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At the atomic scale, interactive physically-based modeling tools are more and more in demand. Unfortunately, solving the underlying physics equations at interactive rates is computationally challenging.

In this dissertation, after presenting a review of theories and algorithms for interactive electronic structure computations, we propose new algorithms that allow for interactive modeling of chemical structures.

• We first present a modeling tool to construct structural models of hydrocarbon systems. The physical feedbacks are based on the Brenner potential. In order to be able to interactively edit systems containing numerous atoms, we introduce a new adaptive simulation algorithm.
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• Then, we introduce interactive quantum chemistry simulations at the Atom Superposition and Electron Delocalization Molecular Orbital (ASED-MO) level of theory. This method is based on the divide-and-conquer (D&C) approach, which we show is accurate and efficient for this non-self-consistent semi-empirical theory.

• Finally, we propose a novel Block-Adaptive Quantum Mechanics (BAQM) approach to interactive quantum chemistry. BAQM constrains some nuclei positions and some electronic degrees of freedom on the fly to simplify the simulation.

We also study different applications including one study of graphane formation, education, virtual reality and virtual prototyping at the atomic scale.

Résumé

A l'échelle atomique, les outils de modélisation interactive sont de plus en plus nécessaires. Cependant, résoudre les équations de la physique sous-jacente en temps interactif est un défi numérique difficile. Dans cette dissertation, nous proposons des nouveaux algorithmes qui permettent la modélisation interactive de structures chimiques.

• Tout d'abord, nous présentons un outil de modélisation pour construire des modèles structuraux de systèmes hydrocarbonés. Les retours physiques sont basés sur le potentiel de Brenner. Pour obtenir des taux interactifs lors de l'édition de systèmes contenant un grand nombre d'atomes, nous introduisons un nouvel algorithme adaptatif.

• Ensuite, nous introduisons ce que nous pensons être le premier algorithme de chimie quantique interactif au niveau de théorie "Atom Superposition and Electron Delocalization Molecular Orbital". Cette méthode est basée sur une approche diviser-pour-régner qui, comme nous le montrons, est précise et efficace pour cette théorie semi-empirique non auto-cohérente.

• Nous proposons ensuite une nouvelle approche pour la chimie quantique interactive : "Block-Adaptive Quantum Mechanics" (BAQM). BAQM contraint la position des noyaux et les degrés de liberté électronique à la volée pour simplifier la simulation.

Nous présentons aussi plusieurs applications : une étude de la formation du graphane, la simulation interactive à des fins pédagogiques, et le prototypage virtuel à l'échelle atomique, à la fois sur des ordinateurs de bureau et dans des environnements de réalité virtuelle.
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Block-Adaptive Quantum Mechanics (BAQM) in SAMSON (Software for Adaptive Modeling and Simulation Of Nanosystems) [START_REF] Samson | Software for Adaptive Modeling and Simulation Of Nanosystems[END_REF]. In this example the system is divided into four subsystems.

The energy is minimized continuously as the user edits the molecular system. At each time step, both the geometry and the electronic structure are incrementally and adaptively updated. Because the user pulls one atom (red arrow) in the left part of the system, the electronic structure is updated with the full basis for the leftmost subsystem (all atoms are red). In the neighboring subsystem, the electronic structure is updated according to a reduced-basis approximation (some carbons are black and some hydrogens are white). In the right part of the molecule, the user force does not have a sufficiently large impact, and atoms positions are frozen (all atoms are blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Block-adaptive Cartesian mechanics. In this example the system S is divided in two overlapping extended subsystems S * 1 and S * 2 , which have two atoms in common. The value indicated in each atom is the atomic force norm. The value indicated in each subsystem is the subsystem force norm. The threshold value is automatically computed as half the value of the maximum of the subsystem force norms. In step 0, f M = 15 and, therefore, S * 2 is frozen. Consequently, only the two leftmost atoms are mobile. In step 1, f M = 5 and, therefore, S * 1 is frozen. Consequently, only the two rightmost atoms are mobile. 
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1 Introduction

Résumé

Après un rappel du contexte historique, nous introduisons le rôle possible de la modélisation interactive dans le cadre de la conception assistée par ordinateur de systèmes atomiques. Après avoir présenté différentes méthodes de modélisation à cette échelle, nous décrivons en particulier l'algorithmique pour la modélisation interactive. Enfin, nous résumons les principales contributions de cette thèse.

Motivations

Contexte historique

Au cours du 20e siècle, une rupture profonde a bouleversé notre regard sur le monde. Il ne s'agit pas d'une des nombreuses crises politiques ou financières mais d'un changement plus fondamental : si la civilisation humaine a toujours été dépendante des ressources de la planète, c'est maintenant la planète elle-même qui dépend de la civilisation humaine. En d'autres termes, l'homme s'est mis à dépendre de ce qui dépend de lui. Plus que jamais, le développement de la société doit donc faire face à la finitude des ressources naturelles.

Comme le remarque Michel Serres de l'Académie française [START_REF] Serres | Le temps des crises[END_REF], "Si nous vivons une crise, au sens plein du terme, aucun retour en arrière n'est possible. Il faut donc inventer du nouveau. Or, le nouveau nous submerge ! En agriculture, transports, santé, démographie, informatique, conflits, des bouleversements gigantesques ont transformé notre condition comme jamais cela n'était arrivé dans l'histoire.". Dans cette thèse, nous nous intéressons en particulier à l'essor de deux nouveaux mondes, le monde numérique et le monde nanoscopique.

Le monde numérique

L'importance de l'informatique ne cesse de croître dans nos sociétés [START_REF] Nora | Computerization of society: a report to the President of France[END_REF]. Excellent support de l'information, elle bouleverse nos modes de communication et notre rapport à la connaissance. L'informatique semble envahir tous les domaines, et dans de nombreux cas, nous sommes probablement à un stade précoce du développement de son potentiel : la croissance future pourrait se fonder essentiellement sur des ressources virtuelles [START_REF] Newman | Limits to growth rates in an ethereal economy[END_REF].
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Le monde nanoscopique

De plus en plus, l'homme contrôle la matière à l'échelle atomique [START_REF] Ample | A Morse manipulator molecule for the modulation of metallic Shockley surface states[END_REF][START_REF] Dietz | Folding DNA into twisted and curved nanoscale shapes[END_REF][START_REF] Grill | Rolling a single molecular wheel at the atomic scale[END_REF][START_REF] Joachim | The design of a nanoscale molecular barrow[END_REF][START_REF] Shirai | Surface-rolling molecules[END_REF]. Les chercheurs d'IBM sont les premiers à avoir réussi un tel exploit technologique [START_REF] Eigler | Positioning single atoms with a scanning tunnelling microscope[END_REF] (Figure 1). 
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faut optimiser le système atomique pour obtenir une certaine propriété objective. Prédire cette propriété numériquement à l'aide d'un prototype virtuel permet donc de guider le cycle de conception. Dans cette section, nous rappelons d'abord la procédure classique de prototypage virtuel à l'échelle macroscopique avant d'introduire les spécificités de l'échelle atomique.

L'échelle macroscopique

Les logiciels de conception assistée par ordinateur (CAO) d'objets macroscopiques opèrent généralement en deux phases distinctes. En phase 1, l'utilisateur dessine le prototype, pour en phase 2 évaluer numériquement certaines de ses propriétés. La répétition en chaîne des phases 1 puis 2 permet d'optimiser la géométrie du prototype afin d'obtenir les propriétés voulues. Tout cela se fait en amont de la réalisation concrète de l'objet (coûteuse) et de ses tests réels. La Figure 2 montre l'exemple de la réalisation d'une formule 1. Ici, afin d'améliorer l'aérodynamique, le logiciel calcule les turbulences générées par le véhicule.

L'analyse numérique et la résolution d'équations complexes, donne ainsi accès à une modélisation fine du comportement de l'objet, permettant la réalisation de prototypes toujours plus performants en des temps raisonnables [START_REF] Law | Simulation modeling and analysis[END_REF]. 

L'échelle atomique

De manière similaire à l'échelle macroscopique, de nombreux logiciels de CAO proposent des outils de conception et de simulation pour les systèmes atomiques (Discovery Studio, Materials Studio, Ascalaph Designer, Spartan...). Sur le même modèle, il existe deux phases distinctes.

• Phase 1 : l'utilisateur construit le système atomique de son choix.

• Phase 2 : l'utilisateur calcule des propriétés sur le système.

Mais contrairement au cas macroscopique, en phase 2, le logiciel commence par modifier la structure pour la rendre stable ; c'est sur la structure modifiée que peuvent être évaluées diverses propriétés avancées : stabilité, capacité calorifique, rayon de gyration, conductivité... Or les lois de la physique à l'échelle atomique sont très différentes de celles régissant le monde macroscopique. La physique est non intuitive et toutes les configurations ne sont pas réalistes (des exemples de géométries sont donnés Figure 4 et 5). Ainsi il est difficile pour l'utilisateur de construire efficacement un prototype virtuel car la phase d'optimisation de la géométrie peut complètement modifier le système construit dans un premier temps. L'initialisation de la phase 2 modifiera sans doute le souhait initial de l'utilisateur rendant l'enchaînement des phases 1 et 2 peu consistante et productive.

Une idée développée dans cette thèse est de ne plus totalement séparer les phases 1 et 2. Précisément, les outils qui ont été conçus pour dessiner des systèmes atomiques sont parfois inadéquats car non physiques. Nous proposons donc d'inclure des retours physiques interactifs au logiciel de CAO lors de l'édition de modèles structurels complexes. La relaxation vers une conformation stable pourra être non brutale et la molécule ressembler aux souhaits de l'utilisateur.

Un exemple très concret de l'efficacité d'une telle interaction est le succès du logiciel Foldit. En effet, la formulation d'un problème de minimisation sous forme de jeu (puzzle) s'est démontrée beaucoup plus efficace que tous les algorithmes aussi sophistiqués soient-ils (Figure 3) [START_REF] Khatib | Crystal structure of a monomeric retroviral protease solved by protein folding game players[END_REF]. Le couplage interactif de l'homme, son intuition, son regard sur le système et de la machine peut donc s'avérer être la méthode la plus efficace pour résoudre la structure tridimensionnel de certaines protéines et en prototype des nouvelles [START_REF] Cooper | Predicting protein structures with a multiplayer online game[END_REF].

La modélisation à l'échelle atomique

Nous venons d'introduire les principes de la conception assistée par ordinateur et les problèmes posés par le caractère non intuitif de la physique à l'échelle atomique. Pour remédier à ce problème, nous proposons d'inclure des retours physiques sur le système en édition en temps interactif. Afin de réaliser notre proposition, il faut adopter un modèle physique puis en résoudre les équations. Nous introduisons dans cette section les modèles physiques les plus utilisés. Il existe deux grandes approches.

• La chimie quantique décrit les interactions fondamentales entre électrons et nucléons. • La mécanique moléculaire traite directement les interactions effectives entre les atomes.
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De nombreuses autres représentations d'un système atomique sont possibles (par exemple modèles gros grains, modèles continus...) mais ces représentations n'ont pas été explorées dans cette thèse.

Les modèles de chimie quantique

Dans cette sous-section, nous considérons un système atomique comme un ensemble de n noyaux atomiques et N électrons. On désigne par R ∈ R 3n le vecteur des positions des noyaux et r ∈ R 3N celui des positions des électrons.

Pour décrire correctement le comportement d'un système de particules à l'échelle atomique, il est naturel de faire appel à la mécanique quantique. L'état d'un système est décrit par la fonction d'onde Ψ(R, r), qui est une amplitude de probabilité, c'est-à-dire que |Ψ(R, r)| 2 correspond à la densité de probabilité de l'état (R, r). L'évolution temporelle de cette fonction est donnée par l'équation fondamentale de Schrödinger :

HΨ = i dΨ dt . (1) 
La formulation typique du Hamiltonien dans notre contexte est : La résolution de cette équation permettrait de prédire toutes les caractéristiques du système. Cependant, comment résoudre l'équation de Schrödinger pour des molécules de plus en plus grandes contenant plusieurs noyaux et plusieurs électrons ?

H = - i 2 2m e ∇ 2 i - k 2 2m k ∇ 2 k - i k e 2 Z k r ik + i<j e 2 r ij + k<l e 2 Z k Z l r kl (2) 
Cette équation est particulièrement complexe car le caractère corrélé du mouvement des électrons et noyaux devient très vite intraitable. D'une part, il n'existe pas de solution analytique connue pour les systèmes à plus de deux corps. D'autre part, l'analyse numérique permet de résoudre le problème seulement pour des molécules ne contenant que quelques électrons et noyaux.

C'est pourquoi, dans la recherche d'un modèle soluble numériquement, de nombreux modèles simplifiés ont été développés par les physiciens [START_REF] Cramer | Essentials of computational chemistry: theories and models[END_REF]. Le Chapitre 2 de cette thèse décrit en détail les différents modèles de chimie quantique et les méthodes de résolution numérique. Dans ce chapitre d'introduction, nous reportons de manière plus concise les grandes lignes de simplification.

Nous présentons d'abord trois approximations qui sont généralement utilisées.

• L'approximation de Born-Oppenheimer stipule que l'on peut découpler le mouvement des électrons de celui des noyaux. La relaxation des électrons pour une position de noyaux donnée est considérée comme instantanée.

• Les noyaux sont considérés de manière classique. Le problème est ainsi réduit à la résolution d'une équation stationnaire pour les électrons, où la position des noyaux devient un paramètre.

• Seuls les électrons de valence sont généralement considérés. Les électrons des couches internes sont considérés comme liés au noyau.

L'idée des modèles de chimie quantique efficaces est ensuite de transformer le problème à N corps à un problème équivalent à un corps et d'en chercher les solutions sur une base de dimension finie. Ces approximations sont les plus critiques. Pour assurer la qualité de la solution les vecteurs de base doivent être très pertinents. Typiquement la base des orbitales atomiques est souvent utilisée. On cherche alors les orbitales des électrons sont comme une combinaison linéaire des orbitales atomiques, celles-ci étant les solutions de l'équation considérée pour des atomes isolés. Ces solutions, combinaisons linéaires des orbitales atomiques, sont appelées les orbitales moléculaires. La projection de l'équation sur un espace de dimension finie permet une formulation matricielle du problème. La résolution de l'équation revient alors à la résolution d'un problème aux vecteurs propres généralisés :

HC = SCE, (3) 
où

H ij = φ i |H|φ j (4) et S ij = φ i |φ j (5) 
où C est la matrice des vecteurs propres et E la matrice diagonale des valeurs propres. Ce sont les inconnues de cette équation. Les φ i sont les éléments de base dans laquelle la solution de l'équation différentielle est cherchée.
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Nous nous plaçons dans le cadre où les N électrons sont placés dans ces orbitales moléculaires 2 par 2 (le nombre maximum autorisé par le principe d'exclusion de Pauli) en commençant par les orbitales de plus basse énergie (on s'intéresse à l'état fondamental du système d'électrons). La Figure 6 illustre la modélisation d'un nanotube de carbone dans avec un modèle de chimie quantique.

Pour une position des noyaux donnés R, l'énergie potentielle de la configuration est la somme de V N N (R), le terme de répulsion des noyaux, et des énergies des états occupés par les électrons :

V (R) = N/2 i=1 2e i (R) + V N N (R). (6) 

Expressions empiriques de l'énergie potentielle

Malgré les nombreuses simplifications introduites, les modèles de chimie quantique restent complexes à mettre en oeuvre et coûteux en temps de calcul. Dans de nombreux cas, les connaissances a priori sur les systèmes ont permis de développer des formulations empiriques de l'énergie potentielle. En général, ces modèles sont beaucoup moins gourmands en temps de calcul, tout en étant précis dans leur domaine d'application. Par contre, ils ne sont que peu transposables, ce qui limite leur applicabilité dans le cadre d'outils très génériques.

Dans ces expressions empiriques, les électrons sont considérés implicitement via la position des atomes. Nous considérons maintenant un système atomique comme un ensemble de n atomes et nous notons R ∈ R 3n le vecteur des positions des atomes.

Un modèle très simple et largement utilisé est le potentiel de Lennard-Jones, qui approche la fonction énergie potentielle par une simple fonction paire additive :

V (R) = k,l V LJ (R kl ) (7) 
où

V LJ (r) = 4E 0 r 0 r 12 - r 0 r 6 , (8) 
et R kl est le vecteur position relatif entre l'atome k et l'atome l. Les paramètres E 0 et r 0 dépendent du type d'atomes considérés. Le terme en puissance 6 est le terme d'interaction de Van der Waals, le terme en puissance 12 est lui un terme répulsif pour rendre compte empiriquement de la forte répulsion à courte distance des nuages électroniques de deux atomes. Ce modèle est particulièrement précis dans le cadre de la simulation des gaz rares monoatomiques [START_REF] Verlet | Computer "experiments" on classical fluids. I. Thermodynamical properties of lennard-jones molecules[END_REF].

Pour décrire les liaisons chimiques qui peuvent se former entre les atomes et les interactions électrostatiques longue portée, il est possible d'utiliser un champ de force classique où l'énergie potentielle s'écrit sous la forme :

V (R) = V bonded (R) + V nonbonded (R), (9) 
V bonded (R) = bonds k b (b -b 0 ) 2 + angles k θ (θ -θ 0 ) 2 + dihedrals k φ [cos(nφ + γ) + 1], (10) 
V nonbonded (R) = k,l q k q l R kl + A kl R kl 12 - C kl R kl 6 . ( 11 
)
INTRODUCTION (FRANÇAIS) Les champs de force classiques décomposent donc l'énergie en deux termes : un terme intramoléculaire, lui-même constitué de 3 termes (déformation des liaisons, des angles et des angles dièdres) et un terme intermoléculaire décrivant les interactions non-liées. Le jeu de paramètres (k b , b 0 , k θ , θ 0 , k φ , γ, q k , A kl , C kl ) est essentiellement basé sur des observations expérimentales ou des calculs ab-initio, et définit le champ de force. Les champs de force les plus répandus sont charmm [START_REF] Mackerell | CHARMM: the energy function and its parameterization[END_REF], amber [START_REF] Cornell | A second generation force field for the simulation of proteins, nucleic acids, and organic molecules[END_REF],

opls [START_REF] Jorgensen | The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin[END_REF]. Ils permettent de bien décrire le comportement d'un système avec une structure chimique prédéterminée.

Les modèles empiriques introduits ci-dessus sont incapables de rendre compte d'une rupture ou d'une création de liaison chimique. En général, ces phénomènes sont difficiles à décrire par des fonctions empiriques. Cependant, des expressions ont été développées pour certaines classes de systèmes. Par exemple, le potentiel de Morse donne une description plus réaliste du comportement d'une liaison covalente soumise à des grands étirements :

V (R) = k,l V Morse (R kl ), (12) 
où V Morse (r) est de la forme :

V Morse (r) = D e (1 -e a(r-rǫ) ) 2 + V Morse (r ǫ ). ( 13 
)
Cette formule est utilisée pour des molécules diatomiques [START_REF] Morse | Diatomic molecules according to the wave mechanics. II. Vibrational levels[END_REF]. D'autres champs de force dits réactifs, plus précis, ont été développés dans d'autres contextes : ReaxFF [START_REF] Van Duin | ReaxFF: a reactive force field for hydrocarbons[END_REF] ou le potentiel de Brenner [START_REF] Brenner | A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons[END_REF].

La physique statistique

Nous avons présenté différentes stratégies pour évaluer l'énergie potentielle d'une configuration donnée d'un système d'atomes. C'est une première étape pour calculer
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les propriétés macroscopiques d'un système. Ce calcul passe par l'évaluation d'une observable sur l'ensemble des états possibles du système. Les ensembles les plus généralement considérés sont :

• L'ensemble microcanonique : le système est isolé thermiquement. L'énergie, le volume et le nombre de particules sont fixés.

• L'ensemble canonique : le système peut échanger de l'énergie avec un réservoir. La grandeur canoniquement associée est la température. Le volume et le nombre de particules sont fixés.

• L'ensemble grand-canonique : le système peut échanger de l'énergie et des particules avec un réservoir. Les grandeurs associées sont respectivement la température et le potentiel chimique. Le volume est fixé.

En général, les quantités observables expérimentalement sont des moyennes statistiques sur ces ensembles : une intégrale sur les valeurs possibles pondérées par leur poids statistique. L'évaluation de ces intégrales est un défi numérique car la dimension de l'espace à intégrer est très grande et les techniques de quadrature classiques ne fonctionnent pas. Cependant, seule une très faible partie de l'espace à intégrer contribue de manière significative à l'intégrale, c'est pourquoi des méthodes plus adaptées d'échantillonnage intelligent de type Monte-Carlo permettent d'obtenir des résultats intéressants. L'idée de base est généralement de simuler une chaîne de Markov dont la mesure de probabilité de l'état stationnaire coïncide avec la probabilité d'existence des états du système pour les conditions imposées (température, pression...).

Il est donc important de comprendre que l'énergie potentielle d'un état d'un système ne suffit pas pour prédire sa stabilité ou ses propriétés. Seul le calcul complet d'une intégrale sur l'ensemble considéré pourra donner des indications concrètes.

Algorithmique pour la modélisation interactive

La modélisation à l'échelle atomique introduite dans la section précédente est très coûteuse en temps de calcul. Par exemple, le calcul d'une moyenne statistique nécessite généralement des heures, des jours ou même des années de temps de calcul, ce qui reste une limitation importante [START_REF] Van Gunsteren | Computer simulation of molecular dynamics: Methodology, applications, and perspectives in chemistry[END_REF]. La modélisation interactive, elle, permet de coupler efficacement la puissance brute des ordinateurs avec les connaissances ou intuitions du chimiste ou biologiste manipulant le système [START_REF] Bolopion | Haptic feedback for molecular simulation[END_REF][START_REF] Bolopion | Comparing position and force control for interactive molecular simulators with haptic feedback[END_REF][START_REF] Cooper | Predicting protein structures with a multiplayer online game[END_REF][START_REF] Cooper | Predicting protein structures with a multiplayer online game[END_REF][START_REF] Delalande | Complex molecular assemblies at hand via interactive simulations[END_REF][START_REF] Haag | Generation of potential energy surfaces in high dimensions and their haptic exploration[END_REF][START_REF] Stone | A system for interactive molecular dynamics simulation[END_REF].

La modélisation interactive nécessite un coût de calcul très faible. Le choix d'un modèle physique simplifié permet de diminuer grandement celui-ci, mais les limitations du modèle peuvent être rédhibitoires. Dans cette section, nous introduisons deux grandes lignes directrices pour accélérer les simulations sans faire de simplification a priori : le calcul parallèle et les algorithmes adaptatifs.

Le calcul parallèle

Un ordinateur de bureau récent est aujourd'hui capable d'effectuer plus de 100 000 000 000 opérations par seconde et la croissance de la puissance des ordinateurs de
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ces dernières décennies est impressionnante. Cependant, le gain en puissance brute ne se traduit pas directement en vitesse d'exécution d'un programme car l'évolution technologique des ordinateurs est en train de prendre un tournant radical vers le calcul parallèle.

En effet, la vitesse en série des processeurs semble atteindre une limite physique [START_REF] Sutter | The free lunch is over: A fundamental turn toward concurrency in software[END_REF] ; cela pousse l'industrie à se tourner vers des technologies parallèles. Cette évolution ne peut pas être prise à la légère par les numériciens car tous les algorithmes, toutes les méthodes numériques peuvent être repensés pour que le calcul soit parallélisable. C'est seulement à cette condition que les calculs pourront pleinement tirer parti de la puissance des architectures des ordinateurs de bureau récents (Figure 8). 

Les algorithmes adaptatifs

Une autre alternative pour accélérer les simulations est d'essayer de développer des approches adaptatives qui permettent de concentrer les calculs sur les parties les plus importantes du système. Les algorithmes adaptatifs modifient leur comportement en fonction des données qu'ils ont à traiter. Cette modification de comportement est due à l'algorithme lui-même et non à une intervention extérieure. C'est l'algorithme qui s'ajuste lui-même.

Un algorithme adaptatif fera varier la quantité de ressources à allouer à chaque partie du système par l'analyse des données. En particulier, la difficulté est donc de savoir juger l'importance des données via une métrique adaptée. L'intérêt de ce type d'approximation réside dans le constat que, pour de nombreuses applications, il est judicieux de concentrer l'effort de calcul sur certaines parties du système [START_REF] Bosson | Block-Adaptive Quantum Mechanics: an adaptive divide-and-conquer approach to interactive quantum chemistry[END_REF][START_REF] Artemova | ARPS: Adaptively Restrained Particle Simulations[END_REF][START_REF] Bosson | Interactive physicallybased structural modeling of hydrocarbon systems[END_REF]. Il est particulièrement inefficace de tout simuler avec le même coût.

Le paradigme adaptatif est un élément central de cette thèse. En particulier, l'effort s'est concentré sur des algorithmes contrôlables en coût, une qualité essentielle pour la modélisation interactive. L'approche adoptée peut être divisée en deux grandes étapes.
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• Le choix des degrés de liberté. Un système d'atomes possède un ensemble de degrés de liberté. Par exemple, pour les simulations d'un système d'atomes en coordonnées cartésiennes avec un modèle empirique, les degrés de liberté sont les positions des atomes. Pour une simulation dans le cadre des modèles numériques de chimie quantique introduit précédemment, les noyaux sont traités classiquement et leur positions constituent des degrés de libertés du système. Les orbitales moléculaires qui vivent dans l'espace des fonctions orthogonales sont aussi des degrés de libertés. L'idée de l'approche adaptative développée au sein de l'équipe NANO-D est de contraindre, à la volée, ces degrés de liberté pour simplifier et accélérer la simulation.

La difficulté dans cette approche adaptative est de choisir les bonnes contraintes sur ces degrés de liberté. Ce choix se base sur une métrique qui dépendra du type de simulation (dynamique [START_REF] Artemova | ARPS: Adaptively Restrained Particle Simulations[END_REF], quasi-statique [START_REF] Rossi | Adaptive torsion-angle quasi-statics: a general simulation method with applications to protein structure analysis and design[END_REF], optimisation de géométrie [START_REF] Bosson | Interactive physicallybased structural modeling of hydrocarbon systems[END_REF]), du système de coordonnées et du modèle considéré.

Par exemple, il a été montré pour un système d'objets articulés qu'il était possible de calculer la somme des accélérations au carré des corps avant même de calculer l'accélération de chacun des corps [START_REF] Redon | Adaptive dynamics of articulated bodies[END_REF]. Il s'agit d'une situation exceptionnelle qui permet de prédire quels seront les degrés de liberté les plus intéressants à simuler.

• La mise à jour incrémentale de l'état du système. Une fois les contraintes sur les degrés de liberté déterminées, il faut mettre en place des algorithmes pour profiter de ces simplifications. Par exemple, dans le cadre des simples potentiels empiriques (somme de termes à deux corps), lorsque certaines positions relatives sont figées, on peut utiliser les tables de forces partielles pour ne mettre à jour que les termes qui ont changé [START_REF] Rossi | Adaptive torsion-angle quasi-statics: a general simulation method with applications to protein structure analysis and design[END_REF]. Pour les modèles de chimie quantique, le caractère délocalisé de l'équation de Schrödinger interdit à priori une mise à jour incrémentale efficace de l'état du système. Cependant, des méthodes exploitant le principe de localité ont permis l'émergence de méthodes de mise à jour incrémentale du système lorsque une partie des noyaux sont figés dans l'espace [START_REF] Lee | Frozen density matrix approach for electronic structure calculations[END_REF][START_REF] Ermolaeva | Implementation and testing of a frozen density matrix-divide and conquer algorithm[END_REF][START_REF] Stewart | Application of localized molecular orbitals to the solution of semiempirical self-consistent field equations[END_REF][START_REF] Surján | Frozen localized molecular orbitals in electron correlation calculations -exploiting the Hartree-Fock density matrix[END_REF]. Les contraintes sur les degrés de liberté électronique, par exemple l'utilisation d'une base réduite, se traduit par une transformation du problème aux valeurs propres généralisés. Cette transformation requiert des méthodes de calcul linéaire adaptées pour en tirer partie.
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6.1 Algorithmes de mise à jour du potentiel de Brenner et de choix des degrés de liberté pour les champs de force réactifs

Dans cette thèse, nous nous sommes d'abord intéressés à la modélisation interactive basée sur un champs de force réactif. En particulier, le potentiel de Brenner est une expression empirique de l'énergie potentielle avec une description fine de l'état des liaisons. Il est capable de décrire des ruptures et des créations de liaisons. Cette thèse décrit un algorithme pour mettre à jour rapidement cette expression en s'appuyant sur la liste des positions relatives des atomes mises à jour. Dans ce contexte, un nouvel algorithme adaptatif pour la simulation en coordonnées cartésiennes a été proposé. Nous avons montré la pertinence de ces outils par la réalisation d'un modeleur appliqué aux systèmes hydrocarbonés. La figure 9 illustre l'utilisation de ce modeleur.

Ces résultats ont été publiés dans Journal of Computational Physics [START_REF] Bosson | Interactive physicallybased structural modeling of hydrocarbon systems[END_REF] et sont présentés dans le Chapitre 3.

Une méthode de chimie quantique interactive

Par la suite, nous avons voulu étendre le travail précédent réservé aux systèmes hydrocarbonés en utilisant un modèle de chimie quantique. Une contribution importante de cette thèse est de présenter une méthode permettant de calculer la structure électronique d'un système de noyaux et d'électrons en « temps réel ». C'est-à-dire, dans le logiciel développé par l'équipe (SAMSON), l'utilisateur peut modifier la géométrie d'une molécule en visualisant immédiatement l'impact sur la structure chimique (l'ordre des liaisons, la densité électronique, les orbitales moléculaires. . . ) pour des molécules contenant jusqu'à plusieurs centaines d'atomes. L'utilisateur peut ainsi visualiser la dynamique du système moléculaire, ou construire des configurations stables en minimisant son énergie potentielle.

La méthode se fonde sur la théorie semi-empirique appelée « Atom Superposition and Electron Delocalisation -Molecular Orbital » [START_REF] Anderson | Electron density distribution functions and the ASED-MO theory[END_REF], et sur un algorithme de type diviser-pour-régner [START_REF] Dixon | Semiempirical molecular orbital calculations with linear system size scaling[END_REF]. Ce dernier permet de rendre l'effort de calcul seulement proportionnel à la taille du système, effort de calcul par ailleurs facilement parallélisable.

Ces résultats ont été publiés dans Journal of Computational Chemistry [START_REF] Bosson | Interactive quantum chemistry: A divide-and-conquer ASED-MO method[END_REF] et sont présentés dans le Chapitre 4. La Figure 10 illustre l'édition d'une molécule de benzène à l'aide de la méthode de chimie quantique interactive.

Algorithmes adaptatifs pour la chimie quantique interactive

Nous avons ensuite développé une nouvelle méthode adaptative pour contraindre à la volée les noyaux comme les électrons : Block-Adaptive Quantum Mechanics (BAQM).

• Les noyaux peuvent être figés dans l'espace. Nous appelons cette composante Block-Adaptive Cartesian Mechanics. • Les orbitales moléculaires peuvent être contraintes dans des sous-espaces vectoriels définis par une base réduite. Cette base réduite est mise à jour automatiquement. Cette composante est appelée Adaptive Reduced-Basis Quantum Mechanics.
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La combinaison de ces deux composantes permet d'accélérer significativement chaque pas de temps. En concentrant adaptativement les efforts sur les variables les plus affectées par les actions utilisateur, l'attraction dans des minimums d'énergie locaux peut être grandement accélérée. Appliquer BAQM au modèle semi-empirique ASED-MO permet de simuler des grands systèmes (plus de 1000 atomes) à des taux de rafraîchissement interactifs. Ces résultats sont présentés dans le Chapitre 5 et devraient paraître sous forme d'une publication [START_REF] Bosson | Block-Adaptive Quantum Mechanics: an adaptive divide-and-conquer approach to interactive quantum chemistry[END_REF]. INTRODUCTION (FRANÇAIS)

Applications

Après avoir développé plusieurs algorithmes pour la modélisation interactive, nous nous sommes intéressés à plusieurs applications possibles de ces travaux. Les résultats sont présentés dans le Chapitre 6.

Étude de la formation du graphane

Le graphane est un nouveau matériau issu de l'hydrogénation complète d'une structure de graphène. Les outils et algorithmes présentés dans le Chapitre 3 ont permis une étude rapide de la formation de celui-ci. En particulier, l'énergie de liaison carbone-hydrogène devient de plus en plus importante lorsque le nombre d'atomes absorbés augmente (Figure 12). 

Outils pédagogiques pour l'éducation

Les outils de simulation interactive ont un rôle de plus en plus important dans l'enseignement des sciences [START_REF] Adams | A study of educational simulations part II -interface design[END_REF][START_REF] Balasubramanian | Games and simulations[END_REF][START_REF] Perkins | PhET: Interactive simulations for teaching and learning physics[END_REF][START_REF] Wieman | PhET: Simulations that enhance learning[END_REF]. Les possibilités qu'offrent les nouveaux algorithmes développés dans cette thèse et implémentés dans SAMSON peuvent être transformés en des outils pédagogiques pour aller au-delà des représentations moléculaires simplifiées du type « boule/bâton », et pour découvrir de manière ludique le monde de la physique quantique. Des travaux pratiques pour des lycéens ont été mis en oeuvre dans le cadre du programme nano@school (Figure 13). Un abstract intitulé "Students construct and edit virtual molecules thanks to a physically-based model" a notamment été présenté à la conférence ICCE-ECRICE (International Conference on Chemistry Education -European Conference on Research In Chemical Education) [START_REF] Chevrier | Students construct and edit virtual molecules thanks to a physically-based model[END_REF]. Une utilisation dans des classes de lycée pour les années à venir est à l'étude. 

Prototypage virtuel

Les molécules-machines sont un sujet d'étude qui intéresse de plus en plus de chercheurs à travers le monde [START_REF] Grill | Rolling a single molecular wheel at the atomic scale[END_REF][START_REF] Joachim | The design of a nanoscale molecular barrow[END_REF][START_REF] Shirai | Surface-rolling molecules[END_REF]. De façon à comprendre le mieux possible les fonctionnalités de telles entités moléculaires, il est important d'isoler autant que possible l'objet moléculaire à étudier d'un environnement. Ainsi, certaines études expérimentales réalisées à l'aide de microscopes à sonde locale concernent des molécules individuelles posées sur des surfaces.

Ces microscopes, comme le microscope à effet tunnel ou le microscope à force atomique, sont munis d'une pointe extrêmement fine puisqu'elle est terminée par un atome. Cette pointe permet de sonder localement, c'est-à dire au niveau de l'angström, une surface ou un entité déposée sur cette surface en mettant à profit certaines propriétés physiques (effet tunnel électronique ou force d'interaction). Une telle approche offre la possibilité d'adresser mécaniquement des actions sur une molécule, par exemple, grâce à la pointe.

SAMSON et les travaux de cette thèse peuvent jouer un rôle important dans la compréhension des mécanismes moléculaires lors que la pointe manipule la molécule sur la surface. En particulier, le suivi des changements de conformation est fondamental si on veut appréhender la mécanique (translation, rotation, engrenage, moteur...) au niveau d'une seule molécule-machine. L'influence de la pointe (modélisée par l'action de la souris) sur les groupes moléculaires peut être calculé en temps interactifs ce qui aide à définir la trajectoire que la pointe devrait suivre pour réaliser la fonction mécanique pour laquelle la molécule a été conçue et synthétisée. Dans ce contexte, une molécule de type "mille-pattes" est étudiée par nos collaborateurs dans le but de transférer une action mécanique au sein d'une molécule (Figure 14).

