N

N

Black-Box identification of automated discrete event
systems
Ana Paula Estrada Vargas

» To cite this version:

Ana Paula Estrada Vargas. Black-Box identification of automated discrete event systems. Other.
Ecole normale supérieure de Cachan - ENS Cachan; Centro de Investigacién y de Estudios Avanzados
del Instituto Politécnico Nacional (Mexico), 2013. English. NNT: 2013DENS0006 . tel-00846194

HAL Id: tel-00846194
https://theses.hal.science/tel-00846194
Submitted on 18 Jul 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00846194
https://hal.archives-ouvertes.fr

Q LROE VS

Sciences Pratiques € A € H A N

Cinvestav

ENSC-

2013 /435

THESE DE DOCTORAT
DE L’ECOLE NORMALE SUPERIEURE DE CACHAN - FRANCE
et

DU CINVESTAY, UNITE DE GUADALAJARA - MEXIQUE

Présentée par

Mademoiselle Ana Paula ESTARDA VARGAS

pour obtenir le grade de

DOCTEUR DE L’ECOLE NORMALE SUPERIEURE DE CACHAN
Domaine : Electronique — Electrotechnique — Automatique
et de
DOCTEUR és SCIENCES DU CINVESTAV

Sujet de la theése :

Black-Box identification of automated discrete event systems

Identification “boite-noire’” des systémes automatisés a événements

discrets

These présentée et soutenue a Guadalajara le : 20 février 2013 devant le jury composé de :

A. Ramirez Trevino Prof. au Cinvestav, Guadalajara - Mexique Président
H. Alla Prof. a 'univ. Joseph Fourier, Grenoble - France Rapporteur
C. Seatzu Prof. a 'Univ. de Cagliari, Italie Rapporteur
J.-). Lesage Prof. a 'ENS de Cachan, france Directeur de These
E. Lopez Mellado Prof. au Cinvestav, Guadalajara - Mexique Directeur de These

Nom du Laboratoire : LURPA
ENS CACHAN/EA 1385
61, avenue du Président Wilson, 94235 CACHAN CEDEX (France)

Acknowledgement

The research work in thesis has been the result of collaboration between
CINVESTAYV Unidad Guadalajara and LURPA of ENS de Cachan.

I want to thank to both institutions for the opportunity of developing my formation in
the corresponding Doctoral programs. This research work has been possible thanks to
financial support of CONACYT that provided my scholarship, and also the Région lle
de France.

I am very grateful with my advisors Dr. Luis Ernesto Lopez Mellado and Prof. Jean-
Jacques Lesage for their aid and support during the development of this work. | really
appreciate all the knowledge, assistance, and guidance they gave me throughout the
thesis project and for their support during this collaboration.

One important component of this research has been provided by the working
environment in both Institutions.

I want to thank my Professors and my colleagues from CINVESTAYV, specially to F.
Ramos, M. Siller, R. Gonzalez, A. Lopez, A. Lutz, A. Raymundo, B. Gudifio, C.
Boyain, E. Salvador, F. Lombera, G. Olascuaga, G. Torres, K. Jaime, K Rios, L.
Gutiérrez, L. Real, M. Trejo, M. Diaz, S. Jauregui, V. Fernandez for their valuable
company and their disposition to help every time | needed something.

I am also grateful with to my co-workers from LURPA for their patience and support
during my stays at Cachan: A. Guiot, A. Zuquete, D. Aza-Vallina, F. Abecassis, G.
Merle, M. Caux, M. Zhang, N. Audfray, P.-A. Brameret, P.-Y. Chaux, S. Benichou, T.
Lemattre, V. Lacharnay. | thank specially to B. Denis, J.-M. Roussel, A. Guignard, and
M. Danancher, for their help during the experimental work.

At last but not the least, thanks to the reviewers of this thesis and jury members: C.
Seatzu, H. Alla, A. Ramirez, F. Ramos for their valuable comments that helped to
improve this thesis manuscript.

Esta tesis esta dedicada a mis padres
Ma. Graciela Guadalupe Vargas Serrano y Pedro Arturo Estrada Quezada.

Gracias por ser el viento bajo mis alas.

This thesis is dedicated to my parents
Ma. Graciela Guadalupe Vargas Serrano and Pedro Arturo Estrada Quezada.
Thank you for being the wind beneath my wings.

Index

INEFOAUCTION.....eiieicee bbb bbbt n e 1
Chapter 1. Identification methods of Discrete Event Systems...........cccccooevveieniennnnn, 5
1.1. Methods derived from language theory........ccccceveiiiiiieiene e 6
1.2. Recent approaches for DES Identificationcccccevvvieveeiescienn e 7
1.2.1. Progressive identifICatiON...........ccoveiiiiiiriiiiieieeee e 7
1.2.2. Parametric automata identifiCation.............cccoviiirieici i 10
1.2.3. Parametric automata distributed identification.............ccccooeriieieinininincieens 13
1.2.4. Integer Linear Programming Language identificationccceoviviiniinincnncnns 14
1.2.5. Integer Linear Programming ldentification............c.c.ccooeviviviicnini s 16
1.2.6. Neural Networks approach.........cccccvivririririeieieisisese e 19
1.2.7. Parametric interpreted Petri net identification.............cccoccviiiciiiii e 22

1.3. Process mining apPrOaCheS.coiuaueiiriieiie et 24
1.3.1. Probabilistic WOrkflow mining..........cccooiiiiiiiiiiiceee s 24
1.3.2. Alfa-algorithm. ..o 26

1.4. DISCUSSTON.....cuteiteetie ettt sttt sttt st b et be et e st e beebe e s e sbe et e sneenne e 29
1.5. CONCIUSION ... bbb 30
Chapter 2. Identification of automated Discrete Event Systems..........ccccceevvvennenne. 31
2.1. Problem StateMEeNtooiiii s 32
2.1.1. Basics 0N PLC teChNOIOQYoovvivieiiiiicie et 32
2.1.2. EXperimental CONSIAINTSccooiiiiiiiiiieierieieee e 33

2.2. Input data and oUtPUt MOAELcccveiviiieiier e 34
2.3. ASSUMPLIONS ...ttt e e e e s e e reeste et e sneesreeneesneenneens 35
24, DISCUSSION....cuteitee ittt sttt sttt b et b et e st e b e besne e b e e neesneenne e 35
2.5. CONCIUSION ... bbbt 39
Chapter 3. A Stepwise Identification Method.............cccoooeiiiiiiici e 41
3.1 Overview of the Methodcociiiiii s 42
3. L1 INILIANIZALION SEAGEe.veeveeeeieeieeiee e 42
3.1.2. BUilding eVENtS and traCES........cceiveiueriiieiteiteesie ettt sre s sre e ere s 43
3.1.3. Building internal MOdel............cocooiiiiiiie e 43
3.1.4. PN structure SIMPIfiCatioN.........ccccveiiiiiiici e 44
3.1.5. Adding interpretation and SIMplfyingcccccooiiiiiiniiiccce e 45

3.2. DISCUSSION. ..ttt bbbttt bbbttt n e 48

3.3. (000] a1¢] (V1] o] o U 54

Chapter 4. A statistical identification method............c.ccoooeiiiiiii 55

4.1. General deSCrIPLION.......cciviiieiecie e ens 56
4110 MOTIVALION ..ttt 56
B.1.2. OVEIVIEW .ottt bbbttt 56
413, EVENE Y PBS et 57

4.2. Computing the observable behaviour ... 58
421, Outline Of the SEEP L....ccvecie i 58
4.2.2. EIEMENTANY BVENTScuiiiiiiieie e 58
4.2.3. Output Event Firing FUNCLIONSc.cov i 60
424, FINAING CAUSAIITYcvviviieiiiiiie e 61
4.25. Determining the firing FUNCLIONScooviiieiiiic e 64
4.2.6. Construction of the observable inCidence MatriXc.cooevvrivninninienscen, 68

4.3. Determining the non observable PN model............ccccooiininiiiiieeee, 71
4.3.1. Problem re-StatemeNnt...........ccoi i 71
4.3.2. DyNamiCal PrOPEITIEScceriereieiiiieiisie st 73
4.3.3. Causal and concurrency relationships.........ccccceveiiiiiiiiiie s 74
4.3.4. Building the non-observable PN ... 79
4.3.5. Places VErfICATIONcceiiiiiiiiiiiie i 81
4.3.6. TESLEXAMPIES....ciiieicie et e e nes 85

44, CONCIUSION ... 88

Chapter 5. Implementation and experimental testsccccocvvvevieiieiieere e 89

5.1. Software to0lS deSCHPLIONoiiiiieie e s 90

5.2. Interactive Training System for PLC.........ccooiiiiiiineeee e, 92
5.2.1. Application of the stepwise Methodcccoviiiiiiiiiiiiee e 93
5.2.2. Application of the statistical Method...........ccccoiviiiiiiii e 95

5.3. ASSEMDBIY SYSTEM ..ot 99
5.3.1. Application of the stepwise Method............cccceviiieiiiicic e, 100
5.3.2. Application of the statistical Method.............ccccooriiiiiniicc e 103

5.4. (04011 [V 1Y To] o USSR 106

CONCIUSIONS ...t bbbttt n e 107
Appendix A. Interpreted Petri NEtScccoiiiiiieieeee e 109

(R (=] =] (0T TR 111

Introduction

Identification allows building systematically a mathematical model that describes the
behaviour of an unknown or ill-known system based on the observation of its evolution.
In the case of discrete event systems (DES), observations consist of data revealing the
system activity: sequences of operations, events, messages, etc., and the models are
abstract machines that reproduce the observed behaviour.

DES identification has been first addressed as a problem of grammatical inference. In
[Gold, 1967] a finite automaton (FA) is built from positive samples of accepted words.
Later several methods for obtaining Mealy [Kella, 1971] [Veelenturf, 1978] and Moore
[Biermann and Feldman, 1972] [Veelenturf, 1981] machines have been proposed. Also
context free grammars building has been studied [Levy, 1978], [Takada, 1998],
[Ishizaka, 1990].

Identification methods yielding Petri net (PN) models have been proposed for coping
with more complex systems exhibiting concurrent behaviour. In [Hiraishi, 1992] an
algorithm for constructing Petri net models is presented. First, the language of the target
system is identified in the form of deterministic FA (DFA). Then, the algorithm obtains
from the DFA the structure of a PN that accepts the obtained language.

The problem, seen from the point of view of identification, and not only as a
grammatical inference problem has been addressed in literature in various formulations
and from diverse approaches. The works summarized in [Cabasino, 2009] obtain a Petri
net system from the knowledge of the language it generates, i.e. the set of transition
sequences that can be fired from the initial marking. Such works, classified later as
synthesis methods in [Cabasino, 2013], differ from the black-box identification
approach held in this thesis because considered transitions are unknown; that is, the only
available information about the system is the input and output signals evolution.
Besides, some of the stated hypotheses on the so called approaches are not well adapted
for real complex DES, particularly the assumptions regarding the entire system
language observation and the existence of counter examples. In practice, only part of the
language is observed, especially when there is a lot of parallelism in the system.

In [Ould EI Medhi, 2006] several algorithms are introduced to synthesize a Petri net
with regard to an event propagation set. However, distinction between input and output
signals is not made and obtained models do not express how inputs and outputs of the
system are interrelated to produce the observed behaviour, although it is the core of a
reactive system.

In [Meda, 2002a] it is described a method to incrementally construct an IPN model
from a single output vectors sequence. The considered DESs to identify must be event-
detectable by the outputs. Applying this method to the identification from an 1/O
sequence would lead to models in which same output changes caused by different input
evolutions would not be differentiated and exceeding behaviour could be introduced.

The method presented in [Klein, 2005a] obtains Automata models representing a set
of cyclic I/0 sequences. This method also considers automated systems. However, in
the obtained models, structural information as parallelism cannot be explicitly
expressed. An extension of this work has been presented in [Roth, 2010], which allows
splitting the system on concurrent parts. Even if modelled subsystems represent
parallelism, the method is strongly adapted for fault detection purposes.

In [Dotoli, 2008] an event sequence is observed, as well as the corresponding output
symbols of a DES to produce an IPN model, in which the sequence and the observed
output vectors are reproducible. This methodology requires the knowledge of an event
list, which is not available in the context of black-box identification problem treated in
this work. An alternative to this lack of events list could be the consideration of all the
observed input changes. In this case, models with several paths describing input changes
would be constructed, in which some input-output relations would not be explicitly
observed.

Process mining is a research domain that can be considered as similar to system
identification: it consists on discovering behavioural models of the processes that
capture the structured orderings of activities in a workflow.

The goal of the method presented in [Cook, 2004] is to identify gross patterns of a
workflow behaviour that can be useful for understanding the system. Statistical and
probabilistic analyses are made, especially to determine when concurrent behaviour is
occurring, and the dependence relationships that may exist among observed events.

In [van der Aalst, 2004] the workflow mining problem is also faced. The input of the
algorithm is a workflow log in which several workflow instances composed by several
tasks, which have been recorded sequentially, even if they may be executed in parallel.
Based on the information in the workflow log and by making some assumptions about
completeness of the log, a process model in the form of a workflow net is deduced by a
so called a-algorithm.

In this thesis, it is addressed the problem of identification of automated DES from a
single input-output sequence describing the external observed behaviour of the system.
The work focuses on systems composed by a plant and a programmable logic controller
(PLC) running in a closed loop. Two identification algorithms are proposed, allowing
the creation of IPN models representing approximately the observed behaviour.

Firstly, different approaches adopted in recent publications are reviewed. An
overview of recent identification approaches and a comparative study of some
techniques is presented.

Afterwards, we describe the problem addressed in this thesis, particularly the PLC
and plant compound system operation and the data collection process for identification.
We describe technological issues of both aspects which are not considered by previous
methods.

Two identification methods are presented. The first one is inspired from the
grammatical inference techniques and allows constructing, using an identification
parameter k, an IPN model to represent in detail the behaviour of a system from a single
input-output sequence. The proposed method yields an IPN model which represents
exactly the same language of length k+1 than that generated by the system without
taking into account information a-priori about the system other than its input and output
signals.

The second one is a statistical method which allows the construction of compact and
expressive IPN models representing complex industrial DES behaviour. The method
computes the reactive part of the system by means of a statistical analysis of the input-
output sequence, yielding a net composed by observable places and labelled transitions.
The model is completed with the addition of non-observable places representing the
internal behaviour inferred by analysis of the input output sequence.

Both methods are based on polynomial-time algorithms. They have been
implemented as software tools and tested with several case studies. The results of the
identification of two real systems in operation are illustrated and compared.

This thesis is organized as follows:

Chapter 1 is devoted to the analysis of existing identification techniques.
Chapter 2 presents some definitions about DES identification and explains
the characteristics of the problem addressed in this work.

Chapter 3 introduces an algorithm for DES identification from a single input-
output sequence, including an analysis of its principal properties and
characteristics and some examples to illustrate the application of the method.
Limitations of this algorithm are finally analyzed.

Chapter 4 describes a methodology to find a compact and complete
representation of the behaviour of a system.

Chapter 5 talks about experimental work.

Conclusions include a summary of the main features of the contributions in
this thesis and give perspectives for extending the research work.

Finally, in Appendix A, the definition of IPN used in the present thesis is
included.

Chapter 1

Identification methods of Discrete Event
Systems

Abstract. This chapter surveys the identification techniques of discrete event
systems found in the literature and analyses recent approaches addressing the
identification problem. A comparative study of such approaches is made.

1.1. Methods derived from language theory

Pioneer works on identification have been developed in computer science, where the
problem of obtaining a language representation from sets of accepted words has been
dealt since a long time. Such methods are generally referred as languages inference
techniques or learning techniques.

Gold’s method [Gold, 1967] processes positive samples: an infinite sequence of
examples such that the sequences contain all and only all the strings of the language to
learn.

The Probably Approximately Correct (PAC) learning technique proposed in
[Valiant, 1984] learns from random examples and studies the effect of noise on learning
from queries.

The query learning model proposed in [Angluin, 1988] considers a learning
protocol based on a “minimally adequate teacher”; this teacher can answer two types of
queries: membership query and equivalence query.

Several works that have adopted state machines as representation model, allow
describing the observed behaviour. In [Booth, 1967] a method to model a language as
Moore or Mealy machines is presented. The system under investigation is placed within
a test bed and connected to a so called experimenter, which generates the input signals
and records the output signals of the system. The identification can be started
considering a very few number of states. If, at some point of the experiment, it is
impossible to find a correct machine with the assumed number of states, the
identification is started again considering a machine with one more state.

The method proposed in [Kella, 1971] allows obtaining models representing Mealy
machines from a single observed input-output sequence. The algorithm lists all reduced
machines which may produce the given sequence. The construction principle is the
merging of equivalent states.

In [Biermann and Feldman, 1972] a method for the identification of non
deterministic Moore machines based on a set of input output sequences is presented. All
the sequences start in the same initial state. The identification principle is the reduction
of an initial machine represented as a tree.

The method presented in [Veelenturf, 1978] processes simultaneously a sample of
sequences to produce stepwise convergent series of Mealy machines, such that the
behaviour of every new machine includes the behaviour of the previous one. At each
step, the last obtained machine is analysed and completed by adding transitions and
possibly new states.

Later, in [Veelenturf, 1981] an algorithm to identify a unique Moore machine
generating the behaviour observed during m sequences starting at the same initial state
is proposed. The learning procedure operates in three steps: induction, contradiction,
and discrimination. A state can never be deleted and only transitions between states can
be modified. This method is improved in [Richetin, 1984], which proposes two
algorithms to identify multiple systems as well as systems that may not be initialized
between two records.

The identification problem for context free grammars (CFGs) needs, beside given
examples, some additional structural information for the inference algorithm [Levy,
1978].

[Ishizaka, 1990] has investigated a subclass of CFGs called simple deterministic
grammars. A polynomial time algorithm that allows an exact identification of a simple
deterministic language is given.

In [Takada, 1998] it has been shown that the grammatical inference problem for
even linear languages can be reduced in polynomial time to the inference of regular
languages.

Other works use as description formalism Petri net models. In [Hiraishi, 1992] an
algorithm for synthesising Petri net models is presented. The proposed algorithm has
two phases. In the first phase, the language of the target system is identified under the
form of a DFA. In the second phase, a Petri net that accepts the same language as the
DFA is built.

1.2. Recent approaches for DES Identification

In recent years, the scientific community has proposed identification approaches (based
on Petri net or automata) for obtaining approximated models of DESs whose behaviour
is unknown or ill-known. In the context of automated DESs, identification methods can
be complementary to established modelling techniques; identification builds a closed-
loop controller-plant model, which is more classically obtained by a composition of
models of controller and plant. Several approaches for identifying DESs have been
proposed in literature and compared in [Estrada, 2010a]. We present an overview of
such approaches; thus for further details please consult the references.

1.2.1. Progressive identification

The problem addressed in this work is to build a model for a DES as it evolves from the
observation of its output signals [Meda, 1998], [Meda, 2000a], [Meda, 2000b], [Meda,
2001], [Meda, 2002a], [Meda, 2002b], [Meda, 2003], [Meda, 2005]. A sequence of
models is built in such a way that the current model acquires more details than the
previous one approaching to the actual model of the system.

The identification approach proposes to compute an Interpreted Petri Net (IPN)
model describing the behaviour of the unknown DES. See Appendix A for an IPN
definition.

Some assumptions are considered in this work:

e The system to be identified can be described by a live, 1-bounded and cyclic
IPN Q.

e Q is event-detectable by the output (the same change of outputs cannot be
provoked by different transitions).

e The transitions of Q are not fired simultaneously and Q has not self-loops.

The algorithm receives a sequence of output signal values obtained from observation
of the working system. The algorithm returns an IPN in which every observable place
represents one of the sensors of the system.

The identification strategy is based on the reconstruction of the cyclic components of
the system model, by processing cyclic sequences of transitions (called m-words)
computed from the observed output symbols.

During the on-line operation of the identification process, the m-words are computed
and then the new model is built adding, removing, or updating dependencies (non-
observable places) between the transitions.

The model synthesis procedure performs mainly two tasks: the computation of the
observable part of the system and the inference of the non observable part of the system.
The first task is made directly from the observation of the output system signals, while
the second task, rather difficult, derived a more detailed study about the dependencies
formed by a non observable place into a model. The proposed identification algorithm is
succinctly described below.

Algorithm 1.1

1. Read the vectors of output symbols 0; 0y,... generated by the system.
2. Detect an output word when the first and last output symbols are the same.

3. For any two consecutive output symbols compute a transition that represents the
output change (if the output was calculated before, take the same transition).

4. Compute an m-word adding each computed transition in the step above.
5. Compute the non observable places.

a. to constrain the firing order of the transitions

b. to compute the t-component associated with the m-word

6. Update the computed IPN model with the information provided by the m-word
allowing the firing of all computed m-words, inferring t-semiflows of the system.

a. computing new observable places and transitions

b. removing or adding dependencies (possibly merging places) updating the
computed real t-semiflows.

Example 1.1. In order to illustrate the method, we take from [Meda, 2002a] the
following example of a system with 11 output signals. We show the models generated
when new m-words are computed from the outputs of the system. For sake of brevity,
not all steps of the algorithm are shown.

Step 1. Observe the first output symbols:
0, = [00000000000]", 0, = [10000000000]", 05 = [00000000000]" = 01, 04 = ...
Step 2. The first cyclic observed sequence is 010,0;
Step 3. t; will represent the transition from 0, to 0, and t; the transition from o, to 0;
Step 4. The m-word resulting is m; = tyt;
Step 5. The t-component associated with the m-word t;t, is shown in Figure 1.1.

t, t,

o

Figure 1.1 t-component associated with m; = t;t,

Step 6. The first t-semiflow inferred is Wy = m;.

After the next output word is treated with steps 1-4, it is obtained the m-word m; =
tsts. Its respective t-component associated is added to infer a new t-semiflow W; = mym;
in step 6, as shown in Figure 1.2,

é t, t, t, t,
=) ——@—l &HI—‘

Figure 1.2 t-semiflow inferred W, = mym,

After Computing of m-words M3 = tgl7, My = tstg, Mg = totig, Me = t11t12, M7 = t13t14, it
is inferred in step 6 the t-semiflow W; = m;m,msmsmsmemy shown in Figure 1.3.

Figure 1.3 t-semiflow inferred W; = m;m,msm,msmgm;

The arriving m-word m; = t;t; is the first one of W; = mimomsmsmsmemyz. Then, it is
supposed that W; has been completely observed and a new t-semiflow W, = m; is
inferred. Observed m-words m; = tst4, and mg.4 = tstetsts, in step 4 are added to the t-
semiflow W, and the model is updated in step 6 to allow the firing of all of them, as
shown in Figure 1.4.

ty, ty t, tys ty

] Heo——>@—>>e—

Figure 1.4 Complete t-semiflow W, = mym,msms;msmem; and inferred t-semiflow W, = mym,ms_4

The last m-word my = ty3ti4 is observed. It is made a merging of places to allow the
firing of the m-words observed in the order the appeared. A new t-semiflow W3 = msmg
is inferred and t-semiflows W1 = mymomzmsm; and W, = mym,ms_4my7 are updated. The
final model can be seen in Figure 1.5.

Figure 1.5 t-semiflows W; = m;m,mgmym;, W, = mym,ms 4m; and W3 = msmg

The proposed algorithms to update the non observable places have linear complexity
on the number of the transitions computed and the m-words detected, that is, in the size
of the identified model.

The general algorithm to update a model that includes all the updating procedures of
non observable places is also executed in polynomial time.

1.2.2. Parametric automata identification

In [Klein, 2005a] a finite automaton is built form a given set of observed cyclic
sequences, containing values of the inputs and outputs values of the system during its
normal behaviour. The method was proposed for obtaining models adapted for fault
detection in a model-based approach [Roth, 2011][Roth, 2012].

The identification approach proposes to compute a non-deterministic
autonomous automaton with output (NDAAO) model describing the behaviour of the
unknown DES. The definition of the NDAAO is presented below.

The system to be identified is a compound system controller + plant running in a
closed-loop considered as a generator or an information source.

The algorithm receives a set of observed production cycles obtained from the system
to be identified. Each observed production cycle or observed sequence is an ordered
series of input/output (I/0) binary vectors at different times. The observed sequences do
not necessarily have the same length; however, the first and last 1/0O vectors of different
sequences must be identical.

The NDAAO construction principle is to associate each different observed 1/O vector
with a single state. The transitions between the different states are created after a path
between the corresponding I/O vectors has been observed.

First, we present some definitions taken from [Klein, 2005b]. A non-deterministic
autonomous automaton with output, denoted NDAADO, is a five-tuple:

NDAAO = (X, 2 1, A, Xo)

X finite set of states,

0 output alphabet,

r: X>2% non deterministic transition relation,
A X2>0 output function,

Xo € X initial state

Each observed production cycle of the system (also referred to as an observed
sequence) is denoted as oj and formally defined as o; = (Ui(1), Ui(2)... ui(|oi|)) where u;(
J) is an I/O vector and |oj| represents the length of the considered sequence ;.

The cyclic production implies that the first and the last observed 1/0O vectors of the
different sequences are identical. This can be formulated as V(i, j), ui(1) = uj(1) =
ui(lsi]) = uj(|oj|). The algorithm proceeds in six steps:

Algorithm 1.2

1. For each observed sequence oj, define sequences oir of k consecutive vectors uj(t)
where k is an a parameter fixed a priori

Construct of the NDAAO
Rename the output function
Reduce the last state

Merge equivalent states
Closure of the automaton

o gk wb

10

Example 1.2. Let us consider the example of an elementary plant with a controller
having two inputs and one output [Klein, 2005b].

The observed sequences of 1/0O vectors are:

0)(0)(1)(0)(0)(O 0
o, =01 L1|1}|O0LO||o,=||0]
0/{0){1)\1){1)(0 0

e
o o
H-I—\l—\
c - o
o_oo

In order to simplify the notation, each 1/O vector is coded as A, B, C, D or E. These
letters represent the letters of the observed alphabet. With this coding, the observed
sequences are: 61 = (A, B,C,D, E, A)and 6, = (A, C, B, C, D, A).

Step 1: Construction of vector sequences ij. Setting k = 2, we obtain for the
example:

o1 = (A/A),(AB),(B,C),(C,D),(D.E),(EA), (AA)
a2 = (A/A),(A,C),(C,B),(B,C),(C,D),(DA), (AA))

Step 2: Construction of the NDAAO. The identification principle is to associate each
different word with a single state. This step is illustrated by Figure 1.6.

Figure 1.6 Association of words with states of the NDAAO

Step 3: Renaming of the output function. Each state of the NDAAO corresponds to a
unique and stable value of the input and output signals. This value is described by the
last letter of each sequence of length k, as shown in Figure 1.7.

Figure 1.7 Association of states with 1/0 signals

Step 4: Reduction of the last state. The last k states of each branch ending with x; are
associated with the same letter. These states can be reduced with a procedure that has to
be iterated k — 1 times. First, merge the pre-states of x;. Second, redefine this new state
as the final state x¢ and delete the former x; from the set of states. This procedure is
illustrated in Figure 1.8.

11

DODD,
L)

Figure 1.8 Reduction of the last state
Step 5: Merging of equivalent states. Two states are equivalent if and only if:
1. They are associated with the same output

2. They have the same set of post states.

It has been proved that the merging of equivalent states does not affect the languages
accepted by the NDAAO. This property can be observed in Figure 1.9.

Figure 1.9 Merging of equivalent states

Step 6: Closure of the automaton. With the hypothesis that each observed sequence
corresponds to a single production cycle, the states X, and xs of the NDAAO identified
are identical. Thus the NDAAO can be closed resulting in a strongly connected
NDAAO, as observed in Figure 1.10.

0‘: G

Figure 1.10 Final model

The time required to build different models is very low and does not represent any
problems for the application of the identification method. However, the reduction of the
NDAAO requires more time than the identification of the model. If new information is
available, the time required for the identification of the NDAAO is reduced. However,
this gain is not very important since the reduction must be performed again.

12

1.2.3. Parametric automata distributed identification

As stated before, in many practical applications, a concurrence phenomenon can be
observed, which does not allow identifying a suitable model for online fault diagnosis
with the [Klein, 2005a] methodology. To overcome this problem, a technique to divide
the system in subsystems with converging observed languages has been proposed by
[Roth, 2010a], [Roth, 2010b].

The idea is to divide the system into subsystems and to systematically accept a
certain amount of unknown combined subsystem behaviour.

The approach is based on the heuristic that a certain amount of unknown global
behaviour resulting from a combination of regular subsystem evolutions can often be
accepted as fault-free because it is similar to the known fault-free behaviour.

The algorithm receives, similarly to [Klein, 2005a] a set of observed production
cycles (cyclic 1/0 binary vector sequences).

As output, the algorithm returns a set of partial automatons, one for each subsystem
in which the observed system has been partitioned. These automatons are later used for
fault detection.

The method to automatically perform the partitioning uses an optimization technique
to solve the combinatorial problem of assigning controller 1/0s to Ngys subsystems.

A solution y(sys,) is a function which assigns a set of controller 1/0Os to each

subsystem. The set y(sys;) contains the I/Os which are considered in the partial 1/O
vector of the t-th subsystem. A heuristic optimization approach is used to find an
optimal solution. Two optimization criteria related to concurrency are used.

The first one counts for each subsystem the newly observed words in each new
system cycle after the first one and multiplies this number with the square root of the

according cycle:
n,h-1))
— |VVobs,sys;)

is the word set of length n up

Em= " T3 (g,

sys Vsys;h=2

where p is the number of observed sequences and WO”kggsysi

to the h-th cycle of subsystem sys;. The term -/h was heuristically chosen and increases

more weight to new words that occur during last system cycles. By division with the
number of subsystems, the optimization criterion is normalized.

The second measure is related to the structure of an automaton identified on the basis
of observed system data. Concurrency typically leads to several possible behaviours
which are reflected by states with several leaving transitions in the reachability graph of
an underlying Petri net. If for a given closed-loop DES an NDAAO is identified with
algorithm proposed, the resulting automaton can be seen as an approximation of the
reachability graph of a Petri net representing the considered system. Hence, concurrency
in the system is represented by states with several leaving transitions.

