
HAL Id: tel-00847076
https://theses.hal.science/tel-00847076

Submitted on 22 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Acceleration of a bioinformatics application using
high-level synthesis

Naeem Abbas

To cite this version:
Naeem Abbas. Acceleration of a bioinformatics application using high-level synthesis. Other [cs.OH].
École normale supérieure de Cachan - ENS Cachan, 2012. English. �NNT : 2012DENS0019�. �tel-
00847076�

https://theses.hal.science/tel-00847076
https://hal.archives-ouvertes.fr

THÈSE / ENS CACHAN - BRETAGNE
sous le sceau de l’Université européenne de Bretagne

pour obtenir le titre de
DOCTEUR DE L’éCOLE NORmALE SUpéRiEURE DE CACHAN

Mention : Informatique
école doctorale mATiSSE

présentée par

Naeem Abbas
Préparée à l’Unité Mixte de Recherche 6074
Institut de recherche en informatique
et systèmes aléatoires

Acceleration of
a Bioinformatics

Application using
High-Level
Synthesis

Thèse soutenue le 22 mai 2012
devant le jury composé de :

philippe COUSSY,
Maître de conférences - Université de Bretagne Sud / rapporteur
Florent DE DiNECHiN,
Maître de conférences - ENS Lyon / rapporteur

Rumen ANDONOV,
Professeur des universités - Université de Rennes 1 / examinateur
Tanguy RiSSET,
Professeur des universités - INSA de Lyon / examinateur

Steven DERRiEN,
Maître de conférences - Université de Rennes 1 / directeur de thèse
patrice QUiNTON,
Professeur des universités - ENS Cachan-Bretagne / directeur de thèse

N° d’ordre :
école normale supérieure de Cachan - Antenne de Bretagne
Campus de Ker Lann - Avenue Robert Schuman - 35170 BRUZ
Tél : +33(0)2 99 05 93 00 - Fax : +33(0)2 99 05 93 29

Résumé

Les avancées dans le domaine de la bioinformatique ont ouvert de
nouveaux horizons pour la recherche en biologie et en pharmacologie.
Les machines comme les algorithmes utilisées aujourd’hui ne sont
cependant plus en mesure de répondre à la demande exponentiellement
croissante en puissance de calcul. Il existe donc un besoin pour des
plate-formes de calculs spécialisées pour ce types de traitement, qui
sauraient tirer partie de l’ensemble des technologie de calcul parallèle
actuelles (Grilles, multi-coeurs, GPU, FPGA).

Dans cette thèse nous étudions comment l’utilisation d’outils de
synthèse de haut niveau peut aider à la conception d’accélérateurs
matériels spécialisés massivement parallèles. Ces outils permettent
de réduire considérablement les temps de conception mais ne sont
pas conçus pour produire des architectures matérielles massivement
parallèles efficaces. Les travaux de cette thèse se sont attachés
à dégager des techniques de parallélisation, ainsi que les moyens
d’exprimer efficacement ce parallélisme, pour des outils de type HLS.

Nous avons appliqué ces résultats à une application de bioinformatique
connue sous le nom de HMMER. Cet algorithme qui pourrait être un bon
candidat à une accélération matérielle est très délicat à paralléliser.
Nous avons proposé un schéma d’exécution parallèle original, basé sur
une réécriture mathématique de l’algorithme, qui a été suivi par une
exploration des schéma d’exécution matériels possible sur FPGA. Ce
résultat à ensuite donnée lieu à une mise en œuvre sur un accélérateur
matériel et a démontré des facteurs d’accélération encourageants.

Les travaux démontre également la pertinence des outils de HLS pour
la conception d’accélérateur matériel pour le calcul haute performance
en Bioinformatique, à la fois pour réduire les temps de conception, mais
aussi pour obtenir des architectures plus efficaces et plus facilement
reciblables d’un plateforme à une autre.

Abstract

The revolutionary advancements in the field of bioinformatics have
opened new horizons in biological and pharmaceutical research.
However, the existing bioinformatics tools are unable to meet the
computational demands, due to the recent exponential growth in
biological data. So there is a dire need to build future bioinformatics
platforms incorporating modern parallel computation techniques.

In this work, we investigate FPGA based acceleration of these
applications, using High-Level Synthesis. High-Level Synthesis
tools enable automatic translation of abstract specifications to the
hardware design, considerably reducing the design efforts. However,
the generation of an efficient hardware using these tools is often a
challenge for the designers. Our research effort encompasses an
exploration of the techniques and practices, that can lead to the
generation of an efficient design from these high-level synthesis tools.

We illustrate our methodology by accelerating a widely used application
-- HMMER -- in bioinformatics community. HMMER is well-known for
its compute-intensive kernels and data dependencies that lead to a
sequential execution. We propose an original parallelization scheme
based on rewriting of its mathematical formulation, followed by an in-
depth exploration of hardware mapping techniques of these kernels,
and finally show on-board acceleration results.

Our research work demonstrates designing flexible hardware
accelerators for bioinformatics applications, using design methodologies
which are more efficient than the traditional ones, and where resulting
designs are scalable enough to meet the future requirements.

Contents

1 Introduction 1

1.1 High Performance Computing for Bioinformatics 1

1.2 FPGA based Hardware Acceleration . 3

1.3 FPGA Design Flow . 3

1.3.1 Synthèse de haut niveau . 5

1.4 Parallélisation à l’aide de réductions et de préfixes parallèles 6

1.5 Contributions de cette thèse . 7

2 Introduction 9

2.1 High Performance Computing for Bioinformatics 9

2.2 FPGA based Hardware Acceleration . 10

2.3 FPGA Design Flow . 11

2.3.1 High-level Synthesis . 13

2.4 Exploiting Parallelism with Reductions and Prefixes 14

2.5 Contributions of this work . 15

3 An Introduction to Bioinformatics Algorithms 17

3.1 DNA, RNA & Proteins: . 17

3.2 Sequence Alignment . 19

3.2.1 Pairwise Sequence Alignment . 20

3.2.2 Multiple Sequence Alignment . 23

3.2.3 The HMMER tool suit . 27

3.2.4 Computational Complexity . 29

3.3 RNA Structure Prediction . 30

3.3.1 The Nussinov Algorithm . 31

3.3.2 The Zuker Algorithm . 32

3.4 High Performance Bioinformatics . 33

3.5 Conclusion . 34

4 HLS Based Acceleration: From C to Circuit 35

4.1 Reconfigurable Computing . 35

4.2 Accelerators for Biocomputing . 38

4.3 High Level Synthesis . 39

i

ii CONTENTS

4.3.1 Advantages of HLS over RTL coding 39

4.4 HLS Design Steps . 41

4.4.1 Compilation . 41

4.4.2 Operation Scheduling . 41

4.4.3 Allocation & Binding . 47

4.4.4 Generation . 50

4.5 High Level Synthesis Tools: An Overview 50

4.5.1 Impulse C . 51

4.5.2 Catapult C . 52

4.5.3 MMAlpha . 53

4.5.4 C2H . 54

4.6 Conclusion . 54

5 Efficient Hardware Generation with HLS 57

5.1 Bit-Level Transformations . 57

5.1.1 Bit-Width Narrowing . 58

5.1.2 Bit-level Optimization . 59

5.2 Instruction-level transformations . 60

5.2.1 Operator Strength Reduction . 60

5.2.2 Height Reduction . 61

5.2.3 Code Motion . 63

5.3 Loop Transformations . 65

5.3.1 Unrolling . 65

5.3.2 Loop Interchange . 66

5.3.3 Loop Shifting . 66

5.3.4 Loop Peeling . 68

5.3.5 Loop Skewing . 68

5.3.6 Loop Fusion . 68

5.3.7 C-Slowing . 69

5.3.8 Loop Tiling & Strip-mining . 70

5.3.9 Memory Splitting & Interleaving . 70

5.3.10 Data Replication, Reuse and Scalar Replacement 71

5.3.11 Array Contraction . 73

5.3.12 Data Prefetching . 73

5.3.13 Memory Duplication . 74

5.4 Conclusion . 76

6 Extracting Parallelism in HMMER 79

6.1 Introduction . 79

6.2 Background . 80

6.2.1 Profile HMMs . 80

6.2.2 P7Viterbi Algorithm Description . 81

6.2.3 Look ahead Computations . 82

6.3 Related work . 83

6.3.1 Early Implementations . 83

6.3.2 Speculative Execution of the Viterbi Algorithm 85

6.3.3 GPU Implementations of HMMER 87

6.3.4 HMMER3 and the Multi Ungapped Segment Heuristic 87

6.3.5 Accelerating the Complete HMMER3 Pipeline 89

6.4 Rewriting the MSV Kernel . 89

6.5 Rewriting the P7Viterbi Kernel . 90

6.5.1 Finding Reductions . 91

6.5.2 Impact of the Data-Dependence Graph 93

6.6 Parallel Prefix Networks . 94

6.7 Conclusion . 96

7 Hardware Mapping of HMMER 97

7.1 Hardware Mapping . 98

7.1.1 Architecture with a Single Combinational Datapath 98

7.1.2 A C-slowed Pipelined Datapath . 98

7.1.3 Implementing the Max-Prefix Operator 99

7.1.4 Managing Resource Constraints through Tiling 100

7.1.5 Accelerating the Full HMMER Pipeline 101

7.2 Implementation through High-Level Synthesis 102

7.2.1 Loop Transformations . 102

7.2.2 Loop Unroll & Memory Partitioning 103

7.2.3 Ping-Pong Memories . 103

7.2.4 Scalar Replication . 103

7.2.5 Memory Duplication . 104

7.3 Experimental results . 104

7.3.1 Area/Speed Results for the MSV Filter 104

7.3.2 Area/Speed Results for Max-Prefix Networks 104

7.3.3 Area/Speed Results for the P7Viterbi Filter 105

7.3.4 System level performance . 107

7.3.5 A Complete System-Level Redesign 108

7.3.6 Discussion . 110

7.4 Conclusion . 110

8 Conclusion & Future Perspectives 113

8.1 Conclusion . 113

8.2 Future Perspectives . 116

iv CONTENTS

1
Introduction

1.1 High Performance Computing for Bioinformatics

La Bioinformatique est un domaine récent, mais qui suscite depuis une dizaine d’année

de plus en plus d’intérêt dans la communauté scientifique. Ce domaine recouvre des

champs disciplinaires très variés incluant la biologie, la génétique, l’informatique mais

également les mathématiques. L’objectif premier de la bioinformatique est d’offrir aux

biologistes des outils informatiques qui leur permettront d’analyser des données issues de

séquences génétiques (par exemple de l’ADN, de l’ARN et/ou des protéines) afin d’essayer

de découvrir ou de prédire les fonctions biologiques associées à ces séquences.

Les problématiques de la bio-informatique sont nombreuses, parmi celles-ci on peut

citer la découverte de gènes dans des séquences d’ADN, la prédiction (et la classification)

de la structure et des fonctions de protéines ainsi que la construction automatique d’arbres

phylogéniques en vue de l’étude des relations évolutives.

En outre, cette dernière décennie a vue l’apparition de techniques de séquençage d’ADN

à haut débit, qui ont permises de grandes avancées (séquençage complet du génome humain

[VAM+01], projet d’annotation du génome des plantes [SRV+07]). Ces progrès se sont à

leur tour traduits par une explosion du volume de données génomiques (ADN, proteines)

disponibles pour la communauté, comme l’illustre la figure 2.1, qui montre l’évolution des

banques NCBI GenBank [NCB11] (ADN) UniProt [INT] (proteines).

Il est à noter que les nouvelles générations de technologies de séquençage, facilitent

encore plus l’extraction d’énormes quantités de séquences, et vont certainement accentuer

cette croissance exponentielle.

Les chercheurs sont de fait désormais confrontés à un défi majeur : extraire de

ces volumes de données gigantesques des informations utiles à la compréhension de

phénomènes biologiques. Les outils traditionnellement utilisés par la communauté

bioinformatique ne sont en effet pas conçus pour fonctionner sur de telles masses de

données, et les volumes de calculs mis en jeux dans ces outils d’analyses sont devenus

trop importants au point de devenir un goulot d’étranglement.

1

2 Introduction

0

50

100

150

200

250

300

Bi
lli
on

s

Number of Base Pairs in GenBank

(a) (b)

Figure 1.1: The exponential growth of the (a) GenBank and (b) UniPortKB
databases [NCB11, ?].

De nombreux travaux se sont donc intéressés à l’utilisation de machines parallèles

pour réduire ces temps de calcul. Si les premier travaux ciblaient essentiellement

des architectures de super-calculateurs classiques [SRG03, YHK09, CCSV04, GCBT10]

(grilles, clusters), la démocratisation des architectures multi-cœurs [Edd, LBP+08] et

l’émergence du GPGPU1 ont rendu ces travaux plus populaires. Outre ces travaux portant

sur des architecture généralistes programmables, il faut également mentionner l’utilisation

d’accélérateur matériels spécialisés à base de logique programmable [HMS+07, SKD06,

DQ07, LST] qui a démontré qu’il était possible de profiter de capacités d’accélération très

élevées pour tout en restant à des niveaux de consommation électriques et donc des coûts

de maintenance très raisonnables.

L’augmentation de la densité et de la vitesse des circuits FPGA a ainsi favorisé

l’émergence d’accélérateurs matériels reconfigurables orientés vers le domaine du calcul

haute performance (HPC), avec des applications en calculs financier [ZLH+05, WV08],

simulations météorologiques [AT01], traitements vidéo [LSK+05] mais également en

bioinformatique[DQ07, SKD06].

Les accélérateurs FPGAs se sont ainsi avérés être des architectures matérielles bien

adaptées à la mise en œuvre de traitements de type bioinformatique. Ceux-ci offrent

souvent la possibilité d’exposer un un niveau important de parallélisme à grain fin dans

l’algorithme, lequel peut ensuite être exploité très efficacement par une mise en œuvre

sur FPGA. Une part importante des algorithmes de bioinformatique repose en effet

sur l’utilisation de techniques à base de programmation dynamique, en autre pour la

comparaison de séquence (Smith-Waterman [SW81], Needleman-Wunsch [NW70] and

BLAST [AGM+90]), l’alignement multiple de séquences (CLUSTALW [THG94]), la

recherche sur profil (HMMER [Edd]), le repliage de séquences de RNA (MFOLD [Zuk03])

et même la construction d’arbres phylogéniques (PHYLIP [Fel93]). Le caractère régulier

des traitements effectués dans ces algorithmes se prête ainsi facilement à une parallélisation

sur un architecture de type réseau régulier disposant de communication locales.

1Qui vise à utiliser les capacités de calculs très importantes des cartes graphiques pour accélérer des
calculs scientifiques

1.2 – FPGA based Hardware Acceleration 3

1.2 FPGA based Hardware Acceleration

Les circuits FPGAs se présentent comme un gigantesque matrice de cellules logiques

programmables, ils peuvent donc être configurés pour implémenter un nombre élevé de

chemins de données matériels spécialisés et fonctionnant en parallèle. Les développeurs

peuvent ainsi directement implémenter un accélérateur matériel dédié à l’application et

tirer parti des gains en performance dus au parallélisme et à la spécialisation.

Dans un FPGA, l’expression de ce parallélisme peut prendre de nombreuses plusieurs

formes : parallélisme de tâches en implantant plusieurs cœurs de calculs opérant en

parallèle, parallélisme d’opérations au travers de l’utilisation de chemins de données

pipelinés complexes. Parce que les FPGAs fonctionnent à des fréquences d’horloges bien

plus faibles que les processeurs (en moyenne par un facteur 10), ils doivent compenser leur

lenteur relative en exploitant un niveau de parallélisme massif au sein du circuit, tout en

s’assurant de la possibilité d’alimenter le circuit en donnée à une cadence suffisante.

Une des techniques utilisées pour améliorer à la fois le degré de parallélisme et la

fréquence de fonctionnement des circuits implantés sur le FPGA est d’utiliser des encodages

de données à précision réduite (entiers à précision arbitraire, et codage virgule fixe en lieu

et place des flottants).

Ici encore les algorithmes de bioinformatique se prêtent très bien à ce genre d’optimisations

(par exemple, le codage d’un base ADN peut se faire sur 2 bits au lieu d’un octet

complet). Ces caractéristiques en font donc de très bon candidats à une accélération

matérielle sur FPGA, en particulier comparé à des machine de type GPUs plus orienté

vers le calcul flottant. De nombreux travaux se sont donc intéressés à la mise en

uvre, sur FPGA, daccélérateur matériels pour les algorithmes les plus couramment

utilisés [HMS+07, SKD06, DQ07].

Ces implémentations, qui ont démontrés des facteurs daccélération très encourageant,

se basent sur des spécifications du circuit écrites en VHDL ou Verilog, et très fortement

optimisées pour une technologie FPGA donnée. Ce type dapproche pose de fait des

problèmes de portabilité, et passer dun accélérateur FPGA à un autre nécessite souvent

de reprendre la conception du circuit à zéro. Le section suivante aborde ce problème et

discute de la pertinence des outils de synthèse de haut niveau dans ce contexte.

1.3 FPGA Design Flow

Le flot de conception standard pour circuit FPGA se base en grand partie sur celui d’un

ASIC. Les principales étapes de ce flot sont représentées dans la Figure 2.2a, elles ne

concernent cependant que la partie matérielle d’un co-design logiciel-matériel, le logiciel

embarqué étant développé à l’aide de châınes de compilation classiques.

La première étape de ce flot consiste à définir les spécifications fonctionnelles des

composants dans des langages de haut niveau (C, C++, Matlab) afin de déterminer

le comportement exact du système. Une fois validée, le concepteur doit définir une

4 Introduction

C / C++ / Matlab Specification

Validate Behavioral Model

Define Architecture

Implementation (Vhdl / Verilog)

Verification

Synthesis

Place & Route

FPGA

C / C++ / Matlab Specification

Validate Behavioral Model

HLS Specification

Synthesis

Place & Route

FPGA

(a)

C / C++ / Matlab Specification

Validate Behavioral Model

Define Architecture

Implementation (Vhdl / Verilog)

Verification

Synthesis

Place & Route

FPGA

C / C++ / Matlab Specification

Validate Behavioral Model

HLS Specification

Synthesis

Place & Route

FPGA

(b)

Figure 1.2: Flot de conception FPGA: (a) Flot de conception traditionnel basé sur
l’utilisation de langages de description de matériel (HDLs). La description d’une
application en HDL est délicate et nécessite un effeort de vérifictaion important. (b)
Flot de synthèse basé sur l’utilisation d’outils de synthèse de haut niveau: l’étape de
conception manuelle au niveau RTL est remplaée par une description comportementale de
haut niveau, suivie d’un phase de généraion automatique de description RTL.

architecture matérielle qui sera en mesure de satisfaire les contraintes de performance,

de coût et de consommation électrique imposés par le cahier des charges.

Une fois l’architecture définie, les concepteurs doivent décrire cette architecture au

niveau RTL (Register to Logic) à l’aide de langages de description de matériel (Verilog ou

VHDL) ou de spécifications schématiques. Cette description est ensuite validée à l’aide de

simulations, afin de garantir sa correction.

Une fois vérifiée, la description du circuit est alors synthétisée, c’est-à-dire transformée

en une représentation à base de primitives logiques du FPGA ciblé appelée netlist. Cette

représentation est ensuite placée et routée sur le circuit FPGA ciblé, en permet de dériver

un fichier bitstream qui servira à configurer le FPGA.

Ce flot de conception reste cependant très complexe et nécessite souvent de nombreuses

itérations avant d’obtenir une configuration matérielle opérationnelle.

La première difficulté est de bien choisir la cible architecturale (type de FPGA,

capacités de traitement, de mémorisation, etc.), car celle-ci va conditionner une grande

partie des choix de conception ultérieurs. Un mauvais choix initial peut ainsi avoir un

impact très important sur l’effort de conception global. Le seconde (et principale) difficulté

est la spécification au niveau RTL (Register to Logic) de l’architecture de l’accélérateur,

qui se fait à l’aide de langage de description matériel tels VHDL ou Verilog. Cette étape

est très fastidieuse et nécessite une étape de débogage très longue, avec de nombreuses

itérations entre les étapes de spécification et de validation.

1.3 – FPGA Design Flow 5

La complexité toujours croissante des systèmes électroniques, qui s’illustre par une

constante augmentation des fonctionnalités intégrées sur un seul circuit FPGA, rend cette

étape de conception RTL de plus en plus critique [CD08]. De fait, les outils de conceptions

utilisés pour la mise en œuvre de systèmes de communication sans-fils 4G sont les même

que pour le standard GSM, et ce malgré l’énorme écart de complexité entre ces deux

standards.

De nombreux travaux se sont donc intéressés à ce problème, en proposant de relever le

niveau d’abstraction utilisé la spécification de composants. L’objectif est d’offrir des outils

de génération automatique de description RTL à partir de spécification algorithmiques

dans des langages de plus haut niveau tel C ou SystemC. On parle alors d’outils de synthèse

de haut niveau.

1.3.1 Synthèse de haut niveau

Les outils de synthèse de haut niveau (High Level Synthesis) visent principalement à

réduire les délais de conception, en utilisant des spécifications de plus haut-niveau que

celles offertes par les approches basés sur des descriptions RTL. En plus de réduire le temps

de conception à proprement parler, les outils d’HLS permettent également de fortement

réduire le temps de vérification, en diminuant le nombre d’itération nécessaire pour obtenir

un composant fonctionnel. Par ailleurs en libérant le concepteur de la gestion des horloges,

du partage de ressource et de l’interfaçage mémoire, ces outils réduisent également les

risques d’erreurs.

Le portage de spécification RTL d’une technologie à une autre se fait souvent au

prix d’une baisse des performances et d’une augmentation du coût en ressource et en

consommation énergétique [Fin10].

Au contraire, parce que la spécification HLS se fait au niveau fonctionnel, le portage

d’une IP matérielle d’une plate-forme à une autre est simplifié, puisque c’est l’outil d’HLS

qui va se charger de réaliser le mapping technologique.

Pour autant, les architectures matérielles générées automatiquement à partir d’un

niveau de spécification plus abstrait ne sont que rarement aussi efficaces que des

implémentations manuelles. En conséquence, les faibles performances obtenues par une

utilisation näıve de ces outils limitent l’intérêt des FPGAs dans un contexte de calcul

� haute performance �.

Ces faibles performances s’expliquent par l’incapacité de ces outils à extraire un niveau

de parallélisme suffisamment élevé. Les accélérateurs matériels issus de ces outils peinent

de fait à rivaliser avec des architecture GPU et multi-cœurs, et ce d’autant plus qu’il

doivent compter sur une fréquence de fonctionnement plus faible.

Il est possible de lever cette difficulté, en modifiant directement le code source de

l’application de manière à faire apparâıtre un niveau de parallélisme qui sera exploitable

par l’outil. Ce type de technique est très efficace dès lors que l’on cherche à accélérer

des calculs réguliers, ayant la forme de nids de boucles. En effet, il est possible de

d’appuyer sur la grande quantité de travaux issus de la communauté de parallélisation

6 Introduction

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s

(a)

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s

(b)

Figure 1.3: Examples of Reduction, (a), and Scan, (b), are shown here, with a possible
order of computation.

automatique [Wol90, Wol96].

Outre les aspects liés à la parallélisation des calculs proprement dits, l’obtention de

bonne performances nécessite également de prendre en compte de manière très fine la

gestion des données dans les différents niveaux de hiérarchie mémoire du système (mémoire

hôte, mémoire locale sur la carte, mémoire embarquée). Une des contributions de ce travail

est de présenter une revue d’ensemble des transformations clés permettant d’obtenir, grâce

à des outils de synthèse de haut niveau, des architectures matérielles spécialisées exploitant

efficacement les possibilités des accélérateurs FPGAs actuels.

1.4 Parallélisation à l’aide de réductions et de préfixes

parallèles

Les algorithmes élémentaires utilisés en algèbre linéaire peuvent être classés en deux

catégories. Dans la première, la taille du résultat d’un calcul est du même ordre que

la taille de ces opérandes; c’est par exemple le cas de l’addition de deux vecteurs. Dans la

seconde la taille du résultat est plus beaucoup plus petite (en général une valeur scalaire),

d’où le terme de réduction proposé par Iverson [Ive62], et qui correspond par exemple à

l’opération de sommation des éléments d’un vecteur ou d’une matrice.

Dans ce travail, nous nous sommes intéressés à deux types de calculs : les opérations

de réduction et les opérations de préfixes2. Ces opérations, qui opèrent sur des collections

d’objets, sont basées sur l’utilisation d’un opérateur élémentaire disposant de propriétés

de commutativité et d’associativité.

Soit ⊕ le symbole identifiant cet opérateur élémentaire, une réduction sur un vecteur

2également connus sous le terme de scan

1.5 – Contributions de cette thèse 7

opérande (x1, x2, . . . , xn) s’écrit comme:

s =
n⊕

i=0

xi = x0 ⊕ x1 ⊕ . . .⊕ xn (1.1)

Pour l’opération de préfixe, la taille du résultat est la même que celle de l’opérande, et

se définit, pour vecteur opérande (x1, x2, . . . , xn) et pour un vecteur résultat (s1, s2, . . . , sn)

comme:

sk =
k⊕

i=0

xi = x0 ⊕ x1 ⊕ . . .⊕ xk (1.2)

Ces deux types d’opérations sont représentées sur la Figure 2.3 pour n = 16. Il est

important de remarquer que ces opérations, a priori séquentielles dans leur définition,

peuvent être réalisées de manière parallèle en réorganisant les calculs de manière plus ou

moins complexe. En particulier, la mise en œuvre efficace d’opérations de type préfixes

sur circuits VLSI est un sujet qui a reçu beaucoup d’attention 3, et ce depuis le début des

années 60. De nombreuses structures matérielles permettant d’explorer des compromis

entre rapidité et coût en surface ont ainsi été proposées [LF80, BK82, KS73, HC87, Skl60].

La mise en œuvre matérielle d’un algorithme utilisant des opérations de préfixes peut

profiter de ces résultats, en explorant les différentes possibilités de réaliser le traitement

pour choisir la plus efficace. Cette exploration est d’autant plus facile lorsque la conception

se fait à haut niveau d’abstraction, par exemple en utilisant des outils de synthèse de haut

niveau.

Les algorithmes d’alignement de séquences utilisés en bioinformatique, sont basés sur

des algorithmes de programmation dynamique, et exposent des schémas de calcul se

prêtant justement assez bien à des reformulations mathématiques permettant de faire

ressortir des opérations de réductions et/ou de préfixe.

Dans le chapitre ??, nous montrons comment certains des traitements mis en jeu dans

l’outil HMMER [Edd] peuvent être reformulées comme des opérations de réductions et/ou

de préfixes, lesquelles permettent une parallélisation plus efficace.

1.5 Contributions de cette thèse

Le chapitre 3 propose une courte introduction au domaine de la bioinformatique, et à ses

enjeux. Nous détaillons en particulier les principaux algorithmes utilisés pour l’alignement

la comparaison et le repliement de séquences, en mettant l’accent sur leur coût en termes

de traitements et sur leur capacité à passer à l’échelle sur de gros volumes de données. Nous

montrons en particulier que la plupart des approches utilisés ne passent pas à l’échelle, et

nécessitent de recourir à des architectures matérielle exploitant des niveaux de parallélisme

important.

3Cet intérêt s’explique par le fait que l’opération d’addition binaire est une opération de préfixe

8 Introduction

Le chapitre 4 présente ensuite un survol des techniques et outils de synthèse de

haut niveau. Ces outils permettent de dériver une architecture matérielle spécialisée

directement à partir d’une spécification algorithmique (par exemple en C). Ils permettent

ainsi de réduire de manière drastique les temps de conception. Le chapitre présente les

différentes étapes mises en jeu dans un flot de synthèse HLS, et propose un état de l’art

des techniques utilisées dans ces outils. Le chapitre se termine par une revue des outils de

HLS académiques et commerciaux actuellement disponibles.

Le chapitre 5 s’intéresse quant à lui aux techniques de transformation de code

permettant d’améliorer les performances des architectures obtenues par synthèse HLS.

Cette partie du manuscrit s’intéresse en particulier aux transformations de boucles pour

la parallélisation et à l’optimisation des accès à la mémoire, qui sont des points cruciaux

pour l’obtention d’accélérateurs efficaces.

Les chapitres 6 & 7 présentent quant à eux les contributions de ce travail, qui portent

sur l’utilisation de transformations de programme complexes, en vue de l’accélération

matériel du programme HMMER. Cet outil, très utilisé dans la communauté bioinforma-

tique, repose sur deux noyaux de calculs (MSV et P7Viterbi) réputés difficiles à accélérer du

fait de la présence de dépendances de données qui empêchent a priori toute parallélisation.

Dans le chapitre 6, nous présentons l’état de l’art concernant la parallélisation de HMMER

sur FPGA et proposons une reformulation des noyaux MSV et P7Viterbi qui permet

de mettre en évidence un niveau important de parallélisme au travers d’opérations de

réductions et de préfixes.

Le chapitre 7 s’intéresse quand à lui à la mise en œuvre, sur un accélérateur FPGA

et à l’aide d’un outil HLS commercial, d’une architecture de co-processeur parallèle pour

HMMER. L’originalité de l’approche vient de l’utilisation d’un schéma de calcul complexe,

exploitant du parallélisme à grain fin (boucles vectorisées) et à gros grain (utilisation d’un

macro-pipeline de tâche). Ces schémas ont donnés lieu à une mise en œuvre matérielle sur

une carte FPGA (XtremeData), et nous a permis de démontrer des facteur d’accélération

intéressant par rapport à une mise en œuvre optimisée exploitant de manière très fine les

extension SIMD des processeurs multi-cœurs Intel.

2
Introduction

2.1 High Performance Computing for Bioinformatics

Bioinformatics can be defined as an application of concepts from computer science,

mathematics and statistics to analyze biological data (e.g. DNA, RNA and Proteins) and

to predict their the functions and structures. The typical problems found in bioinformatics

consist in finding genes in DNA sequences, analyzing new proteins, aligning similar proteins

into families and generating phylogenetic trees to expose evolutionary relationships.

In the last decade, there has been a rapid growth in the amount of available digital

biological data with the advancement in DNA sequencing techniques, and particularly the

success of projects such as The Human Genome Project [VAM+01] and genome annotation

projects for plants [SRV+07]. The noticeable examples are the growth of DNA sequence

information in NCBI’s GenBank [NCB11] database and the growth of protein sequences

in the UniProt [?] database, as shown in Figure 2.1. Furthermore, the next-generation

sequencing technologies have enabled the extraction of genome sequence data in huge

quantities, and this will result in further growth of these databases.

Computer scientists and biomedical researchers are now facing a major challenge

of transforming this enormous amount of genomic data into biological understanding.

The traditional tools and algorithms in bioinformatics were designed to handle very

small databases, hence a bottleneck in terms of computational time has arisen when

scaled up to facilitate analyses of large data-sets and databases. Recently, a lot of

research efforts have been done enabling modern bioinformatics tools to take advantage

of parallel computing environments. The implementation of bioinformatic applications on

modern multicore general-purpose processors [Edd, LBP+08], General Purpose Graphic

Processors (GPGPU) [WBKC09b, VS11, MV08], grid technology [SRG03, YHK09,

CCSV04, GCBT10] and reconfigurable platforms, such as field-programmable gate arrays

(FPGAs) [HMS+07, SKD06, DQ07, LST] have shown promising acceleration and have

significantly reduced the runtime of many biological algorithms while operating on the

9

10 Introduction

0

50

100

150

200

250

300

Bi
lli
on

s

Number of Base Pairs in GenBank

(a) (b)

Figure 2.1: The exponential growth of the (a) GenBank and (b) UniPortKB
databases [NCB11, ?].

enormous databases.

The considerable increase in logic density and clock speed of FPGAs, in recent years,

have in turn increased the trend of using FPGAs to implement compute intensive algo-

rithms from various domains, including finance [ZLH+05, WV08], weather forecast [AT01],

video encoding [LSK+05] and bioinformatics[DQ07, SKD06]. FPGAs are an attractive

target architecture for bioinformatics applications, considering their cost-effectiveness as

customized accelerators and their ability to exploit the fine-grain parallelism available in

many bioinformatics applications. A large class of bioinformatics applications rely on

dynamic programming algorithms or a fast approximation of one, including sequence

database search programs (Smith-Waterman [SW81], Needleman-Wunsch [NW70] and

BLAST [AGM+90]), multiple sequence alignment programs (CLUSTALW [THG94]),

profile based search programs (HMMER [Edd]), RNA-folding programs (MFOLD [Zuk03])

and even phylogenetic inference programs (PHYLIP [Fel93]). The FPGA architecture

is very well suited for such dynamic programming algorithms, since it has a regular

structure, similar to the data dependencies in dynamic programming algorithms, with

a communication network to close neighbors.

2.2 FPGA based Hardware Acceleration

FPGAs are simply large fields of programmable gates, so they can be programmed into

many parallel hardware execution paths. Due to their parallel nature, different processing

operations do not have to compete for the same resources. The designer can map any

number of task-specific cores on an FPGA, that all run as simultaneous parallel circuits.

On an FPGA, a designer can exhibit parallelism with the help of a variety of

computation granularities (i.e. fine and coarse-grain parallelism), pipelining the long

computation paths and through data parallelism. The parallelism granularity may range

from very fine-grain computations (e.g. bit-level operations), to fine-grain operations, as

in a SIMD architecture (e.g. word- and instruction-level operations) and to coarse-grain

computations (e.g. many independent instances of a highly compute intensive kernel,

2.3 – FPGA Design Flow 11

operating in parallel).

Since FPGAs operate on a very low frequency (about 10 × low) in comparison with

a CPU, so in order to outperform the CPU based performance, there should be enough

computations to be computed in parallel. Hence compute intensive applications with

massive inherent parallelism (e.g. converting each pixel of a color image to grayscale)

are highly suitable for FPGA based implementation. Similarly applications with reduced

bit-width data are appropriate for FPGAs, due to their ability to compute custom bit-

width operations. The majority of bioinformatics algorithms do not require even the full

integer precision, thus floating point arithmetic on a modern CPUs will be not valuable.

Therefore, FPGA based implementation of such applications can exploit the customizable

precision and parallelism, and can result in improved speed and better utilization of the

available resources.

The properties held by bioinformatic applications make them viable for FPGA based

acceleration in comparison with other acceleration approaches, such as clusters and GPUs.

And a lot of research work has been done to accelerate these applications on FPGAs

using traditional hardware languages (VHDL and Verilog) [HMS+07, SKD06, DQ07]. The

resulting implementations are very efficient and the obtained speedup is highly valuable.

However, there are few issues with FPGA based implementations that hinders the designer

to opt for an FPGA based implementation, e.g. the design flow is highly error prone and

lengthy verification phase often becomes the bottleneck in design projects. In next section,

we will highlight these issues by discussing the traditional FPGA design flow and a possible

solution to these issues through high-level synthesis.

2.3 FPGA Design Flow

The standard design flow for FPGA designs is borrowed from ASICs, as shown in Figure

2.2a. In practice, a design is usually partitioned into hardware & software parts. The

steps shown in Figure 2.2a are related only to the implementation of hardware blocks

in such a design, while the software blocks will be implemented using standard software

development techniques.

The first step in design flow is to define functional specifications in C, C++, Matlab or

any other language in order to validate and fine-tune the desired behavior. Once tested,

the designer needs to define an optimal architecture to implement the desired functionality.

The architecture selection defines the performance, area and power consumption goals to

be met. After the architecture is defined, the design team hand-codes these decisions in the

form of a Hardware Description language (Verilog or Vhdl) or in the form of a schematic

design. At this stage, functional simulation is carried out to verify the correctness of the

described functionality.

