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Chapter 1

Introduction

The EDSAC was on the top floor of the building and the tape-
punching and editing equipment one floor below. [. . .] It was on
one of my journeys between the EDSAC room and the punching
equipment that "hesitating at the angles of stairs" the realization
came over me with full force that a good part of the remainder
of my life was going to be spent in finding errors in my own
programs.

— Sir Maurice Vincent Wilkes, in 1985 [Wil85, p. 145]

And finally, the cost of error in a certain types of program may
be almost incalculable—a lost spacecraft, a collapsed building, a
crashed aeroplane, or a world war. Thus the practice of program
proving is not only a theoretical pursuit, followed in the interests
of academic respectability, but a serious recommendation for the
reduction of the costs associated with programming error.

— Sir Charles Antony Richard Hoare, in 1968 [Hoa69]

1



CHAPTER 1. INTRODUCTION 2

1.1 Program analysis and verification
The idea of automatic computation is quite old, and mechanical computation
devices can be traced back to Ada Lovelace and other illustrious pioneers,
but its present incarnation in digital computers is barely sixty years old. It
quickly evolved from fully hardware machine, where programs were maps of
wires and connectors, to machines combining hardware and software. Until
the mid 80s, computers were programmed using punch-cards, and bugs could
come from a mistake in the initial program, an undetected faulty transla-
tion from coding pad to card decks, a misplaced card, a card jammed in the
reader, or a dead moth in a relay. Nowadays, it is far more convenient to
execute code on a machine: programs are written on computers, as data,
and can be manipulated by other programs. There are still many problems
to solve to ensure no error is introduced once the program have been writ-
ten. Even if no card has to be punched anymore, programs can contain
millions of lines of code, be developed by many persons on a long time, be
deployed on a wide variety of platforms and the odds of getting the correct
computation may not seem much more favourable than in the punch-card
era. The stakes have been raised too, and Hoare’s statement applies more
than ever, as software controls many aspects of our lives, from railway inter-
locking systems to air-plane flight control, banking transactions, or medical
procedures.

To do proofs on programs, the first step is to give a formal definition
of the language in which they are written: to define its semantics. Using
mathematical tools and reasoning, it is then possible to prove theorems
on the formal semantics of a program, e.g., the absence of errors. Errors
can be informally separated in two categories. Functional errors are due
to differences between the specification and the code, i.e., the code does
not compute the correct value. Run-time errors on the other hand are
due to the code not having a semantics, or running into error state of the
semantics. The latter can be seen as a functional error too: the program
does not compute, thus it does not compute the expected value. Informally,
functional errors correspond to a wrong understanding of the specification,
and run-time errors correspond to a wrong understanding of the semantics
of the language.

The semantics of a program is a complex object itself, and detailed for-
mal reasoning can be long and tedious, thus pen and paper proofs tend to
be error prone, if feasible at all. In the same way programs are necessary
to handle complex computation, programs are necessary to handle complex
reasoning about computation. Verification environments, such as proof as-
sistants, can help enforce rigorous reasoning, by being used to check each
step of a proof according to the formally defined proof system, and static
analysis provides automation or partial automation regarding tedious but
simple reasoning. Rice’s theorem informs us that any interesting property
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will be undecidable for a Turing complete language, i.e., if the programming
language is expressive enough to write all programs that a computer can ex-
ecute, it is impossible to detect automatically exactly the faulty programs,
i.e., to prove automatically the absence of errors. Even the absence of run-
time errors, defined with respect to the semantics of the language and not
the specification of a program, is an undecidable problem in general.

Partial proof procedures have proved very useful in practice to prove
the absence of run-time errors in some programs. For instance, the abstract
interpretation framework allows the formalisation of terminating modular
static analyses. To enforce termination, only an over-abstraction of all pos-
sible executions is computed, thus the algorithm can produce false positive,
i.e., a sound analysis will not accept programs that result in run-time errors
but it can reject programs which do not produce run-time errors. The preci-
sion of a static analyser depends on the precision of the abstraction domain
it uses, on the definition of the operators responsible for its termination,
and on its efficiency in practice, i.e., the performances of its implementa-
tion on a given program. Even if the formalisation of the analyser can be
proved sound using the abstract interpretation framework, the results of a
static analyser can only be trusted as far as the implementation is supposed
faithful to the formalisation.

1.2 Who watches the watchmen
In general, proofs about large programs are impossible to build and ma-
nipulate without the use of other programs, the assessment of the trusted
computing base of a formal verification environment is a crucial issue. A
common criterion is that the amount of lines of code of the programs to
be trusted should be small, and the implemented algorithms should be easy
to understand, such that the trusted programs can be reviewed by hand.
But this criterion eliminates the possibility to use powerful analysers to
prove properties, and even if a particular analyser has been reviewed and
deemed trustworthy, its implementation is fixed, i.e., it can not benefit from
further advances—e.g., new abstract domains or more efficient algorithms—
without a considerable certification effort. To be able to use an analyser to
make proofs, a solution is to prove the soundness of the whole analyser’s
implementation in a proof environment, if the latter is deemed trustworthy.
However, this requires to develop and prove the analyser in a constrained
programming environment, such as the fully functional language of a proof
assistant. The constraints imposed by the proof assistant may hinder the use
of optimised data structures and complicate the development of an efficient
analyser. Thus the formal proof of the implementation of the analyser may
require a large proving effort, and in the end, it does not solve the problem
of updating the analyser’s algorithms.
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Another solution to use an analyser to make trustworthy proofs is to
use the result certification methodology [Ler06]. This methodology is very
general and can be applied to any decision problem. The principle is to
verify the result of a decision procedure rather than its implementation, us-
ing a process deemed trustworthy. And to retain automation, rather than
searching for proofs of the soundness of the results as they come, it is pos-
sible to implement a result verifier in the proof environment. This verifier
can be made simpler than the decision procedure that comes up with the
result depending on the definition of what a result is. In other words, the
decision procedure is asked for more than a simple “yes”/“no” verdict: for
any result, it is required to produce a certificate that is used to verify the
verdict. For example, on the satisfiability problem of propositional formu-
lae, an incomplete result verifier could be a model checker. If the decision
procedure claims that a formula is satisfiable, it is required to produce a
model as a certificate. The result verifier then applies the rules of propo-
sitional logic to prove that the given certificate is a model of the initial
formula. Such a verifier is much simpler to prove sound than a decision
procedure for propositional satisfiability: indeed, the model checking prob-
lem is linear in the size of the formula whereas the satisfiability problem is
NP complete. Of course, it is an incomplete result verifier, because it does
not define certificates for unsatisfiability results. However, using a com-
plete proof system of unsatisfiability—e.g., the resolution rule—certificates
for unsatisfiability results can be defined as resolution trees, and the result
verifier is in this case a proof checker. Again, the result verifier is simpler
than the decision procedure and therefore easier to implement and prove in
a proof environment, even if it can take a number of steps exponential in the
size of the unsatisfiable formula. Applied to a static analyser, the result cer-
tification methodology requires the analyser to give more information than
just “yes”/“no”/“I do not know”. Instead, the output of the analyser should
be enough information for the result verifier to be able to prove the verdict.

1.3 Static analysis result certification
A result certification approach has several advantages over the certification
of the implementation of an analyser. The same result verifier can be used
for several versions of the analyser, therefore the analyser can be used to
prove properties on programs even if its implementation is not trusted, as
long as the underlying logic is not changed, i.e., as long as the result of
the analyser can be described in the same certificate format. Furthermore,
if the certificate format is general enough, the result of different analysers
can be verified. In this sense, the result certification approach brings some
modularity to proofs by static analysis, as it introduces a separation be-
tween proof search and proof verification: they become completely separate
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process, and the proof search can be optimised without compromising the
soundness of the result. The two main properties that need to be verified are
i) the soundness of the results, i.e., the analyser has computed a correct over-
approximation and ii) its precision, i.e., the computed over-approximation
is precise enough to prove the absence of run-time errors. Verifying the
soundness of the result ensures that even if the analyser has made some
errors during the computation, they did not jeopardise the soundness of the
proof. Verifying the precision of the result ensures that the final conclusion
given by the analyser, with respect to the absence of errors, is sound. An-
other benefit of a result certification approach follows from the observation
that a result verifier can be used as an oracle to test the analyser. As any
program, a static analyser needs to be tested during its development. Using
a result verifier as an oracle means that any program can be used as a test
case for the analyser. The only limitation is that the result verifier gives no
information regarding the expected precision of the analyser. If a program is
rejected because the result of the analyser is sound but not precise enough, it
may be because i) the implementation of the analyser made an error during
the computation, and did not compute the best result we could expect from
the formalisation, or ii) because the abstract domain is not precise enough,
i.e., the abstract domain is not appropriate for the property at hand, or
the computations should more precise. Nevertheless, the ability to check
the results of the analyser automatically when developing the analyser can
be very useful, especially if the analyser needs to be optimised to produce
results in a reasonable time on large programs.

Developing a result certification approach gives some leeway in choosing
the format of the certificates, and that choice depends on the kind of verifier
that is desired. If the certificates are empty, then the verifier is a decision
procedure just as the analyser is. If the certificates are complete descriptions
of proofs encoded in a proof system then the verifier is a proof-checker.
But the certificates could be anything in between these two extremes, or
any other kind of data. It does not have to be proof object at all: the
important property is that there exists a proof that if the verifier accepts
the certificate then the analyser result was sound and precise enough to prove
the absence of run-time errors, but the verifier itself can perform any kind
of computation as long as the previous property can be proved. For static
analyser formalised in the abstract interpretation framework, an obvious
candidate for certificates is the abstraction of the program computed by
the analyser. However, this abstraction is not formulated in terms of usual
program logic, such as Hoare logic, but in an abstract domain dedicated to
the property the analyser tries to establish.
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1.4 Our thesis
The result certification methodology allows the use of static analysis to prove
theorems on the semantics of programs. It requires neither a proof effort as
large as the formal proof of the implementation of the analyser would entail,
nor compromising on the efficiency of the analyser. Many-Sorted First-Order
Logic can be used as a middle ground between expressive abstract domains
and generic, powerful decision procedures. It offers a framework in which
the result of an analyser can be described precisely, and for which decision
procedures have reached the degree of maturity necessary to make a result
verifier practical. Our approach can be summarised as follows.

1. We derive from the semantics of a language and from the formalisation
of an analysis a verification condition calculus that given a program,
generates formulae in Many-Sorted First-Order Logic that are valid
only if no execution of the program exhibit run-time errors. The ver-
ification condition calculus is the first part of a result verifier. The
second part, needed for the verifier to be automatic, is an automated
theorem prover able to discharge the verification conditions.

2. We apply the result certification methodology to Satisfiability Modulo
Theory (SMT) solvers—a family of automated theorem provers well-
suited to discharge Many-Sorted First-Order Logic formulae—in order
to improve their reliability and justify the trusted computing base of
the static analysis result verifier.

It follows that a static analysis result verifier combines a verification con-
dition calculus and an SMT result verifier, and a certificate is composed of
the abstraction of a program computed by the analysis and a set of SMT
certificates for the verification conditions. In the dissertation, we detail the
following contributions.

• A methodology to derive a verification condition calculus from an op-
erational semantics of a language and the formalisation of a static
analyser in abstract interpretation. Our experiments have shown that
the verification conditions produced for numerical analyses can be dis-
charged by off-the-shelf decision procedures.

• A verification condition calculus dedicated to a family of analyses of
the heap that produces quantifier-free verification conditions that can
be discharged efficiently by off-the-shelf decision procedures.

• A modular proof-format and result verifier for satisfiability modulo
theory solvers, implemented in Coq, that can furthermore be used to
improve the automation of the proof assistant.
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• An implementation scheme that relies on an intermediate verification
language to generate the verification conditions, to prove the soundness
of the verification condition calculus with respect to the operational
semantics, and to interface with automated theorem provers.

1.5 Outline of the dissertation
The analyses we consider are presented in Chapter 2. They belong to two
different categories that use different abstract domains: numerical analyses
and analyses of the heap. The domains of numerical analyses can be easily
translated into linear constraints over numerical variables, and these con-
straints can be embedded in traditional program logic based on Many-Sorted
First-Order Logic. Analyses of the heap, on the other hand, are based on
dedicated abstract domains. If the certificates are defined as the abstrac-
tion calculated by the analyser, the result verifier has two options. The
first option is to perform the verification using the tools used to calculate
the abstraction. This means that the proof of the result verifier involves
the same kind of proof than the proof of the analyser itself, and the result
verifier risks to be committed to a particular analysis. The second option is
to translate the result of the analyser in a standard framework of program
verification, but then the automation of the result verifier does not follow
from the automation of the analyser.

To define a general methodology of developing result verifier, we use
the second solution, and translate the result of the analyser into formulae
that can be embedded into a general framework of program verification,
the deductive verification framework, recalled in Chapter 3. The concept of
verification condition, i.e., reducing the problem to the validity of a set of
first order formulae, is the basis of our result certification approach, pre-
sented in Chapter 4. Other concepts of deductive verification are re-used,
such as the memory model of the language describes in terms of first order
theories, but some complications, such as framing conditions for object ori-
ented programs, are alleviated by encoding the abstraction of the program
as invariants. Using verification conditions means that the computation of
the result verifier is partially delegated to automated theorem provers. The
result verification is done in two phases: first the conditions are produced
given a program and the result of the analyser, then the conditions are
discharged by automated provers. This design allows to split the overall
soundness of the result verifier in two distinct problems: first the soundness
of the verification conditions generator, then the soundness of the proofs of
the verification conditions.

The soundness of the verification condition calculus and of the verifica-
tion conditions generation is established in Chapter 5, by using a layered
description of the verification conditions in a intermediate verification lan-
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guage, i.e., Why3 in the experiments. First the soundness of the verification
condition calculus is established with respect to the operational semantics
of the language, then the verification conditions can be systematically gen-
erated, and the description of the calculus inside the intermediate language
is used to prove that all the necessary conditions have been generated, and
finally, the conditions are proved valid by automated provers. By using ex-
isting tools, we ensure that the result verifier can be updated easily. The
description of the verification conditions calculus is independent from the
condition generation, which is taken care of by the tools of the intermedi-
ate verification language, and the proving capabilities of the result verifier
evolve along the improvement of automated theorem provers. Moreover, by
using an established intermediate verification language, we benefit from the
existing interface with a variety of provers.

The invariants encoded by numerical abstract domains belong to linear
arithmetic, whose decision procedures have proved to be very efficient in
a number of program verification approaches, therefore we expect the cer-
tification of numerical analyses results to pose no problem to off-the-shelf
solvers. However, there are no decision procedure tailored for the invariants
encoded by abstract domains dealing with the heap, which we expect to be
challenging even for state-of-the-art solvers. As the automation of the result
verifier relies on automated theorem provers, if they can not discharge the
verification condition the approach can not be applied. To alleviate this
problem, we introduce in Chapter 6 another verification condition calculus,
designed to produce quantifier free formulae. This new calculus produce
simpler conditions, that state-of-the-art provers are able to discharge, but
that are necessarily less general. To retain some generality and avoid be-
ing dedicated to a single analysis, we describe a family of analyses using
a parametrised instrumentation of the operational semantics, parametrised
abstract domains, and parametrised concretisation functions. The family of
analyses we describe is a restriction over analyses that deal with the heap,
but contains at least the byte-code verifier and null pointer analysis we con-
sider.

The proposed result certification methodology relies on existing tools in
order to be easily implemented and upgraded. It builds trust in the result
of an analyser by splitting the problem in distinct steps, therefore improv-
ing the reliability of each step improves the reliability of the whole scheme.
However, using automated theorem provers gives rise to the problem of the
reliability of these complex decision procedures. To alleviate this concern,
we consider a particular family of automated theorem provers, the satisfi-
ability modulo theory provers, recalled in Chapter 7, and apply the result
certification approach to their use for proving the validity of a formula, i.e.,
the unsatisfiability of its negation. To this end, we develop a result verifier
in the proof assistant Coq, in order to provide the strongest soundness guar-
anties for the result verifier, and present the underlying proof system and the
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architecture of the verifier in Chapter 8. One of the challenges in building a
result verifier for satisfiability modulo theory solvers is that solvers do not
currently agree on a particular proof system, therefore we chose to concen-
trate on the generality of the proof system, and the possibility to add new
theories to the proof system, rather than choosing a particular solver and
trying to check its results. This should allow us to built a modular result
verifier, that can change its internal parts to be able to handle new theories,
or to handle theories differently to benefit from new verification algorithms,
without having to change the proofs and implementation of the unchanged
parts. To illustrate the benefits of such an approach, in Chapter 9 we com-
pare different verification algorithms for a particular theory, the theory of
equality and uninterpreted functions, in terms of the size of the certificates
and the efficiency of the verifier.



Chapter 2

Abstract interpretation

To study the certification of static analyses in general, without committing
ourselves to a particular analysis, we chose to consider static analyses for-
malised in the abstract interpretation framework. The abstract interpreta-
tion theory [NNH99], introduced by P. Cousot and R. Cousot [CC76, CC77,
CC79], is a general framework to build, compose, and prove the soundness
of static analyses of programs. It amounts to the computation of a finite
abstract semantics that over-approximates the possibly infinite concrete se-
mantics of a program. The abstract semantics is defined over an abstract
domain dependent on the property the analysis verifies, and a generic static
analyser parametrised by these abstract domains and abstract operators can
be defined.

A brief introduction to the theory of abstract interpretation is given in
Section 2.1. Section 2.2 introduces a core unstructured language manipu-
lating numerical variables which will be used in Chapter 5 to formalise nu-
merical analyses and their certification. Section 2.3 describes some standard
numerical analyses and gives a brief description of their main properties in
terms of efficiency and precision. Section 2.4 presents a core object-oriented
language manipulating only references. It is similar the core numerical lan-
guage and will be used in the same way to formalise and certify object-
oriented analyses. The object-oriented analyses selected to illustrate our
approach are presented in Section 2.5.

2.1 Abstract interpretation’s core mechanisms
Using the abstract interpretation framework, one can design an analysis and
obtain guaranties of soundness and termination. As our goal is the certifica-
tion of results of such analysers, we will concentrate first on the mechanisms
that provide the soundness of an analyser. The operators necessary for ter-
mination and composition of analyses will be sketched only to account for
the generality of the approach and to point out that the analyses formalised

10
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later can actually be implemented.

2.1.1 A theory of approximation

The key principle of abstract interpretation is that any semantics can be
described as a fix-point of a monotonic operator in partially ordered struc-
tures. They can therefore be compared, and new semantics can be built
as abstractions of others. Abstractions are described by pairs of functions
to relate two semantics, and can be manipulated as such, and composed to
obtain new semantics.

Semantic domains are described by complete lattices, i.e., a domain D
equipped with a partial order v, a greatest lower bound operator u, a least
upper bound operator t, a least element ⊥ and a greatest element >. The
semantics of a program P is given by the least fix-point of a monotonic
operator FP over D. The semantics of the language is a set of rules [CC92b]
to derive FP from P . Kleene’s theorem on fix-points in complete lattices
informs us the the least fix-point lfp(FP ) is guaranteed to exist, and that if
FP is continuous then lfp(FP ) =

d
i∈N F

i
P (⊥).

Two semantic domains D and D] can be related using Galois connections,
i.e., a pair of functions (α, γ) such that:

1. α : D → D] is monotonic, and

2. γ : D] → D is monotonic, and

3. ∀X ∈ D, X] ∈ D], α(X) v] X] ⇐⇒ X v γ(X]).

The Galois connection is used to make a correspondence between elements of
the two domain. In such a configuration, the domain D is called the concrete
domain and D] is called the abstract domain. The function α is referred to as
the abstraction function, and γ is referred to as the concretisation function.

If an analyser computes an over-approximation in the abstract domain,
i.e., it compute an abstract value X] such that α(lfp(FP )) v] X], then,
if (α, γ) is a Galois connection, γ can be used to interpret X] as an over-
approximation in the concrete domain: lfp(FP ) v γ(X]). Moreover, the
Galois connection can be used to define abstraction of operators. If F is an
operator on the concrete domain, then F ] is said to be a sound approxima-
tion of F if and only if

∀X ∈ D], (α ◦ F ◦ γ)(X) v] F ](X)

The best abstraction is defined as exactly α◦F ◦γ but it may not be computed
exactly in the abstract domain.
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2.1.2 Building new domains

The theory of abstract interpretation defines a framework to describe ab-
stractions and define the soundness of an abstraction w-r-t a concrete se-
mantics, but the building blocks of the theory also give tools to build new
abstractions. For example, the composition of Galois connections is a Ga-
lois connection, therefore relating an abstract domain to a concrete domain
can be done using intermediary domains. Furthermore, if D is a complete
lattice, then for any set S , S → D can be equipped with a complete lat-
tice structure by using operators defined by point-wise lifting of the opera-
tors on D. Another important example of complete lattice is the power-set
(P (S),⊆,∪,∩, ∅, S) of any set S .

Another possibility for creating new domains is to combine two existing
domains D]

1 and D]
2. If these domains are related to the concrete domain D

by two Galois connection (α1, γ1) and (α2, γ2), then a Galois connection for
the product D]

2 × D]
1 can be formed by defining α1×2 and γ1×2 component-

wise. However, if F ]
1 and F ]

2 are sound abstraction of an operator F , the
operator F ]

1×2 defined component-wise is also a sound abstraction, but it
corresponds to performing the two abstraction independently at the same
time: the abstraction using the two domains at once could be made more
precise by using the information obtain in one domain to make the informa-
tion in the other domain more precise. A more precise abstraction G]

1×2 can
be obtained by doing the reduced product: a reduction operator ρ is defined
as α1×2 ◦γ1×2, and this reduction can be used to define G]

1×2 as ρ◦F ]
1×2 ◦ρ,

which is a sound abstraction that is more precise than the component-wise
operator F ]

1×2.

2.1.3 Formalising a static analyser

Once the abstract domain D] has been defined, elements of D] can be inter-
preted as abstractions. To be able to compute in the abstract domain and to
draw conclusions from the result of the computation, fix-point transfer theo-
rems must be established. Such theorems define the conditions under which,
if F ] is a sound abstraction of F , lfp(F ) v γ(lfp(F ])), i.e., the fix-point com-
puted in the abstract domain lfp(F ]) are approximation of fixpoint in the
concrete lfp(F ), therefore it is sufficient to performer all computations in
the abstract domain.

If the abstract domain D] contains no infinitely increasing chain, Klee-
nian iteration Xi+1 = F ](Xi) terminates in finite number of steps. There-
fore, in such abstract domains, the fix-point can be effectively computed, and
the result of the static analyser can be interpreted using fix-point transfer
theorems. For domains with infinite chains, an abstract widening operator
∇] can be defined such that:

• ∀X], Y ], X] v] (X]∇]Y ]) ∧ Y ] v] (X]∇]Y ]), i.e., the result of the
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widening is an upper bound, and

• for every inceasing chain (X]
i )i∈N, the chain

Y ]
0 = X]

0, Y ]
i+1 = Y ]

i ∇
]X]

i+1

is stable after a finite number of steps.

This widening operator guaranties the termination of the analyser at the
cost of a loss of precision: it computes an over-approximation of the Klee-
nian fix-point. Precision can be regained by iterating a dual narrowing
operator [CC92a].

To define a static analysis, one has to: i) define an abstract domain D]

and give the Galois connection (α, γ) relating the abstract domain to the
concrete semantic domain, ii) describe how to compute the sound abstrac-
tion F ]

p (also called transfer function) of the operator FP , and finally to
iii) define a widening operator ∇] such that a fix-point can be computed in
finite time. The formalisation not only establishes the soundness but also
describes an algorithm to compute the abstraction. However, it is a high
level description of the algorithm and not a proof of the soundness of the
implementation of the static analyser. To prove the soundness of the imple-
mentation of the analyser, one has to prove that the implementation of the
abstract domain follows the structure of a complete lattice, in particular, the
implemented operators computes a partial order, a least upper bound and
so on; the iteration engine computes a fix-point; the transfer function is a
sound abstraction. Pichardie et al. [BJPT10, CJPR05, Pic05] have demon-
strated that the implementation of dataflow and polyhedral analyses can
be proved in the proof assistant Coq, using constructive logic to develop
and prove the algorithm and extract an executable analyser. However, such
work is limited to the programming language of Coq and can not easily be
applied to analysers programed in other paradigms.

2.2 Core numerical language & semantics
We present here a core unstructured language with numerical expressions,
conditional jumps, procedure calls and array accesses and updates. The aim
of this language is to facilitate experimentation and account succinctly for
standard programming language constructs of interest.

2.2.1 Syntax

Let PP , Var , Var A , Method be finite sets of program points, names for inte-
ger variables, array variables and procedure—seen as a degenerate case of
methods—respectively. The set Var contains distinguished elements for the
parameters p0 and p1 and the result of a procedure res.
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expr ::= X X ∈ Var
| n n ∈ N
| expr ⊕ expr ⊕ ∈ {+,−,×}

test ::= expr1expr 1 ∈ {=, 6=, <,≤}
| not test
| test and test
| true
| false

stmt ::= X := expr X ∈ Var
| JumpIf test p p ∈ PP
| X := Y [expr] X ∈ Var , Y ∈ Var A
| X[expr] := Y X ∈ Var A , Y ∈ Var
| X := length(Y ) X ∈ Var , Y ∈ Var A
| X := F (expr, expr) F ∈ Method

Figure 2.1: Syntax of numerical programs.

The syntax of the core language, as described in Figure 2.5, contains
only a limited sets of expressions—integer and Boolean—and instructions.
Integer expressions are built from variables, integers and standard binary op-
erators. Boolean expressions combine conjunctions and negations of integer
comparisons. We do not have Boolean variables, as only integer expressions
can be assigned to using x := e: Boolean expressions are used in tests only.
A test JumpIf t p is a conditional jump to a program point p if t evaluates
to true. Array variables are not part of integer expressions, and can only be
accessed through dedicated instructions, one for accesses (x := a[i]) and one
for updates (a[i] = y). A third instruction x := length(a) is used to obtain
the length of an array. The last instruction x := f(e1, e2) is a procedure
call, taking two arguments. For the sake of simplicity, the language does
not allow an arbitrary number of arguments in procedures.

A program is a set of disjoint code sections, each code sections corre-
sponding to a procedure. A code section is an oriented graph where nodes
correspond to program points (elements of PP ) and are annotated with state-
ments. Each program point has exactly one outgoing edge, given by the
function next_pp, except for one point which has none (the exit point) and
each point annotated with a conditional jump (JumpIf test p) which has
two (one being the program point p).

Rather than modelling programs by structures built upon Abstract Syn-
tax Trees (ASTs), the syntactic information is given directly by a flowchart:
the sets of program points, variables, procedure names, and some functions
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describing the control flow and the statements. The control flow is described
by the function next_pp : PP → PP , and the node annotations (program
point statements) are accessed by a function get_stmt : PP → Stmt . These
sets and functions can be calculated directly on the AST of a program,
but as we concentrate on unstructured languages, an analysis can not take
advantage of any syntactic structure within procedures anyway.

To simplify notations, for each program point p, we write p+ for the end
of the outgoing edge (p+ = next_pp(p)). Exit point are represented by
program points p such that p = p+. If p is annotated with a conditional
jump, e.g., JumpIf t p′, we note p− the target p′ of the jump. In either cases,
succ(p) denotes the set of all possible successors.

2.2.2 Semantics

In the seminal abstract interpretation presentation [CC77] analyses are proved
correct with respect to collecting semantics. We choose to use a small-step
presentation of the semantics for instructions, with a big-step reduction for
procedure calls. This formalisation is called mostly small-step by some, and
allows to use small-step derivations without relying on a call stack for intra-
procedural executions.

The distinction between integer and array variables done in the lan-
guages is reflected in the memory model used in semantics states: the part
of the memory containing numerical variables is represented by a mapping
of variable names to value, and the part of the memory containing arrays
is represented by a mapping of variables names to models of array, map-
pings (partial functions, noted ⇀) from indexes to values together with an
integer representing array length. Formally, we distinguish two kinds of en-
vironments, the numerical environments Env = Var → Val and the array
environments EnvA = Var A → (N × (N ⇀ Val )). This simple direct ac-
cess model does not account for more complex memory properties such as
locality—e.g., arrays being allocated as contiguous memory cells—or aliases,
but is sufficient for the analyses we consider.

As we consider unstructured languages and we do not manipulate pro-
grams as Abstract Syntax Trees, the states of execution refers to the current
program point of execution. Therefore, the semantic state space is a Carte-
sian product between the memory models and the set of program points

State = Env × EnvA × PP .

While presenting the semantics, if s is of type state—hence a tuple—we
use record-like notation for accessing to its different component: s.env is
the component of the tuple corresponding to the numerical environment,
s.ars is the component corresponding to the array environment, and s.cpp
is the component corresponding to the current program point of the execu-
tion. Likewise, if a models an array—hence of type N × (N ⇀ Val )—the
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first component, corresponding to the length of the modelled array, is noted
a.len, and the second component, the mapping between indexes and values,
is noted a.elts. All shorthands and notation are summarised in Table 2.1.
Moreover, we use a map-like notation when two functions differ only on
one element: when modelling an update in an array a at index i, the array
containing the new value v2 is noted a[i← v2]. For example, in the interpre-
tation of x := length(a), the term s.ars[a].len refers to the field len of the
array a in the state s. To assign this value to the variable x, we simply up-
date the store s.env, and this new store denoted by s.env[x← s.ars[a].len]
is used to build the next state.

Shorthand Usage

get_stmt(p) Statement annotating a program point p
p+ Program point following p in the control flow graph, short-

hand for next_pp(p)
p− Destination of a conditional jump at p

succ(p) Set of all possible successors of p
F0 Starting point of a procedure F
F∞ Exit point of a procedure F

p0, p1 Read only variables containing the arguments during an
intra-procedural execution

res Variable containing the result of an intra-procedural
execution

x is assignable The variable x 6∈ {p0, p1}
s.env Local numerical environment of a state s
s.ars Local array environment of a state s
s.cpp Current program point of a state s
a.len Length of an array a
a.elts Mapping from indexes to values of an array a

Table 2.1: Shorthands used in the semantics of the core numerical language
to describe a flowchart—emphasised by a truetype font—and a semantic
state

The core numerical language uses side-effect free expressions, with nei-
ther procedure calls nor array accesses within expressions. Therefore, the
semantics of expressions is simple and computing the value corresponding to
an expression AST requires only to know the values of the variables, hence,
the integer environment. For these reasons, we use a natural semantics—
(s, e)⇒ n in Figure 2.2 on the following page, for a state s, and expression
e and integer n—to give the semantics of expressions.

The semantics of instructions presented in Figure 2.3 on the next page
is standard, and only procedure calls require more explanation. Rather
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Var v ∈ V ar
(s, v)⇒ s[v]

Cst n ∈ N
(s, n)⇒ n

Binop
(s, e1)⇒ n1 (s, e2)⇒ n2 ⊕ ∈ {+,−,×}

(s, e1 ⊕ e2)⇒ n1 ⊕ n2

True
(s, true)⇒b true

False
(s, false)⇒b false

Comp
(s, e1)⇒ n1 (s, e2)⇒ n2 n11n2 1 ∈ {=, 6=, <,≤}

(s, e11e2)⇒b true

Not
(s, t)⇒b b

(s,¬t)⇒b ¬b
And

(s, t1)⇒b b1 (s, t2)⇒b b2
(s, t1 and t2)⇒b b1 ∧ b2

Figure 2.2: Natural semantics of expressions and tests

Assign
get_stmt(s.cpp) = x := e x is assignable (s.env, e)⇒ n

s −→
(
s.env[x← n] , s.ars , s.cpp+)

)
JumpIfT

get_stmt(s.cpp) = JumpIf t p (s.env, t)⇒b true
s −→ (s.env , s.ars , p))

JumpIfF
get_stmt(s.cpp) = JumpIf t p (s.env, t)⇒b false

s −→
(
s.env , s.ars , s.cpp+)

Call

get_stmt(s.cpp) = x := F(e0, e1) x is assignable
(s.env, e0)⇒ n0 (s.env, e1)⇒ n1 env′ = s.env[p0 ← n0][p1 ← n1]

init = (env′ , s.ars , F0) init −→∗ end end.cpp = F∞
s −→

(
s.env[x← end.env[res]] , s.ars , s.cpp+)

)

GetArray

get_stmt(s.cpp) = x := a[e] x is assignable
(s.env, e)⇒ n 0 ≤ n < s.ars[a].len

s −→
(
s.env[x← s.ars[a].elts[nK , s.ars , s.cpp+)

)

SetArray

get_stmt(s.cpp) = a[e1] := e2
(s.env, e1)⇒ i (s.env, e2)⇒ n 0 ≤ i < s.ars[a].len
elts′ = s.ars[a].elts ar =

(
s.ars[a].len , elts′[i← n]

)
s −→

(
s.env , s.ars[a← ar] , s.cpp+)

)
Length

get_stmt(s.cpp) = x := length(a) x is assignable
s −→

(
s.env[x← s.ars[a].len] , s.ars , s.cpp+)

)
Figure 2.3: Semantics of instructions
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than introducing a call-stack in the semantic states, we use a mostly small-
step presentation: a small-step relation −→ describes the evolution of the
semantics of intra-procedural execution, but for procedure calls a big-step
reduction of the call execution is enforced using the transitive and reflexive
closure (noted −→∗) of the small-step relation. To simplify the semantic
rule, the parameters of procedures are fixed to p0 and p1, and all arrays are
passed in argument. The result of a call is stored in the variable res and
the integer and array environments are restored to their value before the
call. As there is no dynamic dispatch, the entry point and exit point of a
procedure—noted F0 and F∞, respectively—are known in advance.

GetArrayOoB

get_stmt(s.cpp) = GetArray x a e
(s.env, e)⇒ n n > s.ars[a].len

s −→ OutOfBound

SetArrayOoB

get_stmt(s.cpp) = SetArray a e1 e2
(s.env, e1)⇒ i i > s.ars[a].len

s −→ OutOfBound

Figure 2.4: Error conditions

Note that array bound checks are enforced using side-conditions on the
semantic rules, therefore it is not possible to do out-of-bound accesses (the
semantics blocks). The semantic rules GetArray and SetArray make the
array bound check explicit. Array contents are then safely manipulated as
maps. Figure 2.4 details the rules applied when the check fails: the semantics
enters a special error state OutOfBound. There is no way to allocate arrays:
they are supposed to be allocated, and no information is given on their size,
which is only supposed to be a positive integer.

The set of reachable states are obtained by the reflexive, transitive clo-
sure of the relation _ which enriches the semantic relation −→ with states
reachable from sub-calls.

s −→ s′

s _ s′

get_stmt(s.cpp) = x := F(e0, e1) x is assignable
(s.env, e0)⇒ n0 (s.env, e1)⇒ n1

env′ = s.env[p0 ← n0][p1 ← n1]
s′ = (env′ , s.ars , F0)

s _ s′

The set of reachable states for an initial set S0 of initial states is then defined
as

Reach = {s | s0 ∈ S0 ∧ s0_∗s}.

The semantics refers indirectly to programs through the functions describing
its control-flow and statements. When a more high-level view is required, we
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will allows ourselves to refer to set Reach(P ) of reachable states for a given
program P .

2.3 Numerical analyses
In this section, we aim to give a high-level summary of the abundant lit-
erature on numerical analyses to illustrate what kind of properties we will
and will not consider. We do not propose any improvement but introduce
notations and formalisation reused in Chapter 5.

2.3.1 Interval analyses

Interval arithmetic was introduced by R. E. Moore in the 1960’s [Moo62]
to provide rigorous bounds on round-off errors during computation, starting
a whole new field in scientific computing. Cousot and Cousot adapted the
classical interval operators to the concepts of abstract interpretation in their
presentation [CC76], introducing the interval abstract domain.

Abstract domain. Let D be a numerical domain : D ∈ {Z,R,Q}.
The lattice (Dint,vint

D ,∪int
D ,∩int

D ,⊥int
D ,>int

D ) of intervals is defined as fol-
lows.

• Dint is the set of all intervals: an interval is a pair [a, b] ∈ (D∪{−∞})×
(D ∪ {+∞}) such that a ≤ b, or the empty interval, noted ⊥int

D . The
interval [−∞,+∞] is written >int

D .

• The partial order vint
D on Dint is defined by

– [a, b] vint
D [a′, b′] if and only if a′ ≤ a and b ≤ b′,

– and ⊥int
D is the least element.

• Suppose min and max are lifted to D ∪ {+∞,−∞}.

X]∪int
D Y ] =


[min(a, a′),max(b, b′)] if X] = [a, b] and Y ] = [a′, b′]
X] if Y ] = ⊥int

D
Y ] if X] = ⊥int

D

X]∩int
D Y ] =


[max(a, a′),min(b, b′)] if X] = [a, b] and Y ] = [a′, b′]

and max(a, a′) ≤ min(b, b′)
⊥int

D otherwise

Note that the intersection is exact—no information is lost—while the union
is not, therefore, when performing a join (when analysing nodes with several
predecessors) when doing forward analysis, some information might be lost.
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Intervals are abstraction of values, and the abstraction of a set of states
is a lift of the interval domain: for each program point, one interval is given
for each variable.

State] = PP → Var → Dint

Concretisation. The concretisation function γ of the abstraction of a
program P ] is a lift of the concretisation of values γint

Val .

γint
Val ([a, b]) = {x ∈ D | a ≤ x ∧ x ≤ b}
γint

Val (⊥int
D ) = ∅

γ(P ]) =
{

(e, a, p) ∈ State | ∀v ∈ Var , e(v) ∈ γint
Val (P ](p, v))

}
Widening and narrowing. To achieve termination we need operators to
over-approximate limits of infinitely increasing and decreasing chains. One
possibility, informally described, is to set to ±∞ the bounds that increase
when calculating the abstraction of a variable. The formal definition of the
widening operator and possibility to refine its results can be found in the
formalisation by P. Cousot of the interval analysis in the abstract interpre-
tation theory [CC77].

