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AbstratVirtual mahine tehnology is rapidly gaining aeptane as a fundamental building blok inenterprise data enters. It is most known for improving e�ieny and ease of management.However, the entral issue of this tehnology is seurity. We propose in this thesis to enfore theseurity of virtualized systems and introdue new approahes that deal with di�erent seurityaspets related not only to the tehnology itself but also to its deployment and maintenane.We �rst propose a new arhiteture that o�ers real-time supervision of a omplete virtualizedarhiteture. The idea is to implement deentralized supervision on one single physial host.We study the advantages and the limits of this arhiteture and show that it is unable to reataording to some new stealthy attaks.As a remedy, we introdue a new proedure that permits to seure the sensitive resoures ofa virtualized system and make sure that families of attaks an not be run at all. We introduea variant of the LTL language with new past operators and show how poliies written in thislanguage an be easily translated to attak signatures that we use to detet attaks on the system.We also analyse the impat that an inseure network ommuniation between virtual mahinesan have on the global seurity of the virtualized system. We propose a multilevel seurity poliymodel that overs almost all the network operations that an be performed by a virtual mahine.We also deal with some management operations and introdue the related onstraints that mustbe satis�ed when an operation is performed.
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RésuméLa virtualisation est une tehnologie dont la popularité ne esse d'augmenter dans le monde del'entreprise, et e pour l'e�aité et la failité de gestion qu'elle apporte. Cependant, le problèmemajeur de ette tehnologie est la séurité. Dans ette thèse, nous proposons de renforer laséurité des systèmes virtualisés et nous introduisons de nouvelles approhes pour répondre auxdi�érents besoins en séurité de ette tehnologie et aussi aux aspets liés à à son fontionnementet son déploiement.Nous propososns une nouvelle arhiteture de supervision qui permet de ontr�ler la totalitéde la plateforme virtualisée en temps réel. L'idée est de simuler une supervision déentralisée(plusieurs postes) sur un seul poste physique. Nous étudions les avantages et les limites de etteapprohe et nous montrons que ette solution est inapable de réagir é à un ertain nombred'attaques nouvelles.Comme remède, nous introduisons une nouvelle proédure qui permet de séuriser les ressouresritiques d'un système virtualisé pour s'assurer que des familles d'attaques ne peuvent être exé-utées en ayant aès à es ressoures. Nous introduisons une variante de LTL ave de nouveauxopérateurs de passé et nous montrons omment des politiques de séurité formulées à l'aide dee langage peuvent être failement traduites en signatures d'attaques qui peuvent nous être trèsutiles pour la détetion des intrusions dans le système.Nous analysons aussi l'impat d'une ommuniation réseau non séurisée entre mahinesvirtuelles sur la séurité globale du système virtualisé. Nous proposons un modèle d'une politiquede séurité multi-niveaux qui ouvre la majorité des opérations liées au réseau et qui peuvent êtreexéutées par une mahine virtuelle. Notre modéle traite aussi ertaines opérations de gestionde l'infrastruture virtualisée et les ontraintes de séurité qui doivent être satisfaites.
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Chapter 1Introdution1.1 Context of the thesisToday's IT intensive enterprise must always be on the lookout for the latest tehnologies thatallow businesses to run with fewer resoures while providing the infrastruture to meet today andfuture ustomer needs. Virtualization is the utting edge of enterprise information tehnology. Inreent years the term virtualization has beome the industry's newest buzzword. Virtualizationtehnology is possibly the single most important issue in IT and has started a top to bottomoverhaul of the omputing industry. The growing awareness of the advantages provided byvirtualization tehnology is brought about by eonomi fators of sare resoures, governmentregulation, and more ompetition.Virtualization tehnology is being used by a growing number of organizations to redue poweronsumption and air onditioning needs and trim the building spae and land requirementsthat have always been assoiated with server farm growth. Virtualization also provides highavailability for ritial appliations with a streamlines appliation deployment and migrations.Furthermore it simpli�es IT operations and allow IT organizations to respond faster to hangingbusiness demands.In a few words, this tehnology is a ombination of software and hardware engineering thatreates Virtual Mahines (VMs) by abstrating the omputer hardware and allowing a singlemahine to at as if it were many mahines.In surveys of senior-level IT managers, seurity is onsistently one of the top �ve onerns,along, spei�ally, with seurity related to the hot tehnology of the moment. Most reentlythose worries have inluded soial-networking tehnologies suh as Twitter and Faebook andother outlets through whih employees ould turn loose ompany on�dential data. But theseurity of virtual servers and virtualized infrastrutures also rank near the top of the list andrightly so, aording to analysts.In suh tehnologies, seurity is very important. For instane, if an attaker sueeds tobreak the aess ontrol mehanism and penetrates one sensitive virtual mahine suh as theadministration one, then, all the rest of mahines (sometimes hundreds of mahines runningvirtual servers) are under his ontrol. This is more dangerous than having an isolated mahinebeing attaked. Furthermore, one the system is ompromised, all the sensitive data stored indediated virtual mahines an be ompromised.We address in this thesis the seurity of virtualized systems i.e. systems running under aVirtual Mahine Monitor (VMM). We disuss their seurity issues, present defense mehanismsand introdue new approahes for strongly seuring both sensitive resoures and ommuniation.1



2 CHAPTER 1. INTRODUCTION1.2 ContributionsWe study in this thesis the seurity of virtualized systems. We identify seurity threats andpropose new approahes to seure suh systems. First, we fous on the the design and im-plementation of a new intrusion detetion arhiteture dediated to the supervision of virtualmahines running under the ontrol of an hypervisor. This implementation protets both thesystem resoures suh as VMs and the defense engine whih is in this ase our intrusion dete-tion system Orhids [22, 91℄. Further, we show that this implementation needs to be improvedand omplemented by formal methods that help system administrators design seurity poli-ies, express the seurity properties that they want to see satis�ed and deploy them in orderto protet sensitive resoures suh as the administration VM. Finally we study the seurity ofommuniation in virtual environments and introdue a new seurity poliy model that �lls theseurity requirements of both network and virtual system management operations. We detailour ontributions below.1.2.1 A Deentralized Supervision System for Seuring Virtual Ma-hinesIn hapter 3 we fous on the seurity of virtual mahines. We study the existing seurity threatsand propose a new approah for proteting system VMs from outside. We do this by deployingan Intrusion Detetion System (IDS) out of the supervised VMs, and equipping all VMs by smallsensors reporting at real time all the system ations performed by the users/system. The IDSan reat to attaks, stop them and even kill a whole VM or restart it from an early hekpoint.This arhiteture was designed and implemented in ollaboration with Bertin Tehnologies andwas published in 2010 in the SETOP Workshop [5, 4℄. This approah is ost-e�etive and anbe adapted easily to di�erent platforms thanks to the modularity in the implementation.1.2.2 A Temporal Language for Seuring Sensitive ResouresIn hapter 4, we study the seurity of sensitive resoures in virtual environments. We show thatattaking the administration VM for example an lead to the subversion of the whole system. Asa defense, we propose to let the administrator write seurity poliies expressing safety propertiesin a simple language that we qualify as a variant of Linear Temporal Logi with past operators.LTL with past operators has been proved to be more suint than pure-future temporal logi[18℄. Expressing poliies in this language is quite intuitive. Then, we propose an algorithm thattranslates the aforementioned poliies into attak signatures that an feed the attak base ofthe Orhids IDS. This helps automating the generation of new attak rules and simpli�es themonitoring of growing seurity threats. This ontribution was published in [5, 3℄.1.2.3 A Multi-level Seurity Poliy for Seuring CommuniationThe ontributions ited above do not over the network seurity aspet, thus we introdue inhapter 5 a Multi-level seurity poliy model in order to seure ommuniation in virtual networksbuilt using virtual mahine monitors. Communiation is very important in suh systems. Forinstane, the information �ows between the supervision VM and other VMs is guaranteed thanksto a virtual network that we build by hand. If an attaker sueeds to apture some �owing data,he will know more about the deployed seurity mehanism whih represents a real seurity threat.Our poliy model overs di�erent aspets of networking and also deals with operations relatedto the management of the virtual resoures [2, 1℄.



1.3. RESEARCH PUBLICATIONS 31.3 Researh Publiations1.3.1 Conferenes and WorkshopsThe results obtained in this thesis have been partially published:1. H. Benzina. Towards Designing Seure Virtualized Systems. In Proeedings of The SeondInternational Conferene on Digital Information and Communiation Tehnology and itsAppliations (DICTAP 2012), Bangkok, Thailand. IEEE Computer Soiety Press, 2012.2. H. Benzina. A Network Poliy Model for Virtualized Systems. In Proeedings of The Sev-enteenth IEEE Symposium on Computers and Communiation (ISCC 2012). Cappadoia,Turkey. IEEE Computer Soiety Press, 2012.3. H. Benzina. Logi in Virtualized Systems. In Proeedings of the First International Con-ferene on Computer Appliations and Network Seurity (ICCANS 2011), Malé, Maldives.IEEE Computer Soiety Press, 2011.4. H. Benzina. Seuring Hypervisors through Temporal Logi and Seurity Poliies. Work-shop on Formal methods for speifying and verifying ritial systems 2011. Tunis, Tunisia.5. H. Benzina and J. Goubault-Larreq. Some Ideas on Virtualized Systems Seurity, andMonitors. In The third International Workshop on Autonomous and Spontaneous Seurity(SETOP 2010), Athens, Greee. Springer LNCS 6514.1.3.2 Researh ToolsThe implementation of the tool that was built as part of our researh is available here :� H. Benzina. RuleGen, a tool for ompiling seurity poliies written in a variant of LTLwith past into automata representing attaks signatures (http://www.lsv.ens-ahan.fr/~benzina/rulegen.php).1.4 Thesis PlanChapter 2 introdues onepts standard in the literature and disusses the main ontributions inthe �eld of seuring virtualized systems. In Chapter 3, we present our ontribution in the �eldof intrusion detetion in virtual environments, it onsists of a deentralized supervision systemimplemented on top of the Xen hypervisor. This hapter is rather small and we hoose to startby presenting this implementation in order to show its advantages and also its limits against newattaks. Based on thees limits we introdue in hapter 4 a new approah for seuring sensitiveresoures in virtual environments that aims to defend the system against stealthy attaks thatannot be deteted by the aforementioned implementation, and we introdue a new temporallanguage whih is a variant of LTL with past that helps system administrators write their ownseurity poliies. Furthermore, we show how to translate the written seurity poliies into attakssignatures that an be used by the Orhids IDS. In hapter 5, we disuss the seurity threats thatvirtualized systems an fae while network primitives in a loal virtual network are invoked andpresent a Multilevel Seurity Poliy dediated to the enforement of ommuniation seurity.This poliy overs also all main VM-management operations. Chapter 6 onludes the thesiswith a summary of the results obtained and presents perspetives and possible future work.
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Chapter 2State of The Art2.1 IntrodutionIn this hapter, we review several standard onepts, de�nitions and ontributions in virtualiza-tion tehnology, intrusion detetion and seurity in general.2.2 VirtualizationVirtualization is not a new idea. In fat, it goes bak to the early days of omputing. We anmention the work of Popek and Goldberg in 1974 [6℄, whih analyzed the di�erent possible typesof virtualization solutions, their disadvantages and laid the groundwork for future developments.Virtualization permits to run an operating system inside a virtual mahine, whih allows runningmultiple operating systems in the same physial host and sharing ostly resoures. Historially,virtualization has beome fashionable in 2006, when new software running Windows in Ma OSX appeared. Sine then, this tehnology has been integrated into Windows 7, and was built inthe heart of omputers: �rst at the proessor and then, reently, at the devie level. Nevertheless,this remains a rather mysterious tehnology for the general publi.A Virtual Mahine (VM) is the set of hardware (CPU, memory, hard disk, peripherals, et..)emulated by the virtualization software and viewed by the guest operating systems. Spei�ally,we are talking about HVM (Hardware Virtual Mahine). Popek and Goldberg de�ned a virtualmahine as �an e�ient, isolated dupliate of a real mahine�.A Virtual Mahine Monitor (VMM), or virtual mahine manager is the virtualization softwareitself. Two types of VMM exist, the �rst one an be installed as an appliation on a host(Linux, Ma OS X, Windows, et..). The seond, ommonly alled a hypervisor, is atually avery simple operating system (Linux or Windows) ontaining the virtualization program. Thedi�erene is important in the ase of ritial appliations: using the seond type of VMM avoidswasting resoures with a host system. Virtual mahines an be useful in many areas, often inthe professional �eld where many Appliations do not require the power of a server, but wherethe segmentation of servies however requires administrators to dediate one to eah task. The�rst one is to take advantage of many OSes at the same time, more easily than in a multi-boot.It is thus possible to have Windows on a Maintosh or Windows, Ma OS X and Linux on onemahine, et... Beyond the gimmik, it's an advantage for all software developers who need totest their ode under eah platform, as eah browser, et (see Figure 2.1)... Note that, for now,probably by the will of Apple, it is impossible to install the lient version of Ma OS X on a5
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Figure 2.1: A Virtualized SystemPC. The opposite is quite possible. Another advantage of using virtual mahines is the stabilityand the inreased seurity of the system : if a VM rashes, the other VMs are not a�eted. Inaddition, eah VM is enapsulated in a �le. It is therefore very easy to make a bakup of thesystem at a given time. This �le is also easily transferable from one omputer to another. Aboon to system administrators and others who regularly hange their PC.2.2.1 Popek and Goldberg Virtualization RequirementsThe Popek and Goldberg virtualization requirements [6℄ are a set of onditions allowing a om-puter system to implement the virtualization tehnology orretly. They de�ned the VirtualMahine Monitor (VMM) as a software having some essential harateristis. Programs runningunder the VMM should �nd the same onditions as if they were running under ordinary ma-hines, the VMM has to provide an environment whih is idential with the original mahine.This should not a�et the speed of the system. They required also that the VMM has a ompleteontrol of system resoures. Another harateristi of a VMM is e�ieny. It demands that mostof the virtual proessor's instrutions an be exeuted diretly by the real proessor, with nosoftware intervention by the VMM. This statement rules out traditional emulators and ompletesoftware interpreters (simulators) from the virtual mahine umbrella.The third harateristi, [...resoure ontrol, labels as resoures the usual items suh as mem-ory, peripherals, and the like, although not neessarily proessor ativity. The VMM is said tohave omplete ontrol of these resoures if (1) it is not possible for a program running under it inthe reated environment to aess any resoure not expliitly alloated to it, and (2) it is possibleunder ertain irumstanes for the VMM to regain ontrol of resoures already alloated...℄. [6℄.The Virtual Mahine Monitor is de�ned as a partiular piee of software alled ontrol programomposed of several modules. These modules fall into three groups : the �rst one is a dispather
D, that ontrols the all of other modules. The seond one is an alloator A that deides whethera resoure should be alloated or not. In the ase of one single VM, the alloator has only toprovide the separation between this VM and the VMM. But when several VMs are running ontop of the VMM, the alloator has to handle the aess to shared resoures. The alloator will beinvoked by the dispather when a VM tries to exeute some privileged instrution that attemptsto hange the resoures assoiated to this VM. The third set of modules is alled interpreters.An interpreter is assoiated to eah privileged instrution.Another interesting part of this work is the spei�ation of the virtual mahine properties.The authors have presented three properties of VMs. The �rst one is the e�ieny property.
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Figure 2.2: The Virtual Mahine Map (soure : [6℄)All unprivileged instrutions are exeuted by the hardware diretly, with no intervention of theVMM. The seond one is the resoure ontrol property whih ensures that every program shouldgo through the alloator in order to aess system resoures. The last one is the equivaleneproperty.The availability problem arises from this on�guration. It ours when the alloator fails tosatisfy a partiular request for a resoure. Then the program asking for this resoure will beunable to run. Thus the virtual environment is said to be "smaller" than the real system. Theauthors de�ne the VMM as any ontrol program that satis�es the three properties (e�ieny,resoure ontrol and equivalene). Then funtionally, the environment whih any program seeswhen running with a virtual mahine monitor present is alled a virtual mahine. It is omposedof the original real mahine and the virtual mahine monitor.Theorem. [...For any onventional third generation omputer, a virtual mahine monitormay be onstruted if the set of sensitive instrutions for that omputer is a subset of the set ofprivileged instrutions...℄[6℄.The theorem provides a ondition su�ient to guarantee virtualizability. However, thosefeatures whih have been assumed are standard ones, so the relationship between the sets ofsensitive and privileged instrutions is the only new onstraint. It is a very modest one, easy tohek. Further, it is also a simple matter for hardware designers to use as a design requirement.Virtual Mahine Map Figure 2.2 shows the mapping f : Cr → Cv between instrutions inthe virtual environment. That is for any state Si ∈ Cr and any instrution sequene ei, thereexists an instrution sequene e′i suh that f(ei(Si)) = e′i(f(Si)). Two related properties existin the de�nition of a VM map. The �rst one is the existene of instrution sequenes e′i onthe Cv domain that orrespond to the sequenes ei on the Cr domain. The seond one is themathematial existene of a partiular mapping from the states of the real mahine to the virtualmahine system.2.2.2 Some ChallengesA proessor is apable of running a small number of basi instrutions. This set, alled ISA(Instrution Set Arhiteture), is enoded in the proessor and is not editable. It de�nes theapabilities of a proessor, the hardware arhiteture whih is then optimized to exeute theinstrutions in the ISA as e�iently as possible. The best known ISA in the PC world is the



8 CHAPTER 2. STATE OF THE ARTx86, used from the beginning by Intel and taken over by AMD hips. One an also mentionthe PowerPC, ARM, MIPS, et.. Widespread, even ubiquitous, the x86 is not provided free ofdefets, but it was out of question to replae it by another tehnology. To avoid this, Intel andAMD developed respetively the VT-x and AMD-V solutions. If the x86 is not well suited tovirtualization, it is beause of 17 ritial non-privileged instrutions. The instrutions of thex86 ISA are not similar. Some of them an hange the on�guration of CPU resoures and arealled ritial. To protet the stability of the mahine, these instrutions an not be exeutedby all software. From the perspetive of the CPU, software belongs to four ategories, or levelsof abstration: the rings 0, 1, 2, 3. Eah ring de�nes a dereasing level of privilege. The mostritial instrutions laim the highest privileges, of order 0. Unfortunately, on an x86 proessor,17 of these ritial instrutions an be exeuted by the same software tier 1, 2, or 3. Thisonstitutes a big problem for VMMs. An operating system is atually designed to run in ring0 and use ritial instrutions to alloate CPU resoures between di�erent appliations. But ina situation when it is a guest on a virtual mahine, the OS should not even be able to modifythe material, otherwise it would rash the entire system. Only the hypervisor must have theserights. It is therefore ritial that all instrutions are interepted. It's very easy for all privilegedinstrutions. The OS is then exeuted in ring 3, as appliations, and all requests for privilegedinstrutions trigger an error that is handled by the VMM. This is muh more ompliated for the17 hazardous and non-privileged instrutions. These do not trigger automatially an error, theymust be deteted pieemeal by the VMM and then reinterpreted. This enrolls a high overhead,make the hypervisor more omplex.2.2.3 Types of VirtualizationWe distinguish two types of virtualization: full virtualization and hardware virtualization. Fullvirtualization is the primitive virtualization whih emulates the physial hardware and its behav-ior. This is the most ostly approah but the easiest one to implement. Hardware virtualizationis an extension of the priniple of full virtualization. This extension is done by the use of spei�proessor extensions for virtualization (AMD-V and Intel-VT). These extensions an aeleratethe virtualization by di�erent mehanisms. Solutions using this tehnology are VMWare [8℄, SunVirtualBox [9℄, Mirosoft Virtual PC [10℄, QEMU [11℄ and many others.The virtualization of operating systems is alled paravirtualization. This term tends to be usedin many di�erent ways. Paravirtualization is the virtualization of operating systems whose kernelshas been modi�ed to ommuniate with the virtualization layer instead of ommuniating withthe physial hardware. To summarize, the operating system will be aware of being virtualizedand will be adapted for this purpose. The simple addition of spei� drivers does not neessarilyimply paravirtualization. Existing solutions in this area are the produts of Citrix XenServer,Sun xVM, XenSoure or Mirosoft Hyper-V. VMWare starts to get into this tehnology safely.Hardware VirtualizationTo overome the problem ited in the previous setion, Intel designed VT-x and AMD proposedAMD-V. These two tehnologies are very similar. It onsists of three omponents, aiming to makethe virtualization of the CPU, the memory and devies easier. To failitate the virtualization ofthe CPU, Intel and AMD eliminated the need for monitoring and translating the instrutions.To do this, new instrutions were added. A new ontrol struture is also being introdued, alledVMCS (Virtual Mahine Control Struture) at Intel. Among the new instrutions, one of them(VM entry at Intel) toggles the proessor in another exeution mode, dediated to the guestsystems. This mode also has four di�erent levels of privilege. With doing so, guest OS an run
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Figure 2.3: Mobile Virtualizationin ring 3 of VM mode. If needed, the proessor an swithe from guest to normal mode. Thissale is determined by some onditions set by the VMM using the ontrol bits stored in theVMCS.Desktop VirtualizationDesktop Virtualization is part of the great family of virtualization tehnologies with. The �rstpriniple of desktop virtualization is to display on one host, tens, hundreds or even thousands ofphysial hosts, a virtual image of the user station whih is atually really exeuted on a remoteserver. Behind this great priniple, however there are several forms of desktop virtualization. Theoldest is Server-Based-Computing, onsisting of virtualizing some appliations but not the entireoperating system. While the user sees (and uses) on his host the appliations running on a remoteserver, the Os is still running on the lient side. A variant exists whih is appliation virtualizationby isolation. Also alled isolation by appliative bubbles, this type of virtualization installs anappliation with remote streaming on the workstation. It is the least ommon type but an solvethe problems of inompatibility between appliations and OSes. Desktop Virtualization may alsobe related to the operating system streaming. In this on�guration, the target system boots froma remote disk on the network and load only the appliations that the user wants, this an be doneusing logial volumes installed on a remote server. Another form of Desktop Virtualization is theVDI arhiteture (Virtual Desktop Initiative), also known as Hosted Virtual Desktop (HVD).It onsists of a total virtualization of the host (appliations that operating system), allowing tooverome the problem of inompatibility with the lient host.Mobile VirtualizationThe mobile phone is now as important to businesses as desktop omputers, and ats as a mobileomputer in many ases. Mobile Virtualization is a new tehnology used mainly for Androidphones to separate personal appliations from professional ones in order to redue the risk ofompromising data.