Réalité virtuelle

Les outils interactifs développés dans les chapitres 3, 4 et 5 permet une simulation interactive du monde nanoscopique. Pour augmenter l'immersion visuelle, nous avons implémenté une visualisation stéréoscopique (Figure 15). Chapter 1
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Summary

After recalling the historical context, we emphasize the possible role of interactive modeling for virtual prototyping of atomic systems. We present different methods to model systems at this scale and then describe more precisely paradigms for interactive modeling. Finally, we introduce the main contributions of this thesis.

Motivation

Historical context

During the 20 th century, a fundamental change occurred. Not one of the political or financial crises but a deeper change: if humanity has always been dependent on earth resources, nowadays, the earth itself is dependent on us. In other words, we depend on what depends on us. The perpetual development of our society has to face the lack of resources more than ever.

Michel Serres, member of the French Academy, notices that we are going though a fundamental crisis and there is no way back, and thus, we have to invent again. However, the "new" is everywhere: agriculture, transport, health, demography, computer, conflict, etc. The changes during the 20 th century have transformed our conditions as never before in history [START_REF] Serres | Le temps des crises[END_REF]. In this thesis, we focus on two emerging worlds, numerical and atomistic.

Numerical world

The role of computers is steadily increasing in our society [START_REF] Nora | Computerization of society: a report to the President of France[END_REF]. As an excellent support for information, it is changing our communication habits and our access to knowledge. Computers have entered almost every domain of human society and we are still probably in the early age of its development: the future economic growth could essentially be based on virtual resources [START_REF] Newman | Limits to growth rates in an ethereal economy[END_REF]. 

Atomic world

Humans try more and more to control matter at the atomic scale [START_REF] Ample | A Morse manipulator molecule for the modulation of metallic Shockley surface states[END_REF][START_REF] Dietz | Folding DNA into twisted and curved nanoscale shapes[END_REF][START_REF] Grill | Rolling a single molecular wheel at the atomic scale[END_REF][START_REF] Joachim | The design of a nanoscale molecular barrow[END_REF][START_REF] Shirai | Surface-rolling molecules[END_REF]]. IBM's researchers were the first to demonstrate the ability to manipulate individual atoms [START_REF] Eigler | Positioning single atoms with a scanning tunnelling microscope[END_REF] (Figure 1.1). In the quest for new resources, the infinitely small looks much more promising than the difficult conquest of space and the infinitely large. Richard Feynman anticipated this non-intuitive path in his lecture: "There is plenty of room at the bottom" [START_REF] Feynman | There's plenty of room at the bottom[END_REF]. At the macroscopic scale, humans seem to reach the limits of earth's capabilities. The same resources, considered at the atomic scale, are multiplied and appear to be again without limit.

Nanotechnologies have an important practical potential in many fields including: computers and telecommunications, medicine and biology, chemistry and materials, energy and environment [START_REF] Roco | From vision to the implementation of the U.S. National Nanotechnology Initiative[END_REF]. At the nanoscale, many new design questions appear:

• Can we build a logical gate with a molecule [START_REF] Joachim | Electronics using hybridmolecular and mono-molecular devices[END_REF]?

• Which molecules will allow us to efficiently store hydrogen atoms, one strong candidate as a future energy vector [START_REF] Schlapbach | Hydrogen-storage materials for mobile applications[END_REF]?

• How can we enhance lithium battery capabilities [START_REF] Chan | High-performance lithium battery anodes using silicon nanowires[END_REF][START_REF] Ceder | Application of first-principles calculations to the design of rechargeable Li-batteries[END_REF]?

• ...

Virtual prototyping

Devoted to the problems of computer-aided design at the atomic scale, this thesis is at the intersection of these two emerging worlds (numerical and atomistic). At this scale, modeling and simulation should be essential to analyze and understand systems and thus potentially to accelerate the conception cycle of new molecules or materials. In general, an important difficulty of the design process results from the inverse nature of the problem. Precisely, the principle is to optimize the object geometry (or the chemical structure for an atomic system) to obtain an objective property. Using numerical tools to predict this property thanks to a virtual prototype allows to guide and accelerate the design of new objects.

In this section, we first recall the classical approach of computer-aided design at the macroscopic scale before introducing the specificities of the nanoscale.

Macroscopic scale

Computer-Aided Design (CAD) softwares for macroscopic systems generally have two distinct steps. In a first step, the user draws the prototype in order to, in a second step, evaluate numerically some properties. The repetition of these steps 1 and 2 allows the user to optimize the geometry of the device to obtain the desired property. This process can be performed before the effective construction of a real prototype and real world tests on it (which are costly). Figure 1.2 shows the prototyping of a Formula One. Here, to optimize the aerodynamics, the software computes the turbulences induced by the vehicle.

Numerical analysis permits a fine modeling of the system behavior with complex equations, which in turn makes it possible to build high-performance prototypes in reduced time and at a lower price [START_REF] Law | Simulation modeling and analysis[END_REF]. the aerodynamics of the Formula One virtual prototype to guide the conception. Source: http://www.ansys.com/.

Atomic scale

Similarly to the macroscopic scale, numerous CAD softwares propose tools to prototype and simulate atomic systems (Discovery Studio, Materials Studio, Ascalaph Designer, Spartan...). As previously described, there exists two distinct steps.

• Step 1: the user draws the desired atomic system.

• Step 2: the user computes the desired properties. However, unlike in the macroscopic case, in Step 2, the software starts to modify the atomic structure to stabilize it; and then, on the modified structure, advanced properties can be evaluated (e.g. stability, heat capacity, radius of gyration, conductivity...).

Nevertheless, physical laws at the atomic scale are very different from the ones at the macroscopic level. The physics is non-intuitive and not all the configurations are realistic (molecular geometry examples are presented in Figure 1.3 and 1.4). Consequently, the user may experience difficulties to efficiently virtually prototype a new system because the geometry optimization step can completely modify the system constructed in Step 1. The initialization of Step 2 modifies the system independently from the original will of the user, this makes the approach of alternating Step 1 and Step 2 not very efficient and productive. The electronic structure is materialized by an isosurface of the electronic density. The ethane geometry consists in two nested tetrahedra and ethylene has the specificity to be a planar molecule.

One idea developed in this thesis is to not completely split the virtual computeraided design process in Step 1 and Step 2. Precisely, the tools used to draw the atomic systems are not ideal because they do not satisfy the underlying physics.

We propose to include physical feedbacks into these tools, computed in real time, while editing complex structural models. By doing so, relaxation towards a stable configuration will be smooth, and the system will be in agreement with the user's expectations.

A concrete illustration of the efficiency of such an approach is the success story of the Foldit software, for protein structure prediction. Indeed, turning the complex, high-dimensional minimization problem into a computer game has been shown to lead to better solutions than all previous sophisticated algorithms (Figure 1.5) [START_REF] Khatib | Crystal structure of a monomeric retroviral protease solved by protein folding game players[END_REF]. The association of a human being (its intuition and view on the system) and a machine can be the most efficient way to determine three-dimensional protein structures and to prototype new ones [START_REF] Cooper | Predicting protein structures with a multiplayer online game[END_REF]. We have introduced the principles of computer-aided design and the problem of the non-intuitive underlying physics at the atomic scale. To overcome this difficulty, we propose to include interactive physical feedbacks in the software during the system editing. To achieve this goal, we have to choose a physical model and solve the corresponding equations. In this section, we introduce two possible models.

• Quantum chemistry describes fundamental interactions between electrons and nuclei.

• Molecular mechanics directly treats effective interactions between atoms.

Many other representations of an atomic system are possible (e.g. coarse-grain models, continuum models,...), however, these representations have not been explored in this work.

Quantum chemistry models

In this subsection, we consider an atomic system as being an ensemble of n nuclei and N electrons. Let R ∈ R 3n denote the vector of nucleus positions and r ∈ R 3N the vector of electron positions.

To correctly describe the behavior of a system of particles at the nanoscale, it seems natural to use quantum mechanics. The system state is described by the wave function Ψ(R, r) which is a probability amplitude, i.e., |Ψ(R, r)| 2 is the probability density of finding the system in state (R, r). The time evolution of this function is given by the fundamental Schrödinger equation:

HΨ = i dΨ dt , (1.1) 
where the Hamiltonian operator is

H = - i 2 2m e ∇ 2 i - k 2 2m k ∇ 2 k - i k e 2 Z k r ik + i<j e 2 r ij + k<l e 2 Z k Z l r kl , (1.2) 
where i and j iterate over the electrons, k and l iterate over the nuclei, is the Dirac constant, m e is the mass of the electron, m k is the mass of the nucleus k, ∇ 2 is the Laplace operator, e is the charge of an electron, Z is the atomic number and r ab is the distance between particles a and b.

Solving this equation would allow to predict all the characteristics of the system. However, how can we solve the Schrödinger equation for larger and larger molecules with many nuclei and electrons?

This equation is particularly complex because the correlated nature of the motion of electrons and nuclei is most of the time impossible to treat. On one hand, there is no analytical solution known for systems with more than two bodies. On the other hand, numerical analysis only allows to solve the equation for molecules containing very few electrons and nuclei.

Consequently, many simplified models have been developed by physicists to obtain first-principle numerically solvable models [START_REF] Cramer | Essentials of computational chemistry: theories and models[END_REF]. Chapter 2 describes different quantum chemistry models and numerical methods involved. In this subsection, we shortly report the key approximations.

We first present three approximations which are generally used.

• The Born-Oppenheimer approximation decouples the motions of electrons from those of nuclei. For a given position of the nuclei, electrons are considered to relax instantaneously.

• Nuclei are treated classically. The problem is reduced to the resolution of a stationary equation for the electrons, nucleus positions enter as parameters.

• Only valence electrons are treated explicitly. The inner core electrons are approximated as bounded to the nuclei.

The idea of quantum chemistry models is then to transform the N -body problem into an equivalent one-body problem which is solved in a finite dimensional basis. These approximations are the most critical. To obtain an accurate result, basis elements have to be chosen carefully. Typically, atomic orbitals can be used. In this case, we look for molecular orbitals as a linear combination of atomic orbitals.

The projection of the stationary equation for the valence electrons on a finite basis allows a linear algebra formulation of the problem. Precisely, the solutions are those of the following generalized eigenvalue problem:

HC = SCE, (1.3) 
where

H ij = φ i |H|φ j , (1.4) 
and

S ij = φ i |φ j , (1.5) 
where C is the matrix of the eigenvectors and E is the diagonal matrix of the eigenvalues. These are the unknowns of the eigenvalue problem. The solutions of the one-electron Schrödinger equation are evaluated in the space spanned by the basis of elements φ i . Then, the N valence electrons occupy molecular orbitals two by two with opposite spin (the maximum number allowed by the Pauli exclusion principle). Only the lowest energy molecular orbitals are occupied. Figure 1.6 shows the modeling of a carbon nanotube with a quantum chemistry model.

For an atomic position vector R, the potential energy of the system is the sum of the repulsive nuclei term V N N (R) and the sum of the energies of the occupied molecular orbitals (eigenvalues):

V (R) = N/2 i=1 2e i (R) + V N N (R).
(1.6)

Empirical potential energy expressions

Despite all the simplifications introduced, quantum chemistry models are still complex to implement and computationally costly. In many cases, the a priori knowledge on the systems allows to develop empirical formulations of the potential energy. In general, these models are less computationally demanding and accurate in their application domain. However, they are poorly transferable which is limiting their applicability in the framework of generic tools. In these empirical expressions, electrons are implicitly considered via atomic positions. We now consider an atomic system as a set of n atoms and we denote by R ∈ R 3n the atomic position vector.

A very simple and widely used model is the Lennard-Jones potential energy which approximates the potential energy function as a simple pairwise function:

V (R) = k,l V LJ (R kl ) (1.7)
where

V LJ (r) = 4E 0 r 0 r 12 - r 0 r 6 , (1.8) 
and R kl is the relative position between atom k and atom l. Parameters E 0 and r 0 depend on the atom type. The power 6 term is the van der Waals interaction term, the power 12 term empirically represents the strong repulsion of atomic electronic clouds at short range. This model is particularly suitable for simulation of monoatomic noble gases [START_REF] Verlet | Computer "experiments" on classical fluids. I. Thermodynamical properties of lennard-jones molecules[END_REF]. Classical force fields describe chemical bonds that can form between atoms and long range electrostatics interactions. The potential energy reads as:

V (R) = V bonded (R) + V nonbonded (R) (1.9) V bonded (R) = bonds k b (b -b 0 ) 2 + angles k θ (θ -θ 0 ) 2 + dihedrals k φ [cos(nφ + γ) + 1] (1.10) V nonbonded (R) = k,l q k q l R kl + A kl R kl 12 - C kl R kl 6 (1.11)
where b is a chemical bond length, θ is an angle between 3 atoms and φ is a dihedral angle between 4 atoms. These variables are completely defined by the atomic position R and illustrated in Figure 1.7. Thus, classical force fields split energy contributions into two terms: an intramolecular term which is itself divided in three contributions (bonds, angles and dihedral angles stretching) and an intermolecular term describing non bonded interactions. The set of parameters (k b , b 0 , k θ , θ 0 , k φ , γ, q k , A kl , C kl ) is derived from experimental data and/or first-principle computations. Widely used force fields are charmm [START_REF] Mackerell | CHARMM: the energy function and its parameterization[END_REF], amber [START_REF] Cornell | A second generation force field for the simulation of proteins, nucleic acids, and organic molecules[END_REF], opls [START_REF] Jorgensen | The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin[END_REF]. They allow to describe atomic systems with a predefined chemical structure.

The empirical models introduced so far are not able to realistically mimic bond breaking or bond forming. In general, these phenomena are difficult to describe with empirical functions. However, the Morse potential allows to describe the behavior of covalent bonds with large stretching:

V (R) = k,l V Morse (R kl ), (1.12) 
where

V Morse (r) = D e (1 -e a(r-rǫ) ) 2 + V Morse (r ǫ ). (1.13)
This formula is suitable for diatomic molecules [START_REF] Morse | Diatomic molecules according to the wave mechanics. II. Vibrational levels[END_REF]. Other so-called reactive force fields like ReaxFF [START_REF] Van Duin | ReaxFF: a reactive force field for hydrocarbons[END_REF] or the Brenner potential [START_REF] Brenner | A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons[END_REF] have been developed for other contexts.

Statistical physics

We have described different strategies to evaluate the potential energy of an atomic system configuration. This is a first step to compute macroscopic properties of a system. This computation requires the evaluation of an observable over the set of all the possible configurations we are considering (called ensemble). The most widely used ensembles are:

• Microcanonical ensemble to analyze isolated thermodynamic systems. Energy, volume and number of particles are fixed.

• Canonical ensemble: the system can exchange energy with the reservoir. The temperature is set by the reservoir. Volume and number of particles are fixed.

• Grand canonical ensemble: the system can exchange energy and particles with the reservoir. Both temperature and chemical potential are defined by the reservoir. The volume is fixed.

In general, experimentally observable quantities are statistical averages taken on these ensembles: integrals over all the possible configurations weighted by their statistical weight. Evaluating these integrals is a numerical challenge. The dimension of the phase space of integration is very high and classical quadrature methods cannot work. However, only a small part of the configurational space contributes significantly to the integral. Consequently, methods to adaptively sample the most important phase space region may allow to obtain accurate results (e.g. Monte Carlo method). The main idea behind these techniques is to simulate a Markov process for which the stationary measure is exactly the one imposed by external conditions on the system (temperature, pressure...).

To summarize, potential energy is not sufficient to predict stability or other system properties. One has to estimate a complete integral over the ensemble to compute these values.

On the one hand, the modeling at the atomic scale presented in the previous sections is computationally costly. For instance, the computation of a statistical mean can require hours, days or even years of computer time [START_REF] Van Gunsteren | Computer simulation of molecular dynamics: Methodology, applications, and perspectives in chemistry[END_REF]. On the other hand, interactive modeling allows to efficiently couple the machine power with the knowledge and the intuition of chemists or biologists who manipulate the system [START_REF] Bolopion | Haptic feedback for molecular simulation[END_REF][START_REF] Bolopion | Comparing position and force control for interactive molecular simulators with haptic feedback[END_REF][START_REF] Cooper | Predicting protein structures with a multiplayer online game[END_REF][START_REF] Cooper | Predicting protein structures with a multiplayer online game[END_REF][START_REF] Delalande | Complex molecular assemblies at hand via interactive simulations[END_REF][START_REF] Haag | Generation of potential energy surfaces in high dimensions and their haptic exploration[END_REF][START_REF] Stone | A system for interactive molecular dynamics simulation[END_REF].

Interactive modeling requires a very low computational cost. The choice of a simplified physical model allows to reduce significantly this cost, but the model limitations can be prohibitive. In this section, we introduce two possible directions to accelerate simulations without a priori simplification: parallel computation and adaptive algorithms.

Parallel computing

A recent desktop computer is able to compute 100.000.000.000 operations per second and the trend of steadily increasing power over the past decades is impressive. However, nowadays, extra power does not directly impact the execution speed of a software because computer evolution is radically going into parallel computation.

Indeed, the serial processor speed appears to reach a physical limit [START_REF] Sutter | The free lunch is over: A fundamental turn toward concurrency in software[END_REF]. This is pushing industry towards more and more parallel technologies. This evolution is very important for computer scientists as all the algorithms, all the numerical methods should be rethinked to be parallelizable. This is the condition to fully exploit the power of modern parallel desktop architectures (Figure 1.8). The computational power increase is now due to parallelism. Source: http://www.spiralgen.com/technology.html.

Adaptive algorithms

An alternative answer to accelerate simulations is to develop so-called adaptive algorithms which allows to focus computational resources on the most critical parts of the system. Adaptive algorithms modify their behavior depending on the data that they treat. This modification is due to the algorithm itself and not to an external action.

Precisely, an adaptive algorithm may vary the quantity of allocated resources to each part of the system by analyzing the data. In particular, the difficulty is to know how to choose the importance of the data via a suitable metrics. The benefit of this type of approach comes from the fact that, for many applications, it is more efficient to focus the computational effort on some specific parts of the system. For example, during the simulation of a polymer in a solvent, although the solvent is important, statistics are collected on the polymer and it is possible to focus on this molecule to accelerate the convergence of its statistical properties [START_REF] Artemova | ARPS: Adaptively Restrained Particle Simulations[END_REF]. When a system is locally stressed, it is more efficient to use a truncated gradient which focuses on the most affected variables to perform fast geometry optimization [START_REF] Bosson | Block-Adaptive Quantum Mechanics: an adaptive divide-and-conquer approach to interactive quantum chemistry[END_REF][START_REF] Bosson | Interactive physicallybased structural modeling of hydrocarbon systems[END_REF].

The adaptive paradigm takes a central part in this thesis. The effort was mostly devoted to adaptive algorithms with a controllable cost, an essential feature for interactive modeling. Our approach can be split in two steps.

• Choosing the degrees of freedom. An atomic system has a set of degrees of freedom. For example, for simulations in Cartesian coordinates with a classical empirical model, degrees of freedom are the atomic positions. In the framework of a quantum chemistry model, nuclei are treated classically and their positions are degrees of freedom. Molecular orbitals that belong to the space of the orthogonal functions are also degrees of freedom. The idea of the adaptive approach developed at the NANO-D group is to constrain on the fly these degrees of freedom to simplify and accelerate the simulation.

The difficulty is thus to choose the appropriate constraints on these degrees of freedom. This choice is based on a metrics that will depend on the type of simulation (dynamics [START_REF] Artemova | ARPS: Adaptively Restrained Particle Simulations[END_REF], quasi-static [START_REF] Rossi | Adaptive torsion-angle quasi-statics: a general simulation method with applications to protein structure analysis and design[END_REF], geometry optimization [START_REF] Bosson | Interactive physicallybased structural modeling of hydrocarbon systems[END_REF]), on the coordinate system and on the chosen model.

For example, it was shown that, for articulated body simulations, it is possible to compute the sum of the squared body accelerations even before computing the acceleration of each body [START_REF] Redon | Adaptive dynamics of articulated bodies[END_REF]. It is an exceptional situation that allows to predict which are the most interesting degrees of freedom to simulate.

• Incremental update of the system state. Once the system constraints have been chosen, one has to develop algorithms to benefit from the simplifications. For instance, in the framework of a pairwise empirical potential (sum over two-body terms), partial force tables allow to recompute only the changing terms when some relative positions were frozen [START_REF] Rossi | Adaptive torsion-angle quasi-statics: a general simulation method with applications to protein structure analysis and design[END_REF].

For quantum chemistry models, the delocalized nature of the Schrödinger equation should prevent an efficient incremental update of the system. Fortunately, methods exploiting the nearsightedness principle allowed the development of incremental update of the electronic structure when some nucleus positions are frozen in space [START_REF] Lee | Frozen density matrix approach for electronic structure calculations[END_REF][START_REF] Ermolaeva | Implementation and testing of a frozen density matrix-divide and conquer algorithm[END_REF][START_REF] Stewart | Application of localized molecular orbitals to the solution of semiempirical self-consistent field equations[END_REF][START_REF] Surján | Frozen localized molecular orbitals in electron correlation calculations -exploiting the Hartree-Fock density matrix[END_REF]. Constraints on the electronic degrees of freedom (e.g. the use of a reduced basis) transform the generalized eigenvalue problem. To benefit from the simplifications, appropriate linear algebra routines are required.

In the previous sections, we have introduced the general framework of this thesis. We now present its main contributions.

Incremental update of the Brenner potential and choice

of the degrees of freedom for a reactive force field.

We first focused on interactive modeling based on a reactive force field. Precisely, the Brenner potential is an empirical many-body potential-energy expression with a chemical bond description able to describe bond formation and destruction. This thesis describes an algorithm to rapidly update this potential energy expression based on the list of the relative motions. In this framework, a new adaptive algorithm has been developed for cartesian coordinates modeling. We show the effectiveness of these tools by implementing an hydrocarbon modeler. Figure 1.9 illustrates the use of this modeler.

These results have been published in the Journal of Computational Physics [START_REF] Bosson | Interactive physicallybased structural modeling of hydrocarbon systems[END_REF] and are presented in Chapter 3.

A method for interactive quantum chemistry

Then, we wanted to extend the previous work limited to hydrocarbon systems only by using a quantum chemistry model. An important contribution of this thesis is to present a method that allows computing the electronic structure of a nucleus and electron system at interactive rates. In the software developed by the group (SAMSON), the user can modify the geometry of a molecule while visualizing immediately the impact on the chemical structure (bond orders, electronic density, molecular orbitals) for molecules containing up to a few hundred atoms. Forces acting on nuclei are computed in real time. The user can visualize the dynamics of the atomic system or construct stable configurations by minimization of the potential energy.

The method is based on the semi-empirical theory called «Atom Superposition and Electron Delocalisation -Molecular Orbital (ASED-MO)» [START_REF] Anderson | Electron density distribution functions and the ASED-MO theory[END_REF], and on a divideand-conquer algorithm [START_REF] Dixon | Semiempirical molecular orbital calculations with linear system size scaling[END_REF]. This algorithm has a linear scaling complexity in the number of atoms as well as a good parallel scaling.

These results have been published in the Journal of Computational Chemistry [START_REF] Bosson | Interactive quantum chemistry: A divide-and-conquer ASED-MO method[END_REF] and are presented in Chapter 4. Figure 1.10 illustrates the editing of a benzene molecule thanks to the interactive quantum chemistry method.

Adaptive algorithms for interactive quantum chemistry

After presenting a method for interactive quantum chemistry, we developed a new adaptive method to constrain on the fly nuclei as well as electrons: Block-Adaptive Quantum Mechanics (BAQM).

• The nuclei can be frozen in space. We call this component Block-Adaptive Cartesian Mechanics. • Molecular orbitals can be constrained in vectorial subspaces defined by a reduced basis. This basis is automatically updated. This component is called Adaptive Reduced-Basis Quantum Mechanics.

Combining both approaches allows to significantly speed-up each time step. By adaptively focusing effort on variables that are the most affected by the user actions, attraction to local potential energy minima can be as well significantly accelerated.

Applying BAQM to the semi-empirical ASED-MO theory allows to simulate large systems (more than a thousand atoms) with interactive rates. This results are presented in Chapter 5 and should be published in the future [START_REF] Bosson | Block-Adaptive Quantum Mechanics: an adaptive divide-and-conquer approach to interactive quantum chemistry[END_REF]. 

Applications

After developing many algorithms for interactive modeling, we studied several possible applications of this work. Results are presented in Chapter 6.

Study of graphane forming

Graphane is a new material "built" by complete hydrogenation of a graphene sheet. The tools and algorithms developed in Chapter 3 have allowed a rapid study of graphane forming. In particular, the binding of hydrogen atoms to the graphene sheet gets stronger and stronger as the number of adsorbed atoms increases (Figure 1.12). ). An hydrogen island with more than 16 atoms on a graphene sheet offers a more favorable configuration than 8 H 2 molecules and a graphene sheet.

Tools for education

Interactive simulation tools are more and more in demand in the educational field [START_REF] Adams | A study of educational simulations part II -interface design[END_REF][START_REF] Balasubramanian | Games and simulations[END_REF][START_REF] Perkins | PhET: Interactive simulations for teaching and learning physics[END_REF][START_REF] Wieman | PhET: Simulations that enhance learning[END_REF]. The possibilities provided by the new algorithms can be transformed into educational tools to overcome simplified molecular representation such as the ball-and-stick model and to discover quantum mechanics in an amusing way. Laboratories with high school students were set on in the context of nano@school (Figure 1.13). An abstract entitled "Students construct and edit virtual molecules thanks to a physically-based model" was presented at the ICCE-ECRICE (International Conference on Chemistry Education -European Conference on Research In Chemical Education) [START_REF] Chevrier | Students construct and edit virtual molecules thanks to a physically-based model[END_REF]. Future use of interactive modeling in high school is under study.

Virtual prototyping

Molecular machines are more and more addressed [START_REF] Grill | Rolling a single molecular wheel at the atomic scale[END_REF][START_REF] Joachim | The design of a nanoscale molecular barrow[END_REF][START_REF] Shirai | Surface-rolling molecules[END_REF]. To better understand the behavior of such molecular systems, it is important to isolate as much as possible individual molecules from their environment. To this aim, scanning probe microscopy experimental studies address individual molecules on surfaces. Microscopes such as Scanning Tunneling Microscopes or Atomic Force Microscopes have an extremely fine tip which ends up with a single atom. Using some physical phenomena (tunneling effect or interaction forces), this tip allows to scan locally, at the angstrom resolution, a surface and molecules on a surface. The tip also offers the possibility to apply a mechanical stress on the molecule.

SAMSON and the contributions of this thesis can play an essential role in the understanding of molecular mechanisms while the tip manipulates the molecule. Precisely, local actions of the tip can be computed at interactive rates which helps the experimentalist to define the tip trajectory to get the mechanical function for which the molecule has been designed.

In this context, a molecular "millipede" has been studied by our collaborators in order to transfer a mechanical action to a molecule (Figure 1.14). 

Virtual reality

We report new algorithms in Chapter 3, 4 and 5 to allow for interactive simulation of the nanoscale. To enhance our interactive modeler for hydrocarbon systems, we have implemented a stereoscopic display (Figure 1.15). Chapter 2

Theories and algorithms for interactive quantum chemistry

Résumé

Ce chapitre présente un état de l'art des théories et algorithmes pour le calcul de la structure électronique de systèmes atomiques en temps interactif. La discussion porte essentiellement sur l'aspect performance et algorithmique une fois le modèle fixé pour pouvoir résoudre le problème en temps interactif. Typiquement dans l'approche classique, l'étape limitante consiste en la résolution d'un problème aux valeurs propres généralisées dont nous présentons les propriétés mathématiques. L'approche directe pour résoudre le problème a une complexité cubique en temps CPU et quadratique en encombrement mémoire ce qui est rédhibitoire pour la simulation interactive. Nous présentons des méthodes itératives alternatives de résolution du problème aux valeurs propres pour tirer parti de la spécificité du problème. De plus, le principe de localité des interactions a permis l'émergence de nombreux schémas à coût linéaire en temps CPU et en encombrement mémoire.

Summary

This chapter presents a review of theories and algorithms for interactive electronic structure computation. The chapter focuses mainly on the performance and algorithmic aspects of the simulation, once the quantum chemistry model is chosen. Typically, the simulation bottleneck is to solve a generalized eigenvalue problem. The direct approach to solve this problem has a cubic complexity in computational time and a quadratic complexity in memory consumption, which are important limitations for an interactive simulation. There also exist different iterative algorithms that take advantage of the specificity of the problem. For large systems, we recall the nearsightedness principle, which allows sophisticated schemes to achieve linear complexity in both memory and time.

Introduction

Usually, the quantum chemistry community concentrates efforts on simulating larger and larger systems and introducing new models. In this thesis, however, we pursue a very different goal: working on an interactive treatment of systems. Even for small systems, reaching an interactive rate is a challenge.

For instance, the high cost of quantum chemistry models pushed Haag et al. at developing an adaptive interpolating scheme to permit an interactive exploration of the potential energy surface using a haptic device [START_REF] Haag | Generation of potential energy surfaces in high dimensions and their haptic exploration[END_REF]. In this thesis, we developed new methods and algorithms to directly evaluate and solve quantum chemistry models interactively.

This chapter presents the specific information that serves this purpose and is useful for the development of new algorithms and is organized as follows. In Section 2, we explain different theories and approximations to derive a simpler one-electron equation from the original Schrödinger equation. There are two approaches to solve this problem. In Section 3, we present the direct approach. We formulate the generalized eigenvalue problem, present theorems to understand mathematical properties of the problem and finally introduce numerical methods (direct and iterative). In Section 4, we present reformulations of the one-electron equation to achieve linear scaling complexity.

2 Overview of computational chemistry models

Quantum mechanics: the Schrödinger equation

Let us consider a molecular system with n nuclei and N electrons. We recall that, in quantum mechanics, the system state is described by a wave function Ψ(R, r) where |Ψ(R, r)| 2 is the probability to find the nuclei with the positions R and the electrons with the positions r. The time evolution of the wave function is described by the fundamental time-dependent Schrödinger equation:

HΨ = i dΨ dt , (2.1) 
with the Hamiltonian operator H given as:

H = - i 2 2m e ∇ 2 i - k 2 2m k ∇ 2 k - i k e 2 Z k r ik + i<j e 2 r ij + k<l e 2 Z k Z l r kl , (2.2) 
where i and j iterate over the electrons, k and l iterate over the nuclei, is the Dirac constant, m e is the mass of an electron, m k is the mass of the nuclei k, ∇ 2 is the Laplace operator, e is the charge of an electron, Z is the atomic number and r ab is the distance between nuclei a and b.

The solution of the time-dependent Schrödinger equation can be obtained from the solution of the time-independent Schrödinger equation which reads as:

HΨ = EΨ.
(2.

3)

The solutions are the eigenvalues and eigenfunctions of the Hamiltonian H. Note that, if we could determine them, we could predict any property of any given atomic system. This led the physicist Paul Dirac, after casting quantum mechanics into his formalism, to declare that "the rest, is chemistry.". However, the Schrödinger equation cannot be solved analytically and not even numerically (except for very small systems). Therefore, the computational quantum chemistry community focuses on introducing new approximations to make the equation solvable at least numerically without losing accuracy.

Three reasonable approximations

Below we briefly describe three basic approximations that help to solve the Schrödinger equation.

The first approximation is called the Born-Oppenheimer (BO) approximation [START_REF] Born | Zur Quantentheorie der Molekeln[END_REF]. This approximation considers the electrons being particles that follow the nuclei motion instantaneously. This comes from the fact that there is a strong separation of time scales between the electronic and nuclear motion since electrons are more than three orders of magnitude lighter than nuclei. This leads to the assumption that the Hamiltonian is separable and one can look for the wave function in the form:

Ψ(R, r) = Ψ n (R)Ψ e (R, r), (2.4) 
where Ψ n (R) is a nuclear wave function and Ψ e (R, r) is an electronic wave function that depends parametrically on the nuclei positions. The time independent Schrödinger equation for the electrons is:

(H e (R) + V N (R)Ψ e (R, r) = e(R)Ψ e (R, r), (2.5) 
where

H e (R) = - i 2 2m e ∇ 2 i - i k e 2 Z k r ik + i<j e 2 r ij . (2.6) 
and V N (R) is a constant (nuclei positions dependent term). However, this approximation breaks down when one wants to treat e.g. superconductivity (attractive electronic interaction mediated by phonons) [START_REF] Ishihara | Interplay of electron-phonon interaction and electron correlation in high-temperature superconductivity[END_REF] or lattice motion in graphene [START_REF] Pisana | Breakdown of the adiabatic Born-Oppenheimer approximation in graphene[END_REF] .

The second approximation is to consider the nuclei classically. That means that they are point charge particles following the Newton's laws of motion. In general, this is a good approximation. Exceptions include the proton in H-bonded systems because of its small mass [START_REF] Tuckerman | On the quantum nature of the shared proton in hydrogen bonds[END_REF].

Finally, the many-electrons Schrödinger equation can be simplified by implicitly treating the inner core electrons. They are strongly bound to the nuclei, do not play a significant role in the chemical binding of atoms, and can be effectively taken into account by introducing a pseudopotential [START_REF] Pickett | Pseudopotential methods in condensed matter applications[END_REF].

As a result, only the time-indepedent Schrödinger equation for the valence electrons is the focus of most quantum chemistry methods.

A one-electron formulation of the many-body problem

The time-independent Schrödinger equation for the valence electrons is much simpler than the original equation because electron-nucleus correlations are not present in this equation. The difficulty, however, remains from the interaction between the electrons. Quantum Monte Carlo methods cast the Schrödinger equation in a stochastic problem which allows to compute some observables at a high numerical cost [START_REF] Hammond | Monte Carlo methods in ab initio quantum chemistry[END_REF]. This chapter focuses on deterministic approaches based on a one-electron equation. This section explains the theories that lead to this simpler problem.

Hartree-Fock theory

An approach to further simplify the Schrödinger equation is to neglect the electron-electron correlation by introducing a mean-field approximation. This can be done by assuming that the N-body wave function of the system can be approximated by a single Slater determinant. In this case, all the terms of the Hamiltonian can be expressed as a sum of one-electron operators:

H = i h i = i - 1 2 ∇ 2 i - n k=1 Z k r ik + V HF i , (2.7) 
where V HF i is the effective interaction potential that depends on the electronic density ρ. The electronic density contribution of each molecular orbital ψ j is by definition |ψ j | 2 . Thus, the problem formulation depends on its own solution. To address this issue, Hartree and Fock proposed an iterative self-consistent field method (see e.g. [START_REF] Cramer | Essentials of computational chemistry: theories and models[END_REF]). One has to start with an initial guess, which defines the effective interaction potential V HF i . The solution of this problems provides new molecular orbitals, which define a new problem... The process is repeated until the solution does not change more than a predefined threshold. The convergence can be slow though [START_REF] Dederichs | Self-consistency iterations in electronic-structure calculations[END_REF].

Density Functional Theory

The idea of density functional theory is that the potential energy of the system is completely defined by its electronic density. Therefore, one can look for a practical way to directly compute the electronic density without computing the N-body wave function. This electronic density can be computed by solving a fictitious problem of N independent electrons, which will result in the exact electronic density [START_REF] Kohn | Self-consistent equations including exchange and correlation effects[END_REF]. The wave function for the fictitious system is also a Slater determinant and, as in the Hartree-Fock method, the Hamiltonian of the system can be formulated as a sum of one-electron operators:

H = i h i = i - 1 2 ∇ 2 i - n k=1 Z k r ik + ρ(r) r i -r dr + V XC , (2.8) 
where V XC represents the so-called exchange-correlation energy term E XC . This term accounts for the difference between a classical and quantum mechanical electronelectron repulsion and for the difference in kinetic energy between the fictitious noninteracting electrons and the real ones. Unfortunately, this term V XC can not be computed analytically and one has to involve different approximations, such as the local-density approximation (LDA) [START_REF] Kohn | Self-consistent equations including exchange and correlation effects[END_REF][START_REF] Barth | A local exchange-correlation potential for the spin polarized case: I[END_REF] or the generalized gradient approximation (GGA) [START_REF] Perdew | Generalized gradient approximation made simple[END_REF]. As the effective operators depend on electronic density, the problem is solved via an iterative self-consistent scheme.

