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AbstratThe subjet of this work is image oding and restoration in the ontext of satelliteimaging. Regardless of reent developments in image restoration tehniques andembedded ompression algorithms, the reonstruted image still su�ers from odingartifats making its quality evaluation di�ult. The objetive of the thesis is toimprove the quality of the �nal image with the study of the optimal struture ofdeoding and restoration regarding to the properties of the aquisition and om-pression proesses. More essentially, the aim of this work is to propose a reliabletehnique to address the optimal deoding-deonvolution-denoising problem in theobjetive of global optimization of the ompression/restoration hain.The thesis is organized in three parts. The �rst part is a general introdutionto the problemati addressed in this work. We then review a state-of-the-art ofrestoration and ompression tehniques for satellite imaging and we desribe theurrent imaging hain used by the Frenh Spae Ageny (CNES1) as this is thefous of the thesis.The seond part is onerned with the global optimization of the satellite imaginghain. We propose an approah to estimate the theoretial distortion of the ompletehain and we present, for three di�erent on�gurations of oding/restoration, analgorithm to perform its minimization. Our seond ontribution is also fousedon the study of the global hain but is more aimed to optimize the visual qualityof the �nal image. We present numerial methods to improve the quality of thereonstruted image and we propose a novel imaging hain based on the imagequality assessment results of these tehniques.The last part of the thesis introdues a satellite imaging hain based on a newsampling approah. This approah is interesting in the ontext of satellite imagingas it allows to transfer all the di�ulties to the on-ground deoder. We reall themain theoretial results of this sampling tehnique and we present a satellite imaginghain based on this framework. We propose an algorithm to solve the reonstrutionproblem and we onlude by omparing the proposed hain to the one urrently usedby the CNES.

1Centre National d'Etudes Spatiales





RésuméLe sujet de ette thèse onerne le odage et la restauration d'image dans le on-texte de l'imagerie satellite. En dépit des réents développements en restaurationet ompression embarquée d'images, de nombreux artéfats apparaissent dans lareonstrution de l'image. L'objetif de ette thèse est d'améliorer la qualité del'image �nale en étudiant la struture optimale de déodage et de restauration enfontion des aratéristiques des proessus d'aquisition et de ompression. Plusglobalement, le but de ette thèse est de proposer une méthode e�ae permet-tant de résoudre le problème de déodage-déonvolution-débruitage optimal dansun objetif d'optimisation globale de la haîne ompression/restauration.Le manusrit est organisé en trois parties. La première partie est une introdu-tion générale à la problématique traitée dans e travail. Nous présentons un étatde l'art des tehniques de restauration et de ompression pour l'imagerie satellite etnous dérivons la haîne de traitement atuellement utilisée par le Centre Nationald'Etudes Spatiales (CNES) qui servira de référene tout au long de e manusrit.La deuxième partie onerne l'optimisation globale de la haîne d'imageriesatellite. Nous proposons une approhe pour estimer la distorsion théoriquede la haîne omplète et développons, dans trois on�gurations di�érentes deodage/restauration, un algorithme pour réaliser la minimisation. Notre deuxièmeontribution met également l'aent sur l'étude la haîne globale mais est plus ibléesur l'optimisation de la qualité visuelle de l'image �nale. Nous présentons des méth-odes numériques permettant d'améliorer la qualité de l'image reonstruite et nousproposons une nouvelle haîne image basée sur les résultats d'évaluation de qualitéde es tehniques.La dernière partie de la thèse introduit une haîne d'imagerie satellite baséesur une nouvelle théorie de l'éhantillonnage. Cette tehnique d'éhantillonnage estintéressante dans le domaine du satellitaire ar elle permet de transférer toutes lesdi�ultés au déodeur qui se situe au sol. Nous rappelons les prinipaux résultatsthéoriques de ette tehnique d'éhantillonnage et nous présentons une haîne imageonstruite à partir de ette méthode. Nous proposons un algorithme permettant derésoudre le problème de reonstrution et nous onluons ette partie en omparantles résultats obtenus ave ette haîne et elle utilisée atuellement par le CNES.





Part IIntrodution





Chapter 1Presentation of the thesis
1.1 Context and motivationsSatellite imaging has been the fous of intense works in the remote sensing om-munity for the last years. The ability of satellite optial systems to produe highresolution images has indeed been of a great interest in appliations suh as hangedetetion or image lassi�ation. It has however outomed to be quite halleng-ing for the design of satellite imaging hains. The dimension of images aquiredby high-resolution satellites keeps growing as the image resolution, i.e. the spatialdistane between two adjaent pixels, gets smaller while the swath maintains. Forexample, one image of the PLEIADES-HR satellite overs an area of 20 km × 20km with a resolution of 70 m, giving an image size of almost 30000× 30000 pixels.These images are quantized on 12 bits, whih represents 1.35 Gb of raw data perimage! In addition, a satellite is not able to ontinuously transmit the aquiredimages as ground stations are not always aessible for a transmission. It has tostore the aquired images on the on-board mass storage to transmit them later. Butthe on-board storage apaity of a satellite is highly limited (about 500 Gb for thePLEIADES-HR satellite [Lier 2008℄) suh that the on-board memory needs to beleared frequently; the step of image oding is then important and stands as a majorelement of the satellite imaging hain. The step of restoration is also very important.Due to the onstraint on the size of the optis, the aquired image is blurred and adeonvolution/denoising proess is always required to produe an image whih anbe exploited.Despite the reent advanes in image oding, many artifats appear on the reon-struted image. These artifats appear as spei� patterns whih learly interferewith the image quality assessment. In this sense, the objetive of the thesis is toimprove the quality of the �nal image with the study of the optimal deoding stru-ture regarding to the harateristis of the aquisition and ompression hains. Moregenerally, the aim of this work is to bring a methodologial ontribution to the op-timal deoding-deonvolution-denoising problem and onsists in a haraterizationand an optimization of the ompression/restoration hain onsidering the instru-mental harateristis. As part of the thesis, we do not onstrain the omplexity ofproposed on-board algorithms et we assume that future eletronis arhitetures willallow to embed these algorithms. Works on this subjet are urrently in progress atthe Frenh Spae Ageny (CNES).To formulate this spei� global optimization problem, we onsider the imaginghain showed Fig. 1.1. We denote by x the analog sene. Depending on the ontext,



10 Chapter 1. Presentation of the thesis
x may also be referred in the thesis to the referene or target image whih is thelosest disrete representation of the true analog sene that we an obtain (we willdetail this aspet in Chapter 3). The aquired image y is the image olleted afterthe sampling and the analog-to-digital onversion. This image is the diret ouputof the optial instrument and therefore will be referred as the instrumental image.This image is enoded on-board of the satellite to form a ompressed bitstreamsuh that it an be e�iently stored then transmitted to the ground station. Theomplexity of the oding sheme is strongly onstrained by the resoures availableon board whih remain highly limited, suh that the design of this step is usually adi�ult task. The evolution of eletronis parts and on-board satellite arhiteturesmay however allow more omplex algorithms for future missions.One the enoded image has been transmitted to the ground station, it is deodedand a restoration is applied to redue the degradations due to the aquisition andthe oding proesses. The restored image is the �nal image and is denoted x̂. Thisimage is the image obtained after the oding/deoding C and the restoration T andshould be the losest representation (following some distane that we will de�ne) ofthe referene image.We denote by D(x, x̂) some measure of the distane between the referene imageand the restored one. In the onsidered hain, the oded/deoded image is C(y)(the deoding operator is inluded in C for more larity in the notations) and we willdenote R(C(y)) some measure of the oding rate of the oded image. The restoredimage is obtained by applying the restoration operator T on the oded/deodedimage C(y). It an then be expressed as a funtion of the oding and the restorationby x̂ = T (C(y)). The problem of global optimization onsists in �nding the optimal
C∗ and T ∗ whih minimize the distane D(x, x̂) under the onstraint that the targetrate Rc is not exeeded. This an be formulated as

C∗, T ∗ = arg min E [D(x, T (C(y)))]subjet to C, T

R(C(y)) ≤ Rc

, (1.1)where E is the expeted value with respet to the distribution law of x, meaningthat we want to minimize on average the distane D(x, x̂) for all images x whihfollow a ertain probability distribution.Solving problem (1.1) is very di�ult in many aspets. Firstly, problem (1.1)searhes for the optimal oder and restoration among all tehniques, whih is nottratable. Seond, even if the oding and restoration methods are given and perfetlyknown, an analyti expression of the global distortion is usually not available as theoder and the restoration are highly omplex and an rarely be expressed in losed-form. Moreover, the global distortion depends on the knowledge of the real unknownimage x (or its statistis) and on the distane measure D. Ideally, D should evaluatethe image quality with the same auray as image analysis experts. Designing suhriterion is however di�ult and out of the topi of the thesis. In this work, we willalways take D to be equal to the mean square error sine it is a tool that we aneasily manipulate. We are aware that the mean square error is not the best riterion



1.1. Context and motivations 11that we an use, we will see however that its �exibility is very interesting to developglobal optimization tehniques. But as we an see, the problem (1.1) is di�ult tosolve in a general ontext.The ontribution of the thesis is then to bring some insights on the global op-timization of the imaging hain. We will �rst fous on the theoretial optimizationof the global distortion in the ase of a simple imaging hain. Even if the onsid-ered hain is overly simple, the proposed method appears to be original and taklesa major di�ulty in formulating a losed-form expression of the global distortion.Beause of the omplexity of a true satellite imaging hain, we will then presentseveral experiments to optimize the quality of the �nal image. This numerial studyaddresses ommon questions in the design of the imaging hain suh as the positionof the restoration (i.e. on-board before oding or on-ground after deoding) andhow to proess the oding artifats whih interfere with the interpretation of theimage. To onlude the thesis, we will study a new imaging hain based on reentadvanes in the theory of sampling. This theory appears at �rst slightly opposingthe urrent imaging hain. But the bene�t in term of embedded resoures learlyjustify our interest to this method.

Figure 1.1: Current proessing hain for satellite imaging.



12 Chapter 1. Presentation of the thesis1.2 Organization of the thesisThis doument is divided in three parts. Part I is a general introdution to the thesis.In this part, Chapter 1 desribes the ontext and the organization of the manusript.The hapter 2 presents a state-of-the-art of restoration and ompression tehniquesfor satellite images. Chapter 3 loses the part by the tehnial desription of theurrent imaging hain used by the CNES, whih is the fous of the thesis.Part II is the ore of the thesis and is onerned with the global optimization ofthe satellite imaging hain. This study is our main ontribution and is divided intwo hapters. Chapter 4 is foussed on the theoretial optimization of the hain. Inthis hapter, we onsider a simple ase of imaging hain and we propose a model toestimate the global distortion. This estimation is then minimized with respet tothe parameters of the hain to get the minimum global distortion (and the optimalparameters) given a target oding rate. The main result of this optimization is thatthe quality of the �nal image an be highly improved if we address the problem ofthe satellite imaging hain optimization in its globality. This hapter also addressestheoretially the question of the position of the restoration in the imaging hain.The other part of our work is desribed in Chapter 5 and is also foused on theoptimization of the hain but the true satellite imaging hain is now onsidered. Dueto the di�ulty to extend the previous study to this hain, we present in Chapter 5 aset of numerial experiments whih improve the quality of the �nal image. Throughthis experimental study, Chapter 5 addresses reurrent open questions suh as theposition of the restoration in the hain and how to deal with the oding noise. Fromthe obtained results, we propose a new satellite imaging hain based on an on-board restoration oupled with a subtrative dithering tehnique. Compared to theurrent imaging hain, the proposed approah eliminates several urrent problemsin the observation of the �nal image suh as strutured oding artifats.Finally Part III introdues a satellite imaging hain based on the ompressedsensing approah. In Chapter 6, we reall the main results of the ompressed sensingtheory and we present a satellite imaging hain based on this framework. We proposean algorithm to solve the reonstrution problem and we onlude by omparing theproposed hain to the urrent imaging hain.1.3 PubliationsJournal papers
• M. Carlavan, L. Blan-Féraud, M. Antonini, C. Thiebaut, C. Latry and Y.Bobihon. Joint oding-denoising optimization of noisy images. Submitted toIEEE Transations on Image Proessing.
• M. Carlavan, L. Blan-Féraud, M. Antonini, C. Thiebaut, C. Latry and Y.Bobihon. On the optimization of the satellite imaging hain. Submitted toIEEE Transations on Geosiene and Remote Sensing.
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Chapter 2State-of-the-art of optimizationtehniques for satellite imaging
In this hapter, we make a brief review of optimization tehniques applied to thesatellite imaging hain. We distint here two types of optimization tehniques:

• The tehniques whih optimize only one omponent of the hain regardless tothe other ones. This type of optimization is referred in this thesis as separateor disjoint optimization.
• The tehniques whih optimize one omponent of the hain by taking intoaount the harateris of the other ones. This type of optimization is referredin this thesis as joint optimization.We organized this hapter in two setions and we disuss eah type of optimiza-tion tehnique in eah setion. Setion 2.1 starts this review by presenting advanedoding and restoration tehniques. Although the mentioned tehniques have notbeen spei�ally designed for satellite imaging, they are often used as basis in thedesign of these parts. Setion 2.2 is dediated to oding and restoration tehniquesdesigned to globally optimize the satellite imaging hain. In this part, we presentthe methods proposed in [Parisot 2000a℄ and in [Tramini 1998℄ whih are, to thebest of our knowledge, the two main existing ontributions in this domain.2.1 Disjoint optimization tehniques2.1.1 Advaned ompression algorithmsThe information inside an image (and more spei�ally in a high resolution one) isstrongly redundant (refer, for example, to the image of Cannes harbour Fig. 2.2). Itis then possible to ompress a satellite image by reduing this redundany withoutlosing important features. It is indeed unusual that the totality of an image bringsrelevant information and one an reah signi�ant ompression rates if one aeptsto slightly deteriorate its quality. This is the proess of lossy ompression. Suh aompression tehnique is omposed of several steps as shown on the Fig. 2.1.The �rst step of a lossy ompression sheme is to deorrelate the data. The ideaof the deorrelation step is to redue the redundany in an image by using a (mostof time linear) transform whih gathers all its energy in a small number of non-nulloe�ients, usually loated in the low frequenies of the signal. These transforms



16 Chapter 2. State-of-the-art of optimization tehniques for satelliteimaging
Figure 2.1: Stages of lossy image oding.are named sparse transforms and provided autoorrelation matries whih tend tobe diagonal. The optimal transform for the data deorrelation is the Karhunen-Loève transform1 (KLT) as it provides a strit diagonal autoorrelation matrix.Its implementation is however di�ult as the signal dependeny of this transformmakes it time-onsuming to ompute [Andrews 1971℄. Until very reently, as on theSPOT 5 satellite, the disrete osine transform (DCT), whih is a signal-independentapproximation of the KLT transform, was used [Wallae 1992℄.

Figure 2.2: Referene image, Cannes harbour (12 bits, 30 m resolution, 1024×1024pixels).However, image quality evaluation of the DCT-based ompression tehnique1For signals whih an be expressed as �rst-order Markov proesses.



2.1. Disjoint optimization tehniques 17showed an aeptable ompression rate of approximately 3 : 1 on SPOT5 remotesensing images (8 bits, 5 m resolution) [Thiebaut 2011℄, i.e. the ompressed image is
3 times lighter than the original one. Higher ompression rates wipe out the detailsof the image and reate bloking artifats on uniform zones. Suh phenomenon isillustrated on Fig. 2.3 whih shows the referene image (displayed Fig. 2.2) enodedat a rate of 2.5 bits/pixel (ompression rate of almost 5 : 1). These artifats appearbeause the DCT-based oding tehnique works on the image at a loal level, i.e.on small 8×8 bloks. In order to bypass this ompression bound for new generationhigh resolution satellites, like the PLEIADES-HR satellite, a new approah basedon global transforms, suh as the wavelet transform, has been adopted.

(a) (b) (d)
(e) (f) (h)Figure 2.3: Visual omparison of the DCT-based ompression tehnique. Displayedimages have a size of 200× 200 pixels. The �rst line shows zooms of di�erent zonesof the referene image. The seond line represents the same zones but for the DCT-based deoded version of the referene image (PSNR = 46.75 dB). The target rateis 2.5 bits/pixel (the dynami range of the referene image is enoded on 12 bits).The image range has been extended to point out the image reonstrution artifats.Unlike the Fourier transform whih is loalized in frequeny domain but not inspatial domain and the usual representation whih is loalized in spatial domain butnot in frequeny domain, the wavelet transform appears to be (more or less) loalizedboth in spae and in frequeny. The multiresolution analysis algorithm proposed in[Mallat 1989℄ is reommended to proess the wavelet transform of the image. Thissheme is illustrated Fig. 2.4 for a one dimensional signal. It deomposes the image



18 Chapter 2. State-of-the-art of optimization tehniques for satelliteimagingin low and high frequenies by applying, in parallel, a low-pass �lter h and a high-pass �lter g both followed by subsampling operators. Two sets of oe�ients are thenobtained: The approximation oe�ients whih orrespond to the low frequeniesof the signal and whih an be interpreted as a zoomed out version of the originalsignal and the details oe�ients whih orrespond to the high frequenies of thesignal. This deomposition proess is then iterated on the approximation oe�ients
L times, L being referred as the number of levels deomposition.

Figure 2.4: Filter banks for of a one level multiresolution analysis algorithm.A wavelet transform an be extended to multidimensional signals using separablewavelets. Images an then be deomposed using the sheme desribed Fig. 2.4iteratively on the rows and the olumns of the image. The interested reader mayrefer to [Mallat 2008℄ for more details.Di�erent families of wavelets an be used for the deomposition of the image.The Cohen-Daubehies-Feauveau (CDF) 9/7 wavelet is often used in the imageoding ommunity as it owns interesting properties for image ompression suhas symmetri �lters and enough number of vanishing moments whih reate shortlength �lters while giving e�ient sparse representations for most smooth images[Cohen 1992℄. The de�nition of the orresponding �lters h and g is given in Table 2.1for the analysis of the image. Note that the CDF 9/7 wavelet transform is atuallythe wavelet transform reommended in the reent JPEG-2000 standard and is alsothe transform used by the PLEAIDES-HR satellite for image oding [Lier 2008℄.
k Low-pass �lter hk High-pass �lter gk

0 0.852698679009 −0.788485616406

±1 0.377402855613 0.418092273222

±2 −0.110624404418 0.040689417609

±3 −0.023849465020 −0.064538882629

±4 0.037828455507Table 2.1: Analysis �lters for the 9/7 Cohen-Daubehies-Feauveau wavelet trans-form.A wavelet transform is very sparse [Antonini 1992℄, meaning that it repre-sents the image with a few number of non-null oe�ients. This representationis very attrative for the enoders that follow the transform as they take bene�t



2.1. Disjoint optimization tehniques 19of its sparsity to only enode the oe�ients whih bring information to the im-age and disard all the small wavelet oe�ients. The statistial harateristis of awavelet transform an also be taken into aount to inrease the oding performane[Shapiro 1993, Said 1996, Taubman 2000℄.One the image has been transformed, its oe�ients need to be enoded to formthe output bitstream. This enoding is usually done in two steps. The �rst step is thequantization of the oe�ients whih redues the set of their values (usually reals)to a smaller set (usually integers). It also introdues a small orrelation betweenthe oe�ients to improve the performanes of the entropy oding that follows thequantization. This entropy enoding is then the seond step of this proess andonverts the quantized oe�ients into a binary stream. This onversion does notintrodue any degradation and onsequently is rarely displayed on oding shemes.The quantization is the part of the enoding proess whih introdues an irreversibledegradation of the oe�ients. This quantization an be expliitly performed as inthe DCT-based ompression system [Wallae 1992℄ or impliity, as the onsequeneof a bitstream trunature, for advaned enoders suh as [Shapiro 1993, Said 1996,Taubman 2000℄. We desribe these enoders in the next lines. The enoder usedon-board of urrent satellite imaging systems will be desribed in Chapter 3.2.1.1.1 Embedded Zerotree Wavelet (EZW) enoderThe enoders proposed in [Shapiro 1993, Said 1996℄ are similar in the sense that theyare both based on the hierarhial representation of a wavelet transform and exploitthe self-similarity aross wavelet subbands (displayed Fig. 2.5). More preisely, theEZW enoder proposed in [Shapiro 1993℄ relies on the hypothesis that if a waveletoe�ient magnitude is below a given threshold T (it is said to be insigni�ant),then all the oe�ients of the same orientation in the same spatial loation at �nersales are likely to be insigni�ant too with respet to T . The EZW enoder thenuses this hypothesis to reate a signi�ane map that only retain oe�ients thatbring information to the image.This hierarhial notion allows to link the oe�ients that belong to the sameloation and orientation together suh that they an be represented by a zerotreestruture. The objetive of this struture is to loate the oe�ients in the �nersales that are insigni�ant based on the magnitude of the oe�ient urrentlysanned. The enoder an then predit the absene of signi�ant oe�ients at�ner sales and stops the oding of the urrent tree. This tehnique is partiularlye�ient to quikly enode a wavelet transform as it ontains many oe�ients loseto zero that do not bring muh information to the image. This end-oding method isvery similar to the end-of-blok symbol used by the DCT-based ompression systemto stop the enoding of blok when no more non-null oe�ients are disovered.However in the EZW ase, the enoder works on the whole image instead of small
8×8 bloks and therefore many more oe�ients an be predited to be insigni�antusing one symbol.As mentioned earlier, the reation of the signi�ane map depends on the value of
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Figure 2.5: Coe�ients dependenies through subbands on a 3-levels deomposition.The �gure shows the same loation at di�erent sales.the threshold T . In order to enode both large and small oe�ients, this thresholdneeds to be dereased iteratively. This is the proess of suessive-approximationquantization (SAQ) [Shapiro 1993℄. The SAQ reates a sequene of thresholds Ti, i ∈
{0, 1, . . . ,M}, where M is the number of iterations (usually set to the number ofbits required to represent the maximum absolute value of the wavelet oe�ients),and produes signi�anes maps for eah threshold Ti. Usually, the threshold atthe iteration i is de�ned as the half of the previous threshold to math the binaryrepresentation of wavelet oe�ients

Ti =
Ti−1

2
, (2.1)with T0 is half of the �rst power of two greater than the maximum absolute valueof the wavelet oe�ients to enode.During this iterative enoding proedure, two separate lists of wavelet oe�ientsare used to trak the oe�ients that have previously been marked as signi�ant:The dominant and the subordinate lists. The dominant list ontains the oordinatesof the oe�ients that have not been found to be signi�ant yet while the surbor-dinate list ontains the magnitudes of the oe�ients that have been found to besigni�ant.The overall EZW algorithm is as follows. For eah threshold, the dominantlist is sanned and the signi�ane map is produed. This map is then zerotreeenoded using an algorithm desribed in [Shapiro 1993℄. During this enoding, eahoe�ient marked as signi�ant is removed from the dominant list and its magnitudeis appended to the subordinate list. The oe�ient is then set to zero in the data



2.1. Disjoint optimization tehniques 21to not disturb the omputation of zerotrees of future iterations. One the dominantlist san is ompleted, the magnitude of eah oe�ient of the subordinate list isre�ned. More preisely, a symbol is outputted to indiate if the true value of theenoded oe�ient belongs to the upper or lower half of the urrent threshold. Theenoding stops when the target rate has been reahed.The very good results obtained with this oder an be explained by the e�ienyof the zerotree struture oupled with the SAQ tehnique, whih in fat is almostequivalent to order the wavelet oe�ient and to transmit �rst the large ones. Thisallows to deode the best possible image at any point in the binary stream: This isthe proess of progressive transmission. The Set Partitioning In Hierarhial Trees(SPIHT) enoder proposed in [Said 1996℄ is very similar to the EZW enoder as italso owns this feature of progressive transmission. However, the tehnique used bythe SPIHT enoder to ode the oe�ients is radially di�erent.2.1.1.2 The Set Partitioning In Hierarhial Trees (SPIHT) enoderThe SPIHT algorithm also fousses on this aspet of progressive transmission butexpliitly orders the wavelet oe�ients and enodes �rst the large ones suh thatthe mean square error (MSE) is minimized. Let y be the image to enode and ŷ thedeoded image, the MSE then writes
D =

1

N
‖y − ŷ‖2, (2.2)where N is the number of pixels. Using an orthonormal wavelet transform, thede�nition of the MSE an be futher developped

D =
1

N
‖w − ŵ‖2 =

1

N

N−1
∑

i=0

(wi − ŵi)
2, (2.3)where wi are the wavelet oe�ients to enode and ŵi the deoded oe�ients.As mentioned in [Said 1996℄, it is lear that if the exat value of a oe�ient wiis transmitted, i.e. ŵi = wi, then the MSE dereases by w2
i

N
. The SPIHT enoderis then based on the fat that the large wavelet oe�ients need to be transmitted�rst so an image with the best quality (in the MSE sense) an be reonstruted atany time.This enoder uses the binary representation of the oe�ients and proessesthe data iteratively bit plane by bit plane through two passes: The sorting passwhih orders the oe�ients from the larger to the smaller and the re�nement passwhih outputs the bit value of urrent bit plane for eah signi�ant oe�ient. Thekeypoint of this algorithm is that the oordinates of the sorted oe�ients do notneed to be transmitted as both enoder and deoder share the same exeution path.In detail, the strength of the sorting pass of the SPIHT enoder lies in the fatthat it does not sort all oe�ients but only selets the one that are signi�ant withrespet to a threshold Tn where n is the nth iteration (or sorting pass). To seletthese signi�ant oe�ients, the sorting pass divides all the pixels into partitionning



22 Chapter 2. State-of-the-art of optimization tehniques for satelliteimagingsubsets Tm and evaluates the signi�ane of eah subset. If none oe�ient of thesubset Tm is signi�ant, then the subset is onsidered as insigni�ant and is not pro-essed any further. Otherwise, if at least one oe�ient of the subset is signi�ant,then the subset Tm is onsidered as signi�ant and a spei� rule is applied to dividethe subset into new partition subsets Tm,l [Said 1996℄. The signi�ane test is thenperformed on these new subsets Tm,l and so on. This proess is ahieved iterativelyuntil eah subset is redued to a single oe�ient suh that eah oe�ient has beenfound signi�ant or not.This signi�ane map is then stored in three lists: The list of insigni�ant sets(LIS), list of insigni�ant pixels (LIP) and list of signi�ant pixels (LSP). The LIPand LSP lists are used to respetively store the oordinates of insigni�ant andsigni�ant pixels. The LIS list is used to speify the type of subset assoiated to theoordinates of eah oe�ient.The overall algorithm is as follows. It starts by initializing the number of it-erations n to the number of bits required to represent the maximum value of theoe�ients. For eah entry of the LIP (whih stores the oordinates of pixels whihwere evaluated as insigni�ant at the previous iteration), the signi�ane is evalu-ated. The signi�ant oe�ients are moved to the LSP and their sign is outputted.The signi�ane of the set of eah entry of the LIS is then evaluated. If the set isfound to be insigni�ant, it is added bak to the LIS for the next iteration. Other-wise, it is further partionned. The resulting subsets are added bak to the LIS andthe single oe�ient subsets are added either to the LIP or LSP depending on theirsigni�ane. Eah entry of the LSP is then proessed by the re�nement pass whihoutputs the nth most signi�ant bits of the absolute value of the oe�ients (thesign has already been outputted during the sorting pass). The value of n is thenderemented by 1 to proess the next bit plane.As for the EZW enoder, the SPIHT enoder stops the enoding proedure onethe bit budget has been exhausted. The quality an also be ontrolled by stoppingthe enoding proedure one the evaluation of (2.3) reahes the desired target value.Note that, ontrary to the EZW algorithm, the SPIHT enoder diretly produesthe bitstream without using an entropy oding. As mentioned by [Said 1996℄, usingan entropy oding does not bring muh improvement and strongly inreases theoding time. In the next part, we desribe another well-known oding algorithmused in the JPEG-2000 standard.2.1.1.3 Embedded Blok Coding with Optimized Trunation (EBCOT)enoderThe JPEG-2000 standard is a reent reommendation for imaging oding and isalso based on the wavelet transform desribed in Setion 2.1.1. The JPEG-2000entropy oder is based on the Embedded Blok Coding with Optimized Truna-tion (EBCOT) ontextual enoder proposed in [Taubman 2000℄. This enoder is ablok-based enoder organized in two layers named Tiers. The Tier 1 divides eahwavelet subband in small bloks and enodes eah blok using a ontextual enoder.



