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Résumé

Nous nous intéressons aux lacets markoviens définis dans le cadre de la théorie des chaines
de Markov a temps continu sur un espace d’états discret. Ce sujet a notamment été étudié
par Le Jan [LJ11] et Sznitman [Szn12]. En contraste avec ces références, nous ne supposerons
pas la symétrie de la chaine et nous intéresserons plutdt au cas infini. Tous les résultats sont
présentés en termes de générateur de semi-groupe. En comparaison avec [LJ11], certaines

preuves ont été détaillées ou améliorées.

Nous fournissons par ailleurs quelques résultats sur les amas de boucles (voir [LJL12| dans le
cas symétrique). Nous traitons notamment I’exemple du cercle discret. Nous étudions aussi

les arbres couvrants définis par l'algorithme de Wilson dans le cas asymétrique.

Dans la derniére partie, nous considérons la proportion des lacets couvrants l'espace. En
utilisant la limite du spectre, nous donnons une expression générale de la limite de cette
proportion pour une suite de graphes. Comme applications, nous donnons deux exemples

concrets dans lesquels une transition de phase apparait.

Mots clés : lacets markoviens, amas des lacets, I’arbre couvrant, lacets couvrant.



Abstract

We are interested in Markov laces defined in the framework of the theory of Markov chains
in continuous time on a discrete state space. This particular subject has been studied by
Le Jan [LJ11] and Sznitman [Sznl2]. In contrast to these references, we do not assume the
reversibility of the chain and we are mostly interested in the case of countable state space.
All the results are presented in terms of the generator of semigroup. In comparison with

[LJ11], some demonstration has been detailed or improved.

We also provide some results on the loop clusters (see [LJL12] in the reversible case). In par-
ticular, we study the example of discrete circle. We also study the spanning tree algorithm

defined by Wilson in the non-symmetric case.
In the last part, we consider the proportion of loops covering the whole space. Using the
limit of the spectrums, we give a general expression for the limit of this ratio for a sequence

of graphs. As an application, we give two examples in which a phase transition occurs.

Keywords: Markovian loops, loop cluster, spanning tree, covering loop.
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Chapter 1
Introduction

Dans cette thése nous nous intéressons aux lacets markoviens dans un espace S d’états dé-
nombrables. La notion de la soupe de lacets fut introduite par Lawler et Werner. Dans la
référence [LW04], la soupe de lacets associés & un mouvement brownien dans R? est définie
et son analogue pour une marche aléatoire simple est étudié¢ dans [LTF07|. Dans le cadre des
processus réversibles, ce sujet a été étudié en détail par Le Jan et Sznitman (voir [Sznl2| et

ILITI)).

Etant donné un générateur infinitésimal L, nous pouvons y associer une chaine de Markov
minimale (voir [Nor98|). Désignons par P* la loi de la chaine issue de x et par P}Y la mesure

de pont de durée t :
Prof(Xs, s € [0,8])] = P*[f(X,, s € [0,¢]), Xy = y.

ou X désigne la chaine de Markov. Un lacet basé [ de durée |[| = t est simplement une
trajectoire cadlag de durée t dont les positions au temps initial et final sont égaux : [ :

[0,t] — S telle que [(0) = I(t—) = I(t). Nous définissons une mesure u® o—finie par

pb(dl) = / > PPeldl)dt.

€S

Deux lacets basés sont équivalents ssi ils sont égaux a une rotation prés. Un lacet est une
classe d’équivalence des lacets basé (voir Définition [3.1.5)). La mesure des lacets markovien

est la mesure d’image x de la mesure u® sur 'ensemble des lacets.

Le temps d’occupation d'un lacet (basé) est défini par I* = f 1{i(s)=x} ds pour tout x € S.
0<s<|l|



Le champ de multi-occupation s’écrit comme

n—1
GH=Y [ A dst s
I cstclconat
ou f désigne une fonction sur S. L’espace vectoriel engendré par le champs de multi-occupation
est une algébre qui engendre la tribu borélienne. Par conséquence, la loi du champ de multi-
occupation détermine la mesure des lacets markoviensﬂ Sous I’hypothése de transience, nous
pouvons calculer une variante de la transformée de Laplace du champ d’occupation (voir

3.5.1)) : Soit x une fonction a support compact. Notons p(M, VM s) le rayon spectral de

M VM . Pour z € D ={z€ C:Re(z) < m}, nous avons

(e — 1) = —Indet(I — 2M VM ).

Par contre, dans le complémentaire de D, nous avons pu(|e*"¥) — 1|) = co. En utilisant
ce résultat, nous pouvons déterminer la mesure des lacets non-triviaux qui rencontrent un

sous-ensemble fini /' C S :

p(l est non-trivial et [ N F # ¢) = ln(H(—Li) det(Vr)).
zeF
Plus généralement, pour n ensembles finis F}, ..., F},, nous avons

u(lN F; # ¢ pour tout i =1,...,n) = — Z (=D ndet(Vp,) + Z In(—L%)
AC{1,...,n},A%¢ n

ot Fy & U F; pour A C {1,...,n} (voir Proposition [3.5.8). La mesure des lacets marko-
i€A
viens est compatible avec le changement du temps et la perturbation de Feynman-Kac. En

particulier, elle est compatible avec les notions de “trace” et “restriction” (voir Proposition

et Proposition [3.4.1])

Soit (L4, a > 0) 'ensemble poissonnien des lacets d’intensité ap. Le champ d’occupation de

cet ensemble est défini par ) [”. Les moments sont sous la forme de a—permenant :
1€La

E[ﬁﬁl T ﬁﬁ”] = Pera((vxﬁi)lﬁm,lén)'

En utilisant la formule de Campbell, nous fournissons la transformée de Laplace de (L,, x)

(voir Proposition 4.1.5)). La formule de Campbell nous permet aussi de calculer la probabilité

'En effet, la mesure p est déterminée par I'espérance du champ (voir [3.4.9)).



pour qu’un sous-ensemble F' ne soit pas couvert par des lacets non-triviaux :

Pl € L1 est non-trivial et [N F # ¢] = inf ([ [(~L7) det(Va)) ™.

ACF,|A|l<oco
4] z€A

Par ailleurs, d’aprés la généralisation du théoréme de 'isomorphisme de Dynkin (voir [LJ0S]),
nous pouvons identifier le champ d’occupation avec le carré d’un champ “gaussien” de densité
complexe. En conséquence, on obtient une expression de la densité de (£, ..., L) pour a =
1. Pour « quelconque, nous trouvons la densité de (L%, ..., L%") & partir de sa transformée
de Laplace (voir Proposition . Nous sommes également intéressés par le comportement
conditionnel du champ d’occupation. Plus précisément, nous nous intéressons a la distribution
du champ d’occupation connaissant la trace de I’ensemble de lacets dans un sous-ensemble
F. Etant donné un lacet [ qui rencontre F, en supprimant les excursions en dehors de F et en
collant le reste dans 'ordre de lacet original, nous obtenons la trace [z du lacet [ dans F' qui
est encore un lacet. La proposition [4.6.2| montre que I’ensemble des excursions a l'extérieur de
F' est une mesure aléatoire de Poisson conditionnée au [r. En effet, cette mesure conditionnée

dépend seulement de :
e Le champs d’occupation sur la frontiére OF de F'.
e Le nombre de saut de x € OF vers y € OF pour la trace [p.
e La mesure d’excursion en dehors de F'.

En conséquence, nous donnons une expression explicite de E[e’<£a’x> |o(L4|F)] dans la Propo-
sition ou L,|r sont les trajectoires observées sous la fenétre F'. Dans la section 4.3, nous
nous intéressons au comportement asymptotique de é(ﬁﬁl, ..., L%, D’aprés un résultat gé-
néral de A. de Acosta [dA94], ils vérifient un principe de grandes déviations dont les fonctions
de taux ont été précisées pour n < 2 (voir Proposition et la remarque suivante). Dans
la derniére section de ce chapitre, nous considérons ’amas de lacets E| Ce sujet a été intro-
duit et bien étudié par Yves Le Jan et Sophie Lemaire dans le cas d’une chaine réversible
(voir |[LJL12]). Comme dans [LJL12|, nous pouvons calculer la probabilité pour que certaines
arétes soient fermées et la probabilité pour que la partition de I'espace d’états définie par
I’amas de lacets soit plus fine qu'une partition fixée. Parmis des nombreux exemples étudiés
dans |[LJL12|, on trouve 'amas de lacets sur N. Il est prouvé dans [LJLI2| que ses arétes

fermées forment un subordinateur a la limite dont le potentiel est donné explicitement. A la

2Une aréte est dite “ouverte” ssi. elle est couverte par au moins un lacet dans I’ensemble Poissonnien des

lacets.



fin de ce chapitre, nous considérons la version conditionnelle de ce modéle : I'amas de lacet

sur le cercle discret avec une aréte fermée. Nous identifions sa limite avec un subordinateur

conditionné (voir Proposition 4.7.7)).

La partie 5 étudie les liens entre ’algorithme de Wilson qui génére un arbre couvrant aléatoire
d’une chaine de Markov et I’ensemble Poissonnien des lacets associé a cette méme chaine. Les
propositions et permettent de relier ’ensemble des lacets effacés dans ’algorithme
de Wilson a I’ensemble Poissonnien des lacets. Dans la derniére section, nous étudions 'arbre
couvrant orienté qui peut étre construit par ’algorithme de Wilson. Nous donnons une preuve
¢élémentaire du théoréme de transfert du courant (voir Théoréme et Corollaire [5.3.4).
Ces résultats sont diis & Burton and Permantle pour les chaine réversibles (voir [BP93]) dont
les approches requiérent 1’hypothése de symétrie. Notre méthode s’applique a des graphes

orientés arbitraires.

Dans le sixieme et dernier chapitre nous étudions des lacets couvrants munis de la mesure
de lacets markoviens. Le probléme du temps de couverture est un probléme classique dans
I’étude des chaines de Markov. Nous considérons une suite croissante de graphes GG,, avec une

suite de paramétres de meurtre ¢,. La mesure des lacets non triviaux s’écrit comme

k
qui(k Sauts,§1 = X1, ;gk = .Z’k) = % (1 —i_C ) (Qn)ié(@n)ii e (Qn)if

ou (), est la matrice de transition associée a G,,. Soit B, = ;,’% Le théoréme |6.1.1| donne
def

la limite 9B,,[ couvre tous les sommets de G,,] en fonction de la limite a '= lim —2 avec
n—o0 "

la limite spectrale de G, sous les hypothéses suivantes :

e (H1) Les degrés sont uniformément bornés.
e (H2) Les conductances des arétes sont uniformément bornés.

e (H3) Il existe une distribution v sur [—1, 1] telle que pour tout k& € N,

1
lim — TrQF = /xkl/(dx).

n—oo n,
(Autrement dit, soient 1 > Ay > --- > )\, > —1 des valeurs propres de @Q,, alors

n .
2 %5)\1 ﬂ) I/.)
1=

Intuitivement, en diminuant les taux de meurtre, les longueurs de lacets augmentent sous

PB,, ce qui suggere Paugmentation de 9B,,. Pour établir le Théoréme [6.1.1] nous avons estimé



d’une part la longueur des lacets et d’autre part la probabilité conditionnelle
{l couvre tous les sommets de G, }

sachant que {longueur = k} pour k assez grand. Pour la premiére partie, nous avons utilisé
une borne inférieure du trou spectral die a Persi Diaconis et Daniel Stroock (voir [DS91])
et une borne supérieure de Tr Q% diie & E. A. Carlen, S. Kusuoka et D. W. Stroock (voir
[CKS8T]) qui est ensuite rétablie par un argument simple par Aldous pour les graphes réguliers
(voir [AE]). Avec peu de modifications, nous adaptons la méthode d’Aldous dans le cas des
graphes vérifiant (H1) et (H2). Pour la deuxiéme partie, nous utilisons un résultat classique
concernant la borne supérieure de l'espérance de temps de recouvrement. Nous fournissons
deux exemples dans lesquels nous explicitons les distributions v a limite. Dans la derniére
section, nous considérons des graphes complets qui ne vérifient pas (H1) pour lesquels nous
ne pouvons plus appliquer Théoréme Néanmoins, nous établissons le Théoréme [6.6.3
en comparant une variable géométrique modifiée au temps de recouvrement de la chaine de

Markov dans les graphes complets.



Introduction (English version)

We fix a countable state space S. Given an infinitesimal generator L, one can construct a
minimal continuous Markov chain X, see [Nor9§|. Denote by P* its law starting from z. Let

Py"Y be the non-normalized bridge measure of duration ¢ defined by
Prof(Xs, s € [0, 2])] = PPLf(Xs, 5 € [0,2]), Xy = y].

By a based loop with time duration ¢, we mean a cadlag path [ : [0,¢] — S that [(0) =
I(t—) = I(t). Define the based loop measure u® by

p(dl) = / > Ppdl dt.
0 €S

By forgetting the initial point, we get a o—finite measure on the space of loops’} namely the

Markovian loop measure p. Given a non-negative function y on S, let M, be the operator
defined by M, f(z) = x(x)f(x).

For a (based) loop, its occupation time at z € S is defined by I* = [ 1y5=s} ds. The

0<s<t
multi-occupation field is defined by
n—1
(L, f) :Z / FA(S™), (™)) dst - - ds™
j=0

0<sl< <8<t

where f is a function on S. The linear space generated by these multi-occupation fields form
an algebra and they generate the Borel—o—field of the loops. In particular, their distributions
determine the loop measureE] Under the assumption of transience, we are able to calculate,

for example, the “Laplace transform” of the occupation field:
p(e*0 —1) = —Indet(I — M VM ).

We also show the compatibility of the loop measure with time change and killing. In par-
ticular, we can take the trace and the restriction of a Markovian loop. The push forward
measure is a Markovian loop measure associated with the trace and the restriction of the
Markov process.

By using the loop measure as intensity measure, we construct a Poisson point process of

loops (L4, > 0). We define the occupation field of this loop ensemble by > [*. We can
1€Lq

3See Definition
4In fact, the expectation is enough under the assumption of transience and Markov, see w



calculate the moments of the occupation field (£, z € S):
E[L5! - L&) = Pera (Vi )1<mizn).

Moreover, we give an explicit expression for the Laplace transform of (£,, x), see Proposition
4.1.50 By a non-symmetric generalization of the Dynkin’s isomorphism [LJ08|, we give an
expression for the density of £i*, ..., L]™ using complex integration. We are also interested
in the conditioned behavior of the occupation field. More precisely, what is the occupation
field like if we know the trace of the loop ensemble on a subset F'? For a loop intersecting
F, by removing the excursions out of F' and collecting the remainder in the original order,
we get the trace [p of a loop [ on F' which is again a loop. Proposition shows that
conditionally on the collection of loop traces, the collection of the excursions is a conditioned
Poisson random measure. That conditioned Poisson random measure depends on three types

of quantities:
e The occupation time at the boundary of F.
e The jumping times at the boundary of F' for the trace [p.
e The excursion measure out of F.

Further calculations give the conditioned occupation field in Proposition In the end of
this chapter, we consider loop clusterﬂ. The problem first appears in |[LJLI12]. An example
considered in this paper is the loop cluster on N. It is shown that the closed edges form a
subordinator with explicit renewal measure in the proper scaling limit. We consider condi-
tioned version of this model: the loop clusters on the discrete circle conditioned to be closed

at a specific edge. For the scaling limit, we obtain a conditioned subordinator.

In Chapter 5, we explain the way to recover the Poisson ensemble of loops for o = 1 (resp.
a €]0, 1[) from the loops removed in Wilson’s algorithm by cutting them according to some
additional Poisson-Dirichlet distributions (resp. gamma subordinators), see Propositionm
and Remark [I6] In the last section, we give an elementary proof of the transfer current theo-

rem for the non-symmetric directed random spanning tree measure with a given root weight

p, see Theorem [5.3.3] and Corollary [5.3.4]

5An edge is open iff. it is covered by some loop.



In the last chapter, we consider the loops on a sequence of undirected finite graph G,,. By
adding a killing rate ¢,, we get a non-trivial loop measure p, on G,, and the total mass of

fn, is finite. Denote by C the set of covering loops, i.e. C = {l covers the whole space.}. We

are interested in the limit proportion of the “covering loops”; i.e. lim b (€) . We
n—soo Mn(non-trivial loops)

calculate it under the following crucial assumption:

i) The empirical distribution of the eigenvalues of the transition matrix Qnﬁ converges to

a probability measure on v.
ii) The sequence of the graphs has uniformly bounded degrees and weights.

As an application, we give two concrete examples: the sequence of discrete tori and the
sequence of increasing balls in a regular tree. The limit distribution for the discrete model
converges to the convolution of the semi-circle law and the second converges to a purely
atomic distribution given by the roots of a family of polynomials. We also calculate the case

of the complete graphs as a counter-example.

5The transition matrix Q,, is associated with G,,.



Chapter 2

Preliminaries

In this section, we present some basic results about continuous time Markov chains, including

a discrete version of Feynman-Kac and the transformation by time change.

2.1 Notations

1. Suppose Ei, By are two countable sets, (Aj-,z' € FEy,j € E,) is a matrix. For F} C E;
and Fy C Ej, let (Alp,xp,, i € F1,j € Fy) be the sub-matrix defined by (A|p xg,); = A%

By convention, the absolute value |A] will denote the matrix: (JA]); = [A}].

2. £(N\), X € [0,00] denotes a random variable, exponentially distributed with parameter

A with the convention that £(0) = oo and £(o0) = 0.

3. If k is a non-negative finite function on the state space S, M} will denote the matrix,

(My)y, = k(x)0; where 67 = 1iff. z =y.

4. x € R” can be extended to an periodic series, "% = 2*F m € Z,k =0,...,n — 1.

Given z € R", each time we write z,,1;, we extend x to the n-periodical series.
5. For any countable set A, #A and |A| will denote the number of elements in A.

6. Let & be the collection of permutations on {1,...,k} and S some state space. For
a permutation o € &y and z = (x1,...,25) € S*, define o(2) = (To-101), - - -, To-1(n))-
Accordingly, a permutation o can be viewed as a function from S* to S*. Define the
circular permutation r; as follows: 7;(1,...,k) = (+1,...,k,1,...,7). Define Ry
to be the subset of & consisting of circular permutations on {1,...,k}. Note that o

plays two roles, a function on {1, ..., %k} mapping an integer to another integer and a

17



function on some S* mapping a k-uple to another k-uple (for example, r1(2,1,3,4) =
(4,2,1,3) # (r1(2),71(3),m1(1),r1(4)) = (3,4,2,1)). We have oy(o9(z1,...,2,)) =

(l’(glogz)fl(l), ce ,1’(01002)—1(71)).

2.2 Minimal continuous-time sub-Markov chain in a count-

able space

Let S be a countable set equipped with the discrete topology. Add an additional cemetery
point d to S and set S = S| J{0} (compactification).

Definition 2.2.1 (Generator). A matrix L = (Lj,z,y € S) is called a sub-Markovian

(Markovian resp.) generator iff.

0< L7 <0 for all z € S,
Ly >0 for all x # y,
> L; <0 (Q_Lj=0resp.) forallzels.
J J

L(E

In case Ly <0, set Qy = =75 for z # y and Q7 = 0. In case Ly = 0, set Q = 9,

Convention 2.2.2. A sub-Markovian generator L on S can be extended to a Markovian

generator L on S as follows: ZZ = L for z,y € S, fg =—> Lj forz €S, Zi = 0 for
yes

res.

Construction of the probability on the space of right-continuoud'| paths

Let p, a probability measure on .S, be the initial distribution. Let & be a random variable
with distribution p and (7,7 € N,z € S) be independent random variables, exponentially
distributed with parameter —L%. Let (J;;,7 € N,z € S) be independent random variables
such that for y € S

P(Jiw =y) = Qz'

Tn a discrete space, any right-continuous Markov chain has left limit in its lifetime [0, [ if the path stays

at the cemetery O after there has been infinitely many jumps. Besides, on ¢ < oo, the left limit at time ( is

the cemetery point for the process.



Moreover, assume that &, 7 = (7,7 € N,z € S) and J = (J;;.,7 € N,z € S) are independent.

For any configuration of (u, 7, J), recursively define:

&n = Jne, , forn >1 (discrete Markov chain)
To =0,Tp41 =T, + Tne, (jumping time)

¢ = lim 7, (explosion time).
n—oQ

Then define the path as follows:
Xy =¢ forT; <t <Tiy,
X;=0 fort>C(.
Remark 1. From this construction, it is clear that {z € S : LT = 0} is the set of absorbing

states.

Theorem 2.2.1 (Markov Property). Set (F;); = P[X; = y|Xo = z]. Use P* to stand for
the law of the process (X¢,t > 0). (X¢,t > 0) defined above is a Markov process with initial

distribution p. Its semi-group will be denoted P, and (Pt)“; s right-continuous in t.

Proof. Let Ty < T} < --- be the sequence of jumping times. For all initial distribution u, a
fixed time ¢ cannot be the jumping time, i.e. P#[3n > 0,7, =t] =0. Let t + T3 < t + T} 1 <
.-+ be the sequence of jumping times after time t. It is enough to show the conditional law

of Ty is 5(—L§z) under the sigma field F; = 0(X;,0 < s < t). Let N; be the number of

k .
jumps in [0,¢]. For ty,...,tx, s > 0 with Y ¢ < t,
1

P[N; = k, Xq, = %0, ..., Xq, = a0, Ty =Ty € dt', ..., Ty — Ty € dt*, Ty € ds]

ko
Lk (t=>"ti+s)
1

0,1 szfltlg
= L0 LI (= LI )elwot dt! - et dtPe ds

k

o, i
0,1 lefltk ka (t—zt ) g
= Li? - Li:fleLwot et e Tt dtR <_Li1]z)@l’mks ds

From this expression, we find the conditional law of 7} . Then, we get the desired result. [

The following theorem is taken from the book [Nor9§].
Theorem 2.2.2.

a) Backward Equation.

P, is the minimal non-negative solution of the backward equation:

Py =1 (identity).



b) Forward Equation.

P, is the minimal non-negative solution of the forward equation:
dP,
— =PL
dt t4,
Py =1 (identity).
(These equations are viewed as an infinite system of differential equations.)

Proof.

a) Backward Equation.

a.1) We will show that P; satisfy the backward equation.

Since 7y, is exponentially distributed with parameter L7,
PPIX, =y, t <Ty] = 267
By the strong Markov property,

t
P[Ty < t, Xp, = 2, X; = y] = /_LgeL%SQﬁ(Pt_s)gds.
0

Therefore,
(PY; =PIX0 = ]

t
=eegy 4y / —L2eM0QI(P,)} ds
0
t

=etle (6, + /Z —LﬁeiLngﬁ(Pu)Z du)
0 z
Multiply e~**= on both sides,
t
e ()L =67 + /Z —Lie " QL ()i (s) ds.
0 z

We see that e~ tl= (F); is continuous and the convergence in the integral is uniform

on [0,¢] by the following estimation:

Sl Lie QP )i < 3 | - Lie Q| < —LieLis
z z

#This estimation ensures that Y |LZ|(P,); < oc.
z



Then e~**(P,)? is differentiable and

d . z
o (T R))) = ) —Lie QIR

= Z ngc(Pt)Z

a.2) We will show that P; is the smallest non-negative solution.

Finally,

Suppose P is another non-negative solution of the backward equation. Then by
reversing the steps in part a.1), we find that P also satisfies the backward equation

in the following integral form:

(Pt _eth(s)‘z_{_Z/ LJ: SQJ: Pt s) ds. (*)

By applying the strong Markov property at time 77,

¢
PUX, =yt < Topr] =™+ > [ —LIe"*QIP*[X,_, =yt < T,]ds.
2eS\{z} %
For ¢ > 0, we will prove that (ﬁt)x > P*[X; = y,t <T,] for n € N by recurrence.
Obviously, for y # z, (P 1)y > 0 =P?[X; = y,t < Tp]. From the equation {) we
see that (P,)* > 4. Next, suppose (P) > P*[X; =y, t <T,]is true for n < m
and ¢ > 0, then

PPIX, =yt < D] ="'+ Y | —LI"QUP*[X,_, = y,t < T,,) ds
zeS\{z} |
<et 4 > [ —Lie"QI(PL); ds
zeS\{z}
=(F),

By induction, we have (f’t);“" >P*[X; =y, t <T,) foralln € Nand ¢t > 0. Letting
n tend to infinity, the right-hand side tends to (F;);. Finally, P is the smallest

non-negative solution.
b) Forward Equation.

b.1) We will show that P; satisfies the forward equation. First, consider the case when

—L2 >0 for all z € St}

4In other words, there is no absorbing state.



_ LiZ]P)mO [TTL S t S TTZ+17XT0 = X, ... 7XTn — xn]

n—1 n

— [ H T H —kael’ﬁ]}ztk dt
ZTn, Tht1 Tp, k

k=0 tot+-Htn_1<t k=0
tStO+"'+tn
t; >0 for i=0,...,n
n—1
_— _JZ%Tn Tk Lin (t_t()_"'_tn—l)
——ip ez, [ e x
k=0 to+-Ftn_1<t
t; >0 for i=0,...,n—1
n—1
Ty
_ J Tk L tk
[T -Lizet= at,
k=0
We change the variables: wg =t —tg—--- —t,_1,u1 = tp_1,..., U1 = t1. The
above quantity equals
n—1
Tk _ 7o LERug _ pao  L3d(t—ug——un_1)
| | Tria / Lire™ Le
k=0 uo+-++un 1 <t
u; >0 for i=0,...,n—1
n—1
T Liky k
dUOH—kae o=k gy, g
k=1
n—1 n—1 _—
_ Th _ 70, Lad(t—up——un_1) T Tn—k p Ly _pug
= Hka+1 / one 0 n sz_ke n—k "% duy,
k=0 up+-Fup—1<t k=0
u; >0 for i=0,...,n—1
Then,
Tn— Ui
— LIEZ—iIP) O[Tn_l <t< TTL7XT0 = XZo,... 7XTn—1 = xn—l]
n—2 n—2 . X
11—
_ Ty 10 Lig(t—uo—m—un—z)H_ Tp—1—k Lz"_l_kuk
- H ka_H / one an—l—ke " duy,
k=0 k=0

uo+-+un_2<t
u; >0 for i=0,...,n—2

n—2 n—1 -
zQ Ty
_ Ty 10 on(t—u1—~-—un,1) T ZTp—k L TRk
=[x, / Le [T - Lontetokms du
k=0 ui - tup—1<t
u; >0 for i=1,...,n—1

By comparing the expression for n and n — 1, we see that

- LiZ]P)xO [Tn S t S Tn+17XT0 = Zg, ... ,XTn = .In]
t

= (%1 /}Pﬂo [Tn—l <t—ug < Tn7XT0 = Xo,... ,XTnil = xn—l]

Tn

0

X (—L2)(—LEn=1)e™n dug



b.2)

Dividing by —L7" on both sides,

P(T, <t < Ty, Xpy = Zo, - -+, X1, = )

t

— [z /pxo [Ty <t — o < Tp, Xgy = %0, ..., X, = Tn1)eX5 dug
0
For a general L, set L =1 — ¢ By taking ¢ — 0, the above result is true in

general. For the rest of the proof, suppose we have a general L.
(Fr)y =P*[X; =]
= (VEDQJ t < Tl + Z Z 1{m0:w,mn:y}
n>1 {xg,...,zy }eS+1

]P)x[T <t<Tn+1aXTo :xoa'-'7XT :.’L'n]

:(5;6€Lt /anlLSdSE: § E
n>1 zn,-1€8S {x0,...,on—2}e{T}x 572

]P)m[Tn,1 S t—s S TmXTO = To, - - 7XTn,1 = QZn,l]

t

=5relst 4 / > (P)iLietv ds

0o 2€5\{y}
Consequently,
¢
(Pge ™ =00+ [ > (P)iLie " du.
o z€5\{y}
It follows that ((Pt)je*Lgt,t > 0) is finite non-decreasing. Then, ) (Pu)”Z”L;e*LZ“

zeS5\{y}
converges uniformly on [0,¢]. We find the forward equation by calculating the

derivatives on both sides.

In the part b.1), we see that

]P)xo[Tn S t S T1’L+17XTO =g, JXTn = xn]
t
= Li;rl /Pfo [Tn—l <t—ug <71, XTo = 2o, - - - 7XT77,71 = ZEn_l]GL;Z dug
0

Therefore,

PUIX; =yt < To] = 0™ + [ > P[Xio = 2t < T Lie" ds.
o z€5\{y}

Then by an argument similar to the part a.2) for the backward equation, one can

prove that P, is the smallest non-negative solution for the forward equation.



]

Remark 2. The process we constructed is minimal in the sense of its semi-group as the
solution of the forward backward equations. In a more probabilistic language, it is the least
conservative process. To be more precise, for any sub-Markovian process with generator L, if
we kill the process as long as it jumps infinitely many times, we get the minimal sub-Markov

process with generator L.

Definition 2.2.3. The potential V' is defined as follows:

Ve = B / Loy df] = / (P dt.
0 0
Let v be the counting measure on S. V' is viewed as a kernel as follows: V(z,dy) = V,;7v(dy).
Define the Green function to be the density of V'(z, dy) with respect to the counting measure

v. In this case, we find that Gy = V.

Theorem 2.2.3 (Feynman-Kac). For a non-negative function k on S, define

fk(X)d
(Pip)? = E° (e 0 1{Xt:y}>.

Then, it 1s the minimal positive solution of the following equation:
0
Tt ) = (L — My)ult, )
ot
with initial condition u(0,x) = 0;. We denote by V}, the associated potential. Denote by Py
the law of the canonical minimal Markov process with generator L — M. Then,
P, ~ [R(X) ds
e = ¢ O
dP |z,
where F; = 0(Xs, s € [0,¢]).

Proof. Suppose there is no absorbing pointﬁ Given L — M, we can construct a minimal
right-continuous Markov process Y. Let ((Py)):,t > 0) be its semi-group. It is enough to
prove that

t

de - x
U(La ka ta z, y) :f E exp | — / k(XS) ds 1{Xs=y} = (Pt,k)y'
0

"Recall that (My.f)(z) = k(z) f(z).
6Otherwise, split every absorbing point into two points. Let the process jump between the two state as

soon as the process hits the absorbing point.



