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E. Petit : Professor Université de Paris 12 Créteil, Examiner
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Abstract

This thesis is part of a broader research project which aims to analyze the potential

migration of cancer cells. As part of this doctorate, we are interested in the use

of image processing to count and classify cells present in an image acquired using

a microscope. The partner biologists of this project study the influence of the

environment on the migratory behavior of cancer cells from cell cultures grown on

different cancer cell lines. The processing of biological images has so far resulted

in a significant number of publications, but in the case discussed here, since the

protocol for the acquisition of images acquired was not fixed, the challenge was

to propose a chain of adaptive processing that does not constrain the biologists

in their research. Four steps are detailed in this paper. The first concerns the

definition of pre-processing steps to homogenize the conditions of acquisition. The

choice to use the image of standard deviations rather than the brightness is one

of the results of this first part. The second step is to count the number of cells

present in the image. An original filter, the so-called “halo” filter, that reinforces

the centre of the cells in order to facilitate counting, has been proposed. A statistical

validation step of the centres affords more reliability to the result. The stage of image

segmentation, undoubtedly the most difficult, constitutes the third part of this work.

This is a matter of extracting images each containing a single cell. The choice of

segmentation algorithm was that of the “watershed”, but it was necessary to adapt

this algorithm to the context of images included in this study. The proposal to use a

map of probabilities as input yielded a segmentation closer to the edges of cells. As

against this method leads to an over-segmentation must be reduced in order to move

towards the goal: “one region = one cell”. For this algorithm the concept of using

a cumulative hierarchy based on mathematical morphology has been developed. It

allows the aggregation of adjacent regions by working on a tree representation of

these regions and their associated level. A comparison of the results obtained by

this method with those proposed by other approaches to limit over-segmentation

has allowed us to prove the effectiveness of the proposed approach. The final step

of this work consists in the classification of cells. Three classes were identified:
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spread cells (mesenchymal migration), “blebbing” round cells (amoeboid migration)

and “smooth” round cells (intermediate stage of the migration modes). On each

imagette obtained at the end of the segmentation step, intensity, morphological and

textural features were calculated. An initial analysis of these features has allowed

us to develop a classification strategy, namely to first separate the round cells from

spread cells, and then separate the “smooth” and “blebbing” round cells. For this we

divide the parameters into two sets that will be used successively in two the stages

of classification. Several classification algorithms were tested, to retain in the end,

the use of two neural networks to obtain over 80% of good classification between

long cells and round cells, and nearly 90% of good classification between “smooth”

and “blebbing” round cells.
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Résumé

Ce travail de thèse s’insère dans un projet de recherche plus global dont l’objectif

est d’analyser le potentiel migratoire de cellules cancéreuses. Dans le cadre de ce

doctorat, on s’intéresse à l’utilisation du traitement des images pour dénombrer

et classifier les cellules présentes dans une image acquise via un microscope. Les

partenaires biologistes de ce projet étudient l’influence de l’environnement sur le

comportement migratoire de cellules cancéreuses à partir de cultures cellulaires pra-

tiquées sur différentes lignées de cellules cancéreuses. Le traitement d’images bi-

ologiques a déjà donné lieu à un nombre important de publications mais, dans le

cas abordé ici et dans la mesure où le protocole d’acquisition des images acquises

n’était pas figé, le défi a été de proposer une châıne de traitements adaptatifs ne

contraignant pas les biologistes dans leurs travaux de recherche. Quatre étapes sont

détaillées dans ce mémoire. La première porte sur la définition des prétraitements

permettant d’homogénéiser les conditions d’acquisition. Le choix d’exploiter l’image

des écarts-type plutôt que la luminosité est un des résultats issus de cette première

partie. La deuxième étape consiste à compter le nombre de cellules présentent dans

l’image. Un filtre original, nommé filtre «halo», permettant de renforcer le centre

des cellules afin d’en faciliter leur comptage, a été proposé. Une étape de valida-

tion statistique de ces centres permet de fiabiliser le résultat obtenu. L’étape de

segmentation des images, sans conteste la plus difficile, constitue la troisième partie

de ce travail. Il s’agit ici d’extraire des «vignettes», contenant une seule cellule. Le

choix de l’algorithme de segmentation a été celui de la «Ligne de Partage des Eaux»,

mais il a fallu adapter cet algorithme au contexte des images faisant l’objet de cette

étude. La proposition d’utiliser une carte de probabilités comme données d’entrée

a permis d’obtenir une segmentation au plus près des bords des cellules. Par con-

tre cette méthode entraine une sur-segmentation qu’il faut réduire afin de tendre

vers l’objectif : «une région = une cellule». Pour cela un algorithme utilisant un

concept de hiérarchie cumulative basée morphologie mathématique a été développé.

Il permet d’agréger des régions voisines en travaillant sur une représentation ar-

borescente de ces régions et de leur niveau associé. La comparaison des résultats
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obtenus par cette méthode à ceux proposés par d’autres approches permettant de

limiter la sur-segmentation a permis de prouver l’efficacité de l’approche proposée.

L’étape ultime de ce travail consiste dans la classification des cellules. Trois classes

ont été définies : cellules allongées (migration mésenchymateuse), cellules rondes

«blebbantes» (migration amiböıde) et cellules rondes «lisses» (stade intermédiaire

du mode de migration). Sur chaque vignette obtenue à la fin de l’étape de seg-

mentation, des caractéristiques de luminosité, morphologiques et texturales ont été

calculées. Une première analyse de ces caractéristiques a permis d’élaborer une

stratégie de classification, à savoir séparer dans un premier temps les cellules ron-

des des cellules allongées, puis séparer les cellules rondes «lisses» des «blebbantes».

Pour cela on divise les paramètres en deux jeux qui vont être utilisés successivement

dans ces deux étapes de classification. Plusieurs algorithmes de classification ont été

testés pour retenir, au final, l’utilisation de deux réseaux de neurones permettant

d’obtenir plus de 80% de bonne classification entre cellules longues et cellules rondes,

et près de 90% de bonne classification entre cellules rondes «lisses» et «blebbantes».

iv



Contents

Introduction 1

1 Situating the problem 5

1.1 Imaging cancer cell migration and associated rare cellular events . . . 6

1.1.1 Cancer cells as non-static populations colonizing their neigh-

bourhoods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.2 Cancer cells as individual moving objects . . . . . . . . . . . . 7

1.1.3 Characterizing phenotypic and morphologic features of cancer

cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.4 Combination of the investigation levels . . . . . . . . . . . . . 8

1.2 Microscopy and image acquisition technologies for culture visualization 8

1.2.1 Culture visualization . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Characterisation of imaging techniques . . . . . . . . . . . . . 10

1.2.3 Phase-contrast microscopy . . . . . . . . . . . . . . . . . . . . 11

1.3 Quantitative cell image analysis . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Low-level image processing and preprocessing . . . . . . . . . 13

1.3.2 Image segmentation, object detection . . . . . . . . . . . . . . 14

1.4 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.1 Object counting . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.2 Population movement measurements . . . . . . . . . . . . . . 23

1.4.3 Cell trajectory movement measurements . . . . . . . . . . . . 23

1.4.4 Measurements related to rare cellular events . . . . . . . . . . 24

1.4.5 Shape and cell morphology . . . . . . . . . . . . . . . . . . . . 25

1.5 The problem at hand . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5.1 Biological background . . . . . . . . . . . . . . . . . . . . . . 27

v



Contents

1.5.2 Experimental objectives . . . . . . . . . . . . . . . . . . . . . 30

1.5.3 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.5.3.A Cells and cell culture . . . . . . . . . . . . . . . . . . 32

1.5.3.B Data and its acquisition . . . . . . . . . . . . . . . . 33

1.5.3.C Computational resources . . . . . . . . . . . . . . . . 34

1.6 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 Pre-processing and Cell Detection 36

2.1 Corrective pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1.1 Data-induced challenges . . . . . . . . . . . . . . . . . . . . . 39

2.1.2 Removal of the illumination gradient . . . . . . . . . . . . . . 43

2.1.3 Enhancing the cells . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2 Image binarisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.1 Calculating the image to binarise: anisotropic diffusion . . . . 48

2.2.2 Selecting a thresholding: Otsu’s criterion . . . . . . . . . . . . 49

2.2.3 Thresholding the image: hysteresis . . . . . . . . . . . . . . . 50

2.3 Cell detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3.1 The “Halo” filter . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3.2 Auto-calibration of the Halo filter support . . . . . . . . . . . 56

2.3.3 The “Halo” transform and localization of peaks . . . . . . . . 59

2.4 Cell validation by a maximum likelihood test . . . . . . . . . . . . . . 61

2.4.1 Determining the nature of the noise . . . . . . . . . . . . . . . 61

2.4.2 The decision theory . . . . . . . . . . . . . . . . . . . . . . . . 63

2.5 Cell detection results and analysis . . . . . . . . . . . . . . . . . . . . 67

2.5.1 Exploring manual counts . . . . . . . . . . . . . . . . . . . . . 67

2.5.2 Automatic counts, and benchmarking them . . . . . . . . . . . 68

2.5.3 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3 Pursuing a relevant segmentation 73

3.1 Image segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2 Segmentation of cellular images . . . . . . . . . . . . . . . . . . . . . 75

3.2.1 Thresholding and pixel-classification . . . . . . . . . . . . . . 78

vi



Contents

3.2.2 Edge-Based Segmentation . . . . . . . . . . . . . . . . . . . . 79

3.2.3 Region growing and other region-based methods . . . . . . . . 80

3.2.3.A Watershed Segmentation . . . . . . . . . . . . . . . . 81

3.2.4 Watershed Segmentation as our method of choice . . . . . . . 82

3.3 How good is a segmentation: Segmentation Quality Evaluation . . . . 85

3.3.1 Methods of segmentation quality evaluation . . . . . . . . . . 86

3.3.2 The discrepancy criterion . . . . . . . . . . . . . . . . . . . . 87

3.3.3 The qualitative criterion . . . . . . . . . . . . . . . . . . . . . 89

3.3.4 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . 89

3.4 Applying the Watershed Transform on cellular images: the watershed

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.4.1 The Vincent and Soille algorithm . . . . . . . . . . . . . . . . 91

3.5 Applying the Watershed Transform on cellular images: the input data 92

3.5.1 The distance transform . . . . . . . . . . . . . . . . . . . . . . 93

3.5.2 The gradient-weighted distance transform . . . . . . . . . . . 96

3.5.3 Building cell shape priors into the distance map . . . . . . . . 96

3.5.4 Partial membership probabilities as the topographic function . 98

3.5.5 Comparison and Discussion . . . . . . . . . . . . . . . . . . . 101

3.5.6 Conclusions and opening up to following work . . . . . . . . . 105

4 Improving the segmentation 109

4.1 The problem of over-segmentation and resolution strategies . . . . . . 110

4.2 Preventing over-segmentation . . . . . . . . . . . . . . . . . . . . . . 112

4.2.1 Selecting desired minima through Marking . . . . . . . . . . . 113

4.2.2 Eliminating non-salient basins through Swamping . . . . . . . 114

4.2.2.A Watershed segmentation hierarchies and the Water-

fall algorithm . . . . . . . . . . . . . . . . . . . . . . 115

4.3 Cumulative hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.4 Correcting over-segmentation: Region

Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.4.0.B Region Adjacency Graphs . . . . . . . . . . . . . . . 125

4.4.0.C Constructing the RAG . . . . . . . . . . . . . . . . . 126

4.4.1 Criteria-based merging on the RAG . . . . . . . . . . . . . . . 128

vii



Contents

4.4.1.A The initial algorithm and its shortcomings . . . . . . 129

4.4.1.B Our improved basin-line competition implementation 130

4.4.2 Model-based Object Merging methods . . . . . . . . . . . . . 133

4.4.3 Watershed-line breaking methods . . . . . . . . . . . . . . . . 137

4.4.4 Significance-of-basins approaches . . . . . . . . . . . . . . . . 138

4.5 Cumulative hierarchy versus the other

segmentation-improvement methods: Evaluation and discussion . . . 141

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5 Classification of cells 151

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.2 Definition of cellular characteristics . . . . . . . . . . . . . . . . . . . 157

5.2.1 Morphology features . . . . . . . . . . . . . . . . . . . . . . . 158

5.2.1.A Connected component region and contour properties 158

5.2.1.B Zernike moments . . . . . . . . . . . . . . . . . . . . 162

5.2.2 Texture Features . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.2.2.A First order statistics . . . . . . . . . . . . . . . . . . 163

5.2.2.B Co-occurrence Matrix Features . . . . . . . . . . . . 163

5.2.2.C Gabor Features . . . . . . . . . . . . . . . . . . . . . 165

5.2.3 What does the data look like? . . . . . . . . . . . . . . . . . . 166

5.3 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.3.1 Statistical data models . . . . . . . . . . . . . . . . . . . . . . 168

5.4 Classifying the selected features . . . . . . . . . . . . . . . . . . . . . 171

5.4.1 Discriminant Analysis classification . . . . . . . . . . . . . . . 173

5.4.2 Artificial Neural Networks classification . . . . . . . . . . . . . 177

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Conclusions and Perspectives 181

Bibliography 185

Annexes 207

viii



List of Figures

1.1 Visualizing cells through pigmented . . . . . . . . . . . . . . . . . . . 9

1.2 Fluorescent-marked migrating cells. . . . . . . . . . . . . . . . . . . . 10

1.3 Working of a phase-contrast microscope . . . . . . . . . . . . . . . . . 12

1.4 Example of image details being obstructed by a halo of light formed

around objects in phase-contrast microscopy. . . . . . . . . . . . . . . 13

1.5 Example of the reduction of grey level non-uniformity. . . . . . . . . . 14

1.6 Clustering segmentation method from [57], a) clusterized image (3

clusters), and one cluster image in b) class 1, c) class 2, d) class 3. . . 16

1.7 a) Histogram-corrected Image , b) image of local variance, c) binary

image of variance, d) image of contours. . . . . . . . . . . . . . . . . 16

1.8 Example image segmentation by thresholding. . . . . . . . . . . . . . 18

1.9 Example segmentation combining intensity, edge, and shape informa-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.10 From [96]: Separating and counting stained, i.e. living (green) and

dead (red), cells in microwell arrays. . . . . . . . . . . . . . . . . . . . 21

1.11 From [60]. Histogram thresholding on cellular blobs. . . . . . . . . . . 22

1.12 From [60]. Results of the manual (163 cells counted) and automatic

(143 cells detected) counting, images on the left and right respectively. 22

1.13 From [29]. Front migration example: cell colonization of a wound. . . 24

1.14 From [116]: Tracking closely contacting and partially overlapping cells. 25

1.15 The Yin and the Yang of migration of a cancerous cell [31]. . . . . . . 28

1.16 Characteristic morphologies of cell types. . . . . . . . . . . . . . . . . 29

1.17 The three types of cells: (1) spread or mesanchematic, (2) smooth

round or transitory, and (3) blebbing round or amoeboid cells. . . . . 31

1.18 Changes in microenvironment reflected in metastasic cell morphology. 31

1.19 The phase-contrast microscope used . . . . . . . . . . . . . . . . . . . 33

ix



List of Figures

2.1 Schematic of the experimental processes involved. . . . . . . . . . . . 38

2.2 a) A sample image in PAI − 1 environment, b) its intensity histogram. 39

2.3 The illumination gradient visible from bottom left toward top right. . 40

2.4 Rounds cells are usually more prominent, making spread cells more

difficult to detect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5 An agglomerate of overlapping cells. . . . . . . . . . . . . . . . . . . . 41

2.6 Corrective pre-processing schematic. . . . . . . . . . . . . . . . . . . . 42

2.7 Illustration of the illumination correction . . . . . . . . . . . . . . . . 45

2.8 Image binarisation schematic. . . . . . . . . . . . . . . . . . . . . . . 47

2.9 Comparison on a toy problem between Gaussian filtering (bottom)

and Anisotropic diffusion (top) at increasing scales. . . . . . . . . . . 49

2.10 Summarizing the binarisation process. . . . . . . . . . . . . . . . . . 52

2.11 Behaviour of the correlation coefficient. . . . . . . . . . . . . . . . . . 55

2.12 Image binarisation schematic. . . . . . . . . . . . . . . . . . . . . . . 57

2.13 a) Connected component boundaries are known and centroids could

be calculated. b) The radius histogram with a mode of 16 pixels. . . . 58

2.14 Distances from connected components’ borders to their centroids are

calculated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.15 A zoom on a halos image and the peaks in the correlation space

superimposed on the original image. . . . . . . . . . . . . . . . . . . . 59

2.16 3D plot of (a) halos, (b) greylevel dilation around each peak. . . . . . 60

2.17 Image 0032 with cell centres superimposed on the original image. . . 60

2.18 Characteristic plots for additive and multiplicative noise. . . . . . . . 62

2.19 Examples of the noise evolution plots for a couple of the dataset images. 62

2.20 Centre-valudation: examples of individual scores and the global dis-

tribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.21 Snapshot of image 0032 from the manual detection utility. . . . . . . 67

2.22 Example of normals drawn (sparsely for sake of clarity) to cell walls

adding to accumulator bins. . . . . . . . . . . . . . . . . . . . . . . . 69

2.23 The three types of error committed by the cell detection algorithm. . 71

3.1 Examples implementations from the literature and their shortcomings. 84

3.2 Illustration of the comparison. . . . . . . . . . . . . . . . . . . . . . . 88

x



List of Figures

3.3 Principles of the watershed algorithm by immersion. . . . . . . . . . . 90

3.4 (a) A cell cluster, (b) the corresponding chamfer distance map with

correlation peaks for the distance transform reference points, and (c)

the corresponding watershed. . . . . . . . . . . . . . . . . . . . . . . 94

3.5 Walk-through the shape-guided GWDT watershed transform. . . . . 95

3.6 Shape relationship between (a) cells and (b) corresponding watershed

markers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.7 Fuzzy-C-means class membership visualisations. . . . . . . . . . . . . 100

3.8 Graphs of (a) Correct segmentation (b) basin overflow and (c) basin

shortfall for the entire subimage data. . . . . . . . . . . . . . . . . . . 102

3.9 Trends in mean of (a) Correct segmentation (b) basin overflow and

(c) basin shortfall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.10 Comparison of the segmentations produced by the various functions. . 106

4.1 Segmentations from Fig 3.10 in the described order, this time super-

imposed on the subimage. . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2 Illustration of the marking mechanism. . . . . . . . . . . . . . . . . . 113

4.3 Illustration of the concept of dynamics. . . . . . . . . . . . . . . . . . 115

4.4 Topographic function geodesically eroded by waterfall swamping until

only significant basins remain. . . . . . . . . . . . . . . . . . . . . . . 115

4.5 Explicative example of the hierarchic watershed at various swamping

levels from Najman and Schmitt [145]. . . . . . . . . . . . . . . . . . 117

4.6 A multi-level hierarchy dendrogram. . . . . . . . . . . . . . . . . . . . 119

4.7 Progression of the cumulative hierarchy. . . . . . . . . . . . . . . . . 121

4.9 Final segmentation in the context of the original and binarised images.122

4.8 Progression of the cumulative hierarchy. . . . . . . . . . . . . . . . . 123

4.10 Comparison of a) shape-guided gradient-weighted distance transform

watershed and b) cumulative hierarchy. . . . . . . . . . . . . . . . . . 124

4.11 a) Example of the regions of a segmented image and b) the corre-

sponding RAG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.12 Object-model watershed breaking in the stand-alone and agglomer-

ated cell cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.13 Graphs of (a) Correct segmentation (b) basin overflow and (c) basin

shortfall for the entire subimage data. . . . . . . . . . . . . . . . . . . 144

xi



List of Figures

4.14 Trends in mean of (a) Correct segmentation (b) basin overflow and

(c) basin shortfall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.15 Visual comparison of watershed-segmentation-refinement methods. . . 148

5.1 Example of data issued from cell image segmentation. . . . . . . . . . 152

5.2 Second principal component versus first principal component for all

cell examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.3 Data movement along classification subtasks . . . . . . . . . . . . . . 156

5.4 Illustration of some morphological descriptors used. . . . . . . . . . . 159

5.5 The computation of the phenotypic shape descriptor. . . . . . . . . . 159

5.6 Histograms of the first few features for the complete set of examples. 166

5.7 Minimization of Wilk’s criterion . . . . . . . . . . . . . . . . . . . . . 170

5.8 Class distributions produced by QDA using only morphology features.176

5.9 Class distributions produced by LDA using only texture features. . . 176

5.10 Binary reconstruction from markers . . . . . . . . . . . . . . . . . . . 207

5.11 Threshold decomposition of a greyscale image . . . . . . . . . . . . . 208

5.12 Greyscale reconstruction of image f from marker g . . . . . . . . . . . 209

5.13 Extracting the regional maxima of image I by its reconstruction from

I-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

5.14 Determining the h-domes of image I. . . . . . . . . . . . . . . . . . . 211

xii



List of Tables

2.1 Comparison of cell counts from two experts over sample dataset. . . . 68

2.2 Comparison of cell detection performances w.r.t expert. . . . . . . . . 70

2.3 Error analysis of the Halo transform counting. . . . . . . . . . . . . . 70

3.1 Mean, standard deviation of Correct Attrib. by topographic function 103

3.2 Mean, standard deviation of Basin Overflow by topographic function 105

3.3 Mean, standard deviation of Basin Shortfall by topographic function . 105

4.1 Recall and summary of the segmentation refinement methods discussed.143

4.2 Mean, standard deviation of Correct Attribution by algorithm . . . . 143

4.3 Mean and standard deviation of Basin Overflow by algorithm . . . . . 146

4.4 Mean and standard deviation of Basin Shortfall by algorithm . . . . . 146

4.5 Mean Correct Attribution with and without initialization. . . . . . . 146

4.6 Mean Basin Overflow with and without initialization. . . . . . . . . . 147

4.7 Mean Basin Shortfall with and without initialization. . . . . . . . . . 147

5.1 Percentage distribution of the 3 cell classes in the sample dataset . . 152

5.2 Cell parameters as extracted variables. . . . . . . . . . . . . . . . . . 167

5.3 List of selected features. . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.4 Confusion matrix for QDA on selected morphology features. . . . . . 175

5.5 Confusion matrix for LDA on selected morphology features. . . . . . 175

5.6 Confusion matrix for QDA on selected texture features. . . . . . . . . 175

5.7 Confusion matrix for LDA on selected texture features. . . . . . . . . 175

5.8 Learning and test distributions in the cell features database. . . . . . 179

5.9 Confusion matrix for the BPNN for selected morphology features . . 179

5.10 Confusion matrix for the BPNN for selected texture variables . . . . 180

xiii



List of Tables

5.11 Confusion matrix for the BPNN for all morphology features . . . . . 181

5.12 Confusion matrix for the BPNN for all texture variables . . . . . . . 181

xiv



Introduction

Biology is profiting from mathematics and engineering especially through the

automation of labour-intensive tasks. A successful example can be found, for in-

stance, in cell migration analysis and drug testing areas. The present work focuses

on the different digital image processing technologies available that open the possi-

bility to monitor and to characterize the migratory behavior of cancer cells. Cancer

cell observations have been extensively used for many years in a wide range of ap-

plications, including cell migration analysis and drug testing. Nowadays, computer

assisted-microscopy allows the handling of considerably large amounts of image data

acquired during experiments lasting over several hours or indeed several days. The

combination of time-lapse microscopy with adapted image analysis methods consti-

tutes an efficient tool for the screening of cell behavior in general, and cell motility

and invasiveness in particular.

Cells are either studied as a part of the tissue structure or implanted on an

artificial substrate. Our area of concern is an in vitro study i.e. the cells have been

isolated from their biological source for the purpose of more detailed, controllable

and convenient study. In the experiments that form the source for our data, living

cells are considered.As processors of image information, our work occupies a context

of research and experimental investigation. It focuses therefore on achieving an

understanding of which image processing methods are best adapted for the purpose

of cell sorting in the given biological context, rather than maximizing processing

throughput for example, although these form part of the secondary considerations.

This work was motivated by a question concerning migration of cancerous cells.

These cells are clones of the cell that initiated the cancer, having acquired certain

characteristics allowing it to divide indefinitely and be able to metastase i.e. to

proliferate and migrate. Cancer cell migration is itself of two types: mesenchymatic

and amoeboid. Amoeboid migration is fast and is usually responsible for metastasis

and development of secondary tumours, while mesanchematic migration results in

proliferation within the same tumour. Changes in migratory behaviour are through

experimental observation associated with phenotypes or morphologies of the metas-
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tasic cells, namely blebbing, pertaining to amoeboid migration, splayed, pertaining

to mesenchymatic migration, and the intermediate smooth round phenotype that

could range between being perfectly round to slightly elongated.

The experimental goal is to determine how many and which cells are in each

of the three phases of the metastasic process. This general objective spurs us to-

ward more concrete sub-objectives of being able to recognize parts of the image as

cells (cell counting), to separate cells from the image background and from other

cells (cell segmentation) in order to study their characteristics that represent the 3

phenotypes, finally to recognize the cells into differentiable categories (cell classifi-

cation) according to their metastastic stage. This process determines the numbers

and thus proportions of each of the 3 types of cells over an entire image, by first

translating the overall problem into sub-problems concerning individual cells, and

then re-combining those individual analyses into the global picture of the process of

metastasis.

Various authors have developed a panoply of methods for each of the aforemen-

tioned sub-tasks in their application contexts. Counting of cells has been described

using blob detection, template matching and learning methods to distinguish pixel

patches as cells for instance. Cell image segmentation is a classical area of interest

with very varied methods, ranging from pixel-classification approaches and thresh-

olding, to edge-detection methods comprising image-feature representation models

such as active contours, to region-based approaches such as active regions and the

watershed transform. Classification of cells is quite often the end goal of many cy-

tology applications, employing adapted cellular characteristics. Applications similar

to ours that federate an array of different methods are also found in the literature.

We shall visit the works of these authors in the following chapters. But what makes

our problem different is the nature of the metastasic cells. They exhibit a larger

array of shapes and orientation, are harder to discern from the image background

and tend to adhere into cell-agglomerates because of the ongoing cellular processes,

unlike the cells in blood smears on which the majority of the studies in the literature

have focused.

The special biological context and image acquisition conditions demanded that

bespoke methods be developed, adapted to the demanding application context.

Hence, following a number of pre-processing measures adapted to enable better

exploitation of the image data, a template-matching “halo” filter has been devel-

oped to accentuate and thereby detect the cells on an image, and a log-likelihood

test has been put into place that measures the degree of the match to validate the

detection, permitting an efficient and precise counting of the total number of cells.
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Image segmentation offered the greatest challenge to a correct resolution of the

problem since determining the cell’s metastasic type requires precise morphological

information, and a specialized method of the watershed transformed that we call

“cumulative hierarchy” has been developed that outperforms the usual approaches

taken by authors by a significant degree for the given image data. Finally, a set of

cellular characteristics has been conceptualized and used to classify the cells into

each metastasic phenotype.

The details of these methods are elucidated along five chapters. The thesis is

organized by processing stage, i.e. pre-processing, cell detection, image segmentation

and classification, and each chapter treats both the related literature as well as

our methods and their benchmarking with respect to some alternatives from the

literature. In the following, we briefly summarize the contents of chapters.

Chapter 1: This chapter serves as a general review of tools and methods em-

ployed by cellular biologists and the manner in which image processing technologies

help them in various areas of the different stages of their work. This chapter there-

fore lays the foundation on which the work we present in the following chapters

could be established. Once we have shown why, and equally importantly, how these

images have been obtained, we funnel toward our specific experimental context and

objectives.

Chapter 2: The goal in this chapter is to develop an automatic cell detection

technique that could supplant human intervention while attaining comparable ac-

curacy. This is a particularly useful step for biologists studying the evolution of

cancer under varying environmental conditions since it saves them arduous work.

However, the various difficulties the data pose are first overcome through tailored

pre-processing, which preceded the discussion on cell detection. The chapter con-

cludes with a validation scheme for the cells detected by our filtering approach, and

a comparison with a known method. The output of the chapter are cell locations

and counts, as well as a binary image that distinguishes image pixels belonging to

cellular agglomerates from those in the image background.

Chapter 3: This chapter takes us through the segmentation mechanism we have

devised to separate cells among them. Thus the data we exploit from the previous

chapter comprises: the original grey level image, the binarised image of agglomerate

connected components, and the location of the cell centres detected and validated

for the cells in the image. The chapter offers a review of image segmentation al-

gorithms in the context of cellular images, and explains our choice of segmentation

method. Then it proposes several algorithms for the application of the proposed
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method, including one original proposal, a sum of fuzzy probabilities map, and then

numerically and qualitatively compares them to decide on the one we will ultimately

use for segmentation. This evaluation uses a segmentation quality criterion we de-

fine in the chapter. This application methodology, although precise in describing

cell boundaries suffers from the drawback of fragmenting the image into far more

segments than is required. The following chapter aims to redress this problem.

Chapter 4: The chapter begins by explaining the problem of over-segmentation

and its sources in our data. Then it offers two alternative possibilities to correct

it, one involving modifying the image function before or during the segmentation

process using mathematical morphology, and the other that initially allows over-

segmentation and then tries to resolve it by combining image fragments according

to various rules. Two methods for the former and four for the latter are detailed and

implemented. We propose our own algorithm that combines the first two together to

produce a flexible segmentation approach that removes the drawbacks of either. An

evaluation is performed for the five segmentation refinement algorithms and the most

appropriate is retained for the actual segmentation. Segmentation thus performed

produces image segments one for each individual cell. This allows the calculation of

various classification attributes from these image segments in the following chapter.

Chapter 5: This chapter adds the concluding aspect to the work. At this stage

we have the number of cells their coordinates on an image from Chapter 2, and

their set of connected image pixels that represent a cell as a binary mask as well as

the cutout from the original cellular image representing grey level information from

Chapter 4. This information is exploited in this chapter to extract discriminatory

knowledge about the morphology, grey level and texture of each cell using charac-

teristics that we describe. The most salient characteristics then selected, and passed

onto a classifying algorithm in order to decide the metastasic morphology for each

cell.

To conclude the document, a chapter of conclusions will resume the principal

results obtained within this work and open it up for future perspectives.
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1. Situating the problem

Cancer is a major health problem for mankind, and the existing approaches - surgery

and radiation - to its treatment have clear limitations, notably early detection and

localization [69]. As emphasized by Gibbs in that paper, the past decades have

seen a tremendous increase in our knowledge of the molecular mechanisms and

patho-physiology of human cancer. Cancer kills patients essentially because of the

migratory nature of the cells it effects. Indeed, it is now well established that cell

migration plays pivotal roles in cancer cell scattering, tissue invasion and metas-

tasis [150, 23, 112], i.e., processes which are essentially responsible for the dismal

prognoses of a majority of cancer patients [80]. The identification of compounds

partaking in the migratory process requires adapted in vitro and in vivo biological

models, as well as efficient screening technologies. Concerning the latter, cellular

imaging nowadays clearly appears to be an efficient tool for a wide screening of cell

behaviour in general, and cell migration in particular. The recent advances and

developments in microscopy, cell staining and imaging technologies now allow cell

monitoring in increasingly complex environments, which in turn allow the use of

more realistic biological models for studying cancer cell migration. Combined with

adapted methods of image analysis, this approach is able to provide direct, primary

and quantitative information on the effects of various compounds on the migration

of cancer cells, and also of other cell actors involved in cancer invasion [126].

1.1 Imaging cancer cell migration and associated

rare cellular events

In this section we briefly present different levels at which cell migration-related

events can be observed, imaged and then analyzed. This description follows general

to specific aspects i.e. from an analysis of a global cell population to a focus on a

single cell, via intermediary stages centered on individual cell locomotion and related

morphological characteristics.

1.1.1 Cancer cells as non-static populations colonizing their
neighbourhoods

A first level of investigation concerns the analysis of the migratory behavior of a

population of cells taken as a whole. The global migration property [116] of a cell

population usually refers to its ability to colonize its neighborhood. This ability is

generally evaluated as the distance covered by the migration front from the initial

site after a predefined period of culture, or the net increase in the total area covered
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by all the cells. This colonization ability is clearly affected by migration and growth.

At this first level of investigation, single cell locomotion is thus not considered, in

contrast to the second level described below.

1.1.2 Cancer cells as individual moving objects

A second level of analysis focuses on the tracking of individual cells, aiming to

reconstruct their trajectories from a set of successive positions. This task encounters

a series of difficulties due to phenomena such as cell division, path-crossing and

clustering, in addition to the fact that a number of cells may enter and/or exit the

observed microscope field.

While being more complex, the analysis of individual cell trajectories has a num-

ber of advantages [48]. Firstly, it enables cell migration to be distinguished from cell

growth. In addition, by analyzing individual cell migration behavior, it is possible to

identify subpopulations of cells presenting different migratory characteristics.Finally,

establishing cell trajectories simplifies the detection of preferential directions fol-

lowed by moving cells, e.g., in response to a chemical agent having chemo-attractive

or repulsive properties (one of such is the PAI − 1 molecule we shall visit later in

the chapter).

1.1.3 Characterizing phenotypic and morphologic features
of cancer cells

During migration, cancer cells exhibit a variety of morphologic changes. These

morphologic changes are characteristic of the various migration modes that the cells

could adopt, with possible transitions between them 1.15, [48, 63]. In the case of an

amoeboid migration mode, amoeboid-like migrating cells use a fast ’crawling’ type

of movement, requiring rapid cycles of morphologic expansion and contraction on the

part of the cell body. In contrast, the mesenchymal mode of cell migration presents

a succession of multiple stages involving cell polarization, protrusion extension, cell

elongation and contraction processes to allow for cell translocation. In the case of

collective migration, cells maintain their cell-cell junctions and move as connected

multicellular sheets, aggregates or clusters, in which a promigratory subset of cells at

the leading edge can be identified [142], [186]. Consequently, comparative analysis

between the cellular ability to migrate and cellular morphologic appearance may

provide interesting information on the cell migration process itself, as well as on

the influence of the cell environment on this process, in addition to the possible

anti-migratory effects of a given compound [186, 108].
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1.1.4 Combination of the investigation levels

Of course, the combination of different investigation levels appears interesting in

order to better characterize cancer cell migration processes and their response to

pro-migratory and anti-migratory chemicals. For example, Rosello et al. [172] en-

courage the use of multi-assay strategies combining data obtained at either the cell

population or the individual cell level. On the side of imaging techniques, mix-

ing two- and three-dimensional environments for cell migration observations [48] is

recommended.

1.2 Microscopy and image acquisition technolo-

gies for culture visualization

Given the fundamental importance of cell locomotion, a number of in vitro method-

ologies have been developed to characterize this phenomenon more easily and to

allow the study of the effects of endogenous or exogenous molecules on cell mi-

gration. In vitro tests are generally used to provide a range of initial information

because in vivo tests are both more difficult and time- and money-consuming to

perform, factors that limit the number of tests that can be run at any one time. In

addition to this, quantification in in vivo tests is also generally more difficult. This

is the reason why in vivo tests are generally used as the ultimate stage to confirm

information provided by in vitro tests.

Two-dimensional in vitro models are used to analyze the motility of a cell popu-

lation in a 2D-environment, i.e., cells cultured on the surface of culture plates or in

wells in fluid environments. Even though increasing evidence suggests that migra-

tion across planar substrates is very different from in vivo cell behaviour [13], 2D

cell migration models continue to be in frequent usage for convenience’s sake.

1.2.1 Culture visualization

One of the main challenges in biology is the ability to observe essentially transparent

cell or tissue materials. Solving this practical issue requires adapted methods which

vary depending on whether the analyzed (transparent) materials are fixed or not.

In the case of fixed materials, standard staining techniques can be easily used to

enhance the optical density of the region of interest. In the context of cell migration

analysis, this requires the stopping of the experiments after a given period of time
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(end-point analysis), the fixation and then the staining of the cells. Depending

on the purpose and the target of the analysis, different staining techniques are

available. Standard cell staining methods (e.g., with cristal violet or toluidin blue)

can be used if the aim is simply to identify the cell locations (or the cell number)

on 2D transparent supports (in vitro models). Fig. 1.1 shows an example of such

an image, stained with cristal violet. Digitized images of the stained cultures can

be easily acquired using standard light microscopy and then submitted to image

analysis for quantification see later section 1.5.3.B on our image acquisition).

Figure 1.1: Migrating cells fixed and stained with gentiane/cristal violet under light
microscopy.

In contrast, the monitoring of unstained living specimens requires other tech-

niques. This is why microscopists have developed several optical tricks to exploit

refraction differences that may exist between living material and its surrounding en-

vironment. Techniques such as phase-contrast microscopy and differentiated inter-

ference contrast enable contrasted images to be obtained from transparent specimens

[237] (staining is a difficult and time consuming procedure which sometimes, but

not always, destroys or alters the specimen.). These techniques make possible the

time-lapse monitoring of marker-free/unstained living cells. This approach usually

consists of automatically recording frame sequences of living cell cultures through

relatively inexpensive microscopes equipped with video acquisition systems, such as

the one we will take as the example throughout this thesis (Fig. 1.19). All the in

vitro migration based on cells cultured in transparent 2D environments can be easily

monitored with this approach [193].
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Fluorescence-staining techniques have been adapted to living cells [193]. More

particularly, genetically encoded fluorophores, such as the green fluorescent protein

(GFP) and its color-shifted genetic derivatives, can be used to tag biomolecules

[195], making their tracking in living systems easier. This enables monitoring of

cellular processes by means of live-cell imaging experiments based on fluorescence

microscopy [193]. Refer to Fig. 1.2 for an image of metastasic cells marked by the

Papanicolaou stain, showing distinctly the membrane, cytoplasm and nucleus.

Figure 1.2: Fluorescent-marked migrating cells.

If the aim is simply to mark cells in order to facilitate their tracking through less

transparent or opaque substrates (such as tissue), simpler approaches can be used

which do not require fluorescent protein fusion products. Of these, fluorescent vital

dyes (e.g., the 1, 1′−dioctadecyl−3, 3, 3′, 3′−tetramethylindocarbocyanineperchlorate)
are able to bind to cellular membranes of living cells and thus clearly delineate the

entire cell morphology [195].

By enhancing only the object/target of interest, fluorescence microscopy has

numerous advantages, such as allowing trivial image processing techniques (like

classical image threshold, see section 1.3.2).

1.2.2 Characterisation of imaging techniques

Before going on to quantitative image analysis methods in the following section,

we want to conclude the present section by highlighting a number of key points.