10 CHAPTER 2. STATE OF THE ARTThis tehnology was �rst presented by VMWare [8℄ in 2009 by their VMWare Mobile Vir-tualization platform whih reates a virtual mahine for mobile devies, allowing users to movetheir phone to di�erent handsets (see Figure 2.3. All the data will be stored in a portable �le :this solves the problem of loosing the data when the mobile phone is ompromised.ParavirtualizationParavirtualization is another type of virtualization. Here, the guest operating system is aware ofrunning in a virtualized environment, whih of ourse requires some modi�ations of the software.In return, it beomes apable of interating with the hypervisor and to ask it to transmit allsdiretly to the hardware of the host server. In theory, the virtual performane is then very loseto the performane ahieved with real hardware. The hypervisor is in diret ontat with thephysial hardware. It is the exlusive intermediary between the hardware and the operatingsystems. All operating systems are virtualized in the sense that they have a ore adapted to thevirtualization layer. Some OSes an have spei� rights to aess some ressoures : this dependson what the administrator wants from his software.A hypervisor, also alled virtual mahine manager (VMM), is a virtualization tehnique thatallows to run many OSes on the same physial host. The physial resoures are shared betweenthe di�erent OSes using hyperalls. The most known hypervisor is Xen [12℄. A hyperall is asoftware trap from a guest domain (or host) to the hypervisor, just as a sysall is a software trapfrom an appliation to the kernel. The hyperall is synhronous, but the return path from thehypervisor to the guest domain uses event hannels. An event hannel is a queue of asynhronousnoti�ations, and notify of the same sorts of events that interrupts notify on native hardware.When a domain with pending events in its queue is sheduled, the OS's event-allbak handleris alled to take appropriate ation.2.3 Intrusion DetetionIntrusion Detetion aims to detet ations that attempt to ompromise the integrity, the avail-ability or on�dentiality of a resoure. Early work in intrusion detetion began with Anderson[13℄ in 1980 and Denning [14℄ in 1987. Today there are more than 140 intrusion detetion sys-tems [15℄. Intrusion Detetions Systems (IDS) are designed to reveal, usually through alerts, anyativity that may be onsidered intrusive by analyzing information from various areas within aomputer or a network to identify possible seurity breahes.Intrusion Detetion Systems are generally lassi�ed into two broad ategories depending onthe type of data to analyze [16℄: Host-based IDS (HIDS) and Network-based IDS (NIDS). HIDSare haraterized by the analysis of events or log messages generated by the system. NIDSanalyze the data that travels over the network. An IDS performs a passive san. The passiveanalysis is to be ontrasted with the ative analysis, this is the ase for example a �rewall thatbloks ertain pakets. Intrusion detetion funtions inlude:� Analyzing both user and system ativities� Cheking system and �le integrity� Reognising patterns of attaks (Pattern Mathing)� Alerting users when seurity poliies are violated (sending emails, logging...)The di�erent modules making up an IDS aording to standards proposed by the IntrusionDetetion Working Group [17℄. This arhiteture onsists of three modules ommon to most



2.3. INTRUSION DETECTION 11IDS. The Ativity of the information system provides a soure of data to some Sensors. Thesesensors then have the role to extrat and proess ertain information in order to transmit shapeevents to an Analyzer. The analysis module then uses these events to detet a possible intrusionand generates alerts aordingly. These alerts are �nally sent to an alert Manager. The latteris responsible for proessing alerts from the various analyzers and report any suspiious ativityon the system to the administrator. Finally, note that an intrusion detetion system may onsistof several sensors dealing with di�erent data soures, multiple analyzers using di�erent methodsof analysing and multiple Managers.The performane of an intrusion detetion system, inluding its method of analysis, dependsof two important onepts that allow to evaluate the performane [19℄ :False Negatives. Ideally, any intrusion must result in a warning. An intrusion that is notdeteted, that is to say, did not generate alert, then onstitutes a false negative. In other terms,false negative is the failure of an IDS to detet an atual attak. The reliability of an analyserdepends on the rate of false negatives. This rate must be the lowest possible.False Posistives. Any alert must orrespond to an e�etive intrusion. When the IDS gener-ates an alert that does not make sense, this alert is quali�ed false positive. The relevane (orredibility) of an analyzer is related to its rate of false positive whih represents the perentageof false alarms.2.3.1 Misuse DetetionMisuse detetion detets a known attak via the de�nition of a senario. This approah uses aknowledge base, alled attak signature base and a method of pattern mathing to reognize thede�ned signatures. A misuse IDS is then omposed of: a set of sensors produing a stream ofevents, a base for attak signatures and an algorithm for pattern mathing.Attak SignaturesEah signature an be seen as a harateristi sequene of events of an attak di�erenting it fromnormal behavior. The onstrution of this base requires an aurate knowledge of the attaksand their parameters.Attak SenarioAn attak senario an be represented by an automaton and also by �nite state mahines. Anautomaton represents the sequene of ations needed to ahieve the attak [20℄. This approahallows one to express omplex senarios of attaks ontaining di�erent ways to reah the samestate. The automaton an also be expressed using spei� language as in [22℄ or [21℄. Severalapproahes [23, 24, 25℄ use a �nite state automaton. The automaton an also be represented asa variant of a olored Petri net as in IDIOT [26℄ or in the form of state transition diagrams asin the NETSTAT tool [27℄. The states of this automaton represent the reent history symbols(system alls) that were observed, a transition from one state to another haraterizes the set oftraes to be produed after this state.Pattern MathingThe Pattern Mathing uses algorithms to reognize a signature in a reord orresponding to asequene of events. This onventional approah is problemati when multiple senarios give rise



12 CHAPTER 2. STATE OF THE ARTto the same signature. To overome this problem, some approahes use algorithms reognitionbased on geneti algorithms [28℄, bayesian networks [29℄ or some approahes doing the analysisof system on�gurations [30℄. Other approahes use a multi-events orrelation system, inludingpre-onditions, post-ontentions and onditons [31, 33℄ to larify the de�nition of senarios. Thisapproah gives a high performane in terms of analysis, but is generally the soure of a high rateof false positives. Indeed, one limitation of this approah is that it is di�ult to write a signatureovering several variants of the same attak without generating false positives.2.4 Seurity PoliiesThe de�nition and implementation of a seurity poliy is the heart of systems seurity. A seuritypoliy de�nes a set of seurity properties, eah property representing a set of onditions that thesystem must respet to remain in a state onsidered as safe. An inorret de�nition or the partialappliation of a poliy an lead the system to a non-safe state, allowing the theft of informationor resoures, the modi�ation of information or the destrution of the system. In this setionwe give a general de�nition of some seurity properties and mehanisms used to implement aseurity poliy. The seurity of omputer systems is generally limited to ensuring the rights ofaess to data and system resoures by implementing authentiation mehanisms and ontrols toensure that the users of these resoures have only the rights that they were granted. The seuritymehanisms in plae may still ause disomfort to at the user level while the instrutions andrules are beoming inreasingly ompliated. Thus, information seurity must be studied in suha way that it does not prevent users from the neessary uses of the system. This is why it isneessary to de�ne initially a seurity poliy, that an be implemented aording to the followingfour steps:� Identify needs in terms of seurity, IT risks weighing on the ompany and their possibleonsequenes� Develop rules and proedures in order to protet the system� Monitor and detet vulnerabilities of information systems and keep abreast of vulnerabili-ties on used appliations and hardware� De�ne the ations to take and who to ontat in ase of detetion of a threat (the admin-istrator of the system in most ases)If we onsider the system as a �nite state mahine with a set of transitions (operations) thathange the system state, then a seurity poliy an be seen as a way that partitions these statesinto authorized and unauthorized states. Given this simple de�nition, we an de�ne a seuresystem as a system that begins in an authorized state and will never enter an unauthorized state.2.4.1 Seurity PropertiesSystems seurity is based on three fundamental properties: on�dentiality, integrity and avail-ability. The interpretation of these three areas varies depending on the ontext in whih they areused. This representation is related to user needs, servies and laws in fore. The de�nition andappliation of these properties are part of the evaluation riterias of seurity. Con�dentiality isbased on the prevention of unauthorized aess to information. The need of this property hasemerged after the integration of ritial information systems, suh as government organizationsor industries, in sensitive areas.
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Figure 2.4: Protetion Rings in x86-32 SystemsThe integrity property refers to the state of data whih, when proessed, saved or transmitted,remains unaltered. In the ase of a resoure, the integrity means that the resoure works orretly.The property of data integrity is to prevent unauthorized modi�ation of information. Ensuringthe �delity of information with respet to their ontainer is known as data integrity. The warrantyinformation related to the reation or owners shall be known as the integrity of the original, moreommonly alled authentiity.Availability refers to the ability to use a desired information or resoure. This property shouldbe aompanied with the reliability of the system, beause having a system that is no longeravailable is a system. As part of the seurity, availability of property refers if an individual maydeliberately deny aess to ertain information or resoures of a system.2.5 Virtualization and Seurity2.5.1 OverviewIn x86-32 systems, there are four rings of protetion from 0 to 3 (see Figure 2.4). In almost alloperating systems without virtualization, only the rings 0 and 3 are used (exept in the GNUHurd system [7℄. The most privileged one is ring 0 whih ontains the OS kernel. The leastprivileged one is ring 3 whih ontains the appliations and the dynami data. The other tworings are not used. The diagram below shows the distribution of appliation omponents in amodern operating system. In paravirtualization, the OS does not have a diret aess to thehardware. Only the hypervisor an aess it diretly. For seurity reasons, it will be neessaryto totally separate the operating system and the hypervisor. In this ase, ring 1 will be used.Thus the hypervisor will be plaed in ring 0 and the OS will take ring 1. Appliations remain inring 3. Now that we have explained the utility of the protetion rings. We have to understandhow these rings are implemented in real? And where do they appear in nature? The protetionrings are implemented in the memory. A RAM area is assigned to a partiular ring by the OS.A program running in a memory area assigned to the ring 3 an not hange a memory areaassigned to the ring 0. When AMD and Intel redesigned the x86 arhiteture to move to the64-bit arhiteture, they deided to remove the rings 1 and 2 beause they were not used (see
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Figure 2.5: Protetion Rings in XenFigure 2.5). This does not reate a partiular problem beause these rings were not used inoperating systems. Virtualization has ome relatively soon after and had the habit of using anadditional ring in order to partition the hypervisor, the operating system and the appliations.Virtualization solutions has therefore been left with only two rings rather then three. To solvethis problem, the Xen projet omes with the idea that ring 3 will be shared by the OS and theappliations. The hypervisor will run in a separate ring (ring 0).Then, AMD and Intel quikly realized the importane that virtualization is taking. So, theydeided to inlude the virtualization instrutions in their proessors to make the opearationsrelated to this tehnique easier. These extensions have enabled hardware virtualization. At thesame time, a ring �-1� was added to make the paravirtualization avoid sharing the ring 3 betweenthe OS and appliations, Figure 2.6 explains this new ariteture. The partitioning of virtualmahines is of ourse a basi harateristi of a virtualization platform. In fat, the hypervisordoes not have the total ontrol of virtual mahines (VMs). It an simply turn them o�, start orpause them. The partitioning is managed by restriting the aess to the memory. Hypervisorshave been spei�ally designed to prevent memory over�ows. The only way to exploit theseover�ows is hyperalls in Xen for example. Sor far, this kind of vulnerability was not deteted.Also in the ase of full virtualization and hardware virtualization, virtual mahines do not evenhave a spei� interfae with the hypervisor making this type of vulnerability impratiable.The real seurity risks in virtualization platforms are, mainly, at the management interfae. Themanagement interfaes are not spei� to virtualization but their use in this partiular ase isgeneralized. Aess to management interfaes must be seured by traditional network seuritymehanisms suh as authentiation methods. One an interfae is ompromised, the data and theaess to virtual mahines remain safe. The interfaes do not generally have aess to partiulardata, they only have a global view of the system in order to be able to on�gure the storagemedia. The aess to a VM is proteted by onventional protetion mehanisms suh as loginand password.
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Figure 2.6: Adding a New Ring2.5.2 Seurity Bene�tsIf the primary reason for the popularity of virtualization is server onsolidation and the optimiza-tion of resoures, seurity o�ers, also, may �nd some bene�ts of adopting this tehnology. Thekey bene�t of virtualization is ertainly isolation. Every VM is running in a separate sandboxwhih redues the risk of information leakage and unauthorized aess. Eah VM has its ownmemory resoures, I/O and proessors. The sandboxing isolates VMs from eah other and fromother virtualized servers. This helps keeping the data safe and ensures their integrity, and allowsalso hosting di�erent types of servers, dediate them for a spee� appliation and optimize thesystem layer for this latter.Isolation an be onsidered as the most important seurity-relevant property of hypervisors.If properly used, it guarantees that a maliious ode in one VM does not a�et the remainingVMs. Besides, resoure usage of a VM an not a�et the performane of other VMs. Isolationan also be used to separate appliations : one an plae vulnerable appliations in a dediatedVM without aring about the seurity of the rest of VMs. If this VM is a�eted, the rest of theplatform remains safe. Another seurity-related feature of hypervisors is their small odebase,ompared to a modern OS, it is muh more easier to ensure that hypervisor's ode does notontain any bugs or �aws. This an be very useful for building TCBs (Trusted Computing Base)[34℄. Moreover, in traditional OSes, the seurity mehanisms (IDS, anti-virus, �rewall...) anbe irumvented as soon as the OS is ompromised. But in virtual environments, these seuritymehanisms an be moved out of the VM (in a dediated VM) whih makes them more resistantto attaks [35℄.Companies usually demand to have several types of partitions: one for the prodution servie,another one for testing, one for validation, and another for development. As sandboxing is total,a problem with one of the VMs will not have an e�et on an other one. If a VM is ompromised,one an kill it and restart it later from the last hekpoint. The seurity o�er an also dediatea virtual server for testing new updates before their installation. In terms of path management,the ompany Blue Lane [36℄ has even developed a virtual path system. The pathes are not
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Figure 2.7: Temporal Course of VMware Vulnerabilities Sine 1999diretly applied on the physial server, but tested on the VM before its installation. This ompanyhas also reently developed a new software solution running on a VMWare virtual mahine toseure servers loated in other VMs. Virtual mahines an also be used as virtual honeypotsallowing the olletion of information oming from hakers. This is alled rash-and-burn. Thistehnique o�ers the ability to keep an eye on maliious behaviors, test some odes and restoreto a previous state of the system in ase the VM rashes. Virtualization an also provide agreater seurity when sur�ng Internet. A Windows user with the VMware Player an start aninstane of Linux equiped with the Firefox navigator and surf without being exposed to ewploitsand vulnerabilities related to Windows or Internet Explorer navigator. Another advantage ofvirtualization is also the ability to have a remote aess to a spei� network without deployinga VPN (Virtual Private Network).In the next setion we will see that virtualization does not represent a perfet mean forseuring systems and appliations : many risks an be arised by using this tehnology.2.5.3 Seurity RisksWith the growth of virtualization tehnologies, the seurity alerts related to this tehnology areinreasing. Figure 2.7 shows the inreasing number of vulnerabilities appearing in the VMWareVMM sine 1999. Virtualization introdues new software layers that represent new areas that areexposed to attaks and whih are quite ompliated to manage. The diret aess to hardwareby these layers an also ause a lot of damage.Three parts of the virtual arhiteture must be supervised as they provide a new playgroundfor hakers. The hypervisor is ertainly the most exposed one, beause it makes the link betweenthe hardware and VMs. The seond sensitive part is the administrative platform, as it givesprivileged aess to all the virtual instanes of the infrastruture, this platform is alled Dom0 in the ase of the Xen hypervisor or Management Virtual Mahine in the ase of VMWare.Finally, the dediated hips to the virtual infrastruture (as Intel VT or AMD SVM) is also agreat danger. They use a set of spei� instrutions that failitate the implementation of multipleoperating systems on one mahine. These platforms an be exploited to get unauthorized aessto system resoures, through a rootkit for example. These attaks are partiularly di�ult todetet beause they use lower software layers. Blue Pill [37℄, is one of these attaks, it was madepubli in 2006. In this attak the whole mahine is virtualized by running a small hypervisorunder it. The system an loose the referenes of the devies, the hardware interrupts and even thesystem time : every thing is interepted and proessed by the hypervisor. This gives the attaker



2.6. SOME EXISTING APPROACHES 17the opportunity to do his work without being deteted sine any detetion system an be turnedo� by the hypervisor! Another type of attaks appeared in 2007 against the Xen hypervisor. Auser in domU an exeute ommands on dom0 while using the pygrub tool. Pygrub dediatesa bootloader to domU as in physial hosts. This vulnerability is very dangerous sine dom0 isa very priviliged domain and have a diret aess to hardware. Some other vulnerabilities wasalso found in Xen, one of them allows a domU to break its isolation and an ause a loal DoS(denial of Servie). VMWare is muh more exposed to attaks then Xen. Many vulnerabilitieswas disovered in this hypervisor. This is the result of the big number of assoiated produts(virtual enter, vSphere, workstation...). Almost all these vulnerabilities are about privilegeesalation. The most ritial ones an be exploited by an unauthentiated attaker from theInternet and an ause a omplete ompromise of data integrity and servie availability.Another threat in virtual environments is overt hannels. It is a way to exploit a hannel thatwas not dediated for ommuniation in order to ommuniate information [38℄. In most ases,overt hannels exist when two entities have aess to a shared variable, the �rst one by readingfrom this variable and the seond one by writing to this same variable. There is two kinds ofovert hannels : storage hannels and timing hannels. The �rst one modi�es a stored objetwhile the seond type uses timed events in order to send information. One an redue the numberof overt hannels in the system. Mandatory Aess Control (MAC) [39℄ is very e�ient againstovert hannels. It is the ase when seurity lasses will be assigned to users in order to limitthe aess of ertain resoures to some spei� seurity lasses. In virtual environments, therisk arising from overt hannels is that users an use these hannels to exhange informationwith eah other wihtout using network onnetions [40℄. Furthermore, Denial of Servie attaks(DoS) an be more devastating when exeuted in a virtual environment then in any another onesine subverting the hypervisor would lead to a omplete subversion of the whole arhitetureand would give the attaker an unlimited ontrol of all the VMs and their data. This is thereason why the hypervisor must be as seure as possible [42, 43℄. To summarize, virtualizationproduts are learly not free from vulnerabilities [44, 45℄. The impat of a vulnerability on avirtualized platform will be more devastating ompared to a onventional arhiteture. Manyountermeasures an be taken to prevent these vulnerabilities from being exploited and to reduethe attaks surfae. On the other hand, the frequney of these vulnerablities is relatively lowwhih gives time to seurity o�ers to design strong defene methods. In the next setion, wewill present some existing seurity solutions for these risks and disuss their e�ieny againstsome seurity threats.2.6 Some Existing ApproahesMuh work have been done around seuring virtualized systems. In this setion, we will presentsome of the most important ontributions in this �eld and onlude with a disussion of thepros. and ons. of every ited work. This setion will not only inlude the presentation ofsome interesting papers but also a summary of some big projets around seuring virtualizedplatforms.2.6.1 XSM/FLASK for XenThe Xen Seurity Modules (XSM) framework is a diret appliation of the Flask arhiteture[46, 47, 48℄ to the Xen hypervisor. This projet was started by NSA (National Seurity Ageny)(Flask is an OS seurity arhiteture that provides �exible support for seurity poliies, the Flaskarhiteture is now implemented in SELinux).



