A. Azioune, N. Carpi, Q. Tseng, M. Théry, and M. Piel, Protein Micropatterns, Methods in cell biology, vol.97, pp.133-179, 2010.
DOI : 10.1016/S0091-679X(10)97008-8

URL : https://hal.archives-ouvertes.fr/hal-00981469

A. Azioune, M. Storch, M. Bornens, M. Théry, and M. Piel, Simple and rapid process for single cell micro-patterning, Lab on a Chip, vol.21, issue.26, pp.1640-1642, 2009.
DOI : 10.1039/b821581m

F. Bartolini and G. G. Gundersen, Generation of noncentrosomal microtubule arrays, Journal of Cell Science, vol.119, issue.20, pp.4155-63, 2006.
DOI : 10.1242/jcs.03227

P. Bieling, I. Telley, and T. Surrey, A Minimal Midzone Protein Module Controls Formation and Length of Antiparallel Microtubule Overlaps, Cell, vol.142, issue.3, pp.420-452, 2010.
DOI : 10.1016/j.cell.2010.06.033

M. Braun, D. R. Drummond, R. Cross, and A. D. Mcainsh, The kinesin-14 Klp2 organizes microtubules into parallel bundles by an ATP-dependent sorting mechanism, Nature Cell Biology, vol.13, issue.6, pp.724-754, 2009.
DOI : 10.1038/sj.emboj.7601927

M. Braun, Z. Lansky, G. Fink, F. Ruhnow, S. Diez et al., Adaptive braking by Ase1 prevents overlapping microtubules from sliding completely apart, Nature Cell Biology, vol.13, issue.10, pp.1259-1264, 2011.
DOI : 10.1091/mbc.E10-08-0683

R. E. Carazo-salas, C. Antony, and P. Nurse, The Kinesin Klp2 Mediates Polarization of Interphase Microtubules in Fission Yeast, Science, vol.309, issue.5732, pp.297-300, 2005.
DOI : 10.1126/science.1113465

D. Van-damme, K. Van-poucke, E. Boutant, C. Ritzenthaler, D. Inzé et al., In Vivo Dynamics and Differential Microtubule-Binding Activities of MAP65 Proteins, PLANT PHYSIOLOGY, vol.136, issue.4, pp.3956-67, 2004.
DOI : 10.1104/pp.104.051623

A. Dinarina, C. Pugieux, M. M. Corral, M. Loose, J. Spatz et al., Chromatin Shapes the Mitotic Spindle, Cell, vol.138, issue.3, pp.502-515, 2009.
DOI : 10.1016/j.cell.2009.05.027

G. Fink, L. Hajdo, K. J. Skowronek, C. Reuther, A. Kasprzak et al., The mitotic kinesin-14 Ncd drives directional microtubule???microtubule sliding, Nature Cell Biology, vol.14, issue.6, pp.717-740, 2009.
DOI : 10.1093/emboj/20.18.5101

K. Furuta and Y. Y. Toyoshima, Minus-End-Directed Motor Ncd Exhibits Processive Movement that Is Enhanced by Microtubule Bundling In Vitro, Current Biology, vol.18, issue.2, pp.152-159, 2008.
DOI : 10.1016/j.cub.2007.12.056

D. D. Hackney and W. Jiang, Assays for kinesin microtubule-stimulated ATPase activity, Methods In Molecular Biology Clifton Nj, vol.164, pp.65-71, 2001.

T. E. Holy, M. Dogterom, B. Yurke, and S. Leibler, Assembly and positioning of microtubule asters in microfabricated chambers, Proceedings of the National Academy of Sciences, vol.94, issue.12, pp.6228-6231, 1997.
DOI : 10.1073/pnas.94.12.6228

A. Hyman, D. Drechsel, D. Kellogg, S. Salser, K. Sawin et al., [39] Preparation of modified tubulins, Methods in Enzymology, vol.196, pp.478-85, 1991.
DOI : 10.1016/0076-6879(91)96041-O

M. E. Janson, R. Loughlin, I. Loïodice, C. Fu, D. Brunner et al., Crosslinkers and Motors Organize Dynamic Microtubules to Form Stable Bipolar Arrays in Fission Yeast, Cell, vol.128, issue.2, pp.357-68, 2007.
DOI : 10.1016/j.cell.2006.12.030

K. Jiang and A. Akhmanova, Microtubule tip-interacting proteins: a view from both ends. Current opinion in cell biology, pp.94-101, 2011.

L. C. Kapitein, E. J. Peterman, and B. H. Kwok, The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks, Nature, vol.14, issue.7038, pp.114-118, 2005.
DOI : 10.1021/jp049805+

M. Peterson and . Dogterom, Cortical Dynein Controls Microtubule Dynamics to Generate Pulling Forces that Position Microtubule Asters, Cell, vol.148, pp.502-514, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00994472

H. Li, T. Mao, Z. Zhang, and M. Yuan, The AtMAP65-1 cross-bridge between microtubules is formed by one dimer. Plant & cell physiology, pp.866-74, 2007.

I. Loiodice, J. Staub, T. G. Setty, N. T. Nguyen, A. Paoletti et al., Ase1p Organizes Antiparallel Microtubule Arrays during Interphase and Mitosis in Fission Yeast, Molecular Biology of the Cell, vol.16, issue.4, pp.1756-1768, 2005.
DOI : 10.1091/mbc.E04-10-0899

R. Loughlin, B. Riggs, and R. Heald, SnapShot: Motor Proteins in Spindle Assembly, Cell, vol.134, issue.3, pp.548-548, 2008.
DOI : 10.1016/j.cell.2008.07.038

R. Loughlin, J. D. Wilbur, F. J. Mcnally, F. J. Nedelec, and R. Heald, Katanin Contributes to Interspecies Spindle Length Scaling in Xenopus, Cell, vol.147, issue.6, pp.1397-1407, 2011.
DOI : 10.1016/j.cell.2011.11.014

K. Malekzadeh-hemmat, P. Gendry, and J. F. Launay, Rat pancreas kinesin: identification and potential binding to microtubules. Cellular and molecular biology NoisyleGrand France, pp.279-285, 1993.

Q. Meng, J. Du, J. Li, X. Lü, X. Zeng et al., Tobacco microtubule-associated protein, MAP65-1c, bundles and stabilizes microtubules. Plant molecular biology, pp.537-584, 2010.

Y. Mimori-kiyosue, Shaping microtubules into diverse patterns: Molecular connections for setting up both ends, Cytoskeleton, vol.42, issue.Pt 22, pp.603-621, 2011.
DOI : 10.1002/cm.20540

F. Nedelec, T. Surrey, S. Leibler, and A. C. Maggs, Self-organization of microtubules and motors, Nature, vol.389, pp.305-308, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00402473

L. Théry and . Blanchoin, Actin network architecture can determine myosin motor activity, Science, vol.336, pp.1310-1314, 2012.

A. Reymann, J. Martiel, T. Cambier, L. Blanchoin, R. Boujemaa-paterski et al., Nucleation geometry governs ordered actin networks structures. Nature materials, pp.827-859, 2010.
DOI : 10.1038/nmat2855

URL : https://hal.archives-ouvertes.fr/hal-00525593

J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual, 1989.

M. Sasabe and Y. Machida, MAP65: a bridge linking a MAP kinase to microtubule turnover, Current Opinion in Plant Biology, vol.9, issue.6, pp.563-70, 2006.
DOI : 10.1016/j.pbi.2006.09.010

W. Shang, D. E. Crone, H. Yang, J. S. Dordick, R. E. Palazzo et al., Using Centrosome Fragments in the Directed Assembly of Microtubules, Journal of Nanoscience and Nanotechnology, vol.9, issue.2, pp.871-875, 2009.
DOI : 10.1166/jnn.2009.C043

D. J. Sharp, G. C. Rogers, and J. M. Scholey, Microtubule motors in mitosis, pp.41-47, 2000.

M. L. Shelanski, Chemistry of the filaments and tubules of brain. The journal of histochemistry and cytochemistry official journal of the Histochemistry Society, pp.529-539, 1973.

R. Subramanian, E. M. Wilson-kubalek, C. P. Arthur, M. J. Bick, E. Campbell et al., Insights into Antiparallel Microtubule Crosslinking by PRC1, a Conserved Nonmotor Microtubule Binding Protein, Cell, vol.142, issue.3, pp.433-476, 2010.
DOI : 10.1016/j.cell.2010.07.012

T. Surrey, F. Nedelec, S. Leibler, and E. Karsenti, Physical Properties Determining Self-Organization of Motors and Microtubules, Science, vol.292, issue.5519, pp.1167-1171, 2001.
DOI : 10.1126/science.1059758

M. Théry, Micropatterning as a tool to decipher cell morphogenesis and functions, Journal of Cell Science, vol.123, issue.24, pp.4201-4214, 2010.
DOI : 10.1242/jcs.075150

P. T. Tran, L. Marsh, V. Doye, S. Inoué, and F. Chang, A Mechanism for Nuclear Positioning in Fission Yeast Based on Microtubule Pushing, The Journal of Cell Biology, vol.199, issue.2, pp.397-411, 2001.
DOI : 10.1083/jcb.130.3.687

A. Tulin, S. Mcclerklin, Y. Huang, and R. Dixit, Single-Molecule Analysis of the Microtubule Cross-Linking Protein MAP65-1 Reveals a Molecular Mechanism for Contact-Angle-Dependent Microtubule Bundling, Biophysical Journal, vol.102, issue.4, pp.802-809, 2012.
DOI : 10.1016/j.bpj.2012.01.008

C. E. Walczak and S. L. Shaw, A MAP for Bundling Microtubules, Cell, vol.142, issue.3, pp.364-371, 2010.
DOI : 10.1016/j.cell.2010.07.023

C. E. Walczak, I. Vernos, T. J. Mitchison, E. Karsenti, and R. Heald, A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity, Current Biology, vol.8, issue.16, pp.903-913, 1998.
DOI : 10.1016/S0960-9822(07)00370-3

R. A. Walker, O. Brien, K. Pryer, M. E. Soboeiro, W. A. Voter et al., Dynamic Instability of Individual Microtubules. The Journal of cell biology, pp.1437-1448, 1988.

