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Spécialité: Physique
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Abstract
Spin Torque Oscillators (STO) are nano-sized Radio-Frequency oscillators whose frequency can be tuned by

an order of magnitude. This tuning originates from the nonlinear properties of the underlying magnetization
dynamics that is induced by spin transfer torque (STT) in multilayered magnetic nanostructures.

Being highly tunable in frequency has the inconvenience of creating a very strong sensitivity to noise.
As a result the spectral purity of STOs is far below the one required (for applications for instance in
telecommunications).

The magnetization dynamics induced by STT has been described theoretically in the frame of nonlinear
spin wave theory that makes the essential features of the underlying properties very transparent. However
important information on the excitation mode are “buried” in phenomenological parameters such as, ν the
amplitude-phase coupling, and Γp, the amplitude relaxation rate. Determining these parameters with accuracy
from experiments is thus an important issue.

This thesis describes several experimental methods to extract these parameters. The first involves time
domain noise spectroscopy which permits the power spectral density of phase and amplitude noise to be
extracted. The analysis of such noise in light of theoretical models allows not only direct extraction of the
nonlinear parameters, but also to quantify the technological relevant phase noise. This is demonstrated for
magnetic tunnel junction devices.

A second method involves the analysis of higher harmonic linewidths, where it is shown that due to the
non-isochronous property of STOs, the relationship between ∆fn and ∆f1 is nontrivial and allows ν and Γp
to be determined.

We then apply the information gathered on the autonomous dynamics of STOs to understand the

non-autonomous dynamics of STOs that are a prerequisite for the use of STOs in complex RF architectures.

It is shown experimentally how the nonlinear parameters influence this non-autonomous behavior.

Keywords: - Spintronics, nanomagnetism, oscillators, nonlinear dynamics, autonomous dynamics.
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Part I

Introduction





3

Over the past decades, miniaturization was expected to shrink all electronics products
such that it opened new unprecedented and unforeseeable possibilities to respond to
human needs. For example, the “need” to “telecommunicate” in the late 1990’s was so
huge, that as a consequence there was a telecommunication bubble (early 2000), due to
the inability to scale the telecommunication offer to its real demand. Nowadays the global
telecommunication market represents 3 trillions of US dollars (as in 2010), equivalent to
the total German GDP. Today, there are probably more people owning a cell phone than
people owning a toothbrush: 75% of the world population owns a cell phone. In 2004,
the miniaturization technologies in electronics, i.e. the semiconductor industries and its
market represented only 200 billions dollars and enabled about 10% of the world GDP.

Recent technological progresses are much linked to miniaturization, pushing forward
research in nano-science and nano-technologies. Advances in thin film deposition and
nano-structuration have led to a new field of nano-electronics called the spin electronics
or spintronics. The beginning of spintronics was in 1988 with the discovery of the
giant magnetoresistance effect (GMR). This effect was successfully used to enable higher
density Hard Disk Drives in less than 5 years of R&D. This is due to the fact that the
magnetization state corresponding to a bit of information can be measured electrically
with a great accuracy using the MR effects in nanoscale devices. Thereafter in 1996,
the discovery of the Spin Transfer Torque (STT) allowed to control the magnetization
state electrically, through a spin polarized current. Combining electrical ”reading” and
”writing” of the magnetization will have direct applications for the development of
Magnetic Random Access Memory (called STT-MRAM) that is a promising candidate
for a ”universal” RAM (fast, low consumption, non-volatile) that could replace SRAMs
to DRAMs in the 2X nanometre technological node.

In the research presented in this dissertation we have used the MR effect and STT for
a different application. Notably, a spin polarized current can drive the magnetization into
large angle steady state oscillation, where the magnetization response is very non-linear.
The MR effect then converts these oscillations into an oscillatory output signal at
frequencies that can range from 100 MHz to several tens of gigahertz. These effects,
when realized in nanoscale devices, have potential applications as miniaturized tunable
Radio-Frequency sources that could address issues of wireless communication such as
cognitive RF and low consumption. After the first demonstration by Kiselev et al.
of the Spin Transfer Oscillator (STO), it has rapidly become clear that steady-state
auto-oscillations in the microwave range were generated whose frequency depends on
the applied current or external magnetic field. This frequency tuning property of
auto-oscillator is very desirable for RF sources and are called Voltage Controlled
Oscillators (VCO).

Prior to the start of my thesis, studies in this field was very much focused
on demonstrating the auto-oscillations for a large variety of different nano-device
configurations as well as on analyzing and understanding the corresponding excitation
spectra that were then compared to theoretical simulations. With the introduction of
Magnetic Tunnel Junction (MTJ) devices by the end of 2007, the STO output power,
one of the key parameters for applications, could be improved from the pico-Watt to the
micro-Watt. This allowed addressing a number of other issues important for application
but also for the development of the underlying theoretical models.

This thesis is focused on the problem of measuring the effect of the noise on the



auto-oscillation emitted from STO. This involves both theoretical and phenomenological
arguments to model the effects of noise in the non-linear magnetization dynamics.
Indeed, it has been shown that the noise performance of STO emission is determined
by the strong nonlinearities of the magnetization dynamics. The real interest of this
thesis is thus to relate the noise properties of STOs, to the non-linear parameters from
theoretical models that govern the magnetization dynamics.

Part I presents the context of this thesis. Chapter 1 helps the reader to understand
the basic concepts of the devices we study. From the origin of ferromagnetism in 3d
transition metal to spin dependent tunneling process, we familiarize the reader with
concepts such as magnetization and magnetoresistance effects. These two cannot be
dissociated from the transfer of spin angular momentum that is investigated from a
classical picture to understand its main effect on the magnetization dynamics in MTJs.
Chapter 2 introduces the STO as an auto-oscillator using a recent approach to solve the
problem of the magnetization dynamics in the non-linear regime in presence of STT.
This phenomenological approach described in literature, the KTS model, is reviewed
and it is shown how it will help us to address the problem of noise modeling in STOs
when using a Fokker-Plank equation to describe the diffusion by the noise of the STOs
oscillation characteristics.

Part II presents the main achievements of this work that is the measurement of
the phase and amplitude noise of STOs, which are basic quantities used to characterize
noise properties of oscillators such as VCOs for applications. Chapter 3 is dedicated to
specific frequency and time domain measurement techniques that I developed and applied
to STOs. The relatively low power and the large noise acting on STOs require developing
specific tools using time domain spectroscopy. The noise measurements of STOs are
then compared to theoretical predictions in Chapter 4 for MTJ devices. It is shown
how key parameters of the KTS model are extracted from the nonlinear magnetization
dynamics we measure. The results fits well with the KTS model, which allows for the
capabilities of STOs to be quantified more explicitly, in contrast to previous models.
Minor discrepancies found between experimental results and the models of magnetization
dynamics will be discussed as a perspective for further theoretical investigations in the
field of non-linear magnetization dynamics interacting with a thermal bath.

Part III is dedicated to understanding further the role of these key parameters in the
non-autonomous regime of the STOs, which is of main importance for applications.
Chapter 5 is dedicated to modulation experiments in order to quantify the agility of
STOs that is of primary interest for RF applications, such stable RF sources and fast
dynamical field sensors. Modulation experiments are also used to confirm the results
obtained in Part II and to explore new paths for the study of STOs for both fundamental
and applicative aspects. Chapter 6 details synchronization experiments on STOs in
presence of noise. Preliminary results of an STO synchronized to an external microwave
source are presented in order to describe certain dynamical features of this phase locked
state.



Chapter 1

Context - Spin Transfer in
Ferromagnetic materials

This chapter gives key notions to better understand the context and the results of this
thesis. It includes basic models of the origin of ferromagnetism and spin dependent
phenomena, such as spin dependent tunneling effects. The transfer of angular spin
momentum to a ferromagnetic material by a spin polarized current is also reviewed.
Finally, the dynamics of the magnetization of a ferromagnetic thin film in a voltage biased
magnetic tunnel junction is described. This is the basis of a spin transfer oscillator.

1.1 Ferromagnetism and Spin dependent transport

In this part we introduce the origin of ferromagnetism in 3d transition metals which is
relevant for the devices we are going to study. This will be followed by an introduction
to spin dependent transport phenomena, with a focus on tunneling transport and the
corresponding tunnel transport models.

1.1.1 Origin of Ferromagnetism in 3d transition metals

In a classical picture1, an atom is made of a positively charged core around which revolve
negatively charged electrons. When the electron trajectory is considered circular with
radius r and a velocity v around the core (see Fig. 1.1), the trajectory described by the
electron is then inducing a current of intensity I. This gives a magnetic moment, the
so-called orbital moment ~m0, such that:

~m0 = IS · ~r × ~v.

Here S is the area of the disk formed by the electron trajectory. The time taken for the
electron to make one revolution being τ = 2πr/v, it follows that I = −ev/2πr, which
leads to the magnetic moment:

~m0 = −e2~r × ~v = − e

2me

~l0 ,

1Interested readers may find more details in Ref. [1].



m0 r

e-

l0

v

Fig. 1.1: The electron (in red) has a circular trajectory of radius r and a velocity v around the
core, resulting in a magnetic moment ~m0 (classical picture).

where me is the electron mass and ~l0 is orbital moment. In quantum mechanics, the
orbital moment (that corresponds to the orbital trajectory in the previous classical model)

is quantified by the vectorial operator ` such that ~l0 = ~~̀. The moment ~̀ is defined by
quantum numbers l and m that respectively represents the orbital number (that are s, p,
d orbitals for l = 0, 1, 2...) and the magnetic number that gives the (discrete) “shape“ of

the orbital (for example px, py, pz ...). Finally, we write ~m0 = −µB~̀ with µB = ~e/2me

the Bohr magneton, the base unit of magnetic moment.
In fact, experimental observations have shown differences between the orbital magnetic

moment and the measured magnetic moment. Stern and Gerlach experimentally showed
the existence of an intrinsic momentum due to the electron that is the the spin momentum,
with:

~ls = ~~s.

In a similar way to the vectorial operator `, which is called orbital momentum, s
is called spin angular momentum. Its projection on the quantization axis is the spin
quantum number σ = ±1/2. By analogy with orbital magnetic moments, a spin magnetic
moment exists ~ms:

~ms = −2µB · s.

Finally, the total magnetic moment for a single electron is ~mt = ~m0 + ~ms. This
demonstration allows first insights and an introduction to the origin of magnetism that
is evidently more complex with a large number of electrons and atoms in bulk materials.
Since inner-shell electrons are paired such that their contribution to the atom’s magnetic
moment is zero, the magnetism finds its origin in non-saturated electronic shells.

This model implies that electrons responsible for the total magnetic moment are
localized. The application of this model is thus limited to the case of bulk 3d transition
metals. Indeed, as shown in Fig. 1.2, electrons responsible for magnetism can move
along the atoms since their probability to be at the inter-atomic distance is non-zero:
electrons responsible for magnetism are delocalized. Contrary to 4f electrons, 3d electrons
have a spatial extension that allows the delocalization for the electrons responsible for
magnetism. Therefore, when considering the continuum of energy states available for 3d
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Fig. 1.2: Electron occupation probability versus the distance from the core for different
electronic shells for cobalt and gadolinium. 3d electrons, responsible for magnetism in Co,
are delocalized while in Ga, 4f electrons (responsible for magnetism) are localized. From [1].

Fig. 1.3: Displacement between minority electrons and majority electrons. From [1].

electrons, it is no longer possible to distinguish a magnetic state for those electrons, i.e.
the band structure should be the same for each spin population. The use of the itinerant
electron model from Stoner is then a better description to explain the ferromagnetism in
3d transition metals.

Pauli’s exclusion principle and Hund’s filling rule (lowest energy states are first filled),
imply that spins paired with opposite spin sign share one orbital. This would preclude
the possibility to obtain different density of states for the spin populations ↑ and ↓ inside
a material. These principles do not exclude the probability of finding two electrons of
opposite sign at the same place. Therefore, two electrons of opposite spin sign will repel
on average more than two electrons of same spin sign in the bulk. Stoner introduced a
model for which repulsive forces between two electrons of opposite spins is stronger, by a
quantity I, than between two electrons of the same spin. A potential interaction energy
is introduced of the form Ep = IN↑N↓, where N↑ and N↓ are the electron densities of
each spin.

We first assume two equal populations of spin N↑ = N↓ = N/2. We then transfer
N(εf )δε electrons from ↓ state to ↑ state as shown in Fig. 1.3. The kinetic energy increases
by ∆Ec = N(εF )(δε)2 while the variation of the interaction energy discussed above is:

I
[
N

2 +N(εF )δε
] [
N

2 −N(εF )δε
]
− I

[
N

2

]2
= −IN2(εF )(δε)2 ,

and the total energy variation between equal populations of the ferromagnetic is:

∆E = N(εF )(δε)2 [1− IN(εF )] .
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Fig. 1.4: (a) Density of States (DOS) of Cobalt from ab-initio calculations, from [2]. (b)
Schematic of DOS in a ferromagnetic 3d transition metal, where similar shaped-bands are
effectively shifted by the Stoner potential ∆ε.

From this it follows that the non-magnetic state is stable if IN(εF ) < 1. In the case
of IN(εF ) > 1, a minimum of energy exists when N↑ and N↓ are different, leading to
a ferromagnetic order. This criterion is called the Stoner criterion. For all practical
purposes, however, I is difficult to evaluate. While this model has many limitations, it
is helpful to qualitatively explain the ferromagnetism of cobalt, nickel and iron that have
large densities of state at the Fermi level (therefore the repulsive interaction IN(εF ) is
greater). Indeed, it has been shown that transition metals have a narrow band (about
5 or 10eV) as shown by the example of bcc-cobalt in Fig. 1.4. This description of
ferromagnetism will be enough to explain qualitatively other effects that are described
later. Indeed, spin dependent transport in Magnetic Tunnel Junction (MTJ) and spin
transfer torque effects can be linked to the Stoner model. For this, let us introduce an
empirical parameter, the Stoner energy gap ∆ε. As shown in Fig. 1.4, the Stoner criterion
corresponds to a shift of +∆ε in energy for the minority electrons in the DOS of bulk
bcc-Cobalt compared to majority electrons, i.e. the band structures are different for each
spin population. As we will see, this potential e∆ε is also at the origin of spin dependent
transport and spin transfer torque (based on the free electron model) in MTJs. In the
next section the basics of spin dependent tunneling processes found in MTJs are presented
with emphasis on MgO-based MTJs.



Chapter 1. Context - Spin Transfer in Ferromagnetic materials 9

1.1.2 Spin dependent Tunneling processes

In this section, we review models of the spin dependent tunneling effect. The objective
is to introduce the basic vocabulary and the limitations of the models presented.

The Stoner potential e∆ε allows one to use the free-electron model to express
the tunneling probability for electrons of different spin signs. It serves to define the
magneto-resistance (MR) and its approximate evolution with the applied voltage for
example. We also introduce the coherent tunneling effect in crystalline magnetic tunnel
junctions (MTJ) where the free electron model is of limited use. The coherent tunneling
effect is only investigated for the sake of presenting the recent trends in MTJs.

1.1.2.1 Tunneling effect from the free electron models

A magnetic tunnel junction consists of two ferromagnetic electrodes separated by a thin
insulating layer. By applying a bias voltage to the structure, electrons will pass through
the insulating barrier by an effect known as tunneling. The resulting current that flows
inside the barrier is proportional to the density of states close to the Fermi level of
each electrode. However, as explained previously, the density of states in ferromagnetic
materials are different according to the spin orientation considered. Therefore, for
a similar voltage, the parallel (anti-parallel) magnetization configuration, the current
density JP (JAP ) is: 

JP ∝ N↑1N
↑
2 +N↓1N

↓
2

JAP ∝ N↑1N
↓
2 +N↓1N

↑
2

, (1.1)

where Nσ
i are the density of states at the electrode i for the spin direction σ at the Fermi

level. Here, we consider that the DOSs remain constant close to εF for small applied
voltage.

In fact, this model assumes that there are two independent conduction channels for
majority and minority spins. In Fig. 1.5, this model is schematically shown. In the
parallel case, the majority spins of electrode 1 are also majority spins of electrode 2.
On the contrary, for the anti-parallel configuration the majority spins of electrode 1 are
the minority spins in electrode 2. The schematics on the right in Fig. 1.5 represent the
equivalent electrical circuit of this two channel model in both configurations.

Eq. 1.1 leads to the expression of the Tunnel Magneto-Resistance (TMR) ratio given
by Julière in 1975 [3]:

TMR(%) = JP − JAP
JP

= 2P1P2

1− P1P2
with Pi = N↑i −N

↓
i

N↑i +N↓i
, (1.2)

where Pi is the polarization of the i electrode.
Slonczewski [4] then expressed Eq. 1.2 by writing the transmission coefficient for

each spin when taking into account the effective polarization of the DOS at each
Ferromagnetic/Insulator interface:

Pi = (k↑ − k↓)(κ2 − k↑k↓)
(k↑ + k↓)(κ2 + k↑k↓)

, (1.3)
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Fig. 1.5: Schematic representation of the golden Fermi rule Eq. 1.1 in (a) the parallel
configuration and (b) the anti-parallel configuration of the two electrodes. This two band
model supposes the existence of a Stoner potential.

where kσ depends on the Stoner energy, κ2 = 2me(U0 − εF )/~2 is the effective barrier
height and U0 the total barrier height. Using this formalism, the angular dependence of
the conductance G = I/V through an insulating barrier of width d, in the low voltage
limit, is given by:

G(θ) = G0[1 + P1P2 cos(θ)] with G0 ∝ e−2κd . (1.4)

When κ is large, the Slonczewski model (Eq. 1.3) is equivalent to the Julière model
for infinite barrier height (U0 is large). Because this free electron model takes into
account the parabolic band structures of each spin direction, it is also possible to derive
analytically the expression of the conductance versus the applied voltage similar to the
case for non-magnetic tunnel junctions [5, 6] (See for example Ref. [7]).

1.1.2.2 Coherent Tunneling Effects

Since our devices are based on CoFeB / MgO / CoFeB stacks, it will be important
to introduce the coherent tunneling effect that is not explained by the free electron
model. Indeed, it appears that in crystalline tunnel junctions such as in bcc-Fe/Rock
Salt-MgO/bcc-Fe, the electrons propagate or tunnel within specific electronic Bloch
states. In the case of bcc-Fe(001), there are four electronic bands, also present in the
rock salt MgO structure. In particular, the ∆1 band is occupied at the Fermi level for the
majority spins and has the slowest decay rate in MgO. Indeed at the crystalline Fe/MgO
interface, the Bloch vector is assumed to be kz = q + ip and therefore decays with p
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Fig. 1.6: Tunneling-DOS (ΨΨ∗) for k‖ = 0 in a Fe(001)/MgO(001)/Fe(001) junction in the P
state (top figures) and the AP state (bottom figures). The ∆1 band has the slowest decay rate
in the P state (top-left) compared to the other symmetry bands. The ∆1 band does not exist
inside the right Fe electrode for minority spins in the P state (see top-right) and the AP state
(see bottom-right). In the AP state, ∆1 band also decays in the right Fe electrode. Adapted
from [9].

which depends on the band considered2. This implies that in the parallel configuration,
transport will occur through the ∆1 band. The slow decay rate of the ∆1 band and the
relatively low electron probability in the AP state are illustrated in Fig. 1.6 that shows
the density of state for each electronic band in the P and the AP state for an epitaxial
Fe/MgO/Fe junction.

The calculations given in Ref. [9] reported a TMR ratio higher than 1000% in Fe(001)
/ MgO / Fe(001) crystalline junctions. Even higher TMR ratios were reported from
calculations for FeCo / MgO / FeCo crystalline junctions [10]. In real structures with
defects it is still unlikely to reach such predicted values, for instance a TMR of 1000% at
5 K has been reached by Ikeda et al. [11] after a careful stack engineering with CoFeB
electrodes. The advantage of CoFeB electrodes is that after deposition, the CoFeB / MgO
/ CoFeB stack is amorphous. After annealing, the MgO imposes its crystalline structure
onto the CoFeB electrodes that forms an epitaxial FeCo(001) / MgO(001) / FeCo(001)
heterostructure (the boron is diffused to the grain boundaries).

2For a lattice parameter a, Bloch conditions impose that the Bloch wavefunction satisfies Ψk(r+a) =
(exp ikz · a)Ψk(r) [8].



1.2 From STT to Spin Torque Oscillator

While the giant magneto-resistance (GMR) effect discovered in 1988 [12, 13] found direct
application for read-head sensors in 1995, the reverse associated effect known as Spin
Transfer Torque (STT) was theoretically described by Slonczewski [14] and Berger [15]
only in 1996. Two years after these predictions, Tsoi et al. [16] experimentally observed
the first excitations in magnetic spin-valves due to spin polarized current. A year later,
magnetic switching in metallic magnetic spin valves was observed by Myers et al. [17] and
Katine et al. [18]. The first observations of magnetic switching/excitations in MTJ devices
based on an alumina oxide barrier have been done by Fuchs et al. [19]. Soon after, first
studies reported STT effect in crystalline MgO based MTJ. This was shown on a 4kbit
memory STT-MRAM chip presented by Hosomi et al. [20] from Sony Corporation. While
alumina-based MTJ were already of use for practical applications even with a TMR of 70%
[21], the combination of STT and large TMR ratio due to MgO coherent tunneling effect
leads to a very important perspective of STT-MRAM as a future integrable non-volatile
memory. Indeed the ITRS roadmap starts to include the MRAM development as a key
memory for future electronics applications [22].

In this section, we introduce for the specific case of MTJs the effect
of STT on the local magnetization of the ferromagnetic electrodes using the
Landau-Lifshitz-Gilbert-Slonczewski equation. This equation describes the switching of
the magnetization in STT-MRAM as well as the magnetization dynamics. After a short
introduction of this LLGS equation we summarize the dynamic magnetization states
induced by the STT and indicate the influence of the thermal fluctuations on the switching
in precessional dynamics.

1.2.1 Magnetization Dynamics under STT

The equation that governs the dynamics of ferromagnetic materials under STT is the
Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation. To understand this equation, we
subsequently introduce each of its terms. We first introduce the LLG equation, which
describes the magnetization dynamics with damping only. We then introduce the origin
of the STT terms and their impact on the magnetization dynamics. It will allow us to
give the magnetization state diagram in presence of STT section 1.2.2.

1.2.1.1 The LLG equation

The evolution of the magnetization ~M under the torque ~T exerted by a magnetic field ~H
is given by:

d ~M

dt
= −γ ~T = −γ ~M × ~H , (1.5)

where γ is the gyromagnetic ratio. The potential energy Ue of the magnetization ~M in a
magnetic field ~He can be written:

Ue = −µ0 ~M · ~He , (1.6)
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Fig. 1.7: Schematics of the precessional torque − ~M × ~He and damping torque ~M × d ~M
dt . The

black spiral represents the magnetization trajectory.

with µ0 the magnetic permeability. It is possible to find ~He for any conservative magnetic
interaction (i.e. magnetic energy), so that the total potential energy Ue is the sum of all

potential energies Ui resulting from any fields ~Hi acting on the magnetization ~M . If we

now consider the equilibrium position to be d ~M
dt

= 0 from Eq. 1.5, for a given applied field
(i.e. magnetic energy), it implies that:

~He = −∂Ue
δ ~M

.

It is important to note that the field ~He in Eq. 1.5 is an effective field since it results from
the sum of all interactions acting on the magnetic moment. We list in the following
some of the different magnetic interactions that can be found in our devices. The
Zeeman interaction that originates from an external applied field to the magnetization,
the demagnetizing interactions that include dipolar field and shape anisotropies (that are
self-fields of the magnetization), the magneto-crystalline anisotropy, which can have many
forms and symmetries. In our study, we will consider the “Macrospin” approach, that is
to consider the exchange energy (interaction) is so large that all spins are parallel and act
as one single “macro” spin. There exist other types of magnetic interactions that have to
be considered for specific studies, such as interlayer exchange bias interaction that occurs
at the interface between a ferromagnetic layer and an antiferromagnetic layer, or the
interlayer exchange interaction across nonmagnetic layer NM in FM/NM/FM structures
called the RKKY interaction.

According to Eq. 1.5, the magnetization only precesses around the effective field on a
closed loop trajectory, i.e. at constant magnetic energy Ue. In reality, the magnetization
is damped such that the magnetization aligns towards the effective field ( ~M × ~He = ~0).
While the detailed mechanisms contributing to magnetization damping are not yet fully
elucidated, Gilbert introduced a phenomenological damping torque to Eq. 1.5 to obtain
the LLG equation:

d ~M

dt
= −γ ~M × ~H + γ

α

Ms

~M × d ~M

dt
, (1.7)
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Fig. 1.8: Measured strength of the IEC energy for (a) a Py/Ru(t)/Py stack [24] and (b)
Fe/MgO(t)/Fe MTJ [25].

with Ms the magnetization at saturation and α the Gilbert damping constant. Typically,
α ≈ 0.01 in normal ferromagnetic metals. From any initial position, the damping makes
the magnetization to relax towards the effective field on a timescale given by αMs. The
effect of damping on the overall trajectory is shown in Fig. 1.7.

The damping term originates from energy exchanges between magnetization and the
thermal bath. Both intrinsic and extrinsic damping contributions can exist in a given
material. The intrinsic damping term is still subject to discussions and it depends on
the material considered. For metals recent theories aimed to predict its value from
ab-initio calculations. The extrinsic term is given by the environment of the ferromagnetic
material. Magnons can interact/scatter in such a way that they contribute to the observed
damping. Also, spin pumping can contribute to the damping term. The spin pumping
effect considers that due to the precession spins are pumped out of the volume. If these
spins are scattered before they return to the precessing volume then damping is enhanced.
See Ref. [23] for more details.

In the next part, we introduce the spin transfer torques that induce both a novel
magnetic (conservative) interaction, and a novel extrinsic damping term. In addition, we
will see that the damping contribution of STT can be negative, i.e. can compensate the
intrinsic damping. This allows one to study the magnetization dynamics in the nonlinear
regime. We introduce in the following both the origins and the effects of the STTs on
the magnetization dynamics, with a focus on the “free” layer of a MTJ.

1.2.1.2 The Spin Transfer Torques

In a MTJ - we only consider the dynamics of one layer - called the Free Layer - with
respect to the other one - called fixed layer - which is pinned by a large exchange field. In
the standard notation FM1/MgO/FM2 for an MTJ, we consider FM1 (FM2) as the fixed

(free) layer with a magnetization ~M1 ( ~M2). In addition to usual magnetic interactions
acting on a simple magnetic particle in the macrospin approach, it is possible that a
magnetic interaction occurs because of the proximity of another magnetic moment.

The RKKY coupling mediated by conduction electrons between two ferromagnetic
layers separated by a thin metallic film is an example of this. From the coupling energy
ERKKY = J ~M1 · ~M2, a field H i

RKKY = ∂ERKKY /∂ ~Mi acts upon FMi and therefore exerts
a torque on FMi.

A similar interlayer exchange coupling (IEC) happens in MTJs, where “the RKKY
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FM2FM1

Fig. 1.9: (a) Schematic of the MTJ with FM1 and FM2. (b) Schematic of torques involved. To
change its angular momentum from ~µ1 to ~µ2, “one” electron has to lose the torque −~T . This
torque is subdivided in ~T1 and ~T2 that respectively acts on ~M1 and ~M2. From [26].

coupling” is now mediated by the evanescent states rather than conduction electrons [4,
26]. In Fig. 1.8 experimental measurements of this IEC strength in metallic and insulator
based heterostructures is shown as a function of interlayer thickness. The physical origin
of these torques is that the number of electrons that flow from the left to the right
electrodes and from the right to the left electrodes are equal such that there is no net
current charge but a non-zero spin current, even at zero voltage bias. This results in an
equal transverse torque on each electrodes. When applying a voltage bias to the MTJ,
there is now an additional contribution to this torque due to the net charge current.
Finally, the total torque acting on ~M2 can be written as:

~T⊥ = ~T 0
⊥ + bj ~M2 × ~p , (1.8)

where ~T 0
⊥ is the zero voltage bias torque, bj depends on the net charge current and ~p is

the orientation of the fixed magnetic moment ( ~M1). The transverse torque due to the bj
term is similar to the torque exerted by a magnetic field, that is why this term is referred
as “field-like term”.

Finally, we introduce the term known as Spin Transfer Torque in MTJ which is
responsible for inducing steady state oscillations of the magnetization or its switching.
We consider the MTJ with ~M1 and ~M2 that are misaligned with an angle θ and an
electron flow from the left to the right electrode (see Fig. 1.9). Electrons flowing in FM1

are spin polarized along ~M1 and carry an angular spin momentum ~µ1, once they have
passed through FM2 their angular spin momentum is ~µ2. Hence, a momentum ~T is given
to the system in the process (the electron flow in the MTJ). Since the magnetizations ~M1

and ~M2 “give” their spin orientation to the electron flow, it is natural that spin polarized
electrons “give back” their momenta to the magnetization ~M1 and ~M2. However, the
magnetization norm ~M1 and ~M2 are constant:

d
∣∣∣ ~M ∣∣∣2
dt

= 2 ~M · d
~M

dt
= 0 . (1.9)



It results that any variation d ~M
dt

is necessarily transverse to the magnetization ~M . ~T is

then written as a sum of two moments ~T1 and ~T2 acting respectively on ~M1 and ~M2. In
practice, FM1 is designed to be “fixed” with the direction ~p, so as to make FM1 insensitive
to ~T1, for example by using a Synthetic Anti-Ferromagnetic (SAF) structures or a thick
electrode FM1. Similarly to the bj term in Eq. 1.8, ~p is used such that the torque acting
on FM2 can be written:

~T2 = ~T‖ = aj
Ms

~M2 ×
(
~M2 × ~p

)
, (1.10)

where aj depends on both current amplitude and orientation. The direction of this

torque ~T‖ can have a component in the same direction as the aforementioned damping

term. Indeed, the vector d ~M2
dt

is orthogonal to ~M2 and so is ~M2× ~p. However, the aj term

sign is linear with the current flow and therefore, the orientation of ~T‖ depends on the
current orientation. As a consequence, the STT can either increase the Gilbert damping,
reduce it or even fully compensate it. Based on this idea, Slonczewski [14] and Berger
[15] predicted steady state oscillations and switching of the magnetic moment under the
influence of current flow in a multilayer magnetic structure.

Recent works on STT in MTJ are about to determine exactly the voltage (or current)
dependence of parallel and perpendicular torques. The present consensus is that aj and
bj terms depend on the MTJ stack composition. Indeed, those terms are very related to
the Stoner potential in 3d transition metals [26]; experiments and theories agree that aj
is mostly linear with current and bj mostly quadratic (at low bias) [27, 28].

The exact determination of those terms is not only of fundamental interest but also
of main importance for application purposes since STT effects are expected to be used
in high density RAM. For example, it has been shown that “back switching” processes
occur at high bias voltage due to the field like term bj which always favors one magnetic
configuration in MTJ [29].

By including the STTs in the equation of motion of LLG, one obtains the generalized
LLGS equation for a MTJ:

d ~M

dt
= −γ ~M × ~H + γ

α

Ms

~M × d ~M

dt
+ γ

aj
Ms

~M ×
(
~M × ~p

)
+ γbj ~M × ~p . (1.11)

From an energy point of view, only the damping term and the aj term contribute to the
total magnetic energy variation given by:

dE

dt
= − α

γMs

d ~M
dt

2

− aj
Ms

d ~M

dt

(
~M × ~p

)
. (1.12)

While the damping term is always negative (i.e. always brings the system toward its
equilibrium), the energy contribution of STT will be either an energy source for the
system or an additional dissipative (or damping) contribution. In the case of an energy
source, a closed loop trajectory, i.e. a stable dynamical state, for the magnetic moment
exists if the integral of dE

dt
over the period of the trajectory is zero. In this scenario,

the STT is said to compensate the intrinsic damping. This condition is a prerequisite
to steady-state oscillations of the magnetization under a current bias and occurs when
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IPP trajectories

OPP trajectories

Fig. 1.10: State diagram of the magnetization state in In-plane magnetized structures. Only
aJ is considered. For a constant applied field, two different evolutions of the magnetic state
appear with increasing |J |. The system describes the IPP trajectory and then switching to the
other static state for H < Hb. For H > Hb, the system passes from IPP to OPP. Right, IPP
and OPP trajectories calculated from the integration of LLGS equation. Adapted from [26].

the current is strong enough. At this point the current corresponds to a critical value
Ic, for which the auto-oscillation regime starts. To find the steady-state solutions, the
detailed geometry must now be considered (applied field orientation, polarizer orientation,
anisotropies and other interactions). The next section is dedicated to the most simple
case that corresponds to the one studied in this thesis.

1.2.2 State Diagram of in-plane magnetized magneto-resistive
devices

The simplest case is the one of an in-plane magnetized MTJ, where the free layer and
polarizer layer are in-plane and collinear. If the bj term is neglected, two magnetization
dynamical modes occur under the influence of STT in its simplest form (aj ∝ I). When

the free layer has a uniaxial anisotropy (given by an anisotropy field ~Hu) in the same
direction as the polarizer and the applied field, the state diagram is schematically similar
to the one given in Fig. 1.10 at 0 K. At zero applied field (Hb = 0) and no current, there
are two energy minima (P and AP state) and the initial state defines the evolution of the
magnetization with applied current.

For example, for an initial P state, applying a positive current induces In-Plane
Precession (IPP) trajectories above the critical current Jc1 that compensates the damping
term in Eq. 1.11. Then the switching occurs when J > Jc2 since the energy provided by
the STT term will make the total energy higher than the energy barrier between P and
AP states (see schematic with energy landscape of Fig. 1.10). When reducing the current
back to zero, the system energy minimum exists and is stable in the AP state and will
remain in the AP state.

When Hb > Hu, only the stable state is P (for realistic values of current). When
increasing the current to positive values from zero, the system successively describes IPP
trajectories (from Jc1) and Out-of Plane Precession (OPP) trajectories (from Jc2).



The transition between the static state to the IPP state will be of main interest to us.
In terms of Eq. 1.11 it corresponds to a full compensation of the damping term around
the magnetization equilibrium position. This physical picture based on damping and
STT compensation is actually similar to any descriptions of a dynamical system. The
transition between the stable state of the system toward a dynamical state is called a
bifurcation. In the given case here this is a supercritical Hopf bifurcation, that has a strict
mathematical definition, but that at last leads to steady state oscillation close to a limit
cycle. The second bifurcation that happens between IPP and OPP is more complicated
and some simulations predict chaos to appear at the IPP/OPP transition [30, 31].

1.2.3 State diagram with temperature

Since the resistance of a GMR or TMR structure depends on the relative angle between
the free and the fixed layer (see for example Eq. 1.4), state diagrams can be deduced from
the measurement of the resistance or the average resistance. For the static regime, it can
be realized by monitoring the resistance (see Fig. 1.11-a,b), and for dynamic states, one
can monitor the alternating dynamic resistance induced in the gigahertz (GHz) range
(via a spectrum analyzer; see chapter 3). For that reason, direct comparison between
experiments and expected state diagrams can be performed.

However, the model presented in Fig. 1.10 can be far from what is observed
experimentally since it does not take into account the effect of temperature. For example,
the experimental results from Schneider et al. [32] presented in Fig. 1.11-a,b clearly
indicate that the window defined by switching boundaries decrease from the expected
one when increasing the temperature. Another example is shown in Fig 1.11-c from
direct integration of Eq. 1.11 when taking into account a fluctuating thermal noise field
of the form [33]:

〈H i(t)Hj(t′)〉 = 2αkbT
γ0V µ0Ms

δi,jδ(t− t′) , (1.13)

with i, j representing Cartesian coordinates and the brackets are the time average. This
fluctuating field enters the effective field in the Eq. 1.11. Its main property is that it
corresponds to a white Gaussian noise, only 〈H i(t)H i(t)〉 is non-zero.

This simulations show well the bi-stable state and IPP modes when including the
temperature and a shift of critical switching field is also observed. While numerical state
diagrams are very dependent on the model considered for the angular dependence of aj
term, it is interesting to point out two general features of state diagrams extracted from
the numerical solution of LLGS (Eq. 1.11) with thermal noise. The first feature is how the
noise affects the magnetization switching process in presence of STT. The second feature
is how it affects the steady states precession of the magnetization. In the next subsection
we indicate the role of noise on switching processes, while the effects on steady oscillations
are only envisaged as an introduction for the chapter 2 dedicated to the general study of
auto-oscillators in the absence and in the presence of noise.

1.2.3.1 Effects on the Switching Process

With the inclusion of temperature, the bistable region denoted “P/AP” is reduced due to

thermal activation whereby ~M can overcome the energy barrier between the two minima
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Fig. 1.11: Experimental phase diagram centered at the bistable “P/AP” region at (a) 5 K
and (b) 300 K. From [32]. White dashed boxes represent the supposed 0 K bistable region.
While parameters change with temperature (reducing the dashed white box by increasing
temperature), it is clear that temperature also affects the observed P to AP or AP to P transition
region. (c) State diagrams from numerical integration of LLGS with thermal fluctuations (from
left to right: 3 K, 300 K, 3000 K). The hysteretic behavior found at 3 K for the IPP/P transition
is only present if ones consider the Slonczewski formulation for aj . Adapted from [34].

“P” and “AP”. It leads to a non-trivial dependence of the critical lines (switching from
AP to P or P to AP) with temperature. Defining a comprehensive predictive model for
the magnetic particle under both current and temperature effects has attracted particular
attention due to its impact on a large ensemble of memory cells such as in STT-MRAM
technologies. From numerical simulations and experiments, the switching mechanism
depends on the time scale of the current pulse width. As shown in Fig. 1.12, 3 main
switching mechanisms exist in the macrospin approach in presence of thermal fluctuations.

Precessional switching occurs at very high current densities for which a direct
(ballistic) switching of the magnetization occurs. The aj term makes the magnetic energy
variation in Eq. 1.12 so large that it is only possible to make a direct ballistic switching.
In this case, at a constant current value, the switching time will arise from the initial
angle of the magnetization with respect with the fixed magnetic moment. The effect
of temperature on the switching time distribution will thus only depend on the initial
magnetization angle distribution [35]. The mean switching time therefore only depends
on the magnetization dynamics, even in the presence of temperature.

On the contrary, in the purely thermally activated regime, switching time only depends
on the energy barrier KV , where V is the volume of the magnetic particle and K the
anisotropy constant. In this case, switching can occur at I < 0.5Ic for microsecond
current pulse widths.

Finally, the dynamical regime corresponds to the case in which IPP trajectories first
grow in amplitude until switching occurs. As shown in the schematic of Fig. 1.10, the IPP
trajectory is at higher energy than the stable state. When the magnetic particle describes



Switching regime

Fig. 1.12: Magnetization switching phase diagram adapted from [35]. There are three
switching regimes, from left to right: precessional, dynamical and thermally activated switching,
respectively.

an IPP, the energy barrier from this state to the switched state is reduced. Therefore,
during the trajectory, the switching can be thermally activated in a way that the mean
switching time will not depend only on the dynamic properties of the magnetization,
but rather on a mix between thermally activated and dynamical processes (that in turn
depends on the initial cone angle as for the ballistic regime). While the temperature
dependence of the switching time in the macrospin approach is well understood, one
of the main reasons why STT-MRAM is still not on the market is that for billions of
MRAM cells, reliable and repetitive switching has to be established with the same current
densities. However, some cells also undergo a switching process that depends on the
micromagnetic configuration. For example, it has been shown that in perpendicular
STT-MRAM, the switching occurs through domain wall (DW) nucleation [36, 37].

1.2.3.2 Effects on the Stable Dynamical States

Fig. 1.10-c shows that stable dynamical states of the magnetization exists whose critical
lines (stable state to dynamical state or dynamical to stable state) are temperature

independent (especially when ~H > ~Hu). Particularly, the bifurcation between a static
state and IPP is temperature independent in LLGS, since temperature does not affect
damping and STT terms (when thermal fluctuations are considered in the form of
Eq. 1.13). However, material parameters (Ms, α) and aj are temperature dependent
and will induce a temperature dependence of critical lines jc1 experimentally (compare
the white dashed boxes in Fig. 1.10-b,c).

In other words, while the average switching current is affected by both the
experimental protocol (current pulse width, shape and sample temperature), the critical
lines from static states to IPP modes are independent of it. This statement is
strictly reserved to the Macrospin approach. Similarly to switching by nucleation in
micromagnetism, spin wave modes can occur at the vicinity of Ic [38] and can modify the
aforementioned bifurcation picture (this “picture” is used all along the thesis). In chapter
4, we will address the question of the critical current determination Ic in both macrospin
simulations and experiments.
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(b)

(d)(c)

(a)

Fig. 1.13: (a) H-I diagram of the output power measured on a Co/Cu/Co nanopillar. (b)
Differential resistance plotted in colors for the same (H-I) region. (c) Deduced state diagram.
S and L refer respectively to small and high amplitude IPP modes. W refers to chaotic modes
[40]. (d) Output Spectra for different operating points. From [39].

We now introduce the consequences of temperature on the steady state precession
of the magnetization and especially on the IPP mode. In Fig. 1.13 we show the
first experimentally measured dynamical state diagram by Kiselev et al. [39] with
corresponding voltage output in the GHz range. The information extracted from both
output power and differential resistance measurement indicate a good agreement with the
numerical integration of LLGS. For the region “W”, however, the Macrospin model fails
to predict the mode since it is a non-uniform mode [40].

The feature that we will concentrate on is the linewidth broadening present in the
emitted spectra of those structures under a current/voltage bias. This broadening is
considered to be a consequence of the fluctuations of the trajectory due to the fluctuating
field defined by Eq. 1.13. In Fig. 1.14 the macrospin trajectory is given with and without
considering the fluctuating field. The calculated power spectral density (PSD) of the
signal emitted from a MTJ is also given. It is clear that the noise broadens the linewidth
of the microwave emission.

The fluctuating field is an additional contribution to the effective field in the LLGS
equation 1.11. An analytical study of the impact of the noise on the system is difficult
from this equation. Therefore, a mathematical formalism for oscillators will be used,
which is a powerful tool to predict lineshape broadening of oscillation. In particular, it
allows one to directly link the noise source to the oscillator output. Because the aim of this
thesis is to describe the way the magnetization dynamics is affected by the noise (resulting
in lineshape broadening), the description of LLGS as an oscillator is a prerequisite. A
detailed description will be given in chapters 2 and 4, but we give a first outline of it here.

1.2.3.3 Spin Transfer Oscillator in presence of noise

Due to the magnetoresistive effect (see for example Eq. 1.4), we can consider that the STO
output is an oscillating voltage V (t) proportional to the angle formed by the polarizer
and the free layer. We also only consider the first harmonic of this signal. Then the main
angular frequency of V (t) is ω0 = 2πf0 and its mean amplitude V0, so we can write:
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Fig. 1.14: PSD of the Mx component for a typical IPP mode for (a) T = 0K and (b) T = 400K.
The broadening of the trajectory implies the broadening of the emission lineshape. Simulations
by D. Gusakova.

V (t) = V0 cos(ω0t) .

This output voltage corresponds to an ideal noiseless oscillator (LLGS without Brown
fluctuating field, Eq. 1.13). Nonetheless, in a real system, noise is inevitable such that it
affects the real oscillator. We distinguish noise that can affect the amplitude V0 from the
one that affects the phase term in the cosine. The inclusion of such noise terms leads on
output voltage of the form:

V (t) = [V0 + ε(t)] cos (ω0t+ φ(t)) , (1.14)

where ε(t) is the amplitude noise and φ(t) the phase noise. When ε(t) << V0 and φ(t) <<
1, signal analysis of those terms can be simplified as it will be shown for conventional
electrical oscillators in chapter 3.

If we consider the power spectral density of V (t), the oscillation power is spread around
the main central frequency f0, as a result of these noise contributions. Some examples
are shown Fig. 1.15 for different noise contributions in phase or amplitude.

One of the main objectives of this thesis is to understand and analyze the amplitude
and phase noise observed at the output signal of spin torque oscillators due to the thermal
noise field Eq. 1.13. In order to achieve this, we will introduce in chapter 2 first the basic
concepts of a noiseless oscillator and the role of damping and anti-damping terms to
establish a link between such an oscillator model and LLGS in the form of KTS model.
We then give the basic framework of autonomous (free regime) and non-autonomous
(forced regime) dynamics of auto-oscillators, and of the autonomous dynamics of the
auto-oscillator in presence of noise.
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Fig. 1.15: Time varying output voltage and corresponding PSD. The simulated signal
corresponds to Eq. 1.14 by including (a) and (b) white amplitude noise, (c) and (d) white
phase noise and (e) and (f) white frequency noise. In the insets, the peaks near the oscillating
frequency are compared to a signal without noise that is the black dot curve: instead of pure
Dirac peak, it has a non-zero width since the PSD is obtained on a finite time trace. The
integrated power of the PSD is the same for all signals with or without noise source. While the
white amplitude and phase noise do not affect the width of the PSD at all (c) and (d), the white
frequency noise - or random walk of phase - gives the well known Lorentzian spectrum (f).





Chapter 2

Context - Spin Torque Oscillator

This introductory chapter is dedicated to illustrate the mathematical and physical nature
of oscillators that provide the framework for the Spin Torque Oscillator (STO). In the first
section we give the basis of damped oscillators and how they differ from self-sustained
oscillators. It will illustrate two of the main features of the magnetization dynamics:
ferromagnetic resonance under current bias and the steady state oscillations of the
magnetization induced by STT. Finally, we review results from literature that confirm
specific aspects of the theoretical predictions that were obtained before or at the start of
this thesis.

2.1 Oscillators: an introduction

Ideally, an oscillator is a system characterized by a periodic output in time. A simple
example is the free pendulum at low angle. If we consider the angle θ defined as the angle
between the weight vector m~g and the vector formed by the string of the pendulum ~OM
of length l (see Fig. 2.1), θ is a solution of:

θ̈ + g

l
sin(θ) = 0 . (2.1)

Eq. 2.1 is nonlinear by nature, but the small angle approximation allows one to write:

θ̈ + g

l
θ = 0 . (2.2)

In this case the solution is simple and the period of the oscillation T is 2π
√

l
g
. In a more

realistic system, there are energy losses as the oscillating system is always damped out
towards the static equilibrium state. By considering the simplest form of damping, i.e.
losses that are proportional to the angular velocity θ̇, Eq. 2.2 becomes:

θ̈ + λθ̇ + g

l
θ = 0 , (2.3)

with λ > 0. The solution of Eq. 2.3 is such that θ(t) t→∞−−−→ 0. Depending on the value of
λ, the system can be either pseudo-periodic (damped oscillation) or either exponentially
damped out to the equilibrium state. Actually such an oscillator θ is said to be a“damped
harmonic oscillator” and is found in ubiquitous real systems in physics: pendulums, RLC



Fig. 2.1: Simple pendulum oscillator.

circuits, mass-spring systems, etc... From Eq. 2.3, it is obvious that a damped harmonic
oscillator is not a “self-sustained” oscillator that has continuous oscillating outputs in
time. In the following we give the main characteristics of a harmonic oscillator that is a
“passive” - or driven - oscillator where steady-state oscillations are only possible when an
oscillating driving signal is applied to the oscillator. In contrast to a “passive” oscillator
we will introduce the notion of “self-sustained” oscillations (or “auto-oscillations”) that do
not need this additional driving force.

2.1.1 Damped oscillator, resonator and quality factor

To study Eq. 2.3 in the presence of an external driving signal, it is common to use a
complex representation, because it has an easy relationship with the signal PSD:

d2c

dt2
+ 2ξω0

dc

dt
+ ω2

0c(t) = f(t) , (2.4)

where f(t) and c(t) are complex functions, ξ > 0 is the damping ratio and ω2
0 > 0 the

square of the oscillator angular frequency. When f(t) = fe exp(iwt), the steady-state
solutions are assumed to have the form:

c(t) = A(ω)eıωt+ϕ(ω) ,

where A(ω) and ϕ(ω) are respectively the amplitude and the phase shift with respect to
the external driving source such that:

A(ω) = fe√
(ω2

0 − ω2)2 + (λω)2
; (2.5)

ϕ(ω) = arctan
(

λω

ω2 − ω2
0

)
, (2.6)

with λ = 2ξω0, the damping rate of the harmonic oscillator.
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Fig. 2.2: (a) The oscillation amplitude A(ω) for different values of damping ratio ξ as calculated
from Eq. 2.5. (b) The frequency at the maximum value of A(ω) (i.e. the resonant frequency)
versus damping ratio ξ. (c) Full Width at Half Maximum ∆f of A(ω) versus ξ. The mode
frequency is f0 = ω0/2π = 5GHz.

In Fig. 2.2 the amplitude part A(ω) is given for different damping parameters ξ. For
under-damped systems (ξ < 0.1), we see that the main frequency of the damped harmonic
oscillator is almost damping-independent, while it is shifted for higher values of ξ. The
corresponding resonant angular frequency ωr of the harmonic oscillator is then given by:

ωr = ω0

√
1− 2ξ2 , (2.7)

which is only valid when ξ < 1/
√

2. For larger values of ξ, the resonance frequency is “0”,
the system is said over-damped. Moreover in the case where ξ � 1/

√
2, the full width

at half maximum (FWHM) scales linearly with the damping: ∆f = 2ξω0/2π. Because
of this linear dependence with λ = 2ξω0 below ξ ≈ 0.4, the FWHM is a good indication
of the quality factor Q of a damped oscillator or resonator with relatively small damping
ratio ξ.