18 CHAPTER 2. STATE OF THE ARTXSM is a generalized seurity framework for Xen, it reates general seurity interfaes andallows ustom seurity funtionality in modules. This makes the hypervisor able to supportmany seurity poliy models at the same time. XSM omes also with the idea of deomposingthe domain 0 i.e minimizing the importane of this domain by reduing its privileges and sepa-rating the hardware priviliges from domain ones. In addition, XSM gives the ability to partitionresoure alloation and ontrol between domains. Some other modules in XSM implement mediaenryption, IP-�ltering/routing and measurement and attestation funtionalities. Besides, allthe modules an be registered and linked in at boot, they may also register a seurity hyperalland a poliy magi number to identify and load a poliy from boot.2.6.2 sHypesHype is an implementation of the XSM modules. This projet [98℄ is one of the most famousontributions in the �eld of seure hypervisors. It was developed by IBM researh for the Xenhypervisor. This projet onsists of a seurity arhiteture that ontrols the sharing of resouresamong VMs aording to formal seurity poliies. The primary goal of sHype is to ontrol ofinformation �ows between VMs. The arhiteture was designed to ahieve medium assurane(Common Criteria EAL4 [50℄) for hypervisor implementations. sHype supports a set of seurityfuntions: seure servies, resoure monitoring, aess ontrol between VMs, isolation of virtualresoures, and TPM-based attestation. The mandatory aess ontrol enfores a formal seuritypoliy on information �ow between VMs. sHype leverages existing isolation between virtualresoures and extends it with MAC features. TPM-based attestation [51℄ provides the ability togenerate and report runtime integrity measurements on the hypervisor and VMs. This enablesremote systems to infer the integrity properties of the running system.Besides, sHype uses a referene monitor that enfores, mandatory aess ontrol poliies oninter-VM operations. A referene monitor is designed to ensure mediation of all seurity-sensitiveoperations, whih enables a poliy to authorize all suh operations [53℄. However, the referenemonitor usually does not deide whether a subjet an aess an objet. It only enfores thedeision, whih is often made elsewhere in the system.The arhiteture of sHype onsists of: (1) the poliy manager maintaining the seurity poliy;(2) the aess ontrol module (ACM) delivering authorization deisions aording to the poliy;and (3) and mediation hooks ontrolling aess of VMs to shared virtual resoures based ondeisions returned by the ACM. The poliy manager interats with the ACM in order to establisha seurity poliy or to help the ACM re-evaluate aess ontrol deisions. The Aess ControlModule (ACM) stores all seurity poliy information loally in the hypervisor, and supports poliymanagement through a privileged hypervisor all interfae. This interfae is aess-ontrolled by aspeialized hook and will only be aessible by poliy-management-privileged domains. Mediationhooks are speialized aess enforement funtions that guards aess to a virtual resoure byVMs. They enfore information �ow onstraints between VMs aording to the seurity poliy.These hooks determine aess deisions with the ACM, enfore aess ontrol deisions and andetermine VMs labels, aess operation type et, these information are useful for the aessontrol. With these hooks, sHype minimizes the interation with the ore hypervisor.DisussionThe main goal of sHype was to ontrol all expliit information �ows between VMs. So far, sHypehas ful�lled this objetive and has shown its e�ieny in this area. In addition, it has shownpromising results in ensuring the integrity of the system and preventing information leakage. Onthe other hand all these results was obtained with the Xen hypervisor, as sHype was originally



2.6. SOME EXISTING APPROACHES 19

Figure 2.8: sHype Arhiteturedeveloped under Xen. This makes it unable to seure other hypervisors and beomes softwareand OS-dependant. For instane, VMWare and KVM [54℄ are gaining suess, and it will be apity that suh a software does not support these virtual mahine monitors. Besides, sHype annot be run under Windows or MAC OS X whih makes it loose a huge umber of users. Anotherdisadvantage of sHype is its deployment and its administration : this software is not adapted tosimple users and needs some training before starting using it. In order to bypass these problems,we present in this thesis some portable solutions that are OS and VMM-undependant, and alsovery simple approahes that an be deployed easily by simple users. The last thing to say aboutsHype is its weakness against DoS attaks sine there is no alerting mehanism that an detetthat a VM is not responding : this an be done also by our approah.2.6.3 VAX VMM seurity kernelThis projet [55℄ was one of the �rst attempts to design a seure hypervisor. VAX aims to developa seurity kernel whih was arried out on the virtual address extension (VAX) arhiteturedesigned by Digital Equipment Corporation during the 1970s. This is why the VMM seuritykernel of Karger et al. is often also alled the VAX seurity kernel. VAX supports DAC andMAC for all VMs. It enfores the Bell-La Padula and Biba models for integrity. Furthermore,the seurity kernel was arefully designed in order to prevent overt-hannels. Self-Virtualizationis also supported by VAX : it is the ability of a virtual mahine monitor to run in one of its ownVMs and reate seond-level VMs whih is very useful for developing and debugging the VMMitself.In VAX, the user has to authentiate herself to the VAX VMM before aessing any VM. Forthis purpose the VAX hypervisor o�ers a trusted proess running in the kernel alled the Server.This proess only exeutes veri�ed mahine ode and does not aept any user-written ode. Ifa user wants to interat with the VAX hypervisor, a trusted path between a server proess andthe user is established. The server provides ommands that allow the user to onnet to a VM



20 CHAPTER 2. STATE OF THE ARTdepending on his aess rights. In ase the user has the neessary rights to onnet to a VManother trusted path is established between the user and the VM, allowing him to interat withthe OS running in the VM. VAX has shown a good performane whih is extremely important,beause getting good performane is very hard. It requires detailed analysis of what portions ofthe kernel are performane-ritial and a willingness to redesign those portions for performaneand possibly re-ode them in assembly language or to provide miroode performane assistane.DisussionIt is true that the VAX hypervisor is an old projet, but this does not make it unimportant :in fat this projet was a perfet example for the projets started later. It has lari�ed manyimportant things about the seurity of hypervisors and has stressed some relevant points thathave to be treated arefully to design a seure hypervisor. Besides, VAX represents a goodimplementation for seurity poliy models suh as Bell-La Padula and Biba.2.6.4 TerraTerra [56℄ is a virtualization-based arhiteture for trusted omputing. This projet introduesthe Trusted Virtual Mahine Monitor (TVMM), that partitions a tamper-resistant hardwareplatform into multiple, isolated virtual mahines (VM), providing the appearane of multipleboxes on a single, general-purpose platform. VMs are lassi�ed into open-box VMs and losed-boxVMs. Open-box VMs are not di�erent from ordinary VMs running ont top of Xen for example : nospeial seurity mehanisms are implemented for this kind of VMs. Closed-box VMs implementthe semantis of a losed-box platform. Their ontent annot be manipulated or inspeted by theadministrator of the system. Only the reator of this VM an aess it. This is ahieved throughthe use of three main seurity mehanisms : (1) Attestation whih allows an appliation runningin a losed-box VM to identify itself to a remote party, this an be done through ryptographimehanisms. Then, a hain of trust is established starting from this appliation and ending atthis remote party. (2) Root seure: even the platform administrator annot break the isolationof a losed-box VM. (3) Trusted Path: this is essential for building seure appliations. In theTVMM, users an easily identify VMs that they are ommuniating with, and eah VM is ableto ensure that it is interating with a human user. This ensures the privay of ommuniationsbetween VMs and users and prevents snooping by maliious appliations.DisussionThe main goal of Terra was to make the ommuniation between users and VMs as seureas possible. The notion of open/losed box VMs prevents some families of attaks againsthypervisors. The remote attestation ensures a seure hannel of ommuniation between thedi�erent parties. On the other hand, the deployment of Terra is still di�ult for simple usersand needs to be more intuitive. In addition, terra does not provide aess ontrol mehanismssuh as MAC whih seems to be a serious weakness of this arhiteture. Therefore the designersof Terra deided to make it as �exible as possible by minimizing the ontrol of information �owswhih weakens the overall seurity of this software. We overome some of these problems in ourwork by providing very easy-to-deploy software and strong formal seurity poliies that preventsfamilies of attaks from being exeuted.



2.6. SOME EXISTING APPROACHES 212.6.5 Other ContributionsIn [57℄, Bleikert et al. studied the automated information �ow analysis of heterogeneous virtual-ized infrastrutures. They proposed an analysis system that performs a stati information �owanalysis based on graph traversal. The system uni�es diverse virtualization environments in agraph representation and omputes the transitive losure of information �ow and isolation rulesover the graph and diagnoses isolation breahes from that automatially. The analysis is basedon expliitly spei�ed trust rules. The implemented tool is independant from the vendor andan unify di�erent systems su as : Xen, KVM, VMWare and PowerVM. The stati analysisovers all the resoures : hardware, hypervisor, storage and network resoures. This tehniqueis appliable to the isolation analysis of omplex on�gurations of large virtualized dataentersthat inlude heterogeneous server hardware, di�erent VMMs, and many virtual (and physial)networking and storage resoures. This approah is interesting for stati analysis. However itdoes not enfore any kind of seurity poliy and is only useful in the ase of large-sale infras-trutures with a diversity of underlying platforms. The ore hypervisor does not take advantagefrom this tehnique sine it fouses only on �ow analysis. Another point is that the analysis isrestrited to a binary deision, whether information �ows or not, and does not support tra�types.NetTop [90℄ provides infrastruture for ontrolling information �ows and resoure sharingbetween VMs. While the granularity level in these systems is a VM, we fous in our work at thegranularity of a proess.In [52℄, Kurniadi et al. use virtual mahine monitors for implementing honeypots. This isa di�erent use of virtualized systems, but shows that hypervisors an also be useful for experi-mentation, testing and diagnosis. The authors implement a VMM-based intrusion detetion andmonitoring system for olleting information about attaks on honeypots. Their �rst step was toimplement a sensor mehanism that monitors honeypots for intrusions by dynamially rewritingthe binary of a running kernel image. Then, they ompared the performane impat on threeimplementations built on UML (User Mode Linux) and Xen. The third step was to apply thismehanism to honeypots that are onneted to Internet. Finally, they analysed and lassi�ed thedeteted attaks. Whereas this approah is very useful for diagnosis, the implemented sensorswork only on spei� platforms and do not report the deteted attaks to an IDS for example todo the forensi whih is very important for this kind of approahes. In this thesis we propose asensor-based approah for intrusion detetion but our goal is to seure the virtualized platformand not to implement honeypots, the advantage of our implementation is that all the events andalerts an be saved on the dis, then the seurity o�er an aess the reported events and studytheir impat on the system.ReHype [32℄ is a system implemented on top of the Xen hypervisor that allows the reoveryfrom hypervisor failures. This system is able to preserve the state of running VMs while bootinga new instane of the hypervisor. Besides, it an protet the reovered hypervisor, resolveinonsistenies between di�erent parts of hypervisor state as well as between the hypervisor andVMs and between the hypervisor and the hardware. The authors identi�ed the spei� souresof state orruptions and inonsistenies, determined whih of those are most likely to preventsuessful reovery, and devised mehanisms to overome these problems. Reovery is veryimportant in virtualized systems and ReHype represents a very e�ient tool that implementsthis feature.Another interesting ontribution is the BitVisor [67℄ hypervisor. BitVisor implements a newarhiteture alled parapass-through (see Figure 2.9). This latter allows most of the I/O aessfrom guest VMs to pass-through the hypervisor and enfores storage enryption of ATA devies.
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Figure 2.9: The para pass-through arhiteture (soure : [67℄)If all the aess is pass-through, the hypervisor is almost useless. Di�erent from fully pass-through aess, para pass-through hypervisors interept a part of aess to (1) protet hypervisorsfrom the guest OS, and (2) enfore seurity funtionalities. The aess to be interepted inludesmemory aess and I/O aess. Interepting memory aess is neessary to protet memoryregions of the hypervisor and handle memory-mapped I/Os (MMIOs). Interepting I/O aess isneessary to protet the hypervisor and enfore seurity funtionalities upon the I/Os for spei�devies.



Chapter 3Seuring Virtual Mahines3.1 IntrodutionVirtual Mahine tehnology is going mainstream. Motivated by ost savings, server onsolidationand disaster reovery. IT organizations are hanging the way they deploy appliations anddesktops. But industry pundits agree that full-on deployment of virtual mahines has beenimpeded by a ritial weakness: seurity. Traditional seurity arhitetures and produts areinadequate for this new topology due to its spei� arhiteture and seurity requirements. Manyaspets of virtual platforms have to be taken into onsideration when designing dediated seuritysolutions. It is more hallenging to protet a virtualized system with 10 virtual mahines thantrying to seure only one isolated physial mahine.We introdue in this hapter a new idea for seuring virtualized platforms. It is based onthe notion of deentralized supervision in physial networks and adapts it to virtualized systems.Our objetif is to seure all running VMs and protet them against internal and external attaks,redue the ost of this supervison mehanism and entralize event logging. Our approah is ost-e�etive, e�ient against families of attaks and have the advanatge of isolating the defensesystem (whih is an IDS in this ase) and proteting it against maliious users. We design andimplement our approah on top of the the Xen hypervisor [12℄ using the Orhids IDS [91℄ andthe SELinux auditd daemon. This approah has many advantages and is quite e�ient againstmany seurity threats but has also some limits that we disuss at the end of this hapter andpresent more in-depth disussion in the next hapter.3.2 Related WorkMuh work has been done on enhaning the seurity of omputer systems. Most implemented,host-based IDS run a program for seurity on the same operating system (OS) as protetedprograms and potential malware. This may be simply neessary, as with Janus [86℄, Systrae[93℄, Sekar et al.'s �nite-state automaton learning system [99℄, or Piga-IDS [79℄, where the IDSmust interept and hek eah system all before exeution. Call this an intereption arhiteture:eah system all is �rst heked for onformane against a seurity poliy by the IDS; if the allis validated, then it is exeuted, otherwise the IDS fores the all to return immediately with anerror ode, without exeuting the all.A virtualized system suh as Xen [119℄, VirtualBox [115℄, VMWare [116℄, or QEmu [95℄ allowsone to emulate one or several so-alled guest operating systems (OS) in one or several virtual23



24 CHAPTER 3. SECURING VIRTUAL MACHINESmahines (VM). The di�erent VMs exeute as though they were physially distint mahines, andan ommuniate through ordinary network onnetions (possibly emulated in software). Thevarious VMs run under the ontrol of a so-alled virtual mahine monitor (VMM) or hypervisor ,whih one an think of as being a thin, highly-privileged layer between the hardware and theVMs. See Figure 2.1, whih is perhaps more typial of Xen than of the other ited hypervisors.The solid arrows are meant to represent the �ow of ontrol during system alls. When a guestOS makes a system all, its hardware layer is emulated through alls to the hypervisor. Thehypervisor then alls the atual hardware drivers (or emulations thereof) implemented in aspei�, high privilege VM alled domain zero. Domain zero is the only VM to have aess tothe atual hardware, but is also responsible for administering the other VMs, in partiular killingVMs, reating new VMs, or hanging the emulated hardware interfae presented to the VMs.In reent years, virtualization has been seen by several as an opportunity for enforing betterseurity. The fat that two distint VMs indeed run in separate sandboxes was indeed broughtforward as an argument in this diretion. However, one should realize that there is no oneptualdistintion, from the point of view of protetion, between having a high privilege VMM and lower-privileged VMs, and using a standard Unix operating system with a high privilege kernel andlower-privileged proesses. Loal-to-root exploits on Unix are bound to be imitated in the formof attaks that would allow one proess running in one VM to gain ontrol of the full VMM, inpartiular of the full hardware abstration layer presented to the VMs. Indeed, this is exatlywhat has started to appear, with Wojtzuk's attak notably [117℄.Some of the reent seurity solutions using virtualization are sHype [98℄ and NetTop [90℄.They provide infrastruture for ontrolling information �ows and resoure sharing between VMs.While the granularity level in these systems is a VM, our system ontrols exeution at thegranularity of a proess.Livewire [85℄ is an intrusion detetion system that ontrols the behavior of a VM from theoutside of the VM. Livewire uses knowledge of the guest OS to understand the behavior in amonitored VM. Livewire's VMM interepts only write aesses to a non-writable memory areaand aesses to network devies. On the other hand, our arhiteture an interept and ontrolall system alls invoked in target VMs.G. W. Dunlap desribes an experiene of use of virtual mahines for the seurity of systems[68℄. The proposal de�nes an intermediate layer between the monitor and the host system, alledRevirt. This layer aptures the data sent through the syslog proess (the standard UNIX loggingdaemon) of the virtual mahine and sends it to the host system for reording and later analysis.However, if the virtual system is ompromised, the log messages an be manipulated by theinvader and onsequently are no more reliable.Stefan Berger desribes the trusted omputing in virtual mahine [69℄. By virtualization theTPM hipset, a single TMP hipset an provide the trusted omputing servie for eah VM onthe same hardware platform.In [92℄, Onoue et al. propose a seurity system that ontrols the exeution of proesses fromthe outside of VMs. It onsists of a modi�ed VMM and a program running in a trusted VM. Thesystem interepts system alls invoked in a monitored VM and ontrols the exeution aordingto a seurity poliy. Thus, this is a an intereption system. To �ll the semanti gap betweenlow-level events and high-level behavior, the system uses knowledge of the struture of a givenoperating system kernel. The user reates this knowledge with a tool when reompiling the OS.In ontrast, we do not need to rebuild the OS, and only need to rely on standard event-reportingdaemons suh as auditd, whih omes with SELinux [113℄, but is an otherwise independentomponent.



3.3. SYSTEM SUPERVISION IN VIRTUAL ENVIRONMENTS 253.3 System Supervision In Virtual EnvironmentsWe present in this setion some interesting approahes for supervising system exeution anddeteting maliious behaviors in virtual environments. Some approahes ahieve loal supervison,i.e every VM is equiped with neessary mehanisms for deteting/stopping attaks. Other onesimplement deentralized supervision where only one remote VM ontains seurity mehanismsthat are able to monitor the whole virtualized system and prevent attaks.In most VMM implementations many seurity approahes require the ability to monitorfrequently exeuting events, suh as host-based intrusion detetion systems that interept everysystem all throughout the system, LSM (Linux Seurity Module) [82℄ and SELinux that hookinto a large number of kernel events to enfore spei� seurity poliies, or even instrution-levelmonitoring used by several o�ine analysis approahes. Due to the overhead involved in out-of-VM monitoring, many suh approahes either are not designed for prodution systems. Whilekeeping a monitor inside the VM an be e�ient, the key hallenge is to ensure at least the samelevel of seurity ahieved by an out-of-VM approah.3.3.1 Loal Supervision ApproahesAmong the various approahes proposed for loal VM supervison in the late 10 years, SIM (SeureIn-VM Monitoring) [83℄ is one of the most e�ient and low-ost tehniques that aims to protetthe VMM and VMs. In SIM the authors utilize ontemporary hardware memory protetion andhardware virtualization features available in reent proessors to reate a hypervisor protetedaddress spae where a monitor an exeute and aess data in native speeds and to whihexeution is transferred in a ontrolled manner that does not require hypervisor involvement.Two important properties are ensured by this tehnique : (1) Fast invoation : where invokinga monitor handler should not involve any privilege level hange. (2) Data read/write at nativespeed : the monitor ode should be able to read and write any system data at native speed withoutany hypervisor intervention. The main feature of this approah is that the ode of the monitoris isolated and proteted by the idea of having two adress spaes : a trusted and an untrustedadress spae. The swithing from a spae to another an be done without the intervention of thehypervisor. Something that arises the performane of the whole system. While this approahguarantees the e�ieny of the monitoring and the detetion pf poliy violations, no global viewof the system is given by the urrent implementation whih may redue the intervention ability ofthe administrator in ase of network attaks or omplex attaks where many VMs are involved.Another interesting approah XSM/FLASK (detailed in hapter 2). This approah is providedby the Xen hypervisor whih implements a seurity framework alled XSM, and FLASK is animplementation of a seurity model using this framework (at the time of writing, it is the onlyone). FLASK de�nes a mandatory aess ontrol poliy providing �ne-grained ontrols overXen domains, allowing the poliy writer to de�ne what interations between domains, devies,and the hypervisor are permitted. This approah o�ers for instane the ability to prevent twodomains from ommuniating via event hannels or grants, ontrols whih domains an usedevie passthrough (and whih devies), an restrit or audit operations performed by privilegeddomains and �nally prevents a privileged domain from arbitrarily mapping pages from otherdomains. Some of these examples require Dom0 Disaggregation to be useful, sine the domainbuild proess requires the ability to write to the new domain's memory. On the other hand, thisapproah has many limits that we present in the next paragraph.



