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Introduction 
 

Identification allows building systematically a mathematical model that describes the 
behaviour of an unknown or ill-known system based on the observation of its evolution. 
In the case of discrete event systems (DES), observations consist of data revealing the 
system activity: sequences of operations, events, messages, etc., and the models are 
abstract machines that reproduce the observed behaviour. 

DES identification has been first addressed as a problem of grammatical inference. In 
[Gold, 1967] a finite automaton (FA) is built from positive samples of accepted words. 
Later several methods for obtaining Mealy [Kella, 1971] [Veelenturf, 1978] and Moore 
[Biermann and Feldman, 1972] [Veelenturf, 1981] machines have been proposed. Also 
context free grammars building has been studied [Levy, 1978], [Takada, 1998], 
[Ishizaka, 1990]. 

Identification methods yielding Petri net (PN) models have been proposed for coping 
with more complex systems exhibiting concurrent behaviour. In [Hiraishi, 1992] an 
algorithm for constructing Petri net models is presented. First, the language of the target 
system is identified in the form of deterministic FA (DFA). Then, the algorithm obtains 
from the DFA the structure of a PN that accepts the obtained language.  

The problem, seen from the point of view of identification, and not only as a 
grammatical inference problem has been addressed in literature in various formulations 
and from diverse approaches. The works summarized in [Cabasino, 2009] obtain a Petri 
net system from the knowledge of the language it generates, i.e. the set of transition 
sequences that can be fired from the initial marking. Such works, classified later as 
synthesis methods in [Cabasino, 2013], differ from the black-box identification 
approach held in this thesis because considered transitions are unknown; that is, the only 
available information about the system is the input and output signals evolution. 
Besides, some of the stated hypotheses on the so called approaches are not well adapted 
for real complex DES, particularly the assumptions regarding the entire system 
language observation and the existence of counter examples. In practice, only part of the 
language is observed, especially when there is a lot of parallelism in the system. 

In [Ould El Medhi, 2006] several algorithms are introduced to synthesize a Petri net 
with regard to an event propagation set. However, distinction between input and output 
signals is not made and obtained models do not express how inputs and outputs of the 
system are interrelated to produce the observed behaviour, although it is the core of a 
reactive system. 

In [Meda, 2002a] it is described a method to incrementally construct an IPN model 
from a single output vectors sequence. The considered DESs to identify must be event-
detectable by the outputs. Applying this method to the identification from an I/O 
sequence would lead to models in which same output changes caused by different input 
evolutions would not be differentiated and exceeding behaviour could be introduced. 

The method presented in [Klein, 2005a] obtains Automata models representing a set 
of cyclic I/O sequences. This method also considers automated systems. However, in 
the obtained models, structural information as parallelism cannot be explicitly 
expressed. An extension of this work has been presented in [Roth, 2010], which allows 
splitting the system on concurrent parts. Even if modelled subsystems represent 
parallelism, the method is strongly adapted for fault detection purposes.  
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In [Dotoli, 2008] an event sequence is observed, as well as the corresponding output 
symbols of a DES to produce an IPN model, in which the sequence and the observed 
output vectors are reproducible. This methodology requires the knowledge of an event 
list, which is not available in the context of black-box identification problem treated in 
this work. An alternative to this lack of events list could be the consideration of all the 
observed input changes. In this case, models with several paths describing input changes 
would be constructed, in which some input-output relations would not be explicitly 
observed. 

Process mining is a research domain that can be considered as similar to system 
identification: it consists on discovering behavioural models of the processes that 
capture the structured orderings of activities in a workflow. 

The goal of the method presented in [Cook, 2004] is to identify gross patterns of a 
workflow behaviour that can be useful for understanding the system. Statistical and 
probabilistic analyses are made, especially to determine when concurrent behaviour is 
occurring, and the dependence relationships that may exist among observed events. 

In [van der Aalst, 2004] the workflow mining problem is also faced. The input of the 
algorithm is a workflow log in which several workflow instances composed by several 
tasks, which have been recorded sequentially, even if they may be executed in parallel. 
Based on the information in the workflow log and by making some assumptions about 
completeness of the log, a process model in the form of a workflow net is deduced by a 
so called α-algorithm. 

In this thesis, it is addressed the problem of identification of automated DES from a 
single input-output sequence describing the external observed behaviour of the system. 
The work focuses on systems composed by a plant and a programmable logic controller 
(PLC) running in a closed loop. Two identification algorithms are proposed, allowing 
the creation of IPN models representing approximately the observed behaviour. 

Firstly, different approaches adopted in recent publications are reviewed. An 
overview of recent identification approaches and a comparative study of some 
techniques is presented. 

Afterwards, we describe the problem addressed in this thesis, particularly the PLC 
and plant compound system operation and the data collection process for identification. 
We describe technological issues of both aspects which are not considered by previous 
methods. 

Two identification methods are presented. The first one is inspired from the 
grammatical inference techniques and allows constructing, using an identification 
parameter κ, an IPN model to represent in detail the behaviour of a system from a single 
input-output sequence. The proposed method yields an IPN model which represents 
exactly the same language of length κ+1 than that generated by the system without 
taking into account information a-priori about the system other than its input and output 
signals. 

The second one is a statistical method which allows the construction of compact and 
expressive IPN models representing complex industrial DES behaviour. The method 
computes the reactive part of the system by means of a statistical analysis of the input-
output sequence, yielding a net composed by observable places and labelled transitions. 
The model is completed with the addition of non-observable places representing the 
internal behaviour inferred by analysis of the input output sequence.  
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Both methods are based on polynomial-time algorithms. They have been 
implemented as software tools and tested with several case studies. The results of the 
identification of two real systems in operation are illustrated and compared. 

This thesis is organized as follows: 

• Chapter 1 is devoted to the analysis of existing identification techniques. 
• Chapter 2 presents some definitions about DES identification and explains 

the characteristics of the problem addressed in this work. 
• Chapter 3 introduces an algorithm for DES identification from a single input-

output sequence, including an analysis of its principal properties and 
characteristics and some examples to illustrate the application of the method. 
Limitations of this algorithm are finally analyzed. 

• Chapter 4 describes a methodology to find a compact and complete 
representation of the behaviour of a system. 

• Chapter 5 talks about experimental work. 
• Conclusions include a summary of the main features of the contributions in 

this thesis and give perspectives for extending the research work. 
•  Finally, in Appendix A, the definition of IPN used in the present thesis is 

included.   
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Chapter 1 
Identification methods of Discrete Event 
Systems 

 

Abstract. This chapter surveys the identification techniques of discrete event 
systems found in the literature and analyses recent approaches addressing the 
identification problem. A comparative study of such approaches is made. 
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1.1. Methods derived from language theory 
Pioneer works on identification have been developed in computer science, where the 
problem of obtaining a language representation from sets of accepted words has been 
dealt since a long time. Such methods are generally referred as languages inference 
techniques or learning techniques. 

Gold´s method [Gold, 1967] processes positive samples: an infinite sequence of 
examples such that the sequences contain all and only all the strings of the language to 
learn. 

The Probably Approximately Correct (PAC) learning technique proposed in 
[Valiant, 1984] learns from random examples and studies the effect of noise on learning 
from queries. 

The query learning model proposed in [Angluin, 1988] considers a learning 
protocol based on a “minimally adequate teacher”; this teacher can answer two types of 
queries: membership query and equivalence query. 

Several works that have adopted state machines as representation model, allow 
describing the observed behaviour. In [Booth, 1967] a method to model a language as 
Moore or Mealy machines is presented. The system under investigation is placed within 
a test bed and connected to a so called experimenter, which generates the input signals 
and records the output signals of the system. The identification can be started 
considering a very few number of states. If, at some point of the experiment, it is 
impossible to find a correct machine with the assumed number of states, the 
identification is started again considering a machine with one more state. 

The method proposed in [Kella, 1971] allows obtaining models representing Mealy 
machines from a single observed input-output sequence. The algorithm lists all reduced 
machines which may produce the given sequence. The construction principle is the 
merging of equivalent states. 

In [Biermann and Feldman, 1972] a method for the identification of non 
deterministic Moore machines based on a set of input output sequences is presented. All 
the sequences start in the same initial state. The identification principle is the reduction 
of an initial machine represented as a tree. 

The method presented in [Veelenturf, 1978] processes simultaneously a sample of 
sequences to produce stepwise convergent series of Mealy machines, such that the 
behaviour of every new machine includes the behaviour of the previous one. At each 
step, the last obtained machine is analysed and completed by adding transitions and 
possibly new states. 

Later, in [Veelenturf, 1981] an algorithm to identify a unique Moore machine 
generating the behaviour observed during m sequences starting at the same initial state 
is proposed. The learning procedure operates in three steps: induction, contradiction, 
and discrimination. A state can never be deleted and only transitions between states can 
be modified. This method is improved in [Richetin, 1984], which proposes two 
algorithms to identify multiple systems as well as systems that may not be initialized 
between two records. 

The identification problem for context free grammars (CFGs) needs, beside given 
examples, some additional structural information for the inference algorithm [Levy, 
1978].  
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[Ishizaka, 1990] has investigated a subclass of CFGs called simple deterministic 
grammars. A polynomial time algorithm that allows an exact identification of a simple 
deterministic language is given. 

In [Takada, 1998] it has been shown that the grammatical inference problem for 
even linear languages can be reduced in polynomial time to the inference of regular 
languages. 

Other works use as description formalism Petri net models. In [Hiraishi, 1992] an 
algorithm for synthesising Petri net models is presented. The proposed algorithm has 
two phases. In the first phase, the language of the target system is identified under the 
form of a DFA. In the second phase, a Petri net that accepts the same language as the 
DFA is built. 

1.2. Recent approaches for DES Identification 
In recent years, the scientific community has proposed identification approaches (based 
on Petri net or automata) for obtaining approximated models of DESs whose behaviour 
is unknown or ill-known. In the context of automated DESs, identification methods can 
be complementary to established modelling techniques; identification builds a closed-
loop controller-plant model, which is more classically obtained by a composition of 
models of controller and plant. Several approaches for identifying DESs have been 
proposed in literature and compared in [Estrada, 2010a]. We present an overview of 
such approaches; thus for further details please consult the references. 

1.2.1. Progressive identification 
The problem addressed in this work is to build a model for a DES as it evolves from the 
observation of its output signals [Meda, 1998], [Meda, 2000a], [Meda, 2000b], [Meda, 
2001], [Meda, 2002a], [Meda, 2002b], [Meda, 2003], [Meda, 2005]. A sequence of 
models is built in such a way that the current model acquires more details than the 
previous one approaching to the actual model of the system. 

The identification approach proposes to compute an Interpreted Petri Net (IPN) 
model describing the behaviour of the unknown DES. See Appendix A for an IPN 
definition. 

Some assumptions are considered in this work: 
• The system to be identified can be described by a live, 1-bounded and cyclic 

IPN Q. 
• Q is event-detectable by the output (the same change of outputs cannot be 

provoked by different transitions). 
• The transitions of Q are not fired simultaneously and Q has not self-loops. 

The algorithm receives a sequence of output signal values obtained from observation 
of the working system. The algorithm returns an IPN in which every observable place 
represents one of the sensors of the system. 

The identification strategy is based on the reconstruction of the cyclic components of 
the system model, by processing cyclic sequences of transitions (called m-words) 
computed from the observed output symbols. 

During the on-line operation of the identification process, the m-words are computed 
and then the new model is built adding, removing, or updating dependencies (non-
observable places) between the transitions. 
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The model synthesis procedure performs mainly two tasks: the computation of the 
observable part of the system and the inference of the non observable part of the system. 
The first task is made directly from the observation of the output system signals, while 
the second task, rather difficult, derived a more detailed study about the dependencies 
formed by a non observable place into a model. The proposed identification algorithm is 
succinctly described below. 

Algorithm 1.1 

1. Read the vectors of output symbols o1, o2,... generated by the system. 
2. Detect an output word when the first and last output symbols are the same. 
3. For any two consecutive output symbols compute a transition that represents the 

output change (if the output was calculated before, take the same transition). 
4. Compute an m-word adding each computed transition in the step above. 
5. Compute the non observable places. 

a. to constrain the firing order of the transitions 
b. to compute the t-component associated with the m-word 

6. Update the computed IPN model with the information provided by the m-word 
allowing the firing of all computed m-words, inferring t-semiflows of the system. 
a. computing new observable places and transitions 
b. removing or adding dependencies (possibly merging places) updating the 

computed real t-semiflows. 

 
Example 1.1. In order to illustrate the method, we take from [Meda, 2002a] the 
following example of a system with 11 output signals. We show the models generated 
when new m-words are computed from the outputs of the system. For sake of brevity, 
not all steps of the algorithm are shown. 

Step 1. Observe the first output symbols: 

o1 = [00000000000]T, o2 = [10000000000]T, o3 = [00000000000]T = o1, o4 = ... 
Step 2. The first cyclic observed sequence is o1o2o1 

Step 3. t1 will represent the transition from o1 to o2 and t2 the transition from o2 to o1 

Step 4. The m-word resulting is m1 = t1t2 

Step 5. The t-component associated with the m-word t1t2 is shown in Figure 1.1. 

 
Figure 1.1  t-component associated with m1 = t1t2 

Step 6. The first t-semiflow inferred is W1 = m1. 

After the next output word is treated with steps 1-4, it is obtained the m-word m2 = 
t3t4. Its respective t-component associated is added to infer a new t-semiflow W1 = m1m2 
in step 6, as shown in Figure 1.2. 

 
Figure 1.2  t-semiflow inferred W1 = m1m2 
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After computing of m-words m3 = t6t7, m4 = t5t8, m5 = t9t10, m6 = t11t12, m7 = t13t14, it 
is inferred in step 6 the t-semiflow W1 = m1m2m3m4m5m6m7 shown in Figure 1.3. 

 
Figure 1.3  t-semiflow inferred W1 = m1m2m3m4m5m6m7 

 

The arriving m-word m1 = t1t2 is the first one of W1 = m1m2m3m4m5m6m7. Then, it is 
supposed that W1 has been completely observed and a new t-semiflow W2 = m1 is 
inferred. Observed m-words m2 = t3t4, and m3-4 = t5t6t7t8, in step 4 are added to the t-
semiflow W2 and the model is updated in step 6 to allow the firing of all of them, as 
shown in Figure 1.4. 

 
Figure 1.4  Complete t-semiflow W1 = m1m2m3m4m5m6m7 and inferred t-semiflow W2 = m1m2m3-4 

 

The last m-word m7 = t13t14 is observed. It is made a merging of places to allow the 
firing of the m-words observed in the order the appeared. A new t-semiflow W3 = m5m6 
is inferred and t-semiflows W1 = m1m2m3m4m7 and W2 = m1m2m3-4m7 are updated. The 
final model can be seen in Figure 1.5. 

 
Figure 1.5  t-semiflows W1 = m1m2m3m4m7, W2 = m1m2m3-4m7 and W3 = m5m6 

The proposed algorithms to update the non observable places have linear complexity 
on the number of the transitions computed and the m-words detected, that is, in the size 
of the identified model. 

The general algorithm to update a model that includes all the updating procedures of 
non observable places is also executed in polynomial time. 
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1.2.2. Parametric automata identification 
In [Klein, 2005a] a finite automaton is built form a given set of observed cyclic 

sequences, containing values of the inputs and outputs values of the system during its 
normal behaviour. The method was proposed for obtaining models adapted for fault 
detection in a model-based approach [Roth, 2011][Roth, 2012]. 

The identification approach proposes to compute a non-deterministic 
autonomous automaton with output (NDAAO) model describing the behaviour of the 
unknown DES. The definition of the NDAAO is presented below. 

The system to be identified is a compound system controller + plant running in a 
closed-loop considered as a generator or an information source. 

The algorithm receives a set of observed production cycles obtained from the system 
to be identified. Each observed production cycle or observed sequence is an ordered 
series of input/output (I/O) binary vectors at different times. The observed sequences do 
not necessarily have the same length; however, the first and last I/O vectors of different 
sequences must be identical. 

The NDAAO construction principle is to associate each different observed I/O vector 
with a single state. The transitions between the different states are created after a path 
between the corresponding I/O vectors has been observed. 

First, we present some definitions taken from [Klein, 2005b]. A non-deterministic 
autonomous automaton with output, denoted NDAAO, is a five-tuple: 

NDAAO = (X, Ω, r, λ, x0) 
X   finite set of states, 
Ω   output alphabet, 
r: X2X  non deterministic transition relation, 
λ: XΩ  output function, 
x0 ∈ X  initial state 
Each observed production cycle of the system (also referred to as an observed 

sequence) is denoted as σi and formally defined as σi = ( ui(1), ui(2)... ui(|σi|)) where ui( 
j) is an I/O vector and |σi| represents the length of the considered sequence σi. 

The cyclic production implies that the first and the last observed I/O vectors of the 
different sequences are identical. This can be formulated as ∀( i, j), ui(1) = uj(1) = 
ui(|σi|) = uj(|σj|). The algorithm proceeds in six steps: 

 

Algorithm 1.2 

1. For each observed sequence σi, define sequences σi
k of k consecutive vectors ui(t) 

where k is an a parameter fixed a priori  
2. Construct of the NDAAO 
3. Rename the output function 
4. Reduce the last state 
5. Merge equivalent states 
6. Closure of the automaton 
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Example 1.2. Let us consider the example of an elementary plant with a controller 
having two inputs and one output [Klein, 2005b]. 

The observed sequences of I/O vectors are: 
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In order to simplify the notation, each I/O vector is coded as A, B, C, D or E. These 
letters represent the letters of the observed alphabet. With this coding, the observed 
sequences are: σ1 = (A, B, C, D, E, A) and σ2 = (A, C, B, C, D, A). 

Step 1: Construction of vector sequences σj
k. Setting k = 2, we obtain for the 

example: 

σ1
2 = ((A,A),(A,B),(B,C),(C,D),(D,E),(E,A), (A,A)) 

σ2
2 = ((A,A),(A,C),(C,B),(B,C),(C,D),(D,A), (A,A)) 

Step 2: Construction of the NDAAO. The identification principle is to associate each 
different word with a single state. This step is illustrated by Figure 1.6. 

 

 
Figure 1.6  Association of words with states of the NDAAO 

 

Step 3: Renaming of the output function. Each state of the NDAAO corresponds to a 
unique and stable value of the input and output signals. This value is described by the 
last letter of each sequence of length k, as shown in Figure 1.7. 

 

 
Figure 1.7  Association of states with I/O signals 

Step 4: Reduction of the last state. The last k states of each branch ending with xf are 
associated with the same letter. These states can be reduced with a procedure that has to 
be iterated k – 1 times. First, merge the pre-states of xf. Second, redefine this new state 
as the final state xf and delete the former xf from the set of states. This procedure is 
illustrated in Figure 1.8. 
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Figure 1.8  Reduction of the last state 

Step 5: Merging of equivalent states. Two states are equivalent if and only if: 

1. They are associated with the same output 
2. They have the same set of post states. 

It has been proved that the merging of equivalent states does not affect the languages 
accepted by the NDAAO. This property can be observed in Figure 1.9. 

 

 
Figure 1.9  Merging of equivalent states 

 

Step 6: Closure of the automaton. With the hypothesis that each observed sequence 
corresponds to a single production cycle, the states x0 and xf of the NDAAO identified 
are identical. Thus the NDAAO can be closed resulting in a strongly connected 
NDAAO, as observed in Figure 1.10. 

 
Figure 1.10  Final model 

 

The time required to build different models is very low and does not represent any 
problems for the application of the identification method. However, the reduction of the 
NDAAO requires more time than the identification of the model. If new information is 
available, the time required for the identification of the NDAAO is reduced. However, 
this gain is not very important since the reduction must be performed again. 
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1.2.3. Parametric automata distributed identification 
As stated before, in many practical applications, a concurrence phenomenon can be 

observed, which does not allow identifying a suitable model for online fault diagnosis 
with the [Klein, 2005a] methodology. To overcome this problem, a technique to divide 
the system in subsystems with converging observed languages has been proposed by 
[Roth, 2010a], [Roth, 2010b]. 

The idea is to divide the system into subsystems and to systematically accept a 
certain amount of unknown combined subsystem behaviour. 

The approach is based on the heuristic that a certain amount of unknown global 
behaviour resulting from a combination of regular subsystem evolutions can often be 
accepted as fault-free because it is similar to the known fault-free behaviour. 

The algorithm receives, similarly to [Klein, 2005a] a set of observed production 
cycles (cyclic I/O binary vector sequences). 

As output, the algorithm returns a set of partial automatons, one for each subsystem 
in which the observed system has been partitioned. These automatons are later used for 
fault detection. 

The method to automatically perform the partitioning uses an optimization technique 
to solve the combinatorial problem of assigning controller I/Os to Nsys subsystems. 

A solution )( tsysy is a function which assigns a set of controller I/Os to each 
subsystem. The set y(syst) contains the I/Os which are considered in the partial I/O 
vector of the t-th subsystem. A heuristic optimization approach is used to find an 
optimal solution. Two optimization criteria related to concurrency are used. 

The first one counts for each subsystem the newly observed words in each new 
system cycle after the first one and multiplies this number with the square root of the 
according cycle: 

( )( )∑∑
∀ =

−−=
i

ii
sys

p

h

hn
sysObs

hn
sysObs

sys

WWh
N

yE
2

1,
,

,
,1

1)( , 

where p is the number of observed sequences and hn
sysObs i

W ,
, is the word set of length n up 

to the h-th cycle of subsystem sysi. The term h  was heuristically chosen and increases 
more weight to new words that occur during last system cycles. By division with the 
number of subsystems, the optimization criterion is normalized. 

The second measure is related to the structure of an automaton identified on the basis 
of observed system data. Concurrency typically leads to several possible behaviours 
which are reflected by states with several leaving transitions in the reachability graph of 
an underlying Petri net. If for a given closed-loop DES an NDAAO is identified with 
algorithm proposed, the resulting automaton can be seen as an approximation of the 
reachability graph of a Petri net representing the considered system. Hence, concurrency 
in the system is represented by states with several leaving transitions. 

The branching degree BD of the 
isysNDAAO identified for subsystem isys is defined 

as: 
( )

( ) ( )∑
∈∀ 


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>−

≤
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xrif
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where r(x) is the number of leaving transitions of the state x. Only states with more than 
one leaving transition contribute to this measure since this represents possible 
concurrent behaviour. 

A measure for the concurrency of a given I/O partitioning y can be calculated by 
summing up the branching degrees of partial NDAAO identified for the subsystems: 

( )( )∑
∀

=
i

i
sys

sysNDAAOBDyE )(2

 
It is possible to have 0>BD and thus 0)(2 >yE  although there is no concurrency in 

the system.  

To solve combinatorial problem of partitioning, simulated annealing is used. 

Algorithm 1.3: Simulated annealing 

Input: Starting temperature T , cooling rate cR  and the minimum (stop) temperature 
minT  

Initialize T  
Select current solution cy at random 
Repeat 

Select a new solution newy  
If )()( newc yevalyeval >  

Then newc yy ←  

Else If T
yevalyeval newc

erandom
)()(

)1,0[
−

<  
Then newc yy ←  

ecoolingRatTT *←  
Until minTT <  

 

Once the system has been partitioned in subsystems, an NDAAO is constructed as in 
[Klein, 2005a] for every one of the subsystems, considering only the components of the 
I/O vector correspondent to each part. 

1.2.4. Integer Linear Programming Language identification 
In [Giua, 2005] it is presented a technique for identifying a Petri net system, which is 

able to reproduce a given finite language of transition sequences. Several extensions to 
this work have been made in [Cabasino, 2006a] [Cabasino, 2006b] [Cabasino, 2006c] 
[Cabasino, 2009]; such methodology has been proposed to deal with systematic 
approaches for diagnosis. 

This algorithm processes the set of transition sequences that can be fired starting 
from the initial marking of a Petri net. 

An upper bound on the number of places of the net is necessary. The algorithm 
returns a Petri net which reproduces the given language. 

The strategy of the algorithm is to generate an Integer Linear Programming (ILP) 
problem adding algebraic constraints which force a Petri net to accept the specified 
language.  
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To select among all the solutions that satisfy stated constraints, a performance index 
is minimized, trying to decrease the arcs weights and number of tokens in the initial 
marking of the Petri net. Some definitions from [Cabasino, 2009] are presented. 

Let L  ⊂ T* be a finite prefix-closed language, and k be the length of the longest string in 
L.  

A nonnegative integer K is given such that the following condition holds: 

KjiPostkpiM
jii

≤⋅+ ),(max)(max
,0  

Given two pairs (σ, t) and (σ’, t’), (σ, t) ≡ (σ’, t’) if π (σ) = π (σ’) and t = t’, where π 
(σ) associates σ  to its firing vector. 

Let },,|),{(' LLE ∈<∈= jj tkt σσσσ  and ≡= |'EE  
Let },,|),{(' LLD ∉<∈= jj tkt σσσσ  and ≡= |'DD  

Algorithm 1.4 

A net system is a solution of the identification problem if and only if it satisfies the 
following set of linear algebraic constraints.  
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Let f (M0, Pre, Post) be a given performance index. The solution to the identification 
problem that minimizes f (M0, Pre, Post) can be computed by solving the IPP: 





),(
),,(min 0

DEGms.t.
PostPreMf

 

A typical choice for f is: 

n
T
m

T
m PostPreMPostPreMf 1)(11),,( 00


⋅+⋅+⋅=  

The algorithm has been extended in several works, but the basis principle is the same. 

Example 1.3. In order to illustrate the method, let us present an example taken from 
[Cabasino, 2009]. 

Let L   = {ε, t1, t1t1, t1t2, t1t1t2, t1t2t1} and m = 2, thus k = 3. Assume that we want to 
determine the Petri net system that minimizes the sum of initial tokens and all arcs such 
that L3(N,M0) = L  . This requires the solution of an IPP where 

)},(),,(),,(),,(),,{(' 21112121111 tttttttttttε==EE
  and 

)},(),,(),,{(' 1112212 tttttttε==DD  
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The procedure identifies a net system with 
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The complexity of this approach is exponential with respect to k. Also, it is well 
known that an IPP is an NP-hard problem. 

1.2.5. Integer Linear Programming Identification 
This approach [Dotoli, 2006a], [Dotoli, 2006b], [Dotoli, 2007], [Dotoli, 2008] is an 

extension of the works from [Giua, 2005]. However, besides a sequence of events, the 
available output response sequence of the DES is used to make the inference of a Petri 
Net model. 

The method supposes that all the DES events can be detected, distinguished and not 
silent. 

The algorithm receives a sequence of events with their corresponding output vectors. 
Also, it is needed an upper bound of the number of non-observable places for the net to 
identify. 

The algorithm returns a Petri net with observable places representing the actuators of 
the system, non-observable places and labelled transitions representing the observed 
event sequence. It is also possible that the algorithm returns a 0 (zero) when there is no 
possible solution of the problem for the given sequence and number of places. 

The strategy of the algorithm is to generate an Integer Linear Programming Problem 
similarly to the [Cabasino, 2009] strategy: a net system is a solution of the identification 
problem if and only if it satisfies the following set of linear algebraic constraints: 

















−=−=∈∀

≤=∈∀

≥+

≥+

=∈

∈

=

−

−

1

1

1x1x1x

1x1x1x

x

)(,)(with

,)(with

111
111

,...,0with
,

),,,,(

ii
i

i
i
i

i
i

i
i
i

mnn

nm
T

m
T

m
i

nm

MMtPrePostwt

MtPrewt
PrePost

PrePost
hiNM

NPostPre

mTYw

α
β

α
β

α
β

α
β

σλσ

σλσ

λξ









 

Some constraints can be added if additional structural properties are known on the 
PN model to identify. For example, if there is no place without successor transitions it 
can be added: 1x1x 11 mnPre


≥⋅ . If there is no transition without successor places: 

1x1x 11 nm
TPost


≥⋅ . If there are no source transitions: 1x1x 11 nm

TPre


≥⋅ .  

A performance index is used, an indicator of the PN size, as a linear function. 