The quality factor Q relates to the energy dissipated during a cycle of oscillation by
the system due to damping. Q is more precisely the ratio between the energy losses after
one cycle and its initial energy stored. In the example of the pendulum discussed before,
the initial energy stored is the sum of kinetic and potential energy. Hence a general
expression for the Q factor is:

Q = 2π Energy Stored

Energy losses in a cycle
= 1

2ξ = ω0

λ
. (2.8)

For small damping factors, Q is given by Q = f0/∆f . It is important to note that the
Q factor is independent of the excitation itself, which can be noise sources or correlated
inputs. This statement is only verified in linear damped oscillators, where the damping
is independent from the excitation strength. The Q factor is the quantity to use when
dealing with damped oscillators or resonators because it gives information about the
system’s damping. It is quite straightforward to understand that the quality factor Q



Fig. 2.3: Periodic oscillations are represented in a closed curve in the (θ̇, θ) plane. It allows
a distinction between growing state 1 and decreasing state 2, while θ(1)=θ(2). When the
trajectory in the phase plane is a circle, the radius is noted A0. Adapted from [41].

should not be used to describe ideal self-sustained oscillators because - by definition -
their Q factor is infinite (there are no losses over a cycle of oscillations).

Besides, a general characterization of the resonator, the Q factor (as defined as Q =
f0/∆f) has no real significance because it is impossible to extract any information about
the auto-oscillator characteristics, which is the main topic of this thesis. Indeed, when
we compare Fig. 1.15 and Fig. 2.2 we see that the resonator quality and oscillator quality
when defined as Q = f0/∆f is not valid to describe an oscillator output in the form of
Eq. 1.14. According to Fig. 1.15 the oscillator quality depends, for instance, on whether
the noise is located on the phase or on the amplitude of the total signal. That is why we
will limit here the use of quality factor to the ferromagnetic resonance (FMR) which will
be the topic of the section 2.2.1.

2.1.2 Notion of self-sustained oscillator

Self-sustained oscillators, in contrast to damped oscillators, will oscillate in time forever.
Suppose x(t) is the oscillating variable of the oscillator, which could be either the angle
θ(t) of our pendulum, an output voltage, or the mx component of the magnetic moment.
To describe the state of the oscillator we need at least two parameters [41]. Indeed, as
for the pendulum seen in Eq. 2.1, knowing θ(t) is not enough to predict θ(t + δt) unless
θ̇(t) is known. For the case of the pendulum, this is represented in Fig. 2.3 where the
phase plane (θ̇, θ) describes the steady-state oscillator motion. In such a case, this plane
is called phase portrait and the closed curve is called the limit cycle. A point on a phase
portrait is called a phase point, and is represented in polar coordinates, such it has an
amplitude A and an angle, or phase, φ(t).

If we represent now a damped oscillator in this phase portrait, without any forcing
signal, we see that the system goes from the initial conditions (A(t = 0), φ(t = 0)) towards
a non-dynamical final state (static equilibrium A = 0). This case is represented in the
Figs. 2.4-a,b; the damped oscillator goes back to the static equilibrium while “oscillating”.
If we consider now the case of a non-damped linear oscillator (λ = 0 see Eq. 2.2), the
system evolves on a closed trajectory whose amplitude is given by the initial conditions
(A(t = 0), φ(t = 0)). This is represented Fig. 2.4-c. In contrast, Figs. 2.4-d,e show the
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Fig. 2.4: (a) and (b) Phase portraits for damped oscillators. (c) Phase portrait of oscillators
without damping as in Eq. 2.1, the actual (closed) trajectory taken depends purely on the initial
conditions. On the other hand, limit cycles as shown in (d) and (e) for self-sustained oscillators
are the same for different initial conditions. The relaxation rates are different in each cases.
Initial states are marked with a cross.
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Fig. 2.5: A0 is the equilibrium amplitude of the limit circle that corresponds to a ,balance
between the dissipative (damping terms) and supplied energy (anti-damping term) along the
limit cycle.

trajectories in the phase plane of a “simple” self-sustained oscillator where independent of
the initial conditions, the system will end on a well defined limit cycle of given amplitude.
The speed at which the oscillator reaches the limit cycle can be either slow (Fig. 2.4-d)
or fast (Fig. 2.4-e). We will see later that the slower the return to equilibrium, the better
(the higher) the performances (the quality factor) of the oscillator.

To highlight the main differences between those cases, we use a simple toy model
based on physical considerations. Let us consider the case of Fig. 2.4-a,b. As discussed
before, in this case, a dissipative damping enters in the dynamics of the system, that
brings the system to an equilibrium trajectory (limit cycle). For instance in the case
of Fig. 2.4-d “something” drives the system away from the static equilibrium (or initial
position) towards the limit cycle, i.e. “something” restores the limit cycle and making
the system’s trajectory “grows”. In the case of Fig. 2.4-e, dissipative damping restores
the limit cycle by making the system’s trajectory “falls” toward the limit cycle. The
something is called - by opposition to dissipative damping - dissipative anti-damping.
In the case of a self-sustained oscillator, we speak about the restorative damping terms,
that are the dissipative terms that bring the system back to its limit cycle from either a
higher or lower radius as depicted by Fig. 2.4-d,e. This notion is very important, because
it defines self-sustained systems that are called autonomous oscillators (auto-oscillators).

2.1.2.1 Amplitude in self-sustained oscillator

An important consequence from the cases of Figs. 2.4-d,e is that the amplitude of the
limit cycle is given by the equilibrium between the two dissipative terms as discussed in
the following.

In the simplest form, we assume the trajectory of the limit cycle as a circle of radius
A0. A0 is determined by the equilibrium between the two dissipative terms. The energy
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lost (or gained) by damping (anti-damping) on a closed-loop trajectory of amplitude
A is given in Fig. 2.5. When the system is on a trajectory such that A < A0 (A >
A0), the energy supplied is higher (lower) than the energy losses through damping. A
“stable” self-sustained oscillator is an oscillator where the state “naturally” converges to a
limit cycle because of the competition of these damping/anti-damping terms. The phase
portraits of Figs. 2.4-d,e, are two examples for reaching the limit cycle (slowly going to
the limit cycle). This return to the limit cycle actually only depends on the form of
the restorative terms around A0. For example in Figs. 2.4-d,e, the relaxation times are
different according to the initial condition A(t = 0) < A0 or A(t = 0) > A0.

However, for small perturbation from the limit cycle (δA << A0), it is possible to
consider the relaxation independent of the initial condition A < A0 or A > A0. In this
case, a first order linearization of dissipative terms allows such considerations. Similarly
to damped oscillator cases, one could then define a Q factor Qoscillator that determines
how a deviation from the limit cycle trajectory is attenuated/damped. This Q factor is
an extended concept from a damped oscillator. While the Q factor in a damped oscillator
Qresonator only deals with the rate of energy losses, in self-sustained oscillator the notion
Qoscillator is extended to both the rate of energy losses and gains.

As discussed in chapter 4, a key result of this work is that a quality factor for STOs
can be defined, QSTO = ωg/Γp, with ωg the STO mode frequency and Γp the amplitude
restoration rate. Those quantities will be defined later, while the Q factor discussion is
only given here for the sake of generalizing oscillator concepts of different nature. For
instance, in simple electrical oscillators that are mainly a resonator fed with a negative
load [42], the energy losses and energy gains are made through the RLC tank circuit
that can only receive or dissipate energy with its own Qresonator factor. This is why the
Qresonator factor is often used for a self-sustained oscillator, especially in electrical circuit.

To summarize this section, we have presented the notion of a self-sustained oscillator
which is determined by a well defined amplitude in the phase plane. It is the amplitude
A(t) that is responsible for the stable autonomous dynamical state of the system which
as a constant value A0 (or close to it) to define a limit cycle.

In contrast to the amplitude, we did not consider the phase φ(t), because the oscillating
state happens whatever the phase is. In other words, the phase is “free” while the
amplitude is “stable” in self-sustained oscillator [41]. We discuss in the next part about
the phase in self-sustained oscillator.

2.1.2.2 Phase in self-sustained oscillator

In the previous section, we have shown that a self sustained oscillation occurs due to the
compensation of the damping term (now called Γ+(A)) and the anti-damping term (now
called Γ−(A)) that are found to be equal when the limit cycle is reached with A = A0.
If we consider the system on its limit cycle, the phase of the auto-oscillator is such that
φ(t) = ω0(|A|)t. Thus, if we consider A of the complex form A = |A|eiω0t we have:

dA

dt
+ iω0(|A|)A+ Γ+(|A|)A− Γ−(|A|)A = 0 . (2.9)

With a proper choice of Γ+(A) and Γ−(A), this equation describes all the physical
properties given in the previous section. There is now a consideration to be done that



differs from electrical oscillator theory. If we consider Γ+ and Γ− are real, then the
frequency dependence on the amplitude A is direct. This means ω0(|A|) depends on |A|.
Inversely, if we consider Γ+ and Γ− in complex forms, then ω0 is independent of |A|; a
phase shift (in the complex plane) between Γ+ and Γ− would then explain the frequency
dependence versus A. The latter has been introduced to explain the Leeson effect [43, 44].

We will always consider Γ+ and Γ− real and we will assume a pure amplitude-frequency
dependence upon the oscillating frequency. We will call such a system a “nonlinear”
auto-oscillator but also refers to non-isochronous auto-oscillator in contrast to isochronous
auto-oscillator (whose phase is independent from the amplitude |A|). An oscillator
considered with Γ+ and Γ−, that are complex quantities, and the mode angular frequency
ω0 that is independent from A will be said a “quasi-linear” auto-oscillator (isochronous).
All those terms are a misuse of language because as seen in part 2.1.2, any self-sustained
oscillator is, by essence, nonlinear1.

2.1.2.3 Noise in self-sustained oscillator

We are now interested in the effect the noise may have on the dynamics of the system we
defined as a self-sustained oscillator (Eq. 2.9). The aim here is to obtain an output signal
of the form of Eq. 1.14, that complies with our description of a self-sustained oscillator.
Suppose we can linearize Eq. 2.9 near A0 such that |A| = |A(t)| = A0 + ∆A(t). Then it
is possible to write the amplitude-phase equations such that:

d∆A
dt

+ 2
[
dΓ+(|A|)
dA

− dΓ−(|A|)
dA

]
A0∆A = 0

. (2.10)

dφ

dt
= −ωg −N∆A

with ωg/2π the frequency of the autonomous oscillator on the limit cycle, and N the linear

approximation of dω/dA around the point A = A0. When K(A) =
[
dΓ+(|A|)

dA
− dΓ−(|A|)

dA

]
A0 >

0, a solution exists [42]. However, in Ref. [42], it should be noted that N = 0. Similarly
to N , we can only take into account first order terms in Γ+(|A|) and Γ−(|A|), such that
we define ΓA = K(A) =constant around A = A0. As we introduced noise in equation 1.14
in both amplitude and phase terms, we assume now deterministic (or not) independent
functions f(t) and g(t) that would respectively affect the amplitude and phase such that
Eqs. 2.10 can be approximated by:

d∆A
dt

+ 2ΓAA0∆A = f(t) ,

(2.11)

dφ

dt
+ ωg +N∆A = g(t) ,

With the solution to Eqs. 2.11 we can now write the voltage signal V (t) introduced in
Eq. 1.14 such that:

1For example, without nonlinear terms, Eq. 2.9 cannot be obtained from Eq. 2.4.
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V (t) = V0 [1 + ∆A(t)/A0] cos (φ(t)) . (2.12)

Finally, we reach our objective that was to obtain a link between Eq 1.14 or 2.12 and the
description of a self-sustained oscillator that was not too restrictive in terms of the exact
physical nature of the oscillator.

2.1.2.4 Conclusion on self-sustained oscillators

To summarize this introduction on oscillators, we gave definitions as to what constitute
an oscillator, a damped oscillator, and a self-sustained oscillator. In damped oscillators,
the amplitude always decays exponentially towards zero, but can be stabilized by a
periodic driving force (see Eq. 2.5). This amplitude depends on the excitation frequency,
and is largest at the resonance of the system. In self-sustained oscillators, their nonlinear
nature insures the stability of the oscillator along a “limit cycle”. The limit cycle in
self-sustained oscillators is the trade-off between inherent losses of the system and a
constant energy supply. We have seen that the rate at which the system returns to
the equilibrium tells us about the quality of the self-sustained oscillator. In the case
of perturbations of this dynamical equilibrium, such as noise, linearized equations 2.11
allow studying the phase and amplitude dynamics of the oscillator. We would like to
emphasize that in most cases no analytical treatment of nonlinear differential equations
governing the dynamical system is possible; therefore the definition of the limit cycle
and the linearization of the dissipation near it are prerequisites to the analytical study
of an autonomous auto-oscillators.

We have seen in chapter 1 that the magnetization under a spin polarized current
bias is equivalent to an autonomous self-sustained oscillator since STOs exhibit an
infinite oscillating voltage at their output. We present in the next section 2.2 a model
to obtain Eqs. 2.11 from the LLGS equation. Since these steps are non-trivial, we
summarize in the following this formalism.

2.2 Spin Transfer Oscillators

The basic idea of this section is to show how it is possible to find a general equation of
the form of Eq. 2.9 for the magnetization dynamics from physical considerations. We
then compare this model to the state-of-the-art experimental literature. We start in the
next section by the linearized LLGS around the static equilibrium to obtain the equation
of motion for a damped oscillator Eq. 2.4. This will be followed by a nonlinear model of
the magnetization dynamics that is linearized around a limit cycle to give Eq. 2.9. This
model will be of use to study perturbations of the nonlinear magnetization dynamics by
the noise. This will allow to describe the features of a noisy STO output signal.



2.2.1 Magnetism and damped oscillator: FMR

Starting from Eq. 1.7, we linearize the LLGS equation for a magnetization whose static
equilibrium is along the Z-axis, similar to Eq. 2.1 to obtain [45]:(

ṁx

ṁy

)
= − γ0

1 + α2

[
αH̃ H
−H̃ αH

](
mx

my

)
. (2.13)

H̃ is the field felt by the magnetic moment when my = 0 and H when mx = 0. By
combining the system (2.13), it follows:

m̈x + γ0
1+α2α(H + H̃)ṁx +

(
γ0

1+α2

)2
HH̃mx = 0

my = − (1+α2)
γ0H

ṁx − α H̃Hmx

. (2.14)

With ω2
0 = γ2

0/(1 + α2)2HH̃ and λ = γ0α/1 + α2(H+H̃), we find the same equation as Eq. 2.4
for mx. We can note that ω0/2π is the Larmor frequency and that the quality factor, Q,
is not in a simple relation with the Gilbert damping α. As we will discuss later, λ is the
linear damping rate Γ0, and its expression actually takes on different forms as we change
field orientations, include anisotropy and so on.

This introduction to damped oscillators and the way we transpose its formalism to
the LLG equation in presence of STT (Eq. 1.11) is useful to understand why we speak
of Spin-Transfer Torque Oscillator (STO). As discussed earlier, the STT will have two
effects on the dynamics of the magnetization. The first one, through the aj term (see
Eq. 1.10), will affect the effective damping rate λSTT . The second effect, due to bj term
(see Eq. 1.8), will affect the oscillator eigenvalue ωSTT0 as a field would do. Finally, the
modification of Eq. 2.4 should be such that the solutions ω0

STT and λSTT are:

ωSTT0 = γ0

√
(H − bj)(H̃ − bj)

. (2.15)

λSTT = γ0
α(H + H̃ − 2bj)− 2aj

1 + α2

These results are similar to the direct eigeinvalue of the matrix equation of Eq. 2.13
including the STT, in the case of the in-plane collinear case (See Refs. [46, 47]). The
advantage of Eq. 2.15 is that it allows a direct comparison with the damped oscillator
theory that is less obvious in the form of Eq. 2.13 in the damped region. At the critical
current, the damping λSTT becomes 0, and the system should be periodic with time with
its initial amplitude. The initial amplitude refers to the angle θ formed by the initial
magnetic moment position and the effective field H or H̃. To linearize LLGS (Eq. 2.13),
θ is considered small. Due to damping λSTT , the angle remains small and the linearization
is justified. When λSTT is negligible the linearization is no more valid since the system
is allowed to shift away from the static equilibrium position. Therefore, when STT fully
compensates damping, large angle magnetization would be possible, and the linearized
Eq. 2.13 is no longer appropriate.
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This illustrates that the use of damped oscillator equations, or the linearized LLGS
equation around the equilibrium position of the magnetization moment, to describe the
self sustained magnetization dynamics is not appropriate. In the next section, we present
a formalism for self-sustained oscillations and subsequently treat their stabilities. We
finally show how this formalism is applied to large angle magnetization dynamics, i.e.
when the STT compensates fully the ferromagnetic damping.

2.2.2 KTS Model

A formalism for STO in terms of nonlinear dynamical equation in the presence of noise was
first described within the KTS model, that refers to scientists J.-V. Kim (IEF Orsay),
V. Tyberkevych and A.N. Slavin (Oakland University) [48]. It is compounded of two
distinct parts. A first part of the KTS model is using a spin-wave model, or formalism, to
isolate the important physical variables that matter for the dynamics of the system. The
second part of the KTS model is a phenomenological description that takes into account
the thermal fluctuations, or perturbations, acting on the system. The latter is written
using the newly formed variables from the spin-wave model.

According to V. Tyberkevych and A. N. Slavin’s own words, this theory is based
on the “classical quasi-Hamiltonian formalism for spin-waves” [49]. Substantially, it is
said that in STO nano-structures among the manifold of different spin-waves, a single
spin-wave mode is driven into auto-oscillation thanks to the compensation of the Gilbert
damping term by the STT. J.-V. Kim introduced thermal noise [50] to the dynamics of
this spin wave, that impacts both - and separately - its amplitude and phase. Finally, the
full derivation leads to an explanation of the power distribution of STOs versus applied
current [51], prediction of FWHM versus field orientation and applied current [52] and
the temperature dependence of STO noise linewidth [53]. All results and details of the
KTS model have been summarized in a tutorial [54]. In the following we present the
essential features of this model while keeping in mind that a rigorous demonstration can
be found in literature [49].

2.2.2.1 From the LLGS equation to an autonomous auto-oscillator equation

We have seen in part 1.2.1 that the LLGS can be expressed in the form:

∂ ~M

∂t
= γ

[
~Heff × ~M

]
+ ~Tε , (2.16)

with ~Tε representing the damping and STT torques and where the effective field ~Heff is
the derivative of the magnetic free energy of the system W :

~Heff = −δW
δ ~M

. (2.17)

Firstly, damping and STT torques are considered as perturbations, that is to consider
W0 as the “zero order” free energy2 of the limit cycle (a closed loop trajectory of the
magnetization). This energy only depends on applied, dipolar, anisotropy and exchange
fields. Under these conditions, one can consider Eq. 2.16 in the form:

2bj term also enters W0, see discussion part 1.2.1



∂ ~M

∂t
= γ

[
~M × δW0

δ ~M

]
+ ~Tε . (2.18)

Because the norm of ~M is conserved, Eq. 2.18 has two dimensions. Contrary to the
part where we discussed FMR and small precession angles of the magnetization to lead
to Eq. 2.14, we do not consider the small angle approximation in the following. However,
it is still possible to write Eq. 2.18 with a complex variable a(t) = a( ~M(t)). A convenient
choice of the variable is given by the Holstein-Primakov transformation. Depending on
the system’s symmetry, this transformation has a different form. This transformation
is canonical, which means that it does not change the Hamiltonian of a system, i.e. its
energy, and thus solutions in the canonical form can be transformed back to the real
coordinates that are solutions of Eq. 2.18. After transformation, Eq. 2.18 becomes a
perturbed Hamiltonian equation with Hamiltonian H = γW0/2Ms:

∂a

∂t
= −i δH

δa∗
+ ~Fa , (2.19)

where ~Fa is the “perturbation force” with the form:

~Fa = ∂a

∂ ~M
· ~Tε . (2.20)

It is now possible to expand the Hamiltonian H(a, a∗) and the perturbation force
~Fa(a, a∗). This is done by considering not so large |a|. However, within this single
canonical transformation, the Hamiltonian is still a complicated function of (a, a∗). Two
additional canonical transformations are required to lead to an equation in “c-variables”
such that:

∂c

∂t
= −iδHc

δc∗
+ ~Fd + ~FJ , (2.21)

where the HamiltonianHc (in the Macrospin approximation that neglects spatial variation
of local magnetization) is written:

Hc = ω0|c|2 + N

2 |c|
4 , (2.22)

and the dissipative force ~Fd and the current induced force ~FJ have the form:

~Fd = −Γ0(1 +Q|c|2)c
, (2.23)

~FJ = −ΓJ(1 +QST |c|2)c

with ω0, N , Γ0 the Gilbert damping rate (λ in Eq. 2.14), ΓJ = σI, QST = −1 and Q that
are functions of the canonical transformations and material parameters (and the mode
profile). Finally, Eq. 2.21 can be written in the form:

dc

dt
= −iω(|c|2)c− Γ+(|c|2)c+ Γ−(|c|2)c . (2.24)
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Similar to Eq. 2.9, Eq. 2.24 is a nonlinear differential equation that describes the dynamics
of the magnetic moment in presence of STT.

We have thus seen that it is possible to find a dynamical equation for the
magnetization that has the mathematical form of a general self-sustained oscillator. This
is possible through the calculation of the system’s Hamiltonian and several canonical
transformations3. Because this model is generic, some specifics might have disappeared.
For instance higher order terms in |c|2 in Eq. 2.23 have been neglected to only take into
account the direct effect of a bias DC current or also field that explain some features of
parametric excitations. Moreover this model is said to be classical, because it does not
consider quantized spin waves. A similar approach of the derivation of the quantized spin
wave dynamic through a Hamiltonian can been found elsewhere [55]; it explains as well
spin wave coupling [56] and it has been derived in the presence of a bj term [57] and
thermal noise [58].

In order to find solutions of Eq. 2.24 in the form of a limit cycle, we can separate real
and imaginary part of Eq. 2.24 to obtain an equation for the amplitude (or rather the
power p = |c|2) and the phase:

dp

dt
+ 2 [Γ+(p)− Γ−(p)] p = 0

, (2.25)

dφ

dt
+ ω(p) = 0

with p = |c|2, φ = arg(c) and ω(p) = ω0 +Np as defined in the Hamiltonian Hc.
Next, we consider small mode perturbations around the auto-oscillating state (limit

cycle) with mean power p0 such that p(t) = p0 + δp(t). Linearization of Eq. 2.25 yields:

dδp

dt
+ 2Γpδp = 0

, (2.26)

dφ

dt
+ ωg +Nδp = 0

where ωg = ω(p0) is the generation frequency, Γp(p0) is the amplitude restoration rate
given by (Γ0Q − ΓJ)p0, and defined similarly as in Eqs. 2.11. As for Eqs. 2.11, Γp > 0
insures that stable solutions exist. Moreover, ΓJ depends on the total current I.

As described in Fig. 2.5, in order to establish a stable limit cycle of amplitude p = p0,
damping terms should cancel exactly at p = p0, such that ~Fd = ~FJ . From this equality
one can define the current above which the steady state solution occurs. In Eq. 2.25,
p ≈ 0 is stable as long as Γ−(0) ≤ Γ+(0). Then at and above the critical current Ith,

3Successive transformations can be reduced to only one depending on the geometry of the system.
Transformation steps have been originally proposed in Ref. [49] in order to explain the different steps to
reach Eq. 2.24 from Eq. 2.16. During the process, many terms are neglected both in the Hamiltonian and
in the corresponding perturbation forces from heuristic arguments. We eventually give in chapter 6 a
similar approach closer to the magnetization dynamics of our structures (IPP mode) in order to explain
fractional synchronization. In Ref. [49] fractional synchronization is neglected for the purpose to simplify
the equation in c-variables (read p.1922 of Ref. [49]).



Γ−(p0) = Γ+(p0) is verified for any I > Ith. Therefore, with ζ = I/Ith and ~Fd = ~FJ one
obtains:

p0 = ζ − 1
ζ +Q

. (2.27)

Finally, we can write 2Γp = (ζ − 1)Γ0, which is a simple function of the supercriticality
parameter ζ. Following the discussion made in part 2.1.2, Γp is related to the quality
factor QSTO ∝ 1/Γp of the auto-oscillator. In particular, Γ0, that is the linear damping
rate or FMR linewidth, scales linearly with the Gilbert damping α such that Γ0 ∼ 2αω0,
a direct consequence of which is that the “quality factor” of the STO will depend directly
on its FMR linewidth4. This quality factor QSTO has no direct links with the spectral
purity of the STO. In this case QSTO relates to the timescale required to recover from an
external perturbation, or equivalently, the timescale required for the oscillator to go to
another state (by tuning the applied DC current through the structure for instance).

For example, Γp plays an important role in the characteristic timescale required to
pass from an autonomous state to a synchronized state by an external signal as studied by
mean of macrospin simulations in Ref. [59]. Furthermore, the model predicts a frequency
dependence upon the applied DC current in STOs that is the non-isochronous property
of STOs. It fully describes in a simple way what is usually seen in experiments and
simulations of STOs of various configurations: a shift in frequency versus the applied
current, the possibility to synchronize to an external source and the possibility to mutually
phase lock different STOs.

The main advantage of the KTS model is that it has transformed a quite complicated
equation (LLGS Eq. 1.11) into a simpler and conceptually more transparent one (Eq. 2.26)
that can been adapted to describe the autonomous properties (i.e. the frequency
dependence) of the magnetization dynamics for any magnetization configuration and
STO structure (for example see the Ref. [60]). In the next section we give examples of
experimental results for the non-autonomous regime of STOs.

2.2.2.2 KTS model in literature

Besides describing the influence of noise and the substantial linewidth broadening that
will be discussed in section 2.2.3, the spin-wave model from the KTS theory also provides
the framework for coupling, synchronizing, modulating STOs, i.e. for a non-autonomous
formalism. We first summarize results from literature that do not take into account the
noise factor in Eq. 2.24.

Mutual phase locking of STOs

As a first example we mention the mutual phase locking of STOs. It is straightforward
to couple two or more STOs using the formalism of Eq. 2.24 by introducing a coupling
factor βi,j between two oscillators i, j such that:

4Γ0 is the “Full” Gilbert linear damping rate, while the “half” Gilbert linear damping rate ΓG is such
that 2ΓG = Γ0.
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Fig. 2.6: Top: experiment and theory for the experiment of Mancoff et al. (a) STO structure,
from [62], (b) Spectra observed when increasing the bias DC current to the structure from
[62]. (c) KTS model applied to the structure from [61]. While there are some quantitative
differences, the theory qualitatively agrees well. Bottom: experimental and theoretical results
for the experiment of Kaka et al. (d) STO structure, the bias current of both STOs is controlled
independently, from [63]. (e) Spectra observed when increasing the bias current of STO 2 while
STO 1 has a constant DC bias. Insert: independent measurement of the frequency versus bias
current for both STOs adapted from [63]. (f) Spin-wave model applied to the structure from
[61]; a qualitative agreement is found.

dci
dt

+ iωi(|ci|2)ci + Γ+(|ci|2)ci − Γ−(|ci|2)ci =
∑
j

βi,jcj. (2.28)

The solution to Eq. 2.28 is shown in Fig. 2.6-c,f for two oscillators and explains well
[61] the mutual phase locking of different STO structures through spin waves found
experimentally by Mancoff et al. [62] and Kaka et al. [63].

Injection locking experiments

Besides mutual phase locking, the spin-wave formalism of the KTS theory explains as
well the injection locking experiments to an external signal. An example of injection
locking study by Zhou et al. [59] has explained the transient in the synchronized state
in macrospin simulations. Another achievement of the spin-wave model is to explain
the locking range, i.e. the frequency band δfe over which an STO can be synchronized,
with respect to its nonlinear frequency shift parameter N that appears in the phase
equation of 2.26. While injection locking in STOs has been observed in the early stages
of STO development [64], Georges et al. [65] experimentally confirmed that the coupling



Fig. 2.7: (a) Coupling strength ε versus RF current amplitude. (b) Normalized coupling
strength versus frequency tunning. Frequency tunning is proportional to the nonlinear frequency
shift N . Black squares are experimental data and the red curve is an analytical fit from the
KTS model. From [65].

strength ε, similar to the locking band δfe, is a function of the frequency-shift N (see
Fig. 2.7). Injection locking can be explained within the spin-wave model of the KTS
theory considering a driving signal at frequency ωe with initial phase ψe such that :

dc

dt
+ iω(|c|2)c+ Γ+(|c|2)c− Γ−(|c|2)c = −σ∆I tan(γp)

2
√

2
e−iωet−ψes, (2.29)

where γp is the angle between the equilibrium orientations of the magnetization vector of
the“free”and“pinned”magnetic layers of the STO [66]. By expanding in amplitude-phase
equation, it leads to:

dδp

dt
+ 2Γpδp = 2 | − σ∆I tan(γp)|

2
√

2
√
p0 cos(ωet+ φ− ψe)

. (2.30)

dφ

dt
+ ωg = −| − σ∆I tan(γp)|

4p0
√

2
sin(ωet+ φ− ψe)−Nδp

By introducing an effective phase φ̃ such that:

φ̃(t) = φ(t)− ν δp2p0
, (2.31)

with ν = p0N/Γp, the dimensionless nonlinear amplitude phase coupling parameter. With
Eq. 2.31, the phase equation in Eq. 2.30 becomes:

dφ̃

dt
+ ωg ≈ −

| − σ∆I tan(γp)|
4p0
√

2
√

1 + ν2 sin(ωet+ φ̃− ψe + arctan(ν)), (2.32)

where the ε of Fig. 2.7 is exactly the sine prefactor in Eq. 2.32.
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Fig. 2.8: The measured locking range versus out of plane field angle θe. The locking range
corresponds to the sum of the direct RF spin torque contribution as well as the RF Oersted
field generated by the microwave current. The three lines are calculated from the KTS model.
The non-trivial dependence of the locking range versus the out of plane field angle is explained
by the variation of the nonlinear frequency shift N with θe. From [67].

Another work to be mentioned is the injection locking experiment by Bonetti [67]
where the locking range has been measured as a function of out of plane field angle in
nanocontact based STOs. As we can see in Fig. 2.8 the locking band is explained through
the KTS model when both RF oersted field and RF spin torque are considered in Eq. 2.24.

In addition, in Eq. 2.32 a phase shift equal to arctan(ν) appears in the phase term
of the sine that renders the self-synchronization of STO arrays more difficult. Circuit
engineering allows in this case to compensate such a drawback [68]. We have addressed
the issue of injection locking assuming that the driving force directly affects the dynamics
of c(t) in Eq. 2.24. One may argue that an RF current would only affect the dissipative
anti-damping term Γ− in the Eq. 2.24 resulting in a pure real contribution of the RF
current to the Eq. 2.24 as it is the case during frequency modulation experiments
discussed latter (see Eq. 2.33 and compare with Eq. 2.30). In chapter 6, this issue is
discussed, where a direct derivation of the synchronization using LLGS is given. It leads,
for some cases, to a pure “amplitude origin” of the locking phenomenon through the
nonlinear amplitude phase coupling N .

Frequency modulation

Another example of experimental results that can be well explained by the KTS
model involve experiments on frequency modulation (FM) [69, 70, 71, 72]. When
modulating the DC current at a relatively low angular frequency ωm with the amplitude
depth ε (such that I(t) = IDC [1+ε cos(ωmt)]), this modulation current directly modulates
Γ− at this frequency. Thus Eq. 2.25 is transformed into:

dδp

dt
+ 2Γpδp− 2εΓ−(p0)p0 cos(ωmt) = 0 ,

(2.33)

dφ

dt
+ ωg +Nδp = 0 .



Fig. 2.9: (a) PSD of the STO output (for a nanocontact) with and without modulation
current. (b) Shift of the center frequency versus modulation amplitude ∆I = εIDC . Measured
normalized sideband amplitude (squares) and calculated one (full lines) from a nonlinear
frequency modulation model using first order sidebands (c) and second-order side-bands (d). A
linear modulation model is unable to explain the frequency-shift versus ∆I, and the asymmetry
between the upper and lower sideband amplitude which should be equal in a linear modulation
model. From [69].
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The system 2.33 has the solutions :

dδp(t) = ε
2Γ−(p0)p0√
ω2
m + 4Γ2

p

cos(ωmt+ ψ) ,

(2.34)

φ(t) = −ωgt− ε
N2Γ−(p0)p0

ωm
√
ω2
m + 4Γ2

p

sin(ωmt+ ψ) + φ0 ,

with ψ = − arctan(ωm/2Γp). The final output signal of an STO modulated through
its DC current has thus both a sinusoidal varying amplitude and phase. The resulting
spectra has a non-trivial form. First explanations and analysis have been given by Pufall
et al. [69] where the obtained spectra of the STO under modulation current have been
characterized by a typical Bessel-like spectra as shown in Fig. 2.9. A combined nonlinear
FM amplitude modulation (AM) model [73] explained the exact value of the sideband
amplitude in an FM experiment [70] for the case of a non-isochronous STO characterized
by a nonlinear f vs. I dependence. It has been found that a nontrivial nonlinear frequency
shift, i.e. a frequency that is not linear with applied current, would also change the mean
mode frequency and the amplitude of sidebands. Indeed, Eqs. 2.34 do not consider a
possible second order power dependence of the power on the modulating current. This
shows one of the simple linear approximation of the KTS model. We will show in chapter
5 a different derivation from Eq. 2.33. Experiments done in this thesis in section 5.1 aim
to give insights on this second-order power dependence under modulating current that
is obtained solely from the KTS model without further considerations. Moreover, from
Eq. 2.34, we see that varying the modulation angular frequency ωm would change the
modulation capabilities of the STO on both phase and amplitude/power. This has not
been measured experimentally yet and will be another result of section 5.1.

We have shown in this part that the KTS model is able to explain all interactions that
occur in STOs with an external reference signal. FM, injection locking, and mutual phase
locking are easily explained thanks to the oscillator formalism brought within of the KTS
model. Another major achievement of the model involves providing a full description of
the STO dynamics in the presence of thermal noise, as discussed in the following

2.2.3 The thermal noise model in the KTS theory

In the previous parts, we discussed the deterministic nature of Eq. 2.24 to illustrate the
oscillation of an STO on a limit cycle. When a stochastic force fn(t) acts on the system,
such as a thermal fluctuating field in the LLGS equation, Eq. 2.24 becomes, with |c|2 = p,

dc

dt
+ iω(p)c+ Γ+(p)c− Γ−(p)c = fn(t). (2.35)

Here, the purpose is to study the stochastics of the complex variable c(t). In
mathematics, stochastics relate to the study of the time evolution of a system defined as
a random variable, which in our case is c(t).



2.2.3.1 Diffusion constant from The Fokker-Planck formalism

We have studied in detail the deterministic component of the system, i.e. the limit cycle,
and how the system returns to it. Here, the goal is to give the statistical solution of
Eq. 2.35. This requires some assumptions that have to be made. The first one is that
noise will only contribute “reasonably” to the dynamics of the system, i.e., the noise
does not perturb the system too much so that we can still linearize Eq. 2.35. Second
is a consideration on the noise term fn(t) due to the interaction with the thermal bath.
Because fn(t) is phenomenological, its expression should verify a proper thermodynamical
behavior of the STO in the state of thermal equilibrium (i.e. the Boltzmann distribution
of the system state when Γ−(p) = 0) [54]. We will see that the correct choice for fn is a
white Gaussian noise of the form:

〈fn(t)fn(t′)〉 = 0, 〈fn(t)f ∗n(t′)〉 = 2Dnδ(t− t′), (2.36)

where Dn(p) is the diffusion constant that characterizes the noise amplitude when the
oscillator has the power p. We now focus on the determination of Dn(p). The probability
distribution function Peq(p, φ) of the system should lead to the Boltzmann distribution
at thermal equilibrium (Γ−(p) = 0) such that [51]:

Peq(p, φ) ∝ exp
(
−E(p)
kbT

)
, (2.37)

where kb is the Boltzmann constant, T the temperature and E(p) is the energy of the
oscillation such that:

E(p) = λ
∫ p

0
ω(p′) dp′ ≈ λHc, (2.38)

λ depends on the normalization of the system energy (i.e. from real coordinates to
c-variables) that occurs during the transformation from Eq. 2.18 to Eq. 2.19. λ also
depends on the effective volume Veff of the magnetic material involved in the oscillation.
Finally λ is written as:

λ = VeffMs/γ. (2.39)

While 2.35 is not deterministic, the Fokker-Plank equation is a deterministic equation
for the probability function P(p, φ), which, in the case of STO:

∂P
∂t
− ∂

∂p
[2p(Γ+ − Γ−)P ]− ω∂P

∂φ
= ∂

∂p

(
2pDn

∂P
∂p

)
+ ∂

∂φ

(
Dn

2p
∂P
∂φ

)
. (2.40)

The left hand side comes from the deterministic part of Eq. 2.35 and the right-hand-side
(RHS) part is related to the thermal noise acting on the distribution. Eq. 2.40 represents
a general formalism to analyze dynamical systems in the presence of noise. If we neglect
the RHS (i.e. the noise), any initial distribution (or any initial condition in power and
phase of the STO) will end on the limit cycle. The drift term in power, i.e. 2p(Γ+−Γ−),
gives the relative speed with which the distribution P(p, φ) reaches p = p0, at which
the term 2p(Γ+ − Γ−) will be zero (limit cycle condition). At the same time, after the
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transient period, the drift term in phase ω describes on the “natural” drift with time that
occurs with the phase of the distribution, i.e., the frequency ω(p0). If we now analyze the
RHS of Eq. 2.40 we see that it corresponds to a diffusion operator, and its coefficient is
precisely what we would like to determine. To do so, we consider only the steady-state
solution of the distribution P0(p, φ), ∂P

∂t
= 0. Because phases are equally possible in the

steady-state regime, we consider P0(p, φ) = P0(p). We finally arrive at the equation:

∂

∂p

[
2p(Γ+ − Γ−)P0 + 2pDn

∂P0

∂p

]
= 0, (2.41)

whose formal solution is:

P0 = N0 exp
[
−
∫ p

0

(
Γ+(p′)− Γ−(p′)

Dn(p′)

)
dp′
]
, (2.42)

with N0 that depends on the normalization condition of the distribution. We finally
compare this solution 2.42, which is valid for any applied current - with the Boltzmann
distribution Eq. 2.37 at equilibrium (Γ−(p) = 0) to find the condition that should fit
Dn(p):

Dn(p) = Γ+(p)η(p) = Γ+(p) kbT

λω(p) , (2.43)

where η(p) is the noise power of the oscillation. This result is one of the most important
in the KTS model and will be used in chapter 4 of the thesis. To illustrate the importance
of it, we summarize in the following results from literature that were reported before and
throughout the first year of my thesis.

2.2.3.2 Amplitude noise in autonomous STOs

Since the KTS model provides the power distribution of the system going from thermal
equilibrium (I = 0) to a dynamical state(I > Ith), it allows one to calculate the mean
oscillation power p̄ and the power fluctuation (variance) ∆p2 from P0:

p̄ =
∫ ∞

0
pP0(p) dp , ∆p2 = p2 − (p̄)2, (2.44)

where p2 =
∫∞

0 p2P0(p) dp. All these formulations lead finally to what is shown in Fig. 2.10,
where the distribution function for different ζ = I/Ith and reasonable values of STO
parameters are shown. We can see that thermal noise makes a non zero mean power
when ζ < 1, that is for the thermal FMR-mode in the sub-threshold regime. Finally it
gives an intuitive definition of the critical current from experiments because the inverse of
the power is proportional to (Ith− I) in the sub-threshold regime (see inset in Fig. 2.10).
It should be noted that within a similar approach, Kudo et al. found a similar result [74].

This theoretical description was initially done to determine the power dependence with
current observed experimentally as a first step of the demonstration of noise properties
of STOs and finally the observed linewidth in STO RF emission. Later, based on
measurement of Quinsat et al. [76], Nagasawa et al. [77] directly compared the width
of the power distribution experimentally to the one predicted by the KTS model (see
Fig. 2.11) and found a good agreement with theory (more details in chapter 4). The



(a) (b)

Fig. 2.10: (a) P0(p) for different supercriticalities ζ with η = 0.05. Inset: dependence of p̄ for
different values of η (or temperatures) versus the supercriticaility ζ. From [54]. (b) Comparison
between model and experiments of Mistral et al. [75]. Inset shows the same data but the inverse
power 1/p̄ is plotted versus bias current from which it is possible to extract the critical current
Ith. From [51].

experiment of Nagasawa et al. is a straightforward demonstration of the KTS model since
it shows that the noise origin is indeed due to thermal fluctuations of the magnetization
in MgO-based STO (at least at room temperature).

2.2.3.3 Amplitude noise relaxation and its link to the phase noise

With the definition of the diffusion constant Eq. 2.43, Eq. 2.35 can be transformed, using
f̃n(t) = fn(t)e−iφ(t), into:

dδp

dt
+ 2Γpδp = 2√p0Re[f̃n(t)]

. (2.45)

dφ

dt
+ ωg +Nδp = 1

√
p0
Im[f̃n(t)]

Eq. 2.45 is of main importance for this thesis, because it allows a simple expression for
both amplitude (power) and phase fluctuations. We first discuss the amplitude/power
equation. The autocorrelation function of power fluctuation is expressed by:

〈δp(t)δp(t− τ)〉 = Kδp(τ) = Γ+(p0)
Γp

η(p0)p0e
−2Γpτ . (2.46)

Bianchini et al. [78] computed the autocorrelation function of power fluctuations and
extracted Γp from single shot time domain measurements of the output voltage of an
MTJ based STO. As shown in Fig. 2.12, Γp lies in the range of tens of MHz.

In the phase equation of Eq. 2.45, the phase has a direct contribution from power
fluctuations. It is convenient to express the solution of the phase equation by the time
varying phase variance ∆φ2(t):
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Fig. 2.11: Using a single shot measurement technique, it is possible to extract the envelope of
the output signal V (t) of the STO. The distribution of the square of the envelope is then fitted
and a good agreement with theoretical description is obtained. From [77].

Fig. 2.12: (a) The power fluctuation autocorrelation function Γδp = Kδp for a MTJ-STO. (b)
The power-phase cross correlation function Γδpδφ = Kδpδφ from the same set of data. The red
curve is an exponentially decay fit with a time constant equal to 1/2Γp. From [78].



∆φ2(t) = 2π∆f0t+ 2π∆f0ν
2
[
t− 1− e−2Γpt

2Γp

]
, (2.47)

where ∆f0 is the linear linewidth of the STO. The term ∆φ2(t) ∼ 2π∆f0t is typical of
a classical random walk of phase for a linear isochronous oscillator while the additional
term comes from the nonlinear amplitude phase coupling present in non-isochronous
STOs. This is called the nonlinear contribution to the phase variance. For short time
scales (2Γpt � 1), the exponent can be expanded such that this nonlinear contribution
to the phase is zero. Hence the cross correlation Kδpδφ between phase fluctuations δφ and
power fluctuations δp gives zero at small τ but has a non-zero correlation when τ � 1/Γp,
showing that phase fluctuations originate from power fluctuations at long timescales. This
is shown by the measurement of Bianchini et al. in Fig. 2.12-b, where a nonzero cross
correlation product between phase and amplitude fluctuations is found for τ � 1/Γp.

Many other confirmations of the KTS model through experiments were found in recent
years when comparing the STO characteristics from experiments with model predictions,
especially the FWHM. However, they are all based (except our latest example) on the
approximation that the phase variance ∆φ2(t) is linear in time. Because access to the
direct time traces through single shot experiments can be difficult, the only quantity
measurable is the PSD of the output signal V (t) or equivalently the autocorrelation
function KV that is written in the form:

KV (τ) ≈ R0(p2
0 +Kδp(τ)) exp

(
−iωgτ −

∆φ2(τ)
2

)
, (2.48)

where Kδp(τ) � p2
0 and thus can be neglected in general and R0 is a normalization

constant. Because the PSD of a signal with a Lorentzian form derives from an
autocorrelation function that has an exponential decay linear in time, Eq. 2.48 is often
approximated by:

KV (τ) ≈ R0(p2
0) exp

(
−iωgτ −∆f0(1 + ν2)τ

)
. (2.49)

This approximation leads to an approximate solution for the observed FWHM in STO
derived from the KTS model,

∆f ≈ 2∆f0(1 + ν2) . (2.50)

While Eq. 2.50 is a very convenient way to emphasize the major result in Eq. 2.47, it is a
limiting approximation which removes all specific interest of the KTS model. This model
aims to explain the subtle interplay between phase, amplitude and relaxation phenomena
in STOs. While it might be convenient to fit all observed FWHM with formula 2.50, it
gives actually no real information on the performances of the STO in the autonomous
or non-autonomous regimes and may lead to inconsistent results. For example, in the
work of Bianchini et al., this equation is not at all satisfied since ∆f ≈ ∆f0, because
the nonlinear contribution in this specific measurement does not affect the linewidth.
Nevertheless, amplitude fluctuations indeed enters the phase variance as we have
already discussed. Besides works from Bianchini et al. [78] and Nagasawa et al. [77],
STOs are rarely studied in the time domain with single shot instruments so that the
time-dependence of the phase variance is not determined directly from experiments.
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Fig. 2.13: (a) Calculated power from the total output power of the STO. (b) Estimation of Γp
versus estimated power p. Note that for p = 0.3 (or ζ ≈ 1.3) Γp/π = 41MHz. (c) Comparison
of the observed ωg to the theoretical one obtained from a fit. Note that |ν| ≈ 5 ∼ 10. (d)
Comparison of the FWHM extracted by fitting the Fourier Transform of the measured PSD
with the analytical formula Eq. 2.48 and neglecting amplitude noise contributions to the PSD
of the signal. Experimental blue and red points are two different modes. Adapted from [79].

Furthermore, the parameters ν and Γp are in most experimental cases fitted since no
analytical formulation of those exist (especially in nanopillars). It is therefore important
to characterize them in real experiments.

Before closing this introduction, we would like to give an example of successful
comparison of the KTS theory with experimental work in the frequency domain. One
work to be mentioned is the one of Boone et al. [79] with the explicit title “Experimental
test of an analytical theory of spin-torque-oscillator dynamics”. In their work they
extract all important parameters, Γp, N and p0, from frequency measurements of the
first harmonic. As shown in Fig. 2.13, the authors use nonlinear parameter fits to explain
the experimentally observed FWHM. As shown explicitly in Fig. 2.13-a,c; when the KTS
model fails to predict the correct dependence versus applied current, all the parameters
(power, frequency, FWHM) diverge. The authors invoke the STT angular dependence
to explain the discrepancy between experiments and model for 1.3 < ζ < 1.5 and mode
hoping from ζ > 1.5.

The second work worth mentioning, which is based on frequency domain experiments,



(a)

(b) (c)

Fig. 2.14: (a) Plots of FWHM versus Eosci for different ν. S< and S> denote respectively the
slope of the limit behavior of the FWHM below and above the threshold. Results are directly
obtained from Eq. 2.40. (b) and (c) are experimental plots for two different devices (or setup).
ν ∼ 2.9 for Setup I and ν ∼ 2.6 for Setup II. From [80].
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is the one of Kudo et al. [80] underline the fact that because the KTS model is a generic
model for non-isochronous auto-oscillators, similar to the theory of a single mode laser,
the FWHM should have two asymptotic behaviors, one below the threshold current (∆f<)
and another behavior slightly above (∆f>). Similarly to the KTS model, they introduced
the oscillation energy Eosci that is proportional to the emitted power of the STO. Two
limiting behaviors of the linewidth of the STO can be deduced from it:

∆f< = ΓG
π

(kbT/Eosci) ζ < 1

, (2.51)

∆f> = 2ΓG
2π (kbT/Eosci)(1 + ν2) ζ > 1

where ΓG = Γ+(0) is the damping rate at thermal equilibrium. We note that ∆f>
corresponds to Eq. 2.50 (with ∆f0 = ΓG

2π (kbT/Eosci)). As shown in Fig. 2.14, theoretical
predictions fit to experimental data on MTJ-STOs. For this, they considered the
oscillation energy Eosci proportional to the measured signal power divided by I2. From
the ratio of the slope S< and S> obtained by considering two different trends of the
FWHM versus the inverse power, they extracted the nonlinear parameter ν. However,
this method is unable to provide the value of Γp. Nevertheless, we will use it as an
alternative method to obtain the value of ν in our experiments chapter 4.

2.3 Summary

To conclude, we have given an overview of oscillators, damped oscillators, isochronous
auto-oscillators, non-isochronous auto-oscillators and the application of their formalism
to spin torque driven magnetization dynamics. The KTS model provides a means to
transform the LLGS equation into a general oscillator equation, from which the basic
behavior in the autonomous regime and in the non-autonomous regime can be derived.
The transformation from the (exact) LLGS to the KTS model (with some approximations)
isolates the important physical variable of a specific mode profile, represented by the
nonlinear parameters N and Γp. Only for simplified (high symmetry) cases and for
“extended film” modes these parameters can be calculated analytically.

Hence, one needs experimental tools to extract these parameters and that the KTS
model is valid for most situations of the autonomous and the non-autonomous regimes of
the STOs. In particular, the phenomenological noise model in the KTS theory provides
a means to study the linewidth broadening, i.e. the phase noise, that is also relevant
for applications. This is the main aim of Part II (chapters 3 and 4), which is the main
result of this thesis where the time domain noise spectroscopy (TDNS) technique will be
developed to analyze amplitude and phase noise properties in the autonomous regime.
This method will be then applied in Part III (chapters 5 and 6) to the non-autonomous
dynamics of STOs, respectively the modulation and the synchronization.
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This part presents the first half of the achievements of this thesis that is the study
of the STOs in their autonomous regime. Part III will be dedicated to non-autonomous
studies of STOs as perspectives for more extensive studies where I used the techniques
developed in chapters 3 and 4.

Because the experimental results on the autonomous regime of STOs are not
possible without the development of the appropriate experimental techniques, chapter
3 describes the general concepts for understanding and measuring the noise properties of
an auto-oscillator of any physical nature.