26 CHAPTER 3. SECURING VIRTUAL MACHINES3.3.2 Disadvantages of Loal SupervisionDespite the high quality of protetion that loal supervison approahes give to VMMs, they stillhave many disadvantages and weaknesses. First, implementing a loal approah means that everyVM is equiped with neessary mehanisms for monitoring and detetion. This redues onse-quently the ability of the defense system to intervene in remote VMs in ase of ross-VM attaks,and redues the general view of the administrator of the whole virtualized platform. The latestpoint is of interest beause of the inreasing omplexity of virtual environments and the need tohave the largest view of the system with the most preise details about eah VM/omponent.Besides, these same seurity mehanisms need to have aess rights to remote VMs in order toommuniate and send defense ommands in ase any attak is deteted. This advantage is notgiven by loal approahes. Moreover, some attaks alled network attaks an esape this kind ofapproahes. Owing to the omplexities of the virtual environment, network attaks beome evenharder-to-detet when virtual mahines are introdued to the network. Besides, implementingloal supervision does not help the system administrator have easy and e�ient administrationtasks. In fat, loal poliies need some on�guration from time to time, and assuming the om-plexity of suh systems, the administrator does not have enough tools and mehanisms to shareupgrade with all VMs in suh loal approahes. For example, a VM's on�guration is stored as asingle �le, whih makes it easier for an attaker to opy or delete these �les and potentially steala whole VM (and its stored information). This is due to the limited system view given to theadministrator. Another disadvantage of this approah is its ine�ieny against Cross-VM vul-nerabilities that ome from the o-residene of VMs whih makes information easy to ex�ltrateaross VM boundary. For instane, in Cross-VM attaks, the attaker sends HTTP requests tothe target VM and observe orrelation with ahe utilization or even obtain and ompare XenDom0 address. A Cross-VM attak an then our orrupting the integrity, on�dentiality andavailability of the attaked VM. To detet this kind of attaks, the system administrator needsseveral tehnologies and methods that are not available in simple loal supervision (network�ltering, network monitoring, global poliies...).To summarize, we an say that loal supervision approahes are not the most onvenientapproah for seuring virtualized systems. Sine they are unable to prevent many vulnerabilitiesand detet di�erent maliious behaviors that need larger vision of the system. We presentin the next setion another approah that implements deentralized supervision, we will thenompare the two approahes and propose our own arhiteture/imlementation for seuring virtualmahines.3.3.3 Deentralized Supervision ApproahesWhile loal intereption arhitetures have the advantage of allowing the IDS to ounter anyattak just before they are ompleted. This way, and assuming the seurity poliy that the IDSenfores is su�iently omplete, no attak ever sueeds on S that would make reveal or altersensitive data, make it unstable, or leave a bakdoor open (by whih we also inlude trojans andbots).Deentralized approahes the IDS is meant to work in a deentralized setting. In this ase,the IDS does not run on the same host as the supervised host, S. While in a loal intereptionarhiteture, the IDS would run as a proess on S itself, in a deentralized setting only a smallso-alled sensor running on S ollets relevant events on S and sends them through some networklink to the IDS, whih runs on another, dediated host M.Deentralized arhitetures (see Figure 3.1) make the IDS more resistant to attaks on S(whih may be any of S1, . . . , S4 in the �gure): to kill the IDS, one would have to attak thesupervision mahine M, but M is meant to only exeute the IDS and no other appliation, and
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Figure 3.1: Deentralized Supervisionhas only limited network onnetivity. In addition to the link from S to M used to report eventsto the IDS, we also usually have a (seure) link from M to S, allowing the IDS to issue ommandsto retaliate to attaks on S. While this may take time (e.g., some tens or hundreds of milliseondson a LAN), this sometimes has the advantage to let the IDS learn about intruder behavior onethey have ompleted an attak. This is important for forensis.Deentralized arhitetures are also not limited to supervising just one host S. It is partiularlyinteresting to let the supervision mahine M ollet events from several di�erent hosts at one,from network equipment (routers, hubs, et., typially through logs or MIB SNMP alls), andorrelate between them, turning the IDS into a mix between host-based and network-based IDS.We shall argue in the next setion that one an simulate suh a deentralized arhiteture,at minimal ost, on a single mahine, using modern virtualization tehnology. We shall also seethat this has some additional advantages.3.4 Proposed ArhitetureAs explained earlier, loal intereption approahes are vulnerable to loal attaks, beause theintruder an disable or tamper them. Thus, monitoring data oming from a ompromised systemannot be onsidered reliable. The isolation o�ered by virtual mahines provides a solution tothis problem. The proposal presented here allows building more reliable virtualized platformsfor intrusion detetion.Our proposal's main idea is to enapsulate both the systems to monitor and the surveillanesystem inside virtual mahines. The intrusion detetion and response mehanisms are imple-mented outside the virtual mahine, i.e. out of reah of intruders. Figure 3.2 illustrates the mainomponents of the proposed arhiteture.We run a fast, modern IPS suh as Orhids [91, 87℄ in another VM to monitor, and reatagainst, seurity breahes that may happen on the users' environment in eah of the guest OSespresent in a virtualized system.One an see this arhiteture as an implementation of a deentralized supervision arhitetureon a single physial host.
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Figure 3.2: Proposed ArhitetureWe argue that this solution has several advantages. First, there is a lear advantage in termsof ost, ompared to the deentralized arhiteture: we save the ost of the additional supervisionhost M.Seond, ompared to a standard, unsupervised OS, the user does not need to hange herusual environment, or to install any new seurity pakage. Only a small sensor has to run on hervirtual mahine to report events to Orhids. Orhids aepts events from a variety of sensors.In our urrent implementation, eah guest OS reports sequenes of system alls through thestandard auditd daemon, a omponent of SELinux [113℄, whih one an even run without theneed for installing or running SELinux itself. (Earlier, we used Snare, however this now seemsobsolesent.) Linux auditd sensor is a built-in mehanism in the kernel, whih allows one tointerept hanges to monitored �les and write them to a log on the disk or send them to a loalsoket. Auditd interepts almost all system alls and gives a detailed summary in real time of theperformed system alls. we an let auditd supervise some spei� users or system alls dependingon what we want to audit.The bulk of the supervision e�ort is e�eted in a di�erent VM, thus reduing the installatione�ort to editing a few on�guration �les, to desribe the onnetions between the guest OSesand the supervision OS mainly. In partiular, we do not need to reompile any OS kernel withour arhiteture, exept possibly to make sure that auditd is installed and ativated.A third advantage, ompared with intereption arhitetures, and whih we naturally sharewith deentralized arhitetures, is that isolating the IPS in its own VM makes it resistant toattaks from the outside. Indeed, Orhids runs in a VM that has no other network onnetionto the outside world than those it requires to monitor the guest OSes, and whih runs no otherappliation that ould possibly introdue loal vulnerabilities.Orhids should have high privileges to be able to retaliate to attaks on eah guest OS. Forexample, we use ssh onnetions between Orhids and eah VM kernel to be able to kill o�endingproesses or disable o�ending user aounts. (The neessary loal network links, running in theopposite diretion as the sensor-to-Orhids event reporting links shown in Figure 4.7, are notdrawn.)The Orhids detetion system reognizes senarios by simulating known �nite automata, froma given event �ow. This method allows the writing of powerful stateful rules suitable for intrusiondetetion.Orhids is omposed of �ve main parts: a set of rule de�nitions (in a dediated spei�ationlanguage), a rule ompiler whih translates rule de�nitions into an internal automata representa-



3.4. PROPOSED ARCHITECTURE 29tion, a set ompiled rules whih is the knowledge base of the whole system, a massively parallelvirtual mahine whih simulates non-deterministi �nite automata, and a set of input moduleswhih deodes data inoming from external soures.Next, we annot expet an ordinary user to manage her own mahine, or, for that matter, tokeep an attak signature base up to date. Although Orhids requires rather few signatures, sineone signature an math several attaks (inluding some zero-day attaks [87℄), Orhids is stillfundamentally a misuse intrusion prevention system, and requires some maintenane, if only towrite new rules for new families of attaks. A standard solution to this problem is to install alink between the appliation, here Orhids, and a trusted server, with a regularly triggered taskthat inquires about seurity updates from the server. We do not wish to let the Orhids virtualmahine ommuniate along any link with the outside world, if possible. Trusted servers an behaked, and in any ase emitting seurity updates requires an infrastruture, and resoures.However, running on a virtualized arhiteture o�ers additional bene�ts. One of them is thatOrhids an now ask domain zero to kill an entire VM. This is neessary when a guest OS hasbeen subjet to an attak with onsequenes that we annot assess preisely. For example, thedo_brk() attak [114℄ and its siblings, or the vmsplie() attak [94℄ allow the attaker not justto gain root aess, but diret aess to the kernel . Note that this means, for example, that theattaker has immediate aess to the whole proess table, as well as to the memory zones of allthe proesses. While urrent exploits seem not to have used this opportunity, suh attak vetorsin priniple allow an attaker to beome ompletely stealthy, e.g., by making its own proessesinvisible to the OS. In this ase, the OS is essentially in an unpreditable state.The important point is that we an always revert any guest OS to a previous, safe state,using virtualization. Indeed, eah VM an be hekpointed , i.e., one an save the ompleteinstantaneous state of a given VM on disk, inluding proesses, network onnetions, signals.Assuming that we hekpoint eah VM at regular intervals, it is then feasible to have Orhidsretaliate by killing a VM in extreme ases and replaing it by an earlier, safe hekpoint.Orhids an also detet VMs that have died beause of fast denial-of-servie attaks (e.g.,the double listen() attak [81℄, whih auses instant kernel lok-up), by pinging eah VM atregular intervals: in this ase, too, Orhids an kill the VM and reinstall a previous hekpoint.We reat similarly to attaks on guest OSes that are suspeted of having sueeded in gettingkernel privileges and of, say, disabling the loal auditd daemon.Killing VMs and restoring hekpoints is learly something that we annot a�ord with physialhosts instead of VMs.It would be tempting to allow Orhids to run inside domain zero to do so. Instead, we runOrhids in a separate guest OS, with another ssh onnetion to issue VM administration om-mands to be exeuted by a shell in domain zero. I.e., we make domain zero delegate surveillaneto a separate VM running Orhids, while the latter trusts domain zero to administer the otherguest VMs. We do so in order to sandbox eah from the other one. Although we have takenpreautions against this prospet, there is still a possibility that a wily attaker would manageto ause denial-of-servie attaks on Orhids by rafting events ausing blow-up in the internalOrhids surveillane algorithm (see [87℄), and we don't want this to ause the ollapse of thewhole host. Conversely, if domain zero itself is under attak, we would like Orhids to be ableto detet this and reat against it.To our knowledge, this simple arhiteture has not been put forward in previous publiations,although some proposals already onsider managing the seurity of virtualized arhitetures, aswe have disussed earlier.
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Figure 3.3: The Implemented Remote Logging3.5 Remote LoggingAs explained earlier, we equip every virtual mahine with the SElinux auditd sensor. Thisdaemon aptures system alls aording to a on�guration �le ontaining details about what wewant to audit. To aomplish its mission, the auditd daemon relies on an engine alled audispd.This is the dispather of the daemon, it is responsible of sending the reported events to thespei�ed targets. These targets are either a loal �le or a loal soket, and audispd is unable toreport to a remote target.Sine our idea is to preserve the deentralisation riterion of our arhiteture, we needed tomake audispd able to report to remote targets via the network. To deal with this, we designedand implemented a new funtionality in the auditd dispather. This funtionality makes audispdable to report events via the virtual network (TCP hannel) to a remote target (see �gure 3.3).Besides,and from the IDS side, the need was to make Orhids behave like a server that reeivesinformation from di�erent hosts and reats aording to the orrelation of the events if an attakmathes. The reation is perfomed through the network by sending ommands that are able tokill the o�ending remote proesses and sometimes by asking Dom0 to ompletely stop the VMand restart from an early hekpoint. This an be done in ase of fast Dos attaks that an freezethe whole VM.3.6 DisussionThe proposed arhiteture has pros. and ons.: �rst, ompared to other arhitetures, this oneis very easy to deploy. The sensor omes with almost all 2.6 Linux kernels and no further on�g-uration is needed exept adding the system alls that one wants to audit. From the supervisionVm side, one have just to install Orhdis whih is preon�gured to work with auditd. This makesthe system administrator's life easier.Seond, we argue that this approah has the advantage of working with a powerful hypervi-



3.7. CONCLUSION 31sor whih is Xen. Indeed, Xen represents a thin hypervisor model onsisting of only 2 MB ofexeutable, relying on servie domains for funtionality, needs no devie drivers and keeps do-mains/guests isolated. These harateristis an not be found in other virtualization tools suhas VMware ESX whih needs devie drivers and a base of management where hardware supportdepends on VMware reated drivers.Another advantage of this approah is the fat that defense mehanisms are already imple-mented in Orhids and we bene�t from this funtionality and make it work for all the VMs. Thisgives another dimension to our IDS. This point is of importane beause designing a ompleteand e�ient solution with defense mehanisms, most of the time, is not an easy task.On the other hand, one an notie that our approah relies on the network for ommuniatinginformation between the IDS and the di�erent VMs. This an be a real soure of problems. Anattaker loated in a simple VM an try to break the aess rules to the on�guration �les ofauditd and stop the remote logging mehanism. To deal with this, Orhids an easily detetthat one VM is ative but is not reporting. For now the remedy to this problem is not yetimplemented but we feel that the best solution is to report this issue to the administrator whowill try to diagnose this VM and restart the sensor. If the problem persists, Orhdis an kill theVM and restart later from a safe hekpoint (free from vulnerabilities).Another weakness of relying on the network is the lateny related to the network (the termlateny refers to any of several kinds of delays typially inurred in proessing of network data.A so-alled low lateny network onnetion is one that generally experienes small delay times,while a high lateny onnetion generally su�ers from long delays). Atually we are unable toreat e�iently aording to fast DoS attaks that an rapidly freeze the VM even before thereeption of the reported events by Orhids.The main weakness of our approah is the fat that we rely on the reported system alls todetet intrusions. The problem is that some new attaks are stealthy and undetetable usingthis approah. For instane the Wojtzuk's attak [117℄ on the Xen hypervisor is ompletelyundetetable by our approah. The objetive of our thesis was not to detet this spei� attakbut at least we try to o�er an easy way to avoid the dammage aused by this attak. In fat wewill make sure that the attak an not be run at all (see hapter 4).Another problem related to our approah and that we adress in the next hapter is the abseneof a spei� seurity poliy that an be dediated to this environment. We feel that a rigourousaess ontrol poliy an be omplementary to our supervision/detetion approah. More detailsabout how we adress this problem will be given later.3.7 ConlusionIn this hapter, we have presented a new arhiteture for intrusion detetion that simulatesdeentralized supervision on one single host. Our primary aim was to seure running virtualmahines against attaks by deploying Orhids and sensors reporting at real time to it. Thisarhiteture was implemented on top of the Xen hypervisor and its main advantage is ostsaving. Regarding the e�etiveness of the detetion mehanisms, many improvements an bebrought to our implementation. Muh work an be done on DoS attaks detetion, on seuringommmuniation hannels and espeially on optimizing the ontent of the reported events. Thisan be done by improving the way that auditd logs the aptured events. As further work, itwould be interesting to extend this implementation to other interesting vrtualization solutionssuh as KVM [41℄ or VMWare. It would be also hallenging to explore ways to avoid killing VMsin ase of DoS attaks in order to preserve a good level of the servie ontinuity.
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Chapter 4Proteting Sensitive Resoures4.1 IntrodutionIn hapter 3, we have presented a new approah for seuring virtual mahines. This idea is basedon a deentralized intrusion detetion mehanism ensured by the Orhids IDS and the auditdsensor. Despite the advantages that suh an approah an o�er, it remains unable to protetsensitive resoures e�iently due to the lak of a seurity poliy strategy.In this hapter we introdue a new way to model seurity poliies and deploy them. Ourprimary goal will be to protet sensitive resoures suh as the domain0, and at the same timeprevent some stealthy attaks that we an not detet. We introdue a new language for modellingseurity poliies aompanied with a proedure for the automati translation of poliies intoautomata representing attaks signatures that enrih the IDS signature base.4.2 Related WorkIn this setion, we present two approahes that are similar to our proposal. The �rst one is ProofCarrying Code (PCC). PCC omes with the idea that end-users beome able to verify seurityproperties about an appliation via a formal proof that aompanies the exeutable ode. Theuser an then deide if the appliation is safe by omapring the result of the veri�ation to theloal seurity poliy.The seond approah is Model Carrying Code (MCC) where end-users an pro�t from afully automated veri�ation proedure to determine if a downloaded ode satis�es their seuritypoliies. Alternatively, an automated proedure an sift through a atalog of aeptable poliiesto identify one that is ompatible with the model. In the next two setions, we give a briefpresentation of these approahes in order to larify the idea of verifying models against seuritypoliies, this helps understand our approah whih does not have exatly the same goal butshares many details with these methods espeially in the modelling and veri�ation part.4.2.1 Proof Carrying CodeOverview Proof-Carrying Code (PCC) [89℄ reveals many advantages for safe exeution of un-trusted ode. The tehnique needs that the produer and the onsumer of the ode performsome neessary ations : �rst, the onsumer needs to establish a set of rules (safety) that guar-antees the safe behaviour of a program. Then, the produer has to reate a formal proof for theuntrusted ode. This proof is used by the reeiver of the ode as an entry to his proof validator33
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Figure 4.1: Proof Carrying Code [89℄(given by the produer) in order to hek that the ode is safe. PCC has many uses in systemswhose trusted omputing base is dynami : extensible operating systems, Internet browsers, a-tive network nodes and safety-ritial embedded ontrollers. These examples need most of thetime mobile ode or regular updates.Despite the large amount of e�ort in establishing and formally proving the safety of theuntrusted ode, almost the entire burden of doing this is on the ode produer. The odeonsumer, on the other hand, has only to perform a fast, simple, and easy-to-trust proof-hekingproess. The trustworthiness of the proof-heker is an important advantage over approahes thatinvolve the use of omplex ompilers or interpreters in the ode onsumer.The onsumer does not are about the nature of the proof. The proofs ould be generatedby hand, but sometimes it is neessary to rely on a theorem prover. Besides, the onsumer doesnot have to trust the proof-generation proess. Moreover, any modi�ation (either aidental ormaliious) will result in one of these outomes : (1) the proof is not valid, the program is notaepted, (2) the proof is valid but is not a safety one, so it will be rejeted, (3) the proof is validdespite the modi�ations, in this ase the guarantee of safety will hold.Another interesting feature of PCC is the ontinious heking of intrinsi properties of theode without aring about its origin thus ryptography mehanisms are not needed. In this sensethe proagrams are self-ertifying. On the other hand, the stati veri�ation of the untrustedode before its exeution saves time and detets hazardous operations early thus avoiding thesituations when the ode onsumer must kill the untrusted proess after it has aquired resouresor modi�ed state.Disussion Despite the elegant design of PCC and its easy omprehension, this method is verydi�ult to implement e�iently. First, proofs are not easy to enode beause trivial enoding ofproperties of programs is very large. Seond, the veri�ation part of the proof is not an easy taskbeause it needs a small, fast and independant heker, also, the proofs must be terse. Finally,the produer have to provide a proof that is fully related to the real exeution of the program,
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Figure 4.2: Model Carrying Code [103℄something that is not totally ensured. In our approah, we do not provide proofs, but only safetyproperties at the onsumer side, we do not are about their translation into models, beausewe rely on an automati tool. Then the veri�ation is done by a model-heker (Orhids) thatveri�es these properties at real time.4.2.2 Model Carrying CodeOverview MCC [103℄ introdues program behavioral models (see Figure 4.2) whih help bridgethe semanti gap between low-level binary ode and high-level seurity poliies. These modelsapture seurity-related properties of the ode, but do not apture aspets of the ode thatpertain only to its funtional orretness. The model is stated in terms of the seurity-relevantoperations made by the ode, the arguments of these operations, and the sequening relationshipsamong them. These operations orrespond to system alls, but alternatives suh as funtion allsare also possible. While models an be reated manually, doing so would be a time-onsumingproess that would a�et the usability of the approah. Therefore, the authors developed amodel extration approah that an automatially generate the required models. Sine themodel extration takes plae at the produer end, it an operate on soure ode rather thanbinary ode. It an also bene�t from the test suites developed by the ode produer to testhis/her soure ode. The onsumer wants to be assured that the ode will satisfy a seuritypoliy seleted by him/her. The use of a seurity behavior model enables to deompose thisassurane argument into two parts: poliy satisfation whih heks whether the model satis�esthe poliy, and model safety whih heks if the model aptures a safe approximation of programbehavior.In more details, a produer generates both the program D to be downloaded (e.g., the deviedriver), and a model of it, M . The onsumer heks the model against a loal poliy P . Insteadof merely rejeting the program D if its model M does not satisfy, the onsumer omputes anenforement model M ′ that satis�es bothM and P , and generates a monitor that heks whether
P satis�es M ′ at run-time. Any violation is �agged and reported.In MCC, models, as well as poliies and enforement models, are taken to be extended �nite-state automata (EFSA), i.e., �nite state automata augmented with �nitely many state variablesmeant to hold values over some �xed domain. A typial example, taken from op. it., is theEFSA of Figure 4.3. This is meant to desribe the normal exeutions of D as doing a series of
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loal_read (LogFile)ǫ

exists (IonFile) !exists (IonFile)loal_read (IonFile) remote_read (IonFile)ǫ
Figure 4.3: An EFSA Model, after Sekar et al. [103℄system alls as follows. Eah system all is abstrated, e.g., the �rst expeted system all from

D is a all to loal_read with argument bound to the Con�gFiles state variable. Then D isexpeted to either take the left or the right transition going down, depending on whether sometested �le (in variable IonFile) exists or not. In the �rst ase, D should all loal_read, inthe seond ase, D should all remote_read. The transitions labeled ǫ are meant to be �rablespontaneously.Typial poliies onsidered by Sekar et al. are invariants of the form �any program shouldeither aess loal �les or aess the network but not both� (this is violated above, assumingobvious meanings for system alls), or that only �les from the /var/log/httpd/ diretory shouldbe read by D. Poliies are again expressed as EFSA, and enforement models an be omputedas a form of synhronized produt denoting the intersetion of the languages of M and P .Disussion The EFSA models used in MCC are su�iently lose to the automaton-basedmodel used in Orhids (whih appeared about at the same time, see the seond part of [97℄; orsee [87℄ for a more in-depth treatment) that the EFSA built in the MCC approah an be fedalmost diretly to Orhids. In our approah, we use Orhids for EFSA heking. More detailsabout the proposed approah will be given in the following setions.4.3 Threat Model4.3.1 Sensitive ResouresThe hypervisor is not alone in its task of administering the guest domains on the system. Aspeial privileged domain alled Domain0 serves as an administrative interfae to Xen. Domain0is the �rst domain launhed when the system is booted, and it an be used to reate andon�gure all other regular guest domains. Domain0 has diret physial aess to all hardware,and it exports the simpli�ed generi lass devies to eah DomU. The ritial spots in ourimplementation presented in the previous hapter are the VMM (hypervisor) itself, domain zero,and the surveillane VM running Orhids. Attaking the latter is a nuisane, but is not so muhof a problem as attaking the VMM or domain zero, whih would lead to omplete subversion ofthe system. Moreover, the fat that Orhids runs in an isolated VM averts most of the e�ets ofany vulnerability that Orhids may have.Attaks against the VMM are muh more devastating. Wojtzuk's 2008 attaks on Xen 2[117℄ allow one to take ontrol of the VMM, hene of the whole mahine, by rewriting arbitraryode and data using DMA hannels, and almost without the proessor's intervention. . . quite a



