n (recall that we allow the forecaster to use an external randomiza-

tion) ensures that the simple regret satisfies Ern = ERn/n. Therefore, upper bounds on ERn lead

to upper bounds on Ern.

We show here that, conversely, upper bounds on ERn also lead to lower bounds on Ern: the

smaller the guaranteed upper bound on ERn, the larger the lower bound on Ern, no matter what

the recommendation strategy is.

This is interpreted as a variation of the “classical” trade-off between exploration and exploita-

tion. Here, while the recommendation strategy (Jn) relies only on the exploitation of the results of

the preliminary exploration phase, the design of the allocation strategy (It) consists in an efficient

exploration of the arms. To guarantee this efficient exploration, past payoffs of the arms have to be

considered and thus, even in the exploration phase, some exploitation is needed. Theorem 6.1 and

its corollaries aim at quantifying the needed respective amount of exploration and exploitation. In

particular, to have an asymptotic optimal rate of decrease for the simple regret, each arm should be

sampled a linear number of times, while for the cumulative regret, it is known that the forecaster

should not do so more than a logarithmic number of times on the suboptimal arms.



3. THE SMALLER THE CUMULATIVE REGRET, THE LARGER THE SIMPLE REGRET 137

Formally, our main result is as follows. It is strong in the sense that we get lower bounds for all

possible sets of Bernoulli distributions {ν1, . . . , νK} over the rewards. Note that the stated result

requires in particular that there is a unique best arm.

THEOREM 6.1 (Main result). For any forecaster (i.e., for any pair of allocation and recom-

mendation strategies) and any function ε : {1, 2, . . .} → R such that

for all (Bernoulli) distributions ν1, . . . , νK on the rewards, there exists a constant C >

0 with ERn 6 C ε(n),

the following holds true:

for all sets of K > 3 distinct Bernoulli distributions on the rewards, with parameters

different from 1, there exists a constant D > 0 and an ordering ν1, . . . , νK of the

considered distributions such that

Ern > e−Dε(n) .

COROLLARY 6.1 (General distribution-dependent lower bound). For any forecaster, and any

set of K > 3 distinct, Bernoulli distributions on the rewards, with parameters different from 1,

there exists γ > 0 such that, up to the choice of a good ordering of the considered distributions,

Ern > e−γn .

Theorem 6.1 is proved below and Corollary 6.1 follows from the fact that the cumulative regret

is always bounded by n. To get further the point of the theorem, one should keep in mind that the

typical (distribution-dependent) rate of growth of the cumulative regret of good algorithms, e.g.,

UCB described in Section 2.2 (and which we recall in Figure 2), is ε(n) = lnn, see Theorem 2.2.

This, as asserted in Theorem 2.7, is the optimal rate. But a recommendation strategy based on

such allocation strategy is bound to suffer a simple regret that decreases at best polynomially fast.

The next result follows from noting that UCB (with exploration parameter α) actually achieves a

cumulative regret bounded by a large enough distribution-dependent constant times ε(n) = α lnn.

COROLLARY 6.2 (Distribution-dependent lower bound for UCB). The allocation strategy (It)

given by UCB ensures that for any recommendation strategy (Jt) and all sets of K > 3 distinct,

Bernoulli distributions on the rewards, with parameters different from 1, there exists γ > 0 (inde-

pendent of α) such that, up to the choice of a good ordering of the considered distributions,

Ern > n−γα .

PROOF. The intuitive version of the proof of Theorem 6.1 is as follows. The basic idea is

to consider a tie case when the best and worst arms have zero empirical means; it happens often

enough (with a probability at least exponential in the number of times we pulled these arms) and

results in the forecaster basically having to pick another arm and suffering some regret. Permu-

tations are used to control the case of untypical or naive forecasters that would despite all pull an

arm with zero empirical mean, since they force a situation when those forecasters choose the worst

arm instead of the best one.

Formally, we fix the forecaster (a pair of allocation and recommendation strategies) and a

corresponding function ε such that the assumption of the theorem is satisfied. We denote by

pn = (p1,n, . . . , pK,n) the probability distribution from which Jn is drawn at random thanks to an

auxiliary distribution. Note that pn is a random vector which depends on I1, . . . , In as well as on

the obtained rewards Y1, . . . , Yn. We consider below a set of K > 3 distinct Bernoulli distribu-

tions, satisfying the conditions of the theorem; actually, we only use below that their parameters

are (up to a first ordering) such that 1 > µ1 > µ2 > µ3 > . . . > µK > 0 and µ2 > µK (thus,

µ2 > 0).
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Step 0 introduces another layer of notation. The latter depends on permutations σ of {1, . . . , K}.
To have a gentle start, we first describe the notation when the permutation is the identity, σ =

id. We denote by P and E the probability and expectation with respect to the original K-tuple

ν1, . . . , νK of distributions over the arms. For i = 1 (respectively, i = K), we denote by Pi,id

and Ei,id the probability and expectation with respect to the K-tuples formed by δ0, ν2, . . . , νK
(respectively, δ0, ν2, . . . , νK−1, δ0), where δ0 denotes the Dirac measure on 0.

For a given permutation σ, we consider a similar notation up to a reordering, as follows. Pσ

and Eσ refer to the probability and expectation with respect to theK-tuple of distributions over the

arms formed by the νσ−1(1), . . . , νσ−1(K). Note in particular that the i–th best arm is located in the

σ(i)–th position. Now, we denote for i = 1 (respectively, i = K) by Pi,σ and Ei,σ the probability

and expectation with respect to theK-tuple formed by the νσ−1(i), except that we replaced the best

of them, located in the σ(1)–th position, by a Dirac measure on 0 (respectively, the best and worst

of them, located in the σ(1)–th and σ(K)–th positions, by Dirac measures on 0). We provide now

a proof in six steps.

Step 1 lower bounds the quantity of interest by an average the maximum of the simple regrets

obtained by reordering,

max
σ

Eσrn >
1

K!

∑

σ

Eσrn >
µ1 − µ2

K!

∑

σ

Eσ
[
1− pσ(1),n

]
,

where we used that under Pσ, the index of the best arm is σ(1) and the minimal regret for playing

any other arm is at least µ1 − µ2.

Step 2 rewrites each term of the sum over σ as the product of three simple terms. We use

first that P1,σ is the same as Pσ, except that it ensures that arm σ(1) has zero reward throughout.

Denoting by

Ci,n =

Ti(n)∑

t=1

Xi,t

the cumulative reward of the i–th arm till round n, one then gets

Eσ
[
1− pσ(1),n

]
> Eσ

[(
1− pσ(1),n

)
1{Cσ(1),n=0}

]

= Eσ

[
1− pσ(1),n

∣∣ Cσ(1),n = 0
]
× Pσ

{
Cσ(1),n = 0

}

= E1,σ

[
1− pσ(1),n

]
Pσ
{
Cσ(1),n = 0

}
.

Second, iterating the argument from P1,σ to PK,σ,

E1,σ

[
1− pσ(1),n

]
> E1,σ

[
1− pσ(1),n

∣∣ Cσ(K),n = 0
]

P1,σ

{
Cσ(K),n = 0

}

= EK,σ
[
1− pσ(1),n

]
P1,σ

{
Cσ(K),n = 0

}

and therefore,

(6.1) Eσ
[
1− pσ(1),n

]
> EK,σ

[
1− pσ(1),n

]
P1,σ

{
Cσ(K),n = 0

}
Pσ
{
Cσ(1),n = 0

}
.

Step 3 deals with the second term in the right-hand side of (6.1),

P1,σ

{
Cσ(K),n = 0

}
= E1,σ

[
(1− µK)Tσ(K)(n)

]
> (1− µK)E1,σTσ(K)(n) ,

where the equality can be seen by conditioning on I1, . . . , In and then taking the expectation,

whereas the inequality is a consequence of Jensen’s inequality. Now, the expected number of times

the suboptimal arm σ(K) is pulled under P1,σ (for which σ(2) is the optimal arm) is bounded by
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the regret, by the very definition of the latter: (µ2 − µK) E1,σTσ(K)(n) 6 E1,σRn. Since by

hypothesis (and by taking the maximum of K! values), there exists a constant C such that for all

σ, E1,σRn 6 C ε(n), we finally get

P1,σ

{
Cσ(K),n = 0

}
> (1− µK)Cε(n)/(µ2−µK) .

Step 4 lower bounds the third term in the right-hand side of (6.1) as

Pσ
{
Cσ(1),n = 0

}
> (1− µ1)

Cε(n)/µ2 .

We denote by Wn = (I1, Y1, . . . , In, Yn) the history of pulled arms and obtained payoffs up to

time n. What follows is reminiscent of the techniques used in Mannor and Tsitsiklis [2004]. We

are interested in realizations wn = (i1, y1, . . . , in, yn) of the history such that whenever σ(1) was

played, it got a null reward. (We denote above by tj(t) is the realization of Tj(t) corresponding to

wn, for all j and t.) The likelihood of such a wn under Pσ is (1− µ1)
tσ(1)(n) times the one under

P1,σ. Thus,

Pσ
{
Cσ(1),n = 0

}
=
∑

Pσ {Wn = wn}

=
∑

(1− µ1)
tσ(1)(n)

P1,σ {Wn = wn} = E1,σ

[
(1− µ1)

Tσ(1)(n)
]
,

where the sums are over those histories wn such that the realizations of the payoffs obtained by the

arm σ(1) equal xσ(1),s = 0 for all s = 1, . . . , tσ(1)(n). The argument is concluded as before, first

by Jensen’s inequality and then, by using that µ2 E1,σTσ(1)(n) 6 E1,σRn 6 C ε(n) by definition

of the regret and the hypothesis put on its control.

Step 5 resorts to a symmetry argument to show that as far as the first term of the right-hand

side of (6.1) is concerned, ∑

σ

EK,σ

[
1− pσ(1),n

]
>
K!

2
.

Since PK,σ only depends on σ(2), . . . , σ(K − 1), we denote by Pσ(2),...,σ(K−1) the common value

of these probability distributions when σ(1) and σ(K) vary (and a similar notation for the associ-

ated expectation). We can thus group the permutations σ two by two according to these (K − 2)–

tuples, one of the two permutations being defined by σ(1) equal to one of the two elements of

{1, . . . ,K} not present in the (K − 2)–tuple, and the other one being such that σ(1) equals the

other such element. Formally,

∑

σ

EK,σpσ(1),n =
∑

j2,...,jK−1

Ej2,...,jK−1


 ∑

j∈{1,...,K}\{j2,...,jK−1}
pj,n




6
∑

j2,...,jK−1

Ej2,...,jK−1
[
1
]

=
K!

2
,

where the summations over j2, . . . , jK−1 are over all possible (K− 2)–tuples of distinct elements

in {1, . . . ,K}.

Step 6 simply puts all pieces together and lower bounds max
σ

Eσrn by

µ1 − µ2

K!

∑

σ

EK,σ
[
1− pσ(1),n

]
Pσ
{
Cσ(1),n = 0

}
P1,σ

{
Cσ(K),n = 0

}

>
µ1 − µ2

2

(
(1− µK)C/(µ2−µK) (1− µ1)

C/µ2

)ε(n)
.
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Uniform allocation (Unif) — Plays all arms one after the other

For each round t = 1, 2, . . . ,

pull It = [t mod K], where [t mod K] denotes the value of t modulo K.

UCB — Plays at each round the arm with the highest upper confidence bound

Parameter: exploration factor α > 1

For each round t = 1, 2, . . . ,

(1) for each i ∈ {1, . . . ,K}, if Ti(t− 1) = 0 let Bi,t = +∞; otherwise, let

Bi,t = µ̂i,Ti(t−1) +

√
α ln t

Ti(t− 1)
where µ̂i,Ti(t−1) =

1

Ti(t− 1)

Ti(t−1)∑

s=1

Xi,s ;

(2) Pull It ∈ argmax
i=1,...,K

Bi,t

(ties broken by choosing, for instance, the arm with smallest index).

Figure 2: Two allocation strategies.

�

4. Upper bounds on the simple regret

In this section, we aim at qualifying the implications of Theorem 6.1 by pointing out that is

should be interpreted as a result for large n only. For moderate values of n, strategies not pulling

each arm a linear number of times in the exploration phase can have a smaller simple regret.

To do so, we consider only two natural and well-used allocation strategies. The first one is

the uniform allocation, which we use as a simple benchmark; it pulls each arm a linear number of

times (see Figure 2 for its formal description). The second one is UCB, also described in Figure 2.

It is designed for the classical exploration–exploitation dilemma (i.e., it minimizes the cumulative

regret) and pulls suboptimal arms a logarithmic number of times only.

In addition to these allocation strategies we consider three recommendation strategies, the

ones that recommend respectively the empirical distribution of plays, the empirical best arm, or

the most played arm. They are formally defined in Figure 3.

Table 1 summarizes the distribution-dependent and distribution-free bounds we could prove

(the difference between the two families of bounds is whether the constants in the bounds can de-

pend or not on the unknown distributions νj). In particular, it indicates that while for distribution-

dependent bounds, the asymptotic optimal rate of decrease for the simple regret in the number n

of rounds is exponential, for distribution-free bounds, this rate worsens to 1/
√
n. A similar situa-

tion arises for the cumulative regret, see Theorem 2.7 (optimal lnn rate for distribution-dependent

bounds) versus Theorem 2.6 (optimal
√
n rate for distribution-free bounds).

REMARK 6.1. The distribution-free lower bound in Table 1 directly follows from the proof of

Theorem 2.6. Indeed one can see that the proof goes through for any random variable Jn which is

measurable with respect to the history of the forecaster. Thus, one obtains for n > K > 2,

inf sup Ern >
1

20

√
K

n
,

where the infimum is taken over all forecasters while the supremum considers all sets of K distri-

butions over [0, 1].
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Parameters: the history I1, . . . , In of played actions and of their associated rewards Y1, . . . , Yn,

grouped according to the arms as Xi,1, . . . , Xi,Ti(n), for i = 1, . . . , n

Empirical distribution of plays (EDP)

Recommends arm i with probability Ti(n)/n, that is, draws Jn at random according to

pn =

(
T1(n)

n
, . . . ,

TK(n)

n

)
.

Empirical best arm (EBA)

Only considers arms i with Ti(n) > 1, computes their associated empirical means

µ̂i,Ti(n) =
1

Ti(n)

Ti(n)∑

s=1

Xi,s ,

and forms the recommendation

Jn ∈ argmax
i=1,...,K

µ̂i,Ti(n)

(ties broken in some way).

Most played arm (MPA)

Recommends the most played arm,

Jn ∈ argmax
i=1,...,K

Ti(n)

(ties broken in some way).

Figure 3: Three recommendation strategies.

4.1. A simple benchmark: the uniform allocation strategy. As explained above, the com-

bination of the uniform allocation with the recommendation indicating the empirical best arm,

forms an important theoretical benchmark. This section studies briefly its theoretical properties:

the rate of decrease of its simple regret is exponential in a distribution-dependent sense and equals

the optimal (up to a logarithmic term) 1/
√
n rate in the distribution-free case.

Below, we mean by the recommendation given by the empirical best arm at round K⌊n/K⌋
the recommendation JK⌊n/K⌋ of EBA (see Figure 3), where ⌊x⌋ denotes the lower integer part

of a real number x. The reason why at round n we prefer JK⌊n/K⌋ to Jn is only technical. The

analysis is indeed simpler when all averages over the rewards obtained by each arm are over the

same number of terms. This happens at rounds n multiple of K and this is why we prefer taking

the recommendation of round K⌊n/K⌋ instead of the one of round n.

We propose first two distribution-dependent bounds, the first one is sharper in the case when

there are few arms, while the second one is suited for large K.

PROPOSITION 6.1 (Distribution-dependent; Unif and EBA). The uniform allocation strategy

associated to the recommendation given by the empirical best arm (at round K⌊n/K⌋) ensures

that

Ern 6
∑

i:∆i>0

∆i e
−∆2

i ⌊n/K⌋ for all n > K ;

and also, for any η ∈ (0, 1),

Ern 6

(
max

i=1,...,K
∆i

)
exp

(
−(1− η)2

2

⌊ n
K

⌋
∆2

)
for all n >

(
1 +

2 lnK

(1− η)2∆2

)
K .
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Distribution-dependent

EDP EBA MPA

Uniform © e−©n (Pr.6.1)

UCB ©(α ln n)/n (Rk.6.2) ©n−© (Rk.6.3) ©n2(1−α) (Th.6.2)

Lower bound © e−©n (Cor.6.1)

Distribution-free

EDP EBA MPA

Uniform �

r

K ln K

n
(Cor.6.3)

UCB �

r

αK ln n

n
(Rk.6.2)

�√
ln n

(Rk.6.3) �

r

αK ln n

n
(Th.6.3)

Lower bound �

r

K

n
(Rk.6.1)

Table 1: Distribution-dependent (top) and distribution-free (bottom) upper bounds on the expected

simple regret of the considered pairs of allocation (rows) and recommendation (columns) strate-

gies. Lower bounds are also indicated. The � symbols denote the universal constants, whereas

the© are distribution-dependent constants. In parentheses, we provide the reference (index of the

proposition, theorem, remark, corollary) where the stated bound is proved.

PROOF. To prove the first inequality, we relate the simple regret to the probability of choosing

a non-optimal arm,

Ern = E∆Jn =
∑

i:∆i>0

∆i P{Jn = i} 6
∑

i:∆i>0

∆i P
{
µ̂i,⌊n/K⌋ > µ̂i∗,⌊n/K⌋

}

where the upper bound follows from the fact that to be the empirical best arm, an arm i must

have performed, in particular, better than a best arm i∗. We now apply Hoeffding’s inequality,

see Theorem 10.1. We use the fact that we have 2⌊n/K⌋ random variables in [0, 1]. Thus, the

probability of interest is bounded by

P
{
µ̂i,⌊n/K⌋ − µ̂i∗,⌊n/K⌋ > 0

}
6 exp

(
−2 ⌊n/K⌋2 ∆2

i

2 ⌊n/K⌋

)
,

which yields the first result.

The second inequality is proved by resorting to a sharper concentration argument, namely the

Mc Diarmid’s inequality, see Theorem 10.4. The complete proof can be found in Section 7.3. �

The distribution-free bound of Corollary 6.3 is obtained not directly as a corollary of Propo-

sition 6.1, but as a consequence of its proof. (It is not enough to optimize the bound of Proposi-

tion 6.1 over the ∆i, for it would yield an additional multiplicative factor of K.)

COROLLARY 6.3 (Distribution-free; Unif and EBA). The uniform allocation strategy associ-

ated to the recommendation given by the empirical best arm (at round K⌊n/K⌋) ensures that

sup
ν1,...,νK

Ern 6 2

√
2K lnK

n
,

where the supremum is over all K-tuples (ν1, . . . , νK) of distributions over [0, 1].
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PROOF. We extract from the proof of Proposition 6.1 that

P{Jn = i} 6 exp

(
−1

2

⌊ n
K

⌋
∆2
i

)
;

we now distinguish whether a given ∆i is more or less than a threshold ε, use that
∑

P{Jn =

i} = 1 and ∆i 6 1 for all i, to write

Ern =

K∑

i=1

∆i P{Jn = i} 6 ε+
∑

i:∆i>ε

∆i P{Jn = i}(6.2)

6 ε+
∑

i:∆i>ε

∆i exp

(
−1

2

⌊ n
K

⌋
∆2
i

)

6 ε+ (K − 1)ε exp

(
−1

2
ε2
⌊ n
K

⌋)
,

where the last inequality comes by function study, provided that ε > 1/⌊n/K⌋: for C > 0,

the function x ∈ [0, 1] 7→ x exp(−Cx2/2) is decreasing on [1/
√
C, 1]. Substituting ε =√

(2 lnK)/⌊n/K⌋ concludes the proof. �

4.2. Analysis of UCB as an allocation strategy. We start by studying the recommendation

given by the most played arm. A (distribution-dependent) bound is stated in Theorem 6.2; the

bound does not involve any quantity depending on the ∆i, but it only holds for rounds n large

enough, a statement that does involve the ∆i. Its interest is first that it is simple to read, and

second, that the techniques used to prove it imply easily a second (distribution-free) bound, stated

in Theorem 6.3 and which is comparable to Corollary 6.3.

THEOREM 6.2 (Distribution-dependent; UCB and MPA). For α > 1, the allocation strategy

given by UCB associated to the recommendation given by the most played arm ensures that

Ern 6
K

α− 1

( n
K
− 1
)2(1−α)

for all n sufficiently large, e.g., such that n > K +
4Kα lnn

∆2
and n > K(K + 2).

The polynomial rate in the upper bound above is not a coincidence according to the lower

bound exhibited in Corollary 6.2. Here, surprisingly enough, this polynomial rate of decrease is

distribution-free (but in compensation, the bound is only valid after a distribution-dependent time).

This rate illustrates Theorem 6.1: the larger α, the larger the (theoretical bound on the) cumulative

regret of UCB but the smaller the simple regret of UCB associated to the recommendation given

by the most played arm.

THEOREM 6.3 (Distribution-free; UCB and MPA). For α > 1, the allocation strategy given

by UCB associated to the recommendation given by the most played arm ensures that, for all

n > K(K + 2),

sup
ν1,...,νK

Ern 6

√
4Kα lnn

n−K +
K

α− 1

( n
K
− 1
)2(1−α)

= O

(√
Kα lnn

n

)
,

where the supremum is over all K-tuples (ν1, . . . , νK) of distributions over [0, 1].

4.2.1. Proofs of Theorems 6.2 and 6.3. We start by a technical lemma from which the two

theorems will follow easily.
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LEMMA 6.1. Let a1, . . . , aK be real numbers such that a1 + . . . + aK = 1 and ai > 0 for

all i, with the additional property that for all suboptimal arms i and all optimal arms i∗, one has

ai 6 ai∗ . Then for α > 1, the allocation strategy given by UCB associated to the recommendation

given by the most played arm ensures that

Ern 6
1

α− 1

∑

i6=i∗
(ain− 1)2(1−α)

for all n sufficiently large, e.g., such that, for all suboptimal arms i,

ain > 1 +
4α lnn

∆2
i

and ain > K + 2 .

PROOF. We first prove that whenever the most played arm Jn is different from an optimal arm

i∗, then at least one of the suboptimal arms i is such that Ti(n) > ain. To do so, we prove the

converse and assume that Ti(n) < ain for all suboptimal arms. Then,
(

K∑

i=1

ai

)
n = n =

K∑

i=1

Ti(n) <
∑

i∗

Ti∗(n) +
∑

i

ain

where, in the inequality, the first summation is over the optimal arms, the second one, over the

suboptimal ones. Therefore, we get
∑

i∗

ai∗n <
∑

i∗

Ti∗(n)

and there exists at least one optimal arm i∗ such that Ti∗(n) > ai∗n. Since by definition of the

vector (a1, . . . , aK), one has ai 6 ai∗ for all suboptimal arms, it comes that Ti(n) < ain 6

ai∗n < Ti∗(n) for all suboptimal arms, and the most played arm Jn is thus an optimal arm.

Thus, using that ∆i 6 1 for all i,

Ern = E∆Jn 6
∑

i:∆i>0

P
{
Ti(n) > ain

}
.

A side-result extracted from the proof of [Audibert et al., 2009, proof of Theorem 7], see also [Auer

et al., 2002, proof of Theorem 1], states that for all suboptimal arms i and all rounds t > K + 1,

(6.3) P

{
It = i and Ti(t− 1) > ℓ

}
6 2 t1−2α whenever ℓ >

4α lnn

∆2
i

.

Note that this result is weaker than the one proved in Section 2.2 but it is easier to manipulate. We

denote by ⌈x⌉ the upper integer part of a real number x. For a suboptimal arm i and since by the

assumptions on n and the ai, the choice ℓ = ⌈ain⌉− 1 satisfies ℓ > K + 1 and ℓ > (4α lnn)/∆2
i ,

P
{
Ti(n) > ain

}
= P

{
Ti(n) > ⌈ain⌉

}

6

n∑

t=⌈ain⌉
P

{
Ti(t− 1) = ⌈ain⌉ − 1 and It = i

}

6

n∑

t=⌈ain⌉
2 t1−2α

6 2

∫ ∞

⌈ain⌉−1
v1−2α dv 6

1

α− 1
(ain− 1)2(1−α) ,(6.4)

where we used a union bound for the second inequality and (6.3) for the third inequality. A

summation over all suboptimal arms i concludes the proof. �

OF THEOREM 6.2. It consists in applying Lemma 6.1 with the uniform choice ai = 1/K and

recalling that ∆ is the minimum of the ∆i > 0. �
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OF THEOREM 6.3. We start the proof by using that
∑

P{Jn = i} = 1 and ∆i 6 1 for all i,

and can thus write

Ern = E∆Jn =

K∑

i=1

∆i P{Jn = i} 6 ε+
∑

i:∆i>ε

∆i P{Jn = i} .

Since Jn = i only if Ti(n) > n/K, we get

Ern 6 ε+
∑

i:∆i>ε

∆i P

{
Ti(n) >

n

K

}
.

Applying (6.4) with ai = 1/K leads to

Ern 6 ε+
∑

i:∆i>ε

∆i

α− 1

( n
K
− 1
)2(1−α)

,

where ε is chosen such that for all ∆i > ε, the condition

ℓ > n/K − 1 > (4α lnn)/∆2
i

is satisfied (n/K − 1 > K + 1 being satisfied by the assumption on n and K). The conclusion

thus follows from taking, for instance,

ε =
√

(4αK lnn)/(n−K)

and upper bounding all remaining ∆i by 1. �

4.2.2. Other recommendation strategies. We discuss here the combination of UCB with the

two other recommendation strategies, namely, the choice of the empirical best arm and the use of

the empirical distribution of plays.

REMARK 6.2 (UCB and EDP). We indicate in this remark from which results the correspond-

ing bounds of Table 1 follow. As noticed in the beginning of Section 3, in the case of a recommen-

dation formed by the empirical distribution of plays, the simple regret is bounded in terms of the

cumulative regret as Ern 6 ERn/n. Thus the bounds on Ern for UCB and EDP directly follows

from Theorem 2.2.

REMARK 6.3 (UCB and EBA). We can rephrase the results of Kocsis and Szepesvari [2006]

as using UCB as an allocation strategy and forming a recommendation according to the empir-

ical best arm. In particular, [Kocsis and Szepesvari, 2006, Theorem 5] provides a distribution-

dependent bound on the probability of not picking the best arm with this procedure and can be

used to derive the following bound on the simple regret of UCB combined with EBA: for all n > 1,

Ern 6
∑

i:∆i>0

4

∆i

(
1

n

)ρα∆2
i /2

where ρα is a positive constant depending onα only. The leading constants 1/∆i and the distribution-

dependent exponent make it not as useful as the one presented in Theorem 6.2. The best distribution-

free bound we could get from this bound was of the order of 1/
√
ρα lnn, to be compared to the

asymptotic optimal 1/
√
n rate stated in Theorem 6.3.

5. Conclusions: Comparison of the bounds, simulation study

We first explain why, in some cases, the bound provided by our theoretical analysis in Lemma 6.1

(for UCB and MPA) is better than the bound stated in Proposition 6.1 (for Unif and EBA). The

central point in the argument is that the bound of Lemma 6.1 is of the form©n2(1−α), for some
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distribution-dependent constant©, that is, it has a distribution-free convergence rate. In compar-

ison, the bound of Proposition 6.1 involves the gaps ∆i in the rate of convergence. Some care is

needed in the comparison, since the bound for UCB holds only for n large enough, but it is easy

to find situations where for moderate values of n, the bound exhibited for the sampling with UCB

is better than the one for the uniform allocation. These situations typically involve a rather large

number K of arms; in the latter case, the uniform allocation strategy only samples ⌊n/K⌋ times

each arm, whereas the UCB strategy focuses rapidly its exploration on the best arms. A general

argument is proposed in Section 7.4 as well as a numerical example, showing that for moderate

values of n, the bounds associated to the sampling with UCB are better than the ones associated to

the uniform sampling. This is further illustrated numerically, in the right part of Figure 4).

To make short the longer story described in this chapter, one can distinguish three regimes,

according to the value of the number of rounds n. The statements of these regimes (the ranges

of their corresponding n) involve distribution-dependent quantifications, to determine which n are

considered small, moderate, or large.

• For large values of n, uniform exploration is better (as shown by a combination of the

lower bound of Corollary 6.2 and of the upper bound of Proposition 6.1).

• For moderate values of n, sampling with UCB is preferable, as discussed just above (and

in Section 7.4).

• For small values of n, little can be said and the best bounds to consider are perhaps the

distribution-free bounds, which are of the same order of magnitude for the two pairs of

strategies.

We propose two simple experiments to illustrate our theoretical analysis; each of them was

run on 104 instances of the problem and we plotted the average simple regret. This is an instance

of the Monte-Carlo method and provides accurate estimators of the expected simple regret Ern.

The first experiment (upper plot of Figure 4) shows that for small values of n (here, n 6 80),

the uniform allocation strategy can have an interesting behavior. Of course the range of these

“small” values of n can be made arbitrarily large by decreasing the gap ∆. The second one (lower

plot of Figure 4) corresponds to the numerical example to be described in Section 7.4. In both

cases, the unclear picture for small values of n become clearer for moderate values and shows an

advantage in favor of UCB–based strategies.

REMARK 6.4. We mostly illustrated here the small and moderate n regimes. This is because

for large n, the simple regret is usually very small, even below computer precision. Therefore,

because of the chosen ranges, we do not see yet the uniform allocation strategy getting better than

UCB–based strategies, a fact that is true however for large enough n. This has an important

impact on the interpretation of the lower bound of Theorem 6.1. While its statement is in finite

time, it should be interpreted as providing an asymptotic result only.

6. Pure exploration for X–armed bandits

This section is of theoretical interest. We consider the X -armed bandit problem, of Chapter

4 and (re)define the notions of cumulative and simple regret in this setting. We show that the

cumulative regret can be minimized if and only if the simple regret can be minimized, and use this

equivalence to characterize the metric spaces X in which the cumulative regret can be minimized:

the separable ones. Here, in addition to its natural interpretation, the simple regret thus appears as

a tool for proving results on the cumulative regret.
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Figure 4: K = 20 arms with Bernoulli distributions of parameters indicated on top of each graph.

x-axis: number of rounds n; y-axis: simple regrets Ern (estimated by a Monte-Carlo method).

6.1. Description of the model of X–armed bandits. We consider a bounded interval of R,

say [0, 1] again. We denote by P([0, 1]) the set of probability distributions over [0, 1]. Similarly,

given a topological space X , we denote by P(X ) the set of probability distributions over X . We

then call environment on X any mapping E : X → P([0, 1]). We say that E is continuous if the

mapping that associates to each x ∈ X the expectation µ(x) of E(x) is continuous.
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Parameter: an unknown environment E : X → P([0, 1])

For each round t = 1, 2, . . . ,

(1) the forecaster chooses a distribution ϕt ∈ P(X ) and pulls an arm It at random

according to ϕt;
(2) the environment draws the reward Yt for that action, according to E(It).

Goal:

Find an allocation strategy (ϕt) such that the cumulative regret

Rn = n sup
x∈X

µ(x)−
n∑

t=1

µ(It)

is small (i.e., o(n), in expectation).

Figure 5: The anytime X–armed bandit problem.

Parameter: an unknown environment E : X → P([0, 1])

For each round t = 1, 2, . . . ,

(1) the forecaster chooses a distribution ϕt ∈ P(X ) and pulls an arm It at random

according to ϕt;
(2) the environment draws the reward Yt for that action, according to E(It);
(3) the forecaster outputs a recommendation ψt ∈ P(X );
(4) if the environment sends a stopping signal, then the game takes an end; otherwise,

the next round starts.

Goal:

Find an allocation strategy (ϕt) and a recommendation strategy (ψt) such that the simple

regret

rn = sup
x∈X

µ(x)−
∫

X
µ(x) dψn(x)

is small (i.e., o(1), in expectation).

Figure 6: The anytime pure exploration problem for X–armed bandits.

The X–armed bandit problem is described in Figures 5 and 6. There, an environment E on X
is fixed and we want various notions of regret to be small, given this environment.

We consider now families of environments and say that a familyF of environments is explorable–

exploitable (respectively, explorable) if there exists a forecaster such that for any environment

E ∈ F , the expected cumulative regret ERn (expectation taken with respect to E and all auxiliary

randomizations) is o(n) (respectively, Ern = o(1)). Of course, explorability of F is a milder

requirement than explorability–exploitability of F , as can be seen by considering the recommen-

dation given by the empirical distribution of plays of Figure 3 and applying the same argument as

the one used at the beginning of Section 3.
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In fact, it can be seen that the two notions are equivalent, and this is why we will henceforth

concentrate on explorability only, for which characterizations as the ones of Theorem 6.4 are

simpler to exhibit and prove.

LEMMA 6.2. A family of environmentsF is explorable if and only if it is explorable–exploitable.

The proof can be found in Section 7.1. It relies essentially on designing a strategy suited

for cumulative regret from a strategy minimizing the simple regret; to do so, exploration and

exploitation occur at fixed rounds in two distinct phases and only the payoffs obtained during

exploration rounds are fed into the base allocation strategy.