L. Wordeman, How Kinesin Motor Proteins Drive Mitotic Spindle Function: Lessons from Molecular Assays. Seminars in cell & developmental biology, pp.260-268, 2011.

5. #. References, !. T. Fmiu-!-ka9a%#, !. =#, and !. Y. , 65)!59%&"0585&A!4C!65&549!4C!949)*9&'4%46"8!65, IU!_9)4(9&*'%*%! @'464&*!4'+*'59;!4C!&2*!)4'&5*E+*@*9+*9&!64+5C5)"&549%!4C! 65)'4&

I. Y. , !. , !. !. Gks, !. , *. et al., &5"8!4';"95m, 8A%5%!4C!65)'4&&549!4C!@8"9&!)4'&5)"8! 65)'4&(0(8*%K!)84%*!*9)4(9&*'%!4C!&2*!<k!J59+#!-'*9+%!Q*88!!aS!Q2"9;!f!T<//.U!G!6*)2"95%6!C4'!9(IU!G!0*9+59;!64+*!"9"8A%5%!C4'!;'4P59;! 65)'4&(0(8*%K!*O5+*9)*!C4'!"!O*84)5&AE+*@*9+*9&!'5()&("&549%!4C!;'"C&*+!65)'4&(0(8*%!@'4O5+*!*O5+*9)*!4C!"!8*9;&2E+*@*9+*9&! @*'%5%&*9)*!8*9^S!f'"9J!YS!\5*'9"&!eS!M# \'"&6"9!abS!Q2"9;!f!T<//MU!,*)2"95%6%!C4'!6"59&"5959;!65)'4&MK>M/E?#!! .F# a6*'&*9J4!GHS!Q2"9;!^oS!l";9*'!bS!L"84'5&5!kS!f*9AJ!aS!a4940*!aS!$84A+!QS! ^"(%*'!,-S!^(%%*A!He!T<//IU!-2*!G'"05+4@%5%!65)'4&%%4)5"&*+!@'4&*59! G&,GH?>E.K!648*), pp.4-4

<. , !. \. , !. , and !. T. Hyq, 4!65, !P5&2! 65)'4&9+*9&!65+m49*E%@*)5C5)!%@59+8*!6"&'5D#!,5)'4&(0(8*E"%%4)59+!0(9+859;!@'4&*59!*%%*9&5"8!&4!6"59&"59!&2*!65&4&5)! %@59+8*!65+m49*#!O!P7..!R(1."!.>BK..B>EM?#!!

<. Hes, !. ^-"-pj59%-!-es, !. ^s-!-l-'5&5-!, *. '. , G. >s-! et al., 9&!65(99*'!kS!d3+38*)!feS!-9+!64&4'%!4';"95m*!+A9"65)!65)'4&(0(8*%!&4!C4'6!%&"08*!05@48, [9!O5O4!+A9"65)%!"9+!+5CC*'*9&5"8!65)'4&(0(8*E059+59U! ,5)'4&(0(8*E"%%4)5"&!65956"8!65+m49*!@'4&*59!64+(8*!)49&'48%! C4'6"&549!"9+!8*9;&2!4C!"9&5@"'"88*8!65)'4&(0(8*!4O*'8"@%#!P7..!.I<KI</E=<#! <M# aQHS!\5)J!,eS!Q"6@0*88!_GS!k"'%&!aGS!*! )'4%%859J59;!0A!HYQ.S!"!)49%*'O*+!94964&4'!65)'4&(0(8*!059+59;!@'4&*59#!P7..! .I<KI==EI=#! <F# H4'&'"9!kS!]"588"'+!eS!b"9&"'+!,S!-2*'A!,#!T</.<U!N("9&5C5)"&549!4C!,GH!")&5O5&A! 49!;*46*&'5)"88A!)49&'488*+!,-!9*&P4'J#!QA&4%J*8*&49S!59!@'*%%#!, p.4

=. /. , G. ?. , !. /. T<, !. , and G. ?. , 99!_S!b"9!k"66*!kS!a&4@@59E88*8!6599!_S!a&4@@59E,*88*&!bS! b"9&, MU!-P4!65)'4&(0(8*E"%%4)5"&05+4@%5%!J59*&4)24'*!C50*'E"%%4)5"&*+!,GH?>EI!)'4%%E859J%! 65)'4&(0(8*%!"9+!@'464&*%!65)'4&(0(8*!0(9+8*!*849&549#!H8"9&!Q*88#!<<K=M*)2"95%6!C4'! )49&")&E"9_9)4(9&*'%!0*&P**9!+A9"65)!)4'&5)"8!65)'4&*E+*@*9+*9&!64+5C5)"&549%!4C! 65)'4&

I. , !. Qs-!-e-"-9%49-!, _. !. O+-!, !. H. Qfs, . B. Mk et al., 9!+*9!l58+*90*';!a,S!^44;*9, 8&56*'5m"&549!'*)'(5&%!"%*.@!49&4! 4O*'8"@@59;!65)'4&

I. #. , !. _qs-!-k5d5&, !. Y. , !. G. , *. &&-!-s-!-os-!-^-*-5+%&-'"-!-ys-!-l-"-%&-*-9 et al., 8! 65, *)2"94)2*65)"8! 64+*8!*D@8"59%!59&*'")&549%!0*&P**9!)4'&5)"8!65)'4&(0(8*%!59!@8"9&%#!\54@2A%!e#! FFTIUK./M<EF/#! I=# k249(J%2*!HS!l*5&%!kGS!Q'(mEY"65'*m!GS!k*59(6!__S!-59+*6"9%!<</KMIBE>=#! I># ^A6"9!GS!k'*)2%*8!kS!L*884;;!kS!a"8%*'!aS!a"P59!LS!a&*CC*9!HS!l4'+*6"98#!Q48+!a@'5995(%!eS!d5&m%)2*!\S! H*&m48+!^S!Y500*!eS!a)2tCC*'!_S!a&*"'!e^S!-'(%2J4!GS!b"';"!bS!l5+8(9+!HjS!s"95)!,S!!

. Matériels, Centrifugeuse de paillasse, billes Alexa-561 (Bioprob)

&. !. +13849, !)2"60, C45%!8*!O48(6*!+*!8"!)2"60'*&549!)49&*9"9&!+"9%! +(! \Y\M/!K! 81"9&5EC"+59;! +58(3! "(! +5D76*S!8*!]-H!+58(3!"(!.!R./S!8*!&"6@49!,GH!+58(3!"(!.R=S!8"!63&2A8!)*88

F. Ahmad, C. Echeverri, R. Vallee, and P. Baas, Cytoplasmic Dynein and Dynactin Are Required for the Transport of Microtubules into the Axon, The Journal of Cell Biology, vol.268, issue.2, pp.391-401, 1998.
DOI : 10.1038/378578a0

J. Ambrose and G. Wasteneys, CLASP Modulates Microtubule-Cortex Interaction during Self-Organization of Acentrosomal Microtubules, Molecular Biology of the Cell, vol.19, issue.11, pp.4730-4737, 2008.
DOI : 10.1091/mbc.E08-06-0665

J. Ambrose and R. Cyr, The Kinesin ATK5 Functions in Early Spindle Assembly in Arabidopsis, THE PLANT CELL ONLINE, vol.19, issue.1, pp.226-262, 2007.
DOI : 10.1105/tpc.106.047613

J. Ambrose, W. Li, A. Marcus, H. Ma, and R. Cyr, A Minus-End-directed Kinesin with Plus-End Tracking Protein Activity Is Involved in Spindle Morphogenesis, Molecular Biology of the Cell, vol.16, issue.4, pp.1584-92, 2005.
DOI : 10.1091/mbc.E04-10-0935

J. Ambrose and G. Wasteneys, CLASP Modulates Microtubule-Cortex Interaction during Self-Organization of Acentrosomal Microtubules, Molecular Biology of the Cell, vol.19, issue.11, pp.4730-4737, 2008.
DOI : 10.1091/mbc.E08-06-0665

P. Antin, S. Forry-schaudies, T. Friedman, S. Tapscott, and H. Holtzer, Taxol induces postmitotic myoblasts to assemble interdigitating microtubule-myosin arrays that exclude actin filaments, The Journal of Cell Biology, vol.90, issue.2, pp.300-308, 1981.
DOI : 10.1083/jcb.90.2.300

I. Arnal, C. Heichette, G. Diamantopoulos, and D. Chrétien, CLIP-170/Tubulin-Curved Oligomers Coassemble at Microtubule Ends and Promote Rescues, Current Biology, vol.14, issue.23, pp.2086-95, 2004.
DOI : 10.1016/j.cub.2004.11.055

URL : https://hal.archives-ouvertes.fr/hal-00108101

J. Ault and R. Nicklas, Tension, microtubule rearrangements, and the proper distribution of chromosomes in mitosis, Chromosoma, vol.94, issue.1, pp.33-42, 1989.
DOI : 10.1007/BF00293332

P. Baas, M. Black, and G. Banker, Changes in microtubule polarity orientation during the development of hippocampal neurons in culture, The Journal of Cell Biology, vol.109, issue.6, pp.3085-94, 1989.
DOI : 10.1083/jcb.109.6.3085