2.1. Disjoint optimization tehniques 23The seond layer, Tier 2, omputes the optimal trunation points of the enodedbitstreams suh that the global rate-distortion is minimized.During the Tier 1, the enoder divides eah wavelet subband into small 32× 32bloks and proesses eah blok bit plane by bit plane. During this bit plane en-oding proedure, the enoder sans eah oe�ient and proesses through threedi�erent oding passes: The Signi�ane Propagation pass, the Magnitude Re�ne-ment pass and the Cleanup pass. During eah of these passes, four primitives areused: The Run-Length Coding (RLC) primitive, the Zero Coding (ZC) primitive,the Magnitude Re�nement (MR) primitive and the Sign Coding (SC) primitive.These primitives are used to selet the most appropriate ontext of the oe�ientsanned depending on its neighbors. In detail, for eah sanned oe�ient, theeight adjaent neighbors are observed. Eah neighboring on�guration produes aspei� ontext whih is onverted by the seleted primitive to a partiular outputsymbol. To limit the omplexity of the oder, all the possible on�gurations havebeen redued to eighteen ontexts for all the primitives, one for the RL primitive,nine for the ZC primitive, �ve for the SC primitive and three for the MR primitive[Taubman 2000℄.The oding of a bit plane is as follows. The Signi�ane Propagation pass isused to loate the signi�ant oe�ients or the oe�ients that have signi�antneighbors. One these oe�ients have been loated, the RL and ZC primitives areinvoked to identify the ones whih beome signi�ant in the urrent bit plane. If so,the SC primitive is applied to enode their sign. During the Magnitude Re�nementpass, the MR primitive is applied. This primitive is intended to re�ne the magnitudeof the oe�ients identi�ed as signi�ant by the Signi�ane Propagation pass, byenoding the orresponding bits of the urrent bit plane. Finally, the Cleanup passis used to enode the oe�ients that have not been onsidered during the previouspasses. The RL primitive is applied and the SC primitive is invoked if oe�ients arefound to be signi�ant. Eah outputted symbol is then enoded using an arithmetioder.One eah blok has been enoded using the ontextual enoder, the Tiers 2omputes the optimal trunation points of the enoded bitstream suh that thetrunation points lie on the rate-distortion onvex hull. Let Dni

i be the odingdistortion of the blok Bi whose bitstream has been trunated to the point ni givingthe oding rate Rni

i . As eah blok is enoded independently, the overall odingdistortion D an be expressed as
D =

I−1
∑

i=0

Dni

i , (2.4)where I is the number of bloks. Similarly, the overall oding rate R writes
R =

I−1
∑

i=0

Rni

i . (2.5)The rate-distortion problem onsists here in �nding the optimal trunationpoints n∗i whih minimize the oding distortion D over the set Ni of all possible



24 Chapter 2. State-of-the-art of optimization tehniques for satelliteimagingtrunation points, under the onstraint that the oding rate R does not exeed thetarget rate Rc. It an be formalized as follows
ni

∗ = arg min
∑I−1

i=0 D
ni

isubjet to ∑I−1
i=0 R

ni

i ≤ Rc

ni ∈ Ni

. (2.6)For some value of the Lagrange multiplier λ [Everett 1963℄, the problem (2.6)an be written in an unonstrained form [Taubman 2000℄
nλ

i

∗
= arg min

∑I−1
i=0

(

D
nλ

i

i + λR
nλ

i

i

)subjet to nλ
i ∈ N λ

i

. (2.7)The rate-distortion optimization performed by the Tiers 2 onsists thus in �nd-ing the value of λ suh that the optimal trunation points nλ
i

∗ in (2.7) satisfy
∑I−1

i=0 R
nλ

i

∗

i = Rc. The optimization (2.7) an be performed numerially by �nd-ing, for a given λ, the minimal trunation point j ∈ {1, 2, 3, . . . } whih veri�es foreah blok Bi

∆Dj
i

∆Rj
i

= −λ, (2.8)where
∆Dj

i = Dj−1
i −Dj

i , (2.9)
∆Rj

i = Rj−1
i −Rj

i . (2.10)Until now, the EBCOT enoder desribed here allows to reah the state-of-the-art image oding performanes [Taubman 2000℄. Its high omputational ost makeit di�ult to use it on-board of a satellite. The enoders presented in [Shapiro 1993,Said 1996℄ are less expensive in term of omputational resoures and are frequentlyused as the basis of satellite embedded image oder (see Setion 3.2.2).2.1.2 Restoration tehniquesIn this part, we desribe the tehniques used for the restoration of the deoded image.Note that we only fous on the methods whih deompose the restoration in a diretdeonvolution followed by a threshold operation of some sparse representation. Wedo not inlude the methods based on a variational framework suh as [Bet 2004℄as they are time onsuming to ompute.2.1.2.1 Wavelet thresholding estimatorsMost of restoration tehniques used in satellite imaging are based on the tehniqueproposed in [Kalifa 2003b℄. These methods onsider that the observed image y isthe result of the real sene x blurred by the point spread funtion (PSF) h of theoptis and noised by an additive random noise n
y = h ∗ x+ n, (2.11)



2.1. Disjoint optimization tehniques 25where ∗ denotes the onvolution produt. To simplify the notation, the samplingoperation does not appear in the model (2.11) and we assume that all the variablesare disrete.The PSF h of the optis ats as a low-pass �lter whih attenuates the highfrequenies of the image (edges and sharp textures) making it blurry. Retrievingthe true image x from the observed one y is an ill-posed problem whih requiresprior information on the image x and on the noise n [O'Sullivan 1986℄. As mentionedpreviously, one tehnique to address this problem is to formalize this estimation as aminimization problem using a variational approah. In detail, a variational approahonsists in formulating the inverse problem as a minimization problem omposed ofa data �delity term built from the noise model and a regularizing funtion suited torepresent the image x [Chambolle 1997℄. A general framework for the formulationof inverse problems using variational approahes has been proposed in [Bet 2004℄.The resulting algorithms appear however to be quite time onsuming and are thusinadapted to high resolution satellite imaging.Here, we fous instead on methods similar to [Kalifa 2003b℄ whih proposes toinvert the problem (2.11) in two steps. The �rst step onsists in dividing, in theFourier domain, the observed image by the optial transfer funtion (OTF) to removethe attenuation of the �lter h. This diret inversion tends however to amplify thenoise, so the deonvolved image is usually deomposed in some sparse basis and itsoe�ients are then thresholded to redue the energy of the ampli�ed noise. Thesetehniques belong to the lass of thresholding estimators [Donoho 1994℄.In the ase of an image only degraded by an additive Gaussian noise,[Donoho 1994℄ showed that the maximum risk of these thresholding estimators isminimized if the vetor basis of the deomposition onentrate the energy of theimage over few oe�ients and if the noise oe�ients are nearly independent. Itis well-known that wavelet basis own this property of sparsity as they are widelyused for image ompression [Antonini 1992℄. As these transforms are orthogonal (orbiorthogonal), the nearly independene between noise oe�ients is ahieved.When the image is also degraded by blur, [Kalifa 2003b℄ showed that thesholdingestimators based on wavelet basis may not be e�ient as the deonvolved noise isolored. Let h−1 be the pseudo-inverse �lter whose Fourier transform F(h−1)(u) isde�ned by
F(h−1)(u) =

{

1
F(h)(u) , ifF(h)(u) 6= 0

0, otherwise . (2.12)The deonvolved image x̃ is obtained by applying the pseudo-inverse �lter h−1to the observed image y
x̃ = h−1 ∗ y = w ∗ x+ z, (2.13)where z is the deonvolved noise and w is some regularizing funtion whihanels the frequeny of the image where F(h) vanishes

F(w)(u) =

{

1, ifF(h)(u) 6= 0

0, otherwise . (2.14)



26 Chapter 2. State-of-the-art of optimization tehniques for satelliteimagingThe power spetrum Sz of the deonvolved noise z an be expressed as
Sz(u) =

{

Sn(u)
|F(h)(u)|2 , ifF(h)(u) 6= 0

0, otherwise. (2.15)From (2.15), we see that the power of the noise will be higher in the high fre-quenies where the magnitude of the Fourier transform of the �lter h is low. Athresholding of some sparse deomposition is then required to redue the inten-sity of the deonvolved noise. For deonvolution problems where the magnitude ofthe Fourier transform of the �lter h dereases slowly, [Donoho 1995b℄ showed thatwavelet basis still lead to e�ient thresholding estimators for this lass of deonvo-lution problems.If the magnitude of the Fourier transform of the �lter h vanishes, then theshold-ing in wavelet basis does not lead to satisfying results [Kalifa 2003b℄. As the Fouriertransform of h vanishes, the pseudo-inverse �lter h−1 deals with important variationsin the high frequeny domain where the magnitude of the OTF goes near zero. Un-fortunately, the high frequeny subbands of wavelet basis do not have a su�iently�ne frequeny resolution to onentrate the energy of the deonvolved noise in fewoe�ients. A wavelet paket deomposition [Coifman 1992℄ needs to be used toahieve an e�ient estimation [Kalifa 2003b℄. Hybrid Fourier-Wavelet approahes[Neelamani 2004℄ an also be used to deal with the frequenial representation of theolored noise.A wavelet paket deomposition extends the disrete wavelet transform by iterat-ing the deomposition both on the low frequeny and the high frequeny subbands.An exemple of suh deomposition is illustrated Fig. 2.6 in omparison to a las-sial dyadi wavelet transform. We see that a wavelet paket transform leads toa representation with a �ner frequeny resolution in the high frequeny subbands.For bounded variations signals, [Kalifa 2003a℄ showed that thresholding estimatorsbased on wavelet paket deompositions are nearly minimax optimal for this lassof deonvolution problems.Thresholding estimators based on real wavelet paket transforms produe how-ever artifats on the reonstruted image. These artifats ome from the fat thatreal wavelet paket transforms su�er from a lak of shift invariane and a poor di-retionality. The lak of shift invariane an be worked around by applying thetransform on shifted version of the deonvolved image. This however tends to sig-ni�antly slow down the algorithm. The poor diretionality omes from the fatthat wavelet transforms are extended to the two-dimensional ase using separablewavelets. This allows e�ient deomposition algorithms whih apply the wavelettransform independently on eah dimension (rows and olumns) of the image. Con-sequently, a two-dimensional wavelet transform only selets horizontal and vertialfrequenies of the image but does not orretly represent the diagonal frequenies(oriented objets). This lak of diretional seletivity reates aliasing artifats whihare partiularly visible on the oriented objets (buildings, roads) of the reonstrutedimage.
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Figure 2.6: On the left, absolute value of a 2-levels wavelet deomposition of thereferene image presented Fig. 2.2. On the right, absolute value of a 2-levelswavelet pakets deomposition of the same image. Both transforms use orthogo-nal Daubehies DB6 �lters set [Daubehies 1992℄.Redundant wavelet transforms an be used to deal with the lak of shift in-variane and the poor diretionality, at the ost of more omplex algorithms. Anextension of the real wavelet paket transform to the omplex ase has been pro-posed in [Jalobeanu 2003℄. This omplex wavelet paket transform is based from theomplex wavelet framework proposed in [Kingsbury 1998℄ whih o�ers nearly shiftinvariane and a better diretional seletivity with a limited redundany. Advanedredundant wavelet transforms suh as [Labate 2005℄ and [Candès 2005℄ an be usedto apture spei� features of the image (urves, oriented objets). Finally, notethat all the referred methods an also take bene�t of risk optimization tehniquesto estimate the optimal threshold parameters whih minimize the MSE without theknowledge of the true image [Pesquet 2009℄, [Chesneau 2010℄. A omparison of thestate-of-the-art sparse transforms for image restoration will be presented in part II.2.2 Joint optimization tehniquesIn this part, we brie�y desribe the methods whih optimize one part of the imaginghain by taking into aount the harateristis of the other omponents.2.2.1 Optimal rate-alloation based modelsTo the best of our knowledge, the main ontribution on joint optimization for im-age oding is the tehnique proposed in [Parisot 2002℄. In this work, the authorsproposed to ompute a rate-alloation based on a wavelet subband model. The in-teresting point in the proposed method is that the global distortion an be weightedto take into aount the post-proessing steps. As explained in Setion 2.1.2.1,the restoration done on-ground �rst performs a deonvolution to enhane the highfrequenies of the image. It seems then interesting to weight the high frequeny



28 Chapter 2. State-of-the-art of optimization tehniques for satelliteimagingsubbands during the rate-alloation suh that they are preserved from the quan-tizing [Parisot 2001℄. More preisely, [Parisot 2002℄ proposed to write the odingdistortion D as
D =

J−1
∑

j=0

∆jπjDj, (2.16)where J is the number of wavelet subbands, Dj is the oding distortion in thesubband j and πj are weighting oe�ients whih depend on the �lters and thedeimation fators used in the wavelet transform [Usevith 1996℄. Note that theseweighting oe�ients are only required if one onsiders biorthogonal wavelet trans-forms suh as the CDF 9/7 wavelet transform [Cohen 1992℄. They are equal to 1for an orthogonal wavelet transform. The weighting oe�ients ∆j allow to favorone subband (i.e. one range of frequenies) during the rate-alloation problem. Alow value of this weight will preserve the orresponding subband while a high valuewill penalize it.Similarly, the oding rate R an be expressed as a funtion of eah subband rate
Rj

R =

J−1
∑

j=0

ajRj, (2.17)where
aj =

Nj

N
, (2.18)is the weight of the subband j in the whole image, that is the ratio between thesize Nj of the subband j and the size N of the image.The authors of [Parisot 2002℄ further proposed to modelize eah wavelet subbandusing a entered generalized Gaussian distribution (GGD) law (the low frequenysubband mathes this model if a di�erential oding is �rst applied). Eah subband isthen parametrized by a standard deviation σj and a shape parameter αj . Althoughseveral quantization models are onsidered in [Parisot 2002℄, eah of them an bede�ned by the quantized step qj and the size of a dead-zone zj. A dead-zone is thequantizing interval whih outputs a zero value. As shown in [Parisot 2002℄, usinga dead-zone larger than the quantizing step gives better ompression performanes.The oding distortion D and the oding rate R an be expressed analytially as afuntion of the GGD and the quantization parameters [Parisot 2002℄

D =

J−1
∑

j=0

∆jπjσ
2
jDj
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αj,
zj
σj
,
qj
σj

)

, (2.19)
R =

J−1
∑

j=0

ajRj

(

αj ,
zj
σj
,
qj
σj

)

. (2.20)The rate-alloation problems onsists here in �nding the optimal quantizingparameters (quantizing step q∗j and size of the deadzone z∗j ) whih minimize the



2.2. Joint optimization tehniques 29oding distortion D under the onstraint that the oding rate R does not exeedthe target rate Rc

q∗j , z
∗
j = arg min

∑J−1
j=0 ∆jπjσ

2
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,
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σj

)subjet to ∑J−1
j=0 ajRj
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αj ,
zj
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,
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)

≤ Rc

qj, zj

. (2.21)
We immediately see that if ∆j = 0 then the orresponding subband j will notbe inluded in the minimization of the distortion, leading to the minimal valueof quantizing step (qj = 1). High frequeny subbands may then be preserved fromexessive quantizing, whih is preferable for the restoration that follows. The odingtehnique proposed in [Parisot 2002℄ is jointly optimized in this sense.One an show that for some value of the Lagrange multiplier λ [Everett 1963℄,the rate-alloation problem (2.21) an be written in an equivalent unonstrainedform
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. Exept under high oding rate assumption, the prob-lem (2.22) annot be solved in losed-form. The algorithm proposed in [Parisot 2002℄to solve (2.22) is based on the resolution of the simultaneous equations obtainedfrom the Karush-Kuhn-Tuker (KKT) onditions [Kuhn 1951℄ of problem (2.22).The KKT onditions are the neessary �rst order onditions for a solution of an op-timization problem to be optimal. In lear, the KKT onditions state that the �rstderivatives of the funtion to minimize, taken at an optimal point, have to anel.Note that these onditions are usually not su�ient and the analysis of the seondderivatives is sometimes required to determine if the extremum found is a maximum,a minimum or a saddle point. Due to the omplexity of problem (2.22), the authorsof [Parisot 2002℄ expliitly assume that a mimimum exists and is unique. Only onepoint an then verify the KKT onditions of problem (2.22). These onditions write
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j ) −Rc = 0. (2.25)The solution z̃∗j an be expressed as a funtion of the quantizing step q̃∗j and theshape parameter αj , and therefore an be noted as [Parisot 2002℄

z̃∗j = gαj
(q̃∗j ). (2.26)
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. (2.29)The monotoniity of funtions hαj

and Rj allows to solve numerially (2.27) and(2.28) using root-�nding algorithms suh as binary searh proedures. From (2.29),we see that the funtion hαj
only depends on the shape parameter αj and q̃j, the ratiobetween the quantizing step qj and the standard deviation σj of the urrent subband.Without knowing expliitly the values of qj and σj, one an numerially ompute

hαj
for a given αj and several values of q̃j. Eq. (2.27) an then be solved using thegenerated lookup table (LUT) and a binary searh proedure [Parisot 2002℄. Thesame tehnique is applied to (2.28) to �nd λ∗. Solutions q∗j , z∗j and then deduedfrom q̃∗j and z̃∗j given σj.In terms of oding performanes, the tehnique proposed in [Parisot 2002℄ equals(and sometimes outperforms) JPEG-2000, whih is the state-of-the-art of odingalgorithm. The omplexity of the algorithm [Parisot 2002℄ is however 5 times lowerthat JPEG-2000. These features make the method proposed in [Parisot 2002℄ to bevery suitable for future high-resolution satellite ompression sheme [Parisot 2000b℄.2.2.2 Optimal joint deoding/deblurringAs mentioned in the Setion 2.1.2.1, the restoration performed on-ground after de-oding usually does not take into aount the quantizing noise and onsiders theimage formation model (2.11). But the oding step annot be negleted at low od-ing rates and introdues a quantizing error. The method presented in [Tramini 1999℄fousses on this aspet and proposes a restoration method whih onsiders all thedegradation of the imaging hain.Let W be the wavelet transform used in the oding step, Q the quantizingoperator and S the set of oordinates of the N pixels of the image. The quantizedimage ŵ in the transformed domain writes

ŵ = Q (W (Hx+ n)) , (2.30)where x is the real sene, H is the matrix notation of a �ltering proess h (whihstands as the PSF of the optis of the satellite) and n is the instrumental noise.In [Tramini 1999℄, the noise n is assumed to be entered, bounded, non-stationaryand following a uniform distribution. But other onsiderations an be made toadapt the method to the onsidered hain. The variane σ2
i at the pixel i of the



2.2. Joint optimization tehniques 31instrumental noise relies on the value of the observed pixel (Hx)i and an be writtenas [Tramini 1999℄
σ2

i = α+ β(Hx)i + γ(Hx)2i , ∀i ∈ S (2.31)where α, β and γ are three onstants whih depend on the aquisition parameters.The noise n is assumed to be uniformly distributed; its probability density funtion
pn an be expressed as a funtion of the variane σ
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. (2.32)Eah pixel noise (n)i is then bounded by
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3, ∀i ∈ S. (2.33)Let b be the quantizing noise in the transformed domain, (2.30) an be writtenas

ŵ = W (Hx+ n) + b. (2.34)Under the onsideration that a subband uniform salar quantizer is used, eahpixel of a quantizing noise subband bj is bounded by the quantized step qj appliedto the subband j
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, ∀i ∈ Sj . (2.35)where Sj is the set of oordinates of the Nj oe�ients of the subband j. Eq.(2.34) an be further redued to

ŵ = WHx+ ε, (2.36)where ε = Wn + b. As mentioned in [Tramini 1999℄, the di�ulty here is tobound the wavelet transform of a non-stationary noise. Under some stationaryapproximation of the instrumental noise in the transformed domain, the authorsof [Tramini 1999℄ proposed to ompute numerially the bound ωj for eah waveletsubband j of the instrumental noise. Eah pixel of a subband εj of the global error
ε then veri�es
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, ∀i ∈ Sj . (2.37)From equation (2.37), one de�nes for eah subband j the interval [Tramini 1998℄
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32 Chapter 2. State-of-the-art of optimization tehniques for satelliteimagingwhere J is the number of wavelet subbands. The restoration method proposedin [Tramini 1999℄ is based on a variational approah and onsists in minimizing thesum of two onvex funtions under the onstraint that the global error belongs to
I. This writes

x∗ = arg min f1(x) + f2(x)subjet to (ŵ −WHx) ∈ I,

x ∈ R
N

, (2.41)where f1 is the data �delity term and f2 is the regularizing term. The data�delity term usually depends on the statistis of the noise. Here, the authors of[Tramini 1999℄ proposed to write the data �delity term as
f1(x) =
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j

πj (WHx− ŵ)2i , (2.42)where σ2
j is the variane of the instrumental noise, approximated as stationary, inthe subband j, and πj are weightings oe�ients required for biorthogonal wavelettransforms [Usevith 1996℄. The purpose of the regularizing term f2 is to avoidthe explosion of the noise during the deonvolution. It is built following someassumptions on the image. Here, the image is supposed to be a pieewise smoothfuntion; the norm of its gradient is then assumed to be low [Rudin 1992℄. Theregularizing term proposed in [Tramini 1999℄ writes

f(x) =
∑

i∈S

(Gλ)iΨ (| (∇x)i |) , (2.43)where Ψ is an edge-preserving regularization funtion [Charbonnier 1997℄ and
∇ is the gradient operator. The regularizing term in (2.43) is ontrolled by theparameter λ whih weights the regularization ompared to the �delity to the data.Usually, this parameter is a salar suh that the regularization is the same all overthe image. The authors of [Tramini 1999℄ proposed to use a regularizing map (builtby lassi�ation) suh that the sensitive zones are not too smoothed. As this reg-ularizing map is not di�erentiable, it is then smoothed using a onvolution with aGaussian kernel G. The minimization of the problem (2.41) is obtained from the nu-merial resolution, using the searh method proposed in [Tramini 1998℄ and derivedfrom [Uzawa 1958℄, of Euler-Lagrange equations assoiated to (2.41). As shown bythe results of the method [Tramini 1999℄, taking into aount the oding noise inthe restoration allows to slightly improve the quality of the reonstruted image.The drawbak of the method is that the prior used for the regularizing term tendsto reate �at homogeneous regions whih are not appreiated from image analysisexperts as they annot be interpreted physially [Dherete 2003℄.



Chapter 3Current CNES earth observingimaging hain systems
In this part, we desribe the omposition of a satellite imaging hain. A simpli�edrepresentation of this hain is displayed �gure 1.1. The role of eah omponentof the imaging hain has already been desribed in Chapter 1. We fous in thishapter to the tehnial features of eah of these omponents. The data presentedin the thesis are provided by the CNES and are simulations of the post-PLEIADESnew generation high-resolution satellites. We then fous only on the imaging hainsystem used by the CNES but the methods we propose are more general and anbe easily extended to the harateristis of other hains.3.1 Charateristis and instrument model3.1.1 Transfert funtion of the optisThe optis of a satellite is built from a omplex ombination of mirors. The lightemitted from the sene is re�eted by these suessive mirors and is then foalizedon the detetor. Several design of optis exist, suh as the Korsh telesope wih is athree mirors telesope. The harateristis of the telesope depends on spei�ationssuh as the magnitude of the optial transfer funtion or the target sampling rate.For example, the PLEIADES-HR satellite uses a Korsh telesope [Lier 2008℄ witha 65 m pupil of 12.9 m foal length. It allows to apture panhromati images witha resolution of 70 m and multispetral images with a resolution of 2.80 m. For thepost-PLEIADES new generation satellites, a target resolution of 30 m is planned.The aquired signal is proessed as follows. It is �rst sampled and transmittedto the eletroni parts to be shaped suh that it is not too noisy. The signal is laterampli�ed to �t all the available range and to limit the e�et of the quantizationduring the analog-to-digital onversion. The analog-to-digital onverter is the lastpart of the aquisition proess. It quantizes the ampli�ed signal on 12 bits, givinga digital image whose pixels vary from 0 to 4095.This aquisition proess a�ets the quality of the true image by adding blur andinstrumental noise. The blur is mainly aused by the natural environment and theimperfetion of the aquisition omponents. The atmosphere, the optis and thesensor all own a transfer funtion whih attenuate the high frequenies of the image(edges, sharp textures) making it blurry. Let ha, ho and hd respetively be thetransfer funtions of the atmosphere, the optis and the sensor. We assume that



34 Chapter 3. Current CNES earth observing imaging hain systemsall these operators are linear and translation invariant. The global point spreadfuntion h is then the onvolution produt of all the intermediate transfer funtions
h = ha ∗ ho ∗ hd. (3.1)Note that the Fourier transform of the global PSF, namely the optial transferfuntion, does not anel at the Nyquist frequeny and thus adds aliasing on theimage. This aliasing phenomenon remains however limited as the magnitude of theoptial transfer funtion (the MTF) at the Nyquist frequeny is usually low. Forexample, the MTF is equal to 0.1 at the Nyquist frequeny on the PLEIADES-HRsatellite. This harateristi is one of the major point of the spei�ations of satelliteoptis.3.1.2 Instrument noise modelThe instrumental noise is also the omposition of several noise soures suh as aphoton noise, an eletroni noise and a quantizing noise due to analog-to-digitalonversion. It is assumed to be entered and Gaussian with a variane σ2

i whihdepends on the observed pixel. Let σ2
pi
, σ2

ei
, σ2

qi
be respetively the varianes ofthe photon noise, the eletroni noise and the quantizing noise at the pixel i. Thevariane of the global noise σ2

i at this pixel is expressed as the sum of the varianesof the di�erent noises
σ2

i = σ2
pi

+ σ2
ei

+ σ2
qi
. (3.2)By taking into aount the mathematial expression of eah variane, one anapproximate the variane σ2

i of the global noise at the pixel i as a linear funtion ofthe observed luminane h ∗ x sampled at the same pixel i [Lier 2008℄
σ2

i = α2 + β(h ∗ x)i, (3.3)where α and β are two given onstants (i.e. not pixel dependent). These twoonstants rely on the target signal-to-noise ratio (SNR) (whih is funtion of theluminane) and diretly derive from the parameters of the eletroni hain suh asthe ampli�ation fator or the quantizing step of the analog-to-digital onverter.Two target luminanes are usually used to ompute the value of α and β: Themean luminane of the image, namely L2, whih is de�ned as 97 W.m−2.sr−1.µm−1and the luminane L1 de�ned as 14 W.m−2.sr−1.µm−1. These luminanes anbe onverted in pixel values by multiplying them by the ratio between the pixelmaximum value (4095) and the maximum luminane value (370 W.m−2.sr−1.µm−1).In pixels values, these luminanes are then de�ned as L1 = 154.94 and L2 = 1073.54.Given the target signal-to-noise ratios assoiated to L1 and L2, one dedues thestandard deviation of the global noise at the two target luminanes
σL1 =

L1

SNR(L1)
, (3.4)

σL2 =
L2

SNR(L2)
. (3.5)



3.2. On-board proessing: Image oding 35From equation (3.3), we also have
σ2

L1 = α2 + βL1, (3.6)
σ2

L2 = α2 + βL2. (3.7)Using (3.4) and (3.6), one an ompute the onstants α and β. Table 3.1 showsthe values of these onstants for several operating points (OP) simulated by theCNES on the referene image presented Fig. 3.1.OTF Resolution Coding rate SNR (L1-L2) α βOP 61 0.1 30 m 4.0 bpp 30-100 3.2866 0.097780OP 62 0.1 30 m 2.5 bpp 30-100 3.2866 0.097780OP 63 0.1 30 m 4.0 bpp 30-150 4.6220 0.028128OP 64 0.1 30 m 2.5 bpp 30-150 4.6220 0.028128OP 65 0.1 30 m 4.0 bpp 50-150 1.5286 0.045790OP 66 0.1 30 m 2.5 bpp 50-150 1.5286 0.045790Table 3.1: Parameters of the aquisition hain for several simulated operating points(OP). The olumn OTF displays the value of the OTF at Nyquist frequeny. Theolumn oding rate indiates the number of bits per pixel (bpp) ahieved at theoutput of the ompression algorithm.Finally, we an modelize the disrete aquired image y (onsidered as a vetorof length N , where N is the number of pixels) at the output of the aquisition hainas the onvolution produt of the real analog image x and the global PSF h (3.1),sampled on a grid ∆, and noised by the disrete instrumental noise n. This writes
y = (h ∗ x)∆ + n. (3.8)We assume the grid ∆ to be the usual square sampling grid. The variable h nowrefers to the disretization of the analog PSF on the grid ∆ and x represents theonvolution of the analog image with a target PSF (see Setion 3.3.2), sampled on

∆. Note that this image x is the losest disrete approximation of the true analogimage that we an obtained. Model (3.8) rewrites
y = h ∗ x+ n. (3.9)The instrumental noise n is assumed to follow a normal zero-mean distributionwhose variane σ2

i at the pixel i depends on the observed pixel and is given by themodel (3.3).3.2 On-board proessing: Image odingOne the image has been aquired, it needs to be ompressed for an e�ient storageand transmission. The ompression system embbeded on-board of PLEIADES-HRsatellite proesses the image in three steps, similarly to the oding sheme depited
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Figure 3.1: Referene image, Cannes harbour (12 bits panhromati image, 30 mresolution, 1024 × 1024 pixels).



