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Class invariants for tame Galois Algebras
ABSTRACT (short version)

Let K be a number field with ring of integers OK and let G be a finite group.
By a result of E. Noether, the ring of integers of a tame Galois extension of K with
Galois group G is a locally free OK [G]-module of rank 1.
Thus, to any tame Galois extension L/K with Galois group G we can associate a class
[OL] in the locally free class group Cl(OK [G]). The set of all classes in Cl(OK [G]) which
can be obtained in this way is called the set of realizable classes and is denoted by
R(OK [G]).
In this dissertation we study different problems related to R(OK [G]).
The first part focuses on the following question: is R(OK [G]) a subgroup of Cl(OK [G])?
When the group G is abelian, L. McCulloh proved that R(OK [G]) coincides with the
so-called Stickelberger subgroup St(OK [G]) of Cl(OK [G]). In Chapter 2, we give a de-
tailed presentation of unpublished work by L. McCulloh that extends the definition of
St(OK [G]) to the non-abelian case and shows that the inclusion R(OK [G]) ⊆ St(OK [G])

holds (the opposite inclusion is still not known in the non-abelian case).
Then, just using its definition and Stickelberger’s classical theorem, we prove in Chapter
3 that St(OK [G]) is trivial if K = Q and G is either cyclic of order p or dihedral of order
2p, where p is an odd prime number. This, together with McCulloh’s results, allows us
to have a new proof of the triviality of R(OK [G]) in the cases just considered.
The main original results are contained in the second part of this thesis. In Chapter 4,
we prove that St(OK [G]) has good functorial behavior under restriction of the base field.
This has the interesting consequence that, if N/L is a tame Galois extension with Galois
group G, and St(OK [G]) is known to be trivial for some subfield K of L, then ON is
stably free as an OK [G]-module.
In the last chapter, we prove an equidistribution result for Galois module classes amongst
tame Galois extensions of K with Galois group G in which a given prime p of K is totally
split.

Keywords: Galois module structure, tame Galois extensions, locally free modules, reduced norm,

realizable classes, locally free class group, Stickelberger’s Theorem.
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Invariants de classe pour algèbres galoisiennes modérément
ramifiées

RÉSUMÉ (version brève)

Soient K un corps de nombres d’anneau des entiers OK et G un groupe fini.
Grâce à un résultat de E. Noether, l’anneau des entiers d’une extension galoisienne de
K modérément ramifiée, de groupe de Galois G, est un OK [G]-module localement libre
de rang 1.
Donc, à chaque extension galoisienne L/K modérément ramifiée, de groupe de Galois
G, on peut associer une classe [OL] dans le groupe des classes des modules localement
libres Cl(OK [G]). L’ensemble des classes de Cl(OK [G]) qui peuvent être obtenues de
cette façon est appelé ensemble des classes réalisables et on le note R(OK [G]).
Dans cette thèse, on étudie différents problèmes liés à R(OK [G]).
Dans la première partie, nous nous focalisons sur la question suivante: R(OK [G]) est-il un
sous-groupe de Cl(OK [G])? Si G est abélien, L. McCulloh a prouvé que R(OK [G]) coïn-
cide avec le soi-disant sous-groupe de Stickelberger St(OK [G]) dans Cl(OK [G]). Dans
le Chapitre 2, nous donnons une présentation détaillée d’un travail non publié de L.
McCulloh qui étend la définition de St(OK [G]) au cas non-abélien et montre l’inclusion
R(OK [G]) ⊆ St(OK [G]) (l’inclusion opposée n’est pas encore connue dans le cas non-
abélien).
Puis, en utilisant sa définition et le Théorème de Stickelberger classique, nous montrons
dans le Chapitre 3 que St(OK [G]) est trivial si K = Q et G est soit un groupe cyclique
d’ordre p soit un groupe diédral d’ordre 2p, avec p premier impair. Ceci, lié aux résultats
de McCulloh, nous donne une nouvelle preuve de la trivialité de R(OK [G]) dans les cas
considérés.
Les résultats originaux les plus importants sont contenus dans la deuxième partie de
cette thèse. Dans le Chapitre 4 nous montrons la fonctorialité de St(OK [G]) par rapport
au changement du corps de base. Ceci implique que si N/L est une extension galoisienne
modérément ramifiée, de groupe de Galois G, et St(OK [G]) est connu être trivial pour
un certain sous-corps K de L, alors ON est un OK [G]-module stablement libre.
Dans le dernier chapitre, nous montrons un résultat concernant la distribution des classes
réalisables parmi les extensions galoisiennes de K modérément ramifiées, de groupe de
Galois G, dans lesquelles un idéal premier de K donné est totalement décomposé.

Mots-clés: structure des modules galoisiens, extensions galoisiennes modérément ramifiées, mo-

dules localement libres, norme réduite, classes réalisables, groupe des classes des modules locale-

ment libres, Théorème de Stickelberger.
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Klasse-invarianten voor tamme Galoisalgebra’s
SAMENVATTING (beknopte versie)

Zij K een getallenlichaam met ring van gehelen OK en zij G een eindige groep.
Een resultaat van E. Noether zegt dat de ring van gehelen van een tamme G-Galoisuit-
breiding van K een lokaal vrij OK [G]-moduul van rang 1 is.
Hieruit volgt dat we aan elke tamme G-Galoisuitbreiding van K een klasse kunnen
toekennen in de lokaal vrije klassegroep Cl(OK [G]). De verzameling van alle klassen
in Cl(OK [G]) die afkomstig zijn van de ring van gehelen van een tamme G-Galoisuitbrei-
ding van K wordt de verzameling van realiseerbare klassen genoemd en wordt genoteerd
als R(OK [G]).
In dit proefschrift bestuderen we verschillende problemen gerelateerd aan R(OK [G]).
Allereerst het volgende probleem: is R(OK [G]) een ondergroep van Cl(OK [G])? Voor
abelse G bewees L. McCulloh dat R(OK [G]) overeenkomt met de zogenaamde Stickel-
berger-ondergroep St(OK [G]) van Cl(OK [G]). In hoofdstuk 2, wij geven een gede-
tailleerde presentatie van de gedeeltelijk ongepubliceerde resultaten van L. McCulloh
die de definitie van St(OK [G]) uitbreiden tot het niet-abelse geval, en een inclusie
R(OK [G]) ⊆ St(OK [G]) bewijzen (of de omgekeerde inclusie ook altijd geldt, is voor
niet-abelse G nog steeds niet bekend.)
Vervolgens bewijzen we in hoofdstuk 3, gebruikmakend van de definitie en de klassieke
Stelling van Stickelberger, dat St(OK [G]) triviaal is als K = Q en G een cyclische groep
van orde p is of een dihedrale groep van orde 2p, waarbij p ≥ 3 priem is. Dit resultaat,
samen met resultaten van McCulloh, staat ons toe om een nieuw bewijs te geven voor
de trivialiteit van R(OK [G]) in bovenstaande gevallen.
De belangrijkste originele resultaten zijn bevat in het tweede deel van dit proefschrift.
In hoofdstuk 4, bewijzen we dat St(OK [G]) zich functorieel goed gedraagt ten opzichte
van het beperken van het grondlichaam. Dit geeft het interessante gevolg dat als N/L
een tamme Galoisuitbreiding met groep G is, en als St(OK [G]) triviaal is voor een deel-
lichaam K van L, de ring ON stabiel vrij is als OK [G]-moduul.
In het laatste hoofdstuk bewijzen we een resultaat over de verdeling van Galoismo-
duulklassen afkomstig van tamme Galoisuitbreidingen van K met Galoisgroep G met de
beperking dat een gegeven priem p van K volledig splitst.

Steekwoorden: Galoismoduulstructuur, tamme Galoisuitbreidingen, lokaal vrije modulen, gere-

duceerde norm, realiseerbare klassen, lokaal vrije klassegroep, Stelling van Stickelberger.
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Nomenclature

K Algebraic number field
OK Ring of integers of K
G Finite group
Gab Abelianization of G
Irr(G) Set of irreducible characters of G
RG Ring of Z-linear combinations of elements in Irr(G)

AG Augmentation kernel
χ̃ Complex conjugate of the character χ
{q} Fractional part of q
bqc Integral part of q
[f ] Class with representative f
Z(A) Center of A
s̄ Conjugacy class of s
Ḡ Set of conjugacy classes of G
rn Reduced norm
Kp Completion of K with respect to its place p

Kc (resp. Kc
p) An algebraic closure of K (resp. Kp)

Knr Maximal extension of K unramified at finite places
Knr

p Maximal unramified extension of Kp, if p is finite
Knr

p = Kc
p , if p is infinite

Kt Maximal tame extension of K
Kt

p Maximal tame extension of Kp, if p is finite
Kt

p = Kc
p , if p is infinite

OK, p Completion of OK with respect to p, if p is finite
OK, p = Kp, if p is infinite

Oc
K (resp. Oc

K, p) Integral closure of OK (resp. OK, p) in Kc (resp. Kc
p)

ΩK (resp. ΩKp) Absolute Galois group of K (resp. Kp)
Ωnr
K (resp. Ωnr

p ) Gal(Knr/K) (resp. Gal(Knr
p /Kp))

Ωt
K (resp. Ωt

p) Gal(Kt/K) (resp. Gal(Kt
p/Kp))

J(K) Group of idèles of K (including infinite places)
U(OK)

∏
pO
×
K, p

J(Kc) lim−→ J(L), as L runs over all fin. Galois ext. of K in Kc
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xii NOMENCLATURE

K[G] (resp. Kp[G]) Group ring of G over K (resp. Kp)
Kc[G] (resp. Kc

p [G]) Group ring of G over Kc (resp. Kc
p)

OK [G] (resp. OK, p[G]) Group ring of G over OK (resp. OK, p)
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pOK, p[G]×,
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Chapter 0

Introduction

Throughout this dissertation we will study properties of the structure of rings of integers
in Galois extensions, when seen as Galois modules.
Let K be an algebraic number field and let L/K be a finite Galois extension with Galois
group G (abbreviated as G-Galois extension in the sequel). The question which gives
rise to the main subject of this thesis is: when does there exist a normal integral basis
generator for L over K, i.e. an element a ∈ OL such that {s ·a}s∈G, the set of translates
of a by the elements of G, forms an OK-basis of OL? Or in another equivalent form,
does there exist an element a ∈ OL such that OL = OK [G] · a?
This question goes under the name of Normal Integral Basis Problem (NIBP). Note that,
from the Normal Basis Theorem (see [23]), we know that for anyG-Galois extension L/K,
there exists an element b ∈ L such that L = K[G] · b (such an element b is called normal
basis generator of L/K).

When the base field K equals Q and the group G is abelian, the NIBP is completely
solved by the Hilbert–Speiser Theorem. From the Kronecker–Weber Theorem we know
that any abelianG-Galois extension L/Q is contained in a cyclotomic extension Q(ζn) and
we define the conductor of L to be the smallest natural number r such that L ⊆ Q(ζr).
Then the Hilbert–Speiser theorem says that a finite abelian extension L/Q has a normal
integral basis if and only if its conductor is square-free, or equivalently if L/Q is tamely
ramified (i.e. for any prime (p) of Z, its ramification index in L is coprime to p, or
equivalently the trace map from OL to Z is surjective).
It is shown in [21] that the field Q is the only field with this property, i.e. such that any
finite abelian tame Galois extension over it has a normal integral basis.

It is clear that, if a G-Galois extension L/K has a normal integral basis, then for any
prime ideal p of OK also OL,p := OKp ⊗OK OL (where Kp is the completion of K
with respect to the topology induced by p) has a normal integral basis, i.e. there exists
ap ∈ OL,p such that OL,p = OKp [G] · ap. We call an OK [G]-module with this property
locally free of rank 1 (see §1.1 for a precise definition).

1
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For local extensions, tameness is a necessary and sufficient condition for the existence of
a normal integral basis (as it was globally over Q by the Hilbert–Speiser Theorem), as
Noether’s Criterion explains.

Theorem 0.0.1 (Noether’s Criterion). Let L/K be a finite G-Galois extension. Then
L/K is tamely ramified if and only if OL is a locally free OK [G]-module of rank 1.

We understand from this that, over a general number field K, the right framework to
study the normal integral basis problem is given by tame extensions.
So restricting our attention to tame G-Galois extensions over K, we can see the NIBP
as a question about when a locally free OK [G]-module is actually free.
The main way of approaching such a question is to translate it in terms of a computation
inside a particular classgroup that will be denoted by Cl(OK [G]). The precise definition
of this group will be given in Chapter 1.
The idea behind its definition is analogous to the one leading to the definition of the
classical classgroup Cl(OK), which can be considered for the moment as a prototype of
Cl(OK [G]) (it will coincide with it in the case G = 1). The classgroup Cl(OK) measures
how far OK is from being a principal ideal domain; more precisely any ideal p of OK is
clearly OK-locally free (since OKp is a principal ideal domain) and its class in Cl(OK) is
trivial if and only if p is OK-free.
With this in mind, basic K-theory will lead to a rigorous definition (§1.3) of the locally
free classgroup Cl(OK [G]); where, if G is abelian, the class [M ] of a locally free OK [G]-
module M is trivial if and only if M is free (when G is not abelian a slightly modified
version of this holds, see §1.3 and §1.4). As we will see, Cl(OK [G]) is a finite abelian
group.
Thus to any tame G-Galois extension L/K we can associate the class of its ring of integers
[OL] in Cl(OK [G]). Noether’s Criterion holds in general for G-Galois algebras over K
(see §1.9 for a precise definition), which are a generalization of the notion of G-Galois
field extensions over K. Hence, as for field extensions, to any tame G-Galois K-algebra
we can associate a class in Cl(OK [G]).
It is well-known that the set of isomorphism classes of G-Galois K-algebras is in bijection
with H1(ΩK , G) (see [35, §5] for a precise definition), the first cohomology set of the
absolute Galois group ΩK with coefficients in G (where ΩK acts trivially on G). Hence
we can consider the following morphism of pointed sets:

R : H1(Ωt
K , G) −→ Cl(OK [G])

[L] 7−→ [OL],

where Ωt
K denotes the Galois group of the maximal tame extension over K. In terms

of this map, the NIBP reduces to the study of the kernel of R (i.e. the inverse image of
the trivial class in Cl(OK [G])). Note that, for any finite group G, the set H1(Ωt

K , G)

is defined as the pointed set Hom
(
Ωt
K , G

)
/Inn(G) (where Hom

(
Ωt
K , G

)
is the set of
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continuous homomorphisms from Ωt
K to G and Inn(G) is the set of inner automorphisms

of G), so in particular, if G is abelian, H1(Ωt
K , G) is equal to the group Hom

(
Ωt
K , G

)
.

The map R also allows us to define a new set, which is the main subject of this thesis:
the set of realizable classes.
The set of realizable classes, denoted by R(OK [G]), is defined as the image of R, i.e.
it is composed by all the classes in Cl(OK [G]) which can be obtained from the rings of
integers of tame G-Galois K-algebras.

From what we have seen above, if G is abelian and K equals Q, the set R(Z[G]) is trivial.
In all the other cases this set is quite difficult to study and describe. For example, over
a general number field K and given a finite group G, a natural question is still open in
general:

Question 1. Is R(OK [G]) a subgroup of Cl(OK [G])?

Firstly note that R, when not trivial, is not a priori a group homomorphism. Indeed,
if G is not abelian, the domain is just a pointed set, but even if G is abelian, it is not
difficult to find an example which explains why R is not a group homomorphism. For a
deeper explanation of this fact, see Appendix.

Remark 0.0.2. We could restrict the map R to the set of isomorphism classes of G-
Galois field extensions of K, i.e. to the set of classes in H1(Ωt

K , G) represented by surjec-
tive homomorphisms. The image of this restriction will be denoted by RF (OK [G]) and we
will see that in many cases, with this restriction, we do not lose any realizable class, i.e.
RF (OK [G]) = R(OK [G]). When we want to distinguish between the two sets of realizable
classes, we denote R(OK [G]) by RA(OK [G]).

When the base field is Q and G is abelian we have already seen that R(Z[G]) = 1. Thanks
to a result by Taylor ([43]), proving a conjecture of Fröhlich, the same holds if K = Q

and G is a non-abelian group with no symplectic characters. More generally he proved
that any element in R(Z[G]) has order at most 2 in Cl(Z[G]).

Remark 0.0.3. Note that we could also restrict our attention to RF (Z[G]) in the state-
ment of Taylor’s general result, even if, in this case, one has to take care of the inverse
Galois problem. Indeed, given a finite group G, before investigating the structure of the
set RF (Z[G]), one has to be sure that there exists at least a G-Galois field extension of
Q. The study of this question goes under the name of inverse Galois problem and, for a
general non-abelian group G, is still one of the main open problems in number theory.

Over a general number field K, when G is abelian, a positive answer to Question 1 is
given by Leon McCulloh in [28].
Given a finite group G, he introduced a subgroup St(OK [G]) of Cl(OK [G]) (the no-
tation used here differs from the original one by McCulloh), defined in terms of some
Stickelberger maps (see Chapter 2), and he proved the following result.
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Theorem 0.0.4. Let G be a finite abelian group, then

RF (OK [G]) = RA(OK [G]) = St(OK [G]).

In particular RA(OK [G]) is a subgroup of Cl(OK [G]).

When G is non-abelian, he managed to prove the following inclusion (this is an unpub-
lished result announced in a talk given in Oberwolfach in February 2002 - a detailed
proof of it will be the main subject of Chapter 2).

Theorem 0.0.5. For any finite group G,

R(OK [G]) ⊆ St(OK [G]).

The proof of the reverse inclusion still remains an open problem.

When G is non-abelian and K 6= Q, determining if R(OK [G]) forms a subgroup is in
general an open problem.
Nevertheless, with an approach different from McCulloh’s that starts from the inclusion
R(OK [G]) ⊆ Cl◦(OK [G]) (where Cl◦(OK [G]) is the kernel of the augmentation map from
Cl(OK [G]) to Cl(OK), see §3.1), some non-abelian results have been achieved. In partic-
ular, it has been proved that R(OK [G]) = Cl◦(OK [G]) in the following cases: G = D8,
the dihedral group of order 8, with the assumption that the ray class group modulo 4OK

of OK has odd order (see [10]); and G = A4, without any restriction on K (see [11]).
Recently in [9], Nigel P. Byott and Bouchaib Sodaïgui, under the assumption thatK con-
tains a root of unity of prime order p, showed that R(OK [G]) is a subgroup of Cl(OK [G]),
when G is the semidirect product V oC of an elementary abelian group V of order pr by
any non-trivial cyclic group C which acts faithfully on V and makes V into an irreducible
Fp[C]-module (where Fp is the finite field with p elements). This last result contains as
a corollary the main result of [11].
In the non-abelian context, more has been done in describing a weaker form of R(OK [G]).
IfM denotes a maximal order inK[G] containing OK [G], then, as done for R(OK [G]), we
can define R(M) to be the subset in Cl(M) of classes [M⊗OK[G]

OL], where L is a tame
G-Galois algebra over K. The two sets R(M) and R(OK [G]) are linked by the extension
of scalars Ex : Cl(OK [G]) −→ Cl(M) and in fact one has R(M) = Ex(R(OK [G])).
A complete list, as far as we are aware, of works investigating the structure of R(M)

follows: [37] with G = H8; [39] with G = D4; [20] with G = A4; [8] with G = V oρ C,
where V is a vector space of dimension r over the finite field with 2 elements F2, C is a
cyclic group of order 2r−1 and ρ is a faithful representation of C in V ; [40] with G = S4;
[6] with G = V oρ C, where V is a vector space of dimension r over the finite field with
p elements Fp, C is a cyclic group of order pr − 1 and ρ a faithful representation of C in
V ; [38] with G = H4l and [32] with G = Cl o Cm (where Cl and Cm are cyclic groups
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of order l and m respectively; this article also improves another previous similar work
[36]). Note that [6] and [8] are improved by [9].

Apart from studying the structure of R(OK [G]), more has been done on realizable classes
and, as an example of them, we cite the work by Adebisi Agboola [1] (which improves a
previous result by K. Foster [16]).
Given G abelian, once one knows the description of R(OK [G]) in terms of the Stickel-
berger group St(OK [G]), one may wonder if the G-module structures of rings of integers
of G-Galois K-algebras are equidistributed among the set of realizable classes. Agboola
managed to prove that the asymptotic number (with a slight restriction) of tame G-
Galois extensions over K which realize a class c ∈ R(OK [G]), counted by the absolute
norm of the product of ramified primes, does not depend on the given class c (for details
see Chapter 5).

Some motivations to study realizable classes are given, as noted in [1], by the fact for ex-
ample that they arise in looking for an explicit analog of known Adams–Riemann–Roch
Theorems for Cl(OK [G]) (see [2, §4]).
Moreover realizable classes are useful to deduce some results on another related open sub-
ject in number theory: the problem of Steinitz classes. Given L a G-Galois K-algebra,
we know that OL ∼= O

[L:K]−1
K ⊕ I as OK-modules, where I is a fractional ideal of OK .

The associated class [I] in Cl(OK) is called the Steinitz class of L/K. Analogously to the
set of realizable classes, the collection of all classes in Cl(OK) which can be obtained as
Steinitz classes of tame G-Galois field extensions of K defines the set of Steinitz classes
denoted by Rt(OK , G). The set of realizable classes and the set of Steinitz classes are
linked by the restriction map resG{1} : Cl(OK [G]) −→ Cl(OK) (see §1.8.1), indeed under
this map resG{1}(R(OK [G])) = Rt(OK , G).

In this thesis, we shall investigate some questions on the problem of realizable classes with
particular regard to the Stickelberger subgroup St(OK [G]), introduced by McCulloh, and
we will study some new problems related to the equidistribution result of Agboola.

We shall start in Chapter 1 with some preliminary notions and prerequisites on the
locally free classgroup Cl(OK [G]), giving a good reference for people interested in the
subject.

Chapter 2 will be devoted to McCulloh’s results, in particular we shall give the unpub-
lished proof (by McCulloh) of the inclusion R(OK [G]) ⊆ St(OK [G]) in the non-abelian
case (Theorem 0.0.5). The chapter will finish with a sketch of the proof of the equality
given in Theorem 0.0.4, of which the original version is contained in [28].

Chapter 3 will contain the first new results. After a general comparison of the Stick-
elberger group St(OK [G]) and Cl◦(OK [G]) (see above), we will explicitly compute, just
using its definition, St(Z[G]) in the cases G = Cp, a cyclic group of prime order p, and



6 Chapter 0 Introduction

G = Dp, a dihedral group of order 2p (with p an odd prime). In particular we shall prove
the following theorem.

Theorem 0.0.6. Let p be an odd prime number. If G = C2, a cyclic group of order 2,
or G = Cp, a cyclic group of order p or G = Dp, the dihedral group of order 2p, then
St(Z[G]) = 1.

In Chapter 4 we shall study the behavior of St(OK [G]) under the change of base field
K. Namely, if L is a number field containing K, there is a restriction map NL/K :

Cl(OL[G]) −→ Cl(OK [G]) (see §1.8.3). We shall prove the following result.

Theorem 0.0.7. For every finite group G,

NL/K(St(OL[G])) ⊆ St(OK [G]).

This will have some nice consequences, such as a new proof of a result of Taylor, contained
in [43], which says that the ring of integers of an abelian G-Galois tame extension over
K is free over Z[G].

In the last chapter, restricting ourselves to the abelian case, we will start the investigation
of the connections between the work of Agboola [1] and the work of M. M. Wood [47].
Given G a finite abelian group, in [1], Agboola studied the distribution of the G-Galois
algebras over a number fieldK with respect to the group of realizable classes, while Wood,
in [47], studied the distribution of local behaviors in abelian G-Galois field extensions.
The main result of the chapter will consist of a description of Rts,p(OK [G]), the set of
realizable classes given by tame G-Galois K-algebras totally split at a given finite prime
p of K. After introducing the group Stts,p(OK [G]), a modified version of the original
Stickelberger subgroup St(OK [G]), we shall prove the following result.

Theorem 0.0.8. Let G be a finite abelian group. Then

Rts,p(OK [G]) = Stts,p(OK [G]).

In the second part of the chapter we will adapt the equidistribution results contained in
[1] to Rts,p(OK [G]). Namely, let us consider A′G(K) the set of isomorphism classes of G-
Galois K-algebras unramified at the primes dividing |G|. Moreover, given L ∈ A′G(K),
let us denote by D(L/K) the absolute norm of the product of primes of OK that ramify
in L. Then, given c ∈ Rts,p(OK [G]), let us define

Prts,p(c) := lim
X→∞

]{[L] ∈ A′G(K)|Lp tot. split at p, [OL] = c, D(L/K) ≤ X}
]{[L] ∈ A′G(K)|D(L/K) ≤ X}

.

In the last chapter we shall prove the following result.
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Theorem 0.0.9. Given c ∈ Rts,p(OK [G]), the limit Prts,p(c) exists and it does not
depend on the given realizable class c.

The chapter will end by highlighting the connections between [1] and [47] with regard to
the totally split situation. In particular we shall prove that, with regard to the totally
split case, the events considered by Agboola and Wood, respectively, are independent if
and only if Rts,p(OK [G]) = R(OK [G]).

0.1 Notations

Let K be a number field and OK its ring of integers. Given a place p of K, we denote by
Kp its completion with respect to the metric defined by p: if p is a finite place, then Kp

is a non-archimedean field which is a finite extension of Qp (where p is the characteristic
of OK/p); if p is an infinite place, then Kp is isomorphic to R or C.
We choose an algebraic closure Kc (resp. Kc

p) of K (resp. Kp) and, for each (finite or
infinite) prime p of K, we fix an embedding îp : Kc −→ Kc

p . Let ΩK (resp. ΩKp) denote
the Galois group of Kc/K (resp. Kc

p/Kp). When no confusion arises, to simplify the
notation, we will just write Ω (resp. Ωp). We denote by ip the corresponding embedding
of Ωp into Ω.
The symbol Ωnr (resp. Ωnr

p ) will denote the Galois group of the maximal unramified (at
finite places) extension Knr/K (resp. Knr

p /Kp) in Kc (resp. Kc
p) and Ωt (resp. Ωt

p) will
be the Galois group of the maximal tame extension Kt/K (resp. Kt

p/Kp) in Kc (resp.
Kc

p). At the infinite places we take Knr
p = Kt

p = Kc
p .

If p is a finite place, let OK, p be the completion of OK with respect to p (which also
coincides with the ring of integers of the completion Kp) and Oc

K, p the integral closure
of OK in Kc

p . If p is an infinite place, we define OK, p to be Kp.

Let J(K) denote the group of idèles ofK, i.e. the restricted direct product of {K×p }p with
respect to {O×K, p}p, where p runs through the places of K (both finite and infinite). We
consider K× diagonally embedded in J(K) and U(OK) will denote the product

∏
pO
×
K, p.

Similarly, given a finite group G, the idèle group J(K[G]) is the restricted direct product
of the unit groups of group rings {Kp[G]×}p with respect to {OK, p[G]×}p, where p runs
through the places of K.
The notation J(Kc) (resp. U(OcK)) will denote the direct limit of the idèle groups J(L)

(resp. U(OL)), as L runs over all finite Galois extensions of K inside Kc.

When we consider a representative for a class in a class group, we use the brackets [− ]

to denote its class (e.g. [OL] denotes the class in Cl(OK [G]) corresponding to the ring of
integers OL of a tame G-Galois algebra L/K).

Throughout this dissertation, G will denote a finite group, Gab its abelianization and Ḡ
its set of conjugacy classes. Given s ∈ G, we denote by s̄ its conjugacy class.
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The set of irreducible complex characters of G will be denoted by Irr(G) (occasionally
by Ĝ). The symbol RG will denote the ring of virtual characters of G, i.e. the ring of
Z-linear combinations of elements in Irr(G). The complex conjugate of a character χ
will be denoted by χ̃.

If Y is a group acting on the left on a set X, we denote the action of y ∈ Y on
x ∈ X by the symbol xy (occasionally by y · x); note in particular that (xy)z = xzy.
If Y is a group acting on two groups H and H ′, we denote by HomY (H,H ′) the set
of all group homomorphisms from H to H ′ fixed by the action of Y ; in other words,
let f ∈ Hom(H,H ′) (group homomorphisms), then f ∈ HomY (H,H ′) if and only if
f(hy) = (f(h))y , for all y ∈ Y and h ∈ H.

If we choose an embedding of Kc in C, then the values of the irreducible characters of
G are in Kc and we get that the absolute Galois group Ω naturally acts on the left on
Irr(G) by χω(s) = χ(s)ω, for all ω ∈ Ω and s ∈ G. We extend this action by linearity
to RG. When we have an Ω-action on a set, we can always consider a Ωp-action on the
same set, via the embedding ip.

All these notations and further ones that we will encounter in this thesis are listed in the
Nomenclature page.



Chapter 1

Prerequisites

In this chapter we will recall some general results linked to the notion of locally free class
group. Throughout this chapter, unless otherwise stated, let R be a Dedekind domain
with quotient field an algebraic number field K.

Definition 1.0.1 (Finite dimensional separable algebra). Let L be a field. A finite
dimensional separable L-algebra B is a finite dimensional semisimple L-algebra such
that the center of each simple component of B is a separable field extension of L.

As proved in [30, Theorem 7.18], the following result holds.

Theorem 1.0.2. Let B be a finite dimensional L-algebra. The following are equivalent:

- B is a finite dimensional separable L-algebra;

- There exists a finite separable field extension E/L such that

E ⊗L B ∼=
s∏
i=1

Mni(E),

as E-algebras, where Mni(E) is the E-algebra of ni × ni matrices over E and s is
a natural number;

- For every field F ⊇ L, F ⊗L B is semisimple.

Thus, from now on, given our algebraic number field K, let us consider a finite dimen-
sional separable K-algebra A.

Definition 1.0.3 (Order). Let S be a Dedekind domain with field of fractions L. An
S-order in a finite dimensional separable L-algebra B is a subring Γ of B such that:

- S is contained in the center of Γ;

9
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- Γ is finitely generated as S-module;

- L · Γ = B.

Thus, from now on, given our K-algebra A, let us take an R-order Λ in A.

Definition 1.0.4 (Λ-lattice). A Λ-latticeM is a left Λ-module which is finitely generated
and projective as R-module.

All these definitions are taken from [14, §23].

We shall start this chapter by introducing the definition of locally free module.

1.1 Locally free modules

Given a maximal ideal p of R, let us denote by Rp its completion with respect to the
metric induced by p. We then define

Λp := Rp ⊗R Λ.

Analogously given a Λ-lattice M , let us define Mp := Rp ⊗RM .

Definition 1.1.1 (Locally free Λ-lattice). Let n ∈ Z≥0. A Λ-lattice M is said to be
locally free of rank n (or locally free of constant rank n) if

Mp
∼= Λnp , as Λp−modules,

for each maximal ideal p of R. We then define rk(M) := n.

Example 1.1.2. In this thesis we will frequently consider G-Galois field extensions L/K,
with G a finite group. Then the group ring K[G] is clearly a finite dimensional separable
K-algebra and if we consider R = OK (the ring of integers of K), then OK [G] is an
OK-order and OL is an OK [G]-lattice.
Moreover, when the G-Galois field extension L/K is tame, Noether’s Criterion (see Chap-
ter 0) states that OL is a locally free OK [G]-module of rank 1.

Note that in our definition of locally free Λ-lattices of rank n we could consider R(p)

(resp. Λ(p) := R(p) ⊗R Λ and M(p) := R(p) ⊗R M), where R(p) is the localization of R
with respect to a maximal ideal p of R, instead of Rp (resp. Λp and Mp). Replacing
completions by localizations gives an equivalent version of Definition 1.1.1, due to the
following result contained in [14, Proposition 30.17].

