
HAL Id: tel-00848578
https://theses.hal.science/tel-00848578

Submitted on 26 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MISE EN ŒUVRE ET OPTIMISATION DES PLANS
DE CONTRÔLE DYNAMIQUE DANS LA

FABRICATION DES SEMI-CONDUCTEURS
Justin Nduhura Munga

To cite this version:
Justin Nduhura Munga. MISE EN ŒUVRE ET OPTIMISATION DES PLANS DE CONTRÔLE
DYNAMIQUE DANS LA FABRICATION DES SEMI-CONDUCTEURS. Autre. Ecole Nationale
Supérieure des Mines de Saint-Etienne, 2012. Français. �NNT : 2012EMSE0663�. �tel-00848578�

https://theses.hal.science/tel-00848578
https://hal.archives-ouvertes.fr


NNT : 2012 EMSE 0663

THÈSE
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Farouk YALAOUI Professeur, Université de Technologie de Troyes, Troyes

Examinateurs
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ont consacré à la relecture et l’évaluation du présent manuscrit. Leurs rapports,
commentaires et remarques ont permis d’enrichir davantage le présent manuscrit
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Merci du fond du cœur tous les membres du départment SFL. Pour tous les moments
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1.2.3 Contrôles durant la fabrication et problématique de la thèse . 6
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1.4.1 Analyse et évaluation d’un échantillonnage statique . . . . . . 13
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une inspection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Survey on static or start sampling . . . . . . . . . . . . . . . . . . . . 82

4.2 Mathematical techniques or approaches for static or start sampling . 83

4.3 Survey on adaptive sampling . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Mathematical techniques or approaches for adaptive sampling . . . . 88

4.5 Survey on dynamic sampling . . . . . . . . . . . . . . . . . . . . . . . 90

4.6 Mathematical techniques or approaches for dynamic sampling . . . . 93

5.1 IPC computation and mechanism . . . . . . . . . . . . . . . . . . . . 106

5.2 RI computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.1 Initial situation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2 Example if sets of lots S1 or S2 are selected for inspection. . . . . . . 126

6.3 Example1 - Evaluating two different set of lots S1 and S2 with the

GSI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.4 Example2 - Evaluating two different sets of lots S3 and S4 using the

GSI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.5 Example3 - Evaluating two different sets of lots S5 and S6 using the

GSI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

xv



xvi LIST OF TABLES

6.6 Example4 - Evaluating two different sets of lots S7 and S8 using the

GSI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.7 Example5 - Evaluating two different sets of lots S7 and S8 using the

GSI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.8 Evaluating the GSI sampling algorithms. . . . . . . . . . . . . . . . . 153

6.9 Impact of β when α = 6. . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.10 Impact of TMax ∈ [0,20%]. . . . . . . . . . . . . . . . . . . . . . . . . 162

6.11 Impact of TMax ∈ [0,0.5%]. . . . . . . . . . . . . . . . . . . . . . . . . 163

6.12 Impact of TMax ∈ [0.5,1%]. . . . . . . . . . . . . . . . . . . . . . . . . 164

6.13 Impact of TMax ∈ [0,0.1%]. . . . . . . . . . . . . . . . . . . . . . . . . 165

6.14 Impact of TMin ∈ [0,0.5%]. . . . . . . . . . . . . . . . . . . . . . . . . 166

6.15 Impact of TMin ∈ [0.5,1%]. . . . . . . . . . . . . . . . . . . . . . . . . 167

6.16 Impact of TMetro ∈ [0,0.5%]. . . . . . . . . . . . . . . . . . . . . . . . 168

6.17 Impact of TMetro ∈ [0.5,1%]. . . . . . . . . . . . . . . . . . . . . . . . 168

7.1 Impact of the WL and IL values on the sampling plan policy. . . . . . 178

7.2 Impact of the WL value on the sampling plan policy. . . . . . . . . . 179

7.3 Impact of the IL value on the sampling plan policy. . . . . . . . . . . 180

7.4 Evaluating the WL and IL obtained with the MILP model 1 (Expo-

sure=1 for all production tools). . . . . . . . . . . . . . . . . . . . . . 193

7.5 Evaluating the WL and IL obtained with the MILP model 1 for dif-

ferent values of the exposure. . . . . . . . . . . . . . . . . . . . . . . 194

7.6 Evaluating the WL and IL obtained with MILP model 2 (delay de-

fined per workshop and per tool). . . . . . . . . . . . . . . . . . . . . 196

B.1 Clean room - ISO Standard Classification [97]. . . . . . . . . . . . . . 217

C.1 Impact of β when α = 1. . . . . . . . . . . . . . . . . . . . . . . . . . 226

C.2 Impact of β when α = 2. . . . . . . . . . . . . . . . . . . . . . . . . . 226

C.3 Impact of β when α = 4. . . . . . . . . . . . . . . . . . . . . . . . . . 227

C.4 Impact of β when α = 6. . . . . . . . . . . . . . . . . . . . . . . . . . 227



LIST OF TABLES xvii

C.5 Impact of β when α = 8. . . . . . . . . . . . . . . . . . . . . . . . . . 228

C.6 Impact of β when α = 10. . . . . . . . . . . . . . . . . . . . . . . . . 228

C.7 Impact of β when α = 12. . . . . . . . . . . . . . . . . . . . . . . . . 229



xviii LIST OF TABLES



List of Figures
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Chapter 1

Résumé (Summary in French)

1.1 Introduction

Le développement très rapide de nouvelles technologies ces dernières années,

les exigences de plus en plus fortes des marchés internationaux, et la recherche

de rentabilité de plus en plus élevée par les entreprises multinationales ont donné

place à une très forte concurrence au niveau mondial. Dans le monde de la mi-

croélectronique où les principaux produits fabriqués (circuits et puces électroniques)

sont des éléments majeurs de la vie quotidienne1, proposer les meilleurs produits à

des prix compétitifs est vital pour les entreprises.

Plusieurs pistes sont explorées par les entreprises dans le but de réduire les

coûts de production sans impacter la qualité finale du produit. Parmi les différentes

pistes, une des principales concerne les contrôles durant la fabrication des circuits

électroniques. En effet, la taille des circuits ou puces électroniques à fabriquer

devient tellement petite (de l’ordre du nanomètre)2 que plusieurs contrôles sont

nécessaires pour s’assurer que les procédés de fabrication sont correctement réalisés

et que le produit satisfait aux spécifications du client. Cependant, parmi tous les

contrôles réalisés, certains sont principalement destinés à anticiper toute dérive po-

1On estime qu’une personne utilise environ 250 circuits électroniques par jour [40].
2La taille des composants électroniques (transistors, résistances, condensateurs, etc.) nécessaires

à la fabrication des circuits électroniques est environ 5000 fois plus petite que le diamètre d’un
cheveu.

1
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tentielle et limiter les pertes potentielles en cas problème durant la production. Ils

sont donc jugés non-obligatoires car ils n’ajoutent rien à la fonctionnalité finale du

produit à livrer au client. D’où le challenge pour les entreprises d’arriver à mieux

mâıtriser, répartir, et limiter ce nombre de contrôles non-obligatoires sans augmenter

le risque (c’est-à-dire la perte potentielle) sur la production.

Différentes techniques d’échantillonnage existent et ont été développées par les

entreprises et dans la littérature dans le but de trouver le meilleur compromis entre le

nombre de contrôle et le risque toléré au sein de la production. Entre les techniques

statiques et dynamiques, les techniques d’échantillonnage dynamiques sont jugées

plus robustes de part leur capacité à intégrer la dynamique de la production et la

variabilité. Le problème qui se pose concerne l’industrialisation de ces techniques

d’échantillonnage dynamiques. L’investissement requis (ressources informatiques,

formation des opérateurs et ingénieurs, système de production, etc.) et la com-

plexité sont tels que la plupart des entreprises préfèrent rester sur des techniques

d’échantillonnage statiques alors que l’inefficacité de ces dernières à anticiper les

dérives potentielles pour les entreprises multi-produits a déjà été démontrée [78] [12].

Dans le cadre ma thèse, je m’intéresse à l’évaluation de l’efficacité des

différentes techniques d’échantillonnage, l’identification des points de sur-

et sous-contrôles, et la mise en œuvre concrète des plans de contrôles ou

d’échantillonnage dynamiques au sein de l’entreprise STMicroelectronics.

Ce premier chapitre est un résumé global en Français de ma thèse qui est rédigée

en Anglais. Je commence par présenter rapidement le contexte industriel et la

problé-matique de ma thèse. Ensuite, je synthétise la révue de la littérature qui

généralise mon problème et le positionne parmi les différentes techniques développées

au cours des 20 dernières années. Après cette synthèse de la révue de la littérature,

je présente les solutions générales que je développe dans la cadre de ma thèse. Je

termine ensuite ce résumé en Français en donnant un aperçu des solutions spécifiques

que j’ai développées pour valider les solutions générales au sein du site de 300mm

de la société STMicroélectronics basée à Crolles, en France. L’originalité des

travaux de ma thèse repose sur le fait que toutes les solutions proposées et
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présentées dans ce manuscrit ont été validées industriellement et certaines

d’entr’elles ont été industrialisées sur le site de Crolles et les autres sites

de STMicroelectronics (Rousset, Italie-Catania).

1.2 Contexte Industriel et Problématique de la

thèse

La principale activité d’une entreprise de semiconducteurs est de fabriquer des

composants électroniques, les interconnecter, et obtenir ainsi des puces ou circuits

électroniques qui sont utilisés dans plusieurs domaines de la vie de tous les jours

(téléphone, voiture, régulateur de température, ordinateurs, etc.). La Figure 1.1

donne un aperçu de l’utilisation des circuits électroniques dans la vie de tous les

jours. Dans quasiment toute activité, chaque produit, nous utilisons des puces ou

circuits électroniques.

Figure 1.1: Circuits électroniques dans vie de tous les jours.
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1.2.1 Environnement de production

Les dimensions des composants électroniques fabriqués sont tellement petites

qu’un environnement spécial appelé “salle blanche” est nécessaire pour éviter toute

contamination et assurer un bon fonctionnement des circuits électroniques. La Fig-

ure 1.2 donne un aperçu de l’environnement de production. Dans cet environnement,

les opérateurs et ingénieurs sont couverts de la tête aux pieds et l’air ambiant est

renouvellé toutes les 30 secondes. En comparaison avec une salle d’opération chirur-

gicale, la plus “crasseuse” des salles blanches est au moins 3 fois plus propre qu’une

salle de chirurgie [74].

Figure 1.2: Salle blanche.

1.2.2 Étapes de la fabrication

Le processus de fabrication des puces ou circuits électroniques3 se résume en

deux principales étapes [101] : Front-End et Back-End. Le Front-End regroupe

les étapes de fabrication des éléments de base de la puce tandis que le Back-End

celui des interconnexions des éléments de base et la mise en boitier (Figure 1.3).

3Une puce électronique se compose de plusieurs composants électroniques qui sont fabriqués sur
des plaques de silicium. Ces composants électroniques sont interconnectées entr’elles de diverses
manières pour réaliser diverses fonctions.
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Figure 1.3: Fabrication des puces électroniques.

Cette thèse est réalisée au sein du site 300mm de STMicroelectronics où seule-

ment les opérations de Front-End sont réalisées. Nous ne nous intéresserons donc

qu’à la partie Front-End durant laquelle plusieurs opérations sont réalisées sur des

plaquettes circulaires de silicium appelées wafers. Parmi les principales opérations

du Front-End, nous pouvons citer [40] [101] :

1. Oxidation : on oxide la plaquette de silicium sur toute sa surface. Plusieurs

fours spécifiques sont utilisés.

2. Dépôt de résine : on dépose de façon uniforme une couche de résine photo

sensible sur la couche d’oxide. Cette couche de résine se transforme sous

l’action de la lumière.

3. Photolithographie : comme son nom l’indique, on utilise le principe de la

photo. On se sert des jeux de masque pour créer des motifs sur la plaquette

de silicium. On aligne le masque sur la plaquette et le tout est exposé à une

source de lumière. La résine “s’imprègne” comme une pellicule photographique

normale dans les zones laissées libres par le masque.

4. Développement : comme pour le développement photographique, on enlève

la résine qui a été exposée à la lumière (dans les zones laissées libres par le

masque).

5. Gravure : on enlève l’oxyde laissé libre par la résine, sans attaquer le silicium

de départ.
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6. Dopage : on introduit des éléments chimiques pour modifier les caractéristiques

du silicium et le rendre capable de conduire le courant électrique.

Toutes ces opérations réalisées durant le Front-End se repètent plusieurs fois.

Avant, pendant, et après chaque opération de fabrication, une ou plusieurs opérations

de contrôle sont nécessaires pour vérifier que le procédé a bien été réalisé et les

spécifications clients respectées.

1.2.3 Contrôles durant la fabrication et problématique de

la thèse

1.2.3.1 Contrôles durant la production

Plusieurs niveaux de contrôles existent durant la fabrication des composants

électroniques. Pour chaque niveau de contrôle, plusieurs types de contrôle existent.

Parmi les principaux niveaux de contrôle, nous pouvons citer :

1. Installations techniques : on contrôle les paramètres liés à l’environnement

de production (température ambiante, contamination, luminosité, liquides,

gaz, etc.) pour garantir des conditions les plus optimales possibles au sein

de la production.

2. Capteurs sur les équipements de contrôle : on contrôle l’état des capteurs

placés sur les différents équipements de production pour s’assurer d’une re-

montée correcte des données au moment de l’analyse des différents paramètres.

3. Mesures ou contrôles en ligne : on contrôle, tout au long de la pro-

duction, les wafers sur lesquelles les composants électroniques sont réalisés.

Plusieurs techniques sont utilisées (ellipsométrie, réflectivité, scatterométrie,

etc.) donnant lieu à plusieurs types de contrôles. La plupart des techniques

sont regroupées sous le nom “APC” (Advanced Process Control - Contrôle

avancé des procédés).

4. Tests paramétriques : on analyse les paramètres électriques des composants

électroniques (courant de fuite, tension de claquage, tension de seuil des tran-

sistors, etc.).
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5. Tests finaux ou fonctionnels : ces tests interviennent à la fin du Front-End.

On vérifie que les circuits réalisés fonctionnent correctement avant leur mise

en boitier (Back-End) et envoie aux différents clients.

6. Caractérisations physiques : on évalue la durée de vie des différents com-

posants électroniques sous l’influence des perturbations extérieures (température,

humidité, corrosion, etc.).

Parmi ces 6 niveaux de contrôle, ma thèse s’intéresse au troisième niveau de

contrôle et principalement aux contrôles défectivité où un des principaux objectifs

est la détection des défauts générés par les équipements de production sur

les wafers .

1.2.3.2 Problématique de la thèse

Ma thèse aborde de manière générale les différents contrôles qui ont lieu sur les

wafers et les lots4 durant la fabrication des composants électroniques. Je me suis

focalisé sur les contrôles défectivité à cause de la forte complexité qui est princi-

palement due à la profondeur de contrôle et le champ d’investigation. La

profondeur de contrôle donne le nombre d’opérations de fabrication qui sont

couvertes5 par une opération de contrôle, et le champ d’investigation donne le

nombre d’équipements à considérer lors de l’analyse des défauts détéctés sur les

wafers. Tous les équipements de production sont concernés car ils ont tous des

parties mécaniques qui génèrent à la fois des particules et des défauts sur les wafers.

L’autre niveau de complexité vient du nombre de produits (plus de 200 pro-

duits différents sont fabriqués en parallèle), des technologies (plus de 20 technolo-

gies différentes), ou encore des priorités à considérer (la criticité des produits, les

exigences clients, les délais de livraison, les coûts de production, l’environnement,

le management, etc.) lors de la sélection des wafers ou des lots à contrôler. Cela

constitue un véritable challenge pour l’échantillonnage. En effet, intégrer tous les

paramètres est tout simplement impossible et l’enjeu majeur réside donc dans la

4Un lot est un groupe d’au plus 25 wafers.
5Une opération de fabrication est dite couverte par une opération de contrôle lorsque cette

dernière permet d’avoir l’information sur l’opération de fabrication.
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capacité à utiliser de la manière la plus optimale possible la capacité de contrôle

disponible.

L’objectif de ma thèse est d’arriver à comprendre le mécanisme d’échantillonnage

statique6 en place au sein de STMicroelectronics, analyser son efficacité, détecter les

différents points de sur- et sous-contrôle, et arriver à proposer des solutions pou-

vant supporter la mise en place et le déploiement “concret” (industriel) des plans

de contrôle et d’échantillonnage dynamique. Un des principaux challenges étant

d’arriver à manipuler en temps réel un très grand volume de données, et proposer

des algorithmes compréhensibles, maintenables, généralisables, et par-dessus tout

industrialisables.