In the past, the noise properties of STOs have not been studied in a way that
addresses directly the parameters relevant for the development of RF applications. As
discussed in part I, the measurement of the linewidth is not directly related to the real
performances of STOs in terms of the Q factor, for example. In addition, the linewidth
gives almost no information on the nature and on the origin of the noise acting on the
magnetization in STOs. The time domain noise spectroscopy technique described in
chapter 3 permits phase and amplitude noise, specifically for STO performance, to be
analyzed. Furthermore, this technique provides a means to study many fundamental
aspects of the magnetization dynamics in the presence of noise in STOs.

In chapter 4 these techniques are applied to MTJ devices, whose results will be
compared systematically to the KTS model and to macrospin simulations. Although
some experiments exist that verify the KTS model, as discussed in the introduction
Part I (section 2.2.3 on state-of-the-art literature, i.e. until 2012), a more detailed
verification from a systematic analysis has been missing. In particular, the nonlinear
parameters Γp and ν, which depend on the excitation mode profile, are difficult to derive
theoretically. Therefore they need to be extracted experimentally to provide an input
to theory. We have also shown in part I that the noise model in the KTS theory is
“phenomenological”. One underlying motivation of chapter 4 is therefore to see to what
extent this phenomenological model is appropriate. The motivations for this systematic
experiment/theory comparison is thus twofold where the combined goal of extracting the
nonlinear parameters from the noise studies will be demonstrated on the example of the
IPP excitation mode in MgO based STOs.

The derived method also provides a tool to characterize phase noise that is the relevant
technological parameter. We present first measurements of phase noise values in a large
range of frequency (100 kHz to 1 GHz) for MTJ devices. Although this is demonstrated
for specific IPP modes of planar MTJs, the technique and its conclusions can be applied
to all types of excitation modes in nanopillar and nanocontact structures. This method
is then adapted to the analysis of the non-autonomous dynamics as it will be shown in
Part III.





Chapter 3

Experimental techniques

The measurement of RF electrical signals in the GHz range requires special techniques.
This chapter is dedicated to a detailed presentation of the STO measurements in the
GHz range. From a theoretical point of view, it helps to introduce basic notions of noise
the in oscillator. From an experimental point of view, it is the key aspect of my thesis
and the work I have achieved for the characterization of STOs presented in the following
chapters. It is subdivided into two different sections.

The first section refers to the intrinsic low output power generated by the nanoscale
nature of the STO enhanced by the impedance mismatch found between MTJ-based STOs
with conventional RF objects. We show how to extract the correct generated power of
an MTJ-based STO.

The power measurement is related to the magnetization dynamics through the
magnetoresistance of the STO. For example, first measurements of STOs based on
the GMR effect by Kiselev et al. [39] have shown an output power of around 10 pW
(−80 dBm), taking the reduction of power due to the measurement chain into account.
From this output power, the authors were able to determine the equivalent cone
angle precession of the in-plane precession (IPP) mode in the macrospin approach (see
section 1.2.2), confirming the physical origin of the oscillating voltage observed in their
magnetoresistive devices. The use of the real output power (or mode power) of the
STO will be also of importance for the comparison with the KTS model. Being aware
of the power transmission issues and the impedance mismatches that occur in a RF
measurements will be valuable when dealing with advanced RF techniques discussed in
the following chapters (e.g., modulation and synchronization experiments).

The second section reviews methods to determine frequency instabilities of frequency
synthesizers, i.e., phase and amplitude noise. We first review the concept of signal noise in
conventional electrical oscillators with the aim of defining STO signal noise properties for
typical RF applications. In particular, we give the mathematical concepts of the noise and
the means to measure it experimentally. Since the nanoscale nature of STO makes them
very sensitive to noise, we show how conventional signal analyzer tools fail to determine
their noise performance. As a consequence I finally describe the method I developed for
this noise characterizations of STOs that is also suitable for any conventional oscillators.
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ZM=50Ω
IDC

RDUT

Fig. 3.1: (a) Experimental measurement chain of the STO. An electromagnet controls the local
field on the DUT/STO. A dc current is applied to the STO. A bias-tee allows the ac component of
the current to be extracted, which is then amplified and measured with a dedicated instrument.
Adapted from [81]. (b) Equivalent circuit of the total chain. The measurement is done on a 50Ω
load after the gain amplification of the chain G. RDUT is more complex than only a resistance
(see section on de-embedding).

3.1 Specifics of RF measurements

To examine the detailed steps in the measurement of STOs, we will use an experimental
setup schematically given in Fig. 3.1-a. The corresponding equivalent circuit is shown
in Fig. 3.1-b. Following Fig. 3.1, the Device Under Test (DUT) is measured at one end
of the measurement chain (characterized by ZM = 50Ω). The signal received by the
measurement apparatus is thus strongly affected by the power transmission along the
measurement chain, and must be corrected in some way.

For this purpose, let us first give some basic issues of the power transmission in RF
circuits. From this will follow the direct application to the power transmission between
each component of the chain and between the DUT/STO and the chain. Finally we give
basic information on the measurement apparatus in the frequency domain and traps to
avoid.
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Fig. 3.2: Voltage v(z, t) and current i(z, t) definitions in the lumped-element equivalent circuit
of a transmission line of portion dz.

3.1.1 Transmission line theory

The quasi-static approximation that allows the use of Kirchhoff’s law is not suitable
for gigahertz signals at the component level. For instance, if we consider a 10 GHz
signal, the wavelength is about 3 cm that is a similar length to most of the components
found in Fig. 3.1. Therefore, the electromagnetic wave formalism, provided by Maxwell’s
equations, is used to describe the propagation of microwaves along the measurement chain.
Here the microwave signal is considered as a power quantity (a wave) that propagates
into a certain direction. Most of the RF components are waveguides that guide the
microwave from their input port to their output port. The description of the propagation
of the power through the different components makes use of continuity equations given
by Maxwell’s equations. The following part briefly summarizes the wave theory of basic
RF concepts.

To take into account the spatial variation along a wave guide, the telegraph model is
used (see Fig. 3.2). The wave continuity allows one to consider the infinite medium along
which the wave propagates on infinitesimal parts of size dz where Kirchhoff’s law is valid.
If the (propagative) line is lossless, only a linear capacitance C and linear inductance L
is needed to define the propagation of the wave described (v, i).

The system presented in Fig. 3.2 satisfies the wave equations for cosine-based phasors1

V (z) and I(z) (derived from v(z, t) = V (z)eiωt and i(z, t) = I(z)eiωt):

d2V (z)
dz2 − γ2V (z) = 0

d2I(z)
dz2 − γ2I(z) = 0

, (3.1)

where γ = α+ iβ with β = ω
√
LC and α = 0 (in the case of lossless line). The solutions

are given by:


V (z) = V +

0 e
−γz + V −0 e

γz

I(z) = I+
0 e
−γz + I−0 e

γz

, (3.2)

1Phasors are mathematical quantities where the oscillating term ωt are removed in order to simplify
equations. It is also considered as a physical quantities when dealing with noise in the next section.



Fig. 3.3: Two semi-infinite media linked at z = 0 with two different characteristic impedances
ZC1 and ZC2.

Fig. 3.4: Transmission line terminated by a load of impedance ZL.

V +
0 and I+

0 propagate in the −z direction, while V −0 and I−0 propagate in the +z direction.
An important notion is the characteristic impedance Zc of the line: V +

0 /I+
0 that describes

the inductive/capacitive ratio of a line. For historical reasons, the common value used
for conventional components2 in the RF range is Zc = 50Ω.

3.1.2 Impedance matching

The interest of the characteristic impedance is to describe the reflection and transmission
coefficients at the interface of two different media. In the case of Fig. 3.3, an incoming
wave (u+

1 , i
+
1 ) will split into a transmitted wave (u+

2 , i
+
2 ) and a reflected wave (u−1 , i−1 ).

We define the reflection Γ and transmission T coefficients such that:

Γ = u−1
u+

1
T = u+

2
u+

1
. (3.3)

The continuity conditions i+1 = i−1 + i+2 impose Γ + ZC1/ZC2T = 1 such that:

Γ = ZC1 − ZC2

ZC1 + ZC2
T = 2ZC2

ZC1 + ZC2
. (3.4)

The impedance mismatch between the two media leads to a reflected wave (and thus
power) that decreases the transmitted power. This is the case in a load terminated line.
As shown in Fig. 3.4, if we consider a transmission line terminated by a load of impedance
ZL, with ZC2 = ZL, the reflection coefficient takes the form:

Γ = ZC − ZL
ZC + ZL

. (3.5)

2By convention or consensus the characteristic impedance of most of RF components is 50Ω.
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Fig. 3.5: Transmission Matrix (ABCD) with corresponding inputs and outputs.

Fig. 3.6: Scattering Matrix with corresponding inputs and outputs.

Thus impedance and characteristic impedances for a discrete element are equivalent
(ZC2 = ZL). This part highlights the importance of matched components for the
measurement of RF signals. Indeed, any impedance mismatch leads to reflected waves
that turn into stationary waves, which should be avoided. This aspect needs to be taken
into account when one wants to know the real emitted power by the DUT, i.e. to extract
the exact oscillation power emitted by the STO.

3.1.3 Microwave Network analysis

In order to extract the exact voltage/current at the output of the STO, each component
(probes, amplifiers, cables, ...) is described by a transfer function that links the output
(u2, i2) of a component to its input (u1, i1). For this the Transmission Matrix (ABCD
or T matrix) is used that easily links inputs and outputs (see Fig. 3.5).

From the form of the T matrix, it is possible to compute a chain of several components
by using matrix products [82]. Since T is not directly accessible experimentally (because
most of instruments measure voltages) only the Scattering Matrix (S-matrix) can be
measured.

As shown in Fig. 3.6, the scattering matrix formalism has a very direct use for the
physical interpretation of its elements. For instance, S21, i.e. the ratio of output voltage
to the input voltage, is actually the (voltage) gain of the component: if its two ports are
matched, S21 of a component gives its power gain.

Since S matrices cannot be multiplied, the experimental protocol is to separately
measure the S-matrix of each RF component, then to convert them into T matrices
that they can be combined. Finally the total S-matrix is computed back to obtain the
total measurement chain gain. As shown in Fig. 3.7, the total gain measured with a
vector network analyzer (VNA) of the full chain measured at once (S21 from the Direct
measurement) corresponds well to the computed gain from separate measurements of
each component using T (or ABCD) matrices.

Since a MTJ-based STO has a load impedance of about 300 Ω − 1 kΩ, the signal
generated in the STO is not fully transmitted to the measurement chain because of the
load mismatch problem discussed above. Moreover, the STO is “embedded” in coplanar
waveguide electrodes. Our next exercise is to explain how, from the measurement of
reflected power with a VNA, the exact power generated by the STO can be extracted.
Together with this de-embedding this protocol allows both versatility and accuracy of
different STO measurements.
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Fig. 3.7: Example of the use of the (ABCD) transmission matrix for a typical chain gain of the
STO measurement setup, with gain G ≈ 37. The product of transmission matrices (ABCD) in
red corresponds to the measurement of the full gain of the chain, in black. (b) Schematic of the
typical chain gain, from left to right : bias-tee, 6 dB attenuator, 43 dB amplifier and 1 meter
of RF cable.

3.1.4 Gain correction and de-embedding

Two different geometries of coplanar waveguide exist. The first one is called“transmission
device” that are similar to coplanar wave guide transmission lines whose central line is
split into tow parts to contact the MTJ. Those devices act as quadrupole components
with input and output ports. This is of interest when one wants to input RF signals to
the STO (e.g. modulation and synchronization experiments discussed in part III). The
second coplanar waveguide geometry is called “reflection device”. This one is presented
in Fig. 3.8-a with a zoom at the position of the MTJ device.

To take into account the specifics of the electrode geometry of the STO reflection
device, a model has been described [45, 47] in order to have access to the real output
power of the STO. This model is represented in Fig. 3.8-b. The capacitance effect mainly
originates from the overlap of the electrodes at the position of the MTJ device (see the
capacitance formula in Fig. 3.8-a, with εr = 10 for alumina that is used to electrically
isolate the two electrodes, spaced apart by the distance e = 35nm). When measured with
a VNA, the reflected power S11 (see Eq. 3.5) at the input of the STO corresponds to the
one reflected from the equivalent impedance in Fig. 3.8:

Zeq =
(
rl + RMTJ

1 + (RMTJCω)2

)
+ j

(
Lω − R2

MTJCω

1 + (RMTJCω)2

)
. (3.6)

A fitting procedure of Zeq = 50S11+1
S11−1allows the electrode parameters rl, L and C to be

found. As shown in Fig. 3.8-a,b, the obtained capacitance value indeed corresponds to
the overlap of electrodes in this case. Since the capacitance value is “low”, its effect is
negligible on the power transmission from the MTJ to the 50Ω chain (see Fig. 3.8-d and
the effect of a higher value of the capacitance on the power transmission). In the case
presented here, the high resistance value of the MTJ reduces considerably the transmitted
power to the chain that is 10 times lower than the measured one (see Fig. 3.8-d).

In order to avoid the high impedance mismatch between the MTJ-based STO and the
50Ω chain, a high-Z input amplifier has been realized by the Leti in 2008 for the specific
purpose to be used in MTJ-based STOs [83]. This high-Z amplifier allows to match a
high input source to a 50Ω measurement chain. In this way, all the power generated
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Fig. 3.8: (a) Schematic view of the STO geometry encapsulated in its electrodes. The electrode
overlap of the coplanar waveguide electrode implies a capacitance effect between top and bottom
electrodes. (b) Block diagram of the equivalent electrical circuit and the fitted value for each
component. (c) Real and imaginary part of the impedance of the junction encapsulated in its
electrodes measured by means of VNA. The fitted curves correspond to the model Eq. 3.6.
β = R2

MTJC/L. (d) Effect on the transmitted power generated at the MTJ to a 50Ω load for
C = 40 fF (the design used in this thesis) and C = 1 pF (wrong design). When the capacitance
is low, the transmitted power from the MTJ to the measurement chain is mainly affected by the
common load mismatch implied by the voltage divider formed by the high-Z value of the MTJ
compared to 50Ω. When C is such that ωres/2π < 1 GHz, an additional effect is seen in the
GHz range where the transmitted power is affected by the capacitance and non-negligible. It
requires then to take into account not only the voltage divider, but also the capacitance effect
in order to retrieve the real power emitted by the MTJ.
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Fig. 3.9: (a) Measured output powers of an STO (after gain correction) when the pillar is
connected through a high-Z input amplifier and a 50Ω input amplifier. The power measured
differs by about 6 dB. From [83]. In the case where the STO is connected to the 50Ω input
amplifier, the decrease of output power is due to the fact that the gain of the chain was considered
constant while it decreases with frequency (see Fig. 3.7). (b) Simulated power gain for different
input impedances of the amplifier. In the case of an ideal high-Z input amplifier, the gain
would decrease with frequency, but the simulation with the real input impedance makes the
transmitted gain almost constant in the frequency range considered. The difference between
the real high-Z amplifier and the 50Ω input amplifier is about 5 dB. Simulation parameters:
C = 40 fF, RMTJ = 1 kΩ, L = 7.45 pH and rl = 6 Ω.

in the STO can be transfered to the measurement chain. As shown in Fig. 3.9-a, the
high input amplifier can enhance the measured power on a 50Ω chain. The simulation
results shown in Fig. 3.9-b indicate the interest of such an amplifier for the measurement
of STO. Since the sample requires to be bonded to this high-Z amplifier, we do not use
it in experiments. Nevertheless, this experimental achievement highlights the interest of
the de-embedding model and its accuracy. In particular, this model will be of use when
injecting high frequency signals to the STO, but also to estimate the real oscillation power
generated by the STO.

We now focus on the last components of the RF chain that is the Spectrum Analyzer
(SA). This instrument allows to “locate” a given signal in the frequency space. The way
this “frequency localization” occurs is described in the next section. We also discuss the
limitations of this technique to highlight the need for the signal analysis of STOs.

3.1.5 Measurement of the voltage PSD

As discussed in part 1.1.2, the tunnel conductance of an MTJ depends on the relative
angle between free and pinned layers. When steady-state oscillations occur, we assume
it generates an oscillating voltage:

V (t) = VRF cos(2πfRFt). (3.7)

The problem is now to measure and to locate the component VRF in frequency space.
One solution is to directly acquire this voltage in time domain and to perform a Fast
Fourier Transform (FFT) using digital signal processing (DSP) techniques. However, due
to electronic limitations, this technique was limited until the end of the 1990s to signals
whose frequencies are below 40 MHz [84]. This is explained by the low speed of electronic
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Fig. 3.10: Block diagram of a typical (super-)heterodyne method used in a conventional
spectrum analyzer in the GHz range. The signal is in a first stage multiplied with the local
oscillator signal. The resulting signal is filtered out thanks to the IF filter. The envelope of
this low frequency signal is extracted with a diode detector and then digitalized. The current
technology trend is to digitize directly the IF signal for post-treatment. Adapted from [84].

circuits and the weak dynamic range of digitizers. Very recent instruments allow such
analysis to be performed for GHz signals. Their advantage is that they allow the separate
study of amplitude and phase of a signal as well as single-shot measurements, as it will
be shown in section 3.2.3.2.

To have both the precise measurement of VRF and fRF of a single tone signal such as
the one of Eq. 3.7, the Heterodyne method used by spectrum analyzers (SA) in Fig. 3.10
remains the most accurate in the GHz range3. This method consists of multiplying the
RF signal to be measured by a reference signal given by the local oscillator (LO), of known
amplitude VLO and known frequency fLO. The frequency of the LO is ramped such that
it varies with time. The mixer insures the multiplication of the RF and LO signals.
The cosine product provides the frequency sum (fRF + fLO) and difference (fRF − fLO).
This signal is then directed to the intermediate frequency (IF) bandpass filter of center
frequency fIF and the width RBW (resolution band width). Finally, the signal envelope
is measured with an envelope detector to provide a point in the spectrum. By sweeping
the frequency of the LO, a full spectrum of the input signal can be obtained that have
necessarily a finite width.

This spectrum will depend on the conditions of the measurement. Indeed if we imagine
distinguishing two signals that have a frequency difference of 100 kHz, the RBW should
be below 100 kHz. Moreover, the LO ramp setting must be such that it allows one to
distinguish the two signals separated by 100 kHz. The measurement precision of the value
VRF will depend on the detection mode, i.e. the way the envelope is acquired.

3Actually, the method presented in Fig. 3.10 is the super-heterodyne method, since the IF is fixed.
But we still refer to this method as heterodyne method in the following.
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Fig. 3.11: Signal characteristics of a Lorentzian signal of ∆f = 6 MHz and P = −30.5 dBm
generated by a signal generator with different RBW used for the measurement with a SA. (left)
Measured FWHM ∆f versus the RBW . (right) Measured power versus RBW . This signal
parameters are close to those of an STO after amplification. From [81].

In consequence, the measurement conditions (RBW , sweep procedures, detector type,
averaging, ...) must be defined with respect to the signal that is to be acquired. For
instance, from Fig. 3.11-a it appears that the RBW should be fixed two to three times
lower than the STO’s FWHM in order to provide its correct value. Indeed in the example
of Fig. 3.11, the correct evaluation of the FWHM of a Lorentzian signal of ∆f = 6 MHz
and power P = −30.5 dBm (parameters are set in the signal generator menu) is obtained
when the RBW < ∆f . Nevertheless, the correct determination of the real signal power
is only made possible with a very high RBW 4. Typically, the detector type and the
averaging methods will also influence the shape of the measured peak (see Ref. [81]).
For example the measurement settings in Fig. 3.11-b make the power measurement
“almost” reliable even if the RBW is below the total “frequency spreading” of the signal
to measure. The simplest way to achieve such an “almost” correct power measurement
with RBW < ∆f is to set the RBW at least four times smaller than ∆f . In addition
the sweeping procedure should be such that a point in frequency is measured every RBW
(no overlapping points). When a frequency domain measurement is reported for STOs,
we use such kind of conditions in the SA settings. Indeed, the effect of measurement
conditions on the obtained spectra are well known but need to be adjusted to the specific
signal to be measured and the information one wants to obtain (see for example cases
discussed in [81, 84, 85]).

Finally, even with the most careful measurements of STOs, the different noise
contributions make a reliable and precise measurement of STO’s “main” characteristics
FWHM ∆f difficult [85].

In conclusion, we have shown how it is possible to correct the gain of the chain
in order to extract quantitatively the voltage/power emitted from an STO. Since this

4To estimate the power of a signal spread onto a frequency span ∆fspan, there is no other choice than
to make the power measurement with a frequency aperture higher than ∆fspan.
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voltage is proportional to the angle formed by the pinned and free layer, it gives
information on the dynamics that takes place in the structure. In this way, the
measurement can be qualitatively and quantitatively compared to simulations of the
excitations. The most important message to retain here is that, in addition to the
importance of the estimation of the power for RF application of STOs, the measured
power will depend on the frequency because of the specifics of RF measurements
techniques. When a measurement is done on STOs, it is important to give all the
required information (SA setup, gain calibration procedures) in order to compare with
theories but also in order to compare the efficiency of the different devices measured,
excitation schemes and so on. While measurements with the SA provide ∆f , they do
not provide a deeper insight into its origin, in particular, as to amplitude and phase
fluctuations that, as outlined in chapter 2, determine ∆f .

The next section describes a time domain noise spectroscopy technique (TDNS)
that allows one to analyze amplitude and phase of the signal, by using signal analysis
techniques. The development and the validation of this technique throughout my thesis
is one of the main achievements of this work. The result obtained on STOs with this
technique will be given in chapter 4.

3.2 The time-frequency measurement

The techniques of the previous section were developed and adapted to STO
characterization before the start of my thesis [47, 81]. The very recent time domain
characterization techniques [76, 77, 78, 85, 86] of STOs developed throughout my thesis
have considerably enlarged the information that can be gained from experiments on
the nonlinear dynamics in STOs. We give here the necessary knowledge adapted from
time-domain metrology that can be applied to STOs.

Since STOs are very similar to voltage control oscillators (VCO), we review the
historical development of their characterization (that we have referred to “signal
analysis”). The most common way to characterize auto-oscillators of different nature is the
phase and amplitude noise plot that will be discussed intensively. The understanding of
these plots requires some mathematical definitions, especially related to noise properties.

We finally introduce the phase noise measurement techniques with frequency domain
instruments that are essentially based on heterodyne methods/schemes. We show their
limitations for the characterization of STOs and therefore describe our own developed
technique. The detailed description of this technique presented in this work aims to
provide the necessary information to reproduce the same measurements. Also, it is given
the main limitations of the techniques and its possible solutions.

3.2.1 Introduction to signal analysis

In the previous part we discussed the power measurements of an RF signal that is
supposed to have a single frequency tone. Since STOs are nanoscale devices, they are
very sensitive to noise. In chapter 2 section 2.2.3, it has been described how the noise
affects the linewidth ∆f of STOs via phase fluctuations φ and amplitude fluctuations δa.
Substantially, we explain here the link between φ and δa and the lineshape broadening



(i.e. ∆f) of the PSD of voltage, and why their characterization is of importance for
both applicative and fundamental research. We now consider the general form of a single
frequency tone ν0 signal of amplitude A0 affected by phase φ(t) and amplitude δa(t) noise
[87, 88]:

V (t) = A0(1 + δa(t)) cos(2πν0t+ φ(t)). (3.8)

Historical definition of the phase noise

First of all, let us define the historical notion of the single-side band (SSB) L(f)
(pronounced script ell of f) defined as the ratio of the power found in 1 Hz bandwidth
at a frequency f to the carrier frequency ν0 and the total signal power:

OLD: Lold(f) = power in one sideband per unit of Hz

total signal power

∼ Sφ
2 when φ << 1 and δa neglected

NEW:Lnew(f) = power in one sideband due to phase noise per unit of Hz

total signal power
= Sφ

2

,

(3.9)

where Sφ and Sδa are respectively the PSD of phase noise and amplitude noise for a
signal expressed as in Eq. 3.8. L(f) is expressed in decibels (dB) and since it is relative
to the carrier power and measured on 1 Hz, its unit is dBc/Hz. The definition based on
power ratio, Lold(f), is illustrated in Fig. 3.12. This definition of L(f) corresponds to an
old definition of oscillator noise but is still used nowadays in frequency metrology [87].
The second definition (L(f) = Sφ/2) is now considered as the new definition of L(f)
and is equivalent to the old one for relative low phase noise values as well as negligible
amplitude noise [89]. That is why L(f) = Sφ/2 is considered since 1997 as the exact
definition of SSB noise of an oscillator output voltage [87]. As we said, the old definition
is equivalent to the new definition when amplitude noise is negligible and phase noise
is small. Therefore, the old definition used when referring to the spectral purity of the
STO when measuring the FWHM is not correct (since 1997). This old definition is based
on the former means to measure the quality of a frequency synthesizer (oscillator) that
were based on heterodyne methods (see for example Fig. 3.10). Indeed if we consider a
heterodyne setup, where the carrier suppression is realized by signal mixing in quadrature,
the mixer output is given by:

VMIXER(t) = A0 sin(2πν0t+ φ(t)) · cos(2πν0t)
= A0/2 sin(φ(t)) + A0/2 sin(4πν0t+ φ(t)) . (3.10)

Filtering the signal at 2ν0 insures that only sin(φ) is measured. When φ(t)� 1, sin(φ) ∼
φ. Computing of the PSD of this filtered VMIXER(t) signal is thus equivalent to computing
the PSD of phase fluctuations φ(t).
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Fig. 3.12: L(f) is measured as the ratio of the power Pv(f) measured on a 1Hz bandwidth
at an offset frequency f from the carrier frequency and the total signal power P0 is defined as
the area under the curve of the PSD of V (t). Here the case is presented where the PSD is a
Lorentzian function centered at ν0 = 4.5GHz.

When Sφ(f) is represented or plotted, the quantity is called the double-side band
(DSB) noise5 that is twice L(f) and expressed in dBc/Hz or dB.rad2.Hz−1. The role of
amplitude noise (AN) δa(t) on the spectral purity of a signal is often negligible. The
reason is that in Eq. 3.8, the dominant signal is Gphase(t) = A0 cos(2πν0t+φ(t)) while the
signal Gamp(t) = A0δa(t) cos(2πν0t+ φ(t)) is an order below since δa(t)� 1. Therefore,
only phase noise (PN) φ(t) is considered when dealing with the spectral purity of a signal
emitted from a “stable” oscillator. Fig. 3.13-a schematically illustrates the quasi-linear
oscillator theory [42, 90, 91]. This simplified model considers that the PSD of the total
voltage SV is SV ∝ (Gphase(ω) + Gamp(ω)), and that Gamp(ω) ≈ Sδa. Fig. 3.13-b shows
the experimental verification for a VCO that amplitude noise is much below the phase
noise in RF oscillators in general [89]. The evolution of the definition of L(f) is closely
related to the historical development of telecommunication technology. To highlight the
importance of the spectral purity in telecommunications, and therefore of phase noise,
we detail the issue of phase noise in real applications.

Spectral purity, L(f) and phase noise in telecommunications

Since practical devices emit and receive (transceivers) voltage in communication
protocols, it is important that each signal does not influence its neighborhood.
Therefore, a telecommunication protocol always has restrictions on spectral purity on
signals used. To insure that two neighboring signals do not affect each other, the L(f)
is recommended to be below a certain value for different frequency offsets from the
carrier frequency. In table 3.1 the required SSB is given for different widely spread
telecommunication standards. In the case of GSM, the channel width is 200 kHz (in

5The PSD of φ(t), Sφ(f) is the single-sided power spectral density [87]. There is no ambiguity in the
definitions.
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Fig. 3.13: (a) Schematic representation of the linear oscillator theory, where Gphase = Sφ and
Gamp = Sδa. From [91]. (b) Measurement of phase noise Sφ and amplitude noise Sδa on a Gunn
Diode oscillator (∼ 40 GHz). From [89].
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Fig. 3.14: (a) Constellation Diagram of a 16QAM signal. Example of amplitude and phase
modulations of s0(t) that insure correct formation of bits. The black curve is the signal trajectory
in the I/Q plane. (b) Effect of noise on the bit coding. Phase and amplitude noise may induce
bit error.

Europe) and the requirement is given to indeed not “overlap” on neighbors. In the case
of the global positing system (GPS) and wireless local area network (WLAN or WIFI),
there is respectively no channel width (only 1 GPS signal) and overlapping channels! The
reason is that these standards need protocols such that a noisy carrier frequency should
not induce any errors in data transmission, especially in digital telecommunications.

The best example to understand the importance of having a low L(f) in data
communications, and easy to understand from the definition of phase portrait in chapter
2, is the quadrature amplitude modulation (QAM) or I/Q modulation. In this case
information can transit through amplitude modulations (AM) and phase modulations
(PM) of the carrier signal whose frequency is ν0. The signal has the form:

s(t) = I(t) cos(2πν0t) +Q(t) sin(2πν0t) , (3.11)

where I(t) and Q(t) are modulating signals. If we mix this signal to a mixer in and
90°-off phase with the LO, we can easily reproduce the parametric graph Q(t) versus
I(t). Fig. 3.14 shows the example of 16-QAM that uses both AM and PM of the carrier
signal. All I/Q combinations are marked with their “digital signification”. We also plot
a signal over one carrier period that has both AM and PM. To “read” the I versus Q
signal, it is necessary to have a clock that indicates when the reading should be done.
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Standard Frequency to carrier Max L(f) allowed

GSM/DCS

200 kHz -74 dBc/Hz
400 kHz -106 dBc/Hz
600 kHz -121 dBc/Hz
1.6 MHz -131 dBc/Hz
3 MHz -141 dBc/Hz
20 MHz 145 dBc/Hz

GPS
10 kHz -70 dBc/Hz
70 kHz -70 dBc/Hz
1 MHz -105 dBc/Hz

BlueTooth

1 kHz -78 dBc/Hz
20 kHz -78 dBc/Hz
500 kHz -95 dBc/Hz
1.5 MHz -119 dBc/Hz
2.5 MHz -130 dBc/Hz

802.11 WLAN

1 kHz -80 dBc/Hz
15 kHz -80 dBc/Hz

1.5 MHz -120 dBc/Hz
10 MHz -129 dBc/Hz
30 MHz -140 dBc/Hz

Table 3.1: Required L(f) value for different telecommunication standards at different f .

In the example of Fig. 3.14, two readings are exactly separated by |τi − τi+A| = 1/4ν0.
It is straightforward to communicate digital information with such an encoded signal.
However, because noise can affect both amplitude and phase of the carrier signal, it may
appear that the modulated signal does not appear where it should. It may have some
bit errors. This is why carrier signals as in GPS or WLAN must have very low L(f)
in general since, from its definition in Eq. 3.9, L(f) is an indication on the frequency
stability of the oscillator.

Correct formulation of the phase noise

Since we have reviewed the reason why phase noise is important in oscillators, we
focus on the mathematical definition of phase noise. Following the representation in
Fig. 3.14, we represent the noisy carrier signal in the I/Q plane, similar to phase
portrait, and we focus on its temporal evolution. Since the total phase of the signal
Φ = 2πν0t+φ(t) runs at a constant velocity 2πν0, we can remove this phase accumulation
to form a vectorial representation of s0 that is the phasor. At a time t, the phasor
coordinate is (A0(1 + δa(t));φ(t)) in the phase plane, only the PN and AN appear.

The complete form of PN φ(t) is [88]:

φ(t) = g(t) + ∆Φ sin(2πfmt) + δφ(t), (3.12)

where g(t) is a deterministic function that takes into account the aging of the oscillator
frequency (that is often known), ∆Φ is the amplitude of the periodic phase modulation



with a frequency fm, and δφ(t) a random fluctuation of the phase.
The first term g(t) is compensated by calibration. The phase modulation term

originates from the oscillator electrical environment, for example a DC coupled power
supply will induce such modulation tones (in electrical oscillators). While the two first
terms originate from direct deterministic perturbations of ωg or Γ± terms, as defined
in Eq. 2.24 in chapter 2, δφ is closely related to the internal structure of the oscillator.
In the case of STOs, we have identified its origin from the stochastic processes fn(t)
introduced in Eq. 2.24. Because it is the one of interest for us, we consider from now
δφ = φ. At this point, the definition of stochastic processes is needed, especially to
understand the notion of PSD when dealing with the PSD of φ.

Note on Stochastic processes

A stochastic process y(t) has a strict mathematical definition that can never be
checked in real systems because time is irreversible: we cannot measure the same
quantity twice starting from the same initial time t0. Indeed a stochastic process is a
collection of random variables X, i.e. a time-indexed family of random variables [92]. It
means that:

y(t) = X ∀t . (3.13)

While it seems to be an over constructed entity, studying the stochastic process y(t) is not
equivalent to studying the distribution function of X versus the time t. For example, if we
study N times the same process yi≤N(t) on t ∈ [0,+∞[, we have ∀ t yi(t) 6= yj(t) for i 6= j.
y(t) is indeed a realization of the random variable X at the time t. Fig. 3.15 schematically
shows a stochastic process y(t) and the probability distribution function (PDF) of the
random variable X for two different times τ1 and τ2. We note that the PDF of X at time
τ1 is different from the one at time τ2. Such a process is called non-stationary, since the
PDF of X is not constant over the experiment. In contrast to what is shown in Fig. 3.15,
the stochastic process y(t) must be considered stationary in oscillator models, in order
to insure that the measurement of the PSD of φ is possible. The stationary property of
a stochastic process insures that ∀t ∈ [0,+∞[, and the PDF of X remains unchanged.
In addition to our STO measurements, we assume the ergodicity of the process. In other
words we assume the stochastic process to be ergodic in oscillator models. This means
that by taking sufficiently long time series y(t), the distribution of y(t) converges to the
probability distribution of the random variable X.

Yet φ(t) is considered to originate from an ergodic stationary processes that is fn(t).
It allows then to study a single realization of the oscillator phase to determine its noise
properties and, from the phase noise studies, to extract the key parameters of the KTS
model as we will see in chapter 4. In chapter 2, fn(t) has been considered as a white
Gaussian process, which means that X is a Gaussian variable whose PDF does not change
with the time. It has been used to determine the PDF of the amplitude that, by heuristic
arguments, gave the variance of the Gaussian variable X from fn(t).

Since computing the PSD of a stochastic process requires it to be both ergodic and
stationary, it is of main importance that the noise quantities we are about to extract (δa
and φ) are modeled such in KTS theory. We can highlight the fact that from these only
considerations, the model is phenomenological. Indeed, we would like to highlight that,
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Fig. 3.15: Stochastic process yi(t) measured during the ith experiments between t = 0 and
t = ∞. Two PDFs of X are represented for different time τ1 and τ2. We note that the two
PDFs can be different at different times and that yi(τ1) and yi(τ2) are actually respectively
one unique realization of X at time τ1 and τ2. Of course, only one ”measurement” y(t) can be
realized experimentally. To define more precisely one experiment with noise, it requires thus to
make some hypotheses such as stationarity and ergodicity.

in the real systems, it is rather difficult to check whether the noise quantities are both
stationary and ergodic. In any fields, modeling oscillator involves to consider ergodic
stationary processes in order to define, measure and compute fluctuating quantities
that are never measured as such [88, 93, 94]. It turns out that the fact to point out
such inconvenient proves, of the non-correct description of the noise quantities, is called
“Model pathology” and, in our case, would be an ultimate barrier before bring into play
chaotic dynamics of the magnetization. The “model pathologies” of the KTS theory
will be discussed in the next chapters. However, the ”model pathologies” will have some
direct impacts on the measured noise variances as it will be discussed in the experimental
part of this chapter.

Sφ and its derivatives

Before coming to extracting phase noise from STO measurements, we review the
main features of phase noise found in conventional oscillator measurements. We
previously mentioned the PSD of phase fluctuation φ. The correct mathematical
definition of the PSD of any time function z(t) is:

Sz(f) =
〈

lim
T→∞

 1
T

∣∣∣∣∣
∫ T

2

−T2
z(t)e−i2πft dt

∣∣∣∣∣
2〉 , (3.14)

where < · > is the time average, i.e. the infinite repetition of the realization over an
infinite time. When dealing with PSD of noise quantities, we understand that the notion
of stationarity and ergodicity are primordial to define the PSD on finite length segments.



Then, in practice, the PSD is calculated as the square of the modulus of the Fast Fourier
Transform (FFT) of the quantity z(t). We will especially focus on the PSD of phase
fluctuations φ(t) and amplitude fluctuations δa(t). It is also important to introduce
other fluctuation functions that are used by RF engineers to characterize noise properties
of electrical oscillators. While all those definitions are derived from the phase noise
φ(t), those derivatives are useful at different levels, since they express different aspects
of the phase (frequency) fluctuations behavior of an (electrical) oscillator. These three
definitions are:

� It is convenient to introduce the instantaneous time deviation x(t) defined as:

x(t) = φ(t)
2πν0

. (3.15)

ν0 is considered as a reference frequency. For example, if we consider the time
given by our clock, when we said that we have 25 seconds advance compare to
the real time, we use this definition. We estimate the time deviation from another
time reference. In our case, we evaluate x(t) with the zero-crossing method (ZCM)
defined later.

� In terms of data representation, we also use the frequency noise ∆ν(t). We define
the frequency noise as the time derivative of the phase noise:

∆ν(t) = 1
2π

dφ(t)
dt

. (3.16)

� The relative frequency fluctuation y(t) = ∆ν(t)/ν0 is also used to compare the
quality of an oscillator of different carrier frequency. In this way the value of Sy(f)
at a certain offset frequency f can be compared for electrical oscillators of different
frequency.

The PSDs of those quantities are related to each other:

Sφ =
(

1
f

)2

Sν = (2πν0)2Sx = ν2
0
f 2Sy, (3.17)

where we write S∆ν = Sν for simplicity. Thus, when dealing with noise processes affecting
the system, phase noise, frequency noise, jitter noise (introduced later) are equivalent
since they are all linked by a simple relationship. Fig. 3.16 shows typical phase noise
plots in power law that can be found in electrical oscillators and their corresponding
name is given in table 3.2 when we either deal with phase or frequency noise.

Table 3.2 and Fig. 3.16 illustrates the origin and the type of the noise measured.
Indeed, despite the need for characterizing the oscillator’s noise for applications as
discussed above, noise measurements give information on the origin of the perturbation
the oscillator is subjected to.

The order of the noise type presented in the Fig. 3.16 is often observed in this
way in real VCOs. Indeed, the different noise types are supposed independent (and
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Fig. 3.16: Model of phase noise in power laws. On a log-log plot, Sφ has different slopes
depending on typical noise contributions (see table 3.2).

Sφ(f) ∝
f−a

Type of phase
noise

Type of
frequency noise

Typical origin in
VCOs

Origin in the
case of STOs

a = 0
White Phase

noise
-

External White
Noise

External white
noise [86, 76]

a = 1
Flicker Phase

noise
- Electronic noise

(not yet
observed)

a = 2
Random walk
Phase noise

White
frequency noise

Thermal noise
Thermal noise
(Mag. field)

a = 3 -
Flicker

frequency noise
Resonator

(indeterminate)
[85, 76]

a = 4 -
Random walk

frequency noise
environment

Non-linear effect
[48, 54]

Table 3.2: Different noises modeled by power laws and their usual origin in all-electrical VCOs
[88]. An attempt to summarize the noise types origin for STOs is presented.



therefore exists at all frequencies6). In this case, at very high frequencies, only a white
phase noise of phase can be seen. When decreasing the offset frequency, it appears
that lower (negative) power law are now observable over higher power law noises. This
representation of the phase noise plots helps to determine (and characterize) the different
noise origins and strengths in electrical VCOs.

As we have seen in chapter 2, the phase and amplitude noise of STOs are related
to the noise source in a nonlinear manner (see Eq. 2.24). Therefore, the direct
comparison between experimentally determined PSDs and KTS theory allows one to: (i)
check the validity of the KTS model, (ii) extract the key parameters for practical STO
modeling, (iii) analyze the underlying origins of the lineshape broadening ∆f in STO by
varying different predicted parameters (e.g. the dependence of ∆f upon Γp and ν) and
(iv) understand the limitations of the KTS model.

These motivations show, that apart from technological interests, phase noise plots are
a powerful tool for addressing fundamental issues of STOs.

In the next sections, we focus on the experimental characterization of phase noise
based on heterodyne method usually applied to conventional VCOs to show its limitations
when applied to STOs. We then introduce signal analysis procedures to extract phase and
amplitude fluctuations directly from a real signal V (t) of the form of Eq. 3.8. This time
domain method is then compared to conventional signal analyzer instruments, which
justifies the correctness of the time domain measurements provided by the developed
method.

3.2.2 Phase noise from frequency domain measurement

This section describes frequency domain based methods for phase and amplitude noise
characterization. The first objective of this part is to describe the reference measurement
method that is compared with the method developed in the time domain. The second
objective of this part is to explain why STO phase noise cannot be measured by this
simple frequency based method.

3.2.2.1 Phase noise measurement with a commercial signal analyzer

Phase noise measurements using a signal analyzer is a modified version to the
(super-)heterodyne method presented in Fig. 3.10, where the LO is now exactly the one of
the RF signal and in in-phase quadrature with the signal to characterize and is equivalent
to the measurement of L(f) from its old definition. Usually an adaptive filter is placed
before the down-converted signal that selects only a certain frequency span. A choice of
simple FFTs (with time filters) is realized to perform the best accurate measurement.
As already discussed this method implies that the signal has: (i) a negligible amplitude
noise and (ii) a low phase noise such that sin(φ(t)) ≈ φ(t)� 1.

The assumption (i) insures that the noise signal at the output of the mixer is only
due to phase noise and not due to amplitude noise. The assumption (ii) makes the PSD
of the mixer signal equivalent to the one of φ (the old definition, the one measured by

6This is only a model for the different noises! For example, the ultraviolet catastrophe in the case of
Johnson Nyquist implies that electrical white noise is bounded at high frequency.
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Fig. 3.17: (a) Heterodyne method applied to determine the SSB phase noise of an Agilent
PSG E8257B microwave source with an R&S FSUP26®signal analyzer. (b) Data sheet of the
Agilent source found in [95]. While mismatch of values can be due to a long term drift of the
source compared to its data sheet specifications, it is interesting to note that the PN at the
1 kHz of the 10 GHz signal is exactly 20log(N) = 10 times higher than the 1 GHz PN at 1 kHz
value, where N is the ratio of the frequencies N = 10 GHz/1 GHz. This is typically the case
when the signal is obtained by frequency multiplication of a lower frequency signal. (This is
also correct for the 20 GHz signal).

this technique, converges to the new definition of L(f)). If φ(t) is too large, the phase
quadrature is no longer satisfied and the method fails. In other words, the LO should be
changed accordingly with the phase noise. It becomes important when trying to measure
low frequency phase noise (or the long time stability of a RF synthesizer). In our case
(we’re not yet interested in long term stability of STOs), (ii) is a blocking point since STOs
are very noisy oscillators. Nevertheless, the method applies well to “stable” oscillations
(see the case describes in Fig. 3.17) and will be the reference method to which we will
compare the technique developed in section 3.2.3.2.

Point (i) is also a blocking point since, in the presence of AN (and no significant
PN), the method fails to predict the correct phase noise value. This is illustrated in
Fig. 3.18, where an artificial white Gaussian amplitude noise is added to a “stable” signal
synthesizer (Agilent®PSG E8257B microwave source) signal. The signal analyzer (in our
case a Rhodes&Scwartz FSUP26®that uses an heterodyne detection scheme) returns the
old definition of L(f), that is not equivalent to the real Sφ. This is due to the presence
of AN in absence of significant PN; the output value of the mixer (see Eq. 3.10) is still
interpreted as PN. Since this method fails to correctly describe the nature of the noise
(PN or AN), it will be of limited use for the study of STO’s noise7.

As a consequence, we have to find an alternative method of characterization of PN and
AN in STO that is reliable with the STO noise properties. Before describing this method,
we present a reliable measurement of the amplitude in the case of very low phase noise.
The description of this technique aims to provide a simple AN technique that serves as a
reference when comparing with our own AN analysis method.

7However, close to the carrier, i.e. for low frequency offset, only phase noise is problematic; indeed
when f � ∆f , Sφ � Sδa in auto-oscillator (remember that in auto-oscillator the amplitude is stable,
the phase is free, see chapter 2).
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Fig. 3.18: Measurement of the SSB of the RF source with an additional Amplitude Noise in
black compared to the SSB of the RF source phase noise without AN in red. This example
illustrates perfectly that what is measured with a heterodyne-like method is the noise power
found at a certain frequency offset from the carrier frequency and not the real phase noise.
Phase noise is measured only when AN is negligible (and Eq. 3.10 is verified), that is not the
case here in black.

3.2.2.2 Amplitude Noise measurement

The simplest AN characterization method consists of analyzing the output signal of an
amplitude signal detector, typically a diode detector (see Fig. 3.19-a). The output of
an amplitude detector is analyzed either by a FFT analyzer (FFT analyzers have better
sensitivity than (super-)heterodyne SA for frequencies lower than 10MHz), or as in our
case by acquiring the direct output voltage with an oscilloscope and computing the FFT
of it. Since the diode detector output varies with the signal frequency, it is possible
that additional noise occurs in the measurement because of the phase (frequency) noise
of the measured signal and not because of its amplitude noise. Indeed diode detectors
often have a frequency-dependent conversion factor. This simple method however works
with stable frequency sources. The previous example of Fig. 3.18 AN can be measured
with this technique as illustrated in Fig. 3.19-b for different strength of amplitude noise
(modulation of 10% and 50% from the initial amplitude). In this case we can see that
the noise present close to the signal (the old definition of L(f)) is equal to the amplitude
noise, in absence of significant phase noise. The reference signal has, however, an AN
below the resolution of this simple experimental setup (below −140 dBc/Hz).

As we have seen, there exist basic phase and amplitude noise characterization
techniques using the frequency domain. Those techniques are called such since the signal
analyzers do not analyze the direct oscillating voltage, but a “converted one” assuming
different hypothesis on the signal to measure. Therefore, contradictory results may appear
if the signal under analysis does not satisfy some prerequisites, for example, signals with
very low AN and relatively low PN. Moreover, the only determination of PN with simple
heterodyne method does not provide enough information on the nature of the noise (AN
or PN). As a consequence, we adopted the PN and AN measurement techniques based on
time domain signals for the study of the STO noise characteristics. In the next section we
give the most straightforward time domain technique that consists in directly extracting
time varying phase and amplitude.
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Fig. 3.19: (a) Schematic of the AN detection method. In our case, the amplitude detector
is a simple diode detector (from KRYTAR, Model 201B), instead of an FFT analyzer, a 50Ω
oscilloscope is used to get the detector output. A simple FFT is applied to the output signal.
(b) Comparison between SSB measurements with an FSUP®and the direct measurement of
Sδa with the diode detector. Different white Gaussian AN amplitudes (in percent of A0) are
compared to the reference signal of the detector (no additional AN). We note the strong thermal
noise background of the diode technique that is not optimized at all and is only presented here
for the sake of illustration.

3.2.3 Phase and Amplitude noise Measurement from a Time
signal

We have subdivided this section into two parts. The first is dedicated to tools used to
analyze in depth the signal characteristics in the time-frequency domain. The second part
is dedicated to the experimental protocol that I developed and used for the subsequent
analyses.

3.2.3.1 Signal analysis of a noisy oscillator output signal

It is possible to extract the amplitude and phase noise spectra from the acquisition of
the real signal V (t) in different ways. Here we introduce two different methods.

The Zero-Crossing Method

The first one, which is very intuitive, is the zero-crossing method (ZCM) originally
proposed by Keller et al. for the characterization of STO phase noise [86]. The idea is
as follows. On a time trace of length T , the mean oscillator frequency ν0 is estimated.
Then, the instantaneous time deviation x(τ) is calculated each time the signal crosses
zero. Since x(τ) is not defined on the same time basis as the real signal, some care is
taken to compute the FFT of x(τ) [86]. Calculating the PSD of x(τ) leads to Sφ(f) (see
Eq. 3.17). It is a very straightforward way to have access to phase noise from a time
series.

Fig. 3.20 shows the ZCM applied to a simulated signal in the presence of random
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Fig. 3.20: (a) Evaluation of the ZCM. The instantaneous time deviation is compared to an
ideal cosine signal with frequency ν0. (b) Comparison between the input PN φ(t) and the one
extracted from ZCM. It is interesting to note that the input noise, a random walk in phase,
strongly deviates from zero over the 5 µs while the one extracted from the ZCM “sticks” around
zero. This is because a random walk might give an apparent “linear drift” of the phase in
the realization timespan (in this case about −60 rad after 5 µs). In the analysis, this is then
converted to a frequency shift in ν0 (in this case about −2 MHz, less than 0.1% of ν0). It is
very related to the definition itself of the mean frequency when there is a noisy phase term in
the cosine. (c) Comparison of the PSD of the input PN (in black) and the one measured with
ZCM (in red). We indeed have a random walk of phase with the characteristic f−2 slope. We
note that since there is the compensation of the linear drift of the PN, the high frequency noise
in the PSD of the extracted data via ZCM looks “white”, i.e. with an f0 slope.

walk of the phase8, with no amplitude noise (see the figure caption and the discussion
below about the exact determination of the frequency ν0). In Fig. 3.20-a we present
the estimation of the crossing points (slash symbols “/”) compared to the expected ones
(“-” symbols) from an ideal cosine signal. The extraction from the ZCM of the phase
(realization) φ(t) versus time corresponds to the noise input given in Fig. 3.20-b. We can
see that the mean deviation of the phase noise extracted by ZCM over the full experiment
is zero, whereas the input phase noise has a non-zero mean deviation. Here we face
a “model pathology”, where because of the realization itself, we cannot determine the
actual realization of the noise (compare black and red curves in Fig. 3.20). Indeed, a pure
random walk has a zero mean deviation after a given time, which can only be checked by
averaging an infinite number of realizations. Since in Fig. 3.20 we show only one sample
over all possible realizations, we have the appearance of a “linear drift” of the phase over
the timespan of the realization. This linear drift is eliminated when computing back the
phase noise, in the case where the frequency ν0 is unknown. The direct consequence of
this is that, while the extracted phase noise by the ZCM is correct from quite low to
quite high frequency, a certain saturation (a f 0 slope) in the high frequency phase noise
component extracted by ZCM appears, as well as poor estimates of the first low frequency
points. The problem here is that we cannot be “certain” of the frequency of the measured
signal, only with an accuracy of the experimental timespan, that is not sufficient in the
presence of phase noise. This problem is not specific to the ZCM but a general problem
in time/frequency metrology: the determination of the “exact time” is always “uncertain”.