The branching degree BD of the NDAAO
as:

identified for subsystem sys, is defined

SYs;

BD(NDAAO,,) = Z

vxeX

{o if [r(x) <1

r(x)—-1 if [r(x)>1

13

where r(x) is the number of leaving transitions of the state x. Only states with more than
one leaving transition contribute to this measure since this represents possible
concurrent behaviour.

A measure for the concurrency of a given 1/O partitioning y can be calculated by
summing up the branching degrees of partial NDAAO identified for the subsystems:

E,(y)= Y (BD(NDAAO,,))

vsys;

It is possible to have BD > 0and thus E,(y) >0 although there is no concurrency in
the system.

To solve combinatorial problem of partitioning, simulated annealing is used.

Algorithm 1.3: Simulated annealing

Input: Starting temperature T , cooling rate cR and the minimum (stop) temperature
Tmin
Initialize T
Select current solution y_at random
Repeat
Select a new solution y__,
If eval(y,) >eval(y,,,)

Then yC <~ ynew

eval (e)—eval(Ynew)

Else If random [0,]) <e T
Then y, <« v,
T <« T *coolingRate
Until T <T,,,

Once the system has been partitioned in subsystems, an NDAAO is constructed as in
[Klein, 2005a] for every one of the subsystems, considering only the components of the
I/O vector correspondent to each part.

1.2.4. Integer Linear Programming Language identification

In [Giua, 2005] it is presented a technique for identifying a Petri net system, which is
able to reproduce a given finite language of transition sequences. Several extensions to
this work have been made in [Cabasino, 2006a] [Cabasino, 2006b] [Cabasino, 2006c]
[Cabasino, 2009]; such methodology has been proposed to deal with systematic
approaches for diagnosis.

This algorithm processes the set of transition sequences that can be fired starting
from the initial marking of a Petri net.

An upper bound on the number of places of the net is necessary. The algorithm
returns a Petri net which reproduces the given language.

The strategy of the algorithm is to generate an Integer Linear Programming (ILP)
problem adding algebraic constraints which force a Petri net to accept the specified
language.

14

To select among all the solutions that satisfy stated constraints, a performance index
is minimized, trying to decrease the arcs weights and number of tokens in the initial
marking of the Petri net. Some definitions from [Cabasino, 2009] are presented.

Let Z— T be a finite prefix-closed language, and k be the length of the longest string in
Z

A nonnegative integer K is given such that the following condition holds:
max M, (pi) + k -max Post(i, j) <K
i L]
Given two pairs (o, t) and (&, '), (o, t) = (&', ') if 7 (o) = 7 (o) and t = t’, where 7
(o) associates o to its firing vector.

Let '={(ot))|oe

ol<k,ot;e v}and 7 ="

Let ©'={(o,t))|oce ,

o <kot;g v}and & =

Algorithm 1.4

A net system is a solution of the identification problem if and only if it satisfies the
following set of linear algebraic constraints.

M, + Post - z(c) - Pre- (z(c)+T;) 20 V(o,t.) e
-KS, ; +M, +Post-z(c) - Pre-(z(c) +t;) < -1, V(o,t))e
A ITSGJ- <m-1 V(o,t.))e
G-
M, eN"
Pre, Post e N™"
S, e{0,3"

Let f (Mo, Pre, Post) be a given performance index. The solution to the identification
problem that minimizes f (Mo, Pre, Post) can be computed by solving the IPP:

min f(M,,Pre, Post)
st. . (,7)
A typical choice for f is:
f(M,,Pre,Post) =1 -M, +1 - (Pre+ Post) -1,

The algorithm has been extended in several works, but the basis principle is the same.

Example 1.3. In order to illustrate the method, let us present an example taken from
[Cabasino, 2009].

Let &= {¢ 1y, t1ty, t1ty, tatsty, titot;} and m = 2, thus k = 3. Assume that we want to
determine the Petri net system that minimizes the sum of initial tokens and all arcs such
that L3(N,Mo) = <. This requires the solution of an IPP where

== {(e), (), (), (G, 6), (4t 1) } and

=0 '={(8,t2),(t1t2;t2)’(tltl’tl)}

15

The procedure identifies a net system with

10 01 2
Pre = , Post = M, =
01 00 0

The complexity of this approach is exponential with respect to k. Also, it is well
known that an IPP is an NP-hard problem.

1.2.5. Integer Linear Programming Identification

This approach [Dotoli, 2006a], [Dotoli, 2006b], [Dotoli, 2007], [Dotoli, 2008] is an
extension of the works from [Giua, 2005]. However, besides a sequence of events, the
available output response sequence of the DES is used to make the inference of a Petri
Net model.

The method supposes that all the DES events can be detected, distinguished and not
silent.

The algorithm receives a sequence of events with their corresponding output vectors.
Also, it is needed an upper bound of the number of non-observable places for the net to
identify.

The algorithm returns a Petri net with observable places representing the actuators of
the system, non-observable places and labelled transitions representing the observed
event sequence. It is also possible that the algorithm returns a 0 (zero) when there is no
possible solution of the problem for the given sequence and number of places.

The strategy of the algorithm is to generate an Integer Linear Programming Problem
similarly to the [Cabasino, 2009] strategy: a net system is a solution of the identification
problem if and only if it satisfies the following set of linear algebraic constraints:

Pre, Post e N™"

M, eN™ with i=0,.,h

Post’ I,,, + Pre’ I, > 1,

I:)OSt_:[nxl + Preixl 2 _:[mxl

Vtg eoc with A(o)=w,Pref; <M,

Vtg eoc with (o) =w,(Post—Pre)f; =M, -M,

E(w,Y, A4, T,m)=

Some constraints can be added if additional structural properties are known on the
PN model to identify. For example, if there is no place without successor transitions it
can be added: Pre-1,>1 .. If there is no transition without successor places:

Post™ -1 _,>1 . If there are no source transitions: Pre" -1 >T1 .
A performance index is used, an indicator of the PN size, as a linear function.
$(Pre,Post,M,) =a' Preb +t' Postd + &M,

It is presented now the basis of the algorithm that solves the identification problem
stated above. The complete algorithm and a best explanation of the solution are given in
[Dotoli, 2008].

16

Algorithm 1.5

1. Initialization of the algorithm variables. The first output vector is obtained and the set
of labels, the set of transitions, and the set of output vectors are initialized. Every time
more information is calculated, these sets are actualized.

2. Wait until a new event and its corresponding output vector are observed.
3. Associate a transition to an event.

3.1 The event occurs for the first time. A new transition is created and associated to the
event and the observed change of marking.

3.2 If the event occurred previously

3.2.1 A new transition must be associated with the event (if there is no change in the
marking associated to any transition).

3.2.2 A fired transition is associated to the event.
4. Solve the ILP problem
ming(Pre,, Post,,M,,) S.t. £(w,Y,4,,T,,m")

as many times as necessary, starting with m’ equal to the number of observable places
and incrementing it, until it is found a solution or until m’ is equal to the upper bound of
the number of places.

5. Return to the condition of recording the events.

Example 1.4. It is taken from [Dotoli, 2008]. Let us consider a DES with y € N° and
m = q = 5. Assume the initial output is y, = [00102]7 and the observed sequence is
W = €4, €q, €asCa, = €1,€2, €261 With the corresponding outputs y; = [40101]"
y, = [31001]7, y; = [01011]T and y, = [00102]".

At each event occurrence the identification algorithm is applied, adding constraints

to obtain a PN neither without transitions nor places without successors. However, no
solution is provided until the occurrence of the last event. The ILP solved is:

Minimize
1
[1 1 1 1 1](Pre+ Post) } +001 11 1M,
1

subject to:
1) Pre, Post € N™*"

pre;; prez; pres; prey posty; posty; poStz; poSty
prei; Dprez; pres; pre42} [p05t12 posty; posts; post42]
Pre = |pre;s press press pregs|,Post =|posti; posty; postzs postys|
preis Préyz, Preészs, Prégg postiy PpOStyy PpOStzy POStyy
lprels preézs press pre45J post;s postys postzs pOStys

17

2) M; € N™ withi = 0, ..., h

mo, 0 myy 4 My, 3 ms, 0 M4y
S N 4 1 N 9 B VM N A T
M0= m03 =|1|,M1= m13 =|1|,M2= m23 =|0|,M3= m33 =|0|,M4= m4-3
my, 0 My, |0| my, |0| ms, |1| My,
My lZJ mq l]_J mye l]_J msg llJ My
3) Post™1ysq + PreT T sy = 1oxs
post,; post;, post;; post;, posts [}] pre;y prej; preqz Préyy pregs
post,; post,, poSt,; poSt,, POStys |1|+ préezr prezy prezz preéy, pregg
postz; postz, postzz posts, postss |1 pres; preés; presz; Preésy prezs
poSty; posSt,, poSt,; pOSt,, POSt,s llj PTe€sr PTeyy Préyz pre,, Prégs
4) Postl,xq + Prel, 1 = 11
[pOStn posty; postsz; post41-| 1 prej1 préz; pPreéz; Prég 1 1
post;; posty; postz; PpPOSty, 1 |preiz Prez; pres; preg| 1 1
postyz postyz postzz POStys 1 +|DPre;z Preyz Preész Prégs 1 =11
lPOStM posty, postsy P05t44J 1 prejs DPreéys Pprezs, Pregy 1 1
postys postys PpOStzs POStys pre;s Preézs Ppreéss Preys 1
5) Vtgii € o with A(o) = w, Prefgii <M;_,
-tal - - Ay
pre;y prey; prez; pregyql hig [O] prej; Preyy pres; pregpql Bzq 41
[prelz prez; pres; pre42} tgllz |0] [prelz prez; pres; pre42} tgzzz |0]
preiz Preézz Prézz Préygs (a1 Sili,lprem pPreézz Preézz Préys 172 Sili,
Préi1s Prézy Prézy Prégsi| Big 0 |PTe1s DPTE24 PTe3y PTréyyl| Bz 0
pre;s Pprezs press pre45J tg114 l2J l177”315 pre;s press pre45J tl‘;224 l1J
-ta3 . -
pre;; prez; pres; pregyq| Psg [3] prej; Preyy pres; pregpqyl Baq [0]
[prelz prez; Dpres; pre42} tg:z [1] [prelz prez; pres; pre42} tg:z |1]
préqz prézz prézz Prégs £73 SiOi,lpreB prézz preézz PpPreéys (s S|0|
lprem preézy Presy pre44J B3 3 lOJ lpreu prézs Presy pre44J Ba 3 llj
pre;s Prezs Preézs Preys t;;334 11 Lpre;s prezs prezs pregs tg:4 1
6) Vtg;EaWith Alo) =w, (Post—Pre)fgii=Ml-—Ml-_1
oy -
[pOSty; posty; postz; postyy] [Préin Prezr Présy Preégg t511 r41
/postlz pOSt,, DpOSts, POSt,, pre;, DPrey, Pres, pre42\ tgli 0
| |postis post,s postss postys|—|press prexs press pregs| | a12 =11]-
\P05t14 postyy poOStzy, pPOSty, preys DpPreps presy Pr€44/ tB13 0
[postys postys postzs postysl Lpre;s prezs prezs pregsd tl‘3x114 L1
_taz .
[postyy posty; postz; posty] [Préin Prez; Prézy Preégg Bz 1 37
(POStlz posty; pOStz; PpoSty, pre;; prep; pres; pre42) tgzz 1
posty3 postyz postzz poStys|—|Preérz Prezz pPrezz Preys azz =|0|—
postyy posty, postzy, pOSty, preis prey, press presl ||, 0
Lpostys postys postzs postysl Lpre;s preys preészs pregsd t;;: L1
473 -
[pOStn posty; postzy poOSty] [Préir Prexy prezy pregq\ | hsq 07
posty; posty; poOStzy; PpoSty, prej; prep; pres; prey; tg: 1
posty3 postyz postzz poStys|—|Preéqz Prezz PpPrezz Preéys a32 =|0|—
postiy, pOStyy poOStzy, POSty, prejs PpPreégs Pprezs Pregy tB33 1
l27051515 postys postzs postysl Lpregs prezs press preysd tl‘;334 L1

18

(LIRS N

[0

o]
=1
[ol
5
1| 1
|> |1
|~ |1
| 11

01

0

1],

0

[0]

4

0

1],

0

1

3

1

0f,

0

1

posti; pOSty; poOStz; pPOSty, prei; prep; pPrez; Pprey;
| |postis post,s postss postys|—|pres pre;s press preys

postiy poOStyy pPOStzy POStyy Préis DPrézs, Prézy Prég,

/[POStu post; postzy P05t41] rrell prep; pres; prezu}\
|

)
postis pOStys postzs pPOStys lprels preézs Ppreéss pre45J

The IPN obtained is illustrated in Figure 1.11.

Pa

t

Ps

t? P2

Figure 1.11 Solution for identification problem of Example 1.4

In the worst case the number of unknowns is linear with the number of places, of
transitions, and with the length h of the firing sequence. In the cases examined by the
authors, an optimal solution is obtained in a short time implementing and solving the
ILP problem on a PC equipped with a standard solver of optimization problems, for
example GLPK. However, in order to apply the algorithm online, the dynamics of the
DES has to be slow with respect to the time required to solve the ILP problem at each
occurrence.

1.2.6. Neural Networks approach

The work in [Ould El Medhi, 2006] focuses on the construction of a Petri net to
represent a sequence of observed events. The identified model is used for reliability
Issues.

The algorithm receives a sequence of events stored during the operation of the
system. A technique to include timing information in the form of a stochastic Petri net is
presented, but we do not consider such a technique, since time is out of the scope of this
work.

The identification strategy is the construction of a propagation relation matrix,
which contains the set of preceding events information. From such a matrix, two
perspectives to construct the Petri net are presented. One of them is based on the
addition of places to the net in order to link consecutive events. Another one considers a
learning process by neural networks.

Other work on identification of the same author has been published in [Ould El
Medhi, 2012], but the technique therein presented is quite similar to the ILP
methodology by [Giua, 2005].

Algorithm 1.6

The events set E = {ey, ey,..., &g} is known. From observation of the system, an event
sequence SegE = (e(k))1« <x.e(k) € E is constructed and is the basis of the synthesis
algorithm.

From SeqE, a rank-1 propagation relation matrix B = (bj)) {0, 1}%*% is constructed
such that bj; = 1 if g, e; are consecutive events in SeqE.

19

An event graph is constructed, such that if b = 1, it is created a place n to
accomplish Pre(n, i) < 1 and Post(n,j) « 1.

The minimal initial marking is computed setting M(K) = 0 and determining
recurrently M(k-1) = max(0,M(k) — CeX(k)), where X(k) represents the firing vector of
transition T(e(k)).

An option to reduce the number of places is to reuse the output place p; if b;; = 1 and
pi has already been created to accomplish Pre(p;, i)€ 1 and Post(p;,j) €1

The last method is the Learning by Multilayer Neural Network. A supervised
learning method is used to build a minimal Petri Net model (in number of places or
transitions).

The basic idea is to consider PN as a multi layered neural network (Figure 1.12): the
hidden layer is made of n places and the input and output layers both correspond to the
p transitions. The weight matrix Q between input and hidden layers corresponds to the
connection from transitions to places (i.e. post-incidence matrix Post). The weight
matrix between hidden and output layers V corresponds to pre-incidence matrix Pre.

Lll:l: a VA
N g 4y |
b MO, U
_fu/ Q X Vv -

/ T N

Inputlayer Hidden layer Output layer
Figure 1.12 Petri net model structure construction
The output Y is computed by
Z=Q*X
Y=V*Z
The goal is to learn B from SeqE. The network is trained by couples (xyk), k
=1,...,ne such that the vectors for the input layer {x}, k =1,..., q are the Parikh vectors

associated with events ey and the vectors for the output layer {ydy}, k =1, ..., g are the
columns of the B matrix.

For every input vector xy, the output yx is compared to the desired output ydx. The
objective is to reduce the error to a given threshold:

ns nt

1
E=_- ZZ(yib —yd,,)’
29" 7oA

This is accomplished by modifying Q and V:

88 nt

Av; = _775 = _UZ(yik = ydy) *z
i k=1
ag ns nt -
AQp, =—Nn—_—= _Uzvn Z(yik = Ydi) * X
Oy, k=l k=

20

Once the error is stabilized or once a maximal iterations number is reached, the
entries in matrices Q and V are converted into binary values:

Br(x)=0 if x<05
Br(x)=1 if x>05
Then the Pre and Post matrices are computed:
Post = Br(Q)
Pre = (Br(V))"

The error is computed once again. If the error is lower than a threshold, the process
stops. Otherwise, a new adaptation phase is started, using the integer obtained values.

The initial number of places is g. Once the algorithm converges to an acceptable
model, learning is restarted with a lower value. The minimal size PN is the last one
obtained for which the convergence is assured.

Example 1.5. From a sequence SeqE, a propagation relation matrix is constructed:

(000000 1]
0000001
1000000
B={0 1 0 000 0
0100000
0000100
00110 10

From such a matrix, an event graph (Figure 1.13) is constructed.

T P3 E]

Figure 1.13 Event graph model constructed

With the technique of re-used places, the model is simplified, as shown in Figure
1.14. However, as can be seen, the reduced model is not blocking free.

T Pl 3

Figure 1.14 Petri net model obtained with reusing technique

The learning algorithm is run with n = p = 7 hidden nodes and according to 7 = 0.01,
error_threshold = 0.00001, and limit_epo = limit_ite = 1000. Once the convergence
obtained, algorithm runs again with 6 and then with 5 hidden nodes. Each time, the

21

algorithm does succeed. No convergence is obtained with n < 5 nodes. Error stays
constant to a non zero value. The minimal size PN model is showed in Figure 1.15.

T PS5 T3

Figure 1.15 Petri net model obtained by the learning algorithm

1.2.7. Parametric interpreted Petri net identification

In [Estrada, 2009], a method for building interpreted Petri net models from
observations of DES’s inputs and outputs is proposed. The identification method
consists of several stages that build systematically an IPN model from input-output
sequences representing the external behaviour of partially observable DES. A software
tool based on the presented algorithms has been developed; it processes a set of input-
output vector sequences yielding the drawing of the computed IPN model.

The input data to the identification procedure is a set of input-output words that may
include cyclic behaviour. Based on an accuracy parameter x, the aim of the
identification process is to obtain a safe IPN model (Q, M) such that £5,,,(Q, M,) =
L*(S). The parameter x is used to adjust the accuracy of the identified model.

From the input-output vector words, event sequences are computed and then
sequences of event substrings of length « are built. Then every substring is associated to
a transition of a PN, which describes the relation precedence among the event
substrings; this PN is formed by non-observable places. A transformation method based
on concurrence transformations is performed. Finally, output changes provoked by
events are described by marking changes in observable places and then related to
pertinent transitions in the PN; input changes are associated to such transitions. Implicit
non-observable places are deleted.

We can summarise the stages of the method for IPN model identification as follows.
Algorithm 1.7

Input: A DES and an accuracy parameter k
Output: (Q,Mp): an IPN model

1. Obtain the input symbols and the cyclic sequences of observed output vectors.
2. Compute the event sequences from the observed vectors.

3. For every sequence of events, create traces of length .

4. Create the non-observable behaviour of the IPN and simplify it.

5. Complete the Petri net adding the observed behaviour and delete implicit places.

Example 1.6. Consider the next illustrative example taken from [Estrada, 2010b]. It
consists on a DES with n = 4 output signals, ® = {A, B, C, D}, and m = 3 input signals
¥ ={a, b, c}. Three 1/O sequences have been observed.

22

Vector entries correspond to distribution[abc| A B C D]

oA - (A
BIEIEY \BTEIETETRE) el

The sequences t; of the detected event vectors e; associated to I/O changes are obtained:

—
e
_/

oCooRrcOoO
cooQlooRr
ooRrOolooo
cCoORrOolooORr
e e]

I
[N
I
el
el
I

-
|
coco Hlo or S
[—
-

71 = €16y, /1'(81) =a 1, /1’(92) =&

Tl)
= |%||E||%|[EJ|%||E|I%I|E| |
VI I JE 0 &)

—
L

Tp = €1€3€4€5E¢, /1'(83) =b y A

~—~

es)=c 0,4 (eg)=a_0

(@]
=
PN
~—
®
S
N—r
1
o O
o

o

0 2[116_3)1 e_s)mg ;4o
o[T
\ng|?|ng|g|l2J|?|ng|?|ngFJng}

i I i i B il R B KA

T3 = €1€364€465

The sequences of traces z;using k = 2 are:

12 = cey, e e, for 7,

T2 = cey, e e3, e384, 45, €5, TOr 7,

T2 = cey, e e3,e5e5, esey, e,e, fOr 75

The obtained IPN corresponding to the three sequences of event vector traces of the

example 1 is shown in Figure 1.16. Notice that one of the sequences is not cyclic.
However, all sequences start with the same 1/O vector.

€, =5 €s
tlel t§3 t, 5 ts

Figure 1.16 Basic model with sequences of event vector traces

The application of simplification and concurrence transformations leads to the model
in Figure 1.17.

23

Figure 1.17 Simplified basic model

After adding input and output information, the obtained model is shown in Figure
1.18.

Figure 1.18 IPN model including measurable places

The final model obtained after deleting implicit places and adding the input
information is shown in Figure 1.19.

Figure 1.19 Simplified IPN model

1.3. Process mining approaches

Process mining is a research area that can be considered as similar to system
identification: it consists on discovering behavioural models of the processes that
capture the structured orderings of activities in a workflow. Activity logs are observed
as a trace of events being produced by a black-box system. Automated techniques which
seek to mine logs to discover information have been developed. We consider here two
representative techniques.

1.3.1. Probabilistic workflow mining

The goal of [Cook, 2004] is to identify gross patterns of a workflow behaviour that
can be useful for understanding the system functioning. Statistical and probabilistic
analyses are used to determine when concurrent behaviour is occurring, and to identify
dependence relationships among observed events.

As input, this technique considers a sequence of events S (called event trace)
characterizing activities that have occurred in a workflow system. The goal of the
method is not necessarily to reconstruct a model representing system’s behaviour, but
rather to identify patterns of behaviour that can be useful to understand how the system
works. Individual threads and their individual behaviour are discovered. Also, the points
where threads interact are located.

24

Algorithm 1.8

First, some definitions taken from [Cook, 2004] are introduced. As stated before, a
sequence of events is considered. Two sequence constructors are defined:

o Prefix(S) is the sequence S with the last event removed. If the length of Sis 1
(i.e., a single event), then Prefix(S) = null.
e S:eisthesequence S concatenated with event e

Occur(S) is the number of occurrences of sequence S. For example, Occur(AC) = 2
in SSCABCBACABCABCBAC. Occur(null) is the total number of events in the event
trace.

The conditional probability of occurrence of a sequence (called P(S)) is:
Occur(S)
Occur(Prefix(S))

Frequency tables of N-length sequences can be constructed, providing the (observed)
conditional probability that the last event follows the preceding N - 1 events.

CondProb(S) =P(S) =

Four metrics are computed:

e Entropy. Gives a measure of the randomness in each event sequence and its
occurrences:

Entropy(S) =-> P(S:e) e log (P(S :€))
ecE
where E is the set of events.
The closer an entropy value is to logn(T), the more likely it is to be
signifying a T-way fork behaviour. The same metric can apply to joins by
viewing the trace backwards.

e Event type counts. When an event has several successors, counting event
types helps to make a decision as to whether the behaviour at this point is
sequential or concurrent
If there is a selection:

Occur(S)= > Occur(e)
eeE,Occur(S:e)>0
If concurrency is occurring:
V(e € E,Occur(S :e) > 0),0ccur(e) = Occur(S)
and
T xOceur(S)= > Occur(e)

ecE,Occur(S:e)>0

e Causality. If two events have already been eliminated as forks, joins or
synchronization points, to decide when they are sequentially causally related
and when they are not. If AB and BA have been observed:

o If P(AB) + P(BA) > 1.5, they are likely causally related in a two-event
loop
o If P(AB) + P(BA) < 1.5, they are likely independent

e Periodicity. This measure can help to find synchronization points in the

process.

25

Position(S,i) is the position of the last event of the ith occurrence of S. The

average period of a sequence is:
Occur(S)

PeriodMean(S) Y., Position(S,i)— Position(s,i-1)
eriodMean(S) = ==

Occur(S) -1
Event types with the lowest standard deviations should be event types
marking the synchronization points in the process:

Occur(S) . } 2

i Dsq(S, i) — PeriodMean(S
PeriodStdDev(S) = lez [Dsq(S, i) (S)?]
Occur(S)—-2

Based on this four metrics, dependencies that explain as much of the event stream as
possible are found. A ranking on the quality of information is defined in [Cook, 2004].

Example 1. 7. Consider the Petri net in Figure 1.20.

Figure 1.20 Petri net

From a 1666-event stream produced from a stochastic simulation of such a system,
the Table 1.1 has been constructed.

A B c D E F

0.00 0.25 0.00 0.00 0.00 0.75
0.44 0.00 0.00 0.31 0.00 0.25
0.56 0.44 0.00 0.00 0.00 0.00
0.00 0.00 0.99 0.00 0.01 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.31 0.00 0.69 0.00 0.00

TMOUOm@>

Table 1.1 Conditional probability of length-2 sequences

After computing defined metrics and ranking information, the model in Figure 1.21
has been reconstructed. Thicker arrows are stronger dependencies (they are inferred

first).
((f: 0 _’®

Figure 1.21 Reconstructed model for net in Figure 1.20

1.3.2. Alfa-algorithm

In [van der Aalst, 2004] the workflow mining problem is considered. Since the
modelling of a workflow is a difficult task, techniques to do this automatically are
required. The term process mining is used for the method of distilling a structured
process description from a set of real executions.

26

The input of the algorithm is a workflow log of several workflow instances
composed by several tasks. Workflow instances have been recorded sequentially, even
if tasks may be executed in parallel.

Based on the information in the workflow log and by making some assumptions
about completeness of the log, a process model in the form of a workflow net is
deduced.

In order to find the workflow model, causal dependencies are searched in the
workflow log. Such dependencies are used by a so called a-algorithm, which constructs
the net that represents the observed workflow instances.

In order to explain the construction of the model, some definitions must be
introduced.

Let T be a set of tasks. o € T* is a workflow trace and W e P(T*) is a workflow log.
Let W be a workflow log over T. Leta, b € T:

e a>y b (bdirectly follows a) if and only if (iff) there is a trace o = titsts...th1
andi e {1,...,n-2} such that ceW and t;=a and tj;; = b,

e a—wb(aand b are in a causal relation)iff a >y b and b »y a (a is not
observed before b),

e a#wb (aand b never follow each other directly) iff a »ywb and b» a,

e aljwb (aand b are potentially parallel) iff a >y b and b >y a.

Let Abeaset,a € A and o= a;a...a, € A* a sequence over A of length n:

e acoiffae {ajay...,an},
o first(o) =ay, if n>1,
e last(o) =a,, ifn>1.

Algorithm 1.9: Mining algorithm o

Let W be a workflow log over T. o(W) is defined as follows:
1. T,={teT|JoceW,tec}
T, ={teT |JoceW,t=first(o)}

2
3. T,={teT|JoeW,t=last(c)}
4

Xy ={(AB)|AcT, ABCTy
AVae AvbeB,a—, b
AVa,a, e Aa#, a,
AVDb,b, € B,b#, b}

Y, ={(AB)e X, | V(A B)e X, Ac A
ABcB'= (AB)=(A,B"}

6. R, ={p(AB)I(AB)eY,}Aiy.0n}

27

Fy ={(a Pag)) | (A B) €Y, naeA}
U(Pas) D) [(AB)eY, AbeB}
Uiy) |teT }u(to,)|teT,}
8. aW)=(R,,Ty,Fy)-

Example 1.8. Consider the workflow log in Table 1.2.

Case identifier Task identifier
Case 1 Task A
Case 2 Task A
Case 3 Task A
Case 3 Task B
Case 1 Task B
Case 1 Task C
Case 2 Task C
Case 4 Task A
Case 2 Task B
Case 2 Task D
Case 5 Task A
Case 4 Task C
Case 1 Task D
Case 3 Task C
Case 3 Task D
Case 4 Task B
Case 5 Task E
Case 5 Task D
Case 4 Task D

Table 1.2 Workflow log
It can be seen as W = {ABCD, ACBD, AED}.
The a-algorithm proceeds as follows

1. T, ={AB,C,D,E}
2. T, ={A}

3. T,={D}

4,

Xw ={{AL{B}), {A}{C}), {A}{E}),
({B}.{D}),{C}.{D}), {E}{D}),
({A}.{B.E}),{A}{C,E}),({B,E},{D}),
({C,E}{D}H}

5.
Yo ={{A}{B,E}),({A}{C,E}),
({B,E}{D}),({C,E},{D})}
6. Py ={iw 0w, Pyareen Puaric.en
Pus e140m Pecc.er.0nt
7.

28

FW :{(iw A, (A p({A},{B,E}))
(p({A},{B,E}))’ B---:(D’Ovv)}

8. aW)=(R,,Ty,Fy)-
The result is illustrated in Figure 1.22.

1.4.

Figure 1.22 Obtained model for the workflow log

Discussion

Methods characteristics

For comparison purposes, we analyze the different approaches considering several
features; some of them have already been considered in [Klein, 2005b]; some others are
added to have a more complete scope during comparative analysis.

These features are structured into 4 categories: those characterizing the DES to be
identified, those describing the identification process, those qualifying the identified
model, and those considering general algorithm features.

DES characteristics

Type of inputs/outputs. In the general case, inputs and outputs of DES to be
identified are discrete (they can take a finite number of values). If all inputs and
outputs can only take two values (on/off), the DES is called logic.

Iterative behaviour. A DES is called cyclic if it iteratively reaches the initial
state during its operation. If it iterates on the same behaviour revisiting a state
that is not the initial one it is called repetitive.

Identification process characteristics

A-priori information. If there is no available knowledge about the DES other
than its inputs and outputs evolution, the identification is absolute (commonly
called black-box). Otherwise, the identification is relative.