Proposition 1.1.3. Let p be a maximal ideal of R and let M and N be two Λ-lattices.
Then

Mp
∼= Np as Λp-modules ⇐⇒M(p)

∼= N(p) as Λ(p)-modules.
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Remark 1.1.4. The same definition of locally free Λ-lattices applies even when K is just
the fraction field of a Dedekind domain R (we do not need the fact that K is assumed to
be an algebraic number field). In fact, the results in section 1.2 and 1.3 also hold in this
more general setting.

1.2 Link with projective modules

The locally free notion is strictly connected to the definition of projective modules, as
we shall explain in this section.

Proposition 1.2.1. Let Λ be an R-order and M a Λ-lattice. If M is a locally free
Λ-lattice of rank n then M is a finitely generated projective Λ-module.

Proof. Since, for every maximal ideal p of R, the lattice Mp is free as a Λp-module (and
the same is true considering localizations), we deduce that, for all maximal ideals p,
the functor HomΛ(p)

(M(p),−) from the category of Λ(p)-modules to the category of R(p)-
module is exact. This implies, sinceM is finitely presented, that HomΛ(M,−)⊗RR(p) is
exact for all p. It follows that the functor HomΛ(M,−) from the category of Λ-modules
to the category of R-modules is also exact. ThereforeM is projective as a Λ-module.

The reverse implication is not in general true. Nevertheless when Λ is a group ring R[G]

(with G a finite group and R satisfying an extra hypothesis detailed below), for every
finitely generated projective Λ-module M there exists an n ∈ Z≥0, such that M is a
locally free Λ-lattice of rank n. Before giving the precise result let us recall the following
lemma contained in [33, Exercise 16.4].

Lemma 1.2.2. Let G be a finite group. Suppose that for every prime number p dividing
the order of the group |G| there exists a maximal ideal p of R with R/p of characteristic p.
Then if M is a projective R[G]-module this implies that K ⊗RM is a free K[G]-module.

Thanks to this lemma, we can now prove the following result.

Proposition 1.2.3. Let Λ be the group ring R[G], with G a finite group and R satisfying
the hypothesis of Lemma 1.2.2. Then every finitely generated projective Λ-module M is
a locally free Λ-module of rank n, for some n ∈ Z≥0.

Proof. In [41] Richard G. Swan showed that, given a maximal ideal p of R and two
projective Rp[G]-modules M and M ′ (where G is a finite group), then, if Kp ⊗M is
isomorphic to Kp ⊗M ′, this implies that M ∼= M ′. Thus combining this result with
Lemma 1.2.2, the proof follows.



12 Chapter 1 Prerequisites

Example 1.2.4. Of course, the ring of integers OK satisfies the conditions of Proposition
1.2.3. So, if Λ = OK [G], an OK [G]-lattice is projective if and only if there exists an
n ∈ Z≥0, such that M is a locally free OK [G]-lattice of rank n.

1.3 Genus and locally free class group

We say that two Λ-lattices M and N are in the same genus (or are locally isomorphic)
and we denote it by M ∨N (or N ∈ g(M)), if

Mp
∼= Np, ∀ p maximal ideal of R,

as Λp-modules. A Λ-lattice in g(Λ) is usually called a locally free left Λ-ideal in A.

Again, by Proposition 1.1.3, it is irrelevant if in the previous definition we use localiza-
tions instead of completions.
Our definition implies that, if M and N are in the same genus, then also for p = 0 (i.e.
for all prime ideals of R) we have M0 = KM ∼= KN = N0. This follows from the fact
that for every maximal ideal p we have KM ∼= KM(p) (resp. KN ∼= KN(p)).

Definition 1.3.1 (Maximal order). A maximal order Γ in A is an R-order such that,
for all R-orders Γ′ with Γ ⊆ Γ′, we have Γ = Γ′.

Remark 1.3.2. In general checking that two Λ-lattices M and N are in the same genus
reduces to checking local isomorphism at a finite set of maximal ideals. More precisely,
if

S(Λ) := {p |Λp is not a maximal Rp-order in Ap}

is not empty, for having M ∨ N it is sufficient that Mp
∼= Np for all p ∈ S(Λ). This

follows from the fact that if Mp
∼= Np for at least one maximal ideal, then KM ∼= KN ,

which implies that KMp
∼= KNp for all maximal ideals. Now, when Λp is a maximal Rp-

order in Ap, if KMp
∼= KNp as Ap-modules then Mp

∼= Np as Λp-modules ([14, Exercise
26.11]).
If Λ is maximal, the genus of M is given by the isomorphism class of KM .
In some cases S(Λ) can be determined explicitly, e.g. if Λ = R[G], with G a finite
group, then S(R[G]) = {p | p contains |G|} (this follows from [14, Proposition 27.1] which
explains that if Λ′ is a maximal order in K[G] then R[G] ⊆ Λ′ ⊆ |G|−1R[G]).

An application of a Lemma by Roiter ([14, 31.6]) gives us a first indication on the direct
sum of Λ-lattices in the same genus: if L,M,N are Λ-lattices in the same genus, then
there exists L′ ∈ g(M) such that

M ⊕N ∼= L⊕ L′. (1.1)



Chapter 1 Prerequisites 13

In the same vein we have also the following property ([15, Proposition 49.3]): given two
Λ-lattices M and N , if M ∨ N r, with r a natural number, then M ∼= N r−1 ⊕M ′ with
M ′ ∨N .

In order to define the locally free class group for a general order Λ we have to focus our
investigation on the elements in g(Λ).

Given a Λ-lattice M in g(Λ), since KM ∼= A, up to an isomorphism, we can consider
M ⊂ A. For every maximal ideal p of R we have Mp

∼= Λp and so, considering this
isomorphism as the restriction of an element in AutAp(Ap) ∼= A×p , we can write

Mp = Λp · αp with αp ∈ A×p , ∀ p maximal ideal of R.

Moreover, given m 6= 0 in M ⊂ A, then Λ ·m and M differ at only finitely many places,
as do Λ and Λ ·m; herebyMp = Λp a.e. and so αp ∈ Λ×p a.e. (actually we can take αp = 1

a.e.).

Definition 1.3.3. We define the group J∗(A) as the group of elements {x = (xp)p ∈∏
pA
×
p : xp ∈ Λ×p a.e.}, where the product is taken over all maximal ideals p of R.

Moreover U∗(Λ) denotes the set of elements x = (xp)p in J∗(A) with xp ∈ Λ×p for every
maximal ideal p of R.

Remark 1.3.4. J∗(A) does not depend on the choice of Λ, i.e. if we take another R-
order Λ′ spanning A over K, we have that Λp = Λ′p a.e. and so they give the same group
J∗(A).

Thus to every Λ-lattice M in g(Λ) we can associate an element α ∈ J∗(A). Conversely,
given α ∈ J∗(A), we can recover the Λ-lattice M as

M = I(α) :=
⋂

pmax

{A ∩ Λp · αp}

which is evidently in g(Λ).
So considering I(α) and I(β), two Λ-lattices in the genus of Λ, we observe that

I(α) ∼= I(β)⇔ I(α) = I(β) · a with a ∈ A× ⇔ Λp · αp = Λp · βp · ip(a) ∀ p max. ideal,

where ip embeds A into Ap. This shows that

I(α) ∼= I(β) ⇐⇒ αp = up · βp · ip(a) with up ∈ Λ×p , ∀ p maximal ideal

⇐⇒ α = u · β · a where u ∈ U∗(Λ) and a ∈ A×.

We are now ready to define Cl(Λ) the locally free class group associated to the R-order Λ.
We can reformulate our formula (1.1) in terms of idèles: given α, β ∈ J∗(A) we have
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from [14, 31.19]:
I(α)⊕ I(β) ∼= Λ⊕ I(αβ). (1.2)

It would be nice to define a group law on the isomorphism classes of Λ-lattices in g(Λ) as
[I(α)]+[I(β)] = [I(αβ)] (where the symbol [−] denotes an isomorphism class), reflecting
the group structure of J∗(A), but unfortunately, for some particular Λ’s (see [42] for an
explicit example),

Λ⊕ I(γ) ∼= Λ⊕ I(γ′) ; I(γ) ∼= I(γ′)

and so the addition would not be well defined in these cases.
To avoid these “cancellation problems” we have to introduce the notion of stably isomor-
phic Λ-lattices: we say that M and N , two Λ-lattices, are stably isomorphic if there
exists a natural number k such that

M ⊕ Λk ∼= N ⊕ Λk. (1.3)

Note that this definition does not imply that M ∼= N as already noted before. Just in
some special cases this notion is equivalent to the notion of isomorphic Λ-lattices; the
next section will develop this topic in detail.

Remark 1.3.5. The Bass Cancellation Theorem ([15, 41.20]) allows us to restrict our
previous definition to k = 1, since it proves the following implication

M ⊕ Λk ∼= N ⊕ Λk ⇒M ⊕ Λ ∼= N ⊕ Λ.

If now [M ]s denotes the stable isomorphism class of M , we define

Cl(Λ) := {[M ]s : M ∈ g(Λ)} (1.4)

and we call it the locally free class group of Λ. Now, on this set, using (1.1), we have a
well defined group law given by

[M1]s + [M2]s = [M3]s, (1.5)

where, M3 ∈ g(Λ) such that M1 ⊕M2
∼= Λ⊕M3.

This addition law is well defined since if we take another representative M ′1 of [M1]s

(resp. M ′2 of [M2]s) and M ′3 is such that M ′1⊕M ′2 ∼= Λ⊕M ′3, we have that there exists a
natural number k such that M1⊕Λk ∼= M ′1⊕Λk (resp. M2⊕Λk ∼= M ′2⊕Λk). Therefore

M3 ⊕ Λ(2k+1) ∼= M1 ⊕ Λk ⊕M2 ⊕ Λk ∼= M ′1 ⊕ Λk ⊕M ′2 ⊕ Λk ∼= M ′3 ⊕ Λ(2k+1)

which proves that [M3]s = [M ′3]s. This operation is clearly commutative and associative,
with unit [Λ]s and [I(α−1)]s inverse element of [I(α)]s.
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From (1.2), we see that we have a surjective group homomorphism from J∗(A) to Cl(Λ),
which sends α ∈ J∗(A) to [I(α)]s ∈ Cl(Λ).

Since K is a global field, the Jordan-Zassenhaus Theorem (see [30, Theorem 26.4]) tells
us that the number of isomorphism classes of Λ-lattices in g(Λ) is finite, so a fortiori
Cl(Λ) is finite.

Example. If Λ = R, then the locally free class group Cl(R) is exactly the ideal class
group of R.

1.4 Cancellation law

We have already seen that, given two Λ-lattices M and N such that M ⊕Λk ∼= N ⊕Λk,
for a natural number k, then this does not generally imply M ∼= N . In this section we
will recall some results which explain when two lattices which are stably isomorphic are
also isomorphic. We call this property locally free cancellation and in this case we say
that Λ has locally free cancellation.

With our assumption on K to be an algebraic number field, a sufficient condition to have
locally free cancellation is that A (as at the beginning of the chapter) satisfies the Eichler
condition. We define this condition just in the case when R is the ring of integers of K,
which is actually the original case considered by Eichler; the generalization due to Swan
to every K-algebra A with K global field can be found in [15, §51A].

Definition 1.4.1 (Totally definite quaternion algebra). A simple K-algebra B is totally
definite quaternion if its center Z(B) is a totally real number field and for every embedding
Z(B) ↪→ R the scalar extension B ⊗Z(B) R is the Hamilton quaternion algebra.

Definition 1.4.2 (Eichler’s condition, when K is a number field). A K-algebra A satis-
fies the Eichler condition when none of the simple components of A is a totally definite
quaternion algebra.

When A = K[G], which will be our case in the sequel, [15, Theorem 51.3] lists all the
groups G for which A does not satisfy the Eichler condition. In particular when G is
abelian or of odd order the Eichler condition is always satisfied.

Using this definition we have the following fundamental result.

Theorem 1.4.3 (Jacobinski Cancellation Theorem). If A, as defined at the beginning of
the chapter, satisfies the Eichler condition, then every OK-order Λ in A has locally free
cancellation.

Proof. See [15, 51.24].
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Note that the same result is true if we replace OK with a Dedekind domain R with field
of fractions a global field K.

The Eichler condition is actually just a sufficient condition to have locally free cancel-
lation, indeed for example when Λ = Z[G], various authors such as J. Martinet and R.
G. Swan investigated the groups G for which the locally free cancellation holds for the
integral group ring even if the Eichler condition does not. For details see [15, §51C].

Remark 1.4.4. If Λ is an order with locally free cancellation, we deduce that Cl(Λ), as
previously defined, consists now of the isomorphism classes of Λ-lattices in g(Λ) and we
have that [M ]s = 1 if and only if M is Λ-free.

Remark 1.4.5. If R is a d.v.r. then locally free cancellation always holds ([15, Exercise
39.1]).

1.5 Other (equivalent) definitions of the locally free class
group

In the literature we also find other definitions of Cl(Λ) through the Grothendieck group
K0(Λ) of projective Λ-modules. We shall see in this section that they all coincide with
our previous one.

Definition 1.5.1 (The Grothendieck group of projective modules). The Grothendieck
group K0(Λ) of projective Λ-modules is defined as the abelian group with generators the
isomorphism classes [M ] of finitely generated projective Λ-modules under the relation
[M ] + [N ] = [M ⊕N ].

By the definition of projective module, we immediately understand that every element
x ∈ K0(Λ) can be written as [F ] − [X], where F is a free Λ-module and X a finitely
generated projective Λ-module.

Remark 1.5.2. When Λ is equal to OK [G], by Example 1.2.4, the Grothendieck group
K0(OK [G]) can be defined as the abelian group with generators the isomorphism classes
[M ] of locally free OK [G]-lattices with the sum defined as before.

The next proposition shows that we can also define the locally free class group Cl(Λ) as
the kernel of the following map

ψ : K0(Λ) −→
∏
pmax

K0(Λp),

[M ] 7−→
∏
pmax

[Mp].
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Proposition 1.5.3. Let φ : Cl(Λ) −→ K0(Λ) be the group homomorphism sending
[M ]s ∈ Cl(Λ) to [Λ]− [M ] ∈ K0(Λ). Then the following sequence is exact

0 // Cl(Λ)
φ
// K0(Λ)

ψ
//
∏

pmaxK0(Λp).

Proof. Since [M ] = [N ] in the Grothendieck group if and only if M is stably isomorphic
toN (see [15, Proposition 38.22]), we see that φ is injective. Moreover we also understand
that an element x ∈ K0(Λ), written as before ([F ] − [X]), is in the kernel of ψ if and
only if Fp is stably isomorphic to Xp, which, by Remark 1.4.5, is equivalent to say that
Fp
∼= Xp for every p (or in other words X ∈ g(F )). Moreover if F is free of rank k, by

the property below (1.1), we have that [X] = [Λ]k−1 + [M ] and x = [Λ] − [M ], where
M ∈ g(Λ). Thus, looking at the definition of Cl(Λ) (see 1.4), this shows that x ∈ K0(Λ)

is in the kernel of ψ if and only if it is in the image of φ, concluding the proof.

Other equivalent definitions of the locally free class group Cl(Λ) exist, considering the
following Grothendieck group.

Definition 1.5.4. The Grothendieck group KLF
0 (Λ) is defined as the abelian group with

generators the isomorphism classes [M ] of locally free Λ-lattices of constant rank, under
the relation [M ] + [N ] = [M ⊕N ].

Remark 1.5.5. Note that if Λ = OK [G], then by Section 1.2, the Grothendieck group
K0(Λ) coincides with KLF

0 (Λ).

When A = K[G], with G a finite group, and Λ is an R-order in A, another way of
defining Cl(Λ), used for example by Fröhlich in his works (see for example [17, §2]), is
through the surjective homomorphism rkΛ : KLF

0 (Λ) −→ Z, defined extending linearly
the map sending [M ] 7→ rk(M) (see Definition 1.1.1). Using this homomorphism, Cl(Λ)

is defined as its kernel (Cl(Λ) := Ker(rkΛ)).
As before we can see every element x in KLF

0 (Λ) as [F ]− [X], where F is a free Λ-module
of rank k and X a locally free Λ-lattice of constant rank. Then x ∈ Ker(rkΛ) if and only
if X is of constant rank k, or in other words X ∈ g(Λk). Then, as seen before, we can
write [X] = [Λ]k−1 +[M ], withM ∈ g(Λ), which proves the equivalence of this definition
with the previous one.

Equivalently, always considering Λ an R-order in A = K[G], the locally free class group
Cl(Λ) can also be defined as the cokernel of the homomorphism

Z −→ KLF
0 (Λ),

obtained extending the map which sends a natural number n to the class [Λn] (see for
example [19, §2]).

Remark 1.5.6. If the group G is abelian, then the locally free class group Cl(OK [G]) is
isomorphic to the Picard group Pic(OK [G]) (see [4, Part 4, Corollary 3.8]).
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1.6 Idelic representation of Cl(Λ)

In this section we recall the idelic representation of Cl(Λ) presented by A. Fröhlich in [17].
As in the original paper, except for 1.6.2, we restrict our study to the case R equal to
OK . We recall from the beginning that A is assumed to be a finite dimensional separable
(and so semisimple) K-algebra and that Λ is an R-order in A.

Moreover from now on we also need to add the infinite places of K to our definition of
the idelic group J∗(A), in particular we shall need the following definition.

Definition 1.6.1. Let us define Λp to be equal to Ap at the infinite places p of K. Then
the idelic group J(A) is defined as the set of elements (xp)p belonging to the product over
all places of K (also infinite)

∏
pA
×
p , such that xp ∈ Λ×p almost everywhere.

The group U(Λ) is now defined as the set of elements x = (xp)p in J(A) with xp ∈ Λ×p

for every place p of K.

Given an element α ∈ J∗(A) we embed it in J(A) imposing αp = 1 at every infinite
place.

The main role in the idelic description of Cl(Λ) is played by the reduced norm map on A.

1.6.2 Reduced norm

Note that all the definitions and results contained in this subsection hold for every field
K (not necessarily an algebraic number field). Let us denote by d the dimension of A as
a K-algebra.

Given an element a in A and chosen a basis of A, we can define the characteristic
polynomial of a over K, denoted by chpA/K(a), as the characteristic polynomial of the
matrix associated to the K-linear transformation ma : A −→ A, which sends x to ax. If
Ta is the associated d× d matrix, then chpA/K(a) := det(X1d−Ta). The trace of a over
K, denoted by TrA/K(a), and the norm of a over K, denoted by NA/K(a), are defined
as the following coefficients of the characteristic polynomial:

chpA/K(a) = Xd − TrA/K(a)Xd−1 + · · ·+ (−1)dNA/K(a).

If we consider the simple algebra A = Mn(K) and we take a matrix a ∈ A, we immedi-
ately realize that

TrA/K(a) = n(Tr(a))

NA/K(a) = (det(a))n,

where Tr(a) (resp. det(a)) is the usual trace (resp. determinant) of the matrix a.
This suggests that it would be useful to have some tools which generalize the previous
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relations to a general finite dimensional separable K-algebra, with instead of the trace
and determinant of the matrix a a “modified version” of the trace and norm maps. This
is the main motivation which leads to the notions of reduced trace and reduced norm.

Definitions and properties

From the definition of A and Theorem 1.0.2, there exists E, a finite separable field
extension of K, such that E splits A, i.e. such that

E ⊗K A ∼=
s∏
i=1

Mni(E);

where this isomorphism of E-algebras, that we call h, sends 1⊗a to the product
∏s
i=1 Tai ,

with Tai ∈ Mni(E), for 1 ≤ i ≤ s.
The reduced characteristic polynomial of a over K, denoted by rchpA/K(a), is then
defined as the following polynomial of degree m :=

∑
ni

rchpA/K(a) :=

s∏
i=1

chp(Tai) =

s∏
i=1

det(X1ni − Tai). (1.6)

It can be proved that rchpA/K(a) ∈ K[X] and that this definition does not depend on
the choice of E and of the isomorphism h (see [30, Chapter 2, §9]).
For the proof it is sufficient to consider the case where A is a central simple K-algebra.
In this situation there exists E as above with an isomorphism h : E ⊗K A −→ Mn(E),
where n2 is the dimension of A over K. Then in this case every other isomorphism
h′ : E ⊗K A −→ Mn(E) is related to h by an inner automorphism, i.e. for every u ∈
E ⊗K A we have h(u) = th′(u)t−1 with t ∈ Mn(E), and consequently the characteristic
polynomial remains the same. Moreover it does not depend on the choice of the field
extension E, since if we consider another field extension E′ with the property above
we find a field F such that both E and E′ embed inside it; F is again a splitting field
and, considering the original characteristic polynomials “inside” F , we see that they are
actually the same. Finally rchpA/K(a) ∈ K[X] in this case since we can choose E to be
Galois over K with Galois group G and show that s fixes rchpA/K(a) for every s ∈ G.

Since (chp(Tai))
ni = chpMni (E)/E(Tai) for every i and since E ⊗K A ∼=

∏s
i=1 Mni(E), we

deduce that

s∏
i=1

(chp(Tai))
ni =

s∏
i=1

chpMni (E)/ETai = chpE⊗KA/E(1⊗ a) = chpA/K(a), (1.7)

which allows us to understand that rchpA/K and chpA/K have the same irreducible
factors.

We can then write

rchpA/K(a) = Xm − (rtA/K(a))Xm−1 + · · ·+ (−1)mrnA/K(a),
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where the reduced trace of a is defined as rtA/K(a) and the reduced norm of a as rnA/K(a).

The reduced trace behaves as the usual one, namely it is a K-linear map from A to K
and

rtA/K(ab) = rtA/K(ba).

While for the reduced norm we have the following formulas:

rnA/K(ab) = rnA/K(a)rnA/K(b)

rnA/K(ka) = kmrnA/K(a),

for every k ∈ K.

If A is a separable simple K-algebra with center L (so L separable over K), let dimLA =

u2 and dimKL = v, then E can be chosen such that E ⊗K A ∼=
∏v
i=1 Mu(E) and for

every a ∈ A, from (1.6) and (1.7), we obtain

chpA/K(a) = (rchpA/K(a))u

TrA/K(a) = u(rtA/K(a))

NA/K(a) = (rnA/K(a))u.

If A is a separable K-algebra (so semisimple) we can decompose it in simple algebras as
A = A1 × · · · × At, where each simple algebra Ai has center Ki a field extension of K
and dimKiAi = m2

i . If a ∈ A is equal to (a1, . . . , an), extending the previous formulas
to this situation, we have

TrA/K(a) =

t∑
i=1

mi · rtAi/K(ai)

NA/K(a) =
t∏
i=1

(rnAi/K(ai))
mi

and moreover rtA/K =
∑t

i=1 rtAi/K and rnA/K =
∏t
i=1 rnAi/K .

Example 1.6.3. Let A = K[G], with K of characteristic 0 and G abelian, then the
reduced norm (resp. reduced trace) coincides with the usual norm (resp. trace). Indeed
A ∼=

∏s
i=1Ki, where each Ki is a cyclotomic extension. Then it is easy to see that

rnA/K(a) =

s∏
i=1

rnKi/K(ai) =

s∏
i=1

NKi/K(ai) = NA/K(a),

where a =
∏
ai. Analogously for the trace.

Other examples on explicit computations of reduced traces and norms can be found in
[14, §7D].
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Remark 1.6.4. As already noted at the beginning of the section, the reduced norm map
can be defined for every field K (not necessarily an algebraic number field). In this general
context, one of the main reason to use rtA/K instead of the usual trace map is that, when
A is a separable simple K-algebra of dimension m2 over its center, it allows us to have
a non-degenerate bilinear form from A×A to K even if char(K) divides m (which does
not hold for the usual trace). This result can be extended to every finite dimensional
separable K-algebra. For details on that see [14, §7D].

The image and kernel of the reduced norm map

We see from [14, §7D] that, when we consider A a central simple K-algebra, the image
and the kernel of the reduced norm map are well known.
Namely as regards the image, in the local case we have the following theorem.

Theorem 1.6.5. Let p be a finite place of K and A a central simple Kp-algebra, then
rnA/Kp

(A×) = K×p .

Globally, the result is a bit more delicate and in order to explain it we have to define the
subgroup K×+ in K×. This is defined as the set of elements x ∈ K× such that xp > 0 at
each real prime p of K ramified in A. For an infinite prime p to be ramified in A means
that Ap is a central simple R-algebra such that Ap

∼= Mn(H), where H is the skewfield
of real quaternions (remember that every central simple R-algebra has to be of the form
Mn(R) or Mn(H), since R and H are the only finite dimensional skewfields with center
R). Note that this definition even if not explicit in the notation depends on the algebra
A and not just on K. Then in the global case we have the following result.

Theorem 1.6.6 (Hasse–Schilling–Mass Norm Theorem). Let A be a central simple K-
algebra. Then rnA/K(A×) = K×+ .

This result also holds for K a global field (not necessarily an algebraic number field).

Remaining in the case of A a central simple K-algebra, both Nakayama and Matsushima,
for the local case, both Wang and Platonov, for the global one, proved that the kernel
of rnA/K : A× → K× is equal to the commutator subgroup [A×, A×]. For details and
proofs see [14, §7D] and [30, §33].

Extending now these results to the more general case of A a separable K-algebra, with
K a global field, we can consider its decomposition in simple components

A ∼= A1 × · · · ×An

where each Ai is a simple algebra with center Ki. Then we can consider rnAi/Ki : A×i →
K×i , which combine to yield the reduced norm rnA/Z(A) : A× → Z(A)×, where Z(A) is
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the center of the algebra A and Z(A)× =
∏
K×i .

Using the previous results, we have that for A a separable K-algebra

rnA/Z(A)(A
×) = Z(A)×+

Ker(rnA/Z(A)) = [A×, A×],

where Z(A)×+ =
∏
K×i,+ and K×i,+ is analogously defined as for K×+ with respect now to

the simple component Ai.

Locally for every finite place p, if we consider Ap, we have that rnAp/Z(Ap) is surjective
on Z(Ap)

× with kernel the commutator subgroup, while rnAp/Z(Ap)(Λ
×
p ) ⊆ Z(Λp)

×, with
equality when Λp is a maximal order.
Hence we can consider an idelic version of the reduced norm

rnJ(A)/J(Z(A)) : J(A)→ J(Z(A)),

where now the kernel, denoted by J(A)′, is equal to the closure in J(A) of J(A) ∩∏
p[A
×
p , A

×
p ] (which coincides with the commutator subgroup of J(A), see [15, Exercise

51.1]); while the image is given by J(Z(A))+ =
∏
J(Ki)+ (subgroup of idèles positive

at the real primes ramifying in A), by the behavior of the reduced norm at the infinite
real primes.

We conclude this section with a remark which will be useful in the sequel.

Remark 1.6.7. GivenM a maximal R-order in A,

rnA/Z(A)(U(M)) = U(O)+,

where O is the maximal order of Z(A). Note that O is isomorphic to
∏
OKi, with OKi

the ring of integers of Ki for every i (as above the Ki’s are the centers of the simple
components), and U(M) and U(O) are special cases of U(Λ) defined in Definition 1.6.1.
Now U(O)+ denotes U(O) ∩ J(Z(A))+. The proof is based on the fact cited before that
rnAp/Z(A)p

(Λ×p ) = Z(Λp)
× when Λp is a maximal order. For details we refer to [17].

1.6.8 Idelic description

Let J(A)′ be defined as the commutator subgroup [J(A), J(A)]. In [17], Fröhlich showed
that

Cl(Λ) ∼=
J(A)

J(A)′ ·A× · U(Λ)
, (1.8)

where the isomorphism sends [I(α)] 7→ α (see Section 1.3).
If we denote the reduced norm from A to Z(A) just by rn, applying it to the right-hand
quotient above and using the fact that rn(J(A)) = J(Z(A))+ (resp. rn(A×) = Z(A)×+),



Chapter 1 Prerequisites 23

we get the isomorphism

Cl(Λ) ∼=
J(Z(A))+

Z(A)×+ · rn(U(Λ))
,

which, thanks to the equality J(Z(A)) = J(Z(A))+ · Z(A)×, yields

Cl(Λ) ∼=
J(Z(A))

Z(A)× · rn(U(Λ))
. (1.9)

When the K-algebra A is commutative, since J(A)′ = 1, (1.8) simplifies to

Cl(Λ) ∼=
J(A)

A× · U(Λ)
.

When M is a maximal order in A, we know that rn(U(M)) = U(O)+, where O is the
maximal order of Z(A), so (1.9) reduces to

Cl(M) ∼=
J(Z(A))

Z(A)× · U(O)+
.

Remark 1.6.9. The idelic representation can be actually deduced by a more general work
of Wall [44], where he gave an idelic description of Cl(Λ) with Λ an R-order, where R
now is a general Dedekind domain.

Remark 1.6.10. There is also a way of writing the previous isomorphism without con-
sidering the infinite primes, i.e. using the group J∗(A) defined in Definition 1.3.3. For
details on that, see [15, page 226].

1.6.11 Explicit idelic description for A = K[G]

We now assume that A = K[G] and Λ = R[G]. In this case, given an R[G]-lattice
M in the genus of R[G], we are able to give an explicit way to find the representative
α ∈ J(K[G]) of the class associated to M .

Proposition 1.6.12. Let b be a free generator of KM over K[G] and ap a free generator
of Mp over Rp[G], for every maximal ideal p. Let us define cp ∈ Kp[G]× such that
ap = cp · b, for every maximal ideal p. At the infinite place let us take cp = 1.
Then the class of M in Cl(R[G]) is given by the class of representative c := (cp)p in
J(K[G])/ (J(K[G])′ ·K[G]× · U(R[G])).

Proof. Referring to Section 1.3, let us consider M in K[G] via an embedding i which
sends b to 1. Then, for every maximal ideal p, if ip : Mp −→ Kp[G] denotes the completion
at p of i, since ip(ap) = cp, we deduce that ip(Mp) = Rp[G] · cp.
Let c∗ := (cp)p<∞ ∈ J(K[G])∗. In Section 1.3 we defined I(c∗) as

⋂
p<∞(K[G] ∩Rp[G] ·
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cp). Then, from the previous relation, we get

I(c∗) =
⋂
p<∞

(K[G] ∩Rp[G] · cp) =
⋂
p<∞

(K[G] ∩ ip(Mp)) = i(M),

as we wanted to prove to show our claim.

Remark 1.6.13. Note that a representative of the class of M in terms of the isomor-
phism (1.9) is obtained applying the reduced norm rn to the idelic element (cp)p found in
the previous proposition.

1.7 Hom representation of Cl(Λ)

Let K be as above and let G be a finite group.

The idelic description just seen in the previous section, despite its easiness and elegance,
turns out not always to be so convenient in its applications to concrete computations
of class groups. Also for this reason, when A is equal to K[G], Fröhlich in [18] gave
another description in terms of homomorphism groups involving complex irreducible
characters, which are common arithmetic invariants often appearing in number theory.
This description is better known as the Hom-description.

For the rest of the section we restrict our attention to the case A = K[G].

1.7.1 The Det map

Given a finite group G, we denote by RG its associated ring of virtual characters, i.e. the
Z-linear combinations of characters in Irr(G).
Moreover we consider E a Galois field extension of K such that the irreducible complex
representations of G are defined over E. Let GE denote the Galois group Gal(E/K).
Then GE acts naturally on the left on Irr(G) via χω(s) = χ(s)ω, for all ω ∈ GE ,
χ ∈ Irr(G) and s ∈ G. This action linearly extends to the ring RG, which therefore can
be considered as a left GE-module.
Moreover the group GE acts on the left on Hom(RG, E

×) by conjugation: fω(α) =

(f(αω
−1

))ω, where f ∈ Hom(RG, E
×), ω ∈ GE and α ∈ RG. We recall from the

Introduction that HomGE
(RG, E

×) denotes the set of fixed elements in Hom(RG, E
×)

under the left action of GE (i.e. the set of elements f ∈ Hom(RG, E
×), such that

(f(α))ω = f(αω), for all ω ∈ GE and α ∈ RG).