After functional verification, the design can be synthesized, i.e. mapping boolean

operators on lookup tables (LUTs) modules, shown in Figure 4.1b. The result of

logic synthesis is called the netlist, a file describing the modules to be used for the

12 Introduction

C / C++ / Matlab Specification

Validate Behavioral Model

Define Architecture

Implementation (Vhdl / Verilog)

Verification

Synthesis

Place & Route

FPGA

C / C++ / Matlab Specification

Validate Behavioral Model

HLS Specification

Synthesis

Place & Route

FPGA

(a)

C / C++ / Matlab Specification

Validate Behavioral Model

Define Architecture

Implementation (Vhdl / Verilog)

Verification

Synthesis

Place & Route

FPGA

C / C++ / Matlab Specification

Validate Behavioral Model

HLS Specification

Synthesis

Place & Route

FPGA

(b)

Figure 2.2: FPGA Design Flow: (a) Traditional FPGA design flow using Hardware
Description languages (HDLs). The application description in HDL is very error prone
and requires a lot of verification efforts. Similarly, it is not easy to port design to other
FPGA architectures. (b) High-level Synthesis based FPGA design flow: The manual RTL
based design steps are replaced with high-level behavioral description of design following
by an automatic generation of RTL design.

implementation of the design and its interconnections. In next step, we place and route the

design on FPGA, i.e. the operators (LUTs, Flip-Flops, Multiplexers, etc.) described in

the netlist will be now placed on the FPGA fabric and will be connected together through

routing. This step is normally done by the CAD tool provided by the FPGA vendor. The

CAD tool generates a file called bitstream. The bitstream file contains the description

of all the bits to be configured, in order to configure LUTs, the interconnect matrices,

multiplexers and I/O of the FPGA. Now, by loading the bitstream file on the FPGA, the

hardware will be configured according to the functional specifications of the application.

However, the design flow is not that straightforward and often involves a lot of iterative

development steps. First problem is to find a suitable architecture, since the following

design steps closely related to the selected architecture. An inadequate choice of underlying

architecture will prolong the development cycle greatly. The biggest problem in the design

flow is the manual RTL description, as when the design is tested after first implementation,

bugs are reported and a lot of development time is usually spent in hunting down and fixing

the bugs individually. The iterative process of fixing bugs, generating new bugs and fixing

them again, prolongs the time-to-market.

One major issue with HDL based implementation is the ever-increasing complexity of

electronic designs. The increase in device capacity only exacerbates this issue, as pro-

grammers seek to map increasingly complex computations to even larger devices [CD08].

The reality is that we are trying to develop 4G broadband modems and H264 decoders

2.3 – FPGA Design Flow 13

with tools and methods inherited from era, when GSM and VGA controllers were

popular technologies [Fin10]. Eventually, creating RTL design triggers bug and cause

the verification phase to be the bottleneck of any ASIC project.

Many research efforts have been done to ameliorate this issue by offering higher-level

programming abstractions combined with an automatic RTL generation from popular

high-level languages such as C or Matlab, known as High-level Synthesis (HLS) tools.

2.3.1 High-level Synthesis

High-level synthesis addresses the root cause of the problem, posed by HDL based design

flow, by providing an error-free path from abstract specification to RTL. HLS reduces the

implementation time, while also reduces the overall verification effort. The high-level of

abstraction needs a lot less detail for the description, and the designer can only focus on

describing the desired behavior. With fewer lines of code, when there are no such details as

clocks, technology or micro-architecture specifications in side the sources, the risk of errors

is greatly reduced. Similarly with fewer blocks to verify, the design can be exhaustively

verified.

The abstract functional specifications in HLS, makes the design reuse more effective.

Since the design sources are now the abstract specification of the design, retargeting to

other architectures is easier. Similarly, the concepts of IP and reuse, which have been

promoted to address the design complexity challenge with RTL design, are often unhelpful.

The retargeting of legacy RTL is usually done at the expense of power, performance and

area [Fin10]. However, in HLS, we are dealing with pure functional specifications and

technology specific information is added later by HLS tool automatically. This makes the

IP reuse and change in existing functionality, easy to implement and verify.

For biocomputing applications, HLS framework simplify the complex algorithmic

description phase and also maximize the design portability. However, the abstract

specification of a design may lack several design optimization details, which also expands

the hardware mapping possibilities. This can lead to a less efficient design through

automatic RTL design generation, in comparison with the efficiency of a highly detailed

manual RTL design. Consequently, the resulting performance of HLS based design is often

not good enough to justify the use of an FPGA based acceleration. Most of the research

efforts in development of these HLS tools, are dedicated to an efficient translation of

the given input C code into a hardware design, and this task has been accomplished

quite effectively. However, there has been a very little focus on automatic parallelization

extraction from the input C code. Therefore, the designer needs to pay a lot of attention

on ‘what’ kind of C code will generate ‘what’ kind of circuit.

To tackle this problem, the HLS input needs to be reformed by exposing the hidden

parallelism in the algorithm. This task can be accomplished with a prior dependency

analysis of input design and based on this analysis parallelism can be expressed with the

help of modern high performance compiler optimization techniques [Wol90, Wol96]. The

input code should also manage memory resources in an efficient way (i.e. minimizing

14 Introduction

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s

(a)

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s

(b)

Figure 2.3: Examples of Reduction, (a), and Scan, (b), are shown here, with a possible
order of computation.

data communication overhead and maximizing data reuse). Hence, there is a dire need

to identify, analyze and layout the rules and guidelines, a designer should keep in mind,

while designing for hardware using high-level synthesis tools.

The leitmotiv of this thesis consists in a critical analysis of state of the art HLS tools,

identifying their capabilities and shortcomings, formalize techniques to craft an efficient

hardware using these tools and exercise these strategies on a well-known, compute-intensive

and naively sequential bioinformatic application (i.e. HMMER).

2.4 Exploiting Parallelism with Reductions and Prefixes

The basic algorithms of linear algebra and matrix computation fall into two broad classes.

In the first one, the output of a computation is of the same size or bigger than the input

data. This is the case, for instance, for vector operations. In the second class, the output

is much smaller, typically only one value, than the input data, hence the name reduction

which has been coined by Iverson [Ive62].

Here, we are interested in two special kind of such computations, namely reduction

and scans or prefix computations, where operations hold associativity and commutative

properties. Let say, ⊕ represents such an operation, then a reduction can be defined, over

a input vector (x1, x2, . . . , xn), as:

s =
n⊕

i=0

xi = x0 ⊕ x1 ⊕ . . .⊕ xn (2.1)

A prefix operation belongs to the first class of computations, where output is exactly the

same size as the input, and can be defined for an output vector (s1, s2, . . . , sn) as:

sk =

k⊕
i=0

xi = x0 ⊕ x1 ⊕ . . .⊕ xk (2.2)

2.5 – Contributions of this work 15

The operations can be visualized in Figure 2.3 for n = 16. The possibility to compute

these operations in parallel and in numerous order of executions, has given significant

importance to these computations. While targeting FPGA, a designer can easily devise a

compromise between the speed and area.

The parallel implementation of prefix networks (Parallel Prefix) has received a wealth of

attention from VLSI community going back almost 50 years and various network topologies

have been proposed [LF80, BK82, KS73, HC87, Skl60]. These network topologies allow

a variety of hardware implementations of a prefix operation, managing various design

trade-offs, such as speed, area, wiring and fan-out. Thus, expressing parallelism in the

form of prefix operations allows to utilize these previously developed network topologies.

Furthermore, the high-level synthesis based implementation of such networks simplifies

the design exploration task.

Sequence alignment techniques, based on dynamic programming algorithms, in

bioinformatic applications generally compute a best score for a comparison and the

computations involved usually hold the above mentioned algebraic properties. So there

is a strong tendency that reduction and prefix computations can be detected in these

algorithms and it will lead to parallel implementation of the algorithms. In Chapter

??, we demonstrate how algorithmic dependencies in HMMER [Edd] can be transformed

into reductions and prefixes through algorithmic rewriting and which ultimately help to

accelerate the execution.

2.5 Contributions of this work

Chapter 3 provides an brief introduction to bioinformatics field and common practices

in this field. We highlight some important algorithms for sequence alignment and RNA

folding. A review of these algorithms provides a fair insight to the algorithmic complexities

and also highlights the challenge being faced by biologists and computer scientists, i.e.

exercising these algorithms on constantly growing size of genome databases in becoming

time prohibitive. There is a pressing need to utilize the advancements in computation

platforms and accelerate bioinformatics applications.

Chapter 4 discusses how bioinformatics applications are viable for FPGA based

acceleration. It also reasons the importance of high-level synthesis in FPGA based

implementation, in comparison with traditional RTL based designs. The chapter

introduces to the design flow inside an HLS tool and discusses the state of the art techniques

applied in each step of the design flow. It also provides an overview of few well-known

HLS tools in market, investigates their handling of input code and identify the basis of

performance degradation.

Chapter 5 is dedicated to design techniques and code transformations, a designer needs

to bear in mind while designing hardware from high-level specifications (i.e. C code). The

sole idea is to highlight that ‘what’ kind of C code will be translated to ‘what’ kind

of hardware, and ‘what’ kind of transformations may help to accomplish design goals

16 Introduction

(Speed/Area).

Chapter 6 & 7 presents the research work carried out to accelerate HMMER application

by exercising the previously discussed techniques for efficient hardware design using HLS.

HMMER is a widely usied tool in bioinformatics for sequence homology searching. The

computation kernels of HMMER, namely MSV and P7Viterbi are very compute-intensive,

and their data dependencies, if interpreted naively, lead to a purely sequential execution.

We propose an original parallelization scheme for HMMER based on rewriting its

mathematical formulation, in order to expose hidden potential parallelization opportunities

by transforming computations into well-known architectures, i.e.parallel prefix networks

& reduction trees. Besides exploring fine-grain parallelization possibilities, we employ

and compare coarse-grain parallelization through different system-level implementations

of the complete execution pipeline, based on either several independent pipelines or a

large aggregated pipeline. We implement our parllelization scheme on FPGA, and then

present and compare our speedup with the latest HMMER3 SSE version on a Quad-core

Intel Xeon machine. Our results show that a careful HLS based implementation can fairly

compete an RTL based design in terms of performance and holds a definite edge in terms

of time-to-market and design efforts.

3
An Introduction to

Bioinformatics Algorithms

Bioinformatics can be defined as the science of developing computer systems and

algorithms for the purpose of spreading up and enhancing biological research [Aga08].

To understand bioinformatics in a meaningful way, it is necessary for a computer scientist

to understand some basic biology. This chapter provides a short introduction to those

fundamental concepts in biology and highlights some common algorithms being used in

bioinformatics.

3.1 DNA, RNA & Proteins:

Cells are the smallest structural unit of life that has all the basic characteristics of a living

organism, such as maintaining life and reproducing it [SEQb]. A cell contains all the

necessary information as well as the required equipment to not only produce a replica of

itself, but also helps its offspring start functioning [JP04]. Each cell in a human body

contains 23 pairs of chromosomes, consisting of 30,000 genes in each of them. There are

around 1012 cells in a body, which gives an estimate of approximately 3 billion pairs of

DNA bases [oEGP08]. Similarly, the plant genome-sequencing project reports more than

40,000 genes in average plants [SRV+07].

The three primary types of molecules studied by biologists are DNA, RNA and proteins.

The relationship between these molecules is the transfer of information from DNA to

proteins through RNA, as shown in Figure 3.1. DNA encodes RNA that produces the

proteins, where proteins are responsible for managing and performing different biological

processes inside the cell. A DNA within a cell holds the complete information describing

the functionality of the cell. RNA transfers short pieces of this information to different

places within the cell, where this information is used to produce proteins [JP04].

DNA is a long molecule forming a chain, where the links of the chain are pieces called

17

18 An Introduction to Bioinformatics Algorithms

Transcription Translation

DNA mRNA

Protein

Figure 3.1: The relationship between DNA, RNA and Proteins is refereed as the central
dogma of life. [Courtesy of NIGMS Image Gallery [Gal]]

nucleotides, or ‘bases’, named ‘A’, ‘C’, ‘G’ and ‘T’. DNA encodes the information necessary to

build a cell. Most of the cell activities, e.g. breaking down the food as enzymes, building

new cell fragments, cell signaling and signal transduction, are carried out by proteins.

However, a DNA sequence must be decoded to make a protein and the decoding process

requires the creations of an RNA template [Wil03]. The creation of “messenger RNA” or

mRNA is called transcription, while the process of creating proteins from the mRNA is

called translation.

The discovery of DNA is probably the most influential discovery of the 20th century,

that led to extraordinary breakthroughs in the field of science and medicine. The discovery

of DNA has enabled the identification of genes, diagnosing of diseases and developing

treatments for them.

Why Bioinformatics?

The information that biologists have collected about gene sequences needs to be processed,

in order to completely understand their function and roles, e.g. how a specific gene is related

to a specific disease, or what are the functions of thousands of proteins and how proteins

can be classified, in accordance to the functionalities. The field of Bioinformatics is a

collection of such tools and methods that are used to collect, store, analyze and classify

this huge amount of biological data.

As mentioned by Thampi [Tha09] regarding the history of bioninformatics, it began in

the 1960s with the efforts of Margaret O. Dayhoff, Walter M. Fitch, Russell F. Doolittle

and others. Since then it has evolved into a much developed discipline, having strong

infulence on modern biology research. In 1970, Saul B. Needleman and Christian D.

Wunsch [NW70], proposed the first DNA sequence matching algorithm. However, during

the 1990s few major steps brought revolution in bioinformatics study, e.g. the start of

3.2 – Sequence Alignment 19

Figure 3.2: An example for multiple sequence alignment: The region of convergence is the
shaded part where exact matches are found in all sequences.

Human Genome Project Bioinformatics, the availability of new analysis, services and the

availability of data through Internet. Huge databases, such as GenBank and EMBL were

designed to store, compare and analyze the biological sequence data that is being produced

at an enormous rate. Today, bioinformatics field involves structural and functional analysis

of proteins and genes, drug development and pre-clinical and clinical trials [Tha09].

The field of bioinformatic encompasses the use of tools and techniques from three

separate disciplines; the source of the data to be analyzed is related to molecular biology,

the platform and resources to analyze this data are borrowed from computer science, and

the techniques and tools that analyze this data are based on data analysis algorithms [Ric].

The common activities in bioinformatics are hence storing DNA and protein sequences,

analyzing, aligning or comparing, classifying protein families and finding new members,

predicting structures of RNAs and constructing phylogenetic trees or evolutionary trees.

In this chapter, we will focus on algorithms related to general sequence alignments [NW70,

SW81, AGM+90, THG94, Edd11a] and RNA folding [NPGK78, ZS81].

3.2 Sequence Alignment

Sequence alignment is an arrangement of two sequences which shows where the two

sequences are similar, and where they differ. Sequence alignment techniques are used

to discover structural and functional properties of the biological data and characterizing

evolutionary relationship in sequences. The identical characters are identified as matches,

while nonidentical characters are mentioned as gaps. The regions with identical characters

are known as conserved region, as shown in Figure 3.2. To discover this information it

is important to obtain the “optimal” alignment, which is the one that exhibits the most

significant similarities, and the fewer differences.

A similarity between two sequences suggests a similarity in the function or the structure

of these sequences. Additionally, strong similarities between two sequences may also show

the evolutionary relationship between them, assuming that there might be a common

ancestor sequence. The alignment indicates the changes that could have occurred between

the two homologous sequences w.r.t. a common ancestor sequence during evolution.

There are two types of sequence alignments: global alignments try to align the

sequences from end to end for each sequence. Sequences that are similar and that are

20 An Introduction to Bioinformatics Algorithms

approximately the same length are suitable candidates for global alignment. On the

contrary local alignments search for segments of the two sequences that are similar.

Local Alignment does not force the entire sequence into alignment, instead it only aligns

the regions with the highest density of matches. It hence generates one or more sub-

alignments in the aligned sequences. Local alignments are more suitable for aligning

sequences which are different in length, or sequences that have a strong conserved region

but not located at same position in both sequences.

In the following section we will show a comparison of both type of alignments and how

for the same sequence pair, alignment result can differ.

Sequences are usually either aligned in pairwise manner, i.e. through a Pairwise

sequence alignment, to compare and identify similarities in two sequences. In some other

cases, three or more sequences are aligned, i.e. through a Multiple sequence alignment.

The latter ones are used to show similarities conserved by most of the sequences and to

construct families of these sequences. New members of such families can then be found by

searching sequence databases for other sequences exhibiting these same conserved regions.

3.2.1 Pairwise Sequence Alignment

Pairwise alignment methods are used to find optimal local or global alignment of two

query sequences. The most common methods for pairwise alignment are dot matrix,

dynamic programming and word or k-tuple methods. The most famous dynamic pro-

gramming algorithms for pairwise alignment are Smith-Waterman [SW81] and Needleman-

Wunsch [NW70] algorithms. BLAST [AGM+90], one of the most widely used bioinformatic

tool, is based on a word method.

Needleman-Wunsch: Needleman-Wunsch algorithm performs global alignment for a

pair of sequences. The algorithm was proposed in 1970 by Saul B. Needleman and Christian

D. Wunsch [NW70], and was the first application of dynamic programming to biological

sequence comparison. To find the alignment with the highest score, a two-dimensional

array (or matrix) D is allocated. The entry in row i and column j is denoted by Di,j .

There is one column for each character in sequence A, and one row for each character in

sequence B. Each cell of matrix D will be computed using following formula:

Di,j = max

Di−1,j−1 + δ(Ai, Bj)

Di−1,j + δ(Ai,−)

Di,j−1 + δ(−, Bj)

(3.1)

Figure 3.3a shows the initialized matrix and the data dependency, as depicted by the

formula above. The numbers in small font, in first row and first column mentions the

gap penalty while in rest of the matrix they shows the matching and penalty scores. The

matching score, δ(Ai, Bj) is equal to 1 when Ai and Bj are same characters. Otherwise,

the penalty is set to 0 for any mismatch. Figre 3.3b shows the global alignment from

3.2 – Sequence Alignment 21

(a) (b) (c)

Figure 3.3: Pair-wise Sequence Alignment: (a) Matrix initialization & computation
dependencies , (b) Global alignment with Needleman-Wunsch, (c) Local alignment with
Smith-Waterman. The green trail in (b) and (c) shows the alignment. [Figures generated
using Basic-Algorithms-of-Bioinformatics Applet [Cas]]

Needleman-Wunsch algorithm. The final alignment for this example:

- G C C A C C G T

| | | | |
T G T T A C - G T

Smith-Waterman: The Smith-Waterman algorithm, also based on dynamic program-

ming techniques, computes the optimal local alignment of two sequences. Instead of

looking at the entire sequence length, the Smith-Waterman algorithm compares only

segments (for all possible lengths) of the input sequences and try to optimizes the similarity

score. The main difference with Needleman-Wunsch is that Needleman-Wunsch allows

negative scoring, whereas Smith-Waterman forces negative values to zero. This choice of

positive scoring makes local alignment visible. The Smith-Waterman algoritm computes

the matrix D as:

Di,j = max

Di−1,j−1 + δ(Ai, Bj)

Di−1,j + δ(Ai,−)

Di,j−1 + δ(−, Bj)

0

(3.2)

Figure 3.3c shows the local alignment, where matching score, δ(Ai, Bj) is set to 2 and

all penalties are set to -1. The final alignment in this case is:

A C C G T

| | | |
A C - G T

Local vs. Global Alignment: From the above two alignments, it can be seen that

global alignment can align even less conserved regions in comparison with local alignment

that only aligns the regions that are well conserved by the two sequences. Similarly, local

22 An Introduction to Bioinformatics Algorithms

CAG - TTATGTGGGCCCAAATTG
Global Alignment | | | | | | |

GGGCCCAAATTG - CAGTTATGT

CAGTTATGTGGGCCCAAATTG
Local Alignment | | | | | | | | | | | |

GGGCCCAAATTGCAGTTATGT

Figure 3.4: Local Alignment aligns very significant regions, apart from the region location
in two sequences, While global alignment aligns even small, not very significant, regions.

alignment can align well conserved regions, apart from their location in the two sequences.

The example in Figure 3.4 shows how different results can be obtained from global and

local alignments. In this example, local alignment aligns the starting region of the one

sequence to the end region of the other sequence. On the other hand, global alignment

aligns sequences from end to end and the example demonstrates the “gappy” nature of

global alignment when sequences are insufficiently similar. Global alignments are most

useful when query sequences are similar and of roughly equal size, e.g. protein sequences

from the same protein family are often very conserved, and hence have almost the same

length [JP04].

A hybrid method, known as “glocal” (short for global-local), presented by Brudno et

al. [BMP+03] attempts to combine features of both kind of alignments. Glocal alignment

aligns two sequences by transforming one sequence into the other by a series of operations.

The set of supported additional operations are not limited to insertion, deletion and

substitution, but also include other possible types of mutations, e.g. inversion (a small

segment of the sequence is first removed and then inserted back at the same location but

in the opposite direction), translocation (a small segment is removed from one location

and inserted into another, without changing the orientation) and duplication (a copy of a

segment is inserted into the sequence without making any change to the original segment).

BLAST: The Basic Local Alignment Search Tool, or BLAST, was developed by

Altschul et al. [AGM+90]. This method is widely used from the Web site of the National

Center for Biotechnology Information at the National Library of Medicine in Washington,

DC (http://www.ncbi.nlm.nih.gov/BLAST). The BLAST server is probably the most

widely used sequence analysis facility, where alignments can be performed against all

currently available sequences. BLAST is fast enough to search an entire database in a

reasonable time. Before the development of fast algorithms such as BLAST and FASTA

(another k-tuple based tool), database searches were very time consuming, because they

had to rely on a full alignment procedure such as Smith-Waterman. However, BLAST

algorithm emphasizes on speed rather than sensitivity, in comparison with traditional

tools.

BLAST aligns two sequences by first searching for very short identical words (known

as tuples or k-mers) and then by combining these words into an alignment. The length

of the word is fixed at 3 for proteins and 11 for nucleic acids. In the first step, the

http://www.ncbi.nlm.nih.gov/BLAST

3.2 – Sequence Alignment 23

algorithm creates a word list in the query sequence and then refines the word list to

only very significant words, whose possible matching score is higher than a threshold, as

shown in Figure 3.5a. Then, BLAST scans the database for the exact match of these

high-scoring words, as described in Figure 3.5b. In the third step, these matches are

extended in the right and left directions, from the position of the match, as shown in

Figure 3.5c. The extension process in each direction stops when the accumulated score

ends increasing and is just about to start fall a small amount below the best score found

for shorter extensions. This extension phase may find a larger stretch of sequence, known

as high-scoring segment pair (HSP), with higher score than the original word. A newer

version of BLAST, called BLAST2 [TM99] attempts to accelerate the alignment process

by finding word pairs on the same diagonal, which are within distance A from each other,

as shown in Figure 3.6. It extends only such word pairs, instead of all words. In order to

maintain the alignment sensitivity, BLAST2 lowers down the initial threshold that results

in greater number of candidate words. However, since the extension is done only on a few

of them, the computation time of overall alignment decreases.

3.2.2 Multiple Sequence Alignment

Given a family of functionally related biological sequences, searching for new homolog

sequences in an important application in biocomputing. The new members can be explored

using pairwise alignments between family members and sequences from the database.

However, this approach may fail to identify distantly related sequences, due to weak

similarities to individual family members. A sequence having weak similarities with many

family members is likely to belong to the family, but pair-wise matching will be unable to

detect it. A solution can be to align the sequence to all family members at once.

Multiple sequence alignment (MSA) is an extension of pairwise alignment, that aligns

more than two sequences at a time. Multiple alignment methods try to align all of the

sequences in a given query set in order to identify conserved sequence regions across

the group of sequences. In proteins, such regions may represent conserved functional

or structural domains, thus such alignment can be used to identify and classify protein

families.

Computationally, MSA presents several difficult challenges. The optimal alignment of

more than two sequences at the same time, considering all possible matches, insertions

and deletions, is a difficult problem. Dynamic programming algorithms used for pair-

wise alignment, can be extended for MSA, but for aligning n individual sequences

of length l, the search space increases exponentially and computational complexity is

O((2l)n) [WP84]. Such algorithms can be used to align 3 sequences, in a cubical score

matrix, or a small number of relatively short sequences [Mou04]. Other methods in use for

multiple sequence alignment are (1) Progressive alignment [THG94, WP84], (2) Iterative

alignment [MFDW98] and (3) Statistical methods [KBM+94, Edd].

24 An Introduction to Bioinformatics Algorithms

(a)

(b)

(c)

Figure 3.5: A graphical illustration of the BLAST algorithm: (a) In the first step, BLAST
creates a list of words from the sequence, (b) In the second step, it searches against the
database for exact word matches, (c) Then the third step extends the match in both
directions. [Example borrowed from [SKD06]]

X

X
X

X

X

X
X

X

HSP region

Database sequence

Q
ue

ry
 s

eq
ue

nc
e

Distance < A

Figure 3.6: BLAST: The X’s mark shows the position of the high scoring words. The
elliptic region shows the newly joined region

3.2 – Sequence Alignment 25

L K M F
L Y K M F

L Z F
L Z M F

L K/- Y M F L Z M/- F

L K/- Y/Z M/- F

Figure 3.7: Progressive sequence alignment

Progressive Alignment: Progressive alignment techniques based on the dynamic

programming method try to build an MSA by first aligning the most similar sequences

and then by progressively adding groups of sequences to the initial alignment, reducing

the complexity to O(nl2) [WP84]. Relationships among the sequences are modeled by an

evolutionary tree in which the outer branches or leaves are the sequences. The closely

related sequences are aligned first and then aligned with other pairs in subsequent tree

levels, as shown in Figure 3.7. The most notable program based on progressive methods is

CLUSTALW [THG94]. Progressive alignments are not guaranteed to be globally optimal.

The major problem is that when distantly related sequences are aligned during the first

stage, errors can be made, which may propagate to the final result. A second problem

with the progressive alignment method is the choice of suitable scoring matrices and gap

penalties that apply to the set of sequences [Mou04].

Iterative Alignment: Iterative alignment methods attempt to correct the key issue of

progressive methods, i.e. the fact that errors in the initial alignments propagate through

MSA. The problem is addressed by repeatedly realigning subgroups of the sequences and

then by aligning these subgroups into a global alignment of all of the sequences. The goal

is to improve the overall alignment score [Mou04].

The DIALIGN program [MFDW98], based on an iterative alignment technique,

performs MSA through segment-to-segment comparisons rather than residue-to-residue

comparisons. Pairs of sequences are aligned by locating aligned regions, i.e. the regions

that do not include gaps, called “diagonals”. These diagonals are then used to generate an

alignment. The alignment is generated using a greedy method, i.e. the diagonal with the

highest weight is selected first and then, the next diagonal from the list is added iteratively

to the alignment, if the new diagonal is consistent with the existing alignment, i.e. if there

is no conflict due to the double presence of a single residue or cross-over assignments of

residues. The algorithm proceeds until the whole list of diagonals has been processed.

Hidden Markov Models (HMMs) [RJ86] are a popular machine learning approach used

for sequence homology searching. HMM is a statistical model that take into account

all possible combinations of matches, mismatches, and gaps in a set of query sequences,

to generate an alignment. HMMs are widely used for finding homologous sequence by

comparing a profile-HMM to either a single sequence or a database of sequences. The

profile-HMM is first built with prior information about the sequence family and trained

26 An Introduction to Bioinformatics Algorithms

B M1 M2 M3 M4 E

D1 D2 D3 D4

I0 I1 I2 I3 I4

Match States

Insert States

Delete States

Figure 3.8: Hidden Markov Model for sequence alignment. [KBM+94]

with a set of data sequences. Comparing a query sequence against the profile-HMM allows

one to find out if the query sequence is an additional member to the family or not. A

different profile HMM is produced for each set of sequences. The intuition behind the

profile-based matching is that the multiple alignment of a sequence family reveals regions

that are more conserved by the family and the regions that seem to tolerate insertion

and deletion more than the conserved ones. Thus position-specific informations must be

utilized when searching for homologous sequences. Profile-based methods build position-

specific scoring models from multiple alignments, e.g. there will be a higher penalty

for insertion/deletion in a conserved region than in a region of tolerance. Krogh et al.

[KBM+94] were the first to introduce HMM to computational biology (see Figure 3.8). For

each column of the multiple alignment, a ‘match’ state models the distribution of residues

allowed in the column, while ‘insert’ and ‘delete’ states allow insertion and deletion of

residues between two columns. Profile HMM diverges from standard sequence alignment

scoring by including non-affine gap penalty scores. Traditionally, an ‘insert’ of x residues

is scored as a + b(x − 1), where a is the score of first residue and b is the score for each

subsequent residues in the insertion. In profile-HMM, insertion of a residue x is modeled

using state transitions from state ‘match’ to ‘insert’, from state ‘insert’ to ‘insert’, and

from state ‘insert’ to ‘match’.

Profile Hidden Markov Model Packages: There are several software packages

implementing profile HMMs or HMM-like models. SAM [Hug96], HMMER [Edd10],

PFTOOLS [BKMH96] and HMMpro [BCHM94] implement models based on the original

profile HMMs of Krogh et al [KBM+94]. While PROBE [NLLL97] and BLOCKS [HPH98]

assume different models, where alignments consist of one or more ungapped blocks,

separated by intervening random sequences blocks. In the next section, we will discuss

HMMER tool suite in detail.

3.2 – Sequence Alignment 27

E
M1

I1

D2
S T

M2

I2

D3

M3

I3

D4

M4

I4

D5

M5

N CB

x x

J

x

1.0

1.0

tBMk

tNB

tNN
tCT

tCC

tEC

tEJ
tJJtJB

(a)

x x

E
M1

S T
M2 M3 M4 M5

N CB

J

x

1.0 1.0 1.0 1.0 1.0

1.0

tBMk

tNB

tNN
tCT

tCC

tEC

tEJ
tJJtJB

(b)

N B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 E J C
0
1

5

10

15

L=22

20

M=

se
qu

en
ce

profile

model

(c)

Figure 3.9: HMMER: (a) HMM Plan7 model, (b) MSV filter, (c) Example of MSV path
in DP matrix. [Courtesy [Edd11a]]

3.2.3 The HMMER tool suit

One of the most commonly used program for profile-HMM analysis is the open source

software suite HMMER, developed at Washington University, St. Louis by Sean

Eddy [Edd]. In comparison with other sequence alignment tools (e.g. BLAST and FASTA),

HMMER intends to produce more accurate results and is able to detect more distant

homologs, because it is based on a probability model instead of heuristic filters. Due

to this additional sensitivity, HMMER was previously running about 100x slower than a

comparable BLAST search. However, with HMMER3, this tool suite is now essentially as

fast as BLAST [Edd10].

Figure 3.9a presents the Plan7 HMM model, used by HMMER. The Plan7 HMM

differs from the Krogh et al. HMM model in a few ways. The Plan7 HMM does not have

D → I and I → D transitions, which reduces transitions per node from 9 to 7, one of the

origins of the name Plan7. Similarly, a feedback loop from state E, through J to B can

be seen, which isn’t present in the Krogh et al. profile HMM model. The feedback loop

gives HMMER the ability to perform multiple hit alignments. More than one segment per

sequence can be aligned to the core section of the model. The self-loop over J provides

the separating sequence between two aligned segments.

Figure 3.9c shows how a model can identify two high-scoring alignment segments,

due to the presence of the feedback loop. In HMMER, the P7Viterbi kernel solves the

Plan7 HMM model through the well known Viterbi dynamic programming algorithm. The

P7Viterbi kernel was the most time consuming kernel of HMMER. In order to accelerate

the tool suite and to reduce the workload of P7Viterbi, a new heuristic filter (called Multi

ungapped Segment Viterbi) was designed, that feeds P7Viterbi with the most relevant

sequences and filters out the redundant ones. The MSV filter, shown in Figure 3.9c, in an

ungapped local alignment version of the P7Viterbi kernel, where delete and insert states

28 An Introduction to Bioinformatics Algorithms

are removed. Figure 3.10 shows the execution pipeline of HMMER3, with the percentage

of filtered query data on input of each kernel. It can be seen that the MSV filter handles

most of the input query requests, taking approximately 75% of the total execution time.

The following section discusses the P7Viterbi and the MSV algorithms in detail.

3.2.3.1 The Viterbi Algorithm

The architecture of the Plan7 model is shown in Figure 3.9a. The M (Matching), I

(Insertion) and D (Deletion) states constitute the core section of the model. States B and

E are non-emitting states, representing the start and end of the model. The other states

(S,N ,C,T ,J) are called “special states”. These “special states” combined with entry and

exit probabilities, control some algorithm dependent features of the model. For example,

they control the generation of different types of local and multi-hit alignments. The

parameters are normally set by user in order to specify an alignment style. The P7Viterbi

algorithm follows following equations:

Mi[k] = max

eM (seqi, k) + max

Mi−1[k − 1]+TMM[k]

Ii−1[k − 1] +TIM[k]

Di−1[k − 1] +TDM[k]

Bi−1 +TBM[k]

−∞

(3.3)

Ii[k] = max

 eI(seqi, k) + max

{
Mi−1[k]+TMI[k]

Ii−1[k] +TII[k]

−∞
(3.4)

Di[k] = max

Mi[k − 1] + TMD[k]

Di[k − 1] + TDD[k]

−∞
(3.5) Ei = max

{
Mi[k] + TME[k]

−∞
(3.6)

Ni = max

{
Ni−1 + tNN

−∞
(3.7) Ji = max

Ei + tEJ

Ji−1 + tJJ

−∞
(3.8)

Bi = max

Ni + tNB

Ji + tJB

−∞
(3.9)

Ci = max

Ci−1 + tCC

Ei + tEC

−∞
(3.10)

Variables eM , eI , TMM, TIM, TDM, TBM, TMI, TII, TMD, TDD, TME, are the

transition memories (e.g. TIM[k] holds the transition value from state I to state M during

column k), while tNN , tEJ , tJJ , tNB, tJB, tCC , tEC , are set of constants. In Eq.(3.3) and

3.2 – Sequence Alignment 29

MSV filter P7Viterbi filter
P7Forward

score
100%

4M op. per base 25M op. per base 25M op. per base

<2% 1%

75% exec. time 22% exec. time 3% exec. time

Figure 3.10: HMMER3 execution pipeline, with profiling data

Eq.(3.4), Seqi represents the current sequence character being aligned.

3.2.3.2 The MSV Kernel

As mentioned earlier, the main computation in the MSV kernel is a dynamic programming

algorithm, computing only the match state (Mi[k], with i as the column index, and k as the

row index) together with boundary and special states. The values are computed iteratively,

depending on values computed in previous iteration using the following equations:

Mi[k] = eM (seqi, k) + max

{
Mi−1[k − 1]

Bi−1 + tBMK

(3.11)

Ei = max
k

(
Mi[k],−∞

)
(3.12)

Ji = max
(
Ji−1 + tloop, Ei + tEJ) (3.13) Ci = max

(
Ci−1 + tloop, Ei + tEC) (3.14)

Ni = max
(
Ni−1 + tloop) (3.15) Bi = max

(
Ni + tmove, Ji + tmove) (3.16)

Here, tloop, tmove, tEJ, tEC & tBMK are calculated based on the constant size of the

current model and the length of the current input sequence.

An MSV score is quite comparable to BLAST’s score of one or more ungapped HSPs.

Since the MSV score is computed directly by dynamic programming, and not by heuristics

used by BLAST (i.e. word hit and hit extension heuristics), it is claimed to be potentially

more sensitive than BLAST’s approach [Edd11a].

3.2.4 Computational Complexity

Alignment methods can be compared on the basis of several criteria as shown in Table 3.1.

It is interesting to note that most of the global and local sequence alignment methods

essentially have the same computational complexity of O(LQLD), where LQ and LD are

the lengths of the query and database sequences, respectively. Yet despite this, each of the

algorithms has very different running times, with BLAST being the fastest and dynamic

programming algorithms being the slowest. Using the statistically significant elimination

of HSPs and words, BLAST significantly lowers the numbers of segments which need to

be extended and thus make the algorithm faster than all the previous algorithms.