Model updating. When the model updating is incremental, the method
progressively updates the model from observed information; otherwise, the
identification procedure is global: it must be executed on the whole of the
observed sequences every time new sequences are collected.

Identified model characteristics

Concurrency. This feature considers if the obtained model can represent
explicitly concurrent behaviour observed from the system.

Accuracy. This term is related with completeness of the identified model. If this
model represents exactly the observed behaviour, it is complete.

Algorithm characteristics

29

- Considered data. The identification algorithm constructs an identified model
starting from experimental data that can be inputs and/or outputs of the observed
system.

- Strategy. If the identification algorithm returns all possible models representing
the observed behaviour, the algorithm is called enumerative. If only one of the
possible models is given, it is constructive.

- Execution. If the construction of the model can be performed during the system
operation by computing a new model from new measurements of the system
inputs and/or outputs, the execution is made on-line. Otherwise, the execution is
off-line; the algorithm is not able to run at the same time than the system.

- Complexity. This term refers to the computational complexity of the
identification algorithm. Polynomial time procedures are better than exponential
ones for coping with large systems exhibiting a large amount of input-output
sequences.

The main characteristics of the considered methods are summarized in Table 1.3.

Identification | Progressive | Parametric Integer Neural Parametric Workflow
approach approach automata Programming Networks IPN mining
Comparison approaches approaches approach approach approaches
criteria

DES to be identified
characteristics

Type of inputs/outputs Logical Logical Discrete Discrete Logical Discrete
Iterative Repetitive Cyclic None None Cyclic Cyclic
Behaviour

Identification process
characteristics

A-priori information Absolute Absolute Relative Relative Absolute Relative
Model Incremental Incremental Global Global Incremental Global
updating

Identified model
characteristics

Concurrency Explicit Implicit Explicit Explicit Explicit Explicit
Accuracy Non- Complete Non-complete Non- Complete Non-
complete complete complete
Algorithm
characteristics
Considered data Outputs Inputs and Events and Events Inputs and Events
outputs outputs outputs
Strategy Constructive | Constructive Enumerative Enumerative | Constructive | Constructive
Execution On-line Off-line Off-line/on-line Off-line Off-line Off-line
Complexity Polynomial Polynomial Exponential Polynomial Polynomial Polynomial

Table 1.3 Identification methods characteristics

1.5. Conclusion

We have reviewed different identification techniques found in the literature. An
analysis of their main characteristics has been made in which methods have been
classified according to several criteria. Although most of the techniques have some of
the characteristics required for addressing the identification problem in black-box
approach, there are other features that are not included in such methods for dealing with
large 1/0 sequences measured from real reactive complex DES that exhibit repetitive
behaviour. In the next chapter, we will state the particular issues of the Identification
problem dealt in this thesis and we show that existent identification methods are not
well adapted because of their characteristics.

30

Chapter 2

Identification of automated Discrete
Event Systems

Abstract. This chapter states the problem of identification of industrial automated
discrete event systems. It presents the main characteristics of industrial systems which
have to be taken into account by an identification method, and then the application
reviewed methods are analysed within this context, Also, data collection for
identification is described.

31

2.1. Problem statement

The systems considered in this work are closed loop controlled DES (Figure 2.1);
they consist of a plant and its industrial controller (in many cases a Programmable Logic
Controller: PLC). The behaviour of such systems (i.e. the PLC-plant) can be observed
by collecting the signals exchanged between controller and plant.

v
o a o
|:1:|[0:|-‘-|:1J
a a a
o o o
controlle 1/0 Sequence
L(1) w Q(}) *
Identification

OO0

Figure 2.1 Closed loop controller-plant DES

Beyond the theoretical interest of defining model construction methods from symbol
sequences, the aim of developing identification methods for actual industrial automated
systems establishes challenges related to algorithms scalability and technological issues:
the techniques must be efficient to cope with large and complex systems that handle
actual signals.

In our approach the aim is to discover, from observations of the system behaviour
expressed as a single sequence of its input and output signals, and how components of
the system are related, and then construct a compact model which can explicitly show
discovered behaviour. Identification of already existent systems involves two important
aspects to consider: the system operation and the observation process. Technological
issues of both must be considered in the proposed algorithms in order to construct
suitable abstractions.

The identification is made from the point of view of the PLC (Figure 2.1). Several
phenomena, due to the interaction between plant and controller, increase the complexity
of the identification process; however they must be taken into account when real
controlled DES have to be identified:

e Any input evolution (signal emitted by the plant through a sensor) does not
always provoke an output evolution (signal emitted by the PLC to an
actuator). In practice, few of input changes provoke output evolutions;

e Contrary to assumptions established in DES theory, many I/O signals may
occur simultaneously; moreover, non simultaneous 1/0 signal changes are
often simultaneously observed;

e When output changes are provoked by input changes, this causal relationship
is not necessarily captured simultaneously;

Now, we are going to explain these phenomena.

2.1.1. Basics on PLC technology

Industrial Programmable Logic Controllers (PLC) are used extensively in
manufacturing industries for complex control applications [Lampériére-Couffin, 1999].

A PLC cyclically performs three main steps (Figure 2.2): “input reading” (I) where it
reads the signals from the sensors, “program execution” (PEX) to determine the new

32

outputs values for the actuators, and “output writing” (O) where the newly determined
commands are sent to the plant actuators.
—

Input Reading

Program execution

data
End of /O calculus = = =¥

link
Output Writing (UDP)

Figure 2.2 PLC cycle and data collection

Identification data base /
Identification algorithm

At the end of the PEX phase the current values of inputs and outputs (I/O) are sent
from the PLC to a computer and stored for a later treatment by the identification
algorithm.

2.1.2. Experimental constraints

In the identification problem we are addressing, the PLC program is assumed to be
unknown. Numerous PLC programming languages exist; most of them depend on PLC
manufacturers. However, there exists a standard (IEC 61131-3) in which the semantics
of four programming languages (Ladder Diagram, Function Block Diagram, Structured
Text, and Instruction List) and of a structuring language (Sequential Function Chart) are
given. Sequential Function Charts (SFC) are used in this thesis only for describing the
diverse situations addressed by the proposed method.

SFC is a graphical programming language used for PLCs. It is an extended state
machine that contains primitives to describe sequential, parallel and alternative
behaviours. It enables the partitioning of a PLC program (or function block) into a set of
steps and transitions interconnected by directed links. Main components of SFC are:
Steps with associated actions, Transitions with associated logic conditions, Directed
links between steps and transitions. Steps in an SFC diagram can be active or inactive.
One step is activated when all steps above it are active and the connecting transition is
validated (i.e. its associated condition is true). When a transition is fired, all steps above
are deactivated and simultaneously all steps below are activated. Actions associated
with steps can be of several types, the most relevant ones being Continuous (N), Set (S)
and Reset (R). Apart from the obvious meaning of Set and Reset, an N action ensures
that its target variable is set to 1 as long as the step is active.

Due to the PLC cycle, some situations between inputs and outputs could arise.
Consider a situation described in Figure 2.3 (current active step is #10; a and b are two
input signals to the PLC; A and B are two output signals).

- a

Figure 2.3 A single input is the condition for state evolution

Changes in the state and outputs will occur when signal b is active; however other
input signals may evolve without consequence in the outputs. This must be considered
in the identification algorithm.

33

Consider now the time diagram in Figure 2.4. Two signals are asynchronously
emitted by sensors of the plant between two successive “input reading” phases (I) of the
PLC cycle. These two signals will be simultaneously read during the next | phase and
observed as simultaneous events in the identification data base. In DES theory events
cannot occur simultaneously; so an observed event vector will therefore be defined as a
change of value in an entry of an 1/O vector.

1
I
g nput 1 0 [|
= InpulZé | 1
[_[[PEX[SIO[I] PEX [S|O[T|PEX]SIO[T] |
z 1
2 Input 1 0 1
5 I
@ Input 2
v Inpu 0 _l
1 : Inputs reading PEX: Program execution

S : /O vector sending
0: Outputs writing

Figure 2.4 Apparent simultaneous evolution of several inputs

Now, let us consider the situation described in Figure 2.5(a). As shown in the time
diagram in Figure 2.5(b), if input “b” changes its value from 0 to 1, the corresponding
change in “B” is not provoked immediately, since it is necessary first a change in output
“A”. In this case cause and effect cannot be captured simultaneously but will be
detected only if we observe a sequence of 4 consecutive events.

(b) ‘
Figure 2.5 1/O causality and sequences of events

These three scenarios show that the implementation of a controller and its interaction
with the plant introduces phenomena that must be taken into account by the
identification algorithm.

2.2. Input data and output model

As stated before, at each end of the PLC Program execution phase, the current value
of all Inputs and Outputs is captured and recorded in a data base. Thus, the only
available data for the identification procedure is a single 1/O vector sequence:

SEES
omJLo@JloB)

1o (J) O, (1)
(] O, (]

where, 1(j) = :1(1) and O(j)=|. () are the j-th observed input and output
Im—l(j) On—l(j)

vectors of size m and n respectively in the sequence w.

34

Our aim is to represent the system’s behaviour from the 1/0 vector sequence into an
IPN as shown in Figure 2.6. IPN has been chosen as modelling formalism because of
their inherent capacity to represent reactive behaviour involving input and output
information as well as complex behaviour such as parallelism.

Inputs

Figure 2.6 Input and output information represented by IPN

In next section we will provide a first approximation we have developed to translate
I/O information into IPN models.

2.3. Assumptions

Herein we summarize the assumptions held for addressing the identification problem
of industrial discrete manufacturing systems.

e The constructed model is 1-bounded (no counters will be included).

e Deadlock-free. We assume that during the acquisition of the input-output
sequence, no blocking occurs during the functioning of the system.

e Binary. The input and output signals handled by the algorithm must be
binary.

e Long time operation. We consider that the input-output sequence has been
measured during a long time elapse in which all the programmed tasks are
performed.

e Timed behaviour is not computed. Some PLCs include timers in their
evolution conditions; such conditions are not computed in this work.

e Simultaneous input changes may be measured. Due to the phenomena
explained in section 2.1, several input changes may appear between
consecutive vectors.

e Black-box. The only available information of the system is the input-output
sequence.

e Monolithic. There is only one PLC controlling the plant.

2.4. Discussion

After describing the features of the systems to be identified, we can discuss whether
or not the analyzed methods are suitable for our particular problem

e Progressive identification

The polynomial time execution of the algorithm in [Meda, 1998], [Meda, 2000a],
[Meda, 2000b], [Meda, 2001], [Meda, 2002a], [Meda, 2002b], [Meda, 2003], [Meda,
2005] is a good characteristic which should be aimed by all of the identification
approaches. However, a strong limitation of this technique is that it does not take into
account the inputs of the system, which is very relevant for the closed-loop behaviour
systems we consider in this work. Applying this method to such kind of systems would
lead to models in which same output changes caused by different input evolutions

35

would not be distinguished, and then incorrect behaviour could be introduced in the
created model. For example, consider Figure 2.7. The model at the right has been built
by ignoring the input information, and the relation between input a and output B has
been lost, as well as relation between input b and output D.

Figure 2.7 Lost of the input information

The treatment of the input information during identification is not straightforward, as
will be shown in next chapters.

e Parametric automata identification

Even if the work in [Klein 2005a], [Klein 2005b] is well adapted for experimental
treatment, which is very important for the identification problem; the methodology has
some weak points.

The first one is that concurrence is not explicitly shown in automata models. Lack of
explicit concurrence may not be important for applications such as fault detection and a
model as shown in Figure 2.8.a would be enough. But for other applications like
reengineering or supervision, an expressive and compact model would be much useful.
For example, if the aim of the identification is to produce a model which can help an
engineer to understand how a system works, a structurally rich model as illustrated in
Figure 2.8.b would be better.

2 0 4

\d 191_)}4?3 1\‘

a 0ROl \

b1 PS_/ b_1RS.1

Figure 2.8 Automata and Petri net models for the same behaviour.

36

The second disadvantage is that the methodology considers that cyclic sequences are
provided. In order to collect such sequences, the identified system should be
reinitialized at each production cycle. This assumption is not possible to fulfil in many
cases in which the system does not return to the initial state for cycling.

e Parametric automata distributed identification

One of the limitations of [Roth, 2010a], [Roth, 2010b] concerns the ability to find
concurrent behaviour. If several decisions exist in the system, the different possible
conditional behaviours will be wrongly considered (by the branching degree measure)
as concurrent behaviours.

This algorithm is strongly focused on fault identification, and even if it represents an
improvement over [Klein, 2005a], the built models are not good to represent structural
information such as parallelism inside subsystems and resource sharing. Another
limitation is that the number of sub-systems is known a-priori, but this number is not
always easily determined.

e Integer Linear Programming Language Identification

Even if the synthesis methodology in [Giua, 2005], [Cabasino, 2006a], [Cabasino,
2006b] [Cabasino, 2006c], [Cabasino, 2009] is elegant and theoretically strong, there
are several reasons which make this approach inappropriate for identification on actual
experimental systems. First of all, the exponential number of counterexamples in the set
“, makes the problem intractable for most of the real systems.

Also, the a priori knowledge of the transitions (events) occurring in the system is not
available when a black-box identification approach is performed. Some kind of
computation has to be made in order to find the events.

e Integer Linear Programming Identification

In the work in [Dotoli, 2006a], [Dotoli, 2006b], [Dotoli, 2007], [Dotoli, 2008], it is
no longer necessary the construction of counter-examples as in the method by [Giua,
2005] and extensions; thus, the writing of the linear algebraic constrains is no longer
exponential. However, the method requires the knowledge of an upper bound on the
number of places. Such kind of knowledge is not available in a black-box approach and
in fact, the upper bound could even have a strong influence on the result: different
solutions (and even no solution) depending on the number of non-observable places
may be found, each one representing a different PN structure, and thus, a different
behaviour.

Also, it is well known that Integer Linear Programming is a NP-hard problem, and
thus, if the number of transitions increases, the problem becomes intractable.

e Neural Networks approach

Similarly to other approaches, the technique presented in [Ould EI Medhi, 2006] has
some characteristics that do not make it suitable for our identification problem. First of
all, the event set is supposed to be known, which is not true in a black-box
approximation. Also the hypothesis of exhaustive knowledge of the propagation set
relation between events is very strong. Another inconvenient is that when the places

37

reuse technique is applied, sometimes the resulting net is not blocking free and it does
not allow reproducing the observed sequence.

On the other hand, the learning algorithm is strongly dependent on parameters which
are specified by the user, and no theoretical basis for choosing them is given in the
description of the technique.

Since the goal of this technique is the learning of the matrix B, if two events have
been observed consecutively a place must exist to relate them; consequently, this
technique does not include a concurrence analysis, and thus, the inherent structural
expressiveness of the Petri net is not exploited.

e Parametric interpreted Petri net identification

Since the method in [Estrada, 2009][Estrada, 2010b] is the basis for part of the work
presented here, a deeper analysis of its disadvantages is made on next chapters.
However, we can enounce some of them. First of all, the algorithm considers that
sequences start always at the initial state of the DES, and as discussed before, the
acquisition of such sequences is not easy to achieve. Also, transformations for
determining concurrency in the IPN made by the algorithm are based on the observation
of all the possible combinations of an event set; however, in the general case only a
subset of such combinations is observed during a finite functioning of the system to
identify.

In next chapters, it will also show that the technique could be improved by means of
an input-output relation analysis.

e Probabilistic workflow mining

Even if a concurrence analysis is made on [Cook, 2004], the found models are not
well defined; their construction is strongly focused on workflow operations. Similarly to
other techniques, an exhaustive observation of all possible combinations of events is
supposed.

Due to the join and fork workflow syntax, an event can only be involved in a
concurrence or selection situation, but not in both. It is assumed that if several events
follow an event, they are all concurrent or they are all independent. However, in the
type of systems we consider, such hypothesis may not be satisfied and thus, the system
would not be correctly identified by this method. However, the statistical approach
followed in this method has inspired our methodology proposed in Chapter 4.

e Alfa-algorithm

The methodology from [van der Aalst, 2004] seems to be well adapted for workflow
problems. However, it presents some characteristics that are incompatible with closed-
loop behaviour identification. One of these characteristics is that to assure the
correctness of this method, an exhaustive list of behaviour is needed, but in our
particular problem, it is not possible to assure that all of the possible sequences have
been observed in a finite time. Thus, if the event log is not complete, non-observed
behaviour could be introduced.

38

Another characteristic is that the input for the algorithm is a set of traces. In our case,
traces would be system cycles, but as stated before, system cycles are not known a-
priori.

Finally, in this method the events are a-priori defined, but in our case such
knowledge is not available.

2.5. Conclusion

The problem of identification of industrial automated discrete event systems has been
stated. The reviewed identification methodologies have been analysed considering
operation characteristics of real controlled systems. It can be noticed that none of the
proposed methodologies is perfectly adapted for the particular problem faced in this
thesis. In order to cope with the challenges stated by identification problem, which have
not been dealt by existent identification methods, two different and complementary
approaches have been explored. They will be described in the next chapters. The first
one is an extension to the work in [Estrada, 2009], in which the hypothesis of
knowledge of the system cycles is removed. The second one is a statistical approach
which produces compact and expressive models.

39

40

Chapter 3
A Stepwise Identification Method

Abstract. This chapter presents an identification method for discrete event
manufacturing systems that are automated by a programmable logic controller (PLC).
The behaviour of the closed loop system (PLC and Plant) is observed during its
operation and represented by a single long sequence of observed input/output signals
vectors. The proposed method follows a black-box and passive identification approach;
it allows building stepwise an interpreted Petri net (IPN) model. The identification
method is composed of several polynomial time algorithms.

41

3.1. Overview of the method

This method allows the progressive construction of a safe IPN (see Appendix A,
Definition A.3) representing exactly the observed input-output language of length k +1
of the DES.

From the 1/0 vector sequence, an event sequence is computed and a sequence of
event substrings of length « is built. Every substring is associated to a transition of a
PN, which describes the causal relationship between event substrings. A PN node path
formed by non-observable places represents the substring sequence; this path is built
taking into account the possible repetitive observed behaviour (internal model). Then
simplifications may be applied. Notice that the number of non-observable places is not
predefined.

Finally, the model is completed by including observable places which are related to
pertinent transitions in the PN according to output changes provoked by events; also
input symbols are associated. This part of the algorithm can be concurrently performed
at any moment, for example when a cycle is identified, whilst the internal model is
updated by processing the new 1/O vectors.

The procedure for building the IPN model from the 1/0 sequence has been published
in [Estrada, 2011] and can be summarized on Figure 3.1. It consists of five main steps
that are described below.

No cycle is found

1/0 vector is read Event trace is
computed o
Reading Building Building
Initialization | d | an I/0 | events and)] | internal
vector traces model

A new cycle is
found

Add 110
information

PN structure | Adding
simplification | interpretation

Figure 3.1 Stages of the identification algorithm
3.1.1. Initialization stage
In this step, a PN structure is initiated. This is done by the following statements:

T«J; ET«J; P<«—{pini}; An initial empty set of transitions T is created, as well as an
initial empty event traces set ET, and an initial set of places P containing a place pini

Mo(Pini) <—1; p(pini) <~W(1); current<—pin;; //A token is placed on pi, and such a place is
associated to the first observed vector w(1)and taken as current

42

3.1.2. Building events and traces
Once the net is initiated, the procedure iterates on subsequent I/O vectors in the

sequence. Each I/O vector is considered to update the events sequence and the events
traces according to next definitions.

Definition 3.1 An observed event vector E(j) is the variation between two
consecutive 1/0 vectors: E(j) = w(j + 1) — w(j). The m first entries of E(j), denoted as
IE(j) correspond to the variation between two consecutive input vectors 1(j), I(j + 1)
(input event). A symbolic input event A’(E(j)) is a string representation of the input
event vector IE (j); it is computed as:

I _Lif L,(j+D)—1,(j) =1
AEMD) =L _0if LG+ -1,())=-1
sif 1L(j+1)—1,(j)=0

Then for a sequence w, a sequence of observed events E = E(1) E(2)... E(j)... is
obtained. During the process, if the difference has not been observed before, a new
event g; is created (E(j) = ;).

Definition 3.2 An event trace 7°(j) is the substring from E of length k¥ whose last
eventis E(j). () = E(j —x + 1)E(j —x + 2)...E(}).

This notion is useful to determine during the identification process if two states
represent the same internal behaviour. Then the notion of equivalent states involves the
history of « events that lead to such states.

Definition 3.3 Two states of the model representing the identified system are -
equivalent if the event traces 7°(j) leading to such states are the same.

3.1.3. Building internal model

Once the sequence of event traces has been obtained, every trace 7(j) is related to a
transition in the IPN through a function y:T—{(j)}; the firing of a transition implies
that x consecutive events related to such a transition have been observed.

In order to preserve firing order between transitions, dependencies are created
between them and associated with an observed marking through the function u:P"
—>{oMi| M; eR(N,Mp)}, which relates every non-measurable place with an observed
marking, such that every transition has only one input place and one output place
(VteT, 't = |t = 1).

Notice that the number of non-measurable places is not predefined. When an event
trace 7°(j) is found again in the sequence, the associated dependency must be used if it
leads to the same observed marking.

Let e; be the last event vector in the trace 7°(j); the associated transition will be
denoted as tf’ (more than one transition may have associated the same ;).

This strategy can be systematically performed following the next procedure.

Algorithm 3.1. Building internal model

Input: 7°(j), Petri net structure G, 1, 3 ET
Output: Updated G, ¢/, ¥, ET’
If 7(j)2ET then //1f the computed trace is new

43

ET—ETU{z())}; TTut; v(t,%) <~ (j); Vpa €P,Pre(pa,t;) <=0, Post(pa,t,%) «-0;
/lcreate a transition t, to represent the trace 7*(j)
I(current,trej) «1: /lcreate an arc from current to t,%
P<—PU{pou}:VtheT, Pre(pouth)«-0, Post(Poutth) «<—0; £4(pout) <—p(current)+e;; //create a
new place pou: @and associate it with correspondent marking
Post(Pou,t:¥)«—1; //create an arc from % to pou
current<«—poy; //take poy @s current
else//The computed trace is not new
If % ecurrent” and y(t.¥)=7(j) then //If one of the output transitions t,* of current place
represents the observed trace 7(j)
current«—(t,%)"; //take the output place of t,% as current
else //Current place has not an output transition representing z(j)
If 3t¥ e Thy(t¥) =2) and (%) = z(current) then //There is a transition t%
representing 7*(j)such that its input place et has the same associated marking (‘%)
than current place
take pin = t.%; /ftake % as pi,
merge(current,p;,); //merge current place with such an input place
current «(t,%)" //take the output place of the transition t.% as current
else consider 7*(j) as new

Subroutine merge(p,, p2) //merges places p; and p,

Vi,eT, Pre(py, ty)<— ® (Pre(py,ty), Pre(pa,ty)); // @is a vector bitwise or operation;
Vt,eT,Post(py, tn)«— ® (Post(py,tp),Post(pa,ty));
P<P\{p,} // delete place p,

Remark. The algorithm performs a search operation for each computed trace and
adds a new transition for traces that have not been yet observed, which implies updates
in the Pre and Post matrices. Then, it is easy to see that Algorithm 3.1 is executed in
polynomial time on length of observed sequence and number of different traces.

Property 1. The IPN G built through Algorithm 3.1 represents all and only all the
traces

7(1).

Proof. By construction, the sequence E is represented in G by a path starting from
Pini including the sequence of t,%, which represents the observation of the event trace 7(
J). The reuse of computed transitions having associated the same event traces, during the
processing of trace 7(j), is done only when common paths of length « are built, which
does not introduce other sequences. ¢

3.1.4. PN structure simplification

After performing step 3, the algorithm reads a new 1/O vector by returning to step 2.
Nevertheless, notice that merging places through step 3 of the algorithm could lead to
merging of equivalent transitions. When such a merging is performed, a cycle on the PN
Is created. This is considered as a representative change in the structure of the model,
and thus, simultaneously with launching of step 2, step 4 is executed to make a PN
simplification procedure.

44

Some transformations may be performed when there are transitions that appear in the
sequences in different order describing their interleaved firing; this behaviour is
exhibited by concurrent transitions. The analysis can be performed on a model
component comprised between two transitions relied by several paths containing the
concurrent transitions. If there are m! paths, we can explore if there exists m different
transitions in the paths and every sequence is a permutation from each other. When it is
verified, the subnet can be transformed into a concurrent component of G’ preserving
the same behaviour.

The simplification by analysis of concurrency is not strictly necessary for
representing the event sequences; however the equivalent model with concurrent
transitions may be simpler; the aim of this simplification is not minimizing the number
of nodes in the model, but obtaining fairly reduced models useful for understanding the
DES behaviour. However, the analysis could be inefficient when the number of paths in
the subnet is large, and thus some improving must be done for this purpose.

3.1.5. Adding interpretation and simplifying

Once the event sequences are represented in the basic model, it must be completed
by adding the output changes represented by the events and their respective inputs.
Recall that events are vectors computed from the difference of consecutive vectors; thus
ej relates observable places representing the outputs yielding the incidence matrix
corresponding to observable places.

Algorithm 3.2. Representing outputs changes
Input: G’
Output: Q’: the IPN including observable places

Step 1. P<—PU{p1.p,,...,pq} //Create g observable places for every one of the components in
the output vectors

Step 2. vVt eT: _ _
If e;(i) = -1 then Pre(p;,t,”) < 1 and Post(p;,t;”’) «<— 0; //Event e; takes 1 from component
i
If &;(i) = 1 then Pre(p;,t:%) «0Oand Post(p;,t:%) « 1; /IEvent g; puts 1 into component i
If (i) = 0 then Pre(p;,t;”’) < 0 and Post(p;,t;”) «<— 0; //Event e; does not affect
component i

Step 3. If component i of vector w(1) is 1 then My(p;) <1, otherwise My(p;) <0 //Put tokens
in the observable places to represent the first output vector

Notice that Algorithm 3.2 executes in polynomial time in the number of outputs and
the total of computed transitions in Algorithm 3.1

After adding observable places, some non-observable places could become implicit
places. They can be removed: if there is a non-observable place whose inputs and
outputs are exactly the same than any observable place, remove such a non-observable
place and its input and output arcs.

Once the output adding and implicit places deleting has been performed, it only
remains to add input information to complete the IPN model. Input information is
associated with labels for transitions in a natural way given by the symbolic event input
function of Definition 3.1. Next algorithm describes a systematic way to do it.

45

Algorithm 3.3. Representing input changes
Input: G*, 2'(e;)
Output: Q : the final model of the identification process

Step 1. vtIeT, At%) «A’(e)) //Associate to each t% the symbolic input event registered at
the detection of ;.

Is easy to see that the input addition is executed in polynomial time in the number of
transitions in the net.

Proposition 4. 1. For a DES S and an identification parameter «, algorithm in Figure
3.1 yields an IPN model (Q,Mg) which represents exactly L¥*1(S).

Proof. Since the deletion of implicit places does not alter the language of (Q,My), we
make the proof with the model obtained before this procedure. The firing of a transition
t in the system is not affected by the addition of arcs to, and from t, since these arcs
were computed from differences of vectors in w. Then, according to Property 1, every
event sequence of length less or equal than k belongs to the language of the net if and
only if it was observed.

The sequences of transitions of length less or equal than « that can be fired lead to
markings in the measurable places that also have been observed (since the marking
change provoked in the measurable places was obtained from the difference of observed
vectors). Then, we have that sequences of observed output vectors of length less or
equal than x + 1 correspond to sequences of marking vectors in the net and the net
represents exactly L¥t1(S). o

Example 3.1 Consider a DES with three output signals, ® = {A, B, C}, and three
input signals £ = {a, b, c}. The entries of the binary 1/0O vectors have the following
correspondence: [ab ¢ | A B C]". An 1/O sequence is progressively observed. The first
measured 1/0 vector corresponds to the initial state of the DES: w(1) =[000|000]".

When a second 1/0O vector w(2) = [1 0 0 | 1 0 0]" is read, the event vector
E(1)=e;=[100|100]" is computed; the input event vector is A1) = [1 0 0]" and its
corresponding symbolic input event is 2’(1) = a_1, i.e. the rising edge of a.

Considering a value x = 1, we can compute the first event trace (1) = e;. Notice
that, in this case, trace and event are the same. This event trace is related with a

transition of the IPN. The IPN constructed after observing two 1/O vectors is on Figure
3.2.

t
©—0

Figure 3.2 PN representing e;

When a third 1/0 vector w(3) =[100]000]" isread, E(2)=e,=[000|-100]", 8
(2) =[000]" and 2’(2) = £ are computed and the model is updated, as showed in Figure
3.3.

46

t te

Figure 3.3 PN representing the sequence e;e;

Until 8" 1/O vector, the situation is quite similar: new events are computed and the
model is updated.

e & e e & & &
0 (1] ! [0] 1 (0] 1 [0 1 (0] Liro 711 1] 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
W= 9 0 9 0 0 0 0 0 0 1 1 -1 0 0 0
0 1 1 ?1 0 6 0 0* 0 6 0 0 0 F 0
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
1 0] 0 1 0] 0 10| 0 1 0] 0 10| 1 11] 1 1 0] 0 10|

When 9" vector w(9) = [1 0 0 | 100]" is processed, the event E(8) =e; =[1 00|10
0]" is computed and the trace 7(8) is identified through Step 3 as an already observed
trace ey. Since it leads to the same marking than the input place of t,**, such a place and
the output place of t;*” can be merged as observed on Figure 3.4.

t € e, e A €5 € 4
. t, t, t, t, t, t

Figure 3.4 Internal model for the first detected cycle

Since a cycle is found, steps 4 and 5 of the algorithm are executed, leading to an
intermediate IPN model showed on Figure 3.5.

fIf a_1 A P & B & c_1 C c_0 a_o0

Figure 3.5 IPN for the first detected cycle

Simultaneously to the creation of the intermediate IPN, more I/O vectors are added
to the observed sequence and PN is updated:

N N - S - N - M - S - N - S
1 o] 1 o 1 o 1 o 0 = 1 o] 1 o 1 o 1 o] 1
0 0 0 0 0 0 0 ; 0 0 0 0 0 o 0 0 0 . 1
0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0
11 o 1 = 0 0 0 o 0 1 1 o 1 = 0 0 0 o 0
0 . 1 a 1 1o 0 0 0 0) 1 5 1 1o 0 0
0 0 ol| “|]o 0 0 0 ol| “|]o 0
=2 lo] S lo |t o [lo] o) S o) F Ao | F o [o F

Two more cycles are found in this sequence and intermediate IPN models are
created. We show only the PN obtained after finding the second cycle (Figure 3.6) and
its equivalent model transformed by analyzing concurrency (Figure 3.7). After applying
the steps 4 and 5 the IPN obtained from this PN is showed in Figure 3.8.