Given χ ∈ Irr(G), we can consider an associated representation Tχ : G −→ GLn(E) and
its K-linear extension, always denoted by Tχ, which sends K[G] to Mn(E) (i.e. the group
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of n-square matrices over E). To every character χ we can associate the map detχ, an
extended version of the usual determinant map, via the following diagram

K[G]
Tχ
//

detχ
$$

Mn(E)

det
��

E

where det is the usual determinant of a matrix. If T ′χ is another associated representation,
then for every s ∈ G, there exists a square matrix D, such that Tχ(s) = D−1T ′χ(s)D;
hence we understand that this definition does not depend on the choice of the represen-
tation associated to the character χ (det(Tχ(x)) = det(T ′χ(x)) for every x ∈ K[G]).
It is clear that detχ sends a unit x ∈ K[G]× to E×. Moreover we can easily see that
detχ(x ·x′) = detχ(x)detχ(x′), proving that detχ is actually a group homomorphism from
K[G]× to E×.

Since Tχ+χ′(x) =

(
Tχ(x) 0

0 Tχ′(x)

)
, we have detχ+χ′(x) = detχ(x)detχ′(x), thus we

can finally define a group homomorphism Det : K[G]× −→ Hom(RG, E
×), which maps

x to the linear extension of the homomorphism sending χ 7→ detχ(x). If we consider now
the GE-action on the characters of G we see that Tχω can be chosen so that Tχω(x) =

Tχ(x)ω and thus we deduce that, for all ω ∈ GE and x ∈ K[G]×, we have detχω(x) =

detχ(x)ω which finally explains why we can consider the Det map as follows:

Det : K[G]× −→ HomGE
(RG, E

×)

x 7−→ (χ 7→ detχ(x)).

A “local” analog can be easily obtained substituting K with its completion Kp, with p

a prime of K (finite or not). Then we have that Tχ sends Kp[G] to Mn(Ep), where as
usual Ep := E⊗KKp. Considering GE acting on the left on Ep via its action on the first
component, for every p we also have

Det : Kp[G]× −→ HomGE
(RG, E

×
p ).

One may wonder what happens if we restrict the Det-map to R[G] (resp. Rp[G]). The
key point now is that if we restrict our attention to the local case Rp[G], with p a
finite maximal ideal, every Kp-representation is equivalent to an Rp-representation ([14,
Corollary 16.14]) and so for every x ∈ Rp[G] we can consider Tχ(x) ∈ Mn(Sp), where S
is the integral closure of R in E (e.g. if R = OK then S = OE). Or better it is sufficient
to note that the image of Rp[G] under Tχ is an Rp-order in Mn(Ep), so the determinant
of elements in Tχ(Rp[G]) must be integral over Rp, and therefore contained in Sp. Note
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that this is no longer true for R not a d.v.r.. So for every maximal ideal p, we have

Det : Rp[G]× −→ HomGE
(RG, S

×
p ). (1.10)

Remark 1.7.2. At the beginning of the section we chose a Galois field extension E/K,
nevertheless everything remains the same if we consider another field extension E′/K,
with the only requirement being that it is Galois and contains all the values of the ir-
reducible complex characters of G. A method to avoid the choice of E is to consider a
given algebraic closure Kc of K and everything can be re-written replacing E with Kc,
GE with ΩK (the absolute Galois group of K) and Sp with the integral closure of OKp.
This simplifies the choice at the beginning but it introduces an infinite extension which is
somewhat harder to be used in practice.

Remark 1.7.3. We also have an analogous homomorphism to (1.10) if we replace
Rp[G]× by Λp, where Λ is an R-order contained in A = K[G]. Namely

Det : Λ×p −→ HomGE
(RG, S

×
p ).

1.7.4 Hom description

The Det-map just defined and the reduced norm are almost the same, indeed they are
equal up to an isomorphism, as explained by the following theorem (the proof given here
is taken from [15, Proposition 52.9]).

Theorem 1.7.5. Let E be an extension of K defined as at the beginning of 1.7.1. There
is an isomorphism f : Z(K[G])× −→ HomGE

(RG, E
×), such that the following diagram

commutes

K[G]×

rn

��

Det

((

Z(K[G])×
f
// HomGE

(RG, E
×).

Proof. To understand the proof we have to recall some well-known facts on the Wedder-
burn’s decomposition of the group algebra K[G]. First the number of simple components
is equal to the number of characters of irreducible K-representations of G, which in turn
are in bijection with the orbits of the irreducible complex characters under the action
of GE ([22, Chapter 10]). Moreover, let χ1, . . . , χt be a set of representatives of the
orbits of the irreducible complex characters under the action of GE , then we have the
Wedderburn’s decomposition:

K[G] ∼=
t∏
i=1

Ai,
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where each Ai is a simple algebra with center K(χi), i.e. the field extension of K ob-
tained adding the values of the character χi ([15, §75]). Hereby the center Z(K[G]) ∼=∏t
i=1K(χi).

We can now proceed to the proof of the statement, starting with the definition of the
isomorphism f . Given an element c =

∏t
i=1 ci ∈ Z(K[G]) we define f(c) = fc ∈

HomGE
(RG, E

×) as the product
∏t
i=1 fci , where each fci is defined on each character χ

as

fci(χ) =

{
cωi if χ = χωi for some ω ∈ GE ,

1 otherwise.

Then in general for an element
∑
αχχ ∈ RG, fc(

∑
αχχ) =

∏
fc(χ)αχ . The injectivity of

f is given computing the values of fc at the representatives χi, while for the surjectivity
it is sufficient to underline that every element g ∈ HomGE

(RG, E
×) is determined by the

values it assumes on the representative χi and that g(χi) belongs to K(χi).

For the commutativity of the diagram, it is sufficient to show it on a single character χ ∈
Irr(G), since then by linearity we can extend it on RG . Let us assume that χ = χωi , for
an ω ∈ GE , we would like to prove that, for every a ∈ K[G]×, f(rn(a))(χ) = Det(a)(χ).
Our field extension E, by definition, is a splitting field for each simple component (i.e.
for every simple component E⊗KiAi ∼= Mni(E), for some ni ∈ N), so from the definition
of the reduced norm map we have rn(a) =

∏t
i=1 det(Tχi(a)) =

∏t
i=1 detχi(a), where Tχi

is a representation associated to χi. Hereby applying f , we get

f(rn(a))(χ) =

t∏
i=1

fdetχi (a)(χ) =

t∏
i=1

fdetχi (a)(χ
ω
i ) = detχi(a)ω.

At the same time by definition we have Det(a)(χ) = detχωi (a). But as explained in the
previous subsection detχωi (a) = detχi(a)ω, which gives our claim.

The isomorphism f induces the isomorphism J(Z(K[G])) −→ HomGE
(RG, J(E)). Thus,

applying it to the idelic formula (1.9) and using the commutativity of the previous
diagram, we get the Hom-formula for the class group:

Cl(R[G]) ∼=
HomGE

(RG, J(E))

HomGE
(RG, E×) ·Det(U(R[G]))

,

where, by (1.10), Det(U(R[G])) is contained in HomGE
(RG, U(S)), with U(S) =

∏
p S
×
p

(remember that for the infinite primes Rp = Kp and Sp = Ep).

Explicitly the Hom-description is given in the following way: given M a locally free
left Λ-ideal and considering it as I(α), with α := (αp)p ∈ J(K[G]), the function f ∈
HomGE

(RG, J(E)) representing the class of M is clearly defined by linearity at each p

as
f(χ)p = detχ(αp),
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∀χ ∈ Irr(G). Remember that in Section 1.6.11, we gave an explicit method to find α.

Remark 1.7.6. If instead of the finite field extension E/K we consider the algebraic
closure Kc, with absolute Galois group denoted by ΩK , the Hom-formula becomes:

Cl(R[G]) ∼=
HomΩK

(RG, J(Kc))

HomΩK
(RG, (Kc)×) ·Det(U(R[G]))

, (1.11)

where J(Kc) is given by the direct limit of J(F ), as F runs over all finite Galois exten-
sions of K inside Kc.

Remark 1.7.7. If we replace R[G] by a generic R-order Λ contained in K[G], we also
have

Cl(Λ) ∼=
HomGE

(RG, J(E))

HomGE
(RG, E×) ·Det(U(Λ))

.

Remark 1.7.8. IfM is a maximal order contained in K[G], we have

Det(U(M)) = Hom+
GE

(RG, U(OE));

where now Hom+
GE

(RG, U(OE)) denotes the set of homomorphisms which are positive for
every symplectic character of G at every idelic component corresponding to infinite real
prime ideals of K. A symplectic character is a complex character such that the associated
representation T : G −→ GL2m(C) factors through GLm(H), where H is the skew-field of
real quaternions.
The previous formula is a direct consequence of Remark 1.6.7 and Theorem 1.7.5, using
the fact that the symplectic characters correspond exactly to the simple components of
R[G] isomorphic to Mn(H).
Hereby the Hom-formula for a maximal order simplifies to

Cl(M) ∼=
HomGE

(RG, J(E))

HomGE
(RG, E×) ·Hom+

GE
(RG, U(OE))

.

1.8 Functorial properties of Cl(R[G])

One of the main advantages of the Hom-description is given by the fact that it allows
one to readily express some functorial properties of Cl(R[G]). In this section we state
these properties without giving any proof, for details see [18].

For two different algebras A and A′ (not necessarily equal to K[G]) containing the R-
orders Λ and Λ′ respectively, a homomorphism of orders h : Λ → Λ′ easily induces a
homomorphism between class groups Cl(Λ)→ Cl(Λ′), sending the class [M ] to the class
[Λ′ ⊗Λ M ].
This property is valid in general, while when we restrict our attention to the special case
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A = K[G] we have some further functorial properties under the change of the group G
or of the field K.

We shall use the notation of the previous section and in particular we recall that E
is defined to be a finite Galois extension of K containing the values of the irreducible
complex characters of G.

1.8.1 Change of the group

Restriction. Given H ≤ G, every R[G]-module can be considered as an R[H]-module,
via restriction of scalars. Since R[G] is R[H]-free of rank [G : H], every locally free
R[G]-module is locally free when considered as an R[H]-module. This yields a natural
restriction map

resGH : Cl(R[G]) −→ Cl(R[H]).

On the rings of virtual characters we have the induced map indGH : RH −→ RG which in
turn defines a map r : Hom(RG,−) −→ Hom(RH ,−).
Under the isomorphisms given by the Hom-description, the following diagram commutes:

Cl(R[G])

resGH
��

∼= // HomGE
(RG, J(E))/(HomGE

(RG, E
×) ·Det(U(R[G])))

r

��

Cl(R[H])
∼= // HomGE

(RH , J(E))/(HomGE
(RH , E

×) ·Det(U(R[H]))).

Example 1.8.2. Given a group G, let us consider the trivial group {1}. The only charac-
ter of {1} is the trivial one χ0 and moreover indG{1}(χ0) = ρG, where ρG is the character
of the regular representation of G defined as ρG :=

∑
χ∈ Irr(G) χ. Then, given a class

c ∈ Cl(R[G]) represented by f ∈ HomGE
(RG, J(E)), the class resG{1}(c) is represented

by the homomorphism which sends χ0 to f(ρG).

Induction. Given H ≤ G and M a locally free R[H]-module, then the tensor product
R[G] ⊗R[H] M yields a locally free R[G]-module (this is a special case of the general
situation described in the introduction of this section). This induces a natural induction
map

indGH : Cl(R[H]) −→ Cl(R[G]).

Restricting the characters of G to H, gives a restriction map on virtual characters resGH :

RG −→ RH , which in turn defines a map i : Hom(RH ,−) −→ Hom(RG,−).
Under the isomorphisms given by the Hom-description, the following diagram commutes:

Cl(R[H])

indGH
��

∼= // HomGE
(RH , J(E))/(HomGE

(RH , E
×) ·Det(U(R[H])))

i

��

Cl(R[G])
∼= // HomGE

(RG, J(E))/(HomGE
(RG, E

×) ·Det(U(R[G]))).
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1.8.3 Change of the base field

Let us consider a finite group G and a finite field extension L/K. Let R′ be the integral
closure of R in L. Moreover we now choose as E a field extension of L containing all the
values of the irreducible complex characters of G such that E/K is Galois. We denote
by G′E the Galois group Gal(E/L), while GE will denote as usual Gal(E/K).

Restriction. Since R′ is a projective R-module, we deduce that R′[G] is R[G]-projective,
then every projective R′[G]-module, once considered as an R[G]-module, is still projec-
tive. This induces a homomorphism K0(R′[G]) −→ K0(R[G]) which commutes with
completion and in turn gives a map

resL/K : Cl(R′[G]) −→ Cl(R[G]).

On the set of homomorphisms of characters we can define a “norm map”

NL/K : Hom
G′
E

(RG, J(E)) −→ HomGE
(RG, J(E))

defined as NL/K(f)(χ) :=
∏
σ∈GE/G′E

f(χσ)σ
−1 .

Under the isomorphisms given by the Hom-description, the following diagram commutes:

Cl(R′[G])

resL/K

��

∼= // Hom
G′
E

(RG, J(E))/(Hom
G′
E

(RG, E
×) ·Det(U(R′[G])))

NL/K
��

Cl(R[G])
∼= // HomGE

(RG, J(E))/(HomGE
(RG, E

×) ·Det(U(R[G]))).

Induction. Given M a locally free R[G]-module, then if we consider the tensor product
R′ ⊗RM we get a locally free R′[G]-module; this gives an induction map

indL/K : Cl(R[G]) −→ Cl(R′[G]).

We also have a canonical injection i′ : HomGE
(RG, J(E)) −→ Hom

G′
E

(RG, J(E)).
Under the isomorphisms given by the Hom-description, the following diagram commutes:

Cl(R[G])

indL/K

��

∼= // HomGE
(RG, J(E))/(HomGE

(RG, E
×) ·Det(U(R[G])))

i′

��

Cl(R′[G])
∼= // Hom

G′
E

(RG, J(E))/(Hom
G′
E

(RG, E
×) ·Det(U(R′[G]))).

1.9 G-Galois K-algebras

In this section we recall some well-known results on Galois algebras, which will be fre-
quently used in what follows.
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Given G a finite group, a finite dimensional K-algebra L (dimension denoted by [L : K]),
on which G acts on the left as a group of automorphisms, is called G-Galois K-algebra
(or G-Galois algebra over K) if:

- L is a commutative finite dimensional separable K-algebra (i.e. isomorphic to a
finite direct product of finite algebraic field extensions of K),

- [L : K] = |G|,

- LG = K (fixed elements coincide with the elements of the base field).

A morphism (resp. isomorphism) of G-Galois K-algebras is a morphism (resp. isomor-
phism) of K-algebras preserving the G-action. Considering these morphisms, we can
then look at the category of G-Galois K-algebras.

We define aG-torsor Ω-set (remember that Ω = ΩK := Gal(Kc/K)) as a finite setX with
continuous left Ω-action and with right G-action, respecting the relation ω ·Ω (x ·G s) =

(ω ·Ω x) ·G s, for all ω ∈ Ω, x ∈ X and s ∈ G, and such that it is a G-torsor, i.e. under the
action of G there exists a unique orbit and for some element x ∈ X (and so for all) the
stabilizer is trivial (see also [35, §5.2], where a G-torsor Ω-set is called espace principal
homogène).

It is well known that there is an anti-equivalence between the category of G-Galois K-
algebras and the category of G-torsor Ω-sets (with Ω, G-equivariant functions).

This anti-equivalence sends a G-Galois algebra L/K to the set HomK(L, Kc), on which
Ω acts on the left through its natural action on Kc and G on the right via its action on
L. Under this anti-equivalence G-Galois field extensions over K correspond to finite sets
with a transitive Ω-action.

If we consider the set of isomorphism classes of G-Galois K-algebras, this is in bijection
with the first cohomology set H1(Ω, G) (see [35, Proposition 33]). Since Ω acts triv-
ially on G, by the definition of the cohomology sets, H1(Ω, G) is given by the quotient
Hom (Ω, G) /Inn(G), where Inn(G) denotes the set of inner automorphisms of G. Note
that, if G is not abelian, this is just a pointed set, while, if G is abelian, H1(Ω, G) is a
group.
This bijection sends [h] ∈ H1(Ω, G), with representative h ∈ Hom (Ω, G), to the class of
the G-Galois K-algebra

Kh := Map
Ω

(
hG,Kc

)
,

where hG denotes the set G with a possibly non-trivial left Ω-action via the homomor-
phism h (i.e. ω · s = h(ω)s, for all ω ∈ Ω and s ∈ G) and Map

Ω

(
hG,Kc

)
denotes

the algebra of maps a ∈ Map
(
hG,Kc

)
such that ω · (a(s)) = a(ω · s), for all ω ∈ Ω

and s ∈ G. The left action of G on Kh is given by the formula s · a(s′) := a(s′s), for
a ∈ Map

Ω

(
hG,Kc

)
and ∀ s, s′ ∈ G.
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Under this bijection classes of G-Galois field extensions over K correspond to the ele-
ments in H1(Ω, G) represented by surjective homomorphisms in Hom(Ω, G).

Remark 1.9.1. If the group G is abelian, then H1(Ω, G) = Hom (Ω, G) and the set
of isomorphism classes of G-Galois K-algebras inherits the structure of abelian group.
Given h1, h2 ∈ Hom (Ω, G) the product h1h2 corresponds to the algebra Kh1h2. The
following isomorphism holds

Kh1h2
∼= (Kh1 ⊗K Kh2)Ker(m),

where m : G × G −→ G is the multiplication homomorphism. Note that this is an
isomorphism of G-Galois K-algebras, where on the right G acts as (1, g) (or equivalently
as (g, 1)). See [28, page 268] for a proof of this fact.

From now on we consider every G-Galois K-algebra, up to isomorphism, as being some
Kh, where h ∈ Hom(Ω, G). It is evident that an element a ∈ Kh is determined by the
values it assumes on a set of coset representatives of h(Ω)\G, and these values can be
chosen arbitrarily with the only restriction that they have to belong to (Kc)Ker(h). This
implies that the following isomorphism of K-algebras holds

Kh
∼=

[G:h(Ω)]∏
i=1

Kh, (1.12)

where Kh := (Kc)Ker(h) (this also explains why a surjective h corresponds to a G-Galois
field extension over K).

Remark 1.9.2. Every G-Galois K-algebra is, up to an isomorphism of G-Galois K-
algebras, contained in the Kc-algebra Map (G,Kc).

With this notation the integral closure of OK inside Kh is given by

OKh := Map
Ω

(
hG,Oc

K

)
,

which is in turn isomorphic to a product of [G : h(Ω)] copies of OKh (the ring of integers
of the field extension Kh/K).

Remember that in the Notations section we defined Ωp as Gal(Kc
p/Kp) and there you

can also find the definitions of Ωt (resp. Ωt
p) and Ωnr (resp. Ωnr

p ).
Locally, for every place p of K, if hp = h ◦ ip ∈ Hom(Ωp, G), we have

Kh,p := Kp ⊗K Kh
∼= (Kp)hp = Map

Ωp

(
hpG,Kc

p

)
. (1.13)

If we regard Hom(Ωt
p, G) as a subset of Hom(Ωp, G), we say that (Kp)hp is tame if and

only if hp ∈ Hom(Ωt
p, G). Globally Kh is tame if and only if it is tame for all primes p,
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or equivalently h ∈ Hom(Ωt, G).
The definition of unramified algebras is the same with Ωt (resp. Ωt

p) replaced by Ωnr

(resp. Ωnr
p ). Note that with the term unramified we mean unramified just at the finite

places.





Chapter 2

Realizable classes and Stickelberger
subgroups

From now on m will denote the exponent of G (i.e. the least common multiple of the
orders of the elements of G).

This chapter is devoted to the exposition of McCulloh’s results on the problem of real-
izable classes. Referring to his main work on the subject [28] and to some unpublished
notes on two talks given by McCulloh in Oberwolfach in 2002 and in Luminy in 2011, we
will introduce St(OK [G]) a particular subgroup of Cl(OK [G]), defined through the use
of a Stickelberger map. Then we shall give the unpublished proof of the following result
(this corresponds to Theorem 0.0.5 in the Introduction).

Theorem A. For every number field K and finite group G, we have

RA(OK [G]) ⊆ St(OK [G]).

The description and the notation used for the subgroup St(OK [G]) do not reflect Mc-
Culloh’s original choice, but they are rather inspired from some later informal notes by
A. Agboola. I am heartily thankful to A. Agboola for his notes, which I used to clarify
many points of this chapter.

In the last section of the chapter we restrict our attention to the abelian case and we
will explain the proof of the following theorem, which is the main result contained in [28]
(this is a more precise version of Theorem 0.0.4 in the Introduction).

Theorem B. For every number field K and finite abelian group G, we have

RA(OK [G]) = St(OK [G]).

Moreover RF (OK [G]) = RA(OK [G]) and every class can be obtained from a G-Galois
field extension Kh/K unramified at a preassigned finite set of finite primes of K.

35
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2.1 Resolvends

One of the main tools used by McCulloh in his works is the notion of resolvend, which,
following McCulloh, we spell with the letter “d” on purpose. Roughly speaking it is
similar to the Fourier transform, that allows us to attach to any element in a G-Galois
K-algebra an element in Kc[G]. We will see how some properties of the resolvend map
are closely connected to the notions of normal bases in Galois algebra extensions.
The word “resolvend” is similar to “resolvent”. In fact these two objects are closely related
and indeed one can obtain the second from the first using the characters of G.

Let us recall that Ω denotes the absolute Galois group ΩK := Gal(Kc/K).

As we have already seen in §1.9, any G-Galois K-algebra can be viewed, up to isomor-
phism, as Kh := Map

Ω

(
hG,Kc

)
, where h ∈ Hom(Ω, G). In particular any G-Galois

K-algebra may be viewed as lying in the Kc-algebra Map (G,Kc) (Remark 1.9.2). The
resolvend map is then defined as follows

rG : Map (G,Kc) −→ Kc[G]

a 7−→
∑
s∈G

a(s)s−1.

We underline the two following properties:

(P1) rG is a Kc[G]-module isomorphism (but not an isomorphism of algebras since it
does not preserve multiplication);

(P2) given a ∈ Map (G,Kc) and Ω acting on the left on Kc[G] via its action on the
coefficients in Kc, we see that a ∈ Kh ⇐⇒ rG(a)ω = rG(a)h(ω), ∀ω ∈ Ω.

We recall that an element a ∈ Kh is called a normal basis generator (NBG) of Kh over
K if the set {s · a}s∈G forms a K-basis of Kh. Such a basis is called a normal basis.
Analogously, an element of Kh is called a normal integral basis generator (NIBG) of Kh

over K if it is a normal basis generator for OKh over OK . The first property connecting
resolvends with these notions is the following.

Proposition 2.1.1 (NBG). For every a ∈ Kh, we have

a is a normal basis generator of Kh over K ⇐⇒ rG(a) ∈ Kc[G]×.

Proof. [28, Proposition 1.8].



Chapter 2 Realizable classes and Stickelberger subgroups 37

Following the notation used by McCulloh in his work, we introduce the following defini-
tions:

H(K[G]) :=
{
α ∈ Kc[G]×|α−1 · αω ∈ G, ∀ω ∈ Ω

}
,

H(K[G]) := H(K[G])/G = {α ·G|α ∈ H(K[G])} =
(
Kc[G]×/G

)Ω
.

Pay attention that H(K[G]) is just a left coset space.

Corollary 2.1.2. H(K[G]) = {rG(a)| a NBG of Kh/K for h ∈ Hom(Ω, G)} .

Proof. (⊆) Given α ∈ H(K[G]), since the resolvend map is an isomorphism of Kc[G]-
modules we have that there exists a′ ∈ Map (G,Kc) such that α = rG(a′). Thanks to
the fact that for any ω ∈ Ω, the element rG(a′)−1 · rG(a′)ω belongs to G, we can consider
a homomorphism h′ ∈ Hom (Ω, G) defined as h′(ω) := rG(a′)−1 ·rG(a′)ω. The proof that
h′ is an homomorphism follows from the fact that Ω acts on the left on Kc[G]×, indeed

h′(ω1ω2) = α−1 · (ω1ω2 · α)

= α−1 · (ω1 · (ω2 · α))

= α−1 ·
(
ω1 ·

(
α · α−1 · (ω2 · α)

))
= α−1 · (ω1 · α) ·

(
ω1 ·

(
α−1 · (ω2 · α)

))
= α−1 · (ω1 · α) · α−1 · (ω2 · α)

= h′(ω1)h′(ω2),

where we used the property that α−1 · (ω2 · α) ∈ G and so it is fixed under the action
of Ω.
We immediately see that a′ ∈ Kh′ and that it is a normal basis generator of it by
Proposition 2.1.1.
(⊇) Just use (P2).

Thus we have just proved that H(K[G]) coincides with the set of resolvends of normal
basis generators for G-Galois algebras over K. If we consider the quotient map rag :

Kc[G]× −→ Kc[G]×/G, we can write

H(K[G]) = {rag(rG(a))| a NBG of Kh/K for h ∈ Hom(Ω, G)} . (2.1)

Proposition 2.1.3. There is an exact sequence of pointed sets (groups if G is abelian)

1 // G // K[G]×
rag
// H(K[G]) // H1(Ω, G) // 1.

Proof. In the abelian case, following [28], it is sufficient to consider the Ω-cohomology of
the exact sequence of abelian groups:

1 // G // Kc[G]×
rag
// Kc[G]×/G // 1 . (2.2)
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When G is non-abelian, we explicitly prove the exactness of the sequence of pointed sets:

1 // G // K[G]×
rag
// H(K[G])

g
// H1(Ω, G) // 1, (2.3)

where g is a map of pointed sets which sends a coset α · G ∈ H(K[G]) to the class in
H1(Ω, G) with representative the homomorphism (ω 7→ α−1 · αω) ∈ Hom(Ω, G).
The proof of the exactness of (2.3) reduces to prove that g induces a one-to-one corre-
spondence between rag(K[G]×)\H(K[G])/G and H1(Ω, G).
The fact that g is surjective follows from the fact that every G-Galois K-algebra has
a normal basis generator and (2.1). Moreover the inverse image of the trivial class in
H1(Ω, G) is given by rag(K[G]×), as we see from the definition of g.

Remark 2.1.4. Let A, B, C be three pointed sets with distinguished elements a0, b0, c0,
respectively. Recall that the following sequence of pointed sets

A
f
// B

g
// C

(with maps preserving the distinguished elements) is called exact if the image of f is equal
to the inverse image under g of the distinguished element of C, i.e.

f(A) = g−1(c0).

Analogously, we also have a local notion of the sets just defined. For each finite place p

of K:

H(Kp[G]) :=
{
α ∈ Kc

p [G]×|α−1 · αω ∈ G, ∀ω ∈ Ωp

}
=

{
rG(ap)| ap NBG of (Kp)hp/Kp for hp ∈ Hom(Ωp, G)

}
,

H(Kp[G]) := H(Kp[G])/G = {α ·G|α ∈ H(Kp[G])}.

An integral analog of Proposition 2.1.3 exists just for unramified extensions as explained
by the following proposition.

Proposition 2.1.5 (NIBG). Given a ∈ Kh, such that Kh = K[G] · a, we have

a is a NIBG of Kh and Kh/K is unramified at all fin. p⇐⇒ rG(a) ∈ OcK [G]×.

Proof. The proof consists in slightly adapting the original proof given in [28, (2.11)] to
the non-abelian case.
Let us consider the map [−1] : G −→ G which sends an element s ∈ G to its inverse
s−1. This map induces involutions on Map (G,Kc) and Kc[G], that we denote with the
same symbol [−1].
Let Tr : Map (G,Kc) −→ Kc denote the standard trace map defined on a ∈ Map (G,Kc)

by the formula Tr(a) =
∑

s∈G a(s). By restriction, it induces a trace map Tr : Kh −→ K.
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Note that the associated bilinear form, which sends (a, b) ∈ Kh ×Kh to Tr(ab) ∈ K, is
non-degenerate.
Moreover, given M an OK-lattice of Kh (i.e. an OK-submodule of Kh, finitely generated
and projective as an OK-module and such that K ·M = Kh), its dual lattice M∗ is
defined as

M∗ := {b ∈ Kh|Tr(b ·M) ⊆ OK}.

The discriminant of Kh is then defined as

disc(OKh/OK) := [O∗Kh : OK ]OK ,

where [− : −]OK denotes the OK-module index. By definition, the algebra Kh is unram-
ified at all finite places if and only if its discriminant is (1).
For every a, b ∈ Kh, we have the following formula

rG(a) · rG(b)[−1] =
∑
s∈G

Tr(asb)s−1, (2.4)

where, given an element s ∈ G, the map as ∈ Kh is defined, for every t ∈ G, by the
formula as(t) = a(ts). The proof of (2.4) follows by an easy computation, that can
be found explicitely in [27, (1.6)] (pay attention that the calculation given there is still
correct if G is non-abelian).
Moreover, exactly as in [28, (2.11)], we have the following properties:

- there exists a map b ∈ Kh such that rG(a)[−1] = rG(b)−1 and (OK [G] · a)∗ =

OK [G] · b,

- [(OK [G] · a)∗ : OK [G] · a]OK =
[
OK [G] : OK [G]rG(a)rG(a)[−1]

]
OK

.

Then, using the inclusions OK [G]·a ⊆ OKh ⊆ O∗Kh ⊆ (OK [G] · a)∗, the conclusion follows
exactly as in the abelian case ([28, (2.11)]).

If we denote by H1(Ωnr
p , G) the elements in H1(Ωp, G) coming from the homomorphisms

h in Hom(Ωnr
p , G), thanks to the local version of the previous proposition, we have a local

integral analog of the exact sequence (2.3).

Proposition 2.1.6. For any finite place p, there is an exact sequence of pointed sets
(groups if G is abelian)

1 // G // OK, p[G]×
rag
// H(OK, p[G]) // H1(Ωnr

p , G) // 1, (2.5)

Proof. Clear from above and from the fact that any local unramified extension has a
NIBG.
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Now, analogously as before, we have

H(OK, p[G]) :=
{
α ∈ OcK, p[G]×|α−1 · αω ∈ G, ∀ω ∈ Ωp

}
(2.6)

=
{
rG(ap)| ap NIBG for (Kp)hp where hp ∈ Hom

(
Ωnr
p , G

)}
,

H(OK, p[G]) := H(OK, p[G])/G

= {α ·G|α ∈ H(OK, p[G])}

=
{

rag(rG(ap))| ap NIBG for (Kp)hp where hp ∈ Hom
(
Ωnr
p , G

)}
.

Remark 2.1.7. If Kh/K is a tame G-Galois extension, we know by Proposition 1.6.12,
that its representative in terms of the idelic description is given by the idèle (cp)p defined
componentwise by the relation ap = cp ·b (with b considered as embedded in the completion
at p), where b and ap are normal basis generator and local normal integral basis generator
of Kh/K, respectively.
If we apply rag ◦ rG to the previous equality, we get

rag(rG(ap)) = rag(cp) · rag(rG(b))

in H(Kp[G]). This condition is sufficient to characterize [OKh ], since, as explained in
[28, page 277], if rag(c′p) = rag(cp) for each p, then (cp)p and (c′p)p differ by an element
(sp)p ∈

∏
pG and hence represent the same class in Cl(OK [G]).

Note that at the infinite primes we take cp = 1 (since at those primes we can take ap
equal to the embedding of b in the completion) and this is the reason why in what follows
these primes play no role.

2.2 Determinants of resolvends

We shall now see how determinants of resolvends may be represented in terms of character
maps.