00 edcba),,( MPostPreMPostPre TT  ++=φ  

It is presented now the basis of the algorithm that solves the identification problem 
stated above. The complete algorithm and a best explanation of the solution are given in 
[Dotoli, 2008]. 
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Algorithm 1.5 

1. Initialization of the algorithm variables. The first output vector is obtained and the set 
of labels, the set of transitions, and the set of output vectors are initialized. Every time 
more information is calculated, these sets are actualized. 

2. Wait until a new event and its corresponding output vector are observed. 

3. Associate a transition to an event. 

3.1 The event occurs for the first time. A new transition is created and associated to the 
event and the observed change of marking. 

3.2 If the event occurred previously 

3.2.1 A new transition must be associated with the event (if there is no change in the 
marking associated to any transition). 

3.2.2 A fired transition is associated to the event. 

4. Solve the ILP problem 

),,(min 0www MPostPreφ  s.t. )',,,,( mTYw wwλξ  

as many times as necessary, starting with m’ equal to the number of observable places 
and incrementing it, until it is found a solution or until m’ is equal to the upper bound of 
the number of places. 

5. Return to the condition of recording the events. 

 

Example 1.4. It is taken from [Dotoli, 2008]. Let us consider a DES with 𝑦 ∈ ℕ5 and 
𝑚� = 𝑞 = 5. Assume the initial output is 𝑦0 = [00102]𝑇 and the observed sequence is 
𝑤 = 𝑒𝛼1,𝑒𝛼2,𝑒𝛼3,𝑒𝛼4 = 𝑒1, 𝑒2, 𝑒2, 𝑒1  with the corresponding outputs 𝑦1 = [40101]𝑇 , 
𝑦2 = [31001]𝑇, 𝑦3 = [01011]𝑇 and 𝑦4 = [00102]𝑇. 

At each event occurrence the identification algorithm is applied, adding constraints 
to obtain a PN neither without transitions nor places without successors. However, no 
solution is provided until the occurrence of the last event. The ILP solved is: 

 

Minimize 
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2) 𝑀𝑖 ∈ 𝑁𝑚 with 𝑖 = 0, … ,ℎ 
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⎣
⎢
⎢
⎢
⎡
𝑝𝑜𝑠𝑡11 𝑝𝑜𝑠𝑡21 𝑝𝑜𝑠𝑡31 𝑝𝑜𝑠𝑡41
𝑝𝑜𝑠𝑡12 𝑝𝑜𝑠𝑡22 𝑝𝑜𝑠𝑡32 𝑝𝑜𝑠𝑡42
𝑝𝑜𝑠𝑡13 𝑝𝑜𝑠𝑡23 𝑝𝑜𝑠𝑡33 𝑝𝑜𝑠𝑡43
𝑝𝑜𝑠𝑡14 𝑝𝑜𝑠𝑡24 𝑝𝑜𝑠𝑡34 𝑝𝑜𝑠𝑡44
𝑝𝑜𝑠𝑡15 𝑝𝑜𝑠𝑡25 𝑝𝑜𝑠𝑡35 𝑝𝑜𝑠𝑡45⎦

⎥
⎥
⎥
⎤
�

1
1
1
1

� +

⎣
⎢
⎢
⎢
⎡
𝑝𝑟𝑒11 𝑝𝑟𝑒21 𝑝𝑟𝑒31 𝑝𝑟𝑒41
𝑝𝑟𝑒12 𝑝𝑟𝑒22 𝑝𝑟𝑒32 𝑝𝑟𝑒42
𝑝𝑟𝑒13 𝑝𝑟𝑒23 𝑝𝑟𝑒33 𝑝𝑟𝑒43
𝑝𝑟𝑒14 𝑝𝑟𝑒24 𝑝𝑟𝑒34 𝑝𝑟𝑒44
𝑝𝑟𝑒15 𝑝𝑟𝑒25 𝑝𝑟𝑒35 𝑝𝑟𝑒45⎦

⎥
⎥
⎥
⎤
�

1
1
1
1

� ≥

⎣
⎢
⎢
⎢
⎡
1
1
1
1
1⎦
⎥
⎥
⎥
⎤
 

5) ∀𝑡𝛽𝑖
𝛼𝑖 ∈ 𝜎 with 𝜆(𝜎) = 𝑤, 𝑃𝑟𝑒𝑡𝛽𝑖

𝛼𝑖 ≤ 𝑀𝑖−1 

⎣
⎢
⎢
⎢
⎡
𝑝𝑟𝑒11 𝑝𝑟𝑒21 𝑝𝑟𝑒31 𝑝𝑟𝑒41
𝑝𝑟𝑒12 𝑝𝑟𝑒22 𝑝𝑟𝑒32 𝑝𝑟𝑒42
𝑝𝑟𝑒13 𝑝𝑟𝑒23 𝑝𝑟𝑒33 𝑝𝑟𝑒43
𝑝𝑟𝑒14 𝑝𝑟𝑒24 𝑝𝑟𝑒34 𝑝𝑟𝑒44
𝑝𝑟𝑒15 𝑝𝑟𝑒25 𝑝𝑟𝑒35 𝑝𝑟𝑒45⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡𝑡𝛽1
𝛼1
1

𝑡𝛽1
𝛼1

2

𝑡𝛽1
𝛼1

3

𝑡𝛽1
𝛼1

4⎦
⎥
⎥
⎥
⎥
⎤

≤

⎣
⎢
⎢
⎢
⎡
0
0
1
0
2⎦
⎥
⎥
⎥
⎤
, 

⎣
⎢
⎢
⎢
⎡
𝑝𝑟𝑒11 𝑝𝑟𝑒21 𝑝𝑟𝑒31 𝑝𝑟𝑒41
𝑝𝑟𝑒12 𝑝𝑟𝑒22 𝑝𝑟𝑒32 𝑝𝑟𝑒42
𝑝𝑟𝑒13 𝑝𝑟𝑒23 𝑝𝑟𝑒33 𝑝𝑟𝑒43
𝑝𝑟𝑒14 𝑝𝑟𝑒24 𝑝𝑟𝑒34 𝑝𝑟𝑒44
𝑝𝑟𝑒15 𝑝𝑟𝑒25 𝑝𝑟𝑒35 𝑝𝑟𝑒45⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡𝑡𝛽2
𝛼2
1

𝑡𝛽2
𝛼2

2

𝑡𝛽2
𝛼2

3

𝑡𝛽2
𝛼2

4⎦
⎥
⎥
⎥
⎥
⎤

≤

⎣
⎢
⎢
⎢
⎡
4
0
1
0
1⎦
⎥
⎥
⎥
⎤
, 

⎣
⎢
⎢
⎢
⎡
𝑝𝑟𝑒11 𝑝𝑟𝑒21 𝑝𝑟𝑒31 𝑝𝑟𝑒41
𝑝𝑟𝑒12 𝑝𝑟𝑒22 𝑝𝑟𝑒32 𝑝𝑟𝑒42
𝑝𝑟𝑒13 𝑝𝑟𝑒23 𝑝𝑟𝑒33 𝑝𝑟𝑒43
𝑝𝑟𝑒14 𝑝𝑟𝑒24 𝑝𝑟𝑒34 𝑝𝑟𝑒44
𝑝𝑟𝑒15 𝑝𝑟𝑒25 𝑝𝑟𝑒35 𝑝𝑟𝑒45⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡𝑡𝛽3
𝛼3
1

𝑡𝛽3
𝛼3

2

𝑡𝛽3
𝛼3

3

𝑡𝛽3
𝛼3

4⎦
⎥
⎥
⎥
⎥
⎤

≤

⎣
⎢
⎢
⎢
⎡
3
1
0
0
1⎦
⎥
⎥
⎥
⎤
, 

⎣
⎢
⎢
⎢
⎡
𝑝𝑟𝑒11 𝑝𝑟𝑒21 𝑝𝑟𝑒31 𝑝𝑟𝑒41
𝑝𝑟𝑒12 𝑝𝑟𝑒22 𝑝𝑟𝑒32 𝑝𝑟𝑒42
𝑝𝑟𝑒13 𝑝𝑟𝑒23 𝑝𝑟𝑒33 𝑝𝑟𝑒43
𝑝𝑟𝑒14 𝑝𝑟𝑒24 𝑝𝑟𝑒34 𝑝𝑟𝑒44
𝑝𝑟𝑒15 𝑝𝑟𝑒25 𝑝𝑟𝑒35 𝑝𝑟𝑒45⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡𝑡𝛽4
𝛼4
1

𝑡𝛽4
𝛼4

2

𝑡𝛽4
𝛼4

3

𝑡𝛽4
𝛼4

4⎦
⎥
⎥
⎥
⎥
⎤

≤

⎣
⎢
⎢
⎢
⎡
0
1
0
1
1⎦
⎥
⎥
⎥
⎤
 

6) ∀𝑡𝛽𝑖
𝛼𝑖 ∈ 𝜎 with 𝜆(𝜎) = 𝑤, (𝑃𝑜𝑠𝑡 − 𝑃𝑟𝑒)𝑡𝛽𝑖

𝛼𝑖 = 𝑀𝑖 −𝑀𝑖−1 

⎝

⎜
⎛

⎣
⎢
⎢
⎢
⎡
𝑝𝑜𝑠𝑡11 𝑝𝑜𝑠𝑡21 𝑝𝑜𝑠𝑡31 𝑝𝑜𝑠𝑡41
𝑝𝑜𝑠𝑡12 𝑝𝑜𝑠𝑡22 𝑝𝑜𝑠𝑡32 𝑝𝑜𝑠𝑡42
𝑝𝑜𝑠𝑡13 𝑝𝑜𝑠𝑡23 𝑝𝑜𝑠𝑡33 𝑝𝑜𝑠𝑡43
𝑝𝑜𝑠𝑡14 𝑝𝑜𝑠𝑡24 𝑝𝑜𝑠𝑡34 𝑝𝑜𝑠𝑡44
𝑝𝑜𝑠𝑡15 𝑝𝑜𝑠𝑡25 𝑝𝑜𝑠𝑡35 𝑝𝑜𝑠𝑡45⎦

⎥
⎥
⎥
⎤
−

⎣
⎢
⎢
⎢
⎡
𝑝𝑟𝑒11 𝑝𝑟𝑒21 𝑝𝑟𝑒31 𝑝𝑟𝑒41
𝑝𝑟𝑒12 𝑝𝑟𝑒22 𝑝𝑟𝑒32 𝑝𝑟𝑒42
𝑝𝑟𝑒13 𝑝𝑟𝑒23 𝑝𝑟𝑒33 𝑝𝑟𝑒43
𝑝𝑟𝑒14 𝑝𝑟𝑒24 𝑝𝑟𝑒34 𝑝𝑟𝑒44
𝑝𝑟𝑒15 𝑝𝑟𝑒25 𝑝𝑟𝑒35 𝑝𝑟𝑒45⎦

⎥
⎥
⎥
⎤

⎠

⎟
⎞

⎣
⎢
⎢
⎢
⎢
⎡𝑡𝛽1
𝛼1
1

𝑡𝛽1
𝛼1

2

𝑡𝛽1
𝛼1

3

𝑡𝛽1
𝛼1

4⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
4
0
1
0
1⎦
⎥
⎥
⎥
⎤
−

⎣
⎢
⎢
⎢
⎡
0
0
1
0
2⎦
⎥
⎥
⎥
⎤
, 

⎝

⎜
⎛

⎣
⎢
⎢
⎢
⎡
𝑝𝑜𝑠𝑡11 𝑝𝑜𝑠𝑡21 𝑝𝑜𝑠𝑡31 𝑝𝑜𝑠𝑡41
𝑝𝑜𝑠𝑡12 𝑝𝑜𝑠𝑡22 𝑝𝑜𝑠𝑡32 𝑝𝑜𝑠𝑡42
𝑝𝑜𝑠𝑡13 𝑝𝑜𝑠𝑡23 𝑝𝑜𝑠𝑡33 𝑝𝑜𝑠𝑡43
𝑝𝑜𝑠𝑡14 𝑝𝑜𝑠𝑡24 𝑝𝑜𝑠𝑡34 𝑝𝑜𝑠𝑡44
𝑝𝑜𝑠𝑡15 𝑝𝑜𝑠𝑡25 𝑝𝑜𝑠𝑡35 𝑝𝑜𝑠𝑡45⎦

⎥
⎥
⎥
⎤
−

⎣
⎢
⎢
⎢
⎡
𝑝𝑟𝑒11 𝑝𝑟𝑒21 𝑝𝑟𝑒31 𝑝𝑟𝑒41
𝑝𝑟𝑒12 𝑝𝑟𝑒22 𝑝𝑟𝑒32 𝑝𝑟𝑒42
𝑝𝑟𝑒13 𝑝𝑟𝑒23 𝑝𝑟𝑒33 𝑝𝑟𝑒43
𝑝𝑟𝑒14 𝑝𝑟𝑒24 𝑝𝑟𝑒34 𝑝𝑟𝑒44
𝑝𝑟𝑒15 𝑝𝑟𝑒25 𝑝𝑟𝑒35 𝑝𝑟𝑒45⎦

⎥
⎥
⎥
⎤

⎠

⎟
⎞

⎣
⎢
⎢
⎢
⎢
⎡𝑡𝛽2
𝛼2
1

𝑡𝛽2
𝛼2

2

𝑡𝛽2
𝛼2

3

𝑡𝛽2
𝛼2

4⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
3
1
0
0
1⎦
⎥
⎥
⎥
⎤
−

⎣
⎢
⎢
⎢
⎡
4
0
1
0
1⎦
⎥
⎥
⎥
⎤
, 

⎝

⎜
⎛

⎣
⎢
⎢
⎢
⎡
𝑝𝑜𝑠𝑡11 𝑝𝑜𝑠𝑡21 𝑝𝑜𝑠𝑡31 𝑝𝑜𝑠𝑡41
𝑝𝑜𝑠𝑡12 𝑝𝑜𝑠𝑡22 𝑝𝑜𝑠𝑡32 𝑝𝑜𝑠𝑡42
𝑝𝑜𝑠𝑡13 𝑝𝑜𝑠𝑡23 𝑝𝑜𝑠𝑡33 𝑝𝑜𝑠𝑡43
𝑝𝑜𝑠𝑡14 𝑝𝑜𝑠𝑡24 𝑝𝑜𝑠𝑡34 𝑝𝑜𝑠𝑡44
𝑝𝑜𝑠𝑡15 𝑝𝑜𝑠𝑡25 𝑝𝑜𝑠𝑡35 𝑝𝑜𝑠𝑡45⎦

⎥
⎥
⎥
⎤
−

⎣
⎢
⎢
⎢
⎡
𝑝𝑟𝑒11 𝑝𝑟𝑒21 𝑝𝑟𝑒31 𝑝𝑟𝑒41
𝑝𝑟𝑒12 𝑝𝑟𝑒22 𝑝𝑟𝑒32 𝑝𝑟𝑒42
𝑝𝑟𝑒13 𝑝𝑟𝑒23 𝑝𝑟𝑒33 𝑝𝑟𝑒43
𝑝𝑟𝑒14 𝑝𝑟𝑒24 𝑝𝑟𝑒34 𝑝𝑟𝑒44
𝑝𝑟𝑒15 𝑝𝑟𝑒25 𝑝𝑟𝑒35 𝑝𝑟𝑒45⎦

⎥
⎥
⎥
⎤

⎠

⎟
⎞

⎣
⎢
⎢
⎢
⎢
⎡𝑡𝛽3
𝛼3
1

𝑡𝛽3
𝛼3

2

𝑡𝛽3
𝛼3

3

𝑡𝛽3
𝛼3

4⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
0
1
0
1
1⎦
⎥
⎥
⎥
⎤
−

⎣
⎢
⎢
⎢
⎡
3
1
0
0
1⎦
⎥
⎥
⎥
⎤
, 
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⎝

⎜
⎛

⎣
⎢
⎢
⎢
⎡
𝑝𝑜𝑠𝑡11 𝑝𝑜𝑠𝑡21 𝑝𝑜𝑠𝑡31 𝑝𝑜𝑠𝑡41
𝑝𝑜𝑠𝑡12 𝑝𝑜𝑠𝑡22 𝑝𝑜𝑠𝑡32 𝑝𝑜𝑠𝑡42
𝑝𝑜𝑠𝑡13 𝑝𝑜𝑠𝑡23 𝑝𝑜𝑠𝑡33 𝑝𝑜𝑠𝑡43
𝑝𝑜𝑠𝑡14 𝑝𝑜𝑠𝑡24 𝑝𝑜𝑠𝑡34 𝑝𝑜𝑠𝑡44
𝑝𝑜𝑠𝑡15 𝑝𝑜𝑠𝑡25 𝑝𝑜𝑠𝑡35 𝑝𝑜𝑠𝑡45⎦

⎥
⎥
⎥
⎤
−

⎣
⎢
⎢
⎢
⎡
𝑝𝑟𝑒11 𝑝𝑟𝑒21 𝑝𝑟𝑒31 𝑝𝑟𝑒41
𝑝𝑟𝑒12 𝑝𝑟𝑒22 𝑝𝑟𝑒32 𝑝𝑟𝑒42
𝑝𝑟𝑒13 𝑝𝑟𝑒23 𝑝𝑟𝑒33 𝑝𝑟𝑒43
𝑝𝑟𝑒14 𝑝𝑟𝑒24 𝑝𝑟𝑒34 𝑝𝑟𝑒44
𝑝𝑟𝑒15 𝑝𝑟𝑒25 𝑝𝑟𝑒35 𝑝𝑟𝑒45⎦

⎥
⎥
⎥
⎤

⎠

⎟
⎞

⎣
⎢
⎢
⎢
⎢
⎡𝑡𝛽4
𝛼4
1

𝑡𝛽4
𝛼4

2

𝑡𝛽4
𝛼4

3

𝑡𝛽4
𝛼4

4⎦
⎥
⎥
⎥
⎥
⎤

≤

⎣
⎢
⎢
⎢
⎡
0
0
1
0
2⎦
⎥
⎥
⎥
⎤
−

⎣
⎢
⎢
⎢
⎡
0
1
0
1
1⎦
⎥
⎥
⎥
⎤
. 

The IPN obtained is illustrated in Figure 1.11. 

 
Figure 1.11  Solution for identification problem of Example 1.4 

In the worst case the number of unknowns is linear with the number of places, of 
transitions, and with the length h of the firing sequence. In the cases examined by the 
authors, an optimal solution is obtained in a short time implementing and solving the 
ILP problem on a PC equipped with a standard solver of optimization problems, for 
example GLPK. However, in order to apply the algorithm online, the dynamics of the 
DES has to be slow with respect to the time required to solve the ILP problem at each 
occurrence. 

1.2.6. Neural Networks approach 
The work in [Ould El Medhi, 2006] focuses on the construction of a Petri net to 

represent a sequence of observed events. The identified model is used for reliability 
issues. 

The algorithm receives a sequence of events stored during the operation of the 
system. A technique to include timing information in the form of a stochastic Petri net is 
presented, but we do not consider such a technique, since time is out of the scope of this 
work. 

The identification strategy is the construction of a propagation relation matrix, 
which contains the set of preceding events information. From such a matrix, two 
perspectives to construct the Petri net are presented. One of them is based on the 
addition of places to the net in order to link consecutive events. Another one considers a 
learning process by neural networks. 

Other work on identification of the same author has been published in [Ould El 
Medhi, 2012], but the technique therein presented is quite similar to the ILP 
methodology by [Giua, 2005]. 

Algorithm 1.6 

The events set E = {e1, e2,…, eq} is known. From observation of the system, an event 
sequence SeqE = (e(k))1≤k ≤K,e(k) ∈ E is constructed and is the basis of the synthesis 
algorithm. 

From SeqE, a rank-1 propagation relation matrix B = (bij) ∈{0, 1}q x q is constructed 
such that bij = 1 if ej, ei are consecutive events in SeqE. 

1
1t p1

4
3

2
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2
1t
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1
2t
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An event graph is constructed, such that if bij = 1, it is created a place n to 
accomplish Pre(n, i) ← 1 and Post(n,j) ← 1. 

The minimal initial marking is computed setting M(K) = 0 and determining 
recurrently M(k-1) = max(0,M(k) – C•X(k)), where X(k) represents the firing vector of 
transition T(e(k)). 

An option to reduce the number of places is to reuse the output place pi if bij = 1 and 
pi has already been created to accomplish Pre(pi, i) 1 and  Post(pi,j)1 

The last method is the Learning by Multilayer Neural Network. A supervised 
learning method is used to build a minimal Petri Net model (in number of places or 
transitions). 

The basic idea is to consider PN as a multi layered neural network (Figure 1.12): the 
hidden layer is made of n places and the input and output layers both correspond to the 
p transitions. The weight matrix Q between input and hidden layers corresponds to the 
connection from transitions to places (i.e. post-incidence matrix Post). The weight 
matrix between hidden and output layers V corresponds to pre-incidence matrix Pre. 

 
Figure 1.12 Petri net model structure construction 

The output Y is computed by  

ZVY
XQZ

*
*

=
=

 

The goal is to learn B from SeqE. The network is trained by couples (xk,yk), k 
=1,…,ne such that the vectors for the input layer {xk}, k = 1,…, q are the Parikh vectors 
associated with events ek and the vectors for the output layer {ydk}, k = 1, …, q are the 
columns of the B matrix. 

For every input vector xk, the output yk is compared to the desired output ydk. The 
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Once the error is stabilized or once a maximal iterations number is reached, the 
entries in matrices Q and V are converted into binary values: 

5.01)(
5.00)(

≥=
<=

xifxBr
xifxBr

 

Then the Pre and Post matrices are computed: 

Post = Br(Q) 

Pre = (Br(V))T 

The error is computed once again. If the error is lower than a threshold, the process 
stops. Otherwise, a new adaptation phase is started, using the integer obtained values. 

The initial number of places is q. Once the algorithm converges to an acceptable 
model, learning is restarted with a lower value. The minimal size PN is the last one 
obtained for which the convergence is assured. 

Example 1.5. From a sequence SeqE, a propagation relation matrix is constructed: 





























=

0101100
0010000
0000010
0000010
0000001
1000000
1000000

B

 

From such a matrix, an event graph (Figure 1.13) is constructed. 

 
Figure 1.13 Event graph model constructed 

With the technique of re-used places, the model is simplified, as shown in Figure 
1.14. However, as can be seen, the reduced model is not blocking free. 

 
Figure 1.14 Petri net model obtained with reusing technique 

The learning algorithm is run with n = p = 7 hidden nodes and according to η = 0.01, 
error_threshold = 0.00001, and  limit_epo = limit_ite = 1000. Once the convergence 
obtained, algorithm runs again with 6 and then with 5 hidden nodes. Each time, the 
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algorithm does succeed. No convergence is obtained with n < 5 nodes. Error stays 
constant to a non zero value. The minimal size PN model is showed in Figure 1.15. 

 
Figure 1.15 Petri net model obtained by the learning algorithm 

1.2.7. Parametric interpreted Petri net identification 
In [Estrada, 2009], a method for building interpreted Petri net models from 

observations of DES’s inputs and outputs is proposed. The identification method 
consists of several stages that build systematically an IPN model from input-output 
sequences representing the external behaviour of partially observable DES. A software 
tool based on the presented algorithms has been developed; it processes a set of input-
output vector sequences yielding the drawing of the computed IPN model. 

The input data to the identification procedure is a set of input-output words that may 
include cyclic behaviour. Based on an accuracy parameter κ, the aim of the 
identification process is to obtain a safe IPN model (Q, M0) such that £𝑜𝑢𝑡𝜅 (𝑄,𝑀0) =
ℒ𝜅(𝑆). The parameter κ is used to adjust the accuracy of the identified model. 

From the input-output vector words, event sequences are computed and then 
sequences of event substrings of length κ are built. Then every substring is associated to 
a transition of a PN, which describes the relation precedence among the event 
substrings; this PN is formed by non-observable places. A transformation method based 
on concurrence transformations is performed. Finally, output changes provoked by 
events are described by marking changes in observable places and then related to 
pertinent transitions in the PN; input changes are associated to such transitions. Implicit 
non-observable places are deleted. 

We can summarise the stages of the method for IPN model identification as follows. 

Algorithm 1.7  

Input: A DES and an accuracy parameter 𝜅 

Output: (Q,M0): an IPN model 

1. Obtain the input symbols and the cyclic sequences of observed output vectors. 
2. Compute the event sequences from the observed vectors. 
3. For every sequence of events, create traces of length 𝜅. 
4. Create the non-observable behaviour of the IPN and simplify it. 
5. Complete the Petri net adding the observed behaviour and delete implicit places.  

Example 1.6. Consider the next illustrative example taken from [Estrada, 2010b]. It 
consists on a DES with n = 4 output signals, Φ = {A, B, C, D}, and m = 3 input signals 
Σ = {a, b, c}. Three I/O sequences have been observed. 
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Vector entries correspond to distribution [a b c | A B C D] 
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The sequences τi of the detected event vectors ej associated to I/O changes are obtained: 

𝑤1 =

⎝

⎜⎜
⎛

⎣
⎢
⎢
⎢
⎡00
0
1
0
0
0⎦
⎥
⎥
⎥
⎤

𝑒1→

⎣
⎢
⎢
⎢
⎡ 10
0
−1
0
0
0 ⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡10
0
0
0
0
0⎦
⎥
⎥
⎥
⎤

𝑒2→

⎣
⎢
⎢
⎢
⎡00
0
0
1
0
0⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡10
0
0
1
0
0⎦
⎥
⎥
⎥
⎤

⎠

⎟⎟
⎞

, 

τ1 = e1e2 , λ’(e1) = a_1, λ’(e2) = ε 
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τ2 = e1e3e4e5e6, λ’(e3) = b_1 c_1, λ’(e4) = b_0, λ’(e5) = c_0, λ’(e6) = a_0 
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τ3 = e1e3e4e4e6 
The sequences of traces 𝜏𝑖κusing 𝜅 = 2 are: 

𝜏12 = 𝜀𝑒1, 𝑒1𝑒2 for 𝜏1 
𝜏22 = 𝜀𝑒1, 𝑒1𝑒3, 𝑒3𝑒4, 𝑒4𝑒5, 𝑒5𝑒6 for 𝜏2 
𝜏32 = 𝜀𝑒1, 𝑒1𝑒3, 𝑒3𝑒5, 𝑒5𝑒4, 𝑒4𝑒6 for 𝜏3 

The obtained IPN corresponding to the three sequences of event vector traces of the 
example 1 is shown in Figure 1.16. Notice that one of the sequences is not cyclic. 
However, all sequences start with the same I/O vector. 

 
Figure 1.16 Basic model with sequences of event vector traces 

The application of simplification and concurrence transformations leads to the model 
in Figure 1.17. 
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Figure 1.17 Simplified basic model 

After adding input and output information, the obtained model is shown in Figure 
1.18. 

 
Figure 1.18 IPN model including measurable places 

The final model obtained after deleting implicit places and adding the input 
information is shown in Figure 1.19. 

 
Figure 1.19 Simplified IPN model 

1.3. Process mining approaches 
Process mining is a research area that can be considered as similar to system 

identification: it consists on discovering behavioural models of the processes that 
capture the structured orderings of activities in a workflow. Activity logs are observed 
as a trace of events being produced by a black-box system. Automated techniques which 
seek to mine logs to discover information have been developed. We consider here two 
representative techniques. 

1.3.1. Probabilistic workflow mining 
The goal of [Cook, 2004] is to identify gross patterns of a workflow behaviour that 

can be useful for understanding the system functioning. Statistical and probabilistic 
analyses are used to determine when concurrent behaviour is occurring, and to identify 
dependence relationships among observed events. 

As input, this technique considers a sequence of events S (called event trace) 
characterizing activities that have occurred in a workflow system. The goal of the 
method is not necessarily to reconstruct a model representing system’s behaviour, but 
rather to identify patterns of behaviour that can be useful to understand how the system 
works. Individual threads and their individual behaviour are discovered. Also, the points 
where threads interact are located. 
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Algorithm 1.8 

First, some definitions taken from [Cook, 2004] are introduced. As stated before, a 
sequence of events is considered. Two sequence constructors are defined: 

• Prefix(S) is the sequence S with the last event removed. If the length of S is 1 
(i.e., a single event), then Prefix(S) = null. 