4.3. THREAT MODEL 37fantasti tehnique, and ertainly one that breaks the ommon idea that every hange in storedode or data must be e�eted by some program running on one of the proessors. Indeed, herea separate, standard hip is atually used to rewrite the ode and data. One an attaker hastaken ontrol over the VMM, one annot hope to reat in any e�etive way. In partiular, theVMM ontrols entirely the hardware abstration layer that is presented to eah of the guestOSes: no network link, no disk storage faility, no keyboard input an be trusted by any guestOS any longer. Worse, the VMM also ontrols some of the features of the proessor itself, or ofthe MMU, making memory or register ontents themselves unreliable.We urrently have no idea how to prevent attaks suh as Wojtzuk's, apart from unsatisfa-tory, temporary remedies suh as hekpointing some seleted memory areas in the VMM odeand data areas. However, we laim that averting suh attaks is best done by making sure thatthey annot be run at all. Indeed, Wojtzuk's attaks only work provided the attaker alreadyhas root aess to domain zero, and this is already quite a prediament. We therefore onentrateon ensuring that no unauthorized user an gain root aess to domain zero.Normally, only the system administrator should have aess to domain zero. (In enterpriseirles, the administrator may be a person with the spei� role of an administrator. In familyirles, we may either deide that there should be no administrator, and that the system shouldself-administer; or that one partiular user has administrator responsibilities.) We shall assumethat this administrator is benevolent , i.e., will not onsiously run exploits against the system.However, he may do so without knowing it while updating his system...4.3.2 Automati Updates and Seurity IssuesEither in host-based arhitetures or in virtualized ones, automati updates represent a seriousthreat to the seurity of systems. As shown earlier, attaking a simple VM or a managing VMsuh as Dom0 an be muh more devastating than attaking a simple arhiteture with one singlehost. The attaker an take the ontrol of the whole virtualized system (sometimes hundredsof VMs with virtual servers and ritial data!). This an be done by downloading maliiousupdates for programs or drivers, these updates may ontain trojans that are triggered one theupdate is exeuted. We will present this kind of attak senarios in the folllowing setions withmore details. Now let us explain how automati updates an be a soure of threat for omputersystems in general.Every day, millions of omputer users and system administrators update software some manu-ally, some automatially, and some unknowingly. In 2002, orporations spent more than 2 billionon path management for operating systems alone [77℄. Indeed, many CERT Tehnial CyberSeurity Alerts suggest applying pathes, upgrades, or updates to resolve seurity vulnerabili-ties. And system administrator tend to use ontent distribution networks to download softwareupdates. These updates help to path everyday bugs, plug seurity vulnerabilities, and seureritial infrastruture. Yet hallenges remain for seure ontent distribution: many deployedsoftware update mehanisms are inseure. Users and system administrators are between twohoies : either let the update mehanism download the pathes or keep the omputer isolatedfrom the network. The latter hoie redues the �life expetany� of the omputer system. Thelatter idea is not of interest, thus almost all operating systems, software and even sharewareare equiped with mehanisms that hek for new updates, and most of these systems an beon�gured to automatially download and install the updates, and sometimes without notifyingthe user.On the other hand, many update systems are themselves riddled with seurity vulnerabilities.Kevin Fu et al. from the University of Massahusetts studied the so-alled seure mehanismsfor automati updates. The results are disappointing [78℄. Many software update mehanisms
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Figure 4.4: Attaking System Updatesimplemented in famous software suh as Mirosoft Windows Update, Mozilla Firefox, AdobeArobat Reader and MAfee VirusSan lak basi seurity measures suh as veri�ation of digitalsignatures. Left open and unproteted, the update hannels serve as an ideal bakdoor forspreading maliious ode. The main problem of these update mehanisms is the authentiationof the updates in order to ensure their legitimay. But it is also very important that softwarehave an authentiated onnetion to the update server. As the name implies, having an updateauthentiated means that there is some way for the software doing the update to assure itselfthat the update is an authenti version from the intended soure. Without authentiation, alever haker an arrange a man-in-the-middle attak to insert an exploit in the update stream.Most of these unseured update systems simply go to a Web or FTP server, hek the timestamp on the most reent �le and download the �le if it's new enough. The address of the serveris usually hard-oded into the program doing the update, although oasionally it is stored in aon�guration �le. The attaker an simply to rediret the program making the update to a serverontrolled by the attaker himself. This is quite easy : with DNS-based attak the program anbe redireted to the wrong website. To do this, the attaker run his software in an a afé withwireless onnetion to Internet, waits until the vitim does a DNS query, he athes the IP adressof the update server, and then an answer the DNS query before the o�ial DNS server, andrediret the vitim to the wrong destination. Even if updates are signed, an attaker apableof interepting DNS requests or diverting Internet tra� an still use an update servie to takeover an unsuspeting vitim's omputer. A signature on an update just means that the updateis authenti, it doesn't mean that the update is any good.4.3.3 A possible Attak SenarioOne of the most tangible risks that an our is the failure to keep up with the onstant,labor-intensive proess of pathing, maintaining and seuring eah virtual server in a ompany.Unlike the physial servers on whih they sit, whih are launhed and on�gured by hands-on ITmanagers who also install the latest pathes, virtual mahines tend to be launhed from serverimages that may have been reated, on�gured and pathed weeks or months before.



4.4. PRELIMINARIES 39One possible senario is this: the administrator needs to upgrade some library or driver, anddownloads a new version; this version ontains a trojan horse, whih runs Wojtzuk's attak.Modern automati update mehanisms use ryptographi mehanisms, inluding erti�ates andryptographi hashing mehanisms [118℄, to prevent attakers from running man-in-the-middleattaks, say, and substitute a driver with a trojan horse for a valid driver. However, there isno guarantee that the authenti driver served by the automati update server is itself free oftrojans. There is at least one atual known ase of a manufaturer shipping a trojan (hopefullyby mistake): some Video iPods were shipped with the Windows RavMonE.exe virus [96℄, ausingimmediate infetion of any Windows host to whih the iPods were onneted.4.4 PreliminariesRelated Work. We brie�y present in this setion some ontributions that are related to ourapproah. Most of them implement run-time supervision and enforement of seurity poliies.Systems suh as SELinux (op. it.) are based on a seurity poliy, but fail to reognize illegalsequenes of legal ations. To give a simple example, it may be perfetly legal for user A toopy some private data D to some publi diretory suh as /tmp, and for user B to read anydata from /tmp, although our seurity poliy forbids any (diret) �ow of sensitive data fromA to B. Suh sequenes of ations are alled transitive �ows of data in the literature. To ourknowledge, Zimmerman et al. [120, 121, 122℄ were the �rst to propose an IDS that is ableto hek for illegal transitive �ows. Bri�aut [79℄ shows that even more general poliies anbe e�iently enfored, inluding non-reahability properties and Chinese Wall poliies, amongothers; in general, Bri�aut uses a simple and general poliy language. We propose another,perhaps more prinipled, language in Setion 4.5, based on linear temporal logi (LTL). Usingthe latter is naturally related to a more anient proposal by Roger etal. in [97℄. However, LTLas de�ned in (the �rst part of) the latter paper only uses future operators, and is arguably ill-suited to intrusion detetion (as disussed in op. it. already). Here, instead we use a fragmentof LTL with past , whih, although equivalent to ordinary LTL with only future operators asfar as satis�ability is onerned (for some �xed initial state only, and up to an exponential-sizeblowup), will turn out to be muh more onvenient to speify poliies, and easy to ompile torules that an be fed to the Orhids IPS [91, 87℄.Linear Temporal Logi. As the language we propose in the next setion is a variant of LTL(Linear Temporal Logi) with past operators. We give a brief presentation of this language. Westart by presenting temporal logis.The term Temporal Logi has been used to over all approahes to the representation oftemporal information within a logial framework. This logi an be used as a formalism forlarifying philosophial issues about time, as a framework within whih to de�ne the semantisof temporal expressions in natural language, as a language for enoding temporal knowledge inarti�ial intelligene, and as a tool for handling the temporal aspets of the exeution of omputerprograms.LTL is a modal temporal logi with modalities referring to time. It was �rst proposed forthe formal veri�ation of omputer programs by Amir Pnueli in 1977 [100℄. It has beome thestandard language for linear-time model heking. Model heking is the automati veri�ationthat a model (typially a transition system) of a system possesses ertain (un)desired properties.LTL is supported by many model hekers suh as SPIN [101℄.The alphabet of LTL is omposed of:� atomi proposition symbols p,q,r,...,



40 CHAPTER 4. PROTECTING SENSITIVE RESOURCES� boolean onnetives ∧,∨,→,↔� temporal onnetives ©,2,3,ℜ, U.The set of LTL formulae is de�ned indutively, as follows:� any atomi proposition is a formula,� if ϕ and ψ are formulae, then ϕ and ϕ • ψ, for • ∈ {∧,∨,→,↔} are also formulae,� if ϕ and ψ are formulae, then ©ϕ,2ϕ,3ϕ, ϕ U ψ, ϕℜψ are formulae,� nothing else is a formula.Past LTL and Safety Properties. In [102℄, LTL, whih has only future operators, is extendedwith past operators. This allows the easy writing of spei�ations whih an be shorter, easierand more intuitive. LTL with past operators has been proved to be more suint than pure-future temporal logi [18℄. Consider the following example taken from [18℄ where future-timemodalities suh as F (�sometimes in the future�), G (�always in the future�) and U (�until�) areomplemented with their past-time ounterparts (F−1 for �one in the past�, G−1 for �always inthe past� and S or U−1 for �sine�, ...). The statement �every request is eventually granted � isexpressed by : G(request ⇒ F grant)However, with past-time modalities, the statement an be expressed as follows, �a grant shouldbe preeeded by a request : G(request ⇒ F−1 grant)LTL with past reveals very useful in dealing with safety properties. Informally, safety prop-erties are properties of systems where every violation of a property ours after a �nite exeutionof the system. Safety properties are relevant in many areas of formal methods. Testing methodsbased on exeuting a �nite input and observing the output an only detet safety property vio-lations. Monitoring exeutions of programs is also an area where safety properties are relevantas monitoring also only an detet failures of safety properties. Naturally, formal spei�ationsare also veri�ed to make sure that a given safety property holds.All of the above mentioned uses of safety properties an be aomplished by speifying theproperties as �nite automata. While automata are useful in many ases, a more delarativeapproah, suh as using a temporal logi, is usually preferred. Many model heking tools,suh as SPIN [101℄, support linear temporal logi (LTL). In the automata theoreti approahto veri�ation [60, 61, 62℄, LTL formulas are veri�ed by translating their negation to Buhiautomata, whih are then synhronised with the system. If the synhronised system has anaepting exeution, the property does not hold. One ould bene�t from using �nite automatainstead of Buhi automata if the given LTL property is a safety property. Reasoning about �niteautomata is simpler than reasoning about Buhi automata. For expliit state model hekers,reasoning about Buhi automata requires slightly more ompliated algorithms. In the symboliontext, emptiness heking with BDDs is in pratie signi�antly slower than simple reahability[63℄. For model hekers based on net unfoldings, suh as [64℄, handling safety is muh easierthan full LTL [65℄.Unfortunately, there are some omplexity related hallenges in translating LTL formulas to�nite automata. A �nite automaton speifying every �nite violation of a LTL safety propertyan be doubly exponential in the size of the formula [66℄.



4.5. A LINE OF DEFENSE: LTL WITH PAST AND ORCHDIS 414.5 A Line of Defense: LTL with Past and Orhdis4.5.1 The Proposed LanguageConsider the ase whereby we have just downloaded a devie driver, and we would like to hekwhether it is free of a trojan. Neula and Lee pioneered the idea of shipping a devie driver witha small, formal proof of its properties, and heking whether this proof is orret before installingand running the driver. This is proof-arrying ode [89℄. More suited to seurity, and somehowmore pratial is Sekar et al.'s idea of model-arrying ode (MCC) [103℄. Both tehniques allowone to aept and exeute ode even from untrusted produers.However, we feel that a higher-level language, allowing one to write aeptable poliies forautomati updates in a onise and readable manner, would be a plus. There have been manyproposals of higher-level languages already, inluding linear temporal logi (LTL) [97℄, hroniles[88℄, or the BMSL language by Sekar and Uppuluri [104℄, later improved upon by Brown and Ryan[80℄. It is not our purpose to introdue yet another language here, but to notie that a simplevariant of LTL with past will serve our purpose well and is e�iently and straightforwardlytranslated to Orhids rules�whih we equate with EFSA here, for readability, glossing overinessential details.Consider the following fragment of LTL with past. We split the formulae in several sorts. F •will always denote present tense formulae, whih one an evaluate by just looking at the urrentevent:
F • ::= P (~x) | cond(~x) atomi formula

| ⊥ false
| F • ∧ F • onjuntion
| F • ∨ F • disjuntionAtomi formulae hek for spei� ourrenes of events, e.g., loal_read (IonFile) will typiallymath the urrent event provided it is of the form loal_read applied to some argument, whihis bound to the state variable IonFile. In the above syntax, ~x denotes a list of state variables,while cond(~x) denotes any omputable formula of ~x, e.g., to hek that IonFile is a �le in somespei� set of allowed diretories. This is as in [104, 80℄. We abbreviate P (~x) | ⊤, where ⊤ issome formula denoting true, as P (~x).Note that we do not allow for negations in present tense formulae. If needed, we allow ertainnegations of atomi formulae as atomi formulae themselves, e.g., !exists (IonFile). However,we believe that even this should not be neessary. Disjuntions were missing in [104℄, and wereadded in [80℄.Next, we de�ne past tense formulae, whih an be evaluated by looking at the urrent eventand all past events, but none of the events to ome. Denote past tense formulae by F←:

F← ::= F • present tense formulae
| F← ∧ F← onjuntion
| F← ∨ F← disjuntion
| F← r F • without
| Start initial stateAll present formulae are (trivial) past formulae, and past formulae an also be ombined usingonjuntion and disjuntion. The novelty is the �without� onstrutor: F← r F • holds i� F←held at some point in the past, and sine then, F • never happened. Apart from the withoutoperator, the semantis of our logi is standard. We shall see below that it allows us to enodea number of useful idioms. The past tense formula Start will also be explained below.
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�¬F •

def
= Start r F • �F • never happened in the past�

�F←
def
= F← r ⊥ �F← was one true in the past�

F← → F •
def
= �F← ∧ F • �F← was one true, and now F • is�

F← → F •1 → F •2 → . . .→ F •n
def
= (. . . ((F← → F •1 ) → F •2 ) → . . .) → F •n

F •1 ;F •2 ; . . . ;F •n
def
= Start → F •1 → . . .→ F •n ChronileFigure 4.5: Some Useful IdiomsFormally, present tense formulae F • are evaluated on a urrent event e, while past tenseformulae F← are evaluated on a stream of events ~e = e1, e2, . . . , en, where the urrent eventis en, and all others are the past events. (We warn the reader that the semantis is meant toreason logially on the formulae, but is not indiative of the way they are evaluated in pratie.In partiular, although we are onsidering past tense formulae, and their semantis refer to pastevents, our algorithm will never need to read bak past events.) The semantis of the withoutoperator is that ~e = e1, e2, . . . , en satis�es F← r F • if and only if there is an integer m, with

0 ≤ m < n, suh that the proper pre�x of events e1, e2, . . . , em satis�es F← for some values ofthe variables that our in F← (�F← held at some point in the past�), and none of em+1, . . . ,
en satis�es F • (�sine then, F • never happened�)�preisely, none of em+1, . . . , en satis�es F •with the values of the variables obtained so as to satisfy F←; this makes perfet sense if all thevariables that our in F← already our in F •, something we shall now assume.The past tense formula Start has trivial semantis: it only holds on the empty sequene ofevents (i.e., when n = 0), i.e., it only holds when we have not reeived any event yet. Thisis not meant to have any pratial use, exept to be able to enode useful idioms with only alimited supply of temporal operators. For example, one an de�ne the formula �¬F • (�F • neverhappened in the past�) as Start r F •.The without operator allows one to enode other past temporal modalities, see Figure 4.5.In partiular, we retrieve the hronile F •1 ;F •2 ; . . . ;F •n [88℄, meaning that events mathing F •1 ,then F •2 , . . . , then F •n have ourred in this order before, not neessarily in a onseutive fash-ion. More omplex sequenes an be expressed. Notably, one an also express disjuntionsas in [80℄, e.g., disjuntions of hroniles, or formulae suh as (login(Uid) r logout(Uid)) ∧loal_read(Uid, ConfigF ile) to state that user Uid logged in, then read some ConfigF ileloally, without logging out inbetween.Let us turn to more pratial details. First, we do not laim that only Start and the without(r) operator should be used. The atual language will inlude syntati sugar for hroniles,box (�) and diamond (�) modalities, and possibly others, representing ommon patterns. Thelassial past tense LTL modality S (�sine�) is also de�nable, assuming negation, by F S G =
Gr ¬F , but seems less interesting in a seurity ontext.Seond, as already explained in [97, 104, 80℄, we see eah event e as a formula P (fld1, f ld2, . . . , f ldm),where fld1, fld2, . . . , fldm are taken from some domain of values�typially strings, or integers,or time values. This is an abstration meant to simplify mathematial desription. For example,using auditd as event olletion mehanism, we get events in the form of strings suh as:1276848926.326:1234 sysall=102 suess=yes a0=2 a1=1 a2=6 pid=7651whih read as follows: the event was olleted at date 1276848926.326, written as the num-ber of seonds sine the epoh (January 01, 1970, 0h00 UTC), and is event number 1234



4.5. A LINE OF DEFENSE: LTL WITH PAST AND ORCHDIS 43(i.e., we are looking at event e1234 is our notation); this was a all to the soket() fun-tion (ode 102), with parameters PF_INET (Internet domain, where PF_INET is de�ned as 2 in/usr/inlude/soket.h�a0 is the �rst parameter to the system all), SOCK_STREAM (= 1; a1is onnetion type here), and with the TCP protool (number 6, passed as third argument a2);this was issued by proess number 7651 and returned with suess. Additional �eldss that arenot relevant to the example are not shown. This event will be understood in our formalizationas event e1234, denoting sysall (1276848926.326, 102, "yes", 2, 1, 6, 7651). The event e1234 sat-is�es the atomi formula sysall (T ime,Call, Res,Dom,Conn, Prot, P id) | Res = "yes" butneither audit (X) nor sysall (T ime,Call, Res,Dom,Conn, Prot, P id) | T ime ≤ 1276848925.4.5.2 The Translation AlgorithmHere we will explain how we an detet when a given sequene of events ~e satis�es a given formulain our logi, algorithmially. To this end, we de�ne a translation to the Orhids language, orto EFSA, and rely on Orhids' extremely e�ient model-heking engine [87℄. The translationis based on the idea of history variables , an old idea in model-heking safety properties inpropositional LTL. Our LTL is not propositional, as atomi formulae ontain free variables�onemay think of our LTL as being �rst-order, with an impliit outer layer of existential quanti�erson all variables that our�but a similar tehnique works.It is easier to de�ne the translation for an extended language, where the onstrution F←rF •is supplemented with a new onstrution F← r
∗ F • (weak without), whih is meant to hold i�

F← one held in the past, or holds now , and F • did not beome true afterwards.The subformulae of a formula F are de�ned as usual, as onsisting of F plus all subformulaeof its immediate subformulae. To avoid some tehnial subtleties, we shall assume that Start isalso onsidered a subformula of any past tense formula. The immediate subformulae of F ∧ G,
F ∨ G, F r

∗ G are F and G, while atomi formulae, ⊥ and Start don't have any immediatesubformula. To make the desription of the algorithm smoother, we shall assume that theimmediate subformulae of F r G are not F and G, but rather F r
∗ G and G. Indeed, we arereproduing a form of Fisher-Ladner losure here [84℄.Given a �xed past-tense formula F←, we build an EFSA that monitors exatly when asequene of events will satisfy F←. To make the desription of the algorithm simpler, we shallassume a slight extension of Sekar et al.'s EFSA where state variables an be assigned values ontraversing a transition. Aordingly, we label the EFSA transitions with a sequene of ations

$x1 := e1; $x2 := e2; . . . ; $xk := ek, where $x1, $x2, . . . , $xk are state variables, and e1, e2, . . . ,
ek are expressions, whih may depend on the state variables. This is atually possible in theOrhids rule language, although the view that is given of it in [87℄ does not mention it. Also, wewill only need these state variables to have two values, 0 (false) or 1 (true), so it is in priniplepossible to dispense with all of them, enoding their values in the EFSA's �nite ontrol. (Insteadof having three states, the resulting EFSA would then have 3 2k states.)Given a �xed F←, our EFSA has only three states qinit (the initial state), q, and qalert (the�nal, aeptane state). We reate state variables $xi, 1 ≤ i ≤ k, one per subformula of F←.Let F1, F2, . . . , Fk be these subformulae (present or past tense), and sort them so that anysubformula of Fi ours before Fi, i.e., as Fj for some j < i. (This is a well-known topologialsort .) In partiular, Fk is just F← itself. Without loss of generality, let Start our as F1. Theidea is that the EFSA will run along, monitoring inoming events, and updating $xi for eah i,in suh a way that, at all times, $xi equals 1 if the orresponding subformula Fi holds on thesequene ~e of events already seen, and equals 0 otherwise.There is a single transition from qinit to q, whih is triggered without having to read anyevent at all. This is an ǫ-transition in the sense of [87℄, and behaves similarly to the transitions



44 CHAPTER 4. PROTECTING SENSITIVE RESOURCESexists (IonFile) and !exists (IonFile) of Figure 4.3. It is labeled with the ations $x1 :=
1; $x2 := 0; . . . ; $xk := 0 (Start holds, but no other subformula is urrently true).There is also a single ǫ-transition from q to qalert. This is labeled by no ation at all, but isguarded by the ondition $xk == 1. I.e., this transition an only be triggered if $xk equals 1.By the disussion above, this will only ever happen when Fk, i.e., F← beomes true.Finally, there is a single (non-ǫ) transition from q to itself. Sine it is not an ǫ-transition, itwill only �re on reading a new event e [87℄. It is labeled with the following ations, written inorder of inreasing values of i, 1 ≤ i ≤ k:

$x1 := 0 (Start is no longer true)
$xi := P (~x) ∧ cond(~x) (for eah i suh that Fi is atomi,i.e., Fi is P (~x) | cond(~x))
$xi := 0 (if Fi is ⊥)
$xi := and($xj , $xk) (if Fi = Fj ∧ Fk)
$xi := or($xj , $xk) (if Fi = Fj ∨ Fk)
$xi := or($xj , and(not($xk), $xi)) (if Fi = Fj r

∗ Fk)
$xi := and(not($xk), $xℓ) (if Fi = Fj r Fk, and Fj r

∗ Fk is Fℓ, ℓ < i)Here, and, or and not are truth-table implementations of the familiar Boolean onnetives, e.g.,
and(0, 1) equals 0, while and(1, 1) equals 1. We assume that P (~x), i.e., P (x1, . . . , xn) will equal
1 if the urrent event is of the form P (s1, . . . , sn), and provided eah xj that was already boundwas bound to sj exatly, in whih ase those variable xj that were still unbound will be boundto the orresponding sj . E.g., if x1 is bound to 102 but x2 is unbound, then P (x1, x2) will equal
1 if the urrent event is P (102, 6) (binding x2 to 6), or P (102, 7) (binding x2 to 7), but will equal
0 if the urrent event is Q(102, 6) for some Q 6= P , or P (101, 6). We hope that this operationalview of mathing prediates is learer than the formal view (whih simply treats x1, . . . , xn asexistentially quanti�ed variables, whose values will be found as just desribed).The interesting ase is when Fi is a without formula Fj r Fk, or Fj r

∗ Fk. Fj r Fk willbeome true after reading event e whenever Fj r
∗ Fk was already true before reading it, and Fkis still false, i.e., when $xℓ = 1 and $xk = 0, where ℓ is the index suh that Fj r

∗Fk ours in thelist of subformulae of F← as Fℓ. So in this ase we should update $xi to and(not($xk), $xℓ), asshown above. This relies on updating variables orresponding to weak without formulae Fj r
∗Fk:

Fj r
∗ Fk beomes true after reading event e i� either Fj beomes true ($xj = 1), or Fj r

∗ Fkwas already true before ($xi was already equal to 1) and Fk is false on event e ($xk equals 0),whene the formula $xi := or($xj , and(not($xk), $xi)) in this ase.Note that our LTL fragment only deals with safety formulae of a partiular form. It is easy toextend this fragment to one handling with more general obligation formulae, whih are Booleanombinations of safety formulae.From Poliy Formulas to EFSA. Now we give a more onrete desritpion of the translationdesribed above. We present in details how a given formula written in our language an betranslated to the EFSA of Orhids representing the attak signature.Given a formula F with atomi formulas P1, ..., Pm (m>=1). For eah i, we save the informa-tion about how Pi appears in F , either negated or not (we onsider the formula G as negated inthe formula F rG). We translate F into an EFSA of Orhids by �rst reating a state q_detectwhih will be responsible of warning us when an event e ours. This event should un�ueneenough the values of the atomi formulas in order to hange the value of F . And it will be thease when:� if Pi is true in the urrent event and Pi appears positively (not negated) in F.
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Figure 4.6: The generated EFSA� if Pi is false in the urrent event and Pi appears as negated in F.For ease, we an under-approximate, and deide to be averted in a superset of the ases where

Pi is false. For instane, if Pi says �the urrent event is the sysall open with a �rst parameterhaving the same value as the variable X�, let P ′i = true; if Pi says �the urrent event is an
open sysall�, we an be more preise and write P ′i =�the urrent event is not a all to the openfuntion�.