Semi-empirical theories

One can remark that either of the two presented theories involve approximation or/and parameters. However, they justify that a one-electron Hamiltonian should be able to deliver accurate results. To take advantage of this fact, semi-empirical approaches directly consider an empirical formulation of the one-electron Halmiltonian terms. For instance, Erich Hückel succeeded to explain properties of unsaturated and aromatic hydrocarbons with a very simple model [START_REF] Hückel | Quantentheoretische Beiträge zum Benzolproblem. I. Die Elektronenkonfiguration des Benzols und verwandter Verbindungen[END_REF]. Since then, many others semi-empirical models have been also developed [START_REF] Cramer | Essentials of computational chemistry: theories and models[END_REF].

3 The direct approach: solving a generalized eigenvalue problem

Formulation of a linear algebra equation by projecting the one-electron equation on a finite basis

The main point of the three presented approaches (Hartree-Fock, DFT, semiempirical) is to solve a one-electron equation after it has been projected on a finite basis B. This finite basis has to be carefully chosen as it has to represent the infinitedimensional function space. Let us denote by φ µ the basis elements. Projecting the one-electron equation on this finite basis leads to the following generalized eigenvalue problem:

HC = SCD, (2.9) 
with

H µν = φ µ |H|φ ν , S µν = φ µ |φ ν , (2.10) 
where C is the eigenvector matrix, D is a diagonal matrix where the diagonal elements are the eigenvalues. The basis sets can be generally split in two classes. On the one hand, large basis sets such as real space grid [START_REF] Briggs | Real-space multigrid-based approach to large-scale electronic structure calculations[END_REF], plane waves [START_REF] Kresse | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[END_REF] or wavelets [START_REF] Genovese | Daubechies wavelets as a basis set for density functional pseudopotential calculations[END_REF] can be used. In general, the dimension of such basis sets is much larger than the number of atoms leading to a high computational cost. However, they appear to have advantages such as accuracy and better convergence rate in the self-consistent scheme.

On the other hand, so-called optimized basis sets, centered on atoms can be used. For instance, atomic orbitals are basis functions that are widely used in calculations of molecular orbitals in quantum chemistry [START_REF] Mulliken | Spectroscopy, molecular orbitals, and chemical bonding[END_REF]. Atom-centered basis sets are generally more efficient as they need less basis elements: from 2 to 10 times the number of atoms.

The derivation of the one-electron Hamiltonian terms H µν can be done using one of the three approaches: Hartree-Fock, Density Functional Theory or semi-empirical. For the atomic orbital basis, overlap integrals S µν can be efficiently computed by representing each atomic orbital as a sum of Gaussian-Type Orbitals (GTOs) [START_REF] Hehre | Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals[END_REF]. The document [START_REF] Fermann | Fundamentals of molecular integrals evaluation[END_REF] describes the analytical integral evaluation involved.

Once the eigendecomposition is computed, the closed shell configuration is obtained by filling the lower energy molecular orbitals with pairs of electrons having opposite spins. The potential energy of the system is then expressed as:

V (R) = N/2 i=1 2e i (R) + V N N (R), (2.11) 
where N is the number of electrons, e i are the ordered eigenvalues and V N N (R) is the repulsive nuclei potential.

Problem properties

Independently to the chosen model, one has to solve a generalized eigenvalue problem (equation (2.9)) which typically becomes the bottleneck for large systems. Before introducing numerical methods to solve this equation, we introduce some theorems which help understanding the problem and can provide directions to develop adaptive approaches. Indeed, as the system evolves continuously (the nuclei do not move significantly between two steps), many similar generalized eigenvalue problems have to be solved and there is an opportunity to predict some properties avoiding a systematic recomputation of the whole eigendecomposition. In the following sections, we provide five elements towards this goal.

• Perturbation theory describes the evolution of the eigenvalues and the eigenvectors.

• The Hoffman-Wielandt analogue theorem can be used to predict a bound on the potential energy variation.

• Individual eigenvalue bounds are also presented.

• The Gershgorin circle theorem can predict a bound on the error for the presented approximation.

• And finally, the so-called sin(Θ) theorem provides bounds for the invariant subspace of the occupied eigenvectors.

In this section, we denote by C i the i th eigenvector of the matrix pair (H, S) and e i the corresponding eigenvalue (eigenvalues are sorted in increasing order). Equation (2.9) can be rewritten as:

HC i = e i SC i .
(2.12)

The matrix pair (H, S) corresponds to the one-electron Hamiltonian of the old configuration. We consider a new configuration with associated matrices (H new , S new ):

H new = H + δH, (2.13) 
S new = S + δS. (2.14) 
We introduce ǫ = ||δH|| 2 F + ||δH|| 2 F , a norm of the matrices variation. We recall that the Frobenius matrix norm ||.|| F is defined by:

|| H || F = d i=1 d j=1 |h ij | 2 , (2.15) 
where d denotes the dimension of the matrices. We are interested in gathering information on the eigendecomposition of the new matrix pair (H new , S new ) based on the information on eigendecomposition of (H, S).

Perturbation theory

Eigenvalue perturbation theory allows to express eigenvalues and eigenvectors of a perturbed Hamiltonian (H new , S new ) as a function of the known eigenvectors and eigenvalues. It also allows one to determine the sensitivity of the eigenvalues and eigenvectors with respect to changes in the Hamiltonian terms. We recall that S represents an inner product on a real vector space and thus is a symmetric positivedefinite matrix; H represents the Hamiltonian operator and is symmetric. 

e new i = e i + C T i (δH -e i δS)C i + O(ǫ 2 ), (2.16 
)

C new i = C i 1 -C T i δSC i + j =i C T j (δH -e i δS)C i e i -e j C j + O(ǫ 2 ).
(2.17)

Higher order perturbation can be found in the literature [START_REF] Trefethen | Numerical linear algebra[END_REF].

Potential energy variation bound

For orthogonal basis (S = I), the Hoffman-Wielandt analogue theorem for symmetric matrices bounds the spectral variation of the Hamiltonian.

Theorem 3.2 [172] d i=1 |e i -e new i | 2 ≤ δH 2 F , (2.18) 
where . F is the Frobenius norm.

Corollary 3.3 Let δE denote the variation of the potential energy between the two states with associated Hamiltonians H and H new . We can state:

|δE| = | i=1...N/2 e i - i=1...N/2 e new i | ≤ i=1...N/2 |e i -e new i | ≤ √ d δH F , (2.19) 
The Hoffman-Wielandt theorem has been extended to the generalized eigenvalue case [START_REF] Li | On perturbations of matrix pencils with real spectra[END_REF].

Individual eigenvalues perturbation bound

Let γ(H, S) = min ||x|| 2 =1 (x T Hx + x T Sx) be a condition number of the matrix pair (H, S). Let introduce χ the chordal metrics defined by:

χ(a, b) = |a -b| √ 1 + a 2 √ 1 + b 2 . (2.20)
The chordal metrics is used to measure the relative distance between two eigenvalues and is appropriate to obtain sharper individual bounds.

Theorem 3.4 [START_REF] Stewart | Matrix perturbation theory[END_REF] When ǫ γ < 1, the following perturbation bound theory holds:

χ(e i , e new i ) ≤ ε γ . (2.21)

Energy variation based on the Gershgorin circle theorem

To use the information provided by the previously solved one-electron equation, one can express the new differential equation using the previous molecular orbital as a basis set. Then the eigenproblem writes :

H r C r = S r C r E r , (2.22) 
where

H r ij = C T i H new C j , S r ij = C T i S new C j . (2.23) 
Remark C T i H new C i = e new i + O(ǫ) (2.24) C T i S new C i = 1 + O(ǫ), (2.25) 
C T i H new C j = O(ǫ).
(2.26)

C T i S new C j = O(ǫ). (2.27) 
Thus, for small ǫ, the matrix H r and S r have small off-diagonal elements.

When the basis is orthogonal and S = I, the Gershgorin theorem allows to locate the new eigenvalues.

Theorem 3.5 If D i are the Gershgorin disk defined by:

∀x ∈ D i , |x -H r ii | ≤ d j=1,j =i |H r ij |, (2.28) 
then d i=1 D i contains all the eigenvalues of H. Theorem 3.6 [START_REF] Wilkinson | The algebraic eigenvalue problem[END_REF] If the Gershgorin disks do not overlap, each of them contains one eigenvalue and we can state:

|e new i -H r ii | ≤ d j=1,j =i |H r ij |. (2.29)
For a generalized eigenvalue problem a similar result can be found [START_REF] Stewart | Gershgorin theory for the generalized eigenvalue problem Ax = λBx[END_REF][START_REF] Nakatsukasa | Gerschgorin's theorem for generalized eigenvalue problems in the Euclidean metric[END_REF].

Theorem 3.7 If D i are the generalized Gershgorin disk defined by:

∀x ∈ D i , χ(x - H r ii S r ii ) ≤ d j=1,j =i (H r ij ) 2 + d j=1,j =i (S r ij ) 2 (H r ii ) 2 + (S r ii ) 2 , (2.30)
and if the generalized Gershgorin disks do not overlaps, we can state:

χ(e i , H r ii S r ii ) ≤ d j=1,j =i (H r ij ) 2 + d j=1,j =i (S r ij ) 2 (H r ii ) 2 + (S r ii ) 2
.

(2.31)

Invariant subspace perturbation bound

The previous theorems (3.1, 3.2, 3.4, 3.6) show that we may predict a bound on the variation of the energy. The variation of eigenvectors or invariant subspaces can be bounded as well [START_REF] Stewart | Matrix perturbation theory[END_REF].

Let δ be the gap between the highest occupied eigenvalue of H and the lowest unoccupied one of H new . Let R new and R old denote orthogonal projectors on the occupied subspace. When an orthogonal basis is used (S = I) the Davis-Kahan sin(Θ) theorem [START_REF] Davis | The rotation of eigenvectors by a perturbation[END_REF] states a bound on the variation of the occupied subspace (occupied molecular orbitals).

Theorem 3.8 The sin(Θ) theorem. If δ > 0, ||(I -R new )R old || F ≤ ||(δH)M || F δ . (2.32)
where M is the matrix of the occupied eigenvectors. For the generalized eigenvalue problem, a similar theorem exists (corollary 4.5 of [START_REF] Stewart | Pertubation bounds for the definite generalized eigenvalue problem[END_REF]).

Conclusion

Much information of the eigendecomposition of a new matrix pair can be predicted based on the information of a previously solved similar eigendecomposition. This includes variation bounds on potential energy, individual eigenvalues and invariant subspace. An important remark is that simpler and sharper bounds are available when the basis functions are orthogonal.

The next sections introduce numerical methods to solve the generalized eigenvalue problem (equation (2.9)).

The direct method to solve the generalized eigenvalue problem

In this section, we present the direct approach which is composed of three steps:

• Reduction to an eigendecomposition problem,

• Reduction to a tridiagonal eigendecomposition problem,

• Diagonalization of the tridiagonal matrix.

Reduction to an eigendecomposition problem

The first step is to transform the problem in a simpler eigendecomposition problem with a cubic complexity. To achieve this transformation, the first step is to decompose the overlaps matrix S = U U T (Choleski or Lowdin symmetric orthonormalization). Then the problem can be transformed as follows:

HC i = e i SC i (2.33) becomes U -1 H(U -T U T )C i = e i U -1 U U T C i , (2.34) thus (U -1 HU -T )(U T C i ) = e i (U T C i ), (2.35) 
which reads as

H ′ C ′ i = e i C ′ i , (2.36) 
with

H ′ = U -1 HU -T and C ′ i = U T C i .
From the solution of this equation, one can recover the eigenvectors by

C i = U -T C ′ i .
(2.37)

Reduction to a tridiagonal eigendecomposition problem

The previous step leads to an eigendecomposition problem. A second transformation is generally applied to reduce the problem to a tridiagonal matrix diagonalization. This cubic complexity is the bottleneck of the overall approach [START_REF] Ballard | Symmetric eigenvalue problem: Tridiagonal reduction[END_REF]. Typically, this transformation is based on Householder transformations, is sequential and thus poorly benefits from parallel architectures.

Diagonalization of the tridiagonal matrix

The Holy Graal algorithm exists for this step, i.e., an algorithm with an optimal quadratic complexity (scaling of the output) [START_REF] Dhillon | A new O(n 2 ) algorithm for the symmetric tridiagonal eigenvalue/eigenvector problem[END_REF].

Highly optimized routines

The generalized eigenvalue problem is very common and is not only involved in electronic structure computation. Based on optimization of the processor cache use and on SIMD (Single Instruction Multiple Data), optimized libraries such as MKL, ATLAS, Accelerate Framework or CULA can offer speed-ups of about two orders of magnitude compared to a naive implementation. The possibility of using highly optimized routines at low level has to be taken into account as the efficiency of these routines offers a rude concurrency to alternative approaches.

Iterative methods

In the previous section, we have presented the direct approach to solve the generalized eigenvalue problem HC = SCD (2.9). There exist as well several iterative methods specifically designed for electronic structure computation, which can take advantage of specific properties of our problem.

• A first key remark to accelerate the electronic structure computation is that one is interested only in the invariant subspace spanned by the eigenvectors of the lowest eigenvalues. Consequently, it is useless to perform the full eigendecomposition of the Hamiltonian.

• A second key remark is that during a simulation or a self-consistent scheme, the new eigendecomposition problem is only a slight modification of a previously solved eigendecomposition problem. As a result, a good initial guess is often available.

Jacobi method

The Jacobi method allows to solve a simple eigendecomposition problem. The method works with so-called Given rotation to construct a sequence of similar matrices. The sequence is constructed such that the off-diagonal terms decay and consequently it converges to the diagonal matrix of the eigenvalues. Eigenvectors can be constructed as well [START_REF] Wilkinson | The algebraic eigenvalue problem[END_REF].

Pseudodiagonalization method

In general, the Jacobi method is less efficient than the direct approach. The pseudodiagonalization technique consists in using the same technique as the Jacobi method to directly compute the invariant subspace of the lowest-energy eigenvectors [START_REF] Stewart | Fast semiempirical calculations[END_REF].

Let V denote the previous lowest-energy eigenvectors and W the remaining eigenvectors. The pseudodiagonalisation technique consists in performing a sequence of Given rotation such that ||H v-w = V T HW || tends to zero and an invariant subspace is determined as stated in the following theorem. Theorem 3.9 Consider an orthogonal basis split in two sets of vectors V and W and H v-w = V T HW . If all the eigenvalues are non degenerate and H v-w = 0, an invariant subspace has been computed: span(HV ) = span(V ), span(HW ) = span(W ).

(2.38)

Proof Let (λ, x) be an eigenvalue and an eigenvector (i.e. Hx = λx), we have to show that:

x ∈ span(V ) or x ∈ span(W ).

(2.39)

Let v ∈ span(V ) and w ∈ span(W ) be the unique vectors such that x = v + w, we have Hx = Hv + Hw (2.40)

where Hv ∈ V and Hw ∈ W since H v-w = 0, and,

Hx = λx = λv + λw. (2.41)
Thus, Hv = λv and Hw = λw, e.g., v and w are eigenvectors associated to eigenvalue λ. As we suppose that there is no degeneracy, this implies that v = 0 or w = 0. We can conclude that the theorem is valid.

Direct inversion in the iterative subspace

Peter Pulay developed the Direct Inversion in the Iterative Subspace (DIIS) to accelerate eigenvector search in the framework of the Hartree-Fock self consistentfield method [START_REF] Pulay | Convergence acceleration of iterative sequences. The case of SCF iteration[END_REF]. It has also been very successful in the context of plane-wave basis set [START_REF] Kresse | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[END_REF][START_REF] Kresse | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[END_REF].

In the DIIS approach at a certain iteration, for each current approximate eigenvector v is associated a vectorial space V and a current eigenvalue approximation λ = v T Hv v T Sv . The main idea of the method is then to find the vector w ∈ V that minimizes the norm of the residue R = Hw -λSw. Each eigenvector is treated independently and, therefore, the approach has a good parallel scaling [START_REF] Rayson | Rapid iterative method for electronic-structure eigenproblems using localised basis functions[END_REF]. Remark that in principle no orthogonalization is needed, however, it is useful to improve the convergence of the method.

One key point of the DIIS approach is to generate a good vectorial space V to identify one eigenvector. In [START_REF] Rayson | Rapid iterative method for electronic-structure eigenproblems using localised basis functions[END_REF], Rayson et al. suggest an iterative method to generate this vectorial space. Let consider v, the current approximation of an eigenvector (in general initialized as the eigenvector of a previously solved eigenproblem) and λ the corresponding approximated eigenvalue with the Rayleigh quotient. The main idea is to try to find the perfect increment δv such that

H(v + δv) = λS(v + δv), (2.42) 
which can be rewritten

δv = -(H -λS) -1 (Hv -λSv), (2.43) 
where we can use the spectral decomposition of (H -λS) -1

(H -λS) -1 = i v T i 1 λ i -λ v i . (2.44)
Of course, the pair elements (λ i , v i ) are the unknowns of the problem, so this expression is useless as such. The idea is then to use the previous eigendecomposition of a matrix pair H old , S old :

(H -λS) -1 ≈ i (v old i ) T 1 λ old i -λ v old i . (2.45)
Once δv has been computed with this approximation, it is included in the basis element of the vectorial space V . Then, a new eigenvector approximation is computed as the one minimizing the residue in V and λ is updated by computing the new Rayleigh quotient. The process is repeated until convergence. Remark that the problem becomes ill conditioned when we are getting close to the solution. As a result, one has to stop the iterative process before converging to the machine precision.

Summary

Iterative methods can exploit the temporal coherence between the successive eigendecomposition problems. Also, they have a better parallel scaling and can exploit the sparsity of H and S. Finally, they can compute only the lowest-energy eigenvectors.

However, in general, to achieve exact results, one has to suppose that there is no degeneracy and there is no crossing between the eigenvalues. Precisely, since the eigenvalues evolve continuously with the modification of the Hamiltonian, it might happen that the evolution of Highest Occupied Molecular Orbital become higher in energy than the evolution of Lowest Unoccupied Molecular Orbital. In this case, some iterative algorithms may fail to determine the good eigenvalues.

Another important drawback of the iterative methods is that in practice, one has to perform orthogonalisation of the current set of eigenvectors to obtain good convergence. However, it is not efficient when many eigenvectors have to be computed. That is why, on a desktop machine, iterative methods are often slower than the direct approach when all the eigenvectors are computed [START_REF] Allan | Parallel application software on high performance computers. Parallel diagonalisation routines[END_REF].

4 Density matrix approaches: exploiting nearsightedness principle

Introduction

We have presented many numerical methods to solve the generalized eigenvalue problem (equation (2.9)). However, for large systems, the "nearsightedness" principle formulated by Kohn suggests that we can avoid this expensive diagonalization [START_REF] Kohn | Density functional and density matrix method scaling linearly with the number of atoms[END_REF]. Intensive efforts have resulted in many linear-scaling methods for energy evaluation that are based on a reformulation of the electronic structure problem. For a complete state of the art of the linear-scaling method, we refer to [START_REF] Bowler | O(N ) methods in electronic structure calculations[END_REF][START_REF] Goedecker | Efficient linear scaling algorithm for tightbinding molecular dynamics[END_REF][START_REF] Ordejón | Order-N tight-binding methods for electronic-structure and molecular dynamics[END_REF].

Let us introduce P , the density matrix which is defined as follows:

P = N/2 i 2C i C T i , (2.46) 
where C i are the eigenvectors that minimize the potential energy of the system E = Tr(HP ) with two constraints:

• N = Tr(SP ) (the system have N electrons),

• C T i SC j = 0, i = j (the molecular orbitals are orthogonal).

The idea of linear-complexity methods is to assume that the density matrix is sparse with only a linear number of non-zero entries. Thus, the efficiency and the accuracy of these approaches critically rely on the distance cut-off beyond which the offdiagonal density matrix terms may be neglected. The crucial question of how rapidly these terms decay with the distance between the orbital centers has been well studied in the literature [START_REF] Baer | Sparsity of the density matrix in Kohn-Sham density functional theory and an assessment of linear system-size scaling methods[END_REF]. Linear-complexity methods are also based on the fact that the Hamiltonian matrix H and the overlaps matrix S are sparse, which is true when the basis sets are localized. Linear-complexity methods can be divided into two classes [START_REF] Ordejón | Order-N tight-binding methods for electronic-structure and molecular dynamics[END_REF]:

• Variational approaches: these methods are based either on direct minimization of the density matrix [START_REF] Daw | Model for energetics of solids based on the density matrix[END_REF][START_REF] Li | Density-matrix electronic-structure method with linear system-size scaling[END_REF], or on iterative localized orbital computation [START_REF] Mauri | Orbital formulation for electronic-structure calculations with linear system-size scaling[END_REF][START_REF] Ordejón | Unconstrained minimization approach for electronic computations that scales linearly with system size[END_REF]. In principle, they converge to the exact result.

• Non-variational approaches: these methods are based on a direct approximation of the density matrix and do not involve an iterative minimization. In this category, one successful approach is based on polynomial expansions of the density matrix in terms of the Hamiltonian [START_REF] Goedecker | Efficient linear scaling algorithm for tightbinding molecular dynamics[END_REF][START_REF] Stephan | Order-N projection method for first-principles computations of electronic quantities and Wannier functions[END_REF]. Another linear-scaling approach is the Divide-and-Conquer (D&C) scheme that subdivides the initial molecular system into a number of smaller subsystems treated independently.

The divide-and-conquer method

For the Interactive Quantum Chemistry presented in Chapter 4 and Chapter 5, we choose the divide-and-conquer method. This method has been initially developed and applied in the framework of the density functional theory and real space grid [START_REF] Yang | Direct calculation of electron density in density-functional theory[END_REF][START_REF] Shimojo | Divide-and-conquer density functional theory on hierarchical real-space grids: Parallel implementation and applications[END_REF]. It was then extended to finite basis functions [START_REF] Yang | A density-matrix divide-and-conquer approach for electronic structure calculations of large molecules[END_REF] and to semi-empirical calculations [START_REF] Dixon | Semiempirical molecular orbital calculations with linear system size scaling[END_REF]. The D&C approach is computationally attractive because of its nearly perfect parallel scaling [START_REF] Pan | Parallel implementation of divide-andconquer semiempirical quantum chemistry calculations[END_REF] and its simplicity for non-orthogonal basis sets. Although the solution of this scheme is not guaranteed to coincide with the exact solution, it was shown that the D&C method is able to accurately reproduce the energy, gradient and charges of a standard calculation for various systems and methods [START_REF] Dixon | Semiempirical molecular orbital calculations with linear system size scaling[END_REF][START_REF] Gogonea | Quantum mechanical/quantum mechanical methods. I. A divide and conquer strategy for solving the Schrödinger equation for large molecular systems using a composite density functional-semiempirical Hamiltonian[END_REF][START_REF] Lee | Linear-scaling quantum mechanical calculations of biological molecules: The divide-and-conquer approach[END_REF][START_REF] Shimojo | Divide-and-conquer density functional theory on hierarchical real-space grids: Parallel implementation and applications[END_REF][START_REF] Van Der | Critical assessment of the performance of the semiempirical divide and conquer method for single point calculations and geometry optimizations of large chemical systems[END_REF][START_REF] Yang | Direct calculation of electron density in density-functional theory[END_REF][START_REF] Yang | A density-matrix divide-and-conquer approach for electronic structure calculations of large molecules[END_REF].

The divide-and-conquer principle

Essentially, the Divide-And-Conquer technique consists in three main steps (for more details, we refer the reader to [START_REF] Bosson | Interactive quantum chemistry: A divide-and-conquer ASED-MO method[END_REF][START_REF] Dixon | Semiempirical molecular orbital calculations with linear system size scaling[END_REF]):

• Dividing the system

The original system S is first divided into M non-overlapping subsystems S 1 , . . . , S M . Then, for each subsystem S i , an extended subsystem S * i is defined as the one containing all atoms from S i and those closer to these atoms than a certain distance cutoff.

• Computing each subsystem electronic structure independently A vectorial subspace

V * i is associated to each extended subsystem S * i (1 i M ).
The projection of the one-electron Schrödinger equation in these subspaces leads to local generalized eigenvalue problems and the local density matrices P i .

• Summing up the various contributions

In order to compute the density matrix P , a superposition scheme is applied (e.g. see [START_REF] Bosson | Interactive quantum chemistry: A divide-and-conquer ASED-MO method[END_REF]). The intuitive idea is to reconstruct the electronic density of the global system as a weighted sum over the extended subsystems electronic densities. We recall that the electronic density is expressed as

ρ(r) = µ,ν d µν φ ν (r)φ µ (r).
(2.47)

Advantages and drawbacks

The main advantage of the D&C scheme over other linear-scaling methods is its good parallel scaling [START_REF] Pan | Parallel implementation of divide-andconquer semiempirical quantum chemistry calculations[END_REF], and the simplicity to implement such a scheme for 3dimensional systems with non-orthogonal basis sets. As in the original formulation, in the D&C approach, the density matrix P determines the energy of the system by E = Tr(HP ), and the number of electrons by N = Tr(SP ).

However, two important constraints are not satisfied in the D&C strategy. Because 1 2 P S corresponds to a projection operator on the occupied states, this matrix should have an idempotency property [START_REF] Mayer | The LCAO representation of the first order density matrix in nonorthogonal basis sets: a note[END_REF], which reads as:

(P S) 2 = 2(P S).
(2.48)

This equation is not satisfied by the D&C approach. Consequently, the constructed density matrix is not generated by a set of N 2 S-orthogonal vectors, and the variational principle does not apply. In addition, the projector should commute with the Hamiltonian:

HP S = P SH, (2.49) but this constraint is not satisfied by the D&C approach either, since the global density matrix is not generated by a set of N 2 eigenvectors. Another important disadvantage of the D&C approach is the inconsistency between the potential energy, computed using the trace formula E = Tr(HP ), and the force expressions [START_REF] Goedecker | Linear scaling electronic structure methods[END_REF]. An approach that attempts to address this issue has been recently reported [START_REF] Kobayashi | Reconsidering an analytical gradient expression within a divide-and-conquer selfconsistent field approach: Exact formula and its approximate treatment[END_REF].

Localized molecular orbitals

Principle

The main idea behind localized molecular orbitals is to look for a basis of localized vectors that spans the space of occupied eigenvectors, i.e., to find a set of V i with local support such that

P = N/2 i 2C i C T i = N/2 i 2V i V T i , (2.50) 
where C i are the exact eigenvectors. Instead of looking for the eigenvectors solution of the problem, one may equivalently directly work with a rotation of these vectors that make them localized in space. To compute these vectors, one may solve the minimization problem: min

V i E = N/2 i=1 V T i HV i , subject to V T i SV j = δ ij , i, j = 1...N/2.
with the additional constraint of the local support for the molecular orbitals. The conventional approach consists in two steps:

• the gradient of the energy with respect to the V i entries is computed, and the V i are moved accordingly to decrease the energy,

• the V i are orthogonalized and normalized to respect the constrains.

However, to achieve linear scaling, many other energy functionals have been proposed that remove the explicit implementation of the orthogonality constraints [START_REF] Ordejón | Order-N tight-binding methods for electronic-structure and molecular dynamics[END_REF]. Note that convergence problems may appear in the use of localized orbitals as the energy functionals do not always have a unique local minimum [START_REF] Fattebert | Linear-scaling first-principles molecular dynamics with plane-waves accuracy[END_REF].

Even if we do not use this linear-scaling approach in this thesis, we would like to emphasize that it may be a good candidate to develop new adaptive approaches since one may compute error bounds. We now describe the linear algebra involved.

Analysis of the localized orbitals linear scheme outpout

Let us consider the output of a linear scheme: a set of N/2 localized vectors V i which are supposed to be an orthogonal basis of the occupied eigenvector space S v . The V i are orthonormal, V i |S|V i = 1 and V i |S|V j = 0 (in this section, for clarity we use the bracket notation). There exists as well an orthonormal basis W i of the virtual space S w such that W i |S|W i = 1, W i |S|V j = 0 and W i |S|W j = 0. In general, the W i are not computed (exceptions include exchange-correlation functionals).

If we write the wave function minimization problem in this basis, the result is a classical eigenvalue problem since the basis is orthogonal

H v H v-w (H v-w ) T H w x = λx, (2.51) 
where

H v = V T HV, (2.52 
)

H w = W T HW, (2.53) 
H v-w = V T HW. (2.54) 
Let us introduce Q, the orthogonal matrix that diagonalizes the problem projected in the subspace span(V ):

Q T H v Q = D, (2.55) 
where D is a diagonal matrix. Then, the problem can be further transformed with a unitary transformation that does not affect the virtual block but rotates the occupied block with the matrix Q:

H ′ = Q T 0 0 I H v H v-w H v-w H w Q 0 0 I = D Q T H v-w (Q T H v-w ) T H w . (2.56)
Note that the diagonalisation of this matrix still gives the exact energy. Let us denote the approximate Hamiltonian H app as

H app = D 0 0 H w .
(2.57)

Theorem 4.1 If the eigenvalues of D are lower than those of H w and if the continuous evolution of the eigenvalues between the matrices H ′ and H app is without crossing, the error in energy of the localized molecular orbital approach is bounded as follows:

|δE| ≤ 2 √ d i j ( W j |H|V i ) 2 , (2.58)
where d is the dimension of the basis set.

Proof In the framework of the linear scheme, the energy is computed as E = Tr(D), in other words, one solves the original equation (2.51) with two assumptions:

• (H1) Q T H v-w = 0,
• (H2) all the eigenvalues of D are lower than the ones of H w .

When (H2) is valid, the Hoffman-Wielandt Theorem yields a norm of the error committed by computing the diagonalization of H app instead of H ′ . We note λ app i the diagonal elements of D and λ i the exact lowest eigenvalues. Then, we bound the error:

N/2 i=1 (λ i -λ app i ) 2 ≤ d i=1 (λ i -λ app i ) 2 ≤ ||H ′ -H app || F . (2.59) 
Notice that

H ′ -H app = 0 Q T H v-w Q T H v-w 0 , (2.60) 
and then as the ||.|| F is invariant by unitary transformation

||H ′ -H app || F = 2||Q T H v-w || F = 2||H v-w || F . (2.61)
Thus, in the absence of crossing between the eigenvalues,

|δE| ≤ 2 √ d i j ( W j |H|V i ) 2 .
(2.62)

Generalization of the notion of residue

The inequality presented (equation (2.58)) is not useful as such as in general W i are unknown. In this section, we obtain a better expression by using a generalized notion of residue. Indeed, the problem in analyzing the error committed in the linear schemes is that we do not directly deal with the eigenvectors but only with basis vectors of the occupied space. Classically, for a vector Ψ and a value λ, we define the residue as R = HΨ -λSΨ.

We propose to define R i , the residue of V i , as the vector

R i = Y i - j Y i |S|V j V j , (2.63) 
where

HV i = SY i . (2.64) Theorem 4.2 ||δE|| ≤ 2 √ n N/2 i=1 ||R i || 2 2 .
(2.65)

Proof Because by definition W j is orthogonal to any element of S v , an essential property of the previously defined residue is that for i fixed we have:

j ( W j |H|V i ) 2 = j ( W j |S|Y i ) 2 = j ( W j |S|R i ) 2 .
(2.66)

Then remark that the last term is nothing else than the norm-2 of the function

R i i ( W j |S|R i ) 2 = R i |S|R i 2 = ||R i || 2 2 .
(2.67)

Constant time approaches

One important advantage of the two presented linear schemes, the D&C scheme and the optimization of localized orbitals is that they can exploit the freezing of some atomic position to accelerate the computation. This is used in the frozen density matrix approach [START_REF] Lee | Frozen density matrix approach for electronic structure calculations[END_REF][START_REF] Ermolaeva | Implementation and testing of a frozen density matrix-divide and conquer algorithm[END_REF] in the context of the D&C scheme and in the Frozen localized molecular orbitals [START_REF] Stewart | Application of localized molecular orbitals to the solution of semiempirical self-consistent field equations[END_REF][START_REF] Surján | Frozen localized molecular orbitals in electron correlation calculations -exploiting the Hartree-Fock density matrix[END_REF] in the context of localized molecular orbitals.

Conclusion

In this chapter we have introduced many key computational elements of quantum chemistry. First, we explained different theories and approximations to derive a simpler one-electron equation from the original Schrödinger equation. The direct approach to solve this equation is to formulate a generalized eigenvalue problem and solve its using numerical methods (direct or iterative). Then, we have presented alternative formulations of the one-electron equation to achieve linear complexity.

The goal of this thesis is to provide efficient interactive modeling tools. To achieve this goal, in the next chapter, we investigate the use of an empirical formulation of the potential energy. We develop an interactive method with a reactive force field, the so-called Brenner potential. This is a good introduction to adaptive algorithms. Then, in Chapter 4 and 5, we propose methods to achieve interactive rates with a quantum chemistry model.

Chapter 3 Interactive physically-based structural modeling of hydrocarbon systems

Résumé

Ce chapitre est une adaptation de l'article intitulé "Interactive physically-based structural modeling of hydrocarbon systems" [START_REF] Bosson | Interactive physicallybased structural modeling of hydrocarbon systems[END_REF].

Les systèmes hydrocarbonés ont été largement étudié par l'intermédiaire de méthodes numériques (calcul de structure électronique, dynamique moléculaire, Monte Carlo...). Dans ce chapitre, nous présentons un modeleur interactif et physiquement réaliste pour construire des modèles structurels de systèmes hydrocarbonés. Pendant que l'utilisateur édite le système, les positions des atomes sont aussi influencés par le potentiel de Brenner. Pour maintenir des taux interactifs d'éditions pour les grands systèmes, nous introduisons un nouvel algorithme de simulation adaptative ainsi qu'un nouvel algorithme pour mettre à jour les forces et l'énergie potentielle de manière incrémentale.

Summary

This chapter is an adaptation of the paper entitled "Interactive physically-based structural modeling of hydrocarbon systems" [START_REF] Bosson | Interactive physicallybased structural modeling of hydrocarbon systems[END_REF].

Hydrocarbon systems have been intensively studied via numerical methods, including electronic structure computations, molecular dynamics and Monte Carlo simulations. In this chapter, we present an interactive physically-based modeling tool to construct structural models of hydrocarbon systems. As the user edits the geometry of the system, atomic positions are also influenced by the Brenner potential, a well-known bond-order reactive potential. In order to be able to interactively edit systems containing numerous atoms, we introduce a new adaptive simulation algorithm, as well as a novel algorithm to incrementally update the forces and the total potential energy based on the list of updated relative atomic positions.

Introduction

In Chapter 1, we have motivated the need for physically-based interactive modeling. In Chapter 2, we have introduced models deduced from quantum mechanics and many numerical methods to solve the underlying equations. The use of quantum chemistry models for interactive modeling is challenging because of their high computational cost. In Chapter 1, we have also presented a cheaper approach of using an empirical formulation of the potential energy. Here, we do not use classical force fields as most of them essentially model valence bonds using a harmonic potential, thus preventing topology changes during simulation, which reduces their applicability for Computer-Aided Design (CAD) softwares.