6Au début de ma thèse, l’échantillonnage était à 100% statique, c’est-à-dire qu’un certain nom-
bre de lots/wafers était désigné au lancement de la production pour subir des contrôles réguliers
tout au long du cycle de fabrication. Seuls ces lots “pré-désignés” pouvaient être contrôlés et ce,
à toutes les étapes possibles de contrôle.
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1.3 Généralisation de la Problématique : Révue

de la Littérature

L’échantillonnage n’est pas un concept récent dans le monde du semiconducteur

pour deux raisons principales [19] [23] [33] :

1. Un contrôle à 100% est impossible à cause du coût que cela engendre sur le

produit final [76].

2. Un contrôle à 100% ne pourra jamais garantir une qualité 100% dans le

semiconducteur à la cause de la taille des particules, des défauts, et de la

fiabilité des différents procédés de contrôle [23].

Il est donc indispensable de limiter le nombre de contrôle durant tout processus de

fabrication tout en s’assurant de faire les bons contrôles au bon moment. Plusieurs

types ou méthodes d’échantillonnage existent en fonction des objectifs recherchés.

On en distingue trois principaux [48] :

1. Contrôle du matériel à risque et gestion des excursions7 [83] [9] [61]

: le but est de sélectionner des lots à contrôler suivant une fréquence bien

définie pour d’un côté limiter la perte potentielle en cas de problème, et de

l’autre côté arriver à détecter le plus rapidement possible les différents défauts

générés au cours de la production.

2. Intégration de nouveaux procédés et amélioration du rendement [46]

: le but est d’ajuster le pourcentage des lots à contrôler pour mieux identifier

les principaux détracteurs pour les différentes technologies et les éliminer au

fur et à mesure. Dans les usines de petite taille, on cherche à ajuster le nombre

de lots lancés au début de la production pour compenser les pertes éventuelles.

3. Statistiques et apprentissage [26] : le but est d’apprendre sur les différents

types des défauts détectés ainsi que leur mécanismes.

7Une excursion se produit lorsqu’un problème est détecté sur un wafer, un lot, ou un équipement
après une opération de contrôle.
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Dans ma thèse, je m’intéresse au premier groupe d’échantillonnage

qui vise à contrôler le matériel à risque durant la production et détecter

le plus rapidement possible les différentes excursions. L’objectif est double

: limiter le nombre de contrôle (par échantillonnage) sans augmenter le matériel à

risque en cas de problème, et détecter très rapidement les différents problèmes. Il y a

un compromis nécessaire à trouver car, si d’un côté on se focalise sur la réduction du

nombre de contrôle (ce qui permet de réduire le coût final du produit), on prend le

risque de ne pas détecter rapidement les différents défauts et donc d’avoir des pertes

significatives en cas de problème. D’un autre côté, si on se focalise uniquement sur

la détection rapide des défauts, on risque d’augmenter le nombre de contrôle et donc

augmenter le coût du produit final.

Plusieurs politiques d’échantillonnage ont été développées dans la littérature.

Nous les classifions en trois principaux groupes : statiques, adaptatives, et dy-

namiques.

1.3.1 Échantillonnage statique

Un échantillonnage statique consiste à définir un nombre fixe et limité des lots à

contrôler tout au long de la production. Le nombre de lots à contrôler est fixé par la

capacité disponible de contrôle. Les lots à contrôler sont pré-sélectionnés au début

de la production et subissent systematiquement une opération de contrôle devant

chaque étape de contrôle [45] [70].

Cette politique d’échantillonnage a été largement utilisée par les entreprises dans

les années 1990 car en contrôlant toujours les mêmes lots, il est possible de quantifier

les défauts apportés par chaque opération de fabrication et donc identifier rapide-

ment la source des défauts [31]. De nos jours, cette politique d’échantillonnage

statique est fortement critiquée à cause de son incapacité à ajuster les paramètres

d’échantillonnage en fonction de la dynamique de la production [12]. Ceci est

d’autant plus vrai dans les entreprises multi-produits où plusieurs produits sont

fabriqués en parallèle et où la production n’est jamais linéaire, c’est-à-dire que le

premier produit qui entre dans la châıne da fabrication n’est pas toujours le premier
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à en sortir [57].

Pour prendre en compte la dynamique de la production, de nouvelles politques

d’échantillonnage appelées “adaptatives” ont été dévéloppées.

1.3.2 Échantillonnage adaptatif

Un échantillonnage adaptatif est basé sur un échantillonnage statique mais la

différence majeure avec cette dernière est que le nombre de lots à contrôler est

ajusté en fonction de l’état de la production [98]. Lorsque la production est con-

sidérée comme étant “sous-contrôle”, le taux d’échantillonnage est réduit, et lorsque

il y a suspicion de dérive, le nombre de lots à contrôler est augmenté pour confirmer

rapidement la dérive et limiter ainsi les pertes potentielles [99] [71].

Cette technique d’échantillonnage s’avère plus efficace que la technique d’échan-

tillonnage statique mais le problème ici est que l’on ne mâıtrise plus la charge de

travail (ou ressources nécessaires) des ingénieurs responsables des opérations de

contrôle. Le nombre de lots à contrôler n’étant plus constant en fonction de l’état

de la production, le risque est d’avoir des périodes avec beaucoup de lots à contrôler,

ce qui remettrait en cause l’efficacité des contrôles [58].

Pour faire face à ce problème de gestion de ressources, de nouvelles politiques

d’échantillonnage (très récentes) dites “dynamiques ou intelligentes” ont été dé-

veloppées.

1.3.3 Échantillonnage dynamique

Un échantillonnage dynamique consiste à la sélection en temps réel des lots

à contrôler. Le nombre total de contrôles est fixé par la capacité de contrôle

disponible [79]. Contrairement aux techniques d’échantillonnage précédentes (sta-

tiques et adaptatives), aucun lot n’est pré-sélectionné à l’avance. La sélection se fait

lorsque le lot arrive devant une opération de contrôle. En fonction de l’information

contenue dans le lot, de la capacité disponible de contrôle, ou des priorités au sein

de la production, le lot est soit contrôlé, soit dirigé directement à l’opération de fab-

rication suivante [29] [78] [50]. L’avantage d’une telle technique est qu’en prenant
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en compte l’état réel de la production et en choisissant dynamiquement les bons

lots à contrôler, il est possible de détecter très rapidement toute dérive potentielle

sans augmenter le risque sur la production ou la charge de travail des ingénieurs

responsables des opérations de contrôle [20].

Ma thèse se focalise donc sur cette troisième technique et l’enjeu est

d’arriver à mettre concrètement en place une telle technique au sein du

site 300mm de STMicroelecronics. La technique est très récente et les auteurs

qui ont travaillé dessus ne donnent pas toujours assez de détails sur la complexité

technique de la mise en œuvre d’une telle technique au sein d’une usine où plus

de 200 produits différents sont fabriqués en parallèle. De plus, l’environnement du

semiconducteur est tellement particulier qu’une technique peut s’avérer efficace dans

une usine A et s’avérer inutilisable pour une usine B.

Pour arriver à mettre en œuvre une telle technique d’échantillonnage et donc des

plans de contrôle dynamiques, il a fallu proposer succissevement un indicateur per-

mettant de manipuler en temps réel un très grand nombre de données sans consom-

mer trop de ressources informatiques, développer un indicateur pour arriver à choisir

dynamiquement les bons lots à contrôler, et optimiser les différents paramètres pour

s’assurer de la robustesse de la solution. Je résume dans la section suivante les prin-

cipales solutions générales que je propose dans ma thèse pour la mise en œuvre des

techniques de contrôle dynamiques. Le lecteur pourra trouver plus de détails dans

les chapitres 5, 6, et 7 de ce manuscrit de thèse.
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1.4 Solutions Générales : IPC - GSI - MILP

Dans ma thèse, je propose trois solutions générales permettant de mettre en œu-

vre des plans des contrôles dynamiques dans une unité avancée de fabrication des

semiconducteurs. Ce trois solutions sont : l’IPC (Indice Permanent par Contexte),

le GSI (Global Sampling Indicator), et un modèle MILP (Mixed Integer Linear

Programming). L’IPC est un indicateur qui permet de manipuler un volume im-

portant de données avec une très faible consommation de ressources informatiques.

Cet indicateur permet de simplifier l’analyse de plusieurs types de risques et donc

de supporter l’industrialisation des algorithmes de contrôles ou d’échantillonnage

dynamiques qui manipulent un volume important de données. Le GSI est un in-

dicateur qui permet de choisir dynamiquement le meilleur lot à contrôler et défnir

la priorité de contrôle sur les équipements de contrôle. Le MILP est un modèle

qui calcule les paramètres clés utilisés par le GSI pour une sélection dynamique et

optimisée des lots à contrôler.

Avant de pouvoir proposer les solutions générales résumées dans cette section, il

était nécessaire d’analyser l’efficacité du plan de contrôle “statique” en place pour

en cerner les avantages et inconvénients.

1.4.1 Analyse et évaluation d’un échantillonnage statique

L’analyse du plan de contrôle statique en place chez STMicroelectronics a été

faite en partant de l’hypothèse selon laquelle “un contrôle sans valeur ajoutée est

à la fois une perte de temps et une perte d’argent”. Considérons l’exemple de la

Figure 1.4 qui met en évidence un des principaux inconvénients de l’échantillonnage

statique.

Il y a 6 lots (L1, L2, L3, L4, L5, et L6) qui arrivent dans l’atelier 1 pour subir di-

verses opérations de fabrication avant d’aller dans l’atelier 2 pour d’autres opérations

de fabrication. Le plan de contrôle statique défini par les ingénieurs au début de la

production est de contrôler un lot sur deux. Dans le cas de la Figure 1.4, les lots L2,

L4, et L6 ont été identifiés au début de la production pour des contrôles ponctuels

devant chaque étape de contrôle. Cela signifie qu’une fois passés dans l’atelier 1, ces
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Figure 1.4: Problème de l’échantillonnage statique.

lots (L2, L4, L6) doivent subir une opération de contrôle dans l’atelier de défectivité

avant de subir d’autres opérations de fabrication dans l’atelier 2.

Comme introduit dans les sections précédentes, un contrôle en défectivité a pour

objectif de détecter les défauts ou particules générées par les équipements de pro-

duction sur les wafers, c’est-à-dire qu’à chaque fois qu’un contrôle en défectivité

est réalisé sur un lot ou plusieurs wafers, on analyse le nombre de particules ou des

défauts présents sur les wafers. Si aucune alarme n’est déclenchée (nombre de partic-

ules en dessous d’un certain seuil ou défauts non critiques), on relâche l’incertitude

sur l’ensemble des équipements de production sur lesquels les wafers contrôlés ont

subis des opérations de fabrication avant d’arriver au contrôle défectivité. Dans le

cas décrit dans la Figure 1.4, un plan de contrôle optimal consisterait à faire passer

sur chaque équipement (TOOL1 et TOOL2) au moins un lot échantillonné (c’est-à-

dire L2 ou L4 ou L6), ce qui permettrait, en cas de contrôle “bon” en défectivité,

de relâcher l’incertitude sur l’ensemble des équipements de l’atelier 1.

Cependant, dans un environnement multi-produits (cas du site de 300mm de

STMicroelectronics) où plusieurs produits différents sont fabriqués simultanément

sur les mêmes équipements, le cas tel que celui décrit sur la Figure 1.4 s’est avéré

être un cas fréquent. Tous les lots échantillonnés (c’est-à-dire pré-sélectionnés pour

un contrôle en défectivité) passent sur un seul équipement (TOOL1) alors que sur

l’autre équipement (TOOL2) il n’en passe aucun. Cela résulte donc, après un
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contrôle défectivité, à un sur-contrôle pour l’équipement TOOL1 et un manque de

contrôle pour l’équipement TOOL2. Le phénomène est encore plus accentué avec

le nombre d’équipements disponibles en production (plus de 300 équipements chez

STMicroelectronics).

Pour éviter ce phénomène, une solution simple serait de définir une limite max-

imale de lots échantillonnés pour chaque équipement de production. Le problème

qui se pose concerne la disponibilité des équipements et leur qualifications respec-

tives car, tous les lots ne peuvent pas passer sur tous les équipements et tous les

équipements ne peuvent pas réaliser les mêmes opérations de fabrication à la même

vitesse. De plus, en fonction du produit, de l’opération à laquelle se trouve chaque

lot, de la technologie, de l’état de la production, les responsables de la production ne

peuvent pas se permettre d’arrêter un équipement pour respecter un taux prédéfini

d’échantillonnage. D’où l’intérêt même d’un échantillonnage en mode dynamique.

Convaincu alors de la nécessité d’un échantillonnage en mode dynamique, plusieurs

questions ont été soulévées : comment arriver à analyser en temps réel un très grand

volume de données (300 équipements, 200 produits, 20 technologies, plusieurs con-

traintes de production, etc.) et arriver à identifier “instantanément”, en temps réel

le meilleur lot à contrôler ? Quel coût cela engendrerait-il en terme d’investissement

et de ressources informatiques ? Serait-ce vraiment rentable pour l’entreprise ?

Pour répondre à cette question, l’indicateur IPC a été dévéloppé pour accélérer

les calculs, généraliser les solutions et supporter les différentes décisions en mode dy-

namique. La section suivante décrit brièvement cet indicateur IPC, son utilisation,

et sa généralisation à plusieurs types de risques au sein de la production.

1.4.2 Gestion dynamique des contrôles : indicateur IPC

L’IPC est un compteur qui est incrémenté à chaque fois qu’un contexte est vérifié.

Le contexte peut être un équipement, une chambre8, une recette9, une technologie,

8Une chambre est une partie à l’intérieur d’un équipement où est réalisé une opération de
fabrication.

9Une recette est un ensemble de données nécessaires à un équipement pour le traitement
physique d’un wafer ou d’un lot.
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un type de résine, la combinaison d’une opération de fabrication et d’une technolo-

gie, etc. Ce compteur n’est jamais remis à zéro sauf lorsqu’un événement parti-

culier se produit (maintenance préventive, qualification d’un équipement, change-

ment de recette, etc.). Le but de l’IPC est d’avoir un indicateur général, standard,

et simple qui permette d’évaluer très rapidement différents types de risques en fonc-

tion du contexte sans consommer trop de ressources informatiques ni nécessiter des

développements informatiques complexes.

Lors de la première implémentation dans le cadre de la validation industrielle

de l’IPC, le contexte avait été défini au niveau de l’équipement, c’est-à-dire qu’on

s’intéressait à évaluer en temps réel le risque de faire passer un lot sur un équipement

de production. Ce risque s’appelle Wafer-At-Risk et représente le nombre de wafers

qui ont subis une opération de fabrication entre deux opérations de contrôle. À

chaque lot l et équipement de production m est associé un IPC, qui est égale à 0

si l n’a subi aucune opération de fabrication sur l’équipement m. Définissons M

comme le nombre d’équipements de production, et NW (l) comme le nombre de

wafers contenus dans le lot l. L’objectif est de mettre à jour les paramètres suivants

en temps réel :

• LLM(m) : indice du dernier lot qui a été contrôlé pour valider l’équipement

de production m.

• IPCm
l : IPC du lot l pour l’équipement de production m.

• RIm : indicateur du risque sur l’équipement de production m.

• NIml : nombre de wafers potentiellement impactés sur l’équipement m si le

lot l est contrôlé.

• NI l : nombre de wafers potentiellement impactés dans l’ensemble de la pro-

duction si le lot l est contrôlé.

Quand le lot l passe sur l’équipement de production m, un IPC est associé à l.

Cet IPC du lot l est égal à l’IPC du lot l′ passé juste avant l sur m plus le nombre

de wafers contenus dans l (NW (l)) :



1.4. SOLUTIONS GÉNÉRALES : IPC - GSI - MILP 17

IPCm
l = IPCm

l′ +NW (l) (1.1)

L’indicateur du risque (c’est-à-dire le matériel à risque ou Wafer-At-Risk) sur

l’équipement de production m est donc donné par :

RIm = IPCm
l − IPCm

LLM(m) (1.2)

L’utilisation de l’IPC simplifie largement les calculs des différents types de risque

car tout est réduit à une simple différence entre deux valeurs entières. Cela implique

une faible consommation des ressources informatiques, la possibilité d’analyser en

temps un très grand nombre de types de risques sans passer par des développements

complexes. Au lieu d’aller rechercher à chaque fois l’historique de la production

pour analyser le risque en temps réel, on assigne à chaque lot un indice (IPC du

lot) lorsque le contexte est vérifié.

La Figure 1.5 montre une séquence des lots ayant subis des opérations de fabri-

cation sur l’équipement de production m.

Figure 1.5: Mécanisme IPC.

