. Bas, x, t) obtenue par projection de w(x, t) sur la base ?. (a) t = 0 s. (b) t = 2 s. (c)

. Th, P. Corpetti, E. Héas, N. Mémin, and . Papadakis, Variational pressure image assimilation for atmospheric motion estimation, Proc. Int. Geoscience and Remote Sensing Symp. (IGARSS'08), pp.505-508, 2008.

J. D. Adamo, N. Papadakis, E. Mémin, and G. Artana, Variational assimilation of POD low-order dynamical systems, Journal of Turbulence, vol.8, issue.9, pp.1-22, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00596160

B. K. Horn and B. G. Schunk, Determining optical flow, Artificial Intelligence, vol.17, issue.1-3, pp.185-203, 1981.
DOI : 10.1016/0004-3702(81)90024-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.185.1651

M. Lò-eve, Probability Theory, 1978.

N. Papadakis, Assimilation de données images : application au suivi de courbes et de champs de vecteurs, Mention Mathématiques et Applications, 2007.

O. Titaud, A. Vidard, I. Souopgui, and F. Dimet, Assimilation of image sequences in numerical models, Tellus A: Dynamic Meteorology and Oceanography, vol.105, issue.8, pp.30-47, 2010.
DOI : 10.1111/j.1600-0870.2009.00416.x

URL : https://hal.archives-ouvertes.fr/inria-00332815

. Cet-article, Hydrodynamic modeling of the Black Sea Dynamics » qui s'est déroulée à Sevastopol en Ukraine au mois de septembre 2011. Les travaux présentés dans cette publication sont décrits dans le chapitre 3 Solving ill-posed image processing problems using data assimilation, References Béréziat, D. and Herlin, I. Numerical Algorithms, vol.18, issue.562, pp.219-252, 2011.

T. Corpetti, E. Mémin, and P. Pérez, Dense estimation of fluid flows, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.3, pp.365-380, 2002.
DOI : 10.1109/34.990137

URL : https://hal.archives-ouvertes.fr/hal-00329724

E. Deriaz and V. Perrier, Divergence-free and curl-free wavelets in two dimensions and three dimensions: application to turbulent flows, Journal of Turbulence, vol.319, issue.3, pp.1-37, 2006.
DOI : 10.1080/14685240500260547

K. Drifi and I. Herlin, Assimilation d'images dans un modèle réduit pour l'estimation du mouvement, 2011.

B. Horn and B. Schunk, Determining optical flow, Artificial Intelligence, vol.17, issue.1-3, pp.185-203, 1981.
DOI : 10.1016/0004-3702(81)90024-2

T. Isambert, J. Berroir, and I. Herlin, A multiscale vector spline method for estimating the fluids motion on satellite images, ECCV, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00264727

T. Isambert, I. Herlin, and J. Berroir, Fast and stable vector spline method for fluid flow estimation, ICIP, pp.505-508, 2007.

L. Dimet, F. Talagrand, and O. , Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus A, vol.109, issue.2, pp.97-110, 1986.
DOI : 10.1111/j.1600-0870.1986.tb00459.x

N. Papadakis, T. Corpetti, and E. Mémin, Dynamically consistent optical flow estimation, 2007 IEEE 11th International Conference on Computer Vision, pp.1-7, 2007.
DOI : 10.1109/ICCV.2007.4408889

URL : https://hal.archives-ouvertes.fr/hal-00596200

D. Suter, Motion estimation and vector splines, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition CVPR-94, pp.939-942, 1994.
DOI : 10.1109/CVPR.1994.323929

O. Titaud, A. Vidard, I. Souopgui, and F. L. Dimet, Assimilation of image sequences in numerical models, Tellus A: Dynamic Meteorology and Oceanography, vol.105, issue.8, pp.30-47, 2010.
DOI : 10.1111/j.1600-0870.2009.00416.x

URL : https://hal.archives-ouvertes.fr/inria-00332815

C. Zhu, R. Byrd, P. Lu, and J. Nocedal, L-BFGS-B: a limited memory FORTRAN code for solving bound constrained optimization problems, 1994.