In addition to the different investigation levels described in section 1.1 at which

cell events can be imaged and analyzed, the different imaging techniques can be
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characterized according to the following key points:

The contrast method: As mentioned above, cells are mainly transparent and

thus require systems to generate contrast. Two kinds of approaches can thus be

distinguished: on one hand, optically enhanced microscopy methods and, on the

other hand, stained cell imaging (by using fluorescent or other cell markers).

Time monitoring: Another consideration in imaging is the way time is taken

into account. End-point cell analysis consists of analyzing samples after a period of

time. This allows the samples to be fixed (in their current states) and a contrasting

compound to be used to reveal or stain the targets of interest. Measures with time

can also be achieved by stopping a number of cell culture replicates (carried out

under the exact same conditions) after different time periods. In contrast, in a

time-lapse analysis, the living cells are observed uninterruptedly over time, enabling

continuous processes to be monitored.

The acquisition depth: Single images (2D) can be acquired, such as in the

case of end-point applications, or image sequences for time-lapse (2D + T ), or even

sequences of image stacks (3D). These two latter cases are used in monitoring cell

processes occurring over time in 2D and 3D environments, respectively.

1.2.3 Phase-contrast microscopy

Phase contrast is a widely used optical microscopy illumination technique that

shows differences in refractive index i.e. small phase shifts in the light passing

through a transparent specimen as amplitude or contrast changes in the image [44].

It was developed by the Dutch physicist F. Zernike in the 1930s [235, 236]. The phase

contrast microscope is a vital instrument in biological and medical research. When

dealing with transparent and colorless components in a cell, dyeing is an alternative

but at the same time stops all processes in it. The phase contrast microscope has

made it possible to study living cells, and cell division is an example of a process that

has been examined in detail with it. The phase contrast microscope was awarded

with the Nobel Prize in Physics, 1953[237].

The phase contrast microscope uses the fact that the light passing trough a

transparent part of the specimen travels slower and, due to this, is shifted compared

to the uninfluenced light. However, the change in phase can be increased to half

a wavelength by a transparent phase-plate in the microscope and thereby causing

a difference in brightness. Changes in amplitude give rise to familiar absorption

of light, which is wavelength dependent and gives rise to colours. The human eye

measures only the energy of light arriving on the retina, so changes in phase are not
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easily observed, yet often these changes in phase carry a large amount of informa-

tion. The nucleus in a cell for example will show up dark against the surrounding

cytoplasm. Contrast is excellent; however the technique cannot be used with thick

objects that attenuate the light or possess opacity. Frequently, a halo is formed even

around small objects, which obscures detail, a feature of which our images are good

examples (Fig. 1.4).

(a) (b)

Figure 1.3: A practical implementation of phase-contrast illumination consists of a phase
ring (located in a conjugated aperture plane somewhere behind the front lens element of
the objective) and a matching annular ring, which is located in the primary aperture plane
(location of the condenser’s aperture).

The system consists of a circular annulus in the condenser, which produces a

cone of light (Fig. 1.3 a.). This cone is superimposed on a similar sized ring within

the phase-objective. Every objective has a different size ring, so for every objective

another condenser setting has to be chosen. The ring in the objective has special

optical properties: it first of all reduces the direct light in intensity, but more impor-

tantly, it creates an artificial phase difference of about a quarter wavelength. As the

physical properties of this direct light have changed, interference with the diffracted

light occurs, resulting in the phase contrast image. Fig. 1.3 b. shows a cross section

of the illuminator, condenser and objective. Two selected light rays (indicated by
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Figure 1.4: Example of image details being obstructed by a halo of light formed around
objects in phase-contrast microscopy.

blue lines), which are emitted from one point inside the lamp’s filament, get focused

by the field lens exactly inside the opening of the condenser annular ring.

In summary, with the development of highly sensitive and high-throughput imag-

ing instruments, microscopy has become the major tool to study cellular distribu-

tions and interactions. This chapter presented in its first four sections the ongoing

biotechnology body of research that promises an understanding of the mechanisms,

and in the following two sections a brief overview of the state-of-the-art of how the

corpus of data produced by these technologies is exploited by researchers in the field

of image-processing to further understand, in a symbiotic manner to the biologists

that study them, these aforementioned cellular mechanisms.

1.3 Quantitative cell image analysis

Digital image processing and analysis is able to summarize a large amount of images

into a few, hopefully meaningful and essentially numerical descriptors. As detailed

below, cell image analysis is usually a chained process beginning with low-level

preprocessing, followed by segmentation (i.e., extraction of the candidate objects

from the background), the post-processing of the candidate objects, and finally

feature extraction that supplies a latter stage of data analysis.

1.3.1 Low-level image processing and preprocessing

Specific preprocessing steps are generally needed depending on the type of the ac-

quired images. For instance, optical phase-contrast images are often subject to

illumination problems and poor image contrast. As authors have previously sug-

gested [86, 47], a succession of image preprocessing steps are able to remediate these
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problems. These steps essentially include image background detection, background

masking and local grey level histogram equalization. We shall look at those neces-

sitated by the imagery in this work in Chapter 2.

Fluorescence microscopy generates different sources of noise that have to be

suppressed. For example, the culture medium or substrate (such as tissue) may

have autofluorescence abilities. The resulting noise can be subtracted by estimating

the mean background contribution. Finally, a part of the acquired fluorescence

comes from out-of-focus planes and should be removed from the image to increase

its sharpness.

Some defects originating from phase-contrast microscopy or from the conditions

of image acquisition could be reduced by such low-level pre-processing. For example,

the intensity non-uniformities mentioned above are treated thus by [218], as Fig. 1.5

illustrates. A: An image before background correction and B: a spline surface fitted

to the image background. C: The image after background subtraction. Note that

the intensity scale (same for all images) has been set to visually enhance the contrast

of the darker parts of the images.

Figure 1.5: Example of the reduction of grey level non-uniformity. Courtesy C. Wahlby
[218]

1.3.2 Image segmentation, object detection

Image segmentation consists of the partitioning of the image space into connected

components belonging to either the objects of interest (e.g. cells) or the background.

Very broadly, two families of methods exist to carry out segmentation. Whereas the

first is based on the grouping of pixels sharing certain similarities (according to a

criterion defined with respect to the image or to the application), the second ex-

ploits the borders existing between the objects and the background. The simplest

way of exploiting pixel similarities is to use a grey level threshold to select the pixels

belonging to the objects. This requires the images to present a good level of contrast

between the objects and the background, a condition which is not guaranteed in un-
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stained cell imaging. Threshold determination can be based on different techniques

relating to various, often statistical, concepts (e.g. area, mean grey level, maximum

entropy, clustering, etc.). To efficiently segment cells from the background, authors

have used contour detection and watershed transformation, as we shall shortly see

in this section. The watershed transform is a powerful method of image partitioning

but is highly sensitive to the presence of small variations in the images, resulting

in image over-segmentation. Different methods were thus developed to circumvent

this problem, as we shall see in the Chapters 3 and 4.

Work on the detection and counting of cells in microscopy images is very varied

but has mostly been focused on segmentation of cells leading as a byproduct to an

automatic count. To begin with, hardware methods [178, 122] exist to identify and

quantify sections of cells cultured in suspension. However, being integrated into the

material, they are monetarily expensive and require a trained technical specialist.

Several researchers have been developing automated methods for segmenting

and counting cells in microscopy images [184, 243, 66, 41]. Anoraganingrum [41]

performed edge detection on melanoma cells using median filter and mathematical

morphology. Garrido et al. [66] approximated red blood cell locations using a para-

metric ellipse model and refined its contours using a deformable template. Sheikh

et al. [184] proposed a method of identifying the major blood cell types using me-

dian and edge enhancing filters and to classify them based upon their morphological

features using neural networks. Zimmer et al. [243] suggested tracking of motile

cells using a parametric active contour model, along with a comprehensive strategy

of working with cellular images. Some approaches are based on machine learning

[124, 202, 135, 242]. Long et al. [124] and Zheng et al. [242] proposed methods

based on neural network. Markiewicz et al. [135] proposed a method to cell recogni-

tion and count using Support Vector Machine. In this kind of approach, the major

task is to create the learning set, which is usually done manually by an independent

expert for cell type and is time consuming. Another disadvantage is the time spent

on training and parameter adjustments. Approaches that use classical segmentation

methods, such as threshold, morphological filtering and watershed transformation

Korzynska [103] presented a method for automatic counting of neural stem cells

growing in cultures which is performed in two steps: a segmentation step where

the image is separated in several regions and a counting step where each extracted

region is counted as a single cell. Here, as is the case usually, counting and detection

are obvious byproducts of image segmentation. Figures 1.6 1.7 show this process

from [57].

Blood smear image analysis has been tackled by using conventional image pro-
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1. Situating the problem

Figure 1.6: Clustering segmentation method from [57], a) clusterized image (3 clusters),
and one cluster image in b) class 1, c) class 2, d) class 3.

Figure 1.7: a) Histogram-corrected Image , b) image of local variance, c) binary image
of variance, d) image of contours.
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cessing techniques like morphology [52], edge detection [187], region growing [199]

etc., which all have shown certain degrees of success with respect to the used data,

which is arguably ideal for such processing, on account for cells being clearly distin-

guished from the background and of a non-adhering nature.

Sio et al.[187] addressed the problem of parasitemia estimation using edge detec-

tion and splitting of large clumps made up from erythrocytes. The outcome of the

approach was shown to be satisfactory for well-stained samples with well-separated

erythrocytes. For the same problem, watershed transform [215] were also employed,

given that local maxima indicate the centers of convex shapes, i.e. blood compo-

nents particularly erythrocytes. This concept, however, is only justifiable for images

which exhibit a small degree of cell overlap.

Post-processing stages are often needed after image segmentation in order to

better identify the objects of interest. These stages aim to separate neighboring

objects which remain grouped after segmentation, to merge two parts of the same

(over-segmented) object, to fill small holes, to remove small objects, etc. These tasks

are usually achieved by means of the so-called “morphological” operators which are

usually applied to binary (i.e. segmented) images. While these stages are partic-

ularly useful for evaluating certain measurements, such as the object count, they

are not necessary for others, such as the measurement of surfaces. Morphologically

specialized filters are also used to enhance the characteristics of biological objects,

such as actin fibers [118], as for example used by Helmke et al [88] to characterize

intermediate filament networks in living cells by thinning image objects to identify

their morphological “skeletons”.

High-level image processing such as image segmentation and object detection,

coupled with techniques for low-level image processing, are responsible for the bulk

of the aid that image processing brings to the table for medical researchers. We

shall present in the rest of the thesis an example of such aids that we have been

able to furnish in the context of difficult data to the problem presented in section

1.5. For an explanatory example, please examine Figures 1.8 and 1.9, courtesy C.

Wahlby [218].

1.4 Feature extraction

We review here a number of quantitative features that can be extracted from cell

images that are able to provide information on cell migration processes. It must

be understood that in its traditional meaning in pattern recognition and in image
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Figure 1.8: From [218]: A: Fluorescence stained nuclei of cultured cells. B: Image
histogram of A. A threshold is placed where the histogram shows a local minimum. The
vertical line corresponds to a threshold at intensity 30. C: An intensity profile along the
row y = 300 of A, with the intensity threshold represented by a horizontal line. D: The
result after thresholding and labeling of connected components. All nuclei are not separated
by thresholding.
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Figure 1.9: From [218]: A: Part of an original 2D fluorescence microscopy image of a
section of a tumor. B: Result after thresholding at intensity 60. Most objects are detected,
but a lot of background is also above the threshold. C: Result after thresholding at intensity
100. Only a little background is above the threshold, and some nuclei are nicely delineated,
but many are not detected at all. D: The gradient magnitude of A. E: Object (white)
and background (black) seeds found by the extended h-transformation of the original image
and the gradient magnitude image, respectively. Small components were removed from
the background seed. F: Result of seeded watershed segmentation; some objects are over-
segmented. G: Result after merging seeded objects based on edge-strength. Poorly focused
objects are removed in this step. H: The distance transform of the objects in the segmented
image provide information on object shape. The brighter the intensity the further away
from the background, or a neighboring object, the pixel is. Watershed segmentation of this
image separated clustered objects. I: Final segmentation result based on intensity, edge,
and shape information.
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processing, feature extraction is a special form of dimensionality reduction. When

the input data to an algorithm is too large to be processed and it is suspected to

be notoriously redundant (much data, but not much information) then the input

data will be transformed into a reduced representation set of features (also named

features vector). Transforming the input data into the set of features is called

feature extraction. If the features extracted are carefully chosen it is expected that

the features set will extract the relevant information from the input data in order

to perform the desired task using this reduced representation instead of the image-

sized input. In the context of migrating cancerous cells, features could pertain to

the whole population of cells or to an individual cell, and could measure aspects of

different nature in the image; as shall be the order of presentation of some of such

features in this section.

1.4.1 Object counting

Cell recognition and counting in microscopic systems is an attractive and challeng-

ing task due to the presence of debris, high noise, and the difficulties of adapting

available image segmentation approaches. To evaluate cell distribution, types and

the migration mode it is required to count either the total number of cells or that of

the cells which have migrated during end-point analysis. A correct identification of

these objects usually requires a combination of the segmentation and post-processing

stages described above, but sometimes a bespoke object recognition and counting

procedure e.g. when a count is needed before the application of those stages or is

necessitated by the quality of the image or of the cells.

Several authors discuss the counting of cells in microscopy images. A cell count

as a byproduct of segmentation, as mentioned before, is usually the obvious method

of choice. [232] detail a process of binary-thresholding the image and counting the

number of objects thus obtained, given an image of non-adhesive cells. The indi-

rect approach to the problem of counting cells uses globally estimated features as

intensity of density or density of color to approximate the cell quantity. In [164],

a system to measure the relative cell quantity in culture plates makes use of total

fluorescence after background fluorescence reduction as a measure of a number of

cells per plate. In [130], cell quantity is estimated by dividing a cell cluster area by

means of a cell area. Selinummi et al. [177] exploit organelle-selective marking to

achieve automated segmentation to identify image regions composed of cells stained

by a given biomarker. Korzynska [103] works on phase-contrastmicroscopy with un-

stained cells, manually classifying stem cells into three morphologies and combining
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different segmentaion approaches for each, in order to ascertain the number of cells.

This type of method is evidently only applicable if the number of cells is small and

manual labeling is possible.

A template matching approach, also exploiting selective-marking, is used by

Kachouie et al [96] to separate live and dead cells, stained in different colours, and

then correlation maps are developed for each by template matching with a cell-sized

disc, the maxima indicating cell centres (Fig. 1.10 ).

Figure 1.10: From [96]: Separating and counting stained, i.e. living (green) and dead
(red), cells in microwell arrays.

Faustino et al [60] also use histogram-thresholding on fluorescent cellular blobs

with the calculation of the resulting centroids, and present an interesting compari-

son with manual counting performed by a panel of experts, showing the significant

diversity in manual counts and the difficulty of validating automatic counts. Fig.

1.11 shows their method of segmenting out individual cells, and Fig. 1.12 the result

of counting these cells.

A different method for object-discovery in greyscale images is proposed by [74],

based on a− contrario [51] methods. They build a statistical model to predict the

detectability of a spot on a textured (grainy) background and use binary hypothesis

testing to decide whether a spot, possessing a noticeable contrast, is present or not

in a given realization. This approach is yet to be explored by the wider community.

Recently a pixel patch strategy has been formulated as described in [146]. The

process involves two stages: preprocessing and classification. The major task of pre-
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Figure 1.11: Histogram partition and connected components detection: a) histogram, b),
c) d) and e) bitmaps representing the intervals 4) [0, 63], 3) [64, 127], 2) [128, 191],
and 1)[192, 255], respectively. The numbers besides the cells are the label of the con-
nected component. Note that the higher is the label value smaller is the luminance of the
component.

Figure 1.12: From [60]. Results of the manual (163 cells counted) and automatic (143
cells detected) counting, images on the left and right respectively.
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processing is to derive a representation of cells which makes subsequent classification

computationally effective and insensitive to environmental changes by providing the

classifier only with information essential for recognition. In the classification stage,

a neural network is trained to determine if a pixel patch contains a centered cell

body. This is done with pixel patches represented by feature vectors derived in pre-

processing. Although Long et al [123] simplify it by not learning the not-cell patch,

and following the calculation of the confidence map by a local maxima detection to

designate cell centres. Higher accuracy rotation-invariance are obtained by Theis et

al [200] [201] using unsupervised independent component analysis with correlation

comparison. In order to account for a larger variety of cell shapes, they also propose

a directional normalization.

1.4.2 Population movement measurements

As mentioned before, the global migration property of a cell population usually

refers to its ability to colonize its neighborhood or the entire culture medium. This

ability can be easily monitored by analyzing phase-contrast time-lapse images or by

end-point analyses of fixed and stained materials. The net increase in the total area

covered by the cells is evaluated by segmenting the surface occupied by cells from the

background. In addition, this segmentation process enables the migration front to

be identified, enabling the measurement of the rate of advance and/or the distance

covered by cells in the migration front [29]. Fig. 1.13 shows their experiment with

cell colonization of a wound created in a confluent monolayer of cells at time 0

(t0). This colonization ability is then evaluated at t1 either by determining the net

increase in the total area covered by the cells or the rate of advance of the edge of

the wound. These measurements are evaluated by segmenting the surface occupied

by the cells from the background (cf. hatched areas).

1.4.3 Cell trajectory movement measurements

A particularly useful feature in the study of cell locomotion is the reconstruction

of the trajectory covered by each cell from a frame to the following one in a se-

quence of images. The high processing demand for extended-time studies of large

cell populations rules out the use of manual or computer-aided interactive tracking.

Fully-automated techniques are required. Methods for automated object tracking

mainly involve two different approaches: tracking by detection and tracking by

model-evolution.

The first approach performs object detection and inter-frame data association
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Figure 1.13: From [29]. Front migration example: cell colonization of a wound.

in two independent stages. This approach is effective when the objects are well-

separated, but faces ambiguousness if the objects undergo close contact, and when

the detector produces split/merged measurements. De Hauwe et al. [86] provide an

example of frame-by-frame segmented object tracking by segmentation followed by

inter-frame object-pairing. Khan et al [99] addressed the issue of split/merged mea-

surements, but under the assumption that the number of objects does not change.

The second approach involves the creation of mathematical models, either ap-

pearance or shape models, which are fitted to the objects and are evolved over time

to follow the object movements. This category encompasses a large spectrum of

techniques with varied capabilities. The parametric active contours (e.g, snakes [97]

[228]) and mean-shift [47] models have been explored in the past for tracking mul-

tiple migrating cells under phase-contrast microscopy. Debier et al [47] considered

a somewhat simplified problem of tracking only the centroid positions, but not the

boundaries, of the cells, which permits a mean-shift-based model to be used to es-

tablish migrating cell trajectories through in vitro phase-contrast video microscopy.

Fig. 1.14 shows tracking through frame-by-frame stochastic model filtering. The

numbers at the top-left corner are the frame indices. Cells were manually-labeled.

Those bearing labels 2 and 10 are partially overlapping in frames 65− 67. Cells 6

and 12 are closely passing each other.
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Figure 1.14: From [116]: Tracking closely contacting and partially overlapping cells.

1.4.4 Measurements related to rare cellular events

When cell cultures are observed for longer periods of time (a day or more), it thus

becomes possible to detect less frequent cell events, such as cell division or death or

migration-mode-transitions. A very interesting discussion about a rare metastasic

event triggered by the collective behaviour of the cell population and of the envi-

ronment is found in [128]. The literature also reports related studies in the fields of

neural and clonal development [4].

1.4.5 Shape and cell morphology

Historically, visual inspection was the only way to distinguish different cellular pat-

terns in morphologies of objects in microscope images. However, visual classification

is always time-consuming, subjective, and inconsistent between experts. A major

goal in microscopic image processing, one that ties in with pattern recognition, is

to develop systematic approaches to describe cellular shape, including building clas-

sifiers that can recognize them. Once the objects of interest are segmented, a set

of shape features can be extracted [45]. Cell shape descriptors in 2D environments

include area and perimeter [185]. The complexity of the cell shape can be expressed

by means of a circularity index (equal to 4πArea/Perimeter2). Zaman et al. [234]

used this “cell aspect ratio”, i.e. an index of shape elongation defined by the ratio

of the length of the major axis by the minor axis of the ellipse that best fits the

object, to characterize the 2D projections of the shapes of cells cultivated in a 3D

gel. This index enabled amoeboid cells, which presented a spherical morphology and

an aspect ratio of 1, to be distinguished from mesenchymatic cells, which showed an

elongated morphology and a greater ratio.

Shape information from segmented cell contours and various ratios of cell cyto-

plasm and nuclei in Kim et al [100] are transformed into a polar representation and

reduced through PCA and classified through a neural network.
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In their work on grouping natural images Ren and Malik [169] introduce some

features for comparing two regions, based on classical Gestalt principles of grouping

including proximity, similarity, good continuation ( curvilinear continuity ), closure

as well as symmetry and parallelism, which since they are ceteris paribus rules, i.e.

that they distinguish competing segmentations only when everything else is equal,

form grounds of comparison with ideal class examples.

Lai et al [107] define a set of morphological features and a expert-learned set of

their standards for each type of cell that could be encountered in hepatocellular car-

cinoma images. These features include the nucleocytoplasmic ratio: nuclear density,

nucleus-to-cytoplasm ratio, and cell-size; nuclear irregularity: circularity as defined

above, area irregularity calculared using four intersecting points between a nucleus

and its bounding rectangle and the contour irregularity of the nucleus defined by

curvature at sample points on the contour; hyperchromatism i.e. excessive pigmen-

tation in hemoglobin content of erythrocytes by the average intensity of nuclei and

the ratio of the number of bright and dark spots found through morphological top-

and bottom-hat operators [214]; nuclear size: the number of pixels covered; anisonu-

cleosis i.e. difference among nuclei, described by standard deviation of nuclear size

and the difference of extreme nuclear sizes; and finally nuclear texture using three

features of the Grey Level Co-occurrence Matrices (GLCM) [81] [84].

Shape representation and description generally looks for effective ways to cap-

ture the essence of the shape features that make it easier for a shape to be stored,

transmitted, compared against and recognized. However, shape representation and

description also considered a difficult aspect since shape is often corrupted with

noise. Several attempts have been made in order to find more discriminatory and

more efficient shape representations, such as chain coding [194], Fourier signature

[98] etc. Salih et al [175] discuss one such approach. The crux of their method is to

neglect noise distortions by decomposing the 2D object boundary into sequence of

straight-line segments (lengths and directions), which lead to generate an approxi-

mate representation of the original boundary.

There are two bases that can be exploited to formulate a function of contour [208],

the symmetry and the periodicity. According to Djemal et al [38], if the contour of

an object is symmetrical, the orthogonal distance from a point on the contour to the

axis of symmetry is an example of the first contour function. The considered example

of the second function uses representation of the contour in polar coordinates and

is the description of the contour by its curvilinear abscissa and the tangent to the

contour at any given point. Using these functions, they derive several descriptors

such as chord, extremities and inscribed and circumscribing circles, which are then
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classified using a radial basis functions neural network [15].

The final goal in automatic image analysis is to make a decision with respect to

image contents, for instance, to grade the severity of a disease from a cell culture

image, to assign semantic labels etc. To make the final decision, by appliying decision

rules, learning algorithms or similarity measures, an image representation is needed.

Clearly the set of all pixels in the image is an amount of data that cannot be

efficiently included in an “on-line” decision process, and pixel data is massively

redundant and complex in its internal correlation. The manner to use the data is

therefore to measure pertinent quantities, such as the amount of front propagation,

and to summarize it in quantifiable descriptors or features.

1.5 The problem at hand

Due to lethal consequences of metastatic spreading of cancer, understanding and

controlling the processes underlying the formation of metastases is a major challenge,

remaining largely open. Several modes of metastatic spreading(letting aside surgical

dissemination) were identified: (1) transport in lymphatic circulation, (2) transport

in blood circulation, and (3) a mode involving a specific migration mechanism, the

amoeboid migration [63].

Taking place at the cell scale, it appears less pervasive than the first two ones,

where circulation-facilitated transport spans the whole organism. However it is less

dependent on the anatomical features of the location of the tumor and is a candidate

for the early events of the metastatic spreading,before metastatic cells reach the

lymphatic or the blood circulation. It might well be an essential preliminary step

common to all metastatic processes [31].

1.5.1 Biological background

Early events involved in the escape of a cancer cell from the primary tumor pose a

difficulty because they are rare events, too rare in fact to be easily observed or ex-

perimented in varying conditions. Only a small fraction of tumor cells provides the

seeds for secondary tumors. Accordingly, experimental protocols are restricted to

indirect investigations, mainly genetic and biochemical analyses of metastatic cells

compared to those of the primary tumor [226] or statistical tracking of the num-

ber, location, and genetic lineage of secondary tumors [1]. An increasing number

of experiments focus on the biochemical analysis of the surrounding microenviron-

ment [197], the morphological signature of potentially metastatic cells [212] and
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the reproduction in vitro of the epithelial-mesenchymatous transition (EMT ) and

the mesenchymatous-amoeboid transition (MAT ) (Fig. 1.15) which affect the mor-

phology and the proliferative and migratory capacities(amoeboid migration) of cells

of epithelial origin [129]. These complementary experiments have shown that the

metastatic process involves jointly genetic determinants (accumulation of specific

mutations, biochemical factors) triggering new pathways or switching existing ones,

leading to modifications in the cell state and metabolism), and requirements about

the state and geometry of the microenvironment, that is, the extracellular space and

matrix of the tumor cells.

Figure 1.15: The Yin and the Yang of migration of a cancerous cell [31].

Considering epithelial cells in Fig. 1.16, a first transition toward a cancerous

state is observed, originating in accumulating mutations and leading to the so-

called mesenchymatous state (Fig. 1.16 a)). In this state, cell-cell junctions are

no longer established and the epithelium is destabilized. This state has moreover a

strong proliferative capacity, hence the transition to this mesenchymatous state is

generally associated with the appearance of a well-defined tumour [203]. In invasive

epithelial tumors, it is the default state of the cells [68]. The mesenchymatous-

amoeboid transition (as experienced by the right most cell in 1.16 a) is likely to

play a key role in early metastatic escape. A second transition may occur towards

the so-called amoeboid state (Fig. 1.16 b)) identified by a specific and persistent
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“blebbing” morphology (round shape with dynamic actin rings visible at the cell

periphery). This mesenchymatous-amoeboid transition is associated with a change

in adhesion properties. Due to its peculiar features, a blebbing cell can move fast

and progress by exploiting interstices of the substrate with no need of matrix pro-

teolysis. Accordingly, amoeboid migration is a very efficient mode of migration in a

tissue, encountered in normal conditions during some developmental stages [203]; in

a pathological context, it was suggested as a privileged mode of metastatic migration

[63, 16].

(a) (b)

Figure 1.16: Epithelial cancer cells (colon cancer). (a) Mesenchymatous state, respon-
sible for the destabilization of epithelium and prone to proliferation. (b) Amoeboid state
characterized by a blebbing morphology and by modifed adhesion leading to a special mi-
gratory ability.

Recent observations in vivo hint at a key player in amoeboid migration, metas-

tases, and more generally cancer progression: the Plasminogen-Activator-Inhibitor

protein of type 1, hence forth termed by its acronym PAI−1. It is an ubiquitous

species involved in several pathways and functions, among which some aspects are

relevant for metastatic process. It is found in the surroundings of the most inva-

sive tumors [158] [224] and considered as a marker of bad prognosis [94, 58, 32].

Strikingly, when cancer cells are placed on artficial substrates with high concentra-

tion of matrix-bound PAI-1, they experience the above-mentioned mesenchymatous-

amoeboid transition [129].In this respect, matrix-bound PAI-1 can promote cancer

cell migration, at least in vitro [63]. Moreover, these experimental results, pre-

sented as the horizonatal bar graph in Fig. 1.18, indicate that the mesenchymatous-

amoeboid transition is not due to some mutations but is rather a dynamic transition

between two different states of the cell, controlled by its environment.
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1.5.2 Experimental objectives

The biologists we are partnered with investigate the effects of PAI − 1, on the be-

haviour of migrating cancerous cells [210]. These cells are clones of the cell that

initiated the cancer, having acquired certain characteristics allowing it to divide in-

definitely and be able to metastase i.e. to proliferate and migrate. These cells adopt

one or both of two types of migration: mesenchymatic and amoeboid [63]. Amoe-

boid migration is fast and is usually responsible for metastasis, while mesanchematic

migration results in proliferation within the same tumour. During their migration

process, amoeboid cells first adopt an amoeboid form referred to as blebbing. This

allows them fast movement governed by weak and short-term interactions with the

extracellular matrix. Due to their high deformability, they can slip through the

extracellular matrix without deteriorating it. On the contrary, mesenchymatic cells

become polarized and choose a migration front along which form new points of adhe-

sion to the extracellular matrix, while those on the posterior part of the cell detach

themselves from it, propelling the cell along.

Changes in migratory behaviour have been observed experimentally and asso-

ciated with phenotypic or morphological switching in various situations, such as

the migration-proliferation dichotomy of the epithelial-mesenchymal transition or

the mesenchymal-amoeboid transition of cancer cells in the extracellular matrix [70]

[35]. Fig. 1.17 shows the three morphologies: blebbing [59] and spread, pertaining to

amoeboid and mesenchymatic migrations respectively as well as smooth round per-

taining to the intermediate stage. As shown in Fig. 1.18, cell morphology changes

greatly according to the microenvironment. In particular, the presence of PAI − 1

discourages cells to change into the spread morphology, this effect eroding with time

as the chemical is gradually consumed. The difference in morphology as function of

different substrates is the greatest at 6h and diminishes later. The understanding of

this migration process could help to arrest the development of cancer and increase

the chances of a cure.

In an experiment, the goal is to determine what cells on any sample image are

in which stage of the metastatic process. This general objective spurs us towards

more concrete sub-objectives of being able to recognize parts of the image as cells

(the object of literature in Sections 1.4.2 to 1.5.1), then recognize the cells into

differentiable categories according to their metastastic stage (requiring information

such as that mentioned in Sections 1.5.4 and 1.5.5), and through the nature of the

image data and the image processing operations implicated necessitates the use of

techniques briefly mentioned in Section 1.4.1, thus employing practically the whole
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Figure 1.17: The three types of cells: (1) spread or mesanchematic, (2) smooth round
or transitory, and (3) blebbing round or amoeboid cells.

Figure 1.18: Qualitative and quantitative study of general cellular morphology (round
vs spread) as a function of the microenvironment: (left) time-lapse photography of
MDA−MB − 231 cells seeded on PAI − 1 or collagen substrate; blebbing cells becoming
spread show the reversibility of the mesenchymatous-amoeboid transition (MAT ). (right)
the proportion of blebbing and spindle-shape (spread) cells seeded on a PAI − 1-enriched
microenvironment is shown at successive time points (3, 6, 19, 24 hours). The proportion
of blebbing cells (horizontal axis) decreases in favour of spread morphology indicating the
reverse MAT [31].
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slew of the image processing tools that have been mentioned. The study sic of

individual cells synthesize into that of an entire image in that the numbers and

thus proportions of each of the 3 types of cell could be obtained, and the process of

metastasis (e.g. the reverse-MAT in Fig. 1.15) could be analysed.

This can be done manually by an expert, with the advantage of the conflu-

ence of the cell-recognizing/counting and the category-attribution processes into

one decision-making process of the kind “Is this a cell, and if it is, then what sort?”.

But is a tedious job, and one that requires constant attention and mental focus.

DYNAMIC determined that cell labeling accuracy declines significantly over ex-

tended spans of time, due to the repetitive and monotonous nature of the work.

In addition, a human expert has to be engaged; and in the case of the data we

shortly present the experts took 3 weeks to accomplish it.In the context of this en-

deavour, our goal is to develop automatic image processing techniques that could

optimistically replace the human intervention, while attaining comparable accuracy.

This would provide a particularly useful tool for biologists studying the evolution of

cancer under varying environmental conditions.

Before we proceed to the actual processing ensemble we will briefly present the

data and its acquisition in the following, since the following chapter continues with

a more detailed insight into the data and its characteristics.

1.5.3 Materials

1.5.3.A Cells and cell culture

To study the behavior of cancer cells as a function of the microenvironment, two

cell lines, each very invasive, of epithelial morphology and different origins are used:

line SW620 ([Ref. CDC-227], ATCC, Rockville, MD, USA) from a metastasis of

a human colorectal adenocarcinoma located at the lymph node, and the MDA −
MB − 231 ([Ref. HTB-26], ATCC) derived from a pleural metastasis of human

breast adenocarcinoma.

Cells were grown in Leibovitz’s L−15 Medium (Invitrogen, Carlsbad, CA, USA)

with GlutaMAX supplemented with 10% fetal calf serum (FCS) (Sigma, St. Louis,

MO USA), 100U/mL penicillin and 100U/mL streptomycin (Invitrogen). Cultures

were selected with 400µg/mL G418 to generate stable cell lines and maintained in

exponential growth in a humidified atmosphere at 37řC without carbon dioxide.

The passages are performed twice a week at a seeding density of 30000cells/cm2:

one at day 3 and day 4 to the other. The medium was renewed at day 2 when the
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transition is expected to day 4 and all experiments are performed at day 3. Cells

were fed every third day and only used at passage four to seven for the experiments.

All experiments were performed three times on each of the three cell lines cultivated

in usual conditions (three days in Leibovitz’s L−15 Medium completed with FCS).

1.5.3.B Data and its acquisition

In the course of this work, solely cell line MDA − MB − 231 has been studied

in two situations: a pro-migratory PAI − 1 environment (20mg/cm2) and a non-

permissive collagen control (20mg/cm2) environment. The material includes two

series of greyscale images of 1388 × 1040 pixels in TIFF format, the first - time

effect - studying the effect of time on cancer development under the two substrates,

comprising 79 and the second - dosage effect - studying the effect of PAI−1 dosage,

comprising 63 images. To give the readers an idea of cellular density, as we shall see

in Chapter 2, it is about 460− 470 cells/image, depending on the expert.

Figure 1.19: Zeiss Axiovert200 microscope with incubation chamber for phase-contrast
microscopy, capable of Z-plane photography through the APOTOME system.

The cells were studied with a Zeiss AXIOV ERT 200 inverted microscope,

which is built for examination of tissue culture flasks, Petri dishes, microtiter plates,

etc., in transmitted and reflected light. It can be used for bright field, phase contrast,
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differential interference contrast, and epi-fluorescence techniques. The apparatus

was coupled with a Siemens CCD camera and digitized on an image processing unit

at a final magnification of 5000× and 0.05mm2 per pixel.

1.5.3.C Computational resources

The experiments were set up on a Pentium D machine, with a 3.2GHz CoreDuo

processor and 1GB memory. The bulk of the work was performed on Matlab 7.0

(http : //www.mathworks.com) doted with the Image Processing Toolbox, and for

the purpose of computational speedup some programs were developed in C and

interfaced with Matlab. Classification of cells also uses the statistical software R

(http : //www.r − project.org/).

1.6 Summary and conclusion

Biological discovery is advancing toward the use of high-throughput experimental

approaches for applications in genomics, proteomics, drug development, tissue en-

gineering and stem cell research. A recent focus area is chemical-induced changes

in the cellular microenvironment that play a role in directing cell fates. The study

of how microenvironment patterns regulate migration, proliferation, and apoptosis

requires the use of non-fluorescent phase-contrast microscopy to record the cellular

responses over an extended period of time, which routinely produces large datasets

with low signal-to-noise ratios.

This chapter serves as an appraisal of the kind of problems today’s biologists,

cytologists and histologists contend with, and what kind of aid and in which areas

of the different stages of their works do imaging technologies and the technologies

of processing those images bring to the table. Many of these will be revisited in the

course of the thesis, but here we presented an overview of image techniques such

as acquiring the image, correcting the acquisition biases through low (pixel)- level

methods, zeroing-in on the salient parts of the image, namely the cells, separating

them from the rest of the image as identifiable individuals - image segmentation,

obtaining various measurements on those individual objects - feature extraction,

and also on the entire population of those individuals as an interactive microcosm

of the latter - cell counts and population growth and movement measurements. The

pertinence of these techniques is embodied in the problem at hand; it is a celebration

of cellular image processing methods, from denoising and illumination correction to

individual cell segmentation to an extraction of their phenotypic features to studying
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1.6 Summary and conclusion

the overall populational transition of cancer stages brought about by changes in their

microenvireonment.

This chapter therefore lays the foundation on which the work we present in the

following chapters could be established. Once we have shown why, and equally

importantly, how these images have been obtained, we are prepared to broach the

objectives laid out in Section 1.5.2. Hence, Chapter 2 will be dedicated to the

first objective, i.e. gathering the number of all cells over an image, but also to

the various issues with our phase-contrast microscopy and their mitigation in what

could be called pre-processing to the actual processing-for-our-objectives. Chapter

3 will consecrate itself to the crucial problem of separating cells from the image

background and among themselves. Finally Chapter 4 brings the path full circle

by synthesizes the results issued from Chapter 2 - the total number of cells, and

chapter 3 and 4 - the silhouettes of individual cells, through the study of the shape

and texture of these individual cells to assign them to the three classes in Chapter

5 , finally arriving at a prognosis of the cell sample represented by the image as a

function of the number of cells obtained in Chapter 2 in each class.
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As mentioned before, the objective of an individual experiment designed to offer

prognostic of a cell sample is to determine which and how many cells in which stage

of metastasis. However, under the experimental setting that generates data for this

work, where all cultured cells are in various stages of metastasis, the goal is to

determine the proportion of each migratory mode represented on an image, which

will enable biologists to determine the preponderant migration route the cells in the

image would take. Either of the objectives mandates determining the proportion of

each type of cells, and therefore determining a global cell count as well as counts

of each type of cell. Cell counting is usually done manually by an expert, but it

is a hard and tedious task. Our goal is to develop automatic image processing

techniques that could replace the human intervention, while attaining comparable

accuracy. This is a particularly useful tool for biologists studying the evolution of

cancer under varying environmental conditions.

In this chapter we will focus on cell detection. By cell detection we refer to a

process that provides us the number and the locations of cells. The main focus of our

work, directed toward achieving the best possible cell detection performance, is to

develop a filtering step allowing optimal adaptive estimation from the local clutter.