3.2. On-board proessing: Image oding 37Fig. 2.1. A wavelet transform is �rst applied to the image to redue its orrelation.A bit plane enoder is then used to enode the transformed data. The enodedoe�ients are then onverted by an entropi enoder to form the binary stream.We detail eah step in the following.3.2.1 Wavelet transformSetion 2.1.1 showed that the state-of-the-art image oding algorithms use wavelettransforms to deorrelate the data. Based on this observation, the ConsultativeCommittee for Spae Data Systems (CCSDS), whih produes system standardsfor spae�ight, proposed a new image oding reommandation based on a wavelettransform [CCSDS 2005℄. For example, the oding sheme of the PLEIADES-HRsatellite highly relies on the latter. For implementation issues, the wavelet trans-form is however performed �on the �y� [Parisot 2000b℄ on-board of this satellite.The reommandation [CCSDS 2005℄ is very lose to the SPIHT enoder and uses athree levels Cohen-Daubehies-Feauveau (CDF) 9/7 wavelet transform [Cohen 1992℄followed by a bit plane enoder (BPE).The purpose of the bit plane enoder proposed by the CCSDS onsists in enod-ing the binary representation of the wavelet oe�ients through a suessive proessof the bit planes. This enoder is desribed in the next part.3.2.2 CCSDS Bit plane enoder (BPE)The enoder proposed by the CCSDS is similar to the enoders EZW and SPIHT.It exploits the hierarhial representation of the wavelet transform to proeed �rstwith the oe�ients that bring information to the image. It is however a simpli�edversion of these enoders to math the limited omputing resoures available on-board.3.2.2.1 Struture of the BPEOne the wavelet transform is ompleted, the oe�ients are �rst rounded to thenearest integers and are then divided in bloks of 64 oe�ients eah (the ompo-sition of a blok is detailed in Setion 3.2.2.3). Fig. 3.5 displays this notion ofblok arrangement. We see that, in order to form a blok, the enoder selets thesame geographial zone for eah frequeny bands of eah deomposition level. Thepurpose of this blok arrangement is then to represent the same spatial zone fordi�erent frequeny bands. This allows to ontrol the enoding of a zone dependingon its frequeny ontent. A homogeneous zone may require less high frequeniesthan the zone overing the edges of a building, for example. A blok arrangementis then e�ient in this sense.A blok is omposed of a single low frequeny oe�ient and 63 high frequenyoe�ients taken aross the high frequeny subbands. To inrease the oding per-formanes of the enoder, S bloks are gathered into a segment. The image is thenproessed segment by segment. Usually the number of bloks S is hosen suh that



38 Chapter 3. Current CNES earth observing imaging hain systemsa segment represents a thin horizontal strip of the image. In that ase, a strip om-pression is performed [Yeh 2005℄. This type of ompression is e�ient for memorylimited implementations.The overall proedure of a segment enoding is given in Table 3.2. For eahsegment, the enoder starts by produing a segment header. This header inludesimportant information on the oding parameters and is therefore required for thedeoding. This step is not detailed here but an be found in [Yeh 2005℄. The seondstep of the proedure onsists in enoding the low frequeny oe�ients. Due tothe major role that play these oe�ients in the wavelet reomposition algorithm,they should remain the most unhanged as possible. A spei� enoding rule isonsequently applied on these oe�ients. Setion 3.2.2.2 is dediated to this aspet.The last step of the segment oding proedure onsists in enoding the bit planesof the high frequeny oe�ients from the most signi�ant bit plane (MSB) to theleast signi�ant bit plane (LSB). A bit plane b is a binary image reated from the bthbit of the two's-omplement binary representation of eah low frequeny oe�ientand the bth bit of the binary representation of eah high frequeny oe�ient. Toillustrate this notion of bit plane, let us onsider the blok displayed Fig. 3.2.

Figure 3.2: Illustration of a blok.The oe�ient in grey is the low frequeny oe�ient and will be ignoredfor this example. We see that the highest oe�ient among the high frequenyoe�ients is equal to 49. There are then 6 bit planes to enode as the highestoe�ient is greater than 25 = 32 but lower than 26 = 64 (for that follows, theleast signi�ant bit will be referred to the zeroth bit). The �rst bit plane is b = 5(the MSB). This bit plane is formed by the value of the �fth bit of eah oe�ient.On this example, only three oe�ients have a �fth bit: −34, 49 and 37. The �fthbit plane is then the binary image omposed of the value of the �fth bit of theseoe�ients (respetively −1, +1 and +1, the sign is also taken into aount). Thisgive the binary image displayed Fig. 3.3.Bit plane enoders are partiularly e�ient to enode signals when resoures are
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Figure 3.3: Illustration of the �fth bit plane of the blok presented Fig. 3.2.limited [CCSDS 2005℄. Setion 3.2.2.3 desribed the tehnique used to ahieve thisbit plane enoding. Produe segment headerEnode low frequeny oe�ientsEnode bit plane b = bmax − 1 (MSB)Enode bit plane b = bmax − 2

. . .Enode bit plane b = 0 (LSB)Table 3.2: Segment enoding proedure, bmax is the number of bit planes requiredto enode the magnitude of high frequeny oe�ients.3.2.2.2 Coding of the low frequeny oe�ientsPreserving the low frequeny oe�ients from exessive quantizing is vital to re-onstrut an image with a satisfying visual quality. As they initialize the waveletreomposition algorithm, an error on the low frequeny oe�ients has an impor-tant impat on the �delity of the deoded image. But their magnitude is very high(higher than the magnitude of the high frequeny ones). A lossless enoding of theseoe�ients may then onsume a lot of the bit budget, espeially when the target rateis low. To allow this ase, the enoder onsiders that the least signi�ant bit planesof the low frequeny oe�ients an be slightly deteriorated without impating thequality of the deoded image.The enoder then proesses the low frequeny oe�ients through a losslessenoding of their most signi�ant bit planes using an expliit quantization followedby a di�erential oding sheme [CCSDS 2005℄. The quantization step is hosen as apower of two suh that the quantization of the oe�ients is equivalent in shiftingtheir bit planes. The remaining bits are then represented on bmax bit planes andare inluded in the bit plane enoding proedure desribed in Setion 3.2.2.3.



40 Chapter 3. Current CNES earth observing imaging hain systems3.2.2.3 Bit planes enodingThe bit planes enoding is the last step of the segment oding proedure. It proessesthe oe�ients bit plane by bit plane following the �ve stages proedure depited onFig. 3.4. Eah bit plane is proessed separately. The bloks inside a bit plane arealso treated independently one by one. This segment oding proedure is displayedFig. 3.4.

Figure 3.4: Enoding proedure of a bit plane.The stage 0 simply onsists in appending the bth bit of the remaining bits of thelow frequeny oe�ients to the output bitstream. The stages 1 to 4 are dediatedto the enoding of the high frequeny oe�ients.The tehnique used to enode these oe�ients is very similar to the tehniqueproposed in [Shapiro 1993℄ whih is based on the hierarhial representation of thewavelet transform to enode trees of non signi�ant oe�ients with respet to athreshold T . Here the enoder relies on the binary representation of the oe�ients,proessed bit plane by bit plane. We diretly dedue that the threshold T is impliitythe deimal value assoiated to the urrent bit plane b and is equal to 2b. To evaluateif the oe�ients are signi�ant, the BPE simply tests their magnitude. It produes aodeword tb(wi) named type whih indiates if the sanned oe�ient wi has alreadybeen found signi�ant in the previous bit plane (type 2), beomes signi�ant in theurrent bit plane (type 1) or is not signi�ant (type 0). The rule is as follows
tb(wi) =















0 if |wi| < 2b

1 if 2b ≤ |wi| < 2b+1

2 if 2b+1 ≤ |wi|
. (3.10)At the bit plane b, only the oe�ients whih beome signi�ant (type 1) areenoded in stage 1-3. The oe�ients whose type is 0 are not signi�ant yet and are



3.2. On-board proessing: Image oding 41passed over. The oe�ients evaluated as type 2 have already been found signi�antin the previous bit planes and have therefore been already enoded in stages 1-3.The enoder just needs to re�ne their magnitude by appending their bth bit to theoutput bitstream. This is the stage 4 of the proess. To reah high ompressionrates, the BPE uses the same tehnique as [Shapiro 1993℄ and sets up a tree strutureto e�iently enode trees of non signi�ant wavelet oe�ients. This tree is builtusing the blok arrangement displayed Fig. 3.5.

Figure 3.5: Wavelet blok arrangement. This illustration is the property of theCCSDS.A blok is omposed of one low frequeny oe�ient and 63 high frequeny o-e�ients. To ensure some frequeny seletion, these 63 oe�ients are partionedinto three families F0, F1 and F2. A family represents the same spatial informa-tion through the three (as the wavelet transform is performed on three levels ofdeomposition) di�erent sales. Eah family Fi is then made of
• One parent oe�ient pi.
• A group of four hildren oe�ients Ci.
• A group of sixteen grandhildren oe�ients Gi partitioned into four groups
Hij, j ∈ {0, 1, 2, 3}.This family hierarhy is similar to the zerotree struture of the EZW enoder[Shapiro 1993℄ and is used to e�iently detet trees of non signi�ant oe�ients.These non signi�ant trees an then be enoded using few bits, allowing to reahhigh ompression rates. To enode these families, several lists are de�ned

• The list of parents P = {p0, p1, p2}. For example, the list of parents orre-sponding to the blok presented Fig. 3.2 is P = {−34,−31, 23}.
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• The list of desendants Di in a family i whih inludes the hildren and thegrandhildren oe�ients, Di = {Ci, Gi}.
• The list of desendants B of a blok whih inludes the desendants lists ofall families, B = {D0,D1,D2}.For eah bit plane b, the BPE enodes the oe�ients whih beome signi�ant(type 1) of the three families using a three stages proedure. Stage 1 sans the par-ents list P and evaluates the signi�ane of eah parent using the funtion (3.10). Itthen produes two odewords typesb[P ] and signsb[P ]. Let L be a list of oe�ients
• typesb[L] is the binary odeword onsisting of the bth magnitude bit of eahoe�ient wi of L suh that tb(wi) ∈ {0, 1}.
• signsb[L] is the binary odeword onsisting of the sign bit of eah oe�ient
wi of L suh that tb(wi) = 1. The sign of a oe�ient is only oded one at thebit plane it beomes signi�ant. The sign of a negative oe�ient is representby a 1 and the sign of a positive oe�ient is represent by a 0.

• Given a list of types values T = {t0, t1, . . . , tl}, tword[T ] is the binary ode-word onsisting of the sequene of type values ti that verify ti ∈ {0, 1}.On the parents list of the example blok displayed Fig. 3.2, we have t5(−34) = 1(sine 34 veri�es 32 < 34 < 64), t5(−31) = 0 and t5(23) = 0. Therefore only theoe�ient equal to −34 is signi�ant for the bit plane b = 5, so the BPE produes
typesb[P ] = {1, 0, 0} and signsb[P ] = 1 (−34 is negative).One the BPE has sanned the parents list, it seeks some signi�ant desendants.This is the stage 2. It �rst looks if there is any signi�ant oe�ient among thehildren and the grandhildren. It produes the tranB odeword

tranB =















∅ if tranB = 1 at any previous bit plane b
1 if∃wi ∈ B, tb(wi) = 1

0 otherwise .This transition odeword may be di�ult to grasp and needs further explana-tions. The idea of the odeword tranB is to indiate if there exists at least onesigni�ant desendant. To do so, the BPE tests the signi�ane of eah oe�ientthat belongs to the desendants list B. If a oe�ient wi is found signi�ant, thetest funtion tb(wi) will be equal to 1, 0 otherwise. The BPE takes then the maxi-mum value over all signi�ane tests to generate tranB. If at least one desendantis signi�ant, the BPE will then produes tranB = 1. Note that this odeword isnot generated if it has been previously produed equal to 1. It is indeed useless togenerate this odeword for eah bit plane if the BPE has already mentioned thatsigni�ant desendants exist.On the example illustrated Fig. 3.2, two desendants are signi�ant for the bitplane b = 5 (49 and 47). The BPE produes then tranB = 1.



3.2. On-board proessing: Image oding 43One at least one desendant has been found signi�ant, one needs to loate inwhih family this desendant is. The BPE produes the odeword tranD to ahievethis goal
tranD = tword

[

{max(tb(Di))},∀i ∈ {0, 1, 2} suh that max(tb(Di)) 6= 1in previous bit planes].The behavior of this odeword is similar to tranB: It indiates in whih family
i the desendants have been found. This odeword is not produed if tranB = 0,meaning that there does not exist any signi�ant desendants. The last step of thestage 2 is to produe the magnitude typesb[Ci] and the sign signsb[Ci] odewords ofthe signi�ant hildren. Note that the BPE only enodes the hildren of the familiesthat have been marked as signi�ant by the tranD odeword.On the example Fig. 3.2, two desendants are signi�iant for the bit plane
b = 5. These oe�ients belongs to the desendant lists D0 (for the oe�ient 49)and D1 (for the oe�ient 47). We then have tranD = {1, 1, 0}. As tranD hasbeen generated, the BPE looks for some desendants in the orresponding hildrengroups C0 and C1. The oe�ient 49 is the zeroth bit of the hildren group C1while the oe�ient 47 does not belong to the hildren group C1 (but it belongsto one of the grandhildren groups whih are proessed in stage 3). Therefore theBPE produes typesb[C0] = {1, 0, 0, 0}, typesb[C1] = {0, 0, 0, 0} and signsb[C0] = 0(49 is postive). Codeword signsb[C1] is empty beause no oe�ients have beenfound signi�ant in the hildren group C1.The stage 3 is dediated to the enoding of the grandhildren. Of ourse, thisstage is omitted if the BPE produed tranB = 0 at stage 2 implying that it is notneessary to look for signi�ant grandhildren. Similarly to stage 2, stage 3 produesthe odeword tranG to indiate in whih family one may �nd signi�ant oe�ients

tranG = tword
[

{max(tb(Gi))},∀i ∈ {0, 1, 2} suh that max(tb(Di)) > 0in urrent or previous bit planes].As the grandhildren Gi of eah family are further partitioned into four groups
Hij, j ∈ {0, 1, 2, 3}, the BPE needs to produe one more transition odeword toloate the signi�ant oe�ients

tranH = tword
[

{max(tb(Hij))},∀j ∈ {0, 1, 2, 3}
]

∀i ∈ {0, 1, 2}.The last step of the stage 3 is to produe the magnitude typesb[Hij] and the sign
signsb[Hij] odewords of the signi�ant grandhildren. Again, note that the BPEonly enodes the grandhildren of the families that have been marked as signi�antby the tranG and tranH odewords.On the example Fig. 3.2, the BPE has already produed, during stage 2, tranD =

{1, 1, 0} meaning that signi�ant oe�ients exist in families 0 and 1. the BPE



44 Chapter 3. Current CNES earth observing imaging hain systemsnow looks if these signi�ant oe�ients belong the grandhildren groups of thesefamilies. At the bit plane b = 5, the oe�ient 47 belongs to a granhildren group ofthe family 1. No oe�ient are signi�ant in the granhildren groups of the family
0. Therefore, the BPE produes tranG = {0, 1} and tranH1

= {0, 1, 0, 0} sine theoe�ient 47 is the bit 1 of the H11 group. We also have typesb[H11] = {0, 1, 0, 0}and signsb[H11] = 0 (47 is positive).Table 3.3 summarizes the generated odewords. To form the �nal output bit-stream, these odewords are enoded by a variable length entropy oder. As men-tioned previously, the last stage (stage 4) of the oding proedure onsists in inlud-ing the bth magnitude bit of eah type 2 high frequeny oe�ient. If the targetompression rate does not allow a lossless oding of the wavelet oe�ients, the en-oder trunates the output bitstream of eah segment to reah the target rate. Theoder also provides a quality ontrol whih onsists of setting a maximum number ofbit planes to enode. This option does not allow however to ontrol the ompressionrate. Stage 1 (parents) typesb[P ], signsb[P ]Stage 2 (hildren) tranB

tranD

typesb[Ci], signsb[Ci]Stage 3 (grandhildren) tranG

tranHi

typesb[Hij], signsb[Hij]Table 3.3: Generated odewords for eah oding stage.3.3 On-ground proessing: Image deoding and restora-tion3.3.1 Image deoding and reonstrutionOne the bitstream has been transmitted, the deoder needs to reonstrut the im-age. The bitstream may have been trunated due to some oding rate onstraint.To reonstrut the image, the deoder �rst ompletes the bitstream by adding ze-ros bits and then applies the inverse of the oding proedure desribed in Setion3.2.2.3. An inverse wavelet transform is then applied on the deoded oe�ients toreonstrut the image.The inverse transform sheme used to reonstrut the image is also based onthe multiresolution analysis proposed in [Mallat 1989℄. The obtained algorithm isillustrated on Fig. 3.6. This sheme is initialized with the low frequeny oe�ientsof the deoded signal. These oe�ients are upsampled and �ltered by the low-pass �lter h̃. The same proess is applied to the details oe�ient of the lastdeomposition level with the high-pass �lter g̃. These �lters are given in Table 3.4.
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Figure 3.6: Filter banks for of an one level multiresolution synthesis algorithm.The obtained two sets of oe�ients are later added to reonstrut the signal.This reonstruted signal is then used as the intialization of the next level reom-position and so on. This proess is iterated L times (L is the number of levelsdeomposition �xed to 3 in the ase of the CCSDS reommandation) until all levelshave been reonstruted.

k Low-pass �lter h̃k High-pass �lter g̃k

0 0.788485616406 −0.852698679009

±1 0.418092273222 0.377402855613

±2 −0.040689417609 0.110624404418

±3 −0.064538882629 −0.023849465020

±4 −0.037828455507Table 3.4: Synthesis �lters for the 9/7 Cohen-Daubehies-Feauveau wavelet trans-form.Similarly to the deomposition sheme, the reomposition algorithm an be ex-tended to two dimensional signals using the sheme desribed Fig. 3.6 iterativelyon the rows and the olumns of the image.One the image has been deoded and reonstruted, it needs to be restored.Indeed, at this point, the reonstruted image ontains all the aumulated degra-dations of the imaging hain suh as blur, instrumental and quantizing noise; thestep of restoration is then ruial to produe an image whih an be exploited.3.3.2 Deonvolution and denoisingThe restoration tehnique used by the CNES to improve the quality of the deodedimage is based on the method proposed in [Kalifa 2003b℄ and desribed in Setion2.1.2.1. The restoration is then performed in two steps: The deoded image is �rstdeonvolved to redue the blur of the optis and is then denoised to limit the growthof the instrumental noise power due to the deonvolution. The aquisition modelonsidered by the restoration method of the CNES is the same than the one usedin [Kalifa 2003b℄ and writes
ŷ = h ∗ x+ n, (3.11)



46 Chapter 3. Current CNES earth observing imaging hain systemswhere ŷ is the deoded image, x is the real sene, h is the PSF of the optisdesribed in Setion 3.1.1, and n is the instrumental noise whose model is givenin 3.1.2. Note that the oding noise is not onsidered in this model. The deon-volution tehnique used by the CNES is slightly di�erent from the one proposedin [Kalifa 2003b℄. Rather than using the pseudo-inverse �lter h−1 of h, a spei�deonvolution funtion h̃ is applied on the reonstruted image to redue the blur ofthe optis. To avoid strong aliasing artifats, this deonvolution funtion is not thediret inverse of the PSF h but a funtion suh that the deonvolved image wouldbe similar to the ouput of an ideal instrument with the target PSF ht [Lier 2008℄
h̃ ∗ h = ht. (3.12)The idea of using a target PSF ht is to enfore some spei�ations on the �nalimage suh as the sampling grid and the value of the MTF at the Nyquist frequeny.The deonvolution funtion h̃ is then fully haraterized by the target PSF ht whihis mainly obtained from image analysis of empirial results [Lier 2008℄. This deon-volution funtion redues the blur of the image and enhanes the high frequenies ofboth the image and the noise. The deonvolved image appears thus to be sharp butnoisy. The seond step of the restoration onsists then in a denoising tehnique onthe deonvolved image to redue the ampli�ed noise. Due to the spei� frequentialaspet of the deonvolution funtion ht, the deonvolved noise is olored, meaningthat it oupies a ertain band of high frequenies.State-of-the-art denoising tehniques are usually based on the lassial wavelettransform whih does not have a spetral representation �ne enough to apture thesebands of high frequenies. For this reason, the denoising tehnique used by theCNES is based on the method proposed in [Kalifa 2003b℄ and uses a wavelet pakettransform oupled with a (soft-)thresholding of the wavelet oe�ients [Lier 2008℄.The wavelet paket transform is an extension of the lassial wavelet transformand performs iteratively the deomposition on both the low and the high frequeniesof the image, ontrary to the lassial wavelet transform whih iterates the deompo-sition only on the low frequeny. As mentioned in Setion 2.1.2.1, a wavelet pakettransform allows to obtain a �ner frequential resolution of the image and to apturespei� bands of frequenies. The frequenies bands that are assumed to be noisedare then thresholded to redue the noise power.To ompute the threshold parameters, an image of noise is generated and deon-volved using the deonvolution funtion h̃. The variane of the deonvolved noise isomputed in eah subband and ompared to the variane of the deonvolved imagein the same subband. If these variane are almost the same, then it is assumed thatthe orresponding subband only ontains noise and an be thresholded. The thresh-old parameter is then omputed suh that a �xed signal-to-noise ratio is obtainedat the output of the restoration. Some reonstrution results of the omplete imagehain are displayed on Fig. 3.7.
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(a) (b) ()
(d) (e) (f)
(g) (h) (i)
(j) (k) (l)Figure 3.7: Visual result of the imaging hain used by the CNES. Displayed imageshave a size of 200×200 pixels. For eah ligne, the image on the left is a zoom of thelean referene image, the image in the middle is a zoom of the instrumental image,and the image on the right is a zoom of the �nal image provided by the CNES. Thetarget rate is 2.5 bits/pixel and the simulated SNR is 30-100. The image range hasbeen extended to point up the image reonstrution artifats.
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Chapter 4Optimization of the hain: Atheoretial study
In this hapter, we study the theoritial optimization of the global imaging hain.As mentioned in Setion 1.1, solving theoritially the global optimization problem(1.1) is a di�ult task. Thus, we �rst redue the study to the ase the image isonly degraded by noise and we fous on the optimization of the imaging hain, forthree di�erent on�gurations of oding and restoration, where the global distortion ismeasured by the mean square error (MSE). We present in Setion 4.1 our hypothesesand notations. Setion 4.2 is dediated to the analysis and the optimization of theglobal distortion for di�erent on�gurations of the imaging hain. We onlude inSetion 4.5 and present perspetives of the study.4.1 Notations and hypotheses4.1.1 NotationsFor the study, we denote the operators (oding and restoration) applied to the imagewith a bold upperase letter. The non-bold upperase letters represent randomvariables whose realizations are denoted by a lowerase letter. With this notation,
x is a realization of the random variable X. (X)i denotes the ith element of therandom variable X. These variables are multidimensional x ∈ R

N where N is thenumber of pixels. Wx is a random variable assoiated to the wavelet transform of
x and we denote Wx,j, j ∈ {0, . . . , J − 1} (J being the number of subbands) the
jth subband of the random variable Wx. A wavelet subband of x is then noted
wx,j ∈ R

Nj where Nj is the size of the subband. Finally, we suppose that a waveletsubband wx,j follows a generalized entered Gaussian distribution law of parameter
αwx,j

> 0 and variane σ2
wx,j

> 0 [Antonini 1992℄. The probability density funtion
pwx,j

assoiated to the wavelet subband wx,j an then be modeled as
pwx,j

(wx,j) =
A
(

αwx,j

)

σwx,j
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, (4.1)
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) , (4.3)and Γ is the usual Gamma funtion. The parameters σ2
wx,j

and αwx,j
of thedistribution law will be estimated using the kurtosis-based tehnique proposed in[Kasner 1999℄. Note that the same assumption will be applied to all wavelet trans-forms in the hain with, of ourse, di�erent distribution parameters.4.1.2 Coding and denoising operatorsAs mentioned previously, we study the ase the image is only degraded by an in-strumental noise z that we assume to be independent, identially distributed andto follow a entered normal distribution with variane σ2

z . We onsider the speialase of oding tehniques based on wavelet transforms [Shapiro 1993, Said 1996℄and [Taubman 2000℄. The oding step is then approximately deomposed in a non-redundant wavelet transform followed by a salar subband quantizer. Note that thisapproximation is atually lose to the oding shemes presented in the ited works.The wavelet transform is then denoted W and W̃ for the inverse transform.Eah wavelet subband of the image to enode will be quantized using an in�nitemid-tread salar subband quantizer Q of step ∆j > 0 de�ned as
Q(wj) = ∆j

⌊

wj

∆j
+

1

2

⌋

, (4.4)where ⌊ ⌋ is the �oor funtion whih returns the greatest integer less than orequal to its argument. Eah quantized subband will then be oded using an en-tropy enoder. Note that the entropy enoding operation does not introdue anydegradation in the hain.For the �rst part of the study, we also onsider that the denoising step is per-formed in the same wavelet basis than the oding. This hoie may however needfurther explanations. Usually, an e�ient wavelet transform for image denoisingstrongly di�ers from a wavelet transform suited for image oding. Image denoisingtehniques atually require redundant wavelet transforms to represent the harater-istis of an image suh as ontours and oriented details while inreasing the numberof oe�ients in image ompression may be problemati [Chappelier 2006℄. Hene,a non-redundant wavelet transform leads most of the time to poor denoising results.We are however very on�dent that using the same basis for both oding and de-noising may provide a deoding-denoising struture gathered in a single fast andlow resoures algorithm. Extending the urrent work to omplex denoising shemessuh as [Donoho 1995a℄ is a di�ult task that still need to be addressed.The denoising algorithm R that we propose to use is then a Tikhonov regularizedalgorithm whih operates independently on the wavelet oe�ients of eah subband
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j of the image. Let w̃j be some noisy wavelet subband (of size Nj), its denoisedversion ŵj writes

ŵj = arg min ‖w − w̃j‖2
2 + λj‖w‖2

2subjet to w ∈ R
Nj

, (4.5)where λj > 0 is a regularizing parameter. The restoration algorithm (4.5) has alosed-form solution whih writes
ŵ =

w̃

1 + λj
. (4.6)We are aware of the simpliity of the onsidered algorithm, it appears howeverthat the linearity of the restoration algorithm R is required if one wants to writethe global distortion in losed-form. As mentioned previously, muh work need tobe addressed to onsider state-of-the-art denoising algorithms. We now detail theproposed method to perform a global optimization of the global distortion.4.2 Global optimization of the imaging hainThis setion is dediated to the analysis and the optimization of the global distor-tion. From Setion 3.3.2, we mentioned that, in a general ontext, the restorationmethod used by the CNES only deals with the blur and the additive Gaussian noiseof the instrument. It atually does not take into aount the fat that the trans-mitted image is also deteriorated with oding noise. The restoration tehnique usedon-ground (i.e. after oding) is therefore also suitable to be used on-board justbefore oding on the intrumental image, as this image perfetly mathes the imageformation model onsidered by the restoration.From this remark, we deline in this setion the theoritial study of the globaloptimization to the ase the restoration is performed before oding or splitted intwo parts (one part before oding to redue the instrumental noise and the otherpart after oding to proess the oding noise).4.2.1 Optimization of the on-ground hain4.2.1.1 Presentation of the imaging hainWe �rst study the on-ground hain where the denoising is performed after od-ing/deoding, i.e. �on ground�. This hain is represented in detail Fig. 4.1. Wereall that x is the original image, x̂ is the restored one. The instrumental image

y is a deteriorated version of the original image x where an additive instrumentalnoise z has been added. The wavelet subbands of the instrumental image are de-noted wy,j , j ∈ {0, . . . , J−1}. The quantized and restored version of these subbandsare respetively denoted wỹ,j and wx̂,j.We further introdue several notations. Let wb,j be the oding error of thesubband j
wb,j = Q(wy,j) − wy,j . (4.7)
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Figure 4.1: Considered on-ground imaging hainWe have

wỹ,j = Q(wy,j) = wy,j + wb,j

= wx,j + wz,j + wb,j

= wx,j + wε,j, (4.8)where wε,j = wz,j + wb,j is referred hereafter to the global error. The mainhypothesis of the proposed method is to onsider the �rst-order moments of theterm wε,j to be independent to the ones of wx,j, that is
E
[