B. K. Horn and B. G. Schunk, Determining optical flow, Artificial Intelligence, vol.17, issue.1-3, pp.185-203, 1981.
DOI : 10.1016/0004-3702(81)90024-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.185.1651

I. Cohen and I. Herlin, Optical flow and phase portrait methods for environmental satellite image sequences, Proceedings of European Conference on Computer Vision, pp.141-150, 1996.
DOI : 10.1007/3-540-61123-1_134

URL : https://hal.archives-ouvertes.fr/inria-00626437

N. Papadakis and . Mémin, Variational optimal control technique for the tracking of deformable objects, 2007 IEEE 11th International Conference on Computer Vision, 2007.
DOI : 10.1109/ICCV.2007.4408944

URL : https://hal.archives-ouvertes.fr/hal-00596203

O. Titaud, A. Vidard, I. Souopgui, and F. Dimet, Assimilation of image sequences in numerical models, Tellus A: Dynamic Meteorology and Oceanography, vol.105, issue.8, pp.30-47, 2010.
DOI : 10.1111/j.1600-0870.2009.00416.x

URL : https://hal.archives-ouvertes.fr/inria-00332815

D. Béréziat and I. Herlin, Solving ill-posed Image Processing problems using Data Assimilation, Numerical Algorithms, vol.14, issue.7, pp.219-252, 2011.
DOI : 10.1007/s11075-010-9383-z

K. Drifi and I. Herlin, Assimilation d'images dans un modèle réduit pour l'estimation du mouvement, 2011.

P. Holmes, J. L. Lumley, and G. Berkooz, Turbulence, Coherent Structures, Symmetry and Dynamical Systems , Cambridge Monographs on Mechanics and Applied Mathematics, 1996.

J. L. Lumley, The structure of inhomogeneous turbulence Atmospheric Turbulence and Radio Wave Propagation, pp.166-178, 1967.

C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization, ACM Transactions on Mathematical Software, vol.23, issue.4, pp.550-560, 1997.
DOI : 10.1145/279232.279236

T. Isambert, I. Herlin, and J. Berroir, Fast and stable vector spline method for fluid flow estimation, Proceedings of International Conference on Image Processing, pp.505-508, 2007.

D. Suter, Motion estimation and vector splines, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition CVPR-94, pp.939-942, 1994.
DOI : 10.1109/CVPR.1994.323929

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.4768

D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.2432-2439, 2010.
DOI : 10.1109/CVPR.2010.5539939

. Cet-article, La conférence s'est déroulée à Béréziat and I. Herlin. Solving ill-posed image processing problems using data assimilation, 21st International Conference on Pattern Recognition, pp.219-252, 2011.

D. Heitz, E. Mémin, and C. Schnörr, Variational fluid flow measurements from image sequences: synopsis and perspectives, Experiments in Fluids, vol.28, issue.4, pp.369-393, 2010.
DOI : 10.1007/s00348-009-0778-3

URL : https://hal.archives-ouvertes.fr/hal-00456162

B. Horn and B. Schunk, Determining optical flow, Artificial Intelligence, vol.17, issue.1-3, pp.185-203, 1981.
DOI : 10.1016/0004-3702(81)90024-2

T. Isambert, I. Herlin, and J. Berroir, Fast and stable vector spline method for fluid flow estimation, Proceedings of International Conference on Image Processing, pp.505-508, 2007.

N. Papadakis, T. Corpetti, and E. Mémin, Dynamically consistent optical flow estimation, 2007 IEEE 11th International Conference on Computer Vision, pp.1-7, 2007.
DOI : 10.1109/ICCV.2007.4408889

URL : https://hal.archives-ouvertes.fr/hal-00596200

D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.2432-2439, 2010.
DOI : 10.1109/CVPR.2010.5539939

D. Suter, Motion estimation and vector splines, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition CVPR-94, pp.939-942, 1994.
DOI : 10.1109/CVPR.1994.323929

D. Béréziat and I. Herlin, Using models of dynamics for large displacement estimation on noisy acquisitions, 2010.

D. Béréziat and I. Herlin, Solving ill-posed Image Processing problems using Data Assimilation, Numerical Algorithms, vol.14, issue.7, pp.219-252, 2011.
DOI : 10.1007/s11075-010-9383-z

F. Bouttier and P. Courtier, Data assimilation concepts and methods. Meteorological training course lecture series, 1999.

J. Canny, A computational approach to edge detection. Pattern Analysis and Machine Intelligence, IEEE Transactions, issue.86, pp.679-698, 1986.