6.2. A positive result for metric spaces. We denote by P([0, 1])X the family of all possible

environments E on X , and by C
(
P([0, 1])X

)
the subset of P([0, 1])X formed by the continuous

environments.

EXAMPLE 6.1. Previous sections were about the family P([0, 1])X of all environments over

X = {1, . . . ,K} being explorable.

The main result concerningX–armed bandit problems is formed by the following equivalences

in metric spaces. It generalizes the result of Example 6.1.

THEOREM 6.4. Let X be a metric space. Then C
(
P([0, 1])X

)
is explorable if and only if X is

separable.

COROLLARY 6.4. Let X be a set. P([0, 1])X is explorable if and only if X is countable.

The proofs can be found in Section 7.2. Their main technical ingredient is that there exists a

probability distribution over a metric space X giving a positive probability mass to all open sets if

and only if X is separable. Then, whenever it exists, it allows some uniform exploration.

7. Technical Proofs

7.1. Proof of Lemma 6.2.

PROOF. In view of the comments before the statement of Lemma 6.2, we need only to prove

that an explorable family F is also explorable–exploitable. We consider a pair of allocation (ϕt)

and recommendation (ψt) strategies such that for all environmentsE ∈ F , the simple regret satisfy

Ern = o(1), and provide a new strategy (ϕ′
t) such that its cumulative regret satisfies ER′

n = o(n)

for all environments E ∈ F .

It is defined informally as follows. At round t = 1, it uses ϕ′
1 = ϕ1 and gets a reward Y1.

Based on this reward, the recommendation ψ1(Y1) is formed and at round t = 2, the new strategy

plays ϕ′
2(Y1) = ψ1(Y1). It gets a reward Y2 but does not take it into account. It bases its choice

ϕ′
3(Y1, Y2) = ϕ2(Y1) only on Y1 and gets a reward Y3. Based on Y1 and Y3, the recommendation

ψ2(Y1, Y3) is formed and played at rounds t = 4 and t = 5, i.e.,

ϕ′
4(Y1, Y2, Y3) = ϕ′

5(Y1, Y2, Y3, Y4) = ψ2(Y1, Y3) .

And so on: the sequence of distributions chosen by the new strategy is formed using the applica-

tions

ϕ1, ψ1,

ϕ2, ψ2, ψ2,

ϕ3, ψ3, ψ3, ψ3,

ϕ4, ψ4, ψ4, ψ4, ψ4,
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ϕ5, ψ5, ψ5, ψ5, ψ5, ψ5,

. . .

Formally, we consider regimes indexed by integers t > 1 and of length 1 + t. The t–th regime

starts at round

1 +
t−1∑

s=1

(1 + s) = t+
t(t− 1)

2
=
t(t+ 1)

2
.

During this regime, the following distributions are used,

ϕ′
t(t+1)/2+k =





ϕt

((
Ys(s+1)/2

)
s=1,...,t−1

)
if k = 0;

ψt

((
Ys(s+1)/2

)
s=1,...,t−1

)
if 1 6 k 6 t.

Note that we only keep track of the payoffs obtained when k = 0 in a regime.

The regret R′
n at round n of this strategy is as follows. We decompose n in a unique manner

as

(6.5) n =
t(n)

(
t(n) + 1

)

2
+ k(n) where k(n) ∈

{
0, . . . , t(n)

}
.

Then (using also the tower rule),

ER′
n 6 t(n) +

(
Er1 + 2 Er2 + . . .+

(
t(n)− 1

)
Ert(n)−1 + k(n) Ert(n)

)

where the first term comes from the time rounds when the new strategy used the base allocation

strategy to explore and where the other terms come from the ones when it exploited. This inequal-

ity can be rewritten as

ER′
n

n
6
t(n)

n
+
k(n) Ert(n) +

∑t(n)−1
s=1 sErs

n
,

which shows that ER′
n = o(n) whenever Ers = o(1) as s → ∞, since the first term in the right-

hand side is of the order of 1/
√
n and the second one is a Cesaro average. This concludes that the

exhibited strategy has a small cumulative regret for all environments of the family, which is thus

explorable–exploitable. �

7.2. Proof of Theorem 6.4 and its corollary. The key ingredient is the following character-

ization of separability (which relies on an application of Zorn’s lemma); see, e.g., [Billingsley,

1968, Appendix I, page 216].

LEMMA 6.3. Let X be a metric space, with distance denoted by d. X is separable if and only

if it contains no uncountable subset A such that

ρ = inf
{
d(x, y) : x, y ∈ A

}
> 0 .

Separability can then be characterized in terms of the existence of a probability distribution

with full support. Though it seems natural, we did not see any reference to it in the literature and

this is why we state it. (In the proof of Theorem 6.4, we will only use the straightforward direct

part of the characterization.)

LEMMA 6.4. Let X be a metric space. There exists a probability distribution λ on X with

λ(V ) > 0 for all open sets V if and only if X is separable.
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PROOF. We prove the converse implication first. If X is separable, we denote by x1, x2, . . . a

dense sequence. If it is finite with length N , we let

λ =
1

N

N∑

i=1

δxi

and otherwise,

λ =
∑

i>1

1

2i
δxi .

The result follows, since each open set V contains at least some xi.

For the direct implication, we use Lemma 6.3 (and its notations). If X is not separable, then

it contains uncountably many disjoint open balls, formed by the B(a, ρ/2), for a ∈ A. If there

existed a probability distribution λ with full support on X , it would in particular give a positive

probability to all these balls; but this is impossible, since there are uncountably many of them. �

7.2.1. Separability of X implies explorability of the family C
(
P([0, 1])X

)
. The proof of the

converse part of the characterization provided by Theorem 6.4 relies on a somewhat uniform ex-

ploration. We reach each open set of X in a geometric time.

PROOF. Since X is separable, there exists a probability distribution λ on X with λ(V ) > 0

for all open sets V , as asserted by Lemma 6.4.

The proposed strategy is then constructed in a way similar to the one exhibited in Section 7.4,

in the sense that we also consider successives regimes, where the t–th of them has also length 1+t.

They use the following allocations,

ϕt(t+1)/2+k =

{
λ if k = 0;

δIk(k+1)/2
if 1 6 k 6 t.

Put in words, at the beginning of each regime, a new point It(t+1)/2 is drawn at random in X
according to λ, and then, all previously drawn points Is(s+1)/2, for 1 6 s 6 t − 1, and the new

point It(t+1)/2 are pulled again, one after the other.

The recommendations ψn are deterministic and put all probability mass on the best empirical

arm among the first played g(n) arms (where the function g will be determined by the analysis).

Formally, for all x ∈ X such that

Tn(x) =
n∑

t=1

I{It=x} > 1 ,

one defines

µ̂n(x) =
1

Tn(x)

n∑

t=1

Yt I{It=x} .

Then,

ψn = δX∗
n

where X∗
n ∈ argmax

16s6g(n)
µ̂n
(
Is(s+1)/2

)

(ties broken in some way, as usual; and g(n) to be chosen small enough so that all considered

arms have been played at least once). Note that exploration and exploitation appear in two distinct

phases, as was the case already, for instance, in Section 4.1.

We now denote

µ∗ = sup
x∈X

µ(x) and µ∗g(n) = max
16s6g(n)

µ
(
Is(s+1)/2

)
;
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the simple regret can then be decomposed as

Ern = µ∗ − E

[
µ
(
X∗
n

)]
=
(
µ∗ − E

[
µ∗g(n)

])
+
(
E

[
µ∗g(n)

]
− E

[
µ
(
X∗
n

)])
,

where the first difference can be thought of as an approximation error, and the second one, as

resulting from an estimation error. We now show that both differences vanish in the limit.

We first deal with the approximation error. We fix ε > 0. Since µ is continuous on X , there

exists an open set V such that

∀x ∈ V, µ∗ − µ(x) 6 ε .

It follows that

P

{
µ∗ − µ∗g(n) > ε

}
6 P

{
∀ s ∈

{
1, . . . , g(n)

}
, Is(s+1)/2 6∈ V

}

6
(
1− λ(V )

)g(n) −→ 0

provided that g(n)→∞ (a condition that will be satisfied, see below). Since in addition, µ∗g(n) 6

µ∗, we get

lim sup µ∗ − E

[
µ∗g(n)

]
6 ε .

For the difference resulting from the estimation error, we denote

I∗n ∈ argmax
16s6g(n)

µ
(
Is(s+1)/2

)

(ties broken in some way). Fix an arbitrary ε > 0. We note that if for all 1 6 s 6 g(n),
∣∣∣µ̂n
(
Is(s+1)/2

)
− µ

(
Is(s+1)/2

)∣∣∣ 6 ε ,

then (together with the definition of X∗
n)

µ
(
X∗
n

)
> µ̂n

(
X∗
n

)
− ε > µ̂n

(
I∗n
)
− ε > µ

(
I∗n
)
− 2ε .

Thus, we have proved the inequality

(6.6) E

[
µ∗g(n)

]
− E

[
µ
(
X∗
n

)]
6 2ε+ P

{
∃ s 6 g(n),

∣∣∣µ̂n
(
Is(s+1)/2

)
− µ

(
Is(s+1)/2

)∣∣∣ > ε

}
.

We use a union bound and control each (conditional) probability

(6.7) P

{∣∣∣µ̂n
(
Is(s+1)/2

)
− µ

(
Is(s+1)/2

)∣∣∣ > ε

∣∣∣∣ An
}

for 1 6 s 6 g(n), where An is the σ–algebra generated by the randomly drawn points Ik(k+1)/2,

for those k with k(k + 1)/2 6 n. Conditionnally to them, µ̂n
(
Is(s+1)/2

)
is an average of a

deterministic number of summands, which only depends on s, and thus, classical concentration-

of-the-measure arguments can be used. For instance, the quantities (6.7) are bounded, via an

application of Hoeffding’s inequality, see Theorem 10.1, by

2 exp
(
−2Tn

(
Is(s+1)/2

)
ε2
)
.

We lower bound Tn
(
Is(s+1)/2

)
. The point Is(s+1)/2 was pulled twice in regime s, once in each

regime s+ 1, . . . , t(n)− 1, and maybe in t(n), where n is decomposed again as in (6.5). That is,

Tn
(
Is(s+1)/2

)
> t(n)− s+ 1 >

√
2n− 1− g(n) ,

since we only consider s 6 g(n) and since (6.5) implies that

n 6
t(n)

(
t(n) + 3

)

2
6

(
t(n) + 2

)2

2
, that is, t(n) >

√
2n− 2 .
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Substituting this in the Hoeffding’s bound, integrating, and taking a union bound lead from (6.6)

to

E

[
µ∗g(n)

]
− E

[
µ
(
X∗
n

)]
6 2ε+ 2g(n) exp

(
−2
(√

2n− 1− g(n)
)
ε2
)
.

Choosing for instance g(n) =
√
n/2 ensures that

lim sup E

[
µ∗g(n)

]
− E

[
µ
(
X∗
n

)]
6 2ε .

Summing up the two superior limits, we finally get

lim sup Ern 6 lim sup µ∗ − E

[
µ∗g(n)

]
+ lim sup E

[
µ∗g(n)

]
− E

[
µ
(
X∗
n

)]
6 3ε ;

since this is true for all arbitrary ε > 0, the proof is concluded. �

7.2.2. Separability of X is a necessary condition. We now prove the direct part of the char-

acterization provided by Theorem 6.4. It basically follows from the impossibility of a uniform

exploration, as asserted by Lemma 6.4.

PROOF. Let X be a non-separable metric space (with distance denoted by d). Let A be an

uncountable set and let ρ > 0 be defined as in Lemma 6.3; in particular, the balls B(a, ρ/2) are

disjoint, for a ∈ A.

We now consider the subset of C
(
P([0, 1])X

)
formed by the environments Ea defined as

follows. They are indexed by a ∈ A and their corresponding expectations are given by

µa : x ∈ X 7−→
(

1− d(x, a)

ρ/2

)+

.

Note that µa is continuous, that µa(x) > 0 for all x ∈ B(a, ρ/2) but µa(x) = 0 for all x ∈ X \
B(a, ρ/2); that the best arm is a and gets a reward µ∗a = µa(a) = 1. The associated environment

Ea is deterministic, in the sense that it is defined as Ea(x) = δµa(x).

We fix a forecaster and denote by Ea the expectation under environment Ea with respect with

the auxiliary randomizations used by the forecaster. By construction of µa,

Earn = 1− Ea

[∫

X
µa(x) dψn(x)

]
> 1− Ea

[
ψn
(
B(a, ρ/2)

)]
.

We now show the existence of a non-empty set A′ such that for all a ∈ A′ and n > 1,

(6.8) Ea

[
ψn
(
B(a, ρ/2)

)]
= 0 ;

this indicates that Earn = 1 for all n > 1 and a ∈ A′, thus preventing in particular C
(
P([0, 1])X

)

from being explorable by the fixed forecaster.

The set A′ is constructed by studying the behavior of the forecaster under the environment

E0 yielding deterministic null rewards throughout the space, i.e., associated to the expectations

x ∈ X 7→ µ0(x) = 0. In the first round, the forecaster chooses a deterministic distribution

ϕ1 = ϕ0
1 over X , picks I1 at random according to ϕ0

1, gets a deterministic payoff Y1 = 0, and

finally recommends ψ0
1(I1) = ψ1(I1, Y1) (which depends on I1 only, since the obtained payoffs

are all null). In the second round, it chooses an allocation ψ0
2(I1) (that depends only on I1, for

the same reasons as before), picks I2 at random according to ψ0
2(I1), gets a null reward, and

recommends ψ0
2(I1, I2); and so on.

We denote by A the probability distribution giving the auxiliary randomizations used to draw

the It at random, and for all integers t and all measurable applications

ν : (x1, . . . , xt) ∈ X t 7−→ ν(x1, . . . , xt) ∈ P(X )
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we introduce the distributions A · ν ∈ P(X ) defined as follows. For all measurable sets V ⊆ X ,

A · ν(V ) = EA

[∫

X
IV dν(I1, . . . , It)

]
.

Now, let Bn and Cn be defined as the at most countable sets of a such that, respectively, A · ϕ0
n

and A · ψ0
n give a positive probability mass to B(a, ρ/2); we recall that the latter is the support of

the expectation mapping µa. Then, let

A′ = A \


⋃

n>1

Bn ∪
⋃

n>1

Cn




be the uncountable, thus non empty, set of those elements of A which are in no Bn or Cn.

By construction, for all a ∈ A′, the forecaster then behaves similarly under the environments

Ea and E0, since it only gets null rewards (a is in no Bn); this similar behavior means formally

that for all measurable sets V ⊆ X and all n > 1,

Ea
[
ϕn(V )

]
= A · ϕ0

n(V ) and Ea
[
ψn(V )

]
= A · ψ0

n(V ) .

In particular, since a is in no Cn, it hits in no recommendation ψn the ball B(a, ρ/2), which is

exactly what remained to be proved, see (6.8). �

7.2.3. The countable case of Corollary 6.4. We adopt an “à la Bourbaki” approach and derive

this special case from the general theory.

PROOF. We endow X with the discrete topology, i.e., choose the distance

d(x, y) = I{x 6=y} .

Then, all applications defined on X are continuous; in particular,

C
(
P([0, 1])X

)
= P([0, 1])X .

In addition, X is then separable if and only if it is countable. The result thus follows immediately

from Theorem 6.4. �

7.2.4. An additional remark. In this chapter, we mostly consider non-uniform bounds (bounds

that are individual as far as the environments are concerned). As for uniform bounds, i.e., bounds

on quantities of the form

sup
E∈F

ERn or sup
E∈F

Ern

for some family F , two observations can be made.

First, it is easy to see that no sublinear uniform bound can be obtained for the family of all

continuous environments, as soon as there exists infinitely many disjoint open balls.

However one can exhibit such sublinear uniform bounds in some specific scenarios; for in-

stance, when X is totally bounded and F is formed by continuous functions with a common

bounded Lipschitz constant.

7.3. Proof of the second statement of Proposition 6.1. We use below the notations intro-

duced in the proof of the first statement of Proposition 6.1.

PROOF. Since some regret is suffered only when an arm with suboptimal expectation has the

best empirical performance,

Ern 6

(
max

i=1,...,K
∆i

)
P

{
max
i:∆i>0

µ̂i,⌊n/K⌋ > µ̂i∗,⌊n/K⌋

}
.
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Now, the quantity of interest can be rewritten as

⌊ n
K

⌋(
max
i:∆i>0

µ̂i,⌊n/K⌋ − µ̂i∗,⌊n/K⌋

)
= f

(
~X1, . . . , ~X⌊ nK ⌋

)

for some function f , where for all s = 1, . . . , ⌊n/K⌋, we denote by ~Xs the vector (X1,s, . . . , XK,s).

(f is defined as a maximum of at mostK−1 sums of differences.) We apply the method of bounded

differences, see 10.4. It is straightforward that, since all random variables of interest take values

in [0, 1], the bounded differences condition is satisfied with ranges all equal to 2. Therefore, the

indicated concentration inequality states that

P

{(
max
i:∆i>0

µ̂i,⌊n/K⌋ − µ̂i∗,⌊n/K⌋

)
− E

[
max
i:∆i>0

µ̂i,⌊n/K⌋ − µ̂i∗,⌊n/K⌋

]
> ε

}
6 exp

(
−2 ⌊n/K⌋ ε2

4

)

for all ε > 0. We choose

ε = −E

[
max
i:∆i>0

µ̂i,⌊n/K⌋ − µ̂i∗,⌊n/K⌋

]
> min

i:∆i>0
∆i − E

[
max
i:∆i>0

{
µ̂i,⌊n/K⌋ − µ̂i∗,⌊n/K⌋ + ∆i

}]

(where we used that the maximum of K first quantities plus the minimum of K other quantities is

less than the maximum of the K sums). We now argue that

E

[
max
i:∆i>0

{
µ̂i,⌊n/K⌋ − µ̂i∗,⌊n/K⌋ + ∆i

}]
6

√
2 lnK

⌊n/K⌋ ;

this is done by a classical argument, using bounds on the moment generating function of the

random variables of interest. Consider

Zi = ⌊n/K⌋
(
µ̂i,⌊n/K⌋ − µ̂i∗,⌊n/K⌋ + ∆i

)

for all i = 1, . . . ,K. Independence and Hoeffding’s lemma (see Lemma 10.1) imply that for all

λ > 0,

E

[
eλZi

]
6 exp

(
−1

2
λ2⌊n/K⌋

)

(where we used again that Zi is given by a sum of random variables bounded between −1 and 1).

A well-known inequality for maxima of subgaussian random variables (see, again, [Devroye and

Lugosi, 2001, Chapter 2]) then yields

E

[
max

i=1,...,K
Zi

]
6
√

2⌊n/K⌋ lnK ,

which leads to the claimed upper bound. Putting things together, we get that for the choice

ε = −E

[
max
i:∆i>0

µ̂i,⌊n/K⌋ − µ̂i∗,⌊n/K⌋

]
> min

i:∆i>0
∆i −

√
2 lnK

⌊n/K⌋ > 0

(for n sufficiently large, a statement made precise below), we have

P

{
max
i:∆i>0

µ̂i,⌊n/K⌋ > µ̂i∗,⌊n/K⌋

}
6 exp

(
−2 ⌊n/K⌋ ε2

4

)

6 exp


−1

2

⌊ n
K

⌋(
min
i:∆i>0

∆i −
√

2 lnK

⌊n/K⌋

)2

 .

The result follows for n such that

min
i:∆i>0

∆i −
√

2 lnK

⌊n/K⌋ > (1− η) min
i:∆i>0

∆i ;
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the second part of the theorem indeed only considers such n. �

7.4. Detailed discussion of the heuristic arguments presented in Section 5. We first state

the following corollary to Lemma 6.1.

THEOREM 6.5. The allocation strategy given by UCB (with α > 1) associated to the recom-

mendation given by the most played arm ensures that

Ern 6
1

α− 1

∑

i6=i∗

(
βn

∆2
i

− 1

)2(1−α)

for all n sufficiently large, e.g., such that

n

lnn
>

4α+ 1

β
and n >

K + 2

β
(∆′)2 ,

where ∆′ = maxi ∆i and we denote by K∗ the number of optimal arms and

β =
1

K∗

∆2
+
∑

i6=i∗

1

∆2
i

.

PROOF. We apply Lemma 6.1 with the choice ai = β/∆2
i for all suboptimal arms i and

ai∗ = β/∆2 for all optimal arms i∗, where β denotes the renormalization constant. �

For illustration, consider the case when there is one optimal arm, one ∆–suboptimal arm and

K − 2 arms that are 2∆–suboptimal. Then

1

β
=

2

∆2
+
K − 2

(2∆)2
=

6 +K

4∆2
,

and the previous bound of Theorem 6.5 implies that

(6.9) Ern 6
1

α− 1

(
4n

6 +K
− 1

)2(1−α)

+
K − 2

α− 1

(
n

6 +K
− 1

)2(1−α)

for all n sufficiently large, e.g.,

(6.10) n > max

{
(K + 2)(6 +K), (4α+ 1)

(
6 +K

4∆2

)
lnn

}
.

Now, the upper bound on Ern given in Proposition 6.1 for the uniform allocation associated to the

recommendation provided by the empirical best arm is larger than

∆e−∆2⌊n/K⌋/2 , for all n > K.

Thus for n moderately large, e.g., such that n > K and

(6.11) ⌊n/K⌋ 6 (4α+ 1)

(
6 +K

4∆2

)
lnn

K
,

the bound for the uniform allocation is at least

∆ exp

(
−∆2(4α+ 1)

(
6 +K

4∆2

)
lnn

2K

)
= ∆n−(4α+1)(6+K)/8K ,

which may be much worse than the upper bound (6.9) for the UCB strategy whenever K is large,

as can be seen by comparing the exponents −2(α− 1) versus −(4α+ 1)(6 +K)/8K.

To illustrate this numerically (though this is probably not the most convincing choice of the

parameters), consider the case when ∆ = 0.4,K = 20, and α = 4. Then n = 6020 satisfies (6.10)
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and (6.11). For these parameters, the upper bound (6.9) for the UCB strategy is 4.00×10−14, which

is much smaller than the one for the uniform allocation, which is larger than 1.45× 10−11.

The reason is that the uniform allocation strategy only samples ⌊n/K⌋ each arm, whereas the

UCB strategy focuses rapidly its exploration on the better arms.





CHAPTER 7

Pure Exploration in Multi-Armed Bandits II

We consider the problem of finding the best arm in a stochastic multi-armed bandit game.

The regret of a forecaster is here defined by the gap between the mean reward of the optimal arm

and the mean reward of the ultimately chosen arm. We propose a highly exploring UCB policy

and a new algorithm based on successive rejects. We show that these algorithms are essentially

optimal since their regret decreases exponentially at a rate which is, up to a logarithmic factor,

the best possible. However, while the UCB policy needs the tuning of a parameter depending on

the unobservable hardness of the task, the successive rejects policy benefits from being parameter-

free, and also independent of the scaling of the rewards. As a by-product of our analysis, we

show that identifying the best arm (when it is unique) requires a number of samples of order

(up to a log(K) factor)
∑

i 1/∆
2
i , where the sum is on the suboptimal arms and ∆i represents

the difference between the mean reward of the best arm and the one of arm i. This generalizes

the well-known fact that one needs of order of 1/∆2 samples to differentiate the means of two

distributions with gap ∆.
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This chapter is a joint work with Jean-Yves Audibert and Rémi Munos. It is based on the paper

Audibert et al. [2010] published in the proceedings of the 23rd Annual Conference on Learning

Theory.

1. Introduction

In the multi-armed bandit problem described in Chapter 2, at each stage, an agent (or fore-

caster) chooses one action (or arm), and receives a reward from it. In its stochastic version, the

reward is drawn from a fixed probability distribution given the arm. The usual goal is to maximize

the cumulative sum of rewards, see Robbins [1952], Auer et al. [2002] among many others. Since

the forecaster does not know the distributions, he needs to explore (try) the different actions and

yet, exploit (concentrate its draws on) the seemingly most rewarding arms. In this chapter, we



160 CHAPTER 7. SIMPLE REGRET II

Parameters available to the forecaster: the number of rounds n and the number of arms K.

Parameters unknown to the forecaster: the reward distributions ν1, . . . , νK of the arms.

For each round t = 1, 2, . . . , n;

(1) the forecaster chooses It ∈ {1, . . . ,K},
(2) the environment draws the reward XIt,TIt (t)

from νIt and independently of the past

given It.

At the end of the n rounds, the forecaster outputs a recommendation Jn ∈ {1, . . . ,K}.

Figure 1: The pure exploration problem for multi-armed bandits.

adopt a different viewpoint, which we already investigated in Chapter 6. We assume that after

a given number of pulls, the forecaster is asked to output a recommended arm. He is then only

evaluated by the average payoff of his recommended arm. This is the so-called pure exploration

problem.

The distinguishing feature from the classical multi-armed bandit problem described above is

that the exploration phase and the evaluation phase are separated. Thus, there is no explicit trade-

off between the exploration and the exploitation while pulling the arms. The target of Hoeffding

and Bernstein races, see Maron and Moore [1993], Mnih et al. [2008] among others, is more

similar to ours. However, instead of trying to extract from a fixed number of rounds the best

action, racing algorithms try to identify the best action at a given confidence level while consuming

the minimal number of pulls. They optimize the budget for a given confidence level, instead of

optimizing the quality of the recommendation for a given budget size.

In addition to the applications described in Chapter 6 for this framework, we propose another

motivating with channel allocation for mobile phone communications. During a very short time

before the communication starts, a cellphone can explore the set of channels to find the best one to

operate. Each evaluation of a channel is noisy and there is a limited number of evaluations before

the communication starts. The connection is then launched on the channel which is believed to

be the best. Opportunistic communication systems rely on the same idea. Again the cumulative

regret during the exploration phase is irrelevant since the user is only interested in the quality of

its communication starting after the exploration phase.

2. Problem setup

A stochastic multi-armed bandit game is parameterized by the number of arms K, the number

of rounds (or budget) n, and K probability distributions ν1, . . . , νK associated respectively with

arm 1, . . . , arm K. These distributions are unknown to the forecaster. For t = 1, . . . , n, at round

t, the forecaster chooses an arm It in the set of arms {1, . . . ,K}, and observes a reward drawn

from νIt independently from the past (actions and observations). At the end of the n rounds, the

forecaster selects an arm, denoted Jn, and is evaluated in terms of the difference between the mean

reward of the optimal arm and the mean reward of Jn. Precisely, let µ1, . . . , µK be the respective

means of ν1, . . . , νK . Let µ∗ = maxk∈{1,...,K} µk. The simple regret of the forecaster is

rn = µ∗ − µJn .
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For sake of simplicity, we will assume that the rewards are in [0, 1] and that there is a unique

optimal arm. Let i∗ denote this arm (so, µi∗ = µ∗). For i 6= i∗, we introduce the following

suboptimality measure of arm i:

∆i = µ∗ − µi.
For reasons that will be obvious later, we also define ∆i∗ as the minimal gap

∆i∗ = min
i6=i∗

∆i.

We introduce the notation (i) ∈ {1, . . . ,K} to denote the i–th best arm (with ties break arbitrarily),

hence

∆i∗ = ∆(1) = ∆(2) 6 ∆(3) 6 . . . 6 ∆(K).

Let en denote the probability of error, that is the probability that the recommendation is not the

optimal one:

en = P(Jn 6= i∗).

We have Ern =
∑

i6=i∗ P(Jn = i)∆i, and consequently

∆i∗en 6 Ern 6 en.

As a consequence of this equation, up to a second order term, en and Ern behave similarly, and it

does not harm to focus on the probability en.

For each arm i and all time rounds t > 1, we denote by Ti(t) the number of times arm i

was pulled from rounds 1 to t, and by Xi,1, Xi,2, . . . , Xi,Ti(t) the sequence of associated rewards.

Introduce µ̂i,s = 1
s

∑s
t=1Xi,t the empirical mean of arm i after s pulls. In the following, the

symbol c will denote a positive numerical constant which may differ from line to line.

The goal of this work is to propose allocation strategies with small simple regret, and possibly

as small as the best allocation strategy which would know beforehand the distributions ν1, . . . , νK
up to a permutation. Before going further, note that the goal is unachievable for all distributions

ν1, . . . , νK : a policy cannot perform as well as the “oracle” allocation strategy in every particular

cases. For instance, when the supports of ν1, . . . , νK are disjoints, the oracle forecaster almost

surely identifies an arm by a single draw of it. As a consequence, it has almost surely zero simple

regret for any n > K. The generic policy which does not have any knowledge on the K distribu-

tions cannot reproduce this performance for any K-tuple of disjointly supported distributions. In

this work, the above goal of deciding as well as an oracle will be reached for the set of Bernoulli

distributions with parameters in (0, 1), but the algorithms are defined for any distributions sup-

ported in [0, 1].

We would like to mention that the caseK = 2 is unique and simple since, as we will indirectly

see, it is optimally solved by the uniform allocation strategy consisting in drawing each arm n/2

times (up to rounding problem), and at the end recommending the arm with the highest empirical

mean. Therefore, our main contributions concern more the problem of the budget allocation when

K > 3. The hardness of the task will be characterized by the following quantities

H1 =
K∑

i=1

1

∆2
i

and H2 = max
i∈{1,...,K}

i∆−2
(i) .

These quantities are equivalent up to a logarithmic factor since we have (see Section 8.1)

(7.1) H2 6 H1 6 log(2K)H2.

Intuitively, we will show that these quantities are indeed characteristic of the hardness of the prob-

lem, in the sense that they give the order of magnitude of the number of samples required to find

the best arm with a reasonable probability. This statement will be made precise in the rest of the
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chapter, in particular through Theorem 7.2 and Theorem 7.4.

Outline. In Section 3, we propose a highly exploring policy based on upper confidence bounds,

called UCB-E (Upper Confidence Bound Exploration), in the spirit of UCB1 Auer et al. [2002].

We prove that this algorithm, provided that it is appropriately tuned, has an upper bound on the

probability of error en of order exp
(
− c n

H1

)
. The core problem of this policy is the tuning of

the parameter. The optimal value of the parameter depends on H1, which has no reason to be

known beforehand by the forecaster, and which, to our knowledge, cannot be estimated from past

observations with sufficiently high confidence in order that the resulting algorithm still satisfies a

similar bound on en.

To get round this limitation, in Section 4, we propose a simple new policy called SR (Suc-

cessive Rejects) that progressively rejects the arms which seem to be suboptimal. This algorithm

is parameter-free and its probability of error en is at most of order exp
(
− n

log(2K)H2

)
. Since

H2 6 H1 6 log(2K)H2, up to at most a logarithmic term in K, the algorithm performs as well

as UCB-E while not requiring the knowledge of H1.

In Section 5, we prove that H1 and H2 truly represent the hardness of the problem (up to a

logarithmic factor). Precisely, we consider a forecaster which knows the reward distributions of

the arms up to a permutation. When these distributions are of Bernoulli type with parameter in

[p, 1− p] for some p > 0, there exists a permutation of the distributions for which the probability

of error of the (oracle) forecaster is lower bounded by exp
(
− cn

p(1−p)H2

)
.

Section 6 provides some experiments testing the efficiency of the proposed policies and en-

lightening our theoretical results. We also discuss a modification of UCB-E where we perform a

non-trivial online estimation ofH1. We conclude in Section 7. Finally section 8 gathers the proofs.

Example. To put in perspective the results we just mentioned, let us consider a specific example

with Bernoulli distributions. Let ν1 = Ber
(

1
2

)
, and νi = Ber

(
1
2 − 1

Ki

)
for i ∈ {2, . . . ,K}. Here,

one can easily check that H2 = 2K2K . Thus, in this case, the probability of missing the best arm

of SR is at most of order exp
(
− n

2 log(2K)K2K

)
. Moreover, in Section 5, we prove that there does

not exist any forecaster (even with the knowledge of the distributions up to a permutation) with a

probability of missing the best arm smaller than exp
(
− 11n

K2K

)
for infinitely many n. Thus, our

analysis finds that, for this particular reward distributions, the number of samples required to find

the best arm is at least (of order of) K2K , and SR actually finds it with (of order of) log(K)K2K

samples.

3. Highly exploring policy based on upper confidence bounds

In this section, we propose and study the algorithm UCB-E described in Figure 2. When a is

taken of order log n, the algorithm essentially corresponds to the UCB policy described in Section

2.2, and its cumulative regret is of order log n. In Chapter 6 we showed that algorithms having at

most logarithmic cumulative regret, has at least a simple regret of order n−γ for some γ > 0. So

taking a of order log n is inappropriate to reach exponentially small probability of error. For the

simple regret, one has to explore much more and typically use a parameter which is essentially

linear in n. Precisely, we have the following result, which proof can be found in Section 8.2.

THEOREM 7.1. If UCB-E is run with parameter 0 < a 6 25
36
n−K
H1

, then it satisfies

en 6 2nK exp

(
− 2a

25

)
.
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Parameter: exploration parameter a > 0.