Les lots L1, L2, . . ., L9 sont passés sur m. Parmi ces lots, L2 et L5 ont été
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validés par un contrôle “bon” en défectivité et dans le cas décrit dans la Figure 1.5,

L5 correspond au dernier lot qui a été contrôlé, c’est-à-dire L5 = LLM(m). Selon

les équations (1.1) et (1.2), l’indicateur du risque sur m à t9 est donné par :

RIm = IPCm
L9 − IPCm

L5

où :

IPCm
L9 > IPCm

L5

En utilisant l’IPC, il est aussi possible d’identifier rapidement le meilleur lot l à

contrôler devant une étape de contrôle. Ce lot l est choisi tel que son IPC vérifie

la propriété suivante :

IPCm
l = Max{0, {IPCm

ll \ IPCm
ll > IPCm

LLM , ll ∈ LM}} (1.3)

où LM est l’ensemble des lots en attente devant une étape de contrôle.

Dans la Figure 1.5, les lots L6 et L8 sont passés sur m et sont en attente devant

une étape de contrôle. Selon (1.3), le meilleur lot à contrôler pour m sera L8 car

IPCm
L8 > IPCm

L6 et IPCm
L8 > IPCm

L5.

Un contrôle est défini comme une opération de mesure plus une action [7]. Cela

signifie qu’il est primordial d’être capable d’évaluer en temps réel le nombre de lots

potentiellement impactés si un problème est détecté après une opération de mesure

sur un lot l. Ce nombre peut être déterminé pour chaque équipement de production

m (NIml ) et pour l’ensemble de la production (NI l) :

NIml = Max{0, IPCm
l − IPCm

LLM} (1.4)

et

NI l =
∑
m

NIml (1.5)
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Dans la Figure 1.5, à t9, NIml sera donné par (IPCm
L9 − IPCm

L5) correspondant

à la somme des wafers contenus dans L6, L7, L8, et L9.

Ce mécanisme d’IPC a été implémenté dans un prototype et déployé

en production pour un atelier avant d’être industrialisé sur l’ensemble de

la production. Une fois industrialisé, ce mécanisme IPC a été utilisé pour sup-

porter l’implémentation des algorithmes intelligents d’échantillonnage dynamique

dont le principe est décrit dans la section suivante.

1.4.3 Échantillonnage dynamique : GSI

Un échantillonnage dynamique ou intelligent consiste à sélectionner en temps

réel et au meilleur moment des lots à contrôler. “Aucune règle” n’est définie au

début de la production et les lots à contrôler sont sélectionner à leur arrivée devant

une étape de contrôle. Trois types de décisions sont nécessaires pour réaliser ce type

d’échantillonnage : le sampling, le skipping, et le scheduling. Ces trois décisions sont

liées aux contraintes de la production et à la capacité de contrôle disponible. L’ordre

des différentes décisions n’est pas nécessairement séquentielle, c’est-à-dire d’abord

le sampling, ensuite le skipping, et finalement le scheduling. Certaines décisions

peuvent être prises simultanément. Le principal objectif est de choisir des lots à

contrôler pour minimiser le risque dans la production en fonction de la capacité de

contrôle disponible.

A. Mécanisme de sampling

Le sampling consiste à sélectionner un lot pour le contrôle et le placer dans la

file d’attente d’inspection. La Figure 1.6 nous donne une illustration du sampling.

À chaque fois qu’un lot Lx arrive devant une étape de contrôle (défectivité), une

décision est prise quant à l’ajout de Lx dans la liste des lots déjà en attente.
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Figure 1.6: Mécanisme de sampling.

B. Mécanisme de skipping

Le skipping consiste à ne pas mesurer ou contrôler un lot Lx déjà présent dans la

file d’attente d’inspection (Figure 1.7). Le lot est rétiré de la file d’attente et dirigé

à la prochaine étape de fabrication. Ce type de décision peut se produire lorsque :

(1) La taille maximale de la file d’attente est atteinte et un lot “important” et

prioritaire vient d’arriver devant l’étape de contrôle et doit être absolument

contrôlé,

(2) La capacité de contrôle disponible est réduite à cause d’un équipement qui

vient de tomber en panne,

(3) Certains lots viennent d’être mesurés et par conséquent, un ou plusieurs lots

présents dans la file d’attente d’inspection perdent leur valeur ajoutée.
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Figure 1.7: Mécanisme de skipping.

C. Mécanisme de scheduling

Le scheduling consiste à ordonnancer les lots présents dans la file d’attente, c’est-

à-dire définir la priorité de passage sur les équipements de contrôle. En fonction du

gain (en terme de réduction du risque) apporté par chaque lot et des contraintes de

la production, certains lots sont plus prioritaires que d’autres.

Ces trois décisions (sampling, skipping, scheduling) sont prises en

utilisant un indicateur (GSI) qui donne un score permettant d’évaluer le

niveau de risque “futur” si un lot ou un ensemble de lots était mesuré.

1.4.3.1 Global Sampling indicator GSI

Le GSI est un indicateur qui donne un score à différents ensembles de lots. À

chaque ensemble des lots S est associé un niveau de risque attendu au sein de la

production si les lots dans S étaient sélectionnés pour une inspection ou un contrôle.

Considérons les exemples dans Table 1.1 et Table 1.2. Table 1.1 correspond à une
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situation initiale où aucun lot n’est sélectionné. Table 1.2 montre deux situations si

deux ensembles différents de lots S1 et S2 sont sélectionnés pour une inspection.

Équipements de production Niveau de risque
M1 300
M2 250
M3 450
M4 450

Table 1.1: Situation initiale.

Équipements Niveau de risque
M1 50
M2 10
M3 450
M4 450

(a) Ensemble des lots S1 sélectionné.

Équipements Niveau de risque
M1 200
M2 200
M3 200
M4 200

(b) Ensemble des lots S2 sélectionné.

Table 1.2: Exemple si deux ensembles des lots S1 ou S2 sont sélectionnés pour une
inspection.

Si l’ensemble des lots S1 est sélectionné et inspecté, le niveau de risque résultant

sera celui décrit dans Table 1.2a, c’est-à-dire une réduction du niveau de risque sur

les équipements de production M1 et M2. Si l’ensemble des lots S2 est sélectionné,

on observe une réduction du niveau de risque sur tous les équipements (M1, M2,

M3, and M4). Dans le premier cas, lorsque S1 est sélectionné, le niveau de risque est

fortement réduit pour les équipements de production M1 (=50) et M2 (=10) alors

que M3 et M4 conservent un niveau de risque très élevé (=450). Dans le second

cas, quand l’ensemble S2 est sélectionné, le niveau de risque est réduit pour tous les

équipements. Cependant, dans ce deuxième cas, le niveau de risque reste très élevé

pour les équipements M1 et M2 en comparaison au premier cas où l’ensemble S1

est sélectionné. D’où la question suivante : est-il plus intéressant de sélectionner un
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ensemble des lots dont la mesure ou l’inspection permettrait de fortement réduire le

niveau de risque sur un ou deux équipements, ou bien sélectionner un ensemble de

lots qui permettrait de réduire de très peu le niveau risque sur tous les équipements

?

Pour répondre à cette question, l’indicateur GSI a été développé pour donner

un poids ou score à chaque ensemble des lots S en fonction des paramètres de

contrôle et de la capacité de contrôle disponible. L’ensemble des lots S peut être

vide (Table 1.1) ou non (Table 1.2).

Notations :

• R : nombre de risques,

• WLr : Warning Limit pour le risque r,

• ILr : Inhibit Limit pour le risque r,

• RVr : valeur actuelle pour le risque r,

• Gr,l : gain sur le risque r si le lot l est inspecté,

• NRVr,l : nouvelle valeur du risque si le lot l est inspecté, c’est-à-dire NRVr,l =

RVr −Gr,l.

• NRVr(S) : nouvelle valeur du risque si les lots dans l’ensemble S sont in-

spectés, c’est-à-dire NRVr(S) = Minl∈SNRVr,l.

Pour les contrôles défectivité, le risqueRVr correspond au Wafer-At-Risk (WAR)

pour l’équipement de production r. Le WAR est le nombre de wafers ayant subi

une opération de fabrication sur l’équipement de production r depuis le dernier

contrôle réalisé en défectivité. Le gain Gr,l est la valeur de réduction du WAR sur

l’équipement r si le lot l est contrôlé. Deux paramètres de contrôle sont définis :

Warning Limit et Inhibit Limit. La Warning Limit WLr correspond à la valeur

du WAR au-délà de laquelle la situation commence à devenir critique en terme

de contrôle. L’Inhibit Limit ILr est le nombre maximum de wafers qui peuvent

subir une opération de fabrication sur un équipement de production entre deux
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opérations de contrôles. Le dépassement de cette limite (ILr) pour le WAR peut

entrâıner l’arrêt de l’équipement de production r.

En utilisant les paramètres ci-dessus, deux formules GSI calculant un score ont

été proposées (voir Chapter 6 pour plus de détails). Plus faible est le score GSI

associé à un ensemble S, meilleure sera la situation au sein de la production si

l’ensemble S est sélectionné et inspecté. La première formule GSI ne considère que

la valeur ILr dans la détermination du score ou poids à associer à chaque ensemble

des lots S :

GSI(S) =
R∑
r=1

[(
NRVr(S)

ILr

)1/β

+

(
NRVr(S)

ILr

)α]

La deuxième formule GSI intègre, en plus de la valeur de l’ILr, la valeur de WLr

dans le calcul du score à associer à S :

GSI(S) =
R∑
r=1


Min

1,

NRVr
ILr
WLr
ILr




1/β

+

Max

0,

NRVr
ILr

− WLr
ILr

1− WLr
ILr



α


ou

GSI(S) =
R∑
r=1

[(
Min

(
1,
NRVr
WLr

))1/β

+

(
Max

(
0,
NRVr −WLr
ILr −WLr

))α]

Les deux formules GSI sont utilisées dans deux algorithmes GSI (GSI-SA-1

et GSI-SA-2) pour l’échantillonnage dynamique et intelligent des lots (c’est-à-dire

sampling, skipping, et scheduling).

1.4.3.2 Algorithmes du GSI (GSI-SA-1 et GSI-SA-2)

Les algorithmes GSI sont basés sur les formules GSI, la Warning Limit, l’Inhibit

Limit, et certaines valeurs de seuil appelées thresholds. Les valeurs de seuil permet-

tent de mâıtriser le temps de cycle des lots en évitant de sélectionner et placer dans

la file d’attente des lots ayant un gain, mais qui risquent de ne jamais être mesurés
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à cause de l’arrivée sans cesse des lots ayant une valeur ajoutée plus importante.

L’objective est double :

1. Échantillonner dynamiquement les lots tout en assurant une utilisation opti-

male de la capacité de contrôle disponible.

2. Minimiser le risque sur l’ensemble de la production tout en évitant au maxi-

mum d’atteindre ou dépasser la valeur de l’Inhibit Limit qui pourrait entrâıner

l’arrêt des équipements de production.

Trois différents seuils (threshold) ont été définis. Ils correspondent à des valeurs

au-délà desquelles des actions spécifiques doivent être prises rapidement :

1. Seuil minimum (TMin) = gain minimum que doit apporter la mesure d’un

lot pour que le lot soit sélectionné et placé dans la file d’attente lorsque cette

dernière est vide.

2. Seuil maximum (TMax) = gain minimum que doit apporter la mesure d’un

lot pour que le lot soit sélectionné et placé dans la file d’attente lorsque cette

dernière est pleine.

3. Metrology threshold (TMetro) = gain minimum que doit apporter la mesure

d’un lot pour rester dans la file d’attente lorsqu’un autre lot vient d’être

mesuré10.

Le seuil minimum (TMin) est utilisé lorsque la file d’attente est vide. Le seuil maxi-

mum (TMax) est utilisé lorsque la file d’attente est pleine. Lorsque la file d’attente est

partiellement remplie, le seuil utilisé est proportionnelle la taille de la file d’attente,

c’est-à-dire :

Threshold = TMin +

[
NBQ

SQ
∗ (TMax − TMin)

]
.

10À chaque fois qu’un lot est mesuré, les gains apportés par les lots présents dans la file d’attente
sont impactés et donc recalculés.
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où NBQ est le nombre des lots dans la file d’attente, et SQ la taille maximale de

la file d’attente.

Les trois seuils (TMin, TMax et TMetro) sont basés sur le GSI, c’est-à-dire que le

gain de chaque lot l est toujours évalué parmi un ensemble S des lots :

Gain(l) = 1− GSI(S ∪ {l})
GSI(S)

∈ [0, 1] .

Gain(l) est strictement positif car l’inspection d’un lot ne peut qu’améliorer la

situation au sein de la production. En d’autres termes, l’inspection d’un lot ne peut

pas augmenter le niveau de risque dans la production.

Les deux algorithmes GSI présentés dans cette section ont été implementés et

évalués en utilisant le simulateur S5 développé par l’École des Mines de Saint-

Étienne [104] dans la cadre du projet Européen IMPROVE11. Plus de détails sont

disponibles dans Chapter 6.

Notations :

• Sinitial : ensemble des lots présents dans la file d’attente,

• NBQ : nombre de lots dans Sinitial (NBQ = |Sinitial|), c’est-à-dire le nombre

des lots dans la file d’attente,

• SQ : taille de la file d’attente,

• NbIL(S) : nombre des Inhibit Limits violés (c’est-à-dire NRVr > ILr) si

l’ensemble des lots S est sélectionné pour une inspection,

• NbWL(S) : nombre des Warning Limits violés (c’est-à-dire NRVr > WLr) si

l’ensemble des lots S est sélectionné pour une inspection.

A. Algorithme du GSI-1

Le premier algorithme GSI (GSI-SA-1) détermine le meilleur ensemble des lots

S? et utilise la formule GSI-1, c’est-à-dire :

11Implementing Manufacturing science solutions to increase equiPment pROductiVity and fab
pErformance.
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GSI(S) =
R∑
r=1

[(
NRVr(S)

ILr

)1/β

+

(
NRVr(S)

ILr

)α]

Si le nombre des lots déjà présents dans la file d’attente d’inspection est stricte-

ment inférieure à la taille maximale de file d’attente, c’est-à-dire NBQ < SQ, alors

seul l’ajout d’un lot l dans Sinitial est évalué et comparé au non-ajout de l. Sinon,

c’est le cas où NBQ = SQ, et donc toutes les combinaisons associées au retrait d’un

lot l′ ∈ Sinitial dans Sinitial et l’ajout de l dans Sinitial sont évaluées.

Dans l’algorithme ci-dessous, SS représente un ensemble d’ensembles des lots.

GSI-SA-1 – Sélection du meilleur ensemble des lots S? en utilisant
IL, WL, et la formule GSI-1

1: Initialisation : S? = Sinitial
2: Si NBQ = SQ alors
3: SS = ∅
4: Pour chaque lot l′ ∈ Sinitial
5: SS = SS ∪ {Sinitial \ {l′} ∪ {l}}
6: Fin Pour
7: Sinon si NBQ < SQ alors
8: SS = {Sinitial ∪ {l}}
9: Fin Si
10: Pour chaque ensemble des lots S ∈ SS
11: Si NbIL(S) < NbIL(S?) alors
12: S? = S
13: Sinon si NbIL(S) = NbIL(S?) et NbWL(S) < NbWL(S?) alors
14: S? = S
15: Sinon si NbIL(S) = NbIL(S?) et NbWL(S) = NbWL(S?) alors
16: Si GSI(S) < GSI(S?) et

[1−GSI(S)/GSI(Sinitial)] >

[
TMin +

NBQ

SQ
∗ (TMax − TMin)

]
alors

17: S? = S
18: Fin Si
19: Fin Si
20: Fin Pour
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B. Algorithme du GSI-2

Le second algorithme GSI (GSI-SA-2) utilise la formule GSI-2 :

GSI(S) =
R∑
r=1


Min

1,

NRVr
ILr
WLr
ILr




1/β

+

Max

0,

NRVr
ILr

− WLr
ILr

1− WLr
ILr



α


Contrairement au premier algorithme GSI, les valeurs de Warning Limit et In-

hibit Limit ne sont plus des limites à éviter.

GSI-SA-2 – Sélection du meilleur ensemble des lots S? en utilisant
la formule GSI-2

1: Initialisation: S? = Sinitial
2: Si NBQ = SQ alors
3: SS = ∅
4: Pour chaque lot l′ ∈ Sinitial
5: SS = SS ∪ {Sinitial \ {l′} ∪ {l}}
6: Fin Pour
7: Sinon Si NBQ < SQ alors
8: SS = {Sinitial ∪ {l}}
9: Fin Si
10: FPour chaque ensemble des lots S ∈ SS
11: Si GSI(S) < GSI(S?) et

[1−GSI(S)/GSI(Sinitial)] >

[
TMin +

NBQ

SQ
∗ (TMax − TMin)

]
alors

12: S? = S
13: Fin Si
14: Fin Pour

La prochaine section présente un résumé du programme MILP développé pour

calculer les valeurs optimales de Warning Limit et Inhibit Limit dans le but d’optimiser

l’échantillonnage dynamique au travers des algorithmes GSI.
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1.4.4 Optimisation d’échantillonnage dynamique : MILP

Cette section présente un partie du programme linéaire mixte que je propose

dans ma thèse pour calculer les valeurs de Warning Limit et Inhibit Limit pour

chaque équipement de production en fonction d’un historique de production. Deux

autres versions améliorées du programme intégrant le délai entre les opérations de

fabrication et les qualifications des équipements ont été proposées et le lecteur pourra

trouver plus de détails dans Chapter 7.