8To build the total phase of the signal, starting from Φ(0) = 0, we choose the next total phase value
of the cosine as: Φ(t + ∆t) = 2πν0∆t + Φ(t) + X, where X is a Gaussian random variable whose PDF
variance is constant over the time.
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To evaluate the amplitude noise, a similar method to ZCM consists in evaluating the
amplitude of the signal at each extrema of the signal (eventually interpolated). However,
in this case, only the AN distribution can be studied and not it’s time evolution, since
the amplitude maxima appear at random time (due to oscillator phase noise) compared
to the time of the measurement system. Because of these difficulties, Sδa is not calculated
by this method.

Extraction method of phase and amplitude via the analytical
signal

The general problem is to determine both the instantaneous phase and amplitude
of a noisy signal. The best way to do so is to use the notion of the analytic signal z(t)
which is a complex number, i.e., to consider that the measured voltage V (t) is actually
only the real part of the analytical signal (AS). We consider that the AS “evolves” in
the phase plane. There exists a mathematical transformation, the Hilbert Transform H,
that projects the real part of an AS onto its imaginary counter part. Defining HV (t) as
the Hilbert transform of V (t), HV (t) is the convolution product between V (t) and 1/πt:

HV (t) = 1
π
PV

∫ +∞

−∞

V (t′)
t− t′

dt′ , (3.18)

where PV is the Cauchy principal value such that HV (t) is defined (it means that the
integral exists). It is now possible to give the analytical formulation of the signal V (t):

z(t) = V (t) + iHV (t) = A(t)eiΦ(t) , (3.19)

with A(t) and Φ(t) respectively the instantaneous amplitude and total phase of the signal.
In the case of a signal of the form of Eq. 3.8, the Hilbert Transform Eq. 3.19 is one of the
correct mathematical approach to obtain the corresponding AS [96].

In addition to the HT, there is actually another more straightforward way to obtain
the analytical signal Eq. 3.19. Indeed, Eq. 3.8 can be written as:

V (t) = A0(1 + δa(t)) cos(Φ(t)) = A(t)
2

(
eiΦ(t) + e−iΦ(t)

)
. (3.20)

By simply ignoring the“negative”frequency part in the spectrum of V (t), z(t)/2 is formed.
Thus, in practice, a first FFT is performed on V (t). The negative frequency values are
set to zero and the inverse FFT is performed on these “filtered” data. The result is
2z(t). Actually, this way of forming the AS, is the admitted definition of the AS in RF
engineering, since this field only deals with “pseudo”-periodic signals that are expandable
in Fourier series (sum of cosines).

The argument of the complex AS provides the total phase Φ(t) and its modulus the
amplitude A(t). From it, the phase noise φ(t) can be deduced:

Φ(t)− 2πν0t = φ(t) . (3.21)

We have already pointed out the problem of extracting the center frequency ν0 from a
noisy cosine signal. Here, we give the method to extract ν0. It is well known that the exact
angular frequency 2πν0 from a finite time length T is only known with a precision of 2π/T .



Fig. 3.21: Principle of the stroboscopic or the Equivalent-Time measurement. The same signal
is sampled several times with a low SR. After all acquisitions are realized, the total signal is
constructed. From [97].

Moreover, as seen in the ZCM, it is possible that the phase noise φ(t) itself has a linear
drift with time. On a real signal acquired with the sampling rate fsample, the best is to
consider the average 〈φ(t)φ(t+1/fsample)〉 = 0. It is to assume that at very high frequency,
the observed phase noise is white. Therefore, this hypothesis makes the high frequency
phase noise white (see the high frequency tails in Fig. 3.20-c). As we will see later,
this approximation is generally verified for experiments (presence of white high frequency
phase noise), but not in macrospin simulations. Assuming 〈φ(t)φ(t + 1/fsample)〉 = 0, it
follows: 〈

Φ(t+ 1/fsample)− Φ(t)
1/fsample

〉
≈ 2πν0 . (3.22)

Similarly the relative amplitude noise is defined:

δa(t) = A(t)
A0

(3.23)

with A0 = 〈A(t)〉, which means that δa(t) has a zero mean distribution.
As seen here, the method based on the AS is the perfect tool to extract the

instantaneous phase and amplitude from a signal. In the next part we give test cases
to prove the method on real signals. We also give an overview of the limitations of this
method.

3.2.3.2 Experimental extraction of Phase and Amplitude

This section describes in detail the experimental protocol. We first describe briefly the
oscilloscope settings. We then apply the developed time domain technique to real signals.
Finally we give the limitations of the technique on real signals.

For time domain measurements, there exist two main classes of instruments. To
foresee the interest of single shot experiments compared to stroboscopic experiments, we
first introduce the stroboscopic instruments.

Stroboscopic oscilloscopes are of use to study purely repetitive signals. Their internal
triggers allows sampling the signal to very high sampling rates (SR) but at different time



Chapter 3. Experimental techniques 83

(a)

(b)

Fig. 3.22: (a) Principle of a single-shot acquisition. (b) The different measurement modes
during the acquisition time. From [97].

intervals. For example, a stroboscopic oscilloscope will have a real sampling rate of few
hundred of MHz but can display a point every 1 ps, i.e. an equivalent-time SR of 100 GHz!
They actually slightly change the position of their triggering between each measurements
to reconstruct a signal with such a high sampling rate (see Fig. 3.21). However, it relies
on the assumption that the signal measured is reproducible. These instruments are used
in differential time-domain spectroscopy where a GHz or THz input is sent to the DUT
and the resulting output is measured by the stroboscopic instrument. The method is
valid since the same input is sent to the DUT from the first to the last measurement. As
a consequence, they are of limited use in the study of noise or rare events.

The second kind of time domain measurement is done via single-shot oscilloscopes
(SSO). The interesting aspect of those instruments is the very high SR available (about
tens of GHz). Contrary to stroboscopic instruments, SSOs only acquire the signal once
at a very high sampling rate. There are different acquisition modes (see Fig. 3.22), we
prefer the Sample or HiRes modes.

Apart from the sampling rate (50 GHz in our case), the electrical bandwidth (EB) on
SSOs is of significance. The EB is the frequency span over which the apparatus acquires
data (the aperture of the detectors). This parameter is of importance since a signal that
is not in the EB cannot be measured. On the other hand if the EB is too wide, the
detectors integrate too much electrical noise. Roughly, a detector at a temperature T
that is composed of a resistance R will integrate the noise power 4kbTR×EB. The higher
the EB, the lower will be the signal to noise ratio at the output of the detector.

To overcome this problem (the EB should be about the sampling rate), gigahertz
range SSOs use several detectors with different triggering in time with lower SR and thus
with lower EB. The SR of the SSO (50 GS/s in our case) is actually four times the SR of
12.5 GS/s on a 16 GHz EB. Indeed, the input signal is first separated into four channels
that acquire with a SR of 12.5 GS/s. To reconstruct the signal with a SR of 50 GS/s,
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Fig. 3.23: (a) Spectrogram of a measured RF signal with FM of 100 kHz of deviation (window
size: 8192 points (163.84 ns) and window overlap: 25%). (b)-(d) Instantaneous frequency
ν(t) computed from the extraction of φ(t) using the Hilbert Transform (HT) with different
timescales. In (d), the sinusoidal-like instantaneous frequency appears because of the bandpass
filter (4 GHz) applied to the signal before HT post-processing. The oscillation frequency is
about 2 GHz.

the four channels have a known delay of a quarter of 80 ps (that is 12.5 GS/s). This
sampling technique allows a good signal to noise ratio and a high SR, compensating a
relatively low EB. There are other advantages of such a “four-channel-in-one” technique,
for example the digitizers can work at lower frequencies. Nonetheless, the delay between
acquisition channels need to be controlled perfectly.

In the following we give examples of the efficiency of the method from an experimental
point of view. In all cases, we consider signals with relatively low phase noise (generated
by an Agilent®PSG E8257B analog source) in order to compare with the frequency
domain method presented in section 3.2.2.

Demonstration of the time-technique on real noisy oscillators

The first case corresponds to a signal at ν0 = 9.499 GHz with a white Gaussian
frequency noise (FN) generated via the internal noise source of the RF signal generator,
with a “frequency deviation” set to 100 kHz. It means that the frequency is allowed to
vary by 100 kHz from its initial frequency ν0 in a white Gaussian manner. This type
of phase noise is similar to the expected one for STOs (a random walk of phase gives
a Lorentzian shape signal PSD), but of smaller amplitude. Indeed, its relatively weak
strength makes the signal still measurable on our commercial signal analyzer (e.g. the
FWHM is smaller than few kHz).

In Fig. 3.23 we give a spectrogram of the signal and the instantaneous frequency ν(t)
obtained by the AS. The spectrogram is obtained by making a sliding FFT to the signal
and using a density plot to represent the time evolution of the power spectrum. It is
very sensitive to the window size (that gives the frequency precision) and the overlap
of windows (that gives the time precision). The first comment is that spectrograms
(whatever the windows used) cannot reproduce or “track” frequency fluctuations, nor
give accurate description of its fluctuation. Indeed, the spectrograms rely on sliding FFT
to evaluate the power at a certain frequency. Therefore, the higher the window size over
which the FFT is performed, the better is the frequency accuracy. To have a 100 kHz
accuracy would require at least a 10 microsecond segment length. However, the frequency
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Fig. 3.24: Comparison of the FSUP results (in black) to the time domain results (in gray) (a)
for a signal with white Gaussian phase noise, (b) for a signal with white Gaussian frequency
noise, (c) for a signal with white Gaussian Amplitude noise. (d) Comparison of the phase noise
extracted from time domain (in gray) for a signal with AN only and the phase noise obtained
from the FSUP without any noise source (in black). One would expect to obtain the black curve
with the time domain techniques. However, because of SSO’s inner clock phase noise, the gray
curve is obtained. (a)-(d): the dashed black curve is the intrinsic noise floor of the time domain
technique. In all cases ν0 = 9.49 GHz.



varies in a white Gaussian way (i.e. at all timescale with the same amount), making it
impossible to “see” such a small FN using spectrograms. We rather use the determination
of the instantaneous frequency ν(t) using the Hilbert Transform (Eq. 3.19). In this case,
frequency fluctuations are clearly visible. As shown in the Fig. 3.23-d, fast frequency
fluctuations are filtered because of the digital bandpass filter applied to the signal; the
frequency seems to “oscillate”. In practice, this digital filter insures to get rid off low
frequency noise as well as neighboring signals. The band of the filter is large enough to
make sure that fast events are not missed in the signal.

The DSB phase noise resulting from the FN is presented in Fig. 3.24-b. The
measurement from the time domain (in gray) is compared with the one of the
FSUP®from frequency domain (in black). A similar result is found by both methods; it
proves the usefulness of the time domain techniques.

Finally, we demonstrate that the method based on the time-domain also works for
white Gaussian noise of phase (see Fig. 3.24-a) and of amplitude (Fig. 3.24-c). We
note that for amplitude plots, only the Sδa obtained from time domain is compared
with the measurement from the FSUP®(see discussion in the above section 3.2.2).
We can comment on the specific signature on the Sφ and Sδa plots induced by these
noise contributions. The typical behavior expected from a white noise frequency, or
white phase or amplitude noise (see Table 3.2), is obtained in the 1 kHz to 2 MHz
range. The cut-off of the noise at 2 MHz is actually due to the internal noise source
of the RF generator that has a limited bandwidth for generating this three kinds of
noise. In other words, the frequency or amplitude of the RF generator cannot be
changed in a “white Gaussian” way below (resp. above) the µs (resp. MHz) timescale
(resp. frequency-scale). We see the interest of phase noise plots (over spectrograms,
for example) as a characterization tool: phase noise plots provide information on the
timescales and on the nature of the noise affecting the real oscillator. We discuss now
the major limitations of this technique and the main features to take care of.

Limitations due to physical/mathematical principles

We now subdivide the time trace of 1 ms used in Fig. 3.24-b into 50 time traces
of shorter timespan of 20 µs. Three different Sφ obtained from these shorter time traces
can be seen in Fig. 3.25. The first conclusion is that the noise level (for example the
value Sφ(f = 1MHz)) varies a lot among this three plots, so that Sφ from short time
domain traces do not correspond to the one given by the FSUP®. We can see that
even the correct timescale for the noise is not properly defined. The length of the short
time traces (20 µs) are close to the noise time scale that ranges from the ms to the µs
(the f−2 slope in the curve of Sφ spans from 1 kHz to 2 MHz, see Fig. 3.24-b). As a
result the noise power (the area under the curve) is not well determined on this 20 µs
measurement long and neither is ν0, the oscillation frequency. Indeed, this noise power,
i.e. the phase noise variance < φ2 >, cannot be really well defined because we don’t have
a clear realization of the random walk of phase. Somehow, the ergodic properties φ(t)
that are used when computing the FFT of our signal are not respected in these (short)
experiments: the noise realization does not represent its properties in the time span of
the measurement.

To overcome this timescale mismatch, a 1 ms long time trace is acquired (that was
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Fig. 3.25: Comparison of DSP measured from FSUP and the PSD of φ(t). ν0 = 9.5 GHz
and white Gaussian FN of variance 100 kHz is applied. It is clear that the noise has a cut-off
frequency at 2 MHz. The direct effect on the phase noise extraction is that the estimation of
the random walk of phase that happens from the µs timescale is wrongly estimated on a 20 µs
time trace long. For example, the phase variance < φ2 > obtained on each 20 µs varies with a
factor 4. This explains the discrepancy with the FSUP measurement in both noise amplitude
and nature.

used for Figs. 3.24). Since the time trace is now composed of 50 million points, a specific
routine needs to be used. Indeed, the required FFT cannot be performed on 50 million
points with normal computer programs (such as MATLAB®). Time traces are cut into
fifty files of 1 million points and the time varying phase is computed for all 50 segments
(as shown in Fig. 3.25). Since the phase is continuous on a single-shot experiment, the
50 phase parts can be reconstructed into one. The total phase is under-sampled in order
to perform the FFT on a phase trace that is composed of 1 million points and lasts 1 ms
(the SR decreases). The result of such a procedure is shown in Fig. 3.24 for the different
noise sources. It is to be noted that the average phase variance after 20 µs of the 1 ms
long signal is < φ2 >= 0.00529.

A similar problem is found in the case of a white Gaussian AN that is added to the RF
signal. The problem discussed above is linked to the stationary and ergodic properties of
the measured signal. Indeed, the 20 µs long time traces do not allow one to consider the
ergodicity of the measured signal. A straightforward method is to study the distribution
of the AN measured with the SSO10. According to Fig. 3.26-a, the Gaussian distribution
of the AN is clearly not found when studying the distribution of the“measured”amplitude
noise on short time traces (20µs) with respect to the timescale of the amplitude noise.
However, we recover the Gaussian distribution when we increase the sample length to
1 ms (see Fig. 3.26-c). Since, again, the noise timescale is of the order of µs, only a long
time trace of 1 ms allows one to recover the Gaussian distribution of the AN. In this case,
the measured stochastic properties (i.e. the slopes of Sδa) can be correctly described with
these longer time traces (compare Fig. 3.26-b and Fig. 3.26-b with Fig. 3.19-b).

The limitation we have just discussed is not really related to the technique itself, but

9The phase variance for a random walk of phase is defined by < φ2 >= Dt, where D is the drift
constant and t the time. Therefore the phase variance in a random walk of phase is linearly dependent
over the time. When comparing the phase variance from two different measurements, it is important to
compare on the same time span.

10Again the phase variance in the case of random walk of phase is time dependent. In the case of white
amplitude noise, the variance of amplitude noise is constant.
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Fig. 3.26: (a) Distribution of the amplitude (voltage) measured on a 20 µs long time trace. (b)
PSD of amplitude noise δa for the different source configurations obtained from 20 µs long time
traces. (c) Distribution of the amplitude (voltage) measured on a 1 ms long time trace. (b)
PSD of amplitude noise δa for the different source configurations obtained from 1 ms long time
traces. Since AN is a white Gaussian noise only from 2 MHz (or every 0.5 µs), the distribution
of δa(t) is not representative of the PDF of the AN on short time traces. This proves that 20 µs
is not enough to provide a qualitative description of the noise in this case.
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rather to a mismatch between the timescale of our measurement and the timescale of the
noise we want to measure. Therefore, we can call such an issue an extrinsic limitation of
our technique (not instrument dependent). We now describe intrinsic limitations of the
techniques, i.e. instrumentation related limitations.

Limitations due to instrument capabilities

Fig. 3.24-d shows the main limitation of the method. The gray lines in Fig. 3.24-d
correspond to the phase noise extracted from the signal generated by the RF generator
where AN was added. Yet, this exact gray curve can be reproduced using the RF
generator without any AN, and more extensively, with any other RF generators with
ultra-low phase noise performances (not shown here).

In fact, we are facing the limit of the phase noise measurable by the SSO. Indeed, let
us imagine that the signal sent to the SSO is pure, namely for all t, φ(t) = 0. Of course
such a source does not exist. If such a signal is sent to the SSO, the obtained phase
noise should be zero. As discussed on the operating principle of the SSO, all single shot
acquisitions of a time trace are separated by 20 ps, provided by the sampling rate of the
SSO. However, the inner clock time of the SSO can drift such that along the measurement
time, the acquisition time has “drifted away”. It means that to take a time trace lasting
1 ms, the perfect source will appear perfect, if and only if the SSO exactly samples the
time trace every 20 ps. It is obviously impossible to have such an ideal inner clock, and
more generally, it is the main problem in time-metrology; the measurement of ultra-stable
oscillators is very sensitive to the instruments and the methods used.

The gray curve in Fig. 3.24-d is actually the template from which all phase noise
measured above will be considered as correct. The specifications of the time stability of
the SSO inner clock can be found in Ref. [98]. However these specifications refer to jitter
time rather than referring to phase fluctuations of the inner time reference of the SSO.
The jitter is especially used in modern digital processing units to describe the quality of
signal edges, it gives roughly the dispersion of the instantaneous time deviation x(t) after
a certain time τ . The link with phase noise is thus straightforward:

J2
RMS(τ) = 2

(2πν0)2

∫ ∞
1
τ

L(f)df , (3.24)

where of course practical measurement imposes a finite value of the integral. In Table
3.3 the jitter specifications of the SSO is given as well as the jitter calculated from
Eq. 3.24 from the DSB of Fig. 3.24-d. We can see that indeed the jitter obtained
from 3.24-d is below the maximum allowed jitter value for the SSO we are using (DPO
TEKTRONIX®72000D).

The last aspect of the limitation of the PN measurements coming from the instrument is
the thermal noise floor observed at very high frequency with the time domain technique.
We will see later that in the case of STOs, this noise floor does not have the same origin
as the one discussed here. We have seen that the samplers integrate a noise power
proportional to their temperature and the EB. As shown in Fig. 3.26-a,c, there is a
non-negligible broad distribution of the amplitude of the “pure” RF generator (black
curves labeled as “No AN”). This contribution gives an amplitude noise power of about



jitter at τ jitter from L(f) jitter from
SSO’s Specs

1 µs 62 fs < 250 fs
10 µs 115 fs < 250 fs
100 µs 228 fs < 350 fs
1 ms 380 fs < 650 fs

Table 3.3: Comparison of the jitter noise given from the SSO’s phase noise measurement
Fig. 3.24-d to the one specified by the SSO’s manufacturer.

130 dBc/Hz at 1 MHz, while from the data sheet it is expected at least a figure below
140 dBc/Hz at 1 MHz for the RF generator. It is worth noting that this noise is a white
noise, i.e. the same value of the PSD for all frequencies. Actually, a white Gaussian
amplitude noise is automatically converted to phase noise (and vice versa). As seen in
Fig. 3.27, any short term noise contribution can be interpreted as a phase and amplitude
fluctuation in the phase plane. However, since this fluctuation is white, the resulting
AN and PN are also white. It results that a noise floor appears in the phase noise plot
for very high frequency and has the same order of magnitude as the amplitude noise. In
other words, the PN and AN floor observed experimentally originate from SSO converter
noise and are of similar magnitude. As shown by the black curves in Fig. 3.26-b,d,
this white noise is present at all frequencies. In the case of STOs, the amplitude noise
floor found (and the resulting phase noise floor) have a different origin [86, 76] from the
sampler noise. This will be discussed in the part dedicated to STO measurement.

We have demonstrated the possibility to experimentally study the phase and amplitude
noise of an auto-oscillator by means of time domain techniques. The following chapters
(4 to 6) are dedicated to the study of MTJ STOs using this technique. We therefore
present here the general properties of MgO based in plane-magnetized MTJ STOs. Their
frequency spectra were already well characterized in our group and show qualitatively
similar characteristics as devices described in literature.

3.3 Presentation of the tunnel junction devices

The magnetic tunnel junction devices studied in this thesis have been fabricated by
Hitachi GST (San José) and consist of an in-plane magnetized pinned and free layer,
where the magnetizations are collinear in zero applied field. They are nano-pillars
patterned using electron-beam lithography and ion milling, with the stack composition:
(seedlayers)/IrMn (6.1)/PL/MgO (0.9)/FL/Ru/Ta. The pinned layer (PL) is a
CoFe(1.8)/Ru/CoFeB(2) Synthetic AntiFerromagnetic (SAF) trilayer, while the free layer
(FL) is a CoFe(0.5)/CoFeB(3.4) bilayer.

On a wafer, each MTJ has a different TMR value as well as a different resistance
area (RA) product (that is a size independent measure of the MTJ resistance) because
of the various distributions of MTJ parameters (size of the MTJ, local thin film
in-homogeneities,...). The mean TMR ratio is 80% and the mean RA is about 1Ω.µm2.
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Fig. 3.27: The effect of an additional noise source ε on the signal processing. Note that ε
can be independent from the oscillating voltage V (t). For simplicity, we consider here that it
shifts the AS in the phase plane as if it only acted on the real part of the signal (the measured
signal without ε is the dashed gray vector). While the AS advances with 2πν0/fs, this noise ε
is interpreted as a sum of an amplitude noise term δa and a phase noise term δφ.

(a) (b)
(c)

Fig. 3.28: (a) Dependence of the TMR ratio on the MgO barrier thickness for epitaxial
Fe/MgO/Fe MTJs grown by Molecular Beam Epitaxy. From [99]. (b) Dependence of the TMR
ratio versus MgO thickness with different growth conditions. From [100]. (c) RA versus MgO
thickness for ultra-low MgO thickness. The dashed line is the exponential behavior expected
from a pure tunneling regime. The red curve is a fit in the presence of metallic nano-bridges
inside the MgO barrier. From [101].



The TMR ratio is given by the spin-polarization at the electrode interfaces (see Eq. 1.2
for example) while the RA is mainly due to the MgO barrier thickness (see for example
Eq. 1.4).

Because ultra-low RA MTJs are of interest for practical devices (STT-MRAM, STO,
read head in hard disk drives), they have been intensively studied. Figs. 3.28-a,b shows
examples of the experimental correlation between TMR ratio and RA observed for
ultra-low RA junctions (i.e. for low MgO thicknesses), which can be found in literature
[99, 100]. The drop of the TMR ratio versus the thickness of the MgO film at very
low thickness is due to pinholes in the MgO barrier. “Pinholes” are a generic term for
local defects of local inhomogeneities in the MgO barrier. As shown in Fig. 3.28-c, the
presence of pinholes or nano-bridges [101] is accompanied with an additional reduction of
the RA product (compared with the expected exponential decrease of the RA with the
MgO thickness). It is a real engineering challenge to produce ultra-low RA MTJs with
high TMR ratios. An important point is to grow the stack at very low deposition rate
such that it is possible to control the barrier thickness distribution and to obtain correct
homogeneous barrier stoichiometry.

Since the STT effect requires high current densities and the MgO barrier can only
sustain a finite amount of voltage, the lower the RA, the higher the current that can flow
through the MTJ before reaching the breakdown voltage of the MgO [102]. Therefore,
to study the dynamic excitations of the magnetic layers in MTJs, we will use these
ultra-low RA MTJs, or, equivalently, ultra-thin MgO Barriers (below 10 angstroms). In
addition to the difficulty of growing ultra-thin MgO oxide layers, the process to pattern
and to encapsulate the MTJs in their contact electrodes induces apparent RA and TMR
distributions, since parallel or serial resistances affect both the TMR ratio and the RA
product.

As shown in the example of Fig. 3.29 taken from Ref. [103], the junctions with
ultra-low RA product can exhibit either a pure tunnel transport behavior, a pure ohmic
transport, or a mix of both. As discussed in Ref. [103], the barrier quality can be related
to the average TMR and average RA product. Indeed, the “quality” can be somehow
related to the transport - tunnel or ohmic - exhibited by the junction. Akerman et
al. [104] experimentally verified that the only correct criterion to determine the tunneling
regime was the one of the temperature dependence (i.e. there is tunneling transport if
the resistance increases when decreasing the temperature). Therefore, the MTJ with a
high average TMR and a relatively high average RA product (RA ≈ 1.4 Ω.µm2) exhibits
“pure” tunneling transport (see Fig. 3.29-b). Lower average RA product junctions
exhibit successively a mixed regime for RA ≈ 0.8 Ω.µm2 (see Fig. 3.29-c) and a ”pure”
ohmic regime for RA ≈ 0.2 Ω.µm2 (see Fig. 3.29-d). To summarize, in ultra-low MgO
thicknesses, ”conductive” nano-channels (due to pinholes) may appear that they affect
the “pure” tunnel transport behavior of a MTJ when dealing with ultra-low RA MTJs.
Therefore, in our devices provided by Hitachi it is possible to find such behavior as
shown in our previous studies, on the same wafer one can find devices with high TMR
(HTMR) and devices with low TMR (LTMR) characterized by the presence of pinholes.
In this thesis, in order to compare to theory, we have selected HTMR devices that are
pinhole free and exhibit high TMR and high RA values.

Several studies relate the barrier quality in a MTJ to its breakdown process
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(a) (b) 

(d) (c) 

Fig. 3.29: (a) TMR ratio versus RA product for MTJs with different MgO thicknesses. The
solid line corresponds to a possible MTJ of RA = 1Ω.µm2 and 170 % TMR ratio with a shunt
resistance from 0.5 to ∞ Ω. (b)-(d) Temperature dependence for the MTJs with TMR ratio
and RA product given in Fig. (a). The dependence varies from pure Tunneling (b) to pure
ohmic (d). In (c), the transport is a mix between ohmic and tunnel transport. From [103].



Fig. 3.30: Temperature dependence of an MTJ resistance during its conditioning (decreasing
overall resistance by current/voltage stresses). From [107].

[105, 106, 107, 108, 109, 110]. There are two main breakdown processes [111, 112]. One
is called intrinsic and is due to an abrupt breakdown of the barrier. In terms of energies
involved, it is related to the energy bond found between the elements in the barrier and
at the interfaces with the metallic electrodes. The second process, called extrinsic, is
due to the formation of pinholes that gradually increase in size [107, 113]; it is related to
electromigration and element diffusion. For example, Oliver et al. [107] showed that by
applying several voltage stresses to the MTJ, the temperature dependence of the MTJs
resistance can gradually change from the tunnel to the ohmic regime (see Fig. 3.30).

In our case, i.e. devices from Hitachi with a mean RA of 1Ω.µm2, the dynamical
behavior of the magnetization is dependent on the breakdown process that will happen
in the MTJ after current/voltage stresses. Indeed, previous STT excitation studies
made on in-plane magnetized MTJ-based STOs have shown that the excitation mode
does depend on the barrier quality [81, 114, 115]. The extrinsic breakdown, which
occurs in high-value of TMR (HTMR), is coupled to “standard” excitation schemes.
Here standard excitation modes/schemes refer to the similitudes of the measurements
within the macrospin simulations of an in-plane magnetized thin film patterned into a
circular shape (see phase diagrams of Fig. 1.10 and Fig. 1.11 in section 1.2.2). This is
in contrast to low-valued TMR (LTMR) MTJs (characterized by extrinsic breakdown)
where “non-standard” excitation modes appear. The two behaviors have been described
in detail in [81, 114]. We would like to emphasize that these two “dynamic” populations,
related to barrier qualities and to the value of the RA product, is not a process-dependent
feature. As shown in Fig. 3.31, the LTMR (and HTMR, not shown here) behavior is also
clearly reproduced with an ion beam sputtering system. The study by Matsumoto et
al. [116], on MTJ stacks grown by MBE, shows HTMR dynamic-like behavior (i.e. the
standard behavior) in high TMR ratio junctions (and pure tunnel transport behavior).
Finally, other groups also reported a change of the dynamic magnetization excitations
when degrading the MTJ tunnel barrier (see Refs. [19, 117, 118]). It is worth noting
that similar dynamical HTMR/LTMR correspondences to the barrier quality has been
reported in the works of Nazarov et al. [119, 120].

While the dynamic mode excited in LTMR is still unclear, it is obvious that it is related
to the presence of the degraded barrier quality inducing a non-homogeneous spin-polarized
current profile. Al-Mahdawi et al. [121] reproduced LTMR dynamic behavior on in-plane
magnetized MTJs with a nano-oxide layer [122, 123]. The barrier of those MTJs is made
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Fig. 3.31: (a) Resistance versus applied current for a LTMR-MTJ grown by an IBS tool. (b)
Typical spectra of an LTMR-MTJ grown by an IBS tool. (c) Resistance versus applied current
for a LTMR-MTJ grown by a magnetron sputtering tool. (b) Typical spectra of an LTMR-MTJ
grown by a magnetron sputtering tool. (c) and (d) from [81]. The difference in frequency found
in the two measurements is explained by the applied field (200 Oe) in (b) compared to 500 Oe
in (d).



Name Type and Ø TMR RA(Ω.µm2) Jc (A/cm2) Section
Sample A HTMR Ø85nm 77% 1.5 1.76× 107 4.1
Sample B HTMR Ø75nm 77% 1.5 1.53× 107 4.1
Sample C HTMR Ø75nm 74% 1.5 1.76× 107 4.2 & 4.4
Sample D HTMR Ø85nm 75% 1.3 1.76× 107 4.2

DevA HTMR Ø85nm 81% 1.4 1.12× 107 4.5
DevB HTMR Ø75nm 90% 1.6 1.47× 107 4.5
DevC HTMR Ø62nm 86% 2.2 0.99× 107 4.5

No name LTMR Ø85nm 49% 0.88 0.91× 107 4.6
No name HTMR Ø62nm 83% 1.86 1.12× 107 5.3
No name HTMR Ø85nm 79% 1.55 0.97× 107 6.2.1.1
No name LTMR Ø115nm 64% 1.24 0.77× 107 6.2.1.2

Table 3.4: Summary of all samples presented in this manuscript. TMR and RA have been
calculated under a bias current of 50 µA. The critical current density Jc has been measured by
the time domain method given in Chapter 4, except for the HTMR device in section 6.2.1.1
where we used the linear decrease of the linewidth with I in the sub-threshold regime.

of several nano-confined ohmic paths in the barrier, grown on purpose. However, even
micro-magnetic simulations with non-homogeneous current density across the junction
still fail to predict the excitation modes found in LTMR devices [124, 125]. Possibly
more advanced simulations might be required with coupled transport/micromagnetic
simulations, where it has been shown that non-homogeneous STT can take place in NOL
structures [126].

Because these two populations of MTJs result in two different dynamics in our
samples, we divided the study of our samples in two. Because only the HTMR-MTJs
exhibit an excitation scheme that can be linked to macrospin LLGS simulation and
therefore straightforwardly to the KTS model, HTMR samples will be the focus of our
study.

The magnetization dynamics that appear in LTMR samples have already been
observed in time domain in Ref. [115] where the excited mode exhibit a telegraph-type
switching between static and dynamical state as also observed in time domain in spin-valve
structures by Krivorotov et al. [127]. From another work of Krivorotov et al. [128], the
lifetime of the dynamic mode is several milliseconds at 20K while the lifetime at room
temperature can be expected around the nanosecond timescale as it is the case in the
measurements of Houssameddine et al. [115]. In Chapter 4, we present typical phase and
amplitude noise plots from LTMR devices [76]. Table 3.4 gathers all typical information
from all devices measured in this manuscript.

3.4 Conclusion

In this chapter we have presented the main aspects of the measurement techniques used
to study STOs. In a first section we described the two main aspects (signal amplitude
and STO’s frequency fluctuations) to take care of when measuring STOs in the frequency
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domain with a spectrum analyzer. Then we introduced the notion of phase and amplitude
noise in oscillators and their impact on applications but also their possible origins.
Thirdly, we have introduced and validated the measurement of phase and amplitude
noise from a technique based on time domain. In the following, this technique will be
referred to as the time domain noise spectroscopy (TDNS). This developed technique that
I developed constitutes a key result of this thesis. This technique allows one now to study
the phase and amplitude noise characteristics of STOs. Throughout the thesis we focus
on HTMR MTJ devices provided by Hitachi. These devices exhibit a “macrospin”-like
IPP mode and are the ones that will find in best agreement with the KTS model. The
next chapter is dedicated to their detailed study in the above and below threshold regime
by means of the TDNS technique.





Chapter 4

Amplitude and phase noise of STO

We have identified in chapter 2 the importance of the phenomenological KTS model
for addressing the central question of the effects of the noise on the dynamics of the
magnetization under spin polarized currents. The KTS model involves a perturbation
approach to the problem, which means the fluctuations are treated as perturbations of
the main solution given by the “semi-classical nonlinear Hamiltonian”. The aim of this
chapter is to describe to what extent the phenomenological approach of the noise in the
KTS model can serve experimentalists to characterize the STO dynamics from electrical
measurements. The same approach is applied to macrospin simulations, in the presence
of a fluctuating thermal noise field, which are setup-noise free and a textbook example
for the extraction of key parameters. Results from simulations can also be compared
to the results obtained from real measurements. The key parameters are the amplitude
restoration rate Γp, the dimensionless nonlinear amplitude phase coupling ν and the
“linear linewidth” ∆f0 (i.e. the noise strength affecting the system see chapter 2).

We have introduced at the end of the chapter 3 HTMR MTJ devices. They will be
the focus of this study since they exhibit a behavior that can be directly compared to the
KTS model and simulated macrospin excitations of the in-plane magnetized MR devices
(we neglect the effect of bj in our MTJs). For this, we will detail the KTS model in the
sub-threshold (I < Ic) and above threshold regime (I > Ic) in light of our experimental
(and simulation) results. This involves the analysis of the phase and amplitude noise in
the frame of the KTS model using the techniques we developed in chapter 3.

The study of the harmonic signals of an IPP trajectory is investigated in both
experiment and simulation. Since the generation of multiple harmonics at the STO
output is one of the signatures of the nonlinear nature of the magnetization dynamics, we
show how the nonlinear parameters of the KTS theory can be extracted from the analysis
of these harmonics.

Finally we investigate LTMR MTJ devices, where the presence of flicker noise in the
phase and amplitude noise PSD can be attributed to the poor barrier quality of these
devices.

4.1 I < Ic: Damped Harmonic Oscillator

This part aims to compare the phenomenological KTS model to the experimental results
in HTMR-MTJs in the subcritical regime. The measurements on HTMR samples are
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Fig. 4.1: (a) Resistance versus field hysteresis loop for Sample A. (b) Typical excitation
spectrum in the sub-threshold regime (ζ = 0.8) where first and second harmonics of the FL
are visible. We note the presence of FMR-SAF mode as well as the presence of low frequency
noise.

intensively compared to macrospin simulations (bj term excluded) that allow one to
change the temperature (strength of the noise) without changing material parameters
(that experimentally vary with the temperature). In other words, it means that we can
really see the effect of the noise strength on the dynamic properties of the system. The
power distribution and its relaxation is studied in the sub-threshold regime, since from
general oscillator theory, the linewidth of the resonant spectra originates mainly from
amplitude relaxation.

This section is organized as follows: we first introduce the KTS model in the
subcritical regime in detail, we then compare this model with the experimental and
macrospin simulations results and we finally discuss the temperature effect in the below
threshold regime by considering the harmonic oscillator model of the magnetization near
its equilibrium position.

4.1.1 Model description

We focus on the resolution of Eq. 2.24 in presence of noise:

dc

dt
+ iω(|c|2)c+ Γ+(|c|2)c− Γ−(|c|2)c = fn(t). (4.1)

We consider the solution of Eq. 4.1 near zero oscillation power p ≈ 0:

c(t) =
∫ t

∞
fn(t′) exp{−[iωi(0) + Γ+(0)− Γ−(0)](t− t′)}dt′ . (4.2)

Since fn(t) is a stochastic process, it is impossible to express a solution to Eq. 4.2 without
the measure of fn(t). However, it is possible to express the statistical properties of the
solution 4.2 by the autocorrelation function of c(t), Kc(τ) that is:

Kc(τ) = p̄ exp(−iω0τ − [Γ+(0)− Γ−(0)]τ), (4.3)

where p̄ = Dn(0)
2[Γ+(0)−Γ−(0)] is the mean oscillation power and ω0 = ω(0) is the zero power

mode frequency (see chapter 2 and [54]). The term Γs(ζ) = Γ+(0)−Γ−(0) in Eq. 4.1 is the
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sub-threshold damping of the system. This term gives the decay of the autocorrelation
function in Eq. 4.3, it gives the speed with which the system goes back to equilibrium. We
have shown in section 2.2.1 how the linearized LLGS equation around the magnetization
equilibrium can be written in terms of a damped harmonic oscillator. The characteristic
time with which the system returns to its equilibrium is inversely proportional to λSTT .
In our case, we use Γs that is the damping rate of the energy given by:

Γs(ζ) = Γ+(0)(1− ζ) = 2ΓG(1− ζ) , (4.4)

where ΓG is the linear damping rate, in the absence of a spin polarized current. It gives
exactly half the FMR FWHM (that is 2ΓG/π when I = 0) of the susceptibility spectra
of the magnetization. Indeed, the Fourier Transform (FT) of Eq. 4.3 is a Lorentzian
function:

S(ω) = p̄
2Γs

(ω − ω0)2 + Γ2
s

. (4.5)

The solution 4.5 (or equivalently Eq. 4.3) implies that the exponential decay solely
originates from the mode amplitude relaxation toward the equilibrium position of the
magnetization. In this case, the Lorentzian function Eq. 4.5 originates from the
amplitude/power relaxation only. We recall that if a voltage is of the form of:

V (t) = A(t) cos(ω0t+ φ(t)) ,

the autocorrelation function of V (t) is an exponential decay only if φ(t) is a random walk
process (and A(t) = constant) or the autocorrelation function of A(t) is an exponential
decay and φ(t) = constant.

In other words, the sub-threshold linewidth is necessarily given by the amplitude
exponential relaxation. It is very important to understand that the amplitude fluctuation
δa decays as fast as the power fluctuation δp (δp ≈ 2δa). Therefore, the decay of
amplitude fluctuations δa will be 2 times faster than the decay of the autocorrelation
function of the mode c(t). The way it should be understood is that the energy of the
system goes twice as fast as the oscillating system and so do the losses.

From the equation of motion for c, Eq. 2.24, one can derive the equation for power p:

dp

dt
+ Γ+(p)p− Γ−(p)p = 2√pfn(t)f ∗n(t), (4.6)

where the noise term is now a non-stationary Gaussian process (see discussion below).
For the sake of simplicity, it is assumed that 2√pfn(t)f ∗n(t) = 2

√
p̄fn(t)f ∗n(t). Therefore,

Γs (the mode relaxation rate) and 2Γs (the energy relaxation rate) describe the same
phenomenon.

4.1.2 Experiments of subcritical regime and comparison to the
KTS model

We now compare this model to experiments. We present the result from Sample A that
is a circular MTJ of 85 nm of diameter. The measured TMR ratio is 76.9% and the
RA= 1.5Ω.µm2. Fig. 4.1-b shows a typical excitation spectrum ranging from 100 MHz to
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Fig. 4.2: (a) Current dependence of the mode frequency for Sample A. Three measurement
methods are presented, the first one is the heterodyne method (black dots). In the second
method, we first compute the PSD of the voltage acquired by the SSO and then fit SV with
a Lorentzian function (white circles). In the third case, we estimate the signal frequency from
phase noise analysis (gray dots). In this latter case, for ζ < 1, the frequency obtained does not
fit the one measured by other method since when the amplitude of the oscillation becomes zero,
the phase is also considered to ”advance” with a zero frequency. In average, the frequency is
therefore smaller than the real one.(b) Measured FWHM versus the supercriticality ζ. Again we
compare the Lorentzian fits applied to the signal either measured by heterodyne method (black
dots) and time domain method (white circles). The red line represents the linear decrease of
linewidth with ζ. ζ is evaluated by this method and confirmed by the amplitude distribution
plots (see Fig. 4.13).(c) Power dependence versus ζ. ζ = 1 corresponds to an applied current
density of Jc ≈ 1.76× 1011 A/m2.

18 GHz for a supercriticality ζ = Ith/I = 0.8. Besides the first and second harmonic FL
excitation peaks, a SAF excitation peak and low frequency noise is visible.

Using the spectrum analyzer (e.g. heterodyne method), we have measured the mode
frequency (black dots in Fig. 4.2-a), the FWHM ∆f (black dots in Fig. 4.2-b) and the
mode power (black dots in Fig. 4.2-c), calculated from the area under the curve of the
Lorentzian fit of the peak. The linear extrapolation of sub-threshold linewidth indeed
confirms the linear decrease of the FWHM with ζ, as expected from Eq. 4.5 (e.g. Eq. 4.4).

In order to further verify the model, we performed time domain (TD) measurements
with a SSO. Both the frequency and the linewidth extracted from TD agree with values
measured by the heterodyne method as shown by the white circles in Figs. 4.2-a,b. For
ζ < 1, a substantial increase of the“mode”frequency1 in the sub-threshold regime followed
by the decrease of the frequency mode for ζ > 1 is observed. It is to note that this
behavior is very reproducible among different samples (see for example Fig. 4.3) with
different slopes, and will be discussed later.

To confirm the resonant origin of the linewidth, i.e., that the linewidth is given by
power fluctuations around the equilibrium, we consider now the time domain signal
obtained for ζ < 1 for the sample A. A typical TD signal, where the instantaneous
amplitude A(t) has been extracted via a Hilbert Transform, is presented in Fig. 4.4 for
different ζ. The left panels give in black typical signals filtered with a 4 GHz bandpass
filter centered on the mode frequency with their corresponding instantaneous amplitude.
We can see that upon increasing the current, the signal coherence and amplitude increase.

1According to damped harmonic oscillator theory presented in chapter 2, below the threshold value
ζ = 1, the maximum peak power corresponds to a resonant frequency that differs from the mode frequency
of the system.



Chapter 4. Amplitude and phase noise of STO 103

0.0 0.5 1.0 1.5
0

100

200

300

400

500

(b)

 

 


f 

(M
H

z
)

Supercriticality  

(a)

0.0 0.5 1.0 1.5

7.4

7.6

7.8

8.0
 

 

M
o
d
e
 F

re
q
u
e
n
c
y
 (

G
H

z
)

Supercriticality 

2 

Fig. 4.3: (a) Current dependence of the mode frequency for Sample B. (b) Linewidth versus ζ.
The red line represents the linear decrease of linewidth with ζ < 1 according to Eq. 4.3. ζ = 1
corresponds to an applied current density of Jc ≈ 1.53× 1011 A/m2.

The middle panels give the voltage distributions of the signals; these voltage distributions
are Gaussian, as expected for fluctuations of the magnetic moment around its equilibrium
position. In the right panels we give the autocorrelation function of the amplitude
fluctuations (in black) with an exponential decay fit (in red).

The autocorrelation functions of δa(t) in Fig. 4.4 show a clear exponential decay
of the oscillation power. Experimentally, for small ζ < 0.5, the signal is hidden by
the experimental noise such that the determination of 2Γs is not easy (see right panels
of Fig. 4.4-a). With increasing signal power (by adding more current), the relaxation
phenomena in the amplitude can be clearly distinguished from the setup noise, even in
linear scale (see right panels of Figs. 4.4-b,c).

Finally, we compare the relaxation rate 2Γs/π of the amplitude to the linewidth ∆f
value2 extracted from SV in Fig. 4.5-a. The comparison clearly shows that ∆f = Γs/π
and thus indicates the origin of the sub-threshold linewidth in the case of STOs that
is solely due to the amplitude relaxation. It is also observed that the above-threshold
linewidth near ζ = 1 is given by this amplitude relaxation rate. Before conducting
further investigations, we would like to compare the experimental results to macrospin
simulations that are the resolution of the full LLGS equation (without bj term). We verify
that Γs/π is equal to ∆f1 in Fig. 4.5-b for T = 400 K. In this case, evaluation of Γs is
possible even at very low supercriticality ζ since no noise from the measurement setup is
present (i.e. virtually infinite sensibility).

In the experimental sub-threshold case (similar picture can be drawn from macrospin
simulations), we see from the left panels in Figs. 4.4-a,b that the oscillation “starts” and
is then “damped out”. The distribution of the magnetization is Gaussian up to ζ = 0.9
and centered around zero amplitude. The distribution functions of voltage are given for
different ζ in Fig. 4.6. To highlight the discrepancy from the pure Gaussian distribution
for ζ > 0.8, we have represented those distributions on a logarithmic scale in Fig. 4.6-b.
Above ζ = 0.9, the system tends to be stabilized in the auto-oscillating regime; now the
voltage population is centered around two finite/nonzero values of the voltage (positive
and negative voltage) rather than only one (zero mean amplitude).

2We consider the mode linewidth Γs/π as representative of the damping rate Γs in units of Hz.
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Fig. 4.4: Signal and amplitude analysis of TD measurements on Sample A for different
supercriticality parameters (a) ζ = 0.4, (b) ζ = 0.7 and (c) ζ = 0.9. Left column is TD signal
measured with SSO (in black) and the extracted instantaneous amplitude (in red). Middle
column: distribution of the voltage signal. Right column: autocorrelation function of the
amplitude fluctuations. In red is a fit of the data with an exponential decay to obtain Γs. Inset:
autocorrelation function on a log scale. A 4 GHz digital bandpass centered around the mode
frequency is applied to the TD. The distribution function of voltage when ζ = 0.9 is still roughly
Gaussian.
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(b). A non trivial distribution is observed for ζ ≥ 0.9.



Physically, the regime below ζ = 0.9 corresponds to a push-pull regime of the
magnetization towards its equilibrium position induced by the thermal noise. This
damped oscillating regime is governed by the fluctuation/dissipation phenomena around
the equilibrium, as shown by the voltage distribution function in Figs. 4.4 and 4.6. Adding
a spin-polarized current reduces the overall damping that finally increases the relaxation
time, but also the width of the voltage distribution that remains Gaussian. When the
magnetization describes relatively small deviations from the equilibrium, the linearization
of LLGS found in section 2.2.1 (the linearized Eq. 2.13 or Eq. 2.14) is still correct; and
indeed the amplitude relaxation rate Γs decreases linearly.

For larger currents ζ ≈ 0.9, the “relatively” low resulting damping rate (λSTT ) allows
“relatively” large deviations from equilibrium. It results in a distribution that cannot
be described anymore by a Boltzmann distribution with a reduced damping term and
centered around p ≈ 0. In this case, the linearization of LLGS is no longer valid, which
explains the non-trivial relationship of the sub-threshold linewidth (or restoration rate
Γs) with applied current. In terms of the KTS model, the sub-threshold linewidth ∆fsub
is no longer equivalent to Γ+(0)− Γ−(0) but should be equal to Γ+(p̄)− Γ−(p̄), where p̄
is such that Γ+(0)− Γ−(0) << Γ+(p̄)− Γ−(p̄).

The next section aims to give more details on the transition between the linear and the
nonlinear regime. The discussion is oriented towards two main features of the harmonic
oscillator: a power response proportional to the noise strength, a noise free resonant
frequency and quality factor and finally a damping-dependent resonant frequency.

4.1.3 The damped harmonic oscillator: towards the nonlinear
regime driven by temperature

One direct consequence of the interpretation of the measurements and KTS model for
ζ < 1 implies that the sub-threshold linewidth, i.e. the amplitude relaxation rate, is
independent of the noise strength acting on the magnetization. However, the mean
magnetization deviation, or p̄ = Γ+(0) γkBT

VMsω(0) (with V the volume of the magnetic

material involved in the dynamics), is dependent of the noise strength (namely the
temperature T ). As a consequence, the total power should increase with increasing
temperature since it allows larger deviations of the magnetization from its equilibrium. In
addition, the measurement of the sub-threshold linewidth is supposed not to change with
temperature, as a consequence of a linear damped harmonic oscillator model. Indeed, on
experiments, Fig. 4.7-b confirms such a prediction for the power dependence. In the mean
time, the sub-threshold linewidth exhibits a non-trivial dependence with temperature for
different ζ. For example, around ζ ≈ 0.6, the sub-threshold linewidth remains unchanged
with temperature (see Fig. 4.7-c), while ΓG (= ∆f(ζ = 0)) seems to increase by a factor
of 3.