For i ∈ {1, . . . ,K}, let Bi,s = µ̂i,s +
√

a
s for s > 1 and Bi,0 = +∞.

For each round t = 1, 2, . . . , n:

Draw It ∈ argmaxi∈{1,...,K}Bi,Ti(t−1).

Let Jn ∈ argmaxi∈{1,...,K} µ̂i,Ti(n).

Figure 2: UCB-E (Upper Confidence Bound Exploration) algorithm.

In particular for a = 25
36
n−K
H1

, we have en 6 2nK exp
(
− n−K

18H1

)
.

The theorem shows that the probability of error of UCB-E is at most of order exp(−ca) for

a > log n. In fact, Theorem 7.5 in Appendix 8.3 shows a corresponding lower bound. In view

of this, as long as a 6 25
36
n−K
H1

, we can essentially say: the more we explore (i.e., the larger a is),

the smaller the simple regret is. Besides, the smallest upper bound on the probability of error is

obtained for a of order n/H1, and is therefore exponentially decreasing with n. The constant H1

depends not only on how close the mean rewards of the two best arms are, but also on the number

of arms and how close their mean reward is to the optimal mean reward. This constant should be

seen as the order of the minimal number n for which the recommended arm is the optimal one with

high probability. In Section 5, we will show that H1 is indeed a good measure of the hardness of

the task by showing that no forecaster satisfies en 6 exp
(
− cn

H2

)
for any distributions ν1, . . . , νK ,

where we recall that H2 satisfies H2 6 H1 6 log(2K)H2.

One interesting message to take from the proof of Theorem 7.1 is that, with probability at

least 1− 2nK exp
(
− 2a

25

)
, the number of draws of any suboptimal arm i is of order a∆−2

i . This

means that the optimal arm will be played at least n− caH1, showing that for too small a, UCB-E

”exploits” too much in view of the simple regret. Theorem 7.1 does not specify how the algo-

rithm performs when a is larger than 25
36
n−K
H1

. Nevertheless, similar arguments than the ones in the

proof show that for large a, with high probability, only low rewarding arms are played of order

a∆−2
i times, whereas the best ones are all drawn the same number of times up to a constant factor.

The number of these similarly drawn arms grows with a. In the limit, when a goes to infinity,

UCB-E is exactly the uniform allocation strategy studied in Chapter 6. In general1, the uniform

allocation has a probability of error which can be lower and upper bounded by a quantity of the

form exp
(
− cn∆2

i∗

K

)
. It consequently performs much worse than UCB-E for a = 25

36
n−K
H1

, since

H1 6 K∆−2
i∗ , and potentially H1 ≪ K∆−2

i∗ for very large number of arms with heterogeneous

mean rewards.

One straightforward idea to cope with the absence of an oracle telling us the value of H1

would be to estimate online the parameter H1 and use this estimation in the algorithm. Unfortu-

nately, we were not able to prove, and do not believe that, this modified algorithm generally attains

the expected rate of convergence. Indeed, overestimating H1 leads to low exploring, and in the

event when the optimal arm has given abnormally low rewards, the arm stops being drawn by the

policy, its estimated mean reward is thus not corrected, and the arm is finally not recommended

by the policy. On the contrary, underestimating H1 leads to draw too much the suboptimal arms,

1We say “in general” to rule out some trivial cases (like when the reward distributions are all Dirac distributions) in

which the probability of error en would be much smaller.
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Let A1 = {1, . . . ,K}, log(K) = 1
2 +

∑K
i=2

1
i , n0 = 0 and for k ∈ {1, . . . ,K − 1},

nk =

⌈
1

log(K)

n−K
K + 1− k

⌉
.

For each phase k = 1, 2, . . . ,K − 1:

(1) For each i ∈ Ak, select arm i during nk − nk−1 rounds.

(2) Let Ak+1 = Ak \ arg mini∈Ak µ̂i,nk (we only remove one element from Ak, if there

is a tie, select randomly the arm to dismiss among the worst arms).

Let Jn be the unique element of AK .

Figure 3: SR (Successive Rejects) algorithm.

precluding a sufficiently accurate estimation of the mean rewards of the best arms. For this last

case, things are in fact much more subtle than what can be retranscribed in these few lines, and we

notice that keeping track of a lower bound on H1 would lead to the correct rate only under appro-

priate assumptions on the decrease of the sequence ∆(k), k ∈ {1, . . . ,K}. In Section 6 we push

this idea and propose a way to estimate online H1, however we solely justify the corresponding

algorithm by experiments. In the next section we propose an algorithm which does not suffer from

these limitations.

4. Successive Rejects algorithm

In this section, we describe and analyze a new algorithm, SR (Successive Rejects), see Figure

3 for its precise description. Informally it proceeds as follows. First the algorithm divides the

time (i.e., the n rounds) in K − 1 phases. At the end of each phase, the algorithm dismisses the

arm with the lowest empirical mean. During the next phase, it pulls equally often each arm which

has not been dismissed yet. The recommended arm Jn is the last surviving arm. The length of

the phases are carefully chosen to obtain an optimal (up to a logarithmic factor) convergence rate.

More precisely, one arm is pulled n1 =
⌈

1
log(K)

n−K
K

⌉
times, one n2 =

⌈
1

log(K)
n−K
K−1

⌉
times, ...,

and two arms are pulled nK−1 =
⌈

1
log(K)

n−K
2

⌉
times. SR does not exceed the budget of n pulls,

since, from the definition log(K) = 1
2 +

∑K
i=2

1
i , we have

n1 + . . .+ nK−1 + nK−1 6 K +
n−K
log(K)

(
1

2
+
K−1∑

k=1

1

K + 1− k

)
= n.

For K = 2, up to rounding effects, SR is just the uniform allocation strategy.

THEOREM 7.2. The probability of error of SR satisfies

en 6
K(K − 1)

2
exp

(
− n−K

log(K)H2

)
.

PROOF. We can assume that the sequence of rewards for each arm is drawn before the be-

ginning of the game. Thus the empirical reward for arm i after s pulls is well defined even

if arm i has not been actually pulled s times. During phase k, at least one of the k worst

arms is surviving. So, if the optimal arm i∗ is dismissed at the end of phase k, it means that

µ̂i∗,nk 6 maxi∈{(K),(K−1),...,(K+1−k)} µ̂i,nk . By a union bound and Hoeffding’s inequality, the
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probability of error en = P(AK 6= {i∗}) thus satisfies

en 6

K−1∑

k=1

K∑

i=K+1−k
P(µ̂i∗,nk 6 µ̂(i),nk)

6

K−1∑

k=1

K∑

i=K+1−k
P(µ̂i∗,nk − µ∗ + µ(i) − µ̂(i),nk > ∆(i))

6

K−1∑

k=1

K∑

i=K+1−k
exp

(
−nk∆2

(i)

)
6

K−1∑

k=1

k exp
(
−nk∆2

(K+1−k)
)
.

We conclude the proof by noting that by definition of nk and H2, we have

(7.2) nk∆
2
(K+1−k) >

n−K
log(K)

1

(K + 1− k)∆−2
(K+1−k)

>
n−K

log(K)H2

.

�

The following theorem provides a deeper understanding of how SR works. It lower bounds

the sampling times of the arms and shows that at the end of phase k, we have a high-confidence

estimation of ∆(K+1−k) up to numerical constant factor. This intuition will prove to be useful in

Section 6, see in particular Figure 4.

THEOREM 7.3. With probability at least 1− K3

2 exp
(
− n−K

4log(K)H2

)
, for any arm j, we have

(7.3) Tj(n) >
n−K

4log(K)H2∆2
j

.

With probability at least 1−K3 exp
(
− n−K

32log(K)H2

)
, for any k ∈ {1, . . . ,K − 1}, the dismissed

arm ℓk = Ak+1 \Ak at the end of phase k satisfies

(7.4)
1

4
∆(K+1−k) 6

1

2
∆ℓk 6 max

m∈Ak
µ̂m,nk − µ̂ℓk,nk 6

3

2
∆ℓk 6 3∆(K+1−k).

PROOF. We consider the event E on which for any k ∈ {1, . . . ,K − 1}, for any arm ℓ in the

worst k arms, and any arm j such that 2∆j 6 ∆ℓ, we have

µ̂j,nk − µ̂ℓ,nk > 0.

This event holds with probability at least 1 − K3

2 exp
(
− n−K

4log(K)H2

)
, since, from Hoeffding’s

inequality, a union bound and (7.2), we have

K−1∑

k=1

∑

ℓ∈{(K),(K−1),...,(K+1−k)}
j:2∆j6∆ℓ

P

(
µ̂j,nk − µ̂ℓ,nk 6 0

)

6

K−1∑

k=1

∑

ℓ∈{(K),(K−1),...,(K+1−k)}
j:2∆j6∆ℓ

exp
(
− nk(∆ℓ −∆j)

2
)

6

K−1∑

k=1

kK exp
(
− nk

∆2
(K+1−k)

4

)
6
K3

2
exp

(
− n−K

4log(K)H2

)
.

During phase k, at least one of the k worst arms is surviving. On the event E , this surviving arm

has an empirical mean at the end of the phase which is smaller than the one of any arm j satisfying

2∆j 6 ∆(K+1−k). So, at the end of phase k, any arm j satisfying 2∆j 6 ∆(K+1−k) cannot
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be dismissed. Now, for a given arm j, we consider two cases depending whether there exists

m ∈ {1, . . . ,K} such that ∆(m−1) 6 2∆j 6 ∆(m).

First case. If no such m exists, then we have ∆2
jTj(n) > 1

4∆2
(K)n1 > n−K

4log(K)H2
, so that (7.3)

holds.

Second case. If such m exists, then, from the above argument, the arm j cannot be dismissed

before the end of the phase K+2−m (since there exists K+1−m arms ℓ such that ∆ℓ > 2∆j).

From (7.2), we get

∆2
jTj(n) > ∆2

jnK+2−m >
∆2
j

∆2
(m−1)

n−K
log(K)H2

>
n−K

4log(K)H2

,

which ends the proof of (7.3). We have seen that at the end of phase k, any arm j satisfying

2∆j 6 ∆(K+1−k) cannot be dismissed. Consequently, at the end of phase k, the dismissed arm

ℓk = Ak+1 \Ak satisfies the left inequality of

(7.5)
1

2
∆(K+1−k) 6 ∆ℓk 6 2∆(K+1−k).

Let us now prove the right inequality by contradiction. Consider k such that 2∆(K+1−k) < ∆ℓk .

Arm ℓk thus belongs to the k − 1 worst arms. Hence, in the first k − 1 rejects, say at the end of

phase k′, an arm j with ∆j 6 ∆(K+1−k) is dismissed. From the left inequality of (7.5), we get

∆(K+1−k′) 6 2∆j < ∆ℓk . On the event E , we thus have µ̂j,nk′ − µ̂ℓk,nk′ > 0 (since ℓk belongs to

the k′ worst arms by the previous inequality). This contradicts the fact that j is rejected at phase

k′. So (7.5) holds.

Now let E ′ be the event on which for any arm j, and any k ∈ {1, . . . ,K − 1}
∣∣µ̂j,nk − µj

∣∣ 6
∆(K+1−k)

8 . Using again Hoeffding’s inequality, a union bound and (7.2), this event holds with

probability at least 1− 2K(K − 1) exp
(
− n−K

32log(K)H2

)
. We now work on the event E ∩ E ′, which

holds with probability at least 1 − K3 exp
(
− n−K

32log(K)H2

)
. From (7.5), the dismissed arm ℓk at

the end of phase k satisfies

∣∣µ̂ℓk,nk − µℓk
∣∣ 6

∆(K+1−k)
8

6
∆ℓk

4
.

Besides, we also have

∣∣ max
m∈Ak

µ̂m,nk − µ(1)

∣∣ 6
∆(K+1−k)

8
6

∆ℓk

4
.

Consequently, at the end of phase k, we have

1

4
∆(K+1−k) 6

1

2
∆ℓk 6 max

m∈Ak
µ̂m,nk − µ̂ℓk,nk 6

3

2
∆ℓk 6 3∆(K+1−k).

�

5. Lower bound

In this section we provide a very general and somewhat surprising lower bound. We prove

that, when the reward distributions are Bernoulli distributions with variances bounded away from

0, then for any forecaster, one can permute the distributions on the arms (before the game starts) so

that the probability of missing the best arm will be at least of order exp
(
− cn
H2

)
. Note that, in this

formulation, we allow the forecaster to know the reward distributions up to a permutation of the

indexes! However, as the lower bound expresses it, even in this relatively easier case, the quantity

H2 is a good measure of the hardness of finding the best arm
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THEOREM 7.4 (Lower Bound). Let ν1, . . . , νK be Bernoulli distributions with parameters

in [p, 1 − p], p ∈ (0, 1/2). For any forecaster, there exists a permutation σ : {1, . . . ,K} →
{1, . . . ,K} such that the probability error of the forecaster on the bandit problem defined by

ν̃1 = νσ(1), . . . , ν̃K = νσ(K) satisfies

en > exp

(
−(5 + o(1))n

p(1− p)H2

)
,

where the o(1) term depends only on K, p and n and goes to 0 when n goes to infinity (see the end

of the proof).

The proof of this result is quite technical. However, it is simple to explain why we can

expect such a bound to hold. Assume (without loss of generality) that the arms are ordered,

i.e., µ1 > µ2 > . . . > µK , and that all rewards Xi,t, t ∈ {1, . . . , n}, i ∈ {1, . . . ,K},
are drawn before the game starts. Let i ∈ {2, . . . ,K}. If X̂1,n/i < X̂i,n/i 6 X̂j,n/i for all

j ∈ {2, . . . , i − 1}, then it seems reasonable that a good forecaster should not pull arm 1 more

than n/i times, and furthermore not select it as its recommendation. One can see that, the prob-

ability of the event we just described is of order of exp(−c(n/i)∆2
i ). Thus, with probability

at least exp(−cn/max26i6K i∆
−2
i ), the forecaster makes an error, which is exactly the lower

bound we propose. However, note that this argument does not yield a reasonable proof strategy,

in particular we assumed a ”good” forecaster with a ”reasonable” behavior. For instance, it is

obvious that the proof has to permute the arms, since a forecaster could, despite all, choose arm 1

as its recommendation, which imply a probability error of 0 as soon as the best arm is in position 1.

The main idea of our proposed proof goes as follows. A bandit problem is defined by a product

distribution ν = ν1 ⊗ · · · ⊗ νK . One can consider that at the beginning of the game, n K-tuples

of rewards is sampled from this product distribution. This defines a table of nK rewards. A fore-

caster will explore a subpart of this table. We want to find a permutation σ of {1, . . . ,K} so

that the indices of the best arm for ν and ν̃ = νσ(1) ⊗ · · · ⊗ νσ(K) are different and such that

the likelihood ratio of the explored part of the table of nK rewards under ν and ν̃ is at least of

order exp(−cn/H2) with probability with respect to ν⊗n lower bounded by a positive numerical

constant. This would imply the claimed bound. Remark that, the ”likelihood cost” of moving dis-

tribution νi to arm j depends on both the (Kullback-Leibler) distance between the distributions νi
and νj , and the number of times arm j is pulled. Thus, we have to find the right trade-off between

moving a distribution to a ”close” distribution, and the fact that the target arm should not be pulled

too much. To do this, we ”slice” the set of indexes in a non-trivial (and non-intuitive) way. This

”slicing” depends only on the reward distributions, and not on the considered forecaster. Then, to

put it simply, we move the less drawn arm from one slice to the less drawn arm in the next slice.

Note that the preceding sentence is not well defined, since by doing this we would get a random

permutation (which of course does not make sense to derive a lower bound). However, at the cost

of some technical difficulties, it is possible to circumvent this issue.

To achieve the program outlined above, as already hinted, we use the Kullback-Leibler diver-

gence, which is defined for two probability distributions ρ, ρ′ on [0, 1] with ρ absolutely continuous

with respect to ρ′ as:

KL(ρ, ρ′) =

∫ 1

0
log

(
dρ

dρ′
(x)

)
dρ(x) = EX∼ρ log

(
dρ

dρ′
(X)

)
.
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Another quantity of particular interest for our analysis is

K̂Li,t(ρ, ρ
′) =

t∑

s=1

log

(
dρ

dρ′
(Xi,s)

)
.

In particular note that, if arm i has distribution ρ, then this quantity represents the (non re-

normalized) empirical estimation of KL(ρ, ρ′) after t pulls of arm i. Let Pν and Eν the probability

and expectation signs when we integrate with respect to the distribution ν⊗n. Another important

property is that for any two product distributions ν, ν ′, which differ only on index i, and for any

event A, one has:

(7.6) Pν(A) = Eν′1A exp
(
−K̂Li,Ti(n)(ν

′
i, νi)

)
,

since we have
∏Ti,n
s=1

dνi
dν′i

(Xi,s) = exp
(
− K̂Li,Ti(n)(ν

′
i, νi)

)
.

PROOF. First step: Notations. Without loss of generality we can assume that ν is ordered in the

sense that µ1 > µ2 > . . . > µK . Moreover let L ∈ {2, . . . ,K} such that H2 = L/∆2
L, that is for

all i ∈ {1, . . . ,K},
(7.7) i/∆2

i 6 L/∆2
L.

We define now recursively the following sets. Let k1 = 1,

Σ1 =

{
i : µL 6 µi 6 µL +

∆L

L1/2k1

}
,

and for j > 1,

Σj =

{
i : µL +

∆L

L1/2kj−1
< µi 6 µL +

∆L

L1/2kj

}
,

where kj is the smallest integer (if it exists, otherwise set kj = +∞) such that |Σj | > 2|Σj−1|.
Let ℓ = max{j : kj < +∞}. We define now the random variables Z1, . . . , Zℓ corresponding to

the indices of the less sampled arms of the respective slices Σ1, . . . ,Σℓ: for j ∈ {1, . . . , ℓ},
Zj ∈ argmin

i∈Σj

Ti(n).

Finally let Zℓ+1 ∈ argmini∈{1,...,L}\{Jn} Ti(n).

Second step: Controlling TZj (n), j ∈ {1, . . . , ℓ+ 1}. We first prove that for any j ∈ {1, . . . , ℓ},

(7.8) 3|Σj | > L
1− 1

2
kj+1−1 .

To do so let us note that, by definition of kj+1, we have

2|Σj | >

∣∣∣
{
i : µL + ∆L/L

1/2kj < µi 6 µL + ∆L/L
1/2kj+1−1

}∣∣∣

>

∣∣∣
{
i : µi 6 µL + ∆L/L

1/2kj+1−1
}∣∣∣− (|Σ1|+ . . .+ |Σj−1|).

Now remark that, by definition again, we have |Σ1|+ . . .+ |Σj−1| 6 (2−(j−1) + . . .+2−1)|Σj | 6
|Σj |. Thus we obtain 3|Σj | >

∣∣∣
{
i : µi 6 µL + ∆L/L

1/2kj+1−1
}∣∣∣. We finish the proof of (7.8)

with the following calculation, which makes use of (7.7). For any v > 1,

|{i : µi 6 µL + ∆L/v}| = |{i : ∆i > ∆L(1− 1/v)}|

>

∣∣∣∣∣

{
i :

√
i

L
∆L > ∆L(1− 1/v)

}∣∣∣∣∣
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=
∣∣{i : i > L(1− 1/v)2

}∣∣ > L

(
1− (1− 1/v)2

)
> L/v.

Now (7.8) directly entails (since a minimum is smaller than an average), for j ∈ {1, . . . , ℓ},

(7.9) TZj (n) 6 3L
1

2
kj+1−1 −1 ∑

i∈Σj

Ti(n).

Besides, since Zℓ+1 is the less drawn arm among L− 1 arms, we trivially have

(7.10) TZℓ+1
(n) 6

n

L− 1
.

Third step: A change of measure. Let ν ′ = νL⊗ν2⊗· · ·⊗νK be a modified product distribution

where we replaced the best distribution by νL. Now let us consider the event

Cn =
{
∀t ∈{1, . . . , n}, i ∈ {2, . . . , L}, j ∈ {1, . . . , L},

K̂Li,t(νi, νj) 6 t KL(νi, νj) + on and K̂L1,t(νL, νj) 6 t KL(νL, νj) + on

}
,

where on = 2 log(p−1)
√
n log(2L). From Hoeffding’s maximal inequality, we have Pν′(Cn) >

1/2 (see Appendix 8.4). We thus have
∑

16z1,...,zℓ+16L Pν′
(
Cn∩{Z1 = z1, . . . , Zℓ+1 = zℓ+1}

)
>

1/2. Moreover note that Z1, . . . , Zℓ are all distinct. Thus there exists ℓ+ 1 constants z1, . . . , zℓ+1

such that, for An = Cn ∩ {Z1 = z1, . . . , Zℓ+1 = zℓ+1}, we have

(7.11) Pν′(An) >
1

2L× L!
.

Since, by definition Zℓ+1 6= Jn, we have

(7.12) An ⊂ {Jn 6= zℓ+1}.
In the following we treat differently the cases zℓ+1 = 1 and zℓ+1 6= 1. Let us assume in a first time

that zℓ+1 = 1. Then, an application of (7.6) and (7.12) directly gives, by definition of An,

en(ν) = Pν(Jn 6= 1) = Eν′1Jn 6=1 exp

(
− K̂L1,T1(n)(νL, ν1)

)

> Eν′1An exp

(
− K̂L1,T1(n)(νL, ν1)

)

> Eν′1An exp

(
− on − TZℓ+1

(n)KL(νL, ν1)

)

>
1

2L× L!
exp

(
− on −

n

L− 1
KL(νL, ν1)

)
,

where we used (7.10) and (7.11) for the last equation. Now, note that Lemma 10.3 implies

KL(νL, ν1) 6
∆2
L

p(1− p) ,

which concludes the proof in the case zℓ+1 = 1.

Assume now that zℓ+1 6= 1. In this case we prove that the lower bound holds for a well

defined permuted product distribution ν̃ of ν. We define it as follows. Let m be the smallest

j ∈ {1, . . . , ℓ + 1} such that zm = zℓ+1. Now we set ν̃ as follows: ν̃zm = ν1, ν̃zm−1 = νzm , . . .,

ν̃z1 = νz2 , ν̃1 = νz1 , and ν̃j = νj for other values of j in {1, . . . ,K}. Remark that ν̃ is indeed the

result of a permutation of the distributions of ν. Again, an application of (7.6) and (7.12) gives, by

definition of An,
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en(ν̃) = P
eν(Jn 6= zm)

= Eν′1Jn 6=zm exp

(
− K̂L1,T1(n)(νL, νz1)−

m−1∑

j=1

K̂Lzj ,Tzj (n)(νzj , νzj+1)− K̂Lzm,Tzm (n)(νzm , νz1)

)

> Eν′1An exp

(
− (m+ 1)on − T1(n)KL(νL, νZ1)−

m−1∑

j=1

TZj (n)KL(νZj , νZj+1)

− TZm(n)KL(νZm , νZ1)

)
.

(7.13)

From Lemma 10.3, the definition of Σj , and since the parameters of the Bernoulli distributions

are in [p, 1 − p], we have KL(νL, νZ1) 6 1
p(1−p)

∆2
L
L , KL(νZm , νZ1) 6

∆2
L

p(1−p) , and for any j ∈
{1, . . . ,m− 1},

KL(νZj , νZj+1) 6
1

p(1− p)

(
∆L

L1/2kj+1

)2

.

Reporting these inequalities, as well as (7.9), (7.10) and (7.11) in (7.13), we obtain:

en(ν̃) > Eν′1An exp

(
− (m+ 1)on − 3

∆2
L

p(1− p)L

(
T1(n) +

m−1∑

j=1

∑

i∈Σj

Ti(n) +
nL

3(L− 1)

))

>
1

2L× L!
exp

(
− L on − 3n

∆2
L

p(1− p)L

(
1 +

L

3(L− 1)

))

Since L 6 K and 2K ×K! 6 exp
(
2K log(K)

)
and from the definitions of on and L, we obtain

en(ν̃) > exp

(
−2K log(K)− 2K log(p−1)

√
n log(2K)− 5

n

p(1− p)H2

)
,

which concludes the proof. �

6. Experiments

We propose a few simple experiments to illustrate our theoretical analysis. As a baseline

comparison we use the Hoeffding Race algorithm, see Maron and Moore [1993], and the uniform

strategy, which pulls equally often each arm and recommend the arm with the highest empirical

mean, see Section 4.1 for its theoretical analysis. We consider only Bernoulli distributions, and

the optimal arm always has parameter 1/2. Each experiment corresponds to a different situation

for the gaps, they are either clustered in few groups, or distributed according to an arithmetic or

geometric progression. In each experiment we choose the number of samples (almost) equal toH1

(except for the last experiment where we run it twice, the second time with 2H1 samples). If our

understanding of the meaning of H1 is sound, in each experiment the strategies SR and UCB-E

should be able to find the best arm with a reasonable probability (which should be roughly of the

same order in each experiment). We report our results in Figure 5. The parameters for the experi-

ments are as follows:

– Experiment 1: One group of bad arms,K = 20, µ2:20 = 0.4 (meaning for any j ∈ {2, . . . , 20}, µj =

0.4)

– Experiment 2: Two groups of bad arms, K = 20, µ2:6 = 0.42, µ7:20 = 0.38.

– Experiment 3: Geometric progression, K = 4, µi = 0.5− (0.37)i, i ∈ {2, 3, 4}.
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Parameter: exploration rate c > 0.

Definitions: For k ∈ {1, . . . ,K − 1}, let nk =
⌈

1
log(K)

n−K
K+1−k

⌉
, t0 = 0, t1 = Kn1, and for

k > 1, tk = n1 + . . . nk−1 + (K − k + 1)nk.
For i ∈ {1, . . . ,K} and a > 0, let Bi,s(a) = µ̂i,s +

√
a
s for s > 1 and Bi,0 = +∞.

Algorithm: For each phase k = 0, 1, . . . ,K − 1:

Let Ĥ1,k = K if k = 0, and otherwise

Ĥ1,k = max
K−k+16i6K

i∆̂−2
<i>,

where ∆̂i =
(
max16j6K X̂j,Tj(tk)

)
− X̂i,Ti(tk) and < i > is an ordering such that ∆̂<1> 6

. . . 6 ∆̂<K>.

For t = tk + 1, . . . , tk+1:

Draw It ∈ argmaxi∈{1,...,K}Bi,Ti(t−1)(cn/Ĥ1,k).

Recommendation: Let Jn ∈ argmaxi∈{1,...,K} µ̂i,Ti(n).

Figure 4: Adaptive UCB-E algorithm. Its intuitive justification goes as follows: The time points

tk correspond to the moments where the Successive Rejects algorithm would dismiss an arm.

Intuitively, in light of Theorem 7.3, one can say that at time tk a good algorithm should have

reasonable approximation of the gaps between the best arm and the k worst arms, that is the

quantities ∆(K−k+1), . . . ,∆(K). Now with these quantities, one can build a lower estimate of H2

and thus also ofH1. We use this estimate between the time points tk and tk+1 to tune the parameter

a of UCB-E.

– Experiment 4: 6 arms divided in three groups, K = 6, µ2 = 0.42, µ3:4 = 0.4, µ5:6 = 0.35.

– Experiment 5: Arithmetic progression, K = 15, µi = 0.5− 0.025i, i ∈ {2, . . . , 15}.
– Experiment 6: Two good arms and a large group of bad arms, K = 20, µ2 = 0.48, µ3:20 =

0.37.

– Experiment 7: Three groups of bad arms, K = 30, µ2:6 = 0.45, µ7:20 = 0.43, µ21:30 = 0.38.

The different graphics should be read as follows: Each bar represents a different algorithm and

the bar’s height represents the probability of error of this algorithm. The correspondence between

algorithms and bars is the following:

– Bar 1: Uniform sampling strategy.

– Bar 2-4: Hoeffding Race algorithm with parameters δ = 0.01, 0.1, 0.3.

– Bar 5: Successive Rejects strategy.

– Bar 6-9: UCB-E with parameter a = cn/H1 where respectively c = 1, 2, 4, 8.

– Bar 10-14: Adaptive UCB-E (see Figure 4) with parameters c = 1/4, 1/2, 1, 2, 4.

7. Conclusion

This work has investigated strategies for finding the best arm in a multi-armed bandit problem.

It has proposed a simple parameter-free algorithm, SR, that attains optimal guarantees up to a

logarithmic term (Theorem 7.2 and Theorem 7.4). A precise understanding of both SR (Theorem

7.3) and a UCB policy (Theorem 7.1) lead us to define a new algorithm, Adaptive UCB-E. It comes

without guarantee of optimal rates (see end of Section 3), but performs better than SR in practice

(for c = 1, Adaptive UCB-E outperformed SR on all the experiments we did, even those done to
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Figure 5: These results support our theoretical findings in the following sense: Despite the fact

that the experiments are very different, one can see that since we use a number of samples (almost)

equal to the hardness H1, in all of them we get a probability of error of the same order, and

moreover this probability is small enough to say that we identified the best arm. Note that the

Successive Rejects algorithm represents in all cases a substantial improvement over both the naive

uniform strategy and Hoeffding Race. These results also justify experimentally the algorithm

Adaptive UCB-E, indeed one can see that with the constant c = 1 we obtain better results than SR

in all experiments, even in experiment 6 which was designed to be a difficult instance of Adaptive

UCB-E.
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make it fail). One possible explanation is that SR is too static: it does not implement more data

driven arguments such as: in a phase, a surviving arm performing much worse than the other ones

is still drawn until the end of the phase even if it is clear that it is the next dismissed arm.

Extensions of this work may concentrate on the following problems. (i) What is a good mea-

sure of hardness when one takes into account the (empirical) variances? Do we have a good scaling

with respect to the variance with the current algorithms or do we need to modify them ? (ii) Is

it possible to derive a natural anytime version of Successive Rejects (without using a doubling

trick)? (iii) Is it possible to close the logarithmic gap between the lower and upper bounds? (iv)

How should we modify the algorithm and the analysis if one is interested in recommending the

top m actions instead of a single one?

8. Proofs

8.1. Proof of Inequalities (7.1). Let log(K) = 1
2 +
∑K

i=2
1
i . Remark that log(K+1)−1/2 6

log(K) 6 log(K) + 1/2 6 log(2K). Precisely, we will prove

H2 6 H1 6 log(K) H2,

which is tight to the extent that the right inequality is an equality when for some 0 < c 6 1/
√
K,

we have ∆(i) =
√
ic for any i 6= i∗, and the left inequality is an equality if all ∆i’s are equal.

Proof: The left inequality follows from: for any i ∈ {1, . . . ,K},

H1 =

K∑

k=1

∆−2
(k) >

i∑

k=1

∆−2
(i) > i∆−2

(i) .

The right inequality directly comes from

K∑

i=1

∆−2
(i) = ∆−2

(2) +

K∑

i=2

1

i
i∆−2

(i) 6 log(K) max
i∈{1,...,K}

i∆−2
(i) .

8.2. Proof of Theorem 7.1. First step. Let us consider the event

ξ =

{
∀i ∈ {1, . . . ,K}, s ∈ {1, . . . , n}, |µ̂i,s − µi| <

1

5

√
a

s

}
.

From Hoeffding’s inequality and a union bound, we have P(ξ) > 1 − 2nK exp
(
−2a

25

)
. In the

following, we prove that on the event ξ we have Jn = i∗, which concludes the proof. Since Jn is

the empirical best arm, and given that we are on ξ, it is enough to prove that

1

5

√
a

Ti(n)
6

∆i

2
,∀i ∈ {1, . . . ,K},

or equivalently:

(7.14) Ti(n) >
4

25

a

∆2
i

,∀i ∈ {1, . . . ,K}.

Second step. Firstly we prove by induction that

(7.15) Ti(t) 6
36

25

a

∆2
i

+ 1,∀i 6= i∗.

It is obviously true at time t = 1. Now assume that the formula is true at time t− 1. If It 6= i then

Ti(t) = Ti(t − 1) and the formula still holds. On the other hand, if It = i, then in particular it

means that Bi,Ti(t−1) > Bi∗,Ti∗ (t−1). Moreover, since we are on ξ, we have Bi∗,Ti∗ (t−1) > µ∗ and

Bi,Ti(t−1) 6 µi +
6
5

√
a

Ti(t−1) . Thus, we have 6
5

√
a

Ti(t−1) > ∆i. By using Ti(t) = Ti(t− 1) + 1,

we obtain (7.15).
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Now we prove an other useful formula:

(7.16) Ti(t) >
4

25
min

(
a

∆2
i

,
25

36
(Ti∗(t)− 1)

)
,∀i 6= i∗.

With the same inductive argument as the one to get equation (7.15), we only need to prove that this

formula holds when It = i∗. By definition of the algorithm, and since we are on ξ, when It = i∗

we have for all i:

µ∗ +
6

5

√
a

Ti∗(t− 1)
> µi +

4

5

√
a

Ti(t− 1)
,

which implies

Ti(t− 1) >
16

25

a
(
∆i +

6
5

√
a

Ti∗ (t−1)

)2 .