2.3.2 Polyhedron analyses

Interval analyses are concerned with discovering bounds on variable: they
can not used to infer invariants establishing relations between variables.
The simple example given in Listing 2.1 illustrates the need for relational
domains: if the length of the array is not known, then an interval analysis
will only be able to prove that X belongs to the interval [−1,+∞[, therefore
it will not be able to prove that X < length(A) and the second instruction
will raise an alarm. However, if the analyser can prove relational invariant,
(e.g., X < length(A), X = length(A)− 1, etc.), then proving that the array
access makes no array out of bound error is possible.
X := length(A) − 1
Y := A[X]

Listing 2.1: Example of a program that requires relational information

In the early 70’s, the problem of discovering affine relationships among
variables was explored by Wegbreit [Weg74] and Karr [Kar76]. Cousot and
Halbwachs [CH78] used the framework of abstract interpretation to guaran-
tee termination while searching for linear inequalities, defining an abstract
domain of convex polyhedrons. The algorithms used for operators on the
polyhedron abstract domain suppose D ∈ {R,Q}. In fact, the problem of
finding integer solutions for linear inequalities is NP-complete whereas there
is a polynomial algorithm for finding rational solutions. When dealing with
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integer variables, a common (sound) solution is to abstract set of points with
integer coordinates by a rational polyhedron.

Abstract domain. Let {Xi | 0 ≤ i ≤ n} be the set of variables. A
valuation of all variables can be represented by a vertex in Dn. A linear
constraint is an inequality

∑
0≤i≤n aiXi ≤ b. The set of solutions of such an

inequality (if non-empty) defines a closed half space in Dn.
A set S ⊆ Dn is convex if and only if

∀x, y ∈ S2,∀λ ∈ [0, 1], λx+ (1− λ)y ∈ S

For example, a closed half space is a convex set, the intersection of two
convex set is a convex set, but the union of two convex sets is not. The set
of solutions of a system of linear constraints ∑

0≤i≤n

aijXi ≤ bj

∣∣∣∣∣∣ 0 ≤ j ≤ m


is a convex set, represented by the intersection of the closed half space: a
convex (possibly unbounded) polyhedron. Such a polyhedron can be repre-
sented by a matrix A ∈ Dn×m and a vertex B ∈ Dm.

A dual representation of convex polyhedrons can be given in terms of
a set of vertexes V = V1, . . . , Vk and a set of rays R = R1, . . . , Rl. The
vertexes are extremal points in the polyhedron, and the rays are unbounded
direction included in the polyhedron. Any points in the polyhedron P can
be expressed as a combination of vertexes and rays :

∀X ∈ P,∃(λi)1≤i≤k ∈ [0, 1]k, (νi)1≤i≤l ∈ D+l
,∑

1≤i≤k

λi = 1, X =
∑

1≤i≤k

λiVi +
∑

1≤i≤l

νiRi

Polyhedron are abstraction of environments, and we can define a con-
cretisation function for each representation. An environment is a func-
tion from variables to values, and can therefore be represented by a vertex
~E ∈ Dn.

γpoly
Env (A, ~B) =

{
~E ∈ Env

∣∣∣ A~E ≤ ~B
}

γpoly
Env (V,R) =

 ∑
1≤i≤k

λi
~Vi +

∑
1≤i≤l

νi
~Ri

∣∣∣∣∣∣ λi ∈ [0, 1]k, νi ∈ D+l
,
∑

1≤i≤k

λi = 1
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As it is the case for the interval analysis, the abstraction of a program
and the associated concretisation function are lifted from the base domain
(polyhedron) and its concretisation.

State] = PP → Dpoly

γ(P ]) =
{

(e, a, p) ∈ State
∣∣∣ e ∈ γpoly

Env (P ](p))
}

The widening operator proposed by Cousot and Halbwachs is comparable
to the one used in interval analysis: if a polyhedron keeps on increasing in
one direction, the whole direction is included in the abstraction as an over-
approximation.

Efficiency. We mentioned two different representation because some op-
erators and transfer functions are more easily defined on linear constraints,
while others are easier to define on vertexes and rays. The size of these two
representations is, in practice, exponential in terms of variables,1 and algo-
rithms to switch between representations have worst-case exponential time
and memory cost [Che68]. Therefore the polyhedron abstract domain, if
very precise, is very costly. Section 2.3.3 describe the Octagon domain, that
defines an analysis less precise than the polyhedron analysis, but that can
still find relational invariants, and can be computed much more efficiently.

Example. In the program described in Listing 2.2 on the following page,
the search procedure implements a binary search. To prove that the
procedure raise no array out of bound exception, a static analyser must
prove that the variable i must be positive and strictly less than the length
of the array, 0 ≤ i ≤ t.length.

Using the interproc analyser [Jea] in its polyhedron settings, we can
obtain the annotated invariant. Not all the constraints of the invariant are
useful, but using the last 5 linear inequalities, we can prove that

0 ≤ 2i+ 2 ≤ a+ b ≤ t.length− 1

hence that no array out of bound exception is raised.

2.3.3 Octagon analysis

The polyhedron domain allows inference of useful relational information,
whereas the interval domain provides non-relational information. However,
the exponential cost of inference of polyhedrons makes it difficult to use in
practice. To infer relational information while retaining part of the efficiency

1Remark that the complexity of the polyhedron abstract domain is different from the
complexity of solving a set of linear inequalities in Q. The former should be in terms of a
metric on the program, such as the number of variable, and the number of inequalities is
not bounded, and the latter is in terms of the size of the problem, and is polynomial.
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proc search (v : int , t : i n t array ) returns ( i : i n t )
var a : i n t , b : i n t , a r r : i n t ;
begin

assume t . l ength > 0 ;
a = 0 ;
b = t . l ength − 1 ;
a r r = 0 ;
while ( a r r==0) and (0 < b − a ) do

i = a + (b−a ) / 2 ;
(∗ (L9 C27)

[ | arr =0; −a−b+2i+2≥0 ; −a+b−1≥0 ;
−b+t . l e n g t h−1≥0 ; i≥0 ; a≥0 ; a+b−2 i+2≥0 | ] ∗)

if t [ i ] == v then
ar r = 1 ;

else
if v > t [ i ] then

a = i +1;
else

b = i−1 ;
endif ;

endif ;
done ;

end

Listing 2.2: Binary search

of simple analyses like the interval analysis, abstract domains based on par-
ticular subset of linear constraints with more efficient algorithms are needed.
A. Miné introduced weakly relational domains [Min04, Min06]: numerical
abstract domain based on subset of linear constraint for which algorithms
with good complexity can be devised. They are based on known data struc-
tures and algorithms, which were adapted and expended to fit the abstract
interpretation framework.

Octagon abstract domain. An octagonal constraint is an inequalities
±Xi ±Xj ≤ c, and an octagon is a conjunction of octagonal constraints—
the name octagon reflect the geometrical representation of these abstraction
in dimension 2. Octagons can be encoded by Difference Bound Matrices
(DBMs, square matrices of size n × n), coefficients in the matrix standing
for octagonal constraints.

For this presentation, abstraction of programs and concretisation can
be easily adapted from the concretisation of polyhedron based on linear
constraints.

γoct(O) = {(e, a, p) | ∀(±Xi ±Xj ≤ c) ∈ O,±e(Xi)± e(Xj) ≤ c}

Efficiency. A cubic closure algorithm is needed to obtain a normal form
and attain optimality, therefore an octagon based analysis can only achieve
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O(n3) worst-case time complexity, where n is the number of variables. In
practice, efficient algorithms such as incremental closure and the use of
closure preserving operators make the octagon abstract domain very effi-
cient. All operations on the DBM encoding can be performed with a O(n2)
worst-case memory complexity, and in practice, the use of a sparse ma-
trix representation can improve memory consumption, at the cost of time
efficiency.

For a complete description of all the operators needed to build a full
analyser and more details on algorithms and implementation consideration,
we refer the reader to the dissertation of A. Miné [Min04].

2.3.4 Conclusion

The three abstract domains we described have different precision and dif-
ferent computational properties, but they can all be represented by linear
constraints. There are lots of other numerical domains, either relational or
not. Some can be embedded in the polyhedron domain, other are dedicated
to completely different properties. We only presented the analyses that were
used in our experiments.

2.4 Core object-oriented language & semantics
The core object-oriented language we use is based on the same premises than
the core numerical language presented in Section 2.2: it is unstructured—
rely on program point for a description of the control flow—and uses the
simplest expressions and instruction set needed to illustrate and evaluate
our approach with the respect to the object-oriented paradigm.

The goal is to illustrate some particularity of bytecode while retaining
simplicity of a core language. It therefore concentrate on field dereferencing
and dynamic method call, therefore modelling aliases through the heap and
dynamic dispatch. It does not contain expressions on integers for example,
that a simple exposition of an analyses of heap ignores anyway.

2.4.1 Syntax

The syntactic domains of the core object-oriented language differ from the
numerical language. We have fields instead of arrays, and procedures are
replaced by methods and classes. Therefore we define the finite sets PP , Var ,
Method , Class and F for program points, variable names, classes, method
names and field names. The set Var contains distinguished elements for the
this pointer, the parameters p0 and p1 and the result of a method res.
Figure 2.5 details all statements and expressions.
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Var ::= this | p0 | p1 | res | . . .

Expr ::= X X ∈ Var
| Null

Stmt ::= X := expr
| IfNull(X, p) X ∈ Var , p ∈ PP
| X := Y.F X, Y ∈ Var 2, F ∈ F
| X.F := Y X, Y ∈ Var 2, F ∈ F
| X := Y.C.M(X0, X1) X,Y,X0, X1 ∈ Var 4,

C ∈ Class ,M ∈ Method
| X := new(C) X ∈ Var , C ∈ Class
| skip

Figure 2.5: Syntax of object-oriented programs.

Expressions. Values are defined to be objects, therefore expressions are
restricted to variables or the defaults value Null. The only possibility to
create a new value is the X := new C instruction, which allocate a new
object on the heap and assign a pointer to this object to a variable.

Statements. The object-oriented language has the same base instructions
as the numerical language (assignment, test and call), but their mechanics
have changed. The assignment of expressions is still there, but we do not
have Boolean expressions. Instead, the language has a IfNull test: it takes
a pointer (the content of a variable) and makes the jump if the pointer is
Null.

Paths are not included in the language, to assign an object referred to
by a path such as X.F.G.H we need to use intermediary variables and use
the putfield instruction. Y := X.F.G.H is decomposed in a sequence of
putfields: Y1 := X.F ;Y2 := Y1.G;Y := Y2.H.

The X := new C instruction allocates a new object of class C in the
heap. It does not execute any constructor, but initialise all fields with the
Null value.

The method call X := Y.C.M(X0, X1) takes several arguments: the vari-
able X that will store the result, the variable Y containing the caller, the
name of the method M , the arguments X0 and X1 (which are variables, not
expressions), and the additional arguments C, a class in which the method
M is defined (as in bytecode instructions). The call is a dynamic call: a
method can have multiple implementations as subclasses can redefine the
methods of their ancestors, and a lookup algorithm determines at runtime
the implementation to use. The argument C gives a class name which im-
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plements M , and the lookup can only return implementations that belongs
to subclasses of C.

Programs. The model of programs is similar to the one used in the numer-
ical language, with additional information to account for methods and a class
hierarchy. A method (c, m) ∈ Class×Method is identified by its name m and its
defining class c. Its entry point (written (c.m)0) and its exit point (written
(c.m)∞) are given by the mapping sig ∈ Class ×Method → (PP × PP )⊥. The
mapping sig is effectively a partial function, but contrary to arrays, rather
than being called only when it is defined thanks to array bound checks, it
returns a special value ⊥ if it is not defined. The code is described via
the same two functions: get_stmt ∈ PP → Stmt returns the statement at
program point; next_pp ∈ PP → PP returns the successor of a program
point. The only exception is the conditional statement IfNull(e, p) whose
successor is p if e is null. The class hierarchy is represented by a partial
order � over classes. Each class defines a set of fields. We write f ∈ c for a
field that is either defined or inherited by c, i.e., defined by a super-class of
c. The lookup function models virtual method dispatch and is defined if a
matching method is found by walking up the class hierarchy:

lookup : Class → (Class ×Method )→ Class⊥

We use the same simplified notations p+, p− and succ(p), and all short-
hands and notations are summarised in Table 2.2 on the next page.

2.4.2 Semantics

The memory model used in the semantics of the core object-oriented lan-
guage differs from the one used for the numerical language semantics, to
account for the heap and the absence of arrays.

The semantic domains are built upon an infinite set of location L; values
are either a location or null; an environment is a mapping from variables
to values; an object is a pair made of a class and a mapping from fields to
value ; the heap is a partial mapping from locations to objects. A state is
a tuple of Env × Heap × PP . Again, for accessing states we use a record-like
notation: if a logical variable s refers to a state (e, h, p), then s.env is the
environment e, s.hp is the heap h, and s.cpp is the current program point
p. We add a set of error states Err for null pointer dereferencing and calls
to undefined methods or lookup failure.

Val = L ∪ {null} Env = Var → Val Obj = Class × (F → Val )
Heap = L → Obj⊥ State = Env × Heap × PP

Err = {NullPointer ,LookupFail}
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Shorthand Usage

get_stmt(p) Statement annotating a program point p
p+ Program point following p in the control flow graph, short-

hand for next_pp(p)
p− Destination of a conditional jump at p

succ(p) Set of all possible successors of p
sig(c,m) Signature of a method m in a class c, can be either a pair

of program pointsor ⊥ if the method is not implemented
(c.m)0 Starting point of of a method m in a class c
(c.m)∞ Exit point of of a method m in a class c
c1 � c2 The class c1 is defined as a subclass of c2
f ∈ c The field f is defined or inherited by the class c

lookup(c)(c0,m) Result of the lookup of a method m starting at c and fin-
ishing atc0, can be either a class or ⊥ if the lookup failed

p0, p1 Read only variables containing the arguments during an
intra-procedural execution

res Variable containing the result of an intra-procedural
execution

x is assignable The variable x 6∈ {p0, p1, this}
s.env Local environment of a state s
s.hp Heap of a state s
s.cpp Current program point of a state s
λf.null Uninitialised object
λv.null Uninitialised environment

Table 2.2: Shorthands used in the semantics of the core object-oriented
language to describe a flowchart—emphasised by a truetype font—and a
semantic state

Expressions are restricted to be either variables or null, so their semantics
given below is simple.

(σ, null)⇒ null (σ, v)⇒ σ(v)

The semantics of a program is presented in Figure 2.6 and Figure 2.7 on
page 29 using the same map-like notation—m[k] for accesses and m[k ← v]
for updates—we used in Section 2.2. Again, we use a mostly small-step
presentation of the semantics, defining inductively a relation −→ between
states and its transitive closure −→∗. The environment of initial state while
executing a method call is built upon the environment at the call point.
The variable this is assigned with the callee, and the two arguments of the
call are assigned to the parameters p0 and p1. No instruction allows explicit



CHAPTER 2. ABSTRACT INTERPRETATION 28

assignment to the variables this, p0 and p1, which are effectively read-only
variables. The fields of newly created objects are initialised with the null
value.

Most of the semantics of instruction is standard. The skip instruction,
the assignment and the conditional jump behave as expected. The alloca-
tion of an object initialise all fields to null, and select a location l that is
unallocated in the heap (s.hp[l] = ⊥). Accesses and updates in the heap are
decomposed in two steps: first the location is fetched in the environment,
then the object is fetched in the heap. An object of class c is defined as a
pair (c, o) where o is a mapping from fields to value, therefore the class of
an object appears in the rule for heap accesses even though it is not used.

The relation s �y.c0.m(a0,a1) (s′, pend) defined by the rule SCall in Fig-
ure 2.6 on the next page is a shorthand for the definition of the initial state
of a call to the method c0.m: a method with name m defined in the class
c0. As we use a dynamic dispatch, the implementation of the method to
execute is selected by the lookup algorithm. The relation �y.c0.m(a0,a1) also
defines the exit point pend of the implementation to execute. The initial
environment of a method call only contains value for the variables this, p0
and p1—respectively, the caller and the values of the two arguments.

Figure 2.7 on the following page describes the semantics of programs
“which go wrong”. The semantics is blocking with respect to ill-formed pro-
grams (assignment to the variables this, p0 and p1), but programs leading
to null pointer dereferencing or method not found lead to special error states
(NullPointer and LookupFail).

The set of reachable states are obtained by the reflexive, transitive clo-
sure of the relation _ which enriches the semantic relation −→ with states
reachable from sub-calls in similar way as for the numerical core language,
but adapted to the dynamic dispatch mechanism.

s −→ s′

s _ s′

get_stmt(s.cpp) = x := y.c0.m(a0, a1) x is assignable
s�y.c0.m(a0,a1) (s′, pend)

s _ s′

The set of reachable states for an initial set S0 of initial states is then defined
as

Reach = {s | s0 ∈ S0 ∧ s0_∗s}.

As for the numerical core language, the semantics refers indirectly to pro-
grams through the functions describing its control-flow and statements.
When a more high-level view is required, we will allows ourselves to refer to
set Reach(P ) of reachable states for a given program P .

Definition 2.4.1 formalises the well-formedness properties of semantic
states that are preserved by the semantic rules.
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Skip
get_stmt(s.cpp) = skip
s −→ (s.env, s.hp, s.cpp+)

Assign
get_stmt(s.cpp) = x := e x is assignable (s.env, e)⇒ v

s −→ (s.env[x← v] , s.hp , s.cpp+)

JumpNull
get_stmt(s.cpp) = IfNull(t, p′) (s.env, t)⇒ null

s −→ (s.env , s.hp , p′)

JumpLoc
get_stmt(s.cpp) = IfNull(t, p′) (s.env, t)⇒ l l 6= null

s −→ (s.env , s.hp , s.cpp+)

New

get_stmt(s.cpp) = x := new c x is assignable
s.hp[l] = ⊥ o = λf.null

s −→ (s.env[x← l] , s.hp[l← (c, o)] , s.cpp+)

Getfield

get_stmt(s.cpp) = x := y.f x is assignable
s.env[y] = l l 6= null s.hp[l] = (c, o) o[f ] = v

s −→ (s.env[x← v] , s.hp , s.cpp+)

Putfield

get_stmt(s.cpp) = x.f := y s.env[x] = l
l 6= null s.hp[l] = (c, o) v′ = s.env[y] o′ = o[f ← v′]

s −→ (s.env , s.hp[l← (c, o′)] , s.cpp+)

Call

get_stmt(s.cpp) = x := y.c0.m(a0, a1) x is assignable
s�y.c0.m(a0,a1) (init, pend) init −→∗ end end.cpp = pend

s −→ (s.env[x← end.env[res]] , end.hp , s.cpp+)

SCall

s.env[y] = l l 6= null (s.env, a0)⇒ v0 (s.env, a1)⇒ v1
s.hp[l] = (c, o) lookup(c)(c0,m) = c′ sig(c′,m) = (pbeg, pend)

env′ = (λx.null)[this← l][p0 ← v0][p1 ← v1]
s�y.c0.m(a0,a1) ((env′ , s.hp , pbeg), pend)

Figure 2.6: Semantics of the object-oriented core language

GetfieldNullP

get_stmt(s.cpp) = x := y.f x is assignable
s.env[y] = null
s; NullPointer

PutfieldNullP

get_stmt(s.cpp) = x.f := y x is assignable
s.env[x] = null
s; NullPointer

CallNullP

get_stmt(s.cpp) = x := y.c0.m(a0, a1) x is assignable
s.env[y] = null
s; NullPointer

LookupFail

get_stmt(s.cpp) = x := y.c0.m(a0, a1) x is assignable
s.env[y] = l l 6= null s.hp[l] = (c, o)

lookup(c)(c0,m) = ⊥
s; LookupFail
. . .

Figure 2.7: Limited subset of the error conditions
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Definition 2.4.1 (Well-formedness). A semantic state s = (e, h, p) ∈ State
is well-formed (Wf (s)) if and only if there are no dangling pointers.

∀l.h(l) = (c, o)⇒ ∀f, l′.o(f) = l′ ⇒ l′ ∈ dom(h)
∀x, l.e(x) = l⇒ l ∈ dom(h)

The semantics also enforces certain properties of consecutive states that
are summarised by the notion of compatible states, defined as follows.
Definition 2.4.2 (Compatibility). A state s = (e, h, p) and a state s′ =
(e′, h′, p′) are compatible (Compat(s, s′)) with the semantic relation if and
only if

1. The resulting heap h′ defines more locations than the initial heap h′

2. The class of objects is invariant

3. Arguments of method calls (including the variable this) are immutable
∀l.l ∈ dom(h)⇒ l ∈ dom(h′) (1)
∀c, c′, l, o, o′.h(l) = (c, o)⇒ h′(l) = (c, o′)⇒ c = c′ (2)
e(this) = e′(this) ∧ e(p0) = e′(p0) ∧ e(p1) = e′(p1) (3)

Proposition 2.4.1 formally states that the semantics preserves the well-
formedness conditions (Definition 2.4.1) and that consecutive states are com-
patible (Definition 2.4.2).
Proposition 2.4.1. Given two consecutive states s and s′ (s → s′), if s
is well-formed Wf (s) then s′ is well-formed (Wf (s′)) and compatible with s
(Compat(s, s′)).

2.5 Object-oriented analyses
Our first concern while choosing an analysis to certify is to access the feasi-
bility of our approach, but we still want to consider an analysis relevant to
object-oriented languages. The BCV is full of simple properties for which
analysis are well understood. However, for this very reason, mechanical
proofs of such analysers already exist [Pus99, KN03]. If we want to provide
an alternative to complex mechanised proofs, we need to consider analyses
on which they are hard to provide. We chose to concentrate on Null-pointer
analyses, and describe a whole family of analyses using one formalisation by
using the parametric instrumentation of semantics presented in Section 2.4.

2.5.1 Simple analyser : ByteCode Verifier

We give a brief description of the Java Virtual Machine and enlighten some
features of interest for our approach, then formalise an aspect of Bytecode
Verification to which our result certification approach will be applied in
Chapter 6. More information on Java bytecode verification, its algorithms
and their formalisations [FM98] can be found in a survey by X. Leroy [Ler03].
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Bytecode language. The Java Virtual Machine (JVM) [LY99] is an ab-
stract machine using stacks and registers. Programs are written in an un-
structured, typed, instruction-based language (the Java bytecode), and in-
structions pops arguments off and push their results on a stack. Local
variables are represented by a given set of registers accessed through load
and store instructions that pops off and push on the stack the content of
registers.

The Java bytecode is unstructured in the sense that control is handled by
goto-like instructions (conditional or not). But a bytecode program is com-
posed of delimited methods with entry and exit points, and jump can only
be intra-procedural (approximately, see subroutines). Methods are called
with dedicated instructions such as invokestatic and invokevirtual and each
method has an activation record containing its stack and register, preserved
across method calls.

As mentioned before, most instructions of the JVM bytecode are typed.
For example, the arithmetic addition instruction iadd requires that the top
two elements on the stack be integers, pop them off, and push an integer on
the stack. Objects fields are manipulated through getfield and putfield

typed instructions. More precisely, a getfield C.f.τ instruction requires a
pointer to an object of class C or one of its subclass at the top of the stack,
pops it off, and pushes on a value of type τ (the value contained in field f).
Similarly, method calls are of the form y.C.m(. . .) and the lookup algorithm
for dynamic calls will fail if the dynamic class of y is not a subclass of C.

Bytecode Verifier. The JVM offers no guaranty of proper execution if
the following requirements are not met:

• No stack underflow or overflow: No instruction tries to pop a value
from an empty stack, nor does it try to add a value on a stack of the
maximum size specified on the entry point of its method.

• Code containment: The program counter always points to the begin-
ning of a valid instruction inside the method.

• Register initialisation: a load from a register always follow a store on
that register.

• Object initialisation: After creation of an object and before it is used,
one of the initialisation method of its class must be invoked.

• Type correctness: The arguments of an instruction are always of the
type expected by the instruction.

A defensive JVM approach consists in checking these requirements dy-
namically, but it is expensive and slows down the execution. Verifying these
conditions or part of them statically on the code of a program at loading
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time speeds up the execution, as bytecode passing the verification can be
executed with fewer dynamic checks.

Type correctness. Most conditions can not be interpreted in our set-
tings. We consider a stack free, register free language and suppose code
containment holds. Moreover, we only model dynamic calls, and do not
make a distinction between the constructors and the other methods, there-
fore object initialisation can not be modelled directly. The main property
we are interested in is type correctness, with the exception of basic types.

For any program, the subtyping relation used in the JVM, written <:,
respects the extends relation defined in the program, lifts it to arrays of
arbitrary dimension and adds the class null for null pointers (subtype of
all classes), the class Object ancestor of all classes and arrays, and the
class >, ancestor of the class Object and all basic types (integers, floating
point real numbers, etc.). The set of types ordered by <: is a semilattice
(any pair of types has a least upper bound), and <: is well founded (there
is no infinite strictly increasing chain of types).

2.5.2 Null pointer analysis

In object-oriented language, a programmer needs to distinguish proper ob-
jects from the special null value or base values. Modern languages such as
C# and Java do not provide type information of that sort, i.e., null is a
correct value of any class/type. Other languages like Spec# do make such
a distinction, and the declaration of a field of non-null type ensures that ev-
ery read access yield a non-null value and every update requires a non-null
value. The key property is that a object/record under construction cannot
be accessed until fully constructed. But languages like C# and Java gives
access to partially initialised object through the variable this, and cannot
enforce this kind of properties in general.

Fähndrich and Leino [FL03] propose a type system allowing annota-
tion of fields with non-null types, and a type checking algorithm to verify
an annotated object-oriented program, making sure that annotations are
consistent with the program’s behaviour. Contrary to BCV, this is about
enriching the language with a new type system. Whereas the BCV is in-
tegrated to the JVM, non-null types are not enforced by the BCV, and in
fact not all programs with no non-null error can be typed. However, proving
the absence of null dereferencing error using non-null type systems makes
possible the use of less dynamic checks in a defencive programming setting,
and as usual, provides faster execution.

Raw types. The first conceptual step in creating a non-null type system,
is to introduce for every declared class T , a distinguished type T− for non-
null references of type T . To avoid confusion, let T+ be the type of references
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Figure 2.8: Non-null types are lifted to a lattice (on the right) following
the class hierarchy (on the left)

of class T that can be null. Annotating a program with non-null annotations
now amounts to using the type T− and T+ whenever a type is expected,
e.g., in method signatures or variable declarations. This distinction between
possibly null and non-null values can be lifted to the class hierarchy, as
illustrated in Figure 2.8. If S is a subclass of T , then S+ � T+ and S− �
T−. Naturally, all variables of type T− can be downcasted to T+, simply
forgetting we know they will never be null, hence T− � T+. Therefore, any
expression of type T− can be assigned to a variable of type T+, but to go
the other way around requires a test.

Problems arise when taking into account the initialisation of fields. Sup-
pose a class C declares a field f with a non-null type T−. If a variable c is
declared of type C−, we expect c.f to denote a non-null value. This would
be easy to ensure if we knew that c was fully initialised, but during the
construction of an object, the object being constructed is accessible using
the this keyword, and the field f may not be initialised yet, hence this.f
points to null. In fact, until it has been assigned a non-null value, the lan-
guage semantics requires that this.f denotes the null pointer: when an
object is allocated, all fields are set to null. Worse, this can be used as
an argument for another method, and then x.f (x being the corresponding
method parameter x of type C−) may denote a null pointer whereas f has
been declared T−. Moreover, all these method can be redefined by descen-
dants of the class C, thus even if the methods of a class are implemented
such that no uninitialised field is dereferenced, redefining methods could
have unexpected results.

To solve this problem, Fähndrich and Leino introduce a new type Craw−

denoting non-null but partially initialised value, illustrated in Listing 2.3.
To make sure that once a field of an object of type C− is initialised it never
contains null again, they require that expressions assigned to c.f be of type
T− (hence non-null) even if c is of type Craw− (hence not fully initialised).
This strong requirement of monotonicity ensures the soundness of the type
system even in the presence of aliases or in a concurrent setting. Finally, by
the end of every constructor of a class C, every field annotated with a non-
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class C {
field T− f; // f is supposed not null
C () {
// at this point, this is typed as Craw−

f := new Object (); // f is initiated to non null
// at this point, this is typed as C−
}

}

Listing 2.3: Example of a constructor annotated with raw types

null type and directly declared in class C, must have been assigned. This
ensure that for any class C, new C can safely be downcaste from Craw− to
C−.

Inference. Annotations are useful tools to specify invariants when they
are known, but annotating all the information needed by a verification tool
on a real program is a daunting task. It can be alleviated by using default
annotations policies, but even a default policy is not sufficient to find correct
types for all programs. Static type inference allows to avoid manual anno-
tation. Hubert et al. have proposed an automatic null pointer analysis for
inferring non-null annotations of fields [HJP08] in the type systems proposed
by Fähndrich and Leino [FL03]. In order to track down the initialisation
state of fields, they are using an instrumented semantics which annotates
field with the status def (defined) as soon as their are initialised. Further-
more, they proved the correctness of the proposed analysis with respect to
the operational semantics of the core object-oriented language on which the
analysis is formalised, providing a semantic foundation of non-null annota-
tions, and that proof has been machine checked using the Coq [BC04] proof
assistant. They also proved the completeness of the analysis in the sense
that on any typable programs the analysis will prove the absence of null
dereferencing without any hand-written annotation.

2.5.3 Conclusion

In the present chapter, we introduced the theory of abstract interpretation
and how a static analyser can be formalised in this theory. We instantiated
this formalism on two family of analyses: numerical analyses and analyses
of the heap. To provide a formal definition of programs to analyse we also
introduced two core languages and their semantics. The result certification
of numerical analyses will be studied in Chapter 5, and the approach will
be adapted to analyses of the heap in Chapter 6.



Chapter 3

Deductive verification
background

The previous chapter presented the static analysis context in which our ap-
proach is grounded. But our methodology is based on Verification Condition
generation, a concept central to deductive verification. Therefore before the
presentation of our approach in the chapters 4 to 6, we recall in the present
chapter the necessary background to understand our approach and to eval-
uate its originality.

We first recall in Section 3.1 the seminal works of Floyd, Hoare and Di-
jkstra. Then Section 3.2 discusses some challenges brought forth by modern
programming languages and described the solutions implemented in state-
of-the-art tools. Finally, Section 3.3 discusses the key concept of trusted
computing base and presents one answer to the problem of trust relevant to
our problem: proof-carrying code.

3.1 Deductive verification

3.1.1 Axiomatic semantics

The first efforts towards a formal definition of the meaning of programs,
and the first attempts to prove the absence of errors in a program, led in
the late 60’s to several, very different, paradigms of program semantics. In
particular, the work of Robert W. Floyd was among the first to use proof
techniques as a formal definition of programming languages. In his seminal
work on Assigning Meanings to Programs [Flo67], he relates the semantics
of a language to the tools used to verify properties of programs:

A semantic definition of a particular set of command types, then,
is a rule for constructing, for any command c of one of these
types, a verification condition Vc(P ;Q) on the antecedents [pre-
conditions P ] and consequents [post-conditions Q] of c.

35
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In other words, the semantics of a program—represented as a flowchart—is
a set of verification conditions: formulae parametrised by annotations on
each edge of the flowchart. If, when the pre-condition—i.e., the condition
on entrance—of a statement is true, the post-condition—i.e., the condition
on exit—is true after execution of the statement, we say the annotations
are correct. And by construction the annotations are correct only if the
verification conditions are valid formulae.

?

Yes No

P1

Q1 Q2

a) Test with a condition φ

P1

Q1

b) Assignment of a variable x, with a term
f , ~y being a list of variable distinct of x

Figure 3.1: Flowchart representation of a test and an assignment, anno-
tated with pre-conditions Pi and post-conditions Qi

For example, the verification condition V Cc(P1;Q1, Q2) for the test de-
picted in Figure 3.1 is

(P1 ∧ φ ` Q1) ∧ (P1 ∧ ¬φ ` Q2)

where the semantics of the relation ` is given by a particular deductive
system, which includes the axioms and rules of inference of the first-order
logic with equality. This verification condition corresponds to the usual
semantics of a test: if P1 is true before the test on φ, then for the annotations
to be verified, Q1 must be a logical consequence of P1 ∧ φ and Q2 must be
a logical consequence of P1 ∧ ¬φ. This forward reasoning—assume the pre-
condition, deduce a constraint on the post-condition—leads to a semantics
of the assignment introducing existentially quantified variables. Using the
notation of Figure 3.1, the semantics of x ← f(x, ~y) is, if P1 has the form
R(x, ~y)

(∃xold, x = f(xold, ~y) ∧R(xold, ~y)) ` Q1

The existentially quantified xold represents the variable x before the assign-
ment. Assuming R(x, ~y) holds before the statement, we know that R(xold, ~y)
still holds after the assignment to x, and we also know that the new value of
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x is f(xold, ~y). For the annotations to be verified, we must prove that these
facts are sufficient to deduce Q1. Note that this semantics is only consistent
if we suppose the language free of aliases, and while this is fairly easy to
prove for purely functional expressions, it requires further precautions in the
presence of side-effects. Section 3.2 gives more details on the way modern
verification frameworks alleviate this problem, and Section 4.3.2 explains
how that solution is adapted in our approach.

This definition of the semantics is a formal basis for proofs of relations
between input and output, and can be extended to account for the termi-
nation of a program, using variants—i.e., equations on terms belonging to
well-ordered sets. Floyd also remarks that all verification conditions have
the same form

V Cc(P ;Q) ≡ Tc(P ) ` Q

where Tc(P ) is a formula depending on the statement c and on the pre-
condition P , and whatever Q is, for the annotations to hold it must be
the case that ` Tc(P ) =⇒ Q. Therefore Tc(P ) is the strongest verifiable
consequent, and as it can be calculated using the semantics and the pre-
condition, not all edges need to be annotated for the program to be verified,
only entrance points and one edge per loop. This combined with mechanical
theorem proving techniques opened the way for automatised verification of
programs.

Expanding on Floyd’s work, Tony Hoare introduce a specific notation—
now called Hoare triples—to link textual representation of programs and
logical specification of the states of execution. The triple {P}Q{R}1 is
interpreted as

If the assertion P is true before initiation of a program Q, then
the assertion R will be true on its completion.2

Rather than having rules to produce verification conditions depending on
the statements and proving the verification condition in a deductive system,
Hoare expands the deductive systems with rules and axioms dealing with
triples [Hoa69], providing a full-fledged axiomatic semantics of a program-
ming language usually referred to as the Hoare-Floyd logic.

For example, proving the triple

{P}x← f(x, ~y){Q}

would require the use of the axiom for the assignment and of the rule for
consequences. First, an axiom for assignment describe the semantics of the

1The initial notation by Hoare read P{Q}R but we use instead the pervasive {P}Q{R}.
2This sentence refers to partial correctness, that is, P does not implies that Q termi-

nates. Total correctness requires that if P is true then Q terminates and R is true on its
completion.
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statement

` {Q[f/x]}x← f{Q}
then an inference rule links the notion of consequence in the logical world
to the program annotations

` P =⇒ Q[f/x] ` {Q[f/x]}x← f{Q}
` {P}x← f{Q}

The semantics of the assignment is here given in a backward manner,
whereas Floyd used a forward presentation, but the intent is the same, and
in both cases the semantics is only consistent for a side-effect free language.

Remark that one of the premises of the consequence rule is a purely
logical judgement, and is left to be proved using the standard first order
logic deductive system. Indeed, the pre-condition P is a sufficient condition
but not a necessary one. The weakest condition that must be true on the
state of execution, before the assignment, for the post-condition Q to hold
is Q[f/x].

3.1.2 Weakest precondition calculus

This notion of weakest pre-condition has been systematised by Edsger W.
Dijkstra and he uses it to reformulate and tighten the Hoare-Floyd logic as
a predicate transformer semantics [Dij75].

Considered as a function of the post-condition, the weakest pre-condition,
written wp(C,Q) for a program C and a post-condition Q, is an example of
predicate transformer and gives the semantic of the program Q. To quote
Dijkstra [Dij97, Chap. 4, p. 24]

While the semantics of a specific mechanism (program) are given
by its predicate transformer, we consider the semantics charac-
terisation of a programming language given by the set of rules
that associate the corresponding predicate transformer with each
program written in that language. From that point of view we
can regard the program as “a code” for a predicate transformer.

The rules of inference introduced by Hoare are replaced by rules associating
a program to its predicate transformer, given by a syntax driven weakest
pre-condition calculus

wp(“x← f”, Q) = Q[f/x]
wp(C1;C2, Q) = wp(C1,wp(C2, Q))

. . .

and proving that a triple P{C}Q holds amount to prove in the first order
logic deductive system that

` P =⇒ wp(C,Q)
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A dual strongest post-condition calculus can be defined, and generalises
Floyd’s remark on the strongest verifiable consequent.

3.2 Deductive verification of modern languages
More recent work has built upon Dijkstra’s calculus to provide more effi-
ciency [FS01], but the core of most modern verification condition generators
(VCgen) is still a weakest pre-condition calculus. Nonetheless, extending
Hoare-Floyd logic to modern programming languages give rise to all kinds
of problem, e.g., aliases between variables, dynamic dispatch during method
call.

3.2.1 Memory model

Aliases between variables occur when two variables refer to the same memory
unit, thus, when assigning one variable, the value stored in memory changes
for both variables. A semantic of aliases can be given by the definition of a
memory model, i.e., a refined abstraction of the link between a variable and
the memory manipulated by the program, that allows an explicit semantic
definition of assignment that takes aliases into account.

In object-oriented languages, aliasing occurs within the heap where all
objects are stored: each object is a collection of fields which may contain
pointer to objects in the heap, thus when two variables o and o′ contain
objects, a modification to o.f—f being a field of o—also modifies o′.f if o
and o′ reference the same object.

Rather than modelling the memory by a map from variable names to
values, a common practice, initiated by Cartwright and Oppen [CO81], is
to define an abstraction of the memory , the domain of memory locations3,
and to maintain two separate maps, as illustrated on Figure 3.2: one map
from locations to values (the memory) and one from variables to locations
(the store). Assigning a value v to a variable x is defined as mapping x to a
location l and assigning v to l. Hence if x is an alias of another variable y,
then both x and y refer to the same location, and assigning a new value to
either variable, effectively change the value behind both.

x

y
l v

store memory

Figure 3.2: Simple memory model
3The term employed in [CO81] was abstract addresses but we reformulate in term of

locations to be consistent throughout the dissertation.
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In type-safe object-oriented languages—e.g., Java, C#—aliasing occurs
only when two pointers of same type point to the same object, therefore prov-
ing that the types are different ensures absence of alias. A simple memory
model represents the heap by a mapping from locations to objects, objects
being mapping from field names to value. Most verification frameworks use
a variation upon this approach depending on the language, the reasoning
engine and design choices.

