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Abstract

Nowadays with the world oil price soaring, the energy issue is becoaing

significant topic and the possibility of harvesting ambient energy receiving much

attention. In this dissertation, the main topic surrounds improving the piezoelectric

energy harvesting device in several aspects and the final objective is to initegrtie

low power consumption device, for example a wireless sensor network (WSN) node to

extend the battery lifetime and further supply the energy to device directly. Based on the

high mechanical quality factor of the structure, the output power of the piezoelectric

energy harvesting device will decrease rapidly when the exciting frequency istbat of

resonant frequency range. The tunable resonant frequency technique is proposed to

broaden the resonant frequency range and increase the output power effectively. Then

this technique is successfully combined with a WSN module to transmit the RF signal.

To broaden resonant frequency another method is proposed, based on a bistable

vibrating cantilever beam and a switching-type interface circuit (SSHI). It's a new and

interesting concept to combine these two techniques. The magnets are used to make

mechanical behavior non-linear and increase the output power at non-resonance. The

SSHI technique through zero-velocity detection can work well when system is driven in

non-linear system. The experimental and simulation results through work-cycles

discussion show good performance of combining these two techniques.



In the interface circuit design, synchronized switching harvesting on an inductor
(SSHI) have been verified a successful technique to increase output power in
low-coupling system. In order to make use of the SSHI technique in the real application,
the velocity control self-powered SSHI (V-SSHI) system is proposed. Unlike the
conventional peak detector technique, the zero-velocity detection is used to make the
switching time more accurate. The energy flow is separated into three paths to construct
the V-SSHI and the experimental results show good performance.

When the system is not low-coupled, the SSHI technique will damp vibration. This
technique is called SSDI (synchronized switching damping on an inductor). Based on
the self-powered technique and zero-velocity detection used in the V-SSHI, these
techniques are further applied in structural damping to construct a self-powered SSDI
(SP-SSDI). The major advantage is that it is only necessary to sacrifice a small amount
of damping performance to make the system fully self-powered. The theoretical analysis
and experiment results of time domain comparison and frequency response testing show
the limit and performance of the SP-SSDI technique. The SP-SSDI system is a like a
feedback loop system and when the displacement is over the limit the SP-SSDI will
effectively damp the vibration.

Keywords: piezoelectric energy harvesting, self-powered, zero-velocity detection,

synchronized switching, structural damping.
il



Résumeé

Aujourd’hui, avec lenvolée mondiale du prix du pétrole, la question énergétique
est devenue un sujel’importance et la possibilitéd’exploiter 1’énergie ambiante
connait un regain d’attention. Ainsi dans cette thése, nous nous intéressons aux
dispositts de récupération d’énergie piézoélectriquele vibration dont 1’objectif final est
de réaliser un réseau de capteurs sans fil (WSN) autonome de faible consommation
d’énergie L’idée est dans un premier temps de  prolonger la durée de vie de la batterie
puis dans un second temps de rerdrepteur totalement autonome d’un point de vu
énergétique. Les dispositifs actuels étant basés sur la vibration d’une poutre (résonateur
mécanique), ils ne sont efficaces qu’a la résonance, avec une faible bande-passante.
Ainsi dans ce travail, nous avons tout d’abord proposé une technique de décalage de la
fréquence de résonanael’aide de capacités commutées, cette technique réalise un
ajustement de la fréquence de résonance en fonction de la fréquence de la source
d’excitation et ainsi permet une augmentation de la puissance de sortie. Cette technique
a été implémentée avec succés sur un module de capteur WSN avec transhission
signal RF.Toujours dans 1’objectif d’agrandir la bande-passante, un résonateur hybride
(piézoélectrique/magnétique) bistable associé a une interface électrique (SSHI) a été
proposéCe nouveau et intéressant concept de combiner le résonateur hybride avec une

interface a commutation de la tension piézoélectrique a montré, a I’aide de résultats



expérimentaux et de simulation, que la puissance est augmentée sur une large bande

passante. De plus, afin de rendre le systeme totalement autonome et de commander les

interrupteurs de I’interface électrique aux instants optimaux, une technique de détection

du passage par zéro de la vitesse de vibration a été proposée. Les résultats deontrent

bonnes performances de cette méthode sur toutes les interfaces et résonateurs.

Contrairement a la méthode classique de détection de la tension créte, la détection du

passage par zéro de la vitesse est plus précise.

La récupération d’énergie piézoélectrique engendrant un amortissement de la

source vibrante, il est possible d’utiliser les mémes interfaces é€lectriques pour réaliser

I’amortissement semi-passif de vibations de structures mécaniques. Il s’agit d’extraire

le maximum d’énergie de la structure en vibration a I’aide de 1’¢lément piézoélectrique.

Ainsi, afin de rendre les interfaces électriques pour 1’amortissement (SSHD) totalement

autonomes, nous avons posé d’associer la récupération d’énergie piézoélectrique a

I’amortissement de structure. L’avantage majeur est Guest seulement nécessaire de

sacrifier légérement les performances Idamortissement pour rendre le systeme

totalement autonome. Les performances ainsi que les limites de cette technique ont été

analysees.

Mots-clés : récupération d'énergie pié€zoélectrique, interface électrique, ,SSHI

commutation synchronisée, auto-alimentation, amortissement de structure.
Vv
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Chapter 1. Introduction

1.1 Backgrounds and Motivations

During recent decades, world oil price soars and the energy issue becomes the most
important and attractive issue in the world. Many researches and projects concentrate on
finding alternative energy source. The alternative energy source includes large scale
power source as solar and wind engspl2] used to replace the conventional energy
source and small scale power source as vibration, acoustic noise [1] and temperature
gradient [2] used to extend the battery lifetime of the electronic device. Methods
adopted to make portable devices or sensors retrieve energy from the environment are
so called “Power harvesting” or “Energy harvesting.” Because recently years the size of
portable devices, such as mobile phone, mp3 players, flashlight and sensor nodes
become more and more smaller, and the great advancement in power consumption of
portable devices [3, 4], it becomes possible to harvest energy from ambient and directly
provide the portable devices to use or elongate the battery lifetime. The energy
harvesting device can fully supply the power required by the sensor node in idle mode,
and may have extra power to charge the battery when the sensor is in idle. Thermal
gradient [5, 6], solar [7, 8], wind [9], humans activities [10-12], barometric fluctuations,

ocean wave [13], etc. are the good alternative energy source and there are lots of
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materials can convert these ambient energy into the electrical energy. Some of the most

common materials being the typical energy generators and retrieving the ambient energy

from the devices site are photovoltaic materials, piezoelectric material and

electromagnetic materials. Photovoltaic cells can convert ambient light energy [14] such

as sunlight to electrical energy and these devices typically are tended to located at the

place exposed to sufficient light such as roof, windows of the buildings, roadway signs,

sailboats, and other marine locations. Energy from mechanical vibration in some

situations may also be taken effectively by using two kinds of mechanisms. They are 1)

piezoelectricity that converts mechanical vibrations to electric energies [11, 15-17] and

2) electromagnetism that generates electricity by moving magnetic fields [18-20]

Wireless sensor networks (WSN) can be used to monitor the health of the structures,

environment, wild animals, tire pressure of running car, etc. In the most of WSN

applications, the device is far from the power line or the device needs be embedded into

the structure to monitor. So, it is hard to use power line to transmit energy to device and

battery is the only conventional solution. However, there are lots of disadvantages with

using batteries. The major problem is the life time, a WSN node can only be operated

using 3V battery for 1~2 years. The batteries cannot be a permanent energy supply for

WSN. For embedded applications, it is hard and even impossible to replace batteries
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very often. A WSN with self-powered supply system can be operated for longer life
time, even can be operated without replacing the battery. Harvesting the ambient energy
close to the sensor nodes @iWSN node is the most likely and suitable solution to
extend the life of WSN [21-25]. The efforts of most research are working on harvesting
energy from ambient mechanical vibrations with piezoelectric materials because of its
high energy density per unit volume, high electormechanical coupling, and no external
voltage source requirement. These research also try to combine power harvesting
devices with wireless sensor network [21, 22, 26]. Roundy presented that the energy
density of the piezoelectric material is around 35.4 (m)/camd is higher than
electromagnetic material (24.8 mJRAmand electrostatic (4 mJ/ém[22]. And
comparing with the different energy source, the power density of the piezoelectric
material is around 250 (uUW/cm3) and is also higher than other materials when exciting
from vibration [26]. Paradiso and Feldmeier [27] in 2001 design a self-powered wireless
RF transmission device. From their design, when push the piezoelectric button, the
devices can transmit a digital ID code wirelessly without any battery or any other power
sources. However, this design needs someone to push the piezoelectric button to
generate the energy for transmitting to RF signal, it cannot work automatically. Since

2002, numerous studies have been published on the topic of energy harvesting. Tang et
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al. (2010) and Khaligh et al. (2010) have made a long synthesis and developed a state of
the art for vibration piezoelectric energy harvesting. This demonstrates the interest of
researchers for this topic.

Figure 1-1 shows the WTI (West Texas Intermediate) crude oil price (US dollars
per barrel) from 1997 to 2012 and the crude oil price soars around from 2000. Figure
1-2 shows the paper record count of energy harvesting including all kinds of energy
source and using different materials and Figure 1-3 shows only the paper record count
of piezoelectric energy harvesting. Comparing with Figure 1-1, Figure 1-2 and Figure
1-3, the time of the crude oil pricing soaring agrees with the time of energ\stiagve
technique growing vigorously. Before 2000, the paper count of energy harvesting
almost keeps the same. After 2000, the paper counts of energy harvesting have bloomed
around 5 times, especially using piezoelectric materials in energy harvesting. In 2000,
there is an only one energy harvesting paper using piezoelectric material, however in
2011, there are 253 papers. As Figure 1-3 shown, using piezoelectric material to be the
energy harvesting device is highly focused over the past 10 years and from the Figure
1-4, using the piezoelectric materials to be the energy harvesting device is around
8.74 % of the total energy harvesting papers.

Based on this information, in this dissertation piezoelectric materials are chosen to
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be the interfacing material of the energy harvester to transfer the ambient vibration

energy into electrical energy to be used.
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Figure 1-1. WTI crude oil price chart
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1.2 Literatures review

The typical piezoelectric energy harvesting device can be divided into two parts

as Figure 1-5. First part is the mechanical part composed of piezoelectric material and



host structure and second part is the electrical part composed of the interface circuit and

storage device. The piezoelectric material and host structure are the major part to decide

the electrical energy transformed from the vibration mechanical energy. The interface

circuit and storage device decide the efficiency of the energy transformed from the

piezoelectric material into storage such as capacitor. According to the different storage

device, choosing the proper interface circuit can effectively increase the efficCiéecy.

simplest storage device is composed of the regular capacitor and a equivalent resistor

load. Based on the different parts design of piezoelectric energy harvesting device and

applications, the literatures review is divided into several sub-sections as following.

Piezoelectric

material Interface
circuit
M -
ibrati Host Electrical AC icd Usable DC
Vibration Structure Storage device
mechanical energ energy energy

Mechanical part Electrcal part

Figure 1-5. Schematic of the typical piezoelectric energy harvesting device.

1.2.1 Mechanical part: Design of the piezoelectric material and host structure

Many researchers made efforts in developing energy harvesting devices from

vibrations using cantilever beam based energy harvester due to its tremendous
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application potential [28-36]. The typical cantilever beam is shown as Figure 1-6.
Instead of talking about one-layer piezoelectric cantilever beam energy harvester,
Roundy and Wriht in 2004 [22] develop, validate and optimal the basic analytical model
for a two-layers bending element type (bimorph type) piezoelectric vibration based
energy harvester as Figure 1-7 and then they design a power generation circuit to drive

wireless sensor networks.

ﬂ / 4 Thickness
/ Width

Fixed End (@) Free End

Length

(b)

Figure 1-6. (a) Typical cantilever beam (b) Cantilever beam deflection at first mode

= Piezoelectric layer
= Metal layer
* Polarization direction

=

(a) (b) (c)
Figure 1-7. (a)Bimorph type - A series triple layer type (b)Bimorph - A parallel triple
layer (c)Uunimorph type. [37]




In addition to talk about traditional 1-D cantilever beam design, such as Kim et al.
[38, 39], Ericka et al. [40] use the 2-D piezoelectric membrane to harvest energy from
pulsing vibration sources and establish the 2-D piezoelectric plate model as Figure 1-8
The PZT plate is bounded on the aluminum plate to become a 2-D circular piezoelectric
energy harvesting device. From their results, the energy harvesting can be enhanced by

patterned polarization of the piezoelectric material.

Etched
area

Aluminum
plate

7T Hole for mount

plate

Figure 1-8. Top view of circular piezoelectric energy harvesting device. [39]

All researches about the different structure design whatever 1-D, 2-D, 1-layer or 2
layers are trying to enhance the power output of the piezoelectric energy harvester. The
power output level of energy harvesting devices is very important, because if the power
output is not enough to do real application, all innovative design are useless. However,

the power output is not the only important issue for energy harvesting design; the power



transformation efficiency is the other important issue.

Goldfarb and Jones [41] and Umeda et al. [28, 42] talk about what the parameters
of the piezoelectric materials effect the power efficiency of the power harvesting
devices. The results show that high mechanical quality factoy), (Qigh
electromechanical coupling coefficienfykand low dielectric loss (tan &) will increase
the efficiency of the piezoelectric energy harvester. Richards et al. [43] develop an exact
formula to predicts the power conversion efficiency of the piezoelectric energy
harvester and establish the relation between the electromechanical coupling coefficient,
quality factor and power generation efficiency for piezoelectric oscillators. From the
results, the magnitudes of Q antldce coupled together; it cannot be optimized and
designed separately. The energy conversion efficiency is trade-off between ® and k

Because the most researches is focusing on different part of energy harvesting
piezoelectric based generator, and the energy output is not normalized quantity, it is
hard to compare the different power harvesting devices. Roundy [31] in 2005 provide a
general theory that can be applied to compare different power harvesting devices
vibration-based generator and he present a general theory that can also be applied to
electromagnetic, piezoelectric, magnetostrictive, and electrostatic transducer

technologies. In addition to the input parameters of the vibrations, the general form
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"effectiveness"” is composed of system coupling coefficient, the quality factor of the

device, the mass density of the generator and the degree to which the electrical load

maximizes power transmission.

1.2.2 Electrical part: Design of the interface circuit and storage part

The research of the above sub-section are studying about the material and host

structure part of the energy harvesting devices, and more researches are focusing on

electrial circuit design. If the electrical energy is stored in a capacitor or a battery, an

energy recovery system is obtained. Through the interfacing circuit design and

discussion, the efficiency of energy storage of piezoelectric energy harvesting device

can be increased. Lesieutre et al. [44] indicate that when the piezoelectric materials

connect to the electrical load, the electrical load will absorb the energy from the

piezoelectric and it will increase the damping factor for the piezoelectric system. The

same condition occurs in the power harvesting application, and the storage part

including DC-DC converter and the capacitor or battery is the electrical load to the

piezoelectric cantilever dam and the piezoelectric energy harvesting device with a

DC-DC converter is shown in Figure 1-9 [21]. Comparing with measuring the spectrum

in open or in short circuit condition, the whole system will not be ideal from the

11



damping effect of the electric load. The electric energy issued from a piezoelectric

energy harvesting device is alternating voltage (AC) across its electrodes, so the

simplest interfacing circuit to use is standard DC approach (full bridge diode rectifier).

From the studies [34], the efficiency of the standard DC approach is not designed

optimally. There are lots of studies devoted the efforts to design and optimizing the

interfacing circuits to improve the efficiency and maximizing the output power. Ottman

et al. [21, 29] through the concept of impedance matching provide the adaptive control

technique and design an electric circuit using ac-dc rectifier and dc-dc step-down

converter to increase the harvested power around 325 %. According to Ottman's results,

maximum energy harvesting can be obtained by optimal duty cycle accurately

determined.

MOSFET Controller Card
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Figure 1-9. Experiment circuit setup of energy harvesting device with DC-DC converter
[21].

The piezoelectric elements convert the vibration energy of the host structure into
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electrical energy, and then the generated electrical energy is stored in a capaaitor

battery. Since the piezoelectric element has larger intrinsic capacitance, an impedance

matching circuit is required to maximize the generated power. Although the matching

electric circuit can be optimized by a passive network [32], it cannot be adaptive to the

variations of environmental vibrations. The exciting frequency of environmental

vibrations cannot be always at one constant value and fits to the natural frequency of the

energy harvesting device. To overcome this drawback, a switching circuit [45] was

proposed and popularly used in recent years. In the switching circuits, the switches are

operated synchronously with the vibration of the host structure in order to optimize the

power flow.

Several synchronized switching circuit topologies and corresponding switching

laws were proposed. The most efficient switching techniques can be classified into two

groups according to the placement between the full-wave bridge rectifier and the

switches. The first group of the switching circuits places the switches before the

full-wave bride rectifier, such as parallel-SSHI (Synchronized Switching Harvesting on

an Inductor) as Figure 1-10(a) and series-SSHI [32, 33] as Figure 1-10(b); the second

group places the switches after the full-wave bridge rectifier, such as SECE technique as

Figure 1-10(c) [32]. The optimal load of the series and parallel SSHI techniques are
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different. [32, 33, 36, 46-48]. The optimal load value of parallel-SSHI (around mega

ohms) is higher than that of series-SSHI (around hundred ohms) [34]. In SECE

technique, the power output is not as high as the SSHI technique, but the power output

is independent of the load. In these techniques, the switching circuit only turns “ON” at

the extreme value of the displacement or at the zero crossing of velocity to shift the

phase of the voltage across the piezoelectric element. These techniques are used because

the piezoelectric-generator is weakly coupled to the host structure, i.e. only a small

amount of mechanical energy is taken from the structure and converted in electricity.

The electrical behavior of the piezoelectric-generator with the SSHI circuit is equivalent

to an operation under strong coupling conditions by increasing the output voltage [49].
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Figure 1-10. (a) Parallel-SSHI interface circuit (b) Series-SSHI intertacuit (c)

Synchronized charge extraction interface circuit (SECE) [32].



Except designing the interface circuit to increase the efficiency, it is to be noted
that bootstrapped cold start-up was a new concept on power harvesting as it could start
the overall circuitry even when the batteries are empty. In addition, minimizing
switching loss by controlling oscillator on/off duty cycle low is another major issue
being examined The design of the MIT media lab team concentrates on the interface
electronics. They used an integrated circuit to handle problems that the electrical signal
would come across, which include issues such as how to harvest the primary signal peak

with minimal loss and to provide for bootstrapped “cold” start-up [50].

1.2.3 Self-powered energy harvesting system

Successful interface circuit can effectively increase the harvested energy but most
of them need the external power source to build up the system. So except focusing on
the interface circuit design, there are lots researches to study and make the energy
harvesting device self-powered and be combined with different applications. Elvin et.al.
[51, 52] and Ng and Liao [37], they give some new applications and innovative design
ideas. They use piezoelectric materials not only be a power harvesting device but also
be a senor. The sensor system with power harvesting and RF transmitter is shown in

Figure 111 and the voltage on the charging capacitor is show in Figure 1-12 [51]
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According to their researches, they establish a self-powered sensor system and from
theoretical and experimental analysis they show how the system works and the
performance of the system. When the voltage on the capacitor is over 1.1V and the

electric switch (s) will switch on and the self-powered system successfully transmits the

RFE

t:l P td 3 t.'.

I
T

i : Bwatch On

12 T ,
1} /r\ﬂi !

Voltage on cepreree
Capacitor
(V) il

e Swilch Off

. Time (1‘:}

Figure 1-12. The voltage on charging capacitor [51].

The self-powered system proposed by Elvin in 2001 [51] used a simple half-bridge
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to regulate the energy. However, the synchronized switching technique is much efficient.

So the further complicated technique is to make the synchronized switching technique

be the self-powered. Lallart in 2008 proposed a self-powered SSHI switching circuit

and the circuit is shown in Figure 1-13 [53]. They build up a basic theoretical analysis

and the experiment shows the circuit can be fully self-powered and used in the low

voltage range. So it's proper to integrate with the MEMS generator. In the 2012, Liang

[54] proposed a modified self-powered SSHI interface circuit as Figure 1-14. This

circuit is improved from the Lallart's cirucit and entire system is accurately adalyz

about the switching time lag and inversion factor. The conclusion also shows if the

SRSSHI outperform than standard interface circuit the excitation level must be high

enough.
Maximum Bl
/ Comparator detector with
H_GI'F}C'EIOH - weak time
signal constant
+ Energy L H
storage Digital" Comparator  Envelope detector
[ switch + Energy storage
(a) (b)

Figure 1-13. Unipolar electronic switch on maxima (a) block diagram (b)

implementation [53].

17



1=

I E 1
| | ip _lf-.r)r. Ra g
| ! B Ds D2 %

| | - e

! | I Vi

Ve | ~ ! I

fe & R, 2 5 7

by Gy B Y

: : Ds C:

I I

: ‘ : it

| |

| |

! Piezos | ] =

Figure 1-14. Modified self-powered SSHI interface circuit [54].

1.2.4 Nonlinear energy harvesting technique

Although the piezoelectric materials exhibit high power density, the linear

piezoelectric energy harvester are efficient only when the mechanical system is excited

at the resonance frequency; there is the largest strain, largest vibration displacement and

the maximum output power compared to work at non-resonant frequency. However, in

practice, the exciting frequency of the ambient vibration source is random and it varies

within a frequency range [26]. It is impossible to excite the energy harvester at specific

resonance frequency and to keep the system operating on the maximum power point. In

the mechanical system, the quality factor is commonly very high. It causes that the

harvester has high harvesting power only at single resonance frequency. In order to
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increase the power at non-resonant frequency, designing a mechanical system to work in
a wide frequency range is necessary. This design concept to enlarge the frequency
bandwidth is based on applying external forces. By applying an axial force as the
preload force, the resonant frequency of a piezoelectric cantilever beam is successfully
tuned as Figure 1-15 [55, 56]. but these methods are active techniques and the
mechanical system is still operated within the linear regime. Another method consists to
make a non-linear or bistable vibration of a cantilever beam to enlarge the workable
bandwidth as Figure 1-16 [57-60]. By using simple fixed magnets, this passive
techniqgue make the mechanical system improve the harvesting efficiency within non-

resonant regime without any external power.