We then obtain (7.16) by using u+v 6 2 max(u, v), Ti(t) = Ti(t−1) and Ti∗(t−1) = Ti∗(t)−1.

Third step. Recall that we want to prove equation (7.14). From (7.16), we only have to show that

25

36
(Ti∗(n)− 1) >

a

∆2
i∗
,

where we recall that ∆i∗ is the minimal gap ∆i∗ = mini6=i∗ ∆i. Using equation (7.15) we obtain:

Ti∗(n)− 1 = n− 1−
∑

i6=i∗
Ti(n) > n−K − 36

25
a
∑

i6=i∗
∆−2
i >

36

25
a∆−2

i∗ ,

where the last inequality uses 36
25H1a 6 n−K. This concludes the proof.

8.3. Lower bound for UCB-E.

THEOREM 7.5. If ν2, . . . , νK are Dirac distributions concentrated at 1
2 and if ν1 is the Bernoulli

distribution of parameter 3/4, the UCB-E algorithm satisfies 4Ern = en > 4−(4a+1).

PROOF. Consider the event E on which the reward obtained from the first m = ⌈4a⌉ draws of

arm 1 are equal to zero. On this event of probability 4−m, UCB-E will not draw arm 1 more than

m times. Indeed, if it is drawn m times, it will not be drawn another time since B1,m 6 1
2 < B2,s

for any s. On the event E , we have Jn 6= 1. �

8.4. Application of Hoeffding’s maximal inequality in the proof of Theorem 7.4. Let i ∈
{2, . . . , L} and j ∈ {1, . . . , L}. First note that, by definition of ν ′ and since i 6= 1,

Eν′K̂Li,t(νi, νj) = t KL(νi, νj).

Since νi = Ber(µi) and νj = Ber(µj), with µi, µj ∈ [p, 1− p], we have
∣∣∣∣log

(
dνi(Xi,t)

dνj(Xi,t)

)∣∣∣∣ 6 log(p−1).

From Hoeffding’s maximal inequality, see e.g. [Cesa-Bianchi and Lugosi, 2006, Section

A.1.3], we have to bound almost surely the quantity, with Pν′-probability at least 1 − 1
2L2 , we

have for all t ∈ {1, . . . , n},

K̂Li,t(νi, νj)− t KL(νi, νj) 6 2 log(p−1)

√
log(L2)n

2
.

Similarly, with Pν′-probability at least 1− 1
2L2 , we have for all t ∈ {1, . . . , n},

K̂L1,t(νL, νj)− t KL(νL, νj) 6 2 log(p−1)

√
log(L2)n

2
.
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A simple union bound argument then gives Pν′(Cn) > 1/2.
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CHAPTER 8

Nearest Neighbor Clustering: A Baseline Method for Consistent

Clustering with Arbitrary Objective Functions

Clustering is often formulated as a discrete optimization problem. The objective is to find,

among all partitions of the data set, the best one according to some quality measure. However, in

the statistical setting where we assume that the finite data set has been sampled from some under-

lying space, the goal is not to find the best partition of the given sample, but to approximate the

true partition of the underlying space. We argue that the discrete optimization approach usually

does not achieve this goal, and instead can lead to inconsistency. We construct examples which

provably have this behavior. As in the case of supervised learning, the cure is to restrict the size

of the function classes under consideration. For appropriate “small” function classes we can prove

very general consistency theorems for clustering optimization schemes. As one particular algo-

rithm for clustering with a restricted function space we introduce “nearest neighbor clustering”.

Similar to the k-nearest neighbor classifier in supervised learning, this algorithm can be seen as a

general baseline algorithm to minimize arbitrary clustering objective functions. We prove that it is

statistically consistent for all commonly used clustering objective functions.
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This chapter is a joint work with Ulrike Von Luxburg. It is based on the paper Bubeck and

von Luxburg [2009] published in the Journal of Machine Learning Research. A previous version,

von Luxburg et al. [2008], appeared in Advances in Neural Information Processing Systems 21.

1. Introduction

Clustering is the problem of discovering “meaningful” groups in given data. In practice, the

most common approach to clustering is to define a clustering quality function Qn, and then con-

struct an algorithm which is able to minimize (or maximize) Qn. There exists a huge variety of

clustering quality functions: the K-means objective function based on the distance of the data

points to the cluster centers, graph cut based objective functions such as ratio cut or normalized

cut, or various criteria based on some function of the within- and between-cluster similarities.

Once a particular clustering quality function Qn has been selected, the objective of clustering is

stated as a discrete optimization problem. Given a data set Xn = {X1, . . . , Xn} and a clustering

quality function Qn, the ideal clustering algorithm should take into account all possible partitions

of the data set and output the one that minimizes Qn. The implicit understanding is that the “best”

clustering can be any partition out of the set of all possible partitions of the data set. The practical

challenge is then to construct an algorithm which is able to explicitly compute this “best” clus-

tering by solving an optimization problem. We will call this approach the “discrete optimization

approach to clustering”.

Now let us look at clustering from the perspective of statistical learning theory. Here we

assume that the finite data set has been sampled from an underlying data space X according to

some probability measure P. The ultimate goal in this setting is not to discover the best possible

partition of the data set Xn, but to learn the “true clustering” of the underlying space X . While it is

not obvious how this “true clustering” should be defined in a general setting [cf. von Luxburg and

Ben-David, 2005], in an approach based on quality functions this is straightforward. We choose

a clustering quality function Q on the set of partitions of the entire data space X , and define

the true clustering f∗ to be the partition of X which minimizes Q. In a finite sample setting,

the goal is now to approximate this true clustering as well as possible. To this end, we define

an empirical quality function Qn which can be evaluated based on the finite sample only, and

construct the empirical clustering fn as the minimizer of Qn. In this setting, a very important

property of a clustering algorithm is consistency: we require that Q(fn) converges to Q(f∗) when

n→∞. This strongly reminds of the standard approach in supervised classification, the empirical

risk minimization approach. For this approach, the most important insight of statistical learning

theory is that in order to be consistent, learning algorithms have to choose their functions from

some “small” function space only. There are many ways how the size of a function space can

be quantified. One of the easiest ways is to use shattering coefficients s(F , n) (see Section 2 for

details). A typical result in statistical learning theory is that a necessary condition for consistency

is E log s(F , n)/n→ 0 (cf. Theorem 2.3 in Vapnik, 1995, Section 12.4 of Devroye et al., 1996).

That is, the “number of functions” s(F , n) in F must not grow exponentially in n, otherwise one

cannot guarantee for consistency.

Stated like this, it becomes apparent that the two viewpoints described above are not compat-

ible with each other. While the discrete optimization approach on any given sample attempts to

find the best of all (exponentially many) partitions, statistical learning theory suggests to restrict

the set of candidate partitions to have sub-exponential size. So from the statistical learning theory

perspective, an algorithm which is considered ideal in the discrete optimization setting will not

produce partitions which converge to the true clustering of the data space.
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In practice, for most clustering objective functions and many data sets the discrete optimization

approach cannot be performed perfectly as the corresponding optimization problem is NP hard.

Instead, people resort to heuristics and accept suboptimal solutions. One approach is to use local

optimization procedures potentially ending in local minima only. This is what happens in the K-

means algorithm: even though the K-means problem for fixed K and fixed dimension is not NP

hard, it is still too hard for being solved globally in practice. Another approach is to construct a

relaxation of the original problem which can be solved efficiently (spectral clustering is an example

for this). For such heuristics, in general one cannot guarantee how close the heuristic solution is

to the finite sample optimum. This situation is clearly unsatisfactory: in general, we neither have

guarantees on the finite sample behavior of the algorithm, nor on its statistical consistency in the

limit.

The following alternative approach looks much more promising. Instead of attempting to solve

the discrete optimization problem over the set of all partitions, and then resorting to relaxations

due to the hardness of this problem, we turn the tables. Directly from the outset, we only consider

candidate partitions in some restricted class Fn containing only polynomially many functions.

Then the discrete optimization problem of minimizing Qn over Fn is not NP hard—formally it

can be solved in polynomially many steps by trying all candidates in Fn. From a theoretical point

of view this approach has the advantage that the resulting clustering algorithm has the potential of

being consistent. In addition, this approach also has advantages in practice: rather than dealing

with uncontrolled relaxations of the original problem, we restrict the function class to some small

subset Fn of “reasonable” partitions. Within this subset, we then have complete control over the

solution of the optimization problem and can find the global optimum. Put another way, one can

also interpret this approach as some controlled way to approximate a solution of the NP hard

optimization problem on the finite sample, with the positive side effect of obeying the rules of

statistical learning theory.

This is the approach we want to describe in this chapter. In Section 2 we will first construct

an example which demonstrates the inconsistency in the discrete optimization approach. Then we

will state a general theorem which gives sufficient conditions for clustering optimization schemes

to be consistent. We will see that the key point is to control the size of the function classes the clus-

tering are selected from. In Section 3 we will then introduce an algorithm which is able to work

with such a restricted function class. This algorithm is called nearest neighbor clustering, and in

some sense it can be seen as a clustering-analogue to the well-known nearest neighbor classifier

for classification. We prove that nearest neighbor clustering is consistent under minimal assump-

tions on the clustering quality functionsQn andQ. Then we will apply nearest neighbor clustering

to a large variety of clustering objective functions, such as the K-means objective function, nor-

malized cut and ratio cut, the modularity objective function, or functions based on within-between

cluster similarity ratios. For all these functions we will verify the consistency of nearest neighbor

clustering in Section 4. Discussion of our results, also in the context of the related literature, can

be found in Sections 5 and 6. The proofs of all our results are deferred to Section 7, as some of

them are rather technical.

2. General (In)Consistency Results

In the rest of this chapter, we consider a space X which is endowed with a probability measure

P. The task is to construct a clustering f : X → {1, . . . ,K} on this space, where K denotes the

number of clusters to construct. We denote the space of all P-measurable functions from X to

{1, ...,K} by H. Let Q : H → R+ denote a clustering quality function: for each clustering,

it tells us “how good” a given clustering is. This quality function will usually depend on the
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probability measure P. An optimal clustering, according to this objective function, is a clustering

f∗ which satisfies

f∗ ∈ argmin
f∈F

Q(f).

where F ⊆ H is a fixed set of candidate clusterings. Now assume that P is unknown, but that we

are given a finite sample X1, ..., Xn ∈ X which has been drawn i.i.d according to P. Our goal is

to use this sample to construct a clustering fn which “approximates” an optimal clustering f∗. To

this end, assume that Qn : H → R+ is an estimator of Q which can be computed based on the

finite sample only (that is, it does not involve any function evaluations f(x) for x 6∈ {X1, ..., Xn}).
We then consider the clustering

fn ∈ argmin
f∈Fn

Qn(f).

Here, Fn is a subset of H, which might or might not be different from F . The general question

we are concerned with in this chaper is the question of consistency: under which conditions do we

know that Q(fn)→ Q(f∗)?
Note that to avoid technical overload we will assume throughout this chapter that all the min-

ima (as in the definitions of f∗ and fn) exist and can be attained. If this is not the case, one can

always go over to statements about functions which are ε-close to the corresponding infimum. We

also will not discuss issues of measurability in this chapter (readers interested in measurability

issues for empirical processes are referred to Section 1 of van der Vaart and Wellner, 1996).

2.1. Inconsistency example. In the introduction we suggested that as in the supervised case,

the size of the function class Fn might be the key to consistency of clustering. In particular, we

argued that optimizing over the space of all measurable functions might lead to inconsistency. First

of all, we would like to prove this statement by providing an example. This example will show

that if we optimize a clustering objective function over a too large class of functions, the resulting

clusterings are not consistent.

EXAMPLE 8.1 (Inconsistency in general). As data space we choose X = [0, 1] ∪ [2, 3], and

as probability measure P we simply use the normalized Lebesgue measure λ on X . We define the

following similarity function between points in X :

s(x, y) =





1 if x ∈ [0, 1], y ∈ [0, 1]

1 if x ∈ [2, 3], y ∈ [2, 3]

0 otherwise.

For simplicity, we consider the case where we want to construct K = 2 clusters called C1 and C2.

Given a clustering function f : X → {0, 1} we call the clusters C1 := {x ∈ X | f(x) = 0} and

C2 := {x ∈ X |f(x) = 1}. As clustering quality function Q we use the between-cluster similarity

(equivalent to cut, see Section 4.2 for details):

Q(f) =

∫

x∈C1

∫

y∈C2

s(X,Y ) dP(X) dP(Y ).

As an estimator of Q we will use the function Qn where the integrals are replaced by sums over

the data points:

Qn(f) =
1

n(n− 1)

∑

i∈C1

∑

j∈C2

s(Xi, Xj).
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As set F we choose the set of all measurable partitions on X (note that the same example also

holds true when we only look at the set F of measurable partitions such that both clusters have

a minimal mass ε for some ε > 0). For all n ∈ N we set Fn = F . Let X1, ..., Xn ∈ X be our

training data. Now define the functions

f∗(x) =

{
0 if x ∈ [0, 1]

1 if x ∈ [2, 3]
and fn(x) =





0 if x ∈ {X1, ..., Xn} ∩ [0, 1]

1 if x ∈ [2, 3]

0 if x ∈ [0, 0.5] \ {X1, ..., Xn}
1 if x ∈ [0.5, 1] \ {X1, ..., Xn}

.

It is obvious that Q(f∗) = 0 and Qn(fn) = 0. As both Q and Qn are non-negative, we

can conclude f∗ ∈ argminf∈F Q(f) and fn ∈ argminf∈F Qn(f). It is also straightforward to

compute Q(fn) = 1/16 (independently of n). Hence, we have inconsistency: 1/16 = Q(fn) 6→
Q(f∗) = 0.

Note that the example is set up in a rather natural way. The data space contains two perfect

clusters ([0, 1] and [2, 3]) which are separated by a large margin. The similarity function is the

ideal similarity function for this case, giving similarity 1 to points which are in the same cluster,

and similarity 0 to points in different clusters. The function f∗ is the correct clustering. The

empirical clustering fn, if restricted to the data points, reflects the correct clustering. It is just the

“extension” of the empirical clustering to non-training points which leads to the inconsistency of

fn. Intuitively, the reason why this can happen is clear: the function space F does not exclude

the unsuitable extension chosen in the example, the function overfits. This can happen because the

function class is too large.

2.2. Main Result. Now we would like to present our first main theorem. It shows that if fn
is only picked out of a “small” function class Fn, then we can guarantee consistency of clustering.

Before stating the theorem we would like to recall the definition of the shattering coefficient in a

K-class setting. For a function class F : X → {1, . . . ,K} the shattering coefficient of size n is

defined as

s(F , n) = max
x1,...,xn∈X

|{(f(x1), . . . , f(xn)) | f ∈ F}|.

To state our theorem, we will also require a pseudo-distance d between functions. A pseudo-

distance is a dissimilarity function d : X × X → R+ which is symmetric, satisfies the triangle

inequality and the condition f = g =⇒ d(f, g) = 0, but not necessarily the condition d(f, g) =

0 =⇒ f = g. For distances between sets of functions we use the standard convention d(F ,G) =

inff∈F ,g∈G d(f, g). Our theorem is as follows:

THEOREM 8.1 (Consistency of a clustering optimizing scheme). Let (Xn)n∈N be a sequence

of random variables which have been drawn i.i.d. according to some probability measure P on

some set X . Let Fn := Fn(X1, . . . , Xn) ⊂ H be a sequence of function spaces, and F ⊂ H. Let

d : H × H → R be a pseudo-distance defined on H. Let Q : H → R+ be a clustering quality

function, and Qn : H → R+ an estimator of this function which can be computed based on the

finite sample only. Finally let

F̃n :=
⋃

X1,...,Xn∈Rd

Fn.

Define the true and the empirical clusterings as

f∗ ∈ argmin
f∈F

Q(f),
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fn ∈ argmin
f∈Fn

Qn(f).

Assume that the following conditions are satisfied:

(1) Qn(f) is a consistent estimator ofQ(f) which converges sufficiently fast for all f ∈ F̃n :

∀ε > 0, s(F̃n, 2n) sup
f∈fFn

P(|Qn(f)−Q(f)| > ε)→ 0,

(2) Fn approximates F in the following sense:

(i) ∀f ∈ F , d(f,Fn)→ 0 in probability,

(ii) P(fn /∈ F)→ 0.

(3) Q is uniformly continuous with respect to the pseudo-distance d between F and F̃n:

∀ε > 0 ∃δ(ε) > 0 such that ∀f ∈ F ∀g ∈ F̃n : d(f, g) 6 δ(ε)⇒ |Q(f)−Q(g)| 6 ε.

Then the optimization scheme is weakly consistent, that is Q(fn)→ Q(f∗) in probability.

This theorem states sufficient conditions for consistent clustering schemes. In the context

of the standard statistical learning theory, the three conditions in the theorem are rather natural.

The first condition mainly takes care of the estimation error. Implicitly, it restricts the size of the

function class Fn by incorporating the shattering coefficient. We decided to state condition 1 in

this rather abstract way to make the theorem as general as possible. We will see later how it can be

used in concrete applications. Of course, there are many more ways to specify the size of function

classes, and many of them might lead to better bounds in the end. However, in this chapter we

are not so much concerned with obtaining the sharpest bounds, but we want to demonstrate the

general concept (as the reader can see in appendix, the proofs are already long enough using simple

shattering numbers). The second condition in the theorem takes care of the approximation error.

Intuitively it is clear that if we want to approximate solutions in F , eventually Fn needs to be

“close” to F . The third condition establishes a relation between the quality function Q and the

distance function d: if two clusterings f and g are close with respect to d, then their quality values

Q(f) and Q(g) are close, too. We need this property to be able to conclude from “closeness” as in

Condition 2 to “closeness” of the clustering quality values.

Finally, we would like to point out a few technical treats. First of all, note that the function

class Fn is allowed to be data dependent. Secondly, as opposed to most results in empirical

risk minimization we do not assume that Qn is an unbiased estimator of Q (that is, we allow

EQn 6= Q), nor does Q need to be “an expectation” (that is, of the form Q(f) = E(Ω(f,X)) for

some Ω). Both facts make the proof more technical, as many of the standard tools (symmetrization,

concentration inequalities) become harder to apply. However, this is necessary since in the context

of clustering biased estimators pop up all over the place. We will see that many of the popular

clustering objective functions lead to biased estimators.

3. Nearest Neighbor Clustering—General Theory

The theorem presented in the last section shows sufficient conditions under which clustering

can be performed consistently. Now we want to present a generic algorithm which can be used to

minimize arbitrary clustering objective functions. With help of Theorem 8.1 we can then prove

the consistency of its results for a large variety of clustering objective functions.

We have seen that the key to obtain consistent clustering schemes is to work with an appro-

priate function class. But of course, given quality functions Q and Qn, the question is how such a

function space can be constructed in practice. Essentially, three requirements have to be satisfied:
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• The function space Fn has to be “small”. Ideally, it should only contain polynomially many

functions.

• The function space Fn should be “rich enough”. In the limit n→∞, we would like to be able

to approximate any (reasonable) measurable function.

• We need to be able to solve the optimization problem argminf∈Fn Qn(f). This sounds trivial

at first glance, but in practice is far from easy.

One rather straightforward way to achieve all requirements is to use a function space of piece-

wise constant functions. Given a partitioning of the data space in small cells, we only look at

clusterings which are constant on each cell (that is, the clustering never splits a cell). If we make

sure that the number of cells is only of the order log(n), then we know that the number of cluster-

ings is at most K log(n) = nlog(K), which is polynomial in n. In the following we will introduce a

data-dependent random partition of the space which turns out to be very convenient.

3.1. Nearest Neighbor Clustering—The Algorithm. We will construct a function class Fn
as follows. Given a finite sample X1, . . . , Xn ∈ Rd, the number K of clusters to construct, and

a number m ∈ N with K 6 m ≪ n, randomly pick a subset of m “seed points” Xs1 , . . . , Xsm .

Assign all other data points to their closest seed points, that is for all j = 1, . . . ,m define the setZj
as the subset of data points whose nearest seed point is Xsj . In other words, the sets Z1, . . . , Zm
are the Voronoi cells induced by the seedsXs1 , . . . , Xsm . Then consider all partitions of Xn which

are constant on all the sets Z1, ..., Zm. More formally, for given seeds we define the set Fn as the

set of all functions

Fn := {f : X → {1, . . . ,K} | ∀ j = 1, . . . ,m : ∀z, z′ ∈ Zj : f(z) = f(z′)}.
Obviously, the function class Fn contains Km functions, which is polynomial in n if the number

m of seeds satisfiesm ∈ O(log n). GivenFn, the most simple polynomial-time optimization algo-

rithm is then to evaluate Qn(f) for all f ∈ Fn and choose the solution fn = argminf∈Fn Qn(f).

We call the resulting clustering the nearest neighbor clustering and denote it by NNC(Qn). The

entire algorithm is summarized in Figure 1. We have already published results on the empiri-

Nearest Neighbor Clustering NNC(Qn), naive implementation

Parameters: number K of clusters to construct, number m ∈ N of

seed points to use (with K 6 m ≪ n), clustering quality function

Qn

Input: data set Xn = {X1, . . . , Xn}, distances dij = d(Xi, Xj)

• Subsample m seed points from the data points, without

replacement.

• Build the Voronoi decomposition Z1, . . . , Zm of Xn based on

the distances dij using the seed points as centers

• Define Fn :=
{
f : Xn → {1, . . . ,K} | f constant on all cells Zj

}

• For all f ∈ Fn evaluate Qn(f).

Output: fn := argminf∈Fn Qn(f)

Figure 1: Nearest neighbor clustering for a general clustering objective function Qn.

cal performance of the algorithm in von Luxburg et al. [2008], and more results can be found in
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Section 3 of Jegelka [2007]. We have found that on finite samples, the algorithm performs surpris-

ingly well in terms of quality function: using m = logn seed points, the objective function values

obtained at the solutions are comparable to these of K-means or spectral clustering, respectively.

Moreover, there exist efficient ways to compute fn using branch and bound methods. Using these

methods, the running time of nearest neighbor clustering using m = log n seeds is roughly com-

parable to the one of the other clustering algorithms. See von Luxburg et al. [2008] and Jegelka

[2007] for details on the experimental results.

3.2. Consistency of Nearest Neighbor Clustering (General Statement). Now we want to

prove that nearest neighbor clustering is consistent. We will see that even though we can rely on

Theorem 8.1, the consistency proof for nearest neighbor clustering does not come for free. Let

f : X → {1, . . . ,K} be a clustering function. In the following, we will often use the notation fk
for the indicator function of the k-th cluster:

fk(x) := 1f(x)=k.

This is a slight abuse of notation, as we already reserved the notation fn for the minimizer of the

empirical quality function. However, from the context it will always be clear whether we will refer

to fn or fk, respectively, as we will not mix up the letters n (for the sample size) and k (a cluster

index).

As distance function between two clusterings we use the 0-1-loss

d(f, g) := P(f(X) 6= g(X)|X1, . . . , Xn).

Here the conditioning is needed for the cases where the functions f or g are data dependent. Note

that in clustering, people often consider a variant of this distance which is independent with respect

to the choice of labels, that is they choose d̃(f, g) := minπ P (f(X) 6= π(g(X))|X1, . . . , Xn),

where π runs over all permutations of the set {1, . . . ,K}. However, we will see that for our

purposes it does not hurt to use the overly sensitive 0-1 distance instead. The main reason is that

at the end of the day, we only want to compare functions based on their quality values, which do

not change under label permutations. In general, the theorems and proofs could also be written in

terms of d̃. For better readability, we decided to stick to the standard 0-1 distance, though.

We will see below that in many cases, even in the limit case one would like to use a function

space F which is a proper subset of H. For example, one could only be interested in clusterings

where all clusters have a certain minimal size, or where the functions satisfy certain regularity

constraints. In order to be able to deal with such general function spaces, we will introduce a tool

to restrict function classes to functions satisfying certain conditions. To this end, let

Φ : H → R+

be a functional which quantifies certain aspects of a clustering. In most cases, we will use func-

tionals Φ which operate on the individual cluster indicator functions fk. For example, Φ(fk) could

measure the size of cluster k, or the smoothness of the cluster boundary. The function class F will

then be defined as

F = {f ∈ H | Φ(fk) > a for all k = 1, . . . ,K},
where a > 0 is a constant. In general, the functional Φ can be used to encode our intuition about

“what a cluster is”. Note that this setup also includes the general case of F = H, that is the case

where we do not want to make any further restrictions on F , for example by setting Φ(fk) ≡ 1,

a ≡ 0. As it is the case for Q, we will usually not be able to compute Φ on a finite sample only.

Hence we also introduce an empirical counterpart Φn which will be used in the finite sample case.



4. NEAREST NEIGHBOR CLUSTERING WITH POPULAR CLUSTERING OBJECTIVE FUNCTIONS 187

The following theorem will state sufficient conditions for the consistency of nearest neighbor

clustering. For simplicity we state the theorem for the case X = Rd, but the proofs can also be

carried over to more general spaces. Also, note that we only state the theorem for the case d > 2;

in case d = 1 the theorem holds as well, but the formulas look a bit different.

THEOREM 8.2 (Consistency of nearest neighbor clustering). Let X = Rd, d > 2, Q : H →
R+ be a clustering quality function, and Qn : H → R+ an estimator of this function which can

be computed based on the finite sample only. Similarly, let Φ : H → R+, and Φn : H → R+

an estimator of this function. Let a > 0 and (an)n∈N be such that an > a and an → a. Let

m = m(n) 6 n ∈ N. Finally, denote d(f, g) the 0-1-loss, and let NNm(x) be the nearest

neighbor of x amongX1, . . . , Xm according to the Euclidean distance. Define the function spaces

F := {f : Rd → {1, . . . ,K} | f continuous a.e. and ∀k ∈ {1, . . . ,K} Φ(fk) > a}
Fn := {f : Rd → {1, . . . ,K} | f(x) = f(NNm(x)) and ∀k ∈ {1, . . . ,K} Φn(fk) > an}
F̃n :=

⋃

X1,...,Xn∈Rd

Fn

F̂n := {f : Rd → {1, . . . ,K} | ∃ Voronoi partition of m cells: f constant on all cells}.
Assume that the following conditions are satisfied:

(1) Qn(f) is a consistent estimator of Q(f) which converges sufficiently fast for all

f ∈ F̃n :

∀ε > 0,Km(2n)(d+1)m2
sup
f∈fFn

P(|Qn(f)−Q(f)| > ε)→ 0,

(2) Φn(fk) is a consistent estimator of Φ(fk) which converges sufficiently fast for all f ∈
F̂n :

∀ε > 0,Km(2n)(d+1)m2
sup
f∈cFn

P(|Φn(fk)− Φ(fk)| > ε)→ 0,

(3) Q is uniformly continuous with respect to the pseudo-distance d(f, g) between F and

F̃n, as defined in Condition (3) of Theorem 8.1,

(4) Φk(f) := Φ(fk) is uniformly continuous with respect to the pseudo-distance d(f, g)

between F and F̂n, as defined in Condition (3) of Theorem 8.1,

(5) an decreases slowly enough to a:

Km(2n)(d+1)m2
sup

g∈cFn,k
P(Φn(gk)− Φ(gk) > an − a)→ 0,

(6) m→∞.
Then nearest neighbor clustering based on m seed points using quality function Qn is weakly

consistent, that is for fn ∈ argminf∈Fn Qn(f) and f∗ ∈ argminf∈F Q(f) we have Q(fn) →
Q(f∗) in probability.

This theorem is still rather abstract, but pretty powerful. In the following we will demon-

strate this by applying it to many concrete clustering objective functions. To define our objective

functions, we will from now on adopt the convention 0/0 = 0.

4. Nearest Neighbor Clustering with Popular Clustering Objective Functions

In this section we want to study the consistency of nearest neighbor clustering when applied

to particular objective functions. For simplicity we assume in this section that X = Rd.
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4.1. NNC Using the K-means Objective Function. The K-means objective function is the

within-cluster sum of squared distances, called WSS for short. To define it properly, for a given

clustering function f : Rd → {1, . . . ,K} we introduce the following quantities:

WSSn(f) :=
1

n

n∑

i=1

K∑

k=1

fk(Xi)‖Xi − ck,n‖2 where

ck,n :=
1

nk

1

n

n∑

i=1

fk(Xi)Xi and nk :=
1

n

k∑

i=1

fk(Xi)

WSS(f) := E

K∑

k=1

fk(X)‖X − ck‖2 where ck :=
Efk(X)X

Efk(X)
.

Here, WSSn plays the role of Qn and WSS the role of Q. Let us point out some important

facts. First the empirical quality function is not an unbiased estimator of the true one, that is

E WSSn 6= WSS and Eck,n 6= ck (note that in the standard treatment of K-means this can be

achieved, but not on arbitrary function classes, see below for some discussion). However, at least

we have Enk = Efk(X) and E 1
n

∑n
i=1 fk(Xi)Xi = Efk(X)X.Moreover, one should remark that

if we define WSS(·,P) := WSS then WSSn = WSS(·,Pn) where Pn is the empirical distribution.

Secondly, our setup for proving the consistency of nearest neighbor clustering with the WSS

objective function is considerably more complicated than proving the consistency of the global

minimizer of the K-means algorithm (e.g., Pollard, 1981). The reason is that for the K-means

algorithm one can use a very helpful equivalence which does not hold for nearest neighbor cluster-

ing. Namely, if one considers the minimizer of WSSn in the space of all possible partitions, then

one can see that the clustering constructed by this minimizer always builds a Voronoi partition

with K cells; the same holds in the limit case. In particular, given the cluster centers ck,n one can

reconstruct the whole clustering by assigning each data point to the closest cluster center. As a con-

sequence, to prove the convergence of K-means algorithms one usually studies the convergence

of the empirical cluster centers ck,n to the true centers ck. However, in our case this whole chain of

arguments breaks down. The reason is that the clusters chosen by nearest neighbor clustering from

the set Fn are not necessarily Voronoi cells, they do not even need to be convex (all clusters are

composed by small Voronoi cells, but the union of “small” Voronoi cells is not a “large” Voronoi

cell). Also, it is not the case that each data point is assigned to the cluster corresponding to the

closest cluster center. It may very well happen that a point x belongs to cluster Ci, but is closer to

the center of another cluster Cj than to the center of its own cluster Ci. Consequently, we cannot

reconstruct the nearest neighbor clustering from the centers of the clusters. This means that we

cannot go over to the convergence of centers, which makes our proof considerably more involved

than the one of the standard K-means case.

Due to these technical problems, it will be of advantage to only consider clusters which have

a certain minimal size (otherwise, the cluster quality function WSS is not uniformly continuous).

To achieve this, we use the functionals

ΦWSS(fk) := Efk(X), ΦWSSn(fk) := nk(f).

and will only consider clusterings where Φ(fk) > a > 0. In practice, this can be interpreted as a

simple means to avoid empty clusters. The constant a can be chosen so small that its only effect is

to make sure that each cluster contains at least one data point. The corresponding function spaces
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are

F := {f : Rd → {1, . . . ,K} | f continuous a.e. and ∀k ∈ {1, . . . ,K} ΦWSS(fk) > a}
Fn := {f : Rd → {1, . . . ,K} | f(x) = f(NNm(x)) and ∀k ∈ {1, . . . ,K} ΦWSSn(fk) > an}

Moreover, for technical convenience we restrict our attention to probability measures which have a

bounded support inside some large ball, that is which satisfy supp P ⊂ B(0, A) for some constant

A > 0. It is likely that our results also hold in the general case, but the proof would get even more

complicated. With the notation of Theorem 8.2 we have:

THEOREM 8.3 (Consistency of NNC(WSS)). Assume that an > a, an → a,m→∞ and

m2 log n

n(a− an)2
→ 0.

Then for all probability measures on Rd with bounded support, nearest neighbor clustering with

WSS is consistent, that is if n→∞ then WSS(fn)→WSS(f∗) in probability.

This theorem looks very nice and simple. The conditions on an and m are easily satisfied as

soon as these quantities do not converge too fast. For example, if we define

an = a+
1

log n
and m = logn

then
m2 log n

n(an − a)2
=

(log n)5

n
→ 0.

Moreover, it is straightforward to see from the proofs that this theorem is still valid if we

consider the objective functions WSSn and WSS with ‖ · ‖ instead of ‖ · ‖2. It also holds for any

other norm, such as the p-norms ‖ · ‖p. However, it does not necessarily hold for powers of norms

(in this sense, the squared Euclidean norm is an exception). The proof shows that the most crucial

property is

‖Xi − ck,n‖ − ‖Xi − ck‖ 6 const · ‖ck,n − ck‖.
This is straightforward if the triangle inequality holds, but might not be possible for general powers

of norms.