47

Figure 3.8 IPN for the complete sequence

3.2. Discussion

The parameter « helps to distinguish sequences of events that look similar during the
construction of the basic internal model; its value indicates the history of past events
that have to be considered for deciding the state equivalence [Estrada, 2012]. On the one
hand, high values of k imply distinguishing more sequences avoiding path fusion during
the model construction; thus the obtained models are more accurate but less compact.
On the other hand low values of « allow more state fusions; the obtained model are
more compact but more paths can be created yielding an overrepresentation of the
observed behaviour.

In general it is not possible to establish a priori the value of «, since it is assumed
that the system is unknown. However, in practice the identification procedure can be
applied using several values of k (because it is not time consuming). Compact models
allow a first approximation to the understanding of the system functioning, whilst larger
models provide a more precise description. For small examples, k=1 or k=2 allows
distinguishing event sequences whilst compact models are built. In actual industrial
systems the difference can be more drastic.

Now, we are going to illustrate the application of the above described algorithms to
an example to analyze several characteristics of the synthesized model in order to point
out the limitations of the method that have to be faced. The models are obtained
automatically with the help of a software tool which will be described in Chapter 5.

Example 3.2 Consider a small size application example dealing with an automated
manufacturing system (Figure 3.9). The purpose of such a system is to sort parcels

48

according to their size. It has 9 inputs (signal sensors) from the system: a0, al, a2, b0,
b1, c0, c1, k1, k2, and 4 outputs (signal to the actuators): A+, A-, B, C.

Parcels arrive randomly at conveyor 1 and they are sorted one by one. The sensors k1
and k2 inform whether a parcel is small (k1=1) or big (k2=1). Big parcels are pushed to
conveyor 3, and small parcels to conveyor 2 using the double-acting cylinder A. When a
parcel arrives at the appropriate position, it is pushed by one of the single-acting
cylinders B or C on the according conveyor. A new parcel may arrive (an detected
through sensors k1 and k2) while the previous one is being treated.

AN B, C)
“ Plant

-
Conveyor 1 G g A

Controller B l%[Conveyor2 (small parcsls)
A &
o b
8 c %ﬂ Conveyor 3 {large parcels)
A &
(] 1
a0, &1, @z Po, b1, Co, C1, Ky ke I

Figure 3.9 Diagram of the Example 3.2

The sequence in Figure 3.10 has been considered. Each line of a column corresponds
to an 1/0O vector, where binary values correspond to signals A+, A-, B, C, a0, al, a2, b0,
b1, c0, cl1, k1, k2 respectively. From such a sequence, the model on Figure 3.11 has
been constructed.

0000001001010 0100100001010 0100010000110 1000010001010 0100010001000 1000000001010
1000101001010 0000101001010 0000011000010 1000000001010 0000011001000 0110000101010
1000100001010 1000101001010 1000011001010 1000000101010 1000011001010 0110000100010
1000000001010 1000100001010 1000010001010 1000000001010 1000010001010 0110000000010
0110000101010 1000000001010 1000000001010 0101000011010 1000000001010 0100000000110
0110000100010 0110000101010 1000000101010 0101000001010 1000000101010 0000101000110
0110000000010 0110000100010 1000000001010 0101000001000 1000000001010 0000101000010
0100000000110 0110010000010 0101000011010 0100000001001 0101000011010 1000101001010
0000101000110 0100010000110 0101000011000 0100000001000 0101000001000 1000100001010
0000101000010 0000011000010 0101000001000 0100000101000 0100000001001 1000000001010
1000101001010 1000011001010 0100000001001 0100000001000 0100000101000 0110000101010
1000100001010 1000010001010 0100000001000 0100010001010 0100000001010 0110000100010
1000000001010 1000000001010 0100000101000 0000011001010 0000001001010 0110000000010
0110000101010 1000000101010 0100000001000 1000011001010 1000011001010 0100000000110
0110000100010 1000000001010 0100000001010 1000010001010 1000010001010 0000101000110
0110000000010 0101100011010 0000001001010 1000000001010 1000000001010 0000101000010
0100000000110 0101100001010 1000011001010 1000000101010 1000000101010 1000101001010
0000101000110 0101100001000 1000010001010 1000000001010 1000000001010 1000100001010
0000101000010 0100100001001 1000000001010 0101000011010 0101100011010 1000000001010
1000101001010 0100100101000 1000000101010 0101000001010 0101100001010 0110000101010
1000100001010 0100100001010 1000000001010 0101000001000 0101100001000 0110000100010
1000000001010 0000101001010 0101100011010 0100000001001 0100100001001 0110000000010
0110000101010 1000101001010 0101100001010 0100000001000 0100100101000 0010001000010
0110000100010 1000100001010 0101100001000 0100000101000 0100100001010 0000001000110
0110010000010 1000000001010 0100100001001 0100000001000 0000101001010 0000001000010
0100010000110 0110000101010 0100100101000 0100010001010 1000101001010 0000001001010
0000011000010 0110000100010 0100100001010 0000011001010 1000100001010 0000101001010
1000011001010 0110000000010 0000101001010 1000011001010 1000000001010 1000101001010
1000010001010 0100000000110 1000101001010 1000010001010 0110000101010 1000100001010
1000000001010 0000101000110 1000100001010 1000000001010 0110000100010 1000000001010
1000000101010 0000101000010 1000000001010 1000000101010 0110000000010 0110000101010
1000000001010 1000101001010 0110000101010 1000000001010 0010001000010 0110000100010
0101100011010 1000100001010 0110000100010 0101000011010 0000001000110 0110000000010
0101100001010 1000000001010 0110010000010 0101010001010 0000001000010 0100000000110
0101100001000 0110000101010 0100010000110 0101010001000 0000001001010 0000101000110
0100100001001 0110000100010 0000011000010 0100010001001 1000101001010 0000101000010
0100100101000 0110010000010 1000011001010 0100010101000 1000100001010 1000101001010

Figure 3.10 1/O vector sequence for the Example 3.2

49

k10
[60_o]
Ean
A‘e
[b1_1]]b1 1]
[b1 0]
bO_l‘ =
a2 1
N
a2_0c0_0 c0 0
K2_122 0
[c0_0][a2 0
[c0 0]
cl_1
1 1a2 1
o

Figure 3.11 Identified IPN model of Example 3.2

Notice that in this IPN model there are numerous paths formed by non observable
places. This is due to the observation of input changes that do not affect the outputs, but
maybe they affect the controller state. In order to obtain a more compact model a

50

simplification strategy is applied [Estrada, 2010Db]. It consists in merging several places,
representing internal behaviour whose detected events do not have effect on the outputs,
into a single one where an output event must occur. Consider the following 1/0 vector
sequence involving one input x and two outputs A, B:

HHd

This sequence can be represented as: A—*-1 s A—= B, which can be compacted

as: A1 B . This can be generalized to:
Alioa &, A& sp=a_S%% B The application of this simplification

procedure, yields the IPN model showed in Figure 3.12.

P _

40 0 k2 0 al 1 al 0 k1 _1a2 1]

al 1¢1 0 a1 0c0_1 a0_1|

a0_0 k1_0 a1_1

[b0_0 a1 0 b1 1] | [b0_0 k2 1a1 0 b1 1]

‘sotbie] |

b0_1

[a0_0 k2.0 a1_1 a1 0 a2 1 |
g

\ 0 ¢0_0 1 k21420 c0_0 c1 1

[k1_120_1]]b0_0 a1 0 20_1]

[e1.0 a1 1 a1 0 k2 1c0_12a01] a1 1cl 0a10c012a01) | [allcl0al0a0l]

] K2 1 0 1

Figure 3.12 Obtained IPN model for the Example 3.2 with defined methodology

b1.0 b0_1 ki_1

In the model, we can observe some situations concerning the input and output
information:

1. All the observed input value changes are included into the model. Some of those
changes make part only of the evolution of the plant and do not have a direct
influence on the evolution of the outputs (the signals to the actuators), and thus

51

on the evolution of the system. Including all input value changes yields to long
transition paths and an apparent relationship between inputs and outputs, which
is inexistent. For the Example 3.2, the input signals falling edge is not important
in the evolution of the outputs. However, they are present in the obtained model
and even observed into transitions producing output changes (Figure 3.13).

2. When the triggering of an output event is conditioned to several input values,
such values could appear in different orders. All of the orders are shown within
the model. In the Example 3.2, all of the cylinders have to return to their initial
position and a piece has to arrive in order to start with the sorting of a parcel;
that is, the cylinder A cannot be extended (A+=1) until a piece arrives (k1=1 or
k2=1) and cylinder A is on its initial position (a0=1) and cylinder B is on its
initial position (b0=1) and cylinder C is on its initial position (c0=1). But the
changes of input values to accomplish this condition arrive in different orders,
yielding to several paths shown into the model (Figure 3.14).

3. Some input values having influence on certain output evolutions can evolve at
any part of the cycle of the system. Since those evolutions are showed into the
model into a path at the moment they are observed, their influence on the outputs
is not represented directly. In the Example 3.2, parcels can arrive at any moment
while another parcel is being sorted. Then, several apparitions of k1_1 and k2_1
are over the entire model, and their relation with the starting of a cycle (the
extension of cylinder A) is not directly represented (Figure 3.15).

ab_0 K1_0 al_1

.

lbl)ul] al_o bl‘_ll }:uuo k2_1al_ bl_‘l‘

Figure 3.13 Useless input changes into the model

b0_0 al_0 a0_1 420 ¢0_0 c1_1

el_0 al_1 al_0 k2_1¢0_1 aﬂ_l‘ ‘al_l ¢1_0 al_0c0_1 al]_l‘ |al_l el_0 al_0 a0_1

Figure 3.14 Several input evolution paths leading to the same input condition

52

‘bo_o al 0 bl_l| }m_n K2 1310 b1_1|

Figure 3.15 k2_1 may be observed at any moment

The evolution of the outputs is conditioned to input values and the occurrence of
input events.

Example 3.3 Consider the classical illustrative example of two cars going to the right
and returning (Figure 3.16). There are 5 input signal sensors: a, b, ¢, d and m and 4
output signals to the actuators: R1, L1, R2, L2.

L1 R1
€

—_—>
m _td
L a b
L2 R2
=
c d

Figure 3.16 Cars going to the right and returning

The cars are initially at the leftmost position and when the signal m is given (m=1),
both cars are requested to go to the right (R1_1 and R2_1). Once a car arrives to the
rightmost position (b=1 or d=1), it is ordered to go back (R1_0 and L1 1 or R2_0 and
L2_1). When a car arrives again to the leftmost position (a=1 or c=1), it has to wait until
the other car arrives and the signal m is given to start another cycle.

As it can be seen, a condition on the inputs (a=1 and c=1) must be given in order to
start the evolution of the system (R1_1 and R2_1) as well as an event trigger (m_1).
Before concurrence transformations, the application of the proposed methodology
would obtain the model in Figure 3.17 (a).

A clearer model is in Figure 3.17(b), in which input and output relation is showed
explicitly and directly and which does not include input changes having not influence
on the evolution of an output. We would like to find such a relation and take advantage
of the IPN capabilities to do this. The desired causality between inputs and outputs of
the system is not always easily found within the I/O sequence. However, the
representation of causality can be easily done using IPN from the Definition A.4, but
considering that a conjunction of events may provoke an output change, instead of a
single event.

53

c_ a_l1 m_Jle(anc)
m 1 Rl RZ
R, R,
(a) (b)

Figure 3.17 Different IPN models representing the same condition

3.3. Conclusion

In this chapter we have proposed an identification method for discrete event
manufacturing systems that are automated through a programmable logic controller
(PLC). The method follows a black-box and passive identification approach; it allows
building stepwise an interpreted Petri net (IPN) model in polynomial time which
describes in a detailed way the reactive behaviour of the controller. Several
characteristics of the identified models have been analyzed in order to point out some
limitations of the method. In next chapter, for the same identification problem
statement, we propose a methodology to construct a compacter IPN model by inferring
the input-output causality though a pre-analysis of the 1/O sequence.

54

Chapter 4
A statistical identification method

Abstract. This chapter presents an alternative identification method that builds
compact and expressive IPN models, describing clearly causal and concurrency
relationships. The method is based on a statistical approach, which allows the analysis
of very long 1/0 sequences issued from the execution of repetitive tasks performed by
industrial systems.

55

4.1. General description

4.1.1. Motivation

Although the method previously proposed in Chapter 3 is scalable due to the
efficiency of the algorithms and the models represent the observed language, the size of
the obtained models grows in proportion to the system size and complexity, especially
when it includes parallelism. In industrial systems repetitive tasks are observed as
similar but the sub-sequences of the measured I/O vectors are not identical; using the
stepwise method they are represented within the model as different paths. This leads to
internal model structures close to state machines, whose included information is not
enough rich for determining a concurrency relationship of the involved transitions, and
then few reductions can be applied to the IPN model.

As discussed before, our purpose in this research is not only to compute a model in
which the observed sequence is reproducible, but also to achieve expressivity and
compactness in the identified IPN model (see Appendix A, Definition A.4) allowing
representing causal and concurrency relationships of the involved operations. In order to
reach this goal we have conceived a two-step method based on the analysis of the
relationships between inputs and outputs along the observed behaviour represented by
the 1/O-sequence w. These relationships are discovered by analyzing the relative
frequency of outputs changes with respect to input changes; such relationships are stated
in terms of conditional probability. This is the reason why the approach is called
statistical.

4.1.2. Overview
The two steps of the method are the following:

e Stepl. Discovering the reactive input-output behaviour. The observable part of
the IPN is built, consisting of connected sub-graphs named fragments, composed by
observable places and transitions labelled with algebraic expressions of input
variables (Figure 4.1.a).

e Step2. Determining the non-observable part of the IPN. The sequence w is
transformed into a sequence S of transitions created in the first step of the method,;
this sequence is processed for obtaining causal and concurrency relationships useful
for determining the non-observable places that relate the fragments such that S (thus
w) can be executed (Figure 4.1b).

FA
th:aﬁlf:l:lpb:l 1 5

S

a) IPN fragments b) Assembled fragments
Figure 4.1The two steps of the identification technique

56

4.1.3. Event types

As stated in the previous method, a sequence of observed event vectors E =
E(L)E(2)...E(j)... is derived from the 1/O word w, such that E(j) is the variation
between two consecutive 1/O vectors: E(j) =w(j + 1) —w(j). Each event vector can be
decomposed into input and output event vectors:

&, (1) OE, ()
E(j)=[C')EE((jj))},where IE(j)= S'El(” and OE(j) = ?El(J)
IE,_.(J) OE, .(})

Regarding input and output event vectors and the PLC cycle described in section
2.1.1, there exist four situations (types) between consecutive 1/0 vectors that could be
observed, which are explained by different occurring phenomena:

Type 1. IE(j) =0 and OE(j) =0

An input change has provoked directly an output change, and consequently, a state
evolution. The 1/O reactive causality is observed at the same PLC cycle.

Type 2. 1E(j) = 0 and OE(j) =0

The controller has arrived at step j-1 to a state in which, given the input values, an
output (and state) evolution is allowed at step j.

Type 3. IE(j) =0 and OE(j) =0

a) X(j-1) = X(j) An input evolution has provoked a non-observable state
evolution of the controller.

b) X(j —1) = X(j) It has occurred an input evolution to which the controller is
not sensitive.

Type 4. IE(j) =0and OE(j) =0

a) X(j—1) = X(j) It has occurred a non-observable state evolution of the
controller which is not exhibited by any input nor output change.

b) X(j -1) = X(j) The controller remains in a stable state, i.e., no state
evolution condition is satisfied.

Since situations Type 1 and Type 2 are directly observable by an output change, they
can be straightforwardly represented in an IPN. Such a modelling will be performed by
the first step of our algorithm.

The Type 1 situation represents a direct input-output reactive behaviour, and thus the
modelling is quite easy and similar to the procedure described in chapter 3: the input
change is associated to the label of a transition and the output change is represented as
arcs relating such a transition with the observable places representing outputs involved.
The Type 2 situation is a little more complex, since the input values which lead to the
output evolution are not observed at the same PLC cycle (i.e. at the same event vector).
To model such a behaviour, the step 1 of our algorithm will look into the context (the
values of the inputs) in which the output changes occur. In this case, the output change
will be modelled as described in the Type 1 situation, but instead of an input change, an
input condition will be associated to the label of the corresponding transition.

57

Thus, at the end of the step 1, a set of IPN fragments (connected sub-nets of the IPN)
will be constructed as those shown in Figure 4.1.a. The initial /O vector sequence w can
be translated into a firing sequence of the transitions in the IPN fragments. The
fragments, as well as the transition sequence will serve as input for the second step of
the algorithm.

The Type 3 situation is divided into two, depending on whether or not there is an
internal state evolution of the controller. Situation Type 3.a is the case of the input
events which provoke internal state evolutions and eventually lead to an output event of
Type 2. Such internal evolutions cannot be directly computed, but can be inferred. By
looking in the sequence built in Step 1, the order in which transitions appear can be
determined. Such internal state inference will be performed by the second step of our
algorithm and will be modelled by the addition of non observable places assuring the
order of the transition firings, as illustrated in Figure 4.1.b.

In the situation Type 3.b there is no internal state evolution, and thus there is nothing
to be inferred, as well as the situation Type 4, where there are neither input nor output
events occurring in a PLC cycle. Notice that in this work we can only infer internal state
evolutions by means of transition firing order. Other type of internal evolutions, such as
timers or counters, is out of the scope of this work. We can now make the description of
the two identification steps.

4.2. Computing the observable behaviour

4.2.1. Outline of the Step 1

The main sub-steps of the method for computing the observable part of the IPN
model are given below. Accurate descriptions of such steps as well as the used notation
are detailed along the section.

Algorithm 4.1 General description of the Step 1

Input: 1/0 sequence w
Output: Observable incidence matrix ¢C, labelling transition function A and
transition sequence S

1. Analyze sequence w in order to
e Compute events vector sequence and elementary events
e Compute Direct and Indirect Causality Matrices
e Construct Output Event Firing Functions from matrices
e Find Input events with differed influence

2. Use w, Firing Functions and Events with differed influence in order to
e Compute transitions of the IPN and their labelling A
e Compute observable incidence matrix ¢C
e Compute transition sequence S

4.2.2. Elementary events

In order to discover the relationship between inputs and outputs of the system, we
can start by computing at each event vector which are the specific changes occurring,
that is, the input and output signals which have changed their value.

58

Definition 4.1 A rising input (output) event of the input I; (output O;) occurs when
IE;(J)=1 (OE;(j)=1) and it can be denoted as I;_1 (O;_1). A falling input (output)
event of the input I; (output O;) occurs when IE,(j)=-1 (OE,(j)=-1) and it can be
denoted as I;_0 (O;_0).

We can decompose then each input (output) event vector as a conjunction of
elementary input (output) events, which from now on we can call simply events:

IE(j)=1E, IE,o..=]JIE; suchthat I;;(j+1)—1,(j)#0
OE(j)=OE; #OE,»..=] JOE; such that O;(j+1)-0;(j) # 0
If no input (output) event occurs in E(j), we denote it as IE(j)=¢ (OE(j)=¢).

Similarly, we can represent each input vector as a conjunction of Boolean variables,
depending on the values of each component of the input vector:
I =1if 1,(j) =1

I(j)=|j1.|j2."'=HIji such that Iji:{l — 0if | (J):O

If the system has m inputs, n outputs and the length of the sequence w is h, the
complexity of computing the events is O((m + n)h).

Example 4.1. Consider the next I/O sequence representing the 8 first 1/0 observed
vectors during an evolution of the application presented in Figure 3.9.

k1l 0
k2
a0
al
a2
b0
bl w=
c0
cl
A+
A_
B
C 0]

1
o
|

O 0O oo ok, ok, oo P o
OCookrRroFRoRr oo R oH

ook, ok, ok, oo o o -
O 0O o P ok, ok, OO0 o o o
o Rr P OO P OO O FP OO o

P P OO FP OO0 OO o o o
O O OO P P OO O o o o

ok, P oohkr ok Ok OO

0

o

r
L
T

o

From the 1/O sequence, we can compute the observed event sequence E:

k1
k2
a0
al
a2
b0
bl E=

0 (-1
0

0

|
i

0

O O O 0o ok oo o
o O O o o
|
=
O O 0O ok OO0 o oo o
I

[

[N
|
[N

IOOO'—‘OOOOOOOO"‘

O O O O O o o o o o

O O O O OO0 O o o o o o
|
=

O O O O o o o

L

O O O 0O O o o o o

T
o
o

T
T
L
r
L
L
r
T
L
r
L

[on)
©

We can re-write w and E mixed for a clearer explanation:

E® - E@ .. E® . _ E@ .. E®B __ E®6 .. . E®
— —= S — —

k1
k2
a0
al
a2
b0
bl w=
c0
cl

1 0
0

o

|
-

O OO0 ook ok ook oo
O oo ok ok ook o
O oo P ok ok oo oo
O O o P ok OokF O o o o o
1
L O O O O o oo o
[EN
I
o, P ook ok ok oo o
o kP P OoOo kP oo ok oo o
o kP P OO F OO0 O o o o o
| O ©O O Ok O o o o o
[y
O ok oo kP P OO oo o o

r

T

1

O OO0 o0o0o0oo0o | ©o o oo
=

]

O O O F OO0 O o o o o o

O O O O O O O o o o
O O O O O OO0 O o o o o
O O O O O O o o o

L _ L M| L . L _ L - _0 =)

The decomposition of the event vectors into elementary events is showed at Table

4.1.
Event vector Elementary input events

E(1) IE(1)=k1_1 OE(1) = A+ 1

E(2) IE(2)=a0 0 OE(2) = ¢

E@3) IE(3)=k1_0 OEQ)=¢

E(4) IE(4)=al 1 OE(4)=A+ OeA— 1B 1
E(5) IE(5) =b0_0 OE(5) = ¢

E(6) IE(6)=al 0 OE(6) = ¢

E(7) IE(7)=bl 1 OE(7)=B_0

Table 4.1 Elementary events list for Example 4.1

4.2.3. Output Event Firing Functions

From the elementary events decomposition, the Type 1 situation described before is
clearly observed. It can be noticed that triggering of elementary output events is
conditioned to the occurrence of certain elementary input events (for example, the
elementary output event B_0 seems to be conditioned to the occurrence of bl 1). Also
the situation Type 2 is observed, i.e. the occurrence of an output event is conditioned to
the presence of certain input levels (for example, the occurrence of A+_1 seems to be
conditioned to a0=1).

Definition 4.2 An output event firing function (OEFF) y states sufficient conditions
for the occurrence of the output event OEy. It is defined as:

%(OE)=G(OE)eF(OEy)
where:
G:OE —2'F is the sufficient input event combination to produce the output event OE;.
F:OE—2'" is the sufficient input level condition to produce the output event OEy.

60

Example 4.2. In the Example 3.3, the firing condition for the output event Ry_1 is:
x(R1_1)= G(R1_1)eF(R1_1) =m_le(anc)

4.2.4. Finding causality

As explained in section 2.1.2, it could happen that at the same PLC cycle, an input
event and an output event are observed, but it does not necessarily imply that such input
and output events are related. In order to find G(OEy) to represent situations of Type 1,
we analyze the relative frequency of the simultaneous emergence of an input event IE;
and an output event OEy, with respect to the emergence of OEy during the whole
sequence of events. That relationship can be naturally expressed as the conditional
probability of the occurrence of an output event OEy, given that a certain input event IE;
has occurred at the same PLC cycle:

Observ(OE,, IE,)
Observ(OE,)

Prob(OE, | IE;) =

where Observ(OEg,IE;) is the number of times that the elementary output event OE and
the elementary input event IE; are observed the same event (which implies that they
occurred at the same PLC cycle) in the event sequence E, and Observ(OEy) is the
number of times the elementary output event OE, occurs in the event sequence E.

In a similar way, to find situations Type 2 represented by F(OEy), we will compute
the occurrence probability of an output event at a PLC cycle, given that certain input
level is observed:

Observ(OE,, I, =x)
Observ(OE,)

where Observ(OEy,l; = x) is the number of times the elementary output event OEg
occurred when the input level I; = x was present.

Prob(OE, | I, =x) = X e{1,0}

Conditional probabilities have been used in [Cook, 2004] for analyzing the relative
occurrence between workflow events; this analysis is done in the first step of the
procedure. However the remaining steps and the kind of obtained model differ from that
of our method.

In order to compute previously defined probabilities, we can use counters storing the
respective number of occurrences used at each equation. The values will be stored in
two matrices, called Direct 1/0 Causality Matrix (DCM) and Indirect I/O Causality
Matrix (ICM).

Algorithm 4.2 Building DCM and ICM matrices

Input: w,E

Output: DCM, ICM

1) Initialize counters
VOEy, Observ(OEy) < 0
VIE; VOEy, Observ(OEi and IE;) « 0
VIL; VOEy, Observ(OEx and lj=x) « 0

61

2) Update counters

VE(]))

If OEx € OE(j), Observ(OEy) « Observ(OEy) + 1

If IE; € IE()) and OEy € OE(j), Observ(OEy and IE;) < (OEx and IE;) + 1

If Ii=xinw() and OE, € OE(j), Observ(OEx and I;=X) « (OExand l;j=x) + 1
3) Compute matrices:

DCM; , = Prob(OE, | IE;)

ICM,, = Prob(OE, | I, = X)

Example 4.3. Considering the whole I/O sequence (Figure 4.2) of the Example 4.1,
we have computed the matrices shown in Tables 4.2 and 4.3.

Each column of the DCM corresponds to an output event OEy; each row corresponds
to an input event IE;. If the value in cell DCM; is not 0.000, it means that IE; and OE,
were observed at least once occurring at the same PLC cycle. Such an occurrence could
be due to the fact that there is a causality relationship between the input and the output;
however, as explained in Chapter 2, it could be also due to the PLC cyclic execution
mode.

0000001001010 0100100001010 0100010000110 1000010001010 0100010001000 1000000001010
1000101001010 0000101001010 0000011000010 1000000001010 0000011001000 0110000101010
1000100001010 1000101001010 1000011001010 1000000101010 1000011001010 0110000100010
1000000001010 1000100001010 1000010001010 1000000001010 1000010001010 0110000000010
0110000101010 1000000001010 1000000001010 0101000011010 1000000001010 0100000000110
0110000100010 0110000101010 1000000101010 0101000001010 1000000101010 0000101000110
0110000000010 0110000100010 1000000001010 0101000001000 1000000001010 0000101000010
0100000000110 0110010000010 0101000011010 0100000001001 0101000011010 1000101001010
0000101000110 0100010000110 0101000011000 0100000001000 0101000001000 1000100001010
0000101000010 0000011000010 0101000001000 0100000101000 0100000001001 1000000001010
1000101001010 1000011001010 0100000001001 0100000001000 0100000101000 0110000101010
1000100001010 1000010001010 0100000001000 0100010001010 0100000001010 0110000100010
1000000001010 1000000001010 0100000101000 0000011001010 0000001001010 0110000000010
0110000101010 1000000101010 0100000001000 1000011001010 1000011001010 0100000000110
0110000100010 1000000001010 0100000001010 1000010001010 1000010001010 0000101000110
0110000000010 0101100011010 0000001001010 1000000001010 1000000001010 0000101000010
0100000000110 0101100001010 1000011001010 1000000101010 1000000101010 1000101001010
0000101000110 0101100001000 1000010001010 1000000001010 1000000001010 1000100001010
0000101000010 0100100001001 1000000001010 0101000011010 0101100011010 1000000001010
1000101001010 0100100101000 1000000101010 0101000001010 0101100001010 0110000101010
1000100001010 0100100001010 1000000001010 0101000001000 0101100001000 0110000100010
1000000001010 0000101001010 0101100011010 0100000001001 0100100001001 0110000000010
0110000101010 1000101001010 0101100001010 0100000001000 0100100101000 0010001000010
0110000100010 1000100001010 0101100001000 0100000101000 0100100001010 0000001000110
0110010000010 1000000001010 0100100001001 0100000001000 0000101001010 0000001000010
0100010000110 0110000101010 0100100101000 0100010001010 1000101001010 0000001001010
0000011000010 0110000100010 0100100001010 0000011001010 1000100001010 0000101001010
1000011001010 0110000000010 0000101001010 1000011001010 1000000001010 1000101001010
1000010001010 0100000000110 1000101001010 1000010001010 0110000101010 1000100001010
1000000001010 0000101000110 1000100001010 1000000001010 0110000100010 1000000001010
1000000101010 0000101000010 1000000001010 1000000101010 0110000000010 0110000101010
1000000001010 1000101001010 0110000101010 1000000001010 0010001000010 0110000100010
0101100011010 1000100001010 0110000100010 0101000011010 0000001000110 0110000000010
0101100001010 1000000001010 0110010000010 0101010001010 0000001000010 0100000000110
0101100001000 0110000101010 0100010000110 0101010001000 0000001001010 0000101000110
0100100001001 0110000100010 0000011000010 0100010001001 1000101001010 0000101000010
0100100101000 0110010000010 1000011001010 0100010101000 1000100001010 1000101001010

Figure 4.2 The 1/O vector sequence for the Example 4.1

62

| laeilaol a1l A0l B | BO | C1 | CO]
PN o111 0111 0111 0111 0000 0200 0.000 0.000
BEECN 0000 0000 0000 0000 0000 0.000 0.000 0.000
PZEW 0222 0000 0000 0000 0000 0000 0000 0.000
BZZEN 0000 0000 0000 0000 0000 0000 0.000 0.000
BECEW 0222 0000 0000 1.000 0000 0000 0.000 0.000
BEC 0000 0000 0000 0000 0000 0000 0.000 0.000
BEF 0000 0444 0444 0000 1000 0.000 0.000 0.000
BEAON 0000 0000 0000 0000 0000 0000 0000 0.000
BEPEW 0000 0556 0556 0000 0.000 0000 1.000 0.000
BEAN 0000 0000 0000 0000 0000 0000 0000 0.000
BCOFR 0333 0000 0000 0000 0000 0000 0.000 0.000
B 0000 0000 0000 0.000 0000 0.000 0.000 0.000
BFW 0000 0000 0000 0000 0000 1000 0.000 0.000
BEFCM 0000 0000 0000 0111 0.000 0.000 0.000 0.000
BEFN o111 0000 0000 0000 0000 0000 0.000 0.000
BN 0000 0000 0000 0000 0000 0000 0.000 0.000
W 0000 0000 0000 0000 0000 0000 0000 1.000
BN 0000 0000 0000 0000 0000 0000 0.000 0.000

Table 4.2 Direct Causality matrix for the Example 4.3

[[Aci A0l A1 A0l Bl | BO | C1 | CO|
k1=1 0.444 0.111 0.111 0.333 0.000 0.250 0.200 0.200
k1=0 0.556 0.889 0.889 0.667 1.000 0.750 0.800 0.800
k2=1 0.556 0.000 0.000 0.333 0.000 0.250 0.000 0.200
k2=0 0.444 1.000 1.000 0.667 1.000 0.750 1.000 0.800
a0=1 1.000 0.000 0.000 1.000 0.000 0.500 0.000 0.000

0.000 1.000 1.000 0.000 1.000 0.500 1.000 1.000

al=1 0.000 0.444 0.444 0.000 1.000 0.000 0.000 0.000

al=0 1.000 0.556 0.556 1.000 0.000 1.000 1.000 1.000

az2=1 0.000 0.556 0.556 0.000 0.000 0.000 1.000 0.000

a2=0 1.000 0.444 0.444 1.000 1.000 1.000 0.000 1.000

b0=1 1.000 1.000 1.000 0.556 0.000 0.000 1.000 1.000

0.000 0.000 0.000 0.444 1.000 1.000 0.000 0.000

bl=1 0.000 0.000 0.000 0.111 1.000 1.000 0.000 0.000

b1=0 1.000 1.000 1.000 0.889 0.000 0.000 1.000 1.000

c0=1 1.000 1.000 1.000 0.889 0.000 1.000 1.000 0.000

c0=0 0.000 0.000 0.000 0.111 1.000 0.000 0.000 1.000

cl=1 0.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000

cl1=0 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.000

Table 4.3 Indirect Causality matrix for the Example 4.3

Consider the second column of the DCM corresponding to the event A+_0. The input
candidates to be in a causal relation with A+_0 are k1_1, al 1 and a2_1. Notice that
Prob(A+_0Olal_1) + Prob(A+_0la2_1) = 1. By considering the second column of the
ICM matrix, we can verify that Prob(A+_0jal=1) + Prob(A+_0la2=1) = 1. We can
conclude that the event A+ _0 is sometimes caused by al 1 and sometimes caused by
a2_1.