This process of cell detection and the validation of that detection has consequences

on the statistics obtained on the three classes of cells, since a preferred detection

algorithm would produce equal amount of error across the cell classes. Cell detection

is the first step of a larger chain of processes, including cell segmentation and cell

classification, the latter all depending on the accuracy of this primordial step.

However, before embarking on cell detection, the various intrinsic difficulties in

the data must be overcome in order to allow for a set of processing steps that would

be less fault-prone and in fact even possible only as a result of this pre-processing.

As we shall shortly see, a first step of image segmentation has also been incorporated

into the set of pre-processing steps for reasons of data dependency. Fig. 2.1 gives

an overview of the experimental aspects of the chapter, from pre-processing through

to cell detection.
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2. Pre-processing and Cell Detection

Figure 2.1: Schematic of the experimental processes involved.

2.1 Corrective pre-processing

Let us recall some of the ideas presented in Chapter 1. We saw how the conditions

of image acquisition could be removed from the ideal through culture visualisation

constraints and the limitations of phase-contrast microscopy e.g. the amount of

exposure, the agglomeration of cells, occlusion and lighting conditions at the moment

of acquisition. Then there was the mention of several low-level image processing

methods that could help alleviate some of these issues post-acquisition and pre-

main-processing. Similar conditions are encountered as this section describes, and

38
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methods of similar classes are employed to mitigate them. Since this is a pre-requisite

to cell detection and segmentation, we call this step pre-processing.

Pre-processing, as the name suggests, alters the content of the image and makes

it more suitable for the following image analysis steps. The aim of this step should

however not be to make the images “look nice” since by doing so, one might risk

throwing away useful information, but rather to make them more suitable for the

next steps to be applied. Let us look at the issues and their pre-processing solutions.

2.1.1 Data-induced challenges

There are several constraints that the data impose on processing, which make our

fundamental task more complex. Part of the difficulty comes from the fact that

the image acquisition process is not standardized, meaning that focal length and

lighting conditions are not uniform for the entire data. Let us take a look at each

of these challenges one by one, followed by the solutions used to palliate them:

(a) (b)

Figure 2.2: a) A sample image in PAI − 1 environment, b) its intensity histogram.

1. Low contrast The contrast of greylevel intensities between the cell and the

background is very low (Fig. 2.2 a.). This is evident from the intensity his-

togram (Fig 2.2 b.). The histogram of the cell images are usually unimodal

and very narrow, reflecting the negligible separation in average intensity of the

cell and background, and the feeble dynamic of the image.

2. Inhomogeneous illumination The images present a global illumination gra-

dient, which means that the greylevel of the background, i.e. the non-cell

component of the image, varies across the image (Fig. 2.3). This is due to the
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fact that cells are suspended in liquid with light sources above and below them

that microscope operators adjust to their convenience. This effect is rendered

even more complex by the fact that the direction and intensity of the light

varies from one image to another. In many images this global luminosity is

sourced from a point outside the image borders, while in others it is centered

on the image itself.

Figure 2.3: The illumination gradient visible from bottom left toward top right.

3. Isotropic exposure to lighting In the absence of pigmenting, light from

sources of the microscope offers the discriminating element between the cells

and the background by illuminating or not, parts of cells, and causing shadows

along others. This introduces bias in image processing, particularly for seg-

mentation algorithms, since edges that represent cell features are offset from

them.

4. Varying cell visibility Round cells are more prominent than elongated ones

(Fig. 2.4) because their cellular matter is contained in a smaller area, giving

them more height than their spread counterparts. This creates problems in

the cell detection, where the presence of round cells could overshadow that of

spread neighbours, leading to fewer cell being identified than really exist.
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Figure 2.4: Rounds cells are usually more prominent, making spread cells more difficult
to detect.

5. Cell agglomeration These living cells undergo the processes of anchorage,

adhesion and de-adhesion as they do in their natural milieu. This causes

agglomerates of cells to form. The top-view microscopy therefore presents

these cells as overlapping each other (see Fig. 2.5), which renders the problem

of discerning individual cells difficult even for the human eye due to partial

occlusion.

Figure 2.5: An agglomerate of overlapping cells.

The following two subsections discuss the two preprocessing steps that were

developed in order to alleviate some of these problems and to render the data more

exploitable by the techniques used. Fig. 2.6 illustrates the process. Throughout

the rest of the chapter, image 0032 of the sample dataset is used for illustrations

for the sake of consistency, except in Section 2.1.2 where image 0007 is used since it

displays an illumination gradient that will be clearly visible to the readers.
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Figure 2.6: Corrective pre-processing schematic.
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2.1.2 Removal of the illumination gradient

The problem of uneven field illumination in imagery is a well-known artefact of

optics. Berry [14] describes it as a routinely-occurring problem in astronomic images,

and Obser [148] offers a solution by observing the difference in greylevel in pixels

a certain distance from the axis of symmetry of the image, provided illumination

was always from a fixed point in space. Since the direction of the illumination

gradient varies across the image set, such a method for adjusting intensity levels

is inadequate. Lindblad [121] and Wählby [223] employ a data-driven background

correction algorithm to estimate the background with cubic B-spline, a simplified,

2D relative of which we employ.

The global illumination gradient represents the variation in greylevel not caused

by the presence of cells. This variation manifests itself well in the projections of the

image along its two axes and is identifiable because of its non-local nature, that is

rather than being acute ripples spanning cellular diameters in the projections as in

the case of cells, it is a smooth trend in greylevel spanning the entirety of the image.

In the following we will explain the process with reference to only the column

component, the row marginal being treated in exactly the same way. Let I be an

image of size n1 × n2 then the column marginal drawn for I will respectively be:

i.j =
n2
∑

i=1

i(i, j), i = 1, . . . , n1,

where j refers to column indices .The column marginal vector ij = (i.1, . . . , i.n2)T

could then be fitted by a polynomial curve P of the form:

P (x) =
p
∑

k=0

bkx
k, (2.1)

Here p is the highest degree of the polynomial used. The choice of this degree of

the polynomial is made experimentally, beginning from the linear case upward. The

illumination gradient to be modeled saturated the model of degree 3 in the case of

some of the images where this gradient was at its most complex. The degree was

therefore elevated and chosen at p = 5 to cater for any future addition to the image

dataset.

The coefficients of this polynomial are the solutions of the system of equations

A.b = X where

A =









i0
.1 · · · ip.1
...

. . .

i0
.n2
· · · ip.n2









, b =









b0

...
bp









, X =









i.1
...

i.n2









, (2.2)
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where i0
.1 represents the 0th instance of the marginal. As n2 ≫ p, the optimal

solution is the pseudo-inverse solution, that is:

b = [ATA]−1ATX. (2.3)

The coefficients of the curves Pi and Pj allow us to calculate the approximated

marginal vectors i′i and i′j. The corrected image is obtained by subtraction of the

value of the two marginals from each pixel value, i.e.

Icorrected ← I− i′i. − i′.j (2.4)

Fig. 2.7. depicts the process used to compensate for the illumination gradient.

The dotted lines represent the approximated marginals, and their smoothness means

that no local noise artefacts are introduced during the correction. This process of

modeling the marginals of the image is computationally lighter than a modeling

of the image surface, and is adaptive to the image, and does not pre-suppose the

direction and the extent of the initial illumination gradient.

2.1.3 Enhancing the cells

The problems of similarity of cell and background intensities, of low-registering

spread cells and especially of bright and dark sides of cells mean that the image

in this form is unexploitable for segmentation (Fig. 2.10 d. in Section 2.2 offers an

illustrative example). Cell pixels would be assigned into different classes than in

case of histogram based thresholding, and in case of region-bases segmentation the

region boundaries will follow these dark-to-light transitions rather than cell bound-

aries.Therefore greylevel intensities are transformed into a quantity that assumes

different values for cells than for the background, and which is invariant regardless

of illumination. We know cells are more textured than the background, therefore

local standard deviation within cells is greater than without them. Therefore we

calculate the local standard deviation image I ′ in neighbourhoods of a × a pixels

(eq. 2.5) around each pixel of our greylevel image using a = 3. This is the smallest

support of any spatial filter and is preferred in this case because it makes the dif-

ferences across the image prominent without adding information from farther away

in the image and may be the result of another image feature. The std-image can be

evaluated as:

I ′(i, j) =

√

∑

i,j(I(i, j)− Ī)2

a2
, Ī =

∑

i,j I(i, j)

a2
. (2.5)
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(a)

(b)

Figure 2.7: a) Plots of the column marginals below and row marginals to the right of an
uncorrected image, the plots in red being their approximations; b) image with illumination
gradient removed.
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where the pair (i, j) represent the pixel’s coordinates. I ′ has the desireable property

of the cells appearing different from the background, thus making them independent

of the illumination conditions a particular image has been subjected to.

The image used for this step is the one issued from the illumination-gradient

correction algorithm that has been smoothed with a 3× 3 Gaussian filter. This is,

once again, the bare minimum smoothing that could be applied, and was therefore

selected over filters with a larger support that could add information from neigh-

bouring pixels to the centre pixel.

Fig. 2.10 b. shows the standard-deviation image thus produced, juxtaposed to

the original in 2.10 a. It is discernible from it that cell boundaries and other parts

of high local variation register markedly relative to the rest of the image which is

darker, and the light and dark parts in the original image both produce similar effect

in the std-image.

2.2 Image binarisation

At this point, it is appropriate to elucidate some aspects of image segmentation

even though we shall review the topic in greater detail in chapters 3 and 4. Image

segmentation in our context helps to separate cells from the background and then

cells from other cells. However, the first of these goals must be met for us to

proceed with cell detection, which mandates its discussion here. This separation of

the subject is supported by the logical separation in segmentation concepts utilized

as well as the physical separation afforded by the modular nature of the processing

chain.

We will variously refer to the segmentation of cells from the background as image

binarisation because the segmented image is binary i.e. cell and not− cell. Section

2.2.2 will describe the method used for the binarisation, but the first question that

we must contend with is “What image data we need to work on in order to achieve

this binarisation?”. Of course, the original image has overlapping greylevel ranges

for both cells and the background, hence a more contrasted image is required. We

have just created such an image i.e. the standard-deviations image in the previous

section. That image has much of the central portion of cells at the same greylevel

as the background, and binarising it was found to introduce more uncertainty in

the process because it left holes at the centre of cells which were computationally

indistinguishable from holes between cells in a connected component, and filling

them was based on an empirical hole-size estimation. Thus an input image was
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required which would still maintain the cell - not − cell contrast but would reduce

the cell - cell contrast. Gaussian blurring, which does the second at the cost of the

first, guided us to the much better manner of proceeding with the issue, anisotropic

diffusion. Details of the process follow in the following sections, and an overview in

Fig. 2.8.

Figure 2.8: Image binarisation schematic.
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2.2.1 Calculating the image to binarise: anisotropic diffu-
sion

Since the elegant formulation introduced by Perona and Malik [160], anisotropic

diffusion has been an important image enhancement technique aiming at reducing

image noise without removing significant parts of the image content, typically edges,

lines or other details that are relevant for the interpretation of the image. Anisotropic

diffusion resembles the process that creates a scale-space, where an image is at

the origin of a parameterized family of successively more and more blurred images

based on a diffusion process. Each of the resulting images in this family are given

as a convolution between the image and a 2D isotropic Gaussian filter, where the

width of the filter increases with the parameter. This diffusion process is a linear

and space-invariant transformation of the original image. Anisotropic diffusion is

a generalization of this diffusion process: it produces a family of parameterized

images, but each resulting image is a combination between the original image and

a filter that depends on the local content of the original image. As a consequence,

anisotropic diffusion is a non-linear and space-variant transformation of the original

image.

Formally, let Ω ⊂ ℝ
2 denote a subset of the plane and I(·, t) : Ω→ ℝ be a family

of greylevel images, then anisotropic diffusion is defined as:

∂I

∂t
= div (c(x, y, t)∇I) = ∇c · ∇I + c(x, y, t)∆I (2.6)

where ∆ denotes the Laplacian, ∇ denotes the gradient, div(.) is the divergence

operator and c(x, y, t) is the diffusion coefficient. c(x, y, t) controls the rate of diffu-

sion and is usually chosen as a function of the image gradient so as to preserve edges

in the image. Perona and Malik proposed two functions for the diffusion coefficient:

c (||∇I||) = e−(||∇I||/K)2

(2.7)

and

c (||∇I||) =
1

1 +
(

||∇I||
K

)2 (2.8)

the constant K controls the sensitivity to edges and is usually chosen experimen-

tally or as a function of the noise in the image.

Anisotropic diffusion can be used to remove noise from digital images without

blurring edges. With a constant diffusion coefficient, the anisotropic diffusion equa-
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tions reduce to the heat equation which is equivalent to Gaussian blurring. This is

ideal for removing noise but also indiscriminately blurs edges too. When the diffu-

sion coefficient is chosen as an edge seeking function, such as in Perona and Malik,

the resulting equations encourage diffusion (hence smoothing) within regions and

prohibit it across strong edges. Hence the edges can be preserved while removing

noise from the image.

Figure 2.9: Comparison on a toy problem between Gaussian filtering (bottom) and
Anisotropic diffusion (top) at increasing scales.

We use anisotropic diffusion as an edge-preserving blurring operator, with Perona

and Malik’s first stopping criteria is proportional to ||∇I|| and hence higher-gradient

parts of the image are the least to diffuse.

2.2.2 Selecting a thresholding: Otsu’s criterion

Otsu’s method [152] belongs to the class of clustering-based thresholding algorithms,

the greylevel data undergoes a clustering analysis, with the number of clusters being

set always to two. Otsu suggested minimizing the weighted sum of within-class vari-

ances of the foreground and background pixels to establish an optimum threshold.

Recall that minimization of withinclass variances is tantamount to the maximization

of between-class scatter. This method gives satisfactory results when the numbers

of pixels in each class are close to each other. The Otsu method still remains one of

the most referenced thresholding methods.

The way of accomplishing this is to set the threshold so as to try to make each

cluster as tight as possible, thus minimizing their overlap. Obviously, we can’t

change the distributions, but we can adjust where we separate them (threshold

them). As we adjust the threshold one way, we increase the spread of one and

decrease the spread of the other. The goal then is to select the threshold that
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minimizes the combined spread. The algorithm operates directly on the grey level

histogram [e.g. 256 numbers, p(i)], so it is fast (once the histogram is computed).

We can define the within-class variance as the weighted sum of the variances of

each cluster:

σ2
within =

nB(T )σ2
B(T ) + nO(T )σ2

O(T )

n
(2.9)

where

nB(T ) = ΣT−1
i=0 p(i), nO(T ) = ΣN−1

i=T p(i), n = nB + nO, (2.10)

σ2
B(T ) = the variance of the background pixels (below threshold), (2.11)

σ2
O(T ) = the variance of the foreground pixels (above threshold), (2.12)

and [0, N − 1] is the range of intensity levels.

Otsu’s method assumes the histogram of the greylevel image to be bimodal; has

no implication of spatial coherence, nor any other notion of object structure; and

assumes uniform illumination (implicitly), so the bimodal brightness behavior arises

from object appearance differences.

Once the anisotropically diffused image has been created, an Otsu threshold

is obtained using the algorithm mentioned above, and the diffused image is then

segmented using a hysteresis procedure with the higher threshold equal to the Otsu

threshold and a lower one equal to 40% of it as is often the practice (see [227]).

2.2.3 Thresholding the image: hysteresis

Now that we have seen how to obtain the value of a threshold that best separates the

cell and not− cell pixels according to Otsu, we proceed to applying this threshold

in the manner that gives us the best separations between cells and backgroud in the

image.

An important feature of the image is that although many cell pixels are darker

than some of the more prominent ones near cell walls, these darker pixels are never-

theless usually connected to other lighter ones through cell texture continuity up to

the cell wall and within-cell ridges. Therefore, if we can identify the most prominent
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pixels, from them we can also obtain the less significant pixels connected to them,

while avoiding background pixels of comparable intensities to bleed-through into

the class cell. This is essentially the principle behind hysteresis thresholding used in

Canny’s edge detector [30] for small ridge suppression.

If I is our grayscale input image, then given intensity thresholds th, tl, we can

construct two sets of pixels, H = {(x, y)|I(x, y) = th} and L = {(x, y)|I(x, y) = tl},
which can be used directly to produce binary masks such that all pixels above the

threshold are “on” and all others are off. For a given image, th marks the level at

which background pixels are negligible, while tl indicates the point below which no

more cell pixels are expected. Both these values can be either global, t, or locally

adaptive, t(x, y). Empirically, the use of Otsu’s threshold for th and its fraction for

tl tends to produce good results. With these two sets, we now wish to obtain C,

such that H ⊂ C ⊂ L. In short, H is too restrictive and removes too many cell

pixels, while L is too permissive and keeps too many background ones. This implies

that our target set C consists of C = H ∪ L′, where L′ ⊂ L. Now, all we need is

a heuristic or criterion for choosing L′ out of L. This is supplied by a connectivity

criterion - a pixel in L having in its 8-neighbourhood a pixel in H is included in L′.

In the detection of 1D features, the widespread acceptance of Canny’s edge-

detection algorithm is due in large part to its use of thresholding with hysteresis. We

adapt it to detect 2D features i.e. connected components thus: 1. Select a starting

pixel whose greylevel (note that we are working on an anisotropically diffused image)

above an upper threshold th. Mark that pixel as having been visited. 2. Select and

move to an adjacent pixel whose greylevel is above the lower threshold th. Mark

that pixel as having been visited. 3. Repeat 2 until the value of the greylevel at the

selected pixel falls below a lower threshold tl. 4. Repeat 1 until all pixels above th

have been marked as visited.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.10: Image 0032 (a) original corrected for the illumination gradient, (b)
standard-deviations image, (c) anisotropically diffused image, (d) binarisation of (b), (e)
binarisation of (c), (f) final binarisation: sum of (d) and (e). Notice the absence of holes
inside of cells in (e).

Figure 2.10 sums up the image binarisation process and at the same time de-

scribes its dependence on the earlier pre-processing steps. We begin from the original

52



2.3 Cell detection

image, implying the illumination-gradient correction, pass through to the standard-

deviation image, and then to the binarisation step based on thresholds calculated

on the aforementioned images.

This pre-processing is a pre-requisite to the detection of cells that we present in

the following sections in that cell detection works on the principle of detecting the

image features of the standard-deviation, and uses the binarised image, or as we like

to refer to it as the image of agglomerated connected components (ACC) to avoid

cell detection in the background. Of course, these images prove useful once again

when image segmentation is performed.

2.3 Cell detection

Cell detection, by which we understand cell recognition and counting, in microscopic

systems is an interesting challenge due to the nature of cells i.e. their shape and

adhesion qualities, the presence of debris and of noise, and the difficulties linked to

the culture and imaging techniques (staining versus none, fixing, lighting and other

apparatus-related issues). To evaluate cell distribution, types and migration it is

required to count either the total number of cells or that of the cells which have

migrated during end-point analysis. A correct identification of these objects usually

requires a combination of the segmentation and post-processing stages described

above, but sometimes a bespoke object recognition and counting procedure e.g.

when a count is needed before the application of those stages or is necessitated by

the quality of the image or of the cells.

The counting of cells is a frequently-encountered task in microscopy imagery.

A cell count as a byproduct of segmentation, as mentioned before, is usually the

obvious method of choice. This indirect approach to the problem of counting cells

could view segmented objects as individual cells [232] or use globally estimated

features as intensity of density or density of colour to approximate the cell quantity

[164] [130].

Faustino et al [60] also use histogram-thresholding on fluorescent cellular blobs

with the calculation of the resulting centroids, and present an interesting compari-

son with manual counting performed by a panel of experts, showing the significant

diversity in manual counts and the difficulty of validating automatic counts. We

have presented a similar study that could be found in [211].

Sio et al.[188] addressed the problem of parasitemia estimation using edge detec-

tion and splitting of large clumps made up from erythrocytes. The outcome of the
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approach was shown to be satisfactory for well-stained samples with well-separated

erythrocytes. For the same problem, watershed transform [215] was also employed,

given that local maxima indicate the centers of convex shapes, i.e. blood compo-

nents particularly erythrocytes. This concept, however, is only justifiable for images

which exhibit a small degree of cell overlap.

Multi-scale blob detection [125] appears to be have cell detection as an obvious

application but is not very frequently applied to real cell images, however it has

been applied in some cases with success e.g. by [159] who then use a multi-scale

active contour to segment those cells.

Recently a pixel patch strategy has been formulated as described in [146]. The

process involves two stages: preprocessing and classification. The major task of pre-

processing is to derive a representation of cells which makes subsequent classification

computationally effective and insensitive to environmental changes by providing the

classifier only with information essential for recognition. In the classification stage,

a neural network is trained to determine if a pixel patch contains a centered cell

body. This is done with pixel patches represented by feature vectors derived in pre-

processing. Although Long et al [123] simplify it by not learning the not-cell patch,

and following the calculation of the confidence map by a local maxima detection to

designate cell centres, higher accuracy rotation-invariance are obtained by Theis et

al [200] [201] using unsupervised independent component analysis with correlation

comparison. In order to account for a larger variety of cell shapes, they also propose

a directional normalization.

Matched filtering [207] could be used to construct such a search space since it

maximizes the signal-to-noise ratio between a template and parts of the target image,

thereby producing a response space similar to Hough with peaks corresponding to

regions of the image that are most similar to the template. Locating these peaks

amounts to the aforementioned cell detection.

A template matching approach, also exploiting selective-marking, is used by

Kachouie et al [96] to separate live and dead cells, stained in different colours, and

then correlation maps are developed for each by template matching with a cell-sized

disc, the maxima indicating cell centres. Template-matching has also seen to work

well in case of images of other objects, e.g. by Popescu et al. [163] to detect and

count tree crowns.

The particular nature of our images, as described in section 2.1 dictates our choice

of method. The data does not lend itself to correct segmentation into connected com-

ponents each containing potentially one cell. Therefore, direct cell segmentation is
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2.3 Cell detection

likely to produce incoherent results and has to be preceded and therefore guided by

this in-place cell detection. A similar approach has also been taken by Pinzón et al.

[162] suggested that the problem of erythrocyte segmentation could be reduced to

peak selection in the Hough circle space. The study focused on detecting erythro-

cytes of circular shape and uniform size, an assumption which has to be relaxed for

the purpose of our study.

2.3.1 The “Halo” filter

The problem of locating cells can be reformulated into a peak-finding problem in

a space of correlation with a matched filter. We notice that in the image of local

standard deviations (Fig. 2.10 b.) cells are represented by closed rings where the

cell walls would be, enclosing a textured interior. Most of the time these rings

are quasi-circular, corresponding to the cell walls of round cells and the central,

thicket portion of spread cells. Correlation with a matched filter should maximize

the signal-to-noise ratio where these structures are present.

(a) (b)

Figure 2.11: Correlation coefficient (b) between a circlular object and circles of varying
radii (a) peaks at 20, the radius of the drawn object

The idea can be more easily understood on a binary image, where objects being

represented by a value equal to 1, a circular object will give a higher coefficient

of correlation with a concentric circle of the same size (Fig. 2.11). Indeed the

correlation would be 1 if the object is a perfect circle. Therefore if X is a vector

of size n of intensity values selected in a circular fashion from a greylevel image

containing a circle on a background at 0, and Y be our filter with 1s arranged in

a circular manner in 2-dimensions, then the Spearman’s rank correlation coefficient

[191]:
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reduces to:
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√
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√

∑
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i − (

∑

iXi)2
(2.14)

and therefore the maximum value of ρ corresponds to the radius of the filter that

best matches that of the object.

We develop on this idea of correlation, used by both template matching and

matched filtering, without actually matching patterns with respect to correlation or

of the signal-to-noise-ratio, in the sense of template matching and matched filtering

respectively. The idea of correlation is used to construct a filter, rather like a

matched filter, in a manner adapted to the size of cells, as we shall see in the

following.

We propose a ring-shaped matched filter constructed conditionally from two 2D

Gaussian functions G1(~x) ∼ N(µ1, σ1) and G2(~x) ∼ N(µ2,Σ2) and has the equation:

f(x) =







1
2πΣ1
× exp−

(x−µ1)TΣ−1
1

(x−µ1)

2 if G1(x) < G2(x)

0 otherwise
(2.15)

where ~x = (x1, x2)
T defines pixel location, T denotes the transpose operator,

(µi,Σi)i=1,2 the Gaussian parameters. The supposition is that Σi is a diagonal

matrix of variances i.e. the Gaussian function is circular. An equilibrium between

the radii was empirically selected at Σ2 ≈ 2Σ1 in order to match the shape of the

cellular rings defined by the form of round cells and the central part of spread cells.

Fig. 2.12 provides a summary of the detection process that follows.

2.3.2 Auto-calibration of the Halo filter support

For each image, the filter must adapt its size to the size of cells in the images that

varies with the zoom factor, the cellular line used and natural variation among a

cell population. To make the filter autoadaptive to the modal radius of the cells

in a certain image, we use radius histogramming [91] to determine the modal cell

radius in the following way. The determination of the representative cell radius in

an image implies the determination of the value of Σ2 as described above, the two

quantities being equal.

Before this determination could begin, the image is cleaned of connected com-

ponents too large to consist of one or two cells, so the modal radius is indeed close
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2.3 Cell detection

Figure 2.12: Image binarisation schematic.
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to the true average radius. This is performed through a morphological opening by a

circular structuring element that was comfortably larger than two cells put side by

side, the average size of a cell having been empirically sampled over several images.

With the knowledge of the position of the centroid of a connected component

(Fig. 2.13 a.) and of the contour points, we calculate for each connected component,

the distance between the points of its contour and its centroid (Fig. 2.14). Then

a histogram of these distances is calculated. The representative radius of all the

connected components in the image is chosen to be the modal value i.e. the peak of

the histogram p, cf. figure 2.13 b.

(a) (b)

Figure 2.13: a) Connected component boundaries are known and centroids could be
calculated. b) The radius histogram with a mode of 16 pixels.

Figure 2.14: Distances from connected components’ borders to their centroids are calcu-
lated.
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2.3 Cell detection

2.3.3 The “Halo” transform and localization of peaks

Convolutions f∗I between the “halo” filter f of size p × p are calculated with the

standard-deviations image I. The filtered image has the characteristic “halos” rep-

resenting cell portions- hence the name halos image which we will use henceforth.

For relatively round cells this halo has a bright umbra where correlation scores are

highest. In case of agglomerates of cells, halo umbras may join together to form

ridges, as are also formed in the case of spread cells. The pixel where the coefficient

of correlation was maximum is then located being the only point in the intersection

of halos image function and its greyscale dilation, since dilation makes plateaux

around peaks of the same height as the peak and the shape of the structuring el-

ement (square having a side equal to the modal radius in this case). Fig. 2.16

illustrates this principle. This peak implies the presence of a cell, and is henceforth

referred to as the cell’s centre.

(a) (b)

Figure 2.15: A zoom on a halos image and the peaks in the correlation space superimposed
on the original image.
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(a) (b)

Figure 2.16: 3D plot of (a) halos, (b) greylevel dilation around each peak.

Figure 2.17: Image 0032 with cell centres superimposed on the original image.

Since the counting of cells in a given image is a key element in the biologists’

analysis which requires the proportion of each type of cell for arriving at its decision

concerning the metastasic potential of this cell sample, we have decided to introduce

a validation step for cell centres thus detected, in order to reject the centres produced

due to complex interaction among agglomerated cells, the windowing nature of the

filter and image border effects, and the statistical bias of the modal radius parameter

that then dictates peak detection. This step is described in the following section.
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2.4 Cell validation by a maximum likelihood test

Following Yves Meyer’s seminal work [141], signal decomposition models into a ge-

ometrical component and a textured component have recently been proposed in

image processing and has proved useful in signal decomposition [192], texture mod-

eling [209], image denoising and restoration [6] [151]. The classical approach consists

in considering that an image f can be decomposed into two components u+ v. The

first component u is well-structured, and has a simple geometric description: it mod-

els the homogeneous objects which are present in the image. The second component

v contains both textures and noise.

The filtering scheme described in section 2.3 identifies cells but can produces

errors such as provoking peaks in between cells clustered together, or causing two

peaks on spread cells. We define a centre’s quality of detection as the degree of

confidence with which we can state that it is contained within a cell. This amounts

to saying that the said cellular connected component is indeed a cell. This is a

classical problem of the detection of a signal u in the presence of noise v, and can

be formulated into a maximum of likelihood test as we describe shortly.

The decomposition theory stipulates that u and v are additive components, but

we wanted to make sure if it indeed was the case. Therefore, we try to ascertain the

nature of the noise component.

2.4.1 Determining the nature of the noise

The identification of the nature of the noise affecting the image is an important

step in any system of interpretation of information by vision when the nature of

the degradation is unknown. In an initial study K. Chehdi and Mr. Sabri [36] have

shown that it is possible to identify the nature of the noise from the recording of

changes in statistical local (standard deviation based on the average) calculated in

homogeneous regions of observation alone. The decision criterion uses these statistics

to local identify the nature of the noise.

The characterization of the presence of additive noise or multiplicative in an

image based on the following hypothesis: In homogeneous zones of the degraded

image, only noise statistics are involved.

Based on this assumption, it was shown in [9] that the standard deviation σ[fh]

of a homogeneous part fh of the image f can be written as:

σ[fh] ≈ σ[b] in case of additive noise (2.16)
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where b is an additive white noise, centered and non-correlated with the image

observed f .

σ[fh] ≈ [fh]× σ[n] in case of multiplicative noise (2.17)

where n is a multiplicative white noise, with a mean equal to unity and non-

correlated with the image f .

In other words, according to equations 2.16 and 2.17, if the variation of local

standard deviations forms a line parallel to the local means, the noise is multiplica-

tive. If this variation follows a straight line through 0, the noise is additive. This

is illustrated by the graphs in Fig. 2.18, obtained by an artificial degradation by,

respectively, a centered additive noise of standard deviation 10 and a multiplicative

noise of unit mean of standard deviation 0.2.

(a) (b)

Figure 2.18: Evolution of the standard deviation based on the average; (a) case of an
image degraded by additive noise, (b) case of an image degraded by multiplicative noise.
Figure courtesy [9].

(a) (b)

Figure 2.19: Examples of the noise evolution plots for a couple of the dataset images.
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The noise evolution plots represented in Fig. 2.19 are representative of those

obtained for the entire dataset. They clearly show the pattern of an additive noise,

i.e., is scattered in a funnel around a straight line passing through the origin, and

hence this is the nature of noise we use to formulate our signal-and-noise model

below:

2.4.2 The decision theory

Formally, an observation I could be modeled by adding an independent zero-mean,

unit-variance Gaussian random variable to each component of the target signature

represented by the matched “Halo” filter. That is

I = S +B, (2.18)

where S is the template (i.e. the known signal) image and B is the background

clutter noise. Let the columns of pixels (I·1, I·2, . . . , I·n) that compose the observed

image be random vectors in sequence. In a similar manner, S = (S·1| . . . |S·n) and

B = (B·1| . . . |B·n) are m×n matrices and B·i and S·i are m-dimensional vectors. The

I·i = (I1i, . . . , Imi)
T , i = 1, . . . , n are assumed to be drawn from the same distribution

and thus to be independent and identically distributed.

The cell detection problem can therefore be modeled as the hypothesis testing

problem of a null hypothesis H0, where S·i = (0, 0, . . . , 0)T , against an alternate

hypothesis H1, where S·i = (S1i, . . . , Smi)
T . That is:







H0 : I = B

H1 : I = S +B
(2.19)

Two assumptions are made on the noise probability distributions, that the col-

umn components of noise are independent, and that their distributions are Gaussian.

The independence assumption is solely a practical requirement for the purpose of

solving the equations involved. The gaussianity assumption comes from signal-space

analysis of considering n-dimensional pictures of image points. Usually when a bi-

nary decision should be taken from a multiple observations vector [221], the choice

of the Gaussian cumulative density function is more interesting when computing

the likelihood ratio and lead to interesting graphical interpretation. Hence the noise

components are independent, and the density of B is the product of n Gaussian
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densities. Therefore the likelihood ratio is:

Λ(I) =
p(I·1, I·1, . . . , I·n|H1)

p(I·1, I·1, . . . , I·n|H0)
(2.20)

=
n
∏

i=1

p(I·i|H1)

p(I·i|H0)
(2.21)

=
n
∏

i=1

1

(
√

2π)m|Σ·i|−1/2
exp−1

2
(I·i − S·i)TΣ−1

·i (I·i − S·i)
1

(
√

2π)m|Σ·i|−1/2
exp−1

2
IT·iΣ

−1
·i I·i

(2.22)

where Σ·i is the actual noise covariance matrix.

Equation (2.22) can be simplified by taking the logarithm and combining terms:

log Λ(I) =
n
∑

i

ST·iΣ
−1
·i I·i −

1

2

n
∑

i

ST·iΣ
−1
·i S·i (2.23)

Finally, if the second term is combined with the logarithm of the original threshold

Λ, the decision rule can be stated as a threshold test on the weighted sum of the I·i:

ℓ(I) =
n
∑

i

ST·iΣ
−1
·i I·i

d0

≶
d1

log λ+
1

2

n
∑

i

ST·iΣ
−1
·i S·i = λ′ (2.24)

The statistic that has been identified as ℓ(I) is obviously a sufficient statistic for this

problem: it will tell in which decision region I lies. Suppose that we can define by

I1 = {I|ℓ(I) < λ′} and I2 = {I|ℓ(I) > λ′} two subsets of the n-dimensionnal space.

Therefore the conditional probability that I ∈ I1 (resp. I2) is just the conditional

probability that ℓ(I) is less (resp. greater) than λ′. The error probabilities are

therefore:

P (d1|H0) =
∫ +∞

λ′
p(ℓ|H0)dℓ (2.25)

P (d0|H1) =
∫ λ′

−∞
p(ℓ|H1)dℓ (2.26)

Since ℓ(I) is a weighted sum of Gaussian variables, it is a simple Gaussian variable

whose variance is constant and whose mean depends on the image. Hence to find the

densities p(ℓ|H0) and p(ℓ|H1), we need only find the means and the variance of ℓ(I).

The conditional means are the expected values of their respective distributions:

E[ℓ(I)|H0] = E

[

n
∑

i

ST·iΣ
−1
·i B·i

]

= 0 (2.27)

E[ℓ(I)|H1] = E

[

n
∑

i

ST·iΣ
−1
·i (S·i +B·)

]

(2.28)

=
n
∑

i

S·iΣ
−1
·i S·i = ‖S‖2

Σ (2.29)
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The variance of ℓ(I) will be

var(ℓ(I)|Hk) =
n
∑

i=1

ST·iΣ
−1
·i S·i = ‖S‖2

Σ, k = 1, 2 (2.30)

The probability density p(ℓ|H0) is therefore given by:

p(ℓ|H0) =
1√

2π‖S‖2
Σ

exp

(

−ℓ2

2‖S‖2
Σ

)

(2.31)

so that p(d1|H0) becomes

p(d1|H0) =
∫ ∞

λ′

1√
2π‖S‖2

Σ

exp

(

−ℓ2

2‖S‖2
Σ

)

dℓ (2.32)

If we substitute η = ℓ
‖S‖Σ

, then we have:

p(d1|H0) =
∫ ∞

λ′

‖S‖Σ

1√
2π

exp(
−η2

2
)dη = Φ(

λ′

‖S‖Σ

), (2.33)

where Φ(·) is the cumulative distribution function of the zero-mean, unit-variance

normal distribution. Since from (2.24), λ′ is given by λ′ = log λ + 1
2
‖S‖2

Σ, the

probability of false alarm becomes:

p(d1|H0) = Φ

(

log λ

‖S‖Σ

+
‖S‖Σ

2

)

(2.34)

Defining δ = ‖S‖Σ, then we have the familiar form: p(d1|H0) = Φ( δ
2

+ log λ
δ

). In a

similar fashion, we show that P (d0|H1) = Φ( δ
2
− log λ

δ
).

An invariance requirement would be appropriate for this problem. The knowl-

edge of Σi in the distribution of I can be supplied by computing the variance of the

background in a zone of the image without cells.

Stating Φ( λ
′

‖S‖Σ
) = 0.05, i.e. a confidence interval of 95%, gives λ′ = 1, 64‖S‖Σ,

hence
n
∑

i

ST·iΣ
−1
·i I·i

d0

≶
d1

1, 64‖S‖Σ. (2.35)

The aforementioned probability distributions are constructed by computing ‖S‖Σ

for image patches around each cell centre, and the threshold λ′ that separates the

two distribution is decided as in Eq. 2.35 for the image. All centres that exceed this

threshold are valid according to our maximum signal-to-noise criterion, and are then

passed on to the next stage of the process as described in the following chapters.

At this confidence, for the entire image set we validate an average of 82.95% of the

cells per image. The remaining cell centres are therefore not taken into account for

subsequent processing.
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The application of the statistical test (eq. 2.35) to identify the cells in the image

is illustrated in Fig. 2.20. In this figure, imagettes containing cells selected from a

standard deviation image are shown against their ℓ scores. If ℓ > 0, H1 is in force

and the presence of a cell is not rejected; on the contrary, if ℓ < 0, this hypothesis

is rejected. Figures 2.20.(a-d) examined the values of the ℓ criterion. Notice that

the values of ℓ can be negative even if a cell is present for various reasons: when

more than one cell is present (Fig. 2.20.g.h ), when the centre of the cell is not

aligned with the centre of the template (Fig. 2.20.f) or simply due to the statistical

uncertainty inherent to the test.

(a) ℓ = 1.06 (b) ℓ = 5.92 (c) ℓ = 3.83 (d) ℓ = 21.58 (e) ℓ = −1.38

(f) ℓ = −1.45 (g) ℓ = −15.16 (h) ℓ = −5.60

(i)

Figure 2.20: Final scoring using (Eq. 2.35) (a-d) ℓ > 0, imagette passes the test (e-h)
ℓ < 0, imagette is revoked. i) the distribution of ℓ showing its proportions with respect to
0
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2.5 Cell detection results and analysis

In this section we present a numerical assessment of the cell detection methodology

along with a comparison with the current manual counting method as well as a

method from the state of the art. For the benefit of better readability of the following

analysis we first revisit counting performed manually, then present and discuss our

counting results over the entire image data, and then present an analysis of errors

that automatic counting is susceptible to produce, and finally finish by suggesting

how validation of the counting helps in this regard.