3 piezoelectric

: bimorph
1 proof mass /

frictionless hinge mounts

preload preload

A

Figure 1-15. The schematic of a simply supported piezoelectric bimorph vibration
energy harvester [55].
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Figure 1-16. (a) Setup with fixed opposing magnet (b) Setup with opposing magnetic
attached to a second cantilever [57].

1.2.5 Piezoelectric energy harvesting device used in real application

When talking about the real case applications, the MIT Media Laboratory is the
most famous team using the piezoelectric materials to harvest power from human being
activities. The MIT Media Laboratory studied the possibility of adopting power
harvesting by embedding piezoelectric devices to insole of walking shoes, which extract
electricity from the foot pressure as Figure 1-17 [50, 61]. Both piezoelectric polymer
such as PVDF (polyvinylidene fluoride) and piezoelectric ceramics such as PZT (lead,
zirconate, titanate) were used as the energy harvesting devices. One of the main
challenges lie on how to charge the battery efficiently by using the electricigvesl.
To gain maximum energy usage, the PVDF and PZT devices were designed to fit both
the shoe shape and the way of walking. Flexible piezoelectric devices based on PVDF

were adopted in the front of the shoes as both compressed and bending forces were
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present there. On the other hand, PZT was placed in the back of shoes as the primary

forces present there is compression.
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Figure 1-17. Two approaches to unobtrusive 31-mode piezoelectric energy harvesting in
shoes: a PVDF stave under the ball of the boot and a PZT dimorph under the heel [50].

A few companies are commercializing power harvesting devices worldwide. For
example, Ferro Solutions Energy Harvesters (FSEH) [ref] developed by Ferro is an
independent power sources that generate electricity from environment vibrations to
power wireless transceivers, sensors, micro-motors and actuators. The FSEH was
demonstrated to have the potential to replace batteries in many situations by providing
devices with a continuous, nearly endless supply of electricity. To further advance this
technology, Ferro is using new magnetic materials to further extract energy from

piezoelectric substances, which give off electricity in reaction to mechanical stress.
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Nevertheless, they were facing with the problems that their substances were brittle and

break easily. To solve this problem, Ferro sandwiched the piezoelectric material

between two magnets, which provides them with an opportunity to harvest energy from

a changing magnetic field. The prototype developed by Ferro looked like a clear spool

just under two inches in height and in diameter. With power output in the range of 0.4

mW when the external vibrations is on the order of 20 milli-Gs in strength, which is

barely enough to be felt on the surface by using a bare hand. Stronger vibrations of 100

milli -Gs were found to generate 9.3 mW, which further demonstrate the possibility

offered by power harvesting technology.

1.2.6 Piezoelectric material used in structural damping

The basic theory of using piezoelectric material in energy harvesting is the same as

in structural damping. All we need are using piezoelectric material to transform the

mechanical energy into electrical energy. In the energy harvesting, the electriggl ene

is stored in a capacitor. However, if the electrical energy is dissipated by Joule effect in

a resistance, the vibration of the structure will be significantly reduced and this is called

structural passive damping [62]. So most techniques and interface circuits used in the

energy harvesting can be used in the structural damping. There are many shunt

22



techniques based on the design of piezoelectric materials used for damping applications
The simplest one is the passive technique that uses a matched inductor and resistor
network to the piezoelectric patch as Figure 1-18 [63, 64]. However, this technique has
a major disadvantage. In low frequency applications, the optimal shunt inductor is too
large for feasibly implementation. In most cases, the inductance required would be
approximately one hundred henrys, which can only be implemented with active circuitry.
To implement a shunt inductance with active circuitry, an external power source is
needed, and the major advantage of passive damping is lost. The most effective active
damping technique is to use active controllers, power amplifiers, and analog or digital
processors that generate an out-of-phase signal to control the structural vibration. This
technique usually provides better damping performance than passive ones [65, 66]. The
advantages of the active damping techniques are good performance and a wider working
frequency range, whereas the disadvantage is that the active circuits require external
power. The implementation and algorithms for active techniques can be much more

complex and the cost is much higher than passive damping techniques.
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Figure 1-18. Piezoelectric transducer with an RL shunt circuit [64].

Considering the trade-offs in the cost, difficulty of implementation, power

consumption required and damping performance, some switch shunting or semi-passive

techniques [67-69] have proven to be effective methods. Several switching shunt circuit

topologies and corresponding switching laws were proposed. The two most popular

switching shunt-damping techniques are SSDI (Synchronized Switch Damping on an

Inductor) as Figure 19a) [70] and SSDV (Synchronized Switch Damping on a

\Voltage source) as Figure 1-19(b) [71-73]. Rcihard et al. first proposed the SSD

(Synchronized Switch Damping) technique in 1999 as Figure 1-20 and this technique

was further designed and enhanced to be the SSDI and SSDV technique. SSDI

technique has attracted more attention because its offers several advantages: it does not

require a very large inductor for low frequencies and its robust to the environment

changes. Moreover, this technique only needs low-power to operate the switches. Thus,
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this technique presents the advantages of being self-powered. The fundamental concept
of SSDI technique is the same as the SSHI technique to the use the resonance between
the piezoelectric clamped capacitance and a shunt inductance during a short time

interval to inverse the piezoelectric voltage.

T — R
Ly Ly
el S 4 — Sw'_: SJ’I’:’
=\ ' =|» 1 ]
4 | - +
Vw l__ T TV;:L
Piezoelectric elermnent (a) Piezoelectric element (b)

Figure 1-19. (a) SSDI electric circuit (b) SSDV electric circuit [73].

| H ’I | Piezoelectric élements
| F—‘ T1 | T2
Driving voltage Vgs ’ L F I__| ﬁ L

Figure 1-20. SSDS electric circuit [67].

Based on the previous numerous and great research results, in this dissertation, the

further designs in interfacing circuit of the piezoelectric energy harvester are proposed.
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The synchronized switching technique are proven to be the great effective technique to
increase the efficiency of the piezoelectric energy harvester. In order to make this
outstanding technique be used in the real application, the further design is needed.
Further design in different applications will be discussed in detail in the following

sections.

1.3 Framework of the dissertation and Summary
There are 7 chapters in this dissertation. The following are the summary of the

each chapter.
Chapter 1 introduces this dissertation.

Chapter 2 proposes the fundamental mechanical modal, equivalent modal and the
analysis of the piezoelectric cantilever beam based energy harvesting device. There are
several famous and effective synchronized switching techniques which are used in this
dissertation will be presented, analyzed, discussed, compared and summarized.

Chapter 3 proposed a tunable resonant frequency cantilever beam type energy
harvesting to increase the power output of the piezoelectric energy harvesting device.
The tunable resonant frequency technique is based on the characteristic of the

piezoelectric material to shift the resonant frequency of the cantilever beam and make
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the available bandwidth broaden. The average harvested power output increase almost

30% under chirping and random frequency from 72Hz to 76Hz (resonant frequency is

73.5Hz). From the experimental results, this tunable frequency system can be

successfully combined with wireless sensor network to transmit the RF signal.

Chapter 4 proposed a self-powered piezoelectric energy harvesting device using the

velocity control synchronized switching technique. In this chapter, the self-powered

technique and velocity sensing technique are used to make the popular and effective

synchronized switching technique work without any external instruments. The

experimental results show better performance and lead to a gain of around 200%

compared to the standard DC approach.

Chapter 5 proposed a broad bandwidth and efficient piezoelectric energy harvesting

device by using the magnetic force combined with synchronized switching technique.

Nonlinear magnetic force is used to broaden the available bandwidth to make

piezoelectric energy harvesting device can obtain more energy on the off-resonant

frequency. Combining the magnetic force with the traditional synchronized switching

technique is the innovative and effective method to make a high efficient and wide-band

piezoelectric energy harvesting device. The frequency response and analysis of the

work-cycle show the performance of the results of combing these two techniques to
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build the piezoelectric energy harvesting device.

Chapter 6 propose a self-powered semi-passive piezoelectric structural damping
technique based on zero-voltage crossing detection. The drawback of the traditional
semi-passive damping technique is that the system needs external instrument. In this
chapter, the self-powered technique is used to make semi-passive technique damping
work like passive technique without any external instruments and by using zero-voltage
crossing detection to reduce the traditional shortage of the synchronized switching
technique. Compared to the case in which all of the piezoelectric patches are used for
structural damping and driven by an external function generator and a power supply, the
efficiency of the proposed self-powered damping system is approximately 86%.
Compared to the ideal switching case in which the same size of piezoelectric patch is
used for SSDI damping and is driven by an external function generator and power
supply, the efficiency of the proposed self-powered system is approximately 95%. The
major advantage of the proposed technique is that it is only necessary to sacrifice a
small amount of damping performance to make the system fully self-powered.

Chapter 7 summarizes the entire dissertation and gives a conclusion. The conclusion
will point out the main innovation and contribution of this dissertation. Finally, the

future work will be presented in this chapter.
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Chapter 2 Review of the electric interfaces for energy harvesting and

damping

This chapter presents a review of the literature about electric interface called SSHI
(Synchronized Switching Harvesting on an Inductor) for the energy harvesting and
structural damping applications. The basic governing equation, equivalent circuit model,
waveform, optimal load and maxima output power are analyzed and discéssed.
comparison of different interface trough work-cycle analyze will be done.

Since the efficiency of the electromechanical conversion of piezoelectric
transducer depends of the electrical load, an electrical circuit must be introduced to
optimize the conversion and to adapt the piezoelectric voltage to the storage device. The
interface circuit plays a very important role to regulate the alternating current into direct
current and decides the efficiency of the energy harvester [34]. In order to easily analyze
and combine with the interfacing circuit, the piezoelectric beam will be study with the
equivalent circuit representation. Starting from the equations of motion and the
constitutive equations of the piezoelectric material, the model of the cantilever beam
type piezoelectric energy harvesting device will be established. Several interface
circuits and corresponding waveforms of piezoelectric terminal voltage and output

power will be study. Moreover a work-cycle representation to compare the
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performances of the interface circuits will be investigated.
2.1 Basic theory of piezoelectric materials

According to IEEE standard 176-1987 [74], constitutive law of piezoelectric
materials can be expressed as equation (2.1). The constitutive law presents the relations
between strain S, stress T, electric displacement D and electric field E of the materials.
Table 2-1 shows the representations. According to the constitutive law, the beliavior o
the piezoelectric materials can be obtained and through the further analyzing the

mechanical modal can be easily established.

F—p} :{CE&J _%}{Sﬂ (2.1)
D, €o gii E
Where

Table 2-1. Representations of constitutive law of piezoelectric materials

Ty stress

S strain

D, electric displacement
=5 electric field respectively
c elastic constant

€ permittivity constant
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e piezoelectric constant

superscripts E and S represent constant

superscripts i,k=1~3, p,g=1~@present the coordinates index which is shown in

Figure 2-1.

Considering the piezoelectric patches bound on a cantilever beam can be regarded

as a simple energy harvesting device. The dimensions of piezoelectric patches,

schematic of the beam and coordinate directions are shown in Figure 2-1. When the

cantilever beam vibrates, for example as Figure 2-2 shows the first mode of the

cantilever beam, the force acts on the piezoelectric patches can be simplifi&l to 1-

model and regarded as a forgedets on the lateral surface as Figure 2-1 shows. In the

cantilever beam type piezoelectric energy harvesting application, the first mode

vibration is discussed because there is the largest strain. The larger strain means that

more energy can be generated. On the assumption that the strain distribution is

homogeneous and the 3-1 type piezoelectric patch is used and constitute equation (2.1)

can be rearranged in Force, displacement, charge and voltage (electric potential) as

shown in equation (2.2).
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Figure 2-2. First mode vibration of the cantilever beam.
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where w is the width, | is the length and t is the thickness of the piezoelectric patch.

Table 2-2. Representations of the re-arranged constitutive law.

Force Fo=T- -wt
Displacement X=§-I

Charge Q=D, - w-|

Piezo terminal voltage V, =-E,-t
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In equation (2.2), the relation between forceg) @nd displacement (x) means short

circuit stiffness K7 ), the relation between forcegJFand piezoelectric terminal voltage

(Vp) can be induced a new parameter, force-voltage coupling faetdr gnd the

relation between Q can V is clamped capacitarnCg).(The equation (2.2) can be

rewritten as equation (2.3). The Table Z2Table 2-3 give the new quantities and

parameters.
Table 2-3. Representations of the governing equations.
S w-t
Short circuit stiffness Ko =ci-—
Force-voltage coupling factor a=e,-W
. S WI
Clamped capacitance G = 533-T

{Zﬂ:ﬁf —(d[ﬂ (2.3)

To study the dynamic behavior of the piezoelectric patches, we need the
relations between displacement (x) and velocik) (n mechanical part and the

relations between voltage gVand current (1) in electrical part. So take Laplace
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transform of displacement (x) and charge (Q) into frequency domain. The governing

equation of piezoelectric patches can be shown as equation (2.4).

F = KEx+aV
{ P i (2.4)

| =ax—CV;

According to the equation (2.4), the schematic model of the piezoelectric patch can
be plotted as shown in Figure 2-3. The force-voltage faetgri¢ the main parameter
between mechanical part and electrical part. Under same force, when the force-voltage
factor («) is large, the piezoelectric patch can generate more energy. However, the
above relation only exists when piezoelectric patch is under open-circuit condition.
When the piezoelectric patch is conmetto the load, the output voltage will be
influence and then there will be a force generated in the mechanical part to induce the
damping effect [44]. The damping effect will decrease the displacement of the

cantilever beam and make voltage output decrease.

34



| al

TR S

ORI

.

Mechanical part Elecirical part

Figure 2-3. Schematic model of the piezoelectric patch

2.2 Model of piezoelectric energy harvester
The schematic of piezoelectric energy harvesting cantilever beam in Figure 2-1 can
be modeled as equivalent mechanical model by mass, damper, spring and piezoelectric

system as is shown in Figure 2-4.

Short circuit stiffness, X 5

FD\H Fy Fp
h 4

Damper |-| — —f5
/ Spring

Damping ratio of l | Piezoelectric | 17
the structure, D \\\\\\\$\\\ N —

Stiffness of the structure, Ky

Figure 2-4. Equivalent mechanical model of piezoelectric and structure.
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. External driving force on the structéu
: Damping force from damper
: Spring force from structure stiffness
: Force form piezoelectric structure
: Displacement
: Voltage arcoss the piedectric patch
: Current flow out from piezoelectric pat

(ﬂ-l-l U-n I'I'I-I-I

el

< X T

P

According b Newton’s laws of motion, the force equation of whole structure can

be represented as equation (2.5).

F. = mx+ Dx+ KEx+aV, (2.5)
Damping ratio of structure D
Stiffness of structure Ks
Equivalent stiffness of the circuit KE =K +K;

So the governing equations of piezoelectric patch bedinod structure are shown
in equation (2.6). The energy equations can be obtained by multiplying velagity (
into equation (2.6) and integrating over the time and shown in equation (2.7). The
definition of energy term is shown in Table 2-4. The input energy is divided into four

terms: kinetic energy, elastic energy, mechanical losses and converted energy. The
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converted energy represents the sum of the energy stored in the piezoelectric

capacitance and the energy delivered to the electrical load.

mx+ Dx+ K&x=F, —aV,
| =ax—-CWV,

[ Fexdt= L e LrE [ DXt + [ aVpxdt
2 2

[ aVpxdt = %covg + [Vddt

Table 2-4. Definitions of energy terms

Input energy .f F. xdt
o 1. ..
Kinetic energy > MX

. 1 E 2
Elastic energy > K=x
Mechanical losses .[ Dx°dt

Converted energy I aVpxdt
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2.3 Standard Interface circuit
2.3.1 Standard AC approach
The schematic diagram of piezoelectric energy harvesting device with simple

resistor load is shown in Figure 2-5(a) and Figure 2-5(b) shows the waveforms

including the terminal voltage of the piezoelectric patsh )( equivalent current
generated from piezoelectric patch, () and displacementx). This diagram is called
standard AC approachThe equivalent circuit model of the piezoelectric energy
harvester is shown in Appendix A.1l. Figure 2-6 is the equivalent circuit modal of the

standard AC approach and this model can be used to calculate the optim&l lead

maximum powerP, ..

2<| |-

Load : Resistor

Piezoelectric patch \k\

(@) (b)

Figure 2-5. (a) Schematic diagram of piezoelectric energy harvesting device with resistor
load. (Standard AC approach). (b)Waveform of the standard approach.
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Figure 2-6. The equivalent cintumodal of standard AC approach.

The currentl, equals to equivalent current () minus the current flowing in
clamped capacitori( ). So the voltageV, can be expressed in frequency domain as
equation (2.8) shown. The relation between the external fdfcg dnd displacement
(X) also can be expressed in frequency domain as is shown in equation (2.9)
Considering the piezoelectric energy harvesting device is driven at the resonant
frequency @=w,), the force and the velocityx(=sxX) are in phase, so the equation

(2.9) can be further simplified as is shoiwrequation (2.10).

v, =R (2.8)
1+sGR
s is the Laplace operator.
E 2
E=lsMeipy 2R s (2.9)
S 1+(wCyR)
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2
= D+— %R | (2.10)
(0,CoR)+1

The power output from piezoelectric energy harvesting device with resistor load

can be calculated using simple equatigi/R. Because the waveform across the

resistor is sine wave, when we calculate the output power, the voltage should be take

RMS value. And because thé. is complex, the complex conjugate should be used

and the power output can be expressed as equatibi) Ghown.

* 2 2 ~
P=VC V¢ =i aRsx —a Rsx __ o R2 _)% (211)
2R 2R(1+sGRI\ - sG R 1+(wC)R)" 2

According to the relation between external force and displacement as equation
(2.10) shown, the output power can be further expressed using external force amplitude
as equation (2.123hown. When the piezoelectric patch is low coupled to the cantilever
beam, the electromechanical coefficiekf) is small and the force-voltage factor is
close to zero & — 0) and the equation (2.12) can be simplified as equation (2.13)

shown.

40



2 =2
pZL @R 2} 1 Fe (2.12)
1+(0)nCOR) (ZZR 2
D+ 5
1+(0,GR)
2 =2
po| %R _ FE2 (2.13)
1+ (0,C,R)” ) 2D

In order to calculate the optimal resistor valgg,, taking power in the partial
differential equation and equals to zero, the optimal resistor load can be obtained as
equation (2.14) shown. Substitute the equation (2.14) into the equation (2.13), the

maxima power output of the standard AC approach can be obtained as equation (2.15)

shown.

(2.14)

(2.15)

Because the power output of the piezoelectric energy harvesting device depends on

the electromechanical coefficient and mechanical quality factor of the structure,

according to the definition of the electromechanical coefficient and the mechanical

quality factor, a new parameter is defined as equation (2.16) shown. The
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electromechanical coefficient is shown in Appendix A.2. Through the equation (2.16),
the output power of the standard AC approach can be plotted as a function of the load R
and the parametek’Q, at resonance as Figure 2-7 shown, i@ the mechanical
quality factor and % the electromechanical coupling factor. For weakly coupled
structure kQn is lower than 2 [75]. Wherf®, is lower than 2, the SSHI technique can

effectively increase the power than the standard interface circuit.

2
M
kKo =% | 2.16
@ DCO*\/KE (2.16)

where

Mechanical quality factor Q =—r—

Figure 2-7. Normalized power as a function of the normalized load resistance and the
electromechanical parameters.
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Using work-cycle to present and compare the generating energy from the

piezoelectric energy harvesting device is a good method. It's easy to show the

generating energy from the plot. Figure 2-8 shows the work-cycle of the standard AC

approach. The y-axis is the equivalent fore#/ | and the x-axis is the displacement

(x). The work-cycle area means the energy which the piezoelectric energy harvesting

device can generate, so if the work-cycle is larger, it means that more energy can be

obtained.

Work cycle of Standard AC approach (Optimal load)

|
5l |
o N e
€ ! o
: )/
: e
7
aV(N) T 7/ — —‘ —/—//— —
RE -
_a]'/;._ \-___—~~'"_. ‘ .
— T ‘ EEm
—X  Displacement x (m) x

Figure 2-8. Work cycle of the standard AC approach (optimal load).
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2.3.2 Standard DC approach

The schematic diagram of piezoelectric energy harvesting device with full-bridge
rectifier and resistor load is shown in Figure 2-9. This is called stamarabproach.
Assuming the structure is exciteat resonant frequency and from the governing
equation, the exciting source can be modeled as a current source model as Figure 2-10

shown. C, is the rectifier capacitor to regulate the output voltage. Figue shows

the waveform of standafdC approach including terminal voltage across piezoelectric

(Vp), current sourcel(,,) and displacementx).

5 |- 7ol

I Z§ $ r Load : Resistor

Piezoelectric patch o Rk\

Figure 2-9. Schematic diagram of piezoelectric energy harvesting transducea with
simple resistor load. (Standard DC approach).

. —|— 1y
I =ax —_— 1 Ve
eg
C, C.
Load : Resistor

Piezoelectric equivalent circult

Figure 2-10. The equivalent circuit diagram of the Standard DC approach.
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Figure 211. Waveform of the Standard DC approach.

The detailed time interval discussion is shown in Appendix A.3 and the output

voltage V. can be obtain as the equation (2.17) shown.

5 20Rw,

Vo=—" -0 3 2.17
¢ 2C,Rw,+7 @17)

The output power from piezoelectric energy harvesting transducer with standard
DC approach can be calculated using simple equa\f@)fR as the equation (2.18)

shown.

P=—Ct—-_ " "0 ¥ (2.18)
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In order to calculate the optimal resistgy,, take the equation (2.18) in partial

differential equation toR and equals to zero and tiR, , can be obtain as equation

(2.19) shown.

P
= 2.19
Ron 2C,w, ( )

Substituting theR,, into the equation (2.18), the maxima power outfjt,( can

be obtained as equation (2.20) shown.

a’w, 2

= 2.20
27C, ( )

max| R=Rypt

Substituting the optimal loadR(,) into equation (8.16) and equation (8.13), the

voltage V. and time T, during optimal load condition can be obtain as equation (2.21)

and equation (2.22) shown.