In this chapter, we exploit an effective intermediate approach, which consists in simulating bond formation and destruction of atomic systems with so-called reactive force fields, such as the ReaxFF [START_REF] Van Duin | ReaxFF: a reactive force field for hydrocarbons[END_REF] method or the Brenner potential. The Brenner potential is an empirical many-body potential-energy expression with a chemical bond description [START_REF] Brenner | Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films[END_REF][START_REF] Brenner | The art and science of an analytic potential[END_REF]. It has been used to model e.g. carbon nanotube growth [START_REF] Sinnott | Model of carbon nanotube growth through chemical vapor deposition[END_REF] or reconstructed diamond growth [START_REF] Harris | Growth on the reconstructed diamond (100) surface[END_REF] through chemical vapor deposition, nanotube fracture [START_REF] Belytschko | Atomistic simulations of nanotube fracture[END_REF], buckminsterfullerene dynamics [START_REF] Brenner | Molecular dynamics simulations of the nanometer-scale mechanical properties of compressed Buckminsterfullerene[END_REF], etc. The first proposed version of the Brenner potential had some limitations that were later removed [START_REF] Brenner | A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons[END_REF]. Several other extensions or corrections have been proposed, e.g. which handle other atom types [START_REF] Dyson | Extension of the Brenner empirical interatomic potential to C-Si-H systems[END_REF] and which add weak long-range interactions [START_REF] Los | Intrinsic long-range bond-order potential for carbon: Performance in Monte Carlo simulations of graphitization[END_REF][START_REF] Stuart | A reactive potential for hydrocarbons with intermolecular interactions[END_REF]. Brenner et al. have described the use of this potential to simulate nano-engineering, which involves the creation and destruction of chemical bonds [START_REF] Brenner | Simulated engineering of nanostructures[END_REF]. We show in this chapter that this potential is also particularly adapted to virtual nano-engineering, i.e. interactive digital modeling of carbon and hydrocarbon structures.

Overview

Interactive physically-based structural modeling

The main idea behind the interactive physically-based structural modeling tool presented in this chapter is to continuously minimize the system's Brenner potential energy during editing to help the user build realistic structures. In practice, our builder alternates a time step of minimization with a time step of user action. In order to maintain interactive update rates even when the model contains numerous atoms, though, we propose to use an adaptive, partial update of the system's state at each time step.

Precisely, the structure of interactive modeling algorithm time step consists in alternating two main steps: When the user performs a local action on the system of atoms, the potential energy and interatomic forces are incrementally updated: thanks to the structure of the Brenner potential, only some forces need to be updated, and the total potential energy may be updated through recomputation of some terms only. This helps us to control the computational cost of a time step. We describe in Section 3 a new algorithm to incrementally update energies and forces.

Once all forces and the potential energy are known, the adaptive minimization step chooses a set of "most mobile atoms" and updates the positions of these atoms only (since moving all atoms might prevent interactive rates when constructing large systems). The choice of the set of active degrees of freedom (i.e. the set of mobile atoms) is performed automatically at each time step, based on user-defined precision constraints (e.g. the total number of mobile atoms at each time step, or the maximum allowable error on the acceleration of the molecular system), as well as the current forces being applied on each atom. Controlling the number of mobile atoms, and thus the cost of the system's update, allows us to decouple the cost of the time step from the number of atoms in the system, and helps us maintain interactive editing rates. We describe in Section 4 a new adaptive algorithm to determine the set of most mobile atoms.

Note that detecting neighboring atoms is independent of the underlying forcefield as well, and we may use for example the adaptive neighbor list algorithm described in Rossi et al. [START_REF] Rossi | Adaptive torsion-angle quasi-statics: a general simulation method with applications to protein structure analysis and design[END_REF]. As a result, we assume that, when we need to update forces and energies at each time step, we are given the list of pairs of neighboring atoms whose relative position has changed due to user actions or to adaptive minimization.

Brenner potential

For completeness, we now introduce the second generation Brenner potential [START_REF] Brenner | A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons[END_REF]. This potential belongs to the class of bond-order potentials, and thus has the ability to evolve smoothly between different bonding states. Shortly, it allows the calculation of the interaction energy of chemically covalent bond parametrized by a bond-order function.

Potential expression

The Brenner potential has the particularity to be only focused on covalent bonds (no long-range interaction), i.e. the total potential energy is a sum over interacting atoms (two atoms are said to be interacting if the distance between them is smaller than 2 Å):

E b = i j>i [V R (r ij ) -b ij V A (r ij )] , (3.1) 
where b ij is the bond order. The functions V R and V A are respectively repulsive and attractive terms.

V R (r) = f (r)(1 + Q)Ae -αr (3.2) V A (r) = f (r) n=1,3
B n e -βnr (3.3)

These two terms are limited to the nearest neighbors by a simple smooth cut-off function f . The values of Q, A and B n have been determined for each atomic type.

f (r) =      1 r < D min ij 1 + cos (r-D min ij ) (D max ij -D min ij ) /2 D min ij < r < D max ij 0 r > D max ij (3.4)
where D max ij and D min ij are type-dependent parameters, and r is the distance between atoms i and j. Originally, the parameters have been determined for carbon and hydrogen only [START_REF] Brenner | Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films[END_REF]. Later they have been extended to Silicon [START_REF] Dyson | Extension of the Brenner empirical interatomic potential to C-Si-H systems[END_REF][START_REF] Que | Application of the extended Brenner potential to the Si(111)7×7:H system I: cluster calculations[END_REF][START_REF] Que | Application of the extended Brenner potential to the Si(111)7×7:H system II: periodic calculations[END_REF][START_REF] Schall | Elastic constants of silicon materials calculated as a function of temperature using a parametrization of the second-generation reactive empirical bond-order potential[END_REF]. Bonds are defined dynamically via the f function. As a result, the potential has the ability to describe chemical reactions.

Bond order

The benefit of a reactive potential mainly depends on the bond order. In the Brenner potential case, we can decompose it into four terms depending on environment parameters including angles, dihedral angles and number of neighbors.

b ij = 1 2 [b σ-π ij + b σ-π ji ] + Π RC ij + b DH ji (3.5)

Angle influence

The first term in Equation 3.5 is given as a sum over the angle θ ijk in which the bond (i, j) is involved.

b σ-π ij = 1 + k =i,j f ik (r ik )G(cos(θ ijk ))e λ ijk + P ij (N C i , N H i ) -1/2 (3.6)
where G is a spline and P a bicubic spline. λ ijk is a constant. N C i and N H i are respectively the number of carbon and hydrogen neighbors. The last numbers are continuous values as they are computed by a sum of the f function.

N C i = carbon atoms k =i,j f ik (r ik ) N h i = hydrogen atoms k =i,j f ik (r ik ) (3.7)
For the description of our incremental update algorithm we define :

S σ-π ij = k =i,j f ik (r ik )G(cos(θ ijk ))e λ ijk (3.8)

Radical energetics and π bonds influence

The third term in Equation 3.5 depends on whether the bond has a radical character and is part of a conjugate system.

Π RC ij = F ij (N t i , N t j , N conj ij ) (3.9)
where F is a tricubic spline. N t i is the total number of neighbors of atom i. N conj ij determines whether the bond is part of a conjugate system from the information of the number of neighbors of each neighbor. This term is decomposed in parts that depend either on atom i, or on atom j :

N conj ij = 1 + N aux i + N aux j (3.10)

Dihedral term

The last term in Equation. 3.5 is a sum over the dihedral angles

Θ ijkl b DH ji = T ij (N t i , N t j , N conj ij ) k =i,j l =i,j (1 -cos(Θ ijkl ))f ik (r ik )f jl (r jl ) (3.11)
where T is a tricubic spline. This term favors a planar configuration in the case of double C-C bonds. For the description of our incremental update we define :

S DH ji = k =i,j l =i,j (1 -cos(Θ ijkl ))f ik (r ik )f jl (r jl ) (3.12)
For a complete description of the potential, please refer to [START_REF] Brenner | A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons[END_REF].

Forces

In order to proceed, we need to determine the force terms, i.e. the gradient of the potential, from the description above. Because the force applied on one atom only depends on relative positions, we can express it as a sum over the interacting pairs in which this atom is involved:

∂V dx i = j,(i,j)∈B ∂V dr ji ∂r ji dx i , (3.13) 
where r ji is the distance between atoms i and j, and B is a set of all the pairs of atoms involved in interaction:

B = (i, j), r ij < D max ij , (3.14) 
where D max ij depends on atom types. For future use, we also define:

A = {(i, j, k), (i, j) and (j, k) ∈ B, i = j} , (3.15) 
D = {(i, j, k, l), (i, j), (j, k) and (k, l) ∈ B, i = k = l} , (3.16 
)

and we decompose the potential as follows:

V = i j>i [V R (r ij ) -b ij V A (r ij )] = (i,j)∈B, j>i V B ij . (3.17) 
Then, a direct analysis of the influence of the relative position of every pair in interaction on the potential is sufficient to know the forces on each atom. Because of the bond order term, the relative position of atoms i and j can influence several V B kl terms. Indeed, the total force on one atom can be split into three contributions.

∂V dx i = j,(i,j)∈B   (k,l)∈B ∂V B kl dr ji   ∂r ji dx i , (3.18) 
(k,l)∈B ∂V B kl dr ji = ∂V B ij dr ji + ∂V A ij dr ji + ∂V D ij dr ji , (3.19) 
where V A ji is the sum of bond terms that involve either i or j:

V A ij = k,(j,i,k)∈A V B ik + k,(i,j,k)∈A V B jk , (3.20) 
and V D ji is the sum of bond terms that involve neighbors of i or j:

V D ij = (k,l),(i,j,k,l)∈D V B kl + (k,l),(j,i,k,l)∈D V B kl .
(3.21)

An incremental algorithm to update forces and potential

We may now deduce an algorithm able to incrementally update both the potential and atomic forces.

Influence of relative motions

In the previous section, we have shown that relative positions of interacting atoms may influence several terms in the potential. Figure 3.1 presents these dependencies in a schematic case. Adaptive modeling also requires us to know the dependency of forces on the relative position of two atoms, but this may be directly deduced from the previous analysis. Indeed, equation 3.18 shows that the force on atom i needs to be updated when either one of the three terms in the sum in equation 3.19 has been updated. These terms, in turn, need to be updated when the bond terms involved in equation 3.20 and equation 3.21 are updated. This dependency is illustrated in Figure 3.2. Figure 3.3 shows the complete dependency between the terms involved in both the potential and the atomic forces.

The algorithm

As noted in Section 2, the incremental collision detection algorithm provides us with a set of pairs of atoms whose relative position has changed since the last time step. Let B updated denote this set. Note that this set may include pairs of newly interacting atoms, as well as pairs of atoms which are now separated by a distance longer than the force-field cutoff (2 Å in the case of the Brenner potential), but which were interacting at the previous time step. At each time step, the algorithm starts with this information to update the sets B, A and D. This update is incremental in the sense that the sets are not rebuild from scratch, but elements are inserted or deleted. In practice, the algorithm stores all terms which contribute to the total potential and to the atomic forces. To achieve this, we introduce four sets of tuples:

I Atom = I Atom i = (N H i , N C i , N t i , N aux i ), i ∈ Atoms , I Bond = I Bond ij = (V R ij , V A ij , b σ-π ij , S σ-π ij , b σ-π ji , S σ-π ji , Π RC ij , b DH ji , S DH ji , N conj ij ) , i < j, (i, j) ∈ B} , I Angle = I Angle ijk = (f ik (r ik )G(cos(θ ijk ))e λ ijk ), i < k, (i, j, k) ∈ A , I Dihedral = I Dihedral ijkl = {(1 -cos(Θ ijkl ))f ik (r ik )f jl (r jl )}, i < l, (i, j, k, l) ∈ D . (3.22)
These sets contain the terms that need to be updated to compute the total potential for the adaptive simulation. They contain respectively the information attached to one, two, three or four atoms.

Similarly, we define four more sets to allow for an incremental update of the forces, corresponding to the decomposition proposed in the previous section:

F atom = F atom i = ∂V dr i , i ∈ Atoms , F B = F B ij = ∂V B ij dr ji , i < j, (i, j) ∈ B . F A = F A ijk = ∂V B ij dr ik , i < k, (i, j, k) ∈ A , F D = F D ijkl = ∂V B ij
dr kl , i < l, (i, j, k, l) ∈ D .

(3.23)

F atom contains the forces acting on each atom, and is updated based on the intermediate force terms contained in the sets F B , F A , and F D .

Pseudo-code

The structure of the algorithm is deduced from the hierarchical dependency presented in Figure 3.3. The algorithm works with auxiliary sets Atoms, B, A and D containing respectively singletons, pairs, triplets and quadruplets of atomic indices which correspond to obsolete terms. The computation of the potential and forces is organized in four main steps:

1. Initialization.

Based on B updated , the output of the collision detection algorithm, incrementally update the sets B, A and D as indicated in Section 3.2. Set Atoms, B, A and D to ∅.

First level potential update.

Detect terms that have to be updated directly from the list of bonds with a relative motion, i.e. ∀(i, j) ∈ B updated :

(a) insert (i, j) in B (b) insert i and j in Atoms (c) ∀k, (i, j, k) ∈ A, insert (i, j, k) in A (d) ∀(k, l), (i, j, k, l) ∈ D, insert (i, j, k, l) in D (e) ∀(k, l), (k, i, j, l) ∈ D, k < l, insert (k, i, j, l) in D
Update terms:

(a) ∀ i ∈ Atoms, update the four corresponding values in Extend the list of potential terms that have to be updated to include bonds without a relative motion, but with a bond order change:

I Atom i (b) ∀(i, j) ∈ B, update V R ij , V A ij and N conj ij in I Bond ij (c) ∀(i, j, k) ∈ A,
(a) ∀(i, j) ∈ B updated , ∀(k), (i, j, k) ∈ A, insert (j, k) in B (b) ∀(i, j) ∈ B updated , ∀(k, l), (i, j, k, l) ∈ D, insert (k, l) in B
Update the total potential (a) ∀(i, j) ∈ B, update all the bond order terms (i.e. b

σ-π ij , b σ-π ji ,Π RC ij and b DH ji ). Update V B ij based on V R ij , V A ij
and b ij , and update its contribution to the total sum V .

Force update.

Extend invalid sets to invalid force terms:

∀(i, j) ∈ B, (a) ∀k, (i, j, k) ∈ A, insert (i, j, k) in A (b) ∀(k, l), (i, j, k, l) ∈ D, insert (i, j, k, l) in D
Update forces: We do not provide the details of the update of the F B , F A and F D terms, as their expression is straightforward -it can be directly retrieved form the expression of the potential -but tedious. Note on sums updates: one important point in our algorithm is how we update the sums involved in the Brenner potential and forces. Indeed, sums are never recomputed from scratch, but are incrementally updated. Precisely, when we update a term and have to update its contribution to a sum (e.g. one term V B kl has been recomputed, and the sum in Equation 3.21 has to be updated), we subtract the old value of the term from the sum, and add the new value to it. This allows us to update obsolete terms only. Numerical error may be increased by this approach, however, due to the accumulation of subtractions and additions. To avoid this issue, a periodic re-initialization may be performed every e.g. million steps, where energies and forces are computed for the whole molecular system. Periodic re-initialization is very rarely needed, though, since the sums involve only a limited number of terms, and the loss of precision due to one incremental sum update (one addition and one subtraction) is around machine precision. Thus, the computational cost is amortized over the whole interactive session.

Extension of the Brenner potential

For some applications, a notable limitation of the Brenner potential is the absence of long-range interactions. To overcome this problem, some extensions have been proposed [START_REF] Los | Monte Carlo simulations of carbon-based structures based on an extended Brenner potential[END_REF][START_REF] Los | Improved long-range reactive bond-order potential for carbon[END_REF][START_REF] Ghiringhelli | Improved longrange reactive bond-order potential for carbon. II. Molecular simulation of liquid carbon[END_REF][START_REF] Karssemeijer | Phonons of graphene and graphitic materials derived from the empirical potential LCBOPII[END_REF][START_REF] Stuart | A reactive potential for hydrocarbons with intermolecular interactions[END_REF]. The general idea is to add a non-bonded interaction potential term that is a sum of pairwise potential contributions:

E N B = 1 2 i,j V N B (r ij ). (3.24)
The difficulty is to correctly treat the intermolecular interactions without biasing the intramolecular part. This correction has been done carefully in e.g. the popular AIREBO potential [START_REF] Stuart | A reactive potential for hydrocarbons with intermolecular interactions[END_REF]. In this potential, the long-range term is progressively activated and combined with the accurate short-range part of the Brenner potential.

Long-range interactions are particularly important when one deals with carbon structures above a surface. The adsorption of fullerenes and nanotubes has been extensively studied with a large range of surfaces, including metallic, semiconducting and insulating ones. Here, we focus on the graphite surface and graphene as well. A previous study was based on a self-consistent real-space scheme for calculating the van der Waals interaction energy between a fullerene molecule and a graphitic substrate with atomic surface corrugation [START_REF] Gravil | Adsorption of C 60 molecules[END_REF]. By using linear response theory to evaluate the dipole-dipole interactions between the molecule and the substrate, the van der Waals energy was accurately computed and the optimized conformations of the adsorbed molecule were found.

For simplicity, we use the approach of Los and Fasolino [START_REF] Los | Monte Carlo simulations of carbon-based structures based on an extended Brenner potential[END_REF], and we modulate the exp-6 van der Waals potential parameters:

V N B(r ij ) = b exp(-c 0 r) -ǫ σ r 6 -V shif t , (3.25) 
to retrieve optimum adsorption energies close to the already calculated ones and the corresponding distances between the center of the molecule and the surface [START_REF] Gravil | Adsorption of C 60 molecules[END_REF].

Precisely, with parameters b = 3224.9 eV, c 0 = 3.5995 Å -1 , ǫ = 0.01396 eV, σ = 3.44 Å, the energy errors are 0.0162eV and 0.0108eV and the distance errors are 0.08 Å and 0.09 Å for the top and hollow configurations respectively. In this case, the two-body potential expression can be introduced efficiently in our adaptive approach thanks to the notion of partial forces [START_REF] Rossi | Adaptive torsion-angle quasi-statics: a general simulation method with applications to protein structure analysis and design[END_REF]. As illustrated in Figure 3.4, the preferred orientation of the fullerene is always with a six-membered ring parallel to the surface. The agreement with other calculations and experiments is very satisfactory [START_REF] Dappe | Weak chemical interaction and van der Waals forces between graphene layers: A combined density functional and intermolecular perturbation theory approach[END_REF][START_REF] Dappe | Intermolecular interaction in density functional theory: Application to carbon nanotubes and fullerenes[END_REF][START_REF] Seydou | Atomic force microscope measurements and LCAO-S 2 + vdW calculations of contact length between carbon nanotube and graphene surface[END_REF]. This stacking is somehow similar to the adsorption of aromatic molecules on graphene, where π-π interactions dominate [START_REF] Dappe | Weak chemical interaction and van der Waals forces between graphene layers: A combined density functional and intermolecular perturbation theory approach[END_REF][START_REF] Dappe | Intermolecular interaction in density functional theory: Application to carbon nanotubes and fullerenes[END_REF][START_REF] Shtogun | Many-body van der Waals interaction between graphitic nanostructures[END_REF][START_REF] Björk | Adsorption of aromatic and anti-aromatic systems on graphene through π-π stacking[END_REF].

Once a confident set of parameters is extracted, one can easily deal with larger systems where long-range interaction are important. For instance, it is well known that large fullerenes and nanotubes are deformed when adsorbed on a surface [START_REF] Hertel | Deformation of carbon nanotubes by surface van der Waals forces[END_REF]. One can handle such phenomena with this new parametrization. The approach we propose in this chapter should also deserve attention to investigate structural properties of graphite [START_REF] Lebègue | Cohesive properties and asymptotics of the dispersion interaction in graphite by the random phase approximation[END_REF] or graphene sheets in which one is able to design structures like ribbons or Y-shaped junctions for nano-electronics.

Finally, the interaction of a carbon nanotube with a graphene surface is an important topic in the context of ultimate atomic force microscopy (AFM) [START_REF] Wilson | Carbon nanotube tips for atomic force microscopy[END_REF]. Indeed, it has been shown that a single-walled carbon nanotube anchored at the apex of an AFM tip increases the sensitivity of the measured forces. By cycling approaches and retracts, one is able to extract physical information of the surface, such as energy dissipation [START_REF] Seydou | Molecular mechanics investigations of carbon nanotube and graphene sheet interaction[END_REF][START_REF] Seydou | Atomic force microscope measurements and LCAO-S 2 + vdW calculations of contact length between carbon nanotube and graphene surface[END_REF][START_REF] Delmas | Contact angle hysteresis at the nanometer scale[END_REF]. Nevertheless, it is crucial to understand the mechanical behavior of the nanotube, by mixing strong deformations when it vertically approaches the surface with long-range Van Der Waals contributions when it is deposited on it. We believe that all these developments can be addressed by the on-the-fly calculations using the algorithm and the numerical tool described in this chapter. 

A new adaptive algorithm

The incremental algorithm presented in the previous section is able to take advantage of the freezing of groups of atoms. We now focus on the choice of the active degrees of freedom. An adaptive algorithm has been developed in the framework of internal coordinates and articulated bodies simulation [START_REF] Redon | Adaptive dynamics of articulated bodies[END_REF]. Here, we extend this approach to cartesian coordinates in order to address the problem of providing interactive and efficient structure optimization. This is the essential feature that guides the user in our modeler.

The adaptive approach in cartesian coordinates is to decide for each atom if it might move or be frozen in space. Thus, the algorithm has to decide to activate or freeze an atom depending on the norm of the force applied to the atom. This decision is made by comparing the norm with a certain threshold value. This threshold value is defined either automatically based on the system state (e.g. average acceleration, maximum acceleration) or can be simply predefined by the user. This cartesian adaptive approach is illustrated in Figure 3.5. In this chapter, we implement the cartesian adaptive approach using the steepest descent minimization algorithm [START_REF] Press | Numerical recipes in FORTRAN: The art of scientific computing[END_REF], which serves to guide the model towards an optimized geometry. In practice, the adaptive minimizer does not use the components of the energy gradient (the partial derivatives) that are below a given threshold. This amounts to providing a perturbed minimization direction. This is detailed in Section 5 as an application of this new adaptive approach coupled with the incremental update of the Brenner potential.

An important feature in our algorithm is that the threshold criteria and the active atoms set are not computed from scratch. At the end of each point energy calculation a list of the atoms with force change and the corresponding new threshold are incrementally computed as explained in Section 3. In order to avoid the linear cost of determining the new set of active atoms, a binary tree is used to represent the system. Each leaf node represents an individual atom, while each internal node represents a set of atoms. Each leaf node stores the norm of the force applied to the corresponding atom. Each non-leaf node stores the maximum of the two force norms of its children, as illustrated in Figure 3.6. We use two tree passes in order to update tree nodes' values and to determine the new active atoms. In the first, bottom-up pass, force norms are updated in a sub-tree of the binary tree, starting from the leaves with modified norms, in O(k old (log( n k old ) + 1)) times where k old is the number of active atoms and n the total number of atoms. In the second, top-down pass, the new active atoms (i.e. the atoms with the force norms which are now the largest), are determined in O(k new (log( n k new ) + 1)) times where k new is the new number of active atoms. This process is illustrated in Figure 3.6 as well. The cartesian adaptive approach chooses the most active atoms as mobile particles. The other atoms are frozen in space. This permits to allow fast local minimization with a small active region and an important frozen part. The mobile atoms are chosen automatically based on the information from atomic forces. In this schematic case, the user has arbitrarily decided to allow only three mobile atoms. As a result, the three leftmost atoms are activated because they have the largest forces.
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5 Results and applications

Computational complexity of the Brenner potential incremental update

Our algorithm is linear with the size of the working sets Atoms, B, A and D. Based on the assumption that each atom may only have a bounded number of The algorithm uses a binary tree to represent the atomic system, in which each leaf corresponds to one atom. In this example, the four leaves correspond, from left to right to atoms 1 to 4. Internal tree nodes represent groups of atoms. The value indicated in each leaf node is the norm of the force applied to its corresponding atom. For internal nodes, this value is the maximum of the norms of the forces applied to atoms in the corresponding group. In step 0, the threshold is automatically set to 10. As a result, only atom 1 moves. In step 1, the potential is incrementally updated, and the norms of the forces applied to atoms 1 and 2 are updated. In step 2, the values associated to the tree nodes are incrementally updated through a bottom-up pass that starts from the modified leaf nodes values. Because of this bottom-up update, the adaptive threshold becomes equal to 4. In step 3, the new active atoms are determined through a top-down pass, by visiting only the nodes that have a value larger than the adaptive threshold.

neighbors (which is true for realistic systems), these sets have a linear size in the number of bond updates |B updated |. Thus, the overall complexity is linear in the number of relative positions updates indexed in B updated , since each relative position update has an impact on a bounded number of terms.

In practice, the complexity of the algorithm depends on the local topology of the system and the bond update pattern. To demonstrate this, we generated a carbon nanotube of 8000 atoms thanks to TubeGen [START_REF] Frey | TubeGen 3.3. Web-interface[END_REF], and perturbed the positions of a set of N atoms, 1 < N < 8000. This benchmark is presented in Figure 3.7 where the solid curves represent the computational cost of the forces and potential update. To illustrate the dependency of this cost on the activation pattern (i.e. the evolving set of active atoms), both random and continuous activations are compared. The curve with a continuous activation pattern shows a linear behavior. Indeed, continuous activation is equivalent to consider a nanotube system of length equal to the length of the active region plus a buffer zone. Thus, the linear behavior is a direct consequence of the linear dependency of the Brenner potential on the number of bonds. The computational cost of the random activation step is more important, since updated relative positions are isolated in space with a high probability, which results in a larger number of terms that have to be recomputed. In general, for any molecular system, there exists two constants C min and C max such that the total time T U to update the potential and forces after updating N b relative positions satisfies:

C min N b ≤ T U ≤ C max N b . (3.26) 
Figure 3.7 shows the update time T U as a function of the number of bonds with a relative motion.

Efficient and interactive energy minimization of local deformation

Energy minimization is a classical tool for structure analysis and has already been used with the Brenner potential [START_REF] Hod | Carbon nanotube closed-ring structures[END_REF][START_REF] Huang | Thickness of graphene and single-wall carbon nanotubes[END_REF][START_REF] Reddy | Equilibrium configuration and continuum elastic properties of finite sized graphene[END_REF]. We apply the adaptive algorithm presented in Section 4 with the incremental update to the steepest descent minimization. Classical minimization algorithms typically update the positions of all atoms at each iteration. As a result, all energies and forces are updated at each iteration. In many cases, however, the displacement of many atoms will be small, and will not contribute much to a decrease in potential energy. We thus propose to focus the computational resources by freezing in space the least mobile atoms at each iteration. As discussed in the previous section, our incremental algorithm is able to take advantage of the freezing of groups of atoms. As a result, computational resources will be automatically focused on the most mobile areas of the system. This approach is expected to speed up energy minimization of systems with non-uniform force distributions.

We demonstrate this approach on a locally deformed carbon nanotube with a few broken cycles, which should converge to the reference structure (Figure 3.8).

We minimize the deformed structure using an automatic, relative threshold (only the atoms that have an acceleration larger than half the maximum atom acceleration at the current time step will move). We stop the minimization procedure when the root-mean-square-deviation (RMSD) [START_REF] Theobald | Rapid calculation of RMSDs using a quaternion-based characteristic polynomial[END_REF] between the structure being minimized 
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.7: Forces and potential incremental update complexity of a carbon nanotube composed of 8000 atoms and 11980 bonds. In this benchmark, a number of pairs of atoms have a relative motion and the solid curves represent the time cost of the forces and potential update. The curve of the random activation pattern is steep at the beginning as the relative motions are isolated in space with a high probability and cause a maximum number of terms to recompute. Here, the slope is similar to the slope C max . For a large number or relative motions, the curve becomes flat since a new relative motion does not add many new terms to recompute. Thus the marginal cost of a new relative motion is minimal. The curve with a continuous activation pattern illustrates the linear dependency of the Brenner potential on the number of bonds, since this continuous activation is equivalent to consider a nanotube system with an increasingly longer length. Its slope is also approximately equal to the slope of the minimal cost C min . and the reference one becomes smaller than 0.01 Å. The Brenner potential accuracy is in the order of 0.01 Å [START_REF] Petukhov | Reconstructions of diamond (100) and (111) surfaces: Accuracy of the Brenner potential[END_REF], and thus a better convergence would not be significant. Figure 3.9 plots the RMSD as a function of wall-clock time. The adaptive minimizer converges 3.5 times faster than the original minimizer to the RMSD of 0.1 Å and more than two times faster to the RMSD of 0.01 Å. Indeed, in a first period, the deformation is very local and an adaptive approach is very efficient. Then, when the force distribution is more uniform, the non-adaptive approach becomes faster due to the overhead of the adaptive algorithm. This is illustrated by the second curve in Figure 3.9, which shows the performance of the adaptive steepest descent when all degrees of freedom are active. In this case, detecting which terms have to be updated is useless and time consuming. In our implementation, the overhead is around 6 %. Figure 3.10 presents the snapshot of a video showing the computational benefits of the incremental approach in a similar situation of a nanotube locally deformed with a few broken cycles. The video is accessible on the web.

To understand why our algorithm can accelerate energy minimization, recall that the adaptive steepest descent algorithm does not follow the classical gradient direction on the energy surface but a close, truncated one, to reduce the cost of a minimization step. In fact, this is equivalent to looking for a more efficient direction in the sense of the ratio between the energy decrease and the effective computational cost of the position update. The classical steepest descent algorithm is based on the idea that the most efficient way to reduce the energy is to follow the steepest direction on the energy surface. However, in this argument, the update of the energy potential is seen as a black box and thus the algorithm does not consider the (potentially variable) update cost. We believe this update cost should be taken into account in order to choose the minimization direction, and that it might be beneficial to try and maximize the energy decrease per computational unit at each time step. The overall benefit of such a strategy may depend on the general shape of the potential energy surface. Therefore, it is still difficult to predict the advantage of such an approach in the general case. We have shown that our adaptive approach allows us to finely tune between the update cost and the energy decrease, which speeds up the minimization when the force distribution is localized (when the force distribution is uniform, moving all atoms whose force is larger than half the maximum force will lead to activating all atoms, so that our truncated gradient will be equal to the actual gradient).

Interactive modeling

The classical approach to study hydrocarbon systems is typically to first build a structural model, and then to perform geometry optimization to prepare the model for simulation. As introduced in Chapter 1, because of the complexity of the physics at this scale, however, this approach is not efficient in many cases. Indeed, when the user creates the initial structural model, he can easily produce high-energy, unstable structures, in particular for large systems. As a result, the geometry optimization step may bring on very different structures from the ones targeted by the user, so that the user would have to go back to the construction step. Overall, creating a complex structural model by decoupling the construction step from the geometry optimization step may be particularly ineffective. The most efficient one is the adaptive steepest descent minimizer, which focuses the computational resources to the most mobile atoms. The two other methods follow the same path on the energy surface and are similar in performance. However, because of the computational overhead of the incremental update, the classical steepest descent method is about 6 % faster than the adaptive one when all atoms are activated.

Figure 3.10: Snapshot of a video showing the computational benefits of the incremental approach when minimizing large structures that have been locally deformed. The video is accessible on the web.

Thus, we believe an effective way to help the user to construct a structural model of an hydrocarbon system is to perform geometry optimization during construction. In practice, at each time step, we combine user actions with energy minimization to produce structures that have lower potential energies. This physically-based interactive modeling requires a very low computational cost at each simulation step. One possibility for the user is to act on a small area of the system, creating local deformations only. Another possibility is to perform deformations which require physics simulation in local areas only (such as when two large groups of atoms move rigidly and interact with each other through a few atoms only). The minimizer presented in the previous section has been designed for such cases, since the force distribution should reach a peak in a local area. Furthermore, the adaptive minimizer can guarantee interactivity independently of the size of the system (by directly controlling the threshold value and thus the number of allowed components in the truncated gradient -a choice specifically based on available computational resources). We also recall that the reactive Brenner potential is particularly adapted, since a fundamental step in structural modeling is the creation and destruction of chemical bonds. This makes coupling an adaptive minimization algorithm with an incremental reactive potential update algorithm an effective way to achieve interactive modeling.

Remark that a local deformation can have a local impact as well as a global impact. The locality of the active zone does not prevent the minimizer to produce delocalized deformation. Indeed in the spirit of the adaptive paradigm, the active region is automatically determined thanks to the information of the atomic forces and it might go through the whole system in a linear number of time steps when needed. An important benefit is that a local user action might lead to a non-local, coordinated displacement of a group of atoms (for example when a user pulls on an atom that belongs to a chain), which enables the user to induce large, physicallybased deformations of the nanosystem. More generally, such an approach allows the user to perform even non-local editing (e.g. rotation and translation of entire groups of atoms), while ensuring that the underlying physics is taken into account.

We illustrate this possibility in Figure 3.11, where a complex, original nanosystem is built in a few minutes thanks to the interactivity of the physically-based modeler. In Step 0, the user loads two equilibrated graphene sheets in the modeling tool. In Step 1, the user connects both sheets (left part in Figure 3.11), simply by pulling on atoms. As the two sheets are being attached, the minimizer progressively induces a curvature in the structure, which actually helps the user to attach the sheets. In Step 2, the right part is connected, again by pulling on atoms. In the final step, the two remaining sides have been attached, and a few atoms has been removed from the corners to form a "nano-vesicle". A closed bilayer graphene has already been observed experimentally by high-resolution transmission electron microscopy [START_REF] Liu | Open and closed edges of graphene layers[END_REF]. This shows that the present numerical tool should be efficient for experimentalists to design and to build graphitic nanostructures.

Similarly, carbon nanotubes with a large variety of defects have already been observed experimentally by high-resolution transmission electron microscopy [START_REF] Chamberlain | Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale[END_REF] and our methodology allows to intuitively prototype such complex geometries. Figure 3.12 shows how our modeler may be used to interactively close a nanotube. The user has chosen to add atoms and put them close together to create cycles of 5, 6 or 7 carbon atoms. The tool automatically induces the corresponding curvature on the system leading to the design of the apex of the nanotube. As discussed above, the process could have been done with a nanotube of any size as the computational cost of each minimization step only depends on the number of active atoms. We also present two videos to illustrate the efficiency of the interactive editor. Figure 3.13 presents a snapshot of a video in which a user designs the apex of a nanotube. Figure 3.14 presents a snapshot of a video in which the user adds structural defects to a carbon nanotube model.

Conclusion

In this chapter, we have presented two algorithms, which enable us to digital prototype the hydrocarbon structures. Interactive rates of the modeling tool we have developed are guaranteed by the adaptive minimization algorithm coupled with the incremental update algorithm of the Brenner potential. This allows us to focus computational resources on the regions that are the most affected by user actions. Furthermore, when the user actions have a local impact, the adaptive approach appears to be an effective way to rapidly reach neighboring energy minima, which helps the user build realistic structures. We have shown that our approach may be used to effectively build realistic models of hydrocarbon structures that would be difficult or impossible to produce using other tools.