For (X;,t > 0), let T;,7 > 1 be the sequence of jumping times before explosion. Set Ty = 0.
Then, ¢ = Xr,,7 € N is the discrete chain and 7,_y = T; — T;_;,7 € Ny is the sequence of

L
corresponding holding times. Set Q0 = % Let J[0,t] denote the number of jumps in the

T

time interval [0,¢]. For J[0,t] = 0, P®[J[0, ] = 0] = e’=6*; for J[0,] € N,

PIO(J[O,t] = n,fl = T1,... >€n =T,,T0 € dto, e, Tp—1 € dtn_l)
n—1
Tn— Lip (t—t0——t"~1) _Tmi\ Lt gy
- Q. 11{th<t}e (H( Lihe dt)
i=0 =0

Then,

+ Z Z L3y Lo Lo qn—1<y

n=1 z;€S for i=0,...,n;
TO=T,Tn=Y;
Ti#x;41 for i=0,...,n—1

n—1
(H exp{t'(L; — k(ifz'))})
i=0
n—1
exp{(Ly" — k(xn))(t — th)} A0
For (Y;,t > 0), do the same calculation with k£ = 0,
w(L = My, 0,,,y) =0y exp((Ly);1)

+Z Z (LY> (LY) o1

n=1 z;€S for i=0,...,n;
TO=T,Tn=Y;
x;#xi41 for i=0,....n—1

(H eXp{t%Ly)i:}) xp{(Ly )it = 3 £} e

where Ly = L—M,. Wesee that u(L, k,t,2,y) = u(L—My,0,t,2,y) = (Pix),. Consequently,

we can conclude the desired result. O

Proposition 2.2.4. Suppose V' is transient, i.e. V' < oo for all x and y, then LV =V L =
—1d[

"To be more precise, as long as V|f| < co at point z, we have —LV f(z) = f(x) point wise.




Proof.
a) —LV = 1Id:

d(P,

(LV): ZLWZ /ZLl’Pt :/ dtydt —4e.
0

In order to use Fubini’s theorem, one needs (|L|V); < oo for z,y € S under the

assumption of transience. Recall that we use the following equation in the proof of the

backward equation:

(P)p=elsp+ [ > =0IL(P,); ds.
0 2€S\{z}

By integrating both sides from 0 to +o0o with respect to t, we see that

T T z L (t—s
Ve = Lmay > Ly Vds dt
O<s<t<oo 2€5\{z}
1 X X z
:—La: 5y + Z Lz(PS)de

x o0 2€S\{z}
CY g

x zeS\{z}

Then, (|L|V); = 2(—L3)V,;s — d;. Under the assumption of transience, (|L|V); < oo
for z,y € S and the proof is complete.
b) =V L = Id:

The proof is similar to part a). The following equation appears in the proof of the

forward equation:

T Tt ox zrz LI(t—s
(P =elsr+ [ ) (P)iLye" ) ds.
o 2€S\{v}

Then,

T 1 T xr12z LY(t—s
V=l > (P)rLie ) ds dt

0<s<t<oo 2€5\{v}

[e.9]

1
57 + / > (P)IL;ds

]
v 0 zeS\{y}



1 X x z
:_Ly(5y+ Z ViLy).
Y 2€5\{y}

Consequently, (V|L|)y = 2V,;7(—L}) — 0y < oo for z,y € S. Then we can use Fubini’s

theorem:

z o i TTZ OOd(Pt)x T
vig=Y vt = [ Y= [ g
z 0 P .

]

Lemma 2.2.5. Suppose k : S — [0,00], then Vi My, is sub-Markovian, i.e. Vik(z) <1 for

all z.
Proof.

T k) s

(Vik)(x) = E”‘“[/e 0 k(X,) dt]
0
¢
— [ k(Xs)ds

If k is bounded, (Vik)(z) =E*[1 —e © | < 1. For unbounded case, it is enough to use
Fatou’s lemma. O

Theorem 2.2.6 (Resolvent equation). The following identities hold:
a) Vi + VMRV, =V.
b) Vi + VM,V = V.
c) Vi M,V =V M V.

Proof.

a) We will prove this in the sense of matrices Set k(z) = k(z) — L%. By monotone
convergence, we can replace V, Vj, by V% LB (V% i )k Since V% (1+ k) < n, one could
suppose V(1 + k) is bounded. Intuitively, by multiplying V) on both sides of the
equation (M — L)(V — Vi) = MV, we get V. — Vi = Vi(My — L)(V — Vi) = Vi, M, V.
But associativity (AB)C = A(BC) is not true for general infinite matrices. In order to
use Fubini, one needs to check the integrability, which is correct under the assumption

that “V (1 + k) is bounded".

b) The argument is similar.

8Since they are all non-negative, it will be correct in the sense of operator.



c) First, take k bounded positive. By a) and b), VMV, = Vi, M, V. Then by monotone

convergence, ¢) is proved.

2.3 The time change induced by a non-negative function

Let (Xy,t > 0) be a minimal Markovian process on S, with generator L and lifetime (.
Given \ : S — [0, 00|, define

tAC

A= //\(XS) ds, oy=inf{s>0,4,>t}, C=inf{s>0,0, = 0s}

0
with the convention that inf ¢ = oo. Then, o, are stopping times for all £ and they are
right-continuous with respect to ¢ > 0. Set V; = X, for 0 < ¢ < é' and let Y be killed at
time QA“ . By the strong Markov property, Y; is also a cadlag sub-Markov process with lifetime

é . It could be constructed directly from its generator L as before.

Proposition 2.3.1.

xT

a) If 0 < X\ < oo, then f); = )\—y (change of jumping rates).

xT

b) If N =14+ 1ac - 00, then

o Ly forx,ye A°
0 elsewhere.

(Y is the restriction of X to A.)

c) If \ =14, Y is called the trace of X on A. The generator L of Y will be denoted by
La. In this case, (Yy,t > 0) has the same potential as (X, t > 0). On A x A:

¢ ¢
Ve = 7| / Loy ds] = B / Lyiey ds).
0 0

Let T be the first jumping time and Ty 4 = inf{s > T, X, € A}.
Define (RY); = E*[ X, , = y,Ti,a < 00| fory € S and (RY)5 =1 — Y (R*)2. Then,

y
the generator L of Y satisfies:

(La)s = Ly(1 = (RY)) and (La)y = —Ly(RY)y fora #y.

xT



Proof. Define Ty = inf{t > 0,X; € A} and (Ha); = E*[X7, = y,Ta < o]. As usual,
LQ?

set (Qy = —L—i for y # x, Q% = 0 and Q = o7 if L7 = 0. For any subset B of S, define

(JB)z = 1{xeB}5§, Gp=1+QJg+QJgQJg+ ---. Then

Hy=Ju+ JaQHas= Js+ JacQJa + JacQJacQJa+ -+ .

Next, we see that (R4)? = E*[Xp, , = y] = Q1+ > Q¥(Ha): = (GacQJa): for z,y € A.
zEAC

Then, Y can be described as follows: from x, it waits for an £(—L%)-time, then jumps to

y € AU{0} according to (RA)’” (it does not actually jump if y = z). Finally, it is not hard

to see that (L)% = LE(1 — (RY)Z) and (La)j = —(R*)ILE for y # x. O

Definition 2.3.1. For A C S, define Vi = V]axa. Vi is the potential of the trace of
the Markov process on A and Ly = —(V4)~! is its generator. Let L* = L|s.4 denote
the generator of the Markov process restricted in A (i.e. killed at entering A¢) and let
VA = (=L*)7! be its potential.

Proposition 2.3.2. Assume that V is transient, x is a non-negative function on S and that

F C S contains the support of x. Then, (Vy)r = (Vi)y.

Proof. For x,y € F, let (X;,t > 0) be the minimal Markov process with initial point x
and potential V. Let A; = tfl{xsep} ds,oy = inf{s > 0, A, > t} with the convention that
inf ¢ = co. Then, (V; = th(,)t > 0) is the trace of X; on F. Moreover, its potential is V.
Using the assumption supp(x) C F and Lebesgue’s change of time formula,

o0

(Vg = B [ 1prmpe

0
00

_fft (Xog)ds
:Em[/ 1{Xat:y}e JX dt]

0

o0 ot
- — [ x(Xs)ds
=K [/ 1{Xat:y}€ 0 dt]
t

by Xs)ds
/1{Xt =y}€ {X dt]
0

)y

for z,y € F.

t
~ [x(ve)ds
o0

= (Y



Chapter 3
Loops and Markovian loop measure

In this section, we introduce the loop measure associated with a continuous time Markov
chain. Its properties under various transformations (time change, trace, restriction, Feynman-

Kac) are studied as well as the associated occupation and multi-occupation field.

3.1 Definitions and basic properties

Definition 3.1.1 (Based loops). A based loop [ is an element (&1, 71, ..., &, Tp, Eptr1s Tpt1)

in |J (5%]0, +oo[)P™! such that &1 = & and &1 # & fori=1,...,p. We call p the number
peEN
of jumps in [ and denote it by p(l). Define T'=m + -+ + 711,70 = 0,7, =71 + --- + 7.

Then, a based loop can be viewed as a cadlag piecewise constant path [ on [0, 7] such that

[(t) =& fort € [T, Tipa[,i=1,...,pand I(T") = &,41 = & . Clearly, we have [(T') = I(T'—).

Let P* be the law of the minimal sub-Markovian process started from z with semi-group
(P, t > 0) (or with generator L equivalently). It induces a probability measure on the space
of paths [ indexed by [0, ¢], namely P¥. P{ is carried by the space of paths with finite many
jumps such that [(0) = [(0+) = x. Define the non-normalized bridge measure Pf, from x to
y with duration time ¢ as follows: P§,(-) = PF(- N Ly)=y})-

Definition 3.1.2. The measure on the based loops is defined as p® = ;E:S T%Piz dt.

Proposition 3.1.1 (Expression of the based loop measure). For k > 2,

Mb(p(l> =k & =21,...,& = Tk, Epp1 = Thg1,T1 € dtla s Tl € dtkH)

1 1,1 Thok 77kl k41
. 1, . Tp 71T L1t Tk Lyrth Ly t 1 .. k+1
= 1{“:%“}@12 @171 T tk+1< Lm)e 1 ( ka)e kY e Tk+1 dt dt

30



For k = 17
1 ;e
pp(l) = L& = 2,7 € dt) = S dt

Proof. For k > 2 and all sequence of positive measurable functions (f;,7 > 1), denote by ()
the value of p*(p(l) = k,& = 21, ..., & = Tk, Epgr = Tagr, [1(71) -+ fogr (Ths)-

= k
— [ F B = b6 = 1t = s, fu() o) (= Do)
0

z€eS j=1

dt
/ pr _ka§1=$1,~--7§k+1=$k+1;

x€S
k
Ji(r) - fa(mi) frpa (t ZT]

dt
:/—Pm[ (D) =k& =21, &1 = Tigrs

k
fim) ) fun(t = 32 7). 0(0) = ).

By definition of P},

o0 k

1 x X
(*):1{x1=xk+1}/¥dt Q . k/fl( ) "fk(sk)fk"’l(t_zsj)
0 st...,skt1>0 =
sl tsk<t
sl skt >t
(TT(-zz)es as)
i=1
dt 1 Tr_1 -'Ek 1 k 1 K
:1{x1:xk+1} 7 xo Q f1<5>""fk(5 )flﬁ-l(t_s -8 )
0 st,...,sF>0
slgetsk<t
k
eLii(t—sl—m—s’“)(H( LEyer=i® ds')
i=1
Now, change the variables as follows: t! = st, ... tF = sk tFtl =¢ — s — ... — sk,

Mb(p(l) =k, & =x1,. 0, & = T, S = 9517f1(7'1) T fk(Tk)fk+1(Tk+1))

1 . N
= 1{$1=$k+1}/t1 + . +tk+1 ’ Q - lelffl(tl)"'fk(tk)fk+1(tk+1)€L

th.. thti>0

x
m%thrl

k+1

H — Lo et H dt'.



Consequently, for k > 2,

wp(l) =k, & =m0, & = Tp, € = Tppr, 11 € A, .. Thpy € dEPTY)

1 141 Tpok 7 Tk+1 k41
_ x1 ... Tk gz Laytt (1R, Lt sz t 1. .. k+1
= 1{m1:$k+1} T2 Tyl Ly tk+1( Lx1>e 1 ( ka>e k* e k41 dt dt .
The case k = 1 is similar and even simpler. O]

Definition 3.1.3 (Doob’s harmonic transform). A non-negative function & is said to be
excessive iff —Lh > 0. Define Doob’s harmonic transform ((L")f, x,y € supp(h)) of L as

follows
Lih(y)
h(zx)

As in |[LJL12|, the following proposition is a direct consequence of Proposition [3.1.1]

(L) =

Proposition 3.1.2. The based loop measure is invariant under the harmonic transform with

respect to any strictly positive excessive function.

Remark 3. Doob’s h-transform with respect to a strictly positive function does not change

the bridge measure.

Definition 3.1.4 (Pointed loops and discrete pointed loops). Using the same notation
as before, set 77 = 7 + 41, 77 =7 for 1 < i < p(l) + 1. Then (&, 77, ..., &), ) €

7

U (S x R4)P is called the pointed loop obtained from the based loop (&1, 71,...,&u+1 =
pENy
&1, Tpy+1)- Clearly, & # &y and & # &4 for i = 1,...,p — 1. The induced measure on

pointed loops is denoted by u?. By removing the holding times from the pointed loop, we
get a discrete based loop £ = (&1,...,&q)-

As a direct consequence of Proposition [3.1.1], we obtain the following by change of variables:

Proposition 3.1.3 (Expression of p?). For k > 2,

w(p(l) =k, & =aq,... & = ap, 77 €dtY,..., 17 € dtY)
T xT tl T 141 z Tk
:QI; o x’fm(_[/xi)elzzlt ...<_LIZ)€szt dtl ,.-dtk.

For k =1,
* 1 T141
pP(p(l) = 1,& = a1, 77 € dt') = t—leLw%t dt'.



Definition 3.1.5 (Loops and loop measure). We define an equivalence relation between
based loops. Two based loops are called equivalent iff they have the same time length and
their periodical extensions are the same under a translation on R. The equivalence class of a
based loop [ is called a loop and denoted [°. Sometimes, for the simplicity of the notations, if
there is no ambiguity, we will omit the superscript o and use the same notation [ for a based
loop and the associated loop. Moreover, the based loop measure induces a measure on loops,
namely the loop measure p. The loop measure is defined by the generator L. Sometimes, we

will write pu(L,dl) instead of p to stress this point.

Definition 3.1.6. For a pointed loop [, let p(l) be the number of jumps made by I. For any
p(l) p(l)

pointed loop (§1,71,. .., &, ), define Ny = > 1igmng =y and N® = > N7 = > ligay.
i=1 yeS i=1

p(l), Nj(l) and N*(I) have the same value for equivalent pointed loops. Accordingly, they

can be defined on the space of loops and denoted the same.

Definition 3.1.7 (Discrete loops and discrete loop measure). We define an equivalence
relation ~ on |JS* as follows: (z1,...,2,) ~ (y1,-.,Ym) iff m = n and 3j € Z such that
(X1, ..., 2p) = (kij, ey Ymsj). Forany (z1,...,2,) € [JS*, use (21, ...,,)° to stand for the
equivalent class of (x1, ..., x,). Then the space of discreiI:e loopsis {(x1,...,2,)% (x1,...,2,) €
U S*}. Forany loop I° = (z1,t!, ..., 21, t%)°, use [*? to stand for the discrete loop (1, .. ., 21)°.

k
The mapping from loops to discrete loops and the loop measure induces a measure on the

space of discrete loops, namely the discrete loop measure .

Definition 3.1.8 (Powers). Let [ : [0, ]l]] — S be a based loop. Define the n-th power of
™ :]0,n|l|]] — S as follows: for k =0,...,n—1and ¢t € [0,|l|], I"(t + k|l|) = I(t). The n-th
powers of equivalent based loops are again equivalent. Consequently, the n-th powers of the

loop is well-defined. The powers of the discrete loops are defined similarly.

Definition 3.1.9 (Multiplicity and primitive of the non-trivial loops). The multi-

plicity of a discrete loop is defined as follows:
n(1°?) = max{k € N: 31> 1> = (I>")*}

If (o4 = (iovd)"(lo’d), then [°¢ is called a primitive of [°¢. For a non-trivial loop [, the multi-

plicity is defined as follows:

n(1°) = max{k € N : 3[°,1° = (I°)}



For a trivial loop [, the multiplicity is defined to be 1. If (1°)"(") = [°, then [° will be called
the primitive of [°, as it is always unique. And we will use prime to stand for the mapping

from a (discrete) loop to its primitive.

Definition 3.1.10 (Primitive (discrete) loops and (discrete) primitive loop mea-
sure). A (discrete) loop is called primitive iff its multiplicity is one. The mapping prime

induces a measure on (discrete) primitive loops, namely the (discrete) primitive loop measure.

Proposition 3.1.4. We have the following expression for the discrete loop measure:

1
d 0y _ 1, .. )%k
2 ((x17""xk) ) n((iﬁ,..-,fﬁk)o) Z2 r1°

Definition 3.1.11 (Pointed loop measure). We can define another measure p#* on the

pointed loop space as follows:

o for k> 2,

P (p(l) = k, & = a1,m € dt', ... & = xp, i € dt7)

= % SRR i’;(—Lii)eLﬁtl del ... (_Liz)elﬁﬁtk dt*

o for k=1, up"*(p(§) = 1,{ =z, 7 € dt) = ;e dt.
We call y?* the pointed loop measure.
Proposition 3.1.5. p?* induces the same loop measure as p® and pP.

Proof. 1t is obvious for the trivial loops. Let us focus on the non-trivial loops. For a non-
trivial pointed loop | = (&1, 71,...,&n, Tn), define 0(1) = (&, 72y -+, &ny Ty &1, 71). Fixm > 2,

T,...,7, €8, f: R} — R, measurable, define

O(1) = Lipy=my Lier =21, bn=en) S (715, T0)

and & = %(fl) +®060+---+ Pod" ). By Proposition m,

n

(@) = @z Qi [ e[ L )

i=1

n

* [ R * 1 T x n x; wigi %
() = (@) = Qi @z [ ([ (L)t ar),

i=1



We have pP(®) = puP*(®). For a positive functional ® on the space of pointed loops, we have

the following decomposition

® = Z Z l{p(l)=n}1{£1=x1,...,§n:xn}fm(7'1, e ,Tn>

n>1 xesSn

where f(mi,...,7) = (®|up@)=n}) (@1, 71, - . ., T, 7). Define

i) - Z Z 1{p(l):n}1{51:x17--~7fn=$n}fx<7_17 s 77_71)‘

n>1 xesSn

It is clear that : ® — & is a well-defined linear map which preserves the positivity. By
monotone convergence, uP*(®) = pP(®) for any positive measurable pointed loop functional.

As a consequence, the loop measure induced by pP* is exactly pu. O]

Definition 3.1.12. For a pointed loop | = (&1, 71, .-, &), 7o), § = (&5 -+, &) is the

corresponding discrete pointed loop. For any F' C S, define ¢(F,l) = > N*(l) the number of
zeF
times [ visits F'. Recursively define the i-th hitting time for F' as follows (i = 1,...,q(F,1)):

TE() = TF(E) = inf{m < p(l) : &, € F} and T, (1) = TH,(§) = inf{m > TF : m <
p(l), Sm € F}. Define T' = T ry) the last visiting time for F. Define p(F,l) = #{i : {rr #
Epr yi=1,...,q(F,1)} with the convention that fTJ?F”H = &pr.

i+1
Define a pointed loop measure p*** as follows:

)

*, p(
P Lprnz0y = Yeerersa) —rmm (P, l)
p

) .
PP L =0y = L{eepp(Fi=0} o(F l)ﬂp-

Remark 4. p(F,l) = 0 iff. the intersection of the pointed loop [ and the subset F' C S
q(Fl)
is a single element set: |I N F| = 1 (or | U {&rr} = 1 equivalently). For a loop I with

p(F,1) #0 (or p(F,l)=2,...,00 equlvalently) the term 1¢¢ cpe ¢,y in the above expression
implies that pP*¥ |(:p(F1)20y 18 concentrated on the pointed loops satisfying the following two

conditions:
1. the pointed loop starts from a point in F.

2. the trace of the pointed loop on F' has an endpoint different from the starting point.

p*, I’

By an argument similar to remark [3.1.5] it can be showed that induces a loop measure

which is exactly the restriction of y to the loops visiting F'.



Definition 3.1.13 (Multi-occupation field). Define the circular permutation operator r;
as follows: rj(z',...,2P) = ("9, ... 2" 21 ... 27). For any f:S™ — R measurable, define

the multi-occupation field of a based loop [ of length ¢ as

=3 / Fors(U(s)s .. I(s2)ds'-- - ds™.

T=00csicliconat

If [y and l; are two equivalent based loops, they correspond to the same multi-occupation
field. Therefore, it is well-defined for loops. When n = 1, it is called the occupation time.
For x € R™ for some integer m, define I* = (I, 0,) where 0,(y) = L{z=yy-

Definition 3.1.14 (Another bridge measure p*¥). Another bridge measure p*¥ can be
defined on paths from z to y:

[e.9]

P (dy) = / Py (dy)dt.
0

For a path « from z to y, let p(7) be the total number of jumps, 7; the i-th jumping time and
T the time duration of 7. Then v can be viewed as (x, Ty, vy(T1), T2 — T1,v(T3), ..., T,

p(v) —
Tom-1:9 = YTp), T = Tie))-
The bridge measure p™¥ can be expressed as follows:

Proposition 3.1.6.

Y (p(y) = p,y(Th) = 21, ., Y(Tp-1) = 2p-1,
Tyedt', Ty — Ty €dt*,.... T, — T, €dtr, T —T" € dt'™)

p+1
41 1,2 LEr—l4p gyt .
pisoy (< L2 (< Liet it o (L el T T ar
7j=1

_N)x 1, .. ()%p—
Ty Y2 Yy

.....

Tp_1

In the case x = Yy, v = (l’)le’Y(Tl)vTQ - Tlvly(TQ)v cee 7Tp(’y) - Tp(’y)flay = Tp("/)7T - Tp(’Y))

T,T

can be viewed as a based loop. Therefore, ;** can be viewed as a measure on the based
loop. Moreover, p*(dl) = 1y0)=s}|!|1°(dl). Consequently, the loop measure induced by ",
which will be denoted by the same notation p™®, has the following relation with the loop

measure L.

Proposition 3.1.7.
pt(dl) = 1° p(dl).



In the case x # y, v = (z,T1,v(T1), To = 11, v(12), - - - s Tp(y) — Tpy)—1: Y = Y(Tpy), T = Tpy)
can be viewed as a pointed loop. Similarly, 4™? can be viewed as a measure on the pointed
loop. Moreover, LYp®¥(dl) = 1{ starts at = and ends up at y}P(1) 7" (dl). Consequently, the loop
measure induced by p®Y, which will be denoted by the same notation p™¥, has the following

relation with the loop measure p.

Proposition 3.1.8.
Lyv(dl) = NYu(dl).

3.2 Compatibility of the loop measure with time change

Proposition 3.2.1. Suppose A : S — [0,00]. Given a Markov process (Xy,t > 0) in S,
define By = j)\(Xs) ds. Let (Cy,t > 0) be the right-continuous inverse of (B, t > 0). Define
¢ = inf{s 2% : Cs = Cx}. Define Yy = Xe,, t < ¢ (it will be called the time-changed process
of X with respect to A and denoted A\(X)). On the space of based (pointed) loops contained
in{x € S: \z) < oo}, X defines a similar operation. If Iy and ly are two equivalent based
(pointed) loops, A(l1) and A(l2) are equivalent again. Consequently, A can be defined on the
space of loops with the domain D(\) = {loops contained in {x € S : AN(z) < co}}. There are

two Markovian loop measures px, py defined by X, Y respectively. The following diagram

commutes:
X A v
4 {
A
Mx  — My

In particular, the loop measure is compatible with the notion of “trace on a set" (i.e. X =14)

and “restriction” (i.e. X =14+ 00 - 14c).

Proof. Let X o i be the image law of 1 under the mapping A. Denote by 777° the quotient
map from pointed loops to loops. Then, we have to show that A commutes with 7P7°.
The holding times are almost surely different for px, uy and Ao px. So the same is true for
the measures on pointed loops p&7, pd* and A o pf.
Every change of time can be done in three steps: i) Restriction, ii) trace, iii) time change
with a function 0 < A < co. Accordingly, it is enough to deal with these three special cases
separately:

i) 0< A <oo

Ly

Let L and L represent the generator of X and Y. Then I:i =3



By Definition and its following remark,

Ao (p(&) =k, &=y, & =ap, 7 €dt', -+ i € dly)

:/’Lg:(p(g) = kvél = T1,"" ék = xku)\:rlTl € dtl, te ,)\kak € dtk)

1 141 Thk
:ELgé - Li’lﬂel’zlt //\751 Ce 6szt /)‘Ik dtl . dtk

1. A FTI F Tk
:_Lié e L;’;eLxlt e ekat dtl e dtk

k
:/,cg’,*(p(f) =k & =21, & =ap,7T1 € at', - 1, € dty,)

Therefore, Ao ux = Ao mP7° o pl! = w70 Xo plf = wP7oul’ = py

ii) A =14 +00- 1. In that case, Ao ux = px|pny = py-

i) A=1440-1p.
We needs to show that A o ux = puy. We will only prove this for the non-trivial loops.
The trivial loop case can be proved in a similar way.
Use P* to stand for the law of a minimal Markov process X starting from x. Let T} be
the first jumping time, and set 77 4 = inf{s > T}, X, € A}. Let (RA)Z’; =P*[Xp, , =y
for z,y € S. Obviously, (RA)g = 0 for y € A°. By Proposition , the relation
between the generator L of X and the generator L of Y is stated as follows: L =
Li(1 = (RA)3), Ly = —(RY); L for o # y.
Fix a non-trivial discrete pointed loop (z1,...,x,) where z; € A for i =1,... ,n. Take
F = 6{:@} Take n positive measurable functions fi,..., f, on S. By Definition
i;;d its following remark, it is enough to show that

Ao MI_;;’F(p(g) = n7£1 =T1,... 7€n = Tn, H fZ(Tl))
=1

n

= ,uI;,*(p(f) = nvgl =T1,... 7£n = Tn, HfZ(TZ))
i=1
In order that A(l), the image of the pointed loop I, equals (p(§) = n,x1, 71, ..., Tn, Tn),

the pointed loop [ has to be of the following form uf;é*F—a.s.:

(glllv T111y - - - >€llM11a 7—11M117 ce 7£1N117 TIN11y - - - 7£1N1M}\,l ) TlNlM}Vl?

€211, To11s - - -5 §o10a2, Tor M2 - - - 5 §2Nals T2N 1 - - - 7£2N2M12\,2 » TN MR,

En11s Tnlls - - - ,fnlM;% TpiMps - - &Ny TN, 2, - - - ,annMgn,TnNnM;@n)



with
— &ij = w; for all 4, 7;
— &ijr € A for k # 1 and all 4, j;
-7 = %:Tiﬂ.

Roughly speaking, &;j1, Tiji, - - -, &jais Tijne can be viewed as an excursion in A¢ from
J J
x; to x; for 7 # N;. And &N, Tingas - - - ,fiNl,M]iV s Tin M, Can be viewed as an excursion
[ @

in A¢ from x; to x; 1. Accordingly,
Aot F(p(f) =n,§ =o1,..., 60 = T, H fi(7i))

= ZMP*F ij1 = x; and for all 4, 7,&;, € A® for k # 1 Hf" Znﬂ

=1 7

Since Q7+ > > QY Q% ---Q%'Qy = (RY)I, the above quantity equals

Zp
p=1z1,..., zpEAC

% Z H RA xl N; 1 RA)i;_l

Ni,...,Np>1i=1

/ FOE 4 o V) (= L0Vl (1 et ) gild gy

:% Z H/((RA)QCZ)N 1(RA)Z+1(§VI?+_1)( Lx’)N Ly tlf(ti) dti

— 1T [ Lm0 ) de
i=1
1 ) T (LA)?”:ti % 4
=1

=uy (p(§) = n, 61 = x1,..., & = T, Hfz(n)) for n > 2.
=1

For n =1, it can be proved in a similar way. Finally, we conclude that Ao ux = py.

]

3.3 Decomposition of the loops and excursion theory

Fix some set F' C S.



Definition 3.3.1 (excursion outside F). By non-empty excursion outside F', we mean a
multiplet of the form ((&,71,...,&,7%), A, B) for some k € N, &,...,& € FC,A,B € F
and 7!,..., 7" € Ry. Let Ty = 0 and T,,, = 7' +--- + 7™ for m = 1,... k. Define
e : [0,Tx[— F° such that e(u) = &, for u € [T,,_1,T,,[. Therefore, the excursion can be
viewed as a path e attached to starting point A and ending point B and it will also be

denoted by (e, A, B). By empty excursion, we mean (¢, A, B).

Definition 3.3.2 (excursion measure outside F'). Define a family of probability measure

vy? indexed by z,y € F as follows:

Fex(fl_‘rhT Edtl "7§k:xk77k6dtk,A:u,B:’U>

1 .
_5 (RF)z {11, ,mkEFC}Qa;lL;; Lii—lekeLz%tl . ktk dtl d

and V2 [(6, A, B) = (¢,u,v)] = 0{*¥) 4. Recall that

(u,v) (RF)z )
Qy+> X QnQu---Qu'Qpr foryeF

(RF)Z = k>121,...,.xp€F°
0 otherwise.

Define a function ¢ ¢* from the space of bridges to the space of excursions as follows: Given

a bridge v from x to y, which is represented by

('Ta T17 7(T1)7 TZ - Tla cee aﬂy(Tp(’y)fl)a Tp('y) - Tp('y)fla Yy = V(Tp(’y)% T — Tp(’y))a

we represent ¢’ 7 (v) by

(V). To = T - (L)1), Toyy = Toiny-1), 25 9)-

The image measure of ;%Y under ¢ ¢ namely ¢ 7% o ¥, has the following relation with

the excursion measure vz¥ :

Proposition 3.3.1.

x 1 T exr X C
Viee(dy) = ——LZRx(bb 7oy (dy, y(Th), - ., Y (Tpiy)—1) € F°)
Y

ex—po

Define a function ¢ from the space of non-empty excursions out of £’ to the space of

pointed loops as follows:

op (6,7 G T, A B) = (&, G T

Accordingly, l/F induces a pointed loop measure on the space of pointed loops outside of
F, which is denoted by the same notation I/F . The relation with the pointed loop measure

is as follows:



Proposition 3.3.2. Let C = {(&,74,...,&,7") € {pointed loops} : ng > 0}. Then,

o5 P ovp¥ is absolutely continuous with respect to pP*. Moreover,
dw?_)po o Vlﬂ?y an an
n 7 1 &%y
le = ((flv Ty 7’57” Tn)) = 1{R$>0,51,.~,En€FC} S

dpr* R—g

Definition 3.3.3 (Decomposition of a loop). Let | = (&, 71, ..., &, 7%)° be a loop visiting
F. The pre-trace of the loop [ on F'is obtained by removing all the &,,, 7™ such that &, € F*©
for m =1,...,k . We denote it by Ptrp(l). Suppose the pre-trace on F' can be written as

(r1,8%,...,14,6%)° Then we can write the loop [ in the following form:

1,1 41 1 1 2 2 42 2 2 q 19 o
(;175 Jyl)tlw"vymlutmla;%s 7y17t17"'7ym27tm27"'7Iq)5q7y17t17"‘7y1(f]nq7tgnq>

with ¢; € F for all ¢ and y; € Fe for all 4,j (with the following convention: if m; = 0 for
some i = 1,...,q, yi,t,, ...y}, ,t., does not appear in the above expression). We will use
e; to stand for (yi,},...,}, .t ) with the convention that e; = ¢ if m; = 0. Define a point
measure Ep(l) = 3 0(c i40)- Define Ny (Ptrp(l)) = i Lit;=e11=y} With the convention
that r,41 = 11 Seth(PtrF(l)) = > Ni(Ptrp(l)). In paz;tlicular, in the case above, we have
q(Ptre(l)) = qif ¢ > 2 and q(Ptr;’EJl)) =0ifg=1.