Wm
ε,jW

n
x,j

]

= E
[

Wm
ε,j

]

E
[

W n
x,j

] (4.9)for any integer m > 0, n > 0 and where Wε,j and Wx,j are the random vari-ables assoiated to wε,j and wx,j. This hypothesis is mainly based on the fatthat the quantizing part of the sheme Fig. 4.1 an be seen as a non-substrativedithering system where the Gaussian instrumental noise z ats as a dithering noise[Wannamaker 2000℄.We detail in the next part this hypothesis of deorrelation.4.2.1.2 Deorrelation hypothesisA dithering system onsists in inserting a noise with a ertain probabilitydensity funtion prior to quantizing, to improve the deorrelation property[Vanderkooy 1987℄. As mentioned in [Wannamaker 2000℄, a non-substrative dither-ing system (named non-substrative as the dithering noise is not substrated afterquantizing) allows the moments of the global error (that is the sum of the odingerror and dithering noise) to be fully deorrelated to the moments of the odingsoure.It happens that a Gaussian distribution, if its standard deviation is large enough[Vanderkooy 1987℄, stands among the probability density funtions whih allow anoise to be onsidered as a dithering noise. The idea here is then to take bene�t ofthe presene of the instrumental noise by onsidering it as a dithering noise. Withsuh onsideration, we know that the m �rst-order moments of the global error aredeorrelated to the n �rst-order moments of the quantizing soure, giving property(4.9).Moreover, if the instrumental noise z meets the dithering noise requirements, we
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E [Wε,j] = 0, (4.10)

E
[

‖Wε,j‖2
]

= Njσ
2
wz,j

+Nj

∆2
j

12
, (4.11)where σwz,j

is the standard deviation of the distribution law of the wavelettransform wz,j. A more developed presentation of dithering tehniques is inludedin Appendix B. The standard deviation required by a Gaussian noise to e�etivelyats as a dithering noise has been studied in [Vanderkooy 1987℄. In the present ase,the ondition (4.9) will be veri�ed if the following statement is true
σwz,j

>
∆j

2
. (4.12)As the standard deviation of instrumental noise is usually low in imaging sys-tems, the ondition (4.12) assumes that the proposed approah will be valid onlyfor high oding rates. We will however develop our method to onsider all odingrates.4.2.1.3 Analysis of the global distortionAs mentioned in the Setion 4.1, the studied imaging hain depends on two sets ofparameters: The denoising parameters λj in (4.6) and the quantizing steps ∆j in(4.4), for eah j ∈ {0, . . . , J − 1}. The global oding/denoising joint optimizationproblem onsists in �nding the sets {λ∗j} and {∆∗

j} of optimal parameters whihminimize, on average, the global distortion D under the onstraint that the odingrate R does not exeed the target rate Rc. This global rate-distortion-denoisingjoint optimization problem an be formalized as the following
{λ∗j}, {∆∗

j} = arg min D ({λj}, {∆j})subjet to R ({λj}, {∆j}) ≤ Rc,

λj > 0,∀j ∈ {0, . . . , J − 1}
∆j > 0,∀j ∈ {0, . . . , J − 1}

. (4.13)
Under this form, the optimization problem (4.13) is di�ult to solve so thatit is usually written under an unonstrained form [Everett 1963℄. Let τ > 0 be aLagrange multiplier. The Lagrange dual funtion L writes

L(τ) = inf D({λj}, {∆j}) + τ (R({λj}, {∆j}) −Rc)

λj > 0, j ∈ {0, . . . , J − 1}
∆j > 0, j ∈ {0, . . . , J − 1}

. (4.14)Problem (4.13) an then be written [Boyd 2004℄
{λ∗j}, {∆∗

j} = max
τ>0

L(τ). (4.15)To solve the global distortion joint optimization problem (4.15), we need toexpress the mean global distortion D and the global oding rate R as a funtion ofthe sets of regularizing parameters {λj} and quantizing steps {∆j}.
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veri�es hypothesis (4.12) for eah j ∈ {0, . . . , J − 1}, thenthe mean global distortion D of the imaging hain displayed Fig. 4.1 writes

D({λj}, {∆j}) =
J−1
∑
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+

πjaj

(1 + λj)2
σ2

wz,j
+

πjaj

(1 + λj)2
∆2

j

12
, (4.16)where

aj =
Nj

N
, (4.17)is the weight of the subband j in the whole image.Proof. We start from the fat that the mean global distortion writes

D({λj}, {∆j}) =
1

N
E
(

‖X − X̂‖2
)

, (4.18)where X̂ is the random variable assoiated to the output �nal image x̂. Thanksto the orthogonality of the wavelet subbands, the global distortion an also beformulated as
D({λj}, {∆j}) =

1

N

J−1
∑

j=0

πjE
(

‖Wx,j −Wx̂,j‖2
)

, (4.19)where πj are weighting oe�ients whih depend on the �lters and the deima-tion fators used in the wavelet transform [Usevith 1996℄. Note that these weight-ing oe�ients are only required if one onsiders biorthogonal wavelet transformssuh as the CDF 9/7 wavelet transform [Cohen 1992℄. They are equal to 1 for anorthogonal wavelet transform.In the ase of the studied imaging hain displayed Fig. 4.1, the �nal image isthe output of the restoration and writes
wx̂,j = Rwỹ,j. (4.20)Using (4.6) and (4.8), the �nal image an be expressed as a funtion of the soureand the global error

wx̂,j =
wx,j

1 + λj
+

wε,j

1 + λj
. (4.21)From (4.19), (4.21) and using the moments deorrelation hypothesis (4.9), wededue the global distortion

D({λj}, {∆j}) =
1

N
E
(

‖X − X̂‖2
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=
1
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πjλ
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(1 + λj)2
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(

‖Wx,j‖2
)

+
πj

(1 + λj)2
E
(

‖Wε,j‖2
)

. (4.22)Finally, the global distortion (4.22) an be further developed using the results(4.11) to obtain the expression (4.16).



4.2. Global optimization of the imaging hain 57Note that the global distortion (4.16) requires the knowledge of the variane ofeah subband of the original image σ2
wx,j

. This variane is generally unknown but anbe roughly dedued from the observed image. For an orthogonal or a biorthogonalwavelet transform, the variane of the noise in eah wavelet subband j is equal (oralmost equal in the ase of a biorthogonal wavelet transform) to the variane ofthe noise in the image domain, i.e. σ2
wz,j

= σ2
z , where σz is supposed to be known.Then, σ2

wx,j
an be approximately omputed during the rate-alloation of the oderfrom the observed subband variane σ2

wy,j
by

σ2
wx,j

= σ2
wy,j

− σ2
z . (4.23)The seond part of the problem (4.15) requires the expression of the global odingrate R. This rate an be expressed as the weighted sum of the rate in eah subband

Rj

R({λj}, {∆j}) =

J−1
∑

j=0

ajRj(∆j), (4.24)where aj is given in (4.17). As mentioned in Setion 4.1.2, we assume that eahquantized subband is enoded using an entropy enoder. The oding rate Rj of asubband j an then be estimated by its entropy [Shannon 1948℄
Rj(∆j) = −

+∞
∑

m=−∞
Pwy,j

(m,∆j) log2

(

Pwy,j
(m,∆j)

)

, (4.25)where Pwy,j
(m,∆j) is the probability to get the symbol m whih depends on thedensity probability funtion pwy,j

of the subband wy,j and on the quantizing step
∆j
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∆j

2

pwy,j
(wy,j)dwy,j . (4.26)From Setion 4.1.1, we assume that eah wavelet subband follows the generalizedentered Gaussian distribution law de�ned in (4.1). The density probability funtion
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is then given by
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−

˛
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=
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wy,j

and αwy,j
are the parameters of the distribution law, estimatedusing the kurtosis-based tehnique proposed in [Kasner 1999℄

σ2
wy,j

= E[w2
y,j ], (4.30)

αwy,j
=

1.447

log

(

E[w4
y,j]

E[w2
y,j]

2

)

− 0.345

. (4.31)Proposition 2. The global rate-distortion optimization problem (4.13) an be solvedby maximizing
L(τ) = inf φτ ({∆j}, {λj})

λj > 0, j ∈ {0, . . . , J − 1}
∆j > 0, j ∈ {0, . . . , J − 1}

, (4.32)with respet to τ > 0 and where
φτ ({∆j}, {λj}) =
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 . (4.33)Proof. This demonstration is straightforward. From (4.15), we de�ne
φτ ({∆j}, {λj}) = D({∆j}, {λj}) + τ (R({∆j}, {λj}) −Rc) , (4.34)and we substitute D and R with their respetive expressions (4.16) and (4.24).We further simplify (4.16) using the approximation σ2

wz,j
= σ2

z . The reformulationof problem (4.13) is then obtained using (4.14) and (4.15).We detail in the next part how to solve problem (4.13).4.2.1.4 Global rate-distortion-denoising optimizationUsing proposition 2, the optimization problem (4.13) beomes
{∆∗

j}, {λ∗j} = max
τ>0















inf φτ ({∆j}, {λj})
λj > 0, ∀j ∈ {0, . . . , J − 1}
∆j > 0, ∀j ∈ {0, . . . , J − 1}















. (4.35)The existene and uniqueness of solutions of problem (4.35) is not straightfor-ward but we an show that a solution of problem (4.35) exists and is unique (seeAppendix A.2). We propose a numerial algorithm to �nd this solution. This al-gorithm is based on the resolution of the simultaneous equations obtained from theKKT onditions [Kuhn 1951℄ of problem (4.35).



4.2. Global optimization of the imaging hain 59Proposition 3. The KKT onditions of problem (4.35) admits only one solution({λ∗j}, {∆∗
j}, τ∗) whih veri�es
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12σ2
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, ∀j ∈ {0, . . . , J − 1} (4.36)
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j ) = Rc. (4.38)Proof. From the KKT onditions of problem (4.35), we get (see Appendix A.2)
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. (4.43)The expression (4.36) and onditions (4.37) and (4.38) on the optimal parametersdiretly follow from the optimality onditions (4.39). The existene and uniquenessof these parameters is muh longer and is addressed in Appendix A.2.As we an see from (4.36), (4.37) and (4.38), the parameters {∆∗
j} and τ∗ annot be omputed analytially. But as mentioned in Appendix A.2, any root-�ndingalgorithms an be used to ahieve this goal. For our simulations, binary searhalgorithms will be used for the omputation of both {∆∗

j}, τ∗ and for the sake ofsimpliity, eah binary searh algorithm will be parametrized to the same givenpreision ρ = 0.1.The ase of the low frequeny subband (j = J − 1) will be proessed di�erentlyas we do not want to degrade these oe�ients. We will only use quantizing toround these oe�ients to their nearest integers. Consequently, we will set
∆∗

J−1 = 1, (4.44)
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12σ2
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. (4.45)



60 Chapter 4. Optimization of the hain: A theoretial studyFinally, the overall joint optimization proedure for solving problem (4.13) isgiven in the Algorithm 1. Note that the binary searh sub-proedures are notdetailled in this proess. The Algorithm 1 intends to be quite general and we letthe hoie of the root-�nding algorithms to the user.Algorithm 1 Global rate-distortion-denoising joint optimization algorithm for theon-ground imaging hainSet τ = 1.Set ρ = 0.1.while ∣∣
∣

∑J−1
j=0 ajRj −Rc

∣

∣

∣
> ρ dofor j from 0 to J − 2 doSet ∆j = 1.Compute the value of the regularizing parameter λj from (4.36).while ∣∣∣ πj∆j

6(1+λj )2
+ τ

∂Rj

∂∆j
(∆j)

∣

∣

∣ > ρ doInrease the value of ∆j .Compute the value of the regularizing parameter λj from (4.36).end whileend forSet ∆J−1 = 1.Compute the regularizing paramater λJ−1 from (4.45).if ∣∣
∣

∑J−1
j=0 ajRj −Rc

∣

∣

∣
> ρ thenInrease the value of τ .end ifend whileOutput the optimal regularizing parameters {λ∗j}.Output the optimal quantizing steps {∆∗

j}.4.2.1.5 ResultsWe simulate the joint optimization Algorithm 1 on the high-dynami range remotesensing image displayed Fig. 4.2. For this simulation, we set the wavelet transform
W to be a three levels CDF 9/7 wavelet transform [Cohen 1992℄ and the restoration
R is given by (4.6). The image has been noised with an additive white Gaussiannoise with di�erent standard deviations σz, as the e�ieny of the proposed es-timation depends on σz, see Eq. (4.12). The following ases have been tested
σz ∈ {25, 50, 75, 100}.For eah target rate, we simulate the imaging hain given Fig. 4.1 with the usualdisjoint optimization tehnique, whih onsists in seleting the quantizing steps andthe regularizing parameters suh that the oding and the restoration errors areindependently minimized. The oding error minimization has been ahieved usingthe rate-distortion alloation based model proposed in [Parisot 2001℄. As for therestoration error, it has been minimized using an exhaustive searh of the optimal
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Figure 4.2: Referene image, Cannes harbour (12 bits panhromati image, 30 mresolution, 1024 × 1024 pixels).



62 Chapter 4. Optimization of the hain: A theoretial studyregularizing parameters. One the �nal image has been reonstruted using theseparameters, we numerially ompute the global distortion
D =

1

N
‖x− x̂‖2, (4.46)where x is the lean (i.e. noiseless) test image, assumed to be known in ournumerial experiments, and x̂ is the �nal image. The distortion (4.46) is the truedistortion and will be referred as the ground truth in our simulations. The estimationmodel (4.16) of the global distortion that we proposed has then been omputed withthe values of parameters obtained for the ground truth. This allows to verify thatthe estimation (4.16) of the global distortion is lose to the ground truth (4.46),implying the validity of the proposed method. And �nally, we use the proposed jointoptimization Algorithm 1 to ompute the optimal parameters, that we inserted intothe estimation model (4.16) to estimate the minimal distortion.

Figure 4.3: Comparison of the disjoint optimized distortion (ground truth andmodel-based estimation) to the joint optimized distortion (model-based estimation),
σz = 25.Results are given Fig. 4.3 to 4.6. We immediately see that the validity of theproposed estimation, as expeted by the hypothesis (4.12), is not always veri�edand depends on the target oding rate, for a given σz. As expeted, the proposedestimation approximates well the true distortion, on the simulated ases, for mediumto high oding rates but does not give satisfying results for low oding rates. Thisan be explained by the fat that low target oding rates inrease the subbandsquantizing steps. Consequently, the ondition (4.12) is not respeted anymore andthe moments of the global error annot be onsidered deorrelated to the momentsof the soure.
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Figure 4.4: Comparison of the disjoint optimized distortion (ground truth andmodel-based estimation) to the joint optimized distortion (model-based estimation),
σz = 50.

Figure 4.5: Comparison of the disjoint optimized distortion (ground truth andmodel-based estimation) to the joint optimized distortion (model-based estimation),
σz = 75.
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Figure 4.6: Comparison of the disjoint optimized distortion (ground truth andmodel-based estimation) to the joint optimized distortion (model-based estimation),
σz = 100.To analyse more preisely the range of validity of the proposed estimation, weompute the error (in absolute value) between the ground truth distortion and itsmodel-based estimation (4.16) for the simulated values of standard deviation σz. Theresulting urve is displayed Fig. 4.7. When the standard deviation is low (σz = 25),we see that the proposed estimation is performant if the oding rate is around 3.5bits/pixel and more. However for this high oding rate, the oding step is almostlossless suh that the global optimization problem is redued to the optimization ofthe restoration only. Therefore, the joint and the disjoint optimization tehniquesbeome the same and give then similar results.But the range of validity of the proposed estimation inreases as the standarddeviation inreases. For a high standard deviation (σz = 100), we an verify that theproposed estimation is valid for lower oding rates (around 2.2 bits/pixel and more).In that ase, the joint optimization displays signi�ant improvement in omparisonto the disjoint optimization. It allows for example to reah the same global error thanthe disjoint optimized tehnique but for a lower oding rate. For σz = 100 (Fig. 4.6),the joint optimization tehnique reahes at 1.73 bits/pixel the same distortion thanthe one obtained at 2.04 bits/pixels for the disjoint optimization tehnique, savingtherefore 15% of the bit budget. The bene�t in term of ompression performanes ofthe joint optimization tehnique appears then to be very signi�ant. This simulatedase is however slightly exessive in the ase of satellite imaging as the standarddeviation of the instrumental noise in a satellite hain is low and rarely exeeds tenon average.
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Figure 4.7: Di�erene (in absolute value) between the ground truth and model-basedestimation distortion for the simulated standard deviations of the instrumental noise.To �t the harateris of a true imaging hain, we simulate the ase σz = 10whih is muh more representative of the SNR obtained in satellite imaging (seeTable 3.1, Page 35). We do not display the rate-distortion urve of this simulationas, similarly to the ase σz = 25 displayed Fig. 4.3, the joint and the disjointoptimization tehniques are equal in term of distortion. Visual results however di�eras shown by Fig. 4.8 to 4.11. We do not fous on the quality of the reonstrutedimages regarding to the referene one as the onsidered hain is exessively simple.Clearly, the presene of artifats on the reonstruted image is due to the simplehypothesis that we made on the restoration algorithm, see Eq. (4.5). On theontrary, we are more onerned on the improvement of the image quality of thejoint optimized hain with respet to the disjoint optimized one. We an see thatthe global joint optimization of the hain always leads to a reonstruted imagewhih ontains less blurry edges or ringing artifats. This is partiularly visibleon the edges of the buildings Fig. 4.8 and 4.10. It is important to note that thepresented visual results have been simulated at a oding rate of 2.5 bits/pixel. Andwe know that the estimation of the global distortion is not valid at this rate, leadingto suboptimal omputed parameters. A �ner estimation of the global distortion willtherefore give better results that the ones displayed here.Finally, we see that the obtained results learly point that optimizing oding anddenoising separately is suboptimal. One needs instead to address the problem ofimaging hain design in its globality; the proposed method and the obtained resultsare enouraging in this sense. Extending the proposed method to lower oding ratesand to more omplex denoising shemes appears however to be di�ult to address.
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(a) (b)

() (d)Figure 4.8: Visual omparison of reonstrution results. Displayed images havea size of 200 × 200 pixels. (a) is the referene image, (b) is the noisy observedimage, () is the image reonstruted with the parameters obtained by the disjointminimization of the ground truth distortion and (d) is the image reonstruted withthe parameters obtained by the joint optimization, performed using Algorithm 1, ofthe model-based estimated distortion. The oding rate is 2.5 bits/pixel. The imagerange has been extended to point up the image reonstrution artifats.
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(a) (b)

() (d)Figure 4.9: Visual omparison of reonstrution results. Displayed images havea size of 200 × 200 pixels. (a) is the referene image, (b) is the noisy observedimage, () is the image reonstruted with the parameters obtained by the disjointminimization of the ground truth distortion and (d) is the image reonstruted withthe parameters obtained by the joint optimization, performed using Algorithm 1, ofthe model-based estimated distortion. The oding rate is 2.5 bits/pixel. The imagerange has been extended to point up the image reonstrution artifats.
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(a) (b)

() (d)Figure 4.10: Visual omparison of reonstrution results. Displayed images havea size of 200 × 200 pixels. (a) is the referene image, (b) is the noisy observedimage, () is the image reonstruted with the parameters obtained by the disjointminimization of the ground truth distortion and (d) is the image reonstruted withthe parameters obtained by the joint optimization, performed using Algorithm 1, ofthe model-based estimated distortion. The oding rate is 2.5 bits/pixel. The imagerange has been extended to point up the image reonstrution artifats.
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(a) (b)

() (d)Figure 4.11: Visual omparison of reonstrution results. Displayed images havea size of 200 × 200 pixels. (a) is the referene image, (b) is the noisy observedimage, () is the image reonstruted with the parameters obtained by the disjointminimization of the ground truth distortion and (d) is the image reonstruted withthe parameters obtained by the joint optimization, performed using Algorithm 1, ofthe model-based estimated distortion. The oding rate is 2.5 bits/pixel. The imagerange has been extended to point up the image reonstrution artifats.



70 Chapter 4. Optimization of the hain: A theoretial studyFor this reason, we will propose in Chapter 5 an alternative tehnique to performthe global optimization.4.2.2 Optimization of the on-board hain4.2.2.1 Presentation of the imaging hainAs mentioned in the beginning of Setion 4.2, we also studied the imaging hain inthe ase the denoising is performed before oding, as illustrated on Fig. 4.12. Forthis imaging hain, the transmitted image is the denoised one and the �nal imageis the one obtained after deoding (we will disuss in Setion 4.2.3 the neessity ofusing a seond denoising step after deoding).
Figure 4.12: Considered on-board imaging hainSimilarly to the hain presented in Setion 4.2.1, the instrumental image y is adeteriorated version of the original image x where an additive instrumental noise zhas been added. The wavelet subbands of the instrumental image are again denoted

wy,j, j ∈ {0, . . . , J − 1}. The restored and quantized version of these subbands arerespetively denoted wx̃,j and wx̂,j.Let wb,j be the oding error of the subband j
wb,j = Q(wx̃,j) − wx̃,j. (4.47)We have

wx̂,j = Q(wx̃,j) = wx̃,j + wb,j

=
wy,j

1 + λj
+ wb,j

=
wx,j

1 + λj
+

wz,j

1 + λj
+ wb,j

=
wx,j

1 + λj
+ wε,j, (4.48)where wε,j =

wz,j

1+λj
+ wb,j is the global error. We detail in the next part how toformulate an expression of the global distortion.4.2.2.2 Deorrelation hypothesisThe deorrelation hypothesis (4.9) will also be used to ompute the global distortionof the imaging hain presented Fig. 4.12. The main di�erene is that the quantizedimage is now the restored one. As a onsequene of this restoration, the standard



4.2. Global optimization of the imaging hain 71deviation of the instrumental noise is divided by a fator 1+λj , see Eq. (4.48). Wehave
σ

′

wz,j
=

σwz,j

1 + λj
, (4.49)where σ′

wz,j
is the standard deviation of the residual instrumental noise. Weknow from (4.12) that the deorrelation hypothesis (4.9) is valid only if the standarddeviation of the noise presented at the input of the quantizer is greater than half ofthe quantizing step, i.e.

σ
′

wz,j
>

∆j

2
. (4.50)From (4.49) and (4.50), the ondition (4.9) will now be veri�ed if the followingstatement is true

σwz,j
>

∆j

2
(1 + λj). (4.51)In omparison to the on-ground imaging hain studied in Setion 4.2.1, we seethat a fator (1 + λj) has been introdued in the ondition (4.51). As λj > 0,∀j ∈

{0, . . . , J−1}, the deorrelation hypothesis (4.9) may then be more di�ult to verifyin the ase of the on-board imaging hain. If the instrumental noise z meets thedithering noise requirements, we also have [Wannamaker 2000℄
E [Wε,j] = 0, (4.52)
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12
. (4.53)4.2.2.3 Analysis of the global distortionSimilarly to the analysis of the global distortion performed in Setion 4.2.1.3, theglobal rate-alloation problem onsists in �nding the sets {λ∗j} and {∆∗

j} of optimalparameters whih solve
{λ∗j}, {∆∗

j} = arg min D ({λj}, {∆j})subjet to R ({λj}, {∆j}) ≤ Rc,

λj > 0,∀j ∈ {0, . . . , J − 1}
∆j > 0,∀j ∈ {0, . . . , J − 1}

. (4.54)
Again, we need to express the mean global distortion D and the global odingrate R as a funtion of the sets of regularizing parameters {λj} and quantizing steps

{∆j} for the on-board imaging hain presented Fig. 4.12.Proposition 4. If σwz,j
veri�es hypothesis (4.51) for eah j ∈ {0, . . . , J − 1}, thenthe mean global distortion D of the imaging hain displayed Fig. 4.12 writes
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, (4.55)where
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aj =

Nj

N
, (4.56)is the weight of the subband j in the whole image.Proof. As shown previously, the global distortion an be written as

D({λj}, {∆j}) =
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πjE
(

‖Wx,j −Wx̂,j‖2
)

, (4.57)where πj are weighting oe�ients whih depend on the �lters and the dei-mation fators used in the wavelet transform [Usevith 1996℄. In the ase of thestudied imaging hain displayed Fig. 4.12, the �nal image is the output of theoding/deoding and, from (4.48), writes
wx̂,j =

wx,j

1 + λj
+wε,j. (4.58)From (4.57), (4.58) and using the moments deorrelation hypothesis (4.9), wededue the global distortion
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. (4.59)Finally, the global distortion (4.59) an be further developed using the results(4.53) to obtain the expression (4.55).The seond part of the global rate-alloation problem (4.54) requires the expres-sion of the global oding rate R. This rate an be expressed as the weighted sum ofthe rate in eah subband Rj , estimated by its entropy [Shannon 1948℄
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, (4.61)where Pwx̃,j
(m,∆j) is the probability to get the symbol m whih depends on thedensity probability funtion pwx̃,j

of the subband wx̃,j and on the quantizing step
∆j

Pwx̃,j
(m,∆j) =

∫ m∆j+
∆j

2

m∆j−
∆j

2

pwx̃,j
(wx̃,j)dwx̃,j. (4.62)From Setion 4.1.1, we assume that eah wavelet subband follows the generalizedentered Gaussian distribution law de�ned in (4.1), where the parameters σ2

wx̃,j
and

αwx̃,j
of the distribution law will be estimated using the kurtosis-based tehniqueproposed in [Kasner 1999℄.



4.2. Global optimization of the imaging hain 73Proposition 5. The global rate-distortion optimization problem (4.54) an be solvedby maximizing
L(τ) = inf φτ ({∆j}, {λj})

λj > 0, ∀j ∈ {0, . . . , J − 1}
∆j > 0, ∀j ∈ {0, . . . , J − 1}

, (4.63)with respet to τ > 0 and where
φτ ({∆j}, {λj}) =

J−1
∑

j=0

πjajλ
2
j

(1 + λj)2
σ2

wx,j
+

πjaj

(1 + λj)2
σ2

z + πjaj

∆2
j

12

+ τ





J−1
∑

j=0

ajRj(∆j) −Rc



 . (4.64)Proof. This proof is similar to the one given in proposition 2 where the globaldistortion D is now given by (4.55).We detail in the next part how to solve problem (4.54) for the on-board imaginghain.4.2.2.4 Global rate-distortion-denoising optimizationUsing proposition 5, the optimization problem (4.54) beomes
{∆∗

j}, {λ∗j} = max
τ>0















inf φτ ({∆j}, {λj})
λj > 0, ∀j ∈ {0, . . . , J − 1}
∆j > 0, ∀j ∈ {0, . . . , J − 1}















. (4.65)where φτ is given in (4.64). We an show that a solution of problem (4.65) existsand is unique (see Appendix A.3). To �nd this solution, we propose to use the teh-nique presented in Setion 4.2.2.4 and based on the resolution of the simultaneousequations obtained from the KKT onditions [Kuhn 1951℄ of problem (4.65).Proposition 6. The KKT onditions of problem (4.65) admits only one solution({λ∗j}, {∆∗
j}, τ∗) whih veri�es

λ∗j =
σ2

z

σ2
wx,j

, ∀j ∈ {0, . . . , J − 1} (4.66)
πj∆

∗
j

6
+ τ∗

∂Rj

∂∆j
(∆∗

j ) = 0, ∀j ∈ {0, . . . , J − 1} (4.67)
J−1
∑

j=0

ajRj(∆
∗
j ) = Rc. (4.68)



74 Chapter 4. Optimization of the hain: A theoretial studyProof. From the KKT onditions of problem (4.65), we get (see Appendix A.3)
∂φ(∆∗
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∗
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j) = 0 (4.69)
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. (4.73)The expression (4.66) and onditions (4.67) and (4.68) on the optimal parametersdiretly follow from the optimality onditions (4.69). The existene and uniquenessof these parameters is detailled in Appendix A.3.As we an see from (4.67) and (4.68), the parameters {∆∗
j} and τ∗ still an notbe omputed in losed-form and will be estimated numerially using binary searhalgorithms of preision ρ = 0.1. The ase of the low frequeny subband (j = J − 1)will be also proessed di�erently to prevent exessive quantizing on these oe�ients.We set

∆∗
J−1 = 1, (4.74)
λ∗J−1 =

σ2
z

σ2
wx,J−1

. (4.75)Finally, the joint optimization proedure for solving problem (4.54) is given inthe Algorithm 2. We do not inlude here the results of this algorithm as we havealready shown in Setion 4.2.1.5 that the proposed method was e�ient to formulatean estimation of the global distortion for the on-ground imaging hain. Using anon-board restoration does not however a�et the reliability of the proposed method,as shown in Setion 4.2.2.3. Instead, we will show some results of this algorithmin the setion dediated to the omparison of the performanes of the three hains(on-ground, on-board and hybrid that we present in the next part).4.2.3 Optimization of the hybrid hain4.2.3.1 Presentation of the imaging hainAs mentioned in the beginning of Setion 4.2.2.1, it may be interesting to extendthe on-board imaging hain by adding a supplementary denoising step, after oding,
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Algorithm 2 Global rate-distortion-denoising joint optimization algorithm for theon-board imaging hainSet τ = 1.Set ρ = 0.1.while ∣∣∣∑J−1
j=0 ajRj −Rc

∣

∣

∣ > ρ dofor j from 0 to J − 2 doSet ∆j = 1.Compute the value of the regularizing parameter λj from (4.66).while ∣∣
∣

πj∆j

6 + τ
∂Rj

∂∆j
(∆j)

∣

∣

∣
> ρ doInrease the value of ∆j .Compute the value of the regularizing parameter λj from (4.66).end whileend forSet ∆J−1 = 1.Compute the regularizing paramater λJ−1 from (4.75).if ∣∣∣∑J−1

j=0 ajRj −Rc

∣

∣

∣ > ρ thenInrease the value of τ .end ifend whileOutput the optimal regularizing parameters {λ∗j}.Output the optimal quantizing steps {∆∗
j}.