P ′i is an under-upproximation of the negation of Pi. To simplify this step, we onsider
P ′i = true if at least one of the Pi appears as negated in F (i.e., we had a F rG with G 6= false),and P ′ = false otherwise.The state q_detect will be just an if ondition of the form:state q_detect{if ( P1 or P2 or ... or Pm or P ′) goto q_eval;}Then, the state q_eval performs only epsilon-transitions (no if):state q_eval{
x1 = P1; (true of false depending on the value of P )
x2 = P2;...
xm = Pm;/* Calulate the value of F and save it in the variable xF ,based on the algorithm ited above*/if (xF ) goto q_alert;goto q_detect;} The q_alert state ontains reporting, defensive and o�ensive ommands performed by Or-hids. Other types of ations an also be added to this state. This is in the ase where the atomiformulas Pi are free from logi variables (�rst order). Otherwise, the statements �$xi = Pi� haveto replaed by a mathing mehanism. For instane, if Pi = �sysall = fopen, arg1=X�, the
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Figure 4.7: The RuleGen tool�$xi = Pi� have to be replaed by:if (.sysall = "fopen" ∧ isset(X) ∧ .arg1 = X) goto q1;if (.sysall = "fopen" ∧ !isset(X)) goto q2;if (.sysall != "fopen") goto q3;q1 { $x1 = true ; goto q_eval_follow; }q2 { $x1 = true ; X = .arg1 ; goto q_eval_follow; }q3 { $x1 = false ; goto q_eval_follow; }Then, in q_eval_follow we do the same thing for $x(i+ 1) = P (i+ 1), et. This ends whenwe notie that we have tested all the atomi formulas. One an notie that it is a large sequeneof epsilon-transtions. No one an read a new event exept q_detect.This ompletes the desription of the translation. We now rely on Orhids' fast, real-timemonitoring engine to alert us in ase any poliy violation, expressed in our fragment of LTL, isdeteted.The RuleGen Tool. RuleGen [1, 2℄ implements the algorithm ited above. It translatesformulas written in our language into EFSA representing attaks signatures. RuleGen is fullyautomati and does not need user intervention at any phase of the translation. RuleGen helpsthe administrator avoid the omplexity of writing Orhids' rules. This is important sine theattak base of Orhids needs to be updated frequently and sometimes quikly.4.6 Faing a Maliious DriverWe give in this setion a ase study of the presented idea by simulating the following attaksenario : the administrator of a Xen system tries to download a new driver and installs it inDom0. This driver is maliious and ontains two exploits. We will show how relying on RuleGenand Orhids an help the administartor prevent the disaster. The maliious driver is a modi�edversion of FUSE [123℄, a generi �lesystem driver. This modi�ed version of FUSE ontains tworeal-world DoS attaks that are exeuted automatially one the driver is loaded.N.B. We do not laim that the hosen attaks are the most suited to this senario, ourobjetive is to give a simple use ase with simple attaks. The proedure an be applied on muhmore ompliated attaks. We aim to show how from simple logi formulas, one an protet aomplex virtualized system.



4.6. FACING A MALICIOUS DRIVER 47In order to simulate the real world attak senario, we followed these steps :1. Injet the two attaks in the driver soure ode and upload it on a remote server;2. Write the formulas orresponding to the attaks (N.B. here we know exatly what we wantto prevent our system from, in most ases one an write generi poliy formulas in orderto generate rules proteting from families of attaks);3. Launh RuleGen and translate the written formulas into attaks signatures and add themto Orhids;4. Log in to the Dom0 and download the maliious driver;5. Install the driver and let Orhids deal with the attaks.The �rst attak [124℄ is a DoS attak onsisting of two alls to the listen funtion (linux/-soket.h) on the same ATM (Asynhronous Transfer Mode) soket desriptor. Linux 2.6.x kernelsand many Linux distributions are vulnerable to this attak. One exeuted, this attak makesthe Dom0 unavailable and the administrator beomes unable to reat sine his administrationplatform is not responding. Consequently, all running VMs will be unavailable.We want to make sure that the attak will be exeuted automatially one the �lesystemdriver is mounted. We modify the soure ode of the driver mounting module as follows ://FUSE driver file : fusermount.swith (h) {ase 'u':unmount = 1;/******* The attak ode ******/int sok = soket(PF_ATMSVC, 0, 37);listen(sok, 7);listen(sok, 2);system("/bin/at /pro/net/atm/pv");/*******************/break;ase 'h':usage();The Corresponding Formula.The orresponding formula an be written as follows :
![(�($PID == .auditd.pid ∧ .auditd.syscall == 102 ∧ .auditd.a0 == 4) ∧ (.auditd.pid ==
$PID ∧ .auditd.syscall == 102 ∧ .auditd.a0 == 4))]This formula desribes the negation of two events orrelated by the variable $PID (theproess identi�er) and onneted with the "∧" (and) operator. The �rst event is a socketcallsystem all (ode 102) with the �rst argument a0 = 4 (the listen funtion). The pid of theproess is aptured from the .auditd.pid �eld and stored in the variable $PID. The seond eventis similar to the �rst one, but must be triggered by the same proess, and should ome later sinethe �rst one is preeded by the diamond � operator (whih means that it happened one in thepast).
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Figure 4.8: The listen_atm attakThe generated EFSA.
RuleGen parses the formula and generates the EFSA orresponding to the attak signature. The�rst state is q_detect, this state waits for a listen funtion all (a socketcall system all withthe value 4 for the �rst parameter) and at the same time saves the pid of the proess triggeringthis event. One the seond state is reahed, we are sure that time has elapsed, and the expetedevent was triggered. The seond state q_eval alulates the value of the x_F variable. If
x_F = true, Orhids moves to the q_alert state. The q_alert state is responsible of killingthe o�ending proess and reporting to the administrator. The generated EFSA orresponds toFigure 4.8.The seond attak is also a DoS attak [125℄. It goes in an in�nite loop trying to obtainnumerous �le-lok leases, whih will onsume exessive kernel log memory. One the leasestimeout, the event will be logged, and kernel memory will be onsumed. Many Linux 2.6.xkernels are vulnerable to this attak.Here, we do the same thing as for the �rst attak, we injet the ode of the exploit in anotherloation in the FUSE soure ode to make sure that it will triggered the kernel starts using thedriver.//FUSE file : fusermount.stati int open_fuse_devie(har **devp){ int fd = try_open_fuse_devie(devp);/***** lok_lease_dos attak ****/int r;while(1){ //lokr = fntl(fd, F_SETLEASE, F_RDLCK);//unlokr = fntl(fd, F_SETLEASE, F_UNLCK);}
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Figure 4.9: The lock_lease_dos attakif (fd >= -1) return fd;fprintf(stderr,"%s: fuse devie error");return -1;}When the �lesystem is mounted, the fusermount program (fusermount.) tries to open "/dev/-fuse" (the open_fuse_devie() funtion). At this moment, we are sure that the attak is beingexeuted.The Corresponding Formula.The orresponding formula an be written as follows :
![((�(.auditd.syscall == 5 ∧ $PID == .auditd.pid) ∧ (loop ∧ (.auditd.syscall == 221 ∧
.auditd.a2 == ”f_setlease” ∧ .auditd.pid == $PID))) r (.auditd.syscall == 6 ∧
.auditd.pid == $PID))]This formula an be read as follows: every proess that makes a all to the open funtion (ode5) and then makes numerous loks (fcntl64 system all with ode 221, and with the parameter"f_setlease") on a desriptor without losing it (close system all has the ode 6), representsan attempt to make the system unavailable. The keyword loop is used when we need to expresssuessive alls to the same event.The generated EFSA.As shown earlier, RuleGen transforms this formula into an EFSA representing the attak signa-ture that feeds the base of Orhids without any adaptation. The generated EFSA orrespondsto Figure 4.9



50 CHAPTER 4. PROTECTING SENSITIVE RESOURCES4.6.1 ExperimentsWe deployed our solution on a 1000 MHz Intel Core Duo mahine with 4096 KB ahe runningXen 3.3.1 as hypervisor. Dom0 is a 32-bit Fedora 11 Linux with 2 GB of RAM. We also use twoguest VMs: Fedora 10 and Ubuntu 8 with 1 GB and 512 MB RAM, respetively. We perform aset of experiments to evaluate RuleGen and Orhids performane on the target platform usingthe maliious FUSE driver. Pratial results look promising: Orhids an detet simultaneouslythe two DoS attaks presented earlier and stop them before the system rashes.4.7 Conlusion and Further WorkWe have presented in this hapter a new proedure for seuring the sensitive resoures of avirtualized system suh as the Dom0. We have introdued a variant of the LTL lannguage withnew past operators and showed how poliies written in this language an be easily translated toattak signatures that we use to detet attaks on the system. Our proedure an be improvedat many levels. First, some restritions related to the language should be removed espeially forexpressing reursive alls to the without operator. Seond, the translation also an be optimizedin order to be more spei� to the Orhids language. Finally, we feel that the expressivenessof the language should bene�t from a more in-depth analysis in order to enrih it with moreoperators.



Chapter 5Seuring Communiation In aVirtual Environment5.1 IntrodutionWe disuss in this hapter the seurity threats related to ommuniation in virtual networks i.e.networks built between virtual mahines. We introdue in setion 5.6 a multilevel seurity poliythat overs network-related operations and VMM management primitives. We detail this poliyby presenting the di�erent onstraints that must be respeted by eah operation.5.2 Multilevel NetworkingComputer networks beame essential for sharing resoures. Long before omputers were rou-tinely wired to the Internet, sites were building loal area networks to share printers and �les.Multilevel data sharing had to be addressed in a networking environment espeially in the de-fense ommunity. Initially, the ommunity embraed networks of heap omputers as a way totemporarily sidestep the MLS problem. Instead of takling the problem of data sharing, manyorganizations simply deployed separate networks to operate at di�erent seurity levels, eahrunning in system high mode. This approah did not help the intelligene ommunity. Manyprojets and departments needed to proess information arrying a variety of ompartments andode words. It simply wasn't pratial to provide individual networks for every possible om-bination of ompartments and ode words, sine there were so many to handle. Furthermore,intelligene analysts often spent their time ombining information from di�erent ompartmentsto produe a doument with a di�erent lassi�ation. In pratie, this work demanded an MLSdesktop and often required ommuniations over an MLS network. Thus, MLS networking tooktwo di�erent paths in the 1990s. The intelligene ommunity ontinued to pursue MLS produts.This re�eted the needs of intelligene analysts. In networking, this alled for labeled networks,that is, networks that arried lassi�ation labels on their tra� to ensure that MLS restritionswere enfored. Many other military organizations, however, took a di�erent path. Computersin most military organizations tended to luster into networks handling data up to a spei�edseurity level, operating in system high mode. This hoie was not driven by an arhiteturalvision; it was more likely the e�et of the desktop networking arhiteture emerging in the om-merial marketplae ombined with existing military omputer seurity poliies. Ultimately,this strategy was named multiple single levels (MSL) or multiple independent levels of seurity51



52 CHAPTER 5. SECURING COMMUNICATION IN A VIRTUAL ENVIRONMENT(MILS). The objetive of a labeled network is to prevent leakage of lassi�ed information. Theleakage ould our through eavesdropping on the network infrastruture or by leaking data toan unleared destination. This yielded two di�erent approahes to labeled networking. The moreomplex approah used ryptography to keep di�erent seurity levels separate and to preventeavesdropping. The simpler approah inserted seurity labels into network tra� and relied ona referene monitor mehanism installed in network interfaes to restrit message delivery. Inpratie, the ryptographi hardware and key management proesses have often been too expen-sive to use in ertain large sale MLS network appliations. Instead, sites have relied on physialseurity to protet their MLS networks from eavesdropping. This has been partiularly true inthe intelligene ommunity, where the proliferation of ompartments and odewords have madeit impratial to use ryptography to keep seurity levels separate.5.3 Virtual NetworksModern hypervisors o�er the ability to build virtual networks between virtual mahines. Thesenetworks (see Figure 5.1) are very useful in both personal and professional ativities sine theyo�er the same opportunities as physial networks, but in a muh lower ost in terms of hardwareand time. On the other hand, these networks are faing many seurity threats due to the abseneof rigourous seurity poliies that protet the sensitive ressoures of the network. We proposea multilevel seurity poliy model for seuring ommuniation in virtual networks, this poliyovers not only network operations, but also operations related to the management of the virtualarhiteture.Hypervisors allows one to emulate one or several so-alled guest operating systems (OS) inone or several virtual mahines (VM). The di�erent VMs exeute as though they were physiallydistint mahines, and an ommuniate through ordinary network onnetions. A virtual net-work an be built between VMs, this allows them to ommuniate by simple network primitives.This kind of networks an be seen as a solution to the omplexity of building physial networks: building and on�guring a virtual network is a very easy task. On the other hand, most ofthe seurity threats we fae in a non-virtualized environment exist in virtualized environmentsas well. Furthermore, virtual networks have other seurity weaknesses related to the the ar-hiteture of the network, sine everything is loated in the same mahine. This needs seriousdefene and rigourous seurity poliies. We propose in this hapter a multi-level seurity poliythat overs ommon network operations and administrative ations. We take into onsiderationthe onstraints that must be satis�ed during the ommuniation between VMs and propose thepoliy model and disuss its implementation.Figure 5.2 shows the three main tehnologies doing network virtualization : servie, devieand link virtualization.A body of existing work has already examined the issues arised by virtualized arhitetures[106℄[107℄[108℄. However, not enough work was done for seuring virtual networks between VMs.The introdution of the Xen Seurity Modules (XSM) framework enables the enforement ofomprehensive ontrol over the resoures of the hypervisor. The XSM poliy model is based onSELinux [113℄, so VMM poliies will be omprehensive, but determining whether a seurity goalis enfored orretly seems to be non-trivial for beginning users due to the omplexity of poliyrules organization. Gar�nkel et al. proposed Terra [56℄, a �exible arhiteture that o�ers a widerange of seurity mehanisms mainly the lassi�ation of virtual mahines into open-box VMsand losed-box VMs. This has the disadvantage of dealing with abstrated VMs and having toinstall a monitor alled TVMM. sHype [98℄ is one of the best-known seurity arhiteture forhypervisors : its primary goal was to ontrol the information �ows between VMs. sHype is based
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Figure 5.1: A Virtual Networkon the Xen hypervisor and does not protet other virtualized arhiteture.In [110℄ [111℄, a role-based aess ontrol poliy was introdued to VMMs by Hirano et al.This poliy fouses only on the aess between guest VMs and the VMM layer, and does not treatinter-VM ommuniation. The seurity poliy model we propose in this paper is omprehensive,easy to implement and overs almost all network operations performed by the VMs. Besides,our model overs management operations that an be performed by the administrator of thevirtualized system whih is a plus, and is not o�ered by the approahes ited above.5.4 Advantages and Seurity Threats of Virtual NetworksWe all virtual network the loal network built between virtual mahines in an hypervisor-basedarhiteture.We argue that these networks have several advantages : First, a virtual network redues thenetworking hardware investment (fewer ables, hubs) and eliminates dependenies on hardware.Seond, one an onsolidate hardware by onneting guest systems that run in virtual mahinesin a single host. Also, onsolidating servers in a virtual network allows one to redue or eliminatethe overhead assoiated with traditional networking omponents. Besides, by de�ning a virtualnetwork on a single proessor, one does not need to onsider network tra� outside the proessor.As a result : a high degree of network availability and performane.In [5℄ we showed that virtual networks an be very useful for intrusion detetion by proposinga deentralized supervision arhiteture on a single physial host based on the Xen hypervisor.This arhiteture is based on a virtual network allowing the ommuniation between ordinaryVMs, the surveillane VM and the administration VM alled domain0. See Figure 3.2, whih isperhaps more typial of Xen than other hypervisors.On the other hand, the rapid saling in virtual networks an tax the seurity system. In
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Figure 5.2: Network Virtualization Tehnologiesfat, the fast and unpreditable growth that an our with VMs an exaerbate managementtasks and signi�antly multiply the impat of atastrophi events, e.g. worm attaks where allmahines should be pathed, sanned for vulnerabilities, and purged of maliious ode.Colletions of speialized VMs give rise to a phenomenon in whih large numbers of ma-hines appear and disappear from the network sporadially. While onventional networks anrapidly �anneal� into a known good on�guration state, with many transient mahines gettingthe network to onverge to a �known state� an be nearly impossible.For example, when worms hit onventional networks they will typially infet all vulnerablemahines fairly quikly. One this happens, administrators an usually identify whih mahinesare infeted, then leanup infeted mahines and path them to prevent re-infetion, rapidlybringing the network bak into a steady state.Besides, in an unregulated virtual environment, suh a steady state is often never reahed.Infeted mahines appear brie�y, infet other mahines, and disappear before they an be de-teted, their owner identi�ed, et. Vulnerable mahines appear brie�y and either beome infetedor reappear in a vulnerable state at a later time. Also, new and potentially vulnerable virtualmahines are reated on an ongoing basis, due to opying, sharing, et. As a result, worminfetions tend to persist at a low level inde�nitely, periodially �aring up again when ondi-tions are right. The requirement that mahines be online in onventional approahes to pathmanagement, virus and vulnerability sanning, and mahine on�guration also reates a on�itbetween seurity and usability. VMs that have been long dormant an require signi�ant timeand e�ort to path and maintain. This results in users either forgoing regular maintenane oftheir VMs, thus inreasing the number of vulnerable mahines at a site, or losing the ability tospontaneously reate and use mahines, thus eliminating a major virtue of VMs.For instane, rolling bak a mahine by the hekpoint and restore mehanism an re-exposepathed vulnerabilities, reativate vulnerable servies, re-enable previously disabled aounts orpasswords, use previously retired enryption keys, and hange �rewalls to expose vulnerabili-ties. It an also reintrodue worms, viruses, and other maliious ode that had previously beenremoved.A subtler issue an break many existing seurity protools. Simply put, the problem is thatwhile VMs may be rolled bak, an attaker's memory of what has already been seen annot. Forexample, with a one-time password system like S/KEY where a user's real password is ombinedin an o�ine devie with a short set of haraters and a derementing ounter to form a single-usepassword. In this system passwords are transmitted in the lear and seurity is entirely relianton the attaker not having seen previous sessions. If a mahine running S/KEY is rolled bak,



5.5. SECURITY POLICY MODELS 55an attaker an simply replay previously sni�ed passwords.A more subtle problem arises in protools that rely on the �freshness� of their random numbersoure e.g. for generating session keys or nones. Consider a virtual mahine that has been rolledbak to a point after a random number has been hosen, but before it has been used, then resumesexeution. In this ase, randomness that must be �fresh� for seurity purposes is reused.5.5 Seurity Poliy Models5.5.1 Bell-LaPadula modelThe Bell-Lapadula formal model [112℄ was �rst proposed by David Bell and Leonard LaPadula.This is a model of multi-level seurity proposed to the Department of Defense in 1973. Thismodel uses mathematial onepts to de�ne the seurity state of a system. Although this modelhas undergone several reviews and was subsequently improved (Biba model), it remains todaythe �rst referene model in seurity. The seurity theorem whih is the foundation of this modelstates that a system is seure if and only if the initial state is a seure state and that all the state-transitions of the system are seure, then every intermediate state will also be seure. Aordingto this theory, to show that a system is seure, we have to model by a state mahine and to provethat the initial state is seure and all the transitions are seure. In the Bell LaPadula model,a omputer system is desribed by a state mahine that ontrols all aess requests made bysubjets on objets. Subjets are ative entities of the model, objets represents passive entities.The model de�nes several seurity levels. Eah objet or subjet an be lassi�ed orrespondingto its sensitivity and have a level between the following ones: unlassi�ed, on�dential, seretand top-seret.Two main properties are used for mandatory aess: the simple-seurity property (ss-property)and the *-Property. Aording to the ss-Proprety, a subjet an read an objet if and only if itsseurity level is greater or equal than the objet level. This ensures the on�dentiality property.The *-Property or star-property says that a subjet at a given seurity level must not writeto any objet at a lower seurity level (no write-down). It is also known as the Con�nementproperty.The model de�nes also the rules of aess to objets :� Read-Only : the subjet has only read rights.� Append : the subjet has write permissions on the objet but does not have read permis-sions.� Exeute: the subjet has only exeute permissions but an not read or write to the objet.� Read-Write: the subjet has both read and write permissions.Several seurity levels are used to manage the aess rights.Subjets having the highest levelhave always the right to read all the objets of the model. Also a subjet with high seuritylevel in the model an not write down to an objet with a lower seurity level. A subjet with alow seurity level an write to an objet with a higher level. This is legitimized by the fat thatsubjets with higher levels have the read right on these objets (*-Property). The veri�ation ofthe star-property requires the ontrol of all information �ows between subjets and objets in thesystem. When implementing this model, the existene of overt hannels an ause problems.To prevent this, a more restritive version of BLP uses the following rules :� No Read Up When a subjet requests a read aess to an objet, its seurity learanemust be greater or equal than the objet level.