By looking more carefully at our proofs one can state the following rate of convergence:

THEOREM 8.4 (Convergence Rate for NNC(WSS)). Assume that supp P ⊂ B(0, A) for some

constant A > 0 and that n(an − a)2 → ∞. Let ε 6 1 and a∗ := infk Ef∗k (X) − a > 0. Then

there exists :

N = N((an), a
∗) ∈ N,

C1 = C1(a, a
∗, ε,K,A) > 0, C2 = C2(a, a

∗, ε, A, f∗,P) > 0,

C3 = C3(a, d, ε,K,A) > 0, C4 = C4(a, d,A) > 0

such that for n > N the following holds true:

P(|WSS(fn)−WSS(f∗)| > ε)

6 C1e
−C2m +Km+1(2n)(d+1)m2

(
C3e

−C4ε2n + 8Ke−
n(an−a)2

8

)
.

At first glance, it seems very tempting to try to use the Borel-Cantelli lemma to transform the

weak consistency into strong consistency. However, we do not have an explicit functional form
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of dependency of C2 on ε. The main reason is that in Lemma 8.3 (Appendix) the constant b(ε)

will be defined only implicitly. If one would like to prove strong consistency of nearest neighbor

clustering with WSS one would have to get an explicit form of b(ε) in Lemma 8.3.

For a general discussion relating the consistency result of NNC(WSS) in to the consistency

results by Pollard [1981] and others see Section 5.

4.2. NNC Using Standard Graph-cut Based Objective Functions. In this section we want

to look into the consistency of nearest neighbor clustering for graph based objective functions as

they are used in spectral clustering (see von Luxburg, 2007 for details). Let s : Rd × Rd → R+

be a similarity function which is upper bounded by a constant C. The two main quantities we

need to define graph-cut based objective functions are the cut and the volume. For a given cluster

described by the cluster indicator function fk : Rd → {0, 1}, we set

cut(fk) := cut(fk,P) := Efk(X1)(1− fk(X2))s(X1, X2),

vol(fk) := vol(fk,P) := Efk(X1)s(X1, X2).

For f ∈ H we can then define the normalized cut and the ratio cut by

Ncut(f) := Ncut(f,P) :=

K∑

k=1

cut(fk)

vol(fk)
,

RatioCut(f) := RatioCut(f,P) :=
K∑

k=1

cut(fk)

Efk(X)
.

The empirical estimators of these objective functions will be Ncut(f,Pn) and RatioCut(f,Pn),

in explicit formulas:

cutn(fk) :=
1

n(n− 1)

n∑

i,j=1

fk(Xi)(1− f(Xj))s(Xi, Xj),

voln(fk) :=
1

n(n− 1)

n∑

i,j=1

fk(Xi)s(Xi, Xj), nk :=
1

n

k∑

i=1

fk(Xi),

Ncutn(f) :=

K∑

k=1

cutn(fk)

voln(fk)
, RatioCutn(f) :=

K∑

k=1

cutn(fk)

nk
.

Again we need to define how we will measure the size of the clusters. We will use

Φcut(fk) := vol(fk), ΦNcut(fk) := vol(fk), ΦRatioCut(fk) := Efk(X).

with the corresponding empirical quantities Φcutn ,ΦNcutn and ΦRatioCutn . Then, with the nota-

tions of Theorem 8.2, we have:

THEOREM 8.5 (Consistency of NNC(cut),NNC(Ncut) and NNC(RatioCut)). Assume that

the similarity function s is bounded by a constant C > 0, let an > a, an → a, m→∞ and

m2 log n

n(a− an)2
→ 0.

Then nearest neighbor clustering with cut,Ncut and RatioCut is universally weakly consistent,

that is for all probability measures, if n → ∞ we have cut(fn) → cut(f∗), Ncut(fn) →
Ncut(f∗) and RatioCut(fn)→ RatioCut(f∗) in probability.
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For these objective functions one can also state a rate of convergence. For sake of shortness

we only state it for the normalized cut:

THEOREM 8.6 (Convergence Rate for NNC(Ncut)). Assume that the similarity function s is

bounded by C > 0 and that n(an − a)2 → ∞. Let ε 6 1 and a∗ := infk vol(f
∗
k ) − a > 0. Then

there exist

N = N((an), a
∗) ∈ N,

C1 = C1(a, a
∗, ε,K,C) > 0, C2 = C2(a, a

∗, ε, C,K, f∗,P) > 0,

C3 = C3(a, ε,K,C) > 0, C4 = C4(a,K,C) > 0.

such that for n > N the following holds true:

P(|Ncut(fn)−Ncut(f∗)| > ε)

6 C1e
−C2m +Km+1(2n)(d+1)m2

(
C3e

−C4ε2n + 8Ke−
n(an−a)2

8

)
.

4.3. NNC Using the Modularity Objective Function. A slightly different objective func-

tions for graph clustering is the “modularity”, which has been put forward by Newman [2006] for

detecting communities in networks. In this chapter, the modularity is formulated as an objective

function to find communities in a finite graph. However, as it is the case for Ncut or RatioCut, the

modularity cannot be directly minimized. Instead, a spectral relaxation has been developed to min-

imize the modularity, see Newman [2006] for details. Of course, the nearest neighbor clustering

algorithm can also be used to minimize this objective function directly, without using a relaxation

step. Using our own notation we define:

Modn(f) =

n∑

k=1

1

n(n− 1)

∑

i6=j
fk(Xi)fk(Xj)


 1

(n− 1)2

∑

l,l 6=i
s(Xi, Xl)

∑

l,l 6=j
s(Xj , Xl)− s(Xi, Xj)


 ,

Mod(f) =

n∑

k=1

∫ ∫
fk(X)fk(Y )

(∫
s(X,Z)dP(Z)

∫
s(Y,Z)dP(Z)− s(X,Y )

)
dP(X,Y ).

In the proof we will see that as the limit function Mod(·) is uniformly continuous onH, we do not

need to quantify any function Φ or Φn to measure the volume of the clusters. The function classes

are thus

F := {f : Rd → {1, . . . ,K} | f continuous a.e.},
Fn := {f : Rd → {1, . . . ,K} | f(x) = f(NNm(x))}.

THEOREM 8.7 (Consistency of NNC(Mod)). Assume that m→∞ and

m2 log n

n
→ 0.

Then nearest neighbor clustering with Mod is universally weakly consistent: for all probability

measures, if n→∞ then Mod(fn)→ Mod(f∗) in probability.

4.4. NNC Using Objective Function Based on the Ratio of Within-cluster and Between-

cluster Similarity. Often, clustering algorithms try to minimize joint functions of the within-

cluster similarity and the between cluster similarity. The most popular choice is the ratio of those

two quantities, which is closely related to the criterion used in Fisher linear discriminant analysis.
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Formally, the between-cluster similarity corresponds to the cut, and the within similarity of cluster

k is given by

WS := Ef(X1)f(X2)s(X1, X2).

Thus the ratio of between- and within-cluster similarity is given as

BWR(f) :=

K∑

k=1

cut(fk)

WS(fk)
.

Again we use their empirical estimations:

WSn(fk) :=
1

n(n− 1)

n∑

i,j=1

fk(Xi)fk(Xj)s(Xi, Xj),

BWRn(f) :=

K∑

k=1

cutn(fk)

WSn(fk)
.

To measure the size of the cluster we use

ΦBWR(fk) := WS(fk)

and its natural empirical counterpart. This leads to function spaces

F := {f : Rd → {1, . . . ,K} | f continuous a.e. and ∀k ∈ {1, . . . ,K} ΦBWR(fk) > a},
Fn := {f : Rd → {1, . . . ,K} | f(x) = f(NNm(x)) and ∀k ∈ {1, . . . ,K} ΦBWRn(fk) > an}.

THEOREM 8.8 (Consistency of NNC(BWR)). Assume that the similarity function s is bounded

by a constant C > 0, let an > a, an → a,m→∞ and

m2 log n

n(a− an)2
→ 0.

Then nearest neighbor clustering with BWR is universally weakly consistent, that is for all prob-

ability measure if n→∞ then BWR(fn)→ BWR(f∗) in probability.

5. Relation to Previous Work

In this section we want to discuss our results in the light of the existing literature on consistent

clusterings.

5.1. Standard Consistency Results for Center-based Algorithms. For a few clustering al-

gorithms, consistency results are already known. The most well-known among them is the K-

means algorithm. For this algorithm it has been first proved by Pollard [1981] that the global

minimizer of the K-means objective function on a finite sample converges to the global minimizer

on the underlying space.

First of all, we would like to point out that the consistency result by Pollard [1981] can easily

be recovered using our theorems. Let us briefly recall the standardK-means setting. The objective

function whichK-means attempts to optimize is the function WSS, which we already encountered

in the last sections. In the standard K-means setting the optimization problem is stated over the

space of all measurable functionsH:

f∗ = argmin
f∈H

WSS(f).

It is not difficult to prove that the solution f∗ of this optimization problem always has a particular

form. Namely, the solution f∗ forms a Voronoi decomposition of the space, where the cluster
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centers ck are the centers of the Voronoi cells. Thus, we can rewrite the optimization problem

above equivalently as

f∗ = argmin
f∈GK

WSS(f)

where GK denotes the set of all clusterings for which the clusters are Voronoi cells. The optimiza-

tion problem for the finite sample case can be stated analogously:

fn = argmin
f∈GK

WSSn(f).

So in this particular case we can set Fn = F = GK . This means that even though the original

optimization problem has been set up to optimize over the huge setH, the optimization only needs

to run over the small set GK . It is well known that the shattering coefficient of GK is polynomial

in n, namely it is bounded by KKn(d+1)K2
(cf. Lemma 8.2). Moreover, the uniform continuity of

WSS on GK (Condition (3) of Theorem 8.2) can easily be verified if we assume that the probability

distribution has compact support. As a consequence, using similar techniques as in the proofs of

Theorem 8.3 we can prove that the global minimizer of the empirical K-means objective function

WSSn converges to the global minimizer of the true K-means objective function WSS. By this

we recover the well-known result by Pollard [1981], under slightly different assumptions. In this

sense, our Theorem 8.1 can be seen as a blueprint for obtaining Pollard-like results for more

general objective functions and function spaces.

Are there any more advantages of Theorem 8.3 in the K-means setting? At first glance, our

result in Theorem 8.3 looks similar to Pollard’s result: the global minimizers of both objective

functions converge to the true global minimizer. However, in practice there is one important dif-

ference. Note that as opposed to many vector quantization problems (cf. Garey et al., 1982),

minimizing the K-means objective function is not NP-hard in n: the solution is always a Voronoi

partition, there exist polynomially many Voronoi partitions of n points, and they can be enumer-

ated in polynomial time (cf. Inaba et al., 1994). However, the size of the function class GK is still

so large that it would take too long to simply enumerate all its functions and select the best one.

Namely, we will see in Lemma 8.2 that the number of Voronoi partitions of n points in Rd using

K cells is bounded by n(d+1)K , which is huge even for moderate d and K. As a work-around in

practice one uses the well-known K-means algorithm, which is only able to find a local minimum

of WSSn(f). In contrast, nearest neighbor clustering works with a different function class which

is much smaller than GK : it has only size nlogK . On this smaller class we are still able to compute

the global minimum of WSSn(f). Consequently, our result in Theorem 8.3 is not only a theoreti-

cal statement about some abstract quantity as it is the case for Pollard’s result, but it applies to the

algorithm used in practice. While Pollard’s result abstractly states that the global minimum (which

cannot be computed efficiently) converges, our result implies that the result of nearest neighbor

clustering does converge.

5.2. Consistency of Spectral Clustering. In the previous section we have seen in Theorems

8.5 and 8.6 that NNC is consistent for all the standard graph cut objective functions. Now we want

to discuss these results in connection with the graph cut literature. It is well known that the discrete

optimization problem of minimizing Ncutn or RatioCutn is an NP-hard problem, see Wagner and

Wagner [1993]. However, approximate solutions of relaxed problems can be obtained by spectral

clustering, see von Luxburg [2007] for a tutorial. Consistency results for spectral clustering al-

gorithms have been proved in von Luxburg et al. [2008]. These results show that under certain

conditions, the solutions computed by spectral clustering on finite samples converge to some kind

of “limit solutions” based on the underlying distribution. In the light of the previous discussions,
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this sounds plausible, as the space of solutions of spectral clustering is rather restricted: we only

allow solutions which are eigenfunctions of certain integral operators. Thus, spectral clustering

implicitly works with a small function class.

However, it is important to note that the convergence results of spectral clustering do not make

any statement about the minimizers of Ncut (a similar discussion also holds for RatioCut). The

problem is that on any finite sample, spectral clustering only solves a relaxation of the original

problem of minimizing Ncutn. The Ncutn-value of this solution can be arbitrarily far away from

the minimal Ncutn-value on this sample [Guattery and Miller, 1998], unless one makes certain

assumptions which are not necessarily satisfied in a standard statistical setting (cf. Spielman and

Teng, 1996, or Kannan et al., 2004). Thus the convergence statements for the results computed by

the spectral clustering algorithm cannot be carried over to consistency results for the minimizers

of Ncut. One knows that spectral clustering converges, but one does not have any guarantee

about the Ncut-value of the solution. Here our results for nearest neighbor clustering present an

improvement, as they directly refer to the minimizer of Ncut. While it is known that spectral

clustering converges to “something”, for the solutions computed by nearest neighbor clustering

we know that they converge to the global minimizer of Ncut (or RatioCut, respectively).

5.3. Consistency of Other Clustering Schemes. To the best of our knowledge, apart from

results on center-based algorithms and spectral clustering, there are very few non-parametric clus-

tering algorithms for which statistical consistency has been proved so far. The only other major

class of algorithms for which consistency has been investigated is the class of linkage algorithms.

While single linkage can be proved to be “fractionally consistent”, that is it can at least discover

sufficiently distinct high-density regions, both complete and average linkage are not consistent and

can be misleading (cf. Hartigan, 1981, 1985). A more general method for hierarchical clustering

used in Wong and Lane [1983] is statistically consistent, but essentially first estimates the density

and then constructs density level sets based on this estimator.

Concerning parametric clustering algorithms, the standard setting is a model-based approach.

One assumes that the underlying probability distribution has a certain parametric form (for exam-

ple a mixture of Gaussians), and the goal is to estimate the parameters of the distribution from the

sample. Estimating parameters in parametric models has been intensively investigated in statistics,

in particular in the maximum likelihood framework and the Bayesian framework (for an overview

how this can be done for clustering see Fraley and Raftery, 1998, or the book McLachlan and

Peel, 2004). Numerous consistency results are known, but typically they require that the true un-

derlying distribution indeed comes from the model class under consideration. For example, in a

Bayesian setting one can show that in the large sample limit, the posterior distribution will con-

centrate around the true mixture parameters. However, if the model assumptions are not satisfied,

counter-examples to consistency can be constructed. Moreover, the consistency results mentioned

above are theoretic in the sense that the algorithm used in practice does not necessarily achieve

them. Standard approaches to estimate mixture parameters are the EM algorithm (in a frequentist

of MAP setting), or for example Markov Chain Monte Carlo sampling in a fully Bayesian ap-

proach. However, as it is the case for the K-means algorithm, these methods can get stuck in local

optima, and no convergence towards the global optimum can be guaranteed. Another way to tackle

model-based clustering problems is based on the minimum message length or minimum descrip-

tion length principle. The standard reference for MML approaches to learn mixtures is Figueiredo

and Jain [2002], for a general overview on MDL see Grünwald [2007]. Consistency results for

MML are quite similar to the ones for the Bayesian approach: if the true distribution indeed comes

from the mixture class and the number of components is known, then consistency can be achieved.
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For general results on consistency of MDL see Sections 16 and 17.11 in Grünwald [2007]. Often,

MML/MDL approaches are interpreted as a particular way to work with small function classes,

consisting of functions which can be described in a “compact” way. In this sense, this method can

also be seen as a way of achieving “small” function classes.

5.4. Sublinear Time Algorithms Using Subsampling. Some algorithms related to our ap-

proach have been published in the theoretical computer science community, such as Indyk [1999],

Mishra et al. [2001], or Czumaj and Sohler [2007]. The general idea is to use subsampling ap-

proaches to approximate clustering solutions, and to prove that these approximations are quite

accurate. Given a sample of n points, one draws a subsample of m≪ n points, applies some (ap-

proximate) clustering algorithm to the subsample, and then extends this clustering to the remain-

ing points. Using techniques such as concentration inequalities, Chernoff bounds or Hoeffding

bounds, one can then prove that the resulting clustering approximates the best clustering on the

original point set.

While at first glance, this approach sounds very similar to our nearest neighbor clustering,

note that the focus in these papers is quite a different one than ours. The authors do not aim for

consistent clustering solutions (that is, solutions which are close to the “true clustering solution”

of the underlying space ), but they want to find algorithms to approximate the optimal clustering

on a given finite sample in sublinear time. The sublinearity is achieved by the fact that already

a very small subsample (say, m = logn) is enough to achieve good approximation guarantees.

However, our main point that it is important to control the size of the underlying function class,

is not revealed in these papers. As the authors mainly deal with K-means type settings, they

automatically work with polynomial function classes of center-based clusterings, and the issue of

inconsistency does not arise. Moreover, subsampling is just one way of reducing the function class

to a smaller size, there can be many others. In this sense, we believe that our “small function class”

approach is more general than the subsampling approach.

Finally, one difference between our approach and the subsampling approach is the kind of

results of interest. We are mainly concerned with asymptotic results, and on our way achieve ap-

proximation guarantees which are good for large sample size n. The focus of the subsampling

papers is non-asymptotic, dealing with a small or moderate sample size n, and to prove approxi-

mation guarantees in this regime.

5.5. Other Statistical Learning Theory Approaches to Clustering. In the last years there

have been several papers which started to look at clustering from a statistical learning theory per-

spective. A general statistical learning theory approach to clustering, based on a very similar

intuition as ours, has already been presented in Buhmann [1998]. Here the authors put forward an

“empirical risk approximation” approach for unsupervised learning, along the lines of empirical

risk minimization for the supervised case. The setting under consideration is that the clustering

quality function is an expectation with respect to the true underlying probability distribution, and

the empirical quality function is the corresponding empirical expectation. Then, similar to the sta-

tistical learning theory for supervised learning, generalization bounds can be derived, for example

using VC dimensions. Additionally, the authors discuss regularization approaches and relate them

to annealing schemes for center-based clusterings.

A different approach has been investigated in Ben-David [2007]. Here the author formalizes

the notion of a “cluster description scheme”. Intuitively, a clustering problem can be described by

a cluster description scheme of size l ∈ N if each clustering can be described using l points from

the space (and perhaps some additional parameter). For instance, this is the case for center-based

clusterings, where the clustering can be described by the centroids only. Ben-David then proves
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generalization bounds for clustering description schemes which show that the global minimizer

of the empirical quality function converges to the global minimizer of the true quality function.

The proof techniques used in this chapter are very close to the ones used in standard minimum

description length results.

Another class of results about K-means algorithms has been proved in Rakhlin and Capon-

netto [2007]. After computing covering numbers for the underlying classes, the authors study the

stability behavior ofK-means. This leads to statements about the set of “almost-minimizers” (that

is the set of all functions whose quality is ε close to the one of the global optimal solutions). As

opposed to our results and all the other results discussed above, the main feature of this approach is

that at the end of the day, one is able to make statements about the clustering functions themselves,

rather than only about their quality values. In this sense, the approach in Rakhlin and Caponnetto

[2007] has more powerful results, but its application is restricted to K-means type algorithms.

All approaches outlined above implicitly or explicitly rely on the same intuition as our ap-

proach: the function class needs to be “small” in order to lead to consistent clusterings. However,

all previous results have some restrictions we could overcome in our approach. First of all, in the

papers discussed above the quality function needs to be an expectation, and the empirical quality

function is simply the empirical expectation. Here our results are more general: we neither require

the quality functions to be expectations (for example, Ncut cannot be expressed as an expectation,

it is a ratio of two expectations) nor do we require unbiasedness of the empirical quality func-

tion. Second, the papers discussed above make statements about global optimizers, but do not

really deal with the question how such a global optimizer can be computed. The case of standard

K-means shows that this is by no means simple, and in practice one has to use heuristics which

discover local optima only. In contrast, we suggest a concrete algorithm (NNC) which computes

the global optimum over the current function class, and hence our results not only concern abstract

global minimizers which are hard to obtain, but refer to exactly the quantities which are computed

by the algorithm. Finally, our algorithm has the advantage that it provides a framework for dealing

with more general clustering objective functions than just center-based ones. This is not the case

in the papers above.

Finally, we would like to mention that a rather general but vague discussion of some of the

open issues in statistical approaches to clustering has been led in von Luxburg and Ben-David

[2005]. This chapter partly solves some of the open issues raised there.

6. Discussion

This chapter is concerned with clustering algorithms which minimize certain quality functions.

Our main point is that as soon as we require statistical consistency we have to work with function

classes Fn which are “small”. Our results have a similar taste as the well-known corresponding

results for supervised classification. While in the domain of supervised classification practitioners

are well aware of the effect of overfitting, it seems like this effect has been completely overlooked

in the clustering domain.

We would like to highlight a convenient side-effect of working with small function classes. In

clustering, for many objective functions the problem of finding the best partition of the discrete

data set is an NP-hard problem (for example, this is the case for all balanced graph-cut objective

functions). On the other side, if we restrict the function class Fn to have polynomial size (in n),

then the trivial algorithm of evaluating all functions in Fn and selecting the best one is inherently

polynomial. Moreover, if the small function class is “close” to the large function class, then the

solution found in the small function class approximates the best solution in the unrestricted space

of all clusterings.
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We believe that the approach of using restricted function classes can be very promising, also

from a practical point of view. It can be seen as a more controlled way of constructing approximate

solutions of NP hard optimization problems than the standard approaches of local optimization or

relaxation. While the effects of the latter cannot be controlled in general, we are able to control

the effects of optimizing over smaller function classes by carefully selecting Fn. This strategy cir-

cumvents the problem that solutions of local optimization or relaxation heuristics can be arbitrarily

far away from the optimal solution.

The generic clustering algorithm we studied in this article is nearest neighbor clustering, which

produces clusterings that are constant on small local neighborhoods. We have proved that this

algorithm is statistically consistent for a large variety of popular clustering objective functions.

Thus, as opposed to other clustering algorithms such as the K-means algorithm or spectral clus-

tering, nearest neighbor clustering is guaranteed to converge to a minimizer of the true global

optimum on the underlying space. This statement is much stronger than the results already known

for K-means or spectral clustering. For K-means it has been proved that the global minimizer

of the WSS objective function on the sample converges to a global minimizer on the underlying

space (e.g., Pollard, 1981). However, as the standard K-means algorithm only discovers a local

optimum on the discrete sample, this result does not apply to the algorithm used in practice. A

related effect happens for spectral clustering, which is a relaxation attempting to minimize Ncut

or RatioCut. For this class of algorithms, it has been shown that under certain conditions the

solution of the relaxed problem on the finite sample converges to some limit clustering. However,

this limit clustering is not necessarily the optimizer of the Ncut or RatioCut objective function.

It is interesting to note that the problems about the existing consistency results for K-means

and spectral clustering are “reverse” to each other: while for K-means we know that the global

minimizer converges, but this result does not apply to the algorithm used in practice, for spectral

clustering there exist consistency results for the algorithm used in practice, but these results do not

relate to the global minimizer. For both cases, our consistency results represent an improvement:

we have constructed an algorithm which provably converges to the true limit minimizer of WSS or

Ncut, respectively. The same result also holds for a large number of alternative objective functions

used for clustering.

We believe that a big advantage of our approach is that both the algorithm and the statis-

tical analysis is not restricted to center-based algorithms only, as it has been the case for most

approaches in the literature [Buhmann, 1998, Ben-David, 2007, Rakhlin and Caponnetto, 2007].

Instead, nearest neighbor clustering can be used as a baseline method to construct clusterings for

any objective function. In von Luxburg et al. [2008] we have shown how nearest neighbor cluster-

ing can be implemented efficiently using branch and bound, and that in terms of quality, its results

can compete with algorithms of spectral clustering (for the Ncut objective function) or K-means

(for the WSS objective function). We believe that in particular for unusual objective functions for

which no state of the art optimizer exists yet, nearest neighbor clustering is a promising baseline to

start with. We have seen that for many commonly used objective functions, statistical guarantees

for nearest neighbor clustering can be obtained, and we expect the same to be true for many more

clustering objective functions.

Finally, it is a fair question how statistical consistency helps in practical applications. Is it

any help in solving the big open issues in clustering, such as the question of selecting clustering

algorithms for a particular data set, or selecting the number of clusters? In this generality, the an-

swer is no. In our opinion, consistency is a necessary requirement which any clustering algorithm

should satisfy. If an algorithm is not consistent, even with a high amount of data one cannot rely
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on a clustering constructed on a finite amount of data—and this is not due to computational prob-

lems, but to inherent statistical problems. Such an algorithm cannot be trusted when constructing

results on a finite sample; given another sample, it might just come up with a completely different

clustering. Or, the more samples one gets, the more “trivial” the solution might become (unnor-

malized spectral clustering is an example for such an algorithm). In this sense, consistency is just

one piece of evidence to discard unreliable clustering algorithms. In our opinion, it is very hard to

come up with sufficient conditions about “what a good clustering algorithm is”. The applications

of clustering are just too diverse, and 50 years of clustering literature show that people will not

agree on a unique definition of what a good clustering algorithm is. This is the reason why we

believe that it is very fruitful to start by studying necessary conditions first. This chapter is meant

as a contribution to this effort.

7. Proofs

In this section we concentrate all the proofs.

Proof of Theorem 8.1. The following lemma will be central in our analysis. It allows to take a

supremum out of a probability.

LEMMA 8.1. With the notation in Theorem 8.1 we have:

P( sup
f∈Fn
|Qn(f)−Q(f)| > ε) 6 2s(F̃n, 2n)

sup
f∈fFn

P(|Qn(f)−Q(f)| > ε/4)

inf
f∈fFn

P(|Qn(f)−Q(f)| 6 ε/2)
.

The proof technique is similar to the one in Devroye et al. [1996], Section 12.3. The unusual

term in the denominator originates in the symmetrization step. In a more standard setting where

we have EQn = Q, this term usually “disappears” as it can be lower bounded by 1/2, for example

using Chebyshev’s inequality (e.g., Section 12.3 of Devroye et al., 1996). Unfortunately, this does

not work in our more general case, as we do not assume unbiasedness and instead also allow

EQn 6= Q. However, note that the ratio in Lemma 8.1 essentially has the form un/(1−un). Thus,

as soon as the term un in the numerator becomes non-trivial (i.e., un < 1 or say, un < 3/4), then

the denominator will only play the role of a small constant (it is lower bounded by 1/4). This means

that in the regime where the numerator is non-trivial, the whole bound will essentially behave like

the numerator.

PROOF. First note that we can replace the data-dependent function class Fn by the class F̃n
which does not depend on the data:

P( sup
f∈Fn
|Qn(f)−Q(f)| > ε) 6 P( sup

f∈fFn
|Qn(f)−Q(f)| > ε).

Now we want to use a symmetrization argument. To this end, let X ′
1, . . . , X

′
n be a ghost sample

(that is a sample drawn i.i.d. according to P which is independent of our first sampleX1, . . . , Xn),

and denote by Q′
n the empirical quality function based on the ghost sample.

Let f̂ ∈ F̃n be such that |Qn(f̂) − Q(f̂)| > ε; if such an f̂ does not exist then just choose

f̂ as some other fixed function in F̃n. Note that f̂ is a data-dependent function depending on the

sample X1, ..., Xn. We have the following inequalities:

P( sup
f∈fFn
|Qn(f)−Q′

n(f)| > ε/2)

> P(|Qn(f̂)−Q′
n(f̂)| > ε/2)
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> P(|Qn(f̂)−Q(f̂)| > ε, |Q′
n(f̂)−Q(f̂)| 6 ε/2)

= E

(
P(|Qn(f̂)−Q(f̂)| > ε, |Q′

n(f̂)−Q(f̂)| 6 ε/2|X1, . . . , Xn)
)

= E

(
P(|Qn(f̂)−Q(f̂)| > ε|X1, . . . , Xn)P(|Q′

n(f̂)−Q(f̂)| 6 ε/2|X1, . . . , Xn)
)

= E

(
1|Qn( bf)−Q( bf)|>εP(|Q′

n(f̂)−Q(f̂)| 6 ε/2|X1, . . . , Xn)
)

> E

(
1|Qn( bf)−Q( bf)|>ε inf

f∈fFn
P(|Q′

n(f)−Q(f)| 6 ε/2|X1, . . . , Xn)

)

= E(1|Qn( bf)−Q( bf)|>ε)E

(
inf
f∈fFn

P(|Q′
n(f)−Q(f)| 6 ε/2|X1, . . . , Xn)

)

= P(|Qn(f̂)−Q(f̂)| > ε) inf
f∈fFn

P(|Qn(f)−Q(f)| 6 ε/2)

= P( sup
f∈fFn
|Qn(f)−Q(f)| > ε) inf

f∈fFn
P(|Qn(f)−Q(f)| 6 ε/2).

The last step is true because of the definition of f̂ : note that due to the definition of f̂ the event

|Qn(f̂) − Q(f̂)| > ε is true iff there exists some f ∈ F̃n such that |Qn(f) − Q(f)| > ε, which

is true iff sup
f∈fFn |Qn(f) − Q(f)| > ε (recall that we assumed for ease of notations that all

supremum are attained). Rearranging the inequality above leads to

P( sup
f∈fFn
|Qn(f)−Q(f)| > ε) 6

P( sup
f∈fFn
|Qn(f)−Q′

n(f)| > ε/2)

inf
f∈fFn

P(|Qn(f)−Q(f)| 6 ε/2)
.

Due to the symmetrization we got rid of the quantity Q(f) in the numerator. Furthermore, using

the assumption of the theorem that Qn(f) does not involve any function evaluations f(x) for

x /∈ {X1, . . . , Xn} we can apply a union bound argument to move the supremum in the numerator

out of the probability:

P( sup
f∈fFn
|Qn(f)−Q′

n(f)| > ε/2)

6 s(F̃n, 2n) sup
f∈fFn

P(|Qn(f)−Q′
n(f)| > ε/2)

6 s(F̃n, 2n) sup
f∈fFn

P(|Qn(f)−Q(f)|+ |Q(f)−Q′
n(f)| > ε/2)

6 2s(F̃n, 2n) sup
f∈fFn

P(|Qn(f)−Q(f)| > ε/4).

This completes the proof of the lemma. �

We can now prove Theorem 8.1.

PROOF. Additionally to the functions fn and f∗, we will define

f∗n ∈ argmin
f∈Fn

Q(f),

f̃∗ ∈ argmin
f∈Fn

d(f, f∗).
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To prove the theorem we have to show that under the conditions stated, for any fixed ε > 0 the

term P(|Q(fn) − Q(f∗)| > ε) converges to 0. We can study each ”side” of this convergence

independently:

P(|Q(fn)−Q(f∗)| > ε) = P(Q(fn)−Q(f∗) 6 −ε) + P(Q(fn)−Q(f∗) > ε).

To treat the “first side” observe that if fn ∈ F then Q(fn) − Q(f∗) > 0 by the definition of f∗.

This leads to

P(Q(fn)−Q(f∗) 6 −ε) 6 P(fn /∈ F).

Under Assumption (2) of Theorem 8.1 this term tends to 0.

The main work of the proof is to take care of the second side. To this end we split Q(fn) −
Q(f∗) in two terms, the estimation error and the approximation error:

Q(fn)−Q(f∗) = Q(fn)−Q(f∗n) +Q(f∗n)−Q(f∗).

For a fixed ε > 0 we have

P(Q(fn)−Q(f∗) > ε) 6 P(Q(fn)−Q(f∗n) > ε/2) + P(Q(f∗n)−Q(f∗) > ε/2).

In the following sections we will treat both parts separately.

Estimation error. The first step is to see that

Q(fn)−Q(f∗n) 6 2 sup
f∈Fn
|Qn(f)−Q(f)|.

Indeed, since Qn(fn) 6 Qn(f
∗
n) by the definition of fn we have

Q(fn)−Q(f∗n) = Q(fn)−Qn(fn) +Qn(fn)−Qn(f∗n) +Qn(f
∗
n)−Q(f∗n)

6 Q(fn)−Qn(fn) +Qn(f
∗
n)−Q(f∗n)

6 2 sup
f∈Fn
|Qn(f)−Q(f)|.

Using Lemma 8.1 we obtain

P(Q(fn)−Q(f∗n) > ε/2) 6 2s(F̃n, 2n)

sup
f∈fFn

P(|Qn(f)−Q(f)| > ε/16)

inf
f∈fFn

P(|Qn(f)−Q(f)| 6 ε/8)
.

Now observe that under Assumption (1) the numerator of the expression in the proposition tends

to 0 and the denominator tends to 1, so the whole term tends to 0.

Approximation Error. By definition of f∗n it is clear that

Q(f∗n)−Q(f∗) 6 Q(f̃∗)−Q(f∗).