L’objectif est de déterminer des limites “réalistes” qui permettent aux algo-

rithmes GSI de prendre des décisions pertinentes et donc sélectionner les meilleurs

ensembles des lots à contrôler. On cherche donc à minimiser l’exposure (risque

global) en prenant en compte le volume total de la production, la criticité de chaque

équipement, et le temps nécessaire pour valider chaque équipement.

Paramètres :

• Et : exposure pour l’équipement de production t (c’est-à-dire le coût financier

associé à chaque wafer ayant subi une opération de fabrication sur un équipement

de production t).

• Vt : volume de la production sur l’équipement t.

• Pmt : temps de mesure pour valider l’équipement de production t.

• KMAX : nombre maximum de mesure pour chaque équipement de production.

• CAPA : capacité totale (donnée en temps) pour la mesure.

• M : nombre des équipements de production.

Variables :

• ILt : Inhibit Limit de l’équipement de production t.

• dkt : variable binaire égale à 1 si le nombre de mesure pour valider l’équipement

de production t est k, 0 sinon.
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• EMAX : exposure maximum.

Le modèle MILP est le suivant :

Minimiser EMAX (1.6)

Sujet à :

EMAX ≥ Et ∗ ILt ∀t ∈ {1 . . .M}. (1.7)

ILt ≥
KMAX∑
k=1

Vt

k
∗ dkt ∀t ∈ {1 . . .M}. (1.8)

KMAX∑
k=1

dkt = 1 ∀t ∈ {1 . . .M}. (1.9)

M∑
t=1

KMAX∑
k=1

Pmt ∗ k ∗ dkt ≤ CAPA. (1.10)

ILt ≥ 0 ∀t ∈ {1 . . .M}. (1.11)

dkt ∈ {0, 1} ∀t ∈ {1 . . .M}, ∀k ∈ {1 . . .KMAX}. (1.12)

EMAX ≥ 0. (1.13)

Les contraintes 1.7 définissent l’exposure maximum parmi tous les équipements

de production. Cet exposure est minimisé dans la fonction objectif. Les con-

traintes 1.8 expriment que l’Inhibit Limit de l’équipement de production t (ILt)

est supérieur ou égal au volume de la production sur t divisé par le nombre de

mesure sélectionné pour valider l’équipement de production t. Les contraintes 1.9

spécifient le nombre de mesure pour l’équipement de production t, c’est-à-dire que

une et une seule variable doit être égale à 1. La contrainte 1.10 assure que la capacité

disponible de mesure ou de contrôle est respectée.
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1.5 Solutions Spécifiques : Prototypes et Indus-

trialisation

Dans cette section, je donne un aperçu des solutions spécifiques que j’ai développées

dans la cadre de ma thèse pour valider les solutions générales que je propose.

Plusieurs prototypes ont été développés mais je ne donne qu’un aperçu des deux

principaux (Figure 1.8 et Figure 1.9) qui ont conduits à une industrialisation des

concepts généraux de la thèse.

Figure 1.8: Vue générale du prototype CMP-WAR.

Le premier prototype (Figure 1.8) a été développé pour l’évaluation en temps réel

du risque (Wafer-At-Risk) et l’amélioration du dispatching (c’est-à-dire la répartition

des wafers ou lots sur les équipements de production) au sein de la production. Le

second prototype (Figure 1.9) a été développé pour optimiser la gestion des excur-

sions12 en fournissant d’une part la liste des équipements de production les probables

de la source de l’excursion, et d’autre part, la liste des lots à contrôler rapidement

12Une excursion intervient dans la production lorsque le contrôle sur un lot ou un équipement
est jugé hors spécifications.
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Figure 1.9: Vue générale du prototype de gestion des excursions.

pour confirmer ou infirmer l’excursion.
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1.6 Conclusion et Perspectives

Dans ma thèse, je me suis intéressé au problème de la mise œuvre industrielle

des plans de contrôle dynamique. Après avoir analysé et mis en évidence la com-

plexité de la conception des plans de contrôle dans une industrie multi-produits,

j’ai développé et proposé de nouvelles solutions que j’ai fait validé au travers des

prototypes, simulations, et intéractions avec différents experts. Toutes les solutions

proposées ont été validées industriellement et certaines ont été industrialisées au sein

du site 300mm de STMicroelectronics à Crolles, en France. Les différentes solutions

ont été comminquées et publiées dans des congrès, conférences et journaux interna-

tionaux. Une des communications a été recompensée avec le prix de Best Student

Paper Award [60].

Plusieurs pistes ont été explorées ouvrant la voie à diverses perspectives. Les

deux principales perspectives concernent l’optimisation de la gestion des ex-

cursions et l’échantillonnage prédictif. Concernant la gestion des excursions, le

champ d’analyse (investigation ou recherche de la source du problème) pourrait être

réduit en utilisant la notion d’ensemble dominant où le lot prioritaire à inspecter

serait celui qui apporte le maximum d’informations sur l’ensemble des lots poten-

tiellement impactés. En ce qui concerne l’échantillonnage prédictif, l’idée serait de

ne plus sélectionner les lots en considérant uniquement les lots devant une étape de

contrôle mais d’intégrer aussi des “lots futurs” c’est-à-dire des lots supposés arriver

devant l’étape de contôle dans un “futur” très proche.
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General Introduction

Semiconductor manufacturing is made of numerous and repetitive processing

steps resulting in cycle times of more than two months. With the reduction in de-

vice sizes, re-entrant flows (repetition of similar processing steps), and the variety of

products to be manufactured (more than 200 products in high-mix plants), the com-

plexity has strongly increased in recent years. This complexity brings semiconductor

manufacturers to introduce several layers of controls in order to guarantee high yield

within production. However, most control operations are considered as non-added

value and thus, when a control operation is introduced, cycle times increase with

consequences on the final product costs. In the context of worldwide competition,

companies have to provide pricing power against competitors. This implies that

companies have to be able to sustain high yield with a minimum number of control

operations.

Several works have been conducted on sampling techniques with the aim of min-

imizing the number of control operations without increasing the risk (i.e. material

at risk) in production. Compared to static techniques, dynamic sampling tech-

niques are more suitable for modern and high-mix semiconductor plants because

they integrate factory dynamics and variability. However, the problem is in the

industrial implementation of dynamic sampling approaches. The specificity of each

semiconductor plant, the IT infrastructure, the variability of production flows, the

heterogeneity of information systems, and the customer requirements are factors

that strongly increase the complexity, leading to impracticability of many sampling

algorithms proposed in the literature. The required investments are such that com-

panies prefer to keep static sampling strategies whereas their inability to quickly
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detect process drifts has already been pointed out.

This thesis aims at analyzing the efficiency of sampling policies, identifying

breaches of controls, i.e. places throughout the process flow where control oper-

ations might be introduced or removed, assessing the added-value of each control

operation, understanding why dynamic sampling techniques are seen efficient but

most of the time impracticable, and providing novel solutions and approaches that

can be industrialized. The thesis is realized within the framework of the Conven-

tions Industrielles de Formation par la REcherche (CIFRE), in accordance with

the Association Nationale de la Recherche Technique (ANRT) which supports com-

panies that hire PhD students. The thesis is also written as a part of the Euro-

pean Union project IMPROVE (Implementing Manufacturing science solutions to

increase equiPment pROductiVity and fab pErformance).

Reading plan

Generally, a scientific work is done according to the following schema [14]:

1. Problem definition,

2. State of the art review (literature review),

3. Case study,

4. Solution proposal,

5. Tests and validation,

6. Generalization and perspectives.

However, this is a thesis in an industrial context through a joint collaboration

between industry and academics. There is an industrial problem and a research cen-

ter must define the problem and propose innovative solutions. The case study comes

before the literature review and proposed solutions are based on existing systems.

Our work is thus structured into 7 main chapters:
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- Chapter 1: Industrial Context.

- Chapter 2: Problem Identification and Research Issues.

- Chapter 3: Literature Review on Sampling Techniques.

- Chapter 4: Analyzing and Optimizing Control Plans.

- Chapter 5: Implementing Smart Sampling Policies.

- Chapter 6: Optimizing Smart Sampling Policies.

- Chapter 7: Industrial Developments and Implementations.

This decomposition can be linked to the TRIZ13 approach [4] developed in 1946

by Genrich S. Altshuller for solving technical problems. The TRIZ approach is

characterized by four main steps (Figure 1.10):

1. Problem identification and formulation.

2. Concept generation and comparison.

3. General solution.

4. Specific solution embodiment.

Figure 1.10: General problem solving model (TRIZ approach) [90].

Using the TRIZ approach, we can classify our work into these four main steps:

- Chapters 1 and 2 refer to problem identification and formulation.

- Chapter 3 refers to concept generation and comparison.

13Teoriya Resheniya Izobretatelskikh Zadatch. In English, it is defined as Theory of Inventive
Problem Solving (TIPS).
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- Chapter 4, 5, and 6 refer to general solutions.

- Chapter 7 refers to specific solution and embodiment.

Figure 1.11: Thesis reading plan.

Chapter 1 introduces the industrial context. A description of the semiconduc-

tor industry is given, the main manufacturing steps are introduced, and controls

performed throughout the production are presented.

Chapter 2 describes the problem tackled in this thesis. The specificities of STMi-

croelectronics Crolles are presented, and the thesis questions are introduced.

Chapter 3 surveys the literature on sampling techniques for controls in semicon-

ductor manufacturing. Each sampling technique is reviewed through statements,

critical analyses, and discussions on industrial deployments.
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Chapter 4 analyses the impact of variability on static control plans, and intro-

duces the fab-wide indicator (IPC) that has been developed to support the industrial

implementation of dynamic control plans.

Chapter 5 introduces the dynamic sampling algorithms that have been developed

within the framework of the European project IMPROVE.

Chapter 6 is devoted to optimizing solutions presented in chapter 4 and chapter

5.

Chapter 7 presents some prototypes that have been developed and deployed

within the company during the thesis. These prototypes have been used to vali-

date the novel approaches and algorithms that have been industrialized throughout

the thesis.

The last part of the document is dedicated to a general conclusion and perspec-

tives for further research.
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Chapter 2

Industrial Context

This chapter introduces the context of the thesis: Semiconductor manufacturing

and controls during the production. The focus is put on controls and especially on

in-line measurements that aim at monitoring process and tool variations. The de-

scription of the different types of controls shows an important complexity linked to

the size of manufactured products (Integrated Circuits). This thesis mainly addresses

Defectivity controls where the objective is to detect and reduce particles generated on

wafers during the production. All production tools are concerned and the variability

within the production environment is such that the efficiency of a Defectivity control

plan is never guaranteed. Hence our interest for this challenging problem.

2.1 Introduction

2.2 Semiconductor Manufacturing

2.3 Controls in Semiconductor Manufacturing

2.4 Conclusion
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2.1 Introduction

Semiconductor industry is driven by the increasing demand of Integrated Circuits

(ICs) in almost all domains (Automotive, communication, entertainment, multime-

dia, health care, energy saving, etc.). This strong demand leads to the pressure

of delivering more and more products within reduced periods. However, manufac-

turing an IC requires more than 300 processing steps with a cycle time of at least

two months. Moreover, with the device sizes reduction, the complexity is such that

several types of controls are necessary to maintain high yield and high quality of

products. Before, during, and after each processing step, several types of controls

are performed to verify that the process is still under control and that products

meet customer requirements. The challenge is therefore in finding the best trade-off

between controls and risk1 on the production. This chapter introduces the semicon-

ductor environment, describes the main steps of fabrication, and the different types

of controls.

Section 2.2 presents the production environment, the manufacturing stages, and

the IC characteristics. In Section 2.3, we describe the levels and types of controls,

and precise our focus within the framework of this thesis.

2.2 Semiconductor Manufacturing

The main activity of a semiconductor industry is to realize electronic compo-

nents, interconnect them, and obtain chips or ICs. These ICs are used in quite di-

verse domains of everyday’s life to perform different kind of functions (Temperature

regulation, autopilot, television, smart-phones). Figure 2.1 shows how electronic

chips drive our daily life. In almost each activity or each product, we use electronics

chips.

1The concept of risk and associated actions is historically linked in industry to the area of
quality and process control [7] [53]. In this thesis, the term risk is related to the material at risk,
i.e. the potential loss if a problem occurs in production.
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Figure 2.1: Integrated Circuits or chips in everyday’s life.

The type and size of each IC varies depending on the targeted application. The

trend toward mobility (reduced energy consumption) and the need for ever increasing

computing power (increased speed) drives the race toward ever shrinking dimensions.

The dimensions become so small that a special environment is required to avoid all

kind of contamination.
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2.2.1 Production environment

Integrated Circuits are manufactured in a specific environment called clean

room (Figure 2.2). In the clean room, operators and engineers are covered from

head to feet, and air is filtered and renewed every thirty seconds. Particles of a

few hundredths of a micron in size are like meteors in this environment and might

cause circuit faults and product failure. The average surgical operating room is

three times dirtier than the dirtiest clean room in the world [74].

Figure 2.2: Clean room.

Several types or classes of clean rooms exist depending on the IC to be manufac-

tured. The classification is performed based on the number of particles allowed per

m3 of air into the production environment. For example, a clean room of class 2

corresponds to a clean room where 102 particles greater than 0.1µm of diameter

are allowed. An ISO standard classification is provided in Annex B.1 and further

details can be found in [97]. Several standards exist and the classification may vary

from a country to another.

ICs are manufactured on silicon wafers that are sliced with a circular shape in

order to minimize losses due to the wafer handling during the production. Figure 2.3

shows the evolution of the size of wafers through years. The trend is in increasing
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the wafer size for producing more and more chips simultaneously (i.e. on the same

wafer)2.

Figure 2.3: Wafer size evolution.

2.2.2 Manufacturing stages

Manufacturing stages for ICs are usually divided in two main parts [101]: Front-

End (FE) processing and Back-End (BE) processing.

1. Front-End processing consists of several process steps that are repeated many

times throughout the production3 (Figure 2.4):

– Oxidation. Silicon dioxide (SiO2) is produced by heating the wafer to

very high temperatures in the presence of oxygen.

– Photolithography. Circuit patterns are formed by masking and etching

processes.

– Implantation or doping. After etching is completed, the exposed surfaces

may be doped. Different types of dopants are added by ion implementa-

tion followed by diffusion processes.

2The more the number of chips produced on a wafer, the larger the reduction in the cost per
die (or circuit).

3During the Front-End processing, wafers are manufactured by lots of 12, 25, or 50 wafers.
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– Chemical deposition. Thin films of various material are deposited on the

wafer through several processes (e.g. Chemical Vapor Deposition [CVD]).

– Interconnect creation. Sputtering or evaporation is used to create con-

ducting circuits between individual electronic components and devices.

Figure 2.4: Front-End Processing [101].

2. Back-End processing refers to the testing, assembling, and packaging. It is

performed at the end of the Front-End processing. During this second phase

of fabrication, wafers are electronically tested for functionality and separated

into individual dice (Figure 2.5). Each die is set into a chosen package, wire-

bonded to the outer perimeter of the package, and finally tested for assembly

onto a printed circuit board. Two main steps are defined: Testing-separation

and Attachment-Wire Bonding-Packaging.

– Testing and separation. During the Front-End processing, several tests

are performed after each processing step (oxidation, etching, layering,

and doping). During the Back-End processes, these test dice are put

through an additional series of computer-controlled tests in which fine,

needle like probes contact the aluminum bonding pads of the test dice. If
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results indicate that the processing parameters were within proper limits,

then each die is tested for functionality. Dice that need to be rejected are

marked with an ink spot.

– Attachment and Wire Bonding. Good dice are seated into a desired pack-

age. Wire bonding makes the electrical contacts between the top of the

die and the surrounding lead frame of the package. The package and

packaging material chosen for a chip depend on the IC’s size, number

of external leads, power and heat dissipation, and intending operating

environment.

Figure 2.5: Back-End Processing [101].

In STMicroelectronics Crolles in France, only Front-End processing

steps are performed. Therefore, within the framework of this thesis, we

focus only on the Front End processing and especially on controls between

processing steps (oxidation, etching, layering, doping, etc.).