While some material parameters may change with temperature, allowing for variations
in the value of ΓG; in some cases, ΓG appears two to four times larger at 20 K than
the value at 300 K. In terms of material parameter variations, ΓG is the product of the
Gilbert damping α times the magnetization Ms added to the anisotropy fields (for in-plane
easy axis configurations). For the example in Fig. 4.7, Ms did not to vary much in the
temperature range studied; the variation is not more than 20%. Concerning the damping
parameter α and anisotropy fields, the answer cannot be so straightforward. Patton and



Chapter 4. Amplitude and phase noise of STO 107

(a) (b) (c) 

0 50 100 150 200 250 300
0

100

200

300

400

500
 

 

 0.41

 0.50

 0.67

 0.83


f 
(M

H
z
)

Temperature (K)
0 50 100 150 200 250 300

0

10

20

30

40

50

60
 

 

 = 0.41P
o
w

e
r 

(p
W

)
Temperature (K)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

100

200

300

400

500

600
 

 

  20K

 260K


f 

(M
H

z
)

Supercriticality 

Fig. 4.7: (a) FWHM versus ζ at T = 20 K (white circle) and T = 260 K (black dots). (b)
Integrated power versus T at ζ = 0.41. The offset value might be due to experimental setup,
the standing wave or electrical noise. (c) FWHM versus ζ for different ζ. The increase of the
subcritical linewidth below T = 100 K may have different origin. For DevC. Experiments by
J.-F. Sierra.

Wilts [129] reported an increase of FMR linewidth around T ≈ 80 K because of the
oxidation condition of the Py layer at its interface. This effect has also been evidenced
in Ref. [130]. Also, Sierra et al. [131] showed that in MTJ stacks (e.g. in a trilayer
Py/AlO/Py thin films), an enhancement of the FMR linewidth can be obtained, from 50%
to more than 100% because of the presence of soft-Hard layer coupling (e.g. frustration
near interfaces). In CoFeB thin films, a recent study by Yu et al. [132] evidenced an
increase of the damping by a factor of 3 when the temperature was decreased from 300 K
to 5 K. Therefore, the direct experimental response is uncertain of the real origin of this
increase of FMR damping rate at low temperatures, since the origin of damping is itself
subject to debate.

From macrospin simulations, it is possible to intentionally use temperature
independent materials parameters (α, Ms, ...) . In this way we can compare the
influence of noise (strength) on the magnetization dynamics only that is impossible in
real experiments.

Fig. 4.8-a shows that in the case of macrospin simulations, the sub-threshold linewidth
is independent of temperature (ranging from T= 50 K to T= 600 K), confirming the
relaxation origin of the sub-threshold linewidth up to ζ ≈ 0.6 ∼ 0.8. Indeed, in contrast
to what is observed in experiments, there is no dependence of ΓG with the temperature.
In the macrospin simulations, 2ΓG/π ≈ 650 MHz.

On the other hand, the effect of noise combined with the damping rate on the resonant
frequency is less clear from simulations. In Fig. 4.8-b we show the frequency versus ζ for
different T . There is an upward peak frequency shift with increasing ζ for T = 50 K. In
this case, we can suppose that the thermal noise strength, is not sufficient to lead to any
nonlinear effects up to ζ ≈ 0.9.

Indeed, entering the nonlinear regime (from ζ ≈ 0.9) would induce a power dependent
frequency (i.e. ω(p)), and a power dependent damping terms (Γ+(p) and Γ−(p)) as
explained earlier. In this case, we can suppose that the resonant frequency has an upward
shift of 50 MHz toward the mode frequency of the harmonic oscillator. We note that this
value is in agreement with a damping rate initially a tenth of the mode frequency as
depicted in Fig. 2.2 of section 2.1.1.

In the simulations of Fig. 4.8-b, it is less clear whether this upward shift appears
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Fig. 4.8: (a) Linewidth versus ζ for different temperatures. (b) Observed frequency peak in
macrospin simulations versus ζ for different temperatures. The resonant frequency shifts upward
with increasing ζ. Also, because of the temperature, the frequency peak near the threshold is
also affected by the nonlinear regime (downward shift near ζ = 1). Simulations by D. Gusakova.

for higher temperature since the nonlinear regime, i.e. the downward shift in frequency
(typical for IPP modes) appears at lower ζ value such that the upward shift of the resonant
frequency is not clearly visible (for example, see grey dots from ζ ≈ 0.6). Indeed, in this
case, thermal fluctuations may allow the system to reach relatively high power values.

This appearance of the downward shift of the resonant frequency in the sub-threshold
regime for 0.6 < ζ < 1 and for higher temperatures is well correlated with the substantial
increase of FWHM compared to the linear decreasing trend (see Fig. 4.8-a).

The slight increase of frequency versus the applied current in experiment (Fig. 4.2-a)
may have a similar origin: the upward frequency shift of the resonant frequency is
correlated with the decrease of the damping term. Of course, such an increase could
also be due to the bj term introduced in section 1.2.1.2 (see also Eq. 2.15) that is present
in our MTJ devices (but has been neglected in simulations). Moreover, the increase
of frequency with respect to applied current in the sub-threshold regime is found with
different slopes as seen by the example of another Sample B in Fig. 4.3. It is to note
that the applied field angle is also different from the different sample measurements. The
relative field angle difference3 between sample A and B is about 10◦.

There exists one study in the literature on the sub-threshold frequency and linewidth
in MTJ-based STO from Georges et al. [134]. In the sub-threshold regime, the authors
observed an increase of linewidth together with an increase of a frequency shift with
current (see Fig. 4.9). This result seems to be in agreement with the aforementioned
picture of damped harmonic oscillator whose subthreshold effective damping decreases
with increasing ζ. When the damping rate (1.2 GHz) is about a fifth of the mode frequency
(5.5 GHz that appears around the threshold current value), the resonant frequency is

3Samples have a circular shape, but still some shape anisotropy or uniaxial anisotropy is present (see
Fig. 4.1-a). Moreover, pattern processes and annealing conditions may create an “easy axis” distribution
among samples. Simple angular dependence MR measurements do not provide enough resolution for the
determination of the exact easy axis direction, since it can be different from the “polarizer direction”.
Polarizer direction can be easily determine by frequency measurement as shown in Ref. [133].
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Fig. 4.9: Linewidth dependence versus applied DC current measured at different temperatures.
Inset: Frequency versus applied current for T = 20 K. The critical current Ic ≈ 1mA. From
[134].

shifted downward compared to the mode frequency (by more than 200MHz), as observed
in the inset of Fig. 4.9. This interpretation is also consistent with the fact that when
reducing the damping rate to a more conventional value by applying more bias current,
the resonant frequency becomes closer to the probable (necessary higher) mode frequency.
Indeed, the equality between resonant frequency and mode frequency is indeed almost true
in the case of damped harmonic oscillators with relatively low damping rate. Of course,
we cannot claim to be able to re-interpret all the experimental data in the Ref. [134],
since all experimental conditions are not given in detail.

To further confirm this hypothesis, we have also conducted macrospin simulations with
a larger damping parameter α in order to enhance the downward shift in the resonant
frequency when ζ ≈ 0, in Fig. 4.10, with α = 0.14. In this case, the effect on resonant
frequency and sub-threshold damping is straightforward. When increasing the current
(ζ), the resonant frequency shifts upwards as expected with a decrease of the damping
rate of a harmonic oscillator. We conclude that the LLGS equation, and therefore the
magnetization dynamics, in the low current regime (ζ < 1) is equivalent to an harmonic
oscillator with damping rate λSTT and mode frequency ωSTT0 . We have shown that our
data are in agreement with this model interpretation.

Finally, we would like to stress that we cannot explain the substantially large
increase of the linear damping rate ΓG that is observed experimentally when lowering
the temperature. It is possible, for example, that spin frustration (spin glasses or strong
anisotropies) occur in the ferromagnetic electrodes at the vicinity of the MgO interface.
In this case, it is to note that the fluctuation-dissipation theorem might not be valid
anymore.

In conclusion, we have experimentally verified that a STO in the below-threshold regime
behaves as a regular damped harmonic oscillator up to ζ ≈ 0.8 with power-independent

4This value can be found in some ferromagnetic metallic alloys, such as FePt.
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Fig. 4.10: (a) Sub-threshold resonant frequency versus ζ as observed in macrospin simulations
for different values of the damping constant α or the temperature. (b) Sub-threshold linewidth
for different α values. While α directly influences ΓG, it does not change the linear decrease of
linewidth with ζ, for ζ < 1. Simulation by F. Garcia.

dissipative terms (actually, p ≈ 0 when ζ < 0.8). Slightly above this value, the nonlinear
dependence of the dissipative terms starts to influence the magnetization dynamics in
the presence of noise. Indeed, the system has to be considered to be out of equilibrium,
and the exchange with the thermal bath, i.e. the dissipation, becomes nonlinear. It is
however unclear whether this effect is due to a nonlinear effect in the positive damping
Γ+ or whether it is solely due to the nonlinearities in Γ− (e.g. Q = 0 ?). Nevertheless,
it is clear that the below-threshold regime linewidth observed in STO (up to ζ ≈ 0.8)
is given by the dissipation terms involved in the magnetization dynamics, the damping
term and the STT term. Between 0.8 < ζ < 1, the internal physical picture is less clear,
but the linewidth observed in SV is still related to the amplitude relaxation phenomenon
(same order of magnitude). We also noted a resonant frequency variation due to the
temperature in this regime, even for low damping constants (α ≈ 0.02). Even if the
KTS model assumes α� 1 such that no distinction is made between resonant and mode
frequency, we confirmed that the sub-threshold linewidth is given by the damping terms
as expressed in the KTS theory.

4.2 I > Ic: Non-isochronous Auto-Oscillator

We now focus on the above-threshold regime, ζ > 1. As explained in section 2.2,
linearization of Eq. 4.1 around the limit cycle p0 =< |c|2 > leads to an equation that
describes the evolution of power fluctuations δp and the total phase Φ:

dδp

dt
+ 2Γpδp = ξ1(t)

. (4.7)

dΦ
dt

+ ω0 +Nδp0 +Nδp = ξ2(t)
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ξ1 = 2√p0<(fn); ξ2 = 1/√p0=(fn), ω0 is the eigenfrequency, and ωg = ω0 + Np0 the
mode frequency. In the above-threshold regime, p0 > 0, the frequency shifts. This shift
in frequency is proportional to N , which is negative for the in-plane precession mode, as
expected from the KTS model [54]. In many other auto-oscillators, e.g. lasers, N is small
(more explicitly ν � 1). Such oscillators are called isochronous, in the sense that their
auto-oscillation frequency is independent of the amplitude. STOs, however, belong to the
class of non-isochronous auto-oscillators where the generated frequencies ωg(p) depends
strongly on the auto-oscillation amplitude.

In the following, we sub-divide this section into four subsections.

� The first one is a discussion on the power distribution found in experiments and its
comparison with the model in the autonomous regime for STOs.

� The second subsection describes the amplitude noise relaxation phenomenon that
allows to extract the nonlinear amplitude restoration rate Γp (when ζ > 1).

� The third subsection explains why the non-isochronous property (or nonlinearity
of the auto-oscillation frequency) provides a mechanism to convert the amplitude
noise into phase noise so that it creates an additional effective source of a non-white
(correlated) phase noise that substantially broadens the generation linewidth. The
direct consequence of the study of the phase noise is the extraction of ν.

� We end the section by a discussion on the effect of the nonlinear parameter on the
value of the measured FWHM. In particular, we concentrate on the discussion on
the physical meaning of the linear linewidth ∆f0.

Unless noted otherwise, the experimental results presented were obtained with Sample
C (Fig. 4.11), which has been measured well above ζ = 1. Macrospin results are also
analyzed up to ζ = 2. From the frequency dependence shown in Fig. 4.11-a,d, the mode
exhibits a clear redshift with ζ for ζ ≥ 0.8 in both experiments and simulations. Redshift
means “frequency decrease”, blueshift means “frequency increase”, similarly to the light
color that tends to red (low frequency) or blue (high frequency) in the Doppler effect.
This redshift is the signature of the nonlinear amplitude phase coupling N introduced in
the KTS model.

During the discussion, the macrospin results will be analyzed in a similar manner as
the experimental results (the macrospin simulation parameters are given in Fig. 4.11-f).
The main advantage of the macrospin simulations over the experimental results is that all
components (mx,my,mz) of the magnetization can be analyzed. Moreover the macrospin
simulations are free of setup noise (as we have seen in the below threshold regime section
4.1) and there are no measurement artifacts. Therefore, we can make a comparative
study of the experimental and macrospin results in order to see exactly which points of
the KTS model can be addressed experimentally. Indeed, we have to keep in mind that
the KTS model requires a canonical transformation of the magnetization dynamics while
in most experiments only the first harmonics signal projected on the polarizer direction
is analyzed (i.e. experimentalists measure only the magnetoresistance of the device).
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Fig. 4.11: Top panel: Sample C. (a) Peak frequency versus ζ for sample C (TMR= 74% and
RA= 1.5Ω.µm2, the sample has a circular shape with a diameter of 75 nm). (b) Γp and ∆f1
versus ζ. (c) Inverse mode power versus ζ. The critical current has been obtained by a linear
interpolation of the sub-threshold linewidth. It corresponds to the interpolation of the inverse
of the mode power versus ζ. Bottom panel: macrospin simulations by D. Gusakova (integration
time: of 5 µs). (d) Peak frequency versus ζ. (e) Γp and ∆f1 versus ζ. (f) Simulation parameters.
The anisotropy constant is set to 0, there is only shape anisotropy (elliptical shape : 90×80 nm2,
applied field of Happ = 31830 A/m.
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4.2.1 Power Distribution in the Above-Threshold Regime

A central point of the KTS model is the power distribution probability in the presence of
noise. Here we compare the distribution functions of amplitude and power available from
both experiments and macrospin simulations. The first interest of the power distribution
functions is the determination of the critical current Ic from which the auto-oscillating
(autonomous) regime starts.

In section 2.2, it has been predicted that the linear extrapolation of the linewidth and
the linear extrapolation of the sub-threshold inverse power provide the value of the critical
current. From Figs. 4.11-b,c, this prediction is confirmed experimentally (Ic = 0.675 mA
or Jc = 1.53 × 107 A.cm2). For very low signal power (for ζ < 0.5), the measurement
noise is close to the STO’s output power such that the inverse mode power appears
lower than the expected one (see Fig. 4.11-c). Nevertheless, between 0.5 < ζ < 0.9,
a clear linear trend appears. Slightly above the threshold, the mode power (measured
at the first harmonic) seems to decrease with increasing ζ from ζ = 1.35. A possible
explanation is that the mode power is not necessarily given by the first harmonic peak.
Indeed Fig. 4.12 shows that if we consider the second harmonic, the inverse power of
the second harmonic rises around ζ = 1.65. It follows that the integrated power of the
first and second harmonic peak seem to be representative of the mode power only until
ζ ≈ 1.3 ∼ 1.6. Before giving a possible explanation of this observation, we comment on
the power distribution obtained from TD measurement.

We already discussed about the power distribution function of the oscillation with
supercriticality for ζ > 1 in section 2.2. Fig. 4.13 shows both signal amplitude (from
V (t)) and signal power (from V 2(t)) distributions for the three different devices (Samples
A, B and C). The power distribution function at the threshold value (ζ = 1) corresponds
to the one predicted by KTS model (see Fig. 2.10 in section 2.2.3) in all cases.

Nevertheless, for higher values of ζ, above ζ > 1.5, the mean power seems to saturate
and the distribution is no longer Gaussian. Moreover, the saturation in power also appears
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Fig. 4.14: Power distribution as calculated from macrospin simulation after filtering around
the first harmonic (a), the second harmonic (b), and third harmonic (c).

for Sample C, as already observed in the frequency domain experiments5.
From macrospin simulations, the study of the magnetization dynamics can determine

whether this effect is also seen or not. If we now consider the “power” distribution in each
harmonic of a macrospin simulation for different ζ, we see in Fig. 4.14 that we can indeed
reproduce non-Gaussian power distributions and mode power saturation. From this, we
can conclude that the total power is given by the sum of all harmonic powers in the case
of LLGS.

The main conclusion here is that above a certain applied current ζ > 1.5, it seems
that the power and the power fluctuations extracted from the first harmonic of the signal
is not the correct parameter to be compared with the KTS theory. Since a non-Gaussian
power distribution has been also reported by Nagasawa et al. [77] for ζ > 1.5, we can
investigate the possible reasons for that discrepancy between KTS theory and experiments
or simulations.

We identify and sort the three probable hypotheses (according to their relevancy):

� Nagasawa et al. [77] explained the discrepancy in the power variance between the
KTS model and their experiments by a possible chaotic behavior of the mode
above the value ζ > 1.5. Since this has been also observed in our macrospin
simulation, we can dismiss this argument. Yet, we can consider that the angular
dependence of the STT term (not taken into account in the KTS model, but in our
macrospin simulations) may be at the origin of the model/macrospin or experiment
discrepancy. A way to verify this hypothesis would be to not take into account the
angular dependence in the aj term of the macrospin simulations.

� Another cause of this discrepancy between theory and experiment might be that
despite the Gaussian distribution of the ”force”given by the (stationary and ergodic)
Gaussian process fn(t), it may turn out that the resulting mode power distribution
is no more Gaussian (i.e. p(t) does not have the same stochastic properties as fn(t)),
due to a chaotic behavior.

The second possibility is that fn(t) is no longer stationary. This could be possible
considering that power fluctuations might be such that a variation of Dn(p0 +δp(t))

5The right panels of Fig. 4.13 give the distribution of the voltage square V 2. To be correct, one
should compare the voltage square divided by the square of the current (V 2/I2). Nevertheless, on can
distinguish the saturation of the distribution of the V 2 for ζ > 1.5 in the left panel of Fig. 4.13-c.



makes fn(t) neither stationary nor ergodic anymore. In this case, the PDF of X
depends on p(t) (non-stationary) and therefore the distribution of fn(t) also depends
on its own realization (non-ergodic). Typically, shot noise is a non-stationary white
noise process [92], since the amount of current noise depends on the amount of total
current that is thus time dependent. This statistical inconsistency ignored in the
KTS model (in order to simplify the solution of the equations) may appear here
in light of these measurements and/or simulations. V. Tiberkevich has proposed
[135] to use the conditional probability applied to the power fluctuation in order to
elucidate such effects in experiments and macrospin simulations.

Also, we note the existence of Flicker noise or 1/f noise in the PSD of power
fluctuation in STOs [85, 76]. Historically, this noise has been measured in many
different fields (biology, physics, chemistry, social science) and has still uncertain
origins. This noise typically induces more “model pathologies” than it could
solve our problem in detail. Nevertheless, 1/f -like noise may induce such a
non-Gaussian distribution of power fluctuation (but does not explain the observed
power saturation seen).

� Finally, we give the most probable cause of this discrepancy, which involves
attributing incorrectly the experimental variables to those of the theory. During
the canonical transformation of the LLGS equation to the c-variable equation used
in the KTS model, what is done is a transformation of the “elliptic IPP trajectory”
to a “circular c-variable trajectory”. Elliptic trajectories lead to: (i) the projection
of the magnetization dynamics that has several harmonics and (ii) a velocity of the
magnetization that is not constant along the trajectory (generation of harmonics).
A circular trajectory has no harmonics since the velocity is constant along the
trajectory. Therefore, considering the measurement of the first harmonic-peak as a
description of the system power is not correct.

While we cannot dismiss inconsistencies in the KTS model itself, or eliminate the
fact that we have no chaotic trajectories in the experiments, we investigate in more
detail the third hypothesis: a model-experiment misinterpretation. By applying the
correct transformation of the magnetization vector into a c-variable trajectory from
macrospin trajectories, one can retrieve the real mode power even at high values of ζ.
Fig. 4.15 indeed shows how filtering the first harmonic of the real macrospin trajectory
still induces elliptical representation of the trajectory and not a circular trajectory. If
the transformation from the magnetization vector to c-variables is done correctly, the
power distribution fits the expected behavior, i.e. an increase of total mode power and a
Gaussian distribution of the power distribution.

Therefore, from pure macrospin considerations, the non-Gaussian distributions found
in our measurement, and possibly that of Nagasawa et al. [77], can be attributed to the
incomplete comparison that can be made between the real magnetization dynamics and
the effective measured signal. This conclusion will be of importance when we will study
the variance of the power distribution as a tool to extract the linear linewidth ∆f0 in the
following sections. Yet, we have demonstrated the usefulness of the power distribution
functions to determine the critical current value IC . This is realized by identifying the
typical shape of the power distribution for ζ = 1. Also, we have found a good agreement
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Fig. 4.15: (a) Representation of the magnetization trajectory in the YZ plane (in black), when
considering only the first harmonic (in red) and a circular trajectory (in gray) as expected from
the KTS model. (b) Power distribution for different ζ. The power is obtained by transforming
real macrospin trajectories into power p. Courtesy of F. Garcia.

in the prediction of the sub-threshold inverse power dependence upon current as a means
to determine the critical current IC in our devices.

4.2.2 Amplitude Noise Relaxation

In this section we focus on the time varying power fluctuation distributions. As explained
in section 2.2.3, power fluctuations (or amplitude fluctuations) are correlated in time, i.e.
the power fluctuation at t+τ , δp(t+τ) is correlated with the power realization at t, δp(t),
such that the time average of the product δp(t)·δp(t+τ) is non zero (< δp(t)·δp(t+τ) >6= 0
at short timescale τ).

The autocorrelation function Kδp of the power fluctuation δp, solution of Eq. 4.7, can
be written as:

Kδp(τ) = 4π∆f0p
2
0

Γp
exp(−2Γpτ). (4.8)

Since 2(A0)2δa ≈ δp it follows6 that:

Kδa(τ) = ∆f0

fp
exp(−2Γpτ), (4.9)

where fp = Γp/π is the frequency at half width at half maximum (HFWM) of the power
fluctuations7. It is also more convenient to express the solution 4.9 through its FT, to
form the PSD of amplitude fluctuations:

Sδa(f) = ∆f0

2π
1

f 2 + f 2
p

. (4.10)

Interestingly, in the amplitude fluctuations, it is possible to extract the “linear” HWHM
∆f0 of the STO, the amount of noise available by the STO that affects both the amplitude

6A2
0(1 + δa)2 = p0 + δp, it comes: δp/p0 = 2δa+ (δa)2. (δa)2 << δa.

7Be careful that here, fp defines a half width and not a full width as usual. Plotting fp together with
the FWHM ∆f1 of the oscillation, could show that ∆f1 and fp are of the same order or not, as discussed
in section 4.1.
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and the phase. This subsection aims to prove that we experimentally observe that 4.10
applies to our STOs. The discussion is as follows:

� We identify the amplitude fluctuation relaxation phenomenon in both experiment
and macrospin simulations, and show how to extract the Γp value.

� We discuss the electrical thermal noise floor found experimentally and its effect on
the quantities defined in Eq. 4.9 and 4.10.

� We retrieve the “linear” HWHM ∆f0 of the STO from the amplitude fluctuation
autocorrelation function.

4.2.2.1 Extraction of Γp

We now compare the measured time varying amplitude noise δa(t) (or δp(t)) with the
predicted one and the one obtained from macrospin simulations. Fig. 4.16 shows both
normalized Kδp and normalized Sδp for sample B.

It is important to note that the characteristic frequency fp = Γp/π is independent
of the absolute value of power fluctuations (“∆f0”) or of the contribution of noise setup
(that is discussed later). This frequency actually determines the frequency up to which
the system responds independently from the frequency of the perturbation; above this
frequency an excitation will be attenuated. Another “physical argument” is to say that
for f < fp (or for times t > 1/fp), a perturbation has been fully damped out (return to
equilibrium position) while for f > fp, the fluctuations are adding up (random walk of
power fluctuations). Let us consider these two limiting behaviors of the system amplitude
in presence of noise. For low frequency perturbations8, e.g. f � fp, we can write:

8Remember that the white Gaussian noise can be considered as a perturbation with an equivalent
strength for all frequencies.
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Sδa(f) = ∆f0

2πf 2
p

. (4.11)

This is to consider that the response of the system is of the same nature as the excitation
force: white Gaussian9 below the frequency fp.

For f � fp, it becomes:

Sδa(f) = ∆f0

2πf 2 , (4.12)

which is the form a of random walk of amplitude fluctuations (see Table 3.2). The power
fluctuations are accumulating in the presence of a white Gaussian noise. These two trends
are seen in the amplitude noise plots of Figs. 4.19, for both macrospin (Fig. 4.19-a) and
experiments (Fig. 4.19-b). In our case, 1/fp gives the timescale at which the energy is
exchanged with the thermal bath in the STO. Indeed, if we imagine an instantaneous
deviation of the system from p0 by an amount δp0, we have to wait the time 1/fp to
recover, to dissipate (thanks to Γ+ or Γ−) toward the system power, p0.

We would like to stress here that the two Eqs. 4.11 and 4.12 are asymptotic behaviors of
Eq. 4.10. As shown in Fig. 4.17, one has to be careful when dealing with the interpretation
of the slopes on a double log plot. For example at f = fp, the real value of the amplitude
noise is Sδa(fp) = Sδa(0)− 3dB on the logarithmic scale. Around the roll-off (i.e. around
f ≈ fp), no specific slope can be fitted. Moreover, any other slopes would have no real
physical meaning, i.e. when Sδa would be plotted only up to fp, a wrong conclusion might
be drawn from the slope.

Comparing to the macrospin model and then similarly to the FMR linear damping
rate ΓG, which relaxes a small perturbation towards magnetization equilibrium position,
Γp/π is related to the relaxation of small perturbations of power towards the mean power
of the oscillator p0 (in FMR, p0 ≈ 0). That is why Γp/π is expected to be of the order of
ΓG/π. From KTS model we have indeed:

9We do not discuss anymore about the non-stationary nature of this solution, i.e. that Sδa is not
supposed to exist.
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Fig. 4.18: FWHM ∆f1 and 2Γp/π versus ζ from macrospin simulations (a) and experimental
results (b). The best fit of Γp/π (in red) is obtained with the Eq. 4.13 for the macrospin. The
experimental comparison with theoretical equations is difficult due to the non-trivial dependence
fp versus ζ observed experimentally.

Γp = ΓG(ζ − 1) .

From Fig. 4.3, the experimental full width 2ΓG/π is expected to be around 420 MHz,
which gives Γp/π to be 70 MHz, while the TDNS gives fp = 85 MHz for ζ = 1.33. This can
be considered as an additional proof of the phenomenological KTS model. Physically, it
confirms that the intrinsic linear damping ΓG is a key parameter for the nonlinear regime
in the STO.

However, when we compare ΓG(ζ − 1)/π to the value of Γp/π obtained from the
macrospin simulations, the values do not coincide as well (see gray curve in Fig. 4.18-a).
Instead, the equation:

Γp = 2αωg(ζ − 1) , (4.13)

seems to be satisfied (see red curve in Fig. 4.18-a), with ωg the mode frequency when
p = p0(ζ). To obtain that equation, we simply assumed the damping term to be Γ+(p) =
2αωg(1+Qp). It is however unclear whether a similar equation describes the experimental
results better (the main reason is that α is unknown for the devices). This result is
not predicted exactly in this form from the KTS model. Nonetheless, if we consider the
“physical”oscillator picture, we see that the harmonic oscillator formed by the STO in the
sub-threshold regime has a linear damping rate ΓG ≈ αω0 (in the isotropic case in section
2.2.1). This is possible since the damping (ratio) α fits the losses of one “turn/cycle” of
the magnetization by definition. Similarly, we can consider that even in the “nonlinear”
regime, the exchange with the thermal bath is still given by α times the magnetization
frequency, which is ωg and not ω0.
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Fig. 4.19: (a) Amplitude noise extracted from a macrospin simulations. (b) Amplitude noise
extracted from a real measurement. In the macrospin simulation, there is no thermal noise floor
background (the dashed line in experimental results).

4.2.2.2 Influence of thermal Johnson-Nyquist noise in Amplitude noise
measurements

Before extracting the prefactor of the amplitude noise correlation function Kδa, it is worth
pointing out that an additional white noise is observed experimentally in comparison to
macrospin simulations. This noise provides an additional contribution at τ = 0 for
Kδp (see black points in Fig. 4.16-a) or a thermal noise floor in Sδp (see dashed line in
Fig. 4.16-b).

To identify this noise, we now consider our measurement setup that is composed of:
(i) the resistance of the MTJ, RMTJ and (ii), the amplifier with a gain G and a noise
factor F with a bandwidth B. It implies that the total electrical noise power generated
by the structure, and measured by the SSO, is given by [82]:

Snoise = R2
MTJ

(RMTJ +R50Ω)2 × 4kBGT0FR50Ω ≈ 2.2710−14V2/Hz , (4.14)

where F (= 2.5 dB) and G(= 43 dB) are expressed in linear units, T0 = 300 K and
RMTJ = 560 Ω. It follows, with a signal peak value of 20 mV measured on the SSO
[86], that Sδp/p0 ≈ −105 dBc/Hz. From this, we consider that the noise floor of our
measurement is given by the electrical Johnson-Nyquist noise generated by the resistance
of our MTJ. This is consistent with macrospin simulations in Fig. 4.19, where no such
electrical noise floor is found for Sδa (compare high frequency noise in Fig. 4.19-a with
Fig. 4.19-b).

4.2.2.3 Extraction of ∆f0 from amplitude noise

Following this comment, we extract the amplitude noise variance ∆f0/fp by the fit of the
autocorrelation function Eq. 4.9 and not by fitting the width of the amplitude distribution.
Indeed, while the width of the amplitude distribution is given by the measure of Kδa(τ =
0) (black dot in Fig. 4.16-a), the most accurate value of the amplitude noise variance is
given by the fit of the full autocorrelation function of amplitude fluctuation, i.e. by a
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Fig. 4.20: (a) Extraction of ∆f0 versus ζ from amplitude noise of Sample C. (b) Extraction
of ∆f0 versus ζ from amplitude noise on different harmonics (number in parenthesis)
from macrospin simulations. (b) Extraction of Γp/π from amplitude noise from different
magnetization components of the macrospin simulations. The extraction of Γp is independent
from the harmonic or coordinate considered. Γp extracted from power or amplitude fluctuations
give the same results.

linear extrapolation to τ = 0 in Fig. 4.16-a (about a half of the value marked by the black
dot in Fig. 4.16-a).

Fig. 4.20-a shows the extraction of ∆f0 for sample C considering the amplitude noise
only (Eq. 4.9). We see that ∆f0 increases with ζ from ∆f0 ≈ 5 MHz at ζ = 1.2 (∆f1 ≈
100 MHz) to ∆f0 = 15 MHz at ζ = 1.8 (∆f1 ≈ 150 MHz). We can attribute the large
value of ∆f0 at the vicinity 1 < ζ < 1.2 and the subsequent decrease to the proximity
of the Hopf bifurcation (around ζ ≈ 1, amplitude fluctuations can be very large, ranging
from p = 0 to p = p0(ζ)). In the literature, Nagasawa et al. [77] performed an amplitude
noise study with TDNS. From the variance of the power distribution one can estimate
that in their experiment 2∆f0 is about 6 MHz, for a total peak linewidth of 46 MHz10.
In the experiment of Bianchini et al. [78], 2∆f0 ≈ 50 MHz, for a mode linewidth of
50 MHz11. Therefore, the value ∆f0 ≈ 5 ∼ 20 MHz we have obtained is in the range of
magnitudes expected from other works in literature that aimed to extract ∆f0.

Fig. 4.20-b shows the extraction of ∆f0 from the autocorrelation function Eq. 4.9
of each component of the magnetization from macrospin simulations. We also compare
the value of ∆f0 extracted from the fourth harmonic, i.e. the second harmonic in the
mX time trace. We see that, depending on the magnetization component considered,
the value of the extracted ∆f0 varies much at a given ζ. The question is now to
figure out whether this extraction makes sense or not. The answer is probably no,
since the harmonics do not represent necessarily the full stochastic properties of the
magnetization (see discussion in the above section 4.2.1). To really confirm the trends
between measurements and simulations it would require to perform the transformation of
the magnetization trajectories as explained above. This would lead to a correct extraction
of ∆f0 and that would probably help to better understand what to expect from ∆f0 versus
ζ. Nevertheless, this would only be possible in macrospin simulations, as discussed in the
above section 4.2.1 since in experiments, only the projection of the magnetization on the

10Nagasawa et al. only focused on power fluctuation variance in Ref. [77], with Γp = 0.2 ns−1 [76], we
obtain this value of ∆f0.

11In the introduction, we have already discussed that this result was consistent with Γp/π smaller than
the linewidth value.
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polarizer direction is measured. We propose in section 4.2.4.3 and 4.4 other techniques
that give other measurements of ∆f0.

Still, the relaxation constant fp is independent of the strength of the fluctuation (i.e.
the value of ∆f0). It implies that Γp can be extracted from the study of any harmonics
of the signal and will be the same. Fig. 4.20-c shows this property on the three different
coordinates mx (that “oscillates” at 2ωg and 4ωg), my and mz (that “oscillate” at ωg).
Fig. 4.20-c also shows that the power fluctuations δp and amplitude fluctuations δa give
the same fp value.

In conclusion, the study of amplitude fluctuations allowed us to extract the key
parameters Γp and ∆f0. ∆f0 gives information on the noise strength acting on the
system and can be extracted from amplitude fluctuations of the oscillating signal output
of the STOs. Nevertheless, the obtained value is subject to discussion and the extraction
method. Γp gives the rate of energy exchange with the thermal bath (and spin polarized
current flow) in the nonlinear regime. The demonstration of the existence of the relaxation
phenomenon, required to stabilize an auto-oscillation regime, and is in qualitative and in
quantitative agreement with the KTS model. This parameter Γp is of main importance
for potential applications of STOs in real RF devices. Its role is essential for applications
of STOs and fp will be the main focus of the part III of this thesis (chapters 5 and 6).

The next section is dedicated to information that can be obtained from the phase
noise study.

4.2.3 Phase Noise of the Free Running STO

In the previous section we have analyzed in detail all information that can be obtained
from the study of amplitude/power fluctuations from TDNS. We now focus on information
that can be obtained from the study of the phase noise. Contrary to the below-threshold
regime, the spectral purity of the STO is driven by the phase noise in the above threshold
regime.

When the amplitude noise is not supposed to influence directly the spectral purity
[54, 42], the autocorrelation function Kc(τ) of the c-variable is given by:

Kc(τ) ≈ p0e
i<φ(τ)−φ(0)> exp[−∆φ(τ)2/2]. (4.15)

The quantity < φ(τ)− φ(0) > / τ is the mean angular frequency of the auto-oscillation,
ωg. Here ∆φ2(τ) is the time varying phase variance that is derived from the phase variance
equation. The phase variance Eq. 2.47 can be derived from the Eq. 2.35:

∆φ2(τ) = 2π∆f0τ + 2π∆f0ν
2
[
τ − 1− e−2Γpτ

2Γp

]
, (4.16)

with ν = Np0/Γp, the dimensionless nonlinear amplitude phase coupling. The first
term of the RHS is called the linear contribution of the phase noise. The second term
is the nonlinear contribution of the phase noise and is originating from the nonlinear
amplitude-phase coupling, i.e. it originates from amplitude noise. When this nonlinear
contribution is neglected, ∆φ2(τ) = 2π∆f0τ , ∆f0 is thus the “linear” linewidth of the
STO. From the phase equation in Eq. 4.7, one can define the PSD Sφ of phase fluctuation
φ:
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Fig. 4.21: (a) Phase noise plot obtained from macrospin simulations for ζ = 1.43. The
nonlinear contribution and linear contribution are represented by the red solid and dashed
lines respectively. The red lines have a slope of −20 dB/decade, while the blue line has a slope
of −40 dB/decade. (b) Sy plot. Since Sy ∝ f2Sφ, the 1/f2 slopes of Sφ become flat in log-log
plots. Transitions are well identifiable.

Sφ(f) = ∆f0

πf 2 + ∆f0

πf 2
ν2f 2

p

f 2
p + f 2 , (4.17)

We can identify two different noise contributions in Sφ. Correspondingly, the left term of
the RHS of Eq. 4.17 is the linear contribution to the phase noise, while the right term of
the RHS is the nonlinear contribution to the phase noise. While the linear contribution
is the direct effect of noise on the phase term, the nonlinear contribution is the noise on
the phase term originating from the amplitude fluctuations. Since the frequency depends
on the amplitude of the auto-oscillation (i.e. STOs are non-isochronous oscillators), it
naturally induces this “nonlinear” contribution.

Fig. 4.21-a shows a typical phase noise plot for a macrospin time trace (from mx at
ζ = 1.43). From it, three trends of the phase noise can be found. Again, we can discuss
the high, intermediate and low frequency limits of Eq. 4.17:

Sφ ≈ ∆f0
πf2 (1 + ν2) For f < fp

Sφ ∝ 1
πf4 For fp < f < fp

√
ν2 − 1

Sφ ≈ ∆f0
πf2 For f > fp

√
ν2 − 1

, (4.18)

which are equivalent to three different slopes in a log-log plot of Sφ (as shown in
Fig. 4.21-a).

It is also possible to perform the PSD of the relative frequency fluctuation y(t)
(see Eq. 3.17 in section 3.2.2), where the slope changes can be better identified (see
Fig. 4.21-b). When increasing the frequency, a first slope change appears around
fp = 220 MHz. This change can be easily understood as the roll-off of the amplitude
fluctuations already discussed.
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Fig. 4.22: Phase (in black) and amplitude (in red) noise PSD for a macrospin simulation (a)
and experiment (b). The blue curve is computed from the amplitude noise (arbitrary chosen
N). This blue curve corresponds to the nonlinear contribution of the phase noise. We see that
this noise contribution falls “below” the “linear” contribution of the phase noise (around 1 GHz)
in macrospin simulations. Experimental results from sample D, details can be found in [76].

Indeed, from f = 0 Hz to f = fp
√
ν2 − 1, the phase noise is given by the “nonlinear

contribution”. The nonlinear contribution is the amplitude noise that is integrated
in the phase noise. As seen in Fig. 4.22-a for macrospin simulation, the phase noise
coming from the amplitude noise is the main contribution to phase noise. It is also seen
experimentally in Fig. 4.22-b. In consequence, we say that the linewidth (the spectral
purity) is dominated by the nonlinear contributions/effects in the above-threshold regime.
Indeed, we have seen from Fig. 4.18 that fp > ∆f , the frequency f = ∆f/2 lies in the
regime where the nonlinear contribution of the phase noise is still dominant12. The
“linear” contribution (dashed lines in Fig. 4.21-a,b) is almost 20dB below the ”nonlinear”
contribution (full lines in Fig. 4.21-a,b). The “linear” contribution refers to the direct
contribution of the thermal noise on the phase noise. In contrast to the ”nonlinear” or
indirect contribution, that is the phase contribution of amplitude noise. It is clear with
this picture that the low frequency phase noise, or the phase variance at long timescales,
is fully correlated to the amplitude noise. The high frequency phase noise (f >> fp), is
independent of the amplitude noise. Γp distinguishes the two contributions.

If we now compare the limiting behavior, it appears that the nonlinear parameter
ν can be obtained directly from the phase noise plots. Indeed, the difference ∆ in the
log-log plot of the phase noise, as drawn in Fig. 4.21, is the ratio of the two limiting
trends with a f−2 slope in Sφ or f 0 in Sy. It is straightforward to see from Eqs. 4.18
that ∆ = 1 + ν2. In Fig. 4.23, the nonlinear parameter ν extracted in this way is given
as a function of ζ for both macrospin and measurements13. We see that its typical value
is about |ν| ∼ 5.5 in macrospin and |ν| ∼ 2 in experiments, and that in both cases, |ν|
tends to decrease with increasing ζ.

12Except in the case of Bianchini et al. [78] (we often refer to this measurement since it is the only one
to compare with in literature).

13The sign of ν can be determined by the frequency shift (redshift or blueshift) observed with current.
In the case of IPP mode, ν < 0.
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Fig. 4.23: Dimensionless nonlinear phase-amplitude coupling parameter ν extracted by phase
noise plots from (a) macrospin simulations and (b) experimental results on Sample C.

We should note that the thermal noise floor affects the determination of the linear
contribution of the phase noise experimentally and therefore ∆. Since it is impossible to
get rid of this noise (it originates from electrical Johnson-Nyquist noise), the extraction
of |ν| is limited to the fact that at high f Sφ is hidden by the setup noise.

For MTJs14, another available method to extract ν in the free running regime has
been given in Ref. [80] and reminded in the introduction section 2.2.3. It consists in
identifying the sub- and above- threshold regimes and distinguishing the two different
associated power dependencies of the linewidth. It supposes actually that ν, ∆f0 and
the damping rate are constant along ζ. The method is shown in Fig. 4.24, where from

the ratio of the slopes S> and S<, we obtain |ν| =
√

2S>/S< − 1 ≈ 2.32. This value is

similar to the one extracted from TDNS. This determination of |ν| from two independent
techniques (one uses time domain signal at a given ζ, the other uses frequency domain
data from the overall trend) confirms the validity of both approaches.

In conclusion, the KTS model together with the phenomenological description of the
noise (see chapter 2) is able to predict the noise properties of spin torque auto-oscillators.
In the next section, we engage a discussion on the consequence on the FWHM measured
in STOs by means of spectrum analyzer from the phase variance equation.

4.2.4 FWHM in the case of non-isochronous auto-oscillator

4.2.4.1 Analytical expression of the FWHM

We have given the expression of the phase variance in the case of a non-isochronous
auto-oscillator (see Eq. 4.16), and we focus now on its link with the FWHM. Since the
phase variance is not linear in time, the shape of the PSD of the resulting signal is
not Lorentzian. Indeed, to be Lorentzian, the autocorrelation function of the signal
(see Eq. 4.15) must be a pure first order exponential decay with time. Second order
exponential decay (e.g. e−t

2
) provides a Gaussian function of the PSD of the signal.

14The technique developed by Boone et al. [79] for GMR spin-valves is very dependent on the structures
studied and it requires many assumptions in order to extract p and Γp.



Chapter 4. Amplitude and phase noise of STO 127

0 1 2 3 4 5
0

100

200

300

400

500
 

 

F
W

H
M

 (
M

H
z
)

I
2
/P (a.u.)

Fig. 4.24: Linewidth versus inverse oscillation power for sample C. From the inverse power
dependence of the linewidth, we have seen in section 4.2.1 that below ζ = 0.5, the inverse power
was underestimated. The increase of I2/P for ζ > 1.6 noted in section 4.2.1 does not affect the
determination of S>.

Using the full ∆φ2(τ) expression, no analytical solution of the FWHM exists. However,
one can consider the“limiting”cases of the FHWM (see for example the model from Kudo
et al. [80] used previously), depending on the timescales in Eqs. 4.18 (with |ν| >

√
2):



∆f ≈ 2∆f0(1 + ν2) For 1
∆f >

1
fp

∆f ≈ |ν|
√

2∆f0Γp For 1
fp
> 1

∆f >
1

fp
√
ν2−1

∆f ≈ 2∆f0 For 1
∆f <

1
fp
√
ν2−1

. (4.19)

From Fig. 4.18, we see that the approximation ∆f ≈ 2∆f0(1 + ν2) is only correct for
ζ > 1.6. Moreover, it corresponds to a limiting behavior and not to an exact solution;
∆f ≈ 2∆f0(1 +ν2) is satisfied only if the inequalities in Eq. 4.19 are large (i.e. 1

∆f >
1
fp

).

In the following, we give a “phenomenological” means to extract the FWHM from the
time varying variance as suggested by V. Tiberkevich [136]. We can consider that, when
the time varying variance is equal to 2π, the correlation time τ corresponds to the inverse
value of the FWHM. While this statement is exact for the case of Lorentzian shape, i.e.
∆φ2(t) ∝ t, it only gives a relative error less than 6% in the case of a Gaussian shape,
i.e. ∆φ2(t) ∝ t2.

A qualitative argument for this phenomenological consideration is the following.
The FWHM physically represents our uncertainty to locate the mean frequency of
the oscillation such that there are equal “chances” that the oscillation frequency is
f = fg + ∆f/2 or f = fg −∆f/2. In other words, the total phase diffuses “on average”
between a signal at frequency f = fg + ∆f/2 and the one at frequency f = fg −∆f/2.
After the time 1/∆f , a signal whose frequency is fg ± ∆f/2 will be phase shifted by π
compared to the signal of frequency fg. If now, we consider our signal, the phase noise is
“on average” about 2π or ∓π after having spent the time 1/∆f . Since the phase variance
represents the “average” amount of phase deviation with time, we can write:
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Fig. 4.25: (a) Comparison of the values of ∆f0 versus ζ obtained by different techniques on
Sample C. From the amplitude noise variance (black dots), resolving Eq. 4.20 with ν extracted
from the phase noise plots (gray dots) and ν = 2.32 extracted from the Kudo’s technique found
in Ref. [80] (open dots). (b) Similar comparison on macrospin simulations. ν = 5 corresponds
to the mean value obtained from the analysis of phase noise plots.

∆2φ(1/∆f) = 2π . (4.20)

This equation defines the FWHM of a given signal expressed by its autocorrelation
function of the form of Eq. 4.15. Eq. 4.20 is general, and independent of the value
taken by ∆f0, ν and Γp. When taking an infinite number of realizations of the phase of
our STO and φ0≤i≤∞(τ), the width of the distribution of the phases φ0≤i≤∞(1/∆f) is 2π;
Eq. 4.20 is the exact meaning of phase variance ∆φ2(τ) for τ = 1/∆f .

It makes this expression much more useful than Eq. 4.19 and provides an analytical
expression to extract the FWHM.

4.2.4.2 Signal FWHM ∆f and linear HWHM ∆f0

In sections 4.2.2 and 4.2.3, we have shown how to extract Γp and ν from phase and
amplitude noise. With Eq. 4.20 it is also possible to extract ∆f0, since ∆f is known.

Fig. 4.25 shows the extraction of ∆f0 from Eq. 4.20 in both experimental results
(Fig. 4.25-a) and macrospin simulations (Fig. 4.25-b) using different assumptions for
the value of the dimensionless nonlinear parameter ν. Indeed, we have experimentally
measured that ν depends on the supercriticality ζ via Sφ, and we also extracted the value
of ν = 2.32 from ∆f versus 1/p0 dependence. Therefore, experimentally, we reproduce
these two cases for the extraction of ∆f0 from Eq. 4.20. We have also observed a similar
decrease of |ν| with ζ in macrospin simulations, to compare with a ν independent of ζ,
we also extract ∆f0 in macrospin simulations assuming that ν = −5 over the whole range
of supercriticality.

The first comment is that the HWHM ∆f0 is indeed on the order of MHz as expected
from theory [48] and our previous measurement from amplitude noise in section 4.2.2.3
(black dots in Fig. 4.25). The second comment is about the trend of ∆f0 versus ζ: is it
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an increasing or a constant value versus ζ? From Fig. 4.25, we see that it depends on the
assumption made on ν. Indeed, if the decrease of |ν| with ζ from Fig. 4.23 is confirmed
and real, then the increase of ∆f0 with ζ exists. If we consider a constant value for ν,
∆f0 seems constant over ζ. This trend is well reproduced in both experimental results
and macrospin simulations. While in macrospin simulation, the increase of ∆f0 with ζ is
not clear.

4.2.4.3 Discussion on ∆f0 parameter

The variation of ∆f0 with ζ (or p) is of main importance. In the KTS model, the diffusion
“constant” is nonlinear (see Eq. 2.43):

Dn(p) = Γ+(p)η(p) = 2∆f0(p)p , (4.21)

such that, in presence of STT and in the nonlinear regime (p > 0), the noise strength
acting on the system in its nonlinear regime (p > 0) is not the same as the noise strength
acting on the system at equilibrium (p = 0). Brown’s model [33] involves applying the
fluctuation-dissipation theorem to a magnetic particle at equilibrium (static state), while
the KTS model extends this concept to the out-of-equilibrium state.

We recall here the origin of Dn(p) in the case of the KTS model. In the presence of
thermal noise kbT , the oscillator “state”, such as any system, is spread, with a diffusion
constant D given by the Einstein-Smoluchowski relation:

D = µkbT, (4.22)

with µ = vd/F being the mobility of the particle in the context of Brownian motion, i.e. its
sensitivity to the noise, where vd is the drift velocity and F the force strength that drives
the particle motion. While it is not clear how to identify qualitatively those quantities in
our system (we have an angular motion and not a linear motion), the diffusion constant
found in the KTS model is written:

D(p0) = Γ+(p0)
λω(p0)kbT. (4.23)

Interestingly, if we identify all terms from the Einstein-Smoluchowski equation, we can
probably anticipate that vd ∼ Γp(p0) instead of Γ+(p0) since the drift velocity around the
system energy p0 has been identified as the restoration rate Γp. This “phenomenological
argument” is not in contradiction with the original proof of the KTS model, since one
can show that when identifying Eq. 4.23 with the Boltzmann distribution of power, the
restoration rate (at the equilibrium) is Γ+(0) = 2ΓG.

By now, it is hard to draw any conclusions since the contradictory results on the
variation of ∆f0 over ζ cannot lead to a straightforward conclusion regarding the strength
of the noise from our measurements or simulations. Only a decrease of ∆f0 versus ζ would
possibly lead to Dn(p) ≈ constant for p > 0. The fact that the diffusion constant Dn is
not a constant when increasing the bias current makes already a “physical” representation
of its meaning difficult.