In unsafe languages such as C, objects or structs can overlap in mem-
ory, memory can be explicitly deallocated, and pointers can be forged using
arithmetic operations—under certain restrictions. However, most program
in C that need to be verified adhere to strict coding rules and type discipline,
as after all type-safe programs can be written in unsafe languages. Follow-
ing this principle, the VCC [CDH+09] verification environment provide a
memory model for concurrent C [CMTS09] that allows easy typed reasoning
and more cumbersome but feasible untyped reasoning.

3.2.2 Framing

Even if a memory model allows precise and sound reasoning about aliases,
reasoning about procedure calls is usually based on contracts: the state be-
fore and after a call are related using the pre-condition and post-condition of
the procedure, not its implementation. If the local environment is supposed
untouched by the call—apart from a given variable storing the result—the
heap is not restored after the call: any modification of the heap done during
the call remains valid after the call. The area of the heap that a procedure
modifies is called the footprint of the procedure, and a conservative but
sound approximation of the footprint is to consider the whole heap altered
by the call. However, a more precise over-approximation of the footprint
may be needed for verification.

The most common approach, called framing [BMR95], is to use framing
conditions to specify, for each procedure, which part of the heap it is allowed
to change during its execution. The main challenge is to define a logic
expressive enough to state conditions precise enough for the specifications
of “most” programs to be provable. But another challenge emphasised by
numerous verification approaches is to make the logic “usable”, which entails
keeping annotations concise, and making conditions simple enough to be
specified by non-specialist programmers.

The Java Modelling Language [LBR06] (JML) is a specification lan-
guage used by numerous verification environment targeting Java, e.g., Kra-
katoa [MPMU04, MPm05], ESC/Java [FLL+02], KeY [ABB+00]. Each
method should define, apart from pre-condition (require ) and post-condition
(ensure ), its frame (assignable ), using Java expressions. A common
solution to enhance the expressivity of such expressions is to allow the def-
inition of ghost variables and instructions, i.e., variables used solely in an-
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notations, modified only by ghost instructions and never used to alter the
control-flow or the data of the program. Ghost variables are the basic mech-
anism in more complex framing schemes, such as the ownership system used
in the VCC [CDH+09] and Spec# [BLS04] verification environments, or
the dynamic frames [Kas06] used in the Dafny [Lei10] environment.

In the separation logic approach, used for example in the VeriFast [JSP10,
JSP+11] verification environment for C and Java, rather than introducing
a special framing condition to the specification of methods, the logic of an-
notations is extended with a new operator ∗ that allows logical formulae
to hold for distinct parts of the memory. The axiomatic semantics of the
language is changed to use this operator and a new deductive system is in-
troduced. In this approach, the framing condition is, in a sense, inferred
from the pre-condition.

3.2.3 Intermediate Verification Languages

Both the memory model and the framing conditions complicate substantially
the definition of the VC generator (VCgen). In particular, a precise memory
model leads to axioms that must be taken into account while proving the
VCs and may require the program to be modified so as to reference explicitly
the memory model constructs, and the interpretation of framing conditions
leads to new verification conditions, may require additional analysis of the
program and introduce some axioms. To separate the WP calculus and
the definition of the memory model, numerous verification environment rely
on Intermediate Verification Languages (IVL), e.g., Why [BFMP11] and
BoogiePL [BCD+05].

The IVL provides a simple programming language in which the source
code must be encoded and specification language in which the annotations—
including the framing conditions and explicit side-effects—and the memory
model must be encoded. Such languages are not meant to be executable,
and parts of the program and of the memory model may be axiomatised.
In place of a compiler or an interpreter, the language comes with a WP
calculus and a back-end in charge of sending the VCs to automated theorem
provers and interpreting the results. A deductive verification environment
for a specific language can be seen as the combination of the IVL, its WP
calculus and a compiler of the initial language to the IVL.

Figure 3.3 presents an overview of the deductive verification scheme
based on intermediate verification languages. Squared nodes stand for the
different stages of the work-flow of the verification process, and rounded
nodes stands for input/output of the different processes used. Nodes are an-
notated by relevant existing tools: the VCC [CDH+09] verification environ-
ment takes a C program translates it into BoogiePL, so does Spec# [BLS04]
for C# and Dafny [Lei10] for its specific language, and Krakatoa [MF09]
translates a Java program into Why.



CHAPTER 3. DEDUCTIVE VERIFICATION BACKGROUND 42

Ok / Wrong / I don't know

Program (C, Java) Annotations

Translate to IVL (Spec#, VCC, Krakatoa)

Automatic Theorem Provers
(Z3, Alt-Ergo, CVC, E, etc.)

VCgen (WP of the IVL)

VCs

Program in IVL (Why3, BoogiePL)

Figure 3.3: Overview of deductive verification approaches based on IVLs

The Loop compiler [vdBJ01] is based on a different but comparable
approach. It translates Java programs to theories in the logic of the Isa-
belle/HOL or PVS Proof-Assistants (PA), adds user assertions about
classes and prove them against the theories. The memory model is described
using construct of the logic and Java block statement are translated accord-
ing to their denotational semantics into state transformers [HJ00]. In this
approach, a specific logic is used as an intermediate language between Java
and the logic of the PA, verification conditions are generated as theorems in
the PA and are proved using tactics and decision procedures implemented
in the PA rather than using automated theorem proving.

3.2.4 Automated deductive verification

To provide a usable framework for program verification, the generated veri-
fication conditions must be proved automatically with good reliability, and
a large part of recent successes in program verification is due to progress in
the Automated Theorem Proving practice. We summarise the different steps
in the verification of a program to justify this claim.

1. The program to be verified has to be annotated with pre-conditions,
post-conditions, framing conditions, loop invariants and variants. The
annotation process can be tedious and requires knowledge of both the
verification process—and its mathematical foundation—and the pro-
gram itself—or the algorithm behind it. For verification to be practical
and accessible to programmers with no particular theoretical expertise,
the specification language has to include high-level constructs the pro-
grammer is familiar with, and a default policy must be defined such
that most annotations can be left implicit.
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2. The annotated program is translated into an Intermediate Verification
Language. Again, for practical reasons this translation must be au-
tomatic and require the minimum amount of additional information.
At this point the annotations have to be made explicit and translated
in the specification language used by the weakest pre-condition cal-
culus. These translations may generate numerous axioms to account
for the high-level constructs of both the input programming language,
the initial specification language and the memory model of the source
language.

3. Verification conditions are generated automatically by a weakest pre-
condition calculus. The preceding exposition concentrated on verifica-
tion condition corresponding to the Hoare triple

{pre-condition}program{post-condition}

but they also account for array bound checking, absence of arithmetic
overflows, various data-structure invariants, absence of null pointer
dereferencing, validity of framing conditions, etc. Therefore, the WP
calculus typically generate a large number of formulae. They may be,
at the same time, rather “easy” to prove—in term of proof length for
example, or of the complexity of the reasoning involved—and large in
term of number of symbols.

4. These verification conditions have to be discharged, i.e., proved valid.
Apart from toy examples, a pen-and-paper proof is unrealistic: there
are too many formulae involved, with too many symbols, and the
process would be far too error prone. The use of an interactive proof-
assistant can alleviate some problems. Formulae can be manipulated
with ease, partial automation simplifies the process, and the consis-
tency of individual proof steps can be checked. However, it requires
a high degree of expertise from the user and the proof effort grows—
figuratively at least—exponentially with the size and complexity of the
program. To avoid any manual interaction in the proof search, the ver-
ification condition may be discharged by Automatic Theorem Provers
(ATPs), in which case another translation may be needed—from the
verification conditions’ logic to the input logic of the ATP.

At all stages, automation is key to make program verification practical.
However, at the last stage the ATP may fail, and a negative response or
the absence of response may happen for different reasons. The prover may
need an unreasonable amount of time or resources to finish the proof, or
the translation to the ATP’s logic may not be complete. In any case, the
verification process may be stuck at this stage even if the program and the
annotations are correct. To finish the proof, the user can try to change the
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annotations, in hope that a different equivalent/weaker/stronger formula
may be discharged more easily; he can try to add more annotations, effec-
tively cutting the problem into simpler ones; he can try to use a different
ATP, as different algorithms can succeed on different formulae in practice;
or he can do the remaining proofs “by hand”, if there are not too many left.

3.3 Establishing trust
As we saw, automated program verification is a complex process relying on a
number of pieces of software implementing different theoretically sound but
non trivial transformations and decisions. An error at any stage, whether
due to a human error in the specification of to a buggy implementation, can
have a devastating effect on the final result if it remains undetected.

3.3.1 Trusted Computing Base

Trusted Computing Base (TCB) is a term coined by John M. Rushby and a
key concept to assess the security guaranties of computer systems [Rus81].
It can be defined, in the terms a famous free collaborative encyclopedia puts
it, as

The set of all hardware, firmware, and/or software components
that are critical to the security of the system, in the sense that
bugs or vulnerabilities occurring inside the TCBmight jeopardise
the security properties of the entire system.4

Securing the TCB of a system typically involves manual or computer-assisted
software audit, extensive testing, and/or program verification—in its broader
meaning—using formal methods. But automated program verification—by
means of verification condition generation and automated theorem proving
as detailed in Section 3.1—involves a number of large piece of software and
non trivial decisions. An error during any stage of the verification process
may result in a false assessment that the verified program meets is specifica-
tion, thus the TCB of a verification framework should be carefully identified
and examined to determine i) which decisions and process are key to the
soundness of the final result, and ii) how to limit and facilitate the verifica-
tion of that result.

The first step of verification is the annotation of the program. It may
involve the manual definition in a formal specification language of the spec-
ification of the program and of the program invariants, or the translation of
the manual annotations from one specification language to another. If an
error is done at this stage, and the program’s post-condition is not strong
enough to ensure the informal specification of the program, the verification

4Wikipedia, Trusted computing base, March 18th, 2013.
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process may return a faulty assessment. However, if the error result in a
wrong loop annotation, which is not kept invariant during the execution of
the program, the weakest pre-condition calculus will output an non-provable
verification condition, and the verification process will correctly fail. Thus
the annotated pre-condition and post-condition of the procedures/methods
are part of the TCB, but not the loop invariant. For the verification of any
property, it is impossible to annotate automatically all programs, and there
will always be a human interaction at this stage or some form of incomplete-
ness of the process. To limit the risk of error during the manual specification
process, standard security policies can be used—policies specified once and
for all and applied to all programs, thus included in the TCB.

The second step is the translation of the program in an equivalent alias-
free form, using a memory model. If the translation is not correct, the
verification can obviously not be trusted. Moreover, a deductive verification
framework relies on an automatic translation, and even if the translation’s
formalisation is correct it may be implemented incorrectly, therefore the
implementation have to be included in the TCB. For similar reason, so is
the memory model and the automatic verification generator used in the third
step.

In the final step, the verification are discharged. As explained earlier,
this will involve some automatic process, whether it is an interactive or a
fully automatic proof search. If an interactive proof search is used, then the
resulting proof must be checked. If the search is fully automatic, the prover
is part of the TCB.

At all stage, if an automatic translation or proof is required, the TCB
may contain, in place of the translation/proof search software, a result ver-
ifier. While discharging the verification conditions for example, the ATP
can be treated as an untrusted software: it is not part of the TCB, but a
separated software—the so-called verifier—will be used to check that the
proof found is consistent—w-r-t the appropriate deductive system—and is
a proof of the validity of the verification condition. The verifier is therefore
included in the TCB, but is usually easier to prove correct than the ATP.

In any case, neither sound theoretical foundations nor formal proof of
correctness of an individual step are sufficient to ensure the reliability of
a program verification framework. That does not mean that resistance is
futile, nor that formal verification is a lost cause. It is mainly a reminder
that software complexity can only be partially tamed and remain wild at
heart, and an opportunity for continuous research advance.

3.3.2 Proof-Carrying Code

The use of proof-verifiers to eliminate the proof-search from the TCB is
one of the key aspect of George C. Necula’s Proof-Carrying Code (PCC)
concept [Nec97], whose initial problem is closely related to our own and
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whose solution may be adapted to our needs. The starting point of PCC is
its seminal application scenario.

A code consumer must somehow become convinced that the code
supplied by an untrusted code producer has some (previously
agreed upon) set of properties. Sometimes this is referred to as
establishing “trust” between the consumer and producer. [Nec97]

To solve this problem, the PCC approach consists in splitting the verification
process into two stages. First, the code producer creates a safety proof that
the code respects a safety policy formally defined and made publicly available
by the code consumer. Then the code consumer uses a proof verifier to make
sure this proof is valid.

Checking the consistency of the proof is not enough: the code consumer
has to check that it is a proof of the appropriate property—the safety of
the code at hand. This means that if the program verification is based on
verification conditions, both the consumer and the producer have to perform
the verification condition generation. The producer uses it to produce a
proof, and the consumer uses it to check that the carried proof attests to
the fact that the code respects the safety policy. For example, the carried
proof can be a set of deduction trees using the rules of a—previously agreed
upon—deductive system, in which case the proof verifier is composed of a
verification condition generator and a type checking kernel that checks i)
that each node of a tree is a consistent application of the deductive system
and ii) that each verification condition is the root of a proof tree.

The TCB on the code consumer side includes the safety policy and the
proof verifier, but neither the code nor the proof. Therefore, the proof
verifier has to be trustworthy, which means in most cases that the underlying
decision procedure should be simple and that its implementation should be
small. The program in charge of producing the verifications conditions, the
VCgen, can be shared by, or different for, the producer and the consumer,
but in any case, must be included in the TCB of the consumer.

For practical reasons, the proof verifier should also be fast, at least fast
enough that it can be done on the device executing the code in a reasonable
time. This requirement seems attainable when considering the intuition that

Proof-checking is easier than proof-search.

but it may still be challenging when applying PCC to code distributed on
portable device with limited resources when compared to a standard work-
station. Moreover, the previous intuition may be misleading when proof-
objects are very large and when the prover does not need to maintain it
during the search, or when the proof-checking is executed in a system whose
safety has a high computing cost. Conversely, eliminating the proof-search
from the TCB grants more leeway to use aggressive optimisations and unsafe
heuristics, effectively expanding the reach of the ATPs.
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PCC applications. The seminal work by Necula and Lee [NL98c] at-
tached the annotations used to generate VCs and the proofs of the VCs—
obtained using the Touchstone theorem prover [NL00] and encoded in the
Edinburgh Logical Framework [HHP93, NL98b]—to programs, compiled
from a type-safe subset of C to optimised DEC Alpha machine code. This
approach requires the use of a certifying compiler [NL98a], able to generate
annotated machine code from annotated programs. Necula et al. later on
applied this methodology to a subset of Java and developed an optimising
certifying compiler targeting Intel x86 architectures [CLN+00], showing that
PCC can be applied to object-oriented languages with high-level features
such as exceptions and floating-point arithmetic.

Morissett et al. developed a related approach to machine code safety that
relied on Typed Assembly Language [MWCG99] (TAL). In this approach,
annotations are restricted to source-level type information and certifying
compilers generate TAL code. The strongly-typed assembly code can then be
verified by a type checker, and processed by the standard MASM assembler
to generate Intel x86 machine code. In comparison with the PCC approach
developed by Necula, type-checking replaces VC generation and requires no
additional proof, thus the machine code is only packed with types rather
than both annotations and proofs, but the extent of property that can be
ensured is limited to type information whereas PCC can use higher-order
logic to define arbitrary invariants.

3.3.3 Foundational Proof-Carrying Code

The Trusted Computing Base of the TAL and PCC approaches include
sophisticated type-systems and VCgen. Their soundness can be proved w-
r-t the semantics of the languages, and the seminal works provide extensive
pen-and-paper proofs of the underlying rules, but obtaining a formal proof
of their implementation remains a challenge.

The Foundational Proof-Carrying Code approach [App01] (FPCC) has
been proposed by Appel and Felty [AF00] to alleviate this concern. The
operational semantics of machine instructions and the safety policy are de-
scribed in a higher-order logic, and the proof that a program abide by the
safety policy must be given in this logic. There is no Verification Condition
generation, as any typing or Hoare-Floyd rule must be proved in the logic
as a lemma to be used.

The proof must explicitly define, down to the foundations of
mathematics, all required concepts and explicitly prove any needed
properties of these concepts. [App01]

Therefore, the TCB of a FPCC approach includes only the verifier of the
higher-order logic, the semantics of the machine instructions and the safety
policy.
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Appel and its co-authors have described successive semantic models [AF00,
AM01, AAV02] to prove the soundness of increasingly expressive type sys-
tems. All definitions and proofs were encoded in the Edinburgh Logical
Framework, implemented and machine-checked in the Twelf meta-logic
framework [PS99]. A major difficulty of these FPCC approaches is the
difficulty to obtain a soundness proof. To alleviate this problem, Hamid
et al. [HST+03] proposed to use type derivations and syntactic soundness
proofs [WF94]—rather than semantic soundness proofs—and used Coq to
develop and prove such a FPCC framework. A last example of an FPCC ap-
proach in this line of thoughts is the TALT project [Cra03], that revisit previ-
ous TAL approaches5 and expand them with a more expressive type theory,
an operational semantics closer to actual hardware and a fully machine-
checkable proof defined in Twelf.

Another possible approach to FPCC is to provide machine-checkable
proofs for the VCgen of a PCC framework. The VeryPCC project [WNKN04,
WN05] conducted Nipkow et al. aims to develop a PCC framework in the
Isabelle/HOL theorem prover, where VCs are generated by a certified
generic VCgen as theorems in the proof-assistant, and proofs are Isabelle
proof scripts to be replayed. The framework was used to develop PCC
environments for a simplified assembly language and for the Java Virtual
Machine (JVM). The Mobile Resource Guarantees framework [AGH+05]
(MGR) is another PCC environment for the JVM, but dedicated to proofs
of absence of run-time resource violation. It is based on a powerful resource-
aware type system proved in Isabelle/HOL, and requires programs to be
attached proofs—again, Isabelle proof scripts—of bound preservation.

The Open Verifier [NS03, CCNS05] is another project aiming at sound
VCgens to implement FPCC architectures for proving memory safety. How-
ever, it focuses on providing a general framework allowing the definition of
customised verifiers and type-systems without compromising the TCB of the
approach. A new type checker is an untrusted module which, using a script-
ing language, instructs the trusted kernel of a proof strategy for discharging
the verification conditions.

Finally, Vogels et al. [VJP10] recently presented a fully formal, machine-
checked proof of the soundness of a realistic VCgen, implemented in Coq.
This project was initially part of an effort to improve the reliability of de-
ductive verification approaches based on IVLs, but as a clear value for a
FPCC approach. Herms et al. [HMM12] achieved a similar result for the
VCgen of an IVL inspired by the Why platform. There implementation in
Coq is structured such that it can be extracted into a standalone executable
VCgen that can target different ATPs.

5TALT stand for TAL Two.



Chapter 4

Static analysis result
certification methodology

The present chapter details our approach and how we apply the deductive
verification concepts and tools presented in Chapter 3 to the certification of
the results of the analyses presented in Chapter 2. First, Section 4.1 presents
an overview of the approach, and discusses its possible applications. Sec-
tion 4.2 details the Many-Sorted First-Order Logic as the logical framework
in which is based the generation of VCs, and presents the specification of a
memory model in this framework. Then Section 4.3 presents the specifics
of the approach: how to use the formalisation of an analyser in the abstract
interpretation framework to translate the abstraction of a program into an-
notations of that program and alleviate the framing problem, what VC can
be used to certify the result of an analyser, and the general methodology
we use to translate an operational semantics into a VC calculus. Finally,
Section 4.4 applies this methodology to the core languages presented in Sec-
tion 2.2 and Section 2.4.

4.1 Approach
The idea of using static analyses in a verification environment is certainly
not new. Most of the verification frameworks presented in Chapter 3 use
abstract interpretation, and static analysis in general, to infer parts of the
specifications of programs and to reduce the amount of manual annotations
needed to verify a program. However, the problem addressed in this disser-
tation is not how to use static analysis to help deductive verification but how
to use deductive verification to check the results of a static analyser, thus
our approach side-steps some difficulties of deductive verification approach,
such as the framing problem.

49
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4.1.1 Overview of the approach

The starting point of the approach comes from the observation that the
abstraction b] of a program is interpreted using the concretisation function
γ : Reach] → P(State) as the description of the possible execution states be-
fore each program point, thus corresponds to annotations of the program
w-r-t to the property the analyser is trying to establish. Furthermore, the
fact that b] is a correct post-fixpoint means that the information at each pro-
gram point is sufficient to ensure the pre-condition of the following program
point, and b] proves the absence of runtime error only if the information
at each program point ensures that no runtime error may occur. These
properties of the abstraction can be checked using a Verification Condition
calculus, where b] is considered as an oracle providing untrusted annotations
of the program.

Ok / Wrong / I don't know

Program (C, Java) Annotations

Translate to IVL (Spec#, VCC, Krakatoa)

Automatic Theorem Provers
(Z3, Alt-Ergo, CVC, E, etc.)

VCgen (standard WP of the IVL)

VCs

Program in IVL (Why3, BoogiePL)

a) Overview of deductive verification
Ok / Wrong / I don't know

Program

Automatic Theorem Provers

VCgen (Why3)

Analyser

VCs

Abstraction (b )#

b) Overview of result certification

Figure 4.1: Comparaison between the classical deductive verification
scheme and the result certification scheme

In this context, to build a result certification scheme we can use stan-
dard deductive verification techniques, taking the safety property the anal-
yser was checking as the only specification of the program. Figure 4.1a
recalls an overview of the deductive verification process , and Figure 4.1b
presents how it can be modified in an overview of our approach by replacing
annotations of the program by the result of an analyser. The similarities
with the deductive verification process goes as far as the Trusted Comput-
ing Base (TCB) of the approach (figured by grey boxes on the figures),
which in both cases includes the Automated Theorem Prover and the VC-
gen, but not the annotations of the program: the only annotations we trust
are those specifying the semantics of “absence of runtime errors”. However,
the TCB of our approach contain no translation of the program into the
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IVL: we rely on a dedicated Verification Condition calculus—described in
Section 4.3—specified and proved sound w-r-t the semantics in the IVL, as
detailed in Chapter 5, therefore the program is represented explicitly and
not translated, and the abstraction b] is not just translated into an existing
annotation language, e.g., JML for Java.

Remark that we do not aim at proving that a program meets its func-
tional specification, only that the verdict of an analyser on a program is
correct. The properties proved are not specific to a program, and the pre-
cision of the “annotations” is bounded by what the abstract domain of the
analyser can represent. Moreover even if the static analysis problem in gen-
eral is undecidable, we deal with the results of the analyser, i.e., we are
interested in programs where the analyser succeeded to decide a property,
at least partially. Therefore we expect the result verification to be fully auto-
matic. Even if the abstraction calculated on a program is not precise enough
to prove the complete absence of error, we should be able to prove that it
is a correct over-approximation of the program’s behaviours. Nonetheless,
our approach depends on Automated Theorem Provers for the final verdict.
Even if these tools are mature and powerful, the satisfiability problem re-
mains at least NP-hard1: they can run out of time or memory, and may not
be able to discharge the VCs even if they are valid, hence the possible I do
not know verdict.

Our research problem and the means we use to address it are closely
related to the PCC approach. Following Necula, we choose Floyd style veri-
fication condition generation as the core mechanism of our result certification
scheme. However, contrary to Floyd, we want to specify the semantics of the
analysed language as an operational semantics, against which the verifica-
tion conditions soundness should be established. Contrary to seminal PCC
approaches [Nec97], the only proof carried by a program is the abstraction
calculated by the analyser, and contrary to the Foundational Proof Carry-
ing Code approach [App01]—which takes an extreme stands regarding what
can be included in the TCB—we attack the problem under a more practical
angle, and contend ourselves with ATPs in the TCB. The problem of trust
in the result of ATPs will be examined in Chapter 8.

To help relate the VC calculus with the operational semantics, we build
a memory model in the many sorted first-order logic framework (see Sec-
tion 4.2). It allows us to manipulate memory states in a functional way (as
maps) in the exact same way the operational semantics does. Furthermore,
defining memory states as a sort belonging to the logic and that can be ma-
nipulated as a data structure gives us a direct way to generate the VCs from
the operational semantics described as an interpreter, which eliminates from
the TCB any form of translation from the input languages to an Intermedi-
ary Verification Language (see Chapter 5) and establishes the soundness of

1Or worse, depending on the theories added to propositional logic.
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the VC calculus w-r-t to the operational semantics.

4.1.2 Applications

Our approach to the result certification of static analyses may have several
applications, and each application may have its own constraints on the size
of the TCB and the efficiency of the tools.

PCC approach to an existing uncertified static analyser. Either
the code producer or the user of the analyser—which may or may not be
the same entity—wants to provide a checker. In this case, the result certifi-
cation is performed by the user of the analyser. We suppose the certification
of the analyser itself—i.e., its proof—is not possible: either the user does
not possess sufficient expertise, or the producer—which may possess suf-
ficient expertise—wants to provide a verifier at a low cost. In any case,
both producer and user agree on the specification language of the results
of the analyser and on the semantics of the language. Once the verifier is
implemented, result checking should be fully automatic. The constraints on
the TCB may be high or low depending on the requirements of the code
user, as may be the efficiency requirements. A specific application of the
seminal PCC approach is the problem of trust in third-party software on
portable devices, in which case the user’s main requirement comes from the
limited resources available on the device. If the limited resources prevent
the user from executing ATPs, the scheme must be expanded to include a
proof certification component: the producer provides proofs for the VCs in
addition to the abstraction of the program, and the user runs the VCgen on
the program and the abstraction, and a proof verifier on the VCs and the
proofs provided by the producer. Chapter 8 presents an approach to the
certification of SMT proofs.

Certification of critical software application. Static analyser’s results
are used to prove safety properties during the certification process of critical
software, therefore the analyser itself must be held to the highest degree of
scrutiny. However, it is a complex program, and code review or standard
certification processes may be as costly as avoiding the use of an analyser
altogether. Time is not an issue, and the user of the verifier may be an
expert in program verification, but safety policies are non negotiable and
the verification should meet the highest certification requirements. It entails
much scrutiny of the TCB of the verifier, and probably disqualify ATPs from
being part of it. Chapter 8 provides the beginning of a solution to replace
ATPs by a verifier programmed in the Coq [BC04] proof-assistant.

Testing during static analyser implementation. The developer of
the analyser wants to check the analyser’s results soundness and precision
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during the development phase of the analyser. The verifier is used as an
oracle for testing the analyser. The verifier is also used while prototyping
the analyser to quickly check the precision of the analysis. Once the in-
put are specified, the checking should be fully automatic and fast, to allow
back-and-forth iterations between modifying the analyser and testing the
consequences of these modification. The verifier should be easily modifiable
and the soundness of these modifications should be easy to check against
the operational semantics. The analyser’s results should also be easy to en-
ter. This application requires responsive tools, which means that the first
concern is efficiency. A trade-off between a completely safe but very slow
and a barely correct but very fast verifier must be reached, thus including
ATPs in the TCB is not a problem, and using different ATPs concurrently
is probably desirable.

4.2 Specification language
To detail the translation from abstract states to predicates, and present
the VC calculus, we need to specify the logic for stating and proving the
verification conditions.

4.2.1 Many-sorted FOL

In the Hoare-Floyd logic presented in Section 3.1.1, the core logic was First-
Order Logic (FOL) with equality, augmented with specific syntax and rules
for Hoare triples, and the VC generated by the weakest pre-condition belong
to FOL with equality, and arithmetic for the core numerical language. If
we want to use SMT solvers to discharge the VC, we must either state the
VC in their logic, or define a translation to it, but as we want to prove the
soundness of the VC calculus w-r-t an operational semantics, we want the
logic used for the VC to be as close as possible to the semantics defined in
Chapter 2.

Fortunately, the whole point of Satisfiability Modulo Theory is to pro-
vide powerful decision procedures for formulae written in rich logic, namely
many-sorted FOL. Rich is deliberately non-committing, as many-sorted FOL
is not necessarily more expressive: in the absence of interpreted symbols
(e.g., arithmetic), any many-sorted formula can be linearly encoded in FOL
and vice versa FOL is trivially mono-sorted. However, the richer syntax
is not reducible to syntactic sugar either, as it allows the use of efficient
decision procedures—more details on these are given in Chapter 8. Again,
efficient does not mean the underlying problem belongs to a different com-
plexity class, but refers to efficiency in practice.

Sorts are distinct sets of symbols and variables, they are more commonly
referred to as types in programming languages and we will use both terms
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indistinctly. Many-sorted formulae are built upon well-typed terms, and val-
uations must respects types as well. formal definitions and the applications
can be found in a survey by Meinker and Tucker [MT93] or in the definition
of the SMT-LIB 2.0 input standard for SMT solvers [STB10]. In the follow-
ing, we use the convention of the SMT-LIB standard, the interpretation of
FOL it uses, and illustrate the logic using examples.

In this formalism, new sorts can be defined, and the behaviour of ob-
jects belonging to those sorts can be given using axioms, effectively defining
theories. Following this principle we describe the memory models of our
languages as theories of semantic states based on finite sorts describing the
syntactic domains, i.e., PP , Var , Var A , Method for the core numerical lan-
guage and PP , Var , Method , Class and F for the core object-oriented language.
These are finite sorts, instantiated using the syntax of the program to verify,
and can be easily defined in FOL, but to describe the higher-order constructs
used in the semantic domains, such as environments Env = Var → Val or
heaps Heap = L → Val , we need to present the pervasive theories of equality
and Uninterpreted Functions (UF2), and maps.

The UF theory formalises the minimum amount of information on func-
tions needed to make deduction on them. It states that equality is an equiv-
alence relation—reflexive, symmetric and transitive—and that function ap-
plication should at least satisfy the axiom of congruence. These axiom can
be given directly in FOL.

∀x, x = x ∀x, y, y = x =⇒ x = y ∀x, y, z, x = y ∧ y = z =⇒ x = z

∀x, y, x = y =⇒ f(x) = f(y)

Remark that we omitted the sorts. The many-sorted FOL does not suppose
the existence of polymorphic operators and functions3, and one axiom per
sort and per function symbol should be given. However, the UF theory is
one of the core theory of many-sorted logic and of SMT solvers—if only for
equality— thus the symbol of equality is supposed shared among all theories
and the UF axioms include a built-in quantification of function symbols.

The theory of maps can be viewed as an extension of UF. This theory
introduce two new function symbols, get and set—noted •[•] and •[• ← •].
This theory is sometimes called array theory as it defines the functional con-
structs without side-effects that can be used together with a memory model
to give the semantics of arrays. It was introduced—to our knowledge—in
the seminal work on using memory models to alleviate the restriction on
aliasing in the Hoare-Floyd logic [CO81]. The version given here correspond
to the formalisation used in most modern work. The axioms state what

2Sometimes referred to as EUF.
3Note that the logic of the Why3 tool suite proposes an encoding of polymorphism in

many-sorted FOL [BP11].
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happen when doing a selection (get) on a previously assigned map (set)

∀m : map Var Val , (a1, a2) : Var 2, b : Val , a1 = a2 ⇒ m[a1 ← b][a2] = b

∀m : map Var Val , (a1, a2) : Var 2, b : Val , a1 6= a2 ⇒ m[a1 ← b][a2] = m[a2]

We gave the axioms with the sorts Var and Val , to define the sort
“map Var Val ” of maps from variables to values, but these formulae are
more accurately described as axiom patterns or schemes to be instantiated
when necessary. Using these two axioms, relations between maps can be
modelled, and using a new symbol const and a third axiom

∀b : Val , a : Var , const(b)[a] = b

new maps can be created.

4.2.2 Theory of semantic states

Using these two theories and the sorts describing the syntax, we can define
the sorts of environments, heaps, and eventually states, as presented in Fig-
ure 4.2a for the numerical language and in Figure 4.2b for the object-oriented
language. Following the notations of the semantics, we use records—which
can be viewed as tuples with a special notation for access functions—to
represent the Cartesian product, but will build records as tuples, i.e., with
implicit field names.

Val = Z
Env = map Var Val

Array = {len : N ; elt : map N Val }
EnvA = map Var A Array
State = {st : Env ; ars : EnvA ; cpp : PP}

a) Theory of numerical semantic states

Val = L ∪ {null}
Env = map Var Val
Obj = {cl : Class ; obj : map F Val }

Heap = map⊥ L Obj⊥
State = {st : Env ; hp : Heap ; cpp : PP}

Err = {NullPointer ,LookupFail}

b) Theory of object-oriented semantic
states

Figure 4.2: Theories of semantic states

The sort map⊥ corresponds to a specialisation of maps where the con-
stant map can only be defined with the value ⊥. Otherwise, a fully allocated
infinite memory could be defined, which would jeopardise the coherence of
the system: some VCs suppose that a fresh address can always be found,
therefore if it is not possible, that is, if a fully addressed heap can be de-
fined, the VC is always true. If a VC is always true, it can be used to prove
anything, notably false.

Once these theories are defined, formulae containing variables belonging
to semantic domains can be given a semantics. For example, in the pre-
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viously defined theories, the following (artificial) closed formula φ holds—
denoted using standard notation by |= φ.

φ ≡ ∀h : Heap, ∀e : Env ,∀X : Var , ∀l1, l2 : L2,∀v1, v2 : Val ,
e[X] = l1 ∧ e[X] = l2 ∧ h[l1 ← v1][l2] = v2 =⇒ v1 = v2

Indeed, using the axioms of equality, we can deduce from e[X] = l1∧e[X] =
l2 that l1 = l2, hence the locations l1 and l2 are equal. Then using map
axioms we can prove that v1 = v2: v2 is the value in the heap h[l1 ← v1]
at location l2 and as h[l1 ← v1] is the heap h where the value v1 has been
assigned to location l1, the first axiom of maps allows us to conclude.

Once all syntactic domains are defined, algebraic types4 can be used to
define the sorts of expressions, tests and statements, using one constructor
per operator and per statement. We also suppose that the logic includes
interpreted functions5 that we will used to define the encoding of flowchart
program in the exact same way they were defined in Sections 2.2 and 2.4,
using functions such as get_stmt and so on. We call assertions, noted Assn ,
the set of formulae built upon semantic and syntactic domains as sorts.

This theory of semantic states is straightforward and indeed implied
when stating the semantics, but once formally stated and backed up by
decision procedures, it allows—contrary to Hoare-Floyd logic—explicit ma-
nipulation of states in assertion. The standard remark that a formula with
free variables denotes a set—the set of all valuations that evaluate the for-
mula to true—leads in the cases of states to an easy characterisation of set
of states. If we note

Assn(x1 : sort1, . . . , xn : sortn)

the set of formulae with n free variables x1, . . . , xn of sorts sort1, . . . , sortn,
then the set Assn(s : State) denotes a subset of P(State), i.e., all states that
can be represented by formulae. We will write Assn(s) when there is no
ambiguity on the sort of s, and the fact that a formula φ ∈ Assn(s) evaluates
to true on a state s0—i.e., on the valuation that maps the logical variable s
to the value s0—will be written s0 |= φ.

4.3 Methodology for the result certification of a
static analyser

We are interested in verifying an analysis result, i.e., we consider given an
untrusted b]—recall that b] is an abstraction describing all program points—
that we shall validate by discharging verification conditions. To do so, we

4See [Pas09] for the translation of algebraic data types in many-sorted FOL.
5Depending on the tool used to decide the many-sorted FOL, different constructs may

be defined by default. If functions are not accessible, they can be represented by maps or
axiomatised.
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first translate the abstract states into assertions, to be used as pre-condition
and post-condition to produce VCs.

4.3.1 Compiling abstract states into assertions

Once the core logic—in which verification conditions are stated and proven—
has been specified, we need, to obtain Floyd-style VCs, to transform an ele-
ment b] into pre-conditions and post-conditions expressed through functions
pre, post : PP → Assn(s) satisfying

s |= pre(p) iff s ∈ γ(b]) ∧ s.cpp = p
s |= post(p) iff s ∈ γ(b]) ∧ s.cpp ∈ succ(p)

To get an effective way of computing pre and post, we require elements of
Abs to be mappings from program points to assertions (Abs = PP → Assn(s))
and define γ(b]) = {(e, h, p) | (e, h) |= b](p)}. For example, the formalisation
presented in Section 2.3.1 of an interval analyses can be readily expressed
this way. An interval would be defined as an assertion in Assn(v : Val ). The
elements of Dint—the interval abstract domain, see Section 2.3.1—presented
as pairs, ⊥, or >, can be translated to assertions by the function πval defined
as

πval : Dint → Assn(v : Val )
πval([a, b]) = a ≤ v ∧ v ≤ b
πval(⊥int

D ) = false
πval(>int

D ) = true

Note that the codomain of πval is the set Assn(v : Val ) of all formulae with
a free variable v.

The abstraction of reachable states Reach] would be defined as a function
from program points to assertions in Assn(s : State). The elements of Reach]

int

can be translated to functions in PP → Assn(s : State) by the function πReach

defined as follows. It takes as argument an abstraction b]
int : a function that

returns an interval from a program point p and a variable X.

πReach : Reach]
int → PP → Assn(s : State)

πReach(b]
int) = p 7→

∧
X∈Var

πval(b]
int(p,X))[s.env(X)/v]

For all program point p, the assertion πReach(b]
int)(p) is a finite conjunction

over Var where the Xs are constants, hence s is the only free variable be-
sides the parameter p. Each atom of the conjunction is the translation of an
interval into an assumption: the function πval returns an assumption with a
free variable v that is substituted for the term with a free variable s. For ex-
ample, if the variable x at the program point p is annotated with an interval
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[a, b], then πval([a, b]) = a ≤ v ≤ b and the final atom is a ≤ s.env(x) ≤ b. A
similar translation can be defined for the polyhedral analysis, but as a poly-
hedron can already be represented by a conjunction of linear inequalities,
we will not go into further details.

More generally, given a sufficiently powerful assertion language Assn (e.g.,
many-sorted FOL), most concretisations can readily be expressed this way.
However, the verification conditions for even the simplest object-oriented
program analyses are neither quantifier-free, nor do they fall into existing
decidable fragments. Our experiments show that current SMT solvers are
usually incapable of discharging such verification conditions. Nevertheless,
this approach is sufficient for numerical analyses as established in Chapter 5,
and will be used as a foundation for the soundness of a refined approach for
object-oriented analyses presented in Chapter 6.

4.3.2 VCgen methodology

With fully annotated programs represented as flowcharts, we are now ready
to present a simple verification condition generation algorithm (VCgen).
The informal semantics of the VCgen is that, for a given annotated program,
all the verification conditions should be valid if and only if any execution
starting in a state verifying the annotated pre-condition never reaches an
error state. As accessibility is defined using a small-step semantics, the
reachable states are also defined for non-terminating executions, therefore
we ensure the absence of errors even if a program does not terminate.