2.2.3 Integrated circuit

An IC is generally made of four main components: Resistances, diodes, capac-

itors, and transistors [14]. These four main components are firstly realized on the

silicon wafer before being interconnected to perform specific functions (e.g. auto-

matic switch or regulation). Among these four components, the transistor is the

principal component because of its ability of amplifying solids [73].
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2.2.3.1 Transistor

A transistor is a combination of two diodes sharing a common region. There

are two main types of transistors: Bipolar and Metal Oxide Semiconductor (MOS)

transistors. Bipolar transistors are used to perform analog functions of power at

very high frequency. MOS transistors are used for counting or memorizing i.e. per-

forming logical or binary functions. Most of the integrated circuits are based on

MOS transistors and in the 300mm site of STMicroelectronics Crolles, only MOS

transistors are used4.

A transistor is made of four terminal devices including a gate, a source, a

drain, and the bulk (silicon). Among these four terminals, the gate is the one

that determines the technology node. Figure 2.6 gives a scale factor of the gate

length in today’s transistors.

Figure 2.6: Transistor size - scale factors.

4In the 200mm site of STMicroelectronics, BiCMOS (Bipolar + MOS) transistors are used.
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2.2.3.2 Technological evolution

The technological evolution in semiconductor manufacturing is linked to the

transistor gate length which determines the technology node. This length decreases

regularly following Moore’s Law [6]. The Moore’s law has been edited in 1965 by

Gordon E. Moore. It states that the number of transistors placed in the IC will

double every two years due to the size reduction. Since its edition, the Moore’s law

has become one of the driving principle of the semiconductor industry. All manu-

facturers are challenged with delivering annual breakthroughs ensuring compliance

with Moore’s law. In 1975, the law has been rectified by bringing to 18 months

the rhythm of doubling the number of transistors within an IC. In 1997, Gordon E.

Moore predicted the end of his law in 2017 because of the physical limits. Today,

the trend is to do “More than Moore” by focusing on the system integration

rather than the transistor density within the IC. For example integrating a camera

into a cellphone or a cellphone into a PDA5. One of the main consequences of the

Moore’s law is the significant reduction in product prices (Figure 2.7).

Figure 2.7: Impact of Moore law (Cost of 1MB of memory on silicon).

5Personal Digital Assistant.
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2.3 Controls in Semiconductor Manufacturing

In semiconductor manufacturing, controls are necessary evils because of the pro-

hibitive amount of time required to manufacture a chip [58]. Different levels of

controls are defined and, for each level of control, several types of control are per-

formed.

2.3.1 Levels of controls

Six main levels of controls can be defined [8]:

1. Facilities or technical installations. To guarantee the best possible envi-

ronment for the fabrication of wafers, a huge number of parameters have to

be monitored regarding the technical installations:

– Clean-room ambient characteristics (temperature, humidity, pressure,

contaminants).

– Fluids, liquids, and gases (temperature, pressure, flow, contamination,

etc.).

– Energy (load, intensity, voltage, consumption, etc.).

– Process outputs, wastes, gases, etc.

2. Equipment sensors. To ensure efficient processing operations, all variations

have to be detected and analyzed. For that, several types of sensors are placed

on different production tools to trigger alarms and actions in manufacturing

systems.

3. Fab or In-Line measurements. This level of control groups measurements

that are performed on silicon wafers with a large variety of techniques: Ellip-

sometry, reflectivity, scanning electron microscopy, visual inspection, pixel to

pixel comparison, resistivity, scatterometry, etc. Measurements are classified

according to the following characteristics6:

6The list is not exhaustive.
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– Impact: Destructive or non-destructive.

– Support: Product wafers, Non-Product Wafers (NPW), monitoring wafers,

dummy wafers, or test wafers.

– Throughput or capital cost of the measurement.

– Easiness of the required qualifications.

4. Parametric testing. Once transistors and other various devices are connected

through metalization on the wafer, it is possible to control their performance

versus their specifications. These measurements generally address basic pa-

rameters of electrical devices: Transistor voltage thresholds, leakage current,

oxide breakdown voltage, via resistance, etc. Measurements are done on stan-

dard test structures placed in wafers scribe lines. All the wafers are measured

on a limited number of sites per wafer.

5. Final or Functional tests. Once the front-end process is completed, semi-

conductor devices are subjected to a variety of electrical tests to determine

if they function properly. The proportion of devices on the wafer found to

perform properly is referred to as the yield. The fab tests the chips on the

wafer with an electronic tester that presses tiny probes against the chip.

6. Physical Characterization and Wafer level Reliability. This last level

of controls is used to evaluate component life time under various stressing

conditions (humidity, temperature, corrosion, etc).

2.3.2 Types of controls

Several types of controls exist depending on the level of control. In this thesis, we

focus on In-Line measurements and especially on the types of controls related to

the process and equipment monitoring. There are five main types of controls: Fault

Detection and Classification (FDC), Statistical Process Control (SPC), Run-to-Run

(R2R), Virtual Metrology (VM), and Defectivity controls. The four first types of

controls (FDC, SPC, R2R, and VM) are elements of Advanced Process Control

(APC) [85] (Figure 2.8).



52 CHAPTER 2. INDUSTRIAL CONTEXT

Figure 2.8: Interaction of APC elements [85].

1. Statistical Process Control consists in using statistical methods to analyze

the process stability (Figure 2.9). Depending on the process state, different

actions (stop the process tool, adjust the process parameters, etc.) are taken

to achieve or maintain a state of statistical control. The objective is to con-

tinuously improve the process capability [55] [75]. Several SPC tools exist and

they are based on the so-called Western Electric Rules7 [96].

2. Fault Detection and Classification consists in statistically monitoring pro-

cess variations by analyzing the process tool parameters (temperature, pres-

sure, gas flow, optical emissions, etc.) [75] (Figure 2.10). During the process

fabrication, all the tool parameters are collected for each processed wafer. A

series of curves representing the evolution of these parameters during the time

of the process are plotted for each wafer. Based on these data collected on

both the tool and on wafers during their processing, different correlations are

7Western Electric Rules are decision rules for detecting “out-of-control” or “non-random” con-
ditions on control charts (control charts are tools graphically displaying the process stability or
instability over time).
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Figure 2.9: Statistical Process Control [75].

automatically computed. Whenever a problem is detected, the process tool

is automatically stopped and actions immediately taken. The main difference

between SPC and FDC is that FDC is a real-time based solution and can stop

the process tool before the end of a processing step [2].

Figure 2.10: Fault Detection and Classification [75].

3. Run-to-Run is a closed-loop control solution to correct for process deviation

from the desired target (Figure 2.11). The technique consists in modifying

recipe parameters between production runs8 to improve processing perfor-

mance. In serial processing, this method can just be applied between two

8A run can be a batch, lot, or an individual wafer.
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measurements [2]. It is an in-line technique like the FDC system. As illus-

trated in Figure 2.11, R2R controller is a supervisor that indicates whether

the automatic controller needs adjustment. It consists in manipulating the

set points (also know as recipes) of the underlying automatic controller in a

supervisory manner in an attempt to reduce the output variability. Two types

of control loops are used: Feed-Forward and Feed-Back. Feed-Forward

control loops are used to reduce the impact of variability observed on run N

by modifying the parameters of run N+1. Feed-Back control loops are used

to counteract possible process drift. Using a predefined model [2], the differ-

ence between the desired target and the actual measurement value on run N

is computed. This difference is used to adjust the parameters of run N+1 and

ensure that the desired target will be reached.

Figure 2.11: Run-to-Run.

4. Virtual Metrology consists in predicting measures, hence the term virtual

metrology, based on previous metrology measurements and FDC data [15]

(Figure 2.12). Wafer parameters are derived from upstream metrology (e.g.

process state, additional sensors, temperature, pressure, gas flow, etc.) by

using physical or statistical models, or hybrids models [26]. The objective is

to reduce direct measurements on the wafers and to provide additional virtual

measures to help alerting earlier when a process is drifting. The technique is

based on predictive models that can forecast the electrical and physical param-

eters of wafers, based on data collected from the relevant process tools [39].
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Figure 2.12: Virtual Metrology [39].

5. Defectivity control consists in detecting, analyzing, and reducing the num-

ber of defects generated on wafers during production (Figure 2.13). The phases

of analysis and reduction are also known as the review phase where defects

are first analyzed and then classified by type or class [46] [22].

(a) Embedded
particle.

(b) Simple parti-
cle.

Figure 2.13: Examples of defects on wafers.

Detecting defects means deploying different tools and methods to capture

defects generated by production tools on product or non-product wafers. Two

kinds of detection are used: Optical Detection and Scanning Electron Micro-

scope (SEM).

Analyzing defects means deploying methods to examine defects detected on

wafers. Three main steps are performed during the analysis phase: Review,

classification, and source identification. The review phase consists in verifying
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if the defect found on a wafer is a known defect, i.e. if the defect has already

been encountered in the past and classified into a specified group of “known

defects”. The classification phase consists in defining new groups for new types

of defects or classifying them into existing groups. The source identification

phase consists in locating the source of the defect, i.e. identifying the produc-

tion tool that has generated the defect [61].

Reducing the number of defects means developing and deploying different

tools and methodologies in order to lower the number of classified or known

defects that may appear on wafers during processing steps. The main objec-

tive is to increase yield by reducing the number of bad wafers that may be

discarded during the final tests.

Compared to other types of controls, defectivity controls have the

specificity to potentially address all workshops and all production tools

within the Fab (Chapter 3). This specificity leads to an increasing com-

plexity when designing control plans because of the factory dynamics and

variability during production (Chapter 5). This explains our interest and

focus within the framework of this thesis.
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2.4 Conclusion

In this chapter, we have rapidly presented the context of this thesis: The Semi-

conductor industry. The main activity of this industry is to design and produce ICs

that are used in quite diverse domains of everyday’s life. The production is divided

into two main areas called Front-End and Back-End. The Front-End part consists

in manufacturing and interconnecting different components on wafers in order to

obtain ICs. In the Back-End part, ICs are individually tested, assembled, and pack-

aged depending on the targeted operating environment. In STMicroelectronics in

Crolles, France, the production is focused on the Front-End part, and more than 300

processing steps are necessary to realize a functional IC. This huge number of steps,

combined the size of ICs (nanometer) and the non-reversibility of some processing

steps explain the importance of controls in such an environment.

The description of the different levels and types of controls helped us to un-

derstand the source of complexity linked to both the environment and the size of

products to be manufactured. In this thesis, we focus on controls related to the

process and tool monitoring, and especially on one of the most complex type of

control: Defectivity measurements. The particularity of defectivity controls is that

all the production tools and all areas of production may be concerned. In the next

chapter, we go in depth regarding defectivity controls and especially defectivity con-

trols in STMicroelectronics in Crolles France. We aim at identifying the problem

and defining methods to solve it efficiently.
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Chapter 3

Problem Identification and

Research Issues

Industrial research problems are not tackled the same way than theoretical re-

search problems. The problem must be clearly identified and formulated in order

to propose general solutions that can be industrialized. This chapter introduces De-

fectivity controls, specificities of STMicroelectonics Crolles in France, and research

issues in the industrial context. We aim at concretely understanding the problem,

formulating it, and defining strategies to solve it efficiently.

3.1 Introduction

3.2 Defectivity Controls and STMicroelectronics Specificities

3.3 Research Issues and Solving Approaches

3.4 Conclusion
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3.1 Introduction

The strong competition in semiconductor industry is such that companies are

called to search for different avenues to reduce production costs without impacting

quality of final products. One of the identified tracks is controls throughout produc-

tion. As more than 300 processing steps are required to produce a functional IC, the

trend is to include additional control steps in order to detect as quickly as possible

potential drifts. However, each additional control has impacts on the final product

costs and, therefore, missing to find the right trade-off between controls and risk i.e.

material at risk in production can lead to significant losses. The larger the num-

ber of products to be manufactured, the more finding a trade-off between controls

and risk becomes complex. This is especially true in high-mix semiconductor plants

where more than 200 products are run concurrently on hundreds of production tools.

In this thesis, we focus on defectivity controls that have the particularity to

address all production tools in all process areas. Each time a defectivity control

is performed, the risk related to one or several production tools is impacted i.e.

reduced. The danger of having redundant controls is thus increased with the number

of processing tools. Hence it is necessary to identify the right position for control

operations, remove redundant controls, and optimize the use of inspection capacity.

This chapter introduces defectivity controls, explains the complexity, and brings out

the challenges when designing an efficient and optimized control plan. Section 3.2

introduces in depth defectivity controls and, in Section 3.3, we present research

issues and solving approaches.

3.2 Defectivity Controls and STMicroelectronics

Specificities

Defectivity controls consist in detecting and reducing defects generated on wafers

throughout production. The aim is to increase yield and provide support for new

technologies or products. As introduced in Chapter 2, a defectivity control is a type

of in-line measurement performed between process operations during the fabrica-
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tion process. This type of control was originally used to understand the integration

issues of the main bricks1 for a given product or, identify the main causes of yield

losses. Nowadays, the control of defectivity on products is seen as the most efficient

way to master yield excursions2 in a production line. This is because measurements

done on bare wafers i.e. Non Production Wafers (NPW) or without pattern, are not

representative of the actual operation of a process step. Moreover, by using product

wafers for defectivity controls, there is no waste of productive time (machine) or

material (NPW, monitoring wafers).

One of the main characteristics of defectivity controls is that all production tools

are concerned. Each and every tool is a potential contributor to defectivity (even

the simplest tool has mechanical parts moving). By performing a defectivity control

on wafers of a lot, information is collected on the various tools that have been used

to process the considered lot so far.

3.2.1 Defectivity activity and defects types

The main target addressed by defectivity controls or measurements is the re-

duction of the average level of defects per cm2 and per photo-layer (also known as

“Dφ”), thus yield improvement. The activity of defectivity operators and engineers

is twofold: Inspection which consists in the detection of defects (number of defects

per wafer) and Review where subset of defects are analyzed and then classified by

type or class (Section 2.3.2). Several types of defects may appear depending on the

production step:

- Particles and arcing in the active zone (Figure 3.1),

- Voids (Figure 3.2),

- Scratches (Figure 3.3),

- Extra and missing patterns (Figure 3.4),

- Corrosions and plate-block (Figure 3.5),

1The term brick refers to a set of process operations that need to be performed for a given
technology.

2An excursion is a deviation in process or product specifications. In other words, when a process
or production tool is out of specifications, an excursion happens.
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- Residues (Figure 3.6),

- Back-end type defects (Figure 3.7), etc.

(a) Embedded parti-
cle.

(b) Simple particle. (c) Arcing.

Figure 3.1: Particles and arcing on wafers.

(a) Void type 1. (b) Void type 2. (c) Void type 3.

Figure 3.2: Voids on wafers.

(a) Scratch type 1. (b) Scratch type 2. (c) Scratch type 3.

Figure 3.3: Scratches on wafers.

All defects on wafers have consequences on the final products. If they are not

early detected, they can go through the production (Figure 3.7) and damage the

functionality of the final product (IC). Hence it is critical to develop and set up

specific methods and tools to capture the main defects as quickly as possible.
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(a) Extra-pattern. (b) Missing-pattern. (c) Missing-pattern.

Figure 3.4: Extra and Missing patterns on wafers.

(a) Corrosion 1. (b) Corrosion 2. (c) Plate-block.

Figure 3.5: Corrosions and plate-block on wafers.

(a) Residue. (b) Residue (slurry). (c) Residue (car-
bon).

Figure 3.6: Residues on wafers.

(a) Evolution of a defect. (b) Particle after de-
position.

Figure 3.7: Other types of defects.



64 CHAPTER 3. PROBLEM IDENTIFICATION AND RESEARCH ISSUES

3.2.2 Techniques and tools

The diversity of defects generated by production tools on wafers is such that

several types of inspection tools are necessary to capture all potential defects. The

variety of tools and methodologies vary from one plant to another. Nevertheless, two

main systems can be distinguished [89] [21]: Dark-Field and Bright-Field. Both sys-

tems consist in collecting scattered and reflected light on the wafer. The Bright-Field

system collects both the scattered and reflected light through the same aperture to

obtain an image (Figure 3.8b). The Dark-Field system only collects the scattered

light. No part of the reflected light falls within the collection angle (Figure 3.8a).

The difference between these two systems allows both small defects (Dark-Field sys-

tem) and large defects (Bright-Field system) to be captured. The Dark-Field system

has a high throughput compared to the Bright-Field system [31].

(a) Dark-Field system. (b) Bright-Field system.

Figure 3.8: Dark-Field and Bright-Field systems [31].

Most of the tools used today for defectivity controls work on image comparison.