Consider now the first column of the DCM matrix which corresponds to the output
event A+_1. The input candidates to be in a causal relation with such an output event

63

are ki 1, k2 1, a0 1, b0 1 and c0_1. Observe that Prob(A+ 1]kl 1) +
Prob(A+_1lk2_1) + Prob(A+_1ja0_1) + Prob(A+_1|b0_1) + Prob(A+_1|c0_1) = 1,
but this time, by looking at the second column of the ICM, we observe that
Prob(A+_1lk1=1) + Prob(A+_1]k2=1) + Prob(A+_1la0=1) + Prob(A+_1b0=1) +
Prob(A+_1|c0=1) # 1. However, observe that Prob(A+_1|k1=1) + Prob(A+_1]k2=1) =1
and that Prob(A+_1]a0=1) = 1, Prob(A+_1|b0=1) =1, and Prob(A+_1|c0=1) = 1. Thus,
we can conclude that the event A+_1 always occurs under conditions a0 = 1, b0 = 1, cO
=1 and that it occurs sometimes under the condition k1 = 1 and sometimes under k2 =
1.

All conditions found intuitively above will be computed and included in the function

y of each output event. In the next section the procedure for obtaining such functions is
formalized.

4.2.5. Determining the firing functions

As stated before, the occurrence of an input event (or a conjunction of input events,
given the particular case of the PLC) is a sufficient condition to produce the occurrence
of an elementary output event. Several conjunction combinations are possible, and thus
we know that G(OEy), as a Boolean function, can be expressed as a conjunction of
disjunctions:

G(OE) = DisjE; A DisjEs A ... A DisjE;
Such that DisjE; = (IEw v IEx v ... v IE, v IE,)

If OEy has occurred into an event E(j), it seems that G(OEx) has been made true,
which implies that every one of the terms in DisjE, A DisjEs A ... A DisjE; was true. To
make true DisjE;, we need that at least one of IE, v IEx v ... v IEy v IE; be true, which

implies that at least one of the input events IEy, IEy, ..., IEy, IE; has occurred at the
same event than OE. Then, we can express the number of occurrences of OE as:
Observ(OE,) =

Observ(IE, and OE,) +...+Observ(IE, and OE,)
—Observ(IE, and IE, and OE,) —...—Observ(IE, and IE, and OE,)
+Observ(IE, and IE, and IE, and OE,) +...

Keeping track of all the terms in the expression would be very expensive in space.
We restrict the “or” disjunctions to “exclusive or”:

DisjEj = (IEw @ IEx® ... @ IE, @ IE;), under the hypothesis that if an input event 1Ex
or an input event IE, can provoke the firing of the output event OE,, it was only
provoked by IE, or by IEy, but never both together.

Following this restriction, we can express the number of occurrences of OE as:
Observ(OE,) = Observ(IE, and OE,) +...+ Observ(IE, and OE,)
Dividing both terms by Observ(OEy):

_ Observ(IE, and OE,) +...+ Observ(IE, and OE,)
Observ(OE,)

1

64

and substituting each term:
1=Prob(OE, | IE,) +...+ Prob(OE, | IE,)

We obtain a sum equal to 1 corresponding to terms in the k-th column of the DCM.
Thus, we can express the input event function as:

G(OE,) =TIDisjE;

With DisjE; =(IE, ® IE, @..® IE,)
Such that

1. DCM, =0,DCM; #0,..DCM; =0

2. DCM;+DCM +..+DCM, =1

If no DisjE; is found, we write G(OE,) = ¢

Applying the same reasoning, we can find in the ICM the input level condition under
which output events occur. The k-th column of the ICM matrix can help us then to
distinguish those input signals which must be present or absent in the occurrence of
OEJ‘Z

F(OE,) =I1DisjL,
with DisiL; = (IL, ® IL, ®..® IL,)

such that
1. ICMXj #0, ICMyj ;tO,...ICMZj #0

2. ICM, +ICM; +..+ICM, =1
If no DisjL; is found, we write F(OEy) = (=1)

Some of the input levels on the sum can be considered as redundant. They are simply
result of the conditions under which an output event is produced, but do not have a
direct influence on the occurrence of the event. Consider the Example 3.3 of the cars.
Input levels b=0 and d=0 are always present at the occurrence of R1 1 and R2_1, but
they are not directly related to such output events. In order to avoid representing these
non-direct relations into our model, an additional condition can be added (or in fact,
substitute condition 1):

3. DCM, #0,DCM, #0,..DCM; #0

Introducing such a condition, we could ignore some input events which do not have a
direct effect on the output evolution. To avoid this, we can keep a list D of input events
with differed influence to outputs. If DCM rows corresponding to I;_1 and I;_0 are zero,
we add them to D. If all the entries of the rows corresponding to I;=1 and I;=0 are 1 and
0 respectively (or 0 and 1), it means that no output event occurs between rising event
and falling of the input I;, so we can add I; =1 or I;=0 (the one corresponding to the row
with 1 values).

From the matrices of Example 4.3, the obtained functions are given in table 4.4. No
input event is added to D.

65

A+l (e) (KL®k2) ~a0 AbO A CO) (g)e (KL ® k2) A a0 A bO A CO)
A+ 0 (all1®a21) (1) (al_1®a2 1) e(=1)

A-1 ((al_1®a21) (=1) ((al_1®a2_1)) e (=1)

A-0 (a0.1) (=1) (a0_1) « (=1)

B1 (all) (=1) (al_1) e (=1)

BO (bll) (=1) (bl 1) e (=1)

C1 (a2.1) (=1) (a2 1) e (=1)

CO0 (cl.1) =1) (cl_1) e (=1)

Table 4.4 Firing functions of Example 4.3

These functions state clearly the conditions on the inputs that modify the outputs.
They can be expressed in terms of IPN as the marking/unmarking of observable places.
Figure 4.3 represents pictorially the IPN fragments corresponding to the above

functions.
(k1®k2)Aa0AbOACO)es =le Tal
Q;A+ g B

e —1e(Ta10 T a2) = =1eThl
- =1e(Tal® T a2) — =1 T a2
O a- Oc

== =1eTa0 e =leTcl

Figure 4.3 IPN fragments for Example 4.3

Notice that condition DCMy; = 0, DCMy; # 0,..., DCM, # 0 requires that the inputs
related to the output change were observed at least once changing its value at the same
PLC cycle for the considered output. This condition may be restrictive if the input-
output reaction is not observed in the same event vector. For example, in order to avoid
component damages, if there is not an input sensor to indicate that a pusher has been
retracted, there may be some security temporizations which do not allow another
actuator reacting at the moment an input condition has been satisfied.

In all previous cases, the input-output reaction would not be found and thus there
may be an output event with empty conditions on its firing function. In order to find the
correct OEFF, we can proceed in a similar way that in the previous chapter, where
equivalent states were found at the observation of k equal events. But in this case, the
condition could be relaxed to consider input events which have been observed in
previous event vectors instead of the same event vector. Formally, we can compute:

Observ(OE,, IE,)
Observ(OE,)

Prob(OE, | IE;) =

66

But this time, the computation is done by considering IE; occurred at the previous
event vector than the one with the occurrence of OEx. In such a way, a matrix called
One-step DCM matrix (1-DCM) is computed. A new OEFF can be computed using
values of 1-DCM. If the computed OEFF has still empty conditions, we can take the
previous to the previous event vector constructing a 2-DCM matrix and successively
until the k-DCM matrix while empty conditions are computed. The initial DCM matrix
can be thus denoted as 0-DCM.

In the example of this section, such relaxing condition is not necessary, since, as it
can be noticed, no empty conditions have been computed. However, in one of the
experimental case studies of Chapter 5, such a technique is applied.

The previously described method for finding input-output causality can be
summarized as follows.

Algorithm 4. 3Finding firing functions
Input:DCM and ICM

Output: ¥(OEy)

Vv OEy
1) Make G(OEy) « ¢
Compute G(OE,) < TIDisjE;
With DisjE; «- (IE, @ IE, ®..® IE,)
Such that
1. DCMXJ. #0,DCM i ¢0,...DCMZJ. #0
2. DCM,; +DCM ; +..+DCM; =1

2) Make F(OEy) <« (=1), k<0
While (G(OEy) = gand F(OEy) = (=1))
Compute F(OE,) «-IIDisjL,

With DisjL; =(IL, ®IL, ®..®IL,)
Such that
1. «-DCM;#0,x-DCM #0,.kx —DCM, =0
2. ICM;+ICM; +..+ICM; =1
Make k¢««+1

Remark. Given that the system has m inputs and n outputs, there could be 2m values
different from 0 in the DCM matrix. Thus, in the worst case, the complexity of the
procedure for computing the firing functions is O(n(2™)). However, in practice we have
very often observed that only few values differ from O in the DCM matrix; thus the
complexity of the Algorithm 4.3 can be approximated to O(n(2°)), that is O(n); this is
due to the fact that only a small subset of input events occur at the same PLC cycle than
a given output event.

The accuracy of the firing functions depends (as in all of the identification methods)
on the quality of information provided by the sequence: if a certain input event is related

67

with the occurrence of an output event, but they never occur close enough to detect the
relationship, they will not be related in the final model.

4.2.6. Construction of the observable incidence matrix

Remind that G(OEy) and F(OEy) are expressed in a Conjunctive Normal Form in
which disjunctions are “exclusive or”. We have previously analysed that, to make true
their values (implying the firing of OEy), all of the disjunctions in the expressions must
have a value true. Remind that under the given input conditions, several output events

could be produced at the same PLC cycle.

We can check the 1/0 events sequence (and 1/O sequence) to compute those
conditions under which output events fired along it. We can represent those firing
conditions by observable transitions in the IPN as shown in Figure 4.4.

|

OE(j)=OE, eOE,»...OE,

O(J)

l(j)} E(J) | I(j+1)}
LO(j+1)
IE(j)=IE; eIE, o..0IE,

#(OE,) = F(OE,,) G(OE,,)
#(OE,) = F(OE,,) G(OE,,)

7(OE,) =F(OE,)*G(OE,)

A(T;) = F(OE(]))*G(OE()))

Algorithm 4.4 Building observable behaviour

Figure 4.4. IPN representation of several output events enabled at the same cycle

We also will represent input events with differed output influence by transitions with
no corresponding output change.

Computed transitions will form an incidence matrix corresponding to the observable
part of the system. We can systematically describe the above procedures in the
following algorithm.

Input: 1/0 sequence w, Events sequence E, Differed inputs D, Firing functions

(OEy)
Output: Observable incidence matrix ¢C, labelling transition function A, sequence S

1)
2)
3)

Create a row in the incidence matrix for every output of the system

S¢«¢

VE(j) Consider the I/O sequence and 1/0 events sequence:
a) If OE(j)=0 and IE(j) contains elementary input events IEs,...,IE, belonging to

D

e |If it has not been created before, create a new zero transition T; (a zero
column in the incidence matrix ¢C) such that A(T;) «<—IEs,...,IE,

e S« ST,
b) If OE(j)=0

68

e Consider the output events OE(j) = OE; «OE;, ¢OE, included in E(j)
o Compute a new firing function considering (OE), »(OE), #(OE):
i) Forevery y(OE;)=G(OE;)*F(OE,):

(1) For every DisjE; = (IE, ®IE, ®..® IE,)in G(OE,) look into IE(j) the
input event IEi which has made true DisjE; =(IE, ®IE, ®..®IE,)
and make DisjE,'« IE,

(2) G'(OE;) < IIDisjE;’'

(3) G(OE(j)) «-G'(OE;,)eG'(OE,)»...eG'(CE,,)

(4) For every DisjL; =(IL, ®IL, ®...®IL,) in F(OE;) look into w(j + 1)
the input levels ILi which have made true DisjL; = (IL, ®IL, ®©..®IL,)
and make DisjL;'«— IL;

(5) F'(OE,) < IDisjL;'

(6) F(OE(j)) <~ F'(OE;))eF'(OE;,)e..eF'(OE,)

e If it has not been created before, create a new transition T; (a new column in
the incidence matrix ¢C) such that A(T;) «<— F(OE(j)) e G(OE(j)) and relate it
to its provoked output changes:

i) For all elementary output events in OE(j)=0E; eOE, ¢OE, , put a -1

jro
into the line corresponding to OEj if it is a falling event, or a 1 if it is a
rising event; for the rest of the lines, put a 0.
e S« S-Tj

It can be noticed that a simplified sequence transition S will be created by
concatenating progressively each one of the computed transitions.

The complexity of the procedure for building the transition sequence and fragments
iIs O((n” log m’)h), where n” and m’ are the maximum number of input and output
elementary events in an event vector. Consequently, the Algorithm 4.1 can be executed
in polynomial time.

Property 4.1. The sequence transition S is a translation of the 1/0 sequence w into
transition firings of the PN-fragments built by Algorithm 4.4.

Proof. It is easy to see that at the end of the steps 3.a and 3.b of Algorithm 4.4, S is
formed by concatenating the computed transitions from the event sequence produced by
w. This allows that the reactive behaviour can be reproduced in the partially created IPN
model. ¢

Example 4.4. After treating the long 1/0 vector sequence, we can compute the
transitions in the fourth column of Table 4.4.

69

1/O vector

Elementary input events

Elementary output events

Computed transition

w(l) = [0010010100000]' IE(1)=ki_1 OE(1) = A+ 1 2(t2) = (k1 « 20 « b0 e c0) ® (¢)
w(2) = [1010010101000]" IE(2) = a0_0 OEQ2) = ¢ No transition

W(3) = [1000010101000]" IE(3) =k1_0 OE@3) = ¢ No transition

w(4) = [0000010101000]" IE(d)=al 1 OE(d)=A+ OeA-_1eB 1 4(t)=(=1)e(al 1)
w(5) = [0001010100110]" IE(5) = b0_O OE(5) = ¢ No transition

w(6) = [0001000100110]" _ IE(6) = al_O OE(6) = ¢ No transition

w(7) = [0000000100110]" IE(8) =KL 1 ea0_1 OE(8)=A-0 At) = (=1) » (a0_1)
W(8) = [1010000100010]" IE(7) = b1 1 OE(7)=B_0 AL) = (=1) » (b1_1)
w(9) = [1010001100000]" IE(9) = b1 0O OE(9) = ¢ No transition

w(10) = [1010000100000]" _ IE(10) = b0_1 OE(10) = A+ 1 (t2) = (kL » 20 « b0 e c0) » ()
w(11) = [1010010101000]" IE(11)=a0_0 OE(11) = ¢ No transition

w(12) = [1000010101000]" IE(12) = k1_0 OE(12) = ¢ No transition

w(13) = [0000010101000]" IE(13)=al 1 OE(13)=A+ 0sA__1eB 1 4(t)=(=1)* (al 1)
w(14) = [0001010100110]" _ IE(14) = b0_0 OE(14) = ¢ No transition

w(15) = [0001000100110]" _ IE(15)=al_0 OE(15) = ¢ No transition

w(16) = [0000000100110]" IE(16) = b1 _1 OE(16)=B_0 L) = (=1) » (b1_1)
w(17) = [0000001100100]" IE(17)=a0_1 OE(17)=A-0) = (=1) » (a0_1)
w(18) = [0010001100000]" IE(18) = b1 0 OE(18) = ¢ No transition

w(19) = [0010000100000]" IE(19) = b0_1 OE(19) = ¢ No transition

W(20) = [0010010100000]" _ I1E(20) = k2_1 OE(20) = A+ 1 Ats) = (k2 » a0 » b0 e c0) » ()
w(21) = [0110010101000]" _ IE(21) =a0_0 OE(2L) = ¢ No transition

W(22) = [0100010101000]" I1E(22) = k2_0 OE(22) = ¢ No transition

W(23) = [0000010101000] _ IE(23) =al 1 OE(23)= ¢ No transition

W(24) = [0001010101000]" _ IE(24) =al_0 OE(24) = ¢ No transition

W(25) = [0000010101000] _ IE(25) = a2_1 OE(25)=A+ 0sA—_1eC 1 4t = (=1)* (@2_1)
W(26) = [0000110100101]" _ IE(26) = a2 0 OE(26) = ¢ No transition

W(27) = [0000010100101]" _ IE(27) = c0_0 OE@27) = ¢ No transition

w(28) = [0000010000101]T IE(28) =KL Lecl 1 OE(28)=C_0 A6) = (=1) » (cL_1)
W(29) = [1000010010100]" _ IE(29) =al 1 OE(29) = ¢ No transition

w(30) = [1001010000100]" _ 1E(30) = aL_Oe c0_1 OE(30) = ¢ No transition

W(31) = [1000010100100]" IE(31) =a0_1 OE(31)=A-0) = (=1) » (a0_1)

w(32) = [1010010100000]"

From here, previously observed transitions are found

Table 4.5 Computed transitions for Example 4.3

70

Not all the sequence treatment is shown since it consists of 222 1/O vectors; at the end
of the procedure, we get the following observable incidence matrix which represents the
structure of Figure 4.5 .

t t t3 ts ts te ty
A+ 1 -1 0 0 1 -1 0
A- 0 1 -1 0 0 1 0
B 0 1 0 -1 0 0 0
C 0 0 0 0 0 1 -1

By concatenation of all computed transitions in the fourth column, we obtain the
following transition sequence:

S=tibttutibttttetytibhtutstetruibhbtibiatitstety tuts tety taty 1o

Bttty bbbttt sttt bbb bzttt
Uty

Figure 4.5 Obtained structure for Example 4.3

After this processing, we have only defined the observable part of the IPN, i.e., the
reactive behaviour of the compound PLC + controller. It remains to infer the internal
state evolutions of Type 3.a. Such a problem can be seen as finding how to preserve the
firing of the computed transitions through non observable places to obtain a net
reproducing S. To do this, we can work now over the simplified transition sequence
obtained, considering the incidence matrix and firing functions we have computed.

4.3. Determining the non observable PN model

4.3.1. Problem re-statement

The previously described procedures allow obtaining an observable structure which
represents the reactive behaviour of the system. Given that events and transitions of the
net are completely defined, we need to add non-observable places to translate an
aggregation of the non-observable dynamics of the process in such a way that the global
PN will reproduce the whole behaviour of the system.

The problem of determining the non observable part of the IPN model
complementary to that describing the observable (reactive) behaviour is stated as
follows.

Given an observable IPN model whose structure is (P, T, Pre®®, Post®™) and a

transitions sequence S = t; tp ... tj ... e T* reproducing the I/O sequence w, a PN

71

structure (P™™, T, Pre™ Post"™) that reproduces S and an initial marking Mg
enabling S must be found. The new PN structure is N=(P, T, I, O) with P= P° U P
Pre= Pre®® U Pre™, Post= Post®™ U Post™®. The PN must be ordinary, free-choice
and safe.

Observe that in S there are not consecutive apparitions of the same transition, due to
the nature of the considered events (rising and falling edges of binary signals).

As reviewed in Chapters 1 and 2 of this thesis, in the literature there are many
approaches which tackle the described identification problem, However, remember that
the hypothesis made on such works are not satisfied by our scenario or their
characteristics can be improved:

a) We only have a single sequence which could contain system cycles

b) We have no counterexamples available (we don’t know the whole language of the
system)

¢) We look for polynomial time algorithms
d) We want to build an IPN model that allows showing structurally parallelism

New places and arcs must be determined such that they join PN fragments that have
been built. We will connect them by relating transitions with non-observable places.

Since the tasks in different processes can occur simultaneously or at some predefined
order, each two fragments can be related in two manners: sequentially or concurrently.
Thus, several connecting forms are possible as illustrated in Figure 4.6, where “clouds”
represent the fragments.

A
X
\
e d
_/
) S ——
1
1
1
Ix\
\Tl
1
i
1
1
[

i
1
4
/
<~
-
-
>(-,\.
-
"'(_/

N ,I -------- —\,< ________

db_ _______] ! i« i

1 SN i

1 ’ \E\ i

.-»Q > ! C) !

1 1 T 1 1

1 1 1 ! T 1

1 1 1 H 1 1

o4 A ¥ P .|
~ ~ ~ 1

o ! ¢ G i (y‘n (y‘n i

i i

1 1

!]

d d

Figure 4.6 Some different possibilities for fragments assembling

In this section, we present a procedure to find precedence and concurrency relations
among transitions, which will determine the final structure of the identified model. First
some properties derived from the sequence S are introduced. Afterwards, based on such
properties, an analysis technique allowing determining causal and concurrency
relationships among the transitions in S are proposed. Then, the rules for building a net
structure observing the causal and concurrency relationships are presented.

72

4.3.2. Dynamical properties

Since the construction method is based on the analysis of causal and concurrency
relationships, some notions must be defined before introducing construction procedure
of the non-observable behaviour.

Definition 4.3 The relationship between transitions in S that are observed
consecutively is expressed in a relation Seq = T x T which is defined as Seq ={(t;, tj+1)|
1<j<|S|}. If (ta tp) € Seq, this is denoted by t <t

In a PN model every pair in Seq may in fact be represented differently. If t,, t, were
observed consecutively in S, this behaviour could be issued from one of two situations
in N described in the following definition.

Definition 4.4 Every couple of consecutive transitions t,, t, in Seq can be classified
in one of the following situations:

Causal relationship. If the occurrence of t, enables t,. In a PN structure, this implies
that there must be at least one place from t, to t, (Figure 4.7a).

Concurrent relationship. If both t, and t, are simultaneously enabled, but t, occurs
first and its firing does not disable tp. In a PN structure, this implies that it is impossible
the existence of a place from t, to t,. In this case, t, and t, are said to be concurrent,
denoted as talty. (Figure 4.7b).

t t) O—=0
=0

Figure 4.7a Causal relationship from t, to t, Figure 4.7b Concurrent relationship from t, to t,

Figure 4.7 Structures that represent t,< t,

The following notion is the systematic precedence of a transition t; with respect to
another transition ty; it establishes a necessary condition for tj to occur repeatedly.

Definition 4.5 A transition t; is preceded systematically by ti, denoted as t,£t; iff ti is
always observed between two apparitions of t; in S. By convention, we say that t;£t; if ;
was observed at least twice in S. Then the Systematic Precedence Set of a transition tj is
given by the function PS: T—2, that indicates which transitions must be fired to re-
enable the firing of tj, i.e. PS(t)={t« [t£t;}. If t; was observed only once in S, then PS(t;)
= .

Definition 4.6 Two transitions t,, t, are called transitions in a two-cycle if S contains
the subsequence tatyt, Or the subsequence tytat,. The two-cycle transitions set TC of S is
given by TC={(tat)|ta, tp are in a two-cycle}.

Example 4.5. In the sequence S=tibtsautibytatstetytyti ottty tstgty ty ty ot ty
bbbttty Ui bttty bttt utstety sttty ittty i o tata 1y
Lbhtytibtstutibtatsti oty ty from Example 4.4, one may observe that th /1, 13 /1,
ta£ty, thus PS(t1)={t1, t2, t3, ts}. Notice that PS(t;) is the set of transitions that must
invariantly occur to fire tj repeatedly. The rest of the PS sets are:

PS(tg):{tl, tg, t3, t4}, PS(tg):{tl, tg, t3},

PS(t4):{t4}, PS(t5)={t4, ts, 6, t7})

73

PS(ts):{t4, t5! tGl t7}| Ps(t7):{t4, t5, t6, t7}

The set of consecutively observed transitions is Seq={ (t1, t2), (t2, t3), (t3, ts), (t4, 1),
(tz,t4), (t4, tg), (t3, t5), (t5, tG), (ts, t7), (t7, t4), (t4, t5), (t3, tl)}. The set of transitions in a
two-cycle is TC= .

Definition 4.7 A Petri net circuit is a path starting and ending in the same node. A
circuit is said to be simple if it does not use the same transition more than once, and
elementary if it does not use the same place more than once.

We will now extract some structural properties regarding N from S. The previously
defined notions will be used to determine which situation between causality and
concurrence is the most appropriate for every pair of consecutively observed transitions
inS.

4.3.3. Causal and concurrency relationships

4.3.3.1. Causal relationship

Proposition 4.2 If t,/t, (tacPS(tp)) then, there must exist in N a simple elementary
circuit (SE circuit) to which both t, and t, belong.

Proof. Suppose there is not a SE circuit containing t; and t,. Thus, right after the
firing of ty, all the tokens in t," could be displaced by transition firings through some
path to °t,, enabling t, without needing to fire t,, which implies that t,2PS(ty).

Proposition 4.3. If t, < t, and t,£ty, then there must exist in N a place from t; to t,.

Proof. Suppose that there is not a place from t; to t,. In order to allow the observation
ta<tp, both t, and t, should be enabled simultaneously. By Proposition 4.2, there is at
least one SE circuit containing t, and t, and thus, at least one path from t, to tp. Thus, if
ty and t, are enabled simultaneously and t, is fired, all paths from t, to t, contain two
tokens. If all transitions in a path from t, to t, are fired, then there will be two tokens in
one of the input places of t,, resulting in a non-safe net. Then, at least one of the
transitions t; in each path from t, to t, must be conditioned to the previous firing of t,.
But if t, is fired, all the transitions in paths from t; to t, can be fired and all the
transitions in paths from t, to t, which do not include t, can be fired; thus t, will be
enabled before t, fires and as a consequence t,zPS(ty). ¢

Proposition 4.4 If t, <ty and t,£t,, then there must exist in N a place from t, to tp.

Proof. Suppose that there is not a place from t, to t,. Then, before the observation of
ta < ty, both t; and t, must be enabled, and thus the occurrence of t,<t, is possible, which
together with t,£t; and by Proposition 4.3 implies that there should be a place from t, to
ta. However, at the firing of t, there are two tokens in such a place, and thus the net is
not safe. ¢

Proposition 4.5 If (t,,t,) €TC, then there must exist in N a place from t; to t, and a
place from t;, to t,.

Proof. The sequence tat,t, must be reproducible in N. Right after the firing of t, there
is a token on its output places, and thus t, must be at the output of such places;
otherwise, there would be two tokens in such places after the second firing of t,.
Similarly, right after the first firing of t,, there are no tokens on its input places, and thus
tp, must be at the input of such places; otherwise, t, could not be fired again. The same
reasoning can be applied to reproduce the sequence tytty. ¢

74

Notice that when two transitions are observed consecutively and one is
systematically preceded by the other, a causal relationship is found. Also, when two
transitions are involved in a two-cycle relation, they are in a causal relationship each
other. Observe that all of these relationships are structural, and thus they do not depend
of the initial marking of the net.

Definition 4.8 The causal relationship set CausalR keeps track of all the causal
relationships in S. CausalR = {(ta, ty) | (ta<tp) and (taLty Or tp, Lty Oor (ta,ty) e TC)}.