Finally, we would like to comment on the numerous successful examples of the
Fokker-Planck equation applied to predict the switching of the magnetization under the



combined influence of spin transfer torque and thermal fields. All those theories assume a
constant diffusion“constant”D in agreement with Brown’s model [33] (and therefore those
examples are well verified by macrospin simulations including a Brown thermal fluctuation
field Eq. 1.13 in section 1.2.3). To open the discussion on this “phenomenological” model
of the noise, we quote the introduction of the paper by Brown from 1963 [33]:

“This problem [the magnetization behavior under the influence of a thermal
bath] can be approached through simplifications that have proved successful
in the theory of the Brownian motion and other stochastic processes.
The most important simplification is the assumption that the random
thermal forces have a correlation time much shorter than the response
times of the system (e.g,. of the Brownian particle). This simplification
makes possible the replacement of an integral equation (the Smoluchowski
or Chapman-Kolmogoroff equation) by a partial differential equation (the
Fokker-Planck equation). In effect, it reduces the random forces to a
“purely random” process, with a “white” spectrum. According to the
quantum-mechanical Nyquist formula, the spectrum of thermal agitation
forces may be regarded as white up to a frequency of order of kT/h(≈ 1013

sec−1 at room temperature); this corresponds to correlation times of the order
10−13 sec.”

It opens some questions about the model of the fluctuations themselves when applied
to the power oscillation fluctuations. We have previously highlighted the different
formulation from the Smoluchowki approach and the Fokker-Planck one in the KTS model
presented in chapter 2, without any further proofs. When the temperature decreases,
is the “thermal” noise still “white”? Also, considering that ∆p0/p0 can be large (see

Fig. 4.13), is the approximation of the non-stationary process
√
p(t)fn(t) ≈ √p0fn(t)

physically correct?
Those questions are beyond the scope of this thesis. However, we will keep in

mind the interrogation of the “whiteness” of the noise when presenting the results on
experimental measurements of the temperature dependence of STO noise properties and
their comparison with the macrospin model (that assumes the “whiteness” of the thermal
noise for all temperatures).

4.3 Conclusion on the systematic comparison of KTS

theory to experiments

We have seen how, from TDNS, that it is possible to extract the key parameters that
govern the dynamics of the magnetization in the nonlinear regime under spin-polarized
currents. We described the KTS model in the light of our experimental and macrospin
simulation results. We have explained the two limiting behavior of the STO. In the
below-threshold regime, the STO is a simple harmonic oscillator whose spectral purity is
driven by the amplitude relaxation only. When it enters the nonlinear regime (ζ ≈ 0.9),
the damping and anti-damping terms become nonlinear.

Slightly above the threshold (ζ ≈ 1.1), a nonzero power p0 is stabilized due to the
compensation of the damping and the anti-damping term. We have verified that any
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fluctuations around p0 are stabilized by the amplitude restoration rate Γp. The major
effect of this parameter has been identified as the timescale required to exchange energy
with the thermal bath or spin-polarized current flow. This property will be the subject
of the chapter 5.

The fluctuations around this mean power of oscillation induces a nonlinear
contribution to the phase noise. In simulations and in experiments, we found that this
nonlinear contribution enhances the phase noise above the linear contribution: the system
nonlinearities provide a substantial linewidth broadening. This phenomenon is solely due
to the non-isochronous nature of the STO; their auto-oscillation frequency is strongly
dependent on the power of oscillation. It leads to the definition of the dimensionless
nonlinear amplitude phase coupling parameter |ν| which has been extracted here.

Finally, the KTS model includes a Fokker-Planck formalism for the auto-oscillating
state. From this formalism the diffusion constant D ∝ ∆f0 is extracted. Since the TDNS
technique allows to provide a tool to study the variation of the nonlinear parameters Γp,
ν and ∆f0 versus ζ, we found some unexpected results such as a nontrivial (unexplained)
dependence of ν and ∆f0 versus ζ in both macrospin and experiments. We discuss in more
detail this question in the next section, where a novel independent extraction technique
of these parameters is developed. We will not answer definitively the question of the
model validity, but we will rather give a “nonlinear” solution of the STO in presence
of noise. Indeed, our main problem in the TDNS technique is that the diffusion of the
noise into the harmonics of the signal remains unclear since no canonical transformation
is possible experimentally. In fact, the presence of harmonics is the signature of the
nonlinear behaviors of the STO. The next section aims to give insight on the full analytical
solution of the magnetization dynamics under a spin polarized current.

We would like to end this summary by listing the points we have highlighted during the
systematic study of experimental measurements and macrospin simulations from TDNS
and KTS theory:

� The results from the TDNS technique show a good agreement between experiments
and KTS model in the below- and the above-threshold regime.

� Experimental data available from the magnetoresistance of the device do not allow
a systematic comparison to the KTS model concerning amplitude variance, because
of the canonical transformation involved in the KTS model.

� Simultaneous studies of amplitude and phase fluctuations allow the subtle
interplay/coupling in the magnetization dynamics to be described in detail.

� From the TDNS technique, one is able to extract Γp, and to have a reliable measure
of ν.

� ∆f0 can be extracted both by the analysis of the variance of amplitude fluctuations
and by the analysis of the phase noise. Both approaches lead to inconsistent results.

� Finally, the TDNS analysis leads to a probable power dependence of the non linear
parameter ν(p) and ∆f0(p).



4.4 Study of ∆f of higher harmonics

We have highlighted the problem of the canonical transformation required by the KTS
model. This model assumes that the signal in c-variable is mono-chromatic, i.e. has only
one harmonic component. We therefore put forward this argument as a possible cause of
the divergence between our experimental results and the KTS model. We can consider
this section as a renormalization of our (multi-harmonic real) signal to the canonical
transformed c-variables of the KTS model. Here we use this discrepancy as a tool to
extract the nonlinear parameters ν, Γp and ∆f0.

The LLGS equation is a system of nonlinear differential equations. In particular, the
norm of the magnetization is constant:

M2
x +M2

y +M2
z = M2

s . (4.24)

We consider the case where the magnetic field is applied along the direction of Mx (IPP
case). Because of the norm conservation, Eq. 4.24, we can do a Taylor expansion:

Mx/Ms = 1− 1
2M2

s

(M2
y +M2

z )−
∞∑
n=2

(−1)n(2n)!
(1− 2n)(n!)(4n)Mn

s

(M2
y +M2

z )n , (4.25)

since (M2
y + M2

z ) < M2
s . If now we consider an oscillating solution, i.e. My(t) =

M0
y cos(ωt+ φ0

y) and Mz(t) = M0
z cos(ωt+ φ0

z), one obtains:

Mx(t)/Ms ≈ 1 + A cos(φ0
y − φ0

z) +B cos(2ωt+ φ0
y + φ0

z)

+
∞∑
n=2

Cn cos[n(2ωt+ φ0
y + φ0

z)] +Dn cos[n(φ0
y − φ0

z)] ,
(4.26)

where A, B, Cn and Dn are constants given by M0
z and M0

y . Interestingly, it generates a
signal at ”zero” frequency and twice the mode frequency.

The aim of this section is to take advantage of this nonlinear property (Eq. 4.25)
of the LLGS equation to extract noise properties in signal harmonics. It is to note
that the different canonical transformations introduced in section 2.2 aimed to get rid
of this higher order polynomial terms of the magnetization coordinates in Eq. 4.25.
Here we demonstrate that there is a difference between isochronous and non-isochronous
auto-oscillators in the linewidth values of higher generation harmonic due to the
nonlinearity of the generation frequency in the latter case. Then, it is demonstrated
how this difference provides an alternative method to the TDNS technique to determine
the intrinsic nonlinear parameters of the auto-oscillator, such as the nonlinear coefficient
of linewidth broadening ν and the damping rate of the amplitude fluctuations Γp, that
determine the non-autonomous auto-oscillator dynamics. Also, it provides a measurement
of the linear linewidth ∆f0 that is independent of Γp and ν.

4.4.1 Model description

The general theory of linewidth for an isochronous auto-oscillator was developed in [42,
137]. It was shown in [137] that the phase variance ∆φ2 of an auto-oscillator increases
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Fig. 4.26: FWHM ∆f1 and ∆f2 extracted from PSDs (a) for macrospin simulations and (b) for
experiments on MTJs (sample A). In the simulations the even (odd) harmonics were obtained
from the PSD of the in-plane magnetization parallel (perpendicular) to the static equilibrium
orientation. In (a) and (b) the ∆f2 values (gray circles) are compared with 2∆f1 (open circles)
and 4∆f1 (open squares).

linearly with time τ (∆φ2 ∼ τ , corresponding to a “random walk” of phase), and that the
generation line has a Lorentzian shape. Considering that the phase variance of the nth

harmonic is given by:

∆φ2
n = n2∆φ, (4.27)

and, since the phase undergoes a “random walk” in the isochronous case (∆φ2 ∼ τ), it
results that the spectrum of the nth isochronous auto-oscillator harmonic has a Lorentzian
shape with the linewidth [137]:

∆f ison = n2∆f iso1 , (4.28)

which is n2 times larger than the fundamental linewidth ∆f iso1 .
We would like to note that the linewidth of the nth harmonic in a passive (damped)

isochronous resonator, or harmonic oscillator, is determined by a different relation:

∆f resn = n∆f res1 , (4.29)

and is only n-times larger than the passive resonator linewidth ∆f res1 determined by the
resonator damping (as shown earlier for ζ < 1).

In the case of a non-isochronous auto-oscillator [54] the shape of the generation
line becomes non-Lorentzian [38], and the phase variance of the main frequency is a
nonlinear function of τ (see Eq. 4.16). As such, the expression 4.28 will not hold in the
non-isochronous case and the main goal here is to find a correct description for linewidth
of the nth harmonic in a STO.

First of all, to illustrate the importance of this problem we demonstrate that the
linewidth of higher harmonics in STOs, indeed, deviates substantially from the classical
relation 4.28 established in Ref. [137]. In Fig. 4.26 we present the linewidth of a main
auto-oscillation mode ∆f1 (black filled circles) and the linewidth of its second harmonic
∆f2 (gray filled circles) measured experimentally on sample A as a function of the



supercriticality parameter ζ. In the same figure, we show for comparison values of 2∆f1
(open circles) and 4∆f1 (open squares). The experimental linewidths were obtained from
the Lorentzian fits of the power spectral density (PSD) of the magnetoresistive voltage
signal acquired in the frequency domain.

The behavior of the linewidth ∆f2 of the second harmonic in our “macrospin”
simulations (see Fig. 4.26-a) is qualitatively similar to the behavior of ∆f2 in the
experiment (see Fig. 4.26-b) in both the subcritical and supercritical regime. In particular
the second harmonic ∆f2 of the second harmonic in the subcritical regime (ζ < 1) (or
harmonic oscillator) regime practically coincides with 2∆f1.

For ζ < 1, the FWHM of the first harmonic corresponds to half the FWHM of
the amplitude/power signals, which is the energy dissipation rate of the system. The
energy dissipation rate is independent of the harmonic considered (see Fig. 4.20-c) as
demonstrated elsewhere [136]. Therefore considering the signal cn(t) of the nth harmonic
(cn(t) = cn1 (t) with c1(t) the solution of the Eq. 4.1), one obtains:

Kn(τ) =< cn(t)c∗n(t+ τ) >= n!cn0 exp[inω0τ − nΓsτ ] , (4.30)

where the mode amplitude c0 is proportional to the noise power.
Two important properties follow from this equation. The first is that in the subcritical

regime ζ < 1 the lineshape of the main mode and all its harmonics are Lorentzian15 and
that the corresponding linewidth of the nth harmonic is related to the linewidth of the
main mode by Eq. 4.29. This theoretical result is confirmed by both simulations and
experiment shown in Fig. 4.26 for the second harmonic. Here, it is clear that Eq. 4.29
holds up to the point ζ = 0.95, where nonlinear terms in Eq. 4.1 become important (see
also discussion in section 4.1.3). The second important property is that the fundamental
linewidth is given by the amplitude relaxation rate with ∆f1 = Γs/π ∝ (1 − ζ). This
result is confirmed by the almost linear decrease of the linewidth with ζ seen in Fig. 4.26
and has already been discussed in section 4.1.

For the auto-oscillation regime (ζ > 1), it is clear from Fig. 4.26 that the linewidth of
the second harmonic does not follow the predictions of the isochronous theory [137], and
that the experimental and numerical ratios of the second harmonic to the fundamental
mode are smaller than expected from Eq. 4.28, but larger than expected from Eq. 4.28,
i.e. they lie in the interval 2∆f1 < ∆f2 < 4∆f1. To understand the qualitative reason
of this discrepancy we present below an analytical derivation of the higher harmonics
linewidth in a general non-isochronous auto-oscillator that applies to STOs.

In the supercritical regime, when the oscillation power substantially exceeds the noise
level (this condition is typically satisfied for ζ > 1.05), the amplitude fluctuations do
not contribute directly to the correlation function Kn(τ), and it is determined solely
by the phase decoherence, Kn(τ) ∝ exp(−n2∆φ2). For a non-isochronous oscillator,
however, the amplitude fluctuations change the phase dynamics through the nonlinear
amplitude-frequency coupling (N or ν), and the phase variance ∆φ2 is determined by
Eq. 4.16.

The phase variance Eq. 4.16 is plotted in Fig. 4.27-a for typical STNO parameters. As
discussed previously, one can distinguish three regimes. For long time scales τ � 1/2Γp

15In Chapter 2, we have seen that in the low damping ratio approximation, the harmonic oscillator
exhibits a Lorentzian shape in presence of noise
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Fig. 4.27: (a) Calculated phase variance ∆φ2(τ) from Eq. 4.16 using ∆f0 = 10MHz, 1/Γp =
3.18ns and ν = 10. Point A corresponds to 1/∆f1, Point B corresponds to the expected
coherence time (1/∆fn) for the harmonic n = 10 for the non-isochronous oscillator and point
C corresponds to the isochronous oscillator; (b) Ratio ∆fn/∆f1 versus harmonic order n from
simulations. Black dashed and solid lines are for ∆fn = n∆f1 and ∆fn = n2∆f1, respectively.
The gray line shows the values calculated from Eqs. 4.16, 4.31 with the nonlinear parameters Γp
and ν extracted from the first harmonic signal. Dots are the results of a “macrospin” numerical
simulation performed for ζ = 1.8.

and for short time scales τ � 1/(2Γpν2) the phase variance is linear in τ , while in between
the phase variance is quadratic in τ [53].

To find the generation linewidth ∆fn from the phase variance ∆φ2 one should, in
principle, find the generation spectrum as a Fourier transform of the correlation function
Kn(τ), which cannot be done analytically. It is clear, however, that at the correlation
time Tn = 1/∆fn the value of the nth harmonic phase variance n2∆φ2(Tn) should be of
the order of unity (as discussed in section 4.2.4):

∆φ2(Tn) = 2π/n2 . (4.31)

Eq. 4.31 gives an exact value of the linewidth ∆fn for a pure random-walk process ∆φ2 ∼
τ , and its error does not exceed 6% in the quadratic region ∆φ2 ∼ τ 2.

Combining Eqs. 4.16 and 4.31, one can easily understand why for a non-isochronous
oscillator the linewidths ∆fn deviate from the well-known relation 4.28. The fundamental
linewidth ∆f1 corresponds to the coherence time T1 = 1/∆f1 for which the phase variance
is ∆φ2(T1 = 1/∆f1) = 2π (line A in Fig. 4.27-a). The linewidth ∆fn of the nth harmonic is
then found as the inverse of the coherence time Tn = 1/∆fn for which the phase variance
is 2π/n2 (line B in Fig. 4.27-a). It can be seen immediately that the corresponding
coherence time in the case of a non-isochronous oscillator (line B) is larger than for an
isochronous one (line C), whose phase variance is linear in time for all time scales (pure
random walk phase). Correspondingly, the linewidths of higher harmonics are smaller
than predicted by Eq. 4.28 with ∆fn < n2∆f1. Moreover, since the logarithmic slope of
∆φ2(τ) changes between 1 (∆φ2 ∼ τ) and 2 (∆φ2 ∼ τ 2), for a general non-isochronous
oscillator the linewidth ∆fn always lies in the interval n∆f1 < ∆fn < n2∆f1 as has been
found in experiment and in simulations, Fig. 4.26. Thus by fitting the experimental (or
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Fig. 4.28: Comparison of the nth harmonic linewidth extracted from the PSD numerically
calculated for n = 3 (a) and experimentally measured for n = 2 (b) (open dots) with the results
obtained from our analytical model 4.16 and 4.31 (black line) and the results of the model [137]
(gray line). Measurements were done on Sample C.

numerically calculated) dependence ∆fn(n) using Eq. 4.31 it is possible to determine the
nonlinear auto-oscillator parameters ν and Γp (see section 4.4.2 below).

In order to further verify the presented theoretical description, we compare the
linewidth of the higher harmonics obtained from a Lorentzian fit of the numerically
calculated PSD (open dots in Fig. 4.28) to the results obtained from the analytical model
Eqs. 4.16 and 4.31 (black lines in Fig. 4.28). For the analytical model the nonlinear
parameters ν and Γp of the auto-oscillator were extracted in each case independently
from the phase and amplitude noise of the first harmonic (fundamental frequency)
following section 4.2, and the intrinsic linewidth ∆f0 was calculated from Eq. 4.16 for
∆f1. Using the set of values Γp, ν,∆f0, obtained solely from the analysis of the signal
at the fundamental frequency, we then calculated ∆fn from Eqs. 4.16 and 4.31 to obtain
the black lines in Fig. 4.28. One can see that the model Eqs. 4.16 and 4.31 give a
good description of ∆fn in the auto-oscillation regime ζ > 1, as shown in Fig. 4.28-a
for the third harmonic obtained from macrospin simulations and in Fig. 4.28-b for the
second harmonic measured experimentally. In Fig. 4.27-b, this is shown more explicitly
for the macrospin simulation for orders n = 2 to 7. In contrast to the analytical model,
the derivation using Eq. 4.28 for an isochronous oscillator (gray lines in Fig. 4.28) does
not provide a good description. In particular, the analytical model in agreement with the
macrospin simulations predicts the increase of ∆f3 with supercriticality ζ (see Fig. 4.28-a)
due to the variation of Γp and ν with ζ (with Γp = 0.2 ∼ 1.2ns−1 and ν ∼ 5). In contrast,
the isochronous oscillator model [137] predicts an almost constant ∆f3 since ∆f1 in this
particular case does not vary significantly with supercriticality (compare gray line and
open dots in Fig. 4.28-a).
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4.4.2 Extraction of nonlinear parameters through harmonic
linewidth analysis

An important consequence of the analytical description is that it is possible to extract,
via the analytical model Eqs. 4.16 and 4.31, the three parameters Γp, ν and ∆f0 that
define many properties of the dynamics of the system by measuring experimentally the
linewidths of three harmonics in a non-isochronous auto-oscillator. This method of
extraction of the nonlinear auto-oscillator parameters is very general and can be used
for auto-oscillators of different physical nature over a wide range of auto-oscillation
amplitudes (or supercriticalities ζ). It is of particular importance when the time domain
data from the auto-oscillator (i.e. used in Ref. [76, 78, 85]) are not available.

In our experimental case, we only have access to the two first harmonics. One of
the nonlinear parameter needs to be assumed to solve the three (minus one) equations.
Experimentally, the system:

2π
1 = 2(2π)∆f0

[
(1 + ν2) 1

∆f1
− ν2 1−e

−2Γp 1
∆f1

2Γp

]
2π
22 = 2(2π)∆f0

[
(1 + ν2) 1

∆f2
− ν2 1−e

−2Γp 1
∆f2

2Γp

]
ν is known or Γp is known or ∆f0 is known

, (4.32)

is thus solved. Since this system 4.32 is nonlinear, it might be possible that this system
does not converge for a given set of parameters. Moreover, there are many variations of
Γp and ν versus ζ that may be attributed to some extraction errors. Therefore, a fitting
routine with interpolated input parameters (ν and Γp) is also presented (for experiments
only).

The results of the fit from Eqs. 4.32 on Sample C are presented in Fig. 4.29. To
obtain the value Γp presented in Fig. 4.29-c, we use the value of ν obtained from the
TDNS technique (see Fig. 4.23-b), which varies with ζ. We can see that this procedure
of extraction of Γp (black dots) quantitatively and qualitatively agree with the value of
Γp obtained from the TDNS technique in section 4.2.2. Since the extraction of ν from
TDNS leads to “oscillations” with ζ, we also used an interpolated value of ν (shown by
the red curve in Fig. 4.29-b) to extract Γp from the harmonic linewidth analysis shown
by the red curve. In this case, the value obtained from the interpolated value of ν is
even better. Finally, in Fig 4.29-a, the value of Γp obtained from the assumption of a
constant ν = −2.32 over the whole range of the supercriticality is shown in gray dots. In
this last case, we can see that Γp continues to increase with ζ for ζ > 1.6, while other
fits of Γp (obtained with a decreasing ν) confirm the saturation of the value of Γp for
ζ > 1.6 observed from the TDNS technique extraction. It is clear that this method is
suitable to extract, at least quantitatively, the value of Γp solely from frequency domain
measurements of the two first harmonics (ν can then be obtained from the dependence
of ∆f1 versus I2/P as shown in section 4.2.3). Regarding the variation of Γp versus
ζ, together with the analysis of the harmonic linewidths, it seems to indicate a relative
decrease of |ν| with ζ.

When we solve Eqs. 4.32 with an assumed value of Γp, we reproduce qualitatively (i.e.
a decrease of |ν| versus ζ) and quantitatively (e.g. |ν| ≈ 2) the value of |ν| obtained from
the analysis of the phase noise (see Fig. 4.29-b).
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Fig. 4.29: (a) Comparison of Γp obtained with Eq. 4.32 and the one from TDNS method. The
gray dots correspond to the case where |ν| = 2.32 is assumed constant. The black dots use
the value of |ν| obtained by TDNS. The red line is obtained with the interpolated value of |ν|
obtained by TDNS as shown in (b). (b) Comparison of |ν| obtained by TDNS (white circles)
and using Eq. 4.32 with Γp by TDNS (black dots). The red curve is the interpolated values of
|ν| versus ζ obtained from the TDNS method. (c) Comparison of the extracted value of ∆f0
with different methods. The red curve is the interpolated value of Γp and |ν| obtained by TDNS.
With this interpolated values, the noise of the fitting result is reduced.

Finally, we discuss the case of the extraction of ∆f0 experimentally from the analysis of
the harmonics linewidths. When Γp and/or |ν| obtained from TDNS technique is assumed
to be known for the resolution of Eqs. 4.32, it gives the same increase of ∆f0 versus ζ
(see black dots, white circles and red curve in Fig. 4.29-c). Even when ν is constant,
this increase appears, but is somehow less clear (from ∆f0 ≈ 10MHz to ∆f0 ≈ 15 or
20 MHz). This increase of ∆f0 versus ζ is relatively small compared to the one observed
when the values of Γp or ν are assumed from TDNS technique (from ∆f0 ≈ 10 MHz to
∆f0 ≈ 40 MHz).

We discuss now in more detail the method itself. By this method, the extracted
value of Γp does not really depend on the nonlinear parameter ν, and a good agreement
between TDNS and harmonic analysis methods is found. This statement considers the
fact that the fitting procedure is not “always” converging (for example at ζ = 1.6).
Indeed, Γp is related to the time where the transition ∆φ2 ∼ τ to ∆φ2 ∼ τ 2 occurs.
This transition is not affected much by the value of ν. As a consequence, it requires that
some ∆fi used to solve Eqs. 4.32 are of the order of Γp, otherwise, Γp has almost no
effect on the relationship between ∆fi (i.e. all ∆fi lie in the same “limiting behavior”
defined by Eq. 4.19 in section 4.2.4). For example, in the case of Bianchini et al. [78],
all harmonic linewidths should lie in the bottom left part of the phase variance (see
Fig. 4.27) such that the relationship ∆fn = n2∆f1 = n22∆f0 should hold. Finally, it
should be noted that another case limiting the use of harmonic linewidths may appear
when, in the auto-oscillating regime with high ν values, the linewidth values ∆fi belong
to the “limit behavior” defined by the second equation (∆φ2 ∼ τ 2) of Eq. 4.19 and are

in relation such that ∆fn = n∆f1 = n
√

2∆f0Γp. Other cases may arise (for example

all ∆fi belong to the upper right part of the curve in Fig. 4.27-a), but it is important
to understand that the value of the FWHM of the fundamental may affect the fitting
procedure.

In macrospin simulations, where the harmonic linewidths ∆fn up to n = 5 are used,
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Fig. 4.30: (a) Extraction of Γp using Eq. 4.32 and using ν and ∆f1,∆f2 (black curve) or
∆f1,∆f3 (gray curve) as input. (b) Comparison between Γp obtained from TDNS and from
the average of the extraction of Γp using the 4 combinations ∆fi,∆fj ,∆fk. The gray curve is
obtained from the black curve after a floating average of 4 neighbors. (c) Comparison between
Γp obtained from TDNS and from Eq. 4.32 with input conditions ∆f1,∆f2,∆f3. The gray
curve is obtained from the black curve after a floating average of 4 neighbors.

the fitting procedure has a better convergence for Γp when ∆f1 and ∆f2 (and ∆f3) are
considered. In Fig. 4.30, different options were used to fit the value of Γp. The first option
is to compare the method as if the data originated from experiment, i.e. only ∆f1 and
∆f2 and ν where given parameters. In this case, the result for Γp is similar to the one
measured by TDNS (see black curve in Fig. 4.30-a). Finally, in case of Fig. 4.30-b, all
the results of the combinations ∆fi,∆fj,∆fk for i, j, k < 5 are averaged (black curve)
and smoothed with 4 neighbors (gray curve). In this case, the fitting routine output are
the three parameters Γp, ν,∆f0. Since experimental data are often limited to n = 3, we
present this case apart in Fig. 4.30-c. Even in macrospin simulations, some scattering
in the results is found, but the fitting routine gives the correct value and trend of Γp
over ζ from 1 to 2. Again, since Kudo et al. [80] gave an easy way of obtaining ν, this
complementary technique is shown here in order to obtain an estimate of Γp, when only
the two or three first harmonics are measured in the frequency domain (this has been
confirmed in Fig. 4.29-a) with ν obtained from Fig. 4.24.

In contrast to the case of Γp, a better fit of ν is obtained when using higher harmonics
(assuming ∆f1 < fp), or even with high index (i, j, k) difference. Firstly, we again consider
cases that can be obtained in experiments, the case where ∆f1 , ∆f2 and Γp are given
(black dots in Fig. 4.31-a), and the three first harmonics (gray squares in Fig. 4.31-b).
The scattering of the fitting result for ν is more pronounced than for Γp. Furthermore,
the mean value of |ν| versus ζ (about 3) is smaller than the one obtained from TDNS
(about 5). In this case, a third method, such as the one given for experiments (∆f1 versus
I2/P see Fig. 4.24), would be required to determine which method is the most accurate,
the TDNS or the harmonic linewidth analysis. Beside this divergence in the value of |ν|,
the harmonic linewidth analysis confirms the decrease of ν versus ζ. Indeed, in the case
where all nonlinear parameters are free, |ν| decreases from |ν| ≈ 4 for ζ ≈ 1.2 to |ν| ≈ 1.8
for ζ ≈ 2.

In fact, this decrease of ν with ζ should be associated with an increase of ∆f0 with
ζ, as remarked in the section 4.3. This is confirmed by the black dots in Fig. 4.32-b
where the trend of ∆f0 is to increase with ζ when all parameters Γp, ν,∆f0 are fitted
from linewidth values only. We also confirmed that with Γp, ν obtained from TDNS, an
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increase of ∆f0 is required to obtain ∆fn (see Fig. 4.32-a).

In conclusion, we have provided a general analytical description for the linewidth
∆fn of higher harmonics in a non-isochronous auto-oscillator. Using this analytical
description it is possible to determine all nonlinear parameters of a non-isochronous
auto-oscillator if the linewidths of at least three generated harmonics are experimentally
measured or numerically calculated. This independent study of the STO parameters
Γp, ν,∆f0 from TDNS allows in macrospin simulations16 and in experiment to confirm
the increase of ∆f0 for ζ larger than 1.5.

This result is unexplainable in the sense where this increase of ∆f0 is not seen in usual
diffusion problems. Moreover, the role of the non-stationary nature of the stochastic
process (the noise) affecting the magnetization dynamics is also uncertain. This problem
can be complicated by the fact that around ζ ≈ 1.5, the in-plane component of the
magnetization in the direction of the applied field (i.e. MX) can be negative, i.e. the
oscillation angle in-plane is > 90°. This would result in dissipative terms that strongly
vary in amplitude and in sign within the magnetization trajectory and therefore give to
the noise this strong “nonstationary” nature.

16Up to ζ ≈ 2.5 there is no evidence of an out-of plane trajectory.
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Fig. 4.33: Normalized FWHM 2(2π)∆f/Γp versus 2(2π)∆f0/Γp on a log-log scale for different
ν. In the case of large ν, the observed temperature dependence is almost always square root,
while it can be a linear dependence for moderate values of ν. From [53].

4.5 Temperature dependence, noise origin and

nonlinear parameters

In the previous part we discussed intensively the non-isochronous nature of the STO.
It leads to the conclusion that the phase noise, i.e. a substantial linewidth broadening,
has two main contributions from the environment: a direct one and one provided by the
nonlinear amplitude-phase coupling. Note that we always consider the noise source fn(t)
originating from the thermal fluctuation acting directly on the magnetization. The noise
fn(t) that is supposed to affect both the amplitude and the phase of the auto-oscillation
is supposed, similarly to the well known Brown model [33] for a magnetic particle, to
originate from exchange with the thermal bath. Since the Brown model, like any model
based on fluctuation/dissipation theorem, only describes the thermal field acting at the
equilibrium of the system. Thus the KTS model has to implement a power dependent
noise function fn(t) (see chapter 2). Moreover, this noise function is itself considered
“linearly proportional” to the temperature at a given power p0, as the Brown model has
a linear temperature dependent fluctuating field. Finally, in a first approximation, it
can be considered that reducing the temperature would also reduce the FWHM, through
∆f0 ∝ kBT .

Since the phase variance is a nonlinear function of time, the FWHM is itself a nonlinear
function of ∆f0 (i.e. the temperature T ). Therefore, reducing the temperature by a
factor “x” does not necessarily imply a reduction of the FWHM by a factor “x”. From
both simulations and experiments, a square root [138] or a linear dependence [139] of
the FWHM with temperature has been reported. Other exponential dependences of the
FWHM with temperature have been considered to originate from mode hopping [138]
and will not be discussed here.

In section 4.2.4, we gave the three limit behaviors of the FWHM (at a fixed T )
depending on its value compared to Γp (Eq. 4.19). Two of these behaviors are directly
proportional to ∆f0, and one is proportional to

√
∆f0. Since ∆f0 ∝ T , according to the

value of Γp with respect with the FWHM value, the square root or the linear dependence
with T can be found in the KTS model.
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Fig. 4.35: Power distribution for different applied current I for (a) T = 20K and (b) T =
260 K. The power distribution looks critical in both case around Ic ≈ −0.3 mA (green curve).
Results from DevC.

Since the temperature dependence of the FWHM depends on Γp, it is convenient
to present the normalized FWHM (i.e. 2π∆f/Γp) versus the normalized temperature
[53] (i.e. ∆f0/Γp ∝ T/Γp). Fig. 4.33 gives this normalized curve for different values of ν.
Because the data plot is in log-log scale, the slope informs on the temperature dependence
of the FWHM. The square root dependence, in this scale, provides a slope of 1/2 while a
linear dependence with temperature provide as slope of 1.

In section 4.1, the temperature dependence of the subcritical linewidth and power for
a MTJ-STO has been discussed. Fig. 4.34 shows the experimental FWHM and power
dependence versus T for different supercriticalities ζ, for ζ > 1 (Fig. 4.7 showed the same
curves for ζ < 1 measured on the same device). While the power remains constant with
temperature, indicating the above threshold regime of the STO, a clear linear dependence
of the FWHM is seen from 100 K to 300 K, with a saturation of the FWHM from 100 K
to 20 K. This saturation of the FWHM is not well understood yet and could be related
to temperature-independent noise [140].

From TD measurements, we can estimate from the power distribution that the
critical current Ic remains constant and is Ic ≈ −0.3 mA (see Fig. 4.35). Most of
the measurements are reproducible, in the sense where a linear decrease of the FWHM
with decreasing temperature is observed for many samples of different size. Fig. 4.36-a
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shows the FWHM temperature dependence of three samples (DevA, DevB and DevC) of
different sizes. All samples exhibit about the same slope: 0.25 MHz/K with a different
positive intercept.

We define the normalized FWHM r = 2(2π)∆f/Γp, which is flat over the temperature
range T = 100 ∼ 300 K (see Fig. 4.36-b). This results from the fact that in experiment
a linear increase of Γp with temperature is observed similar to ∆f . Therefore the ratio
r is constant. The direct consequence of this is that the normalized temperature must
be constant: the normalized temperature does not change with temperature. If we had
to plot the experimental data in a plot similar to Fig. 4.33, all measurement would lie in
one point for DevA.

This surprising result makes a direct comparison of the experiments to the theoretical
predictions less clear. First we discuss the decrease of Γp with the decrease of temperature
T . We have shown that Γp scales with the linear Gilbert damping rate ΓG, or eventually
with a phenomenological damping rate given by Γω = αωg (see discussion in section 4.2.2
and Fig. 4.18, note that DevC 6= Sample C and DevA 6= Sample A). In fact, for DevA,
an increase of the experimental ΓG (i.e. the measured FWHM when ζ = 0), cannot be
related to the damping constant α or the saturation magnetization Ms (see discussion in
section 4.1.3). Therefore, we expect from this formulation that Γp ∝ ΓG would increase
with the decrease of the temperature. Moreover, the mode frequency does not change
significantly (but rather increases due to Ms) such that “Γω” is supposed to increase with
decreasing temperature experimentally. Since the critical current (ζ = 1) is monitored
by the amplitude/power distribution, we see no clear evidence of a shift of the critical
current Ic that could explain the dependence observed (Γp depends on ζ).

In conclusion, while the FWHM decrease can be attributed to a decrease of ∆f0 ∝ T ,
the restoration rate Γp, which is the energy exchange with the thermal bath, also decreases
with the thermal energy kbT . Finally, we note that in macrospin simulations the ratio
r indeed decreases with decreasing temperature (i.e. Γp is constant for all effective T
simulated) and is in agreement with Fig. 4.33. We recall that the thermal noise input
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as a delta correlated fluctuating field from the Brown formulation has been used (see
Ref. [33] and Eq. 1.13).

We have tried to understand first the increase of ∆f0 with ζ and then we found
that it is not only linear with temperature, but that the exchange rate Γp changes with
temperature in way that cannot be explained by material parameters in experiment.
Several explanation might be given. First the KTS model, similarly to the case discussed
by T.J. Silva and M. Keller in Ref. [48], has many simplifications in the form of the
noise acting on the magnetization. We have seen from the Brown model that the
“whiteness” of the thermal noise may disappear at low temperatures, or that it implies
another formulation of the problem. In particular, Rezende proposed to treat the effect
of the applied current to the magnetization interacting with a thermal bath as a quantum
problem [58]. Since it involves the appearance of a coherent quantum state (i.e. according
to the Rezende paper, coherent quantum state exhibit a Poisson distribution of the
”power” distribution rather than a Gaussian one) it is hard to identify such a distribution
in our measurements (see for example Fig. 4.35) and therefore to state on this solution.

Finally, in order to find a possible explanation of the saturation of the linewidth as
well as the positive intercept, we can note that an equivalent fluctuating field originating
from spin current fluctuations [140] can overcome the classical thermal field proposed by
Brown below a certain temperature. Therefore, one can imagine it to be possible to see
such phenomenon in our experiments.

This nontrivial behavior of the STO, observed in the temperature range of 20 K -
300 K and revealed here in the light of TDNS analysis, actually requires more evidence
to really conclude on the physical origin of the noise in STOs.

4.6 Flicker noise in degraded junctions

As a final result of this chapter, we show to what extent the KTS theory is general and
is expandable to any kind of auto-oscillator. We first discuss the very trivial nature
of the system’s bifurcation in the KTS model as presented in [54]. Indeed, this model
considers only a single mode of the magnetization that turns out to be auto-oscillating
upon increasing current. In the next section, we present a study where the auto-oscillating
mode does not originate from the “FMR” mode of the magnetization.

In the last section of chapter 3, we have presented the distinction between LTMR
and HTMR devices. The HTMR devices are in good agreement with the KTS theory.
In the presence of noise, the distribution function of the power is continuous (i.e. with
a single mean value p̄); there are no “jumps” between the auto-oscillating state and the
equilibrium position of the magnetization.

However, it has been shown in [81] that in LTMR devices the auto-oscillating mode
appears and then disappears with time close to ζ = 1 and that the auto-oscillating mode
does not originate from the “FMR” mode (the lowest frequency mode in the absence of
STT). Fig. 4.37 shows the transition between the FMR mode and the auto-oscillating
state. Contrary to the HTMR case, there is no smooth transition at ζ = 1. At the time
of the study by Houssameddine et al. [115, 81], this has been understood as “stochastic”
transitions between the FMR mode and the auto-oscillating mode.

With the knowledge on the IPP-mode acquired from macrospin simulations and the



Fig. 4.37: Measurement of an LTMR sample with applied field H0 = 575 Oe. Peak frequency
(a) and FWHM (b) dependence versus the applied current I, obtained from frequency domain
measurements. (c)-(e) Time traces for three value of current 1© in the subthreshold regime,
2© in an intermittent regime and 3© in a steady-state of the auto-oscillation. (Left): 200ns
long time trace measured (red) with time varying amplitude (black). (Middle) zoom on a 5ns
time windows. (Right) amplitude distribution function. 2© corresponds to the coexistence of
the FMR mode with a auto-oscillating mode. From [81].
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studies on HTMR samples, it is clear that this case is nontrivial and is not considered
in the KTS model. Yet, the KTS theory is a generic theory aiming to describe any kind
of non-isochronous autonomous dynamics, which is independent on how the oscillating
state is reached. The LTMR belongs to this class.

Fig. 4.38 shows a typical power distribution from LTMR device. For ζ > 1.5, almost
no stochastic transition between the static and the dynamic mode appears such that it
is possible to study amplitude and phase noise of the oscillation.

The result is presented in Fig. 4.39-a. Similar to HTMR devices, a relaxation
phenomenon qualified by Γp is seen both in phase and amplitude noise. While we defined
Γp from the“linear linewidth”ΓG in HTMR devices, we cannot consider this in the case of
LTMR devices. Nevertheless, as discussed in the general introduction of auto-oscillators,
a Γp is required to stabilize a nonzero amplitude. Similar to HTMR device, we thus
identify a nonlinear contribution to phase noise.

Besides the standard phase and amplitude noise characterization similar to HTMR
devices, we also observed an additional 1/f slope in the amplitude noise ranging from
≈ 1 MHz to the minimum of the resolution of the method (100 kHz) for LTMR devices.
Because of the nonlinear amplitude phase coupling, it up-converts the 1/f amplitude
noise to a 1/f 3 phase noise. We can note the similitude with the so called Leeson effect
in semiconductor-based oscillators [43].

In order to confirm these trends, we performed, in collaboration with XLIM/CNRS
laboratory, two different low frequency measurements. The first one involves a phase
noise measurement with the retardation line method, Fig. 4.39-b. This method allows
one to use a heterodyne detection of the phase noise for noisy oscillators since the local
oscillator is replaced by the signal of the oscillator with a 20 ns delay (details on the
method can be found in Ref. [89]). This measurement confirms the trends observed in
the phase noise from TDNS. In this case, the flicker frequency noise is observed from
100 Hz to ≈ 500 kHz. We note the difference of the two measurements on the value of
the frequency which appear at the transition 1/f 3 and 1/f 2.

To further investigate the presence of 1/f noise and its origin, we suppose that this
“amplitude noise” could originate from low frequency electrical current fluctuations. We
will see in chapter 5, dedicated to current modulation, that such effects may indeed
generate a “pure” amplitude noise.

To verify the presence of “electrical noise” in our LTMR devices, we performed low
frequency noise measurement under bias field whose amplitude is similar to the one
applied in the auto-oscillation regime (i.e. with the same field value). Nevertheless, we
note no evolution of the low frequency current noise with applied field. This is expected
since the magnetoresistance is not supposed to vary much in the saturated AP state of
the tunnel junction (Fig. 4.40-a).

Yet, it is well known that the STT induces strong low frequency fluctuations of the
magnetoresistance of magnetoresistive devices (spin valves or tunnel junctions), since it
allows the magnetization to be pulled away from equilibrium (see for example the low
frequency component in Fig. 1.14-b and details in Refs. [141, 142, 143, 144]). Therefore,
we measure, for the same field value and for the inverse current polarity −I as the one
applied in order to obtain Fig. 4.39-a,b (i.e. +I), the electrical low frequency noise of our
junctions presented in Fig. 4.40-a,b (therefore in these measurements ζ < 0).

The enhanced presence of flicker current noise due to pinholes in MTJs suggests that
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the enhanced phase noise at low frequency in degraded LTMR junctions, as compared
to HTMR devices results from flicker frequency noise. An extended discussion on the
value of Si compared with the measurement of Sφ will be done in the next chapter 5 on
macrospin simulations in presence of current noise.

Similar 1/f frequency noise has been reported by Keller et al. [85] in spin valve
nanocontact devices using a low frequency TDNS setup. We have verified that such a
setup conserves the amplitude noise contribution of the auto-oscillation and therefore
would probably correlate the flicker amplitude noise to the flicker frequency noise.

It should noted that the exact experimental conditions could not be exactly reproduced
in the experiment carried out in XLIM/CNRS laboratory with a delay line method and
for the TDNS in SPINTEC, since not the same experimental setup has been used (current
source, applied field and applied field angle), and that the LTMR may have been degraded
between measurements.

Since an extended flicker current noise is expected in degraded junctions compared to
those with a high quality barrier [145], and that so far we have not found evidence of such
a noise contribution in our high barrier (HTMR) quality device down to the frequencies
of f = 100 kHz, it would be profitable to conduct more such correlated (delay-line /
TDNS technique / low frequency current) measurements in the future to investigate the
presence of these noise correlations.

In conclusion, we have shown that the KTS model, which assumes an up-conversion of
amplitude noise to the phase noise, is able to explain a similar effect from the Leeson effect
in MTJ-based STOs. Indeed, a flicker current noise originating from external parameters
(dc current source or tunnel effect) only affects the anti-damping term (the “amplifier”)
of the oscillator. Similar to what has been shown here, these contributions should be
characterized in absence of an auto-oscillating regime of the STO, since this contribution
is “extrinsic” of the system. Therefore, in a first approximation, a current modulation
would only affect the phase through the nonlinear amplitude phase coupling as predicted
by the KTS model. This question will be addressed in the next chapter.





Part III

Non-autonomous regime of
non-isochronous STOs
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In chapter 4, we have studied in detail the STO in its “free-running” or autonomous
regime, i.e. when no sources (except noise) interact with the STO. Despite the tunability
of the STO, i.e. the possibility to change its mode frequency ωg with applied current, the
agility of STO, i.e. the speed to change the STO state, has been less studied [146, 147].

The interaction of the STO with an external system is now investigated as a
complement to the autonomous regime. Indeed, the use of STOs for a practical
application requires the STO to interact with its environment in some deterministic way.
The results provide possible routes of optimization of STOs for applications, i.e. to
optimize the STOs performances when driven in non-autonomous regimes.

This part describes the effects of the interaction of the STO with an external
microwave current source. It is subdivided into two chapters since the effect of the driving
signal depends on its frequency fe. In section 2.2, both modulation and injection locking
experiments from the literature were reviewed. While low frequency signals (fe < Γp/2π)
would only affect the anti-damping term Γ−, the higher frequency signals (fe ≈ fg) lead
to “synchronization” of the STO to the external microwave source17. We will see how
both experiments lead to rich dynamics of the STOs in a non-autonomous regime.

17It is only a matter of semantics, since there is no distinction between the two, both could be called
synchronization or injection locking [41]. We only distinguish the two because of the different information
that can be retrieved from each.





Chapter 5

Modulation experiments

In this chapter, we discuss results obtained by modulating the current, using the
techniques presented in chapters 3 and 4 on phase and amplitude noise. The advantages
are that the study of modulation is not limited to the observation of modulation sidebands
in the frequency domain. The use of the TDNS technique allows the direct comparison
of the expected time varying phase and amplitude term of the auto-oscillator driven in
a non-autonomous regime and the experimental results. We will sspecially focus on two
points that can be addressed within the KTS model.

The first one is the non-trivial dependence of the sideband amplitude on the
modulating current amplitude that we will explain by a second-order phase/frequency
response of the STO to an excitation. We show how this can be used to extract a
fundamental parameter of the STO that is the nonlinear damping term Q (see Eq. 2.23
in section 2.2.2.1).

The second point is the modulation frequency dependent phase response of STOs
[54] (see section 2.2.2.2) that has been less studied in recent experimental [70, 71] and
theoretical [73, 148] works. Since the phase response is of interest for applications, it will
be the focus of our study. The modulation speed of STOs is fundamental in STO reader
application [149, 150, 151, 152, 153] and in frequency shift keying (FSK) transmission
protocols [146, 147].

While the agility, i.e. the speed at which the STO mode frequency can be changed,
of vortex-based STOs has been studied (see [147]), in the context of characterizing
the STOs as frequency synthesizers, we show here that this agility is exactly Γp. We
give hereafter a very simple method to check this agility, which is at the same time a
complementary method to extract the nonlinear parameter Γp, from a “non-autonomous”
regime of the STO [154]. In addition to the potential application for the definition of
STOs’ specifications, as with all methods presented in this work, this technique can be
extended to any non-isochronous auto-oscillator, i.e. any voltage control oscillator (VCO).

5.1 Modulation in the KTS model

The explanations in this section are given within the context of the KTS model, neglecting
the noise effect which has been discussed in chapter 4. However, the noise is still



present in the system1. We start with an introduction of the physical concept underlying
this experiment, and we derive the mathematical expressions, as in [54], to express
the expected result in terms of time domain measurements. We also give a novel
approach to simply explain the origin of nonlinear frequency modulation results obtained
experimentally.

5.1.1 Physical picture of the modulation in the frame of an
auto-oscillator

Here, we are interested in the effect of the modulation of the anti-damping term ΓIDC
− (p)

for a given applied current IDC = I(t = 0) that stabilizes the oscillation power at p0 (see
the red curve in Fig. 5.1-d). The idea is that at a certain time (t1) in the measurement,
we modify the input DC current to a slightly higher value as shown in Fig. 5.1-a. As
a consequence the anti-damping dissipative term changes. If we consider the physical
picture of the compensation of the dissipative terms (see Fig. 2.5 in section 2.1.2), an
instantaneous change of I corresponds to an instantaneous change of the anti-damping
dissipative term Γ−. In Fig. 5.1-e, this corresponds to going from the red curve to
the dashed green curve, while the dissipative damping term Γ+ remains unchanged.
Therefore, under the condition of IDC = I(t1), the only stable dynamical equilibrium
state is p1, while the STO power is still at p(t1) = p0.

The system power will naturally relax towards this new equilibrium position, or limit
cycle. Since the system has a limited energy supply (or dissipation) rate, a transient in
the power appears, as pictured in Fig. 5.1-b. The transient solution, in the case of the
KTS model, is governed by Eq. 2.24, and the transient power and the transient phase
evolution is governed by Eq. 2.25 with a time dependent anti-damping term only:

dp

dt
+ 2 [Γ+(p)− Γ−(p, t)] p = 0 ,

(5.1)

dφ

dt
+ ω(p) = 0 .

Therefore, the power transient leads to a phase (or frequency) transient. This transient is
schematically represented in Fig. 5.1-c, in the case of a negative nonlinear amplitude-phase
coupling (i.e. ω(p)). The corresponding relaxation constant is given by the characteristic
relaxation time to return to the stable state p(t) = p1 (see Fig. 5.1-f). As shown in
the Fig. 5.1, when switched back to IDC = I0 at t = t2 a similar process appears such
that the system relaxes towards p0 and ω0. This exact protocol has been followed in
vortex based STOs [146], where the instantaneous frequency is monitored by means of
time domain techniques. However, the experimental protocol used made it impossible to
exactly determine the relaxation time of the STO that was supposed to be below 20 ns
for a mode frequency of fg = 300 MHz. Based on the same experiment setup, with a

1The “only” interaction between noise and modulation experiments that can be seen in frequency
domain (e.g. on the FWHM) has already been explained in [71]. This experiment describes how the
response to the noise of the STOs are averaged over the whole power range that is covered by current
modulation.
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Fig. 5.1: (a) Time varying dc current. At t1, the DC current is changed from I0 to a higher
value I1. (b) Consequence on the instantaneous auto-oscillation power p. (c) Consequence on the
frequency of a non-isochronous auto-oscillator. (d) Energy supplied (red or green) compared
to the energy dissipated (black curve). The compensation of these two energies makes the
dynamical equilibrium of the system. (e) When changing the current, the anti-damping term
Γ− instantaneously changes; the oscillation power is still p0 but now additional energy is given
to the system so that the new dynamical equilibrium is at p1. (f) After a certain time, the
system is set to a new dynamical equilibrium p1.
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Fig. 5.2: Illustration of the stationary oscillation power due to the compensation of the damping
terms Γ+(p) and Γ−(p). For (a) Γ+(p) = ΓG and for (b) Γ+(p) = ΓG(1 +Qp).

complex fit of the data from the frequency domain experiments performed with different
modulation frequencies, the authors obtained a relaxation time of about 5 ns [147]. Since
we want to define an experimental protocol to determine the relaxation/transient of the
system in the gigahertz range, the simplest one is to use a microwave monochromatic
signal: a gigahertz sinusoid.