A. J. Chorin, Numerical study of slightly viscous flow, Journal of Fluid Mechanics, vol.23, issue.04, pp.785-796, 1973.
DOI : 10.1017/S0022112073002016

. Th, P. Corpetti, E. Héas, N. Mémin, and . Papadakis, Variational pressure image assimilation for atmospheric motion estimation, Proc. Int. Geoscience and Remote Sensing Symp. (IGARSS'08), pp.505-508, 2008.

T. Corpetti, P. Étienne-mémin, and . Pérez, Dense estimation of fluid flows, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.3, pp.365-380, 2002.
DOI : 10.1109/34.990137

URL : https://hal.archives-ouvertes.fr/hal-00329724

G. Cottet and P. Koumoutsakos, Vortex methods : Theory and practice, 2000.
DOI : 10.1017/CBO9780511526442

A. Cuzol, P. Hellier, and E. Memin, A Low Dimensional Fluid Motion Estimator, International Journal of Computer Vision, vol.21, issue.3, pp.329-349, 2007.
DOI : 10.1007/s11263-007-0037-0

URL : https://hal.archives-ouvertes.fr/inserm-00140892

D. Juan, N. Adamo, E. Papadakis, G. Memin, and . Artana, Variational assimilation of POD low-order dynamical systems, Journal of Turbulence, vol.8, issue.9, pp.1-22, 2007.

A. E. Deane, I. G. Kevrekidis, G. E. Karniadakis, and S. A. Orszag, Low???dimensional models for complex geometry flows: Application to grooved channels and circular cylinders, Physics of Fluids A: Fluid Dynamics, vol.3, issue.10, pp.2337-2354, 1991.
DOI : 10.1063/1.857881

R. Deriche, Using Canny's criteria to derive a recursively implemented optimal edge detector, International Journal of Computer Vision, vol.1, issue.2, pp.167-187, 1987.
DOI : 10.1007/BF00123164

F. Dimet, Une application des méthodes de contrôle optimal à l'analyse variationnelle, 1982.

K. Drifi and I. Herlin, Assimilation d'images dans un modèle réduit pour l'estimation du mouvement, 2011.

K. Drifi and I. Herlin, Coupling reduced models for optimal motion estimation, International Conference on Pattern Recognition -ICPR 2012, pp.2651-2654, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00803622

P. Dérian, P. Héas, C. Herzet, and E. Mémin, Wavelets to reconstruct turbulence multifractals from experimental image sequences, 7th Int. Symp. on Turbulence and Shear Flow Phenomena, 2011.

I. Herlin, D. Béréziat, K. Drifi, and S. Zhuk, Learning reduced models for motion estimation on ocean satellite images, Hydrodynamic modeling of the Black Sea Dynamics, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00646272

I. Herlin, D. Béréziat, and N. Mercier, Strategies for processing images with 4D-Var data assimilation methods, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00546222

I. Herlin, D. Béréziat, N. Mercier, and S. Zhuk, Divergence-Free Motion Estimation, ECCV 2012 -European Conference on Computer Vision, pp.15-27, 2012.
DOI : 10.1007/978-3-642-33765-9_2

URL : https://hal.archives-ouvertes.fr/hal-00742021

I. Herlin and K. Drifi, Learning reduced models for motion estimation on long temporal image sequences, 2012 IEEE International Geoscience and Remote Sensing Symposium, 2012.
DOI : 10.1109/IGARSS.2012.6351591

URL : https://hal.archives-ouvertes.fr/hal-00730515

I. Herlin and E. Huot, Monitoring surface currents from uncertain image observations, XX International Conference on Problems of Decision Making under Uncertainties (PDMU), 2012.
URL : https://hal.archives-ouvertes.fr/hal-00739091

P. Holmes, J. L. Lumley, and G. Berkooz, Turbulence, Coherent Structures , Symmetry and Dynamical Systems, Cambridge Monographs on Mechanics and Applied Mathematics, 1996.