However, the presented approach is limited to hydrocarbon systems and do not provide the user with electronic structure information such as molecular orbitals or electronic density. To overcome these limitations, in the next chapter, we address the important challenge of solving equations that arise from a quantum chemistry model at interactive rates. we show, is accurate and efficient for this non-self-consistent semi-empirical theory.
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The method has a linear complexity in the number of atoms, scales well with the number of cores, and has a small prefactor. The time cost of the method is fully controllable, as all steps are performed with direct algorithms, i.e., no iterative schemes are used. We discuss the errors induced by the D&C approach, first empirically on a few examples, and then via a theoretical study of two toy models that can be analytically solved for any number of atoms. Thanks to the precision and speed of the D&C approach, we are able to demonstrate interactive quantum chemistry simulations for systems up to a few hundred atoms on a current multicore desktop computer. When drawing and editing molecular systems, interactive simulations provide immediate, intuitive feedback on chemical structures. As the number of cores on personal computers increases, and larger and larger systems can be dealt with, we believe such interactive simulations -even at lower levels of theory -should thus prove most useful to effectively understand, design and prototype molecules, devices and materials.

Introduction

In the previous chapter, we have presented an interactive modeling method based on a reactive force field. However, the presented approach suffers from the lack of transferability of empirical potentials. To accurately describe bond breaking, bond formation, charge transfer or other electronic phenomena, modeling and simulation tools based on quantum chemistry will be more and more needed. For example, when a user adds an atom to the system, or attempts to deform the chemical structure, the modeling application will need to efficiently update the positions of other atoms, as well as the electronic structure of the whole system, to inform the user about the plausibility of the modified structure. In other words, interactive quantum chemistry simulation will allow users to easily explore different chemical structures, states, conformations and processes.

In Chapter 2, we discuss how the intrinsic complexity of the many-body Schrödinger equation has led physicists to formulate approximate quantum theories, such as Hartree-Fock and density functional theories, from which efficient computational methods have been deduced [START_REF] Cramer | Essentials of computational chemistry: theories and models[END_REF]. We recall that the key step typically consists in solving a generalized eigenvalue problem. Since practical algorithms exhibit a cubic complexity in the dimension of the Hamiltonian matrix [START_REF] Golub | Matrix computations[END_REF], and the matrix dimension scales linearly with the number of atoms, diagonalization has long been a bottleneck of computational chemistry algorithms.

In Chapter 2, we have presented the Divide-And-Conquer (D&C) linear-scaling approach in a general framework that may address this issue. In this chapter, we propose to couple this efficient D&C scheme with the non-self-consistent semi-empirical Atom Superposition and Electron Delocalization Molecular Orbital (ASED-MO) theory [START_REF] Anderson | Electron density distribution functions and the ASED-MO theory[END_REF] to achieve interactive quantum chemistry simulations.

We validate the D&C approach for the ASED-MO theory on several test molecules. Compared with the original ASED-MO theory, we find that the potential energy error for carbon nanotubes, a graphene sheet, a graphane sheet and polymers is about of 10 -4 eV per atom. A fast energy minimization for a test molecule that was used in a previous ASED-MO study (see [START_REF] Lafferentz | Conductance of a single conjugated polymer as a continuous function of its length[END_REF] and its supporting material) appears to validate the accuracy of the forces and the potential energy obtained by the D&C version for this molecule. To complement the empirical validation, we study the properties of the D&C method by focusing on two specific toy models. These problems can be solved analytically and allow us to compute the D&C energy error for very large system sizes. We also study the characteristics of the error in these cases to give an insight into the D&C mechanism.

In this chapter, we also demonstrate that the efficiency of the approach allows us to run interactive quantum chemistry simulations of systems up to a few hundred atoms on a standard desktop computer. Precisely, we show that a user of SAMSON is able to interactively edit the structure of an atomic system, and immediately visualize the impact on its electronic structure. In particular, SAMSON interactively updates and displays iso-surfaces of the constantly changing electron density while the atomic system is being modified. Figure 4.1 presents screenshots of such interactive session for a polyfluorene chain of 162 atoms.

The chapter is organized as follows. In Section 2, we provide an overview of the ASED-MO theory. In Section 3, we recall the D&C scheme. In Section 4, we present the efficiency of our implementation and the accuracy of the approach for Interactive electronic structure calculations in SAMSON [START_REF] Samson | Software for Adaptive Modeling and Simulation Of Nanosystems[END_REF]. In this example containing 162 atoms corresponding to 432 basis functions, the user has selected a group of atoms (in blue) and is moving it towards a large molecule (a-d). The electronic structure is interactively updated and the geometry is being minimized while the user edits the molecular system. Because the user pulls on the atomic group, bonds are formed between carbon atoms, and a polyfluorene molecule is obtained (e). SAMSON computes and displays isosurfaces of the electron density on-the-fly during editing, which helps the user visualize bond formation and breaking.

the ASED-MO theory. In Section 5, we study the error of the D&C scheme for large systems with analytical solution available. In Section 6, we present interactive quantum chemistry modeling. In Section 7, we conclude the chapter.

The Atom-Superposition and Electron-Delocalization Molecular-Orbital theory

In Chapter 2, we explain different theories and approximations to derive a oneelectron equation from the original Schrödinger equation. The Hartree-Fock approach and the Density Functional Theory justify that we can use such a simpler one-electron equation and still expect accurate results. Semi-empirical approaches introduces some parameterization of the operators to simplify the computation involve in the Hamiltonian evaluation. It also appears to be an effective way to introduce some electron correlation effects into the methods.

In this section, for interactive quantum chemistry, we introduce the semi-empirical, non-self-consistent Atom-Superposition and Electron-Delocalization Molecular-Orbital (ASED-MO) theory, that has been applied in different fields, including surface science [START_REF] Ample | A semi-empirical study of polyacene molecules adsorbed on a Cu(1 1 0) surface[END_REF][START_REF] Simonetti | The electronic effect of carbon and hydrogen in an (1 11) edge dislocation core system in bcc iron[END_REF][START_REF] Ray | Molecular orbital study of CO chemisorption and oxidation on a Pt (111) surface[END_REF][START_REF] Zhou | Bonding of CN on Ni (111) surface: ASED-MO studies[END_REF][START_REF] Mehandru | Adsorption of H, CH 3 , CH 2 and C 2 H 2 on 2 × 1 restructured diamond (100): Theoretical study of structures, bonding, and migration[END_REF] and electrochemistry [START_REF] Seong | Water dissociation on Pt (111) and (100) anodes: Molecular orbital theory[END_REF][START_REF] Anderson | Molecular orbital investigation of water reactions with tin hydroxide complexes in association with platinum electrodes[END_REF][START_REF] Juan | The electronic structure and bonding of an hydrogen pair near a FCC Fe stacking fault[END_REF][START_REF] Anderson | The influence of electrochemical potential on chemistry at electrode surfaces modeled by MO theory[END_REF].

The Extended Hückel Molecular Orbital theory (EHMO)

The ASED-MO theory is based on the Extended Hückel Molecular Orbital theory (EHMO), which expresses molecular orbitals as a Linear Combination of Atomic Orbitals (LCAO). Atomics orbitals (denoted φ µ ) are basis functions that are widely used in calculations of molecular orbitals in quantum chemistry [START_REF] Mulliken | Spectroscopy, molecular orbitals, and chemical bonding[END_REF]. When the one-electron Schrödinger equation is projected to this finite basis set, the following generalized eigenvalue problem has to be solved:

HC = SCD, (4.1) 
where

H µν = φ µ |H|φ ν , (4.2) 
S µν = φ µ |φ ν , (4.3) 
D is the diagonal matrix of the increasing ordered eigenvalues ǫ i and C is the matrix containing the corresponding eigenvectors. The overlap integrals S µν can be efficiently computed by representing each atomic orbital as a sum of Gaussian-Type Orbitals (GTOs) [START_REF] Hehre | Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals[END_REF].

The EHMO [START_REF] Hoffmann | An extended Hückel theory. I. Hydrocarbons[END_REF] is a simple semi-empirical quantum chemistry method based on the Hückel theory [START_REF] Hückel | Quantentheoretische Beiträge zum Benzolproblem. I. Die Elektronenkonfiguration des Benzols und verwandter Verbindungen[END_REF], which approximates the Hamiltonian matrix terms as:

H µν = K I µ + I ν 2 S µν , (4.4) 
where I µ is the ionization energy of orbital φ µ , and K is the Wolfsberg-Helmholtz constant, which is usually set to 1.75 [START_REF] Hoffmann | An extended Hückel theory. I. Hydrocarbons[END_REF]. For a system with N electrons, at zero electronic temperature, the total energy is expressed as a sum over the N 2 lowest eigenvalues:

E EHMO = i< N 2 2ǫ i . (4.5)
Such a simple approximation of the Hamiltonian may provide a good approximation for the electronic structure of the system. However, it fails at describing twobody electrostatic interactions [START_REF] Anderson | Description of diatomic molecules using one electron configuration energies with two-body interactions[END_REF]. In order to compute more accurate geometries by energy minimization, Anderson developed the Atom-Superposition and Electron-Delocalization Molecular-Orbital (ASED-MO) theory [START_REF] Anderson | Electron density distribution functions and the ASED-MO theory[END_REF], which is described below.

ASED-MO theory

The ASED-MO theory corrects the electrostatic interactions while keeping the electronic structure of the EHMO method. Precisely, the electron density is divided into two terms: a perfectly-following term, which is the electron density when atoms do not interact, and a non-perfectly-following term, which corresponds to the electron density deformation when atomic nuclei are brought from infinity to a finite distance (the bond formation) [START_REF] Anderson | Toward a better understanding of the atom superposition and electron delocalization molecular orbital theory and a systematic test: diatomic oxides of the first transition-metal series, bonding and trends[END_REF].

Consequently, the total energy of the system E tot can be expressed as a sum of two contributions:

E tot = E rep + ∆E EHMO , (4.6) 
where E rep is the repulsive electrostatic part, and ∆E EHMO is the binding energy part.

The repulsive electrostatic part is:

E rep = A B E AB , (4.7) 
where energies E AB with indices A and B running over all atoms in the system originate from the perfectly-following term of the electron density. These energies contain integrals of Slater-type atomic orbitals and have an analytical expression (equation [START_REF] Ballard | Symmetric eigenvalue problem: Tridiagonal reduction[END_REF] in reference [START_REF] Calzaferri | Molecular geometries by the Extended Hückel Molecular Orbital (EHMO) method[END_REF]).

The binding energy ∆E EHMO is the difference between the energy of the molecule computed with the Extended Hückel theory (E EHMO ) and the ionization energies of separate atoms:

∆E EHMO = E EHMO - µ I µ , (4.8) 
where I µ are the ionization energies. The summation runs over the atomic orbitals that are occupied when atoms do not interact.

The H µν Wolsberg-Helmholtz approximation (equation (4.4)) can be considered as the first term of the full development of the Hamiltonian in powers of the overlap matrix. The ASED-MO theory has been shown to be extendable by the use of a second-order expansion, leading to the ASED+ method [START_REF] Ample | A semi-empirical study of polyacene molecules adsorbed on a Cu(1 1 0) surface[END_REF]. The use of higher-order expansions offers promising possibilities in the applicability of the ASED-MO theory to a large class of problems.

Forces formulation in the ASED-MO theory

In the ASED-MO theory, the force on each atom can be computed analytically [START_REF] Tasi | A new program for effective one-electron (EHMO-ASED) calculations[END_REF]. This is an advantage when performing dynamic simulations or energy minimizations. Let x be the position of an atom. The gradient of the potential energy at zero electronic temperature is:

∇ x E = µ ν P µν ∇ x H µν - µ ν W µν ∇ x S µν + ∇ x E rep , (4.9) 
where P is the density matrix,

P µν = i< N 2 2C µi C νi , (4.10) 
W is the energy-weighted density matrix

W µν = i< N 2 2ǫ i C µi C νi , (4.11)
and C is the matrix of the eigenvectors. The computational complexity of evaluating these two matrices is cubic in the number of atoms in the system. One has to compare this result with the quartic complexity of computing the numerical gradient.

The divide-and-conquer approach

For large systems, the cubic complexity of the original ASED-MO theory formulated in the previous section is a bottleneck. To overcome this problem, we choose to apply the linear-scaling divide-and-conquer (D&C) approach to the ASED-MO theory. In this section, for completeness, we first recall the D&C scheme.

The divide-and-conquer formulation

The D&C algorithm can be divided into three parts:

• Dividing the system

The original system S is first divided into non-overlapping subsystems S 1 , . . . , S M (i.e. each atom belongs to one and only one subsystem). Let us define V as the global vector space spanned by all atomic orbitals, and let V i denote the vector space spanned by the atomic orbitals corresponding to subsystem S i . We have:

V = i V i . (4.12)
Then, for each subsystem S i , an extended subsystem S * i is defined as containing all atoms from S i as well as those closer to atoms in S i than a certain distance cutoff. The set of additional atoms is called the buffer region of S i . For each i, 1 i M , we denote by B i the vector space spanned by the atomic orbitals associated to these neighboring atoms, and we denote by V * i = V i B i the space corresponding to S * i . The systems S, S i and S * i are illustrated in Figure 4.2.

• Solving each subsystem independently

For each extended subsystem S * i , 1 i M , the D&C method forms the generalized eigenvalue problem in the local space V * i :

H i C i = S i C i D i . (4.13)
The solution of each local generalized eigenvalue problem (4.13) determines the local matrices P i and W i once the Fermi energy e F and the occupation numbers σ i j are known:

P i µν = j,ǫ i j ≤e F σ i j C i µj C i νj , (4.14) 
W i µν = j,ǫ i j ≤e F σ i j ǫ i j C i µj C i νj , (4.15) 
where ǫ i j is the energy of molecular orbital j in subsystem i.

• Summing up the various contributions

In order to compute the global density matrix elements P µν from the local elements P i µν , the following superposition scheme is applied:

P µν = i d i (φ µ , φ ν )P i µν , (4.16 
)

W µν = i d i (φ µ , φ ν )W i µν , (4.17) d i (φ µ , φ ν ) = 0.5[1 V i (φ µ ) + 1 V i (φ ν )], (4.18)
where 1 is the indicator function.

This scheme has been improved with the introduction of a second buffer region for each subsystem [START_REF] Dixon | Semiempirical molecular orbital calculations with linear system size scaling[END_REF]. Although the additional local density matrix elements are not explicitly taken into account when computing the global density matrix, the larger neighborhoods improve the accuracy of the local density matrix terms corresponding to the initial subsystems S * i , thus improving the quality of the global density matrix. Thus, for each subsystem i, we may redefine the extended subsystem as containing the subsystem and both its buffer regions. As a result, each extended vector space is redefined as

V * i = V i B 1 i B 2 i
, where B 1 spans the atomic orbitals in the first, inner buffer region, and B 2 spans the atomic orbitals in the second, outer buffer region. The new scheme reads as:

P µν = i d i (φ µ , φ ν )P i µν , (4.19) 
W µν = i d i (φ µ , φ ν )W i µν , (4.20) 
d i (φ µ , φ ν ) = 0.5[1 V i (φ µ ) + 1 V i (φ ν )][1 -1 B 2 i (φ µ )][1 -1 B 2 i (φ ν )]. (4.21)
Note on the Fermi energy and the occupation numbers: in practice, to satisfy N = Tr(SP ), N being the exact number of electrons in the entire system, we do not explicitly compute the Fermi energy e F . We populate the energy-ordered molecular orbitals with an occupation number σ = 2 and update the number of electrons Tr(SP ), while Tr(SP ) ≤ N . Then, one final molecular orbital is occupied with a fractional number of electrons to satisfy N = Tr(SP ).

Remarks on the choice of the buffer region cut-off

The choice of the size of the buffer regions is rather empirical. However, a few remarks can be made to choose appropriate values. When only energy and forces are needed, we suggest that the inner buffer's distance cut-off only needs to be just as large as the Hamiltonian's. The inner buffer cut-off does need to be as large as the Hamiltonian's to preserve the continuity of the potential. However, since E = Tr(HP ), the density matrix elements corresponding to zero Hamiltonian terms will not contribute to the energy and forces, so that a larger inner buffer cut-off will not affect them. Note that the potential energy still converges to the exact one when the cut-off of the outer buffer region tends to infinity. The tests were run on a desktop computer equipped with two 2.33 GHz quad-core processors. The direct method (ASED-MO) has a prohibitive cubic complexity in the number of basis functions, and the Multithreaded ASED-MO variant shows a poor parallel speed-up. Consequently, the two corresponding curves are difficult to distinguish. The D&C ASED-MO approach demonstrates a considerable speed-up thanks to the linearity of the computational cost, and the Multithreaded ASED-MO variant is able to benefit from the multiple cores on the desktop computer.

Note that the multithreaded version of the D&C scheme led to an important speed-up by computing the eigenvectors and density matrices of each subsystem in parallel. For the largest carbon nanotube with 9600 basis elements, the computational time was less than two seconds.

In the divide-and-conquer approach, the amount of work increases linearly with the size of the system. However, as the number of atoms, hence subsystems, increases, more and more work can be performed in parallel on the two quad-core processors. Consequently, the speed-up of the ASED-MO D&C multithreaded variant over the ASED-MO D&C variant increased with the number of subsystems (Table 4.1). However, our implementation does not achieve the maximum theoretical speed-up [START_REF] Anderson | The influence of electrochemical potential on chemistry at electrode surfaces modeled by MO theory[END_REF], probably because diagonalization and the rank-one matrix updates involved in density matrix computations are memory demanding operation, and the memory bus is not able to feed the eight cores fast enough.

Accuracy of the approach

To experimentally study the potential energy approximation, we computed the error of the ASED-MO D&C implementation compared with the original ASED-MO version, for several carbon nanotubes, a graphene sheet, a graphane sheet and several polymer molecules. For all tests we used four subsystems, and the two distance cut-offs (for the inner and outer buffer regions) were set to 6 Å and 2 Å, respectively. Table 4.2 gathers the different energy errors, in electron volts. Note that this comparison was limited to rather small molecules, due to the cost of the cubic-complexity ASED-MO method. This limitation will be overcome in the next section, thanks to analytically solved toy models. Secondly, to test the quality of the forces computed by the D&C approach, we optimized the geometry of the polyfluorene chain molecule shown in Figure 4.1, and compared the final computed structure with the one computed using the original model. This is an interesting benchmark since many structures of this chain optimized with the ASED-MO theory have been previously used to perform a conductance study [START_REF] Lafferentz | Conductance of a single conjugated polymer as a continuous function of its length[END_REF]. The structure optimization was performed with the quasi-Newton method with approximate line search, since this is typically recommended for semiempirical minimization [START_REF] Thiel | Fast semiempirical geometry optimizations[END_REF]. Again, we used four subsystems and the two cut-offs were set to 6 and 2 Å.

The D&C variant was very accurate for this system, and allowed for fast minimization. The direct and the D&C approaches converged to very similar structures, with a Root-Mean-Square Deviation (RMSD) smaller than 0.01 Å. Figure 4.4 shows the RMSD to the ASED-MO structure as a function of wall-clock time, during minimization. The rapid convergence of the divide-and-conquer variant confirms for this test system the quality of both the energy approximation and the force formulation.

An analytical error study

The empirical results above appear to confirm the applicability of the divide-andconquer scheme for single-point energy calculations and geometry optimizations, when compared with the original, cubic-complexity ASED-MO variant. In this section, we propose to study the approximations resulting from the D&C method for large systems through toy models for which analytical solutions are available:

• First toy model: this is a C n H n+2 polyacetylene molecule treated with the Hückel theory [START_REF] Hückel | Quantentheoretische Beiträge zum Benzolproblem. I. Die Elektronenkonfiguration des Benzols und verwandter Verbindungen[END_REF]. A schematic representation of the molecule is presented in Figure 4.5. The Hückel theory considers only one atomic p-orbital by every carbon atom. Consequently, the n π-electrons occupy n/2 low-energy molecular orbitals. Each orbital only interacts with its two nearest neighbors. The atomic orbitals are considered orthogonal and thus, S is the identity matrix.

• Second toy model: this is a linear chain of hydrogen atoms treated with the ASED-MO theory. Hydrogen atoms are equidistant and each s-orbital only overlaps with its two nearest s-orbital neighbors. ). Analytical expressions are readily available for the electronic structure of such a molecule when using the Hückel theory. This allows us to estimate the quality of the energies obtained by the divide-and-conquer approach for very large systems.

The analytical eigenvalues and eigenvectors of the toy models

The Hamiltonian matrix of the introduced toy models has the following form:

H =         α β 0 . . 0 β α β . . 0 β . . . . β 0 . . β α β 0 . . 0 β α         . ( 4.22) 
This tridiagonal Toeplitz matrix has analytically known eigenvalues and eigenvectors (see e.g. [START_REF] Meyer | Matrix analysis and applied linear algebra[END_REF]). For instance, for dim(H) = n, there exists n eigenvalues:

λ k = α + 2β cos kπ n + 1 , k = 1, . . . , n. (4.23) 
The eigenvector v k corresponding to λ k is:

v k = sin kπ n + 1 , sin 2kπ n + 1 , . . . , sin nkπ n + 1 . (4.24) 
Note that this provides an analytical solution for the energy of the polyacetylene toy model only. In the second toy model, a generalized eigenvalue problem (4.1) has to be solved with the following overlap matrix:

S =         1 s 0 . . 0 s 1 s . . 0 s . . . . s 0 . . s 1 s 0 . . 0 s 1         . ( 4.25) 
The vectors (v k ) k=1,...,n above are also solution of this generalized eigenvalue problem, but the n eigenvalues are now:

λ k = α + 2β cos kπ n+1 1 + 2s cos kπ n+1 , k = 1, . . . , n. (4.26) 
The values of α and β were chosen based on the literature. For the polyacetylene molecule described with the Hückel theory, we used α = -11.4 eV and β = -2.82 eV [START_REF] Bahnick | Use of Huckel molecular orbital theory in interpreting the visible spectra of polymethine dyes: An undergraduate physical chemistry experiment[END_REF]. For the hydrogen chain in the ASED-MO theory, we used α = -13.6 eV, s = 0.6, K = 2 and β = Ksα = -16.32 eV.

Accuracy of the D&C approach for the toy models

Both toy models allow us to compare the linear scheme's solution with the exact one for very large systems. Indeed, the energy evaluation for a given configuration is a linear time operation for the direct diagonalization approach (summation over n/2 eigenvalues) and constant time for the D&C approach (besides the first and the last subsystem, each subsystem has the same local Hamiltonian and energy contribution).

When applying the D&C technique to both toy models, we used the same number of atoms n S for the subsystems and their left and right total buffers. Because of the tridiagonal form of the matrix, the inner buffer contained only two atoms (one left and one right) for each subsystem, and the outer buffer contained n S -2 atoms. This is illustrated in .7 shows the total energy error as a function of the total number of atoms, for each toy model, using fixed subsystem sizes. The plot clearly shows that the D&C error linearly depends on the system size. The error per atom introduced by the D&C approach, approximately between 10 -3 and 10 -5 eV per atom, is small in comparison with the error introduced by the semi-empirical models. This confirms the applicability of the scheme for energy evaluation.

In Figure 4.8, the potential energy error is plotted as a function of the subsystem size for the C 720 H 722 molecule. It shows the convergence of the approach when increasing the subsystems size. Note that, for conciseness, we do not show the very similar energy error and asymptotic behavior obtained with the second toy model.

Analysis of the density matrix

Although the D&C approach does not satisfy some key constraints of the original problem, as mentioned in Chapter 2 Section 4.2, the computed energies appear to be satisfactory. In this section, to study more precisely the error induced by the D&C approach, we analyze the electronic structure based on the approximate (left) and the hydrogen chain (right) as a function of the number of basis functions. Three different subsystems sizes were used. As can be seen, the error increases linearly with the size of the system, and decreases with the subsystems size. In these examples, the error per atom is approximately between 10 -3 -10 -5 eV.

Figure 4.8: Error of the D&C approach for the polyacetylene C 720 H 722 when increasing the subsystems size. For a fixed number of atoms, the energy computed by the divide-and-conquer approach converges to the exact one when the size of the subsystems increases.

density matrix. For simplicity, we only consider the polyacetylene toy model since, in an orthogonal basis set, the density matrix divided by two ( 1 2 P ) can be directly interpreted as a projector on the vector space spanned by the occupied eigenvectors (S = I in equation (2.48)). To maximize the number of non-zero elements in the approximate density matrix, we choose to consider the version of the D&C scheme with only one buffer region, containing 2n S atoms, where n S is the number of atoms per subsystem (equation (4.16)).

Let D lin denote the projector matrix computed from the D&C density matrix (equation (4.16)), and let D denote the exact projector matrix, computed analytically. Finally, let V occ (resp. V virt ) denote the vector space spanned by the exact occupied (resp. virtual) eigenvectors. Recall that the exact eigenvectors are computed directly by the analytical expression (4.24).

The projector matrix D lin is an approximation of D, the orthogonal projector on V occ . For the exact projector D and an exact eigenvector |ψ , at zero electronic temperature, the following equation holds:

ψ|D|ψ = 1 Vocc (ψ), (4.27) 
so that plotting ψ|D lin |ψ gives a good sense of the quality of the approximate density matrix. As can be seen from Figure 4.9, the error is mainly localized on eigenvectors with corresponding eigenvalues close to the Fermi energy. This phenomenon is reminiscent of the one found in the Chebyshev Fermi operator expansion method when the zero-temperature Fermi distribution is expressed in a polynomial basis [START_REF] Goedecker | Linear scaling electronic structure methods[END_REF], introducing so-called Gibbs oscillations.

To explain this phenomenon, one can consider that the D&C approach performs two approximations. The first approximation results from computing local density matrices from local eigenvectors |ψ loc . However, these local eigenvectors do not necessarily span the occupied vector space V occ . To illustrate this, we plot the quantities

ψ loc |D|ψ loc (4.28) 
in Figure 4.10. Recall that for v with ||v|| 2 = 1,

v|D|v =      1, if v ∈ V occ 0, if v ∈ V virt x, 0 < x < 1, else . (4.29) 
An instructive observation is that the local eigenvectors with the lowest energy lie within a reasonable approximation in V occ , but this is not the case for local vectors with eigenvalues around the Fermi energy. As a result, the local density matrix is a projector on a vector space that is not a subspace of V occ essentially because of these vectors.

The second approximation occurs when the scheme combines local density matrices from each subsystem. Here, the idempotency property of the projector is not satisfied, which could already be observed by the fact that ψ|D lin |ψ > 1 in Figure 4.9 for some eigenvector indices. The behavior of the approximate density matrix is tested for each of the exact eigenvectors. The accuracy of the approach improves as the subsystem size grows. The error is mainly localized for eigenvectors which have eigenvalues near the Fermi energy. for the C 500 H 502 molecule treated with the Hückel theory, for a subsystem size of 20. Local eigenvectors around the Fermi energy have a large component in both the exact virtual space and the exact occupied space, which may be a source of error in the divide-and-conquer scheme.

A possible correction of the density matrix with some exact eigenvectors

The localization of the error presented in Figure 4.9 suggests a way to correct the D&C scheme. Indeed, the computed density matrix has a correct behavior for the lowest energy eigenvectors, but not for eigenvectors with eigenvalues near the Fermi energy. Assume we know some of the (exact) occupied eigenvectors, and let I occ denote the set of indices of these known occupied eigenvectors. Similarly, let I virt denote the set of indices of some known virtual eigenvectors. Thanks to these known eigenvectors, we may compute the corresponding projectors:

D occ corr = i∈I occ |ψ i ψ i |, (4.30) 
D virt corr = i∈I virt |ψ i ψ i |, (4.31) 
and use them to have the exact expected values of equation (4.27) for the known eigenvectors without changing the results for the other eigenvectors. This is done by applying the following correction:

D corr lin = (D lin (I -D occ corr ) + D occ corr ) I -D virt corr . (4.32) 
Indeed, it can easily be checked that :

ψ i |D corr lin |ψ i =      1, if i ∈ I occ 0, if i ∈ I virt ψ i |D lin |ψ i , else . (4.33) 
In Figure 4.11, we plotted this computed correction for a C 500 H 502 molecule with the knowledge of 100 exact eigenvectors around the Fermi energy (i.e. I occ = [START_REF] Zhou | Bonding of CN on Ni (111) surface: ASED-MO studies[END_REF]250] and I virt = [251, 300]). As one can see, it results in a very accurate projector. However, this correction is expensive to compute, and might not be practical, especially when the overlap matrix is not set to identity.

Interactive quantum chemistry

The previous sections appear to indicate that the D&C scheme may efficiently provide accurate energy and forces in the ASED-MO theory. In this section, we demonstrate that our implementation is fast enough to allow for interactive quantum chemistry simulation at this level of theory.

Methodology

In practice, our interactive quantum chemistry modeler alternates a time step of either dynamics simulation or energy minimization with a time step for user action. The algorithm reads as: 

Electronic structure visualization

With the new capability of solving at an interactive rate quantum-based models, one has to display at the same rate the large set of information provided by the calculation, including electron density and molecular orbitals. Because electronic structure visualization is computationally demanding, recent techniques have proposed to use Graphics Processing Units (GPUs) to efficiently evaluate molecular orbitals on a 3D scalar field prior to performing volume rendering [START_REF] Stone | High performance computation and interactive display of molecular orbitals on GPUs and multi-core CPUs[END_REF][START_REF] Jang | Interactive volume rendering of functional representations in quantum chemistry[END_REF].

In our modeler, we have implemented an OpenCL program to compute and display an isosurface of the electron density based on the density matrix entries. Precisely, the CPU computes the density matrix entries using the methods described above, and the GPU both computes the electron density and extracts an isosurface from the electron density. To achieve interactivity with systems up to a few hundred atoms, we used three main techniques:

• View frustum culling: the density is only computed for the visible part of the molecular system.

• Adaptive resolution: the resolution of the electron density grid may change depending on the distance to the atoms.

• Divide-and-Conquer electron density computation: a bounding volume of the system is partitioned in sub-volumes of constant size for which the set of atomic orbitals closer to a certain cut-off is precomputed on the CPU at each time step. As a result (considering systems with a bounded atom density), the electron density at each lattice point can be computed in constant time, and the electron density display complexity is linear with the number of atoms.

Results

For several large systems, such as polymers of a few hundred atoms, our approach is efficient enough to enable interactive quantum chemistry simulations on a multicore desktop computer. We present three videos demonstrating interactive quantum chemistry modeling in SAMSON [START_REF] Samson | Software for Adaptive Modeling and Simulation Of Nanosystems[END_REF]. The computer is equipped with a quad-core computer at 2.40 Ghz with 4GB of RAM running a 32-bit Linux Fedora operating system. The graphics card is a GeForce GTX 260 with 216 CUDA cores and 896 MB of memory. In these examples, the user edits the system by pulling on atoms. The imposed atomic displacement is proportional to the distance between the selected atom (or center of mass of a group of selected atoms) and the position of the mouse pointer. Three different systems are considered:

• Benzene molecule: the molecule is transformed into an isomer, the fulvene molecule. Figure 4.12 presents screenshots of this session. The Multithreaded ASED-MO variant was used for this small system. The video is accessible on the web: link.

• Hexamethylbenzene molecule: the user runs an energy minimization of a set of hydrogen and carbon atoms, resulting in the hexamethylbenzene molecule which is then transformed in an isomer. Figure 4.13 presents screenshots of this editing. The Multithreaded ASED-MO variant was also used for this system. The video is accessible on the web: link.

• Polyfluorene chain molecule: the polymer molecule with 162 atoms and 432 basis elements is edited by the user. Figure 4.1 presents screenshots of this editing. In this case, the Multithreaded D&C ASED-MO variant allows for interactive rates as well. For this system, the time cost allows about 10 frames per second with electronic structure visualization and about 20 frames per second without. We do not demonstrate sessions with larger systems on this computer as we do not consider less than 10 frames per second (i.e. more than 100ms to update the system's state) as interactive. The video is accessible on the web: link.

Conclusion

In this chapter, we demonstrate that interactive quantum simulation is feasible in the framework of the ASED-MO theory. In our implementation of the divideand-conquer scheme for this theory, all steps are direct, i.e. they do not involve any iterative algorithm. The sequential implementation shows the linearity of the Starting from a hexamethylbenzene molecule, the user has moved hydrogen atoms and formed a methylene group. By pulling on this methylene group, the user forms new bonds between carbon atoms. The video is accessible on the web: link. computational cost. The multithreaded variant shows an important speed-up on a standard multicore desktop computer. As a result, the computational cost is low enough to allow for interactive simulations for systems up to a few hundred atoms. Trajectories and electron densities are both computed and visualized on-the-fly while the user interacts with the system, providing immediate feedback.

Furthermore, our empirical results appear to confirm the applicability of the D&C scheme for potential energy computation and geometry optimization. We found that the energy error of the D&C scheme is in the order of 10 -4 eV per atom for our test systems, which is small in comparison with the precision of the ASED-MO theory. To study the error for large systems, we analyzed the D&C approach for two toy models: the C n H n+2 polyacetylene molecule treated with the Hückel theory, and an equidistant chain of hydrogen atoms treated with the ASED-MO theory. The problems can be solved analytically, and allow us to compare the D&C approach with the exact solution even for large systems. Again, the energy error is in the order of 10 -4 eV per atom for large enough subsystems sizes. In this analysis, we found distortions of the density matrix around the Fermi level. Indeed, the errors on the constructed projector were mainly localized on eigenvectors associated to eigenvalues around the Fermi energy. In addition, we observed a similar problem when constructing the local projectors associated to the subsystems.

With the current technological trend of increasing the number of cores in desktop computers, we believe that our approach will allow for interactive simulations for larger and larger systems. However, it will still be difficult to achieve interactive rates in two situations: for large systems and systems with large subsystems. In the next Chapter, we extend the adaptive approach presented in Chapter 3 in the context of the Brenner potential to the presented D&C ASED-MO method. We demonstrate the possibility of efficient interactive quantum chemistry modeling for a much wider class of systems.

Chapter 5 BAQM

Résumé

Dans ce chapitre, nous présentons la méthode Block-Adaptive Quantum Mechanics (BAQM) pour la simulation intéractive de la chimie quantique. Bien que les modèles de chimie quantique soient très couteux en calcul numérique, nous obtenons des taux interactifs en concentrant l'effort de calcul sur les parties les plus importantes du système. BAQM est basée sur la méthode diviser-pour-régner et contraint, à la volée, certains degrés de liberté (certaines positions de noyaux et certaines orbitales moléculaires monoélectroniques). En appliquant cette approche à la théorie semiempirique ASED-MO (Atom Superposition and Electron Delocalization Molecular Orbital), nous démontrons des taux interactifs et un prototypage virtuel efficace pour des systèmes contenant plus de mille atomes sur un ordinateur de bureau..

Summary

In this chapter, we present a novel Block-Adaptive Quantum Mechanics (BAQM) approach to interactive quantum chemistry. Although quantum chemistry models are known to be computationally demanding, we achieve interactive rates by focusing computational resources on the most active parts of the system. BAQM is based on a divide-and-conquer technique, and constrains some nucleus positions and some electronic degrees of freedom on the fly to simplify the simulation. As a result, each time step may be performed significantly faster, which in turn may accelerate attraction to the neighboring local minima. By applying our approach to the non-self-consistent ASED-MO (Atom Superposition and Electron Delocalization Molecular Orbital) theory, we demonstrate interactive rates and efficient virtual prototyping for systems containing more than a thousand of atoms on a standard desktop computer.

Introduction

In the previous chapter, we have demonstrated that interactively solving the one-electron Schrödinger equation is possible on current desktop computers for systems composed of a few hundreds of atoms. By subdividing the system into many overlapping subsystems, this approach has a linear time complexity in the number of atoms, as well as a good parallel scaling [START_REF] Pan | Parallel implementation of divide-andconquer semiempirical quantum chemistry calculations[END_REF], which should thus allow for continued improvements with current hardware trends in personal computers.

Despite this, it will still be difficult to achieve interactive rates in two situations:

• Large number of subsystems: since the number of subsystems increases linearly with the number of atoms, some systems will simply be too large to allow for interactive rates.