Using Assumption (3) this leads to

P(Q(f∗n)−Q(f∗) > ε/2) 6 P(Q(f̃∗)−Q(f∗) > ε/2)

6 P(d(f, f̃∗) > δ(ε/2)).

The right hand side clearly tends to 0 by Assumption (2). �

Proof of Theorem 8.2. Before proving Theorem 8.2, we again need to prove a few technical lem-

mas. The first one is a simple relation between the shattering coefficients of the nearest neighbor

function classes.
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LEMMA 8.2. Let u ∈ N and F̃n and F̂n be the function sets defined in Theorem 8.2. Then

s(F̃n, u) 6 s(F̂n, u) 6 Kmu(d+1)m2
.

PROOF. The first inequality is obvious as we have F̃n ⊂ F̂n. For the second inequality

observe that

s(F̂n, u) 6 Kms∗(F̂n, u)
where s∗(F̂n, u) is the maximal number of different ways u points can be partitioned by cells

of a Voronoi partition of m points. It is well known (e.g., Section 21.5 of Devroye et al., 1996)

that s∗(F̂n, u) 6 u(d+1)m2
for d > 1. Note that for d = 1 a similar inequality holds, we do not

consider this case any further. �

The second lemma relates a function evaluated at a point x to the same function, evaluated at

the nearest neighbor of x in the training points. This lemma builds on ideas of Fritz [1975].

LEMMA 8.3. Let f : X → {1, . . . ,K} be continuous almost everywhere and

Ln := P(f(X) 6= f(NNm(X))|X1, . . . , Xn).

Then for every ε > 0 there exists a constant bf (ε) > 0 independent of n such that

P(Ln > ε) 6
2

ε
e−mbf (ε).

PROOF. By B(x, δ) we denote the Euclidean ball of center x and radius δ. The first step of

the proof consists in constructing a certain set D (depending on ε) which satisfies the following

statement:

For all ε > 0 there exists some δ(ε) > 0, a measurable set D ⊂ Rd and a constant 1 > u > 0

such that

(a) P(D) > 1− ε/2
(b) ∀x ∈ D : P(B(x, δ)) > u

(c) ∀x ∈ D the function f is constant on B(x, δ).

Assume we have such a set D. Then using Properties (c) and (a) we can see that

Ln = P(f(X) 6= f(NNm(X))|X1, . . . , Xn)

6 P(X /∈ D|X1, . . . , Xn) + P(X ∈ D, |X −NNm(X)| > δ|X1, . . . , Xn)

6 ε
2 + P(X ∈ D, |X −NNm(X)| > δ|X1, . . . , Xn).

Using the Markov inequality we can then see that

P(Ln > ε) 6 P(P(X ∈ D, |X −NNm(X)| > δ|X1, . . . , Xn) > ε
2)

6 2
εE(P(X ∈ D, |X −NNm(X)| > δ|X1, . . . , Xn))

= 2
εP(X ∈ D, |X −NNm(X)| > δ)

= 2
ε

∫
D P(|x−NNm(x)| > δ) dP(x).



202 CHAPTER 8. CONSISTENT CLUSTERING WITH ARBITRARY OBJECTIVE FUNCTIONS

Due to Property (b) we know that for all x ∈ D,

P(|x−NNm(x)| > δ) = P(∀i ∈ {1, . . . ,m}, x /∈ B(Xi, δ))

= (1− P(B(x, δ)))m

6 (1− u)m.
Setting b(ε) := −log(1− u) > 0 then leads to

P (Ln > ε) 6
2

ε
P(D)(1− u)m 6

2

ε
e−mb(δ(ε)).

Note that this constant b(ε) will also be used in several of the following lemmas. To finish the

proof of the lemma we have to show how the set D can be constructed. By the assumption of the

lemma we know that f is continuous a.e., and that f only takes finitely many values 1, ...,K. This

implies that the set

C = {x ∈ Rd : ∃δ > 0 : d(x, y) 6 δ ⇒ f(x) = f(y)}
satisfies P(C) = 1. Furthermore, for any δ > 0 we define the set

Aδ = {x ∈ C : d(x, y) 6 δ ⇒ f(x) = f(y)}.
We have ∪δAδ = C, and for σ > δ we have Aσ ⊂ Aδ. This implies that given some ε > 0 there

exists some δ(ε) > 0 such that P(Aδ(ε)) > 1 − ε/4. By construction, all points in Aδ(ε) satisfy

Property (c).

As the next step, we can see that for every δ > 0 one has P(B(x, δ)) > 0 almost surely (with

respect to x). Indeed, the set U = {x : ∃δ > 0 : P(B(x, δ)) = 0} is a union of sets of probability

zero. So using the fact that Rd is separable we see that P(U) = 0. Thus, P(P(B(X, δ)|X) > 0) =

1, which implies P(P(B(X, δ)|X) > 1
n)→ 1. This means that given ε > 0 and δ > 0 there exists

a setA and a constant u > 0 such that P(A) > 1−ε/4 and ∀x ∈ A,P(B(x, δ)) > u. So all points

in A satisfy Property (b).

Now finally define the set D = A
⋂
Aδ(ε). By construction, this set has probability P (D) >

ε/2, so it satisfies Property (a). It satisfies Properties (b) and (c) by construction of A and Aδ(ε),

respectively. �

Proof of Theorem 8.2. To prove this theorem we will verify that the conditions (1) - (3) of

Theorem 8.1 are satisfied for the function classes studied in Theorem 8.2.

Lemma 8.2 proves that Condition (1) of Theorem 8.2 implies Condition (1) of Theorem 8.1.

Moreover, it is obvious that Condition (3) of Theorem 8.2 implies Condition (3) of Theorem 8.1.

Thus we only have to prove Condition (2) of Theorem 8.1. We begin by proving that P(fn /∈
F) → 0. As fn ∈ Fn by definition we have that Φn(fn,k) > an for all k = 1, . . . ,K. A union

bound argument shows that

P(fn /∈ F) 6 K sup
k

P(Φ(fn,k) 6 a).

Using the same techniques as in the proof of Lemma 8.1 we can see that

P(Φ(fn,k) 6 a) 6 P(Φn(fn,k)− Φ(fn,k) > an − a)
6 P( sup

g∈Fn
Φn(gk)− Φ(gk) > an − a)



7. PROOFS 203

6 2s(F̂n, 2n)

sup
g∈cFn

P(Φn(gk)− Φ(gk) > (an − a)/4)

inf
g∈cFn

P(Φn(gk)− Φ(gk) 6 (an − a)/2)
.

Moreover, we already proved in Lemma 8.2 that s(F̂n, 2n) 6 Km(2n)(d+1)m2
. Condition (5) of

Theorem 8.2 then implies that P(Φ(fn,k) 6 a) tends to 0.

Now we have to prove that for f ∈ F the term d(f,Fn) := ming∈Fn d(f, g) tends to 0 in

probability. Let f̃(x) = f(NNm(x)). If f̃ ∈ Fn then d(f,Fn) 6 d(f, f̃), so the following holds

true:

P(d(f,Fn) > ε) 6 P(f̃ /∈ Fn) + P(d(f, f̃) > ε).

The second term on the right hand side tends to 0 because of Lemma 8.3. To deal with the first

term on the right hand side, observe that

P(f̃ /∈ Fn) 6 K sup
k

P(Φn(f̃k) 6 an).

Because of Condition (4), for all ε > 0, f ∈ F and g ∈ F̂n there exists δ(ε) > 0 such that

d(f, g) 6 δ(ε)⇒ Φ(fk)− Φ(gk) 6 ε.

Define afn := infk Φ(fk) − an. Since f ∈ F there exists N such that n > N ⇒ afn > 0. For

n > N we have the following inequalities:

P(Φn(f̃k) 6 an)

= P(Φ(fk)− Φn(f̃k) > Φ(fk)− an)

= P(Φ(fk)− Φ(f̃k) + Φ(f̃k)− Φn(f̃k) > Φ(fk)− an)

6 P(Φ(fk)− Φ(f̃k) > (Φ(fk)− an)/2) + P(Φ(f̃k)− Φn(f̃k) > (Φ(fk)− an)/2)

6 P(Φ(fk)− Φ(f̃k) > afn/2) + P(Φ(f̃k)− Φn(f̃k) > afn/2)

6 P(d(f, f̃) > δ(afn/2)) + P( sup
g∈cFn

Φ(gk)− Φn(gk) > afn/2)

6 2

δ(afn/2)
e−mb(δ(a

f
n/2)) + P( sup

g∈cFn
Φ(gk)− Φn(gk) > afn/2).

If m→∞ then the first term goes to 0. Indeed, δ(afn/2) and b(δ(afn/2)) tend to positive constants

since f ∈ F and thus afn → infk Φ(fk) − a > 0. For the second term, the key step is to see that

by the techniques used in the proof of Lemma 8.1 we get

P( sup
g∈cFn

Φ(gk)− Φn(gk) > afn/2)

6 2Km(2n)(d+1)m2

sup
g∈cFn

P(Φ(gk)− Φn(gk) > afn/8)

inf
g∈cFn

P(Φ(gk)− Φn(gk) 6 afn/4)
.
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Under Condition (2) this term tends to 0. �

The Proofs of the Consistency Theorems 8.3, 8.5, 8.7 and 8.8. All these theorems are applica-

tions of Theorem 8.2 to specific objective functions Qn and Q and to specific functions Φn and Φ.

For all of them, we individually have to check whether the conditions in Theorem 8.2 are satisfied.

In this section, we do not follow the order of the Theorems. This is only due to better readability

of the proofs.

In most of these proofs, we will use the McDiarmid inequality [McDiarmid, 1989], see Theo-

rem 10.4.

Moreover, several times we will use the fact that an → a,m→∞ and m2 logn
n(a−an)2

→ 0 implies

that n(a− an)2 →∞ and m2 logn
n → 0.

Before we look at the “combined” objective functions such as Ncut, RatioCut, WSS, we will

prove some technical conditions about their “ingredients” cut, vol, Efk(X) and WS.

LEMMA 8.4 (Conditions (2), (4), and (5) for cut, vol, Efk(X), and WS). Assume that

m2 log n

n(a− an)2
→ 0

then vol, cut, Efk(X) and WS satisfy Conditions (2), (4) and (5) of Theorem 8.2.

PROOF. To prove Conditions (2) and (5) we are going to use the McDiarmid inequality. Ob-

serve that if one replaces one variable Xi by a new one X ′
i, then voln changes by at most 2C/n,

cutn changes by at most 2C/n, WS(fk) changes by at most 2C/n, and nk(f) changes by at most

1/n. Using the McDiarmid inequality, this implies that for all g ∈ F̂n and ε > 0

P(| voln(gk)− vol(gk)| > ε) 6 2e−
nε2

2C2 ,

P(| cutn(gk)− cut(gk)| > ε) 6 2e−
nε2

2C2 ,

P(|WSn(gk)−WS(gk)| > ε) 6 2e−
nε2

2C2 ,

P(|nk(g)− Egk(X)| > ε) 6 2e−2nε2 .

So to prove Condition (2) we have to show that

∀ε > 0,Km(2n)(d+1)m2
e−nε → 0.

This follows clearly from Km(2n)(d+1)m2
e−nε = e

−n
„

m logK+(d+1)m2 log(2n)
−n

+ε

«

and
m2 logn

n → 0. Moreover, since n(a− an)2 →∞ Condition (5) is also true.

To prove (4) for each of the objective functions, let f, g ∈ H and fk and gk be the correspond-

ing cluster indicator functions for cluster k. Then we can see that

| vol(gk)− vol(fk)| = |
∫ ∫

(fk(X)− gk(X))s(X,Y ) dP (X)dP (Y )|

6 C

∫

{fk=gk}
0 dP (X)dP (Y ) + C

∫

{fk=gk}c
1 dP (X)dP (Y )

= CP(fk 6= gk)

6 Cd(f, g),

| cut(gk)− cut(fk)| = |
∫ ∫

fk(X)(1− fk(Y ))s(X,Y )− gk(X)(1− gk(Y ))s(X,Y ) dP (X)dP (Y ) |
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6 C

∫ ∫

{f=g}2

0 dP (X)dP (Y ) + C

∫ ∫

({f=g}2)c
1 dP (X)dP (Y )

= C(1− P(f(X) = g(X))2)

= C(1− (1− d(f, g))2)
6 2Cd(f, g),

|Efk(X)− Egk(X)| 6 d(f, g),

|WS(fk)−WS(gk)| = |
∫ ∫

(fk(X)fk(Y )− gk(X)gk(Y ))s(X,Y ) dP (X)dP (Y ) |

6

∫

{f=g}2

0 dP (X)dP (Y ) + C

∫

({f=g}2)c
1 dP (X)dP (Y )

= C(1− P(f = g)2)

= C(1− (1− d(f, g))2)
6 2Cd(f, g).

�

Now we are going to check that the “combined” objective functions Ncut, RatioCut, Mod,

WSS, BWR satisfy the conditions of Theorem 8.2. For many of the objective functions, one

important step in the proof is to separate the convergence of the whole term into the convergence

of the numerator and the denominator.

LEMMA 8.5 (Condition (1) for Ncut). Assume that

m2 log n

n
→ 0

then Ncut satisfies Condition (1) of Theorem 8.2.

PROOF. We first want to split the deviations of Ncut into the ones of cut and vol, respectively.

To this end we want to show that for any f ∈ F̃n
{| cutn(fk)− cut(fk)| 6 a

2ε}
⋂{| voln(fk)− vol(fk)| 6 a

2ε}

⊂ {| cutn(fk)
voln(fk)

− cut(fk)
vol(fk)

| 6 ε}.
This can be seen as follows. Assume that | cutn(fk)−cut(fk)| 6 ε and | voln(fk)−vol(fk)| 6 ε.

If vol(fk) 6= 0 then we have (using the facts that cut(fk) 6 vol(fk) and that voln(fk) > an > a

by definition of F̃n):

cutn(fk)
voln(fk)

− cut(fk)
vol(fk)

= cutn(fk) vol(fk)−cut(fk) voln(fk)
voln(fk) vol(fk)

6
(cut(fk)+ε) vol(fk)−cut(fk)(vol(fk)−ε)

voln(fk) vol(fk)

= ε
voln(fk)

cut(fk)+vol(fk)
vol(fk)

6 2ε
a .
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On the other hand, if vol(fk) = 0 then we have cut(fk) = 0, which implies cutn(fk) 6 ε by the

assumption above. Thus the following statement holds true:

cutn(f)

voln(f)
− cut(f)

vol(f)
=

cutn(f)

voln(f)
6
ε

a
6

2ε

a
.

Using the same technique we have the same bound for
cut(fk)
vol(fk)

− cutn(fk)
voln(fk)

, which proves our set

inclusion.

Now we apply a union bound and the McDiarmid inequality. For the latter, note that if one

changes one Xi then cutn(f) and voln(f) will change at most by 2C/n. Together all this leads to

P(|Ncut(f)−Ncutn(f)| > ε)

6 Ksup
k

P(|cutn(fk)

voln(fk)
− cut(fk)

vol(fk)
| > ε/K)

6 Ksup
k

(
P(| cutn(fk)− cut(fk)| >

a

2K
ε) + P(| voln(fk)− vol(fk)| >

a

2K
ε)
)

6 4Ke−
na2ε2

8C2K2 .

To finish we have to prove that

∀ε > 0,Km+1(2n)(d+1)m2
e−nε → 0.

This follows clearly from Km+1(2n)(d+1)m2
e−nε = e

−n
„

(m+1) logK+(d+1)m2 log(2n)
−n

+ε

«

and
m2 logn

n → 0. �

LEMMA 8.6 (Condition (3) for Ncut). Ncut satisfies Condition (3) of Theorem 8.2.

PROOF. Let f ∈ F , g ∈ F̃n. In the proof of Lemma 8.4 we have already seen that

| cut(fk)− cut(gk)| 6 2Cd(f, g),

| vol(fk)− vol(gk)| 6 2Cd(f, g).

If vol(g) 6= 0 then we have (using the fact that we always have cut(f) 6 vol(f)):

cut(fk)
vol(fk)

− cut(gk)
vol(gk)

= cut(fk) vol(gk)−cut(gk) vol(fk)
vol(fk) vol(gk)

6
(cut(gk)+2Cd(f,g)) vol( ef)−cut(gk)(vol(gk)−2Cd(f,g))

vol(fk) vol(gk)

= 2Cd(f,g)
vol(fk)

vol(gk)+cut(gk)
vol(gk)

6 4C
a d(f, g)).

On the other hand if vol(gk) = 0 then we have | cut(fk)| 6 | vol(fk)| 6 2Cd(f, g), in which case

the following holds true:

cut(fk)

vol(fk)
− cut(gk)

vol(f̃k)
=

cut(fk)

vol(fk)
6

2Cd(f, g)

a
6

4C

a
d(f, g).

So all in all we have

Ncut(f)−Ncut(g) 6
4CK

a
d(f, g).
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We can use the same technique to bound Ncut(g)− Ncut(f). This proves that Ncut is Lipschitz

and thus uniformly continuous. �

LEMMA 8.7 (Condition (1) for RatioCut). Assume that

m2 log n

n
→ 0

then RatioCut satisfies Condition (1) of Theorem 8.2.

PROOF. Using exactly the same proof as for Lemma 8.5 (just changing voln(fk) to nk and

vol(fk) to Efk(X) and using the fact that cut(fk) 6 CEfk(X)) we get

P(|RatioCutn(f)− RatioCut(f)| > ε)

6 Ksup
k

(
P(| cutn(fk)− cut(fk)| >

a

(S + 1)K
ε) + P(|nk(f)− Efk(X)| > a

(S + 1)K
ε)

)
.

Now a simple McDiarmid argument (using again the fact that changing one Xi changes cutn by

at most 2S/n) gives

P(|RatioCutn(f)− RatioCut(f)| > ε) 6 2Ke−
na2ε

8C2K2 + 2Ke−
na2ε2

2K2 .

We conclude the proof with the same argument as in Lemma 8.5. �

LEMMA 8.8 (Condition (3) for RatioCut). RatioCut satisfies Condition (3) of Theorem 8.2.

PROOF. This follows by the same proof as Lemma 8.5, just changing voln(fk) to nk, vol(fk)

to Efk(X) and using the fact that cut(fk) 6 CEfk(X). �

LEMMA 8.9 (Condition (1) for BWR). If m2 log n/n→ 0, then BWR satisfies Condition (1)

of Theorem 8.2.

PROOF. Let f ∈ F̃n. Let ε 6 a/2. If |WSn(fk)−WS(fk)| 6 ε and | cutn(fk)−cut(fk)| 6 ε

then WS(fk) > a/2 > 0 (because WSn(fk) > an > a since f ∈ F̃n). This implies

cutn(fk)
WSn(fk)

− cut(fk)
WS(fk)

= WS(fk) cutn(fk)−WSn(fk) cut(fk)
WSn(fk)WS(fk)

6
WS(fk)(cut(fk)+ε)−(WS(fk)−ε) cut(fk)

WSn(fk)WS(fk)

= ε
WSn(fk)

WS(fk)+cut(fk)
WS(fk)

6 2Cε
a2 .

The analogous statement holds for
cut(fk)
WS(fk)

− cutn(fk)
WSn(fk)

. Thus, if ε 6 C/a then

{|WSn(fk)−WS(fk)| 6 a2ε/(2C)} ∩ {| cutn(fk)− cut(fk)| 6 a2ε/(2C)}

⊂ {
∣∣∣∣
cutn(fk)

WSn(fk)
− cut(fk)

WS(fk)

∣∣∣∣ 6 ε}.

As a consequence, if ε 6 CK/a we have

P(|BWRn(f)− BWR(f)| > ε) 6 K sup
k

P

(∣∣∣∣
cutn(fk)

WSn(fk)
− cut(fk)

WS(fk)

∣∣∣∣ | > ε/K

)

6 K sup
k

(
P(|WSn(fk)−WS(fk)| > a2ε/(2CK)) + P(| cutn(fk)− cut(fk)| > a2ε/(2CK))

)
.
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Using the McDiarmid inequality together with the fact that changing one point changes cutn and

WSn by at most C/(2n), we get for ε 6 CK/a:

P(|BWRn(f)− BWR(f)| > ε) 6 4Ke−
na4ε2

8C4K2 .

On the other hand, for ε > CK/a we have

P(|BWRn(f)− BWR(f)| > ε)

6 P(|BWRn(f)− BWR(f)| > SK/a)

6 4Ke−
na4(SK/a)2

8C4K2 .

So all in all we have proved that

P(|BWRn(f)− BWR(f)| > ε) 6 2Ke−
na4(min(ε,CK/a))2

8C4K2 .

We conclude the proof with the same argument as in Lemma 8.5. �

LEMMA 8.10 (Condition (3) for BWR). BWR satisfies Condition (3) of Theorem 8.2.

PROOF. Let ε > 0, f ∈ F and g ∈ F̃n.We have already proved the two following inequalities

(in the proofs of Lemmas 8.4 and 8.6):

| cut(fk)− cut(gk)| 6 2Cd(f, g),

|WS(fk)−WS(gk)| 6 2Cd(f, g).

If 2Cd(f, g) 6 a/2, then using that WS(fk) > a we get WS(gk) > a/2 > 0. By the same

technique as at the beginning of Lemma 8.9 we get

|BWR(f)− BWR(g)| 6 2CK

a2
2Cd(f, g).

Written a bit differently,

d(f, g) 6
a

4C
⇒ |BWR(f)− BWR(g)| 6 4C2K

a2
d(f, g).

Now recall that we want to prove that there exists δ > 0 such that d(f, g) 6 δ ⇒ |BWR(f) −
BWR(g)| 6 ε.

If ε 6 CK/a then we have:

d(f, g) 6
a2

4C2K
ε 6

a

4C
⇒ |BWR(f)− BWR(g)| 6 4C2K

a2
d(f, g) 6 ε.

On the other hand, if ε > CK/a then

d(f, g) 6
a

4C
⇒ |BWR(f)− BWR(g)| 6 4C2K

a2
d(f, g) 6 CK/a 6 ε

so we have proved the lemma. �

LEMMA 8.11 (Condition (1) for WSS). If
m2 logn

n → 0 and that supp P ⊂ B(0, A), then

WSS satisfies Condition (1) of Theorem 8.2.

PROOF. Let f ∈ F̃n. First note that

|WSSn(f)−WSS(f)| =
∣∣∣∣∣
1

n

n∑

i=1

K∑

k=1

fk(Xi)‖Xi − ck,n‖2 − E

K∑

k=1

fk(X)‖X − ck‖2
∣∣∣∣∣
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6

∣∣∣∣∣
1

n

n∑

i=1

K∑

k=1

fk(Xi)‖Xi − ck,n‖2 −
1

n

n∑

i=1

K∑

k=1

fk(Xi)‖Xi − ck‖2
∣∣∣∣∣

+

∣∣∣∣∣
1

n

n∑

i=1

K∑

k=1

fk(Xi)‖Xi − ck‖2 − E

K∑

k=1

fk(X)‖X − ck‖2
∣∣∣∣∣ .

Now we will bound the probability for each of the terms on the right hand side. For the second

term we can simply apply McDiarmid’s inequality. Due to the assumption that supp P ⊂ B(0, A)

we know that for any two points x, y ∈ supp P we have ‖x− y‖ 6 2A. Thus if one changes one

variable Xi then the term 1
n

∑n
i=1

∑K
k=1fk(Xi)‖Xi − ck‖2 will change by at most A2/(4n). This

leads to

P

(∣∣∣∣∣
1

n

n∑

i=1

K∑

k=1

fk(Xi)‖Xi − ck‖2 − E

K∑

k=1

fk(X)‖X − ck‖2
∣∣∣∣∣ > ε

)
6 2e−

2nε2

A4 .

Now we have to take care of the first term, which can be written as

1

n

n∑

i=1

K∑

k=1

fk(Xi)
(
‖Xi − ck,n‖2 − ‖Xi − ck‖2

)
.

The triangle inequality gives

‖Xi − ck,n‖2 6 (‖Xi − ck‖+ ‖ck,n − ck‖)2,
and together with the fact that supp P ⊂ B(0, A) this leads to

‖Xi − ck,n‖2 − ‖Xi − ck‖2 6 6A‖ck,n − ck‖.
So at this point we have

∣∣∣∣∣
1

n

n∑

i=1

K∑

k=1

fk(Xi)‖Xi − ck,n‖2 − ‖Xi − ck‖2
∣∣∣∣∣ 6 6A sup

k
‖ck,n − ck‖.

We will denote the j-th coordinate of a vector X by Xj . Recall that d denotes the dimensionality

of our space. Using this notation we have

‖ck,n − ck‖2 =
d∑

j=1

(
Efk(X)Xj

Efk(X)
− 1

nk

1

n

n∑

i=1

fk(Xi)X
j
i

)2

.

Our goal will be to apply the McDiarmid inequality to each coordinate. Before we can do this, we

want to show that

{|nk − Efk(X)| 6 aε
A+1} ∩ {| 1n

n∑

i=1

fk(Xi)X
j
i − Efk(X)Xj | 6 aε

A+ 1
} ⊂ {|cjk − c

j
k,n| 6 ε}.

To this end, assume that |nk − Efk(X)| 6 ε and | 1n
n∑

i=1

fk(Xi)X
j
i − Efk(X)Xj | 6 ε.

In case Efk(X) 6= 0 we have

cjk − c
j
k,n =

nkEfk(X)Xj − Efk(X) 1
nk

1
n

∑n
i=1fk(Xi)X

j
i

nkEfk(X)

6
(Efk(X) + ε)Efk(X)Xj − Efk(X)(Efk(X)Xj − ε)

nkEfk(X)
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=
ε

nk

Efk(X)Xj + Efk(X)

Efk(X)

6
(A+ 1)ε

a

and similarly for cjk,n − c
j
k.

On the other hand, in case Efk(X) = 0 we also have Efk(X)Xj = 0 (as fk is a non-

negative function and |X| is bounded by A). Together with the assumption this means that
1
n

∑n
i=1fk(Xi)X

j
i 6 ε. This implies

|cjk − c
j
k,n| =

1

nk

1

n

n∑

i=1

fk(Xi)X
j
i 6

ε

a
6

(A+ 1)ε

a

which shows the inclusion stated above. The McDiarmid inequality now yields the two statements

P(|nk − Efk(X)| > ε) 6 2e−2nε2 ,

P

(∣∣∣∣∣
1

n

n∑

i=1

fk(Xi)X
j
i − Efk(X)Xj

∣∣∣∣∣ > ε

)
6 2e−

2nε2

A2 .

Together they show that for the coordinate-wise differences

P(|cjk − c
j
k,n| > ε) 6 2e

− 2na2ε2

(A+1)2 + 2e
− 2na2ε2

A2(A+1)2 6 4e
− 2na2ε2

max(1,A2)(A+1)2 .

This leads to

P(‖ck − ck,n‖ > ε) = P(

d∑

j=1

|cjk − c
j
k,n|2 > ε2) 6 d sup

j
P(|cjk − c

j
k,n| > ε/

√
d)

6 4de
− 2na2ε2

dmax(1,A2)(A+1)2 .

Combining all this leads to a bound for the first term of the beginning of the proof:

P

(∣∣∣ 1n
∑n

i=1

∑K
k=1fk(Xi)

(
‖Xi − ck,n‖2 − ‖Xi − ck‖2

)∣∣∣ > ε
)

6 P (supk ‖ck,n − ck‖ > ε/(6A))

6 K supk P(‖ck,n − ck‖ > ε/(6A))

6 4dKe
− na2ε2

18dmax(1,A2)A2(A+1)2 .

Now we combine the probabilities for the first and the second term from the beginning of the proof

using a union bound to get

P(|WSSn(f)−WSS(f)| > ε) 6 4dKe
− na2ε

18dmax(1,A2)A2(A+1)2 + 2e−
8nε2

A4 .

We conclude the proof with the same argument as in Lemma 8.5. �

LEMMA 8.12 (Condition (3) for WSS). Assume that supp P ⊂ B(0, A) then WSS satisfies

Condition (3) of Theorem 8.2.

PROOF. Let f ∈ F , g ∈ F̃n. We begin with the following inequality, which can be seen

by splitting the expectation in the part where {f = g} and {f 6= g} and using the fact that
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supp P ⊂ B(0, A):

|WSS(f)−WSS(g)| = |E∑K
k=1fk(X)‖X − ck(f)‖2 − gk(X)‖X − ck(g)‖2|

6 4A2d(f, g) +
∫
{f=g}

∑K
k=1fk(X)

(
‖X − ck(f)‖2 − ‖X − ck(g)‖2

)
.

For the second term we have already seen in the proof of the previous lemma that ‖X− ck(f)‖2−
‖X − ck(g)‖2 6 6A‖ck(f)− ck(g)‖. So for the moment we have

|WSS(f)−WSS(g)| 6 4A2d(f, g) + 6A sup
k
‖ck(f)− ck(g)‖.

Now we want to bound the expression ‖ck(f) − ck(g)‖. First of all, observe that |Efk(X) −
gk(X)| 6 d(f, g) and ‖Efk(X)X − gk(X)X‖ 6 Ad(f, g).

In case Egk(X) 6= 0 we have

‖ck(f)− ck(g)‖ =
‖Egk(X)Efk(X)X − Efk(X)Egk(X)X‖

Efk(X)Egk(X)

6
‖Egk(X) (Efk(X)X − Egk(X)X) ‖+ ‖ (Egk(X)− Efk(X)) Egk(X)X‖

Efk(X)Egk(X)

6
Egk(X)‖Efk(X)X − gk(X)X‖+AEgk(X)|Egk(X)− fk(X)|

Efk(X)Egk(X)

6
2A

Efk(x)
d(f, g)

6
2A

a
d(f, g).

On the other hand, in case Egk(X) = 0 we also have Egk(X)X = 0 (as gk is a non-negative

function and |X| is bounded by A). This leads to

‖ck(f)− ck(g)‖ = ‖Efk(X)X

Efk(X)
− Egk(X)X

Egk(X)
‖ = ‖Efk(X)X

Efk(X)
‖ 6

A

a
d(f, g) 6

2A

a
d(f, g).

Combining all results leads to

|WSS(f)−WSS(g)| 6 4A2(1 + 3/a)d(f, g)

which proves the lemma. �

LEMMA 8.13 (Condition (1) for Mod). If m2 log n/n→ 0, then Mod satisfies Condition (1)

of Theorem 8.2.

PROOF. Let f ∈ f̃ . Using McDiarmid inequality one can prove

P(|
K∑

k=1

1

n(n− 1)

∑

i6=j
fk(Xi)fk(Xj)s(Xi, Xj)−

K∑

k=1

Efk(X)fk(Y )s(X,Y )| > ε) 6 2e−
nε2

2C2K2 .

Now for ease of notation let

Qn(f) =
1

n(n− 1)3

K∑

k=1

∑

i6=j
fk(Xi)fk(Xj)

∑

l,l 6=i
s(Xi, Xl)

∑

l,l 6=j
s(Xj , Xl),

Q̃n(f) =
1

n(n− 1)

K∑

k=1

∑

i6=j
fk(Xi)fk(Xj)

∫
s(Xi, Z)dP(Z)

∫
s(Xj , Z)dP(Z),

Q(f) =
K∑

k=1

∫ ∫
fk(X)fk(Y )

∫
s(X,Z)dP(Z)

∫
s(Y,Z)dP(Z)dP(X,Y ).
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If we have an exponential bound for P(|Qn(f)−Q(f)| > ε) then with the above bound we would

have an exponential bound for P(|Modn(f)−Mod(f)| > ε). Thus with the same argument than

the one at the end of Lemma 8.5 the current lemma will be proved.

First note that

P(|Qn(f)−Q(f)| > ε) 6 P(|Qn(f)− Q̃n(f)| > ε/2) + P(|Q̃n(f)−Q(f)| > ε/2).

Moreover EQ̃n(f) = Q(f) and thus with McDiarmid one can prove that

P(|Q̃n(f)−Q(f)| > ε) 6 2e
nε2

2C4K2 .

The next step is to use the fact that for real numbers a, b, an, bn ∈ B(0, C),

|ab− anbn| = |ab− anb+ anb− anbn| 6 C(|a− an|+ |b− bn|).
This implies the following inequalities:

|Qn(f)− Q̃n(f)|

6
K

n(n− 1)

∑

i6=j

∣∣∣∣∣∣
1

(n− 1)2

∑

l,l 6=i
s(Xi, Xl)

∑

l,l 6=j
s(Xj , Xl)−

∫
s(Xi, Z)dP(Z)

∫
s(Xj , Z)dP(Z)

∣∣∣∣∣∣

6 2CK sup
i

∣∣∣∣∣∣
1

n− 1

∑

l,l 6=i
s(Xi, Xl)−

∫
s(Xi, Z)dP(Z)

∣∣∣∣∣∣
.

Hence the following:

P(|Qn(f)− Q̃n(f)| > ε) 6 P(sup
i
| 1

n− 1

∑

l,l 6=i
s(Xi, Xl)−

∫
s(Xi, Z)dP(Z)| > ε/(2CK))

6 n sup
i

P(| 1

n− 1

∑

l,l 6=i
s(Xi, Xl)−

∫
s(Xi, Z)dP(Z)| > ε/(2CK)).