Remark 5. The pre-trace (r1,s',...,1,,67)° of a loop 1 on F is not necessarily a loop. We

allow r; = r;1 for some ¢ = 1, ..., ¢ which is prohibited in the definition we gave of a loop.

Definition 3.3.4. The pre-trace of a loop [ on F' can always be written as follows:
Q:lvsi s 7?175717117$275%7 SR 7;2;537127 s ;Ik»slfv SR 7?74375];%)0
with r; # 1,41 for i = 1,... k with the usual convention that ry.; = r;. Then, [g, the trace

of [ on F' is defined by

2
mas

'72:k7tk:5]f+”'+5k )O'

mg

(Tt =8+ +8,,,02,8+ +5

Formally, the trace of [ on F'is obtained by throwing away the parts out of F' and then by

gluing the rest in circular order.

p*, I

By replacing p by p and considering the pointed loops, we have the following propositions.

Proposition 3.3.3. Let f be some measurable positive function on the space of ercursions

and g a positive measurable function on the space of pre-traces on F. Then,

M(l{l visits F}Q(Pt?”p(l))ei@F(l)’f)) = :u(l{l visits F}g(PtrF(l)) H (Vla::‘:zm(eif)>N§(PtTF(l)))'

zyelF



Proposition 3.3.4. The image measure /L]]J;;mF of the pointed loop measure pP*t under the

map of the pre-trace on F' can be described as follows:

o ifx1,...,x, are not identical, then

i p(a(Ptre(l)) = g5 = 21,8" € ds',.. . 1y = 74,87 € ds?)

— %H((RF Nx(PtrF(l H sz LY zs’ dSZ,

p(lF

s}

z,y =1
o ifr, =...=x,=2x and q > 1, then
M%r,F(Q(PtTF(Z)) =q¢,n=T1=" =l =2 = r,s' €dst,... 57 ¢ ds?)
1 1 e
= —((RO)D ] [(—L3)e™=*" ds'

RCRER ) (28

e ifg=1 and x;y = x and , then
x 1 €T

W w(q(Ptrp(l)) = Lr=xz,s €ds) = (RU)I(-Ly)e"*ds  + s

Vv
tributi th -trivial |
contribution of the non-trivial loops contribution of the trivial loops

where /ﬁfm 7 18 the tmage measure of the pointed loop measure sl \{loops visiting F} -
Proposition 3.3.5. Under the same notation as Definition[3.3.4),
o fork>1,

/L];fr7F(F1:$1,...,§k:$k,m1 =q1,---, mk:qk,tl Edtl,...,tk Gdtk)

1 12wy (L + (Lp)ay)t)
L xl . L a:k (Lr)s t dtz < (LF)zj)t j I
~ bt He H (4, - 1)

‘forkle;Q1:CZ>1;

#Z;er,F(Il =1, M = CI1,’£1 S dtl)
_ Loweme g as-weme (CLE A+ (Lp)gh)th)®
b ¢!

o fork=1and ¢, =1,

/‘Z;sr,F(Fl =x,m =1t € dtl)

— 1 (LF) 1t dtle(L;%—(LF);) (( L931 —|—(L )rl)tl)_|_tlleL§}t1 dt!
1



Proof. The result comes from Proposition [3.3.4] and Proposition [2.3.1] O
Combining Proposition [3.3.3] and Proposition [3.3.5] we have the following proposition:
Proposition 3.3.6.

M<1{l visits F}g(lp) (Er ), f))

z LT e—F
(1{1U15,tsp}g lF H VFex —f)N;f(lF)eI;F(L —(Lp)NEVE ey (1—e™7)
r#Yyelr

Corollary 3.3.7. We see that I/Fex s a probability measure on the space of the excursions

from x to y out of F. By mapping an excursion (e,x,y) into the Dirac measure 0(cgyy),

z,y

Ve, induces a probability measure on MP({excursions}), the space of point measures over

the space of excursions. We will adopt the same notation vi? . Choose k samples of the

excursions according to yF oy namely exy, ... exy, then Z Oex; has the law (I/F Y )ek. For any
= (" xreF)c Ri, let Np(B) be a Poisson random measure on the space of excursions
with intensity Y (—L5 + (Lp);)B°VEe,. Let lp — K(lp,-) be a transition kernel from {the
trace of the loo;g on F} to {point measure over the space of excursions} as follows:
K(lp,-) = @ Wil )*M " QNe (I« € F))
aAyeF
Then the joint measure of (Ig,Ep(1)) is pp(dlp)K (g, ) where pp is the image measure of p
under | — lp. By Proposition[3.2.1], pr is actually the loop measure associated with the trace

of the Markov process on F' or with Lp equivalently.

Remark 6. K(lp,-) can also be viewed as a Poisson random measure on the space of excur-

sions with intensity > (—Lj + (Lr)i)EvEe, + Y. Ve, conditioned to have exactly Ny (Ir)
T r#YyeF
excursions from x to y out of F for all z £ y € F.

Definition 3.3.5. Suppose Yy is a non-negative function on S vanishing on F'. For an excur-

sion (e, A, B), define the real-valued function (x,-) of the excursion as follows:

(x,(e;A, B)) = /x(e(t))dt.

Lemma 3.3.8. We see that the excursion measure vi?  varies as the generator changes. Let

veX be the excursion measure when L is replaced by L — M,,. Define (Rf;)g as (RF)g when

L is replaced by L — M,,. Then,



In particular,

viesle” ] =
Accordingly, we have the following corollary,

Corollary 3.3.9.

<X7’>
(Lt visits myg(lp)e 7@ )

Nz(lp) (RF)z
I (REY:\ " S s (1
= ,u 1{l visits F}g(lF) (ﬁ evEF ( (RF):E>

r#yeF

Y

3.4 Further properties of the multi-occupation field

We know the loop measure varies as the generator varies. To emphasize this, we write (L, dl)

instead of u(dl).
Proposition 3.4.1. e~ (L, dl) = (L — M, dl) for positive measurable function x on S.

Proof. 1t is the direct consequence of the Feynman-Kac formula. To be more precise,

~ (L, dl) Z/ ~U0di] dt = Z/ —Ple "Ny )—ay, dl] dt

€S €S

_Z/ il gt()=ay, dl) dt = (L — M, dl).

€S

Proposition 3.4.2. Suppose f : S™ — R is positive measurable, then
p({L )= > VIV, )

Proof.

O<sl< <s<t<oo

1 x o x
;f o Tj(xl, “ e 7xn)<P81)x1(P52*51)11 AR (Ptfs")mn



= / o> dst--dstdt

O<sl<<sn<t<oo 7=

1
;f (¢] rj(xl, e 7xn)(P52751>§; (Ps3752)§§ s (Pt,SnJrSl)iT.

Changing again variables with b7 =a', ... 0" = a7, b' = a" 7, ... [ b = a" and y14; =
Ti,. o Yn = Tn—js Y1 = Tp—ji1,-- -, Yj = Tp, and summing the integrals for all j,
(L, f) = / (Py)ys - (P )y f (g, -y yn) A - - dD"
bl,....bn>0 (Y1,e+5Yn) ES™

= > VIV ).

]

Define émm C 6,4 to be the collection of permutations o on {1,...,n+ m} such that the

order of 1,...,nand n+1,...,n+ m is preserved under the permutation o respectively, i.e.
Gpm=1{0€G,ym:0(l)<---<om)ando(n+1) <--- <o(n+m)}.
Define &), ,,, = {0 € &, m;0(1) = 1}. Then, we have o(1) < --- < o(n) for o € &},

Proposition 3.4.3 (Shuffle product). Suppose f: S™ — R, g : S™ — R bounded or positive
and measurable. Then,

-1

LOgy =3 > L(f@lgor))ea™).

3

Proof. Let t be the length of .

n—1 m—1

LHLg =) / For(I(ub),. .. 1(u™)) dut - du™

I=0 k=00 1< licyn <t



/ gor(w), .. W™ dv' - do™

O<vli< . <vm<t

m

“1m—1

-y / For((@),. ... 1(u")
T=0 k=00 1 licynat

O<vl< <™ <t

gory(lwh), ..., (™)) du" - - - du™dv' - - - dv™,

Let w = (u!,...,u" o', ..., v™). Almost surely, u! < --- < u", 0! < --- < v™ are different
from each other. Let s = (s',...,s™™™) be the rearrangement of w in increasing order.
Almost surely, for each w, there exists a unique o € én,m such that s = o(w). We change w
by o~H(s),

n—1m—1

0 )0 g) = / dst .. dsmtm

J=0 k=0 5€6n mo<sic...csntm<y

(forj)®(gory)o o (I(sY), ..., I(s™))

= / (f@g)oo t(I(sY),...,[(s™*™) dst - - ds"+™

TEGn,mo 1 <. cgntm ot

- Z / (f@g)oroo t(I(sh),...,1(s™)) ds" - -- ds"™™

UGGn mO<sl< < gntm <t
€R

= > (IL(fegoo

066,1I m

3 Y e gen)eat.

3=0 6€6p.m

Corollary 3.4.4.

) = L S v
0'6671
Proof.
lZ] lI
1 —H/1{l y=ai} dli = /Hl{za =i} dli-
=1 0
In the above expression, almost surely, one can write ¢1,...,%¢, in increasing order, s; =

to() < -+ < 8y = to(n) for a unique o € &,,. Then,

1|

/H Li(t)=ayy dti = Z / H Lag, =Zo(i)} dto ;)

066"0<t ()< <to(n)<‘l|



- Z / H 1{l(si):xd(i)} ds;.

TE€OnG gy <<l L

Since G,r; = 6,, for all j = 1,...,n, the above expression equals to

Z / 1{Z(Si):$a(i+j)} ds;.
1

TE€Gn sy <t<sn<ll] T

for all j =1,...,n. Finally,

1 n n
[FL .. % :ﬁ Z Z / H 1{l(si)=$o(i+]’)} dSi

g=1 Cr66"0<81<~~-<5n<|l\ =1

1
— g lxo'(l) 7777 xo’(n).
n

0'6671,

Then, by Proposition [3.4.2] we are done. O
Corollary 3.4.5. The linear space generated by all the multi-occupation fields is an algebra.
Proof. By shuffle product, the operation of multiplication is closed. O

Theorem 3.4.6 (Blackwell’s theorem, [DMT78]). Suppose (E,€E) is a Blackwell space, S, F
are sub-o-field of £ and S s separable. Then F C S iff every atom of F is a union of atoms
of S.

Theorem 3.4.7. The family of all multi-occupation fields generates the Borel-o-field on the

loops.

Lemma 3.4.8. Suppose (E,B(E)) is a Polish space with the Borel-o-field. Let {f;,i € N}
be measurable functions and denote F = o(f;,i € N). Then, F = B(E) iff for allx #y € E,
there exists f; such that f;(x) # fi(y).

Proof. Since E' is Polish, B(E) is separable and (£, B(E)) is Blackwell space. The atoms of
B(E) are all the one point sets. Obviously, F C B(E) and F is separable. By Blackwell’s
theorem, F = B(FE) iff. the atoms of F are all the one point sets which is equivalent to the
following: for all x # y € E, there exists f; such that f;(x) # fi(y). O

Proof for Theorem[3.4.7. By Lemma [3.4.§ and the fact that

{lml 77777 Im:m€N+7<$1,---7xm>€Sm}



is countable, it is sufficient to show that given all the multi-occupation fields of the loop [,
the loop is uniquely determined.

Note first that the length of the loop can be recovered from the occupation field as |I| = ) [*.
Let J(I) = max{n € N : 3(zy,...,2,) € S™ such that x; # x;4y fori =1,...,n — 1?;? +
x, and [*1»" > 0}, the total number of the jumps in the loop . Define D() to be the set
of discrete pointed loop such that [***/® > (. As a discrete loop is viewed as an equivalent
class of discrete pointed loop, it appears that D(l) is actually the discrete loop 4. A loop is
defined by the discrete loop with the corresponding holding times. It remains to show that
the corresponding holding times can be recovered from the multi-occupation field. Suppose
we know that the multiplicity of the discrete loop n(I¢) = n, the length of the discrete loop
J(1) = gn and that (z1,...,24,...,21,...,7,) € D(l) is a pointed loop representing [?. Then

the loop [ can be written in the following form:

1 1 1 1 n .n n __n\o
(T oy Ty, Ty e T T T Ty )
with o = z;,i =1,...,¢gand (7{,..., 7)) > --- > (T{L?...,T;) in the lexicographical order.

7

>
For k € M,,,(N;) a n by ¢ matrix, define y(k) € S’ as follows

. 1 1 n n
y<k)_(x17 y L1, Lo, » La, ,Iq,...,l’q).
A A g
N~ N~ N’
k:% times k% times kg times

Define k! = [[k}!. Define K* = (ki,...,k}) for i = 1,...,n. Define 7* = (7{,...,7]) for
i,J

q
i=1,...,n. For K € N? and t € R?, define the polynomial fX(t) = [](¢;)%/. We have the
j=1
following expression,

1 - 1 n n
PO = S N @0 fFon(r 1)
i=1

where r;(7, ... 7)) = (7" o L 77, All the holding times are bounded by
the length |I| of the loop. By the theorem of Weierstrass, for any continuous function f on
(R7)™, the following quantity is determined by the family of occupation fields:

n

Zfo?“i(Tl,...,Tn).

i=1
n
As a consequence, ) d,,(s1,. ) is uniquely determined. Since we order 71> ... > 7" in the
i=1
lexicographical order, (7',...,7") is uniquely determined. Finally, the loop [ is determined

by the family of the multi-occupation fields of [ and we are done. m



Proposition 3.4.9. In the transient case, the Markovian loop measure is determined by the

expectations of the multi-occupation field {V2! ---Vir}.

Proof. Suppose F}, is a sequence of subset of S such that lim F,, = S. For any loop [, let [,

n—oo

be the trace of [ on the subset F,,. Then, nlg& [, = | in the sense of Skorokhod. Once the
laws of [, are determined, the Markovian loop measure is determined, too. Moreover, the
law of [,, is Markovian loop measure, too. It is defined by the Markov process with potential
V|, xr,. Therefore, the expectations of the multi-occupation field for [, is determined. As

a consequence, it is enough to prove this proposition under the assumption that |S| < oo.

Now, suppose |S| = N. Recall that

Mp*(p(g) - k7§1 = xl;"'agk =Tk, T1 € dt17"'a7-k S dtk)

e Yl T T T1 — L3l 1 T fLI,ktk k
— QU QLT e A gt [ e B g

So it is enough to prove Lf!--- Li™ is uniquely determined.

Since one knows {V21 ---V"} one knows all the determinant of all the major sub-matrix
(Vi )zyercs- So one knows all the coefficient of the characteristic polynomial p(\) = det(A —
V). Cayley-Hamilton theorem ensures that p(V') = 0. Let g(\) = %, p(0) = det(=V) #
0. Obviously, ¢(0) = 0. —L =V~ = ¢(V) where q is determined by {V2! --- V" n > 1}.
Besides, (V)

multi-occupation field. Finally, L7} --- Li* = (q(V))3L---(q(V))zr is uniquely determined.

T2 1
O

o (VRn)Za (k) ook, > 0) is determined for n > 1 by the expectations of the

1
z2 1

3.5 The occupation field in the transient case

Assumption: Throughout this section, assume we are in the transient case.

Proposition 3.5.1. Suppose x is a non-negative function on S with compact support F'. Let
p(M VM f) be the spectral radius of M 5V M . Then, for z € D = {z € C: Re(z) <
m}, the following equation holds:

(e —1) = —Indet(I — zM VM ).
Outside of D, p(|e*™X) —1]) = oco.

Proof. Suppose n = |supp(x)| and Ay, ..., A, are the eigenvalues of M 5V M , ordered in
the sense of non-increasing module. Then, [\ = p(M 5V M ). By Corollary and



Proposition [3.4.2]

p((L)™) = (m =18 Y VI VX)X () = (m = DI Te(M gV M x)™).

We have:
ZTL
ezz14—2—1—---4—5—1—,2’”rl / e dsy - dspq1.
' 0<s1 < <sp41<1
Therefore
on | |n+1
’62+h 1_2___‘ <emax(Re(z
nl (n+ 1)V

In particular, |e® — 1| < em®*®e@).0)|z| and [e* — 1 — 2| < emaX(Re(x)’O)%.

For z € C such that Re(z) < 1/p(M VM ) = 1/|\1], let b = max(Re(z),0),

bm m+1
u(1e=0 1) <p(0= (L, ) Z" )
oo meﬂ m+1) oo . .
—y = S [l Te((M, gV M )
m=0 m=0

<[zllsupp(x)| D 0" |(p(M 5V M )™ < oo

Consequently, ®(z) = u(e*™ — 1) is well-defined for z € D. Next, we will show that ®(z)
is analytic in D. Fix zg € D, take h small enough that zy + h € D. By an argument very
similar to the above one, we have that u(e®X) (1, y)) and pu(e®e(z0)tmax(Re(h).0)) () LX) X> ) are

well-defined and finite.

(20 + h) = B(20) — hu(e* X {1, x))|
= pu(le* (" —1 —h{l, X))

2 2
< M<€Re(20)<l,x>emaX(Re(h)’0)<l’X>h<l—7X>) = O(h2)

2
Finally, by dominated convergence, for |z| < 1/p(M VM s),
Tr((M sV M )"
O(2) = Z (M VM 0)") = —Indet(1l — zM VM ).
n

n>1
Since ®(z2) is analytic in D = {z € C: Re(z) < 1/p(M VM s)}, ®(2) is the unique analytic
continuation of —Indet(1 — zM VM s) in D.

Indet(] — 2M 5V M ) cannot be defined on C as an analytic function. Nevertheless, af-

ter cutting down several half lines starting from 1/\;,...,1/),, it is analytic and equals



—>_ In(1 — z)\;). Moreover, when z converges to some )\;, | — Indet(! — 2M VM )|

i=1

tends to infinity. But we have showed that p(e*¥) — 1) = —Indet(I — zM 5V M x)

is well-defined as an analytic function on D. Consequently, 1/A,...,1/A, lie in D¢ i.e.
1 - 1

Re( ) > W = - In particular, \; = p(M xGM /). For x > PTG

(L,x)

(e — 1)) = p(e™™ —1) > pe AT ot (X .

By monotone convergence,

[ S 1,
/L(e‘“M\/iGMx/Y)( Y 1) =lim p(e?™Y — 1) = lim — Indet(I — yM, V M,)
yTA1 YT
=lim | — Indet({ — yM,VM,)| =
YT
{ _ il
Consequently, for x > W p(je*®X) — 1)) = oo. For all y € R, p(|e?X —1]) < oo

Therefore, by the triangular inequality, for z = z + iy ¢ D,

e = 1]) et = e0]) = u(je 0 — 1))
=) = 1J) = u(Je 9~ 1])| = oc.

[]

Lemma 3.5.2. Suppose x is a finitely supported non-negative function on S and F contains
the support of x. Then,

det (VF)

W =det(! + (M) pVp) = det(I + M VM )

IF F
. S Y e
—(M,)Fr IF ACF A£G veA

Proof. By the resolvent equation, we have Vi = (Vi) +(Vr)y (M) pVp. By Proposition[2.3.2]
we have (V)r = (Vr),. Combining these two results, we have Vi = (V)r + (V3 ) r(My) rVp.

Consequently,
det(V}J
————— =det({ + (M, )rVp).
det((Vx)p) € ( +< X)F F)
The last equality follows from simple calculations in linear algebra. m

Corollary 3.5.3. For non-negative x not necessarily finitely supported,

eu(l—e—““)) =14+ Z H x(x) det(Vr)

FCS,0<|F|<cc z€F



Proof. For x a non-negative finitely supported function, by Proposition [3.5.1] with Lemma
B.5.2

—e—{Lx)
et ) =det(/ + M\/?VM\T> = det(] + (M )supp(x)vsupp(x))

=14+ Z HX )) det (V).

FCsupp(x),F'#£¢ z€F

The trace of the Markov process on F has the potential Vi and generator L. Since det(—L) >
0 and (—L)Vp = Id, det(Vr) > 0. Finally, the result comes from monotone convergence

theorem. O

Corollary 3.5.4. For a > 0, let x = ad,, then u(l — e ") = In(1 + aV®). As a result,
p(l® € dt) = 1e V< dt fort > 0.

Proposition 3.5.5. For non-negative function X

,u(l{l is trivial}(l —e X H X
€S
Iz
,u(l{l is non-tm'vial}(l - €_<ljx>)) = ln([ + M\/%VM\/?) + IH(H X(l’) _zLx)

z€eS

Proof. Since p(p(§) =1,& =2,1 € dtl) =

xT

e X@t gl — HX _LxL .

mES zeS

,u(]-{l is trivial}(]- —e

Combining with Proposition [3.5.1], we have

H<1{l is non—trivial}(1 — €_<l’x>))
- 'u(l o €_<l7x>) - M(l{l is trivial}(l — 6_<Z’X>))

= In(det(I + M5V M )+ In(] | W)'
zE€S z

]

Proposition 3.5.6. If x1,...,xn are finitely supported non-negative functions on S, and for
A a subset of {1,...,n} we set xa = > Xi, then forn > 2,

€A
p(JJa—e @)y == 3" (=) ndet(I + M5V M 57);
i=1 Ac{l,..n}

n

1l i oy [J( = @) == 37 ()M (] —Lij—;ifl(fﬂ))_

i=1 AC{l,..n} TEF,



Proof. We see that

Therefore,

i=1 AcC{1,...,n}
AcC{1,...,n}

The last equality is deduced from Proposition [3.5.1] By a similar method and Proposition
3.5.5, we get the following expression for the trivial loops:

(L is trivialy H(l — e~y = — Z (—1)M n( H JéjL_XA(ZE))

_Lac
i=1 Ac{l,...,n} z€Fy z

Proposition 3.5.7. For a finite subset F' C S,

w(l is non-trivial and 1 visits F') = ln(H(—Li) det(Vr)).
el

Proof. By Proposition [3.5.5

_I
M(l{l is non—trivial}(l - e_<l’ﬂF>>> =1In det<l + M\/EVM\/E) + IH(H t — L:Cq; '

zCF z

By Lemma|3.5.2] we have

Indet(l + MV M) =In(1+ > t4Vy).
ACF,A#¢

Take t — 0o, we have

N/(l{l is non-trivial and [ visits F}) - ID(H <_L£) det(VF>>

zeF

Similarly, one has the following property.

Proposition 3.5.8. Suppose we are given n > 2 finite subset Fi, ..., F,. For any subset

A cCA{l,...,n}, define Fy = |J F;. Then,
1€EA

wu(l is not trivial and it visits all F; fori=1,....,n)



Proof. By Proposition 3.5.6] take x; = t1p:
H 1{[ is non-trivial} H —(L,t1g;)
== Y () indet(I + MV M)

AcC{1,...,n},A#¢
Li XA .CE)
+ E (—1) 4 In( | | —()

AC{l,...n},A#¢ zEF, z

where x4 = > tlr. By Lemma [3.5.2] for A non-empty,

icA
BCF,B#¢ z€B icA
~PICTT O Lwery)) det(Vi,) as t — oo,
zeFy i€A
And we have that
Z l{xEF}
L ;
H j—L)iA ~ 1Al H eA as t — oo.
zEF ) TEF
As a result,
: — L3 + xa(x)
TEF 5 &
—Indet(Vp,) — In( [ ] (~L2)).
xEF 4
Then,
(1 is not trivial and it visits all F; fori=1,...,n)
= hm M(l{l is non-trivial} H (Lt >))
=1
=— > (D"ndet(Ve) - Y (=DM (] (-LY).
AC{1,...n},A#¢ AC{l,...n},A#¢ z€F,

Finally, by inclusion-exclusion principle, we have

w(l is not trivial and it visits all F; fori =1,...,n)

=— Y (-Dmdet(Ve,) + > In(~LY).

AC{l,...,n},A#¢ "



Corollary 3.5.9. Forn > 2 and n different states xq,...,x,,

w(l visits each state of {xy,...,x,}) = — Z (=D n det(Vy).
AcC{z1,....,xn },AFP
Definition 3.5.1. For a loop [, let N(I) be the number of different points visited by the
loop. That is N(I) = > L1gesoy-

zeS
Corollary 3.5.10.
p(Nlvs1y) = Y In(=LEVY).

z€S
Proof.
W(N1ns1y) = Z (1 is non-trivial and [ visits z).
zeS
O
Corollary 3.5.11.
Vevy
z,yeSiaty zes
Proof.
(N Liys1y) = Zu(l is non-trivial, [ visits x and [ visits y).
zy
O

Consider the Laguerre-type polynomial L; with generating function

et — 1 = ZtkLk(u)
1

Lemma 3.5.12.

Proof.
7, — T — 1 = kk 2 k
S Ly () = e Z(m) Zut Chfe)
1 k=1
Therefore,

S La()] < Dl (4 4 ) = e -
1



Proposition 3.5.13. (VE(V*)*?L, ( > k > 1) are orthonormal in L*(). More gener-
ally,

w (Ve (37 ) VL, (é)) !

xT

Proof. Vs,t <0 with |s], |f| small enough with — < 1/2

1- sz’l tV

0o I 00 v e e
2 ((Z(‘/fs)k[,k (W)) (Z(Vyyt)k[/k (W))) =u ((61+V$s _ 1)(6 Hvlt 1))
1 x 1 Y
Ts 1Yt s 1Yt

Recall that p((I*)") = (n — 1)!I(V,*)". By Lemma |3.5.12]
s =11 #s \"™
L l‘r x 1— VIS — 1 — -
Zl‘ (V)] ,u( ‘ > Z n!m!ﬂ<(1—1/:ﬁ$s> )

n,m=1
i (n+m)! [ Vis \"T
Sz ntm nim! 1-Ves

< 2V7rs g -
00.
- 1-Vzs
k>1

(VY Li(£), k > 1) € L?(u1). Moreover, in the equation

Therefore, (

S
e
8

o0

m <<Z<st)’%k<lf/vy>><Z<vyt>’%k<ly/m,,y>>) = —In(1 — stV V).

1

we can expand both sides as series of s and ¢, compare the coefficients and deduce that

(VL0 ) ) = BV i

Therefore,

(VI L VR L) ) =

x

3.6 The recurrent case

Proposition 3.6.1.
1
p(l® € ds,l1* > 0) = —ds.
S



Proof.
p(l7e™) = p(L = Mys,, 1) = (Vps,)7 = 1/p.

1
Therefore, p(l* € ds,1* > 0) = ;1{8>0} ds. O

Lemma 3.6.2. In the irreducible positive-recurrent case, there is a one-to-one correspondence

between the semi-group of the Markov process and the Markovian loop measure.

Proof. 1t is enough to show the loop measure determines the law of the Markov process.
Let 7 be the invariant probability of the Markov process. Then it is positive everywhere.
Define a based loop functional qng’y as follows: for any based loop I with length ||, extend
the function (I(t),t € [0,]l]]) periodically, i.e. by setting I(s + |I|) = I(s), and set:

li

0y 4y (1) = 1{z>t}/1{l< y=a} L{i(s+1)=y} dS.
0

This rotation invariant functional defines a loop functional ¢, ., on the space of loops.

I

l| € du, ¢ )
MGt - DS e [ el d5) = (PO (Puc)t
zGS 0

Taking u tends to infinity,

Il €d
hIIl Iu(| | € u, ¢t7$7y) — 7_‘_:E(Pt);?

U—00 du

Since pu(1%e ) = u(L—p,1%) = (V,)%, 70, = lirr(l)pu(lxe_p‘”). Finally, we are able to determine
pP—
the semi-group (F;)y for all z,¢,y. Accordingly, the law of the Markov process is uniquely

determined. n

Remark 7. From the argument above, we see that an irreducible positive-recurrent semi-
group cannot have the same loop measure as another irreducible transient or null-recurrent

semi-group.
Finally, we can prove the following theorem.

Theorem 3.6.3. In the irreducible recurrent case, there is a 1-1 correspondence between the

semi-group of the Markov process and the Markovian loop measure.

Proof. Given a minimal semi-group (P,,t > 0), we can always define the corresponding
Markovian loop measure. It is left to show that we can recover the semi-group from the loop

measure. Let the series of finite subset Fy C Fy, C --- C F,, C --- exhaust S. By Proposition



3.2.1], we know that the measure of the trace of the Markovian loop on F; corresponds to the
trace the Markov process on F,,. Since |F;| < oo, the trace of the Markov process on Fj is an
irreducible and positive-recurrent Markov process. Let (Pt(n),t > () be its semi-group. By
Lemma [3.6.2] we can conclude that this trace of the Markov process is determined by the
Markovian loop measure. Recall that Yt(n),t > 0, the trace of the Markov process X;,t > 0
on F,, is defined as follows:

AP = j Lix.er ds, o™ is the right-continuous inverse of A™ ¢ > 0 and ¥, = X _m,t >0,

0 :

As n tends to infinity, A" increases to t and o™ decreases to t. Since X, ¢ > 0 is right-

continuous, lim Y;(n)

n—oo

= X;. As a consequence, for any bounded f, P,f(z) = lim Pt(")f(x)
n—oo

Thus, we recover the semi-group P; as the limit. O



Chapter 4

Poisson process of loops

In this chapter, we study the Poisson point processes naturally defined on the set of Markov
loops (which also known as “loop soups"). We mostly focus on the associated occupation

fields and on the partitions defined by loop clusters.

4.1 Definitions and some basic properties

Definition 4.1.1. We denote by £ the Poisson point process on R, xloops with intensity
Lebesgue ® p and by L, the Poisson random measure on the space of loops, L,(B) =
L([0,a] x B). Its intensity is a.

The following proposition is taken from [Kin93|.