• Large subsystems: to reach high accuracy, the D&C approach needs to employ sufficiently large overlapping subsystems [START_REF] Bosson | Interactive quantum chemistry: A divide-and-conquer ASED-MO method[END_REF]. In this case, solving even a single subsystem's eigendecomposition problem may be too costly to achieve interactive rates. Furthermore, it may be difficult to expect important speedups in the near future because diagonalization algorithms typically have poor parallel scaling [START_REF] Breitmoser | A performance study of the PLAPACK and SCALAPACK eigensolvers on HPCx for the standard problem[END_REF][START_REF] Bientinesi | A parallel eigensolver for dense symmetric matrices based on multiple relatively robust representations[END_REF] and the serial speed of processing cores is reaching a physical limit [START_REF] Sutter | The free lunch is over: A fundamental turn toward concurrency in software[END_REF]. One approach to speed-up electronic structure calculations consists in incrementally updating eigenvectors, as in the Residual Minimization -Direct Inversion of the Iterative Subspace" (RM-DIIS) approach [START_REF] Rayson | Rapid iterative method for electronic-structure eigenproblems using localised basis functions[END_REF].

Unfortunately, this may be as slow as the direct approach when too many eigenvectors have to be updated. Another approach could be to directly freeze the density matrix while letting atomic nuclei move [START_REF] Ermolaeva | Implementation and testing of a frozen density matrix-divide and conquer algorithm[END_REF]. However, when a non-orthogonal basis set is used, this may produce non-orthogonal molecular orbitals, which might attract the system in configurations with actually higher potential energy.

To address both issues, we propose a novel Block-Adaptive Quantum Mechanics (BAQM) approach, based on the Divide-And-Conquer method and two new components.

First, in order to decouple the computational complexity from the system's size, we propose to adaptively simulate the nucleus degrees of freedom. In general, the nearsightedness principle [START_REF] Kohn | Density functional and density matrix method scaling linearly with the number of atoms[END_REF] makes it possible to perform a fast incremental update of the electronic structure when only some atoms have moved [START_REF] Lee | Frozen density matrix approach for electronic structure calculations[END_REF][START_REF] Surján | Frozen localized molecular orbitals in electron correlation calculations -exploiting the Hartree-Fock density matrix[END_REF][START_REF] Stewart | Application of localized molecular orbitals to the solution of semiempirical self-consistent field equations[END_REF][START_REF] Ermolaeva | Implementation and testing of a frozen density matrix-divide and conquer algorithm[END_REF]. In the Divide-And-Conquer approach [START_REF] Dixon | Semiempirical molecular orbital calculations with linear system size scaling[END_REF], the system is divided into nearly independent overlapping subsystems. In the context of a non self-consistent theory, when all atoms of a subsystem are frozen in space, both the Hamiltonian and its eigendecomposition are constant. To take advantage of this fact, we extend the approach we previously introduced in Chapter 3 for adaptive Cartesian mechanics coordinates [START_REF] Bosson | Interactive physicallybased structural modeling of hydrocarbon systems[END_REF]. Precisely, we freeze and unfreeze groups of atoms, according to the applied atomic forces and the system's decomposition into overlapping subsystems. We call this first component Block-Adaptive Cartesian Mechanics.

Second, to be able to deal with large subsystems for which diagonalization is the bottleneck, we propose to use an adaptively updated reduced basis which takes advantage of temporal coherence between successive eigendecomposition problems.

For some methods, evaluating the Hamiltonian and overlap matrices may be computationally demanding. However, these computations are intrinsically parallel and can benefit from modern hardware architectures such as Graphics Processing Units (GPUs) [START_REF] Ufimtsev | Quantum chemistry on graphical processing units. 1. Strategies for two-electron integral evaluation[END_REF]. Similarly, the computation of the density matrix has a cubic complexity in the number of basis functions, but dense matrix multiplications are memoryfriendly [START_REF] Thottethodi | Tuning Strassen's matrix multiplication for memory efficiency[END_REF][START_REF] Whaley | Automated empirical optimizations of software and the ATLAS project[END_REF] and can be efficiently handled on modern hierarchical-memory multicore architectures [START_REF] Chan | Supermatrix out-of-order scheduling of matrix operations for SMP and multi-core architectures[END_REF][START_REF] Volkov | Benchmarking GPUs to tune dense linear algebra[END_REF]. As a result, we have focused our efforts on the computation of molecular orbitals. A natural way to accelerate the resolution of many similar differential equations is to use a reduced basis approach [START_REF] Noor | Reduced basis technique for nonlinear analysis of structures[END_REF]. This methodology has been applied in specific contexts for electronic structure calculation [START_REF] Cancès | Feasibility and competitiveness of a reduced basis approach for rapid electronic structure calculations in quantum chemistry[END_REF][START_REF] Maday | A reduced basis method applied to the restricted Hartree-Fock equations[END_REF]. In this chapter, we propose to use an adaptive reduced basis which is automatically updated during the simulation. We call this second component Adaptive Reduced-Basis Quantum Mechanics.

We demonstrate that the BAQM approach may significantly speed-up energy minimization, as well as enable interactive quantum chemistry for large molecular systems. Figure 5.1 illustrates interactive virtual prototyping of a polyfluorene chain molecule. ware for Adaptive Modeling and Simulation Of Nanosystems) [START_REF] Samson | Software for Adaptive Modeling and Simulation Of Nanosystems[END_REF]. In this example the system is divided into four subsystems. The energy is minimized continuously as the user edits the molecular system. At each time step, both the geometry and the electronic structure are incrementally and adaptively updated. Because the user pulls one atom (red arrow) in the left part of the system, the electronic structure is updated with the full basis for the leftmost subsystem (all atoms are red). In the neighboring subsystem, the electronic structure is updated according to a reduced-basis approximation (some carbons are black and some hydrogens are white). In the right part of the molecule, the user force does not have a sufficiently large impact, and atoms positions are frozen (all atoms are blue).

In general, adaptive approaches automatically focus computational resources on the most relevant parts of a problem. We use such an approach to maintain interactive rates while modeling chemical structures based on quantum chemistry principles. In this section, we provide an overview of our approach, and introduce its two main components: block-adaptive Cartesian mechanics, and adaptive reduced-basis quantum mechanics. For completeness, we first shortly recall the Divide-And-Conquer (D&C) technique.

The Divide-And-Conquer (D&C) technique

Essentially, the Divide-And-Conquer technique consists in three main steps (for more details, we refer the reader to Chapter 4 Section 3):

• Dividing the system

The original system S is first divided into M non-overlapping subsystems S 1 , . . . , S M . Then, for each subsystem S i , an extended subsystem S * i is defined as the one containing all atoms from S i and those closer to these atoms than a certain distance cutoff.

• Computing each subsystem electronic structure independently A vector subspace V * i is associated to each extended subsystem S * i (1 i M ). The projection of the one-electron Schrödinger equation in these subspaces leads to the generalized eigenvalue problems:

H i C i = S i C i D i , 1 i M.
(5.1)

The solution of each local generalized eigenvalue problem (5.1) determines the local density matrix P i and energy weigthed density matrix W i .

• Summing up the various contributions In order to compute the density matrix P and the energy-weighted density matrix W from the local matrices P i and W i , a superposition scheme is applied (e.g. [START_REF] Bosson | Interactive quantum chemistry: A divide-and-conquer ASED-MO method[END_REF]). Once P and W have been obtained, the potential energy is expressed as

E = Tr(HP ) (5.2)
and the gradient of the potential energy is approximated as:

∇ x E = µ ν P µν ∇ x H µν - µ ν W µν ∇ x S µν .
(5.3)

Block-adaptive Cartesian mechanics

One possible adaptive approach to control the computational cost of each time step consists in reducing the number of nucleus degrees of freedom to reduce the cost of updating the potential energy [START_REF] Rossi | Adaptive torsion-angle quasi-statics: a general simulation method with applications to protein structure analysis and design[END_REF][START_REF] Bosson | Interactive physicallybased structural modeling of hydrocarbon systems[END_REF]. The extension of this approach to a quantum chemistry model is not straightforward. In the D&C method, it is only when all atoms of an extended subsystem are frozen in space that an eigendecomposition formulation (eq. (5.1)) is constant and that incrementally updating the electronic structure may lead to important speed-ups.

Consequently, we decide to take into account the specific decomposition of the whole system S into overlapping subsystems S * 1 , . . . , S * M to focus calculations, and we freeze and unfreeze nuclei positions subsystem by subsystem. We describe this approach in Section 3.

Adaptive reduced-basis quantum mechanics

Block-adaptive Cartesian mechanics allows us to reduce the number of eigendecomposition problems that have to be solved at each time step. However, solving even just one of them may be too costly to achieve interactive rates. In order to accelerate molecular orbitals computation, we reduce the dimension of the basis in which the one-electron Schrödinger equation is projected.

For any given subsystem, successive eigendecomposition problems are very similar, because atoms do not move significantly at each time step. Perturbation theory suggests that the subspace spanned by a cluster of eigenvectors might be rather insensitive to small perturbations [START_REF] Stewart | Pertubation bounds for the definite generalized eigenvalue problem[END_REF]. To take advantage of this temporal coherence, we thus propose to use a reduced basis composed of low-energy eigenvectors computed at a previous time step. To do so, we introduce a simple distance measure between generalized eigenvalue problems to determine when the reduced basis should be updated. We describe this approach in Section 4.

Block-Adaptive Quantum Mechanics

The two components introduced above may be combined to form an adaptive minimization step which reads as:

• Block-adaptive Cartesian mechanics (a) Adaptively freeze some extended subsystems. (b) For each mobile atom, move along the force applied to it.

• Adaptive reduced-basis quantum mechanics (a) For subsystems with mobile atoms, adaptively choose either a reducedbasis or a full-basis update of the molecular orbitals. (b) For subsystems with mobile atoms, update the density matrices.

(c) Update all density matrices based on the new Fermi energy.

Section 5 presents the complete algorithm.

Block-adaptive cartesian mechanics

We now describe the block-adaptive Cartesian mechanics component, which consists in automatically freezing some positional degrees of freedom. As has been shown before, freezing atomic positions may accelerate geometry optimization of local defects [START_REF] Lee | Frozen density matrix approach for electronic structure calculations[END_REF][START_REF] Stewart | Application of localized molecular orbitals to the solution of semiempirical self-consistent field equations[END_REF]. Generally, these methods use a pre-defined active site, and only atoms in the active region are allowed to be mobile. In the context of interactive structural modeling, however, one cannot assume a pre-defined active site, since the user has the possibility to stress the system at any location. Therefore, to efficiently attract the system into low-energy regions, we need to efficiently choose the set of mobile atoms at each time step.

In Chapter 3, we have introduced a novel adaptive algorithm which allows for interactive modeling with a reactive force field [START_REF] Bosson | Interactive physicallybased structural modeling of hydrocarbon systems[END_REF]. The key idea was to decide whether to activate or freeze an atom depending on the norm of the force applied to it. Precisely, an atom was frozen if this norm was smaller than a certain threshold value. Similarly, in quantum chemistry models, by switching some positional degrees of freedom off, we may avoid updating some terms in the eigendecomposition problem (eq. (2.10)). However, as soon as a single term changes in the problem (eq. (5.1)), we have to solve a new eigendecomposition problem. It is thus very computationally attractive to freeze all atoms of an extended subsystem to avoid a new diagonalization.

To extend the previous approach of comparing the atomic force norms with a certain threshold, we define an extended subsystem force norm N S * i for the extended subsystem S * i . Precisely, N S * i is the maximum atomic force norm in S * i . We also define a threshold value f M , which is compared to these norms N S * 1 , . . . , N S * M . When a norm N S * i is lower than f M , then, all atoms in the extended subsystem S * i are frozen in space, and the corresponding eigendecomposition is not updated. On the contrary, if there exists at least one atom with a force norm larger than f M , we do not choose to freeze all atoms of S * i . Note that even in this case, though, S * i may still contain some frozen atoms, if it overlaps with some other, frozen subsystems.

The threshold value f M can either be predefined by the user, or automatically computed at each time step based on the system's state. This value helps us control the computational cost of a time step, since one may directly control the number of performed diagonalizations. For fast energy minimization, we propose

f M = 1 2 max i=1..M N S * i (5.4)
This scheme is illustrated in Figure 5.2. Step 0: threshold =15

Step 1: threshold =5
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Adaptive reduced-basis quantum mechanics

In this section, we present the adaptive reduced-basis quantum mechanics component. For clarity, we consider a system S with only one subsystem, and we first recall how the electronic structure problem (2.9) may be projected to a reduced basis.

Electronic structure calculations in a reduced basis

Let V denote a matrix of independent vectors expressed in the full basis. The matrix formulation of the electronic structure problem in this reduced basis is:

H v C v = S v C v D v , (5.5) 
where H v and S v can be computed by matrix multiplication:

H v = V T HV, S v = V T SV.
(5.6)

The diagonal matrix D v contains the sorted eigenvalues (e v i denotes the i th lowest eigenvalue).

To compute forces, one could deal with the gradient of the reduced Hamiltonian H v and overlap matrix S v , since the resulting eigenvectors are expressed in basis V . However, these terms are complex and can lead to a quartic complexity for the forces expression. To compute forces in practice, we first express the eigenvectors in the full basis:

C n = V C v .
(5.7)

Exploiting temporal coherence with a new eigendecomposition algorithm

When ε is small, (H v , S v ) are nearly diagonal. To exploit this property, we have devoted our efforts to develop a new eigendecomposition algorithm for this case with the following properties:

• Iterative -to exploit the temporal coherence which makes (H v , S v ) nearly diagonal.

• No explicit orthogonalization -to have a good parallel scaling.

• Use of Level 3 BLAS routines -to exploit the power of modern architectures and highly optimized routines available on desktop computers.

• Rapid convergence.

This algorithm is a contribution of this thesis. However, it has not been published yet. In this subsection, we only report the basic structure of the method to solve the generalized eigenvalue problem (HC = SCD) from the solution of a similar problem:

H old C old = S old C old D old , (5.13) 
where

H = H old + δH, S = S old + δS, (5.14) 
and ǫ = ||(δH, δS)|| F << 1.

The principle of the algorithm is to compute at each iteration the order-one correction of each approximate eigenvector from the perturbation theory (equation (2.17) in Chapter 2).

At iteration 1, we choose the initial guess as the previously computed eigenvectors (equation (5.13)): C 1 = C old . Then one can deduce the corresponding approximate eigenvalue by the Rayleigh quotient for the matrix pair (H, S). Let D 1 be the diagonal matrix of the approximated eigenvalues. As soon as C 1 gathers independent vectors, a new pair of matrices which have exactly the eigenvectors C 1 and eigenvalues D 1 exists. We call these matrices H 1 , S 1 :

S 1 = C 1 (C 1 ) T -1 , (5.15 
)

H 1 = S 1 C 1 D 1 (C 1 ) T S 1 .
(5.16)

Let C n denote the n th exact eigenvectors and C 1 n the n th eigenvectors approximation of the iteration 1. One can check that

H 1 C 1 n = (D 1 ) nn S 1 C 1 n .
(5.17)

The perturbation theory proposes a correction for each eigenvector (see equation (2.17) in chapter 2).

δC 1 n = k =n (C 1 k ) T (H -H 1 )C 1 n -(D 1 ) nn (C 1 k ) T (S -S 1 )C 1 n (D 1 ) nn -(D 1 ) kk C 1 k (5.18)

Energy minimization with a reduced-basis approach

We recall that the main goal of this chapter is to enable interactive geometry optimization, even for large systems. In general, one looks at this problem as the following energy minimization problem:

min X E(X), with X = {(x i ) i=1..n } ∈ R 3n
, where E is the potential energy dependent on X, the nuclei positions. To understand why we can accelerate geometry optimization, we have to look at the problem as a minimization problem on both nucleus and electrons degrees of freedom. Let Z denote the vector space of the basis functions, then the problem reads as:

min X,Ψ E(X, Ψ) = N/2 i=1 < ψ i |H(X)|ψ i >, with X = {(x i ) i=1..n } ∈ R 3n , Ψ = {(ψ i ) i=1..N/2 } ∈ Z N/2 , subject to < ψ i |S(X)|ψ j >= δ ij , i, j = 1..N/2.
We do not necessarily have to compute Ψ which minimizes E for each atomic position X (as is done when a complete diagonalization is performed). Our approach is to look for Ψ in a reduced basis, i.e., a Ψ which does not minimizes E for a given X. To guarantee convergence to local energy minima, we frequently update this reduced basis. Precisely, we perform at most N max reduced basis steps between two full basis steps. Thus, unlike approaches which reduce the accuracy (by e.g. choosing a simpler model or decreasing the cutoff distance defining the extended subsystems size) to accelerate the simulation, our approach does not alter the final geometry of the molecule. In Section 6, we demonstrate that the reduced basis can be used to accelerate interactive geometry optimization.

The Block-Adaptive Quantum Mechanics algorithm

In practice, we combine the two adaptive components described above in an algorithm which is now explicitly described.

We recall that f M is a force threshold, ε M is an eigendecomposition perturbation threshold and N max the maximum number of reduced basis steps between full basis steps. We introduce C i a counter of the successive number of reduced basis steps in subsystem i. -For each mobile atom, move along the force applied to it.

Algorithm description

• Incremental matrix computation for each extended subsystem with mobile atoms -Compute the new Hamiltonian H i and overlap matrix S i , as well as the difference between them and the matrices from which we have deduced the reduced basis, δH i and δS i .

-

Compute ε i = ||δH i || 2 F + ||δS i || 2 F . -Update the threshold value ε M (e.g. ε M = 1 2 max i=1..M ε i ).
• Adaptive reduced-basis quantum mechanics ∀i ∈ 1..M

-If all the atoms of S * i are frozen in space: keep the previous molecular orbitals.

-Else if (0 < ε i < ε M and C i < N max ): the current reduced basis of S * i is used, i.e., perform a frozen invariant subspace molecular orbital computation.

C i = C i + 1.
-Else, classical update: perform a diagonalization to update the molecular orbitals and the reduced basis. C i = 0.

• Finalize energy and forces computation -For each extended subsystem S * i with a molecular orbital change: compute the density matrix P i and the energy weighted density matrix W i based on the previous number of occupied molecular orbitals.

-Incrementally update all density matrices (P i and W i ) according to the new Fermi energy.

-Update the atomic force contribution in each subsystem with a density matrix modification.

Choice of the threshold values

At least two options are possible for the choice of the thresholds f M and ε M . The simplest choice is to predefine these values. In this case, the system will not relax completely (since some atoms with non-zero applied forces will not move). However, this approach is very powerful when the user is prototyping a new system and does not need the full accuracy of the quantum chemistry model. In this mode, an adaptive minimization step is performed only when the modeler detects that large forces are applied or that an important perturbation in the eigendecomposition problem appeared.

The second option is to automatically choose the thresholds based on the system's state. Let K denote a user-defined constant. We may choose f M = (max i=1..M N S * i )/K and ε M = (max i=1..M ε i )/K. Consequently the computational resources will be focused on the most mobile atoms and on the most perturbed eigendecomposition problems. For interactive quantum chemistry modeling, one may also compute the threshold values to allow only N 1 subsystems with mobile atoms and N 2 subsystems with diagonalisation such that the time cost of each step is well controlled.

Two options are also possible for N max . In practice, for interactive quantum chemistry, we choose a large value N max = 100. However, in Section 6, we show that a value N max = 5 is a better choice for energy minimization for two systems containing 240 basis elements.

Result

We now present results of our block-adaptive quantum mechanics algorithm for the ASED-MO level of theory. In these tests, we have used C++ as the main programming language. We have also used the highly optimized multithreaded Intel Math Kernel Library [START_REF]#$%%&[END_REF] to solve the generalized eigenvalue problems and to perform all the linear algebra operations. The tests have been performed on two different computers. Computer 1 is a desktop computer with two 2.67 GHz quadcore processors and 4GB of RAM, running a 32-bit Linux Fedora operating system. Computer 2 is a desktop computer with two 2.33 GHz quad-core processor and 4GB of RAM, running a 32-bit Linux Fedora operating system.

Reduced-basis molecular orbital computations

In this section, we compare full-basis and reduced-basis molecular orbitals computations. Computer 1 was used in this test.

We recall that, for fast steps, we have to perform the linear algebra operations H p = B T HB, S p = B T SB, solve the eigendecomposition H p C p = S p CE p , and perform C n = BC p . We also compare this scheme with a simpler S-orthogonalization. Indeed, an S-orthogonalization of the molecular orbitals can be used when the system S contains only one subsystem and the reduced basis dimension coincides with the number of occupied molecular orbitals. In this case, any S-orthogonal basis of the occupied subspace results in the same energy, and is a better choice if one is not interested in the molecular orbitals (eigenvectors and eigenvalues) themselves.

Figure 5.3 presents timings averaged over 100 evaluations for different matrix sizes (the method does not depend on the matrix elements). All curves demonstrate a cubic behavior. With the implementation presented in Chapter 8 "Appendix" Section 3, the simple orthogonalization of 50% of the previous eigenvectors is about one order of magnitude faster than the full basis approach. Therefore, adaptive reduced-basis quantum mechanics allows for interactive rates with larger subsystems.

Energy minimization with the adaptive reduced-basis approach

We recall that, in our approach, the main goal is to provide interactive and efficient geometry optimization. During an interactive modeling session, on-the-fly geometry optimization assists the user by continuously attracting the system into lower energy states. Section 6.1 demonstrates that using a reduced basis leads to faster steps, which allows for interactive rates with larger subsystems. We now demonstrate the relevance of the adaptive reduced-basis approach for accelerating energy minimization. In interactive geometry optimization, sophisticated methods such as quasi-newton or conjugate gradient may not be appropriate since each minimization step may require several forces and potential energy evaluations, making it more difficult to achieve interactive rates with large systems. Our approach is simply to use a steepest descent method with a constant time step size to have a smooth attraction of the system into a local minimum.

For two structures, a carbon fullerene and a carbon nanotube, we optimized the geometry and get the global minimum of the potential energy. Then, we performed again the optimization with the adaptive reduced-basis approach and stop the energy minimization when the global minimum energy has been reached. In these tests, we do not use ε M as there is no user action but we simply alternate between N max reduced basis steps and one full basis step. The reduced basis are composed of 50% of a previously solved eigendecompositon problem and thus, as the dimension of the reduced basis coincides with the number of molecular orbitals to be computed, we perform a simpler orthogonalization. The tests were done using computer 1.

Figure 5.4 presents different speed-ups for the two structures depending on N max the number of reduced basis steps between each full basis steps. Figure 5.5 presents in detail the faster energy descent of the fullerene molecule (C60) by choosing N max = 5 .

Energy minimization with the Block-Adaptive Quantum Mechanics (BAQM) approach

Here, we demonstrate how the BAQM algorithm (presented Section 5) may be used to accelerate the geometry optimization of a locally deformed graphane sheet The number in the abscise represents N max the number of reduced basis steps between each full basis steps (reduced basis update). The fullerene and the nanotube are systems of 60 carbon atoms with 240 atomic orbitals basis. of 1556 atoms. In this structure, each carbon atom is bound to one hydrogen atom, explaining the potential role of graphane as an hydrogen storage medium [START_REF] Sofo | Graphane: A two-dimensional hydrocarbon[END_REF]. Stable graphane structures were first theoretically predicted and then experimentally realized. The lowest potential energy structure is achieved when hydrogen atoms are attached to the graphane sheet in an alternating pattern (up and down). An important problem is to understand the role of H-frustration [START_REF] Legoas | Graphene to graphane: the role of H frustration in lattice contraction[END_REF].

In this minimization test, one hydrogen bond was flipped in such a way that two hydrogen atoms became frustrated, and the geometry of the graphane sheet had to be relaxed. We used 64 subsystems and a cut-off of 6 Å to define the extended subsystems. The tests were performed on computer 2.

Figure 5.6 shows the Root-Mean-Square-Deviation (RMSD) to the optimized structure as a function of wall-clock time while energy minimization was performed and reports the resulting speed-ups. Energy minimization was stopped when a 0.01 RMSD was reached. The BAQM approach allows for a speed-up of more than 20 by choosing the threshold value f M automatically computed by f M = (max i=1..M N S * i )/2 and by updating the reduced basis every 6 steps (i.e. for N max = 5, without using ε M ). The reduced basis sets were composed of 50% of the previously solved eigendecomposition problem (orthogonalization was not used because we needed to access each eigenvalue individually in the D&C scheme). The adaptive reduced-basis approach itself allowed us to speed-up minimization by a factor of 1.4. The block-adaptive cartesian mechanics allowed for an important speed-up of 16, since only some atoms had to be moved to relax the structure. We note that the total speed-up allowed by the BAQM approach was approximately the multiplication of these two speed-ups, which shows that the two components developed in this chapter combine well. Geometry optimization is stopped when the RMSD is smaller than 0.01 Å. In this case, our block-adaptive D&C approach allows for an important speed-up. Speed-ups of the different adaptive approaches are indicated into brackets in the legend.

Interactive quantum chemistry demonstration

For many systems, our approach is sufficiently efficient to enable interactive quantum chemistry simulations on a multicore desktop computer. We present two videos demonstrating interactive quantum chemistry modeling in SAMSON [START_REF] Samson | Software for Adaptive Modeling and Simulation Of Nanosystems[END_REF], the software being developed in our group. We used computer 1. In these examples, the user interactively edits the systems by pulling on atoms. The imposed atomic displacement is proportional to the distance between the selected atom and the position of the mouse pointer.

• Interactive quantum chemistry with a large subsystem: the user loads a carbon nanotube of 120 atoms treated with the ASED-MO theory with 480 basis elements and only one subsystem. For this system, the classical approach allows only 5 energy and forces computations per second. Thanks to the reduced basis approach, 20 energy and forces evaluations per second can be achieved and the user may interactively prototype the system. In the reducedbasis approach, bonds may break and re-form, however, the reduced basis, which has been deduced from the electronic structure of the initial geometry of the system, prevents the system from creating new bonds. To overcome this limitation, the user activates the Adaptive Reduced-Basis Quantum Mechanics approach. Then, in this example, the user is able to intuitively edit the system and explore different chemical structures. Figure 5.7 illustrates this interactive session. The video is accessible on the web: link.

• Interactive quantum chemistry with a large system: the user loads a graphane sheet of 1556 atoms treated with the ASED-MO divide-and-conquer approach. 64 subsystems are used and a cut-off of 4 Å for the buffer zone is chosen to achieve interactivity with our block-adaptive approach. The user is able to study the impact on the geometry of the structure when the state of a carbon-hydrogen chemical bond is changed. The bond can be broken and reformed on the other side of the graphane sheet. The block-adaptive quantum mechanics approach allows the user to interactively prototype the structure with each time step being approximately one order of magnitude faster. Figure 5.8 illustrates this interactive session. The BAQM approach also allows us to efficiently access different optimized configurations as illustrated in In this chapter, we demonstrate that interactive quantum chemistry simulation is feasible for rather large systems in the framework of the ASED-MO theory and the Divide-And-Conquer (D&C) technique. The proposed Block-Adaptive Quantum Mechanics (BAQM) approach allows for interactive rates with larger systems and larger subsystems than in the original scheme described in Chapter 4. This approach also reduces the percentage of the time spent in the diagonalization routine. As a result, optimization and multithreading on the rest of the computations can significantly improve the speed of a simulation, so that interactive quantum chemistry should be feasible for systems up to few thousands of atoms in the near future thanks to technological progress.

To achieve these results, we developed two adaptive approaches in which nuclei positions as well as electronic degrees of freedom can be constrained on the fly to control the simulation cost.

• First, we presented a block-adaptive Cartesian mechanics approach, in which nuclei may be frozen in space by groups, which allows us to deal with large systems.

• Second, we proposed to use a reduced basis set composed of some of the lowenergy eigenvectors of a previous time step to accelerate the molecular orbital computations in large subsystems. The reduced basis is adaptively updated.

We demonstrated that these two adaptive approaches may accelerate geometry optimization. Indeed, each simulation step is solved significantly faster by constraining some nuclei and electrons, and, by focusing computational resources on the most mobile atoms, we obtain a faster descent on potential energy surface. This chapter, the chapter 4 and the chapter 3 describe many new algorithms to allow for interactive modeling of chemical structures. The next chapter is devoted to some possible applications of these works.

A study of hydrogen absorption on a graphene sheet 1.Introduction

Hydrogen is a future direction of clean energy development. The H 2 molecule reacts with the O 2 molecule to form water and release heat. In this sense, hydrogen is an energy carrier. However, H 2 rarely occurs in nature because it readily forms covalent compounds with most of the chemical elements. The main challenge thus is to store it efficiently after it has been manufactured [START_REF] Schlapbach | Hydrogen-storage materials for mobile applications[END_REF]. Computational modeling helps to predict properties of future hydrogen storage materials. For example, many numerical simulations of hydrogen gas in carbon-based materials such as nanotubes can be found in the literature [START_REF] Dillon | Storage of hydrogen in single-walled carbon nanotubes[END_REF][START_REF] Liu | Hydrogen storage in single-walled carbon nanotubes at room temperature[END_REF][START_REF] Yang | Hydrogen storage by alkali-doped carbon nanotubes-revisited[END_REF]. Recently, a new stable carbon material called graphane has been theoretically predicted (in 2007 [START_REF] Sofo | Graphane: A two-dimensional hydrocarbon[END_REF]) and shortly after observed experimentally (in 2009 [START_REF] Elias | Control of graphene's properties by reversible hydrogenation: evidence for graphane[END_REF]). A sheet of graphane can be obtained starting from a graphene sheet, if each carbon atom gets bonded to one hydrogen atom. Heating the material allows desorption of hydrogen atoms leading back to H 2 molecules. Consequently, graphane material might be useful as a hydrogen storage medium by chemisorption [START_REF] Lebègue | Accurate electronic band gap of pure and functionalized graphane from GW calculations[END_REF][START_REF] Lin | Hydrogen storage by spillover on graphene as a phase nucleation process[END_REF].

The Brenner potential is very efficient and accurate for hydrocarbon systems, and thus, is a good choice to study graphane systems where many configurations are feasible and thus have to be evaluated. For example, Brenner potential was successfully applied when different configurations of a partially hydrogenated graphene needed to be optimized [START_REF] Dzhurakhalov | Structure and energetics of hydrogen chemisorbed on a single graphene layer to produce graphane[END_REF].

The most stable structure

The lowest potential energy graphane structure is achieved when hydrogen atoms are attached to the graphane sheet in an alternating pattern. The carbon hydrogen bonds alternate on both sides of the graphene plane as illustrated in Figure 6.1.

Binding energy dependence on the number of hydrogen atoms absorbed

The binding energy of hydrogen atoms E b to a graphene sheet is defined by:

E b = (E PHG -E graphene )/N H , (6.1) 
where N H is the number of hydrogen atoms of the Partially Hydrogenated Graphene (PHG) material. E PHG is the minimum potential energy of the Partially Hydrogenated Graphene and E graphene is the minimum potential energy of the graphene. Hydrogen atoms can either bond together to form H 2 molecules (2.36 eV/H) or get adsorbed on the graphene sheet to form partially hydrogenated graphene. Figure 6.2 illustrates the variation of binding energy E b (computed with the Brenner potential) with the number of hydrogen atoms attached to the graphene sheet. Single H binding to graphene is weak, but it becomes stronger and stronger as they bind in cluster. Note that this graph only corresponds to the most favorable configurations, i.e. hydrogen atoms binding fully to some aromatic rings with hydrogen atoms alternating up and down. As a consequence of this plot, at zero temperature, clusters with more than 16 atoms offer a more favorable configuration than hydrogen gas. 

H-frustration

In the hydrogenation processes, once the first hydrogen atom is bonded with the graphene sheet, the geometry of the material is modified. Then, it is more favorable for the new hydrogen atoms to bond in an "up and down" pattern. Figure 6.3 illustrates this hydrogenation processes. Ideally, one would like to be able to produce this low energy structure to efficiently store hydrogen. However, it is experimentally nearly impossible to produce the perfect graphane sheet. The problem occurs when hydrogen atoms start to bind to two distinct sites of the graphene plane and two clusters of hydrogen atoms start to grow independently from each other, in parallel. In this case, with a probability 0.5, the junction of the two hydrogen islands will respect the optimal pattern. In the other case, several nearest neighbor hydrogen atoms may be found on the same side of the plane, which would locally stress the system and thus is less favorable. This problem is called H-frustration [START_REF] Legoas | Graphene to graphane: the role of H frustration in lattice contraction[END_REF] and is illustrated in Figure 6.4.

All the geometries presented in the figures have been interactively optimized using the adaptive minimization of the Brenner potential presented in Chapter 3.

Monte Carlo simulation

The binding of hydrogen atoms not only modifies the geometry of the structure but also the energies of the exited states. To study this effect, we compute the heat capacity for several graphene/graphane systems at 300K. This is done by computing the internal energy at 290K and 310K to estimate the derivative of the internal energy by the temperature.

The internal energy is defined by: E(X)e -βE(X) dX e -βE(X) dX . (6.2)

We use Monte Carlo method to compute this average value in the canonical ensemble. A trial Monte Carlo move simply consists in randomly picking an atom and choosing a random move. The step is accepted according to the Metropolis rule. We launched a simulation for a graphene sheet of 594 atoms and a graphane sheet of 1556 atoms. We found a heat capacity of 24.44 J/molK for graphene and 28.21 J/molK for graphane after 10 9 trial moves. These values can be compared respectively with 24.98 J/molK and 29.32 J/molK found by Neek-Amal et al. [START_REF] Neek | Lattice thermal properties of graphane: Thermal contraction, roughness, and heat capacity[END_REF]. The small difference might be explained by the difference in system's size. In both cases, the molar heat capacity is increased by approximately 15% when the graphene is fully hydrogenated. The incremental potential update algorithm presented in Chapter 3 was used for the Monte Carlo simulations. This allowed us to perform each Monte Carlo trial move with the minimal cost.

A grand canonical Monte Carlo study

For a practical purpose, we would like to predict the quantity of adsorbed hydrogens as a function of temperature and pressure. Some results using continuum models derived from atomistic simulations have been already reported [START_REF] Shi | Atomistically-informed continuum model for hydrogen storage on graphene[END_REF][START_REF] Lin | Hydrogen storage by spillover on graphene as a phase nucleation process[END_REF]. The Brenner potential should allow a direct atomistic simulation prediction of adsorbed hydrogen thanks to a grand canonical Monte Carlo algorithm.

Failure of the direct Grand Canonical Monte Carlo simulation

Let N h (X) denote the quantity of adsorbed hydrogen in a configuration X. To know exactly the amount of hydrogen which should be adsorbed by the graphene sheet at certain condition of temperature and hydrogen gas pressure (equivalently the chemical potential), one has to compute the statistical average:

N h = S N h (X)n(N (X))e -β(E(X)-µN t h (X)) dX S n(N (X))e -β(E(X)-µN t h (X) dX , (6.3) 
where S is the configurational space, E is the potential energy, µ is the chemical potential directly related to the hydrogen gas phase pressure, N t h is the total number of hydrogen atoms, N is the number of atoms, and n(N ) is the normalization factor:

n(N ) = V N Λ 3N N ! . ( 6.4) 
We first attempt to run a Grand Canonical Monte Carlo algorithm. Insertion of a hydrogen atom is a very rare event because the energy difference is acceptable only when the hydrogen atom is inserted in the optimal position. Ideally, one should optimize the geometry after the hydrogen atom has been inserted, but this approach does not preserve the statistics. Furthermore, the Brenner potential has some unexpected artificial stable configuration when a hydrogen is bonded to both a carbon atom and a hydrogen atom. For these reasons, we were not able to produce any interesting output with the Grand Canonical Monte Carlo algorithm.