• S : e is the sequence S concatenated with event e 
Occur(S) is the number of occurrences of sequence S. For example, Occur(AC) = 2 

in S=CABCBACABCABCBAC. Occur(null) is the total number of events in the event 
trace. 

The conditional probability of occurrence of a sequence (called P(S)) is: 

))(Prefix(
)()()CondProb(

SOccur
SOccurSPS ==  

Frequency tables of N-length sequences can be constructed, providing the (observed) 
conditional probability that the last event follows the preceding N - 1 events. 

Four metrics are computed: 

• Entropy. Gives a measure of the randomness in each event sequence and its 
occurrences: 

)):((log):()( || eSPeSPSEntropy
Ee

E∑
∈

•−=  

where E is the set of events. 
The closer an entropy value is to logN(T), the more likely it is to be 
signifying a T-way fork behaviour. The same metric can apply to joins by 
viewing the trace backwards. 

• Event type counts. When an event has several successors, counting event 
types helps to make a decision as to whether the behaviour at this point is 
sequential or concurrent 
If there is a selection: 

∑
>∈

=
0):(,

)()(
eSOccurEe

eOccurSOccur  

If concurrency is occurring: 
)()(),0):(,( SOccureOccureSOccurEe =>∈∀  

and 
∑

>∈

=×
0):(,

)()(
eSOccurEe

eOccurSOccurT  

  
• Causality. If two events have already been eliminated as forks, joins or 

synchronization points, to decide when they are sequentially causally related 
and when they are not. If AB and BA have been observed: 
◦ If P(AB) + P(BA) ≥ 1.5, they are likely causally related in a two-event 
loop 
◦ If P(AB) + P(BA) < 1.5, they are likely independent  

• Periodicity. This measure can help to find synchronization points in the 
process. 
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Position(S,i) is the position of the last event of the ith occurrence of S. The 
average period of a sequence is: 
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Event types with the lowest standard deviations should be event types 
marking the synchronization points in the process: 
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Based on this four metrics, dependencies that explain as much of the event stream as 
possible are found. A ranking on the quality of information is defined in [Cook, 2004]. 

Example 1. 7. Consider the Petri net in Figure 1.20. 

 
Figure 1.20 Petri net 

From a 1666-event stream produced from a stochastic simulation of such a system, 
the Table 1.1 has been constructed. 

 A B C D E F 

A 0.00 0.25 0.00 0.00 0.00 0.75 
B 0.44 0.00 0.00 0.31 0.00 0.25 
C 0.56 0.44 0.00 0.00 0.00 0.00 
D 0.00 0.00 0.99 0.00 0.01 0.00 
E 0.00 0.00 0.00 0.00 0.00 0.00 
F 0.00 0.31 0.00 0.69 0.00 0.00 

Table 1.1 Conditional probability of length-2 sequences 

After computing defined metrics and ranking information, the model in Figure 1.21 
has been reconstructed. Thicker arrows are stronger dependencies (they are inferred 
first). 

 
Figure 1.21 Reconstructed model for net in Figure 1.20 

1.3.2. Alfa-algorithm 
In [van der Aalst, 2004] the workflow mining problem is considered. Since the 

modelling of a workflow is a difficult task, techniques to do this automatically are 
required. The term process mining is used for the method of distilling a structured 
process description from a set of real executions. 
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The input of the algorithm is a workflow log of several workflow instances 
composed by several tasks. Workflow instances have been recorded sequentially, even 
if tasks may be executed in parallel. 

Based on the information in the workflow log and by making some assumptions 
about completeness of the log, a process model in the form of a workflow net is 
deduced. 

In order to find the workflow model, causal dependencies are searched in the 
workflow log. Such dependencies are used by a so called α-algorithm, which constructs 
the net that represents the observed workflow instances. 

In order to explain the construction of the model, some definitions must be 
introduced. 

Let T be a set of tasks. σ ∈ T* is a workflow trace and W ∈ P(T*) is a workflow log. 

Let W be a workflow log over T. Let a, b ∈ T: 

• a >W b (b directly follows a) if and only if (iff) there is a trace σ = t1t2t3…tn-1 
and i ∈ {1,…,n-2} such that σ∈W and ti = a  and  ti+1 = b, 

• a →W b (a and b are in a causal relation)iff a >W b and b ≯W a (a is not 
observed before b), 

• a #W b (a and b never follow each other directly) iff a ≯Wb and b≯W a, 
• a ||W b (a and b are potentially parallel) iff a >W b and b >W a. 

Let A be a set, a ∈ A, and σ = a1a2…an ∈ A* a sequence over A of length n: 

• a∈σ iff a∈ {a1,a2,…,an}, 
• first(σ) =a1, if n ≥ 1, 
• last(σ) =an, if n ≥ 1. 

 Algorithm 1.9: Mining algorithm α 

Let W be a workflow log over T. α(W) is defined as follows: 
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Example 1.8. Consider the workflow log in Table 1.2. 

Case identifier Task identifier 
Case 1 
Case 2 
Case 3 
Case 3 
Case 1 
Case 1 
Case 2 
Case 4 
Case 2 
Case 2 
Case 5 
Case 4 
Case 1 
Case 3 
Case 3 
Case 4 
Case 5 
Case 5 
Case 4 

Task A 
Task A 
Task A 
Task B 
Task B 
Task C 
Task C 
Task A 
Task B 
Task D 
Task A 
Task C 
Task D 
Task C 
Task D 
Task B 
Task E 
Task D 
Task D 

Table 1.2 Workflow log 

It can be seen as W = {ABCD, ACBD, AED}. 

The α-algorithm proceeds as follows 
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8. ).,,()( WWW FTPW =α  

 The result is illustrated in Figure 1.22. 

 
Figure 1.22 Obtained model for the workflow log 

1.4. Discussion 
Methods characteristics 
For comparison purposes, we analyze the different approaches considering several 

features; some of them have already been considered in [Klein, 2005b]; some others are 
added to have a more complete scope during comparative analysis. 

These features are structured into 4 categories: those characterizing the DES to be 
identified, those describing the identification process, those qualifying the identified 
model, and those considering general algorithm features. 

DES characteristics 
- Type of inputs/outputs. In the general case, inputs and outputs of DES to be 

identified are discrete (they can take a finite number of values). If all inputs and 
outputs can only take two values (on/off), the DES is called logic. 

- Iterative behaviour. A DES is called cyclic if it iteratively reaches the initial 
state during its operation.  If it iterates on the same behaviour revisiting a state 
that is not the initial one it is called repetitive. 

Identification process characteristics 
- A-priori information. If there is no available knowledge about the DES other 

than its inputs and outputs evolution, the identification is absolute (commonly 
called black-box). Otherwise, the identification is relative. 

- Model updating. When the model updating is incremental, the method 
progressively updates the model from observed information; otherwise, the 
identification procedure is global: it must be executed on the whole of the 
observed sequences every time new sequences are collected. 

Identified model characteristics 
- Concurrency. This feature considers if the obtained model can represent 

explicitly concurrent behaviour observed from the system. 
- Accuracy. This term is related with completeness of the identified model. If this 

model represents exactly the observed behaviour, it is complete. 

Algorithm characteristics 

A

B

C

E

D
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- Considered data. The identification algorithm constructs an identified model 
starting from experimental data that can be inputs and/or outputs of the observed 
system. 

- Strategy. If the identification algorithm returns all possible models representing 
the observed behaviour, the algorithm is called enumerative. If only one of the 
possible models is given, it is constructive. 

- Execution. If the construction of the model can be performed during the system 
operation by computing a new model from new measurements of the system 
inputs and/or outputs, the execution is made on-line. Otherwise, the execution is 
off-line; the algorithm is not able to run at the same time than the system. 

- Complexity. This term refers to the computational complexity of the 
identification algorithm. Polynomial time procedures are better than exponential 
ones for coping with large systems exhibiting a large amount of input-output 
sequences. 

The main characteristics of the considered methods are summarized in Table 1.3. 
Identification 

approach 
Comparison 
criteria 

Progressive 
approach 

Parametric 
automata 

approaches 

Integer 
Programming 

approaches 

Neural  
Networks 
approach 

Parametric 
IPN 

approach 

Workflow 
mining 

approaches 

DES to be identified 
characteristics 

 

Type of inputs/outputs Logical 
 

Logical Discrete Discrete Logical Discrete 

Iterative 
Behaviour 

Repetitive Cyclic None None Cyclic Cyclic 

Identification process 
characteristics 

 

A-priori information Absolute 
 

Absolute Relative Relative Absolute Relative 

Model 
updating 

Incremental Incremental Global Global Incremental Global 

Identified model 
characteristics 

 

Concurrency 
 

Explicit Implicit Explicit Explicit Explicit Explicit 

Accuracy 
 

Non-
complete 

Complete Non-complete Non-
complete 

Complete Non-
complete 

Algorithm 
characteristics 

 

Considered data 
 

Outputs Inputs and 
outputs 

Events and 
outputs 

Events Inputs and 
outputs 

Events 

Strategy 
 

Constructive Constructive Enumerative Enumerative Constructive Constructive 

Execution 
 

On-line Off-line Off-line/on-line Off-line Off-line Off-line 

Complexity 
 

Polynomial Polynomial Exponential Polynomial Polynomial Polynomial 

Table 1.3 Identification methods characteristics 

1.5. Conclusion 
We have reviewed different identification techniques found in the literature. An 

analysis of their main characteristics has been made in which methods have been 
classified according to several criteria. Although most of the techniques have some of 
the characteristics required for addressing the identification problem in black-box 
approach, there are other features that are not included in such methods for dealing with 
large I/O sequences measured from real reactive complex DES that exhibit repetitive 
behaviour. In the next chapter, we will state the particular issues of the Identification 
problem dealt in this thesis and we show that existent identification methods are not 
well adapted because of their characteristics.  
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Chapter 2 
Identification of automated Discrete 
Event Systems 

 

 

Abstract. This chapter states the problem of identification of industrial automated 
discrete event systems. It presents the main characteristics of industrial systems which 
have to be taken into account by an identification method, and then the application 
reviewed methods are analysed within this context, Also, data collection for 
identification is described.  
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2.1. Problem statement 
The systems considered in this work are closed loop controlled DES (Figure 2.1); 

they consist of a plant and its industrial controller (in many cases a Programmable Logic 
Controller: PLC). The behaviour of such systems (i.e. the PLC-plant) can be observed 
by collecting the signals exchanged between controller and plant. 

 
Figure 2.1 Closed loop controller-plant DES 

Beyond the theoretical interest of defining model construction methods from symbol 
sequences, the aim of developing identification methods for actual industrial automated 
systems establishes challenges related to algorithms scalability and technological issues: 
the techniques must be efficient to cope with large and complex systems that handle 
actual signals.  

In our approach the aim is to discover, from observations of the system behaviour 
expressed as a single sequence of its input and output signals, and how components of 
the system are related, and then construct a compact model which can explicitly show 
discovered behaviour. Identification of already existent systems involves two important 
aspects to consider: the system operation and the observation process. Technological 
issues of both must be considered in the proposed algorithms in order to construct 
suitable abstractions. 

The identification is made from the point of view of the PLC (Figure 2.1). Several 
phenomena, due to the interaction between plant and controller, increase the complexity 
of the identification process; however they must be taken into account when real 
controlled DES have to be identified: 

• Any input evolution (signal emitted by the plant through a sensor) does not 
always provoke an output evolution (signal emitted by the PLC to an 
actuator). In practice, few of input changes provoke output evolutions; 

• Contrary to assumptions established in DES theory, many I/O signals may 
occur simultaneously; moreover, non simultaneous I/O signal changes are 
often simultaneously observed; 

• When output changes are provoked by input changes, this causal relationship 
is not necessarily captured simultaneously; 

Now, we are going to explain these phenomena. 

2.1.1. Basics on PLC technology 
Industrial Programmable Logic Controllers (PLC) are used extensively in 

manufacturing industries for complex control applications [Lampérière-Couffin, 1999].  

A PLC cyclically performs three main steps (Figure 2.2): “input reading” (I) where it 
reads the signals from the sensors, “program execution” (PEX) to determine the new 
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outputs values for the actuators, and “output writing” (O) where the newly determined 
commands are sent to the plant actuators. 

 
Figure 2.2 PLC cycle and data collection 

At the end of the PEX phase the current values of inputs and outputs (I/O) are sent 
from the PLC to a computer and stored for a later treatment by the identification 
algorithm.  

2.1.2. Experimental constraints 
In the identification problem we are addressing, the PLC program is assumed to be 

unknown. Numerous PLC programming languages exist; most of them depend on PLC 
manufacturers. However, there exists a standard (IEC 61131-3) in which  the semantics 
of four programming languages (Ladder Diagram, Function Block Diagram, Structured 
Text, and Instruction List) and of a structuring language (Sequential Function Chart) are 
given. Sequential Function Charts (SFC) are used in this thesis only for describing the 
diverse situations addressed by the proposed method.  

SFC is a graphical programming language used for PLCs. It is an extended state 
machine that contains primitives to describe sequential, parallel and alternative 
behaviours. It enables the partitioning of a PLC program (or function block) into a set of 
steps and transitions interconnected by directed links. Main components of SFC are: 
Steps with associated actions, Transitions with associated logic conditions, Directed 
links between steps and transitions. Steps in an SFC diagram can be active or inactive.  
One step is activated when all steps above it are active and the connecting transition is 
validated (i.e. its associated condition is true). When a transition is fired, all steps above 
are deactivated and simultaneously all steps below are activated. Actions associated 
with steps can be of several types, the most relevant ones being Continuous (N), Set (S) 
and Reset (R). Apart from the obvious meaning of Set and Reset, an N action ensures 
that its target variable is set to 1 as long as the step is active. 

Due to the PLC cycle, some situations between inputs and outputs could arise. 
Consider a situation described in Figure 2.3 (current active step is #10; a and b are two 
input signals to the PLC; A and B are two output signals).  

 
Figure 2.3 A single input is the condition for state evolution 

Changes in the state and outputs will occur when signal b is active; however other 
input signals may evolve without consequence in the outputs. This must be considered 
in the identification algorithm.  
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Consider now the time diagram in Figure 2.4. Two signals are asynchronously 
emitted by sensors of the plant between two successive “input reading” phases (I) of the 
PLC cycle. These two signals will be simultaneously read during the next I phase and 
observed as simultaneous events in the identification data base. In DES theory events 
cannot occur simultaneously; so an observed event vector will therefore be defined as a 
change of value in an entry of an I/O vector.  

 
Figure 2.4 Apparent simultaneous evolution of several inputs 

Now, let us consider the situation described in Figure 2.5(a). As shown in the time 
diagram in Figure 2.5(b), if input “b” changes its value from 0 to 1, the corresponding 
change in “B” is not provoked immediately, since it is necessary first a change in output 
“A”. In this case cause and effect cannot be captured simultaneously but will be 
detected only if we observe a sequence of 4 consecutive events. 

(a)                (b)  
Figure 2.5 I/O causality and sequences of events 

These three scenarios show that the implementation of a controller and its interaction 
with the plant introduces phenomena that must be taken into account by the 
identification algorithm. 

2.2. Input data and output model 
As stated before, at each end of the PLC Program execution phase, the current value 

of all Inputs and Outputs is captured and recorded in a data base. Thus, the only 
available data for the identification procedure is a single I/O vector sequence: 
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Our aim is to represent the system’s behaviour from the I/O vector sequence into an 
IPN as shown in Figure 2.6. IPN has been chosen as modelling formalism because of 
their inherent capacity to represent reactive behaviour involving input and output 
information as well as complex behaviour such as parallelism.  

 
Figure 2.6 Input and output information represented by IPN 

In next section we will provide a first approximation we have developed to translate 
I/O information into IPN models. 

2.3. Assumptions 
Herein we summarize the assumptions held for addressing the identification problem 

of industrial discrete manufacturing systems. 

• The constructed model is 1-bounded (no counters will be included). 
• Deadlock-free. We assume that during the acquisition of the input-output 

sequence, no blocking occurs during the functioning of the system. 
• Binary. The input and output signals handled by the algorithm must be 

binary. 
• Long time operation. We consider that the input-output sequence has been 

measured during a long time elapse in which all the programmed tasks are 
performed.  

• Timed behaviour is not computed. Some PLCs include timers in their 
evolution conditions; such conditions are not computed in this work. 

• Simultaneous input changes may be measured. Due to the phenomena 
explained in section 2.1, several input changes may appear between 
consecutive vectors. 

• Black-box. The only available information of the system is the input-output 
sequence. 

• Monolithic. There is only one PLC controlling the plant.  

2.4. Discussion 
After describing the features of the systems to be identified, we can discuss whether 

or not the analyzed methods are suitable for our particular problem 

 

• Progressive identification  
The polynomial time execution of the algorithm in [Meda, 1998], [Meda, 2000a], 

[Meda, 2000b], [Meda, 2001], [Meda, 2002a], [Meda, 2002b], [Meda, 2003], [Meda, 
2005] is a good characteristic which should be aimed by all of the identification 
approaches. However, a strong limitation of this technique is that it does not take into 
account the inputs of the system, which is very relevant for the closed-loop behaviour 
systems we consider in this work. Applying this method to such kind of systems would 
lead to models in which same output changes caused by different input evolutions 
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would not be distinguished, and then incorrect behaviour could be introduced in the 
created model. For example, consider Figure 2.7. The model at the right has been built 
by ignoring the input information, and the relation between input a and output B has 
been lost, as well as relation between input b and output D. 

  

Figure 2.7 Lost of the input information  

The treatment of the input information during identification is not straightforward, as 
will be shown in next chapters. 

• Parametric automata identification 
Even if the work in [Klein 2005a], [Klein 2005b] is well adapted for experimental 

treatment, which is very important for the identification problem; the methodology has 
some weak points. 

The first one is that concurrence is not explicitly shown in automata models. Lack of 
explicit concurrence may not be important for applications such as fault detection and a 
model as shown in Figure 2.8.a would be enough. But for other applications like 
reengineering or supervision, an expressive and compact model would be much useful. 
For example, if the aim of the identification is to produce a model which can help an 
engineer to understand how a system works, a structurally rich model as illustrated in 
Figure 2.8.b would be better. 

  
a) b) 

Figure 2.8 Automata and Petri net models for the same behaviour. 
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The second disadvantage is that the methodology considers that cyclic sequences are 
provided. In order to collect such sequences, the identified system should be 
reinitialized at each production cycle. This assumption is not possible to fulfil in many 
cases in which the system does not return to the initial state for cycling.  

• Parametric automata distributed identification 
One of the limitations of [Roth, 2010a], [Roth, 2010b] concerns the ability to find 
concurrent behaviour. If several decisions exist in the system, the different possible 
conditional behaviours will be wrongly considered (by the branching degree measure) 
as concurrent behaviours. 

This algorithm is strongly focused on fault identification, and even if it represents an 
improvement over [Klein, 2005a], the built models are not good to represent structural 
information such as parallelism inside subsystems and resource sharing. Another 
limitation is that the number of sub-systems is known a-priori, but this number is not 
always easily determined. 

• Integer Linear Programming Language Identification 
Even if the synthesis methodology in [Giua, 2005], [Cabasino, 2006a], [Cabasino, 

2006b] [Cabasino, 2006c], [Cabasino, 2009] is elegant and theoretically strong, there 
are several reasons which make this approach inappropriate for identification on actual 
experimental systems. First of all, the exponential number of counterexamples in the set 
D  makes the problem intractable for most of the real systems. 

Also, the a priori knowledge of the transitions (events) occurring in the system is not 
available when a black-box identification approach is performed. Some kind of 
computation has to be made in order to find the events. 

 

• Integer Linear Programming Identification 
In the work in [Dotoli, 2006a], [Dotoli, 2006b], [Dotoli, 2007], [Dotoli, 2008], it is 

no longer necessary the construction of counter-examples as in the method by [Giua, 
2005] and extensions; thus, the writing of the linear algebraic constrains is no longer 
exponential. However, the method requires the knowledge of an upper bound on the 
number of places. Such kind of knowledge is not available in a black-box approach and 
in fact, the upper bound could even have a strong influence on the result: different 
solutions (and even no solution) depending on the number of non-observable places 
may be found, each one representing a different PN structure, and thus, a different 
behaviour. 

Also, it is well known that Integer Linear Programming is a NP-hard problem, and 
thus, if the number of transitions increases, the problem becomes intractable. 

 

• Neural Networks approach 
Similarly to other approaches, the technique presented in [Ould El Medhi, 2006] has 

some characteristics that do not make it suitable for our identification problem. First of 
all, the event set is supposed to be known, which is not true in a black-box 
approximation. Also the hypothesis of exhaustive knowledge of the propagation set 
relation between events is very strong. Another inconvenient is that when the places 
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reuse technique is applied, sometimes the resulting net is not blocking free and it does 
not allow reproducing the observed sequence. 

On the other hand, the learning algorithm is strongly dependent on parameters which 
are specified by the user, and no theoretical basis for choosing them is given in the 
description of the technique. 

Since the goal of this technique is the learning of the matrix B, if two events have 
been observed consecutively a place must exist to relate them; consequently, this 
technique does not include a concurrence analysis, and thus, the inherent structural 
expressiveness of the Petri net is not exploited. 

 

• Parametric interpreted Petri net identification 
Since the method in [Estrada, 2009][Estrada, 2010b] is the basis for part of the work 

presented here, a deeper analysis of its disadvantages is made on next chapters. 
However, we can enounce some of them. First of all, the algorithm considers that 
sequences start always at the initial state of the DES, and as discussed before, the 
acquisition of such sequences is not easy to achieve. Also, transformations for 
determining concurrency in the IPN made by the algorithm are based on the observation 
of all the possible combinations of an event set; however, in the general case only a 
subset of such combinations is observed during a finite functioning of the system to 
identify. 

In next chapters, it will also show that the technique could be improved by means of 
an input-output relation analysis. 

 

 

• Probabilistic workflow mining 
Even if a concurrence analysis is made on [Cook, 2004], the found models are not 

well defined; their construction is strongly focused on workflow operations. Similarly to 
other techniques, an exhaustive observation of all possible combinations of events is 
supposed. 

Due to the join and fork workflow syntax, an event can only be involved in a 
concurrence or selection situation, but not in both. It is assumed that if several events 
follow an event, they are all concurrent or they are all independent. However, in the 
type of systems we consider, such hypothesis may not be satisfied and thus, the system 
would not be correctly identified by this method. However, the statistical approach 
followed in this method has inspired our methodology proposed in Chapter 4. 

 

• Alfa-algorithm 
The methodology from [van der Aalst, 2004] seems to be well adapted for workflow 

problems. However, it presents some characteristics that are incompatible with closed-
loop behaviour identification. One of these characteristics is that to assure the 
correctness of this method, an exhaustive list of behaviour is needed, but in our 
particular problem, it is not possible to assure that all of the possible sequences have 
been observed in a finite time. Thus, if the event log is not complete, non-observed 
behaviour could be introduced. 



39 

 

Another characteristic is that the input for the algorithm is a set of traces. In our case, 
traces would be system cycles, but as stated before, system cycles are not known a-
priori. 

Finally, in this method the events are a-priori defined, but in our case such 
knowledge is not available. 

 

2.5. Conclusion 
The problem of identification of industrial automated discrete event systems has been 

stated. The reviewed identification methodologies have been analysed considering 
operation characteristics of real controlled systems. It can be noticed that none of the 
proposed methodologies is perfectly adapted for the particular problem faced in this 
thesis. In order to cope with the challenges stated by identification problem, which have 
not been dealt by existent identification methods, two different and complementary 
approaches have been explored. They will be described in the next chapters. The first 
one is an extension to the work in [Estrada, 2009], in which the hypothesis of 
knowledge of the system cycles is removed. The second one is a statistical approach 
which produces compact and expressive models. 
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Chapter 3 
A Stepwise Identification Method 

 

Abstract. This chapter presents an identification method for discrete event 
manufacturing systems that are automated by a programmable logic controller (PLC). 
The behaviour of the closed loop system (PLC and Plant) is observed during its 
operation and represented by a single long sequence of observed input/output signals 
vectors. The proposed method follows a black-box and passive identification approach; 
it allows building stepwise an interpreted Petri net (IPN) model. The identification 
method is composed of several polynomial time algorithms. 
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3.1. Overview of the method 
This method allows the progressive construction of a safe IPN (see Appendix A, 

Definition A.3) representing exactly the observed input-output language of length κ +1 
of the DES.  

From the I/O vector sequence, an event sequence is computed and a sequence of 
event substrings of length κ is built. Every substring is associated to a transition of a 
PN, which describes the causal relationship between event substrings. A PN node path 
formed by non-observable places represents the substring sequence; this path is built 
taking into account the possible repetitive observed behaviour (internal model). Then 
simplifications may be applied. Notice that the number of non-observable places is not 
predefined. 

Finally, the model is completed by including observable places which are related to 
pertinent transitions in the PN according to output changes provoked by events; also 
input symbols are associated. This part of the algorithm can be concurrently performed 
at any moment, for example when a cycle is identified, whilst the internal model is 
updated by processing the new I/O vectors. 

The procedure for building the IPN model from the I/O sequence has been published 
in [Estrada, 2011] and can be summarized on Figure 3.1. It consists of five main steps 
that are described below. 

 
Figure 3.1 Stages of the identification algorithm 

3.1.1. Initialization stage 
In this step, a PN structure is initiated. This is done by the following statements: 

T←∅; ET←∅; P←{pini}; An initial empty set of transitions T is created, as well as an 
initial empty event traces set ET, and an initial set of places P containing a place pini  

M0(pini) ←1; µ(pini) ←w(1); current←pini; //A token is placed on pini and such a place is 
associated to the first observed vector w(1)and taken as current 
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3.1.2. Building events and traces 
Once the net is initiated, the procedure iterates on subsequent I/O vectors in the 

sequence. Each I/O vector is considered to update the events sequence and the events 
traces according to next definitions. 

Definition 3.1 An observed event vector E(j) is the variation between two 
consecutive I/O vectors: E(j) = w(j + 1) – w(j). The m first entries of E(j), denoted as 
IE(j) correspond to the variation between two consecutive input vectors I(j), I(j + 1) 
(input event). A symbolic input event λ’(E( j)) is a string representation of the input 
event vector IE ( j); it is computed as: 
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Then for a sequence w, a sequence of observed events E = E(1) E(2)... E(j)... is 
obtained. During the process, if the difference has not been observed before, a new 
event ej is created (E(j) = ej). 

Definition 3.2 An event trace τκ( j) is the substring from E of length κ whose last 
event is E( j). τκ(j) = E( j − κ + 1)E( j − κ + 2)…E( j). 

This notion is useful to determine during the identification process if two states 
represent the same internal behaviour. Then the notion of equivalent states involves the 
history of κ events that lead to such states. 

Definition 3.3 Two states of the model representing the identified system are κ-
equivalent if the event traces τκ( j) leading to such states are the same. 

 

3.1.3. Building internal model 
Once the sequence of event traces has been obtained, every trace τκ(j) is related to a 

transition in the IPN through a function γ:T→{τκ( j)}; the firing of a transition implies 
that 𝜅 consecutive events related to such a transition have been observed.  

In order to preserve firing order between transitions, dependencies are created 
between them and associated with an observed marking through the function µ:Pu 
→{ϕMi| Mi ∈R(N,M0)}, which relates every non-measurable place with an observed 
marking, such that every transition has only one input place and one output place 
(∀tr∈T,|•tr| = |tr

•| = 1).  
Notice that the number of non-measurable places is not predefined. When an event 

trace τκ( j) is found again in the sequence, the associated dependency must be used if it 
leads to the same observed marking.  

Let ej be the last event vector in the trace τκ( j); the associated transition will be 
denoted as 𝑡𝑟

𝑒𝑗 (more than one transition may have associated the same ej). 

This strategy can be systematically performed following the next procedure. 