P. Baas, J. Deitch, M. Black, and G. Banker, Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite., Proceedings of the National Academy of Sciences, vol.85, issue.21, pp.858335-858344, 1988.
DOI : 10.1073/pnas.85.21.8335

P. Baas, A. Karabay, and L. Qiang, Microtubules cut and run, Trends in Cell Biology, vol.15, issue.10, pp.518-542, 2005.
DOI : 10.1016/j.tcb.2005.08.004

S. Baba, Flexural rigidity and elastic constant of cilia, J Exp Biol, vol.56, issue.2, pp.459-67, 1972.

A. Bannigan, M. Lizotte-waniewski, M. Riley, and T. Baskin, Emerging molecular mechanisms that power and regulate the anastral mitotic spindle of flowering plants, Cell Motility and the Cytoskeleton, vol.378, issue.1, pp.1-11, 2008.
DOI : 10.1002/cm.20247

F. Bartolini and G. Gundersen, Generation of noncentrosomal microtubule arrays, Journal of Cell Science, vol.119, issue.20, pp.4155-63, 2006.
DOI : 10.1242/jcs.03227

T. Baskin, On the alignment of cellulose microfibrils by cortical microtubules: A review and a model, Protoplasma, vol.68, issue.1-4, pp.1-4150, 2001.
DOI : 10.1007/BF01280311

R. Basto, J. Lau, T. Vinogradova, A. Gardiol, C. Woods et al., Flies without Centrioles, Cell, vol.125, issue.7, pp.1375-86, 2006.
DOI : 10.1016/j.cell.2006.05.025

B. Becker and L. Cassimeris, Cytoskeleton: Microtubules Born on the Run, Current Biology, vol.15, issue.14, pp.551-555, 2005.
DOI : 10.1016/j.cub.2005.07.006

P. Bieling, I. Telley, and T. Surrey, A Minimal Midzone Protein Module Controls Formation and Length of Antiparallel Microtubule Overlaps, Cell, vol.142, issue.3, pp.420-452, 2010.
DOI : 10.1016/j.cell.2010.06.033

A. Bicek, E. Tüzel, D. Kroll, and D. Odde, Analysis of Microtubule Curvature, Methods Cell Biol, vol.83, pp.237-68, 2007.
DOI : 10.1016/S0091-679X(07)83010-X

C. Brangwynne, F. Mackintosh, S. Kumar, N. Geisse, J. Talbot et al., Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement, The Journal of Cell Biology, vol.104, issue.5, pp.733-774, 2006.
DOI : 10.1083/jcb.139.2.417

M. Braun, Z. Lansky, G. Fink, F. Ruhnow, S. Diez et al., Adaptive braking by Ase1 prevents overlapping microtubules from sliding completely apart, Nature Cell Biology, vol.13, issue.10, pp.1259-64, 2011.
DOI : 10.1091/mbc.E10-08-0683

M. Braun, D. Drummond, R. Cross, and A. Mcainsh, The kinesin-14 Klp2 organizes microtubules into parallel bundles by an ATP-dependent sorting mechanism, Nature Cell Biology, vol.13, issue.6, pp.724-754, 2009.
DOI : 10.1038/sj.emboj.7601927

I. Brust-mascher and J. Scholey, Microtubule Flux and Sliding in Mitotic Spindles of Drosophila Embryos, Molecular Biology of the Cell, vol.13, issue.11, pp.3967-75, 2002.
DOI : 10.1091/mbc.02-05-0069

E. Bugnard, K. Zaal, and E. Ralston, Reorganization of microtubule nucleation during muscle differentiation, Cell Motility and the Cytoskeleton, vol.15, issue.1, pp.1-13, 2005.
DOI : 10.1002/cm.20042

R. Carazo-salas, C. Antony, and P. Nurse, The Kinesin Klp2 Mediates Polarization of Interphase Microtubules in Fission Yeast, Science, vol.309, issue.5732, pp.297-300, 2005.
DOI : 10.1126/science.1113465

J. Chan, G. Calder, S. Fox, and C. Lloyd, Localization of the Microtubule End Binding Protein EB1 Reveals Alternative Pathways of Spindle Development in Arabidopsis Suspension Cells, THE PLANT CELL ONLINE, vol.17, issue.6, pp.1737-1785, 2005.
DOI : 10.1105/tpc.105.032615

J. Chan, C. Jensen, L. Jensen, M. Bush, and C. Lloyd, The 65-kDa carrot microtubuleassociated protein forms regularly arranged filamentous cross-bridges between microtubules, Proc Natl Acad Sci, issue.26, pp.9614931-9614937, 1999.

J. Chan, A. Sambade, G. Calder, and C. Lloyd, Arabidopsis Cortical Microtubules Are Initiated along, as Well as Branching from, Existing Microtubules, THE PLANT CELL ONLINE, vol.21, issue.8, pp.2298-306, 2009.
DOI : 10.1105/tpc.109.069716

F. Chang, Establishment of a cellular axis in fission yeast, Trends in Genetics, vol.17, issue.5, pp.273-281, 2001.
DOI : 10.1016/S0168-9525(01)02279-X

F. Chang and S. Martin, Shaping Fission Yeast with Microtubules, Cold Spring Harbor Perspectives in Biology, vol.1, issue.1, p.1347, 2009.
DOI : 10.1101/cshperspect.a001347

F. Chang and M. Peter, Yeasts make their mark, Nature Cell Biology, vol.5, issue.4, pp.294-303, 2003.
DOI : 10.1038/ncb0403-294

R. Carazo-salas and P. Nurse, Self-organization of interphase microtubule arrays in fission yeast, Nature Cell Biology, vol.9, issue.10, pp.1102-1109, 2006.
DOI : 10.1038/ncb1312

L. Cassimeris, D. Gard, P. Tran, and H. Erickson, XMAP215 is a long thin molecule that does not increase microtubule stiffness, J Cell Sci, vol.114, pp.3025-3058, 2001.

D. Chrétien, S. Fuller, and E. Karsenti, Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates, The Journal of Cell Biology, vol.129, issue.5, pp.1311-1339, 1995.
DOI : 10.1083/jcb.129.5.1311

D. Chrétien, F. Metoz, F. Verde, E. Karsenti, and R. Wade, Lattice defects in microtubules: protofilament numbers vary within individual microtubules, The Journal of Cell Biology, vol.117, issue.5, pp.1031-1071, 1992.
DOI : 10.1083/jcb.117.5.1031

D. Chrétien and R. Wade, New data on the microtubule surface lattice, Biology of the Cell, vol.71, issue.1-2, pp.161-74, 1991.
DOI : 10.1016/0248-4900(91)90062-R

C. Conde and A. Cáceres, Microtubule assembly, organization and dynamics in axons and dendrites, Nature Reviews Neuroscience, vol.13, issue.5, pp.319-351, 2009.
DOI : 10.1038/421230a

C. Lagomarsino, M. Tanase, C. Vos, J. Emons, A. Mulder et al., Microtubule Organization in Three-Dimensional Confined Geometries: Evaluating the Role of Elasticity Through a Combined In Vitro and Modeling Approach, Biophysical Journal, vol.92, issue.3, pp.1046-57, 2007.
DOI : 10.1529/biophysj.105.076893

C. Cullen and H. Ohkura, Msps protein is localized to acentrosomal poles to ensure bipolarity of Drosophila meiotic spindles, Nature Cell Biology, vol.3, issue.7, pp.637-679, 2001.
DOI : 10.1038/35083025

D. Forges, H. Bouissou, A. Perez, and F. , Interplay between microtubule dynamics and intracellular organization, The International Journal of Biochemistry & Cell Biology, vol.44, issue.2, pp.266-74, 2012.
DOI : 10.1016/j.biocel.2011.11.009

R. Dixit and R. Cyr, Encounters between Dynamic Cortical Microtubules Promote Ordering of the Cortical Array through Angle-Dependent Modifications of Microtubule Behavior, THE PLANT CELL ONLINE, vol.16, issue.12, pp.3274-84, 2004.
DOI : 10.1105/tpc.104.026930

Z. Donhauser, W. Jobs, and E. Binka, Mechanics of Microtubules: Effects of Protofilament Orientation, Biophysical Journal, vol.99, issue.5, pp.1668-75, 2010.
DOI : 10.1016/j.bpj.2010.06.065

R. Dye, S. Fink, R. Williams, and . Jr, Taxol-induced flexibility of microtubules and its reversal by MAP-2 and Tau, J Biol Chem, vol.268, issue.10, pp.6847-50, 1993.

D. Ehrhardt and S. Shaw, MICROTUBULE DYNAMICS AND ORGANIZATION IN THE PLANT CORTICAL ARRAY, Annual Review of Plant Biology, vol.57, issue.1, pp.859-75, 2006.
DOI : 10.1146/annurev.arplant.57.032905.105329

C. Elie-caille, F. Severin, J. Helenius, J. Howard, D. Muller et al., Straight GDP-Tubulin Protofilaments Form in the Presence of Taxol, Current Biology, vol.17, issue.20, pp.1765-70, 2007.
DOI : 10.1016/j.cub.2007.08.063

URL : https://hal.archives-ouvertes.fr/hal-00188201

S. A. Endow, R. Chandra, K. D. Yamamoto, A. H. , and S. E. , Mutants of the drosophila ncd microtubule motor protein cause centrosomal and spindle pole defects in mitosis, Journal of Cell Science, vol.107, pp.859-867, 1994.