To address these issues, we propose to map the problem into an Ising model problem and introduce several simplifications with a similar approach developed in [START_REF] Ceder | A derivation of the Ising model for the computation of phase diagrams[END_REF].

Coarse graining the grand canonical ensemble

Given a configuration X, each carbon atom can have three states:

• without bond to an hydrogen atom,

• with an hydrogen atom bonded on one side of the graphene sheet,

• with an hydrogen atom bonded on the other side of the graphene sheet.

If n denote the number of carbon atoms, we can write the integral over the whole space S as the sum over this 3 n configuration sets. Remark that in some unrealistic configurations one carbon atom may have several hydrogen atoms bonded. In this case, we consider that the carbon atom is only bonded to the closest hydrogen atom. Consequently, the average number of hydrogen atoms on the partially hydrogenated graphene can read as

N h = 3 n i=1 N i h S i n(N (X))e -β(E(X)-µN t h (X)) dX 3 n i=1 S i n(N (X))e -β(E(X)-µN t h (X)) dX , (6.5) 
where the {S i } i=1...3 n correspond to the partition of the whole configurational space S and N i h is the number of hydrogen atoms adsorbed on the graphene of the configurations in S i . We can rewrite the sum as

N h = 3 n i=1 N i h e -βE i 3 n i=1 e -βE i , (6.6) 
where E i is the free energy associated to the set S i . Let E 0 i denote the potential energy of the optimized structure corresponding to the set S i . We can rewrite the energy E i as

E i = E 0 i -µN i h - 1 β ln( S i n(N (X))e -β(E(X)-E 0 i -µ(N t h (X)-N i h )) dX) = E 0 i -µN i h + E S i (6.7)
To estimate the finite sum in equation 6.6 with a Monte Carlo scheme one has to be able to compute E i -E j . In the following section, we are going to suggest different approximations to efficiently evaluate these terms.

Simplification of the lattice model

Configuration independent entropic term

The most effective approximation to compute E i -E j is to consider E S i as a lattice configuration independent term. A quasi harmonic approximation could be used to test the validity of the hypothesis [START_REF] Karplus | Method for estimating the configurational entropy of macromolecules[END_REF]. In particular, it might be important to study the low frequency modes of the whole graphene/graphane sheet.

Once the assumption is made,

E i -E j = E 0 i -E 0 j -µ(N i h -N j h ). Thus, the critical part is to compute the difference E 0 i -E 0 j .
Binding energy contributions: the "bulk" and boundary interface

The computation of the E 0 i terms could be done exactly by mapping each lattice configuration i to the corresponding real space structure that should be optimized. In this case, the adaptive minimization with the Brenner potential should be useful to rapidly access different local minima of the potential energy landscape. However, as suggested in the literature, we derive a much simpler model to compute the E 0 i . As found in [START_REF] Lin | Hydrogen storage by spillover on graphene as a phase nucleation process[END_REF], we were able to identify a simple relation to compute the binding energy. Let C GE denote the class of carbon atoms bonded with three carbon atoms (like in the graphene case) and C GA the class of carbon atoms bonded to three carbon atoms and one hydrogen atom (like in the graphane case). In [START_REF] Lin | Hydrogen storage by spillover on graphene as a phase nucleation process[END_REF], the authors introduce n 23 , the number of bonds between an atom of type C GE and an atom of type C GA . Remark that n 23 represents the size of the interface between a cluster of bonded hydrogens and the rest of the graphene sheet. We recall that N h denote the number of carbon hydrogen bonds. The computed binding energies by hydrogen atom depend linearly on n 23 /N h . This dependence is illustrated in Figure 6.5.

As a result, for the most favorable structures, the binding energy is accurately reproduced by the following simple expression:

E 0 = E graphene + N h (A - n 23 N h B). (6.8) 
In [START_REF] Lin | Hydrogen storage by spillover on graphene as a phase nucleation process[END_REF], the authors found A = 2.54 eV/Atom and B = 0.41 eV/Atom with a quantum model which should be more accurate that the results with the Brenner potential. Furthermore, we propose to add a frustrated penalty term of C = 0.34 eV/Atom. Let N F denote the number of frustrated hydrogens. Then, the minimal potential energy should be accurately reproduced by the expression:

E 0 = E graphene + N h (A - n 23 n B) + CN F . (6.9) 
Here, we deduce the coefficient C from a single configuration with four frustrated hydrogen atoms. For more accurate results, this coefficient probably needs to be optimized with a least square procedure using several configurations of graphene. 

Conclusion

We have studied several properties of the formation of graphane. First, we reproduced some binding energy presented in [START_REF] Lin | Hydrogen storage by spillover on graphene as a phase nucleation process[END_REF] with the simpler Brenner potential. Then, we found that Grand canonical Monte Carlo simulations fail to predict hydrogen absorption on a graphene sheet. Finally, we suggest an alternative model which should be explored further. More precisely, we propose to solve a simpler Ising-like model on a two dimensional lattice using a very simple expression of the binding energy derived in equation (6.9).

Remark that the role of H-frustration on a fully hydrogenated graphene sheet could also be investigated with the analytical solution of the 2D Ising model.

Education

The increasing role of interactive modeling in education

Computers are changing the education field at least for the two following reasons:

• Internet has become the largest database of information providing invaluable resources for students and teachers. In particular, more and more open educational resources are available [START_REF] Hylén | Giving knowledge for free[END_REF][START_REF] Mcandrew | Motivations for OpenLearn: The Open University's open content initiative[END_REF][START_REF] Vest | Why MIT decided to give away all its course materials via the internet[END_REF].

• The use of computer-assisted educational programs or serious games should increase the efficiency and effectiveness of the educational process [START_REF] Kulik | Effectiveness of computer-based education in colleges[END_REF][START_REF] Merrill | Computers in education[END_REF][START_REF] Malone | What makes things fun to learn? a study of intrinsically motivating computer games[END_REF][START_REF] Mitchell | The use of computer and video games for learning: A review of the literature[END_REF][START_REF] Wieman | A powerful tool for teaching science[END_REF].

In particular, we would like to emphasize the interest for interactive simulation for teaching and learning [START_REF] Perkins | PhET: Interactive simulations for teaching and learning physics[END_REF][START_REF] Wieman | PhET: Simulations that enhance learning[END_REF][START_REF] Balasubramanian | Games and simulations[END_REF][START_REF] Adams | A study of educational simulations part II -interface design[END_REF]. In this thesis, we present new tools for interactive modeling at the atomic scale. We believe that they should have many advantages in an educational context. We identified two different perspectives. The first one is to provide a totally new perception of the atomic scale for a very large audience. The second is to offer intuitive exercises for practical work in specific topics of the French high school program.

A physically-based representation of the atomic scale

In this section, we provide several pedagogical aspects in the very ambitious objective to replace the simple ball and stick model by a more realistic representation of the atomic scale including key chemical phenomena such as bond formation and dissociation, deformations or configurational changes under constraint, and vibrations.

Beyond the ball and stick model

Although wooden ball-and-stick models are extensively used to represent molecules, unfortunately, they poorly represent key chemical phenomena. We believe that the interactive methods developed in this thesis may allow to give a better insight of the atomic scale and molecular behavior.

Using our tool, the user can visualize the three dimensional shape of the molecule with a spacial zoom of 10 10 . And much more interesting, he can visualize and dynamically interact with the physical behavior of the molecule with a temporal zoom of the order 10 10 compared to reality. Interactively manipulating the molecule would allow to intuitively discover complex phenomena such as vibrations, configurational changes under constrains, etc.

First experiments with students have been organized in the context of Nano@School [START_REF]Nano@school[END_REF]. Nano@School is a project which has mainly two objectives:

• Introduce the nanoscale and nanotechnologies to high school students.

• Introduce the underlying physics. Figure 6.6 shows the first use of SAMSON by high school students in this context. New sessions are planned for the next years. An abstract about this event has been presented at ICCE-ECRICE (International Conference on Chemistry Education -European Conference on Research In Chemical Education) [START_REF] Chevrier | Students construct and edit virtual molecules thanks to a physically-based model[END_REF].

We now present several aspects which can be treated with our interactive methodology:

• molecular geometry and potential energy,

• chemical bonds: bond order and vibrations,

• thermal energy,

• introduction to nanomaterials,

• electronic cloud,

• quantum mechanics. 

Molecular geometry and potential energy

We propose to introduce the idea of potential energy and its minimization. Indeed, as introduced in Chapter 2, each configuration X has an associated potential energy E(X). At 0 K, stable structures are those which minimize this energy.

By running the interactive minimization of a molecular potential energy, the student can discover molecular geometry, the potential energy at the atomic scale and the idea of energy minimization. Figure 6.7 illustrates this possibility. 

Chemical bonds: bond order and vibrations

Bonds are oscillating around an equilibrium. The nature of the bonds (simple, double, triple or delocalized) depends on the close neighboring of each atom (and not only the nearest neighbors).

In the Brenner potential, some variables directly indicate the nature of the bonds:

• N conj ij indicates delocalized bonds;

• the number of neighbor computed with N H i , N C i , N H j , N C j can be used to choose between simple, double or triple bond representation;

• the f ij smoothing function allows a smooth representation of bond breaking and formation. The thickness of the bond is made proportional to this value.

This possibility is illustrated Figure 6.8. In quantum chemistry models, one has to compute the Mulliken population to know the corresponding bond order [START_REF] Mayer | Bond order and valence: Relations to Mulliken's population analysis[END_REF].

In both cases (Brenner potential and quantum chemistry models), bond orders can be automatically calculated and the user may explore many chemical structures and the impact on the geometry and vibrational modes of the molecule. 

Thermal energy

At room temperature, molecules are dynamic objects. The distribution of atomic velocities follows the well-known Maxwellian law. The student can observe realistic trajectories of molecules at room temperature with an important temporal zoom and discover that atoms are definitively not static like in the ball and stick model. This possibility is illustrated in Figure 6.9.

Introduction to nanomaterials

Carbon nanotubes are among the most solid materials (approximately hundred times harder and six times lighter than steel). The student can manipulate different carbon nanomaterials (fullerene, graphene, nanotube, etc).

Electronic cloud

The sticks that visualize the bonds between atoms are artificial objects created for an easy user perception and do not belong to reality. A chemical bond corresponds to the sharing of valence electrons between the atoms. Interactive quantum chemistry allows to visualize the electronic clouds during bond breaking and formation. Figure 6.11 illustrates this possibility.

Quantum mechanics

Electron behavior is described by quantum mechanics. Unfortunately, a classical single particle model with a position and a velocity cannot describe the state of Figure 6.9: Thermal energy. As temperature is raised, the student can discover that the system can access higher energy configurations. The student is introduced to entropy. an electron. In fact, one has to deal with a function of the whole space, the wave function, which only allows a probabilistic description of the position of the electron: the electronic density. The time evolution of the wave function is then described by a differential equation. This should stimulate the will of the student to discover quantum mechanics and mathematic analysis.

Interactive modeling as a support for French high school practical works

Teachers have also been introduced to the interactive modeler developed in Chapter 3. Interactive modeling may greatly assist teachers to treat many subjects of the new French high school program including introduction to the atomic scale, organic chemistry, molecular conformations, new materials (carbon nanotube, fullerene, graphene), oil refinery (steam cracker, hydrocarbon chain modification). We are still studying the possibility to use the developed tools directly in French high schools next year.

Virtual prototyping

Scanning probe microscopy studies allow to treat individual molecules on surfaces. These microscopes (e.g. scanning tunneling microscope or atomic force microscope) have an extremely fine tip which ends up with a single atom. Using some physical phenomena (tunneling effect or interaction forces), this tip allows to scan locally, at the angstrom resolution, a surface and molecules on a surface. The tip also offers the possibility to induce mechanical stress on the molecule.

Consequently, these scanning probe microscopes provide the ability to control matter at the atomic scale and the opportunity to study new devices such as molecular machines. For instance, Grill et al. proved the possibility of using a molecule as "nano-wheel" rolling over a surface [START_REF] Grill | Rolling a single molecular wheel at the atomic scale[END_REF]. Molecular machines are more and more studied and this is leading to the development of new original molecular barrows [START_REF] Joachim | The design of a nanoscale molecular barrow[END_REF], nano-cars [START_REF] Shirai | Surface-rolling molecules[END_REF], etc.

Modeling and simulation tools have a major role to play in the understanding of molecular mechanisms when the tip manipulates the molecule on the surface. In our interactive modeling tools, the mouse can play the role of the atomic tip and the influence of the latter can be computed in real time with the algorithms presented in Chapters 3, 4 and 5. This helps the experimentalist to guess what should be the trajectory of the atomic microscope tip to produce the desired mechanical function for which the molecule has been synthesized.

In this context, at CEMES laboratory, a new "millipede" molecule (Figure 6.12) has been studied to transfer a mechanical action inside a molecule. In other words, the molecule has been prototyped to transport an information along its carbon chain. Once an impulse is given to one side of the molecule, the system is locally stressed which should induce a mechanical response of the molecule, which propagates along the carbon chain similarly to a "domino" fall.

To accurately simulate and study the mechanical response of the structure to the atomic tip, a minimization process is applied for many tip positions. Both the Brenner potential extended with the Van der Waals terms and the ASED-MO theory allows to accurately describe this type of structure. However, due to the large number of degrees of freedom, the simulation time prevents to study many different trajectories of the microscope tip. Each time the atomic tip position is changed, the system is locally stressed and a geometry optimization is launched. Thanks to the adaptive Cartesian minimization with the Brenner potential and the Block-Adaptive Quantum Mechanics (BAQM) approach, we should be able to speed-up the whole process by several orders of magnitude. This gives the opportunity to study many tip trajectories, which in turn should speed-up the "nano millipede" concept design. 

Virtual reality at the nanoscale

In this thesis, we report new algorithms to allow for interactive simulation of atomic scale environment making possible to manipulate and virtually interact with atomic systems.

To enhance our interactive modeler for hydrocarbon systems, we have implemented a stereoscopic display. In Figure 6.13, we can see two snapshots of a user editing the closure of a nanotube. In Figure 6.14, we can see two snapshots of a cyclohexane molecule in the "chair" and in the "boat" conformation. Red and blue glasses are needed to properly visualize these figures. A cyclohexane in the "chair" conformation is loaded in the modeler with the stereo visualization. The user applies a force on a hydrogen and the system is attracted in the "boat" conformation.

Chapter 7

Summary, perspectives and conclusion 1 Summary of the previous chapters

• In Chapter 1, we emphasize the importance of interactive modeling at the atomic scale to motivate the need for new algorithms.

• In Chapter 2, we propose a review of theories and algorithms for electronic structure computation with interactive rates.

• In Chapter 3, we present an interactive physically-based modeling tool to construct structural models of hydrocarbon system. The physical feedbacks are based on the Brenner potential and, in order to be able to interactively edit systems containing numerous atoms, we introduce a new adaptive simulation algorithm.

• In Chapter 4, we introduce interactive quantum chemistry simulation at the Atom Superposition and Electron Delocalization Molecular Orbital (ASED-MO) level of theory. This method is based on the divide-and-conquer (D&C) approach, which we demonstrate to be accurate and efficient for this non-selfconsistent semi-empirical theory.

• In Chapter 5, we present a novel Block-Adaptive Quantum Mechanics (BAQM) approach to interactive quantum chemistry. BAQM constrains some nucleus positions and some electronic degrees of freedom on the fly to simplify the simulation. As a result, each time step may be performed significantly faster, which in turn may accelerate attraction of atomic systems to the neighboring local minima. By applying our approach to the non-selfconsistent ASED-MO theory, we demonstrate interactive rates and efficient virtual prototyping for systems containing more than a thousand of atoms on a standard desktop computer.

• In Chapter 6, we demonstrate different applications of our work including a study of graphane formation, the use of interactive modeling tools for educational purpose, virtual reality and virtual prototyping at the nanoscale.

Adaptive energy minimization algorithms

The proposed modified steepest descent algorithm in Chapter 3 may allow for an important speed-up when the energy gradient is non-uniform. We would like to extend our approach in several directions.

First, we have noticed an overhead resulting from the incremental update. The marginal cost of a relative motion may make our approach slower than the classical one in some cases. This suggests the need for hybrid minimization algorithms that would be able to switch between the classical and the adaptive approach on the fly based on the distribution of forces in the system. Also, we would like to investigate whether our new Cartesian adaptive approach to compute a truncated gradient could be useful in combination with other minimization algorithms.

Finally, we want to determine whether the Cartesian adaptive approach may be combined with an adaptive internal degrees-of-freedom simulation method [START_REF] Rossi | Adaptive torsion-angle quasi-statics: a general simulation method with applications to protein structure analysis and design[END_REF]. It would be interesting to group atoms into clusters that might deform while creating and breaking bonds, which should provide great functionality, both for simulation and digital prototyping.

ASED-MO divide-and-conquer

In Chapter 4, we point out that the divide-and-conquer linear scheme has several drawbacks. We would like to study whether we can efficiently and systematically improve this scheme based on the remarks of our electronic structure error study. This could be done by introducing a larger delocalized reduced basis as a buffer region (and not only for closed neighboring atomic orbitals).

Block-Adaptive Quantum Mechanics

The BAQM method presented in Chapter 5 is general, and should be applicable to many quantum chemistry models. We would like to determine whether it might be useful to accelerate geometry optimization with self-consistent models, and/or large basis sets such as real space grids [START_REF] Briggs | Real-space multigrid-based approach to large-scale electronic structure calculations[END_REF], plane waves [START_REF] Kresse | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[END_REF] or wavelets [START_REF] Genovese | Daubechies wavelets as a basis set for density functional pseudopotential calculations[END_REF]. Furthermore, we have to investigate whether we can combine BAQM with more sophisticated minimization algorithms (e.g. Quasi-Newton).

The idea of adaptively constraining the degrees of freedom in Cartesian coordinate [START_REF] Bosson | Interactive physicallybased structural modeling of hydrocarbon systems[END_REF] can also be used to accelerate phase-space sampling in the framework of the Adaptively Restrained Particle Simulations (ARPS) algorithm [START_REF] Artemova | ARPS: Adaptively Restrained Particle Simulations[END_REF]. We would like to investigate whether the adaptive reduced basis approach may be efficiently combined with ARPS to efficiently compute statistical properties with quantum chemistry models.

Interactive quantum chemistry extensions

The presented approaches for interactive quantum chemistry can be extended in several directions.

• All the matrices (Hamiltonian, overlaps, eigenvectors, reduced basis, density matrix, energy-weighted density matrix) are stored in memory. As a result, our approach is currently limited to several thousand of atoms. A solution to address this memory limitation should be to store all the precomputed data on the hard drive. This solution should be even more efficient with the recent development of solid-state drives.

• The D&C approach is very efficient when the system is split in subsystems in a balanced way. Therefore, we have to study a dynamical re-balancing of the system decomposition.

• In BAQM approach, diagonalization is still required. Even though its percentage of the computational time has been reduced, it is still an important bottleneck and prevents us using interactive quantum chemistry for many systems. A solution might be to perform eigendecomposition in parallel while the user interacts with the system only via a reduced basis approach. When a new basis is available, based on some perturbation bound criteria presented in Chapter 2, a subsystem could choose to update the reduced basis or not.

• The D&C approach is probably the most straightforward approach for parallelisation. With the current trend of many cores architecture, it would be interesting to study the efficiency of a "one atom by core" approach.

Conclusion

The goal of this thesis was to develop algorithms for interactive chemical structure modeling. We achieved this goal in the context of the Brenner potential and the semi-empirical ASED-MO theory. We start to apply these theoretical contributions to efficient virtual prototyping, numerical studies, virtual reality and education. Larger use of the developed tools will require an important software development effort. These tools will be made available through SAMSON (Software for Adaptive Modeling and Simulation Of Nanosystems), developed in the NANO-D group (http://nano-d.inrialpes.fr).

Résumé, perspectives et conclusion 1 Résumé des chapitres précédents

• Dans le chapitre 1, nous expliquons l'importance de la modélisation interactive à l'échelle atomique pour motiver le besoin de nouveaux algorithmes.

• Dans le chapitre 2, nous proposons un état de l'art des théories et algorithmes pour le calcul de structures électroniques à des taux interactifs.

• Dans le chapitre 3, nous présentons un outil de modélisation pour construire des modèles structurels de systèmes hydrocarbonés. Les retours physiques sont basés sur le potentiel de Brenner et, pour obtenir des taux interactifs avec des très grands systèmes, nous introduisons un nouvel algorithme adaptatif.

• Dans le chapitre 4, nous introduisons la chimie quantique interactive au niveau de théorie "Atom Superposition and Electron Delocalization Molecular Orbital" (ASED-MO). La méthode de simulation se base sur l'approche diviser pour régner qui, nous le démontrons, est précise et efficace pour cette théorie sans auto-cohérance.

• Dans le chapitre 5, nous présentons une nouvelle approche pour la chimie quantique interactive : Block-Adaptive Quantum Mechanics (BAQM). BAQM contraint certains noyaux et certains degrés de liberté électroniques à la volée pour simplifier la simulation. Ainsi, chaque pas de simulation peut être significativement plus rapide ce qui, à son tour, peut accélérer l'attraction dans les minimums locaux. En appliquant BAQM à la théorie sans auto-cohérance ASED-MO, nous démontrons des taux interactifs et un prototypage virtuel efficace pour des systèmes contenants jusqu'à des milliers d'atome sur un ordinateur de bureau standard.

• Dans le chapitre 6, nous démontrons différentes applications de notre travail : une étude de la formation du graphane, l'utilisation des outils de modélisation interactive pour le domaine éducatif, le prototypage virtuel et les environnements de réalité augmenté.

Algorithmes adaptatifs de minimisation de l'énergie potentielle

Les modifications de l'algorithme de descente de gradient proposées dans le Chapitre 3 peuvent accélérer la minimisation quand les forces atomiques ne sont pas distribuées uniformément. Nous souhaiterions étendre cette approche dans plusieurs directions.

Premièrement, nous avons noté un surcoût de la mise à jour incrémentale de l'énergie potentielle. Le coût marginal d'un mouvement relatif peut rendre notre approche plus lente que l'approche classique dans certains cas. Cela suggère le besoin d'un algorithme de minimisation hybride qui serait capable de choisir entre l'approche classique et l'approche adaptative, à la volée, basée sur la distribution des forces du système.

Deuxièmement, nous voudrions étudier si notre approche adaptative de calculer un gradient approché pourrait être utile combiné à d'autres algorithmes de minimisation.

Finalement, nous voudrions déterminer si l'approche adaptative Cartésienne pourrait être combinée avec une approche adaptative en cordonnée interne [START_REF] Rossi | Adaptive torsion-angle quasi-statics: a general simulation method with applications to protein structure analysis and design[END_REF]. Il serait intéressant de grouper les atomes en objets qui pourraient se déformer lors de la création ou rupture de liaisons, ce qui serait des fonctionnalités intéressantes aussi bien pour la simulation que pour le prototypage virtuel.

Amélioration de l'algorithme diviser pour régner

Dans le Chapitre 4, nous avons relevé certains désavantages de l'algorithme diviser pour régner. Nous voudrions étudier si nous pourrions améliorer cette approche de façon systématique et efficace en se basant sur les remarques de notre étude du modèle analytique. Cela pourrait être en introduisant des éléments de base délocalisé dans la zone tampon (et pas seulement les orbitales atomiques localisées des atomes les plus proches).

Block-Adaptive Quantum Mechanics

La méthode BAQM présentée dans le Chapitre 5 est générale et devrait être applicable à de nombreux modèles de chimie quantique. Nous voudrions déterminer si elle pourrait être utile pour accélérer l'optimisation de géométrie avec les schémas auto-cohérents et/ou avec des grandes bases telles que les grilles dans l'espace réel [START_REF] Briggs | Real-space multigrid-based approach to large-scale electronic structure calculations[END_REF], les ondes planes [START_REF] Kresse | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[END_REF] ou les ondelettes [START_REF] Genovese | Daubechies wavelets as a basis set for density functional pseudopotential calculations[END_REF].

L'idée de contraindre à la volée les degrés de liberté en coordonnées cartésiennes [START_REF] Bosson | Interactive physicallybased structural modeling of hydrocarbon systems[END_REF] peut aussi être utilisée pour accélérer l'échantillonage de l'espace des phases dans le cadre de l'algorithme Adaptively Restrained Particle Simulations (ARPS) [START_REF] Artemova | ARPS: Adaptively Restrained Particle Simulations[END_REF]. Nous voudrions étudier si l'approche base réduite adaptative peut être combinée avec ARPS pour efficacement calculer des propriétés statistiques avec des modèles de chimie quantique.

Chimie quantique interactive

L'approche présentée pour la chimie quantique interactive peut être étendu dans plusieurs directions.

• Toutes les matrices (Hamiltonien, recouvrements, base réduite, densité) sont stockés en mémoire. Par conséquent, notre approche est présentement limité à quelques milliers d'atomes. Une solution pour surmonter ce problème serait de stocker toutes les données précalculées sur le disque dur. Cette solution devrait être efficace étant donné les récent développement des "solid-state drive".

• L'approche diviser pour régner est très efficace quand le système est divisé en plusieurs sous systèmes équilibrés. Ainsi, nous devons étudier un rééquilibrage dynamique de la décomposition en sous systèmes.

• Dans l'approche BAQM, la diagonalisation est toujours requise. Bien que le pourcentage du temps de calcul est été fortement réduit, cela reste un goulet d'étrenglement important empêchant la chimie quantique interactive pour de nombreux systèmes. Une solution serait de calculer la décomposition en parallèle pendant que l'utilisateur interagit avec le système seulement via une approche base réduite. Quand une nouvelle base réduite est disponible, basé sur des théorèmes de la théorie de la perturbation présenté dans le Chapitre 2, un sous-système pourrait choisir de mettre à jour la base réduite ou non.

• L'approche diviser pour régner est probablement l'approche la plus facilement parallélisable. Etant donné la tendance actuelle des architectures comportant de nombreux coeurs, il serait intéressant d'étudier l'efficacité d'une approche un atome par coeur.

Conclusion

Le but de cette thèse était de développer des algorithmes pour la modélisation interactive de structures chimiques. Nous avons atteint ce but dans le contexte du potentiel de Brenner et de la théorie semi-empirique ASED-MO. Nous avons appliqué ces contributions théoriques pour le prototypage virtuel, des études numériques, la réalité virtuelle et l'éducation. Un usage plus large des outils développés vont requérir un effort de développement logiciel important. Ces outils seront proposés via SAMSON (Software for Adaptive Modeling and Simulation Of Nanosystems), développé dans l'équipe NANO-D (http://nano-d.inrialpes.fr).

Chapter 8 Appendix 1 Forces expression in a reduced basis approach

Let us prove the force formulation presented in Chapter 5 in Section 4.1.

Theorem 1.1 The gradient with respect to an atomic position x of the potential energy computed with a reduced basis is:

∇ x E v = µ ν P v µν ∇ x H µν - µ ν W v µν ∇ x S µν , (8.1) 
Proof ∇ x E v = ∇ x i 2e v i = ∇ x i 2(C v i ) T H v C v i , (8.2) 
then,

∇ x E v = i 2(∇ x C v i ) T H v C v i + i 2(C v i ) T (∇ x H v )C v i + i 2(C v i ) T H v (∇ x C v i ). (8.3)
As C v i are eigenvectors, we have:

∇ x E v = i 2e v i (∇ x C v i ) T S v C v i + (S v C v i ) T (∇ x C v i ) + i 2(C v i ) T (∇ x H v )C v i , (8.4) 
however,

(∇ x C v i ) T S v C v i + (C v i ) T S v (∇ x C v i ) = ∇ x C v i ) T S v C v i -(C v i ) T (∇ x S v )C v i , (8.5) 
and

∇ x (C v i ) T S v C v i = ∇ x 1 = 0. (8.6)
As a result,

∇ x E v = - i 2e v i (BC v i ) T ∇ x S(BC v i ) + i (BC v i ) T (∇ x H)BC v i . (8.7) 
We can develop the terms:

(BC v i ) T ∇ x S(BC v i ) = (C n i ) T ∇ x S(C n i ) = µ ν C n µi C n νi ∇ x S µν , (8.8) 
(BC v i ) T ∇ x H(BC v i ) = (C n i ) T ∇ x H(C n i ) = µ ν
C n µi C n νi ∇ x H µν . (8.9)

Finally,

∇ x E v = µ ν P v µν ∇ x H µν - µ ν W v µν ∇ x S µν (8.10)
2 An order-one correction

Let us prove Equation 5.12 in Chapter 5 Section 4.2.

Let us consider two pairs of symmetric matrices:

• (H old , S old ) for which an eigendecomposition is available, we denote V the lowest-energy eigenvectors and W the remaining eigenvectors. We assume that the rank of V is larger than N 2 . • (H new , S new ) related to the new system state.

Let us define a simple distance between the two matrix pairs ε as:

ε = ||H new -H old || 2 F + ||S new -S old || 2 F , (8.11) 
Let us show that projecting the new problem in the previous lowest-energy eigenvectors results in an order-one correction of the system's potential energy.

For clarity, we first introduce four lemma.

• Lemma 2.1 Let H r and S r denote the new Hamiltonian and overlap matrices expressed in the old eigenvector basis Z = (V, W ):

H r = Z T H new Z, S r = Z T S new Z. (8.12)

Precisely:

H r = H v H v-w (H v-w ) T H w , S r = S v
S v-w (S v-w ) T S w (8.13)

where

H v = V T H new V, S v = V T S new V, (8.14) 
H w = W T H new W, S w = W T S new W, (8.15)

H v-w = V T H new W, S v-w = V T S new W. (8.16)
The eigenvalues of (H r , S r ) are also eigenvalues of (H new , S new ).

• Lemma 2.2 Let H p and S p denote the matrices of the approximate Hamiltonian by neglecting H v-w :

H p = H v 0 0 H w , S p = S v 0 0 S w . (8.17)

When the largest eigenvalue of the matrix pair (H v , S v ) is lower than the lowest eigenvalue of the matrix pair (H w , S w ), the sum of the N 2 lowest eigenvalues of (H p , S p ) is the sum of the N 2 lowest eigenvalues of (H v , S v ).

• Lemma 2.3 Let H a and S a denote the matrices of the approximate Hamiltonian by neglecting H v-w expressed in the full basis:

H a = Z -T H p Z -1 , S a = Z -T S p Z -1 . (8.18)

The eigenvalues of (H a ,S a ) are those of (H p ,S p ) and we can state that: which can be rewritten as

||H a -
||D old -H r || F = O(ε), ||I -S r || F = O(ε), (8.22) 
where D old denotes the diagonal matrix of the ordered eigenvalues of the matrix pair (H old , S old ).

Since both (block-)diagonal elements of H r -H p and S r -S p are zero, we have: Since, again, Z is constant, Proof One can apply eigenvalue perturbation theory with the matrix pairs (H new , S new ) and (H old , S old ). In the limit of small perturbations, the order of the eigenvalues is not changed and we can state: Proof In view of lemma 2.1, the potential energy E is the sum of the lowest eigenvalues of (H r , S r ):

||Z -T H p Z -1 -Z -T H r Z -1 || F = O(ε), ||Z -T S p Z -1 -Z -T S r Z -1 || F = O(ε), (8.25 
e i =
E = i=1.. N 2 2e i , (8.35) 
In the limit of small ε, the largest eigenvalue of the matrix pair (H v , S v ) is lower than the lowest eigenvalue of the matrix pair (H w , S w ). Thus, in view of lemma 2.2, the reduced-basis potential energy E v is the sum of the lowest eigenvalues of (H p , S p ):

E v = i=1.. N 2 2e v i = i=1.. N 2 2e p i , (8.36) 
In the limit of small ε, lemma 2.3 implies that we can write the potential energy error |E -E v | induced by the use of a reduced basis as: which shows that projecting the new problem (H new , S new ) in the previous lowestenergy eigenvectors results in an order-one correction of the system's potential energy.

|E -E v | = i=1.. N
We present here the orthogonalization solver used in Chapter 5.

In general, orthogonalization has a cubic scaling. However, it can be efficiently performed on multicore architecture [START_REF] Agullo | A fully empirical autotuned dense QR factorization for multicore architectures[END_REF][START_REF] Buttari | Parallel tiled QR factorization for multicore architectures[END_REF][START_REF] Buttari | A class of parallel tiled linear algebra algorithms for multicore architectures[END_REF][START_REF] Liu | Analyzing memory access intensity in parallel programs on multicore[END_REF]. Unfortunately, we are considering S-orthogonalization and we had to implement an orthogonalization algorithm for this specific case. We chose the modified Gram-Schmidt algorithm [START_REF] Golub | Matrix computations[END_REF]. As a result, we designed it in such a way that for our system's sizes the algorithm provides a good speed-up when using the multithreaded variant of the code using OpenMP [START_REF] Chandra | Parallel programming in OpenMP[END_REF].

Let N denote the number of occupied molecular orbital, S -the overlap matrix, and B -the reduced basis.

Algorithm 2 S-orthogonalisation solver Require: A matrix S and a matrix B with the vectors to S-orthogonalize. Ensure: B contains S-orthogonal vectors. SB(:, i) ← 1 norm * SB(:, i)

#Loop using multithreading 7:

for j = i + 1 → N do 8:

x ← B(:, i) T * SB(:, j) 
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 233 Dependency of atomic forces on relative positions updates (see Section 3.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scheme illustrating the Brenner potential terms dependency.
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 44511961217 Performance of the divide-and-conquer approach for energy minimization. The figure plots the Root-Mean-Square Deviation (RMSD) to the minimized structure of the polyfluorene molecule visible in Figure 4.1, as a function of wall-clock time during energy minimization using the Quasi-Newton descent technique. Structure optimization is stopped when the RMSD is smaller than 0.01 Å. In this case, the D&C scheme allows for an important speed-up for the whole calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Representation of the C n H n+2 polyacetylene molecule used in the theoretical comparison (Section 5). Analytical expressions are readily available for the electronic structure of such a molecule when using the Hückel theory. This allows us to estimate the quality of the energies obtained by the divide-and-conquer approach for very large systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Schematic representation of the D&C approach used in the theoretical comparison. The subsystems and the right and left buffer regions all contain n S atoms. As a result, each extended subsystem contains 3n S atoms, except the first and last ones which contain 2n S atoms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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 1112612 Correction of the D&C projector for the C 500 H 502 molecule. The correction is performed using 100 exact eigenvectors with eigenvalues around the Fermi energy (indices between 201 and 300). The subsystem size used was 20. . . . . . . . . . . . . . . . . . . . . . . . Interactive modeling session. After breaking a benzene cycle, the user moves a hydrogen atom closer to the top carbon atom to force them to bond (a). Then, the user pulls on a carbon atom to form a fulvene molecule (b-d). Interactive electronic structure calculations allow the user to easily build plausible topologies, and get immediate feedback on the chemical structure. The video is accessible on the web: link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 4.13 Interactive modeling session.
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 1 Figure 1 -Atomes de xénon déposés par un microscope à effet tunnel sur du nickel. Source : http ://www.almaden.ibm.com.

Figure 2 -

 2 Figure 2 -Modélisation de l'écoulement de l'air avec le logiciel ANSYS. L'utilisation de la modélisation permet d'optimiser l'aérodynamisme du prototype virtuel de la formule 1 avant même la réalisation d'un prototype réel. Source : http ://www.ansys.com/.
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 345 Figure 3 -Foldit. Structure tridimensionnelle d'une protéine du virus du sida chez le singe résolu par des joueurs en ligne (en jaune) puis raffiné (en bleu). Source : Nature [97].