Given an irreducible character χ of G, the map detχ (Chapter 1, Section 1.7.1) is a
character of G of degree 1 (or a character of Gab) and it was defined as

detχ(s) = det(Tχ(s)),

where Tχ is a representation associated to χ.
This definition is independent of the choice of the representation Tχ and we can in turn
consider the homomorphism det : RG −→ Ĝab defined by

det

 ∑
χ∈ Irr(G)

aχχ

 =
∏

χ∈ Irr(G)

(detχ)aχ .
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Let AG be the kernel of this map, we shall call it the augmentation kernel. Then we can
consider the following short exact sequence of groups:

0 // AG // RG
det // Ĝab // 1. (2.7)

Remark 2.2.1. When the group G is abelian we have an explicit Z-basis of AG. From
the proof of [28, Theorem 2.14], if Irr(G) has a basis χ1, . . . , χk, with χi of order ei,
for i = 1, . . . , k and any χ ∈ Irr(G) is written uniquely as χ =

∏k
i=1 χ

ri(χ)
i , where

0 ≤ ri(χ) < ei; a Z-basis of AG is given by the non-zero elements in the collection
{eiχi| i = 1, . . . , k} ∪ {χ−

∑k
i=1 ri(χ)χi|χ ∈ Irr(G)}.

Going back to the previous short exact sequence and using the fact that (Kc)× is injective,
the functor Hom(−, (Kc)×) gives the following short exact sequence

1 // Hom
(
Ĝab, (Kc)×

)
// Hom

(
RG, (Kc)×

) rag′
// Hom

(
AG, (Kc)×

)
// 1 (2.8)

where the map rag′ is just the restriction map to the augmentation kernel (this also
explains its name).

Extending the definition of the map Det given in Section 1.7.1 to

Det : Kc[G]× −→ Hom
(
RG, (K

c)×
)

we have now the following proposition.

Proposition 2.2.2. (Global commutative diagram). There is a commutative Ω-diagram
(every map preserves the action of Ω) of pointed sets with exact rows:

1 // G //

Det
��

Kc[G]×
rag

//

Det
��

Kc[G]×/G //

D̃et
��

1

1 // Gab // Hom
(
RG, (K

c)×
) rag′

// Hom
(
AG, (Kc)×

)
// 1

(2.9)

Proof. If s ∈ G, then Det(s)(χ) = detχ(s) and so Det restricted to G has image
Hom

(
Ĝab, (Kc)×

)
∼= Gab (by duality). Thus Det induces a map D̃et : Kc[G]×/G −→

Hom
(
AG, (Kc)×

)
, making the diagram commute.

Remark 2.2.3. Note that from the definition of the map Det and from the canonical
isomorphism Hom

(
Ĝab, (Kc)×

)
∼= Gab, the map Det : G −→ Gab coincides with the

natural quotient map G −→ Gab which sends s ∈ G to its associated coset in G/[G,G].

Taking now the Ω-invariants we deduce the following proposition.
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Proposition 2.2.4. (Global commutative diagram 2). There is the following commuta-
tive diagram of pointed sets with exact rows:

1 // G //

Det
��

K[G]×
rag

//

Det
��

H(K[G]) //

D̃et��

H1(Ω, G) //

��

1

1 // Gab // HomΩ

(
RG, (K

c)×
) rag′

// HomΩ

(
AG, (Kc)×

)
// Hom

(
Ω, Gab

)
// 1

Proof. We just note that exactness at the bottom row follows applying Ω-cohomology to
the sequence (2.8).
Indeed we have H1(Ω,Hom

(
RG, (K

c)×
)
) = 1, since Hom

(
RG, (K

c)×
)
is isomorphic

to Z(Kc[G])× and H1(Ω, Z(Kc[G])×) = 1, by Hilbert’s Satz 90 (see [34, Chapter X,
§1]).

Similarly, for every place p of K, we have an analogous diagram.

Proposition 2.2.5. (Local commutative diagram). The following diagram of pointed
sets with exact rows commutes:

1 // G //

Det
��

Kp[G]×
rag

//

Det
��

H(Kp[G]) //

D̃et
��

H1(Ωp, G) //

��

1

1 // Gab // Hom
Ωp

(
RG,

(
Kc

p

)×) rag′
// Hom

Ωp

(
AG,

(
Kc

p

)×)
// Hom

(
Ωp, G

ab
)

// 1

From Proposition 2.1.6, the integral analog follows.

Proposition 2.2.6. (Local integral commutative diagram) For any finite place p of K,
we have the following commutative diagram:

1 // G //

Det

��

OK, p[G]×
rag

//

Det
��

H(OK, p[G]) //

D̃et
��

H1(Ωnr
p , G) //

��

1

1 // Gab // HomΩp

(
RG,

(
Oc
K, p

)×) rag′
// HomΩp

(
AG,

(
Oc
K, p

)×) // Hom
(
Ωnr

p , Gab
)

// 1 .

Proof. We just note that exactness at the bottom row follows from the fact that the
map H1(Ωnr

p , G) −→ Hom
(
Ωnr
p , G

ab
)
, induced by the natural map from Hom

(
Ωnr
p , G

)
to

Hom
(
Ωnr
p , G

ab
)
, is surjective as one can check using the description of Ωnr

p as a procyclic
group (see at the beginning of Section 2.4).

Therefore we have defined the following maps of pointed sets

D̃et : H(K[G]) −→ HomΩ

(
AG, (Kc)×

)
(2.10)

D̃et : H(Kp[G]) −→ HomΩp

(
AG,

(
Kc

p

)×) (2.11)

D̃et : H(OK, p[G]) −→ HomΩp

(
AG,

(
Oc
K, p

)×) (2.12)
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and we can actually show that the image of (2.12) is a group.

Proposition 2.2.7. The image of (2.12) is a group.

Proof. In the proof of Proposition 2.1.3 we have seen that we have a one-to-one correspon-
dence between rag(K[G]×)\H(K[G])/G and H1(Ω, G). Analogously, from Proposition
2.1.6, for every finite place p we have

rag(OK, p[G]×)\H(OK, p[G]) ∼= H1(Ωnr
p , G).

Thus, applying the map D̃et, we get

rag′(Det(OK, p[G]×))\D̃et(H(OK, p[G])) ∼= Hom(Ωnr
p , G

ab),

since the map H1(Ωnr
p , G) −→ Hom

(
Ωnr
p , G

ab
)
is surjective.

Thus the set rag′(Det(OK, p[G]×))\D̃et(H(OK, p[G])) inherits from Hom(Ωnr
p , G

ab) the
structure of an abelian group.
From this we can now prove the group structure of D̃et(H(OK, p[G])): given D̃et(x), D̃et(y) ∈
D̃et(H(OK, p[G])), there exist λ in OK, p[G]× and z ∈ H(OK, p[G]) such that

D̃et(x) · D̃et(y) = rag′(Det(λ)) · D̃et(z),

where the products are considered in HomΩp

(
AG,

(
Oc
K, p

)×)
. Moreover

D̃et(x) · D̃et(y) = rag′(Det(λ)) · D̃et(z)

= D̃et(rag(λ) · z),

which therefore shows that D̃et(x) · D̃et(y) ∈ D̃et(H(OK, p[G])), as we wanted to prove.
Analogously, given x ∈ H(OK, p[G]), one can prove that D̃et(x)−1 ∈ D̃et(H(OK, p[G])).

Note that, for every finite place p of K, since the reduced norm rn sends Oc
K, p[G]× into

Z(Oc
K, p[G])× and thanks to Theorem 1.7.5, we have the following inclusions

D̃et(H(OK, p[G])) ⊆
(
Z(Oc

K, p[G])×/Gab
)Ωp

⊆ HomΩp

(
AG,

(
Oc
K, p

)×)
. (2.13)

When the finite place p does not divide |G|, then OK, p[G] is a maximal order of Kp[G]

and, from Remarks 1.6.7 and 1.7.8,

rn(OK, p[G]×) = Z(OK, p[G])× ∼= HomΩp

(
RG,

(
Oc
K, p

)×)
.

Thus in these cases the inclusions in (2.13) are actually equalities, as one can deduce
looking at the diagram of Proposition 2.2.6 and at the proof of Proposition 2.2.7.
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When p divides |G|, we need not have equality, nevertheless, when G is abelian, the
following approximation result does hold.

Proposition 2.2.8. Let G be abelian. If m is an integral ideal of OK divisible by a
sufficiently high power of |G|, we have

HomΩp

(
AG, (1 + mOc

K, p) ∩ (Oc
K, p)×

)
⊆ D̃et (H(OK, p[G])) ⊆ HomΩp

(
AG, (O

c
K, p)×

)
,

for each finite place p of K.

Proof. See [28, Theorem 2.14] for the original proof by McCulloh.

Remark 2.2.9. It is important to note that when G is abelian, the D̃et maps (2.10) and

(2.11) are isomorphisms and that
(
Z(Oc

K, p[G])×/Gab
)Ωp

equals the set H(OK, p[G]).

Thus, we can replace D̃et (H(OK, p[G])) with H(OK, p[G]) in Proposition 2.2.8 (as well
as in what follows when G is abelian).

Now if we write

U(OK [G]) :=
∏
p

D̃et(H(OK, p[G])) ⊆ HomΩ (AG, J(Kc)) (2.14)

and we define the group

MCl(OK [G]) :=
HomΩ (AG, J(Kc))

HomΩ (AG, (Kc)×) · U(OK [G])
,

we see that the map rag′ : HomΩ (RG, J(Kc)) −→ HomΩ (AG, J(Kc)), induced by the
local version of (2.8), yields a group homomorphism

Rag :
Hom

Ω
(RG, J(Kc))

HomΩ (RG, (Kc)×) ·Det(U(OK [G]))
−→ Hom

Ω
(AG, J(Kc))

HomΩ (AG, (Kc)×) · U(OK [G])
(2.15)

which, by the Hom-description of Cl(OK [G]) (see (1.11)), can be written as

Rag : Cl(OK [G]) −→ MCl(OK [G]).

If we now consider Rnr(OK [G]), the subset of realizable classes given by unramifed (at fi-
nite places)G-GaloisK-algebras, using the previous results on resolvends and via §1.6.11,
we have the following result.

Proposition 2.2.10. For every finite group G and number field K,

Rnr(OK [G]) ⊆ Ker(Rag).

Proof. If Kh/K is an unramified G-Galois K-algebra, we consider b ∈ Kh a normal basis
generator of Kh/K and, for each finite place p of K, we choose ap ∈ OKh,p a normal
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integral basis generator. Considering the idèle c = (cp)p defined componentwise by the
relation rag(rG(ap)) = rag(cp) · rag(rG(b)) (Remark 2.1.7), the element Det(c) represents
the class [OKh ] in terms of the Hom-description (at the infinite primes we take cp = 1).
From the local analog of Proposition 2.2.2,

rag′(Det(c)) = D̃et(rag(c)) =
(

D̃et (rag(rG(ap))) · D̃et
(
rag(rG(b))−1

))
p

which, by Proposition 2.1.1 and Proposition 2.1.5, gives the proof.

2.3 The Stickelberger map

In order to describe resolvends of local normal integral basis generators in the ramified
case, McCulloh introduced a Stickelberger map ΘG : AG −→ Z[G]. It is in particular
its transpose Θt

G : Hom (Z[G],−) −→ Hom (AG,−), after a necessary adjustment due
to the Ω-action, which will be used to give a local decomposition of resolvends. The
original definition of the Stickelberger map, when G is abelian, is contained in [28],
while its extension to the non-abelian case was presented for the first time by McCul-
loh in a talk given in Oberwolfach in 2002. Let us start defining the Stickelberger pairing.

We define a Q-pairing 〈−,−〉 : Q⊗Z RG × Q[G] −→ Q as follows:

? Characters of degree 1. If χ is a character of degree 1 and s ∈ G, 〈χ, s〉 is the rational
number defined by

χ(s) = e2πi〈χ,s〉,

such that 0 ≤ 〈χ, s〉 < 1. This was the original definition contained in [28] (in
the abelian case every irreducible character is of dimension 1). If G is abelian,
this already defines, extending it by Q-bilinearity, a Q-pairing 〈−,−〉 : Q⊗Z RG ×
Q[G] −→ Q.

? Characters of higher degree. If χ is a character of degree bigger than 1, then we define

〈χ, s〉 := 〈resG〈s〉 χ, s〉,

where resG〈s〉 χ is the restriction of the character χ to the cyclic group generated
by s.

Extending it by Q-bilinearity, we have the required pairing for a generic finite group G.

Thanks to this pairing, the Stickelberger map ΘG : Q ⊗Z RG −→ Q[G] is defined by
Z-linearity as

ΘG(χ) :=
∑
s∈G
〈χ, s〉s.
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Going back to the definition of AG, we can now prove the following proposition.

Proposition 2.3.1. Let α ∈ Q ⊗Z RG, then ΘG(α) ∈ Z[G] ⇐⇒ α ∈ AG. So ΘG

induces a homomorphism ΘG : AG −→ Z[G].

Proof. Given α :=
∑
aχχ ∈ Q⊗Z RG, we have

det(α)(s) =
∏

χ of deg 1

χ(s)aχ ·
∏

χ of deg >1

det (Tχ (s))aχ ,

with Tχ a representation associated to χ. We know that det (Tχ (s)) =
∏n
i=1 β

ji
i , where

βi are the eigenvalues of Tχ(s).
In the meanwhile we have resG〈s〉Tχ =

∑n
i=1 ji χi, where each χi is the irreducible character

of 〈s〉 associated to the eigenvalue βi (βi = χi(s)).
Thus

det (Tχ (s)) = e
2πi〈resG〈s〉χ,s〉

and, by bilinearity, we get det(α)(s) = e2πi〈α,s〉; which gives

ΘG(α) ∈ Z[G]⇐⇒ 〈α, s〉 ∈ Z, ∀s ∈ G⇐⇒ det(α)(s) = 1, ∀s ∈ G⇐⇒ α ∈ AG.

Up to now we have not considered the Ω-action. If we let Ω act trivially on G, as at the
beginning of the chapter, it is easy to see that the Stickelberger map does not preserve
Ω-action. In order to have such an invariant property we have to introduce a non-trivial
Ω-action on G.

Definition. Let m be the exponent of G and µm the group of m-th roots of unity. Re-
stricting Ω to Gal (K (µm) /K), we consider the map κ : Ω −→ (Z/mZ)× defined via the
formula ζω = ζκ(ω), for ζ ∈ µm.
We denote by G(−1) the group G with an Ω-action defined via the inverse of κ:

sω := sκ
−1(ω).

If we take a character χ of degree 1, we have χ(s) ∈ µm and, since χω(s) equals χ (s)ω,
we get

χω(s) = χ (s)ω = χ (s)κ(ω) = χ(sκ(ω)).

By bilinearity, we deduce that, for all α ∈ Q⊗Z RG and for all s ∈ G,

〈αω, s〉 = 〈α, sκ(ω)〉 = 〈α, sω−1〉. (2.16)
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Applying this to the Stickelberger map, we get

ΘG(αω) =
∑
s∈G
〈αω, s〉 s =

∑
s∈G
〈α, sω−1〉 s =

∑
s∈G
〈α, s〉 sω;

from which we deduce the following proposition.

Proposition 2.3.2. The map ΘG : Q⊗ZRG −→ Q[G(−1)] is an Ω-homomorphism, i.e.

ΘG(αω) = ΘG (α)ω ,

∀α ∈ Q⊗Z RG and ω ∈ Ω.

The pairing 〈χ, s〉 just depends on the conjugacy class of s ∈ G (it is the same for all
the elements in the same conjugacy class) and hence ΘG(Q ⊗Z RG) ⊆ Z(Q[G]), where
Z(Q[G]) is the center of the group algebra Q[G], with basis the conjugacy class sum of G.
If we denote by Ḡ the set of conjugacy classes of G, then the action of Ω via κ−1 preserves
conjugacy classes and it induces an Ω-action on Z(Z[G]) and on Z[Ḡ]; we denote these
Ω-modules by Z(Z[G(−1)]) and Z[Ḡ(−1)], respectively.
There is a canonical Ω-module isomorphism i between Z[Ḡ] and Z(Z[G]), defined by
linearity as follows:

i : Z[Ḡ] −→ Z(Z[G])

s̄ 7−→ i(s̄) :=
∑
t∈ s̄

t.

Moreover, defining the Stickelberger pairing on the set of conjugacy classes as

〈χ, s̄〉 := 〈χ, s〉,

we denote by ΘḠ the map, defined by Q-bilinearity as:

ΘḠ : Q⊗Z RG −→ Q[Ḡ] (2.17)

χ 7−→
∑
s̄∈ Ḡ

〈χ, s̄〉s̄.

Clearly iΘḠ = ΘG and ΘḠ(χ) ∈ Z[Ḡ]⇐⇒ χ ∈ AG.

Transposing the map ΘḠ : AG −→ Z[Ḡ(−1)], we get the Ω-equivariant homomorphism

Θt
Ḡ : Hom

(
Z[Ḡ(−1), (Kc)×

)
−→ Hom

(
AG, (Kc)×

)
.

Hence, if we write

(
KΛ̄

)×
:= HomΩ

(
Z[Ḡ(−1)], (Kc)×

)
,

Λ̄× := HomΩ

(
Z[Ḡ(−1)], (Oc

K)×
)

;
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then Θt
Ḡ
induces a homomorphism

Θt
Ḡ :
(
KΛ̄

)× −→ HomΩ

(
AG, (Kc)×

)
.

For any place p of K, we get a local analog just replacing K with Kp:

Θt
Ḡ, p :

(
KpΛ̄p

)× −→ HomΩp

(
AG, (Kc

p)×
)
.

Moreover Θt
Ḡ, p

(Λ̄×p ) ⊆ HomΩp

(
AG, Oc

K, p
×
)
. Be careful that at the infinite places, since

we set OK, p = Kp, we have Λ̄p = KpΛ̄p.

Hence, if we define the idèle group J(KΛ̄) as the restricted product of (KΛ̄)× with
respect to Λ̄×, the homomorphisms Θt

Ḡ, p
combine to give an idelic transpose Stickelberger

homomorphism:
Θt
Ḡ : J(KΛ̄) −→ HomΩ (AG, J (Kc)) . (2.18)

Remark 2.3.3. Note that J(KΛ̄) can also be defined as

HomΩ

(
Z[Ḡ(−1)], J(Kc)

)
;

for details see [28, Remark 6.22].

Remark 2.3.4. Note that if G is abelian, we can remove the “bar” from all our notation,
since G = Ḡ. In the sequel, if G is abelian, we will adopt this simplification in the
notation.

2.4 Resolvends of local tame extensions

In this section we describe the decomposition of resolvends of normal integral basis
generators of local tame extensions which will be the main ingredient of the proof of
Theorem A. For this section p is a finite place of K.

Notation. For any finite place p of K we consider a uniformizer πp of Kp and we denote
by qp the cardinality of the residue field.
Moreover we choose a compatible set of roots of unity {ζn} and roots of the uniformizer
{π1/n

p }. The term “compatible” means that the following relations hold: ζnnr = ζr and(
π

1/nr
p

)n
= π

1/r
p . Clearly πr/np :=

(
π

1/n
p

)r
.

We denote by Knr
p the maximal unramified extension of Kp, it is well known that

Knr
p = Kp ({ζn : (n, qp) = 1}) .

Analogously we write Kt
p for the maximal tamely ramified extension of Kp and we know

that
Kt

p = Kp

({
ζn, π

1/n
p : (n, qp) = 1

})
.
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The Galois group Ωnr
p := Gal(Knr

p /Kp) is a procyclic group generated by the Frobe-
nius element φp, defined by φp(ζn) := ζ

qp
n . This in turn determines a generator σp of

Gal(Kt
p/K

nr
p ), defined as σp(π

1/n
p ) := ζnπ

1/n
p . If we extend φp to Gal(Kt

p/Kp) fixing π
1/n
p ,

one can see that Ωt
p := Gal(Kt

p/Kp) is the profinite group topologically generated by σp
and φp, subject to the relation φp · σp · φ−1

p = σ
qp
p . The set of elements σipφ

j
p ∈ Ωt

p, with
i and j natural numbers, forms a dense subgroup of Ωt

p.

Thanks to this description, we clearly have the following bijection

Hom(Ωt
p, G) ←→ {(t, u) : t, u ∈ G and t · u · t−1 = uqp}

hp 7−→ (hp(φp), hp(σp)) .

From now on, let hp be an element in Hom(Ωt
p, G). We denote by u the element hp(σp)

and by t the element hp(φp). We write e for the order of u and f for the order of t.
Note that if G is abelian then e|(qp − 1). While in general, for any finite group, we have

(e, qp) = 1,

since t ∈ NG(〈u〉) (where NG(〈u〉) is the normalizer of 〈u〉 in G) and hence qp belongs
to (Z/eZ)×.

Let hnr
p and htr

p be two maps in Map
(
Ωt
p, G

)
, defined by:

hnr
p

(
σipφ

j
p

)
:= tj (2.19)

htr
p

(
σipφ

j
p

)
:= ui. (2.20)

Clearly hp = htr
p · hnr

p and hnr
p ∈ Hom(Ωnr

p , G). Moreover, if we denote by Gnr the group
G with a non-trivial Ωt

p-group action defined as

sω = hnr
p (ω) · s · hnr

p (ω)−1,

or better, considering ω = σipφ
j
p, as

s(σ
i
pφ
j
p) = tj · s · t−j ;

we can prove the following lemma.

Lemma 2.4.1. The map htr
p ∈ Z1(Ωt

p, Gnr), where Z1(Ωt
p, Gnr) represents the set of

1-cocycles of Ωt
p in Gnr.

Proof. Given two elements σipφ
j
p and σkpφlp in Ωt

p, we need to show the equality

htr
p

(
σipφ

j
p · σkpφlp

)
= htr

p

(
σipφ

j
p

)
· htr

p

(
σkpφ

l
p

)σipφjp
.
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Now, using the relation φp · σp · φ−1
p = σ

qp
p , it is easy to see that

htr
p

(
σipφ

j
p · σkpφlp

)
= htr

p

(
σ
i+kqjp
p φj+lp

)
= ui+kq

j
p .

Moreover htr
p

(
σipφ

j
p

)
= ui and the equality

htr
p

(
σkpφ

l
p

)σipφjp
= tj · uk · t−j = ukq

j
p

concludes the proof.

Let us denote by htr
p Gnr the Ωt

p-set G with an Ωt
p-action defined as

sω = htr
p (ω) · hnr

p (ω) · s · hnr
p (ω)−1,

the easy proof that this action respect the associativity is left to the reader and follows
from the fact that htr

p ∈ Z1(Ωt
p, Gnr). Pay attention to the fact that we look at h

tr
p Gnr

as an Ωt
p-set and not as an Ωt

p-group.

Then we consider the (Hopf) Kp-algebra

(Kp)htr
p

:= Map
Ωt
p

(
htr
p Gnr,K

c
p

)
.

Here we need to make a clarification: the theory of resolvends that we have seen in
the previous sections for G-Galois algebras over K (or Kp) can be generalized to the
set of Hopf algebras, as fully done by N. Byott in his paper [7] (the author considered
just the abelian case, but what we are going to use is valid in the non-abelian case
too). In particular (Kp)htr

p
is an example of those algebras that the author calls principal

homogeneous spaces (p.h.s.) over the algebra Map
Ωtp

(
Gnr,K

c
p

)
(this corresponds to B in

[7]). As explained in the cited work, (Kp)htr
p
can be considered as a (Kc

p [Gnr])
Ωt

p-module,
where, given α =

∑
s∈Gnr

αss ∈ (Kc
p [Gnr])

Ωt
p and a ∈ (Kp)htr

p
,

(α · a)(s′) :=
∑
s∈Gnr

αsa(s′ · s).

The algebra (Kp)htr
p
, considered with such a structure, is free of rank 1 over (Kc

p [Gnr])
Ωt

p

(this follows from the fact that Map(Gnr,K
c
p) is free of rank 1 over Kc

p [Gnr]), i.e. there
exists b ∈ (Kp)htr

p
such that (Kp)htr

p
= (Kc

p [Gnr])
Ωt

p · b.
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Now if we take its ring of integers O(Kp)
htr
p

= Map
Ωt
p

(
htr
p Gnr, O

c
K, p

)
, we can consider the

element βu :=
1

e

∑e−1
i=0 π

i/e
p ∈ Oc

K, p and the map ϕp,u ∈ Map(G,Oc
K, p) defined as

ϕp,u(s) =

{
σip(βu) if s = ui,

0 otherwise.
(2.21)

We can now prove the following results.

Proposition 2.4.2. (a) The map ϕp,u belongs to O(Kp)
htr
p
.

(b) The map ϕp,u generates O(Kp)
htr
p

over (Oc
K, p[Gnr])

Ωt
p, i.e.

O(Kp)
htr
p

= (Oc
K, p[Gnr])

Ωt
p · ϕp,u.

(c) Given a ∈ (Kp)htr
p
, for any ω ∈ Ωt

p,

rG(a)ω = hnr
p (ω)−1 · rG(a) · hp(ω).

Proof. (a) For any ω = σjpφ
k
p ∈ Ωt

p, we have

ϕp,u((ui)ω) = ϕp,u(uj · tk · ui · t−k)

= ϕp,u(uj+iq
k
p )

= σ
j+iqkp
p (βu)

= σ
j+iqkp
p φkp(βu)

= σjpφ
k
pσ

i
p(βu)

= ϕp,u(ui)ω,

where we frequently use the relations t · u · t−1 = uqp and φp · σp · φ−1
p = σ

qp
p . If

s /∈ 〈u〉, then also sω, for ω ∈ Ωt
p, is not in 〈u〉, so clearly ϕp,u(s)ω = 0 = ϕp,u(sω).

(b) The proof of this point generalizes the analogous result in the abelian case contained
in [28, page 281] and follows the proof of [7, Lemma 6.6].
Let us consider the cyclic group 〈u〉 inside htr

p Gnr, then the group Ωt
p acts transitively

on it. Now if we consider the algebra Lu := Map
Ωtp

(
〈u〉,Kc

p

)
, this, since the action

of Ωt
p is transitive on 〈u〉, embeds in a subfield of Kt

p via the map which sends
b ∈ Lu to b(1) ∈ Kt

p. Since (look at the action of Ωt
p on htr

p Gnr)

b(1)σ
i
p = b(ui),

b(1)φ
j
p = b(1),

we see that Lu coincides with the subfield of Kt
p given by the elements fixed by φp

and σep, i.e. Kp(π
1/e
p ). Its ring of integers is clearly OK, p[π

1/e
p ].
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Consider now (Oc
K, p[〈u〉])

Ωt
p , where 〈u〉 is now seen in Gnr, and define the element

α :=
∑e−1

i=0 ζ
−ki
e ui. Since σp acts trivially on Gnr and

αφp =
e−1∑
i=0

ζ
−kiqp
e uqpi =

e−1∑
i=0

ζ−kie ui = α,

using the fact that (e, qp) = 1, we see that α ∈ (Oc
K, p[〈u〉])

Ωt
p . Moreover

α · βu =

e−1∑
i=0

ζ−kie ui · βu =

e−1∑
i=0

σip(βu)ζ−kie

and this sum coincides with πk/ep (cfr. [28, page 281]). Note that βu coincides with
ϕp,u(1).
Hence we have proved that (Oc

K, p[〈u〉])
Ωt

p · βu = OK, p[π
1/e
p ], which in turn proves

that (Oc
K, p[Gnr])

Ωt
p · ϕp,u = O(Kp)

htr
p
.

(c) Remember that rG(a) ∈ Kc
p [G] and Ωt

p acts trivially on G. Then we have

rG(a)ω =
∑
s∈G

a(sω)s−1

=
∑
s∈G

a(htr
p (ω) · hnr

p (ω) · s · hnr
p (ω)−1)s−1

=
∑
τ∈G

a(τ) · hnr
p (ω)−1 · τ−1 · htr

p (ω) · hnr
p (ω)

= hnr
p (ω)−1 · rG(a) · htr

p (ω) · hnr
p (ω)

= hnr
p (ω)−1 · rG(a) · hp(ω).

Given anr a normal integral basis generator of (Kp)hnr
p

:= Map
Ωp

(
hnr
p G,Kc

p

)
and atr

an element in (Kp)htr
p

such that O(Kp)
htr
p

= (Oc
K, p[Gnr])

Ωt
p · atr, we can find an element

a ∈ (Kp)hp such that
rG(a) = rG(anr) · rG(atr) ∈ Kc

p [G]×.

The fact that we can find an element a ∈ Map(G,Kc
p) such that its resolvend is equal

to the product follows from the fact that the resolved map is an isomorphism. To prove
that a is actually in (Kp)hp we use (P2), noting that, for any ω ∈ Ωt

p,

rG(a)ω = rG(anr)
ω · rG(atr)

ω

= rG(anr) · hnr
p (ω) · hnr

p (ω)−1 · rG(atr) · hp(ω)

= rG(a) · hp(ω),
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where on the second line we used point (c) of the previous proposition. The fact that
rG(a) ∈ Kc

p [G]× proves that a is in particular a normal basis generator of (Kp)hp/Kp.
In fact McCulloh proved something more: the element a just found is a normal integral
basis generator of (Kp)hp/Kp.

Proposition 2.4.3. Let anr and atr be as above. The element a ∈ (Kp)hp defined by

rG(a) = rG(anr) · rG(atr)

is a normal integral basis generator of (Kp)hp/Kp.

Proof. The proof is essentially the same of the one given in the abelian case in [28,
Theorem 5.6, page 283]. Since anr and atr are normal integral basis generators it is clear
that their resolvends have coefficients in Oc

K, p, thus we have OK, p[G] · a ⊆ O(Kp)hp
. The

equality follows, as in the abelian proof, comparing the discriminants of OK, p[G] · a and
of O(Kp)hp

.

For any finite place p, let us define

Cqp := {s ∈ G| sqp ∈ s̄}.

Given hp ∈ Hom(Ωt
p, G), it follows, from the relation φp ·σp ·φ−1

p = σ
qp
p , that the element

hp(σp) belongs to Cqp .

Then for any s ∈ Cqp , let us define the map fp,s ∈ Map
Ωp

(
Ḡ(−1), (Kc

p)×
)
as

fp,s(t̄) =

{
πp if t̄ = s̄ 6= 1,

1 otherwise.
(2.22)

Since s ∈ Cqp , the group Ωp fixes s̄ considered in Ḡ(−1) and thus we see the Ωp-
equivariance of fp,s.

Moreover let us define Fp ⊆ (KpΛ̄p)
× as the set {fp,s}s∈Cqp . These combine to define

F ⊆ J(KΛ̄) as the set of idèles f ∈ J(KΛ̄) such that fp ∈ Fp for all finite p. We
immediately see that, by the definition of J(KΛ̄), if f ∈ F then fp = 1 a.e.. The set
Fp can be considered embedded in F via the natural map (KpΛ̄p)

× −→ J(KΛ̄) and the
non-trivial elements of Fp once considered in F are called prime F -elements over p.

We choose T a set of representatives of the orbits of Ḡ(−1) under the Ω-action and, for
any t̄ ∈ T , denote by K(t) the field extension over K given by the fixed elements in Kc

under the stabilizer of t̄. Then we have the following Wedderburn decomposition:

KΛ̄ ∼=
∏
t̄∈T

K(t),
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where, for every t ∈ T , the projection KΛ̄ −→ K(t) is given by evaluation of functions
in KΛ̄ at t. For any prime p of K, let us denote by K(t)p the tensor product Kp⊗KK(t),
then analogously, we also have

KpΛ̄p
∼=
∏
t̄∈T

K(t)p,

where now, pay attention that everyK(t)p is not a field but a product of fields. Moreover,
if J(K(t)) denotes the restricted direct product of K(t)×p with respect to O×K(t),p (where
OK(t),p := OK, p ⊗OK OK(t)), one can prove that

J(KΛ̄) ∼=
∏
t̄∈T

J(K(t)). (2.23)

If s ∈ Cqp , we deduce that (qp, |s|) = 1 and that s̄ is fixed by Ωp (and hence K(s)p = Kp).
Thus (cf. [28, page 288]), we see that the prime F -elements over p coincide with the
invertible prime ideals P = (Pt̄)t̄∈T of Λ, with Ps̄ a prime of degree one over p in K(s),
for some s̄ 6= 1 with vp(|s|) = 0 (where vp denotes the valuation associated to p), and
Pt̄ = OK(t), ∀ t̄ 6= s̄.