H. Erickson, MICROTUBULE SURFACE LATTICE AND SUBUNIT STRUCTURE AND OBSERVATIONS ON REASSEMBLY, The Journal of Cell Biology, vol.60, issue.1, pp.153-67, 1974.
DOI : 10.1083/jcb.60.1.153

L. Evans, T. Mitchison, and M. Kirschner, Influence of the centrosome on the structure of nucleated microtubules, The Journal of Cell Biology, vol.100, issue.4, pp.1185-91, 1985.
DOI : 10.1083/jcb.100.4.1185

V. Fache, J. Gaillard, D. Van-damme, D. Geelen, E. Neumann et al., Arabidopsis Kinetochore Fiber-Associated MAP65-4 Cross-Links Microtubules and Promotes Microtubule Bundle Elongation, THE PLANT CELL ONLINE, vol.22, issue.11, pp.3804-3819, 2010.
DOI : 10.1105/tpc.110.080606

URL : https://hal.archives-ouvertes.fr/hal-00587808

J. Fan, A. Griffiths, A. Lockhart, R. Cross, and L. Amos, Microtubule Minus Ends can be Labelled with a Phage Display Antibody Specific to Alpha-Tubulin, Journal of Molecular Biology, vol.259, issue.3, pp.325-355, 1996.
DOI : 10.1006/jmbi.1996.0322

H. Felgner, R. Frank, J. Biernat, E. Mandelkow, E. Mandelkow et al., Domains of Neuronal Microtubule-associated Proteins and Flexural Rigidity of Microtubules, The Journal of Cell Biology, vol.123, issue.5, pp.1067-75, 1997.
DOI : 10.1083/jcb.112.6.1177

H. Felgner, R. Frank, and M. Schliwa, Flexural rigidity of microtubules measured with the use of optical tweezers, J Cell Sci, vol.109, issue.2, pp.509-525, 1996.

G. Fink, L. Hajdo, K. Skowronek, C. Reuther, A. Kasprzak et al., The mitotic kinesin-14 Ncd drives directional microtubule???microtubule sliding, Nature Cell Biology, vol.14, issue.6, pp.717-740, 2009.
DOI : 10.1093/emboj/20.18.5101

S. Gadde and R. Heald, Mechanisms and Molecules of the Mitotic Spindle, Current Biology, vol.14, issue.18, pp.797-805, 2004.
DOI : 10.1016/j.cub.2004.09.021

J. Gaillard, E. Neumann, D. Van-damme, V. Stoppin-mellet, C. Ebel et al., Two Microtubule-associated Proteins of Arabidopsis MAP65s Promote Antiparallel Microtubule Bundling, Molecular Biology of the Cell, vol.19, issue.10, pp.4534-4578, 2008.
DOI : 10.1091/mbc.E08-04-0341

URL : https://hal.archives-ouvertes.fr/hal-00360506

J. Gardiner, J. Harper, N. Weerakoon, D. Collings, S. Ritchie et al., A 90-kD Phospholipase D from Tobacco Binds to Microtubules and the Plasma Membrane, THE PLANT CELL ONLINE, vol.13, issue.9, pp.2143-58, 2001.
DOI : 10.1105/tpc.13.9.2143

J. Gardiner, N. Taylor, and S. Turner, Control of Cellulose Synthase Complex Localization in Developing Xylem, THE PLANT CELL ONLINE, vol.15, issue.8, pp.1740-1748, 2003.
DOI : 10.1105/tpc.012815

B. Gigant, P. Curmi, C. Martin-barbey, E. Charbaut, S. Lachkar et al., The 4 ?? X-Ray Structure of a Tubulin:Stathmin-like Domain Complex, Cell, vol.102, issue.6, pp.809-825, 2000.
DOI : 10.1016/S0092-8674(00)00069-6

F. Gittes, M. B. Nettleton, J. Howard, and J. , Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape, The Journal of Cell Biology, vol.120, issue.4, pp.923-957, 1993.
DOI : 10.1083/jcb.120.4.923

K. Giunta, J. Jang, E. Manheim, G. Subramanian, and K. Mckim, Subito encodes a kinesin-like protein required for meiotic spindle pole formation in Drosophila melanogaster, Genetics, vol.160, issue.4, pp.1489-501, 2002.

G. Goshima and J. M. Scholey, Control of Mitotic Spindle Length, Annual Review of Cell and Developmental Biology, vol.26, issue.1, pp.21-57, 2010.
DOI : 10.1146/annurev-cellbio-100109-104006

G. Goshima, F. Nédélec, and R. Vale, Mechanisms for focusing mitotic spindle poles by minus end???directed motor proteins, The Journal of Cell Biology, vol.8, issue.2, pp.229-269, 2005.
DOI : 10.1016/j.jmb.2003.08.051

S. Goodwin and R. Vale, Patronin Regulates the Microtubule Network by Protecting Microtubule Minus Ends, Cell, vol.143, issue.2, pp.263-74, 2010.
DOI : 10.1016/j.cell.2010.09.022

I. Grigoriev, G. Borisy, and I. Vorobjev, Regulation of microtubule dynamics in 3T3 fibroblasts by Rho family GTPases, Cell Motility and the Cytoskeleton, vol.169, issue.1, pp.29-40, 2006.
DOI : 10.1002/cm.20107

U. Gruneberg, R. Neef, X. Li, E. Chan, R. Chalamalasetty et al., KIF14 and citron kinase act together to promote efficient cytokinesis, The Journal of Cell Biology, vol.110, issue.3, pp.363-72, 2006.
DOI : 10.1091/mbc.E05-02-0167

G. Gundersen, Evolutionary conservation of microtubule-capture mechanisms, Nature Reviews Molecular Cell Biology, vol.145, issue.4, pp.296-304, 2002.
DOI : 10.1038/nrm777

G. Gundersen, E. Gomes, and Y. Wen, Cortical control of microtubule stability and polarization, Current Opinion in Cell Biology, vol.16, issue.1, pp.106-118, 2004.
DOI : 10.1016/j.ceb.2003.11.010

T. Hamada, Microtubule-associated proteins in higher plants, Journal of Plant Research, vol.17, issue.5, pp.79-98, 2007.
DOI : 10.1007/s10265-006-0057-9

T. Hawkins, M. Mirigian, S. Yasar, M. Ross, and J. , Mechanics of microtubules, Journal of Biomechanics, vol.43, issue.1, pp.23-30, 2010.
DOI : 10.1016/j.jbiomech.2009.09.005

J. Hayles and P. Nurse, A journey into space, Nature Reviews Molecular Cell Biology, vol.2, issue.9, pp.647-56, 2001.
DOI : 10.1038/35089520

Y. He, F. Francis, K. Myers, Y. W. Black, M. Baas et al., Role of cytoplasmic dynein in the axonal transport of microtubules and neurofilaments, The Journal of Cell Biology, vol.12, issue.5, pp.697-703, 2005.
DOI : 10.1083/jcb.200301026

C. Hentrich and T. Surrey, Microtubule organization by the antagonistic mitotic motors kinesin-5 and kinesin-14, The Journal of Cell Biology, vol.4, issue.3, pp.465-80, 2010.
DOI : 10.1091/mbc.E05-02-0167

C. Ho, Y. Lee, L. Kiyama, S. Dinesh-kumar, and B. Liu, Arabidopsis Microtubule-Associated Protein MAP65-3 Cross-Links Antiparallel Microtubules toward Their Plus Ends in the Phragmoplast via Its Distinct C-Terminal Microtubule Binding Domain, The Plant Cell, vol.24, issue.5, pp.2071-85, 2012.
DOI : 10.1105/tpc.111.092569

J. Höög, C. Schwartz, A. Noon, O. Toole, E. Mastronarde et al., Organization of Interphase Microtubules in Fission Yeast Analyzed by Electron Tomography, Developmental Cell, vol.12, issue.3, pp.349-61, 2007.
DOI : 10.1016/j.devcel.2007.01.020

C. Hoogenraad and F. Bradke, Control of neuronal polarity and plasticity ??? a renaissance for microtubules?, Trends in Cell Biology, vol.19, issue.12, pp.669-76, 2009.
DOI : 10.1016/j.tcb.2009.08.006

T. Horio and H. Hotani, Visualization of the dynamic instability of individual microtubules by dark-field microscopy, Nature, vol.82, issue.6070, pp.605-612, 1986.
DOI : 10.1038/321605a0

M. Hoyt, L. He, L. Totis, and W. Saunders, Loss of function of Saccharomyces cerevisiae kinesin-related CIN8 and KIP1 is suppressed by KAR3 motor domain mutations, Genetics, vol.135, issue.1, pp.35-44, 1993.

P. Hussey, T. Hawkins, H. Igarashi, D. Kaloriti, and A. Smertenko, The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP215-like protein, MOR1, Plant Molecular Biology, vol.50, issue.6, pp.915-939, 2002.
DOI : 10.1023/A:1021236307508

S. Ishijima and Y. Hiramoto, Flexural Rigidity of Echinoderm Sperm Flagella., Cell Structure and Function, vol.19, issue.6, pp.349-62, 1994.
DOI : 10.1247/csf.19.349

M. Janson and M. Dogterom, A Bending Mode Analysis for Growing Microtubules: Evidence for a Velocity-Dependent Rigidity, Biophysical Journal, vol.87, issue.4, pp.2723-2759, 2004.
DOI : 10.1529/biophysj.103.038877

M. Janson, R. Loughlin, I. Loïodice, C. Fu, D. Brunner et al., Crosslinkers and Motors Organize Dynamic Microtubules to Form Stable Bipolar Arrays in Fission Yeast, Cell, vol.128, issue.2, pp.357-68, 2007.
DOI : 10.1016/j.cell.2006.12.030

M. Janson, T. Setty, A. Paoletti, and P. Tran, Efficient formation of bipolar microtubule bundles requires microtubule-bound ??-tubulin complexes, The Journal of Cell Biology, vol.41, issue.2, pp.297-308, 2005.
DOI : 10.1016/S1534-5807(04)00096-6

J. Jaworski, L. Kapitein, S. Gouveia, B. Dortland, P. Wulf et al., Dynamic Microtubules Regulate Dendritic Spine Morphology and Synaptic Plasticity, Neuron, vol.61, issue.1, pp.6185-100, 2009.
DOI : 10.1016/j.neuron.2008.11.013

C. Jiang and S. Sonobe, Identification and preliminary characterization of a 65 kDa higherplant microtubule-associated protein, J Cell Sci, vol.105, pp.891-901, 1993.