5.1.2 Sinusoid modulation of the anti-damping dissipation in
STOs

In the following, we are interested in the effect of the modulation of the anti-damping
term ΓIDC

− (p) at a given applied current IDC. When a modulation current of amplitude
IAC and frequency fM is applied its form is changed to [54]:

ΓIDC+IAC
− (p) = σIDC(1− p) + σIAC cos(2πfM t)(1− p) . (5.2)

If we consider the compensation of the dissipative terms (see Fig. 5.1 and 2.5 in
section 2.1.2), this means that the anti-damping dissipative term Γ− oscillates between
two extrema in time (see Fig. 5.2). In Fig. 5.2, if we consider the minimal (resp. maximal)
value Γmin

− (Γmax
− ) in Eq. 5.2, it leads to minimal (resp. maximal) oscillation power pmin

(resp. pmax). Therefore, the STO power oscillates between two “power” states pmin and
pmax, while its power without AC oscillating current is p0 that arises from ΓIDC

− . Since
the value of the nonlinear damping term Q is not known2, the aforementioned picture is
considered in several limit cases: without nonlinear damping Q = 0 (see Fig. 5.2-a) and
with Q > 0 (see Fig. 5.2-b).

It is important to note that there is no simple relation between the time varying
applied current I(t) and time varying power p(t), and that this relation depends also on
Q (see Eq. 2.27 in section 2.2). Therefore, when applying a modulating current, a simple
resolution of the dynamical equations can be found for only two limiting cases.

The first limiting case corresponds to very low modulation frequency fM (fM � fp)
such that a stationary power is found for any time t. Indeed, for very low frequency

2it is not the oscillator quality factor Γp.
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perturbation, we can consider that the time dependent power p(t) is the one that
equilibrates the damping and the anti-damping terms for all t � 1/Γp: Γ+(p(t)) =
Γ−(p(t), t). This equation already led to the definition of the mean power p0 in the case
of the autonomous regime (see Eq. 2.27 in section 2.2.2.1) and gives now the relationship
between the stationary power p(t) and the excitation εt = (IAC/IDC) cos(2πfM t):

p(t) = p0

1 + ζ
Q+ζ εt

+ ζεt

(Q+ ζ)
(
1 + ζ

Q+ζ εt
)

≈ p0 + εt
ζ

Q+ ζ
(1− p0)− ε2t

(
ζ

Q+ ζ

)2

(1− p0) + o(ε2t )
. (5.3)

The power p(t) has a harmonic response to the excitation εt. Finally, similarly to the
time dependent power solution, we can give the approximated time varying frequency
response:

ω(p(t), t) ≈ ω0 +Np0 +Nεt
ζ

Q+ ζ
(1− p0)−Nε2t

(
ζ

Q+ ζ

)2

(1− p0) + o(ε2t ). (5.4)

The direct consequences of the second order response in ε2t are:

1. The mean angular frequency < ω((p(t), t) > is not equal to ω(p0) as already
observed experimentally [69, 70].

2. We expect a second harmonic phase (or frequency) response for increasing high
modulation depth IAC/IDC and low modulation frequencies fM .

The effect of this second harmonic phase response is that the amplitude of the nth

order sidebands are in a nontrivial relationship. This effect has been evidenced in
Refs. [69, 70, 148], yet the value of fp is unknown so that it is not clear whether the
condition fM � fp is fulfilled.

The second limiting case that has a simple analytical solution corresponds to the
case of small modulation depth ε = IAC/IDC and is valid for all frequencies fM (below
the mode frequency fg). In this case, the power modulation δp(t) is expected to be small
so that a linearization of the general oscillator equation 2.24 is possible. In this case we
use Eq. 2.33 given in section 2.2.2.2 and derived in [54]:

dδp

dt
+ 2Γpδp− 2εΓ−(p0)p0 cos(ωmt) = 0

,
dφ

dt
+ ωg +Nδp = 0

whose solutions are:



dδp(t) = ε
2Γ−(p0)p0√
ω2
m + 4Γ2

p

cos(ωmt+ ψ)

, (5.5)

φ(t) = −ωgt− ε
N2Γ−(p0)p0

ωm
√
ω2
m + 4Γ2

p

sin(ωmt+ ψ) + φ0

where ωg = ω0 + Np0 is the mode frequency and ψ = − arctan(ωM/2Γp). This equation
is similar to the solution with noise as discussed in chapter 4. The effect of the white
Gaussian noise is that the system is“modulated”with the same strength at all frequencies
at the same time. The modulation experiments correspond to an excitation at a given
(determined) frequency fM : the system’s response, for small modulation levels, is actually
the same as the one with noise. The difference is that the modulation only affects
the amplitude, i.e. only modifies the nonlinear contribution to the phase. Modulation
experiments are then a means of characterizing Γp from the phase. Because we will
compare our experiments with the PSD of the frequency of the oscillator, we express the
phase response in terms of the oscillator frequency response:

2πν(t) = ω(t) ≈ ω0 +Np0 + ε
N2Γ−(p0)p0√
ω2
M + 4Γ2

p

cos(ωM t+ Ψ) . (5.6)

We will solely focus on the amplitude of the prefactor of the cosine of Eq. 5.6. Its
contribution to the PSD Sν of the STO frequency ν(t) can be written as:

Sν(f) ∝ A(fM)δ(fM − f) , (5.7)

with δ being the Dirac function and A(fM) the frequency response of the STO. It
is convenient to express the frequency response of the STO by the frequency of the
excitation:

A(fM) = ε2
(N2Γ−(p0)p0)2

4π2 × 1
f 2
M + f 2

p

. (5.8)

One can figure out the two limiting behaviors of the frequency response of the STO A(fM)
defined by Eq. 5.8. For fM � fp, the response A(fM) = constant and it corresponds to
the first harmonic/order frequency response obtained in Eq. 5.4. For fM � fp, the
frequency response of the STO is inversely proportional to the square of fM . We propose
in the following to verify both trends of Eq. 5.8, while in the case fM � fp, we will also
be interested in the second order/harmonic frequency response given in Eq. 5.4.

5.2 Experimental protocol

Our modulation experiments are done with a standard analog microwave generator (model
Agilent®PSG analog source E8257B). The signal generated is a pure sinusoidal signal.
The rejection of the second harmonic of the signal is more than 30 dBc so that it can
be neglected. Contrary to the experiment in [146], we use a rather simple experimental



Chapter 5. Modulation experiments 161

2,5GHz
43dB

50
Ω

50
Ω

IDC

RF source

-6dB -10dB

~

Ω Ω

Oscilloscope

Fig. 5.3: Experimental setup for modulation measurements. This setup provides a reliable
measurement of the STO RF generation with the single shot oscilloscope.

protocol that does not involve any complex interferometry setup. Moreover, as discussed
in the previous section the estimation of the agility (the phase response in Eq. 5.5) is
simple compared to the indirect demonstration made in [147]. The experimental protocol
we use in modulation experiments is shown Fig. 5.3. We describe the measurement chain
from the left to the right.

The RF source is connected to one port of a transmission device. A 6 dB attenuator
is positioned in between the bias-tee and the source. Its purpose is to reduce the standing
wave in the left part of the chain due to the strong impedance mismatch between the
50 Ω chain and the RMTJ ≈ 600 Ω. The DC current is supplied through two identical
bias-tees whose lowest frequency of the high frequency port is f = 80 kHz (e.g. from
80 kHz, S21 > −1 dB). It allows input modulating frequencies down to 90 kHz without
further compensation.

The right arm is dedicated to the measurement instrument. Before amplifying the
signal by 43 dB in the band of 100 MHz - 14 GHz, we filter out the low frequency
component that can arise from the RF source. This filtering technique allows one to
amplify at a higher gain without saturating the amplifiers (as observed in Ref. [146])
and is therefore suitable for time domain measurements of spin valve structures. In fact,
while the power of the RF source is set between −30 to −20 dBm, a fraction of this
signal directly enters the right part of the chain (with 5 to 10 dB of losses due to the
impedance mismatch). Therefore, a fraction of power enters the amplifier and risks to
“saturate” it as in the case of the experiment of [146]. The high pass filter is a cavity
filter with a rejection higher than 50 dBc from DC to 2.5 GHz. Therefore, it does not
absorb the modulating signal. That is why a 10 dB attenuator is positioned between the
MTJ and the high-pass filter: the backward wave (and therefore the standing wave) can
be suppressed. The signal is then measured with the 50 Ω single shot oscilloscope. Time
traces are 20 µs long.

The idea of this measurement is to obtain the frequency response of the STO to a
microwave excitation of different power Pmod and frequency fM . The frequency response
is either defined by Eq. 5.4 or by the first order response Eq. 5.8. We expect the STO to
respond to low frequency excitations when fM < Γp/π and to have a frequency response
that becomes attenuated for fM > Γp/π, we thus apply modulation frequencies fM over
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Fig. 5.4: Experimental protocol principle. Before injecting microwave current to the structure,
a time trace is acquired under Hmod and under constant current (ζ varies from 0.8 to 1.5). Then
Pmod gradually increases. For each Pmod, fM is varied from 100 kHz to 2 GHz.

several decades. Therefore, hundreds of time traces are acquired for each applied source
power Pmod, applied DC current IDC and applied field Happ. The oscilloscope requires
at least 2 seconds to acquire and save the 20 µs time trace, while the RF source needs
a certain delay to adjust its frequency. Therefore, the experiment lasts several minutes
with IDC near the current breakdown3 with a microwave stress of different intensities: the
device does not keep its main characteristics during the whole measurement.

To take into account this possible effect on the measurement, we used a specific
measurement protocol, shown in Fig. 5.4. The overall measurement time is about 6 hours.
First, the DC current IDC and the external field H1 are applied and a time trace without
any modulating current is acquired. Second, the RF source is set to the lowest power value
(Pmod = −30 dBm) and its frequency is swept from fM = 100 kHz to fM = 2 GHz with
an adaptive frequency step to obtain several measurements on each frequency decade.
The source power is increased (up to Pmod = −20 dBm) before the field is changed to H2
and the previous steps reproduced. Finally, the current IDC is increased until the voltage
breakdown of the (HTMR) sample that occurred when ζ = 1.5 under the maximum
modulation strength for the device presented here. Since we only present this method as
a tool to extract Γp and to highlight the main features of the nonlinear compensation of
the dissipative terms, we only present a detailed the study on the modulation results for
Happ = H1 = −490 Oe.

5.3 Modulation Experiments

The results are presented in two forms. The first manner to represent the effect of
the modulation current on the STO is the spectrogram. We have explained in section
3.2.3.2 that spectrograms are inadequate to provide enough precision to characterize all
timescales of the phase/frequency fluctuations of oscillator output. When applying the
microwave modulating current, we expect that the frequency modulation depth is high
(i.e. the STO changes significantly its mode frequency) so that during slow modulation

3HTMR samples exhibit a breakdown time apparently given by the E model (i.e. the junctions break
according to a statistical model based on energy bonds). The DC voltage breakdown varies among
samples from 0.3V to 0.5V. The critical current IC corresponds to critical voltage VC ≈ 0.25 ∼ 0.35 V.
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Fig. 5.5: (a) Mode frequency, (b) FWHM and (c) fp = Γp/π versus supercriticality ζ for
different fields. The first characterization of the sample has been realized for 0.4 < ζ < 1.2
(black circles and red dots) and then the protocol described in section 5.2 has been applied for
0.6 < ζ < 1.5 (gray circles and gray dots, labeled Hmod). Our reference measurements are the
orange curves. However, degradation occurs during the experiment.

frequency fM , the STO frequency modulation is observable with spectrograms. The
second way to represent the effect of modulation is the amplitude and phase noise plots.
Here, we will use the frequency noise plot Sν that has been defined in section 3.2.1. We
will use them to directly quantify and qualify the frequency response A(fM) of the STO
over the microwave modulating excitation.

The main characteristics of the STO devices that we used for the study are given
in Fig. 5.5. The sample exhibits a clear redshift and a linear decrease of the linewidth
below the threshold. It is assumed that this circular device of 62nm of diameter exhibits
a typical IPP mode. It is worth noting that the main characteristics of the STO slightly
changes during the modulation experiment where the mode frequency slightly decreases
for both fields studied. Many effects, such as heating of the sample, heating of the
electromagnet that provides the applied field, or slight sample conditioning4 can be the
origin of this changes. Our reference frequency fg, FWHM ∆f and restoration rate Γp will
be those of the autonomous STO measured during the modulation experiment (orange
curves labeled Hmod, when Pmod is set to 0 in Fig. 5.5) since they are measured just before
the modulation experiment starts at a given ζ (see Fig. 5.4).

We have divided the experimental results into three sections. The first section gives
the qualitative features that can be obtained from frequency modulation both in sub-
and super-critical regimes. The last two sections give the quantitative results that can
be obtained from experiments using the full frequency response Eq. 5.4 at low frequency
modulation and the results that can be compared to the frequency response A(fM) in
Eq. 5.8.

4Prior to the first dynamical measurement, the TMR was 63% and the RA= 1.7Ω.µm2 that end in
TMR= 83% and RA= 1.8Ω.µm2. This increase of both TMR and RA sometimes happens in HTMR
samples. We suppose the sample exhibits a redshift when increasing ζ > 1, and that the FWHM also
increases from ζ > 1.



5.3.1 STO Spectrogram under low frequency modulation

We first illustrate the general features induced by applying a modulation frequency of
500 kHz that allows one to understand the basic concept of frequency modulation over
some periods of oscillation of the AC source. Secondly, we illustrate the information that
can be obtained from time domain experiments at low modulation frequency 100 kHz. In
this case, we can extract the time varying frequency and linewidth with precision.

Fig. 5.6-a,b show typical spectrograms obtained in the below-threshold (ζ = 0.9) and
above-threshold (ζ = 1.25) regimes with the highest modulation depth (Pmod = −20 dBm)
and a relatively low modulation frequency (fM = 500 kHz). In Fig. 5.6-c,d with the same
timescale, we report the integral of the PSD peak computed on every segment that has
been used to create the spectrogram. The segments are 82 ns long and the overlap
between each segment is 50%.

We can see in the sub-threshold regime (ζ < 1) that the output power is modulated
while the mode frequency is constant over the time. In the above critical regime (ζ > 1.2),
the signature of the frequency modulation of an IPP mode is clear. Indeed the downward
frequency shift (redshift) in the spectrogram is observed together with an increase of the
integrated power of the peak (i.e. higher value of the applied current in Fig. 5.6-d). It is
important to note that the increase of power is directly associated with the increase of the
instantaneous current that is applied to the STO. Indeed, as explained in the previous
chapter, the power measured in watts is proportional to the resistance variation times
the square of the applied current. From the power measurement, it is however difficult
to evaluate the effective microwave current felt by the STO, i.e. the absolute value of IAC.

In order to further analyze the sub- and the super-critical regimes during the
modulation of the DC current applied to the STO, spectrograms using larger time
windows have been used. For this, we reduced the modulation frequency fM down to
100 kHz in order to have a better appreciation of the STO characteristics. In fact, a
specific post treatment has been performed on the 20 µs time traces. First, sliding
windows of 65536 points (i.e. ≈ 1.310 µs long) with 10% of overlap have been selected.
Each window has been cut into 16 non-overlapping time traces whose PSDs have been
calculated and averaged. The resulting PSD has a spectral resolution of ∼ 12 MHz
(82 ns), which is enough to have a rough estimation of the FWHM ∆f by a Lorentzian
fit (the FWHM is supposed to be 4 times higher than this resolution).

In Fig. 5.7 we report the time varying frequency, FWHM and power of the STO under
current modulation of frequency fM = 100 kHz and different power in the above (left
panel) and the below (right panel) threshold regime. All values have been obtained from
Lorentzian fits as described above.

In the below threshold regime (ζ = 0.9) the time evolution of the frequency, the
FWHM and the power under modulation are what is expected from the KTS model.
Namely, the frequency is almost constant during the modulation, while the linewidth is
substantially affected. Once again, the peak power is modulated mainly by the current
conversion effect (Ppeak ≈ ∆RdynI

2, where ∆Rdyn is the AC resistance generated by the
magnetization dynamics and I the applied current to the MTJ) while the power variation
is surprisingly high for Pmod = −20 dBm. The measurement time spent between each
measurement may explain the downward shift of the frequency along the modulation
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Fig. 5.6: (a) and (b) Spectrograms obtained on a 10µs segment in the sub-threshold (ζ =
0.9) and supercritical (ζ = 1.25) regime while a modulating current (fM = 500 kHz and
Pmod = −20 dBm) is applied to the STO (linear scale, a.u.). (c) and (d) give the corresponding
integrated power calculated as the integral below the spectra used to plot the spectrograms.
The PSD segments are 82 ns long and the overlap between each segment is 50%. In (a) and
(c), only the output power is modulated while the mode frequency is constant over time. While
in (b) and (d) it appears that the highest power corresponds to the lowest mode frequency, as
expected from an IPP mode with a redshift.
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power (c) and (f) extracted from time traces with different modulation depths Pmod (see labels)
when fM = 100 kHz. Left panel sub-critical regime (ζ = 0.9) and right panel super-critical
regime (ζ = 1.35).
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measurements. Indeed, since 10 minutes separate each measurement, we can consider that
it is an effect of sample heating (increasing of temperature, sample conditioning) or setup
drift (i.e. applied field). Ideally for Pmod = −25 dBm, the difference between the FWHM
at the highest applied current (i.e. the highest peak power measured), ∆fmin ≈ 100MHz,
and the FWHM at the lowest applied current (i.e. the lowest peak power measured)
∆fmax ≈ 160 MHz, makes a current modulation of about 10 ∼ 20% of the applied DC
current, i.e. IAC ≈ 0.04 ∼ 0.08 mA. If we now compare with the deembedding (see section
3.1.4), Pmod = −25 dBm corresponds to IAC ≈ 0.08 mA. Therefore, the linear decrease of
the FWHM in the sub-threshold regime can be used to retrieve the modulating current
applied to the MTJ.

In the above threshold regime (ζ = 1.35), the minimum of the frequency is observed
with the maximum of power, for all Pmod applied. It is also noted that the frequency
excursion (the difference between the minimal and maximal frequency value) that occurs
during the measurement increases with increasing Pmod. Moreover, as expected with an
increase of ∆f with ζ (all HTMR sample exhibits such behavior that is not clear in
Fig. 5.5-b because of the aging), the FWHM increases when the frequency is minimal,
i.e. when the applied current is maximal. In addition, we see from the shape of the
time varying mode frequency fg(t) that the frequency response of the STO is not purely
sinusoidal, indicating the second harmonic response of the STO to the modulating current
predicted by Eq. 5.4. However, the average frequency of the mode seems to decrease with
the increasing modulation depth Pmod in a manner not expected from the KTS model
Eq. 5.4. Moreover, the maximum peak power reached when Pmod = −25 dBm and
Pmod = −20 dBm indicates further irreversible effects during the measurement. The
irreversible changes of the sample can be supposedly attributed to stress effects during
the long experiments that are not observed during a 20 µs time trace.

5.3.2 Frequency response roll-off

Spectrograms are limited to very low frequency modulation. A more quantitative analysis
can be done using the Time domain Spectroscopy Technique (see Chapter 3) to retrieve
the frequency PSD Sν of the STO as shown in Fig. 5.8. Its advantages over spectrograms
have been described in Chapter 3, their main interests are that it is possible to retrieve
simply both amplitude and phase (frequency) noise. It is clear from Fig. 5.8 that there is
a roll-off in the frequency response A(fM) of the STO above a certain value, as indicated
by the dashed blue lines that are guides for the eyes of the measured A(fM). As written
in Eq. 5.8, this roll-off frequency is Γp/π ≈ 100 MHz (compare to the value of Γp in
the autonomous regime Fig. 5.5-b). A similar response in the amplitude noise Sδa is
observed (not shown) where an additional modulation (due to electrical modulation) is
also present. The total amplitude modulation has been taken into account in recent
modulation experiments [70, 73].

If we consider only the low frequency regime (fM � Γp/π), we see that the STO
response is independent of fM . In this region, the frequency response A(fM) between
Fig. 5.8-c and Fig. 5.8-b increases by 5 dB, when the modulation power Pmod is increased
by 5 dB. It is important to note that A(fM) is proportional to ε2 (see Eq. 5.8). An
increase of 5 dB of Pmod indeed corresponds to an increase of A(fM) of 5dB (since in linear
scale, Pmod ∝ ε2). The relative increase of 3 ± 1 dB of the frequency response between



(a) Pmod = -20dBm (b) Pmod = -25dBm (c) Pmod = -30dBm 

Fig. 5.8: PSD of the frequency noise obtained for all modulation experiments using the ZCM
for (a) Pmod = −20dBm, (b) Pmod = −25dBm and (c) Pmod = −30dBm. The dotted blue lines
indicate the roll-off of the frequency response. It is worth to note the second order frequency
response when Pmod = −20dBm (small peaks around f =∼ 5MHz for example). The change in
slope appears for Γp/π ≈ 100MHz. In this case ζ = 1.25.

Fig. 5.8-b and Fig. 5.8-a is however not expected, even in the case of second order power
dependence of the mode frequency Eq. 5.4. Since there is no clear evidence of sample
degradation during this part of experiment, this discrepancy may be attributed to the
large modulation depth such that the oscillation power returns to zero when the applied
instantaneous current is close to its minimum, i.e. at this modulation depth the system
is no longer in the auto-oscillating regime. Because Pmod = −20 dBm represents almost
20% of the DC current IDC = 0.52 mA, this scenario is probable (from deembedding,
IAC ≈ 0.15 mA). Yet, even when ζ = 1.35 (not shown here), this phenomenon occurs,
but in this case the conditioning of the sample is also probable.

Finally, we note that Γp/π is not the maximum modulation frequency that the system
can respond to. Indeed, if the frequency response for fM = 1GHz is not visible for
the lowest modulation depth Pmod, a clear frequency response of the STO appears at
fM = 1 GHz when Pmod = −20 dBm. The STO can work virtually at all modulation
frequencies, but the specification (the conversion factor frequency/milliampere) is only
constant below Γp at about 3 MHz/µA.

5.3.3 Nonlinear damping Q extracted from modulation
experiments

We have discussed the possibility of the second order frequency response for low
modulation frequency. As shown in Fig. 5.9, the frequency response PSD of the STO
reveals a second order frequency response for any fM < fp. If we now consider the ratio
r = a1/a2 between the frequency response a1 at fM and a2 at 2fM , we have from Eq. 5.4:

r =

(
εN ζ

ζ+Q(1− p0)
)2

(
1
2ε

2N
(

ζ
ζ+Q

)2
(1− p0)

)2 = 4(ζ +Q)2

ε2ζ2 , (5.9)

which finally gives:

Q = ζ × (ε×
√
r/2− 1) . (5.10)
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Fig. 5.9: PSD of the frequency noise obtained for Pmod = −20 dBm, (a) fM = 1.7 MHz and
(b) fM = 10 MHz. From these plots it is easy to see the second order frequency response. The
ratio a1/a2 can be calculated for any 2fM < fp. Above this value, the analysis is more tedious.
ζ = 1.25.

From Fig. 5.9, we have r ≈ 40 ∼ 100. Since ε = IAC/IDC ≈ 0.15/.5 ≈ 0.3, Q ≈ −0.2 ∼ 0.6
with a mean value of 0.2 for 1 MHz < fM < 30 MHz from 11 different frequencies. In
the KTS model, Q was estimated to be 0 ≤ Q ≤ 3 for an IPP mode [54].

In order to measure the value of Q with more accuracy, it would require a more
systematic study that the one presented here. In particular, one should focus on the
exact determination of ε which considerable influences the extracted value of Q. Also,
MTJ-based STOs are very sensitive to current stresses which affect the quality of the
insulator barrier. Therefore, it would be worth to try these modulation experiments on
GMR-based STOs that are more robust to current stresses. In addition, this method
of extraction of Q based on Eq. 5.9 should be confirmed in macrospin simulations on
magnetic configurations where the value of Q can be calculated almost analytically (for
example, by identification of p0 obtained from the renormalization of the macrospin
trajectory in p-variable (e.g. Fig. 4.15-b) with Eq. 2.27).

5.3.4 Conclusion on modulation experiments

We have experimentally verified the effect of a time varying spin transfer torque term
on the dynamics of the magnetization. We find a good agreement between theory and
experiments, where Γp is the key parameter that sets the timescale of the transient state
of the STO. Indeed, we showed that a relaxation phenomenon exists when the state of the
STO is changed. While it has helped to understand the physical concepts underlying the
modulation of the STO’s frequency, we have also addressed one of the most important
characteristics of the STOs that: agility.

Indeed, besides potential applications in frequency synthesizers, STOs are proposed
to be a part of the next generation read heads of hard drive disks. The basic idea is to
measure the bit transition in the media by measuring the frequency change of an STO that
is positioned above the magnetic bits. Based on the KTS model, it has been predicted



that high data transfer rates can be achieved by this technique [149, 150, 153, 155, 156]
Recently, experimental proofs have shown the possibility of using STOs with a field pulse
of 1 ns [151, 152, 157], i.e. a reading rate of 1 Gbit/s, with a carrier frequency of only
3 GHz.

The telecommunication and read head applications motivate the interest of both
theoretical and experimental investigations to understand how to increase the amplitude
restoration rate Γp. In the following we present two aspects where the restoration rate of
the auto-oscillation is primarily involved. The section related to the noise in current could
have been given in section 4.6 on phase noise originating from noise current. However, we
show it here since the noise in current is related to the modulation aspects discussed above,
except that it corresponds to small modulation amplitudes, and as a white frequency
noise, white frequency current noise acts on the STO within the same strength at all
frequencies.

Finally we investigate a simple RF design widely used by RF engineers, where a
modulating current is generated in order to “instantaneously” compensate the noise in
frequency (coming from thermal fluctuations). Such a design is called a phase locked loop
(PLL), where an input parameter (such as the input DC current to the STO) is used to
“control” the phase of an auto-oscillator. We only focus on the interpretation of the PLL
and we will not focus on its detailed study (i.e. a parametric study of the stability of the
PLL).

5.4 Perspective: noise in current and cyclostationary

processes

We have mentioned in section 4.6 the possible presence of flicker, i.e. 1/f , current noise
in some of our devices that would generate a flicker amplitude noise, which ,due to the
nonlinear amplitude coupling, results in a flicker frequency noise. To first verify that a
noise in current leads to phase noise, we investigate the effect of current noise on the
magnetization dynamics from macrospin simulations. From the modulation experiments
presented in section 5.3, it is clear that it would induce a noise in Γ− that will affect in
first place the amplitude of the auto-oscillation. From the KTS theory, we can therefore
describe the magnetization subject to a current noise by the equations:

dδp

dt
+ 2Γpδp = 2

√
p(t)ξ(t)

, (5.11)

dΦ
dt

+ ω0 +Nδp0 +Nδp = 0

where ξ(t) is real and delta correlated whose diffusion constant is given by current

fluctuations. Since 2
√
p(t)ξ(t) would be non-stationary, we approximate 2

√
p(t)ξ(t) ≈

2√p0ξ(t) under the assumption of small power fluctuations. We see that there is no
direct noise contribution of the phase, in contrast to the phenomenological noise term
fn(t) in KTS theory.
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Fig. 5.10: (a) PSD of phase noise for three different cases: (i) thermal fluctuating field (black
curve), (ii) current noise of strength Si (red curve) and (ii) thermal fluctuating field and current
noise (green curve). (b) PSD of frequency noise for case (i) and (ii). Simulations have been
performed by F. Garcia with the same material parameters as those used in chapter 4.

The results of macrospin simulations are presented in Fig. 5.10, where we show three
different situations: (i) a thermal noise field has been considered (black curves), (ii) only
white frequency current noise has been considered (red curves) and (ii) when both noise
contributions are present (green curve).

The effect of the current noise in Eq. 5.11 as compared to the effect of the thermal
noise in Eq. 2.35 is clearly seen in Fig. 5.10-a,b as we will discuss now. In Fig. 5.10-b we
show the frequency noise plots where the slopes can be better estimated. It is clear that
in the presence of the current noise alone (red curves), there is no “linear” contribution
to the phase or frequency noise, while when considering the temperature noise only, this
linear noise contribution exists (black curves). Moreover, the two independent nonlinear
contributions to phase noise are additive (green curve is 3 dB above the two others in
Fig. 5.10-a), as expected from KTS model with two independent noise sources.

Since we work with MTJs, we may consider that the shot noise could lead to
such a white noise contribution in current, and therefore shot noise may be the origin
of the linewidth broadening we observe experimentally. However, the results from
temperature dependent experiments do not seem to be in agreement with this statement,
at least in HTMR. Indeed, we have observed, at least in the region T = 100 - 300 K
for HTMR devices, a linear decrease of the noise ∆f0 (accompanied with a decrease of
FWHM ∆f , see Fig. 4.36 in section 4.5). Nevertheless, the noise current can contribute
to the linewidth broadening below T = 100 K. To confirm this, one should observe
an increase of |ν| extracted from TDNS upon decreasing the temperature while the
FWHM ∆f of the STO remains constant. However, the “electrical background” found
in experiments so far for both the phase and the amplitude noise make it difficult to
identify such a contribution.

Nonetheless, the current noise measured so far in our LTMR-MTJs seems to be
about Si ≈ 10−21 A2.Hz−1 (see noise floor at high frequencies in Fig. 4.40 section 4.6).
It is worth noting that in LTMR MTJs, we did not observe any temperature variation



of the FWHM ∆f ≈ 10 ∼ 30 MHz (from 20 K to 300 K). Moreover, in the case of
macrospin simulations, when Si ≈ 10−21 A2.Hz−1, we observed a ∆f ≈ 20 MHz (not
shown here), that is the value observed in LTMR devices. Finally, in LTMR devices, the
FWHM exhibit a plateau in its value (from ζ = 1.2 ∼ 1.8) that only starts to increase
for very high current densities (ζ > 1.8). Once again, more temperature dependent
measurements in MTJs based STO would help to answer to this question.

Finally, this approach of “current noise” involves the notion of cyclostationary
noise sources [158] in STOs. Indeed, in the case where the MTJ-based STO is driven by
voltage, we have seen that the electrical current that flows in the MTJ is proportional to
the angle formed by the pinned and free layer (see Eq. 1.4). In addition, the shot noise in
tunnel junctions, is proportional to the amount of current flowing through the structure.
In simulations of Fig. 5.10 we only assumed a constant current noise amplitude that did
not vary along the trajectory.

Considering that we have just seen how the current noise may affect the dynamics
of the STO, and that the DC current naturally fluctuates with the magnetization
dynamics (see Eq. 1.4), we can consider that the current noise (shot noise) will have
different amplitudes along the trajectory. This noise therefore depends on the closed-loop
trajectory: it is called a cyclostationary process (a process that is stationary with“a cycle”
of the oscillator). In general, the study of these noise contributions to the oscillator phase
noise is a tricky question that requires advanced modeling software tools, but can still be
integrated in the LLGS equation coupled to transport models.

5.5 Perspective: PLLs

The final perspective section of this chapter on modulation is the phase locked loop (PLL)
that can be achieved in STOs. Typically, PLLs are used to “control” the phase of a noisy
oscillator using a less noisy oscillator that oscillates at lower frequency.

In Fig. 5.11 the block diagram (from SIMULINK®) of a simulated PLL for a STO,
designed by M. Zarudniev, is given. The block diagram labeled “STO” resolves the KTS
equations 2.35 for an instantaneous input that is the DC current. The outputs of the
block are the total phase and the total power, as well as the total (real) signal. The
total phase is divided by 10 by an ideal frequency divider. The output of this divider is
compared (by a phase comparator) to an ideal cosine signal whose frequency is 10 times
smaller than the mode frequency fg of the noisy STO. Finally, the output of the phase
comparator is filtered (the cut-off frequency is below Γp/π and especially below the mode
frequency divided by 10) and fed back to the input port of the STO model. The results
of the STO controled by this PLL are shown in Fig. 5.12 and are compared with the
“free-running STO” outputs, i.e. when the PLL state is OFF. In Fig. 5.12-a, we see that
the PLL transforms a 140 MHz linewidth signal to a Dirac peak (the “pure” signal the
STO is compared to).

We can see that the effect on phase noise is straightforward: no phase correction is
done above the low-pass filter cut-off frequency fc = 100 MHz. For f < fc, the phase
noise of the STO has a slope 1/f 0 instead of the slope 1/f 2: the phase noise is canceled
(compare the black (PLL ON) and gray (PLL OFF) curves in Fig. 5.12-b). This is a
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STO model 

Fig. 5.11: Phase locked loop (PLL) block diagram designed by M. Zarudniev (CEA-LETI)
using SIMULINK®. The red block diagram is the STO modeled using a KTS equation (power
/ phase). Parameters are N = −4 × 1010, Q = 1, σ = ΓG = π0.3 × 109, ω0 = 2π109 rad.s−1,
p0 ≈ 0.33 (ζ = 2) and T ≈ 300 K. The free running STO is defined by: fg ≈ 7.87 GHz,
∆f ≈ 140MHz and fp ≈ 300MHz. The filter is a second order low-pass filter with a cut-off
frequency fc = 100 MHz. The ideal signal is generated by the same STO model, without noise
contribution in phase and amplitude. The division factor is 10.

general feature of PLLs: the phase noise is canceled below its cut-off frequency (fc). We
can understand that in the case case of a PLL, the perturbing current is used to stabilize
the auto-oscillation. We can see that the decrease of phase noise is associated with a
similar decrease of amplitude noise (compare red (PLL ON) and blue (PLL OFF) curves
in Fig. 5.12-b). This effect can be simply understood by the fact that decreasing the phase
noise in the region f < fc < fp is equivalent to decreasing the nonlinear contribution to
the phase noise, i.e. decreasing the amplitude noise of the STO.

Usually, the frequency division is higher than 10, since the oscillator to control is
phase compared (after division) to 10 MHz or 100 MHz stable oscillators. To have a
better efficiency, the retro-acting current frequency should be below Γp/π (it is the case
here since fc < fp). When dividing by 100 (such that the reference oscillator has now a
frequency of ≈ 80 MHz) and adapting consequently the low-pass filter cut-off frequency
to fc = 10 MHz, the shape of the corrected phase noise is similar to the one presented
in Fig. 5.12-b, but the correction now starts around f ≈ fc = 10 MHz (in the case of
Fig. 5.12-b we have identified this frequency to be around 100 MHz). It makes the phase
noise to be around −60 dBc/Hz at 1 MHz with a division by a factor 100, while it is
−80 dBc/Hz at 1 MHz with a division by a factor of 10. We note that the corresponding
measurement has been done in Ref. [86] with a vortex-based STO and no frequency
division in the PLL. The large decrease of linewidth observed in their experiment can be
attributed to the control of the phase deviation of the vortex-based STO.

The PLL results presented here are a toy model and cannot serve as a real
demonstration of a PLL design since, for example, no delays have been taken into account.
Preliminary results show that short delays strongly influence the stability of the PLL and
would require more detailed studies.

All RF VCOs that are used in telecommunications (i.e., commercially) are phase
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Fig. 5.12: (a) Comparison of the signal PSD of the resulting signal with PLL state ON and
OFF. (b) Comparison of phase and amplitude noise with PLL state ON and OFF.

controlled by advanced PLL designs [159]. What will make the choice of a design of
PLL+VCO for practical use over another PLL+VCO’s design is the cost in space of the
PLL+VCO on the chip, the price of the device and finally the ratio power consumption
over phase noise specifications. In the case of STOs, the study of practical design
PLL+STO, versus nonlinear parameters would be useful to understand what in STOs
should be improved in priority (Γp, |ν|, ∆f0).

Finally, we see that the PLL acts as if the STO were phase locked to another oscillator
(with a lower frequency). In the next chapter, we study in more detail the direct “phase
to phase” synchronization phenomenon, which is the forcing of the phase of the STO to
an external phase signal: the injection locking experiment.



Chapter 6

Synchronization

Synchronization or mutual phase locking of several hundreds of STOs has been imagined
to increase the total emitted power [160, 161] and to reduce the intrinsic (high) phase
noise present in a single STO. It is a general assumption that a network formed of N
quasilinear oscillators, each under the influence of their own internal noise, oscillating
coherently, would reduce the phase noise factor of the total network output by a factor of
about N [162]. In the case of STOs interacting with each other, the analysis of only two
interacting STOs can already become rather complex when coupled via their generated
AC current [163]. Therefore, the study of the phase coherence of an STO interacting
with an external signal is of crucial importance to determine the behavior of an STO
interacting in a more complex network.

A brief review of injection locking experiments has been given in section 2.2. One
recent experimental result of STOs is the fractional synchronization [164, 165, 166].
In these experiments, an external force can synchronize the STO frequency fg to any
frequency fe that respects the condition fe = p

q
fg with p, q integers. It is virtually

possible to synchronize the STO at all frequencies fe.

The fractional synchronization is explained through the symmetries of the trajectory
over one period (q = 1) or several (q > 1) periods with respect to the symmetry of

the excitation force acting on ~M [164]. Here we focus our study on the “fractional”
synchronization for varying p and constant q = 1. We first highlight the symmetry of
the STT on a macrospin trajectory of an in-plane precession mode, in order to give
insight into the non-trivial synchronization conditions for p > 1. Afterwards, we present
a model that has been developed by Zarudniev et al. [167]. This model aims to give
mathematical arguments of this synchronization condition that is related to the ellipticity
of the macrospin trajectory.

The experimental confirmation of the fractional synchronization and further aspects of
the synchronized state are then demonstrated for three cases: (i) the IPP mode of HTMR
MTJ devices, (ii) the non-trivial mode of LTMR devices and (iii) the vortex mode of the
out-of-plane polarizer structure [168, 169].

To analyze the experimental results in the case of the IPP mode, we conduct macrospin
simulations in the presence of noise to understand how the effect of a microwave current
compares to external (thermal) noise. From macrospin simulations, we give the main
features of this non-autonomous regime with the additional presence of noise where
the nonlinear parameters (Γp and ν) play an important role, to highlight the features



of the autonomous regime that can be used to describe the non-autonomous regime,
which are relevant for applications. As further experimental proof, we extract the time
varying phase of the LTMR device in the phase locked regime that we compare with
the predicted features of the non-autonomous regime of a non-isochronous auto-oscillator
(from macrospin simulations).

6.1 Macrospin description of the fractional

synchronization for the IPP mode

This section presents the conditions of fractional synchronization to an RF current (with
q = 1) using macrospin simulations for the IPP mode with a polarizer that is collinear to
the free layer (FL) magnetization equilibrium position. We first make general comments
on the form and on the symmetries of the STT along one period of the trajectory in
the presence of a microwave current. Then we show the effect of the microwave current
on the macrospin trajectory. To interpret the role of the ellipticity on this fractional
synchronization, a model developed by M. Zarudniev et al. [167] is presented. This
model allows the possibility to use a simplified phase state representation (i.e. with the
amplitude and the phase of an oscillator) of the magnetization under the influence of
both DC and AC currents.

6.1.1 Symmetry of the “microwave” STT term

First, we investigate the three components of the trajectory of the magnetization. Fig. 6.1
shows the magnetization components MX , MY and MZ , with the associated STT term
calculated from macrospin simulations. In such a representation, the X-component of the
STT term oscillates twice as fast as than the mode frequency fg. Moreover, at the turning
point of the in-plane trajectory of the magnetization, i.e. when MZ = 0, MY =max, the
STT is the most important for the magnetization dynamics. Indeed, it can be shown
that the energy provided by STT is mainly positive (i.e. the anti-damping term plays the
most important role) at the turning points, when considering the transient state under
DC current before the switching [170] or before the limit cycle is reached. Therefore the
“symmetry” condition1 on STTX should be satisfied, especially at the point of MZ = 0
(the red circles in Fig. 6.1-d).

We now apply the alternating current at frequency fe at the vicinity fe ≈ pfg, with
p = 1, 2, 3, 4, and we consider again the STT term component along one period of the
trajectory. Fig. 6.2 shows that when fe is an even multiple of fg the symmetry is satisfied.
When fe is an odd multiple of fg, however, this symmetry condition is not satisfied.

This simple interpretation in terms of the STT symmetry along the magnetization
trajectory is confirmed by more detailed simulations of the mode frequency as a function
of the frequency of the microwave source fe, as shown in Fig. 6.3-a. As it can be seen, no
or very weak locking occurs when the microwave frequency fe is located at the vicinity
of fg and 3fg, while the STO frequency locks to the external signal over a certain range
of frequencies when fe is at the vicinity of 2fg and 4fg.

1Symmetry means two cycles of STTX along one period.
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Fig. 6.1: Analysis of a simulated trajectory with DC current without alternating current.
Projection of the magnetization on the Cartesian coordinates; along (a) X on (b) Y and (c)
Z. The Mx component makes two cycles in one period of oscillation (therefore its frequency is
2fg). Decomposition of the STT (aj) term on the Cartesian coordinates; along (d) X on (e) Y
and (f) Z. The X component of the STT term makes two cycles in the period of oscillation.
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Fig. 6.2: (a) Simulation of STTX in presence of an alternative current when fe = fg and
fe = 2fg. The symmetry condition (the gray circle) is only satisfied when fe = 2fg. (b) STTX
in presence of an alternative current when fe = 3fg and fe = 4fg. The symmetry condition
(the gray circle) is only satisfied when fe = 4fg.
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Fig. 6.3: (a) Simulation of the STO mode frequency fg versus source frequency for θpol = 0°.
(b) STO mode frequency fg versus source frequency for θpol = 15°. The same DC and AC
currents are applied in both cases (IDC/IAC = 0.6). Dashed areas represent the locking bands.

When breaking this symmetry condition the odd synchronization condition can be
recovered. Such symmetry breaking may happen, for example, by tilting the polarizer
direction with an in-plane angle θpol with respect to the equilibrium direction of the
magnetization of the FL. This is explicitly shown in Fig. 6.3-b, where the same current
is applied in the case of θpol = 15° and of θpol = 0°. Such a small angle does not affect
much the critical current nor the mode frequency fg (about 5 GHz).

6.1.2 Ellipticity dependent fractional synchronization

We present now a fractional synchronization model directly derived from the LLGS
equation derived by Zarudniev et al. [167] for the IPP trajectory.

In a similar fashion to Eq. 2.13, the LLGS in cartesian coordinates and SI units is
considered, with an arbitrary in-plane polarizer angle θp, an applied field H0 (collinear
to the magnetization equilibrium direction, the X-axis) and no anisotropy. Only the
projection of the IPP trajectory on the (Y ,Z) plane is considered:

(
ṁy

ṁz

)
=− γ0

[
−(H0 +Msmx)mz

H0my

]

+ αγ0

[
−H0mxmy +Msmym

2
z

−H0mxmz −Ms(m2
x +m2

y)mz

]

+ σI(t) cos(θp)
[
mxmy

mxmz

]
+ σI(t) sin(θp)

[
−(m2

z +m2
x)

mymz

] . (6.1)

In the linear regime, solving this equation would lead to the usual FMR mode and
criticality lines, by considering the solution to be oscillating (∝ eiωt). Since we want to
solve it in the nonlinear auto-oscillating state for the IPP mode, we consider the ellipticity
of the solution such that:my(t) ≈ r

2e
iΦ(t) + r

2e
−iΦ(t) = r cos(Φ(t))

mz(t) ≈ a−1
2a e

iΦ(t) + a+1
2a e

−iΦ(t) = r
a

sin(Φ(t))
, (6.2)
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with a ≈
√

H0+Ms
H0

the amplitude normalization coefficient. If we consider now the

complex signal A = my(t) + imz(t) = r(t)eiΦ(t), in the presence of the oscillating current
(I(t) = IDC + IAC sin Φe), Eq. 6.1 can be linearized, around a limit circle. This leads to:

ṙ = kd(1 + kqr
2)r + σIDC cos(θp)(1− ksr2)r

+ k1r sin(Φe − Φ) + k2r
3 sin(Φe − 2Φ) + np(t)

Φ̇ = ω0 +Nr2 + k1
r
σIDC sin(Φe − Φ) + nΦ(t)

. (6.3)

Here kd, kq are damping terms found by identification with a real macrospin trajectory.

The mode frequency is ω0 = |γ0|
√
H0(H0 +Ms), N = −γ2

0
(a2−1)H0Ms

8a2ω0
and ks = a2+1

4a2

(see details in Ref. [167, 171]). np(t) and nΦ(t)(t) are noise terms affecting respectively
amplitude and phase of the oscillation. The prefactors of the synchronization terms at f
and 2f are: k1 = −σ IAC

2 sin(θp)
k2 = σ IAC

2
a2−1
4a2 cos(θp)

. (6.4)

In fact, one can show that the equation Eq. 6.3 is similar to the one given in the KTS
model. In the model presented here, the term kd and kq cannot be obtained analytically,
while this is possible in the KTS model from the canonical transformation of the system.
Therefore, we can consider Zarudniev’s model as phenomenological compared to the
theoretical KTS model. Nevertheless, we now have a term that can explain directly the
synchronization of the magnetization to a signal frequency fe = 2fg. We have previously
mentioned that in Ref. [49], the KTS theory in its simplest form (i.e. Eq. 2.24 in section
2.2.2.1) intentionally eliminates the term that “describes the second order parametric
excitation of the spin waves” (Vhc

∗ and VJc
∗ in Ref. [49]). We did therefore not use the

KTS formalism in order to qualitatively explain the fractional synchronization here, but
it can be probably achieved through the KTS theory.

Finally, from the above expressions 6.4 (neglecting noise) one can write an explicit
expression of the locking range ∆ω1 at the vicinity fe ≈ fg and the locking range ∆ω2 at
the vicinity fe ≈ 2fg from the stability conditions of Eq. 6.3:

∆ω1 = k1

√
1 + ( N

ksσIDC cos(θ)− kdkq
)2 ∆ω2 =

Nk2r
2
eq

ksσIDC cos(θ)− kdkq + k2
. (6.5)

Here req is the amplitude in the stationary autonomous regime. This result is very
interesting for the following reasons:

1. It gives the θp dependence on the synchronization bands (see Fig. 6.4);

2. It confirms that the locking band for fe ≈ fg is enhanced by the nonlinearity of the
system as predicted in Ref. [54];

3. That for θp = 0 no synchronization is expected for fe ≈ fg as predicted in Ref. [66]
and shown in section 6.1.1;

4. The synchronization is expected for fe ≈ 2fg (shown in section 6.1.1);



p

Fig. 6.4: Calculated locking ranges ∆ω1 (red) and ∆ω2 (blue) from Eq. 6.5 for a fixed IDC and
variable θp for IDC/IAC = 0.5 (solid lines), IDC/IAC = 0.33 (dashed lines) and IDC/IAC = 0.25
(dashed dotted lines). From [167].

5. The locking condition fe ≈ 2fg is only possible because of the nonlinearity in
frequency (N 6= 0).

The last point means that the locking condition at the vicinity fe ≈ 2fg requires that
N 6= 0. In fact, it is straightforward to see from Eq. 6.3 that this synchronization only
occurs due to amplitude synchronization that stabilizes the phase indirectly through the
amplitude phase coupling (N). Finally, the locking bands are calculated in Fig. 6.4 for
different ratios IAC/IDC. For θp ≈ 15°, the locking band ∆ω1 is about the same order as
∆ω2 as shown in Fig. 6.3.

6.2 Experimental verification

Experimentally, we have confirmed the feasibility of synchronization at 2fg in MTJs
on HTMR [166] and LTMR devices at room temperature. Another experimental result
obtained for an STO based on a perpendicular polarizer will be shown in section 6.3.4.4
to highlight specific features of the non-isochronous auto-oscillators in a non-autonomous
regime. As for the autonomous case in Chapter 4, we discuss first the experimental
cases that we can qualitatively compare to macrospin simulations. We focus on the
demonstration of the locking condition fe ≈ 2fg in HTMR IPP mode and LTMR, where
we give the locking bands as well as the measurements of the mode linewidth in the
locked state, which are possible since the source frequency signal does not perturb the
STO signal extraction when fe ≈ 2fg.

6.2.1 HTMR devices

Our experiments were performed by injecting first a DC current IDC into the device to
induce a self-sustained oscillation and by tuning the in-plane magnetic field H so that
the free running STNO frequency is fHTMR

g ≈ 5.0 GHz with θp ≈ 5° in the case of
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Fig. 6.5: (a) Experimental PSD map (linear scale) of the STO frequency f versus the source
frequency fe for IRF/IDC = 0.37. Red dots are artifacts of the measurement. (b) Injection
locking range δfe and (c) minimum linewidth ∆fmin as a function of IRF/IDC.

HTMR. The HTMR sample is a nanopillar of 85 nm diameter with oscillations that are
stabilized at a bias field of Happ = 90 Oe (applied along the easy axis) and a DC current
of IDC = 0.6 mA. At this current the resistance value in the antiparallel state is 415 Ω
and the magneto-resistance is 50%.

Then a microwave current of varying frequency fe and amplitude IRF was added, in
a similar manner that the one described in Fig. 5.4. The amplitude IRF of the driving
RF current was estimated as in Ref. [172] from the measured power levels of the RF
signal source, taking into account reflections and the capacitance between the STO top
and bottom electrodes. The frequency fg and the linewidth ∆f of the externally driven
STO were extracted using a Lorentzian fit of the voltage PSD.

Synchronization at fe ≈ 2fg

Fig. 6.5-a shows the power spectral density (PSD) map of the output voltage for
the STO frequency f versus the driving frequency fe. It is clear from Fig. 6.5-a that
the frequency f of the driven STO follows the driving frequency fe only in the vicinity
of the point fe = 2fg, while very weak or even no locking is observed near the points
fe = fg or fe = 3fg. The red dots at fe = fg are an artifact of the measurement and are
due to the signal of the driving source that cannot be suppressed. The disappearance of
the generated power between 6 GHz and 8 GHz might be related to the presence of a
secondary oscillation peak in the STO power spectrum (see details in [166]).