Proposition 4.1.1. Let P be a Poisson random measure on S with o-finite intensity measure
p(dl).
a) Suppose that ® is a measurable complex valued function, with p(]Im(®)| A1) < co and

w(le® — 1)) < oo, then

Elexp(}_ @(1))] = e/ -uld)
leP

b) The above equation holds if ® is non-negative measurable without further assumptions.

c) Suppose Fy,--- | Fy, are non-negative functions, then the following ‘Campbell formula’ holds
k k
El > J[R@I=]]wuF)
l1,...,lx€P distinct i=1 =1

d) Suppose that S, T are two measurable spaces and ¢ : S — T is a measurable mapping. Let
P be a Poisson random measure on S with intensity p. Then ¢ o P is the Poisson random

measure on T with intensity ¢ o p.

29



Proof. See [Kin93]. O
From the expression of p on trivial loops, we get the following:

Proposition 4.1.2. Let Lo, priviaz = {{ € Lo : Lis a trivial loop at x}. Then, {|l| : | €

. . . . . . x
Lo Triviaie 18 a Poisson point measure on R with intensity e’z dt.
) 3 + t

Recall that a Poisson-Dirichlet distribution has a representation by a Poisson point process,

see section 9.4 in [Kin93].

Corollary 4.1.3.
/=
{ﬁv le ‘Ca,Tm’vml,x}

ZEEOL, Trivial,z

follows a Poisson-Dirichlet (0, ) distribution. Moreover, it is independent of >,  [I*
ZEEa,TTivial,z

which follows the T'(a, (—L%)™) distribution.

Recall that the density of I'(a, 8) distribution is ﬁ—xa’le_%.

[(a)

Proof. By Proposition 4.1.1

Elexp(—A Z )] = exp(/(e)‘t — 1)%€Lgt dt)

leﬁa,Trivial,z

= exp(/ / afe ™ — 1)e el ds dt)
00

o a L7 .
_eXp(/AJrs—Lg_s—LgdS)_(A—L:v)

x
0

which is exactly the Laplace transform of the I'(c, (—L2)™!) distribution. Therefore, >
leLa,T'f’Lvial,z

follows the I'(c, (—L2)~1) distribution. O
By taking the trace of the loops on {z}, we get a Poisson ensemble of Markov loops. To be
more precise, we get a Poisson ensemble of trivial loops at x, but its intensity measure, (i.e.

the loop measure), is associated with the generator (L)% = —1/V;?. As a consequence, we

have the following proposition:

~ lw
Proposition 4.1.4. £Z = > I* follows a I'(a, VF) distribution. {ﬁ_’l € L.} follows a
l€La a

Poisson-Dirichlet distribution T'(0, ) which is independent of L.

«



Definition 4.1.2. Define £2 = 3 1% and (L., x) = 3 LZx().
€L z€S

Proposition 4.1.5. For any non-negative measurable x on S,

E[e_<ﬁ°"x>] =(1+ Z H X(x) det(Vy))

ACS,0<|Al<oco z€A
For any non-negative finitely supported x on S and z € D = {z € C: Re(z) < m},
E[€Z<£mx>] = (det([ - ZM\/XVM\/Q))ia
Outside of D, E[]ez<ﬁaax>” = 00.

Proof. Tt is a direct consequence of Proposition Corollary and Proposition [£.1.1]

O
Proposition 4.1.6. ﬁ‘f is exponentially distributed with parameter 1/V?".
Proof. Since E[e~?£7] = : +;V1 and £ > 0, £7 is exponentially distributed with parameter
1/VE. O
Remark 8.
cx
E((1—e¢ %)) = ((a),a > 1
Proof. By Proposition [4.1.5]
£ ° h o
B(1- e )1 = 3B F ) = Yk = (o)
k=0 k=1
O

4.2 Moments and polynomials of the occupation field

Definition 4.2.1 (a-permanent). Denote by m(o) the number of cycles in the decompo-
sition of the permutation o. For any square matrix A = (A;'-,i,j = 1,...,n), define the

a-permanent of A as

Pera(A) == Z Oém(U)Alg(l) tee Ang(n).

O'ESn

Note that Per_;(A) = det(—A).

Proposition 4.2.1.
E[ﬁﬁl T ﬁﬁ”] = Pera((vxﬁ)lﬁm,lﬁn)'



Proof. Let Fi(l) = [*. By Corollary [3.4.4]
p(Fy - ) = p(lo 1) = Z Vi) = Vag) = Y Vil Vi
O'EGk Ue@kvm(a):

Let P({1,...,n}) be the collection of partitions of {1,...,n}. For a partition 7, we denote
by #m the number of blocks in m, 7 = (71, ..., Tgx).

BILT L] = B[ 17)- (3 1)

lela leLa

#
= > Bl > Il E)@)

71'673({1 ..... n}) l1y..ey l#ﬂeﬁa =1 jem;

distinct
Define GI = [] F; for j =1,...,#m. Then,
JE™;
#
LI 7 H Gi(
i=1 jem;

By Campbell’s formula,

#m #7
> I Bwi=a*[Lue

l1 ..... l#ﬂ—eﬁa i=1 jeﬂ'i
distinct

Write 7; in decreasing order p(i,1) < --- < p(i, #m;), then

#i
_ i) _
M(Gz‘) = Z H Vrzﬁz aJm) Z H am
0E€G 4, ;m(o)=17=1 o: circular jET;

permutation
on 7;

Clearly, there is a one-to-one correspondence between a permutation  on {1,...,n} and an

m(n)-partition ™ = (71, ..., () together with these circular permutation on the blocks of

7. Finally,

H#m
BILG - Lil= >, o [w(@)
= #”H > 1Ivz,

meP({1,...,n}) i=1 o: circular jéem;
permutation
on T;

Z HV”T = Per, (V7,1 <i,j <n)
neGn

]



Definition 4.2.2. p(I*) = V=, define £% = £% — aV?.
Note that E[£Z] = 0.

Definition 4.2.3. For A = (Aij)lgi,jgna define
Perg(A) = Z CYm(a)félla(l) U Ana(n)
0ESn,o(i)#1,i=1,...,n

with m(o) the number of cycles in o.

Proposition 4.2.2.
E[L3 - L] = Perd (Vi )1<m i<n)-

Proof. For o € S,, let n(k,o) be the number of cycles of length k£ in . According to
Proposition [4.2.1]

n

ECy - Lol =E[J[(£r —avinl= > ()" VinRI]] £

i=1 Ac{l,..n} jeA jeAe
= > () Vi) Pera(Vae)
Ac{l,..,n} jEA

where A° = {1,...,n}\ A. The above quantity equals

Z (—1)|A‘ Z am(U)X/;;l(l) . Vfgrzn)

Ac{l,..,n} 0€6n,0la=Id
m(o x Tn A
_ Z a™ )Vzal(l)"'vxa(n)< Z 1{g|A:Id}<—1)| I)
ce6,, Ac{1,...,n}
_ Z am(o)vzﬂil(l) . Vggﬁzn)l{n(l,a)zo} = Perg(([/;ﬁ)lgm,lgn).
oeG,
]

It is well-known that the generalized Laguerre polynomials (L3~ ' k € N),a > 0 have the

following generating function

1—0° DL @),
k=0

k i
Moreover, Ly (x) = Z(—l)i (n * a) x

Definition 4.2.4. Define P*(z) = (—o)F Lo~ (f) and Q7 (z) = P (z + ao).
g



These polynomials of the occupation field are related to Wick renormalisation in the sym-

metric case, when « is a half integer (see [LJ11]).

Proposition 4.2.3.

rt+tao
el+t0 k a— 10_ e 14to /C — 10_
t" P, d —— .
) Gxior Z A+ to)e Z Qe (@)

b) POV (L) = QpY (L2).
a+k

S ATt B G AR

Proof of ¢). By Proposition for |s| and |t| small enough,

E elfzivtg eljrf\o;?}’ o
=(1—-stV VY@
vz sy~ o)
k k i
Since Ly (x) = ;}(_1) (M2 | Ly ()| < ;} (") 2L = L (—|z[). Therefore,
SR L P B < 3D (VI - TR sV (- )
k a l al/l = x k Ve Y ! Vz
k,leN k,leN z z
LZ || £Y \ \
e T-VEI o 1=V Isl
(L= V)= [s[V)e
L£Z |t] LY |s]
T o1V ]
By Proposition 4.1.5] for |s| and |t| small enough, E = \etﬂ/x‘”)afl TSV < 00. Con-
sequently,
LTt sLy
e THVE o1 +sVy

NP (L) P (LY) = B

k,1eN

]

T+ V) (L4 s
k
SRR i Qe (A
keN

Finally, identifying the coefficients of s*t!, we obtain

o+ k

I o o = ot (1

]

Proposition 4.2.4. Fixz some p > 1, for [t| small enough, o — (1 +tV.")~ 61“‘”” and

a— Pl (/J“) are continuous LP-martingales indexed by o > 0.



4.3 Limit behavior of the occupation field

Remark 9. (Xo = (£%,...,£*), a > 0) is a multi-subordinator with respect to the increas-
ing family of o—fields F, = o0(Ls, s < ).
E[ﬁfl, o 7£A515n] = (V#,..., V&) and E[e—)qﬁﬁl_..._mﬁﬁn] — 0P An) where
— i iyt
DA, ... Ay) = / (1—e = y)u(l”‘”1 edy',...,I" €dy").
yl,...,yneRt
. 1(pz ATn\ T Tp Lo —aViil LEn —aVgn :

So O}l_)IIOlO S(Lar - Lg) = (V- Vo). And (=, ..., =) converges in law to
a Gaussian variable with mean 0 and covariance (C;; = fo%% Ji,7=1,...,n).

The following result comes from [dA94]: the rescaled Lévy process (1X(ts),s > 0),¢ > 0

verifies the strong large deviation principle with a good rate function as ¢ — oo under the

exponential integrability condition:
38 > QE[eﬂl\X(l)ll] < 00

This is true for the subordinator ((ﬁgl, o ﬁg’"), a > 0) by Propositionm The proposition

below follows by application of the contraction principle.

Proposition 4.3.1. i(ﬁﬁl, e ,ﬁg") € R™ verifies a strong large derivation principle with

AT

good rate function A* : R" — [0, 00] when o tends to co. Here, A(u) = InE[ef1' vt+L7"un]

and A*(y) = sup ((u,y) — A(u)).
ucRd
To be more precise, for all open set O C R",

lim inf 1 ln(IP[l(EAfj, L2 € 0)) > — inf A*(y)
o

a—00 (¥ yeO
and for all closed subset C' of R",
1 1 4 .
li —In(P[—(L%, ..., L") € C]) < —inf A"(y).
im sup - (P (Lq o') € C]) < — Inf A(y)

Remark 10. In particular, for n = 1,

* VCL
A(y) =
o0 Y <0
For n = 2,
(
ayly2vTly 2
e
In( otz ) + Indet(V] e, 0,p)
A (y) = S W2 py2v,00 1,211 1/%2
M_l_ 1 4y y Vg Vg >
+det(V\{zl,x2}) + det(V](zy,001)2 Y1,y2 2 0
00 otherwise.

\



1
Proof of the remark. For n = 1, by Proposition 4.1.5, A(u) = —In(1 —uV}*) for u < Ve and

xT

A(u) = oo otherwise. Then,

y=VE AUV =~ 0 M) 142 >0
u€eR 00 y S 0 50 y S 0.

T1 T1
Vxl U1 ng A/ U1U2

‘/;’;2 \/UtU2 ‘/;;2 U9
For n = 2, by Proposition [{.1.5] for u; > 0,uy > 0,

Denote by A(ug,us) the matrix

1/det(I — A(uy,ug)) if 1 < 1/p(A(uq,uz))

E[eﬁfl Ul +£T1 ug] _
00 otherwise

where the spectral radius

Vituy + Vi2ug + \/(V}cﬁlm — Vadug)? + AV Vit uq ug

p(A(ur, uz)) = 5

and
1

1/det(I — A = |
/ e ( (Ul, UQ)) 1 — ‘/‘mdilul _ ‘/maézu2 —+ det(V’{zl,zz})uluz

Finally, for uy,us > 0,
if 1 — V2w — Vi2uy + det (Vi) 20y )uaug > 0 and V2w + V72uy < 2,

Aur,ug) = —In(1 — V7 uy — Vi2ug + det (V] (z) 203 Juau2)

and A(uq,us) = 0o otherwise.
For uy, us <0, Auy,ug) = —In(1 — V2 uy — V2uy + det(V ]y, oy Jurus).

For u; > 0,us < 0,
Bl v —oxp ([ (7 < e uta) + [ < yulan)).

By Proposition [3.5.1} [(e*?"* — 1)u(dl) = —Indet(1 — u*V;*2). By Theorem and then
Proposition [3.5.1],

e = nen ) = (@ = Dl - M)

—In(l —u (Vs )7y) 1w < 1/(Vouss,, )7}

00 otherwise.

By the resolvent equation, V7l = (V_y,s, )52 + (Vouys,, )zt (—u2) V2. Therefore, (Voy,s,, )50 =
Voo

T Again, by the resolvent equation, V1 = (V_yys, )50 + (Vougs,, )at(—u2) V2. We

1 T2



1y ,T
u2 Vz21 Vo 12
1—ugVp?

if 1 — V2w — Vi2ug + det(V ]y, o Jugug > 0,

deduce that (V_,,s,, )5 = Vo + Therefore, for uy > 0,us < 0,

Ty

A(uy,ug) = —In(1 = V" uy — V22uy + det (Va2 )urus)

and A(ui,uy) = oo otherwise. It is easy to check that V7'u; 4+ V72u, < 2 is implied by
1 — Viuy — V22ug + det(V e, o )urug > 0 for ug > 0,up < 0. Similar results can be proved
for u1 < 0,uy > 0. In the end, for any u,us € R,

if 1 — V5w — V2uy 4+ det(V ] 203 )urue > 0 and Vi uy + VE2uy < 2,

Alur,ug) = —In(1 = V2 uy — Vi2ug + det (V] (z) 203 Juau2)

and A(uq,us) = 0o otherwise.

It is obvious that A*(y;,y2) = oo for 13 < 0 or yo < 0. Fixing y;,y2 > 0, we are able to
solve (%A(ul, Us), %A(ul, us)) = (y1,vy2). We find that the extreme value of (u,y) — A(u)
is reached for

1+ \/ 1+ ( Ayry2Vey Vo?

Uy = Viy Vo Vag —Viy Vai')?
VRV SV 2y
14 \/ | 4 —yeVey VP
- Vx;vll B (Vz11 VZQZ _Vach Vm12)2
VA -V 2,

and then conclude that

4yly2V V2
14 )1+ yVey Vey
T T @, ) 2

2y1y?

A*(y) =In

) +1n det(V“thQ}

A NN T
det(v|{x1,x2}) det(v|{x1,x2})2

]

4.4 Hitting probabilities

Definition 4.4.1. For D C S, define loop” = {I; (I, 1{s_py) = 0}, namely loops contained

in D. Let LY = L, Nloop® be the restriction of the Poisson ensemble on loop”.

Since pu({l;1 is a trivial loop at 2}) = oo, L, contains infinitely many trivial loops at x p —

a.s..



Proposition 4.4.1. For a finite subset F,
Pl € L,; 1 is non-trivial and [ visits F| = (H(—Li) det(Vp))™@
el

Proof. 1t is a direct consequence of Proposition and the definition of the Poisson random

measure. OJ

Remark 11. For any subset F', we can find F} C --- C F,, C --- a sequence of finite subsets

of F increasing to F. Then,

Pl € L,;!1 is non-trivial and [ visits F]
= lim | P[Al € L,;1 is non-trivial and [ visits F,]

= tim L ([ (~L2) det(Vi,))

r€F,

— it (L) det(va) e

ACF,|A|l<oc0
4] z€A

4.5 Densities of the occupation field

A non-symmetric generalization of Dynkin’s isomorphism was given in [LJOS|. Suppose L
is the generator of a transient sub-Markovian process on {zy,...,x,}, m is an excessive

measure, and y is a non-negative function on {z,...,z,}, then

<271r>n / ¢

where 2/ = w +/=1-0/ for j = 1,...,n and Lj = Lj for 4,j = 1,...,n. And it has

been proved that if supp(y) C F, then E[e~(£1x)] = d(fett(X/FF))x — d;e(t(Liix

l\)\»—l

EzmesEaan TT dul dv' = det(— Mo L + Myy) ™

So, we have the

following representation.

Proposition 4.5.1. Let F = {xy,...,x,} C S and Lr = (=V¢)~'. For any bounded

measurable function G,

det(—M,, L)
(2m)"

Remark 12. Recall that in the symmetric case, if ¢ is a Gaussian free field with covariance

AT Tn 1 1 n 1 2,2 7 7
E[G(LT, ..., L)) = /G(2m1|z .. ,§mn|z 2)e2(Lr= >’"H du' dv'.

matrix given by the Green function L, /2 has the same law as —¢2 Moreover, if ¢1,..., ¢k
are k i.i.d. copies of ¢, then 1 Z #7 and Ly /2 have the same law. For details, see Chapter 5
in |[LJ11] and Chapter 4 in [Szn12]



We can derive from this expression a formula for the joint densities of the occupation field,

for a = 1.

Proposition 4.5.2. Let F = {zy,...,2,} C S and Lp = (=Vr)™'. Then, f(p',...,p"), the

density of (ﬁfl, o ,ﬁfn) with respect to the Lebesgque measure on R} is
((Lr)zi/pip?)™
det(_LF> Z 1{Znij:ani,i:1 ..... n} H ol .
ni;€Nij=1,.n 7’ J ij=1,...,n w°

Proof. The above Proposition shows that for any G bounded measurable

A det(—M,, L 1 1 19 (Lo s Py
E[G(L2, ..., L)) = W/G(ﬁmllzllz,...,ﬁmnlz [2yezttrze TT du’ du'.
Using the polar coordinate, let 7/ = |27|, 6; € [0,2x[, v/ = r7 cos(f;) and v/ = 77 sin(6;).

Then, E[G(LY, ..., L)) equals
d t M Ly) 1 > 3 (Lp)syrivimiettie™ s 4
A EmoF) /G —my(r), ..., §mn(r")2)ei7j o H dr* db;.

Let p/ = mj(rj)2/2 for j =1,...,n, then E[G(£%,..., £)] equals

1/2 )
det(—L S(Lr)et | ptp? ei®ie™ "% 4
W/G(/)l,.. Pt e ( J) H dp' db;.

Therefore, the density of ﬁ‘fl, e ,ﬁf", is

1/2 _
n det(—Lp) SLr)i (oot ) eie s
0 = | St S i

[0,27]™

. 12
/ det(—Lp) 1 S (Lp)s) (ppj J) 2

@]
(2mi)m b 2m

dz'- - dz".

1/2

We expand exp ( E (L F)ﬁj (plp7 —) —J.) into series, integrate it term by term and use
— mj V4
27-7

Cauchy’s formula. Only the constant terms in the expansion of

1/2 5
oMy z
E L)% | p'p? — —

o < irj ek (p p]mj) ZJ)
contribute. Accordingly, we have

F(os . ") = det(—Lp) T ( 1l ((Lr)z \/pzmnn) |

n;; €N for i,j=1,...,
Sonij=> nj; for i=1,...,n
J J




Moreover, we have the follow expansions of the density of occupation field for general o > 0:

Proposition 4.5.3. Denote by Coeff (det(MS + Vp)~, st sfy") the coefficient before the

Mnin the expansion of the function s — det(M, + Vp)~* for s small enough.
Then the density (f*(p1,---,Pn)s P1s---5Pn > 0) of the occupation field (LX, ..., L") has

the following expression:

M
term syt

N Coeff (det(M; + V)= e o
f (plv"'vaL): Z ( n 1 HpM+ 1
Mi,..,.Mn€N [IT(M; 4+ «)
i=1

Proof. Let’s calculate the Laplace transform of the function

(pl’ e 7’0n) - fa(pl) B aPn>€_C(pl+"'+Pn).

For ¢ sufficient large, we have

| Coeff (det(M + Vp)~o, s

.SMn) ’ n
= | | Pf’uﬁa*le_c(pﬁ"*p") < 00
Mi,..., Mn €N H D(M; + «) i=1

i=1

/dpl e dpne_(pl)‘1+“'+Pn/\n)fa(pl’ o ’pn)e—c(p1+...+pn)

Coeff (det(M + Vp)~®, st

/H pM i+a— 16 pi(/\i-i-c)dpi
=1

Coeff (det(M; + Vi) =@, st -+ - shn)

Mz,...,Mn,eN H ()\i + C)Mﬂra
i=1

Mu,...,M,€eN H F(Ml + Oé)

= det(Ml, + Vi) [N+ o)™
=1

— 3 L% (Aite
— det(l + My V) = Ele &),

Clearly, f* is the density of (£Z',..., LZ"). O

4.6 Conditioned occupation field

Definition 4.6.1. For F' C S, define L,|r = {lp : | € L,} where [ is the trace of [ on F,
see Definition 3.3.4]

For s sufficient close to (0, ...,0), det(M, + VF)~% is an analytic function.




Proposition 4.6.1. Let X,Y be two Borel spaces. Let P be a Poisson random measure on
7Z = X XY with o—finite intensity measure p(dx,dy) = m(dx)K(x,dy), K being a probability
kernel. Let wx and mwy be the projection from Z = X XY to X and Y respectively. Define
Px =nmxoP and Py = wyoP. Forall® : Y — R non-negative measurable, define ¢ : Y — R
according to ® by the following equation e~ *®) = fe_‘p(y)K(:v, dy). Then,

Y

E[B*U’Y@)‘I_'X] — o (Px:9)

Remark 13. The Poisson random measure P is the K-randomization? of the Poisson random

measure wx o P.

Proof. Take ¥ : X — R and ® : Y — R non-negative measurable. Define ¢ by the following

equation:

=) _ / PO K (1, dy).
Y

We have

E[e—(PX,\I/>e—<7>y,¢>>] _ ]E[e—<77,\11®<b>] _ e#(e"l’@‘l’—l)

—exp(_ [ (e M 1y (da) K (o, dy)

XxXY

= exp(/(e_‘p(z) /e‘q’(y)K(x,dy) — 1)m(dzx))

X Y

= exp(/(e—\v(r)—aﬁ(z’) — Dm(dz)) = E[6_<PX’\I’>6_<PY’¢>].

X

Since Fx = o({e~Px¥) : ¥ is a non-negative measurable function on X}),
E[e= Py @) Fy] = e~ Px:?),
[

Let f be a positive measurable function on the space of excursions. Recall that Er(() is
the point measure of the excursions of the loop [ outside of F' (see Definition [3.3.3]). As
a consequence of Proposition and Proposition or Corollary [3.3.7, we have the

following proposition.

ZPlease refer to Chapter 12 of [Kal02]



Proposition 4.6.2.

T xz 0171/ e
Ble 2T o) = ([ vt )tent) o5 T EDDEI O

r#yel

For an excursion (e x y) outside of F from x to y and y any non-negative measurable function

on S, set ( = [ x(e(s)) ds. Then we have the following:

Proposition 4.6.3. The conditional expectation Ele= LX) |o(Ly|r)] equals

) | - (RP): NZ(LalF)
E[e—ma ,x>]6_(£a|FvX> exp <Z L3(Lalr) ((RF)g o (R£)§)> H (ﬁ) |

z€F z#YyeF Y

Proof. The set of loops which do not intersect F, £, is independent of the set of loops

o )

which intersect F'. Therefore,

E[e’<£a’x>|0(ﬁa|p)] :E[e*<@7X>]E[exp(— Z (L))o (Lalr)]

Sisis F

visits

=E[e"“VElexp(— Y ((rx)+ Y. (e x))lo(Lalp)]
leLo ee€r(l)

—Ele“EVEexp(— Y S (e ) exp(—(Lalr X))o (Lal )]

leLa ec€r(l)
[ visits F’

— [e%llﬁc,xqef(lialpx Elexp(— Z Z e, X))o (Lalr)]

€Ly ec€r(l)
[ visits F’

—Ele~ (L x Xe ~(LalF X Elexp(— Z Z e, \)|o(La)|F)]-

l€Lq e€Ep(l)

By Proposition [4.6.2], taking the positive excursion function f(-) to be (-, x),

- Z Z <67X> - Z <g (l))<',X>>
E[e l€ELo e€Ep (1) |U(£a|p)] :E[e leLy F |0(£a|F)]
= (T vrt(e )Ny exp (Z(Li ~ (Le)2)(Lalr) Vit (1 - e-<'v><>>> .
rzF#yel zel

By Lemma B33,
o (o — Y
Fex(e ) - (RF)x

Then, by Proposition 2.3.1, L% — (L)% = L%(RY)2. Then,

-2 X (ex)

]E[e leLo e€Ep (1) ’U(£a|F)]



) (Rf?)g NZ(LalF) . f\x X (Ri)g
- II G exp | Y (L3 = (Lr))(Lalr) T (")

rFAYEF zeF

(RE) S
(11 (W) exp (Z@(ﬁam <<RF>§—<R§>§>>-

x
r#YyceF Y zeF

Finally, we get E[e~ (£« |g(Lq|r)] equals

. ) (RF)? NE(Lalr) .
Ble(h W]ertCelra | ] ] <( R’;)i) exp (Z L5 (Lalr) (B"); = (RY >§>> .

z#YeF Y zEF

4.7 Loop clusters

Consider the space S as a graph (S, F) with S as the set of vertices and E = {{z,y} :
Ny (l) >0 or NY(I) > 0} as the set of undirected edges. An edge {x,y} is said to be open at
time « if it is traversed by at least one loop of L,, i.e. Nj(L,) + NY(L,) > 0. The set of
open edges defines a subgraph G, with vertices S. The connected components of GG, define
a partition of S denoted by C,, namely the loop clusters at time «.

As in section 2 of [LJL12], we have the following proposition,

Proposition 4.7.1. Given a collection of edges F' = {e; = {z1,y1},...,ex = {xx,yr}}, let
k
A= U {xh yz} Thenf
i=1

Pley, ..., ex are all closed] = det(I + (L|p)|axaVa)™

N Ly if{x,y} € F
where (L|F)y N Oy otherwise

Proof. Suppose S is finite,

k

Pley, . .., ex are all closed] = exp(—au(z Nyi(l) + NY(1) > 0))
i=1
k
= exp(—oz,u(z N, (I) + NZi(I) > 0, 1 is non-trivial))
i=1

k
= exp(—au(l is non-trivial) + Oz,u(z Nyi(l) + NY(I) = 0, [ is non-trivial))
i=1



Define (L')y = Ly if {z,y} ¢ F and (L'); = 0 if {x,y} € . By Propositionm
Z Nyi(1) + NYi(1) = 0,1 is non-trivial) = p(L’, 1 is non-trivial).

(Recall that u(L’,dl) is the Markovian loop measure associated with the generator L’.) By
Proposition [3.5.7, u(L’,1 is non-trivial) = —In([[ (=L")%) + Indet(—L") = In([[ (—=L)%) —

T

zeS zes
Indet(—L') and p(l is non-trivial) = In( [[ (=L)%) — Indet(—L). Therefore,
z€S
det(—L)

Pley, ..., ex are all closed] = ( ) = det(—L'V)™@

det(—L")

Write as —L' = —L+ (L — L') = —L + L|r. Therefore, det(—L'V') = det(I + (L|r)|axaVa).
Consequently,
Pley, ..., ex are all closed] = det(I + (L|r)|axaVa)™®

For S countable, let Ay C Ay C --- exhausting S. Then we have

k
Pley, . .., ek are all closed] = exp(—au(z Nyi(l) + NYi(1) > 0))

i=1
k
=exp(—a lim M(Z N, (1) + NZi(I) > 0,1 is contained in Ay)).
n—00 —
By Proposition [3.2.1],
k
ZN% + NYi(1) > 0,1 is contained in A,) = p(L|a,xa,, » N (1) + NY (1) > 0).
By the calculation for the finite case,
L auxan; Z Nyo() + NE(D) > 0) = det(T + (L) |axa(~Lla,ca)3)

It is not hard to check that lim ((—L|a,xa,)”"); = V;' for z,y € S. Finally,

n—oo

Pley, ..., ex are all closed] = det(I + (L|p)|axaVa)™®
]

As a corollary, we obtain another expression by using the Poisson kernel. For X C S, define
the Poisson kernel (HX)? = P*[Xy, = y] the probability of hitting X at the position y for a

process starting from z.



Proposition 4.7.2. Given a partition m = {Si,..., Sk}, define 0S; = {x €S, dy e
S5,Qy + QY% >0}, F = U{{m y}:Qy + QY >0,z € S,y €55} and A= U@S Suppose
|A| < co. Define H; ; = H i|as, xas; and

0 H - Hi |
P :

Hy_ 1,

| Henp - Hpge 0 |

Then,
P[C, is finer than 7] = P[all the edges in F are closed] = (det(I — K))“.

Proof. By taking the trace of the loops on A, we can suppose the state space S is finite and
0S; = S; fori =1,..., k. By an argument similar to the argument in the above proposition,

we see that

det(L)\
det(L) )

where (L')y = Ly for {z,y} ¢ F and (L) = 0 for {z,y} € F". To be more precise,

P[C, is finer than 7] = (

_L\Slxsl 0 . 0
I = 0 L’SQ X S2
. ) 0
| 0 0 L|Sk><sk
Therefore,
det (L’
P[C, is finer than 7] = (deet<(L)))_ (det((=L") " (—=L)))~
vse 0 ... 0] I —Hg, - —Hyy,
0 Vo o —H I :
= [ det(— | Lyl = ' 21
P | : —Hj 11
0 e 0 Vsk_ —Hya e —Hp 1 T

= (det(I — K))°.

(Note that VSiL]Sixsj = Hg s, =Hijforiz#je{l,... k}) O



4.7.1 An example on the discrete circle

Consider a discrete circle G with n vertices 1,...,n and 2n oriented edges
E={(1,2),(2,3),...,(n—1,n),(n,1),(2,1),(3,2),...,(n,n—1),(1,n)}

Define the clockwise edges set F, = {(1,2),(2,3),...,(n — 1,n),(n,1)} and the counter
clockwise edges £ = E — E,. Consider a Markovian generator L such that for any e € E,
Ly =p, L =1—p,Li" = —(1+4¢) and L is null elsewhere. Then, we have a loop measure
and Poissonian ensembles associated with L. The rest of this subsection is devoted to study

the loop cluster C, in this example.

Lemma 4.7.3. Let Ts,, be a n X n tri-diagonal Toeplitz matriz of the following form:

a b 0 - 0
c a b
0 . 0
c a b
0o - 0 ¢ a .
Let S, be the following n X n matriz:
@ b 0 c]
c a b
0 - 0
c a b
b 0 ¢ a] .