D. Job, O. Valiron, and B. Oakley, Microtubule nucleation, Current Opinion in Cell Biology, vol.15, issue.1, pp.111-118, 2003.
DOI : 10.1016/S0955-0674(02)00003-0

M. Juanes, R. Ten-hoopen, and M. Segal, Ase1p phosphorylation by cyclin-dependent kinase promotes correct spindle assembly in S. cerevisiae. Cell Cycle, pp.1988-97, 2011.

L. Kapitein and C. Hoogenraad, Which way to go? Cytoskeletal organization and polarized transport in neurons, Molecular and Cellular Neuroscience, vol.46, issue.1, pp.9-20, 2010.
DOI : 10.1016/j.mcn.2010.08.015

L. Kapitein, M. Janson, S. Van-den-wildenberg, C. Hoogenraad, C. Schmidt et al., Microtubule-Driven Multimerization Recruits ase1p onto Overlapping Microtubules, Current Biology, vol.18, issue.21, pp.1713-1720, 2008.
DOI : 10.1016/j.cub.2008.09.046

L. Kapitein, E. Peterman, B. Kwok, J. Kim, T. Kapoor et al., The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks, Nature, vol.14, issue.7038, pp.114-122, 2005.
DOI : 10.1021/jp049805+

S. Kar, F. J. Smith, M. Goedert, M. Amos, and L. , Repeat motifs of tau bind to the insides of microtubules in the absence of taxol, The EMBO Journal, vol.22, issue.1, pp.70-77, 2003.
DOI : 10.1093/emboj/cdg001

K. Kawaguchi and A. Yamaguchi, Temperature dependence rigidity of non-taxol stabilized single microtubules, Biochemical and Biophysical Research Communications, vol.402, issue.1, pp.66-75, 2010.
DOI : 10.1016/j.bbrc.2010.09.112

E. Kawamura and G. Wasteneys, MOR1, the Arabidopsis thaliana homologue of Xenopus MAP215, promotes rapid growth and shrinkage, and suppresses the pausing of microtubules in vivo, Journal of Cell Science, vol.121, issue.24, pp.4114-4137, 2008.
DOI : 10.1242/jcs.039065

T. Keating, J. Peloquin, V. Rodionov, D. Momcilovic, and G. Borisy, Microtubule release from the centrosome, Proceedings of the National Academy of Sciences, vol.94, issue.10, pp.5078-83, 1997.
DOI : 10.1073/pnas.94.10.5078

P. Keller, F. Pampaloni, G. Lattanzi, and E. Stelzer, Three-Dimensional Microtubule Behavior in Xenopus Egg Extracts Reveals Four Dynamic States and State-Dependent Elastic Properties, Biophysical Journal, vol.95, issue.3, pp.1474-86, 2008.
DOI : 10.1529/biophysj.107.128223

T. Keating and G. Borisy, Centrosomal and non-centrosomal microtubules, Biology of the Cell, vol.91, issue.4-5, pp.321-330, 1999.
DOI : 10.1111/j.1768-322X.1999.tb01090.x

A. Khodjakov, R. Cole, B. Oakley, and C. Rieder, Centrosome-independent mitotic spindle formation in vertebrates, Current Biology, vol.10, issue.2, pp.59-67, 2000.
DOI : 10.1016/S0960-9822(99)00276-6

M. Kikumoto, M. Kurachi, V. Tosa, and H. Tashiro, Flexural Rigidity of Individual Microtubules Measured by a Buckling Force with Optical Traps, Biophysical Journal, vol.90, issue.5, pp.1687-96, 2006.
DOI : 10.1529/biophysj.104.055483

M. Kirschner, L. Honig, and R. Williams, Quantitative electron microscopy of microtubule assembly in vitro, Journal of Molecular Biology, vol.99, issue.2, pp.263-76, 1975.
DOI : 10.1016/S0022-2836(75)80144-6

M. Knop and E. Schiebel, Spc98p and Spc97p of the yeast gamma -tubulin complex mediate binding to the spindle pole body via their interaction with Spc110p, The EMBO Journal, vol.16, issue.23, pp.6985-95, 1997.
DOI : 10.1093/emboj/16.23.6985

J. Kollman, A. Merdes, L. Mourey, and D. Agard, Microtubule nucleation by ??-tubulin complexes, Nature Reviews Molecular Cell Biology, vol.119, issue.11, pp.709-730, 2011.
DOI : 10.1038/nrm3209

M. Kurachi, M. Hoshi, and H. Tashiro, Buckling of a single microtubule by optical trapping forces: Direct measurement of microtubule rigidity, Cell Motility and the Cytoskeleton, vol.269, issue.3, pp.221-229, 1995.
DOI : 10.1002/cm.970300306

Y. Kurasawa, W. Earnshaw, Y. Mochizuki, N. Dohmae, and K. Todokoro, Essential roles of KIF4 and its binding partner PRC1 in organized central spindle midzone formation, The EMBO Journal, vol.10, issue.16, 2004.
DOI : 10.1083/jcb.129.3.709

L. Landau, E. Lifshitz, A. Kosevich, and L. Pitaevskii, Theory of elasticity, 1986.

T. Lechler and E. Fuchs, Desmoplakin: an unexpected regulator of microtubule organization in the epidermis, The Journal of Cell Biology, vol.115, issue.2, pp.147-54, 2007.
DOI : 10.1091/mbc.E05-08-0810

M. Ledbetter and K. Porter, Morphology of Microtubules of Plant Cell, Science, vol.144, issue.3620, pp.872-876, 1964.
DOI : 10.1126/science.144.3620.872

H. Li, X. Zeng, Z. Liu, Q. Meng, M. Yuan et al., Arabidopsis microtubule-associated protein AtMAP65-2 acts as a microtubule stabilizer, Plant Molecular Biology, vol.91, issue.Suppl, pp.313-337, 2009.
DOI : 10.1007/s11103-008-9426-1

J. Lippincott-schwartz and N. Cole, Roles for microtubules and kinesin in membrane traffic between the endoplasmic reticulum and the Golgi complex, Biochemical Society Transactions, vol.23, issue.3, pp.544-552, 1995.
DOI : 10.1042/bst0230544

T. Liverpool, Active gels: where polymer physics meets cytoskeletal dynamics, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.95, issue.25, pp.3335-55, 1849.
DOI : 10.1103/PhysRevLett.95.258103

B. Liu, J. Marc, H. Joshi, and B. Palevitz, A gamma-tubulin-related protein associated with the microtubule arrays of higher plants in a cell cycle-dependent manner, J Cell Sci, vol.104, pp.1217-1245, 1993.

C. Lloyd and J. Chan, Plant cell biology: Microtubules and the shape of plants to come, Nature Reviews Molecular Cell Biology, vol.5, issue.1, pp.13-22, 2005.
DOI : 10.1038/nrm1277

J. Lucas, S. Courtney, M. Hassfurder, S. Dhingra, A. Bryant et al., Hypocotyls, The Plant Cell, vol.23, issue.5, pp.1889-903, 2011.
DOI : 10.1105/tpc.111.084970

E. Mandelkow, E. Mandelkow, and R. Milligan, Microtubule dynamics and microtubule caps: a time-resolved cryo- electron microscopy study, The Journal of Cell Biology, vol.114, issue.5, pp.977-91, 1991.
DOI : 10.1083/jcb.114.5.977

G. Mao, J. Chan, G. Calder, J. Doonan, and C. Lloyd, Modulated targeting of GFP-AtMAP65-1 to central spindle microtubules during division, The Plant Journal, vol.102, issue.4, pp.469-78, 2005.
DOI : 10.1111/j.1365-313X.2005.02464.x

T. Mao, J. L. Li, H. Liu, B. Yuan, and M. , Two Microtubule-Associated Proteins of the Arabidopsis MAP65 Family Function Differently on Microtubules, PLANT PHYSIOLOGY, vol.138, issue.2, pp.654-62, 2005.
DOI : 10.1104/pp.104.052456

J. Marc, D. Sharkey, N. Durso, M. Zhang, and R. Cyr, Isolation of a 90-kD Microtubule-Associated Protein from Tobacco Membranes, THE PLANT CELL ONLINE, vol.8, issue.11, pp.2127-2138, 1996.
DOI : 10.1105/tpc.8.11.2127

R. Margolis and L. Wilson, Microtubule treadmills???possible molecular machinery, Nature, vol.75, issue.5835, pp.705-716, 1981.
DOI : 10.1038/293705a0

R. Margolis and L. Wilson, Microtubule treadmilling: what goes around comes around, BioEssays, vol.20, issue.10, pp.830-836, 1998.
DOI : 10.1002/(SICI)1521-1878(199810)20:10<830::AID-BIES8>3.0.CO;2-N

S. Markus, K. Kalutkiewicz, and W. Lee, Astral microtubule asymmetry provides directional cues for spindle positioning in budding yeast, Experimental Cell Research, vol.318, issue.12, pp.3181400-3181406, 2012.
DOI : 10.1016/j.yexcr.2012.04.006

J. Matuliene, R. Essner, J. Ryu, Y. Hamaguchi, P. Baas et al., Function of a minus-end-directed kinesin-like motor protein in mammalian cells, J Cell Sci, vol.112, pp.4041-50, 1999.