2.5.1 Exploring manual counts

It is opportune to recall the counting method employed by our biologists be-

cause such a count not only establishes the standard an automatic method would

aspire to achieve, but also recalls the man − hour factor required to achieve that

standard. Figure 2.21 shows the result for image 0032 from the manual detection

utility we developed for labeling and therefore counting each type of cell, displayed

in a different colour, present in an image.

Figure 2.21: Snapshot of image 0032 from the manual detection utility.

Table 2.1 exposes more detail for this manual counting using our 14-image subset.

Are presented here counting/labeling results for our two experts who we denote by
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E1 and E2. It tells us that for the image set, about 12% cells are smooth round,

around 30% blebbing and around 57% spread. The plenitude of spread and therefore

harder-to-detect cells is a critical test for any automatic counting algorithm. The

table is also a good reminder that manual counts as well as label attribution varies

between experts. For instance, E1 counts 124 more cells than E2 for the image

set, i.e. about 9 cells more per image. By the same token, each class attribution

too varies by a few percents. The most marked difference of opinion between the

experts is witnessed in image 113 which has a large number of cells in the course

of splaying, where E1 counts 129 more spread cells than E2 and an equal number

fewer in the two remaining classes. Therefore the 2% tolerance manifested between

the two expert counts sets the counting algorithm a benchmark.

Table 2.1: Comparison of cell counts obtained by two experts for each image in our
14-image sample dataset and for each class of cell.

Image All Smooth round Blebbing spread
E1 E2 E1 E2 E1 E2 E1 E2

0096 427 424 17 19 75 75 335 330
0100 302 301 17 17 45 45 240 239
0108 342 333 12 13 73 74 257 246
0112 456 445 37 37 108 107 311 301
0113 454 433 56 15 174 65 224 353
0032 528 509 75 72 192 190 261 247
0020 469 460 75 75 221 218 173 167
0021 710 703 164 163 269 268 277 272
0028 662 649 118 116 230 230 314 303
0073 368 363 56 55 120 129 192 179
0074 356 353 33 33 149 151 174 169
0082 624 612 100 100 151 153 373 359
0084 441 438 51 50 125 124 265 264

Total 6588 6464 875 826 2118 2012 3595 3626
Mean 470.57 461.71 62.50 59.00 151.29 143.71 256.79 259.00

Std 121.89 119.49 42.55 43.72 65.09 67.77 61.45 65.22

2.5.2 Automatic counts, and benchmarking them

We can now offer a breakdown of automatic counts obtained over the two subsets

of the data images presented in Chapter 1 from the two experiments, namely “time

effect” and “dosage effect”. We also present a comparison of the counting results

with a state-of-the-art method. For this purpose we implemented Pinzón’s approach

[162] alluded to in Section 2.3 that employes the Hough transform [89] as an easy-to-

implement- method that could serve as a benchmark for the Halo transform. In this
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method, in order to locate a circular object, we draw at each point of the contour,

straight lines perpendicular to the contour through this point. For a circle, all these

lines intersect at the center of the circle. We use an accumulator parameter space,

a matrix of the same size as the original image where all pixels are initialized to

0. We accumulate to perpendiculars over sampled points of the contours. It thus

calculates, for each contour point, the equation of the line orthogonal to the contour,

and increment on the accumulator, the value of all pixels on this line. Fig. 2.22

shows the result of such accumulation over several cell contours. In the end, the

centers, intersections of many orthogonal lines, are traversed and binned more than

other points. Local maxima detection, as before, is used to identify the positions of

the centers, and therefore the presence of a cell.

Figure 2.22: Example of normals drawn (sparsely for sake of clarity) to cell walls adding
to accumulator bins.

A three-way comparison of the number of cells detected by the implementation

of the Hough transform and by Halo filtering versus manual counting performed by

expert E1 for our population of 142 images can be seen in Table 2.2. The manual

counting establishes the yardstick to measure the efficiency of the two automatic

methods. It is nonetheless important to know that it includes cells touching image

borders, which are discounted later since it is difficult to conclude about their type.

All automatic methods under-perform for the temporal effect series of cells since

cells tend to elongate as environmental PAI − 1 depletes. The manual counts

presented are from expert E1, and henceforth throughout the thesis the same counts

and labels are used. The choice of expert was made automatically since this is

the expert we received counts initially and began the work with. The third data

row presents the result of a single iteration of the filter. Subsequently, discs with

the modal cell radius for the image, representing cells located around the detected

centres are depletion from the image, and a second iteration of maxima detection

is performed. This minute but portentous improvement in the application of the

proposed filter results in an increase from about 86% to about 97% in cell detection,

which suggests the significance of this iteration. Further iterations were empirically

found to not add more than two new centres to an image, and in fact none at all in

most cases, and were not pursued. As also can be discerned from the table, Hough

transform manages about 94% of the cells while Halo filtering detects around 97%.
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We conclude therefore that the method we propose performs better for the data and

the conditions, and given its 3% shortcoming is extremely close to the 2% deviation

already existing between the two experts, can be used to relieve them of the job.

Table 2.2: Comparison of cell detection performances: ground truth (human expert) vs
Hough Transform vs Halo Transform.

Number of Cellular series: Cellular series:
cells detected Temporal effect Dosage effect Total

Human expert 33651 33250 66901
Hough transform 30252 32646 62898

89,90% 98,18% 94.02%
Halo transform 26947 30531 62898

iter. 1 80.08% 91.82% 85.92%
Halo transform, 31902 32975 64877

iter. 2 94.8% 99.17% 96.98%

2.5.3 Error analysis

The figures presented in the previous sub-section represent brute counts, irrespective

of the errors committed in the counting. In Table 2.3 we look at the counting errors

over a sample of 14 varied images from our set of 142; for which the human expert

has counted 6588 cells. We find that errors may occur

• in the localization of a local maximum - it might appear in the background or

the border of the image and not on the cell itself (Fig. 2.23 a.);

• in the number of local maxima - multiple ones might be found on the same

cell (Fig. 2.23 b), either due to interaction with neighbouring cells in an

agglomerate or due to its disproportionate size with respect to other cells;

• or the absence of a local maximum (Fig. 2.23 c.), again due to interactions

with other cells in a cluster.

Table 2.3: Error analysis of the Halo transform counting for 6588 cells.

Undetected Undetected Multiple Detection in
Cells detected round cells spread cells detection background

Number 327 394 91 257
% 4.96 5.98 1.38 3.90

Mean 23.36 28.14 6.5 18.36
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(a) (b) (c)

Figure 2.23: The three types of error committed by the cell detection algorithm.

The comparison of the filtering algorithm presented with a simple filtering shows

that they have been necessary to limit false positives i.e. missed cells. A false

positive could be a dangerous prospect since it could ultimately lead to the diagnosis

of absence of aggressive blebbing metastase when it was present. The algorithm

has shown to miss only about 5% of all round cells i.e about 3.5% blebbing cells,

this repsenting the risk factor of a blebbing false positive. The first type of error

represents false negatives, that is to say, cells are counted where they are absent.

These are particularly inconvenient for automatic algorithms that we use in the

following work because a false centre detected between two cells cannot help create a

segmented object representing a cell itself, and rather it interferes in correct centre-

guided segmentation of the neighbouring cells. This produces segmented objects

with which cannot be characterized by a classification algorithm into any of the

three classes of cells. The hypothesis testing mechanism we discuss in section 2.4

has been put into place in order to reduce the risk of false negatives, and help the

processing chain to proceed smoothly. Through it we surmise for any given image

that the test allows us 90% confidence that an average of 82.95% will not be false

negatives. These validated centres can therefore be used to produce desired cellular

characteristics leading to correct identification of cells into the pertinent types.

2.6 Conclusions

This chapter was dedicated to the first tangible and in its right a crucial step within

the framework of our problem. A new method for automatic counting of “in vitro”

cells, well adapted to microscopy of cellular suspensions, is presented. Counting

results show that the proposed filter detects about 97% of the cells and commits

few errors, ensuring that cells identified are mostly in agreement with reality. These

results were obtained from nearly 150 images in a difficult context, and acquired

in a non-standard environment. We propose adaptive pre-processing steps for the

rectification of these defects. This work essentially helps experts identify cells in less
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time and effort; the automatic count is only about 3% smaller than manual counts

obtained by experts, given also that manual counts vary among themselves by 2%.

The work accomplished as described in this chapter resolves part of the most

tedious routine our partner biological experts had to engage in, that is, count all

cells in a microscopy image by visual inspection. By visual inspection of such images,

it is possible to make a qualitative evaluation of the signals representing cells, but

even such a simple thing as saying if a signal is present or not becomes strongly

biased by the user, and the measure is difficult to reproduce. Fully automated

methods for quantitative evaluation of digital image data are therefore vital for its

robust and reliable evaluation. The described signal-validation process increases this

robustness. There are limitations to this method in that it supposes a rigid signal

template and non-correlation between its column data. A further improvement that

uses no prior knowledge has been envisaged for future work and offers possibility of

a higher percentage of cell-validation.

However, manual counting till this stage in the thesis offers the benefit of on-line

cell classification, i.e., the experts are also able to decide while counting which cell

should be labeled into which category, with a fair amount of overlapping decisions.

We however, will have to inspect the aspect of each cell obtained in this step in

order to arrive at that decision. This necessitates the need to cut each cell out

of the image, in other words, to perform image segmentation. Only when this

segmentation is accurate enough that we would be able to calculate classification

attributes that could help us arrive at a decision. These two steps are described in

the following chapters.
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Preamble

For any image segmentation problem, the knowledge of the “segmentation goal” is

very crucial [40] because in a context where the number of regions to extract is not

known a priori, there is generally no unique solution to the division of an image into

“relevant” tessellations. The segmentation goal in the application scenario was to

separate cells from the background and among themselves. The first was achieved in

the previous chapter. This chapter revolves around the objective of separating cells

from other cells in a situation where cells tend to adhere, and to hone the initially

limited accuracy of the separation of cells from the background. Let us begin by

recapitulating where we left off at the end of last two chapters. Thus far we have

located the cells on an image and found a way to cut out parts of the image that

principally comprise pixels belonging to cells, which we call connected components.

This chapter takes us through the segmentation mechanism we have devised to

separate cells among them. Having done this, we would be able to calculate various

classification attributes from the individual cell images. Thus the data we exploit

from the previous steps of the processing chain comprises: the original grey level

image, the binarised image of agglomerate connected components, and the location

of the centres detected and validated for the cells in the image.

3.1 Image segmentation

Image segmentation, or simply segmentation, is one of the most ubiquitous and chal-

lenging problem encountered in image processing, referring to the task of detecting

boundaries of objects of interest in an image, or alternatively to the image processing

operation which gathers pixels among themselves according to predetermined crite-

ria [153]. Each group of pixels then forms a region or a segment, and a paving of the

image by regions is thus obtained. Segmentation is often the most vital and most

difficult step in an image analysis task. The segmentation result usually determines

eventual success of the analysis. For this reason, many segmentation techniques

have been developed, and there exist almost as many segmentation algorithms [241]

as there are segmentation problems.

To understand image segmentation we need to realize that it is an application

of the set partitioning problem. A partition of a set X is a division of X into non-

overlapping and non-empty parts or blocks that cover all of X. More formally, these

partitions are both collectively exhaustive and mutually exclusive with respect to the

set being partitioned.
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A partition of a set X is a set of nonempty subsets of X such that every element

x in X is in exactly one of these subsets.

Equivalently, a set P of nonempty sets is a partition of X if

1. the union of the elements of P is equal to X. (the elements of P are said to

cover X):
⋃

P = X

2. the intersection of any two distinct elements of P is empty. (all elements of P

are pairwise disjoint): A ∩B = ∅ if A ∈ P, B ∈ P, A 6= B

where ∅ is the empty set.

The notion of the similarity or the dissimilarity criterion augments set partition-

ing to apply it to image data because the a priori definition of what constitutes the

elements of the set is not implicit. The choice of the criterion translates homoge-

neous regions into partitions or segments. Henceforth, defining image segmentation

is straightforward: The segmentation D = ΛDi(I) decomposes set E into zones that

are:

• disjoint and cover the whole space E,

• where the image function I is homogeneous according to criterion ǫ.

3.2 Segmentation of cellular images

Segmentation algorithms and techniques are remarkable in their numerousness and

variation an the literature abounds with algorithms. However, there does not appear

to be any unifying principle guiding many of them. Some are one dimensional

signal processing techniques which have been extended to two dimensions such as

pattern recognition. Many are the same basic algorithm with parameter values

tweaked to suit the problem at hand. Alternatively, the parameters are optimized

with respect to a suitable training set, without thought on how to vary them for

images with different properties. Moreover producing an exhaustive list will exceed

the scope of this document. Nonetheless, there are some general themes grouping

methods of segmentation, in a dichotomous one-versus-the-other manner, sometimes

exploiting the same mathematical bases. These themes provide a nice categorization

of segmentation methods along the lines of paradigms of approach to a problem. The

following reviews these.
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The difficulties in automatic segmentation of images of cell nuclei in tissue pro-

duced by fluorescence microscopy usually have three causes. First, the image back-

ground intensity is often uneven due to auto-fluorescence from the tissue and fluo-

rescence from out-of-focus objects. This unevenness makes the separation of objects

and background a non-trivial task. Second, intensity variations within the nuclei

further complicate the segmentation as each nucleus may be split into more than one

object, leading to over-segmentation. Third, cell nuclei are often clustered, making

it difficult to separate the individual nuclei.

Despite active research in the field, cell segmentation remains a challenging prob-

lem due to the diversity and complexity of microscopy images across cell types and

application contexts, with weak contrast, touching nuclei, diffused background and

varying size and shape of cell nuclei all posing challenges to existing methods. Gen-

erality and portability of existing methods is also a challenge.

One of the first and largest application fields for image analysis is biomedicine

in general and, particularly, pathology. The final diagnostic decision for many dis-

eases is based on microscopic examination of cells and tissues. In particular, cancer

is always finally diagnosed through the microscope. Therefore, ever since the first

appearance of computers, significant development efforts have been aiming at sup-

plementing or replacing human visual inspection with computer analysis [12].

In addition to its diagnosis and screening applications, microscopic examination

can help in grading the cancer, i.e., to determine how aggressive it is and how it

should be treated. The grading may be based on an assessment of the amount

of DNA per cell nucleus or on a specific staining of some other marker/pigment,

e.g., associated with cell proliferation. Computerized image analysis may be used

to automatically measure the staining reaction in a quantitative way i.e. by the

number of stained objects and their area [167].

In order to study and control stem cell multipotency and self-renewal, cell mi-

gration and cell division have to be modeled. This is done by tracking individual

cells over time. Image sequences are acquired using time-lapse microscopy supple-

mented by an incubator system such as ours (refer to Chapter 1. 1.5.3.B) to keep

the cells alive and to make it possible to investigate and compare multiple cell cul-

tures, e.g., manipulated cells and controls. Tracking the cells in these sequences

presents a number of image analysis challenges. Cells may touch, overlap, or enter

or leave the microscopic field of view, as well as divide or die during the time-lapse

experiment. The robustness and accuracy of automated tracking methods can be

improved if statistical a priori information on typical cell movement patterns can
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3.2 Segmentation of cellular images

be incorporated into the tracking algorithm [77].

Cells are elaborately subdivided into functionally distinct, membrane-bounded

compartments. Each compartment contains its own characteristic set of specialized

molecules, and complex distribution systems transport specific products from one

compartment to another or from one compartment and out of the cell. Specific

proteins within living cells can be tagged with green fluorescent protein and similar

tags, by genetic engineering. The localization and movement of the tagged protein

can thereafter be imaged as “blobs” using fluorescence microscopy. Methods for the

detection, characterization, quantification, and positioning of blobs are required. In

addition these kinds of methods are also of great interest to the pharmaceutical

industry in the development of new drugs [121].

The difficulty of the segmentation problem highly depends on the type of spec-

imen to be analyzed. If we are dealing with cytological specimens where the cells

are singly lying on a clean background with well-stained nuclei, and if the analysis

task is limited to nuclear properties, then a simple automatic thresholding method

may be sufficient. If, on the other hand, the cells are presented in intact tissue,

such as histopathological tissue sections, and the nuclei as well as the cytoplasms

are stained, then the segmentation task may be difficult indeed. Sometimes, it is

necessary to use interactive techniques in order to obtain sufficient data quality.

But even in these cases, it is useful to push the automated segmentation as far as

possible.

So far, no general standard solution to the segmentation problem has been found.

A new tailored solution is typically developed for each application problem. Still,

these solutions can be discussed in terms of image and object models, i.e., what kind

of information in the images they are based on and whether it is mainly intensity,

edges, connectivity, or shape. Through such a discussion, as we attempt in this sec-

tion, some general properties can be seen and, hopefully, some useful steps towards

more generally useful segmentation approaches can be taken.

In a general, application-independent manner, Robert M. Haralick and Linda G.

Shapiro classified the image segmentation techniques as: measurement space guided

spatial clustering, single linkage region growing schemes, hybrid linkage region grow-

ing schemes, centroid linkage region growing schemes, spatial clustering schemes,

and split and merge schemes [83]. Most of these algorithms were conceived for

greyscale images, and some have been extended to colour images. In the domain of

cell images, the same classification persists and can be seen in various image process-

ing suites of methods developed for both specific and relatively general problems.
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In the following we will discuss some of the broad categories of methods.

3.2.1 Thresholding and pixel-classification

A simple and often used method for image segmentation is thresholding based on

histogram characteristics of the pixel intensities of the image. Here, it is implied

that objects of interest are brighter or darker than other parts of the image. For

an overview of thresholding techniques, see [174]. In order to get a satisfactory

segmentation by thresholding, a sufficiently uniform background is required. Many

background correction techniques exist (see, e.g., [105, 182]), but they may not al-

ways result in an image suitable for further analysis by thresholding. The transition

between object and background may be diffuse, making an optimal threshold level

difficult to find. At the same time, a small change in the threshold level may have

a great impact on further analysis. Feature measures, such as area, volume, mean

pixel intensity, etc., directly depend on the threshold. These effects can be reduced

through the use of fuzzy techniques, e.g., fuzzy feature measures [147]. Adaptive

thresholding, i.e., local automatic thresholding, can be used to circumvent the prob-

lem of varying background or to refine a coarse global threshold [46]. The problems

of segmenting clustered objects and choosing a suitable threshold level for objects

with unsharp edges will, however, remain. Thresholding does not have to be the

final step in the segmentation procedure. Usually, thresholding on its own is not

powerful enough a tool to segment cell images, except when the cells are completely

separate of each other. It is, however, the first pass that simplifies the second pass

in a two-pass segmentation. An intensity threshold can be used as a start for further

processing (as Fig. 1.8 illustrated), e.g., by the morphological operations presented

below and/or visual inspection. For example, thresholding is combined with region

growing in [199] to obtain a binarisation and then restrict the regions to blood cells

using regional context information. Still, some authors do find thresholding suf-

ficient to extract cell matter from the image if the separation among cells is not

required, or as in [127] and [8] where only cell nuclei are of interest.

Thresholding is essentially a classification method for the grouping of pixels

sharing certain similarities to select the pixels belonging to the objects. Methods

for selecting the threshold once the similarity criterion is defined can be as varied as

methods for data classification, either supervised or unsupervised. Simple methods

of threshold selection that classifies pixels into two classes could be traced back to

Isodata [7] that iteratively refines the threshold akin to k-means and Otsu [152] that

tries to maximize intra-class variance, and can be used to separate more than two
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classes [117]. This classification may be done by measuring a set of features at each

point and defining a decision surface in the feature space [154]. For colour images,

multi-class pixel-classification becomes interesting because sub-cellular structures

may be pigmented variously. Lebrun et al. [111] use an SVM to learn various sub-

cellular structures using among others colour information to achieve an accurate

separation of nuclei, cytoplasm and image background. Lezoray et al. flirt with

the idea of combining pixel-classification with watershed segmentation beginning

with [115] by first aggregating watershed markers based on colour using k-means

and Bayesian classification. This however necessitates defining a colour gradient

measure as the topographic function for the watershed. Meurie et al. [138] combine

pixel-classification with definition of one class as watershed markers. Multi-channel

cellular images necessitate additional requirements of histogram-concordance [114]

since the initial pixel classification may assign same pixels different labels in different

colour channels.

3.2.2 Edge-Based Segmentation

Another observation used as a basis for segmentation is that cells are surrounded

by edges where the intensity changes rapidly. Anoraganingrum [41] performed edge

detection on melanoma cells using median filtering and mathematical morphology.

Edges are usually initially extracted as a gradient image in which the local maxima

are connected. A drawback of this method is that one often runs into problems when

trying to produce closed curves. A powerful solution to this problem is offered by

the so-called snakes or active shape models [97]. From a rough marking of the border

or a seed inside the object of interest, a curve expands until it finds a strong edge.

The function describing the expansion consists of different energy terms attracting

the curve to edges [190]. Problems with this model consist in defining suitable en-

ergy terms and, again, constructing automatic seeding methods that are restricted

to one unique seed per nucleus. Edge-based snakes, although very successful in the

bio-medical image segmentation in general such as MRI images [37] used in order

to precisely segment one object, have not caught on as means to segment cell images

with a large number of cells, absence of colour and small grey level distinction as in

our images because they tend to stray and fit themselves to neighbouring cells or are

simply computationally too expensive for a large image with many objects to locate.

Few authors such as [38] do use them when the image contains about a dozen cells

and the object is actually the fairly distinctive cell nucleus. Cell nuclei are usually

convex and fairly round or elliptic. The shape of the cell nuclei itself can therefore
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be used as part of the object model. In [229], a 3D blob segmentation method based

on elliptic feature calculation, convex hull computations, and size discrimination is

described. Careful choice of a scale parameter is needed, and the edges of the result-

ing objects will not necessarily be aligned with the edges of the nuclei. A restricted

convex hull is computed for slice-wise 3D segmentation in [11]. Distance information

in the restricted convex deficiency defines the location of separating lines between

clustered objects. The information obtained per slice is later joined to construct 3D

objects. Watershed segmentation applied to distance transformed binary images

(usually binarised through thresholding) is useful for separating touching objects

that are convex (see [130, 46, 220]). In [105], similar separating lines between touch-

ing objects are found in a slightly different way. The distance image is thresholded,

creating a new binary image consisting of shrunk versions of all the objects. Dividing

lines are thereafter defined as the skeleton. Including the time dimension, Zimmer

et al. [243] suggest the segmentation and racking of motile cells using a parametric

active contour model, along with a comprehensive strategy of working with cellular

images. io et al.[187] addressed the problem of parasitemia estimation using edge

detection and splitting of large clumps made up from erythrocytes. The outcome

of the approach was shown to be satisfactory for well-stained samples with well-

separated erythrocytes. For the same problem, watershed transform [216] were also

employed, given that local maxima indicate the centers of convex shapes, i.e. blood

components particularly erythrocytes. This concept, however, is only justifiable for

images which exhibit a small degree of cell overlap.

3.2.3 Region growing and other region-based methods

If we model the objects as consisting of connected regions of similar pixels, we obtain

region growing methods. The name comes from the fact that starting regions grow

by connecting neighboring pixels/voxels of similar gray level.

Many region-growing algorithms result in over-segmented images; i.e., too many

object regions are formed. In [157], region growing is combined with region merg-

ing based on edge information, and in [120], the images are preprocessed with an

adaptive anisotropic filter to reduce over-segmentation. The adaptive anisotropic

filter reduces noise in homogeneous regions while sharpening discontinuities. Using

these methods, one is still left to face the prominent clustering problem, i.e., finding

separation lines when no intensity variation is present. Another approach, described

in [2], is to let the regions grow from predefined small regions, known as seeds. Each

region in the resulting segmented image will contain exactly one of the starting seeds.
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Both manually marked seeds and an automatic seeding method are described. The

problem with this approach to cell nuclei segmentation is that it is very difficult to

construct a seeding method that puts exactly one seed in each nucleus, even when

the nuclei are clustered and/or have internal intensity variations. Garrido et al. [66]

approximated red blood cell locations using a parametric ellipse model to generally

fit the cell and refined its contours using a region-based deformable model as intro-

duced by Chan and Vese [34] that exploits region homogeneities. This region-based

snake model is often successfully used in the segmentation of images of non-adherent

blood cells. For example, region growing is combined with thresholding in [199] to

obtain a binarisation and then restrict the regions to blood cells using regional con-

text information in the deformable model. Eom et al. [55] use region-based active

contour model, where region information is estimated using a statistical analysis, to

segment blood cells.

3.2.3.A Watershed Segmentation

A popular region-growing method, which has proved very useful in many areas of im-

age segmentation and analysis, is the so-called watershed algorithm. The watershed

algorithm [109, 19] is a morphology-based segmentation method [140]. It is based on

the assumption that any greyscale image can be considered as a topographic surface

[20]. If we flood this surface from its minima preventing the merge of the waters

coming from different sources, the surface is eventually separated as two different

sets: the catchment basins and the watershed lines. If we apply this transformation

to the magnitude of image gradient ||∇I|| , the catchment basins correspond to the

uniform sub-regions in the image and the watershed lines correspond to the edges.

We will skip a detailed discussion of the watershed transform in this section because

we shall be seeing a lot more of it later in the chapter.

The concept of watersheds comes from the field of topography, referring to the

division of a landscape in several basins or water catchment areas. A good example is

the continental divide that separates the USA into two main regions: one associated

with the Atlantic Ocean, and another associated with the Pacific Ocean. So, on

rainy days, all the drops of rain that fall on one side of the divide flow into one

ocean, while rain falling on the other side of the division will flow into the other

ocean. It is clear that the water will reach the ocean provided that it is not trapped

in a local minimum along the way.

Beucher and Lantuejoul used it to segment images of bubbles and SEM metal-

lographic pictures. Unfortunately, this transformation very often leads to an over-
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segmentation of the image. To overcome this problem, a strategy has been proposed

by Meyer and Beucher [140]. This strategy is called marker-controlled watershed seg-

mentation. This approach is based on the idea that machine vision systems often

roughly “know” from other sources the location of the objects to be segmented.

A gradient image is often used as the topographical function for the watershed

transformation, because the main criterion of the segmentation is the homogeneity

of the greylevels of the objects present in the image. But, when other criteria

are relevant, other functions can be used. In particular, when the segmentation is

based on the shape of the objects, the distance function is very helpful. Section

3.5 discusses, among some other things, our efforts at exploring several topographic

functions in order to arrive at the suitable one.

Concluding remarks

Often none of the above-described methods will alone produce a satisfactory result

on the more difficult types of cell and tissue images. We may, for instance, have

problems if 1) the cells are clustered, 2) the image background varies, and 3) there

are intensity variations within the cells. By combining the methods, more powerful

models of the situation can be created which can solve many segmentation problems.

The amount of literature favouring the watershed, and especially the propensity of

authors to use the watershed transform in problems involving cell images, has shown

that the watershed approach is a useful core component in such more complex

segmentation models. Hence it becomes a default choice as segmentation method

for another of these segmentation problems.

3.2.4 Watershed Segmentation as our method of choice

As we showed in Chapter 2, the images suffer from highly directional illumination,

which causes image gradients to be lopsided and inaccurate as means to represent

image variability, thus obviating the use of a gradient-based segmentation technique.

With these as well as the adherent nature of the cells and their textural similarity

in mind, simple thresholding techniques that exploit pixel intensities nor more ad-

vanced gradient-based edge-detection methods like active contours can be deemed

appropriate for separating cells among one another. In fact none of the methods

that use the gradient or other local image variability measures such as image statis-

tics or texture measures resulted in well-formed cells, for the reason that though

the global illumination gradient has been mitigated, the local effects of directional

illumination can not be and must not be eliminated from the images. It is these

that make the cell silhouettes and the textured cell interior visible by allowing parts
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of the image to be lit up and others be darkened by shadowed, but it is also these

that impose on us a view by anamorphosis of the data, that is, the light and the

dark parts of the image do not accurately coincide with cellular structures, e.g. the

cell wall and in fact all the edge pixels are mal-positioned, because the cell wall

is lighted up on one side causing lighter pixels to extend into the cell and on the

opposite side shadows extend well beyond the cell. This information is difficult to

reconcile and the detected cell contour lies inside the cell on the brighter side and

outside the cell on the darker side. Any mechanism that establishes the position of

the cell wall by using local information therefore positions the edge at the wrong

place. Similarly, in histogram-thresholding the two cell sides go to the two opposite

extremes of the image histogram and therefore to different classes. More sophisti-

cated pixel classification, such as that using either one local information e.g. the

local standard deviations nor those using a combination of local information such

as in [154] resolve the problem of incorrect assignment of pixels in classes. One

such approach using partial-membership assignments was successful in separating

the background, the most high-local-variability parts of cells and the remainder of

the cell pixels, but these assignments were still affected by the problems associated

with locally directional illumination. This is incongruous with the segmentation

goals, and a combination of the classes is equivalent to a reversion to the two-class

Otsu thresholding 2.2.2 explained in the previous chapter. Still, it was found to be

aid in the application of the segmentation method actually selected and is therefore

mentioned in Section 3.5.4. Fig. 3.1 elucidates these problems using segmentation

methods implemented from the literature.

Obviously a region-based approach is required. Of these, those that try to group

pixels into individual cells using pixel-similarity measures, such as region growing,

fail for the same reasons as above. Region-based snakes are geared towards the

search of image parts that exhibit homogeneity, tantamount to pixel-similarity, and

are computationally exorbitant when used on large images such as ours. The wa-

tershed transform offers an interesting alternative because it can be independent of

local image information if such a formulation is feasible. It also guarantees closed

object contours and a degree of salvageability of objects of interest, that is to say

for example that the lighter corner of a cell may form a separate region but algo-

rithms as we shall see in Chapter 4 exist that could regroup them. Among all the

segmentation methods, the watershed transform is certainly one of the most popular

judging by the great diversity of applications in which the method appears relevant.

Several factors make it such a success. The morphological segmentation paradigm

is a two steps procedure: in the first step, the image is analyzed and some germs
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(a) (b)

(c) (d)

(e)

Figure 3.1: Zoom on one cell of the image and a review of the implementation of some
classical segmentation methods: (a) the cell tile in question (b) the norm of the two partial
derivatives showing the gradient, (c) local dominant direction of the gradient vectors not
pointing in a uniform direction, (d) a hysteresis thresholded connected component, and (e)
a gradient-seeking active contour eating into the cell.
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or markers are introduced within each object of interest; the precise location of the

marker inside the object has no importance. This determining step may also be done

iteratively or interactively, permitting an elegant and easier decision procedure. The

second stage of the segmentation consists in finding the strongest and best contours

separating the markers and this part is independent of any parameter setting and

fully automatic. Furthermore, a very efficient computation method exists for the

watershed transform, making the whole strategy one of the least expensive ones in

terms of computation time. Last, the strategy is versatile. The watershed transform

is well adapted to many segmentation problems. It may be also used on more com-

plex structures such as neighborhood graphs or trees. It also offers nice perspectives

in multi-scale segmentation strategies and user-interactive segmentation schemes.

The ubiquity of the watershed transform as a means for image segmentation, par-

ticularly in application to biological images, makes it an attractive prospect for a

segmentation application such as ours, and offers a vast array of competing applica-

tions for reference and comparison. The watershed transform, in addition to being

a region-based method, brings the added advantage of being not tied to a particular

image representation such as grey level or indeed gradient, and stands out as the

method of choice for our application.

In this chapter, the mechanisms of this transformation is briefly recalled and

in the associated annexes some major contributions are listed: formal definitions,

computation methods and connected works. The main focus remains on the exam-

ination of the watershed transform as an organic part of our application, without

having to wrap the principal segmentation in a panoply of post-processing methods

not related to morphological image processing.

Before presenting the segmentation methods we utilize in this chapter, let us

take a brief detour to define the manner in which we evaluate the results those

segmentation methods produce.

3.3 How good is a segmentation: Segmentation

Quality Evaluation

Prior to presenting any number of competing segmentation schemes it is necessary to

have a way to perform discriminatory assessment of the quality if each segmentation.

In this section we present some existing ideas and a natural adaptation of one of

them to our situation.

Evaluating a segmentation method is at the same time necessary, important, and
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ill-posed. It is necessary to rank segmentation results obtained by different methods,

or one method with different sets of parameter values, in order to select a method or

to tune parameters. Although this sounds natural, deciding on a way to rank results

can actually be difficult. Evaluating a method is also important in order to assess

and validate it: this requires to have a quantitative and qualitative measure of the

segmentation results. Here again, deciding on a metric to perform these measures

is not obvious. Finally, evaluation in itself is an ill-posed task. It refers to different

criteria, some of which have various interpretations and are measured with various

metrics.

3.3.1 Methods of segmentation quality evaluation

Because of the profusion of image segmentation methods evaluation becomes crucial,

but the problem of defining a good segmentation remains unsolved and the solution

mainly depends on the goal. A good segmentation can be defined as a segmentation

true to one given by a human being.

The criteria of quantitative evaluation can be split into two classes, depending

whether we possess or not a ground-truth which constitutes a reference segmentation.

This reference is directly accessible in the case of computer generated, i.e. the

segmentation which was used for synthesizing the image, but in the case of real

images it must generally be built “by hand” [161] by an expert of the application

domain. For an evaluation on real images the notion of “segmentation goal” is very

important [40] because in a context where the number of regions to extract is not

known a priori, there is generally no unique solution to the division of an image into

“relevant” regions. The “relevance” of a region is indeed a notion highly dependent

on what Correia and Pereira in the same article call an “application scenario”. Since

for our purposes such a ground-reality is existent we shall limit ourselves to the first

class of methods.

Similar to the segmentation theory itself, there is no established standard pro-

cedure for the evaluation of its results. In literature there exists a multitude of

very different approaches. A general classification of evaluation methods has been

proposed by Zhang [239], categorising three variants: analytic methods, empirical

goodness methods, and empirical discrepancy methods. In recent studies, empirical

goodness methods are also referred to as unsupervised evaluation methods, empirical

discrepancy methods are denoted as supervised or stand-alone evaluation methods

e.g. Zhang et al. [238].

Most existing approaches in practice are supervised methods using discrepancy
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measures between a reference and the segmentation, based on a qualitative visual

and a quantitative evaluation based on geometrical features of the segments, e.g.

area, perimeter, and shape, using manually derived ground truth. Many criteria

of “discrepancy” have been proposed, which can be used when a ground truth is

available, usually given by an expert of the application domain, who is supposed to

exactly know what he is expecting, in terms of accuracy, level of detail, etc. Among

these discrepancy criteria we could cite Vinet measure [217], the measure of Yasnoff

et al. [230] which counts the number of mis-segmented pixels, the Baddeley distance

[225], and the ultimate measurement accuracy of Zhang [240]. The measure of

consistency between segmentations of Martin [136] can also be used as a discrepancy

measure between a segmented image and a reference image.

Statistical model-based methods have also been explored, for example [244] ex-

amine the Dice Similarity Coefficient (DSC), a statistical validation method based

on the spatial overlap between two sets of segmentations of the same anatomy. DSC

values are computed and logit-transformed values are compared in the mean with

the analysis of variance (ANOV A).

3.3.2 The discrepancy criterion

Recent publications have clarified the different evaluation criteria. Zhang describes

three types of evaluation, namely analysis, goodness, and discrepancy. Analysis

focuses on the algorithm used in a segmentation method, in particular its complexity,

in terms of memory or runtime. This type of evaluation is important to assess

the performance of an algorithm, or to implement optimisation. In our context

however, analysis is not the main evaluation required: runtime, memory allocation

or optimisation are secondary for an experimental study. Goodness evaluates results

based on image and object properties, regardless of external references. It can be

based on intra-region uniformity, inter-region contrast, or region shapes. These

somehow artificial criteria have been used to reproduce human judgment on the

quality of segmentation in itself. They do not apply in our task however: our

goal is not to produce visually pleasing results, but to accurately segment adhering

cells. The final criterion by Zhang is discrepancy: this type of evaluation consists in

comparing results against references. It requires prior referencing of the images, and

a measure to compare a computed segmentation against a reference segmentation.

It allows an objective comparison of segmentation methods and guidelines for tuning

a method’s parameters, and therefore this is the evaluation required in our context.

We use a supervised method where the ground-truth is obtained by delimiting
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cell boundaries by hand, and the resulting contour and the enclosed region are

used as references, using which different segmentations methods can be compared.

What does not change is the nature of the segmentation method, i.e. a watershed

mosaic of regions. This has the implication that all pixels belonging to the image

are accounted for, by falling either within one region or catchment basin or into the

background. The ground-truth serves to establish whether the pixel is in the correct

basin or is elsewhere. Thus a group of pixels that should have been, according to

the ground-truth, in a particular basin, may either be attributed by a segmentation

to another, or just as well the other way round. This gives rise to two types of

errors in segmentation that the evaluation tries to quantify: basin overflow (BO)

beyond cell boundaries, resulting in excessive pixels attributed to a cell; and basin

shortfall (BS), i.e. loss of cell pixels to the background or neighbouring basins.

Basin overflow is calculated as the ratio of segmented region pixels lying outside of

the manual contour, and basin shortfall is calculated as the ratio of the manually

cut region pixels not in the segmented region.

Figure 3.2: Illustration of the comparison.

In reality, this discrepancy criterion was chosen for the reason because it mimics

the way the human mind discerns the quality of a segmentation (see Section 3.3.3).

This is a simple yet handy criterion to evaluate the discrepancy to the ground-truth

of any segmentation method in our application scenario, and we shall see in later

sections, produces fairly discriminating results. In latter text, we sometimes refer

to Segmentation Quality Evaluation by the abbreviation SQE.
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3.3.3 The qualitative criterion

Segmentation quality is obviously describable in a qualitative manner than only a

quantitative one. The human eye is better than numerical criteria for discerning the

accuracy of a segmentation. Therefore we augment our discrepancy criterion with

the anvil of human visual inspection. Through this visual scoring we conclude the

quality of a segmentation based in much the same manner as we described earlier

i.e. as CA, BO and BS or how much of a cell is well-segmented, how much goes

missing and how much of it engulfs parts of other cells; as well as the precision with

which segmentation cuts or connected component edges sit on object boundaries.

The last factor is possibly decisive because it is absent in the discrepancy criterion.

The decision is arrived at by first studying the manual segmentation and then

looking at each individual segmentation candidate for SQE. Poor segmentation

can be easily spotted thanks to objects missing chunks or encroaching others or

the background. Ranking close segmentations, particularly in order to determine

the best among the candidates, necessitates closer inspection, in finer cases of the

validity of the object contours. We generally score each segmentation on a scale of

1 to 10, with 10 being a perfect superposition with the manual segmentation. Even

though not graphically representable, this criterion represents a factor that could

nullify the numerical comparative edge of one method over another.