Let x1, x5 be the roots of 2% — ax + be = 0. Then,

n+1 n+1
T —x

o det(T5,) = L 2
T1 — T2

o det(S,) = 2 +ah + (—1)" (D" + ).

Proposition 4.7.4.

Set z; :%(1 + e+ /(14 ¢)2 —4p(1 —p)),

T :%(1 +c—+/(1+¢)2—4p(1—p)).

Then,
(27 — 23)”

(w1 — w2) (27 — 2y )(af + 28 — (pn + (1 - p)”))) '

P[{1,n} is closed.] = (



Proof. By Proposition [3.2.1] and Proposition [3.5.§]

]P’[{l,n} is ClOSGd] _ 6—au(N,1l(l)+Nf(l)>0) — e—au(l visits 1 and n)

_ <det(V{1,n}))a _ <det(—L!{g,,.,,n}x{z,,..,n})det(L’{l,...,n1}x{1,“.,n1}))_a
Vivne det(—L|2,...n—1}x{2,...n-1}) det(—L)

((931 — xp)(a ™ — xé‘gﬁ(;?wf); —(pr+ (1= p)”))>_a

1+c—+/(14c)2—4p(1—p) =

D) .

1+ct+4/(14¢)2—4p(1—p)
2

and xz9 =

where x; =

Proposition 4.7.5. Conditionally on {1,n} being closed, C, is a renewal process conditioned
to jump at time n. To be more precise, by deleting edges {1,n} and adding {0,1},{n,n+1},
we get a discrete segment with vertices {0,1,... ,n,n+ 1} and edges {{0,1},...,{n,n+1}}.
Conditionally to {1,n} being closed, Cy, induces a partition on {1,...,n}. The clusters of C,,
are the intervals between the edges closed at time o (namely the edges which are not crossed
by any loop of L, ). Then the left points of these closed edges, together with the left points of

{0,1} and {n,n + 1}, form a renewal process conditioned to jump at n.

Proof. Among the Poissonian loop ensembles, the ensemble of loops crossing {1,n} and the
rest are independent. Therefore, the conditional law Q of the loops not crossing {1,n} con-
ditioned on the event that no loop is crossing {1,n} is exactly the same as the unconditioned

law. Consider another Poissonian loop ensembles on Z driven by the following generator:
Ly=—(1+¢),Ly, . =pLy_=1—pforall meZ, and L is null elsewhere.

Then, Q is the same as the conditional law of the loop ensembles contained in {1,...,n}
given the condition that {0,1} or {n,n+1} are closed. By Proposition after a harmonic

transform, L is modified as follows:

Ly=—-1+c¢),Ly. =Ly Vp(1 —p) for all m € Z, and L is null elsewhere.

m m—1 —

According to Proposition 3.1 in [LJL12|, in the case of Z, conditionally to the event that
{0,1} is closed, the left points of the closed edges form a renewal process. There is an
obvious one-to-one correspondence between the jumps of the renewal process and the closed
edges. Finally, in the case of the circle, conditioning on {1,n} being closed, we can identify

C. to a renewal process conditioned to jump at time n. It is not hard to see the parameter

 in [LJLI2| equals # HI)(TM. O
p(1-p



We can go back to the symmetric model conditionally on {1,n} being closed. Hence, we use
the following modified model. Consider a pure-jump Markov process on {1,...,n,...} with
generator L: L7 = Lt =1/2, L™ = —(1+ k/2) form € Ny, Ly = L} = 1/2 and L is
null elsewhere. Then, associated with this L, we have a loop measure p and a Poisson point

process of loops of intensity apu. Let us treat the case « €]0,1].
Hypothesis 4.7.1. Suppose « €]0, 1].

The corresponding loop probability depends on & and we will denote it by P*). It has
been showed in [LJL12| that the left points of the closed edges form a renewal process
(Sﬁf),m > 0)(S§ = 0), see Proposition 3.1 in |[LJLI2]. Moreover, in Proposition 3.1 of
|[LJL12], it has been proved that (65 ") > 0) converges to a subordinator (Xt(”),t >0)

o 1t ik
2k “
pp— s}
distribution. Once we show the tightness in the sense of Skorokhod, we could replace the

with potential density U(z,y) = lyy>a) in the sense of finite marginal

finite marginal convergence by the convergence in law in the sense of Skorokhod.

Lemma 4.7.6 (Tightness of (eSL o ltJ,t > 0)). The distribution (e Sf”j 1.t = 0) is tight in
the Skorokhod space. Therefore, (€ fj;)lﬂ,t > 0) converges to a subordinator (Xt('{), t>0)in

the sense of Skorokhod.

Proof. Define §,, = a(Sf“Q),...,S,(@“z)) for n € N and 355) = §lea-1q) for t > 0. Then,
(3’§6),t > 0) is a right-continuous filtration. As usual, by adding the negligible sets, we get a
the complete filtration which are denoted by the same notation.

Let T be a (&(f),t > 0) stopping time. Then, [¢* T is a (F,,n € N) stopping time.

In order to show the tightness, it is enough to verify the following Aldous’ criteria, see [JSO3].
For each M > 0,0 > 0,

Jim_Tim P (S0, > K] =0 (4.1)
lim lim sup POeS{ g, — €Sty | > 6] = 0 (4.2)

T1,Toe3') Ti<To<Ti+6

Since we already know the finite marginal convergence, condition (4.1]) reduces to IP[X](\;) =

oo] = 0. Since S+ {5 a renewal process, for T}, T, € S(E) such that 77 < Ty < T7 + 0,

Ke? Ke Ke? law K€ . .
‘Esfea—)lTJ — S i )1T | < e SEQ LT |4 [ea-16] ES( ca 1TJ’ = e S[ N )191\ By the finite marginal
convergence,

. . € Ke?)

laliglll_{% sup )H SLEQ N SLGQ 17y | | > 5]

Ty, Toe3\) T <To<Ti+6



< 1911{)111_1%]? [|€S[a 19]| > 0]

im P[] x )
<
. 191?01 [1X39°| > 0] =0
The proof is complete. n

Immediately, we get the convergence in the sense of the Skorokhod. Using this result, we will

the convergence of the corresponding bridge processes in the following proposition.

Proposition 4.7.7. Define (Zf,f/nQ),m > 0) by 28— S A The law of Z(/m*)
depends on n,k and is are denoted by Q™*. Conditioned on {n,n + 1} being closed, the
left points of the closed edges together with the left point of {0,1} form a renewal process
conditioned to jump at n. Define a conditioned loop probability as follows: P(“/”Z)[-] =
P/ [ {n,n + 1} is closed). Let Q™ be the law of Z™* under PS/™) . As n tends to
infinity, under P6/™), (Z(”/” /n,t > 0) converges in law to (Xt(”) A1,t > 0) conditioned

L 1 O‘tJ
on {X%?’oo[_ = 1}, in the sense of finite marginal convergence.

Before proving this, let us precise the law of (X ©) ,t < Tj1,0[) conditioned on the event
{X le = 1} in the following lemma. Recall that the potential density U(x,y) of X

equals 1gy~q) (%)a Set u(z) = U(0,z) and h(z) = U(z,1) = u(l — x).
Lemma 4.7.8.

1. For all positive functions f, we have

E°[f(X(, s € [0, )L per, 0, X4 € db]

u(b — Xt(”))

= LX) ORL

ool S db]]EO[f(Xéﬁ), S € [O’t])l{t<T]1,oo[}

2. The conditioned procesﬁ 1s a h-transform of the original subordinator with respect to
the excessive function x — u(l — x). To be more precise, for y € [z, 1], its semi-group
18 given by
9 (g dy) = LAY
Qt (.T, y) U(]_ —ZL’)

The process is right-continuous on [0, C[.

Pt(ﬂ) (‘7;7 dy) :

3. Denote by ¢ the lifetime of the conditioned process Y ™). Then, Y " =1,

4. The semi-group @ is a Feller semi-group.

u(l— X("))

3More precisely, the process defined by the probability E° [f(X(g'f")7 s €0, t])l{t<T]1,oo }




5. The time reversal from the lifetime of the process Y ¥) is the left-continuous modification

of 1 — Y under Q.
Proof.

1. The subordinator (X, ¢ > 0) has the potential density U(z,y) = (1_6722%)0‘ for
y > x. When y tends to z, U(x,y) tends to co. As a consequence, the drift coefficient
d = 0. It is proved by H. Kesten [Kes69] that for a fixed z > 0, x does not belong to
the range of the subordinator with probability 1, see Proposition 1.9 in [Ber99]. By
using the strong Markov property at stopping time S,

E°[f(X!,s € [0, 8)se, 3o Xit)

ool © db

. (%) (e
—E° [ /(X3S € [0, ) Lser, o B (XS € abl].
Then, we use Lemma 1.10 in [Ber99):
o« BXIXP e db) = T1(1 - bju(b — X§) db]
o EOIX(Y e db] =TI(1—b)u(b)db.
Immediately, we have
()¢ (e
B [ f(X2,s € [0,8)1(sem, B (X € b
. ) u(b — X¢7)
= EO[X;]ROO[ e dbE°[f(X", s € [0, S 1gs<tiy) u(b)S .
In particular, we take fixed time ¢,
E°[f(X!,s € 0,8 Lper, ol X7, = 1]
u(l — X{)

=E°[f(X7, s € [0, ) Ly, oy ()

u(1)
2. It is enough to show that z — u(1 — ) is excessive. The rest follows from the classical
results on the h transform, see Chapter 11 of [CWO05|. Take a positive function g, we
have P,Ug = f P,gds and Ug = f P,gds. Then, for all positive function g, we have
PUg < Ug and hm PUg = Ug. As a consequence, except on a set N(z) of zero

Lebesgue measure, y — u(y, z) is an excessive function for all z, i.e.

o [Pz, dy)uly,2) < u(z,2),

4Here, II represents the tail of the characteristic measure of the subordinator.



o lim P(x, dy)uly, =) = u(r, =),

Take a decreasing sequence z; > --- with limit 1. As the increasing limit of a sequence

of excessive functions y — u(y, z,), y — u(y, 1) is excessive.

3. It is enough to show that Q*[T};_so[ < ¢] = 1 for any 6 > 0. In fact, by Theorem 11.9
of [CW05],

u(l - XT[lé,oo[):|

:ET_OO :PxT—oo<Toov
Q" [Ti1—5,00f < €] {[1 sl < Thooel == 3

IP’O[XT[P&OO[, € da, X1, _; .~ — X1,_; o~ € db] = u(a) dall(db).

Consequently,

w(l =z — Xy )
“[Th 500 =P° | Th—ss00] < 1200 [zt
Q" [Ti1—5,00] < (] {[1 s00] < T1—a,00]s w(i—2)

B u(l—a:—a—b)ua "
-/ ) dati(a)

O<a<l—z—d<a+b<l—z

Sete=1—z—a—0b.

Q" Th—s00] < (] = / %u(l —x —c¢—b)dcll(db)
0<c<d<etb<l—z

u(l - — XT[a,oo[>
u(l —x)

:IEDO |:T[5,oo[ < lefx,oo[y

:@x [ﬂx—&-é,oo[ < C]

By the right-continuity of the path,

(151_I>I(1) Qz[ﬂlfxf&oo[ < C] - (151_1>T(1) Qx[T[er(S,OO[ < C] =1.

But Q®[Tiy1a,00] < (] decreases as a increases. Then, we must have

Q' Tyeof < (] =1fory € [z, 1]

4. We know that P is a Feller semi-group. For f € Ci/([0, 1[)7 r — Quf(x) belongs
to Cp([0,1]). By the Markov property of the semi-group @, i.e. ||Q:floc < ||f|ocs We
have Qi f = lim Q¢(fljo1-1/n]) € Co([0, 1]). For fixed x € [0, 1],

n—oo

w(l — X"

o=@

lim Quf () = Ty B s, o FX)

t—0

Then we see that the semi-group (Q,t > 0) is Feller.

®The collection of compact supported continuous function over [0, 1[.



5. By a classical result about time reversal, the reversed process is a moderate Markov

process, its semi-group Qt(:p, dy) is given by the following formula:

<g7 Qtf)G = <thv f>G

where Q,(z, dy) = YU P, (z, dy) and G(dz) = J Q:(0,dx) dt = YO0 47 Denote
0

U(x,1) U(0,1)
by (P;,t > 0) the dual semi-group of (P, ¢ > 0) or the semi-group of —X %) equivalently.
Denote by u(x) the function U(0, ) and by h(z) the function U(z,1).

(0. Qufre =200 g0 ) g,
otk
ELGLN
This implies that the semi-group (Q,,¢ > 0) associated with the reversed process of Y
is given by
Qi(x, dy) = Py(x, dy)% = Py(x, dy)%-

Then, by a change of variable, we find it equals the semi-group of 1 — Y. By 3, the
reversed process starts from 1. Then, it is exactly the left-continuous modification of

1 —Y® for Y starting from 0.
O

The above proposition gives the Radon-Nikodym derivative between the subordinator and
its bridge on a sub-o-field. We will prove Proposition by showing the convergence of

the Radon-Nikodym derivative from the discrete model to the continuous case.

Proof of Proposition[£.7.7. Define f#(k) = P*/" [Si'{/"Q) = k], ™" (k) = P/ [Sf“/nz) > k]
and C*/" (k) = P*"[{k,k + 1} is closed]. Let Wi(”) = SZ-(”/TLQ) — S(f/an) for i € Ny. As

1

mentioned above, W;,i € N, is a sequence of i.i.d. variables. Then,

~ K /n?
d@n,n _ fn,ﬁ(n _ Sé“n/—l))
AQs st ()gres(n = S5)

where T, = inf{l € N : Sl(”/"Q) =p}. Let F,, = U(Sé'{/nQ), ce Sr(r'f/"Q)) and G, = 0(Zo, ..., Zm).
Then, G, N{m < T,,} = F,, N {m < T,} and G, N {T,, < m} = Fr,_1N{T, < m}ﬂ

i 07 [d@m Qm]
gm

d@n,n d@n,n
6T, — 1is a (Fui1,m > 0) stopping time.




£ (n = S3")
C'x/n? nK( S(“/”2)
(n)gm=(n Ty—1 )
K/n?
fr(n = SE)
K/n2 n,K (k/n?) gm
¢ (n)g™ (n_STn—l )
frn = SE)
C'x/n? n,k(n S("‘/Tﬂ)
(n)gm=(n Th—1 )
K/n? K/n? K/n?
e — S (Sl _ gl ‘g ]
K/n? K/n? K/n? m
Ol (m)gns(n — S/ = (S5 — S5™))
- SE) " (n — S/"™)
Tn>m+1 w/n
C'x/n? (n)gn,m(n _ Séﬂ’;/jf)) { 1} Cw/ Q(n)

=L{n,<my

+ E(5/n?) ll{T"ZmH}

=Lir,<my

+ E(5/n?) ll{T"ZmH}

=lir,<m}

In the proof of Proposition 3.1 of [LJLI12], it is been showed that
1—(14+ L5 +4/5 + K2 )2
Cﬁ/nQ (m) _ ( 2n2 n2 4n4)

1—(1+ # + n% + %)—Q(m-i-l)

(In fact, C*/"*(m) is denoted ¢"/"*(m) there). We deduce the following estimation for
C*"* (|bn]) (b > 0) as n tends to oo:

(kil/fbﬁ)o‘n_a k>0

K/n? nl) ~
e (Lbn]) () 0

Moreover, for any compact subset K 0, 00|, (C*/"(|bn])n® b € K) converge uniformly.
Define g}") = G|p1-ay) for £ > 0. Then,

A ~ K/n? ("f/nQ)
dQmr dQmr C / n—3S nl-a
Q 1 (k/n?) = Q 1 (r/n?) =1 (r/n?) ( 2 - tj)
Q- g™ ey /m<ty Qe g ey /n<th - H{S1may /o<t Cx/m*(n)
t t

It is proved in [Ber96] that for any fixed z > 0, X:(p']?
1ifd=0.
From Lemma [4.7.6, we know that the sequence of renewal process S/ n?) converges towards

the subordinator X *) in the sense of Skorokhod. By the coupling theorem of Skorokhod and

o> X%jw[f holds with probability

Dudley, we can suppose that S/ n?) converges to X %) almost surely as long as our result only

_ holds with probability 1,
/2 (g (n/n*)

depends on the law. Since for any x > 0, X%?oo[ > x> X%Z)w[

STy —1 (k) : > [nl—ay
“=L converges to XT]l,oo[f‘ Moreover, if we fix t > 0, 1{562471203” <1} ) converges
to 1 u1=X") since X® is continuous at time ¢ and X% > 1 > X\* almost
{le,oo[>t} u 1) le,oo[ le,oo[_

_x®
converges to lyz, > w=X) almost surely.

d~n,n
surely. Consequently, d%—w|gt1 o T

[nl—a)



The Proposition 3.1 in [LJL12| gives the density of the renewal measure of the subordinator
(X" ¢ > 0):
2k

1 — e 2Vns
Let Q7 stand for the law of the Markov process with sub-Markovian semi-group Q;(z,dy) =
“(I—Zngt(:v, dy) and initial state z. By Lemma |4.7.8]

u(1l

u(s) =U(0,s) = ( )¢ for s > 0.

u(l — X))

Q°[la,t < (] =P" llAu(l——itv)l{qu} for A e F

where P? is the law of the process X *) starting from z. By dominated convergence, for any

0 >0,
1
hm@”[f%%<1—} QX <1-9

n—oo
It is clear that Q™*[1Z (Z{na)t (S = = Q[X" < 1]. Therefore, for any fixed ¢, 17 Lz{na)t |

converges in law towards Xt(“) (under the law Q™" and Q° respectively) as n tends to infinity.

In particular, we have
Cﬁ/n ( S(’i/”ﬁ) )
. N,k [nl—ot] n,K H/" )
i Qe ey ™Gy Jm Q" [ ety < 1
~QIX" < 1]

0 u(l—Xy)
“P[x" < 1,2 TR

Taking any bounded continuous f, by the coupling assumption and dominated convergencdﬂ,

]

Cn/n2<n _ S(H/?Z) )

im @ | £ (2877 se(0.4)1 o n'7ot)
n—oo n Ln17a8J7 ’ {sz{ia)tj/n<1} CH/TLZ (n)

=P° [f(XS(“), s € [0,1])

Equivalently,

n—oo

~ 1 K/m K/mn
lim Q™" [f (EZE,L{ s €0, t]) ~Zm) < 1]

Therefore, we have the finite marginals convergence. O]

" (n = ()
“The dominating sequence is I{S(Lz/li)” Imei} Cﬁ/n"‘(hg J ,n>0].



Chapter 5
Loop erasure and spanning tree

In this section we will show that Poisson processes of loops appear naturally in the construc-

tion of random spanning trees.

5.1 Loop erasure

Suppose w is the path of a minimal transient canonical Markov process, then its path can
be expressed as a sequence (g, to, z1,t1,...). The corresponding discrete path (zg, x1,...) is

the embedded Markov chain. From the transience assumption, > 1y;, - < 00 a.s..
neN

Definition 5.1.1 (Loop erasure). The loop erasure operation which maps a path w to its

loop erased path wpg is defined as: wpp = (yo,...) with yo = zo. Define Ty = inf{n € N :

VYm > n,x, # Yo}, then set y; = xg,. Similarly define T} = inf{n € N : Vm > n,z,, # 11},

set yo = x, and so on. Let P, be the image measure of PV where v is the initial distribution

of the Markov process.

Recall that O is the cemetery point, that Q% = 1 — ;}Qg for # # 0 and Q2 = 69. Set
y

Ly =—3 L forz#08, L§=—1and LY = 0 for = # 0.
y#0

Proposition 5.1.1. We have the following finite marginal distribution for the loop-erased

random walk:

PV plwse = (xo, 1, ..., Tp, .. .)]

= Vzy det(‘/{ro,...,mnfﬂ)Lig U Liz—lpln [T{ro,...,mn,l} = OO}
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Tp—1

Veoo . ymoo ]

— zo Tn—1
— VCUOLIIH “ e sz

an;n71 e Vxnfl 1 '

Tn—1
Vi e Ve,
Proof. Starting from z,,, the probability that the Markov process never reaches g, ..., r,_1,
P [Ttz wn1y = 00| equals the same probability for the trace of the Markov process
on Ig,...,Tn, IP’“”{‘ZO 77777 J;n}[T{xO:---ﬂ?nfl} = o00|. It equals the one step transition probability

from z, to O for the trace of the process. Let L, . ..} be the generator of the trace

of the Markov process on {zg,...,x,}. Then, the one step transition probability from z,
(Liao,wal)d” o . o .

to 9 equals —7R= 8o Since (Liay.on))§ = ~(Lianen))5s = 2 (Lioo..mn) )i and
- TQyeees Tns/)xTn =0

(L) = (1t SV o o))

. , we have
i det(‘/{xo,,wn})
eroo e Vgc-”‘cno_1 1
1 : ' : :
(Lizo,za})e" =
ot 0 det(Viwg ) [Vins oo o 1
V:Eagn o wanil 1
V;Ca;o - V;;O_l
and — (Lyzg,..cn))or = | .
‘/mxon—l . Vxxn":l 1
Vio ... VR . -
: - : : ono o ‘/;,?_1
Therefore, P [Ty, 3 =00 =| ‘ 1] | .
angn—l .. men:ll 1
n ‘/;an_l [P ‘/'mxn—l
V;ﬂgn . anil 1 ’ "

Set Dy = ¢ and Dy, = {xg,...,z,_1} for & € N,. Note that Q

probability for the process restricted in Dj. In order for the loop-erased path wgpg to be

pexpe is the transition

(o, T1,. .., Tp,...), the random walk must start from zo. After some excursions back to xy,
it should jump to x; and never return to xy. Next, after some excursions from z; to zy, it

jumps to zo and never returns to xg, r7, etc. Accordingly,

PV plwse = (o, 1, ..., Tp, .. .)]

n—1

= vao [ [O S ((@lbgng)™)5)Q%% P [Tia..on_ry = )

k=0 n>0



n—1

= Vzq H(VD )i:LﬁHPIn [T{mo ,,,,, Tn_1} — OO]
k=0

where LPk = L| DgxDe is the generator of the Markov process restricted in Df, and VPi be
the corresponding potential, see Definition [2.3.1]

Let Vg stands for the sub-matrix of V' restricted to F' x F. It is also the potential of the
trace of the Markov process on F' and let Pr stand for its law. Then, for all D C F, we have
(VP)p = (Vp)”". In particular, for k < n, we have (VPi)Zr = (VPk)p, )i = ((Vp,)Pk)i

One can apply Jacobi’s formula

Tk*

det(A|pxp) det(A™) = det(A ™ gexpe)

for A = (Vp,)” and B = {z;}. To be more precise, since ((Vp,)”*)™" = (=Lp,)|pexp: =

<_LDn)‘(Dn—Dk)><(Dn—Dk), we have

c o det(—L . _
(VP2 = (Vo)) = S ol BByt
det(—Lp,|(D,~Dy)x(Du-D))

with the convention that det(—Lp,|s) = 1. Then,

n—1 n—1

H(VD,i)Ik — det(_LDn|(Dn*Dk+l)X(Dn*Dk+l)) — det(_LDn|(Dn*Dn)X(Dn*Dn))

k=0 ‘ k=0 det(_LDn|(Dn_Dkz)><(Dn_Dk)) det(_LDn|(Dn_D0)><(Dn_DO))
1

= T = det = det _
det(_LDn) € ((VDn)Dn) € (‘/{Z‘U ..... -Z’n—l})

Finally, by combining the results above, we conclude that

P plwse = (xo, 21, ..., Tp, .. .)]

= Vg det(‘/{mo ..... Ty 1})LIO ’ an P [T{mo ,,,,, Tpn—1} — OO}

o e o
‘/;CO ‘/;lfn 1 1
= To ., [ Zn-1 ' ’ ’

= VgL -+ LT .
vxn—l .. Vxn 1 1
Tn—1

Tn e Tn

Vi Vim 1
O

Remark 14. Since a Markov chain in a countable space could be viewed as a pure-jump
sub-Markov process with jumping rate 1, the above result holds for a sub-Markov chain if

we replace L by the transition matrix Q — Id and V = (Id — Q)™!

The following property was discovered by Omer Angel and Gady Kozma, see Lemma 1.2 in
[Koz07]. Here, we give a different proof as an application of Proposition [5.1.1]



Proposition 5.1.2. Let (X,,,m € [0,(]) be a discrete Markov chain in a countable space S
with time life ¢ and initial point xo. Fiz some w € S\{xo}, define Ty = inf{n > 0: X,, = w}
and Ty = inf{m > Tn_y : X, = w} with the convention that inf ¢ = co. We can perform
loop-erasure for the path (Xo,...,Xr,), and let LE[0,Ty| stand for the loop-erased self-
avoiding path obtained in that way. If Ty < oo with positive probability, then the conditional
law of LE[0,Tx] given that {Tn < oo} is the same as the conditional law of LE[0,T}] given
that {17 < oo}.

Proof. We suppose T < co with positive probability. By adding a small killing rate € at all
states and taking € | 0, we could suppose that we have a positive probability to jump to the

cemetery point from any state. In particular, the Markov chain is transient.

Let 0 be the cemetery point. Let 7(p) be a geometric variable with mean 1/p, independent of
the Markov chain. Let (Xﬁf), m € [0, (¢ —1) AT;)] be the sub-Markov chain X stopped after
T:(y which is again sub-Markov. Let P2 stand for the law of X and let P,’sp stand for
the law of the loop-erased random walk associated to (X}r]f), m € [0,(¢—1)ATr)). Let QW
be the transition matrix of X and use the notation @ for Q®. Then, (Q®)¥ = (1 — p)Q¥
for i € S and (Q(p))j- = Q; for i € S\ {w} and j € S. Accordingly, (QP)¥ = p + Q¥ — pQY.
Define V.= (I — Q)™ Vis, = (Mys, + 1 — Q)7 for ¢ > 0 and VP = (I — QW) =
(Ma-pys., (I + 15— Q)= Vs, Mﬁéw' Set C,, = {the loop-erased random walk stopped
at w} Then,

Cq ={the random walk stopped at w}

= U{the random walk stopped at w at time Tj}

n>1
=Jlr =k T <UL = ¢~ 17(p) > K}
k>1 k>1
For z,, = w,
]P);?BE[WBE = (20, 71, ..., Tp = w)]
(V(p))gg e (V(p))ig
— (Q(p))i? o (Q )wn 1(@(1))) :
(V(p))ﬁg e (V(p))iz
0¥ — pOv (V—aw)ﬁg e (Vs )i
p o — Py Tn—1
T -pgy O
(Vl%péw)ﬁg e (Vies, )i



By the resolvent equation, V' = (V%(;w)’ %(V 25, V= (Ves,):+ %(V 26w ) Vi

1-p W J
Therefore,

1 ——‘/fﬂ e _%%In

Vzo ... ‘/:Tmo p Zo P Tn

| (VP sz (Vizs)ay o (Vies,)o

Vi .. Ve

Vs )m (Vies)n - (Vies, )
1+ lppvajrnn __pvxﬂgn _ﬁvxxnn
_ 0 Viesu)zg - (Vizs, )il
0 (Vs o (Vs

Vs )zg - (Vizs,)ab
p . .
—(1+ Ly :
1+ v
Vs )zg - (Vies,)on
(1—p+pV)Q§
Accordingly, P, lwpr = (29,21, ..., 2, = w)] does not depend on p. Con-
gly. P+ QY — pQy pBE[ BE = (To, T1 )] p p
sequently, it must be equal to Pg’s[wpe = (0, 71, . . ., ¥, = w)]. Equivalently,
(1-p+pVy)Q%
w o pro, [ Cl = Pilppl Cly
P+ QY —pQY oBE ] 0BE! ]

Therefore,
(1 —p+pVa)Q3
Pro. . [Cy] = L Pro, - [Cw
Immediately, it implies that conditionally on C,, the law of the loop-erased random walk

does not depend on p:
P;?BEHCW] = PS?BEHCW]'

Since

P:;,OBE[MBE € K Cw] = ZPxO[T(p> = kaTk < C7LE[07TI€] € ]

k>1
+3 P[r(p) >k, Th = ¢ — 1, LE[0,T}] € ]
k>1
=) (1 —p)* 'pP™[T}, < 00, LE[0,T}] € ]
k>1
+ Y (1= p)*P™[T} < 00, LE[0, Tx] € |Q¥
k>1

=371 =) o + Qf — pQY)P™(Ty < co]P™[LE[0, Ty] € -|Tj, < oo,

k>1



we have

ST (1= p)PIP™ [T}, < co]P*[LE[0, Ty € T}, < 9]

k>1

P*o . Cw — ] *
poetens & Cul =0~ ) BT, < .

k>1

Since P plwpr € +|Cy] does not depend on p € [0,1], we will denote it by Q. Then the

equation @ can be written as follows:

QLY (1= p)F ' P(T < o0

k>1

= (1= p)"'"P™[T} < 0oP™[LE[0, T € -|T} < o0].
k>1

Finally, by identifying the coefficients, we conclude that P [LE[0, Ty] € -|T}, < o] = Q]| as

long as P* [T}, < oo for k > 1 and we are done. O

Consider (e;,t > 0), a Poisson point process of excursions of finite lifetime at = with the
intensity Leb ® (—L% — %)Vﬁfgﬁx (Recall that {7 is the normalized excursion measure
at x, see Definition [3.3.2]) Let (v(t),¢ > 0) be an independent Gamma subordinatoifl] with

the Laplace exponent

d(N) = /(1 — e M) s eV ds.

0

Let R, be the closure of the image of the subordinator y up to time «, i.e. R, = {y(t) : t € [0, ]}.
Then, [0,v(a)] \ R, is the union of countable disjoint open intervals, {]y(t—),v(t)[: t €
[0,a],v(t—) < 7v(t)}. To such an open interval ]g,d|[, one can associate a based loop [ as
follows: During the time interval |g, d[, the Poisson point process (e;,¢ > 0) has finitely many
excursions, namely e;, - ,e;,,9 < t; < --- < t, < d. Each excursion e, is viewed as a

cadlag path of lifetime (;,: (e, (s),s € [0,¢,[). Define I : [0,d — g+ > (] — S as follows:

eti(s - (Z Ctj + tl)) if s € [Z Ctj + ti? Z Ctj +tz[

I(s) = j<i j<i J<i
x otherwise.
This mapping between an open interval |g,d[ and a based loop [ depends on |g,d[ and
(es,t €]g,d[) and we denote is by W9l (] = Wl9dl(¢)). By mapping a based loop into a loop,

we get a countable collection of loops for o > 0, namely O,.

Proposition 5.1.3. (O,,a > 0) has the same law as the Poisson point process of loops

intersecting {x}, i.e. ({l € Ly 1" >0}, >0).