H. Matthies, H. Mcdonald, L. Goldstein, and W. Theurkauf, Anastral meiotic spindle morphogenesis: role of the non-claret disjunctional kinesin-like protein, The Journal of Cell Biology, vol.134, issue.2, pp.455-64, 1996.
DOI : 10.1083/jcb.134.2.455

K. Mckim and R. Hawley, Chromosomal Control of Meiotic Cell Division, Science, vol.270, issue.5242, pp.1595-601, 1995.
DOI : 10.1126/science.270.5242.1595

T. Meads and T. Schroer, Polarity and nucleation of microtubules in polarized epithelial cells, Cell Motility and the Cytoskeleton, vol.65, issue.4, pp.273-88, 1995.
DOI : 10.1002/cm.970320404

B. Mickey and J. Howard, Rigidity of microtubules is increased by stabilizing agents, The Journal of Cell Biology, vol.130, issue.4, pp.909-926, 1995.
DOI : 10.1083/jcb.130.4.909

Y. Mimori-kiyosue, Shaping microtubules into diverse patterns: Molecular connections for setting up both ends, Cytoskeleton, vol.42, issue.Pt 22, pp.603-621, 2011.
DOI : 10.1002/cm.20540

Y. Mineyuki, The Preprophase Band of Microtubules: Its Function as a Cytokinetic Apparatus in Higher Plants, Int Rev of Cyto, vol.187, pp.1-49, 1999.
DOI : 10.1016/S0074-7696(08)62415-8

T. Mitchison, Localization of an exchangeable GTP binding site at the plus end of microtubules, Science, vol.261, issue.5124, pp.1044-1051, 1993.
DOI : 10.1126/science.8102497

T. Mitchison and M. Kirschner, Dynamic instability of microtubule growth, Nature, vol.61, issue.5991, pp.237-279, 1984.
DOI : 10.1038/312237a0

T. Mitchison and M. Kirschner, Properties of the kinetochore in vitro. II. Microtubule capture and ATP- dependent translocation, The Journal of Cell Biology, vol.101, issue.3, pp.766-77, 1995.
DOI : 10.1083/jcb.101.3.766

A. Mitra and D. Sept, Taxol Allosterically Alters the Dynamics of the Tubulin Dimer and Increases the Flexibility of Microtubules, Biophysical Journal, vol.95, issue.7, pp.3252-3260, 2008.
DOI : 10.1529/biophysj.108.133884

C. Mollinari, J. Kleman, W. Jiang, G. Schoehn, T. Hunter et al., PRC1 is a microtubule binding and bundling protein essential to maintain the mitotic spindle midzone, The Journal of Cell Biology, vol.116, issue.7, pp.1175-86, 2002.
DOI : 10.1016/S0960-9822(01)00307-4

V. Mountain, C. Simerly, L. Howard, A. Ando, G. Schatten et al., The Kinesin-Related Protein, Hset, Opposes the Activity of Eg5 and Cross-Links Microtubules in the Mammalian Mitotic Spindle, The Journal of Cell Biology, vol.55, issue.2, pp.351-66, 1999.
DOI : 10.1083/jcb.129.5.1287

M. Nakamura, D. Ehrhardt, and T. Hashimoto, Microtubule and katanin-dependent dynamics of microtubule nucleation complexes in the acentrosomal Arabidopsis cortical array, Nature Cell Biology, vol.50, issue.11, pp.1064-70, 2010.
DOI : 10.1038/ncb2110

S. Narasimhulu and A. Reddy, Characterization of Microtubule Binding Domains in the Arabidopsis Kinesin-like Calmodulin Binding Protein, THE PLANT CELL ONLINE, vol.10, issue.6, pp.957-65, 1998.
DOI : 10.1105/tpc.10.6.957

R. Nishihama and Y. Machida, Expansion of the phragmoplast during plant cytokinesis: a MAPK pathway may MAP it out, Current Opinion in Plant Biology, vol.4, issue.6, pp.507-519, 2001.
DOI : 10.1016/S1369-5266(00)00208-9

E. Nogales, Structural Insights into Microtubule Function, Annual Review of Biophysics and Biomolecular Structure, vol.30, issue.1, pp.397-420, 2001.
DOI : 10.1146/annurev.biophys.30.1.397

E. Nogales, S. Wolf, and K. Downing, Structure of the alpha beta tubulin dimer by electron crystallography, Nature, vol.391, issue.6663, pp.199-203, 1998.
DOI : 10.1038/34465

E. Nogales, S. Wolf, I. Khan, R. Ludueña, and K. Downing, Structure of tubulin at 6.5 ?? and location of the taxol-binding site, Nature, vol.375, issue.6530, pp.424-431, 1995.
DOI : 10.1038/375424a0

E. Nogales, H. Wang, and H. Niederstrasser, Tubulin rings: which way do they curve?, Current Opinion in Structural Biology, vol.13, issue.2, pp.256-61, 2003.
DOI : 10.1016/S0959-440X(03)00029-0

K. Oegema, C. Wiese, O. Martin, R. Milligan, A. Iwamatsu et al., ??-tubulin Complexes that Differ in Their Ability to Nucleate Microtubules, The Journal of Cell Biology, vol.259, issue.4, pp.721-754, 1999.
DOI : 10.1038/378578a0

D. Odde, L. Ma, A. Briggs, A. Demarco, and M. Kirschner, Microtubule bending and breaking in living fibroblast cells, J Cell Sci, vol.112, pp.3283-3291, 1999.

F. Pampaloni, G. Lattanzi, A. Jonás, T. Surrey, E. Frey et al., Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length, Proceedings of the National Academy of Sciences, vol.103, issue.27, pp.10248-53, 2006.
DOI : 10.1073/pnas.0603931103

M. Pastuglia and D. Bouchez, Molecular encounters at microtubule ends in the plant cell cortex, Current Opinion in Plant Biology, vol.10, issue.6, pp.557-63, 2007.
DOI : 10.1016/j.pbi.2007.08.001

D. Pellman, M. Bagget, Y. Tu, G. Fink, and H. Tu, Two microtubule-associated proteins required for anaphase spindle movement in Saccharomyces cerevisiae [published erratum appears in J Cell Biol 1995 Oct;131(2):561], The Journal of Cell Biology, vol.130, issue.6, pp.1373-85, 1995.
DOI : 10.1083/jcb.130.6.1373

R. Pepperkok, M. Bré, J. Davoust, and T. Kreis, Microtubules are stabilized in confluent epithelial cells but not in fibroblasts, The Journal of Cell Biology, vol.111, issue.6, pp.3003-3015, 1990.
DOI : 10.1083/jcb.111.6.3003

E. Peterman and J. Scholey, Mitotic Microtubule Crosslinkers: Insights from Mechanistic Studies, Current Biology, vol.19, issue.23, pp.1089-94, 2009.
DOI : 10.1016/j.cub.2009.10.047

J. Pfaendtner, D. L. Cruz, E. Voth, and G. , Actin filament remodeling by actin depolymerization factor/cofilin, Proceedings of the National Academy of Sciences, vol.107, issue.16, pp.7299-304, 2010.
DOI : 10.1073/pnas.0911675107

V. Pizon, F. Gerbal, C. Diaz, and E. Karsenti, Microtubule-dependent transport and organization of sarcomeric myosin during skeletal muscle differentiation, The EMBO Journal, vol.8, issue.21, pp.3781-92, 2005.
DOI : 10.1083/jcb.39.3.544

URL : https://hal.archives-ouvertes.fr/hal-00016383

A. Popov, F. Severin, and E. Karsenti, XMAP215 Is Required for the Microtubule-Nucleating Activity of Centrosomes, Current Biology, vol.12, issue.15, pp.1326-1356, 2002.
DOI : 10.1016/S0960-9822(02)01033-3

R. Ravelli, B. Gigant, P. Curmi, I. Jourdain, S. Lachkar et al., Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain, Nature, vol.428, issue.6979, pp.428198-202, 2004.
DOI : 10.1038/nature02393

A. Reilein, S. Yamada, and W. Nelson, Self-organization of an acentrosomal microtubule network at the basal cortex of polarized epithelial cells, The Journal of Cell Biology, vol.110, issue.5, pp.845-55, 2005.
DOI : 10.1091/mbc.11.7.2471

A. Reymann, J. Martiel, T. Cambier, L. Blanchoin, R. Boujemaa-paterski et al., Nucleation geometry governs ordered actin networks structures, Nature Materials, vol.63, issue.10, pp.827-859, 2010.
DOI : 10.1038/nmat2855

URL : https://hal.archives-ouvertes.fr/hal-00525593

E. Rodriguez-boulan, G. Kreitzer, and A. Müsch, Organization of vesicular trafficking in epithelia, Nature Reviews Molecular Cell Biology, vol.109, issue.3, pp.233-280, 2005.
DOI : 10.1038/nrm1593

M. Rolls, D. Satoh, P. Clyne, A. Henner, T. Uemura et al., Polarity and intracellular compartmentalization of Drosophila neurons, Neural Development, vol.2, issue.1, p.7, 2007.
DOI : 10.1186/1749-8104-2-7

H. Roque, J. Ward, L. Murrells, D. Brunner, and C. Antony, The Fission Yeast XMAP215 Homolog Dis1p Is Involved in Microtubule Bundle Organization, PLoS ONE, vol.29, issue.Pt 12, p.14201, 2010.
DOI : 10.1371/journal.pone.0014201.s011

A. Samsonov, J. Yu, M. Rasenick, and S. Popov, Tau interaction with microtubules in vivo, Journal of Cell Science, vol.117, issue.25, pp.6129-6170, 2004.
DOI : 10.1242/jcs.01531

I. Sandoval and J. Vandekerckhove, A comparative study of the in vitro polymerization of tubulin in the presence of the microtubule-associated proteins MAP2 and tau, J Biol Chem, vol.256, issue.16, pp.8795-800, 1981.