A % =-2% % (2.21)
R=R)Pt T 2C0
ZCOCUO T +7
0@
T
AN (2.22)



The work cycle of the standard DC approach with optimal t@zatbe plotted as
Figure 2-12. Because the full-bridge rectifier, th¥ is constrained betweeaV,

and —aV, . The shape is a parallelogram.

Work cycle of the Standard DC approach

b T T Fo
—X  Displacemenk (it X

Figure 2-12. Work cycle of the Standard DC approach with optimal load

2.4 Analysis of the synchronized switching technique

In energy harvesting applications, the piezoelectric elements convert the vibration

energy of the host structure into the electrical energy, and then the generated electrical

energy is stored in a storage buffer. Since the piezoelectric element has large clamped

capacitance, an impedance matching circuit is required to maximize the generated
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power. It is known that an inductor can be added to compensate the contribution of the

piezoelectric clamped capacitor [26], but it cannot be adaptive to the environmental

variations and the value of the inductance is too large in a low frequency range. To

overcome this drawback, switching-type interfaces were proposed and popularly used in

recent years [76]. In the switching circuits, the switches are operated synchronously

with the vibration of the host structure in order to optimize the power flow.

Several synchronized switching circuit topologies and corresponding switching

laws were proposed. They can be classified into two groups according to the placement

of the rectifier and the active switches. The first group of the switching circuits places

the switches between piezoelectric element and the rectifier, such as parallel-SSHI

(Synchronized Switching Harvesting on an Inductor) and series-SSHI [33, 77]. This

group of techniques is used to modify the waveform of the piezoelectric voltage, i.e. the

voltage across the piezoelectric element, in order to increase the collected power in the

weakly coupled structure. The second group places the switches between the rectifier

and the storage buffer, such as SECE technique [32]. This second group of techniques is

used to modify the charging current flowing into the storage buffer in order to fasten the

charging speed and to make a load adaptation.

In this dissertation, the parallel-SSHI technique and series-SSHI technique will be
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used to increase the efficiency. So in the following two sub-suctions these two technique

will be discussed in detail.

2.4.1 Synchronized Switch Harvesting on Inductom parallel (parallel-SSH)

The schematic diagram of Synchronized switching harvesting on inductor in
parallel (parallel-SSHI) piezoelectric energy harvesting device with full-bridge rectifier
to a simple resistor load is shown in Figure 2-13. This is called SSHI technique.
Assuming the structure is exciteat resonant frequency and from the governing
equation, the piezoelectric energy harvesting device can be modeled as a current source
parallel with a clamped capacitor and the equivalent circuit of entire system is shown as
Figure 2-14. Figure 2-15 shows the waveform of SSHI-parallel including voltage across
piezoelectricV,, current sourcel , and displacementx.

In this technique, a bi-directional switch and an inductor L are added in parallel
with the piezoelectric patch. The switch is conducted at each maximum and minimum
of the displacement or at the zero crossing of the vibration velocity, in order to reverse
the voltage across the piezoelectric element and put it in phase with velocity. The result
is that the energy stored in the structural clamped capa€itQrig extracted by the LC

resonance and achieve to a minimum value, and thus the piezoelectric voltage can be
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increased [78]. The harvested energy of the system with the SSHI technique is similar to
that using the standard interface under the strongly coupled condition [49]. When the
vibration velocity crosses zero, the switch is conducted, the inductor L and the clamped
capacitor C,) begin to oscillate. This resonant circuit increases the magnitude and
changes the polarity of the voltage across the piezoelectric capacitance sinusoidal, and

thus put voltage\(,) and velocity &) in phase, which indicates that more energy is

extracted from the vibration source.

/ V_: 'l . - VE
I L% C
l, L A : r Load : Resistor

Piezoelectric patch B

Figure 2-13. Schematic diagram of parallel-SSHI piezoelectric energy harvesting device
with full bridge rectifier to a simple resistor load.

_[ IT IR .
" P s =
[ | Ic\'
N (O L1l
I,=ax @C__ E I —E ¢
. 0 |—) } Load : Resistor

AN

Figure 2-14. The equivalent circuit diagram of the parallel-SSHI piezoelectric energy
harvesting device.
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Figure 2-15. Waveform of the parallel-SSHI piezoelectric energy harvesting device.

The detailed analysis of the each time interval (Fromtol Ts) is shown in

Appendix A.4. TheV. can be obtained and the result is shown in equation (2.23).

V. = 2aRe, % (2.23)

© ”+(1_QLC)C0%0

The power output from piezoelectric energy harvesting device with parallel-SSHI
can be calculated using simple equatiéfR as the equation (2.24) shown.

A

:V_Cz _ 4a2Ra)02 .
R [7[ +(1_ Uc ) G %0}2

(2.24)
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In order to calculate the optimal resist®;,, take the equation (2.24) in partial

differential equation toR and equals to zero as equation (2.25) shown and the optimal

resistor R,,) can be obtain as equation (2.26) shown.

P 4a® [7+(1-60)GRo, | ~(22R) 2(1 qc) Gop [7+( T g) G Ry

— = 7 wi%* =0
oR [7[+(1_ qLC)CDF‘)wo]
(2.25)
. T
R = (1-0c) Gy (2.26)

Substituting the optimal resistoR(,) into the equation(2.24), the maxima power

output (P,.,) can be obtained as equation (2.27) shown.

2 2
= a‘w;

max|R=F{)pt - V4 (l— q|_c ) COa)O

Q

(2.27)

The voltageV. and time T, under optimal load condition can be obtain as
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equation (2.28) and equation (2.29) shown.

. 20w, 7 o @ 2
_ 200, g 2 (2.28)
“IReRy 747 (1— eqc) Gy Q)(l_ qC)
T,| ——cos{ *(1q )V‘ —]J_i cos( ¥
2IR=Ryy @, X e/ e R=Ropt 20 (2 29)
T
:>T2|R:Rm _ZO

The work-cycle of the parallel-SSHI with optimal load can be plotte8igure

2-16.

Work-cycle of parallel-SSHI with optimal load

c .

C. | __*_|/
A A e

—X Displacemenk (n X

Figure 2-16. Work-cycle of the parallel-SSHI.
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2.4.2 Synchronized Switch Harvesting on Inductoin Series (Series-SSHI)

The schematic diagram of synchronized switching harvesting on inductor in series
(Series-SSHI) piezoelectric energy harvesting device with full-bridge rectdiea
simple resistor load is shown in Figure 2-17. the piezoelectric energy harvesting device
can be modeled as a current source parallel with a clamped capacitor and the equivalent

circuit of entire system is showas Figure 2-18 Figure 2-19 shows the waveform of

series-SSHI including voltage across piezoelec¥ic voltage across load/. current

source |, and displacementx.

A zF |
Vi X _— V,
T (75T
. ! Load : Resistor

Piezoelectric patch ‘k\

Figure 2-17. Schematic diagram of series-SSHI piezoelectric energy harvesting device
with full bridge rectifier to a resistor load

vi Ny, j& ZF 1.
I, =ax DCf: '

Ve

A Z; C
Load: Resistor
AN

Piezoelectricequivalentcircuit Full Bridge

Figure 2-18. The equivalent circuit diagram of the series-SSHI piezoelectric energy
harvesting device.
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Figure 2-19. Waveform of the series-SSHI piezoelectric energy harvesting device.

The detailed analysis of the each time interval (Fromtol T,) is shown in

Appendix A.5. The maximadV, ) can be obtained and the result is shown in equation

(2.30).

X 20R(1+q) .
- o X (2.30)
¢ 2Rw,C,(1+ o) +7(1-qc)

The power output from piezoelectric energy harvesting device with seris-SSHI can

be calculated using simple equatitiiR as the equation (2.31) shown.
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P:\ﬁz 4a*R(1+qc )’
R [2Ra)oco(1+ Qe )+7(1- qe )]

s (2.31)

In order to calculate the optimal resist&;,, take the equation (2.31) in partial

differential equation toR and equals to zero and tiR, , can be obtain as equation

(2.32) shown.

_ 7[(1_ Qc )
Ryt = 20,Co( L+ 0 (2.32)

Substituting theR, into the equation (2.31), the maxima power outfRjt,( of
series-SSHI can be obtained as equation (2.33) shown.

ot (1+0.)
P =— 2 M H ¥ 2.33
maler 27C, (1~ o ) “ (2:33)

Substituting theR,, into equation (8.31), the voltagé. under optimal load

condition can be obtained as equation (2.34).

A

Cc

~ 20R,, (1+a.c) .
= @R
R=Ryp: ZROpta)OCO(1+ Oc)+7(1- qc)
a
=—X
R= Rnp! 2CO

(2.34)

A

VC

According to the waveform in the Figure 2-20, the work cycle can be plotted as
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Figure 2-20.

Work-cycle of series-SSHI with optimal load

—-X Displacemenk (nm X

Figure 2-20. Work cycle of the series-SSHI with optimal load.

2.5 Discussion of the energy harvesting interface circuits

2.5.1 Power output discussion

The above sub-sections show the theoretical analysis of the standard enterfac

circuits and the synchronized switching technique circuits and in this sub-section the
power output of the interface circuits are compared and discussed. From the equation
(2.18), equation (2.24) and equation (2.31), the power output of the standard DC
approach, parallel-SSHI, and series-SSHI can be obtained by using the same
displacement to make system be driven under the same excitation. The output power

and the load resistor can be normalized by the maximal output power and the optimal
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resistor load of the standard DC approach and the results are shown in Figure 2-21. The
piezoelectric is weakly coupled to structure af@.kis 1.6x10* (much lower than 2)

to plot the Figure 2-23. The standard AC approach doesn't be compared here because in
the real application the AC output energy cannot be used to supply the WSN module or
other portable devices. The parallel and series SSHI is plotted using three different
quality factors Q =1.5, 2.5 and 3.5. The optimal resistor load and maxima output
power of different techniques are marked in star in Figure 2-21. The following are the
comparison of the power output and resistor load.

1. Resistor load comparison.

From the results, it's obviously that the optimal load of parallel-SSHI are always
higher than standard DC approach. Frdgh=1.5 to 3.5, the optimal load of
parallel-SSHI are 3.08, 4.28 and 5.52 times than standard case. For the series-SSHI, the
optimal resistor load is opposite to the parallel-SSHI. FrQm=1.5 to 3.5, the optimal
load of series-SSHI are 0.48, 0.32 and 0.24 times than standard case. In the
parallel-SSHI case, the higher quality factQr needs higher optimal resistor load. On
the contrary, in the series-SSHI, the higher quality needs lower optimal resistor load. So
according to the different load, the proper synchronized switching technique can be

chosen to achieve the maxima output power.
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2. Output power comparison

Comparing the synchronized switching technique with standard DC approach

whatever parallel-SSHI or series-SSHI, the power output is always higher and it shows

the switching technique is an effective technique to increase the output power of the

piezoelectric energy harvesting device. The higher quality fa@orcan lead higher

output power. FromQ, =1.5 to 3.5, the maxima power output of parallel-SSHI are 3.08,

4.29 and 5.53 times than standard case. For series-SSHI the optimal load are 2.08, 3.29

and 4.52 times than standard case. Comparing the parallel-SSHI to series-SSHI, under

the same quality factoQ,, the power output of parallel-SSHI is little higher than

series-SSHI. However, in the real application the quality faQpris constrained and

the range from 1.5 to 3.5 is the reasonable value. If the system wants to achieve very

high Q, value such as 10, it needs very expensive elements in the circuit and the cost

will be very high. But it's meaningless to establish a expensive energy harvesting

device.
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Figure 2-21. Normalized power VS Normalized Resistor Load.

2.5.2 Work-cycle discussion

According to the energy equation (2.7), the converted energy means the energy

transferred from the external energy

terminal voltage of the piezoelectric patch and multiplied the force-voltage fachor (
in y-axis and measuring the tip displacemexj ¢f the cantilever beam. The unit of the
y-axis is Newton (N) and the x-axis is meter (M), so the enclosed area represent the
transferred energy (J) and this plot is called work-cycle. Work-cycle is a simpliowa
show and compare the increased efficiency of the interface circuits for the energy

harvesting device. When the enclosed area is larger, it means the more energy are

and it can be easily plotted by measuring the
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transferred from the vibration energy and if the external energy is the same, larger

enclosed area means the higher efficiency. According to the equation (2.21), (2.23), and

(2.34), we can plot the work-cycles of the standard DC approach, parallel-SSHI and

series-SSHI techniques in the same plane at the optimal load as Figure 2-22 by giving

the same displacemenx ], force-voltage factord ), inverting quality factor ¢, ) and

clamped capacitorG,) to assume that it's the same piezoelectric patch connected to

different interface circuits.

Standard DC approach 1
= = = = Parallel-SSHI
| ==+ = Series-SSHI

. & ; |

V - -
aVe pqre +——— :

al:*I}C-S‘L(VRF-s71}(“—5)'%(}—7_' i |

aV(N) -

<o 1
PRt L
Fomome e’
r |
' o i
X %

I}C_ e —> V( of Standard DC approach
V. » —>V, of Parallel SSHI

V, ¢ =V, of Series SSHI

V,. s =V, of Series SSHI

__#®
— . 20
ic =¢€

Figure 2-22. Work-cycles comparison of different interface circuits.

As the enclosed area is the transferred energy from piezoelectric patch, the
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following are the discussion of each technique.
1. Standard DC approach:

The work-cycle of the standard DC approach is a parallelogram, so the area can be
calculated by the equation (2.35). And substitute the equation (2.21) into the equation
(2.35), the transferred energy of standard DC approach at optimal load can be obtain as

equation (2.36).

Epc = 20V pe- 2% = 40N oKX (2.35)

5¢ (2.36)

2. Parallel SSHI technique:

From the Figure 2-22, the enclosed area of the parallel-SSHI can be calculated as

equation (2.37). And by substituting the equatign, into equation (2.37), the

transferred energy of parallel-SSHI at the optimal load can be obtained as equation

(2.38).
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A

Eparater ssri= 20{\7@ P 2;(_(0!\7 e P_a\i e #d "()X (2.37)

= 4a\7C—P)2_(1_q LC)(ZVC—FX

a o a’.
Eraratier sshi= 4m 5¢ - c 'S (2.38)

3. Series-SSHI:

The enclosed area of the series-SSHI is also a parallelogram like standard DC
approach, so the area can be calculated as equation (2.39). And by substitute the

equation \7C into equation (2.39), the transferred energy of series-SSHI at optimal load

can be obtained as (2.40).

Eseries SSHI:{VP st |:_V c s+(V p sV £)§1 L}}-Zmﬁ

. pRre e (1+0) (2.39)
Co © (1_ q_c)
2@ (1+ae) (2.40)

E . =
Series- SSHI Co (1_ q_c)

Using the transformed energy of the standard DC approach as the standard, the
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ratio of the parallel-SSHI to standard techniquebls as equation (2.41) and the ratio

of the series-SSHI to standard techniqueEig as equation (2.42). Using different
inverting quality factor ¢, ) the energy ratio curves can be plotted as Figure 2-23.
From the plot, the energy ratio of the parallel-SSHI is always little higher than
series-SSHI and when the inverting quality factor is higher, the series-SSHI is much
closer to the parallel-SSHI. In the low inverting quality factor, the energyisatigher

than 1, it shows even high electrical losses in the synchronized switching technique the

efficiency is still better than standard technique.

E = Eparallek SSHI _ 2

1
" Eoc (1_ qLC) 2

(2.41)

E (1+0ac)
E.= series- SSHI _ (242)
" EDC (1_ qLC )
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Figure 2-23. Energy ratic, vs. Inverting factor g.
2.6 Theoretical analysis of interface circuits of structural damping
2.6.1 Synchronized Switching Damping on a Short circuit (SSDS)

Another application of the previous SSHI interfaces is semi-passive structural
damping. In this application, the synchronized switching technique is used to extract
energy from the structure in order to damp the vibration. One of these techniques is
called SSDS (Synchronized Switching Damping on Short circuit). It is a semi-passive
technique first presented by Richard et al. in 1999 [67]. The schematic diagram of SSDS
technique using piezoelectric patch is shown in Figure 2-25. The SSDS technique is

composed of a piezoelectric patch and two-way switches. The two-way switches usually
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are composed of two MOSFET (metal oxide semiconductor field effect transistor). The
equivalent circuit of SSDS technique is shown in Figure 2-25. The waveforms of the
SSDS technique are shown in Figure 2-26. The switches turn on when the disptacemen

x or piezoelectric terminal voltage, reaches to the maxima and minima value.

7, | 12

W

Piezoelectric patch ~\

Figure 2-24 Schematic diagram of synchronized switching damping on short circuit
(SSDS).

Figure 2-25. The equivalent circuit diagram of the synchronized switching damping on a
short circuit (SSDS).
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Figure 2-26. Waveforms of the SSDS technique.

According to the energy equation (2.7) and integrating over a period (T), the
energy equation can be expressed as equation (2.43). The first and second terms in the
right-hand side are kinetic and elastic energies. When integrating over a period, these
two terms will vanish as they are periodic function and the energy equation will be
simplified as equation (2.44). It means that the external energy will turn into viscous
energy (mechanical losses) and electrical energy dissipated in the interfacing circuit.
Thus the switching damping energy is shown in equation (2.45). The Vp waveform of

SSDS can be decomposed of two waveforvh&) and V,(t) as Figure 2-27(b) and

Figure 2-27(c). The piezoelectric patch is short-circuited during the LC resonance and
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most time in one period is open-circuiteld £0). So the magnitude of th¥, (t) can

be obtained from integrating the current flow out from piezoelectric pdich qver

half LC resonant period and is shown in equation (2.46).
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Figure 2-27Waveforms of (a) SSDS can be decomposed o#(i) and (c) V,(t) .
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As the V,(t) can be decomposed of two waveforms, the switching damping
energy can be rewritten as equation (2.47). Vh¢) integrate with the velocityX)
will turn into zero because they are 90 degree phase lagVJe is a 50% duty cycle
square wave so when integrating one period will equal to integrate only half period.

Finally, the SSDS switching damping energy can be expressed as equation (2.48).

E.=a jOTvl(t)thm j;vz(t)xdt (2.47)

T
Es ssps= O‘Jj V, (t)xdt = Oljoz [Zci )A(J xdt
’ (2.48)

2

a
=E =4
S-SSDS C,

2.6.2 Synchronized switching damping on an inductor (SSDI)

The synchronized switching damping on an inductor (SSDI) technique is proposed
in this sub-section. The SSDI technique is further improved from the SSDS technique
and presented by Richard et Al. in 2000 [68]. The damping ability of SSDI technique is
more powerful than the SSDS technique. The schematic diagram of SSDI technique

using piezoelectric patch is shown in Figure 2-28. The SSDI technique is composed of a
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piezoelectric patch, two-way switches and an inductor. The two-way switches usually
are composed of two MOSFET (metal oxide semiconductor field effect transistor) like
traditional switching technique. The inductor used here is like in SSHI technique and
through the resonance between the inductor and the clamped capacitor of piezoelectric,
the more energy can be attracted from piezoelectric patch to damp the structural
vibration. The equivalent circuit of SSDI technique is shown in Figure 2-29 and the
waveforms of the SSDI technique is shown in Figure 2-30. The switches turn on when
the displacementx or piezoelectric terminal voltage, reaches to the maxima and
minima value. From the Figure 2-30, there is a transient period. In this transient period,
the SSDI turns on and the terminal voltage of the piezoelectric patch will increase first
and then decrease to the stable state. In the SSHI technique, the piezoelectric patch is
low coupled to the structure, so the displacement is assumed to keep the same. When
SSHI technique turns on, the displacement doesn't be changed and the terminal voltage
will only increase to stable state. However, in SSDI technique, when SSDI turns on the
displacement will start to decrease and make the terminal voltage decrease. Finally the

system will reach to the stable state.
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"UH

Piezoelectric patch

Figure 2-28. Schematic diagram of synchronized switching damping with and Inductor
(SSDI).

Figure 2-29. The equivalent circuit diagram of SSDI technique.

SSDI starts to work
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Figure 2-30. Waveforms of the SSDI technique.

The SSDI waveform of the steady state (Figure 2-31(a)) is also can be decomposed
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of two waveforms as Figure 2-31(b) and Figure 2-31(c) like SSDS. As the equations
derived from the SSDS sub-section, the SSDI switching damping energy can also
expressed as (2.47). From the waveform, the behavior of SSDI technique is almost the
same as the series-SSHI and the only difference is the voltage of regulated capacitor
(V.) equals to zero. So according to the equation (8.29) and equation (8.26) and setting
the V. equals to zero, the voltagé, and voltageV, can be obtained as equation
(2.49) and equation @0). The V,(t) integrate with the velocityX) will turn into zero
because they are 90 degree phase lag and the SSDI switching damping energy will onl

be composed oW, (t) . Finally, the SSDI switching damping energy can be expressed as

equation (2.51).
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Figure 2-31. Waveforms of (a) SSDI can be decomposed of,(b) and (c) V,(t) .
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2.6.3 Discussion of the structural damping circuits

the SSDI can be usually higher than the SSDS around 4 times.
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(2.49)

(2.50)

(2.51)

Comparing the switching damping energy of the SSDI with the SSDS, the
switching damping energy ratioE(,) can be expressed as equation (2.52). Using
different inverting factor, the switching damping energy ratio can be plotted as Figure
2-32. The higher inverting quality factor can make SSDI technique more efficient than
SSDS technique but there is a limit of the SSDI. If the SSDI technique is efficient than
SSDS, the inverting quality factor needs to be higher téalas equation (2.53). In the

normal system, the inverting quality factor will be higher than 0.6 and the efficiency of



E 9
E — —SSsbl_ o LC (2.52)
* Es ssps (1_ q LC)

Eo>1=0q.>= (2.53)
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Figure 2-32. Switching damping ratigd=vs. Inverting quality factorg.