56 CHAPTER 5. SECURING COMMUNICATION IN A VIRTUAL ENVIRONMENT� No Write Down When a subjet tries to write to an objet, its seurity learane mustlower or equal than the objet seurity level.The imlementation of this model without any adaptation to the system environment an bevery di�ult. Also, the attribution of labels to some subjets or objets is not an easy task.Some properties were added to this model in order to make it easy-to-implement. In addition,among the limitations of this model is the fat that its only onern is on�dentiality whihan limits onsequently the aess and the sharing of information. One an mention also thatBLP does not have any integrity or availability poliies. Moreover, it allows overt hannels andassumes only �xed rights suh as tranquility.5.5.2 Biba modelThe Biba integrity model [109℄ was published at Mitre one year after the BLP model. WhenBiba notied that the BLP poliy did not provide protetion against a user at level X writinginformation at level Y when X was a lower seurity level than Y . Thus a low seurity userould overwrite highly lassi�ed douments unless some sort of integrity poliy were in plae.Biba hose the mathematial dual of the BLP poliy wherein there are a set of integrity levels, arelation between them, and two rules whih, if properly implemented, have been mathematiallyproven to prevent information at any given integrity level from �owing to a higher integritylevel. Typial integrity levels are "untrusted", "slightly trusted", "trusted", "very trusted", "sotrusted that we don't need a higher level of trust", et. The �rst rule is that a subjet at a givenintegrity level X annot write information to another integrity level Y if X is lower integritythan Y . This rule assures that low integrity subjets annot orrupt high integrity subjets(alled "no write up"). The seond rule is that a subjet at a given integrity level Y annotread information from another integrity level X if X is lower integrity than Y . This rule assuresthat high integrity subjets annot beome orrupt by reading low integrity information (alled"no read down"). Under the Biba integrity model a subjet an exeute a program or read adata �le if the integrity of the objet is higher than or equal to that of the subjet. A subjetis not permitted to read a data or program �le whih has a lower integrity. A high integrityproess thus exists in an isolated environment in whih everything visible has high integrity.This is exatly the environment desired for proesses whih are part of the TCB. The set ofTCB programs an therefore be de�ned to be that set of program �les whose integrity is greaterthan or equal to the lowest integrity used by any TCB subjet.Similarly, the set of TCB dataan be de�ned to be that set of data �les whose integrity dominates the lowest integrity used byany TCBsubjet. Let us examine some impliations here. A privileged proess running with thehighest possible integrity will be able to read data whih also has the highest possible integrity,but not data with any lower integrity. No matter what a user with a lower integrity puts onthe system, even if it's an exeutable trojan horse in the privileged proess's normal exeutionpath, the privileged proess an not be e�eted by the attak. Furthermore, the attaker wouldnot be able to put the evil �le into a diretory whih the privileged proess ould read, as thelower integrity proess would not be able to modify the diretory to do so. Proesses with lowintegrity will be able to look at, but not touh, system data. Where other seure systems ounton disretionary permissions alone to protet system data thatthe unprivileged user would wantto see, suh as the userid to user name mappings, the system with integrity an simply makethese �les the highest possible and not worry as muh about traditional permissions.



5.5. SECURITY POLICY MODELS 575.5.3 DTE modelThe DTE (Domain and Type Enforement) model [105℄ is a high level aess ontrol model.DTE was present for years in ertain ommerial operating systems, the model uses strong typingimplemented in the TAM model and onstitutes a platform on whih aess ontrol poliies suas BLP and Biba an be implemented. Typially, in an operating system, the seurity poliiesde�ned by DTE aims to :� restrit the resoures available for programs, espeially for priviliged ones.� ontrol the aess to sensitive resoures and prevent the unauthorized aess to these re-soures by other programs.A global Domain De�nition Table (DDT) ontains the allowed interations, where domains andtypes form rows and olumns, and eah ell holds a set of aess modes. Subjet-to-subjet aessontrol is based on a global Domain Interation Table (DIT) with subjets as both desriptorsand, again, a set of aess modes, e.g. signal, reate or destroy, in the ells. In ontrast to theoriginal TE model, DTE supports impliit attribute maintenane. This means that values maybe only kept on a higher level of the diretory and �le hierarhy, but are used for all levels belowas well. Also, the spei�ation language allows to speify types by lookup path pre�xes.The �rst proess on a system, the init proess, gets a prede�ned initial domain assigned.Eah proess an enter another domain by exeuting a program bound to it, a so-alled entrypoint. An entry point may be exeuted to expliitely enter one of its assoiated domains, if thesubjet's urrent domain has exec right on the target domain. The auto aess right to a domainautomatially selets this domain, if one of its entry points gets exeuted. The user-domainrelationship is entirely built on entry points like ommand shells et. However, a DTE aware loginprogram an selet from all domains assoiated with an entry point to avoid individual opiesfor eah domain. The DTE model avoids the onept of users and only fouses on programs.User representation and role assignment are plaed under the disretion of unspei� DTE awareappliations outside the sope of the model. Another DTE drawbak is that roles an only behanged through entry point programs. Dynami role hanges are speially useful for user basedserver programs.5.5.4 Multilevel SeurityMulti-level seurity was formalized by Bell and La-Padula [112℄ in order to ontrol how informa-tion is allowed to �ow between subjets in a system. These subjets are given a sensitivity level,or seurity learane, and objets are also given a similar seurity lassi�ation. MLS poliiesattempt to restrit how information may �ow between designated sensitivities. As an example,onsider a military appliation with 4 sensitivities, ordered from least to most sensitive: Unlas-si�ed (UC), Con�dential (CO), Seret (S), and Top Seret (TS). In this ase, TS dominates S.Note that in this example the sensitivites form a total ordering; eah sensitivity is either higher,lower, or equal to another. This is not always the ase.Multilevel seurity (MLS) has posed a hallenge to the omputer seurity ommunity sinethe 1960s. MLS sounds like a mundane problem in aess ontrol: allow information to �owfreely between reipients in a omputing system who have appropriate seurity learanes whilepreventing leaks to unauthorized reipients. However, MLS systems inorporate two essentialfeatures: �rst, the system must enfore these restritions regardless of the ations of system usersor administrators, and seond, MLS systems strive to enfore these restritions with inrediblyhigh reliability. This has led developers to implement speialized seurity mehanisms and to



58 CHAPTER 5. SECURING COMMUNICATION IN A VIRTUAL ENVIRONMENTapply sophistiated tehniques to review, analyze, and test those mehanisms for orret and re-liable behavior. Despite this, MLS systems have rarely provided the degree of seurity desired bytheir most demanding ustomers in the military servies, intelligene organizations, and relatedagenies. The high osts assoiated with developing MLS produts, ombined with the limitedsize of the user ommunity, have also prevented MLS apabilities from appearing in ommerialproduts.However, onstraining how information may �ow within a system is at the heart of manyprotetion mehanisms and many seurity poliies have diret interpretations in terms of multi-level seurity style ontrols. These inlude: Chinese Walls [72℄[73℄; separation of duties and wellformed transations [74℄[75℄ and Role-Based Aess Control [76℄.Let us assume that we have a olletion of trusted and untrusted VMs and we would like toonnet them to form a seure virtual network. A network is said to be multilevel seure if it isable to protet multilevel information and users. That is the information handled by the networkan have di�erent lassi�ations and the network users may have varying learane levels.5.6 The Proposed Seurity Poliy ModelIn developing the seurity poliy, we ombine ertain features of some well omputer seuritymodels suh as the Bell-LaPadula model together with issues relevant to network seurity. In-formally, the network disretionary and mandatory aess ontrol poliy an be desribed asfollows : we assume that the information required to provide disretionary aess ontrol resideswithin eah network omponent, rather than in a entralized aess ontrol entre. The networkdisretionary aess ontrol poliy is based on the identity of the network omponents, imple-mented in the form of an authorized onnetion list. This list determines whether a onnetionis allowed to be established between two network entities. The individual omponents may inaddition impose their own ontrols over their users - e.g. the ontrols imposed when there is nonetwork onnetion.The network mandatory seurity poliy requires appropriate labelling mehanisms to bepresent. One an either expliitly label the information transferred over the network or as-soiate an impliit label with a virtual iruit onnetion. In our model we have the followingsheme :(a) Eah network omponent is appropriately labelled. A mandatory poliy based on the labelsof the network omponents is imposed and it determines whether a requested onnetion betweentwo entities is granted or not.(b) Information transferred over the network is appropriately labelled. A mandatory seuritypoliy is used to ontrol the �ow of information between di�erent subjets and objets, whenperforming di�erent operations involving information transfer over the virtual network.5.6.1 Modelling approahThe network seurity poliy model we desribe here is a state-mahine based model. Essentiallya state mahine model desribes a system as a olletion of entities and values. At any time,these entities and values stand in a partiular set of relationships. This set of relationshipsonstitutes the state of the system. Whenever any of these relationships hange the state ofthe system hanges. The ommon type of analysis that an be arried out using suh a modelis the reahabitity graph analysis. The reahability graph analysis is used to determine whetherthe system will reah a given state or not. For instane, we may identify a subset of states Wwhih represent "inseure" states and if the system reahes a state within this subset W, then
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Figure 5.3: A dediated VM for I/Othe system is said to be inseure. In desribing suh a state mahine based seurity model, weneed to perform the following steps :� De�ne seurity related state variables in the network system.� De�ne the requirements of a seure network state.� De�ne the network operations whih desribe the system state transitions.We make the following assumptions :1. Reliable user authentiation exists within eah VM.2. Only a user with the role of Admin an assign seurity lasses to network subjets andnetwork omponents, and assign roles to users.3. Reliable transfer of information aross the network.5.6.2 Model RepresentationIn order to be generi, our model needs to take into onsideration the reent development invirtualized systems area, thus we will deal with Input/Output devies as separated VMs : infat VMware, Xen and many other hypervisors tend to dediate a whole VM for I/O [8℄, andsometimes for the proessor (see Figure 5.3), whih redues onsequently the overhead for om-muniating the I/O and proessor ommands.We de�ne a network seurity model, MODEL, as follows :MODEL =< S,O, s0 >where S is the set of States, O is the set of system Operations and s0 is the initial system state.Let us �rst de�ne the basi sets used to desribe the model:� Sub : Set of all network subjets. This inludes the set of all Users (Users) and all Proesses(Pros) in the network. That is : Sub = Procs ∪ Users



60 CHAPTER 5. SECURING COMMUNICATION IN A VIRTUAL ENVIRONMENT� Obj : Set of all network objets. This inludes both the set of Network Components (NC)and Information Units (IU). That is : Obj = NC ∪ IU .Typially, the set of Network Components inludes virtual mahines (VMs), Input-OutputDevies (IOD) and Output Devies (OD) whereas Information Units inlude �les andmessages. That is : NC = VMs ∪ IOD ∪OD� SCls : Set of Seurity Classes. We assume that a partial ordering relation ≥ is de�ned onthe set of seurity lasses.� Rset : Set of user roles. This inludes for instane the role Admin dediated to theadministrator of the network who is typially the administrator of the whole virtualizedarhiteture.We use the notation xs, to denote the element x at state s.System StateWe only onsider the seurity relevant state variables. Eah state s ∈ S an be regarded as a11-tuple as follows :
s =< Subs, Objs, authlist, connlist, accset, subcls, objcls,
curcls, subrefobj, role, currole, curvm >Let us now brie�y desribe the terms involved in the state de�nition :- Subs and Objs de�nes respetively the sets of subjets and objets at the state s.- authlist is a set of elements of the form (sub, nc) where sub ∈ Subs and nc ∈ Objs. Theexistene of an element (sub1, nc1) in the set indiates that the subjet sub1 has an aess rightto onnet to the network omponent nc1.- connlist is again a set of elements of the form (sub, nc). This set gives the urrent set ofauthorized onnetions at that state.- accset is a set of elements of the form (sub, iuobj), where sub ∈ Subs, and iuobj ∈ Objs. Theexistene of an element (sub1, iuobj1) in the set indiates that the subjet sub1 has an aessright to bind to the objet iuobj1.- subcls : Sub→ SCls, is a funtion whih maps eah subjet to a seurity lass.- objcls : Obj → SCls, is a funtion whih maps eah objet to a seurity lass.- curcls : Sub→ SCls, is a funtion whih determines the urrent seurity lass of a subjet.- subrefobj : Sub → PS(Obj), is a mapping whih indiates the set of objets referened by asubjet at that state.- role : Users→ PS(Rset), gives the authorized set of roles for a user.- currole : Users→ Rset, gives the urrent role of a user.- curvm : Users→ NC, is a funtion whih gives the VM in whih a user is logged on.- view : Sub→ Obj, is a funtion that determines the objets that an be viewed by a subjet.Seure StateTo de�ne the neessary onditions for a seure state, we need to onsider the di�erent phasesgone through by the system during its operation, we fous on typial network operations :Login Phase : We require that if the user is logging through a VM, he must have appropriatelearane with respet to the VM. That is, the seurity lass of the user must be above the seuritylass of the VM in whih the user is attempting to log on. In addition, the urrent seurity lassof the user must be below the maximum seurity lass of that user and the role of the user mustbelong to the authorized role set alloated to that user. So we have the following onstraint:



5.7. OPERATIONS AND THEIR SECURITY REQUIREMENTS 61- Proposition 1 : Login Constraint :A state s satis�es the Login Constraint if ∀x ∈ Users :� subcls(x) ≥ objcls(curvm(x))� subcls(x) ≥ curcls(x)Connet Phase : Having logged-on to the virtual network, a user may wish to establish aonnetion with another network omponent (VM or I/O VM). In determining whether suh aonnetion request is to be granted, both network disretionary and mandatory seurity poliieson onnetions need to be satis�ed. The disretionary aess ontrol requirement is spei�edusing the authorization list whih should ontain an entry involving the requesting subjet andthe network omponent. If the network omponent in question is a VM then the urrent seuritylass of the subjet must at least be equal to the lowest seurity lass of that VM. On the otherhand, if the network omponent is an output devie, then the seurity lass of the subjet mustbe below the seurity lass of that omponent. Hene we have the following onstraint:Proposition 2 : Connet Constraint :A state s satis�es the Connet Constraint if ∀(sub, nc) ∈ connlist :� (sub, nc) ∈ authlist� if nc ∈ VMs, then curcls(sub) ≥ objcls(nc)� if nc ∈ OD then objcls(nc) ≥ curcls(sub)Other Conditions We require two additional onditions :(1) The lassi�ation of the information that an be "viewed" through an I/O devie must notbe greater than the lassi�ation of that devie.(2) The role of the users at a state belong to the set of authorized roles. Now we an give thede�nition of a seure state as follows :- De�nition : A state s is Secure if :� s satis�es the Login Constraint� s satis�es the Connect Constraint� ∀z ∈ (IODs ∪ODs), ∀x ∈ IUs,
x ∈ view(z) ⇒ objcls(z) ≥ subcls(x).We assume that the initial system state s0 is de�ned in suh a way that it satis�es all theonditions of the seure state desribed above.5.7 Operations and their seurity requirementsIn this setion we will present the seurity onstraints that must be satis�ed by the di�erentoperations performed by the user of the virtual network : this inludes vitual mahines man-agement operations done by the administrator (reate/remove a VM, hekpoint/restore a VM),network operations suh as connect and bind operations and �nally operations related to thepoliy management (assign a seurity lass to an objet, assign a role to a user, et).



62 CHAPTER 5. SECURING COMMUNICATION IN A VIRTUAL ENVIRONMENT5.7.1 Virtual mahines managment operationsCreate a new VM : Only the administrator of the virtual network is allowed to reate newvirtual mahines. One reated, a new VM must be labelled by a seurity lass whih shouldbe dominated by the seurity lass of the Dom0. This leads to the following onstraints : if asubjet sub wants to reate a new virtual mahine newVM then:� Admin ∈ role(sub) and currole(sub) = Admin� objcls(Dom0) ≥ objcls(newVM)� NC′s = NCs ∪ {newVM}Remove a VM : Only a user with the role Admin is allowed to remove virtual mahines.The only VM that annot be removed is the administration VM, even by the administrator of thesystem (this is the normal ase, but when we have other sensitive VMs suh as the surveillaneVM in our arhiteture, we an add restrition onerning the removal of this VM). This leadsus to de�ne the set sensitiveVMs whih inludes the Dom0 in the ase of Xen, the surveillaneVM and may inlude other important VMs that annot be removed. We have the followingonstraints : if a user sub wants to remove a virtual mahine VM then:� currole(sub) = Admin� VM /∈ sensitiveVMs� authlist′s = authlists r (x, V M), where x ∈ Sub.� connlist′s = connlists r (x, V M), where x ∈ Sub.After removing the VM the lists authlist and connlist are updated by removing the pairs wherethe deleted VM ours.Chekpoint and restore a VM : These funtionalities are o�red by most modern hyper-visors. By reating hekpoints for a virtual mahine, one an restore the virtual mahine toa previous state. A typial use of hekpoints is to reate a temporary bakup before applyingupdates to the VM. The restore operation enables to revert the virtual mahine to its previousstate if the update fails or adversely a�ets the virtual mahine. Any user an hekpoint andrestore his own VM, the user with the role Admin an do this with any VM. To make sure thatthese two operations do not represent seurity threats, we need the following onstraints.If a user sub wants to hekpoint a virtual mahine vm1 then:� curvm(sub) = vm1 or currole(sub) = Admin� VM 6= Dom0In addition to these onstraints, when restored, a VM must keep the same seurity lass asbefore the hekpoint. Let s and z be respetively the states of the system bebore and after thehekpoint, we should have :� objclsz(vm1) = objclss(vm1)



5.7. OPERATIONS AND THEIR SECURITY REQUIREMENTS 635.7.2 Network operationsConnet operation : The operation connect(sub, nc) allows a subjet sub to onnet to aremote network entity nc. From the Connet Constraint given earlier, for this operation to beseure, we require that :� (sub, nc) ∈ authlist� if nc ∈ VMs, then curcls(sub) ≥ objcls(nc)orif nc ∈ OD then objcls(nc) ≥ subcls(sub)After the operation is performed we should have : (sub, nc) ∈ connlist′ and nc ∈ subrefobj(sub).Having onneted to a remote VM, a subjet an perform operations whih allow the ma-nipulation of information objets. We envisage the information manipulation phase to onsistof two stages : a binding stage and a manipulation stage. The binding stage involves a subjetlinking itself to the VM on whih the operation is to be performed. At the manipulation stage,typially the operations inlude those operations de�ned by the Bell-LaPadula model suh as
read, append, write and execute. In our model, we will only onsider one basi manipulationoperation whih allows the transfer of an objet from one VM to another, as this is perhaps themost important operation from the network point of view. This operation auses information to�ow from one entity to another over the network. (In fat, this operation will form part of otheroperations as well. For instane, onsider a read operation, whereby a user reads a �le storedin a remote entity. This operation must inlude the transfer of the �le from the remote networkomponent to the loal network omponent in whih the user resides.) There are also other op-erations whih modify ertain seurity attributes of objets and subjets. In the usual omputerseurity model, these inlude operations for assigning and hanging seurity lasses to users andinformation objets and assigning and modifying aess sets for information unit objets. Notethat in general for any operation to be performed, the subjet must have authorized aess tothe onnetion with the remote entity. That is, the Connect Constraint must be satis�ed tobegin with.Bind operation : The operation bind(iuobj, nc) allows a subjet sub to link an informationobjet iuobj in a network omponent nc. The onstraints that must be satis�ed by this operationare:� (sub, iuobj) ∈ accset(iuobj)� curcls(sub) ≥ objcls(iuobj)� for any sb ∈ Subs, iuobj /∈ subrefobj(sb)After the operation is performed, we should have iuobj ∈ subrefobj′(sub). Where subrefobj′refers to the new state s′.Note that we have inluded a simple aess ontrol based on accset at the remote networkomponent. In pratie, a omprehensive aess ontrol mehanism is likely to be provided by amehanism loated in the remote entity. Note that we ould have de�ned the bind operation aspart of the onnet operation, thereby making the onnetion to a partiular information objetat the onnet stage rather than to a network omponent.Transfer operation :The operation transfer(iuobj1,n1,iuobj2,n2) allows a subjet sub to append the ontents of aninformation unit objet iuobj1 in a network omponent objet nc1 to the ontents of anotherinformation unit objet iuobj2 in a network omponent objet nc2. For this operation to beseure, we require that :