M. Sasabe and Y. Machida, MAP65: a bridge linking a MAP kinase to microtubule turnover, Current Opinion in Plant Biology, vol.9, issue.6, pp.563-70, 2006.
DOI : 10.1016/j.pbi.2006.09.010

E. Schulze and M. Kirschner, New features of microtubule behaviour observed in vivo, Nature, vol.334, issue.6180, pp.356-365, 1988.
DOI : 10.1038/334356a0

S. Schuyler and D. Pellman, Search, capture and signal: games microtubules and centrosomes play, J Cell Sci, vol.114, pp.247-55, 2001.

S. Schuyler, J. Liu, and D. Pellman, The molecular function of Ase1p, The Journal of Cell Biology, vol.160, issue.4, pp.517-545, 2003.
DOI : 10.1038/bjc.1997.483

D. Sharp, K. Yu, J. Sisson, W. Sullivan, and J. Scholey, Antagonistic microtubulesliding motors position mitotic centrosomes in Drosophila early embryos, Nat Cell Biol, vol.1, issue.1, pp.51-55, 1999.

S. Shaw, R. Kamyar, and D. Ehrhardt, Sustained Microtubule Treadmilling in Arabidopsis Cortical Arrays, Science, vol.300, issue.5626, pp.1715-1723, 2003.
DOI : 10.1126/science.1083529

K. Skowronek, E. Kocik, and A. Kasprzak, Subunits interactions in kinesin motors, European Journal of Cell Biology, vol.86, issue.9, pp.559-68, 2007.
DOI : 10.1016/j.ejcb.2007.05.008

A. Smertenko, H. Chang, V. Wagner, D. Kaloriti, S. Fenyk et al., The Arabidopsis Microtubule-Associated Protein AtMAP65-1: Molecular Analysis of Its Microtubule Bundling Activity, THE PLANT CELL ONLINE, vol.16, issue.8, pp.2035-2082, 2004.
DOI : 10.1105/tpc.104.023937

A. Smertenko, D. Kaloriti, H. Chang, J. Fiserova, Z. Opatrny et al., The C-Terminal Variable Region Specifies the Dynamic Properties of Arabidopsis Microtubule-Associated Protein MAP65 Isotypes, THE PLANT CELL ONLINE, vol.20, issue.12, pp.3346-58, 2008.
DOI : 10.1105/tpc.108.063362

R. Subramanian, E. Wilson-kubalek, C. Arthur, M. Bick, E. Campbell et al., Insights into Antiparallel Microtubule Crosslinking by PRC1, a Conserved Nonmotor Microtubule Binding Protein, Cell, vol.142, issue.3, pp.433-476, 2010.
DOI : 10.1016/j.cell.2010.07.012

T. Stepanova, J. Slemmer, C. Hoogenraad, G. Lansbergen, B. Dortland et al., Visualization of microtubule growth in cultured neurons via the use of EB3-GFP (end-binding protein 3-green fluorescent protein), J Neurosci, vol.23, issue.7, pp.2655-64, 2003.

M. Stiess, N. Maghelli, L. Kapitein, S. Gomis-rüth, M. Wilsch-bräuninger et al., Axon Extension Occurs Independently of Centrosomal Microtubule Nucleation, Science, vol.327, issue.5966, pp.704-711, 2010.
DOI : 10.1126/science.1182179

M. Stone, F. Roegiers, and M. Rolls, Microtubules Have Opposite Orientation in Axons and Dendrites of Drosophila Neurons, Molecular Biology of the Cell, vol.19, issue.10, pp.4122-4131, 2008.
DOI : 10.1091/mbc.E07-10-1079

V. Stoppin, M. Vantard, A. Schmit, and A. Lambert, Isolated Plant Nuclei Nucleate Microtubule Assembly: The Nuclear Surface in Higher Plants Has Centrosome-like Activity, THE PLANT CELL ONLINE, vol.6, issue.8, pp.1099-1106, 1994.
DOI : 10.1105/tpc.6.8.1099

W. Tao, R. Walter, and M. Berns, Laser-transected microtubules exhibit individuality of regrowth, however most free new ends of the microtubules are stable, The Journal of Cell Biology, vol.107, issue.3, pp.1025-1060, 1988.
DOI : 10.1083/jcb.107.3.1025

A. Tassin, B. Maro, and M. Bornens, Fate of microtubule-organizing centers during myogenesis in vitro, The Journal of Cell Biology, vol.100, issue.1, pp.35-46, 1985.
DOI : 10.1083/jcb.100.1.35

C. Troxell, M. Sweezy, R. West, K. Reed, B. Carson et al., pkl1+and klp2+: Two Kinesins of the Kar3 Subfamily in Fission Yeast Perform Different Functions in Both Mitosis and Meiosis, Molecular Biology of the Cell, vol.12, issue.11, pp.3476-88, 2001.
DOI : 10.1091/mbc.12.11.3476

A. Tulin, S. Mcclerklin, Y. Huang, and R. Dixit, Single-molecule analysis of the microtubule cross-linking protein MAP65-1 reveals a molecular mechanism for contact-angledependent microtubule bundling, Biophys J. Feb, vol.22102, issue.4, pp.802-811, 2012.

R. Vale, C. Coppin, F. Malik, F. Kull, and R. Milligan, Tubulin GTP hydrolysis influences the structure, mechanical properties, and kinesin-driven transport of microtubules, J Biol Chem, vol.269, issue.38, pp.23769-75, 1994.

O. Valiron, I. Arnal, N. Caudron, and J. D. , GDP-Tubulin Incorporation into Growing Microtubules Modulates Polymer Stability, Journal of Biological Chemistry, vol.285, issue.23, pp.17507-17520, 2010.
DOI : 10.1074/jbc.M109.099515

URL : https://hal.archives-ouvertes.fr/hal-00488194

D. Van-damme, K. Van-poucke, E. Boutant, C. Ritzenthaler, D. Inzé et al., In Vivo Dynamics and Differential Microtubule-Binding Activities of MAP65 Proteins, PLANT PHYSIOLOGY, vol.136, issue.4, pp.3956-67, 2004.
DOI : 10.1104/pp.104.051623

V. Vanburen, L. Cassimeris, and D. Odde, Mechanochemical Model of Microtubule Structure and Self-Assembly Kinetics, Biophysical Journal, vol.89, issue.5, pp.2911-2937, 2005.
DOI : 10.1529/biophysj.105.060913

P. Venier, A. Maggs, M. Carlier, and D. Pantaloni, Analysis of microtubule rigidity using hydrodynamic flow and thermal fluctuations, J Biol Chem, vol.269, issue.18, pp.13353-60, 1994.

K. Verbrugghe and J. White, SPD-1 Is Required for the Formation of the Spindle Midzone but Is Not Essential for the Completion of Cytokinesis in C. elegans Embryos, Current Biology, vol.14, issue.19, pp.1755-60, 2004.
DOI : 10.1016/j.cub.2004.09.055

. Feo, the Drosophila homolog of PRC1, is required for central-spindle formation and cytokinesis, Curr Biol, vol.14, issue.17, pp.1569-75

D. Vinh, J. Kern, W. Hancock, J. Howard, and T. Davis, Reconstitution and Characterization of Budding Yeast gamma -Tubulin Complex, Molecular Biology of the Cell, vol.13, issue.4, pp.1144-57, 2002.
DOI : 10.1091/mbc.02-01-0607

R. Wade and A. Hyman, Microtubule structure and dynamics, Current Opinion in Cell Biology, vol.9, issue.1, pp.12-19, 1997.
DOI : 10.1016/S0955-0674(97)80146-9

N. Wakida, E. Botvinick, J. Lin, and M. Berns, An Intact Centrosome Is Required for the Maintenance of Polarization during Directional Cell Migration, PLoS ONE, vol.68, issue.2, p.15462, 2010.
DOI : 10.1371/journal.pone.0015462.s006

R. Walker, S. Inoué, and E. Salmon, Asymmetric behavior of severed microtubule ends after ultraviolet- microbeam irradiation of individual microtubules in vitro, The Journal of Cell Biology, vol.108, issue.3, pp.931-938, 1989.
DOI : 10.1083/jcb.108.3.931

R. Walker, O. Brien, E. Pryer, N. Soboeiro, M. Voter et al., Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies, The Journal of Cell Biology, vol.107, issue.4, pp.1437-1485, 1988.
DOI : 10.1083/jcb.107.4.1437

C. Walczak, S. Verma, and T. Mitchison, Egg Extracts, The Journal of Cell Biology, vol.102, issue.4, pp.859-70, 1997.
DOI : 10.1038/347780a0

L. Wang and A. Brown, Rapid Movement of Microtubules in Axons, Current Biology, vol.12, issue.17, pp.1496-1501, 2002.
DOI : 10.1016/S0960-9822(02)01078-3

J. Waters and E. Salmon, Pathways of spindle assembly, Current Opinion in Cell Biology, vol.9, issue.1, pp.37-43, 1997.
DOI : 10.1016/S0955-0674(97)80149-4

G. Wasteneys, Microtubule organization in the green kingdom: chaos or self-order?, J Cell Sci, vol.115, pp.1345-54, 2002.