Algorithm 3.1. Building internal model 
Input: τκ( j), Petri net structure G, µ, γ, ET 
Output: Updated G’, µ’, γ’, ET’ 
If τκ( j)∉ET then //If the computed trace is new 
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ET←ET∪{τκ( j)}; T←T∪tr
ej; γ(tr

ej) ←τκ( j); ∀pa ∈P,Pre(pa,tr
ej) ←0, Post(pa,tr

ej) ←0; 
 //create a transition tr

ej  to represent the trace τκ( j) 
I(current,tr

ej) ←1; //create an arc from current to tr
ej  

P←P∪{pout};∀tb∈T, Pre(pout,tb)←0, Post(pout,tb) ←0; µ(pout) ←µ(current)+ej; //create a 
new  place pout  and associate it with correspondent marking 
Post(pout,tr

ej)←1; //create an arc from tr
ej to pout  

current←pout; //take pout as current 
else//The computed trace is not new 

If tr
ej ∈current• and γ(tr

ej)=τκ( j) then //If one of the output transitions tr
ej of current place 

represents the observed trace τκ( j)  
current←(tr

ej)•; //take the output place of tr
ej as current  

else //Current place has not an output transition representing τκ( j) 
If ∃tr

ej ∈ T|γ(tr
ej) =τκ( j) and µ(•tr

ej) = µ(current) then //There is a transition tr
ej 

representing τκ(j)such that its input place •tr
ej has the same associated marking µ(•tr

ej) 
than current place 

take pin = •tr
ej; //take •tr

ej as pin 
merge(current,pin); //merge current place with such an input place 
current ←(tr

ej)•; //take the output place of the transition tr
ej as current 

else consider τκ( j) as new 
Subroutine merge(p1, p2) //merges places p1 and p2 

∀tb∈T, Pre(p1, tb)← ⊕


(Pre(p1,tb), Pre(p2,tb)); // ⊕���⃑  is a vector bitwise or operation; 

∀tb∈T,Post(p1, tb)← ⊕


(Post(p1,tb),Post(p2,tb)); 

P←P\{p2} // delete place p2 

 

Remark. The algorithm performs a search operation for each computed trace and 
adds a new transition for traces that have not been yet observed, which implies updates 
in the Pre and Post matrices. Then, it is easy to see that Algorithm 3.1 is executed in 
polynomial time on length of observed sequence and number of different traces. 

 

Property 1. The IPN G built through Algorithm 3.1 represents all and only all the 
traces  
τκ( j).  

Proof. By construction, the sequence E is represented in G by a path starting from 
pini including the sequence of tr

ej, which represents the observation of the event trace τκ( 
j). The reuse of computed transitions having associated the same event traces, during the 
processing of trace τκ( j), is done only when common paths of length κ are built, which 
does not introduce other sequences.♦ 

3.1.4. PN structure simplification 
After performing step 3, the algorithm reads a new I/O vector by returning to step 2. 

Nevertheless, notice that merging places through step 3 of the algorithm could lead to 
merging of equivalent transitions. When such a merging is performed, a cycle on the PN 
is created. This is considered as a representative change in the structure of the model, 
and thus, simultaneously with launching of step 2, step 4 is executed to make a PN 
simplification procedure. 
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Some transformations may be performed when there are transitions that appear in the 
sequences in different order describing their interleaved firing; this behaviour is 
exhibited by concurrent transitions. The analysis can be performed on a model 
component comprised between two transitions relied by several paths containing the 
concurrent transitions. If there are m! paths, we can explore if there exists m different 
transitions in the paths and every sequence is a permutation from each other. When it is 
verified, the subnet can be transformed into a concurrent component of G’ preserving 
the same behaviour. 

The simplification by analysis of concurrency is not strictly necessary for 
representing the event sequences; however the equivalent model with concurrent 
transitions may be simpler; the aim of this simplification is not minimizing the number 
of nodes in the model, but obtaining fairly reduced models useful for understanding the 
DES behaviour. However, the analysis could be inefficient when the number of paths in 
the subnet is large, and thus some improving must be done for this purpose.  

3.1.5. Adding interpretation and simplifying 
Once the event sequences are represented in the basic model, it must be completed 

by adding the output changes represented by the events and their respective inputs. 
Recall that events are vectors computed from the difference of consecutive vectors; thus 
ej relates observable places representing the outputs yielding the incidence matrix 
corresponding to observable places. 

 

Algorithm 3.2. Representing outputs changes 
Input: G’ 
Output: Q’: the IPN including observable places 

Step 1. P←P∪{p1,p2,…,pq} //Create q observable places for every one of the components in 
the  output vectors 

Step 2. ∀tr
ej ∈T: 

If ej(i) = -1 then Pre(pi,tr
ej) ← 1 and Post(pi,tr

ej) ← 0;  //Event ej takes 1 from component 
i 
If ej(i) = 1 then Pre(pi,tr

ej) ← 0 and Post(pi,tr
ej) ← 1;  //Event ej puts 1 into component i 

If ej(i) = 0 then Pre(pi,tr
ej) ← 0 and Post(pi,tr

ej) ← 0;  //Event ej does not affect 
component i 

Step 3. If component i of vector w(1) is 1 then M0(pi) ←1, otherwise M0(pi) ←0 //Put tokens 
in  the observable places to represent the first output vector 

 
Notice that Algorithm 3.2 executes in polynomial time in the number of outputs and 

the total of computed transitions in Algorithm 3.1 

After adding observable places, some non-observable places could become implicit 
places. They can be removed: if there is a non-observable place whose inputs and 
outputs are exactly the same than any observable place, remove such a non-observable 
place and its input and output arcs. 

Once the output adding and implicit places deleting has been performed, it only 
remains to add input information to complete the IPN model. Input information is 
associated with labels for transitions in a natural way given by the symbolic event input 
function of Definition 3.1. Next algorithm describes a systematic way to do it. 
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Algorithm 3.3. Representing input changes 

Input: G’, 𝜆′(𝑒𝑗) 
Output: Q : the final model of the identification process 
Step 1. ∀tr

ej∈T, λ(tr
ej) ←λ’(ej) //Associate to each tr

ej the symbolic input event registered at 
the detection of ej. 

 

Is easy to see that the input addition is executed in polynomial time in the number of 
transitions in the net. 

 

Proposition 4. 1. For a DES S and an identification parameter κ, algorithm in Figure 
3.1 yields an IPN model (Q,M0) which represents exactly ℒ𝜅+1(𝑆). 

Proof. Since the deletion of implicit places does not alter the language of (Q,M0), we 
make the proof with the model obtained before this procedure. The firing of a transition 
t in the system is not affected by the addition of arcs to, and from t, since these arcs 
were computed from differences of vectors in w. Then, according to Property 1, every 
event sequence of length less or equal than κ belongs to the language of the net if and 
only if it was observed. 

The sequences of transitions of length less or equal than κ that can be fired lead to 
markings in the measurable places that also have been observed (since the marking 
change provoked in the measurable places was obtained from the difference of observed 
vectors). Then, we have that sequences of observed output vectors of length less or 
equal than 𝜅 + 1 correspond to sequences of marking vectors in the net and the net 
represents exactly ℒ𝜅+1(𝑆). ♦ 

Example 3.1 Consider a DES with three output signals, Φ = {A, B, C}, and three 
input signals Σ = {a, b, c}. The entries of the binary I/O vectors have the following 
correspondence: [a b c | A B C]T. An I/O sequence is progressively observed. The first 
measured I/O vector corresponds to the initial state of the DES: w(1) = [0 0 0 | 0 0 0]T. 

When a second I/O vector w(2) = [1 0 0 | 1 0 0]T is read, the event vector 
E(1) = e1 = [1 0 0 | 1 0 0]T is computed; the input event vector is β(1) = [1 0 0]T and its 
corresponding symbolic input event is λ’(1) = a_1, i.e. the rising edge of a. 

Considering a value κ = 1, we can compute the first event trace τ1(1) = e1. Notice 
that, in this case, trace and event are the same. This event trace is related with a 
transition of the IPN. The IPN constructed after observing two I/O vectors is on Figure 
3.2. 

 
Figure 3.2 PN representing e1 

 

When a third I/O vector w(3) = [1 0 0 | 0 0 0]T  is read, E(2) = e2 = [0 0 0 | -1 0 0]T, β 
(2) = [0 0 0]T and λ’(2) = ε are computed and the model is updated, as showed in Figure 
3.3. 

1
1
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Figure 3.3 PN representing the sequence e1e2 

 

Until 8th I/O vector, the situation is quite similar: new events are computed and the 
model is updated.  
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When 9th vector w(9) = [1 0 0 | 1 0 0]T is processed, the event E(8) = e1 = [1 0 0 | 1 0 
0]T is computed and the trace τ1(8) is identified through Step 3 as an already observed 
trace e1. Since it leads to the same marking than the input place of t1

e1, such a place and 
the output place of t7

e7 can be merged as observed on Figure 3.4. 

 
Figure 3.4 Internal model for the first detected cycle 

 
Since a cycle is found, steps 4 and 5 of the algorithm are executed, leading to an 

intermediate IPN model showed on Figure 3.5. 

 
Figure 3.5 IPN for the first detected cycle 

 

Simultaneously to the creation of the intermediate IPN, more I/O vectors are added 
to the observed sequence and PN is updated: 
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Two more cycles are found in this sequence and intermediate IPN models are 
created. We show only the PN obtained after finding the second cycle (Figure 3.6) and 
its equivalent model transformed by analyzing concurrency (Figure 3.7). After applying 
the steps 4 and 5 the IPN obtained from this PN is showed in Figure 3.8. 
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Figure 3.6 PN corresponding to the whole I/O sequence 

 
Figure 3.7 Equivalent internal model representing concurrency 

 
Figure 3.8 IPN for the complete sequence 

3.2. Discussion 
The parameter κ helps to distinguish sequences of events that look similar during the 

construction of the basic internal model; its value indicates the history of past events 
that have to be considered for deciding the state equivalence [Estrada, 2012]. On the one 
hand, high values of κ imply distinguishing more sequences avoiding path fusion during 
the model construction; thus the obtained models are more accurate but less compact. 
On the other hand low values of κ allow more state fusions; the obtained model are 
more compact but more paths can be created yielding an overrepresentation of the 
observed behaviour. 

 In general it is not possible to establish a priori the value of κ, since it is assumed 
that the system is unknown. However, in practice the identification procedure can be 
applied using several values of κ (because it is not time consuming). Compact models 
allow a first approximation to the understanding of the system functioning, whilst larger 
models provide a more precise description. For small examples, κ=1 or κ=2 allows 
distinguishing event sequences whilst compact models are built. In actual industrial 
systems the difference can be more drastic. 

Now, we are going to illustrate the application of the above described algorithms to 
an example to analyze several characteristics of the synthesized model in order to point 
out the limitations of the method that have to be faced. The models are obtained 
automatically with the help of a software tool which will be described in Chapter 5. 

Example 3.2 Consider a small size application example dealing with an automated 
manufacturing system (Figure 3.9). The purpose of such a system is to sort parcels 
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according to their size. It has 9 inputs (signal sensors) from the system: a0, a1, a2, b0, 
b1, c0, c1, k1, k2, and 4 outputs (signal to the actuators): A+, A-, B, C. 

Parcels arrive randomly at conveyor 1 and they are sorted one by one. The sensors k1 
and k2 inform whether a parcel is small (k1=1) or big (k2=1). Big parcels are pushed to 
conveyor 3, and small parcels to conveyor 2 using the double-acting cylinder A. When a 
parcel arrives at the appropriate position, it is pushed by one of the single-acting 
cylinders B or C on the according conveyor. A new parcel may arrive (an detected 
through sensors k1 and k2) while the previous one is being treated. 

 
Figure 3.9 Diagram of the Example 3.2 

The sequence in Figure 3.10 has been considered. Each line of a column corresponds 
to an I/O vector, where binary values correspond to signals A+, A-, B, C, a0, a1, a2, b0, 
b1, c0, c1, k1, k2 respectively. From such a sequence, the model on Figure 3.11 has 
been constructed. 

 
Figure 3.10 I/O vector sequence for the Example 3.2  

0000001001010
1000101001010
1000100001010
1000000001010
0110000101010
0110000100010
0110000000010
0100000000110
0000101000110
0000101000010
1000101001010
1000100001010
1000000001010
0110000101010
0110000100010
0110000000010
0100000000110
0000101000110
0000101000010
1000101001010
1000100001010
1000000001010
0110000101010
0110000100010
0110010000010
0100010000110
0000011000010
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1000010001010
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Figure 3.11 Identified IPN model of Example 3.2 

Notice that in this IPN model there are numerous paths formed by non observable 
places. This is due to the observation of input changes that do not affect the outputs, but 
maybe they affect the controller state. In order to obtain a more compact model a 
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simplification strategy is applied [Estrada, 2010b]. It consists in merging several places, 
representing internal behaviour whose detected events do not have effect on the outputs, 
into a single one where an output event must occur. Consider the following I/O vector 
sequence involving one input x and two outputs A, B:  
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











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
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






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



1
0
1

0
1
1

0
1
0

B
A
x  

This sequence can be represented as:  BAA x →→ ε1_ , which can be compacted 
as:  BA x→ 1_ . This can be generalized to: 

B
eee

ABeA
e

AeA kjikji  →≅→→→
...

... . The application of this simplification 
procedure, yields the IPN model showed in Figure 3.12. 

 
Figure 3.12 Obtained IPN model for the Example 3.2 with defined methodology 

In the model, we can observe some situations concerning the input and output 
information: 

1. All the observed input value changes are included into the model. Some of those 
changes make part only of the evolution of the plant and do not have a direct 
influence on the evolution of the outputs (the signals to the actuators), and thus 
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on the evolution of the system. Including all input value changes yields to long 
transition paths and an apparent relationship between inputs and outputs, which 
is inexistent. For the Example 3.2, the input signals falling edge is not important 
in the evolution of the outputs. However, they are present in the obtained model 
and even observed into transitions producing output changes (Figure 3.13). 

2. When the triggering of an output event is conditioned to several input values, 
such values could appear in different orders. All of the orders are shown within 
the model. In the Example 3.2, all of the cylinders have to return to their initial 
position and a piece has to arrive in order to start with the sorting of a parcel; 
that is, the cylinder A cannot be extended (A+=1) until a piece arrives (k1=1 or 
k2=1) and cylinder A is on its initial position (a0=1) and cylinder B is on its 
initial position (b0=1) and cylinder C is on its initial position (c0=1). But the 
changes of input values to accomplish this condition arrive in different orders, 
yielding to several paths shown into the model (Figure 3.14). 

3. Some input values having influence on certain output evolutions can evolve at 
any part of the cycle of the system. Since those evolutions are showed into the 
model into a path at the moment they are observed, their influence on the outputs 
is not represented directly. In the Example 3.2, parcels can arrive at any moment 
while another parcel is being sorted. Then, several apparitions of k1_1 and k2_1 
are over the entire model, and their relation with the starting of a cycle (the 
extension of cylinder A) is not directly represented (Figure 3.15). 

 
Figure 3.13 Useless input changes into the model 

 

 
Figure 3.14 Several input evolution paths leading to the same input condition 
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Figure 3.15 k2_1 may be observed at any moment 

 

The evolution of the outputs is conditioned to input values and the occurrence of 
input events. 

Example 3.3 Consider the classical illustrative example of two cars going to the right 
and returning (Figure 3.16). There are 5 input signal sensors: a, b, c, d and m and 4 
output signals to the actuators: R1, L1, R2, L2.  

  
Figure 3.16 Cars going to the right and returning 

The cars are initially at the leftmost position and when the signal m is given (m=1), 
both cars are requested to go to the right (R1_1 and R2_1). Once a car arrives to the 
rightmost position (b=1 or d=1), it is ordered to go back (R1_0 and L1_1 or R2_0 and 
L2_1). When a car arrives again to the leftmost position (a=1 or c=1), it has to wait until 
the other car arrives and the signal m is given to start another cycle. 

As it can be seen, a condition on the inputs (a=1 and c=1) must be given in order to 
start the evolution of the system (R1_1 and R2_1) as well as an event trigger (m_1). 
Before concurrence transformations, the application of the proposed methodology 
would obtain the model in Figure 3.17 (a). 

A clearer model is in Figure 3.17(b), in which input and output relation is showed 
explicitly and directly and which does not include input changes having not influence 
on the evolution of an output. We would like to find such a relation and take advantage 
of the IPN capabilities to do this. The desired causality between inputs and outputs of 
the system is not always easily found within the I/O sequence. However, the 
representation of causality can be easily done using IPN from the Definition A.4, but 
considering that a conjunction of events may provoke an output change, instead of a 
single event. 

a b

c d

R1L1

R2L2

m
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(a) (b) 

Figure 3.17 Different IPN models representing the same condition 

 

3.3. Conclusion 
In this chapter we have proposed an identification method for discrete event 

manufacturing systems that are automated through a programmable logic controller 
(PLC). The method follows a black-box and passive identification approach; it allows 
building stepwise an interpreted Petri net (IPN) model in polynomial time which 
describes in a detailed way the reactive behaviour of the controller. Several 
characteristics of the identified models have been analyzed in order to point out some 
limitations of the method. In next chapter, for the same identification problem 
statement, we propose a methodology to construct a compacter IPN model by inferring 
the input-output causality though a pre-analysis of the I/O sequence.  

  

1R 2R

1_m

1_a1_c

1_a 1_c

)(1_ cam ∧•

1R 2R
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Chapter 4 
A statistical identification method 

 

 

Abstract. This chapter presents an alternative identification method that builds 
compact and expressive IPN models, describing clearly causal and concurrency 
relationships. The method is based on a statistical approach, which allows the analysis 
of very long I/O sequences issued from the execution of repetitive tasks performed by 
industrial systems. 
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4.1. General description 

4.1.1. Motivation 
Although the method previously proposed in Chapter 3 is scalable due to the 

efficiency of the algorithms and the models represent the observed language, the size of 
the obtained models grows in proportion to the system size and complexity, especially 
when it includes parallelism. In industrial systems repetitive tasks are observed as 
similar but the sub-sequences of the measured I/O vectors are not identical; using the 
stepwise method they are represented within the model as different paths. This leads to 
internal model structures close to state machines, whose included information is not 
enough rich for determining a concurrency relationship of the involved transitions, and 
then few reductions can be applied to the IPN model. 

 As discussed before, our purpose in this research is not only to compute a model in 
which the observed sequence is reproducible, but also to achieve expressivity and 
compactness in the identified IPN model (see Appendix A, Definition A.4) allowing 
representing causal and concurrency relationships of the involved operations. In order to 
reach this goal we have conceived a two-step method based on the analysis of the 
relationships between inputs and outputs along the observed behaviour represented by 
the I/O-sequence w. These relationships are discovered by analyzing the relative 
frequency of outputs changes with respect to input changes; such relationships are stated 
in terms of conditional probability. This is the reason why the approach is called 
statistical. 

4.1.2. Overview 
The two steps of the method are the following:  

• Step1. Discovering the reactive input-output behaviour. The observable part of 
the IPN is built, consisting of connected sub-graphs named fragments, composed by 
observable places and transitions labelled with algebraic expressions of input 
variables (Figure 4.1.a).     

• Step2. Determining the non-observable part of the IPN. The sequence w is 
transformed into a sequence S of transitions created in the first step of the method; 
this sequence is processed for obtaining causal and concurrency relationships useful 
for determining the non-observable places that relate the fragments such that S (thus 
w) can be executed (Figure 4.1b). 

  
a) IPN fragments b) Assembled fragments  

Figure 4.1The two steps of the identification technique 
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4.1.3. Event types 
As stated in the previous method, a sequence of observed event vectors E = 

E(1)E(2)…E( j)… is derived from the I/O word w, such that E( j) is the variation 
between two consecutive I/O vectors: E( j) = w( j + 1) – w( j). Each event vector can be 
decomposed into input and output event vectors: 
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Regarding input and output event vectors and the PLC cycle described in section 
2.1.1, there exist four situations (types) between consecutive I/O vectors that could be 
observed, which are explained by different occurring phenomena: 

Type 1. IE(j) ≠ 0 and OE(j)  ≠ 0 
An input change has provoked directly an output change, and consequently, a state 

 evolution. The I/O reactive causality is observed at the same PLC cycle.  

Type 2. IE(j) = 0 and OE(j)  ≠ 0 
The controller has arrived at step j-1 to a state in which, given the input values, an 

 output (and state) evolution is allowed at step j. 

Type 3. IE(j) ≠ 0 and OE(j)  = 0 

a) X(j −1) ≠ X(j) An input evolution has provoked a non-observable state 
evolution of the controller. 

b) X(j −1) = X(j) It has occurred an input evolution to which the controller is 
not sensitive. 

Type 4. IE(j) = 0 and OE(j)  = 0 

a) X(j −1)  ≠ X(j) It has occurred a non-observable state evolution of the 
controller which is not exhibited by any input nor output change.  

b) X(j −1) = X(j) The controller remains in a stable state, i.e., no state 
evolution condition is satisfied. 

Since situations Type 1 and Type 2 are directly observable by an output change, they 
can be straightforwardly represented in an IPN. Such a modelling will be performed by 
the first step of our algorithm. 

The Type 1 situation represents a direct input-output reactive behaviour, and thus the 
modelling is quite easy and similar to the procedure described in chapter 3: the input 
change is associated to the label of a transition and the output change is represented as 
arcs relating such a transition with the observable places representing outputs involved. 
The Type 2 situation is a little more complex, since the input values which lead to the 
output evolution are not observed at the same PLC cycle (i.e. at the same event vector). 
To model such a behaviour, the step 1 of our algorithm will look into the context (the 
values of the inputs) in which the output changes occur. In this case, the output change 
will be modelled as described in the Type 1 situation, but instead of an input change, an 
input condition will be associated to the label of the corresponding transition. 
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Thus, at the end of the step 1, a set of IPN fragments (connected sub-nets of the IPN) 
will be constructed as those shown in Figure 4.1.a. The initial I/O vector sequence w can 
be translated into a firing sequence of the transitions in the IPN fragments. The 
fragments, as well as the transition sequence will serve as input for the second step of 
the algorithm. 

The Type 3 situation is divided into two, depending on whether or not there is an 
internal state evolution of the controller. Situation Type 3.a is the case of the input 
events which provoke internal state evolutions and eventually lead to an output event of 
Type 2. Such internal evolutions cannot be directly computed, but can be inferred. By 
looking in the sequence built in Step 1, the order in which transitions appear can be 
determined. Such internal state inference will be performed by the second step of our 
algorithm and will be modelled by the addition of non observable places assuring the 
order of the transition firings, as illustrated in Figure 4.1.b. 

In the situation Type 3.b there is no internal state evolution, and thus there is nothing 
to be inferred, as well as the situation Type 4, where there are neither input nor output 
events occurring in a PLC cycle. Notice that in this work we can only infer internal state 
evolutions by means of transition firing order. Other type of internal evolutions, such as 
timers or counters, is out of the scope of this work. We can now make the description of 
the two identification steps. 

4.2. Computing the observable behaviour  

4.2.1. Outline of the Step 1 
The main sub-steps of the method for computing the observable part of the IPN 

model are given below. Accurate descriptions of such steps as well as the used notation 
are detailed along the section. 

Algorithm 4.1 General description of the Step 1 

Input: I/O sequence w 
Output: Observable incidence matrix φC, labelling transition function λ and 
transition          sequence S 

1. Analyze sequence w in order to 
• Compute events vector sequence and elementary events 
• Compute Direct and Indirect Causality Matrices 
• Construct Output Event Firing Functions from matrices 
• Find Input events with differed influence 

 2. Use w, Firing Functions and Events with differed influence in order to 
• Compute transitions of the IPN and their labelling λ 
• Compute observable incidence matrix φC 
• Compute transition sequence S 

 

4.2.2. Elementary events 
In order to discover the relationship between inputs and outputs of the system, we 

can start by computing at each event vector which are the specific changes occurring, 
that is, the input and output signals which have changed their value.  
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Definition 4.1 A rising input (output) event of the input Ii (output Oi) occurs when 
1)( =jIEi  ( 1)( =jOEi ) and it can be denoted as Ii_1 (Oi_1).  A falling input (output) 

event of the input Ii (output Oi) occurs when 1)( −=jIEi  ( 1)( −=jOEi ) and it can be 
denoted as Ii_0 (Oi_0). 

We can decompose then each input (output) event vector as a conjunction of 
elementary input (output) events, which from now on we can call simply events: 

 ...)( 21 ∏=••= jijj IEIEIEjIE such that 0)()1( ≠−+ jIjI jiji  

∏=••= jijj OEOEOEjOE ...)( 21 such that 0)()1( ≠−+ jOjO jiji  
If no input (output) event occurs in E( j), we denote it as IE( j)=ε  (OE( j)=ε). 

Similarly, we can represent each input vector as a conjunction of Boolean variables, 
depending on the values of each component of the input vector: 

 ...)( 21 ∏=••= jijj IIIjI such that 




==
==

=
0)(  0

1)(  1
 

jIifI
jIifI

I
ii

ii
ji  

If the system has m inputs, n outputs and the length of the sequence w is h, the 
complexity of computing the events is O((m + n)h). 

Example 4.1. Consider the next I/O sequence representing the 8 first I/O observed 
vectors during an evolution of the application presented in Figure 3.9. 
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From the I/O sequence, we can compute the observed event sequence E: 
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We can re-write w and E mixed for a clearer explanation: 
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The decomposition of the event vectors into elementary events is showed at Table 
4.1. 

Event vector Elementary input events Elementary output events 

E(1) IE(1) = k1_1 OE(1) = A+_1 

E(2) IE(2) = a0_0 OE(2) = ε 

E(3) IE(3) = k1_0 OE(3) = ε 

E(4) IE(4) = a1_1 OE(4) = A+_0 • A−_1 • B_1 

E(5) IE(5) = b0_0 OE(5) = ε 

E(6) IE(6) = a1_0 OE(6) = ε 

E(7) IE(7) = b1_1 OE(7) = B_0 

Table 4.1 Elementary events list for Example 4.1 

 

4.2.3. Output Event Firing Functions 
From the elementary events decomposition, the Type 1 situation described before is 

clearly observed. It can be noticed that triggering of elementary output events is 
conditioned to the occurrence of certain elementary input events (for example, the 
elementary output event B_0 seems to be conditioned to the occurrence of b1_1). Also 
the situation Type 2 is observed, i.e. the occurrence of an output event is conditioned to 
the presence of certain input levels (for example, the occurrence of A+_1 seems to be 
conditioned to a0=1). 

Definition 4.2 An output event firing function (OEFF) χ states sufficient conditions 
for the occurrence of the output event OEk. It is defined as: 

χ(OEk)=G(OEk)•F(OEk) 

where: 

G:OE→2IE is the sufficient input event combination to produce the output event OEk. 

F:OE→2IL is the sufficient input level condition to produce the output event OEk. 
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Example 4.2. In the Example 3.3, the firing condition for the output event R1_1 is: 

χ(R1_1)= G(R1_1)•F(R1_1) = m_1•(a∧c) 

 

4.2.4. Finding causality 
As explained in section 2.1.2, it could happen that at the same PLC cycle, an input 

event and an output event are observed, but it does not necessarily imply that such input 
and output events are related. In order to find G(OEk) to represent situations of Type 1, 
we analyze the relative frequency of the simultaneous emergence of an input event IEi 
and an output event OEk, with respect to the emergence of OEk during the whole 
sequence of events. That relationship can be naturally expressed as the conditional 
probability of the occurrence of an output event OEk, given that a certain input event IEi 
has occurred at the same PLC cycle: 

)(
),()|(

k

ik
ik OEObserv

IEOEObservIEOEProb =  

where Observ(OEk,IEi) is the number of times that the elementary output event OEk and 
the elementary input event IEi are observed the same event (which implies that they 
occurred at the same PLC cycle) in the event sequence E, and Observ(OEk) is the 
number of times the elementary output event OEk occurs in the event sequence E. 

In a similar way, to find situations Type 2 represented by F(OEk), we will compute 
the occurrence probability of an output event at a PLC cycle, given that certain input 
level is observed: 

}0,1{,
)(

),()|( ∈
=

== x
OEObserv

xIOEObservxIOEProb
k

ik
ik  

where Observ(OEk,Ii = x) is the number of times the elementary output event OEk 
occurred when the input level Ii = x was present. 

Conditional probabilities have been used in [Cook, 2004] for analyzing the relative 
occurrence between workflow events; this analysis is done in the first step of the 
procedure. However the remaining steps and the kind of obtained model differ from that 
of our method. 