2.7 Summary of the interface circuits
In this chapter, a review of several interface circuits in energy harvesting and

damping applications is proposed. The basic governing equation, equivalent circuit
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model, waveform, optimal load and maxima output power are analyzed and discussed.
The output power and transferred energy are compared of each interface circuit. The
synchronized switching circuits in energy harvesting are theoretically always better than
the standard circuit composed of full-bridge rectifier. In the normal inverting quality
factor, the parallel-SSHI and series-SSHI can theoretically increase around 400% power
output at optimal load. From the discussion of the work-cycle, the transferred energy of
parallel-SSHI and series-SSHI are theoretically increased around 4 times. tii¢he
synchronized switching technique is used in the structural damping, the performance of
the SSDI is better than the SSDS but there is a limit of the inverting quality factor. In
the normal inverting quality factor, the switching damping energy of SSDI is around 4
times than SSDS. Whatever in energy harvesting application or structural damping
application, the higher inverting quality factor can lead better performance. But there is
a trade-off between inverting quality factor and the cost. The interface circypissed

will be used in the following chapters to further design and establish the more useful

piezoelectric energy harvesting device and piezoelectric structural damping system.
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Chapter 3 Tunable Resonant Frequency Power Harvesting Devices

Methodologies of using piezoelectricity to convert mechanical power to egctric
power with a cantilever beam excited by external environmental vibration were widely
discussed and examined. Operating in resonant mode of the cantilever beam was found
to be the most efficient power harvesting method, but in most cases that the resonant
frequencies of the cantilever beam is hardly matching with the frequency of external
vibration sources, such as mounting on a real world bridge. A cantilever beam based
tunable resonant frequency power harvesting device which will shift its resonant
frequency to match the external vibrationasweveloped and verified and will be
presented in this chapter. From the networks analysis results, the useful bandwidth can
be successfully extended. This system utilizes a variable capacitive load to shift the gain
curve of the cantilever beam and a low power microcontroller sampling the external
frequency and adjust the capacitive load to match external vibration frequency in
real-time. The underlying design thoughts, methods developed, and preliminary
experimental results will be presented. Potential applications of this newly developed

power harvesting to wireless sensor network will also be detailed.
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3.1 Introduction

From the research activities mentioned [11, 15-17, 28-36], researchers are

improving the power harvesting devices from all aspects, including mechanics design,

electrical signals, best materials, magnetic fields and adaptive power circuit design. In

comparison with these technologies, the newly developed technology presented in this

chapter derives its innovation from the interaction with the external excitation sources.

It is known that the mecharmitbehavior of the structure is hard to be controlled, and

most control technique will consume lots of the energy. In the energy harvesting

application, if the energy harvesting device needs to be used in the real application, it is

meaningless to control the mechanical behavior by using the external instruments and

external energy.

In the view of basic mechanics, when the external force excites one of the natural

frequencies of the system, resonant condition are meet and leads to large structure

vibrations. If the resonant frequencies of the power harvesting devices coincide with the

natural frequencies of the structure it mounted, much higher power output could be

expected due to higher gain on the resonant frequencies. However, the natural frequency

of the structure which power harvesting devices mounted on, such as bridges, scaffolds

etc., may change with time when the structure is under different loading conditions. For
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a power harvesting device based on a cantilever-beam structure has onlyconstant

resonant frequencies, it will not always be working at the best condition. A high

mechanical quality factor cantilever beam can bring larger displacement at resonant

frequency and generator more energy, but when the exciting frequency is away from the

resonant frequency high mechanical quality factor will cause larger attenuation. Thus

the best solution for this trade-off problem is to design a high mechanical quality factor

cantilever beam and the resonant bandwidth of this cantilever beam can be tuned. In a

short region bandwidth, the voltage gain of the cantilever beam will not attenuate and

the harvesting efficiency can be increased. An innovative real-time resonant frequency

tuning system which can tune the resonant frequency to match the natural frequencies

drifting of the mounting structure are proposed. The device can always worktat bes

condition during a short frequency range by tuning its resonant frequency to match the

external excitation frequency.

The technology proposed in this chapter utilized an ultra-low-power

microcontroller on real-time sampling the external excitation frequency which can be

combined with the wireless sensor on wireless sensor network(WSN) nodes, so as a

more efficient self-powed wireless sensor could be built. Sensor network typically

finds its applications in remote or difficulty to access areas, long-lasting batteries and
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wireless technologies are the two subsystems mostly used. Power harvesting techniques

provide the user with an opportunity to eliminate or at least reduce the frequency of

battery replacement, which is particular attractive for long-term applications related to

highly dangerous or remote areas. Adopting such techniques to improve the usage time

of portable electronics without increasing the pack weight is another area worth noting

considering the mobile computing trend in today’s information application.

3.2 Theoretical Analysis

In this section, theoretical analysis of a piezoelectric cantilever beam will be

conducted and through the simple analysis and the concept of the tunable frequency

system would be derived. The piezoelectric cantilever beam bend at 1st mode can be

shown as Figure 3-1, when boundary condition is one end fixed and the other end free.

. Free
Fixed ’__,]
L
I
7 ]

Figure 3-1. Cantilever beam bends at 1st Mode.
According to the theoretical analysis in the chapter 2, if the external electric load is
a capacitive loadC, shunt with a resistive loadR , the equivalent circuit model can
further be simplified by reflecting the static capacitof, capacitive loadC, and the

load R to the primary side of the transformer by times the square of the transformer
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turns ratio (force-voltage factor,x) and the simplified equivalent circuit model is
shown in Figure 3-2. The&C, equals toa’C,, C/ equals toa’C_, and R equals

to «’R_ after reflection.

Mechanical branch

Figure 3-2. Simplified equivalent circuit model.

The equivalent circuit model in Figure 3-2 is a simple serial-parallel loaded resonant

network (SPLR), the voltage gaim,(‘aF—Vo) represents the force to voltage output
E

gain, and it can be written as equation (3.1).

_ R I3/ jwC,
| |(R,+ joL,+1/ joC,)+ R, '||1/jeC,

A

(3.1)

av,
I:E

Wwhere C, =(G+Q)

Equation (3.1) can be further simplified and non-dimensionized Wi:t:hc% :
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!L ’L ;
wO:}/'_LmCm’ QL:”O %{ and QS:‘"O %ﬂ as equation (3.2).

A = (3.2)

o), o o o), k(o]
[(“k"k(wsj +QJ {QL(wa w}Qs[waﬂ

From equation (3.2), the two resonant frequencies of the RLC oscillator can be

obtained. One is the series resonant frequency and the other is the shunting resonant

frequency as shown in equation (3.3) and equation (3.4).

. = = 3.3
= JLc. (33)
P 0
L[ CaCe K
"\ C, +C,

For short circuit condition,C, =0 (k= 0), the circuit becomes a serial loaded
resonant network ando, is the resonant frequency. Whe@, is much larger than
C, (large K), o, = w, and the resonant would be closeddp again. For other finite
smaller capacitive loading values, the resonant frequency will bedhitween o,

and o, with C,=Cj (the open circuit condition). The value of capacitive load
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can then be varied to tune the resonant frequency within this frequency range. The force
to voltage output gain versus non-dimensionalizefiw; is plotted in Figure 3-3 by

using Q_ =1, Q,=1000 and k=0, 0.5, 1, 1.5 and. It's obviously to see that the in
different k value, the resonant frequency is successfully be shifted and when k value is
larger, the voltage gain increases.

From the view of mechanics, the stiffness of the cantilever beam is varied when the
electrical loading condition chaad The frequency tuning can be achieved by a simple
analog circuit or by sampling the external excitation frequency with a microprocessor,
and switch in an adequate capacitive value to tune the resonant frequency ntatching
the external excitation frequency in a small range. The circuit can be put on the sensor
node and control the frequency tuning with the low power microprocessor on the sensor

node.
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Figure 3-3. A, versus o/ ) plot.
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3.3 Experimental validation and discussion

3.3.1 Real bridge frequency measurement

In this sub-section, we want to know the behavior of the real bridge when the time

passes or the loading of the bridge changes. It is obviously that the amounts of the cars

go through a bridge will not be the same all day long and the cars may have traffic jams

on the bridge, so it means that the loading of the bridge is varying over time. From the

structural dynamics perspective, when the loading of the bridge changes, the natural

frequency of the bridge will be changed. When the time passes or the bridge encounters

to the natural disaster, the bridge will be fatigued and be destroyed and these reason will

also cause the natural frequency of the bridge be changed. If a cantilever-bedm typ

power harvesting device combined with wireless sensor networks is placed on a real

bridge to monitor the bridge, the resonant frequency of the cantilever beam will be

within narrow band width. When the natural frequency of the bridge changes, the

cantilever-beam typed power harvesting device cannot afdtie best condition. This

result cause the power harvesting device cannot always work matching the resonant

frequency of the bridge.

Figure 3-4(a) shows the experimental setup for measuring the vibration signal of

the bridge. The accelerometer is placed on the middle of the two bridge piers, because
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the middle point is the maximum displacement point and it is the best point to
harvesting the vibration energy. Figure 3-4(b) shows how to record the accelerometer
data. Through the conditioning, DAQ card and LabVIEW program of the notebook, the
measuring data of the accelerometer can be recorded in the notebook and then be

analyzed.

Acceleromete

Bridge Car @

\ e A Loyt
Accel it
1 cererometel ‘ Conditioning DAQ Notebook

& Conditioning

@ (b)

Figure 3-4. (a) Bridge Vibration Measurement (b) Measuring data record setup

Figure 3-5 shows the results of the real bridge vibration measurement. The bridge
is Jhonghsing bridgev’(&*#@) located in Taipei, Taiwan. There are three data sets
measured in different time in the Figure 3Each measuring time interval here is 800
sec. During each measuritigie interval, the loading of the bridge must be different as
different amount of the cars pass the bridge. Because the natural frequency of the bridge

must be very low and the frequency range we concern is under 100Hz, the measuring

84



sampling rate is set to be 5000Hz. From the measuring result, we can obviously see that

the three vibration signal are different from each other when the loading is different.

Vibration Signal of the bridge - 1 Vibration Signal of the bridge - 2

Voltage Measured from LabVIEW(V)
Voltage Measured from LabVIEW(V)

00 500 300 400
Time(sec) Time(sec)

(a) Vibration Signal of the bridge - 3 (b)
003

Voltage Measured from LabVIEW(V)

(©

400
Time(sec)

Figure 3-5. Three data sets of vibration measurement results of the bridge.

Then three measuring data sets are taken into Fast Fourier Transformation (FFT),
and the FFT results are shown in Figure 3-6. The results are sorted from the frequency
range from 65Hz to 85Hz and three FFT results show the resonant frequencies are a
little shifting from each other under different loading. The resonant frequency range is
around 2.5Hz. If the resonant frequency of the tunable energy harvesting device is

designed to match in this 2.5Hz range, it can work better and harvest more energy.
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Figure 3-6. FFT of the vibration signals.

3.3.2 Piezoelectric energy harvesting cantilever beam testing

The experimental setup of the piezoelectric energy harvesting cantilever beam is
shown in Figure 3-7. The experimental setup is composed of a bimorph piezoelectric
clamped at fixed end, a function generator generating the vibration signal, a vibrating
shaker generating exciting source and a photonic sensor measuring the displacement.
The instruments and model are shown in Table 3-1. The piezoelectric patch used here is
bimorph type made by Mide Corporation and the model is QP25W. The dimension and
the parameters are shown in

Table 3-2. The bimorph piezoelectric cantilever beam is composed two

piezoelectric patches as Figure 3-8 and the two patches can be used separately. This
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QP25W bimorph piezoelectric is suitable for power harvesting as its good performance

for charging the battery [79].

Full-Bridge Rectifier

\ 4

Super Capacitor (0.047F

——

\ 4

Function Generator
(AFG320)

g Q Bimorph Piezoelectric (QP25W)
I I T T Fotonic sensor (MTI12000)
ooooo
OO0 ©0O
Power Amplifier Vibration Shaker @ [ 1100

(HSA4052)  (Briiel& Kjeer 4809)
Figure 3-7. Experimental setup of the tunable energy harvesting device.

Table 3-1. Instrument list

Instrument Company Model
Function generator Tektronix AFG320
Power Amplifier Briel & Kjeer 4809
Vibration Shaker NF Corporation HSA4052
Fotonic Sensor MTI Instruments Inﬁc. MTI2000

[T
1ZEw

= —

Figure 3-8. Bimorph piezoelectric cantilever (QP25W) from Mide corporation.
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Table 3-2. Dimension and parameters of the piezoelectric cantilever beam.

Symbol | Description Value (unit)
Size | LengthxWidthxThickness 2x1.5%0.02 (if)
fop Open circuit resonant frequency 76 Hz
fon Short circuit resonant frequency 73.55Hz
K? Electromechanical courpling coefficent 0.0677

C Damping ratio 0.054
Qwm Mechanical quality facotr 9.19

M Mass 51¢g

KE  |Equivalent stifiness when all piezoelectric element is in shioit 1163.2 N/m
KP Equivalent stiffiness when all piezoelectric element is in opeutci 1089.4 N/m
D Damping coefficient 0.265 N/m/s
a Force-voltage facotr 0.35 NV
Co Clamped capacitance of 330nF

The piezoelectric energy harvesting device is tested under different excitations at
short-circuit resonance and the results are shown in Figure 3-9. Figure 3-9(a) shows the
capacitor's voltage versus charging time curves when the device charges to a 0.047F
super capacitor under different excitations. When the exciting source increases, the
charging time decreases. The total charging energy can be calculated by using

(1/2)CV?, whereC is the capacitance value and Vs the terminal voltage of the capacitor

And the average harvesting power can be calculated by dividing the total charging
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energy by the charging time when the voltage reaches the target value. The target
voltage here is set at 4V for calculating the average power. Figure 3{8fl)s the
results of the power output of piezoelectric patchinder different excitations. When

the displacement is under 0.08mm, the relation between power output and displacement
is almost a linear line. However, when excitation goes too large the power output won't
increase linearly. This result shows that the excitation should be limited in the elastic
region or the device may be broken. In order to keep the piezoelectric cantilever beam
working in the linear region, the acceleration of the following testing is set to 6.5m/s

(displacement = 0.017mm).
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Figure 3-9. Piezoelectric energy harvesting cantilever beam testing results. (a) Charging
time curve (b) Output power under different excitation.

3.3.3 Network Analysis
In order to demonstrate the function of the tunable frequency system, the shifting

resonant frequency effect will first be verified through SRS Network Signal Analyzer
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SR780, and the experimental setup is shown in Figure 3-10. The microprocessor is used

to choose different capacitor load according to the exciting frequency. The upper patch

of the bimorph piezoelectric configuration is used for the frequency tuning purpose

through the microprocessor to sample the exciting frequency and connected to different

camcitors loadings. According to the theory when the capacitor loadings are changed,

the resonant frequency of the piezoelectric cantilever beam can be tuned to match the

exciting frequency. The lower piezoelectric patch is used to harvest energy and

regulated to a DC voltage by a full-bridge rectifier to charge a 0.047F supertcapa

The super capacitor can then provide the extra energy for wireless sensor network nodes

and extend the battery life time.

The testing results are shown in Figurd13-The short-circuit condition (star

points) and the open-circuit condition (triangle points) are two extreme conditions and

the resonant frequencies are 73.5Hz and 76Hz respectively. Around 2.5Hz frequency

range is the tunable bandwidth on this system. The resonant frequency of the system can

be changing within this 2.5Hz range by switching in different capacitive loads as Figure

3-11 shown. This tunable bandwidth and resonant frequency almost fit the measuring

results from the real bridge and can be used in the real application. When the tuning

patch of the bimorph piezoelectric is shunted to the 0.16uF and 0.078uF capacitor, the
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gain curve can be tuned between the two extreme conditions and through proper

switching control the gain curve of the tunable frequency system can be extended and

smoothly changed between short-circuit and open-circuit condition as the experimental

results (round points). Comparing the tunable system curve with short-circuit,

open-circuit and other single capacitive loads, the resonant bandwidth is obviously

wider and the harvesting efficiency can be effectively increased.

Choosing Different Capacitors

Microprocessor of the Sensor Networks ) ) ) )

-

T Bimorph Piezoelectric
ooooo
00 oof—dd G

Vibration Shaker Power Amplifier SRS 2 Channel Network Signal Analyzer

Figure 3-10. Network analysis of the tunable energy harvesting device.
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Figure 311. Experimental results of the network analysis.
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3.3.4 Charging the Capacitor with Chirping and Random Frequency Excitations
3.3.4.1 Frequencies slightly away from the resonance test

In order to evaluate the difference of harvesting efficiency when the piezoelectric
energy harvesting cantilever beam excited under slightly different frequencies around
the resonance, a 0.047F super capacitor is charged by the power harvesting device under
short-circuit condition (resonant frequency = 73.5Hz) at acceleration=8.5nTke
testing results are shown in Figure 3-12.

We can see that the super capacitor reaches the target voltage 4V in shortest time
when excited at the resonant frequency (73.5Hz). When the system is excited at 72.5Hz,
1Hz away from the resonance, the charging time spends more than 50 seconds to reach
the target voltage. And when the system is excited at 71.5Hz, 2Hz away from the
resonance, the charging time spent are longer than 200 seconds.

When piezoelectric energy harvesting cantilever beam is excited at resonant
frequency (73.5Hz), its average harvesting power output is around 0.859mW. When the
beam is excited 1Hz away from the resonant frequency (72.5Hz), its average harvesting
power is around 0.778mW and 2Hz away from the resonant frequency (73.5Hz), its
average harvesting power is around 0.578mW. From average power results, if the

resonant frequency can be tuned for 1Hz, the average harvesting power will increase
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10.4%, and if the system can be tuned for 2Hz , the average harvesting power will
increases 48.6%. When 3Hz or more away from the resonant frequency, the voltage of
the super capacitor is hdydo reach to 4V, even cannot reach the target voltage. This

results show that in a quality factor system, to match excitation frequencies with the

resonance is very important.

Comparing different frequency charging time

Voltage of the Super Capacitor(V)

0 T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400
Time(sec)

Figure 3-12. Charging time of external excitations at different frequency.

3.3.4.2 Chirping and random frequencies excitation testing
The testing of the above sub-section excites the energy harvesting system at the
single frequency under short-circuit condition to show how the tunable technique use to

increase the energy harvesting efficiency. The real-time frequency tuning energy
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harvesting device is then tested in chirping frequency and random frequency excitation
under different frequency range. The exciting signal source is provided by the
LabVIEW program to generate the chirping frequency and random frequency with a
DAQ card (USB 6259) and drive the vibration shaker through a power amplifier. The
testing chirping and random frequency ranges are both from the wider frequency range
to the narrowr frequency range. There are four testing ranges: 1.Bandwidth=40Hz
(55~95Hz), 2. Bandwidth=20Hz (65~85Hz), 3. Bandwidth=10Hz (70~80Hz) and 4.
Bandwidth=4Hz (72~76Hz). The tunable energy harvesting device still charges to a
0.047F super capacitor and the charging voltage curve versus time of the four testing
ranges are shown in Figure 3-13 to Figure 3-16, the testing curves (a) are all chirping

testing and (b) are all random testing.

Chirping Frequency from 55Hz to 95 Hz Random Frequency from 55Hz to 95 Hz

s S
<
5 0-29?‘”'2)’\’ Pt 0.184mwW
= < r .
5, 0.33MW oottt 3, 0.219MWL"  sasstilees™”
= ,
Ao @ s
g e 0276mw | & 0.165
S =~ .165mwW
g e o
5 3 Ak =
3 asse” g°
> 2ol S
o T /,v" » I
Q 2 s ] 2
£ # £
o = L .
o —3¢— With tunable frequency system g x*)( 2 —>¢— With tunable frequency system
o 1 —A— No tunable frequency system - Open condi o1 > —A— No tunable frequency system - Open condi
‘_j —@— No tunable frequency system - Short condifion| 9 —@— No tunable frequency system - Short condifion
3 o
> >
0 T T T T T T T T OF— T T T T T T T T T T T T T
I I I I I I I I I I I I I I I I I I I I I

o

200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600
Time (sec) Time (sec)

@) (b)
Figure 3-13. Chirping (a) & Random frequency (b) from 55Hz to 95Hz.
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Figure 3-14. Chirping (a) & Random frequency (b) from 65Hz to 85Hz.
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Figure 3-15. Chirping (a) & Random frequency (b) from 70Hz to 80Hz.
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Figure 3-16. Chirping (a) & Random frequency (b) from 72Hz to 76Hz.
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These experimeal results can verify our tunable energy harvesting system. Table

3-3 and Table 3-4 summarize the power output of the chirping and random frequency

testing results. The increased power is calculated by using the short-circuit condition to

be the reference and the increased power is calculated using equation (3.5).

Table 3-3. Chirping frequency testing results.

Average Power Output (mW)

Frequency range Short-Circpit Open-cirguit Tunable Systéncreased power (%
55 to 95 Hz 0.276 0.298 0.33 19.57
65 to 85 Hz 0.345 0.372 0.409 18.55
70 to 80 Hz 0.561 0.66 0.723 28.88
72 to 76Hz 0.606 0.671 0.737 21.62

Table 3-4. Random frequency testing results.

Average Power Output (mwW)

Frequency range Short-Circpit Open-cirguit Tunable Systéncreased power (%
55 to 95 Hz 0.165 0.184 0.219 32.73
65 to 85 Hz 0.261 0.284 0.313 19.92
70 to 80 Hz 0.384 0.427 0.495 28.91
72 to 76Hz 0.495 0.57 0.66 33.33

Tunable system power outf

Increased power= — (3.5
Short-circuit power output

In the chirping frequency testing results, four testing frequency ranges can all reach
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mW level power output and the average power output is around 0.3mW, 0.38mW,
0.65mW and 0.67mW for each range. The tunable resonant frequency energy harvesting
device can increase the power output around 19.57%, 18.55%, 28.88% and 21.62% for
each frequency range. The maxima increased power is 28.88% and occurs when the
chirping testing frequency range is 70 to 80Hz. The charging time can be shorted around
170 seconds.

In the random frequency testing results, the average power is around 0.19mW,
0.29mW, 0.44mW and 0.58mW for each range. The tunable resonant frequency energy
harvesting device can increase the power output around 32.73%, 19.92%, 28.91% and
33.33% for each frequency range. The maxima increased power is 33.33% and occurs
when the chirping testing frequency range is 72 to 76Hz. The charging time can be
shorted around 160 seconds.