3.3.4 Evaluation Methodology

The test data comprises 42 connected component images that we call subimages,

each containing more than one cells in an aggregate. Each has been extracted from

our test set of 14 images, i.e. 3 subimages from each image, and therefore represent

well the variability in the image data. The aggregation within most of the connected

components also means that the simpler case of an individual cell in a subimage has

not been considered, but some connected components do have non-adhering cells,

hence incorporating that case in the study.

The ground-truth (refer to Section 3.3.2) is established by tracing out the con-

tours of each cell in a subimage by hand. We start with a lasso that is unattached

to any point in an image and anchor it to every judged salient point on the cell

boundary. No interpolation is performed between any pair of these points and the

lasso is non-rigid i.e. we end up with a piecewise-linear curve.
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3.4 Applying the Watershed Transform on cellu-

lar images: the watershed algorithm

There are two broad families of watershed algorithms, following the two major water-

shed paradigms: the flooding or the immersion paradigm and the rain-fall paradigm.

We briefly discuss the first in the following because it was the one initially concep-

tualized and techniques for markings developed for it, the latter we employ in this

work.

This technique basically involves gradually immersing the surface in a water

container. Previously, a hole has been made in each of the surface minima (see Fig.

3.3a). The water will begin to flow through the holes, first through those with less

altitude but gradually reaching those with a greater altitude. Progressively all the

catchment basins associated to the minima are flooded. The water coming from the

flooding of two or more different basins might converge. At this point, suppose that

a dam is built to prevent the joining. Once the whole surface is immersed, only

the dams will rise above the water level, making up the watershed lines (see Fig.

3.3b). The watersheds or catchment basins are all the areas surrounded by the lines.

There are several algorithms implementing this technique [19] [20], which have been

subsequently improved [216] [166] [39] and even implemented in hardware [106].

(a) (b)

Figure 3.3: Principles of the watershed algorithm by immersion: (a) considering a topo-
graphic image g; (b) building dams at the places where the water coming from two different
minima would merge. Image courtesy Hai et. al [79].
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3.4.1 The Vincent and Soille algorithm

An implementation of the watershed transform by the immersion model was pre-

sented by Vincent and Soille [216]. It is a straightforward application of the idea,

and could be summarized as follows:

1. Sorting: Compute a gray-level histogram. A list H of pixels of gray-level h is

created.

2. Flooding: For all gray-levels:

(a) Pixels having greylevel h are processed. All such can be directly accessed

through the list H.

(b) Pixels having greylevel h are potential members of catchment basin l if

one of their neighbors is a watershed pixel. Potential members are put in

a FIFO queue.

(c) The geodesic influence zone of a catchment basin li is the pixels having

greylevel h who are closer to li than any other catchment basin lj Pixels

that do not belong to a catchment basin represent new catchment basins.

Since the discussion of this algorithm in detail is beyond the scope of this work,

we direct the reader to Vincent and Soille’s original paper [216], and only list the one

minor change, rather a simplification, that we adapt. Much of the section focuses

instead on the manner in which the topographic function is defined, that is the

following section, because therein lies the greater part of innovation.

Practical adaptation of the algorithm

The flooding of water in the image is efficiently simulated using the FIFO queue of

pixels. The algorithm consists of two major steps:

1. sorting the pixels w.r.t. increasing grey value, for direct access to pixels at a

certain grey level;

2. a flooding step, proceeding level by level and starting from the minima, i.e.

the three-step flooding process delineated above.

In practice, Vincent and Soille’s algorithm demonstrates the undesirable property

of misplaced label attribution. That algorithm could make several changes to the

labels’ queue during a single sweep of its neighbors, which sometimes results in
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incorrect labeling. This seems to be particularly a problem in higher dimensions with

the correspondingly larger number of neighbours. The process to “detect and process

new minima” at a level h is a slightly modified version of the algorithm originally

published in Vincent and Soille’s paper. Here the algorithm is changed to make a

sweep of the neighborhood, accumulating key information about its configuration,

and then, after the neighborhood sweep is finished, make one and only one change to

the labels queue. Thus we trade-off accuracy for computational speedup. However,

with the classical 4− or 8−connectivity this performance degradation is insignificant

against the possibility of misplacing region labels in a situation where correct labeling

is paramount, such as near the boundaries lying between adjoining cells.

3.5 Applying the Watershed Transform on cellu-

lar images: the input data

This section exposes a two-pronged phenomenon with the watershed transform,

that is, the choice of the data on which the watershed transform is applied and the

strategy of that application cannot be divorced. The data dictates the strategy, for

example, the use of markers (Chapter 4 Section 4.2.1) is likely to work better on a

smooth topographic function image than on one with many local perturbations and

therefore a tessellation incoherent with image semantics. We shall keep this in mind

while discussing the topographic function and its role in the watershed transform.

In topography, the watershed line refers to a ridge that divides areas drained

by different river systems while a catchment basin is the geographical area draining

into a river or reservoir.

The fundamental idea leading to the watershed-based segmentation is built on

this analogy. In standard image segmentation applications, contours correspond

to high luminance transitions, i.e. points where the gradient norm ||∇f || takes

high values. The analogy consists in regarding the gradient image function, or any

other contours image such as a morphological gradient, as a topographic relief : the

function values correspond to altitudes and the contours to crest lines of the relief,

i.e. to border points of the catchment basins (Fig. 3.3).

Concurrently to the original and less pragmatic definition of the watershed trans-

form proposed by Lantuéjoul and Beucher, a more formal definition exists in terms

of skeleton by influence zone, as [20] excellently presents. The watershed line is the

set of points at equal distance of the image minima, according to a certain distance:

the topographic distance. Distance-based formulations of watershed transform are
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due to Meyer in the discrete case [139] and to Schmidt and Najman in the continuous

case [144].

The care that must be taken with watershed segmentation is that before applying

it, one must be sure whether the objects and their background do contain a regional

minimum, and if crest lines outline the objects. If not, the original image must be

transformed so that the contours to be calculated correspond to watershed lines,

and the objects to catchment basins surrounded by them.

To this end, two image transformations have been widely studied: distance trans-

form and gradient transform. Distance transformation is purely geometrical, and

accounts for the shape of objects. However, it is only good at dealing with regular

shapes, either isolated or touching objects with bottleneck-shaped connections.

3.5.1 The distance transform

The notion of distance is intrinsic to the watershed transform as the influence zones

of regional minima are defined as the geodesic distances between them. The geodesic

zone of influence zX(Yi) of the regional minimum Yi is the set of points X of the

image at a finite geodesic distance from Y and closer to Yi than to any other Yj.

zX(Y ) = x ∈ X : dX(X, Yi) finite and ∀j 6= i, dX(X, Yi) ≤ dX(X, Yj) (3.1)

The ideal function for representing objects in the image is the Distance Transform,

DT , also called chamfer distances; given the fact that we have achieved a primary

segmentation whereby the object i.e. cell and background portions are well delim-

ited; and because we have correlation peaks or cell centres to serve as the points of

origin P from which these distances will be calculated. The measure of distance is

therefore

DT (P )[X] = min
Y ∈P

dist(X, Y) (3.2)

for each point x in the image to the nearest point y in P . The calculation of

chamfer distances on binary images is performed in practice by propagating local

distances as min-sums forward and backward passes as in the popular SLT algorithm

by Rosenfeld and Pfaltz [173]. The distance used is the Eucledian distance i.e.

dist(X, Y ) =
√

(x1 − y1)2 + (x2 − y2)2 for the 2D dimensions 1, 2.

Watershed segmentation applied to distance transformed binary images (usually

binarised through thresholding) is useful for separating touching objects that are

convex (see [130, 46, 220]). This means that on the distance map, all the pixels
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of any connected component will have for intensity their distance to the closest

pixel belonging to the corresponding centre. But since this would simply produce

a Voronoi tesselation, we hope that the separation calculated by the watershed lies

on the real boundaries that separate two cells.

Once the peaks in the correlation space are located (Chapter 2 Section 2.3.3),

they are ideal candidates to serve as the set of markers for the subsequent watershed

(e.g. in Fig. 3.4 these centres are initial propagation points for the distance trans-

form) because of the fact that for any given cell its corresponding peak is always

found to lie within the cell. That is the reason why we variously call these peaks

the centres of our cells, even though they are only pseudo-centres.

(a) (b) (c)

Figure 3.4: (a) A cell cluster, (b) the corresponding chamfer distance map with correla-
tion peaks for the distance transform reference points, and (c) the corresponding watershed.

The peaks do constitute our set of markers for any subsequent mathematical

morphological operation but we try to augment it with an a priori pertaining to

the morphology of the cells around them. For this purpose we globally threshold

our Chamfer distance map to obtain an extended maximum around the peaks. The

assumption is that the central part of the chamfer “hill” around each peak mimics

the overall shape of the “hill”, and therefore the cell. This assumption is empirically

observed to hold to the extent that the extended maxima are round-ish for round

cells and longer for long ones, which is all very well, but may have significantly

different shapes to their parent cells or touch each other in an agglomerate. Fig. 3.5

shows the images involved in segmentation.

We notice that watershed segmentation based on chamfer distance transform

does not necessarily

1) segment cells right at their cell walls, and

2) does not necessarily correctly decompose a connected component; instead decom-

posing them in an equitable manner based on the chamfer distance, even though we

introduced a prior information in the form of extended maxima.
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(a) (b)

(c) (d)

(e)

Figure 3.5: (a) Peaks or peudo-centres, (b) superimposed on the original image, (c) their
extended maxima as initial distance transform fronts, (d) the chamfer distance map from
markers to connected component edges and (e) the labels given by the watersheds.
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3.5.2 The gradient-weighted distance transform

Contrary to the geometric distance transform, the gradient transformation is intensity-

based, assuming that inter-cellular gradients are higher than intra-cellular ones gra-

dients. As with all gradient-based operations, this transformation is sensitive to

imaging noise, and usually results in over-segmentation.

To overcome the above difficulties, namely non-realistic segmentation of the dis-

tance transform and the extreme over-segmentation of the gradient transform, we use

a combined image transformation called the “gradient-weighted distance transform”

or GWDT , which accounts for both geometric and intensity features. The distance

element smooths out the many local minima generated by the gradient, by augment-

ing it with a monotonically-increasing component, and the gradient component adds

critical boundary information for better placement of watershed boundaries.

The geometric distance transform D and the gradient transform G must be

combined into a single representation that captures the object separation cues avail-

able in the data. One challenge in this regard is the fact that these quantities are

dissimilar, i.e., they are expressed in different units, and they can be normalized

differently. The final result of the combining operation should be in distance units.

These conflicting requirements are met by the following formula [119].

Dw = D × exp(1− G−Gmin
Gmax −Gmin

) (3.3)

where Gmin and Gmax are the minimum and maximum values of the gradient G

(the Deriche gradient [49] is used) needed for normalization. Note that the distance

value Dw is high at positions closer to the center of foreground objects, and in

pixels with smaller gradient values. Dw is smaller close to the boundary of the

foreground objects, or where the gradient is relatively large. Intuitively, this captures

the essential object separation cue that pixels with bigger gradient values tend to

be on the boundary of an isolated object, or on the boundary between two touching

objects.

3.5.3 Building cell shape priors into the distance map

Usually only a marker’s presence is used in the watershed algorithm, and marker

structure remains unemployed. This section presents a method to increase the per-

formance of marker-guided watershed by using the information related to the mark-

ers’ placement, shape and size. Such a priori information is commonly exploited in

other segmentation schemes such as active contours [113]. It is important to note
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that the term marker is being used generally as a small connected component that

helps regulate an operation on a larger one, not necessarily as watershed markers.

It is preferable that prior shape information be available in markers since it would

affect object shape irrespective of the image function. This means for instance that

the watershed algorithm will degrade gracefully in case of use of a simple geodesic

distance map.

Pixel-markers would work well if all cells have the same size and shape or if the

image function has clearly demarcated object boundaries. But since that is rarely

the case, point-markers on a distance map could bias watershed segmentation results

for cells lying in clusters. For this purpose we would like the regional minima around

the discovered peaks to imitate the shape of the cell they represent. The halos image

candidates perfectly as the date-source for these regional maxima, since it presents a

relief that elevates toward each peak, in various manners as we have previously seen

depending on the shape of the cell. We notice that the elevation around peaks of

circular cells are more pointy as well as circular, while those of spread cells they form

particular longitudinally-concave crests. Thus the use of regional maxima around

centres as watershed markers will allow shape information to be propagated over

the distance map.

As a marker is always contained within object boundaries, we devise a method to

detect approximate cell boundaries by a point-marker guided watershed, and then

work within each cell region to construct the marker. Thus in this windowed h-home

the value of h is dynamically calculated within the region representing the cell. The

local h is therefore the Otsu threshold of this region. Fig. 3.6b) shows an example

of the markers thus produced. They compare favorably with the parent cell in Fig.

3.6a.

(a) (b)

Figure 3.6: Shape relationship between (a) cells and (b) corresponding watershed markers.
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The problems however that exist with these methods include:

• the frequent aberrant cases of cells where the gradient information is not strong

enough to stop the flooding process, and the watershed thus produced reflects

simply the distance map, cutting cells in arbitrary shapes.

• malplaced centres: cell centres detected multiple times on the same cell force

the cell to be separated into more than one segments even if left naturally

without markers the cell would have formed a unique basin.

• the marker might be mal-formed, because the process leading up to its for-

mation had previous errors, making the segmentation incoherent with the

ground-truth

3.5.4 Partial membership probabilities as the topographic
function

As mentioned in the beginning of the section, we were looking for a topographic

function that is independent of extraneous influences like the distance map, and

more robust to the placement of watershed markers or even their absence.

Let us recall that one of the main problems in image segmentation is uncer-

tainty. Some of the sources of this uncertainty include additive and non-additive

noise, imprecision in computations and vagueness in class definitions. Traditionally,

probability theory was the primary mathematical model used to deal with uncer-

tainty problems; however, the possibility concept introduced by the fuzzy set theory

has gained popularity in modeling and propagating uncertainty in imaging applica-

tions. Let us succinctly explain the Fuzzy C-Means Clustering algorithm and then

how the algorithm is adopted for this work.

In hard clustering, data is divided into distinct clusters, where each data element

belongs to exactly one cluster. In fuzzy clustering (also referred to as soft clustering),

data elements can belong to more than one cluster, and associated to each element

is a set of membership levels. Refer to Dunn [54] for a detailed treatment of the

subject. These indicate the strength of the association between that data element

and a particular cluster. Fuzzy clustering is a process of assigning these membership

levels, and then using them to assign data elements to one or more clusters. One of

the most widely used fuzzy clustering algorithms is the Fuzzy C −Means (FCM)

Algorithm [21]. The FCM algorithm attempts to partition a finite collection of n

elements X = x1, ..., xn into a collection of c fuzzy clusters with respect to some
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given criterion. Given a finite set of data, the algorithm returns a list of c cluster

centres C = c1, ..., cc and a partition matrix U = ui,j ∈ [0, 1], i = 1, ..., n, j = 1, ..., c,

where each element uij tells the degree to which element xi belongs to cluster cj .

Like the k-means algorithm, the FCM aims to minimize an objective function.

In fuzzy clustering, each point has a degree of belonging to clusters, as in fuzzy

logic [233], rather than belonging completely to just one cluster. Thus, points on

the edge of a cluster, may be in the cluster to a lesser degree than points in the

center of cluster. For each point x we have a coefficient giving the degree of being

in the kth cluster uk(x). Usually, the sum of those coefficients for any given x is

defined to be 1:

∀x
(

c
∑

k=1

uk(x) = 1

)

. (3.4)

With fuzzy c-means, the centroid of a cluster is the mean of all points, weighted

by their degree of belonging to the cluster:

centerk =

∑

x uk(x)x
∑

x uk(x)
. (3.5)

The degree of belonging is related to the inverse of the distance to the cluster

center:

uk(x) =
1

d(centerk, x)
, (3.6)

The fuzzy c-means algorithm is very similar to the k-means algorithm:

• Choose a number of clusters.

• Assign randomly to each point coefficients for being in the clusters.

• Repeat until the algorithm has converged (that is, the coefficients’ change

between two iterations is no more than a sensitivity threshold ε):

– Compute the centroid for each cluster, using the formula above.

– For each point, compute its coefficients of being in the clusters, using the

formula above.

The algorithm can be regarded as a variation on k-means but with partial member-

ship in classes.

In spite of a slew of modifications available for the watershed transform, little

interest has been shown to using a pre-classified topographic image. Of course,
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hard classification is final in its decision, and a soft method such as the one de-

scribed above is required. The sole authors found to have studied this possibility

are [50], where pixels are represented by the memberships to each class of interest.

A morphological gradient is computed from this representation on which watershed

is applied.

(a) (b)

(c) (d)

Figure 3.7: Fuzzy-C-means class assignment to (a) background (b) cell matter and (c)
highly-contrasted cell matter or walls. (d) represents the sum of the scores in (b) and (c)
i.e. the net probability of a pixel belonging to the class cell.

Using a very similar idea, we assign one of the three membership-classes to

each pixel in the image: background, cell-inside and cell-borders. cell-borders is

somewhat of a misnomer because its higher membership degrees represent highly-

textured parts of the cells as well as those near and around its cell walls. However,

the manner these degrees are used (post-classification re-combination) renders the

difference insignificant. Combined, cell-inside and cell-borders represent the cell

pixels in the image. The sum of the labels in cell-inside and cell-borders represents

100



3.5 Applying the Watershed Transform on cellular images: the input
data

our topographic image. The desirable property of this image is that all regional

minima among the cell pixels are higher than their counterparts in the background

(yet we still do not have a connected component vs background decision). This

means, used in a hierarchical watershed scheme, the basins located in cells will

become extinct later than those in the background, as well as more slowly than

those in the background. Refer to the section 4.2.2.A on hierarchical watersheds.

3.5.5 Comparison and Discussion

The nature of the topographic image function always points toward the desirable

properties of higher values close to object boundaries but its constitution could

very well vary, as we have shown in the preceding subsections. Obviously, the first

function i.e. simple chamfer distances is insufficient for images where cuts following

finely the object boundaries are necessary. Even so, we will include it in our analysis.

The other topographic data are either currently used in medical image processing

or have been proposed as in subsection 3.5.4. In any case, this part of the section

will aim to benchmark the five functions mentioned on the same test data sample

so that for the latter part of the work could be carried out on the one that is best

suitable for our purposes.

Each subimage is then loaded and undergoes a segmentation using each of the

five topographic functions, and a geodesic-reconstruction-by-dilation marker (Annex

A). This marker is needed for the case where the segmentation fragments the cell

the fragment geodesic-dilation-marked by the centre is identified as the cell, since

at this stage no post-segmentation-merging is applied. At each turn, it is then a

simple matter to compare each resulting cell-object and the ground-truth according

to the discrepancy criterion in 3.3.2.

The resulting data thus compiled are too copious to reproduce raw, instead we

have graphed them for a more efficient spotting of trends within them.Figures 3.8

through 3.9 illustrate the comparisons.

Fig. 3.8 compares (a) correct attribution (CA), (b) basin overflow (BO) and (c)

basin shortfall (BS) for the subimage set. Several trends is noticeable, and it is only

fair to discuss them individually and at proper length, as in the following:

• The subimages present a diverse test data set, and we thus obtain non-flat

curves with singular corners.

• All curves follow very similar trajectories, since all data points lie in tight

neighborhoods. The advantage of one topographical function over the others
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(a)

(b)

(c)

Figure 3.8: Graphs of (a) Correct segmentation (b) basin overflow and (c) basin shortfall
for the entire subimage data.
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is therefore marginal, except for the fuzzy probability function.

• The simple chamfer distance does not fare too badly considering its relative

lack complexity of calculation when compared to the shape-guided gradient-

weighted chamfer distance. The first two and the fourth curves practically

overlay each other.

• The gradient plays the maverick in (a) and (b), due to its different BS. This

could be attributable to the rather brusque nature of the gradient image, which

has not been smoothed or post-processed in any way, which causes the basins

to form inside of the high-gradient band representing cell walls, thus causing

the high basin shortfall values and lowering those of correct attribution. But at

the same time the gradient also demonstrates lower basin overflow, something

that reaffirms the basins-forming-inside hypotheses, which is advantageous for

a segmentation in which deeper basins risk spilling over into shallower ones,

as can happen in case of the simple chamfer topographic function if a marker

were not used.

• The sum-of-fuzzy-probabilities-function demonstrates the highest correct at-

tribution for the majority of subimages, and the lowest basin shortfall again

for the majority of the subimages. This could be attributed to the within-

cell and near-cell-wall probabilities being very distinct from the background

probabilities. The actual gain in precision is small but non-negligible.

• The shape-guided GWDT does not fare too well because of the issues with the

gradient used in its construction, and also because of the possibly-imperfect

shaping of the DT initial propagation fronts.

Table 3.1: Mean and standard deviation of Correct Attribution by topographic function.

method dist grad gwdt shape-gwdt prob
mean 55.75% 55.78% 56.38% 56.11% 56.49%

stddev 20.28% 19.30% 18.77% 18.25% 20.35%

Fig. 3.9 and Table 3.1 illustrates the trend of the mean values of the segmentation

quality parameter scores, in the same order as the previous image:

• All methods have on the average scored less than 70% according to our correct

segmentation criteron.
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(a)

(b)

(c)

Figure 3.9: Trends in mean of (a) Correct segmentation (b) basin overflow and (c) basin
shortfall.
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• The gradient scores the poorest on CA but the highest (lowest value) in terms

of BO. Barring the gradient from the list, we would have flat CA and BS

curves, hovering around 0.65% and 0.07% respectively.

• The fuzzy probability function shows a slightly superior CA over gradient, but

also reasonably superior BO and a BS that is only slightly worse off compared

to all other topographic functions involving a distance measure.

Table 3.2: Mean and standard deviation of Basin Overflow by topographic function.

method dist grad gwdt shape-gwdt prob
mean 31.38% 29.51% 30.72% 31.77% 30.50%

stddev 23.92% 22.73% 22.27% 22.10% 23.07%

Table 3.3: Mean and standard deviation of Basin Shortfall by topographic function.

method dist grad gwdt shape-gwdt prob
mean 12.86% 14.71% 12.89% 12.12% 13.01%

stddev 14.49% 14.10% 14.47% 13.70% 12.54%

3.5.6 Conclusions and opening up to following work

The previous section not only exposes various topographic functions that one could

use in order to achieve desirable partitioning of an image, but it also exposes how ill-

adapted some of them are for applying to our image data. In fact, in this section we

wish to re-visit that discussion, and have saved for this point the most discriminating

results, i.e., a visual inspection. One must bear in mind that the use of, for instance

a DT map, as the topographic relief for the watershed transform is a complete image

segmentation strategy, as authors have shown [71, 24, 20, 72, 219, 130, 183], and

much more consequential than simply having built an image representation. The

segmentation over any topographic function not only defines the regions that are

assigned logically to objects in the image, but also defines the shape and extent of

those regions, and sometimes dictates the post-segmentation corrective process as

well [3, 64].

To illustrate this with examples, let us invite the reader’s attention to the seg-

mentations produced in the previous section, as shown in Fig. 3.10. The distance

transform (Fig. 3.10 b. is simply a Voronoi tessellation and completely disregards

the shape of the cells. It has managed to separate each cell centre (obtained in

Chapter 2) by perpendicular bisectors equidistant from each centre. Weighting by
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: Segmentation of the subimage a) 0032.1, using for topographic relief func-
tion: b) chamfer distance map, c) Deriche gradient, d) GWDT, e) shape-guided GWDT,
and f) fuzzy C-means probability map.
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the gradient (Fig. 3.10 d.) does little to alter the original tessellation albeit in fine

details, and distance weights calculated from different-sized centre-grains (Fig. 3.10

e.) does a little better in respecting object-region sizes and shapes, e.g. the spread

cell region encroaches its neighbouring cells less, and region boundaries are more

convex, following the convex cell shapes, rather than straight lines.

Of course, after this segmentation, the segments are restricted to within the

agglomerate connected components of the binarised image, thereby providing us with

regions representing individual cells within the ACCs. But the original inaccuracy of

the segmentation produces regions that do not accurately represent cell shapes and

sizes. For many segmentation applications in the literature [12, 167, 77, 130, 220]

this does not pose a problem, but since our goal is to be able to distinguish different

classes of metastasic cells, this lack of segmentation accuracy renders the following

classification difficult and impinges on its accuracy as well.

Topographic functions without external information imposed on them, such as

the gradient (Fig. 3.10 c.) and the probability maps (Fig. 3.10 f.) however, are

much more realistic in the manner in which they match the segmented regions and

real object boundaries. This is desirable to our application for the reason presented

in the previous paragraph, although these methods introduce a different problem:

over-segmentation (treated in detail in following chapter’s section 4.1). But before

passing on to that subject, let us for a further moment adhere to the analysis of

the figure. The gradient map (Fig. 3.10 c.) produces shallower basins than the

probability map (Fig. 3.10 f.), and these could be relatively easily confused by a

corrective algorithm with the shallow background basins. And if we looked further,

the former are also larger and exceed the cell contours and into the background, and

the latter do not. This reinforces the decision arrived at in Section 3.5.5 to use the

probability map as the topographic function.

The use of the probability map in this manner only offered us a correct segmen-

tation score of around 56% according to our discrepancy criterion. As an outcome

of this comparison it seems logical to select the fuzzy-probability map over com-

peting topographic functions. There are other reasons for this choice as well. In a

hierarchic watershed scheme, as we shall see later (Chapter 4 Section 4.2.2.A) the

probability function attenuates much slower than its gradient counterpart, resulting

in a much more precise hierarchy. Also, our qualitative-only eyesight criterion which

complements our discrepancy criterion for segmentation quality evaluation clearly

indicates its superiority over the chamfer-distance-only function, the latter being

able to only make straight-line cuts in the image and failing to follow the curve of

the cell wall. Thus the probability function will constitute our topographic func-
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tions of choice for the ensuing segmentation. And because of the over-segmentation,

the regions do not correspond to cells in the images. Therefore we were compelled

to look at strategies to improve the segmentation thus obtained by mitigating the

effects of over-segmentation, and this aspect was investigated in an amount of detail

that necessitates its presentation in a separate chapter. Therefore in the following

chapter we investigate two major axes of methods used to mitigate the problem of

over-segmentation inherent in the use of the probability map as the topographic

function before finally arriving at the solution we propose for this application in

particular.
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The previous chapter presented implementations of various watershed segmenta-

tion application algorithms utilizing different topographic functions that one could

use in order to achieve desirable partitioning of an image, and it concludes with the

choice of the fuzzy probabilities map as the most appropriate one for applying to our

image data. We build this chapter up by continuing with the same discourse and

re-visiting the same example as the concluding figure offered. The application of the

watershed transform on the probability map without the use of any segmentation-

saliency aids such as marking or modifying the topographic function did produce

watershed regions that adhered well to cell boundaries and were well distinct from

the rest of the image, but were many and small and incoherent with the desired ob-

ject shapes. We begin by looking at this familiar problem called over-segmentation.

We then offer some solutions for this problem, including four implementations in-

spired from the existing literature as well as the one we conceived, compare them,

and include the best-performing one into our processing chain that emits bounding

boxes of the segmented cells, called imagettes, to the final phase of cell classification.

4.1 The problem of over-segmentation and reso-

lution strategies

Let us once more invite the reader’s attention to the segmentations produced in the

previous chapter, now shown superimposed over the original subimage for a better

appreciation in Fig. 4.1. We surmise as before that topographic functions without

external information imposed on them, such as the gradient (Fig. 4.1 b.) and the

probability maps (Fig. 4.1 e.) however, are much more realistic in the manner in

which they match the segmented regions and real object boundaries. The gradient

map (Fig. 4.1 b.) produces shallower basins than the probability map (Fig. 4.1 e.),

and shallower basins being less distinguished from those in the background and are

therefore difficult to correctly unify into cell objects through the use of corrective

post-segmentation-processing as described in Section 4.4. And if we looked further,

the former are also larger and exceed the cell contours and into the background, and

the latter do not. This reinforces the decision arrived at in Section 3.5.5 to use the

probability map as the topographic function.

The above appraisal serves well as an exponent of the inherent problem with

the watershed, that it often results in severe over-segmentation, even if appropriate

filters are used for the original image or for the topographic gradient image before the

watershed operation is performed. This is due to the fact that the topographic image
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(a) (b)

(c) (d)

(e)

Figure 4.1: Segmentations from Fig 3.10 in the described order, this time superimposed
on the subimage.
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over which the watershed transform is calculated, usually the gradient, exhibits too

many minima. The coarse application of watershed is due to the fact that each

minumum gives rise to a catchment basin. Many minima are produced by small

variations, mainly due to noise, in the grey values.

This over-segmentation could be reduced by appropriate filtering, such as av-

eraging and smoothing. However, all the catchment basins do not have the same

importance. Some of them are induced by noise, others are minor structures in the

image. Hence, techniques for reducing over-segmentation have been developed that

take into account the saliency or the relevance of a catchment basin to the partic-

ular watershed application, either automatically or through human input. These

techniques fall into two categories: preventative and corrective. In the following

sections we will review some of these techniques before presenting our own contri-

bution to this solution.

4.2 Preventing over-segmentation

As mentioned before, without any preprocessing, the number of regions extracted

equals the number of regional minima of the topographic image function used and

these are often extremely numerous leading to an over-segmentation. For this rea-

son, the watershed is generally computed from a modified topographic function that

allows us to privilege certain and much fewer minima or indeed allow them exclusiv-

ity as sources to the flooding process. In the case where the sources for the flooding

are not all minima of the topographic image, two solutions are possible:

1. First, use the markers (Section 4.2.1) as sources: in this case, catchment basins

without sources are flooded from already flooded neighboring regions.

2. The second solution consists in modifying the topographic surface, such as to

change its homotopy, in such a way that the desired or significant minima be-

come the only regional minima. The most well-known homotopy modification

operation is called swamping (Section 4.2.2).

Both the methods mentioned above make use of morphological image recon-

struction or geodesic erosion that is explored in more detail in Annex B . The

following two subsections are dedicated to the examination of the two mechanisms

of preventing over-segmentation.
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4.2.1 Selecting desired minima through Marking

To avoid over-segmentation, a very powerful method was introduced by Meyer [140].

Suppose we know a priori that a connected set of points belong to an object, and

such a connected set for each object to segment, called markers in the literature.

If we could modify the image on which to compute the watershed so as to impose

these sets as regional minima, we can then obtain a watershed that has a region

around each object, since each catchment basin represents either the background or

one unique object.

Meyer proposed a direct marker-based watershed algorithm by immersion. In

this algorithm, the flooding process is performed directly on the marker-modified

gradient image i instead of the final modified gradient image s as shown in Fig. 4.2,

and unwanted minima (and consequently, unwanted regions) are suppressed during

the algorithm itself.

(a) (b)

(c)

Figure 4.2: 1D illustration of marker-induced topographic image modification: (a) the
topographic (gradient) image g and the marker image m; (b) imposing markers on the
topographic image g as minima and get the marker-modified topographic image i; (c) sup-
pressing all unwanted minima and get the final modified topographic image s. Image
courtesy Hai et. al [79].

The marking approach is applied as follows: first, we define the properties which

will be used to mark the objects. These markers are called object markers. The same

is done for the background, i.e., for portions of the image in which we are sure there
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is no pixel belonging to any object. These markers constitute the background mark-

ers. The rest of the procedure is straightforward and is the same for all applications:

the gradient image is modified in order to keep only the most significant contours

in the areas of interest between the markers. This gradient modification consists in

changing the homotopy of the function. Then, we perform the final contour search

on the modified gradient image by using the watershed transformation. No super-

vision, no parameter and no heuristics is needed to perform the final segmentation.

The parameterization controlling the segmentation is concentrated in the marker

construction step where it is easier to control and validate it.

The technique of marker-controlled watershed allows us to look for the contour

of the objects with less exactitude and guarantees the number of contours found,

i.e. one for each object. All the difficulty lies in determining the markers, i.e., to a

localization of the objects.

In brief, a segmentation by marker-controlled watershed therefore constitutes of

the following steps:

1. Find the markers, one for each object and one (or more) for the background

2. Compute the topographic function, usually a contrast image e.g. the gradient

image

3. Impose the minima of the markers by greyscale geodesic reconstruction

4. Compute the watershed.

4.2.2 Eliminating non-salient basins through Swamping

The second solution consists in modifying the topographic surface in such a way that

the markers become its only regional minima. This operation is performed using

greyscale image reconstruction by erosion, an operation which modifies the minina

dynamics of the image. Let us examine it briefly.

Minima dynamics The dynamics [73] of a regional minimum is a criterion of

contrast. If we recall, a regional minimum is a connected set from which it is impos-

sible to reach a point with a lower height without having climbed. The minimum

height of this climb is the valuation of the contrast of the regional minimum.

The concept of dynamics is illustrated in Fig. 4.3. It can be used, as we shall

shortly see, to find relevant regional minima by geodesic reconstruction of a to-

pographical function. In practice, we do not impose these minima as markers by
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geodesic reconstruction of a marked function. On the contrary, we suppress the

regional minima of f with a dynamics lower than a given contrast value h. The

standard algorithm to achieve this relies on the computation of the geodesic recon-

struction by erosion E∞f (fh) of (fh) over f where (fh)(a) = f(a) + h.

Figure 4.3: Illustration of the concept of dynamics.

The mechanism for morphologically reconstructing by erosion an image at any

level h is illustrated in Fig. 4.4 which contrasts with the previous in the number

and the height of catchment basins which will engender segmented regions when

the watershed transform is applied on the image. Only the basins having a depth

greater than the swamping level h remain after the reconstruction step. This alters

the dynamics of each catchment basin but also the number of regional minima, hence

homotopy modification.

Figure 4.4: Topographic function geodesically eroded by waterfall swamping until only
significant basins remain.

4.2.2.A Watershed segmentation hierarchies and the Waterfall algorithm

Thus far, we have seen as a means to prevent over-segmentation, marking and

using homotopy modification, to produce as many catchment basins as there are

objects in the image. This section presents hierarchical watershed segmentation as

an alternative. Originally developed by Beucher [17], this approach, rather than

preventing over-segmentation, computes the importance of watersheds with respect

to given criteria.
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First let us mathematically define what is meant by a hierarchy.

Definition Let Phi be a sequence of partitions of the plane. The family (Phi)i is

called a hierarchy if hi ≥ hj implies Phj ⊆ Phi, i.e., any region of partition Phi is

a disjoint union of regions of partition Phj .

There exist many methods for building a hierarchical segmentation [156], which

can be divided in three classes: bottom-up, top-down or split-and-merge. A recent

review of some of those approaches can be found in [189]. A useful representation

of hierarchical segmentations was introduced in [145] under the name of saliency

map. This representation has been used (under several names) by several authors,

for example for visualisation purposes [75] or for comparing hierarchies [5].

For bottom-up approaches, a generic way to build a hierarchical segmentation is

to start from an initial segmentation and progressively merge regions together [155].

Every hierarchy can be assigned a saliency map, by valuating (i.e. assigning a

value to) each point of the plane by the highest value h such that it appears within

the boundaries of partition Ph. If we interpret these partitions as segmentations,

we have a nice way of assigning importance to the contours thus produced. The

problem now is to obtain a family of such segmentations. The Waterfall algorithm

presents an intuitive solution.

The Waterfall algorithm was proposed by Beucher [18] as a means to morpholog-

ically build a hierarchy of nested segmentations using swamping or morphological

reconstruction operator described in this section. The Waterfall is a hierarchical

approach that iteratively selects the least contrasted among all the basins of the

watershed topographic image. By swamping these basins and thereby eliminating

the regional minima, a simplified partition is obtained. At the end, a single region

corresponding to the global minimum, that spans the whole image is obtained.

Let us invoke the very illustrative example that Najman and Schmitt [145] use

to explain the change of dynamics along a hierarchical watershed. Every catchment

basin with a regional minimum having a depth inferior to the level of the swamped

dynamics has been eliminated until only the global minimum remains at 30 grey

levels. The swamping levels have apparently been defined by the user and do not

follow an automatic stopping criterion. Along with the increase in the dynamics

level that is eliminated, the number of watershed region, i.e. over-segmentation

from our perspective, steadily decreases.

The algorithm is non-parametric because instead of using markers provided by

a previous process, it automatically selects significant regional minima by using
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Figure 4.5: Explicative example of the hierarchic watershed at various swamping levels
from Najman and Schmitt [145].

geodesic reconstruction by erosion (Annex B). We build a new topographic function

g by setting g(x) = f(x) if x belongs to the watershed, and g(x) = +∞ if it does

not. This function g is obviously greater than f . Let us now reconstruct f over

g. It is easy to see that the minima of the resulting image are significant regional

minima of the original image.

Closing remarks Some remarks are appropriate at this point. First, even if

this procedure allows the convergence of a hierarchy by repeating itself until con-

vergence, it does not allow a valuation of the watersheds thus obtained: the con-

vergence is usually very rapid and only a few levels of hierarchy are present in the

result. Second, even if we valuate the hierarchy by noting the order of extinction

of the watershed, the final valuation result is only a manner of providing this par-

tial ordering relationship and runs the risk of being independent of the underlying

gradient information.

However, in the framework of our segmentation application, the use of a partial

labeling by fuzzy classification as the topographical function in lieu of purely gradient

information makes the ordering relationship meaningful. Since the vast majority cell

or object basins are naturally deeper than all background basins, cell regions do not

usually merge into the background.

The next section presents the manner in which we propose to remove the prob-
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lems associated with the hierarchical watershed as well as of the marker-guided

watershed within our segmentation framework, by synthesizing the two into an effi-

cient and, as we prove in the later sections, a more accurate segmentation strategy.