!See Chapter I1I of [Ber96].



Proof. As both sides have independent stationary increment, it is enough to show O; =
{l € Ly :1" > 0}. Tt is well-known that (y(t) — y(t—),¢t € R) is a Poisson point process

with characteristic measure e s/V& ds. Therefore, > 0 is Poisson random measure with
1€0q

intensity ie‘s/ V" ds. On the other hand, for the Poisson ensemble of loops L., by taking the

trace of the loops on x and dropping the empty ones, as a consequence of Proposition [3.2.1]

Les(Lga})z (g

S

we get a Poisson ensemble of trivial Markovian loops with intensity measure

where (—Ly;)s = 1/V;F. Consequently, we have
{l* : 1 € Oy} has the same law as {I® : [ € £;,1" > 0}

In other words, by disregarding the excursions attached to each loop, the set of trivial loops in
x obtained from O; and {l € £; : I* > 0} is the same. In order to restore the loops, we need
to insert the excursions into the trivial loops. Then, it remains to show that the excursions
are inserted into the trivial loops in the same way. Finally, by using the independence
between (e;,t > 0) and (v(t),t > 0) and the stationary independent increments property
with respect to time ¢, it ends up in proving the following affirmation: WI%7l(e) induces the
same probability on the loops with [* = T as the loop measure conditioned by {I* = T'}.
By Proposition [3.1.7, we have [u(dl) = p™*(dl). Hence, p(dl|l® = T) = p>*(dl|lI* = T)

¥ is considered to be a loop measure. Let P* be the law of the Markov process

where p®
(X, t €10, ¢[) associated with the Markovian loop measure p. Let (L(x,t),t € [0,(]) be the
local time process at  and L™ (x, ) be its right-continuous inverse. Let T be an independent
exponential variable with parameter 1. Define the process X @7 with lifetime L~} (x, T)AC
as follows: X* ' &7)(T) = X (T),T € [0, L~ "(z,7) A¢[. Denote by QI[dI] the law of X~ (®7).

Then, e~ i®*(dl) = Q|dl] where u®*(dl) is considered to be a based loop measure. Therefore,
P (dli" = T) = Q[dl|I* = T] = Q[dl|r = T] = the law of W1*7((e)

in the sense of based loop measures. Then, the equality stills holds for loop measures and we

are done. []

Suppose (X, t € [0,(]) is a transient Markov process on S. (Assume the process stays at the
cemetery point after lifetime (.) Define the local time at z L(z,t) = j: L{x,=a} ds. Denote
by L'(x,t) its right-continuous inverse and by L~!(x,t—) its left—con(tjinuous inverse. The
excursion process (e;,t > 0) is defined by e,(s) = X p-1(54-y,5 € [0, L7z, t) — L7 (z,t—)].
Define a measure on the excursion which never returns to x by

v dl] = Z @, P[dl, the process never hits z].
yeS



We can calculate the total mass of 7* as follows:

1] = Z Q,P[the process never hits ]
yes

= 1 — E*[{after leaving z, the process returns to x}|

Lizy)® 1
whyey - Ead)s _

After normalization, we get a probability measure v»*~. The law of the first excursion is

_szlL% vE <1 + ﬁ) fx‘})ix In particular, the first excursion is not an excursion from x

back to x with probability — According to the excursion theory, the excursion process

LIIJ V{E N
is a Poisson point process stopped at the appearing of an excursion of infinite lifetime or an

excursion that ends up at the cemetery. The characteristic measure is proportional to the

law of the first excursion. By taking the trace of the process on x, we know that the total

occupation time is an exponential variable with parameter (—L{x})gc = % According to

the excursion theory, it is an exponential variable with parameter d being the mass

xT

of the characteristic measure. Immediately, we get d = —LZ. If we focus on the process

of excursions from z back to z, it is a Poisson point process with characteristic measure
(—L% — —)yfx_}”;x stopped at an independent exponential time with parameter % Let

x

(v(t),t > 0) be a Gamma subordinator with Laplace exponent

oo

— p— — x
/ )\s 16 s/ V2 ds.
0

Then, (t) follows the T'(¢ distribution with density p(y) = (1vz)f y' e ¥/Vi  In partic-

)
ular, (1) is an exponential variable of the parameter 1/V.*. It is known that (V((t)) te0,1])
is independent of (1), and that it is a Dirichlet process. (One can prove this by a di-
rect calculation on the finite marginal distribution.) Moreover, the jumps of the process
(7((3 ,t € [0,1]) rearranged in decreasing order follow the Poisson-Dirichlet (0, 1) distribution.
For z € S, let Z, be the last passage time in z: Z, = sup{t € [0,¢[: X(t) = z}. Suppose
the loop erased path wpp equals (z1,...). Define S, = T,, for n > 1 and Sy = 0. Let O; be
(Xs,s € [S;,Si41]) i-e. the i-th loop erased from the process X. Then O; can be viewed as
a Poisson point process (egl),t € [0, L(x1,()]) of excursions at z; killed at the arrival of an
excursion with infinite lifetime or an excursion ending up at the cemetery. Conditionally on
wpg = (1, 22, .. .), the shifted process (X(s+1T1),s € [0,][) is the Markov process restricted
in S\ {z1} starting from xo = X(71) . Moreover, it is conditionally independent of the

Poisson point process e!). Once again, we can view O, as an killed Poisson point process



of excursions at x5 and denote it by e(®.

Clearly, we have the independence between e
and e® conditionally on wpg = (21, 29, ...). Repeating this procedure, we get a sequence of
point process of excursions eV, . ... Conditionally on wgp = (21,...,%,,...), they are inde-
pendent, and e™ has the same law as the killed excursion process for the Markov process
restricted in D,, = S\ {x1,...,2,-1}. Let O] be the occupation time at x; for the based
loop O;. Let (%(i),t > 0),7 > 1 be a sequence of independent Gamma subordinators with

Laplace exponent

d(\) = /(1 — e )s Lexp <_(VD+)§Z> ds.
0
We suppose they are independent of the Markov process. Then, O;*,i > 1 has the same law as

7@(1),i > 1 conditionally on wpg. In the spirit of Proposition by cutting the excursion

process according to the range of subordinator, if at time a € [0,1], we cut the loop O;
1D (5)07"
7()(1)
Conditionally on wpp, it has the same law as the Poisson point process (£2\ L™ o € [0,1]).

according to the range of ( ,s € [0, a]), we get a point process of loops ((’)((f), a € [0,1]).
Moreover, conditionally on wgg, (OS),Q € [0,1]),7 > 1 are independent. The definition of
the Poisson random measure ensures independence among (£ \EaDi“, acl0,1)),i=1,...

Consequently, we have the following proposition.

Proposition 5.1.4. Conditionally on wpg, (O, € [0,1]) has the same law as ({I € L, :

[ intersects wpg},a € [0,1]).

t
Remark 15. The jumps of the process % rearranged in decreasing order follow the Poisson-
7

Dirichlet (0, 1) distribution. Since a Poisson point process is always homogeneous in time,

the following two cutting method gives the same loop ensemble in law:

v(t)

e Cutting the loop according to the range of (—, t €0, 1]),

v(1)

e Cutting the loop according to the Poisson-Dirichlet (0, 1) distribution.

As a result, a similar result holds for « = 1 if we cut the loops according to the Poisson-

Dirichlet (0, 1) distribution.

5.2 Rooted random spanning tree

Throughout this section, we consider a finite state space S with a transient Markov process
(X;,t > 0) on it. Denote by A the cemetery point for X. As usual, denote by L the generator
of X and by () the transition matrix of the embedded Markov chain.



By the following algorithm, one can construct a random spanning tree of SU{A} rootedE| at

A. We give an orientation on the tree: each edge is directed towards the root.

Definition 5.2.1 (Wilson’s algorithm). Choose an arbitrary order on S: S={vy,...,v,}.
Define Sy = {A}. Let Ty be the tree with single vertex A. We recurrently construct a series
of growing random trees Ty, k € N as follows:

Suppose T is well-constructed with set of vertices Sy. If S U{A}\ Sk = ¢, then we stop
the procedure and set 7 = Tj. Otherwise, there is a unique vertex in S U {A} \ S with the
smallest sub-index and we denote it by yx,1. Run a Markov chain from g, with transition
matrix (). It will hit Sy in finitely many steps. We stop the Markov chain after it reaches
Sk and erase progressively the loops according to the Definition [5.1.1] In this way, we get
a loop-erased path 7,1 joining yx.1 to T;. By adding this loop erased path 7., to Tk, we
construct the random tree Ty, 1. The procedure will stop after a finite number of steps and

it produces a random spanning tree 7 .

Remark 16. In Wilson’s algorithm, the spanning tree is constructed by progressively adding
new branches. For k € N, conditionally on the tree 7} that has been constructed at step
k, the law of 7., is associated with the Markov process X stopped at the next jump after
reaching Tj. At the same time, we remove #7},1; — #1} loops based on each vertex in 7.
We cut those loops according to some independent Poisson-Dirichlet (0,1) distribution as
in Proposition and Remark [I5] and we get an ensemble of loops O,, ..
on 7, Oy is equal in law to E{T’“}c \ EiT’““}C. Those (O,,,k > 1) are independent as for
(cj{Tk}c\@Tk“}c, k > 1). It implies that |J O,, has the same law as £; = |J EiTk‘l}c\Ci[T’“}c.

k>1 k>1
In summary, we have removed #5S loops based on each vertex in S in Wilson’s algorithm.

Conditional

By cutting all those loops according to some independent Poisson-Dirichlet (0,1) distribution

as in Proposition and Remark [I5] we recover the Poisson ensemble of loops £ .

Proposition 5.2.1. Denote by jusra the distribution of the random spanning tree rooted at

A given by Wilson’s algorithm. Then,

(z,y) is an edge in T
directed towards the root A

MST,A(T = T) = det(v)l{T is a spanning tree rooted at A} H LZ

where V' is the potential of the process X E|

2By a random spanning tree rooted at A, we mean a random spanning tree with a special mark on the

vertex A.
Recall that Lj = — > L% for z € S.
yeS
4Wilson’s algorithm use the embedded Markov chain of X.



Proof. Suppose |S| = n. Choose an arbitrary order on S: S={vy,...,v,} and use Wilson’s
algorithm to construct a random spanning tree 7 rooted at A. Set vy = A. For a rooted
spanning tree T, let A,,(T") be the set of vertices in T{vo,...,vm}ﬂ form=1,...,n. Set By(T) =
¢. Form =1,... n, set B,,(T) = ¢ if v, belongs A,,,_1(T). Otherwise, let B,,(T) be the
unique path joining v, to A,,_1(T) in T. We will calculate the conditional distribution of
By (T) given A,,—1(T) for m > 1. Suppose that v,, ¢ A,,—1. Let (Y, ¢t > 0) be the process
(X;,t > 0) killed at the first jumping time after the process reaches the A,, ;. Then, Y is a

transient Markov with generator

(Ly)z _ Ly for x not contained in Ty, v, 1}
o, Ly otherwise

and potential Vy such that
o Vylac xac_, = VAn-1;

° (Vy)j = > (VAfnfl);”Lz forx € AS, 1,y € Apq;

zEAS

m—1

o Vyla, xac  =0;

m—1

o (W) =4y ng for z,y € Ap_1.

Let 0y stand for the cemetery point of Y. Then conditionally on 7, ., _,, the probability
By = ((20, 21), (21, 22) - - -, (2ps 2p41)) With 20 = vy, 2p11 € Ay and 2g, ..., 2, € AS | equals
the probability that the loop-erased path obtained by Y is (20, 21, . - . , 2, Zp+1, Oy ). According
to Proposition [5.1.1] that conditional probability equals

det((VY)Am\Am—l) H L; = det((VAgnil)Am\Am—l) H Lf;

(z,y) is contained in By, (z,y) is contained in By,

By Jacobi’s formula,

det(—L

ag, yxae, ) det(VAm) 4 a0 ) = det(—Lag, xaz, )

Accordingly,
. det(VAm—
det (VA1) 4 y) = SHV7)

det(VAR)
Therefore, if v, ¢ Ap_1,1.e. Ap1 # A,
det(VAsnfl)
P[Br = ((20,21), -+ -5 (2p; 2p41)) [ Am—i] = ————e<" 11 Ly.
det(VA) , -
(z,y) is contained in By,
5Here, Tup....,v, ) i the smallest sub-tree of T' containing the same root with the set of vertices vo, ..., vp.



Trivially, if v, € A,,_1,

det(VAn-1)
det(VAn)

Finally, by multiplying all the conditional probability above, we find that

P[B,, = ¢|Am_1] =1=

/LST,A(T - T) - det(V) 1{T is a spanning tree rooted at A} H L;

(z,y) is an edge in T’
directed towards the root A

O

Theorem 5.2.2 (Kirchhoff’s theorem). The probability of containing a certain edge is given

by
psrale=(e—e+) € T) = L (V2 = V)
with the convention that VA =0 and L% = — Y Ly foraz €S.
yes
Proof. We list S by vy = e—,vs,...,. From Wilson’s algorithm,

pstale = (e—,e+) € T) =Ppplwpr = (e— e+, ...)]
e |Vem 1
e+ ‘/:_Jr 1

=L (Vo = V).

Theorem 5.2.3 (Transfer current theorem). For k edges e; = (e;—,e;+),i =1,... k,
MST’A(el, o, e € T) = Lg; c Li:l det(<Kei,ej)i,j:l,...,k)

with Kap) (ca) = V& — V2P for a,b,e,d € S U{A} with the convention that V2 = 0 and

L =—> L; forzesS.
yeSs

Proof. We could suppose e;—, ..., ep— are k different vertices. Otherwise, both sides Vanishﬁ

Consider a modified Markov process X’ with generator L’ defined as followﬂ:

’

Ly ifeé¢{es—,...,ex—},y € SU{A}L
(L) Ly if the edge (z,y) € {e1,...,exr};
’ —Lg, ifr=y=e — forsomei=1,... Fk;
[ 0 otherwise.
6For example, if e;— = ea—, we have ugra(er,...,ex € T) = 0. For the right side, the determinant
vanishes as K¢, ¢, = K¢, ¢, for j=1,... k.

"We define L’ as a matrix labelled by S U {A}. The process X’ is killed at A.



Then we obtain another random spanning tree 7" rooted at A with the law pgp o. Clearly,
the random spanning tree 7’ has to contain e, ..., e;. Moreover, for any fixed spanning tree

T rooted at A,

det(—L)
! ! = T = — = T .
MST,A(T ) det(_L,),UST,A(T )
Consequently,
det(—L/)
= — 2 =det(-L'V).
/J“ST7A(61a , Ek S T) det(—L) € ( )
For x ¢ {e;—,...,ex—}, we have (—=L'V)y = d7. For i,j € {1,... Kk},
(CLIV)S = —(L)ETVET = (DYETVET = LETVET — LVt = Ko,
Finally, psra(er,...,ex € T) =det(=L'V) = LgiT ... Lty det(Ke, ;)i j=1,...k- O

The following corollary is the analogue of the classical transfer current theorem for the rooted

spanning tree with an elementary proof.

Corollary 5.2.4. Define A.; = VST LS, — VETLE, — VT LS + VEFLEY with the convention
that V2 =0 and Ly = — %~ L% for x € S. Then,

yes

psra(Eer, ..., Fep € T) = det(Ae, e, )ij=1,...k

7777

Proof. Define B.; = K.:L: = V;_’L‘;j — V:fLijr Immediately, we see that B_.; = —B..
Theorem [5.2.3| gives that

psraler, ... ex € T) =det(Be,e,)ij=1,..k

Fix k edges ey,... e, set FT = {ey,...,ex}, F- = {—e1,...,—ex} and FF = FT U F~.

M N
Define M = B|p+xp+ and N = B|p-yp-. Then, B|pxr = For all H C F with
—-M N

#H >k,
0 = usr.a(H is covered by the random spanning tree 7) = det(Bez)ezen
Consequently,

det(B + M)pur = Y N # det(Blywn)

HCF

= > X det(Bluxn)

HCF#H<k

=Npsra(Eer, - ,Fe, € T) +o(AF) as A — 0.



We can compute det(B 4+ A )pxp in another way:

M+M =N

det(B + )\I)FXF =
—-M AN+ N

M+M —N
i A

MA+M+N —N
0 A

=\"det(A + M + N)
:/\k det()\ + Aei,ej-)ijzl

),

.....

By comparing the dominant terms, the result is proven. m

Proposition 5.2.5. In the special case where L and V' are symmetric matrixz, we have

uST,A(j:el, R :|:€k € T) = det(Zei,ej)i,j=1 k

.....

where Z(gy) (uw) = /Lo LE[ViE = VY = ViE + V¥ is symmetric. Clearly, Z oo = Ze s = —Zcg.
For any collection of edges n1, ..., Mk, det(Zy, . )ij=1,.k = MsT,a(EM, ..., Lq € T) > 0.

.....

As a consequence, Z is positive definite. There is a property of negative association between

edges:

psra[EEr, s £, £, 0 € T
< psralEE, .o £ € TlsralEm, ... £n, € T
and the equality is obtained iff. one of the following three condition s fulfilled:
o det(Ze, ¢;)ij=1,..m = 0, i.e. psra(£,...,£n €T) =0,
o det(Zy, n)ij=1,.n =0, €. prgra(Em,...,£n, € T) =0,

.....

® Zew, =0 fori=1,...omand j =1,....n, i.e {& € T} {n; € T} are pairwise

independent.

Proof. Set By = {&,...,&n} and Ey = {m,...,n,}. Fori,j € {1,2}, write Z; ; in short for
Z

E:xE;- We consider the non-trivial case: pgsra [£&1, . £, £, ..., £, € T > 0.



MST,A[ZI:EI, :l:EQ C ﬂ _ det(Z|(E1UE2)><(E1UE2))
/ULSTA[:l:El C ﬂMST’A[iEQ C ﬂ det(ZM) det(Zgjg)

—1/2 —-1/2
= det( o0 Z|(ByUE) % (E1UEs) Zit 0 )
- U X U
0 Zy,"” R I (/A
4 I ARAVARY Al
= det —1/2 —1/2
Zl,l 22712171 _[
0 Z Vg 712
Set B={ 0, 0TV then
Zl,l ZQ71Z1’1 0

pstalEEy, £E, C T
pstalEE C Tlpstal£E, CT]

which is symmetric definite. Consequently, the eigenvalues of the symmetric matrix B are

= det(I + B)

greater or equal to —1. If we replace E; by —E; = {—&;,..., =&, } in the argument above,
the probabilities do not change, the matrix Z_g, _p, = Zg, 5, but Z_p, g, = Zp,—p, =
—ZE, By, = —Zp,,E - Finally, we see that

psralEEy, £E, C T
pst.al£Er C Tlusra[£E2 C T]

Similarly, the eigenvalues of the symmetric matrix —B are greater or equal —1. Finally,

= det(I — B).

ALy oy Aman, the eigenvalues of B, must be contained in [—1,1]. Consequently,

psralEEy, £E, C T
pstalEE C Tlpsral£E, C T]

=det(/ — B) = det(I + B)

=[Ia-2=TJa+x») = TTa-» <1

The equality is obtained iff. pugra[+E1 C T| = det(Z|g,xr,) = 0 or usralEy C T| =
det(Z|E2><E2):OOI' Z|E1><E2:0- ]

Remark 17. The negative association is not true in general. For example, S = {1,2} and

-2 1
L= . Then,
0 -1

psralE(1,2), £(2,A) € T) = psral£(1,2) € T) = psral£(2,A) € T] = 1/2.

In the end of this section, we would like to point out some possible generalization of the
above results under the following assumption:

for any initial state, the process reaches the cemetery A after finitely many jumps.

Then, Wilson’s procedure still works and it defines a random spanning tree 7 on the extended

state space S U {A}.



Proposition 5.2.6. The distribution of T is characterized| by the following quantity:

e=(e—,e+) is an edge in T

,LLST,A(ﬁ:cl,...,ack} - T)ﬂ - H L:J_r det(vT)

where VT is short fOT’ Vt{vertices in T except for A}-

Proof. Suppose the state space S is enumerated as vy, ..., v,,.... By an argument similar to

Proposition [5.2.1], one can prove that

MST,A(’]d{vh...,vn} = T) = H LE—T— det(VT)

e=(e—,e+) is an edge in T

Note that the right hand side does not depend on the way in which we enumerate S. As a

consequence, for any permutation o € G,,, if we list S in another way:

S = {Ua(l), <oy Us(n)s Unt1, - - .},

the law of Tyy, .. v, is the same. In particular, for any {1, ..., 2} subset of {vi,...,v,}, we

choose the proper ¢ € G,, such that
Vo) = fori=1,... kand o(i) =ifori=k+1,....n

Hence the following equality holds:

#ST,A(,]T{xL...,mk} = T) — H L:_T_ det(VT)
e=(e—,e+) is an edge in T’
Notice that for fixed zi,...,zx, we can always choose n large enough so that {vy,...,v,}
includes {xy,...,zx}. The proof is then complete. O

Remark 18. Fix F a subset of S. Denote by 11§, the rooted spanning measure related to

the restriction of the process X in F.

psT,A(Tian,....ry = T|The vertex set of Ty, . 5,3 is exactly F)

= por.a(T = T|The leaves of T are contained in {1, ..., z)}).
8Tn fact, one can deduce from it the marginal distribution psr,A(The edges e1,...,e, €7T)
9Given any oriented tree 7 rooted at A, and some vertices 1,...,z; in T different from A, define
Tiwr,....xn}y @s the smallest sub-tree of 7 containing z1, ..., xy.

10This expression implies that the spanning tree distribution does not depends on the way in which we

enumerate S.



Theorem [5.2.3] (transfer current theorem) remains valid as well as Corollary remains

true. We give the proof of the transfer current theorem as follows:

Proof. Take a sequence of sets exhausting S
S1={e1—,...,ex—} C--- C S, C with USH:S.
n=1
Consider a modified Markov process X’ with generator L' given as followg '}

"

Ly ifxd{ei—,...,ex—},y € SU{A};
(L) Ly if the edge (z,y) € {e1,...,ex};
Y —LgT ifr=y=e¢ — forsomei=1,... k;
{ 0 otherwise.

Denote by pisy o the corresponding random spanning tree measure. Set F' = | J{e;—}. For

any subset E such that F' C E C .S, one checks immediately that

(LN e)le\rxe = (Le)|Ee\rxEe- (5.1)
Moreover, for a sequence of subsets F; C --- which increases to 5,
Tim (L), )| pxr = Llpx- (5.2)

For a tree T, let S(T') stand for the collection of the vertices in T" except for A. Then, for

any n € N

psraler,...,ex € T) =psraler,....ex € Tg,)

T is a tree
det(Vg(T))
= 3 Gt e alTs, = TN o )
T is a tree S(T)
= > det(—=(L)sn)Vam)tsra(Ts, = T contains r,...cx)
T is a tree

By the equation (5.1]) for £ = S(T'), we have that

(—=(L")sr))|lpxrVe  *

det(—(L")s(r Vs(r)) =
(T)Vs(T) 0 1d

= det((— (L)) |rxrVr).

H'We define L' as a matrix labelled by S U {A}. The process X' is killed at A.



Then by the equation (5.2)), as n — o0, (—(L')s(r))|rxrVF tends to —L'|pypVp uniformly
for all tree T' containing .S,,. Therefore, as n — oo,

uST,A(ela co, €, € T) = Z det(_(L/)S(T)VS(T))[L(S’T,A(%” = T)l{T contains ej,...,ex

T is a tree

Ndet(_LllFXFVF) Z ,UZS’T,A(’]TS'TL == T)l{T contains ej,...,ex

T is a tree

= det(—L/|F><FVF)

Finally, by the same calculation as in the proof of Theorem [5.2.3] we get that

k
det(—L'|pxr Vi) = det[(Ke, e, )ij1..4] [ [ LE5-
=1

5.3 Spanning tree measure

Consider an irreducible recurrent Markov process X with generator L on a finite state space
V. Fix a non-negative function p : V- — R, (p # 0). By killing the process at rate ep, we
obtain a transient Markov process X (“?) with the generator L(“?) = L — M,,. The cemetery
is denoted by A. Denote by jis7 A ¢, the law of the random spanning tree rooted at A related
to X(eP),

Definition 5.3.1 (Spanning tree measure with weights function p on the roots). We define

the spanning tree measure pgr, on V' by lir% 1sT,A e p Testricted to the edge set V' x Vﬁ
€E—

It is not difficult to see that the spanning tree measure pgr, is a mixture of spanning tree

measure with fixed root. To be more precise, we have the following description:

Proposition 5.3.1. For a spanning tree T, let r(T') to stand for its root. Then,

p(r(T)) I L&t

e is an edge in T

HsST, (T = T) = e—*
' Xp(r(T) I Lex
T e is an edge in T
In other words,
HSTp = plomlv) HsT
T p)m(v) T

veV

121t is not difficult to see that the measure pgr, is concentrated on trees since most of the mass 157 A cp
is concentrated on the spanning tree rooted at A with only one edge towards the root. More precisely, under

UST,Aeps the chance that there exists at least 2 edges towards the root A is of order o(e).



where m s the stationary distribution of the process X an jisr, s the rooted spanning tree

measure associated to the process X killed at the vertex v.

Proof. The first expression follows directly from the definition. For the second equation, it

is enough to prove that pusr,[v is the root.] = %. By Kirchhoff’s theorem (Theorem

veV

5.2.9),

pstp[v is the root.] = liI% pst.acp((v, A) appears in the rooted spanning tree.)
€E—>

v

=limep(v)(Vep),-

We shall prove in the following lemma that the above limit equals %. O]

As a consequence, we can express the probability of pgr,(£es,...,xe, € T) as a convex
combination of pgr,(xer,..., e, € T) for v € V. But, it is not clear from this expression
that the random spanning tree is a determinantal process. We look for an expression similar
to Theorem m The idea is to use Theorem for the probability p1s7,ap and then let

e — 0. We need two limit properties for the potential proved in the following lemma.

Lemma 5.3.2. Suppose (X¢,t > 0) is a recurrent irreducible Markov process on {1,...,n}.
Denote by EY its law with initial state b, by m its unique invariant distribution and by L its
generator. Let p be a non-trivial non-negative function on {1,...,n}, i.e. i p(i) > 0. Then
for any a,b € {1,... n} -

i) i e(V,,)) =

E° Xs)d c
- : b a [E)f p( ) S] mav{a} p(b> .
i) ll_r%—(vep)a + (Vopla = —3 = ) where T4+ = inf{t > Ty : X; =
B[ [ p(Xs)ds] ’
0

a} and T is the first jumping time.
Proof.

i) Firstly Suppose p is strictly positive.
t
Define A; = f Iﬁ ds,t > 0 and its right-continuous inverse o; = inf{s > 0, Ay >
0

t},t > 0. Define the time changed process Y; = (X,,,t > 0). Then (Y;,t > 0) is a

recurrent irreducible Markov process on {1,...,n} with generator L) = M, /L



(p)

M,
and resolvent (V;*’,r > 0). Its invariant probability is nm—p. By the ergodic

;mip(i)

theorem,

lim e((€ — My L)~ = lim e((e — L)1) = lim ¢(VP)! = M.

a
e—0 e—0 e—0 Z mlp(z)
i=1

Since Vp = (M, — L)™' = (e — My, L)' M,

Dy

lim 6(‘/61))2 =

for any a,b € {1,...,n}.

e—0 <7n7 p> Y { }

Second For p non-negative, take h > 0, then p + h is strictly positive. Thus, we can
apply the partial result for the strictly positive case:

. Mg
lim €(Vopin) )i =

A a m for any a, b < {]_ }

By the resolvent equation, €V ,1n) — €V, = —heQVqDVe(erh). We will prove that

sup ||€Vep||oo < 00 in order to conclude
e>0

lim (V) =

lim ) for any a,b € {1,...,n}.

1 —
By the resolvent equation, V, =V, + —EVEPMGPV;,. By Lemma |2.2.5
€

1—c¢ 1
WVeplle < 1Vl + ~—< 11Vl oo = <[1V]

By the assumption of irreducible recurrence, ||V,||« < oo and the proof is com-

plete.

ii) By the strong Markov property at the hitting time T,

e}

/6 ) 1{Xt:a} dt]
_Eb/ ) 1{Xt —a) dt]
T
¥ p(xa)
—€ Xs)ds
=E'le 0" )
By monotone convergence,
Ty Ta

TEL -~ exp(—c [ p(X) d9)] = B [ p(X.)ds) = VIV (),



where V{4 is the potential corresponding to the process X killed at {a}. Meanwhile,

a __ Mg
e Ve)e =1y
Finally,
{a}e
. b a __ mgV p(b)
lg%(‘/fp)a (‘/;p)a - <m7p> :

By the ergodic theorem and the strong Markov property,

t T+
Ea[f 1{Xs:a} ds] ]E'a[ f 1{Xs:a} dS]
0

mg 1 0 1
= lim = = :
<"’)’L7 p) t—o00 Ta+ Ta+
Ee[fp(Xs)ds]  Ee [ p(X,)ds|] — —LaEe[ [ p(X,)ds]
0 0 0
Therefore we have another way to interpret the limit:
Ta
E°[ [ p(X
: a 0
lg% _(VEP)Z + (Vep)a = Tot
—LeEe| [ p(Xs)ds]
0

]

Theorem 5.3.3 (Transfers current theorem). The finite marginal distribution is given by

psrpler, ... ex € T) = L&, - L det(K? i, j=1,...,k)

6677

Te.

J~ Te;-
E«T[ [ p(Xs)ds] —E“7[ [ p(X
where KP , = 0 0
) Tej—+
LT[ [ p(X.)ds)
0

Proof. By Definition and Theorem [5.2.3]

pg;ﬂp(el, Lo, ep € T) :lli% M5T7A757p(61, Lo, ep € T)
k
=lim det (K)o, iy j =1,...,k) Hl(L(E hn
]:
where
(K )ese; = (Voo™ = (Vep)e
As € tends to 0, (L(“P),, tends to L} for i = 1,...,n. By Proposition m
T, - TEJ
Eei+[ J‘ p(Xs — [Rei— J‘ p
. (&) _ 0 0
lg%(K Peve; = Te._+



Denote that limit by K? . . Then,

pstplen, ... ex € T) = L& -+ Lety det(K?

7

An argument similar to Corollary gives:

Corollary 5.3.4.

pstp(Eer, ..., e, € T) = det(A

where Ag,)ej = Kéf’)eng; +K® et

—€i,—€j; € —

®
€i,€j ’ /L’

7ej7 )

j=1,...

ij=1,...

k).