In the two testing conditions, the both average power increases when the testing
range narrows. Comparing the chirping frequency testing results with the random
frequency testing results, the output power of the chirping testing is higher than random
testing. However, the tunable energy harvesting system used in random frequency
testing can increase power output more than in chirping testing case. That's because

when exciting signal is random frequency and if the exciting frequency is changed
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instantaneously from the resonance to non-resonance, the piezoelectric voltage will

decrease immediately to induce the full-bridge rectifier turning into open-circuit

condition and the charging current discontinued Because the charging current

discontined the charge time will increase. The tunable frequency energy harvesting

system is very suitable to be used in the random exciting source and the random

exciting source is more closed to the vibration sources in real world. The tunable

techniqgue make the resonance of the system changed with the exciting frequency and

this wide resonant bandwidth keeps the charging current continuous and effectively

increase the output power. This real-time resonant frequency tuning system shows

significant improvement on average harvesting power output.

3.3.5 Implement the tunable frequency power harvesting function on a Wireless
sensor network transceiver module

The real-time frequency tuning capability can be achieved by integratingawith

wireless sensor with the low-power microcontroller on a wireless sensor to sample the

external excitation frequency and changing the loading capacitor to tune the resonant

frequency of the cantilever beam. Figure 3-17 show a wireless sensor transceiver

module which uses an integrated Chipcon CC1010 microcontroller with built-in

wireless transceiver circuit and analgdigital converters for sensor signal interfacing.
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The microcontroller was programmed to control the frequency tuning harvesting device.
It hasto be noted that general microcontroller will consume several tens mW power
which is much higher than the energy harvesting devices can generate. However,
modern low-power microprocessor can operatgWhlevel. It would be worthy to pay

the price ofuW power consumption in operating microcontroller to tune the frequency

and gain much higher harvesting power generation in mW range.

Antenna

Connectors
reserved
for sensor

Power connector  Chipcon CC1010

Figure 3-17The wireless sensor transceiver module using Chipcon CC1010 integrated
microprocessor.

Figure 3-18 shows the circuit schematic of the wireless sensor network (WSN)
transceiver module implemented the tunable frequency function for piezoelectric
energy harvest and Figure 3-19 shows the photos. The energy harvested from the
piezoelectric cantilever beam is stored in the super capacitor C1 through a full-bridge

rectifier. Here, we still use a battery to supply the energy to the WSN module and the
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piezoelectric energy harvesting device provide the extra energy to extend the lifetime of
the battery by proper switching control.

Figure 3-20 shows the schematic diagram of the switching control for supplying
energy to the WSN transceiver module. The voltage of the capacitor C1 and the battery's
voltage of the WSN transceiver module are compared by a Schmitt trigger circuit which
is composed of a TLV3494 voltage comparator. When the C1's voltage is charged higher
than the battery's voltage, the analog switch (TS5A4596) will switch the C1' terminal to
connect to the WSN module and supply powethe WSN transceiver module. The
switching signal will also be sent to the WSN transceiver module and the triggers the
transmitting procedure. When the WSN transceiver module started transmission, the
C1l's voltage will drop immediately and the switching control will switch the power
supply back to the battery. And then the C1 will be charged by piezoelectric energy
harvesting device until the voltage is higher the target level. The regulator (TLV70230)
regulates the voltage of the super capacitor to provide a stable voltage. In this circuit,
Schmitt trigger plays an important role to generator the hysteresis. The hysteresis can
make the system more stable, because when the voltage of the capacitor decreases, the
power switching control will not switch the circuit to the battery supply mode

immediately.
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Figure 3-18. Electric circuit for the wireless sensor network combined with piezoelectric
energy harvesting system.

Figure 3-19. Electric circuit photos.
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Figure 3-20. Schematic diagram of the switching control for supplying to the WSN
node.
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Figure 3-21 shows experimental result of the battery, energy harvester switching

and the transceiver transmission scheme. In Figure 3-21, left half part shows the module

tries to register itself in the registering interval and right half part shows the

communication behaviors after it is successfully registered.. If in this registering time

interval, switching control switches the system immediately to the piezoelectric energy

harveser to supply power, the system will go back to the battery supply mode just as

shown in left half part. That's because the piezoelectric energy lewashot provide

the enough energy for the module workingthe registering interval. The switching

control will switch the power supply mode back and forth between battery supply and

energy harvester. After all the sensor nodes have already registered, the sensar node ca

be arranged by the local control center to sleep in idle mode or to transmit the RF signal

in active mode. When sensor node works in idle mode, the battery provides the system

energy and in this time interval the piezoelectric energy hawestl harvest the

ambient vibration energy. When the voltage is charged over around 2.3V (set by

comparator), the switching control will switch the system to the piezoelectric supply

mode to provide energy and sensor node will be in the active mode to transmits the RF

signal. After sensor node transmitting the RF signal, the voltage drops down and the

system will go back to the battery supply mode. Under this switching scheme, the
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sensor network node can work longer through combining with piezoelectric energy

harvesters and batteries.
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. — | | R _
L l >
4 Registering Already registered
35
S x Ix h
>
g 25
g 2 #
15 \
! Transmit RF Signal
05 L
0
2 0 2 4 6 8 1

Time (sec)
Figure 3-21. Experimental result of battery switching and the transceiver module
transmission scheme.

3.4. Conclusion

In this chapter, we present the theoretical analysis and experimental results of the
tunable resonant frequency system on a piezoelectric energy harvesting cantilever beam
device. The real-time resonant frequency tuning system is further demonstrated by using
a microcontroller on a wireless sensor in sensor networks. The tunable frequency

technique can extend the resonant frequency range around 2.5Hz and increase the
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average harvesting power output almost 30% when under chirping and random
frequency excitation testing. This significant power improvement can be expected due
to the nature of high mechanical quality factor. From the final experiments, this tunable
frequency system can be successfully combined with the wireless sensor network to
transmit the RF signal. By integrating the tunable resonant frequency harvesting device
with wireless sensor network system, a more powerful self-powered wireless sensor

could be built and the battery lifetime can be effectively extended.
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Chapter 4 A self-powered switching circuit for piezoelectric energy

harvesting with velocity control

In this chapter, a self-powered piezoelectric energy harvesting device is proposed
based on the velocity control synchronized switching harvesting on inductor technique
(V-SSHI). In chapter 3, in order to use the tunable technique in the real applications, a
WSN module is necessary to be used to get the exciting frequency and change the
electrical load. To further improve the power output, synchronized switching techniques
iIs proved to be effective on enhance the overall power output. To simplify to overall
system design the main focus in this chapter is to realize the synchronized switching
technique to be a self-powered system.

Comparing to the standard full-bridge rectifier technique, the synchronized
switching harvesting on inductor (SSHI) technique can highly improve harvesting
efficiency. However, in real applications when the energy harvesting device is
associated with wireless sensor network (WSN) nodes, the SSHI technique needs to be
implemented and requires to be self-powered for a reasonable and neat design. The
conventional technique to implement self-powered SSHI is to use bipolar transistors and
diode as voltage peak detector. In this chapter, a new self-powered design is proposed,

using velocity control to switch the MOSFETs more accurately than in the conventional
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technique. The concept of the design and the theoretical analysis are presented in detail

andexperimental results are used to examine to concept of the design.

4.1 Introduction

Nowadays with improvement and rapid growth of low-power electronics, it is

possible to supply portable devices such as mobile phone, MP3 player, wireless sensors

and human or animal detecting devices, with harvest energy from ambient. Among these

low-power devices, wire-less sensor network (WSN) is one of the most important and

valuable applications which is highly investigated. Wireless sensor networks can be

used to monitor the health of structures, environment, wild animals, tire pressure of

running cars, etc. In most of WSN applications, the devices are far from the power line

or the devices need to be embedded into the structure to monitor. So, it is hard to use

power line to transmit energy to device; battery is the only conventional solution.

However, there are lots of disadvantages with using batteries. The major problem is the

lifetime: using a 3 V battery a WSN module can only be operated for 1 or 2 years. The

batteries cannot be a permanent energy supply for a WSN module. A WSN module with

self-powered system can be operated for a longer time without replacing the battery.

Harvesting the ambient energy close to the sensor nodes of the WSN is the most likely
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and suitable solution to extend the its lifetime [21-25, 80-84].

As mentioned in the chapter 1 and chapter 2, the Synchronized Switch Harvesting

on Inductor (SSHI) technique is a very successful and efficient technique to boost the

output power from piezoelectric [32, 33, 46, 85]. This approach is derived from a

semi-passive damping technique: Synchronized Switch Damping on Inductor (SSDI)

[67, 68]. The SSHI technique consists in adding up a nonlinear switching. This

nonlinear process increases the output voltage of the piezoelectric elements that increase

the output power. The switching device is triggered at the zero crossing of velocity. In

order to realize the synchronized switching technique in real applications without

external power source to supply the system, many researches present self-powered

supply system for piezoelectric energy harvesting devices [23, 37, 53, 54]. The design

concept of self-powered system proposed by Lallart and Guyomar [53] is shown in

Figure 4-1. This conventional self-powered system works by using a peak voltage

detector to control the switching time for SSHI technique. However, the energy

supplying to the peak detector and the switching control is drawn from the piezoelectric

device. Tle energy losses in the circuit can be accurately controlled by circuit design;

the larger excitation levels leading to relatively smaller losses. As the conventional

self-powered system uses peak detector, there is always a phase lag between the peak
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voltage and the actual switching time. Moreover, the phase lag for large excitation level

is less than for a small one [54].

In this chapter, we present a new self-powered piezoelectric energy Imayvesti

system using velocity control SSHI technique, called "V-SSHI". The schematic design

concept of self-powered velocity control SSHI is shown in Figure 4-2. The SSHI used

herein is in series type (inductor and switch are in series with piezoelectric patch).

Comparing to the conventional design concept, the piezoelectric material is separated

into three parts. The main part is dedicated to harvest ambient vibration energy. The

second small part is designed to supply energy for switching MOSFET and the last

small part is designed for velocity control and for switching on the optimal time. There

are two major advantages of this new technique: (1) theoretically, there is no phase lag

by using velocity control signal to determine the switching time; (2) the supply energy

for the switching driver can be designed and optimized by the size of the piezoelectric

material.

The energy flow chart of the conventional self-powered technique and the

self-powered V-SSHI technique is shown in Figure 4-3. There is a common path for the

main stream of energy and for the supply of the self-switching system. In the V-SSHI

technique, they are three energy paths. The energy supplying the self-switching system
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and the velocity control patches can be designed optimally. The theoretical analysis and

modeling of the self-powered V-SSHI is presented in detail in section 4.2. The

experimental results comparing standard DC approach, conventional self-switched

technique and V-SSHI technique are presented in section 4.3. The experimental results

show higher output power of the V-SSHI technique over conventional technique.
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Figure 4-1. Schematic design concept of conventional self-switched system.
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Figure 4-2. Schematic design concept of velocity control SSHI self-switched system.
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Figure 4-3. Energy flow chart (a) Conventional self-powered technique (b)
Self-powered V-SSHI technique.

4.2 Theoretical Analysis of the self-powered V-SSHI technique
4.2.1 Standard DC technique

Before talking about the models of the V-SSHI technique, the standard DC
technique is proposed to be a reference. The schematic diagram of piezoelectric energy
harvesting transducer with full bridge rectifier connected to a resistor is shown in Figure
4-4(a). Figure 4-4(b) shows also the key waveforms of the standard DC approach. When
the absolute voltage value of the piezoelectric patehsMess than voltage &/ the
diode bridge is in open-circuit. The diodes conduct and piezo-patbhege the load
only when \4 reaches load voltagecVThe detail theoretical analysis is already derived
and discussed in the chapter 2. Because in the next sub-suction, the theoretical and
experimental results of the standard DC approach will be shown to compared with

V-SSHI, here the voltage crossing the resistog) (dnd output power (P) can be
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expressed as equation (4.1) and equation (4.2)

vajizfgfc v,

Piezoelectric patch

M~
o

Load : Resistor -¥[~

(@)

Figure 4-4. (a) The schematic diagram of the Standard DC approach and (b) waveforms.
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4.2.2 Self-powered V-SSHI technique

According to the self-powered V-SSHI concept presented in Figure 4-2, the model
can be easily separated into three parts. The details are presented hereunder.
4.2.2.1 Main patch for SSHI

The main patch concerned with our new concept is designed to act like a classic
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SSHI technique. The schematic diagram of a SSHI technique is shown in Figure 4-5.
The fundamental concept of SSHI is to use an inductor L and achievingradddance
between piezo-patch and L. Throughglt@sonance and switches to confine the current
flow, more power can be harvested from the piezo-patch. Assuming the structure is
excited at the mechanical resonance frequency, the excitation source can be modeled as
a current source leq. Figure 4-6 shows the waveform of series-SSHI including voltage
across piezoelectricpv, current source leq and displacement x. The detail equations are
already derived and discussed in the chapter 2. The voltage crossing the load resistor
(V¢) and power output (P) can be expressed as equation (4.3) and equation (4.4). The
theoretical results and experimental results will be shown, calculated and compared in

the next sub-section.

: J
( T
Piezoelectric patch

Figure 4-5. Schematic diagram of SSHI piezoelectric energy harvesting device with full

é_

bridge rectifier to a resistor load.
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Figure 4-6 Waveform of the SSHI piezoelectric energy harvesting device.
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4.2.2.2 Auxiliary patch for supplying comparator

The second piezoelectric patch is designed to create two stable supply voltages +V

cc and —V¢c to supply energy to a comparator and make V-SSHI self-powered and

self-switched. The velocity control input signal of the comparator is discussed in next

part and the output signal of the comparator drives the two switches (NMOS and PMOS
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pair). The equivalent circuit of the supplying circuit is depicted Figure 4-7. The two
diodes [} and I rectify the positive and negative current flow, Cr regulates the voltage
between +¥c and —Vcc , G regulates the voltage between ctMo GND and G
regulates thevoltage between —Vcc to GND. The voltage ¥ can be obtained by
integrating from the interval ;Tto T3 as equation (4.5) and the output power can be

represented byVz./ R., as equation (4.6). ResistoR, is the equivalent load

between +\¥cand -V cc.

b ) . e A A A
N E (P 59 ®- 0 @O x
v, | \-\r:.g‘; / \w_ s
1 C L = ,J ‘
CP C:N Ve -—\J— i-" ""I"" —
<\ T1 TZ T3
@ (b)

Figure 4-7. (a) The equivalent circuit diagram of the supplying circuit. (b) Waveform of
the supplying circuit.
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4.2.2.3 Sensor patch for velocity control

The third patch is designed for generating the velocity control signal. The
equivalent circuit is shown in Figure 4-8(a). A low value resistgrisRconnected in
parallel with the patch to sense the mechanical current leq. A passive low-pass filter is
used to reduce the high frequency noise. When SSHI works, the high frequency noise of
the velocity signal is very large, so it is impossible to apply directly voltagéoV
comparator and the high frequency noise will make the comparator output unstable
during the switching interval. The current sensing resistor used herein must be small
enough to avoid the effeof the piezoelectric capacitance. The low-pass filter should be
carefully designed to guarantee there is no phase lag for the considered frequency. The
key waveforms are also shown in Figure 4-8(b). The blue linés\the open-circuit
waveform of the piezoelectric patch and the red lirasvthe velocity control signal
which is in phase with leq. There is 90 degree phase lag inherently betgaad W .
When the circuit switches by velocity control, the switching time can be accurate; the

current is always in phase with voltage when SSHI works. The power output from
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piezoelectric can be always positive.

Vp open circuit

.
— with Re
Passive 4
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Figure 4-8. (a) The equivalent circuit diagram of the sensor patch (b) Waveforms.

4.3. Experimental results and discussion
4.3.1 Experimental setup

The experimental structure under testing is a cantilever steel beam. Three 31-type
PZT-QA piezoelectric ceramic patches provide by the company ELECERAM were
bonded on the beam. Table 4-1 gives the dimensions of the beam and the patches.
Figure 4-9 shows the experimental setup and the self-powered V-SSHI circuit diagram.
Figure 4-10 shows a picture of the experimental setup. In the experimental setup, the
SSHI circuit part is a little bit different from the one of Figure 4-6, but it works
identically. The four diodes act like a full bridge rectifier to confine the current flow and

the inductor is in series with;pathch.
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The cantilever beam is excited by a vibration shaker (LDS-V406). Three

piezoelectric patches {Ro P; ) are bounded close to the fixed end. An accelerometer

(PCB-353B03) is situated at the fixed end to measure acceleration; a laser vibrometer

(LK-G32) measures the displacement at the free end.tRe main patch for harvesting

power. The circuit connected tq for SSHI is composed of several parts: an inductor L

for LCp resonance to enhance the power; four Schottky diode® (D) for confining

the current flow; the load composed of a resistor and a capacitor; NMOS (2N7002) and

PMOS (NDS0610) pair for positive and negative switching. There are two stages for

switching:

-when velocity crosses zero from negative to positive, voltage Rt the maximal

positive value, the NMOS is switched at this time and the SSHI process will occur

through the path L-D-LOAD-D3; -NMOS.

-the negative stage works with the same logic through the pathllOBD-D, -PMOS.

Patch R is connected to circuit composed of two Schottky diodes and three

capacitors to generate the positive voltagegscrahd —Vc for supplying comparator

(TLV3701). Voltage \&c should be larger than 2.5V to make sure that the comparator

fully works to drive MOSFET. The comparator chosen here is a nano-power comparator

from TI and the supplying current is only 560nA/per channel. This nano-power
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comparator is very easy to drive and suitable for low power circuit design.

Patch R is designed for velocity control. It is connected to a current sensing
resistor followed by a passive low-pass filter. The resistor used herein is small enough
to make sure there is no phase lag. The velocity signal noise (sine wave ideally) is
attenuate by the low-pass filter. A comparator is used in order to generate the switching
signal (square wave ideally) to drive NMOS and PMOS. The low{péessis designed
to reduce high-frequency noise without phase lag. Figure ghows the experimental

waveforms of the self-powered V-SSHI device.

Table 4-1. Dimension of the electromechanical transducer.

Steel beam
LengthxWidthxThickness 168.5mm x 94.3mm x 15mm

First bending mode 41.4Hz

Piezoelectric pathes (PZT-QA)

P1 38.1mm x 16.5mm x 0.5mm
P2 15mm x dHmm x 0.5mm
P3 15mm x S5mm x 0.5mm

118



P1

P:[
Velocity Power
sensor supply

l — Ve
\ L SSHI EgDB ol
-
|

Veout J

Low pass filter _Comparator

it

Figure 4-9. Experimental setup and circuit diagram of V-SSHI device.
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Self-powered V-SSHI circuit

Figure 4-10. Picture of the experimental setup and circuit.

4.3.2 Experimental results

Figure 411 shows three waveforms:
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- black line \k is the waveform of the piezoelectric patch P
- blue line \&outis the output waveform of the comparator,
- red line \& is the velocity control signal after the low-pass filter.

Although there is still some high frequency noise in the velocity control signal V
the comparator work still well; it is a trade-off between reducing noise and phase lag.
Observing waveform ¥, we can note that the switching time occurs almost at the peak
value of the voltage. The model parameters, identified by measurements, are given in
Table 4-2. The experimental and theoretical results of output power are shown in Figure
4-12. All experimental data are acquired for the same acceleration (a =2p.5fs
theoretical curves for standard DC and standard SSHI are drawn from equations (4.2),
equation (4.4) and parameters are in Table 4-2. The standard DC experiment (measured
using Figure 4-4(agircuit) and ”SSHI-Experiment” (measured by power supply and
function generator using Figure 4-5 circuit) are the reference lines compared to
theoretical lines; results show good agreement with predictions. Piezoelectric patch P
can be replaced by a smaller one. So, in the experiments of this study, the effect of patch
P; is neglected. The experimental results (blue point) cal®8HI-Experiment” are
measured on the conventional SSHI technique powered by external switching signal.

The self-powered V-SSHI technique (red point) is measured by only one patdiné
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output power of V-SSHI circuit is lowehan the one of "SSHI-Experiment” circuit,
because the energy is split to supply the auxiliary self-powered circuit. In torder
establish the self-powered system, there has to spend parts of energy to supply the
electrical circuit. The conventional self-powered technique proposed by [54] is the line
with green points. Experimental results show that the maximum output power of
self-powered V-SSHI is higher than the conventional technique, essentially due to the

efficient phase control.
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Figure 411. Experimental waveform of the self-powered V-SSHI.
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Table 4-2. Measurements and model parameters.

f, Short circuit resonance frequency 41.41 Hz

f,  Open circuit resonance frequency 41.45 Hz

& Open circuit damping coefficient 0.00105
Q  Quality Factor 2.6
V, Diode drop voltage 0.3V
Clamped capacitance of R 25nF
Co the piezoelectric element E 3.5nF
P, 3.5nF

@  Force-voltage coupling factor 0.00069 N/V

k? Electromechanical coupling coefficient 0.00193
M Mass 1829

e Equivalent stifiness of the structure .

when piezoelectric is short-circuited 12320Nrit

D Damping ratio of the structure 0.1 Nm's*?