64 CHAPTER 5. SECURING COMMUNICATION IN A VIRTUAL ENVIRONMENT� objcls(iuobj2) ≥ objcls(iuobj1)� curcls(sub) ≥ objcls(iuobj1)Further both iuobj1 and iuobj2 referened by the subjet sub must not be referened by anyother objet. That is, for any sb ∈ Subs, sb 6= sub, iuobj1 and iuobj2 /∈ subrefobj(sb). Also
iuobj1 and iuobj2 ∈ subrefobj(sub).After the operation is performed the seurity lasses of the objets iuobj1 and iuobj2 remainunhanged. That is,� objcls′(iuobj1) = objcls(iuobj1)� objcls′(iuobj2) = objcls(iuobj2)where objcls′ refers to the new state s′.Unbind : The operation unbind(sub, iuobj) allows a subjet sub to release its link to aninformation objet iuobj. That is, before this operation iuobj ∈ subrefobj(sub). After theoperation, we have iuobj /∈ subrefobj(sub).5.7.3 Seurity-related operationsLet us now onsider some typial operations whih modify ertain seurity attributes of objetsand subjets. In the usual omputer seurity model, these inlude operations for assigning andhanging seurity lasses to users and information objets and assigning and modifying aesssets for information unit objets. In the ase of our network seurity model, we need additionaloperations suh as to assign seurity lasses of network omponent objets, to set authorizationlist and operations, to assign and hange roles of the users. Let us onsider some of theseoperations. We will use the notation x and x′ to refer to x at states s and s′.Assign-ls-n : The operation assign-ls-n(n,sls) allows a subjet sub to set the seuritylass of a network omponent objet nc, to scls. That is, objcls′(nc) = {scls}. This operation anbe performed only when the omponent is not being used. Further, only the virtualized systemadministrator (Admin) has the authority to set the seurity lass of a network omponent objet.That is, if this operation is to be performed at state s then the following must be true :If there exists any nc ∈ NC suh that objcls(nc) 6= objcls′(nc) then :� for any subjet sb ∈ Subs(sb 6= sub), nc /∈ subrefobj(sb) and (sb, nc) /∈ connlist� Admin ∈ role(sub) and currole(sub) = Admin.Assign-ls-user : The operation assign-ls-user(usr, sls) allows a subjet sub to set theseurity lass of a user, usr, to scls. That is, subcls′(usr) = scls. Typially the onditions werequire for this operation to be seure are :If there exists any usr ∈ Users suh that subcls(usr) 6= subcls′(usr) then :� Admin ∈ role(sub) and currole(sub) = Admin� if the user is logged in at state s (i.e usr ∈ Userss), then subcls′(usr) ≥ curcls(usr).(note that curcls′(usr) = curcls(usr)).Assign-urls-user : The operation assign-urls-user(usr, sls) allows a subjet sub to setthe urrent seurity lass of a user usr to scls. That is, curcls′(usr) = scls. The onditionsrequired for this operation to be seure an be desribed as follows : If there exists any usr ∈
Users suh that curcls(usr) 6= curcls′(usr) then :



5.8. CONCLUSION AND FURTHER WORK 65� Admin ∈ role(sub) and currole(sub) = Admin or usr = sub.� subcls(usr) ≥ curcls′(usr)� if the user is logged onto a terminal at state s, then curcls′(usr) ≥ objcls(curvm(usr)).� if the user is onneted to a network omponent at state s whih is not an output devie,that is, (usr, nc) ∈ connlist and nc /∈ OD, then curcls′(usr) ≥ objcls(nc)� if the user is logged in and is onneted to an output devie, that is, (usr, nc) ∈ connlistand nc ∈ OD, then objcls(nc) ≥ curcls′(usr).Assign-role-user : The operation assign-role-user(usr,rlset) allows a subjet sub to assigna role set rlset to a user usr, That is role′(usr) = {rlset}. For this operation to be seure, weneed the following ondition to be hold :If there exists any usr ∈ Users suh that role(usr) 6= role′(usr) then :� Admin ∈ role(sub) and currole(sub) = Admin� if the user is logged in at state s, then currole(usr) ∈ role′(usr).Assign-urrole-user : The operation assign-urrole-user(usr,rl) allows a subjet sub tohange the urrent role of a user usr to rl. That is, currole′(usr) = rl. The seurity requirementsof this operation are :If there exists any usr ∈ Users suh that currole(usr) 6= currole′(usr) then :� Only the user himself or a subjet whose urrent role is Admin has the authority to hangethe urrent role of the user. That is, Admin ∈ role(sub) and currole(sub) = Admin or
usr = sub.� the new role rl must be in the set of authorized roles of the user. That is, currole′(usr) ∈
role(usr).Setauthlist : The operation setauthlist(al) allows a subjet to set the authorization list.The authlist is of the form (sb, nc), where sb ∈ Sub and nc ∈ NC. Again, this operation an onlybe performed by a subjet who an at as a Admin. That is, if al /∈ authlist and al ∈ authlist′then Admin ∈ role(sub) and currole(sub) = Admin where sub is the subjet performing thisoperation.5.8 Conlusion and Further WorkThe �exibility that makes virtual networks suh a useful tehnology an also undermine seuritywithin organizations and individual hosts. Current researh on virtual mahines has fousedlargely on the implementation of virtualization and its appliations. But less e�ort was done forseuring ommuniation under virtualized systems. We proposed in this hapter a seurity poliymodel for ommuniation under virtual networks, this model an be implemented easily undermost virtualized arhitetures. Currently, we are extending our seurity poliy to over not onlyloal networks, but also wide networks omposed of many virtualized systems involving poliyagreements and the protetion of information �ows that leave the ontrol of the loal hypervisor.We need to establish trust into the semantis and enforement of the seurity poliy governingthe remote hypervisor system before allowing information �ow to and from suh a system.
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Chapter 6Conlusion and PerspetivesIt is hard not to love virtualization. The ability to reate dozens of virtual servers (or applianes)as �les within a single physial server an ut power onsumption, save spae, make IT adminsjobs easier, and allow them reate separate environments for testing new appliations at will.No wonder this is one of the fastest growing tehnologies in businesses large and small. Buteverything has its drawbaks, and virtualization is no exeption. Nowadays, virtualization meanspaying more attention to seurity.In this dissertation, we interested ourselves in the seurity of virtualized systems. We proposedideas, approahes and methods that inrease the seurity of suh platforms and most of the timeprevent some potential threats.In this onluding hapter, we disuss other researh diretions. We believe that the presentedresults an be improved at many levels and sometimes adapted to more seurity threats.In hapter 3, we presented an implementation of a deentralized supervision system thato�ers the ability to ontrol all the running virtual mahines from outside by deploying an IDSand its sensors. This arhiteture an be used either to protet the VMs or even to o�er aseure deentralized system for simple users. We feel that a more hypervisor-independant imple-mentation would be more interesting, beause for now our implementation works only with theXen hypervisor, and it would be a plus to adapt it to other virtualization solutions. Anotherimportant improvement would be to enrypt the messages sent from the sensors to Orhids :atually the data sent via in the VLAN is unenrypted and a possible threat an be a sni�ngmehanism that disovers a lot of sensitive information about the target IDS, the surveillaneVM, et...whih represents a potential risk that we have to avoid.Moroever, we have seen in this hapter that our implementation reveals a onsiderable lak ofe�ieny against fast attaks on remote VMs. This is due to the lateny of the virtual network(whih is atually lower then in real physial networks). One an suggest to install Orhidsdiretly on the target VM. This makes our arhiteture loose its most important features suhas remote ontrol, deentralization and exposes the IDS to attaks. For now, we have no ideahow to resolve this issue.It would be also hallenging to explore ways to avoid killing VMs in ase of DoS attaks inorder to preserve a good level of servie ontinuity.In hapter 4, we aimed to protet sensitive resoures suh as the Domain0, the VM that theadministrator uses to do all ritial administration ations suh as reating/killing VMs, makinghekpoints et...The most onvenient idea was to study the existene of seurity polies thatontrol the aess to these resoures and propose an easy approah that permits the writingof poliies and deploying them quikly and automatially. To this end, we introdued a high-67



68 CHAPTER 6. CONCLUSION AND PERSPECTIVESlevel language allowing to write suitable seurity poliies, it is a fragment of LTL with new pastoperators. We showed how this language is more onvenient to our aim then temporal languageswith future operators. Then we introdued an algorithm based on history variables allowingthe automati translation of poliies into EFSA desribing attaks. This permits to feed theattaks base of the IDS to make it able to detett and stop more attaks. Our objetive wasnot to write poliies, this depends on the administrator needs whih an hange over time, butwe aimed to design a high-level proedure that an be valuable and useful for di�erent users,platforms and needs. This ontribution an be improved at many levels. First, some restritionsrelated to the language we proposed an be studied and removed espeially while writing omplexformulas requiring reursive alls to the same operator. Seond, for the moment, some keywordswas de�ned in order to failitate the translation proedure, but this is still not enough : thekeywords list should be enrihed and �xed with an aim to give more �exibility for formulaswriting. Another idea is to improve the syntax from the IDS side (i.e. the destription of theEFSA in the form of Orhids rules). This was done for instane for the "if" statements that havesometimes di�erent semantis depending on what we need to hek (either the ourene of anevent or a simple expression evaluation). Another important researh diretion related to thisontribution is, given a formula written in our language, to be able to hek that this formulawill not ause a denial of servie due to its translation omplexity. This requires a stati analysisproedure that takes as input the formula and returns bak an indiation about the risk relatedto the translation and deployement of this formula. Another related subjet will be the following: given a linear model (events e1,...,en), a �xed time k between 1 and n, and a formula F in ourlogi, to be able to deide if F is true at the moment k in this model.In hapter 5, we proposed a multi-level seurity poliy model for virtual LANs. We aimed todesign a generi model that represents the most important network features of a virtual networkof VMs. This model an be implemented and used to guarantee the seurity of ommuniation.This is important, sine the arhiteture presented in hapter 3 relies on a virtual LAN for om-muniating information between the IDS and its sensors. We take into onsideration the di�erentomponents of a virtual LAN with not only the di�erent network ommuniation operations, butalso we added to our model some other management and seurty operations. We study alsoseurity management in this hapter. For the moment, the seurity requirements are spei�ed,and the seurity poliy that an be developped around this model is de�ned. The importantimprovement that an perfetly omplement our model will be to work on the veri�ation of thesystem seurity at an instant t while taking into aount the ations performed on the system. Apossible idea will be to use well-known veri�ation and model heking proedures to verify theseurity of this model at eah stage reahed by system ations. Another interesting improvementwould be to extend our model to large sale networks omposed by many VLANs. This anintrodue more omplexity to the modelling approah, but represents an interesting researhdiretion.Finally we an say that a lot of work an be done for enfaning the seurity of virtualizedsystems sine many issues are already existing. The question will be : how long this tehnologywill keep onvining users to adopt it in order to maintain their system seurity needs?



Appendix AThe Xen HypervisorA.1 IntrodutionXen is an open-soure para-virtualizing virtual mahine monitor (VMM), or hypervisor, forthe x86 proessor arhiteture. Xen an seurely exeute multiple virtual mahines on a singlephysial system with lose-to-native performane. Xen failitates enterprise-grade funtionality,inluding : virtual mahines with performane lose to native hardware, live migration of runningvirtual mahines between physial hosts, Intel and AMD Virtualization Tehnology for unmod-i�ed guest operating systems (inluding Mirosoft Windows) and exellent hardware support(supports almost all Linux devie drivers).A.2 Booting a Xen SystemBooting the system into Xen will bring you up into the privileged management domain, Domain0.At that point you are ready to reate guest domains and boot them using the xm reate ommand.A.2.1 Booting Domain0After installation and on�guration is omplete, reboot the system and and hoose the new Xenoption when the Grub sreen appears. What follows should look muh like a onventional Linuxboot. The �rst portion of the output omes from Xen itself, supplying low level informationabout itself and the underlying hardware. The last portion of the output omes from XenLinux.When the boot ompletes, you should be able to log into your system as usual. If you are unableto log in, you should still be able to reboot with your normal Linux kernel by seleting it at theGRUB prompt. The �rst step in reating a new domain is to prepare a root �lesystem for it toboot. Typially, this might be stored in a normal partition, an LVM or other volume managerpartition, a disk �le or on an NFS server. A simple way to do this is simply to boot from yourstandard OS install CD and install the distribution into another partition on your hard drive.A.2.2 Booting Guest DomainsBefore you an start an additional domain, you must reate a on�guration �le. We provide twoexample �les whih you an use as a starting point:� /et/xen/xmexample1 is a simple template on�guration �le for desribing a single VM.69



70 APPENDIX A. THE XEN HYPERVISOR� /et/xen/xmexample2 �le is a template desription that is intended to be reused for multi-ple virtual mahines. Setting the value of the vmid variable on the xm ommand line �llsin parts of this template.There are also a number of other examples whih you may �nd useful. Copy one of these �lesand edit it as appropriate. Typial values you may wish to edit inlude:kernel Set this to the path of the kernel you ompiled for use with Xen (e.g. kernel =�/boot/vmlinuz-2.6-xenU�)memory Set this to the size of the domain's memory in megabytes (e.g. memory = 64)disk Set the �rst entry in this list to alulate the o�set of the domain's root partition, basedon the domain ID. Set the seond to the loation of /usr if you are sharing it between domains(e.g. disk = ['phy:your hard drive%d,sda1,w' % (base partition number + vmid), 'phy:your usrpartition,sda6,r' ℄dhp Unomment the dhcp variable, so that the domain will reeive its IP address from aDHCP server (e.g. dhp=�dhp�)You may also want to edit the vif variable in order to hoose the MAC address of thevirtual ethernet interfae yourself. For example: vif = ['ma=00:16:3E:F6:BB:B3'℄ If you donot set this variable, xend will automatially generate a random MAC address from the range00:16:3E:xx:xx:xx, assigned by IEEE to XenSoure as an OUI (organizationally unique identi�er).XenSoure In. gives permission for anyone to use addresses randomly alloated from this rangefor use by their Xen domains.A.2.3 Starting / Stopping Domains AutomatiallyIt is possible to have ertain domains start automatially at boot time and to have dom0 waitfor all running domains to shutdown before it shuts down the system. To speify a domain is tostart at boot-time, plae its on�guration �le (or a link to it) under /et/xen/auto/.A Sys-V style init sript for Red Hat and LSB-ompliant systems is provided and will beautomatially opied to /et/init.d/ during install. You an then enable it in the appropriateway for your distribution. For instane, on Red Hat:# hkonfig --add xendomainsBy default, this will start the boot-time domains in runlevels 3, 4 and 5. You an also use theservie ommand to run this sript manually, e.g:# servie xendomains startStarts all the domains with on�g �les under /et/xen/auto/.# servie xendomains stopShuts down all running Xen domains.



A.3. NETWORK CONFIGURATION 71A.3 Network Con�gurationFor many users, the default installation should work �out of the box�. More ompliated networksetups, for instane with multiple Ethernet interfaes and/or existing bridging setups will requiresome speial on�guration. The purpose of this setion is to desribe the mehanisms providedby xend to allow a �exible on�guration for Xen's virtual networking.A.3.1 Xen virtual network topologyEah domain network interfae is onneted to a virtual network interfae in dom0 by a point topoint link (e�etively a �virtual rossover able�). These devies are named vif<domid>.<vi�d>(e.g. vif1.0 for the �rst interfae in domain 1, vif3.1 for the seond interfae in domain 3). Tra�on these virtual interfaes is handled in domain 0 using standard Linux mehanisms for bridging,routing, rate limiting, et. Xend alls on two shell sripts to perform initial on�guration of thenetwork and on�guration of new virtual interfaes. By default, these sripts on�gure a singlebridge for all the virtual interfaes. Arbitrary routing / bridging on�gurations an be on�guredby ustomizing the sripts, as desribed in the following setion.A.3.2 Xen networking sriptsXen's virtual networking is on�gured by two shell sripts (by default network-bridge and vif-bridge). These are alled automatially by xend when ertain events our, with argumentsto the sripts providing further ontextual information. These sripts are found by default in/et/xen/sripts. The names and loations of the sripts an be on�gured in /et/xen/xend-on�g.sxp.network-bridge This sript is alled whenever xend is started or stopped to respetively ini-tialize or tear down the Xen virtual network. In the default on�guration initialization reatesthe bridge 'xen-br0' and moves eth0 onto that bridge, modifying the routing aordingly. Whenxend exits, it deletes the Xen bridge and removes eth0, restoring the normal IP and routingon�guration.vif-bridge This sript is alled for every domain virtual interfae and an on�gure �rewallingrules and add the vif to the appropriate bridge. By default, this adds and removes VIFs on thedefault Xen bridge. Other example sripts are available (network-route and vif-route, network-nat and vif-nat). For more omplex network setups (e.g. where routing is required or integratewith existing bridges) these sripts may be replaed with ustomized variants for your site'spreferred on�guration.
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Appendix BThe SELinux Auditd SystemModern Linux kernel (2.6.x) omes with auditd daemon. It is responsible for writing auditreords to the disk. It allows one to omprehensively log and trak aess to �les, diretories,and resoures of the system, as well as trae system alls. It enables the monitoring of thesystem for appliation misbehavior or ode malfuntions. By reating a sophistiated set of rulesinluding �le wathes and system all auditing, seurity o�ers an make sure that any violationof seurity poliies is noted and properly addressed.The kernel part is inluded in Linux, and ativated in most Linux distributions (inludingSqueeze). The following options must be enabled in the kernel :CONFIG_AUDIT=yCONFIG_AUDITSYSCALL=yCONFIG_AUDIT_WATCH=yCONFIG_AUDIT_TREE=yTo be able to use it, we need to install the userspae tools :[user�laptop tmp℄ aptitude install auditd audispd-pluginsB.1 Audit rulesThe main ommand to ontrol audit rules is audittl To show the urrent status of the auditsystem:[user�laptop tmp℄ audittl -sTo list the rules :[user�laptop tmp℄ audittl -lLIST_RULES: exit,always arh=3221225534 (0x000003e) wath=/et/hosts sysall=openRemoving all rules :[user�laptop tmp℄ audittl -DNo rules 73



74 APPENDIX B. THE SELINUX AUDITD SYSTEMB.2 ProessesNow, suppose we want to log the reation of all new proesses from a spei� user :[user�laptop tmp℄ audittl -a exit,always -S exeve -F uid=1000Log all exeutions of a spei� program (any user) :[user�laptop tmp℄ audittl -A exit,always -F path=/path/to/exeutable-S exeveWathing for ptrae system alls (very verbose, one trae all an result in many ptraesysals) :[user�laptop tmp℄ audittl -a entry,always -F arh=b64 -S ptrae -k info_sanThe -k option is used to speify a ustom key for this event (31 hars max). This an be usedto �ltering when searhing for events. Now, a funnier use of the �lters: monitor exeution of allprograms with the setuid bit and owner root. Finding these is easy, beause the uid running theprogram will be non-0 while the e�etive uid will be 0 :[user�laptop tmp℄ audittl -A exit,always -F arh=b64 -F euid=0 -F 'uid!=0' -S exeveLog all sysalls done by some program (emulate strae, without the nie deoding of allarguments) :[user�laptop tmp℄ audittl -a exit,always -S all -F pid=19845B.3 FilesAudit all �les opened by some user :[user�laptop tmp℄ audittl -a exit,always -S open -F uid=1000Audit all aesses to a spei� �le :[user�laptop tmp℄ audittl -a exit,always -F arh=b64 -F path=/et/hosts -S openLog all unsuessful �le open alls :[user�laptop tmp℄ audittl -a exit,always -S open -F suess=0In the same idea, log all unsuessful writes :[user�laptop tmp℄ audittl -a exit,always -S write -F suess=0B.4 ReportingTo see the events, either run : �tail -F /var/log/audit/audit.log�type=SYSCALL msg=audit(1308608275.954:25072): arh=000003e sysall=59suess=yes exit=0 a0=7fff3e038690 a1=7faaa6418e80 a2=d99190 a3=0 items=2ppid=6854 pid=14762 auid=4)type=EXECVE msg=audit(1308608275.954:25072): arg=2 a0="ls" a1="--olor=auto"type=CWD msg=audit(1308608275.954:25072): wd="/home/pollux/GIT/admin/SELINUX"



B.4. REPORTING 75It is lear that the result is very verbose. One an also reognize SELinux information, andthat is indeed the ase sine SELinux is using auditd a lot. We an also use the very powerfulausearh and aureport ommands.Get the list of ptrae sysalls (monitored as above) for the last 5 minutes :[user�laptop tmp℄ ausearh -ts reent -s ptrae -i��ts� is the time start option, �s� is for sysallSine we spei�ed a ustom key when reating the �lter, we are also able to query eventsbased on the key :[user�laptop tmp℄ ausearh -ts -k info_san -iSearh by user id :[user�laptop tmp℄ ausearh -ui 1000 -ts reentSearh in a time range :[user�laptop tmp℄ aureport -f --start 06/21/2011 23:00:00 --end 06/21/2011 23:10:00Report on wathed �les :[user�laptop tmp℄ aureport -f -ts reentOutput will be similar to :[user�laptop tmp℄ aureport -f -ts reent1. 06/21/2011 20:54:01 /root 4 no /bin/dash -1 28515Here is the desription of the olumns (for the �les report):� �rst olumn is an index� 2nd is the date of the event� 3rd is the time of the event� 4th is the �le name� 5th is the sysall id (use -i to make aureport display strings)� 6th is the result of the system all� 7th is the proess that triggered the event� 8th is the atual/audit uid (the initial uid of the session, whih remains the same even ifyou hange user with su after, for ex)� 9th is the event id
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