In order to compute previously defined probabilities, we can use counters storing the 
respective number of occurrences used at each equation. The values will be stored in 
two matrices, called Direct I/O Causality Matrix (DCM) and Indirect I/O Causality 
Matrix (ICM). 

Algorithm 4.2 Building DCM and ICM matrices 
Input: w,E 

Output: DCM, ICM 

1) Initialize counters 

∀OEk, Observ(OEk) ← 0 

∀IEi ∀OEk, Observ(OEk and IEi) ← 0 

∀ILi ∀OEk, Observ(OEk and Ii = x) ← 0 
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2) Update counters 

∀E( j) 

If OEk ∈ OE( j), Observ(OEk) ← Observ(OEk) + 1 

If IEi ∈ IE( j) and OEk ∈ OE( j), Observ(OEk and IEi) ← (OEk and IEi) + 1 

If Ii = x in w( j) and OEk ∈ OE( j), Observ(OEk and Ii = x) ← (OEk and Ii = x) + 1 
3) Compute matrices: 

)|(, ikki IEOEProbDCM =  

)|(, xIOEProbICM ikki ==  

 
Example 4.3. Considering the whole I/O sequence (Figure 4.2) of the Example 4.1, 

we have computed the matrices shown in Tables 4.2 and 4.3. 

Each column of the DCM corresponds to an output event OEk; each row corresponds 
to an input event IEi. If the value in cell DCMi,k is not 0.000, it means that IEi and OEk 
were observed at least once occurring at the same PLC cycle. Such an occurrence could 
be due to the fact that there is a causality relationship between the input and the output; 
however, as explained in Chapter 2, it could be also due to the PLC cyclic execution 
mode. 

 

 
Figure 4.2 The I/O vector sequence for the Example 4.1 

0000001001010
1000101001010
1000100001010
1000000001010
0110000101010
0110000100010
0110000000010
0100000000110
0000101000110
0000101000010
1000101001010
1000100001010
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0100000000110
0000101000110
0000101000010
1000101001010
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Table 4.2 Direct Causality matrix for the Example 4.3 

 

 
Table 4.3 Indirect Causality matrix for the Example 4.3  

 

Consider the second column of the DCM corresponding to the event A+_0. The input 
candidates to be in a causal relation with A+_0 are k1_1, a1_1 and a2_1. Notice that 
Prob(A+_0|a1_1) + Prob(A+_0|a2_1) = 1. By considering the second column of the 
ICM matrix, we can verify that Prob(A+_0|a1=1) + Prob(A+_0|a2=1) = 1. We can 
conclude that the event A+_0 is sometimes caused by a1_1 and sometimes caused by 
a2_1. 

Consider now the first column of the DCM matrix which corresponds to the output 
event A+_1. The input candidates to be in a causal relation with such an output event 

A+_1 A+_0 A-_1 A-_0 B_1 B_0 C_1 C_0
k1_1 0.111 0.111 0.111 0.111 0.000 0.200 0.000 0.000
k1_0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
k2_1 0.222 0.000 0.000 0.000 0.000 0.000 0.000 0.000
k2_0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
a0_1 0.222 0.000 0.000 1.000 0.000 0.000 0.000 0.000
a0_0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
a1_1 0.000 0.444 0.444 0.000 1.000 0.000 0.000 0.000
a1_0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
a2_1 0.000 0.556 0.556 0.000 0.000 0.000 1.000 0.000
a2_0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
b0_1 0.333 0.000 0.000 0.000 0.000 0.000 0.000 0.000
b0_0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
b1_1 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
b1_0 0.000 0.000 0.000 0.111 0.000 0.000 0.000 0.000
c0_1 0.111 0.000 0.000 0.000 0.000 0.000 0.000 0.000
c0_0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
c1_1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
c1_0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

A+_1 A+_0 A-_1 A-_0 B_1 B_0 C_1 C_0
k1=1 0.444 0.111 0.111 0.333 0.000 0.250 0.200 0.200
k1=0 0.556 0.889 0.889 0.667 1.000 0.750 0.800 0.800
k2=1 0.556 0.000 0.000 0.333 0.000 0.250 0.000 0.200
k2=0 0.444 1.000 1.000 0.667 1.000 0.750 1.000 0.800
a0=1 1.000 0.000 0.000 1.000 0.000 0.500 0.000 0.000
a0=0 0.000 1.000 1.000 0.000 1.000 0.500 1.000 1.000
a1=1 0.000 0.444 0.444 0.000 1.000 0.000 0.000 0.000
a1=0 1.000 0.556 0.556 1.000 0.000 1.000 1.000 1.000
a2=1 0.000 0.556 0.556 0.000 0.000 0.000 1.000 0.000
a2=0 1.000 0.444 0.444 1.000 1.000 1.000 0.000 1.000
b0=1 1.000 1.000 1.000 0.556 0.000 0.000 1.000 1.000
b0=0 0.000 0.000 0.000 0.444 1.000 1.000 0.000 0.000
b1=1 0.000 0.000 0.000 0.111 1.000 1.000 0.000 0.000
b1=0 1.000 1.000 1.000 0.889 0.000 0.000 1.000 1.000
c0=1 1.000 1.000 1.000 0.889 0.000 1.000 1.000 0.000
c0=0 0.000 0.000 0.000 0.111 1.000 0.000 0.000 1.000
c1=1 0.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000
c1=0 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.000
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are k1_1, k2_1, a0_1, b0_1 and c0_1. Observe that Prob(A+_1|k1_1) + 
Prob(A+_1|k2_1) + Prob(A+_1|a0_1) +  Prob(A+_1|b0_1) +  Prob(A+_1|c0_1) = 1, 
but this time, by looking at the second column of the ICM, we observe that 
Prob(A+_1|k1=1) + Prob(A+_1|k2=1) + Prob(A+_1|a0=1) +  Prob(A+_1|b0=1) +  
Prob(A+_1|c0=1) ≠ 1. However, observe that Prob(A+_1|k1=1) + Prob(A+_1|k2=1) = 1 
and that Prob(A+_1|a0=1) = 1, Prob(A+_1|b0=1)  = 1, and Prob(A+_1|c0=1) = 1. Thus, 
we can conclude that the event A+_1 always occurs under conditions a0 = 1, b0 = 1, c0 
= 1 and that it occurs sometimes under the condition k1 = 1 and sometimes under k2 = 
1. 

All conditions found intuitively above will be computed and included in the function 
χ of each output event. In the next section the procedure for obtaining such functions is 
formalized.  

4.2.5. Determining the firing functions 
As stated before, the occurrence of an input event (or a conjunction of input events, 

given the particular case of the PLC) is a sufficient condition to produce the occurrence 
of an elementary output event. Several conjunction combinations are possible, and thus 
we know that G(OEk), as a Boolean function, can be expressed as a conjunction of 
disjunctions: 

G(OEk) = DisjEr ∧ DisjEs ∧ … ∧ DisjEt 

Such that DisjEj = (IEw ∨ IEx ∨ … ∨ IEy ∨ IEz) 
If OEk has occurred into an event E( j), it seems that G(OEk) has been made true, 

which implies that every one of the terms in DisjEr ∧ DisjEs ∧ … ∧ DisjEt was true. To 
make true DisjEj, we need that at least one of IEw ∨ IEx ∨ … ∨ IEy ∨ IEz be true, which 
implies that at least one of the input events IEw, IEx, …, IEy, IEz has occurred at the 
same event than OEk. Then, we can express the number of occurrences of OEk as: 

...
...)(

)(...)(
)(...)(
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++

−−−
++
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kyxw

kzykxw

kzkw
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OEandIEandIEandIEObserv
OEandIEandIEObservOEandIEandIEObserv

OEandIEObservOEandIEObserv
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Keeping track of all the terms in the expression would be very expensive in space. 
We restrict the “or” disjunctions to “exclusive or”: 

DisjEj = (IEw ⊕ IEx ⊕ … ⊕ IEy ⊕ IEz), under the hypothesis that if an input event IEx 
or an input event IEy can provoke the firing of the output event OEk, it was only 
provoked by IEx or by IEy, but never both together. 

Following this restriction, we can express the number of occurrences of OEk as: 

)(...)()( kzkwk OEandIEObservOEandIEObservOEObserv ++=  

Dividing both terms by Observ(OEk): 

)(
)(...)(1

k

kzkw

OEObserv
OEandIEObservOEandIEObserv ++

=  
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and substituting each term: 

)|(...)|(1 zkwk IEOEProbIEOEProb ++=  

We obtain a sum equal to 1 corresponding to terms in the k-th column of the DCM. 
Thus, we can express the input event function as: 

jk DisjEOEG Π=)(  

With )...( zyxj IEIEIEDisjE ⊕⊕⊕=  

Such that 
1. 0,...0,0 ≠≠≠ zjyjxj DCMDCMDCM  

2. 1... =+++ zjyjxj DCMDCMDCM  
If no DisjEj is found, we write G(OEk) = ε 
Applying the same reasoning, we can find in the ICM the input level condition under 

which output events occur. The k-th column of the ICM matrix can help us then to 
distinguish those input signals which must be present or absent in the occurrence of 
OEj: 

jk DisjLOEF Π=)( , 

with )...( zyxj ILILILDisjL ⊕⊕⊕= , 

such that 
1. 0,...0,0 ≠≠≠ zjyjxj ICMICMICM   

2. 1... =+++ zjyjxj ICMICMICM  
If no DisjLj is found, we write F(OEk) = (=1) 

Some of the input levels on the sum can be considered as redundant. They are simply 
result of the conditions under which an output event is produced, but do not have a 
direct influence on the occurrence of the event. Consider the Example 3.3 of the cars. 
Input levels b=0 and d=0 are always present at the occurrence of R1_1 and R2_1, but 
they are not directly related to such output events. In order to avoid representing these 
non-direct relations into our model, an additional condition can be added (or in fact, 
substitute condition 1): 

3. 0,...0,0 ≠≠≠ yjyjxj DCMDCMDCM  

Introducing such a condition, we could ignore some input events which do not have a 
direct effect on the output evolution. To avoid this, we can keep a list D of input events 
with differed influence to outputs. If DCM rows corresponding to Ii_1 and Ii_0 are zero, 
we add them to D. If all the entries of the rows corresponding to Ii=1 and Ii=0 are 1 and 
0 respectively (or 0 and 1), it means that no output event occurs between rising event 
and falling of the input Ii, so we can add Ii =1 or Ii=0 (the one corresponding to the row 
with 1 values). 

From the matrices of Example 4.3, the obtained functions are given in table 4.4. No 
input event is added to D. 
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OEk G(OEk) F(OEk) χ(OEk) 

A+_1 (ε) ((k1 ⊕ k2) ∧ a0 ∧ b0 ∧ c0) (ε)• ((k1 ⊕ k2) ∧ a0 ∧ b0 ∧ c0) 

A+_0 ( a1_1 ⊕ a2_1) (=1) ( a1_1 ⊕ a2_1) • (=1) 

A−_1 ( (a1_1 ⊕ a2_1)) (=1) ( (a1_1 ⊕ a2_1)) • (=1) 

A−_0 ( a0_1) (=1) ( a0_1) • (=1) 

B_1 ( a1_1) (=1) ( a1_1) • (=1) 

B_0 ( b1_1) (=1) ( b1_1) • (=1) 

C_1 ( a2_1) (=1) ( a2_1) • (=1) 

C_0 ( c1_1) (=1) ( c1_1) • (=1) 

Table 4.4 Firing functions of Example 4.3 

These functions state clearly the conditions on the inputs that modify the outputs. 
They can be expressed in terms of IPN as the marking/unmarking of observable places. 
Figure 4.3 represents pictorially the IPN fragments corresponding to the above 
functions. 

 
Figure 4.3 IPN fragments for Example 4.3 

 

Notice that condition DCMxj ≠ 0, DCMyj ≠ 0,…, DCMzj ≠ 0 requires that the inputs 
related to the output change were observed at least once changing its value at the same 
PLC cycle for the considered output. This condition may be restrictive if the input-
output reaction is not observed in the same event vector. For example, in order to avoid 
component damages, if there is not an input sensor to indicate that a pusher has been 
retracted, there may be some security temporizations which do not allow another 
actuator reacting at the moment an input condition has been satisfied.  

In all previous cases, the input-output reaction would not be found and thus there 
may be an output event with empty conditions on its firing function. In order to find the 
correct OEFF, we can proceed in a similar way that in the previous chapter, where 
equivalent states were found at the observation of κ equal events. But in this case, the 
condition could be relaxed to consider input events which have been observed in 
previous event vectors instead of the same event vector. Formally, we can compute: 

)(
),()|(

k

ik
ik OEObserv

IEOEObservIEOEProb =
 

ε•∧∧∧⊕ )000)21(( cbakk

+A

)21(1 aa ↑⊕↑•=

C

21 a↑•=

11 c↑•=

−A

)21(1 aa ↑⊕↑•=

01 a↑•=

B

11 a↑•=

11 b↑•=
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But this time, the computation is done by considering IEi occurred at the previous 
event vector than the one with the occurrence of OEk. In such a way, a matrix called 
One-step DCM matrix (1-DCM) is computed. A new OEFF can be computed using 
values of 1-DCM. If the computed OEFF has still empty conditions, we can take the 
previous to the previous event vector constructing a 2-DCM matrix and successively 
until the κ-DCM matrix while empty conditions are computed. The initial DCM matrix 
can be thus denoted as 0-DCM.  

In the example of this section, such relaxing condition is not necessary, since, as it 
can be noticed, no empty conditions have been computed. However, in one of the 
experimental case studies of Chapter 5, such a technique is applied.  

The previously described method for finding input-output causality can be 
summarized as follows. 

 

Algorithm 4. 3Finding firing functions 
Input:DCM and ICM 

Output: χ(OEk) 

∀ OEk 

1) Make G(OEk) ← ε 
Compute jk DisjEOEG Π←)(  

With )...( zyxj IEIEIEDisjE ⊕⊕⊕←  

Such that 
1. 0,...0,0 ≠≠≠ zjyjxj DCMDCMDCM  

2. 1... =+++ zjyjxj DCMDCMDCM  
2) Make F(OEk) ← (=1), κ←0 

While (G(OEk) = ε and F(OEk) = (=1)) 
Compute jk DisjLOEF Π←)(  

 With )...( zyxj ILILILDisjL ⊕⊕⊕=  

Such that 
1. 0,...0,0 ≠−≠−≠− zjyjxj DCMDCMDCM κκκ   

2. 1... =+++ zjyjxj ICMICMICM  
Make κ←κ+1 

 
Remark. Given that the system has m inputs and n outputs, there could be 2m values 

different from 0 in the DCM matrix. Thus, in the worst case, the complexity of the 
procedure for computing the firing functions is O(n(22m)). However, in practice we have 
very often observed that only few values differ from 0 in the DCM matrix; thus the 
complexity of the Algorithm 4.3 can be approximated to O(n(26)), that is O(n); this is 
due to the fact that only a small subset of input events occur at the same PLC cycle than 
a given output event. 

The accuracy of the firing functions depends (as in all of the identification methods) 
on the quality of information provided by the sequence: if a certain input event is related 
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with the occurrence of an output event, but they never occur close enough to detect the 
relationship, they will not be related in the final model. 

4.2.6. Construction of the observable incidence matrix 
Remind that G(OEk) and F(OEk) are expressed in a Conjunctive Normal Form in 

which disjunctions are “exclusive or”. We have previously analysed that, to make true 
their values (implying the firing of OEk), all of the disjunctions in the expressions must 
have a value true. Remind that under the given input conditions, several output events 
could be produced at the same PLC cycle. 

We can check the I/O events sequence (and I/O sequence) to compute those 
conditions under which output events fired along it. We can represent those firing 
conditions by observable transitions in the IPN as shown in Figure 4.4. 

 
Figure 4.4. IPN representation of several output events enabled at the same cycle 

 

We also will represent input events with differed output influence by transitions with 
no corresponding output change. 

Computed transitions will form an incidence matrix corresponding to the observable 
part of the system. We can systematically describe the above procedures in the 
following algorithm. 

Algorithm 4.4 Building observable behaviour 

Input: I/O sequence w, Events sequence E, Differed inputs D, Firing functions 
χ(OEk) 

Output: Observable incidence matrix φC, labelling transition function λ, sequence S 

1) Create a row in the incidence matrix for every output of the system 
2) S←ε 
3) ∀E( j) Consider the I/O sequence and I/O events sequence:  

a) If )( jOE =0 and IE(j) contains elementary input events IEs,…,IEu belonging to 
D 

• If it has not been created before, create a new zero transition Tj (a zero 
column in the incidence matrix φC) such that λ(Tj) ←IEs,…,IEu 

• S ← S⋅Tj 
b) If OE( j)≠0 
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• Consider the output events jrjqjp OEOEOEjOE ••=)(  included in )( jE  

• Compute a new firing function considering )(),(),( jrjqjp OEOEOE χχχ   :  

i) For every )()()( jkjkjk OEFOEGOE •=χ : 

(1) For every )...( zyxi IEIEIEDisjE ⊕⊕⊕= in )( jkOEG  look into IE(j) the 

input event IEik which has made true )...( zyxi IEIEIEDisjE ⊕⊕⊕=  
and make iki IEDisjE ←'  

(2) ')(' ijk DisjEOEG Π←  

(3) )('...)(')('))(( jrjqjp OEGOEGOEGjOEG •••←  

(4) For every )...( zyxi ILILILDisjL ⊕⊕⊕= in )( jkOEF  look into w(j + 1) 

the input levels ILik which have made true )...( zyxi ILILILDisjL ⊕⊕⊕=  
and make iki ILDisjL ←'  

(5) ')(' ijk DisjLOEF Π←  

(6) )('...)(')('))(( jrjqjp OEFOEFOEFjOEF •••←  
• If it has not been created before, create a new transition Tj (a new column in 

the incidence matrix φC) such that λ(Tj) ← F(OE(j)) • G(OE(j)) and relate it 
to its provoked output changes: 

i) For all elementary output events in jrjqjp OEOEOEjOE ••=)( , put a -1 
into the line corresponding to OEjk if it is a falling event, or a 1 if it is a 
rising event; for the rest of the lines, put a 0. 

• S ← S⋅Tj 
 

It can be noticed that a simplified sequence transition S will be created by 
concatenating progressively each one of the computed transitions. 

The complexity of the procedure for building the transition sequence and fragments 
is O((n’ log m’)h), where n’ and m’ are the maximum number of input and output 
elementary events in an event vector. Consequently, the Algorithm 4.1 can be executed 
in polynomial time. 

Property 4.1. The sequence transition S is a translation of the I/O sequence w into 
transition firings of the PN-fragments built by Algorithm 4.4. 

Proof. It is easy to see that at the end of the steps 3.a and 3.b of Algorithm 4.4, S is 
formed by concatenating the computed transitions from the event sequence produced by 
w. This allows that the reactive behaviour can be reproduced in the partially created IPN 
model.♦ 

Example 4.4. After treating the long I/O vector sequence, we can compute the 
transitions in the fourth column of  Table 4.4. 
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I/O vector Elementary input events Elementary output events Computed transition 

w(1)  =  [0010010100000]T IE(1) = k1_1 OE(1) = A+_1 χ(t1) = (k1 • a0 • b0 • c0) • (ε) 

w(2)  =  [1010010101000]T IE(2) = a0_0 OE(2) = ε No transition 

w(3)  =  [1000010101000]T IE(3) = k1_0 OE(3) = ε No transition 

w(4)  =  [0000010101000]T IE(4) = a1_1 OE(4) = A+_0 • A−_1 • B_1  χ(t2) = (=1) • (a1_1)  

w(5)  =  [0001010100110]T IE(5) = b0_0 OE(5) = ε No transition 

w(6)  =  [0001000100110]T IE(6) = a1_0 OE(6) = ε No transition 

w(7)  =  [0000000100110]T IE(8) = k1_1 • a0_1 OE(8) = A−_0 χ(t3) = (=1) • (a0_1)  

w(8)  =  [1010000100010]T IE(7) = b1_1 OE(7) = B_0  χ(t4) = (=1) • (b1_1)  

w(9)  =  [1010001100000]T IE(9) = b1_0 OE(9) = ε No transition 

w(10) = [1010000100000]T IE(10) = b0_1 OE(10) = A+_1 χ(t1) = (k1 • a0 • b0 • c0) • (ε) 

w(11) = [1010010101000]T IE(11) = a0_0 OE(11) = ε No transition 

w(12) = [1000010101000]T IE(12) = k1_0 OE(12) = ε No transition 

w(13) = [0000010101000]T IE(13) = a1_1 OE(13) = A+_0 • A−_1 • B_1  χ(t2) = (=1) • (a1_1) 

w(14) = [0001010100110]T IE(14) = b0_0 OE(14) = ε No transition 

w(15) = [0001000100110]T IE(15) = a1_0 OE(15) = ε No transition 

w(16) = [0000000100110]T IE(16) = b1_1 OE(16) = B_0 χ(t4) = (=1) • (b1_1) 

w(17) = [0000001100100]T IE(17) = a0_1 OE(17) = A−_0 χ(t3) = (=1) • (a0_1) 

w(18) = [0010001100000]T IE(18) = b1_0 OE(18) = ε No transition 

w(19) = [0010000100000]T IE(19) = b0_1 OE(19) = ε No transition 

w(20) = [0010010100000]T IE(20) = k2_1 OE(20) = A+_1 χ(t5) = (k2 • a0 • b0 • c0) • (ε) 

w(21) = [0110010101000]T IE(21) = a0_0 OE(21) = ε No transition 

w(22) = [0100010101000]T IE(22) = k2_0 OE(22) = ε No transition 

w(23) = [0000010101000]T IE(23) = a1_1 OE(23) = ε No transition 

w(24) = [0001010101000]T IE(24) = a1_0 OE(24) = ε No transition 

w(25) = [0000010101000]T IE(25) = a2_1 OE(25) = A+_0 • A−_1 • C_1 χ(t6) = (=1) • (a2_1)  

w(26) = [0000110100101]T IE(26) = a2_0 OE(26) = ε No transition 

w(27) = [0000010100101]T IE(27) = c0_0 OE(27) = ε No transition 

w(28) = [0000010000101]T IE(28) = k1_1 • c1_1 OE(28) = C_0 χ(t7) = (=1) • (c1_1)  

w(29) = [1000010010100]T IE(29) = a1_1 OE(29) = ε No transition 

w(30) = [1001010000100]T IE(30) = a1_0• c0_1 OE(30) = ε No transition 

w(31) = [1000010100100]T IE(31) = a0_1 OE(31) = A−_0 χ(t3) = (=1) • (a0_1) 

w(32) = [1010010100000]T From here, previously observed transitions are found 

…    

Table 4.5 Computed transitions for Example 4.3 
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Not all the sequence treatment is shown since it consists of 222 I/O vectors; at the end 
of the procedure, we get the following observable incidence matrix which represents the 
structure of Figure 4.5 . 

  t1 t2 t3 t4 t5 t6 t7  
A+ 

 

1 -1 0 0 1 -1 0 

 

A- 0 1 -1 0 0 1 0 
B 0 1 0 -1 0 0 0 
C 0 0 0 0 0 1 -1 

 

By concatenation of all computed transitions in the fourth column, we obtain the 
following transition sequence: 

S = t1 t2 t3 t4 t1 t2 t4 t3 t5 t6 t7 t4 t1 t2 t3 t4 t5 t6 t7 t4 t1 t2 t3 t4 t1 t2 t3 t4 t5 t6 t7 t4 t5 t6 t7 t4 t1 t2 
t3 t4 t5 t6 t7 t4 t5 t6 t7 t4 t5 t6 t7 t4 t5 t6 t7 t4 t5 t6 t7 t4 t1 t2 t4 t3 t1 t2 t3 t4 t1 t2 t3 t4 t1 t2 t4 t3 t1 t2 t3 
t4 t1 

 

 
Figure 4.5 Obtained structure for Example 4.3 

After this processing, we have only defined the observable part of the IPN, i.e., the 
reactive behaviour of the compound PLC + controller. It remains to infer the internal 
state evolutions of Type 3.a. Such a problem can be seen as finding how to preserve the 
firing of the computed transitions through non observable places to obtain a net 
reproducing S. To do this, we can work now over the simplified transition sequence 
obtained, considering the incidence matrix and firing functions we have computed. 

4.3. Determining the non observable PN model 

4.3.1. Problem re-statement 
The previously described procedures allow obtaining an observable structure which 

represents the reactive behaviour of the system. Given that events and transitions of the 
net are completely defined, we need to add non-observable places to translate an 
aggregation of the non-observable dynamics of the process in such a way that the global 
PN will reproduce the whole behaviour of the system. 

The problem of determining the non observable part of the IPN model 
complementary to that describing the observable (reactive) behaviour is stated as 
follows. 

Given an observable IPN model whose structure is (Pobs, T, Preobs, Postobs) and a 
transitions sequence S = t1 t2 … tj …  ∈ T* reproducing the I/O sequence w, a PN 

1t 5t

2t 6t
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structure  (Pnobs, T, Prenobs, Postnobs) that reproduces S and an initial marking M0 
enabling S must be found. The new PN structure is N=(P, T, I, O) with P= Pobs ∪ Pnobs, 
Pre= Preobs ∪ Prenobs, Post= Postobs ∪ Postnobs. The PN must be ordinary, free-choice 
and safe. 

Observe that in S there are not consecutive apparitions of the same transition, due to 
the nature of the considered events (rising and falling edges of binary signals). 

As reviewed in Chapters 1 and 2 of this thesis, in the literature there are many 
approaches which tackle the described identification problem, However, remember that 
the hypothesis made on such works are not satisfied by our scenario or their 
characteristics can be improved: 

a) We only have a single sequence which could contain system cycles 

b) We have no counterexamples available (we don’t know the whole language of the 
system) 

c) We look for polynomial time algorithms 

d) We want to build an IPN model that allows showing structurally parallelism 

 

New places and arcs must be determined such that they join PN fragments that have 
been built. We will connect them by relating transitions with non-observable places.  

Since the tasks in different processes can occur simultaneously or at some predefined 
order, each two fragments can be related in two manners: sequentially or concurrently. 
Thus, several connecting forms are possible as illustrated in Figure 4.6, where “clouds” 
represent the fragments. 

 
Figure 4.6 Some different possibilities for fragments assembling 

In this section, we present a procedure to find precedence and concurrency relations 
among transitions, which will determine the final structure of the identified model. First 
some properties derived from the sequence S are introduced. Afterwards, based on such 
properties, an analysis technique allowing determining causal and concurrency 
relationships among the transitions in S are proposed. Then, the rules for building a net 
structure observing the causal and concurrency relationships are presented. 
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4.3.2. Dynamical properties 
Since the construction method is based on the analysis of causal and concurrency 

relationships, some notions must be defined before introducing construction procedure 
of the non-observable behaviour. 

Definition 4.3 The relationship between transitions in S that are observed 
consecutively is expressed in a relation Seq ⊆ T × T which is defined as Seq ={(tj, tj+1)| 
1 ≤ j < |S| }. If (ta, tb) ∈ Seq, this is denoted by ta<tb. 

In a PN model every pair in Seq may in fact be represented differently. If ta, tb were 
observed consecutively in S, this behaviour could be issued from one of two situations 
in N described in the following definition. 

Definition 4.4 Every couple of consecutive transitions ta, tb in Seq can be classified 
in one of the following situations: 

Causal relationship. If the occurrence of ta enables tb. In a PN structure, this implies 
that there must be at least one place from ta to tb (Figure 4.7a).  

Concurrent relationship. If both ta and tb are simultaneously enabled, but ta occurs 
first and its firing does not disable tb. In a PN structure, this implies that it is impossible 
the existence of a place from ta to tb. In this case, ta and tb are said to be concurrent, 
denoted as ta||tb. (Figure 4.7b). 

 

 
Figure 4.7a Causal relationship from ta to tb Figure 4.7b Concurrent relationship from ta to tb 

Figure 4.7 Structures that represent ta< tb 

The following notion is the systematic precedence of a transition tj with respect to 
another transition tk; it establishes a necessary condition for tj to occur repeatedly. 