As the assertion language is powerful enough to represent sets of states,
and as we can manipulate—build and relate—explicitly states, the premises
and conclusions of the inference rules of the small-step semantics can ef-
fectively be translated into assertions of Assn(s : State). However, terms
of the form (s.env, e) ⇒ v and init →∗ end—parts of the semantics that
are not strictly small-step—are not part of the assertion language and have
to be translated. The formers—terms involving the natural semantics of
expressions—are easy to transform into formulae JeK(s) while computing the
VCs, the latter—terms involving big-step reductions—will be abstracted by
the pre-conditions and post-conditions of methods.

We define for each semantic rule rulei a function V Crulei which takes
as arguments a program point and the closed terms of the corresponding
statement, and returns an assertion in Assn(s). We will write terms(s) the
closed terms of the statement s to simplify notations, e.g., if rulei can be
applied at point p, we will write the VC it generates as follows.

V Crulei(p, terms(get_stmt(p)))

For instance, if a program p0 is annotated by a statementX := Y , the rule to
be applied is Assign and the generated VC would be V CAssign(p,X, Y ). The
pre-conditions and post-conditions come from assertions in Assn(s) denoted
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by pre(p) and post(p). The post-condition usually should be checked on
an updated state s′, thus the corresponding assertion is post(p)[s′/s]—the
assertion post(p) where s′ is substituted at free occurrences of s.

To signify when both post(p) and pre(p) denote a sub-assertions—and
therefore can be reduced, i.e., partially or completely evaluated—we put
them between J K. Remark that we supposed that the logic includes in-
terpreted functions, therefore, as the sort PP is finite, we can encode the
functions pre and post directly in the logic and the reduction denoted by J K
is not mandatory. However, it simplifies the formulae substantially, and it
seems relevant to point out where such reduction can take place.

Informally, the guiding idea behind the VCs is to establish for each
program point p that the following holds

∀s, s′ : State, Jpre(p)K⇒ s→ s′ ⇒ Jpost(p)[s′/s]K

To translate s → s′ to the assumption language, we state the relation be-
tween s and s′ in the logic, supposing that the conditions of the correspond-
ing semantic rule hold. If several rules may apply for a particular program
point—depending on the statement annotating the node—we produce one
VC per semantic rule. The results of V Crulei functions are assumptions in
Assn(s), leaving only the variable s free: all other variables are bound. We
could boldly omit all universal quantification at the head of formulae, as to
prove the validity of a formula ∀x, φ we ask ATPs to prove the unsatisfia-
bility of ¬φ, however to clarify the formulae—e.g., make explicit sorts and
binding point—we will only treat differently the variable s. When neces-
sary, the closed formed of a VC—including the universal quantification over
s—will be noted V CRulei(. . .).

Finally, a specific VC quantify over all program points, and check that,
at each program point, a state satisfying the post-condition will satisfy also
the pre-condition of the next statement.

V Ccontinue = ∀p ∈ PP , s ∈ State,

p 6= p+ ∧ post(p) ∧ s.cpp ∈ succ(p)⇒ pre(s.cpp)

The atom p 6= p+ specifies that p is not an exit point. Note that p is not
directly used in the precondition: it is assumed that the current program
point is a successor of p. It does not matter that the implication post(p)⇒
pre(s.cpp) may not be true for other states s: the semantics ensures that in
all executions, after the execution of a the statement annotating a program
p, the current program point is a successor of p.

To define the soundness of a VC calculus such that it can be embed-
ded in the standard definition of a result certification approach, we write
VC gen(P, b]) the set of verification conditions generated on a program P ∈
Pgm encoded as a flowchart, given a analysis result b] encoded as pre and
post predicates.
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Definition 4.3.1. A VC calculus is defined as a function returning a set of
VC from a program and an abstraction.

VC gen : Reach] × Pgm → P (Assn)

Definition 4.3.2 (Soundness of a VC calculus).
A VC calculus VC gen is said sound if and only if

for all well-formed program P and untrusted analysis result b], if all the
verification conditions are valid

∀Φ ∈ VC gen(P, b]),Φ is valid

the absence of run-time error is guaranteed by b].

∀s ∈ State, e ∈ Err , s ∈ Reach(P )⇒ s 6; e

4.3.3 Handling semantic invariants

Proposition 2.4.1 states that the semantics preserves the well-formedness
condition (predicate wf ) and that consecutive states are compatible (predi-
cate compat(s, s′)). As an analyser may rely on this semantic invariant for
its soundness, it may be necessary to discharge the VCs, i.e., the annotations
may not be sound without the semantics invariants.

The proposition holds for states that are initially well-formed, therefore
well-formedness must be in the hypothesis of the VCs. It can be systemat-
ically stated along the hypothesis of all semantic rules, or added to closed
VCs:

VC rulei(. . .) = ∀s ∈ State,wf (s) =⇒ V C(. . .)
For most VCs, the state after a statement is fully describe w-r-t the

state before, therefore the invariant holds by construction as a consequence
of the axioms of the theory of semantic states. However for V Cpost

call , the
big-step reduction of the SOS is abstracted by the pre-condition and post-
condition of the procedure/method called, therefore the invariant does not
hold by construction of the two states init and end but by induction on
the derivation of semantic states. In this case, the compatibility and well-
formedness of both states should be part of the relation abstracting the
big-step reduction, and needs to be stated in the hypotheses of the VC.

V Cpost
call (. . .) =


∀ init, end ∈ State2,

Jpre(p)K⇒ . . .
compat(init, end) ∧ wf (init) ∧ wf (end)⇒ . . .
⇒ Jpost(p)[s′/s]K

This skeleton of VC dedicated to verification of the post-condition of call
program points makes explicit the compatibility between the initial call state
and the end call state. We leave the details of the specification of init and
end to Sections 4.4.1 and 4.4.2, where the general scheme of the VCs are
instantiated on the numerical and object-oriented core languages.
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4.4 VCgen for core languages
This section applies the methodology previously detailed to both core lan-
guages used in the experiment. As explained in Section 4.3.2, these VCs are
closely related to the operational semantics of the languages described in
Section 2.2 and Section 2.4, but to avoid bloating this section with inference
rules, most of the semantic rules are not reproduced.

Following the notation of Section 4.3.2, we put between brackets J K the
sub-assertions that can be reduced when computing the VCs. Terms of the
syntax of the languages are denoted by capital letters, to distinguish them
from logical variables.

4.4.1 Numerical VCgen

Expressions. The translation of the natural semantics of expressions into
assertions, presented in Figure 4.3, needs for the numerical core language
two different functions: one for numerical expressions and one for Boolean
expressions. They are recursive but trivially terminating, and as they have
the same purpose we will use the same notation: J•K(•).

JeK(s) =


n if e = n n ∈ Z
s.env(X) if e = X X ∈ Var
Je1K(s)⊕ Je2K(s) if e = e1 ⊕ e2 ⊕ ∈ {+,−,×}

JtK(s) =



true if t = true
false if t = false
¬Jt1K(s) if t = not t1
Jt1K(s) ∧ Jt2K(s) if t = t1 and t2
Je1K(s)1Je2K(s) if t = e11e2 1 ∈ {=, 6=, <,≤}

Figure 4.3: Translation of the natural semantics of expressions

This function does not compute the result of an expression, it translate a
term of the syntax into a term of the logic. Thus it takes as arguments a nu-
merical expression (respectively a Boolean expression) and a variable name
of sort State, and returns a term of sort Val (respectively an assertion) that
leaves free the variable name denoting a state, whereas the natural semantics
(e, s) ⇒ v is to be understood as a relation between an expression (respec-
tively a test) e, a state s and a value in Z (respectively {true, false}).

Assignments and tests. Figure 4.4 details the VC rules for assignments.
It is a direct translation of the SOS, as all conditions of the rule are part
of the assertion language. The function V CAssign producing the VC for an
assignment takes as argument three terms of the syntax: the program point
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V CAssign(P,X,E) =



Jpre(P )K⇒
let p′ = s.cpp+ in
let env′ = s.env[X ← JEK(s)] in
let s′ = (env′, s.ars, p′) in

Jpost(P )[s′/s]K

Figure 4.4: VC function for assignments

P which is annotated by the statement, a variable nameX and an expression
E coming from the statement X := E.

Assign
get_stmt(s.cpp) = X := E (s.st, E)⇒ n

s −→ (s.st[X ← n], s.ars, s.cpp+)
The semantic rule for the assignment (recalled here for readability) es-

tablishes the link between the state before execution of the statement and
after: the new environment is an update of the previous environment at
variable X with the natural semantics of the expression E, and the current
program point is incremented. Accordingly, the VC is valid only if the en-
vironment of state s′ is an update of the environment of state s at variable
X with a value that is a model of the term JEK(s), and the current program
point in state s′ is the successor of the program point in s.

V C>JumpIf(P, T, Pj) =



Jpre(P )K⇒
JT K(s)⇒
let p′ = Pj in
let s′ = (s.env, s.ars, p′) in

Jpost(P )[s′/s]K

V C⊥JumpIf(P, T, Pj) =



Jpre(P )K⇒
¬JT K(s)⇒
let p′ = s.cpp+ in
let s′ = (s.env, s.ars, p′) in

Jpost(P )[s′/s]K

Figure 4.5: VC functions for tests

Remark that we consider the let . . . in construct as part of the logic,
and use it to simplify formulae. We do not generate VCs corresponding
to syntactic constraints (such as X is assignable, i.e., X is not one of the
read-only variables, p0 and p1), as they can be checked while building the
VCs. If X is not assignable (syntactically) then the VC generation fails (or
asks for a proof of false).

There are two semantic rules for tests, therefore we generate two VCs
per node annotated with a JumpIf T Pj statement, using the VC functions
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described in Figure 4.5. The operational semantics states that the execution
should jump to program Pj if the test T evaluates to true. Accordingly, the
VCs for a JumpIf statement states that the post-condition should hold on
a state s′ with a current program point equal to Pj if the assertion JT K(s)
is valid, and with a current program point equal to s.cpp+ if the assertion
¬JT K(s) is valid.

Procedure calls. The semantics of procedure calls uses a big-step reduc-
tion to avoid using a call stack. The corresponding VC functions, presented
in Figure 4.6 on the next page, abstract this big-step reduction by the con-
tract of the procedure, i.e., its pre-condition and post-condition. Recall that
a procedure call takes the form

X := F (E0, E1)

It takes two arguments, two numerical expressions, thus the call-related VC
functions has five terms of the program syntax as arguments: the program
point P , the variable name X that stores the result of the call, the procedure
name F , and the two arguments of the call.

An initial state init is built using the arguments of the call. The initial
environment envinit for numerical variables of the init state is built

s.env[p0 ← JE0K(s)][p1 ← JE1K(s)]

and its initial program point is defined as the entry point F0 of the procedure.
Remark that F0 is a shorthand for the term returning the correct starting
point given a procedure name. We could have used a function name to make
it explicit but we preferred to keep the notation as compact as possible in
the SOS and in the VCs. The same goes for F∞. However, as the numerical
core language does not have any dynamic dispatch feature, these terms can
be evaluated while calculating the VCs, hence the brackets J K.

A state end is supposed compatible with init—i.e., the formal parame-
ters have not been reassigned—and should validate the post-condition. The
compat predicate is defined according to the operational semantics. Recall
that no well-formed property is defined for the numerical core language,
hence no predicate wf is necessary. The state end is used as if it were the
final state of execution of the procedure,

. . .
end.cpp = JFendK⇒ . . .
let env′ = s.env[X ← end.env[res]] in . . .

i.e., its current program point is supposed to be the exit point Fend of the
procedure, and it is used to defined the environment env′ of the exit state.

According to the operational semantics, there is only one way to define
the initial state of a procedure call given the environment at call point,
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V Cpre
Call(P,X, F,E0, E1) =

Jpre(P )K⇒
let envinit = s.env[p0 ← JE0K(s)][p1 ← JE1K(s)] in
let init = (envinit , s.ars, JF0K) in

Jpre(F0)[init/s]K

V Cpost
Call(P,X, F,E0, E1) =

∀end : State,
Jpre(P )K⇒
let envinit = s.env[p0 ← JE0K(s)][p1 ← JE1K(s)] in
let init = (envinit, s.ars, JF0K) in

Jpre(F0)[init/s]K⇒
Jpost(F∞)[end/s]K⇒
end.cpp = JF∞K⇒
compat(init, end)⇒
let p′ = s.cpp+ in
let env′ = s.env[X ← end.env[res]] in
let s′ = (env′, s.ars, p′) in

Jpost(P )[s′/s]K

Figure 4.6: VC functions for procedure calls

V Cno error
GetArray(P,X, Y,E) =

{
Jpre(P )K⇒

0 ≤ JEK(s) < s.ars[Y ].len

V Cno error
SetArray(P,X,E1, E2) =

{
Jpre(P )K⇒

0 ≤ JE1K(s) < s.ars[X].len

V CGetArray(P,X, Y,E) =



Jpre(P )K⇒
let p′ = s.cpp+ in
let v = s.ars[Y ].elts[JEK(s)] in
let env′ = s.env[X ← v] in
let s′ = (env′, s.ars, p′) in

Jpost(P )[s′/s]K

V CSetArray(P,X,E1, E2) =



Jpre(P )K⇒
let p′ = s.cpp+ in
let l = s.ars[X].len in
let elt = s.ars[X].elts in
let elts′ = elts[JE1K(s)← JE2K(s)] in
let ars′ = s.ars[X ← (l, elts′)] in
let s′ = (s.env, ars′, p′) in

Jpost(P )[s′/s]K

V CLength(P,X, Y ) =



Jpre(P )K⇒
let p′ = s.cpp+ in
let env′ = s.env[X ← s.ars[Y ].len] in
let s′ = (env′, s.ars, p′) in

Jpost(P )[s′/s]K

Figure 4.7: VC functions for array statements
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therefore the state init is defined using the let in notation. However, the
state end can be any state satisfying the post-condition of the procedure
and compatible with init, and depending on the post-condition, there could
be many such states, thus the V Cpost

Call quantify universally over end.

Arrays. The VC functions for statements dealing with arrays, presented
in Figure 4.7 on the preceding page illustrate how VC can be added to
deal with the blocking semantics: the conditions V Cno error

GetArray—for accesses
in arrays—and V Cno error

SetArray—for updates in arrays—will only be valid if the
pre-condition ensures that no array out-of-bound error may occur.

Definition 4.4.1. We write VC num the VC calculus defined by the rules
presented in Figures 4.4, 4.5, 4.6 and 4.7:

Let P be a program encoded as a flowchart and b] be the result of an
analyser encoded as pre and post predicates.

• If P is not well-formed, then false ∈ VC num(P, b])

• ∀p ∈ PP , if rulei may apply on get_stmt(p), then

V Crulek
i
(p, terms(get_stmt(p))) ∈ VC num(P, b])

• V Ccontinue ∈ VC num(P, b])

Theorem 4.4.1 (Soundness).
The verification condition calculus VC num is sound:

Let P be a well-formed program and b] be the untrusted result of an
analysis. If all the verification conditions are valid

∀Φ ∈ VC num(P, b]),Φ is valid

the absence of run-time error is guaranteed by b].

∀s ∈ State, s ∈ Reach(P )⇒ s 6; OutOfBound

Proof. Theorem 4.4.1 has been proved using the intermediate verification
language Why3:

• the VC calculus is specified as a set of lemmas parametrised by the
implementation of a flowchart,

• the operational semantics of the language is specified as an interpreter,

• and the lemmas are used to discharge—with ATPs in this case—the
proof obligations generated by the weakest pre-condition calculus of
Why3 for the interpreter.

More details on the implementation can be found in Section 5.2.
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4.4.2 Object-oriented VCgen

The VC functions for assignments and tests are similar to the ones used in
the numerical case and will not be detailed.

Expressions. As the expressions are very simple in the core object-oriented
language, the translation of the natural semantics of expressions into asser-
tions only need one (non-recursive) function and is more a shorthand than
anything else.

JEK(s) =
{

null if E = null
s.env(X) if E = X

Heap accesses and updates. Figure 4.8 on the next page presents the
VC functions for the semantic rule of accesses to the heap. One for the
normal case, V CGetfield and one for the null pointer error case, V CNullP

Getfield.
In case the analysis cannot prove the absence of null pointer dereferencing,
this latter VC will not be validated. These VCs are not quantified only over
states, because we can not use the let in to name the value of a variable—it
is either ⊥ or a location and we need to distinguish these two cases—or an
object in the heap—the fact that all accessible locations point to a non-null
object is a semantic invariant, not a syntactic property.

A heap access takes the form X := Y.F , where X and Y are variable
names and F is a field name, hence the four arguments of the VC function—
the program point P is the first argument as in previous VC functions.

The VC functions for the semantic rules of updates in the heap presented
in Figure 4.9 on the following page are similar. The order of the arguments of
the VC functions reflects the syntax of a heap update statement X.F := Y .

Method calls. Amethod call takes the formX := Y.C0.M(A0, A1), where
X is the variable storing the result, Y if the variable pointing to the object
on which the call is made, C0 is the first class—the highest in the class
hierarchy—defining the method M , and will be used as the highest class
in the hierarchy when searching for an implementation, M is the method
name, and A0 and A1 are the arguments of the method—either null or a
variable given the limited expressions of the language.

Figure 4.10 on the next page presents the relation s �c0,m (init, pend)
used in the call-related semantic rules. It is translated to a conjunction of
constraints linking a state s and the initial state init of a method. We write
Js�C0,M (init, pend)K(Y,A0, A1) this translation. The translation contains an
axiomatising of the lookup algorithm: the class clook returned by the lookup
is a super-class of the dynamic class c in which the method is implemented,
but a subclass of the class C0 of the call.

The dynamic class is defined by the literal s.hp[l] = (c, o), where l is
defined as the location of the object calling the method using the literal
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V CGetfield(P,X, Y, F ) =



∀o ∈ Obj , l ∈ L, c ∈ Class ,
Jpre(P )K⇒
s.env[Y ] = Loc(l)⇒
s.hp[l] = (c, o)⇒

let v = o[F ] in
let p′ = s.cpp+ in
let env′ = s.env[X ← v] in
let s′ = (env′, s.hp, p′) in

Jpost(P )[s′/s]K

V CNullP
Getfield(P,X, Y, F ) =


∀l ∈ L,

Jpre(P )K⇒
s.env[Y ] 6= ⊥

Figure 4.8: VC functions for the Getfield and GetfieldNullP rules

V CPutfield(P,X, F, Y ) =



∀o ∈ Obj , l ∈ L, c ∈ Class ,
Jpre(P )K⇒
s.env[X] = Loc(l)⇒
s.hp[l] = (c, o)⇒

let v′ = s.env[Y ] in
let o′ = o[F ← v′] in
let p′ = s.cpp+ in
let hp′ = s.hp[l← (c, o′)] in
let s′ = (s.env, hp′, p′) in

Jpost(P )[s′/sK]

V CNullP
Putfield(P,X, F, Y ) =


∀l ∈ L,

pre(P )⇒
s.env[X] 6= ⊥

Figure 4.9: VC functions for the Putfield and PutfieldNullP rules

Js�C0,M (init, pend)K(Y,A0, A1) =



∃l ∈ L, clook ∈ Class , pbeg ∈ PP ,
s.env[Y ] = Loc(l)

∧ s.hp[l] = (c, o)
∧ c � clook ∧ clook � C0
∧ sig(clook ,M) = (pbeg, pend)
∧ let v0 = JA0K(s) in

let v1 = JA1K(s) in
let et = s.env[this← l] in
let e0 = et[p0 ← v0] in
let e1 = e0[p1 ← v1] in

init = (e1, s.hp, pbeg)

Figure 4.10: Definition of the initial state of a method call
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s.env[Y ] = l. The class clook is constrained by the literal c � clook∧clook � C0
to be between c and C0 in the class hierarchy, and required to implement
the method by the literal sig(clook ,M) = (pbeg, pend)—which imply that
sig(clook ,M) 6= ⊥. This is not an exact axiomatising of the lookup algo-
rithm, as it does not require clook to be the first such super-class, but it
does not matter as all implementations are required to enforce the same
pre-condition (or a weaker one) and the same post-condition (or a stronger
one).

Finally, the initial environment is built by giving the appropriate value
to this, p0 and p1 , the parameters of the method.

let et = s.env[this← l] in
let e0 = et[p0 ← v0] in
let e1 = e0[p1 ← v1]

and the entry point of the implementation selected is used as the program
point of the initial state.

For the call instruction we have three semantic rules. We build one VC
for each error rule and two VCs for the normal case rule (see Figure 4.11 on
the following page).

The functions V Cno error
Lookup and V CNullP

Call produce the VCs that ensure the
absence of error. If the former is valid, then the pre-condition is sufficient to
prove that the dynamic class of the object calling the method is a subclass
of C0. If the latter is valid, then the pre-condition is sufficient to prove that
Y does not contain a null pointer.

The function V Cpre
Call produces a VC ensuring that the call enforces the

pre-condition of the method and that the initial state is well-formed. The
function V Cpost

Call produce a VC ensuring that the method call enforce the
post-condition of the current program point. As previously stated, the pre-
condition and post-condition of the method called does not depend on the
implementation returned by the lookup.

As for the VC for procedure call in the numerical core language, the
VC quantify universally on the end state, but this time, as the initial state
depends on the result of the lookup which can not be determined statically,
both the pre-condition and the post-condition VCs quantify universally on
the init state. Note that it is not necessary to quantify on both init and pend ,
as once the implementation is fixed, both the initial state, the entry and exit
point are chosen. But for the readability of the VCs, we used a shorthand
for the lookup—the s�c0,m (init, pend) relation—which would be confusing
without both quantification. An complete inlining of this shorthand would
uncover a possible simplification, using the let . . . in to fully define the init
state.

As for the numerical language, the state end is not specified in terms
of parts of init. The only link between those two states is the semantic
invariant compat described in Definition 2.4.2 and the fact that init satisfies
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V Cpre
Call(P,X, Y,C0,M,A0, A1) =


∀init ∈ State, pend ∈ PP ,

Jpre(P )K⇒
Js�C0,M (init, pend)K(Y,A0, A1)⇒

Jmth_pre(M, init)K ∧ wf (init)

V Cpost
Call(P,X, Y,C0,M,A0, A1) =



∀init, end ∈ State2, pend ∈ PP ,
Jpre(P )K⇒
Js�C0,M (init, pend)K(Y,A0, A1)⇒

Jmth_pre(M, init)K⇒
Jmth_post(M, end)K⇒
end.cpp = pend ⇒
wf (init)⇒
compat(init, end)⇒
let e = s.env[X ← end.env[res]] in
let s′ = (e, end.hp, s.cpp+) in

Jpost(P )[s′/sK]

V Cno error
Lookup (P,X, Y,C0,M,A0, A1) =



∀l ∈ L, c ∈ Class , o ∈ Obj ,
Jpre(P )K⇒
s.env[Y ] = l⇒
s.hp[l] = (c, o)⇒
c � C0

V CNullP
Call (P,X, Y,C,M,A0, A1) =

{
Jpre(P )K⇒
s.env[Y ] 6= ⊥

Figure 4.11: VC functions for Call rule

V Cmth_pre =


∀s ∈ State, c ∈ Class ,m ∈ Method , pbeg, pend ∈ PP ,

sig(c,m) = (pbeg, pend)⇒
mth_pre(m, s)⇒
pre[pbeg]

V Cmth_post =


∀s ∈ State, c ∈ Class ,m ∈ Method , pbeg, pend ∈ PP ,

sig(c,m) = (pbeg, pend)⇒
pre[pend ]⇒
mth_post(m, s)

Figure 4.12: Global VCs
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the pre-condition of the method and end satisfies the post-condition. This
constraints must be sufficient to prove that the next state of execution, built
using the environment before the call updated with the result of the call,
enforces the post-condition of the program point P , where the call was made.

let e = s.env[X ← end.env[res]] in
let s′ = (e, end.hp, s.cpp+) in

Jpost(P )[s′/sK]
Finally, Figure 4.12 on the previous page presents the VCs for linking

the pre-conditions and post-condition of methods and of all their implemen-
tations. V Cmth_pre enforces that the pre-condition of a method is strong
enough to ensure the pre-conditions of the entry points of all its implementa-
tions. V Cmth_post enforces that the pre-conditions of the exit points (which
are annotated with skip) of all implementations of a method are strong
enough to ensure the post-condition of the method.
Definition 4.4.2. We write VC obj the VC calculus defined by the rules
presented in Figures 4.8, 4.9, 4.11, and 4.12:

Let P be a program encoded as a flowchart and b] be the result of an
analyser encoded as pre and post predicates.
• If P is not well-formed, then false ∈ VC obj(P, b])

• ∀p ∈ PP , if rulei may apply on get_stmt(p), then

V Crulei(p, terms(get_stmt(p))) ∈ VC obj(P, b])

•
{
V Ccontinue, V Cmth_pre, V Cmth_post

}
⊂ VC obj(P, b])

Theorem 4.4.2 (Soundness).
The verification condition calculus VC obj is sound:

Let P be a well-formed program and b] be the untrusted result of an
analysis. If all the verification conditions are valid

∀Φ ∈ VC obj(P, b]),Φ is valid

the absence of run-time error is guaranteed by b].

∀s ∈ State, e ∈ Err , s ∈ Reach(P )⇒ s 6; e

Proof. Theorem 4.4.2 has been proved using the intermediate verification
language Why3 in the same way as Theorem 4.4.1 were:
• the VC calculus is specified as a set of lemmas parametrised by the
implementation of a flowchart,

• the operational semantics of the language is specified as an interpreter,

• and the lemmas are used to discharge the proof obligations generated
by the WP calculus.

More details can be found in Section 5.2.
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4.5 Conclusion
In this chapter we have adapted the deductive verification approach to the
certification of the results of an analyser. We presented a general approach
to generate a verification condition calculus in many-sorted first-order logic
from a structural operational semantics.

The memory-model we defined is standard and, as in most deductive
verification approaches, is a variant of the initial ideas of Cartwright and
Oppen [CO81]. However, our approach took a step further by defining se-
mantic states as a sort in its own right, which allows us to manipulate states
in a functional way in VCs, thus the VCs follow closely the SOS. Approaches
based on translation to an IVL define the memory model in a similar or
even more precise way, but the state of execution is a global variable, and
is modified by side-effects in all methods. A notable exception is the Loop
compiler [vdBJ01] which use a memory model accounting for the whole Java
language, and translate java programs into state transformers in the logic of
a proof-assistant. Therefore, the state of an execution is manipulated in a
functional way during proofs, by application of state transformers. However,
the aim of the Loop compiler is to provide a framework to reason about
Java programs, it provides tools to do proofs, not to automatise proofs.
The result of the compilation is a series of theorems whose proofs are left
to be done by the user in the expressive language of a proof-assistant, not
a set of VCs expressed in a language well-suited for the ATPs in charge of
discharging them, whereas our approach, when instantiated on a language
and an analyser, provides a fully automatic result verification process.

To emphasise the simplicity of the relation between the VC calculus and
the operational semantics, we present in Chapter 5 a practical approach to
the justification of the VCs with respect to the operational semantics, and
an experimental validation of the approach on numerical analyses. The same
chapter presents our approach to the generation of VCs and establishes the
soundness of the VCgen w-r-t the VC calculus.

By translating the abstraction of the program into pre-conditions and
post-conditions, the VCs can manipulate the full memory, and we side-step
the framing problem, so crucial to most deductive verification approaches
(see Section 3.2.2). However, this does not solve entirely the problem as the
main effort is moved on the ATPs, which may not be able to handle the
VCs resulting from our approach. To address this concern—which involves
primarily object-oriented programs as the experiments on numerical analyses
show—we explain in Chapter 6 how to simplify the VCs depending on the
abstract domain of analyses that are checked, and evaluate this simpler set
of VCs on two object-oriented analyses.



Chapter 5

Experimentation in Why3:
soundness of the VC calculus
and numerical analyses
result certification

Chapter 4 presented an encoding of memory models in many-sorted First-
Order Logic (FOL) and a Verification Condition (VC) calculus derived from
the operational semantics and the formalisation of an analyser as abstract
interpretation. As discussed earlier, implementing a VC generator (VCgen)
is not a trivial task and avoiding including it in the Trusted Computing
Base (TCB) would require the certification of the VCgen. The present
chapter proposes to generate VCs using the Weakest Precondition (WP)
calculus of a standard Intermediate Verification Language (IVL, e.g., Why3)
and to establish the soundness of the VCs w-r-t the operational semantics
implemented as an interpreter, inside the IVL. By doing so, the TCB of our
approach includes a standard tool rather than a dedicated tool.

This is a good trade-off between the effort required to prove the imple-
mentation of the VCgen and the ability to adapt it to other languages and
analyses, as it introduces some flexibility in the scheme: if the standard WP
calculus is trustworthy, then it can be used to generate VCs for different lan-
guages and analyses. Moreover, recent work on the certification of the WP
calculus of an IVL [HMM12, VJP10] clears the way to a fully certified VC
generation. Remark that to really exclude from the TCB any dedicated tool,
we can not rely on a compilation of programs targeting the IVL: we need to
have in the IVL a representation of programs faithful to the programming
language they are implemented in.

Based on this implementation scheme, some preliminary experiments
were conducted to test the ability of off-the-shelf Automated Theorem Provers
(ATPs) to discharge the generated VCs, first on an interval analysis, often
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considered as the starting point for numerical analyses, and then on a polyhe-
dral analysis, which is a more complex numerical analysis than the intervals
as it provides relations between numerical variable.

A brief description of the Why3 IVL is presented in Section 5.1. Then
Section 5.2 details the implementation of a memory model as a theory, of a
mostly small-step operational semantics as an interpreter, the specification
of a VC calculus as lemmas, and how the proofs of Theorem 4.4.1 on page 65
and Theorem 4.4.2 on page 70 were obtained. Section 5.3 presents the results
of the experimental validation of the methodology on numerical analyses.
Finally, Section 5.4 discusses some related work and concludes.

5.1 The Why3 intermediate verification language
Why3 [BFM+12] is the last iteration of the Why [FM07] platform for de-
ductive verification. It provides a ML like language for programming and
specification, a WP calculus to generate VCs, and a back-end that allows the
use of different ATPs (e.g., Z3 [dMB08c], Alt-Ergo [CCK06], CVC [BT07],
veriT [BODF09], E [Sch02], Vampire [RV99]) and proof assistants (e.g.,
Coq [BC04]) to discharge the generated VCs. A WhyML file contains
theories and modules, the first containing logical definitions and the latter
containing programs and their specifications.

The base logic used in theories and specification is a variant of many-
sorted FOL with algebraic data types and polymorphic functions. This logic
happens to be—not completely incidentally—a super-set of the many-sorted
logic used to define the theory of semantic states in Section 4.2.2. A theory
is a list of declarations of types, functions, predicates, axioms and lemmas.
Functions can be recursive or mutually recursive, but must terminate. Lem-
mas are formulae that will generate proof-obligations and will be added to
the context of following proof-obligations, whereas axioms are not required
to be proved. Using axioms, new data types can be axiomatised, e.g., the
theory of maps defines a new type map , two functions get and set , and
the axioms mentioned in Section 4.2.1.

A module can contain any declaration valid in a theory, and defines
programs and their specifications. A program can be non-terminating, con-
tain loops, mutable field assignment, and raise exceptions. The specification
of a program includes pre-condition, post-condition, variant (to prove ter-
mination), and effects (e.g., which exceptions can be raised, which global
values can be read, modified). Moreover, WhyML provides the statements
assert φ, assume φ and absurd, with specific semantics, i.e., rules for the
WP calculus. Asserts are formulae that must be proved to hold, and that
can be assumed to hold for the rest of the program, assumes on the other
hand does not have to be proved to hold. The absurd keyword is used to
cut paths that can not be reached in the control graph.
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Lemmas and asserts can be useful to guide ATPs in the proof of a par-
ticular goal or proof-obligation. As the name implies, lemmas can be use
to state simple (or simpler) intermediate properties that are easy (easier) to
prove, and can be used in a more complex proof. In the same idea, asserts
can be used to split the proof of a complex proof-obligation is several parts
following the control flow of a program.

Once proof-obligations for programs and lemmas are generated, Why3
translate these formulae into the input syntax of different ATPs, e.g., the
SMT-LIB [STB10] syntax for SMT solvers, the TPTP syntax [Sut09] for
ATPs, and Why3 provide means to define new translations. During these
translation, Why3 applies transformations on the formulae to eliminate
constructs that are not defined in the input syntax of the targeted tool, such
as algebraic data type and polymorphic functions. But the transformations
to apply are not limited to such eliminations, and can include arbitrary
inlining of definition or splitting of goals at the choice of the user. These
additional transformation, i.e., not required to obtain formulae that conform
to an ATP input syntax, can be be necessary for a proof-obligation to be
discharged more quickly, or at all.

For details on the syntax of WhyML or on the features of the Why3
platform, the reader can refer to the Why3 manual [BFM+12]. Our ex-
periments were done in the 0.74 version of the platform, but since they
were conducted, a new iteration (the 0.80 version) has been released. Addi-
tional publications provide information on the translation of algebraic data
types [Pas09] and polymorphic functions [BP11] or on the general architec-
ture of the framework [BFMP11].

5.2 Relying on an Intermediate Verification Lan-
guage for VC generation and VC soundness

The base logic of Why3 includes all the necessary construct to generate our
VCs and prove a VC calculus sound:

• the terms of the syntax of the programming languages can be defined
as an algebraic data-type,

• the flowchart description of a program can be given by functions over
these types,

• the memory model of the language, i.e., a theory of semantic states,
can be defined using the theories provided by the Why3 standard
library (e.g., maps, records, tuples, integers),

• the translation of expression into terms of the logic—denoted by the
J•K(•) function—can be defined by functions in the logic of Why3,
even for numerical expression, where recursion is necessary,
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• a VC calculus VC gen as defined in Definition 4.3.1 on page 60 can
be specified by lemmas quantifying over program points. Informally,
these generalised lemmas state that all program points valid the VCs.

As lemmas in Why3 generate proof-obligations, the framework can be used
as a high-level interface with ATPs: the VC calculus is specified in Many-
Sorted First-Order Logic, and Why3 generates the VC and send them to
ATPs.

Moreover, the WhyML programming language can be used to write
annotated programs over the theory of semantics states: programs and an-
notations can manipulate objects of types State, Heap, etc. Therefore, the
operational semantics can be implemented as an interpreter, and the sound-
ness of the VC calculus w-r-t that interpreter can be established, providing
a mechanised proof of Theorem 4.4.1 and Theorem 4.4.2.

5.2.1 Overview of the implementation of the approach

The goal of the implementation in Why3 is twofold: generating the VCs
on a program, and establishing the soundness of the VC calculus w-r-t the
operational semantics.

Given a program and the result of an analyser, the implementation in
Why3 can be used to generate VCs and discharge them with ATPs. It does
not require any translation of the program into the Why3 IVL, but is done
by specifying the flowchart and by instantiating the syntactic domains. The
specification of the flowchart is equivalent to providing the Abstract Syntax
Tree of the program as a data type in Why3, if the input programming
language was structured. No translation or program transformation is re-
quired.

Given a VC calculus and an operational semantics, the implementation
can be used to prove the VCs sound w-r-t the semantics, once and for all.
This does not provide the same formal guaranties as a formal proof of a
VCgen, because it requires to trust the implementation of the WP calculus
of Why3 and the implementation of the tools used to discharges the proof-
obligations (which can be ATPs or a proof-assistant). However, those tools
are used to discharge the VCs generated to certify the result of an analyser
and belong to the TCB of the approach anyway.

Figure 5.1 on the next page presents an overview of the implementation
and of its two uses: on right hand side, the certification of the result of an
analyser on a program (see Section 5.2.2), and on the left hand side the
certification of the soundness of the VC calculus (see Section 5.2.3). As
can be seen on the figure, the definition of the syntax of the programming
language, the theory of semantic states and the specification of the VC
calculus are reused in both cases. The syntactic domains, the flowchart of
the program and the abstraction calculated by the analyser are specified by
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certification of 
VC soundness

certification of 
analyser's result

generalised VCs as lemmas

abstract def. of analyser's result

semantics as an interpreter

definition of analyser's result

theory of semantic states

abstract def. of syntactic domains definition of syntactic domains

abstract def. of a flowchart definition of a flowchart

instantiation
dependency

syntax of the programming language

Figure 5.1: Overview of the implementation

abstract types and functions while proving the soundness of the VC calculus,
and instantiated on a given program and the result of an analyser to generate
VC. Note that the interpreter is only used to prove the soundness of the VC
calculus.

type PP
function p+: PP → PP
predicate pre: PP × State

type PP = PP0
function p+ = PP0 → PP0
predicate pre p:PP s:State = . . .

Figure 5.2: Abstract definition of an annotated flowchart vs specification
of an annotated program

Figure 5.2 illustrates—using a pseudo-Why3 syntax—the differences be-
tween, on the left hand side, the specification of a flowchart using abstract
definitions, and on the right hand side, the specification of a program by
instantiating the abstract definitions. In abstract definitions, the implemen-
tation of types, functions and predicates are not given, only the functional
type of functions and the types of the arguments of predicates are specified.
This does not prevent Why3 from generating VCs, but the non-implemented
functions and predicates will be treated as uninterpreted symbols by ATPs.