Chips (on wafers) supposed to have the same image are compared. Based on the

difference detected between images, it is possible to identify and localize defects

on wafers [1]. This technique which was very expensive some years ago has been

greatly enhanced with the available computing power. Nevertheless, as the technique

is based on comparison of images, the set-up of measurement recipes is extremely

complex and specific to each product operation (pattern, contrast, color, etc.).
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Each time a defect is detected, several analyses need to be performed to identify

the source of the defect, i.e. the processing tool that has generated the defect on

the wafer [61] (Section 5.5).

3.2.3 Defectivity control plans and complexity

Defectivity control is instrumental to yield improvement when developing or

ramping up a technology in volume (engineering phase). Once the main issues are

identified and fixed, controls are relaxed and measurements are used to monitor

and control production tools. These controls are considered as non-mandatory since

they are not explicitly required to manufacture a functional IC. If they contribute

in maintaining high yield within the production, they increase cycle times. That is

why sampling is required to find a trade-off between yield and cycle time. Sampling

rates are usually set by technology, at the start of production, and take into account

different parameters such as the process criticality, the phase of integration, the ma-

turity of products, or the customer requirements. For example, an old technology

(e.g. CMOS120) will have a much lower sampling rate than a recent technology

(e.g. CMOS028). Failing to find the right trade-off between yield and cycle time

may lead to significant losses.

In a high-mix environment as in the 300mm fab of STMicroelectronics in Crolles,

more than 20 technologies are run simultaneously, production tools are sometimes

qualified to process more than 5 different technologies, process criticality varies from

one technology (or operation) to another, processing throughput is different from

one tool to another, each processing step requires a specific recipe for measurement,

and customer requirements are varying. Furthermore, to each technology is asso-

ciated one or several products. Each time a new measurement is introduced for

a new product or operation, the corresponding recipe has to be created and engi-

neered. Because of the variety of products running at the same time in the so-called

“high-mix fab”, doing this for every product is an overwhelming task. So, in such

production lines, products3 are divided into two main groups: Measurable and

3The cost of recipe set-up is so high that the only products targeted are the so called “big
runners”. As they are supposed to last a few months, they are seen as economically viable.
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non-measurable products. By extension, lots of a product which can be measured

in defectivity are said to be “measurable”, and the others are “not measurable”.

Moreover, because of the cost of defectivity measurement tools and of the ever vary-

ing volumes of products (customer demands), it is not possible or interesting to

measure all the lots of a given product. It implies that, among measurable lots, only

a limited number will be chosen for a control and only at some pre-defined steps.

The sampling is therefore done at lot start (beginning of the production flow)4 and is

mainly based on the experience of the engineering team. The objective is to control

at least 90% of production tools in less than 24 hours.

3.2.3.1 Defectivity control plans: STMicroelectronics Crolles

In the 300mm site of STMicroelectronics in Crolles, the number of products and

tools to be monitored is such that defectivity control plans are designed by tech-

nology depending on product specificities. For each technology, two matrices are

designed. One matrix giving the set of control operations activated for each group

of lots (Figure 3.9), and another matrix giving the depth of control, i.e. the set

of process operations validated or covered by control operations (Figure 3.10).

Figure 3.9 shows an example of the control plan for the CMOS065 technology in

the 300mm fab of STMicroelectronics. The column GENERIC OPERATION gives

the list of control operations performed in the defectivity area. Different attributes

(DEF C065 STANDARD, DEF C065 FAST1, DEF C065 FAST2,

DEF C065 FAST3, DEF C065 FAST4, DEF C065 FAST5, DEF C065 OPTION)

are defined. These attributes are associated to different measurable lots corre-

sponding to a product of the CMOS065 technology. For each attribute, only a

certain number of control operations will be performed on the lot (see the “X”

in the graph). For example, if, to a measurable lot is associated an attribute

“DEF C065 OPTION”, it implies that during the processing flow, only one con-

trol operation (18-O STRIP NSD) will be performed on this lot. This is the case

4Selecting lots at the start also guarantees that the same wafers will be inspected at operation
N and N+X, thus enabling an easy identification of “added defects” and simplifying the analysis
in the case a problem occurs.



3.2. DEFECTIVITY CONTROLS 67

for all technologies running within the fab. The processing flow varies from one

technology to another, the names of attributes are different and specific to each

technology, and the number of control operations activated by attributes is differ-

ent. Some technologies can have more than 10 attributes. Considering an average

of 20 technologies with at least 6 different attributes per technology, the engineering

task consists in defining and updating 20 matrices with at least 120 attributes. This

is a challenging task considering the high probability of missing key parameters.

Figure 3.9: Example of a control plan for the CMOS065 technology.

As defects created at operation X may still be observable at operation X+D (de-

pending on the “transparency” of successive process layers), one single defectivity
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measurement may validate several process operations (tools). So, a second matrix

giving the depth of control has to be designed. Figure 3.10 shows an example of this

second matrix for the CMOS065 technology. Defectivity control operations (G, I,

Figure 3.10: Example of depth of control for the CMOS065 technology.

L, Q) are those reported in the first matrix (Figure 3.9) (1, 2, 3, 4). For example,

when a defectivity control operation is performed at “O OXID SACOX (Q)”, six

process operations are covered or validated (Figure 3.10): P, O, N, K, H, F. The

process operation “O ANN STI (M)” is not validated because of the experience of

the engineering team that concluded that no defect could be detected for that pro-
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cess operation when measuring at “O OXID SACOX (Q)”. Each technology has its

own matrix giving the depth of control.

Consequently, during the processing flow, whenever there is a need to know if

a lot has been flagged (i.e. selected for measurement at the start of production)

or sampled for a defectivity measurement in the next defectivity control operation,

four main steps need to be performed:

1. Identify the attribute associated to the lot.

2. Locate the current process operation of the lot.

3. Utilize the “depth-of-control” matrix (Figure 3.10) to determine whether there

is a defectivity control operation or a set of defectivity control operations that

can validate the process operation.

4. If there is a defectivity control operation that can validate the current process-

ing step, then use the matrix (Figure 3.9) giving the set of defectivity control

operations to be activated by each attribute to see whether the lot is flagged

(“X”).

Let us consider lot L1 currently in process operation O CMP STI (N) and hav-

ing O DEF C065 FAST1 as attribute. To know if lot L1 can be validated in the

next defectivity operation, four steps will be performed:

1. Identify the attribute associated to the lot: O DEF C065 FAST1.

2. Locate the current process operation: O CMP STI (N).

3. Utilize the depth-of-control matrix in Figure 3.10 to determine whether the

process operation O CMP STI (N) is validated by a control operation in de-

fectivity. In the matrix, we can see that O CMP STI (N) is validated by the

defectivity operation O OXID SACOX (Q) (“X” in the table).

4. Use the matrix in Figure 3.9 to see if the lot has a flag (or has been sampled)

for a control in the next defectivity operation. We check if there is a “X”
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indicating that lots having the attribute O DEF C065 FAST1 are sampled

for a control in the defectivity operation O OXID SACOX (4). Since this is

the case, lot L1 will be validated by a defectivity control in the next

operation. Lot L1 is “flagged” or “sampled” for the next defectivity operation

(O OXID SACOX).

The complexity very quickly increases depending on the number of technologies

that are run simultaneously and the number of products associated to each tech-

nology. Other parameters such as the process criticality and the capture rate5 also

play an important role in the design of the defectivity control plan. They are not

explicitly modeled in the sampling or control plan but they contribute in increasing

or reducing the priority of lots depending on the production state. The next section

presents some of these parameters.

3.2.3.2 Factors increasing the complexity of designing control plans

Here are the main characteristics that contribute in increasing the complexity of

designing defectivity control plans: Production tool qualifications, kill ratio, capture

rate, Defect Work Request. These characteristics are discussed below.

• Production tool qualifications [36] [37] are related to the ability of pro-

duction tools to perform some predefined process operations. One of the main

goals when qualifying production tools is to ensure that tools are optimally

used and provide flexibility for the entire production. However, by doing this,

the focus is put on production tools, not on metrology or defectivity tools.

The problem is that, when the sampling strategy is defined at the start of

production, there is no information on the arrival of sampled lots in front of

defectivity tools. As defectivity controls address the uncertainty of processing

lots on production tools, some tools may have a high level of uncertainty while

others will keep a low level of uncertainty. Figure 3.11 shows examples of qual-

ifications of production tools for various operations. Operation O OXID PAD

can be performed by three different production tools: WOASI01, WOASI02,

5The capture rate represents the sensibility in detecting defects for a given processing operation.
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and WOASI03. These tools are also qualified for other types of operations (e.g.

O OXID LINER). Depending on the availability of tools or types of products

within the production, the priority will vary, some tools may be preferred

compared to others, and it will impact the defectivity control plan.

Figure 3.11: Example of qualified tools per process operation.

• Kill Ratio (KR) defines the criticality of defects on wafers regarding the size

of patterns [1]. It is generally between 0 and 1 [72] and defines whether a defect

detected on a wafer is killer6 (Figure 3.12) or not (Figure 3.13). Defectivity

control plans designed by technology do not explicitly include this parameter

(KR). Some process operations may be more critical than others because of the

size of patterns, the product types, or the types of operations to be performed.

Impacts on control are thus observed when there is a need to prioritize lots on

defectivity tools or perform additional control operations. The start sampling

plan is no longer respected.

• Capture Rate (CR) gives the percentage of defects that can be captured

or detected at a given control operation [86]. All control operations (e.g.

Figure 3.9) do not have the same CR because of the depth of control (e.g.

Figure 3.10) and the criticality (KR) of some process operations. The priority

6A defect is identified as “killer” when it will definitively hinder the circuit functionality. This
is linked to the size of the defect, hence its location in the circuit.
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Figure 3.12: Killer defects.

Figure 3.13: Non killer defects.

is thus different when defining sampling rate per product or technology. Hence

an additional level of complexity.

• Defect Work Request (DWR) is a specific term used in STMicroelectronics

Crolles to identify a lot that is sampled by the engineering team but informa-

tion is not recorded in the Manufacturing Executing System (MES). A DWR

is necessary when there is a suspicion in production and there is a need to

quickly analyze a lot. This lot should normally contribute to reduce the risk

level but, as no information is recorded in the MES, it is difficult to quantify

the risk reduction. Moreover, this is an additional task for engineers regarding

the sampling rate defined at the start of production.



3.2. DEFECTIVITY CONTROLS 73

All these additional factors or parameters are not explicitly included in the initial

defectivity control plan but, they play an important role. They are considered by

engineers when defining sampling rates, and when performing controls throughout

production. It is hard to analyze and understand reasons for different sampling

rates without being a member of the defectivity engineering team or working in

close collaboration with defectivity experts. The large number of parameters to

consider requires a high level of expertise to assess the efficiency of the control plan.

This is one of the main motivations of this thesis: Try to think in a different way

and find smart solutions for such problems.
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3.3 Research Issues and Solving Approaches

In the previous sections, we saw that the complexity of designing a defectivity

control plan increases with the number of parameters (types of products, technolo-

gies, process operations, criticality, etc.) to include or consider depending on the

production state. There are situations where some controls need to be introduced

throughout production, other controls need to be removed or released, and others

are not even recorded in the automation system. One of the worst cases is when

additional control operations do not contribute to reduce the risk at all. Increasing

the number of control operations lead to instability because of the limited metrology

capacity. The workload for defectivity engineers varies depending on the production

state, there is no “standard” rule for prioritizing lots on defectivity tools, and the

level of integration (number of parameters to consider) is such that it is impossible

to assess the actual added value of controls or the efficiency of the entire control plan.

If there exist controls without actual added-value because of the complexity,

can we say that there are too much controls or lack-of-control? Can we identify

where control operations might be added or removed? What can we propose

to model and solve these issues? Is it possible to have a general solution that

could be understood by everybody and generalized for other types of controls than

defectivity?

3.3.1 Research issues

This thesis, linked to the efficiency of control plans (especially defectivity control

plans) tries to answer the three following main questions:

1. Over- or lack-of-control? And why?

2. Which kind of solution can be proposed, generalized, and industrialized?

3. How can the solution be optimized?
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3.3.2 Solving approaches

This is a thesis in an industrial context. The objective is to propose solutions

that can be, not only generalized, but also industrialized. We use the three following

premises of the TRIZ approach to characterize our problem [4]:

1. The ideal design with no harmful functions is a goal.

2. An inventive solution involves wholly or partially eliminating a contradiction.

3. The inventive process can be structured.

Based on these three premises of the TRIZ approach, we choose as supports for

the research: Interaction with experts and development of prototypes.

1. Interacting with experts helps us in understanding the industrial context,

the origin of the problem, and the complexity we may face. We aim at avoiding

traps and focusing on the final objective.

2. Developing prototypes helps us in testing and validating new algorithms

or techniques in an industrial context. We aim at progressively validating our

solutions in a production environment. As the efficiency of an algorithm or

technique may vary depending on its application, we aim at avoiding develop-

ing theoretically efficient algorithms that are impracticable when aiming for

industrial implementation.
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3.4 Conclusion

In this chapter, we presented the problem tackled within the framework of this

thesis and introduced our solving approaches. We described the defectivity con-

trol plan in the 300mm fab of STMicroelectronics in Crolles, and discussed the

complexity that motivates our research. The focus is on the efficiency of controls

throughout production. This thesis tries to answer whether there is over- or lack-of-

control regarding the current control plan, and propose general solutions that can

be industrialized and optimized.

In the next chapter, we survey the literature. We aim at identifying problems

related to our thesis questions especially on sampling techniques, classifying these

problems, and positioning our problem among solutions that have already been

proposed.



Chapter 4

Literature Review on Sampling

Techniques

This chapter provides a state-of-the-art1 on sampling techniques (at lots and

wafers level) for non-mandatory controls in semiconductor manufacturing, and po-

sitions our problem in the literature. We observed that the specificities of each semi-

conductor plant is such that the efficiency of a sampling technique is directly linked

to the production environment. Hence, our focus is on adaptive and dynamic sam-

pling techniques that respond to the factory dynamics and variability.

4.1 Introduction

4.2 Sampling Techniques in Semiconductor Manufacturing

4.3 Static or Start Sampling

4.4 Adaptive Sampling

4.5 Dynamic Sampling

4.6 Conclusion

1Part of this chapter has been submitted for publication in IEEE Transactions on Semi-
conductor Manufacturing [67].
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4.1 Introduction

Sample measurement for a process parameter is a necessity in semiconductor

manufacturing because of the prohibitive amount of time involved in 100-percent

inspection while maintaining sensitivity to all types of defects and abnormality [91].

Moreover, a 100-percent inspection (or metrology) rate does not guarantee 100-

percent quality since, in semiconductor manufacturing, inspection is never totally

reliable and can easily introduce an error of almost the same order as the fraction

of defectives [76]. If the development of sampling techniques is not recent in semi-

conductor manufacturing [23] [19] [33], significant improvements have been observed

and, today, new challenges are being faced. Current computers offer the possibility

to handle applications that were judged “infeasible” five or ten years ago. This

opens the way for the development and implementation of very complex sampling

techniques.

This chapter surveys the literature on sampling techniques for inspection or

metrology steps (defect inspection or defectivity controls, critical dimension mea-

surements, overlay, thickness, and step height measurements) in semiconductor man-

ufacturing. We aim at identifying works related to our problem, and an-

alyzing solutions that have been proposed. We discuss the trade-off between

the cost of a measurement and the related cost in term of risk reduction, and the

development of effective sampling techniques. We collected the literature from dis-

sertations, working papers, technical reports, conference papers (Advanced Semi-

conductor Manufacturing and International Symposium on Semiconductor Manu-

facturing), and also from journals on Semiconductor Manufacturing, process control,

and operational research. Each article is reviewed through statements, critical anal-

ysis, and also discussions on industrial deployments of various sampling techniques

in semiconductor plants.

Through all of the papers browsed in our review, we observe that sampling tech-

niques can be classified into three main groups: Static or start, adaptive, and

dynamic sampling. Static or start sampling techniques are based on fixed rules
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not changed throughout the production. Adaptive sampling techniques consist in

adapting sampling rules defined at the start of the production. Depending on infor-

mation brought by other types of controls (statistical analysis, process variations,

maintenance, etc.), rules are adjusted in order to prevent potential drifts or reduce

the material at risk. Dynamic sampling techniques consist in selecting in real time

the best lots or wafers to inspect depending on the inspection capacity and the actual

situation within the production. No rule is defined at the start of the production

and the decision of selecting or not a lot is directly taken in front of the inspection

step, and based on information brought by the lot.

Section 4.2 presents a general overview of sampling techniques in semiconductor

manufacturing. In Section 4.3, we discuss static or start sampling techniques. Sec-

tions 4.4 and 4.5 are devoted to adaptive and dynamic sampling techniques respec-

tively. For each group in our classification (static, adaptive, and dynamic sampling

techniques), we analyze the different papers and articles using the six following indi-

cators: Year, mathematical technique, rule-based technique, industrial deployment,

simulation, and comparison with other techniques.