Definition 4.5 A transition tj is preceded systematically by tk, denoted as tk∠tj iff tk is 
always observed between two apparitions of tj in S. By convention, we say that tj∠tj if tj 
was observed at least twice in S. Then the Systematic Precedence Set of a transition tj is 
given by the function PS: T→2T, that indicates which transitions must be fired to re-
enable the firing of tj, i.e. PS(tj)={tk |tk∠tj}. If tj was observed only once in S, then PS(tj) 
= ∅. 

Definition 4.6 Two transitions ta, tb are called transitions in a two-cycle if S contains 
the subsequence tatbta or the subsequence tbtatb. The two-cycle transitions set TC of S is 
given by TC={(ta,tb)|ta, tb are in a two-cycle}. 

Example 4.5. In the sequence S = t1 t2 t3 t4 t1 t2 t4 t3 t5 t6 t7 t4 t1 t2 t3 t4 t5 t6 t7 t4 t1 t2 t3 t4 
t1 t2 t3 t4 t5 t6 t7 t4 t5 t6 t7 t4 t1 t2 t3 t4 t5 t6 t7 t4 t5 t6 t7 t4 t5 t6 t7 t4 t5 t6 t7 t4 t5 t6 t7 t4 t1 t2 t4 t3 t1 
t2 t3 t4 t1 t2 t3 t4 t1 t2 t4 t3 t1 t2 t3 t4 t1 from Example 4.4, one may observe that  t2∠t1, t3∠t1,  
t4∠t1, thus PS(t1)={t1, t2, t3, t4}. Notice that PS(tj) is the set of transitions that must 
invariantly occur to fire tj repeatedly. The rest of the PS sets are:  

PS(t2)={t1, t2, t3, t4},   PS(t3)={t1, t2, t3},  

PS(t4)={t4},     PS(t5)={t4, t5, t6, t7}, 

at bt
at

bt
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 PS(t6)={t4, t5, t6, t7},    PS(t7)={t4, t5, t6, t7}. 

The set of consecutively observed transitions is Seq={ (t1, t2), (t2, t3), (t3, t4), (t4, t1), 
(t2,t4),  (t4, t3), (t3, t5), (t5, t6), (t6, t7), (t7, t4), (t4, t5), (t3, t1)}. The set of transitions in a 
two-cycle is TC= ∅. 

Definition 4.7 A Petri net circuit is a path starting and ending in the same node. A 
circuit is said to be simple if it does not use the same transition more than once, and 
elementary if it does not use the same place more than once. 

We will now extract some structural properties regarding N from S. The previously 
defined notions will be used to determine which situation between causality and 
concurrence is the most appropriate for every pair of consecutively observed transitions 
in S. 

4.3.3. Causal and concurrency relationships 

4.3.3.1. Causal relationship 
Proposition 4.2 If ta∠tb (ta∈PS(tb)) then, there must exist in N a simple elementary 

circuit (SE circuit) to which both ta and tb belong. 

Proof. Suppose there is not a SE circuit containing ta and tb. Thus, right after the 
firing of tb, all the tokens in tb

•  could be displaced by transition firings through some 
path to •tb, enabling tb without needing to fire ta, which implies that ta∉PS(tb). ♦ 

Proposition 4.3. If ta < tb and ta∠tb, then there must exist in N a place from ta to tb. 

Proof. Suppose that there is not a place from ta to tb. In order to allow the observation 
ta<tb, both ta and tb should be enabled simultaneously. By Proposition 4.2, there is at 
least one SE circuit containing ta and tb and thus, at least one path from ta to tb. Thus, if 
ta and tb are enabled simultaneously and ta is fired, all paths from ta to tb contain two 
tokens. If all transitions in a path from ta to tb are fired, then there will be two tokens in 
one of the input places of tb, resulting in a non-safe net. Then, at least one of the 
transitions ti in each path from ta to tb must be conditioned to the previous firing of tb. 
But if tb is fired, all the transitions in paths from ta to tb can be fired and all the 
transitions in paths from tb to tb which do not include ta can be fired; thus tb will be 
enabled before ta fires and as a consequence ta∉PS(tb). ♦ 

Proposition 4.4 If ta < tb and tb∠ta, then there must exist in N a place from ta to tb. 
Proof. Suppose that there is not a place from ta to tb. Then, before the observation of 

ta < tb, both ta and tb must be enabled, and thus the occurrence of tb<ta is possible, which 
together with tb∠ta and by Proposition 4.3 implies that there should be a place from tb to 
ta. However, at the firing of tb there are two tokens in such a place, and thus the net is 
not safe.♦ 

Proposition 4.5  If (ta,tb) ∈TC, then there must exist in N a place from ta to tb and a 
place from tb to ta. 

Proof. The sequence tatbta must be reproducible in N. Right after the firing of ta there 
is a token on its output places, and thus tb must be at the output of such places; 
otherwise, there would be two tokens in such places after the second firing of ta. 
Similarly, right after the first firing of ta, there are no tokens on its input places, and thus 
tb must be at the input of such places; otherwise, ta could not be fired again. The same 
reasoning can be applied to reproduce the sequence tbtatb.♦ 
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Notice that when two transitions are observed consecutively and one is 
systematically preceded by the other, a causal relationship is found. Also, when two 
transitions are involved in a two-cycle relation, they are in a causal relationship each 
other. Observe that all of these relationships are structural, and thus they do not depend 
of the initial marking of the net. 

Definition 4.8 The causal relationship set CausalR keeps track of all the causal 
relationships in S. CausalR = {(ta, tb) | (ta<tb) and (ta∠tb or tb∠ta  or (ta,tb)∈TC)}. 

Example 4.6 From the PS sets and the Seq set in the Example 4.5, we compute 
CausalR={(t1, t2), (t2, t3), (t4, t1), (t2, t4), (t5, t6), (t6, t7), (t7, t4), (t4, t5), (t3, t1)}. 

If a couple of transitions (ta, tb) in the Seq set, belongs also to CausalR, there must be 
a place from ta to tb in order to preserve the observed firing order. For the rest of the 
transition couples in Seq, we must decide if a place should exist to relate them. Next, we 
will discuss some cases where the existence of a place can be discarded. 

4.3.3.2. Concurrency relationship 
If two transitions ta and tb are concurrent, there must not exist a place neither from ta 

to tb nor from tb to ta; otherwise, the firing of one would constrain the firing of the other 
one. 

Definition 4.9 The set of all pairs of concurrent transitions is called ConcR={(ta,tb)| 
ta||tb}. 

If the sequence w is complete, (consequently, S) i.e., if it shows all of the possible 
behaviour of the observed system, we can find concurrency between transitions that are 
not in a causal relation, as showed in the next proposition. 

Proposition 4.6. Let ta, tb be two transitions which have been observed consecutively 
in a complete sequence S in both orders, i.e. (ta, tb)∈Seq, (tb, ta)∈Seq. Then (ta, 
tb)∉CausalR and (tb, ta)∉CausalR if and only if ta||tb. 

Proof. (→) Suppose that (ta,tb)∉ConcR. Without lose of generality, we suppose there 
is a place pab from ta to tb. Since (tb, ta)∈Seq, there must also be a place pba from tb to ta; 
otherwise, ta could be enabled simultaneously with tb to allow tb<ta and ta may be fired, 
yielding to the presence of two tokens in the place pab and breaking the safeness 
condition. Since (ta,tb)∉CausalR, tb∉PS(ta) and thus there must be at least one path from 
pab to pba which does not contain tb. Similarly, there must be at least one path from pba 
to pab which does not contain ta. Since (ta,tb)∉TC, tatbta should not be enabled and thus, 
there must be at least one SE circuit to which ta belongs, but tb does not belong. The 
resulting net violates the free-choice conditions (observe Figure 4.8). 

(←) Suppose now that (ta,tb)∈ConcR. This means that they can be both enabled 
simultaneously and one can be fired without needing the firing of the other one, and 
thus ta∉PS(tb) and tb∉PS(ta). Also, since there cannot be any place from ta to tb nor from 
tb to ta, neither the subsequence tatbta, nor the subsequence tbtatb can be enabled, and thus 
(ta,tb)∉CausalR and (tb, ta)∉CausalR.♦ 
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Figure 4.8 (ta, tb)∈Seq, (tb, ta)∈Seq and (ta,tb)∉ConcR 

 

Notice that our methodology allows computing also non free-choice nets. Only in the 
case where the system includes behaviour like the one shown in Figure 4.8, the 
transitions ta and tb would be wrongly considered as concurrent and the existence of 
links from ta to pab and from tb to pba would be missed. However, the obtained model 
would be still capable to reproduce the sequence S. 

It is well known that in practice, the sequence w is not complete, since in the general 
case, the observed systems do not show all their possible behaviour during the 
collection data. In fact, it is not possible to assure that the whole behaviour of a system 
has been observed. The consideration of Proposition 4.6 is then very restrictive, since it 
demands the observation of all possible behaviour; it could lead to the construction of 
incorrect models in case of incomplete sequences. Then, some less constraining rules to 
find concurrency must be considered. Next, we present several properties which allow 
us to identify couples of transitions which must be concurrent in the identified net N. 

First, we will introduce the notion of Sequential Independence, which is a 
characteristic of concurrent transitions. Later, the propositions to find concurrency will 
be introduced.   

Definition 4.10 Two transitions ta and tb are Sequentially Independent if ta∉PS(tb) 
and tb∉PS(ta). 

Proposition 4.7. Let ta and tb be two transitions in S which have been observed 
consecutively in both orders (ta < tb and tb < ta). If: 

a)  (ta,tb) ∉ CausalR and (tb,ta) ∉ CausalR 
b) and |PS(ta)| >1 and |PS(tb)| >1 

Then ta||tb. 

Proof. Suppose that ta and tb are not concurrent. Without lose of generality, suppose 
there is a place pab from ta to tb. Since tb<ta has been observed, there must be also a 
place pba from tb to ta (and as consequence N contains a two-transition cycle); otherwise, 
ta could be enabled simultaneously with tb to allow tb<ta and ta may be fired, yielding to 
the presence of two tokens in the place pab and breaking the safeness condition. Since 
tb∉PS(ta), there must be at least one path leading from pab to pba not including tb. Since 
|PS(ta)| >1, there must be at least one circuit including ta and not including pab, pba nor 
tb. Since ta∉PS(tb), there must be at least one path leading from pba to pab not including 
ta. Consider the first transition tx of this path. The free-choice conditions are not 
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satisfied, since tx and ta share pba as input place, but ta has at least one different input 
place.♦ 

Observe the net in Figure 4.9 which is composed by two independent t-components 
X1 and X2 with supports <X1>= {ta,ti} and <X2>= {tb,tk} respectively. In a sequence 
belonging to the language of such a net, transitions belonging to different t-components 
are sequentially independent. In fact, PS sets of this net correspond exactly to t-
components of the net. 

 
Figure 4.9 A net with two t-components 

The PS set of a given transition PS(tj) is very useful to find concurrency when it is 
not a singleton. However, if PS(tj) is singleton, it means that it belongs to several 
elementary circuits and then Proposition 4.7 does not allow anymore to find concurrent 
transitions to tj. However if tj is included in the PS of other transitions, we may find 
some concurrency relations, as shown in the next proposition. 

Proposition 4.8. Let ta and tb two transitions in S that have been observed 
consecutively in both orders (ta < tb and tb < ta). If ta and tb  

a) are Sequentially Independent and  
b) there exists a transition tk such that ta∠tk (ta∈PS(tk)) and tb∠tk (tb∈PS(tk)) 

then ta||tb. 

Proof. Suppose that it does not hold that ta||tb. Without loss of generality, suppose 
that there is a place from ta to tb. Since ta∈PS(tk) and tb ∈PS(tk), after the firing of tk, 
both ta and tb must be fired before the next firing of tk. Since tb < ta may happen, the 
place from ta to tb must be marked. However ta < tb may occur too, leading to the 
presence of two tokens in the same place after the firing of ta, and making the net not 
safe.♦ 

Example 4.7. Figure 4.10 shows an example of the case characterised by Proposition 
4.8. It is the general case of transitions belonging to concurrent threads (ta, tc and tb, td, 
te, tf respectively), which are eventually synchronized by one transition (tk). If we make 
several firings to build a transition sequence, eventually the PS sets would be: 

PS(tk) = {tk, ta, tc, tb, td, tf} 

PS(ta) = PS(tc) = {tk, ta, tc} 

PS(tb) = PS(tf) = {tk, tb, td, tf} 

PS(te) = {te, td}, PS(td) = {td} 

Even if PS(td) is singleton, the synchronization point tk help us to find by Proposition 
4.8 that td || ta and that td|| tc. 

ta ti tb tk
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Figure 4.10 Concurrent threads synchronized by a transition 

 

If concurrent transitions do not belong to synchronized threads, conditions of the 
next propositions help us to find a subset of concurrent transitions which do not depend 
from another transition tk. 

Proposition 4.9. Let be two transitions ta and tb which have been observed 
consecutively in both orders (ta < tb and tb < ta). If ta and tb are: 

a) Sequentially Independent and 
b) ∃ tk such that tk∈PS(tb), tk∉PS(ta), and 
c) (ta,tk)∈Seq 

then ta||tb. 

Proof. Suppose there is a place pab from ta to tb. Since tb<ta has also been observed, 
there must be also a place pba from tb to ta; otherwise, ta should be enabled 
simultaneously with tb to allow tb<ta and ta may be fired, yielding to the presence of two 
tokens in pab. Since there exist tk such that tk∈PS(tb), then there must be a SE circuit 
containing both tb and tk. If such a circuit contains places pba or pba, it is not possible to 
fire ta<tk and thus such a circuit must contain another input place pkb of tb and another 
output place pbk of tb. Now, to accomplish that tb∉PS(ta), there must be at least one path 
leading from pab to some input place of ta not including tb. Consider the first transition tx 
of this path. In order to respect the free-choice conditions, pkb should be an input place 
of tx, making the occurrence of ta<tk impossible.♦ 

Definition 4.11 The Inverse Systematic Precedence set of a transition PS-1: T→2T 
contains the transitions which are dependent of a common transition to re-enable their 
firing: 

)}(|{)(1
kjjkkj tPStandttttPS ∈≠=−  

Proposition 4.10 Let be ta and tb two transitions which have been observed 
consecutively in both orders (ta < tb and tb < ta). If ta and tb are: 

a) Sequentially Independent, and 
b) PS-1(ta) ≠ ∅, ∀tj∈PS-1(ta), tj || tb, 

then ta||tb. 

Proof. Suppose there is a place pab from ta to tb. Since tb<ta has also been observed, 
there must be also a place pba from tb to ta; otherwise, ta should be enabled 
simultaneously with tb to allow tb<ta and thus ta may be fired, yielding to the presence of 
two tokens in the place from ta to tb. Since tb∉PS(ta), there must be at least one path 
leading from pab to pba not including tb. Similarly, there must be at least one path leading 
from pba to pab not including ta. Since PS-1(ta) ≠ ∅, there is at least one transition tj 
concurrent to tb such that tj∠ta and there must be a SE circuit including ta and tj. Such a 
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circuit cannot contain pab nor pba otherwise tj may be able to fire without need of firing 
ta. Consider the input place px of ta in this path. The free-choice conditions are not 
satisfied between px and pba: they share ta as output transition, but pba has at least 
another output transition.♦ 

An example where Proposition 4.10 can be used is shown in Figure 4.11. PS-1(ta) ={ 
tj1, tj2} and tj1||tb, tj2||tb are determined by Proposition 4.7. Consequently, ta || tb. 

 
Figure 4.11 Concurrence between transitions whose PS is a singleton 

4.3.4. Building the non-observable PN 
We will use now the computed data from sequence S to infer internal evolutions of 

the system. We will make an analysis of causal and concurrency relations that have 
been found between consecutive transitions in order to compute non-observable places 
of the net.  

Definition 4.12 The set Seq’= (Seq - CausalR) - ConcR contains the set of transition 
pairs (ta,tb) which have been observed consecutively, but are not in a causal relation or 
in a concurrency relation. 

If Seq’ ≠ ∅, there are two possibilities for the remaining transition pairs (ta,tb) in 
Seq’: 

a) They are both input and output transitions of a place with several input and 
output transitions 

b) They are concurrent, but w (thus, S) is not complete enough to find such a 
relationship 

Since our goal is to approximate as much as possible the language generated by the 
net N to the observed sequence S, we assume that if we have observed two transitions 
consecutively (ta<tb) but by none of the previous propositions we have determined that 
they are concurrent, thus the firing of ta has enabled tb. This is made in order to preserve 
in N the firing order observed in S. Then, a place will be added from ta to tb; this 
denoted by [ta, tb]. 

When it is found that [ta, tc] and [tb, tc], and the involved transitions are related by a 
single place, this is represented as [tatb, tc]. In general, a place p can be denoted as 
[ta1 ta2… tal, tb1 tb2… tbh], where tai are the input transitions of p and tbi are the output 
transitions of p, and l=|•p|, h=|p•|, as illustrated in Figure 4.12. 

ta tbtj1tj2
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Figure 4.12 A PN place p = [ta1 ta2…tal, tb1 tb2… tbh] 

The same place could be used to relate several consecutive transitions. If a transition 
tk has been observed followed by two transitions tai, taj in S (tk<tai and tk<taj), there are 
two cases to represent such observations into the PN model: the case of selection, where 
they are represented with the same place [tk, tai taj] (Figure 4.13a) or the case of 
concurrence, where they are represented with different places [tk,tai] [tk, taj] (Figure 
4.13b).  

  
a) tai, taj are not concurrent and have not 

been observed consecutively 
b) tai, taj are concurrent or have been 

observed consecutively 

Figure 4.13 Selection and parallelism representation 

In a generalized form, for every set tk<ta1,…, tk<taw of non-concurrent consecutive 
transition pairs with the same first transition tk, we can thus merge all tk<ta1,…, tk<tax 
whose second transitions ta1…taw are non-concurrent nor consecutive and represent 
them into a single place [tk, ta1…taw], as illustrated in Figure 4.14. 

 
Figure 4.14 Selection and concurrence between post-transitions 

Once we have made the first merging, all places [tk1, ta1…taw], [tk2, ta1…taw],…, [tkz, 
ta1…taw] whose input transitions are non-concurrent nor consecutive and whose output 
transitions are the same, can be merged into a single place as illustrated in Figure 4.15. 

 
Figure 4.15 Selection and concurrence between pre-transitions 

tb1 tb2 …

ta1 talta2 …

tbh

tk

tai taj

tk

tai taj

tk

ta1 tawta2 … tb1 tbxtb2 … tc1 tcytc2 …

…

ta1 tawta2 …

tk1 tkztk2 … tk1 tkztk2 …
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Once the structure of the net is built, the initial marking can be computed allowing 
the firing of S. All transitions are processed, from the last transition till the first one. The 
processing of a transition is as follows: 

• If its output places are marked, the tokens in such places are retired 
• Tokens are added to its unmarked input places  

When there are transitions with an empty PS, it means that they were observed only 
once and thus, they will not be included in any cycle of the constructed model. In case 
of one of these transitions be a source transition, we will add an input marked place for 
avoiding non-safeness; accordingly for a sink transition we will add an unmarked output 
place. 

Example 4.8. In the sequence from the Example 4.5, S = t1 t2 t3 t4 t1 t2 t4 t3 t5 t6 t7 t4 t1 
t2 t3 t4 t5 t6 t7 t4 t1 t2 t3 t4 t1 t2 t3 t4 t5 t6 t7 t4 t5 t6 t7 t4 t1 t2 t3 t4 t5 t6 t7 t4 t5 t6 t7 t4 t5 t6 t7 t4 t5 t6 
t7 t4 t5 t6 t7 t4 t1 t2 t4 t3 t1 t2 t3 t4 t1 t2 t3 t4 t1 t2 t4 t3 t1 t2 t3 t4 t1, the concurrent transitions 
determined are ConcR = {(t3,t4)(t4,t3)}. Since Seq={(t1, t2), (t2, t3), (t3, t4), (t4, t1), (t2,t4),  
(t4, t3), (t3, t5), (t5, t6), (t6, t7), (t7, t4), (t4, t5), (t3, t1)} and CausalR={(t1, t2), (t2, t3), (t4, t1), 
(t2, t4), (t5, t6), (t6, t7), (t7, t4), (t4, t5), (t3, t1)}, we have that Seq’ = {(t3, t5)} and thus, there 
is a relationship that has not been explained as sequential nor as concurrent. We 
consider all couples of consecutive non-concurrent transitions (all couples in Seq - 
ConcR) to compute the places: [t1, t2], [t2, t3], [t3, t1 t5], [t4, t1 t5], [t5, t6], [t6, t7], and [t2 t7, 
t4]. The structure and the computed initial marking correspond to the net in Figure 4.16.  

 
Figure 4.16 Non-observable model 

4.3.5. Places verification 
As stated before, with the proposed mechanisms in last section, the sequence w may 

not have shown enough combinations which allow us to determine concurrency. If the 
sequence w were complete, all the concurrent and sequential behaviour could be found 
and represented, according to Proposition 4.6. However, since we know that w might 
not be complete, in order to approximate the language of N to S as much as possible, we 
have considered that if two transitions have not been declared as concurrent, they must 
be in a sequential relationship. But if the transitions are actually concurrent, the 
sequential consideration could lead us to arcs or places in the built model which restrict 
too much the behaviour of the system and do not allow the firing of S. Now, we present 
some notions that will help us to verify if added places until now do not interfere in the 
correct reproduction of S. 

Proposition 4.11. If the IPN model has been correctly build, every computed non-
observable place p in N must fulfil the place input-output flow equation: 

1t 5t

2t 6t

4t3t 7t

p1

p2

p3 p4

p5

p6p7



82 

 

1)()( ±= ∑∑
•∈•∈ pt

i
pt

i
ii

tOcctOcc  

where Occ(tk) is the number of occurrences of tk in S 
Proof. Equation follows straightforward from the IPN transition enabling and firing 

conditions and from the fact that N must be safe. ♦ 

Proposition 4.12 If there exists a place p such that |•p|=1, then ∀tj ∈ p•, tk ∈ PS(tj), 
where tk is the input transition of p. Also, if there exists a place p such that |p•|=1, then 
∀tj ∈ •p, tk ∈ PS(tj), where tk is the output transition of p. 

Proof. If |•p|=1, for the re-enabling of tj, p must be marked and the only way to do so 
is the firing of tk, and thus tk ∈ PS(tj). Similarly, if |p•|=1, for the re-enabling of tj, p 
must be unmarked and the only way to do so is the firing of tk, thus  tk ∈ PS(tj).♦ 

Correction rule. If the input-output flow equation or the conditions in Proposition 
4.12 are not satisfied by some place, the arcs relating transitions which are not in 
CausalR are removed. If there are not CausalR represented in such a place, it is deleted. 

Example 4.9 In the model of Figure 4.16, we check the input-output flow equation 
for each place. Occ(t1) = 12, Occ(t2) = 11, Occ(t3) = 11, Occ(t4) = 20, Occ(t5) = 9, 
Occ(t6) = 9, Occ(t7) = 9. We check also the condition of Proposition 4.12. 

p1: Occ(t1) = Occ(t2) (±1), t1∈PS(t2), t2∈PS(t1) 

p2: Occ(t2) = Occ(t3) (±1), t2∈PS(t3), t3∈PS(t2) 

p3: Occ(t3) ≠ Occ(t1) + Occ(t5) (±1)  wrong place 

p4: Occ(t4) = Occ(t1) + Occ(t5) (±1), t4∈PS(t1), t4∈PS(t5) 

p5: Occ(t5) = Occ(t6) (±1), t5∈PS(t6), t6∈PS(t5) 

p6: Occ(t6) = Occ(t7) (±1), t6∈PS(t7), t7∈PS(t6) 

p7: Occ(t2) + Occ(t7) = Occ(t4) (±1), t4∈PS(t2), t4∈PS(t7) 
Observe that the condition p3: Occ(t3) = Occ(t1) + Occ(t5) (±1) is not satisfied, and 

thus the place p3 must be corrected to allow reproducing the observed behaviour. Since 
t3∈PS(t1), t1∈PS(t3), t3∉PS(t5) t5∉PS(t3), we can conclude that (t3, t5) are not in a casual 
relationship (remember that Seq’ = {(t3, t5)}), and thus, to correct the place, we delete 
the link going from p3 to t5. The resulting net is shown at Figure 4.17. Notice that the 
computed net is not free-choice. 

 
Figure 4.17 Non-observable model 
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Observe that in Figure 4.5 observable places [t2, t3] and [t6, t7] already exist. By 
adding computed non-observable places to such a model and deleting implicit places 
[t2,t3] and [t6,t7], we obtain the final result shown in Figure 4.18, which reproduces w. 

 
Figure 4.18 Final model representing the system from Example 4.1  

Now, we present another example with the whole non-observable behaviour 
identification procedure developed.  

Example 4.10. In order to illustrate our non-observable behaviour discovering 
technique, consider the net in Figure 4.19 composed by only non-observable places: 

 
Figure 4.19 A test IPN with non-observable places 

We have built the net in the Platform Independent Petri net Editor (PIPE), which is 
an editor for visualization and analysis of Petri nets. With such tool, we have generated 
a transition sequence of length 1000 by firing randomly transitions of the net : S = t9 t11 
t1 t4 t10 t9 t6 t1 t2 t12 t5 t6 t12 t8 t11 t10 t9 t6 t10 t12 t8 t11 t9 t10 t11 t9 t10 t11 t9 t11 
t10 t9 t6 t12 t10 t5 t11 t9 t1 t4 t1 t6 t2 t12 t5 t1 t2 t10 t6 t12 t8 t11 t9 t10 t11 t9 t10 t11 
t9 t10 t11 t9 t1 t4 t11 t10 t9 t11 t10 t9 t11 t1 t4 t10 t9 t1 t11 t2 t1 t2 t1 t2 t1 t2 t10 t9 t6 
t1 t12 t2 t10 t8 t11 t9 t11 t10 t9 t10 t6 t12 t8 t11 t9 t6 t1 t2 t10 t12 t5 t11 t9 t11 t10 t9 t6 
t10 t12 t5 t11 t9 t6 t1 t2 t1 t2 t12 t1 t5 t6 t2 t1 t4 t10 t12 t8 t11 t9 t1 t4 t10 t6 t12 t5 t11 
t9 t10 t11 t9 t10 t6... 

From such a sequence, the following data has been computed: 

PS(t11) = {t11, t9}, PS(t10) = {t10, t9}, PS(t9) = {t9, t11, t10}, PS(t8) = {t8, t6, 
t12}, PS(t6) = {t6, t12}, PS(t5) = {t5, t6, t12}, PS(t4) = {t4, t1}, PS(t2) = {t2, t1}, 
PS(t1) = {t1}, PS(t12) = {t12, t6}. 

Occ(t11)=127, Occ(t10)=128, Occ(t9)=128, Occ(t8)=60, Occ(t6)=123, Occ(t5)=63, 
Occ(t4)=55, Occ(t2)=69, Occ(t1)=124, Occ(t12)=123 

0001:1 cbakt ∧∧∧ 0002:5 cbakt ∧∧∧

1:2 at ↑ 2:6 at ↑

−A

0:4 at ↑

B C

1:3 bt ↑

+A

0:7 ct ↑

t1 t2t4
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t9t11

t5
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Observed consecutive transitions: Seq = { 
(t9, t11), (t11, t1), (t1, t4), (t4, t10), (t10, t9), (t9, t6), 
(t6, t1), (t1, t2), (t2, t12), (t12, t5), (t5, t6), (t6, t12), 
(t12, t8), (t8, t11), (t11, t10), (t6, t10), (t10, t12), (t11, t9), 
(t9, t10), (t10, t11), (t12, t10), (t10, t5), (t5, t11), (t9, t1), 
(t4, t1), (t1, t6), (t6, t2), (t5, t1), (t2, t10), (t10, t6), 
(t4, t11), (t1, t11), (t11, t2), (t2, t1), (t1, t12), (t12, t2), 
(t10, t8), (t12, t1), (t1, t5), (t6, t4), (t8, t6), (t2, t6), 
(t12, t4), (t11, t4), (t1, t8), (t8, t2), (t2, t8), (t4, t12), 
(t2, t11), (t8, t4), (t4, t6), (t8, t10), (t2, t5), (t5, t10), 
(t8, t1)} 
Concurrences: ConcR = { 

(t2, t12), (t11, t10), (t6, t10), (t10, t12), (t10, t5), (t6, t2), (t4, t11), (t11, t2), (t10, t8), 
(t6, t4), (t12, t4), (t8, t2), (t1, t11), (t1, t6), (t1, t12) } 

After the creation of the net as specified in section 4.3.4, the following places have 
been considered: p11:[t11 ,t9], p10:[t10 ,t9], p9:[t8 t5 ,t1], p8:[t1 ,t8 t5], p7:[t12 ,t8 t5],  
p6:[t8, t4], p5:[t6 ,t12], p4:[t9 t8 t5 ,t6 t11], p3:[t2 ,t5 ], p2:[t9 t4 t2 ,t10 t1] and 
p1:[t1 , t4 t2]. 