5.2.2 VC generation

The first step to generate the VCs on a given program and on the result of
an analyser, is to instantiate the syntactic domains, i.e., to define the types
PP , Var , Var A , Method if the program is in the core numerical language and
PP , Var , Method , Class and F if the program is in the core object-oriented
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language. Then, the flowchart of the program must be describe by defining
the functions next_pp, get_stmt, and the functions describing the signa-
tures of procedures or methods, summarised in Table 2.1 and Table 2.2. The
class hierarchy is defined by the relation subclass and axioms stating that
its transitive and reflexive. Finally, the annotations of the program must be
written as predicates according to Listing 5.1. Recall that pre and post are
defined in Section 4.3.1 as functions from PP to annotations in Assn(s), i.e.,
they are formulae with s ∈ State as sole free variable besides their parameter
p, whereas pre and post are predicates defined in the syntax of Why3.

predicate pre(p,s0) = pre(p)[s0/s]
predicate post(p,s0) = post(p)[s0/s]

Listing 5.1: Implementation of the interpreter’s annotations

The lemmas used to specify the VC calculus are generalisation and not
the instantiated VCs that would be generated by a VCgen: they state that
“all program points valid the verification conditions”. The general form of
the lemmas is presented in Listing 5.2, where the xj are variables typed
according to the terms expected in stmti. For each sort of statement stmti,
there is one lemma per VC function V Crulek

i
in the VC calculus (the over-

lined notation correspond to the closed formula), and one lemma per global
VC. As all terms are variables, no reduction is possible.

lemma generalised_VC_stmtki :
∀p ∈ PP , ∀x1 : sort1, . . . , xn : sortn,

get_stmt(p)=stmti(x1, . . . , xn) =⇒ V Crulek
i
(p, x1, . . . , xn)

Listing 5.2: Lemma specifying the VC calculus

While certifying the results of an analyser on a program, these lemmas
need to be proved on the implementation of the functions describing the
program and the predicates describing the analyser’s result. At this point,
the VCs defined in the Chapter 4 are simply projections of the generalised
lemmas on each program point. These projections can be obtained either by
requiring Why3 to apply transformations—i.e., inlining and splitting—on
the lemmas while outputting the proof-obligation to an ATP, or by generat-
ing automatically intermediate lemmas using an untrusted external program.
These intermediate lemmas can then be used by ATPs to discharge the gen-
eralised lemma, ensuring that a potential error while generating the projec-
tion does not jeopardise the result certification. Both solutions—projections
using transformations of proof-obligations or as intermediary lemmas—are
tested during the experiment on numerical analyses, and a comparison is
done in Section 5.3.3.
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(* instantiation of syntactic domains, flowchart and annotations*)
type PP = PP0
type Var = X
function p+ = PP0 → PP0
function get_stmt p:PP = PP0 → X := X+1
predicate pre p:PP s:State = s.env[X] ≥0
predicate post p:PP s:State = s.env[X] > 0

(* projection on program point PP0 : VC(PP0)*)
lemma projection_PP0 :
∀s ∈ State,

pre(PP0, s) →
let e’ = s.env[ X <- s.env[X]+1 ] in
let s’ = (e’,s.ars, PP0) in

post(PP0,s’)

(* generalised lemma for assignment *)
lemma gen_VC_assign :
∀p ∈ PP , x ∈ Var , e ∈ Expr ,

get_stmt(p)= x := e →
∀s ∈ State,

pre(p,s) →
let p’ = s.cpp+ in
let env’ = s.env[x <- JeK(s) ] in
let s’ = (env’ , s.ars , p’ ) in
post(p,s′)

Listing 5.3: Example of an instantiation with intermediary lemma

Listing 5.3 details the example of the instantiation of the necessary types
and functions on a simplistic program with only one program point PP0
annotated with an assignment, and the lemmas relevant to that statement.
The gen_VC_assign lemma is the generalised lemma for the assignment:
it follows the structure given in Listing 5.2 and uses the V CAssign function
defined in Section 4.4.1. The projection_PP 0 lemma is a projection of
the generalised lemma specifying the VC on the program point PP0. This
projection instantiate the variable X, the expression X := X + 1, and the
next program point PP0, thus the quantification over instantiated variables
and the literal get_stmt(p)= x := e have been eliminated. We used in
this listing the same notations than in the previous chapters, but some do
not belong to the syntax of Why3 and are replaced by functions in the
implementation.

5.2.3 Small step semantics as an interpreter in the IVL

To establish the soundness of the VC calculus, the operational semantics
is implemented as an interpreter in the WhyML language. The syntactic
domain, the functions implementing a flowchart, and the predicates imple-
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menting its annotations, are left abstract. The generalised lemmas specify-
ing the VC calculus are supposed valid—i.e., the VC are supposed true on
all program points—and the WP calculus of Why3 is run on the interpreter.
The generated proof-obligations are then discharged either by an ATP or
in a proof-assistant (in fact, in this case all VCs were discharge by ATPs).
They establish the soundness in the sense that, if the VC are valid on a
program and its annotations, the interpreter never run into an error state,
i.e., the program never reach an error state. This definition of soundness
corresponds to Definition 4.3.2 if the interpreter is a faithful representation
of the semantics, and under this condition, Why3 can be used to prove
Theorem 4.4.1 and Theorem 4.4.2.

The semantic relations −→ can be modelled by interpreters implement-
ing a function eval : State → State. The interpreters can be annotated in
the IVL with pre-conditions and post-conditions, which correspond to what
the VC calculus certifies: for each program, for each program point, if the
annotated pre-condition is satisfied by the execution state on entry, then the
execution state on exit satisfies the annotated post-condition, and no error
state is reached.

To implement the operational semantics, an interpreter do a case analysis
on the statement annotating the current program point. The pattern fol-
lowed by the implementation of the interpreters is presented in Listing 5.4.
Note that the annotations of the interpreters are abstractions of the pro-
gram’s pre-conditions and post-conditions. When describing the semantics
of a language with an interpreter the annotations of a specific program are
not known and are abstracted by the two unimplemented predicates pre

and post .

let eval (s:State) =
{ pre(s.cpp,s) }

match get_stmt s.cpp with
| stmt1 →
| stmt2 →
. . .

end
{ post(s.cpp,result) }

Listing 5.4: Pattern used for the interpreters

Transitive closure. To account for the relation −→∗, transitive and re-
flexive closure of −→, the function eval is recursive and mutually defined
with a function eval_closure, which simply iterate eval until the exit
program point is reached. The closure asks for its arguments to validate the
precondition of the method/procedure called, therefore it needs to have the
method and class names or the procedure name as arguments.
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let eval_closure (c:Class) (m:Method ) (init:State) (s:State)=
{ mth_pre(c,m,init) ∧ pre(s.cpp,s) ∧ sig c m 6= None }

match sig c m with
| None → absurd;
| Some (pbeg, pend) →

if s.cpp = pend
then s
else

eval_closure c m init (eval s)
end

{ mth_post(c,m,result) }

Listing 5.5: Transitive closure of the eval function

The iteration is performed by a call on eval and a recursive call to
eval_closure, presented in Listing 5.5. Therefore, the closure is not only
called on the entry point of methods but also on intermediary states, and the
annotations of the closure must be implied by the pre-condition of the meth-
ods, but the pre-conditions of the intermediary states must also holds during
the iteration. To account for both situation, the closure has two states as ar-
guments: the initial state of the call init and the current state of execution
s . The pre-condition of the closure is therefore that the pre-condition of the
method called holds on the initial states—i.e., mth_pre(c, m, init) holds—
and that the pre-condition of the current states of execution holds—i.e.,
pre(s.cpp, s) holds. The last part of the pre-condition, sig(c, m) 6= None
is simply stating that the class c and method m correspond to an actual
implementation. It is already established during the lookup, but we need to
include it in the pre-condition to discard the possibility that no exit program
point could be found.1

Ill-formed programs. To discard ill-formed program, we demand a proof
that all program points are syntactically well-formed by generating corre-
sponding proof-obligations. As the syntax is described as a sort of the logic,
a predicate that check syntactic properties can be defined. To generate
a proof-obligation, we add two simple lemmas, well_formed_stmt and
well_formed_sig , detailed in Listing 5.6 on the following page. The for-
mer checks that parameters are never assigned and the latter checks that all
call specify a class that implement the method.

Error cases. As in the semantics, error cases—e.g., array out of bound,
null-pointer dereferencing—can be treated in several ways. In the semantic
world, they can be treated by the addition of special error states—that

1An alternative would be to push the exit program point among the argument of the
closure, but as the current implementation lead to a trivial proof-obligation anyway, we
preferred to keep the arguments of the closure simple.
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lemma well_formed_stmt : ∀ p:pp . well_formed_stmt p
lemma well_formed_sig :
∀ p:pp, x y:var, cmax:class, m:method, arg1 arg2:var.

get_stmt p = Call x y cmax m arg1 arg2 →
not (sig cmax m = None)

Listing 5.6: Well-formedness of programs

can not be reduced further—or the semantics can simply block. In the
interpreter, these choices can be translated as either doing checks in the
control graph of the interpreter and raising an exception/including a error
state in the type State, or calling semantic functions with pre-conditions.
The former will be illustrated in Section 6.3.1 to deal with NullPointer
errors, while the latter will be illustrated in Section 5.3.1 to deal with array
out-of-bound errors.

Another option to model a blocking semantics would be to use the absurd
keyword in the branches of the interpreter that lead to a blocked execution.
It generates a proof-obligation that entails proving the keyword is never
reached, therefore proving the semantics of a program is never blocked. It is
similar to the current settings, that uses pre-condition of auxiliary function
to generate these proof-obligations.

Variant of operational semantics. The semantics used in the proof-of-
concept are deterministic, but we believe that it is not a requirement of the
approach. To account for an non-deterministic semantics, a choice operator
could be axiomatised in Why3 in the same way a random generator is—
when no assumption on probability distribution is made. A simple function
choice could be specified, with the only requirement that it result should
belong to a particular set of values. The result in proof obligations would
be the introduction of a disjunction upon the possible value returned by the
call to choice .

5.3 First experiment: result certification of nu-
merical analyses

To describe the results of our approach, we first instantiate the scheme on
two numerical analyses performed on different programs. To obtain the
invariants, we used a web demo provided by Bertrand Jeannet [Jea], using
the box (for the intervals) and convex polyhedral (polka) abstract domains.
All development can be found at http://www.irisa.fr/celtique/
ext/chk-sa-boogie.

http://www.irisa.fr/celtique/ext/chk-sa-boogie
http://www.irisa.fr/celtique/ext/chk-sa-boogie
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5.3.1 Numerical language VCgen

For the core numerical language, array out of bound errors block the seman-
tics. Therefore in the definition of the eval function of the interpreter, ac-
cesses and updates of arrays are done by auxiliary functions set_array and
get_array as defined in Listing 5.7. They have their own pre-condition—
which enforces the necessary check on the bounds of the array—and post-
condition—which reflects the semantics of the operator.

let get_array (a:array) (i:int) =
{ 0 ≤ i < a.len}

M.get (a.elts) i
{result = a.elts[i]}
let set_array (a:array) (i:int) (v:int) =
{0 ≤ i < a.len}

( len = a.len ; elts = M.set a.elts i v )
{result = ( len = a.len ; elts = a.elts[i<-v] )}

Listing 5.7: Functions manipulating arrays

5.3.2 Experiment

All VCs, even the proof-obligation generated on the interpreter to prove
the soundness of the VC calculus, were discharged by a combination of
SMT solvers—Alt-Ergo (version 0.94), CVC3 (version 2.4.1) and Z3 (version
2.2)—on a 3 years old laptop equipped with 4 GiB of memory and a 2.93
GHz Intel Core 2 Duo and using Linux. We chose SMT solvers for this first
experiment on numerical analysis because they integrate powerful arithmetic
decision procedures. The tests were done on a factorial program and a binary
search program2.

The standard binary search program makes an interesting case study
for a relational analysis, as it involves multiples array accesses at indexes
between bounds indirectly related to the array length. As stated in Sec-
tion 4.4.1, array bound checks are enforced in the interpreter through the
use of array access functions, and appear in the corresponding axiomatising
theorems. If the analysis is precise enough, discovered invariants should be
strong enough to prove the safety of array accesses.

To illustrate the elimination of explicit array bound checks, the analyses
not only deals with integer variables, but also takes into account the length
of the arrays. However to prove the absence of error in the binary search
program requires a relational analysis3, thus the interval analysis was only

2In order for the analyser to return meaningful results, the multiplication was imple-
mented as a loop and the division by two was integrated as an additional operator

3As parameters of procedures are not reassigned, the notion of relational analysis ex-
tend to relations between the arguments of a procedure call and its result.
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ran on the factorial program.
In the binary search program an integer variable s is used as a surrogate

Boolean variable, with value 1 and 0 standing for true and false, not in-
tended to be related to the other variables. Nevertheless, the analyser used
for this experiment discovered hidden but unnecessary relations between all
the integer variables, and invariants tended to be very large, with lots of
noise. This is not unusual but rather inevitable for static analysers and a
certification scheme should be robust regarding such convoluted invariants.
The interesting point is that those invariants were checked and were pre-
cise enough to ensure array access safety. Even if the analysis results were
far from invariants used in manual program proof, no post-processing was
necessary to prove the corresponding VCs.

5.3.3 Results

In a first time, the ATPs were launched directly on the generalised lemmas
specifying the VC calculus described in Listing 5.2 on page 77. However,
some VCs were not discharged by any solver. To complete the proof, we
could either instantiate the generalised lemma on some program points, and
obtain a new lemma, effectively stating a VC to be proved, or split the
unproved goal using Why3 transformation.

The first solution—illustrated in Table 5.1 on the following page—involves
generating new auxiliary lemmas. As argued before, this can be done auto-
matically with no loss of trust in the final result as long as the generalised
lemma specifying the VC calculus is proved. Moreover, this solution al-
lows selective projection of the unproved goal only on the relevant program
points, which limit the number of generated auxiliary lemmas.

Recall that each generalised lemma quantify over all program points, thus
the generalised lemma for assignment, for instance, need only to be projected
on program points annotated by assignment. We call these program points
relevant to this particular lemma. Projecting on program points annotated
with any other statement leads to trivial lemma of little interest for ATPs.

In the given example, to prove the generalised V Cpre
Call, 3 auxiliary lem-

mas are used. Two are the VC for the relevant program points—i.e., p4
and p5 in this case—and one is a subgoals of the VC for p5, and correspond
to an inlining of the post function. Alt-Ergo discharge the auxiliary lemma
and the projected VCs whereas Z3 and CVC3 reach timeout (as indicated
by the “ ! ”), but the exact opposite happens for the generalised lemma.

The second solution, illustrated in Table 5.2 on the next page, is auto-
matic but leaves the split to a tool oblivious to the VC generation method-
ology and to the structure of the VCs. This lead to a large number of
subgoals, as the transformation requires both inlining and split, and do not
typically result in one subgoals per program point. In any case, subgoals
will be generated for irrelevant program points, but the reasons for this
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Proof obligations Alt-Ergo(0.94) CVC3(2.4.1) Z3(2.2)

V Cpre
Call(p4, . . .) 0.07 ! !

V Cpre
Call(p5, . . .)aux 16.91 ! !

V Cpre
Call(p5, . . .) 0.72 ! !

V Cpre
Call ! 8.45 0.18

Table 5.1: Result for V Cpre
Call on polyhedral analysis of factorial program

irrelevancy—typically, the VC does not concern the statement annotating a
program point—may be harder to detect after inlining.

Proof obligations Alt-Ergo(0.94) CVC3(2.4.1) Z3(2.2)

V Cpost
Call

Compat(s, s′) 3.98 ! !
post(p, s′)

subgoal1 p0 0.09 ! !
subgoal2 p1 0.04 0.72 !
subgoal3 p1 0.06 ! !

. . .
subgoal8 p4 0.14 0.74 !
subgoal9 p4 17.90 ! !
subgoal10 p5 0.15 0.73 !
subgoal11 p5 5.22 ! !

. . .

Table 5.2: Result for V Cpost
Call on polyhedral analysis of factorial program

In the given example—a proof of the generalised V Cpost
Call for the facto-

rial program and the polyhedral analysis—a first split isolate two subgoals,
V Cpost

Call and post(p, s′). The former is proved by Alt-Ergo while the latter
has to be inlined and split and result into 27 subgoals, each related to a
program point between p0 and p14—some program points being related to
two subgoals (p1 for example) while others are related to only one (as for p0)
depending on the shape of the post-condition. We did not show all subgoals
in the table to keep it readable but left all relevant parts to keep it infor-
mative. The only program point where a call do occur are p4 and p5, which
explains the significantly longer time taken by Alt-Ergo to prove the cor-
responding subgoals. Nevertheless, even subgoals associated with irrelevant
program point were not discharged by Z3 or CVC3.

Overall, only Alt-Ergo and Z3 are necessary to prove all subgoals, but
the goals proved by CVC3 were not all proved by one of the others. For
practical issues, we set a timeout of 30s on subgoals, not on goals. As a
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matter of fact, the overall time taken by Alt-Ergo to prove V Cpost
Call amounts

to 26.62s, but such numbers are difficult to compare to time spent on goals
discharged with neither auxiliary lemma nor split/inline transformations. In
one case a number of completely separated proofs are done, whereas most
of the context is the same, in the other, the context is given once. Besides,
a timeout result on a lemma proved directly by one prover may be unfair to
the other provers, as a split may change the result and entails, in a sense, a
much larger timeout distributed over all subgoals.

Our experiment can not be taken as a benchmark to establish the supe-
riority of one solver over the others. On the contrary, it demonstrates that
the possibility to use different ATPs can be useful to prove a given set of
VCs, or even a particular one. In the two previous examples, results seem to
indicate that Alt-Ergo was the only solver able to discharge most subgoals.
However, the differences between the two examples, i.e., Z3 and CVC3 hav-
ing a hard time on the fully split and inlined goal for V Cpost

Call but being the
only ones to discharge V Cpre

Call (and pretty quickly for Z3), indicate that they
were able to handle the generalised lemma specifying the VC calculus and
use the auxiliary projected lemmas efficiently.

Most subgoals (92% of 94 subgoals) were proved in less than 1s by one
of the SMT solvers. Z3 for instance typically either reaches timeout or is
very fast—and actually never takes more than 2s when it succeed—even
on subgoals on which the other solvers reaches timeout or take significantly
longer than usual. On the contrary, Alt-Ergo and CVC3 exhibit a wide range
of behaviours, with subgoals proved very quickly—even some on which Z3
reaches timeout—and others (but very few) subgoals proved in 15s.

Altogether, the three different provers behaved very differently. Each
solver has a specific input standard, and the Why3 back-end performs dif-
ferent transformations to encode its high level features in each standard,
therefore it is difficult to determine the reasons behind these differences.
What the experiment has shown is that one solver may not be enough to
achieve full automation. This fact may have dire consequence when consid-
ering the TCB of a result certification solution as any new solver is a new
source of errors, and we examine a partial solution for excluding ATPs from
the TCB in Chapter 8.

5.4 Conclusion and related work
The present chapter detailed an approach to generate VC and establish their
soundness with-respect-to the operational semantics using an intermediate
verification language and its weakest pre-condition calculus, and presented
some experimental results.
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5.4.1 Trusted Computing Base

The soundness of this approach relies on the adequate modelling of the
language, and on the Weakest Precondition calculus (WP) of Why3. To
prove a particular analysis result on a specific program, one has only to
prove the VCs generated by the WP calculus on the specification of the
VC calculus in Why3 establishing point-wise correctness of the result of
an analysis on a particular program. Hence the first part of the Trusted
Computing Base (TCB) is the Why3 tool and its WP calculus.

Programs are not transformed to an Intermediate Verification Language
(IVL), as their representation is explicit, rather, the semantics of the lan-
guage is described in the IVL of Why3 and program invariants (or condi-
tions) are described using the logic provided in the IVL. No transformation
on top of the IVL is required, hence no compiler is added to the TCB.

The analysis result must be embedded in the logic on the IVL. This can
be done either by translating the concretisation in a predicate over the ab-
stract domain or providing directly the pre and post predicates used in the
verification conditions—which amount to a partial evaluation of the trans-
lated concretisation function on the abstraction of the program. Therefore
if the aim of the process is to ensure the soundness of the abstraction calcu-
lated by the analysis, this translation from the abstract domain to assertions
is part of the TCB. However, if the result of the analysis is understood as a
verdict on the absence of errors at run-time in the program, then the faulty
translation of an unsound abstraction does not matter: as long as the ver-
ification conditions are valid, the program is proved safe. In that case the
translation of abstractions to assertions is not part of the TCB.

Goals are discharged using Coq or automatic solvers after translation
from the Why3 syntax and application of specific transformation to elimi-
nate high-level constructs and simplify or split the goals. The TCB depends
on the automatic and interactive tools used to make the proof, and on the
Why3 tools in charge of the translations and transformations. The use of an
interactive proof assistant is acceptable when doing the interpreter’s proof,
as it needs to be done only once; but in a certification scheme, the proof
of goals specific to a program should be done automatically, to make sure
that no knowledge of the analysis is required from users and that we do
not include the analysis in the TCB. On the other hand, Why3 provides no
facility for checking automatic provers results for now and the TCB includes
these rather complex tools.

With respect to deductive verification approaches, our approach is a
middle-ground between a compilation approach (e.g., Krakatoa [MPMU04],
Spec# [BLS04], VCC [CDH+09]), whose TCB includes a compiler perform-
ing transformations and typing, and full program proofs using a framework
dedicated to a single language (e.g., KeY [ERB+06]), whose TCB only
includes the WP calculus, but are restricted to programs written in one in-
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put language (e.g., Java for the KeY platform). In both cases, automatic
provers are widely used to discharge verification conditions, and must be
added to the TCB.

The TCB of our approach includes tools—i.e., an IVL and ATPs—that
are not deemed worthy of trust in foundational proof-carrying code ap-
proaches [App01, CCNS05, AAV02, WNKN04]. However, we rely on an
IVL to generate the VCs but also to justify the VC calculus, as the same
generalised lemmas are responsible for the generation of VCs and proved
w-r-t the operational semantics. This provides a declarative implementation
of the VCgen: one has only to specify the VC calculus, a program, and the
result of the analyser, to generate VCs. In a sense, we use Why3 as a VCgen
generator, and the soundness of the generation of VCs is dependent on the
encoding of algebraic data types and recursive functions into many-sorted
FOL.

The proof of the soundness of the VC calculus, which involves imple-
menting the operational semantics of a language as an interpreter, is not a
foundational proof, in that it rely on the WP calculus implemented in the
Why3 platform. But it is a middle-ground between a foundational approach
and no guaranties, and it allows to prove the VC calculus and the VCgen at
the same time. Furthermore, providing a foundational proof for verification
frameworks based on IVL is an active field of research [HMM12, VJP10],
and so is providing foundational proofs for state-of-the-art ATPs [BW10,
AFG+11, BCP11, Mos08, FMM+06]. Such approaches could in the short
or medium term eliminate some of the concerns regarding the TCB of our
approach.

5.4.2 Certified static analysis

Albert et al. [APH05] have developed an Abstract-Carrying Code approach,
that attach to programs the abstraction calculated by an analyser. The
analyser is a CLP abstract interpreter that calculate a fix-point sufficient
to ensure a safety policy, and the verification of the fix-point iterate the
CLP program one time. The TCB of such a PCC framework includes the
analyser—which in this case contains the specification of the analyser and
the CLP engine—whereas our approach aims specifically at removing the
analyser from the TCB.

A foundational proof of safety for a static analyser can be obtained by
certifying the analyser inside a proof-assistant. Klein and Nipkow have
formalised the Java byte code verifier in Isabelle [KN03], and Pichardie et
al. [CJPR05, Pic05] formalised the abstract interpretation framework [CC77]
in Coq and used it to prove the soundness of several program analysers.
This last approach requires to develop and prove in Coq the whole analyser
which is a formidable effort of certification and raises efficiency concerns,
Coq being a pure lambda-calculus language. Another way to obtain a
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foundational proof of safety is to certify, inside the proof-checker, a verifier of
analysis result rather than the analyser. Besson et al. [BJPT10] applied this
result certification methodology [WB97] to a polyhedral analysis, developing
an analyser together with a dedicated checker whose soundness is proved
inside Coq, but which is limited to linear invariants, whereas we can certify
any result the ATP can handle.

The work closest to our approach is the result verification of resource
analyses proposed by Albert et al. [ABG+11] who have shown how results
of the state-of-the-art static analysis system COSTA can be checked using
the verification tool KeY. COSTA produces guarantees on how resources
are used in programs. Resource guarantees are expressed as upper bounds
on number of iterations and worst-case estimation of resource usage, and
injected into KeY as JML annotations. The derived proof obligations are
proved automatically using the prover of KeY. Our approach defines a
methodology applicable to a wide range of analyses, and generates VC using
a standard IVL rather than relying on a framework dedicated to a particular
language, such as KeY. Overall, we provide a more general framework
that use standard tools and can rely on multiple provers, but we have only
developed a proof-of-concept, whereas they focused on a particular analysis
and a particular tool to achieve a complete integration.

5.4.3 Limits

If the soundness of the approach is formally proved, its completeness is not
clearly established, as the verifications conditions may not be appropriate
for all analysers. They are sufficient to prove program safety, as the proof
of the interpreter established, but they may not be necessary, and may be
too strong to account for some abstract domains. Moreover the amount of
automation is a concern. The statement of the semantics of the language
and the verifications conditions were carefully crafted, as minor syntactic
differences can make a huge difference when discharging the verification
conditions. A sound representation, easily proved in Coq using a limited
set of tactics in a systematic way, may prove very challenging for ATPs. On
the other hand, large invariants may involve simple but fastidious reasoning
in Coq, whereas ATPs performed very well. Using auxiliary lemmas in an
IVL to cut proofs in parts of different complexity could be an approach to
get the best of both worlds.



Chapter 6

Verification Condition
simplification for analyses of
the heap

The time spent by Automated Theorem Provers on some VCs is source of
concern, not as such for the result certification of numerical analysis, but
when dealing with more different kind of abstract domains, e.g., the BCV
or the null pointer domain. Contrary to numerical analyses, the verification
conditions for even the simplest object-oriented program analyses are nei-
ther quantifier-free, nor do they fall into existing decidable fragments. Our
experiments show that for now, ATPs are usually incapable of discharging
such verification conditions. To circumvent this obstacle, we suggest to re-
strict to a particular class of analyses in order to obtain a more parsimonious
embedding of abstract domains into pre-conditions and post-conditions. We
will use the same methodology as employed in Chapter 5 to generate VCs
with a new specialised VC calculus dedicated.

Section 6.1 presents a family of object-oriented analyses, described by
a parametrisation of the instrumentation of the semantics and of a generic
abstract domain. Section 6.2 details a set of quantifier-free verification con-
ditions tailored to the family of analyses previously described. Section 6.3
evaluates the methodology on two object oriented analyses: a simple, clas-
sical analysis (the BCV), and a more complex analysis that requires instru-
mentation of the semantics (the null pointer analysis). Finally, Section 6.4
concludes the present chapter and presents further research directions to
explore.

6.1 Restriction to a family of analyses
The VCs presented in Chapter 4 were derived from the semantics and are
very general. To be simplified, the VC calculus must be less general, which

89
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entails restricting the number of analyses whose results can be certified.
Rather than choosing a particular analysis and defining a dedicated VC
calculus, we define a new VC calculus restricted to a family of analyses:
analyses that have comparable concretisation functions, as defined in Sec-
tion 6.1.2, and that use the same kind of instrumentation of the semantics,
as defined below.

6.1.1 Instrumented semantics

The soundness of an analysis is given w-r-t the concrete semantics of the
language. For a good number of analyses, only the set of reachable states is
needed to state correctness. However, some properties on the execution of a
program may be hard or impossible to describe on the reachable states alone
as some information on the trace of the execution may have been lost. For
example, the semantics of an undefined field is that it contain null, hence
it can not be distinguished from a field that has been initialised with null
if the only information available is the reachable states, whereas it can be
observed in the complete trace of execution.

To add some information from the trace of execution to the set of reach-
able states, a common approach is to instrument the semantics, i.e., to add
to semantic states some form of flag. These flags should not change the
semantics of a program, hence they can be modified but can not influence
the evolution of all non-instrumented parts of the state. The instrumented
semantics obtained can be projected on the normal semantics by forgetting
all information about the flags.

For the analyses we want to certify, the initialisation of an object is
essential, and needs to be monitored. We add a flag to the fields, that will
have different meanings depending on the analysis we want to certify. This
flag is modified when an object is allocated and when the field is updated.
Different analyses may require a different instrumentation, but the approach
is always the same. To retain some generality of the VC calculus, we define
an instrumented semantics parametrised by the domain of flags IF , the
default flag inull—used when a field is set to null during the allocation of
an object—and the function ifield—used to update the flag of a field. The
domain Obj of objects is updated to include the instrumentation of fields.

Obj = Class × (F → Val × IF )

Given an object o and a field f , we write o(f)1 (respectively o(f)2) the
projection of o(f) on the value (respectively the instrumentation).

To define the two analyses that concern us the function ifield only has
to take as argument the flag to be updated, but this could be generalised,
and any information available while applying the update field semantics rule
could be of interest, e.g., the dynamic class of the object containing the field,
the type of the value assigned, or the current program point. Figure 6.1 only
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details the rules for allocation of an object and for update in a field, as all
other rules only propagate the flags and leave them unchanged. The parts of
the rules that have changed are emphasised using a bold font and underlined,
to be compared with Figure 2.6 in Section 2.4.2.

New

get_stmt(s.cpp) = x := new c x is assignable
s.hp[l] = ⊥ o = λf.(null, inull)

s −→ (s.env[x← l] , s.hp[l← (c, o)] , s.cpp+)

Putfield

get_stmt(s.cpp) = x.f := y s.env[x] = l s.hp[l] = (c, o)
v′ = s.env[y] (v, i) = o[f ] i′ = ifield(i) o′ = o[f ← (v′, i′)]

s −→ (s.env , s.hp[l← (c, o′)] , s.cpp+)

Figure 6.1: Main differences between instrumented and non-instrumented
semantics

The parametrisation of the instrumentation leads to a new semantic
invariant: the flag of a field can not be modified “manually”, it is initially
inull and is only modified by successive application of ifield. This property
is similar to the compatibility property we defined on the non-instrumented
semantics, and leads to the definition of an updated CompatIF predicate
that replaces for all purposes the predicate Compat.

Definition 6.1.1. A state s = (e, h, p) and a state s′ = (e′, h′, p′) are
compatible (CompatIF (s, s′)) with the instrumented semantic relation if and
only if

1. s and s′ are compatible with the semantic relation

∀l.l ∈ dom(h)⇒ l ∈ dom(h′) (1)
∀c, c′, l, o, o′.h(l) = (c, o)⇒ h′(l) = (c, o′)⇒ c = c′ (2)
e(this) = e′(this) ∧ e(p0) = e′(p0) ∧ e(p1) = e′(p1) (3)

2. A field instrumentation can only be updated by iterating the ifield
function (any number of time)

∀c, l, f, o, o′.
h(l) = (c, o) ∧ h′(l) = (c, o′)⇒ ∃n. o′(f)2 = ifieldn(o(f)2) (4)

This definition completes Definition 2.4.2, and Proposition 2.4.1 holds for
this extended compatibility relation. However, the iteration of the function
ifield is not a construct of many-sorted FOL, and needs to be axiomatised.

∀i ∈ ifield, ifield0(i) = i
∀i ∈ ifield, n ∈ N, ifieldn(i) = ifield(ifieldn−1(i))



CHAPTER 6. SIMPLIFIED V.C. FOR ANALYSES OF THE HEAP 92

6.1.2 Parametrised analyses

We restrict our attention to analyses parametrised by an abstract domain
Val ]. A variable x is abstracted in a flow-sensitive manner by an element
v ∈ Val ]; a field f is abstracted in a flow-insensitive manner by a pair
(v1, v2) ∈ Val ] × Val ] such that v2 is the abstraction of x.f providing v1 is
the abstraction of x. The form of the abstract domain is defined by

Heap] = F → Val ] × Val ] Env ] = Var → Val ]

Abs = Heap] × (PP → Env ])

The concretisation function γReach is parametrised by a set γnull ⊆ Val ]

and a function γL , that are used to build the concretisation γVal of values.
In the semantics, a value is either the constant null or a location l. The
constant null can be abstracted by any abstract value v ∈ γnull. Locations
are non-interpreted, i.e., L is not a set of concrete addresses in memory,
but an artifact of the memory model. Therefore, a concretisation function
γL : Val ] → P(L) would make little sense. The purpose of γL : Val ] →
P(Class × F × IF ) is to relate in the heap the class of the location and the
instrumentation of the fields. As a result γVal is parametrised by a heap h
and is defined as follows:

v] ∈ γnull

null ∈ γh
Val (v])

h(l) = (c, o) ∀f ∈ c. (c, f, o(f)2) ∈ γL(v])
l ∈ γh

Val (v])

The quantification ∀f ∈ c. stands for for all fields f defined in objects of
class c, i.e., f is either defined in c or in a super-class of c. The notation
o(f)2 correspond to the second element in the couple o(f): an object o maps
a field f to couples (v, i), o(f)1 stands for v, i.e., the value stored in o.f , and
o(f)2 stand for i, i.e., the flag attached to o.f . The rule on the left-hand side
simply states that γnull contains all abstract values that can be interpreted
as null. The other rule states that, given a heap h, a location l belongs to
the concretisation of an abstract value v] only if the object (c, o) at location
l has the correct flags attached to its field according to γL(v]), i.e., is such
that the tuple (c, f, o(f)2) belongs to the concretisation γL(v]), for all the
fields f defined in the class c.

The abstraction of environments is defined component-wise, i.e., the
abstraction of each variable is non-relational. It is a simple lift of the ab-
straction of values.

∀x ∈ Var , e(x) ∈ γh
Val (e](x))

e ∈ γh
Env (e])

Note that the abstraction of a program defines one abstraction e] per pro-
gram point. The abstraction of environments are flow-sensitive but the lift
from Env ] to PP → Env ] is not detailed.
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The abstraction of the heap is also non-relational and each field is ab-
stracted by a pair of abstract values, the first abstract value is denoted by
h](f)1 and the second by h](f)2.

∀l ∈ L, c ∈ Class , o ∈ Obj . h(l) = (c, o)⇒
∀f ∈ c. (c, f, o(f)2) ∈ γL(h](f)1)⇒ o(f)1 ∈ γh

Val (h](f)2)
h ∈ γHeap(h])

An abstraction h] concretises into all heaps h such that for all objects (c, o),
if the annotation of the field o.f abides by h](f)1—according to γL—then
the value of that field must belong to the concretisation of h](f)2—according
to γh

Val . In other words, given an object, the abstraction of the heap can
distinguish fields according to the status of the flag attached to it. For those
whose flag is consistent with h](f)1, it gives the information h](f)2, for the
others, it says nothing.

6.1.3 Instantiations of the framework

We intend to verify abstract interpretations obtained by instantiating:

• the domain of annotations IF , the default value at allocation inull and
the update function ifield,

• the abstract domain Val ] and the concretisations γnull and γL .

Formalisation of part of the BCV. For our core language, the purpose
of byte-code verification consists in ensuring that all virtual method calls
will succeed. This is the case if for any call instruction x := y.c0.m(a1, a2)
the class of y is a subclass of c0. Therefore, to rule out this error, byte-code
verification would compute as abstraction for y a class c that is a subclass
of c0.

This analysis does not require any instrumentation of the semantics.
Therefore the domain IF contains only one dummy element 3. The abstract
domain Val ] is defined as Class⊥, i.e., an abstract value v ∈ Val ] is either a
class c which represents either null or any object of class c′ � c, or ⊥ which
represents only null.

IF = {3} inull = 3 ifield(i) = 3 γnull = Val ]

γL(c) = {(c′, f, i) | c′ � c}

Formalisation of a null pointer analysis. Our parametrised concreti-
sation can also model more sophisticated abstract domains similar to the
null-pointer type system of Fähnrich and Leino [FL03], presented in Sec-
tion 2.5.2. The instrumentation of the semantics accounts for the initialisa-
tion of fields: at allocation, fields are flaged as undef, and the first update in
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the field put the flag at def. With our semantics, this behaviour is modelled
by the following instrumentation:

IF = {def , undef } inull = undef ifield(i) = def

The first part of the abstract domains of the analysis is concerned with
the initialisation of fields. It defines an abstract domain IF ] that contains
two values: Def , which means definitively defined, and UnDef , which means
may be defined, i.e., UnDef contains no information.

IF ] = {Def ,UnDef } γIF (Def ) = {def } γIF (UnDef ) = IF

Hubert et al. [HJP08] have developed an analysis able to infer automatically
types that can be checked by type system of Fähnrich and Leino [FL03].
The abstract domain of their analysis differs from the type system in that
it requires this to be given a more precise abstraction than other vari-
ables. Instead of a raw type, this is abstracted by an explicit mapping
f ∈ F → {Def ,UnDef }. In our framework, all the variables are treated in
an homogeneous way and doing a special case for this would complicate
the generic γ. As a result, in our abstraction, all the variables are treated
like this. This is a generalisation as a raw type raw(c) can be represented
by a mapping

λf . if f ∈ c then Def else UnDef
but on the contrary, not all mappings in F → {Def, UnDef} can be repre-
sented by a type raw(c) for some class c.

Another deviation from Fähnrich and Leino or Hubert et al., is that
our core language does not contain constructor, only methods and dynamic
calls, and any method can be used to initialise an object. The semantics
of the new statement is simple compared to the Java bytecode semantics:
new just allocates memory but does not call a constructor, if it exists, the
initialisation method must be called afterwards. To precisely track down
the state of a newly created object of class c, we introduce the type ĉ which
represents a totally uninitialised object of class exactly c.

We define the abstract domain of values Val ] as the union of the domains
F → IF ], Ĉlass , and a third possible domain, {MaybeNull,NotNull}.

Val ] = {MaybeNull,NotNull} ∪ Ĉlass ∪ (F → IF ])
γnull = {MaybeNull}

The type MaybeNull represents an arbitrary value and NotNull represents a
non-null object with all its fields initialised. The type ĉ represents an unini-
tialised object of class (exactly) c and a mapping F ∈ F → IF ] represents
an object such that the initialisation state of a field f is given by F (f).

γL(MaybeNull) = Class × F × IF
γL(NotNull) = {(c, f, i) | f ∈ c⇒ i = def }
γL(ĉ) = {c} × F × IF
γL(F ) = {(c, f, i) | f ∈ c⇒ i ∈ γIF (F (f))}
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A feature of this analysis is that even if the abstraction of the heap is
not flow-sensitive, it can make a distinction between initialised fields and
uninitialised fields. This property is obtained as soon as an abstract heap
h] ∈ Heap] is such that h](f)1 = NotNull. In fact, the abstractions of the
heap calculated by an analyser all belongs to a subset

{NotNull} × Val ]

of the possible abstractions in Val ] × Val ]. Therefore the results of the
analyser will only provide information about the fields of initialised objects,
whereas fields of partially initialised objects will be treated as potentially
null.

6.2 Simplification of object-oriented VCs
We define a new VC calculus DVC obj , designed to produce verification con-
ditions that belong to a decidable theory DAssn based on a fragment of the
theory of semantic states and new atoms that use γnull and γL .

6.2.1 A fragment with quantifier elimination

We define the theory DAssn of formulae of the form

∀c̄ ∈ Class , f̄ ∈ F , ī ∈ IF , v̄ ∈ Var . φ

where c̄, f̄ , ī, v̄ are vectors of universally quantified variables and φ is a
quantifier-free propositional formula built over the following atomic propo-
sitions

p ::= v] ∈ γnull | (c, f, i) ∈ γL(v]) | c � c | f ∈ c.