Now to bound the last term we condition on Xi and use the McDiarmid inequality. Then taking

the expectation yields the exponential bound:

P(| 1

n− 1

∑

l,l 6=i
s(Xi, Xl)−

∫
s(Xi, Z)dP(Z)| > ε/(2CK))

= E(P(| 1

n− 1

∑

l,l 6=i
s(Xi, Xl)−

∫
s(Xi, Z)dP(Z)| > ε/(2CK)|Xi))

6 E(2e−
nε2

2C4K2 )

= 2e−
nε2

2C4K2 .

All in all we proved that

P(|Modn(f)−Mod(f)| > ε) 6 2e−
nε2

8C2K2 + 2(n+ 1)e−
nε2

32C2K2 .

The n in front of the exponential obviously does not matter for the limit, see end of the proof of

Lemma 8.5. �

LEMMA 8.14 (Condition (3) for Mod). Mod satisfies Condition (3) of Theorem 8.2.
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PROOF. Let f ∈ F , g ∈ F̃n. Following the proof of Lemma 8.6 we have:

|Mod(f)−Mod(g)| 6
K∑

k=1

∫ ∫

({f=g}2)c
(C + C2)

= K(C + C2)(1− (1− d(f, g))2)
6 2K(C + C2)d(f, g).

�

The Proofs of the Convergence Rates in Theorems 8.4 and 8.6 The following lemma collects

all the bounds given in the previous proofs for WSS . Whenever possible, we used the one-sided

McDiarmid inequality.

LEMMA 8.15. Assume that supp P ⊂ B(0, A) for some constantA > 0. Let a∗n := infk Ef∗k (X)−
an. Then a∗n → a∗ := infk Ef∗k (X)− a > 0. For all n and ε > 0 there exists a constant b(a∗n/2)

which tends to a constant C ′ > 0 when n→∞, and a constant b(ε/(8A2(1+3/a))) (see Lemma

8.3 for more details about b) such that the following holds true

P(|WSS(fn)−WSS(f∗)| > ε)

6 2Km+1(2n)(d+1)m2

(
4dKe

− na2ε
616dmax(1,A2)A2(A+1)2 +2e

− nε2

32A4

1−4dKe
− na2ε

308dmax(1,A2)A2(A+1)2 −2e
− nε2

8A4

+ Ke−
n(an−a)2

8

1−e−
n(an−a)2

2

+ Ke−
na∗n

2

32

1−e−
na∗n

2

8

)

+4K
a∗n
e−mb(a

∗
n/2) + (16A2(1 + 3/a)/ε)e−mb(ε/(8A

2(1+3/a))).

Proof of Theorem 8.4. First we take care of the last two terms. There exists N ′ which depends

on the rate of convergence of an and on a∗ such that for n > N ′ we have

a∗n 6 a∗/2.

This implies b(a∗n/2) 6 b(a∗/4) (see Lemma 8.3 for details). Now letC ′
1 := b(ε/(8A2(1+3/a)))

and C ′
2 := b(a∗/4). Then for n > N ′ we have:

4K

a∗n
e−mb(a

∗
n/2) + (16A2(1 + 3/a)/ε)e−mb(ε/(8A

2(1+3/a)))

6 8Ka∗e−C
′
2m + (16A2(1 + 3/a)/ε)e−C

′
1m

6 C1e
−C2m

with

C1 := max(8Ka∗; 16A2(1 + 3/a)/ε) and C2 := min(C ′
1;C

′
2).

C2 is a positive constant which depends on a, a∗, A, ε and P. C1 depends on K, a, a∗, ε and A.

Since we assume n(an− a)2 →∞ there exists N ′′ which depends on the rate of convergence

of an and on a∗ such that n > N ′′ implies:

e−
n(an−a)2

8 6 1/2 and e−
na∗n
32 6 e−

n(an−a)2

8 .

This means that for n > N ′′ :

Ke−
n(an−a)2

8

1− e−n(an−a)2

2

+
Ke−

na∗n
2

32

1− e−
na∗n

2

8

6 4Ke−
n(an−a)2

8 .
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Finally let N = max(N ′, N ′′) and

C3 :=
8dK

1− 4dKe
− Na2ε

308dmax(1,A2)A2(A+1)2 − 2e−
Nε2

8A4

C4 := min(
a2

616dmax(1, A2)A2(A+ 1)2
;

1

32A4
).

Since ε 6 1 we have with these notations for n > N :

4dKe
− na2ε

616dmax(1,A2)A2(A+1)2 + 2e−
nε2

32A4

1− 4dKe
− na2ε

308dmax(1,A2)A2(A+1)2 − 2e−
nε2

8A4

6 (C3/2)e−C4ε2n.

All in all Theorem 8.4 is proved. �

The Proof of Theorem 8.6 works analogously, we just replace the above lemma by to follow-

ing one:

LEMMA 8.16. Assume that the similarity function s is bounded byC > 0. Let a∗n := infk vol(f∗k )−
an. Then a∗n → infk vol(f∗k ) − a > 0. For all n and ε > 0 there exists a constant b(a∗n/(2S))

which tends to a constant C ′ > 0 when n→∞, and a constant b(aε/(8SK)) (see Lemma 8.3 for

more details about b) such that the following holds true

P(|Ncut(fn)−Ncut(f∗)| > ε)

6 2Km+1(2n)(d+1)m2

(
4e

− na2ε2

2048C2K2

1−4Ke
− na2ε2

512C2K2

+ e
−
n(an−a)2

32C2

1−e−
n(an−a)2

8C2

+ e
−
na∗n

2

128C2

1−e−
na∗n

2

32C2

)

+4CK
a∗n

e−mb(a
∗
n/(2C)) + 16CK

aε e−mb(aε/(8CK)).



CHAPTER 9

How the initialization affects the stability of the k-means algorithm

We investigate the role of the initialization for the stability of the k-means clustering algo-

rithm. As opposed to other papers, we consider the actual k-means algorithm and do not ignore its

property of getting stuck in local optima. We are interested in the actual clustering, not only in the

costs of the solution. We analyze when different initializations lead to the same local optimum,

and when they lead to different local optima. This enables us to prove that it is reasonable to select

the number of clusters based on stability scores.
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This chapter is a joint work with Ulrike Von Luxburg and Marina Meila.

1. Introduction

Stability is a popular tool for model selection in clustering, in particular to select the number

k of clusters. The general idea is that the best parameter k for a given data set is the one which

leads to the “most stable” clustering results. While model selection based on clustering stabil-

ity is widely used in practice, its behavior is still not well-understood from a theoretical point of

view. A recent line of papers discusses clustering stability with respect to the k-means criterion

in an idealized setting [Ben-David et al., 2006, 2007, Shamir and Tishby, 2008a, Ben-David and

von Luxburg, 2008, Shamir and Tishby, 2008b,c]. It is assumed that one has access to an ideal

algorithm which can globally optimize the k-means criterion. For this perfect algorithm, results

on stability are proved in the limit of the sample size n tending to infinity. However, none of these

results applies to the k-means algorithm as used in practice: they do not take into account the

problem of getting stuck in local optima. In this chapter we try to overcome this shortcoming. We

study the stability of the actual k-means algorithm rather than the idealized one.
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a. b.

Figure 1: Different initial configurations and the corresponding outcomes of the k-means algo-

rithm. Figure a: the two boxes in the top row depict a data set with three clusters and four initial

centers. Both boxes show different realizations of the same initial configuration. As can be seen

in the bottom, both initializations lead to the same k-means clustering. Figure b: here the initial

configuration is different from the one in Figure a, which leads to a different k-means clustering.

Our analysis theoretically confirms the following intuition. Assume the data set has K well-

separated clusters, and assume that k-means is initialized with K ′ > K initial centers. We conjec-

ture that when there is at least one initial center in each of the underlying clusters, then the initial

centers tend to stay in the clusters they had been placed in.

Consequently, the final clustering result is essentially determined by the number of initial

centers in each of the true clusters (which we call the initial configuration), see Figure 1 for an

illustration. In particular if one uses an initialization scheme which has the desired property of

placing at least one center in each cluster with high probability, then the following will hold: If

K ′ = K, we have one center per cluster, with high probability. The configuration will remain

the same during the course of the algorithm. If K ′ > K, different configurations can occur.

Since different configurations lead to different clusterings we obtain significantly different final

clusterings depending on the random initialization, in other words we observe instability (w.r.t

initialization) .

Note that our argument does not imply stability or instability for K ′ < K. As we have less

initial centers than clusters, for any initialization scheme there will be some clusters with no ini-

tial center. In this setting centers do move between clusters, and this cannot be analyzed without

looking at the actual positions of the centers. Actually, as can be seen from examples, in this case

one can have either stability or instability.

The main point of this chapter is that the arguments above can explain why the parameter k

selected by stability based model selection is often the true number of clusters, under the assump-

tion that the data set consists of well separated clusters and one uses an appropriate initialization

scheme.

Even though the arguments above are very intuitive, even individual parts of our conjecture

turn out to be surprisingly hard. In this chapter we only go a first step towards a complete proof,

considering mixtures of Gaussians in one dimension. For a mixture of two Gaussians (K = 2)

we prove that the k-means algorithm is stable for K ′ = 2 and instable for K ′ = 3. The proof

technique is based on our configuration arguments outlined above. We also provide some prelim-

inary results to study the general case, that is when the data space is Rd and we do not make any

parametric assumption on the probability distribution. Then we have a closer look at initialization

schemes for k-means, when K ′ > K. Is there an initialization scheme that will place at least

one center in each true cluster w.h.p? Clearly, the naive method of sampling K ′ centers from the
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data set does not satisfy this property except for very small K. We study a standard but not naive

initialization scheme and prove that it has the desirable property we were looking for.

Of course there exist numerous other papers which study theoretical properties of the actual

k-means algorithm. However, these papers are usually concerned with the value of the k-means

objective function at the final solution, not with the position of the final centers. As far as we know,

this work is the first one which analyzes the “regions of attractions” of the different local optima of

the actual k-means algorithm and derives results on the stability of the k-means clustering itself.

2. Notation and assumptions

In the following we assume that we are given a set of n data pointsX1, ..., Xn ∈ R which have

been drawn i.i.d. according to some underlying distribution P. For a center vector c = (c1, ..., cK′)

with ci ∈ Rd we denote the cluster induced by center ck with Ck(c). The number of points in this

cluster is denotedNk(c). The clustering algorithm we study in this chapter is the standard k-means

algorithm. We denote the initial centers by c<0>
1 , ..., c<0>

K′ with c<0>
i ∈ R, and the centers after

step t of the algorithm as c<t>1 , ..., c<t>K′ . By K we denote the true number of clusters, by K ′ the

number of clusters constructed by the k-means algorithm. It attempts to minimize the k-means

objective function

Wn : RdK′ → R,Wn(c1, ..., cK′) =
1

2

n∑

i=1

min
k=1,..,K′

||ck −Xi||2.

We now restate the k-means algorithm:

Input: X1, ..., Xn ∈ Rd, K ′ ∈ N

Initialize the centers c<0>
1 , ..., c<0>

K′ ∈ Rd

Repeat until convergence:

1. Assign data points to closest centers.

2. Re-adjust cluster means:

(9.1) c<t+1>
k =

1

Nk(c<t>)

∑

i: Xi∈Ck(c<t>)k

Xi

Output: c = (c<final>1 , ..., c<final>K′ ).

Traditionally, the instability of a clustering algorithm is defined as the mean (with respect to

the random sampling of data points) minimal matching distance between two clusterings obtained

on two different set of data points. For the actual k-means algorithm, a second random process

is the random initialization (which has not been taken into account in previous literature). Here

we additionally have to take the expectation over the random initialization when computing the

stability of an algorithm. In this chapter we will derive qualitative rather than quantitative results

on stability, thus we omit more detailed formulas.

In the following we restrict our attention to the simple setting where the underlying distribution

is a mixture of Gaussians on R and we have access to an infinite amount of data from P. In

particular, instead of estimating means empirically when calculating the new centers of a k-means

step we assume access to the true means. In this case, the update step of the k-means algorithm

can be written as

c<t+1>
k =

∫
Ck(c<t>) xf(x)dx
∫
Ck(c<t>) f(x)dx
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where f is the density of the probability distribution P. Results in the finite data case can be

derived by the help of concentrations inequalities. However, as this introduces heavy notation

and our focus lies on the random initialization rather than the random drawing of data points we

skip the details. To further set up notation we denote ϕµ,σ the pdf of a Gaussian distribution

with mean µ and variance σ. We also denote f(x) =
∑K

k=1wkϕµk,σ where K is the num-

ber of Gaussians, the weights wk are positive and sum to one, the means µ1:K = (µ1, . . . , µK)

are ordered, µ1 6 . . . 6 µK . The minimum separation between two Gaussians is denoted by

∆ = mink(µk+1 − µk). For the standard normal distribution we denote the pdf as ϕ and the cdf

as Φ.

3. The level sets approach

In this section we want to prove that if we run the k-means algorithm withK ′ = 2 andK ′ = 3

on a mixture of two Gaussians, then the resulting clustering depends exclusively on the initial

configuration. More precisely if we initialize the algorithm such that each cluster gets at least one

center and the initial centers are “close enough” to the true cluster means, then during the course

of the algorithm the initial centers do not leave the cluster they had been placed in. This implies

stability for K ′ = 2 since there is only one possible configuration satisfying this constraint. On

the other hand for K ′ = 3 we have two possible configurations, and thus instability will occur.

The following function plays an important role in our analysis:

H : R2 → R, H(x, y) = xΦ(−x+ y)− ϕ(−x+ y).

Straightforward computations show that for any µ, σ, α and h one has
∫ h

−∞
(x− µ+ α)ϕµ,σ(x)dx = σH

(
α

σ
,
h+ α− µ

σ

)
.(9.2)

We describe necessary and sufficient conditions to obtain stability results for particular “re-

gions” in terms of the level sets of H .

3.1. Stability in the case of two initial centers. We consider the square Sa = [µ1 − a, µ1 +

a]× [µ2 − a, µ2 + a] in R2. The region Sa is called a stable region if

(9.3) c<0> ∈ Sa ⇒ c<1> ∈ Sa
PROPOSITION 9.1 (Stable region for K ′ = 2). Equation (9.3) is true if and only if the follow-

ing four inequalities are satisfied:

• w1H

„

a

σ
,

∆

2σ

«

+ w2H

„

a + ∆

σ
,

∆

2σ

«

> 0(9.4)

• w1H

„

− a

σ
,

∆

2σ

«

+ w2H

„

−a + ∆

σ
,

∆

2σ

«

6 0(9.5)

• w1H

„

a − ∆

σ
,− ∆

2σ

«

+ w2H

„

a

σ
,

∆

2σ

«

> 0(9.6)

• w1H

„

−a − ∆

σ
,− ∆

2σ

«

+ w2H

„

− a

σ
,− ∆

2σ

«

6 0(9.7)

PROOF. Similar to the proof of Proposition 9.2, see below. �



3. THE LEVEL SETS APPROACH 219

This proposition gives necessary and sufficient conditions for the stability of k-means in the

case K ′ = 2. In the following corollary we show an example of the kind of result we can derive

from Proposition 9.1. Note that the parameters a and ∆ only appear relative to σ. This allows us

to consider an arbitrary σ.

COROLLARY 9.1 (Stability for K ′ = 2). Assume that min(w1, w2) = 0.2 and ∆ = 7σ.

Assume that we have an initialization scheme satisfying:

• with probability at least 1−δ we have one initial center within 2.5σ of µ1 and one within

2.5σ of µ2.

Then k-means is stable in the sense that with probability at least 1 − δ it converges to a solution

with one center within 2.5σ of µ1 and one within 2.5σ of µ2.

PROOF. We simply check numerically that for a = 2.5σ,∆ = 7σ and w1 = 0.2 (we also

check w2 = 0.2) Equations (9.4) - (9.7) are true. Then by Proposition 9.1 we know that Sa is a

stable region which implies the result. �

3.2. Instability in the case of 3 centers. The case of 3 centers gets more intricate. Consider

the prism Ta,b,ε and its symmetric version sym(Ta,b,ε) in R3:

Ta,b,ε ={c ∈ R3 : c1 6 c2 6 c3,

c ∈ [µ1 − a, µ1 + a− ε]× [µ1 − a+ ε, µ1 + a]× [µ2 − b, µ2 + b]}
sym(Ta,b,ε) ={c ∈ R3 : c1 6 c2 6 c3,

c ∈ [µ1 − b, µ1 + b]× [µ2 − a, µ2 + a− ε]× [µ2 − a+ ε, µ2 + a]}.
If we have an initialization scheme such that each cluster gets at least one center and the initial

centers are close enough to the true cluster means, then we initialize either in Ta,b,ε or sym(Ta,b,ε).

Thus, if these regions are stable in the following sense:

(9.8) c<0> ∈ Ta,b,ε ⇒ c<1> ∈ Ta,b,ε
then the global k-means algorithm will be instable, leading either to a clustering in Ta,b,ε or

sym(Ta,b,ε). Expressed in the terms used in the introduction, the algorithm will be initialized

with different configurations and thus be instable.

PROPOSITION 9.2 (Stable region for K ′ = 3). Equation (9.8) is true if and only if all the
following inequalities are satisfied:

•w1H
“ a

σ
,

ε

2σ

”

+ w2H

„

a + ∆

σ
,

ε

2σ

«

> 0(9.9)

•w1H
“−a + ε

σ
,

ε

2σ

”

+ w2H

„

−a + ∆ + ε

σ
,

ε

2σ

«

6 0(9.10)

•w1H

„

a − ε

σ
,
a − b + ∆ − ε

2σ

«

+ w2H

„

a − ε + ∆

σ
,
a − b + ∆ − ε

2σ

«

> w1H
“a − ε

σ
,− ε

2σ

”

+ w2H

„

a − ε + ∆

σ
,− ε

2σ

«

(9.11)

•w1H

„

− a

σ
,
b − a + ∆

2σ

«

+ w2H

„

−a + ∆

σ
,
b − a + ∆

2σ

«

6 w1H
“

− a

σ
,− ε

2σ

”

+ w2H

„

−a + ∆

σ
,− ε

2σ

«

(9.12)
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•w1H

„

b − ∆

σ
,
b − a − ∆ + ε

2σ

«

+ w2H

„

b − ∆

σ
,
b − a − ∆ + ε

2σ

«

6 b/σ − w1∆/σ(9.13)

•w1H

„

−b − ∆

σ
,
a − b − ∆

2σ

«

+ w2H

„

− b

σ
,
a − b − ∆

2σ

«

> −b/σ − w1∆/σ(9.14)

PROOF. (Sketch) Let c<0> ∈ Ta,b,ε. Note that the k-means algorithm in one dimension does

not change the orders of centers, hence c<1>
1 6 c<1>

2 6 c<3>
1 . By the definition of Ta,b,ε, to

prove that after the first step of k-means the centers c<1> are still in Ta,b,ε we have to check

six constraints. Due to space constraints, we only show how to prove that the first constraint

c<1>
1 > µ1 − a is equivalent to Equation (9.9). The other conditions can be treated similarly.

The update step of the k-means algorithm on the underlying distribution readjusts the centers

to the actual cluster means:

c<1>
1 =

1

∫ c<0>
1 +c<0>

2
2

−∞ f(x)

∫ c<0>
1 +c<0>

2
2

−∞
xf(x).

Thus, c<1>
1 > µ1 − a is equivalent to

∫ c<0>
1 +c<0>

2
2

−∞
(x− µ1 + a)f(x) > 0.

Moreover, the function h 7→
∫ h
−∞(x − µ1 + a)f(x) is nondecreasing for h ∈ [µ1 − a,+∞).

Since c<0> ∈ Ta,b,ε we know that (c<0>
1 + c<0>

2 )/2 > µ1 − a + ε/2 and thus the statement

∀c<0> ∈ Ta,b,ε, c11 > µ1 − a is equivalent to

∫ µ1−a+ε/2

−∞
(x− µ1 + a)f(x) > 0.

We can now apply Eq. (9.2) with the following decomposition to get Eq. (9.9):
∫ µ1−a+ε/2

−∞

(x− µ1 + a)f(x)

= w1

∫ µ1−a+ε/2

−∞

(x− µ1 + a)ϕµ1,σ + w2

∫ µ1−a+ε/2

−∞

(x− µ2 + ∆ + a)ϕµ2,σ.

�

A simple symmetry argument allows us to treat the stability of the symmetric prism.

PROPOSITION 9.3. If Ta,b,ε is stable for the pdf f(x) = w1ϕµ1,σ + w2ϕµ2,σ and f̃(x) =

w2ϕµ1,σ + w1ϕµ2,σ, then the same holds for sym(Ta,b,ε).

PROOF. The k-means algorithm is invariant with respect to translation of the real axis as well

as to changes in its orientation. Hence if Ta,b,ε is stable under f (resp. f̃ ), so is sym(Ta,b,ε) under

f̃(x) = w2ϕµ1,σ + w1ϕµ2,σ (resp. f ). �

COROLLARY 9.2 (Instability for K ′ = 3). Assume that min(w1, w2) = 0.2 and ∆ = 14.5σ.

Assume that we have an initialization scheme satisfying:

• with probability at least (1−δ)/2 we have 2 initial centers within 2.5σ of µ1 and 1 initial

center within 2.5σ of µ2
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• with probability at least (1−δ)/2 we have 1 initial centers within 2.5σ of µ1 and 2 initial

centers within 2.5σ of µ2

Then k-means is instable: with probability (1−δ)/2 it will converge to a solution with two centers

within 3.5σ of µ1 and with probability (1− δ)/2 to a solution with two centers within 3.5σ of µ2.

PROOF. We simply check numerically that for a = 3.5σ, b = 2.5σ, ε = σ, ∆ = 14.5σ and

w1 = 0.2 (we also check w2 = 0.2) Equations (9.9) - (9.14) are true. Then by Proposition 9.2 and

Proposition 9.3 we know that T3.5σ,2.5σ,σ and its symmetric sym(T3.5σ,2.5σ,σ) are stable regions

which implies the result. �

4. Towards more general results: the geometry of the solution space of k-means

In the section above we proved by a level set approach that in a very simple setting, if we ini-

tialize the k-means algorithm “close enough” to the true cluster centers, then the initial centers do

not move between clusters. However we would like to obtain this result in a more general setting.

We believe that to achieve this goal in a systematic way one has to understand the structure of the

solution space of k-means. We identify the solution space with the space RdK′
by representing

a set of K ′ centers c1, ..., cK′ ∈ Rd as a point c in the space RdK′
. Our goal in this section is

to understand the “shape” of the k-means objective function on this space. Secondly, we want to

understand how the k-means algorithm operates on this space. That is, what can we say about the

“trajectory” of the k-means algorithm from the initial point to the final solution? For simplicity, we

state some of the results in this section only for the case where the data space is one dimensional.

They also hold in Rd, but are more nasty to write up.

First of all, we want to compute the derivatives of Wn with respect to the individual centers.

PROPOSITION 9.4 (Derivatives of k-means). Given a finite data set X1, ..., Xn ∈ R. For

k, l ∈ {1, ...,K ′} and i ∈ {1, ..., n} consider the hyperplane in RK′
which is defined by

Hk,l,i := {c ∈ RK′
: Xi = (ck + cl)/2}.

Define the set H := ∪K′

k,l=1 ∪ni=1 Hk,l,i. Then we have:

(1) Wn is differentiable on RK′ \H with partial derivatives

∂Wn(c)

∂ck
=

∑

i: Xi∈Ck
(ck −Xi).

(2) The second partial derivatives of Wn on RK′ \H are

∂Wn(c)

∂ck∂cl
= 0 and

∂Wn(c)

∂ck∂ck
= Nk.

(3) The third derivatives of Wn on RK′ \H all vanish.

PROOF. First of all, note that the sets Hk,l,i contain the center vectors for which there exists

a data point Xi which lies on the boundary of two centers ck and cl. Now let us look at the first

derivative. We compute it by foot:

∂Wn(c)

∂ck
= lim
h→0

1

h
(Wn(c1, ..., cK)−Wn(c1, ..., ck + h, ..., cK))

When c 6∈ H we know that no data point lies on the boundary between two cluster centers. Thus,

if h is small enough, the assignment of data points to cluster centers does not change if we replace

ck by ck + h. With this property, the expression above is trivial to compute and yields the first

derivative, the other derivatives follow similarly. �
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A straightforward consequence is as follows:

PROPOSITION 9.5 (k-means does Newton iterations). The update steps performed by the k-

means algorithms are exactly the same as update steps by a Newton optimization.

PROOF. This proposition follows directly from Proposition 9.4, the definition of the Newton

iteration on Wn and the definition of the k-means update step. This fact has also been stated (less

rigorously and without proof) in Bottou and Bengio [1995]. �

Together, the two propositions show an interesting picture. We have seen in Proposition 9.4

that the k-means objective function Wn is differentiable on RK′ \ H . This means that the space

RK′
is separated into many cells with hyperplane boundaries Hk,l,i. By construction, the cells are

convex (as they are intersections of half-spaces). Our finding means that each data set X1, ..., Xn

induces a partitioning of this solution space into convex cells. To avoid confusion, at this point we

would like to stress again that we are not looking at a fixed clustering solution on the data space

(which can be described by cells with hyperplane boundaries, too), but at the space of all center

vectors c. It is easy to see that all centers c within one cell correspond to exactly one clustering of

the data points. As it is well known that the k-means algorithm never visits a clustering twice, we

can conclude that each cell is visited at most once by the algorithm.Within each cell, Wn is qua-

dratic (as the third derivatives vanish). Moreover, we know that k-means behaves as the Newton

iteration. On a quadratic function, the Newton optimization jumps in one step to the minimum of

the function. This means that if k-means enters a cell that contains a local optimum of the k-means

objective function, then the next step of k-means jumps to this local optimum and stops.

Now let us look more closely at the trajectories of the k-means algorithm. The paper by Zhang

et al. [2008] inspired us to derive the following property.

PROPOSITION 9.6 (Trajectories of k-means). Let c<t> and c<t+1> be two consecutive so-

lutions visited by the k-means algorithm. Consider the line connecting those two solutions in

RK′
, and let cα = (1 − α)c<t> + αc<t+1> be a point on this line (for some α ∈ [0, 1]). Then

Wn(c
α) 6 Wn(c

<t>).

PROOF. The following inequalities hold true:

Wn(c
α) =

1

2

K∑

k=1

∑

i∈Ck(cα)

||Xi − cαk ||2

6
1

2

K∑

k=1

∑

i∈Ck(ct)
||Xi − cαk ||2

6
1

2

K∑

k=1

∑

i∈Ck(ct)
α||Xi − ctk||2 + (1− α)||Xi − ct+1

k ||2

6 αWn(c
t) + (1− α)Wn(c

t+1)

For the first and third inequality we used the fact that assigning points in Ck(c) to the center ck is

the best thing to do to minimize Wn. For the second inequality we used that x→ ||x||2 is convex.

The proof is concluded by noting that Wn(c
<t>) 6 Wn(c

<t+1>). �

We believe that the properties of the k-means objective function and the algorithm are the key

to prove more general stability results. However, there is still an important piece missing, as we

are going to explain now. Since k-means performs Newton iterations on Wn, one could expect
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to get information on the trajectories in the configuration space by using a Taylor expansion of

Wn. However, as we have seen above, each step of the k-means algorithm crosses one of the

hyperplanes Hk,l,i on which Wn is non-differentiable. Hence, a direct Taylor expansion approach

on Wn cannot work. On the other hand, surprisingly one can prove that the limit objective func-

tion W := lim 1
nWn is almost surely a continuously differentiable function on RK′

(we omit the

proof). Thus one may hope that one could first study the behavior of the algorithm for W , and

then apply concentration inequalities to carry over the results to Wn. Unfortunately, here we face

another problem: one can prove that in the limit case, a step of the k-means algorithm is not a

Newton iteration on W .

Proposition 9.6 directly evokes a scheme to design stable regions. Assume that we can find

two regions A ⊂ B ⊂ RK′
of full rank and such that

(9.15) max
x∈∂A

Wn(x) 6 min
x∈∂B

Wn(x).

Then, if we initialize in A we know that we will converge to a configuration in B. This approach

sounds very promising. However, we found that it was impossible to satisfy both Equation (9.15)

and the constraint that A has to be ”big enough” so that we initialize in A with high probability.

Finally, we would like to elaborate on a few more complications towards more general results:

• On a high level, we want to prove that if K ′ is slightly larger than the true K, then k-means

is instable. On the other hand, if K ′ gets close to the number n of data points, we trivially

have stability again. Hence, there is some kind of “turning point” where the algorithm is most

instable. It will be quite a challenge to work out how to determine this turning point.

• Moreover, even if we have so many data points that the above problem is unlikely to occur, our

analysis breaks down if K ′ gets too large. The reason is that if K ′ is much bigger than K, then

we cannot guarantee any more that initial centers will be in stable regions. Just the opposite

will happen: at some point we will have outliers as initial centers, and then the behavior of the

algorithm becomes rather unpredictable.

• Finally, consider the case of K ′ < K. As we have already mentioned in the introduction,

in this case it is not necessarily the case that different initial configurations lead to different

clusterings. Hence, a general statement on (in)stability is not possible in this case. This also

means that the tempting conjecture “the true K has minimal stability” is not necessarily true.

5. An initialization algorithm and its analysis

We have seen that one can prove results on clustering stability for k-means if we use a ”good”

initialization scheme which tends to place initial centers in different Gaussians. We now show

that an established initialization algorithm, the PRUNED MINDIAM initialization described in

Figure 2 has this property, i.e it has the effect of placing the initial centroids in disjoint, bounded

neighborhoods of the means µ1:K . This often rediscovered algorithm is credited to Hochbaum

and Shmoys [1985]. In Dasgupta and Schulman [2007] it was analyzed it in the context of the EM

algorithm. Later N.Srebro et al. [2006] used it in experimental evaluations of EM, and it was found

to have a significant advantage w.r.t more naive initialization methods in some cases. While this

and other initializations have been extensively studied in conjunction with EM, we are not aware

of any studies of PRUNED MINDIAM for k-means.

We make three necessary conceptual assumptions. Firstly to ensure that K is well-defined

we assume that the mixture weights are bounded below by a known weight wmin. Assumptions.
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Algorithm PRUNED MINDIAM

Input: wmin, number of centers K ′

(1) Initialize with L random points c<0>
1:L , L computed by (9.19)

(2) Run one step of k-means, that is

(a) To each center c<0>
j assign region C0j , j = 1 : L

(b) Calculate c<1>
1:L as the centers of mass of regions C01:L

(3) Remove all centers c<1>
j for which P [C1j ] 6 p0, where p0 is given by (9.19). We are left with

c<1>
j′ , j′ = 1 : L′.

(4) Choose K ′ of the remaining centers by the MINDIAM heuristic

(a) Select one center at random.

(b) Repeat until K ′ centroids are selected:

Select the centroid c<1>
q that maximizes the minimum distance to the already selected cen-

troids.

Output: the K ′ selected centroids c<1>
k , k = 1 : K ′

Figure 2: The PRUNED MINDIAM initialization

wk > wmin for all k. We also require to know a lower bound ∆ and an upper bound ∆max on the

separation between two Gaussians, and we assume that these separations are “sufficiently large”.

In addition, later we shall make several technical assumptions related to a parameter τ used in

the proofs, which also amount to conditions on the separation. These assumptions shall be made

precise later.

THEOREM 9.1 (PRUNED MINDIAM Initialization). Let f =
∑K

1 wkϕµk,1 be a mixture of K

Gaussians with centers µ1:K , µk 6 µk+1, and unit variance. Let τ ∈ (0, 0.5), δmiss > 0, δimpure
defined in Proposition 9.8. If we run Algorithm PRUNED MINDIAM with any 2 6 K ′ 6 1/wmin,

then, subject to Assumptions 1, 2, 3, 4, 5 (specified later), with probability 1 − 2δmiss − δimpure
over the initialization there exist K disjoint intervals Ãk, specified in Section 5.4, one for each

true mean µk, so that all K ′ centers c<1>
k′ are contained in

⋃
k Ãk and

if K ′ = K, each Ãk will contain exactly one center c<1>
k′ ,(9.16)

if K ′ < K, each Ãk will contain at most one center c<1>
k′ ,(9.17)

if K ′ > K, each Ãk will contain at least one center c<1>
k′ .(9.18)

The idea to prove this result is to show that the following statements hold with high probability.

By selecting L preliminary centers in step 1 of PRUNED MINDIAM, each of the Gaussians obtains

at least one center (Section 5.1). After steps 2a, 2b we obtain “large” clusters (mass > p0) and

“small” ones (mass 6 p0). A cluster can also be “pure” (respectively “impure”) if most of its

mass comes from a single Gaussian (respectively from several Gaussians). Step 3 removes all

“small” cluster centers, but (and this is a crucial step of our argument) w.h.p it will also remove all

“impure” cluster centers (Section 5.2). The remaining clusters are “pure” and “large”; we show

(Section 5.3) that each of their centers is reasonably close to some Gaussian mean µk. Hence,

if the Gaussians are well separated, the selection of final centers c<1>
q in step 4 “cycles through

different Gaussians” before visiting a particular Gaussian for the second time (Section 5.4). The

rest of this section outlines these steps in more details.