Locking range and linewidth in synchronized state

When the amplitude of the driving signal increases from IRF/IDC = 0.25 (Fig. 6.6-a)
to IRF/IDC = 0.57 (Fig. 6.6-c), the width of the injection locking frequency range δfe
increases (full lines), while the linewidth of the driven STO oscillation (gray dots) varies
inside the injection-locking range δfe, and reaches a minimum value ∆fmin at its center.
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Fig. 6.6: Experimental detuning defined as fe− 2fg (solid lines) and FWHM ∆f versus source
frequency fe for (a) IRF/IDC = 0.25, (b) IRF/IDC = 0.37 and (c) IRF/IDC = 0.57.

Here we defined δfe as the interval inside which the oscillation linewidth is reduced to
half of the difference between the free-running and the minimum value. With the further
increase of the driving amplitude IRF the injection locking range continues to increase,
reaching δfe = 0.6 GHz at IRF/IDC = 0.8 (Fig. 6.5-b), while the minimum STO linewidth
∆fmin continues to decrease (Fig. 6.5-c). Note, however, that even at reasonably large
amplitudes of the driving signal IRF/IDC = 0.57 (Fig. 6.6-c), when the frequency f of the
driven STO is locked to fe/2, the minimum STO linewidth ∆fmin remains rather large
(about 35 MHz). This corresponds to an improvement by a factor of 7 as compared to
the linewidth of the free running STO, but it is still much larger than the linewidth of
the generator of the microwave driving signal (of the order of several Hz). These results
indicate that despite a clear “frequency locking”, the oscillation phase is not stationary
and evolves in time, thus a “true” phase-locked state is not obtained. Such a behavior
of the driven STO can be attributed to the influence of noise [161, 42]. The external
microwave driving signal has to compete with noise, which results in phase slips and,
thus, in fluctuations of the STO phase.

In conclusion, on HTMR devices that exhibit an IPP mode of the magnetization
of the free layer, we have confirmed that the synchronization at the vicinity fe ≈ 2fg
is favored as predicted from macrospin simulations and the phenomenological model
from Zarudniev. This is an important condition to consider when phase locking several
oscillators. We have also seen that the noise acting on the magnetization plays an
important role in the synchronized regime. This will be investigated within macrospin
simulations in section 6.3. In the following, we present similar experimental results
obtained from LTMR devices.

6.2.2 LTMR devices

We proved in section 4.6 that LTMR devices exhibit nonlinear amplitude phase coupling
N and that the amplitude restoration rate Γp is similar to HTMR devices. Thus, we
consider LTMR samples as non-isochronous auto-oscillators.

The “only” disadvantage of LTMR samples is the constant degradation process that
happens during the measurement when applying an additional microwave current bias.
In the case of LTMR, fLTMR

g ≈ 7.0 GHz, which varied during the experiment because of
the gradual degradation of the junction during the experiment. Therefore, the locking
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Fig. 6.7: Experimental PSD map (linear scale) of the STO frequency f versus the source
frequency fe for (a) IRF/IDC = 0.24 and (b) IRF/IDC = 0.32. The dashed white line
represents the STO frequency that decreases due to the continuous degradation happening
in the experiment.

band δfe and minimum FWHM ∆fmin are not studied as a function of the ratio IRF/IDC.
The LTMR device is a nanopillar of 115 nm in diameter with oscillations that are
stabilized at a bias field of Happ ≈ 385 Oe (applied along the easy axis) and a DC current
of IDC = 1.2 mA at the initial state of the LTMR (ζ ≈ 1.5 and Γp ∼ 100 MHz from time
domain measurements at the initial state of the device).

Fig. 6.7 shows two PSD maps of the STO frequency versus the source frequency
for two different ratios IRF/IDC. The white dashed line represents the continuous
degradation process of the barrier, which tends to decrease the STO frequency during
the experiment. It is clear from Fig. 6.7 that fractional synchronization at the vicinity
fe ≈ 2fg can be obtained, and even at the vicinity of fe ≈ 5/2fg = 17.5 GHz for the
higher ratio of IRF/IDC.

The corresponding detuning and ∆fmin obtained from the PSD maps are shown in
Fig. 6.8 at the vicinity fe ≈ 2fg (Fig. 6.8-a,b) and fe ≈ 5/2fg (Fig. 6.8-c). In the latter,
we did not observe pure phase locking, but rather the same “frequency locking” as for the
case of HTMR. In contrast for fe ≈ 2fg and for IRF/IDC = 0.32, ∆fmin is equal to the
resolution bandwidth of the spectrum analyzer, we can thus consider a limited effect of
noise (i.e. a limited number of phase slips as defined later), reaching the “phase locked”
state.

In order to understand these experimental results on the linewidth in the synchronized
state we give first a quantitative approach based on macrospin simulations and then a
qualitative approach of the synchronization effect. For this, we review the “classical”
picture of synchronization effect in auto-oscillators. While synchronization is in any cases
given by the nonlinear properties of auto-oscillators [173], we describe the phase dynamics
in the synchronized regime with an Adlerian picture (i.e. only the phase is considered). It
will allow us to explain some qualitative results obtained from pure phase synchronization
in the LTMR devices. Finally, the role of amplitude in the synchronization is investigated
by means of macrospin simulations. The description is given as a future perspective for
more systematic studies of synchronization in STOs.

The structure of the next section is the following:

� Comparison of experimental frequency domain data with macrospin simulations in
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presence of noise (section 6.3.1).

� Introduction of phase synchronization in quasi-linear oscillators and how it compares
with macrospin simulations (section 6.3.2).

� Qualitative description of the phase synchronization in the presence of noise for
macrospin simulations and LTMR devices (section 6.3.3).

� Emphasis of the rich non-Adlerian synchronization dynamics in the case of STO
from macrospin simulations (section 6.3.4).

� Qualitative effect of the synchronization on the amplitude of the auto-oscillation
(in section 6.3.4).

6.3 Synchronization in auto-oscillators

6.3.1 Macrospin simulations

In order to elucidate the role of noise in the injection locking process we performed
macrospin simulations using fluctuating fields in the form of Eq. 1.13 with effective
temperatures T = 0 K, 50 K, and 400 K. The total current I acting on the STO was the
sum of the DC current IDC and the sinusoidal variable current IRF that represents the
injected RF driving signal of the frequency fe.

The magnitudes of the bias current IDC (ζ ≈ 1.4) and the bias magnetic field H
(applied along the easy axis) were chosen to make the STNO free running frequency
equal to fg = 5 GHz. We also calculated the mismatch fe − 2f of the STO frequency
and the STO linewidth ∆f at T = 400 K for different values of the ratio IRF/IDC. These
results are presented in Fig. 6.9-a and 6.9-b respectively.

It should be noted that the variation of ∆f across the injection locking range is
qualitatively similar to that observed in the experiment (see Figs. 6.6-a,b,c) with a
gradual reduction from the free-running value towards a minimum value at the center.
The role of the noise is further illustrated by Fig. 6.9-d where the minimum linewidth
as a function of the ratio IRF/IDC is shown for two different effective temperatures.
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Fig. 6.9: (a) Simulated frequency detuning fe − 2fg and (b) linewidth versus the driving
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∆fmin versus IRF/IDC for T = 50 K, 400 K.

Clearly for IRF/IDC < 0.5 ∆fmin is higher at T = 400 K than at T = 50 K, while
for IRF/IDC > 0.5 the linewidth at both temperatures is below the numerical resolution.
While the effective temperature, and therefore the noise, has a strong influence on the
phase noise characteristics of the injection-locked state, the injection-locking range δfe
is only moderately affected by temperature, as shown in Fig. 6.9-c. The numerically
obtained increase of the δfe with increasing temperature has been previously reported
in Ref. [174]. In the simulations for T 6= 0, δfe in Fig. 6.9 has been defined as in the
experiment on the HTMR device (Fig. 6.6), while for T = 0 K (with ∆f = 0), δfe
corresponds to the range where fe − 2f is zero, similar to the definition in Ref. [154]
where the experiments have been conducted at T = 4.2 K.

It should also be noted that our numerical results demonstrate only qualitative
agreement with the experiment. For example, in the numerical modeling at T = 400 K we
need IRF/IDC ≈ 0.25 to achieve δfe = 0.6 GHz (see Fig. 6.9-c), while in the experiment
the same result is obtained only at IRF/IDC = 0.7 (see Fig. 6.5-b ). A similar picture is
seen in the behavior of the minimum STO linewidth: the reduction of ∆fmin by a factor
of 7 in numerical modeling takes place at IRF/IDC = 0.3 (Fig. 6.9-d), while the ratio
of IRF/IDC = 0.7 is needed for a similar effect in the experiment in the HTMR device
(Fig. 6.5-c). This discrepancy might be explained by a possible overestimate of the RF
current in our microwave measurements and by the fact that in the experiment our STO
is driven by the bias current that is just above the critical value. The critical value of the
bias current (Ic = 0.55 mA) was estimated from the variation of the linewidth with the
bias current.



We have found a qualitative agreement between macrospin simulations and HTMR
experiments for the locking band and linewidths inside the locking band. To give insights
into the underlying process of the STO dynamics in the presence of noise and the external
forcing signal, we now give general aspects of phase synchronization in auto-oscillators.

6.3.2 Phase synchronization phenomenon in quasi-linear
oscillators

We would like to stress here that the forthcoming descriptions are well defined and
described in literature [41]. This is referred to as Adlerian synchronization [173]. We
define the phase of the oscillator φ(t) (whose free running frequency is ωg), while φe(t) is
the phase of the forcing signal whose frequency is ωe. Even though no equation will be used
in the following description, we give the Adler equation, which governs the quasi-linear
(isochronous) oscillator phase in the synchronized regime:

dψ

dt
= ∆ω0 +B sinψ , (6.6)

where ψ = φ−φe, ∆ω0 = ωg−ωe the frequency mismatch between the natural free-running
oscillator frequency ωg and the forcing signal ωe and B a constant proportional to
the external source signal. Because of the synchronization condition, sin(ψ) ≈ ψ is
used to solve the nonlinear equation 6.6. Contrary to the autonomous case where the
phase was free, the phase is stable in time in this case due to synchronization. When
sinψ ≈ ψ, Eq. 6.6 is similar to the equation that governs the amplitude in an autonomous
auto-oscillator. We will see at the end of this section that the synchronization of STOs
is non-Adlerian, because of the presence of amplitude-phase coupling. Nevertheless, the
following picture can be applied to understand the basic concepts of synchronization
phenomenon.

We first introduce the notion of synchronization without noise. The free running
oscillator has the frequency fg. We consider first the external signal with the frequency
fe = fg. The initial phase difference between the oscillator and the external signal is φinit

(just when external signal is turned on). The action of the external force on the oscillator
depends on this phase difference. Naturally, the system (oscillator + external force) will
minimize its energy by choosing the phase difference φ0 that minimizes the interaction
energy, which can be represented by a potential as shown in Fig. 6.10-b, toward a stable
equilibrium. After a transient, the phase difference evolves from φinit to φ0. Usually, this
phase difference φ0 is π/2 in the case of an isochronous (or quasilinear) auto-oscillator,
but in the case of STOs, an additional phase shift occurs due to nonlinearities (see [54]).

If a frequency mismatch ∆ω0 is now present, i.e. fe 6= fg, in the same representation
as in Fig. 6.10-a (see Fig. 6.11), we have an additional effect of the external force that tries
to push/pull the oscillator (red arrows in Fig. 6.11). It shifts the two equilibrium points
(the stable one and the saddle one), and the stable equilibrium point has as a consequence
an additional phase shift ∆φ compared to the zero frequency mismatch case, such that
the total phase shift is finally ∆φ + φ0. This additional phase shift due to frequency
mismatch is well established in the Adler model [42, 173]. In this model, Eq. 6.6, this
shift is ∆φ = −∆ω0/B, while φ0 is not accounted for.
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Fig. 6.10: (a) In the phase plane, the action of the external force is the same. However, since
the external source does not affect the amplitude in isochronous oscillators, depending on the
phase shift (point 1 to 8), the effect of the force on the oscillator will be of different strength (the
oscillator can only move on the dashed circle). Point 1 and 2 are the two equilibrium points.
However, point 2 is unstable. This is represented in an equivalent energy landscape versus the
phase difference in (b). From [41].

More interestingly, this frequency difference makes the previously mentioned potential
tilted (represented now in Fig. 6.11-b). In consequence the saddle equilibrium is not π
shifted from the stable equilibrium (see Fig. 6.11). Without noise, the oscillator stays
at a constant phase difference with respect to the external source, while its frequency is
the one of the external source fe. When the stationary points of the phase potential 1
and 2 merge, i.e. ∆φ = π/2, the stationary points disappear; phase slips occur (even
without noise). In this case, the detuning frequency is no longer zero (see Fig. 6.12) and
the synchronized state is lost.

The situations described above can be represented within Adler model, which gives
the locking range as a function of the external force ε (or B in Eq. 6.6). This is called an
Arnold tongue, as illustrated in Fig. 6.12-a, by the gray shaded area, which corresponds
to the locking range. It is now instructive to look at the phase difference versus time for
various points indicated by 1, 2, ...5 at constant ε. This is shown in Fig. 6.12-b for the 6
different points (solution to Adler equation) and compared to macrospin simulation for
an STO in Fig. 6.12-c for a source frequency at the vicinity of fe ≈ 2fg. Note that in this
case the phase difference is φ− φe/2. From this, we can distinguish three main different
dynamical synchronized states:

� The case 1©, ∆φ = 0 and the phase potential is almost symmetric, in the sense that
upward (+2π) or downward (−2π) phase difference jumps are equally probable in
the presence of noise. In Fig. 6.12, it corresponds to the point marked “1”. This
case can be observed when the potential is 2π periodic (see the Fig. 6.10-b), i.e. the
forcing frequency is the same as the STO frequency.

� The case 2©, marked as“2”in Fig. 6.12-a is when the frequency mismatch is non-zero
(or non-negligible). It leads to a constant offset in the phase difference. In the
macrospin simulation presented in Fig. 6.12-c, instead of point marked as “1”, only
points similar to “2” as been presumably represented. Indeed, due to the nonlinear
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Fig. 6.11: (a) Since the external signal always wants to push/pull the oscillator to its own
frequency, the phase “feels” an additional effect (in red arrows). Since the external force also
wants to have a phase difference of φ0 with the oscillator, the compensation of both occurs with
an additional phase difference ∆φ. The equilibrium points (points 1 and 2) occur now with
a phase difference less than π. Without further perturbations, the system stabilizes in a local
minimum (b). From [41].
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The dashed area, the Arnold Tongue, represents the “locked” state of the oscillator. In (b) we
represent the phase difference φ−φe versus time for each state. State 1 and 2 are phase-locked,
State 3 and 3’ are found at the boundary of the Arnold tongue, and 4 and 5, far away from it.
(c) φSTO−φe obtained from a macrospin simulation with a zero effective temperature (T = 0 K)
and different source frequency fe. Each state found in (a) and (b) can be reproduced, indicating
or not the synchronized state of the STO. (a) and (b) from [41].
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amplitude-phase coupling, an additional phase offset between STO and the signal
source is present (which is not considered in the Adler model). Nevertheless, we can
see that the phase offset depends on the frequency mismatch (see Fig. 6.12-c). In
this case 2©, the potential is inclined (since fe 6= fg, see the Fig. 6.11). Depending
on the condition fg > fe or fg < fe, only downward or upward phase jumps will
occur in the presence of noise. When increasing the frequency difference fe−fg, the
“barrier” seen by the phase difference decreases, leading to more and more phase
slips under a constant phase perturbation.

� For the case 3©, there are no stationary or equilibrium points for the phase difference.
This case is obtained from the points marked by“3”, “3’ ”and“4” in Fig. 6.12-a. The
evolution of the phase difference at a given time differs according to the position
of the phase difference in the phase potential. The phase difference evolves slowly
near the (former) stable equilibrium and sharply just after the (former) saddle
equilibrium. This case that occurs at the vicinity of the Arnold tongue corresponds
to a unsynchronized state.

While the Adlerian picture assumes that the amplitude of the auto-oscillation is not
changed by the application of the external signal, we can see that these pictures for
isochronous (quasi-linear) oscillators give very good insights on what is happening in
STOs.

Now that these three main cases have been described, we are now able to “classify”
the phase slips we observe in our macrospin simulations in the presence of noise.

6.3.3 Synchronization of a macrospin mode and a LTMR device;
Phase Slips

For HTMR devices, no time domain data have been acquired so that unfortunately
the experimental phase cannot be analyzed in this experiment. However, macrospin
simulations with an alternative current allows such a study. Therefore, we present an
analysis of the synchronized state in the presence of noise for an STO from macrospin
simulation that we compare with to KTS model.

We first analyze in detail the phenomenon that occurs to the phase in the “Arnold
tongue”, i.e. in the “locking band” as defined in Fig. 6.13-a,b for IRF/IDC = 0.6, where
we reported the three cases discussed previously from an Adlerian picture. In each case
1©, 2© and 3©, we have extracted the phase mismatch φSTO(t)−φe(t)/2 between the STO
(φSTO(t) obtained from the Analytic Signal see section 3.2.3.2) and the signal source
divided by two (φe(t)/2) presented in Fig. 6.13-c.

The first case 1© is in the center of the synchronization window (i.e. fe ≈ 2fg, with
fg the STO free-running frequency), where the oscillation peak is a Dirac function in
the frequency domain (i.e. the mode has a single frequency). In this case, phase jumps
occur upward or downward by ±π as expected from a symmetric phase potential (and π
periodic)2.

2Because we use the locking condition fe ≈ 2fg, the phase potential is π periodic and not 2π as
discussed in the previous section.
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Fig. 6.13: Simulations. (a) Detuning and (b) FWHM versus fe for IRF/IDC = 0.6 for T =
400 K. Three different cases are represented. (c) Phase difference φSTO(t) − φe(t)/2 for the
three different cases. Case 1©: some phase slips occur, phase slips might be reversible. Case
2©: many phase slips occur and are not reversible. Case 3©: the phase difference is such that
a linear component clearly appears, inducing non-zero detuning. The case fe = 10.9 GHz is no
longer “locked” to the microwave current.

The second case 2© occurs when ∆f is larger than the frequency resolution of the
simulated spectrum, but small compared to the free running linewidth of the STO. The
source frequency fe is close to, but smaller, than the 0 K locking border. In this case,
only downward (−π) phase jumps are observable after a random time. The higher the
frequency mismatch, the larger the number of phase slips occurring during the 10 µs time
trace.

Unfortunately, because case 3© cannot be investigated by Adlerian dynamics in STOs
, no qualitative picture can be given. The last case 3© in the Adlerian picture, and
especially the cases labeled 3 and 3’, corresponds to the ones where the source frequency
fe is close to the boundary of the synchronization range. In macrospin simulations, this
would correspond to a frequency applied just near the boundary of the 0 K locking band
but still inside the 400 K locking band (See Fig. 6.9-c). In this case many phase slips occur,
but the overall picture is rather complicated, since in this region the synchronization is
hysteretic [165]. However, only a qualitative agreement can be found with the Adlerian
case 3©; the phase differences look like the curves 3 or 3’ in Fig. 6.12-b and within the
oscillator phase fluctuations, the effective barrier seems to be zero.

To further investigate experimentally the spectral purity of the “phase locked” state
(cases 1© and 2©), we have performed time domain measurements in the case of the LTMR
device when synchronized to the external signal (at the same time as the measurements
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Fig. 6.14: Experiments. Phase difference φSTO−φe/2 measured on a LTMR sample for different
source frequency fe.

shown in section 6.2.2). To do so, we used a 1 GHz analog filter around fc = 7 GHz
in order to remove the source signal peak. The phase has been extracted by the usual
method (described in chapters 3 and 4), but the unwrapping frequency is half that the
microwave source fe/2. We show the phase difference φSTO − φe obtained in the LTMR
device in Fig. 6.14.

It is clear from the Fig. 6.14 that the phase is never stationary in the sense where phase
slips (upward and downward) always occur in the supposed region 1© (fe = 14.2GHz).
Because of the almost equal probability to obtain upward and downward jumps, we can
suppose that the phase potential is symmetric. For lower frequencies, we indeed see
almost only upward jumps, as explained by an inclined phase potential (when fe < 2fg).
Because the device is not stable, the signal lost its integrity when 2fe > fg, and we do
not obtain the expected result. Since the device is not stable, the peak observed on the
spectrum analyzer even for fe = 14.2 GHz is broader than the one when fe = 13.8 GHz
(see Fig. 6.15, the sidebands in the red curve are discussed in the next section 6.3.4).

This fact somehow limits the conclusions that can be drawn from these measurements,
since the sample did not conserve its integrity during the measurement. However, this
first study should encourage to measure the synchronized state both in frequency and
time domain.

It is more than probable that a systematic study of the locked STO to an external signal
provides further information on the nonlinear parameters/dynamics of the autonomous
state. Indeed, to get the nonautonomous behavior of the STO, it is required that the
STO phase, φSTO is “locked” to the source phase φe. It is clear from the chapter 4 and
5 that the frequency of the auto-oscillation in the autonomous regime is given by the
amplitude, through the nonlinear amplitude-phase coupling. Therefore, one can imagine
that the amplitude of the STO is somehow “locked” to the external force as a necessary
condition since STO is non-isochronous. Actually, we previously highlighted the fact
that, for the case of the injection locking fe ≈ 2fg, the synchronization occurs through
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the amplitude (see Eq. 6.3 in section 6.1.2). While the solution of the STO in presence
of external forcing signal can be found elsewhere [54, 59], we give in the next section
the solution of the synchronization in presence of noise in STOs in order to highlight
features of the dynamics of the STOs that could be found in locking experiments.

6.3.4 Non-Adlerian dynamics and its consequence on the
emitted spectrum

6.3.4.1 Mathematical description

We focus now on the mathematical description of the cases 1© and 2©. We want to
study the synchronized solution (in both phase and amplitude); we therefore assume
the existence of this solution. Then, in the synchronized state, the instantaneous power
takes the form: p(t) = p0 + δp0 + δp(t) while the instantaneous phase mismatch is:
ψ(t) = φSTO(t)− ωet+ ψ0. p0 is the free running power (in absence of the synchronizing
signal) and δp0 is the amplitude shift induced by the synchronization condition and ψ0,
the phase shift between the source and the STO that is induced by the synchronization
condition. Under the assumption sin(ψ−ψ0) ≈ ψ−ψ0, the phase difference fluctuations
ψ(t) and power fluctuations δp(t)� 1 are solutions of:

(
dδp
dt
dψ
dt

)
=
[
−2Γp −2p0F sin(ψ0)
N −F cos(ψ0)

](
δp
ψ

)

+
(

2δp0Γp + 2p0F cos(ψ0) + 2√p0<fn(t)
−∆ω0 − F sin(ψ0) + 1√

p0
=fn(t)

) . (6.7)

This equation has been written in [42] with N = 0 (isochronous case in 1968) and in
[59, 174] with N 6= 0 (non-isochronous case in 2010). Without noise, the stationary
solutions (δp0, ψ0) are:
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ψ0 = arctan(ν)− arcsin
(

∆ω0

∆ν0

)
, (6.8)

δp0 = p0
ν∆ω0 +

√
∆ν2

0 −∆ω2
0

(1 + ν2)Γp
, (6.9)

where ∆ν2
0 =
√

1 + ν2F is the nonlinearity-enhanced frequency interval of phase locking.
It is interesting to note that δp0 is proportional to ν times the frequency mismatch.
Therefore, if one wants to lock the system to a frequency fe smaller than fg, it has to
reduce (increase) the total power p0 + δp0 in the case of ν > 0 (ν < 0). This is illustrated
in Fig. 6.16 with ν < 0 in the case of the IPP mode. The free-running trajectory is
in black, with the frequency fg. If the system oscillates at a frequency higher (lower)
than fg, it should be below (above) the black trajectory. If one wants to synchronize the
system with fe > 2fg (green and blue trajectories), the system has to decrease p0, i.e. the
“average” solid angle formed by the trajectory. If the system is now synchronized with
fe < 2fg (red trajectory), the power needs to be increased, i.e. the “average” solid angle
increases. For macrospin simulations, this effect has been first observed in Ref. [175].

We can interpret this amplitude/power stabilization on a specific orbit as a necessary
condition for the phase synchronization. In the non-isochronous case, if the amplitude was
free, the phase also would be free, because of the amplitude/phase coupling. Therefore,
we can anticipate that a control of amplitude would control the phase, in an amplitude
locked loop for example [176, 177].

6.3.4.2 Sideband appearance in the emitted spectrum

The linearized system Eq. 6.7 has two eigenvalues, which correspond to two time
constants. The first λ1 describes how a small perturbation δp or δψ is attenuated towards



the power/phase equilibrium state (the locked state). The second eigenvalue λ2 is the
beat frequency, or oscillating transient response, and is higher than the first (see details
in Ref. [59]).

Finally, in the presence of noise the solutions δp (or equivalently δa) and ψ(t) expressed
by their autocorrelation functions are given by:

Γψ(τ) ∝ e−λ1τ [1 + cos(λ2τ)] , (6.10)

Γδa(τ) ∝ e−λ1τ [1 + cos(λ2τ)] , (6.11)

with:

λ1 = Γp and λ2 ≈ Γp
√
µ/µcr − 1 , (6.12)

with µ = IRF/IDC the modulation depth and µcr a critical modulation depth from which
the non-Adlerian regime Eq. 6.10 starts (µ > µcr). The amplitude and phase noise in the
synchronized regime (when fe ≈ 2fg, case 1©) is given in Fig. 6.17 for different applied
RF current at T = 50 K (in order to have the minimum of phase slips). In Fig. 6.17, the
phase slips stop when IRF > 15 (a.u.) and the phase becomes stationary (in the sense of
a stochastic process) and ergodic in the timespan calculated here: the solution is defined
by Eq. 6.10. When IAC < 15, phase slips occur so that no solution can be given. However,
between two phase slips, the system can be considered stationary and the solutions 6.10
and 6.11 are valid in those time windows.

Even in the frequency log-scale Fig. 6.17-c, we can see that λ2 increases with IAC as
expected [59]. The direct consequence of this beat frequency is that sidebands appear
in the synchronized regime near the peak at a frequency given by λ2 (see Fig. 6.18-c).
Those sides bands have been reported in macrospin simulations [178] and micromagnetic
simulations [174, 179]. We also report them for LTMR device, as shown in Fig. 6.18-e.
The stability of the LTMR device did not allow however to make a systematic study on
them. Nevertheless, we note that the sideband frequency is about 500 MHz, higher than
the fp = Γp/π value for this sample (about 200 MHz).

6.3.4.3 Effect on the low frequency noise of STOs

More interestingly, the low frequency (below f < 1 GHz) component of the signal PSD in
Figs. 6.18-a,c is similar to the one of the amplitude noise in the autonomous regime. When
the STOs are in non-autonomous regime (Figs. 6.18-b,e), the low frequency component
of the PSDs is reduced similarly to the reduction of the amplitude noise in this regime
(compare black and green curves in Fig. 6.17-c). It is not surprising since, as noted
in section 4.4, the zero frequency signal present in mx is equivalent to the amplitude
relaxation toward the mean value of mx (see Eq. 4.26). Therefore, the low frequency
noise (often confused with a low frequency 1/f noise) is indeed due to the relaxation of
the mx component toward its average. Moreover, this increase of low frequency noise
due to the effect of the spin transfer torque onto the magnetization is used to determine
the enhancement of high frequency noise in GMR/TMR reader in hard disk drives [141,
142, 143, 144]. In our case, we can use this low frequency component to extract Γp with
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Fig. 6.17: Macrospin simulations. (a) Autocorrelation function Γδa of amplitude fluctuation
δa(t) in the synchronized state for different applied microwave currents IAC (note that IDC =
68× 1012 A/m2). From IAC > 15× 1012 A/m2, the beat frequency can be seen in Γδa. We can
also notice that the period of the oscillation decreases with increasing IAC (i.e. λ2 increases).
Corresponding phase noise plot (b) and amplitude noise plot (c). The peak frequency (or λ2)
increases with IAC and is higher than Γp/π ≈ 200 MHz. The temperature is 50 K.

a simple measurement in the frequency domain of the free running oscillation3. In the
synchronized regime, mx is necessarily stabilized (around p0 + δp0), and thus reduces
the noise component on mx. A straightforward reduction by a factor of 10 of this low
frequency noise component in the “locked” regime has been observed in the LTMR device
as shown in Fig. 6.18-d,e.

6.3.4.4 Stabilization of the MR signal under synchronization

Since the mean value of mx (projected on the polarizer direction) gives the mean value of
the resistance in magnetoresistive devices, we can suppose that the injected signal changes
the value of the resistance of the magnetoresistive device through the shift of mode power
δp0. To verify the resistance dependence of the STO versus the frequency mismatch
fe − p/qfg in the synchronized state, we performed synchronization experiments on the
perpendicular-polarizer structure (see Fig. 6.19 and Ref. [81, 168] for details). As we
have already explained, the continuous degradation of the LTMR device (associated with
a decrease of the total MR) has prevented such an analysis on LTMR synchronization
experiments.

For the sake of clarity, we do not present the whole study of this sample and state
diagrams that can be found elsewhere [169], but we focus on the single experimental

3The amplitude roll-off observed in the experiments can originate from this low frequency component
of the extracted electrical signal. Therefore, it justifies the fact that the experimental amplitude roll-off
indeed originate from the amplitude relaxation toward the mean power
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Fig. 6.18: Top panels: Macrospin simulations.(a) PSD of mx for the free-running IPP mode
(See Fig. 1.14 in Chapter 1). (b) PSD of mx in the synchronized state (IRF/IDC = 0.6)
with fe = 10 GHz. (c) PSD of mx where side-bands are indicated by red arrows. Effective
temperature: 400 K. Bottom panels: LTMR experiments PSD of the free running LTMR-STO
(d) and the STO locked to an external signal of fe = 13.8 GHz (e). The free-running frequency
is originally fg ≈ 7.8 GHz but is reduced because of the conditioning process of the sample.
Figure (e) shows explicitly the effect of synchronization on the low frequency spectrum of the
signal compared to Figure (d) while Figure (f) shows the two (asymmetric) side-bands.
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(a) (b) (c) 

Fig. 6.19: (a) Stack of the perpendicular polarizer structure. While the perpendicular polarizer
induces an out-of-plane auto-oscillation of the free layer (Py), the analyzer (the top magnetic
layer) allows one to retrieve the GMR signal. (b) Output of an OPP mode compared to an
IPP mode. The signal of the OP mode oscillates between the AP and the P resistance state.
When oscillating, the mean resistance is in between the AP and the P resistance state. (c)
Experimental evidence of the Intermediate Resistance Level (IRL). From [168].

graph given in Fig. 6.20. In this figure, the resistance measured inside the locking band
is proportional to the injected frequency. It is straightforward from the Fig. 6.20 that
when fe ≈ fg, the resistance (in the synchronized state) is equal to the mean resistance
state outside the locking band.

This simple evidence proves that not only the non-isochronous property can be verified
easily, but that many effects of the nonlinear nature of the STO can lead to deterministic
behaviors of the oscillator.

6.3.4.5 Conclusion

In conclusion, we have found a general good agreement of the non-autonomous regime
observed experimentally in STOs compared to what is expected from the theoretical
models. Of course, the magnetization dynamics driven by an external microwave current
or field can be subject to even more complicated pictures in the presence of noise [180],
as for example the chaos [181]. Nonetheless, for small perturbation around the limit cycle
defined by the synchronized state (p0 + δp0, fe), the non-autonomous dynamics can be
related to the autonomous dynamics defined by the nonlinear parameters ν and Γp.

In addition, we have shown the importance of the noise in the stability of the
synchronized regime. The relatively weak phase coherence found in our best“synchronized
state” (see upward and downward phase jumps in Fig. 6.14) are most likely problematic
for exhibiting the long term stability of networks of STOs. Further experimental evidence
from TDNS analyses would be of importance to determine the real possibilities of STOs
as a component of complex RF architectures.
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Fig. 6.20: PSD map of the measured STO spectra as a function of the applied source frequency
fe in linear scale. The superimposed white dots (same X-axis) show the normalized resistance
value as a function of the source frequency fe. Measurements by A. Jenkins.
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6.4 Perspectives of synchronization in STOs

This section describes further possible studies to be realized for synchronization
experiments in STOs. This is not an exhaustive list of what can be realized in the
future but it is written as a perspective for studies initiated by this thesis work.

The first case is a simulation study on coupled layers to demonstrate the potential
improvements that can be reached for STOs. It is shown how the extraction of the
nonlinear parameters (Γp, ν) can help to the study of such a complex system.

The second case summarize some aspects on STOs networks.

6.4.1 Perspective: Oscillator Formalism toward Applications

In the previous sections dedicated to synchronization, we have investigated the reduction
of the phase noise by “external” forces and/or external coupling between two individual
oscillators. Another possibility for accomplishing this involves coupling layers inside the
magnetic stack. Here we present a macrospin simulation that indicates the linewidth can
be reduced in coupled systems.

Prior to the begin of my thesis, it has been demonstrated by macrospin simulations
that the reciprocal effect of the STT onto the polarizer leads to a “self-synchronization”
inside the multilayered magnetic device [182]. The “reciprocal effect of the STT” can be
easily understood with the simple introduction of STT in section 1.2.1. Indeed, within a
certain electron flow direction, the STT onto the free layer acts as an anti-damping that
leads to an increase in the angle between the free and polarizer layers. Conversely, the
reciprocal STT onto the magnetization of the polarizer acts as a damping term and leads
to a decrease in the angle between the polarizer layer with respect with the free layer
magnetization, destabilizing the FL. It turns out that a dynamical coupling can occur
when the mode frequencies of each magnetization cross. Such a crossing occurs in a MR
device formed by a “normal” free layer and a Synthetic Anti-ferromagnetic (SAF) trilayer,
as shown in Fig. 6.21-a. The geometry is reported in Fig. 6.21-b.

This coupling gives rise to two interesting features. First, when sweeping the field,
there are no abrupt jumps of the frequency of the free layer, whereas a dynamical coupling
supported by the dipolar fields in the same structure occurs with abrupt jumps [183]. This
difference is supposed to originate from the different nature of the dynamical coupling.
The coupling occurs through non-conservative quantities (damping and anti-damping)
in the case of reciprocal STT, while it occurs through a conservative interaction in the
case of dipolar fields. The qualitative difference between the two couplings is shown in
Fig. 6.21-a.

The second feature of this dynamical coupling is that it is accompanied with
a substantial linewidth reduction (see Fig. 6.22). We use the time domain noise
spectroscopy developed in Part II to analyze the evolution of the nonlinear parameters
inside and outside the “self-locking” range. It can be shown that a combined effect of the
reduction of |ν| and the increase of Γp are responsible of this FWHM reduction [184].

It is clear that the dynamic STT interaction between the magnetic layers of the STO
leads to the formation of a collective auto-oscillation mode that involves magnetization
of both the free and fixed magnetic layers. The observed linewidth reduction is related
to the coupling-induced reduction of the effective nonlinear coefficient ν that describes
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Fig. 6.21: (a) Simulated mode frequency versus applied field. When the auto-oscillation of
the free layer “crosses” the FMR-SAF, a dynamical coupling appears from Ref. [184]. The
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Fig. 6.22: Simulated (a) FWHM of the free layer with (red dots) and without (black squares)
coupling via mutual STT. (b) ν and (c) Γp extracted from the analysis of the time trace with
and without dynamical coupling. The vertical gray line represents the “self-locking” range.
Japp = 50.1011 A/m2. Simulations from D. Gusakova.
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nonlinear amplitude-phase coupling in STOs. Besides revealing the important role of
the dynamic coupling between the STO layers in tailoring the phase noise properties
of an STO, this numerical study also provides a theoretical evaluation of the nonlinear
parameters of ν and Γp that cannot be accurately evaluated analytically, especially in the
case of coupled magnetic layers. Although in this study we only considered the interlayer
STT coupling via the spin polarized current, we believe that the obtained results can be
generalized to other types of dynamic interlayer interactions (i.e. dipolar interaction).
We believe such studies on complex STO structures would lead to the definition of the
problem in a simpler way using the KTS model formalism (Γp, ν).

It should also be mentioned that a recent experimental study [185] reveals a strong
reduction in the generation linewidth in the case when vortex oscillations in the polarizing
and free layer of a spin valve structure are coupled via dipolar fields. Thus, our analysis
suggests that the control of coupling between the magnetic layers of an STO could provide
an important tool to improve the microwave performance characteristics of STOs.



6.4.2 Perspective: Mutual phase locking and RF-devices

The final goal of proving and improving electrical synchronization is to reach mutual phase
locking of several STOs. This mutual phase locking may appear through magnetostatic
or dipolar fields and/or electrical current. Due to the KTS model, or advanced
phenomenological STO descriptions such as Eq. 6.3, it is possible to study and produce
robust STO networks from the amplitude/phase models that correctly describe the STO
in its autonomous state. As a perspective part, we would like to cite two studies on the
electrical mutual phase locking of STOs.

Based on the amplitude/phase equations of the STOs from the KTS model,
Tiberkevitch et al. [68] studied the dynamics of an array of 10 STOs serially connected.
In their paper, the authors show that by inducing an external phase shift through a RLC
resonant circuit, the cooperative dynamics of all the 10 different STOs can occur. The
paper also proves the use of a linearized amplitude/phase model as a powerful tool for the
network analysis. They indeed first obtained their result for interconnected STOs with
the amplitude/phase model that they finally checked with LLGS macrospin simulations.

Finally, based the Eq. 6.3, Zarudniev et al. [167] studied the one-to-one and all-to-all
interconnection scheme for a network of 10 different in-plane STOs. The fractional
synchronization (p = 2 and q = 1) is considered and improves considering synchronization
in the network. Once again, the comparison of the model to LLGS macrospin simulations
showed the equivalence of the two approaches (LLGS and amplitude/phase model taking
into account the fractional synchronization). The study of the phase noise shows a
reduction of the phase noise by a factor N , with N the number of interconnected STOs
[167].

These models offer now the possibility to build and study even more complex
topologies of STO networks [186]. The bridge provided by the KTS model that transforms
the complex LLGS equation into an oscillator equation should allow one to conceive robust
RF sources based on STO networks.

However it should be mentioned that these models are all based on simplifications of
the real physical system. One of the difficulties in realizing STOs is that nominally
identical STOs (from a fabrication point of view) are not the same because of the
dispersion of the nano-structuration of the devices. This leads to a dispersion of
anisotropies, internal fields and critical currents, and therefore a disperison in ν, Γp,
ω0, Q, and so on. This dispersion has not been taken into account in models. In this
case, the phenomenological approach is preferred (such as KTS approach), where one can
feed models with real experimental data (ν, Γp, fg, Q, ...).



Part IV

Conclusion
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Fig. 6.23: Comparison of the phase noise of the free running STO (from macrospin simulation)
to the telecommunication standards specifications (from Table 3.1).

We have developed a tool that can accurately measure the phase and the amplitude
noise of a STO. The intensive comparison of experiments and simulations to model
predictions, i.e. the KTS theory, found a general good agreement. Concerning the phase
noise in STOs, the key point that has been demonstrated is the relative enhancement
of the phase noise due to a nonlinear amplitude phase coupling of the STO, due to the
non-isochronous nature of STOs.

For the moment, the relative high phase noise prevents any applications in
telecommunications (see Fig. 6.23). The PLL can be an approach to reduce the
phase noise as shown in this work and experimentally elsewhere [86]. The final design
performance with respect to power consumption, agility, robustness,..., will define the
potential use of STO in transceivers. The second approach, involving the mutual
synchronization of STOs, should take the symmetry into account and might be realized
via fractional synchronization principles. Simulations indicate the feasibility of such a
network. Both approaches will require more characterization of real STO devices to
determine the input parameters for models, such as the KTS model and subsequent
development to it.

Indeed, we have seen that the characterization of the autonomous regime can
well explain the response of the non-autonomous properties of the STOs (modulation,
synchronization). Not only the models can be used to verify the experimental data, but
the models can also estimate the best uses of the STO for telecommunication applications.
Therefore, a greater interconnection between STO experimentation and RF designers
should be engaged for the sake of the development of STO technology, but also in order
to locate the potential applications for STOs.

A promising application of STOs is the “STO reader” that seems to benefit from the
high modulation speed (Γp) and the high “susceptibility” to a shift in STO state (ν).
Since read heads are nowadays already using ultra-low RA MTJs as the main component



of the read head, the integration of MgO-based STO would be easier.
However, MgO-based STOs working at high bias current can potentially exhibit some

unwanted effects, for example, long term aging (element diffusion, polarizer stability, AF
pinning stability,...) or even barrier destruction such that their practical uses may not be
possible. This is a material question that needs to be solved on the long run in parallel
to RF and signal treatment problems.

Another new route to explore comes from the recent observation that spin transfer
torque can be generated inside a ferromagnetic material near a material with a large
Rashba spin orbit coupling or large spin hall effect [187]. These spin transfer torques
are able to drive the magnetization of the ferromagnetic layer into the nonlinear regime.
Potentially, with a magnetoresistive device to sense these dynamics (as shown in [188])
the breakdown of the MgO barrier can be avoided such that it allows one to study the
nonlinear dynamical effects at higher spin transfer torque amplitudes.

In all those perspectives for new applications routes, the study of the nonlinear
dynamics of the magnetization is required and with this theoretical and experimental
concepts that have been provided by this thesis will be of interest.
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spin assistée thermiquement. PhD thesis, SPINTEC, 2010.

[103] H. Maehara, K. Nishimura, Y. Nagamine, K. Tsunekawa, T. Seki, H. Kubota,
A. Fukushima, K. Yakushiji, K. Ando, and S. Yuasa. Tunnel Magnetoresistance
above 170% and Resistance-Area Product of 1 (µm)2 Attained by In situ Annealing
of Ultra-Thin MgO Tunnel Barrier. Applied Physics Express, 4(033002), 2011.

[104] J. Akerman, R. Escudero, C. Leighton, S. Kim, D. A. Rabson, R. W. Dave, J. M.
Slaughter, and I. K. Schuller. Criteria for ferromagnetic-insulator-ferromagnetic
tunneling. Journal of Magnetism and Magnetic Materials, 240:86–91, 2002.

[105] B. Oliver, Q. He, X. Tang, and J. Nowak. Dielectric breakdown in magnetic tunnel
junctions having an ultrathin barrier. Journal of Applied Physics, 91(7):4348, 2002.



BIBLIOGRAPHY 215

[106] J. Das, R. Degraeve, P. Roussel, G. Groeseneken, G. Borghs, and J. De Boeck. Area
scaling and voltage dependence of time-to-breakdown in magnetic tunnel junctions.
Journal of Applied Physics, 91(10):7712, 2002.

[107] B. Oliver, Q. He, X. Tang, and J. Nowak. Tunneling criteria and breakdown for low
resistive magnetic tunnel junctions. Journal of Applied Physics, 94(3):1783, 2003.

[108] C. Shang, Y. Chen, and K.-S. Moon. Kinetics of pinhole nucleation and growth in
magnetic tunnel junctions. Journal of Applied Physics, 93(10):7017, 2003.

[109] Z.-S. Zhang and D. A. Rabson. Electrical and thermal modeling of the non-Ohmic
differential conductance in a tunnel junction containing a pinhole. Journal of
Applied Physics, 95(2):557, 2004.

[110] K. Hosotani, Y. Asao, M. Nagamine, T. Ueda, H. Aikawa, N. Shimomura,
S. Ikegawa, T. Kajiyama, S. Takahashi, A. Nitayama, and H. Yoda. Effect of
interface buffer layer on the reliability of ultra-thin MgO magnetic tunnel junctions
for spin transfer switching MRAM. In IEEE International Reliability Physics
Symposium Proceedings, pages 650–651. IEEE, 2007.

[111] B. Oliver, G. Tuttle, Q. He, X. Tang, and J. Nowak. Two breakdown mechanisms
in ultrathin alumina barrier magnetic tunnel junctions. Journal of Applied Physics,
95(3):1315, 2004.

[112] Q. Chen, T. Min, T. Torng, C. Horng, D. Tang, and P. Wang. Study of dielectric
breakdown distributions in magnetic tunneling junction with MgO barrier. Journal
of Applied Physics, 105(07C931), 2009.

[113] H. Xi, S. Franzen, J. Guzman, and S. Mao. Degradation of magnetic tunneling
junctions caused by pinhole formation and growth. Journal of Magnetism and
Magnetic Materials, 319:60–63, December 2007.

[114] D. Houssameddine, S. H. Florez, J .A. Katine, J.-P. Michel, U. Ebels, D. Mauri,
O. Ozatay, B. Delaet, B. Viala, L Folks, B. D. Terris, and M.-C. Cyrille. Spin
transfer induced coherent microwave emission with large power from nanoscale MgO
tunnel junctions. Applied Physics Letters, 93(022505), 2008.

[115] D. Houssameddine, U. Ebels, B. Dieny, K. Garello, J.-P. Michel, B. Delaet,
B. Viala, M.-C. Cyrille, J. A. Katine, and D. Mauri. Temporal Coherence of MgO
Based Magnetic Tunnel Junction Spin Torque Oscillators. Physical Review Letters,
102(257202), June 2009.

[116] R. Matsumoto, A. Fukushima, K. Yakushiji, S. Yakata, T. Nagahama, H. Kubota,
T. Katayama, Y. Suzuki, K. Ando, S. Yuasa, B. Georges, V. Cros, J. Grollier, and
A. Fert. Spin-torque-induced switching and precession in fully epitaxial Fe / MgO
/ Fe magnetic tunnel junctions. Physical Review B, 80(174405), 2009.

[117] G. C. Han, E. L. Tan, B. Y. Zong, Y. K. Zheng, S. G. Tan, and L. Wang. Abnormal
increase in ferromagnetic resonance amplitude just before the breakdown in tunnel
magnetoresistive heads. Journal of Applied Physics, 103(07F518), 2008.



[118] T. Devolder, L. Bianchini, J.-V. Kim, P. Crozat, C. Chappert, S. Cornelissen, M. Op
De Beeck, and L. Lagae. Auto-oscillation and narrow spectral lines in spin-torque
oscillators based on MgO magnetic tunnel junctions. Journal Of applied Physics,
106(103921), 2009.

[119] A. V. Nazarov, H. M. Olson, H. Cho, K. Nikolaev, Z. Gao, S. Stokes, and B. B. Pant.
Spin transfer stimulated microwave emission in MgO magnetic tunnel junctions.
Applied Physics Letters, 88(162504), 2006.

[120] A. V. Nazarov, K. Nikolaev, Z. Gao, H. Cho, and D. Song. Microwave generation
in MgO magnetic tunnel junctions due to spin transfer effects (invited). Journal of
Applied Physics, 103(07A503), 2008.

[121] M. Al-mahdawi, M. Doi, S. Hashimoto, H.N. Fuke, H. Iwasaki, and M. Sahashi.
Frequency Modulation of a Nano-Oxide Layer-Based Spin-Torque Oscillator With
FeCo Nanocontacts. IEEE Transactions on Magnetics, 47(10):3380–3382, 2011.

[122] Tetsuya Nakamura, Hiroaki Suzuki, Yoshihito Okutomi, Masaaki Doi, Hiromi Niu
Fuke, Hitoshi Iwasaki, and Masashi Sahashi. Feature of Current-Induced Microwave
Oscillation in Nano-Contacts Magneto-Resistive Devices After High-Temperature
Annealing. IEEE Transacations on Magnetics, 46(6):2212–2215, 2010.

[123] M. Doi, H. Endo, K. Shirafuji, S. Kawasaki, M. Sahashi, N. H. Fuke, H. Iwasaki,
and H. Imamura. Spin-transfer-induced microwave oscillations in spin valves with
ferromagnetic nano-contacts in oxide spacer layer. Journal of Physics D: Applied
Physics, 44(092001), 2011.

[124] J.-G. Zhu. Pinholes and spin transfer effect in magnetic tunnel junction heads.
Journal of Applied Physics, 97(10N703), 2005.

[125] Yisong Zhang, Zongzhi Zhang, Yaowen Liu, Zhixiong Kang, B. Ma, and Q. Y. Jin.
Micromagnetic study of hotspot and thermal effects on spin-transfer switching in
magnetic tunnel junctions. Journal of Applied Physics, 101(10):103905, 2007.

[126] N. Strelkov, A. Vedyayev, N. Ryzhanova, D. Gusakova, L. D. Buda-Prejbeanu,
M. Chshiev, S. Amara, N. De Mestier, C. Baraduc, and B. Dieny. Spin-current
vortices in current-perpendicular-to-plane nanoconstricted spin valves. Physcial
Review B, 84(024416), 2011.

[127] I. N. Krivorotov, N. C. Emley, R. A. Buhrman, and D. C. Ralph. Time-domain
studies of very-large-angle magnetization dynamics excited by spin transfer torques.
Physical Review B, 77(054440), February 2008.

[128] I. N. Krivorotov, N. C. Emley, A. G. F. Garcia, J. C. Sankey, S. I. Kiselev, D. C.
Ralph, and R. A. Buhrman. Temperature Dependence of Spin-Transfer-Induced
Switching of Nanomagnets. Physical Review Letters, 93(166603), October 2004.

[129] C. E. Patton and C. H. Wilts. Temperature Dependence of the Ferromagnetic
Resonance Linewidth in Thin NiFe Films. Journal of Applied Physics, 38(9):3537,
1967.



BIBLIOGRAPHY 217

[130] M. Diaz De Sihues, P. J. Silva, and J. R. Fermin. Effect of temperature on the
ferromagnetic resonance of Ni50Fe50 thin films. Physica B, 354:361–364, 2004.

[131] J. F. Sierra, V. V. Pryadun, F. G. Aliev, S. E. Russek, M. Garćıa-Hernández,
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