76 Chapter 4. Optimization of the hain: A theoretial studyto redue the quantizing noise. This �hybrid� hain is depited Fig. 4.13. Theinstrumental image y is still a deteriorated version of the original image x where anadditive instrumental noise z has been added.
Figure 4.13: Considered hybrid imaging hainThe wavelet subbands of the instrumental image are again denoted wy,j, j ∈

{0, . . . , J − 1} and their denoised version wx̃,j. The quantized version of thesedenoised subbands are denoted wx̌,j. An additional denoising algorithm S has beenadded at the end of the hain to redue the oding noise. This Algorithm is similarto the one used for the operator R and writes
wx̂,j =

wx̌,j

1 + µj
. (4.76)where wx̂,j is the �nal denoised subband and µj > 0 is a regularizing parameter.Let wb,j be the oding error of the subband j

wb,j = Q(wx̃,j) − wx̃,j. (4.77)We have
wx̌,j = Q(wx̃,j) = wx̃,j + wb,j

=
wy,j

1 + λj
+ wb,j

=
wx,j

1 + λj
+

wz,j

1 + λj
+ wb,j,and, from (4.76)

wx̂,j =
wx̌,j

1 + µj
,

=
wx,j

(1 + λj)(1 + µj)
+

wz,j

(1 + λj)(1 + µj)
+

wb,j

1 + µj
,

=
wx,j

(1 + λj)(1 + µj)
+ wε,j. (4.78)where wε,j =

wz,j

(1+λj )(1+µj ) +
wb,j

1+µj
is the global error. We detail in the next parthow to formulate an expression of the global distortion.4.2.3.2 Deorrelation hypothesisThe deorrelation hypothesis (4.9) will also be used to ompute the global distortionof the imaging hain presented Fig. 4.13. It is important to note that the hybridhain is an extension of the on-board hain and only adds a post proessing after



4.2. Global optimization of the imaging hain 77oding; all the on-board proess remain therefore the same. From this remark,it seems lear that the ondition for the validity of the deorrelation hypothesisremains idential and writes
σwz,j

>
∆j

2
(1 + λj). (4.79)If the instrumental noise z meets the dithering noise requirements, we have[Wannamaker 2000℄

E [Wε,j] = 0, (4.80)
E
[

‖Wε,j‖2
]

= Nj

σ2
wz,j

(1 + λj)2(1 + µj)2
+Nj

∆2
j

12(1 + µj)2
. (4.81)4.2.3.3 Analysis of the global distortionThe global rate-alloation problem onsists now in �nding the sets {λ∗j}, {µ∗j} and

{∆∗
j} of optimal parameters whih solve

{λ∗j}, {µ∗j}, {∆∗
j} = arg min D ({λj}, {µj}, {∆j})subjet to R ({λj}, {∆j}) ≤ Rc,

λj > 0,∀j ∈ {0, . . . , J − 1}
∆j > 0,∀j ∈ {0, . . . , J − 1}
µj > 0,∀j ∈ {0, . . . , J − 1}

. (4.82)
In omparison to the analysis performed in Setion 4.2.2.3, the expression of theglobal distortion D hanges and is now funtion of two sets of regularizing param-eters {λj}, {µj} and, of ourse, is also funtion of the quantizing steps {∆j}. Theexpression of the global oding rate R remains however unhanged as the denoisingstep that we introdued ats after the oding step.Proposition 7. If σwz,j

veri�es hypothesis (4.79) for eah j ∈ {0, . . . , J − 1}, thenthe mean global distortion D of the imaging hain displayed Fig. 4.13 writes
D ({λj}, {µj}, {∆j}) =

J−1
∑

j=0

πj (λj + µj + λjµj)
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+
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12(1 + µj)2
, (4.83)where

aj =
Nj

N
, (4.84)is the weight of the subband j in the whole image.



78 Chapter 4. Optimization of the hain: A theoretial studyProof. Using the orthogonality of wavelet subbands, the global distortion an beformulated as
D ({λj}, {µj}, {∆j}) =

1

N

J−1
∑

j=0

πjE
(

‖Wx,j −Wx̂,j‖2
)

, (4.85)where πj are weighting oe�ients whih depend on the �lters and the dei-mation fators used in the wavelet transform [Usevith 1996℄. In the ase of thestudied imaging hain displayed Fig. 4.13, the �nal image is the output of theseond denoising step whih, from (4.78), writes
wx̂,j =

wx,j

(1 + λj)(1 + µj)
+ wε,j. (4.86)From (4.85), (4.86) and using the moments deorrelation hypothesis (4.9), wededue the global distortion

D ({λj}, {µj}, {∆j}) =
1
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J−1
∑

j=0

πj (λj + µj + λjµj)

(1 + λj)2(1 + µj)2
E
(

‖Wx,j‖2
)

+ πjE
(

‖Wε,j‖2
)

.(4.87)Finally, the global distortion (4.87) an be further developed using the results(4.81) to obtain the expression (4.83).The seond part of the global rate-alloation problem (4.54) requires the expres-sion of the global oding rate R. As the on-board proesses of the hybrid imaginghain remain the same, the oding rate R is given by (4.60) and (4.61).Proposition 8. The global rate-distortion optimization problem (4.82) an be solvedby maximizing
L(τ) = inf φτ ({∆j}, {µj}, {λj})

λj > 0, ∀j ∈ {0, . . . , J − 1}
∆j > 0, ∀j ∈ {0, . . . , J − 1}
µj > 0, ∀j ∈ {0, . . . , J − 1}

, (4.88)
with respet to τ > 0 and where

φτ ({∆j}, {µj}, {λj}) =
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∑
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ajRj(∆j) −Rc



 . (4.89)Proof. This proof is similar to the one given in proposition 2 where the globaldistortion D is given by (4.83) and R is given by (4.60) and (4.61).We detail in the next part how to solve problem (4.82) for the hybrid imaginghain.



4.2. Global optimization of the imaging hain 794.2.3.4 Global rate-distortion-denoising optimizationUsing proposition 8, the optimization problem (4.82) beomes
{∆∗

j}, {µ∗j}, {λ∗j} = max
τ>0























inf φτ ({∆j}, {µj}, {λj})
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µj > 0,∀j ∈ {0, . . . , J − 1}























. (4.90)
where φτ is given in (4.89). The situtation here is slightly di�erent than theon-ground or on-board hains sine problem (4.82) does not have any solution (seeAppendix A.4). This means that we are not able to optimize in the same time theparameters of the two restorations (on-board and on-ground) used by this hain.We hosed therefore to enfore the value of λ∗j as the same than for the on-boardhain and we dedue the onditions of the three other parameters (see AppendixA.4)
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j) = Rc. (4.94)As we an see from (4.93) and (4.94), the parameters {∆∗

j} and τ∗ still an notbe omputed in losed-form and will be estimated numerially using binary searhalgorithms of preision ρ = 0.1. The ase of the low frequeny subband (j = J − 1)will be also proessed di�erently to prevent exessive quantizing on these oe�ients.We set
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)

. (4.97)Sine the on-board denoising parameter has been �xed, the optimization algo-rithm an be dedued from the one presented for the on-ground hain. We thereforeget the suboptimal algorithm presented in Algorithm 3. The results of this algo-rithm are given in Setion 4.3 whih is dediated to the omparison of the threeimaging hains desribed in Setion 4.2.1, 4.2.2 and 4.2.3.
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Algorithm 3 Rate-distortion-denoising optimization algorithm for the hybrid imag-ing hainSet τ = 1.Set ρ = 0.1.while ∣∣
∣

∑J−1
j=0 ajRj −Rc

∣

∣

∣
> ρ dofor j from 0 to J − 2 doSet ∆j = 1.Compute the value of the regularizing parameters λj from (4.91) and µj from(4.92).while ∣∣∣πj∆j

6 + τ
∂Rj

∂∆j
(∆j)

∣

∣

∣ > ρ doInrease the value of ∆j .Compute the value of the regularizing parameters λj from (4.91) and µjfrom (4.92).end whileend forCompute the quantizing step ∆J−1 from (4.95).Compute the regularizing paramaters λJ−1 from (4.96) and µJ−1 from (4.97).if ∣∣
∣

∑J−1
j=0 ajRj −Rc

∣

∣

∣
> ρ thenInrease the value of τ .end ifend whileOutput the regularizing parameters {λ∗j} and {µ∗j}.Output the quantizing steps {∆∗

j}.



4.3. Comparison of the three imaging hains 814.3 Comparison of the three imaging hainsThis part is dediated to the omparison of the three hain (on-ground, on-boardand hyrid) visually and in a rate-distortion sense. For this omparison, the refereneimage (displayed Fig. 3.1) has been noised with an additive white Gaussian noisewhose standard deviation is equal to 10. The other parameters are the same thanthe ones desribed in Setion 4.2.1.5. For eah target rate, we simulate eah imaginghain with the usual disjoint optimization tehnique in omparison to the proposedjoint optimization algorithm.

Figure 4.14: Comparison of the disjoint optimized distortion (ground truth) to jointoptimized distortion (model-based estimation) for the three imaging hains, σz = 10.The obtained rate-distortion urve is given Fig. 4.14. Sine we simulate thease σz = 10, it is not suprising to observe that the joint optimization is slightlybetter than the disjoint optimization tehnique, in terms of global distortion, onlyfor very high oding rates. This behavior is quite expeted for the simulated levelof instrumental noise sine, as mentioned previously, the validity of the proposedmethod depends on the power of the instrumental noise. For σz = 10, we learlyknow that the proposed approah will be valid only for high oding rates. However,for these rates, the oding step is almost transparent and therefore disjoint and jointoptimized tehniques are almost the same. At low oding rates, the deorrelationhypothesis does not hold anymore and the proposed method does not give a goodestimation of the global distortion.We also see on Fig. 4.14 that the on-board and on-ground hains give similarresults, the on-ground hain being slightly better in term of global distortion. Thisis atually not suprising if we look at the estimation of the global distortion (4.16)



82 Chapter 4. Optimization of the hain: A theoretial studyand (4.55), we see that one term is not attenuated by the regularizing term forthe on-board hain. This remark atually leaded us to propose the hybrid hain.But we see on Fig. 4.14 that the joint optimization of this hain does not givesatisfying results whih is not suprising sine the global optimization of this hainis not ahievable (see Setion 4.2.3.4).The reonstruted images are given Fig. 4.15 to 4.18. The value of the peaksignal-to-noise ration (PSNR) is given for indiation. It is de�nes, for 12 bits dy-nami images, by
PSNR(x, x̂) = 20 log10

(

4095
1
N
‖x− x̂‖2

)

, (4.98)where N is the number of pixels, x is the referene image and x̂ is the reonstruted�nal image.The visual results are also similar, although we an observe on Fig. 4.16 asigni�ant di�erene on the reonstruted images. On this zone, we observe thatthe on-board hain gives an image with less blur and artifats than the ones obtainedwith the other hains. This result may however di�er for other restoration algorithmssine we used a Wiener like tehnique whih is well adapted to proess Gaussiannoise but not oding noise.We �nally see that, visually, the reonstruted image with the joint optimizationis better, for eah hain, than the one reonstruted with the disjoint optimizationtehnique. This result is atually quite surprising sine the simulated oding rateis 2.5 bpp for whih the dithering hypothesis does not hold anymore. This result isinteresting and suggests that, even for medium oding rates, the orrelation betweenthe global error and the soure may be negliged, suh that our estimation of theglobal distortion also holds for this range of oding rates.To onlude, we see that the obtained results point out one again that optimiz-ing oding and denoising separately is suboptimal and that the problem of imaginghain design need to be treated in its globality. The proposed approah is inter-esting in this sense and allows to perform the optimization of the global hain, i.e.from the true sene to the �nal reonstruted image. Some works need however tobe done to improve the proposed method and we address in the next setion thequestion of extending the proposed approah to the urrent imaging hain used bythe CNES.4.4 Extension of the proposed method to the CNESimaging hainThe urrent imaging hain used by the CNES di�ers from the one we used in thishapter mainly on three points:
• the presene of the PSF whih requires a deonvolution,
• the presene of the dead-zone on the quantizer,
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(a) (b)
() (d) (e)
(f) (g) (h)Figure 4.15: Visual omparison of reonstrution results. Displayed images have asize of 200 × 200 pixels. (a) is the referene image, (b) is the noisy observed image(PSNR = 52.25 dB). () and (d) are the images reonstruted with the parametersobtained respetively by the disjoint minimization of the ground truth distortion(PSNR = 46.95 dB) and by the joint optimization of the estimated distortion(PSNR = 45.81 dB) for the on-board hain. (e) and (f) are the images reon-struted with the parameters obtained respetively by the disjoint minimization ofthe ground truth distortion (PSNR = 46.99 dB) and by the joint optimization ofthe estimated distortion (PSNR = 44.47 dB) for the hybrid hain. (g) and (h) arethe images reonstruted with the parameters obtained respetively by the disjointminimization of the ground truth distortion (PSNR = 47.01 dB) and by the jointoptimization of the estimated distortion (PSNR = 45.76 dB) for the on-groundhain. The oding rate is 2.5 bits/pixel. The image range has been extended topoint up the image reonstrution artifats.
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(a) (b)
() (d) (e)
(f) (g) (h)Figure 4.16: Visual omparison of reonstrution results. Displayed images have asize of 200 × 200 pixels. (a) is the referene image, (b) is the noisy observed image(PSNR = 52.25 dB). () and (d) are the images reonstruted with the parametersobtained respetively by the disjoint minimization of the ground truth distortion(PSNR = 46.95 dB) and by the joint optimization of the estimated distortion(PSNR = 45.81 dB) for the on-board hain. (e) and (f) are the images reon-struted with the parameters obtained respetively by the disjoint minimization ofthe ground truth distortion (PSNR = 46.99 dB) and by the joint optimization ofthe estimated distortion (PSNR = 44.47 dB) for the hybrid hain. (g) and (h) arethe images reonstruted with the parameters obtained respetively by the disjointminimization of the ground truth distortion (PSNR = 47.01 dB) and by the jointoptimization of the estimated distortion (PSNR = 45.76 dB) for the on-groundhain. The oding rate is 2.5 bits/pixel. The image range has been extended topoint up the image reonstrution artifats.
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(a) (b)
() (d) (e)
(f) (g) (h)Figure 4.17: Visual omparison of reonstrution results. Displayed images have asize of 200 × 200 pixels. (a) is the referene image, (b) is the noisy observed image(PSNR = 52.25 dB). () and (d) are the images reonstruted with the parametersobtained respetively by the disjoint minimization of the ground truth distortion(PSNR = 46.95 dB) and by the joint optimization of the estimated distortion(PSNR = 45.81 dB) for the on-board hain. (e) and (f) are the images reon-struted with the parameters obtained respetively by the disjoint minimization ofthe ground truth distortion (PSNR = 46.99 dB) and by the joint optimization ofthe estimated distortion (PSNR = 44.47 dB) for the hybrid hain. (g) and (h) arethe images reonstruted with the parameters obtained respetively by the disjointminimization of the ground truth distortion (PSNR = 47.01 dB) and by the jointoptimization of the estimated distortion (PSNR = 45.76 dB) for the on-groundhain. The oding rate is 2.5 bits/pixel. The image range has been extended topoint up the image reonstrution artifats.
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(a) (b)
() (d) (e)
(f) (g) (h)Figure 4.18: Visual omparison of reonstrution results. Displayed images have asize of 200 × 200 pixels. (a) is the referene image, (b) is the noisy observed image(PSNR = 52.25 dB). () and (d) are the images reonstruted with the parametersobtained respetively by the disjoint minimization of the ground truth distortion(PSNR = 46.95 dB) and by the joint optimization of the estimated distortion(PSNR = 45.81 dB) for the on-board hain. (e) and (f) are the images reon-struted with the parameters obtained respetively by the disjoint minimization ofthe ground truth distortion (PSNR = 46.99 dB) and by the joint optimization ofthe estimated distortion (PSNR = 44.47 dB) for the hybrid hain. (g) and (h) arethe images reonstruted with the parameters obtained respetively by the disjointminimization of the ground truth distortion (PSNR = 47.01 dB) and by the jointoptimization of the estimated distortion (PSNR = 45.76 dB) for the on-groundhain. The oding rate is 2.5 bits/pixel. The image range has been extended topoint up the image reonstrution artifats.
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• and the denoising whih is usually performed using shrinkage estimators in-stead of Wiener like tehniques.Introduing a deonvolution in the restoration algorithm that we used may bethe easiest point to ahieve. A deonvolution is usually performed in the Fourierdomain and we expressed our global distortion in the wavelet domain. Moving fromone domain to the other one may be di�ult so one way to inlude this deonvolutionis to use a wavelet paket denoising suh that the variation of frequeny inside apaket is low enough to be approximated by a onstant. The deonvolution ouldthen be approximated, for eah paket, as a division by this onstant.The presene of a dead-zone in the quantizer is also a point that may be ad-dressed. Theoretially, the dead-zone of the quantizer prevents the moments of theglobal error to be deorrelated to the moments of the soure, as the dithering hy-pothesis requires an equally spaed quantizer. We are however on�dent that theorrelation introdued by this dead-zone may be negliged suh that the proposedapproah an still be applied.The main di�ulty for extending this work to the imaging hain used by theCNES omes from the use of shinkage estimators. The non-linearity of these esti-mators makes our approah very di�ult to extend to this ase. Moreover, the lakof statistis on the reonstruted image of these estimators omplexify the problemof global distortion estimation.For these reasons, we propose in the next hapter a di�erent approah to performthe global optimization of the hain.4.5 Conlusions and perspetivesWe studied in this hapter the global optimization of the hain from a theoretialpoint of view. We onsidered a simple ase of imaging hain and we proposed atehnique to estimate the global distortion. We also presented an algorithm to getthe optimal oding and denoising parameters by minimizing the estimated globaldistortion with respet to the parameters of the hain, given a target oding rate.We simulated this joint optimization tehnique on a satellite image and weshowed this approah allows a signi�ant improvement on the quality of the �-nal image. In detail, our joint oding/denoising optimization approah an eitherallows to reah the same quality at lower rates or to improve the quality of thereonstruted �nal image for the same rates, in omparison to the image obtainedusing the lassial disjoint optimization tehnique. The main onlusion obtainedin this hapter is that the quality of the �nal image an be highly improved if weaddress the problem of the satellite imaging hain optimization in its globality andthe proposed method is interesting in this sense.We also developed our study to three on�gurations of the imaging hain wherethe restoration is either performed after oding, before oding or splitted in twoparts: One part before oding and one part after oding. The omparison of these



88 Chapter 4. Optimization of the hain: A theoretial studythree imaging hains showed that it is more interesting, in term of image quality, toplae the restoration before oding, i.e. on-board of the satellite.The imaging hain that we onsidered remains however simple and is far fromthe true satellite imaging hain whih is muh more omplex. We disussed inChapter 4.4 the main di�erenes between the onsidered imaging hain and thesystem urrently used by the CNES. The main di�ulty to extend our method tothat hain omes from the shrinkage-based restoration algorithm used by the CNES.Due to the lak of statistis on this type of algorithm, it seems highly di�ult toformulate an expression of the �nal image. This however may be ahieved if oneallows to introdue more prior information that we used in this hapter.



Chapter 5Numerial optimization of thehain
In the previous hapter we presented a method to perform, under simplifying hy-potheses, a global joint optimization of the imaging hain whih showed signi�antimprovements on the visual quality of the �nal image. This method is however dif-�ult to extend to the true imaging hain of a satellite, due to the non-stationarityof the instrumental noise, the non-linearity of the restoration tehnique and thepresene of a dead-zone on the quantizer.Although we are not able to express the global distortion as a funtion of theparameters of the hain, we will show in Setion 5.1 that a global optimization anbe approximately performed by simply shifting the position of the restoration in thehain. Tuning the parameters of the restoration is however theoretially di�ult sowe propose in this part to address this question numerially. This hapter foussesthen on the global study of the satellite imaging hain, but mainly from a numerialpoint of view. We will �rst present in Setion 5.1 numerial experiments to improvethe quality of the �nal image by hanging the position and the tehnique used forthe restoration step. For visual onsiderations, we will show then in Setion 5.2 howto deal with the strutured artifats of the oding noise. We onlude in Setion 5.4and give perspetives of the study.5.1 Global optimization using on-board restorationAs mentioned in the introdution of the thesis (see Setion 1.1), the initial global op-timization problem onsists in �nding the optimal oding/deoding C∗ and restora-tion T ∗ whih minimizes on average some measure D of the distane between thetrue sene x and the restored �nal image x̂ = T (C(y)), under the onstraint thatthe oding rate R(C(y)) does not exeed the target oding rate

C∗, T ∗ = arg min E [D(x, T (C(y)))]subjet to C, T

R(C(y)) ≤ Rc

. (5.1)Problem (5.1) is highly omplex to solve as it looks for the optimal oding C∗ andrestoration T ∗ without any knowledge on the true image x and for any distane D.Clearly, solving (5.1) is very di�ult to ahieve in a general ontext. The authorsof [Wolf 1970℄ have however shown that some simpli�ations an be made if the



90 Chapter 5. Numerial optimization of the haindistane D is the mean square error (MSE). The main result of [Wolf 1970℄ statesthat, in the ase of the MSE, the global distortion an be separated in two terms asfollows
D = E

[

‖x− T (C(y))‖2
2

]

= E
[

‖x− E[x|y]‖2
2

]

+ E
[

‖E[x|y] − T (C(y))‖2
2

]

, (5.2)where E[x|y] is the onditional expetation of the original image x knowing thenoisy one y. The image E[x|y] is the best (in the MSE sense) estimator of the originalimage x from y. As this image does not depend on the on-ground restoration or theompression tehnique used, the minimal distortion D∗ then writes [Wolf 1970℄
D∗ = E

[

‖x−E[x|y]‖2
2

]

+ min E
[

‖E[x|y] − T (C(y))‖2
2

]subjet to C, T

. (5.3)We see that the global distortion an be expressed and optimized with respet tothe image E[x|y] instead of the original image x. Note that the problem (5.3) is notsimpler to solve as the omputation of the image E[x|y] is usually not aessible.As mentioned previously, the image E[x|y] represents the restoration of the trueimage x from the instrumental one y. It is then very tempting to think that this idealimage is atually the result of the restoration T , moved on-board of the satellite,i.e. before oding (see Fig. 5.1). From this remark, we then propose to onsider theMSE as the distane D and to use the results of [Wolf 1970℄ on the problem (5.1).We further replae E[x|y] by T (y) suh that the global optimization problem (5.1)an be approximatively written as
C∗, T ∗ = arg min E

[

‖T (y) − C(T (y))‖2
2

]subjet to C, T

R(C(T (y))) ≤ Rc

. (5.4)It is ertain that the problem (5.4) is not stritly equal to the initial optimizationproblem (5.1). Problem (5.4) seems however easier to treat as eah variable analmost be optimized separately. If T is �xed, problem (5.4) looks then for the optimaloder C∗ whih minimizes the oding error under the onstraint that the oding ratedoes not exeed the target oding rate. This problem is well-known and referred asthe oding rate-alloation problem [Shannon 1948℄ whih has been addressed a lot inthe oding ommunity [Antonini 1992℄, [Ortega 1998℄, [Berger 1971℄ and referenestherein.To be lear, the global joint optimization problem (5.1) is very di�ult to ad-dress. But, in our opinion, we believe that moving the restoration on-board allows tooptimize the global imaging hain by optimizing separately eah proess (restorationand oding) 1. Moreover, the fat that eah proess needs to be optimized separatelyatually �ts how these parts have been originally designed. This strengthens our1If we go bak to the theoretial study of the hain, in Setion 4.2.2.4, we observe that theoptimal parameters of the on-board hain are independent of eah others, whih is not the ase ofthe on-ground hain
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Figure 5.1: On-board restoration based satellite imaging hain.idea that moving the restoration on-board is atually a reliable method to performthe global optimization. So one way (but again this is not the only one) to addressthe problem of global joint optimization (5.1) is to use an on-board restoration suhthat the global optimization problem an be approximatively splitted in two inde-pendent ones. The �rst problem is to optimize the on-board restoration suh that itis lose to E[x|y]. The seond problem is to design a oder C whih minimizes theoding error. As mentioned previously, the latter has been the fous of intense workin the imaging ommunity. So the di�ulty here is to evaluate how lose to E[x|y]is T (y). As the ideal image E[x|y] depends on the original image x and is thereforenot aessible, we will simulate several state-of-the-art restoration algorithms andobserve their impat on the global distortion and on the quality of the reonstrutedimage. This is the fous of the next part.5.1.1 Comparison of on-board and on-ground hainsWe are onsidering the on-board hain displayed Fig. 5.1 in omparison to thelassial on-ground one illustrated Fig. 5.2 for several restoration algorithms.For the simulation, the oding step is �xed and is performed using the methodproposed in [CCSDS 2005℄ whih is the basis of satellite embedded oding algo-rithms. For example, the tehnique implemented on-board of the reent PLEIADES-HR satellite is an extension of the method proposed in [CCSDS 2005℄. To be on-
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Figure 5.2: On-ground restoration based satellite imaging hain.



5.1. Global optimization using on-board restoration 93sistent with the tehnique used by the CNES, we only fous here on restorationtehniques whih proess the image in two steps (we do not inlude the methodsbased on a variational framework suh as [Bet 2004℄) as follows. First, a diretdeonvolution is performed using the target point spread funtion (PSF) providedby the CNES. This deonvolution tends to inrease the power of the instrumentalnoise suh that a post-proessing denoising is always required as the seond step. Awavelet paket deomposition [Kalifa 2003b℄ is usually used for this denoising as it�ts the frequential harateristis of the deonvolved noise [Lier 2008℄. However, an-other important point to take into aount for an e�ient denoising is the dereaserate of reonstrution error from theM largest wavelet oe�ients [Patel 2009℄. Thefaster the reonstrution error dereases, the better the denoising is. And on thispoint, a wavelet paket transform may not be optimal [Mallat 2008℄.We propose here to perform the denoising using a variant of the wavelet trans-form named the Shearlet transform [Labate 2005℄. A wavelet transform an berepresented using a matrix with dyadi shifts and dilations as oe�ients. As men-tioned in Setion 3.2.1, it is lassially extented to the two dimensional ase usingseparable wavelets whih proess eah dimension of the image independently. Thematrix representation of a two dimensional wavelet transform is therefore diago-nal. The Shearlet transform presented in [Labate 2005℄ proposes instead to use anon-diagonal matrix and more spei�ally onsiders a �shear� matrix. A shear ma-trix is a matrix that ombines operations along its rows and olumns. This impliesthat a Shearlet transform uses ombinations of shifts and dilations of eah dimen-sion of the image. This o�ers the ability to apture oriented details and is, amongthe ontourlets [Do 2005℄ and the urvelets [Candès 2006a℄, an optimal transform(in term of reonstrution error dereasing rate with respet to the number of re-tained oe�ients) for the representation of images [Patel 2009℄. A deonvolutionmethod based on the Shearlet transform has been proposed in [Patel 2009℄. We willtherefore ompare the method [Patel 2009℄ to the urrent state-of-the-art restora-tion methods suh as the ForWarRD method [Neelamani 2004℄, whih performs adeonvolution followed by a regularization in both the Fourier and wavelet domains,or the method based on a Stein blok thresholding [Chesneau 2010℄ whih performsthe regularization in the Vaguelet-Wavelet domain followed by an adaptive blokthresholding.We simulate both on-board and on-ground hains on the image presented Fig.5.3 using the mentioned restoration algorithms. The reonstruted images will beompared to the ones provided by the CNES whih, as mentioned in Setion 3.3.2,uses an on-ground restoration based on a diret deonvolution followed by a waveletpaket thresholding. For the numerial experiments, the threshold parameters havebeen hosen suh that the MSE is minimized. An exhaustive searh of these pa-rameters has been used to ahieve this goal. In this simulation, the original image
x is known and the MSE an thus be omputed. Note that in a real environment,unbiased estimators of the MSE exist and do not require the knowledge of the trueimage [Ramani 2008℄. Other estimators suh as generalized ross validation (GCV)tehniques [Golub 1979℄ may also be used.
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Figure 5.3: Referene image, Cannes harbour (12 bits, 30 m resolution, 1024×1024pixels).