By an easy computation, for any s ∈ Cqp and α ∈ AG, we have:

Θt
Ḡ(fp,s)(α) = fp,s(ΘḠ(α))

= fp,s

∑
t̄∈ Ḡ

〈α, t̄〉t̄


= π

〈α,s̄〉
p

= π
〈α,s〉
p .

In the meanwhile we have the following result.

Proposition 2.4.4. Let us consider ϕp,u as defined in (2.21). For any α ∈ AG,

D̃et(rag(rG(ϕp,u)))(α) = π
〈α,u〉
p .

Proof. Let χ ∈ Irr(G), assume that resG〈u〉(χ) =
∑

ψ∈ 〈̂u〉 aψψ. Then

Det(rG(ϕp,u))(χ) = det

(
e−1∑
i=0

σip(βu)Tχ(u−1)

)

=
∏
ψ∈ 〈̂u〉

(
e−1∑
i=0

σip(βu)ψ(u−1)

)aψ
.
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Since, as in [28, page 282], we have the relation
∑e−1

i=0 σ
i
p(βu)ψ(u−1) = π

〈ψ,u〉
p , we get

∏
ψ∈ 〈̂u〉

(
e−1∑
i=0

σip(βu)ψ(u−1)

)aψ
= π

〈
∑
ψ∈ 〈u〉 aψψ,u〉

p = π
〈χ,u〉
p .

So by linearity, for any α ∈ AG,

D̃et(rag(rG(ϕp,u)))(α) = rag′(Det(rG(ϕp,u)))(α) = Det(rG(ϕp,u))(α) = π
〈α,u〉
p .

Corollary 2.4.5. D̃et(rag(rG(ϕp,u))) = Θt
Ḡ

(fp,u).

Proof. Clear.

Remark 2.4.6. D̃et(rag(rG(ϕp,u))) just depends on the conjugacy class of u, since it is
easy to check that rG(ϕp,s−1us) = s−1rG(ϕp,u)s.

From now on, let us take atr = ϕp,u.

Proposition 2.4.7. Let hp ∈ HomΩ

(
Ωt
p, G

)
. If a′p is a NIBG of (Kp)hp/Kp, then

D̃et(rag(rG(a′p))) = Θt
Ḡ(fp,u) · wp,

where u = hp(σp) and wp ∈ D̃et(H(OK, p[G])).

Proof. Given a′p a NIBG of (Kp)hp/Kp, if we consider ap the NIBG defined, as in
Proposition 2.4.3 (considering atr = ϕp,u), by the relation rG(ap) = rG(anr) · rG(ϕp,u),
then there exists an element dp ∈ OK, p[G]×, such that a′p = dp · ap. Thus, since
D̃et(rag(OK, p[G]×)) ⊆ D̃et(H(OK, p[G])), using (2.6) and Corollary 2.4.5, we conclude.

2.5 Proof of Theorem A

We can now define the Stickelberger subgroup St(OK [G]). Thanks to the definitions
given in the previous sections, we have the following group homomorphisms

Cl(OK [G])
Rag
//MCl(OK [G]) J(KΛ̄),

Θt
Ḡoo

where the map on the right is the natural map given by the composition of Θt
Ḡ

: J(KΛ̄)→
HomΩ (AG, J (Kc)) with the quotient map HomΩ (AG, J(Kc))→ MCl(OK [G]) (and we
will denote it again by Θt

Ḡ
).
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Definition 2.5.1. The Stickelberger subgroup St(OK [G]) is defined as

St(OK [G]) := Rag−1(Im(Θt
Ḡ)).

Thanks to the previous section, we can now give a proof of Theorem A.

Theorem A. Given a number field K and a finite group G,

RA(OK [G]) ⊆ St(OK [G]).

Proof. Let us consider Kh a G-Galois K-algebra tamely ramified, with h ∈ Hom
(
Ωt, G

)
.

Then as in Propostion 1.6.12, we choose a normal basis generator b and, for any finite
place p, a local normal integral basis generator ap. Then we know, by Remark 2.1.7, that
the class [OKh ] is represented by the idèle c = (cp)p ∈ J(K[G]) defined componentwise
by the relation rag(rG(ap)) = rag(cp) · rag(rG(b)) (where cp = 1 at the infinite primes).
Applying now the map D̃et, by (2.1) and Proposition 2.4.7, for any finite prime p we get

D̃et(rag)(cp) = g−1 ·Θt
Ḡ(fp,u) · wp,

with g = D̃et(rag(rG(b))) ∈ HomΩ (AG, (Kc)×) (note that g does not depend on p),
wp ∈ D̃et(H(OK, p[G])) and fp,u ∈ Map

Ωp

(
Ḡ(−1), (Kc

p)×
)
defined as in (2.22), with

u = hp(σp). Note that since Kh/K has to be unramified a.e., fp,u will be equal to 1 a.e..
If we define f := (fp,u)p ∈ J(KΛ̄) (with fp,u = 1 at the infinite primes) and w :=∏

pwp ∈ U(OK [G]) (with wp = gp at the infinite primes), we finally get

D̃et(rag)(c) = g−1 ·Θt
Ḡ(f) · w,

which concludes the proof.

2.6 The abelian equality

From now on the group G will be assumed to be abelian.

In this last part of the chapter we will explain the main ideas which led McCulloh to
prove the inclusion St(OK [G]) ⊆ RA(OK [G]) in the abelian case and hence Theorem B.

When G is abelian, the main simplifications, with respect to the previous sections, are
the following:

? The maps Det and D̃et in the diagrams of Proposition 2.2.4 and Proposition 2.2.5
are isomorphisms (Remark 2.2.9). So we will avoid in the notation the use of Det
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and we have

K[G]× ∼= HomΩ

(
RG, (K

c)×
)
,

H(K[G]) ∼= HomΩ

(
AG, (Kc)×

)
,

H(OK, p[G]) ⊆ HomΩp

(
AG, (OcK, p)×

)
.

? Any irreducible character of G is of dimension 1.

? The set of conjugacy classes Ḡ coincides with G, so in particular J(KΛ) = J(KΛ̄).

? In Section 2.4, the set Cqp becomes the set of elements in G of order dividing qp−1.

The proof of Proposition 2.4.7 becomes easier in the abelian situation, in particular we do
not need to use the notion of Hopf-algebras, thanks to the fact that htr

p ∈ Hom
(
Ωt
p, G

)
in this case. Moreover, we also have a reverse statement of that proposition.

Proposition 2.6.1. Given an element s ∈ G of order dividing qp − 1 and an element
wp ∈ H(OK, p[G]), there exists an hp ∈ Hom

(
Ωt
p, G

)
, such that hp(σp) equals s and

(Kp)hp/Kp has a NIBG ap such that rag(rG(ap)) = Θt
Ḡ

(fp,s) · wp.

Proof. ([28, Theorem 5.6]) The general idea is that for any element s ∈ G of order
dividing qp − 1 we can always find a totally ramified extension (Kp)htr

p
/Kp such that

htr
p (σp) equals s and htr

p (φp) = 1. In the meanwhile, by (2.6), we can find an unramified
hnr
p ∈ Hom

(
Ωnr
p , G

)
with a NIBG anr

p such that rag(rG(anr
p )) = wp. A homomorphism

hp defined as hp = htr
p · hnr

p will give the extension required.

The following proposition will be the main ingredient in the proof of Theorem B.

Proposition 2.6.2. Let Kh/K be a G-Galois K-algebra and take b a normal basis
generator. Then Kh/K is tamely ramified if and only if there are c ∈ J(K[G]), f ∈ F

and w ∈ U(OK [G]), such that

rag(c) = rag(rG(b))−1 ·Θt
G(f) · w. (2.24)

Moreover c is a representative of the class [OKh ] and f is uniquely determined by the
relation fp = fp,s for each finite p, with s = hp(σp). In particular h is unramified at p if
and only if fp = 1 and h is unramified if and only if f = 1.

Proof. See [28, page 286]. The main property which allows to prove this result in the
abelian case is that, when G is abelian, H(Kp[G]) ∼= HomΩp

(
AG,

(
Kc

p

)×), for any
place p.
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This would already be sufficient to give the proof of Theorem B, restricting the Stick-
elberger map from St(OK [G]) to Θt

G to F . But note that F is not a group and so this
would not prove that the set of realizable classes, for an abelian group, forms a subgroup
of Cl(OK [G]). Hence in order to give a proof of Theorem B, we need to show that
Θt
G(F ) = Θt

G(J(KΛ)) in MCl(OK [G]) and this will be obtained through the following
approximation result.

Let m be an integral ideal of OK . For each finite place p of K, we define

U ′m(Λp) := {gp ∈ (KpΛp)
×| gp(s) ∈ (1 + mOc

K, p) ∩ (Oc
K, p)

×, ∀ s ∈ G, s 6= 1}.

The value at s = 1 can be arbitrary. If we write

U ′m(Λ) :=

(∏
p

U ′m(Λp)

)
∩ J(KΛ),

then we define the modified ray class group mod m of Λ as

Cl′m(Λ) :=
J(KΛ)

(KΛ)× · U ′m(Λ)
. (2.25)

The following result holds.

Proposition 2.6.3. Given an integral ideal m of OK , each class in Cl′m(Λ) contains
infinitely many elements of F and they can be chosen with support disjoint from any
preassigned finite set of finite primes. Moreover f ∈ F can be chosen so that ft 6= 1 for
each t ∈ T \ {1}, where f =

∏
t∈T ft, via the Wedderburn decomposition (2.23).

Proof. ([28, Proposition 6.14]) This mainly follows considering

Cl′m(Λ) ∼=
∏

t∈T\{1}

Clm(OK(t)),

where Clm(OK(t)) is the ray class group mod m of K(t). Indeed, as already seen below
(2.23), the prime F -elements over p coincide with the invertible prime idealsP = (Pt)t∈T

of Λ, with Ps a prime of degree one over p in K(s), for some s 6= 1 with vp(|s|) = 0, and
Pt = OK(t), ∀ t 6= s. Thus, since, for every t ∈ T \ {1}, each ray class mod m of K(t)

contains infinitely many prime ideals of degree one in K(t)/K, the proof follows.

Corollary 2.6.4. Θt
G(F ) = Θt

G(J(KΛ)) in MCl(OK [G]).

Proof. Let us consider m an integral ideal divisible by a sufficiently high power of |G|
(following Proposition 2.2.8). Then, by the previous proposition, given an element g ∈
J(KΛ) there exists an f ∈ F (which can be chosen with support disjoint from any
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preassigned finite set of finite primes S), such that

g ≡ f mod((KΛ)× · U ′m(Λ)).

Thus, applying the map Θt
G to this relation and using the fact that Θt

G((KΛ)×) ⊆
HomΩ (AG, (Kc)×) and Θt

G(U ′m(Λ)) ⊆ U(OK [G]) (by Proposition 2.2.8), we get

Θt
G(g) ≡ Θt

G(f) mod
(
HomΩ

(
AG, (Kc)×

)
· U(OK [G])

)
.

Thanks to this, we can now (re)state and prove Theorem B.

Theorem B. Given a number field K and a finite abelian group G,

RA(OK [G]) = St(OK [G]).

Moreover RF (OK [G]) = RA(OK [G]) and any class can be obtained from a G-Galois field
extension Kh/K unramified at a preassigned finite set of finite primes.

Proof. For a precise proof see [28, Theorem 6.17]. Nevertheless the general idea behind
the proof should now be clear and the main ingredients are given by: the fact that in
the abelian case Det is an isomorphism, Proposition 2.6.2 and Corollary 2.6.4.

The fact that any class can be actually obtained from a G-Galois field extension follows
from:

- if Kh/K is not a field, then it contains an unramified non-trivial extension H/K,

- given Kh′/K such that the associated (via 2.24) f ∈ F is so that ft 6= 1, for each
t ∈ T \ {1} (in terms of (2.23)), then every K-subalgebra of Kh′ is ramified ([28,
page 290]).

Since for any class c we can find an algebra Kh/K realizing c such that the associated
f ∈ F is so that ft 6= 1, for each t ∈ T \ {1} (Proposition 2.6.3), we conclude that this
has to be a field extension.

The statement on the ramification follows from the fact that the element f ∈ F in a
given modified ray class group can be chosen with support disjoint from any preassigned
finite set of primes.

Corollary 2.6.5. Given a number field K and a finite abelian group G,

Rnr(OK [G]) = Ker(Rag).
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Proof. This follows from Proposition 2.2.10, Theorem B and the last statement of Propo-
sition 2.6.2.



Chapter 3

Computing the Stickelberger
subgroup

This chapter contains the first new results of this dissertation.

In the first part we shall investigate the relations between the Stickelberger subgroup
St(OK [G]) defined by McCulloh in his works and the subgroup Cl◦(OK [G]), that we
have already met in the Introduction.

The second part of this chapter is devoted to the explicit computations of St(OK [G]),
just using its definition, in some particular situations. Namely, we will consider K = Q

and we will develop the cases G = Cp and G = Dp, where Cp is a cyclic group of prime
order p and Dp the dihedral group of order 2p, with p ≥ 3.

3.1 St(OK [G]) and Cl◦(OK [G])

In this section G is a finite group, not necessarily abelian.

From Theorem A of the previous chapter, we know, that for every number field K and
for every finite group G,

RA(OK [G]) ⊆ St(OK [G]),

where St(OK [G]) is a particular subgroup of Cl(OK [G]), defined in Definition 2.5.1, via
a Stickelberger map (see (2.18)) and the map Rag (see (2.15)).

In the meanwhile, we recall that Cl◦(OK [G]) is defined as the kernel of the group homo-
morphism ε? : Cl(OK [G]) −→ Cl(OK), induced by the augmentation map ε : OK [G] −→
OK which sends

∑
s∈G ass to

∑
s∈G as. McCulloh proved the following result.

61
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Proposition 3.1.1. For every number field K and finite group G,

RA(OK [G]) ⊆ Cl◦(OK [G]).

Proof. The original proof is contained in [26] (see also [27]). The general idea is that
given L/K a tame G-Galois K-algebra, then

ε?([OL]) = OK ⊗OK [G] OL ∼=
1

|G|
TrL/K(OL),

where TrL/K is the trace map from L to K.
By definition of tame extensions the trace map is surjective, i.e. TrL/K(OL) = OK , hence
ε?([OL]) is trivial in Cl(OK).

Remark 3.1.2. In terms of the Hom-description (§1.7.4), we have the following iso-
morphism

Cl◦(OK [G]) ∼=
Hom◦

Ω
(RG, J(Kc))

Hom◦
Ω

(RG, (Kc)×) ·Det◦ (U (OK [G]))
.

The superscript “ ◦ ” means that we are considering the homomorphisms f such that
f(χ0) = 1, where χ0 is the trivial character of G (see [10]).

Considering the two inclusions just recalled, a natural question arises: what is the link
between the two groups St(OK [G]) and Cl◦(OK [G])? Are they equal?

A first answer to these questions is given by the following result.

Proposition 3.1.3. Given a number field K and a finite group G,

St(OK [G]) ⊆ Cl◦(OK [G]).

Proof. Let us consider a class c ∈ St(OK [G]) represented in terms of the Hom-description
by f ∈ HomΩ (RG, J(Kc)). In order to prove that c ∈ Cl◦(OK [G]), we need to show
that f(χ0) ∈ K× · U(OK) (see [10, Proposition 2.1]).
Since for any finite group G, the trivial character χ0 belongs to AG, in order to get f(χ0)

we can compute the value of rag′(f)(χ0). By the definition of St(OK [G]), we have

rag′(f) ∈ HomΩ

(
AG, (Kc)×

)
· U(OK [G]) ·Θt

Ḡ(J(KΛ̄)),

so we can split the computation on χ0 to any of the three components on the right.
Let us compute these values:

? HomΩ (AG, (Kc)×): If we take a homomorphism g ∈ HomΩ (AG, (Kc)×), the fact
that g is Ω-equivariant means that, for any ω ∈ Ω, we have

g (χ)ω = g(χω).
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Thus when we consider the value g(χ0), we have that, for any ω ∈ Ω,

g (χ0)ω = g(χω0 ) = g(χ0)

and hence g(χ0) ∈ K×, since it is fixed by Ω. So we have shown that every element
in HomΩ (AG, (Kc)×) evaluated at χ0 gives a global element in K×.

? U(OK [G]): We look at each place p separately and we compute the values at χ0. By
definition of the map Det and considering an element α :=

∑
s∈G ass ∈ Kc[G], we

obtain Det(α)(χ0) = Tχ0(α) =
∑

s∈G as.
If we take xp ∈ (Oc

K, p[G]×/G)Ωp represented by αp ∈ Oc
K, p[G]×, we have

D̃et(xp)(χ0) = rag′(Det(αp))(χ0) = Det(αp)(χ0).

Now, for any ω ∈ Ωp, we have αωp = αp · s′, where s′ ∈ G. Thus, applying Tχ0 ,
we get Tχ0(αp)

ω = Tχ0(αp). Hence, for each p, the element Det(αp)(χ0) belongs
to O×K, p, which combine to show that each element in U(OK [G]) is sent to U(OK)

when evaluated at χ0.

? Θt
Ḡ

(J(KΛ̄)): Given h ∈ J(KΛ̄), just by definition, we have Θt
Ḡ

(h)(χ0) = h (ΘḠ (χ0)),
but ΘḠ(χ0) = 0, since χ0(s) = 1 for each s ∈ G. Thus every element in
Θt
Ḡ

(J(KΛ̄)) evaluated at χ0 is trivial.

Combining all together, it is now easy to see that, if we take c ∈ St(OK [G]) and we
consider a representative of it f ∈ HomΩ (RG, J(Kc)), we obtain f(χ0) ∈ K× · U(OK),
as we wanted to prove.

After this proposition, one may wonder if the reverse inclusion also holds. This is the
case for some groups (e.g. G = A4, see [11]), but is not in general true as the next
counterexample shows.

Counterexample. Given a prime number p, take G = Cp, a cyclic group of order p;
then, as shown in [31], we have Cl(Z[Cp]) ∼= Cl(Z[ζp]), where ζp is a primitive p-th root
of unity. Since Cl(Z) = 1, we get Cl◦(Z[Cp]) = Cl(Z[Cp]).
By the Hilbert–Speiser theorem, R(Z[Cp]) = 1 and, by McCulloh’s results, the group
St(Z[Cp]) is trivial. So, just taking a cyclic group Cp, with a prime p such that the class
number of Cl(Z[ζp]) is not one (e.g. p = 23, see [46, Chapter 11]), we have a simple
example where St(OK [G]) ( Cl◦(OK [G]).
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3.2 Computing St(OK [G])

In this section we compute explicitly St(OK [G]) in some special cases, just using its
algebraic definition and Stickelberger’s classical theorem. The results here contained are
summarized in the next theorem (Theorem 0.0.6 in the Introduction).

Theorem 3.2.1. Given a prime number p 6= 2. If G = C2, a cyclic group of order 2,
or G = Cp, a cyclic group of order p or G = Dp, the dihedral group of order 2p, then
St(Z[G]) = 1.

This result will immediately imply, just using Theorem A, the following corollary.

Corollary 3.2.2. In the cases of the theorem above, R(Z[G]) = 1.

Note that the result of Corollary 3.2.2 was already known. As explained in the Introduc-
tion, the case G = Cp, with p a prime number, follows from Hilbert–Speiser; while the
dihedral case is a consequence of a more general result by Taylor contained in [43]. The
proof of Theorem 3.2.1 given here does not assume either of these results, however, but
instead uses the definition of St(Z[G]) and its connection to the classical Stickelberger
theorem.
In the dihedral case, the result of Theorem 3.2.1 is genuinely new, since the inclusion
R(Z[Dp]) ⊆ St(Z[Dp]) is not known a priori because the dihedral group Dp is not abelian.
The result obtained for the dihedral case is the more interesting one, since in particular it
goes in the direction of extending Theorem B to non-abelian groups, giving a non-abelian
example where the equality R(Z[G]) = St(Z[G]) holds.

3.2.3 Background on Cp and Dp

Let Cp be a cyclic group of order a prime number p with generator denoted by t and let
the group of characters Ĉp be generated by χp, where χp(t) := e

2πi
p . We denote by χ0

the trivial character (χpp = χ0).
The following result, that we have already used in the previous counterexample, describes
Cl(Z[Cp]) in terms of the class group of a cyclotomic extension Q(ζp) and is due to D. S.
Rim.

Lemma 3.2.4. Let ζp be a primitive p-th root of unity, then we have the following group
isomorphism:

L : Cl(Z[Cp])
∼=−→ Cl(Z[ζp])

c = [f ] 7−→ [f(χp)] .

Proof. This is a result contained in [31] and here rewritten in terms of the Hom-descrip-
tion, after having recalled the idelic representation of the ideal class group

Cl(Z[ζp]) ∼= J (Q(ζp)) /
(
Q(ζp)

× · U(Z[ζp])
)
.
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The element f , representative of the class c, belongs to HomΩ

(
RCp , J(Qc)

)
.

The dihedral group Dp is the group of symmetries of a regular polygon with p sides,
including both rotations and reflections. It has order 2p and it can be represented as

Dp := 〈r, s | rp = s2 = 1, s−1rs = r−1〉.

We will just consider p ≥ 3, note that D2 is the Klein four-group.
If p ≥ 3, the set of irreducible characters over C, denoted by Irr(Dp), consists of two
characters ψ0 and ψ′0 of dimension 1, and (p− 1)/2 characters ψj (with j = 1, . . . , (p−
1)/2) of dimension 2. The character ψ0 is the trivial character, while ψ′0 sends rk to 1

and srk to −1. The characters ψj , for j = 1, . . . , (p− 1)/2, are defined as

ψj :

r
k 7−→ 2 cos

(
2πjk

p

)
, k = 0, . . . , p− 1 ;

srk 7−→ 0, k = 0, . . . , p− 1.

For Dp an analogous result to Lemma 3.2.4 follows.

Lemma 3.2.5. Let p be an odd prime and let ζp be as above, then the following group
isomorphism holds:

J : Cl(Z[Dp])
∼=−→ Cl(Z(ζp + ζ−1

p ))

[f ] 7−→ [f(ψ1)] .

Proof. This follows from the Wedderburn decomposition Q[Dp] ∼= Q×Q×M2(Q(ζp+ζ
−1
p ))

and the isomorphism Cl(Z[Dp]) ∼= Cl(M) ∼= Cl(Z(ζp+ζ
−1
p )), whereM denotes a maximal

order in Q[Dp] containing Z[Dp]. See [15, Theorem 50.25] for more details.

3.2.6 Stickelberger’s classical theorem

We briefly recall here some annihilation results for class groups.

Let N/Q be a finite abelian extension, so, by the Kronecker–Weber theorem, N ⊆ Q(ζn)

(n is assumed to be the minimal integer with this property and ζn is a primitive n-th
root of unity). If H = Gal(N/Q), then it can be viewed as a quotient of (Z/nZ)× and we
denote by σµ, where µ ∈ (Z/nZ)×, both the element of Gal(Q(ζn)/Q) which sends ζn to
its µ-th power and its restriction to N . Then the Stickelberger element of N is defined
as

Ψ :=
∑

µ∈ (Z/nZ)×

{µ
n

}
σ−1
µ ∈ Q[H]

and we have the following classical theorem.
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Theorem 3.2.7. (Stickelberger’s Theorem). Let I be a fractional ideal of N , let β ∈
Z[H], and suppose βΨ ∈ Z[H]. Then (βΨ) · I is principal.

Proof. [46, Theorem 6.10].

Another useful relation for ideal classes of cyclotomic extensions is given by the next
theorem.

Theorem 3.2.8. Let L = Q(ζn), where ζn is a primitive n-th root of unity and denote
by σµ, for µ ∈ (Z/nZ)×, the automorphism defined above. Let p be a prime number,
such that p - n and let us consider a prime ideal P|p in OL. For positive integers a, b
such that ab(a+ b) 6≡ 0 mod n, let us write

Ψa, b :=
∑

µ∈ (Z/nZ)×

(⌊
(a+ b)µ

n

⌋
−
⌊aµ
n

⌋
−
⌊
bµ

n

⌋)
σ−1
µ .

Then (Ψa, b).P is principal. Since any ideal class contains infinitely many primes, this
gives a relation on the ideal class group of Q(ζn).

Proof. [24, Chapter IV, §4, Theorem 11].

3.2.9 The Stickelberger map for Cp and Dp

For any prime number p, in the cyclic case Cp, it is easy to see that 〈χ0, t
j〉 is equal to

0 and 〈χip, tj〉 =

{
ij

p

}
, for j = 0, . . . , p− 1 and i = 1, . . . , p− 1. Hence

ΘCp :

 χ0 7−→ 0 ,

χip 7−→
i

p
t+

{
2i

p

}
t2 + · · ·+

{
(p− 1)i

p

}
tp−1 , for 1 ≤ i ≤ p− 1.

While for the dihedral group Dp (with p ≥ 3), first we have to think about the restriction
of the irreducible characters over the cyclic subgroups 〈r〉 (of order p) and 〈srk〉 (of order
2). For the characters of dimension 1 we clearly have

res
Dp
〈r〉ψ0 = χ0 res

Dp
〈srk〉ψ0 = φ0

res
Dp
〈r〉ψ

′
0 = χ0 res

Dp
〈srk〉ψ

′
0 = φ′0

where χ0 represents the trivial character of the cyclic group 〈r〉 (we use the same notation
for the trivial character of Cp, since they are both cyclic group of order p), while φ0, φ

′
0

are the trivial and the non-trivial character of a cyclic group of order 2, respectively.
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For the other characters of dimension 2, using the inner products and some computations,
since Cp ∼= 〈r〉, we get

res
Dp
〈r〉ψj = χjp + χp−jp , for j = 1, . . . , (p− 1)/2.

While for the subgroups 〈srk〉, where k = 0, . . . , p− 1, we get

res
Dp
〈srk〉ψj = φ0 + φ′0, for j = 1, . . . , (p− 1)/2.

Then we easily deduce the values of the Stickelberger pairings on the elements of Irr(Dp):

〈ψ0, r
k〉 = 〈ψ0, sr

k〉 = 0, for k = 0, . . . , p− 1,

〈ψ′0, rk〉 = 0, 〈ψ′0, srk〉 = 1/2, for k = 0, . . . , p− 1,

〈ψj , 1〉 = 0, for j = 1, . . . , (p− 1)/2,

〈ψj , rk〉 = 1, for k = 1, . . . , p− 1 and j = 1, . . . , (p− 1)/2,

〈ψj , srk〉 = 1/2, for k = 0, . . . , p− 1 and j = 1, . . . , (p− 1)/2.

Thus we can now consider the Stickelberger map on the conjugacy classes

ΘD̄p : Q⊗Z RDp −→ Q[D̄p]

χ 7−→
∑
s̄∈ D̄p

〈χ, s̄〉s̄.

There are (p+ 3)/2 conjugacy classes of Dp:

{1}, {rk, r−k} for k = 1, . . . , (p− 1)/2 and {s, sr, sr2, . . . , srp−1};

then, since 〈χ, s̄〉 was defined as 〈χ, s〉, it is easy to see that we obtain:

ΘD̄p :


ψ0 7−→ 0 ,

ψ′0 7−→ 1

2
s̄ ,

ψj 7−→
∑(p−1)/2

k=1 r̄k +
1

2
s̄, for j = 1, . . . , (p− 1)/2.

3.2.10 The augmentation kernels ACp and ADp

As we have already seen in Remark 2.2.1, we have the following lemma.

Lemma 3.2.11. Let Cp be the cyclic group of prime order p, then

AC2 = 〈χ0, 2χ2〉 ,
ACp = 〈χ0, jχp − χjp, pχp〉, for 2 ≤ j ≤ p− 1, if p 6= 2.

An analogous result for the dihedral group Dp follows.
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Lemma 3.2.12. Let Dp be the dihedral group of order 2p, with p ≥ 3, then

ADp = 〈ψ0, 2ψ′0, ψ
′
0 − ψj〉 for j = 1, . . . , (p− 1)/2.

Proof. Consider an element α ∈ RDp and write it as

α = α0ψ0 + α′0ψ
′
0 +

(p−1)/2∑
j=1

αjψj .

Since det(ψj) = ψ′0, we have

det(α) =
(
ψ′0
)α′0+

∑(p−1)/2
j=1 αj ,

hence, by the definition of ADp ,

α ∈ ADp ⇐⇒ α′0 +

(p−1)/2∑
j=1

αj ≡ 0 mod 2.

Thus writing

α = α0ψ0 + 2bψ′0 −
(p−1)/2∑
j=1

αj(ψ
′
0 − ψj),

where b ∈ Z such that α′0 +
∑(p−1)/2

j=1 αj = 2b, we get our claim.

3.2.13 The triviality of Θt
Cp

and Θt
D̄p

over Q

Once we know the structure of the augmentation kernel ACp , we can apply Stickelberger’s
classical theorem in the computation of Θt

Cp
(HomΩ (Z[Cp(−1)], J(Qc))), as the following

proposition explains. We warn the reader that, since we are working over Q, the notation
Ω here stands for ΩQ.

Proposition 3.2.14. For any prime number p,

Θt
Cp (HomΩ (Z[Cp(−1)], J(Qc))) ⊆ HomΩ

(
ACp ,Q(ζp)

× · U (Z[ζp])
)
.

Proof. We first remark that the group HomΩ (Z[Cp(−1)], J(Qc)) is equal to the group
HomΩ (Z[Cp(−1)], J (Q(ζp))) (think about the Ω-action) and, given an element h ∈
HomΩ (Z[Cp(−1)], J (Q(ζp))), we immediately understand that, thanks to the Ω-action,
it is uniquely determined by h(1) and h(t) (where t is the chosen generator of Cp). Indeed
σ−1
i · t = ti (remember the twist in the definition of the action of Ω on Cp(−1)), where,

as before, σi ∈ Gal(Q(ζp)/Q) is such that σi(ζp) = ζip, for i = 1, . . . , p − 1. Thus if
h(t) = x ∈ J(Q(ζp)), considering the Ω-invariance, we have h(ti) = σ−1

i · x.
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Now, using the description of the Stickelberger map given in §3.2.9, on the generators of
ACp we get

ΘCp :


χ0 7−→ 0 ,

pχp 7−→ t+ 2t2 + · · ·+ (p− 1)tp−1 ,

jχp − χjp 7−→
⌊

2j

p

⌋
t2 + · · ·+

⌊
(p− 1)j

p

⌋
tp−1 , for 2 ≤ j ≤ p− 1;

where the last line is not considered if p = 2.
Thus we can now compute the transpose of the Stickelberger map (again when p = 2 we
just consider the first two lines) on h ∈ HomΩ (Z[Cp(−1)], J (Q(ζp))), obtaining

Θt
Cp(h) :


χ0 7−→ 1 ,

pχp 7−→
(∑p−1

i=1 iσ
−1
i

)
· x ,

jχp − χjp 7−→
(∑p−1

i=1

⌊
ij
p

⌋
σ−1
i

)
· x , for 2 ≤ j ≤ p− 1.