30 An Introduction to Bioinformatics Algorithms

Method Type Accuracy Search Complexity

Needleman-Wunsch Global Exact Dynamic Programming O(LQLD)

Smith-Waterman Local Exact Dynamic Programming O(LQLD)

BLAST Local Approximate Heuristic O(LQLD)

HMMER Multiple Approximate Heuristic O(LQL
2
D)

ClustalW Multiple Approximate Heuristic O(L2
QL

2
D)

Table 3.1: Comparison of various sequence alignment methods, according to their type,
accuracy, search method and the complexity [HAA11].

3.3 RNA Structure Prediction

RNA is a long chain of molecules, although much shorter than DNA. Although an

RNA is a linear sequence of bases A,C,G and U, they have intra-chain base pairing that

produce structures known as secondary and tertiary structures, such as the one shown in

Figure 3.11. Tertiary structures determine the biochemical activity of the RNA sequence.

(a) Secondary Structure of a tRNA. (b) The actual structure of a tRNA is
a three-dimensional L shape.

Figure 3.11: An example of RNA secondary structure and its corresponding tertiary
structure. [Courtesy [SEQc]]

Investigation of such structures, based on X-ray diffraction or biochemical probes, are

extremely costly and time consuming. Thus biologists have simplified the study of complex

three-dimensional tertiary structures by focusing attention simply on what base pairs are

involved from the secondary structure [ZS84]. A common problem for researchers working

with RNA is first to predict the secondary structure of the molecule, in order to analyze

the resulting tertiary structure from it.

In order to predict secondary structures, algorithms based on dynamic programming,

compute the free energies of the different possible folded structures and attempt to find

a structure with minimum free energy. The first algorithm proposed by Nussinov et al.

[NPGK78] tries to maximize the number of base pairs in the structure. Later on, Zuker

and Stiegler [ZS81] refined this algorithm with a more accurate energy model. In this

section we briefly describe these algorithms.

3.3 – RNA Structure Prediction 31

1,2 1,3 1,4 1,5

2,3 2,4 2,5

3,4 3,5

4,5

1,1

2,2

3,3

4,4

5,5

2 4 6 9

3 5 8

4 7

6

1

1

2

3

5

Figure 3.12: Nussinov data dependencies for the computation of X[1, 5], where N = 5.
The cells corresponding to identical arrows are being added using the 4th term of Equation
(3.17)

3.3.1 The Nussinov Algorithm

The Nussinov algorithm tries to maximize the number of base pairs in a given RNA

sequence. The underlying assumption is that the higher number of base pairs is, the more

the structure is stable. For a sequence S with N bases, the Nussinov algorithm attempts

to maximize the base pair score X[i, j] in a folded structure of a subsequence S[i . . . j]

using following equation, as defined by Jacob et al. [JBC08]:

X[i, j] = max

X[i+ 1, j]

X[i, j − 1]

X[i+ 1, j − 1] + δ(i, j)

max
i<k<j

{
X[i, k] +X[k + 1, j]

(3.17)

where variable X is defined over the domain 1 ≤ i ≤ j ≤ N . Figure 3.12 shows the data

dependencies of the Nussinov algorithm. The score δ(i, j) can be a constant or a value of

the free energy. It allows admissible base pairs to be considered:

δ(i, j) =

{
1 if (i, j) = (A,U) or (C,G)

0 otherwise
(3.18)

After the matrix has been filled, the solution can be recovered by backtracking beginning

from the score of the best structure at X[1, N]. Sometimes, there are several structures

with the same number of base pairs. However, the back tracking algorithm only traces

one of the best structures. The overall time complexity of this algorithm is O(N3) and its

space complexity is O(N2).

32 An Introduction to Bioinformatics Algorithms

Dangling Ends

Internal Loop

Stack

Multi loop Bulge

Hair pin

Figure 3.13: An example of an RNA folded into its secondary structure, showing different
types of structural features. [Generated with Vienna RNA Websuite [GLB+08]]

3.3.2 The Zuker Algorithm

The Nussinov algorithm does not deal with most of the pseudoknots, the structural models

shown in Figure 3.13. Moreover, maximizing the number of base pairs is an overly

simplistic criterion, which can not give an accurate prediction.

The Zuker algorithm [ZS81] is also a dynamical programming algorithm and it works

on the basis of identifying the globally minimal energy structure for a sequence. The Zuker

algorithm is more sophisticated than the Nussinov algorithm, since for every structural

element, an individual energy is calculated, which then contributes to the overall energy

of the structure.

For an RNA sequence S with N bases, the Zuker algorithm recursively computes three

data variables W,V, and V BI according to the following equations, as defined by Jacob

et al. [JBC10]:

W [i, j] = min

W [i+ 1, j] + b

W [i, j − 1] + b

V [i, j] + δ[Si, Sj]

min
i<k<j

{W [i, k] +W [k + 1, j]}

(3.19)

3.4 – High Performance Bioinformatics 33

V [i, j] = min

∞ if (Si, Sj) is not a base pair

eh(i, j) otherwise

V [i+ 1, j − 1] + es(i, j)

V BI[i, j]

min
i<k<j−1

{W [i+ 1, k] +W [k + 1, j − 1] + c}

(3.20)

VBI [i, j] = min
i<i′<j′<j

{V [i′, j′] + ebi(i, j, i′, j′)} (3.21)

V [i, j] represents the minimum energy of a subsequence Si...j , given that Si and Sj form

a base pair. Variable eh represents a hairpin loop, es represents a stack, VBI represents

an internal loop (or bulge), and W represents a multi loop, as shown in Figure 3.13.

The complexity is the same as for the Nussinov algorithm, namely the time complexity is

O(N3) and the space complexity is O(n2).

Although the Zuker algorithm is a very powerful framework for RNA secondary

structure predictions, it is still only an approximation of RNA folding, which involves

a more complicated processes and factors [Sch08].

The common tools in use for RNA secondary structure prediction are Vienna RNA

Web server [Hof03], RNAsoft [AAHCH03], pfold [KH03] and MFold [Zuk03].

3.4 High Performance Bioinformatics

The genetic sequence information in the National Center for Biotechnology Information

GenBank database has nearly doubled in size every eighteen months, with more than 146

million sequence records as of December 2011 [NCB11]. Performing sequence alignment

and homology searching at this large scale is thus becoming prohibitive. For example,

Venter et al. [VAM+01] mentions that the assembly of the human genome, from many

short segments of sequence data, required approximately 10,000 CPU hours.

Most of the tools currently being used in bioinformatics were not designed to deal with

such enormous data sets, but for very small databases of few decades ago. As a result,

the tools, which were adequate in past, are very slow and are incapable of a successful

analysis. In order to cope with this problem, high performance computing techniques have

been experimented for bioinformatic algorithms.

Many solutions have been presented during the last few years, involving a variety

of computational frameworks, e.g. grid computing [CCSV04, SRG03, YHK09], cloud

computing [QEB+09, MTF08, DTOG+10], SIMD based algorithmic rewriting [Edd11b],

and usage of hardware accelerators such as GPUs [MV08, VS11, WBKC09b], FP-

GAs [HMS+07, SKD06, DQ07] and ASIC [GJL97, LL85]. BIOWIC [SEQa], a workflow

for intensive bioinformatics computing, provides access to various acceleration platforms,

consisting of clusters, FPGAs and GPUs, through a single framework interface.

34 An Introduction to Bioinformatics Algorithms

3.5 Conclusion

The field of bioinformatics is going through a revolutionary phase. Advancements in

bioinformatics improve our understanding of the genes and of their function in diseases.

This helps to identify new potential directions in the pharmaceutical industry.

Although the field of bioinformatics is still in developing stage, its importance is

evident from the increasingly dependence of modern biology and other related fields on it.

Bioinformatics has shown the real potential to lead and play a major role in the future

biological research.

However, the traditional analysis tools in bioinformatics are unable to handle the

exponential growth in available digital biological data to be processed. This requires

an urgent attention from the parallel computing community to develop such platforms for

bioinformatics that are fast enough to process the enormous size of biological databases

in agreeable time and scalable enough to handle the constant expansion of datasets.

4
HLS Based Acceleration: From C

to Circuit

The performance requirements of compute intensive applications, such as bioinformatics

and image processing, have increased the demands on computation power. Many

acceleration platforms, such as grid computing, cloud computing, GPUs, ASICs and

FPGAs, are being actively used. In this research work, we focus on FPGA-based

acceleration that has been widely as dedicated accelerators, to satisfy the computation

requirements of such applications.

In this chapter, we discuss the characteristics of FPGA based acceleration in general

and show how FPGAs are well suited for bioinformatics applications. In section 4.3 we

support the idea of High-Level Synthesis based FPGA design, considering the fast and

error-free design flow in comparison with the traditional RTL-based design flow. Section

4.4 discusses in detail various steps involved in automatic generation of RTL design from

abstract specifications, such as a C program.

4.1 Reconfigurable Computing

Reconfigurable computing (RC) has received a lot of attention from the research

community, due to its potential to accelerate a wide variety of applications and its

ability to fill the gap between hardware and software designs. It is believed that

reconfigurable computing is able to achieve potentially much higher performance than

a software design by performing computations in hardware, while retaining much of

the flexibility of a software solution in comparison with rigid hardware designs such as

ASIC (Application Specific Integrated Circuits). Reconfigurable devices, including Field-

Programmable Gate Arrays (FPGAs), consist of an array of computational elements,

usually known as logic blocks. The functionality of these logic blocks is programmable

through programmable configuration bits. The routing resources that connects these logic

35

36 HLS Based Acceleration: From C to Circuit

blocks are also programmable. Thus the configurable logic blocks and routing resources,

combinedly perform the functionality of the mapped application.

The history of FPGA dates back to the 1970s with the commercial development of

programmable logic array (PLA) devices. The first commercially successful FPGA was

developed by Xilinx in 1985. Since then, FPGAs have increased considerably in their

logic capacity and clock speed. This in turn increased the trend of using FPGAs for high

performance computing applications.

FPGAs have been extensively used for ASIC prototyping, which contain fixed hardware

configurations and the implementation can not be altered or updated if a bug is found.

With their increasing logic density, FPGAs are now also a low-cost alternatives of

ASICs, for mapping complex applications. Similarly, with their reprogrammability

and massive parallel processing, FPGAs have emerged as a viable alternative for

microprocessors. Indeed, FPGAs have brought distinct domains of hardware and software

close together and emerged as a platform holding the advantages of both, ASICs and

microprocessors [MoH05].

A general comparison between FPGAs and other technologies (ASICs and general

purpose CPUs), shows that FPGAs lies as an intermediate option for different design

goals, such as speed, power, flexibility and cost.

Speed: FPGAs are inherently parallel and well suited to take advantage of fine grain

parallelism. They operate at very low clock frequency, compared to CPUs, but they can

perform sometimes tens of thousands of calculations per clock cycle and thus outperform

CPUs in speed. The increased logic capacity of FPGAs has also added the ability to

accommodate large complex algorithms, which wasn’t possible for first generation FPGAs.

In terms of speed, the flexibility of programmable logic always results in a slower

implementation and ASIC based design can easily outperform FPGA. It is acknowledge

that an ASIC is typically 3 to 10 times faster than an FPGA for the same level of

technology [KR07]. So, it can be concluded that generally FPGAs can provide better

speed than CPUs, but hardly perform better than ASICs.

Power: CPUs are operating at high clock frequencies (1.5-2GHz), which results in high

power dissipation levels. However, because FPGAs operate at low clock speed, they

consume very low “tens of watts” of power, while providing a better speed. However,

FPGAs can not perform better in power consumption, in comparison with ASICs. FPGAs

have been reported to consume 9-12 times more power than ASIC based design [KR07].

The main cause of this large disparity in power consumption is the increased capacitance

and the larger number of transistors that must be switched.

Cost: The initial design and production cost of an FPGA unit is much lower than for

an ASIC, since the non-recurring engineering (NRE) cost of an ASIC can reach millions

of dollars. NRE is the one-time cost corresponding to the design and test of a new chip.

4.1 – Reconfigurable Computing 37

Logic Blocks

Input/Output
Blocks

Programmable
Interconnects

(a)

cin

Lookup

table

(LUT)

Clock

enable

logic

Carry

logic

Load and

clear

logic
D Q

EN

To routing

fabric

To routing
fabric

cout

Data

inputs

Clock

inputs

(b)

Figure 4.1: (a) An island-style FPGA architecture. The logic blocks (LBs) implements
part of application functionality and interconnects connect different LBs to implement the
complete logic. (b) A simplified Altera Stratix logic element.

For lower production volumes, FPGAs can be more cost effective than an ASIC design.

However, high volume production of custom circuit units can lower cost per unit.

Flexibility: FPGAs are highly flexible due to the reconfigurable nature of the device,

contrary to ASIC where the functionality is fixed at the time of production. This is why

FPGAs have been extensively used to prototype ASIC design, in order to estimate the

performance and more importantly to fix bugs before tape-out. The reconfigurability of an

FPGA can also be utilized to run different versions of a hardware architecture for different

set of input data sets, as shown in section 7.3.5.

Comparison with multi-core: As the demand for computing resources increases,

central processing unit (CPU) development has relied on a combination of an increase in

clock speed and change in the micro architecture to improve instruction level parallelism.

However, there is a growing performance gap between the capabilities of the micro-

processor and the data transfer rate of memory. To fill this gap, techniques such as caching,

pipelining, out-of-order execution, and branch prediction have been pushed to their limits.

These microarchitectural changes have come at a cost, as running a system with extra

circuitry and at a higher frequency consumes more power and dissipates more heat. As a

result, CPU designers have moved toward multicore and many-core technologies to improve

performance while keeping thermal dissipation within manageable limits. Unfortunately,

multi-core architectures have not really addressed the memory bottleneck issue and have

introduced a completely new set of problems.

On the other end, FPGAs with reduced power consumption and heat dissipation,

38 HLS Based Acceleration: From C to Circuit

can provide parallel access to on chip memory banks and can address part of the memory

bottleneck issue in multi-core systems. Similarly a lot of applications, such as bioinformatic

applications for sequence matching do not require the full integer precision available on

modern CPUs, so exploiting this fact on FPGA may result in a better utilization of

available resources.

4.2 Accelerators for Biocomputing

Sequence homology detection (or sequence alignment) is a pervasive compute operation

carried out in almost all bioinformatic sequence analysis applications. However, performing

this operation at a large scale is becoming prohibitive due to the exponentially growing

sequence databases, doubling about every eighteen months [NCB11]. The bioinformatic

applications, e.g. Smith-Waterman (SW), Needleman-Wunsch (NW) and HMMER, are

very good candidates for hardware acceleration due to several reasons:

1. Fine-grain Parallelism: SW, NW and a simplified version of HMMER (without

feedback loop) provide very apparent and significant amount of opportunities for

acceleration through fine-grain parallelism, as anti-diagonal cells have no dependency

on each other and can be computed in parallel.

2. Coarse-grain Parallelism: In practice, SW and NW are often executed by

aligning a query sequence against a database. In such scenario, multiple pairwise

alignments can be done by performing several independent alignments of input

sequence against several sequences from the database in parallel. This coarse grained

level of parallelism achieves linear speedup. Similarly, HMMER aligns a database

of sequences against a profile and multiple sequences can be aligned in parallel on

FPGA.

3. Bit-width Optimization: A biological sequence is a set of characters, and on

FPGA a character can be represented, and subsequently operated, with reduced

number of bits (e.g. 5 bits are sufficient to represent 24 distinct characters in protein

sequences). This bit-level optimization enables huge acceleration of alignment

computations and permits implementation of more coarse grained nodes.

The above reasons show that these applications are very well suited for FPGA-based

acceleration. However, most of these algorithms were originally developed by biologists

as software applications, focusing entirely on the accuracy of the results, operating on

very small datasets. In order to accelerate these algorithms, a fair amount of efforts is

required to first make these algorithms amenable for parallel implementation, and then

to map them from software to hardware. A variety of hardware mapping techniques need

to be experimented to make sure an efficient utilization of the underlying architecture.

Traditionally, FPGA designers would develop a behavioral register transfer level (RTL)

description of the required circuit using a hardware description language (HDL), such as

4.3 – High Level Synthesis 39

VHDL or Verilog. So for, most of the acceleration efforts of bioinformatic applications has

been done at RTL level. Although the results have provided very good speedup, designing

at RTL level is laborious. Since the RTL designs are often architecture specific, it is

usually hard to retarget such designs. Additionally, at the HDL level, the designs become

larger and more complicated and it becomes more difficult to manage this complexity. Any

modification in such complex designs is error-prone and may force a very long verification

period. To meet these challenges, High Level Synthesis (HLS) tools have been developed

to make system-level design easier.

4.3 High Level Synthesis

Logic synthesis is the process of generating circuit implementations from elementary

circuit component’s descriptions. High-level Synthesis (HLS) refers to circuit synthesis

from algorithmic or behavioral description. The input behavioral description is usually a

program written in a high level language (HLL), e.g. C, MATLAB, SystemC or any other

imperative language. The generated circuit, as output, is an RTL design consisting of a

data path and a control unit in HDL.

4.3.1 Advantages of HLS over RTL coding

As mentioned by Michael Fingeroff [Fin10] about RTL, “We are still trying to develop

4G broadband modems with CAD tools whose principles date back from mid-90s, when

GSM was a focus of research, or trying to design H264 decoders with languages used to

design VGA controllers”. The steadily growing design sizes and increasing complexity

of applications, amplifies reasons to design with HLS. Here, we discuss a few important

motives to adopt HLS over RTL.

High productivity: Design abstraction is generally helpful for the designer in order to

control the design complexity and to improve the design productivity. A study from NEC

[Wak04] shows that a 1M-gate design typically requires about 300K lines of RTL coding,

in comparison with about 40K lines of code in a high-level design specification language.

This means the productivity per line of code for behavioral description is about 7.5× thats

of RTL coding.

Verification Efforts: With increasing application complexity, the designer’s tool should

also evolve. Designing modern applications through RTL will eventually trigger bugs and

problems will arise during the verification phase. In such a scenario, HLS addresses the

root cause of this problem by enabling abstract description of design as an input and

providing an error free path from functional specification to RTL. This simplifies the

design verification phase.

40 HLS Based Acceleration: From C to Circuit

IP reuse: The RTL designs are targeted to a specific technology and retargeting is

usually done by compromising power, performance and area. Even small changes to

existing RTL IP to create a derivative can be a tedious job and a complete rewrite might

be required for considerable performance [Fin10]. On the other hand, with high-level

specification, the design sources become truly generic. The functional specifications in

HLS can be easily targeted to available technologies and similarly new functionalities in

the existing IP can be added and verified at abstract level.

Architecture Exploration: High-level synthesis tools can provide a quick feedback of

performance, area and power for the design, which allow designers to explore different

available architectures to finally pick the best one. As estimations are being done at

an abstract level, designer can explore different design partitioning opportunities, i.e.

with a very low effort, compared to RTL design, designers can explore which parts of

the application should be accelerated on hardware and which parts are better suited

for a software implementation. High-level synthesis allows the designer to experiment

a variety code transformations, individually or usually a combination, to observe their

effectiveness on circuit performance criteria. The code transformations range from bit-

level to instruction and loop-level transformation (discussed in detail in next chapter).

Instruction-level transformations: Beside simple algebraic transformations, such

as constant folding, constant propagation and common subexpression elimination, High-

Level Synthesis tools perform transformations such as operator strength reduction and

tree-height reduction. In the operator strength reduction transformation some operations

are replaced with a sequence of less expensive operations in order to reduce the area

cost and operation delay. Similarly, height reduction rearranges the order of arithmetic

operations by exploiting their commutative, associative and distributive properties. Tree-

height reduction (THR) organizes the operations in the form of a tree to reduce the latency

of the resulting hardware. In the best case, THR reduces the height from O(n) to O(log n)

where n represents the number of computations in the expression [CD08].

Loop-level transformations : Generally, the most time consuming parts of a

program are within loops. The goal of loop transformations is to enable parallel execution,

improve data-reuse and data locality to help improving the memory hierarchy, or help

the compiler implementing software pipelining. High-level synthesis provides the ability

to quickly observe the impact of loop transformations on the resulting hardware design

implementation.

4.4 – HLS Design Steps 41

4.4 HLS Design Steps

4.4.1 Compilation

The compilation stage transforms the input code to a formal intermediate representation.

During this stage, the compiler validates the syntax of the input program, applies

syntactic and code transformations e.g. function inlining, dead-code elimination, false

data dependency elimination, constant folding & loop transformations [CGMT09] and

then transforms the input program into an intermediate representation. The optimizations

can be architecture-independent transformations (e.g. elimination of redundant memory

accesses) and architecture-dependent transformations (e.g. array data partitioning). The

most popular intermediate representations for high-level synthesis are Data flow graphs

(DFGs) and control-data flow graphs (CDFGs). However, some HLS tools use additional

representations, e.g. SPARK [GGDN04] uses Hierarchical Task Graphs (HTGs) [GP92].

4.4.2 Operation Scheduling

Operation scheduling is one of the most important task in high level synthesis. By

scheduling operations in a design, the speed/area tradeoffs can be met, hence an

inappropriate scheduling can prevent from exploiting the full potential of the system.

The input to a scheduler is a data flow graph (DFG) or control data flow graph(CDFG).

Operation scheduling techniques can be classified in to two categories, namely resource

constrained and time constrained. Given a DFG, a clock speed constraint, a total number

of available resources and their associated delays, a resource constrained schedule tries to

minimize the number of clock cycles needed to execute the set of operations in DFG.

Conversely, a scheduler with timing constraint attempts to minimize the number of

resources needed for a given number of clock cycles.

ASAP & ALAP: The simplest scheduling task consist in trying to minimize the latency

in the presence of unlimited computing resources. In this scenario, an operation will be

scheduled as soon as all of its predecessors have completed, which gives it the name As

Soon As Possible. ASAP schedule provides the lower bound of the overall application

latency.

For a given latency, As Late As Possible scheduling tries to schedule an operation at

the latest possible time step. The result of such a scheduling provides the upper bound

for the starting time of each operation.

The schedules derived from ASAP and ALAP combinedly provide the scheduling range

for each operation. Such scheduling range is often used as an initial exploration step,

in more advanced scheduling methods [WGK08]. For instance, Hwang et. al. [HLH91]

and Lee et. al. [LHL89] restrict the search space for the schedule of each operation

using both ASAP and ALAP scheduling and use ILP to minimize the resource cost. In

Figure 4.2, ASAP and ALAP schedules define the earliest and latest scheduling steps for

each operation, also known as mobility of an operation. For instance, operation 5 can be

42 HLS Based Acceleration: From C to Circuit

1 2 5 8

3 6 9

4

7

1 2

5

8

3

6

9

4

7

Step 1

Step 2

Step 3

Step 4

Step 1

Step 2

Step 3

Step 4

10

11

10

11

x x x x

x x +

-

-

+

<

Step 1

Step 2

Step 3

Step 4

1 2

3 6

4

85

7

11

10

9

x x x

x

x x

+

-

-

+

<

Step 1

Step 2

Step 3

Step 4

1 2

3 6

4 8

5

7 11

10

9

(a) ASAP Scheduling

1 2 5 8

3 6 9

4

7

1 2

5

8

3

6

9

4

7

Step 1

Step 2

Step 3

Step 4

Step 1

Step 2

Step 3

Step 4

10

11

10

11

x x x x

x x +

-

-

+

<

Step 1

Step 2

Step 3

Step 4

1 2

3 6

4

85

7

11

10

9

x x

x

x

x

x

+

-

-

+

<

Step 1

Step 2

Step 3

Step 4

1 2

3

64 8

5

7 11

10

9

(b) ALAP Scheduling

Figure 4.2: An illustration of ASAP and ALAP scheduling. [example borrowed from
[PK87]]

scheduled at step 1 to step 2 and operation 8 & 10 can be scheduled between step 1 to 3,

and thus limit the scheduling search space for the following ILP. In list-based scheduling,

the mobility information is also used as a priority function for operation scheduling [Gaj92].

List-Based Scheduling: List scheduling is one of the most popular scheduling method

for resource constraint scheduling. At each time step, the list scheduling selects and

schedules operations from a list of ready operations, based on the priority, as far as

resources are available. A ready operation is the one whose all predecessors are scheduled

at previous time steps. A ready operation which isn’t scheduled due to low priority and

resource constraint will be deferred to later time steps. A new scheduled operation may

result in changing some other non-ready operations into the ready state and these should

be added in the priority list. In absence of resource constraints, list scheduling will generate

an ASAP schedule.

Step 1

Step 2

Step 3

Step 4

X XX

+ +

X

X

X

+

+

A B C

D E

A B

C

D

E

Step 1

Step 2

Step 3

Step 4

X X

X+

+

A

B

C

D

E

(a) DFG

Step 1

Step 2

Step 3

Step 4

X XX

+ +

X

X

X

+

+

A B C

D E

A B

C

D

E

Step 1

Step 2

Step 3

Step 4

X X

X+

+

A

B

C

D

E

(b) List scheduling with mo-
bility

Step 1

Step 2

Step 3

Step 4

X XX

+ +

X

X

X

+

+

A B C

D E

A B

C

D

E

Step 1

Step 2

Step 3

Step 4

X X

X+

+

A

B

C

D

E

(c) List scheduling by [SD02]

Figure 4.3: List Scheduling with different priority functions, with 2 multipliers and 1
adder.

The priority list is sorted according to a priority function, thus the quality of list-

based schedule largely depends on its priority function. A common priority function can

4.4 – HLS Design Steps 43

be the mobility of an operation, i.e. lower mobility causes a higher priority. However, a

scheduler based only on mobility will have no further decision information for operations

with equal priority and incorrect ordering may generate a sub-optimal schedule. Sllame

and Drabek [SD02] use mobility as the main priority function and then for those operations

that have equal priority value the scheduler selects the operations that belong to the same

path, using tree-id information collected at a preprocessing phase. Figure 4.3 shows a

comparison of both priority functions, where a time step has been saved by giving priority

to C, over B, as it belongs to the same path as A. Similarly, Beidas et al. [BMZ11]

performed register pressure aware list scheduling. In order to reduce the total number of

required registers, they try to minimize the live range cut, i.e. the number of live values

after each time step. The live range values are captured through an extended data flow

graph and the scheduler tries to minimize the sum of the lengths of live range edges in the

DFG. SPARK [GGDN04] uses a priority-based global list scheduling, where the priority

function tries to minimize the longest delay within the design. The priorities are assigned

to each operation based on their distance from the primary outputs of the design. Hence,

the output operations carry a priority of zero and operations whose results are read by

output operations have a priority of one and so on.

ILP: Integer Linear Programming (ILP) expresses the scheduling problem through a

mathematical description and tries to solve the problem by minimizing or maximizing

an objective cost function (e.g. resource or time). For a time constrained schedule, a

formulation can be derived as:

min

{
m∑
k=1

Ctk ∗Mtk

}
(4.1)

subject to

Li∑
j=Ei

xi,j = 1 for 1 ≤ i ≤ n (4.2)

Where Mtk is number of resources of type tk and Ctk is the associated cost of the

resource unit. The variable xi,j will be 1 only if operation oi is scheduled at step j else it

will be 0, and j is bounded by Ei ≤ j ≤ Li, where Ei and Li are the earliest and latest

scheduling time steps for operation oi derived from ASAP and ALAP schedules [LHL89].

In order to limit the number of resources to Mtk, at each time step, an additional constraint

will be:

n∑
i=1

xi,j ≤Mtk (4.3)

The data and control dependencies between two operation oi and ok, i.e. oi → ok, can

44 HLS Based Acceleration: From C to Circuit

be enforced by:

Li∑
j=Ei

(j ∗ xi,j)−
Lk∑

j=Ek

(j ∗ xk,j) ≤ −1 (4.4)

The above set of equations defines the scheduling problem and minimizing the

Equation 4.1 will lead to the optimal schedule for the given problem. However, the

complexity of ILP formulation increases exponentially with the number of time steps,

i.e. a unit increase in time step will lead to n additional x variables. This factor rapidly

increases the algorithm execution time and limits the applicability of ILP only to very

small examples [WGK08].

Force-directed scheduling: The force-directed scheduling (FDS) [PK89] is a popular

heuristic for time constraint scheduling. The goal is to reduce the total number of

functional units by distributing similar operations into all available time steps. The

uniform distribution of resources leads to high utilization and low idle time for each

resource. The algorithm is iterative, scheduling one operation at each iteration by

balancing the distribution of operations within each time step.

Similar to ILP and list-based scheduling, FDS relies on ASAP and ALAP to determine

the time frame of each operation. The time frame is the probability of scheduling an

operation in a time step. An operation has a uniform probability of being scheduled into

any time step within the mobility period and zero outside this period. This probability

will be 1/(Li − Ei + 1), where Li and Ei are the latest and earliest possible time step for

operation oi respectively, e.g. in Figure 4.2 operation 8 has the probability of 1/3 for time

step 1 to 3 and 0 for step 4.

The next step is to construct the distribution graph by taking the summation of the

probabilities of each type of operations for each time step. The distribution graph DG of

operation type tk for step i can be expressed as:

DG(i) =
∑
tk

Prob(opn, i) (4.5)

For the example previously discussed in Figure 4.2, Figure 4.4 shows the time frame for

each operation and the DG for the multiplication operation. The DG provides an expected

operator cost, i.e. the maximum of DG over all i steps. For example, the operator cost

for above example is 2.83 × Costmul. The FDS algorithm attempts to minimize this cost

by distributing the probability over all possible states. The algorithm computes the force

or impact of scheduling an operation in one of the possible time steps j as:

F (j) =

Li∑
i=Ei

DG(i) ∗ x(i) where Ei ≤ j ≤ Li (4.6)

4.4 – HLS Design Steps 45

x x x x

x x +

-

-

+

<

Step 1

Step 2

Step 3

Step 4

1 2

3 6

4

85

7

11

10

9

Step 1

Step 2

Step 3

Step 4

2.83

2.33

0.83

0.00

(a) The dotted arrows shows the mobility of
an operation

x x x x

x x +

-

-

+

<

Step 1

Step 2

Step 3

Step 4

1 2

3 6

4

85

7

11

10

9

Step 1

Step 2

Step 3

Step 4

2.83

2.33

0.83

0.00

(b) The bar graph shows the probability
of multiplication operation scheduling for
a time step

Figure 4.4: Distribution graphs for multiplication operation

Where x(i) corresponds to a change in the probability by scheduling the operation at

step i, e.g. scheduling operation 5 at step 1 will result in x(1) = 0.5 and x(2) = −0.5.

A positive F (j) corresponds to an increase in operation concurrency and negative for a

decrease, hence for efficient sharing of functional units across all states, a negative F (j) is

desired. For instance, scheduling operation 5 at step 1 results F (1) = 0.25 due to higher

probability at step 1 in the DG, while scheduling at step 2 will result in F (2) = −0.75,

which is more effective. FDS schedules an operation based on already computed partial

schedule and force associated to the current operation and iterates until all operations are

scheduled.

Constraint based scheduling: Constraint Programming (CP) is increasingly being

used as a problem-solving tool to solve scheduling problems due to its ability to define

precisely the problem in the form of constraints, finding the solution domain and

enabling the selection of an optimal solution based on a variety of algorithms [BPN01].

Kuchcinski [Kuc03] used CP over finite domains for scheduling and resource assignment in

high-level designs. The prototype constraint solver JaCoP consists of a constraint solver

that can find different optimal and suboptimal solutions and optimization algorithms.

According to Kuchcinski, a constraint satisfaction problem (CSP) can be defined as a

3-tuple function S = (V,D, C), where V is a finite set of variables (FDVs), D is a finite set

of domains (FD) for each FDV, and C is a set of constraints defining the range of values

that can be assigned for each variable. Here, we recall some scheduling function defined

by Kuchcinski [Kuc03], in order to show how constraint based scheduling can be useful.

For instance, scheduling problem can then be formulated for a partial ordered task graph,

by defining FDVs of starting time T , delay D and assigned resource R for each task. The

precedence relation can be modeled by inequality constraints:

for each(i, j) ∈ Dependencies

impose Ti +Di ≤ Tj (4.7)

46 HLS Based Acceleration: From C to Circuit

For instance, in Figure 4.2 the precedence relations can be written as:

T1 + 1 ≤ T3 T2 + 1 ≤ T3 T5 + 1 ≤ T6 T8 + 1 ≤ T9 (4.8)

T10 + 1 ≤ T11 T3 + 1 ≤ T4 T4 + 1 ≤ T7 T6 + 1 ≤ T7 (4.9)

Similarly, a resource sharing constraint can be imposed for tasks whose execution do

not overlap. The following constraint will ensure that a resource is not being shared

simultaneously:

for each (i, j) where i 6= j

impose Ti +Di ≤ Tj ∨ Tj +Dj ≤ Ti ∨ Ri 6= Rj (4.10)

In order to implement the resource constraint, the cumulative constraint can be used to

express the limit on available resources at any time instance. For the following constraint,

ARi is the amount of required resources by each task and Limit is the amount of available

resources.

cumulative([T1, · · · , Tn], [D1, · · · , Dn], [AR1, · · · , ARn],Limit) (4.11)

Furthermore, we can find an optimal solution from the available solution domain by

defining a design goal in terms of a cost function. A cost function can be the schedule

length, or the number of resources or power consumption. For example, the schedule

length can be defined with the maximum constraint.

for each i

impose Ei = Ti +Di

impose maximum(EndTime, [E1, · · · , En]) (4.12)

By minimizing the variable EndTime, the shortest schedule can be found. The above

examples show the capability of constraint based schedulers to precisely define the design

dependencies, the design constraints and the cost functions for the design goals. The

complex scheduling constraints for pipelining and chaining operations can be also be

specified.

Pipelining: Pipelining [Lam88] is one of the most effective techniques used to improve

the design throughput, when a set of instructions being executed iteratively and not

much parallelism is available to execute instructions in parallel. Most of the scheduling

techniques, discussed above, can generate schedules for pipelined data flow graphs. Loop

pipelining provides a way to increase the throughput of a circuit defined by loop by

initiating the following iteration of the loop before the current iteration has completed.

The overlapped execution of subsequent iterations takes advantage of the parallelism

across loop iterations. The amount of overlap is mentioned as the Intiation Interval.

4.4 – HLS Design Steps 47

Computation
Block A

Computation
Block B

Computation
Block C

Computation
Block A

Computation
Block B

Computation
Block C

A B C

A A A
B B B

C C C

Cycles

A A A
B B B

C C C

Cycles

(a) An un pipelined loop. Each loop iteration starts after the completion of
previous iteration. It can be noted that only one computation block is active
at any clock cycle.

Computation
Block A

Computation
Block B

Computation
Block C

Computation
Block A

Computation
Block B

Computation
Block C

A B C

A A A
B B B

C C C

Cycles

A A A
B B B

C C C

Cycles

(b) The pipelined architectural view of the loop. The loop iterations are
completely overlapped and II=1. The Computation blocks are now separated
with storage resources and all computation blocks are now active at each
clock cycle, operating on different loop iterations.

Figure 4.5: Loop pipelining impact on resulting architecture, for a loop body with 3
computation blocks or instructions.

Loop pipelining goes through three phases: prolog, when new iterations are entering

the pipeline and no iteration is completed yet, kernel, when the pipeline is in steady

state, i.e. new iterations are entering while previous iterations are being completed, and

epilog, when the pipeline is being flushed and no new iteration is being started. Maximum

instruction-level parallelism is obtained during the kernel phase, hence pipelining is most

beneficial when most of the execution time is spent in the kernel phase. The Intiation

Interval is the number of cycles it takes before starting the next iteration, thus an II=1

means a new iteration is started every clock cycle, as shown in Figure 4.5. The demand for

computation resources will increase in accordance to the number of overlapping operators

and the increase in storage resources will grow with the number of stages in the pipeline.

4.4.3 Allocation & Binding

Allocation defines the type and number of resources needed to satisfy the design

constraints. The resources include computational, storage and connectivity components.

These components are selected from the RTL component library. The RTL library also

includes the characteristics (e.g. area, delay and power) of each component, which are

used to construct an early estimation of total area and cost of the design.