5.1. Global optimization using on-board restoration 95The quality of the reonstrution results will be estimated both visually andnumerially using the PSNR riterion de�ned in (4.98). To evaluate visually theperformanes of these algorithms, we will only display the reonstruted images forthe aquisition parameters desribed by the operating point 62 (whose SNR is 30-
100 and target oding rate is 2.5 bpp) in Table 3.1, page 35. This operating pointis very interesting to visually test the e�ieny of the restoration algorithms sineit gives the worst-ase simulation parameters: An instrumental noise with a highstandard deviation (low SNR 30 − 100) and a low oding rate (2.5 bits/pixel).

Figure 5.4: Rate-distortion omparison of on-board and on-ground hains in ref-erene to the method urrently used by the CNES. The simulated SNR is 30-100.The omparison of the on-board and on-ground hains in a rate-distortion senseis given Fig. 5.4 to 5.6 for the di�erent restoration algorithms and for di�erentsimulated signal-to-noise ratios. We an see that for the simulated restoration teh-niques, an on-board hain always performs better than its on-ground variants. Atlow oding rate, the di�erene between the two hains reahes almost 1 dB. We analso observe that eah restoration tehnique outperforms the restoration tehniqueused by the CNES in terms of PSNR. For a oding rate of 2.5 bpp, the improvement,in terms of PSNR, of these methods over the method of the CNES varies between 1and 1.5 dB. Note that the PSNR of the method used by the CNES is almost on-stant after the oding rate of 2.5 bits/pixel as this tehnique leaves some residualnoise to give the image a physial sense. This residual noise simulates the instru-mental noise that one obtains at the output of a sensor. This phenomenon onlyappears from 2.5 bits/pixel, as at this rate the enoder starts to e�iently enodethe instrumental noise instead of removing it. Also note that this image harater-
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Figure 5.5: Rate-distortion omparison of on-board and on-ground hains in ref-erene to the method urrently used by the CNES. The simulated SNR is 30-150.

Figure 5.6: Rate-distortion omparison of on-board and on-ground hains in ref-erene to the method urrently used by the CNES. The simulated SNR is 50-150.



5.2. Coding noise removal 97isti is highly appreiated by image analysis experts. This feature will be the basisof the method proposed in Setion 5.3 to remove the oding artifats inherent inwavelet-based ompression systems.Among the simulated tehniques, the ForWarRD restoration algorithm[Neelamani 2004℄ gives the best PSNR for all oding rates. The di�erene withother methods is however very small suh that it is di�ult to onlude only fromthe rate-distorsion urves. To better evaluate the di�erenes between these algo-rithms, we show visual results on the Fig. 5.7 to 5.10.We an hek on Fig. 5.7 for example that the on-board hain gives edges whihare slightly more blurred than the on-ground hain (partiularly visible around theedges of buildings). This is due to the fat that the edges of the image have beenenhaned by the deonvolution. The high frequeny subbands require then morebits to be properly enoded.It is atually di�ult to onlude on the di�erene between the two hains asthey both give similar results, although the on-ground one seems to perform betteron low intensity areas. For example, on Fig. 5.9, we see that the on-board hainreonstruts an image whih is more blurred (see the small square element at thebottom of the �gure) than the one we would have obtained with an on-ground hain(see also �gure 5.7). The on-board hain presents however the advantage to separatethe proess of oding noise removal and we will exploit this ability later in Setion5.3.Visually, the Stein blok thresholding restoration tehnique [Chesneau 2010℄does not give satisfying results and tends to oversmooth the image. If we observe thereonstruted images (Fig. 5.7 and 5.9 for example), we an verify that all the smalldetails are lost. The ForWaRD method [Neelamani 2004℄ seems also to su�er fromthe same behavior and provides slightly smooth reonstruted images. The methodbased on the Shearlets [Patel 2009℄ seems to be slightly superior in term of imagequality. This method give satisfying results and reover the small details of theimage without giving too many artifats. A deeper evaluation of the reonstrutedimages, by image analysis experts, may be however required to on�rm this result.Finally, we see that many oding artifats still appear in the reonstruted im-ages. This phenomenon is partiularly visible on the reonstrution results of theon-board hain as the oding noise is not treated at all by this hain. The on-boardhain may be therefore penalized by the presene of these artifats, so we present inthe next part some of the state-of-the-art proessing methods to redue these odingartifats.5.2 Coding noise removalAs mentioned in Setion 5.1.1, the oding step of the imaging hain degrades thequality of the transmitted image by introduing strutured artifats. These arti-fats are due to the quantizing proess of the oder whih sets to zero the waveletoe�ients of low magnitude. This ation of quantizing to zero an be interpretated
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(a) (b) ()
(d) (e) (f)
(g) (h) (i)Figure 5.7: Visual omparison of on-board and on-ground hains. Displayed imageshave a size of 200 × 200 pixels. (a) is the referene image, (b) is the instrumentalimage (output of the aquisition, PSNR = 32.69 dB), () is the reonstruted imageprovided by the CNES (PSNR = 45.93 dB), (d) and (e) are the reonstrutedimages respetively from the Shearlets based on-board (PSNR = 46.80 dB) andon-ground (PSNR = 46.69 dB) hains, (f) and (g) are the reonstruted imagesrespetively from the blok thresholding based on-board (PSNR = 46.46 dB) andon-ground (PSNR = 46.24 dB) hains, (h) and (i) are the reonstruted imagesrespetively from the ForWarRD based on-board (PSNR = 47.11 dB) and on-ground (PSNR = 47.05 dB) hains. The target rate is 2.5 bits/pixel and thesimulated SNR is 30-100. The image range has been extended to point up theimage reonstrution artifats.
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(a) (b) ()
(d) (e) (f)
(g) (h) (i)Figure 5.8: Visual omparison of on-board and on-ground hains. Displayed imageshave a size of 200 × 200 pixels. (a) is the referene image, (b) is the instrumentalimage (output of the aquisition, PSNR = 32.69 dB), () is the reonstruted imageprovided by the CNES (PSNR = 45.93 dB), (d) and (e) are the reonstrutedimages respetively from the Shearlets based on-board (PSNR = 46.80 dB) andon-ground (PSNR = 46.69 dB) hains, (f) and (g) are the reonstruted imagesrespetively from the blok thresholding based on-board (PSNR = 46.46 dB) andon-ground (PSNR = 46.24 dB) hains, (h) and (i) are the reonstruted imagesrespetively from the ForWarRD based on-board (PSNR = 47.11 dB) and on-ground (PSNR = 47.05 dB) hains. The target rate is 2.5 bits/pixel and thesimulated SNR is 30-100. The image range has been extended to point up theimage reonstrution artifats.
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(a) (b) ()
(d) (e) (f)
(g) (h) (i)Figure 5.9: Visual omparison of on-board and on-ground hains. Displayed imageshave a size of 200 × 200 pixels. (a) is the referene image, (b) is the instrumentalimage (output of the aquisition, PSNR = 32.69 dB), () is the reonstruted imageprovided by the CNES (PSNR = 45.93 dB), (d) and (e) are the reonstrutedimages respetively from the Shearlets based on-board (PSNR = 46.80 dB) andon-ground (PSNR = 46.69 dB) hains, (f) and (g) are the reonstruted imagesrespetively from the blok thresholding based on-board (PSNR = 46.46 dB) andon-ground (PSNR = 46.24 dB) hains, (h) and (i) are the reonstruted imagesrespetively from the ForWarRD based on-board (PSNR = 47.11 dB) and on-ground (PSNR = 47.05 dB) hains. The target rate is 2.5 bits/pixel and thesimulated SNR is 30-100. The image range has been extended to point up theimage reonstrution artifats.
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(a) (b) ()
(d) (e) (f)
(g) (h) (i)Figure 5.10: Visual omparison of on-board and on-ground hains. Displayed imageshave a size of 200 × 200 pixels. (a) is the referene image, (b) is the instrumentalimage (output of the aquisition, PSNR = 32.69 dB), () is the reonstruted imageprovided by the CNES (PSNR = 45.93 dB), (d) and (e) are the reonstrutedimages respetively from the Shearlets based on-board (PSNR = 46.80 dB) andon-ground (PSNR = 46.69 dB) hains, (f) and (g) are the reonstruted imagesrespetively from the blok thresholding based on-board (PSNR = 46.46 dB) andon-ground (PSNR = 46.24 dB) hains, (h) and (i) are the reonstruted imagesrespetively from the ForWarRD based on-board (PSNR = 47.11 dB) and on-ground (PSNR = 47.05 dB) hains. The target rate is 2.5 bits/pixel and thesimulated SNR is 30-100. The image range has been extended to point up theimage reonstrution artifats.



102 Chapter 5. Numerial optimization of the hainas taking the original wavelet oe�ients summed with negative impulses (wherethe magnitude of the impulses is equal to the value of the oe�ients prior to quan-tizing). The inverse transform, performed after the transmission, displays then thewavelet responses.These artifats visually look like hekerboard (see Fig. 5.11) and are thus some-times referred that way in the literature [Selesnik 2003℄. Clearly, these struturesare not appreiated in the �nal image as they an not be related to some naturalimage features. The denoising of suh oding noise is then important for the qualityof the �nal image and is the fous of this part.
Figure 5.11: Wavelet responses for the �rst level of a 3-levels CDF 9/7 deomposi-tion. The �rst two wavelets are oriented in the vertial and horizontal diretions.The third wavelet is a mix of two diagonal orientations and gives the �hekerboard�artifat.We start by giving in this setion a brief review of the state-of-the-art of quan-tization noise removal methods. We will then disuss in Setion 5.3 the integrationof these tehniques in the satellite imaging hain.5.2.1 Variational methods for denoising quantization noiseSeveral methods have been reently proposed in [Durand 2003, Weiss 2008,Tramini 1998℄ to takle the problem of quantization noise removal for wavelet-basedoder. They proposed to solve the problem of retrieving an image x0 from its odedversion x̃. The observed oded image x̃ an be modeled as

x̃ = W̃ (Q (Wx0)) , (5.5)where W stands for a wavelet transform (its inverse is denoted W̃ ) and Q is aquantizing proess. Tehniques [Weiss 2008℄ and [Tramini 1998℄ are atually verysimilar and, onsequently, we only present the methods proposed in [Durand 2003℄and [Weiss 2008℄. These methods are both based on a variational framework andboth rely on the minimization of the total variation (TV) prior [Rudin 1992℄.The TV prior assumes that an image an be modeled as a smooth funtionwith disontinuities aross urves. The osillations reated by the oding artifatsannot therefore be onsidered to be natural and do not belong to an image. Thepartiularity of these artifats is that they exhibit important variations of intensitywhih tend to inrease the magnitude of the gradient of the image, assumed to below by the smoothness hypothesis. Minimizing the l1-norm of the gradient of theimage, namely the TV, will then replae these osillations by smooth homogeneous



5.2. Coding noise removal 103regions. Both methods [Durand 2003℄ and [Weiss 2008℄ ould globally be formalizedas the following minimization problem
x̂ = arg min ‖∇x‖1subjet to x ∈ K

, (5.6)where x̂ is the denoised image and K is a set that onstrains the reon-struted image. Two di�erent approahes have been proposed in [Durand 2003℄and [Weiss 2008℄ to formulate this set. The authors of [Weiss 2008℄ proposed tode�ne the set K suh that it onstrains the error between the observed and thereonstruted wavelet oe�ients. In detail, let Q be the set of all possible outputquantized values Q = {qk; k ∈ Z, q0 = 0} and bk, bk+1 (bk+1 > bk) be the boundariesof eah quantization interval suh that
(Wx̃)i = qk, if bk ≤ (Wx0)i < bk+1, ∀i ∈ {0, . . . , N − 1}. (5.7)From equation (5.7), we have
bk − qk ≤ (Wx0)i − (Wx̃)i < bk+1 − qk, ∀i ∈ {0, . . . , N − 1}. (5.8)For eah pixel i, we set the bounds αi = bk − qk and βi = bk+1 − qk, where

k veri�es (5.8) given i. Note that the bounds αi and βi an be estimated fromthe wavelet oe�ients of the deoded image and the knowledge of the quantizingmodel. The authors of [Weiss 2008℄ proposed to de�ne K as the following hyperube
K =

{

x ∈ R
N , αi ≤ (Wx)i − (Wx̃)i < βi, ∀i ∈ {0, . . . , N − 1}

}

, (5.9)suh that problem (5.6) onsists in minimizing the TV of the image under theonstraint that the error between the wavelet oe�ients of the reonstruted imageand the wavelet oe�ients of the deoded image belongs to the invervals de�nedby the boundaries (5.8).The method proposed in [Durand 2003℄ is slightly di�erent and onstrains thewavelet oe�ients without any referene to the original image x0. They de�ne theset K as
K =

{

x ∈ R
N , (Wx)i = (Wx̃)i , ∀i ∈M

}

, (5.10)where M is the set of oe�ients oordinates that have not been set to zero bythe quantizing
M =

{

i ∈ {0, . . . , N − 1}, |(Wx̃)i| > 0
}

. (5.11)The idea of the method proposed in [Durand 2003℄ is to reonstrut the smalloe�ients that have been set to zero by the quantizing. The method relies on thefat that the minimization of the TV reates �at regions whih are represented bysmall wavelet oe�ients. The presene of the onstraint (5.10) is to ensure thatonly these small oe�ients are updated and that the large quantized oe�ients,whih are likely to be lose to the original ones, remain unhanged.



104 Chapter 5. Numerial optimization of the hainA omparison of the two presented methods is given at the end of this part.We will see however that the �at homogeneous regions reated by the minimizationof the TV are not natural in the sense that they annot be interpreted as somephysial features of an image. The problem of quantization noise removal is atuallyvery di�ult to address. The main di�ulty lies in the fat that the quantizationnoise is highly orrelated to the signal soure and annot be modeled using lassialprobability distributions (exept under high oding rate assumption). We presentin the next part methods to improve the statistial properties of the quantizationnoise.5.2.2 Dithering methods for removing quantization artifatsWe present in this part dithering tehniques to redue the quantization artifats.These tehniques have been originally introdued in the speeh [Jayant 1972℄ andvideo [Roberts 1962℄ proessing ommunities to redue the pereptual distortiondue to ompression. The partiularity of these tehniques is that they onsist ininserting a noise prior to quantizing to improve the statistis of the quantizationerror. A review of the theory of dithering tehniques is given in Appendix B.For the appliation of quantization artifats, we will fouss here on the sub-trative dithering system proposed in [Shuhman 1964℄ whose partiularity is tosubtrat the added noise after quantizing. From Appendix B, we see that the non-subtrative dithering tehnique only allows the moments of the global error ε to bedeorrelated to the soure w. An independene of the moments is however rarelyexploited by restoration algorithms, whih require the true signal independene,only provided by the subtrative variant. Let w be an original (i.e. prior to quan-tizing) wavelet subband and w̃ be the output orresponding subband whih, for asubtrative dithering system, writes
w̃ = Q(w + v) − v, (5.12)where Q is the quantizing operator and v is the dithering noise. The global error

ε of this sytem is de�ned as
ε = w̃ − w. (5.13)As mentioned by [Lipshitz 1992℄, a subtrative dithering system produes anindependent and uniformly distributed global error if the dithering noise v an beexpressed as the summation of retangular probability density funtions. This isan enouraging result as it implies that an on-board restoration oupled with asubtrative dithering sheme will result in a restored image with a residual noisewhih is independent of the original image. Sine this residual noise is not strutured,it an be interpreted physially (as the intrumental noise of the sensor for example)better than the residual noise obtained with the urrent imaging hain system. Thisaspet of residual noise is very important as it is one of the features seeked by theCNES for the design of restoration methods [Dherete 2003℄. We will disuss thisaspet later as this is the basis of the proposed imaging hain desribed in Setion5.3.



5.2. Coding noise removal 105We would like also to mention the dithering tehnique proposed in [Stamm 2011℄.This method is slightly di�erent from the dithering tehniques presented in Ap-pendix B as it is more foused on the reonstrution of the original wavelet sub-bands rather than improving the statistis of the quantization noise. More preisely,the main result of [Stamm 2011℄ states that the probability density funtion of awavelet subband an be reovered exatly (assuming we know the parameters of itsmodel) from its quantized version by adding a dithering noise v to the quantizedoe�ients.We assume that the quantizing model is the same than the one presented inSetion 5.2.1. The authors of [Stamm 2011℄ proposed to model a wavelet subband
w (eah subband an be treated separately) by a Laplae distribution [Li 1998℄

pw(w) =
λ

2
e−λ|w|, (5.14)where λ is the sale parameter that an be estimated using lassial estima-tion tehniques suh as least-squares minimization methods or maximum-likelihoodestimations. Similarly to (5.7), the quantized wavelet subband w̃ writes

w̃ = qk, if bk ≤ w < bk+1. (5.15)Using the wavelet subband model (5.14), we an express the probability densityfuntion pw̃ of a quantized wavelet subband
pw̃(w̃ = qk) =
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(5.16)As said previously, the method proposed in [Stamm 2011℄ onsists in adding adithering noise after quantizing. The �nal wavelet subband z is then given by
z = w̃ + v, (5.17)where w̃ is the quantized wavelet subband and v the dithering noise. The waveletsubband probability density funtion pz an be expressed using the law of totalprobability [Stamm 2011℄

pz(z) =

+∞
∑

k=−∞
pz|w̃(z|w̃ = qk)pw̃(w̃ = qk), (5.18)where

pz|w̃(z|w̃ = qk) = pv|w̃(v = z − qk|w̃ = qk), (5.19)



106 Chapter 5. Numerial optimization of the hainis the probability density funtion of the dither noise v knowing the quantizedvalues w̃. The authors of [Stamm 2011℄ showed that the hoies
pv|w̃(v|w̃ = qk, k 6= 0) =

{

1
αk
e− sign(qk)λ̂v, if (bk − qk) ≤ v < (bk+1 − qk)

0, otherwise (5.20)
pv|w̃(v|w̃ = 0) =

{

1
α0
e−λ̂|v|, if b0 > v > b1

0, otherwise , (5.21)with ak being some normalization onstants and λ̂ an estimated value of thesale parameter λ, lead to the original wavelet subband probability density funtion
pw, under the ondition that the sale parameter has been estimated exatly, i.e.
λ̂ = λ [Stamm 2011℄
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e−λ̂|z| = pw(z), (5.22)where
1(a ≤ z < b) =

{

1, if a ≤ z < b

0, otherwise . (5.23)Even if the reonstruted and original subbands will numerially di�er, thistehnique will remove the undesirable observed artifats, due to the quantization,by �lling in the blanks. The fat that we also add dither noise on the null oe�ientsmay also provide the residual noise appreiated by image analysis experts.5.2.3 Comparison of removal methods for quantization artifatsWe simulate the behavior of the presented quantization removal methods diretlyon a oded version of the referene (i.e. without any blur or instrumental noise)satellite image shown Fig. 5.3. The simulation of the omplete imaging haininluding these tehniques is done in the next part. To perform a fair omparison,the image will be oded using the biorthogonal 9/7 wavelet transform [Cohen 1992℄followed by the quantizer desribed in [Lipshitz 1992℄. As a onsequene, the method[Stamm 2011℄ has been adapted to this hoie. For the subtrative dithering method



5.3. Proposed imaging hain 107[Lipshitz 1992℄, we simulated a uniform dithering noise to limit the power of theresidual noise. This dithering noise will be applied to the wavelet subbands of theimage prior to quantizing. Therefore, after the inverse transform the residual noise(i.e. the error between the referene image and the output of the dithering system)is not uniformly distributed anymore but we found out experimentaly that this noiseappears, suprisingly, to be still independent and identially distributed following aentered Gaussian law.We only provide visual results as ommon riteria suh as PSNR do not takeinto aount the appreiated physial pereption of residual noise.The results are given Fig. 5.12 to 5.15. Visually, we immediately see that thetehniques based on the minimization of the TV reate large smooth homogenousregions and remove the small details of the image. This e�et is known as the artoone�et. These �at regions are not onsidered to be natural for a satellite image and arereally not appreiated by image analysis experts who learly prefer a deteriorationthat an be interpreted physially. As explained previously, this is for examplethe ase of an unstrutured residual noise. The subtrative dithering tehniqueand the method proposed in [Stamm 2011℄ give good visual results in this sense.Both images are well reonstruted and do not present ommon artifats suh asringing or blurry edges. The quality of the image reonstruted with the subtrativedithering tehnique atually seems slightly better, partiularly on the small detailsof the image (ars and zebras). As expeted, these methods leave a residual noiseon the reonstruted image whih an be interpretated as the instrumental noise ofthe sensor.5.3 Proposed imaging hainIn the previous setion, we showed that the dithering tehniques may be very in-teresting to remove the strutured artifats of the oding step. As we have alsomentioned in Setion 5.2.3, these tehniques leave a uniform residual noise whih ishighly appreiated from the image analysis experts as it an be interpretated physi-ally. More preisely, an ideal restored image (as de�ned by image analysis experts)should owns a residual blur haraterized by a target PSF [Lambert-Nebout 2000℄along with a uniform residual noise with a �xed standard deviation [Dherete 2003℄.We also presented in Setion 5.1.1 an on-board restoration tehnique whih givesan image with a residual noise (whose power is very small in omparison to the powerof the residual noise obtained from the dithering tehniques) and a residual blur fullyharaterized by the target PSF. If we ombine these two tehniques, i.e. if we usean on-board restoration oupled with a subtrative dithering tehnique, the imageobtained at the output of the hain will then present an unstrutured residual noise(oming from the dithering tehnique) with the blur of the target PSF (oming fromthe on-board restoration). And as mentioned previously, a �nal image with suhharateristis is the objetive of image analysis experts as it an be interpreted asthe diret output of an ideal instrument.
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(a) (b) ()
(d) (e) (f)Figure 5.12: Visual omparison of quantizing removal tehniques. Displayed imageshave a size of 200 × 200 pixels. (a) is the referene image, (b) is the deompressedimage, () is the image obtained using the post-proessing tehnique proposed in[Durand 2003℄, and (d) is the image obtained using the post-proessing tehniqueproposed in [Weiss 2008℄, (e) is the image reonstruted using the post-proessingdithering tehnique proposed in [Stamm 2011℄, (f) is the image reonstruted usingthe subtrative dithering tehnique [Lipshitz 1992℄ with an uniform dithering noise.The target rate is 2.5 bits/pixel. The image range has been extended to point upthe image reonstrution artifats.
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(a) (b) ()
(d) (e) (f)Figure 5.13: Visual omparison of quantizing removal tehniques. Displayed imageshave a size of 200 × 200 pixels. (a) is the referene image, (b) is the deompressedimage, () is the image obtained using the post-proessing tehnique proposed in[Durand 2003℄, and (d) is the image obtained using the post-proessing tehniqueproposed in [Weiss 2008℄, (e) is the image reonstruted using the post-proessingdithering tehnique proposed in [Stamm 2011℄, (f) is the image reonstruted usingthe subtrative dithering tehnique [Lipshitz 1992℄ with an uniform dithering noise.The target rate is 2.5 bits/pixel. The image range has been extended to point upthe image reonstrution artifats.
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(a) (b) ()
(d) (e) (f)Figure 5.14: Visual omparison of quantizing removal tehniques. Displayed imageshave a size of 200 × 200 pixels. (a) is the referene image, (b) is the deompressedimage, () is the image obtained using the post-proessing tehnique proposed in[Durand 2003℄, and (d) is the image obtained using the post-proessing tehniqueproposed in [Weiss 2008℄, (e) is the image reonstruted using the post-proessingdithering tehnique proposed in [Stamm 2011℄, (f) is the image reonstruted usingthe subtrative dithering tehnique [Lipshitz 1992℄ with an uniform dithering noise.The target rate is 2.5 bits/pixel. The image range has been extended to point upthe image reonstrution artifats.
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(a) (b) ()
(d) (e) (f)Figure 5.15: Visual omparison of quantizing removal tehniques. Displayed imageshave a size of 200 × 200 pixels. (a) is the referene image, (b) is the deompressedimage, () is the image obtained using the post-proessing tehnique proposed in[Durand 2003℄, and (d) is the image obtained using the post-proessing tehniqueproposed in [Weiss 2008℄, (e) is the image reonstruted using the post-proessingdithering tehnique proposed in [Stamm 2011℄, (f) is the image reonstruted usingthe subtrative dithering tehnique [Lipshitz 1992℄ with an uniform dithering noise.The target rate is 2.5 bits/pixel. The image range has been extended to point upthe image reonstrution artifats.



112 Chapter 5. Numerial optimization of the hainFrom this remark, we propose the imaging hain shown Fig. 5.16.

Figure 5.16: Proposed satellite imaging hainThis hain inludes the on-board restoration based on the Shearlets transform[Patel 2009℄ and the subtrative dithering tehnique [Lipshitz 1992℄ to deorrelatethe quantizing noise. Note that, in this hain, the quantizer follows the modeldesribed in [Lipshitz 1992℄ to respet the subtrative dithering sheme hypothesis.The oding step is then deomposed in a 3-levels CDF 9/7 wavelet transform followedby an expliit quantization of the wavelet oe�ients and an entropy enoding ofthe quantized oe�ients. The results of the proposed imaging hain are given Fig.5.17 to 5.20.We immediately see that the reonstruted images with the proposed hain donot present any ommon wavelet ompression artifats (see �gures 5.17 and 5.18),that we observed on the reonstruted image provided by the CNES. They exhibitinstead an unstrutured residual noise whih is visually similar to the noise obtainedon the instrumental image at the ouput of the aquisition hain. This is partiularlyvisible on the dark zones of the reonstruted image, see �gures 5.18 and 5.19.It is lear that the proprosed hain tends to replae one type of residual noise(wavelet ompression artifats) by another one. The obtained residual noise is how-
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(a) (b)

() (d)Figure 5.17: Visual omparison of the proposed and the urrent imaging hains.Displayed images have a size of 200 × 200 pixels. (a) is the referene image, (b)is the instrumental image, () is the deompressed and restored image provided bythe CNES, (d) is the reonstruted image from the Shearlets based on-board hainfollowed by a subtrative dithering sheme. The target rate is 2.5 bits/pixel andthe simulated SNR is 30-100. The image range has been extended to point up theimage reonstrution artifats.