Figure 6 -

 6 Figure 6 -Modélisation d'un nanotube de carbone dans SAMSON à l'aide d'une méthode de chimie quantique. Les noyaux sont traités selon les principes de la physique classique. Une sphère noire matérialise leur position déterministe. Les électrons de valence sont traités selon les principe de la physique quantique. La résolution d'une équation de Schrödinger à un corps détermine la fonction d'onde et donc la densité électronique du système. Une isosurface de la densité électronique matérialise la description probabiliste de la position des électrons de valence.

Figure 7 -

 7 Figure 7 -Champs de force classique. Le terme intramoléculaire d'un champs de force classique dépend de la longueur de liaisons b, d'angle θ et d'angles dièdre φen considération.

Figure 8 -

 8 Figure 8 -Évolution des processeurs Intel. La fréquence des processeurs a cessé d'augmenter. Les futurs gains en performance seront dus au parallélisme. Source : http ://www.spiralgen.com/technology.html.

Figure 9 -Figure 10 -

 910 Figure 9 -Prototypage virtuel d'un système hydrocarboné. L'approche adaptative permet à l'utilisateur de concevoir une structure originale. L'utilisateur charge 2 plans de graphène puis applique simplement des forces sur les atomes avec la souris. L'optimisation de géométrie interactive courbe les plans de graphène pour prendre en compte les modifications de l'utilisateur.

Figure 11 -

 11 Figure 11 -Chimie quantique interactive avec une approche adaptative. L'utilisateur charge une molécule de polyfluorène et lance une méthode d'optimisation de géométrie adaptative qui attire le système vers des structures stables pendant l'édition de la molécule.

Figure 12 -

 12 Figure 12 -Énergie de liaison carbon hydrogène en fonction du nombre d'atome absorbés. La ligne horizontale représente l'énergie de liaison par atome de la molécule de dihydrogène (H 2 ). Un îlot de plus de 16 atomes d'hydrogène sur un plan de graphène offre une configuration plus favorable que 8 molécules de dihydrogène et un plan de graphène.
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Figure 13 -

 13 Figure 13 -Première utilisation de SAMSON à des fins pédagogiques dans le cadre nano@school. Des élèves de lycée sont initiés à l'échelle atomique et à la physique sous-jacente par l'utilisation des outils de modélisation interactive développés dans cette thèse.

Figure 14 -

 14 Figure 14 -La molécule-machine étudiée. La molécule a été dessinée pour transporter une information le long de sa chaîne carbonée sachant qu'une impulsion mécanique a été générée à une extrémité.

Figure 15 -

 15 Figure 15 -Édition de la pointe d'un nanotube de carbone. Un nanotube de carbone est chargé avec la vision stéréoscopique, ce qui aide l'utilisateur à produire la géométrie de son choix.

Figure 1 . 1 :

 11 Figure 1.1: Xenon atoms deposition on a nickel surface by scanning tunneling microscopy. Source: http://www.almaden.ibm.com.

Figure 1 . 2 :

 12 Figure 1.2: Modeling air flows with ANSYS software. Modeling allows to optimize the aerodynamics of the Formula One virtual prototype to guide the conception. Source: http://www.ansys.com/.

Figure 1 . 3 :

 13 Figure 1.3: Atomic structure of ethane molecule (a) and ethylene molecule (b).The electronic structure is materialized by an isosurface of the electronic density. The ethane geometry consists in two nested tetrahedra and ethylene has the specificity to be a planar molecule.

Figure 1 . 4 :

 14 Figure 1.4: Atomic structure of a diamond computed in SAMSON. Inside the diamond, each carbon atom is bonded with 4 neighbors which strongly constrains its position.

Figure 1 . 5 :

 15 Figure 1.5: Foldit. Three dimensional structure of a monkey's HIV protein solved by online gamers (in yellow) which has been further refined (in blue). Source: Nature [97].

Figure 1 . 6 :

 16 Figure 1.6: Carbon nanotube modeling in SAMSON with a quantum chemistry model. Nuclei are treated according to classical physics. A black sphere materializes their deterministic positions. Valence electrons are treated according to quantum physics principles. The solution of a one-electron Schrödinger equation determines the wave function and thus the electronic density of the system. An isosurface of the system electronic density (shown in white) materializes the probabilistic description of electron positions.
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 17 Figure 1.7: Classical force field. Bond lengths b, angles θ and dihedral angles φ are used in the intramolecular terms of a classical force field.

Figure 1 . 8 :

 18 Figure 1.8: Intel processor evolution. Processor frequency stopped to increase.The computational power increase is now due to parallelism. Source: http://www.spiralgen.com/technology.html.
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 19110 Figure 1.9: Carbon system virtual prototyping. The adaptive approach allows the user to prototype a new original structure. The user loads two graphene sheets and then simply applies forces on atoms with the mouse. The geometry optimization running in parallel curves graphene plans to take into account the user modifications.

Figure 1 . 11 :

 111 Figure 1.11: Interactive quantum chemistry with an adaptive approach. The user loads a polyfluorene molecule and launches an adaptive geometry optimization method which attracts the system in stable structures during the editing of the molecule.

Figure 1 . 12 :

 112 Figure 1.12: Binding energy of hydrogen to a graphene sheet as a function of the number of absorbed atoms. The horizontal line represents the binding energy by atom of the dihydrogen molecule (H 2). An hydrogen island with more than 16 atoms on a graphene sheet offers a more favorable configuration than 8 H 2 molecules and a graphene sheet.
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Figure 1 . 13 :

 113 Figure 1.13: First use of SAMSON for educational purpose. High-school students have been initiated to the atomic scale and underlying physics by the use of the modeling tools developed in this thesis.

Figure 1 . 14 :

 114 Figure 1.14: Molecular machine in study. The molecule has been prototyped to transport an information along its carbon chain when a mechanical pulse is generated at one extremity.

Figure 1 . 15 :

 115 Figure 1.15: Carbon nanotube editing. A carbon nanotube is loaded with the stereoscopic display which helps the user to produce the tip geometry of his choice.
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 31 Perturbation theory) If the eigenvalues of (H, S) are non-degenerate,

1 .

 1 User action step (a) let the user move / create / delete one or more atoms (b) incrementally update forces and the Brenner potential energy 2. Adaptive minimization step (a) choose a new set of mobile atoms (b) perform a minimization step with the corresponding set (c) incrementally update forces and the Brenner potential energy
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 33132 Figure 3.1: Dependency of the Brenner potential terms on the relative motion of atoms (see Section 3.1). Atoms belonging to "Type 1" bonds have a relative motion, which induces a modification in every term of the bond potential contribution. "Type 2" bonds are rigid, but with a bond order change due to its dependency on the number of neighbors, as well as on angles and on dihedrals. "Type 3" bonds are rigid, but with a bond order change caused by the change on the conjugate number N conj . The relative motion of atoms in "Type 1" bonds does not impact the potential contribution of "Type 4" bonds.

3 .

 3 update the angle-dependent value I Angle ijk and its influence in I Bond ij and I Bond jk (i.e. the terms S σ-π ij and S σ-π ji ) (d) ∀(i, j, k, l) ∈ D, update the dihedral-dependent value I Dihedral ijkl and its influence in I Bond jk (i.e. the term S DH ji ) Second level potential update.

  (a) ∀(i, j) ∈ B, update the corresponding F B terms and their influence in the sum defining F Atom i and F Atom j (b) ∀(i, j, k) ∈ A, update the corresponding F A terms and their influence in the sum defining F Atom i ∀(i, j, k, l) ∈ D, update the corresponding F D terms and their influence in the sum defining F Atom i
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 34 Figure 3.4: Buckminsterfullerene in interaction with a graphite surface thanks to the fitted pairwise Van Der Waals term. The fitting procedure has been performed to respect the fullerene-surface stable distance.

Figure 3 . 5 :

 35 Figure 3.5: The cartesian adaptive approach chooses the most active atoms as mobile particles. The other atoms are frozen in space. This permits to allow fast local minimization with a small active region and an important frozen part. The mobile atoms are chosen automatically based on the information from atomic forces. In this schematic case, the user has arbitrarily decided to allow only three mobile atoms. As a result, the three leftmost atoms are activated because they have the largest forces.

Figure 3 . 6 :

 36 Figure 3.6: Procedure to determine the active zone, when the threshold is automatically set to half the largest atomic force norm.The algorithm uses a binary tree to represent the atomic system, in which each leaf corresponds to one atom. In this example, the four leaves correspond, from left to right to atoms 1 to 4. Internal tree nodes represent groups of atoms. The value indicated in each leaf node is the norm of the force applied to its corresponding atom. For internal nodes, this value is the maximum of the norms of the forces applied to atoms in the corresponding group. In step 0, the threshold is automatically set to 10. As a result, only atom 1 moves. In step 1, the potential is incrementally updated, and the norms of the forces applied to atoms 1 and 2 are updated. In step 2, the values associated to the tree nodes are incrementally updated through a bottom-up pass that starts from the modified leaf nodes values. Because of this bottom-up update, the adaptive threshold becomes equal to 4. In step 3, the new active atoms are determined through a top-down pass, by visiting only the nodes that have a value larger than the adaptive threshold.

Figure 3 . 8 :

 38 Figure 3.8: Different snapshots of an experiment where a carbon nanotube is being relaxed after a local deformation. The adaptive steepest descent minimizer automatically focuses the computational resources on the most mobile atoms. This leads to a more efficient minimization scheme in such a situation.

4 Figure 3 . 9 :

 439 Figure 3.9: Performance of the adaptive minimizer in the case of a local deformation of a nanotube. The three curves show the performance of three different approaches to recover the stable structure with a RMSD of 0.01 Å of the nanotube shown in Figure 3.8.The most efficient one is the adaptive steepest descent minimizer, which focuses the computational resources to the most mobile atoms. The two other methods follow the same path on the energy surface and are similar in performance. However, because of the computational overhead of the incremental update, the classical steepest descent method is about 6 % faster than the adaptive one when all atoms are activated.
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 311 Figure 3.11: Different steps to prototype a "nano-vesicle" with the adaptive interactive modeler. Starting with two graphene sheets, the adaptive methodology enables the user to prototype a new structure by applying forces on atoms with the mouse. We demonstrate the efficiency of the modeler by the creation of this new original carbon structure.

Figure 3 . 12 :

 312 Figure 3.12: Snapshots of a nanotube capping process with the adaptive interactive modeler. A classical nanotube is loaded in the modeler and the closure is performed by applying forces on bordering atoms. The curvature at the tip appears automatically thanks to the adaptive minimization running while the user edits the structure's topology. Thanks to the adaptive methodology, this operation can be done in a few minutes.
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 41 Figure 4.1:Interactive electronic structure calculations in SAMSON[START_REF] Samson | Software for Adaptive Modeling and Simulation Of Nanosystems[END_REF]. In this example containing 162 atoms corresponding to 432 basis functions, the user has selected a group of atoms (in blue) and is moving it towards a large molecule (a-d). The electronic structure is interactively updated and the geometry is being minimized while the user edits the molecular system. Because the user pulls on the atomic group, bonds are formed between carbon atoms, and a polyfluorene molecule is obtained (e). SAMSON computes and displays isosurfaces of the electron density on-the-fly during editing, which helps the user visualize bond formation and breaking.

Figure 4 . 2 :

 42 Figure 4.2: Schematic representation of the divide-and-conquer technique. The D&C technique consists in splitting the whole system in different overlapping subsystems, for which the electronic structures are computed independently.

Figure 4 . 3 :

 43 Figure 4.3: Performance comparison of the four ASED-MO variants for a carbon nanotube.The tests were run on a desktop computer equipped with two 2.33 GHz quad-core processors. The direct method (ASED-MO) has a prohibitive cubic complexity in the number of basis functions, and the Multithreaded ASED-MO variant shows a poor parallel speed-up. Consequently, the two corresponding curves are difficult to distinguish. The D&C ASED-MO approach demonstrates a considerable speed-up thanks to the linearity of the computational cost, and the Multithreaded ASED-MO variant is able to benefit from the multiple cores on the desktop computer.

Figure 4 . 4 :

 44 Figure 4.4: Performance of the divide-and-conquer approach for energy minimization. The figure plots the Root-Mean-Square Deviation (RMSD) to the minimized structure of the polyfluorene molecule visible in Figure 4.1, as a function of wall-clock time during energy minimization using the Quasi-Newton descent technique.Structure optimization is stopped when the RMSD is smaller than 0.01 Å. In this case, the D&C scheme allows for an important speed-up for the whole calculation.

Figure 4 . 5 :

 45 Figure 4.5: Representation of the C n H n+2 polyacetylene molecule used in the theoretical comparison (Section 5). Analytical expressions are readily available for the electronic structure of such a molecule when using the Hückel theory. This allows us to estimate the quality of the energies obtained by the divide-and-conquer approach for very large systems.
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 46 Figure 4.6: Schematic representation of the D&C approach used in the theoretical comparison. The subsystems and the right and left buffer regions all contain n S atoms. As a result, each extended subsystem contains 3n S atoms, except the first and last ones which contain 2n S atoms.

Figure 4

 4 Figure 4.7 shows the total energy error as a function of the total number of atoms, for each toy model, using fixed subsystem sizes. The plot clearly shows that the D&C error linearly depends on the system size. The error per atom introduced by the D&C approach, approximately between 10 -3 and 10 -5 eV per atom, is small in comparison with the error introduced by the semi-empirical models. This confirms the applicability of the scheme for energy evaluation.In Figure4.8, the potential energy error is plotted as a function of the subsystem size for the C 720 H 722 molecule. It shows the convergence of the approach when increasing the subsystems size. Note that, for conciseness, we do not show the very similar energy error and asymptotic behavior obtained with the second toy model.

Figure 4 . 7 :

 47 Figure 4.7: Error induced by the D&C approach for the polyacetylene molecule(left) and the hydrogen chain (right) as a function of the number of basis functions. Three different subsystems sizes were used. As can be seen, the error increases linearly with the size of the system, and decreases with the subsystems size. In these examples, the error per atom is approximately between 10 -3 -10 -5 eV.

Figure 4 . 9 :

 49 Figure 4.9: Error in the zero-temperature Fermi distribution induced by the D&C scheme for the C 500 H 502 polyacetylene molecule. The molecule was treated with the Hückel theory and different subsystem sizes n S were used.The behavior of the approximate density matrix is tested for each of the exact eigenvectors. The accuracy of the approach improves as the subsystem size grows. The error is mainly localized for eigenvectors which have eigenvalues near the Fermi energy.
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 410 Figure 4.10: Projecting local eigenvectors to the vector space spanned by the exact occupied eigenvectors. We plot ψ loc i |D|ψ loc i

Figure 4 . 11 : 1 . 2 .

 41112 Figure 4.11: Correction of the D&C projector for the C 500 H 502 molecule. The correction is performed using 100 exact eigenvectors with eigenvalues around the Fermi energy (indices between 201 and 300). The subsystem size used was 20.
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 412413 Figure 4.12: Interactive modeling session. After breaking a benzene cycle, the user moves a hydrogen atom closer to the top carbon atom to force them to bond (a). Then, the user pulls on a carbon atom to form a fulvene molecule (bd). Interactive electronic structure calculations allow the user to easily build plausible topologies, and get immediate feedback on the chemical structure. The video is accessible on the web: link.

Figure 5 . 1 :

 51 Figure 5.1: Block-Adaptive Quantum Mechanics (BAQM) in SAMSON (Soft-ware for Adaptive Modeling and Simulation Of Nanosystems)[START_REF] Samson | Software for Adaptive Modeling and Simulation Of Nanosystems[END_REF]. In this example the system is divided into four subsystems. The energy is minimized continuously as the user edits the molecular system. At each time step, both the geometry and the electronic structure are incrementally and adaptively updated. Because the user pulls one atom (red arrow) in the left part of the system, the electronic structure is updated with the full basis for the leftmost subsystem (all atoms are red). In the neighboring subsystem, the electronic structure is updated according to a reduced-basis approximation (some carbons are black and some hydrogens are white). In the right part of the molecule, the user force does not have a sufficiently large impact, and atoms positions are frozen (all atoms are blue).

1 , 1 ,Figure 5 . 2 :

 1152 Figure 5.2: Block-adaptive Cartesian mechanics. In this example the system S is divided in two overlapping extended subsystems S * 1 and S * 2 , which have two atoms in common. The value indicated in each atom is the atomic force norm. The value indicated in each subsystem is the subsystem force norm. The threshold value is automatically computed as half the value of the maximum of the subsystem force norms. In step 0, f M = 15 and, therefore, S * 2 is frozen. Consequently, only the two leftmost atoms are mobile. In step 1, f M = 5 and, therefore, S * 1 is frozen. Consequently, only the two rightmost atoms are mobile.
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 53 Figure 5.3: Timings of reduced-basis molecular orbitals computations with different basis dimensions. The eigendecomposition problem is projected in a basis containing respectively 100%, 80%, 70%, 60% or 50% of the low energy eigenvectors of a previously solved problem.

Figure 5 . 4 :

 54 Figure 5.4: Different speed-ups for convergence to global minima are presented.The number in the abscise represents N max the number of reduced basis steps between each full basis steps (reduced basis update). The fullerene and the nanotube are systems of 60 carbon atoms with 240 atomic orbitals basis.

Figure 5 . 5 :

 55 Figure 5.5: Faster energy descent when performing five reduced-basis steps after each complete step for a fullerene molecule composed of 60 carbon atoms.

Figure 5 . 6 :

 56 Figure 5.6: Performance of the block-adaptive divide-and-conquer approach for energy minimization. The figure plots the Root-Mean-Square Deviation (RMSD) to the minimized structure of a graphane sheet as a function of wallclock time during energy minimization. Geometry optimization is stopped when the RMSD is smaller than 0.01 Å. In this case, our block-adaptive D&C approach allows for an important speed-up. Speed-ups of the different adaptive approaches are indicated into brackets in the legend.
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 565758 Figure 5.7: Interactive modeling session. The user selects a group of atoms (atoms in blue) and splits the carbon nanotube into two parts (a). Then, the user pulls on a carbon atom to break a bond (b) and designs a new chemical structure (c). The user force is displayed by a red arrow. The video is accessible on the web: link.
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 61 Figure 6.1: Most stable graphane structure. Each carbon atom is bonded with one hydrogen atom which alternates on both sides of the graphene plan.

Figure 6 . 2 :

 62 Figure 6.2: Hydrogen binding energy as a function of the number of hydrogen atoms. Single H binding to graphene is weak, but it becomes stronger and stronger as they bind in cluster. The horizontal line represents the binding energy of the H 2 molecule (2.36 eV/H ).

Figure 6 . 3 :

 63 Figure 6.3: Hydrogen chemical absorption on a graphene sheet. When one hydrogen atom forms a bond with a carbon atoms, the closest neighboring hydrogen atoms bind on the other side of the graphene plane.

Frustrated hydrogen areaFigure 6 . 4 :

 64 Figure 6.4: Hydrogen frustration on a graphene sheet. Hydrogen atoms start to bind to two separate parts; as a result, a frustrated area appears.
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 65 Figure 6.5: Hydrogen binding energy depends directly on the size of the interface.
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 66 Figure 6.6: SAMSON for educational purpose. High school students introduced to the nanoscale and the underlying physics via the use of the interactive modeling tools presented in this thesis.
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 67 Figure 6.7: Molecular geometry and cohesive energy. The student discovers the link between potential energy and molecular geometry by trying to build several molecules with 6 hydrogen atoms and 2 carbon atoms.

Figure 6 . 8 :

 68 Figure 6.8: Chemical bonds: bond order and vibration. The student discovers several bonding states and vibrational modes.
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 610611 Figure 6.10: Nanomaterials. The student discovers different curvatures of the graphene sheet. By creating five atoms cycles on one extremity, he is able to induce a curvature on the whole graphene sheet and reconstruct a carbon nanotube.

Figure 6 . 12 :

 612 Figure 6.12: CEMES millipede.

Figure 6 . 13 :

 613 Figure 6.13: Snapshots of a nanotube capping process. A classical nanotube is loaded in the modeler with the stereo visualization and the closure is performed by adding new atoms and applying forces on bordering atoms. The curvature at the tip appears automatically thanks to the adaptive minimization running in parallel.

Figure 6 . 14 :

 614 Figure 6.14: Snapshots of cyclohexane molecule. A cyclohexane in the "chair" conformation is loaded in the modeler with the stereo visualization.The user applies a force on a hydrogen and the system is attracted in the "boat" conformation.

  ||H p -H r || F ≤ ||D old -H r || F , ||S p -S r || F ≤ ||I -S r || F . (8.23)Consequently, from equations (8.22) and (8.23), we have||H p -H r || F = O(ε), ||S p -S r || F = O(ε). (8.24) 

(8. 33 ) 2 . 5

 3325 Theorem The potential energy error |E -E v | induced by the use of the reduced basis V is asymptotically negligible compared to ε:|E -E v | = O(ε 2 ). (8.34) 

1 :

 1 SB ← S * B 2: for i = 1 → N do 3: norm ← B(:, i) T * SB(:, i) 4: B(:, i) ← 1 norm * B(:, i) ⊲The vector B(:, i) is now S-normalized 5:

9 : 12 :

 912 B(:, j) ← B(:, j)x * B(:, i) ⊲ B(:, i) and B(:, j) are now S-orthogonal 10:SB(:, j) ← SB(:, j)x * SB(:, i) end for
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 41 Performance of the multithreaded divide-and-conquer implementation. This table reports the speed-up achieved by the multithreaded divideand-conquer variant over the sequential divide-and-conquer one, on an eightcore desktop computer.

	System	Number of atoms Energy error (eV) Energy error per atom (eV)
	Polyfluorene Polyacetylene Polyethylene Carbon nanotube Carbon nanotube Carbon nanotube Graphene Graphane	162 100 68 288 300 600 240 700	1.67 × 10 -2 4.16 × 10 -2 6.08 × 10 -4 5.86 × 10 -2 3.20 × 10 -2 5.17 × 10 -2 1.95 × 10 -1 4.29 × 10 -2	1.03 × 10 -4 4.16 × 10 -4 8.95 × 10 -6 2.03 × 10 -4 1.06 × 10 -4 8.61 × 10 -5 8.13 × 10 -4 6.13 × 10 -5
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2: Error induced by the D&C approach when applying the ASED-MO theory to different hydrocarbon systems. Four subsystems extended with an inner buffer (cut-off of 6 Å) and an outer buffer (cut-off of 2 Å) were used.
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  H old || 2 F + ||S a -S old || 2 F = O(ε). (8.19) Proof As ||H old -H new || F = O(ε), ||S old -S new || F = O(ε) (8.20)and Z is constant, we have||Z T (H old -H new )Z|| F = O(ε), ||Z T (S old -S new )Z|| F = O(ε) (8.21)

  ) which can be rewritten as||H a -H new || F = O(ε), ||S a -S new || F = O(ε). (8.26)From equations (8.20) and (8.26), we can conclude that||H a -H old || F = O(ε), ||S a -S old || F = O(ε). (8.27)• Lemma 2.4 Let e i denote the i th lowest eigenvalue of (H new , S new ) and e p i the i th lowest eigenvalue of (H p , S p ), we have|e ie p

i | = O(ε 2 ) (8.28)

  e old i + z T i (H newe old i S new )z i + O(ε 2 ). (8.29)where z i is the i th eigenvector of (H old , S old ). By definition of (H r , S r ), we can rewrite equation (8.29)e i = e old i + H r iie old i S r ii + O(ε 2 ).(8.30)One can apply eigenvalue perturbation theory with the matrix pairs H a , S a and (H old , S old ). In view of lemma 2.3, this may be written ase p i = e old i + z T i Z -T H p Z -1e old i Z -T S p Z -1 z i + O(ε 2 ).

		(8.31)
	which is simply	
	e p i = e old i + H p ii -e old i S p ii + O(ε 2 ).	(8.32)
	Since H p ii = H r ii and S p ii = S r ii , we can state that	
	|e	

ie p i | = O(ε 2 ).

Dans la quête de nouvelles ressources, cette fuite vers l'infiniment petit semble bien plus prometteuse que la difficile conquête de l'espace et l'infiniment grand. Cette voie non intuitive a été anticipée par Richard Feynman dans son discours "There is plenty of room at the bottom"[START_REF] Feynman | There's plenty of room at the bottom[END_REF]. Si à l'échelle macroscopique l'homme semble atteindre les limites de la capacité de notre planète, ces mêmes ressources, en les considérant à l'échelle atomique, se retrouvent démultipliées et semblent à nouveau abondantes et inépuisables.En pratique, les nanotechnologies représentent un potentiel considérable dans de nombreux domaines : informatique et télécommunications, médecine et biologie, matériaux et chimie, énergie et environnement[START_REF] Roco | From vision to the implementation of the U.S. National Nanotechnology Initiative[END_REF]. Ainsi de nouveaux problèmes de conception émergent :• Peut-on construire une porte logique avec une seule molécule[START_REF] Joachim | Electronics using hybridmolecular and mono-molecular devices[END_REF] ?• Quelles molécules permettent de stocker efficacement l'hydrogène, candidat comme carburant du futur[START_REF] Schlapbach | Hydrogen-storage materials for mobile applications[END_REF] ?• Comment démultiplier les performances des batteries lithium[START_REF] Chan | High-performance lithium battery anodes using silicon nanowires[END_REF][START_REF] Ceder | Application of first-principles calculations to the design of rechargeable Li-batteries[END_REF] ? ...3 Le prototypage virtuelEn s'intéressant à la problématique de la conception assistée par ordinateur d'objets à l'échelle atomique, cette thèse s'inscrit à l'intersection de ces deux nouveaux mondes (numérique et nanoscopique). À une telle échelle, les outils de simulation numérique devraient jouer un rôle essentiel pour accélérer le cycle de conception des produits. En effet, une grande difficulté vient du caractère inverse des problèmes. Il

ContributionsDans ce premier chapitre, nous avons introduit le cadre général des travaux de cette thèse. Nous en résumons maintenant les principales contributions.
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Chapter 4

Interactive quantum chemistry: a divide-and-conquer ASED-MO method

Ce chapitre est une adaptation de l'article intitulé "Interactive quantum chemistry: a divide-and-conquer ASED-MO method" [START_REF] Bosson | Interactive quantum chemistry: A divide-and-conquer ASED-MO method[END_REF].

Dans ce chapitre, nous présentons une méthode de simulation interactive de chimie quantique dans le cadre de la théorie semi empirique Atom Superposition and Electron Delocalization Molecular Orbital (ASED-MO). Notre méthode se base sur un algorithme diviser-pour-régner, qui nous le montrons, est précis et efficace pour la théorie non autocohérante ASED-MO. La méthode a une complexité linéaire avec le nombre d'atomes et un faible préfacteur. Le coût de calcul est complètement maitrisé car toutes les calculs sont réalisés avec des méthodes numériques directes, aucune procédure itérative n'est utilisée. Nous discutons de l'erreur introduite par l'algorithme diviser pour régner, d'abord empiriquement sur plusieurs exemples, puis par une étude théorique de deux molécules tests pour lesquelles il existe des solutions analytiques indépendamment du nombre d'atomes. A l'aide de la précision et de la rapidité de l'algorithme diviser pour régner, nous démontrons la possibilité de chimie quantique interactive sur un simple ordinateur de bureau pour des systèmes contenant des centaines d'atomes. Lorsque l'utilisateur dessine et édite le système, la simulation interactive lui procure des retours immédiats et intuitifs sur les structures chimiques. Avec la tendance à l'augmentation du nombre de coeurs dans les processeurs des ordinateurs personnels, des systèmes de plus en plus grand pourront être traités et nous pensons que, même à ce niveau de théorie, de tels simulations interactives seront très utiles pour efficacement comprendre, dessiner et prototyper des systèmes atomiques.

Summary

This chapter is an adaptation of the paper entitled "Interactive quantum chemistry: a divide-and-conquer ASED-MO method" [START_REF] Bosson | Interactive quantum chemistry: A divide-and-conquer ASED-MO method[END_REF].

In this chapter, we present interactive quantum chemistry simulation at the Atom Superposition and Electron Delocalization Molecular Orbital (ASED-MO) level of theory. Our method is based on the divide-and-conquer (D&C) approach, which, as 4 Implementation of the divide-and-conquer approach for the ASED-MO theory

Performance

We have implemented the D&C approach for the ASED-MO theory into SAM-SON [START_REF] Samson | Software for Adaptive Modeling and Simulation Of Nanosystems[END_REF], the software application being developed in our group. We have used C++ as the main language, and used the highly optimized Intel Math Kernel Library [START_REF]#$%%&[END_REF] to solve the generalized eigenvalue problems. All tests have been performed on a desktop computer with two quad-core processors at 2.33 GHz and 4GB of RAM, running a 32-bit Linux Fedora operating system.

In our tests, the costs of computing the Hamiltonian matrix, the overlap matrix, and the repulsive interactions are not taken into account, since they are identical for both methods. These contributions represent approximately twenty percent of the total cost in the divide-and-conquer implementation. We compare four different variants of our implementation:

• ASED-MO: the cubic-complexity approach, linked with the sequential MKL library [START_REF]#$%%&[END_REF]. This variant only uses one core out of the eight that are available on the desktop computer used for the tests.

• ASED-MO D&C: our linear-scaling divide-and-conquer implementation, linked with the sequential MKL library [START_REF]#$%%&[END_REF]. This variant only uses one core out of the eight available as well.

• ASED-MO Multithreaded: this variant of the cubic-complexity ASED-MO algorithm is linked with the multithreaded MKL library [START_REF]#$%%&[END_REF], and attempts to use all eight cores to help with the diagonalization.

• ASED-MO D&C Multithreaded: our linear-scaling divide-and-conquer implementation, linked with the sequential MKL library, but multithreaded with OpenMP (see e.g. [START_REF] Chandra | Parallel programming in OpenMP[END_REF]) to compute eigendecompositions and density matrices for subsystems in parallel. This variant uses all eight cores.

In this section, we report on tests on a series of nanotubes with chirality (3,3), containing 75, 150, 300, 600, 1200 and 2400 atoms corresponding respectively to 300, 600, 1200, 2400, 4800 and 9600 basis elements. In our tests, we placed 75 atoms per subsystem, resulting in 1, 2, 4, 8, 16 and 32 subsystems, respectively, for the D&C approach. We averaged timings over one hundred energy evaluations for each nanotube size. Only one buffer region with a cut-off of 6 Å was used for these computations.

In Figure 4.3, we plot the cost of the diagonalization and the density matrix computation as a function of the number of basis functions, for the four different variants. For the two direct, cubic-complexity variants (ASED-MO and ASED-MO Multithreaded), we only plot the costs up to 1200 basis functions for readability. We note that the multithreaded version did not provide any significant speed-up, as it suffered from the poor parallel scaling of the generalized eigenvalue problem [START_REF] Breitmoser | A performance study of the PLAPACK and SCALAPACK eigensolvers on HPCx for the standard problem[END_REF][START_REF] Bientinesi | A parallel eigensolver for dense symmetric matrices based on multiple relatively robust representations[END_REF]. For the two divide-and-conquer variants (ASED-MO D&C and ASED-MO D&C Multithreaded), we found the expected linear complexity, since the number of subsystems doubles as the linear system size doubles. The resulting C n coefficients are the solution of the problem of finding the set of N molecular orbitals minimizing the energy in the subspace generated by V . Then, the force formulation that expresses the variation of the energy calculated in the reduced basis (denoted E v ) by the atomic position is:

where P v is the density matrix

W v is the energy-weighted density matrix

and C n is the matrix of the orthogonal molecular orbitals. One can remark that we do not speed-up the forces evaluation by the reduced basis approach. The proof of the formulation is presented in Chapter 8 "Appendix" Section 1.

Exploiting temporal coherence with a reduced basis

Let us consider two pairs of symmetric matrices:

• (H old , S old ) for which an eigendecomposition is available, we denote V the lowest-energy eigenvectors and W the remaining eigenvectors,

• (H new , S new ) related to the new system state.

In order to take advantage of the temporal coherence between successive eigendecomposition problems, we propose to use the eigenvectors V as a reduced basis for the new problem. This choice is justified by perturbation bound theory on the invariant subspace [START_REF] Stewart | Matrix perturbation theory[END_REF][START_REF] Stewart | Pertubation bounds for the definite generalized eigenvalue problem[END_REF].

Let us define a simple distance ε between the two matrix pairs :

where ||.|| F is the Frobenius norm. Then, the error in potential energy |E -E v | induced by the use of the reduced basis V is asymptotically negligible compared to ε:

The proof is presented in Chapter 8 "Appendix" Section 2. Consequently, we propose to use the distance ε as an indicator of the pertinence of using low-energy eigenvectors of (H old , S old ) to solve the new problem (H new , S new ), i.e. help us decide on the fly when to update the reduced basis by performing a full-basis step (when ε becomes larger than a threshold value ε M ). such that

where ǫ 1 = ||(H -H 1 , S -S 1 )|| F . We thus propose to choose

Similarly, at iteration i, C i+1 n is computed from the order one correction of the approximated eigenvectors C i n . The efficiency of our approach comes from the fact that the computation of matrices H i , S i can be skipped when we perform the order-one correction. Indeed, we have by construction:

As a result, we only need to perform a matrix multiplication to compute the matrices H r = (C i ) T HC i and S r = (C i ) T SC i to evaluate the order-one perturbation terms. Then, one can compute the new vectors by performing a new matrix multiplication C i+1 = (I + A)C i where A is the matrix defined by:

The following algorithm presents a pseudocode of the approach.

Algorithm 1 Iterative order-one correction function iterative-one-order-pertubation(C 0 , H, S, n) A = zeros (n,n) Dcur = zeros (n,1) ⊲ eigenvalues to be computed Ccur = C 0 ⊲ eigenvectors to be refined for k=1...Nb-iterations do Hr = Ccur T × H × Ccur Sr = Ccur T × S × Ccur Dcur=diag(Hr)./diag(Sr) for i=1...n do for j=1...n do A(j, i) = Hr(i,j)-Dcur(i)×Sr(i,j)

end for end for Ccur = Ccur + Ccur × A normalise (Ccur,S) end for return Ccur end function At each iteration, the error in the eigendecomposition is reduced from an order of ǫ to an order of ǫ 2 . Thus, the algorithm convergence speed is quadratic when the initial guess is close enough to the solution. Typically, 2-3 iterations is sufficient for the algorithm to converge to machine precision. However, an extension of the proposed algorithm to the degenerated case and precise convergence conditions is still need to be figured out.

Chapter 6

Applications and results

Résumé

Dans ce chapitre nous illustrons quelques applications possibles des algorithmes présentés dans les chapitres précédents.

• Nous présentons une étude l'adsorption chimique d'atomes d'hydrogènes sur un plan de graphène par minimisation interactive et mise à jour incrémentale de l'énergie potentielle dans des algorithmes Monte Carlo.

• Nous abordons l'utilisation de la modélisation interactive à l'échelle atomique à des fins pédagogiques. Une première mise en situation a été effectuée par des élèves et des professeurs de lycée et de nouvelles utilisations sont planifiées pour les années à venir.

• Nous donnons un exemple de prototypage virtuel.

• Nous illustrons la réalité virtuelle à l'échelle atomique via des images en trois dimensions.

Summary

In this chapter, we illustrate some possible applications of the algorithms presented in the previous chapters.

• First, we present a study of hydrogen chemisorption on a graphene sheet via interactive energy minimization and fast incremental update of the potential energy in the framework of a Monte Carlo algorithm.

• Second, we tackle the use of interactive physically-based modeling tools for educational purpose. We have carried out some computational experiments with high school teachers and students. New sessions and tests are planned for the next years.

• Then, we give an example of virtual prototyping of molecular machines.

• Finally, we illustrate the possibility of virtual reality at the nanoscale by presenting some three dimensional images.