Observe that t2<t5 has been observed, but t5<t2 has not been observed and this leads 
to the creation of the place p3:[t2, t5]. However, we make the previously described 
verification on this and other places and some corrections are made: 

Place p11:[t11 ,t9] Correct place 

Place p10:[t10 ,t9 ] Correct place 

Place p9:[t8 t5 ,t1 ] Wrong place: t1∉PS(t8), t1∉PS(t5) 

Place p8:[t1 ,t8 t5 ] Wrong place: t1∉PS(t8), t1∉PS(t5) 
Place p7:[t12 ,t8 t5 ] Correct place 

Place p6:[t8 ,t4 ] Wrong place: Occ(t8)≠Occ(t4) ±1 

Place p5:[t6 ,t12 ] Correct place 

Place p4:[t9 t8 t5 ,t6 t11 ] Correct place 

Place p3:[t2 ,t5 ] Wrong place: Occ(t2)≠Occ(t5) ±1 
Place p2:[t9 t4 t2 ,t10 t1 ] Correct place 

Place p1:[t1 ,t4 t2 ] Correct place 

All places not satisfying the flow equation are deleted. The final set of places is 
p11:[t11,t9], p10:[t10,t9], p7:[t12,t8 t5], p5:[t6,t12], p4:[t9 t8 t5,t6 t11], p2:[t9 t4 t2 ,t10 
t1 ] and p1:[t1,t4 t2], which corresponds in fact to the net in Figure 4.19. 

All algorithms described to construct the non-observable part of the net can be 
summarized in the following procedure. 
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Algorithm 4.5 Non-observable behaviour construction 
Input: The sequence S 
Output: Non-observable model representing S 

1. Compute Seq, PS and TC from S 
2. From the information in Seq, PS and TC compute CausalR 
3. From Seq and CausalR, compute ConcR 
4. Merge transitions as specified in 4.3.4 
5. Validate and correct places as specified in 4.3.5 

Proposition 4.13 The PN model N built with the previous procedures summarized in 
Algorithm 4.5 executes the sequence S 

Proof. Regard that we have computed the following sets: 

• Seq containing all the consecutive transition couples in S. If we represent into 
a net all couples in Seq, the net will be able to reproduce S.  

• CausalR containing transition couples (ta, tb)∈Seq that must be related by a 
place. 

• ConcR containing transition couples (ta, tb)∈Seq, that must not be related by 
any place. 

If the set Seq’= (Seq - CausalR) - ConcR = ∅, that means that all transition couples 
(ta,tb)∈Seq are correctly represented in N and thus the sequence S is reproducible. This 
follows from the consideration of ordinary safe Petri nets.  If Seq’≠∅, it means that 
there are still transition couples that cannot be distinguished as concurrent or sequential. 
Thus, by merging several couples in Seq, all couples in Seq’ are considered as 
sequential by creating places with several input and output transitions. If they are 
actually sequential, all the verification rules are satisfied. Otherwise, they are actually 
concurrent and they are corrected with the described procedure. Once they are 
corrected, it only remains places relating sequential transitions and thus the sequence S 
is executable.♦ 

Properties of Algorithm 4.5  

• Given that all of the procedures of Algorithm 4.5 are executed in polynomial time 
the construction of the non-observable IPN is efficiently performed. 

• The application of Algorithm 4.5 to a sequence S provides always the same PN 
model, due to that all the constructive steps in the procedures are deterministically 
performed, i.e. there are not random selections on the input and intermediate data.    

4.3.6. Test examples 
The method for building the non-observable IPN has been tested with diverse PN 

structures following the same procedure detailed in the Example 4.10. We present here a 
subset of some representative examples which have been correctly identified. 

For the sequence S = t3 t5 t4 t8 t1 t2 t7 t3 t2 t1 t4 t8 t7 t6 t5 t8 t5 t3 t4 t8 t5 t3 t8 t2 t3 t2 t1 t5 t8 t5 
t6 t4 t1 t5 t6 t5 t6 t7 t4 t8 t7 t8 t1 t5 t6 t7 t4 t8 t3 t7 t4 t3 t8 t4 t5 t8 t5 t1 t8 t7 t2 t6 t1 t4 t3 t5 t8 t5 t8 t2 t7 
t1 t6 t2 t1 t7 t8 t4 t7 t1 t2 t3 t6 t2 t1 t2 t5 t3 t8 t7 t4 t6 t3 t7 t8 t5 t2 t1 t2 t6 t1 t7 t6 t7 t8 t5 t4 t6 t7 t3 t2 t6 
t3 t7 t4 t8 t5 t3 t4 t8 t5 t1 t6 t5 t6 t7 t6 t5 t8 t5 t6 t5 t8 t5 t8 t2 t3 t2 t1 t7 t4 t8 t1 t4 t5 t3 t6 t5 t2 t6 t1 t4 t1 
t4 t1 t7 t2 t6 t5 t3 t6 t7 t2 t1 t6 t2 t5 t8 t7 t6 t5 t6 t1 t5 t2 t3 t2 t3 t8 t2 t1 t4 t3 t5 t8 t7 t4 t1 t8 t7 t2 t1 t2 t3 
t6 t4 t7 t8 t7 t6, the obtained PN model  is shown in Figure 4.20, which is in fact two 
independent PN systems. 
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Figure 4.20 Two equal components running concurrently 

The identification method applied to the sequence S = t4 t1 t2 t3 t1 t5 t6 t7 t2 t3 t4 t5 t6 t1 
t2 t3 t7 t1 t4 t2 t5 t4 t3 t5 t1 t4 t5 t2 t6 t3 t1 t7 t6 t7 t6 t2 t3 t1 t2 t3 t7 t1 t4 t5 t2 t4 t5 t3 t4 t5 t4 t5 t1 t6 t7 
t4 t2 t3 t1 t5 t6 t7 t6 t2 t3 t7 t4 t1 t5 t2 t4 t5 t6 t7 t3 t1 t6 t2 t7 t6 t7 t6 t7 t6 t3 t7 t4 t1 t2 t3 t5 t1 t4 t5 t6 t7 
t2 t6 t3 t1 t7 t4 t2 t3 t5 t6 t1 t2 t3 t1 t7 t4 t5 t6 t7 t4 t2 t3 t1 t5 t4 t2 t5 t6 t3 t7 t6 t1 t7 t4 t2 t3 t5 t4 t5 t1 t6 
t2 t7 t4 t5 t6 t3 t7 t1 t6 t7 t2 t3 t1 t2 t6 t7 t4 t5 t4 t5 t3 t4 t5 t4 t1 t5 t4 t5 t4 t5 t2 t6 t3 t1 t2 t3 t1 t7 t2 t3 t1 
t4 t5 t6 t2 t3 t1 t2 t3 t1 t2 t3 t1 t7 t2 t6 t7 t3 t1 t2 t4 t5 t4 yields two different PN models shown in 
Figure 4.21. 

 
Figure 4.21 Two different components running concurrently 

From the sequence S = t1 t2 t3 t1 t4 t5 t6 t7 t8 t2 t3 t1 t2 t4 t5 t6 t3 t4 t5 t1 t7 t2 t8 t6 t3 t4 t1 t2 t5 
t7 t8 t6 t7 t8 t3 t1 t2 t4 t5 t6 t3 t1 t2 t7 t4 t8 t5 t6 t7 t3 t1 t2 t4 t5 t8 t6 t7 t8 t3 t4 t5 t1 t2 t6 t7 t3 t8 t1 t2 t4 
t5 t6 t3 t7 t8 t1 t2 t4 t5 t6 t7 t3 t8 t4 t5 t6 t1 t7 t2 t3 t4 t8 t1 t5 t2 t6 t7 t3 t1 t4, the obtained model is 
shown in Figure 4.22, which is a composition of smaller sequential models exhibiting 
together concurrent behaviour. 

 
Figure 4.22 Concurrent machines net 

The processing of the sequence S = t5 t3 t1 t0 t1 t0 t2 t4 t5 t4 t5 t4 t0 t1 t5 t4 t5 t3 t2 t4 t0 t2 t3 
t1 t0 t2 t4 t0 t2 t4 t5 t4 t5 t3 t1 t0 t1 t5 t3 t2 t3 t2 t4 t0 t2 t4 t0 t1 t5 t4 t5 t4 t0 t2 t3 t2 t3 t2 t4 t0 t1 t0 t2 t4 
t0 t1 t0 t1 t5 t3 t2 t3 t2 t3 t1 t0 t1 t5 t4 t5 yields a PN state machine (Figure 4.23) in which it is 
possible to move from one place to another in one step. 

 
Figure 4.23 PN state machine whose PS(tj)=∅ ∀tj 
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The sequence S = t1 t4 t2 t1 t2 t4 t1 t4 t2 t1 t2 t3 t1 t3 t2 t1 t3 t2 t1 t3 t2 t1 t4 t2 t1 t2 t3 t1 t2 t4 t1 
t3 t2 t1 t2 t4 t1 t3 t2 t1 t4 t2 t1 t2 t4 t1 t2 t3 t1 t3 t2 t1 t4 t2 t1 t3 t2 t1 t4 t2 t1 t3 t2 t1 t2 t4 t1 t4 t2 t1 t2 t3 
t1 t4 t2 t1 t2 t4 t1 t4 t2 t1 t4 t2 t1 t2 t3 t1 t3 t2 t1 t3 t2 t1 t4 t2 t1 t3 t2 t1 yield the model in Figure 
4.24 when it is treated with the identification method. 

 
Figure 4.24 Selection and concurrency combined 

The model in Figure 4.25 is obtained after the treatment of the sequence S = t0 t1 t2 t3 
t4 t5 t6 t1 t2 t3 t4 t5 t6 t1 t2 t4 t5 t3 t6 t1 t2 t4 t3 t5 t6 t1 t2 t3 t4 t5 t6 t1 t2 t4 t5 t3 t6 t1 t2 t4 t5 t3 t6 t1 t2 
t4 t3 t5 t6 t1 t2 t3 t4 t5 t6 t1 t2 t4 t3 t5 t6 t1 t2 t3 t4 t5 t6 t1 t2 t4 t7. Notice that there are transitions 
which only fire once in the sequence (t0 and t7). 

 
Figure 4.25 A net with starting and ending transitions 

Finally, we present two cases in which the built models are not the same than the net 
from which the sequence is obtained. The first case corresponds to the original PN 
model in Figure 4.26.a, from which the sequence S = t1 t2 t3 t0 t2 t3 t1 t2 t3 t0 t2 t3 t1 t2 t3 t0 t2 t3 
t0 t2 t3 t1 t2 t3 t0 t2 t3 t0 t2 t3 t0 t2 t3 t1 t2 t3 t1 t2 t3 t0 t2 t3 t1 t2 t3 t0 t2 t3 t0 t2 t3 t0 is obtained. The 
identified model, which is illustrated in Figure 4.26.b is not equal to the original one, 
but it is equivalent given it represents the same behaviour. Indeed is easy to see that the 
original model has some redundancy (if we abstract for the observable part).  

 

  
a) b) 

 Figure 4.26 Original Free-choice PN and identified model 

The second case corresponds to original and identified models in Figure 4.27.a and 
Figure 4.27.b respectively. The reproduced sequence we have used for identification is 
S = t1 t3 t4 t6 t2 t3 t5 t6 t1 t3 t4 t6 t1 t3 t4 t6 t2 t3 t5 t6 t2 t3 t5 t6 t1 t3 t4 t6 t1 t3.  
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a) b) 

Figure 4.27 Non-identified memory places 

Notice that nor the place from transition t1 to t4 has not been found, neither the place 
from t2 to t5. This is due to the couples (t1 , t4) and (t2 , t5) do not appear in the set Seq 
because they are never observed consecutively. Such places can be considered as a 
memorisation of the choice of firing t1 or t2; these places may be found if it is possible 
to determine the t-invariants from S, but this is out of the reach of this thesis. However, 
notice that the sequence S is executable in the identified model. 

4.4. Conclusion 
A method to discover the actual input-output relation of PLC controlled discrete 

event systems has been presented. This yields a concise IPN representation of the 
compound Plant + Controller behaviour by associating to transitions sufficient 
conditions on the inputs which represent both the input changed and the current inputs 
values (execution context). None of the approaches analyzed in Chapter 1 have made 
such kind of analysis or representation of the input conditions. The obtained structure is 
remarkably more clear and expressive than the identified models with the stepwise 
method of Chapter 3. 
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Chapter 5 
Implementation and experimental tests 

Abstract. This chapter presents the application of the identification methods to cases 
studies defined on two experimental sites. First, the proposed methods have been 
implemented as software tools that allow processing large actual data; such tools are 
briefly described. Then, the experimental sites are presented, and with the help of the 
tools, the identification algorithms are tested with input-output sequences obtained 
during the operation of the closed loop controlled manufacturing processes. 
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Two tools have been developed to automate the IPN model identification algorithms 
presented in this thesis (one for each method). In this chapter, we show some of the 
results obtained with the first and second techniques of chapters 3 and 4 respectively. 

5.1. Software tools description 
The input data is the same for the two described algorithms and several software 

components have been used in both tools. However, there are some differences: the 
stepwise technique needs an identification parameter κ, and each one of the software 
tools returns a different graphical format for the IPN. All the implementations have been 
completed with IDE Netbeans 6.5, java jdk 1.6.0. 

The user interface can be observed in Figure 5.1. In order to start an identification 
process, there are several fields that the user must fill in: 

• The name of the input file containing the observed I/O sequence. If the input 
file name text field is mouse clicked, an open dialog is showed and the txt file 
containing the sequence can be chosen by the user. 

• The desired name for the output file. A save dialog appears if the output file 
name text field is clicked. 

• The accuracy identification parameter. The tool for the stepwise method 
needs the insertion of the desired accuracy parameter 𝜅. There is a text field 
where the user can provide it. 

• The inversed order condition allows being compliant with two different forms 
of data file (I/O or O/I). There is a check box that must be selected to let the 
software know if the order is O/I. 

• The total elementary inputs number. Also it might happen that the input file 
does not have a tab to divide input values from output values. In that case, the 
user must insert the total number of inputs to indicate the software how to 
divide between input and output signals. 

• The index mask. If we want to take into account only some of the inputs or 
outputs of the I/O vectors, we can use a mask by selecting the corresponding 
check box and inserting the indices of fields we want to take into account. 
This allows, for example, masking push buttons or lights that are not 
mandatory in the identified model. 

• The mnemonics of inputs and outputs. The desired names of the outputs and 
inputs (in that order) are written separated with a blank. 

• The same PLC cycle condition. As specified at the end of section 4.2.5, there 
are two options for the construction of firing conditions: the observation of 
input and output events at the same PLC cycle or the consideration of 
previous PLC cycles. There is check box where the user can choose the 
construction mode for identification. 
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Figure 5.1 User interface 

Figure 5.2 shows the global software description. When the button Start 
identification is pressed, the I/O input sequence is read from a file containing several 
rows, each one representing an I/O vector. Each row is composed of three parts 
separated by tabs: the instant at which the I/O vector has been stored (which is not used 
by the proposed algorithms, but could be used in future applications), the values of the 
inputs and the values of the outputs at each PLC cycle. When a line of such a file is 
read, time information is ignored and input and output are transformed into binary 
vectors. The identification algorithm described in Chapter 3 or that in Chapter 4 is then 
applied and the IPN is constructed in the correspondent output format. 

 
 Figure 5.2 Software architecture 

For the stepwise method, the creation of the graphic model images has been 
performed with the hierarchical layout module dot of Graphviz. At the end of the 
identification, a file written in the format read by such a drawing tool is created. Then, 
the command dot is invoked from the application to produce the output result, in the 
form of a jpg or a svg file. 

User
interface

Options

Input file

Input reader Identification
Algorithm Drawer

IPN

I/O vectors dot file

Mnemonics, κ

2    0000  001001010
45  1000  101001010
67  1000  100001010
83  1000   000001010
99  0110   000101010
...
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For the statistical method, the XML format has been chosen to represent the IPN 
models. They can later be opened by the software PIPE. 

Once the identification algorithm has been executed, the user interface displays into 
the text area called Data some information about the identification process, such as the 
number of transitions and places of the IPN obtained and the execution time for 
identification. 

Now, we present two experimental systems which have been used for testing the 
identification methods with the help of both tools. 

5.2. Interactive Training System for PLC 
The Interactive Training System for PLC (ITS PLC) Professional Edition is a tool 

for PLC programming which offers virtual systems for education and training in PLC 
programming. Each system is a behavioural and visual simulation of an industrial 
system including virtual sensors and actuators, so its state can be sensed by a real PLC. 
The objective is to program the PLC to control each virtual system as if it was a real 
system. The sensors and actuators data is exchanged between the PLC and the system 
by a data acquisition board (DAQ) with 32 I/O isolated channels and USB interface. 

For our experimental work, we have chosen the so called Sorting system. It transports 
cases from a feeder to a couple of elevators, sorting them by height (Figure 5.3). It 
consists of 11 inputs (s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10) and 7 outputs (A0, A1, 
A2, A3, A4, A5, A6). 

 
Figure 5.3 The Sorting system from ITS PLC 

For the collection of data, a routine written on Python has been launched at the 
computer with the ITS PLC (see Figure 5.4). It uses the Modbus communication 
protocol to read values of the inputs and outputs at each PLC cycle. The PLC is a 
Modicon TSX Premium. 
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Figure 5.4 Scheme of the data collection procedure 

 

If a I/O vector read is equal to the previous one, it is ignored. Otherwise, the I/O 
vectors as well as the time value are written into a file. Figure 5.5 shows the 
experimental environment. 

 
Figure 5.5 Experimental environment 

After the treatment of 30 pieces, the data collection has been stopped, giving as result 
a file containing 472 I/O vectors. 

5.2.1. Application of the stepwise method 
The stepwise identification procedure from Chapter 3 has been applied with different 

values of κ. Identified models for κ = 1 and κ = 2 are showed in Figure 5.6. The 
execution time for the identification was 156ms and 157ms respectively. 
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a) Identified model with κ = 1 b) Identifed model with κ = 2 

Figure 5.6 Identified models for the Sorting system 

Observe that increasing the value of κ provokes that several transition paths are 
created. However, the net computed with κ = 2 does not represent a significant change 
from the net computed with κ = 1 and thus, we decided that it is not necessary to 
compute new nets with largest values of κ, and the value κ = 1 is enough. 
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By expertise knowledge, we have been able to validate models, checking that they 
are able to reproduce the behaviour of the plant and controller compound. However, 
expressiveness of the nets is reduced: it is hard for someone not familiarised with the 
system to know how the system works by looking at the models. 

A compact model (Figure 5.7) has been created following the procedures described 
in section 3.2. The execution time to produce this model has been 125ms. Even if the 
model is easier to read, notice how several input events are related to a single transition 
and as a consequence, it is not clear to distinguish which input sensors belong to a 
condition and which ones are the causal events that actually produce the setting of the 
output values to the actuators. 

 
Figure 5.7 Reduced model for the sorting system 

5.2.2. Application of the statistical method 
Consider now the results obtained by the statistical method of Chapter 4. Direct and 

context matrices contain values in Figure 5.8 and Figure 5.9 respectively. 
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Figure 5.8 Direct Causality Matrix of the Sorting system 

 
Figure 5.9 Indirect Causality Matrix of the Sorting system 

 

By analysis of the I/O sequence and direct and indirect matrices, the statistical 
procedure has computed the model fragments in Figure 5.10. Notice how the number of 
transitions has been reduced with respect to models in Figure 5.6. We have verified that 
the obtained firing functions are correct. 

A0_1     A0_0     A1_1     A1_0     A2_1     A2_0     A3_1     A3_0     A4_1     A4_0     A5_1     A5_0     A6_1     A6_0
s0_1          0.000    1.000    1.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000 0.000
s0_0          0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000 0.000
s1_1          0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000 0.000
s1_0          0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000 0.000
s2_1          0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000 0.000
s2_0          0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000 0.000
s3_1          0.000    0.000    0.000    0.000    0.630    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000 0.000
s3_0          0.967    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000 0.000
s4_1          0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000 0.000
s4_0          0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000 0.000
s5_1          0.000    0.000    0.000    0.000    0.370    0.000    1.000    0.000    0.000    0.000    1.000    0.000    1.000 0.000
s5_0          0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000 0.000
s6_1          0.000    0.000    0.000    0.000    0.000    0.630    0.000    0.000    1.000    0.000    0.000    0.000    0.000 0.000
s6_0          0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000 0.000
s7_1          0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000 0.000
s7_0          0.000    0.000    0.000    0.000    0.000    0.000    0.000    1.000    0.000    0.414    0.000    0.000    0.000 0.000
s8_1          0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000 0.000
s8_0          0.000    0.000    0.000    0.000    0.000    0.370    0.000    0.000    0.000    0.586    0.000    0.000    0.000 0.000
s9_1          0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000 0.000
s9_0          0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000 1.000
s10_1        0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000  0.000
s10_0        0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    1.000    0.000  0.000

A0_1     A0_0     A1_1     A1_0     A2_1     A2_0    A3_1     A3_0     A4_1     A4_0     A5_1     A5_0    A6_1 A6_0
s0=1          0.967    1.000    1.000    0.000    0.630    0.717    0.000    0.250    1.000    0.241    0.000    1.000    0.000 1.000
s0=0          0.033    0.000    0.000    0.000    0.370    0.283    1.000    0.750    0.000    0.759    1.000    0.000    1.000 0.000
s1=1          0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000 0.000
s1=0          1.000    1.000    1.000    0.000    1.000    1.000    1.000    1.000    1.000    1.000    1.000    1.000    1.000 1.000
s2=1          0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000 0.000
s2=0          1.000    1.000    1.000    0.000    1.000    1.000    1.000    1.000    1.000    1.000    1.000    1.000    1.000 1.000
s3=1          0.000    0.000    0.000    0.000    0.630    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000 0.000
s3=0          1.000    1.000    1.000    0.000    0.370    1.000    1.000    1.000    1.000    1.000    1.000    1.000    1.000 1.000
s4=1          1.000    0.033    1.000    0.000    0.630    0.630    0.000    0.000    1.000    0.000    0.000    1.000    0.000 1.000
s4=0          0.000    0.967    0.000    0.000    0.370    0.370    1.000    1.000    0.000    1.000    1.000    0.000    1.000 0.000
s5=1          0.000    0.300    0.000    0.000    0.370    0.370    1.000    1.000    0.000    1.000    1.000    0.000    1.000 0.000
s5=0          1.000    0.700    1.000    0.000    0.630    0.630    0.000    0.000    1.000    0.000    0.000    1.000    0.000 1.000
s6=1          0.000    0.100    0.000    0.000    0.370    0.630    1.000    0.000    1.000    0.000    1.000    0.000    1.000 0.000
s6=0          1.000    0.900    1.000    0.000    0.630    0.370    0.000    1.000    0.000    1.000    0.000    1.000    0.000 1.000
s7=1          0.000    0.100    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000 0.000
s7=0          1.000    0.900    1.000    0.000    1.000    1.000    1.000    1.000    1.000    1.000    1.000    1.000    1.000 1.000
s8=1          0.000    0.133    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000 0.000
s8=0          1.000    0.867    1.000    0.000    1.000    1.000    1.000    1.000    1.000    1.000    1.000    1.000    1.000 1.000
s9=1          0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000 0.000
s9=0          1.000    1.000    1.000    0.000    1.000    1.000    1.000    1.000    1.000    1.000    1.000    1.000    1.000 1.000
s10=1        0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000  0.000
s10=0        1.000    1.000    1.000    0.000    1.000    1.000    1.000    1.000    1.000    1.000    1.000    1.000    1.000  1.000
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Figure 5.10 Observable behaviour identified for the Sorting system  

By the first step of the statistical procedure we have also computed the corresponding 
transition sequence: 

S = t1 t2 t3 t4 t5 t1 t6 t7 t8 t9 t4 t10 t11 t12 t5 t1 t6 t7 t3 t13 t4 t14 t11 t15 t5 t1 t6 t7 t3 t9 t10 t4 t11 t12 
t5 t1 t6 t7 t8 t9 t4 t10 t11 t12 t5 t1 t6 t7 t8 t13 t14 t4 t11 t15 t5 t1 t6 t7 t8 t13 t14 t4 t11 t15 t5 t1 t6 t7 t3 t13 
t14 t4 t11 t15 t5 t1 t6 t7 t8 t9 t4 t10 t11 t12 t5 t1 t6 t7 t8 t13 t14 t4 t11 t15 t5 t1 t6 t7 t8 t13 t14 t4 t11 t15 t5 t1 
t6 t7 t3 t13 t14 t4 t11 t15 t5 t1 t6 t7 t8 t9 t10 t4 t11 t12 t5 t1 t6 t7 t3 t13 t4 t14 t11 t15 t5 t1 t6 t7 t8 t9 t10 t4 
t11 t12 t5 t1 t6 t7 t3 t13 t14 t4 t11 t15 t5 t1 t6 t7 t3 t9 t10 t4 t11 t12 t5 t1 t6 t7 t8 t9 t10 t4 t11 t12 t5 t1 t6 t7 
t8 t13 t14 t4 t11 t15 t5 t1 t6 t7 t8 t13 t14 t4 t11 t15 t5 t1 t6 t7 t3 t13 t14 t4 t11 t15 t5 t1 t6 t7 t8 t9 t10 t4 t11 
t12 t5 t1 t6 t7 t8 t13 t14 t4 t11 t15 t5 t1 t6 t7 t8 t13 t4 t14 t11 t15 t5 t1 t6 t7 t3 t13 t14 t4 t11 t15 t5 t1 t6 t7 t8 
t9 t10 t4 t11 t12 t5 t1 t6 t7 t3 t13 t14 t4 t11 t15 t5 t1 t6 t7 t8 t9 t10 t4 t11 t12 t5 t1 t6 t7 t3 t13 t4 t14 t11 t15 t5 
t1 t6 t7 t3 t9 t10 t4 t11 t12 

 
The sequence contains following pairs of consecutive transitions: 
t1<t2, t2<t3, t3<t4, t4<t5, t5<t1, t1<t6, t6<t7, t7<t8, t8<t9, t9<t4, t4<t10, t10<t11, t11<t12, t12<t5, 

t7<t3, t3<t13, t13<t4, t4<t14, t14<t11, t11<t15, t15<t5, t3<t9, t9<t10, t10<t4, t4<t11, t8<t13, t13<t14, 
t14<t4 
 

The following PS sets have been computed: 
PS(t1) =  { t1 t4 t5 }   PS(t2) =  { } 
PS(t3) =  { t3 t4 t5 t1 t6 t7 t11 }  PS(t4) =  { t4 t5 t1 t6 t7 } 
PS(t5) =  { t5 t1 t6 t7 t4 t11 }  PS(t6) =  { t6 t7 t4 t11 t5 t1 } 
PS(t7) =  { t7 t4 t11 t5 t1 t6 }  PS(t8) =  { t8 t4 t11 t5 t1 t6 t7 } 
PS(t9) =  { t9 t4 t10 t11 t12 t5 t1 t6 t7 } PS(t10) = { t10 t11 t12 t5 t1 t6 t7 t4 t9 } 
PS(t11) = { t11 t5 t1 t6 t7 t4 }  PS(t12) = { t12 t5 t1 t6 t7 t4 t11 t9 t10 } 
PS(t13) = { t13 t4 t14 t11 t15 t5 t1 t6 t7 } PS(t14) = { t14 t11 t15 t5 t1 t6 t7 t13 } 
PS(t15) = { t15 t5 t1 t6 t7 t4 t11 t13 t14 } 
 
Based on the computed data, the model in Figure 5.11 has been inferred. We have 

shaded non-observable places to facilitate the reading of the model. The initial marking 
has been computed backwards in order to reproduce the sequence S. However, start of 
the sequence ‘t1 t2 t3 t4’, would lead to non-safe markings. This is due to the first events 
occurring in S are actually to initialise the machine and the remainders correspond to the 
repetitive behaviour of the net (from the 5th transition t5 t1 t6 t7 t8…). An initialization 
sequence replicating the first four transitions of the S can be added to the model to allow 
the firing of the whole sequence (see Figure 5.12). 