Now, using the idelic representation of Cl(Z[ζp]) recalled in the proof of Lemma 3.2.4,
we immediately deduce from Theorem 3.2.7 that Θt

Cp
(h)(pχp) is trivial considered in

Cl(Z[ζp]) or in other words Θt
Cp

(h)(pχp) ∈ Q(ζp)
×·U(Z[ζp]); which proves the proposition

for p = 2.
When p 6= 2, for the other generators jχp−χjp, we use Theorem 3.2.8 considered for the
cyclotomic extension Q(ζp) and we proceed by induction. Starting with j = 2, we get

Θt
Cp(h)(2χp − χ2

p) =

(
p−1∑
i=1

⌊
2i

p

⌋
σ−1
i

)
· x

and using Theorem 3.2.8, with a = b = 1, we get Θt
Cp

(h)(2χp − χ2
p) ∈ Q(ζp)

× · U(Z[ζp])

(proving the result for p = 3).
For p > 3, let j be a natural number in {2, . . . , p − 1}, denote Θt

Cp
(h)(jχp − χjp) by xj

and assume that xj ∈ Q(ζp)
× · U(Z[ζp]), then we have

xj+1

xj
=

(
p−1∑
i=1

(⌊
(j + 1)i

p

⌋
−
⌊
ji

p

⌋)
σ−1
i

)
· x ,

which belongs to Q(ζp)
× ·U(Z[ζp]), applying Theorem 3.2.8 with a = j and b = 1. Thus

we deduce that, if xj ∈ Q(ζp)
× · U(Z[ζp]), then xj+1 ∈ Q(ζp)

× · U(Z[ζp]), which by
induction gives the proof.

We do exactly the same for Dp and an analogous result follows.

Proposition 3.2.15. Let Dp be the dihedral group defined above, with p ≥ 3, then

Θt
D̄p

(
HomΩ

(
Z[D̄p(−1)], J(Qc)

))
⊆ HomΩ

(
ADp ,Q(ζp + ζ−1

p )× · U
(
Z[ζp + ζ−1

p ]
))
.
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Proof. Going back to the definition of the Ω-action on D̄p(−1), we see that Stab (s̄)

equals Ω, since s is of order 2, while Stab
(
r̄k
)

= Gal(Qc/Q(ζp + ζ−1
p )), for all k =

1, . . . , (p− 1)/2.
Thus note that HomΩ

(
Z[D̄p(−1)], J(Qc)

)
= HomΩ

(
Z[D̄p(−1)], J

(
Q(ζp + ζ−1

p )
))
.

Given h ∈ HomΩ

(
Z[D̄p(−1)], J(Qc)

)
, then Θt

D̄p
(h) in HomΩ

(
ADp , J(Qc)

)
is defined

by the values it assumes on the set of basis elements of ADp which we studied in the
previous section. In particular, if we denote by x ∈ J(Q) the element h(s̄) and by
y ∈ J(Q(ζp + ζ−1

p )) the element h(r̄), we have

Θt
D̄p

(h) :


ψ0 7−→ 1 ,

2ψ′0 7−→ x ,

ψ′0 − ψj 7−→ −(
∑

σ∈Gal(Q(ζp+ζ−1
p )/Q) σ) · y, for j = 1, . . . , (p− 1)/2.

where in the last computation we used the fact that Gal(Q(ζp+ζ−1
p )/Q) acts transitively

on the set of conjugacy classes
{
r̄k
}
k=1, ..., (p−1)/2

.

We see that Θt
D̄p

(h)(ψ0) and Θt
D̄p

(h)(2ψ′0) are in J(Q) so they can be written as a product
of a global and a unit element (Cl(Z)=1). While, we have (

∑
σ∈Gal(Q(ζp+ζ−1

p )/Q) σ) · y =

N
Q(ζp+ζ−1

p )/Q(y), hence Θt
D̄p

(h)(ψ′0−ψj) ∈ J(Q), for j = 1, . . . , (p−1)/2, which concludes
the proof.

3.2.16 Proof of Theorem 3.2.1

Let us consider the isomorphism L, given in Lemma 3.2.4. For every ω ∈ Ω and c ∈
Cl(Z[Cp]), represented in terms of the hom-description by f ∈ HomΩ

(
RCp , J(Qc)

)
, we

have:
L(c)ω = [f(χp)]

ω = [f(χp)
ω] = [f

(
χωp
)
],

where, in the last equality, we use the Ω-equivariance of f .

Using again Stickelberger’s Theorem and the isomorphism L between Cl(Z[Cp]) and
Cl(Z[ζp]), we can now prove the following proposition.

Proposition 3.2.17. Let p be a prime number and f ∈ HomΩ

(
RCp , J(Qc)

)
, such that

rag′(f) ∈ HomΩ

(
ACp ,Q(ζp)

× · U (Z[ζp])
)
.

If c := [f ] ∈ Cl(Z[Cp]), then c = 1.

Proof. If p = 2, then Cl(Z[C2]) ∼= Cl(Z) = 1, so there is nothing to prove and in our
proof we can assume p 6= 2. Using the isomorphism L, we have

(L(c))p = [f(χp)]
p = [f(χp)

p]
(a)

= [f(pχp)]
(b)

= [rag′(f)(pχp)]
(c)

= 1, (3.1)
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where (a) is given by the fact that f is a homomorphism, (b) since pχp ∈ ACp and (c)

thanks to the idelic representation of the ideal class group Cl(Z[ζp]).
If σj ∈ Gal(Q(ζp)/Q) is such that σj(ζp) = ζjp , for j = 1, . . . , p− 1, we also get

σj · (L(c)) = [f
(
jχp − (jχp − χjp)

)
] = [f(jχp)][f(jχp − χjp)]−1

(d)

= [f(jχp)] = (L(c))j ,

where in (d) we use the fact that jχp − χjp ∈ ACp and the idelic representation of
Cl(Z(ζp)).
Once we know the action of σj on L(c), we can apply Stickelberger’s Theorem to the
element of Cl (Z[ζp]) given by L(c):

1 =

p−1∑
j=1

jσ−1
j · (L(c))

(e)

=

p−1∏
j=1

(L(c))jj
−1

= (L(c))p−1 , (3.2)

where the first equality is exactly Stickelberger’s Theorem and (e) is assured by σ−1
j =

σj−1 , where j−1 is the inverse of j in (Z/pZ)× belonging to {1, . . . , p− 1}. Note that the
last equality follows from the fact that jj−1 ≡ 1 mod p and from (3.1).
Finally, putting together (3.1) and (3.2), we have

L(c) = 1,

which implies c = 1 in Cl(Z[Cp]), thanks to the isomorphism between Cl(Z[Cp]) and
Cl(Z[ζp]).

Analogously, using the isomorphism J given in Lemma 3.2.5, in the dihedral case we
have the following result.

Proposition 3.2.18. If p ≥ 3, let us consider f ∈ HomΩ

(
RDp , J(Qc)

)
, such that

rag′(f) ∈ HomΩ

(
ADp ,Q(ζp + ζ−1

p )× · U
(
Z[ζp + ζ−1

p ]
))
.

If c := [f ] ∈ Cl(Z[Dp]), then c = 1.

Proof. Given c ∈ Cl(Z[Dp]) as in the hypothesis, then

J (c) = [f(ψ1)] = [f(ψ′0 − (ψ′0 − ψ1))] = [f(ψ′0)][f(ψ′0 − ψ1)]−1.

Now since ψ′0 − ψ1 is contained in ADp , by hypothesis we have [f(ψ′0 − ψ1)] = 1 and so
we get J (c) = [f(ψ′0)]. Since f(ψ′0) ∈ J(Q), this concludes the proof.

We can finally prove Theorem 3.2.1.
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Proof of Theorem 3.2.1. We consider the case G = Dp, the case Cp is analogous.
A class c = [f ] ∈ Cl(Z[Dp]) belongs to St(Z[Dp]) if and only if

rag′(f) = g ·Θt
D̄p

(h) · w,

where g ∈ HomΩ

(
ADp , (Qc)×

)
, h ∈ HomΩ

(
Z[D̄p(−1)], J

(
Q
(
ζp + ζ−1

p

)))
and w ∈

U(Z[Dp]) ⊆ HomΩ

(
ADp , U(Zc)

)
(see (2.14) for the original definition of U(Z[Dp])).

Since

HomΩ

(
ADp , (Qc)×

)
= HomΩ

(
ADp ,Q(ζp + ζ−1

p )
)

HomΩ

(
ADp , U(Zc)

)
= HomΩ

(
ADp , U(Z[ζp + ζ−1

p ])
)
,

clearly g · w ∈ HomΩ

(
ADp ,Q(ζp + ζ−1

p )× · U
(
Z[ζp + ζ−1

p ]
))
. Thus, using Proposition

3.2.15 and Proposition 3.2.18, we finally get c = 1, as we wanted to show.

�



Chapter 4

Functoriality of St(OK [G]) under
base field restriction

In this chapter G is a finite group (not necessarily abelian).

As seen in §1.8.3, given K a subfield of a number field L, we have a restriction map
resL/K : Cl(OL[G]) −→ Cl(OK [G]), which in terms of the Hom-description is expressed
by the norm map

NL/K :
HomΩL

(RG, J(Qc))

HomΩL
(RG, (Qc)×) ·Det(U(OL[G]))

→
HomΩK

(RG, J(Qc))

HomΩK
(RG, (Qc)×) ·Det(U(OK [G]))

[f ] 7→ [NL/K(f)]

where NL/K(f)(α) :=
∏
ω∈ΩK/ΩL

fω(α) =
∏
ω∈ΩK/ΩL

f
(
αω
−1
)ω

(by the definition of
the left Ω-action on Hom (RG, J(Qc))) and instead of taking Kc and Lc, we consider Qc

in order to homogenize the notation (we can do it since L and K are both algebraic
extensions of Q).

From Chapter 2, we know that R(OL[G]) (resp. R(OK [G])) is contained in the Stickel-
berger subgroup St(OL[G]) (resp. St(OK [G])), with equality when the group G is abelian.
An interesting question naturally arises: is the Stickelberger subgroup functorial under
this map? Or more precisely, does the inclusion

NL/K(St(OL[G])) ⊆ St(OK [G])

hold?
In this chapter we are going to give an affirmative answer to this question, which will
have some nice consequences, as explained in the last section.
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4.1 Changing the base field for the Stickelberger subgroup

In §2.5, using the group homomorphisms

Cl(OL[G])
RagL //MCl(OL[G]) J(LΛ̄),

ΘtLoo

we defined St(OL[G]) as Rag−1
L (Im(Θt

L)). Analogously for St(OK [G]). Differently from
§2.5, it is better to put in evidence the base field in our notation used for the map Rag

and Θt
Ḡ
: namely RagL (resp. RagK) stands for the map Rag defined over L (resp. K)

and analogously Θt
L (resp. Θt

K) stands for the map Θt
Ḡ
defined over the field L (resp. K).

It is not difficult to see that NL/K induces the following well-defined group homomor-
phisms (for which we will use the same name):

NL/K : MCl(OL[G]) −→ MCl(OK [G]),

NL/K : HomΩL

(
Z[Ḡ](−1), J(Qc)

)
−→ HomΩK

(
Z[Ḡ](−1), J(Qc)

)
.

Thus we can prove the next result.

Proposition 4.1.1. The following diagram commutes:

Cl(OL[G])
RagL //

NL/K

��

MCl(OL[G])

NL/K

��

HomΩL

(
Z[Ḡ(−1)], J(Qc)

)Θt
Loo

NL/K
��

Cl(OK [G])
RagK //MCl(OK [G]) HomΩK

(
Z[Ḡ(−1)], J(Qc)

)
.

Θt
Koo

Proof. First of all we claim that the following diagram commutes

Cl(OL[G])
RagL //

NL/K
��

MCl(OL[G])

NL/K
��

Cl(OK [G])
RagK //MCl(OK [G]).

Given f ∈ HomΩK
(RG, J(Qc)) and an element α :=

∑
χ∈ Irr(G) aχχ ∈ AG, using the

definition of NL/K , we have

NL/K(RagL(f))(α) =
∏

ω∈ΩK/ΩL

RagL(f)
(
αω
−1
)ω

=
∏

ω∈ΩK/ΩL

f
(
αω
−1
)ω

= NL/K(f)(α)

= RagK(NL/K(f))(α)
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which proves our claim. From this we deduce in particular that NL/K(Ker(RagL)) is
contained in Ker(RagK).
We pass now to the proof of the commutativity of the following diagram

MCl(OL[G])

NL/K

��

HomΩL

(
Z[Ḡ(−1)], J(Qc)

)Θt
Loo

NL/K
��

MCl(OK [G]) HomΩK

(
Z[Ḡ(−1)], J(Qc)

)
.

Θt
Koo

Given g ∈ HomΩL

(
Z[Ḡ(−1)], J(Qc)

)
and an element α ∈ AG, we have

Θt
K(NL/K(g))(α) = NL/K(g)

∑
s̄∈ Ḡ

〈α, s̄〉s̄


=

∏
ω∈ΩK/ΩL

g


∑
s̄∈ Ḡ

〈α, s̄〉s̄

ω−1

ω

=
∏

ω∈ΩK/ΩL

∏
s̄∈ Ḡ

g
(
s̄ω
−1
)〈α,s̄〉ω

=
∏

ω∈ΩK/ΩL

∏
t̄∈ Ḡ

g (t̄)〈α,t̄
ω〉

ω

using the fact that any ω acts as an automorphism. On the other side

NL/K(Θt
L(g))(α) =

∏
ω∈ΩK/ΩL

Θt
L(g)

(
αω
−1
)ω

=
∏

ω∈ΩK/ΩL

g

∑
s̄∈ Ḡ

〈αω−1
, s̄〉s̄

ω

=
∏

ω∈ΩK/ΩL

∏
s̄∈ Ḡ

g (s̄)〈α
ω−1

,s̄〉

ω

=
∏

ω∈ΩK/ΩL

∏
s̄∈ Ḡ

g (s̄)〈α,s̄
ω〉

ω

where in the last equality we used the relation

〈αω−1
, s̄〉 = 〈αω−1

, s〉 = 〈α, sω〉 = 〈α, sω〉 = 〈α, s̄ω〉,

which one can get using the definition of the action of ω on conjugacy classes, the
definition of the Stickelberger pairing for the set of conjugacy classes and property (2.16).
This proves the commutativity.
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The previous two diagrams combine to prove that the following diagram commutes

Cl(OL[G])
RagL //

NL/K

��

MCl(OL[G])

NL/K

��

HomΩL

(
Z[Ḡ(−1)], J(Qc)

)Θt
Loo

NL/K
��

Cl(OK [G])
RagK //MCl(OK [G]) HomΩK

(
Z[Ḡ(−1)], J(Qc)

)
.

Θt
Koo

A more precise version of Theorem 0.0.7 of the Introduction now easily follows.

Theorem 4.1.2. Given a finite group G and a subfield K of a number field L, then

NL/K(Ker(RagL)) ⊆ Ker(RagK)

NL/K(St(OL[G])) ⊆ St(OK [G]).

Proof. We have already noted the first inclusion in the proof of Proposition 4.1.1. For
the second one it is sufficient to have in mind the definition of the Stickelberger subgroup
and use Proposition 4.1.1.

4.2 Corollaries

The first consequence of Theorem 4.1.2 in the abelian case follows.

Corollary 4.2.1. Let G be a finite abelian group and let K be a subfield of a number
field L. Then NL/K(Rnr(OL[G])) ⊆ Rnr(OK [G]) and NL/K(R(OL[G])) ⊆ R(OK [G]).

Proof. This follows from Theorem 4.1.2 and from the equalities in the abelian case of
Chapter 2: Rnr(OL[G]) = Ker(RagL) (resp. Rnr(OK [G]) = Ker(RagK)) and R(OL[G]) =

St(OL[G]) (resp. R(OK [G]) = St(OK [G])).

The following result is valid for any finite group G.

Corollary 4.2.2. Let G be a finite group and K be a subfield of a number field L, such
that St(OK [G]) = 1. Then for any tame G-Galois L-algebra N , its ring of integers ON
is a stably free OK [G]-module.

Proof. Clear from Theorem 4.1.2 and from the fact that [ON ] = 1 in Cl(OK [G]) means
that ON is stably free when seen as an OK [G]-module (see §1.3).

From this we deduce as an immediate consequence a result of Taylor.
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Corollary 4.2.3. Given a number field L and an abelian tame G-Galois extension N/L,
the ring of integers ON is a free Z[G]-module.

Proof. It follows from Corollary 4.2.2 with K = Q and from the fact that, since G is
abelian, R(Z[G]) = 1, by Hilbert–Speiser’s Theorem. Moreover, note that from the
cancellation law (§1.4), in the abelian case, to be a stably free Z[G]-module implies to
be free (see Remark 1.4.4).

Finally, from our result on Dp contained in Chapter 3, we have the following corollary.

Corollary 4.2.4. Let Dp be a dihedral group of order 2p, where p is an odd prime
number. Given a number field L and a tame Dp-Galois L-algebra N , the ring of integers
ON is a free Z[Dp]-module.

Proof. The proof is a direct consequence of Theorem 3.2.1, Corollary 4.2.2 and the fact
that Z[Dp] has locally free cancellation. This last claim follows from Theorem 1.4.3,
indeed Q[Dp] satisfies the Eichler condition (see Definition 1.4.2) by the Wedderburn
decomposition given in the proof of Lemma 3.2.5.





Chapter 5

Equidistribution of rings of integers
with local splitting behavior

In this chapter the group G will be abelian and K, as usual, a number field.

To simplify the notation throughout this chapter, we denote by AG(K) (resp. At
G(K))

the set of isomorphism classes of G-Galois K-algebras (resp. tame G-Galois K-algebras)
and by FG(K) (resp. F t

G(K)) the set of isomorphism classes of G-Galois field extensions
of K (resp. tame G-Galois field extensions of K). Moreover A′G(K) (resp. F ′G(K)) will
denote the set of isomorphism classes of G-Galois K-algebras (resp. field extensions)
unramified at every p

∣∣|G|. We will denote the elements in these sets by [L], where L is
an algebra (or field) representative of the class.
Note that A′G(K) ⊆ At

G(K) (resp. F ′G(K) ⊆ F t
G(K)).

Once one knows the structure of R(OK [G]), one may wonder how the G-module struc-
tures of the ring of integers of tame G-Galois K-algebras are distributed over the realiz-
able classes, i.e., roughly speaking, given two realizable classes c1 and c2, is the number
of tame G-Galois K-algebras realizing the two classes asymptotically of the same order
of magnitude?
More precisely, given L ∈ AG(K), let us denote by D(L/K) the absolute norm of the
product of the primes of OK that ramify in L. Given a class c ∈ R(OK [G]) and a natural
number X, let us write ND(c,X) for the number of classes [L] in At

G(K) such that OL
realizes the class c and D(L/K) ≤ X. Moreover we denote by MD(X) the number of
classes [L] in At

G(K) such that D(L/K) ≤ X. Then, when limX→∞ND(c,X)/MD(X)

exists, we can define

PrA(c) := lim
X→∞

ND(c,X)

MD(X)
.

Hence our previous question becomes: is PrA(c) independent of the realizable class c?

Adebisi Agboola in [1], using McCulloh’s result R(OK [G]) = St(OK [G]) (see Chapter 2)
and improving a previous result by K. Foster [16], managed to give a positive answer to
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a slightly modified version of this question.
Let us consider N ′D(c,X) (resp. M ′D(X)) obtained considering just the classes [L] ∈
A′G(K) in the definition of ND(c,X) (resp. MD(X)) and let us write

Pr′A(c) := lim
X→∞

N ′D(c,X)

M ′D(X)
.

Then Agboola’s result is as follows.

Theorem 5.0.5 ([1, Theorem B]). Let G be a finite abelian group and K a number field.
For every c ∈ R(OK [G]), the limit Pr′A(c) exists and it is equal to 1/|R(OK [G])|.

Remark 5.0.6. Note that every class in R(OK [G]) can be obtained from a G-Galois
algebra unramified at the primes dividing |G| (see Theorem B in Chapter 2).

Moreover, using the fact that every class in R(OK [G]) can be obtained from the ring of
integers of a tame G-Galois field extension of K (as McCulloh showed), Agboola also
proved that the same result holds if in our definition of Pr′A(c) instead of taking classes
in A′G(K) we just consider F ′G(K).

The general result contained in [1] also considers other kinds of “counting functions”
different from D(L/K). In particular Agboola showed that for some of them (e.g. using
as a counting function the discriminant of L/K) an analogous result to Theorem 5.0.5 is
unlikely to hold (actually, in a talk given in Luminy in 2011, he really showed an explicit
example of a counting function for which the equidistribution result does not hold). This
explains that the equidistribution result depends on the counting function we use (for
more details on that see [1]).

As suggested by Agboola in [1], his result has some natural connections with the work
[47] by Melanie M. Wood, where she studied the distribution of local behaviors in abelian
G-Galois field extensions. Let us recall the main questions and results of [47].

Given a G-Galois field extension L/K and a finite place p of K, we know that

pOL ∼=
∏
P|p

Pe,

where P runs over the primes of L over p, the exponent e is the ramification index of p
and |G| = efg, with f the inertia degree at p and g the number of primes P over p (see
[34, Chapter 2]).
Given a pair of natural numbers (e, f) such that ef divides |G|, we call T = (e, f) a
splitting type and we say that p is of type T in L (or L has splitting behavior T at p),
if p splits in L with ramification index equal to e and inertia degree f . To simplify the
notation, when p is of type T in L, we will write Lp ≡ T .

The main question addressed by Wood in [47] is the following: given a prime ideal
p ⊆ OK , what is the probability that p splits in a determined way in a random G-Galois
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field extension L over K? Or, more precisely, given a splitting type T = (e, f) and
setting

PrW (T, p) := lim
X→∞

]{[L] ∈ FG(K)|Lp ≡ T and D(L/K) ≤ X}
]{[L] ∈ FG(K)|D(L/K) ≤ X}

, (5.1)

where D(L/K) is as above, can we show that it exists and compute PrW (T, p)?

The first problem one encounters in the study of this question is given by the fact that
not every splitting type can always be obtained (e.g. if G = C8, the cyclic group of
order 8, L/Q is never inert at the prime 2). This problem has been already studied in
detail and a result due to Grunwald–Wang (see [45] and also [3, Chapter 10]) describes,
given a finite abelian group G and a finite place p of K, all the possible splitting types
which are “realizable” as splitting pattern of p in a G-Galois K-algebra. We call these
splitting types, realizable splitting types at p (without making explicit the dependence
on G and K).
In particular, given an abelian finite group G and a number field K, there is a finite set
of “problematic” primes S0, for which not every splitting type occurs. This finite set of
primes S0 is defined in the following way: let s be the maximal natural number such
that zs := ζ2s + ζ−1

2s (where ζ2s denotes a primitive 2s-th root of unity) belongs to K;
then, if 2s+1 does not divide the exponent of G, the set S0 is the empty, otherwise S0

is the set of all primes p′ of K dividing the ideal 2OK such that none of −1, 2 + zs and
−2− zs are squares in Kp′ (this definition is taken from [47, §2.2]). Note that, if G is of
odd order, the set S0 is empty.
For the precise result explaining which realizable splitting types at the primes contained
in S0 do not occur, we refer to [3, Chapter 10].

Aware of all the realizable splitting types, Wood proved, as corollary of a more general
theorem (see [47, Theorem 2.1]), the following result.

Theorem 5.0.7. Let G be a finite abelian group, let K be an algebraic number field
and let p be a prime of K not belonging to S0, if |S0| 6= 1. Then, given T = (e, f)

and T ′ = (e′, f ′) two realizable (via Grunwald-Wang) splitting types at p, the following
formula holds:

PrW (T, p)

PrW (T ′, p)
=

CT /NK/Q(pδ(T ))

CT ′/NK/Q

(
pδ(T ′)

) ,
where CT := ]{isom. classes of G-Galois Kp-algebras giving the splitting type T} (anal-
ogously for CT ′), the map NK/Q is the usual norm map and δ(−) is defined to be equal
to 1 on ramified splitting types (e > 1), while equal to 0 on unramified splitting types
(e = 0).

This result follows as a special case of [47, Corollary 2.2], obtained by restricting it to
the single prime p and using as counting function the absolute norm of the product of
ramified primes (see [47, §2.1]).

Moreover she also proved the next result.
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Theorem 5.0.8. Let S be a finite set of finite places {p1, p2, . . . , pn} of K disjoint from
S0, if |S0| 6= 1. Given TS := {T1, . . . , Tn} a collection of n splitting types, then

PrW (TS) =
n∏
i=1

PrW (Ti, pi);

where PrW (TS) denotes the probability, as in (5.1), that a G-Galois field extension L/K
is such that Lpi ≡ Ti for all i = 1, . . . , n.

This result follows as a special case of [47, Corollary 2.4].

Wood also considered other kinds of counting functions different from D(L/K) and she
extended her results to the set of functions that she called “fair” counting functions (for
details see [47, page 108]).

We immediately see that the probabilities considered by Agboola and Wood have some
connections and a first question arises: are they “independent”?
Namely, given c ∈ R(OK [G]), a finite place p of K and a realizable splitting type T at
p, we can define

Pr(T, p, c) := lim
X→∞

]{[L] ∈ F ′G(K)|Lp ≡ T, [OL] = c, D(L/K) ≤ X}
]{[L] ∈ F ′G(K)|D(L/K) ≤ X}

. (5.2)

Note that, in the definition, it does not matter whether or not p divides |G|.
Then, does the limit Pr(T, p, c) exist?
Moreover, let PrW

(
(T, p)

∣∣∣L unr. at all p′
∣∣|G|) denote the conditional probability de-

fined as the quotient

PrW
(
p of type T &L unr. at all p′

∣∣|G|) /PrW
(
L unr. at all p′

∣∣|G|) , (5.3)

where PrW
(
p of type T &L unr. at all p′

∣∣|G|) denotes the probability (as in (5.1)) that
a random G-Galois field extension of K has splitting behavior T at p and is unramified
at all primes of K dividing |G|, while PrW

(
L unr. at all p′

∣∣|G|) denotes the probability
(as in (5.1)) that a random G-Galois field extension of K is unramified at all primes of
K dividing |G|. Then if Pr(T, p, c) exists, does the equality

Pr(T, p, c) = PrW

(
(T, p)

∣∣∣L unr. at all p′
∣∣|G|) · Pr′A(c) (5.4)

hold?

The study of this question restricted to the totally split case is the main subject of
this chapter, i.e. we focus our attention on the splitting type T = (1, 1) (which is always
realizable at every prime, for every abelian group G and number field K). In Proposition
5.3.1 we will find a sufficient and necessary condition such that (5.4) holds when T =

(1, 1). To reach this result the main effort will consist in determining Rts,p(OK [G]), the
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set of realizable classes given by tame G-Galois K-algebras totally split at a given prime
p. In particular in Theorem 5.1.11 we will give a description of this set (actually group)
in terms of a modified version of the original Stickelberger subgroup St(OK [G]).
A natural question arises: is Rts,p(OK [G]) the same as R(OK [G])? It seems reasonable
to expect that, for every abelian group G, each realizable class can be realized by a
G-Galois K-algebra totally split at every prescribed finite set of primes, by analogy with
the statement where “totally split” is replaced with “unramified” (see Theorem B). This
will lead us to the following two conjectures (note that the second one is clearly stronger
than the first one):

Conjecture 1. Let K and G be as before. For every prime p of K, we have

Rts,p(OK [G]) = R(OK [G]).

Conjecture 2. Let K and G be as before. Given a finite set S of primes of K, let
us denote by Rts,S(OK [G]) the set of classes in Cl(OK [G]) given by tame G-Galois K-
algebras totally split at every prime p in S. Then, for every finite set S of primes of K,
we have Rts,S(OK [G]) = R(OK [G]).

We will discuss these conjectures in Section 5.3.

5.1 Realizable classes totally split at p

We have seen that R(OK [G]) is defined as the classes in Cl(OK [G]) which can be obtained
from the ring of integers of tame G-Galois K-algebras. This set, since we are considering
G abelian, is a group, described in terms of idèles by the work of McCulloh (Chapter 2,
Theorem B).

Given a finite place p of K, we may restrict our attention to the classes in Cl(OK [G])

which can be obtained from tame G-Galois K-algebras with a particular splitting behav-
ior at p. Given a splitting type T , we write

RT,p(OK [G]) := {[OL] ∈ Cl(OK [G])| [L] ∈ At
G(K) and Lp ≡ T}.

In the same way, given S = {p1, . . . , pn} a finite set of finite places of K and taking
TS := {T1, . . . , Tn} a collection of n splitting types, we write

RTS (OK [G]) := {[OL] ∈ Cl(OK [G])| [L] ∈ At
G(K) and Lpi ≡ Ti, ∀ i = 1, . . . , n}.

In our work we are going to consider the totally split case, i.e. we will focus our attention
on the splitting type decomposition T = (1, 1). Given a finite place p, we will denote
R(1,1),p(OK [G]) with the more intuitive notation Rts,p(OK [G]).
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In this section we will modify McCulloh’s proof of Theorem B in order to give an idelic
description of Rts,p(OK [G]) analogous to the one given for R(OK [G]) in Chapter 2, in
terms of the Stickelberger subgroup St(OK [G]).

5.1.1 Resolvends of local totally split extensions

Given a G-Galois K-algebra Kh (see §1.9) and a finite place p of K, by (1.12) and (1.13),
we have

Kh, p := Kh ⊗K Kp
∼= (Kp)hp = Map

Ωp

(
hpG,Kc

p

)
∼=

[G:hp(Ωp)]∏
i=1

(Kc
p)Ker(hp).

By definition Kh is totally split at p if and only if (Kp)hp
∼=
∏|G|
i=1Kp, i.e. if and only if

the map hp is trivial. Thanks to this remark and Proposition 2.1.5 we can now prove
the following result.

Proposition 5.1.2 (NIBG totally split case). Given ap ∈ (Kp)hp, we have

ap is a NIBG and (Kp)hp/Kp is totally split ⇐⇒ rG(ap) ∈ OK, p[G]×.

Proof. (=⇒) Since the extension is totally split we know that ap(s) ∈ Kp, ∀ s ∈ G and
hence rG(ap) ∈ Kp[G]. Thus from Proposition 2.1.5, the resolvend rG(ap) belongs to
Kp[G] ∩Oc

K, p[G]×; it remains to show that Kp[G] ∩OcK, p[G]× = OK, p[G]×.
One implication is trivial, for the other one let us consider

∑
s∈G ass ∈ Kp[G]∩OcK, p[G]×,

we know that there is
∑

s∈G bss ∈ Oc
K, p[G]× such that (

∑
s∈G ass)(

∑
s∈G bss) is equal

to 1. If we enumerate the elements of G as {s1 = 1, s2, . . . , s|G|}, to find the in-
verse

∑
s∈G bss is equivalent, by linear algebra, to solve the system in the variables

x1, x2, . . . , x|G| which follows:

A ·


x1

x2

...
x|G|

 =


1

0
...
0

 ,
where A = (ai,j)1≤i,j≤|G| ∈ GL|G|(Kp) with ai,j = as, such that s is the only element in
G satisfying s · sj = si. Thus we understand that

∑
s∈G bss actually belongs to Kp[G].

Moreover considering the intersection at each coefficient, we have Kp[G] ∩ OcK, p[G] =

OK, p[G], which shows that
∑

s∈G bss ∈ OK, p[G] and
∑

s∈G ass ∈ OK, p[G]×, as we
wanted to prove.

(⇐=) From Proposition 2.1.5, we know that ap is a NIBG of the unramified G-Galois
algebra (Kp)hp/Kp (where hp ∈ Hom

(
Ωnr
p , G

)
). Moreover, since rG(ap) ∈ OK, p[G]×,

we have ap(s) ∈ OK, p, ∀ s ∈ G. Thus, since we also have (Kp)hp = Kp[G] · ap, this
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implies that (Kp)hp is equal to a finite product of copies of Kp and hp is trivial, so totally
split.