Here, v] is a constant of the abstract domain Val ]; c is either a constant
class name or a class variable bound in c̄; f is either a constant field or a
field variable bound in f̄ ; i is an annotation of the form ifieldn(i) where i is
either a constant annotation or an annotation variable bound in ī.

To argue the decidability of DAssn , we first observe that ground formulae
c � c′ and f ∈ c are syntactic properties of programs that are trivially de-
cidable. As a result, the decidability of the ground theory depends only on
the abstract interpretation, i.e., the definition of γnull or γL . For any reason-
able analysis it is likely that it is decidable whether an abstract element v]

represents null (v] ∈ γnull) and whether a triple of constants (c, f, i) is part
of γL(v]). To deal with quantified formulae, we recall that a theory admits
quantifier elimination if for any quantified formula there exists an equivalent
ground formula. Quantifier elimination provides a way to lift the decidabil-
ity of ground formulae to the decidability of the quantified fragment. In
our case, the only assumption required for decidability is that the domain
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IF is finite. In that case, the previous theory admits quantifier-elimination
because each quantified variable ranges over a finite domain, be it IF , Class ,
F or Var .

The byte-code verification logic is decidable. There is only a single an-
notation. Moreover, v] ∈ γnull always holds and (c, f, i) ∈ γL(v]) reduces to
c � v].

The null-pointer logic is also decidable. In this case, there are only two
annotations. Moreover, v] ∈ γnull is effectively an atom of the theory of
equality—it holds if and only if v] = MaybeNull—and (c, f, i) ∈ γL(v]) is a
formula combining the theory of equality and existing atoms:

(c, f , i) ∈ γL(MaybeNull) iff True
(c, f , i) ∈ γL(NotNull) iff f ∈ c ⇒ i = def
(c, f , i) ∈ γL(ĉ′) iff c′ = c
(c, f , i) ∈ γL(F) iff f ∈ c ⇒ F(f ) = Def ⇒ i = def

For these restrictions to be of interest we must show that a sound verifi-
cation condition calculus can be defined in this fragment. This is far from
evident, as Remark that the concretisation defined in Section 6.1 uses uni-
versal quantification of locations on both sides of implications, therefore if
it was used for the verification condition calculus defined in Chapter 4, the
VCs would fall into the quantifier-free fragment.

6.2.2 Decidable verification conditions

We define the VC calculus DVC obj that generates finitely many verification
conditions that are provably sufficient to ensure the invariant of an analysis
and therefore the absence of run-time errors in a program. The essential
property of DVC obj is that it generates verification conditions that belong to
the logic fragment DAssn identified in Section 6.2.1. The soundness of DVC obj
has been formally proved in Coq [BC04] and is available online [BCJ12].

The verification conditions generated by DVC obj require the instrumen-
tation to be heap monotonic w.r.t. to the abstraction of location:

∀v], c, f, i. (c, f, i) ∈ γL(v])⇒ (c, f, ifield(i)) ∈ γL(v])

This property has already been identified as being instrumental for coping
with multi-threading [FL03]. It informally states that at every time, the
abstraction holds even if the fields are more defined than expected, i.e., even
if another thread has updated some fields. In a sequential setting, it could
be relaxed at the cost of introducing an additional quantification modelling
the fact that, for instance, during a method call the instrumentation can be
updated an arbitrary number of times.

DVC obj manipulates terms of the syntax and the functions γnull and
γL seen as predicates. To simplify the notations we use the short-hands
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presented in Figure 6.2. The first short-hand, v]
1
•⇒ v]

2, means that γL(v]
1) v

γL(v]
2), where v denotes an inclusion restricted to tuples (c, f, i) in which

f ∈ c, and that if v]
1 can denote null, so does v]

2. The second short-hand
v]

1
•
∧ v]

2
•⇒ v]

3 defines a similar relation but with an intersection of states on
the left-hand side: γL(v]

1) u γL(v]
2) v γL(v]

3), where u is also restricted to
tuples (c, f, i) in which the field f is defined in the class c. The definition of
the short-hands translates the inclusion into the theory of semantic states.

v]
1
•⇒ v]

2
M=

∧ v]
1 ∈ γnull ⇒ v]

2 ∈ γnull

∀c, i, f ∈ c. (c, f, i) ∈ γL(v]
1)⇒ (c, f, i) ∈ γL(v]

2)

v]
1
•
∧ v]

2
•⇒ v]

3
M=

∧ v]
1 ∈ γnull ∧ v]

2 ∈ γnull ⇒ v]
3 ∈ γnull

∀c, i, f ∈ c. (c, f, i) ∈ γL(v]
1) ∧ (c, f, i) ∈ γL(v]

2)
⇒ (c, f, i) ∈ γL(v]

3)

Figure 6.2: Short-hands used in the simplified VCs

Given an abstraction (H,E) ∈ Heap] × (PP → Env ]) of the program, we
generate for each program point p a verification condition VC ](H,E)

p for the
statement s ∈ Stmt such that get_stmt(p) = s. For each method signature
m′ ∈ Class ×Method which overrides a method m ∈ Class ×Method in a sub-
class, we also generate verification conditions VC ](m′,m)(H,E) modelling
the usual variance/co-variance rules for method redefinitions, i.e., the pre-
condition of the redefinition should follow from the pre-condition of the
initial definition, and the post-condition of the redefinition should imply the
post-condition of the initial definition. The comprehensive VCs are given
in Figure 6.4 on page 102 and detailed below. In all rules, the terms of
the statement on which the VC is produced are capital letters in a True-
Type font (e.g., X) and the two parts of the abstraction are written in italic
capital letters. We do not indicate the sorts of the quantified variables to
keep the formulae readable, but all v are variables in Var , c are classes in
Class , f are fields in F , i are instrumentations of fields in IF , except in the
VC for call instructions, where it is specified ∀i ∈ {0, 1} to avoid repeating
the condition.

Skip. The VC for the skip instruction is limited to the propagation of the
flow-sensitive abstraction of the environment.

VC ](skip)(H,E)
p = ∀v. E(p)(v) •⇒ E(p+)(v)

If p is the program point annotated with the skip instruction, then for all
variables v, the abstraction E(p)(v) should be contained in the abstraction
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of the next program-point E(p+)(v). This condition is also found in all
the other VCs, with a restriction on the variable v, i.e., all instructions
that modify a variable X obviously does not have to report the exact same
information regarding that variable on the next program point.

Assignments. We produce different VCs for assignments X := e depend-
ing on the expression e. If e is simply null, then the VC simply propagates
the information on all variables different from X and checks that the abstract
value for X at the next program point can represent a null value.

VC ](X := null)(H,E)
p =

{
∀v 6= X. E(p)(v) •⇒ E(p+)(v)
∧E(p+)(X) ∈ γnull

The other VC for assignment deals with instructions of the form X := X′,
and checks that the information on X′ are propagated to the information on
X at the next program point, replacing the condition E(p+)(X) ∈ γnull by
E(p)(X′) •⇒ E(p+)(X).

Method calls. Along the same lines, most of the conditions of the VC for
call statements x := Y.C.M(V0, V1) simply check that the correct information
is propagated. First, the information on all local variables that are not
concerned by the call—variables that are neither X, Y, V0 nor V1—must be
propagated to the next program point.

∀v /∈ {X, Y, V0, V1}. E(p)(v) •⇒ E(p+)(v)
Then, the VC must check that the pre-condition of the method called is

enforced, i.e., it must check that the information on the argument of the call
Y,V0 and V1 implies the information on the parameter this,p0 and p1 at the
entry point of the method. We take the entry point of the implementation of
the method in the highest possible class (C, M)0. A different VC checks that
all implementations respect the usual variance/co-variance rule for method
redefinitions.
∀i, f, c′ 4 C. (c′, f, i) ∈ γL(E(p)(Y))⇒ (c′, f, v) ∈ γL(E((C, M)0)(this))
∀i ∈ {0, 1}. E(p)(Vi)

•⇒ E((C, M)0)(pi)
The constraint concerning the parameter this is a bit relaxed: we know that
the object Y is not null and at most of class C. A different VC, presented
in Figure 6.3 on page 101, is in charge of checking that the lookup never
fails. The VC checks that the information on Y at the call point up to C is
propagated to the information on this at the entry point.

Finally, the VC checks that the information at the exit point (C, M)∞—
i.e., the post-condition of the method—is propagated.

E((C, M)∞)(res) •⇒ E(p+)(X)
E((C, M)∞)(this)

•
∧ E(p)(Y) •⇒ E(p+)(Y)

∀i ∈ {0, 1}. E((C, M)∞)(pi)
•
∧ E(p)(Vi)

•⇒ E(p+)(Vi)
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Note that even if the semantics specify that the value—i.e., the location—of
the variables Y,V0 and V1 is not touched by the call, the object they point
to may have been modified by the call, e.g., more fields could be initiated.
Therefore, the information at the next program point on these variables is
actually the intersection of the information at the call point—i.e., E(p)(•)—
and of the information on the parameters—this for Y, p0 for V0 and p1 for
V1—at the exit point of the method E((C, M)∞)(•), hence the use of the
shorthand v]

1
•
∧ v]

2
•⇒ v]

3.

Conditional tests. A program point p annotated with a branching state-
ment Jnull(X, p′) generates one VC, with conditions related to the two
branches. If the information on X at program point p indicates that the
variable can be null, i.e., E(p)(X) ∈ γnull , then the jump may occur, there-
fore the information on X at p′ must signal that X may be null, and the
information on all other variables must be propagated from p to p′.

E(p)(X) ∈ γnull ⇒ E(p′)(X) ∈ γnull
∀v 6= X. E(p)(X) ∈ γnull ⇒ E(p)(v) •⇒ E(p′)(v)

As soon as the information on X at p indicates that the variable can be
not-null, i.e., if (c, f, i) ∈ γL(E(p)(X)) is true, then some executions may
continue to p+ and the information must be propagated accordingly.

∀c, i, f ∈ c. (c, f, i) ∈ γL(E(p)(X))⇒ (c, f, i) ∈ γL(E(p+)(X))
∀v 6= X,∀c, i, f ∈ c. (c, f, i) ∈ γL(E(p)(X))⇒ E(p)(v) •⇒ E(p+)(v)

Note that the information that X may be null at p is not propagated to p+,
we use a constraint a bit more relaxed than a simple E(p)(X) •⇒ E(p+)(X),
and can therefore certify guard-sensitive analyses.

A simpler VC could account for analyses that do not take the guard
into account. It would only need to check that the information is correctly
propagated to both possible successor of p

∀v,E(p)(v) •⇒ E(p′)(v)
∀v,E(p)(v) •⇒ E(p+)(v)

However, such VC could not account for analyses that use the test on X to
infer a more precise information in each branch, and given the nature of the
test—i.e., “is X null ?”—this would entails a potential loss of precision in
the null-pointer analysis.

Object allocation. The VC for the X := new C statement is straightfor-
ward. It only has to check—besides the fact that variables other than X
are unchanged—that the information on X at the next program point can
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account for the fact that all the fields of the object stored in X have a blank
annotation and have a null value.

∀f ∈ C. (C, f, inull) ∈ γL(E(p+)(x))
∀f ∈ C. (C, f, inull) ∈ γL(H(f)1)⇒ H(f)2 ∈ γnull

Accesses in the heap. The VC for a program point p annotated with
an access in the heap X := Y.F states that the information on F in the flow-
insensitive abstraction of the heap, i.e., H(F)2, should be propagated to the
information on X at the next program point. Nonetheless, recall that the
abstraction of the heap may distinguish between the possible annotations
of F. Therefore, the information from H must be propagated to E(p+)(X)
depending on what the information on Y at p can say about the flag on Y.F.

∀c, i.
F ∈ c⇒
(c, F, i) ∈ γL(E(p)(Y))⇒(
(c, F, i) ∈ γL(H(F)1)⇒ H(F)2 ∈ γnull

)
⇒

E(p+)(X) ∈ γnull

∀c, c′, f ′, i, i′.
F ∈ c⇒
(c, F, i) ∈ γL(E(p)(Y))⇒(
(c, F, i) ∈ γL(H(F)1)⇒ (c′, f ′, i′) ∈ γL(H(F)2)

)
⇒

(c′, f ′, i′) ∈ γL(E(p+)(X))

There are two kinds of information to propagate: f may be null, i.e.,
H(F)2 ∈ γnull , and the set of objects the abstraction of f may correspond
to, hence the two conditions. Remark that the parentheses does not allows
the use of the shorthand H(F)2

•⇒ E(p+)(X).

Updates in the heap. The VC for a program point p annotated with an
update in the heap X.F := Y checks that the information on Y is propagated
in the heap

E(p)(Y) •⇒ H(F)2

but must also checks that the abstraction accounts for the update on the
flag attached to the field. It must be accounted for in the abstraction of the
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environment, for all objects in which F is defined, but only for the field F

∀c, i.
F ∈ c⇒
(c, F, i) ∈ E(p)(x)⇒
(c, F, ifield(i)) ∈ E(p+)(x)
∀i, c, f ′ 6= F.

F ∈ c⇒
(c, f ′, i) ∈ γL(E(p)(X))⇒
(c, f ′, i) ∈ γL(E(p+)(X))

and it must be accounted for in the heap.

∀c, f ′, i. (c, F, i) ∈ γL(E(p)(x))⇒ (c, F, ifield(i)) ∈ γL(H(f ′)2)

Absence of errors. For each statement s ∈ Stmt at program point p which
can potentially be responsible for an error e ∈ Err we generate an abstract
verification condition Chk](s)(H,E)

p ruling out this error. Figure 6.3 details
the VCs for the statement that can generate errors: for accesses and updates
in the heap, VCs that rule out null pointer dereferencing, and for method
calls, a VC that also rules out potential failures of the lookup algorithm.

Chk](x := y.f)(H,E)
p = ¬(E(p)(y) ∈ γnull)

Chk](x.f := y)(H,E)
p = ¬(E(p)(x) ∈ γnull)

Chk](x := y.c.m(v0, v1))(H,E)
p =

{
¬(E(p)(y) ∈ γnull)
∧∀c′, f, i. (c′, f, i) ∈ E(p)(y)⇒ c′ � c

Figure 6.3: Verification conditions proving the absence of errors

Definition 6.2.1. We write DVC obj the VC calculus defined by the rules
presented in Figures 6.4 and 6.3:

Let P be a well-formed program encoded as a flowchart and (H,E) be the
untrusted result of an analysis such that the instrumentation is monotonic.

• ∀p ∈ PP . VC ](H,E)
p (get_stmt(p)) ∈ DVC (P, (H,E)).

• ∀m,m′. ifm′ is a redefinition ofm, VC ](m′,m)(H,E) ∈ DVC (P, (H,E)).

• ∀p ∈ PP , if s = get_stmt(p) can potentially be responsible for an
error, Chk](s)(H,E)

p ∈ DVC (P, (H,E)).
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VC ](skip)(H,E)
p = ∀v. E(p)(v) •⇒ E(p+)(v)

VC ](X := null)(H,E)
p =

{
∀v 6= X. E(p)(v) •⇒ E(p+)(v)
∧E(p+)(X) ∈ γnull

VC ](X := X′)(H,E)
p =

{
∀v 6= X. E(p)(v) •⇒ E(p+)(v)
∧E(p)(X′) •⇒ E(p+)(X)

VC ](x := Y.C.M(V0, V1))(H,E)
p =



∀v /∈ {X, Y, V0, V1}. E(p)(v) •⇒ E(p+)(v)
∧∀i, f, c′ 4 C. (c′, f, i) ∈ γL(E(p)(Y))⇒ (c′, f, v) ∈ γL(E((C, M)0)(this))
∧∀i ∈ {0, 1}. E(p)(Vi)

•⇒ E((C, M)0)(pi)
∧E((C, M)∞)(res) •⇒ E(p+)(X)
∧E((C, M)∞)(this)

•
∧ E(p)(Y) •⇒ E(p+)(Y)

∧∀i ∈ {0, 1}. E((C, M)∞)(pi)
•
∧ E(p)(Vi)

•⇒ E(p+)(Vi)

VC ](Jnull(X, p′))(H,E)
p =


E(p)(X) ∈ γnull ⇒ E(p′)(X) ∈ γnull
∧∀v 6= X. E(p)(X) ∈ γnull ⇒ E(p)(v) •⇒ E(p′)(v)
∧∀c, i, f ∈ c. (c, f, i) ∈ γL(E(p)(X))⇒ (c, f, i) ∈ γL(E(p+)(X))
∧∀v 6= X,∀c, i, f ∈ c. (c, f, i) ∈ γL(E(p)(X))⇒ E(p)(v) •⇒ E(p+)(v)

VC ](X := new C)(H,E)
p =

 ∀v 6= X. E(p)(v) •⇒ E(p+)(v)
∧∀f ∈ C. (C, f, inull) ∈ γL(E(p+)(x))
∧∀f ∈ C. (C, f, inull) ∈ γL(H(f)1)⇒ H(f)2 ∈ γnull

VC ](X := Y.F)(H,E)
p =



∀v 6= X. E(p)(v) •⇒ E(p+)(v)
∧∀c, i.

F ∈ c⇒
(c, F, i) ∈ γL(E(p)(Y))⇒
((c, F, i) ∈ γL(H(F)1)⇒ H(F)2 ∈ γnull)⇒
E(p+)(X) ∈ γnull
∧∀c, c′, f ′, i, i′.

F ∈ c⇒
(c, F, i) ∈ γL(E(p)(Y))⇒
((c, F, i) ∈ γL(H(F)1)⇒ (c′, f ′, i′) ∈ γL(H(F)2))⇒
(c′, f ′, i′) ∈ γL(E(p+)(X))

VC ](X.F := Y)(H,E)
p =



∀v 6= X. E(p)(v) •⇒ E(p+)(v)
∧∀c, i.

F ∈ c⇒
(c, F, i) ∈ E(p)(x)⇒
(c, F, ifield(i)) ∈ E(p+)(x)
∧∀i, c, f ′ 6= F.

F ∈ c⇒
(c, f ′, i) ∈ γL(E(p)(X))⇒
(c, f ′, i) ∈ γL(E(p+)(X))
∧E(p)(Y) •⇒ H(F)2
∧∀c, f ′, i.

(c, F, i) ∈ γL(E(p)(x))⇒ (c, F, ifield(i)) ∈ γL(H(f ′)2)

VC ](m′,m)(H,E) =


E(m′∞)(res) •⇒ E(m∞)(res)
∧∀c 4 class(m′), f, i. (c, f, i) ∈ γL(E(m0)(this))⇒ (c, f, i) ∈ γL(E(m′0)(this))
∧∀i ∈ {0, 1}. E(m0)(pi)

•⇒ E(m′0)(pi)
∧∀v /∈ {this, p0, p1}. E(m0)(v) ∈ γnull

Figure 6.4: Verification conditions proving the soundness of the result of an analysis
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Theorem 6.2.1. The VC calculus DVC obj is sound:
Let P be a program encoded as a flowchart and (H,E) be the untrusted

result of an analysis such that the instrumentation is monotonic. If all the
verification conditions are valid

∀Φ ∈ DVC obj(P, (H,E)),Φ is valid

the absence of run-time error is guaranteed by (H,E).

∀s ∈ State, e ∈ Err , s ∈ Reach ⇒ s 6; e

Proof. This theorem is proved correct in the Coq development [BCJ12] in
two stages. First Lemma 6.2.2 establish that the VC described in Figure 6.4
ensure the soundness of the analysis result, then Lemma 6.2.3 establish that
the VC described in Figure 6.3 ensure the absence of error in P . Section 6.3.2
will explain how this proof could be related to the implementation in Why3.

Lemma 6.2.2. Let P be a program and (H,E) be the untrusted result of
an analysis such that the instrumentation is monotonic. If the VCs hold for
all the statements

∀p ∈ PP , s ∈ Stmt . get_stmt(p) = s⇒ VC ](H,E)
p (s)

and the VCs hold for method redefinitions

∀m,m′. override(m′,m)⇒ VC ](m′,m)(H,E)

the analysis result is sound.

Reach ⊆ γ(H,E)

Lemma 6.2.3. Let P be a program and (H,E) be a sound analysis re-
sult (Reach ⊆ γ(H,E)). If the VCs hold for all the statements potentially
responsible for an error in P

∀p ∈ PP , s ∈ Stmt , get_stmt(p) = s⇒ Chk](H,E)
p (s)

then the absence of errors is guaranteed by the static analysis result.

∀s ∈ State, e ∈ Err , s ∈ Reach ⇒ s 6; e

6.3 Second experiment: result certification of object-
oriented analyses

The present section reports a second experiment illustrating our approach
on the two object oriented analyses formalised in Section 6.1.2.
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6.3.1 Object-oriented language VCgen

We used Why3 exceptions to represent error states. They are raised by
the interpreter when semantic conditions are not met, therefore, semantics
conditions leading to error states are integrated in the interpreter’s control
flow. Exceptions leads to exceptional post-conditions. If the analysis is sup-
posed to eliminate the corresponding error, the exceptional post-condition
is set to false, and will lead to verification conditions ensuring the absence
of errors. If the analysis can’t prove the absence of a particular error, the
corresponding exceptional post-condition is set to true and won’t lead to
any verification condition.

Branches of the interpreter that should not be reachable are cut using
the Why3 keyword absurd. In the interpreter, it is used to eliminate a
branch corresponding to a dangling pointer. The generated proof obligation
will be provable using the assumption that the current state is well-formed,
according to Definition 2.4.1 and Proposition 2.4.1.

Semantic auxiliary functions can be either implemented or axiomatised,
depending on the tool used to discharge the verification condition and its
ability to take into account the constructions used in the implementation to
guide its proof search.

6.3.2 Generation of verification condition revisited

To implement the VC calculus DVC obj described in Section 6.2.2, we use
the same methodology as with the VC calculus VC num in Section 5.2.2. We
implement the parametrised concretisation and abstract domain described
in Section 6.1.2 in the IVL and specify DVC obj using generalised lemma,
universally quantified over program points, class, and methods, as shown in
Listing 6.1.

type pp
. . .

type abs_val
predicate γnull abs_val
predicate γVal abs_val (class,field,ifield)
type abs_env = map var abs_val
predicate γEnv (e]:abs_env) (h:heap) (e:env) = . . .

. . .
function (H,E) : abstract_state

lemma generalised_DVC_stmti :
∀ p:pp. get_stmt p = stmti → V C](stmti)H,E

p

lemma generalised_DVC_override :
∀ c c’:class, m m’:method.

override (c’,m’) (c,m) → V C]
(
(c’,m’),(c,m)

)
Listing 6.1: Specification of DVC
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With these generalised lemmas, the Theorem 6.2.1 can1 be proved, i.e.,
the soundness of DVC obj w-r-t the VC calculus VC obj described in Chapter 4,
once and for all, in the same way the soundness of VC obj can be proved w-r-t
the interpreter. Why3 generates proof-obligations for the specification of
VC obj , that can be discharged in Coq using the specification of DVC obj .

To certify the result of an analyser, the program is specified in Why3 as
a flowchart, the Val ] domain, the γnull and γL functions are implemented,
and the result of the analyser is specified in Why3. The proof-obligations
generated by the Why3 WP calculus on the generalised lemmas specifying
DVC obj constitute the VC to be discharged, and have to be proved automat-
ically by ATPs.

6.3.3 Results

All experiments [BCJ12] were done on a laptop—the same as for the previous
experiments—running Linux with 4GB memory and Inter Core 2 Duo CPU
at 2.93GHz. We used Why3 0.71 version and a combination of SMT solvers
(Z3 [dMB08c] 2.2, Alt-ergo [CCK06] 0.94) and a TPTP solver (E [Sch02]
1.4). We tested the ability of the automatic provers to discharge the VCs
produced by DVC obj on short programs annotated with abstraction in the
byte-code verification logic and in the null-pointer logic. We put emphasis
during the tests on method calls and inheritance. As previously, all verifi-
cation conditions were eventually discharged automatically.

More precisely, DVC obj was specified using a number of nested predicates
and functions, used for example to describe the translation of the abstract
domain to assertions, or factorise parts of the VCs, and some inlining and
splitting was required. However, contrary to the experiment on numerical
analyses, the transformations featured in Why3 were not sufficient to obtain
the behaviour we desired, and we needed to project the VCs on program
points—albeit in a systematic way—using auxiliary projected lemmas, as
explained in Section 5.2.2.

The VCs functions defining DVC obj , described in Section 6.2.2, are con-
junction of assertions. Schematically, one lemma was produced per assertion
and per relevant program point, then one lemma per program point stated
that “it validated its VC”, and finally a lemma stated that all program
points validated their VCs (cf Listing 6.1 on the previous page). In this ex-
periment the auxiliary lemmas were generated systematically and not only
when needed, and the only Why3 transformation applied were some further
inlining on a few lemmas.

The proof-obligations were discharged in less than 5s by one prover or
another—most in less than 1s even. As in the previous experiment, the
performances of the ATPs are hard to predict and to explain. Again, no

1This step has not been implemented (yet): DVCobj is specified in Why3 but the proof
of its soundness has been done separately, albeit in Coq.
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ATP could prove all lemmas and a combination of tools was necessary to
achieve full automation. In our experiments, only Alt-Ergo and E were
necessary to discharge all goals. Again, Z3 either discharged a goal very
quickly or reached timeout whereas the other tools exhibited a larger range
of behaviours. As they belong to the same family of provers, the goals proved
by Z3 were consistently more often discharged by Alt-Ergo than by E, but
neither was able to discharge, alone, all of them.

Note that the final lemma, stating that all program point validated their
VCs, could not be discharged using an ATP—even if each auxiliary projected
lemma could be—but was proved in Coq instead. However, the same one-
line proof, chaining some basic tactics, was reused for all programs and
all analyses. Therefore, overall full automation was attained. Similarly,
some predicates related to the class hierarchy needed to be tabulated, as
needed to be the lemmas stating that the verification conditions hold for
method redefinitions. This tabulation took the form of a number of auxiliary
lemmas generated automatically, all proved by the ATPS, and one final
lemma quantified over the possible redefinitions, which needed a one-line
proof in Coq—again, the same one-line Coq proof for all programs.

6.4 Conclusion
For some analyses, a straightforward VC calculus will produce formulae
which makes extensive use of quantifiers. This will make it practically im-
possible to use ATPs to discharge the VCs. We present, for a family of
object oriented analyses, a method for defining a more efficient VC calculus,
more amenable to ATPs, while still being provably sound. The family of
object oriented analyses is defined using a parametrisation of the operational
semantics, and parametrised abstract domains and concretisations. This al-
lows our approach to retain generality without sacrificing automation of the
result certification.

Our approach has been validated through an implementation with the
Why3 tool which is capable of verifying analysis results in a few seconds
using off-the-shelf solvers. For the experiments, we have developed result
certifiers for different static analyses:

• a byte code verifier (BCV) for Java: BCV is a fairly straightforward
data flow analysis but requires a semantic model of the heap for its
correctness that leads to complex VCs;

• a null-pointer analysis: a more complex analysis than BCV, leading
to quantifier-rich VCs where our technique for quantifier elimination
is a necessary ingredient for the result certifier to work.
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6.4.1 Further work

Presently, VCs are discharged consistently by a combination off-the-shelf
TPTP provers and SMT solvers, but their behaviours are unpredictable. It
would be desirable to fine-tune the settings of the ATPs to facilitate and
accelerate enumeration on finite domains. It is often said that choosing the
ideal settings for a particular application can have a tremendous impact on
the performances, and even the results, of the ATPs. In our approach, all
VCs were discharged by ATPs launched with the default settings used by
the Why3 framework, but the time spent on some VCs was unpredictable.
A comprehensive study of the effect of different choice of settings on per-
formances for the result certification of a particular analysis may alleviate
concern on scalability.

Relying on ATPs for each and every part of the proofs can be seen as a
brute force approach. A solution to help the ATPs to discharge problematic
VCs would be to identify problematic construction or patterns in formu-
lae and isolate them through lemmas proved once by other means, or rely
on some auxiliary lemmas generated systematically and proved by generic
tactics in a proof-assistant. Ideally, additional decision procedure for some
parts of the semantic state theory could be developed and integrated into
SMT solvers.

We also intend to experiment the framework on other type of analyses.
For numerical analyses (interval and polyhedral-based), preliminary experi-
ments indicate that these analyses can be verified using more quantifier-full
VCs without putting the SMT solvers into difficulty. Other numerical anal-
yses could be explored to validate this claim, such as linear congruence
equalities domain [Gra91]. More challenging is the verification of control
flow and points-to analyses. These analyses are close to the object oriented
analyses presented here but rely on annotations of objects to keep track
of allocation points, rather than annotations of fields to keep track of the
initialisation status of an object. If AP is the set of possible allocation
points—possibly a subset of the set of program points PP or a combination
of PP and control-flow information—the abstract domain of value can be de-
fine as the power-set of allocation points Val ] = P (AP ), and the domain of
object instrumentation IO—an addition to the parametrisation presented in
Section 6.1—can be defined as equal to the set of allocation points IO = AP .
The concretisation γh

Val (v]) of a value is the set of objects possibly allocated
at a point included in v].

h(l) = (c, o, i) i ∈ v]

l ∈ γh
Val (v])

The abstraction of the heap is a mapping between fields and couples of
abstract values in Val ], e.g., (p1, p2) ∈ h](f) corresponds to the informa-
tion: if an object has been allocated at p1, then the field f points to an



CHAPTER 6. SIMPLIFIED V.C. FOR ANALYSES OF THE HEAP 108

object allocated at p2. Therefore the concretisation of an abstraction of
heaps can be built upon the concretisation γh

Val of abstractions of objects.
The parametrised concretisation we defined in Section 6.1 can be adapted
to account for such concretisation of values: γnull and γL can be defined
differently so as to be used to define the concretisation γh

Val , which in turn
is used to define γHeap and γEnv . The VC calculus also needs to be adapted,
but the similarities between the structures of the concretisations lead us to
suspect the required modification to be marginal.

More generally, a more systematic approach to the definition of dedicated
VC calculus would be desirable. Defining a VC calculus dedicated to an
analysis or a family of analyses, such as DVC obj , can be seen as a middle-
ground between a full proof of the analysis and the general VC calculus VC obj
defined in Chapter 4, which relies on a direct translation of abstract domains
to assertions. By providing a framework of parametrised analyses we attain
some generality, but finding a parametrisation of the concretisation—and the
corresponding VC calculus—appropriate for more analyses, or even defining
a systematic approach to the definition of such a parametrisation, that result
in a VC that can be discharged by ATPs, remains an open issue. The
challenge lies not in defining a sound VC calculus, but in defining a sound VC
calculus that belongs to a fragment of the logic that offer strong guaranties
that the VC can be discharged consistently by ATPs.

Another challenge would be the result certification of an analyser based
on a combination of analyses. In particular, understanding how the re-
duced product may be taken into account in a VC calculus belonging to the
quantifier-free fragment, and how to profit from the modularity it brings to
the definition of new analyses, would be a great step towards result certifi-
cation of pragmatic static analysis.

To conclude, our experiments demonstrated the potential of the ap-
proach, but more tests would be necessary to assess its scalability. Extensive
tests would require full automation of the translation to Why3 of both pro-
grams and analysis result, and finding a significant benchmark would ask for
a less restrictive programming language or even a full modern programming
language (e.g., JavaCard), hence would require additional VCs. Overall, a
much larger implementation effort that could not be justified until the abil-
ity of automated theorem provers to consistently discharge the verification
condition was demonstrated.



Chapter 7

Satisfiability Modulo Theory
background

Automatic Theorem Provers (ATPs) constitute the biggest part of the Trusted
Computing Base (TCB) of our static analysis result certification approach.
Our tests emphasise the importance of using different tools to achieve sat-
isfactory automation, i.e., for discharging all Verification Conditions (VCs)
automatically, and sometimes even for discharging all parts of a single VC.
Moreover, satisfiability is an NP complete problem and ATPs rely on aggres-
sive optimisations and heuristics to be efficient. Even though the decision
procedures are sound, their implementations can make all kind of errors,
which may result in the validation of non-valid VCs. Static analyses are
be used to prove properties related to security—e.g., the absence of direct
accesses in the memory, the correct initialisation of classes and objects. If
they make an error and judge a program safe, whereas it is not, at least
one of the VCs will not be valid. Therefore if Automated Theorem Provers
make an error and judge a VC valid whereas it is not, it may result in the
certification of an unsafe program. Crafting an attack around such errors
may be difficult, but is possible.

To remove ATPs from the Trusted Computing Base, Chapter 8 presents
a result certification scheme for a family of ATPs: Satisfiability Modulo The-
ory (SMT) solvers. The present chapter recalls the necessary background
in Satisfiability Modulo Theory necessary for the exposition of our scheme.
First, a brief presentation of the lazy SMT approach is given in Section 7.1.
Then, Section 7.2 discusses proof checking approaches, and benefits of the
reconstruction of SMT solvers’ results in proof-assistants.

7.1 Lazy SMT approach
This section gives an overview of the essential concepts used in state-of-the-
art SMT solvers. It presents SMT solving in three layers, and our proof
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format follows closely this layered presentation. Note that we focus on for-
mulae that must be proved unsatisfiable. The certification of satisfiability
results is in general significantly simpler, as it amounts to the verification
that a given valuation of the variables is a model of the formula. Fur-
thermore, we have reduced the result certification of static analyses to the
validity of VCs, which is equivalent to the unsatisfiability of their negations.

We take as running example the quantifier free many sorted formula
presented in Figure 7.1, that mixes specifically the theories of equality and
Uninterpreted Functions (UF) and Linear Real Arithmetic (LRA).

f(f(x)−f(y)) 6= f(z) ∧ x ≤ y ∧ ((y+ z ≤ x∧ z ≥ 0)∨ (y− z ≤ x∧ z < 0))

Figure 7.1: Running example of a many sorted formula

For UF, a literal is an equality between many sorted ground terms and a
formula is a conjunction of positive and negative literals. The axioms of this
theory are reflexivity, symmetry and transitivity, and the congruence axiom
for functions, as specified in Section 4.2.1 and summarised in Figure 7.2.

∀x. x = x

∀x, y. y = x =⇒ x = y

∀x, y, z. x = y ∧ y = z =⇒ x = z

∀x, y. x = y ⇒ f(x) = f(y)

Figure 7.2: Summary of the UF theory

For LRA, a literal is a linear constraint where (ci)i=0..n ∈ Q is a sequence
of rational coefficients, (xi)i=1..n is a sequence of real unknowns and 1 is a
binary relation.

c0 + c1 · x1 + · · ·+ cn · xn 1 0 1∈ {=, >,≥}

Following Simplify [DNS05], our presentation consider that disequality is
managed on the UF side. Therefore, a LRA formula is a conjunction of
positive literals.

7.1.1 SAT decision procedure modulo theory

An eager approach to the satisfiability of many sorted formulae is to encode
the whole formulae into propositional logic [Ack54, ZG03, FG02], reducing
the problem to propositional satisfiability. To be practical, such an en-
coding must avoid the potential exponential blow-up during the encoding,
even though the propositional satisfiability problem is already NP. Eager
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encoding for the UF theory are well-studied, but to solve the satisfiabil-
ity of formulae combining other theories, such as LRA, and to avoid the
growth in propositional formulae, modern SMT solver rely on a different,
lazy, approach [dMR02, ABC+02, FJOS03], that uses a (propositional) SAT
decision procedure to solve the propositional component of the problem and
a theory engine to reason about the combination of theories.

The lazy SMT solver approach abstracts each many sorted atom of the
input formula by a distinct propositional variable, uses a SAT solver to
find a propositional model of the propositional abstraction, and then checks
that model against the theory using the theory engine. Models that are
incompatible with the theories are discarded by adding a proper lemma to
the original formula. This process is repeated until all possible propositional
models have been explored.

Figure 7.3 presents the result of the propositional abstraction on our
running example presented in Figure 7.1. As it can be seen on this example,
the abstraction is not completely oblivious to the theories, and can observe
that z < 0 is the negation of z ≥ 0. A theory aware abstraction allows
to share terms, i.e., it can reuse the same propositional variables—z < 0
is abstracted by ¬D rather than by a new variable. This sharing of terms
result in a shorter proof search, but even a naive abstraction would suffice.

a) Propositional abstraction of the initial formula:

A ∧B ∧ ((C ∧D) ∨ (E ∧ ¬D)) (7.1)

b) Mapping from propositional variables to many sorted atoms:

A B C D E

f(f(x)− f(y)) 6= f(z) x ≤ y y + z ≤ x z ≥ 0 y − z ≤ x
(7.2)

Figure 7.3: Setup of a lazy SMT solving of the running example formula
presented in Figure 7.1

The valuation σ1 defined below (7.3) is a possible model of the propo-
sitional abstraction (7.1). Using the mapping (7.2) from propositional vari-
ables to multi-theory atom, the SMT solver then translates back the model
σ1 into a multi-theory conjunction (7.4).

σ1 $ A: true, B: true, C: true, D: true, E: false (7.3)
(f(f(x)−f(y)) 6= f(z))∧(x ≤ y)∧(y+z ≤ x)∧(z ≥ 0)∧¬(y−z ≤ x) (7.4)

Consider the many-sorted FOL formula (7.4) obtained from σ1. If (7.4)
is satisfiable, then the propositional model σ1 can be translated into a many-
sorted model of the initial formula, presented in Figure 7.1. Conversely, if
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(7.4) is unsatisfiable, σ1 can not be translated in a model of the initial
formula, and another propositional model must be tested. To obtain a new
model from the SAT engine, the model σ1 must first be discarded. To do
so, the clause (7.5), called a conflict clause, is added to the context of the
SAT engine.

¬(A ∧B ∧ C ∧D ∧ ¬E) (7.5)

This process—asking for a propositional model, testing it with the theory
engine, discarding it by adding a conflict clause to the context of the SAT
engine—is repeated until all the propositional models are proved unsatisfi-
able by the theory, i.e., once the conjunction of the propositional abstraction
and all the conflict clauses is unsatisfiable. The SMT solver then concludes
to the unsatisfiability of the initial many-sorted formula.

abstraction

conflict

model

lazy SMT

conflict

model

...

SAT
initial abstraction

unsat

conflict 1

conflict 2

theory atomspropositional
abstraction

multi-theory formula

Theory
atom list

...

unsat-core

Figure 7.4: Lazy SMT approach applied to the running example presented
in Figure 7.1

To accelerate the search, the theory engine usually returns unsat cores,
i.e., minimal subsets of a propositional model still unsatisfiable for the the-
ories. These unsat cores lead to stronger conflict clauses, as illustrated by
the Figure 7.4 with the following clause:

¬(A ∧B ∧ C ∧D) (7.6)

Whereas the conflict clause (7.5) only discarded the model σ1 (7.3), this new
conflict also discarded all models that could lead to the same unsat core,
such as the valuation σ2 mapping E to true.