5.1. Step 1 of PRUNED MINDIAM. Picking the initial centroids c<0>. We need to pick

a number of initial centers L large enough that each Gaussian has at least 1 center w.h.p. We
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formalize this here and find a value for L that ensures the probability of this event is at least

1−δmiss, where δmiss is a tolerance of our choice. Another event that must be avoided for a “good”

initialization is that all centroids c<0>
j belonging to a Gaussian end up with initial clusters C0

j that

have probability less than p0. If this happens, then after thresholding, the respective Gaussian

is left with no representative centroid, i.e it is “missed”. We set the tolerance for this event to

δthresh = δmiss. Let t = 2Φ(−∆/2) the tail probability of a cluster and Ak the symmetric

neighborhood of µk that has ϕµk,1(Ak) = 1− t.

PROPOSITION 9.7. If we choose

L >

(
ln

1

δmisswmin

)/(
(1− t)wmin

)
and p0 =

1

eL
(9.19)

then the probability over all random samplings of centroids c<0>
1:L that at least one centroid c<0>

j

with assigned mass P [C0
j ] > p0 can be found in each Ak, k = 1 : K, is greater or equal to

1− 2δmiss.

The proof of this result is complicated but standard fare (e.g. Chernoff bounds) and is therefore

omitted.

After steps 1, 2a and 2b of PRUNED MINDIAM are performed, we obtain centers c<1>
1:L situ-

ated at the centers of mass of their respective clusters C1
1:L. Removing the centers of small clusters

follows. We now describe a beneficial effect of this step.

5.2. Step 3 of PRUNED MINDIAM. Thresholding removes impure clusters. We introduce

the concept of purity of a cluster, which is related to the ratio of points from a certain Gaussian

w.r.t to the total probability mass of the cluster. Denote Pk the probability distribution induced by

the k-th Gaussian ϕµk,1.

DEFINITION 9.1. A cluster C is (1−τ)-pure if most of its points come from a single Gaussian,

i.e if wkPk[C] > (1 − τ)P [C], with τ < 1/2 being a positive constant. A cluster which is not

(1− τ)-pure is τ -impure (or simply impure).

The values of τ that we consider useful are of the order 0.001 − 0.02 and, as it will appear

shortly, τ < wmin/2. The purity of a cluster helps in the following way: if a cluster is pure,

then it can be “tied” to one of the Gaussians. Moreover, its properties (like center of mass) will

be dictated by the Gaussian to which it is tied, with the other Gaussians’ influence being limited;

Section 5.3 exploits this idea.

But there will also be clusters that are impure, and so they cannot be tied to any Gaussian.

Their properties will be harder to analyze, and one expects their behavior to be less predictable.

Luckily, impure clusters are very likely small. As we show now, the chance of having an impure

cluster with mass larger than p0 is bounded by a δimpure which we are willing to tolerate.

Because of limited space, we leave out the long and complex rigourous proofs of this result,

and give here just the main ideas. Let Cj = [z1, z2] be a τ -impure cluster, with P [Cj ] > p0, cj
the centroid that generates Cj (not necessarily at its center of mass) and cj−1, cj+1 the centroids of

the adjacent clusters (not necessarily centers of mass). As one can show, even though an impure

cluster contains some probability mass from each Gaussian, in most of this section we only need

consider the two Gaussians which are direct neighbors of C. Let us denote the parameters of these

(consecutive) Gaussians by µ1,2, w1,2.

For the purpose of the proof, we are looking here at the situation after step 2a, thus the cen-

troids cj−1,j,j+1 should be c<0>
j−1,j,j+1, but we renounce this convention temporarily to keep the

notation light. We want to bound the probability of cluster Cj being impure and large. Note that
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Figure 3: Concrete example of a large impure

cluster [z1, z2]; c1, c, c2 represent the consecu-

tive cluster centers c<0>
j−1 , c

<0>
j , c<0>

j+1 . We demon-

strate that if P [z1, z2] > p0 then the interval

[c1, c2] (which is twice its length) must have mass

> p1 >> p0. If L is large enough, having such

a large interval contain a single cj is improbable.

Numerical values: mixture with ∆ = 10, wmin =
0.15, impurity τ([z1, z2]) = 0.07, P [z1, z2] =
0.097, P [c1, c2] = 0.24; using δmiss = 0.02, τ =
0.015 one gets L = 38, p0 = 0.095 <
P [z1, z2], p1 = 0.0105 < P [c1, c2], δimpure =
0.016 >> (1− P [c1, c2])L−1 = 0.00003

    c1  c   c2    
z1 z2

Step 2b of the PRUNED MINDIAM does not affect either of these properties, as it only acts on the

centers.

A simple observation is the following. Since z1 =
cj−1+cj

2 and z2 =
cj+1+cj

2 we have cj+1 −
cj−1 = 2(z2 − z1) = 2∆z. The idea is to show that if an impure region has probability

larger than p0, then the interval [cj−1, cj+1] has probability at least p1, significantly larger than p0.

On the other hand, the probability of sampling from P a single center Cj out of a total of L in an

interval of length 2∆z is P [cj−1, cj+1](1−P [cj−1, cj+1])
L−1 < (1−p1)

L−1. If p1 and L are large

enough, then (1 − p1)
L−1 def

= δimpure will be vanishingly small. We proceed in two steps: first

we find the minimum length ∆z0 of a cluster Cj which is impure and large. Then, we find a lower

bound p1 on the probabability of any interval [c, c + 2∆z0] under the mixture distribution. The

following assumption ensures that the purity 1 − τ is attainable in each Gaussian. Assumptions.

Let γk,k′(x) =
wk′ϕµk′ ,1

(x)

wkϕµk,1(x) (a local purity measure). Then

∑

k′ 6=k
γk,k′

(
Φ−1

(
1

2
+

(1− τ)p0

2wmin

))
6

τ

1− τ .

The next assumption ensures that ∆z0 > 0, i.e it is an informative bound. Assumptions.

d
(

τp0
wmin

)
< 1

2∆.

PROPOSITION 9.8 (Impure clusters are small w.h.p). Let w1, w2 be the mixture weights of two

consecutive Gaussians and define ∆z0 = ∆− d
(
τp0
w1

)
− d

(
τp0
w2

)
,

p1 = w1Φ

(
∆− 2∆z0

2
−

ln w1
w2

∆− 2∆z0

)
+ w2Φ

(
∆− 2∆z0

2
−

ln w2
w1

∆− 2∆z0

)
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and δimpure = (1 − p1)
L−1. Let C0

j , j = 1, . . . , L be the regions associated with c<0>
1:L after step

2a of the PRUNED MINDIAM algorithm. If assumptions 5,5.2,5.2 hold, then the probability that

there exists j ∈ {1, . . . , L} so that P [C0
j ] > p0 and w1P1[C0

j ] > τP [C0
j ], w2P2[C0

j ] > τP [C0
j ] is

at most δimpure. This probability is over the random initialization of the centroids c<0>
1:L .

To apply this proposition without knowing the values of w1, w2 one needs to minimize the

bound p1 over the range w1, w2 > wmin, w2 + w1 6 1 − (K − 2)wmin. This minimum can be

obtained numerically if the other quantities are known.

We also stress that because of the two-step approach, first minimizing ∆z0, then P [c, c +

2∆z0], the bound δimpure obtained is not tight and could be significantly improved.

5.3. The (1−τ)-pure cluster. Now we focus on the clusters that have P [C] > p0 and are (1−
τ)-pure. By Proposition 9.8, w.h.p their centroids are the only ones which survive the thresholding

in step 3 of the PRUNED MINDIAM algorithm. In this section we will find bounds on the distance

|c<1>
j − µk| between Cj’s center of mass and the mean of “its” Gaussian.

We start by listing some useful properties of the standard Gaussian. Denote by r(x) the center

of mass of [x,∞) under the truncated standard Gaussian, and by d(t) the solution of 1−Φ(d) = t,

with 0 < t < 1. Intuitively, d(t) is the cutoff location for a tail probability of t. Note that any

interval whose probability under the standard normal exceeds t must intersect [−d(t), d(t)]. Let

a > 0 (in the following a as to be thought as a small positive constant).

PROPOSITION 9.9. (i) r(x) is convex, positive and increasing for x > 0 (ii) For w ∈ [2a,∞)

the function d(a/w) is convex, positive and increasing w.r.t w, and r(d(a/w)) is also convex,

positive and increasing.

PROPOSITION 9.10. Let C = [z1, z2] be an interval (with z1, z2 possibly infinite), c its center

of mass under the normal distribution ϕµ,1 and P [C] its probability under the same distribution.

If 1/2 > P [C] > p, then |c− µ| 6 r(d(p)) and min{|z1 − µ|, |z2 − µ|} 6 d(p) = −Φ−1(p).

The proofs are straightforward and omitted. Define now wmax = 1 − (K − 1)wmin the

maximum possible cluster size in the mixture and

R(w) = r

[
−Φ−1

(
(1− τ)p0

w

)]
, R̃(w1, w2) = −Φ−1

[
τw1

(1− τ)w2
+ Φ(d(

(1− τ)p0

w1
−∆)

]

In the next proposition, we will want to assume that R̃ > 0. The following assumption is

sufficient for this purpose. Assumptions. τ
wmin

6 1
2 − Φ(−∆/2)

PROPOSITION 9.11 (The (1− τ)-pure cluster). Let cluster C = [z1, z2] with z2 > µk, P [C] >

p0 and wkPk[C] > (1− τ)P [C] for some k, with τ satisfying Assumptions 5.2 and 5.3. Let c, ck
denote the center of mass of C under P, Pk respectively. Then

|ck − µk| 6 R(wk)(9.20)

and, whenever k < K

z2 − µk 6 −R̃(wk, wk+1) 6 −R̃(wmax, wmin)(9.21)

PROPOSITION 9.12 (Corollary). If ck > µk and k < K then

c− µk 6 (1− τ)R(wk) + τ(∆− R̃(wk, wk+1))(9.22)

6 (1− τ)R(wmax) + τ(∆− R̃(wmax, wmin))(9.23)

6 (1− τ)R(wmax) + τ∆(9.24)
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else

µk − c 6 R(wk) 6 R(wmax) c− µk 6 τ(∆− R̃(wk, wk+1))(9.25)

By symmetry, a similar statement involving µk−1, wk−1, µk, wk and c holds when z2 > µk is

replaced by z1 < µk. With it we have essentially shown that an almost pure cluster which is not

small cannot be too far from its Gaussian center µk.

Proof of Proposition 9.11 (9.20) follows from Proposition 9.10. Now for bounding z2, in the

case k < K. Because (1 − τ)P [C] 6 wk (the contribution of Gaussian k to cluster C cannot

exceed all of wk) we have Pk+1[C] 6
τP [C]
wk+1

6
τwk

(1−τ)wk+1
and Pk+1[C] = Φ(z2 − µk+1) −

Φ(z1−µk+1) > Φ(z2−µk+1)−Φ(c1−µk+1) from which the first inequality in (9.21) follows.

The function R̃ is increasing with wk when wk+1 constant or wk+1 = constant−w1, which gives

the second bound. 2

Proof of the corollary First note that we can safely assume z1 > µk. If the result holds for

this case, then it is easy to see that having z1 < µk only brings the center of mass c closer to µk.

c =
wkPk[C]ck +

∑
k′ 6=k wk′Pk′ [C]ck′

P [C] 6 (1− τ)ck + τz2(9.26)

Now (9.22,9.23) follow from Proposition 9.11. For (9.24) Assumption 5.3 assures that R̃ > 0. As

a consequence, this bound is convex in wk. If k = 1 and c1 6 µ1, or k = K and cK > µK then

the second term in the sum (9.26) pulls c1 in the direction of µ1 (respectively cK in the direction

of µK) and we can get the tighter bounds (9.25). 2

In conclusion, we have shown now that if the unpruned center c “belongs” to Gaussian k, then

c ∈ Ãk(wk) = [µk −R−
τ (wk), µk +R+

τ (wk) ]

whith R−
τ (wk) = (1 − τ)R(wk) + τ(µk − µk−1), R

+
τ (wk) = (1 − τ)R(wk) + τ(µk+1 − µk),

R−
τ (w1) = R(w1), and R+

τ (wK) = R(wK).

5.4. Step 4 of PRUNED MINDIAM. Selecting the centers by the MINDIAM heuristic. From

Section 5.2 we know that w.h.p all centroids unpruned at this stage are (1 − τ) pure. We want to

ensure that after the selection in step 4 each Gaussian has at least one c<1>
j near its center. For

this, it is sufficient that the regions Ãk are disjoint, i.e

(µk+1 − µk)− (R+
τ (wk) +R−

τ (wk+1)) > R−
τ (wk) +R+

τ (wk)

(µk+1 − µk)− (R+
τ (wk) +R−

τ (wk+1)) > R−
τ (wk+1) +R+

τ (wk+1)

for all k. Replacing R±
τ (wk) with their definitions and optimizing over all possible w1:K > wmin

and for all ∆µ 6 µk+1 − µk 6 ∆max produces

Ãk = [µk ± (1− τ)R(wmax)± τ∆max]

and Assumptions. (1− 3τ)∆− τ∆max > [3R(wmax) +R(wmin)](1− τ).

6. Simulations

In this section we test our conjecture in practice and run some simulations to emphasize the

different theoretical results of the previous sections. We also investigate whether it is necessary to

look at the stability of k-means with respect to the random drawing of the data set. In the following

when we refer to randomization we mean with respect to the initialization while the resampling

corresponds to the random drawing of the data set.
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Figure 4: Simulation results. First row: data set “two dim four balanced clusters”. Second row:

data set “two dim four imbalanced clusters”. Third row: data set “ten dim ten clusters” (see text

for details).

Setup of the experiments. As distributions we consider mixtures of Gaussians in one, two,

and ten dimensions. Each mixture consists of several, reasonably well separated clusters. We

report the results on three such data sets:

• “Two dim four balanced clusters”: Mixture of four Gaussians in R2 with means (−3.3), (0, 0),

(3, 3), (3,−3); the covariance matrix of all clusters is diagonal with entries 0.2 and 1 on the

diagonal; the mixing coefficients are uniform, that is all clusters have the same weight.

• “Two dim four imbalanced clusters”: As above, but with mixing coefficients 0.1, 0.5, 0.3, 0.1.

• “Ten dim ten clusters”: Mixture of ten Gaussians in R10 with means (i, 0, 0, ...) for i =

1, ..., 10. All Gaussians are spherical with variance 0.05 and mixing coefficients are uniform.

As clustering algorithm we use the standard k-means algorithm with the following initializa-

tions:

• Standard initialization: randomly pick K ′ data points.

• MINDIAM initialization, coincides with Step 5 in Fig. 2.

• PRUNED MINDIAMinitialization, as analyzed in Section 5 (see Fig. 2

• Deterministic initialization: K ′ fixed points sampled from the distribution.

For a range of parameters K ′ ∈ {2, ..., 10} we compute the clustering stability by the follow-

ing protocols:

• Randomization, no resampling: We draw once a data set of n = 100 points from the distribu-

tion. Then we run the k-means algorithm with different initializations.

• Resampling, no randomization: We fix a set of deterministic starting points (by drawing them

once from the underlying distribution). Then we draw 100 data sets of size n = 100 from the

underlying distribution, and run k-means with the deterministic starting points on these data

sets.

• Resampling and randomization: we combine the two previous approaches.
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Then we compute the stability with respect to the minimal matching distance between the

clusters. Each experiment was repeated 100 times, we always report the mean values over those

repetitions.

Note that all experiments were also conducted with different data set sizes (n = 50, 100, 500),

stability was computed with and without normalization (we used the normalization suggested in

Lange et al., 2004), and the k-means algorithm was used with and without restarts. All those vari-

ations did not significantly effect the outcome, hence we omit the plots.

Results. First we evaluate the effect of the different initializations. To this end, we count how

many initializations were “good initializations” in the sense that each true cluster contains at least

one initial center. In all experiments we consistently observe that both the pruned and non-pruned

min diameter heuristic already achieve many good runs if K ′ coincides with K or is only slightly

larger than the true K (of course, good runs cannot occur for K ′ < K). The standard random

initialization does not achieve the same performance. See Figure 4, first column.

Second, we record how often it was the case that initial cluster centers cross cluster borders.

We can see in Figure 4 (second column) that this behavior is strongly correlated with the number

of “good initializations”. Namely, for initialization methods which achieve a high number of good

initializations the fraction of centers which cross cluster borders is very low. Moreover, one can

see in the third column of Figure 4 that centers usually do not cross cluster borders if the initial-

ization was a good one. This coincides with our theoretical results.

Finally, we compare the different protocols for computing the stability: using randomization

but no resampling, using resampling but no randomization, and using both randomization and re-

sampling, cf. right most plots in Figure 4. In simple data sets, all three protocols have very similar

performance, see for example the first row in Figure 4. That is, the stability values computed on

the basis of resampling behave very similar to the ones computed on the basis of randomization,

and all three methods clearly detect the correct number of clusters. Combining randomization and

resampling does not give any advantage. However, on the more difficult data sets (the imbalanced

one and the 10-dimensional one), we can see that resampling without randomization performs

worse than the two protocols with randomization (second and third row of Figure 4). While the

two protocols using randomization have a clear minimum around the correct number of clusters,

stability based on resampling alone fails to achieve this. We never observed the opposite effect in

any of our simulations (we ran many more experiments than reported here). This shows, as we had

hoped, that randomization plays an important role for clustering stability, and in certain settings

can achieve better results than resampling alone.

Finally, in the experiments above we ran the k-means algorithm in two modes: with restarts,

where the algorithm is started 50 times and only the best solution is kept; and without restarts.

The results did not differ much (above we report the results without restarts). This means that in

practice, for stability based parameter selection one can save computing time by simply running

k-means without restarting it many times (as is usually done in practice). From our theory we

had even expected that running k-means without restarts achieves better results than with restarts.

We thought that many restarts diminish the effect of exploring local optima, and thus induce more

stability than “is there”. But the experiments did not corroborate this intuition.
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7. Conclusions and outlook

Previous theoretical work on model selection based on the stability of the k-means algorithm

has assumed an “ideal k-means algorithm” which always ends in the global optimum of the ob-

jective function. The focus was to explain how the random drawing of sample points influences

the positions of the final centers and thus the stability of the clustering. This analysis explicitly

excluded the question when and how the k-means algorithm ends in different local optima. In par-

ticular, this means that these results only have a limited relevance for the actual k-means algorithm

as used in practice.

In this chapter we study the actual k-means algorithm. We have shown that the initialization

strongly influences the k-means clustering results. We also show that if one uses a “good” initial-

ization scheme, then the k-means algorithm is stable if it is initialized with the correct number of

centers, and instable if it is initialized with too many centers. Even though we have only proved

these results in a simple setting so far, we are convinced that the same mechanism also holds in a

more general setting.

These results are a first step towards explaining why the selection of the number of clusters

based on clustering stability is so successful in practice Lange et al. [2004]. From this practical

point of view, our results suggest that introducing randomness by the initialization may be suffi-

cient for an effective model selection algorithm. Another aspect highlighted by this work is that

the situations K ′ < K and K ′ > K may represent two distinct regimes for clustering, that require

separate concepts and methods to be analyzed.

The main conceptual insight in the first part of the chapter is the configurations idea described

in the beginning. With this idea we indirectly characterize the “regions of attraction” of different

local optima of the k-means objective function. To our knowledge, this is the first such character-

ization in the vast literature of k-means.

In the second part of the chapter we study an initialization scheme for the k-means algorithm.

Our intention is not to come up with a new scheme, but to show that a scheme already in use is

“good” in the sense that it tends to put initial centers in different clusters. It is important to realize

that such a property does not hold for the widely used uniform random initialization.

On the technical side, most of the proofs and proof ideas in this section are novel. In very

broad terms, our analysis is reminiscent to that of Dasgupta and Schulman [2007]. One reason

we needed new proof techniques lie partly in the fact that we analyze one-dimensional Gaussians,

whose concentration properties differ qualitatively from those of high dimensional Gaussians. We

loose some of the advantages high dimensionality confers. A second major difference is that k-

means behaves qualitatively differently from EM whenever more than one Gaussian is involved.

While EM weights a point “belonging” to a cluster by its distance to the cluster center, to the

effect that far away points have a vanishing influence on a center cj , this is not true for k-means. A

far-away point can have a significative influence on the center of mass cj , precisely because of the

leverage given by the large distance. In this sense, k-means is a more brittle algorithm than EM, is

less predictible and harder to analyze. In order to deal with this problem we “eliminated” impure

clusters in Section 5.2. Third, while Dasgupta and Schulman [2007] is concerned with finding the

correct centers when K is known, our analysis carries over to the regime when K ′ is too large,

which is qualitatively very different of the former.
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Of course many initialization schemes have been suggested and analyzed in the literature for

k-means (for examples see Ostrovsky et al., 2006, Arthur and Vassilvitskii, 2007). However, these

papers analyze the clustering cost obtained with their initialization, not the positions of the initial

centers.
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1. Concentration Inequalities

We state here all the different concentration inequalities that we use throughout the text. We

start with the celebrated Hoeffding’s inequality (Hoeffding [1963]).

LEMMA 10.1 (Hoeffding’s Inequality). Let X be a real random variable with a 6 X 6 b.

Then for any s ∈ R,

log (E exp(sX)) 6 sEX +
s2(b− a)2

8
.

The second result is a consequence of Lemma 10.1 and Markov’s inequality. It concerns the

concentration of a sum of martingales differences.

THEOREM 10.1 (Hoeffding-Azuma’s inequality for martingales). Let F1 ⊂ · · · ⊂ Fn be a

filtration, andX1, . . . , Xn real random variables such thatXt isFt-measurable, E(Xt|Ft−1) = 0

and Xt ∈ [At, At + ct] where At is a random variable Ft−1-measurable and ct is a positive

constant. Then, for any ε > 0, we have

(10.1) P

( n∑

t=1

Xt > ε
)

6 exp

(
− 2ε2∑n

t=1 c
2
t

)
,

or equivalently for any δ > 0, with probability at least 1− δ, we have

(10.2)

n∑

t=1

Xt 6

√√√√ log(δ−1)

2

n∑

t=1

c2t .

The next result is a refinement of the previous concentration inequality which takes into ac-

count the variance of the random variables. More precisely up to a second order term it replaces

the range (squared) of the random variables by their variances.

THEOREM 10.2 (Bernstein’s inequality for martingales). Let F1 ⊂ · · · ⊂ Fn be a filtration,

andX1, . . . , Xn real random variables such thatXt isFt-measurable, E(Xt|Ft−1) = 0, |Xt| 6 b

for some b > 0 and E(X2
t |Ft−1) 6 v for some v > 0. Then, for any ε > 0, we have

(10.3) P

( n∑

t=1

Xt > ε
)

6 exp

(
− ε2

2nv + 2bε/3

)
,
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and for any δ > 0, with probability at least 1− δ, we have

(10.4)

n∑

t=1

Xt 6
√

2nv log(δ−1) +
b log(δ−1)

3
.

PROOF. Both inequalities come from Result (1.6) of Freedman [1975]. The first inequality

then uses (1 + x) log(1 + x) − x > x2

2+2x/3 , while the other uses Inequality (45) of Audibert

et al. [2009]. This last inequality allows to remove the
√

2 factor appearing in Lemma A.8 of

Cesa-Bianchi and Lugosi [2006]. �

The next concentration inequality was proved by Audibert et al. [2009]. It allows to replace

the true variance by its empirical estimate in Bernstein’s bound.

THEOREM 10.3 (Empirical Bernstein bound). Let X1, . . . , Xn be i.i.d centered real random

variables in [0, b] for some b > 0. Then for any δ > 0 and s ∈ {1, . . . , n}, with probability at

least 1− δ, we have
s∑

t=1

Xt 6
√

2nVs log(3δ−1) + 3 log(3δ−1),

where Vs = 1
s

∑s
t=1

(
Xt − 1

s

∑s
ℓ=1Xℓ

)2
.

The above concentration inequalities were concerned with sums of random variables. There

exists a vast litterature on the extension of these results to more general functionals of a sequence

of random variables, see e.g., Massart [2006]. We cite here a basic result in this direction which

shall be enough for our purposes, namely McDiarmid’s inequality (McDiarmid [1989]).

THEOREM 10.4 (McDiarmid’s inequality). Let X1, . . . , Xn be independent random variables

taking values in a set A. Let g : An → R be measurable and for any 1 6 t 6 n assume that there

exists a positive constant ct such that

sup
x1,...,xn,x′∈A

g(x1, . . . , xn)− g(x1, . . . , xt−1, x
′, xt+1, . . . , xn) 6 ct.

Then

P (|g(X1, . . . , Xn)− Eg(X1, . . . , Xn)| > ε) 6 2 exp

(
− 2ε2∑n

t=1 c
2
t

)
.

2. Information Theory

We recall here some basic definitions and useful lemmas from Information Theory, see e.g.,

Cover and Thomas [1991]. If P and Q are two probability distributions defined over the same

sigma field and such that P is absolutely continuous with respect to Q then we define the Kullback-

Leibler divergence as:

KL(P,Q) =

∫
log

(
dP

dQ

)
dP.

In the case of Bernoulli distributions with parameters p and q in (0, 1) we make a slight abuse of

notations and note:

KL(p, q) = p log
p

q
+ (1− p) log

1− p
1− q .

Here are three useful lemmas to compute bounds on the Kullback-Leibler divergence in dif-

ferent cases.
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LEMMA 10.2 (Pinsker’s inequality). For any measurable set A,

|P(A)−Q(A)| 6
√

1

2
KL(P,Q).

LEMMA 10.3. For any p, q ∈ [0, 1],

2(p− q)2 6 KL(p, q) 6
(p− q)2
q(1− q) .

PROOF. The left hand side inequality is simply Lemma 10.2 for Bernoulli’s random variables.

The right hand side on the other hand comes from log x 6 x− 1 and the following computations:

KL(p, q) = p log

(
p

q

)
+ (1− p) log

(
1− p
1− q

)

6 p
p− q
q

+ (1− p)q − p
1− q

=
(p− q)2
q(1− q) .

�

LEMMA 10.4 (Chain Rule for Kullback-Leibler Divergence). Assume that P and Q are defined

over a finite product set A × B. Let PA,QA (respectively PB,QB) be the marginal distributions

over A (respectively B). Then:

KL(P,Q) = KL(PB,QB) +

∫

B
KL(P(·|A× {b}),Q(·|A× {b}))dPB(b).

3. Probability Theory Lemma

LEMMA 10.5 (A Maximal Law of Large Numbers). Let X1, X2, . . . be a sequence of real

random variables with positive mean and satisfying almost surely

(10.5) lim
n→+∞

1

n

n∑

t=1

Xt = µ.

Then we have almost surely:

(10.6) lim
n→+∞

1

n
max

16s6n

s∑

t=1

Xt = µ.

PROOF. Let Sn =
∑n

t=1Xt andMn = max16i6n Si. We need to prove that limn→+∞ Mn
n =

µ. First of all we clearly have almost surely:

lim inf
n→+∞

Mn

n
> lim inf

n→+∞
Sn
n

= µ.

Now we need to upper bound the lim sup. Let ϕ : N → N be an increasing function such that

ϕ(n) is the largest integer smaller than n satisfying Mn = Sϕ(n). Thus

Mn

n
6
Sϕ(n)

ϕ(n)
.

If ϕ(n)→∞ then one can conclude from (10.5) that

lim sup
n→+∞

Sϕ(n)

ϕ(n)
6 µ.

On the other hand if ϕ(n) 6 N ∀n then for any T > 0 we have
∑T

t=N+1Xt < 0 and this event

has probability zero since P(Xt < 0) < 1 (otherwise µ would not be positive). �
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S. Filippi, O. Cappé, and A. Garivier. Regret bounds for opportunistic channel access. Available

on Arxiv, 2009.

H. Finnsson and Y. Bjornsson. Simulation-based approach to general game playing. In Proceed-

ings of the Twenty-Third AAAI Conference on Artificial Intelligence, pages 259–264, 2008.

D. Foster and R. Vohra. Calibrated learning and corellated equilibrium. Games and Economic

Behavior, 21:40–55, 1997.

C. Fraley and A. Raftery. How many clusters? which clustering method? answers via model-based

cluster analysis. Comput. J, 41(8):578–588, 1998.

D. A. Freedman. On tail probabilities for martingales. The Annals of Probability, 3:100–118,

1975.

J. Fritz. Distribution-free exponential error bound for nearest neighbor pattern classification. IEEE

Trans. Inf. Th., 21(5):552 – 557, 1975.

M. Garey, D. Johnson, and H. Witsenhausen. The complexity of the generalized Lloyd - max

problem (corresp.). IEEE Trans. Inf. Theory, 28(2):255–256, 1982.

A. Garivier and E. Moulines. On upper-confidence bound policies for non-stationary bandit prob-

lems. ArXiv e-prints, 2008.

S. Gelly and D. Silver. Achieving master level play in 9× 9 computer go. In Proceedings of AAAI,

pages 1537–1540, 2008.

S. Gelly and D. Silver. Combining online and offline knowledge in UCT. In Proceedings of the

24th international conference on Machine learning, pages 273–280. ACM New York, NY, USA,

2007.

S. Gelly, Y. Wang, R. Munos, and O. Teytaud. Modification of UCT with patterns in Monte-Carlo

go. Technical Report RR-6062, INRIA, 2006.



242 BIBLIOGRAPHY

J. C. Gittins. Multi-armed Bandit Allocation Indices. Wiley-Interscience series in systems and

optimization. Wiley, Chichester, NY, 1989.

P. Grünwald. The minimum description length principle. MIT Press, Cambridge, MA, 2007.

S. Guattery and G. Miller. On the quality of spectral separators. SIAM Journal of Matrix Anal.

Appl., 19(3):701 – 719, 1998.

A. György, T. Linder, G. Lugosi, and G. Ottucsák. The on-line shortest path problem under partial

monitoring. J. Mach. Learn. Res., 8:2369–2403, 2007.

J. Hartigan. Consistency of single linkage for high-density clusters. JASA, 76(374):388 – 394,

1981.

J. Hartigan. Statistical theory in clustering. Journal of classification, 2:63 – 76, 1985.

D. Hochbaum and D. Shmoys. A best possible heuristic for the k-center problem. Mathematics of

Operations Research, 10(2):180–184, May 1985.

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the

American Statistical Association, 58:13–30, 1963.

J.-F. Hren and R. Munos. Optimistic planning for deterministic systems. In European Workshop

on Reinforcement Learning. 2008.

D. Hsu, W.S. Lee, and N. Rong. What makes some POMDP problems easy to approximate? In

Neural Information Processing Systems, 2007.

M. Inaba, N. Katoh, and H. Imai. Applications of weighted Voronoi diagrams and randomization

to variance-based k-clustering. In Proceedings of the 10th Annual Symposium on Computational

Geometry, pages 332–339. ACM Press, Stony Brook, USA, 1994.

P. Indyk. Sublinear time algorithms for metric space problems. In Proceedings of the thirty-first

annual ACM Symposium on Theory of Computing (STOC), pages 428–434. ACM Press, New

York, 1999.

S. Jegelka. Statistical learning theory approaches to clustering. Master’s thesis, University of
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Jeux de Bandits et Fondations du Clustering

Résumé : Ce travail de thèse s’inscrit dans le domaine du machine learning et concerne plus

particulièrement les sous-catégories de l’optimisation stochastique, du online learning et du clus-

tering. Ces sous-domaines existent depuis plusieurs décennies mais ils ont tous reçu un éclairage

différent au cours de ces dernières années. Notamment, les jeux de bandits offrent aujourd’hui

un cadre commun pour l’optimisation stochastique et l’online learning. Ce point de vue conduit

à de nombreuses extensions du jeu de base. C’est sur l’étude mathématique de ces jeux que se

concentre la première partie de cette thèse. La seconde partie est quant à elle dédiée au clustering

et plus particulièrement à deux notions importantes: la consistance asymptotique des algorithmes

et la stabilité comme méthode de sélection de modèles.

Mots-clés : online learning, optimisation stochastique, jeux de bandits, apprentissage séquentiel,

regret minimax, prédiction avec information incomplète, bandits avec infinité d’actions, regret non

cumulé, exploration efficace, clustering, consistance, stabilité.

—————————————-

Bandits Games and Clustering Foundations

Abstract: This thesis takes place within the machine learning theory. In particular it focuses on

three sub-domains, stochastic optimization, online learning and clustering. These subjects exist for

decades, but all have been recently studied under a new perspective. For instance, bandits games

now offer a unified framework for stochastic optimization and online learning. This point of view

results in many new extensions of the basic game. In the first part of this thesis, we focus on the

mathematical study of these extensions (as well as the classical game). On the other hand, in the

second part we discuss two important theoretical concepts for clustering, namely the consistency

of algorithms and the stability as a tool for model selection.

Keywords: online learning, stochastic optimization, bandits games, sequential learning, minimax

regret, prediction with limited feedback, bandits with infinitely many arms, non-cumulative regret,

efficient exploration, clustering, consistency, stability.
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