The Binding stage involves the mapping of the variables and operations in the

scheduled CDFG into function, storage and connectivity units. Every operation needs

to be bound to a functional unit that can execute the operation. If a variable is used

48 HLS Based Acceleration: From C to Circuit

across several time steps, a storage unit also needs to be bound to hold the data values

during the variable lifetime. Finally, a set of connectivity components are required for

every data transfer in the schedule.

Scheduling, allocation and binding phases are deeply interrelated and decisions made in

one phase impose constraints on the following phases. For instance, if a scheduler decides

for a concurrent execution of two operations, then the binding phase will be constrained to

allocate separate resources for these operations. Many research works perform the three

tasks simultaneously [KAH97, CFH+05, LMD94] and others usually take the scheduled

DFG as an input for the allocation and binding phase [RJDL92, SDLS11].

The allocation and binding steps are usually also formulated as an optimization

problem, where the main goal is to minimize the number of resources (or the overall

resource cost) while fulfilling the area/performance constraints.

ILP: Rim et al. and Landwehr et al. used ILP based formulation to achieve optimal

allocation and binding solution [RJDL92, LMD94]. The binding problem can be defined

with following constraints:

Res∑
j=1

Bi,j = 1 for 1 ≤ i ≤ Ops (4.13)

Ops∑
i=1

Bi,j .Si,k ≤ 1 for 1 ≤ j ≤ Res; 1 ≤ k ≤ Time (4.14)

The first constraint ensures that an operation can only be assigned to one resource, while

the second constraint impose that at most one operation can be scheduled on a resource

during any time step. The ILP-based problem definition can be extended in many ways

to include other complex parameters. For instance, in order to reduce the wiring area, the

following constraint can be minimized [RJDL92]:

Res∑
j1=1

Res∑
j2=1

Costj1,j2Transferj1,j2 (4.15)

Where Transferj1,j2 ∈ {0, 1} will be 1, if there is a value transfer from resource j1 to j2

and Costj1,j2 is the associated cost of connecting those resources.

Compatibility Graphs: Allocation and binding can be defined as graph problem as

finding cliques in a compatibility graph. A compatibility graph is used to express the

resource sharing. Two operations are compatible if they can be executed on same resource

and belong to different time steps in the schedule. A compatible graph can be defined

as graph G(V,E) where set V represents operations and E is a set of edges representing

compatibility among operations.

To solve the binding problem, using a compatibility graph, we have to find a maximal

set of compatible operations by formulating a maximal clique partitioning problem, where

4.4 – HLS Design Steps 49

(a) (b) (c) (d)

Figure 4.6: Binding Example: (a) Scheduled DFG, (b) Binding results from
WBM [HCLH90], (c) Binding results from CPB [KL07], (d) Binding results from [DSLS10].
[Example borrowed from [DSLS10]]

a clique is defined as a subgraph where all nodes are connected to each other. A clique

is then said to be maximal if it is not contained by any other clique. An early work on

clique partitioning is presented by Tseng et al. [TS86].

More recent results [KL07, DSLS10, SDLS11] on binding algorithms adopt a modified

form of compatibility graphs, i.e. Weighted and ordered compatibility graph (WOCG),

where an edge u
wuv−−→ v represents that operations u and v are compatible and u is

scheduled earlier than v. The weight wuv represents the strength of the compatibility.

Kim and Liu [KL07] try to reduce the interconnect cost by the reduction of multiplexer

inputs. In their work, wuv represents the flow dependency between u and v and how many

common inputs the two operations have. This leads to schedule operations holding a

dependency or common inputs on same functional unit. The weight is calculated as:

Wuv = αFuv +Nuv + 1 (4.16)

The Fuv is a boolean variable which indicates if there is a flow dependency between

u and v. Nuv is the number of common inputs of the vertices. The coefficient α is used

to tune the binding criteria. After generating WOCGs for all FU types, they iteratively

search for the longest path in the WOCG, remove operations and associated edges from

the graph and finally bind operations inside the path to single FU. Figure 4.6c and 4.7c

show the binding results of their algorithm and a comparison with the results of other

algorithms.

Dhawan et al. extended this work with a modification in the operation compatibility

criteria [DSLS10]. The modified weight function is given as:

Wuv = αFuv + βNuv + γRuv + 1 (4.17)

Where Fuv and Nuv has similar definitions, as above. Ruv is a boolean variable that

represents the possibility of operation u and v to store their output variable in the same

register. R will be 1, if output variable lifetime do not overlap, else it is 0. Figure 4.6d

shows the binding results of this algorithm and compare the difference it made with CPB

results.

50 HLS Based Acceleration: From C to Circuit

The longest path-based approach proposed by Kim et al. and Dhawan et al. [KL07,

DSLS10] reduces the MUX input count, but can result in a design with a few FUs suffering

from a large MUX input count. Sinha et al. [SDLS11] proposed an algorithm to divide

the number of operations equally among the FUs. This may results in an increase in

number of MUXes, but due to a smaller MUX input count, a better critical path delay

can be achieved. They used weight relation similar to [DSLS10] but instead of following

a path-based approach, they formulated an upper bound for the number of operations

for each FU. The upper bound is based on maximum possible delay of FU+MUX, when

operations are equally distributed among the available FUs. Figure 4.7 shows a comparison

of binding results with existing techniques, discussed earlier. The longest path search binds

the last add operation to the left sided FU, which results a MUX with 4 inputs, shown

in Figure 4.7c. However, shifting this operation to right sided FU reduces the maximum

MUX input count to 3, shown in Figure 4.7d.

(a) (b) (c) (d)

Figure 4.7: Binding Example from [SDLS11]: (a) Scheduled DFG, (b) Binding results
from WBM [HCLH90], (c) Binding results from CPB and ECPB [KL07, DSLS10], (d)
Binding results from [SDLS11]. [Example borrowed from [SDLS11]]

4.4.4 Generation

During the RTL generation step, the decisions made by previous steps such as scheduling,

allocation and binding, are applied in a synthesizeable RTL model. A finite state

machine (FSM) implements the scheduling decision and controls which operations are to be

executed in which state. The RTL design inside each state can be generated with different

levels of binding details. For example, Figure 4.8 shows different types of generated RTL

code for an addition operation in state n of the FSM. Binding details can be completely

omitted, or partially assigned such as mentioning the storage location of each variable,

or completely assigned such as binding variables to storage locations and operations to

specific operators. The binding tasks that are not performed in generated design, are

performed in logic synthesis step that follows HLS.

4.5 High Level Synthesis Tools: An Overview

This section will discuss briefly some state of the art HLS tools available on the market,

both from commercial and academic ends.

4.5 – High Level Synthesis Tools: An Overview 51

-- Without any binding:

state(n): a = b + c;

goto state(n+1);

-- With storage binding:

-- RF represents a storage location

state(n): RF(1) = RF(2) + RF(3);

goto state(n+1);

-- With storage and FU binding:

-- RF represents a storage location and ALU is a functional unit

state(n): RF(1) = ALU1(+, RF(2), RF(3));

goto state(n+1);

Figure 4.8: RTL description written with different binding details. [example borrowed
from [CGMT09]]

4.5.1 Impulse C

Impulse C from Impulse Accelerated [HLSa] uses extended version of standard ANSI

C language and is based on communication sequential processes (CSP) programming

model. An Impulse C program consists of processes and streams, where processes are

concurrently operating segments of the application, and data flows from process to

process through streams, constructed with FIFOs. A distinct configuration function

instantiates instances of all processes and connects them together. Impulse C provides

predefined unsigned and signed integer data types for bit widths ranging from 1 to 64.

However, the compiler doesn’t include any bit-width analysis (discussed in the following

chapter) for resource optimizations. Besides ANSI C functions, Impulse C permit to

embed custom hardware functions written in HDL languages. Impulse C also provides

Platform Support Packages (PSPs) for various target platforms to simplify the creation

of mixed software/hardware applications, by providing the necessary hardware/software

interfaces for both the hardware (FPGA) and software (microprocessor) elements of the

platform [PT05]. Impulse C provides pragmas for loop unrolling and pipelining. The

limitations involved in Impulse C based hardware design, are:

− Unrolling: Loop unrolling is limited to only for loop with a constant bound.

− Pipelining: pipelining can only be performed to inner-most loop in a loop nest.

This can lead to inefficient solutions in cases where there are dependencies that

cross multiple iterations at the innermost loop, or if the innermost loop has few

iterations. In the latter case, the pipeline will be mainly in a prolog or an epilog

stage throughout the execution time.

− Partial unrolling: Partial unrolling and subsequently memory partitioning is not

supported, which are one of the most important transformations to exhibit adequate

52 HLS Based Acceleration: From C to Circuit

parallelism, when a complete unroll is not possible due to resource constraints or

non-constant loop bounds.

− Array Configuration: Impulse C does not support an automatic configuration

of local array variables, i.e. an array being accessed twice per cycle will not be

automatically configured as dual-port. The designer is suppose to manually configure

each array variable with an array configuration function.

− Non Recursive Memory Access: When an array is accessed, multiple times, in

a pipeline, non-recursively e.g.:

for(i=8;i>0;i--){

A[i+1]=A[i];

}

The Impulse C compiler conservatively assumes false dependencies between the array

accesses and will not allow parallel read & write operations on a same memory

bank, hence will increase the Iteration Interval of the pipeline. In order to suppress

these dependencies, the designer needs to specifically describe that there will be no

aliasing of memory accesses, i.e. two addresses that are only known at runtime

will not refer to same memory location. Impulse C allows to specify the non-

recursive accesses of such memories with the help of a #pragma, e.g. #pragma CO

NONRECURSIVE A will allow parallel access to array A. However, if designer specify a

memory non-recursive erroneously, the data inside pipeline will be corrupted without

any compiler’s warning.

− Loop Transformations: most of the loop transformations discussed in following

chapter have to be implemented manually.

4.5.2 Catapult C

Catapult C developed by Mentor Graphics [HLSb] is one of the most prominent tool in

the market and leading market by holding 50% market share in HLS market [HLS09a]. It

supports both ANSI C++ and SystemC. Catapult C uses Mentor Graphics Algorithmic C

bit accurate data types and it also try to optimize the bit width of variables with bit width

defined more than required. Catapult C supports full and partial loop unrolling for all kind

of loops, i.e. the inner-most loop or a loop containing a nested loop and partial unrolling

for parametrized bounded loops. Similarly, pipelining is not restricted to only inner-most

loop, as compared with Impulse C. Loop merging can be also be carried out automatically,

if allowed by the designer. Partial loop unrolling combined with memory partitioning (in

both block and interleaved manner) can be useful to express parallelism in a scenario

where resources are limited or a full unroll is not desired. The designer can derive several

solutions for the same input design and Catapult C encourages the designer to iteratively

improve the generated design, tuning up different design constraints. However, one of the

4.5 – High Level Synthesis Tools: An Overview 53

limitation observed is that Catapult C takes a lot of time for scheduling very large designs,

which hinders the design refinement if performed in an iterative manner.

In terms of loop pipelining, the data dependency analysis in Catapult C is to some

extent very conservative, enforcing false memory access dependencies and thus generating a

pipeline with low throughput. On the other hand, Catapult C allows nested loop pipelining

with unknown loop bounds, but it may generate false schedule, and subsequently corrupt

design, problem highlighted by Morvan et al. [MDQ11]. For example, for a loop nest with

loop bounds unknown at compile time, e.g.:

for(i=0;i<M;i++){

for(j=0;j<N;j++){

S[i][j]= func(S[i-1][j]);

}

}

The Catapult C allows to pipeline the complete loop nest with initiation interval of

1. However, for situation where pipeline latency ∆ is greater than the inner loop count

N, if computation S[i-1][j] starts at time t, it will be available at t + ∆. While the

computation of S[i][j] will read this value at t + N , where t + N < t + ∆, hence will

read the incorrect value. The Catapult C does not generate any guard for such situation,

thus may generate a fallacious hardware design.

4.5.3 MMAlpha

MMAlpha is an academic HLS tool developed at IRISA, Rennes. It is aimed at

compiling parallel circuits from high level specifications. MMAlpha generates systolic like

architectures that are well suited regular computations in signal processing applications.

It manipulates and transforms Alpha programs. Alpha is a functional language developed

for the synthesis of regular architectures from recurrence equations [LVMQ91]. The

transformations implemented in MMAlpha are based on research work on automatic

synthesis of systolic arrays by Quinton and Robert [QR91]. Figure 4.9 shows the

design flow with MMAlpha. A computation intensive part of original program (usually

nested loops) is translated into Alpha program (either manually or using automatic

translators), which serves as input to MMAlpha. The initial specification is translated

into an internal representation in the form of recurrence equations. Analysis based on

polyhedral model is used to check properties of input equations, translated from original

loop nests. The translation into Polyhedral model can be helpful to perform most of

the loop transformations, discussed in next chapter, to expose parallelism. MMAlpha

generates a hardware description at the Register Transfer Level along with a C code to

interface with the rest of software program. Scheduling is performed by solving an integer

linear problem using parametrized integer programming [DRQR08]. MMAlpha also allows

automatic derivation of a HDL test-bench for simulation and test purpose [GQRM00].

54 HLS Based Acceleration: From C to Circuit

Scheduling/ Mapping

HDL derivation

Uniformization

M
M

A
lp

ha Hard

FPGA

AlphaC
VHDL

Hard/Soft

C
Soft

C

Host

Bus
for j=1,N

endfor

Figure 4.9: Design flow with MMAlpha: Square shaded boxes represent programs of
various languages, and round boxes represent transformations. [Courtesy [DR00]]

4.5.4 C2H

C2H [HLS09b] by Altera Corporation is integrated in the development flow of NIOS II

embedded software development (EDS) tools. C2H enables creation of a custom hardware

accelerator (described as a ANSI-C function) that communicate with the NIOS II processor

and other modules through Avalon system interconnect fabric and FIFOs. C2H performs

somehow direct syntactic translation to hardware and lacks most of the automatic code

optimizations. For example, a scalar variable is mapped to a register and an array to

a local memory with no memory reorganization. The arithmetic and logical operations

are mapped to hardware without resource sharing. Similarly, a very long expression is

performed by chaining these resources and C2H does not cut such paths into smaller

paths, with intermediate storage. C2H offer loop pipelining that is not limited to only

innermost loop, but can also be applied to nested loops. A more detailed review can be

found in thesis work of Alexandru Plesco [Ple10].

4.6 Conclusion

In the last decade, FPGAs have greatly prospered in their power of computation, with

more computational resources operating at higher speed. This emerged the trend of using

FPGAs for high performance computing. Bioinformatics applications are viable for FPGA

based acceleration, since they can benefit from fine & coarse grain parallelism on FPGAs.

Similarly, bioinformatics applications usually require low bit-width representation, and an

FPGA based implementation of such application can benefit from bit-width optimizations.

Bit-level optimizations may help to reduce the required resources for a design and may

increase the clock speed. Similarly, the reduced resource requirement may help to increase

coarse-grain parallelism.

However, the traditional hardware development languages (HDLs) are not efficient

for designing large and complex circuit designs of today. HDL based implementations

are time consuming, architecture specific and highly error-prone, and finally a laborious

verification phase becomes the bottle-neck in the design cycle. High-Level Synthesis tools

address these limitations by automating this manual and error-prone design path. The

designer provides the abstract design specification and the tool can generate the error-free

4.6 – Conclusion 55

HDL design automatically. Since the design specification are abstract and truly generic,

it can be easily re-targeted to a different platform and any changes to an existing design

are easily manageable. The design description at abstract level can lead to many possible

hardware implementations. In next chapter we show how different code transformations

can help to generate an efficient hardware design.

56 HLS Based Acceleration: From C to Circuit

5
Efficient Hardware Generation

with HLS

The third generation of HLS tools has achieved a reasonable success in comparison with

previous generations. One of the several reasons for this success is that tools can take

advantage of research into compiler based optimizations rather than relying solely on

HDL-driven improvements. Another strong reason is the rise of FPGAs in the same

time period [MS09]. High level synthesis targeting FPGA quickly maps an algorithm to

hardware and helps enormously to reduce the time-to-market.

Although the current HLS tools deliver a reliable quality of synthesis results, the

outcome largely depends on the input functional description. The input language used by

most of HLS tools is a variant of the C language. An important point here is that C is

not being used as a programming language, but as a sort of circuit description language.

For an efficient hardware generation, the designer needs to understand how an abstract

description will be translated into hardware. Here, by efficient hardware generation, we

mean an effort to maximize parallelism using minimum resources. As a correct functional

description doesn’t guarantee an optimal hardware to be found, the designer needs to keep

in mind the target hardware.

This chapter will cover most common code transformations, which might help a

designer to improve the quality of the synthesis results.

5.1 Bit-Level Transformations

In order to be consistent with RTL data types, many HLS tools provide predefined bit-

accurate data types instead of standard HLL data types. In this section we discuss some

common bit-level transformations.

57

58 Efficient Hardware Generation with HLS

for(int i=0;i<=31;i++){

...

}

(a) Standard data type

for(unsigned_int<5> i=0;i<=31;i++){

...

}

(b) Bit-accurate data type

Figure 5.1: Bit-width Narrowing example

.

a1= input()

a1<0

a2 = a1: (a1<0)
a3 = a2+1

a4 = a1: (a1≥0)

a5 = (a3,a4)
b = array[a5]

true false

↓a1:<INTmin,INTmax>

↓a2:<INTmin,-1>

↓a3:<INTmin+1,0>

↓a4:<0,INTmax>

↓a5:<INTmin+1,INTmax>

↑a5:<0,9>

↑a3:<0,0>

↑a2:<-1,-1> ↑a4:<0,9>

↑a1:<-1,9>

Figure 5.2: The Data propagation analysis with Bitwise: The forward propagation is
denoted with ↓ and the backward with ↑. The control information is utilized to collect the
value ranges of the variables in each branch, and the backward analysis makes use of the
array bound informations to tighten the bounds. [Example borrowed from [SBA00]]

5.1.1 Bit-Width Narrowing

For a numerical data type, the declared bit-width should be consistent with the actual

required bit-width, in order to store the data correctly. In Figure 5.1a, the loop control

variable is 32-bit wide, although it requires only 5 bits to accommodate the possible values

of i, i.e. (0-31). HLS tools allow the designer to explicitly define the bit-width of the

variables, as shown in Figure 5.1b. However, this feature still transfers the responsibility

for an accurate bit-width analysis to the programmer. A few HLS compilers try to optimize

the control structures, but most of the time it is the responsibility of the programmer.

An alternative approach is based on automatic bit-width analysis inside the HLS

compiler. With such analysis, the number of required bits for representing a variable,

can be estimated. Static bit-width analysis has been implemented in a variety of ways.

Budiu et al. [BSWG00] provide a compiler algorithm that tries to determine the possible

values of each individual bit. They formulate the problem as a data flow analysis, and

propagate possible bit-width values both forward and backward iteratively.

Another variant of bit-width analysis is value range analysis. Range analysis involves

studying the data range of each variable and ensuring that the design has enough bits

to accommodate the range. Most of the research work for range analysis is based on

Interval Analysis invented by Moore in 1960s [Moo66]. The Bitwise [SBA00] compiler

performs the data range propagation both forward and backward over a program control

5.1 – Bit-Level Transformations 59

for(i=0;i<1024;i++){

for(j=i;j<=i+2;j++){

... = x[j-i]

}

}

(a)

i

j

(b)

Figure 5.3: Bit-width Analysis under the Polyhedral Model: (a) A sample C code, (b)
Iteration domain for memory read index k = j − i, for array access x[j-i].

flow graph, where all variables are in SSA form. The Control dependent information allows

a more accurate collection of data ranges to be found, (See Figure 5.2). Similarly, the array

bound information can be utilized in the backward analysis. In the example of Figure 5.2 a

constant propagation replaces all occurrences of a3 with the constant 0. Value propagation

analysis for operations inside loop bodies is carried out by finding a closed-form solution for

each strongly connected component. Another very powerful bit-width analysis technique is

based on the polyhedral mode, [MKFD11], where the iteration domain of each statement

is taken into account. In Figure 5.3a, a naive interval analysis for k can lead to the range

< −1024, 1024 >, although from the iteration domain representation in Figure 5.3b it can

be seen that the range of k is < 0, 2 >.

5.1.2 Bit-level Optimization

Bit-wise operations are used extensively in many application domains, e.g. cryptography

and telecommunication. Bit-level optimization is an attempt to simplify the logic functions

with traditional boolean minimization techniques. For example, a simple operation of

r = a|b&1 can be naively translated to an OR gate followed by an AND gate. However,

based on constant integer value of 1, compiler can simplify it to a 1-bit OR gate for the

lowest bit of a and b and simply wire rest of the bits a to resulting r.

Another expressive example is the bit-reversal, (Figure 5.4), where by fully unrolling

the loop, the compiler may greatly simplify the design. It can be noticed that bit-wise

operations are tricky to be represented in C, using load/shift/mask/store instructions, but

since hardware directly supports bit-value accessing and storing, such optimizations are

easy at the RTL level. Zhang et. al [ZZZ+10] proposed a new intermediate representation

for bit-wise operations, named bit-flow graph (BFG), which contains only the basic logical,

shift and conversion operations. They convert a simple DFG node into several BFG nodes,

each one representing a bit operation in the original graph. After the BFG construction,

redundant operations can be eliminated and the BFG can be converted back to the

extended DFG, for further processing.

60 Efficient Hardware Generation with HLS

for(i=0;i<32;i++){

wordRev |= (((word>>i)&1)<<(31-i))

}

(a)

word

wordRev

...

...

(b)

Figure 5.4: Optimized implementation of bit reversal function: (a) C code for Bit Reversal
function, (b) Optimized implementation in hardware using wires.

Algebraic Simplifications Original Simplified

Multiplication/division with 1/-1 −1× x −x
Multiplication with 0 0× x 0

Addition with 0 0 + x x

a = b× c+ d t = b× c
Common Subexpression Elimination e = b× c+ g a = t+ d

e = t+ g

Constant Folding 3 + (6 ∗ (5− 2))/2 12

Constant Propagation x = 4, y = x+ 7 x = 4, y = 11

Table 5.1: Simple Algebraic Transformations

5.2 Instruction-level transformations

Simple algebraic transformations, e.g. common subexpression elimination, constant folding

and constant propagation, simplify the program and may improve the timing and reduce

the resource usage of the design. Most common simplifications are listed in Table. 5.1. In

this section we will discuss three key transformations which can be very helpful to expose

parallelism for HLS.

5.2.1 Operator Strength Reduction

Strength reduction is an optimization technique where the compiler replaces expensive

operators with a sequence of less expensive operators. The replacement can be performed

in order to either reduce the time/area cost of the design, or substitute more suitable

operator available on hardware. For example, FPGA chips usually include dedicated blocks

for particular bit-width multipliers, multiply-accumulate operators and FIR filters, and a

compiler can perform strength reduction for a specific FPGA to utilize these accelerators.

A typical example of strength reduction can be replacement of 2 ∗ x by x << 1, as a

shift operation is less costly than a multiplication. Generally, multiplications and divisions

by constants can be replaced with a combination of shift and add operations [MPPZ87],

e.g. 5 ∗ x can be replaced by x + (x << 2). Strength reduction can also simplify the

memory addressing inside a loop body, as shown in Figure 5.5. During each iteration,

5.2 – Instruction-level transformations 61

i=0;

while(i<100){

a[i] = 0;

i = i + 1;

}

(a)

i = 0;

L0: t1 = i < 100;

IfZero(t1) Goto L1;

t2 = 4 * i ;

t3 = arr + t2 ;

*(t3) = 0 ;

i = i + 1 ;

L1:

(b)

i = 0;

t0 = arr;

L0: t1 = i < 100;

IfZero(t1) Goto L1;

*(t0)=0;

t0 = t0 + 4;

i = i + 1 ;

L1:

(c)

Figure 5.5: Operator Strength Reduction for memory access: (a) Original Code, (b)
Symbolic IR with OSR, (c) Symbolic IR after OSR.

OSR Scenarios Original Simplified

Multiplications 7× x x+ (x << 3)

Multiplication with powers of 2 2× x x << 1

Division with powers of 2 bx/2c x >> 1

Square to multiplication x2 x× x
induction variable for(i=0;i<100;i++) for(i=0;i<100;i++)

j=i*15; j=j+15;

Y31:0 = X31:0 + 216 Y15:0 = X15:0

Constant accumulation of form 2N Y31:16 = X31:16 + 1
(32-bit adder) (16-bit adder)

Table 5.2: Operator Strength Reduction

element a[i] is accessed by multiplying i by 4, but this multiplication can be obviously

replaced by an addition.

5.2.2 Height Reduction

A well-known technique to increase ILP is height reduction, in which the compiler exploits

commutativity, associativity, and distributivity of arithmetic operations to reduce the

number of time steps required to compute the expression. The objective is to reduce the

height of expression trees by balancing the operation nodes, where the height represents

the number of cycles required to compute the expression. Figure 5.6 shows how rearranging

the addition operation reduces the data path height by one cycle.

In tree-height reduction (THR) the compiler tries to minimize the expression tree

height, by exploiting commutativity and associativity of arithmetic operations. A

summation operation of N inputs can be reduced to log2(N) steps, forming a binary

tree, as it can be seen in Figure 5.7. However, such an optimization can only be beneficial

when the memory bandwidth can support the parallel data accesses. In Figure 5.7, If the

memory can only be accessed once per cycle, then the THR transformation will produce a

worse hardware implementation, in terms of required number of cycles, than the original

one, since the memory accesses would have been pipelined otherwise.

62 Efficient Hardware Generation with HLS

cbad

x

cbad

x

(a)

cbad

x

cbad

x

(b)

Figure 5.6: Height Reduction: (a) x = a+ b ∗ c+ d, (b) x = (a+ d) + (b ∗ c).

for(i=0;i<4;i++){

sum+=a[i];

}

(a)

a[0]sum

a[1]

a[2]

a[3]

a[0]

sum

a[1] a[2] a[3]

sum

(b)

a[0]sum

a[1]

a[2]

a[3]

a[0]

sum

a[1] a[2] a[3]

sum

(c)

Figure 5.7: Tree Height Reduction: The associativity of addition allows one to compute
summation in parallel and in this manner, N steps can be reduced to log2(N) steps,
provided the input data is available: (a) Original Code, (b) Before THR, (c) After THR.
[Example borrowed from [CD08]]

Exploiting the distributivity may increase the number of operations in the expression,

but in some cases it may break dependencies thus leading to a better schedule, or it may

reduce the required resources for a resource-sharing scenario. In Figure 5.8, distributivity

helps to remove the self-inserted dependency of addition before multiplication for x, which

results in utilizing two multipliers instead of three in the original version.

Similarly, distributivity can expose common subexpression in a set of expressions [CD08].

For instance, applying the distributivity transformation to the following example:

x = a ∗ (b+ c+ d) −→ x = a ∗ b+ a ∗ c+ a ∗ d

y = a ∗ (b− e) + a ∗ d −→ y = a ∗ b− a ∗ e+ a ∗ d

5.2 – Instruction-level transformations 63

b c b c g h

a e e

d

x y

b c g h

e e

y

b ca a

d

x

(a) x = a ∗ (b + c) + d
y = e ∗ (g + h) + e ∗ (b− c)

b c b c g h

a e e

d

x y

b c g h

e e

y

b ca a

d

x

(b) x = a ∗ b + a ∗ c + d
y = e ∗ (g + h) + e ∗ (b− c)

Figure 5.8: Exploiting distributivity: The transformation implements x and y with 2
multipliers and 2 add/sub blocks, where as the original code needed 3 multipliers.

reveals that the subexpression a ∗ b + a ∗ d is common to both instructions and can be

computed one cycle earlier.

5.2.3 Code Motion

Code motion allows us to change the order of execution of the instructions in a program

in order to optimize both area and timing. Code motion is often helpful for expressions

inside a loop body, whose value does not change from iteration to iteration, known as

loop-invariant code motion. For instance, in Figure 5.9b, the computations c+d and b*b

can be computed before the loop, as their value is constant throughout the loop iterations.

This kind of code motion results in a shorter schedule length for the loop body. However

code motion can sometimes increase the latency of a loop when memory accesses are being

moved [CD08]. For example, in Figure 5.9c the access to array c is loop invariant for loop

j, but assuming that memories b and c can be read in same cycle, the loop invariant code

motion does not affect the schedule length. However, in Figure 5.9d, moving c[i] outside

the inner loop reduces the number of memory accesses to c but increases the latency of

the loop, as now b and c will be accessed in separate cycles for the first iteration of j.

Code motion techniques, e.g. speculation and reverse speculation, have been

extensively studied for control-flow branches in order to expose instruction level parallelism

across the conditional blocks [GDGN03, RFJ95]. Code motion can be applied to move a

code segment:

− upward from inside a branch block to a split block, i.e. speculation.

− downward from a split block to a branch block, i.e. reverse speculation.

− upward from a join block to branch blocks, i.e. conditional speculation or duplicating

64 Efficient Hardware Generation with HLS

for(i=0;i<100;i++){

b=c+d;

a[i]=2*i+(b*b);

}

(a)

b=c+d;

tmp=b*b

for(i=0;i<100;i++){

a[i]=2*i+tmp;

}

(b)

for(i=0;i<100;i++){

for(j=0;j<100;j++){

a[i][j] = b[j]*c[i];

}

}

(c)

for(i=0;i<100;i++){

tmp = c[i];

for(j=0;j<100;j++){

a[i][j] = b[j]*tmp;

}

}

(d)

Figure 5.9: Code Motion Examples: (a) Original Code, (b) Transformed Code: moving
loop invariant computations c*d and b*b outside shortens the critical path length, (c)
Original Code: array a,b and c are mapped to disjoint memories and can be accessed
during the same clock cycle, (d) Transformed Code: moving c[i] outside reduces the
number of memory accesses to c[i], but increases the loop latency.

up

− upward across the conditional block, i.e. useful motion [RFJ95]

Figure 5.10 shows all four types of speculative code motions.

mux mux

c e d f

x

y

a b

mux

x

y

c d e fa b

Split Block

Branch BlockBranch Block

Join Block

Specu
latio

n Reverse

Speculation

Duplicating-up Dup
lic

at
ing

-u
p

U
se

fu
l

Figure 5.10: Various types of conditional block code motion

Speculative code motion may shorten the critical path at the price of using extra

resources, as shown in Figure 5.11. Speculative code motion can also be helpful to eliminate

common subexpression across a conditional block by moving the common expression

upward, when there exist a common expression inside one of the branch blocks and of

the join block.

5.3 – Loop Transformations 65

if(a<b)

x = c + d;

else

x = e + f;

y = x - h;

(a)

mux mux

c e d f

x

y

a b

mux

x

y

c d e fa b

(b)

mux mux

c e d f

x

y

a b

mux

x

y

c d e fa b

(c)

Figure 5.11: Speculative Code Motion: Moving addition outside the condition block helps
to reduce the critical path, costing an extra adder: (a) Original Code, (b) Original RTL:
resource sharing is enabled, (c) Speculation: an extra adder is being used.

5.3 Loop Transformations

Since most of the applications spend a considerable amount of execution time executing

loops, loop-level transformations are likely to generate abundant opportunities for

parallelism. In the context of HLS from a C program, a loop transformation can be

specified with the help of pragmas, e.g. loop unrolling, and most of them can be generated

automatically. However, in the absence of a key transformation or if the HLS generates

an imperfect implementation, the designer may have to expose the parallelism by himself

to be able to generate an efficient RTL design from the HLS tool. A better understanding

of these transformations is therefore essential to be able to use HLS tools in an efficient

manner.

5.3.1 Unrolling

Loop unrolling is the most common transformation to exhibit parallelism in the architec-

ture. Loop unrolling replicates the statements inside the loop body and in this manner

it provides the possibility to execute several loop iterations concurrently. This kind of

execution is also known as doacross concurrent loop scheduling, where processor P1

executes the first iteration and P2 executes the second iteration and so on [Wol90]. Loops

with constant bounds can theoretically be fully unrolled to achieve parallelism. The

replication of the instructions increases the required computational and storage resources,

but it also reduces the control overhead for the loop iterations. The concurrent execution

of several iterations requires higher data bandwidth, first to read the input data for

all iterations being executed in parallel and finally to write back the computed results.

Thus, loop unrolling might not be a profitable transformation in situations where data

dependencies restrict the concurrent execution or when the available data bandwidth is

66 Efficient Hardware Generation with HLS

unable to sustain the increased pressure. Loop unrolling may also help the compiler

to detect expressions subject to THR, when loop-carried dependencies are related to

computations holding associative and commutative properties. After unrolling, such kind

of computation may be detected and optimized through THR.

for(i=0;i<4;i++){

sum+=A[i]*B[i];

}

(a)

sum+=A[i]*B[i];

sum+=A[i+1]*B[i+1];

sum+=A[i+2]*B[i+2];

sum+=A[i+3]*B[i+3];

(b)

A[i]

B[i]

X SUM

Control Unit

A[0]

B[0]

X

A[1]

B[1]

X

A[2]

B[2]

X

A[3]

B[3]

X

SUM

(c)

A[i]

B[i]

X SUM

Control Unit

A[0]

B[0]

X

A[1]

B[1]

X

A[2]

B[2]

X

A[3]

B[3]

X

SUM

(d)

Figure 5.12: Loop unrolling impact on resulting architecture: (a) Intial loop, (b) Fully
unrolled loop, (c) Architecture of the original rolled Loop, (d) Architecture of the fully
unrolled loop after THR. [Example borrowed from [CD08]]

5.3.2 Loop Interchange

Loop interchange is the process of switching inner and outer loops. It can be used to expose

parallelism, to improve the data locality and to reduce the memory traffic. Memory traffic

can be reduced by fetching the operands from memory at the beginning of the loop and

by reusing the data throughout the execution of the loop [Wol90]. A similar technique

has been used as a power saving technique by minimizing the number of operand changes

in a functional unit input [MC95]. Figure 5.13 and 5.14 show how interchange can help

to expose common subexpressions and can also be used to move a loop without intra-

dependency inward for unrolling.

5.3.3 Loop Shifting

Loop shifting is a type of circuit retiming, a well known hardware technique based on

relocating registers to reduce combinational rippling [LS91]. The transformation shifts

the loop instructions in order to overcome the data dependencies within a loop iteration.

5.3 – Loop Transformations 67

for(j=0;j<N;j++){

for(i=0;i<N;i++){

A[i][j]=B[i]*C[i][j];

}

}

(a)

for(i=0;i<N;i++){

tmp=B[i];

for(j=0;j<N;j++){

A[i][j]=tmp*C[i][j];

}

}

(b)

Figure 5.13: Loop interchange example: Reducing the memory traffic with the help of
loop interchange and a CSE: (a) Original Code: Array B will be accessed NxN times, (b)
Reducing Memory Traffic: The B operand will be invariant in the inner loop and can be
kept in a register for the duration of the inner loop.

for(j=0;j<N;j++){

for(i=0;i<N;i++){

A[i][j]=B[i-1][j]*C[i-1][j];

}

}

(a)

for(i=0;i<N;i++){

for(j=0;j<N;j++){

A[i][j]=B[i-1][j]*C[i-1][j];

}

}

(b)

Figure 5.14: Loop interchange example: Exposing parallelism by loop interchanging, so
that the inner loop can be parallel. (a) Original Code: The inner loop unrolling will not
be beneficial due to dependence i → i-1, (b) Parallelism: loop interchange moves the
dependencies from inner to outer loop, making the innermost loop fully parallel.

Figure 5.15 shows a code fragment where instructions inside the loop body can not be

executed in parallel, due to the data dependency from array a to d through b, hence a

loop unroll will not be beneficial. However, a simple retiming enables the latency to be

reduced to 2 cycles.

for(i=1;i<100;i++){

a[i] = f1(c[i-1]);

b[i] = f2(a[i]);

c[i] = f3(a[i]);

d[i] = f4(b[i]);

}

ai

bi ci

di ai+1

bi ci

di

(a)

a[1] = f1(c[0]);

for(i=1;i<100;i++){

b[i] = f2(a[i]);

c[i] = f3(a[i]);

d[i] = f4(b[i]);

if(i<99)

a[i+1] = f1(c[i]);

}

ai

bi ci

di ai+1

bi ci

di

(b)

Figure 5.15: Loop shifting example: The dependency from a[i] → b[i] → d[i] is shifted
inside the loop body. The dashed arrows show dependency for next loop iteration. (a)
Original Code: the loop body requires at least 3 cycles to complete, (b) Loop Shifting:
d[i] and a[i+1] can be computed in parallel.