114 Chapter 5. Numerial optimization of the hain

(a) (b)

() (d)Figure 5.18: Visual omparison of the proposed and the urrent imaging hains.Displayed images have a size of 200 × 200 pixels. (a) is the referene image, (b)is the instrumental image, () is the deompressed and restored image provided bythe CNES, (d) is the reonstruted image from the Shearlets based on-board hainfollowed by a subtrative dithering sheme. The target rate is 2.5 bits/pixel andthe simulated SNR is 30-100. The image range has been extended to point up theimage reonstrution artifats.
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(a) (b)

() (d)Figure 5.19: Visual omparison of the proposed and the urrent imaging hains.Displayed images have a size of 200 × 200 pixels. (a) is the referene image, (b)is the instrumental image, () is the deompressed and restored image provided bythe CNES, (d) is the reonstruted image from the Shearlets based on-board hainfollowed by a subtrative dithering sheme. The target rate is 2.5 bits/pixel andthe simulated SNR is 30-100. The image range has been extended to point up theimage reonstrution artifats.
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(a) (b)

() (d)Figure 5.20: Visual omparison of the proposed and the urrent imaging hains.Displayed images have a size of 200 × 200 pixels. (a) is the referene image, (b)is the instrumental image, () is the deompressed and restored image provided bythe CNES, (d) is the reonstruted image from the Shearlets based on-board hainfollowed by a subtrative dithering sheme. The target rate is 2.5 bits/pixel andthe simulated SNR is 30-100. The image range has been extended to point up theimage reonstrution artifats.
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(a) (b)

() (d)Figure 5.21: Visual omparison of the proposed and the urrent imaging hains.Displayed images have a size of 200 × 200 pixels. (a) is the referene image, (b)is the instrumental image, () is the deompressed and restored image provided bythe CNES, (d) is the reonstruted image from the Shearlets based on-board hainfollowed by a subtrative dithering sheme. The target rate is 3.0 bits/pixel andthe simulated SNR is 30-100. The image range has been extended to point up theimage reonstrution artifats.



118 Chapter 5. Numerial optimization of the hain

(a) (b)

() (d)Figure 5.22: Visual omparison of the proposed and the urrent imaging hains.Displayed images have a size of 200 × 200 pixels. (a) is the referene image, (b)is the instrumental image, () is the deompressed and restored image provided bythe CNES, (d) is the reonstruted image from the Shearlets based on-board hainfollowed by a subtrative dithering sheme. The target rate is 3.0 bits/pixel andthe simulated SNR is 30-100. The image range has been extended to point up theimage reonstrution artifats.
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(a) (b)

() (d)Figure 5.23: Visual omparison of the proposed and the urrent imaging hains.Displayed images have a size of 200 × 200 pixels. (a) is the referene image, (b)is the instrumental image, () is the deompressed and restored image provided bythe CNES, (d) is the reonstruted image from the Shearlets based on-board hainfollowed by a subtrative dithering sheme. The target rate is 3.5 bits/pixel andthe simulated SNR is 30-100. The image range has been extended to point up theimage reonstrution artifats.
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(a) (b)

() (d)Figure 5.24: Visual omparison of the proposed and the urrent imaging hains.Displayed images have a size of 200 × 200 pixels. (a) is the referene image, (b)is the instrumental image, () is the deompressed and restored image provided bythe CNES, (d) is the reonstruted image from the Shearlets based on-board hainfollowed by a subtrative dithering sheme. The target rate is 3.5 bits/pixel andthe simulated SNR is 30-100. The image range has been extended to point up theimage reonstrution artifats.
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(a) (b)

() (d)Figure 5.25: Visual omparison of the proposed and the urrent imaging hains.Displayed images have a size of 200 × 200 pixels. (a) is the referene image, (b)is the instrumental image, () is the deompressed and restored image provided bythe CNES, (d) is the reonstruted image from the Shearlets based on-board hainfollowed by a subtrative dithering sheme. The target rate is 4.0 bits/pixel andthe simulated SNR is 30-100. The image range has been extended to point up theimage reonstrution artifats.
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(a) (b)

() (d)Figure 5.26: Visual omparison of the proposed and the urrent imaging hains.Displayed images have a size of 200 × 200 pixels. (a) is the referene image, (b)is the instrumental image, () is the deompressed and restored image provided bythe CNES, (d) is the reonstruted image from the Shearlets based on-board hainfollowed by a subtrative dithering sheme. The target rate is 4.0 bits/pixel andthe simulated SNR is 30-100. The image range has been extended to point up theimage reonstrution artifats.



5.4. Conlusions and perspetives 123ever better appreiated by image analysis experts as it an be interpreted physially.More preisely, the proprosed imaging hain produes a reonstruted image whihowns the two harateristis of an ideal image: Blur with the target PSF (obtainedby the on-board restoration) and a residual unstrutured noise [Dherete 2003℄. Thedrawbak of the proposed method is that the standard deviation of the residualnoise is funtion of the quantizing step (see Theorem 11) while it should be on-stant for all oding rates. Consequently, for a low oding rate, the proposed haingives an image whih is more noisy than the instrumental one. It gives however veryinteresting results for high oding rates as shown by Fig. 5.21 to 5.26. Futher worksneed thus to be done on this aspet.5.4 Conlusions and perspetivesIn this hapter, we presented a numerial study on the satellite imaging hain op-timization problem. We presented several results whih showed that the quality ofthe reonstruted image an be improved if one onedes several hanges on theusual design of imaging hains.The �rst one would be to move the restoration step on-board of satellite, prior tooding. The results we obtained here showed that an on-board restoration allows toreonstrut an image with less reonstrution artifats, speially on shadows zones.On a more theoretial point of view, moving the restoration on-board seems to be areliable method to approximately optimize the global imaging hain sine it does notrequire to express the global distortion as a funtion of the parameters of the hainwhih, as disussed in Chapter 4.4, is di�ult for true satellite imaging systems.The seond point disussed in this hapter deals with the problem of odingnoise removal. From the results we presented, we onluded that the urrent state-of-the-art oding noise denoising algorithms do not give ompetitve results and thatthe best option may be to used dithering tehniques to transform the stuturedoding noise in an unstrutured residual noise. This property of residual noiseis highly appreiated from photo interpreters sine it simulates the noise obtaineddiretly at the output of the instrument. From these onlusions, we proposed a newimaging hain based on an on-board restoration oupled with a subtrative ditheringtehnique. We showed results on a real satellite data and we ompared the results ofthe proposed hain with the ones obtained with the urrent satellite imaging hainused by the CNES. We showed that the proposed hain gives interesting results andmay be partiularly e�ient at medium and high oding rates (around 3.0 bits/pixeland more). The partiularity of the proposed imaging hain is that the �nal imageis fully haraterized by the target blur (spei�ed by the CNES) and a residualunstrutured noise. Suh feature is interesting for images analysis experts sinelassial defets of the ompression and restoration steps do not appear in the �nalimage, suh that these two steps appear then almost transparent in the hain.A drawbak of the proposed method is that the power of this residual noisedepends on the target oding rate. At low oding rate (like 2.5 bits/pixel), the



124 Chapter 5. Numerial optimization of the hain�nal image appears to be more noisy than the instrumental image and is thereforedi�ult to exploit. It would be thus interesting to investigate how to limit theintensity of this residual noise suh that ompetitive results an also be obtained atlow oding rates.



Part IIIA ompressed sensing basedsatellite imaging hain





Chapter 6Compressed Sensing for satelliteimaging
The last part of the thesis is dediated to the study of Compressed Sensing (CS) forsatellite imaging. This study on the Compressed Sensing slightly di�ers from theglobal optimization tehniques that we presented in part II and the purpose of thisstudy is mainly to evaluate the apability of CS applied to high resolution satelliteimaging. The CS tehnique is interesting for satellite imaging as it simpli�es theresoures required for the aquisition of the image, whih are, in our ase performedon-board of the satellite. All the proessings on the image are then performed on-ground by a spei� deoder and the quality of the �nal image entirely depends onthe reliability of this deoder. Due to the limited apaity of embedded resoures,this tehnique learly appears to be adapted to our ontext.We �rst present in Setion 6.1 a brief introdution of the CS framework. Wethen detail, in Setion 6.2, how to apply this tehnique to satellite imging. Wepresent reonstrution results of the proposed method in omparison to the resultsobtained with the urrent imaging hain and we onlude this part.6.1 A short introdution to Compressed Sensing6.1.1 MotivationsIn a lassial imaging system, the aquired image is sampled at the Nyquist fre-queny to give N pixels. Any digital amera produes nowadays an image withdozen millions of pixels. By assuming that eah pixel is represented on 24 bits (8bits per olor hannel), eah image requires then almost 100 Mb of storage apaity.Some ompression algorithms, like the JPEG [Wallae 1992℄ and JPEG2000 stan-dards, are then required to allow the user to take an important number of pitures,stored into a simple memory ard. In brief, the purpose of the oding step is toredue the redundany in the image and to remove insigni�ant ontent to maththe apaity of the storage devie. Compression algorithms require however thewhole image for, �nally, disarding an important part of (irrelevant) information.This may appear to be wasteful for appliations whose sampling sheme is expensiveto perform. Many omputing resoures ould then be saved up if the ompressedoe�ients were diretly aquired out of the sensor.Reently, a new theory of sampling has been emerged in the signal proessingommunity. This theory, introdued as the Compressive Sampling or Compressed



128 Chapter 6. Compressed Sensing for satellite imagingSensing [Candès 2006b, Donoho 2006℄, suggests that one an reonstrut perfetly asignal, supposed to be sparse in some basis, from a limited (i.e. fewer than Nyquist)number of inoherent measurements. The motivation behind the CS tehnique isto perform in the same time the aquisition and the ompression of the signal. Wegive a quik overview of this tehnique in this setion but more information an befound in the referred works.6.1.2 Main resultsLet x0 ∈ R
N be a Nyquist sampled version of the analog measured sene. The mainresult of the CS theory states that x0 an be reovered exatly from a small numberof measurements [Candès 2006a℄ diretly outomed from the sensor. The key of theCS theory relies on the supposed sparsity of the original signal x0, meaning thatit an be perfetly represented in some basis Ψ : R

N → R
N with only S non-nulloe�ients. This property of sparsity is atually well-known for natural images andwidely used by oding algorithms to represent the ontent of images on ompatbitstreams [Wallae 1992℄.Based on this property of sparsity, the authors of [Candès 2006a℄ showed thatonly M (with M << N) measurements are required to perfetly reonstrut theoriginal signal x0 with a high probability. These M observations are obtained bythe projetion of the image x0 ∈ R

N on a measurement matrix Φ : R
N → R

M

y = Φx0. (6.1)Matrix Φ being not of full rank, it seems di�ult to reover x0 exatly. However,it appears that if one onsiders the image x0 to be sparse in some basis Ψ, then allthe information and the struture of x0 is onserved in y with a high probability[Candès 2006a℄. More preisely, let α0 ∈ R
N be a S sparse vetor, that is a vetorhaving S non-null oe�ients, and let y ∈ R
M be the measurement vetor obtainedby

y = Φα0. (6.2)If we assume that we know the loation of the S sparse oe�ients, only Slinearly independent equations are then required to reover α0 from y. In oth-erwords, one an reover α0 exatly from y if the sub-matrix ΦK of size M × Sis full rank. The restrited isometry property (RIP) has been introdued in[Candès 2006d, Candès 2006a℄ to generalize this notion of quasi-orthonormality. Let
θ ∈ R

N be a S sparse vetor, then the measurement matrix Φ owns the RIP of order
S if for any sub-matrix Φp of size M × p with p ∈ [1, . . . , S], one has

(1 − δK)‖θ‖2
2 ≤ ‖Φpθ‖2

2 ≤ (1 + δK)‖θ‖2
2, (6.3)where δK is the smallest onstant (known as the restrited isometry onstant)whih veri�es (6.3) for any p. The design of suh measurements matries is how-ever a NP-omplete task. Fortunately, it appears that most of random matries,suh as Gaussian random matries or matries outomed from Bernouilli proesses



6.1. A short introdution to Compressed Sensing 129[Candès 2006a℄, satisfy the RIP of order 2K (required to preserve the distane be-tween any two sparse signals) with a high probability [Baraniuk 2008℄.When no prior information on the loation of the non-null sparse oe�ients isavailable, reovering α0 from y is more di�ult. The authors of [Donoho 2006℄ ad-dressed this problem and showed that, if the RIP ondition is satis�ed, the image x0an be reovered with a high probability by minimizing the l0-norm of its oe�ientsin Ψ, under the onstraint that its projetion on Φ is equal to the observed vetor
y. This however leads to a NP-omplete algorithm [Donoho 2006℄. A strong result,due to [Candès 2006b℄, states that the l0-norm an be equivalently replaed by the
l1-norm. The reonstrution problem is then formulated as follows [Candès 2006b℄Find x̃ ∈ arg min ‖Ψx‖1subjet to x ∈ R

N

y = Φx

. (6.4)The optimization problem (6.4) is a partiular instane of the Basis Pursuitproblem [Chen 1998℄ whih an be e�iently solved using lassial algorithms fromthe linear programming literature. Problem (6.4) an be interpreted as follows.The randomness of the measurement matrix Φ spreads the ontent of the imagein the measurement vetor y. If Φ satis�es the RIP, then the inverse solution Φ†yontains all the information of the image x0 but in disorder. Also remind that therepresentation of x0 in the basis Ψ is sparse or, in other words, strongly ompat.Minimizing the l1-norm of its oe�ients will then put the non-null oe�ients bakat the orret position, reovering therefore the original image.It is shown in [Candès 2007℄ that solving problem (6.4) leads to an exat solu-tion if x0 is sparse enough in Ψ. Therefore, the more sparse is x0 the easier it willbe for the algorithm (6.4) to reover the original signal. Reovering the image x0highly depends on the link between the ompatness of the deomposition basis Ψand the di�usion of the measurement matrix Φ. More generally, the algorithm (6.4)e�iently reovers the original image only if matries Φ and Ψ are ompletely un-orrelated. A mutual oherene µ has been introdued in [Candès 2007℄ to measurethis orrelation and more preisely, to measure the orrelation between eah vetorbasis φi and ψj of Φ and Ψ. It is de�ned as
µ(Φ,Ψ) =

√
N max

i,j
|〈φi, ψj〉|. (6.5)This oherene measure belongs to [1,

√
N ] [Candes 2008℄; a small value of µmeaning that the matries Ψ and Φ are ompletely unorrelated. For example,if Φ is the Fourier basis, then the minimal oherene is obtained with Ψ = I (thesampling operator) and is equal to 1. Suh senario atually orresponds to magnetiresonane imaging for example, where the data is diretly aquired in the Fourierdomain [Lustig 2007℄. More generally, solving (6.4) reovers x0 exatly if

M ≥ Cµ2(Φ,Ψ)S log(N), C < 1 is a onstant. (6.6)



130 Chapter 6. Compressed Sensing for satellite imagingIn lassial imaging systems, aquired images are usually degraded by both blurand instrumental noise. As shown in [Jianwei 2009℄, the CS tehnique is robust tothis sheme. In the ase of blurred and noisy measurements, the aquisition model(6.1) beomes [Jianwei 2009℄
y = ΦHx0 + z, (6.7)where H : R

N → R
N is the blur matrix and n ∈ R

M is an additive noise. In thelassial ase of an additive white Gaussian noise of variane σ2
n, the reonstrutionalgorithm may write [Jianwei 2009℄Find x̃ ∈ arg min ‖Ψx‖1subjet to x ∈ R

N

‖y − ΦHx‖2
2 ≤Mσ2

z

. (6.8)Similarly to (6.4), the optimization problem (6.8) is a partiular instane of BasisPursuit Denoising whih an also be solved using linear programming tehniques[Chen 1998℄. Of ourse, exat reonstrution annot be ahieved anymore due tothe error on the measurements introdued by the noise. The reonstrution erroran however be aurately estimated (at least in the ase of measurements onlydegraded by noise) as a funtion of the restrited isometry onstant [Candès 2006℄.Although the design of a sensor able to produe these random measurements isdi�ult and beyond the sope of the thesis, the CS tehnique learly appears to beadapted to the satellite imaging hain. It ould indeed drastially simplify the pro-ess of image aquisition by providing a redued number of measurements, diretlyoutomed from the sensor, therefore saving an important quantity of resoures. It isalso valuable to point out that the CS framework provides an aquisition tehniquewhose performanes depend mainly on the reonstrution algorithm done on-ground.In omparison, the urrent aquisition imaging hain is bounded by the e�ieny ofthe ompression sheme embedded on-board. In that ase, if one wants to inreasethe quality of the �nal image, one has to design a new image oder. This �universal�oding feature [Candès 2006d℄ of the CS is thus very attrative. In the next part, wepropose therefore a satellite imaging hain based on this tehnique. We formulatethe aquisition model and we present an algorithm to reonstrut the image fromthe measurements vetor.6.2 Compressed Sensing based satellite imaging hain6.2.1 Aquistion model of the satellite imaging hainAs said previously, we assume that we have at our disposal a sensor able to pro-due inoherent measurements, in the sense of the CS framework. We are inter-ested in evaluating the quality of the reonstruted image in omparison to theimage obtained using the urrent aquisition hain based on wavelet ompression[Antonini 1992℄.Though it is not a general result (see [Goyal 2008℄ for example), previous works[Shulz 2009℄ have shown that the CS tehnique may be ompetitive regarding to



6.2. Compressed Sensing based satellite imaging hain 131a wavelet-based ompression sheme on smoothed lassial test images. But to thebest of our knowledge, no works have been dediated to this omparison for high-resolution satellite imaging, taking into aount the degradations of the satelliteimaging aquisition hain (blur, instrumental and quantizing noises).

Figure 6.1: Current satellite imaging hain.The urrent satellite imaging hain used by the CNES is realled Fig. 6.1. Inthe ase of a CS based aquisition tehnique, the instrumental image at the outputof the aquisition an be written as the projetion of the blurred image on themeasurement matrix Φ, noised by an instrumental noise n
y = ΦHx+ n, (6.9)where H is the matrix notation for the PSF, n is the instrumental noise supposedto be a zero-mean Gaussian distribution with a known variane σ2. We assume thatthe variane of this noise is pixel dependent and we use the model (3.3) to expressthis dependene.In addition to blur and instrumental noise, the M measurements are also de-graded by quantizing noise. In a lassial satellite imaging hain, a wavelet transformis usually applied prior quantizing to deorrelate the data. Sine, the aquired datais random, in the CS tehnique, and does not present any favored struture, we pro-pose here to diretly quantize the oe�ients y. We modelize this quantization Q as



132 Chapter 6. Compressed Sensing for satellite imaginga salar uniform quantization whih quantizing step ∆i depends on the oe�ient
yi, i ∈ {1, . . . ,M} regarded

Q (yi) = ∆i

⌊

yi

∆i
+

1

2

⌋

, (6.10)where ⌊.⌋ is the �oor funtion whih returns the greatest integer less than or equalto its argument. The quantizing step ∆i an be transmitted with the image as inthe JPEG standard [Wallae 1992℄ or an be dedued during the deoding algorithmfor more reent methods [Taubman 2000, Said 1996℄. Therefore, we assume in thefollowing that the quantizing steps ∆i are known. Let b = Q(y)−y be the quantizingerror. From (6.10), we have for eah oordinate bi of b
− ∆i

2
≤ bi <

∆i

2
, ∀i ∈ {1, . . . ,M} (6.11)or equivalently

b ∈ B, withB =

{

b ∈ R
M ,−∆i

2
≤ bi <

∆i

2
∀i ∈ {1, . . . ,M}

}

. (6.12)Using the previous de�nition of b, we propose to modelize the observed measure-ments as
ŷ = Q (ΦHx+ n) = ΦHx+ n+ b, (6.13)where ŷ is the measurements vetor.6.2.2 Proposed reonstrution algorithmThe extension of the reonstrution algorithm (6.8) to the aquistion model (6.13)is simple. First, simply remark that the problem (6.8) an also be writtenFind x̃ ∈ arg min ‖Ψx‖1subjet to x ∈ R

N , n ∈ R
M

‖ 1
σz
n‖2

2 ≤M

y = ΦHx+ n

. (6.14)
In our ase, the variable b needs to be added to the problem (6.14) to take intoaount the presene of the oding noise. Using (6.12) and (6.13), the reonstrutionproblem for aquisition model (6.13) writesFind x̃ ∈ arg min ‖Ψx‖1subjet to x ∈ R

N , n ∈ R
M , b ∈ R

M

‖Σn‖2
2 ≤M,

b ∈ B,

ŷ = ΦHx+ n+ b

. (6.15)
where Σ = diag( 1

σi

) is used to take into aount the pixel dependene of thevariane of the noise n. The problem (6.15) an be further simpli�ed by noting that



6.2. Compressed Sensing based satellite imaging hain 133the variable b an be replaed by ŷ − (ΦHx+ n). We �nally propose to formulatethe reonstrution problem asFind x̃ ∈ arg min ‖Ψx‖1subjet to x ∈ R
N , n ∈ R

M

‖Σn‖2
2 ≤M,

ŷ − (ΦHx+ n) ∈ B

. (6.16)
The optimization problem (6.16) is a onvex problem onstrained on onvexsets and thus admits a unique (onvex) set of solutions [Boyd 2004℄. However, thepresene of the linear operators Ψ,Φ and H make it di�ult to solve.We propose here to use the alternating diretion method of multipliers proposedin [Afonso 2011℄. The advantage of this algorithm is that it is very general and itgives satisfying omputing time. It solvesFind (ũ, ṽ) ∈ arg min f1(u) + f2(v)subjet to Cu+Dv = a

u ∈ R
p, v ∈ R

q

, (6.17)where
• f1 : R

p → R∪{+∞} and f2 : R
q → R∪{+∞} are two losed onvex funtions.

• C ∈ R
l×p and D ∈ R

l×q are two linear operators.
• a ∈ R

l is a given vetor.The alternating diretion algorithm relies on the augmented Lagrangian method.Let λ ∈ R
l be a Lagrange multiplier attahed to the linear onstraint (6.17), theaugmented Lagrangian writes

L(u, v, λ) = f1(u) + f2(v) + 〈λ,Cu+Dv − a〉 +
β

2
‖Cu+Dv − a‖2

2, (6.18)where β is a parameter whih ontrols the linear onstraint [Glowinski 1984℄.This parameter has to belong to the interval ]0, √5+1
2

[ to ensure that {(uk, vk)}onverge to the set of minimizers [Glowinski 1984℄.This algorithm onsists in �nding a saddle point of the augmented Lagrangian,thereby solving (6.17), by minimizing it in an alternating way, subjet to u, v, thento λ. The algorithm is given in algorithm 4.We now detail how to apply algorithm 4 to problem (6.16). To math the lassof problem (6.17), we de�ne
u =





u1

u2

u3



 ∈ RN ×RM ×RM , v =

(

v1
v2

)

=

(

x

n

)

∈ RM ×RM ,

a =





0

0

−ŷ



 ∈ RN ×RM ×RM , (6.19)



134 Chapter 6. Compressed Sensing for satellite imagingAlgorithm 4 Alternating diretion method of multipliers to solve (6.17)Set the number of iterations K.Set an initial point u0 ∈ R
p.Set an initial point v0 ∈ R
q.Set an initial point λ0 ∈ R
l.Set γ > 0 and β > 0.for k from 0 to K − 1 doCompute uk+1 = arg min L(u, vk, λk)subjet to u ∈ R

p

.Compute vk+1 = arg min L(uk+1, v, λk)subjet to v ∈ R
q

.Set λk+1 = λk + βγ(Cuk+1 +Dvk+1 − a).end forand
C = I, (6.20)
D =





Ψ 0

0 I

−ΦH −I



 , (6.21)where I is the identity matrix. Using these de�nitions, problem (6.16) an bereformulatedFind (ũ, ṽ) ∈ arg min ‖u1‖1subjet to u ∈ R
N × R

M × R
M , v ∈ R

M × R
M

‖Σu2‖2
2 ≤M,

u3 ∈ B,

−u+Dv = a

. (6.22)
We further de�ne

f2(v) = 0, (6.23)
f1(u) = ‖u1‖1 + χG(u2) + χB(u3), (6.24)where χG is the indiator funtion on a weighted l2 ball
χG(u2) =

{

0, if ‖Σu2‖2
2 ≤M

∞, otherwise , (6.25)and χB is the indiator funtion on the hyperube B
χB(u3) =

{

0, ifu3 ∈ B

∞, otherwise . (6.26)



6.2. Compressed Sensing based satellite imaging hain 135Using these notations, it is straightforward to see that problem (6.16) �ts theformulation (6.17) and beomesFind (ũ, ṽ) ∈ arg min f1(u)subjet to u ∈ R
N × R

M × R
M , v ∈ R

M × R
M

−u+Dv = a

. (6.27)The �rst step of the algorithm onsists in omputing
uk+1 = arg min L(u, vk, λk)subjet to u ∈ RN × R

M × R
M

, (6.28)where L is the augmented Lagragian whih, for problem (6.27), writes
L(u, v, λ) = f1(u) + 〈λ,Dv − u− a〉 +

β

2
‖Dv − u− a‖2

2. (6.29)We have
uk+1 = arg min f1(u) + 〈λ,Dvk − u− a〉 + β

2 ‖Dvk − u− a‖2
2subjet to u ∈ R

N × R
M × R

M

= arg min 1
β
f1(u) + 1

2‖Dvk − a+ λk

β
− u‖2

2subjet to u ∈ R
N × R

M × R
M

= prox 1
β

f1

(

Dvk − a+ λk

β

)

, (6.30)where prox is the proximal operator presented in [Combettes 2005℄. For anyfuntion f : R
N → R ∪ {+∞}, the proximal operator proxf is de�ned by

proxf

(

x0

)

= arg min
x∈RN

f(x) +
1

2
‖x− x0‖2

2. (6.31)We reall two results of [Combettes 2005℄ that we will use. Let X ⊆ R
N be alosed onvex set and f(x) =

{

0 if x ∈ X
+∞ otherwise . Then

proxf = ΠX , (6.32)where ΠX is the eulidian projetor on the set X. It is straightforward to seethat the proximal operator generalizes the notion of projetion. If f(x) = τ‖x‖1,then proxf is the soft-thresholding operator and we have
proxτ‖·‖1

(

x0

)

= shrinkτ (x0) = sign(x0)max(|x0| − τ, 0). (6.33)Using results (6.32) and (6.33), we have
uk+1 =











shrink 1
β

(

Dvk − a+ λk

β

)

ΠG

(

Dvk − a+ λk

β

)

ΠB

(

Dvk − a+ λk

β

)











, (6.34)



136 Chapter 6. Compressed Sensing for satellite imagingwhere ΠG is the orthogonal projetion on a weighted l2 ball and ΠB is theorthogonal projetion on the hyperube B. The projetion ΠB is simple to omputeand writes
(ΠB(x0))i =















(x0)i if − ∆i

2 ≤ (x0)i <
∆i

2

−∆i

2 if (x0)i < −∆i

2
∆i

2 if ∆i

2 ≤ (x0)i

. (6.35)The projetion ΠG is more di�ult to address and an be solved e�iently usingan iterative sheme. This projetion is detailled in [Weiss 2009℄ and we refer theinterested reader to this paper for the omputation of this projetion.The seond step of the algorithm requires to ompute vk+1. We have
vk+1 = arg min 〈λk,Dv − uk − a〉 + β

2 ‖Dv − a− uk‖2
2subjet to v ∈ R

M × R
M

(6.36)
= arg min β

2 ‖Dv + λk

β
− a− uk‖2

2subjet to v ∈ R
M × R

M

.

vk+1 is then the solution of the positive-semide�nite linear system
D∗Dv = D∗

(

a+ uk − λk

β

)

. (6.37)Equation (6.37) needs then to invert D∗D. Most of the time, the operator D∗Downs a partiular struture whih an be numerially exploited to solve (6.37). Thisremark has been used in [Ng 2010℄ for example to obtain fast algorithms. System(6.37) an also be solved using standard tehniques suh as onjugate gradient. Inour experiments we observe that 10 iterations of a onjugate gradient method aresu�ient to solve (6.37). Note that sub-problems (6.28) and (6.36) an be solvedapproximately while preserving the onvergene of the algorithm [He 2002℄.The resulting algorithm is given in the algorithm 5.Algorithm 5 Alternating diretion method of multipliers to solve (6.16)Set the number of iterations K.Set an initial point u0 ∈ R
p.Set an initial point v0 ∈ R
q.Set an initial point λ0 ∈ R
l.Set γ > 0 and β > 0.for k from 0 to K − 1 doCompute uk+1 from (6.34).Compute vk+1 by solving (6.37).Set λk+1 = λk + βγ(Dvk+1 + uk+1 − a).end forOutput x̃ = v1.