σ2 $ A: true, B: true, C: true, D: true, E: true
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The lazy SMT approach as it was presented here requires a SAT engine
and a theory engine such that:

• the SAT engine implements an incremental search for models, i.e.,
the SMT proof search needs to add clauses to the context of the SAT
engine’s context,

• the theory engine implements a multi-theory decision procedure for
the satisfiability of conjunctions that can output unsat cores.

7.1.2 Multi-theory decision procedure for conjunctions

In the previous steps, the theory solvers have been fed with conjunctions
of many sorted literals. We now explain the Nelson-Oppen (NO) algorithm
that is a sound and complete Decision Procedure (DP) for combining in-
finitely stable theories with disjoint signatures [NO79]. Figure 7.5 presents
the deduction steps of this procedure on the theory lemma (7.4). We start
from the formula at the top of Figure 7.5 and first apply a purification step
that introduces sufficiently many intermediate variables to flatten each terms
and dispatch pure formulae to each theory. Then, each theory exchanges new
equalities with the others, until a contradiction is found.

LRA proves x
= y

LRA proves t6
= z

f (f (x)− f (y)) = f (z) ∧ x ≤ y ∧ y+z ≤ x ∧ z ≥ 0

purification
LRA

EUF proves t3 = t5

EUF proves UNSAT !

LRA proves t0
= z

EUF

(1) f (y) = t3 (0) t0 = 0
(2) f (x) = t5 (3) t3− t5−t 6 = 0
(4) f (t6) = t8 (7) y−x ≥ 0
(5) f (z) = t9 (8) −y+x− z ≥ 0
(6) t8 = t9 (9) z ≥ 0

(11) x = y
(12) t0 = z

(14) t3− t5 = 0

(18) t6 = z

/

Figure 7.5: Example of Nelson-Oppen equality exchange

To deduce an unsat core from an Nelson-Oppen equality exchange, on
can keep track of the hypothesis that are actually used during the exchange.
This can not guaranty the minimality of the unsat core, and even achieving
non-redundancy can raise significant algorithmic challenges [NO07], depend-
ing on the decision procedures used for the theories. However, the minimal-
ity of unsat cores only accelerates the SMT search, and is not necessary to
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deduce the unsatisfiability. To be efficiently integrated inside the Nelson-
Oppen algorithm, the cooperating decision procedures must be incremental,
i.e., each theory DP must be able to assert, during a proof search, the
equality of two variables.

7.1.3 Optimisations of the lazy SMT approach

If the use of unsat cores can be easily described in the lazy proof search as
it was presented in Section 7.1.1, modern SMT solver implement numerous
other optimisations. First of all, the theory engine implements a richer in-
terface, allowing a closer integration of the theory engine into a DPLL proof
search [DP60, DLL62]—the standard algorithm for propositional satisfiabil-
ity. The resulting decision procedure is referred to as the DPLL(T) algo-
rithm [GHN+04, NOT06]. This better integration allows the SMT solvers
to check partial models incrementally against the theory in order to detect
conflicts earlier, and the multi-theory engine may discover propagation lem-
mas [ACG00, ABC+02, GHN+04], i.e., theory literals that are consequence
of partial models. On the running example, this would mean understanding
that the partial model

A: true, B: true, C: true, D: true

leads to a contradiction, and adding the conflict clause (7.6) before attribut-
ing a value to E.

The Nelson-Oppen decision procedure requires theory decision proce-
dures to provide, on satisfiable conjunctions, the list of all entailed equalities
between variables, which may be particularly costly for some theories. Fur-
thermore, formulae belonging to non-convex theories, e.g., the Linear Integer
Arithmetic (LIA) decision procedure may need to propagate disjunctions of
equalities between variables, instead of conjunctions. For example, the fol-
lowing system of constraints

a ≤ b ≤ c ∧ c = a+ 1

entails no equalities in LRA. However, in LIA, the disjunction a = b∨ b = c
can be deduced, but neither a = b nor b = c are consequences on their
own. To integrate these theories, the Nelson-Oppen algorithm can be en-
riched with case-split and backtrack features. Or, rather than modify-
ing the Nelson-Oppen algorithm, the cooperation between theories may
be passed over to the SAT engine, by means of delayed theory combina-
tion [BBC+05, BCF+06] or model based theory combination [dMB08a].

7.2 Checking SMT proofs
Even if all applications based on Satisfiability Modulo Theory solvers did not
require more than a verdict of satisfiability, SMT solving algorithms involve



CHAPTER 7. S.M.T. BACKGROUND 115

different, complex tools, and the soundness of the whole scheme depends on
the correct cooperation between all tools. Therefore, using SMT solvers in
formal verification calls for proof-producing decision procedures, checking
algorithm and independent proof checkers.

7.2.1 Proof producing decision procedures

The area of proof-generating decision procedure has been pioneered by Boul-
ton for the HOL system [Bou94] and Necula for Proof Carrying Code [Nec98].
In the context of the latter, the Touchstone theorem prover [NL00] generates
LF proof terms.

Several authors have examined UF proofs [dMRS05, NO05]. They ex-
tend a pre-existing decision procedure with proof-producing mechanism with-
out degrading its complexity and achieving a certain level of irredundancy.
However, their notion of proof is reduced to unsatisfiable cores of literals—
to be used to accelerate proof search—rather than proof trees. Chapter 9
presents different proof-format and verifier algorithms that can be defined
as extensions of these works.

Modern SMT solvers (e.g., CVC3 [BT07], veriT [BODF09], Z3 [dMB08c]
or Yices [DdM06]) are able to automatically discharge formula of industrial
size combining various logic fragments such as linear (real or integer) arith-
metic, the theory of uninterpreted function symbols or the theory of arrays.
The SMT-LIB 2.0 format [STB10] is a standard interface for SMT solvers.
It provides a unified syntax for SMT problems and a rich interface for inter-
acting with SMT solvers. The command check-sat tests the satisfiability of
the problem and is the minimal information that is expected from a SMT
solver. More advanced features are unsat cores (get-unsat-core) or models
(get-model).

In case the problem is unsat, the command get-proof outputs a proof
of this fact. The answer to the get-proof command is unspecified and is
therefore prover-specific. And naturally, the SMT solvers CVC3, veriT
and Z3 all use a different syntax and semantics for their proofs. Moreover,
the granularity of the proofs greatly differ, i.e., many rules of the SMT
solvers proof languages reflect the internal reasoning with various levels of
precision. Certain rules detail each computation step, some others account
for complex reasoning with no further details. Despite on-going efforts, there
is no standard SMT proof format, as SMT-LIB concentrate on providing a
standard for the input of SMT solvers.

7.2.2 Proof verification

Independent proof checking. The verification of SAT solvers’ results
developed as soon as they became efficient enough to tackle industrial size
formulae, e.g., formulae coming from the verification of industrial code. At
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first, checking algorithms were developed along side a particular solver, e.g.,
in the works of Goldberg and Nivikov [GN03], who developed BerkMin [GN07],
Zhang and Malik [Zha03], for Chaff [MMZ+01], and Biere and Sinz [SB06],
for PicoSAT [Bie08]. The problem of independently checking proofs pro-
duced by different SAT solvers was attacked by Van Gelder [Van02, Van07]
and lead to the verified-unsatisfiable track of the SAT–2005 and SAT–2007
solver competitions. The proof-system is based on the resolution deduction
system, such that modern SAT solving algorithm’s output can be converted
easily to the proof-format. To be able to verify extremely large proofs, Van
Gelder proposed a log-space checking algorithm [Van12], which manipulates
explicit resolution, thus is simple enough to be verified—in theory at least—
and trusted.

Proof reconstruction. During the past few years, interactive proof as-
sistants have been very successful in the domain of software verification
and formal mathematics. In these areas the amount of formal proofs is
impressive. For Coq [BC04], one of the mainstream proof assistants, it is
particularly impressive to see that so many proofs have been done with so
little automation. In his POPL’06 paper on verified compilation [Ler06,
Section 6, § 7], Leroy gives the following feedback on his use of Coq:

Our proofs make good use of the limited proof automation fa-
cilities provided by Coq, mostly eauto (Prolog-style resolution),
omega (Presburger arithmetic) and congruence (equational rea-
soning). However, these tactics do not combine automatically
and significant manual massaging of the goals is necessary be-
fore they apply.

Proof reconstruction is an approach to alleviate this lack of automation
using proof producing ATPs: if its proofs can be reconstructed in a proof
assistants and checked by, the ATP benefits from the soundness guaranties
provided by the proof assistant, and the proof assistant benefits from the
automation provided by the ATP.

Several approaches have been proposed to integrate new decision proce-
dures in proof assistants for various theories. First-order provers have been
integrated in Isabelle [PS07], HOL [Hur99] or Coq [CC05]. These works
rely generally on resolution proof trees. Similar proof formats have been
considered to integrate Boolean satisfiability checking in a proof assistant.
Armand et al. [AGST10] have extended the Coq programming language
with machine integers and persistent array and have used these new fea-
tures to directly program and prove sound, in Coq a reflexive SAT checker.
On a similar topic, Weber and Amjad [WA09] have integrated a state-of-the-
art SAT solver in Isabelle/HOL, HOL4 and HOL Light using translation
from SAT resolution proofs to LCF-style proof objects.
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The proof reconstruction approach has also been applied to SMT solvers.
McLaughlin et al. [MBG06] have combined CVC Lite and HOL light for
quantifier-free first-order logic with equality, arrays and linear real arith-
metic. Ge and Barrett have continued that work with CVC3 and have ex-
tended it to quantified formulae and linear integer arithmetic. This approach
highlighted the difficulty of proof reconstruction. Independently, Fontaine et
al. [FMM+06] have combined haRVey with Isabelle/HOL for quantifier
free first-order formulae with equality and uninterpreted functions. In their
scheme, Isabelle solves UF sub-proofs with hints provided by haRVey.

Böhme and Weber [BW10] developed a proof reconstruction approach
for Z3 proofs in the theorem provers Isabelle/HOL and HOL4. Their im-
plementation is particularly efficient but their fine profiling shows that a lot
of time is spent re-proving sub-goals for which the Z3 proof does not give
sufficient details. The integration of Z3 in Isabelle/HOL is now part of
Sledgehammer [PS07], a meta prover, or interface, that brings the automa-
tion of different ATPs, including SMT solver [BBP11], to Isabelle/HOL.
Sledgehammer has been a powerful tool to discharge Isabelle/HOL
proof goals [BN10], and associated with counterexample generators, makes
proving in Isabelle “more enjoyable and productive”[BBN11].

The Coq proof assistant currently lacks a tool as powerful as Sledge-
hammer, but recent works have improved the situation. Most notably,
Armand et al. [AFG+11] have extended their previous work [AGST10] to
check proofs generated by the SMT solver veriT [BODF09]. Independently,
we proposed a proof-format for SMT solvers and a verifier implemented in
Coq [BCP11], described in Chapter 8.



Chapter 8

Result certification of
Satisfiability Modulo Theory
solvers inside Coq using a
reflexive verifier

The present chapter details our result certification approach for Satisfiability
Modulo Theory (SMT) solvers, to i) integrate SMT solvers inside Coq and
ii) alleviate the problem of including Automated Theorem Provers (ATPs)
into the Trusted Computing Base (TCB) of our static analyses result cer-
tification approach. First, Section 8.1 presents some specificity of Coq re-
garding result certification and proof checking, and gives an overview of our
approach. Then, Section 8.2 details a proof system adapted to SMT solvers
and Section 8.3 presents a reflexive proof verifier. Finally, Section 8.4 de-
scribes the proof-generation scheme and preliminary experimental results,
and Section 8.5 concludes with a discussion on further work, and a compar-
ison between our approach and another SMT proofs checker for Coq.

8.1 Satisfiability Modulo Theory result certifica-
tion in Coq

8.1.1 Result certification in Coq

There are two main methods for integrating computations in formal proofs,
e.g., a new decision procedure in a system like Coq: the autarkic and the
sceptical approaches.1 The sceptical approach relies on an external tool,
written in an other programming language than Coq, that builds a Coq

1We rephrase here the definitions introduced by Barendregt and Barendsen [BB02] in
the context of formal proofs in Coq.
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proof term for each formula it can prove. The main limit of this approach is
the size of the exchanged proof term, especially when many rewriting steps
are required [GM05]. The autarkic approach requires to verify the prover
by directly programming it in Coq and mechanically proving its soundness.
Each formula is then proved by running the prover inside Coq. Such a
reflexive approach [GM05] leads to short proof terms but the prover has to
be written in the constrained environment of Coq. Programming a state-of-
the-art SMT solver in a purely functional language is by itself a challenging
task; proving it correct is likely to be impractical—with a reasonable amount
of time.

The result certification methodology suggests a trade-off between the
two previous extreme approaches: programming a reflexive verifier that
uses certificates—or hints—given by an untrusted prover programed in any
efficient programming language. Such an approach has been successfully
applied to numerous decision procedures [GM05, Bes07, AGST10, Ler06],
and benefit from the efficiency of the Coq reduction engine [GL02], that
allows the evaluation of Coq programs with the same efficiency as OCaml
programs. Using a verifier programed in Coq has the following advantages:
1) The verifier is simpler to program and prove correct in Coq than the
prover itself; 2) Termination is obtained for free as the number of validation
steps is known beforehand; 3) The certificates convey the minimum amount
of information needed to validate the proofs and are therefore smaller than
genuine proof terms. This last point is especially useful when a reasoning
takes more time to explain than the time to directly perform it in the Coq
engine, i.e., when the proof terms are huge but the decision procedure is
efficient in Coq. This design provides a good trade-off between proof time
checking and proof size.

8.1.2 Overview of the approach

Programming a reflexive verifier inside Coq paves the way for the integration
of different tools, providing they all can generate the appropriate certificates.
This makes the approach particularly relevant to the problem of excluding
ATPs from the Trusted Computing Base (TCB) of our static analysis result
certification approach, as experiments have shown that committing to a
particular solver would not allow to discharge all the necessary verification
conditions.

A generic proof system. To ensure the format of the certificates will be
relevant to different tools, we propose a proof format derived from the lazy
SMT approach described in Chapter 7, which we see as a common denomi-
nator of efficient SMT solving algorithms. This presentation of SMT solving
establish a clear separation between propositional reasoning on one hand and
theory reasoning on the other. Following this separation, the proof-system,
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presented in Section 8.2, isolates a propositional proof of unsatisfiability and
a set of theory lemmas that correspond to the conflict clauses. This allows us
to benefit from existing approaches to the verification of SAT proofs, and to
reuse the implementations they lead to, such as the SAT verifier programed
in Coq by Armand et al. [AGST10].

An upgradable proof checker. Checking the result of a new analysis
may require a richer theory of semantic states, and introduce new abstract
domains. Therefore, the proof checker must be extensible to new theo-
ries, and account for non-convex ones. To allow for such extensions, the
proof-system models the Nelson-Oppen equality exchange with case-split,
as presented in Section 8.2.2.2 This allows us to design a modular proof
checker that combines theory specific checkers. As long as a checker respects
the interface presented in Section 8.3.1, adding a new theory does not re-
quire any modification of the rest of the implementation nor of the proofs
attached to it.

Beside leaving room for possible extensions, the modular design of the
proof checker allows the replacement of a theory specific checker by a new
implementations. This open the possibility for some theories to benefit from
specific optimised checking algorithms. For example, Chapter 9 presents
different checking algorithms for the theory of equality and Uninterpreted
Functions (UF), that exhibit different behaviours. Moreover, SMT solvers
may pay a high price for giving extensive details of their reasoning, and may
omit large theory reasoning from their trace. In such cases, it may be more
practical to reuse a decision procedure already implemented in Coq, if it
exists.

Assessing the viability of the approach. To assess the viability of
the proof system and the efficiency of the proof checker, without having
to rely on the output of the current implementation of SMT solvers, we
have developed our own certificate generator for conflict clauses. However,
the SMT-LIB standard does not provide a “get-conflict ” command,
and SMTs in general do not currently provide the conflicts clauses, so we
have implemented a lazy SMT proof search, presented in Section 8.4.1, that
outputs the necessary conflicts using black box SMTs as a theory engine
and a SAT engine. Our experiments, described in Section 8.4, indicate that
unsat cores are relatively small, and their proofs are obtained with a modest
overhead by our hand-crafted proof-producing prover. This methodology
allows us to implement a prover co-designed with the Coq verifier, which

2Optimisation of the SMT solving algorithm that do not rely on the NO algorithm
for the combination of theories, e.g., Delayed Theory Combination [BCF+06] and Model
Based Theory Combination [dMB08a], can be understood as relying on the SAT engine for
the combination, and modelling their behaviour with conflict clauses should be possible,
but is left as further work.
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therefore has the advantage of generating the exact level of details needed
to validate the proof.

Contributions. The contributions of the work described in the present
chapter can be summarised as follows:

• A new methodology for exchanging unsatisfiability proofs between an
untrusted SMT solver and a proof assistant with computation capabili-
ties like Coq. Our proof format is modular: it separates propositional
reasoning from theory reasoning, and structures the communication
between theories using the Nelson-Oppen combination scheme.

• A modular reflexive Coq verifier that allows for fine-tuned theory spe-
cific verifiers exploiting as much as possible the efficient Coq reduction
engine. The current verifier is able to verify proofs for quantifier-free
formulae mixing linear arithmetic and uninterpreted functions.

• A proof-generation scheme that uses state-of-the-art SMT solvers in a
black-box manner, and only requires the SMT solvers to extract unsat-
cores and propositional models—features that have been standardised
by the SMT-LIB 2 format.

8.2 Proof system
To describe the proof-checker without getting into the details of its program-
ming, which relies heavily on dependent types, and to present the expected
proof format, we first formalise the proof system underlying our approach.

8.2.1 S.M.T. proof format

A witness of unsatisfiability of the input formula is given by a proof of unsat-
isfiability of a propositional formula composed of the propositional abstrac-
tion of the input formula, plus conflict clauses that correspond to negations
of unsatisfiable multi-theory conjunctions. The two parts of the reasoning
are merged using the proof rule presented in Figure 8.1. A judgement of the
form Γ ` cert : F means that formula F can be deduced from hypotheses in
Γ, using certificate cert.

fB,¬CB
1 , . . . ,¬CB

n `Boolean certB : False
∀i = 1, . . . , n, σ(CB

i ) `NO certi : False

σ(fB) `SMT
(
σ, (certB : fB),

[
(cert1 : CB

1 ), . . . , (certn : CB
n )
] )

: False

Figure 8.1: Proof rule merging propositional and theory reasoning
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In the judgement σ(fB) `SMT cert : False, the certificate cert is com-
posed of three elements: a mapping σ between propositional variables and
theory literals, a propositional abstraction fB of F and a list CB

1 , . . . , C
B
n of

conjunctions of propositional variables. For this judgement to establish that
the ground formula F is unsatisfiable, several premises have to be verified
by the reflexive checker. First, σ(fB) must be reducible to F . It means
that the propositional abstraction is just proposed by the untrusted prover
and checked correct by the reflexive verifier. Then, the conjunction of fB
and all the negation ¬CB

1 , . . . ,¬CB
n must be checked unsatisfiable with a

propositional verifier. This verifier can be helped with a dedicated certificate
certB—e.g., taking the form of a refutation tree.3 At last, every multi-theory
conjunction σ(CB

i ) must be proved unsatisfiable with a dedicated certificate
certi. This is done with the judgement `NO which is explained in the next
subsection. Figure 8.2 presents the certificate for the running example. It is
composed of the mapping (7.2), the propositional abstraction (7.1) together
with an propositional unsatisfiability certificate, and the two conjunctions
corresponding to the only two conflict clauses needed to prove unsatisfiabil-
ity, together with their respective multi-theory certificates.

a) Mapping σ (7.2) from propositional variables to multi-theory atoms:

A B C D E

f(f(x)− f(y)) 6= f(z) x ≤ y y + z ≤ x z ≥ 0 y − z ≤ x

b) Propositional abstraction (7.1) of the initial formula and SAT
certificate:

• fB = A ∧B ∧ ((C ∧D) ∨ (E ∧ ¬D))

• certB (unsatisfiability of fB ∧ ¬CB
1 ∧ ¬CB

2 )

c) Theory lemmas and certificates:

• (certNO
1 , CB

1 = A ∧B ∧ C ∧D) corresponding to the conflict
clause (7.5)

• (certNO
2 , CB

2 = B ∧ ¬D ∧ E)

Figure 8.2: SMT certificate for the running example formula presented in
Figure 7.1, the sub-certificates certB, certNO

1 , and certNO
2 , are not instanti-

ated to keep the chapter readable

3As explained in introduction, we do not focus on this specific part. We instead rely
on the reflexive tactic proposed by Armand et al., [AGST10, AFG+11].
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8.2.2 A proof system for Nelson-Oppen with case-split

Theory exchange is modelled by the Nelson-Oppen proof rule presented in
Figure 8.3. We assume here a collection of n theories T1,. . . , Tn. In this
judgement, Γi represents an environment of pure literals of theory Ti. Each
theory is equipped with its own deduction judgement Γi `Ti certi : (Γ′i, eqs)
where Γi and Γ′i are environments of theory Ti, certi is a certificate specific
to theory Ti and eqs is a disjunction of equalities between variables. Such
a judgement reads as follows: assuming that all the literals in Γi hold, we
can prove (using certificate certi) that all the literals in Γ′i hold and deduce
a disjunction of equalities eqs. The disjunction eqs can then be used by
following deductions.

Γi `Ti certi : (Γ′i,
∨m

k=1 xk = yk)∧m
k=1

(
Γ1 :: [xk = yk], . . . ,Γ′i, . . . ,Γn :: [xk = yk] `NO sons[k] : False

)
Γ1, . . . ,Γn `NO (certi, sons) : False

Figure 8.3: Proof rule modelling a Nelson-Oppen equality exchange

Figure 8.4 presents a certificate for the Nelson-Oppen proof rule repre-
sented as a tree. The array sons contains certificates for three equalities:
(certi1 , sons1), (certi2 , sons2), (certi3 , sons3). The content of the arrays
sons1 and sons3 are not represented, but the array sons2 contains two cer-
tificates (certi21 , sons21) and (certi22 , sons22), and so on and so forth until
certificates with empty arrays, which constitute the leaves of the tree.

... ...

... ...

Figure 8.4: Example of Nelson-Oppen certificate seen as a tree

Such tree-like certificates are checked using the Nelson-Oppen proof rule,
presented in Figure 8.3. The judgement Γ1, . . . ,Γn `NO (certi, sons) : False
holds only if, given an environment Γ1, . . . ,Γn of the joint theory T1+. . .+Tn,
the certificate (certi, sons) allows to exhibit a contradiction, i.e., False.

Suppose that the disjunction eqs is empty, i.e., trivially false. The cer-
tificate certi establishes a judgement of the form Γi `Ti certi : (Γ′i,False),
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and the proof rule can be simplified as follows.

Γi `Ti
certi : (Γ′i,False)

Γ1, . . . ,Γn `NO (certi, ∅) : False

The conjunction over the k certificates in sons is empty, i.e., trivially true,
and therefore can be omitted. This simpler rule formalises a proof that Γi

is contradictory, therefore the joint environment Γ1, . . . ,Γn is contradictory,
and the judgement holds.

An important situation is when the disjunction eqs is limited to a single
equality during a proof. This corresponds to the case of convex theories—
e.g., LRA and UF—for which the Nelson-Oppen algorithm never needs to
perform case-splits [NO79]. In this case, the array of certificate sons contain
only one certificate son—singular—if any, therefore the tree-form of the
certificate degenerates into a list, and the proof rule can be simplified as
follows.

Γi `Ti
certi : (Γ′i, x = y)

Γ1 :: [x = y], . . . ,Γ′i, . . . ,Γn :: [x = y] `NO son : False
Γ1, . . . ,Γn `NO (certi, son) : False

In the general case, the rule presented in Figure 8.3 applies: we re-
cursively exhibit a contradiction for each equality (xk = yk) using the kth

certificate of sons, i.e., sons[k] for a joint environment

Γ1 :: [xk = yk], . . . ,Γ′i, . . . ,Γn :: [xk = yk]

enriched with the equality (xk = yk).4 The judgement holds if all the
branches of the case-split over the equalities in eqs lead to a contradiction.

For the example of Nelson-Oppen equality exchange presented in Fig-
ure 7.5, we start with the sets ΓLRA and ΓUF of LRA hypotheses (resp.
UF hypotheses). LRA and UF are convex theories, therefore the certificate
certNO

1 presented below is a list of LRA or UF certificates, not a tree like
the certificate described in Figure 8.4.

certNO
1 $ (certLRA

1 , {(certUF
1 , {(certLRA

2 , {(certUF
2 , {})})})})

A first certificate certLRA
1 is required to prove the equality x = y, then a

certificate certUF
1 to prove t3 = t5, then a certificate certLRA

2 to prove the
equality t6 = z, and at last a certificate certUF

2 to find a contradiction.

Discharging unsat mono-theory conjunctions. Each part of the NO
proof is theory-specific: each theory must justify either the equalities ex-
changed or the contradiction found. A LRA proof of a = b is made of two

4The rule use the notation of lists for an enriched certificate Γ :: [xk = yk], but adding
an equation to a pure environment can be implemented differently, e.g., using memory
space occupied by equations that are non longer necessary, or a different data-structure.
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Farkas proofs [Sch98] of b−a ≥ 0 and a−b ≥ 0. Each inequality is obtained
by a linear combination of hypotheses that preserves signs. For example,
the previous certificate certLRA

1 explains that hypothesis (7) gives y− x ≥ 0
and (8) + (9) gives x− y ≥ 0. For more details on the proof-system and on
certificates for LRA, see Appendix A. A UF proof of a = b is made of a se-
quence of rewrites that allows to reach b from a. For example, the certificate
certUF

1 explains the equality t3 = t5 with the following rewritings:

t3
trans. with (1)−−−−−−−−−→ f(y) congr. with (11)−−−−−−−−−−→ f(x) trans. with (2)−−−−−−−−−→ t5

For more on this proof format, alternatives and comparison, see Chapter 9.

8.3 Reflexive S.M.T. proof checker in Coq
This section presents the design of a reflexive Coq verifier for a Nelson-
Oppen style combination of theories. Section 8.3.1 presents the main fea-
tures of the theory interface, and Section 8.3.2 explains the data-structures
manipulated by the Nelson-Oppen proof-checker, i.e., its dependently typed
environment and its certificates.

8.3.1 Theory interface

A theory T defines a type sort for sorts , term for terms, and form for
formulae. Sorts, terms and formulae are equipped with interpretation func-
tions isort, iterm and iform. The function isort:sort→Type maps a
sort to a Coq type. This allows us to design a Nelson-Oppen verifier that
never needs to be modified, and whose proofs will not need to be updated
when adding a new theory: new sorts are explained in the interface of the
new theory checker.

Terms and formulae are interpreted with respect to a typed environment
env ∈ Env defined by

Env := var → ∀ (s:sort), isort s

Each theory uses an environment Γ ∈Gamma to store formulae, equipped with
an interpretation function ienv. Listing 8.1 on the following page presents
the complete API expected of environments. The empty environment rep-
resents an empty conjunction of formulae, i.e., the assertion true and is
such that ienv env empty holds for any environment. The operation add

models the addition of a formula and is compatible with the interpretation
iform of formulae. Our instantiations exploit the fact that environments are
kept abstract: for UF, environments are radix trees allowing a fast look-up
of formulae; for LRA, they are simple lists but arithmetic expressions are
normalised (put in Horner normal form) by the add operation.



CHAPTER 8. S.M.T. RESULT CERTIFICATION 126

Record GammaAPI : Type :=
{|
empty : Gamma ; add : form → Gamma → Gamma;
ienv : Env → Gamma → Prop;
ienv_empty : ∀ env, ienv env empty;
ienv_add : ∀ (f : form) (s : Gamma) (env : Env),

ienv env s → iform env f → ienv env (add f s)
|}.

Listing 8.1: Environment API definition

A representative theory record in presented in Listing 8.2. The key
feature provided by a theory T is a proof-checker Checker. It takes as
argument an environment Γ and a certificate cert. Upon success, the checker
returns an updated environment Γ′ and a list

eqs = (x1 =s1 x
′
1, . . . , xn =sn x

′
n)

of equalities between sorted variables. In such cases, Checker_sound estab-
lishes that Γ `T cert : (Γ′, eqs) is a judgement of the Nelson-Oppen proof
system presented in Section 8.2.2. The environment Γ′ denotes the mem-
ory used for further computations, and can be used to store intermediary
results, potentially useful for the following deductions. And as the type Env
is abstract in the interface, each theory checker can defined environments
optimised for the theory.

Record Thy :=
{|

sort : Type; term : Type; form : Type;
sort_of_term : term → sort; isort : sort → Type;
Env := var → ∀ (s:sort), isort s;
iterm : Env → ∀ (t : term), isort (sort_of_term t);
iform : Env → form → Prop
...
Checker : Gamma → Cert → option(Gamma * list (Eq.t sort))
Checker_sound :
∀ cert Γ Γ′ eqs, Checker Γ cert = Some(Γ′, eqs)

→ ∀ (env : Env), ienv env Γ
→ ienv env Γ′
∧ ∃ s, ∃ x, ∃ y, (x =s y) ∈ eqs ∧ env x s = env y s

|}.

Listing 8.2: Theory record definition

8.3.2 Nelson-Oppen proof checker

Given a list of theories T1,. . . ,Tn the environment of the Nelson-Oppen proof-
checker is a dependently typed list such that the ith element of the list is
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an environment of type Ti.(Gamma). Dependently typed lists are defined as
follows:
Inductive dlist (A : Type) (typ : A → Type) : list A → Type :=
| dnil : dlist A typ nil
| dcons : ∀ (x : A) (e : typ x) (lx : list A) (le : dlist lx),

dlist A typ (x::lx).

A term dcons x e lx le constructs a list with head e and tail le.
The type of e is typ x and the type of the elements of le is given by
(List.map typ lx). A term dnil A typ nil constructs the empty list.
It follows that the environment of the Nelson-Oppen proof-checker has type:

dlist Thy Gamma (T1::...::Tn)

A single proof-step consists in checking a certificate JCert of the joint theory
defined by

JCert := T1.(Cert) + ... + Tn.(Cert)

Each certificate triggers the relevant theory proof-checker and derives
an eventually empty list of equalities, i.e., a proof of unsatisfiability. Each
equality x =s y is cloned for each sort s’ such that isort s = isort s’

and propagated to the relevant theory. Each equality of the list is responsible
for a case-split that may be recursively closed by a certificate, as presented in
Section 8.2.2. A certificate for the Nelson-Oppen proof-checker is therefore
a tree of certificates defined by:
Inductive Cert := Mk (cert : JCert) (lcert : list Cert).

The Nelson-Oppen verifier consumes the certificate and returns true if the
last deduced list of equalities is empty. In all other cases, the verification
aborts and the verifier returns false.

8.4 Experiments
The purpose of our experiments is twofold. They show that our SMT format
is viable and can be generated for a substantial number of benchmarks, and
they assess the efficiency of our Coq reflexive verifier.

8.4.1 Certificate generation using collaborating black-box sol-
vers

To generate our SMT proof format, we implement the simple lazy SMT loop
discussed in Section 7.1, using SMT-LIB 2 scripts to interface with off-the-
shelf SMT solvers. The SMT-LIB 2 [STB10] standard exposes a rich API for
SMT solvers that makes this approach feasible. More precisely, SMT-LIB 2
defines scripts that are sequence of commands to be run by SMT solvers.
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The asserts f command adds the formula f to the current context and the
check-sat command checks the satisfiability of the current context. If the
context is satisfiable—check-sat returns sat—the get-model command
returns a model. Otherwise, the get-unsat-core command returns an
unsat core, i.e., a minimised unsatisfiable subset of the current context.

abstraction

assert

get-model

lazy SMT

...

SAT
initial abstraction

conflict 1

conflict 2

theory atomspropositional
abstraction

multi-theory formula

SMT

...

get-unsat-core

assert

get-model

in OCaml

Figure 8.5: Generation of conflict clauses, using the lazy SMT scheme
presented in Figure 7.4, implemented using SMT solvers as black-boxes, with
the SMT-LIB API—commands of the API are typed using a typewriter
font

The SMT loop, as presented in Figure 8.5, is implemented using SMT-
LIB 2 compatible off-the-shelf SAT and SMT solvers (we chose Z3 for both).
Given an initial unsatisfiable formula, the protocol is the following. To
begin with, the propositional abstraction of the input formula is computed
and sent to the SAT solver by a simple front-end programed in OCaml.
For each propositional model returned by the SAT solver, the SMT solver
is asked for an unsat core, whose negation is sent to the SAT solver as
a conflict clause. The loop terminates when the SAT solver returns an
unsat status. Once all the unsat cores have been discovered, our OCaml
prover generate certificates for them, following the proof system described
in Section 8.2.2. This untrusted certifying prover implements the Nelson-
Oppen algorithm [NO79] described in Chapter 7. Overall, unsat cores tend
to be very small (10 literals on average) and therefore our certifying prover
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is not the bottleneck. The propositional proof is obtained by running an
independent certifying SAT solver. Unlike SMT solvers, DPLL-based SAT
solvers have standardised proofs: resolution proofs.

Our prototype could be optimised in many ways. For instance, a propo-
sitional proof could be obtained directly without re-running a SAT solver.
Our scheme would also benefit from a SMT-LIB 2 command returning all
the theory lemmas (unsat cores are only a special kind of those) needed to
reach a proof of unsatisfiability.

8.4.2 Sampling

Evaluation was performed on quantifier-free first-order unsatisfiable formu-
lae over the combinations of the theory of equality and uninterpreted func-
tions (UF), linear real arithmetic (LRA), linear integer arithmetic (LIA)
and real difference logic (RDL). All problems were taken form the SMT-LIB
benchmarks and we have limited our evaluation to problems independently
solved under 30 seconds by the SMT solver used in our search. Some cate-
gory being larger than others (there are more than 4000 unsatisfiable bench-
marks in UF for example), we have focused our evaluation on diversity and
are working through the largest categories. These benchmark are not meant
be representative of goals arising in Coq proofs, but are a combination of
very large and fairly hard formulae designing to stress test SMT solvers, and
should allow us to test the limits of our proof checker, and to assess its effi-
ciency. Further testing involving typical Coq goals would be welcomed, but
such benchmarks does not exist for the moment, and crafting a reasonable
amount of sufficiently diverse Coq goals is left to further work.

8.4.3 Results

Efficiency. Table 8.1 on the next page shows our results sorted by logic.
For each category, we measure the average running time of Z35 (Solved),
the average running time of our certificate generation (Generation), and the
average time spent checking the certificates (Checking). The Solved time can
be seen as a best-case scenario: the certifying prover uses Z3 and provide
proofs that can be checked in Coq, so we do not expect faster results than
the standalone state-of-the-art solver. We also measure the time it takes
Coq to type-check our proof term (Qed) and have isolated the time spent by
our Coq reflexive verifier validating theory lemmas (Thy). The generation
phase (Generation) and the checking phases (Checking) have an individual
timeout of 150 seconds. These timeouts account for most of the failures, the
remaining errors come from shortcomings of the prototype.

As the success rates indicates, our simple SMT loop may fail to produce
certificates before timeout. For UF and RDL we only generate certificates

5On its own, natively, on the initial formula.
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Solved (Z3) Generation Checking

Logic # Time (s) Success Time (s) Success Thy (s) Qed (s)

UF 613 0.96 31.3% 42.55 100% 0.29 16.81
LRA 248 0.65 79.4% 6.79 69.5% 0.28 4.02
UFLRA 407 0.11 100% 0.72 98.8% 0.02 3.56
LIA 401 1.86 74.3% 9.05 46.0% 2.26 7.02
UFLIA 159 0.05 97.5% 8.15 96.1% 0.33 2.91
RDL 79 4.01 38.0% 11.24 53.3% 0.14 3.64
Total 1907 0.87 67.1% 11.02 80.8% 0.45 6.45

Table 8.1: Experimental results for selected SMT-LIB logics

for a third of the formulae. The generation of certificates could be optimised
further. A more clever proof search strategy could improve both certificate
generation and checking times: smaller certificates could be generated faster
and checked more easily. Yet, the bottleneck is the reflexive verifier, which
achieves 100% success ratio for UF only. Currently, we observe that our
main limiting factor is not time but the memory consumption of the Coq
process. A substantial amount of our timeouts are actually due to memory
exhaustion. We are investigating the issue, but the objects we manipulate
(formulae, certificates) are orders of magnitude larger than those manipu-
lated on a day-to-day basis by a proof-assistant, and we are reaching the
limits of the system. As a matter of fact, to perform our experiments we
already overcome certain inefficiencies of Coq. For instance, to construct
formulae and certificates we by-pass the Coq front-end, which is not effi-
cient enough for this application, and use homemade optimised versions of
a few Coq tactics.

Overall, the theory specific checkers account for less then 7% of checking
time (0.45s in 6.45s). However, this average masks big differences. For
UFLRA, the checker spends less than 1% of its time in the theories, but
for the integer arithmetic fragments it represents 11% of checking time for
UFLIA and 32% for LIA. For integer arithmetic the success ratio is rather
low. It is hard to know whether this is due to the inherent difficulty of the
problems or whether it pinpoints an inefficiency of the checker. The fault
might also lie on the certifying prover side. In certain circumstances, it
performs case-splits that are responsible for long proofs.

Shape of theory reasoning. To understand the differences between bench-
marks in the amount of time spent in the theories, and to evaluate the dif-
ficulty of certifying the conflict-clauses, we have to look at the number of
conflict clauses per formula, and to the size of these clauses.
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Figure 8.6: Number of conflic-clauses per formula. The x-axis gives the
percentage of formulae for which the number of conflict-clauses is under a
given number on the y-axis, one curve per theory, and one curve—the black
one—for the set of all formulae in all theories.