68 Efficient Hardware Generation with HLS

5.3.4 Loop Peeling

Loop peeling transformation helps to eliminate dependencies established by early loop

iterations, restricting parallelization, by moving these early iterations out of the loop. The

original code in Figure 5.16 contains a self dependency for the first iteration a[1]. By

moving this iteration out of the loop, the loop body has no auto dependency and can be

executed completely in parallel.

for(i=1;i<100;i++){

a[i] = a[1] + b[i];

}

(a)

a[1] = a[1] + b[1]

for(i=2;i<100;i++){

a[i] = a[1] + b[i];

}

(b)

Figure 5.16: Loop Peeling removes the self-dependency of the loop body: (a) Orignal
Code, (b) Transformed Code.

5.3.5 Loop Skewing

In a situation where the inner-most loop contains an intra-loop dependency, loop unrolling

may not be beneficial. Loop skewing transformation helps to expose the parallelism by

overlapping the outer loop iterations in such a loop nest, as shown in Fig. 5.17. In this

example, loop skewing is able to expose the anti-diagonal parallelism in the loop nest and

now the inner loop can be completely unrolled to be executed in parallel. The loop skewing

transformation has been extensively used to parallelize bioinformatic algorithms like

Smith-Waterman [SW81], Needleman-Wunsch [NW70] and simplified HMMER [OSJM06].

In presence of only diagonal dependencies, loop skewing can be helpful to construct

rectangular tiling (discussed later in section 5.3.8).

5.3.6 Loop Fusion

Loop fusion or loop merging merges two loops into a single loop by concatenating the

bodies of the original loops. Since the transformed loop will execute the original loop

bodies in an interleaved order, the transformation should be applied carefully to avoid

any violation of data dependencies. Loop fusion is often an adequate transformation

for efficient memory contraction (discussed later in section 5.3.11). Fig. 5.18 shows an

example where loop fusion allows a N element array T[i] to be reduced to a scalar variable

t. Loop fusion has been extensively used, in combination with other transformations, for

improving parallelism and data locality [SXWL04]. Loop shifting alone and in combination

with loop peeling has been also used to maximize the loop fusion opportunities [Dar99,

MA97, SXWL04].

5.3 – Loop Transformations 69

for(i=0; i<N; i++){

for(j=0; j<N-i; j++){

if(i==0 && j==0)

A[i][j]= 2*(A[i-1][j]+A[i][j-1]);

}

}

(a)

i

j

i

j

i

j

(b)

for(i=0; i<N; i++){

for(j=0; j<=i; j++){

t = i-j;

A[t][j] = 2*(A[t-1][j]+A[t][j-1]);

}

}

(c)

i

j

i

j

i

j

(d)

Figure 5.17: Loop Skewing Transformation: (a) Original Code, (b) Data dependency for
original code, (c) Transformed Code: All operations in a vertical column can be executed
in parallel now, (d) Data dependency after skewing.

for(i=1;i<N;i++){

T[i] = A[i] + B[i];

}

for(i=1;i<N;i++){

D[i] = T[i] + C[i];

}

(a)

for(i=1;i<N;i++){

t = A[i] + B[i];

D[i] = t + C[i];

}

(b)

Figure 5.18: Loop Fusion: Loop Fusion + Array Contraction: (a) Original Code, (b) After
Loop Fusion.

5.3.7 C-Slowing

Loop pipelining becomes less effective or ineffective, when an inter-iteration dependency

exist in the loop, forming a feedback path in the loop body. Pipelining becomes less

effective as the initiation interval will always be greater than 1 or totally ineffective when

the feedback is precisely from the end to the start of the datapath, as shown in Fig. 5.19.

In such a situation, a C-slow pipeline might be implemented, if the design allows multiple

independent input data instances to be processed. A C-Slow pipelined loop nest accepts

an interleaved data of independent data inputs. Every pipeline stage is active on each

cycle, operating on disassociated data. Another way to view this transformation is to

consider that we add an additional outer loop iterating over independent instances of the

algorithm, and then performing a loop interchange in order to move this outer parallel

loop as innermost loop. Finally, the pipelining transformation is applied to implement the

multiple independent instances on pipelined hardware.

70 Efficient Hardware Generation with HLS

A B C

A A A
B B B

C C C

A B C

A A A A A A A A A
B B B B B B B B

C C C C C C C

A. Pipelining Without C-Slow

B. Pipelining With C-Slow

Single input data stream
Cycles

CyclesMultiple independent input data stream

(a) Pipelining without C-slow: The pipeline with a single input data stream and a
feedback loop from the end to the start is not be completely filled at any time instance
due to dependencies on previous results. At each cycle only one logic block is active.

A B C

A A A
B B B

C C C

A B C

A A A A A A A A A
B B B B B B B B

C C C C C C C

A. Pipelining Without C-Slow

B. Pipelining With C-Slow

Single input data stream
Cycles

CyclesMultiple independent input data stream

(b) Pipelining with C-slow: In presence of a feedback loop in a pipeline, several
(precisely equal to the number of pipeline stages inside the feedback loop) independent
interleaved input data streams make efficient use of pipeline hardware. Now all logic
block are active at each cycle and they are operating on independent data streams.

Figure 5.19: Impact of pipelining with C-slow in presence of a feedback loop.

5.3.8 Loop Tiling & Strip-mining

Loop tiling transforms the iteration space of the loop nest into smaller blocks (also called

chunks) of iterations. Loop tiling transforms n nested loops into 2× n nested loops. The

outer loops are the control loops, controlling which iteration block to be executed by the

inner loops.

Loop strip-mining is a special case of loop tiling, where tiling is applied only to

the inner-most loop, instead of the complete loop nest. Loop tiling and strip-mining

increase the data locality and increase coarse-grain parallelization opportunities. These

transformations may also expose memory mapping opportunities, as each block of

iterations may access disjoint memory banks, thus enabling the execution of several blocks

in parallel.

The tile shape and size should be chosen carefully to reduce the communication with

external memories and to increase data reuse. For instance, in presence of diagonal data

dependencies in Figure 5.20, rectangular tiles are not appropriate for data reuse, but if

parallelogram tiles are shaped in the direction of the dependencies, one can benefit from

data reuse being produced inside the tile.

5.3.9 Memory Splitting & Interleaving

As loop unrolling replicates the loop instructions, the access to memories in such loop

instruction are also replicates. purely a parallel execution of the unrolled loop, the memory

banks need to be accessed several times per cycle. But a memory bank can only be

accessed in accordance with its number of memory input/output ports. This often hinders

a parallel execution of multiple instructions, and a solution to this problem is to split

the array memory into disjoint data subsets, where each subset is mapped to a separate

5.3 – Loop Transformations 71

for(i=0;i<N;i++){

for(j=0;j<N;j++){

c[i+j] += a[i]*b[j];

}

}

(a)

i

j j

i

(b)

i

j j

i

(c)

Figure 5.20: Loop Tiling: Impact of tile shape on data reuse opportunity [Ple10]

X

A[0:511] B[0:511]

C[0:511]

X

C[0:511]

A[0:511] B[0:511]

Local_A
[0:63]

Local_B
[0:63]

Local_C
[0:63]

X

Local_A
[0:63]

Local_B
[0:63]

Local_C
[0:63]

X

Local_A
[64:127]

Local_B
[64:127]

Local_C
[64:127]

X

Local_A
[448:511]

Local_B
[448:511]

Local_C
[448:511]

A[0:511] B[0:511]

C[0:511]

(a)

X

A[0:511] B[0:511]

C[0:511]

X

C[0:511]

A[0:511] B[0:511]

Local_A
[0:63]

Local_B
[0:63]

Local_C
[0:63]

X

Local_A
[0:63]

Local_B
[0:63]

Local_C
[0:63]

X

Local_A
[64:127]

Local_B
[64:127]

Local_C
[64:127]

X

Local_A
[448:511]

Local_B
[448:511]

Local_C
[448:511]

A[0:511] B[0:511]

C[0:511]

(b)

X

A[0:511] B[0:511]

C[0:511]

X

C[0:511]

A[0:511] B[0:511]

Local_A
[0:63]

Local_B
[0:63]

Local_C
[0:63]

X

Local_A
[0:63]

Local_B
[0:63]

Local_C
[0:63]

X

Local_A
[64:127]

Local_B
[64:127]

Local_C
[64:127]

X

Local_A
[448:511]

Local_B
[448:511]

Local_C
[448:511]

A[0:511] B[0:511]

C[0:511]

(c)

Figure 5.21: Impact of tiling and strip-mining for a vector multiplication example C[i] =
A[i]∗B[i]: (a) Original Code: No data locality is implemented for input-output memories,
(b) Strip-mining: Data being accessed in the form of strips of size 64, (c) Coarse-grained
parallelization of strip-mined code. [Example borrowed from [CD08]]

memory bank. Fig. 5.22 shows two types of memory splitting using blocks or interleaving.

Both techniques can be used to express fine and coarse-grain parallelism.

5.3.10 Data Replication, Reuse and Scalar Replacement

In many computations, particularly in dynamic programing algorithms, data values are

reused. A compiler sometimes identify the data reuse in a computation, and save this data

in scalar variables to avoid multiple memory accesses. Figure 5.23 shows example of scalar

72 Efficient Hardware Generation with HLS

for(i=0;i<15;i++){

A[i]

}

(a)

for(i=0;i<7;i++){

A_0[i]

A_1[i]

}

(b)

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11] A[12] A[13] A[14] A[15]

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

A[8] A[9] A[10] A[11] A[12] A[13] A[14] A[15]

A[0:15]

A_0[0:7]

A_1[0:7]

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11] A[12] A[13] A[14] A[15]

A[0] A[2] A[4] A[6] A[8] A[10] A[12] A[14]

A[1] A[3] A[5] A[7] A[9] A[11] A[13] A[15]

A[0:15]

A_0[0:7]

A_1[0:7]

(c)

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11] A[12] A[13] A[14] A[15]

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

A[8] A[9] A[10] A[11] A[12] A[13] A[14] A[15]

A[0:15]

A_0[0:7]

A_1[0:7]

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11] A[12] A[13] A[14] A[15]

A[0] A[2] A[4] A[6] A[8] A[10] A[12] A[14]

A[1] A[3] A[5] A[7] A[9] A[11] A[13] A[15]

A[0:15]

A_0[0:7]

A_1[0:7]

(d)

Figure 5.22: Memory splitting of an array memory into disjoint memory modules: (a)
Original Code, (b) Transformed code, (c) Block splitting, (d) Interleave splitting.

replacement. The original loop requires three accesses to the external memory bank for

each loop iteration. However, by scalar replacement, the memory access is reduced to one

write operation. The use of local registers substantially decreases the data access latency

and the number of external memory accesses.

for(i=2;i<N;i++){

A[i] = A[i-1] + A[i-2];

}

(a)

tmp2=A[0];

tmp1=A[1];

for(i=2;i<N;i++){

tmp3 = tmp1 + tmp2;

tmp2 = tmp1;

tmp1 = tmp3;

A[i] = tmp3;

}

(b)

Figure 5.23: Scalar Replacement: (a) Original Code, (b) Scalar replacement exploits the
data reuse and reduces memory accesses to a single write operation.

5.3 – Loop Transformations 73

5.3.11 Array Contraction

Array contraction is a transformation that reduces the array size while preserving the

correct output of the program. Typically, array contraction helps to contract, or converts

to a scalar, a temporary array introduced by designer in order to store intermediate

computations being used in several successive loops, as shown in Figure 5.18. Loop

fusion and loop shifting transformations have been used to enable array contraction

[DH02, SXWL04, GOST92, KM94]. An early work by Sarkar and Gao focused on finding

the most suitable loop reversal transformation to enable array contraction [SG91]. For

programs with affine array index functions and loop bounds, Alias et al. provide an array

contraction algorithm for intra-array memory reuse [ABD07]. Intra-array memory reuse

reduces the size of temporary arrays by reusing the memory locations when they contain

a data that is not used later.

#define N 200

int t[N][N];

for(i=1;i<N;i++){

for(j=1;j<N;j++){

t[i][j]= ...

out = t[i][j-1]-t[i][j];

}

}

(a)

#define N 200

int t[2];

for(i=0;i<N;i++){

for(j=1;j<N;j++){

t[i%2]= ...

out = t[(i-1)%2]-t[i%2];

}

}

(b)

#define N 200

int t[N][N];

for(i=1;i<N;i++){

for(j=1;j<N;j++){

t[i][j]=t[i-1][j-1]

-t[i-1][j];

}

}

(c)

#define N 200

int t[2][N];

for(i=0;i<N;i++){

for(j=1;j<N;j++){

t[i%2][j]=t[(i-1)%2][j-1]

-t[(i-1)%2][j];

}

}

(d)

Figure 5.24: Array Contraction Example: (a) Original Code, (b) Memory contracted to 2
cells, (c) Original Code, (d) Memory contracted to 2 columns.

5.3.12 Data Prefetching

A hardware accelerator accessing external memories, such as SDRAM, may suffer from

serious performance degradation due to non-consecutive accesses to DDR. For example,

in Figure 5.25a, array a,b and c are accessed in an interleaved manner and slow down the

system performance. Plesco [Ple10] derived a data fetch mechanism for such architecture

for C2H HLS tool. Loop tiling is used to improve the data locality and it also tries to

increase the data reuse, with the help of local memories, in order to to reduce the memory

74 Efficient Hardware Generation with HLS

for(i=0;i<=N;i++){

for(j=0;j<=N;j++){

for(k=0;k<=N;k++){

c[i][j] += a[i][k]*b[k][j];

}

}

}

(a)
i

k

j

Data Reuse Directions for
respective reads

 c[i][j]

 a[i][k]

 b[k][j]

(b)

Figure 5.25: Data Prefetching for a matrix multiplication example. [Example borrowed
from [Ple10]]

traffic. Here, c[i][j] should be read once at the start of loop k and should be written

once at the end of loop k. At the start of a tile, only the input data which are not produced

by a previous tile, or not already loaded for a previous tile are to be loaded from the DDR.

Similarly, only that data which is no more needed by any future tile are stored to DDR

. Later on, the local memories are optimized using array contraction and data lifetime

analysis. Figure 5.25b shows a single tile data inputs with colored tiles. The arrows shows

the direction of reuse of this input data, i.e. the subsequent tiles in this direction, use the

same data already loaded, as input to the current tile, from DDR.

5.3.13 Memory Duplication

In order to improve parallelism, memory duplication can be beneficial in many cases by

enabling parallel accesses and by removing read-write dependencies for the same memory.

An important application is a scenario where tiling or strip-mining is done in presence

of a diagonal or vertical dependency, and a write operation is to be performed outside

the current tile. For instance, array contraction reduces the memory t to 2 columns in

Figure 5.24c and 5.24d. However, in case of tiling, we can reduce it to a single column by

using memory duplication only for the tile boundaries. The example in Figure 5.26a shows

a loop nest, where inner-most loop is strip-mined and each strip is unrolled to execute in

parallel. Due to the presence of diagonal dependency (A[j]→A[j-1]), the input to the

first computation of the strip will be corrupted, as it has been updated to a new value in

last cycle. The code in Figure 5.26b uses an extra cell tempL to store the temporary result

of the boundary computation, and update the original memory cell in next cycle.

Figure 5.27 shows the graphical illustration of such read/write operations for a single

column memory(self read operations are not shown here). Dashed arrows show the

diagonal read operations and solid arrows show the write operations. The horizontal

dash-dot lines show the boundary of a strip. All operations inside a strip are executed in

5.3 – Loop Transformations 75

for(i=1;i<N;i++){

A[0] = -infty;

for(j=0;j<9;j+=3){

// Scalar Replacement

in0=A[j];

in1=A[j+1];

in2=A[j+2];

in3=A[j+3];

// Computation

tmp_0 = fun(in1, in0);

tmp_1 = fun(in2, in1);

tmp_2 = fun(in3, in2);

// Write Back

A[j+1]=tmp_0;

A[j+2]=tmp_1;

A[j+3]=tmp_2;

}

}

(a)

for(i=1;i<N;i++){

tmpL = -infty;

for(j=0;j<9;j+=3){

// Scalar Replacement

in0=tmpL;

in1=A[j+1];

in2=A[j+2];

in3=A[j+3];

// Computation

tmp_0 = fun(in1, in0);

tmp_1 = fun(in2, in1);

tmp_2 = fun(in3, in2);

// Write Back

A[j] = tmpL;

A[j+1] = tmp_0;

A[j+2] = tmp_1;

tmpL = tmp_2;

}

}

(b)

Figure 5.26: Memory Duplication: The code in (a) is corrupt, since old value of A[j] is
overwritten in last iteration as A[j+3], and a naive solution will be to duplicate entire
memory A. However, the code (b) uses an additional register tempL to store only the newly
computed value of the corner of the tile and update the original memory cell in the next
cycle.

Fk

Fk+1

Fk+2

Lk

Lk+1

Lk+2

Fk

Fk+1

Fk+2

Lk

Lk+1

Lk+2

Tk

Fk

Fk+1

Fk+2

Lk

Lk+1

Lk+2

Fk

Fk+1

Fk+2

Lk

Lk+1

Lk+2

Tk+1

(a)

Fk

Fk+1

Fk+2

Lk

Lk+1

Lk+2

Fk

Fk+1

Fk+2

Lk

Lk+1

Lk+2

Tk

Fk

Fk+1

Fk+2

Lk

Lk+1

Lk+2

Fk

Fk+1

Fk+2

Lk

Lk+1

Lk+2

Tk+1

(b)

Figure 5.27: Memory Duplication Example: Memory duplication helps to reduce the
memory layout from 2×N cells to N+1 cells. (a) Original Layout: Functionally incorrect,
(b) Duplicated Memory.

76 Efficient Hardware Generation with HLS

parallel. We can see that the first operation of a strip k, Fk needs to read the previous

value of Lk−1. However since, Lk−1 is updated in last cycle , the input value read for Fk

in next cycle will be corrupted, as shown in Figure 5.27a. Figure 5.27b shows a solution

to this problem by using a temporary memory Tk. Now, for the execution of any strip k,

the memories from Lk−1 till Lk will be read and Fk till Lk − 1 will be written along with

a temporary memory Tk, which will update Lk at next cycle.

5.4 Conclusion

It has been extensively observed that the quality of the generated RTL design from an

HLS tool largely depends on the quality of its input specifications. This chapter covers

various code transformations that may help to improve the quality of the input code.

Since most of the HLS tools use a C-dialect, this chapter shows how different versions of

a C code input may lead to different speed and area results at the hardware level. We

have discussed such transformations at various levels, i.e. bit, instruction and loop-level

transformations.

Bit-level transformations allow one to express the custom bit-width storage and

operation in hardware. Bit-width narrowing techniques help to find the data types

with the exact required precision. The reduced bit-width representation may result

in a huge resource conservation and may improve clock speed. Since bioinformatics

algorithms mostly operate on char data types, the reduced bit-width implementation

on FPGAs is helpful for accelerating the kernel computation. It also reduces the resource

requirement, which allow more independent kernels to be embedded, amplifying the coarse

grain acceleration.

Instruction level transformations simplify the mathematical computations, thus they

can reduce the required resources and the number of execution cycles for the operations.

The mathematical properties of operations, such as associativity, commutativity and

distributivity can be exploited to rearrange the computations in such a way that it may

result in a reduction of the number of execution cycles or in the reduction in resource

requirement by resource sharing. Similarly, expensive operations e.g. multiplication and

division, involving constants, can be transformed into inexpensive shift and add operations.

Loop transformations play a vital role in the design, because the execution time of

a computation kernels is mostly spend inside loops. Hence, improving the parallelism

inside loops can greatly accelerate the kernel. In HLS, loop parallelism can be either

expressed through unrolling, i.e. several loop iterations executed in parallel, or through

pipelining, i.e. several loop iterations executed in an overlapped manner. The majority

of the other transformations, such as interchange, shift, peel, skew, enables the code

to be unrolled and/or pipelined in the most beneficial way. Similarly transformations

like Memory Splitting and Interleaving, Data Replication, Prefetching ensure the data

availability, avoiding memory access delay.

HLS based design is rapid and error-free in comparison with RTL based design.

5.4 – Conclusion 77

However, there is still lack of adoption from professional community, as the design

generated from these tools is often poor in performance in comparison with a finely tuned

manual design. However, this difference in performance can be reduced by expressing

design more sensibly. A careful application of these code transformation techniques can

lead to an as efficient RTL design, as a manual coded design can be. In coming chapters, we

apply, the techniques we have just learned, on a well-known compute-intensive application

of bioninformatics (HMMER), and show how efficient HLS based design can be. This will

rest our case that HLS based FPGA development is fast, efficient and generic.

78 Efficient Hardware Generation with HLS

6
Extracting Parallelism in

HMMER

6.1 Introduction

Sequence database homology searching is one of the most important applications in

computational molecular biology. In this application, protein sequences of unknown

characteristics are searched against a database of known sequences in order to predict

their functions and to classify them in families. Performing this operation at a large

scale is however becoming time prohibitive due to the exponentially growing size of

sequence databases, which double every eighteen months [NCB11]. Over the last few

years, reconfigurable computing has proved to be an attractive solution for accelerating

compute-intensive bioinformatic applications, such as Smith Waterman [SW81] or BLAST

[AGM+90]. The possibility of massive parallel processing, power efficiency and comparable

price/performance solutions makes FPGA-based accelerations a practicable alternative to

other supercomputing infrastructures such as vector computers or PC clusters.

Sequence alignment techniques based on Hidden Markov Models (HMMs)[RJ86] has

generated very good results [Edd98]. Profile HMMs, introduced to computational biology

by Krogh et al. [KBM+94] for representing profiles of multiple sequence alignments,

has been successfully applied in homology detection and protein classification ([Edd98,

HKMS93, JH98]). A profile HMM, built from multiple sequence alignments of the sequence

family, concentrates on the features or key residues conserved by the family of sequences,

so it can find even a remote sequence homolog which can not be detected by pairwise

alignment techniques (e.g. BLAST [AGM+90] or Smith-Waterman [SW81]).

One of the most commonly used program for HMM analysis is the open source

software suite HMMER, developed at Washington University, St. Louis by Sean

Eddy [Edd]. HMMER involves very computationally demanding algorithms and accounts

for a large amount of time spent in biological sequence analysis. Many authors

79

80 Extracting Parallelism in HMMER

have also investigated dedicated parallel hardware implementations, notably on FPGAs

and GPUs [MBC+06, OSJM06, BVK08, JLBC07, OYS07, DQ07, TM09, SLG+09,

EGMJdM10, HHH05, WBKC09a, GCBT10]. Recently, a new software implementation

(HMMER3) has been released and a great deal of effort has been put to improve its

software execution through both fine grain (SIMD extension such as ALTIVEC and SSE

extensions) and coarse grain parallelization (using MPI or multi-threads) [Edd11b]. It

has been shown that DualCore SSE implementation of HMMER3 is faster than most of

previous FPGA and GPU versions of HMMER2.

As currently defined and programmed, HMMER3 spends most of its time in two kernel

functions called MSV and P7Viterbi. These two kernels contain so-called loop-carried

dependencies (caused by the feedback path from the end to the beginning of the model)

which restricts any kind of parallelism.

We propose a technique to rewrite the computations in such a way that both

kernels become very amenable to parallel implementation, while keeping all the original

dependencies into account. In this chapter we describe how the original dynamic

programming equations of MSV and P7Viterbi can be rewritten so as to develop a

new algorithm that admits a scalable parallelization scheme, at the price of a moderate,

constant factor increase in the algorithm computational volume.

6.2 Background

6.2.1 Profile HMMs

HMMs are stochastic models that capture the statistical properties of observed data. A

Hidden Markov Model is a finite set of states, each of which is associated with a probability

distribution, and the transitions among the states are governed by a set of transition

probabilities. A profile HMM of a family of biological sequences is built from the multiple

sequence alignments. For each column in the Profile HMM, a match state models the

allowed residue, while an insert and delete state models the insertion of one or more

residues, or the deletion of a residue. The multiple alignment of a sequence family shows

the pattern of conservation of the sequence, i.e. some regions are more conserved by the

family and some regions seem to tolerate insertions and deletions. The position specific

information shows the degree of conservation in some positions and the degree of variation

to which insertions and deletions are permitted. Profile HMMs use this information

for position specific scoring, e.g. there will be more penalty for insertion/deletion in

a conserved region than in a region of tolerance. Traditional pairwise alignments, like

BLAST [AGM+90] or Smith-Waterman [SW81], use position independent scoring (i.e.

gap penalties are globally fixed) and the pattern of conservation in a sequence family is

not considered. Several available software packages implement profile HMMs or HMM-

like models. The HMMER toolsuite uses the ‘Plan7’ HMM architecture shown in Fig. 6.1.

The Plan7 HMM incorporates multiple features in a single model [Edd98]: local alignment

with respect to the model (through B → M → E paths), local alignment with respect

6.2 – Background 81

E
M1

I1

D2
S T

M2

I2

D3

M3

I3

D4

M4

I4

D5

M5

N CB

x x

J

x

1.0

1.0

tBMk

tNB

tNN
tCT

tCC

tEC

tEJ
tJJtJB

Figure 6.1: Structure of a Plan7 HMM [Edd11b]

to the sequence (through flanking insert states) and more than one hit to the HMM per

sequence (through feedback loop E → J → B). HMMER implements the Plan7 HMM in

the P7Viterbi kernel that we describe now.

6.2.2 P7Viterbi Algorithm Description

P7Viterbi is the most time consuming kernel inside the hmmsearch tool. This kernel

solves Plan7 HMMs through the well-known Viterbi dynamic programming algorithm. The

architecture of Plan7 HMM model is shown in Fig.6.1. The M (Matching), I (Insertion)

and D (Deletion) states constitute the core section of the model, whose equations are:

Mi[k] = max

eM (Seqi, k) + max

Mi−1[k − 1]+TMM[k]

Ii−1[k − 1] +TIM[k]

Di−1[k − 1] +TDM[k]

Bi−1 +TBM[k]

−∞

(6.1)

Ii[k] = max

 eI(Seqi, k) + max

{
Mi−1[k]+TMI[k]

Ii−1[k] +TII[k]

−∞
(6.2)

Di[k] = max

Mi[k − 1] + TMD[k]

Di[k − 1] + TDD[k]

−∞
(6.3)

The Seqi in Eq.(6.1) and Eq.(6.2) is the current sequence character being aligned. States

N , B, E, C and J are called “control states”. State B and E are dummy non-emitting

states, representing the beginning and the end of the model:

Ei = max
k

(Mi[k] + TME[k],−∞) (6.4)

82 Extracting Parallelism in HMMER

Bi = max (Ni + tNB , Ji + tJB ,−∞) (6.5)

States N , J and C are used to control algorithm-dependent features like local and

multi-hit alignments:

Ni = max (Ni−1 + tNN ,−∞) (6.6)

Ji = max (Ei + tEJ , Ji−1 + tJJ ,−∞) (6.7)

Ci = max (Ci−1 + tCC , Ei + tEC ,−∞) (6.8)

The eM , eI , TMM, TIM, etc., are transition memories while tNB , tJB , etc., are a set of

constants.

States E, J and B form a feedback loop in the model (i.e., a cycle in the graph), which

rarely changes the value of M . Many hardware accelerators exploit this fact and ignore

this feedback path, as will be shown in section 6.3.1.

On the other hand, this feedback loop gives HMMER the ability to perform multiple

hit alignments, i.e. more than one segment per sequence can be aligned to the core section

of the model. The self-loop over J provides the separating sequence length between two

aligned segments. Thus, from an algorithmic point of view, it is incorrect to ignore this

edge in the model.

The computations in (6.3) and (6.4) are the most crucial as far as extracting parallelism

is concerned. Early implementations used to ignore the Bi−1 in (6.1), and which removes

the inter-column cyclic dependency (i.e. Mi → Ei → Ji → Bi → Mi+1). In our work, we

will rewrite the (6.3) in such a way that the dependency Di[k] −→ Di[k−1] is transformed

into a look-ahead computation, thus allowing computations in column k to be done in

parallel.

6.2.3 Look ahead Computations

The feedback in a recursive algorithm often destroys the opportunity to pipeline or

parallelize the execution. Consider a first order recursion:

Tk = ak−1 ⊗ Tk−1 ⊕ uk−1 ∀k : 1 ≤ k ≤ N (6.9)

The dependence Tk → Tk−1 enforces the sequential execution of the computations.

However, in order to obtain the parallelism, look-ahead computations can be defined as an

algorithmic transformation to express Tk+m in term of Tk, without directly depending

on the values of Tk+m−1 . . . Tk+1. This algorithmic transformation is based on the

properties (commutativity and distributivity) of the algebraic functions involved, i.e.

6.3 – Related work 83

(⊕,⊗). Fettweis et al. [FTM90] define the algebraic structures amenable to look-ahead

computations. Fettweis and Meyr [FM89],[FM91] also apply a similar concept to a

simplified Viterbi decoder and show the possibility of look-ahead computations in the

presence of add/compare/select recursions in the decoder.

In this chapter, we propose a similar look-ahead computation architecture for a more

complex Viterbi decoder. The computation Di[k] in (6.3) holds a similar auto-dependency,

as in the recursion in (6.9), and the algebraic functions involved in the computation, sum

and max, also hold the above mentioned algebraic properties. This makes (6.3) suitable

for a look-ahead scheme. Our parallelization strategy is based on transforming the intra-

column dependency of (6.3) into look-ahead computations, as described in Section 6.5.

6.3 Related work

6.3.1 Early Implementations

HMMER has received a lot of attention from the high performance computing community,

with several implementations either for standard parallel machines or for more heteroge-

neous architectures [WBKC09a, WBC05, LPAF08]. In the following we will focus on

hardware implementations targeting ASIC or FPGA technologies.

Simplified Viterbi Implementations: Early proposals [MBC+06, OSJM06, BVK08,

JLBC07] of hardware accelerators for profile-based similarity search considered an over-

simplified version of the algorithm in which the feedback loop was ignored, as shown in

Figure 6.2. The simplification was based on the idea that the feedback loop has a relatively

limited impact on the actual quality of the algorithm. The removal of the feedback loop,

removes the inter-column dependency in the Viterbi algorithm and allows the column-wise

computations to be overlapped through loop skewing, as discussed in Section 5.3.5. The

feedback-free recurrence can be computed in N+L steps, compared to N×L steps for the

original recurrence, where N is the size of model and L is the length of query sequence.

However, as discussed in section 6.2.2, feedback loop detects multiple hits of a single motif,

the feedback-free algorithm generates false-negative results and reduces the sensitivity of

the original algorithm.

Exact Viterbi Implementations: Since the presence of a feedback loop in the original

Viterbi algorithm does not allow computation of several cells to be done in parallel, the

exact implementation of Viterbi will be considerably slow. However, researchers have taken

advantage of the fact that during each call to HMMER, a full database of independent

input sequences need to be processed. Thus, acceleration can be done by computing several

instances of Viterbi in parallel.

The first hardware implementation of the exact algorithm was proposed by Oliver et

al [OYS07]. By aligning several input sequences independently on separate PEs. They

were able to fit 10 independent PEs on a Xilinx Spartan-3 board. However, one issue

84 Extracting Parallelism in HMMER

M0
(start)

I0

M1

I1

D1

M2

I2

D2

M3

I3

D3

M4

I4

D4

M5
(end)

Figure 6.2: A simplified HMM model, without the feedback loop from end to the start of
the model [OSJM06].

with their parallelization scheme is that all PEs need to access the same emission cost

look-up tables for eM (Seqi, k) and eI(Seqi, k), see Equation (6.1) and (6.2). On the

other hand, for each cycle, all PEs need to access only a subset of the tables, where

the subset is defined by the unit increment in k and the random value of the sequence

character, Seqi. Since the number of amino-acid alphabets is 24, the size of the subset is

eM (0 . . . 23, k) and eI(0 . . . 23, k). Oliver et al. addressed this problem by implementing a

24-element wide data bus, and each PE selects its cost value using a 24-to-1 multiplexer.

This solution suffers from severe scalability issues, and makes it impractical for massively

parallel implementation.

Another approach was proposed by Derrien and Quinton [DQ07]. It also uses the fact

that many instances of the Viterbi algorithm can be processed in parallel. However,

the parallelization scheme (based on polyhedral space-time transformations) is more

sophisticated than that of Oliver et al. [OYS07]. In their approach, each PE operates on

all input sequences, instead of each PE operating on independent sequence. The proposed

architecture does not need to access a shared memory for calculating the transition costs,

since the emission tables are partitioned among the PEs and each PE requires to access

only a subset of the emission table.

Figure 6.3 shows a space-time mapping for an exemplary architecture, with M = N = 4

and L = 5. The computational dependencies of the Viterbi algorithm are on i-k plane and

there is no dependency on the j axis (due to independent sequences). The space-time map

shows an implementation of 2 PEs on the k-axis, where the black dots correspond to the

iteration sub-space allocated to first PE. The first PE processes by starting 2 computations

of the HMM model for every input sequence, and thus only needs to access a sub-set of the

emission tables, i.e. eM (0 . . . 23, 0 . . . 1) and eI(0 . . . 23, 0 . . . 1), which is implemented as a

separate RAM being accessed by only one single PE. The solid arrows show the iteration

execution order of a single PE. In this approach, each PE operates on interleaved input

sequences, compared to Oliver et al. where each PE operates on independent sequence. It

can be seen that sequence interleaving allows a delay of one cycle between the dependent

6.3 – Related work 85

(0,0,0)

j

i

k

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

t = 5

t = 7

(0,0,M)

(L,0,0)

(0,N,0)

(L,N,0)

(L,N,M)

(0,N,M)

(L,0,M)

Figure 6.3: Pipelined space-time mapping proposed by Derrien and Quinton [DQ07]: Here
L denotes the length of query sequence, M the size of HMM model, and N the number
of independent sequences being processed in parallel. The blue arrows show the execution
order of operations on a single PE. [Courtesy [DQ07]]

computations and hence helps to pipeline the datapath. By changing the execution order,

the delay can be adjusted flexibly.

The proposed approach easily handles resource constraints by controlling the number of

PEs in the architecture, and allows the datapath pipeline to be precisely tuned. However,

the scalability of this approach is still somewhat limited, as the local storage requirements

of the hardware implementation can be prohibitive. For example a 64-element processing

array with a 6 stage pipelined datapath would need more than 500 embedded memory

blocks on a FPGA.

6.3.2 Speculative Execution of the Viterbi Algorithm

More recently, an approach for hardware acceleration based on speculative execution was

proposed by Takagi et al. [TM09] and Sun et al. [SLG+09]. Their idea is to take advantage

of properties of the max operation, so as speculatively ignore the dependency over variable

Bi in (6.1), since it very seldom contributes to the actual computation of Mi+1[k], Di+1[k]

and Ii+1[k]. Ignoring this dependency results in a feedback-loop free algorithm, which is

very easy to parallelize.

Whenever it is observed that the actual value of Bi would have contributed to the

actual value of Mi+1[0], all computations related to columns i′ such as i′ > i are discarded

(flushed) and the computation must be re-executed so as to enforce the original algorithm

dependencies, as shown in Figure 6.4. To do so, Takagi et al. propose a misspeculation

detection mechanism which stores in a buffer the values of M,D and I computed at the

86 Extracting Parallelism in HMMER

Cycles

Profile Size

N

Mi[0]

Mi[N]

N computations can be
executed in parallel.

A mis-speculation
detected

Computations to be discarded, due to
mis-speculation detection

N Cycles
Mi+1[0]

Mi+1[N]

Resuming the computation

Mi’[0]

Mi’-N[N]

Figure 6.4: Speculative execution of the Viterbi algorithm

beginning of the new column (together with their inputs) until the actual value of B is

available (that is Nprof cycles later). The true values of M,D and I are then recomputed,

and if they differ from the previous one, it means that the speculation was wrong, and

that the previous results must be discarded.