A0

t1 3s

t4 0s↑

A4

t10 )()( 877 sss ∧•↓

A3

t14

)()( 878 sss ∧•↓

A2

t9 5s↑

A6

t12 9s↓ t6 )()( 86 ss •↑

t5 3s↑ t13 5s↑

A5

10s↓t15

t2 0s↑

A1

t3 21 ss ↑•↑ t8 1s↑

t11 4s↑ t7 4s↓
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Figure 5.11 Final IPN model for the Sorting system 
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Figure 5.12 IPN model for the Sorting system including initialization sequence 

5.3. Assembly System 
The second case study is an experimental facility in LURPA (see Figure 5.13). It is 

called Mechatronics Standard System (MSS) from Bosch: an assembly machine 
composed by four stations. The machine treats several gearwheels in order to insert or 
remove bearings into them. At the end of the treatment, the work pieces are sorted by 
material into a warehouse.  

 
Figure 5.13 Mechatronics Standard System 

Figure 5.14 shows the MSS installations at LURPA. The controller communicates 
with the plant via Ethernet [Roth, 2010c]. The data collection has been made with a 
routine in Python allowing a computer to acquire the input sequence from the automata 
through the Modbus communication protocol. 
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Figure 5.14 MSS experimental environment 

The machine has several operation modes: the bearings can be removed or inserted 
(or both), and the sorting mode can be by material or by arriving order.  For purposes of 
this work, only the fourth station was identified (dotted part of the Figure 5.13), which 
is in charge of the arrangement and storage of the work pieces. We have made the data 
collection with a scenario where the gearwheels have been sorted by material in one of 
the three available pallets. An I/O sequence of 63,797 vectors has been stored. The 
index of the inputs and outputs belonging to the fourth station were inserted in the user 
interface. They correspond to 16 inputs (3B11, 4S24, 4S23, 4S22, 4S21, 4S20, 4S17, 
4B16, 4B15, 4B14, 4B13, 4B12, 4B11, 4B10, 4B07, 4S06) and 6 outputs (4Y11, 4Y10, 
4Y07, 4Y06, 4K05, 4K04).  

5.3.1. Application of the stepwise method 
The stepwise algorithm has processed the input-output sequence using different 

values of κ from 1 to 6. In general it is not possible to establish a-priori the value of κ, 
since it is assumed that the system is unknown. However, in practice the identification 
procedure can be applied using several values of κ (because it is not time consuming). 
Compact models allow a first approximation to the understanding of the system 
functioning, whilst larger models provide a more precise description. However, one 
more time, larger models are huge and close to automata, and the expressiveness of the 
Petri nets is not exploited. 

Since the obtained models are huge, we present only the identified models in Figure 
5.15 for κ = 1 and in Figure 5.16 for κ = 2. The size of the rest of identified models are 
summarised in Table 5.1. The execution time of the identification procedure is also 
included to provide an idea of the performance of the algorithm. The tests have been 
performed in a computer based on an Intel Core 2 Duo T7300 processor at 3.00 GHz 
with 2.00 GB of RAM under Windows XP Professional 2002 Service Pack 2. The time 
has been measured excluding the execution of the Graphviz visualisation software. 

The compacting procedure has been also applied, yielding the model in Figure 5.17. 
However, once again, the input-output relationship is hidden by the long computed 
transitions. 

κ Transitions Places Total of nodes ∆ Processing time 
1 142 85 227  3093 ms 
2 218 152 370 143 3094 ms 
3 305 227 532 162 3141 ms 
4 396 314 710 178 3297 ms 
5 498 404 902 192 3375 ms 
6 606 508 1114 212 3469 ms 
7 718 615 1333 219 3531 ms 

Table 5.1 Size of identified models for different values of κ 
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Figure 5.15 Identified model with κ = 1 
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Figure 5.16 Identified model with κ = 2 
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5.3.2. Application of the statistical method 
For the statistical method, the DCM in Figure 5.18 and the ICM in Figure 5.19 have 

been computed. 
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Figure 5.18 Direct Causality Matrix for the MSS 

 
Figure 5.19 Indirect Causality Matrix for the MSS 

Notice that the DCM matrix column corresponding to output event 4Y07_1 is zero 
and thus the computed firing conditions would be empty. The same occurs for output 
events 4Y07_0, 4Y06_1 and 4K05_1: the corresponding DCM matrix columns are 
almost zero and as a consequence they yield to empty firing conditions. This situation is 
the case specified at the end of section 4.2.5, where instead of considering that the input 
and output events must occur at the same PLC cycle, we must look at the input events 
occurring in the previous event vector. We have computed the probability values 
considering the previous event vector to construct the called One Step Direct Matrix in 
Figure 5.20. 

4Y11_1    4Y11_0   4Y10_1    4Y10_0    4Y07_1    4Y07_0   4Y06_1    4Y06_0    4K05_1    4K05_0    4K04_1  4K04_0
3B11_1          0.000        0.000        0.000        0.000        0.000        0.000       0.000        0.000        0.000 0.004        0.000        0.000
3B11_0          0.000        0.000        0.000        0.000        0.000        0.000       0.000        0.000        0.000 0.000        0.000        0.000
4S24_1          0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.006        0.000 0.000        0.000        0.000
4S24_0          0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4S23_1          0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.010        0.000 0.000        0.000        0.000
4S23_0          0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4S22_1          0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.006        0.000 0.000        0.000        0.000
4S22_0          0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4S21_1          0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.004        0.000 0.000        0.000        0.000
4S21_0          0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4S20_1          0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.002        0.000 0.000        0.000        0.000
4S20_0          0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4S17_1          0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.012        0.000 0.000        0.000        0.000
4S17_0          0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4B16_1          0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4B16_0          0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4B15_1          0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4B15_0          0.000        0.000        0.000        0.000        0.000        0.000        0.006        0.000        0.000 0.000        0.000        0.077
4B14_1          0.000        0.000        0.000        0.000        0.000        0.000        0.004        0.000        0.000 0.000        0.000        0.023
4B14_0          0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4B13_1          1.000        1.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4B13_0          0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4B12_1          0.000        0.000        1.000        1.000        0.000        0.000        0.000        0.000        0.000 0.000        1.000        0.000
4B12_0          0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4B11_1          0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4B11_0          0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4B10_1          0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.015        0.000 0.000        0.000        0.000
4B10_0          0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4B07_1          0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        1.000
4B07_0          0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4S06_1          0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 1.000        0.000        0.000
4S06_0          0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000

4Y11_1    4Y11_0 4Y10_1    4Y10_0    4Y07_1    4Y07_0    4Y06_1    4Y06_0    4K05_1    4K05_0    4K04_1    4K04_0
3B11=1             1.000        1.000        0.098        1.000        1.000        0.549        0.088        0.062        0.044 0.056        0.098        0.088
3B11=0             0.000        0.000        0.902        0.000        0.000        0.451        0.912        0.938        0.956 0.944        0.902        0.912
4S24=1             0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.006        0.000 0.000        0.000        0.000
4S24=0             1.000        1.000        1.000        1.000        1.000        1.000        1.000        0.994        1.000 1.000        1.000        1.000
4S23=1             0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.010        0.000 0.000        0.000        0.000
4S23=0             1.000        1.000        1.000        1.000        1.000        1.000        1.000        0.990        1.000 1.000        1.000        1.000
4S22=1             0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.006        0.000 0.000        0.000        0.000
4S22=0             1.000        1.000        1.000        1.000        1.000        1.000        1.000        0.994        1.000 1.000        1.000        1.000
4S21=1             0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.004        0.000 0.000        0.000        0.000
4S21=0             1.000        1.000        1.000        1.000        1.000        1.000        1.000        0.996        1.000 1.000        1.000        1.000
4S20=1             0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.002        0.000 0.000        0.000        0.000
4S20=0             1.000        1.000        1.000        1.000        1.000        1.000        1.000        0.998        1.000 1.000        1.000        1.000
4S17=1             0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.012        0.000 0.000        0.000        0.000
4S17=0             1.000        1.000        1.000        1.000        1.000        1.000        1.000        0.988        1.000 1.000        1.000        1.000
4B16=1             0.000        1.000        0.000        1.000        0.500        0.500        0.000        0.000        0.000 0.000        0.000        0.000
4B16=0             1.000        0.000        1.000        0.000        0.500        0.500        1.000        1.000        1.000 1.000        1.000        1.000
4B15=1             0.000        1.000        1.000        0.000        0.500        0.500        0.002        0.000        0.000 0.000        1.000        0.008
4B15=0             1.000        0.000        0.000        1.000        0.500        0.500        0.998        1.000        1.000 1.000        0.000        0.992
4B14=1             1.000        0.000        0.000        1.000        0.500        0.500        0.833        1.000        1.000 1.000        0.000        0.829
4B14=0             0.000        1.000        1.000        0.000        0.500        0.500        0.167        0.000        0.000 0.000        1.000        0.171
4B13=1             1.000        1.000        0.000        0.000        0.000        1.000        0.000        0.000        0.000 0.000        0.000        0.000
4B13=0             0.000        0.000        1.000        1.000        1.000        0.000        1.000        1.000        1.000 1.000        1.000        1.000
4B12=1             0.000        0.000        1.000        1.000        1.000        0.000        1.000        1.000        1.000 1.000        1.000        1.000
4B12=0             1.000        1.000        0.000        0.000        0.000        1.000        0.000        0.000        0.000 0.000        0.000        0.000
4B11=1             1.000        1.000        1.000        1.000        1.000        1.000        1.000        0.000        1.000 1.000        1.000        1.000
4B11=0             0.000        0.000        0.000        0.000        0.000        0.000        0.000        1.000        0.000 0.000        0.000        0.000
4B10=1             0.000        0.000        0.000        0.000        0.000        0.000        0.000        1.000        0.000 0.000        0.000        0.000
4B10=0             1.000        1.000        1.000        1.000        1.000        1.000        1.000        0.000        1.000 1.000        1.000        1.000
4B07=1             0.000        0.000        0.000        0.000        0.000        0.000        1.000        0.992        0.992 0.000        0.000        1.000
4B07=0             1.000        1.000        1.000        1.000        1.000        1.000        0.000        0.008        0.008 1.000        1.000        0.000
4S06=1             1.000        1.000        1.000        1.000        0.995        1.000        0.000        0.000        0.000 1.000        1.000        0.000
4S06=0             0.000        0.000        0.000        0.000        0.005        0.000        1.000        1.000        1.000 0.000        0.000        1.000
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Figure 5.20 One Step Direct Matrix for the MSS 

Using such a matrix instead of the DCM matrix, we have been able to compute the 
lacking firing functions and the correspondent fragments of Figure 5.21 have been 
constructed. 

 
Figure 5.21 Observable behaviour computed for the MSS 

The length of the computed sequence S is 6,240; this is why it is not showed here. 
From such a sequence and the computed fragments, the second part of the statistical 
method has allowed us to build the model in Figure 5.22. The whole identification 
procedure has taken 7.5s. Notice how the constructed model is more compact and 
expressive than those constructed by the stepwise method. 

We have verified that the model reproduces the observed behaviour: a car arrives 
with a gearwheel and the rotary gripper goes down to take it. Once the gripper is down, 
it holds the piece and it starts going up again. Once the gripper up, it starts to swivel to 
the right.  Once arriving to the rightmost position, it goes down again to depose the 
gearwheel into another car. Once the piece is released, the gripper goes up again and to 
the left, to return to its initial position. Meanwhile, the car moves until the storage area. 
There, the car stops and a cylinder is pushed until the gearwheel is in the warehouse. 

4Y11_1    4Y11_0     4Y10_1   4Y10_0     4Y07_1    4Y07_0     4Y06_1     4Y06_0   4K05_1    4K05_0    4K04_1   4K04_0
3B11_1             0.000        0.000        0.000        0.000        0.500        0.000        0.000        0.000        0.000 0.000        0.000        0.000
3B11_0             0.000        0.000        0.000        0.000        0.000        0.451        0.000        0.000        0.000 0.000        0.000        0.000
4S24_1             0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4S24_0             0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4S23_1             0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4S23_0             0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4S22_1             0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4S22_0             0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4S21_1             0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4S21_0             0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4S20_1             0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4S20_0             0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4S17_1             0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4S17_0             0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4B16_1             0.000        0.000        0.000        0.000        0.000        0.500        0.000        0.000        0.000 0.000        0.000        0.000
4B16_0             0.000        0.000        0.000        0.000        0.000        0.049        0.000        0.000        0.000 0.000        0.000        0.000
4B15_1             0.000        0.000        0.000        0.000        0.500        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4B15_0             0.000        0.000        0.000        0.000        0.000        0.000        0.077        0.000        0.000 0.000        0.000        0.081
4B14_1             0.000        0.000        0.000        0.000        0.000        0.000        0.023        0.006        0.000 0.000        0.000        0.131
4B14_0             0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4B13_1             0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4B13_0             0.000        0.000        1.000        1.000        0.000        0.000        0.000        0.000        0.000 0.000        1.000        0.000
4B12_1             0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4B12_0             1.000        1.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4B11_1             0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        1.000 0.000        0.000        0.000
4B11_0             0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.008        0.000 0.000        0.000        0.000
4B10_1             0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.985        0.000 0.000        0.000        0.000
4B10_0             0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4B07_1             0.000        0.000        0.000        0.000        0.000        0.000        1.000        0.000        0.000 0.000        0.000        0.000
4B07_0             0.000        0.000        0.000        0.000        0.001        0.000        0.000        0.000        0.000 0.990        0.000        0.748
4S06_1             0.000        0.000        0.000        0.000        0.002        0.000        0.000        0.000        0.000 0.000        0.000        0.000
4S06_0             0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000        0.000 0.000        0.000        0.085
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Then, the cylinder is completely retracted and then the car goes back to its initial 
position. 

Notice how the concurrence between the arriving of a new piece (t1) and the 
arrangement of the last one (t13) has been captured in the model. 

 
Figure 5.22 Final model for the MSS 

5.4. Conclusion 
The software tools implementing the algorithms described in this thesis have been 

tested on two experimental sites with several other case studies. The results have shown 
that both methods are able to deal with real systems; on the one hand the stepwise 
method yields detailed models that grows proportionally the system size; on the other 
hand, the statistical method produces remarkably more clear and expressive models than 
those synthesized with the stepwise method, because the models are directly expressed 
in the structure of the IPN. None of approaches considered in the related work of this 
thesis allow discovering such kind of models.  

 

  



107 

 

Conclusions 
 

 

In this thesis the problem of black-box identification of reactive Discrete Event 
Systems (DES) has been addressed. Two methods for building Interpreted Petri Net 
models from a single input-output sequence observed during the DES operation have 
been conceived and implemented.  

The first one is a stepwise method based on the inference of cycles from a state-
equivalence definition. This approach allows obtaining IPN models from a single input-
output sequence that exhibits the closed loop behaviour of PLC-based controlled plants. 
The proposed technique builds progressively the IPN approximating the compound 
controller-plant behaviour, which can be detailed for controller redesign or model-based 
diagnosis purposes. The resulting procedure operates considering a parameter 𝜅 , 
defining the number of past events to consider, such that in the output language of the 
obtained IPN only and all observed output sequences of length 𝜅 + 1 are represented. 

The second method allows discovering the actual input-output relation of PLC 
controlled discrete event systems. The technique allows building a concise IPN model 
in which the transitions are labelled with sufficient conditions on the inputs which 
represent both the input changed and the inputs execution context. The obtained 
structure is remarkably more clear and expressive than that synthesized with the first 
method, because it is directly expressed in the structure of the IPN. Neither the first 
methodology nor the approaches considered in the related work allow discovering such 
kind of input conditions. 

The methods herein proposed allow dealing with complex automated DES because 
they take into account technological characteristics of actual controlled systems, and 
because they are based on efficient algorithms. This feature is not still addressed in 
current literature on the matter, reviewed in this thesis, in which several features 
considered in the current stated problem have not been dealt. Both methods are 
complementary; whilst the first one represents in detail the observed input changes 
yielding large IPN models, the second method captures in the transition labelling 
functions the input conditions, producing more compact IPN models that exhibit clearly 
the concurrent behaviour. 

The algorithms issued from these methods have been implemented as software tools 
and tested on two experimental case studies which are very close to actual industrial 
discrete event processes. The performed tests reveal the efficiency of the methods when 
data including thousands of input-output vectors are processed in few seconds.  

Due that is a black-box approach the obtained models represent the observed 
behaviour, consequently when the observation has been made for a long time, the IPN 
approximates closely the actual behaviour. Afterwards this model can be completed 
using available knowledge on the process. 

Although the presented methods go ahead the previous identification techniques 
regarding most of the analysed features, several issues can be addressed for extending 
the work described herein:  

• The hypothesis that constraints the inputs and outputs to binary signals could be 
relaxed. 
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• The inclusion of timers or counters within the logic of the controller is a feature that 
appears often in actual industrial discrete manufacturing systems. This feature 
states interesting problems that implies the identification of non regular languages. 

• The inference of other information about the system, like PN invariants, could be 
done. 
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Appendix A. Interpreted Petri Nets 
 

This appendix contains the basic concepts and notation of PN and IPN used in this 
work. 

Definition A.1. An ordinary Petri Net structure G is a bipartite digraph represented 
by the 4-tuple G = (P, T, I, O) where: P = {p1, p2, ..., p|P|} and T = {t1, t2, ..., t|T|} are 
finite sets of vertices named places and transitions respectively; I(O) : P × T → {0,1} is 
a function representing the arcs going from places to transitions (from transitions to 
places). 

The incidence matrix of G is C = C+ − C−, where C− = [cij
−]; cij

− = I(pi, tj); and C+ = 
[cij

+]; cij
+ = O(pi, tj) are the pre-incidence and post-incidence matrices respectively.   

A marking function M : P→ℤ + represents the number of tokens residing inside each 
place; it is usually expressed as an |P|-entry vector. ℤ+ is the set of nonnegative integers. 

Definition A.2. A Petri Net system or Petri Net (PN) is the pair N = (G,M0), where G 
is a PN structure and M0 is an initial marking. 

In a PN system, a transition tj is enabled at marking Mk if ∀pi ∈ P, Mk(pi) ≥ I(pi, tj); 
an enabled transition tj can be fired reaching a new marking Mk+1 . This behaviour is 
represented as Mk → jt Mk+1. The new marking can be computed as Mk+1 = Mk + Cvk, 
where vk(i) = 0, i≠j, vk(j) = 1; this equation is called the PN state equation. The 
reachability set of a PN is the set of all possible reachable markings from M0 firing only 
enabled transitions; this set is denoted by R(G,M0).  

Now it is defined IPN, an extension to PN that allows associating input and output 
signals to PN models. Two definitions are used in this work. 

Definition A.3. An IPN (Q, M0) is a net structure Q = (G, Σ, Φ, λ, ϕ) with an initial 
marking M0 where: 

G is a PN structure, Σ = {α1, α2, ..., αr} is the input alphabet, and Φ = {φ1, φ2,..., φq} 
is the output alphabet. 

λ : T→ Σ∪{ε} is a labelling function of transitions, where ε represents a system 
internal event externally uncontrollable; it is not allowed that the symbol ε is associated 
to more than one tj ∈ pi

•. 

ϕ : R(Q,M0)→( ℤ+)q is an output function, that associates to each marking in R(Q,M0) 
a q-entry output vector; q=|Φ| is the number of outputs. ϕ is represented by a q×|P| 
matrix, such that if the output symbol φi is present (turned on) every time that M(pj) ≥ 1, 
then 
ϕ (i, j) = 1, otherwise ϕ(i, j) = 0. 

When an enabled transition tj is fired in a marking Mk, then a new marking Mk+1 is 
reached. This behaviour is represented as Mk → jt Mk+1; the state equation is 
completed with the marking projection yk = ϕ Mk, where yk ∈ (ℤ +)q is the k-th output 
vector of the IPN. 

Definition A.4. An IPN [David and Alla, 1994] (Q, M0) is a net structure Q = (G, V, 
Σ, Φ, λ, ϕ) with an initial marking M0 where: 
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G is a PN structure, V = {v1, v2, ..., vr} is the set of variables, Σ = {α1, α2, ..., αs} is 
the set of events, and Φ = {φ1, φ2,..., φq} is the output alphabet. 

λ : T→ C x E is a labelling function of transitions, where C={C1, C2,…} is the set of 
variable conditions and E={E1, E2,…} is the set of events. 

In an IPN, a transition will be fired: 
• if transition tj is enabled 
• and if condition C(Tj ) is true 
• when event in E(Tj) occurs 

In this thesis, we consider a conjunction of events instead of a single event, due to 
the PLC technology explained in Chapter 2. 

ϕ : R(Q,M0)→( ℤ+)q is an output function, that associates to each marking in R(Q,M0) 
a q-entry output vector; q=|Φ| is the number of outputs. ϕ is represented by a q×|P| 
matrix, such that if the output symbol φi is present (turned on) every time that M(pj) ≥ 1, 
thenϕ (i, j) = 1, otherwise ϕ(i, j) = 0. 

The state equation is completed with the marking projection Yk = ϕ Mk, where Yk ∈ 
(ℤ +)q is the k-th output vector of the IPN. 

Definition A.5.  A place pi∈P is said to be observable if the i-th column vector of ϕ  
is not null, i.e. ϕ(•,i) ≠ 0. Otherwise it is non-observable. P = Pm ∪ Pu where Pm is the 
set of observable places and Pu is the set of non-observable places.  
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Identificación Caja-negra de Sistemas de Eventos Discretos 
Automatizados 

 
Resumen 

Esta tesis trata sobre la identificación de sistemas de eventos discretos (SED) automatizados operando 
en un contexto industrial. En particular el trabajo se enfoca a los sistemas formados por una planta y un 
controlador lógico programable (CLP) operando en lazo cerrado; la identificación consiste en la 
obtención de un modelo aproximado expresado en redes de Petri interpretadas (RPI) a partir del 
comportamiento externo observado en la forma de una única secuencia de vectores entrada-salida del 
CLP.  

En primer lugar, se presenta una revisión de algunos métodos de identificación así como un estudio 
comparativo de enfoques recientes para la identificación de SED. Enseguida se describe el problema 
abordado; se detallan características tecnológicas importantes en los sistemas automatizados por CLP. 
Dichas características deben ser consideradas en la solución del problema, pero no pueden ser tratadas por 
métodos de identificación anteriores. La principal contribución de esta tesis es la creación de dos métodos 
de identificación complementarios. 

El primer método permite construir de manera sistemática un modelo RPI desde una única secuencia 
de entrada-salida que representa el comportamiento observable del SED. Los modelos RPI resultantes 
describen en detalle la evolución de entradas y salidas durante el funcionamiento del sistema. 

El segundo método considera DES grandes y complejos; está basado en un enfoque estadístico para 
crear modelos RPI compactos y expresivos. Consiste en dos etapas; la primera calcula, a partir de la 
secuencia entrada-salida, la parte reactiva del modelo, la cual está compuesta por lugares observables y 
transiciones. La segunda etapa construye la parte no observable del modelo incluyendo lugares que 
aseguran la reproducción de la secuencia de entrada-salida. 

Los métodos propuestos, basados en algoritmos de complejidad polinomial, han sido implementados 
en herramientas software, las cuales han sido probadas con secuencias de entrada-salida obtenidas de 
sistemas reales en funcionamiento. Las herramientas son descritas y su aplicación es ilustrada mediante 
dos casos de estudio.  
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Black-box Identification of Automated Discrete Event Systems 

 
 

Abstract 
This thesis deals with the identification of automated discrete event systems (DES) operating in an 

industrial context. In particular the work focuses on the systems composed by a plant and a programmable 
logic controller (PLC) operating in a closed loop; the identification consists in obtaining an approximate 
model expressed in interpreted Petri nets (IPN) from the observed behaviour given under the form of a 
single sequence of input-output vectors of the PLC. 

First, an overview of previous works on identification of DES is presented as well as a comparative 
study of the main recent approaches on the matter. Then the addressed problem is stated; important 
technological characteristics of automated systems and PLC are detailed. Such characteristics must be 
considered in solving the identification problem, but they cannot be handled by previous identification 
techniques. The main contribution in this thesis is the creation of two complementary identification 
methods. 

The first method allows constructing systematically an IPN model from a single input-output 
sequence representing the observable behaviour of the DES. The obtained IPN models describe in detail 
the evolution of inputs and outputs during the system operation. 

The second method has been conceived for addressing large and complex industrial DES; it is based 
on a statistical approach yielding compact and expressive IPN models. It consists of two stages; the first 
one obtains, from the input-output sequence, the reactive part of the model composed by observable 
places and transitions. The second stage builds the non-observable part of the model including places that 
ensure the reproduction of the observed input-output sequence. 

The proposed methods, based on polynomial-time algorithms, have been implemented in software 
tools, which have been tested with input-output sequences obtained from real systems in operation. The 
tools are described and their application is illustrated through two case studies. 
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Identification Boîte-noire de Systèmes Automatisés 
à Evénements Discrets 

 
Résumé 

Cette thèse traite de l'identification des systèmes à événements discrets (SED) automatisés dans un 
contexte industriel. En particulier, ce travail s’intéresse aux systèmes constitués d’un processus et d’un 
contrôleur (le plus souvent un automate programmable industriel - API) fonctionnant en boucle fermée. 
Dans ce contexte, l’identification a pour objectif de construire un modèle (exprimé sous la forme d’un 
réseau de Petri interprété - RPI) approximant le comportement du SED, à partir de l’observation de son 
comportement externe, capturé sous la forme d'une séquence de vecteurs d’entrées-sorties de l’API. 

Tout d'abord, une analyse des méthodes d'identification existantes est présentée, ainsi qu’une étude 
comparative des approches les plus récentes dédiées à  l'identification des SED. Le problème de 
l’identification est ensuite reformulé sous son aspect expérimental, de manière à permettre une prise en 
compte des caractéristiques technologiques des systèmes automatisés, et en particulier de celles de l’API. 
Il est alors montré que les méthodes existantes d’identification ne peuvent prendre en compte ces 
contraintes expérimentales. La contribution principale de cette thèse, qui consiste à proposer deux 
méthodes d’identification complémentaires, est ensuite développée. 

La première méthode permet de construire systématiquement un modèle RPI à partir d'une seule 
séquence d’entrées-sorties représentant le comportement observé du SED. Les modèles RPI construits 
décrivent en détail l’évolution des entrées et sorties pendant le fonctionnement du système. 

La seconde méthode est plus spécifiquement destinée aux SED complexes  et de grande taille ; elle est 
basée sur une approche statistique qui permet la construction de modèles RPI compacts et expressifs. Elle 
est composée de deux étapes ; la première permet de calculer à partir de la séquence d’entrées-sorties, la 
partie réactive observable du modèle. La deuxième étape permet l’inférence du comportement non-
observable, en ajoutant des places qui permettent la reproduction de la séquence entrée-sortie observée. 

Les méthodes proposées, basées sur des algorithmes de complexité polynomiale, ont été implémentées 
dans un environnement logiciel expérimental et ont été testés avec des séquences d’entrées-sorties 
obtenues à partir de systèmes réels en fonctionnement. L’ensemble de ces outils expérimentaux est décrit 
et leur application est illustrée à travers deux études de cas.   
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