Figure 8.6 presents a comparison of the number of conflicts between
the different theory combinations. Overall, our experiments suggest that
in general, formulae do not require a lot of conflict-clauses. On the fig-
ure, 62% of all the formulae generates less than 100 conflicts. As can be
seen on the figure, 80% of the formulae in the UFLRA fragment—green
curve—generate less than 1 conflict, hence their propositional abstraction is
unsatisfiable from the start. This explains why the checker spends less than
1% of the time in the theory. For some of these benchmarks, our proof-
producing solver actually outrun state-of-the-art solvers, just by checking
the satisfiability of the abstraction first. On the other hand, the formulae in
the UF fragment—blue curve—generate lots of conflict-clauses, more than
1000 for 80% of them, up to 10000 for a small number of formulae. This
can be explained by the fact that a lot of these benchmarks are crafted to
emphasise inefficiencies in solvers, e.g., not taking into account the symme-
try of the formula to simplify the proof search, whereas other benchmarks
are generated automatically by verification tools and seam to contain some
noise.

Figure 8.7 on the next page presents a comparison between the different
theory combinations of the average number of literal in the conflict-clause
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Figure 8.7: Average size of the conflict-clauses. The x-axis gives the per-
centage of formulae for which the average number of literals in the conflict
clauses is under a given number on the y-axis, one curve per theory, and one
curve—the black one—for the set of all formulae in all theories.

generated by a formula. Overall, our experiments suggests that conflict-
clauses are small formulae. On the figure, for 77% of all the formulae the
average number literals per conflict-clauses is 10 or less. This corresponds
to theory lemmas of conjunctions of 10 literals, even for initial formulae
with hundreds of literals. This behaviour is consistent for the benchmarks
of all the fragments we tested, and suggests that the full power of state-
of-the-art SMT solvers is not necessary to prove that a conflict-clause is
unsatisfiable. In other words, there is not need for SMT solvers to certify
the conflict-clauses, it can be done afterwards by a much simpler proof-
producing decision procedure. The only thing that is required from a SMT
solver to obtain certificates in our format is to output the set of conflict
clauses it used.

8.5 Conclusion
We have presented a reflexive approach for integrating a SMT solver in
a proof assistant like Coq. It is based on a SMT proof format that is
independent from a specific SMT solver. We believe our approach is robust
to changes in the SMT solvers but allows nonetheless to benefit from their
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improvements. For most usages, the overhead incurred by our SMT loop
is acceptable. It could even be reduced if SMT solvers gave access to the
theory lemmas they use during their proof search, and we are confident that
such information could be generated by any SMT solver with little overhead.

Implementing our approach requires proof-producing decision procedures
for conjunctions of the theory involved, that use a proof format accepted by
the theory checkers targeted. However, the hard job is left to the SMT
solver that extracts unsat cores. A fine-grained control over the produced
proof has the advantage of allowing to optimise a reflexive verifier and of
ensuring the completeness of the verifier with respect to the prover. Our
Nelson-Oppen Coq verifier is both reflexive and parametrised by a list of
theories. This design is modular and easy to extend with new theories. Our
prototype implementation is perfectible but already validates SMT formulae
of industrial size. Such extreme experiments test the limits of the proof-
assistant and will eventually help at improving its scalability.

8.5.1 Comparison with other SMT result certification in Coq

In parallel with our work, Armand et al. extended their integration of SAT
solvers in Coq [AGST10] to Satisfiability Modulo Theory solvers [AFG+11].
Their proof-format is built on sequences of clause, obtained through resolu-
tion, or using axioms of a particular theory. A proof is then a sequence of
combinations of clauses, each step being justified by a small checker—e.g., a
resolution checker, a UF checker or a LIA checker—until the empty clause is
reached. They were able to encode proofs returned by the veriT [BODF09]
SMT solver into their format, and to discharge formulae from the SMT-
LIB [STB10] library, belonging to the unquantified fragment of the theory
of Uninterpreted Functions (UF), Linear Integer Arithmetic (LIA) and In-
teger Difference Logic (IDL).

There are numerous similarities between their approach and ours. Both
works built on the SAT result verification scheme in Coq [AGST10], both
approaches rely on proof by reflexion, and both approaches are modular, i.e.,
can be expanded to new theories by providing new checkers for additional
theories. However, our proof-format makes a distinction between proposi-
tional reasoning and theory reasoning, and includes a rule for multi-theory
reasoning. It allows us to discharge formulae belonging to unquantified com-
binations of UF and Linear Real Arithmetic (LRA), or UF and LIA, and not
only LIA or UF. Moreover, we do not translate proofs output by an SMT
solver such as veriT but rely on our own implementation of a certifying
Nelson-Oppen combination, and a lazy SMT loop between a SAT solver and
a SMT solver to extract conflict clauses. Therefore, we are able to generate
certificate in our own format for any SMT solver complying with the SMT-
LIB standard, but can not generate certificates for a substantial number of
benchmarks, our generation scheme lacking too many optimisations present
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in state-of-the-art SMT solvers and generating too many conflicts clauses.
Their approach was designed to integrate efficiently state-of-the-art SMT

solvers in Coq, whereas we preferred to avoid relying on the output of
the current implementation of SMT solvers. As a result, their approach
integrates efficiently the result of veriT for a small set of theories it can
solve, whereas we are independent from the SMT solver, therefore we can
not generate certificates for some benchmarks but can easily discharge new
theories, as long as some SMT solver can generate unsat cores for it, and we
can independently generate and check certificates for that theory. To make
the best of both approaches, the two implementations could be merged by
integrating our multi-theory checker as a small checker for their general
SMT proof-checker.

8.5.2 Further work

In the future, we plan to integrate new theories such as the theory of arrays
and bit-vectors. Another theory of interest is the theory of constructors
that would be useful to reason about inductive types. The verification of
SMT proofs involving bit-vectors has already been explored [BFSW11] for
the Isabelle/HOL and HOL4 systems, but adapting such works to Coq
may raise new issues and provide new opportunities. The theories of arrays
and constructors are closely related to the UF theory, and the UF proof
checker could probably be expanded to deal with them.

The rising trend of integrating decision procedures in Coq calls for ex-
tensive, peer reviewed benchmarks. A good starting point for such a library
would be large Coq developments, such as the CompCert project [Ler06],
and possibly the benchmarks used for the evaluation of the Sledgeham-
mer [BN10]. For benchmarks more related to program verification, the
Why3 [BFMP11] platform for deductive verification provides tools to ex-
port Verification Conditions (VCs) to Coq, and large Why development
may become valuable sources of Coq benchmarks.

Our implementation can not yet be used to discharge verification condi-
tions generated by the result certification of static analyses for two reasons:
the integration of SMTs in Coq is not complete enough, and the implemen-
tation does not cover enough automated theorem provers .

The integration of SMTs is not complete enough because we do not
provide checkers for all the theories required to describe the theory of se-
mantic states, and we only discharge unquantified formulae, whereas even
the abstract VCs presented in Chapter 6 require at least to certify axiom
instantiation. Besides arrays and constructor, algebraic data-types are nec-
essary, but they are wildly used in Coq, and existing tactics could be used
to build a checker. The main obstacle for the certification axiom instantia-
tion should be to obtain enough information from SMT solvers to recognise,
after preprocessing, the axioms that are instantiated.
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The experiments described in Chapters 5 and 6 have shown that dif-
ferent automated theorem provers are needed to discharge all VCs. We
have restricted ourselves to SMT solvers, but TPTP solver are needed too.
And beyond that, even if the proof system can account for different SMT
solving algorithms, the current certificate generation is based on a naive
lazy SMT proof search and does not benefit from all the optimisations of
state-of-the-art SMT solvers. We are confident that modern SMT solvers
can be modified to output the necessary conflict clauses, and the fact that
a significant amount of SMT-LIB benchmarks can be discharged with our
naive conflict generation suggests that generating conflict should not dis-
able too many optimisation, but the actual instrumentation remains to be
done. Moreover, certifying optimisations performed by SMT solvers during
the preprocessing of the formula remains an open issue.



Chapter 9

Result certification of
equality with Uninterpreted
Functions logic

We have detailed in Chapter 8 a result verification scheme for SMT solvers.
Our verifier uses sub-verifiers in charge of the verification of theory reason-
ing’s. Each sub-verifier is specific to a theory, and ignores all the rest of the
reasoning involved when proving valid a many sorted formula. This mod-
ular design allows us to change the verifier if a new verification algorithm
emerges for a theory.

This feature is essential for an upgradable SMT verifier, as even for
the simplest logic, such as the quantifier-free logic of equality with Un-
interpreted Function symbols (UF), there exist competing proof formats
generated by SMT solvers. Several of those formats have been validated
in proof-assistants: Z3 proofs can be reconstructed in Isabelle/HOL and
HOL4 [BW10]; veriT proofs can be reconstructed in Coq [AFG+11]. Even
though the results are impressive, certain SMT proofs cannot be verified
because they are too big.

To alleviate this problem, we propose different UF verifiers that require
different amounts of information from the solving decision procedure, thus
different proof formats. Our first proof format is tightly related to the
axioms of the theory, and translates the result of the decision procedure
in a sequence of commands, each command corresponding to an axiom of
the theory. Our second proof format is made of proof forests, the artifact
proposed by Nieuwenhuis and Oliveras to extract efficiently unsatisfiable
cores [NO05]. Our third proof format is a trimmed down version of the proof
forest reduced only to the edges responsible for triggering a congruence. The
proof verifiers for these formats implement more and more of the decision
procedure, therefore each format is a different trade off between short proofs
and simple verifiers. For the sake of comparison, we have also implemented

136
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a Coq verifier for the UF proof format of Z3 [dMB08b] and compared with
the existing Coq verifier for the UF proof format of veriT [AFG+11].

Recent works [BW10, AFG+11] show that SMT proofs are big objects
and that the bottleneck is usually the proof-assistant. Ideally, SMT proofs
should be i) generated by SMT solvers with little overhead, and ii) verified
quickly by proof assistants.

Embedding union-find in UF proofs was previously proposed by Con-
chon et al. [CCKL07]. However, in their approach, union-find computations
are interleaved with logic inferences that are responsible for an overhead
that is absent from our verifiers. The importance of succinct proofs has
been recognised by Stump [Stu09] and its Logical Framework with Side
Conditions (LFSC). Our proofs are less flexible than LFSC proofs, but are
purely computational, and use the principle of proof by reflection [BC04,
Chapter 16].

First, Section 9.1 describes the standard decision procedure for UF. It
is implemented in most SMT solvers and will therefore be used to generate
certificates. Section 9.2 presents the different proof formats we introduced,
then Section 9.3 describe their implementations, and the results of our ex-
periments, and finally, Section 9.4 concludes the present chapter.

9.1 Equality and Uninterpreted Functions proof
producing decision procedure

Nieuwenhuis and Oliveras have proposed a proof-producing congruence clo-
sure algorithm for deciding UF [NO05]. Their main contribution is an ef-
ficient Explain operation which outputs a (small) set of input equations E
needed to deduce an equality, say a = b. If a 6= b is also part of the input,
E ∪ a 6= b is a (small) unsatisfiable core that is used by the SMT solver
for backtracking. As a result, SMT solvers using congruence closure run a
variant of the Explain algorithm—whether or not they are proof producing.

The Explain algorithm is based on a specific data structure: the proof
forest. A proof forest is a collection of trees in which each edge a→ b in the
proof forest is labelled by a reason justifying why the equality a = b holds.
A reason is either an input equation a = b or a pair of input equations
a1(a2) = a and b1(b2) = b. For the second case, there must be justifications
in the forest for a1 = b1 and a2 = b2. Figure 9.1 presents an example of proof
forest, with two trees, and edges labelled by the reasons its nodes are equal.
Two edges are labelled by a couple of input equations: the edge between x1
and x4, which was added after f2 = f3 was proved, and the edge between
x5 and x6, that was added after f1 = f3 and x2 = x3 were proved. All the
other edges come directly from input equations.

A recursive version of Explain is given Listings 9.2 and 9.1. The auxiliary
functions NearestAncestor and Parent return (if it exists) respectively the nearest
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Figure 9.1: Example of proof forest with two trees

common ancestor of two nodes in the proof forest and the parent of a node in
the proof forest. A union-find data structure is also used: Union(a,b) merges
the equivalence classes of a and b; HighestNode(c) is the highest node (in the
proof forest) belonging to the equivalence class of c. When asked for a reason
why two variables a and b are equal, the algorithm searches for the nearest
common ancestor c of the two nodes, then searches for the highest ancestor
c′ of c that belongs to its equivalence class, i.e., such that a reason for c = c′

has already been given. Then, the algorithm climbs up the path from a to c
and from b to c, collecting along the way the input equations responsible for
the edges. If it finds an edge between two nodes a′ and b′, annotated with
two input equations a′ = a1(a2) and b′ = b1(b2), i.e., an edge between two
variables equal because of the congruence axiom, it recursively asks for the
reason why a1 = b1 and a2 = b2.

9.2 Uninterpreted Functions proof verifiers
The present section details three proof formats that could be placed on
a scale from checking of derivation tree in a deductive system to decision
procedure that need no certificates. The command verifier would be closer
to the checking of a derivation tree, as it apply axioms to verify an equality;
the proof forest verifier would be in the middle of the scale, as it requires
to implement a union find decision procedure to check that the SMT solver
did not make a mistake; the last verifier, that used trimmed forest, would
be on the other end of the scale, close to a decision procedure, as it uses
the certificates as hints, and re-implements a simpler version of the decision
procedure.
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let Exp la inA longPath ( a , c ) :=
a:=HighestNode ( a ) ;
if a = c then return
else

b:=Parent ( a ) ;
if edge has form a

a=b−−→ b
then output ( a = b)
else{

(∗ edge has form a
b1(b2)=b−−−−−−→
a1(a2)=a

b∗)

output a1 ( a2 )=a and b1 (b2 )=b ;
E x p l a i n ( a1 , b1 ) ;
E x p l a i n ( a2 , b2 )

} ;
Union ( a , b ) ;
Exp la inA longPath (b , c )

Listing 9.1: ExplainAlongPath

let E x p l a i n ( a , b ) :=
c :=Nea r e s tAnce s t o r ( a , b ) ;
c :=HighestNode ( c ) ;
Exp la inA longPath ( a , c ) ;
Exp la inA longPath (b , c )

Listing 9.2: Recursive
Explain algorithm

9.2.1 Command verifier

This proof format was used in the experiments presented in Chapter 8. Each
command derives new equalities from initial equalities or already derived
equalities.

The key commands correspond to the following deduction rules, identical
to the axioms defining the theory.

Symmetry a = b
b = a

Transitivity a = b b = c
a = c

Congruence
a = a1(a2) b = b1(b2) a1 = b1 a2 = b2

a = b

The commands are obtained by running a version of Explain where the
union-find structure has been replaced by a hash-table keeping track of al-
ready derived equalities. Each call Explain a b appends a Transitivity and a
Symmetry command to the commands obtained by the two successive calls to
ExplainAlongPath a c and ExplainAlongPath b c. Each call ExplainAlongPath a c gen-
erates a list of commands justifying the equality a = c. An edge a a=b−−→ b is
justified by a command Hyp checking that a = b is indeed an input equation.

An edge a b=b1(b2)−−−−−−→
a=a1(a2)

b is justified by a Congruence command appended

to the result of the recursive calls to Explain a1 b1 and Explain a2 b2 which gen-
erate commands justifying the equalities a1 = b1 and a2 = b2. The recursive
call to ExplainAlongPath b c generates commands justifying the equality b = c.
The complete list of commands is then obtained by adding a Transitivity
command to prove a = c from a = b and b = c. Each ExplainAlongPath call
produces a Transitivity command on top of either the recursively produced



CHAPTER 9. U.F. RESULT CERTIFICATION 140

command in case of an edge labelled by an input equation or a Congruence,
and the recursively produced commands otherwise.

The verification of such a proof then consists in executing in order each
command to derive the wanted equality, checking that each rule is correctly
applied.

9.2.2 Proof forest verifier

The Explain algorithm of Listings 9.2 and 9.1, rather than being used to
produce certificates, can be turned into a UF proof verifier. The verifier is a
version of Explain augmented with additional checks to ensure that the edges
obtained from the SMT solver correspond to a well-formed proof forest. The
resulting algorithm performs a tree traversal that checks that each edge is
correctly annotated.

For instance, the verifier checks that edges are only labelled by input
equations. Moreover, for edges of the form a

b1(b2)=b−−−−−−→
a1(a2)=a

b, the recursive calls

to Explain ensure that a1 = b1 and a2 = b2 have proofs in the proof forest i.e.,
a1 (resp. a2) is connected with b1 (resp. b2) by some valid path in the proof
forest. For efficiency and simplicity, the least common ancestors are not
computed by the verifier but used as untrusted hints. The soundness of the
verifier does not depend on the validity of this information as the proposed
least common ancestor is just used to guide the proof. If the return node is
not a common ancestor, the verifier will simply fail.

For this verifier, a UF proof is a pruned proof forest corresponding to
the edges walked through during a preliminary run of Explain. As the SMT
solver needs to traverse the proof forest to extract unsatisfiable core, we
argue that the proof forest is a UF proof that requires no extra-work from
the SMT solver.

9.2.3 A verifier using trimmed forests

To avoid traversing the same edge several times, the Explain algorithm and
its verifier are using a union-find data structure. Therefore, the Explain ver-
ifier implicitly embeds a decision procedure for the theory of equality. Our
optimised verifier UFchecker fully exploits this observation and starts by
feeding all the input equalities of the form a = b into its union-find. For the
decision procedure, new equalities are obtained by applying the congruence
rule and efficiency crucially depends on a clever indexing of the equations.
The verifier does not require this costly machinery and takes as argument
a trimmed down proof forest reduced to the list of edges of the forest of
form a

b1(b2)=b−−−−−−→
a1(a2)=a

b, as illustrated by Figure 9.2, which presents the trimmed

version of the previous example of proof forest. The edge labels indicate the
equations that need to be paired to derive a = b by the congruence rule.
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Figure 9.2: Example of trimmed forest, obtained with the proof forest
presented in Figure 9.1

The algorithm of the verifier is presented in Listing 9.3, where the pred-
icate isEqual(a,b) checks whether a and b have the same representative in
the union-find i.e., Find(a) = Find(b). Once again, a preliminary run of
Explain is sufficient to gather all the edges arising from the application of the
congruence axiom, thus to generate a proof that this verifier can check.

let UFchecker input edges (x , y ) :=
for ( a = b) ∈ input do Union ( a , b ) done

for a
b1(b2)=b−−−−−−→
a1(a2)=a

b in edges do

if ( a1 ( a2 )=a ) ∈ input & (b1 ( b2 )=b) ∈ input
& i s E q u a l ( a1 , b1 ) & i s E q u a l ( a2 , b2 )

then Union ( a , b ) else fail
done
return i s E q u a l (x , y )

Listing 9.3: Verifier algorithm for trimmed forests

9.3 Implementation and experiments

9.3.1 U.F. verifiers in Coq

Our verifiers are implemented using the native version of Coq [BDG11]
which features persistent arrays [CF08]. Persistent arrays are purely func-
tional data-structures that ensure constant time accesses and updates of the
array as soon as it is used in a monadic way. For maximum efficiency, all
the verifiers make a pervasive use of those arrays that allows for an efficient
union-find implementation: union and find have their logarithmic asymp-
totic complexity, despite being implemented in a purely functional language.

Compared to other languages, a constraint imposed by Coq is that all
programs must be terminating. The UFchecker (see Section 9.2.3) is triv-
ially terminating. Termination of the proof-forest verifier is more intricate
because the Explain algorithm does not terminate if the proof forest is ill-
formed e.g., has cycles. However, if the proof forest is well-formed, an edge
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is only traversed once. As a result, at each recursive call, our verifier decre-
ments an integer initialised to the size of the proof forest. An interesting
observation is that the original Explain algorithm [NO05, Section 3.4] al-
ways terminates but does not detect certain ill-formed proof forests e.g.,
a

b=f(b)−−−−→
a=f(a)

b. In this case, the recursive Explain algorithm of Listings 9.2

and 9.1 does not terminate. In Coq, the verifier fails after exhausting the
maximum number of allowed recursive calls.

For the sake of comparison, we have also implemented the UF proof
format of Z3. Z3 refutations are also generated using Explain [dMB08b, Sec-
tion 3.4.2]. Unlike ours verifiers, Z3 proofs are using explicit propositional
reasoning and modus ponens. As a consequence formulae do not have a con-
stant size. As already noticed by others [BW10, AFG+11], efficient verifiers
require a careful handling of sharing. Our terms and formulae are hash-
consed; sharing is therefore maximum and comparison of terms or formulae
is a constant-time operation.

9.3.2 Benchmarks

We have assessed the efficiency of our UF verifiers on several families of
handcrafted conjunctive UF benchmarks. The benchmarks are large and all
the literals are necessary to prove non-satisfiability. For all our benchmarks
the running time of the verifiers is negligible especially compared to the time
spent parsing/type-checking the textual representation of the different UF
proofs. Moreover, the proof size is linear in the size of the formulae. The
veriT UF small checker uses a proof format similar to the command format,
therefore we did not include our own implementation of the command verifier
in the experiment.

Figure 9.3 on the following page shows our experimental results for a
family of formulae of the general form

x0 = x1 x0 6= x(j+1)·j
f(xi·j , xi·j) = xi·j+1 = ... = xi·j+j for i ∈ {0 . . . j}

The benchmarks are indexed by the number of UF variables and the results
are obtained using a Linux laptop with a processor Intel Core 2 Duo CPU
T9600 (2.80GHz) and 4GB of Ram. Figure 9.3.a, on the left, shows the time
needed to construct and compile Coq proof terms. Figure 9.3.b, on the right,
shows the size of the compiled proof terms. Figure 9.3.c, at the bottom, is
focusing on the running time of the verifiers excluding the parsing/typing
phase.

For all our benchmarks, the UFchecker shows a noticeable advantage over
the other verifiers. We can also remark that its behaviour is more predicable.
The veriT verifier [AFG+11] is using proofs almost as small as proof forests.
This is an impressive result knowing that veriT produces sometimes traces
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Figure 9.3: Comparison of a) generation time (in seconds), b) size
of compiled proofs (in kilo-octet), and c) running time (in seconds, on
logarithmic scale), between the different UF checkers. Benchmarks are
ordered by size, i.e., number of variables, times are given in seconds,
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(not shown) that can be more than two orders of magnitude bigger. In
the timings, the pre-processing needed to perform the proof reduction is
accounted for and might explain why the veriT verifier gets slower as the
benchmark size grows. Remark also that for the biggest benchmarks, the
veriT SMT solver fails to generate proofs.

Except for veriT, the running time of the different verifiers (Figure
at the bottom) is below the second and is not the limiting factor of the
verification. The Z3 verifier is more scalable despite being slightly but con-
stantly overrun by the our verifiers. Not surprisingly, the UFchecker re-
quires smaller proofs and therefore its global checking time is also smaller.
For big benchmarks, even its running time tends to be smaller than other
verifiers.

As all the verifiers are equally optimised, we are confident that the verifier
for trimmed proof forests UFchecker requires smaller UF proofs in general
and that it should scale better.

9.4 Conclusion
We have compared empirically different proof verifiers for UF proofs that
can be generated by SMT solvers. The conclusion of our experiments is
that our UFchecker verifier outperforms existing verifiers for UF proofs.
Its certificates can be generated by the SMT solver with little overhead, the
proof is succinct and the proof checking is fast. Moreover, we also have
proved its soundness in Coq with respect to UF axioms. As future work,
we intend to integrate the UFchecker into the SMT proof verifier presented
in Chapter 8, and extend its scope to the logic of constructors. The ex-
periments presented in this chapter illustrate how important the differences
between different verification algorithms for a single theory can be. Con-
versely, they stress how useful it can be for a multi-theory result verifier to
be able to update easily the algorithm it uses for a particular theory, and
therefore emphasise the relevance of the modular proof-system and result
verifier presented in Chapter 8.



Chapter 10

Conclusion

In this dissertation we have examined how to apply the result certification
methodology to static analysers. Our approach is to divide the verification of
static analysis results into two steps: first, the soundness and the precision—
i.e., the fact that the abstraction can prove the absence of errors—of the
result of the analyser are reduced to the validity of a set of Verification
Conditions (VCs); then, these verification conditions are discharged by Au-
tomated Theorem Provers (ATPs), that can themselves be certified using
the result certification methodology. This approach brings modularity to
the result verifier, as improving the reliability of each step improves the
reliability of the whole scheme.

Off-the-shelf automated theorem provers can be used to build
efficient and trustworthy static analysis result verifiers, because
the many-sorted first-order logic provides a formalism general
enough to describe abstract domains in a simple enough way for
decision procedures to be able to conclude.

Splitting the result certification process in successive steps multiply the num-
ber of links in the certification chain, and requires careful examination of
each step, to understand which links may be trusted, and which links should
not be. However, it also reduces the trusted computing base to powerful,
yet trustworthy, tools, such as proof assistants, by distributing the proof
effort over simpler isolated problems. Conversely, it allows the approach to
benefit immediately from new solutions that may emerge for any particular
sub-problem. Therefore, by splitting our initial problem into sub-problems,
and by using standard tool belonging to active areas of research, we hope
to secure the long term relevance of our work.

VC generation and soundness. The verification condition calculus we
propose is based on standard deductive verification techniques and tools,
such as defining a memory model in an Intermediate Verification Language
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(IVL), and using the weakest precondition calculus of the IVL to generate
the verification condition. Supposing that static analysers are formalised as
abstract interpretation allows us to avoid some difficulties of deductive ver-
ification, such as the need for framing conditions. To describe the memory
model, we define a theory of semantic states in the IVL, therefore the verifi-
cation conditions manipulate states of execution, exactly as an operational
semantics does. This allows us to prove the soundness of the verification
calculus w-r-t the operational semantics, defined as an interpreter in the
IVL. To do this proof, we use standard deductive verification techniques
but we do not rely on the translation of programs into the IVL, thus we
exclude from the Trusted Computing Base (TCB) any form of compilation.
The generated VCs may be more detailed than VCs obtained in deductive
verification, but can nonetheless be discharged automatically by ATPs in a
matter of seconds for numerical analyses.

To obtain an executable result verifier and prove its soundness
we only need to specify the formalisation of the static analysis
as abstract interpretation and the operational semantics of the
language in a intermediate verification language.

The VCs generated to certify the results of analyses of the heap are too
complex for ATPs. To resolve this difficulty, we proposed another simpler
VC calculus, that produces quantifier free formulae. To obtain such simple
conditions, the new VC calculus is necessarily less general, nonetheless, it
can be used for a family of analysers, defined by a parametrised abstract do-
main and concretisation. The use of an IVL to generate VCs, and prove the
soundness of the VC calculus, gives a framework to prove the soundness of
the quantifier free VC calculus w-r-t the general VC calculus. This layered,
modular design allows us to split the proof effort between ATPs and a proof
assistant, when possible—i.e., when the proof need not be redone for indi-
vidual results. We also benefit from the back-end of the IVL, which allows
us to use different ATPs, which has proved invaluable when discharging the
VCs.

Testing static analysers. The modularity of the approach, the use of an
IVL to specify the VC calculus, and the ability to rely on off-the-shelf ATPs
to discharge VCs, mean that the result verifier can be operable with very
little programming.This simplifies substantially another application of the
result certification methodology: the use of the result verifier as an oracle to
test the analyser during its development. The definition of the VC calculus
is based on the formalisation of the analyser in the abstract interpretation
framework, thus a new result verifier can be obtained by simply declaring
the abstract domains and concretisation function in the IVL. As soon as the
analyser can output abstractions, the IVL can be used to generate verifica-
tion conditions that can be discharged using off-the-shelf ATPs. Therefore,
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testing if an analyser can prove the absence of errors for a given program
can be done automatically, and testing if a modification in the implemen-
tation of the analyser generates unsound results only requires running the
new version of the analyser and embedding the results in the IVL.

SMT result certification. To prove the validity of verification condi-
tions, we use Automated Theorem Provers to prove the unsatisfiability of
the negation of many-sorted first order formulae. Therefore to complete
our result certification approach for static analysis, we have applied the re-
sult certification methodology to a specific family of automated theorem
provers: Satisfiability Modulo Theory (SMT) solvers. The certification of
SMT solvers is a first step towards the certification of ATPs. Furthermore,
SMT solvers are commonly used in a wide variety of program verification
techniques, therefore verifying their results have far more application than
our particular methodology for static analysers. Conversely, by splitting our
initial problem into sub-tasks, we benefit from future improvements in ATP
certification.

Our experiments emphasised the need for different SMT solvers to dis-
charge the verification conditions, but off-the-shelf proof-producing solvers
currently do not agree on a proof-format, and their different behaviour stems
from different design choices. To be able to use the same result verifier for
different tools, we have developed a general proof-system using the mecha-
nisms common to all SMT solvers rather than concentrating on the output
of a particular solver. The proof-system uses conflict-clauses to separate
the propositional reasoning from the theory reasoning, which can then be
certified in their own proof-system. This allows us to use the standard API
of existing solvers to emulate a proof-producing SMT solver that outputs
conflict-clauses, even though off-the-shelf solvers currently does not provide
this information, and to certify these clauses using a much simpler SMT
implementation that can output certificates in a format or our choice. Our
experiments show that it is sufficient to discharge a substantial subset of
the industrial benchmarks used by the SMT community to evaluate the
progresses in SMT solving algorithms. Moreover, our experiments provide
strong evidences that the limiting factor to discharge even larger proofs is
neither the certification of conflict-clauses nor the efficiency of the verifier’s
algorithm, but the manipulation of large terms by the Coq engine which we
used to execute the verifier. As the result verifier can be extracted to OCaml,
an efficient programming language, this limit can be easily overcome.

To be certified efficiently, SMT solvers only need to output conflict-
clauses.

A modular result verifier. Moreover, to leave room for additional the-
ory combinations, we designed a modular result verifier, based on a combi-



CHAPTER 10. CONCLUSION 148

nation of mono-theory sub-verifiers. By doing so, we were able to describe
combinations of theories without committing ourselves to a specific certifi-
cate format, nor requiring to encode certificates in a particular higher-order
logic. The benefit of this modular design was illustrated on the theory of un-
interpreted function, for which we defined and compared several certificates
format and verification algorithms, with different properties regarding the
size of the certificates, the complexity of the verifier, and its efficiency. By
implementing the result verifier in the language of the proof assistant Coq,
based on dependent types, the modularity of the implementation of the re-
sult verifier can be lifted to the proof of its correctness, and the proof of the
general architecture does not need to be changed when new sub-verifiers are
added.

Improving the partial automation of a proof assistant. Using the
proof-by-reflection technique, the result verifier can be used to integrate
SMT solvers in Coq, allowing to call these powerful decision procedures in
the middle of a proof script. This improves the automation of the proof-
assistant, in addition to improving the reliability of SMT solvers. As the
proof-by-reflection requires to execute the verifier in the Coq engine, the
limit w-r-t the size of proof-terms exhibited in the experiment apply, how-
ever, using SMT solvers to provide partial automation inside proof scripts
does entails neither large formulae nor large proofs. Therefore, the result
verifier could provide much needed automation before scalability issues arise.

Further work. Besides further engineering work needed to bring together
all pieces of software, there are still open questions to answer to complete the
scheme. We have proposed a result certification scheme for SMT solvers but
not for TPTP solvers, which are also needed to discharge some conditions
in our experiments. Furthermore, the result certification of SMT solvers
is not complete enough at the moment, as it lacks certificates for axiom
instantiation and for some theories needed to describe the theory of semantic
states. Moreover, the encoding of the theory of semantic states could be
more direct, and new decision procedures for additional theories of Many-
Sorted First-Order Logic would be useful to discharge more efficiently, and
more consistently, the VCs. How to isolate parts of the theory of semantic
states to benefit from its structure beyond what can be achieved with the
theory of maps and algebraic data-types is an open question. In addition,
more information could be extracted from the result of the ATPs when
failing to verify the results of an analyser: the model of the negation of a
VC can be translated into a counter-example, i.e., values of the program on
which it violates the invariant deduced from the abstraction returned by the
analyser.

The question of finding a systematic process to generate new verification
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condition calculus that produce VCs that automated provers can easily dis-
charge constitute a more ambitious research project. If a family of analyses
is described by a parametrisation of the abstract domain and of the con-
cretisation, it seems that an equivalent of the VC calculus DVC obj could be
obtained by partial evaluation of the pre-condition and post-condition pred-
icates on the parametrised concretisation, and a simplification of the general
verification conditions on the partially evaluated predicates. The simplifi-
cation step, which is probably the most important part, may be guided by
invariants of the semantics of the language and by the transfer function.
Another possibility may be to find a way to extract the VC calculus from
the proof of soundness of the formalisation of the analyser. In this case,
the benefit of the result certification approach comes from the fact that the
actual implementation of the analyser may be quite different from its for-
malisation, in order to be efficient, e.g., the proof of the formalisation may
use a naive fix-point engine, a high-level description of the abstract domains,
and the termination does not need to be proved. Such an approach would
mean that once the fundamental ideas behind an analysis are proved sound,
the results of the analyser can be fully trusted—i.e., automatically verified—
regardless of the details of its implementation, filling the gap between formal
verification techniques and efficient programming a little more.
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Appendix A

Certificate checking and
generation for LRA and LIA

In this section we introduce the certificate language and proof system for
linear arithmetic and describe its certifying prover. Literals are of the form
e 1 0 with e a linear expression manipulated in (Horner) normal form and
1∈ {≥, >,=}.

Certificate language. Since our initial work [Bes07], we are maintaining
and enhancing reflexive tactics for real arithmetic (psatz) and linear integer
arithmetic (lia). Those tactics, which are now part of the Coq code-base,
are based on the Positivstellensatz [Ste73], a rich proof system which is
complete for non-linear (real) polynomial arithmetic. Those reflexive veri-
fiers are at the core of our current theory verifiers for linear real arithmetic
(LRA) and linear integer arithmetic (LIA). We present here simplified proof
systems specialised for linear arithmetic.

For linear real arithmetic Farkas’ lemma provides a sound and complete
notion of certificate for proving that a conjunction of linear constraints is
unsatisfiable [Sch98, Corollary 7.1e]. It consists in exhibiting a positive
linear combination of the hypotheses that is obviously unsatisfiable, i.e.,
deriving c 1 0 for 1∈ {>,≥,=} and c a constant such that c 1 0 does
not hold. To construct such a contradiction, we start with a sub-proof
system that allows to derive an inequality with a list of commands (a Farkas
certificate). Each command is a pair Mul(c, i) where c is a coefficient (in
type Z) and i the index of an assumption in the current assumption set.
Such a command is used below in a judgement Γ, e 1 0 Mul(c,i)−−−−→ Γ′, e′ 1′ 0
with 1 and 1′ in {≥, >}. Γ ∪ {e 1 0} is the current set of assumptions,
e′ 1′ 0 is a new deduced inequality and Γ′ is an enriched set of assumptions.
For LIA, the proof system is augmented with a Cut command to generate
cutting planes [Sch98, chapter 23] and a rule for case-splitting Enum. We also
need a Push and a Get command in order to update the environment and
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c > 0 Γ(i) 7→ e′ ≥ 0

Γ, e 1 0 Mul(c,i)−−−−→ Γ, (c[∗]e′[+]e) 1 0

Γ(i) 7→ e′ = 0

Γ, e 1 0 Mul(c,i)−−−−→ Γ, (c[∗]e′[+]e) 1 0

c > 0 Γ(i) 7→ e′ > 0

Γ, e 1 0 Mul(c,i)−−−−→ Γ, (c[∗]e′[+]e) > 0

Γ(i) = e′ 1 0

Γ, e 1′ 0 Get(i)−−−−→ Γ, e′ 1 0

Γ′ = Γ[i 7→ e 1 0]

Γ, e 1 0 P ush(i)−−−−−→ Γ′, e 1 0

g > 0
Γ, (g[∗]e[−]d) ≥ 0 Cut−−→ Γ, (e[−]dd/ge) ≥ 0

g | d
Γ, (g[∗]e[−]d) = 0 Cut−−→ Γ, (e[−](d/g)) = 0

¬(g | d)
Γ, (g[∗]e[−]d) = 0 Cut−−→ Γ, 0 > 0

Γ(i1) 7→ e[−]l ≥ 0 Γ(i2) 7→ h[−]e ≥ 0
∀v ∈ [l, h],Γ, e = v

cv−l−−→∗ Γ′v, e′ 1′ 0

Γ, · 1 0 Enum(i1,i2,[c0;...;ch−l])−−−−−−−−−−−−−−→ Γ, e′ 1′ 0

Figure A.1: LRA and LIA proof rules

retrieve an already derived formula. The semantics of the commands is given
in Figure A.1. The operators [∗], [+], [−] model the standard arithmetic
operations but maintain the normalised form of the linear expressions. The
rules for the Mul command follow the standard sign rules in arithmetic: for
example, if e′ is positive we can add it c times to the right part of the
inequality e 1 0, assuming c is strictly positive. To implement the Cut rule,
the constant g is obtained by computing the greatest common divisor of the
coefficient of the linear expression. For inequalities, the rule allows to cut
the constant. For equalities, it allows to detect a contradiction if g does not
divide d (¬(g | d)).

A LRA certificate is then either a proof of 0 > 0 given by a list of
commands or a proof of x = y given by two lists of commands (one for
x− y ≥ 0 and one other for y − x ≥ 0.
Inductive LRA_certificate :=
|LRA_False (l : list command) |LRA_Eq (l1 l2 : list command)

Γ ` l : 0 > 0
Γ `LRA (LRA_False(l)) : (Γ,nil)

Γ ` l1 : e ≥ 0 e = x[−]y Γ ` l2 : [−]e ≥ 0
Γ `LRA (LRA_Eq(l1, l2)) : (Γ, [x = y])

Because the theory LIA is non-convex, it is necessary to deduce contradic-
tions but also disjunction of equalities.
Inductive LIA_certificate :=
| LIA_False (l : list command)
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| LIA_Eq (eqs : list (var * var)) (l : list (list command))

Proving equalities is done by performing a case-split and each list of com-
mands l ∈ l is used to prove that a case is unsatisfiable.

Certificate generation. In order to produce Farkas certificates efficiently,
we have implemented the Simplex algorithm used in Simplify [DNS05]. This
variant of the standard linear programming algorithm does not require all
the variable to be non-negative, and directly handles (strict and large) in-
equalities and equalities. Each time a contradiction is found, one line of the
Simplex tableau gives us the expected Farkas coefficients. The algorithm is
also able to discover new equalities between variables. In this case again,
the two expected Farkas certificates are read from the current tableau, up
to trivial manipulations.

For LIA, we use a variant of the Omega test [?]. The Omega test lacks
a way to derive equalities but the number of shared variables is sufficiently
small to allow an exhaustive search. Moreover, an effective heuristics is to
pick as potential equalities the dis-equalities present in the unsat core.
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