The main issue of such an approach is to estimate the probability and the cost of a

misprediction. In this solution, whenever a misprediction occurs, the architecture has been

running useless calculations during last N cycles. Assuming a misspeculation probability

p, the execution overhead for a sequence of S amino-acid bases can then be written as :

e =
S +N

S +N + pSN

As noticed by Takagi et al, the average observed value for p is 0.0001, which leads to

an efficiency that vary between 94% and 99% depending on the depth of the speculation.

It can also be observed that the overhead is more important for an architecture exhibiting

a large level of parallelism (the depth of the speculation being deeper), and for long

sequences matched against small profiles, for which the probability of observing a repetition

is cumulative with the sequence size. As an example Takagi et al. report cases where HMM

profile characteristics lead to a poor efficiency (performance degradation by 85 %).

Very recently, Eusse Giraldo et al. [EGMJdM10] proposed another approach. They

used a simplified (without J state) Viterbi kernel as a filter and pass only sequences with

significant scores to original Viterbi kernel along with a divergence algorithm [BBdM08]

data. The divergence algorithm data reduces the number of cells that must be calculated

with the original Viterbi kernel by providing limits of the alignment region. The alignment

region defines where the alignment starts and ends. This approach yields an acceleration

of 5.8 GCUPS (Giga Cell Updates Per Second).

However, the use of a simplified Viterbi algorithm as a filter may not detect multiple hit

alignments. As the filter also specifies the alignment region to the original Viterbi kernel,

the original kernel will not try to align sequence segments lying outside the alignment

region, and this may produce false negatives. The paper [EGMJdM10] does not discuss

6.3 – Related work 87

MSV filter P7Viterbi filter
P7Forward

score
100%

4M op. per base 25M op. per base 25M op. per base

<2% 1%

75% exec. time 22% exec. time 3% exec. time

(a) HMMER3 execution pipeline, with profiling data

x x

E
M1

S T
M2 M3 M4 M5

N CB

J

x

1.0 1.0 1.0 1.0 1.0

1.0

tBMk

tNB

tNN
tCT

tCC

tEC

tEJ
tJJtJB

(b) MSV Filter [Edd11b]

Figure 6.5: HMMER3 execution pipeline and MSV filter

issues with the multiple hit alignments, and how this is handled inside the simplified

Viterbi filter.

6.3.3 GPU Implementations of HMMER

The HMMER search was implemented on graphics processing units by Horn et al. [HHH05]

as Claw-HMMER and later by Walters et al. [WBKC09a]. The overall speed up reported

by Walters is 15 to 35× on a single NVIDIA 8800 GTX Ultra GPU in comparison with

a software implementation. The GPU implementation lacks a very high speedup due to

extensive global memory access by P7Viterbi algorithm.

A very recent implementation on GPU by Ganesan et al. [GCBT10] accelerates the

HMMER by breaking the chain of dependencies inside P7Viterbi. The reported speed-up

is 100+ times on 4 Tesla C1060 GPUs in comparison with a software implementation

of HMMER2. They converted the vertical cell dependency Di[k] −→ Di[k − 1] into

dependencies between equal sized chunks of a column. During the first stage, the headers of

the chunks are updated serially, then the intermediate values of each chunk are computed

in parallel. Ganesan et al. follow an almost similar strategy as we do for breaking this

dependency in computation of D, but we convert this dependency into well-known parallel

prefix networks. The parallel prefix network topologies provide the freedom to compromise

between delay and area costs according to the architecture requirement, as shown in later

Sections.

6.3.4 HMMER3 and the Multi Ungapped Segment Heuristic

The new version of HMMER, which is available for use now, is a radical rewrite of the

original algorithm, with a clear emphasis on speed-up. The most noticeable difference in

this new version lies in a new filtering heuristic (called Multi Ungapped Segment Viterbi)

which serves as a prefiltering step, and MSV is executed before the standard P7Viterbi in

88 Extracting Parallelism in HMMER

the HMMER pipeline as illustrated in Fig. 6.5. This algorithmic modification alone helps

improving the speed-up by a factor of 10.

It is important to note that the MSV still holds the feedback loop (E → J → B), which

restricts to start computing Mi+1[k] until Mi[k] is finished. But as compared to Fig. 6.1,

the computations of Di[k] and Ii[k] are removed and hence Mi[k] no longer depends on

these computations, which gives an opportunity to accelerate the computation.

Table 6.1: Performance of HMMER in GCUPS on a Quad-core Intel Xeon machine

HMMER
HMM Profile Size N

61 84 119 255

V2 ≈ 0.03 ≈ 0.03 ≈ 0.03 ≈ 0.03

V3-noSSE 0.3 0.26 0.3 0.37

V3-SSE 3.4 4.3 6.7 10.3

In addition to this filtering step, both the P7Viterbi and the MSV algorithms have

also been redesigned to operate on short wordlengths (8 bits for MSV and 16 bits for

P7Viterbi), so as to fully benefit from the SIMD extensions (SSE, Altivec) available on

all Intel/AMD CPUs. The SSE allows up to 16 simultaneous operations for MSV and 8

operations for P7Viterbi, to be computed using 128-bit vectors. Similarly, row-based-shift

and horizontal-max operations reduce expensive data shuffling by aligning the data for the

diagonal dependencies and performing the max operations for the multiple values stored

within a single register respectively. These optimizations enable the new HMMER3 to

run about as fast as BLAST, slightly faster than WU-BLAST and somewhat slower than

NCBI BLAST [Edd09].

Table 6.1 shows the performance in GCUPS for the PfamB.fasta database on a Quad-

core Intel Xeon machine. These results show that the combination of the MSV pre-filtering

stage with SIMD has a huge impact on the overall software performance, which is improved

by a factor of more than 100, and makes most previous FPGA based accelerations slower

than any recent Quad-core CPU machine, as shown by Table 6.2.

Table 6.2: Reported average performance for previous FPGA implementations of
HMMER2

Min GCUPS Max GCUPS

Simplified Viterbi Implementation

T. Oliver [OSJM06] 5.3

Benkrid [BVK08] 5.2

Exact Viterbi Implementation

T. Oliver [OYS07] 0.7

Derrien [DQ07] 0.64 1.8

Speculative Viterbi Implementation

Takagi [TM09] 0.78 7.38

Y Sun [SLG+09] 0.28 3.2

6.4 – Rewriting the MSV Kernel 89

6.3.5 Accelerating the Complete HMMER3 Pipeline

As shown in Fig. 6.5, because the MSV algorithm is used as a prefiltering step, the

P7Viterbi algorithm still contributes in a non-negligible way to the execution time. In

other words, significantly improving the global execution time cannot be done by only

accelerating the MSV kernel alone, and there is still a need for efficiently accelerating the

P7Viterbi algorithm.

In the following section we propose to rewrite both MSV and P7Viterbi algorithms to

make them amenable to hardware acceleration. We do so by using a simple reformulation

of the MSV equations to expose reduction operations, and by using an adaptation of

the technique proposed by Gautam and Rajopadhye [GR06] to detect scans and prefix

computations in P7Viterbi. This exposes a new previously unknown level of parallelism

in both algorithms. We use the V3-SSE results in Table 6.1 as a baseline for performance

comparison with our implementation.

6.4 Rewriting the MSV Kernel

As mentioned earlier, the main computation in the MSV kernel is a dynamic programming

algorithm that follows the standard algorithmic technique of filling up one data table

(called Mi[k] in this chapter with i as the row index, and k as the column index) together

with some other auxiliary variables. The values of the table entries are determined from

previously computed entries (with appropriate initializations) using the following formulas:

Mi[k] = MSC[k] + max

{
Mi−1[k − 1]

Bi−1 + tBMK

(6.10)

Ei = max
k

(Mi[k]) (6.11)

Ji = max(Ji−1 + tloop, Ei + tEJ) (6.12)

Ci = max(Ci−1 + tloop, Ei + tEC) (6.13)

Ni = max(Ni−1 + tloop,−∞) (6.14)

Bi = max(Ni + tmove, Ji + tmove) (6.15)

It can be observed that the computation of Mi has a diagonal dependency for column

Mi−1 and Bi, where Bi depends on all values of Mi−1. In other words, no computation for

column Mi can start, before all computations for the column Mi−1 are computed, which

gives a column-wise sequential execution to the algorithm.

On the other hand, all values of a given column Mi can be computed in parallel.

Since the computation of Ei consists of a max reduction operation, this can be realized

using a max tree computation, as shown in Fig.6.6, thus reducing the latency of the MSV

architecture from O(N) to O(log2N).

90 Extracting Parallelism in HMMER

Mi[0]
Mi[1]

Mi[7]Mi-1[7]

Mi-1[0]
Mi-1[1]

Max tree

Dataflow graph for ith stage (N=8)

Max

Max

Max

Max

Max

Max

Max

Max

Ei

Bi-1

+

+

+

+

+

+

+

+

Msci[0-7]

Figure 6.6: Dataflow dependencies for one stage of the MSV filter (N = 8) algorithm after
rewriting

6.5 Rewriting the P7Viterbi Kernel

As shown in the previous Section, it is easy to rewrite the MSV algorithm recurrence

equations so as to expose parallelism in the form of a simple max-reduction operation.

In this Section, we show how it is also possible to use a similar (but more complex)

transformation on the P7Viterbi kernel. Here again, the goal is to get rid of the current

inherent sequential behavior caused by the so-called feedback loop. To do so, we replace

the accumulation along the k index for one of the variables by a prefix-scan operation

and replace the feedback loop by a simple max-reduction operation. This transformation

leads to a modified dependence graph which is much better suited to a parallel hardware

implementation. In the rest of the chapter, we express control states collectively as X, to

emphasize the main part of the model:

Mi[k] = fM (Mi−1[k − 1], Ii−1[k − 1], Di−1[k − 1], Xi−1) (6.16)

Ii[k] = fI(Mi−1[k], Ii−1[k]) (6.17)

Di[k] = fD(Mi[k − 1], Di[k − 1]) (6.18)

Xi = fX(max
k

(Mi[k] + E[k])) (6.19)

The above equations are a simplified form of equation (6.1)-(6.4), highlighting depen-

dencies on dynamic computations. The key observations concerning P7Viterbi formulas

(6.16-6.19) are that

− there is a chain of dependences in the increasing order of k in computing the values

of D in any column;

− to compute the X for any column, we need all the values of M of that column, each

6.5 – Rewriting the P7Viterbi Kernel 91

of which needs a D from the previous column;

− Finally, the value of X of a column is needed to compute any M in the next column.

Because of above the observations, there seems to be an inherent sequentiality in the

algorithm, as noted by all previous work on this problem.

6.5.1 Finding Reductions

We now develop an alternate formulation of equations (6.16)-(6.19) so that there is no

such chain of dependences, thus enabling scalable parallelization of the computations on

a hardware accelerator.

More specifically, we show that equation (6.18) computing D can be replaced by a

different equation in which such dependences either do not exist, or can be broken through

well-known techniques. For our purposes, we shall focus on the function fD of equation

(6.18), which is defined more precisely as follows:

Di[k] =

{
k = 1 : Mi[0] + TMD[0]

k > 1 : max(Di[k − 1] + TDD[k],Mi[k − 1] + TMD[k − 1])
(6.20)

In order to emphasis the self-dependency of Di, we can represent other variables as inputs,

and thus equation (6.20) can be abstracted as follows:

Di[k] =

{
k = 1 : a0

k > 1 : max(Di[k − 1] + bk−1, ak−1)
(6.21)

Now, if B is zero, the equation is a simple scan computation (also called prefix

computations) Di[k] =
k

max
i=1

ai.

How to efficiently and scalably parallelize such scan computations is well-known [LF80].

However, if B 6= 0, the solution is not at all obvious. We show below how to obtain a

scan-like structure for this case. If we expand out the individual terms, we see that:

D[1] = a0

D[2] = max(a0 + b1, a1)

D[3] = max(max(a0 + b1, a1) + b2, a2))

= max(a0 + b1 + b2, a1 + b2, a2)

D[4] = max(a0 + b1 + b2 + b3, a1 + b2 + b3, a2 + b3, a3)

...

D[k] = max(a0 + b1 + b2 + b3 . . . bk−1, a1 + b2 + b3 . . . bk−1,

a2 + b3 . . . bk−1, . . . ak−2 + bk−1, ak−1)

92 Extracting Parallelism in HMMER

The last term can be written more visually as

D[k] =max

ak−1,max

b1+b2+b3+. . .+bk−1

b2+b3+. . .+bk−1

b3+. . .+bk−1
...

bk−1

+

a0

a1

a2
...

ak−2

or more compactly:

D[k] = max

ak−1, k−1
max
j=1

aj−1 +
k−1∑
i=j

bi

 (6.22)

In (6.22), one can easily identify a reduction operation over vector b and a max-prefix

over this reduction operation. But the reduction operation still depends on the inner loop

index and we would like to get rid of it. To do so, we add and subtract a same term which

does not effect the computation and yields following expression:

D[k] = max

ak−1, k−1
max
j=1

aj−1 +

k−1∑
i=j

bi +

j−1∑
i=1

bi −
j−1∑
i=1

bi

The term
k−1∑
i=1

bi =
k−1∑
i=j

bi +

j−1∑
i=1

bi is independent of j, so it can be moved out of the max:

D[k] = max

(
ak−1,

(
k−1∑
i=1

bi +
k−1
max
j=1

(
aj−1 −

j−1∑
i=1

bi

)))

Let b′j−1 =

j−1∑
i=1

bi. We note that b′j−1 is a scan of the b input, so

D[k] = max

(
ak−1, b

′
k−1 +

k−1
max
j=1

(aj−1 − b′j−1)
)

= max

(
ak−1, b

′
k−1 +

k−1
max
j=1

a′j−1

)
(6.23)

where a′j = aj − b′j is the element-wise difference of a and b′.

Now, the inner term is a max-scan of the a′ vector. Hence the D[k], as specified in

(6.23), can be computed in parallel using the following steps.

6.5 – Rewriting the P7Viterbi Kernel 93

Max selection tree

 Max Prefix (Brent-Kung)

Dataflow graph for ith stage (N=8)

f7

f6

f5

f4

f3

f2

f1

f0

h7

h6

h5

h4

h3

h2

h1

h0Di-1,0

Di-1,1

Xi

Xi-1

Di-1,6

88

Di-1,7

Ii-1,0

Ii-1,1

Mi-1,7

Ii-1,7

Mi-1,0

Mi-1,1

8

Di,0

Di,1

Di,7g7

g6

g5

g4

g3

g2

g1

g0 Ii,0

Ii,1

Mi,0

Mi,1

Mi,7

Ii,7

Ii,7

Max selection tr

Di,7
Figure 6.7: Dataflow dependencies for one stage of the P7Viterbi (N = 8) algorithm after
rewriting. The dependency Di,k −→ Di,k−1 in equation (6.3) is converted to a max-prefix
block, reducing the critical path from O(N) to O(log2N) operations.

Step 1. Compute, b′ the sum-prefix of the array b i.e.

j−1∑
i=1

TDD[i], Eq. 6.3. Note that in the

Viterbi algorithm, b′ needs to be computed only once since TDD is an input.

Step 2. Compute a′, the element wise subtraction of b′ from a, where aj−1 = Mi[j − 1] +

TMD[j − 1], Eq. 6.20.

Step 3. Compute a′′, the max-prefix on a′. The max-prefix computation can be parallelized

perfectly and scalably.

Step 4. Add b′ element wise to a′′ and compare (again element wise) the result with the a

input, retaining the larger one. This yields D, the desired answer.

We have rewritten the dependency Di[k] −→ Di[k − 1], and now the vector D can be

computed in parallel by the above steps, where the computation path is converted into a

max-prefix network rather than a strict intra-column dependency.

6.5.2 Impact of the Data-Dependence Graph

To help the reader understanding the benefits of this rewriting transformation, we provide

in Fig. 6.7 an illustration of the data dependence flow in the rewritten algorithm for a

small problem size (profile size N = 8). In this dataflow graph, functions f
k
,g

k
and h

k
are

defined as follows :

94 Extracting Parallelism in HMMER

fM (w, x, y, z) = max
4

(w + bsck, x+ TMMk, y + TDMk, z + TIMk) +msck[dsqi])

gI(x, y, z) = max
2

(x+ TIIk, y + TMIk) + isck[dsqi]

hD(x, y) = max
2

(x+ TMDk, y + y)

In these expressions max and sum correspond to saturated (w.r.t to −∞) max and

sum operations. It can be observed that there is no longer a chain of dependencies along

the vertical axis in the data-flow graph, and that the longest critical path is now set by the

depths of the parallel max-tree and of the parallel max-prefix blocks, which is O(log2(N)).

Another consequence is that the update operations for Mi,k, Ii,k and Di,k can be executed

in parallel for all values of k in the domain 0 ≤ k ≤ N . In the next Section, we briefly

introduce a wide class of prefix computation and discuss various existing prefix topologies,

that can be adopted after rewriting.

6.6 Parallel Prefix Networks

As mentioned in Section 6.5.1, step 3, the rewritten version of the P7Viterbi algorithm

exhibits a max-prefix pattern. Prefix computation is a very general class of computations

which can be formally defined as follows : given an input vector xi with 0 ≤ i < N we

define its ⊕-prefix vector yi as :

yi =
i⊕

k=0

xk = x0 ⊕ x1 ⊕ . . .⊕ xi

where ⊕ is a binary associative operator (and possibly commutative, see [Kno99] for a

more detailed definition). Because binary adders fall into this category and since adders

form one of the most important building blocks in digital circuits, there is a wealth of

research going back almost 50 years dealing with fast (i.e parallel) implementations of

prefix adders [LF80, BK82, KS73, HC87, Skl60] using various interconnection networks

topologies. Blelloch [Ble90] presents a detailed list of parallel prefix applications in various

domains, such as string comparison, polynomial evaluation, different sorting algorithms,

solving tri-diagonal linear system and many others.

Figure 6.8 shows some popular prefix network topologies. One of the most important

aspects of these network topologies is that they allow the designer to explore the trade-off

between speed (i.e. critical path of the resulting circuit), area (number of operators used

to implement the prefix operation), and other metrics such as fan-out or wiring length. A

comprehensive classification, describing the trade-offs in existing network topologies, has

been done in [Har03].

For example, a Brent-Kung [BK82] network computes the prefix in 2 log2N − 1 stages

with 2(N − 1) − log2N operators, while a Sklansky network implements a faster circuit

6.6 – Parallel Prefix Networks 95

Han Carlson

(a) Brent Kung

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

MSV
filter

P7Viterbi
filter

P7Forward
score

100%

4M op. per base 25M op. per base 25M op. per base

5% 1%

75% exec. time 22% exec. time 3% exec. time

Kogge-Stone

(c) Kogge-Stone

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

(d) Han Carlson

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

(b) Sklansky

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

(b) Ladner-Fischer

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0(a) Brent-Kung

Han Carlson

(a) Brent Kung

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

MSV
filter

P7Vite
filte

100%

4M op. per base 25M op. p

5%

75% exec. time 22% exec

Kogge-Stone

(c) Kogge-Stone

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

(d) Han Carlson

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

(b) Sklansky

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

(b) Ladner-Fischer

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

(b) Sklansky
Han Carlson

(a) Brent Kung

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

MSV
filter

P7Vite
filte

100%

4M op. per base 25M op. p

5%

75% exec. time 22% exec

Kogge-Stone

(c) Kogge-Stone

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

(d) Han Carlson

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

(b) Sklansky

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

(b) Ladner-Fischer

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

(c) Han Carlson

Han Carlson

(a) Brent Kung

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

MSV
filter

P7Vite
filte

100%

4M op. per base 25M op. p

5%

75% exec. time 22% exec

Kogge-Stone

(c) Kogge-Stone

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

(d) Han Carlson

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

(b) Sklansky

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

(b) Ladner-Fischer

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

(d) Kogge-Stone

Han Carlson

(a) Brent Kung

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

MSV
filter

P7Viterbi
filter

P7Forward
score

100%

4M op. per base 25M op. per base 25M op. per base

5% 1%

75% exec. time 22% exec. time 3% exec. time

Kogge-Stone

(c) Kogge-Stone

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

(d) Han Carlson

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

(b) Sklansky

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

(b) Ladner-Fischer

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

(e) Ladner-Fischer

Figure 6.8: Examples of parallel prefix implementation for N = 16

(log2N stages) at a price of an increase in area (N2 log2N operators). Similarly, Han-

Carlson network provides a trade-off between Brent-Kung and Kogge-Stone for the delay

and wiring.

By rewriting the algorithmic dependencies of P7Viterbi, we are able to express a naively

sequential computation in the form of a max-prefix computation. This rewriting task not

only enables us to compute it in parallel, but it also provides us with the ability to utilize

the characteristics of existing various prefix network topologies and to explore Speed/Area

trade-offs. From Table 6.3, we can see that, Di can now be computed in (log2N) to

(2 log2N + 1) cycles, instead of N cycles, where the cost range from (2N − 2− log2N) to

(N log2N −N + 1) operators.

In our case, since the max-prefix computation lies on the critical path, as shown in

Figure 6.7, a faster prefix network is desirable. To cause a minimum delay, but a minimal

area consumption is also crucial, due to the limited resources of the target platform.

96 Extracting Parallelism in HMMER

Table 6.3: Characteristics of various parallel-prefix networks

Method Delay Cost

Sklansky[Skl60] log2 N
N
2

log2 N

Ladner-Fischer[LF80] log2 N + 1 N
4

(log2 N − 1) + N

Kogge-Stone [KS73] log2 N N log2 N −N + 1

Brent-Kung [BK82] 2 log2 N − 1 2N − 2 − log2 N

Han-Carlson [HC87] log2 N + 1 N
2

log2 N + N
4

Hence, it is be interesting to investigate FPGA-based implementations of different prefix

topologies and to integrate the most suitable one to our design. In the next chapter, we

present several implementations of these network topologies for different size of N , we

compare their performance on FPGA, and select one of them, after hardware mapping

optimizations, for our final implementation.

6.7 Conclusion

HMMER is a widely used tool in bioinformatics for sequence homology searches. The data

dependencies of HMMER kernels, namely MSV and P7Viterbi, lead to a pure sequential

execution. All previous attempts to parallelize HMMER either exploit other sources of

parallelism such as independent calls to the kernel functions, simplify the algorithm to

approximate the computation, or use other techniques such as speculation.

In this chapter, we have proposed an original parallelization scheme for the new

HMMER3 profile based search software, which leverages on a rewriting of the compute-

intensive kernels inside HMMER, in order to transform the intra-column dependencies

into reduction and prefix scan computation patterns without modifying the semantic of

the original algorithm. The modified algorithm allows us to exercise the plenty of research

efforts already done in the domain of parallel prefix networks, to explore speed and area

trade-off, and to implement a faster HMMER application.

7
Hardware Mapping of HMMER

The rewritten version of MSV and P7Viterbi in Chapter 6 exposes a significant amount of

parallelism. However, the feed-back loop dependency still exists and we cannot start the

computation of column i + 1, before finishing all computations of current column i. The

critical path is shortened to O(log2N) from N , but for larger value of N , the delay can

slow-down the circuit.

In this chapter, we discuss the hardware implementation of the rewritten algorithms

and we present various implementation schemes. Specifically, this chapter shows the

following contributions.

− First, we propose several fine-grain parallelization strategies for efficiently imple-

menting this improved algorithm on an FPGA-based high performance computing

platform and we discuss the performance that we obtain.

− Besides exploring fine-grain parallelism opportunities inside each computational

kernel independently, we propose a system-level design approach, where the

computational kernels are connected in an execution pipeline. We implemented

these designs and present speed-up results.

We propose two system-level implementations strategies.

− A straightforward pipeline strategy that connects the computation kernels (MSV

and P7Viterbi) through a filter. The coarse-grain parallelism is employed through

multiple independent pipelines.

− The second pipeline strategy utilizes more efficiently the filtering characteristics. We

implement a single a aggregated pipeline, instead of several disconnected pipelines,

and enables load balancing throughout the execution path, among several parallel

pipelines.

The profile size for an HMMER database may vary between 50 to 650, and such differences

in profile sizes cause a performance degradation due to the fixed size of the hardware design.

97

98 Hardware Mapping of HMMER

We handle this issue by creating a library of preexisting configurations and by loading the

optimal configuration for a given profile size.

This chapter is organized as follows. Section 7.1 presents various hardware map-

ping opportunities. Section 7.2 discusses how various hardware mapping techniques

are implemented through High-Level Synthesis tool. In Section 7.3 we present the

speed/area performance results for each individual blocks and also for our system-level

implementations. Conclusion and future work directions are drawn in Section 7.4.

7.1 Hardware Mapping

Even though the rewritten versions of both the MSV and P7Viterbi algorithms exhibit

a significant amount of hidden parallelism, deriving an efficient architecture from the

modified dataflow graph is not straightforward. In this section we address the different

challenges involved in this architectural mapping. We first start by discussing efficient

hardware implementations of parallel prefix operations as needed by P7Viterbi, and we

present two transformations (namely C-Slow and tiling) that we use to improve the

architecture efficiency.

7.1.1 Architecture with a Single Combinational Datapath

It can be easily seen from Figure 6.7 and Figure 6.6, that in both MSV and P7Viterbi, it

is not possible to pipeline the execution of consecutive stages —all the results of the ith

stage are needed before any value in the (i+1)th stage can be computed.

As a consequence, and in spite of the fact that we replaced in both cases the initial

chain of dependence of O(N) operations by a chain of O(log2(N)), large values of N may

induce a long critical path, which could lead to a poor clock frequency.

7.1.2 A C-slowed Pipelined Datapath

To obtain a datapath with better clock speed, pipelining is always an adequate choice.

Pipelining a datapath without feedback loop results in fast and efficient designs. However

it becomes ineffective when there is a feedback loop in the pipelined datapath. Figure 7.1a

illustrates this situation. One can observe that the pipeline is never completely filled, due

to the dependence of the logic block ’A’ over results of the logic block ’C’. A new sample

waits until the results of all previous sample are calculated, hence only one logic block is

active at any clock cycle.

As the HMMER hardware will be always executed for a set of independent sequences,

a wise choice is to input interleaved sequences to the pipeline, after slowing down the

pipeline-rate by a factor of C. The resulting architecture is shown in Fig.7.1b. This

method costs extra registers (i.e. (C−1)×stages). But in return, our architecture becomes

as efficient as a normal pipelined architecture without a feedback loop. The same solution

7.1 – Hardware Mapping 99

A B C

A A A
B B B

C C C

A B C

A A A A A A A A A
B B B B B B B B

C C C C C C C

A. Pipelining Without C-Slow

B. Pipelining With C-Slow

Single input data stream
Cycles

CyclesMultiple independent input data stream

(a) Pipelining without C-slow: The pipeline with a single input data stream and a feedback loop from
end to the start will not be completely filled at any time instance due to dependency on previous
results and at each cycle only one logic block will be active.

A B C

A A A
B B B

C C C

A B C

A A A A A A A A A
B B B B B B B B

C C C C C C C

A. Pipelining Without C-Slow

B. Pipelining With C-Slow

Single input data stream
Cycles

CyclesMultiple independent input data stream

(b) Pipelining with 3-slow C-slow: In presence of a feedback loop in a pipeline, several (precisely
equal to number of pipeline stages inside the feedback loop) independent interleaved input data
streams make efficient use of the pipeline hardware. Now all logic blocks are active at each cycle.

Figure 7.1: Impact of pipelining with C-slow in presence of a feedback loop

to improve the throughput of the hardware implementation has been used by Derrien and

Quinton [DQ07], and also by Oliver et al. [OYS07].

On a loop representation of such a calculation, this transformation amounts to add

an additional outer loop iterating over independent instances of the algorithm, and then

perform a loop interchange so as to move this parallel outer loop to the innermost level

and to implement the multiple independent instances on a pipelined hardware in parallel.

Using this idea, and assuming that S independent instances are to be interleaved, the

ith stage only depends on the computation that was executed i−S stages ago. This extra

delay can then be used to pipeline the stage execution, as depicted in Fig. 7.2a.

This of course includes the use of additional memories, as we must replicate all

registers/memories in the architecture; but because the critical path remains O(log2N),

we only need a reasonably small slowing factor, S, to achieve the maximum throughput

(as compared to S ≈ O(N) in the approach of Derrien and Quinton).

7.1.3 Implementing the Max-Prefix Operator

We have shown in the previous chapter that the max-prefix computation is part of the

critical path. Although we need a fast network to reduce this critical path, resource

minimization is also crucial in our case, since a smaller kernel block allows one to

accommodate more coarse grain parallelism). It would be very interesting to see how much

a faster network, such as Sklansky or Kogge-Stone, can speed up our system, and in what

manner a slow network, such as Brent-Kung, helps to reduce the resource consumption.

Since the presence of a C-Slow pipelined architecture allows also the prefix network to

be pipelined, we can hide the delay caused by the extra cycles required by a slow prefix

network and can still benefit from the resource saving offered by such network.

Another important aspect is that most of the algorithmic explorations in the domain

100 Hardware Mapping of HMMER

t

N

p

N
um

be
r o

f p
ro

ce
ss

or
s,

 n
P

 =
 N

S

i x S (i+1) x S

Iteration i Iteration i+1 S: C-Slow Factor

S

(a) Viterbi with C-slow: A Viterbi ker-
nel with S pipeline stages is receiving S
independent interleaved data streams,
to overcome the feedback loop effect.
The required number of processors is
N, the profile size.

S

nP
 =

 M
/T

i x T x S (i+1) x T x S

Iteration i Iteration i+1

t

S: C-Slow Factor
T: Number of Tiles

B. Design with C-Slow + tiling
(b) Viterbi with C-slow and tiling: A Viterbi kernel imple-
mented with S pipeline stages and S interleaved independent
data inputs on N/T processors through tiling.

Figure 7.2: Viterbi kernel implementation with simple C-Slowed pipeline and Tiled C-
slowed pipeline

of prefix networks were in a context where the operator was extremely fine grain—just

a few Boolean gates, as in a half- or full-adder. Despite the fact that our computation

scheme is based on the same prefix patterns as binary adders, our situation differs in two

ways :

− The basic operation is not a bit-level but a more complex word-level operation

(namely max).

− The size of the prefix can be very large (up to 256 input elements) which poses

scalability issues in terms of routing.

To the best of our knowledge there has been no systematic study of FPGA

implementations of prefix computations. One reason is that the typical use of such

circuits would be in adders, where high-speed carry circuits are already provided by FPGA

vendors, and there are few applications that need coarse-grain, word-level operators. For

the HMMER application, we implemented a number of the max-prefix as well as max-

reduce architectures. The performance comparisons are reported later in Section 7.3.2.

7.1.4 Managing Resource Constraints through Tiling

Both MSV and P7Viterbi dataflow graph sizes scale linearly1 with the target HMM profile

size N . For large values of N e.g., N > 100, the straightforward mapping of the complete

dataflow graph to a hardware datapath quickly becomes out of reach of most FPGA

platforms.

However, since the computational pattern of both algorithms exhibits a lot of regularity,

it is possible to apply a simple tiling transformation, which separates each dataflow of size

1The scaling is linear for the Brent-Kung architecture that we implemented. For the Ladner-Fischer
architecture, the resource usage grows as n logn

7.1 – Hardware Mapping 101

MSV filter P7Viterbi

4M op. per base 25M op. per base 25M op. per base
75% exec. time 22% exec. time 3% exec. time

MSV filter P7Viterbi

MSV filter P7Viterbi

P iterations in // P’ iterations in //

D
E

M
U

X

M
U

X

Figure 7.3: System Level Implementation: First Approach

N into P partitions (tiles), each of them calculating N/P consecutive values of the current

column. This transformation, and its impact on the scheduling of the computations is

depicted in Fig. 7.2b. In the case of the MSV, the partitioned datapath should implement

a N/P reduction max operator, whereas in the case of P7Viterbi, we need a N/P max

prefix operation.

As a summary, the characteristics of various designs that we explored are listed in

Table 7.1. It can be concluded that in our case, optimal throughput of O(N/P) can be

obtained by combining tiling and c-slowing techniques.

Table 7.1: A summary of the different architectural solutions, along with their space-time
characteristics

Method Area Tclk Through-put

Combinational O(N) O(log2 N) O(N
log2 N

)

Tiled O(N/P) O(log2
N
P

) O(N/P

log2
N
P

)

C-slow O(N) O(1) O(N)

Tiled + C-slow O(N/P) O(1) O(N/P)

7.1.5 Accelerating the Full HMMER Pipeline

As mentioned in section 6.3.5, improving the global performance requires that both MSV

and P7Viterbi are accelerated in hardware. This can be done by streaming the output of

the MSV to the input of the P7Viterbi, so as to map the complete HMMER3 pipeline to

hardware. Special care must be given to the C-Slow factor of both accelerators, which must

be the same to avoid a complex data reorganization engine between the two accelerators.

In addition, depending on available resources, it is even possible to instantiate several

HMMER3 pipelines in parallel, as illustrated in Fig. 7.3. However, in order to optimize the

hardware resource usage, we must also ensure that the pipeline workload is well distributed

among the hardware accelerators. Let us quantify the total algorithm execution time, Ttotal

when the two task executions are pipelined, we have :

Ttotal = max (Tmsv, αTViterbi) (7.1)

where TMSV and TV iterbi correspond to the average algorithm execution times, and where

α is the filtering selectivity. Optimizing the performance therefore means ensuring that the

102 Hardware Mapping of HMMER

raw performance (in GCUPS) of the P7Viterbi accelerator is able to sustain the filtered

output of the MSV accelerator, that is, its performance should be at least 1/50th that of

MSV, i.e. the filtering percentage of MSV in Fig. 6.5. Using this constraint, we can then

define a set of pipeline configurations, by choosing distinct tiling parameters (i.e. partition

sizes) for P7Viterbi and MSV such that the level of parallelism exposed in MSV is at least

50 times that of P7Viterbi.

7.2 Implementation through High-Level Synthesis

Our design flow leverages high-level synthesis through a commercial C to Hardware

compiler (Impulse CoDeveloper C-to-FPGA) combined with the GeCos [rg] framework,

a semi-automated source-to-source compiler targeted at program transformations for high

level synthesis. The combined use of these two tools allowed us to explore a very large

architectural design space in a very reasonable amount of time. In this section we explain

how various hardware mapping techniques are implemented through Impulse C, we discuss

the challenges raised by the HLS tools and the solutions that we adopted to generate an

efficient hardware design.

We have seen in section 7.1.2 that due to the C-Slow pipelining transformations, we

now have a triply nested loop [j, i, k], instead of the previous doubly nested [i, k] loops, for

MSV and P7Viterbi described in section 6.2.2 and section 6.4. Since index j corresponds

to independent input sequences, this loop can be executed in parallel on independent

PEs. Similarly, as shown in Figure 6.7, calculations along index k can also be executed in

parallel. However for large profile size, the hardware resources may not be sufficient.

7.2.1 Loop Transformations

In our final implementation of MSV and P7Viterbi, we perform a loop interchange to

interleave independent sequences to be processed on the same PE, i.e. [j, i, k] → [i, j, k].

For MSV, we implement a fully parallel loop k. However in the case of P7Viterbi, a

complete parallel implementation of loop k cannot be implemented on a single chip. So

we perform a strip-mining on k axis to transform our loop nest to [j, i, k′, k′′], where k′′

is the parallel loop. After having an inner-most parallel loop, we would like to pipeline

the rest of the loop nest. However, since Impulse C allows only the inner-most loop to

be pipelined, the architecture will experience a repeated behaviour of pipeline start and

end, and since the inner loop count is smaller than the outer one, the pipeline stays most

of the time in the epilog and the prolog state. In order to avoid this situation, we need

to coalesce the rest of the loop nest, [i, j] for MSV and [i, j, k′] for P7Viterbi, to have a

regular and unbroken pipeline (i.e. the prolog of the next outer loop iteration overlaps the

epilog of the current loop iteration). Since Impulse C does not support any of these loop

transformations, we have to apply these transformations through GeCos or by a manual

rewriting of the code.