Remark 5.1.3. In the first part of the proof, the non trivial inclusion

Kp[G] ∩Oc
K, p[G]× ⊆ OK, p[G]×

could also be proved (maybe more easily) in the following way: if α :=
∑

s∈G ass ∈
Kp[G]∩OcK, p[G]×, then, since it is a unit, the multiplication by α gives an isomorphism
mα : Oc

K, p[G] −→ OcK, p[G] which induces an isomorphism m̂α : Kc
p [G] −→ Kc

p [G]. By
restriction, since α ∈ Kp[G], we get an isomorphism mα : Kp[G] −→ Kp[G]. Hereby,
looking at the intersection we have that the multiplication by α gives an automorphism
of OK, p[G], which says that actually α ∈ OK, p[G]×.

Analogously to (2.6), the previous proposition also tells us that

OK, p[G]× =
{
rG(ap)| ap NIBG for (Kp)hp

, where hp ∈ Hom(Ωp, G) is trivial
}
, (5.5)

OK, p[G]×

G
=

{
rag(rG(ap))| ap NIBG for (Kp)hp

, where hp ∈ Hom(Ωp, G) is trivial
}
.

Remark 5.1.4. The previous equality could also be seen from the exact sequence (2.5),
namely the set of reduced resolvends of NIBG for totally split G-Galois algebras over
Kp is the kernel of the connecting homomorphism H(OK, p[G]) −→ H1(Ωnr

p , G). So by
exactness it coincides with rag(OK, p[G]×) = OK, p[G]×/G.

For future use, we also prove the following lemma.

Lemma 5.1.5. Given a finite group G, then OK, p[G]×/G ⊆ H(OK, p[G]) with finite
index.

Proof. By the previous remark, considering the exact sequence (2.5), if we show that
H1(Ωnr

p , G) is finite, we have the claim. It is sufficient to remark that Ωnr
p is the procyclic

group generated by the Frobenius automorphism of Knr
p /Kp to see that |H1(Ωnr

p , G)| =
|Hom(Ωnr

p , G)| = |G|.

Remark 5.1.6. Note that Proposition 5.1.2 and Lemma 5.1.5 are valid even if G is not
abelian.

Remark 5.1.7. Another way to prove the previous lemma, which is valid just in the
abelian case, is as follows: since G is finite and abelian, it has finite exponent denoted
by m, then it is easy to see that

Hom(Ωnr
p , G) = Hom

(
Ω

(nrAB,m)
p , G

)
,
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where Ω
(nrAB,m)
p is the Galois group over Kp of the maximal unramified abelian extension

of exponent m of Kp, known to be finite by local class field theory.

5.1.8 The subgroup Rts,p(OK [G])

Analogously to Chapter 2 and in the light of the results above, we are going to modify
the definition of St(OK [G]) in order to have a suitable subgroup which will be equal to
Rts,p(OK [G]).

Given a finite place p of K, we write

Uts,p(OK [G]) :=

∏
p′ 6=p

H(OK, p′ [G])

 · (OK, p[G]×/G) (5.6)

and we define
MClts,p(OK [G]) :=

HomΩ (AG, J(Kc))

H(K[G]) · Uts,p(OK [G])
.

Thus we can consider the group homomorphism

Ragts,p : Cl(OK [G]) −→ MClts,p(OK [G])

and the natural map induced by Θt
G : J(KΛ) −→ HomΩ (AG, J(Kc))

Θt
G,ts,p : J(KΛ) −→ MClts,p(OK [G]).

Analogously to §2.5, we define

Stts,p(OK [G]) := Rag−1
ts,p(Im(Θt

G,ts,p)). (5.7)

Defining F p ⊆ F (see (2.22)), as the subset of elements f ∈ F which are trivial at the
finite prime p (i.e. fp = 1), we get the following modified version of Theorem 2.6.2.

Theorem 5.1.9. Let Kh/K be a G-Galois K-algebra and take b a normal basis gener-
ator. Then, Kh/K is tame and totally split at p if and only if there exist c ∈ J(K[G]),
f ∈ F p and w ∈ Uts,p(OK [G]) such that

rag(rG(b)) = (rag(c))−1Θt
G(f)w.

Moreover c is a representative of the class [OKh ], the element f is unique and Kh ramifies
at p′ if and only if fp′ 6= 1.

Proof. The proof is essentially the same of Theorem 2.6.2, where we now control the
totally split condition using Proposition 5.1.2.
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In order to give an analog of Theorem B, proving in particular that Rts,p(OK [G]) is
again a subgroup of Cl(OK [G]), we have first to introduce a modified version of the
approximation result given by Proposition 2.2.8.

Theorem 5.1.10. For every finite prime p of K, there exists a natural number Np, such
that

HomΩp

(
AG, (1 + pNpOcK, p) ∩ (OcK, p)

×) ⊆ OK, p[G]×/G ⊆ HomΩp

(
AG, (OcK, p)×

)
.

We postpone the proof of this theorem, which is a bit technical, to the next section, we
will now rather show how to deduce from this an analog of Theorem B (this corresponds
to Theorem 0.0.8 in the Introduction).

Theorem 5.1.11 (Realizable classes totally split at p). Let G be a finite abelian group
and let K be a number field. For every finite prime p of K, we have

Rts,p(OK [G]) = Stts,p(OK [G]).

Moreover every class can be obtained from a G-Galois field extension unramified at a
preassigned finite set of finite primes of K.

Proof. One inclusion is clear from Theorem 5.1.9.
For the other one suppose that we have c ∈ J(K[G]) such that rag(c) = b · Θt

G(g) ·
w, with b ∈ H(K[G]), g ∈ J(KΛ) and w ∈ Uts,p(OK [G]). Then, using Proposition
2.6.3 with an integral ideal m divisible by a sufficiently high power of |G| and of the
ideal p (i.e. pNp where Np is given by Theorem 5.1.10), we find an element f ∈ F p

such that g ≡ f mod ((KΛ)× · U ′m(Λ)). We can find f really in F p using the property
of Proposition 2.6.3 which explains that f can be chosen with support disjoint from
any preassigned finite set of finite primes. Then, by Theorem 5.1.10, we get Θt

G(g) ≡
Θt
G(f) mod H(K[G]) · Uts,p(OK [G]). This, applying Theorem 5.1.9, allows us to deduce

that
rag(c) = b′ ·Θt

G(f) · w′

with b′ ∈ H(K[G]), w′ ∈ Uts,p(OK [G]) and f ∈ F p.
The proof of the second statement remains the same as in Theorem B.

Remark 5.1.12. From the last assertion, we see that in the definition of Rts,p(OK [G]),
if instead of taking the classes [L] in At

G(K) we consider just the classes [L] in F t
G(K)

(or even F ′G(K)) the group does not change.

Remark 5.1.13. If instead of considering a single prime p, we take S a finite set of
finite primes of K. We can naturally define

Uts,S(OK [G]) :=

∏
p/∈S

H(OK, p[G])

 ·∏
p∈S

(OK, p[G]×/G)
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and, analogously as above, we define the associated group Stts,S(OK [G]).
If Rts,S(OK [G]) denotes the set of realizable classes given by tame G-Galois K-algebras
which are totally split at every prime in S, we can generalize the proof of Theorem 5.1.11
and get Rts,S(OK [G]) = Stts,S(OK [G]) (with G abelian of course!).

Remark 5.1.14. In the non-abelian case, thanks to Remark 5.1.6, an analog of Theorem
A holds. It is sufficient to extend the definition of Stts,p(OK [G]) to the non-abelian case.
Let G be a finite group (not necessarily abelian). Given a finite place p of K, we write

Uts,p(OK [G]) :=

∏
p′ 6=p

D̃et(H(OK, p′ [G]))

 · D̃et(OK, p[G]×/G)

and we define

MClts,p(OK [G]) :=
HomΩ (AG, J(Kc))

D̃et(H(K[G])) · Uts,p(OK [G])
.

Then if Stts,p(OK [G]) is defined likewise to the abelian situation (5.7), an analog of
Theorem A follows.

Theorem 5.1.15. Let G be a finite group and let K be a number field, then for every
finite place p of K, we have

Rts,p(OK [G]) ⊆ Stts,p(OK [G]).

The proof remains exactly the same of Theorem A, imposing the totally split condition
via the description of resolvends given in the previous part.

5.1.16 Proof of Theorem 5.1.10

We pass now to the technical proof of Theorem 5.1.10. The proof is based on the
properties of profinite groups and the techniques differ from the ones used by McCulloh
for proving Proposition 2.2.8.

Before going into details we need to recall three lemmas on profinite groups which will
be useful in the proof.

Lemma 5.1.17. Given M and N profinite groups and a homomorphism ψ : M → N ,
if ψ is continuous and with finite cokernel, then it is an open map.

Proof. If we take an open subgroup M0 ⊆ M , then it is closed and of finite index
(property of profinite groups). Since M0 is closed in a compact space, it is compact, as
is its image under the continuous ψ. Moreover N is Hausdorff, so we deduce that ψ(M0)

is a closed subgroup of N (compact in a Hausdorff space). Since M0 ⊆ M with finite
index, we have ψ(M0) ⊆ ψ(M) with finite index and, since the cokernel is finite, we see
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that ψ(M0) ⊆ N with finite index.
Finally we have shown that ψ(M0) is a closed subgroup of finite index in N and so, again
using the equivalence for profinite groups, it is open, as we wanted to show.

Lemma 5.1.18. Let M be a profinite abelian group and H a finitely generated group
acting continuously on it. Given a continuous H-equivariant endomorphism φ : M →M

with finite kernel and cokernel, its restriction to the subgroup of fixed elements MH is
again continuous and has finite kernel and cokernel.

Proof. Let H = 〈s1, . . . , st〉, we can then consider the map τ : M → M t (where M t de-
notes the direct product of t copies ofM) which sendsm to τ(m) := (s1m−m, . . . , stm−
m) (where M is considered with the additive structure). We can then consider the fol-
lowing commutative diagram

0 //MH //

φ

��

M
τ //

φ

��

τ(M) //

φ

��

0

0 //MH //M
τ // τ(M) // 0

and applying the Snake Lemma we get

0 // Ker(φ|MH ) // {Finite} // {Finite}

//

0 //MH //M
τ // τ(M) // 0

0 //MH //M
τ // τ(M)

Coker(φ|MH ) // {Finite} // . . .

�� �� ��

φ

��

φ

��

φ

��

�� ��
��

which shows our claim.

Now given M and H as before, for every n ∈ N we can consider the continuous H-
equivariant automorphism n : M →M which sends m to mn (it is continuous sinceM is
a topological group and the multiplication is continuous by definition). Supposing that
the cokernel of this map is finite, the next lemma will show that MH has the property
that every finite index subgroup is open.
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Lemma 5.1.19. Let M be, as above, a profinite group with the additional property that
for every n ∈ N the quotient M/Mn is finite, then every subgroup of MH of finite index
is open in MH .

Proof. From the previous two lemmas we see that for every n ∈ N, the map n : MH →
MH , previously defined, is open. So, given a subgroup M0 ⊆ MH with finite index r,
we have

(
MH

)r ⊆M0. Since
(
MH

)r is open in MH it will contain a neighborhood of 1

and so the same holds for M0, which as a consequence is open in MH , by the structure
of topological groups.

Using these lemmas we can now proceed to the proof of Theorem 5.1.10, but before doing
it, let us make the following remark.

Remark 5.1.20. (Reduction to the finite case.) Looking at HomΩp

(
AG, (OcK, p)×

)
,

roughly speaking and similarly to §1.7.1, we would like to reduce its definition to a finite
context.
Let us consider the number field E containing K and all the values of the characters of G;
since G is finite, the extension E/K is finite and Galois. So, considering the restriction
map r : Ω −→ Gal(E/K), in the definition of the group HomΩp

(
AG, (OcK, p)×

)
we can

just consider the finite group rp(Ωp) (where rp = r ◦ ip) and we see that

HomΩp

(
AG, (OcK, p)×

)
= Hom

rp(Ωp)

(
AG, O×L

)
,

where L is a finite extension of Kp (in particular L = E ·Kp, the compositum of E and
Kp, and rp(Ωp) ∼= Gal(E ·Kp/Kp)). Just to be clear, here is a diagram representation:

Kc
p

Ωp

E ·Kp

rp(Ωp)

Kc

Ω

Ωp

Kp

E · (Kc ∩Kp)

rp(Ωp)

E Kc ∩Kp

K

Finally, we can now write down the proof of Theorem 5.1.10.
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Proof of Theorem 5.1.10. As explained in Remark 5.1.20,

HomΩp

(
AG, (OcK, p)×

)
= Hom

rp(Ωp)

(
AG, O×L

)
where L is a finite extension of Kp and rp(Ωp) is finite.
We would like to apply Lemma 5.1.19, where nowM = Hom

(
AG, O×L

)
and H = rp(Ωp).

The fact that Hom
(
AG, O×L

)
is profinite follows from the fact that it can be written

as a finite product of copies of O×L (since AG is a finitely generated abelian group). If
we look at Mn =

(
Hom

(
AG, O×L

))n for every n ∈ N, we have
(
Hom

(
AG, O×L

))n
=

Hom
(
AG,

(
O×L
)n) and so we see that M/Mn is finite since (OL)×/ ((OL)×)

n is (prop-
erty of local fields). Thus all hypotheses of Lemma 5.1.19 are satisfied and, combin-
ing it with Corollary 5.1.5, we see that OK, p[G]×/G is open in Hom

rp(Ωp)

(
AG, O×L

)
=

HomΩp

(
AG, (OcK, p)×

)
. Since the set {(1 +psOcK, p)∩ (OcK, p)

×}s∈N forms a fundamental
system of neighborhoods of 1 in (OcK, p)

×, the open subgroup OK, p[G]×/G has to contain
an open neighborhood of the unity and so there exists a power pNp such that

HomΩp

(
AG, (1 + pNpOcK, p) ∩ (OcK, p)

×) ⊆ OK, p[G]×/G;

which gives the proof. �

5.2 Equidistribution for Rts,p(OK [G])

Once we know the idelic structure of the realizable classes given by G-Galois K-algebras
totally split at a given prime p of K, we would like to obtain an analog of Theorem
5.0.5 for the group of classes Rts,p(OK [G]). More precisely, we would like to prove that
Pr((1, 1), p, c) (see (5.2)), does not depend on the class c ∈ Rts,p(OK [G]).

At the beginning we shall work with a general counting function W (a precise definition
will be given in §5.2.4) and not just D as in the introduction of the chapter. Given
X a natural number; we denote by NW,ts,p(c,X) the number of classes [L] in At

G(K),
such that L/K totally split at p, its ring of integers realizes the class c and such that
W(L/K) ≤ X. Moreover MW(X) will denote the number of classes [L] in At

G(K) such
that W(L/K) ≤ X. Then we would like to understand if the limit

PrW,ts,p(c) := lim
X→∞

NW,ts,p(c,X)

MW (X)

exists and is independent of the class c.
In this section we will just adapt the whole proof given in [1] to our setup step by step
without any particular modification and, as in the cited work, we will answer the previous
question putting some extra conditions at primes dividing |G| (namely, we will have to
consider [L] in A′G(K) and our result will concern Pr′W,m,ts,p(c), a modified version of
PrW,ts,p(c) analogous to Pr′A(c) with respect to PrA(c) as in the introduction of the
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chapter).
When the proofs remain exactly the same of [1], we refer directly to the original paper
for explanations and details.

5.2.1 Towards the counting problem

As in [1] we move our problem to a counting one. For that we will transpose the char-
acterization of the group Rts,p(OK [G]), given in Theorem 5.1.11, to the following group:

Cts,p(OK [G]) :=
HomΩ (AG, J(Kc))

(K[G]×/G) · Uts,p(OK [G])
,

note that this definition is very similar to the one given for MClts,p(OK [G]) with a slight
difference at the denominator. See (5.6) for a definition of Uts,p(OK [G]). Since we are
working with an abelian group G sometimes it is better to think of HomΩ (AG, J(Kc))

as the restricted direct product of H(Kp[G]) with respect to H(OK, p[G]).
Let us consider the following three homomorphisms:

1.
ρts,p : Cl(OK [G]) −→ Cts,p(OK [G]),

where ρts,p is induced by the embedding J(K[G]) −→ HomΩ (AG, J(Kc)) (con-
sider it as the restricted direct product of H(Kp[G])), using the isomorphism
Cl(OK [G]) ∼= J(K[G])/(K[G]× ·

∏
pOK,p[G]×).

2.
ψts,p : Hom(Ω, G) −→ Cts,p(OK [G]),

induced by the following composition of maps

Hom(Ω, G) // AG(K) //
H(K[G])

K[G]×
// Cts,p(OK [G])

h � // Kh
� // [rG(b)] � // [rG(b)]

where b is a normal basis generator of Kh and the last map is the natural quotient.
The independence of ψts,p from the choice of b follows from the fact that we quotient
by K[G]×.

3.
Θts,p : J(KΛ) −→ Cts,p(OK [G]),

induced by the following composition of maps

J(KΛ) // HomΩ (AG, J(Kc)) // Cts,p(OK [G])

f � // Θt
G(f) � // [Θt

G(f)]
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where the last map is the natural quotient.

Proposition 5.2.2 ([1, Proposition 3.4]). The previous homomorphisms have the fol-
lowing properties:

1. ρts,p is injective.

2. h ∈ Ker(ψts,p)⇐⇒ Kh/K is unramified totally split at p and OKh is OK [G]-free.

3. Θts,p|F p is injective.

Proof. 1. It is sufficient to note that

J(K[G]) ∩

∏
p′ 6=p

H(OK, p′ [G])

× (OK, p[G])×

 =
∏
p′

(OK, p′ [G])×.

2. The proof remains the same as in [1] with the adjustment given by Theorem 5.1.11.

3. This follows immediately from the proof given in [1], since F p ⊆ F .

Corollary 5.2.3. Ker(ψts,p) is finite.

We know, by Theorem 5.1.9, that, given a tame G-Galois K-algebra Kh totally split
at p, there exist c ∈ J(K[G]), a unique f ∈ F p and an element w in the group(

(
∏

p′ 6=pH(OK, p′ [G]))× (OK, p[G]×/G)
)
, such that

rag(c) = rag(rG(b))−1 ·Θt
G(f) · w.

Thus if we move to Cts,p(OK [G]), using the three previous homomorphisms, we get that
there exist a unique class [c] = [OKh ] ∈ Cl(OK [G]) and a unique f ∈ F p, such that

ρts,p([c]) = ψts,p(h)−1 ·Θts,p(f). (5.8)

Moreover, by the previous corollary, if, given a class [c] ∈ Rts,p(OK [G]) and an element
f ∈ F p, there exists h ∈ Hom(Ω, G) such that (5.8) is satisfied, then there are |Ker(ψts,p)|
elements in Hom(Ω, G) satisfying (5.8) with the same [c] and f .
Thus we have seen that ρts,p(Rts,p(OK [G])) ⊆ Im(ρts,p) ∩ [Im(Θts,p) · Im(ψts,p)], but,
thanks to Theorem 5.1.11, we also get the reverse inclusion, obtaining the identity

ρts,p(Rts,p(OK [G])) = Im(ρts,p) ∩ [Im(Θts,p) · Im(ψts,p)].

Hereby in order to count all the tame G-Galois K-algebras (up to isomorphisms) totally
split at p realizing a fixed class [c] ∈ Rts,p(OK [G]), we have to count all the couples
(h, f), with h ∈ Hom(Ω, G) and f ∈ F p, satisfying equation (5.8), where [c] is fixed.
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Counting problem: Let [c] ∈ Rts,p(OK [G]), then ρts,p([c]) = ψts,p(h)−1Θts,p(λc), with
h ∈ Hom(Ωt, G) and λc ∈ F p. Following [1], we can now define the set

PΘts,p := {x ∈ J(KΛ)|Θts,p(x) ∈ Im(ψts,p)}

and one can prove that a couple (hµ, µ), with hµ ∈ Hom (Ω, G) and µ ∈ J(KΛ), satisfies

ρts,p([c]) = ψts,p(hµ)−1Θts,p(µ)

if and only if µ ∈ λcPΘts,p (see [1, Proposition 3.7], with our modified homomorphisms
the proposition remains the same).
Hence we see that counting the couples (h, f), with h ∈ Hom(Ωt, G) and f ∈ F p, satis-
fying equation (5.8), with [c] fixed (and so counting all the tame G-Galois K-algebras,
up to isomorphisms, totally split at p realizing the class [c]), is the same (up to multipli-
cation by |Ker(ψts,p)|) of counting the elements in F p ∩λcPΘts,p for a fixed coset λcPΘts,p

of PΘts,p in J(KΛ).

Following [1], we divide the study of this counting problem into two parts: an algebraic
one and an analytic one.

5.2.4 Algebraic part

Using the modified ray class group Cl′m(Λ) already defined in (2.25) and Theorem 5.1.10,
we can prove the following proposition.

Proposition 5.2.5 ([1, Proposition 3.9]). Let m be an integral ideal divisible by a suffi-
ciently high power of |G| and of p, then we have a natural quotient

qm : Cl′m(Λ) −→ J(KΛ)/PΘts,p

and hence λcPΘts,p is equal to a disjoint union of cosets of (KΛ)× · U ′m(Λ) in J(KΛ).

Proof. We develop the proof in detail, since the original one ([1, Proposition 3.9]) contains
a mistake.
If m is an integral ideal divisible by a sufficiently high power of |G| and of p (see Theorem
5.1.10 and Proposition 2.2.8), then Θt

G(U ′m(Λ)) ⊆ Uts,p(OK [G]) and hence Θts,p(U
′
m(Λ)) =

0 in Cts,p(OK [G]). Moreover Θts,p((KΛ)×) ⊆ H(K[G]). Since every element in H(K[G])

can be obtained from a normal basis generator of a G-Galois K-alegbra (2.1), thinking
about the definition of ψts,p and of PΘts,p , we see that (KΛ)× ·U ′m(Λp) ⊆ PΘts,p ⊆ J(KΛ).
Then we have a natural quotient qm : Cl′m(Λ) −→ J(KΛ)/PΘts,p , which proves our
statement and shows moreover that J(KΛ)/PΘts,p has to be finite.
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From now on, we fix once and for all m to be an integral ideal satisfying the hypothesis
of the previous proposition.

As we will see in the sequel the use of the modified ray class group, through the choice
of the integral ideal m, will oblige us to avoid some algebras in our counting procedure,
but this will be clearer later on.

Let us recall some facts and notations used in [1] which are useful in the sequel.

Given T a set of representatives of the orbits of G(−1) under the Ω-action, we recall the
Wedderburn decomposition given in (2.23):

J(KΛ) ∼=
∏
t∈T

J(K(t)).

Following the description below (2.23), if we consider the set of ideals of Λ obtained
taking the ideal content (denoted by co(−)) of the elements in F p and we denote it by
Fp, we see that it consists of the ideals P = (Pt)t∈T such that:

? P1 = OK ,

? NKΛ/K(P) :=
∏
t∈T NK(t)/K(Pt) is a squarefree OK-ideal,

? Pt is coprime to the order of t,

? P is coprime to p.

The function that we shall use to count extensions is defined via the use of weights
introduced by Agboola in [1]. A weight on the set of representatives T , given as above,
is a function W : T −→ Z, which is equal to 0 for t = 1 and different from 0 for each
t 6= 1. The minimum of the values it assumes outside t = 1 is denoted by αW . The
easiest example of weight is Wram which is defined as the constant function 1 for each
t 6= 1.
For every fractional ideal a = (at)t∈T of Λ, Agboola defined dW(a) :=

(
a
W(t)
t

)
t∈T

and
the associated discriminant for Galois algebras over K as

DW(Kh/K) := [Λ : dW(co(f))],

where f ∈ F is the element of J(KΛ) satisfying (5.8) for the given extension. For
example using Wram, we get that DWram(Kh/K) is equal to the absolute norm of the
product of primes of K which ramify in Kh/K.

Definition of probability. Given a class c ∈ R(OK [G]) and a natural number X,
NW,m,ts,p(c,X) is defined as the number of classes in At

G(K) such that their representa-
tives Kh/K are totally split at p, realize the class c (i.e. [OKh ] = c) and have DW(Kh/K)

coprime to m and less or equal to X. While MW,m(X) denotes the the number of classes
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in At
G(K) such that their representatives Kh/K have DW(Kh/K) coprime to m and less

or equal to X. In what follows we will study the behavior of the limit of the quotient of
these two quantities as X goes to infinity, which we denote as:

Pr′W,m,ts,p(c) := lim
X→∞

NW,m,ts,p(c,X)

MW,m(X)
.

We shall prove that, if W is constant on T \ {1}, this limit exists and does not depend
on the class c.

Remark 5.2.6. If c /∈ Rts,p(OK [G]), then Pr′W,m,ts,p(c) is clearly equal to 0.

So, given c ∈ Rts,p(OK [G]), the discussion in §5.2.1 implies that

NW,m,ts,p(c,X) = K · |{f ∈ F p ∩ λcPΘts,p | (co(f),m) = 1 and [Λ : dW(co(f))] ≤ X}|,

where K := |Ker(ψts,p)|.
Following Proposition 5.2.5, if for every coset c of (KΛ)× · U ′m(Λ) in J(KΛ) we define

κW,m,ts,p(c, X) := |{f ∈ F p ∩ c | (co(f),m) = 1 and [Λ : dW(co(f))] ≤ X}|, (5.9)

we get

NW,m,ts,p(c,X) = K ·

 ∑
c∈ q−1

m (λc)

κW,m,ts,p(c, X)

 , (5.10)

where qm is the natural quotient of Proposition 5.2.5.
Thus, we see that the asymptotic behavior of NW,m,ts,p(c,X) is controlled by the asymp-
totic behavior of κW,m,ts,p(c, X). For example, if we are able to prove that κW,m,ts,p(c, X)

is asymptotically independent of c as X goes to ∞, then we will have as a conse-
quence that Pr′W,m,ts,p(c) is independent of c, as we would like to prove. Note that,
if κW,m,ts,p(c, X) is not asymptotically independent of c as X goes to ∞, the asymptotic
behavior of NW,m,ts,p(c,X) could still be independent of c.

5.2.7 Analytic part

We have reduced our problem to an analytic one: we want to understand the asymptotic
behavior of κW,m,ts,p(c, X) as X → ∞. We shall prove now, that, for certain counting
function W, it does not depend on the class c.
As we shall immediately see, the proof of this fact will be a direct consequence of the
results contained in [1, Sections 4-8]. So, without repeating arguments which are already
in [1, Sections 4-8], we shall explain the main steps which lead to the analytic investigation
of the behavior of κW,m,ts,p(c, X) as X → ∞, refering to [1] when the proofs given by
Agboola apply to our case too.
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Given a coset c of (KΛ)× · U ′m(Λ) in J(KΛ), let us consider the function of z ∈ C

Dc,m,ts,p(z) :=
∑

a∈ co(F p∩c)
(a,m)=1

[Λ : dW(a)]−z.

Using Ĉl′m(Λ), the group of characters of Cl′m(Λ), we can write

Dc,m,ts,p(z) =
1

|Cl′m(Λ)|
∑

χ∈ Ĉl′m(Λ)

χ̃(c)Dts,p(z, χ),

where Dts,p(z, χ) :=
∑

a∈Fp χ(a)[Λ : dW(a)]−z and χ is considered as a map on the set of
integrals ideals of Λ, by establishing χ(a) = 0 if a1 6= OK (where a = (at)t∈T ) or if a is
not coprime to m.

Since, in our case, we are considering m divisible by a sufficiently high power of |G| and
of p, we understand that, by the description of Fp given above, we have

{a ∈ co(F p ∩ c), (a,m) = 1} = {a ∈ co(F ∩ c), (a,m) = 1}.

Thus, with our choice of m, the series Dc,m,ts,p(z) previously defined, is equal to the series

Dc,m(z) :=
∑

a∈ co(F∩c)
(a,m)=1

[Λ : dW(a)]−z

considered by Agboola in his paper (see [1, Definition 4.1]). This is the reason why the
analytic part remains exactly the same of [1]: we are considering the same series studied
by Agboola with just an extra condition on the prime m.

Proposition 5.2.8. The series Dc,m,ts,p(z) is convergent in some right hand half-plane.

Proof. From our discussion above, this result follows from the analogous one proved in
[1, Section 4] for the series Dc,m(z). See in particular [1, Proposition 4.5] where, through
the use of Euler product expansions, Agboola showed that Dc,m(z) converges in some
right hand half-plane.

From its definition we know that Dc,m,ts,p(z) is a Dirichlet series
∑∞

n=0 ann
−z, where the

an are non-negative coefficients, and it is moreover clear that

κW,m,ts,p(c, X) =
∑
n≤X

an.

So we have reduced our problem to study the asymptotic behavior of the sum of the first
X coefficients of a convergent Dirichlet series. A classical theorem which helps at this
point is the Délange–Ikehara Tauberian Theorem, which is recalled below.
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Theorem 5.2.9 (Délange–Ikehara Tauberian Theorem). Let
∑∞

n=1 ann
−z be a Dirichlet

series with non-negative coefficients which is convergent on the half-plane Re(z) > a > 0.
Assume that in its domain of convergence

∞∑
n=1

ann
−z = g(z)(z − a)−w + h(z),

where w > 0 and g(z) and h(z) are holomorphic functions on the closed half-plane on
the right of a, such that g(a) 6= 0. Then

∑
n≤X

an ∼
g(a)

a · Γ(w)
·Xa · (log(X))w−1,

as X →∞. At the denominator Γ(w) is the value of the classical Gamma function at w.

In order to apply Theorem 5.2.9 to our case, first of all we need to find the most right
pole β(c,m) of Dc,m,ts,p(z) (which corresponds to Dc,m(z) in [1]), its order δ(c,m) and the
“residue” at β(c,m) given by

τ(c,m) := lim
z→β(c,m)

(z − β(c,m))δ(c,m)Dc,m,ts,p(z).

Then, using Theorem 5.2.9, we shall get

κW,m,ts,p(c, X) ∼ τ(c,m)

β(c,m) · Γ(δ(c,m))
·Xβ(c,m) · (log(X))δ(c,m)−1. (5.11)

Hence, from this, if we are able to show the independence of β(c,m), τ(c,m) and δ(c,m)

from c, we will deduce the independence of κW,m,ts,p(c, X) from c, as X →∞.

Let I(Λ) denote the group of fractional ideals of Λ. The values β(c,m), τ(c,m) and δ(c,m)

can be found, as already done in [1, Sections 6-7], through a comparison of Dc,m,ts,p(z)

with the Dirichlet L-series associated to Λ

LΛ(z, χ) :=
∑

a∈ I(Λ)

a⊆Λ

χ(a)[Λ : dW(a)]−z.

In particular, if we define

bαW (χ) := lim
z→ 1

αW

(
z − 1

αW

)δ(c,m)

Dts,p(z, χ),
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from [1, Section 7] (be careful that in Proposition 7.1, the assumption p - m is superflu-
ous), we get:

β(c,m) =
1

αW
δ(c,m) =

∣∣t ∈ T \ {1} s.t. W(t) = αW
∣∣

τ(c,m) =
1

|Cl′m(Λ)|
∑

χ∈ Ĉl′m(Λ)

χ̃(c)bαW (χ).

Finally, we have the following result.

Proposition 5.2.10. Let κW,m,ts,p(c, X) be defined as in (5.9). Then

κW,m,ts,p(c, X) is asymptotically independent from c⇐⇒ bαW (χ) = 0 , ∀χ 6= 1.

Moreover, in this case we have

lim
z→ 1

αW

(
z − 1

αW

)dαW (1)

Dc,m,ts,p(z) = bαW (1)/|Cl′m(Λ))|.

Proof. For a proof of it see [1, Lemma 7.5 - Proposition 7.6].

As explained in [1], the easiest case when bαW (χ) = 0 , ∀χ 6= 1, is when W is chosen
to be constant on T\{1}. While in the non-constant case we can lose the asymptotic
independence as explained in [1, Proposition 7.8].