4.3 Cumulative hierarchy

After having reviewed both the methods that prevent over-segmentation and im-

prove segmentation quality or correct over-segmentation and improve over-segmentation

over the baseline watershed segmentation, our quest for the most accurate segmen-

tation strategy for extracting cells from our images has led to the conclusion that

corrective methods are less effective in this case because of their use of innate im-

age information, such as the weights on watershed lines, beyond our control and far

from being optimally applicable. A good solution is generally inherently simple (Oc-

cam’s razor [149, 67]) and elegant (consensus of the computer science community

[102, 33]), i.e. it is the smallest and the most straightforward possible algorithm

for producing the output that it does. We therefore re-visit the preventive strate-

gies because of their simplicity and elegance and because they can integrate into

the watershed algorithm instead of being an extraneous package. Reflection on the

watershed transform and the immersion process,as described in the following, pro-

duced an elegant, more accurate as we see later, and less computationally intensive

process, which we refer to as the cumulative hierarchy.

The watershed transform is a global transform, that is, it affects all parts of

the image at once. A problem becomes apparent, because of this global nature, in

the Waterfall or a successive-swamping algorithm. Parts of the image cannot be

selectively swamped, and at any level h of the hierarchy, all basins inferior to h are

swamped indiscriminate to whether they belong to what is known to be an object of

interest, resulting in a loss of object regions shallower than h+1. Since the nature of

this morphological operation cannot be changed, the overall segmentation algorithm

should be so designed that these basins are preserved. Our goal is to approximate

a way to localize the swamping, meaning that the hierarchy stops at different levels

along different branches, as shown by the dendogram in Fig. 4.6. Thus, contrary

to a global hierarchy that could produce for us a desired number of final basins, we

could decide on the number as well as the choice of the basins.

Our solution takes advantage of the property 4.2.2.A and the particular topo-

graphic function while building a bottom-up hierarchy. Let us examine these factors

individually in order to understand the mechanism of the algorithm. The waterfall

definition implies that any basin that is swamped at level h becomes part of a larger

118



4.3 Cumulative hierarchy

Figure 4.6: Dendrogram representing a hierarchicy cut at not a single λi but at various
ones according to application-mandated resolutions.

one at level h+1. This implies that a region at level h either merges into a larger cell

region or disappears into the background at level h + 1. The probability map that

serves as the topographic function is such, as we have seen earlier in Section 3.5.4,

that the topography of the cell is more extreme than that of the background and

demonstrates deeper basins and higher crests. Thus non-cell basins will merge into

the very large regions that the background produces at the initial levels i.e. for small

values of h. Thus very early in the hierarchy creation of these background regions is

complete whereas the cells are still fragmented into multiple regions. These regions

within cells thus mostly absorb each other to grow into individual cells, while some

at the fringes of larger ones are lost to the background regions. Ultimately individ-

ual cells form distinct regions, which persist through differing number of resolutions

in the hierarchy until being lost to the background.

A local swamping could preclude the disappearance of interesting basins, i.e. the

hierarchy would stop for a given basin and continue for other parts of the image. In

the stead of preventing further resolution of the hierarchy we chose to “remember”

any interesting region that does not exist beyond level h. Obviously the basins of

interest are the ones containing a cell centre detected and validated from Chapter

2. Let us call all such watershed regions centre-regions.

All centre-regions can be identified, and extracted, from the watershed image at

any level of the hierarchy. So they are identified at the 0th level and tracked along

the upward progression of the hierarchy. The decimation of a centre-region is the

result of its absorption either into another centre-region or into the background. This

triggers region memorization. For the centre-region decimating into the background

at level h its state at level h − 1 is copied into an accumulator image. For the

centre-regions decimating into each other at level h all of them at level h − 1 are

copied into the accumulator image. As the hierarchy is traversed from the bottom

up, more and more centre-regions accumulate until finally the successively swamped
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watershed image is left with a unique background region. Through this process of

cumulative hierarchy an image of distinct segmented cells is eventually arrived at.

In the accumulator image, a centre-region at level h+ 1 replaces the one associated

with the same centre but at level h, and by construction, all lower levels of the

hierarchy, until its eventual absorption and disappearance.

Thus if at any level h, fh the topographic function for the watershed recon-

structed by erosion over an image function which is its version shifted up by a

constant step h, C is the set detected cell centres, BCh the image resulting from

the binary reconstruction of the watershed by C at level h and therefore contain-

ing only the set of watersheds that are absorbed at this level, and Zh is the set of

topographic image pixels at level h, then the final topographic function is the the

geodesic reconstruction by erosion E∞
fh
∧

f
(f), and the watershed image at level h

will be:

• f = Pprobmap

• For h = 0 to N − 1

– f + h is reconstructed by erosion over f :

f = ψEf (f + h))

– The watershed transform W is calculated

– Binary reconstruction by dilation of the watershed W by the image of

cell centres C : BCh = ψDC (W )

– When a basin ∈ W disappears at level h′, its state at level h′−1 is saved

in an accumulator:

Waccumulator = Waccumulator ∪ (BCh−1 \BCh)

This algorithm allows us to obtain not only the exact number of regions as

dictated by the number of counted cells but also their placement within the image.

Let us present some visual results that will lead to an appreciation of the working

of the algorithm. Fig. 4.7 gives an overall view of the evolution of the cumulative

hierarchy accumulator along the climb up the hierarchy. This is calculated over an

entire image (image 0032), and the state of the watershed image at a given level

of hierarchy is shown in the left column while that of the accumulator in the right

column.

Fig. 4.8 shows the same algorithmic walk-through for a manually-selected rectan-

gle taken from image 0032 so that small regions are easily viewable. Total decimation
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Figure 4.7: Progression of the cumulative hierarchy. The column on the left describes the
bottom-up traversal of the hierarchy and the one on the right the corresponding cumulation
(levels 2, 22, 42, 62, 82, 102, 122, 142, 162).
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occurs at level 138, and every tenth level up to it from level 0 is shown. Again, the

watershed images is on the left and corresponding accumulator ones on their right.

The following two figures place the reader in the process when viewed as a black

box, i.e. inputs into and outputs out of it are described. Fig. 4.9 describes these

inputs (4.9. a) and outputs (4.9. b) and offers the manually binarised imaged used

in Segmentation Quality Evaluation as a benchmark in 4.9. c. A limitation of the

cumulative hierarchy algorithm is also demonstrated in that it limits cell-regions to

inside the Aggregate Connected Component in 4.9. c. in order to avoid Basin Over-

flow and hence loses potential regions that would have constituted the tail of that

spread cell. Finally Fig. 4.10 offers the reader a comparison between cumulative

hierarchy segmentation and the gradient weighted distance transform topographic

image based watershed segmentation to expose a link to the previous work described

in Section 3.5.2, because that was shown to be the next-best method in that set of

conditions. The imprecision of the latter method is evident particularly in that the

regions representing cells do not respect cell boundaries and eat into neighbour-

ing cells and into the background, which would make discrimination between these

difficult in the classification step.

(a) (b)

(c) (d)

Figure 4.9: Details make interesting perspective: a) original subimage selection, b) the
corresponding binarisation, c) the manual binarisation used for SQE, and d) the cumu-
lative hierarchy segmentation produced.
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Figure 4.8: Progression of the cumulative hierarchy. The column on the left describes the
bottom-up traversal of the hierarchy and the one on the right the corresponding cumulation
(levels 0, 8, 28, 38, 58, 68, 88, 108, 128, 138). 123
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(a) (b)

Figure 4.10: Comparison of a) shape-guided gradient-weighted distance transform wa-
tershed and b) cumulative hierarchy.

The bottom-up implementation proceeds thus: we modify the topographic im-

age function at each iteration through global geodesic reconstruction by erosion over

itself shifted up by a constant level h and this modified image function is segmented

using a watershed transform. This process allows us the latitude of not defining

a strict background marker that would not permit those basins that lie in its in-

fluence zone but potentially belong to cells. This, coupled with the characteristic

of the probability-based topographic function that well-discriminates cell and back-

ground pixels, producing desired image regions corresponding to the extents of the

centre-basins at each level of the hierarchy. At the same time, an accumulator image

permits us to preserve the regions marked at inferior levels of the hierarchy but are

absorbed into the background as the hierarchy tends toward the global minimum of

the image, hence the name of the method. This method strictly solely uses math-

ematical morphology, and due to this quality, integrates seamlessly and elegantly

into a framework that uses only morphological geodesic image reconstruction first

by erosion and then by dilation and a watershed transform between the two. The

reason for the selection of this method, however, is that it was able to translates

this elegance of intuition into practical segmentation quality.

The usual methods of watershed segmentation improvement through post-processing

take the form of region merging, which we introduce and discuss in the following sec-

tion. It is there that the true usefulness of our cumulative hierarchy algorithm only

becomes evident. In order to present a holistic appraisal of the situation between

the algorithms we again broach further theoretic aspects the cumulative hierarchy

in the conclusion of the chapter.
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4.4 Correcting over-segmentation: Region

Merging

When watershed segmentation is applied to an image, water will rise from every

minimum in the image, i.e., a unique label will be given to each image minimum. In

many cases, not all image minima are relevant. Only the larger intensity variations

mark relevant borders of objects. This means that applying watershed segmentation

will lead to over-segmentation, i.e., objects in the image will be divided into several

parts.

Over-segmentation can in theory be reduced by a pre-processing step reducing

the number of local image minima, e.g., by smoothing the image with a mean or

median filter, however these operations are not ensured to respect object geometries.

Smoothing may remove important structures, such as edges, in the image. As is often

the case, a post-processing alternative exists for this pre-processing. After applying

watershed segmentation, over-segmented objects can be merged. Merging, or region

merging, can be performed according to different rules, based on the segmentation

model. One example is merging based on the height of the ridge separating two

catchment basins, as compared to the depth of the catchment basins. The model

says that a true separating ridge, must have a height greater than a given threshold.

All pairs of lakes that at some point along their separating ridge have a height lower

than the threshold are merged.

The following sections describe some usual methods employed in merging seg-

mented regions or objects. The methods are discussed as presented in the corre-

sponding literature and implemented by us as possible routes to an improved image

segmentation. Wherever the implementation differs greatly from the original method

presented because of a different application context or the fact that only the idea

was adapted and a propriety implementation was devised, we also present the details

of our algorithms. But first we will look at a representation of these regions that is

used in several of these methods to implement the decision process in practice, the

region adjacency graph.

4.4.0.B Region Adjacency Graphs

A Region Adjacency Graph or RAG describes the spatial adjacency relationship

between segments in a segmented image and is composed of a set of nodes repre-

senting connected components or regions of the image and a set of arcs connecting

two neighbouring nodes. This RAG denoted by G = (V,E) is constructed to de-
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scribe a partition of the image by the topology and the inter-region relations of the

image (Fig. 4.11). It is defined by an undirected graph where V = 1, 2, ..., K is

the set of nodes and E ⊂ V × V is the set of edges (denoting the presence of an

adjecency relationship between two regions). K = θ(G) is the number of region

nodes.

(a) (b)

Figure 4.11: a) Example of the regions of a segmented image and b) the corresponding
RAG.

The RAG holds adjacency relations of regions which we need in order to merge

those neighbouring regions that meet certain criteria as detailed in the following

subsection.

4.4.0.C Constructing the RAG

As mentioned before, a Region Adjacency Graph is the set G = (V,E) that contains

the connectivity or neighbourhood relationship among watershed regions or objetcs

in general in a segmented image. Maintaining one is essential for many merging

schemes, and could be done using data structures such as topological maps, but

building a RAG efficiently could however be a tricky process. Several algorithms

[183, 206] have been presented that outline the construction and management of the

RAG, however one or more finer but crucial details always find themselves omitted.

The principal such omission is the manner in which the adjacency relationship -

which region is the neighbour of which region - is established. As has been proposed

this can be done in a labeled connected component image by expanding outwards

each labeled region until it encounters others, whose labels are noted, for example

through morphological binary dilation; but this is an expensive operation, particu-

larly when regions are abundant. Moreover, in our case the watersheds are labeled
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Procedure: label segmentation lines and build RLRAG

Input:

segmented image of labeled connected components

Output:

RlRAG(region-region-line)

labeled line image

Algorithm:

Get list of coordinates of all line pixels

For each line pixel

Find labels of touching connected components by running through

the 8-neighbourhood,

Remove line labels i.e. 0s,

If neither connected components labels in RLRAG

Label this line pixel,

Put all 3 labels in RLRAG and the pixel’s label

on new line image

Else

Put line label for the region-region-line trio on the line image

at this pixel,but don’t update the RLRAG

End If-else

End For

with the same value, 0, as the background, making the job even harder, particularly

when we will also need the additional information of region-to-line spatial adjacency.

Therefore we have designed the following algorithm for constructing a RAG

augmented with watershed-adjacency information, which is computationally efficient

even in the event of a segmentation resulting in a very large number of regions i.e.

in the tens of thousands, both in terms of time and memory requirements. The

algorithm is independent of the segmentation method, and only requires a segmented

image whose connected components have been labeled a priori. In addition to

building a compact adjacency matrix, the procedure also labels the watersheds and

returns this labeled image. The RAG is in the format region− region− line i.e. in

effect it is a Region-Line-Region Adjacency Graph RLRAG.

This is essentially a line-following procedure, where we traverse all pixels of

the segmented image found on the separating lines. The rationale is that since a

segmentation or a tiling of an image into connected components results in the vast

majority of pixels being attributed to objects, processing the minority should result

in a substantial speedup.

The other reason for the computational efficiency of this algorithm is the fact
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that for each image pixel, there is a lookup into the 8-neighborhood image matrix,

which is much less computationally intensive than a morphological dilation opera-

tion. The image of the watershed lines thus obtained has been verified to have been

created correctly i.e. with a different label for each line segment between any pair

of connected components for the entire image set.

The RLRAG is used by any region merging method extraneous to and following

the initial process of watershed segmentation, such as the ones we now present to

the reader.

4.4.1 Criteria-based merging on the RAG

Section 4.4.2 will shortly discuss the criteria and the manners which are generally

used for merging regions in an over-segmented watershed image. We use similar

criteria and a global scheme to decide which regions merge and when does merging

stop. Let us first look at the criteria.

Global criteria: Region merging for any given image is obviously also a func-

tion of the context in which the image was taken, other than being dictated by

the aforementioned merging criteria. Indeed these context-derived criteria override

the rest, since they take into account factors beyond the data extractable from the

segmented image. For example, a region-merging scheme cannot be allowed to con-

tinue to merge regions until unity of regions when we know there is at least one

object present in the image, even though traditional merging criteria so dictate.

In our context, we possess knowledge prefatory to segmentation about the images:

we have established a count of the number of cells in the image (Chapter 2), and

thence determined their average size. This information serves well to be exploited

at present.

Since we have found a certain number C̄ of cell centres and have calculated the

modal cellular radius and therefore the corresponding cell size (under the assumption

of their circularity) S̄ (refer to chapter 2 again), it is only natural that this knowledge

be exploited if possible and if needed. Therefore, a global criterion is simply to ensure

that the current number of image regions C and the current average region size S

are as close as possible to the desired values mentioned above. That is we minimize

the differences:

||C − C̄||+ ||S − S̄|| (4.1)

Local criteria: The local criteria are taken from the discussion mentioned
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above. The ones we use are:

Size:
(S̄ − areai)

max(area)
(4.2)

Convexity:
convi

max(conv)
(4.3)

Depth:
((max(depth)− depthi)×max(depth))

depthi
(4.4)

where C̄ and S̄ represent approximated parameters actually calculated by the

algorithm.

4.4.1.A The initial algorithm and its shortcomings

As stated before, the procedure starts out on the basis of the current state of the

watershed image with respect of the measures of two sets of criteria, and the informa-

tion on the connectivity of the regions or watershed basins among them contained in

the RAG. The merging procedure aims that the regions be as “cell-like” as possible

in size, shape etc i.e. the local criteria, and therefore at each iteration merges the

regions that violate the set of local criteria. The procedure goes on until the global

criteria are met i.e. the number and the general size of the regions does not begin

to diverge from the manually-labeled image. A region, once candidate to merging

according to local criteria, merges with its neighbour with whom it has the weakest

border according to Wälby’s definition i.e. having the smallest mean height. Once

a new region is formed it is assigned a new region label. The RAG is updated at

the end of each iteration to reflect the state of the connections between regions that

were removed and the new ones formed with the new regions.

In this way vast swathes of the image are updated at each iteration, but it

comes at the cost of accuracy. The very apparent problem with this approach is

its use of an implicit set of thresholds, particularly in the case of the local criteria.

These thresholds are inevitable because the criteria as defined above produce each

a score in the interval [0, 1]. The thresholds are determined from the scores of

the regions that constitute whole cells found outside of cell unclusters. But these

supposed cell-regions might not themselves be perfect, e.g. formed of a cell divided

into multiple regions, and risk producing, if only slightly, different criteria scores

thanks to being not surrounded by touching cells. The local criteria are ANDed

amongst themselves on their individual thresholds decisions. Therefore, to avoid as
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much as possible the summing of uncertainties induced by each threshold, we have

used a few but significant criteria. Still, convergence could be elusive for the global

criteria since between two iterations a large number of regions merge and fine-tuning

the procedure globally is not possible. There is thus a theoretical schism between

the global and the local criteria sets and the local ones allow merging of numerous

regions in one iteration, causing the global criteria to over- or under-estimate their

objectives by a significant margin (in tens of cells) in the final iteration.

A second problem is the erratic manner in which regions might merge. Any pair

of regions merge based on which watershed line is the weakest between a region

and its neighbours. While this is a natural and intuitive way of watershed line

breaking, it does happen to merge regions across cell boundaries, a quality attribute

established by the human eye. That is general problem that we will not attribute

to this method, but it is a problem that we will try to minimize, as we see shortly.

Another discrepancy is the ordering affects in region merging due to the order

of traversal of the RAG, but this too is inevitable. The RAG is accessed in the

order of region discovery or labeling in the image i.e. from top left to bottom right.

Once a region is found to be the candidate to merging as a result of its local criteria

scores, it is merged with the connected neighbour connected by the weakest border

or the watershed line having the smallest minimum value along it. The new region

thus produced is assigned a new label, has its local criteria scores calculated, and

is inserted into the RAG in place of the two former regions that now constitute

it. But a different order of traversal of the RAG may not even consider this pair

of regions for merging because one or both of them might have been merged with

neighbouring regions encountered earlier in RAG traversal. Thus there is no global

ordering of regions, and flipping the image around or using a different labeling order

will change the merging result. This also means that the newly-created regions are

studied for possible merging towards the end, owing to their higher region labels,

which is a desirable property since new regions are assumed to be more “cell-like”.

4.4.1.B Our improved basin-line competition implementation

In the algorithm presented above we saw several drawbacks:

• setting threshold on the local criteria, which complicate and often hinder cor-

rect merging,

• rapid and abrupt region merging often with lack of global convergence,

• the selection of the pair of regions to merge in a connected neighbourhood,
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• the order of merging.

We decided to improve the algorithm mentioned above to eliminate these flaws.

Hence the method we discuss in this section is a derivative of the previous one.

One possible manner to resolve the issue of local thresholds is, instead of compar-

ing quantities describing an object to calculated thresholds, they be compared with

those emanating from other objects. Thus a competition between several connected

objects would decide the winners.

Watershed regions and lines present a conceptual duality: strong regions can exist

without being captured by neighbours despite being surrounded by weak watershed

lines, and strong watershed lines, purportedly representing object borders, should

put a hold to the merging of two neighbouring regions that may be eligible to a merge

according to any set of criteia. The notions of weakness and strength can be defined

either as in section 4.4.4 or though Wählby’s criteria [219] as described in Section

4.4.3. Thus we think of the region and the line in an antagonistic relationship,

and propose the following: a watershed region has the propensity to merge with

its neighbours, and a watershed line has an inertia to breaking i.e. a tendency to

remain. The latter is a straightforward corollary of the line-strength definition. The

former behaviour can be formulated with criteria that encourage regions that are

not “cell-like” to merge.

There is only one global criterion, the number of cells, which the number of

regions will finally try to match. A number of local criteria are defined, both for

regions and for watershed lines.

Local region criteria:

Size:
(S̄ − areai)

S̄
(4.5)

The smaller (removed from ideal cell size) is the cell region the higher the merging

propensity.

Convexity:
convi

max(conv)
(4.6)

The less convex is the cell region, the higher is the merging propensity.

Depth (lack of):

((max(depth)− depthi)

max(depth))
(4.7)

The shallower the cell region is, the higher the merging propensity.
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The three criteria are summed and divided by 3 so that the Net Merging Propen-

sity of a region is bounded by [0, 1].

Local line criteria:

Mean Depth:
((max(mean(depth))−mean(depth)i)

max(mean(depth))
(4.8)

The deeper the watershed line the higher the inertia.

Variation along the line:

std−1
i (4.9)

to go along with the mean value, the higher the inverse of the grey level standard

deviation along a line the higher its inertia.

Variation along the line:

(2× π × modal cell radius− lengthi)

max((2× π × modal cell radius− lengthi))
(4.10)

The closer to a semicircle the region bounded by the watershed line is, the higher

the inertia.

Thus for the segmentation to be optimal, we once again wish for the regions to be

as “cell-like” as possible, as defined by the criteria. The algorithm proceeds as fol-

lows: the regions wish to attain stability by being more “cell-like” through merging,

and the lines wish to remain intact to not allow the regions they enclose if the latter

are already “cell-like”. Thus the sum of the two sets of criteria are normalized to 1

for each region and each line, and the RAG’s edges are weighted with the difference

WLi − inertia − 0.5 × (Rj − merging-propensity + Rk − merging-propensity). At

each iteration, the edge representing the lowest weight over the entire RAG is bro-

ken, the regions merged, the newly-created region assigned a new label, its merging

propensity calculated and its related edges updated.

The problem of convergence is resolved by only allowing one merge every iteration

of the algorithm. Because we now have a global view of the tendencies of region-

pairs to merge through their candidacy-scores, we select the one with the highest

score for merger. In this manner, region-merging happens in a manner that does

not negate the goals we set for the image globally. But this also means sacrificing

processing efficiency for merging accuracy: a higher number of iterations is required,

each necessitating RAG traversal and update.

The problem of deciding for a region with which neighbour to merge is automat-

ically solved because this choice is now made globally, and because this choice is
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now the result of a comparison between quantities which are more computationally

stable than a simple minimum over a watershed line.

The issue of the global ordering of regions is also resolved by the ordering rela-

tionship determined by the weights on RLRAG edges.

Once again, this is a computationally-expensive operation, and we must be care-

ful not to apply it over a watershed image but when the over-segmentation is not

very acute.

4.4.2 Model-based Object Merging methods

To overcome the problem mentioned in the introduction of this section, some type

of merging mechanism has to be introduced in the post-processing step. Several

techniques have been proposed in the literature. One possible method is to make

use of hysteresis thresholding to filter noisy weak contours, representing the water-

shed lines between small regions. As pointed out by [145], hysteresis thresholding

produces non-closed contours and barbs in the case of watershed. [3] presented a

rule-based heuristic merging technique to reduce over-segmentation, by identifying

the oversegmented objects based on size, and merging them with their parent nu-

cleus. This method represents a significant advance, but can be improved upon.

Its limitations arise from the fact that merging purely based on object size is prone

to error, especially when segmenting objects with great variation in size. Second,

a global size threshold is not easy to set in an automated and consistent manner.

Finally, the merging rule does not account for the features of other objects in the

image.

Statistical shape-modeling methods depend upon the availability of parametric

models to describe the nucleus objects. These parameters must be selected carefully

in order to accurately characterize the nucleus objects, and discriminate outliers

from real nucleus objects in an effective manner. The set of parameters must be

rich enough to describe complex objects. A realistic strategy for estimating these

parameters is for the user to specify examples of valid and invalid nucleus objects,

and to perform supervised morphometry on these objects. In practice, the tedium

and labor cost of specifying these examples is high enough to limit the number of

examples. This, in turn, forces us to limit the number of object modeling parameters.

Let the location of the pixels in a cell nucleus denoted p = {p0, p1, . . . , pn−1},
where pi = {xi, yi, [zi]}. Their corresponding pixel intensity values are denoted

v = {v0, v1, . . . , vn−1}. The following features could be readily measured.

Volume: The volume (size) of the object, V , is the total number of voxels inside the
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object, i.e., V = n.

Texture: The simplest texture measure, denoted T , is the standard deviation of

intensities of all pixels inside the object

T =

√

1

n− 1
Σn−1
i=0 (vi − v̄)2 (4.11)

where v̄ denotes the average nucleus intensity.

Convexity: The convexity, S, of an object is defined as the ratio of the object volume

to the volume of the convex hull of the object. The convex hull of an object can be

formed by a method called Jarvis’s March [92]. The convexity is desired to be close

to one for circular and elliptical objects, and less than one for concave objects.

Shape: Let Q be the boundary pixels of the object. The shape feature, U , is

defined as

U =
|Q|3

64π × V 2
(4.12)

where |.| denotes the number of elements in a set.

Circularity: Let p̄′ denote the purported center of the object, then the distance

between pixels p and the center can be described as d = ||p′−p̄′||. The circularity,

C, is defined as

C = mean(d)/stddev(d). (4.13)

Area: The area, A, is the number of pixels of 2D objects, i.e., A = k.

Mean radius: Let R be the vector of the distances from the boundary pixels to

the center p̄′, and the mean radius R̄ is defined as the average of R, i.e., R̄.

Eccentricity: The eccentricity, E, is defined as the ratio of the major axis to the

minor axis, and can be estimated by the ratio of the maximum to minimum radius

R, i.e., E = max(R)/min(R).

The statistical object model is an m-dimensional Gaussian distribution defined

on a vector of m features X = (x1, x2, . . . , xm) drawn from the list above. The

distribution requires the mean, denoted X̄ and covariance matrix, denoted ΣX .

These parameters are estimated from a subset Ct , of the objects C produced by the

watershed algorithm.

134



4.4 Correcting over-segmentation: Region
Merging

The training set Ct is selected as follows. It is known that objects representing

intact cells in these results are generally characterized by a relatively large value

of volume V , convexity S, and circularity C. Based on these considerations, the

training set can be constructed by placing thresholds on volume V , convexity S,

and circularity C, as described below:

Ct =
{

c|c ∈ C, Vc ≥ overlineV + tσV ;Sc ≥ S + tσS;Cc ≥ C + tσC
}

, (4.14)

where V̄ , S̄, and C̄ are the mean values of object volume, convexity and circu-

larity, and σV , σS and σC are their corresponding standard deviations respectively,

t is an empirically specified parameter that sets the degree of selectivity.

Based on the above Gaussian model, we can measure the confidence score for

any given object c with feature X, using the Gaussian probability that the object

feature fits the model, as follows:

Sc = p(X) =
1

(2π)m/2|ΣX |1/2
exp(−1

2

√

(X − X̄)TΣ−1
X (X − X̄)). (4.15)

To correct the over-segmentation produced by the initial watershed over the

probability map, it is necessary to detect and eliminate the false watersheds and

thereby merge segmented objects. This is guided by a merging criterion based on

a merging score derived from the confidence measure described above in equation

4.15. Let W denote the set of watersheds that separate adjacent objects, in our case

cells. As illustrated in Fig. 4.12 a., each watershed surface w ∈ W separates two

touching nuclei, denoted as c1
w and c2

w. We define the gradient of w as the average

intensity gradient among all pixels on the watershed w, i.e., λw = (Σi ∈ wλi)/n,

where n is the number of pixels in w. In the same manner, we define the intensity

gradient λcw for each object cw by averaging the intensity gradients among all pixels

in c. Let cw denote an object formed by breaking w (in other words, merging c1
w

and c2
w separated by w). Then, we have:

cw = c1
w ∪ c2

w ∪ w (4.16)

Note that pixels corresponding to the watershed surface w itself should also be

merged into cw. The confidence score of cw, based on equation 4.15 above, is called

the “merging score” and denoted Scw in the following. Intuitively, the merging

decisions are based on the following two observations: 1) The merging score Scw

should be higher than the score of either nucleus before merging, i.e., S1
cw and S2

cw .

2) The gradient of w should be relatively large compared with the gradient of objects

or regions c1
w and c2

w. This is based on the assumption that intra-region gradients
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(a)

(b)

Figure 4.12: Illustrating two example cases encountered by the watershed-breaking al-
gorithm. (a): A case that leads to merging of the two objects. (b): The case where one
object has multiple (two) watershed lines. In this case, there are two candidate watershed
surfaces to choose from for breaking. Our algorithm prioritizes the watershed surface w
that has a greater merging score cw, indicating better fit to the object model, thus the higher
confidence towards its breaking. Explicative figure courtesy G. Lin [119].

are smaller than inter-region gradients, which generally holds true. With these

observations in mind, we calculate the following ratios:

RSw =
2× S

(S1
cw + S2

cw)
(4.17)

Rλw =
(λ1
cw + λ2

cw)

2× λ (4.18)

The ratio RSw reflects the relative degree that the objects match the statistical

model before and after merging, thus it accounts for the confidence we have on the

breaking of w. The higher RSw is, the more confidence we have in merging c1
w and c2

w.

The ratio Rλw captures the intuition that a watershed with high intensity gradient

is likely the boundary of two touching nuclei. The higher the Rλw , the less likely

that w represents background pixels, thus more likely that w belongs to the interior

of an object, rather than c1
w and c2

w being two objects separated by w. The above

two ratios can be combined as follows into a single decision making criterion:

Rw = RSw ×Rλw ≥ β (4.19)

where β is an empirical decision threshold (typical value 1.2 [119]).

Breaking of the watershed w results in the merging of two objects c1
w and c1

w. This

procedure is repeated until no more watershed surfaces in W satisfy the condition
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in equation 4.19. Special attention needs to be given to nuclei that touch more than

one object, as illustrated in Fig. 4.12 b. In this case, we have multiple candidate

watershed surfaces to be selected for breaking. Intuitively, we must assign a higher

priority to the one that has a greater merging score, i.e., break the watershed with

the greatest cw value before other watershed surfaces.

4.4.3 Watershed-line breaking methods

Watershed segmentation is expected to result in over-segmentation. The segmen-

tation is therefore followed by two merging steps. The first merging step removes

extra regions due to non-seeded local minima. These regions are merged with the

neighboring region towards which it has its weakest border. The weakest border is

defined as the border in which the mean intensity of the inverse of the original im-

age is the least [219]. The seeded neighbor may be either object or background, and

the merging continues until all non-seeded objects are merged. The second merging

step deals with over-segmentation resulting from extensive h-maxima seeding. This

over-segmentation is reduced by removing region boundaries crossing bright parts

of the image, e.g., a boundary dividing a bright cell in two. In this case we continue

the merging until all remaining objects have a defined maximum average intensity

along the border (greater or smaller than that of the basins depending on the topo-

graphical image). This step will not only reduce over-segmentation, but also merge

false objects, such as debris, with the background.

After watershed segmentation, over-segmentation was reduced by only keeping

those borders that correspond to strong edges. If two seeds are in the same object,

the magnitude of the gradient at the region border will usually be small.

Associating region boundaries with border strength requires some careful defi-

nitions. The strength of a border separating two regions should be calculated in

such a way that the strength of the border between regions A and B is the same

as the strength of the border between B and A. This is achieved by the following

method, where the image of the segmentation result is traversed once. If the current

pixel/voxel has a label which is different from that of a “forward” neighbor, (2 edge

and 2 vertex neighbors in the 2D case), the pixel intensities from the correspond-

ing two positions in the gradient magnitude image are retrieved. The intensity of

the brighter of the two is used to define the local border strength between the two

neighboring pixels and saved in a table for border data. We choose the brightest

value since it represents the strongest border value. If a pixel has several forward

neighbors with different labels, each label will result in a new value in the table of
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border data.

The strength of the complete border between two regions can be measured in

many different ways. A simple measure is to define the strength of a border as the

weakest point along the border. This is often used for reducing over-segmentation

resulting from watershed segmentation. However, many correctly segmented objects

are then merged, due to single weak border pixels or weak border parts originating

from locally less steep gradients. Another measure, which is less sensitive to noise

and local variations, is the mean value of all border pixels of two neighboring objects.

This measure proved to give good results for merging of over-segmented nuclei. The

mean value of the border of each merged object must be updated after merging. This

is done by adding the border data (mean value and number of pixels) of the merged

objects to the new, larger, object and its neighbors. The merging is continued until

each remaining object border is stronger than a given threshold. Instead of defining

the border strength as a mean value, one might consider the median, or some other

percentile, but this would need storage of more data than just the number of pixels

and the pixel sum.

A strong border means that the object is well-focused. Merging based on border

strength therefore means that not only over-segmented objects are merged, but also

poorly focused objects will be merged with the background, and disappear. This is

an important feature if well-focused objects are required in the further analysis of

fluorescent signals. In this case, a rather high threshold is suitable. If also poorly

focused objects are of interest, their removal can be avoided by not allowing merging

of objects and background.

This method is not only intuitive but also straightforward to implement, albeit

prone to noise-induced-variation in the watershed-line score. However, in our imple-

mentation we use the mean value instead of the minimum, affording more stability if

less correctness (basins spill once they are flooded above the minimum value on any

encircling watershed line) to the method. Moreover, the method has a similitude

with the hierarchic segmentation, only it is the watershed lines instead of the basins

that are successively eliminated.

4.4.4 Significance-of-basins approaches

In their seminal work, Léon and Bleau [25] address the following question: given

an image I , what is the transformed image T [I] that is closest to I but has fewer

and more significant watersheds? Obviously, the answer will depend on the exact

meaning we attach to “closest” and “significant”. In the following, we discuss the
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use of several specific criteria to substantiate these words.

Significance criteria. To assess the significance of watersheds, the simplified

algorithm will rely on some measurements. The selected criteria may be:

1. Watersheds with depth reaching a threshold Dt are considered significant.

Threshold selection has to take into account such factors as grey-level digiti-

zation method and enhancement pre-processing performed.

2. Watersheds with core surface reaching a threshold St are considered signifi-

cant. Threshold selection has to take into account such factors as scaling, and

zooming.

3. Watersheds with volume reaching a threshold Vt are considered significant.

Threshold selection has to take into account the factors of both measurements

described above.

4. A combination obtained by OR-ing or AND-ing the above criteria, such as

Surface[WScore[I,WS]] ≥ St AND

Depth[I,WS] ≥ Dt V olume[I,WS] ≥ Vt OR

Depth[I,WS] ≥ Dt V olume[I,WS] ≥ Vt1 AND

Depth[I,WS] ≥ Dt1 OR V olume[I,WS] ≥ Vt2 AND

Depth[I,WS] ≥ Dt2 ,

with Vt2 > Vt1 and Dt2 < Dt1 . The criteria listed above were selected for the

simplified algorithm because all of them are dependent on the overflow altitude

of the watershed under study.

Additional significance criteria. Several other criteria may be used to as-

sess the significance of watersheds; some involve a priori knowledge in the form of

markers, and some involve measurements.

1. Markers-based criteria: Let Markers be a set of pixels known a priori to be

located on significant features. This set may be the union of several disjointed

connected components, Markers k, that we will term marker components.

(a) Watersheds touching a marker are considered significant, i.e., the water-

sheds WS such that WS∩ Markers 6= ∅ .

(b) Watersheds including a marker component are considered significant, i.e.,

the watersheds WS such that ∀k| Markersk ⊆ WS.
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2. Measurement-based criteria: Watersheds with total surface exceeding a thresh-

old St are considered significant. Threshold selection has to take into account

such factors as scaling and zooming.

These criteria may be combined with first set of criteria in various ways. If

the selected criterion includes terms that are independent of the former, such as

a minimum surface or the inclusion of markers, some of the previous assumptions

about which watersheds will never satisfy that criterion will not hold.

Frucci et al. [64] [65] simplifies the significance-of-basin approach by studying

the significance of basins in relation with their neighbours. They consider the sig-

nificance of a basin X as depending on the interaction of X with its adjacent basins.

In this way, we are able to select the basins with which merging of X is more con-

venient. Such an interaction is evaluated by taking into account some features of

the basin X and of its adjacent basin. First, let us define the relative significance of

X. We say that a basin X is significant with respect to an adjacent basin Y if the

following holds.

SAXY > At or DXY > Dt, (4.20)

where the thresholding values At and Dt are computed by taking into account

the initial watershed transform and by analysing the frequencies of the similarity

parameters and local depths associated to the basins. We will also say that the

WL dividing X from Y is a strong separation with respect to X when (4.20) holds.

Then, we define the intrinsic significance of X in terms of the relative significances

of X, and distinguish three degrees of significance:

Strong significance: if anyWLs surroundingX is a strong separation with respect

to X,

Weak significance: if no WL surrounding X is a strong separation with respect to

X.

Partial significance: in all other cases.

Frucci et al. propose a merging iterative process in which each iteration consists

of two steps, respectively applied on weakly significant basins, and then on partially

significant basins. In the first step, they assume that a weakly significant basin X

can be merged with any of its neighbours, and to this purpose we use a flooding

transform. Since some basins, resulting from a single flooding process, may still be

weakly significant, this step is iterated until only partially and strongly significant

basins are present in the image. In the second step, the removal of a partially sig-

nificant basin X is accomplished by merging X with its neighbours belonging to
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NS(X), where NS(X) is the set of adjacent basins which are non significant with

respect to X (and with respect to which X is non significant) and whose regional

minimum are at altitude not greater than PRX , the corresponding regional mini-

mum. If NS(X) is not empty, a steepest descending path is created starting from

RX and terminating on RY , for any basin Y of the current NS(X), and the water-

shed transformation is repeated. Due to the modifications of the degree of intrinsic

significance of a basin occurring during the removal process, the whole merging pro-

cess needs to be iterated to obtain basins which are all strongly significant. Note

that the initial values computed for At and Dt might be no longer valid for the

final image, and have to be computed again. If one of these new values (At′ or Dt′)

results greater than the previous value then the merging process is applied again.

The whole process terminates when neither At nor Dt are greater than the previous

values.

4.5 Cumulative hierarchy versus the other

segmentation-improvement methods: Evalu-

ation and discussion

We wish, at this point, to explain the emphasis that we give to cumulative hiearchy

with respect to the other methods, in particular to the basin-line competition algo-

rithm which too has been developed by us. The cumulative hierarchy is a method

that prevents over-segmentation rather than being a post-segmentation operation.

Just as well, it modifies the image terrain at each iteration and at the same time

control the further unification of the regions in the watershed image according to

criteria similar to those presented in this section for region-merging methods. There-

fore, by its qualities of integration into the watershed transform, of the intuitiveness

and the elegance of the method itself, cumulative hierarchy is our method of choice

at the theoretical level. In this sub-section we analyze whether the theoretical pref-

erence translates into practical segmentation quality. For this purpose, we return to

the SQE methodology presented in Section 3.3.