Example 4.6 From the PS sets and the Seq set in the Example 4.5, we compute
CausalR={(t, t), (t2, ta), (ta, t1), (t2, ta), (ts, t6), (L6, t7), (t7, ta), (L4, ts), (L3, t1)}-

If a couple of transitions (t,, tp) in the Seq set, belongs also to CausalR, there must be
a place from t, to t, in order to preserve the observed firing order. For the rest of the
transition couples in Seq, we must decide if a place should exist to relate them. Next, we
will discuss some cases where the existence of a place can be discarded.

4.3.3.2. Concurrency relationship

If two transitions t; and t, are concurrent, there must not exist a place neither from t,
to ty, nor from t, to t,; otherwise, the firing of one would constrain the firing of the other
one.

Definition 4.9 The set of all pairs of concurrent transitions is called ConcR={(ta,ty)|
tallto}-

If the sequence w is complete, (consequently, S) i.e., if it shows all of the possible
behaviour of the observed system, we can find concurrency between transitions that are
not in a causal relation, as showed in the next proposition.

Proposition 4.6. Let t,, ty be two transitions which have been observed consecutively
in a complete sequence S in both orders, i.e. (ta, ty)eSeq, (t,, ta)eSeq. Then (ts,
t,) ¢ CausalR and (ty, t,) ¢ CausalR if and only if ty|tp.

Proof. (—) Suppose that (t,,tp) ConcR. Without lose of generality, we suppose there
is a place pap from t, to t,. Since (ty, ty) €Seq, there must also be a place ppa from ty to t;;
otherwise, t, could be enabled simultaneously with t, to allow tp<t, and t; may be fired,
yielding to the presence of two tokens in the place ps, and breaking the safeness
condition. Since (t,,t,) 2 CausalR, t,2PS(t;) and thus there must be at least one path from
Pab 10 Poa Which does not contain t,. Similarly, there must be at least one path from ppa
to pap Which does not contain t,. Since (ta,t,) 2 TC, tatpta Should not be enabled and thus,
there must be at least one SE circuit to which t, belongs, but t, does not belong. The
resulting net violates the free-choice conditions (observe Figure 4.8).

(«) Suppose now that (tstp)eConcR. This means that they can be both enabled
simultaneously and one can be fired without needing the firing of the other one, and
thus t,2PS(tp) and t,2PS(t,). Also, since there cannot be any place from t, to t, nor from
tp to ta, neither the subsequence tatyts, Nor the subsequence tytat, can be enabled, and thus
(ta,tn) 2CausalR and (tp, t;) ¢CausalR. ¢

75

1 \
1 \
I \
' v
4
t, ty
I
]
7
/

Poa -

-~
-

___"

Figure 4.8 (t, ty)eSeq, (t, ta)eSeq and (t,,t,) €ConcR

Notice that our methodology allows computing also non free-choice nets. Only in the
case where the system includes behaviour like the one shown in Figure 4.8, the
transitions t, and t, would be wrongly considered as concurrent and the existence of
links from t; to pa, and from t, to ppa Would be missed. However, the obtained model
would be still capable to reproduce the sequence S.

It is well known that in practice, the sequence w is not complete, since in the general
case, the observed systems do not show all their possible behaviour during the
collection data. In fact, it is not possible to assure that the whole behaviour of a system
has been observed. The consideration of Proposition 4.6 is then very restrictive, since it
demands the observation of all possible behaviour; it could lead to the construction of
incorrect models in case of incomplete sequences. Then, some less constraining rules to
find concurrency must be considered. Next, we present several properties which allow
us to identify couples of transitions which must be concurrent in the identified net N.

First, we will introduce the notion of Sequential Independence, which is a
characteristic of concurrent transitions. Later, the propositions to find concurrency will
be introduced.

Definition 4.10 Two transitions t, and t, are Sequentially Independent if ta2PS(ty)
and t,PS(t,).

Proposition 4.7. Let t; and t, be two transitions in S which have been observed
consecutively in both orders (t, < tpand tp < ty). If:
a) (tatp) ¢ CausalR and (t,ty) ¢ CausalR

b) and |PS(t)| >1 and |PS(ts)] >1

Then ta|tp.

Proof. Suppose that t, and t, are not concurrent. Without lose of generality, suppose
there is a place pap from t, to t,. Since t,<t, has been observed, there must be also a
place pya from t;, to t, (and as consequence N contains a two-transition cycle); otherwise,
ta could be enabled simultaneously with t, to allow t,<t, and t, may be fired, yielding to
the presence of two tokens in the place pa, and breaking the safeness condition. Since
t,2PS(ta), there must be at least one path leading from pap, to ppa NOt including ty. Since
|PS(ta)| >1, there must be at least one circuit including t, and not including pap, Ppa NOF
tp. Since t,2PS(tp), there must be at least one path leading from ppa to pap NOt including
ta. Consider the first transition t;, of this path. The free-choice conditions are not

76

satisfied, since tx and t, share ppa as input place, but t; has at least one different input
place. ¢

Observe the net in Figure 4.9 which is composed by two independent t-components
X1 and X, with supports <X;>= {t,,ti} and <X;>= {t,,t} respectively. In a sequence
belonging to the language of such a net, transitions belonging to different t-components
are sequentially independent. In fact, PS sets of this net correspond exactly to t-
components of the net.

t, t; tp ty

Figure 4.9 A net with two t-components

The PS set of a given transition PS(t;) is very useful to find concurrency when it is
not a singleton. However, if PS(t;) is singleton, it means that it belongs to several
elementary circuits and then Proposition 4.7 does not allow anymore to find concurrent
transitions to t;. However if t; is included in the PS of other transitions, we may find
some concurrency relations, as shown in the next proposition.

Proposition 4.8. Let t, and t, two transitions in S that have been observed
consecutively in both orders (t, < tpandt, < ty). If t; and ty

a) are Sequentially Independent and
b) there exists a transition t, such that t, £ty (taePS(tk)) and t, £tk (t,ePS(tx))

then ta[ts.

Proof. Suppose that it does not hold that t,|[t,. Without loss of generality, suppose
that there is a place from t, to t,. Since t,ePS(tx) and t, ePS(ty), after the firing of ty,
both t, and t, must be fired before the next firing of tx. Since t, < t, may happen, the
place from t, to t, must be marked. However t, < t, may occur too, leading to the
presence of two tokens in the same place after the firing of t;, and making the net not
safe. ¢

Example 4.7. Figure 4.10 shows an example of the case characterised by Proposition
4.8. 1t is the general case of transitions belonging to concurrent threads (t,, tc and tp, tg,
te, t respectively), which are eventually synchronized by one transition (t). If we make
several firings to build a transition sequence, eventually the PS sets would be:

PS(t) = {t, ta, tc, to, ta, te}
PS(ta) = PS(tc) = {tx, ta, tc}
PS(to) = PS(ty) = {tx, to, ta, t}
PS(te) = {te, ta}, PS(ta) = {ta}

Even if PS(ty) is singleton, the synchronization point tx help us to find by Proposition
4.8 that ty || ty and that tg|| t.

77

\4
b 4

Figure 4.10 Concurrent threads synchronized by a transition

If concurrent transitions do not belong to synchronized threads, conditions of the
next propositions help us to find a subset of concurrent transitions which do not depend
from another transition ty.

Proposition 4.9. Let be two transitions t, and t, which have been observed
consecutively in both orders (t; < tyand tp < t,). If t; and t, are:
a) Sequentially Independent and

b) 3ty such that tyePS(ty), tkgPS(t,), and

c) (tat)eSeq
then t,|t,.

Proof. Suppose there is a place pa, from t; to t,. Since tp<t; has also been observed,
there must be also a place pp,a from t, to t;; otherwise, t, should be enabled
simultaneously with t, to allow t,<t, and t; may be fired, yielding to the presence of two
tokens in pap. Since there exist tx such that t,ePS(ty), then there must be a SE circuit
containing both t, and tx. If such a circuit contains places ppa Or ppa, it is not possible to
fire t;<ty and thus such a circuit must contain another input place py, of t, and another
output place ppk of t,. Now, to accomplish that t,&PS(t,), there must be at least one path
leading from pa,p to some input place of t, not including t,. Consider the first transition ty
of this path. In order to respect the free-choice conditions, px, should be an input place
of ty, making the occurrence of t,<ts impossible. ¢

Definition 4.11 The Inverse Systematic Precedence set of a transition PS™*: T—2"
contains the transitions which are dependent of a common transition to re-enable their
firing:

PS7H(t;) ={t, It #t; and t, e PS(t,)}

Proposition 4.10 Let be t; and t, two transitions which have been observed
consecutively in both orders (t, < tpandt, <ty). If t, and ty are:

a) Sequentially Independent, and

b) PS™(ta) # &, VePS™(ta), Il o,

then t,|t,.

Proof. Suppose there is a place pa, from t; to ty,. Since tp<t; has also been observed,
there must be also a place p,a from t, to t;; otherwise, t, should be enabled
simultaneously with ty to allow ty<t, and thus t; may be fired, yielding to the presence of
two tokens in the place from t, to ty. Since t,¢PS(t;), there must be at least one path
leading from pap t0 ppa NOt including t,. Similarly, there must be at least one path leading
from ppa t0 pap not including t,. Since PS'l(ta) # &, there is at least one transition t;
concurrent to t, such that t;£t, and there must be a SE circuit including t; and t;. Such a

78

circuit cannot contain pa, NOr Pya Otherwise t; may be able to fire without need of firing
ta. Consider the input place px of t, in this path. The free-choice conditions are not
satisfied between pyx and ppa: they share t; as output transition, but py, has at least
another output transition. ¢

An example where Proposition 4.10 can be used is shown in Figure 4.11. PS™(t,) ={
tj1, tio} and tj|ty, tj2||ty are determined by Proposition 4.7. Consequently, t, || t.

[]
[|
o+

i ta =iy] tb]

O/ /
Figure 4.11 Concurrence between transitions whose PS is a singleton

4.3.4. Building the non-observable PN

We will use now the computed data from sequence S to infer internal evolutions of
the system. We will make an analysis of causal and concurrency relations that have
been found between consecutive transitions in order to compute non-observable places
of the net.

Definition 4.12 The set Seq’= (Seq - CausalR) - ConcR contains the set of transition
pairs (ta,t,) which have been observed consecutively, but are not in a causal relation or
in a concurrency relation.

If Seq” # &, there are two possibilities for the remaining transition pairs (ta,t) in
Seq’:
a) They are both input and output transitions of a place with several input and
output transitions

b) They are concurrent, but w (thus, S) is not complete enough to find such a
relationship

Since our goal is to approximate as much as possible the language generated by the
net N to the observed sequence S, we assume that if we have observed two transitions
consecutively (ta<tp) but by none of the previous propositions we have determined that
they are concurrent, thus the firing of t; has enabled t,. This is made in order to preserve
in N the firing order observed in S. Then, a place will be added from t, to ty; this
denoted by [ta, ty].

When it is found that [t,, tc] and [ty, t], and the involved transitions are related by a
single place, this is represented as [tatp, tc]. In general, a place p can be denoted as
[tar taz... tai, to1 o2, ton], Where ty are the input transitions of p and ty are the output
transitions of p, and 1=|"p|, h=|p°®|, as illustrated in Figure 4.12.

79

Figure 4.12 A PN place p = [ta1 taz.. ta, to1 tho... ton]

The same place could be used to relate several consecutive transitions. If a transition
t, has been observed followed by two transitions ta, ty in S (t<ts and t<ty), there are
two cases to represent such observations into the PN model: the case of selection, where
they are represented with the same place [tx, tai ty] (Figure 4.13a) or the case of
concurrence, where they are represented with different places [tita] [tk, ta] (Figure
4.13b).

ty tk
L t.;
al 4 tai taj
a) ta, ty are not concurrent and have not b) tai, ty; are concurrent or have been
been observed consecutively observed consecutively

Figure 4.13 Selection and parallelism representation

In a generalized form, for every set ty<ta,..., t<taw Of non-concurrent consecutive
transition pairs with the same first transition ty, we can thus merge all t<ta,..., tk<tax
whose second transitions t,;...taw are non-concurrent nor consecutive and represent
them into a single place [t, tai...taw], as illustrated in Figure 4.14.

tal t612 taw tbl tb2 tbx tcl tcz tc
Figure 4.14 Selection and concurrence between post-transitions

Once we have made the first merging, all places [tk, ta1...taw], [tke, taz...taw],-- -, [tkes
ta1...taw] Whose input transitions are non-concurrent nor consecutive and whose output
transitions are the same, can be merged into a single place as illustrated in Figure 4.15.

Figure 4.15 Selection and concurrence between pre-transitions

80

Once the structure of the net is built, the initial marking can be computed allowing
the firing of S. All transitions are processed, from the last transition till the first one. The
processing of a transition is as follows:

e Ifits output places are marked, the tokens in such places are retired
e Tokens are added to its unmarked input places

When there are transitions with an empty PS, it means that they were observed only
once and thus, they will not be included in any cycle of the constructed model. In case
of one of these transitions be a source transition, we will add an input marked place for
avoiding non-safeness; accordingly for a sink transition we will add an unmarked output
place.

Example 4.8. In the sequence from the Example 4.5, S=tito sty t1 bty ta3ts ts t7 ta 1y
PR R VR R v A VR CR PR R VR (R OB CR VR R R v A VR R R v VR (R PR CR VR (R R v A VR R Pl v VR R R R PR R T
bhtttgty htib i b i b st i b tata g L ts ta ty, the concurrent transitions
determined are ConcR = {(tg,t4)(t4,t3)}. Since Seq:{(tl, tz), (tg, tg), (t3, t4), (t4, tj_), (tz,t4),
(t4, t3), (t3, t5), (t5, ts), (ts, t7), (t7, t4), (t4, t5), (t3, tl)} and CausaIR={(t1, tz), (tz, t3), (t4, tl),
(tz, ta), (ts, t), (t6, t7), (t7, ta), (ta, t5), (t3, t1)}, we have that Seq’” = {(ts, ts)} and thus, there
is a relationship that has not been explained as sequential nor as concurrent. We
consider all couples of consecutive non-concurrent transitions (all couples in Seq -
ConcR) to compute the places: [t1, t2], [t2, ta], [t3, t1 ts], [ta, t1 ts], [ts, te], [t6, t7], @and [t; ty,
t4]. The structure and the computed initial marking correspond to the net in Figure 4.16.

Figure 4.16 Non-observable model

4.3.5. Places verification

As stated before, with the proposed mechanisms in last section, the sequence w may
not have shown enough combinations which allow us to determine concurrency. If the
sequence w were complete, all the concurrent and sequential behaviour could be found
and represented, according to Proposition 4.6. However, since we know that w might
not be complete, in order to approximate the language of N to S as much as possible, we
have considered that if two transitions have not been declared as concurrent, they must
be in a sequential relationship. But if the transitions are actually concurrent, the
sequential consideration could lead us to arcs or places in the built model which restrict
too much the behaviour of the system and do not allow the firing of S. Now, we present
some notions that will help us to verify if added places until now do not interfere in the
correct reproduction of S.

Proposition 4.11. If the IPN model has been correctly build, every computed non-
observable place p in N must fulfil the place input-output flow equation:

81

D Oce(t;) = > Oce(t;) £1

ticep t,epe
where Occ(ty) is the number of occurrences of ty in S

Proof. Equation follows straightforward from the IPN transition enabling and firing
conditions and from the fact that N must be safe. ¢

Proposition 4.12 If there exists a place p such that |'p|=1, then Vt; € p°, tx € PS(Y),
where ty is the input transition of p. Also, if there exists a place p such that |p°*|=1, then
Vi € °p, tc € PS(t}), where t is the output transition of p.

Proof. If |*p|=1, for the re-enabling of t;, p must be marked and the only way to do so
is the firing of t,, and thus tx € PS(t;). Similarly, if |p*|=1, for the re-enabling of tj, p
must be unmarked and the only way to do so is the firing of t,, thus t € PS(t;). ¢

Correction rule. If the input-output flow equation or the conditions in Proposition
4.12 are not satisfied by some place, the arcs relating transitions which are not in
CausalR are removed. If there are not CausalR represented in such a place, it is deleted.

Example 4.9 In the model of Figure 4.16, we check the input-output flow equation
for each place. Occ(t;) = 12, Occ(ty) = 11, Occ(ts) = 11, Occ(ty) = 20, Occ(ts) = 9,
Occ(ts) = 9, Occ(ty) = 9. We check also the condition of Proposition 4.12.

p1: Occ(ty) = Occ(ty) (£1), t1ePS(ty), toePS(ty)

p2: Occ(ty) = Occ(ts) (£1), t,ePS(ts), tsePS(ty)

p3: Occ(ts) = Occ(ty) + Occ(ts) (£1) = wrong place

p4: Occ(ts) = Occe(ty) + Occe(ts) (£1), t4ePS(ty), taePS(ts)
ps: Occ(ts) = Occ(ts) (£1), tsePS(ts), tscPS(ts)

pe: Occ(ts) = Occ(ty) (£1), tsePS(t7), t7ePS(ts)

p7: Occ(ty) + Occ(ty) = Occe(ty) (£1), t4ePS(LL), t4ePS(ty)

Observe that the condition ps: Occ(tz) = Occ(ty) + Occ(ts) (1) is not satisfied, and
thus the place ps must be corrected to allow reproducing the observed behaviour. Since
t3ePS(t1), t1ePS(t3), ts2 PS(ts) ts2PS(t3), we can conclude that (ts, ts) are not in a casual
relationship (remember that Seq’ = {(t3, t5)}), and thus, to correct the place, we delete
the link going from p;3 to ts. The resulting net is shown at Figure 4.17. Notice that the
computed net is not free-choice.

Figure 4.17 Non-observable model

82

Observe that in Figure 4.5 observable places [t;, t3] and [ts, t7] already exist. By
adding computed non-observable places to such a model and deleting implicit places
[t2,t3] and [ts,t7], we obtain the final result shown in Figure 4.18, which reproduces w.

Figure 4.18 Final model representing the system from Example 4.1

Now, we present another example with the whole non-observable behaviour
identification procedure developed.

Example 4.10. In order to illustrate our non-observable behaviour discovering
technique, consider the net in Figure 4.19 composed by only non-observable places:

Figure 4.19 A test IPN with non-observable places

We have built the net in the Platform Independent Petri net Editor (PIPE), which is
an editor for visualization and analysis of Petri nets. With such tool, we have generated
a transition sequence of length 1000 by firing randomly transitions of the net : S =t9 t11
t1t4t10t9t6t1t2 t12 t5t6 t12 t8 t11 t10 t9 t6 t10 t12 t8 t11 t9 t10 t11 t9 t10 t11 t9 t11
t10t9 t6 t12 t10t5t11 t9 t1 t4 t1 t6 t2 t12 t5 t1 t2 t10 t6 t12 t8 t11 t9 t10 t11 t9 t10 t11
t9 110 t11 19 t1 t4 t11 t10 t9 t11 t10 t9 t11 t1 t4 t10 t9 t1 t11 t2 t1 t2 t1 t2 t1 t2 t10 t9 t6
t1t12t2t10t8t11t9t11t10t9t10t6t12t8t11t9t6t1t2t10t12t5t11t9t11t10t916
t10 t12 t5 t11 t9 t6 t1 t2 t1 t2 t12 t1 t5 t6 t2 t1 t4 t10 t12 t8 t11 t9 t1 t4 t10 t6 t12 t5 t11
t9 110 t11 t9 t10 t6...

From such a sequence, the following data has been computed:

PS(t11) = {t11, t9}, PS(t10) = {t10, t9}, PS(t9) = {t9, t11, t10}, PS(t8) = {t8, t6,
t12}, PS(t6) = {t6, t12}, PS(t5) = {t5, t6, t12}, PS(t4) = {t4, t1}, PS(t2) = {t2, t1},
PS(t1) = {t1}, PS(t12) = {t12, t6}.

Occ(t11)=127, Occ(t10)=128, Occ(t9)=128, Occ(t8)=60, Occ(t6)=123, Occ(t5)=63,
Occ(t4)=55, Occ(t2)=69, Occ(t1)=124, Occ(t12)=123

83

Observed consecutive transitions: Seq = {

(t9, t11), (t11,t1), (t1, t4), (t4, t10), (t10, t9), (19, t6),
(t6, t1), (t1,t2), (t2, t12), (t12, t5), (t5, t6), (t6, t12),
(t12,t8), (18, t11), (t11, t10), (t6, t10), (t10, t12), (t11, t9),
(t9, t10), (t10, t11), (t12, t10), (t10, t5), (t5, t11), (t9, t1),

(t4,t1), (t1, t6), (6, 12), (5, t1), (t2, 110), (t10, 16),
(t4, t11), (t1, t11), (t11, 12), (t2, t1), (t1, t12), (t12, 12),
(t10,18), (t12, t1), (t1, t5), (16, t4), (8, t6), (t2, 16),
(t12, t4), (tl1, t4), (tl, 8), (18, 12), (t2, 18), (t4, t12),
(t2, t11), (8, t4), (t4, 16), (t8, t10), (t2, t5), (5, t10),
(t8, t1)}

Concurrences: ConcR ={

(t2, t12), (t11, t10), (t6, t10), (t10, t12), (10, t5), (6, t2), (t4, t11), (t11, t2), (t10, t8),
(16, t4), (t12, t4), (8, t2), (t1, t11), (t1, t6), (t1, t12) }

After the creation of the net as specified in section 4.3.4, the following places have
been considered: p11:[t11 ,t9], p10:[t10 ,t9], p9:[t8 t5 ,t1], p8:[t1 ,t8 t5], p7:[t12 ,t8 t5],
p6:[t8, t4], p5:[t6 ,t12], p4:[t9 t8 t5 ,t6 t11], p3:[t2 ,t5], p2:[t9 t4 t2 ,t10 t1] and
pl:tl, t4 t2].

Observe that t2<t5 has been observed, but t5<t2 has not been observed and this leads
to the creation of the place p3:[t2, t5]. However, we make the previously described
verification on this and other places and some corrections are made:

Place p11:[t11 ,t9] Correct place

Place p10:[t10 ,t9] Correct place

Place p9:[t8 t5 ,t1] Wrong place: t1¢PS(18), t1PS(t5)
Place p8:[t1 ,t8 t5] Wrong place: t1PS(t8), t1¢PS(t5)
Place p7:[t12 ,t8 t5] Correct place

Place p6:[t8 ,t4] Wrong place: Occ(t8)=Occ(t4) £1
Place p5:[t6 ,t12] Correct place

Place p4:[t9 18 t5 ,t6 t11] Correct place

Place p3:[t2 ,t5] Wrong place: Occ(t2)=0cc(t5) £1
Place p2:[t9 t4 t2 ,t10 t1] Correct place

Place p1:[tl ,t4 t2] Correct place

All places not satisfying the flow equation are deleted. The final set of places is
p11:[t11,t9], p10:[t10,t9], p7:[t12,t8 t5], p5:[t6,t12], p4:[t9 t8 t5,t6 t11], p2:[t9 t4 t2 ,t10
t1] and pl:[t1,t4 t2], which corresponds in fact to the net in Figure 4.109.

All algorithms described to construct the non-observable part of the net can be
summarized in the following procedure.

84

Algorithm 4.5 Non-observable behaviour construction

Input: The sequence S
Output: Non-observable model representing S

Compute Seq, PSand TC from S

From the information in Seq, PS and TC compute CausalR
From Seq and CausalR, compute ConcR

Merge transitions as specified in 4.3.4

Validate and correct places as specified in 4.3.5

agrwdE

Proposition 4.13 The PN model N built with the previous procedures summarized in
Algorithm 4.5 executes the sequence S

Proof. Regard that we have computed the following sets:

e Seq containing all the consecutive transition couples in S. If we represent into
a net all couples in Seq, the net will be able to reproduce S.

e CausalR containing transition couples (t5, tp)€Seq that must be related by a
place.

e ConcR containing transition couples (t,, tp)€Seq, that must not be related by
any place.

If the set Seq’= (Seq - CausalR) - ConcR = J, that means that all transition couples
(ta,th) €Seq are correctly represented in N and thus the sequence S is reproducible. This
follows from the consideration of ordinary safe Petri nets. If Seq’#d, it means that
there are still transition couples that cannot be distinguished as concurrent or sequential.
Thus, by merging several couples in Seq, all couples in Seq’ are considered as
sequential by creating places with several input and output transitions. If they are
actually sequential, all the verification rules are satisfied. Otherwise, they are actually
concurrent and they are corrected with the described procedure. Once they are
corrected, it only remains places relating sequential transitions and thus the sequence S
is executable. ¢

Properties of Algorithm 4.5

e Given that all of the procedures of Algorithm 4.5 are executed in polynomial time
the construction of the non-observable IPN is efficiently performed.

e The application of Algorithm 4.5 to a sequence S provides always the same PN
model, due to that all the constructive steps in the procedures are deterministically
performed, i.e. there are not random selections on the input and intermediate data.

4.3.6. Test examples

The method for building the non-observable IPN has been tested with diverse PN
structures following the same procedure detailed in the Example 4.10. We present here a
subset of some representative examples which have been correctly identified.

For the sequence S= Ghhitgthitbtytato i tatgtytgtstgtstatytgtstatgtotatoti ts g ts
ttutitsletls et tutgty g i s e tr tu g3ty s tstu s g s Ly fgtr ot ti Ly L3 ts fg ts g T 17
Lttt hihtytstu b tgh i b s hatgty atgtaty g tls b i L ts ti s Ly g ts Ly tg 7 t3 to B
GBtrlutgtsalatgtstitets ety tststots e ts fgts s o ta o i 7 g i tu ts L3 te ts ot Ty T4 1y
Ltttz litehislgtrtetstelits st tatg b lilatats gty i tgt7 oty 1o 13
ts t4 t7 tg t7 tg, the obtained PN model is shown in Figure 4.20, which is in fact two
independent PN systems.

85

Figure 4.20 Two equal components running concurrently

The identification method applied to the sequence S=t,; i tots i tste ty o ta ta ts te 1y
bbbttt btrlethbty iyt byttt hitsti sty
Lhbtblhtthhtr Ui bhUtttetyhitthtrtetr ezt atr i b lats ity ts te 17
Lttt bttt bttty ity o tatlstyts th tg
Lttt bbbttt bbbttt bbthlehatibiztitzrtaly
Litstshtzibtsatitb ity sty i3ty bty ts ty ylelds two different PN models shown in
Figure 4.21.

Figure 4.21 Two different components running concurrently

From the sequence S=tibtstitststgtrtghotati thtutstetatytsty ty o tgtgtaty ty th 5
Uhtet7laibtlehibtrhtgtsley ati b utslgle trtstatuts i L s t7 tatgti o s
Glgtatztgti o tatststytatgtats gty ty o t3 ty tg 1y t5 1) t t7 t3 ty 1y, the obtained model is
shown in Figure 4.22, which is a composition of smaller sequential models exhibiting
together concurrent behaviour.

Figure 4.22 Concurrent machines net

The processing of the sequence S=ttatitotitotbitsutstutotitstats tath tatog o 13
Lt httthtststitoits b s b tatobtato i sty tstuto L s o sty oty o to 1y
totitoty stz otz ta ta ty to ty t5 t4 ts yields a PN state machine (Figure 4.23) in which it is
possible to move from one place to another in one step.

Figure 4.23 PN state machine whose PS(t;)= Vt;

86

The sequence S=tiubtbttubtbhttzhb itz hbtzthibtsaty
BhubuhbhthububhbtuhbhbtbhhLbhbht bbbttt
Luubttbuyuthtuubtybtibtsti btz iyttt o ty yleld the model in Figure
4.24 when it is treated with the identification method.

Figure 4.24 Selection and concurrency combined

The model in Figure 4.25 is obtained after the treatment of the sequence S =tot; t; t3
Lttt bbbttt bttt bzttt atytste i b tstate i b htstate ts 1o
Uthatstgtihtstutlstgtitotatatste i oty ty t5 tg 17 to T4 L7, Notice that there are transitions
which only fire once in the sequence (tp and t7).

Figure 4.25 A net with starting and ending transitions

Finally, we present two cases in which the built models are not the same than the net
from which the sequence is obtained. The first case corresponds to the original PN
model in Figure 4.26.a, from which the sequence S =t; tytstotr tati totsto o tsty Lo tatotats
hhtatitb o tatp b atpth tatibhtati b a3t tati st th tatp o t3 tp is obtained. The
identified model, which is illustrated in Figure 4.26.b is not equal to the original one,
but it is equivalent given it represents the same behaviour. Indeed is easy to see that the
original model has some redundancy (if we abstract for the observable part).

b)
Figure 4.26 Original Free-choice PN and identified model

The second case corresponds to original and identified models in Figure 4.27.a and
Figure 4.27.b respectively. The reproduced sequence we have used for identification is
S=titsautettatstetitatytetitaytstotatlsts o tats te ty L3ty to 1 Ls.

87

t t

a)

Figure 4.27 Non-identified memory places

Notice that nor the place from transition t; to t, has not been found, neither the place
from t, to ts. This is due to the couples (t; , t4) and (t; , ts) do not appear in the set Seq
because they are never observed consecutively. Such places can be considered as a
memorisation of the choice of firing t; or ty; these places may be found if it is possible
to determine the t-invariants from S, but this is out of the reach of this thesis. However,
notice that the sequence S is executable in the identified model.

4.4. Conclusion

A method to discover the actual input-output relation of PLC controlled discrete
event systems has been presented. This yields a concise IPN representation of the
compound Plant + Controller behaviour by associating to transitions sufficient
conditions on the inputs which represent both the input changed and the current inputs
values (execution context). None of the approaches analyzed in Chapter 1 have made
such kind of analysis or representation of the input conditions. The obtained structure is
remarkably more clear and expressive than the identified models with the stepwise
method of Chapter 3.

88

Chapter 5
Implementation and experimental tests

Abstract. This chapter presents the application of the identification methods to cases
studies defined on two experimental sites. First, the proposed methods have been
implemented as software tools that allow processing large actual data; such tools are
briefly described. Then, the experimental sites are presented, and with the help of the
tools, the identification algorithms are tested with input-output sequences obtained
during the operation of the closed loop controlled manufacturing processes.