4.2 Sampling Techniques in Semiconductor Man-

ufacturing

In semiconductor manufacturing, sampling techniques vary depending on the set

of parameters to be monitored or production objectives. Three main groups are

defined in the literature [48]:

• Excursion monitoring and control aim at frequently monitoring the pro-

cess so that any process deviations are caught and the causes for the process

excursion are fixed.

• Process integration and yield improvement aim at adjusting the per-

centage of lots flagged at the start of their production (baseline lots) in order

to identify the main detractors for a given technology and eliminate them.
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For low-mix semiconductor plants, the percentage of lots flagged at the start

of production is adjusted in order to compensate the potential loss based on

measurement results.

• Defect detection and learning aim at learning on different defect types

and their mechanisms: Killer rates. The sampling rate has to enable defect

detection at a rate that is matched to the one of root-cause analysis and

problem fixing.

Among these three groups of sampling techniques, we only focus on excur-

sion monitoring and control, and therefore, the classification we propose (static,

adaptive and dynamic sampling techniques) concern this first group of sampling

techniques that includes defectivity controls. The objective is twofold: Reduce

the number of measurements without increasing the risk in production, and detect

as quickly as possible potential excursions. Missing to reach these two objectives

can lead to significant losses. Indeed, if the focus is only on the reduction of mea-

surements, the danger can be to miss the detection of potential excursions. When

a process is likely to be out of control, increasing the number of measurements can

help to detect excursions as quickly as possible. Similarly, if the focus is only on

excursion monitoring, the danger is to increase the number of measurements leading

to increased cycle times, and therefore increased product costs.
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4.3 Static or Start Sampling

Static or start sampling consists in determining a fixed number of lots to measure

at different manufacturing stages. The number of lots to measure depends on the

available inspection capacity, the maturity of the technology, and the process step

criticality [12]. The frequency and the sensitivity of the measurement are selected

in advance, at the start of production. The objective is to monitor and detect pro-

cess drifts and limit the material at risk [9] between controls. For example, if the

sampling plan specifies to control one lot every five lots, the objective is to limit the

material at risk to not more than five. Always measuring the same lots or wafers

enables the identification of the added defect density between sequential inspection

steps [30]. Another advantage is the simplicity of implementation and adequate

management of resources [12].

Static sampling is being widely used in most semiconductor plants. However,

it does not fit high-mix semiconductor plants because of its main drawbacks of not

taking into account the factory dynamics and variability. By always selecting the

same lots to measure, there is, for the selected lots, a strong impact on the cycle time

and an increased risk of yield losses due a higher number of steps and the significant

time spent in front of each inspection step. Nevertheless, start sampling is still used

during the phase of integration for some specific products. In some semiconductor

industries, especially in a low-mix context, where a production tool can be qualified

to process only a specific type of product, start sampling remains valid and some

optimized solutions can be designed.

Among papers surveyed in Table 4.1, note that, even if all papers are ap-

plied to a case study of a semiconductor plant, very few provide industrial deploy-

ments [94] [87] [43]. In [94], the study performed in an IBM plant to determine the

optimal sampling plan for the poly etch module is described. The goal is to minimize

both the risk for the product and the cost of inspection. Three decision variables

are considered in the study: Lot sampling interval, number of wafers per lot, and

process control limits. Results indicate that an optimal sampling plan may require
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Lazaroff et al. [45] 1991 * *
Nurani et al. [70] 1994 * *
Nurani et al. [68] 1996 *
McIntyre et al. [52] 1996 * *
Tomlinson et al. [94] 1997 * *
Scanlan et al. [84] 1998 *
Elliott et al. [25] 1999 *
Chien et al. [18] 2000 *
Lee et al. [48] 2001 *
Chien et al. [17] 2001 * *
Shumaker et al. [87] 2003 * *
Xumei et al. [103] 2003 * *
Wu and Pearn [102] 2006 * *
Kwang and Chin [43] 2008 * *

Table 4.1: Survey on static or start sampling

additional inspection capacity whose cost is much lower than the benefits. In [87],

a sampling method developed at Motorola is discussed. The method is based on

two steps: The first step consists in determining products that are good candidates

for sampling, and the second step performs analysis to determine the break-even

operating constraints. The method is developed and validated against historical

data. Results indicate a reduction of wafer test costs by a factor of 10. Kwang and

Chin [43] worked on data management. They present an industrial deployment of

an automatic push-pull sampling methodology. The methodology consists in the

transition from manual to automated sampling controls in order to propagate the

correct sampling data to the operators and reduce sampling errors due to human

interventions. Results indicate an increase of two percent in productivity.

The efficiency of an algorithm depends on its application. This is the case in

semiconductor manufacturing where the environment completely changes from one
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factory to another and the degree of complexity is not always the same. Differ-

ent mathematical techniques have been proposed but none of them has actually

been deployed. Table 4.2 presents mathematical techniques and approaches sur-

veyed in the literature. The complexity is such that most static or start sampling

Algorithms or Mathematical Techniques
Nurani et al. [68] Heuristic approach
Chien et al. [18] Bayes’ theorem
Lee et al. [48] Self-Organizing Feature Map (SOFM) network
Wu and Pearn [102] Process capability index Cpmk

Table 4.2: Mathematical techniques or approaches for static or start sampling

techniques are rule-based and take into account some observations within the fab,

personal experiences, and statistical analysis. Lazaroff et al. [45] present an evalua-

tion of different defect sampling techniques using linear regression. A discussion on

the strengths and weaknesses of various sampling techniques for Critical Dimension

(CD) measurement is presented by Elliott et al. [25]. Chien et al. [17] and Xumei et

al. [103] worked on optimizing sampling techniques for overlay measurements and

validated their experiments through simulations using historical data from semi-

conductor plants. Nurani et al. [70] present an economic model for optimizing a

sampling plan. The model aims at specifying the number of lots to inspect, the

number of wafers within a lot, and the number of dies per wafer. Increasing the

cost of inspection (number of lots or wafers to inspect) leads to an increased benefit

by detecting excursions very quickly. However, above a certain limit, if the cost of

inspection is still increasing, all revenues gained by inspections will be offset by the

increased learning and subsequent defect reduction. Close to the work of Nurani

et al. [70] are the works of McIntyre et al. [52] and Scanlan et al. [84]. McIntyre

et al. [52] discuss key factors that influence the cost of an optimal sampling plan

and Scanlan et al. [84] identify the use of baseline lots as a key in cost inspection

reduction.

In the papers on static or start sampling, the authors try to find the best trade-off

between the cost of inspections and the cost related to the material at risk. However,

decisions are only taken at the start of production and do not consider unexpected
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events that may occur during the production. When the process is likely to be out-

of-control for example, it could be more interesting to sample more lots or wafers in

order to detect potential drifts as quickly as possible. When the process is within

control, metrology capacity could be saved by reducing the number of sampled lots.

These main drawbacks of static sampling led to the introduction and development

of adaptive sampling strategies.
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4.4 Adaptive Sampling

Adaptive sampling consists in adjusting sampling decisions defined at the start

of production, i.e. the number of lots or wafers to select is adjusted throughout

production depending on the process state. Table 4.3 presents a survey of adaptive

sampling techniques in semiconductor manufacturing.
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Prahbu et al. [77] 1994 * * *
Nurani et al. [69] 1995 * *
Kuo et al. [42] 1996 * * *
Kuo et al. [41] 1997 * *
Babikian and Engelhard [5] 1998 *
Williams et al. [99] 1999 * *
Williams et al. [98] 1999 * *
Langford et al. [44] 2000 * *
Nurani and Shantikumar [71] 2000 * * *
Lee et al. [49] 2001 * *
Wootton et al. [100] 2001 * *
Allebé et al. [3] 2002 * *
Lee [47] 2002 * *
Song-Bor et al. [88] 2003 * *
Sullivan et al. [92] 2004 * *
Moon et al. [56] 2005 * *
Boussetta and Cross [12] 2005 * *
Mouli [57] 2005 *
Shantikumar [86] 2007 *
Mouli et al. [58] 2007 * *
Bunday et al. [13] 2008 *
Veetil et al. [95] 2009 * *
Chen et al. [16] 2009 * *
Sahnoun et al. [83] 2010 * *
Sahnoun et al. [82] 2010 * * *
Good et al. [28] 2010 * *
Nduhura Munga et al. [60] 2011 * *

Table 4.3: Survey on adaptive sampling
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The transition from static to adaptive sampling started in the second part of the

1990’s [77] and a great contribution can be noticed between 1995 and 2005. First

industrial deployments can be observed in the beginning of the 2000’s [99] [98] [100].

However, among twenty-seven papers browsed in this review (Table 4.3), only eight

indicate an industrial deployment. Moreover, among these eight papers, no indica-

tion or comparison with other techniques or technologies is given. This shows the

complexity and the particularity of the semiconductor environment. Depending on

the amount of data to handle, and the strategies in semiconductor plant, a solution

can be efficient when simulated but not practical because of unexpected events or

factory dynamics. The specificity of each factory is such that a given solution can

be efficient in a factory A and be completely impracticable for a factory B. This

explains why no comparison is presented in the literature. Moreover, strong compe-

tition and confidentiality reasons explain why many works are not published. Most

of the works published or patented do not detail the technical aspects, and actual

performances are never published.

Among papers that indicate industrial deployments, Williams et al. [99] [98]

present the results of a joint research project between Intel Corporation and KLA-

Tencor. The project consists in evaluating and optimizing the defect inspection sam-

pling plan for an advanced semiconductor manufacturing process. A Sample Plan-

ner is developed by KLA-Tencor to assist in the development of cost-effective defect

inspection sampling strategies, and to provide an accurate assessment of whether

monitor reduction and/or elimination should be pursued for cost savings. The re-

sults of the project indicate that the costs due to defect excursions could completely

eradicate any projected savings from monitor reduction activities, due to the addi-

tional defect excursions that would be missed by the reduced inspection sampling

plan.

Wootton et al. [100] present a study performed between KLA-Tencor and Mo-

torola. The study consists in finding the best sample criteria providing the best

representation of existing problems in the inspected wafers. The main drawbacks

of random selection are presented and the proposed solution consists in adapting

the sample size based on in-line information and priority rules (defect size). Re-
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sults indicate an improvement of yield, analysis time, and sampling resolution at

Motorola.

Boussetta and Cross [12] analyze the key parameters that have to be monitored

for an efficient adaptive sampling plan. Their results indicate three key parameters:

The variance ratio, the excursion frequency, and the normalized mean shift. They

propose a general adaptive sampling plan and recommend a fab-wide strategy, a

very good understanding of inspection requirements, and capacity constraints for

an efficient adaptive sampling plan.

Song-Bor et al. [88], Sullivan et al. [92], Mouli et al. [58], and Nduhura Munga et

al. [60] present industrial deployments of adaptive sampling plans in four different

semiconductor companies: TSMC, IBM Microelectronics, Intel Corporation, and

STMicroelectronics respectively. Song-Bor et al. [88] at TSMC present a capacity-

dependence sampling strategy, based on the utilization rate of the capacity of defect

inspection tools and on the WIP (Work-In-Progress) management. If the utiliza-

tion of defect detection rises too high, then an automatic function that allows the

execution of defect inspection is temporarily turned off and another function that

allows skipping the execution of defect inspection is turned on until the utilization

drops to the expected threshold pre-settled by users. If the utilization of defect

detection drops too low, the function to force the execution of defect inspection is

turned on to bring back the utilization level up to the threshold. Results indicate

10% enhancement in tool utilization compared to the previous static sampling plan.

Sullivan et al. [92] present an adaptive sampling technique for overlay measure-

ments. The technique is based on a sampling capability ratio (CsK) analogous to

the traditional CpK index2. The difference between the process capability (CpK)

and the proposed CsK is in the selection of historical data. CpK is the process per-

formance whereas CsK only considers data from lots that would have been available

2The CpK index is the process capability index. CpK takes into account both accuracy (cen-
tering) and precision (dispersion) and helps to determine the cause of failures and the need for
changes in the product design, tooling, or the manufacturing process. The larger the CpK value,
the greater the indication that the process is consistently under control (is within specification
limits) [75].
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for skipping through metrology. A sampling/skipping plan is implemented based on

the results of the CsK. Results indicate significant cost savings. However, authors do

not give percentage enhancement. Mouli et al. [58] present an Adaptive Metrology

Sampling (AMS) based on a risk score evaluation. The concept consists in weighting

each lot and wafer within a lot to make metrology sampling decisions and processing

sequence (or priority) on metrology tools. The score varies between 0 and 1 and

it is calculated based on Advanced Process Control (APC) and Statistical Process

Control (SPC) analysis and observations. Results indicate a reduction of 30% of

excursions without increasing tool capacity or sampling rates. Nduhura Munga et

al. [60] present an adaptive sampling strategy based on the real time computation

of the material at risk. In order to optimize the computational time, a Permanent

Index per Context (IPC ) is developed to reduce risk computation by simple subtrac-

tions or additions. Results indicate a risk reduction of more than 30% of material

at risk compared to the previous static sampling strategy.

Concerning the technical aspects of proposed solutions, some papers are only

rule-based while others are mathematical based. Table 4.4 summarizes the different

mathematical techniques or approaches browsed in this review.

Algorithms or Mathematical Techniques
Babikian and Engelhard [5] Skip-Lot algorithm (CpK)
Nurani and Shantikumar [71] Explicit Search algorithm
Lee et al. [49] Self-Organizing Feature (SOFM) network
Lee [47] Artificial Neural Network (ANN)
Sullivan et al. [92] Skip-lot algorithm
Mouli et al. [58] Risk-Score evaluation algorithm
Chen et al. [16] Integer Linear Programming
Sahnoun et al. [83] Skip-Lot algorithm (risk reduction)
Sahnoun et al. [82] Skip-Lot algorithm (risk reduction)
Good et al. [28] Sampling Compensation Algorithm (SCA)
Nduhura Munga et al. [60] Permanent Index per Context (IPC )

Table 4.4: Mathematical techniques or approaches for adaptive sampling

An important point to note is that, among all papers with a mathematical tech-

nique or an algorithm, only three indicate industrial deployments [92] [58] [60]. Most

works only use simulations to validate models [41] [95] but very few are industrial-
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ized.

Through papers surveyed for adaptive sampling strategies, the specificities of

semiconductor plants can be highlighted once again. Most of the sampling tech-

niques browsed in this review are different. This is because of the specificity of

each factory: Lot or wafer management, data storage, production tool manage-

ment or qualifications, IT infrastructure, expert knowledge, company culture, etc.

Therefore, the efficiency of a sampling technique varies depending on its

application [12] [69].

Compared to static sampling strategies, adaptive sampling strategies offer two

main advantages which lead to an increase in yield. The first advantage is the quick

response to process variation by an increase of the number of lots to inspect when

the process is likely to be out-of-control. The second advantage is a better use of

metrology capacity through the reduction of the number of lots to inspect when the

risk reduction is not significant or when the process is really under control. However,

some drawbacks can be pointed out regarding the management of resources, the

complexity of algorithms, and the industrial deployment. By modifying the number

of lots to sample (increasing or reducing this number depending on the process

state), the workload in metrology is no longer the same throughout production. The

complexity of algorithms is such that the validation is most of the time performed

through simulation and algorithms are never industrialized. To tackle the problems

faced by adaptive sampling strategies, dynamic or smart sampling strategies have

been introduced.
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4.5 Dynamic Sampling

Dynamic sampling consists in selecting in real time the best lot or wafer to

measure depending on the production state, metrology capacity, and the factory

dynamics. The main difference with adaptive sampling is that no rule is defined at

the start of production and the decision to sample or not a lot is taken when the lot

can be selected for metrology. The metrology workload remains balanced contrary

to adaptive sampling. The objective is to measure the lot that brings as much as

possible information on both the risk reduction and the process variation. In high-

mix semiconductor plants, where more than 200 products can be run concurrently,

dynamic sampling techniques are seen as more suitable. Table 4.5 presents a survey

on dynamic sampling in semiconductor manufacturing.
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Purdy et al. [79] 2005 * *
Lensing and Stirton [50] 2007 * *
Holfeld et al. [32] 2007 * *
Good and Purdy [29] 2007 * * *
Purdy et al. [78] 2007 * *
Kaga et al. [38] 2008 * * *
Jansen et al. [35] 2008 * * *
Hyung [34] 2008 * *
Sun et al. [93] 2008 *
Lin et al. [51] 2010 *
Dauzère-pérès et al. [20] 2010 * *

Table 4.5: Survey on dynamic sampling

The first research works have been published in 2005 and a pioneer is this domain

is M. A. Purdy who has authored or co-authored most of the papers found in the
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literature. His works include industrial deployments [79] [32] [29] [78] and a patent

can be found in [80]. Compared to adaptive sampling, dynamic sampling is mainly

mathematically-based because of the levels of decision. Industrial deployments in

semiconductor plants have been achieved thanks to the computing power that has

strongly increased.