K. P. Berthold, B. G. Horn, and . Schunck, Determining optical flow, Artifical intelligence, vol.17, pp.185-203, 1981.

É. Huot, I. Herlin, N. Mercier, and E. Plotnikov, Estimating Apparent Motion on Satellite Acquisitions with a Physical Dynamic Model, 2010 20th International Conference on Pattern Recognition, pp.41-44, 2010.
DOI : 10.1109/ICPR.2010.19

URL : https://hal.archives-ouvertes.fr/inria-00538317

T. Isambert, I. Herlin, and J. Berroir, Fast and Stable Vector Spline Method for Fluid Apparent Motion Estimation, 2007 IEEE International Conference on Image Processing, pp.505-508, 2007.
DOI : 10.1109/ICIP.2007.4379203

URL : https://hal.archives-ouvertes.fr/inria-00603910

R. Kalman and E. , A New Approach to Linear Filtering and Prediction Problems, Journal of Basic Engineering, vol.82, issue.1, pp.35-45, 1960.
DOI : 10.1115/1.3662552

R. E. Kalman and R. S. Bucy, New Results in Linear Filtering and Prediction Theory, Journal of Basic Engineering, vol.83, issue.1, pp.95-107, 1961.
DOI : 10.1115/1.3658902

G. K. Korotaev, E. Huot, F. Dimet, I. Herlin, S. V. Stanichny et al., Retrieving ocean surface current by 4-D variational assimilation of sea surface temperature images, Remote Sensing of Environment, vol.112, issue.4, pp.1464-1475, 2008.
DOI : 10.1016/j.rse.2007.04.020

URL : https://hal.archives-ouvertes.fr/hal-00283896

F. , L. Dimet, and O. Talagrand, Variational algorithms for analysis and assimilation of meteorological observations : theoretical aspects, pp.97-110, 1986.

M. Loève, Probability Theory, 1978.

J. Lumley, The structure of inhomogeneous turbulence Atmospheric Turbulence and Radio Wave Propagation, pp.166-178, 1967.

O. Musse, F. Heitz, and J. Armspach, 3D deformable image matching using multiscale minimization of global energy functions, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), 1999.
DOI : 10.1109/CVPR.1999.784724

N. Papadakis, T. Corpetti, and E. Mémin, Dynamically consistent optical flow estimation, 2007 IEEE 11th International Conference on Computer Vision, pp.1-7, 2007.
DOI : 10.1109/ICCV.2007.4408889

URL : https://hal.archives-ouvertes.fr/hal-00596200

N. Papadakis, Assimilation de données images : application au suivi de courbes et de champs de vecteurs, Thèse, Université Rennes 1, 2007.

M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, Particle Image Velocimetry : A Practical Guide. Experimental Fluid Mechanics, 2007.
DOI : 10.1007/978-3-662-03637-2

M. Rajaee, K. F. Sture, L. Karlsson, and . Sirovich, Low-dimensional description of free-shear-flow coherent structures and their dynamical behaviour, Journal of Fluid Mechanics, vol.37, issue.-1, pp.1-29, 1994.
DOI : 10.1017/S0022112088001818

D. Rempfer, Investigations of boundary layer transition via Galerkin projections on empirical eigenfunctions, Physics of Fluids, vol.8, issue.1, pp.175-188, 1996.
DOI : 10.1063/1.868825

I. Souopgui, Assimilation d'images pour les fluides géophysiques, Thèse, 2010.

S. Srinivasan and R. Chellappa, Optical flow using overlapped basis functions for solving global motion problems, Computer Vision ? ECCV'98, pp.288-304, 1007.
DOI : 10.1007/BFb0054748

D. Sun, S. Roth, and M. J. Black, Secrets of optical flow estimation and their principles, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.2432-2439, 2010.
DOI : 10.1109/CVPR.2010.5539939

D. Suter, Motion estimation and vector splines, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition CVPR-94, pp.939-942, 1994.
DOI : 10.1109/CVPR.1994.323929

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.4768

R. Szeliski and H. Shum, Motion estimation with quadtree splines, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.18, issue.12, pp.1199-1210, 1996.
DOI : 10.1109/34.546257

A. N. Tikhonov, Regularization of incorrectly posed problems, Sov. Math. Dokl, vol.4, pp.1624-1627, 1963.

O. Titaud, A. Vidard, I. Souopgui, and F. Dimet, Assimilation of Image Sequences in Numerical Models. Tellus Series A : Dynamic meteorology and oceanography, pp.30-47, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00332815

Y. Wu, T. Kanade, C. Li, and J. Cohn, Image registration using wavelet-based motion model, International Journal of Computer Vision, vol.38, issue.2, pp.129-152, 1023.
DOI : 10.1023/A:1008101718719

C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization, ACM Transactions on Mathematical Software, vol.23, issue.4, pp.550-560, 1997.
DOI : 10.1145/279232.279236