7.2 – Implementation through High-Level Synthesis 103

7.2.2 Loop Unroll & Memory Partitioning

One big challenge for designing with Impulse C is the limitation of the loop unrolling

feature. Impulse C can only perform full unrolling of the inner-most loop and does not

support a partial unrolling, which is required for P7Viterbi. Although for MSV we can use

this automated full unrolling of loop k, another constraint limits the design efficiency, i.e.

the limitation of Impulse C on memory partitioning. Impulse C can only scalarize an array

completely to variables, and does not support automatic memory partitioning into splitted

blocks or interleaved blocks, as discussed in section 5.3.9. Since HMMER kernels need to

access a lot of profile data, it is not a wise choice to map the profile database on logic

cells, as it also makes the design more complex with muxes to access the right register.

Thus, the limitation on memory partitioning does not allow us to use the automated loop

unrolling and we have to implement both transformations (i.e. loop unroling and memory

partitioning) manually.

7.2.3 Ping-Pong Memories

In our implementation, read/write accesses to memory locations in consecutive cycles

belong to independent input sequences, and hence a data being written in cycle t will be

read in cycle t + S, where S is the slowing factor. These memories are being accessed

in circular manner, and a data read and write do not have any dependency. However,

Impulse C compiler conservatively imposes dependency on such accesses and does not

allow parallel read and write accesses, which will result in an increase in the pipeline rate.

In order to cope with this constraint, we use ping-pong memories where we read and write

to these memories on alternate cycles (i.e. every cycle read from one memory and write to

another and vice versa). The use of ping-pong memories duplicates the required memory

resources, but it also helps to improve the design throughput. On the other hand, since

the C-Slow factor is very small (the size of a memory), the duplication of memories does

not effect heavily the resource management.

7.2.4 Scalar Replication

In a single cycle, if a same memory location is being accessed several times (without any

intermediate write back to the same location), it would be better to store the first read

in a local register and reuse this memory access to avoid any increase memory latency.

The Impulse C compiler does not support automatic scalar replacement of such multiple

memory accesses. We implemented scalar replacement manually, by reading the memory

cell to a register, at first usage, and use this register for later accesses. Similarly multiple

memory write accesses are combined to a single access during the last write operation,

and intermediate operations write to a register.

104 Hardware Mapping of HMMER

7.2.5 Memory Duplication

In presence of a tiled execution of size T , a read/write diagonal dependency results in

reading data sets from location [i, . . . , i + T], computing and writing back to locations

[i+1, . . . , i+T +1], where the location [i+T +1] is accessed during the next cycle to read

the previous data. Hence, a straightforward write operation will corrupt the data. One

solution to this problem can be to duplicate the complete memory and access them in a

ping-pong manner. A better choice is to duplicate only the tile corners, and to perform

the write operation to the duplicated cell, which can update the original corner location

with a delay of one cycle.

7.3 Experimental results

In this section we provide an in-depth quantitative analysis of our proposed architectures,

and we compare their performance with that of a state of the art software implementation

of HMMER3 on a CPU using the SSE SIMD implementation.

Our target execution platform consists in a high-end FPGA accelerator from Xtreme-

Data (XD2000i-FSBFPGA) which has already been successfully used for implementing

bioinformatics algorithms [ACL+09]. This platform contains two Stratix-III 260 FPGAs,

a high-bandwidth local memory (8.5 GBytes/s) and a tight coupling to the host front side

bus through Intel Quick Assist technology, providing sustained a 2 GBytes/s bandwidth

between the FPGA and the host main system memory.

The rest of this section is organized as follows: we first make a quantitative analysis of

speed/area results for the MSV accelerator, then we address the mapping of the max prefix

network implemented on FPGA along with P7Viterbi implementation results. Finally, we

discuss the system-level performance and compare the performance of our approach with

that of an hypothetical, state-of-the-art GPU implementation.

7.3.1 Area/Speed Results for the MSV Filter

Table 7.2 summarizes the area and speed of MSV hardware accelerators for different values

of N and S (the MSV accelerator does not need tiling as for all profile sizes, it fits in the

FPGA). It can be observed, that even though we use a C-to-hardware high-level synthesis

tool, we are able to achieve remarkably high operating frequencies (up to 215MHz). When

compared1 with Table 6.1, these results indicate a speedup for a single accelerator varying

between 3× to 6× depending on the profile size, N .

7.3.2 Area/Speed Results for Max-Prefix Networks

As mentioned in Section 7.1, the P7Viterbi implementation uses a parallel max prefix

scheme, for which many implementations exist. As this computational pattern is at

1This is an rough approximation, as we should also account for the time spent by the software in
P7Viterbi (50% of the total execution time)

7.3 – Experimental results 105

Table 7.2: Speed and resource usage of a single MSV kernel hardware implementation

N C-Slow (S) Logic Util. M9K MHz GCUPS

64 7 10k / 5% 66 / 8% 215 14

128 8 19k / 9% 130 / 15% 201 26

256 9 37k / 19% 258 / 30% 175 45

512 10 69k / 34% 513/60% 160 82

Figure 7.4: Speed/Area results for combinational parallel max prefix implementations on
Stratix-III FPGA

the core of the modified algorithm, we explored several alternative implementations to

experimentally quantify their respective merits with respect to an FPGA implementation.

We used an in-house Java based RTL generator, to generate these network topologies.

The results provided in Fig. 7.4 show that for large values of N , so called fast

implementations of parallel prefix such as Kogge-Stone or Ladner-Fischer provide only

marginal speed improvements with respect to the Brent-Kung architecture. This can

easily be explained by the long wires used in the first two approaches, which make the

routing much more challenging on an FPGA. For our implementation, we decided to use

the Brent-Kung architecture due to its minimal resource utilization and we increased the

speed by pipelining all stages in the network.

7.3.3 Area/Speed Results for the P7Viterbi Filter

Table 7.3 summarizes the area and speed of P7Viterbi hardware accelerators for different

values of N , S and P . It can be observed, that the rewritten P7Viterbi kernel can deliver

quite promising speed with a log2(N) C-Slow factor. By fitting multiple instances of

P7Viterbi on a chip, it can alone (i.e. not using MSV filter) perform better than earlier

implementation of HMMER2, reported in Table 6.2.

106 Hardware Mapping of HMMER

Table 7.3: Performance and area for a Single P7Viterbi implementation

P N Logic Util. M9K MHz GCUPS

8 64 5.8K / 2.8% 69 / 8% 126 1

8 128 6.8K / 3.3% 128 / 14.8% 124 0.99

16 64 10.1K / 4.9% 112 / 13% 119 1.9

16 256 14K / 6.9% 170 / 19.7% 117 1.87

32 256 28.7k / 14% 332 / 38% 112 3.6

Table 7.4: Speed/Area results for our System-Level implementation

N P Logic Util. M9K MLAB MHz GCUPS

64 8 21K / 10% 54 / 6% 27Kb 99 7

64 16 26K / 13% 99 / 11% 29Kb 97 7.6

128 8 31K / 15% 57 / 7% 51Kb 94 12.7

128 16 38k / 19% 105 / 12% 55Kb 93 13

512 8 79K / 39% 675 / 78% 66Kb 89 45.7

Figure 7.5: Speed/Area results for a single HMMER3 pipeline implementation

7.3 – Experimental results 107

7.3.4 System level performance

So far, we have provided area/performance results only for standalone accelerator modules,

which should be integrated together in one or several complete HMMER3 computation

pipelines.

Following the constraints on pipeline workload balancing, and given the resources

available for implementing the accelerator on a chip, we derived a set of pipeline

configurations depending on the target profile size N .

These configurations have parameters (C-Slow factor S, Tiling parameter P) chosen to

maximize the overall performance. The set of parameters for a given value of N in chosen

as follows:

− First, we choose the C-slow factor S to enable fine grain pipelining (i.e. at the

operator level) of the MSV accelerator. The same value is then used for the pipelining

of the P7Viterbi accelerator.

− Second, we choose the tiling size P so that the P7Viterbi accelerator can sustain the

MSV input throughput.

Table 7.4 describes some Quartus place and route data for the pipeline configurations

that we derived through this approach. The results presented correspond to a single

pipeline implementation. These results show that speedups of up to 4.5×, compared to

HMMER V3-SSE in Table 6.1, can be achieved for a single execution pipeline implemented

on one out of the two FPGAs of the platform.

By implementing multiple HMMER3 pipelines we should be able to also improve the

overall speed for smaller profile sizes (e.g. 64 and 128). Indeed, more than 9× speedups

could be achieved compared to our baseline QuadCore SSE implementation for smaller

profile sizes. By using both FPGAs on board, we could double the number of HMMER3

pipelines running on the XD2000i platform. However due to firmware and device driver

limitations, only one of the two FPGAs can be used at a time.

7.3.4.1 Discussion

For now, we followed a typical approach for system-level implementation, i.e. keep all

pipelines independent of each other and connect each MSV block to its own P7Viterbi

block, as shown in Fig.7.3. At the end, results are collected from all P7Viterbi blocks.

However, this approach lacks load balancing after the MSV filters. The initial

demultiplexer distributes sequences evenly between the available MSV blocks, but there

is no guarantee that the following P7Viterbi blocks will also receive the same amount of

inputs to process and this might result in an inefficient use of the P7Viterbi units.

Similarly, while increasing coarse-grain parallelism, a complete HMMER3 pipeline

needs to be instantiated, which might not be possible to fit inside the remaining resources

and will reduce the obtainable speedup, due to under utilization of the resources. Similarly,

for S input sequences and N existing parallel pipelines, each additional MSV unit reduce

108 Hardware Mapping of HMMER

HOST

Data
Reader

Data
Writer

MSV Process
A

MSV Process
B

MSV Process
C

Filter

Filter

Filter

P7Viterbi
Process

R

P7Viterbi
Process

S

Score
MUX

I & C data
I & C

I & C

I & C

I & C

* I&C = Intialization & Configuration

Sequence
DEMUX

Sequence
DEMUX

Sequence
MUX

All data

Sequ
ences

Filtered
 Sequ

ences
Filtered

 Sequ
ences

Score

Score

Score for each sequence

In
te

rl
ea

ve
d

 S
eq

ue
nc

es
In

te
rl

ea
ve

d
 S

eq
ue

nc
es

In
te

rl
ea

ve
d

 S
eq

u
en

ce
s

In
te

rl
ea

ve
d

 S
eq

ue
nc

es

Score for each sequence

Figure 7.6: System level view of a complete HMMER3 hardware accelerator: The figure
shows an HMMER3 pipeline with 5 computation blocks (i.e., 3 MSV blocks communicating
to 2 P7Viterbi blocks). The Sequence DEMUX distributes the interleaved sequences
between computation blocks. The Filter filters out the sequences with scores lower than
the threshold. The Sequnce MUX receives interleaved sequences and outputs un-interleaved
sequences to Sequence DEUMX.

S by S × 1/N(N + 1) load for each MSV, while an additional P7Viterbi may only reduce

.02 × S × 1/N(N + 1) load for each P7Viterbi. Hence, an additional P7Viterbi block is

not as beneficial as an additional MSV block.

In order to solve these issues, we propose a complete redesign at system-level in the

next Section.

7.3.5 A Complete System-Level Redesign

A better way to utilize both available hardware resources and HMMER filtering character-

istics is to couple a larger number of MSV blocks to a smaller number of P7Viterbi blocks,

as shown in Figure 7.6. However, this design requires a complex filtering step, collecting

results and sequences from all MSV blocks, filtering out sequences with results less than

the specified threshold, interleaving the rest of the sequences again and distributing them

to P7Viterbi blocks. We organize this step into three modules: Filter, Sequence MUX

and Sequence DEMUX. A dedicated Filter for each MSV block performs the collection

of results and filtering step and sends filtered out sequences to the Sequence MUX. The

Sequence MUX receives inputs from all Filter blocks, un-interleaves all sequences and

sends serialized sequences to the Sequence DEMUX, which interleaves the sequences once

again and distributes them evenly among the P7Viterbi blocks.

By this approach the Sequence DEMUX block works as a load balancing component by

collecting the sequences and distributing them evenly between computation components.

However, while selecting the number of MSV and P7Viterbi components, Eq. (7.1) should

be in consideration to keep the TMSV and the TV iterbi balanced.

Table 7.5 shows the area and speed of the system-level implementation described in

7.3 – Experimental results 109

Fig. 7.6. It can be seen that by fitting multiple HMMER3 pipelines, a speedup of 13 ×
can be achieved compared to QuadCore SSE implementation for profile sizes of 64, and

for higher profile sizes we reach a speedup of 5 over the software implementation. Since

our FPGA platform is not a recent one, we limit our comparison to a QuadCore machine,

instead of an 8-core machine. A fair comparison for an 8-core machine implementation

should be against the recent stratix V FPGAs, which contains almost 4 times more

resources than a Stratix III.

As the profile size N varies between 50 to 650 [DQ10], the design should be able to

handle arbitrary value of N and sustain its speedup. This can be managed by taking

advantage of the reconfigurable nature of FPGAs. For a given profile size, we can

choose and load the configuration, which best suits that specific profile size from a set

of predetermined bitstream configurations. As the hmmsearch compares an HMM profile

against a database of sequences, the profile reconfiguration is only required in the beginning

of a new profile-sequence comparison. To obtain real-life performance measurements,

we benchmarked our implementation on representative profile and sequence data sets.

The experimentally measured speed-ups were in average within 80% of the place and

route estimated results. This discrepancy can be explained by the communication and

initialization overhead. The amount of initialization overhead depends on the size of

HMM profile to be loaded. However, a large sequence database to be processed following

the initialization, makes this overhead negligible.

Figure 7.7: Speed/Area results for multiple HMMER3 pipelines implementation

110 Hardware Mapping of HMMER

Table 7.5: Performance and area for our System-Level implementation

N P MSV P7Vit Logic Util. M9K MLAB MHz GCUPS

64 8 6 1 128K / 63% 864 / 100% 215Kb 103 40.0

64 8 7 1 143K / 70% 864 / 100% 269Kb 97 44.2

128 8 3 1 105K / 52% 864 / 100% 181Kb 95 37.2

256 8 2 1 147K / 72% 864 / 100% 203Kb 99 51.5

512 8 1 1 79K / 39% 675 / 78% 66Kb 89 45.7

7.3.6 Discussion

One question raised by our results is whether an implementation of a complex system-

level architecture, such as that of Fig. 7.6, is beneficial or not. The area cost for auxiliary

components (e.g. MUX, DEMUX, Sequence Interleaver) becomes much higher than

the area cost for such components in independent pipelines. And the area cost for

these auxiliary components restricts the overall speedup improvement in comparison with

independent pipelines of our first approach. It can be concluded that while implementing

complex architecture on hardware, a high implementation effort may result in a marginal

speedup compared to a simple architecture involving fewer auxiliary components.

Another important point of discussion is whether our FPGA would actually perform

faster than an equivalent GPU implementation. This is an important point as GPU offers

more flexibility at a much lower cost than a typical HPC FPGA platform, albeit at a higher

cost in power/energy consumption. Unfortunately, there is currently no GPU version of

HMMER3 available for comparing the two targets.

We however believe that, contrary to HMMER2, a GPU version of HMMER3 would

only offer marginal speedup w.r.t the optimized SSE version. The GPU speedup for

HMMER2 were reported in the order of 15− 35× [WBKC09a] and 20− 70× [GCBT10]

for a single GPU over the software implementation. While the software implementation

of HMMER3 gives 340× performance improvement compared to that baseline.

It is a well known fact that very well optimized multi-core software implementations

reduce the performance gap to only 2.5× on average against a GPU implementa-

tion [LKC+10]. When looking at HMMER3 speedup results (given in Table 6.1), it turns

out that the use of an optimized SSE software implementation alone brings up to 27×
speedup improvement over the non SSE version, a speed-up somewhat comparable to the

GPUs implementation for HMMER2, and which is mostly due to the systematic use of

sub-word parallelism, as discussed in section 6.3.4. As GPUs do not have support for short

integer sub-word parallelism, it is therefore very unlikely that they will do much better

than SSE implementation.

7.4 Conclusion

This rewritten version of HMMER has permitted us to obtain a full and efficient

parallelization of the two kernels on hardware. In this chapter, we have combined the new

parallelization scheme with an architectural design space exploration stage and we have

7.4 – Conclusion 111

presented various fine-grain parallelization and resource management strategies. Finally,

we have shown implementation of each kernel individually as well as in combination in

the HMMER execution pipeline. After determining the best performing architecture

for a given HMMER profile size, by taking into account the amount of available

hardware resource and the pipeline workload balance, we have presented two system-level

implementation schemes.

An improvement would be to take advantage of data reusability. Because HMMER is

often used in a context where a profile database is matched against a sequence database,

reducing the bandwidth pressure by using the on-board memory of the accelerator to

store part of the input data-set seems an attractive option. The sequence database can

be received in the beginning and stored in the on-board memory and it can be utilized for

each profile in HMM profile database. Indeed, it can be observed that, for small HMM

profiles (say N < 128), the combined throughput of a complete system level accelerator

(with several pipelines) gets very close to the maximum throughput supported by the

board.

112 Hardware Mapping of HMMER

8
Conclusion & Future

Perspectives

8.1 Conclusion

In recent years, the growing dependence of the biological research and of the pharmaceuti-

cal industry on advancements in bioinformatics, and the exponential increase in available

biological data to process have urged the development of powerful computational platforms

that can sustain the accumulating computational requirements. The resulting platforms

can leverage on the advancements in parallel computing.

Among several alternatives, such as multi-core, GPUs, Grid and ASICs, FPGAs appear

to be the viable target platform due to their reconfigurability along with speed and power

optimality. It is worth to be noted that a power optimized framework can considerably

reduce the operating cost, considering a long life cycle.

However the major impediment to the wide spread use of FPGAs is the design cost.

Custom circuits on FPGAs are usually described at the Register Transfer Level that

provides very little abstraction. Such low level design description results in an error-prone

design path. A large part of the design time is usually spend in design verification efforts.

Although the resulting design is very efficient, it is architecture specific and shows low

code reusability opportunity. Thus, an FPGA-based accelerator, with a long development

cycle and resulting into a rigid design, can hardly be helpful for bioinformatics community,

which requires computing platforms to be powerful as well as scalable and flexible to the

constantly growing requirements.

Fortunately, High-Level Synthesis tools can overcome the problems associated with

FPGA design flow. HLS tools transform the long, error-prone design path to an

automated, error-free design step, where the designer’s job is reduced to provide an

abstract functionality of the application and the tool generates a RTL design automatically.

Since the abstract specification (usually a C program) is truly generic, the design can be

113

114 Conclusion & Future Perspectives

altered easily and can be retargeted to an up-to-date platform. HLS based accelerators

thus appear to satisfy the requirements of bioinformatics.

In this research work, we investigated HLS based accelerators for bioinformatics, specif-

ically HMMER, a bioinformatics application well-known for its compute-intensiveness and

for its hard to parallelize data dependencies. In order to obtain an efficient design, we

first explored the behavior of various HLS tools with different design inputs. It has been

widely observed that the generated hardware from an HLS tools, largely depends on the

input C code. The higher abstraction level of input design results in a huge design space

that needs to be explored. Hence, an HLS based designer needs to understand ‘what’ kind

of C code will be translated to ‘what’ kind of hardware circuit. Chapter 5 encompassed

the techniques that can lead to an efficient hardware design.

We demonstrated these design practices for an HLS based design on acceleration of

HMMER. The computation kernels of HMMER, namely MSV and P7Viterbi are very

compute-intensive, and their data dependencies, if interpreted naively, lead to a purely

sequential execution. We proposed an original parallelization scheme for HMMER based on

rewriting its mathematical formulation, in order to expose hidden potential parallelization

opportunities. We discussed the different challenges involved in the architectural mapping

and exercised various fine-grain parallelization techniques. In order to take full advantage

of available hardware resources, we employed and compared coarse-grain parallelization

schemes through different system-level implementations of the complete execution pipeline,

i.e. based on either several independent pipelines or on a large aggregated pipeline. Our

parallelization scheme targeted FPGA technology, and our architecture can achieve up to

13 times speedup compared with the latest HMMER3 SSE version on a Quad-core Intel

Xeon machine, without compromising on the sensitivity of the original algorithm.

This research shows that a decent amount of design efforts (still at abstract level)

can turn C based hardware development as efficient as a manual RTL design. HLS based

acceleration, makes FPGAs very affordable target platforms. The reduced design time

can now sustain the fast-paced time-to-market requirements. Similarly, the reduced design

efforts allow complex algorithms to be implemented at abstract level, and makes FPGA

design flow competitor with that of multi-core and GPUs. Furthermore, the low power

consumption of FPGAs along with the faster design time and high design performance

can outperform other acceleration platforms.

This research focus on acceleration of bioinformatics application on FPGA using high-

level synthesis, and our approach shows promising speedup results, and makes a strong

case for using C-to-Hardware tools for FPGA based acceleration. Future challenges and

some interesting aspects to be explored, as short-term goals, are as follows:

FPGAs demonstrate considerable performance achievements with low power budget,

however there are still many challenges to be addressed for a wide adoption in the high

performance computing community. High-Level Synthesis tools answer only partly one

major concern, i.e. the programming model is simplified and the HPC designers do not

need to program in HDL. However, a hardware design still requires a different way of

8.1 – Conclusion 115

thinking and even with a most advanced HLS tool, software developers must be “system-

aware” to produce good performance results. Since each HLS tool is equipped with a set of

particular design translation techniques, which might not be the same for any other tool,

a designer working on several HLS tools will not have a standard level of efficiency on each

tool. Hence, the designer should understand the capabilities of each tool, and provide

the design specifications accordingly. Since FPGAs are normally used as coprocessors in

a hardware-software co-design paradigm, the I/O bandwidth of such design may appear

as a performance bottleneck. Similarly the manual mapping to a platform, e.g. HW-SW

partitioning, designing interface between hardware and software parts, still obstruct a

software designer to perform FPGA based design.

In order to make FPGAs easier for designers to adopt, the HLS tools need to make an

extra effort to incorporate techniques related to application analysis and parallelization

extraction. In other words, the techniques for an efficient hardware design, discussed

in Chapter 5, need to be embedded inside the HLS compilation framework. This will

simplify the requirement of specialized skills, as “thinking in hardware”, and may attract

more software designers to perform hardware-based acceleration. The research efforts for

a front-end source-to-source compiler, such as [MKFD11, Ple10, RP08], seems to be an

interesting solution to extract parallelization automatically through these tools and feed

the output source code to HLS tools.

Similarly, HLS tools need to provide support for more and more FPGA platforms

through Platform Support Packages (PSPs), so that the tool can generate architecture

specific designs and hardware/software interfaces automatically.

In our research efforts, we have been limited to use one out of two FPGAs on XD2000i.

It would be interesting to use both FPGAs, after release of firmware update, and observe

how it can sustain with the doubled data band-width requirement. Similarly, our final

system-level implementation of HMMER, is an aggregated pipeline. It would be interesting

to see the possibility of a single aggregated pipeline, implemented on both FPGAs, so that

a single load-balancing unit balance inputs to all P7Viterbi blocks. Besides exploration on

FPGA, it would be also interesting to implement a SIMD optimized version of P7Viterbi

block on an 8-core host machine and implement only MSV blocks on FPGA. The only

concern is to keep the execution time of both kernels balanced, as discussed earlier.

Since the SIMD based optimizations can accelerate P7Viterbi significantly, it would be

interesting to see how the performance of P7Viterbi on an 8-core machine, can sustain

with the performance of MSV blocks on FPGA, while the P7Viterbi needs to deal with

only 2% of original data input to the MSV.

The algorithmic rewriting of HMMER, has exposed many parallelization opportunities,

which were not visible before. It would be interesting to implement the rewritten HMMER

on GPUs to establish a fair comparison with FPGA’s performance.

116 Conclusion & Future Perspectives

8.2 Future Perspectives

In this research work, we studied the feasibility of using High-Level Synthesis for the

acceleration of bioinformatics applications and experimented the optimization techniques

on dynamic programming kernels inside HMMER.

Bioinformatics comprises a large class of algorithms based on dynamic programming

techniques. Many of these algorithms hold similar or a little varying data dependencies as

compared to the P7Viterbi and the MSV kernels. It would be interesting to apply similar

techniques, we have learnt, on these algorithms for acceleration. For example, Smith-

Waterman and Needleman-Wunsch algorithms hold much simpler data dependencies than

P7Viterbi, since there is no feed-back loop causing an inter-column sequential execution.

Similarly, the RNA-folding algorithms hold similar, but more complex data dependencies

due to non-local memory access. One future perspective would be to accelerate these

potential algorithms by experimenting similar techniques we used for HMMER.

The rewriting of HMMER kernels, based on look-ahead computations, helped to expose

the hidden parallelism. It would be interesting to use similar rewriting techniques for other

dynamic programming algorithm to expose the parallelism. For example, it is well-known

that computations, inside a Smith-Waterman algorithm, lying on same diagonal can be

computed in parallel. However, we can rewrite the computations, and can express the

dependencies in terms of alternate diagonals. This kind of rewriting will enable us to

compute every alternate diagonal, on the same time re-using the partial computations of

the middle diagonal. Similarly, look-ahead computations may help to break the intra-

diagonal dependencies in Nussinov algorithm.

Another interesting perspective is to automate the identification of parallel prefix

networks, for parallelization extraction. The reduction computation and various types

of prefix networks provide the designer freedom to compromise between speed and area

of the resulting design. It would be interesting to automatically select the most feasible

architecture for the given application. Such analysis can be based on the time slack

between the production of input to such architectures and the first consumption of the

output. Thus, a very sophisticated architecture can be implemented by utilizing the

available cycles to execute the computation.

Bibliography

[AAHCH03] Mirela Andronescu, Rosaĺıa Aguirre-Hernández, Anne Condon, and Hol-

ger H. Hoos, RNAsoft: a Suite of RNA Secondary Structure Prediction and

Design Software tools, Nucleic Acids Research 31 (2003), no. 13, 3416–3422.

[ABD07] Christophe Alias, Fabrice Baray, and Alain Darte, Bee+Cl@k: an Im-

plementation of Lattice-based Array Contraction in the Source-to-Source

Translator Rose, Languages, Compilers, and Tools for Embedded Systems,

2007, pp. 73–82.

[ACL+09] Jeffrey Allred, Jack Coyne, William Lynch, Vincent Natoli, Joseph Grecco,

and Joel Morrissette, Smith-Waterman implementation on a FSB-FPGA

module using the Intel Accelerator Abstraction Layer, IPDPS, 2009, pp. 1–

4.

[Aga08] S.K. Agarwal, Bioinformatics, APH Publishing Corporation, 2008.

[AGM+90] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and

David J. Lipman, Basic Local Alignment Search Tool, Journal of Molecular

Biology 215 (1990), no. 3, 403 – 410.

[AT01] G. Acosta and M. Tosini, A Firmware Digital Neural Network for Climate

Prediction Applications, Intelligent Control, 2001. (ISIC ’01). Proceedings

of the 2001 IEEE International Symposium on, 2001, pp. 127 –131.

[BBdM08] Rodolfo Bezerra Batista, Azzedine Boukerche, and Alba Cristina Magal-

haes Alves de Melo, A parallel strategy for biological sequence alignment in

restricted memory space, J. Parallel Distrib. Comput. 68 (2008), 548–561.

[BCHM94] P Baldi, Y Chauvin, T Hunkapiller, and M A McClure, Hidden Markov

models of biological primary sequence information, Proceedings of the

National Academy of Sciences 91 (1994), no. 3, 1059–1063.

[BK82] R.P. Brent and H.T. Kung, A Regular Layout for Parallel Adders, IEEE

Transactions on Computers C-31 (1982), no. 3, 260 –264.

117

118 BIBLIOGRAPHY

[BKMH96] Philipp Bucher, Kevin Karplus, Nicolas Moeri, and Kay Hofmann, A flexible

motif search technique based on generalized profiles, Computers &

Chemistry 20 (1996), no. 1, 3 – 23.

[Ble90] Guy E. Blelloch, Prefix Sums and Their Applications, Tech. Report

CMU-CS-90-190, School of Computer Science, Carnegie Mellon University,

November 1990.

[BMP+03] Michael Brudno, Sanket Malde, Alexander Poliakov, Chuong B. Do, Olivier

Couronne, Inna Dubchak, and Serafim Batzoglou, Glocal alignment: finding

rearrangements during alignment, Eleventh International Conference on

Intelligent Systems for Molecular Biology, Brisbane, Austrailia (2003).

[BMZ11] R. Beidas, Wai Sum Mong, and Jianwen Zhu, Register pressure Aware

Scheduling for High Level Synthesis, Design Automation Conference (ASP-

DAC), 2011 16th Asia and South Pacific, jan. 2011, pp. 461 –466.

[BPN01] P. Baptiste, C.L. Pape, and W. Nuijten, Constraint-based Scheduling:

Applying Constraint Programming to Scheduling Problems, International

series in operations research & management science, Kluwer Academic,

2001.

[BSWG00] Mihai Budiu, Majd Sakr, Kip Walker, and Seth Copen Goldstein, Bit-

Value Inference: Detecting and Exploiting Narrow Bitwidth Computations,

Proceedings from the 6th International Euro-Par Conference on Parallel

Processing (London, UK), Euro-Par ’00, Springer-Verlag, 2000, pp. 969–

979.

[BVK08] K. Benkrid, P. Velentzas, and S. Kasap, A High Performance Reconfigurable

Core for Motif Searching Using Profile HMM, NASA/ESA Conference on

Adaptive Hardware and Systems, June 2008, pp. 285 –292.

[Cas] Norman Casagrande, Basic-Algorithms-of-Bioinformatics Applet,

http://baba.sourceforge.net.

[CCSV04] Mario Cannataro, Carmela Comito, Filippo Lo Schiavo, and Pierangelo Vel-

tri, Proteus, a Grid based Problem Solving Environment for Bioinformatics:

Architecture and Experiments, IEEE Computational Intelligence Bulletin 3

(2004).

[CD08] Joo M.P. Cardoso and Pedro C. Diniz, Compilation Techniques for Recon-

figurable Architectures, 1 ed., Springer Publishing Company, Incorporated,

2008.

[CFH+05] J. Cong, Yiping Fan, Guoling Han, Yizhou Lin, Junjuan Xu, Zhiru

Zhang, and Xu Cheng, Bitwidth-aware Scheduling and Binding in High-

Level Synthesis, Design Automation Conference, 2005. Proceedings of the

BIBLIOGRAPHY 119

ASP-DAC 2005. Asia and South Pacific, vol. 2, jan. 2005, pp. 856 – 861

Vol. 2.

[CGMT09] P. Coussy, D.D. Gajski, M. Meredith, and A. Takach, An Introduction to

High-Level Synthesis, Design Test of Computers, IEEE 26 (2009), no. 4, 8

–17.

[Dar99] Alain Darte, On the Complexity of Loop Fusion, Parallel Computing 26

(1999), 149–157.

[DH02] Alain Darte and Guillaume Huard, New Results on Array Contraction,

Proceedings of the IEEE International Conference on Application-Specific

Systems, Architectures, and Processors (Washington, DC, USA), ASAP

’02, IEEE Computer Society, 2002, pp. 359–.

[DQ07] Steven Derrien and Patrice Quinton, Parallelizing HMMER for hardware

acceleration on FPGAs, ASAP 2007, 18th IEEE International Conference

on Application-specific Systems, Architectures and Processors, July 2007.

[DQ10] Steven Derrien and Patrice Quinton, Hardware Acceleration of HMMER on

FPGAs, Journal of Signal Processing Systems (2010), 53–67.

[DR00] Steven Derrien and Tanguy Risset, Interfacing compiled FPGA programs:

the MMAlpha approach, International Workshop on Engineering of Recon-

figurable Hardware/Software Objects, 2000.

[DRQR08] Steven Derrien, Sanjay Rajopadhye, Patrice Quinton, and Tanguy Risset,

High-Level Synthesis of Loops Using the Polyhedral Model, High-Level Syn-

thesis (Philippe Coussy and Adam Morawiec, eds.), Springer Netherlands,

2008, pp. 215–230.

[DSLS10] U. Dhawan, S. Sinha, Siew-Kei Lam, and T. Srikanthan, Extended Com-

patibility Path based Hardware Binding Algorithm for Area-Time Efficient

Designs, Quality Electronic Design (ASQED), 2010 2nd Asia Symposium

on, aug. 2010, pp. 151 –156.

[DTOG+10] Paolo Di Tommaso, Miquel Orobitg, Fernando Guirado, Fernado Cores,

Toni Espinosa, and Cedric Notredame, Cloud-Coffee: Implementation of

a Parallel Consistency-based Multiple Alignment Algorithm in the T-Coffee

package and its Benchmarking on the Amazon Elastic-Cloud, Bioinformatics

26 (2010), no. 15, 1903–1904.

[Edd] Sean Eddy, HMMER3: a new generation of sequence homology search

software, http://hmmer.janelia.org/.

[Edd98] Sean R. Eddy, Profile Hidden Markov Models, Bioinformatics 14 (1998),

no. 9, 755–763.

120 BIBLIOGRAPHY

[Edd09] , A new generation of homology search tools based on probabilistic

inference, International Conference on Genome Informatics 23 (2009), 205–

211.

[Edd10] , HMMER User’s Guide : Biological sequence analysis using profile

hidden Markov models, Janelia Farm Research Campus, 2010.

[Edd11a] Sean R. Eddy, Accelerated Profile HMM Searches, PLoS Computational

Biology 7 (2011), no. 10, e1002195.

[Edd11b] Sean R. Eddy, Accelerated profile HMM searches (preprint), 2011.

[EGMJdM10] Juan Fernando Eusse Giraldo, Nahri Moreano, Ricardo Pezzuol Jacobi, and

Alba Cristina Magalhaes Alves de Melo, A HMMER Hardware Accelerator

using Divergences, Proceedings of the Conference on Design, Automation

and Test in Europe, 2010, pp. 405–410.

[Fel93] J. Felsenstein, PHYLIP: phylogenetic inference package, version 3.5c.,

Seattle, 1993.

[Fin10] Michael Fingeroff, High-Level Synthesis Blue Book, Xlibris Corporation,

2010.

[FM89] G. Fettweis and H. Meyr, Parallel Viterbi algorithm implementation:

breaking the ACS-bottleneck, Communications, IEEE Transactions on 37

(1989), no. 8, 785 –790.

[FM91] , High-speed parallel Viterbi decoding: algorithm and VLSI-

architecture, Communications Magazine, IEEE 29 (1991), no. 5, 46 –55.

[FTM90] G. Fettweis, L. Thiele, and G. Meyr, Algorithm Transformations for

Unlimited Parallelism, Circuits and Systems, 1990., IEEE International

Symposium on, may 1990, pp. 1756 –1759 vol.3.

[Gaj92] Daniel D. Gajski, High-level Synthesis: Introduction to Chip and System

Design, Kluwer Academic, 1992.

[Gal] NIGMS Image Gallery, Central Dogma of Life,

http://images.nigms.nih.gov/.

[GCBT10] Narayan Ganesan, Roger D. Chamberlain, Jeremy Buhler, and Michela

Taufer, Accelerating HMMER on GPUs by implementing hybrid data and

task parallelism, Proceedings of the First ACM International Conference on

Bioinformatics and Computational Biology (New York, NY, USA), BCB

’10, ACM, 2010, pp. 418–421.

BIBLIOGRAPHY 121

[GDGN03] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, SPARK: A High-Level

Synthesis Framework For Applying Parallelizing Compiler Transformations,

VLSI Design, 2003. Proceedings. 16th International Conference on, jan.

2003, pp. 461 – 466.

[GGDN04] Sumit Gupta, Rajesh Gupta, Nikil D. Dutt, and Alexandru Nicolau,

SPARK:: A Parallelizing Approach to the High-Level Synthesis of Digital

Circuits, Springer, 2004.