89

Two tools have been developed to automate the IPN model identification algorithms
presented in this thesis (one for each method). In this chapter, we show some of the
results obtained with the first and second techniques of chapters 3 and 4 respectively.

5.1. Software tools description

The input data is the same for the two described algorithms and several software
components have been used in both tools. However, there are some differences: the
stepwise technique needs an identification parameter k, and each one of the software
tools returns a different graphical format for the IPN. All the implementations have been
completed with IDE Netbeans 6.5, java jdk 1.6.0.

The user interface can be observed in Figure 5.1. In order to start an identification
process, there are several fields that the user must fill in:

e The name of the input file containing the observed I/O sequence. If the input
file name text field is mouse clicked, an open dialog is showed and the txt file
containing the sequence can be chosen by the user.

e The desired name for the output file. A save dialog appears if the output file
name text field is clicked.

e The accuracy identification parameter. The tool for the stepwise method
needs the insertion of the desired accuracy parameter k. There is a text field
where the user can provide it.

e The inversed order condition allows being compliant with two different forms
of data file (1/0 or O/1). There is a check box that must be selected to let the
software know if the order is O/I.

e The total elementary inputs number. Also it might happen that the input file
does not have a tab to divide input values from output values. In that case, the
user must insert the total number of inputs to indicate the software how to
divide between input and output signals.

e The index mask. If we want to take into account only some of the inputs or
outputs of the I/0O vectors, we can use a mask by selecting the corresponding
check box and inserting the indices of fields we want to take into account.
This allows, for example, masking push buttons or lights that are not
mandatory in the identified model.

e The mnemonics of inputs and outputs. The desired names of the outputs and
inputs (in that order) are written separated with a blank.

e The same PLC cycle condition. As specified at the end of section 4.2.5, there
are two options for the construction of firing conditions: the observation of
input and output events at the same PLC cycle or the consideration of
previous PLC cycles. There is check box where the user can choose the
construction mode for identification.

90

* - Identification of DES

Options

Input file name: |MBS\QD1 2-06-04 Beq 4 and Flseq ‘

Output file name: |MSS'LQD1 2-06-04 Seq 4 and Tistation3

[] Select this check box if outputs are written first

Insert index numbers to apphy a mask 56 3384 85 86 87 BB 8940 g
["]Insert total inputs if there is no tab in the 1O file |
Insert Signal ics {first 12 3r11 3710 3Y07 3Y086 |

[_] Select for same PLC cycle condition

Start ldentification |

Data

Figure 5.1 User interface

Figure 5.2 shows the global software description. When the button Start
identification is pressed, the 1/0 input sequence is read from a file containing several
rows, each one representing an 1/0O vector. Each row is composed of three parts
separated by tabs: the instant at which the 1/O vector has been stored (which is not used
by the proposed algorithms, but could be used in future applications), the values of the
inputs and the values of the outputs at each PLC cycle. When a line of such a file is
read, time information is ignored and input and output are transformed into binary
vectors. The identification algorithm described in Chapter 3 or that in Chapter 4 is then
applied and the IPN is constructed in the correspondent output format.

Mnemonics, K‘
Options 1/0 vectors dot file

User Inout reader I Identification Drawer
interface P Algorithm

f Input file

45 1000 101001010
67 1000 100001010
83 1000 000001010
99 0110 000101010

s

Figure 5.2 Software architecture

For the stepwise method, the creation of the graphic model images has been
performed with the hierarchical layout module dot of Graphviz. At the end of the
identification, a file written in the format read by such a drawing tool is created. Then,
the command dot is invoked from the application to produce the output result, in the
form of a jpg or a svg file.

91

For the statistical method, the XML format has been chosen to represent the IPN
models. They can later be opened by the software PIPE.

Once the identification algorithm has been executed, the user interface displays into
the text area called Data some information about the identification process, such as the
number of transitions and places of the IPN obtained and the execution time for
identification.

Now, we present two experimental systems which have been used for testing the
identification methods with the help of both tools.

5.2. Interactive Training System for PLC

The Interactive Training System for PLC® (ITS PLC) Professional Edition is a tool
for PLC programming which offers virtual systems for education and training in PLC
programming. Each system is a behavioural and visual simulation of an industrial
system including virtual sensors and actuators, so its state can be sensed by a real PLC.
The objective is to program the PLC to control each virtual system as if it was a real
system. The sensors and actuators data is exchanged between the PLC and the system
by a data acquisition board (DAQ) with 32 1/O isolated channels and USB interface.

For our experimental work, we have chosen the so called Sorting system. It transports
cases from a feeder to a couple of elevators, sorting them by height (Figure 5.3). It
consists of 11 inputs (s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10) and 7 outputs (A0, Al,
A2, A3, A4, A5, Ab).

Figure 5.3 The Sorting system from ITS PLC

For the collection of data, a routine written on Python has been launched at the
computer with the ITS PLC (see Figure 5.4). It uses the Modbus communication
protocol to read values of the inputs and outputs at each PLC cycle. The PLC is a
Modicon TSX Premium.

92

/ Computer

Python
routine

- A
1/0
\ Sequence

Modbus

ITSPLC

Figure 5.4 Scheme of the data collection procedure

If a 1/O vector read is equal to the previous one, it is ignored. Otherwise, the 1/0
vectors as well as the time value are written into a file. Figure 5.5 shows the
experimental environment.

Figure 5.5 Experimental environment

After the treatment of 30 pieces, the data collection has been stopped, giving as result
a file containing 472 1/0 vectors.

5.2.1. Application of the stepwise method

The stepwise identification procedure from Chapter 3 has been applied with different
values of x. Identified models for k = 1 and k = 2 are showed in Figure 5.6. The
execution time for the identification was 156ms and 157ms respectively.

93

[s0_1]
()
(w)
0.0
0.9 510520
s1.0s2 0 501
01
.0
s3_1
s4.0)
S1152 161 1)
0.0 [s00)
s1 _0s2_0

A:Tm\

‘i

s6_0||s0_1|s8_0
s8 0 s5 0| | |s7_0|s5_0|/s0_1 [s10_0|
5.0 5.0/s0_1
@ ‘\‘
s5_0)
s10_1] s9_1 o
£10_0 s9.0)
a) Identified model with x = 1 b) Identifed model with « =2

Figure 5.6 Identified models for the Sorting system

Observe that increasing the value of k provokes that several transition paths are
created. However, the net computed with k = 2 does not represent a significant change
from the net computed with « = 1 and thus, we decided that it is not necessary to
compute new nets with largest values of «, and the value k = 1 is enough.

94

By expertise knowledge, we have been able to validate models, checking that they
are able to reproduce the behaviour of the plant and controller compound. However,
expressiveness of the nets is reduced: it is hard for someone not familiarised with the
system to know how the system works by looking at the models.

A compact model (Figure 5.7) has been created following the procedures described
in section 3.2. The execution time to produce this model has been 125ms. Even if the
model is easier to read, notice how several input events are related to a single transition
and as a consequence, it is not clear to distinguish which input sensors belong to a
condition and which ones are the causal events that actually produce the setting of the
output values to the actuators.

J—
$4 0 s1.1s0_0 s1.0 s5_ft

$4_1s9 1590 50841591590 $4.1s10_1s10_0 $5_0 s4_1 s10_1 s10_0

Figure 5.7 Reduced model for the sorting system

5.2.2. Application of the statistical method

Consider now the results obtained by the statistical method of Chapter 4. Direct and
context matrices contain values in Figure 5.8 and Figure 5.9 respectively.

95

A0_1

s0_1 0.000
s0.0 0.000
s1.1 0.000
s1.0 0.000
s2.1 0.000
s2.0 0.000
s3.1 0.000
3.0 0967
s4 1 0.000
s4 0 0.000
s5.1 0.000
s5.0 0.000
s6_1 0.000
s6.0 0.000
s7.1 0.000
s7.0 0.000
s8.1 0.000
s8.0 0.000
s9 1 0.000
90 0.000

s10_1 0.000
s10 0 0.000

AO0_1
s0=1 0.967
s0=0 0.033
sl=1 0.000
s1=0 1.000
s2=1 0.000
$2=0 1.000
s3=1 0.000
$3=0 1.000
s4=1 1.000
s4=0 0.000
s5=1 0.000
$5=0 1.000
s6=1 0.000
$6=0 1.000
s7=1 0.000
s7=0 1.000
s8=1 0.000
$8=0 1.000
s9=1 0.000
$9=0 1.000
s10=1 0.000
s10=0 1.000

A0_O
1.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

A0 0
1.000
0.000
0.000
1.000
0.000
1.000
0.000
1.000
0.033
0.967
0.300
0.700
0.100
0.900
0.100
0.900
0.133
0.867
0.000
1.000
0.000
1.000

Al_1
1.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

A1 O
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

A2_1
0.000
0.000
0.000
0.000
0.000
0.000
0.630
0.000
0.000
0.000
0.370
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

A2_0
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.630
0.000
0.000
0.000
0.000
0.370
0.000
0.000
0.000
0.000

A3_1
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
1.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

A3_0
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
1.000
0.000
0.000
0.000
0.000
0.000
0.000

Ad_1
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
1.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

A4_0
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.414
0.000
0.586
0.000
0.000
0.000
0.000

AS_1
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
1.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Figure 5.8 Direct Causality Matrix of the Sorting system

Al_1
1.000
0.000
0.000
1.000
0.000
1.000
0.000
1.000
1.000
0.000
0.000
1.000
0.000
1.000
0.000
1.000
0.000
1.000
0.000
1.000
0.000
1.000

Al 0
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

A2_1
0.630
0.370
0.000
1.000
0.000
1.000
0.630
0.370
0.630
0.370
0.370
0.630
0.370
0.630
0.000
1.000
0.000
1.000
0.000
1.000
0.000
1.000

A2 0
0.717
0.283
0.000
1.000
0.000
1.000
0.000
1.000
0.630
0.370
0.370
0.630
0.630
0.370
0.000
1.000
0.000
1.000
0.000
1.000
0.000
1.000

A3_1
0.000
1.000
0.000
1.000
0.000
1.000
0.000
1.000
0.000
1.000
1.000
0.000
1.000
0.000
0.000
1.000
0.000
1.000
0.000
1.000
0.000
1.000

A30
0.250
0.750
0.000
1.000
0.000
1.000
0.000
1.000
0.000
1.000
1.000
0.000
0.000
1.000
0.000
1.000
0.000
1.000
0.000
1.000
0.000
1.000

Ad_1
1.000
0.000
0.000
1.000
0.000
1.000
0.000
1.000
1.000
0.000
0.000
1.000
1.000
0.000
0.000
1.000
0.000
1.000
0.000
1.000
0.000
1.000

A4 O
0.241
0.759
0.000
1.000
0.000
1.000
0.000
1.000
0.000
1.000
1.000
0.000
0.000
1.000
0.000
1.000
0.000
1.000
0.000
1.000
0.000
1.000

A5_1
0.000
1.000
0.000
1.000
0.000
1.000
0.000
1.000
0.000
1.000
1.000
0.000
1.000
0.000
0.000
1.000
0.000
1.000
0.000
1.000
0.000
1.000

Figure 5.9 Indirect Causality Matrix of the Sorting system

A5_0
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
1.000

A5_0
1.000
0.000
0.000
1.000
0.000
1.000
0.000
1.000
1.000
0.000
0.000
1.000
0.000
1.000
0.000
1.000
0.000
1.000
0.000
1.000
0.000
1.000

A6_1
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
1.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

A6_1
0.000
1.000
0.000
1.000
0.000
1.000
0.000
1.000
0.000
1.000
1.000
0.000
1.000
0.000
0.000
1.000
0.000
1.000
0.000
1.000
0.000
1.000

A6_0
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
1.000
0.000
0.000

A6_0
1.000
0.000
0.000
1.000
0.000
1.000
0.000
1.000
1.000
0.000
0.000
1.000
0.000
1.000
0.000
1.000
0.000
1.000
0.000
1.000
0.000
1.000

By analysis of the 1/0 sequence and direct and indirect matrices, the statistical
procedure has computed the model fragments in Figure 5.10. Notice how the number of
transitions has been reduced with respect to models in Figure 5.6. We have verified that
the obtained firing functions are correct.

96

4 i t TSO
AO% Alg
t TSO tio

s i sols, tg o ts

1) o TSA U iSA

Figure 5.10 Observable behaviour identified for the Sorting system

By the first step of the statistical procedure we have also computed the corresponding
transition sequence:

S=titotstatstytetr tgto ta tio tra tio ts ty te t7 ta tag ta tag to tis ts ty te t7 ta to tyg ta ts tr2
blitetrlgtotatiotntiotsti et lgtis iy sty tists it t7 tg tig tia ta tiy s G5ty Lo t7 13 M
tatitutistsitetylgloty ot tots i ety g sttt ists i te L tg s g Ly tia s ts 4
tet7tistubtutistitet7tglotiotutiotls it 7 tatista gt tists Ly sty tgto tao Uy
ottt iattubtntisbhtrtialbotiotnto b ttrtglotiotntosti sty
ettt tiststi e trlg sty tntists i te 7 etz iyt tis sty te L7 tg to tap g Ty
ottty lgtistutytntists e tg sy tiatn ists i ety 3 tis it tis sty te t7 L
liobtutotshtet7latistatytntiststitetrtglotio iyt o sty te 7 ta tas Ly tia tra tas ts
Lty tatgtioty tag tao

The sequence contains following pairs of consecutive transitions:

t1<ty, [r<t3, t3<ty, 14<ts, t5<<ty, t1<tg, ts<t7, t7<tg, tg<ly, to<ls, 14<tig, t10<t11, t11<tip, t1o<ts,
t7<ts, t3<tys, t13<ty, L<l14, 114<tiy, 112<lys, t15<ts, t3<ty, to<tio, t10<ls, L4<lyy, lg<lyz, t13<lys4,
t14<ts

The following PS sets have been computed:

PS(t1) = {titats } PS(tz) = {}

PS(tg) = { t3 t4 t5 tl t5 t7 t11 } PS(t4) = { t4 t5 tl tG t7 }

PS(ts) = {tstite t7 ta tyg } PS(te) = {tetrtatiats ty }

PS(t7) = { t7 t4 t11 t5 t1 tG } PS(tg) = { tg t4 t11 t5 tl t5 t7 }
PS(tg) = {totatiotyy tiotsty t t7 } PS(tio) = {tiotintiptsty te t7 tato }
PS(tir) ={tutstitet7 ta } PS(ti2) = {tiots ty te t7 ta tag to tio }

PS(tis) = {tistatigtis taists ty e t7 } PS(ts) = {tiatin tis ts ty te t7 taz }
PS(tis) = {tists ty te t7 ta tyy tys tya }

Based on the computed data, the model in Figure 5.11 has been inferred. We have
shaded non-observable places to facilitate the reading of the model. The initial marking
has been computed backwards in order to reproduce the sequence S. However, start of
the sequence ‘t; t, t3 t;°, would lead to non-safe markings. This is due to the first events
occurring in S are actually to initialise the machine and the remainders correspond to the
repetitive behaviour of the net (from the 5" transition ts t; ts t7 ts...). An initialization
sequence replicating the first four transitions of the S can be added to the model to allow
the firing of the whole sequence (see Figure 5.12).

97

t7:s4_0

t3:s1_14s2_1

F1
1

P10 :j 1

1

t2: s0_1
y 1 1 sH-
t1: 753 P14 1
1
1
A1

Y
Al

1 1 <

Pa 1
1
. -
ta: s0_1 1 P4 t12: 8.0
o
P&
P2 110:57_0 * =57 ~s8
. 1
1
1
15: 510_0
Y
1 1
t11:54_1 P15

Figure 5.11 Final IPN model for the Sorting system

98

t10: 57_0 4 257 4-sB

t15:510_0

t11:=s4_1

@1\.I1‘J\1\.i1\f\1.¥1‘/\1hl1\. !
Fz1 PZZU t1 PZSU tz P24U t3 Fz5 ta'

start

Figure 5.12 IPN model for the Sorting system including initialization sequence

5.3. Assembly System

The second case study is an experimental facility in LURPA (see Figure 5.13). It is
called Mechatronics Standard System (MSS) from Bosch: an assembly machine
composed by four stations. The machine treats several gearwheels in order to insert or

remove bearings into them. At the end of the treatment, the work pieces are sorted by
material into a warehouse.

Figure 5.13 Mechatronics Standard System

Figure 5.14 shows the MSS installations at LURPA. The controller communicates
with the plant via Ethernet [Roth, 2010c]. The data collection has been made with a
routine in Python allowing a computer to acquire the input sequence from the automata
through the Modbus communication protocol.

99

Figure 5.14 MSS experimental environment

The machine has several operation modes: the bearings can be removed or inserted
(or both), and the sorting mode can be by material or by arriving order. For purposes of
this work, only the fourth station was identified (dotted part of the Figure 5.13), which
is in charge of the arrangement and storage of the work pieces. We have made the data
collection with a scenario where the gearwheels have been sorted by material in one of
the three available pallets. An 1/O sequence of 63,797 vectors has been stored. The
index of the inputs and outputs belonging to the fourth station were inserted in the user
interface. They correspond to 16 inputs (3B11, 4S24, 4S23, 4S22, 4S21, 4S20, 4S17,
4B16, 4B15, 4B14, 4B13, 4B12, 4B11, 4B10, 4B07, 4S06) and 6 outputs (4Y11, 4Y10,
4YQ7, 4Y06, 4K05, 4K04).

5.3.1. Application of the stepwise method

The stepwise algorithm has processed the input-output sequence using different
values of « from 1 to 6. In general it is not possible to establish a-priori the value of «,
since it is assumed that the system is unknown. However, in practice the identification
procedure can be applied using several values of k (because it is not time consuming).
Compact models allow a first approximation to the understanding of the system
functioning, whilst larger models provide a more precise description. However, one
more time, larger models are huge and close to automata, and the expressiveness of the
Petri nets is not exploited.

Since the obtained models are huge, we present only the identified models in Figure
5.15 for k = 1 and in Figure 5.16 for x = 2. The size of the rest of identified models are
summarised in Table 5.1. The execution time of the identification procedure is also
included to provide an idea of the performance of the algorithm. The tests have been
performed in a computer based on an Intel Core 2 Duo T7300 processor at 3.00 GHz
with 2.00 GB of RAM under Windows XP Professional 2002 Service Pack 2. The time
has been measured excluding the execution of the Graphviz visualisation software.

The compacting procedure has been also applied, yielding the model in Figure 5.17.
However, once again, the input-output relationship is hidden by the long computed
transitions.

x | Transitions | Places | Total of nodes | A | Processing time
1 142 85 227 3093 ms
2 218 152 370 143 3094 ms
3 305 227 532 162 3141 ms
4 396 314 710 178 3297 ms
5 498 404 902 192 3375 ms
6 606 508 1114 212 3469 ms
7 718 615 1333 219 3531 ms

Table 5.1 Size of identified models for different values of x

100

m

S17_14B10_1
[4517_0)
4B10_0) ST
524 1
@BT1_1) @221
5231
S20_1 L
45211 4B07.0) ™

11_14B07_
[4B07_1]) [3B11_1 — ||
| T

[4S06_1
[4812_0)
48131
an
[4B16_1][4B13_1
[4B16_0]
4513 0[[3B11.0
4813 0
48121

4Y10
[4s06_0] [4812_1
[4s06_0] [4B07_1]14B07_1 KE\B15_O4BO7_1 48140

LU B15_0 4807 1
[4B07_1 4807 1 JY B15_0 4B07_{| [4B15 0] [4B15_1
B15_04507_1 4815 0
[4B15_0] A [3B11_0] [4B14_1|[4B07_0)
4815 0 B14_1 4B07_(
4B07_0 B14_14B07_1/4B14_1||4B07_1 14B07_1 4B12_0
48141
14B07_1 B14_14B07_1 14B07_1 4B07_1|/|4B15_0||4B07_1
B14_1 4807 0 [#B14_1 4807 1
3B11_D0| 4B15_0((4B15 0| 4B14_1 [4B07_0 4B11_0| 4B14_1
4814 1 ovoe
[4B07_0] [4B14_1](4B14_1 4B11_Q|4B11_0|U4S21_1 4B10_ [4S17_1]114S21_1]|4524_1)[4S20_1]\\"[4522_1][4S23_1 $23_14B10_1)\ [4814_1][4B11_0|BB11_04B11_0 [[3B11_0]/ [T
[4B07_1 48741 45210 @524 0) | | |[45200) 4523 0] #523_04B10_0 [4B10_1 38110 | (#B10_0
[4524_1 4221 [4B11_1]
[3B11_0]4B10_0]/4524 1)/ |[4520_1]\\ #S22_1
3110/ [4B111] [S24_0)[4820_0[4522 03811 0

522_0)
4K0S
3B11_0| \ 4B07_0]BB11_14506_1 [4506_1
[4B07_1 S06_1

Figure 5.15 Identified model withk =1

101

1 AN
el

Ve)

i ‘ “.

R
I

N
S e]

fein

[
e
bl |

I
N

e !
E
;,HEE@%

VA R A O R T)
o' ——

e NS

Y;
#8103 10_0]

Figure 5.16 Identified model with x = 2

102

B11.0 36110 48101

0 4B14_1 3B11.0 4810_1

fisn

41 48101

85,0

\.‘/
/
=X

1145230 4810_0 4811_14524 0 4B10_0 4B11_14520 0 4B10 0 4B11_14B10.0 4B111]

1 4520_{UB_0 4B10_1 1815_0 4B11_0 4Bt

1.0 4B10_1 4524_JIBI1_0 4810,

%060 4B07 1 4B15 0 4814 14807 0 4807 1 3B11_0 4B07_0 4BO7]HS06 0 4807

06_0 4B074306 0 4B15 0 4807_1 4B14_14B07_0 4B07_1 4807 0 4B07_1 4B07_0 4B07_1 4807 0 4B

)

7.0 4807 1 48070 4B07_1 4B07_0 4B07_1 4B07_0 48071 4B07.0 3B11_1 4505

—

RIED 04101 & fiet 0 4521 14B10_1#B11_0 4B10_1 4823

v

048100 4811

07_0 3811'4B07_0 4S06tAlf7_0 4B07_1 480

v

1_Yis17_0 48100 4B11_1]jS22_0 48100 4B11_{js21

1[/iB07_ 48110 481

B15.0

4522 0 4810 0 4811

b710 4807 1 4B07_0 4807_1 4B07_0 4807 1 4B07_D 48071 4B07.0 4807 1 4B

0 496§

06_0 4B15_0 4807

4606_0 4B15_0 4807 1 4B14_14BA7_D 4B07_1 4B07_0 4B07_1 4807 0 4BA7_1 4B07_0 4BO7

I

iB10_0 4811_14522_1 38110

4816.0

N

0 4B10_1BT1_0 48141 3B11.0 4B

0.1 4517 JB110 4B14_1 4317 14B10_J4B14_1 4B1_D 4BMO_{

| _———HB10.0 46111

(W80 48101 [igt4_t 481

0.0 48111

/

5110 4810_1 4524 |
7.0 4807_1 4B7_0 4B07_1 4BO7_D 4807 1 4507_0 48071 4B07_0 4B07_1 4807

LN
4524 0 481

-

5.3.2. Application of the statistical method

For the statistical method, the DCM in Figure 5.18 and the ICM in Figure 5.19 have
been computed.

103

ARA7 1 ARNT N 4RNT 1 ARNT N ARNT 1 ARNT N ARNT 1 ARAT N ARN7 1 ARGT N ARNT { ARN7 04SN

Figure 5.17 Compacted model for the sorting system

4Y11_1 4Y11_0 4Y10_1 4Y10_0 4YO07_1 4Y07_0 4Y06.1 4Y06.0 4KO05 1 4K05 0 4K04_1 4K04_0
3B11_1 0000 0000 0000 0000 0000 0000 0000 0000 0000 0004 0000 0.000
3B11.0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0.000
4S24_1 0000 0000 0000 0000 0000 0000 0000 0006 0000 0000 0000 0.000
4524 0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0.000
4S23_1 0000 0000 0000 0000 0000 0000 0000 0010 0000 0000 0000 0.000
4523_0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0.000
4S22_1 0000 0000 0000 0000 0000 0000 0000 0006 0000 0000 0000 0.000
45220 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0.000
4S21_1 0000 0000 0000 0000 0000 0000 0000 0004 0000 0000 0000 0.000
45210 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0.000
4S20_1 0000 0000 0000 0000 0000 0000 0000 0002 0000 0000 0000 0.000
45200 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0.000
4s17_1 0000 0000 0000 0000 0000 0000 0000 0012 0000 0000 0000 0.000
4S17.0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0.000
4B16_1 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
4B16_0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
4B15_1 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
4B15.0 0000 0000 0000 0000 0000 0000 0006 0000 0000 0000 0000 0077
4B14_1 0000 0000 0000 0000 0000 0000 0004 0000 0000 0000 0000 0023
4B14.0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
4B13_1 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
4B13.0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
4B12_1 0000 0000 1.000 1000 0000 0000 0000 0000 0000 0000 1.000 0.000
4B12.0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
4B11_1 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
4B11.0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
4B10_1 0000 0000 0000 0000 0000 0000 0000 0015 0000 0000 0000 0.000
4B10_0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0.000
4B07_1 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000
4B07.0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
4S06_1 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0.000
4506 0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0.000

Figure 5.18 Direct Causality Matrix for the MSS

4Y11_1 4Y11_0 4Y10_1 4Y10_0 4Y07_1 4Y07_0 4Y06_1 4Y06_0 4K05_1 4K05_0 4K04_1 4K04_0

3B11=1 1.000 1.000 0.098 1.000 1.000 0.549 0.088 0.062 0.044 0.056 0.098 0.088
3B11=0 0.000 0.000 0.902 0.000 0.000 0451 0.912 0.938 0.956 0.944 0.902 0912
4824=1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.000
4824=0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.994 1.000 1.000 1.000 1.000
4823=1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.000 0.000 0.000 0.000
4823=0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990 1.000 1.000 1.000 1.000
4822=1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.000
4822=0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.994 1.000 1.000 1.000 1.000
4821=1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000
4821=0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 1.000 1.000 1.000 1.000
4820=1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000
4S20=0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000 1.000 1.000 1.000
4817=1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.000 0.000 0.000 0.000
4817=0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.988 1.000 1.000 1.000 1.000
4B16=1 0.000 1.000 0.000 1.000 0.500 0.500 0.000 0.000 0.000 0.000 0.000 0.000
4B16=0 1.000 0.000 1.000 0.000 0.500 0.500 1.000 1.000 1.000 1.000 1.000 1.000
4B15=1 0.000 1.000 1.000 0.000 0.500 0.500 0.002 0.000 0.000 0.000 1.000 0.008
4B15=0 1.000 0.000 0.000 1.000 0.500 0.500 0.998 1.000 1.000 1.000 0.000 0.992
4B14=1 1.000 0.000 0.000 1.000 0.500 0.500 0.833 1.000 1.000 1.000 0.000 0.829
4B14=0 0.000 1.000 1.000 0.000 0.500 0.500 0.167 0.000 0.000 0.000 1.000 0.171
4B13=1 1.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
4B13=0 0.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000
4B12=1 0.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000
4B12=0 1.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
4B11=1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000
4B11=0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
4B10=1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
4B10=0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000
4B07=1 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.992 0.992 0.000 0.000 1.000
4B07=0 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.008 0.008 1.000 1.000 0.000
4806=1 1.000 1.000 1.000 1.000 0.995 1.000 0.000 0.000 0.000 1.000 1.000 0.000
4S06=0 0.000 0.000 0.000 0.000 0.005 0.000 1.000 1.000 1.000 0.000 0.000 1.000

Figure 5.19 Indirect Causality Matrix for the MSS

Notice that the DCM matrix column corresponding to output event 4Y07_1 is zero
and thus the computed firing conditions would be empty. The same occurs for output
events 4Y07_0, 4Y06_1 and 4KO05_1: the corresponding DCM matrix columns are
almost zero and as a consequence they yield to empty firing conditions. This situation is
the case specified at the end of section 4.2.5, where instead of considering that the input
and output events must occur at the same PLC cycle, we must look at the input events
occurring in the previous event vector. We have computed the probability values
considering the previous event vector to construct the called One Step Direct Matrix in
Figure 5.20.

104

4Y11_1 4Y11_0 4Y10_1 4Y10_0 4Y07_1 4Y07_0 4Y06_1 4Y06_0 4K05_1 4K050 4K04_1 4K04_0

3B11_1 0.000 0.000 0.000 0.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3B11_0 0.000 0.000 0.000 0.000 0.000 0451 0.000 0.000 0.000 0.000 0.000 0.000
4824 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4824 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4823_1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4823_0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4822 _1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4822 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4821 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4821 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4820_1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4820_0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4817_1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4817_0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4B16_1 0.000 0.000 0.000 0.000 0.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000
4B16_0 0.000 0.000 0.000 0.000 0.000 0.049 0.000 0.000 0.000 0.000 0.000 0.000
4B15_1 0.000 0.000 0.000 0.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4B15_0 0.000 0.000 0.000 0.000 0.000 0.000 0.077 0.000 0.000 0.000 0.000 0.081
4B14_1 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.006 0.000 0.000 0.000 0.131
4B14_0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4B13_1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4B13_0 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000
4B12_1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4B12_0 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4B11_1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
4B11 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000 0.000
4B10_1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.985 0.000 0.000 0.000 0.000
4B10_0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4B07_1 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
4B07_0 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.990 0.000 0.748
4S06_1 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4806_0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.085

Figure 5.20 One Step Direct Matrix for the MSS

Using such a matrix instead of the DCM matrix, we have been able to compute the
lacking firing functions and the correspondent fragments of Figure 5.21 have been
constructed.