Power VS Resistor Load

25
= == = = Standard DC-Theory
-1 & @& @ standard DC-Experiment
SSHI - Theory
20 — @® @ @ ssHI-Experiment
’ A A A Selfpowered V-SSHI
& @ @ Conventional Self-powered
=15 =
2 |
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05 —
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Figure 4-12. Experimental results.
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4.4 Conclusion

In this chapter, a self-powered V-SSHI piezoelectric energy harvesting is proposed

and this is a new design concept which is different from the traditional design. Based on

the outstanding performance of SSHI technique, the self-powered V-SSHI circuit is

fully self-powered, requiring no external power supply and though the velocity control,

the switching time can be more accurate than with state-of-the-art techniques. The

performance of the conventional self-powered circuit is close to the theoretical values of

the SSHI; however, it requires an excitation level high enough to work properly [22]. In

the self-powered V-SSHI technique, the excitation level dbesifiluence the

performance and when the supply voltage of the comparator is larger than 2.5V, the

whole circuit fully works. The experimental results show better performance and lead to

a gain of around 200% compared to the standard DC approach. Of course, the V-SSHI

output power is lower than the theoretical SSHI, because the energy is split to supply

the auxiliary self-powered circuit. The architecture proposed in this chapter is more

beneficial and represents a new step of the design concept. This circuit is easily used in

real applications and may be combined with wireless sensor networks.
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Chapter 5 Study of a Piezoelectric Switching Circuit for Energy
Harvesting with Bistable Broadband Technique by
Work-cycle Analysis

In order to increase the output power of the piezoelectric energy harvesting in all
aspect including mechanical part design and electrical part design, in this chapter, a
piezoelectric energy harvesting device comprised of a bistable vibrating cantilever beam
and a switching-type interface circuit (SSHI) are proposed, and the resulting
performance are compared to the traditional linear technique. The main contribution
focuses on combining two non-linear techniques to achieve an efficient broad band
piezoelectric energy harvesting device. So in this chapter, the system is not combined
with WSN module. It was known that the synchronized switching techniques increase
efficiently the output power of the piezoelectric energy harvester for low-coupled
structures. However, the traditional piezoelectric energy harvester based on a cantilever
beam is only efficient at resonance. To broaden the available bandwidth, a bistable
non-linear technique was proposed. In this paper, the bistable technique and SSHI
interface are combined together to accomplish a more efficient broadband piezoelectric
energy harvester. The power flow and work-cycles are adopted to simplify the analysis
of the switching techniques and then summarize the increasing performance of the

non-linear piezoelectric harvester. Finally, simulation results and experimental
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validations show that the proposed integrated device owns larger bandwidth and collects
more harvested energy
5.1 Introduction

Although the piezoelectric materials exhibit high power density, the linear
piezoelectric energy harvester are efficient only when the mechanical system is excited
at the resonance frequency; there is largest strain, largest vibration displacement and
maximum output power compared to work at non-resonant frequency. However, in
practice, the exciting frequency of the ambient vibration source is random and it varies
within a frequency range [26]. It is impossible to excite the energy harvester at specific
resonance frequency and to keep the system operating on the maximum power point. In
the cantilever beam system, the mechanical quality factor is commonly very high. It
causes that the device has high harvesting power only at single resonant frequency. In
order to increase the power at non-resonant frequency, designing a mechanical system
to work in a wide frequency range is necessary. This design concept to enlarge the
frequency bandwidth is based on applying external forces. By applying an axial force,
the resonant frequency of a piezoelectric cantilever beam can be successfully tuned [55,
56], but these methods are active techniques and the mechanical system is still operated

within the linear regime. Another method consists to make a non-linear or bistable
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vibration of a cantilever beam to enlarge the workable bandwidth [57-60]. By using
simple fixed magnets, this passive technique makes the mechanical system improve the
harvesting efficiency within non-resonant regime without any external power.

In this chapter, the performances, drawbacks and system requirements of magnetic
non-linear piezoelectric generators combined with the SSHI technique, shown in Figure
5-1(c), will be discussed. According to comparisons with others linear standard
generator (Figure 5-1(a)) and linear SSHI generator (Figure 5-1(b)), the evoltag
waveform across the piezoelectric element and displacement are used to show the
efficiency of the bistable piezoelectric energy harvester trough the work-cycle
representation. The simulation and experimental results show that the SSHI technique is
advantageous over the standard interface for both linear and non-linear cases and
non-linear case is advantageous over linear for both the standard interface and SSHI
techniques. The theoretical analysis, equivalent circuit model, simulation and

experimental results will be presented in following sections.

Structure
Structure

[ Piezoceramic

(@) (b)
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Figure 5-1. (a) Standard DC Technique (b) Series SSHI Technique (c) Series SSHI
Technique with broadband vibration.

5.2 Electromechanical Linear Model

As detailed theoretical analysis in the chapter 2, a mechanical model based on a
spring-mass system gives a good description of the vibration behavior near the
resonance of the host structure. Therefore, for simplicity, this system can be modeled as
a one degreef-freedom system of a mass M, a sprifgand a damper D. According

to dynamics equation, the differential governing equation of this electromechanical

system can be expressed as equations (5.1).

MX +DX +K ™ + oV, =F . (5.1)

where F is external force and x is displacement exerted on the host structure. The
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equation (5.1)is linear equations. However, the bistable energy harvesting technique is
a non-linear method essentially, and it is not easy to analyze. To make the analysis more
intuitive, the work-cycle (or energy cycle) is adopted here to analyze the non-linear
circuit and vibration. The work-cycle is the trace in piezoelectric force-displacement
plane. The observing point of interest is the power generated from the mechanical part.
At this point, the average power converted into the electric part in a period can be

expressed as equation (5.2).
17
P:?.[O a XV, dt (5.2)

Where T represents the period of the vibration, i.e. Trtka2 Accordingly, the
energy flowing out of the piezoelectric in one vibration cycle can be expressed as

equation (5.3).
E=af " Vdt (5.3)

The integration in equation (5.3) stands for the area in the force-displacement plane,

representing the energy flowing out of the piezoelectric element. The real energy, which
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flows out of the piezoelectric element, is the key issue in energy harvesting design. The
energy that flows out of the piezoelectric element is larger when the vibrating energy

harvested by the electronic circuit in each cycle is larger.

5.3 Switching Control Strategy

The equivalent circuit of the single-mode piezoelectric harvester including the
switching circuit is represented in Figure 5-2. In this figukerepresents the velocity
of the host structure at a particular location, which also can be viewed as the current in
the equivalent circuit. The voltage 6 the voltage across the piezoelectric element. In

this following, \6 is directly named piezoelectric voltage for simplicity.

M I’/K D
| A A a:l
_—
- X L Switching
Iy @S/VW\_‘ GT Y| Circuit R
X L

}

Change the magnitude and phase of piczoclectric voltage ¥,

Figure 5-2. Equivalent electric circuit of the single-mode piezoelectric harvester.

Usually in energy harvesting applications, the piezoelectric patches and structure
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are weakly coupled. This means that the energy extraction from piezoelectricspatche
doesn’t disturb the vibration behavior of the structure and the magnitude of velocity x

can be assumed unchanged. As we mentioned in the chapter 2, for weakly coupled
structure kQn is lower than 2 [75]. Wherf®, is lower than 2, the SSHI technique can
effectively increase the power than the standard interface circuit.

According to equation (5.2) for the weakly coupled structure, the purpose of the
switching circuit is to change the waveforms of piezoelectric veltggto enlarge the
extracted energy and to keep similar magnitude of velocity. According to equation (5.3),
in order to have the best performance, the piezoelectric edifaghould be in phase
with velocity x and the voltage amplitude should be large to harvest the larger energy
as well. The circuits studied here are the standard DC rectifier (Figua)=md the
series-SSHI technique (Figure 5-1(b)) opedaat resonance. Then these two initial
techniques are applied to a non-linear bistable structure (Figure 5-1(c)). The key

waveforms are given in Figure 5-3.
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Figure 5-3 The ideal waveforms of voltageWelocity x and displacement x: (a)

Simple resistive load (b) Standard DC rectifier (c) Series SSHI technique.

5.4 Series-SSHI Technique

The SSHI technique used here is like the classical series-SSHI technique and the
detailed theoretical analysis is studied and discussed in the chapter 2. In thastisu)-
we just talk and show the significant equations, waveforms and behavior. Figure 5-3(c)
shows the theoretical waveforms of series-SSHI. When the vibration velocity crosses
zero, the switch is conducted, the inductor L and the piezoelectric capachegi@ to
oscillate. This resonant circuit increases the magnitude and changes the polarity of the

voltage across the piezoelectric capacitance sinusoidally, and thus put vgitagd V
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velocity X in phase, which indicates that more energy is extracted from the vibration
source.

To quantify the performances of energy harvesting devices, the force-displacement
diagram is employed to illustrate the energy conversion cycle. In the case of a purely
capacitive load on the piezoelectric element, the displacement and voltage are in phase;
the area of the cycle is null, so the harvesting energy is equal to zero. When a resistive
load is added, a phase shift appears between displacement and voltage (Figure 5-3(a)).

Figure 5-4 shows the force-displacement locus under three conditions. The first
condition corresponds to the simple resistive load. The area enclosed by the locus
represents the vibratory energy converted into electrical energy. The second condition
corresponds to the full-wave bridge rectifier. The extracted energy by the full-wave
bridge is lower than in the case of simple resistance because the maximum piezoelectric
voltage is lower, but the maximal value of the displacement remains the same. The third
condition corresponds to the series-SSHI technique. The energy harvested by the series
SSHI technique is much higher than the previous cases because ¢thresb@ance
increases the magnitude of Vh the low coupling condition and the magnitude of

displacement does not change.

132



oV ’ I . I
Series SSHI Technique

il 4

oV =olV +V, Vg )

Simple resistive load

-u\n’,‘ﬂ‘. -

(1]
3 AR . B
e Displacement x (m) e

Figure 5-4. Force-displacement diagram: simple resistive load, standard DC rectifier

and series SSHI technique.

From the energy conversion cycle shown in Figure 5-4, and based on the geometric
relations among the area in different colors, we can calculate the extracted energy. For

the series-SSHI, the transferred energy ESSHI can be expressed as follows:

a® (1+0c) .
E... =2 Aclg 54
Series- SSHI Co (1_ q_c) ( )

T

where —e®™ s a function of the quality factor (@ of the resonant.Cy
Oc

circuit. The usual value of theqis around 0.7 in the normal experiment because if the
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system have very high quality factor it will lead bulky and expensive inductor [G#4]. F

the standard DC rectifier, the transferred energydan be expressed as follows:

2
(04
E.=2—¥% 55
e = (5.5)
The conclusion that we can get from the work-cycle observations is we can
evaluate the performances of the energy harvesting circuits by the size of théherea.
maximum corresponds actually to the rectangular shape in the force-displacement plane

for the same external voltage and displacement.

5.5 Bistable Energy Harvester

The most piezoelectric energy harvesting system is a linear electromechanical
device excited at resonance. Considering that most realistic vibration environments are
more accurately described as multi-frequency and time varying, narrowband linear
systems are inefficient under these conditions. Non-linear systems, on the other hand,
are capable of responding over a broad frequency range. The solution is to use a bistable
inertial oscillator comprised of permanent magnets and a piezoelectric cantilever beam

(Figure 5-1(c)). The bistable behavior is obtained with two magnets. One is mounted on
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the tip of the beam and the other one is fixed on a stage. Because the two magnets

repulse to each other, the system will be a bistable system and there will be two possible

stable positions as shown in Figure 5-5. When the distance between these two magnets

is designed properly, the non-linear behavior can broaden the available bandwidth [57,

86].

B

Stable posm

Figure 5-5. Principle of the broadband energy harvesting device with a destabilized zero

Stable position;/
——=1

equilibrium position.

The non-linear magnetic repulsion forcg given by the interaction of the magnets
can be simplified to one-dimensional model and it is acting only in vertical direction
[86]. The magnetic force\fx) is a variable value and depends on the displacement of
the cantilever beam x and the distance between the moving and the fixed magnets. By
using the curve fitting method, the magnetic forge fBr a specific distance can be

expressed as equation (5.6) [57].
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ax

Fu ()= 1+bx*

(5.6)

where a and b are the fitted parameters.

In order to analyze the non-linear energy harvester with an electric interface, in this

chapter we adopt an electric equivalent impedance representation. According to

equations (5.1) and (5.6), the equivalent circuit model can be represented as shown in

Figure 5-6. The host structure with piezoelectric elements mechanical is modeled by the

classical equivalent circuit. The magnetic forgg iB taken into account by adding a

non-linear magnetic feedback loop. The main advantage of this equivalent circuit is that

it can be easily simulated and does not need to use numerical methods. This method has

some limitations. First of all, it considers the equivalent spring as a linear one in which

the stiffness is independent of the position of the mass. In the present case, this is true

only when the displacement is small with respect to the distance between the moving

and the fixed magnets. When this hypothesis is not verified, significant errors can take

place.
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Figure 5-6. Electric equivalent circuit of the piezoelectric energy harvester coupled with

non-linear magnetic force.

5.6 Simulation, experimental results and discussion

5.6.1 Experimental setup

In order to demonstrate the performances of the energy harvesting devices, a

simple experimental test was performed on a clamped cantilever steel beam with

31-type PZT-QA elements provided by the Eleceram Technology Co., Ltd. There were

two piezoelectric elements. The first one is the main element to harvest the energy, and

it was connected to the series-SSHI interface. The second one is smaller size, and it was

used only to sense the velocity and to generate the driving signal for the switches of the

SSHI interface [36]. The electronic components in this experiment were supplied by an

external DC source. A picture of the tested beam and SSHI circuit is shown in Figure

5-7 and the detailed experimental setup is presented in Figure 5-8. The distance between
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the two magnets was 3.5 mm. The dimensions of the beam and the piezoelectric

elements are shown in Table 5-1.

Magnetic coupling part Velocity Contrql patch

e
SSHI Harvesting patch

(@)

Velocity control SSHI part

(b)

Figure 5-7. (a) Experimental beam structure (b) SSHI circuit.
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Figure 5-8. Experimental setup.

Table 5-1. Piezoelectric elements and Steel Beam.

Steel beam Piezoelectric element for SSHI Piezoelectric element for velocity signal
Length (mm) 189 28 6
Width (mm) 3438 16.5 16.5
Thickness (mm) 0.8 0.5 0.5
Location None | mm from fixed end | mm from fixed end

The beam was excited that fixed end by an electromagnetic shaker (Briiel & Kjaer
4809). The shaker is driven by a data acquisition card (NI-DAQ USB-6259). To realize
the SSHI circuit, two diodes and two MOSFET switches (Metal Oxide Semiconductor
Field Effect Transistor) were used. When the velocity signal goes zero crossing from

negative to positive, the NMOS switch (IRFU210) is switched-on and when the signal
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goes zero crossing from positive to negative, the PMOS switch (IRF9640) is
switched-on. The two diodes confine the current flow, and the inductor L resonates with
the clamped capacitoro@f the piezoelectric-element. Parameters of the model were
identified from the experimental measurements. The tip displacement of the beam x was
measured when the piezoelectric element is in open circuit and in short circuit. B, M, K

a and Cp were calculated with Equations (5.7) to (5.10).

a:fco (5.7)
P

V,, f2
KE:aZprshfz (5.8)

p "op sh

KE

op
D=2/Mao™ (5.10)

where V, is the open-circuit measured piezoelectric voltage for a given tip
displacementgy of the beam. The parameter model values are given in Table 5-2.

The parameteb of the magnetic force, in equation (5.6), sets the static beam tip
displacement and parameter a sets the maximum value of the magnetic force as shown

in Figure 5-9. First, the parameter b was calculated according the experimental measure
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of displacement pp=1.2mm. Then the parameter a was obtained by fitting the

experimental voltage curve in Figurel®-& Figure 5-12. According to the experiment

results, the proper parameters could be chosen.

Table 5-2. Measured values and model parameters.

Symbol Description Value (unit)
fop Open-circuit resonant frequency when all piezoelectric elements are in open circuit 10.4 Hz

f‘g Short-circuit resonant frequency when all piezoelectric elements are in short circuit 10.307 Hz
k Electromechanical coupling coefficient 0.0018

I Damping ratio 0.02

Qm Mechanical quality factor 2.09

M Mass 49g

KE Equivalent stiffness when all piezoelectric elements are in short circuit 209.22 N/m
KP Equivalent stiffness when all piezoelectric elements are in open circuit 211 N/m

D Damping coefficient 0.15 N/m/s
[l Force-voltage factor 0.00007716 N/V
qic Inversion factor 0.7

Cp Clamped capacitance 15.57 nF

L Resonance inductor in SSHI 10 mH

a Fitting magnetic force parameter 280

b Fitting magnetic force parameter 1.5 x 10"

Magnetic force Fyy (N)

-10 -5 0 5
Beam tip displacement x (mm)

10

Figure 5-9 The magnetic forceyras a function of the beam tip displacement x.
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5.6.2 Frequency sweeping

The main interest of this work is broadening the frequency range from which
energy can be extracted. To show the interest of bistable non-linear technique to
broaden the available bandwidth the excitation frequency was linearly increasing. This
was accomplished using an excitation of the foym: A, cos((w, +wd )t) wherewo is
the initial pulsation andws is the frequency sweep ratep & the amplitude of
acceleration: 2mfs

The experimental testing was performed on the linear and non-linear clamped
cantilever beam shown in Figure 5-8. The simulation was carried out with Matlab and
PSIM software packages as shown in Figure 5-10. The module Simcoupler in PSIM
software is used to make a link between Simulink in Matlab and PSIM. The driving
chirp frequency of the input force is sent from Matlab to the electric circuit
implemented in PSIM. The simulated results will be sent back to Matlab and organized.
Figure 511 and Figure 5-12 show the experimental and simulation results of increasing
frequency sweeping for the case of standard DC rectifier interface and SSHI éterfac
respectively. The experimental driving signal was chirping with frequency range from 5
Hz to 30Hz in 250 seconds. The simulation driving signal was ranging from 1Hz to 30

Hz in 300 seconds and its sweeping rate was the same as the experimental conditions
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(ws=0.1 Hz/s). The sweeping rate was kept sufficiently small in order to reflect the

non-linear response [87]. The output voltage for the linear system without magnetic

force and the output voltage for the case with the magnetic force are plotted in Figure

5-11 The load resistance was chosen 2MQ to show the piezoelectric terminal voltage.

Comparing to the experimental results, the simulation shows good agreement with the

experimental data. The results of Figur&ls& Figure 5-12 show that the piezoelectric

voltage V at 10.4 Hz (resonant frequency in linear system) is almost the same for the

both systems, but at non-resonance frequencies the bistable system can improve the

output power obviously. The non-linear effect at the resonance is limited unlike in the

non-resonant region. At the resonance, the driving force from resonant effect is larger

than the magnetic force in our experiment, so the non-linear magnetic coupling

technique cannot work effectively. The results also show considerable chaotic motion

when f<5 Hz and between 10Hz and 17Hz. For other frequencies the motion is would

be periodic response. This result is in agreement with study in Stanton et al. [86] and

Thompson [88]. Over a wide frequency range, there is enough energy imparted into the

bistable system to enable drive the beam from one stable position to the other.

In the non-linear system there is a critical frequency when the potential energy is

not enough to drive the system from one stable position to another [60, 89]. In our
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experimental results shown in Figurelb-& Figure 5-12, the critical frequency is

around at 23Hz. When the driving frequency is higher than 23Hz, the piezoelectric

terminal voltage in non-linear system is the same as in linear system.
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Figure 5-10. Non-linear simulation setup (a) Matlab Simulink and (b) PSIM

144



Linear + Standard

4 \‘ Linear + Standard

| / Bistable+ Standard
3 | J
W \V ‘ I l.l'

Bistable+ Standard

£

L W, /I

Piezoelectric voltage Vp (N)
Piezoelectric voltage Vyp (N)

|

1 L 1 1 L

5 1 O 20 25 30 5 10 15 20 25 30
Frcqumc_\ (Hz) Frequency (Hz)

(a) (b)

Figure 511. (a) Experimental results (b) simulation results of nonlinear piezoelectric
energy harvester combined with standard DC rectifier interface: increasing frequency
sweeps.
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Figure 5-12. (a) Experimental results (b) simulation results of nonlinear piezoelectric
energy harvester combined with SSHI interface: increasing frequency sweeps.
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5.6.3 Work cycles study

Two specific frequencies (at-resonance: =10.4 Hz and off-resarfabttz) were

chosen to be the examples to analyze the work cycles. Figure 5-13 and Figure 5-14

show simulation results of the voltage &cross the piezoelectric element, the velocity

and the voltage-displacement diagrams at resonance frequency of the structure (10.4 Hz)

for standard DC rectifier and SSHI technique. The maximum displacemenk s X5

mm. According to the Equation (9), the energy by period for the SSHI technique is

EssuE13.5u) and thus the power is Pssy = 140.4uW. According to the Equation (10),

the Boc =2.39uJ and power for standard DC rectifier is Ppc =24.86uW. Figure 5-15 and

Figure 5-16 show voltagepVacross the piezoelectric element, the velocity and the

voltage-displacement diagram at non-resonance frequency of the structure (5Hz) for

standard DC rectifier and SSHI technique.

Figure 5-13 to Figure 5-16 clearly show that the SSHI interface enlarges the

work-cycle area by increasing the piezoelectric voltage and non-linear bistable

technique increase the work-cycle area by increasing beam displacement at

non-resonance. Therefore, if we compare the energy harvested at the non-resonance

frequency (Figure 5-15 and Figure 5-16) the work-cycle area of bistable device is much

wider. That means that for both cases, standard DC rectifier and series SSHI, the

146



bistable device keeps good performances at the would-be resonance but increases them
at the non-resonance.

Figure 5-17 shows the output power for the SSHI technique in the case of bistable
and linear devices and for the two frequencies: at-resonance 10.4Hz and non-resonance
frequency 5Hz. The maximum output power at resonance frequency (10.4 Hz) is 0.14
mW. This power at nomesonance frequency (5 Hz) with linear device is only 0.3uW,
but with bistable vibration the output power is 8uW. Comparing bistable system to
linear system results, the output power close to the resonance frequency is almost the
same, but more energy can be harvested in bistable system at non-resonant frequency

when the displacement is large enough to drive the beam from one stable position to the

other stable position.
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Figure 5-17. Experimental results of the output power for SSHI technique.

5.7 Conclusion

This chapter studies the performances of magnetic non-linear piezoelectric

generator combined with a series-SSHI interface in the weak coupling case. The
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equations of motion for a one-degree-of-freedom piezoelectric cantilever beam with

magnetic non-linear force were derived and an equivalent electric circuit is proposed.

Then, this equivalent electric circuit is used to simulate a bistable piezoelectric

generator with the series-SSHI technique. Finally, the non-linear generator was tested

experimentally and compared with work-cycle to standard interface and linear technique.