Chapter 6

Loop covering

6.1 Basic settings

Suppose (G, = (V,, By, wy,),n > 1) is a sequence of undirected connected weighted graphs
with maximum degrees D, and minimum degrees d,,. Suppose the degrees are uniformly
bounded from above and below, D, < D < +oo and d,, > d > 0 for n > 1. Let V,, be the
set of vertices and F,, the set of edges. Each edge {z,y} is associated with a positive weight
(Wn)ay = (Wn)ye Let (wp)y = D (Wn)ay, wn = Y (wy), and (m,)y = (wy)s/wyf'| Suppose
0 <7 <1/(wy)w <R <0 foryall n>1uxy Gan. Use m,, to stand for the numbers of
the vertices, m,, = |V,|. Suppose (X,S?), m € N) is the Markov chain associated to G,, with

transition matrix ), where

Wy /Wy if {z,y} € E,,

(@n)y = (Qn)2 =0 otherwise.

Given an additional killing parameter ¢,, the non-trivial pointed loop measure p?* associated

with the generator —(1 + ¢,)Id + @Q,, has the following expression:

k
pqumps, & = o1 =00 = 1 (110 ) @IR@E QI (6)

Let p, be the corresponding loop measure. We see that the non-trivial (pointed) loop mea-

sures pP* are finite. Set ,, = uff?l) and P = Hg’?;)‘

Our main result is the determination of the limit of the probability under 3, of the set of

loops which cover V,,. We deduce from these results the probability of existence of such loops

in a Poisson process of loops of intensity \_VLHI These limits show the existence of a phase

In fact, m, is the stationary distribution for the associated Markov chain on G,,.
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transition according to the rate of increase of —Inc,. Our main assumptions, which will be
checked in several examples are listed as follows:

(H1) Denote by D,, the maximum degrees in G, and by d,, the minimum degrees. Suppose
the degrees are uniformly bounded from above and below: D, < D < +oo and d,, > d > 0 for
n > 1.

(H2) The weights are uniformly bounded from above and below: 30 < r < R such that 0 <
r <1/(wp)wy < R <00 foralln>1xz,y€V,.

(H3) The empirical distributions of the eigenvalues of the transition matrices @, converge

in distribution to a probability measure v as n — oo.

For example, take V,, = Z¢/nZ?. There is a map from Z? to V,, which maps the vector v to

[v] € V,, (the equivalence class of v). The edge set E,, is defined by
{{[u], [v]} : u,v € Z% and the distance between u and v is 1}.

We give each edge the same weight 1, i.e. (wy,),, = 1 for all {z,y} € E,. It is not hard to
find that D, = d,, = d and we can take R = r = 1. We will show in section 4 that (H3)
holds for this sequence of graph. The limit distribution is given by the self-convolutions of

the semi-circle law.

For the sake of simplicity, we will use C to stand for the event {I covers every vertex}. We

can now state precisely the announced results:
Theorem 6.1.1. We suppose (H1), (H2) and (H3).

a) If lim —iln(cn) <0, then lim B, (C) = 0.

n—oo m?’b n—oo

1
b) If im ——In(c,) = +o00, then lim B, (C) = 1.
n—o0

n—oo n

1
¢) If lim ——1In(c,) = a €0, 00, then

n—oo my,

rzll—{&m”(c) T a— [In(1 — z) v(dx)

2

where [ —In(1 — z)v(dz) € (33752, %].

Corollary 6.1.2. We suppose (H1), (H2) and (H3). Let L™ be the Poisson collection of

loops on G, with intensity — pu,. Suppose lim ———1In(c,) = a. Then, Y lgecy converges
my, n—oo My, leL(m

in distribution to a Poisson random variable with parameter max(a,0) as n tends to infinity.



Remark 19. Suppose lim ———1In(c,) = a. We have a “phase transition” at @ = 0 in the
n—oo mn

following sense:

e For a <0, in the limit, there is no loops covering the whole space i.e. ) 1gecy tends
leL)
to 0 in probability.

e For a > 0, large loops covering the whole space appear in the limit.

The classical covering problem is about the mean covering time C' at which a random walk
on the weighted graph G = (V, E,w) has visited every vertex. Often, one considers the
covering-and-return time CF, which is defined as the first return time to the initial point
after the covering time. Using a spanning tree argument, Theorem 1 in Chapter 6 of [AF]

shows that

T is a spanning tree w
edge ecT €

E'(CT) < way min > L (6.2)
.y

Moreover, Lemma 25 in Chapter 6 of [AE]| shows that maxE"(C*), min E"(C*) and E™(C)
are equivalent up to some constants independent of the Lfndirected Wefghted graphs.
In our problem, we need to use these classical results to deduce an upper bound of the covering
time under the bridge measure p,(:|p(l) = k). More precisely, we consider the conditional
probability of the event C given the length of the loop. Trivially, it is zero for loops with
length smaller than the size of the graph. As the size of the graph G, grows to infinity, it
tends to 1 for length larger than m! where m,, is the size of the graph, see Proposition m
Besides, we need an estimation of the length of the loops, see Proposition [6.2.7 The proof
is based on an upper bound on the transition functions of symmetric Markov processes. It
is related to an estimate on Dirichlet forms, proved in [CKS87|. Proposition 18 of Chapter 6
in [AF] gives the result for regular case through an elementary argument which is used here
to get the estimations for the traces of the transition matrices.
In the end, let us briefly present the plan of the paper. Except for section 6, we assume
(H1), (H2) and (H3). Section 2 is devoted to proving Theorem and Corollary [6.1.2] In
section 3, we show a stability result for the limit distribution v of the eigenvalues of (),, by
Cauchy’s interlacing theorem, see Proposition [6.3.2] and its following remark. As a result, we
obtain that the limit of 3,,(C') does not change if the weights are modified in a subgraph of
G, of size o(m,,). As applications of Theorem , we analyse two examples of graphs: the
case of discrete torus in section 4 and the case of balls in a regular tree in section 5. In the

second example, we show that the empirical distributions of the eigenvalues of the transition



matrices (), converge as n — oo to a purely atomic distribution given by the roots of a class
of polynomials, see Proposition In section 6, we study the complete graph which does
not satisfy (H1). By comparing a modified geometric variable with the covering time of the
coupon collector problem, we get a result different from Theorem and an equivalent of
PB,.(C) if the killing rate is of order n~!, see Theorem [6.6.3]

6.2 The limit of the percentage of non-trivial loops con-

taining all the vertices

We suppose |V,| = n for all n € N, as the result for the case |V,| = m, "=5 oo can be

proved in the same way.
Write the eigenvalues of @), in a non-decreasing order —1 < A\, < --- < A\, ,, <1 (all the

Then

n,i®

n
n

eigenvalues are real because the Markov chain is reversible) and set v, = %Z Ox
i=1

assumption (H3) can be written as follows:

v, converges in distribution to a probability measure v on [—1,1].

Immediately, we have [z v(dz) =0 since Tr@,, =0 Vn € N,.

6.2.1 The d-regular aperiodic case

Suppose that all the graphs G,, are d-regular with weight 1 on every edge and that all the
graphs GG, are aperiodic.

We use bounds for the second largest and the smallest eigenvalues of an irreducible aperiodic
Markov transition matrix stated in [DS91]. To present these bounds, let us introduce some
notations.

A weighted connected finite undirected graph G = (V, E, w) is naturally associated with an

irreducible reversible Markov chain with transition matrix ). Denote by 7 its stationary
D Way
distribution: w, = zy:—w for z € V. Set the normalized weight w by:
zy
z,y
_ Wy
Wy = TQ) = =——.
Ty $Qy Z wxy
7y

For any different x,y € V', there exists at least a self-avoiding path from x to y. Choose one

such path arbitrarily and denote it by 7,,. Define the path length |v,,|,, with respect to w



(which actually depends on w):

|7xy|w = Z 1/wuv

{u,v} €Yy
Define

Kk = g}}%}é Z |7$y|w7Tz7Ty.

{z,yeV:{uv}eyey}
Proposition 6.2.1 (Poincaré inequality [DS91]). The second largest eigenvalue B; of @
satisfies:

fr<1—-1/k
for any choice of (Vay, xz,y € V).
Moreover, if () is aperiodic, for each x € V', there exists at least one path from x to x with

odd number of edges. Choose one such path, namely o,. Define the length of the path related

to w (which is determined by w):
Oalw =Y 1/Wy
{u,v}€oy

Define 7 = max > T2 | 0| o

€ x:0, contains edge e
g

Proposition 2 in [DS91] gives the following lower bound for the smallest eigenvalue:
Proposition 6.2.2 ([DS91]). Suppose Q is aperiodic, then the smallest eigenvalue Bpin of
Q satisfies

2
Bmin Z _1+_
T

for any choice of o, for x € X.
As an application in our sequence of graphs (G,,n > 1), we have the following estimates:

Corollary 6.2.3. Let () be the transition matrix associated with a regqular connected graph

with n vertices, degree d and weight 1.

a) The second largest eigenvalue 5y of Q satisfies:

1
<l-—.
b < dn?

b) If Q is aperiodic, then the smallest eigenvalue B, of Q satisfies:

3dn?’



Proof. In the Poincaré’s inequality, 7 is the stationary probability measure. Specially, in the

case of regular graphs, it is uniformly distributed on vertices and

1

(wn)l‘y = (Wn)a:(Qn)z = %

For the part a), one could choose 7,, to be self-avoiding and consequently its length is no
more than n — 1. Thus, |V4y|w < dn? and

pr<1-— #
For the part b), among all the loop with odd number of edges, there is a loop with minimal
number of edges, namely o. Then o is necessarily self-avoiding. Accordingly, the number of
edges in ¢ is no more than n. Suppose the loop o visits xy. For any z € V, there exists a
self-avoiding path 7,,, from z to zy and its reverse 7,,,. The sum of vV,z,, Yz and o is a
loop containing z with a odd number of edges which is no more than 3n. Thus, |o,|, < 3dn?

and 7 < 3dn?. Therefore,

g + 3dn?

As a consequence of Corollary [6.2.3] we have the following result:

Corollary 6.2.4. If ), is the transition matrix associated with a reqular connected aperiodic

graph with degree d and n vertices, then

lim sup [TrQF —1| =0 Vb > 2.

n—oo kznb

Proof. By Corollary [6.2.3 for any eigenvalue A different from 1, 1 — |A\| > z25. Denote by
Eig(Q,) the collection of eigenvalues with the multiplicities. Recall that the eigenvalue 1 is

simple by Perron-Frobenius theorem. Then, we have

Ty 1= Y N-1=] Y A

AeEig(Qn) ACEig(Qn), \#£1
2
k k
A€Eig(Qn),A#1L
Consequently, lim sup | TrQ* — 1] = 0. ]
n—oo anb

We also need the following bound deduced from Proposition 18 of Chapter 6 in [AF]:



Proposition 6.2.5. Let X" be the simple random walk on a reqular n-vertezx graph, P* [X( " =

z] <10 max(f L) for every vertex x.
Proof. By Proposition 18 of Chapter 6 in [AF], for any x,y

PX™ =y <10k7Y2 k< n

n)

k— TL27

Conditioning with respect to XM we get

n 10
PUXM =y <=, k>n’
n’
We can now prove the following estimates on the length of the loops on G,,.

Proposition 6.2.6. Let u, be the loop measure on a d-reqular connected aperiodic graph

with n vertices defined by equation in the section of basic settings of this chapter:

9 20 n
o ol € In) < e (2 - 1),

10b1Inn
(1+c,)"’

1 1 \*
E\l1+c¢,/) "’

q) %un@ < p(l) <n) € [mzo]

b) Forb>2, u,(p(l) € [n?,n"]) <

¢) Forb>2, u,(p(l) >nb) ~

(]

k>nb

Proof. Let (X ,g"))  denote the simple random walk on G,, and (),, its transition matrix.

a),b) By Proposition [6.2.5, sup P*[X ,5”) z] <10 max( %) Consequently,

0 €)= 3 o (w )

<(s

pin(p(l) € [n?,n%]) = Z % (Z XY = ﬂ) (1 Jicn>

k=n?2 €V

1\ L1 10 _ 10bln
< 2
k n = (1+c,)"



c¢) By Corollary [6.2.4] for b > 2, we have

1 \" 1 1\
pn(p(l) = ZkTer(1+c) NZE(lecn) as n — 0o.
k>nb

k>nb

. In the

(]

k=2

n—1 1 1 k i 1 1 2 ) n 1 i
d) mn(2<pl) <n)=) + 7o ) e 5 10 TrQnaZETrQn

case of the regular graph with degree d, TrQ? > % While by Proposition [6.2.5],

1
TrQF < 10n Vk € N. As a consequence,

Vk

]

Proposition 6.2.7. Assume that for every n € N, G,, is a d-regular connected aperiodic

graph with n-vertices and assume that (H3) holds.

a.1) [fhmlnfcn>0 then lim B, (p(l) <n) = 1.

n—oo

a.2) If hm ¢, =0 and lim ——ln(cn) =0, then lim B, (p(l) <n) = 1.

n—oo n—oo

1
b) If lim ¢, =0 and lim ——ln(cn) oo, then lim P, (p(I) > nt) = 1.

n—00 n—00 -

1
c) If IL% ¢, =0 and lim ——In(c,) = a €0, 00|, then

n—oo N

lim 9B, (p(l) > n*) = lim R, (p(l) > n) = - .
dm B (p(l) 2 n7) = T 3 (p(0) 2 ) = o
Besides, [ —In(1 —z)v(dz) € [55,20].
Proof.
a.1) and a.2) By the estimations in Proposition [6.2.6] we have
20n
1) un(p(l) € [n,n?]) < :
40lnn
2) pn(p(l 2t < ———
) inplD) € 0] < o,
1 k 00 1 k
n l Y~ " 7 =-1 n In(1 n)s
3) palo(l) > ) k:(1+> <33 (1) = +h0ra)

4) a(p(l) < n) > ﬁ



As a summary, we have p,(p(l) > n) = o(u,(p(l) < n)). Therefore,

lim P, (p(l) < n) = lim pa(p(l) <n)

b 2 o) < ) + P > )

b) In this case, lim sup |[(1 + ¢,)* — 1| = 0. By Proposition [6.2.6] we have

n—oo k<n4

uamozﬁﬂ~§:%(1j%>k

k>n4

i) 2l
k21k‘ 1+e¢, k<n4l€ 1+¢,
——ln(c)—i—ln(l—l—c)—z:1 Ly
= n n k<n4k‘ 1+Cn .

Since

1/ 1 \* 1
ZE (1+0n> ~ Z EN41nn = o(—1Inn), we have u,(p(l) > n*) ~

k<n? k<n4

—In(e,). By Proposition [6.2.6, we know pu,(p(l) < n*) = O(n). Then,

pn(p(l) < n') = o(=In(cs)) = o(pn(p(l) = n*)).

Therefore,

lim B, (p(I) > n*) = lim =

c) If lim ¢, =0 and lim —<In(c,) = a €]0, 00, then

n—o0 n—oo
k
1
-1 =0.
<1—|—cn) |

n
We have assumed that £ " 6,,, converges in distribution to the probability measure
=1

v. Then for k fixed,

lim sup
n—oo kS?’L4

7

Tr Q* 1
0 < lim L@ = lim —()\Z’1+'-~+>\Z,n) :/xkv(dx)_

n—00 n n—oo N

Note that

m s L0 < (4.1) = fim B S 1 ()

A—=00 oo N 0 n—oo n
n
1TrQF
< lim limsup E -
—00  noo k n



T 1
By Proposition [6.2.5] rQn < \/_OE for k < n?. Therefore,

n
lim li L [)e|A <l -~ 10 =0
i Lim sup i (p(l) € [A;n]) < lim > o =
Consequently,
2 2, A
O ERn) L (el € 2.4
n—00 n A—00 n—00 n
~1
s k
—f}grgoz%/x v(dz).
k=2
S L L@ el <20 for n 1 d [a*v(dz) > 0, we b
ince ———— < —u, , r rge an v > 0,
ce I TERE (P n or n large a zhv(dx we have
that
= 1
Z%/x% v(dx) < 20.
k=1
=1 , 1 :
Note that Z P <2 YR for |#| < 1 and supp(v) C [—1,1]. By the dominated
k=2 —

convergence theorem, we have

lim n(p(D) € [2,m]) :/(—ln(l — 1) — x)v(dr)

=— /ln(l —x)v(dx) € [%,QO]'

By Proposition [6.2.6, we have ju,(p(l) € [n,n%]) = o(n) and

pn(p(l) 2 n*) ~ ) ;1 (ch) g% (H%)’“_”f% <1icn)k

k>n4 k=1

i1\
=—Ilnc, +In(l+¢,) — Z ( ) ~ —an.
k=1 Cn

Therefore,

Yim 3 (p(0) 2 ) = lim Pl 2 m) = L=

Proposition 6.2.8. Take e > 0, lim sup |[B,(C|p(l) =k)— 1] =0.

N0 > p3+e



Proof. According to Theorem 1 in Chapter 6 of the book [AF], the expectation of the “cover-

and-retur” time is bounded from above by dn(n — 1). To be more precise, define the hitting

time by Tgfn) = inf{m >0, x5 = y}, define the covering time by C™ = ax T;") and define
ye n

the cover-and-return time C’J(rn) = inf{m > C™ . X\ = Xén)}. Then, Theorem 1 in [AF]
states that

maXEx[CEL")] <dn(n—1). (6.3)
dn(n — 1
By Markov’s inequality, max P* [C’J(rn) > n?te) < %
T n2Te

P, (I does not cover every vertex | p(l) = k)

_ *Bu(l does not cover every vertex, p(l) = k)

P (p(l) = k)
_ fin(l does not cover every vertex, p(l) = k)
pn(p(l) = k)
SRS 1 1 : k
By the definition?| of fi,, pn(p(l) = k) = P\ Tr @, and
Cn

tn (1 does not cover every vertex, p(l) = k)

k

1 1 " '

~k (1 i ) Z P* [X,ﬁ ) = x, X does not cover every vertex before time k.
Cn

Therefore,

P, (I does not cover every vertex | p(l) = k)

1
= O :g‘; P*[X lgn) =z, X does not cover every vertex before time k|
1 2 ()
< Tor > ey > i
" zeVn,
n dn?(n —1 d
We have that Z ]P’m[C’J(r) > k| < n (Z ) < —. By Corollary [6.2.4, Tr Q% tends to 1
n3te ne
xGVn
uniformly for k > n3+te,
Therefore, lim sup |B,(C|p(l) =k)—1] =0. O

N—00 f~p3+e

Theorem for a sequence of d-regular aperiodic connected graphs follows from Proposition
and Proposition [6.2.8] Indeed,

a) If lim —2% <0, then lim PB,[C] < lim P,[p(l) > n] = 0.

n—oo n—o0 n—oo

2See equation 1) in the introduction.



b) If lim —2% = oo, then
n—oo

lim B,[C] > lim 9, [C.p(1) > ') TS L o, [p(1) > 0] = 1,

n—oo

c) Suppose lim —2& = q €]0,00[. Then,

n—0o0

nli_}n;)i,*.% [C,p(1) € [n,n*]] < lim B, [p(I) € [n,n*]] = 0.

n—oo

Thus,

lim B, (€] = lim $,[C, p(1) > n']
n—00 n—o0
By Proposition (2. lim B, [p(l) > n4] .

n—00 a — 1Il(]_ — ZE)I/(dl’) '

We provide a proof of Corollary in this setting as follows:

Proof of Corollary[6.1.9 The argument in Proposition [6.2.7] actually gives the following

result:
1 1
lim — 1, (p(l) > n*) = lim —p,(p(I) > n) = max(a,0).
n—oo N, n—oo 1
. . un(C)
By Proposition [6.2.8] n11_>r£10 = 7}1—{20 ﬁun(p(l) > n*) = max(a, 0). Therefore, Z() Luecy
leLtn

converges in distribution to a Poisson random variable with parameter max(a,0) as n tends

to infinity. O

6.2.2 Non-regular aperiodic case, with unit weights

In this section, we still suppose that all the weights are 1 but the graph is not necessarily
d-regular. We also assume that the graphs are aperiodic. Corollary [6.2.3, Corollary
and Proposition [6.2.8| remain valid except that one should replace the universal degree d by
the maximum degree D everywhere.

The only statement in the previous section that has to be changed is Proposition based
on Proposition 18, Chapter 6 in [AF|. We use instead the following upper bound:

Proposition 6.2.9. Given any unweighted (all the weights are 1) graph with n vertices,

mazimum degree D and minimum degree d, let (X, k > 0) be the simple random walk on the

2.

graph. For k > 1, one has

14D?
Z]P’x[Xk:a:]ﬁ 2 max(

<



Proof. Proposition 18 of Chapter 6 in [AF] states that P*(X, = y) < \1/—% for any vertex x,y

in a regular graph and for any £ < n

2. Since our graph is not regular, we cannot directly

apply this result. Nevertheless, the proof used there still works with a little modification and

it is repeated here, for self containedness.

Use N;(A€) to stand for the number of times the chain visits the vertex ¢ before hitting A°.

1)

Suppose 0 < |A| < n, we will show that E‘[N;(A¢)] < 5D|A|/d:
EN;(A%)] = 1/P Ty < T;7] = d(i)r(i, A°).

Tyc is the hitting time for A° and T;" is the first return time for i. d(i) < D is the
degree of the vertex ¢ and r(i, A°) is the effective resistance between i and A° which is
bounded from above by 5|A|/d. For the definition of the effective resistance and the

relation between electrical network and reversible Markov chain, please refer to [LP].

In order to show (i, A°) < 5|A|/d, let us choose a shortest path from i to A°, namely
i =1 — -+ — ipyq such that iy,... 9 € A and ixq € A If k=1, (i, A°) < 1/d.
For k > 1, consider B the subset of A which consists of the vertices adjoint to some

{i:5=1,....k—1}, ie.
B={yeA:31<j<k-—1,yis adjoint to ¢;}.

For each b € B, b has at most 3 neighbours in {iy,...,ix1}. Otherwise, one could
find a path from i to A° containing b which is shorter than the path i; — - -+ — i41.
Therefore,
1t 1
|B| Z § Z Z 1{y is adjoint to i;} Z gd(k’ - ]-)
j=1 yeB

where the second inequality comes from the fact that the neighbourhoods of i1, ..., i5_1
are all contained in B. Moreover, B is contained in A and hence |A| > |B| > d(k—1)/3.

It implies that

as long as d < 2| A|. For the case d > 2|A|, we know that there exists at least d — | A|

1 2 A
edges from i to A°. Thus, r(i, A°) < 1A S d < y

. D? k
We will show that Z ZIP”[X,: =1 <1+ 6¥ max (ﬁ’ \/E)
i i<k

Let 7 stand for the invariant probability of the Markov chain and let d(j) be the degree



D
of vertex j. Then m; = —} For that reason,

S d(j) T | Dn’dn
J
d _. D
P — < P = = < —.
; o P Xy =] SPPX =i =m <
j D 1 < kD? : j
Asaresult,Z]P”[ =i < —and 30 Y P[Xp =] < 5 Set A= {j: Y P[X, =
t<k 3 t<k

J
2

k D
i] > s}. Then we have |A| < T For |A| < n, by splitting the chain at the hitting
time T'4c, we have

3
SN, =] < 5+ EN(A9) <5+ 2D

t<k

kD?
Take s = | YAD® | . Then for k < n?, we have |A] < ST and
s

S P = i) < VR 450

Vil
1<1 —.
d)+ <1+6 kd2
t<k

For k > n?, take s = [X22] 4 1, then |A| < n and

i kD? D D%k
> PX, =i < s 14O <146,
t<k

Finally, ,
D k

Z]P” i] <1+ 6— max(— \/E)

d? n’
t<k
3) We will show that S leﬂ ] 14DQ/de k> 1
W SNnow a —F 10T .
e Vk

Let @) stand for the trans1t10n matrix and let 1 = A; > --- A\, > —1 be the eigenvalues
of Q. Then, Y P{Xy, = i] + > P Xopy1 = i = Tr Q% + Tr Q* ! = Z AE(1+N;). As

K] K]
a result, S, decreases when k increases. Therefore,

D PiXop =] + P X = 4]

< > P/X, = i]
k+1 i 1<2k+1
n D? 2k + 1
< 1 —
_k;—|—1< +6d2max( - ,\/2k+1)>

2
Finally, for £ > 1, ZIP’i[Xk =1 < 14D max (%, 1).

3|x] is the largest integer not greater than .



Finally, Theorem [6.1.1] and Corollary remain valid.

6.2.3 General case

We consider weighted graphs satisfying (H1), (H2) and (H3).

Weighted aperiodic case

Let us first consider weighted aperiodic graphs satisfying (H1), (H2) and (H3). Compared
to the uniform 1—weight case, the proof is exactly the same with a few changes in the
coefficients. The main idea of the proof of Corollary [6.2.3 remains and the spectral gap of
Q,, is still of order O(n?). Consequently, Corollary and its proof remain the same.

For Proposition , replace D by D/r and d by d/R. The proof is similar.

For Proposition [6.2.0], there are a few changes in the coefficients:

Proposition 6.2.10. Consider a sequence of connect n-vertez graphs G, satisfying (H1),
(H2) and (H3).

< D?*R?*28n/y/n —1 — 28

— d%r? (1+c,)n ’

14D?R?> blnn
d?r? (1 + ¢,

a) pin(p(l) € [n,n7])

b) Forb> 2 fired, u,(p(l) € [n*,n"]) <

k
c) Forb>2ﬁxed,,un(p(l)2nb)wZ%< ! );

k>nb 1 T Cn

1 2 D?R?
d) —pa(2 < p(i 28
) i@ <pll) <n)€ [2(1+cn)2R2D2 d2r2]

For Proposition m, just replace [ —In(1 — z)v(dx) € 55, 20] by

r?  28D*R?
/—ln(l —z)v(dr) € [QRQDQ’ 2 ]
For Proposition [6.2.8] one should use the upper bound of the expectation of the covering-
and-return time for a general reversible Markov process stated in Theorem 1 in Chapter 6 of
the book [AF] and recalled in the introduction (inequality (6.2)). By the assumptions (H1)
and (H2), we have w%y <R, |E,| < Dn and ) w,, < Dn/r. Therefore,
Y

1 DRn?
E(CH) < wa,  min 3 < 2
x7y

T is a spanning tree w r
edge {z,y}eT Y



Thus, the result of Proposition [6.2.8 is still valid. Finally, for Theorem [6.1.1] and Corollary
6.1.2, nothing needs to be changed.

Weighted Periodic case

Under the assumption (H1), (H2) and (H3), we consider periodic graphs. Then the period
must be 2 since Tr@Q? > 0. The largest eigenvalue of @, is 1 and the smallest one is

—1. In this case, one can divide the vertices into two parts as follows: fix a vertex x, set
A, ={y eV, : > PrXy =y| >0} and set B, = V,, — A,,. This partition V,, = {4,, B,}

k>0
does not depend on the choice of . Moreover, if the initial distribution is supported on A,

(resp. B,), then the chain (X"

om» M € N) is a reversible aperiodic Markov chain on A,, (resp.

B,,) with the transition matrix Q2|4, (resp. Q2|p,) and the stationary distribution ﬁﬂ A,

1 : - 2 2 -
(resp. mﬂ B, ). A direct consequence is that Q2|4 x5, and Q2|p,xa, are zero matrices.

If one puts the eigenvalues of Q?|4, and Q?|p, together, one gets exactly the squares of the
1— AP
2
gap proposition as Corollary by considering the aperiodic Markov chains on A,, and

eigenvalues of @),,. Since 1 — [A\| > for [A| < 1, one can still get a similar spectrum
B,,. (In fact, as aperiodic reversible Markov chains, they are related to weighted undirected
aperiodic graphs. Moreover, one can check that the associated graphs satisfy (H1) and (H2).)
Then, instead of Corollary [6.2.4] we have

lim sup | TrQF — 2| =0 and TrQF =0 for k odd.

=00 k>nb and k is even

For Proposition [6.2.8] one considers only the loops with even length and the proof remains

the same. For the statement of Proposition [6.2.7] and Theorem [6.1.1] just replace

1 r?  28D*R?
/—ln(l —z)v(dr) € [@’20} by /—111(1 — z)v(dx) € STRD? e

The proof is the same except for little changes in the constants. Finally, Corollary is

unchanged.

6.3 A stability result

Proposition 6.3.1. Assume that ), is a m, X m, transition matriz, the following two

statements are equivalent:

a) The empirical distributions v, of the eigenvalues of the transition matrices @, converge

tov as n — o0.



1
b) Forall0 < p <1, ———Indet(1 — pQ,) converges to [ —In(1 — pz)v(dx) as n — oo.
m

n

Proof.
e a)=—>b):

. —Indet(1 — pQn) 1 r(Qn)p"
1 = lim ——— Trin(1 — p@Q,) = 1 —n
nl—>nolo My, n1—>Hc}o My, T In( pQn) = lim Z m,k

n

ominate COHVer ence T K
dominated converg E lim — Q E / = /—ln(l — pz)v(dz).
n—>00

e b)=—a): The distributions of the eigenvalues of the transition matrices @, form a
tight sequence of probability measures on [—1,1]. In order to show its convergence, it
is enough to show that the limits are the same for all convergent subsequences. Finally,
for two probabilities v and 7 on [-1,1], by comparing the derivatives of the two parts

with respect to p, it can be showed that

“/ —In(1 — pz)v(de) = /— In(1 — pz)o(dz) for all p € [0, 1[.”
implies that
“/xky(dx) = /xkﬁ(dx) for all k > 1.7,

Therefore, v = v.
m

Recall (Cauchy’s interlacing theorem). Let S be a n x n Hilbert matriz, i.e. S' = S. Let
7 :{1,...,n} = R" strictly positive and M, be the diagonal matriz such that (M;)! = 7(7)
fori=1,...,n. Let A= M,S. For each principal minor of A, its eigenvalues are real. Let
F c{l,...,n}, |F| =m and B = A|pxr. If the eigenvalues of A are oy < -+ < «,, and
those of B are By < -+ < B, then for all j=1,...,m,

Q; S ﬁj S Ap—me4j-

One can find the interlacing theorem as Theorem 4.3.15 in [HLJ90] [
We are ready to state the following stability result.

4The theorem is stated for 7 = 1. By using Theorem 4.3.15 in [HJ90] for M, 1,2 AM_1/2, we get this

trivial generalization.



Proposition 6.3.2. Suppose (G,, = (V,,, By, w,,),n > 1) is a sequence of undirected weighted

graphs. We assume G,, has m,, vertices V,,, F, is the set of edges and w,, the weights of the

edges (if e = (e—, e+) is not an edge in the graph, we put we_ .. = 0). Let w, be a measure on
Wn)ay/(Wn)e tf 12, y} € By

Vi, defined by (wn)e = D _(Wn)ey- Define (Qn); = (Wn)ay/(@a)e i {2y} Suppose

y 0 otherwise.
(G = (V!,El w.),n > 1) is a sequence of undirected weighted sub-graphs such that V| C
Vo, B, C E,, W) =W, |g foralln. Let a, = |E,| —|E,|. Write the eigenvalues of Q,, (resp.

n) in non-decreasing order Ay < - < Ay, (resp. Ay <00 <AL ). Define
1
Up = _(5>\n,1 + e +5)\

n

n,Mn )
n

1
a,nd I/;L = W(CSA;A —+ -4 5)‘;,171’ )
Suppose: a, = o(m,). Then

lim v, =v & lim v, = v.