[GJL97] Pascale Guerdoux-Jamet and Dominique Lavenier, Samba: Hardware

accelerator for biological sequence comparison, Computer Application in

the Biosciences 13 (1997), no. 6, 609–615.

[GLB+08] Andreas R. Gruber, Ronny Lorenz, Stephan H. Bernhart, Richard Neuböck,

and Ivo L. Hofacker, The Vienna RNA Websuite, Nucleic Acids Research

36 (2008), no. suppl 2, W70–W74.

[GOST92] Guang R. Gao, R. Olsen, Vivek Sarkar, and Radhika Thekkath, Collective

Loop Fusion for Array Contraction, Languages and Compilers for Parallel

Computing, 1992, pp. 281–295.

[GP92] M. Girkar and C.D. Polychronopoulos, Automatic Extraction of Functional

Parallelism from Ordinary Programs, Parallel and Distributed Systems,

IEEE Transactions on 3 (1992), no. 2, 166 –178.

[GQRM00] A.-C. Guillou, P. Quinton, T. Risset, and D. Massicotte, Automatic design

of VLSI pipelined LMS architectures, Parallel Computing in Electrical

Engineering, 2000. PARELEC 2000. Proceedings. International Conference

on, 2000, pp. 144 –149.

[GR06] Gautam and S. Rajopadhye, Simplifying reductions, POPL ’06: Conference

record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of

programming languages (New York, NY, USA), ACM, 2006, pp. 30–41.

[HAA11] Laiq Hasan and Zaid Al-Ars, An Overview of Hardware-Based Acceleration

of Biological Sequence Alignment, Computational Biology and Applied

Bioinformatics, InTech, 2011.

[Har03] D. Harris, A taxonomy of Parallel Prefix Networks, Thirty-Seventh Asilo-

mar Conference on Signals, Systems and Computers, vol. 2, nov. 2003,

pp. 2213 – 2217 Vol.2.

[HC87] T. Han and D. A. Carlson, Fast area-efficient VLSI adders, Proceedings of

the 8th Symposium on Computer Arithmetic, IEEE, 1987, pp. 49–55.

122 BIBLIOGRAPHY

[HCLH90] Chu-Yi Huang, Yen-Shen Chen, Yan-Long Lin, and Yu-Chin Hsu, Data

Path Allocation based on Bipartite Weighted Matching, Design Automation

Conference, 1990. Proceedings., 27th ACM/IEEE, jun 1990, pp. 499 –504.

[HHH05] D. R. Horn, M. Houston, and P. Hanrahan, ClawHMMER: A Stream-

ing HMMer-Search Implementation, SC’05 : Proceedings of the 2005

ACM/IEEE conference on Supercomputing, 2005.

[HKMS93] D. Haussler, A. Krogh, I.S. Mian, and K. Sjolander, Protein Modeling using

Hidden Markov Models: Analysis of Globins, Proceeding of the Twenty-

Sixth Hawaii International Conference on System Sciences, vol. i, jan 1993,

pp. 792 – 802 vol.1.

[HLH91] C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu, A Formal Approach to the

Scheduling Problem in High Level Synthesis , Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on 10 (1991), no. 4,

464 –475.

[HLSa] Impulse Accelerated Technologies:, Impulse C, http://www.impulsec.com.

[HLSb] Mentor Graphics, Catapult C, http://www.mentor.com/catapult.

[HLS09a] Gary Smith EDA, Market Trends, 2009.

[HLS09b] NIOS II C2H Compiler User Guide, November 2009,

http://www.altera.com.

[HMS+07] Martin C. Herbordt, Josh Model, Bharat Sukhwani, Yongfeng Gu, and Tom

VanCourt, Single pass streaming BLAST on FPGAs, Parallel Computing

33 (2007), 741 – 756, ¡ce:title¿High-Performance Computing Using Accel-

erators¡/ce:title¿.

[Hof03] Ivo L. Hofacker, Vienna RNA secondary structure server, Nucleic Acids

Research 31 (2003), no. 13, 3429–3431.

[HPH98] Steven Henikoff, Shmuel Pietrokovski, and Jorja G. Henikoff, Superior

Performance in Protein Homology Detection with the Blocks Database

servers, Nucleic Acids Research 26 (1998), no. 1, 309–312.

[Hug96] Richard Hughey, Parallel Hardware for Sequence Comparison and Align-

ment, Computer applications in the biosciences : CABIOS 12 (1996), no. 6,

473–479.

[INT] UniProtKB/Swiss-Prot Protein Knowledgebase Release 2012-01 Statistics,

http://web.expasy.org/docs/relnotes/relstat.html.

[Ive62] Kenneth A. Iverson, A Programming Language, Jonh Wiley & Sons, 1962.

BIBLIOGRAPHY 123

[JBC08] A. Jacob, J. Buhler, and R.D. Chamberlain, Accelerating Nussinov RNA

secondary structure prediction with systolic arrays on FPGAs, Application-

Specific Systems, Architectures and Processors, 2008. ASAP 2008. Interna-

tional Conference on, july 2008, pp. 191 –196.

[JBC10] A.C. Jacob, J.D. Buhler, and R.D. Chamberlain, Rapid RNA Folding:

Analysis and Acceleration of the Zuker Recurrence, Field-Programmable

Custom Computing Machines (FCCM), 2010 18th IEEE Annual Interna-

tional Symposium on, may 2010, pp. 87 –94.

[JH98] Tommi Jaakkola and David Haussler, Exploiting Generative Models in

Discriminative Classifiers, Advances in Neural Information Processing

Systems 11, MIT Press, 1998, pp. 487–493.

[JLBC07] Arpith C. Jacob, Joseph M. Lancaster, Jeremy D. Buhler, and Roger D.

Chamberlain, Preliminary results in accelerating profile HMM search

on FPGAs, Workshop on High Performance Computational Biology

(HiCOMB), 2007.

[JP04] Neil C. Jones and Pavel A. Pevzner, An Introduction to Bioinformatics

Algorithms (Computational Molecular Biology), The MIT Press, August

2004.

[KAH97] P. Kollig and B.M. Al-Hashimi, Simultaneous Scheduling, Allocation and

Binding in High Level Synthesis, Electronics Letters 33 (1997), no. 18,

1516 –1518.

[KBM+94] A. Krogh, M. Brown, I. S. Mian, K. Sjölander, and D. Haussler, Hidden

Markov Models in Computational Biology: Applications to Protein Model-

ing, Journal Molecular Biology 235 (1994), 1501–1531.

[KH03] Bjarne Knudsen and Jotun Hein, Pfold: RNA secondary structure prediction

using stochastic context-free grammars, Nucleic Acids Research 31 (2003),

no. 13, 3423–3428.

[KL07] Taemin Kim and Xun Liu, Compatibility Path Based Binding Algorithm for

Interconnect Reduction in High Level Synthesis, Computer-Aided Design,

2007. ICCAD 2007. IEEE/ACM International Conference on, nov. 2007,

pp. 435 –441.

[KM94] Ken Kennedy and Kathryn S. McKinley, Maximizing Loop Parallelism

and Improving Data Locality via Loop Fusion and Distribution, IN LAN-

GUAGES AND COMPILERS FOR PARALLEL COMPUTING, Springer-

Verlag, 1994, pp. 301–320.

124 BIBLIOGRAPHY

[Kno99] S. Knowles, A Family of Adders, ARITH ’99: Proceedings of the 14th

IEEE Symposium on Computer Arithmetic (Washington, DC, USA), IEEE

Computer Society, 1999, p. 30.

[KR07] I. Kuon and J. Rose, Measuring the Gap Between FPGAs and ASICs,

Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-

actions on 26 (2007), no. 2, 203 –215.

[KS73] Peter M. Kogge and Harold S. Stone, A Parallel Algorithm for the Efficient

Solution of a General Class of Recurrence Equations, IEEE Transcation on

Computers 22 (1973), no. 8, 786–793.

[Kuc03] Krzysztof Kuchcinski, Constraints-driven Scheduling and Resource Assign-

ment, ACM Trans. Des. Autom. Electron. Syst. 8 (2003), 355–383.

[Lam88] M. Lam, Software Pipelining: An Effective Scheduling Technique for

VLIW Machines, Proceedings of the ACM SIGPLAN 1988 conference on

Programming Language design and Implementation (New York, NY, USA),

PLDI ’88, ACM, 1988, pp. 318–328.

[LBP+08] Heshan Lin, Pavan Balaji, Ruth Poole, Carlos Sosa, Xiaosong Ma, and

Wu-chun Feng, Massively Parallel Genomic Sequence Search on the Blue

Gene/P Architecture, Proceedings of the 2008 ACM/IEEE conference

on Supercomputing (Piscataway, NJ, USA), SC ’08, IEEE Press, 2008,

pp. 33:1–33:11.

[LF80] Richard E. Ladner and Michael J. Fischer, Parallel Prefix Computation,

Journal of ACM 27 (1980), no. 4, 831–838.

[LHL89] Jiahn-Hung Lee, Yu-Chin Hsu, and Youn-Long Lin, A New Integer

Linear Programming Formulation for the Scheduling Problem in Data Path

Synthesis, Computer-Aided Design, 1989. ICCAD-89. Digest of Technical

Papers., 1989 IEEE International Conference on, nov 1989, pp. 20 –23.

[LKC+10] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun

Kim, Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas

Chennupaty, Per Hammarlund, Ronak Singhal, and Pradeep Dubey,

Debunking the 100X GPU vs. CPU myth: an evaluation of throughput

computing on CPU and GPU, Proceedings of the 37th annual international

symposium on Computer architecture, ISCA ’10, 2010, pp. 451–460.

[LL85] R.J. Lipton and D. Lopresti, A systolic array for rapid string comparison,

Chapel Hill Conference on VLSI, 1985, pp. 363–376.

[LMD94] Birger Landwehr, Peter Marwedel, and Rainer Dömer, OSCAR: Optimum

Simultaneous Scheduling, Allocation and Resource Binding Based on Integer

BIBLIOGRAPHY 125

Programming, Proceedings of the conference on European design automa-

tion (Los Alamitos, CA, USA), EURO-DAC ’94, IEEE Computer Society

Press, 1994, pp. 90–95.

[LPAF08] Jizhu Lu, M. Perrone, K. Albayraktaroglu, and M. Franklin, HMMer-Cell:

High Performance Protein Profile Searching on the Cell/B.E. Processor,

IEEE International Symposium on Performance Analysis of Systems and

Software, april 2008, pp. 223 –232.

[LS91] Charles Leiserson and James Saxe, Retiming synchronous circuitry, Algo-

rithmica 6 (1991), 5–35, 10.1007/BF01759032.

[LSK+05] O. Lehtoranta, E. Salminen, A. Kulmala, M. Hannikainen, and T.D.

Hamalainen, A Parallel MPEG-4 Encoder for FPGA Based Multiprocessor

SoC, Field Programmable Logic and Applications, 2005. International

Conference on, aug. 2005, pp. 380 – 385.

[LST] Isaac TS Li, Warren Shum, and Kevin Truong, 160-fold Acceleration of

the Smith-Waterman Algorithm using a Field Programmable Gate Array

(FPGA).

[LVMQ91] Hervé Le Verge, Christophe Mauras, and Patrice Quinton, The ALPHA

language and its use for the design of systolic arrays, J. VLSI Signal Process.

Syst. 3 (1991), 173–182.

[MA97] Naraig Manjikian and Tarek S. Abdelrahman, Fusion of Loops for Paral-

lelism and Locality, IEEE Trans. Parallel Distrib. Syst. 8 (1997), 193–209.

[MBC+06] R. P. Maddimsetty, J. Buhler, R. D. Chamberlain, M. A. Franklin, and

Brandon Harris, Accelerator Design for Protein Sequence HMM Search,

Proceedings of the ACM International Conference on Supercomputing

(Cairns, Australia), ACM, 2006.

[MC95] E. Musoll and J. Cortadella, High-Level Synthesis Techniques for Reducing

the Activity of Functional Units, Proceedings of the 1995 international

symposium on Low power design (New York, NY, USA), ISLPED ’95, ACM,

1995, pp. 99–104.

[MDQ11] A. Morvan, S. Derrien, and P. Quinton, Efficient Nested Loop Pipelin-

ing in High Level Synthesis using Polyhedral Bubble Insertion, Field-

Programmable Technology (FPT), 2011 International Conference on, dec.

2011, pp. 1 –10.

[MFDW98] B Morgenstern, K Frech, A Dress, and T Werner, DIALIGN: finding

local similarities by multiple sequence alignment., Bioinformatics 14 (1998),

no. 3, 290–294.

126 BIBLIOGRAPHY

[MKFD11] Antoine Morvan, Amit Kumar, Antoine Floch, and Steven Derrien, GeCoS

: a source to source optimizing compiler for the automatic synthesis of

parallel hardware accelerators, Poster in Designing for Embedded Parallel

Computing Platforms at DATE, March 2011.

[MoH05] John Morrison, Padraig o’Dowd, and Philip Healy, An Investigation of the

Applicability of Distributed FPGAs to High-Performance Computing, High-

performance computing: paradigm and infrastructure, Wiley, 2005.

[Moo66] R.E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs N. J., 1966.

[Mou04] David W. Mount, Bioinformatics: Sequence and Genome Analysis, Cold

Spring Harbor Laboratory Press, 2004.

[MPPZ87] Daniel J. Magenheimer, Liz Peters, Karl Pettis, and Dan Zuras, Integer

Multiplication and Division on the HP Precision Architecture, Proceedings

of the second international conference on Architectual support for program-

ming languages and operating systems (Los Alamitos, CA, USA), ASPLOS-

II, IEEE Computer Society Press, 1987, pp. 90–99.

[MS09] G. Martin and G. Smith, High-Level Synthesis: Past, Present, and Future,

Design Test of Computers, IEEE 26 (2009), no. 4, 18 –25.

[MTF08] A. Matsunaga, M. Tsugawa, and J. Fortes, CloudBLAST: Combining

MapReduce and Virtualization on Distributed Resources for Bioinformatics

Applications, eScience, 2008. eScience ’08. IEEE Fourth International

Conference on, dec. 2008, pp. 222 –229.

[MV08] Svetlin Manavski and Giorgio Valle, CUDA Compatible GPU cards as

Efficient Hardware Accelerators for Smith-Waterman Sequence Alignment,

BMC Bioinformatics 9 (2008), no. Suppl 2, S10.

[NCB11] NCBI, GenBank Realse Notes, August 2011.

[NLLL97] Andrew F. Neuwald, Jun S. Liu, David J. Lipman, and Charles E. Lawrence,

Extracting Protein Alignment Models from the Sequence Database, Nucleic

Acids Research 25 (1997), no. 9, 1665–1677.

[NPGK78] Ruth Nussinov, George Pieczenik, Jerrold R. Griggs, and Daniel J.

Kleitman, Algorithms for Loop Matchings, SIAM Journal on Applied

Mathematics 35 (1978), no. 1, 68–82.

[NW70] Saul B. Needleman and Christian D. Wunsch, A General Method Applicable

to The Search for Similarities in The Amino Acid Sequence of Two Proteins,

Journal of Molecular Biology 48 (1970), no. 3, 443 – 453.

BIBLIOGRAPHY 127

[oEGP08] U.S. Department of Energy Genome Programs, The Science Behind the

Human Genome Project , http://genomics.energy.gov, 2008.

[OSJM06] T. Oliver, B. Schmidt, Y. Jakop, and D. L. Maskell, Accelerating the

Viterbi Algorithm for Profile Hidden Markov Models Using Reconfigurable

Hardware., International Conference on Computational Science, 2006.

[OYS07] T. Oliver, L. Y. Yeow, and B. Schmidt, High Performance Database Search-

ing with HMMer on FPGAs, HiCOMB 2007, Sixth IEEE International

Workshop on High Performance Computational Biology, march 2007.

[PK87] P. G. Paulin and J. P. Knight, Force-Directed Scheduling in Automatic Data

Path Synthesis, Proceedings of the 24th ACM/IEEE Design Automation

Conference (New York, NY, USA), DAC ’87, ACM, 1987, pp. 195–202.

[PK89] P.G. Paulin and J.P. Knight, Force-Directed Scheduling for The Behavioral

Synthesis of ASICs, Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on 8 (1989), no. 6, 661 –679.

[Ple10] Alexandre Plesco, Program Transformation and Memory Architecture Op-

timization for High-Level Synthesis of Hardware Accelerators, Ph.D. thesis,

École Normale Supérieure de Lyon, 2010.

[PT05] David Pellerin and Scott Thibault, Practical FPGA Programming in C,

Prentice Hall, 2005.

[QEB+09] Xiaohong Qiu, Jaliya Ekanayake, Scott Beason, Thilina Gunarathne,

Geoffrey Fox, Roger Barga, and Dennis Gannon, Cloud Technologies for

Bioinformatics Applications, Proceedings of the 2nd Workshop on Many-

Task Computing on Grids and Supercomputers (New York, NY, USA),

MTAGS ’09, ACM, 2009, pp. 6:1–6:10.

[QR91] Patrice Quinton and Yves Robert, Systolic Algorithms and Architectures,

Prentice Hall, 1991.

[RFJ95] Minjoong Rim, Yaw Fann, and Rajiv Jain, Global Scheduling with Code-

Motions for High-Level Synthesis Applications, Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on 3 (1995), no. 3, 379 –392.

[rg] CAIRN-INRIA research group, The GeCoS: The Generic Compiler Suite,

http://gecos.gforge.inria.fr/.

[Ric] Allen B. Richon, A Short History of Bioinformatics, Network Science

Corporation, http://www.netsci.org/Science/Bioinform/feature06.html.

[RJ86] L. Rabiner and B. Juang, An Introduction to Hidden Markov Models, IEEE

ASSP Magazine 3 (1986), no. 1, 4 – 16.

128 BIBLIOGRAPHY

[RJDL92] M. Rim, R. Jain, and R. De Leone, Optimal Allocation and Binding in High-

Level Synthesis, Proceedings of the 29th ACM/IEEE Design Automation

Conference (Los Alamitos, CA, USA), DAC ’92, IEEE Computer Society

Press, 1992, pp. 120–123.

[RP08] Tanguy Risset and Alexandru Plesco, Coupling Loop Transformations and

High-Level Synthesis, Symposium en Architecture de machines (Sympa

2008) (Fribourg, Suisse), 2008.

[SBA00] Mark Stephenson, Jonathan Babb, and Saman Amarasinghe, Bitwidth

Analysis with Application to Silicon Compilation, In Proceedings of the

SIGPLAN conference on Programming Language Design and Implementa-

tion, 2000, pp. 108–120.

[Sch08] Sophie Schneiderbauer, RNA Secondary Structure Prediction, Bachelor’s

Thesis, Cognitive Science, University Of Osnabrück, 2008.

[SD02] A.M. Sllame and V. Drabek, An efficient List-Based Scheduling Algorithm

for High-level Synthesis, Digital System Design, 2002. Proceedings. Euromi-

cro Symposium on, 2002, pp. 316 – 323.

[SDLS11] S. Sinha, U. Dhawan, Siew Kei Lam, and T. Srikanthan, A Novel Binding

Algorithm to Reduce Critical Path Delay During High Level Synthesis, VLSI

(ISVLSI), 2011 IEEE Computer Society Annual Symposium on, july 2011,

pp. 278 –283.

[SEQa] BIOWIC: Bioinformatics Workflow for Intensive Computation,

http://biowic.inria.fr/.

[SEQb] Longman Science Biology 9, Pearson Education India.

[SEQc] Review of the Universe, Unicellular Organisms, http://universe-review.ca.

[SG91] Vivek Sarkar and Guang R. Gao, Optimization of Array Accesses by

Collective Loop Transformations., ICS’91, 1991, pp. 194–205.

[SKD06] E. Sotiriades, C. Kozanitis, and A. Dollas, FPGA based Architecture for

DNA Sequence Comparison and Database Search, Parallel and Distributed

Processing Symposium, 2006. IPDPS 2006. 20th International, april 2006,

p. 8 pp.

[Skl60] J. Sklansky, Conditional-Sum Addition Logic, IRE Transactions on Elec-

tronic Computers EC-9 (1960), no. 2, 226 –231.

[SLG+09] Yanteng Sun, Peng Li, Guochang Gu, Yuan Wen, Yuan Liu, , and Dong Liu,

HMMER Acceleration Using Systolic Array Based Reconfigurable Architec-

ture, IEEE International Workshop on High Performance Computational

Biology, 2009.

BIBLIOGRAPHY 129

[SRG03] Robert D. Stevens, Alan J. Robinson, and Carole A. Goble, myGrid:

Personalised Bioinformatics on the Information Grid, Bioinformatics 19

(2003), no. suppl 1, i302–i304.

[SRV+07] Lieven Sterck, Stephane Rombauts, Klaas Vandepoele, Pierre Rouze´, and

Yves Van de Peer, How many genes are there in plants (... and why are

they there)?, Current Opinion in Plant Biology (2007), 199–203.

[SW81] T.F. Smith and M.S. Waterman, Identification of Common Molecular

Subsequences, Journal of Molecular Biology 147 (1981), no. 1, 195 – 197.

[SXWL04] Yonghong Song, Rong Xu, Cheng Wang, and Zhiyuan Li, Improving Data

Locality by Array Contraction, IEEE Trans. Comput. 53 (2004), 1073–1084.

[Tha09] Sabu M. Thampi, Bioinformatics, 2009,

http://arxiv.org/ftp/arxiv/papers/0911/0911.4230.pdf.

[THG94] Julie D. Thompson, Desmond G. Higgins, and Toby J. Gibson, CLUSTAL

W: Improving the Sensitivity of Progressive Multiple Sequence Alignment

Through Sequence Weighting, Position-Specific Gap Penalties and Weight

Matrix Choice, Nucleic Acids Research 22 (1994), no. 22, 4673–4680.

[TM99] Tatiana A Tatusova and Thomas L Madden, Blast 2 sequences, a new tool

for comparing protein and nucleotide sequences, FEMS Microbiology Letters

174 (1999), no. 2, 247–250.

[TM09] Toyokazu Takagi and Tsutomu Maruyama, Accelerating HMMER Search

Using FPGA, International Conference on Field Programmable Logic and

Applications, September 2009.

[TS86] Chia-Jeng Tseng and D.P. Siewiorek, Automated Synthesis of Data Paths

in Digital Systems, Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on 5 (1986), no. 3, 379 – 395.

[VAM+01] J. Craig Venter, Mark D. Adams, Eugene W. Myers, Peter W. Li,

Richard J. Mural, Granger G. Sutton, Hamilton O. Smith, Mark Yandell,

Cheryl A. Evans, Robert A. Holt, Jeannine D. Gocayne, Peter Amanatides,

Richard M. Ballew, Daniel H. Huson, Jennifer Russo Wortman, Qing Zhang,

Chinnappa D. Kodira, Xiangqun H. Zheng, Lin Chen, Marian Skupski,

Gangadharan Subramanian, Paul D. Thomas, Jinghui Zhang, George L.

Gabor Miklos, Catherine Nelson, Samuel Broder, Andrew G. Clark, Joe

Nadeau, Victor A. McKusick, Norton Zinder, Arnold J. Levine, Richard J.

Roberts, Mel Simon, Carolyn Slayman, Michael Hunkapiller, Randall

Bolanos, Arthur Delcher, Ian Dew, Daniel Fasulo, Michael Flanigan, Liliana

Florea, Aaron Halpern, Sridhar Hannenhalli, Saul Kravitz, Samuel Levy,

130 BIBLIOGRAPHY

Clark Mobarry, Knut Reinert, Karin Remington, Jane Abu-Threideh,

Ellen Beasley, Kendra Biddick, Vivien Bonazzi, Rhonda Brandon, Michele

Cargill, Ishwar Chandramouliswaran, Rosane Charlab, Kabir Chaturvedi,

Zuoming Deng, Valentina Di Francesco, Patrick Dunn, Karen Eilbeck,

Carlos Evangelista, Andrei E. Gabrielian, Weiniu Gan, Wangmao Ge,

Fangcheng Gong, Zhiping Gu, Ping Guan, Thomas J. Heiman, Maureen E.

Higgins, Rui-Ru Ji, Zhaoxi Ke, Karen A. Ketchum, Zhongwu Lai, Yiding

Lei, Zhenya Li, Jiayin Li, Yong Liang, Xiaoying Lin, Fu Lu, Gennady V.

Merkulov, Natalia Milshina, Helen M. Moore, Ashwinikumar K Naik,

Vaibhav A. Narayan, Beena Neelam, Deborah Nusskern, Douglas B. Rusch,

Steven Salzberg, Wei Shao, Bixiong Shue, Jingtao Sun, Zhen Yuan Wang,

Aihui Wang, Xin Wang, Jian Wang, Ming-Hui Wei, Ron Wides, Chunlin

Xiao, Chunhua Yan, Alison Yao, Jane Ye, Ming Zhan, Weiqing Zhang,

Hongyu Zhang, Qi Zhao, Liansheng Zheng, Fei Zhong, Wenyan Zhong,

Shiaoping C. Zhu, Shaying Zhao, Dennis Gilbert, Suzanna Baumhueter,

Gene Spier, Christine Carter, Anibal Cravchik, Trevor Woodage, Feroze Ali,

Huijin An, Aderonke Awe, Danita Baldwin, Holly Baden, Mary Barnstead,

Ian Barrow, Karen Beeson, Dana Busam, Amy Carver, Angela Center,

Ming Lai Cheng, Liz Curry, Steve Danaher, Lionel Davenport, Raymond

Desilets, Susanne Dietz, Kristina Dodson, Lisa Doup, Steven Ferriera, Neha

Garg, Andres Gluecksmann, Brit Hart, Jason Haynes, Charles Haynes,

Cheryl Heiner, Suzanne Hladun, Damon Hostin, Jarrett Houck, Timothy

Howland, Chinyere Ibegwam, Jeffery Johnson, Francis Kalush, Lesley Kline,

Shashi Koduru, Amy Love, Felecia Mann, David May, Steven McCawley,

Tina McIntosh, Ivy McMullen, Mee Moy, Linda Moy, Brian Murphy,

Keith Nelson, Cynthia Pfannkoch, Eric Pratts, Vinita Puri, Hina Qureshi,

Matthew Reardon, Robert Rodriguez, Yu-Hui Rogers, Deanna Romblad,

Bob Ruhfel, Richard Scott, Cynthia Sitter, Michelle Smallwood, Erin

Stewart, Renee Strong, Ellen Suh, Reginald Thomas, Ni Ni Tint, Sukyee

Tse, Claire Vech, Gary Wang, Jeremy Wetter, Sherita Williams, Monica

Williams, Sandra Windsor, Emily Winn-Deen, Keriellen Wolfe, Jayshree

Zaveri, Karena Zaveri, Josep F. Abril, Roderic Guigó, Michael J. Campbell,

Kimmen V. Sjolander, Brian Karlak, Anish Kejariwal, Huaiyu Mi, Betty

Lazareva, Thomas Hatton, Apurva Narechania, Karen Diemer, Anushya

Muruganujan, Nan Guo, Shinji Sato, Vineet Bafna, Sorin Istrail, Ross

Lippert, Russell Schwartz, Brian Walenz, Shibu Yooseph, David Allen,

Anand Basu, James Baxendale, Louis Blick, Marcelo Caminha, John

Carnes-Stine, Parris Caulk, Yen-Hui Chiang, My Coyne, Carl Dahlke,

Anne Deslattes Mays, Maria Dombroski, Michael Donnelly, Dale Ely, Shiva

Esparham, Carl Fosler, Harold Gire, Stephen Glanowski, Kenneth Glasser,

Anna Glodek, Mark Gorokhov, Ken Graham, Barry Gropman, Michael

BIBLIOGRAPHY 131

Harris, Jeremy Heil, Scott Henderson, Jeffrey Hoover, Donald Jennings,

Catherine Jordan, James Jordan, John Kasha, Leonid Kagan, Cheryl Kraft,

Alexander Levitsky, Mark Lewis, Xiangjun Liu, John Lopez, Daniel Ma,

William Majoros, Joe McDaniel, Sean Murphy, Matthew Newman, Trung

Nguyen, Ngoc Nguyen, Marc Nodell, Sue Pan, Jim Peck, Marshall Peterson,

William Rowe, Robert Sanders, John Scott, Michael Simpson, Thomas

Smith, Arlan Sprague, Timothy Stockwell, Russell Turner, Eli Venter, Mei

Wang, Meiyuan Wen, David Wu, Mitchell Wu, Ashley Xia, Ali Zandieh, and

Xiaohong Zhu, The Sequence of the Human Genome, Science 291 (2001),

no. 5507, 1304–1351.

[VS11] Panagiotis D. Vouzis and Nikolaos V. Sahinidis, GPU-BLAST: Using

Graphics Processors to Accelerate Protein Sequence Alignment, Bioinfor-

matics 27 (2011), no. 2, 182–188.

[Wak04] Kazutoshi Wakabayashi, C-based Behavioral Synthesis and Verification

Analysis on Industrial Design Examples, Proceedings of the 2004 Asia and

South Pacific Design Automation Conference (Piscataway, NJ, USA), ASP-

DAC ’04, IEEE Press, 2004, pp. 344–348.

[WBC05] Ben Wun, Jeremy Buhler, and Patrick Crowley, Exploiting Coarse-Grained

Parallelism to Accelerate Protein Motif Finding with a Network Processor,

PACT ’05: Proceedings of the 14th International Conference on Parallel

Architectures and Compilation Techniques, 2005.

[WBKC09a] John Paul Walters, Vidyananth Balu, Suryaprakash Kompalli, and Vipin

Chaudhary, Evaluating the use of GPUs in Liver Image Segmentation and

HMMER Database Searches, IPDPS ’09: Proceedings of the 2009 IEEE

International Symposium on Parallel&Distributed Processing (Washington,

DC, USA), IEEE Computer Society, 2009, pp. 1–12.

[WBKC09b] J.P. Walters, V. Balu, S. Kompalli, and V. Chaudhary, Evaluating the use

of GPUs in Liver Image Segmentation and HMMER Database Searches,

IEEE International Symposium on Parallel and Distributed Processing

(IPDPS09), 2009.

[WGK08] Gang Wang, Wenrui Gong, and Ryan Kastner, Operation Scheduling:

Algorithms and Applications, High-Level Synthesis (Philippe Coussy and

Adam Morawiec, eds.), Springer Netherlands, 2008, pp. 231–255.

[Wil03] Steve Wiley, DNA to RNA to Protein, Tutorials - Biology for the Novice,

2003.

[Wol90] Michael Joseph Wolfe, Optimizing Supercompilers for Supercomputers, MIT

Press, Cambridge, MA, USA, 1990.

132 BIBLIOGRAPHY

[Wol96] M.J. Wolfe, High Performance Compilers for Parallel Computing, Addison-

Wesley, 1996.

[WP84] Michael Waterman and Marcela Perlwitz, Line Geometries for Sequence

Comparisons, Bulletin of Mathematical Biology 46 (1984), 567–577,

10.1007/BF02459504.

[WV08] N.A. Woods and T. VanCourt, FPGA Acceleration of Quasi-Monte Carlo

in Finance, Field Programmable Logic and Applications, 2008. FPL 2008.

International Conference on, sept. 2008, pp. 335 –340.

[YHK09] Chao-Tung Yang, Tsu-Fen Han, and Heng-Chuan Kan, G-BLAST: a Grid-

based Solution for mpiBLAST on Computational Grids, Concurrency and

Computation: Practice and Experience 21 (2009), no. 2, 225–255.

[ZLH+05] G.L. Zhang, P.H.W. Leong, C.H. Ho, K.H. Tsoi, C.C.C. Cheung, D.-U.

Lee, R.C.C. Cheung, and W. Luk, Reconfigurable Acceleration for Monte

Carlo based Financial Simulation, Field-Programmable Technology, 2005.

Proceedings. 2005 IEEE International Conference on, dec. 2005, pp. 215

–222.

[ZS81] Michael Zuker and P. Stiegler, Optimal computer folding of large RNA

sequences using thermodynamics and auxiliary information, Nucleic Acids

Research 9 (1981), no. 1, 133–148.

[ZS84] Michael Zuker and David Sankoff, RNA Secondary Structures and

Their Prediction, Bulletin of Mathematical Biology 46 (1984), 591–621,

10.1007/BF02459506.

[Zuk03] Michael Zuker, Mfold web server for Nucleic Acid Folding and Hybridization

Prediction, Nucleic Acids Research 31 (2003), no. 13, 3406–3415.

[ZZZ+10] Jiyu Zhang, Zhiru Zhang, Sheng Zhou, Mingxing Tan, Xianhua Liu,

Xu Cheng, and Jason Cong, Bit-level Optimization for High-level Syn-

thesis and FPGA-based Acceleration, Proceedings of the 18th annual

ACM/SIGDA international symposium on Field programmable gate arrays

(New York, NY, USA), FPGA ’10, ACM, 2010, pp. 59–68.

	COUV THESE NaeemABBAS
	MYThesis.pdf
	Introduction
	High Performance Computing for Bioinformatics
	FPGA based Hardware Acceleration
	FPGA Design Flow
	Synthèse de haut niveau

	Parallélisation à l'aide de réductions et de préfixes parallèles
	Contributions de cette thèse

	Introduction
	High Performance Computing for Bioinformatics
	FPGA based Hardware Acceleration
	FPGA Design Flow
	High-level Synthesis

	Exploiting Parallelism with Reductions and Prefixes
	Contributions of this work

	An Introduction to Bioinformatics Algorithms
	DNA, RNA & Proteins:
	Sequence Alignment
	Pairwise Sequence Alignment
	Multiple Sequence Alignment
	The HMMER tool suit
	Computational Complexity

	RNA Structure Prediction
	The Nussinov Algorithm
	The Zuker Algorithm

	High Performance Bioinformatics
	Conclusion

	HLS Based Acceleration: From C to Circuit
	Reconfigurable Computing
	Accelerators for Biocomputing
	High Level Synthesis
	Advantages of HLS over RTL coding

	HLS Design Steps
	Compilation
	Operation Scheduling
	Allocation & Binding
	Generation

	High Level Synthesis Tools: An Overview
	Impulse C
	Catapult C
	MMAlpha
	C2H

	Conclusion

	Efficient Hardware Generation with HLS
	Bit-Level Transformations
	Bit-Width Narrowing
	Bit-level Optimization

	Instruction-level transformations
	Operator Strength Reduction
	Height Reduction
	Code Motion

	Loop Transformations
	Unrolling
	Loop Interchange
	Loop Shifting
	Loop Peeling
	Loop Skewing
	Loop Fusion
	C-Slowing
	Loop Tiling & Strip-mining
	Memory Splitting & Interleaving
	Data Replication, Reuse and Scalar Replacement
	Array Contraction
	Data Prefetching
	Memory Duplication

	Conclusion

	Extracting Parallelism in HMMER
	Introduction
	Background
	Profile HMMs
	P7Viterbi Algorithm Description
	Look ahead Computations

	Related work
	Early Implementations
	Speculative Execution of the Viterbi Algorithm
	GPU Implementations of HMMER
	HMMER3 and the Multi Ungapped Segment Heuristic
	Accelerating the Complete HMMER3 Pipeline

	Rewriting the MSV Kernel
	Rewriting the P7Viterbi Kernel
	Finding Reductions
	Impact of the Data-Dependence Graph

	Parallel Prefix Networks
	Conclusion

	Hardware Mapping of HMMER
	Hardware Mapping
	Architecture with a Single Combinational Datapath
	A C-slowed Pipelined Datapath
	Implementing the Max-Prefix Operator
	Managing Resource Constraints through Tiling
	Accelerating the Full HMMER Pipeline

	Implementation through High-Level Synthesis
	Loop Transformations
	Loop Unroll & Memory Partitioning
	Ping-Pong Memories
	Scalar Replication
	Memory Duplication

	Experimental results
	Area/Speed Results for the MSV Filter
	Area/Speed Results for Max-Prefix Networks
	Area/Speed Results for the P7Viterbi Filter
	System level performance
	A Complete System-Level Redesign
	Discussion

	Conclusion

	Conclusion & Future Perspectives
	Conclusion
	Future Perspectives