The SSHI technique has proved that it is an effective technique to improve output power

over the standard interface in both linear and bistable cases. Moreover, the non-linear

coupling technique has proved that it is not only advantageous over linear technique for

standard interface but also for SSHI interface. It is interesting to combine these two

remarkable techniques and the results show that these two techniques can work well

together. The SSHI interface enlarges the work-cycle area by increasing the

piezoelectric voltage in the weak coupling case and non-linear bistable technique

increase the work-cycle area by increasing beam displacement inducing voltage to

increase. According to the analysis of work-cycles, the synchronized switching interface

and non-linear bistable technique are two major factors for designing a broad bandwidth

and efficient energy harvester. Through these two non-linear techniques, the

piezoelectric harvester can work more efficiently and more output power at a broadened

frequency range can be gained.
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Chapter 6 Self-Powered Semi-Passive Piezoelectric Structural

Damping Based on Zero-Velocity Crossing Detection.

In recent years, semi-passive vibration damping using non-linear synchronized
switching methods has been intensively investigated and discussed. In this chapter, a
self-powered synchronized switch damping on inductor (SSDI) technique based on
zero-velocity crossing detection is proposed and investigated. The control signal used to
drive the switches is obtained by sensing velocity as we used in the self-powered
V-SSHI technique in energy harvesting. A totally self-powered damping system
powered by harvested energy using SSDI technique with velocity sensing and without
external power is established. Compared with the conventional technique based on
voltage peak detector, this technique do not generate lag in detection of switching time.
The theoretical model, the experimental evaluation and the drawback of the
self-powered zero-velocity crossing detection switching technique are discussed in this

study. The system performance is also compared with the externally powered system.

6.1 Introduction
Many successful applications of piezoelectric materials for structure vibration

suppression have been developed in recent decades. In these applications, piezoelectric
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materials convert the vibration energy of the host structure into electrical energy, and

then the generated electrical energy is dissipated in a shunt circuit. The piezoelectric

shunt techniques were widely used due to their simple configurations and compact size,

but these techniques are better to be self-powered to reduce the system complexity. In

some applications, like automotive and aeronautics, the external power is limited [90,

91], the self-powered design can eliminate the requirements of external power supply.

Several versions of self-powered SSDI technique have been proposed [92, 93]. The

conventional method is based on peak voltage detef@®m4] using a small energy

storage capacitor. The peak detection is made using an envelope detector: a comparison

between envelope and piezoelectric voltage is made with a bipolar transistor. The

drawback of this method is the lag in detection of switching time due to the use of the

transistor, which degrades the damping performance. The principle of the peak detector

method is shown in Figure qsl).

In this chapter, a self-powered SSDI technique based on zero-velocity crossing

detection is proposed and investigated. Hereafter this technique in this chapter is called

SRSSDI. Based on the self-powered system used in piezoelectric energy-harvesting

devices(V-SSHI) [36], SP-SSDI does not require external instruments. The control

signal used to drive the switches is obtained by sensing velocity, and then compare to
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zero. A totally self-powered damping system powered by harvested energy using SSDI
technique with velocity sensing and without external power is established. The concept
of the proposed system is shown in Figure 6-1(b).

The chapter is organized as follows: the second section 6.2 summarize the SSDI
technique and present the theoretical analysis. The next section 6.3 presents the detailed
analysis of the self powered SSDI based on zero-velocity crossing detection technique.
Section 6.4 presents the experimental results that include the time domain evaluation for
different excitation levels, the measurement of the efficiency and the system frequency

response results. Finally, the last section 6.5 concludeshapter.

Extremum Energy
K \‘_ Detection [ Storage

Structure
Structure

Velocity Energy
Detection [ | Storage

Piezoceramic
Piezoceramic

(a) (b)

Figure 6-1. (a) Principle of voltage peak detector method (b) Principle of zero velocity

crossing detector method.
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6.2 SSDI Technique

The electrical circuit of the semi-passive damping technique called SSDI
(Synchronized Switching Damping on an Inductance) is represented in Figure 6-2(a).
An inductor L, a resistance R and a switch K are connected in series with the
piezoelectric patch. The piezoelectric patch voltagés\éwitched across tHeR shunt
circuit. The dissipated energy of the structure depends on the voltage amplitude across
the piezoelectric patches. The role of these additional patches is to increase the
amplitude of voltage vand thus to increase the damping effect. The switch K is turned
ON when a maximum of displacement x occurs and the voltageavts to oscillate,
until K is turned OFF. The switching ON period is equal to a half of the resonant period
of the LCy circuit. Assuming that the electrical resonant period is very small compared
to the mechanical vibration period, voltage ¢an make the inversion in this short
period. The same function can be obtained by turning switch K ON at the minimum
displacement. Theoretical waveforms of the displacement x, the velocity dx/dt and the
voltage 4 of the SSDI technique are shown in Figure 6-2(b). The amplitude of voltage

Vp is limited by the loss of energy during the inversion process.
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Figure 6-2. (a) Electric circuit of the SSDI technique (b) Key waveforms of the SSDI
technique.

The absolute value of the voltage of the piezoelectric patch after inversion is less
than the initial voltage. This difference occurs because of the energy losses that occur

due to the energy flow between the capacitance and the inductor during the switching

V4

interval. The absolute value of the inverted voltagegisV,, where g, = e®@ isa

function of the quality factor @ of the resonaritCy circuit.
Analytic calculation of the displacement amplitude at resonagoean be made
from previously expressed equations. The expression of the mechanical displacement

Xsso @s a function of external force amplitude &d the resonant circuit factorcgs

given in equation (6.1) [73],

>
T
m

= 6-1
Xsspi 4’ (L g ) (6.1)

Da, +
7Cy(1-q)
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6.3 Self-powered zero-velocity crossing detection for SSDI Technique

Due to the use of switches in the SSDI technique, the shunt circuit requires an

external power source. To design a totally self-powered device, a part of extract energy

for damping can be used to power the electronics. Moreover, because it is a

synchronous technique, the displacement or the velocity must be measured accurately to

obtain the driving signal for the switches. The technique proposed here is to divide the

piezoelectric patches into three parts. The largest part, calletheRaves like the

conventional piezoelectric patch used in the SSDI technique to dissipate the vibration

energy. The second piezoelectric patch, callgdig?a smaller patch that works like

energy harvesting device to provide power supply to other electronic circuit. The third

piezoelectric patch, calledsPis a smaller patch designed to sense the velocity and to

generate driving signal to control the switches at the optimal time. All three patches

contribute to damp the structure.

A schematic of the complete electronic circuit is shown in Figure 6-3 with the

functions of different sub-circuits labeled in the same figure. The system will be

analyzed in detalil in the following subsections. To obtain a precise velocity signal, P

cut from the electrode of the lower piezoelectric patch, and the patch is positioned on

the centerline of the cantilever, as shown in Figure 6-3.
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Figure 6-3. Schematic diagram of the zero velocity crossing detection self-powered
SSDI technique.

6.3.1 Zero-velocity crossing detector (piezoelectric-patchsP

Figure 6-4 shows the electric circuit and the theoretical waveforms of the
zero-velocity crossing detector. Since the mechanical current in the electric equivalent
circuit of a piezoelectric patch can be assumed to be velocity; if the output terminal is
short-circuited, the current through this short-circuit is proportional to velocity, i.e.
Iy, =aX. To convert this current into voltage, this short-circuit can be made by a small
resistance. Thus, voltage across the shunt resistance represents the velocity of the
structure. The value of the current-sensing resistance must be much smaller than the

output impedance of the piezoelectric patch. As shown in Figure 6-4(b), the velocity
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signal \4 (black curve) is in phase with the output current dx/dt (green curve). To avoid
the noise problems when SSDI is active, a low-pass filter is necessary, because the
voltage inversion introduces high frequency vibrations into the system. A third-order
low-pass filter is used; it is composed of two capacitors and an inductor. The design
goal of the filter is to ensure that the high frequency noise is reduced sufficiently to
generate an accurate control signal with minimum phase lag to keep the efficiency of
the SSDI system. Finally, the filter output voltageis/connected to a comparator, and

the output of the comparatoey is used to drive the switches, as shown the red curve

in Figure 6-4(b).

P Veaws
t
dx/dt

(a) (b)

[N

Structure

Figure 6-4 The velocity zero crossing detector: (a) electric circuit (b) theoretical
waveforms.

Compared to the conventional switching method using a voltage peak detector, the
velocity-synchronized signal should theoretically cause the switches to switch more
precisely at the optimal time. Because the conventional peak detector uses the diode

drop to detect the peak voltage, it produces a time lag between the peak time and the
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switching time.

Figure 6-5 shows the Bode diagram of the filter of zero-velocity crossing detector,
as measured by an SR780 dynamic signal analyzer. The Bode diagram shows that the
corner frequency is approximately 340Hz. The first natural frequency of the cantilever
beam is approximately 34Hz; approximately 10 times lower than the corner frequency
of the low-pass filter. The low-pass filter design reduces the high frequency noise of the

velocity signal effectively without altering the phase.
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Figure 6-5. Bode diagram of the filter of the zero velocity crossing detector.

6.3.2 Power supply (piezoelectric-patch &

Figure 6-6 shows the electric circuit and the theoretical waveforms of the power

supply part. This circuit provides two DC voltages sources; &hd—Vcc, to supply

power to the comparator and the switches of the SSDI circuit. The power supply circuit
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is composed of two diodes f&nd ) and three capacitors §CCy and G). The two

diodes maintain the correct positive and negative current flows to charge the capacitors.
Cp regulates the positive voltage betweegc\Vand ground, and xCregulates the
negative voltage betweeAVcc and ground. Cregulates the voltage betweerzcV
and—V¢c and acted as an energy storage buffer. Two Zener diogdasised to limit
excursion and to regulate the DC voltage. The two regulated voltageand—Vcc,

are connected to the comparator, and the output of the comparator is used to drive the
switches. The comparator used in this application is a Nano-power comparator
TLV3701 from Texas Instrument (Dallas USA) that sinks a small and constant current

(Icom=560nA) for a voltage ¥c higher than 2.5V. Assuming that the equivalent load of

the comparator between the two regulated voltageR,is=2V ./l ., the voltage
Vcc can be expressed as in equation(6.2) [77].
_EMX (6.2)

°©2C,R@+7

Using equation(6.2) given the relation betweerC, and the parameters of the

piezoelectric patches, the voltagec\an be rewritten as equation(6.4). The parameters
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of the piezoelectric patches described in Table 6-4,a@d a are calculated as

equation(6.3).

wi
a =W Co:‘ggsT (6.3)
1 € | << w,
Ve = R Comp X (6.4)
ey —Cwyt+r
t IComp

Table 6-1. piezoelectric physical parameters.

w Width of the piezoelectric patches

t Thickness of the piezoelectric patches

I Length of the piezoelectrigaches

ck Elastic rigidity of equivalent patches in short-circuit
€31 Permittivity of piezoelectric patches
5, Piezoelectric coefficient of equivalent patches

Since voltage ¥c must be higher than 2.5V, we can find a relation between the
amplitude of displacement and the size of piezoelectric patcha® shown in

equation(6.5).
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Figure 6-6. Power supply circuit: (a) electric circuit diagram and (b) Key waveforms.

6.4 Experimental results and discussion

6.4.1 Experimental setup

Figure 6-7 shows the experimental setup and pictures of the zero-velocity crossing
based SSDI damping system. The experimental structure is a cantilever steel beam with
three 31-type PZT-QA patches provided by the Eleceram Technology Co., Ltd.(Taoyuan
Taiwan). The fixed end of the beam is excited by a shaker (Bruel & Kjaer 4809), and the
shaker-driving signal is generated by a DAQ card (NI USB-6259 from National

Instrument, Austin USA) on a notebook computer. A viborometer (LK-G3001P+LK-G32
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from Keyence, Osaka Japan) is used to measure the beam tip displacement, and an
accelerometer (Bruel & Kjaer 4381 from Briel & Kjer Sound & Vibration
Measurement A/S, Neerum Denmark) is used to measure the acceleration at the fixed
end. The piezoelectric voltage, the displacement and the acceleration are recorded by
the DAQ card. The dimensions of the cantilever beam and the piezoelectric patches are
shown in Table 6-2. The component measured values and model parameters are shown
in Table 6-3. The first natural frequency of the cantilever beam is 34Hz. The dimension
and the clamped capacitance of the main piezoelectric patch are much greater than those

of the two small piezoelectric patches.

[ AccelerometerBriiel & Kjaer 4381 ] Vibrometer K
x 9 L
Exciting source : ‘\
Vibration shaker

Fixed
End

Piezoelectric Patches

Py P
L Laser Head
4 -Detect Displacement|
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\"77/
'

v

Free End

Supplyingand Driving
Circuit for SSDI

— SSDI Circuit
Zero-Velocity Crossing

(_ Detection Circuit

i Measured Signal

L
National Instruments DAQ Card, Notebook
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Driving Signa|

Figure 6-7. Experimental setup and pictures.
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Table 6-2. Dimensions of the piezoelectric patches.

Steel Beam LengthxWidthxThickness 140mmx35mmx0.51r
P; 50mmx65.5mmx0.6mm
Piezoelectric Patchche P, 30mmx5mmx0.5mm
Ps 50mmx4.5mmx0.6mm

Table 6-3. Component values and model parameters.

Symbol | Description Value (unit)
fop Open circuit resonant frequency when 34 Hz
piezoelectric patch is in open circuit
fsh Short circuit resonant frequency when 33.97Hz
piezoelectric patch is in short circuit
K Electromechanical courpling coefficient 0.0018
¢ Damping ratio 0.02
Qwm Mechanical quality factor 2.09
M Mass 2849
KE Equivalent stiffness when all piezoelect 1276 N/m
patch is in short circuit
KP Equivalent stiffness when all piezoelect 1278 N/m
patch is in open circuit
D Damping coefficient 0.24 N/m/s
ot Force-voltage factor of,P 0.000368 N/V
a? Force-voltage factor of P 0.0000242 N/V
o3 Force-voltage factor of 0.0000227 N/V
Qe Quiality factor of resonant GP; 4.4
R Equivalent resistor of resonant@P; 0.48Q
dic Inversion factor 0.7
Cp1 Clamped capacitance of P 67.6 nF
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Cp2 Clamped capacitance of P 4.44 nF
Cps Clamped capacitance o P 4.16 nF
L Resonant inductor in SSDI 10mH
C Regular capacitor in supply circuit 4.7 uF
Cp Regular capacitor in supply circuit 2.2 uF
Cn Regular capacitor in supply circuit 2.2 uF
Dz Zener diode in supply circuit 15V
L+ Low pass filter inductor in zero veloci 700mH

crossing detector
Ct Low pass filter capacitor in zero veloci 470 nF

crossing detector

6.4.2 Experimental results

Experimental data were taken to validate the self-powered velocity-synchronized

semi-passive system presented in this sub-section and to demonstrate the operation of

the circuit.

Figure 6-8 shows the displacement, the sensed velocity, the switching signal and

the piezoelectric voltage of uncontrolled and self-powered SSDI

acceleration of 0.16nfls Comparing the results with and without the SSDI system
active, the tip displacement is reduced from approximately 1.12mm to 0.72mm by the

SSDI damping effect. Because the curremiing resistance of 1kQ is much lower than
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the output impedance of the piezoelectric patch (around XX)5ie signal is very
small, with a peak value of approximately 0.01V. When SSDI is active, the high
frequency noise is easily introduced into the velocity control signal, but it does not

influence the power supply effectiveness because the capacitors in the rectifier regulate

the supplied voltage.
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Figure 6-8. Experimental results of the zero-velocity crossing detection circuit (a)
without SSDI active and (b) with SSDI active (green trace: velogjtyleck trace:
Vcous blue curve: piezoelectric voltage,\and red trace: beam tip displacemégnt x

The operating limit of the self-powered technique is obtained when the voliage V

is lower than 2.5V. Once the SSDI circuit works, the decrease of the vibration
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magnitude leads to a decrease in terms of harvested power and thus leads to a decrease
of voltage \tc. Therefore there is a minimum value of the displacement magnitude.
Figure 6-8 we can see that the DC voltage M equal to 3.26 VV when the displacement
magnitude is 1.12 mm, and 2.51 V for a displacement of 0.72 mm. The experimental
limit of the system is 0.7 mm to have/greater than 2.5V to power the comparator in

the circuit. Figure 6-9 shows the theoretical and experimental valugcais/a function

of displacement.
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Figure 6-9Voltage VCC as a function of displacement x.

This minimum value of the displacement magnitude can be set by the size of the
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piezoelectric patch £ If we consider the thickness is fixed and vary the width,
equation(6.5) can be used to predict the minimal displacement magnitude required for
the corresponding width. The theoretical minimum value of magnitude of displacement
as a function of the width is therefore plotted in Figure 6-10 for thickness, t=0.5mm,
and length 1=30mm. Figure 6-10 shows that for a width w=5 mm, the theoretical value

of the displacement magnitude is 0.7 mm.

T Limit of displacement

Magnitude of displacement {m)

Width: 5mm

0,004 ool nots ooz 0,075
Width {m}

Figure 6-10. Minimum value of displacement magnitude as a function of width of
piezoelectric-patch P
6.4.3 Comparison

For comparison, experiments were carried out in four different cases; these cases
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are listed in Table 6-4.

Table 6-4. Four experimental cases.

Piezoelectric patches Conditions
case 1 Uncontrolled

External energy: Power supply

case 2 P +P,+P; . L . .
Optimal switching point: Function generator
case 3 P, Extgrnal en.erg.y: Power supp!y
Optimal switching point: Function generator
case 4 P, No External energy. Using self-powered supplying cir

Switching point: Velocity control cirucit.

- Case 1 is the reference case, used to show the undamped situation. The
piezoelectric voltage is in phase with the tip displacement and has a phase lag of
approximately 90 degrees with respect to the velocity signal.

- Case 2 is the maximal damping condition. All three piezoelectric patches
(P1+P,+P3) are controlled using the SSDI damping technique, and the SSDI is operated
by external instruments. The power source is an external DC power supply, and the
optimal switching signal is provided by a function generator.

- Case 3 provides an experimental control for comparison with case 4. In case 3,
only one piezoelectric patch {Pis controlled using the SSDI damping technique. The
power source is an external DC power supply, and a function generator provides the

switching signal.
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- Case 4 is the experimental condition and uses the self-powered technique
(SP-SSDI) presented in this chapter without any external instruments.

The following two subsections will compare the damping performance of each of
the cases when the beam is driven at different excitation levels. The results will be

compared in both the time domain and the frequency domain.

6.4.3.1 Time domain comparison

The cantilever beam is driven at its first natural frequency (34Hz) at different
accelerations. Figure Bt and Figure 6-12 show the experimental results of the
displacement and the work cycles calculated for the 4 cases for acceleration of0.13m/s
and 0.16m/5 respectively. To quantify the performances of damping technique, the
force-displacement diagram (work-cycle) is employed to illustrate the energy
conversion cycle. In the case of a purely capacitive load on the piezoelectric patch (case
1), the displacement and voltage are in phase; the area of the cycle is null, so the
extracted energy is equal to zero. When the SSDI technique is actit€sthesonance
circuit increases the magnitude of voltageavid decreases the displacement x. The area
of the cycle is the extracted energy. Case 2 is the most effective one because all

piezoelectric patches are used for the damping control with SSDI technique. This is the
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ideal experimental case because the SSDI circuit is powered by external power supply.
If we compare case 3 (external drive) and case 4 (self-powered), we obtain a good
evaluation of the zero velocity crossing detection technique (same area of piezoelectric
patches with SSDI). For an acceleration of 0.13ntlse self-powered SSDI circuit
damps the structure only up to 0.7mm (0.5mm for the case with external supply) due to
the limit of operation of the comparator For the acceleration of 0.2&mdshigher, the
results show that the amplitude of voltage and displacement are in phase, which means
that with the proposed technique the switching occurs at nearly the optimal time. The

little difference is due to the high frequency noise in the velocity sense signal.
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4 Case 2: P +P,+P, +External Energy

[ 3
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A
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a g
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P @®Case 11 U wralléd X Case 4: SP-SSDI
5 e 2 | @@ @ Casc 1: Uncontrolled
Acceleration=0.13m/s 4—&—& Case 2: P +P,+P, + External Energy
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Figure 611 Experimental results (acceleration=0.13n(a) displacement (b)
work-cycle.
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Figure 6-12. Experimental results (acceleration=0.18rte3 displacement (b)
work-cycle.

Figure 6-13 shows the experimental results and theoretical value of the
displacement magnitude as a function of acceleration. The self-powered technique
operates successfully for acceleration higher than 0.6Rusa lower acceleration, the
damped displacement is kept at 0.7mm until the uncontrolled displacement is higher
than 0.7mm. The system behaves like a feedback control loop; SSDI decrease
displacement but when the displacement is lower than 0.7mm, the comparator stop to

work and the displacement increases again.
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Figure 6-13. Displacement magnitude as a function of acceleration.

Table 6-5 summarizes the experimental results for 4 accelerations: & 16m/s
0.19m/é, 0.21m/é and 0.24m/s The tip displacement increases as the imposed
acceleration increases. Two measures of efficiency are proposed and defined in
equations(6.6) and equation(6.7); there are presented in Table 6-5. The first efficiency
compares the self-powered technique with velocity control, called SP-SSDI here to the
use of all of the piezoelectric patches{P,+P3) for SSDI damping. From Table §-5

the average efficiency is approximately 86%. This result means that if the size of the
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piezoelectric patches used in the system is not increased, the proposed SP-VSSDI

technique provides approximately 14% less damping. The second efficiency compares

the SP-VSSDI technique to the case in which only thedech is used for SSDI, and

the patch is controlled with an external function generator with perfect timing and

powered by external power sources. This measure provides a fairer comparison because

the area of the piezoelectric patch used for the SSDI is the same as that used for the

self-powered system. From Table 6-5, the average of this efficiency measure is

approximately 95%. This means that the phase lag generated by the inherent structure

and the passive low-pass filter degrades the damping performance by approximately 5%.

Based on the two comparisons, the SP-SSDI technique demonstrates high efficiency and

good damping ability while maintaining a fully self-powered system.

Table 6-5. Experimental results for different excitation levels.