6.2. Compressed Sensing based satellite imaging hain 1376.2.3 Numerial resultsWe evaluate the performanes of the CS tehnique for satellite imaging in omparisonto the hain used by the CNES and based on a wavelet ompression sheme. Forthe numerial experiments, we hoose the measurement matrix Φ to be the noiselettransform [Coifman 2001℄ and set Ψ to be the gradient operator suh that ||Ψx‖|1is the TV [Rudin 1992℄. We made the hoie of the TV as it is almost equivalentto a Haar basis whih, as required by the CS framework, shares a small mutualoherene with the noiselet transform [Candes 2008℄.As mentioned previously, we ompare the CS aquisition tehnique to the las-sial aquisition hain whih onsists in sampling the real image at the Nyquistfrequeny followed by a ompression sheme. The onsidered ompression algo-rithm uses the biorthogonal CDF 9/7 wavelet transform desribed in [Cohen 1992℄followed by the same quantization proess as the one de�ned in (6.10). In that ase,the aquisition model writes
ŷ = Q(W (Hx+ n)), (6.38)where W is the CDF 9/7 wavelet transform. As in the CS tehnique, we andesign an algorithm to reonstrut the image from the noisy observed wavelet oef-�ients ŷ Find x̃ ∈ arg min ‖Ψx‖1subjet to x ∈ R

N , n ∈ R
N

ŷ −W (Hx+ n) ∈ B

‖Σn‖2
2 ≤ N

, (6.39)
where Ψ is the gradient operator. Note that the formulation (6.39) is not ex-pressed using any matrix Φ as, in this ase, the measurement matrix is the samplingoperator (Φ = I). We will ompare the results of tehniques (6.16) and (6.39) visu-ally but also in a rate-distortion sense. As both tehniques o�er di�erent ways toontrol the target oding rate, we now detail the hoie of the oding parameters ineah ase.For the CS tehnique, we take bene�t from the fat that the image an ideally bereonstruted from less measurements than Nyquist. More preisely, for a low targetrate, we will restrit the number of measurementsM to be small and when the targetrate is high, we will inrease this number, the maximum number of measurementsbeing equal to the number of pixels N . This partiular hoie omes from the fatthat the distribution of the CS oe�ients is quite large and that a high quantizationhas to be applied on these oe�ients to reah low target rates [Flether 2007℄. Itseems then more appropriate to tune the number of measurements M instead oftuning the quantizing steps, for a given oding rate. Consequently, we will alwaystake ∆i = 1,∀i ∈ {1, . . . ,M} for all oding rates. Note that these measurementswill be taken randomly and that the position of the retained oe�ients an beknown at eah side of the hain by transmitting the seed of the random generator.The imaging hain based on a wavelet sheme does not however o�er suh feature.More preisely, all the oe�ients have to be retained to be able to reonstrut the



138 Chapter 6. Compressed Sensing for satellite imagingimage. Consequently, for this tehnique, we will keep all the oe�ients and we willtune the quantizing steps to reah the target oding rate. For more simpliity, wewill take the same quantizing step for all oe�ients ∆i = ∆,∀i ∈ {1, . . . , N}.As mentioned previously, we will evaluate the results in a rate-distortion sense.The distortion will be evaluated using the PSNR de�ned in (4.98). For the evaluationof the oding rate, we assume that the quantized oe�ients will be enoded usingan entropy enoder. The oding rate R an then be measured using the entropy(expressed in bits/symbol) of the oe�ients ŷ [Shannon 1948℄
R(ŷ) = −

∞
∑

m=−∞
pŷ(m) log2(pŷ(m)), (6.40)where pŷ(m) is the probability for a quantized oe�ient to get the symbol m. Notethat for the imaging hain based on the CS tehnique, we only retainM oe�ients.Sine the sampling of these M is done randomly, one an transmit the seed of therandom generator to reprodue the same sampling sheme. The position of the Moe�ients an thus be assumed to be known by the deoder, without the need totransmit more information than a seed (whih holds on a few bytes), and does nothave to be taken into aount in the omputation of the entropy. The entropy ofthe quantized oe�ients will be thus multiplied by the ratio between the numberof measurements and the number of pixels for that ase.We simulate the two imaging hains on the referene image depited Fig. 6.2.The blur H used in this simulation is the PSF provided by the CNES and theinstrumental noise n is a zero-mean Gaussian noise with variane given by (3.3).Results are shown on Fig. 6.3 and 6.4. From the rate-distortion funtion dis-played on Fig. 6.3, we see that the CS tehnique does not give ompetitive reon-strution results in omparison to the wavelet-based tehnique, and stands 5− 6 dBbelow this tehnique, for all ompression rates. Visually, the reonstruted imagesare not very good as well. We an see on Fig. 6.4 that the CS reonstrution al-gorithm overregularizes the solution and reates large patterns, therefore losing thedetails of the image. Although it seems lear that the CS is a good aquisition teh-nique as it better spreads the information than a wavelet transform, it also appearsthat high-resolution satellite images are not sparse enough, in usual basis, suh thatthis tehnique is di�ult to apply.Moreover, as said previously the CS oe�ients have a large distribution (largerthan wavelet oe�ients) making their oding di�ult to perform, even when oneonly retains a limited number of these oe�ients. We have however strong thoughtsthat the CS ould be an e�ient aquisition strategy for satellite images as it has al-ready shown interesting results in appliation where the image is naturally stronglysparse, suh as in MRI appliation [Lustig 2007℄. Following this idea, an imaginghain based on the CS tehnique may be interesting for galaxy observation mis-sions whih naturally give sparse images, as in astronomy where the CS exhibitsgreat performanes [Bobin 2008℄. Due to time onstraint, this aspet has not beenaddressed in the thesis.
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Figure 6.2: Referene image, Cannes harbour (12 bits panhromati image, 30 mresolution, 1024 × 1024 pixels).



140 Chapter 6. Compressed Sensing for satellite imagingHowever, in the ase of earth observation missions, the approximative sparsity ofsatellite images does not seem to be su�ient to make the CS tehnique ompetitiveregarding to the lassial wavelet approah.

Figure 6.3: Rate-distortion funtion for the two aquisition tehniques. The dashedurve is the PSNR w.r.t. the ompression rate for the CS aquisition tehniquewhile the solid urve is the PSNR w.r.t. the ompression rate for the wavelet-basedmethod.6.3 Conlusion and perspetivesIn this part, we have experimentaly studied the performanes of the CS aquisitiontehnique in appliation to satellite imaging. We showed that this tehnique isinteresting for satellite imaging hain sine it proposes a low-resoures aquisitiontehnique whih mathes the redued embedded omputational apaity of satellites.We proposed a novel imaging hain based on this framework and we formulateda deoding algorithm whih takes into aount the main degradations of the satelliteimaging hain (blur, instrumental and quantizing noise). We showed reonstrutionresults, visually and in a rate-distortion sense, on a real satellite data and we per-formed a omparison of this method to the lassial aquisition method based on awavelet transform.The obtained results showed that the CS aquisition tehnique does not giveompetitive results for earth observation imaging sine satellite images of suh ap-pliation an not be represented in a ompat form using lassial transform, i.e. theinformation of the image an not be ontained on a redued number of oe�ients.The CS aquisition method ould be however interesting for galaxy observation
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(a) (b) ()
(d) (e) (f)Figure 6.4: Reonstrution results for the two aquisition tehniques at a om-pression rate of 2.5 bits/pixel. (a)-(d) are zooms of the original image, (b)-(e)are zooms of the reonstruted image using the CS tehnique (PSNR = 33.8 dB)and ()-(f) are zooms of the reonstruted image using the wavelet-based tehnique(PSNR = 40 dB).missions whih give images whih are naturally ompat. There is also room forimprovements by onsidering more properly the distribution of satellite images toenhane usual priors, used by the deoder, and quantizing strategies whih need tobetter �t the harateristis of the CS oe�ients distribution.





Part IVConlusion





Chapter 7Conlusion of the thesis
This hapter is the onlusion of the thesis. It summarizes the ontributions of thethesis and disusses some perspetives of this work.7.1 Conlusion and summary of the ontributionsIn this thesis we addressed the problem of imaging hain optimization in the ontextof satellite imaging and we proposed several methods whih fous on the problemof global optimization of the ompression/restoration hain.Formulating an expression of the global distortion is a di�ult task sine manyintermediate variables are orrelated. In this thesis, we presented a method to solvethis problem and we ahieved to theoretially estimate the global distortion of asimple ase of imaging hain. We then proposed an algorithm to minimize theestimated distortion with respet to the parameters of the hain. We also developedthe proposed method for three di�erent on�guration of the imaging hain to addressthe question of the optimal position of the restoration in the imaging hain.We also presented, in the thesis, an alternative method to optimize of the qualityof the �nal image. Though this study is mainly experimental, we sueeded toaddress reurrent open questions suh as the position of the restoration in the hainand how to deal with the oding noise. From the obtained results, we proposed a newsatellite imaging hain whih eliminates several urrent problems in the observationof the �nal image.Finally, we presented in the last part of the thesis a novel satellite imaginghain based on a reent theory of sampling. We showed that low-resoures samplingtehnique is interesting for satellite imaging and we proposed an algorithm to solvethe reonstrution problem.7.2 PerspetivesSeveral future investigations may be opened to improve the results obtained in thisthesis.The extension of the imaging hain that we onsidered in Chapter 4 to the truesatellite seems di�ult to ahieve. An alternative tehnique to express the globaldistortion as a funtion of the hain parameters may then onsists in using theunbiased estimators presented in [Ramani 2008℄. In that ase, the di�ulty is toextend these estimators to the aquisition model of the satellite imaging hain whihis omplex.



146 Chapter 7. Conlusion of the thesisRegarding to the imaging hain that we proposed in Chapter 5, it would be veryinteresting to study how to limit the power of the residual noise on the �nal image.Sine this residual noise depends on the target oding rate, it may be interesting tofous on advanes oding tehniques with the hallenge to onserve the deorrelationproperty of dithering tehniques. Conversely, it would be worth extending the atualsubtrative dithering tehniques, used by the proposed imaging hain, to math moreomplex quantizing shemes, similarly to [Stamm 2011℄.Finally, an interesting investigation for the CS aquisition tehnique would be toevaluate its performanes on naturally sparse satellite images like the ones obtainedfrom galaxy observation missions.
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Appendix AExistene and uniqueness ofoptimal parameters
We detail here the existene and uniqueness of optimal parameters of the imaginghains addressed in Chapter 4.A.1 Notions in optimizationWe start by giving here some notions in optimization. The proofs of the followingtheorems an be found in [Rokafellar 1997℄.Let f : R

N → R be a twie ontinously di�erentiable funtion and let x =

(x1, x2, . . . , xN )T be a vetor.Theorem 1. A point x∗ ∈ R
N is a loal minimum of f if there is an ε > 0 suhthat f(x) ≥ f(x∗) for all x ∈ R

N with ‖x− x∗‖ < ε.Corollary 1. If f(x) > f(x∗) for all x 6= x∗ with ‖x− x∗‖ < ε, then x∗ is a stritloal minimum of f .Theorem 2. A point x∗ ∈ R
N is a global minimum of f if f(x) ≥ f(x∗) for all

x ∈ R
N .Corollary 2. If f(x) > f(x∗) for all x 6= x∗, then x∗ is a strit global minimum of

f .De�nition 1. The gradient of f is the vetor
∇f(x) =

(
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. (A.1)De�nition 2. The Hessian H of f is a N ×N matrix de�ned as
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. (A.2)Theorem 3. If x∗ is a loal minimum, then the following onditions hold1. ∇f(x∗) = 0,



158 Appendix A. Existene and uniqueness of optimal parameters2. dTHf (x∗)d ≥ 0 for all d ∈ R
N .The Hessian matrix Hf (x∗) is symmetri postive semi-de�nite, that is

xTHf (x∗)x ≥ 0 for any x ∈ R
N [Rokafellar 1997℄. It is positive de�nite if wehave a strit inequality: xTHf (x∗)x > 0 for any x ∈ R

N .Theorem 4. For any x∗ ∈ R
N , if ∇f(x∗) = 0 and Hf(x∗) is positive de�nite, then

x∗ is a strit loal minimum.We now introdue some results of onvex optimization, whih is a wide �eld ofoptimization.De�nition 3. A set Ω ⊂ R
N is said to be onvex if, for all x and y in Ω and all

t ∈ [0, 1], the following is veri�ed
tx+ (1 − t)y ∈ Ω. (A.3)De�nition 4. A funtion f : Ω → R de�ned on a onvex set Ω is said to be onvexif for every x and y in Ω and all t ∈ [0, 1], we have

f (tx+ (1 − t)y) ≤ tf(x) + (1 − t)f(y). (A.4)Theorem 5. Let f be twie ontinously di�erentiable, then f is onvex over a onvexset Ω ontaining an interior point if and only if the Hessian matrix Hf is positivesemi-de�nite in Ω.Theorem 6. Let f be a onvex funtion de�ned on a onvex set Ω. Then, the set
X∗ where f ahieves its minimum is onvex. Furthermore, any loal minimum is aglobal minimum.A.2 Optimal parameters of the on-ground hainWe now give a proof of existene and uniqueness of optimal parameters of thefollowing problem

inf
λj>0,∆j>0

φτ (∆j , λj), (A.5)where
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 . (A.6)To simplify the notations, we get rid of the onstant Rc and the sum over j (aseah subband is independent) in φτ , whih now rewrites
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j , λ

∗
j ) whih veri�es

λ∗j =
σ2

z

σ2
wx,j

+
∆∗

j
2

12σ2
wx,j

(A.8)
πj∆

∗
j

6(1 + λj)2
+ τ∗

∂Rj

∂∆j
(∆∗

j) = 0 (A.9)Proof. To prove the existene and uniqueness of this solution, we propose to studythe onvexity of the funtion (A.7). We have
∂φτ

∂∆j
(∆j , λj) =

πjaj∆j

6(1 + λj)2
+ τaj

∂Rj

∂∆j
(∆j), (A.10)and

∂2φτ

∂∆2
j

(∆j , λj) =
πjaj

6(1 + λj)2
+ τaj

∂2Rj

∂∆2
j

(∆j). (A.11)We also have
∂φτ

∂λj
(∆j , λj) = πjajσ

2
wx,j

(

2λj(1 + λj)
2 − 2(1 + λj)λ

2
j

)

(1 + λj)4
− πjajσ

2
z

2

(1 + λj)3

− πjaj∆
2
j

2

12(1 + λj)3

=
2λjπjajσ

2
wx,j

(1 + λj)3
− 2πjajσ

2
z

(1 + λj)3
−

2πjaj∆
2
j

12(1 + λj)3

=
12λjπjajσ

2
wx,j

− 12πjajσ
2
z − πjaj∆

2
j

6(1 + λj)3
(A.12)and

∂2φτ

∂λ2
j

(∆j , λj) =
12πjajσ

2
wx,j

6(1 + λj)3
−

12λjπjajσ
2
wx,j

− 12πjajσ
2
z − πjaj∆

2
j

2(1 + λj)4

=
4πjajσ

2
wx,j

(1 + λj) − 12λjπjajσ
2
wx,j

+ 12πjajσ
2
z + πjaj∆

2
j

2(1 + λj)4

=
4πjajσ

2
wx,j

− 8λjπjajσ
2
wx,j

+ 12πjajσ
2
z + πjaj∆

2
j

2(1 + λj)4
(A.13)Finally, we have
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j , λ
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160 Appendix A. Existene and uniqueness of optimal parametersTo ensure that this solution exists and is unique, we study the onvexity of φτthrough its Hessian matrix Hφτ
, whih writes
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 . (A.17)Sine Hφτ
is a 2 × 2 matrix, we an onlude that the funtion φτ is stritlyonvex if
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> 0.(A.20)The oding rate Rj is a monotonially dereasing positive funtion with respetto ∆j [Shannon 1959℄, ∆j being positive. Its limits are zero when ∆j tends to in�nityand in�nity when ∆j vanishes to zero [Gish 1968℄. Its derivative ∂Rj
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(∆j , λj)) > g(∆j , λj), (A.26)suh that if g(∆j , λj) > 0 then we diretly dedue that the Hessian matrix Hφτis stritly positive and thus the funtion φτ is stritly onvex. We have
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162 Appendix A. Existene and uniqueness of optimal parametersWe an thus onlude that the funtion φτ is only onvex loally on the onvexdomain R
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+×]0, λc

j [.From now, we set ∆j to be equal to the optimal value ∆∗
j . Let us imagine that
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, (A.33)whih is non-sense as it means that the optimal quantizing step would be greaterthan the standard deviation of the signal to quantize. In partiular, note that +∞also veri�es (A.33) although it ompletely anels the signal. Condition (A.33) isalso ontraditory to the dithering hypothesis (4.12) that we made to develop ourmethod, whih omforts ourselves that this behavior never happens and that wealways have λ∗j < λc
j .This result suggests that the point (∆∗
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j ) always lie in the stritly onvex partof the funtion φτ .By developing (A.23), we have
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164 Appendix A. Existene and uniqueness of optimal parametersA.3 Optimal parameters of the on-board hainWe now fous on the on-board hain and we give a proof of existene and uniquenessof optimal parameters in that ase. The optimization problem still writes
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166 Appendix A. Existene and uniqueness of optimal parametersA.4 Optimal parameters of the hybrid hainWe now fous on the hybrid hain. The optimization problem now writes
inf
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Appendix BReview of non-subtrative andsubtrative dithering tehniques
B.1 Undithered systemWe start this review by the presentation of an undithered system. This system ispresented Fig. B.1. Figure B.1: Undithered system.The signal to quantize is noted x, y is the output of the system

y = Q(x), (B.1)where Q is an in�nite mid-tread quantizer of step ∆. The transfer harateristisof this quantizer an be modeled as
Q(x) = ∆

⌊

x

∆
+

1

2

⌋

, (B.2)where ⌊ ⌋ is the �oor funtion whih returns the greatest integer less than orequal to its argument. Let ε be the global error (i.e. output minus input) of thesystem
ε = y − x = Q(x) − x = q(x), (B.3)where q is the quantization error funtion

q(x) = Q(x) − x. (B.4)If −∆
2 ≤ x < ∆

2 , then y = 0 and from (B.3) ε = −x. Similarly, if ∆
2 ≤ x < 3∆

2 ,then y = ∆ and ε = ∆ − x. By extension, the onditional probability pε|x an beexpressed as [Widrow 1961℄
pε|x(ε, x) = δ(ε − q(x))

= δ

(

ε+ x− ∆

⌊

x

∆
+

1

2

⌋)

= Π∆(ε)W∆(ε+ x), (B.5)



170 Appendix B. Review of non-subtrative and subtrative ditheringtehniqueswhere Π∆ is the retangular window funtion
Π∆(ε) =

{

1
∆ if − ∆

2 < ε ≤ ∆
2 ,

0 otherwise (B.6)and W∆ is the sampling funtion
W∆(ε) =

+∞
∑

k=−∞
δ(ε − k∆). (B.7)The probability density funtion pε of ε is then given by

pε(ε) =

∫ +∞

−∞
pε|x(ε, x)px(x)dx

= ∆Π∆(ε) [W∆ ∗ px] (−ε), (B.8)where px is probability density funtion of x. From (B.8) it is lear thatthe retangular funtion Π∆ is wide enough suh that at least one delta of the
W∆ funtion will ontribute to the sum, and the position of this delta dependson px. Consequently, the global error of an undithered system annot be madeindependent of the system input [Widrow 1961℄.The harateristi funtion (de�ned as the Fourier transform of the probabilitydensity funtion) of ε writes

Pε(u) = sinc(u) ∗ [W 1
∆

(−u)Px(−u)]

=

+∞
∑

k=−∞
sinc

(

u− k

∆

)

Px

(

− k

∆

)

= sinc(u) +

+∞
∑

k=−∞,k 6=0

sinc

(

u− k

∆

)

Px

(

− k

∆

) (B.9)where Px is the harateristi funtion of x and
sinc(u) =

{

sin(π∆u)
π∆u

, ifu 6= 0

1, otherwise . (B.10)From equation (B.9), we see that the global error ε an be made uniformly dis-tributed if the harateristi funtion Pε is redued to sinc(u). This gives rise toTheorem 7 [Lipshitz 1992℄.Theorem 7. The global error of an undithered system is not independent of thesystem input but an be made uniformly distributed if the harateristi funtion Pxof the system input veri�es [Sripad 1977℄
Px

(

k

∆

)

= 0, ∀k ∈ Z
∗. (B.11)



B.2. Non-subtrative dithering system (NSD) 171A diret onsequene of Theorem 7 is that the global error of an unditheredsystem is uniformly distributed if the probability density funtion of the systeminput an be expressed as the onvolution produt of uniform distributions. Notethat the normal distribution also veri�es this property if its standard deviation σ islarge enough in front of the quantizing step [Vanderkooy 1987℄
σ >

∆

2
. (B.12)To extend Theorem 7 to arbitrary probability density funtions, a noise with aspei� distribution an be inserted prior to quantizing. This noise an be eithersubtrated or not subtrated after the quantizing, giving two dithering systems: Thenon-subtrative and the subtrative dithering systems. Both systems are desribedin the next parts.B.2 Non-subtrative dithering system (NSD)We present here the extension of the undithered system to the ase the system inputis noised prior to quantizing [Wannamaker 2000℄. This system is depited Fig. B.2.

Figure B.2: Non-subtrative dithering system.We keep the same notations than previously. The added noise, supposed to beindependent of the soure x, is noted v. The noisy signal w is now the input of thequantizer and we have
y = Q(w) = Q(x+ v), (B.13)suh that

ε = y − x = Q(x+ v) − x = q(x+ v) + v. (B.14)To study the statistial properties of the global error ε, the same tehnique thanthe one presented in Setion B.1 an be used, exept that the input of the quantizeris now w. Therefore, if −∆
2 ≤ w < ∆

2 , then y = 0 and ε = −x. Similarly, if
∆
2 ≤ w < 3∆

2 , then y = ∆ and ε = ∆− x. By extension, the onditional probability
pε|x an be expressed as [Wannamaker 2000℄

pε|x(ε, x) =

+∞
∑

k=−∞
δ(ε + x− k∆)

∫ ∆
2

+k∆

−∆
2

+k∆
pw|x(w, x)dw. (B.15)Using the fat that

pw|x(w, x) = pv(w − x), (B.16)



172 Appendix B. Review of non-subtrative and subtrative ditheringtehniqueswhere pv is probability density funtion of the noise v, the onditional probability
pε|x rewrites

pε|x(ε, x) =

+∞
∑

k=−∞
δ(ε+ x− k∆)

∫ ∆

2
+k∆

−∆

2
+k∆

pv(w − x)dw

=
+∞
∑

k=−∞
δ(ε+ x− k∆)

∫ ∆
2

−∆
2

pv(w + k∆ − x)dw

=

+∞
∑

k=−∞
δ(ε+ x− k∆)

∫ ∞

−∞
∆Π∆(w)pv(ε+ w)dw

= W∆(ε+ x)[∆Π∆ ∗ pv](ε). (B.17)We dedue the probability density funtion of the global error ε
pε(ε) =

∫ +∞

−∞
pε|x(ε, x)px(x)dx

= [∆Π∆ ∗ pv](ε) [W∆ ∗ px] (−ε). (B.18)From (B.18), we see that for any hoie of pv (whih is non-negative), theonvolution produt Π∆ ∗ pv will give a funtion as wide as the retangular windowfuntion. Similarly to the undither system, we dedue from this remark that theglobal error of a non-subtrative dithering system annot be made independent ofthe system input [Wannamaker 2000℄.The harateristi funtion of ε writes
Pε(u) = [sinc(u)Pv(u)] ∗ [W 1

∆

(−u)Px(−u)]

=

+∞
∑

k=−∞
sinc

(

u− k

∆

)

Pv

(

u− k

∆

)

Px

(

− k

∆

)

. (B.19)To be uniformly distributed, the harateristi funtion of ε must be redued to
sinc(u). If we admit that this is possible, we have for any l ∈ Z

∗

Pε

(

l

∆

)

= sinc

(

l

∆

)

= 0, (B.20)and from equation (B.19)
Pε

(

l

∆

)

=

+∞
∑

k=−∞
sinc

(

l

∆
− k

∆

)

Pv

(

l

∆
− k

∆

)

Px

(

− k

∆

)

= Px

(

− l

∆

)

. (B.21)



B.2. Non-subtrative dithering system (NSD) 173By ombining (B.20) and (B.21), we get that the global error of a non-subtrativedithering system an be made uniformly distributed if
Px

(

l

∆

)

= 0, ∀l ∈ Z
∗ (B.22)whih is not veri�ed for arbitrary density probability funtions. This gives The-orem 8 [Wannamaker 2000℄Theorem 8. The global error of a non-subtrative dithering system is not inde-pendent of the system input and annot be made uniformly distributed for arbitrarydensity probability funtions px.From Theorem 8, we see that the independene of the global error annotbe obtained with this system. The moments of the global error an, however,be made independent of the system input for a ertain lass of dithering noise v[Wannamaker 2000℄. The m-moment of the global error is given by

E[εm] =

∫ +∞

−∞
εmpε(ε)dε, (B.23)and an also be expressed using its harateristi funtion Pε [Kawata 1972℄

E[εm] =

(

j

2π

)

P (m)
ε (0), (B.24)where j is the imaginary number and P (m)

ε is the m derivative of the harater-isti funtion Pε. Let Gv(u) be de�ned as
Gv(u) = sinc(u)Pv(u), (B.25)suh that, from (B.19), we have

E[εm] =

(

j

2π

) +∞
∑

k=−∞
G(m)

v

(

u− k

∆

)

Px

(

− k

∆

)

. (B.26)From equation (B.26), we dedue the following theorem [Wannamaker 2000℄Theorem 9. The m-moment of the global error of a non-subtrative dithering sys-tem is independent of the system input if
G(m)

v

(

k

∆

)

= 0, ∀k ∈ Z
∗. (B.27)If Theorem 9 is veri�ed, the m-moment of the global error is given by

E[εm] =

(

j

2π

)

G(m)
v (0), (B.28)whih, by de�nition (B.25), is the same than the moment of the random variableomposed by the sum of the dithering noise v plus a uniform random variable whose



174 Appendix B. Review of non-subtrative and subtrative ditheringtehniquesprobability density funtion is the retangular window funtion (B.6). We, amongothers, then have [Wannamaker 2000℄
E[ε] = E[v] (B.29)

E
[

ε2
]

= σ2
v +

∆2

12
, (B.30)where σv is the standard deviation of the dithering noise v. Theorem 9 an befurther developedTheorem 10. The m-moment of the global error of a non-subtrative ditheringsystem is independent of the system input if

P (l)
v

(

k

∆

)

= 0, ∀k ∈ Z
∗ and ∀l ∈ {0, 1, 2, . . . ,m− 1}. (B.31)The proof of this theorem is adressed in [Wannamaker 2000℄. If Theorem 10is satis�ed, an interesting orollary states that for a given m and for any n, the

m-moment of the global error ε is independent from the n-moment of the systeminput x
E[εmxn] = E[εm]E[xn]. (B.32)A seond interesting orollary is that Theorem 10 will be satis�ed for anydithering noise v whih is the sum of m uniformly distributed random variables[Wannamaker 2000℄. In the thesis, we fous on dithering noise generated by a nor-mal distribution. This type of dithering noise veri�es Theorem 10 if its standarddeviation σv is large enough in front of the quantizing step [Vanderkooy 1987℄

σv >
∆

2
. (B.33)Although the moments independene may be su�ient for some appliations, itis rarely exploited by image restoration algorithms whih usually require strongerstatistial properties suh as signal independene. The latter an however be ob-tained using the subtrative dithering system desribed in the next part.B.3 Subtrative dithering system (SD)The subtrative dithering system is an extension of the non-subtrative shemewhere the dithering noise v is substrated after quantizing. This system is depitedFig. B.3.

Figure B.3: Subtrative dithering system.



B.3. Subtrative dithering system (SD) 175Using the same notations, we have
y = Q(w) − v = Q(x+ v) − v, (B.34)suh that

ε = y − x = Q(x+ v) − (x+ v) = q(x+ v). (B.35)By analogy with equation (B.3), we see that the results of the subtrative dither-ing theory an be diretly obtained from the undithered system theory by replaing
x in part B.1 by x+ v. We diretly dedue [Lipshitz 1992℄

pε(ε) = ∆Π∆(ε) [W∆ ∗ px ∗ pv] (−ε), (B.36)and
Pε(u) = sinc(u) +

+∞
∑

k=−∞,k 6=0

sinc

(

u− k

∆

)

Px

(

− k

∆

)

Pv

(

− k

∆

)

. (B.37)In that ase, the signal independene an be obtained if the following theoremis veri�ed [Shuhman 1964℄Theorem 11. The global error of a subtrative dithering system is independentfrom the system input and uniformly distributed between [−∆
2 ,

∆
2 ] if the harateristifuntion Pv of the dithering noise satis�es

Pv

(

k

∆

)

= 0, ∀k ∈ Z
∗. (B.38)whih is true for any dithering noise generated by the sum of uniformly dis-tributed random variables. Here again, the normal distribution veri�es Theorem11 if its standard deviation σv is large enough in front of the quantizing step[Vanderkooy 1987℄

σv >
∆

2
. (B.39)