The comparison has been carried out in the same manner as earlier in section

3.5.5. The test data comprises 30 cell-aggregate connected component subimages.

Each has been extracted from our test set of 14 images, and therefore represent well

the variability in the image data. The aggregation within most of the connected

components also means that the simpler case of an individual cell in a subimage has

not been considered, but some connected components do have non-adhering cells,
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hence incorporating that case in the study.

The ground-truth (refer to section 3.3.2) is established by tracing out the contours

of each cell in a subimage by hand. We start with a lasso that is unattached to any

point in an image and anchor it to every judged salient point on the cell boundary.

No interpolation is performed between any pair of these points and the lasso is

non-rigid i.e. we end up with a piecewise-linear curve.

The merging algorithms being compared are from among those described earlier

in this section. Specifically, they are:

• Waterfall with global stopping criteria on the RLRAG (Section 4.2.2.A)

• Region-line competition merging (criteria-based merging onRLRAG) (Section

4.4.1.B, improved algorithm)

• Object-Model Merging through watershed breaking over the RLRAG (Section

4.4.3)

• Merging on basin properties according to Léon and Bleau (Section 4.4.4)

• Cumulative Hierarchy (Section 4.3)

Let us briefly recapitulate these methods in Table 4.1 for ease of reference in the

following discussion.

The last three methods are repeated without an initialization, thus we have a

comparison among 8 different applications of 5 individual methods, the last three

separated for better readability into Tables 4.5, 4.6 and 4.7 which offer a comparison

for these merging methods wit and without the aforementioned initialization. The

initialization we refer to is a certain level of hierarchy in a waterfall segmentation

that is applied to reduce the number of regions to merge, and to ensure that too many

regions are not erroneously merged across object boundaries. This level of hierarchy

is constant for each algorithm, and is the cumulative hierarchy optimum for its global

criteria. Each subimage is segmented at this level the first five times and at level 0 the

last three, and then passed onto the corresponding merging algorithm. At the end,

one region representing each cell is selected using a marker. As before the marker

provides a ceterus paribus situation for comparison, but conduces to a very strict

comparison since the regions left unmerged but still inside the aggregate connected

component are not taken into account. This phenomenon is especially prominent in

the without-initialization implementations because the algorithms stop much earlier

than the optimum of cell-like regions, and we have very significant Basin Shortfalls.
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1 Waterfall, global
stopping criteria

Classical waterfall but with examination of the
number and the sizes of cell regions at each level
in order to stop.

2 Region-line com-
petition

Merging on the RAG using local criteria for water-
shed regions and lines so that regions are mergeo-
phile and lines mergeo-phobe, and for each edge of
the RAG one wins over the other, until stability.

3 Watershed
breaking

Defining statistical similarity between regions as
RAG nodes and testing whether eliminating RAG
edges increases similarity scores for merged regions
over their former component regions.

4 Léon and Bleau A significance-of-basins approach that weighs
RAG edges similarly to 2 and decides which basins
are strongly, partially and weakly significant, and
iteratively filling up the latter ones and dissolving
RAG edges until only strong significances remain.

5 Cumulative hier-
archy

Marks the topographic function at increasing lev-
els with validated cell centres, and accumulates as-
sociated basins as they extinguish.

Table 4.1: Recall and summary of the segmentation refinement methods discussed.

Each of these marked cell-object are compared to the ground-truth according to the

discrepancy criterion in 3.3.2. Figures 4.13 through illustrate the comparisons.

We present the set of figures 4.13, 4.14 first and then discuss the conclusions.

Fig. 4.13 compares (a) correct segmentation (CA), (b) basin overflow (BO) and (c)

basin shortfall (BS) for the subimage set.

Table 4.2: Mean and standard deviation of Correct Attribution by improvement algo-
rithm.

Met- Waterfall, global Region-line Watershed Léon-Bleau Cumulative
hod stopping criteria competition breaking hierarchy

Mean 62.77% 57.81% 61.34% 49.89% 69.56%
Stdev 19.06% 18.14% 17.50% 16.25% 17.27%

• The comparison is self-evident in that the first three of the five algorithms

outperform the rest by a significant margin, with respect to all three quality

criteria.

• Since the third is in fact a derivative of the first, we can logically count them

as one.
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(a)

(b)

(c)

Figure 4.13: Graphs of (a) Correct segmentation (b) basin overflow and (c) basin short-
fall for the entire subimage data.
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(a)

(b)

(c)

Figure 4.14: Trends in mean of (a) Correct segmentation (b) basin overflow and (c)
basin shortfall.
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Table 4.3: Mean and standard deviation of Basin Overflow by improvement algorithm.

Met- Waterfall, global Region-line Watershed Léon-Bleau Cumulative
hod stopping criteria competition breaking hierarchy

Mean 14.74% 22.12% 15.22% 5.07% 1.73%
Stdev 17.34% 17.77% 15.31% 9.97% 2.37%

Table 4.4: Mean and standard deviation of Basin Shortfall by improvement algorithm.

Met- Waterfall, global Region-line Watershed Léon-Bleau Cumulative
hod stopping criteria competition breaking hierarchy

Mean 24.41% 21.71% 24.46% 45.66% 30.23%
Stdev 17.35% 17.73% 19.32% 18.42% 17.21%

• Among the remaining two, cumulative hierarchy is found to consistently have

the largest CA, while also having the advantage of not requiring an initializa-

tion at all.

• The ad hoc method of RAG merging based on local similarity criterion worked

surprisingly well as long as it was initialized so that the decision was among

the few fragments of cells in an aggregate.

Table 4.5: Mean Correct Attribution with and without initialization.

Method Region-line Watershed Léon-Bleau
competition breaking

With init. 57.81% 61.34% 49.89%
Without init. 38.33% 38.33% 38.62%

As can be seen, the Basin Shortfall is around 62%, i.e., that percentage of every

cell is not included in the region that corresponds to it. At the amount of over-

segmentaion that exists in the images, region-merging processes completely fail if

not given a little headstart through a swamping process. Even though cumulative

hierarchy only fares twice as better as region-mergind methods without initialization

for the BS score, the latter is in the same ball-park as all the region-merging methods

with initialization, so that result is not too unexpected.

The second segmentation quality criterion, which is not represented in these

graphics, has a story to tell. Even the object-model and region-line-competition

algorithms suffer more than cumulative hierarchy on visual inspection when it comes

to merging regions from different cells together. This is possibly because of the

implied thresholds, and because of the fact that the criteria implemented represented

characteristics of segmented connected components / regions and not of the image
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Table 4.6: Mean Basin Overflow with and without initialization.

Method Region-line Watershed Léon-Bleau
competition breaking

With init. 22.12% 15.22% 5.07%
Without init. 0.12% 0.12% 0.13%

Table 4.7: Mean Basin Shortfall with and without initialization.

Method Region-line Watershed Léon-Bleau
competition breaking

With init. 21.71% 24.46% 45.66%
Without init. 62.27% 62.27% 61.91%

topography, something logically much simpler and intrinsically present. The reader

can gather an idea about the subjective SQE criterion from Fig. 4.15, which has

been selected to offer a honest appreciation of the success and indeed the lack of in

the use of the various merging algorithms.

Thus the result of the exercise is the selection of the cumulative hierarchy method

for our segmentation application. The result of this segmentation will now be passed

on to the phase of the process that computes various characteristics that define the

various cellular classes from these connected components.

4.6 Conclusion

In this chapter we detailed the second and arguably the most arduous phase of

our work, i.e., segmentation of cellular images into imagettes containing individual

cells. The cells in our images are not easily discernible from the background because

of very similar grey levels, and are clustered together in cellular agglomerates. A

first contribution to this image segmentation problem was presented in Chapter 2

where we presented a method to binarise, i.e., segment into two classes, the pixels

from an image using an image transform and a classification-based thresholding

technique. In this chapter, we first treated the subject of image segmentation and

its application to cellular imaging, and then presented the watershed transform as

the method of choice in our application of image segmentation. We also outlined

a simple yet discriminatory method for assessing the quality of a segmentation in

Section 3.3 that would help us to present a comparative analysis of the various

methods implemented in later sections.

Our contributions to the state of the art in watershed segmentation are described
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.15: Merging and hierarchical algorithms’ visual comparison: a) original im-
age selection with detected centres superimposed, b) the corresponding binarisation, c)
the RLRAG used to give non-hierarchical methods a head start; and now the results of
the merging methods: d) Criteria-based merging on the RLRAG, e) Bleau and Léon’s
Significance-of-basins method, f) Our extension of the previous method i.e. Region-line
competition merging; and finally g) the result of the Waterfall algorithm under global stop-
ping criteria, and h) our cumulative hierarchy or multi-scale marking.
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in two separate places, i.e., Chapter 3 Section 3.5 and Section 4.3. However, the

reader will realize that the two form a holistic idea, the first principally being a

description of the best input data for the second.

Chapter 3 Sections 3.4 and 3.5 discusses the ingredients necessary for the imple-

mentation of the watershed transform to a particular segmentation problem. First

a minor simplification in the actual watershed algorithm is offered that consists of

adding for each grey value pixels one by one to the priority queue instead of all pixels

at that grey level at once, to eliminate the risk of mal-attribution of a pixel from one

basin to another. However, algorithms are not the focus of this thesis and therefore

apart from this simple modification we implement the Vincent and Soille algorithm

in its originality. The real focus of this part of the chapter was the implementation

of the watershed transform on various topographic reliefs obtained from the origi-

nal greyscale image. These reliefs not only define the input data to the watershed,

but veritable strategies for segmentation that quite often suffice for a correct and

acceptable segmentation result for many authors as we saw in the previous chapter

[71, 24, 20, 72, 219, 131, 183]. We prove that the use of a probabiltity function

that describes membership scores to classes cell and background for each pixel in

the image offers advantages over more traditional functions such as the gradient and

the distance transform in terms of a more accurate representation of object shapes,

a more well-defined separation between basin depths between the two classes, a de-

sirable property for any post-processing region-merging operation as well as for the

method we describe in 4.3 due to the fact that the deeper basins belonging to cells

persist longer in the described hierarchical traversal thereby reducing the chance of

a background basin becoming part of a cell.

The current chapter deals with our strategy of segmentation of cellular images,

the presentation of a novel method of information preservation within a hierarchi-

cal watershed framework, and a comparison with several classes of segmentation-

refining methods employing region merging. It is worthy of note that all five meth-

ods described in section 4.4 were implemented and the implementations are de-

scribed in detail wherever we differed from the original proposition, in particular

the watershed-breaking algorithm 4.4.3 and the basin-line-competition algorithm

4.4.1.B. An original RAG construction algorithm is also described in section 4.4.0.C,

which is computationally much less expensive than its alternatives in the literature.

Unlike region merging however, our method called cumulative hierarchy prevents

over-segmentation rather than being a post-segmentation operation. Our bottom-

up implementation proceeds thus: we modify the topographic image function at each

iteration through geodesic reconstruction by erosion by itself increased by a constant
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level h and this modified image function is segmented using a watershed transform.

This process allowed us the latitude of not defining strict watershed marker that

would not permit the possible of an eventual merging into centre-containing-basins

those basins that lie in the formers’ vicinity and potentially belong to cells. This,

coupled with the characteristic of the probability-based topographic function that

well-discriminates cell and background pixels, producing desired image regions cor-

responding to the extents of the marked-basins at each level of the hierarchy. At the

same time control, an accumulator image permits us to preserve the regions marked

at inferior levels of the hierarchy but are absorbed into the background as the hierar-

chy tends toward the global minimum of the image, hence the name of the method.

This method strictly solely uses mathematical morphology, and due to this quality,

integrates seamlessly and elegantly into a framework that uses only morphological

greyscale image reconstruction first by erosion and then by dilation and a watershed

transform between the two. The reason for the selection of this method, however,

is that it was able to translate this elegance of intuition into practical segmentation

quality. Cumulative hierarchy manifests a noticeable improvement in segmentation,

allowing a Correct Attribution (for definitions refer to Chapter 3 Section 3.3) of

about 70% while the three region-merging methods remain in the region of around

50%−60%. Incidently, even with global critera to stop it, the waterfall scores better

than the latter at around 62%. Thus cumulative hiearchy not only improves in the-

ory on classical waterfall while allowing the suppleness of not discounting shallow

but desireable basins, but also practically by correctly segmenting around 8% more

of the image in our rather less-than-ideal case. As detailed results in section 4.5

show, cumulative hiearchy is by a large margin superior in Basin Overflow as well,

while being inferior in its Basin Shortfall score, something due to the topographic

function which very differently measures grey levels on pixels strictly inside of cells

and those on the fringes and in the background. In the future, we would like to

improve on this criterion as well, by introducing a basin-size measure to the cur-

rently basin-depth mechanism of the hierarchy. We also hope to publish this method

internationally.

The work described in this chapter allows us to obtain as accurately as possible

the shape, size and grey level information of every cell detected in Chapter 2 in the

form of connected components. The shape and size information can now be used to

formulate shape features, and the grey level information texture features, for the

purpose of classifying the cells, which forms the subject of the work described in the

following chapter.
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5.1 Introduction

The knowledge of metastasic progress, i.e., the knowledge of how many cells are in

each phase of metastasis is the final objective of this work. Once we have arrived at

this stage in the process, we possess the information on the number of cells, their

coordinates on an image, and their connected component in the form of both the

bounding box that defines the imagette as well as the binary mask representing the

connected component coordinates. Fig. 5.1 shows an example of this information on

the subimage 0032.1 in continuity with the previous example. This example shows

well both the accuracy and the shortcomings in the segmentation algorithm. This

information will now be exploited to extract discriminatory knowledge about the

shape, size, grey level and texture of the cell represented by the imagette to arrive

at a decision for each cell whether it is a spread cell, a smooth round or transitory

cell, or a blebbing cell. Let us briefly introduce this classification process and its

application in our context.

Figure 5.1: Example of data issued from cell image segmentation.

Table 5.1: Percentage distribution of the 3 cell classes in our 14-image sample
dataset, labeled by an expert.

% Smooth Blebbing Spread Smooth Blebbing/ Smooth/
round round Spread +Blebbing (Smth+Bleb) (Smth+Bleb)

Mean count 59.00 143.71 326.00 202.71 - -
Mean % 11.67 30.38 57.95 42.05 73.39 26.61

Statistical classification is the problem of identifying the sub-population to which

new observations belong, on the basis of a training set of data containing observa-
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tions whose sub-population is known. Therefore these classifications will show a

variable behaviour which can be studied by statistics. Thus the requirement is that

new individual items are placed into groups based on quantitative information on

one or more measurements, traits or characteristics, etc. and based on the training

set in which previously decided groupings are already established. The problem here

may be contrasted with that for cluster analysis, where the problem is to analyze a

single data-set and decide how and whether the observations in the data-set can be

divided into groups. In certain terminology, particularly that of machine learning,

the classification problem is known as supervised learning, while clustering is known

as unsupervised learning. A learning classifier is able to learn based on a sample.

The data-set used for training consists of information x and y for each data-point,

where x denotes what is generally a vector of observed characteristics for the data-

item and y denotes a group-label. The label y can take only a finite number of

values.

The classification problem can be stated as follows: given training data

{(x1, y1), . . . , (xn, yn)} produce a rule (or “classifier”) h, such that h(x) can be eval-

uated for any possible value of x (not just those included in the training data) and

such that the group attributed to any new observation, specifically ŷ = h(x), is

as close as possible to the true group label y. For the training data-set, the true

labels yi are known but will not necessarily match their in-sample approximations

ŷi = h(xi). For new observations, the true labels yj are unknown, but it is a prime

target for the classification procedure that the approximation ŷj = h(xj) ≈ yj as

well as possible, where the quality of this approximation needs to be judged on

the basis of the statistical or probabilistic properties of the overall population from

which future observations will be drawn. Given a classification rule, a classification

test is the result of applying the rule to a finite sample of the initial data set.

Microscopy is a consequential application for pattern recognition that presents

many diverse problems and image modalities [26, 168, 196]. When pattern recog-

nition has been used, the tendency is to tailor the image descriptors as well as the

classification algorithm to a specific type of imaging problem. Many methods for

analyzing images have been proposed during the last few years. Beil et al. [10]

proposed a dual approach to structural texture analysis for microscopic cell images,

in which textures are composed of primitives and can be described by arrangement

of regions and lines. Thiran and Macq [204] presented an automatic recognition

method based on shape and size analysis for the observed cells in cancerous tissues

and provided an evaluation method for scoring the images to be classified. A Biopsy

Analysis Support System (BASS) was introduced by Schnorrenberg et al. [176] to
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detect the nuclei of breast cancer based on staining intensity and the number of

stained nuclei. Esgiar et al. [56] developed an algorithm to identify cancerous colon

mucosa using six texture features. Yi et al. [231] developed a computer assisted

differential diagnosis system based on syntactic structure analysis, which utilized

k-nearest-neighbor (KNN) algorithm with parameters selected from the Voronoi

Diagram (V D) and the Minimum Spanning Tree (MST ).

The classification of segmented cells is understood to be the assignment of one

of the following labels to it: spread (S), smooth round (T ), or blebbing (B).

This process can be viewed as an information refinement procedure: we begin with

the cut-out imagette of the cell - the information, i.e. pixel values, is copious but

not directly relevant, so we transform the imagette into a set of measures that

describe the cell and compress the information of all cells into a table, but since

these measures are not all equally important for decision making, we select the most

discriminatory ones, and finally the classifier reduces the information for each such

measure, called a feature vector, into a decision label.

To summarize, the decision process consists of:

1. Feature extraction:

calculation of the set of measures that describe a cell.

2. Feature or variable selection:

selection of the most discriminatory features.

3. Classification:

learning and predicting a decision label for the cell.

The rest of the chapter follows this three-step chain of action. A few comments

are appropriate at this point, and we treat them in some detail in the following

discussion.

We will present our classification results on the 14-image dataset. Cells have

already been labeled by experts for this dataset, and therefore we have adopted a

supervised approach to classification - we will learn the best configuration of the

selected variables for each of the three labels, and predict the label for any new data

presented.

In lieu of variable selection, we initially tried dimensionality reduction through

PCA [95]. One purpose for Principal Component Analysis is to transform the fea-

tures to orthogonality. Another is to try to find the linear combinations of features

which have the maximum variation. Figure 5.2 produces a bi-plot of the variables
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Figure 5.2: Second principal component versus first principal component for all cell
examples.
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and of the observations in a factorial plan. The variable scores in the PCA can

be drawn as bi-plot arrows that point in the direction of increasing values for that

variable. Although PCA failed to achieve the best combination of variables for

classification, and hence the results are not cited, the plot reveals a wealth of in-

formation, which ultimately set us on our classification strategy: we observe one

large cluster of variables ci in the bottom-right quadrant, and a smaller one in the

top-right quadrant, and a number of other variables scattered in different and indeed

opposing directions. This means that a number of features all group to define one

class, labeled 1, pertaining to spread cells. Since most cells labeled 1 are on the

right and most labeled 2 on the left, the deduction is obvious: it is easier to classify

cells into the classes spread and round, and a subset of the features, i.e. the large

clusters on the left, is clearly more favorable to distinguish them. Looking closely

at those features we found most features describing cell morphology/shape grouped

within it. Therefore the classification strategy is the following:

Figure 5.3: Flow diagram representing data movement along the hierarchical classifica-
tion strategy.
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5.2 Definition of cellular characteristics

1. Separate all round cells and spread cells using features pertaining to cell mor-

phology.

2. Within the classification space of round cells, separate smooth round cells

from blebbing round cells using features pertaining to the texture within the

imagette.

We understand that the most discriminatory combination of all kinds of cellular

features, morphological or textural, can be arrived at through meticulous analysis,

but for the purpose of these experiments, this morphology versus texture division

appeared to be a logical choice. Hence once the selected feature vectors are retained,

we divide them into morphology and texture sets and follow the classification strat-

egy outlined in Fig. 5.3, i.e. first spread cells and round cells, and then within the

round cells, smooth and blebbing cells.

5.2 Definition of cellular characteristics

Although the image plane is the carrier of various patterns, pixels themselves are not

normally used directly as inputs to machine learning algorithms. Instead, image con-

tent is derived through computation of numerical values that represent quantitative

measures of various pixel patterns [76] [87]. These numerical features of the image

are based on different algorithms that extract a wide variety of patterns present in

the image, such as edges, color [205], textures [61], shapes [143], histograms [165]

etc.

In order to distinguish between simple round, blebbing and spread metastasic

cells, we need to extract distinguishing features of each from the image and com-

pute new variables that concentrate information to separate classes. Such feature set

has to consist of features leading to large between-class distance and small within-

class variance in the feature vector space, i.e. the set of features should discriminate

between different classes as well as possible. An additional requirement is robust-

ness, so that the results can be reproduced for new independently collected material.

Raw images cannot be used directly as features due to high variations in morphology

which are coupled with arbitrary rotations and scales and because the raw images

contain large amount of data, but relatively little information. This is the aim of

feature extraction to transform the input data into a reduced set of features that ex-

tract the relevant information from the input data. Rodenacker and Bengtsson [171]

have surveyed a large collection of content descriptors for the analysis of grayscale

microscopy images. They differentiated feature types into four major categories:
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intensity, size and shape, texture, and structure. Following the concept introduced

in [171], the feature extraction process can be expressed in terms of the definition

of the zone of measurement, i.e. the imagette, and a non-scalar set of measurements

on the latter, i.e. the feature vector. This is the process generally followed in this

work.

The selection of the features for classification was based on the visual differences

between the classes of cells as are commonly used by technicians for manual micro-

scopic diagnosis, and the feature selection used by other cytological studies. The

chosen features can be grouped into two categories: morphological features, and

texture features including those pertaining to grey level.

Morphological features express the overall size and shape of the cell without tak-

ing the grey levels represented inside of the cell into account. In other words, these

features are computed only from the binary region representing the cell which was

obtained by the preceding segmentation process and the actual gray level image is

not needed. Since absolute measurements, such as orientation, absolute coordinates,

and absolute dimension are inutile for the application, we have to choose features

which are invariant under translation, changes in scale, and rotation.

Grey level features are based only on the absolute value of the intensity mea-

surements in the image. In grey level based measurements, the spatial positions of

the pixels are not taken into account, only the information retained in an histogram

of the image.

5.2.1 Morphology features

Although all these features are closely related to the size of the object relative to

the estimated cell radius, they all describe different aspects of the shape.

5.2.1.A Connected component region and contour properties

We also used a set of common region (segmented CC) properties to describe the

morphology and texture characteristics of the cells. For general texture description,

the maximum, minimum mean value, and standard deviation of the intensity in the

segmented cell area were used. Moreover, we used some elementary morphological

descriptions, such as the lengths of the longest axis L and the shortest axis l, the

ratio L/l (Fig. 5.4 a), the area s of the cell, the perimeter p of the cell, and the

compactness of the cell, which is calculated as compactness = p2/(4p × s) (Fig.

5.4 b). If the perimeter of the minimum convex shape is pc, then the roughness is
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roughness = p/pc. In all, we extracted 7 general intensity and shape features for

each segmented cell region: length of long axis, length of short axis, long axis / short

axis, area, perimeter, compactness, and perimeter of convex hull of the cell.

(a) (b) (c) (d) (e)

Figure 5.4: Illustration of some morphological descriptors: a) major and minor axes,
b) compactness, c) Centroid and centre-of-gravity disparity, d) convexity, and e) ratio
cell-to-inscribed-ellipse (round cell w.r.t circle shown).

(a)

(b) (c)

Figure 5.5: The computation of the shape descriptor using ratio length and ratio area: a)
cellular region, central axis, and fan bin, b) the 36-dimensional ratio length feature, c)the
18-dimensional ratio area feature.

Contour irregularity:

The depressions and protrusions on the cell wall potentially define the degree of bleb-

bing on a cell. Hence we study the countour, i.e., the edge of the region representing

the cell, in a greater detail. The contour can be represented by a sequence of sam-

pling boundary points {p0p1p2...pj−w...pj...pn−1} with pt = pt+n for t = ... − 101....
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The curvature at a boundary point pj = (xjyj) can be approximated by the differ-

entiation of two successive tangent values in window w [98]:

dj = tan−1 yj − yj−w
xj − xj−w

− tan−1 yj−1 − yj−1−w

xj−1 − xj−1−w

Since the morphology of a cell could be quite convoluted and fine in its detail,

we chose n = cell circumference. Then we define contour irregularity as

contour-irreg = Σn−1
j=0 |dj − dj−1| (5.1)

Centroid and region centre-of-gravity distance:

We know the position of the centroid of the region matter and it is easy to calculate

the position of the center of the imagette. We can therefore calculate the distance

between the center of the sticker and the centroid. This feature is shown in Fig. 5.4

c.

cent-cog-dist =
√

(xG − xd)2 + (yG − yd)2 (5.2)

For a perfect round, the two points obviously overlap and the distance is zero.

Region convexity:

In a convex figure, when connecting two points of the contour, the connecting line

segment does not exit the figure. The round, for example, is a convex figure. It would

be far too long to consider all pairs of contour points. We therefore choose a random

point on the contour and see what happens when the links to all other points of

contour. For each line segment, we look at the proportion that goes “outside” of the

binary mask of the connected component. While averaging all the results obtained,

we have a score related to the convexity. For a convex connected component or CC,

this score will be zero. Refer to Fig. 5.4 d. for an illustration.

conv = mean(
number of non-CC pixels

chord length
) (5.3)

Region within inscribed ellipse:

The correlation with an ellipse inscribed within the imagette provides a coarse clue

of the morphology of the CC contained in it. The less crooked the cell and the fuller

it is, the closer this feature will it be to 1. The ratio of number of cell pixels in the

ellipse are therefore counted, as shown in Fig. 5.4 e.

Phenotype shape binning descriptor:

Ideally, if we precisely define the boundary of each cell, the 3 different phenotypes
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of metastasic cells have more obvious differences in morphology rather than texture.

Because the shape information provided in the region property features is inexact,

we developed 2 additional kinds of morphological descriptors as our problem-specific

features. One feature is based on the ratio length of the central axis projection, and

the other feature is the area distribution over each equal sector.

Inside the CC the value of f(x, y) equals 1 when the pixel (x, y) is located in the

cell area, otherwise it is 0. The centroid of the cellular area (mx,my) is obtained.

Centered at the centroid, we get a series of the central axis as the line Lα, shown

in Fig. 5.5. The central projection along Lα denotes the length of the axis. The

equation of Lα is based on the angle a of the axis and the centroid coordinate

(mx,my). The ratio length of the central projection is defined as the length of Lα

divided by the perimeter of the cellular contour.

rLα =
1

p

∫

f(x, y), (5.4)

where p is the same with the perimeter calculated in region property. For each

different angle a, the ratio length for the central axis is calculated. The angles

are evenly sampled with 36 different values to derive a 36-dimensional ratio length

feature that represents the shape of the cellular boundary.

The second morphological descriptor is based on the distribution of sector areas.

As shown in Fig. 5.5, a sweeping “fan” bin Sβ centered at the centroid is denoted.

The ratio area is defined as the area of the bin to the area of the entire cellular

region.

rSβ =

∫ ∫

f(x, y)(x,y)∈Sβ
∫ ∫

f(x, y)
(5.5)

The entire cellular region is angle-evenly partitioned into 18 sectors. Hence, the

ratio area feature is constructed by the ratios of each sector. Figure 5.5 b,c gives the

computed shape features represented by the histograms, where the x-axis denotes

the index of the sector and the value of the y-axis represents the percentage of area

of the cell region or the length of the cell boundary falling into this sector. These

2 morphological descriptors are scale and translation invariant but rotation variant.

To achieve rotation independence, the calculated ratio length and ratio area are

sorted by value.
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5.2.1.B Zernike moments

Zernike moments are part of the geometrical moment’s general theory. They were

introduced initially by F. Zernike. Zernike moments are built on a set of orthogonal

polynomials which allow construction of orthogonal base given by Eq. 5.6.

Vn,m(x, y) = Vn,m(ρ, θ) = Rn,m(ρ). exp(j.m.θ) (5.6)

where

Rn,m(ρ) = Σnk=|m|
(−1)(n−k)/2.(n+ k)!
(n−k)

2
!. (k+m)

2
!. (k−m)

2
!

(5.7)

ρ =
√

x2 + y2, θ = argtan(
y

x
) (5.8)

with n ≥ 0, m 6= 0, m < n, n−m < n n− k even.

Rn,m(ρ) are the orthogonal radial polynomials, n is the order of the moment and

m the repetition factor (the smoothness of the required details) at this order. ρ and θ

are respectively the radius and the angle of the function’s point under consideration.

Simply speaking, the Zernike moments features of an image are calculated based

on the particular weighted averages of the intensity values. They are generated

with the basis functions of Zernike polynomials. As classical image features, Zernike

moments have wide applications. Here, we give a brief description for calculating

Zernike moments features for each cell.

1. Calculate the center of mass for each cell polygon image and redefine the cell

pixels based on this center.

2. Compute the radius for each cell, and define the average of the radii as R.

3. Map the pixel (x, y) of the cell image to a unit circle and obtain the projected

pixel as (x′, y′).

Because the Zernike moments polynomials are defined over a circle of radius

1, only the pixels (x′, y′) within the unit circle will be used to calculate Zernike

moments. Finally, 49 Zernike moments features are computed.
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5.2.2 Texture Features

Textural features aim to quantify the overall local density variability inside the object

of interest. Textural features are more complex, more difficult to define in a unique,

robust and reproducible way, and they are more difficult to understand intuitively.

Moreover, it is often difficult to visualize textural features and relate specific feature

values to appearance of cells. The difficulty to relate the textural features to visually

perceived changes in object structure and appearance is the large disadvantage of

these features, especially of the co-occurrence and run-length types. However, these

features also proved to be one of the most useful ones in many cytological studies

[171].

5.2.2.A First order statistics

These are very basic representations of the texture of a connected component, but as

we have seen in Chapter 4, are still used as means for measuring textural homogene-

ity of an image region, in that case for a merging decision. What we use here are the

intensity or grey level values, their mean over the connected component, their min-

imum and maximum over the connected component, and their standard-deviation

over the connected component. In addition, we believe that the hierarchy level at

which a cell region disappeared from the watershed hierarchy during the cumulative

hierarchy algorithm is an indication of how textured the cell was, since more texture

meant higher partial-membership assignment values and a slower fusion and later

extinction of the region by swamping, and have included this level as an elementary

texture measure.

5.2.2.B Co-occurrence Matrix Features

Co-occurrence matrix is a spatial-dependent matrix representation of the image

which estimates the probability that a pixel I(k, l) has intensity i and a pixel I(m,n)

has intensity j [28]. Supposing the probability depends only on a certain spatial

relation r between a pixel with intensity i and a pixel with intensity j, then the

information about the relation r is recorded in the co-occurrence matrix Cr with

dimensions corresponding to the number of intensity levels in the image. The spatial

relation r can be represented by displacement vector D which is often expressed as

distance d and angle θ . Let LX = {1, 2, ..., NX} denote the horizontal spatial domain

of the analyzed image with resolution NX ×NX , and let LX = {1, 2, ..., NX} denote

the vertical spatial domain and G = {1, 2, ..., NG} be the set of NG quantized grey

levels. The input image I is represented as I : LY × LX . Then the co-occurrence
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matrix C of dimensions NG ×NG for displacement vector D = [d1, d2] is defined as

originally proposed in [82].

C(i, j,D) = freq{((k, l), (m,n)) ∈ (LY × LX)× (LY × LX)

|k −m = d1, l − n = d2I(k, l) = i, I(m,n) = j} (5.9)

where freq denotes the number of elements in the set.

The co-occurrence matrix can be seen as an accumulator matrix to which 1 is

added at C(i, j) if a co-occurrence specified by intensities i and j and the spatial

relation given by D is found. The co-occurrence matrix defined by 5.9 is not sym-

metrical. The symmetrical co-occurrence matrix can be obtained by using absolute

values in the distance conditions: |k −m| = d1 and |l − n| = d2. Then the ordering

of values in the pixel pairs is not considered and C(i, j,D) = C(j, i,D).

Since the texture in cells is directionally homogeneous, we can calculate the co-

occurrence matrix using only one displacement vector. However, in order to reduce

any irrelevant directional dependencies, we also apply the displacement vector with

a rotation of 90◦ and accumulate the results to the co-occurrence matrix. The

following displacement vectors are used: D = [0, d] which corresponds to angle

θ = 90◦ and D = [d, 0] which corresponds to angle θ = 90◦.

The parameters controlling the extraction of the co-occurrence matrix are, in

addition to the displacement vector D, also the number of quantized gray levels

NG, which determines the size of the co-occurrence matrix, and the normalization

method, which determines how the gray-scale values are scaled to the gray levels.

The number of gray levels can, theoretically, be any number. However, for large

numbers of levels, the co-occurrence matrix may become sparse with limited gen-

eralization properties. The normalization method may be, for example, histogram

equalization or linear spread.

The co-occurrence matrix features can be calculated for any of the previously

described transformed images as well as for the original extinction image. In our

case, co-occurrence matrix is generated from the segmented imagette. The 13-feature

set originally proposed in [82] is derived from the co-occurrence matrix and is used

as below.

We evaluate the co-occurrence matrix features for lengths of the displacement

vector d = 1, and a number of gray levels NG = 256. The co-occurrence matrix

is calculated in the four adjacent pixels i.e. with θ = 0◦, 90◦, 135◦, 180◦ and the

result averaged. The extracted co-occurrence features were as follows: angular sec-

ond moment, contrast, correlation, sum of squares, inverse difference moment, sum
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average, sum variance, sum entropy, entropy, difference variance, difference entropy,

information measures of correlation, and maximal correlation coefficient.

5.2.2.C Gabor Features

In the spatial domain, a 2D Gabor filter is a Gaussian kernel function modulated

by a sinusoidal plane wave. The Gabor filters are self-similar: all filters can be

generated from one mother wavelet by dilation and rotation.

The Gabor wavelet features were developed by Manjunath and Ma [132] and are

formed by a set of multiscale and multiorientation coefficients to describe texture

variations in an image. The Gabor wavelet features have been used as the texture

signature for numerous image analysis applications, such as image retrieval, segmen-

tation, and recognition [27, 43]. Gabor filters are directly related to Gabor wavelets,

since they can be designed for a number of dilations and rotations. However, in gen-

eral, expansion is not applied for Gabor wavelets, since this requires computation

of bi-orthogonal wavelets, which may be very time-consuming. Therefore, usually,

a filter bank consisting of Gabor filters with various scales and rotations is created.

The filters are convolved with the signal, resulting in a so-called Gabor space. This

process is closely related to processes in the primary visual cortex [42]. As defined by

Daugman, the 2-dimensional complex-value Gabor function is a plane waverestricted

by a Gaussian envelope. After conducting the Gabor wavelet transformation on the

cell image, the real and imaginary parts of the transformation coefficients CR, CI

can be obtained. The magnitude of the transformed coefficients C =
√

C2
R + C2

I is

used as the Gabor vector.

The discrete wavelet transformation (DWT ) has been adopted to investigate

image characteristics in both scale and frequency domains. In our work, we ap-

plied an important wavelets technique, the Gabor wavelet to extract phenotype

texture. Because the transformed coefficients are computed based on pixels, this

procedure derives the magnitudes for each pixel in the image. In the texture feature

extraction method [132], the statistics, such as mean µ and standard deviation σ of

these magnitudes on the entire image, are calculated as the feature representation.

Through changing the scales and orientations, a set of feature representations can

be calculated, which provide rich texture signatures in the frequency domain. In

our experiments, 4 scales and 6 orientations are used to compute a 70-dimensional

feature (µ0,0, σ0,0, µ0,1, ...µ4,6, σ4,6) for each segmented cell.
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5.2.3 What does the data look like?

The cell features can be categorized into 2 categories: morphological features and

textural features. These are produced by the aforementioned processes i.e. intensity

measurements, discrete texture (Haralick) calculations, Gabor and Zernike charac-

teristics. Recapitulating very briefly, morphological features estimate the size, shape,

and boundary variations of the nuclear object of an image using measurements such

as area, x−centroid, y−centroid, mean radius, max radius, var radius, sphericity,

eccentricity, inertia shape, compactness and boundary variation. Photometric fea-

tures give estimations of absolute intensity. The discrete texture features are based

on segmentation of the object into regions. Gabor-based features are obtained by

applying a set of Gabor filters with 6 equidistant orientations and 4 resolutions,

resulting in 70 means and standard deviations filtered images. Zernike moments

have proved to be superior in terms of their feature representation capability and

low noise sensitivity; Zernike features describe shape in terms global estimation of

differences of phase and amplitude. The list of features is given in Table 5.2.

Figure 5.6: Histograms of the first few features for the complete set of examples.
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Figure 5.6 gives the histogram of the values for some characteristics, both mor-

phological and textural. Their distributions do not reveals a universal structure in

the data. For example, the first feature or characteristic c1 is Gaussian, c3 is bi-

modal, the last few distributions are very narrowly-clumped and so forth. However,

a natural division of the distribution into two or indeed three distinct classes for

the same data examples is not present, and shows that the need of classification is

warranted.

Feature Type Features’
list

Brief description

Morphology: region
simple

c6 · · · c13 estimate size, shape, and boundary
variations of the nuclear object of an
image

Morphology: region
and contour

c14 · · · c17 centre centroid diff., chord-convexity,
inscribed ellipse correlation, contour ir-
regularity

Morphology: Zernike c87 · · · c133 Zernike coefficients
Morphology: “Pheno-
type binning”

c18 · · · c72 spatial histogramming

Texture: 1st order c1 · · · c5 segmentation region extinction level,
and mean, min, max and standard de-
viation of grey level

Texture: co-
occurrence

c73 · · · c86 Haralick’s measures: entropy, energy,
contrast, correlation, homogeneity · · ·

Texture: Gabor c134 · · · c202 mean and standard derivation for each
Gabor-transform image

Table 5.2: Cell parameters as extracted variables.

5.3 Feature Selection

The features described above might contain redundancies. Some of them might

also be non-discriminative (i.e., not able to contribute to the classification task).

Feature reduction has shown to increase classification accuracy as well as speed up

a classifier [90], [26].

In machine learning literature, feature selection methods are traditionally divided

into filter methods (or simply “filters”), which perform feature selection independent

of any particular inducer, and wrapper methods (or “wrappers”), which try to opti-

mize the feature set for a given classifier (refer to Guyon [78] for a detailed review).