We will explain the meaning of “stability” in the following remark.

/

') is a sub-

Remark 20. In the above proposition, we consider the case that G, = (V,), E/,w

graph of G,, = (V,,, E,,,w,,) for all n > 1. If G/, is not a sub-graph of G, for some n > 1,

we consider the biggest common sub-graph G = (V) E//,w!) of G,, and G/, for all n > 1.

By applying Proposition to the pair of sequences ((G,,n > 1),(G”,n > 1)) and to the

pair of sequences ((Gl,,n > 1), (G, n > 1)), we see that a similar result as Proposition [6.3.2]
1

holds for the pair of sequences ((G,,n > 1), (G’,,n > 1)) provided that
|Enl = [En] + |EL] = By | = o([Val). (%)

Then suppose we have two sequences of graphs (G,,n > 1) and (G),,n > 1) such that the
condition (*) holds for both of them. If the sequence of graphs (G,,n > 1) satisfies (H3),
then (G),,n > 1) also satisfies (H3). Moreover, the corresponding sequences of empirical
distributions of eigenvalues have the same limit distribution v. The word “stability” means

the above result.

Proof of Proposition[6.3.3. Since a, = o(m,), lim Mn ., By Proposition [6.3.1} it is

enough to prove that for all p > 0,

lim —— (Indet(1 — pQy) — Indet(1 — pQ’,)) = 0.

n—00 My,

Since a,, = o(my,,), for n large enough, there exists A, C V,, such that

Qnla, = Qula, and [Va] = [An| < ap.



It is enough to show that

lim - (Indet(l — p@,) — Indet(l — pQn|a,)) =0
n—oo "
lim - (Indet(l — p@,) — Indet(1 — pQ|4,)) = 0.
n—oo M

In the following, we will give the proof for the first limit as the second can be proved in the

same way. Let 3; < --- < 4, be the eigenvalues of Qy,|4,. Then,

Indet(1 — pQ,) — Indet(1 — pQn|a,)
=In(1 —pAp1) + -+ In(1 = pApm,) —In(1 = pBi) — -+ = In(1 — pBla,)

By Cauchy’s interlacing theorem, we have

|An|
o > In(l—pAy;) —In(l—ps;) > 0;
i=1

|An|

o > In(1— pAuisvil-ja.) — In(l —pB;) <0.
i=1
Consequently,
[Va| [Vi|—=|An]
Indet(1 - pQu) — ndet(l = pQula) €[ 3 W= pAs)s > (1= pAn)]
i=1+|Ay| i=1

Since —1 < A1 < - < Ay, <14

Indet(1 — p@Q,) — Indet(1 — pQy|a,)
€ (IVal = [An])[In(1 = p), In(1 + p)] C [In(1 = p)an, In(1 + p)ay]

1
Since a,, = o(m,), lim —(Indet(1 — pQ,) — Indet(1 — pQn|a,)) = 0. O

n—0co0 My,

Remark 21. If lirg inf 2 > 0 and My, ~ mp, (Vn), and (v),), can converge towards two
different measurez. O1::01“77(pgb<arnple, let (G, = (Vy, By, wy),n > 2) be a sequence of graphs with
equal edge weight 1. Here, V,, = {1,...,3n}, E,1 = {{1,2},{2,3}...,{3n—1,3n},{3n,1}}
and E, 5 = {{1,3},{4,6},...,{3n — 2,3n}}. Take E,, = E, 1 U E, 5. The following picture

is a representation of Giy:



Let (G], = (V! El,,w!),n > 2) be another sequence of graphs with weights 1 on each edge
such that V! = V,, and E| = E,;, i.e. G is the discrete circle with 3n vertices. By

Proposition 2l A1 > —121. To prove this lower bound, choose o3;_5 = 03;_1 = 03; to be
the cycle 3t — 2 — 3i — 1 — 32’ — 3i—2fori=1,...,n. Then, (m,)3i-1 = 72, (M)3i—2 =
()30 = 8% for i = 1,...,n. Moreover, |0,|y,, = 24n and 7 = 24. Therefore, \,,; > —%. It

implies that v = lim v, satisfies v[—1, —35[= 0. While for (G],,n > 2), lim v/, exists and
n—oo

n—oo
v, (dy) =

1{ye}—1,1[}—ﬂﬂdy
6.4 Example: discrete torus

Let V,, be the discrete torus Z4/nZ?. There is a map from Z¢ to V,, which maps the vector
v to [v] € V,,(the equivalence class of v). The edge set F, is defined by

{{[u], [v]} : u,v € Z* and the distance between u and v is 1}.

Finally, give each edge the same weight 1. Let ()4, be the transition matrix. We will find
the limit distribution of the eigenvalues as follows:

Let (Pynt,t > 0) stand for the semi-group of a simple random walk on Z?/nZ? with jumping
rate d. Then Py, ; = e~ I=Qan)  Since it can be viewed as d independent simple random

dP,
— 2 = (1 = Qun),

walks on Z¢/nZ with jumping rate 1, Py, = P& nt As — 7

1
Qd,nzE(Ql,n®l®~-®l+~-+I®~-®I®Q1,n).

For d = 1, the eigenvalues of ()4, are cos —Wpl for py = 0,...,n — 1. Therefore, in
n

) 1 2m 2w
general, the eigenvalues of g, are p cos | —p1 | +---+cos —pd for p1,...,pq €
n

{0,...,n—1}. In fact, the eigenvectors are { f,, . p, : P1,--.,pa = 0,...,n—1} where f,,
{0,....,n—1}* — Csuch that f,, _,.(z1,...,24) = exp (2Z (plml +- —I—pdxd)). Rewrite the

1
— ~d
eigenvalues in non-increasing order A, ..., A,e. Define v/¢ = W E 0y, and 7, = o g Od, -
Then 7¢ = (v})*® (x stands for the convolution). For f € C([—1,1]),

n—1
ot = 5 (o (2)

1

/f(cos(27m: ) dx = / fly %y?dy.

0 1-1,1]



1

/1 —y?

d
T d __ *d o
v = nlglg() v, = m*® where m(dy) = 1{?),6[,1/61,1/(1]}—7T Ty dy.
The same argument as in the case d = 1 shows that:

/—ln(l —2)v(dz) = / “In (1 _ cos@ran) + - i C°S<2”d>) da: - dza.

Therefore, as n — 0o, v} converges to Liye-1,13 dy. Consequently,

[0,1]¢

By Theorem [6.1.1], we obtain the following description of the proportion of loops covering
72 nZ? as n tends to +oo:

Proposition 6.4.1.

a) If lim —— <0, then lim 5, (C) = 0.
n—oo n n—oo

b) If lim IZC = 00, then lim B, (C) = 1.
n—00 n n—00

“Ine,
c) ]f,}if;o nrizc = a €0, 00[, then
lim 96, (C) ]
im P,,(C) = ‘ ‘
n—oo a+ [ —ln(l— ErEEeteosCridy gy . g,

[0,1)¢

For d =1, the above limit equals

a+1n2

6.5 Example: the balls in a regular tree

Let T be an infinite regular tree with degree d. For any pair of vertices x, y in the tree, there
is a unique path 7., joining x and y. The graph distance between x and y is the number
of edges in that path. Fix a vertex r, let GG,, be the balls with radius n centered at r. We
give uniform unit weight on each edge. To be more precise, let us fix some notations in the

following definition.

Definition 6.5.1. Define G,, = (V,,, E,,, w,,) with depth n by recurrence. For all n, w,, gives
equal weight 1 for every edge in E,. Define Vy = {r}, Ey = ¢. Define V} = {r,1,...,d},
Ey = {{r,1},...,{r,d}}. Once G, is well-defined for n < k, define Gy, as follows: Vi1 =
Vi U(Ve\ V1) x{1,...,d—1}) and Ep1 = Ex J{{v, (v,5)} v € Vi\Vieq, 5 =1,...,d—1}.



The following picture is for d = 3,n = 3.

(1,1) (1,2) (2,1) (2,2) (3,1) (3,2)
/ N\ / N\ \ / N\ / N\ / N\
(LLD)(1,1,2)(1,2,1)(1,2,2)(2,1,1)(2,1,2)(2,2,1)(2,2,2) (3,1,1)(3,1,2) (3,2,1) (3,2,2)

Let m,, = |V,]|, then

dd-1"=2 1 o
mo=1landm,=1+dd—-1)°+---+dd-1)""= =2
1+2n d=2.
Let QQqn be the transition matrix for the graph G,. Let v4, be the distribution of the
eigenvalues of (Qq,. The following two propositions describe the limit distribution of the

eigenvalues of (g,.

Proposition 6.5.1. For d > 3, the distribution of the eigenvalues of Qq, converges to a

purely atomic distribution v supported on [—2¥— 2¥<

] as n — oco. To be more precise,

o Let O(M,0),...,0(M, M) be the roots of the equation (d — 1)sin((M + 2)0) = sin(M0)
in ]0, [ and A\(M, i) = 2@ cos(Q(M,i)) fori=0,...,M. Then,

o) (d . )2 M
v=1> (4= 1y2e > -
M=0 =0

. /—ln(l—x)y(dx):di11n<di1>.

Proof. To prove the convergence, it is enough to show that the moments of the probability
distribution (v4,), converges as n — oo, i.e. |‘}—7Z|T1r(62(17,l)’“ converges as n — oo for all
k > 0. Denote by W; the collection of vertices at distance i away from the root r. The total
number of vertices in W; is d(d — 1)"~* for 4 > 1 and [Wy| = 1. Suppose x € W,,_; with a
fixed I € N, ((Q4.,)*)% does not depend on z or n as long as n > [ + k/2. It implies the
uniform convergence of ((Q.,)*)% as n — oo for z € W,,_;. Denote the limit by P(k,l). As
(Woi| = d(d — 1)"1 and |V,| = 4022

lim Wi __d=2
n=oo V| (d— 1)1

As a consequence,
. 1 k d—2
lim m Tr(Qun)" = Z mp(lﬁ ).

n—00
leN



Consequently, for d > 3, the distribution of the eigenvalues of )4, converges to v on [—1,1] as
n — 0o. Then, our next task is to identify those P(k,[). We know that P(k,1) = ((Qan)*)*
forn > 1+ k/2 and z € W,,_;. Let (Xf,?))m be the associated Markov chain on G,. For
n>1+k/2and x € W,_y, P(k,l) = IP’“"[X,E,n) = z|. Define Uy, = qininkd(Xén),r). By using

the symmetry, a direct calculation gives that

Pr X € Wl i|Uy = u] = (d — 1)" 7P (X" = 2|U, = .

Therefore,
1
PPX, " =z]=E 1{X]gn>ewn_l}m} :
Define V;{") = n — d(Xf:f),T) for m € N. Then, Y™ is a Markov chain on {0,1,...,n} with
transition matrix ((T(”))§, i,j=0,...,n):
0 1 0 0]
1 d—1
a 0 7
7™ — | - : 0
1o a1
d ©d
0 0 1 0

Define M) = max, Y™ We can express P(k,1) in terms of Y™ for n > 1+ k/2:

%
i=1,...,

1

Pk, 1) = P = o] =P ¥ =1, s

Consider the Markov chain Y on N with the transition matrix (T;, i,j € N):

1 0
0 d—1

(e}
.&|

O Al
Ul

Conditionally on Yk(") =1l for n > 1+ k/2, we have M} < n and (Yj(n),j =1,...,k) has the

same law as (Y;,j = 1,..., k). Therefore,

1

P(k,1) =Py, =1, m]

®Recall that the graph distance d(y, ) is the length of the shortest path joining y to the root r. In other
words, if y € W,,, then d(y,r) = m. Here, Uy, is the highest level reached by the Markov chain up to time k.



1

PY, =1, My = M]

(d— 1\M—1
= (d—1)M
1
- W(PZ[YkZLMkSM]—]P’I[Yk:l,]\/[kSM_l])
M>I
1 1
=S PV, =L, M <M _
= Y, =1, M < M] ((d— M- (d— 1)M+1—l>
d_QZPl[Y—lY'sk'lleda’c [M +1,n]] 1
d_lez PR ! (d—1)M-1
I-1 ]\;(( [0, 2 x0,.03)"); a T
Td—1 MZZI((S’{O ..... M} x{o,..., M}) ) m
where ] _
1
0 7 0
1 d—1
g — | Vd 0 d
0 v

As a symmetric transition matrix, S|, . ayxfo,..m3 = Qi AvQy where Q'Q = Id and

Ay =

A(M, M)

(A(M,0))*
Then, (S|qo,...myxfo,...m3)" = Qi Qus. Define the atomic dis-
(A(M, M))*

----------

d—2 d—2
V:ZZ (d—l)l“ (d_1>M+1—lVMl

leN le
Z —1) 2+M Z Vil
MeN <M
:Z _12+MZ(5/\M’L)
ren (

Next, we will give a more precise description of those A(M,i) for 0 < i < M. De-

1
fine By(\) = det(\ - Id — Sljo, _myxqo,..m3)- Then, By(A) = A, Bl(A):)\Q—E and



%BM(A). Therefore, By (\) = C1(A)(21(A\)M + Co(N)(29(X))M

)
At/ A2 - —4“32”) if A2 > D)

Bir+a(A) = ABurt1(A) —

where

N =

z1(\) =
e x4 —A2+M) if A2 < 2L
2 d? 4z
\
4
L v 4(@;1)) if A2 > D),
To(A) =
2( ) 1 . a2 4(d1)) if )\2 < 4(d—1) ,
2 d 2
\
[\ 22 _1 4(d—1)
221 \o _
5 + —W lf )\ > d2 9
Ci(N) =14 3 if \2 = 2
A %2_% 2 < 4(d-1) .
\ 2 )\2+4(¢ig1) d?
( A2 1
A T3 e 2 o Ad-1)
2 )\22_4(3—1) if A > a2
Co(A) = ¢ 2 if A2 = 2D
A+i.i if A2 < -1

For \2 > 4(?1;1), x1,22,C1,Cy > 0and By (A) > 0. As aresult, the eigenvalues of S|y, . a1 x0,...m}
are contained in | — 2v/d—1,2y/d—1[. For A> < X0 | = |2y = Y&L n po-
lar coordinates z1(\) = Y&Le¥® and z5(\) = Y4Le=®N where (A) €]0,7[. We have

\ =21 + 29 = 2¥9%L cos(6). In particular, there is a bijection between \ and 6 if 6 €]0, 7| or
d

A2 < 4(62—51) equivalently. As a function of 0,

(d—1)sin((M +2)0) — sin(M6) [Vd—1\"
BM = - ,9 E]O, 71'[.
dv/d — 1sin(6) d
Hence, By = 0 iff. Fy(0) o/ (d —1)sin((M + 2)0) — sin(M60) = 0. Note that Bj; has at
most M + 1 roots. Consequently, Fj; has at most M + 1 roots in |0, 7[. Since Fi(g575) >
0, FM(ﬁ) < 07FM(W5+4) > O,FM(ﬁ) < 0,..., the M + 1 zeros of By(#) are located

in the following M + 1 open intervals:

] 1 3 H 3 5 [ ]2M+12M+3
OM +4"2M +472M +4"2M +47 " 2M + 4" 2M + 4

[

As a consequence, we get that supp(v) = [—2—V§l’1, 2—@3’1]. Finally, we calculate

/— In(1 —z)v(dx) :



/—ln(l—x)y(x):—z _12+MZI (1 —X(M, 1))

MGN

d—
:—Z(C;_lewlndet([ Slt0,... Myx{0,...M})

B (d —2)*

= — Z —(d— 1)2+M lnBM(l)

R N e N T A
et (( a ) )
- ME-2? | (d-1

-~ S e ()

L (. d
“d—1"\d=1)"

Proposition 6.5.2. For d = 2, the distribution of the eigenvalues of ()2, converges to the

O

semi-circle law v on [—1,1] as n — oo. As a result, [ —In(1 — z)v(dz) = In(2).

Proof. In the discrete circle, the empirical distribution of the eigenvalues converges to the
circular law v on [—1, 1] defined by v(dx) = 1{16[,1,1]}7#%7 dx. As a consequence of Propo-
sition the distribution of the eigenvalues of )2, converges to the circular law as the

difference between these two graphs is small. O]

By Theorem [6.1.1] we obtain the following result for the proportion of loops covering the ball

with radius n of the regular tree T" as n tends to oo:

Proposition 6.5.3.

o ford>3:
If li L 1 <0, l 0
o) If fim — gy inen <0, Jim Bal€) =
: 1 :
VA e = oo I PO =1
c) [fnli_{go—(d_ Ty Ine, 10, 00|
qd=2
lim B, (C) = d
L 1 e =

o Ford=2:



—Inec,

a) If lim <0, lim B, (C) =0.
n—oo 2N n—o00
. —lInc, . B
VU T =0 PO =
. —lInc,
c) Ifnh_{glo 5 =@ €0, ool
lim ,,(C) = ——
n—oo " In24a’

6.6 The case of the complete graph

Let (G, = (V,, Ep,w,,)) be the complete graph of n vertices and weights 1 on each edge.
Recall that we study the asymptotic behavior of 9, (C), the proportion of loops covering
(G,,. Since there is no universal degree bound, the result could not be derived from Theorem
[6.1.1] In fact, the distribution of the length of the loops is quite different: the loops of length
between m,, and m? is no longer negligible.

Instead, we use a different method to analyse this problem: we compare the covering time
of the coupon collector problem and an independent modified geometric variable. The later

one is very close to the distribution of the length of the loop.

Let us first explain the reason for which we can reduce our problem to the classical coupon
collector problem as follows: Let (X ,g"), k > 1) be the simple random walk on the complete
graph with uniform initial distribution. We denote by IP’,(:) the law of (X ](”), j=1,....k).
Then, for our covering problem, these two models are very close to each other in the following

sense:

Lemma 6.6.1. Let IP’,(:L) (C) be the probability that (Xl(n), . ,X,gn)) covers the graph G,,. Then,
P,gn) (C) and PB,.(C|p(l) = k) are equivalent. More precisely,

P (Clp(l) = k).

P(C) < a(Clp(l) = )

n) n—2

P (C) >

n

Proof. Define ka) = {(x1,...,2) € {1,....n}* : @y # 21,25 # X9,..., 7 # 741} and
Sék) = {(z1,...,2x) € {1,....n}* 1 @1 # 2p, 20 # 21,73 # To,..., 7, # Tp_1}. Then,
ISP = n(n — 1)"1 and |S¥| = (n — 1)% + (=1)*(n — 1). Notice that B, (-|p(l) = k) is the
uniform distribution on Sék) and ]P’;") is the uniform distribution on Sik). Consequently,

E#@xw%ﬂbzﬁﬁmmmﬁwy (6.4)
1



Moreover,

P, x5 = xM) =P (B (C, X = XMo(x{™ . X))

<——pP"(). (6.5)

From equation ((6.4), we have

(n) EX
P, (C) > ‘S(k)"ﬁn(c\p(l) =k) >

1

n

— 2. (Clp(l) = k).

n

By combining equation (6.4)) with inequality (6.5]), we have

P (C) < |S§k)|mn(6|p(l) = k) + L P (C).
51 n-l
It implies that
P(n) n—l\Sék)] . n—l .
(0 < —— 2—|S£,§)|‘Bn(clp(l) = k) < ——Pu(Clp() = k).

]

By using the fact that [Sy| = (n — 1)* + (=1)*¥(n — 1), we have the following formula for
Tr QF:
Lemma 6.6.2. We have Tr Q% =1 + %

We state the main result in the following theorem.

Theorem 6.6.3.

—1
1. @) If lim —— <1, lim B, (C) = 0.
n—oo  Inn n—o00
—1
b) If lim ——" = oo, lim ,(C) = 1.
n—oo  Inn n—00
I lim 2 g o], 1 C)=1-1/d
o) If lim =5 = d €l ool lim Ba(C) =1-1/d
2. Fix 8 >0, setc, = g Let & be a random variable that follows the Gumbel distributiorﬁ.
Then,
1 _ I'(1+ p)
W] ~ ———FE[e ] = — L.
FulC] fnf(lnn)? O pfnf(lnn)?

SPl¢ <t]=e ¢ forteR.



We will prove this theorem after two lemmas.

Lemma 6.6.4. Let C™ be the covering time of the simple random walk on the complete

graph K,.

1. The sequence of ( n converges in law to the Gumbel distribution, see section 2

C<")fnlnn>
of Chapter 6 in [AF].

1
1—A

2. Fix A € [0,1[, P (C™ —(n—1)In(n—1)) <~| < e for allm > 1

and v < —1.

n—1

To our best knowledge, the second estimation is new.

Proof. Tt is known that %(C’(") —nlnn) N ¢ as n — oo where ¢ follows the Gumbel
distribution, see section 2 of Chapter 6 in [AF]. This classical result is well-known for the
coupon collector problem. As mentioned in [AF], the complete graph case is a little variation
of this problem: Let ﬂ(n) be the first time that we have collect ¢« coupons. Similar notation
Ti(") for the first time visiting ¢ different vertices in the complete graph with n vertices.
For the coupon collector problem, Tl(ﬂ — Ti(n),i €1,...,n—1is a sequence of independent
geometric variables with corresponding expectations ~=. In the complete graph case, ﬂ(ﬂ -

T i = 1,...,n — 1 is a sequence of independent geometric variables with corresponding

1 Y

n—1
expectations “=1. So that cr =3 Zi(") where ZZ-(") are independent geometric variables
i=1

with expectations Z—j fors=1,...,n — 1. For the second part of this lemma, it is enough
to prove that
1 n—1 - 1
E An—1 i zZ" < —. 6.6
exp [ A(n — 1) exp m—] ;1 ; ST (6.6)

Then, we get the desired estimation by Markov inequality.

Proof of inequality : We expand the exponential and use the independence between
(Z™ i=1,...,n—1). Then,

n—1
1
exp ()\(n —1)exp (—m Zl(n)) )]
i=1

E




Recall that the Laplace transform s — ®(s) of a geometric variable G with expectation 1/p
is given by
- pe”” p
E[e™5¢] = .
e T ey

Applying this to all Z™, we have

n—1
1
E |exp ()\(n —1)exp (— : Z ZZ.(")>>]
n —
i=1
n—1 n—i
1 (n — 1)€ n—1
PR | -~
£>0 i=1 €"7F — (1 - n—l)
n—1 n—i
-y Ae(n 1)* n—1
/) |
>0 i=1 € oy

Since /=) > 14+ ¢/(n — 1),

E |exp ()\(n —1)exp (——1 Z ))]
. ¢ . n—1
= 14 st (=10 +/(n-1)—i+1
(n—1)*(n—1)!'§ 1
_ Nyl
Z 14 H n+{l—1
>0 i=1
_ z ¢
Z (n+ ﬁ —1)! Z A= X
>0 >0
m
Lemma 6.6.5. Consider a sequence of random variable n, with the following distribution
L1 +cy)™ L1 +cy)™
P(nn:p): oop = L —1 fO'f’pZ2
S 11 4e)t Ine, +In(l+¢,) — (1 +¢,)
k=2
Then,
a) If lim ——= < 1, then lim P, < n] = 1;
n—00 ln

n—o0

“Ine,
b) If lim N _ 00, then lim Py, > n?| = 1;
n—oo  Inmn n—00




—1
c) If lim Lo

n—oco Inn

=d €]1,00[, then

lim P(n, > n(lnn)?*) =1—1/d and lim P(n, <n) = 1/d.

n—o0

Proof.

a) We have that

P, > n] = ! = l(1 +e,)7P

—Inc, +In(1+¢,) — (1 +¢,) ! =P

(1+c,) ! 1 e
“(1+e¢,
—lncn—i—ln(l—i—cn)—(1+cn)_1;k‘( +cn)

(I +c) " (=In(c,) + In(1 4+ ¢,))
 —Inc, +In(l1+c¢,) — (T+c)t

-1 —Ing,
As a result, lim P[n, >n| =0 if lim "% 1. For the case lim —— " = 1, we
n—00 n—oo  Inn n—oo  Inmn
will prove that lim P[n, <n|>1—4 for any § > 0. Fix § > 0,
n—oo
1 nl=9
Pin, <n| > —(14¢,)7?
Z n]_—lncn+ln(1+cn)—(1+cn)lpzzp( +cn)

: —p . nl—o
o minf{(I+e) P pe2n} Z‘
“—Inc, +In(l +¢,) — 1+cn) 1
min{(1 +c,) P :p € [2,n'°]}
—lnc, +In(l+¢,) — (1 +¢,) !

In(n'~?).

—Ing,
Under the condition lim ———" = 1, we have lim min{(1+c,)?:p€[2,n'7°]} = 1.

n—oo INmn n—so0

Therefore, lim P[n, <n] > 1— ¢ for any fixed 6 > 0.
n—o0

—Ine,
b) If lim — " = o,
n—oo Inmn
1 »
lim Pin, < <1 il
tim By, <] < fim e Y

—2

<1 In(n?) 0
im =0.
“nooo —Ine, +In(1+¢,) — (14 ¢,)7t

—Inec,

c¢) Suppose lim
n—oo Inmn

Similar to b), we can prove lim P(n, € [n,n(Inn)?]) = 0. Consequently, we have
n—oo

lim P(n, > n(lnn)?) =1-1/d.
n—oo

=d €]1,00[. Similar to a), we can prove lim P(n, < n) = 1/d.
n—oo



Proof of Theorem [6.6.3.

PnlC] = Z&Bn[ap(l) = k| o0

with u,(p(l) =j) = %(1 +¢,) 7 Tr QY. By Lemma W,

BolClp(l) = K] = BV (C)(1 + O(1/n)).

Therefore,
14+0(2) =1 ke (n
PulC] = = Q2  TrQn 1+ ) B[C)),
> TrQE(1+4¢,)7" k=2
k=2
By Lemma we replace Tr QF by 1
1+0(2) X1 e
PulCl = O 1+ e BC)
> a1l +c)7F k=2
k=2
1+ O(%)

00 1 .
1+¢,) ZE1+C” k[pi)[c]).

- In(c,) +1In(1+4¢,) — ~

Consider an independent random variable 7, with the following distribution
(I+c,)?

1
p
Z %(1 + Cn)ik

P(n, =p) = forp=2,3,....

Then, B,[C] = (1 + OL)P™W[C™ < n,] where C™ is the covering time of the simple
random walk on the complete graph K,. Recall that % converges in law to a Gumbel
distribution, see Lemma [6.6.4!

Then, the part 1) follows from an estimate for 7, in Lemma

For the part 2), let us fix > 0 and ¢, = #/n. Then,

fn(innty+e)]

. —ninn 1 1 nlnn nn
P(EEE ) v D0 (L)L ) O
p=[n(lnn+y)]

1 [n(In n+y+e)]
MmO SEsmTe

Inn
p=[n(lnn+~)]

p—nlnn
=



Since (1 4 B/n>—nlnn — e—lnn(nln(l—i—,@/n)) — e—lnn(,@—i—o(l/n)) — n—ﬁe—o(lnn/n) ~ n—,B’ we have

[n(Inn+y+e)]

n—nlnn 1 5 1 p—nlnn —ny
P(n—e[%v—l—e[)mmn Pe=hr Z —exp(—ﬁ )

n n
p=ln(inn+)]

Notice that

exp (_p—nlnn—n’V) ele 1] forpe [Ln(IHN+7)J, fn(lnn—i—’y—l-eﬂ];

n
Wlnnzﬂﬂﬂ 1 1 (n(lnn +7+ €)> €

— ~ In ~ .
o nmain) P n(lnn + ) Inn

We can conclude that for fixed 7,

n —nl
lim sup n” (In n)*P (w € [y,v+ e[) < e P
n—00 n
n —nl
fm inf (I )P <% € vt 4) S b,

Moreover, we have the following estimate for 7,:

n—nl
e for v >0, supn®(Inn)*P (w € [y,y+ e[) < cst-ePe,
n>2 n
n —nl
o for v <0, supn®(lnn)*P (w €[y, v+ e[) < est - e e,
n>2 n

where the constant cst does not depend on . By the second part of Lemma [6.6.4, the

following estimate on the covering time C™ holds for v < —1:
1
P {—(C(”) —nlnn) < ’y} < cst - e
n

where the constant cst does not depend on v, n. (We replace —=(C™ — (n—1)In(n—1)) by
L(C™ — nlnn) since the difference tends 0 as n — co.) Finally, the integrability condition

is fulfilled and we have

lim n”(Inn)*B[C] = /E[f < Ale P dy = %E[e‘ﬂg] = w

n—00 5
R

]

We deduce from Theorem the following result on the asymptotic distribution of the

number of loops covering G,.

Corollary 6.6.6. Let L™ be the Poisson collection of loops with intensity I,U_n Suppose
nn

—Ine,

lim

=d. Then, Y lyueccy converges in distribution to a Poisson random variable
n—oo nn

leL)
with parameter (d — 1)4 as n tends to infinity.



Proof. The total mass of fi,, namely ||p,]|, is equivalent to Y 1(7-)" = —In(1 — =) —

1+cn 1+cn
k>2
ﬁ. By Theorem [6.6.3] if nhﬁngo% <1, r}grgomn(C) =0, ie. p,(C) = o(||nl]) = o(lnn).
Therefore, lim “1"—(2) = 0. If lim =% = oo, lim PB,(C) =1, ie. pu(C) ~ |[pa]| ~ —Incy.
n—00 n—00 n—0o0
Therefore, lim “1’;1—(2) = oco. If lim =% = d €]1,00[, lim P,(C) =1 —1/d, i.e. p,(C) =
n—oo n—oo n—oo
(1 =1/d)||pgn]| ~ —(1 =1/d)In¢, ~ (d — 1) Inn. Therefore, lim “1’;1(5) =d — 1. In summary,
n—oo

suppose nhjEO % = d, then 711;12@ #17;1_(5) = (d — 1)4. Consequently, >  lpecy converges in
lect)

distribution to a Poisson random variable with parameter (d — 1), as n tends to infinity. [
Similarly, we have the following corollary:

Corollary 6.6.7. Suppose that c, = 3/n. Let L™ be the Poisson collection of loops with in-

tensity n®(Inn)?P,, (or n’(Inn)u, equivalently). Then, > lgyeey converges in distribution
leLtm)

LD 45 n tends to infinity.

to a Poisson random variable with parameter o 5
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