Acceleration Tip Displacement(mm) ) )

(mi) Case 1:Uncontroled Case 2: P1+P24P3 Case(3:P1 Case 4: SP-@@BI“C)}(%) Eficienicy'(%)
0.16 112 0.65 0.7 0.72 85.11 95.24
0.19 1.23 0.75 0.81 0.825 84.38 96.43
0.21 1.42 0.86 0.917 0.95 83.93 93.44
0.24 1.52 1.013 1.039 1.066 89.55 94.39

Average 85.74 94.87
Effciency_ 1= Uncontrolled-[ Self- poweref 6.6)

Uncontrolled-[ P+ P+ B
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Uncontrolled-[ Self- poweref

Efficiency 1=
Y- Uncontrolled-[ B

(6.7)

Figure 14 shows the experimental results in the time domain at acceleration of
0.19m/$. The results show that when the SP-SSDI system starts to take effect, the tip
displacement decreases rapidly, and the piezoelectric terminal voltage increases rapidly.
The results also demonstrate that the SP-SSDI system provides good, stable damping
during the period when it is active. The SSDI damping effect is not influenced when the

self-powered system is active.
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Figure 6-14. Experimental results in the time domain of the self-powered technique.
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6.4.3.2 Frequency response

Figure 6-15 shows, the frequency responses of the system for the 4 cases and for
acceleration of 0.13nfls 0.16m/$, 0.21m/4, and 0.24mf/s The testing frequency
ranges from 28Hz to 40Hz. For an acceleration of 0.13mis can see clearly the limit
of the system; the SSDI circuit dumps the structure only up to 0.7mm, it is not plenty
effective. As we say, the system works like a feedback control loop and regulates
displacement at 0.7mm. When the uncontrolled displacement is lower than 0.7 mm the
SSDI is not active. The acceleration of 0.16mis the limit case; the damped
displacement is 0.7mm with self-power technique (case 4) and with external supply
(case 3), but the bandwidth is smaller with self-powered technique (2Hz). For the
aaceleration of 0.21m/s2, and 0.24m/s2, the self-powered technique provides almost the
same damping ability as the case in which thep&ch is controlled with external
instruments. The working bandwidth of the self-powered system is approximately 3.5
Hz at 0.21m/Sacceleration, and 3.5Hz at 0.24frésceleration. Compared to the cases
in which the R+P,+P3; patches and the;FRpatch are driven by external instruments
(with working bandwidths of approximately 5Hz and 6Hz, respectively), the
self-powered technique does not provide as much damping. Consequently, when the

exciting acceleration is low, the working bandwidth is small. However, when the
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exciting acceleration is sufficiently high, the working bandwidth is almost the same as

when external instruments are used.
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Figure 6-15. Experimental frequency response results: (a) acceleration=01®)n/s
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6.5 Conclusion

In this chapter, a self-powered SSDI technique based on zero-velocity crossing
detection is proposed. The control signal used to drive the switches is obtained by
sensing the velocity signal. This technique makes the semi-passive damping technique
SSDI become the passive damping technique. The system concept is to divide the
piezoelectric patch into three parts. The largest part behaves like the conventional
piezoelectric patch used in the SSDI technique to dissipate the vibration energy. The
second piezoelectric patch is a smaller patch that works like energy harvesting device to
provide the power supply circuit. The third piezoelectric patch is a smaller patch
designed to sense the velocity and to generate driving signal to control the switches.
Because the three components are designed individually, each can be analyzed and
optimized separately. Compared to the case in which all of the piezoelectric patches
(P1+P,+P3) are used for structural damping and driven by an external function
generator and a power supply, the efficiency of the proposed self-powered system is
approximately 86%. Compared to the ideal switching case in which only the main
piezoelectric patch is used for SSDI damping and is driven by an external function
generator and power supply, the efficiency of the proposed self-powered system is

approximately 95%. The major advantage of the proposed technique is that it is only
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necessary to sacrifice a small amount of damping performance to make the system fully

self-powered. The circuit design and the implementation of the system are quite simple,

and the study shows the effectiveness of this new design. The drawback of this

technique is the narrow bandwidth in the frequency response for low excitation level

due to the decrease of harvested energy when the SSDI circuit works. When the exciting

acceleration is sufficiently high, the working bandwidth is nearly equal to the bandwidth

of the system driven by external instruments. To improve the system performance, the

high frequency noise generated by the inversion could be further processed; the

damping performance and efficiency of the self-powered system could also be

improved.
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Chapter 7 Summary and Discussion

The main topic of this dissertation is about improving the output power of the
piezoelectric energy harvesting device. The objective was to build a totally self-powered
energy harvester and to broaden the bandwidth of the frequency response. Because the
interfaces used in energy harvesting application are sitalanes used in damping
applications, the self-powered technique was applied in the damping system. According
to different techniques proposed in this dissertation, Figure 7-1 shows a schematic

diagram of our contributiomo enhance the performances of the piezoelectric energy

harveser.
Chapter 3
Tunable Resonant
Frequency Techniqu
Shift Resonant Frequency Final Purpose
Piezoelectric
: Interface
material -
circuit
+
) . Host I ical + . bl
Vibration Structure Electrical AC | storage device Usable DC
mechanical energ energy energy
Mechanical part Electrical part
Enlarge Work-Cycle Area
Bistable broadband technique
Self-powered

Velocity detection SSHI

SSHI Technique

Enhance bandwidth at non-resonance
+Enlarge Work-cycle Area

Bistable Broadband technique
Chapter5 combined with SSHI technique

Figure 7-1. Schematic diagram of different techniques improving the power output of

Chapter 4

the piezoelectric energy harvesting device.
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7.1 Summary and conclusion of the major results

The techniques proposed in this dissertation can be summarized as follows.
1. Tunable resonant frequency piezoelectric energy harvesting system

The tunable resonant frequency technique is based on the characteristic of the
piezoelectric material and shifts the resonant frequency in a short region by connecting
the piezo-patch to different capacitors in the electrical part and then influences the
behavior in the mechanical part. Finally the resonant region can be broadened around
2.5 Hz in the experimental results.

Because this technique is performed through changing the loads in the electrical
part to influence the mechanical behavior, the electromechanical paraf@@tenist
be at least close to the medium coupling region. When the electromechanical parameter
k’Qm is much lower than 2 is in the weak-coupling region and in our experiment in
chapter 3 the %y, = 1.25 is in the medium-coupling region, that is why the tunable
resonant frequency technique can shift the resonant frequency.

In the results of the tunable resonant frequency energy harvesting device, the
maximal output power can be increased around 30 % and the charging time can be
shortened to around 200s. The tunable resonant frequency system is successfully

combined with th@ WSN node to transmit the RF signal. The tunable system can make
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aWSN node transmit more RF data during the same time period.
2. Self-powered velocity detection SSHI energy harvesting system:

Due to the success of the SSHI technique improving the output power for the
piezoelectric energy harvesting device, the main contribution in this dissertation is to
make the SSHI technique into a fully self-powered system through the velocity
detection to switch more accurately than classical peak detector technique. The energy
flows are separated into three parts so it can be designed respectively. The velocity
signal is detected from the characteristic of the piezoelectric patch and it can
theoretically make switches work at the optimal time.

The SSHI techniques achieve good performance over standard techniques when the
harvester is weakly coupled. In this case the electromechanical paraffgatés kuch
lower than 2. The self-powered V-SSHI increases the output power by enlarging the
work-cycle area. From the results, the self-powered V-SSHI can lead to a gain of around
200% compared to the standard DC approach without any external energy and have
better performance than using peak detector technique.

3. Bistable broadband technique combined synchronized switching technique:
In order to harvest the vibration energy over a broader frequency range than that of

the traditional linear beam harvest®e proposed a bistable harvester. This bistable
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harvester was combined with synchronized switching technique. The bistable broadband
technique enhances the bandwidth and makes mechanical behavior nonlinear through
proper magnets design in the mechanical part. The classical SSHI technique enlarges the
work-cycle area in the electrical part and is combined with bistable broadband technique
to construct a complete system.

From the results of our example, at resonance (f = Hf).#he output power of the
bistable broadband technique combined with SSHI is 14W.4nd the output power of
the bistable broadband combined with standard DC technique is|2¥.8Bhe output
power is increased around 5.64 times at resonance. At non-resonance (f= 5Hz) the
output power of the bistable broadband technique combined with S8hWsand the
output power of the bistable broadband combined with standard DC techniqueVé.0.3
The output power is increased around 26.67 times at non-resonance.

The greatest advantage aimbining these two non-linear techniques is that they
can be designed individually and will not influence each other. The performance of the
bistable broadband technique and the SSHI technique are integrated together.

4. Self-Powered Semi-Passive Piezoelectric Structural Damping Based on
Zero-Velocity Crossing Detection

When the piezoelectric patch is not weakly coupled to the host structure, the
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piezoelectric energy harvester will produce damping effects. Based on this characteristic,
the self-powered synchronized switching technique used in the energy harvesting
application can be also used in the structural damping application. The advantage of the
self-powered technique is that it can fully perform in damping application but the limit
of the self-poweredamping technique is that this method needs a minimum structure’s
displacement to harvest energy to supply electronic devices. As the structure's
displacement is the key parameter for the self-powered technique, in the damping
application the system behaves like a feedback loop when the displacement is over the
limit level, the self-powered semi-passive damping system will start to damp the
structural vibration effectively. Compared to the case when the electronics are supplied
with an external source, the efficiency of the proposed self-powered semi-passive
damping system is approximately 86 %. Compared to the ideal switching case in which
only the main piezoelectric patch used for SSDI damping with external source, the
efficiency of the proposed self-powered semi-passive damping system is approximately
95 %. The major advantage of the this technique is that it is only necessary to sacrifice a
small amount of damping performance to make the system fully self-powered and also

make the system also have good damping performance.
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7.2 Future work

The most important points in the future are maintaining the increase of the output

power of energy harvesting and these techniques must be really combined with WSN

modules or other low power consumption portable devices. The following points are the

possible ways to increase the output power, increase efficiency and combined with

WSN system.

1. Piezoelectric material is the fundamental part to convert the energy. As the properties

of the single crystal piezoelectric material is better than PZT, substituting the single

crystal piezoelectric material for PZT is a potential method to increase energy directly.

2. Design the proper interface circuit for capacitive load. The interface circuit designed

in this dissertation is suitable for the resistor load. However if in the application the

electrical energy does not supply to the load directly, the capacitor is needed to be the

buffer to store the energy temporarily.

3. Design a better and proper WSN communication framework for piezoelectric energy

harvesting device. According to the different applications, the WSN communication

framework should be designed and developed as an exclusive system to make

piezoelectric energy harvesting device efficiently extend the battery lifetime.
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Appendix A.

A.1 Equivalent circuit of the piezoelectric energy harvesr

In order to analyze and discuss the piezoelectric energy harvesting device with the
interfacing circuit, the equivalent circuit of the piezoelectric energy harvesting is
presented. From the governing equation of piezoelectric (equation (2.6)), the equivalent
circuit of mechanical part and electrical part can be modeled and separated by an idea
transformer and the ratio of the transformer is force-voltage coupling fagtprag
shown in Figure A-1. The equivalent inductdy, is given by equivalent mass, the
equivalent capacitoiC_ is given by equivalent stiﬂ’nes.%@E and the equivalent

resistor R, is given by damping ratio D.

Figure A-1. Equivalent circuit model of piezoelectric and structure.

The mechanical part of the equivalent circuit can be transformed into electrical part

as Figure A-2 shownyv,, and I is the equivalent voltage and current which
transformed from the mechanical part. Figure A-2 is the equivalent circuit of the
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piezoelectric energy harvesting device and can be used to analyze with the interfacing

circuit. The impedance of the mechanical part is shown in equation (8.1).

Figure A-2. Equivalent circuit model transformed into electrical part.

= jo—+ K +R
fech o’ jwa® af (8.1)

z

A.2 Electromechanical coupling coefficient

Electromechanical coupling coefficient (EMCC) is another important parameter
andit indicates the effectiveness of piezoelectric materials to convert the mechanical
energy into electrical energy. EMCC can be presented as equation[98]2)This
equation is general formula and suitable for both dynamic and static condition. In the
real application, it's hard and complex to measure energy and put it into equation (8.2)
to calculate the EMCC. So when the structure driving at the resonance, the equation (8.2)

can be extended as equation (8.3) sh{@®&) 96] and this EMCC is called effective

electromechanical coupling coefficienk ). Effective electromechanical coupling
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coefficient (k%) can be given by open-circuit resonant frequency and short-circuit

resonant frequency as following equations (8.3) shows.

Um
k= 0.0, (8.2)
Where
Table A-1. Definitions of the EMCC energy terms.
Elastic energy U,
Electric energy U,
Mutual energy U,
G, =2 _zwé (8.3)
a)D
where
Open-circuit resonant frequency @p
Short-circuit resonant frequency lon

The effective electromechanical coefficient shown in equation (8.3) is dynamic
definition. According to the static definition of open-circuit resonant frequency and
short-circuit resonant as equation (8.4) shown, the static electromechanical coupling
coefficient (k?) can be represented in open-circuit stiffness and short-circuit stiffness as

equation (8.5) shown and it's also called global electromechanical coupling coefficient
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(k°).

KP KE
Oy =[—=, @ =,
M M (8.4)
KP_KE
k?i=—P P S P (8.5)
KD
where
Effective mass
M
Effective open-circuit stiffness K P
p
Effective short-circuit stiffness KE

The effective open-circuit stiffnesKf) can be calculated by the piezoelectric

equation when the piezoelectric patch is in short-circuit condition as equation (8.6).
When the piezoelectric patch is in short-circuit condition, there is no piezoelectric effect
and the piezoelectric material like only a normal ceramic. In order to calculate the

effective open-circuit stiffness(), let the piezoelectric patch in open-circuit condition

and it means there is no current flow out from piezoelectric patch. The output current (1)
in piezoelectric equation is zero and substitute the relation between velocity and voltage

into the governing equation (2.4). Open-circuit stiffness’ Y can be obtained as

equation (8.7). When the piezoelectric pagctiriving under low-coupled condition and
small displacement, the displacement can be assumed constaxif)( X represents the

displacement when the system is driven under open-circuit conditior agpresents
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the displacement when the system is driven under short-circuit condition. The relation

between effective open-circuit stiffnesk {) and effective open-circuit stiffnes«f)

can be expressed as equation (8.8).

Fo = K5 -x (8.6)
P
D '
FP :[Kp +—Cojx (87)
D E a’
Kp =K " +C— (88)

A.3 Time interval discussion of Standard DC approach
In this sub-section, the time interval behavior of the standard DC approach is

discussed. It is assumed that the displacement is sinusoidal and the displagement

velocity X, equivalent currentl , can be represented as equation (8.9), (8.10) and

(8.11).
X(t) = —Xcos@t ) (8.9)
X(t) = m,Xsin(wgt ) = X singg ) (8.10)
| () = aX = aapRsin(et )= sinEg ) (811)
where
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According to the Figure 24, the time whenV, equals V., x equals —X
and |, equals zero isT;, the time whenV, reaches to thV, is T, and the time
when x equals X is T,. The behavior of these three time intervals is discussed in
detail as following.
() t=T,~T,

As V, <|V|. the full bridge rectifier is disconnected ang, !, flow into R
and C, respectively as equation (8.12) shown. Integrating the second equation in

equation (8.12) fromT, to T,, the time T, can be obtained as equation (27) shown.

=l
e (8.12)
lo =aXx-CV,.=0

Ty a (.
Vet :c_jn xdt
T (8.13)
=T, :—cos‘l[A—OVC - 1)

X
(i) t=T,~T,

The voltageV, reaches to the/., so the full bridge rectifier is connected,
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equals I. +1 and flow through full bridge to into the rectifier capacitGr and load
resistor R as equation (8.14) shown.
lp=1c+l 4 (8.14)

(i) t=T,~T,

Considering half cycle period (the time interval frofn to T,) and assuming the
rectified capacitorC, of load is large enough, so the output voltage during the
time interval form T, to T, can be regarded as a constant value and the net current
through C, equals zero. As this assumption, the sum of the current olpfriiom
piezoelectric patch equals to the sum of the curdgntflow through the resistor load
R as equation (8.15) shownlIntegrating over the half cycle from timg to T,, the

output voltageV, can be obtain as the equation (8.16) shown.

[Pregt=["1.at (8.15)

jTT:\?C dt= jTT(ax— V. )dit
_ 2aRaw, 2
 2C,Rw, +7

R (8.16)
=V,
A.4 Time interval discussion of Parallel-SSHI

In this sub-section, the time interval behavior of the parallel-SSHI is presented.

192



According to the Figure 2-15, the time wh&f equals -V., x equals —X and | eq
equals zero isT,. Let T, is initial time and equals zero. The time when the clamped

capacitor C, and inductorL is resonant during half resonant cycle avid reaches

T

tothe V..q, is T, . T, equals %TLC. Oc = e isthe inverting quality factor of
the LC resonance and th®, is quality factor of whole energy harvesting device and
equals wLC%LC . The Rc in the Q, can be regarded as whole electrical ésss the
system. The time when, reaches toV. is T, and the time whenx equals X is
T,. The behavior of the these time interval is discussed in detail as following.
(i) te[T,T,]

The time interval fromT, to T, equals to the half LC resonant perieid'l’(c). In
this interval the inductor will resonate with the clamped capacitor of the piezoelectric
patch and the terminal voltage of piezoelectric patch reverses from the negative voltage
to positive voltage. The terminal voltage of the piezoelectric patch can be expressed as
equation (8.17) shown during oscillating period. Substitute the%‘ into the

equation (8.17) and the terminal voltage at tifie can be obtained as equation (8.18).

Vi (t) =V, e {%sin(a)mtﬁ cos(coLCt)} (8.17)
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V,(T,) =V, e e {isin[a)m ij + co{wLC LH
2Q, @ c @ c (8.18)

(i) te[T,T;]
As V. <V |. the full-bridge rectifier is disconnected arld and I, can be
represented as equation (8.19) shown. Integrating the piezoelectric equatiofi ftom

T,, the time T, can be obtained as equation (8.20) shown.

l=—I,
. (8.19)
l; =1+l =aX-CV .+l =0
T3 .
[ (@x=CVp +1 it
=T, = ic:os‘{&( -G )Ve — J} (8.20)
@, Xt

(i) te[T,T,]

The voltageV, reaches to the/

-, so the full-bridge rectifier is connectedl.

equals I. +1; and flow through full-bridge to into the rectifier capacitGf and

load resistorR as equation (39) shown.
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la=ls—lo=l o+ A ¢ (8.21)
(iv) te[Tl,T4]

Assuming the rectified capacito€, of the load is large enough, so the output
voltage V. during the time interval forml, to T, can be regarded as a constant
value and the net current throudl} equals zero. As this assumption, the sum of the
current outputl, from piezoelectric patch equals to the sum of the curtgntflow
through the resistor loadk as equation (8.22) shown. When integrate the curtegnt

from the time T, to T,, the V. can be obtained and the result is shown in equation

(8.23).
=1+, (8.22)
Tj“%dt:j;“(ax— CoV. + 1, )t
=V, = 20 R, X
7+(1-0 ) G Ro, (8.23)

A.5 Time interval discussion of Series-SSHI

In this sub-section, the time interval behavior of the series-SSHI is presented.
According to Figure 2-19, the time whew, equals-V,, x equals —X and | oq
equals zero isT,. Let T, is initial time and equals zero. The time when the clamped

capacitor C, and inductorL is resonant during half resonant cycle avid reaches
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to the —\7C+(\7P—\fc)-q . is T,. T, equals % and X(T,) = X(T)=-X .

T

Oc = e® js also the inverting quality factor of the LC resonance. The time when

reaches to\?P’ x equals X is T,. The behavior of these time interval is discussed in
detail as following.
() te[T,T,]

During this time interval, the inductor resonate with the clamped capacitor of the
piezoelectric patch and comparing with the one oscillating period of the SSHI, the
interval of LC resonance is much shorter. As LC resonance, the full-bridge rectifier is
connected andl, and I, can be represented as equation (8.24) shown. During the
oscillating period, the relation between voltage and voltageV. can be expressed
as equation (8.25). Substitute the initial condition into equation (8.25), and the voltage

V, attime T, and T, can be obtained as equation (50) shown.

| dv, (8.24)
L 0 gt
vy S (o e @ e | L g Ea i
(Ve —Ved( 5 —( pt c)e 20 sin ch'w +COo a)Lc'a)
| Lc Lc
T, P 0 An
:>(VP _Vc)(§ =<VP_VC)e A :(V P_V c)'q LC (8-25)
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(Ve =V )(0) = -V

T S (8.26)
VP(%):_VC-F(VP_VC)q LC

Considering integratindg, during half resonant period, the result is shown in

equation (8.27).

T, e dV,
L_l |L'dt:.[02 _COWdt

(8.27)

Tic

= [ 21, -dt=CN (1+q,)

(i) te[T,,T;]
During this period LC resonance is off, so the full bridge rectifier is disconnected.
The I, and I, can be represented as equation (8.28). By integrdtingrom T, to

T,, the relation betweeV, and V. can be obtained as equation (8.29) shown.

I, =
{ RoC (8.28)
l,=1,=0
T3 T3 .
jTZ |, -dt =sz (a%x—CyV,)dt=0
A 5 A (8.29)
—V, = 2a% (1+ Oc )V

B Co(l_ qLC) (1_ q_c) ©

(i) te[T,T,]

197



Considering the time period frori, to T, and integratingl., the result is
shown in equation (8.30). The result shows that the current flow thréggfrom T,

to T, equals to the current during resonant period.

T. T. T. T T
e=[ et [ R:J'Tj(l = C)+L:(4 c)

. i (8.30)
o=l
:>J‘T1 Rt

According to the equation (8.30) and substituting the equation (8.27) into equation

(8.30), the V. can be obtained as equation (8.31) shown.

V, S
ECC%:CO(VP _VC)(1+qLC)

o
\7C T 20X (1+0c)y
— = — V.-V, (1 8.31
R (00 0 Co(l— qC) (1_ qc) C C ( +qLC) ( )
v, 20R(1+q.) .

2Rw,C, (1+ qc )+ 7 (- qc)
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