More recently a third category, the embedded feature selection methods, has been

added to this system. This chapter is organized according to this system.
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The selection of variables by filters is based on a metric calculated directly on

the data. This method does not take into account the performance of the classifier

in the selection of variables, unlike the other two approaches developed in the fu-

ture. Metrics are usually based on the notions of dependence (linear correlation),

distance (Mahalanobis distances, etc.). Or information (entropy) or on statistical

tests and allow for an order of relevance of the variables. Guyon and Wlodzislaw

[53] [22] address comprehensively the various metrics recognized and widely used in

the selection of variables and their advantages.

A key problem is to discover the most relevant variables, or features, among

the tens of thousands of parallel measurements in a particular experiment. This is

referred to as feature selection. For feature selection to be principled, one needs to

decide exactly what it means for a feature to be “relevant”. This thesis considers

relevance from a statistical viewpoint, as a measure of statistical dependence on

a given target variable. The predictive features are those that allow an accurate

predictive model. The most predictive features may not always be the most relevant

ones from a biological perspective, since the predictive power of a given feature may

depend on measurement noise rather than biological properties.

We had several questions concerning feature selection which we could not resolve

within available literature. The most important were the following:

• What does “relevance” mean? When is a feature relevant to a given target

variable? Are there perhaps several perspectives on relevance, and do we need

to choose a particular perspective in a subjective fashion?

• What is the relation between a good predictive model and the features relevant

to that model?

• What types of feature selection methods are feasible given the limited sample

sizes we have access to?

5.3.1 Statistical data models

In a statistical data model, we think about experimental systems as statistical dis-

tributions. The model is “statistical” in that, when experiments are repeated, there

is some random variation in the measurements which we cannot explain by the ex-

perimental design. We might be able to control some of the “nuisance” variables

by experimental design but this is not always possible. Moreover, many factors

that influence the cell migration are probably unknown to us since our knowledge

of biology is incomplete, and these are of course impossible to control. Also, the
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measurements themselves may be more or less corrupted with noise from various

physical or chemical factors. Therefore, one will inevitably observe variation that

cannot be explained. In a statistical perspective, we often speak about any varia-

tion that cannot be explained by the chosen model as noise. However, it should be

understood that this does not imply that the variation is truly random. Much of

the variation one observes between individuals in biology is probably deterministic,

and could in principle be explained if our knowledge of biology was more complete.

In order to choose a subset of features from the morphology and texture feature

sets, Stepwise Discriminant Analysis (SDA) [101] was used.

The goal of stepwise discriminant analysis is to sequentially identify those vari-

ables (features) that maximize a criterion which describes their ability to separate

classes from one another while at the same time keeping the individual classes as

tightly clustered as possible. The criterion used is Wilks’ Λ which is defined as

Λ =
det(W (c))

det(T (c))
, (5.10)

where c = (c1, c2, . . . , cp)
T is a vector of the features that are currently included in

the system,

W (i, j) =
Q
∑

q=1

nq
∑

t=1

(ciqt − c̄iq)(cjqt − c̄jq), (5.11)

is the matrix of within-groups sums of squares and cross products for the features

under consideration, and

T (i, j) =
Q
∑

q=1

nq
∑

t=1

(ciqt − c̄i)(cjqt − c̄j). (5.12)

is the matrix of total sums of squares and cross products. Q is the number of classes,

nq is the number of samples in class q, xiqt is the value of feature i for sample t of

class q, c̄iq is the mean of feature i over class q, and c̄i is the mean of feature i over

all classes.

Low values of Λ indicate features that better discriminate the classes. To accommo-

date the stepwise nature of the process, the partial Λ statistic is used. This statistic

describes the increase in the discrimination ability of a system after adding a new

feature, cp+1

Λ(cp+1 · x) =
Λ([c, cp+1])

Λ(x)
. (5.13)

To facilitate the ability to decide whether adding a new feature to the system will

increase discrimination significantly, Wilks’ partial-Λ is converted to an F -statistic
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for which it is possible to assign a level of statistical significance: what is the prob-

ability, given the null hypothesis that there is no separation between groups, that

one would obtain a value larger than

F =

(

n− q − p
q − 1

)

1− Λ(cp+1 · c)
Λ(cp+1 · x)

(5.14)

where n is the number of data samples in all classes, p is the number of features

currently in the analysis, and Q is the number of classes. Large values of F indicate

better discrimination for a particular feature. This version of the F -statistic is used

to decide whether feature xp+1 should be entered into the system.

The process of stepwise discriminant analysis can be referred to in algorithmic details

in [93].

(a) (b)

Figure 5.7: The within-class difference Λ is minimized as variables are eliminated, for
morphology and texture features respectively.

Feature type Features index in respective table
Morphology c70, c1, c5, c42, c103, c8, c67, c11, c36, c46,

c102, c91, c9, c78, c79, c112, c97, c6, c4, c12,
c62, c23, c14, c2, c55, c66, c48, c82, c85, c105,
c94, c92, c71, c109, c29, c104, c93, c107, c10,
c106, c95

Texture c93, c10, c76, c102, c72, c3, c44, c6, c8, c128,
c121, c133, c98, c87, c56, c91, c39, c97, c132, c69,
c136, c101, c62, c127, c90, c79, c109, c12, c68, c49,
c48, c130, c105, c96, c131, c115, c111, c117, c116,
c118, c99, c35, c11, c24, c30, c124, c122

Table 5.3: List of selected features.

Table 5.3 lists the variables selected for morphology and texture features. Note

that the new subscripts represent the indices in either dataset. Fig 5.7 details
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the SDA variable selection process. The feature with the lowest F -statistic value

that also corresponds to a significance level (p) greater than an assigned threshold

(p = 0.10 i.e. a 90% confidence level) is removed from the list of features. That

is, the most informative variable is eliminated. The W and T matrices are re-

calculated. The degree-of-freedon Df of the model therefore decreases at every step.

The two rightmost columns describe the decreasing information in the statistical

model through Wilk’s Λ. At the end, 42 variables out of 114 are selected from

among morphology variables, and 47 variables out of 89 are selected from among

texture ones.

The fewer and more discriminatory features are now extracted from the initial

morphology and texture feature tables into similar tables containing only the selected

features. At this point we re-express ci as ci−mean(c)
std-dev(c)

. We want to do this because

1. Numerical stability is enhanced when all variables are on a similar scale.

2. variables of similar magnitude are easier to compare. For instance ci = 5, 78

is easier to parse for a classifier than ci = 0, 000000578

3. A change of units might aid interpretability.

One rather thorough approach to scaling is to convert all the variables to stan-

dard units (mean 0 and variance 1). This is called centering and reduction of the

data. Once centeres and reduced, the selected variables are passed onto the classi-

fication step.

5.4 Classifying the selected features

Classification is the problem of the prediction of a categorical response Y given a

feature vector X. Let (X, Y ) denote the pair of a feature X and class Y for a unit

drawn at random from the population. In the framework of a statistical model, the

class prior for a class r is denoted as πr = P (Y = r), and the conditional density of

feature x given Y = r is denoted as P (X = x|r) or simply p(x|r). Given a probability

space and two events r and x, the conditional probability of r given x is denoted as

p(r|x). The posterior probability of an event is the conditional probability given the

observation. The posterior probability of class r given the realization of the random

variable X = x is given by Bayes formula:

p(x|r) = P (Y = r|X = x) =
πrp(x|r)

∑R
k=1 πkp(x|k)

. (5.15)
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If we consider a classifier to be optimal if it minimizes the classification error, then

the problem of allocation of future cases is optimized using Bayes rule.

Here, the true state is r = 1, . . . , R and we can choose any of those classes (k =

1, . . . , R). The optimal rule is to simply choose the class with the highest posterior

probability. Much work has been done in the approximation of the conditional dis-

tribution p(r|x).

It is generally the case that the probability density p(x) = f(x|Y = r) is not

known. Many classification methods have been developed using both heuristic

approaches and based on formal statistical models, including tree-based methods

(CART, random forests), Neural Nets, Support Vector Machines, Kernel and Near-

est Neighbor methods. Methods based on formal statistical models or which are at

least statistically motivated include Linear Discriminant Analysis (LDA), Quadratic

Discriminant Analysis (QDA), Logistic regression, Estimated Bayes methods, and

Naive Bayes. It is important to note that some problems are better suited for dif-

ferent classification methods. The lack of a dominating method for every problem

requires us to be able to employ all the tools at our disposal when approaching a

classification problem to determine which one works best for our problem of interest.

The process of selecting the best classifier may suffer from the problem of selecting

one that is over-trained, working great on the data set that it was trained on, but

poorly on an independent data set. A popular solution is to use cross validation in

order to get unbiased estimates of the classifier’s performance. Hastie et al. sug-

gested that if there is enough data, divide the data into three data sets: a training,

validation, and test set [85], sampling in the proportions of 40%, 30%, and 30% in

order to make the training, validation and test sets, respectively. The training set is

used to estimate the parameters of a classifier. The validation set is used to get es-

timates of our trained classifier’s performance, using the parameters estimated from

the training set. The test set is reserved for the very end when we have chosen the

best classifier (choosing one based on the estimated performances on the validation

set) and want to get a final unbiased estimate of its performance on an independent

set. We expect that the performance on the test set will deteriorate.

If we were to look at 10 classifiers that had the exact same theoretical performance,

one will come out as best in the validation set out of all of them by chance, which of

course will be an overestimate of its true performance. Then, when applied to the

test set, its estimated performance would regress to the mean.

Many classification methods exist and have varying degrees of success. While

some of them generally behave with better accuracy, none is best in every situation.
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It is wise to try a number of classification procedures for a given problem in order

to see which provides the best results for the problem at hand. We now present

an overview of some of the procedures that we use on our data. It is by no means

exhaustive nor all-inclusive. The methods were implemented in the R statistical

package [198].

We start with data that are classified into several groups, and want a rule that

will allow us to predict the group to which a new data value will belong. In the

language of Ripley [170], our interest is in supervised classification.

5.4.1 Discriminant Analysis classification

Discriminant analysis is a method used in statistics, pattern recognition and machine

learning to find a linear combination of features which characterize or separate two

or more classes of objects or events. The resulting combination may be used as

a linear classifier for partitioning the data, or, more commonly, for dimensionality

reduction before later classification. In case the variables are linearly separable, the

method is known as Linear Discriminant Analysis or LDA [62].

LDA is closely related to ANOV A (analysis of variance) and regression analy-

sis, which also attempt to express one dependent variable as a linear combination

of other features or measurements [62, 137]. In the other two methods however,

the dependent variable is a numerical quantity, while for LDA it is a categorical

variable (i.e. the class label). Logistic regression and probit regression are more

similar to LDA, as they also explain a categorical variable. These other methods

are preferable in applications where it is not reasonable to assume that the indepen-

dent variables are normally distributed, which is a fundamental assumption of the

LDA method. LDA works when the measurements made on independent variables

for each observation are continuous quantities. When dealing with categorical inde-

pendent variables, the equivalent technique is discriminant correspondence analysis.

For two classes in the data, consider a set of features or variables ~x for each

sample of an object with known class y. This set of samples is called the training

set. The classification problem is then to find a good predictor for the class y of any

sample of the same distribution (not necessarily from the training set) given only an

observation ~x. LDA approaches the problem by assuming that the conditional prob-

ability density functions p(~x|y = 0) and p(~x|y = 1) are both normally distributed

with mean and covariance parameters (~µ0,Σy=0) and (~µ1,Σy=1), respectively. Under

this assumption, the Bayes optimal solution is to predict points as being from the
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second class if the ratio of the log-likelihoods is below some threshold T, so that;

(~x− ~µ0)
TΣ−1
y=0(~x− ~µ0) + ln|Σy=0| − (~x− ~µ1)

TΣ−1
y=1(~x− ~µ1) − ln|Σy=1| < T

Without any further assumptions, the resulting classifier is referred to as QDA

(quadratic discriminant analysis). LDA also makes the simplifying homoscedastic

assumption (i.e. that the class covariances are identical, so Σy=0 = Σy=1 = Σ)

and that the covariances have full rank. In this case, several terms cancel and the

above decision criterion becomes a threshold on the dot product ~w · ~x < c for some

threshold constant c, where ~w = Σ−1(~µ1 − ~µ0)

This means that the criterion of an input ~x being in a class y is purely a function

of this linear combination of the known observations.

It is often useful to see this conclusion in geometrical terms: the criterion of an

input ~x being in a class y is purely a function of projection of multidimensional-

space point ~x onto direction ~w . In other words, the observation belongs to y if

corresponding ~x is located on a certain side of a hyperplane perpendicular to ~w .

The location of the plane is defined by the threshold c.

As described earlier We use all classification algorithms in this description in

two passes. First, feature vectors representing cells are classified using morpholog-

ical features. This helps us to decide between spread cells and all round cells. In

the future the same examples will be classified using texture variables, in order to

distinguish between smooth round and blebbing round cells, hoping that the little

more textural coarseness is sufficient to make the latter class stand out. The labels

given by the expert (Table 5.1) are read as the prior probabilities.

Confusion matrices of the attribution of class labels byQDA and LDA are shown

in Tables. 5.4 and 5.5 for morphology variables, and in Tables 5.6 and 5.7 for texture

variables. As the reader can infer, despite the use of variable selection, the classes

are still overlapping and confused. The amount of overlap can be seen in Figures

5.8 and 5.9. It is evident that morphological features, even though overlapping,

are separable both linearly and quadratically, while texture parameters produce two

clusters that are very intermixed. We hope to improve cluster compactness by the

methods in the following section.

QDA and LDA appear to be complementary in their classification of spread and

round cells using only morphology features. The first correctly classifies around 65%

spread cells and around an equal percentage of round cells incorrectly, while LDA

too follows a roughly 60%-to-40% classification ratio but in the other direction i.e.

it fares slightly better for the class of round cells. Fig. 5.8 illustrates the issue that

the two clusters are intermingled in such a way that one is almost inside the other.
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Table 5.4: Confusion matrix for QDA on selected morphology features.

Actual

class

Predicted class

Spread Round

Spread 65.00% 35.00%

Round 64.80% 35.20%

Table 5.5: Confusion matrix for LDA on selected morphology features.

Actual

class

Predicted class

Spread Round

Spread 43.50% 56.50%

Round 34.60% 65.40%

Table 5.6: Confusion matrix for QDA on selected texture features.

Actual

class

Predicted class

Blebbing Smooth

Blebbing 80.70% 19.30%

Smooth 26.20% 73.80%

Table 5.7: Confusion matrix for LDA on selected texture features.

Actual

class

Predicted class

Blebbing Smooth

Blebbing 75.90% 24.10%

Smooth 26.20% 26.50%
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Figure 5.8: Class distributions produced by QDA using only morphology features.

Figure 5.9: Class distributions produced by LDA using only texture features.
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A linear separator cuts across the round cells’ cluster, mal-classifying them.

Texture features prove better in discriminating smooth and blebbing round cells

in both discriminant analyses. QDA well-classifies more than 80% blebbing cells

and about 74% smooth ones, and the trend carries over to LDA, which too cor-

rectly classifies around 75% blebbing and round cells each. Fig. 5.9 explains the

phenomenon. The feature clusters are still very significantly overlap, but their cen-

troids are further apart i.e. more of similar labels lie on each side of the separator

than closer to it but on the other side.

These tables illustrate that Discriminant Analysis is not a very powerful tool

in case of the features selected in the previous section, especially with regards to

the classification based on morphological/shape parameters. We therefore tried one

more classification method that is able to learn much more complex data models

than a discriminant analysis hyperplane could be able to effectively separate. We

attempt the same classification, with the same two-pass hierarchy using a neural

network.

5.4.2 Artificial Neural Networks classification

Artificial Neural Networks (ANN) have a strong biological background. In the field

of the brain cortex, local regulated and folded receptive field is the characteristic of

the reflection of the brain. Based on this characteristic, this computational model

was inspired, and for greater detail on the subject we refer the reader to [104]. An

artificial neural network consists of an interconnected group of artificial neurons,

and it processes information using a connectionist approach to computation. In

most cases an ANN is an adaptive system that changes its structure based on ex-

ternal or internal information that flows through the network during the learning

phase. In an artificial neural network, simple artificial nodes, variously called “neu-

rons” or “processing elements” (PEs), are connected together to form a network

of nodes mimicking the biological neural networks. Modern neural networks are

non-linear statistical data modeling tools. They are usually used to model complex

relationships between inputs and outputs or to find patterns in data.

In modern software implementations of artificial neural networks, the approach

inspired by biology has been largely abandoned for a more practical approach based

on statistics and signal processing. In some of these systems, neural networks or

parts of neural networks (such as artificial neurons) are used as components in larger

systems that combine both adaptive and non-adaptive elements. While the more

general approach of such adaptive systems is more suitable for real-world problem
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solving, it has far less to do with the traditional artificial intelligence connectionist

models. What they do have in common, however, is the principle of non-linear,

distributed, parallel and local processing and adaptation.

Models:

Neural network models are essentially simple mathematical models defining a func-

tion f :X→Y or a distribution over X or both X and Y , but sometimes models are

also intimately associated with a particular learning algorithm or learning rule. A

common use of the phrase ANN model really means the definition of a class of such

functions (where members of the class are obtained by varying parameters, connec-

tion weights, or specifics of the architecture such as the number of neurons or their

connectivity).

Network function:

The word network in the term ’artificial neural network’ refers to the inter-connections

between the neurons in the different layers of each system. An example system has

three layers. The first layer has input neurons, which send data via synapses to

the second layer of neurons, and then via more synapses to the third layer of out-

put neurons. More complex systems will have more layers of neurons with some

having increased layers of input neurons and output neurons. The synapses store

parameters called “weights” that manipulate the data in the calculations.

An ANN is typically defined by three types of parameters: 1) The interconnec-

tion pattern between different layers of neurons, 2) The learning process for updating

the weights of the interconnections, and 3) The activation function that converts a

neuron’s weighted input to its output activation.

Mathematically, a neuron’s network function f(x) is defined as a composition

of other functions gi(x), which can further be defined as a composition of other

functions. This can be conveniently represented as a network structure, with arrows

depicting the dependencies between variables. A widely used type of composition is

the nonlinear weighted sum, where f(x)=K(
∑

i
wigi(x)) , where K(commonly referred to

as the activation function) is some predefined function, such as the popular sigmoid

tangent approximating but less brutal than, a step function. It will be convenient

for the following to refer to a collection of functions gi as simply a vector g=(g1,g2,...,gn).

Before classification, the image feature data were separated into distinct train-

ing and test sets in order to assess performance on images not seen by the classifier

during training. Numbers of train/test images for each class are described in Table

5.8. After this separation, the training data were used to calculate the mean and

variance of each feature. These values were then used to normalize the training data
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to have a mean of zero and a variance of one for each feature. The same mean and

variance were then used to normalize the test data (the resulting means and vari-

ances for the test set therefore differed somewhat from zero and one respectively).

The normalized training and test sets were used with the neural network classifier.

Back-propagation neural networks (BPNN) were implemented using the R package

neuralnet. Networks were configured with the number of inputs equal to the num-

ber of features being used, 10 hidden nodes, and 1 output nodes (with a sigmoid

activation function). The learning rate was empirically chosen to be 0.2 at initial-

ization, and the momentum was 0.9. The desired outputs of the network for each

training sample were defined as 1 when corresponding to round cell class and 0 in

the other case. The BPNN was always trained using the single training data set

defined above. After every third epoch of training, the sum of squared error was

calculated for the stop data, where the error of the output node is defined as the

difference between its expected and actual output values. Training of the network

was terminated when the sum of squared error for the stop set reached a minimum.

The performance of the network at the stopping point was measured using the corre-

sponding evaluation set. The classification results summed to generate the confusion

matrices in Tables 5.9 and 5.10 for both classification sub-problems. When mea-

suring the performance of the network using the evaluation data, each sample was

classified as belonging to the class corresponding to the largest output values.

Class Training Test Sub-problem Class
class total total

Spread 2500 1167 3627 6463
Round Blebbing 1500 511 2011 2836

Smooth 500 325 825

Table 5.8: Learning and test distributions in the cell features database.

Table 5.9: Confusion matrix generated from the output of a back-propagation neural
network for selected morphology features.

Actual

class

Predicted class

Spread Round

Spread 83.01% 16.99%

Round 16.54% 83.46%

The BPNN was chosen as the second classifier because it is able to generate

decision boundaries that are significantly more complex than the rectilinear and
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Table 5.10: Confusion matrix generated from the output of a back-propagation neural
network for selected texture features.

Actual

class

Predicted class

Blebbing Smooth

Blebbing 67.16% 32.84%

Smooth 11.88% 88.12%

conical boundaries of the discriminant analysis models. The disadvantage to the

BPNN is that the ready interpretability of the classification tree is lost and those

class separation boundaries are not known. It is not possible, for example, to easily

determine which features are being used to discriminate which classes. In order

to prevent over-training and therefore “memorization” of the training data, training

was stopped when the sum of squared error value for the stop data was at a minimum.

At this point, the evaluation data were applied to the network and the output node

of the network with the largest value was defined as the classification result for each

evaluation example. Results are shown in Tables 5.9 and 5.10. However, it is evident

that the BPNN was still not able to well-discriminate blebbing cells from smooth

round cells (correct calssification was around 67%). This is because of the fact that

the feature selection method assumes linear correlation among the variables and

the data possibly represents nonlinear dependances between variables that might

be either noisy and nonlinear. Nevertheless,a neural network is a highly non-linear

classifier, and is able to work with a large number of variables, so it was alimented

with the two entire sets of variables. These results are shown in Tables 5.11 and

5.12, and as expected the BPNN was able to achieve superieor results. The average

rate of correct classification for morphology features is around 90% for spread cells

and around 80% for round cells. Within the round class, the average rate of correct

classification for texture features is around 95% for blebbing cells and around 87%

for smooth round cells. These results outclass both discriminant analyses in both

levels of the classification hieararchy. Moreover, LDA and QDA both floundered for

blebbing cells in particular and round cells in general. The neural network does not

suffer from such lopsided classification. It can be concluded that the BPNN is an

improvement over the classification tree in terms of its ability to classify the images

in our context.
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Table 5.11: Confusion matrix generated from the output of a back-propagation neural
network for all morphology features.

Actual

class

Predicted class

Spread Round

Spread 89.41% 10.59%

Round 19.81% 80.18%

Table 5.12: Confusion matrix generated from the output of a back-propagation neural
network for all texture features.

Actual

class

Predicted class

Blebbing Smooth

Blebbing 94.88% 5.12%

Smooth 12.49% 87.51%

5.5 Conclusion

In this chapter we presented an adapted strategy for classifying the cells obtained

from image segmentation. The shape, size, contour, intensity, grey-level co-occurrence

and other information is used to formulate representative characteristic features for

the purpose of classifying the cells. A total of 203 features was thus obtained.

Following exploratory experiments it was decided to split these features into mor-

phological and textural feature tables, and use them to classify spread versus round

cells and blebbing versus smooth cells respectively. As is usually normative in classifi-

cation, the number of features was reduced through linear feature selection in order

to filter out less discriminatory features. The selected features are first classified

using discriminant analysis, and we achieve around 65%, 65%, 80% and 74% in the

best of the two discriminant analysis cases for spread, all round, blebbing round and

smooth round cells respectively. The classification based on morphologyy not being

satisfactory, we decided to use a highly non-linear predictor, the neural network.

A back-propagation neural network in its turn produced correct classification rates

of around 90% and 80% for the spread versus all round case using morphological

features, and around 95% and 87% for the blebbing round versus smooth round case

using textural features, without prior feature selection, thereby proving to be the

method of choice for classification in our application context.
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Let us begin by recalling the objectives of this work. How microenvironment pat-

terns regulate cancer cell migration, proliferation or apoptosis can be studied by the

use of phase-contrast microscopy to record the cellular responses over an extended

period of time. Cells undergo metastasis i.e. they proliferate and migrate. Cancer

cell migration is of two types: mesenchymatic or amoeboid, which translates to par-

ticular cellular morphologies, namely spread and blebbing respectively, along with

the intermediate stage represented by the smooth round phenotype. The biologists

which form out source of data are concerned with studying changes in migratory

behaviour are through experimental observation associated with these morphologies

of metastasic cells. In the context of numerical image processing, the goal was to

determine how many and which cells are in each of the three phases of the metasta-

sic process. This engendered sub-objectives of being able to recognize parts of the

image as cells (cell counting), separating cells from the image background and from

other cells (cell segmentation) in order to study their characteristics that represent

the 3 phenotypes, then recognize the cells into differentiable categories (cell classi-

fication) according to their metastastic stage. This process determines the numbers

and thus proportions of each of the 3 types of cells over an entire image, by first

translating the overall problem into sub-problems concerning individual cells, and

then re-combining those individual analyses into the global view of the process of

metastasis.

The image acquisition procedure produces large in vitro cell images with specific

issues, such as uneven illumination and low signal-to-noise ratios. Corrective pre-

processing for mitigating these effects was first presented. Next the cell images were

considered for cell detection and counting. We presented a new method for the

automatic counting of cells. Counting results show that the proposed filter detects

about 97% of the 66901 cells represented in the 142 image dataset, and commits

few errors. This part of the work helps experts identify cells in less time and effort.

The automatic count is only about 3% less than manual counts obtained by experts,

given also that the uncertainty on manual is around 2%, which can be considered
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comparable. Then the maximum-likelyhood test devised for validating these results

ensures that about 83% of the cells identified agree with reality.

For image segmentation, the choice of the method naturally led to the water-

shed transform. We have contributed through two improvements in its applica-

tion: the topographic input function and the application strategy that limits over-

segmentation. Our contributions to the state of the art in watershed segmentation

are described in two separate places, i.e., Chapter 3 and Chapter 4. However, the

reader would have realized that both form an holistic idea, the first principally being

a description of the best input data for the second.

The focus of the latter part of Chapter 3 was the implementation of the watershed

transform on various topographic reliefs obtained from the original greyscale image.

These reliefs, such as distance or gradient maps, define not only the input data of

the watershed but also dictate strategies for segmentation that often suffice for an

acceptable segmentation result for many authors. We compared several topographic

relief functions after having partially geodesically reconstructed by erosion them

using a watershed segmentation. We found that the best correct segmentation score

(Correct Attribution) of around 56% according to the segmentation-quality criterion

defined earlier was offered by the fuzzy-probability map. We therefore proved that

the use of a probability function that describes membership scores to classes cell

and background for each pixel in the image offers advantages over more traditional

topographic functions such as the gradient and the distance transform in terms of

a more accurate representation of object shapes and more well-defined separation

between basin depths between the cells and image background. As an outcome of

this comparison the fuzzy-probability map was selected over competing topographic

functions. The drawback associated of this topographic function is the splitting

of the image into many small regions (so-called over-segmentation). We felt that

the correct segmentation score could be improved well over 56% by mitigating this

problem.

Chapter 4 reviewed several strategies to improve the segmentation of the cellu-

lar images by reducing over-segmentation. This consisted of the presentation of a

novel method of information preservation within a hierarchical watershed framework,

called cumulative hierarchy and its comparison with several classes of segmentation-

refining methods employing region merging. It is worthy of note that all five meth-

ods described in section 4.4 were implemented and the implementations are de-

scribed in detail wherever we differed from the original proposition, in particular

the watershed-breaking algorithm 4.4.3 and the basin-line-competition algorithm

4.4.1.B. An original region adjacency graph construction algorithm is also described
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in section 4.4.0.C, which is computationally much less expensive than some of its

alternatives in the literature. Unlike region merging however, cumulative hierar-

chy prevents over-segmentation rather than being a post-segmentation operation. It

also allowed local image information to dictate the level of detail of the segmentation

hierarchy. This method solely uses mathematical morphology and because of this

integrates seamlessly and elegantly into a framework that uses only morphological

greyscale image reconstruction first by erosion and then by dilation and a watershed

transform between the two. Cumulative hierarchy manifested a noticeable improve-

ment in segmentation, allowing a Correct Attribution of about 70% while the three

region-merging methods remain in the region of around 50− 60%. Incidently, even

with global stopping critera, the waterfall scored better than the latter at around

62%. Thus cumulative hierarchy not only improves in theory on classical waterfall

while allowing the suppleness of not discounting shallow but desireable basins, but

also practically by correctly segmenting around 8% more of the image in a prac-

tical application context. The detailed results in section 4.5 show that cumulative

hierarchy is by a large margin superior in Basin Overflow score as well, while be-

ing inferior in its Basin Shortfall score, something due to the topographic function

in which pixel values of class cell are an amalgam of cell-inside and cell-borders

and therefore do possess discontinuities that continue to over-segment cell boundary

regions in many cases.

Automated region selection and cropping for classification can be exceptionally

difficult and computationally expensive, especially when cells are highly confluent.

Using cumulative hierarchy we were able to correctly segment about 70% cell pix-

els. The segmented regions issued from cumulative hierarchy are then extracted as

cellular connected components in bounding boxes. Small values of Basin Overflow

score mean that these connected components do not invade neighbouring cells, and

the qualitative criterion shows that the connected components roughly do represent

the shape of the cells they are associated with. These connected components were

then used to extract relevant information for the classification work described in last

chapter.

Chapter 5 takes the processing chain to its logical conclusion by classifying the

cells obtained from image segmentation. The shape, size, contour, intensity, grey-

level co-occurrence and other information is used to formulate representative char-

acteristic features for the purpose of classifying the cells. A total of 203 features

was thus obtained. Following exploratory experiments it was decided to split these

features into morphological and textural features, and use them to classify spread

versus round cells and then blebbing versus smooth cells respectively following a
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divide-and-conquer strategy. As is usually normative in classification, the number

of features was reduced through feature selection in order to filter out less discrimi-

natory features. A back-propagation neural network produced correct classification

rates: respectively around 90% and 80% for the spread versus all round cells; re-

spectively around 95% and 87% for the blebbing round versus smooth round cells.

To summarize, we have established a complete processing chain which permits,

given a microscopic cellular image acquired by biologists, to obtain the number and

proportion of cells in each class present over the image. This chain leans on a succes-

sion of steps - corrective pre-processing, cell detection, cell segmentation and finally

cell classification, enabling us to find responses to the objectives initially outlined.

Several communications and articles are in the course of preparation to valorize the

methods developed and the results obtained at various stages of this work.

We have envisaged several extensions to the work. The limitation to the val-

idation method for cell counting through hypothesis testing was that it supposed

a rigid signal template and the absence of correlation between its columnar data.

We are exploring an improvement that uses no prior knowledge and could offer in

addition of a higher percentage of cell-validation.

We also plan to improve the cumulative hierarchy algorithm by limiting the

rejection of minor peripheral cell regions into the background, by introducing a

basin-size measure to the currently basin-depth mechanism of the hierarchy, and

also by tweaking the topographic function to eliminate singularities towards the

outer cell boundary.

Cell classification was limited in this study to a representative subset of the image

dataset, only for which manual verification was available at the time. We now have

to deploy cell classification, and as information tributary image segmentation as

well, to the entire image dataset.

We believe that the cumulative hierarchy segmentation method can be easily

adapted to a context wider than that of our application. We plan to extend it to

images of different natures and formalize it as a general segmentation strategy.
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Annex A: Morphological image reconstruction

Reconstruction is a very useful operator provided by mathematical morphology

[179, 180]. Although it can easily be defined in itself, it is often presented as part as

a set of operators known as geodesic ones [110]. The reconstruction transformation

is relatively well-known in the binary case, where it simply extracts the connected

components of an image which are “marked” by another image (seeFig. 5.10). How-

ever, reconstruction can be defined for grayscale images as well. In this framework,

it turns out to be particularly interesting for several filtering, segmentation and

feature extraction tasks.

Reconstruction for binary images

Let I and J be two binary images defined on the same discrete domain DI and such

that J ⊆ I. In terms of mappings, this means that: ∀p ∈ D; J(p) = 1 ⇒ I(p) = 1.

J is called the marker image and I is the mask. Let I1, I2, ...In be the connected

components of I.

Definition The reconstruction I(J) of mask I from marker J is the union of

the connected components of Iwhich contain at least a pixel of J :

ρI(J) = ∪J∩IK 6=∅IK (5.16)

Fig. 5.10 illustrates this extremely simply but extremely useful transform.

Figure 5.10: Binary reconstruction from markers

Grayscale reconstruction

It is known that at least in the discrete case that any increasing transformation

defined for binary images can be extended to grayscale images [179, 180, 181, 222].

By increasing, we mean a transformation ψ such that ∀X, Y ⊂ ℤ
2, Y ⊆ X ⇒

ψ(Y ) ⊆ ψ(X), In order to extend such a transformation ψ to grayscale images I
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taking their values in 0, 1, ..., N − 1, it suffices to consider the successive thresholds

Tk(I) of I, for k = 0 to N − 1:

Tk(I) = {p ∈ DI |I(p) ≥ k}. (5.17)

Figure 5.11: Threshold decomposition of a greyscale image

They are said to constitute the threshold decomposition of I [133, 134]. As illus-

trated by Fig. 5.11, these sets obviously satisfy the following inclusion relationship:

∀k ∈ [1..N − 1], Tk(I) ⊆ Tk−1(I). (5.18)

When applying the increasing operation ψ to each of these sets, their inclusion

relationships are preserved. Thus, we can now extend ψ to grayscale images as

follows:

∀p ∈ DI , ψ(I)(p) = max{k ∈ [0, N − 1]|p ∈ ψ(Tk(I))}. (5.19)

In the present case, binary geodesic reconstruction is an increasing transforma-

tion in that it satisfies:

Y1 ⊆ Y2, X1 ⊆ X2;Y1 ⊆ X1, Y 2 ⊆ X2⇒ ρX1(Y1) ⊆ X2(Y2). (5.20)

Therefore, following the threshold superposition principle of equation 5.17, we

define grayscale reconstruction as follows [213]:

Definition (grayscale reconstruction): Let J and I be two grayscale images

defined on the same domain, taking their values in the discrete set {0, 1, ..., N −
1} and such that J ≤ I(i.e., foreachpixelp ∈ DI ; J(p) ≤ I(p)). The grayscale

reconstruction ρI(J) of I from J is given by:

∀p ∈ DI , ρI(J)(p) = max{k ∈ [0, N − 1]|p ∈ ρTk(I)(Tk(J))}. (5.21)

Fig. 5.12 illustrates this transformation. Just like binary reconstruction extracts

those connected components of the mask which are marked, grayscale reconstruction

extracts the peaks of the mask which are marked by the marker-image.
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Figure 5.12: Greyscale reconstruction of image f from marker g

Regional maxima and dome extraction

Reconstruction turns out to provide a very efficient method to extract regional

maxima and minima from grayscale images. Furthermore, the technique extends

to the determination of “maximal structures”, which we call h-domes and h-basins.

Let us first briefly review the notion of regional maximum:

Definition (regional maximum) A regional maximum M of a grayscale image

I is a connected components of pixels with a given value h (plateau at altitude h),

such that every pixel in the neighborhood of M has a strictly lower value.

Regional maxima should not be mistaken with local maxima. Recall that a pixel

p of I is a local maximum for grid G if and only if its value I(p) is greater or equal

to that of any of its neighbours. All the pixels belonging to a regional maximum

are local maxima, but the converse is not true: for example, a pixel p belonging to

the inside of a plateau is a local maximum, but the plateau may have neighboring

pixels of higher altitude and thus not be a regional maximum.

An alternative definition can also be proposed for the notion of regional maxi-

mum: Definition A regional maximum at altitude h of grayscale image I is a con-

nected component C of Th(I) such that C ∩ Th+1(I) = ∅. (Recall from eq. that

Th(I) is threshold of I at level h.)

Determining the regional maxima of a greyscale image is relatively easy and sev-

eral algorithms have been proposed in literature. One of the most efficient methods

makes use of grayscale reconstruction and is based on the following proposition:

Proposition 1.1 The (binary) image M(I) of the regional maxima of I is given

by:

M(I) = I − ρI(I − 1). (5.22)

Proof : According to the definition above, a connected component C of Th(I)

is a maximum at level h if and only if C ∩ Th+1(I) = C ∩ Th(I − 1) = ∅. In other

words, the set Mh of the pixels belonging to a maximum of I at altitude h is given

by:

Mh = Th(I) ρTh(I)(Th(I − 1)). (5.23)
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Now, for any h, h′, h 6= h′, Mh ∩Mh′ = ∅. This means that by replacing the set

difference (

) by an algebraic diffierence and using the threshold superposition principle, formula

5.16 can be extended to the grayscale case. This proposition is illustrated by Fig.

5.13.

Figure 5.13: Extracting the regional maxima of image I by its reconstruction from I-1

Now, instead of subtracting value 1 in prop. 1.1 an arbitrary greylevel constant

h can be subtracted from I. This provides a useful technique for extracting “domes”

of a given height, that we call h-domes. The following definition can be proposed:

Definition: The h-dome image Dh(I) of the h-domes of a grayscale image I is

given by:

Dh(I) = I − ρI(I − h). (5.24)

Geometrically speaking, an h-dome can be interpreted the same way maxima

are: an h-dome D of image I is a connected component of pixels such that:

1. every pixel p neighbor of D satisfies: I(p) < min{I(q)|q ∈ D},

2. max{I(q)|q ∈ D} −min{I(q)|q ∈ D} < h.

In addition, the value of pixel p of h − dome D in image Dh(I) is equal to

I(p) − min{I(q)|q ∈ D}. The h-dome transformation is illustrated on Fig. 5.14.

Unlike classical top-hats, the h-dome transformation extracts light structures with-

out involving any size or shape criterion. The only parameter (h) is related to the

height of these structures. This characteristic is of interest for complex segmentation

problems.

In the context of the hierarchic watershed transform we find it judicious to state

a theorem about geodesic reconstruction which is implicitly used by all the authors.

Theorem 5.0.1. Let f and g be two functions from ℝ
n to ℝ, f ≥ g.

Each regional minimum of the geodesic erosion E∞
f
∧

g
(g) contains at least one

regional minumum of f .
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Figure 5.14: Determining the h-domes of image I.

That is to say, if f ≥ g, the geodesic erosion E∞
f
∧

g
(g) can only surpass or merge

regional minima of f . As the main problem in watershed segmentation is to suppress

spurious minima, we understand why geodesic reconstruction is so crucial.

The various techniques of morphological image reconstruction form the founda-

tion of several of the methods we have used in segmentation, such as in marking and

swamping, and by extension it forms the crux of the cumulative hierarchy by multi-

level marking algorithmic theory, as well as the determination of shaped-markers

using h-domes.
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