G. Wasteneys and J. Ambrose, Spatial organization of plant cortical microtubules: close encounters of the 2D kind, Trends in Cell Biology, vol.19, issue.2, pp.62-71, 2009.
DOI : 10.1016/j.tcb.2008.11.004

C. Wicker-planquart, V. Stoppin-mellet, L. Blanchoin, and M. Vantard, Interactions of tobacco microtubule-associated protein MAP65-1b with microtubules, The Plant Journal, vol.411, issue.1, pp.126-160, 2004.
DOI : 10.1111/j.1365-313X.2004.02115.x

R. Wightman and S. Turner, Severing at sites of microtubule crossover contributes to microtubule alignment in cortical arrays, The Plant Journal, vol.124, issue.4, pp.742-51, 2007.
DOI : 10.1111/j.1365-313X.2007.03271.x

A. Yamashita, M. Sato, A. Fujita, M. Yamamoto, and T. Toda, The Roles of Fission Yeast Ase1 in Mitotic Cell Division, Meiotic Nuclear Oscillation, and Cytokinesis Checkpoint Signaling, Molecular Biology of the Cell, vol.16, issue.3, pp.1378-95, 2005.
DOI : 10.1091/mbc.E04-10-0859

W. Yu, C. Cook, C. Sauter, R. Kuriyama, P. Kaplan et al., Depletion of a microtubule-associated motor protein induces the loss of dendritic identity, J Neurosci, vol.20, issue.15, pp.5782-91

Y. Zheng, M. Wong, B. Alberts, and T. Mitchison, Nucleation of microtubule assembly by a ??-tubulin-containing ring complex, Nature, vol.378, issue.6557, pp.578-83, 1995.
DOI : 10.1038/378578a0

C. Zhu, E. Lau, R. Schwarzenbacher, E. Bossy-wetzel, and W. Jiang, Spatiotemporal control of spindle midzone formation by PRC1 in human cells, Proceedings of the National Academy of Sciences, vol.103, issue.16, pp.6196-201, 2006.
DOI : 10.1073/pnas.0506926103

. Tel, (33) 438 783 203, pp.785-091

. Abbreviations and M. Mt, Microtubule-Associated Protein 65; GFP, Green Fluorescent Protein; TIRFm, Total Internal Reflection Fluorescence microscopy REFERENCES 1 Dynamic instability of microtubule growth, Mitchison T, Kirschner M, vol.65, 1984.

E. Schulze and M. Kirschner, Microtubule dynamics in interphase cells, The Journal of Cell Biology, vol.102, issue.3, pp.1020-1031, 1986.
DOI : 10.1083/jcb.102.3.1020

S. Shaw, R. Kamyar, and D. Ehrhardt, Sustained Microtubule Treadmilling in Arabidopsis Cortical Arrays, Science, vol.300, issue.5626, pp.1715-1718, 2003.
DOI : 10.1126/science.1083529

R. Walker, O. Brien, E. Pryer, N. Soboeiro, M. Voter et al., Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies, The Journal of Cell Biology, vol.107, issue.4, pp.1437-1448, 1988.
DOI : 10.1083/jcb.107.4.1437

L. Brun, B. Rupp, J. Ward, and F. Nedelec, A theory of microtubule catastrophes and their regulation, Proceedings of the National Academy of Sciences, vol.106, issue.50, pp.21173-21178, 2009.
DOI : 10.1073/pnas.0910774106

F. Bartolini and G. Gundersen, Generation of noncentrosomal microtubule arrays, Journal of Cell Science, vol.119, issue.20, pp.4155-4163, 2006.
DOI : 10.1242/jcs.03227

S. Bratman and F. Chang, Mechanisms for maintaining microtubule bundles, Trends in Cell Biology, vol.18, issue.12, pp.580-586, 2008.
DOI : 10.1016/j.tcb.2008.09.004

W. Jiang, G. Jimenez, N. Wells, T. Hope, and G. Wahl, PRC1, Molecular Cell, vol.2, issue.6, pp.877-885, 1998.
DOI : 10.1016/S1097-2765(00)80302-0

S. Schuyler, J. Liu, and D. Pellman, The molecular function of Ase1p, The Journal of Cell Biology, vol.160, issue.4, pp.517-528, 2003.
DOI : 10.1038/bjc.1997.483

P. Hussey, T. Hawkins, H. Igarashi, D. Kaloriti, and A. Smertenko, The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP215-like protein, MOR1, Plant Molecular Biology, vol.50, issue.6, pp.915-924, 2002.
DOI : 10.1023/A:1021236307508

C. Mollinari, J. Kleman, W. Jiang, G. Schoehn, and T. Hunter, PRC1 is a microtubule binding and bundling protein essential to maintain the mitotic spindle midzone, The Journal of Cell Biology, vol.116, issue.7, pp.1175-1186, 2002.
DOI : 10.1016/S0960-9822(01)00307-4

S. Müller, A. Smertenko, V. Wagner, M. Heinrich, and P. Hussey, The Plant Microtubule-Associated Protein AtMAP65-3/PLE Is Essential for Cytokinetic Phragmoplast Function, Current Biology, vol.14, issue.5, pp.412-417, 2004.
DOI : 10.1016/j.cub.2004.02.032

I. Loiodice, J. Staub, T. Setty, N. Nguyen, and A. Paoletti, Ase1p Organizes Antiparallel Microtubule Arrays during Interphase and Mitosis in Fission Yeast, Molecular Biology of the Cell, vol.16, issue.4, pp.1756-1768, 2005.
DOI : 10.1091/mbc.E04-10-0899

M. Janson, R. Loughlin, I. Loiodice, C. Fu, and D. Brunner, Crosslinkers and Motors Organize Dynamic Microtubules to Form Stable Bipolar Arrays in Fission Yeast, Cell, vol.128, issue.2, pp.357-368, 2007.
DOI : 10.1016/j.cell.2006.12.030

E. Kiris, D. Ventimiglia, and S. Feinstein, Quantitative Analysis of MAP-Mediated Regulation of Microtubule Dynamic Instability In Vitro, Methods Cell Biol, vol.95, pp.481-503, 2010.
DOI : 10.1016/S0091-679X(10)95024-3

P. Bieling, I. Telley, and T. Surrey, A Minimal Midzone Protein Module Controls Formation and Length of Antiparallel Microtubule Overlaps, Cell, vol.142, issue.3, pp.420-432, 2010.
DOI : 10.1016/j.cell.2010.06.033

M. Vantard, C. Peter, . Fellous-a, P. Schellenbaum, and M. Lambert-a, Characterization of a 100-kDa heat-stable microtubule-associated protein from higher plants, European Journal of Biochemistry, vol.124, issue.3, pp.847-853, 1994.
DOI : 10.1083/jcb.92.2.435

A. Hyman, D. Drechsel, D. Kellogg, S. Salser, and K. Sawin, [39] Preparation of modified tubulins, Methods Enzymol, vol.196, issue.26, pp.478-485, 1991.
DOI : 10.1016/0076-6879(91)96041-O

A. Tulin, S. Mcclerklin, Y. Huang, and R. Dixit, Single-Molecule Analysis of the Microtubule Cross-Linking Protein MAP65-1 Reveals a Molecular Mechanism for Contact-Angle-Dependent Microtubule Bundling, Biophysical Journal, vol.102, issue.4, pp.802-809, 2012.
DOI : 10.1016/j.bpj.2012.01.008

S. Shaw and J. Lucas, Intrabundle microtubule dynamics in the Arabidopsis cortical array, Cytoskeleton, vol.103, issue.Pt 6, pp.56-67, 2010.
DOI : 10.1002/cm.20495

D. Barton, M. Vantard, and R. Overall, Analysis of Cortical Arrays from Tradescantia virginiana at High Resolution Reveals Discrete Microtubule Subpopulations and Demonstrates That Confocal Images of Arrays Can Be Misleading, THE PLANT CELL ONLINE, vol.20, issue.4, pp.982-994, 2008.
DOI : 10.1105/tpc.108.058503

URL : https://hal.archives-ouvertes.fr/hal-00282438

S. Figure, Dynamic parameters of individual MTs in the presence of MAP65-1

S. Figure, Dynamics of individual MTs in the presence of 50 nM MAP65-1. (A)

S. Figure, Dynamic parameters of individual MTs in the absence of MAP65

S. Movie, Movies of elongating MTs in the absence of MAP65 (0.2 fps)

S. Movie, Movies of elongating MT bundles in the presence of MAP65-1 (0.5 fps)

S. Movie, Movies of elongating MT bundles in the presence of MAP65-4 (0.2 fps)

S. Movie, Simulations of MT dynamics in the absence of MAP65 (0.1 fps) Top panel shows dynamic MTs undergoing rescues and catastrophes. MT seeds are in red, tubulin is in green; (+) and (-) indicate plus and minus MT ends respectively, Bottom

S. Movie, Simulations of MT dynamics in the presence of 0

. Fps, Top panel illustrates MT dynamics and the control of depolymerization by MAP65-4. MT seeds are in red, tubulin is in green. MAP65-4 bonds are symbolized by blue lines connecting the MTs. (+) and (-) indicate (+) and (-) MT ends respectively. On the bottom of the Figure, kymographs of tubulin (left, green traces) and MAP65-4 (right, blue traces) are shown. The MAP65-4 binding wave is coded by the intensity of the blue color used to represents bonds, pp.65-69

S. Movie, Simulations of MT dynamics in the presence of 1 M MAP65-1 (0.1 fps)