HO(4BOT_1]) AND (=1)]

HIZAB11_11)AND (=1 P HBI4B1Z_1)) AND (=]

4K05 408 aKoa 4710

H1((E))AND [(4B10=1])
+13{(4506_1)] AND ((=1)) 34 BOT_1)) AND ([=1]] H(4B12_1))AND [(=1])

HZ{(AB3_T) AND [(=11) H((3811_1)) AND ([3B11=1] and [4B07=0)) t5([4B15_1)) AND [[3B11=1]and [4B07=0]]

a1y

B[[4B13_17) AND [j=1)) 3([4B1B_1]) AND [[=1])|
{7MABAE 00 AND (=11

Figure 5.21 Observable behaviour computed for the MSS

The length of the computed sequence S is 6,240; this is why it is not showed here.
From such a sequence and the computed fragments, the second part of the statistical
method has allowed us to build the model in Figure 5.22. The whole identification
procedure has taken 7.5s. Notice how the constructed model is more compact and
expressive than those constructed by the stepwise method.

We have verified that the model reproduces the observed behaviour: a car arrives
with a gearwheel and the rotary gripper goes down to take it. Once the gripper is down,
it holds the piece and it starts going up again. Once the gripper up, it starts to swivel to
the right. Once arriving to the rightmost position, it goes down again to depose the
gearwheel into another car. Once the piece is released, the gripper goes up again and to
the left, to return to its initial position. Meanwhile, the car moves until the storage area.
There, the car stops and a cylinder is pushed until the gearwheel is in the warehouse.

105

Then, the cylinder is completely retracted and then the car goes back to its initial
position.

Notice how the concurrence between the arriving of a new piece (t1) and the
arrangement of the last one (t13) has been captured in the model.

+10([4BO7_1]] AND ([=1])

(4 BOT_1]] AND ((=1])

tB4B12_1]] AND ([=1])

74 B16_0]) AND ((=1])

LG4 B13_1]] AND (=1])
4v11

_1JFAND [[2B11=1] and [4E07=0])

Figure 5.22 Final model for the MSS

5.4. Conclusion

The software tools implementing the algorithms described in this thesis have been
tested on two experimental sites with several other case studies. The results have shown
that both methods are able to deal with real systems; on the one hand the stepwise
method yields detailed models that grows proportionally the system size; on the other
hand, the statistical method produces remarkably more clear and expressive models than
those synthesized with the stepwise method, because the models are directly expressed
in the structure of the IPN. None of approaches considered in the related work of this
thesis allow discovering such kind of models.

106

Conclusions

In this thesis the problem of black-box identification of reactive Discrete Event
Systems (DES) has been addressed. Two methods for building Interpreted Petri Net
models from a single input-output sequence observed during the DES operation have
been conceived and implemented.

The first one is a stepwise method based on the inference of cycles from a state-
equivalence definition. This approach allows obtaining IPN models from a single input-
output sequence that exhibits the closed loop behaviour of PLC-based controlled plants.
The proposed technique builds progressively the IPN approximating the compound
controller-plant behaviour, which can be detailed for controller redesign or model-based
diagnosis purposes. The resulting procedure operates considering a parameter k,
defining the number of past events to consider, such that in the output language of the
obtained IPN only and all observed output sequences of length x + 1 are represented.

The second method allows discovering the actual input-output relation of PLC
controlled discrete event systems. The technique allows building a concise IPN model
in which the transitions are labelled with sufficient conditions on the inputs which
represent both the input changed and the inputs execution context. The obtained
structure is remarkably more clear and expressive than that synthesized with the first
method, because it is directly expressed in the structure of the IPN. Neither the first
methodology nor the approaches considered in the related work allow discovering such
kind of input conditions.

The methods herein proposed allow dealing with complex automated DES because
they take into account technological characteristics of actual controlled systems, and
because they are based on efficient algorithms. This feature is not still addressed in
current literature on the matter, reviewed in this thesis, in which several features
considered in the current stated problem have not been dealt. Both methods are
complementary; whilst the first one represents in detail the observed input changes
yielding large IPN models, the second method captures in the transition labelling
functions the input conditions, producing more compact IPN models that exhibit clearly
the concurrent behaviour.

The algorithms issued from these methods have been implemented as software tools
and tested on two experimental case studies which are very close to actual industrial
discrete event processes. The performed tests reveal the efficiency of the methods when
data including thousands of input-output vectors are processed in few seconds.

Due that is a black-box approach the obtained models represent the observed
behaviour, consequently when the observation has been made for a long time, the IPN
approximates closely the actual behaviour. Afterwards this model can be completed
using available knowledge on the process.

Although the presented methods go ahead the previous identification techniques
regarding most of the analysed features, several issues can be addressed for extending
the work described herein:

e The hypothesis that constraints the inputs and outputs to binary signals could be
relaxed.

107

e The inclusion of timers or counters within the logic of the controller is a feature that
appears often in actual industrial discrete manufacturing systems. This feature
states interesting problems that implies the identification of non regular languages.

e The inference of other information about the system, like PN invariants, could be
done.

Publications

During the thesis research development the following papers have been published
and written.

1. A. P. Estrada-Vargas, E. Lopez-Mellado, J.-J. Lesage. “A Comparative Analysis of Recent
Identification Approaches for Discrete-Event Systems”, Mathematical Problems in Engineering,
Hindawi Pub. Corp. Vol. 2010, Article ID 453254, 21 pages, August, 2010
d0i:10.1155/2010/453254.

2. A. P Estrada-Vargas, E. Lopez-Mellado, J.-J. Lesage. "An Identification Method for PLC-based
Automated Discrete Event Systems". Proc. of IEEE Int. Conference on Decision and Control,
pp.6740-6746. Atlanta E. U. Dec 2010.

3. A. P. Estrada-Vargas, J.-J. Lesage, E. Lopez-Mellado. “Stepwise Identification of Automated
Discrete Manufacturing Systems” Proc. of IEEE Int. Conference on Emergency Technologies and
Factory Automation, pp. 1-8, Toulouse, France. Sep 2011.

4. A. P. Estrada-Vargas, J.-J. Lesage, E. Lopez-Mellado. “Identification of Industrial Automation
Systems: Building Compact and Expressive Petri Net Models from Observable Behaviour”, 2012
American Control Conference, pp. 6095 - 6101, Montréal, Canada, Jun 2012,

5. A. P. Estrada-Vargas, J.-J. Lesage, E. Lopez-Mellado. "Identification de SED au moyen de
réseaux de Petri : une approche pour la représentation structurelle des comportements observés",
2012 Conférence Internationale Francophone d’Automatique, pp. 919 - 924, Grenoble, France, Jul
2012.

6. A.P. Estrada-Vargas, E. Lopez-Mellado, J.-J. Lesage. "Input-Output Identification of Controlled
Discrete Manufacturing Systems”, International Journal of Systems Science. Published on-line
September 18, 2012, DOI:10.1080/00207721.2012.724098.

7. A. P. Estrada-Vargas, J.-J. Lesage, E. Lépez-Mellado. “A Stepwise Method for Identification of
Controlled Discrete Manufacturing Systems”, International Journal of Computer Integrated
Manufacturing (submitted).

8. A.P. Estrada-Vargas, E. Lopez-Mellado, J.-J. Lesage. “Automated Modelling of Reactive Discrete
Event Systems from External Behavioural Data”. IEEE Int. Conf. on Electronics, Communications
and Computers, Cholula, Mexico, Mar 2013 (submitted).

108

Appendix A. Interpreted Petri Nets

This appendix contains the basic concepts and notation of PN and IPN used in this
work.

Definition A.1. An ordinary Petri Net structure G is a bipartite digraph represented
by the 4-tuple G = (P, T, I, O) where: P ={p1, p2, ..., ppi} and T ={ty, to, ..., tyr} are
finite sets of vertices named places and transitions respectively; 1(0) : P x T — {0,1} is
a function representing the arcs going from places to transitions (from transitions to
places).

The incidence matrix of G is C = C* - C, where C™ = [c;]; ¢ = I(pi, tj); and C* =
[cii']; ci” = O(pi, t;) are the pre-incidence and post-incidence matrices respectively.

A marking function M : P—>Z " represents the number of tokens residing inside each
place; it is usually expressed as an |P|-entry vector. Z" is the set of nonnegative integers.

Definition A.2. A Petri Net system or Petri Net (PN) is the pair N = (G,Mg), where G
is a PN structure and Mg is an initial marking.

In a PN system, a transition tj is enabled at marking My if Vp; € P, Mi(pi) > I(pi, tj);
an enabled transition t; can be fired reaching a new marking My+1 . This behaviour is
represented as My—— Mys+1. The new marking can be computed as My+1 = My + Cy,
where v(i) =0, i#, w(j) =1; this equation is called the PN state equation. The
reachability set of a PN is the set of all possible reachable markings from My firing only
enabled transitions; this set is denoted by R(G,Mo).

Now it is defined IPN, an extension to PN that allows associating input and output
signals to PN models. Two definitions are used in this work.

Definition A.3. An IPN (Q, M) is a net structure Q = (G, Z, @, A, ¢) with an initial
marking Mg where:

G is a PN structure, X = {oy, ay, ..., o} is the input alphabet, and ® = {¢1, ¢o,..., dg}
is the output alphabet.

A T— ZU{e} is a labelling function of transitions, where € represents a system
internal event externally uncontrollable; it is not allowed that the symbol ¢ is associated
to more than one tj € p;".

¢ : R(Q,Mg)—(Z")% is an output function, that associates to each marking in R(Q,Mo)
a g-entry output vector; q=|®| is the number of outputs. ¢ is represented by a qx|P|
matrix, such that if the output symbol ¢; is present (turned on) every time that M(p;) > 1,
then
o (i, j) = 1, otherwise o(i, j) = 0.

When an enabled transition tj is fired in a marking My, then a new marking My is

reached. This behaviour is represented as My —1 > M, the state equation is
completed with the marking projection yx = ¢ My, where y, € (Z%)? is the k-th output
vector of the IPN.

Definition A.4. An IPN [David and Alla, 1994] (Q, My) is a net structure Q = (G, V,
%, @, A,) with an initial marking Mo where:

109

G is a PN structure, V = {vi, vy, ..., Vr} is the set of variables, X = {oy, oy, ..., 0} IS
the set of events, and @ = {1, ¢,..., ¢} is the output alphabet.

A : T—> C x E is a labelling function of transitions, where C={C;, C,,...} is the set of
variable conditions and E={E;, E,,... } is the set of events.

In an IPN, a transition will be fired:

e if transition t; is enabled
e and if condition C(T;) is true
e when event in E(T;) occurs

In this thesis, we consider a conjunction of events instead of a single event, due to
the PLC technology explained in Chapter 2.

o R(Q,Mo)—(Z")" is an output function, that associates to each marking in R(Q,Mo)
a g-entry output vector; q=|®| is the number of outputs. ¢ is represented by a gqx|P|
matrix, such that if the output symbol ¢ is present (turned on) every time that M(p;) > 1,
thene (i, j) = 1, otherwise ¢(i, j) = 0.

The state equation is completed with the marking projection Yy = @ M, where Yy €
(Z)% is the k-th output vector of the IPN.

Definition A.5. A place pjeP is said to be observable if the i-th column vector of ¢
is not null, i.e. ¢(e,i) # 0. Otherwise it is non-observable. P = P™ U P" where P is the
set of observable places and P" is the set of non-observable places.

110

References

[Angluin, 1988] D. Angluin, “Queries and concept learning”, Machine Learning, 2(4),
pp. 319-342, 1988.
[Biermann and Feldman, 1972] A.W. Biermann, J.A. Feldman, “On the synthesis of
finite-state machines from samples of their behaviour”, IEEE Trans. on
Computers, 21(6), pp. 592-597, 1972.

[Booth, 1967] T.L. Booth, “Sequential machines and automata theory”, John Wiley and
Sons, Inc. New York, London, Sidney, 1967.

[Cabasino, 2006a] M. P. Cabasino, A. Giua, C. Seatzu, “Identification of deterministic
Petri nets”, Proc. of the 8th Int. Workshop on Discrete Event Systems, Ann Arbor,
Michigan, USA, Jul. 2006.

[Cabasino, 2006b] M. P. Cabasino, A. Giua, C. Seatzu, “Computational complexity
analysis of a Petri net identification procedure”, Int. Symp. on Nonlinear Theory
and its Applications, Bologna, Italy, Sep. 2006.

[Cabasino, 2006¢] M. P. Cabasino, A. Giua, C. Seatzy, “ldentification of unbounded
Petri nets from their coverability Graph”, Proc. of the 45" IEEE Conf. on
Decision & Control, San Diego, California, USA, Dec. 2006.

[Cabasino, 2009] M. P. Cabasino, “Diagnosis and identification of discrete event
systems using Petri nets”, Ph. D. Thesis, University of Cagliari, Mar. 20009.

[Cabasino, 2013] M. P. Cabasino, P. Darondeau, M. P. Fanti, C. Seatzu, “Model
identification and synthesis of discrete-event systems”, Contemporary Issues in
System Science and Engineering, IEEE/Wiley Press Book Series, M. Zhou, H.-X.
Lim M. Weijnen (Eds), 2013.

[Cook, 2004] J. E. Cook, Z. Du, C. Liu, A. Wolf, “Discovering models of behaviour for
concurrent workflows”, Computers in Industry, 53(3), pp. 297-319, 2004.
D0i:10.1016/j.compind.2003.10.005.

[David and Alla, 1994] R. David, H. Alla, “Petri nets for modeling of dynamic
systems- A survey”, Automatica, 30(2), pp. 175-202, 1994.

[Dotoli, 2006a] M. Dotoli, M. P. Fanti, A. M. Mangini, “An optimization approach for
identification of Petri nets”, Proc. of the 8" Int. Workshop on Discrete Event
Systems, Ann Arbor, Michigan, USA, Jul. 2006.

[Dotoli, 2006b] M. Dotoli, M. P. Fanti, A. M. Mangini, “On-line identification of
discrete event systems: a case study”, Proc. of the 2006 IEEE Int. Conf. on
Automation Science and Engineering, Shangai, China, Oct. 2006.

[Dotoli, 2007] M. Dotoli, M. P. Fanti, A. M. Mangini, “On-line identification of
discrete event s(}/stems via Petri nets: an Application to Monitor Specification”,
Proc. of the 3" Annual IEEE Conf. on Automation Science and Engineering,
Scottsdale, Arizona, USA, Sep. 2007.

[Dotoli, 2008] M. Dotoli, M. P. Fanti, A. M. Mangini, “Real time identification of
discrete event systems using Petri nets”, Automatica, 44(5), pp. 1209-1219, May
2008.

111

[Estrada, 2009] A. P. Estrada-Vargas, “ldentification of concurrent discrete event
systems from input-output sequences”, Master of Sciences Thesis, Centro de
Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad
Guadalajara, Aug. 2009.

[Estrada, 2010a] A.P. Estrada-Vargas, E. Lopez-Mellado, J.-J. Lesage. “A comparative
analysis of recent identification approaches for discrete-event systems”,
Mathematical Problems in Engineering, 2010, Hindawi.
D0i:10.1155/2010/453254

[Estrada, 2010b] A.P. Estrada-Vargas, E. Lopez-Mellado, J-J. Lesage. “An
identification method for PLC-based automated discrete event systems”. Proc. of
the IEEE Int. Conf. on Decision and Control, pp.6740-6746, Atlanta, USA, Dec.
2010.

[Estrada, 2011] A. P. Estrada-Vargas, J.-J. Lesage, E. LOpez-Mellado, “Stepwise
identification of automated discrete manufacturing systems”, 16th IEEE Int. Conf.
on Emerging Technologies and Factory Automation, Toulouse, France, Sep. 2011.

[Estrada, 2012] A. P. Estrada-Vargas, E. Lopez-Mellado, J.-J. Lesage,. ”Input-Output
Identification of Controlled Discrete Manufacturing Systems”, International
Journal of Systems Science. Published on-line September 18, 2012,
DOI:10.1080/00207721.2012.724098.

[Giua, 2005] A. Giua, C. Seatzu, “Identification of free-labeled Petri nets via integer
programming”, Proc. of the 44th IEEE Conf. on Decision and Control, and the
European Control Conference 2005, Seville, Spain, Dec. 2005.

[Gold, 1967] E.M. Gold, “Language identification in the limit”, Information and
Control, 10, pp. 447-474, 1967.

[Hiraishi, 1992] K. Hiraishi, “Construction of safe Petri nets by presenting firing
sequences”, Lectures Notes in Computer Sciences, 616, pp. 244-262, 1992,

[Ishizaka, 1990] H. Ishizaka, “Polynomial time learnability of simple deterministic
languages”, Machine Learning, 5, pp. 151-164, 1990.

[Kella, 1971] J. Kella, “Sequential machine identification”, IEEE Trans. on Computers,
20, pp. 332-338, 1971.

[Klein, 2005a] S. Klein, L. Litz, J.-J. Lesage, “Fault detection of discrete event systems
using an identification approach”, 16th IFAC World Congress, CDROM paper
n°02643, 6 pages, Praha, Czech Republic, Jul. 2005.

[Klein, 2005b] S. Klein, “Identification of discrete event systems for fault detection
purposes”, Ph. D. Thesis, Ecole Normale Supérieure de Chachan, Oct. 2005.

[Lampériere-Couffin, 1999] S. Lampériere-Couffin, O. Rossi, J.-M. Roussel, J.-J.
Lesage, “Formal Validation of PLC programs : a survey”, European Control
Conference, Karlsruhe, Germany, CD-ROM paper n°741, 6 pages, Sep. 1999

[Levy, 1978] L.S. Levy, A.K. Joshi, “Skeletal structural descriptions”, Information and
Control, 39, pp. 192-211, 1978.

[Meda, 1998] M.E. Meda, “DES identification using interpreted Petri nets”, Int.
Symposium on Robotics and Automation, pp. 353-357, Saltillo, Mexico, Dec.
1998.

112

[Meda, 2000a] M. Meda, A. Ramirez, E. Lopez “Asymptotic identification for DES”,
IEEE Conf. on Decision and Control, Sydney, Australia, pp. 2266-2271, Dec.
2000.

[Meda, 2000b] M. Meda, A. Ramirez, E. Lopez, “Behavioral properties for the control
of discrete event systems modelled by interpreted Petri nets”, IEEE Int. Conf. on
Systems, Man, and Cybernetics, Nashville, USA, pp. 2150-2155, Oct. 2000.

[Meda, 2001] M. Meda, E. Lopez, “A passive method for on-line identification of
discrete event systems”, IEEE Int. Conf. on Decision and Control, Orlando,
Florida, USA pp. 4990-4995, Dec. 2001.

[Meda, 2002a] M. E. Meda, “On-line identification of discrete event systems:
fundamentals and algorithms for the synthesis of Petri net models”, Ph. D. Thesis,
Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico
Nacional, Unidad Guadalajara, Nov. 2002.

[Meda, 2002b] M. Meda, E. Ldpez, “Incremental synthesis of Petri net models for
identification of discrete event systems”, IEEE Conf. on Decision and Control,
Las Vegas, USA, pp.805-810, Dec. 2002.

[Meda, 2003] M. Meda, E. Lépez, “Required transition sequences for DES
identification”, IEEE Conf. on Decision and Control, Maui, Hawaii USA pp.
3778-3782, Dec. 2003.

[Meda, 2005] M. Meda, E. Lopez, “Identification of concurrent discrete event systems
using Petri nets”, IMACS 2005 World Congress, Paris, France, pp. 1-7, Jul. 2005.

[Ould EI Medhi, 2006] S. Ould EI Medhi, E. Leclercq, D. Lefebvre, “Petri nets design
and identification for the diagnosis of discrete event systems”, 2006 1AR Annual
Meeting, Nancy, France, Nov. 2006.

[Ould El Mehdi, 2012] S. Ould ElI Mehdi, R. Bekrar, N. Messai, E. Leclercq, D.
Lefebvre, B. Riera, “Design and identification of stochastic and deterministic
stochastic Petri nets”, IEEE Trans. on Systems, Man and Cybernetics, Part A,
42(4), pp. 931-946.

[Richetin, 1984] M. Richetin, M. Naranjo, P. Luneau, “ldentification of automata by
sequential learning”, Pattern Recognition Letters 2, 2(6), pp. 379-385, 1984.

[Roth, 2010a] M. Roth, “Identification and fault diagnosis of industrial closed-loop
discrete event systems”, Ph. D. Thesis, Technische Universitat Kaiserslautern,
Ecole Normale Supérieur de Cachan, Oct. 2010.

[Roth, 2010b] M. Roth, J.-J. Lesage, L. Litz, “Black-box identification of discrete event
systems with optimal partitioning of concurrent subsystems”, Proc. of the 2010
American Control Conf., Baltimore, USA, pp. 2601-2606, Jun.-Jul. 2010.

[Roth, 2010c] M. Roth, J.-J. Lesage, L. Litz, “Identification of discrete event systems,
implementation issues and model completeness”, 7th Int. Conf. on Informatics in
Control Automation and Robotics, Funchal, Portugal, pp. 73-80, Jun. 2010

[Roth, 2011] M. Roth, J.-J. Lesage, L. Litz, “The concept of residuals for fault
localization in discrete event systems”, Control Engineering Practice, 19(9), pp.
978-988.

113

[Roth, 2012] M. Roth, S. Schneider, J.-J. Lesage, L. Litz, “Fault detection and isolation
in manufacturing systems with an identified discrete event model”, Int. Journal of
Systems Science, 43(10), pp. 1826-1841. D0i:10.1080/00207721.2011.649369

[Takada, 1998] Y. Takada, “Grammatical inference for even linear languages based on
control sets”, Information Processing Letters, 28, pp. 193-199, 1998.

[Valiant, 1984] L.G. Valiant, “A theory of the learnable”, Communications of the ACM,
27, pp. 1134-1142, 1984.

[van der Aalst, 2004] W. van der Aalst, T. Weijters, L. Maruster, “Workflow mining:
discovering process models from event logs”, IEEE Trans. on Knowledge and
Data Engineering, 16(9), Sep. 2004.

[Veelenturf, 1978] L.P.J. Veelenturf, “Inference of sequential machines from sample
computations”, IEEE Trans. on Computers, 27, pp. 167-170, 1978.

[Veelenturf, 1981] L.P.J. Veelenturf, “An automata theoretical approach to developing
learning neural networks” Cybernetics and Systems, 12, pp. 179-202, 1981.

114

Identificacion Caja-negra de Sistemas de Eventos Discretos
Automatizados

Resumen

Esta tesis trata sobre la identificacidn de sistemas de eventos discretos (SED) automatizados operando
en un contexto industrial. En particular el trabajo se enfoca a los sistemas formados por una planta y un
controlador ldgico programable (CLP) operando en lazo cerrado; la identificacién consiste en la
obtencion de un modelo aproximado expresado en redes de Petri interpretadas (RPI) a partir del
comportamiento externo observado en la forma de una Unica secuencia de vectores entrada-salida del
CLP.

En primer lugar, se presenta una revision de algunos métodos de identificacion asi como un estudio
comparativo de enfoques recientes para la identificacion de SED. Enseguida se describe el problema
abordado; se detallan caracteristicas tecnolégicas importantes en los sistemas automatizados por CLP.
Dichas caracteristicas deben ser consideradas en la solucién del problema, pero no pueden ser tratadas por
métodos de identificacion anteriores. La principal contribucién de esta tesis es la creacion de dos métodos
de identificacion complementarios.

El primer método permite construir de manera sistematica un modelo RPI desde una Gnica secuencia
de entrada-salida que representa el comportamiento observable del SED. Los modelos RPI resultantes
describen en detalle la evolucidn de entradas y salidas durante el funcionamiento del sistema.

El segundo método considera DES grandes y complejos; esta basado en un enfoque estadistico para
crear modelos RPI compactos y expresivos. Consiste en dos etapas; la primera calcula, a partir de la
secuencia entrada-salida, la parte reactiva del modelo, la cual estd compuesta por lugares observables y
transiciones. La segunda etapa construye la parte no observable del modelo incluyendo lugares que
aseguran la reproduccion de la secuencia de entrada-salida.

Los métodos propuestos, basados en algoritmos de complejidad polinomial, han sido implementados
en herramientas software, las cuales han sido probadas con secuencias de entrada-salida obtenidas de
sistemas reales en funcionamiento. Las herramientas son descritas y su aplicacién es ilustrada mediante
dos casos de estudio.

115

116

Black-box Identification of Automated Discrete Event Systems

Abstract

This thesis deals with the identification of automated discrete event systems (DES) operating in an
industrial context. In particular the work focuses on the systems composed by a plant and a programmable
logic controller (PLC) operating in a closed loop; the identification consists in obtaining an approximate
model expressed in interpreted Petri nets (IPN) from the observed behaviour given under the form of a
single sequence of input-output vectors of the PLC.

First, an overview of previous works on identification of DES is presented as well as a comparative
study of the main recent approaches on the matter. Then the addressed problem is stated; important
technological characteristics of automated systems and PLC are detailed. Such characteristics must be
considered in solving the identification problem, but they cannot be handled by previous identification
techniques. The main contribution in this thesis is the creation of two complementary identification
methods.

The first method allows constructing systematically an IPN model from a single input-output
sequence representing the observable behaviour of the DES. The obtained IPN models describe in detail
the evolution of inputs and outputs during the system operation.

The second method has been conceived for addressing large and complex industrial DES; it is based
on a statistical approach yielding compact and expressive IPN models. It consists of two stages; the first
one obtains, from the input-output sequence, the reactive part of the model composed by observable
places and transitions. The second stage builds the non-observable part of the model including places that
ensure the reproduction of the observed input-output sequence.

The proposed methods, based on polynomial-time algorithms, have been implemented in software
tools, which have been tested with input-output sequences obtained from real systems in operation. The
tools are described and their application is illustrated through two case studies.

117

118

Identification Boite-noire de Systemes Automatisés
a Evénements Discrets

Résumé

Cette these traite de l'identification des systemes a événements discrets (SED) automatisés dans un
contexte industriel. En particulier, ce travail s’intéresse aux systémes constitués d’un processus et d’un
contrdleur (le plus souvent un automate programmable industriel - API) fonctionnant en boucle fermée.
Dans ce contexte, I’identification a pour objectif de construire un modéle (exprimé sous la forme d’un
réseau de Petri interprété - RPI) approximant le comportement du SED, a partir de I’observation de son
comportement externe, capturé sous la forme d'une séquence de vecteurs d’entrées-sorties de I’ API.

Tout d'abord, une analyse des méthodes d'identification existantes est présentée, ainsi qu’une étude
comparative des approches les plus récentes dédiées a [lidentification des SED. Le probleme de
I’identification est ensuite reformulé sous son aspect expérimental, de maniére a permettre une prise en
compte des caractéristiques technologiques des systemes automatisés, et en particulier de celles de I’API.
Il est alors montré que les méthodes existantes d’identification ne peuvent prendre en compte ces
contraintes expérimentales. La contribution principale de cette thése, qui consiste a proposer deux
méthodes d’identification complémentaires, est ensuite développée.

La premiére méthode permet de construire systématiquement un modele RPI a partir d'une seule
séquence d’entrées-sorties représentant le comportement observé du SED. Les modeles RPI construits
décrivent en détail I’évolution des entrées et sorties pendant le fonctionnement du systeme.

La seconde méthode est plus spécifiqguement destinée aux SED complexes et de grande taille ; elle est
basée sur une approche statistique qui permet la construction de modeles RPI compacts et expressifs. Elle
est composée de deux étapes ; la premiére permet de calculer a partir de la séquence d’entrées-sorties, la
partie réactive observable du modele. La deuxiéme étape permet I’inférence du comportement non-
observable, en ajoutant des places qui permettent la reproduction de la séquence entrée-sortie observée.

Les méthodes proposées, basées sur des algorithmes de complexité polynomiale, ont été implémentées
dans un environnement logiciel expérimental et ont été testés avec des séquences d’entrées-sorties
obtenues a partir de systemes réels en fonctionnement. L’ensemble de ces outils expérimentaux est décrit
et leur application est illustrée a travers deux études de cas.

119

120

	ENSC- 2013 / 435
	Introduction
	Identification methods of Discrete Event Systems
	1.1. Methods derived from language theory
	1.2. Recent approaches for DES Identification
	1.2.1. Progressive identification
	1.2.2. Parametric automata identification
	1.2.3. Parametric automata distributed identification
	1.2.4. Integer Linear Programming Language identification
	1.2.5. Integer Linear Programming Identification
	1.2.6. Neural Networks approach
	1.2.7. Parametric interpreted Petri net identification

	1.3. Process mining approaches
	1.3.1. Probabilistic workflow mining
	1.3.2. Alfa-algorithm

	1.4. Discussion
	1.5. Conclusion

	Identification of automated Discrete Event Systems
	2.
	2.1. Problem statement
	2.1.1. Basics on PLC technology
	2.1.2. Experimental constraints

	2.2. Input data and output model
	2.3. Assumptions
	2.4. Discussion
	2.5. Conclusion

	A Stepwise Identification Method
	3.
	3.1. Overview of the method
	3.1.1. Initialization stage
	3.1.2. Building events and traces
	3.1.3. Building internal model
	3.1.4. PN structure simplification
	3.1.5. Adding interpretation and simplifying

	3.2. Discussion
	3.3. Conclusion

	A statistical identification method
	4.
	4.1. General description
	4.1.1. Motivation
	4.1.2. Overview
	4.1.3. Event types

	4.2. Computing the observable behaviour
	4.2.1. Outline of the Step 1
	4.2.2. Elementary events
	4.2.3. Output Event Firing Functions
	4.2.4. Finding causality
	4.2.5. Determining the firing functions
	4.2.6. Construction of the observable incidence matrix

	4.3. Determining the non observable PN model
	4.3.1. Problem re-statement
	4.3.2. Dynamical properties
	4.3.3. Causal and concurrency relationships
	4.3.3.1. Causal relationship
	4.3.3.2. Concurrency relationship

	4.3.4. Building the non-observable PN
	4.3.5. Places verification
	4.3.6. Test examples

	4.4. Conclusion

	Implementation and experimental tests
	5.
	5.1. Software tools description
	5.2. Interactive Training System for PLC
	5.2.1. Application of the stepwise method
	5.2.2. Application of the statistical method

	5.3. Assembly System
	5.3.1. Application of the stepwise method
	5.3.2. Application of the statistical method

	5.4. Conclusion

	Conclusions
	Appendix A. Interpreted Petri Nets
	References