An example, as we have seen, of constant W is given by Wram. In this case we have
αWram

= 1 and so

κWram,m,ts,p(c, X) ∼
bαWram

(1)

Γ(|T \ {1}|) · |Cl′m(Λ))|
·X · (log(X))|T\{1}|−1,

as X →∞, and hence, from (5.10),

NWram,m,ts,p(c,X) ∼ K · |Ker(qm)| ·
bαWram

(1)

Γ(|T \ {1}|) · |Cl′m(Λ))|
·X · (log(X))|T\{1}|−1,

as X →∞.
Thus the analog of [1, Theorem B] now clearly follows (this is a more precise version of
Theorem 0.0.9 in the Introduction).

Theorem 5.2.11. Let c be a given class in Rts,p(OK [G]). The asymptotic behavior of
NWram,m,ts,p(c,X), as X → ∞, does not depend on c. Moreover Pr′Wram,m,ts,p(c) exists
and does not depend on c.



100 Chapter 5 Equidistribution of rings of integers with local splitting behavior

Proof. Clear from the previous asymptotic approximation and from the definition of
Pr′Wram,m,ts,p(c).

Remark 5.2.12. Analogously to [1, Section 9, Proposition 9.5], one can prove that in
our definition of probability, if instead of considering G-Galois K-algebras we restrict
our attention to just field extensions, the result of Theorem 5.2.11 remains the same.

Corollary 5.2.13. The limit Pr((1, 1), p, c), defined in the introduction of this chapter
(see (5.2)), exists and does not depend on the given realizable class c ∈ Rts,p(OK [G]).

Proof. Since DWram(L/K) coincides with D(L/K) (see at the beginning of the chapter),
taking m := (|G| · p)mOK (where m is the sufficiently high natural number given by
Theorem 5.1.10 and Proposition 2.2.8), and thanks to Corollary 5.2.13, we see that
Pr′Wram,m,ts,p(c) coincides with Pr((1, 1), p, c).

5.3 Probabilities on G-Galois K-algebras totally split at p

Thanks to the previous results, going back to question (5.4), we can now prove the
following result.

Proposition 5.3.1. Let K be a number field and G a finite abelian group. Given a finite
prime p of K and c ∈ Rts,p(OK [G]), we have

Pr((1, 1), p, c) = PrW

(
((1, 1), p)

∣∣∣L unr. at all p′
∣∣|G|) · Pr′A(c)

if and only if Rts,p(OK [G]) = R(OK [G]).

Proof. The proof is a direct consequence of Corollary 5.2.13. Indeed, from that result,
we know that the limit Pr((1, 1), p, c) does not depend on the given realizable class
c ∈ Rts,p(OK [G]). Thus, from the definition of Pr((1, 1), p, c), we have

Pr((1, 1), p, c) = PrW

(
(1, 1), p

∣∣∣L unr. at all p′
∣∣|G|) /|Rts,p(OK [G])|.

Moreover we know from Theorem 5.0.5 that Pr′A(c) = 1/|R(OK [G])|. Hence the claim
of the proposition is now straightforward.

Remark 5.3.2. Assuming that R(OK [G]) = {c1, c2, . . . , cn}, the following diagrams give
a representation of the different probabilities computed by Agboola and Wood. We focus
our attention on the classes in F ′G(K). The columns are taken of the same width since
the realizable classes are equidistributed as Agboola proved, while the different heights of
the rows are related to the conditional probabilities at one prime which can be computed
through the results of Wood.
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c1 c2 . . . . . . cn−1 cn

Totally split at p 

Other types of
ramification at p

Actually it is conceivable that some classes are not realized by extensions with a particular
ramification condition at p, so a more faithful table should be similar to the following,
where a black cell means that the correspondent class is not realized by any extension with
the ramification condition of the respective row.

c1 c2 . . . . . . cn−1 cn

Totally split at p 

Other types of
ramification at p

The previous result opens a new conjecture which, surprisingly, seems not to have received
any attention.

Conjecture 1. Let K and G be as before. Given p a finite place of K, the equality

Rts,p(OK [G]) = R(OK [G])

holds.

We are not able to prove this conjecture even if we know the representations of the
two groups, following McCulloh’s method, as explained in the previous sections. The
idea that a restriction of such a kind on a single prime can result in the loss of some
realizable classes is quite weird and a good motivation which strengthens the conjecture
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is given passing from realizable to Steinitz classes (which we have already encountered
in Chapter 0).

Given L a G-Galois K-algebra, we denote by st(L/K) its associated Steinitz class in
Cl(OK). Given a base field K and a finite group G, we define the subset of Steinitz
classes given by field extensions as

Rt(OK , G) := {c ∈ Cl(OK) : ∃ [L] ∈ F t
G(K) s.t. st(L/K) = c}. (5.12)

As already noted in Chapter 0, there is a link between realizable and Steinitz classes.
Namely, given L/K a tame G-Galois algebra, then st(L/K) is equal to the image of [OL]

under the natural restriction (see 1.8.1) between class groups

resG{1} : Cl(OK [G]) −→ Cl(OK).

There are several works on the problem of describing the set of Steinitz classes, as the
recent ones by Alessandro Cobbe and Luca Caputo. In particular in [12, Remark 3],
the authors underline that, given a finite prime p of K, if we denote by Rt,ts,p(OK , G)

the set of Steinitz classes given by tame field extensions which are totally split at p, we
do not lose any class or in other words Rt(OK , G) = Rt,ts,p(OK , G). Hereby we obtain
that resG{1}(Rts,p(OK [G])) = resG{1}(R(OK [G])), even if this does not allow us to deduce
a proof of our original conjecture on realizable classes.

5.3.3 More primes and other types of splitting behavior

Instead of imposing the totally split condition on a single prime we could take a finite set
S of finite primes of K and wonder to describe Rts,S(OK [G]), the set of realizable classes
given by tame G-Galois K-algebras which are totally split at every p ∈ S. As we have
already noted in Remark 5.1.13, one has the equality Rts,S(OK [G]) = Stts,S(OK [G]) (see
Remark 5.1.13 for precise definitions).
Hereby, just using an integral ideal m divisible by a sufficiently high power of |G| and of
every ideal in S, the results obtained in §5.2 can be easily generalized considering a finite
set of primes. More precisely, given S := {p1, . . . , pn} as above and TS := {Ti}i∈{1,...,n}
a finite collection of splitting types, we write

Pr(TS , S, c) := lim
X→∞

]{[L] ∈ F ′G(K)|Lpi
≡ Ti, ∀ i = 1, . . . , n, [OL] = c, D(L/K) ≤ X}

]{[L] ∈ F ′G(K)|D(L/K) ≤ X}
.

Moreover let PrW

(
p of type (1, 1), ∀ p ∈ S

∣∣∣L unr. at all p
∣∣|G|) be defined similarly to

(5.3). Then we have the following proposition analogous to Proposition 5.3.1.

Corollary 5.3.4. Let K and G be as before. Given a finite set S of finite prime ideals
in K, let Tts,S be the finite collection {Tts,p}p∈S, where Tts,p = (1, 1) for every p ∈ S,
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then

Pr(Tts,S , S, c) = PrW

(
p of type (1, 1), ∀ p ∈ S

∣∣∣L unr. at all p
∣∣|G|) · Pr′A(c)

if and only if
Rts,S(OK [G]) = R(OK [G]).

Hereby also the following conjecture arises spontaneously.

Conjecture 2. Let K and G be as before. Given a finite set S of finite places of K,
Rts,S(OK [G]) = R(OK [G]).

Again the analogous conjecture for the group of Steinitz classes is proved in [12, Re-
mark 3].

Another immediate question is the following: what happens if we consider other types
of ramification at a prime (or a finite set of primes)? Following our method used in the
previous sections for the totally split case, we can just make the following remark.

Remark 5.3.5. Let d be a natural number dividing |G|. The equidistribution result of the
chapter (see Corollary 5.2.13) may be “generalized”, replacing the totally split condition
with the condition that a G-Galois extension of K is unramified at p, with p splitting into
a number of primes divisible by |G|/d.
This follows applying the methods used in the chapter, with the group OK, p[G]×/G,
which corresponds to the totally split case, replaced by the subgroup of elements a ∈
H(OK, p[G]) such that ad ∈ OK, p[G]×/G. Indeed we have to underline that the quotient
H(OK, p[G])/(OK, p[G]×/G) is isomorphic to Hom(Ωnr

p , G) (∼= G) and that, given Kh/K

an unramified extension at p, the number of primes lying over p is equal to |G|/|Im(hp)|.
Note that our original totally split condition corresponds to the case d = 1.





Appendix

Why the map R is not a group homomorphism

Suppose G to be abelian. We have seen in the Introduction that the image of the map

R : H1(Ωt
K , G) −→ Cl(OK [G])

[L] 7−→ [OL],

is the set of realizable classes R(OK [G]), which McCulloh showed to be a subgroup of
Cl(OK [G]).
This raises the question: is R a group homomorphism?

When the map is trivial (e.g. when K is equal to Q), the answer to our question is clearly
yes. We will now give an explicit example where R is not a group homomorphism.

To do so, let us consider the group homomorphism resG{1} : Cl(OK [G]) −→ Cl(OK). As
we have already seen, given [L] ∈ H1(Ωt

K , G), the compositum resG{1}(R([L])) is equal
to st(L/K), the Steinitz class associated to the G-Galois K-algebra L (see Chapter 0).
The first cohomology group H1(Ωt

K , G) is equal to Hom(Ωt
K , G) (since G is abelian).

Thus, given h ∈ Hom(Ωt
K , G), we clearly see that st(Kh/K) = st(Kh−1/K), since as

K-algebras Kh
∼= Kh−1 . So if the map st : H1(Ωt

K , G) −→ Cl(OK), which to any
[L] ∈ H1(Ωt

K , G) associates st(L/K), would be a group homomorphism, any Steinitz
class should be of order less or equal than 2. Thus, in order to find an example when st

(and so R) is not a group homomorphism, we shall show that there exists a quadratic
extension of K 6= Q with non-trivial Steinitz class of order different from 2.

Let us consider K = Q(
√
−26), then with MAGMA we find that Cl(OK) is isomorphic

to Z/6Z. Let p be one of the two primes over (17). We compute that the ray classgroup
Clp(OK) is isomorphic to Z/2Z × Z/24Z. By Class Field Theory (see [29, Chapter
V, §3]), to any subgroup of Clp(OK) of index 2 corresponds a quadratic extension of
K of conductor dividing p and to any subgroup of Cl(OK) of index 2 corresponds an
unramified (at both finite and infinite places) quadratic extension of K. Since Z/2Z ×
Z/24Z contains three subgroups of index 2 (they correspond to the elements of order 2

in Clp(OK)/2Clp(OK) ∼= Z/2Z×Z/2Z), while Z/6Z only contains one, by the results of
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Class Field Theory just stated, we can find two tame quadratic extensions L, L′ of K
with discriminant over K equal to p.
Let us consider just L and suppose that α ∈ K satisfies L = K(

√
α). Then, by a general

result on Steinitz classes (see for example [13, Theorem 1.3.6]), the ideal p/α is a square
and the class of its square root is equal to st(L/K). Always with the help of MAGMA,
we see that p is not a principal ideal, proving in particular that st(L/K) 6= 1, as well as
st(L/K)2 6= 1.

This can also be seen as a consequence of the more general result Rt(OK , C2) = Cl(OK),
where Rt(OK , C2) denotes the set of classes in Cl(OK) which can obtained as Steinitz
classes of quadratic extensions over K (see [13, Proposition 2.2.3], even if this result goes
back at least as far as McCulloh’s paper [25]).

Remark. The question if R is a group homomorphism was already answered “no” by
Jan Brinkhuis in [5], without giving an explicit example as we did. Moreover, in the
same paper, he also showed that a weaker group law holds: given h1, h2 ∈ H1(Ωt

K , G),
such that the corresponding G-Galois K-algebras have disjoint ramification, then

R(h1h2) = R(h1) +R(h2).

For details on this “weak” group law version, see [5, Section 3].
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Résumé

Invariants de classe pour algèbres galoisiennes
modérément ramifiées

Soient K un corps de nombres d’anneau d’entiers OK et G un groupe fini.

Une algèbre N sur K, avec une action de G, est dite galoisienne de groupe de Galois G,
si N est étale (c.-à-d. un produit d’un nombre fini d’extensions finies de corps sur K) et
si G agit sur N comme un groupe d’automorphismes tel que :

- [N : K] = |G|,

- NG = K.

Les extensions galoisiennes de corps sont des cas particuliers d’algèbres galoisiennes.

Une algèbre galoisienne N sur K, de groupe de Galois G, est dite modérément ramifiée
si pour tout p, idéal maximal de OK , l’indice de ramification en p est premier à la
caractéristique du corps résiduel de p (ou de façon équivalente s’il existe dans la clôture
intégrale ON de OK dans N un élément de trace 1).

Le Théorème de Noether

Le Théorème de la base normale nous dit qu’une algèbre galoisienne N/K est un K[G]-
module libre de rang 1, c.-à-d. il existe un élément b ∈ N tel que {s · b}s∈G - l’orbite de
b sous l’action de G - forme une base de N sur K.

La question à l’origine du sujet principal de cette thèse est d’obtenir un analogue pour
l’anneau d’entiers ON : soit N une algèbre galoisienne sur K de groupe de Galois G,
quand existe-t-il un générateur de base normale d’entiers, c.-à-d. un élément a ∈ ON

tel que {s · a}s∈G forme une base de ON sur OK ? Ou, d’une façon équivalente, quand
existe-t-il un élément a ∈ ON tel que ON = OK [G] · a ?
Ce problème est appelé problème de la base normale d’entiers.

Si K = Q et G est abélien, le problème est complètement résolu par le Théorème de
Hilbert- Speiser : une algèbre galoisienne abélienne N/Q a une base normale d’entiers si
et seulement si N/Q est modérément ramifiée.
Si K est différent de Q ou G est non abélien, ce résultat n’est plus valable en général,
même si, grâce à E. Noether, on a un résultat un peu plus faible.

Le Théorème de Noether dit qu’une algèbre galoisienne N sur K de groupe de Galois G
est modérément ramifiée si et seulement si ON est un OK [G]-module localement libre de
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rang 1.
L’ OK [G]-module ON est dit localement libre de rang 1 si, pour tout idéal premier
p ⊆ OK , l’anneau ON,p := ON ⊗OK OK,p est un OK,p[G]-module libre de rang 1 (OK,p
dénote le complété de OK par rapport à la métrique induite par p), c.-à-d. si pour tout
p il existe un élément ap ∈ ON,p générateur d’une base normale d’entiers de ON,p sur
OK,p.
On comprend tout de suite qu’un module libre doit nécessairement être localement libre,
donc on voit bien que les algèbres galoisiennes modérément ramifiées sont le cadre correct
pour étudier le problème de la base normale d’entiers. En outre, grâce au Théorème de
Noether, en restreignant notre attention à l’ensemble des algèbres galoisiennes modéré-
ment ramifiées, on peut donc voir que le problème de la base normale d’entiers consiste
à comprendre quand un certain module localement libre est libre.

Nous notons AtG(K) l’ensemble des classes d’isomorphisme des algèbres galoisiennes sur
K, de groupe de Galois G, modérément ramifiées et nous considérons Cl(OK [G]), le
groupe des classes des OK [G]-modules localement libres de rang 1, c.-à-d. le groupe
donné par les classes d’isomorphisme stable des OK [G]-modules localement libres.
Grâce au Théorème de Noether, on peut considérer l’application d’ensembles pointés

R : AtG(K) −→ Cl(OK [G])

qui associe à une classe de AtG(K) de représentant N la classe dans Cl(OK [G]) de
représentant l’anneau d’entiers ON .
Cette thèse aborde plusieurs questions liées à l’étude de cette application.

L’image de R et l’ensemble des classes réalisables

La première question que nous considérons consiste à étudier l’image de l’application R.
Nous appelons cette image ensemble des classes réalisables et elle sera notée R(OK [G]).
Explicitement, l’ensemble des classes réalisables est l’ensemble des classes de Cl(OK [G])

que l’on peut obtenir à partir des anneaux d’entiers des algèbres galoisiennes sur K, de
groupe de Galois G, modérément ramifiées.

L’étude des classes réalisables est motivée aussi par ses applications dans d’autres prob-
lèmes en théorie des nombres, elle intervient par exemple dans la recherche d’un analogue
explicite de certains théorèmes de type Adams–Riemann–Roch connus pour Cl(OK [G])

et elle donne des informations importantes pour l’étude de l’ensemble en Cl(OK) des
classes de Steinitz.

Même si l’application R est une application d’ensembles pointés, on peut se demander
si son image, c.-à-d. l’ensemble des classes réalisables, est un sous-groupe de Cl(OK [G]).

En 1986, L. McCulloh, après avoir introduit un sous-groupe St(OK [G]) du groupe des
classes Cl(OK [G]) défini en termes de certaines applications de Stickelberger, a montré
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que, si G est abélien, alors
R(OK [G]) = St(OK [G]).

De ce résultat émerge, dans le cas abélien, une réponse affirmative à la question précé-
dente sur la structure de sous-groupe, c.-à-d., étant données deux classes c1, c2 dans
R(OK [G]), il existe une algèbre galoisienne N sur K, de groupe de Galois G, modéré-
ment ramifiée telle que, si [N ] dénote sa classe d’isomorphisme, alors R([N ]) = c1 + c2

(des considérations analogues sont valables pour l’inverse d’une classe réalisable).

Dans le cas d’un groupe G non abélien, la question si l’ensemble des classes réalisables
est un sous-groupe de Cl(OK [G]) est encore ouverte aujourd’hui.
Dans la première partie de cette thèse nous donnons une preuve détaillée d’un résultat
non publié de L. McCulloh qui montre que même dans le cas non abélien

R(OK [G]) ⊆ St(OK [G]).

Savoir si cette inclusion est une égalité, même dans le cas non abélien, est une question
encore ouverte.

Le noyau de R et le problème de la base normale d’entiers

L’étude du noyau de l’application R est strictement liée au problème de la base normale
d’entiers, que nous avons rappelé précédemment.
En fait, dans le cas abélien et dans plusieurs cas non abéliens (p. ex. G diédral, G d’ordre
impair, . . . ), une classe de Cl(OK [G]) est triviale si et seulement si son représentant est
un OK [G]-module libre de rang 1.

Dans cette thèse, en n’utilisant que la définition de St(OK [G]) et le Théorème classique
de Stickelberger, nous montrons que, si G = Cp, un groupe cyclique d’ordre premier
p, ou G = Dp, un groupe diédral d’ordre 2p, avec p premier impair, alors St(Z[G]) est
trivial.
Comme conséquence, en utilisant les résultats de McCulloh, nous obtenons, par une
méthode différente, le résultat bien connu R(Z[G]) = 1 dans les cas ci-dessus, c.-à-d.
l’anneau d’entiers d’une algèbre galoisienne sur Q, de groupe de Galois G (où G = Cp ou
G = Dp), modérément ramifié a une base normale d’entiers.

Le comportement de St(OK [G]) par rapport au changement de corps de base

Si on considère K contenu dans un autre corps L, la restriction de L à K induit na-
turellement le foncteur suivant :

NL/K : Cl(OL[G]) −→ Cl(OK [G]).

Dans cette thése nous étudions le comportement du groupe St(OK [G]) par rapport à ce
foncteur.
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En particulier nous montrons que, pour tout corps L et sous-corps K et pour tout groupe
fini G,

NL/K(St(OL[G])) ⊆ St(OK [G]).

Ce résultat a des conséquences intéressantes :

- d’abord, si G est abélien, en utilisant les résultats de McCulloh, nous voyons que

NL/K(R(OL[G])) ⊆ R(OK [G]),

- ensuite si K et G ont les deux propriétés suivantes: pour un OK [G]-module être
stablement libre est équivalent a être libre et K est tel que St(OK [G]) = 1 (ce
qui est le cas dans le paragraphe précédent), alors nous en déduisons que l’anneau
d’entiers d’une algèbre galoisienne sur un corps de nombres L qui contient K, de
groupe de Galois G, modérément ramifiée est libre en tant que OK [G]-module.

Les fibres de R et la distribution des classes réalisables

Une fois que l’on connait la structure de l’ensemble R(OK [G]), on peut se demander
si le nombre d’algèbres galoisiennes modérément ramifiées qui réalisent une classe varie
selon la classe. On peut considérer ce problème comme une étude des fibres de notre
application R.

Par rapport à cette question un travail de A. Agboola nous montre que, si on compte
les extensions galoisiennes modérément ramifiées de K avec des fonctions qui satisfont
certaines caractéristiques, alors dans le cas abélien le nombre asymptotique des extensions
galoisiennes modérément ramifiées qui réalisent une classe ne dépend pas de la classe
choisie, ou, dit d’une autre façon, les extensions galoisiennes modérément ramifiées sont
équidistribuées par rapport à l’ensemble des classes réalisables.

Dans la dernière partie de cette thèse, en nous restreignant au cas abélien, nous avons
étudié un problème lié à ce travail.
D’abord nous avons décrit, en termes d’une version modifiée de St(OK [G]), l’ensemble
des classes réalisables obtenues des extensions galoisiennes modérément ramifiées totale-
ment décomposées en un idéal premier p ⊆ OK donné.
Puis nous montrons qu’un analogue des résultats de A.Agboola peut être obtenu pour ce
sous-ensemble de classes réalisables, c.-à-d. le nombre des extensions galoisiennes mod-
érément ramifiées totalement décomposées en un idéal premier p, qui réalisent une classe
c, asymptotiquement ne dépend pas de c.

Enfin nous terminons en mettant en évidence des relations entre le travail d’Agboola
déjà cité et un travail de M. M. Wood qui étudie les probabilités des différents types de
décomposition d’un idéal premier fixé dans une extension galoisienne de K de groupe de
Galois G.
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Samenvatting

Klasse-invarianten voor tamme Galoisalgebra’s

Zij K een getallenlichaam met ring van gehelen OK en G een eindige groep.

Een algebra N over K met een werking van G heet een Galoisalgebra met groep G als
N étale is (d.w.z. N is een eindig product van lichaamsuitbreidingen van K) en als G
op N werkt als een groep van automorfismen zodanig dat:

- [N : K] = |G|,

- NG = K.

Galoisuitbreidingen van lichamen zijn speciale gevallen van Galoisalgebra’s.

Een Galoisalgebra N over K met groep G wordt tam vertakt genoemd als voor alle
maximale idealen p van OK , de vertakkingsindex van p copriem is met de karakteristiek
van het restklassenlichaam van p (dit is equivalent met het bestaan van een element in
de gehele afsluiting ON van OK in N met spoor 1).

De Stelling van Noether

De Stelling van de normale basis vertelt ons dat een Galoisalgebra N/K een vrij K[G]-
moduul van rang 1 is, d.w.z. er bestaat een element b ∈ N zodanig dat {s · b}s∈G - de
baan van b onder de actie van G - een basis vormt voor N over K.

De vraag die ten grondslag ligt aan dit proefschrift is het verkrijgen van een analagon voor
de ring van gehelen ON : zij N een Galoisalgebra over K met Galoisgroep G, wanneer
bestaat er een voortbrenger van een normale basis van gehelen, d.w.z. een element
a ∈ ON zondanig dat {s · a}s∈G een basis vormt voor ON over OK? Of, equivalent,
wanneer bestaat er een element a ∈ ON zondanig dat ON = OK [G] · a?
Dit probleem wordt probleem van de normale basis van gehelen genoemd.

Als G abels is en K = Q, dan is het probleem geheel opgelost door de Stelling van
Hilbert-Speiser: een abelse Galoisalgebra N/Q heeft een normale basis van gehelen dan
en slechts dan als N/Q tam vertakt is.
Als K ongelijk aan Q is of G is niet abels, dan is het resultaat in het algemeen incorrect,
maar dankzij E. Noether hebben we een resultaat dat net iets zwakker is.

De Stelling van Noether zegt dat een Galoisalgebra N over K met Galoisgroep G tam
vertakt is dan en slechts dan als ON een lokaal vrij OK [G]-moduul van rang 1 is.
Het OK [G]-moduul ON is lokaal vrij van rang 1 als voor elk priemideaal p ⊆ OK de ring

117



ON,p := ON⊗OKOK,p een vrij OK,p-moduul is van rang 1 (hierbij is OK,p de completering
van OK bij de metriek geïnduceerd door p), d.w.z. als er voor elke p een voortbrenger
ap ∈ ON,p van een normale basis van de ring van gehelen van ON,p over OK,p bestaat.
Het is duidelijk dat een vrij moduul noodzakelijkerwijs lokaal vrij is, dus we zien dat
tam vertakte Galoisalgebra’s het correcte framework zijn voor het bestuderen van het
probleem van de normale basis van gehelen. Wanneer we ons beperken tot tam vertakte
Galoisalgebra’s, dan is het probleem van de normale basis van gehelen dankzij de Stelling
van Noether equivalent met het begrijpen wanneer een zeker lokaal vrij moduul vrij is.

Met AtG(K) noteren we de verzameling van isomorfieklassen van tam vertakte Galoisal-
gebra’s over K met Galoisgroep G, en we bekijken Cl(OK [G]), de groep van klassen van
OK [G]-modulen die lokaal vrij van rang 1 zijn, d.w.z. de groep gegeven door de stabiele
isomorfieklassen van lokaal vrije OK [G]-modulen.
Dankzij de Stelling van Noether hebben we een afbeelding

R : AtG(K) −→ Cl(OK [G])

die aan elke klasse van AtG(K), gerepresenteerd door N , de klasse van de ring van gehelen
ON in Cl(OK [G]) toekent.
Dit proefschrift behandelt verschillende vragen die gerelateerd zijn aan de studie van
deze afbeelding.

Het beeld van R en de verzameling van realiseerbare klassen

De eerste vraag die we behandelen is de studie van het beeld van de afbeelding R. Het
beeld van deze afbeelding wordt genoteerd als R(OK [G]), en de elementen van R(OK [G])

heten realiseerbare klassen. Explicieter, de verzameling van realiseerbare klassen is de
deelverzameling van Cl(OK [G]) bestaande uit de klassen van ringen van gehelen van tam
vertakte Galoisalgebra’s over K met Galoisgroep G.

De studie van de realiseerbare klassen wordt ook gemotiveerd door haar toepassingen in
andere problemen in de getaltheorie. Zo zijn er connecties met de zoektocht naar een
expliciete versie van zekere stellingen van het type Adams–Riemann–Roch verbonden
aan Cl(OK [G]) en geeft deze studie belangrijke informatie bij het bestuderen van de
deelverzameling van Cl(OK) van Steinitz-klassen.

Aangezien de afbeelding R slechts een afbeelding van verzamelingen is, kunnen we ons
afvragen wanneer het beeld, d.w.z. de verzameling van realiseerbare klassen, een onder-
groep van Cl(OK [G]) is.

In 1986 heeft L. McCulloh, na het introduceren van St(OK [G]), een ondergroep van
Cl(OK [G]) gedefinieerd in termen van zekere Stickelbergerelementen, bewezen dat

R(OK [G]) = St(OK [G]),
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als G abels is.
Hieruit volgt een positief antwoord op de vraag of de verzameling van realiseerbare
klassen een groep vormt in het geval dat G abels is, d.w.z. gegeven twee klassen c1, c2 ∈
R(OK [G]), bestaat er een Galoisalgebra N over K, met Galoisgroep G, tam vertakt,
zodanig dat R([N ]) = c1 + c2, waarbij [N ] de isomorfieklasse van N aangeeft (een
vergelijkbare opmerking is waar voor de inverse van een realiseerbare klasse).

In het geval dat G niet abels is, is de vraag of de verzamling van realiseerbare klassen
een ondergroep van Cl(OK [G]) vormt nog een open probleem.
In het eerste deel van dit proefschrift geven wij een gedetailleerd bewijs van een ongepu-
bliceerd resultaat van L. McCulloh dat ook in het niet abelse geval de inclusie

R(OK [G]) ⊆ St(OK [G])

geldt. Of de bovenstaande inclusie een gelijkheid is in het niet-abelse geval is een open
probleem.

De kern van R en het probleem van de normale basis van gehelen

De studie van de kern van de afbeelding R is sterk verbonden met het probleem van de
normale basis dat we hiervoor besproken hebben.
In het geval dat G abels is en in verschillende niet-abelse gevallen (bijvoorbeeld als G
dihedraal is, de orde van G oneven is, ...) is een klasse van Cl(OK [G]) triviaal dan en
slechts dan als zijn representant een vrij OK [G]-moduul van rang 1 is.

Alleen gebruikmakend van de definitie van St(OK [G]) en de Stelling van Stickelberger
tonen we in dit proefschrift aan dat St(Z[G]) triviaal is als G = Cp, een cyclische groep
van priemorde p, of G = Dp, een dihedrale groep van orde 2p, met p ≥ 3 priem.
Met de resultaten van McCulloh geeft dit een nieuw bewijs voor het welbekende feit dat
R(Z[G]) = 1 in de bovenstaande gevallen, d.w.z. dat de ring van gehelen van een tam
vertakte Galoisalgebra over Q met groep G (waarbij G = Cp of G = Dp) een normale
basis van gehelen heeft.

Het gedrag van St(OK [G]) onder basisuitbreiding

Als K een deellichaam van L is, dan induceert de restrictie van L tot K de volgende
natuurlijke functor:

NL/K : Cl(OL[G]) −→ Cl(OK [G]).

In dit proefschrift bestuderen wij het gedrag van de groep St(OK [G]) onder deze functor.

In het bijzonder tonen we aan dat, voor alle lichamen L en deellichamen K en voor alle
eindige groepen G geldt:

NL/K(St(OL[G])) ⊆ St(OK [G]).
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Dit heeft de volgende interessante gevolgen:

- als G abels is, volgt met de resultaten van McCulloh dat

NL/K(R(OL[G])) ⊆ R(OK [G]),

- als elk stabiel vrij OK [G]-moduul vrij is, en St(OK [G]) = 1 (wat het geval is als
K = Q en G = Cp of G = Dp voor een priemgetal p ≥ 3), dan leiden wij af dat de
ring van gehelen van een tam vertakte Galoisalgebra met Galoisgroep G over een
getallenlichaam L dat K bevat, vrij is als OK [G]-moduul.

De vezels van R en de verdeling van realiseerbare klassen

Als de structuur van R(OK [G]) bekend is, kan men zich afvragen of het aantal tam
vertakte Galoisalgebra’s dat een bepaalde klasse realiseert, afhankelijk is van de gekozen
klasse. We kunnen dit probleem opvatten als de studie van de vezels van onze afbeeld-
ing R.

Het werk van A. Agboola laat ons zien dat, als we de tam vertakte Galoisuitbreidingen
van K op een bepaalde manier tellen, in het abelse geval het asymptotische aantal van
tam vertakte Galoisuitbreidingen die een klasse realiseren onafhankelijk van de gekozen
klasse is, of anders gezegd, de tam vertakte Galoisuitbreidingen zijn gelijk verdeeld over
de realiseerbare klassen.

In het laatste deel van dit proefschrift beperken we ons tot het abelse geval en bestuderen
we aan hieraan gerelateerde vragen.
Eerst beschrijven wij, in termen van een aangepaste versie van St(OK [G]), de verzame-
ling van realiseerbare klassen verkregen uit tam vertakte Galoisuitbreidingen waar een
gegeven priem p ⊆ OK volledig splitst.
Vervolgens bewijzen we dat een analogon van de resultaten van A. Agboola kan worden
verkregen voor deze deelverzameling van realiseerbare klassen, d.w.z. het aantal tam
vertakte Galoisuitbreidingen waar p volledig splitst, die een klasse c realiseren, is in de
limiet niet afhankelijk van c;

We eindigen met een vergelijking tussen het zojuist geciteerde werk van A. Agboola en
het werk van M. M. Wood die de kansen van verschillende decompositietypes van een
vast priemideaal in een Galoisuitbreiding van K met Galoisgroep G bestudeert.
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