Among papers that indicate industrial deployments, Purdy et al. [79] present

a Dynamic Sampling System (DSS) that combines a number of separate sampling

rules into a single sampling decision. The first step consists in removing all sampling

rates, i.e. making all lots measurable. For that, some defect inspection operations

are defined so that all lots can enter the metrology queue. The next step consists in

selecting lots to introduce in the metrology queue and lots to skip depending on the

metrology capacity and on the information brought by each lot. The selection of

lots to introduce in the metrology is performed based on an algorithm that analyses

all rules (for example metal etchers at 30%, plasma etch at 10%, and a given prod-

uct at 25%) and tries to ensure that each rule is satisfied with the minimum overall

sampling rate when there are overlapping rules. The Last-In-First-Out (LIFO) prin-

ciple is also used to ensure that the lots most recently added to the queue will be

measured first. The aim is to get the greatest probability that the measurement of

the current lot will allow for one or more other lots to be removed from the queue.

Results indicate that the DSS has been rapidly adopted within the AMD company

and only a small percentage of lots that entered the metrology queue were removed.

Lensing and Stirton [50], Holfeld et al. [32], and Purdy et al. [78] present and

discuss the fab-wide APC sampling deployed within an AMD fab. This APC sam-

pling system is based on the algorithm introduced by Good and Purdy [29]. The

algorithm aims at selecting the best wafers to measure given a sampling rule set

that can be infeasible, by assigning a penalty to each rule that is violated. This

penalty is chosen such that it is larger for critical rules. The problem is written as a

Mixed-Integer Linear Program (MILP) and the best wafers to measure correspond

to the set that minimizes the sum of penalties. Results indicate rapid deployments

within the fab and increased product yields. However, authors do not give compar-
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isons with the previous system and percentage enhancement in terms of risk or cycle

time reduction.

Kaga et al. [38] and Jansen et al. [35] discuss the use of design information to

dynamically improve sampling for defect review. Lin et al. [51] discuss the benefit

of developing a dynamic and intelligent sampling system in semiconductor manufac-

turing. Based on their experience, they point out three main benefits of a dynamic

sampling system: Sampling stability, satisfactory coverage of in-line products, and

comprehensive inclusion of process tools. Hyung [34] presents a model that com-

bines the cost of sampling with the performance of control in terms of yield and

cycle time. Tests are performed on different areas such as CVD (Chemical Vapor

Deposition), PVD (Physical Vapor Deposition), and Photo-Lithography. Results

show that the performance of dynamic sampling depends on the characteristics of

the process. When the process is very stable, dynamic sampling has no effects,

whereas it is effective when data set have large step disturbances.

Sun et al. [93] present a scoring algorithm based on weighted objectives to de-

termine the optimal wafer sampling for maximum coverage. The algorithm is a

multi-stage approach. The first stage consists in setting up various numbers of

wafer samples and various numbers of equipment units. The aim is to ensure that

all possible, but not redundant, combinations of wafers are captured. The second

stage consists in using the scoring algorithm to evaluate and determine the preferred

wafer sample based on pre-defined objectives and weighting factors. The score is cal-

culated by multiplying individual normalized scores by associative weighted factors

and summarizing them. The last stage uses the second stage results and designs a set

of algorithms based on the number of experimental design group. This set of algo-

rithms is used to select wafers in each group. No industrial assessment is mentioned.

Dauzère-pérès et al. [20] present a sampling, scheduling, and skipping algorithm

to minimize risk dynamically. The algorithm is based on a Global Sampling Indica-

tor (GSI) that gives a weight to each lot arriving at the measurement step, i.e. in

front of metrology. This weight is computed based on the lot history and on two key
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parameters, called Warning Limit (WL) and Inhibit Limit (IL). The WL indicates

when the situation starts to become critical, and the IL corresponds to the maxi-

mum risk that can be tolerated for each production tool regarding the metrology

capacity and production state. An Integer Linear Programming is provided in [63],

and helps to compute the values of WL and IL depending on the production state.

The sampling, scheduling, and skipping algorithm has been embedded in a proto-

type and simulated with actual data from STMicrolectronics. Results indicate a

risk reduction of more than 70% compared to Fab sampling without any additional

metrology capacity.

Table 4.6 summarizes the main mathematical techniques, approaches or algo-

rithms developed for dynamic sampling.

Algorithms or Mathematical Techniques
Good and Purdy [29] Mix Integer Linear Programming (MILP)
Sun et al. [93] Risk Scoring Algorithm
Dauzère-pérès et al. [20] Global Sampling Indicator (GSI) algorithm

Table 4.6: Mathematical techniques or approaches for dynamic sampling

It is clear that dynamic sampling techniques are the most suitable techniques

for modern and high-mix semiconductor fabs because of their ability to consider

real-time information. Our research is thus focused on developing and im-

plementing dynamic sampling techniques which are one of the best ways

to master the added value of each control, avoid redundant controls, and

optimize the use of metrology capacity. Between sampling at the lot level and

wafer level, we focus on sampling at the lot level because the lot-to-lot variation is

much higher than the wafer-to-wafer variation [94], and the processes of uploading

and downloading a lot into a production tool spend more time than inspecting a

wafer does [52].

The challenge is now in finding how a complex but efficient sampling algorithm

can be industrialized in a high-mix semiconductor plant.
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4.6 Conclusion

In this chapter, we surveyed the literature on sampling techniques in semicon-

ductor manufacturing. We defined three main groups: Start or static, adaptive, and

dynamic sampling techniques. Adaptive and dynamic sampling are more suitable

for modern and high-mix semiconductor fabs. Our research is thus focused on mod-

eling and implementing dynamic sampling control plans.

In the next chapter, we analyze the impact of variability and factory dynamics

on the efficiency of a sampling plan, and introduce a fab-wide indicator that will

support the implementation of dynamic and smart sampling approaches (Chapter 6

and Chapter 7).



Chapter 5

Analyzing and Optimizing Control

Plans

This chapter1 analyzes the impact of a static control plan in a high-mix environ-

ment, highlights its main drawbacks, and introduces a fab-wide indicator called IPC2

to support the industrial implementation of dynamic control plans. This IPC allows

a very large amount of data to be managed, and several types of risk3 indicators to

be computed in real time. The simplicity and efficiency of the IPC led to its indus-

trialization in the entire production.

5.1 Introduction

5.2 Factory Dynamics and Variability

5.3 Permanent Index per Context (IPC)

5.4 Real-Time Risk Assessment: CMP-WAR

5.5 Excursion Management

5.6 Conclusion

1Part of this chapter has been submitted for publication to the International Journal of
Production Research [64].

2IPC: Indice Permanent par Contexte. In English: Permanent Index per Context.
3In this chapter, the risk is defined as the number of wafers processed on a production tool

between two control operations. It corresponds to a potential loss in the case a problem occurs.
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5.1 Introduction

What is the efficiency of an algorithm, approach, or technique if it cannot be gen-

eralized or industrialized? In the previous chapter we saw that the complexity in

modern semiconductor plants is such that dynamic control plans are more suitable

because of the variability throughout production. In this chapter, we first analyze

the impact of variability and factory dynamics on the efficiency of control plans and

then propose a global indicator (IPC) that can support the industrial implementa-

tion of dynamic control plans. The main goals of the IPC is to have a solution that

can be generalized to several types of risks and simplify computations. We aim at

developing solutions that can be supported by any IT infrastructure and generalized

to other types of fabs, especially to the other sites of STMicroelectronics (Rousset,

Italy, etc.).

Section 5.2 discusses the impact of variability in production. In section 5.3, we

introduce and describe the IPC. Section 5.4 presents an industrial application where

the risk i.e. material at risk is computed in real time using the IPC. In section 5.5,

we present the way the IPC can be used to optimize the management of excursions.

5.2 Factory Dynamics and Variability

A high-mix semiconductor environment is characterized by several types of changes

occurring in production. The qualifications as well as the availability of production

tools vary depending on the production state, the number of products to be man-

ufactured is never constant and, most of the time, changes come from intentional

operational changes such as the lengthening of process flows or the addition of engi-

neering lots. All these changes impact the static control plan that does not consider

factory dynamics.

In order to concretely understand the impacts of all of these changes on a static

control plan, we made some observations in the Chemical Metal Polishing (CMP)

area regarding the defectivity control plan. We stated our working hypothesis on
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added value of controls i.e. “A control without a real added value is a waste of time

and money”. Observations showed us that the static sampling plan designed by the

defectivity engineering team at the start of the production was completely affected

(“destroyed”) by the factory dynamics and variability.

Figure 5.1: Drawbacks of static sampling.

Figure 5.1 illustrates the main drawbacks of a static sampling plan for defec-

tivity controls. Six lots (L1, L2, L3, L4, L5, and L6) are coming into the CMP

workshop to be processed. The control plan, designed by the defectivity engineering

team at the start of the production is to control one lot every two lots. In this case,

lots L2, L4, and L6 are flagged for a defectivity control after the CMP processing

operation. A control on a lot is called to reduce the risk on the production tool

regarding the number of wafers processed on the tool since the latest control per-

formed. In other words, if a defectivity control performed on a lot is validated, i.e.

no critical defects are detected, the risk (i.e. the material at risk) is released on the

wafers of all the lots processed in the same production tool since the latest control

performed. In the case described in Figure 5.1, an optimal control plan would be

to process at least one lot flagged on each production tool. But, because of the

variability, the availability of production tools, and the complexity of process flows

in high-mix semiconductor plants, situation such as the one described in Figure 5.1

is frequent. TOOL 1 processes all flagged lots i.e. L2, L4, L6 whereas TOOL 2

does not process any. This results in over-control for production tool TOOL 1 and
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lack-of-control for production tool TOOL 2. As quality control is defined at prod-

uct level, without taking into account tool information, the information is biased

to monitor tool drifts. A simple solution could be to impose a limit set for each

tool. This means to control L3, or L1 and L5 for example. The problem of this

solution is that control capacity is limited. A better solution would be to release

the control on L4 and control L3. This implies to flag L3 for a defectivity control

operation at the next step. The question here is: What if potential defects generated

by the current processing operation cannot be captured at the next control operation

for L3? This situation is frequent since a lot, depending on its technology, will not

be measurable at all (defectivity) control steps.

Another point is the variability of the delay or travel time between processing

and measurement steps (Figure 5.2). Production tools are most of the time qualified

to process more than one processing operations of different products [36]. The

processing time varies depending on the processing operation to be performed and,

for some products or technologies, additional processing steps are required in other

workshops before a control in the defectivity workshop as illustrated in Figure 5.2.

Consequences are such that production tools are no longer monitored by the “static

(or start) sampling plan” and the situation becomes critical for all of production

tools (TOOL1 and TOOL2).

These situations (Figure 5.1 and Figure 5.2) led designers and defectivity engi-

neers to put in place additional controls often redundant whereas a good repartition

of different lots on production tools could allow efficient sampling rates. This results

in increasing the number of controls and, most of the time, without real added value.

To overcome this problem, the risk on different production tools should be known

in real time and took into account when dispatching lots on production tools. The

problem lies in the large amount of data to manage. The complexity of process flows

and the huge number of parameters to consider often lead many dynamic sampling

algorithms to be too difficult to implement in practice. This also explains the par-

ticularity of the sampling techniques analyzed in the previous chapter.
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Figure 5.2: Impact of delay between process and measurement steps.

To answer this question, we developed an indicator called Permanent

Index per Context (IPC) to allow very quick and fast computations of

risk indicators. The risk depends on the context as described in the next section.

This indicator is based on industrialization constraints and on the KISS4 principle.

We aimed at keeping things as simple as possible, minimizing the computing times

of risk indicators, and thus minimizing the resource utilization.

4Keep It Simple Stupid. This principle states that simplicity is a key goal in design and that
unnecessary complexity must be avoided.
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5.3 Permanent Index per Context (IPC)

The Permanent Index per Context (IPC)5 is a counter which is increased

each time a context is verified. The context can be a tool, a chamber, a recipe, a

technology, a resin, the combination of an operation and a technology, etc. This

counter is never reset except when a special event occurs (Preventive Maintenance,

intermediary qualification, etc.). The IPC has been introduced to allow both very

quick and easy computations for any given context. In our first implementation, the

context has been defined at the tool level to control the risk on production tools.

Therefore, the risk is evaluated as the number of wafers processed on a production

tool since the latest control performed. This is called Wafer at risk. To each lot

l and tool m is associated an IPC, which is equal to 0 if l is not processed on m.

Let M be the number of production tools, and NW (l) be the number of wafers

contained in lot l. The goal is to update in real time the following parameters:

• LLM(m): Index of the Last Lot that has been Measured for the production

tool m.

• IPCm
l : IPC of lot l for production tool m.

• RIm: Risk Indicator on production tool m.

• NIml : Number of wafers potentially Impacted on tool m if lot l was measured.

• NI l: Number of wafers potentially impacted in the entire production if lot l

was measured.

When lot l is processed on production tool m, an IPC is associated to l. The

IPC of the lot l is equal to the IPC of the lot l′ processed just before l on m plus

the number of wafers in l (NW (l)):

IPCm
l = IPCm

l′ +NW (l) (5.1)

5Part of this section has been communicated to the 13th Scientific and Technical Meeting
of ARCSIS [59].
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The risk indicator (i.e. material at risk) on production tool m is then given by:

RIm = IPCm
l − IPCm

LLM(m) (5.2)

The use of the IPC simplifies the computations of the risk indicators since these

computations are reduced to calculating differences between two integer values. This

implies very low resources usage, the possibility to manage a very large amount of

data and quickly compute risk indicators for all of production tools. Instead of com-

puting each time the risk indicators with complex algorithms using historical data,

we assign to each lot an index (IPC of the lot) when the context is verified.

Figure 5.3 represents a sequence of different lots processed on a production tool

m. Lots L1, L2, . . ., L9 are processed on tool m.

Figure 5.3: IPC mechanism.

L2 and L5 were validated by a defectivity control and, in this case, L5 cor-

responds to the last lot that has been measured LLM(m). According to (5.1)

and (5.2), the risk indicator on tool m at time t9 is given by:

RIm = IPCm
L9 − IPCm

L5

Where:
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IPCm
L9 > IPCm

L5

It is also possible to quickly identify the best lot l to validate at the metrology

step. This lot l is chosen such that its IPC verifies the following property:

IPCm
l = Max{0, {IPCm

ll \ IPCm
ll > IPCm

LLM , ll ∈ LM}} (5.3)

Where LM is the set of lots waiting at the metrology step.

In Figure 5.3, lots L6 and L8 are processed on tool m and are waiting at the

metrology step. According to (5.3), the best lot to select for m will be L8 since

IPCm
L8 > IPCm

L6 and IPCm
L8 > IPCm

L5.

A control is defined as a measurement plus an action[7]. It is then crucial to be

able to evaluate in real time the number of lots potentially impacted whenever a

problem occurs on a lot l. This number can be determined for a given production

tool m (NIml ) and for the entire production (NI l):

NIml = max{0, IPCm
l − IPCm

LLM} (5.4)

And

NI l =
∑
m

NIml (5.5)

In Figure 5.3, at time t9, NIml will be given by (IPCm
L9− IPCm

L5) corresponding

to the sum of wafers in L6, L7, L8, and L9.

This IPC mechanism has been embedded in a prototype and first

deployed for the CMP workshop before being industrialized in the entire

fab. The next section describes the implementation of the IPC mechanism for

real-time risk assessment within the CMP workshop.
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5.4 Real-Time Risk Assessment: CMP-WAR

CMP-WAR is the name of an internal project that took place within the 300mm

site of STMicroelectronics. The project has been initiated based on both the thesis

and the European project IMPROVE. The main goal of the project was to master

the risk level in production and ensure that the maximum risk (at the tool level)

expected by the company would not be exceeded. For that, a solution had to be

proposed to avoid cases of under-control as well as cases of over-control6.

Two challenges had to be faced: Industrialization constraints and simplicity

of solutions. Concerning industrialization constraints, the solution to be provided

should be real time based and generalizable to other types of risks (chamber, recipe,

resin, etc.). Concerning the simplicity of the solution, information should be gath-

ered and presented in a way such that it could be easily understood by everybody.

These two challenges offered us a good opportunity to test, assess, and validate

the IPC mechanism introduced in the previous section. We thus embedded the IPC

mechanism in a prototype that we deployed for the CMP workshop. Figure 5.4 gives

an overview of the CMP-WAR prototype that has been developed and deployed in-

line during the CMP-WAR project. The prototype has been implemented in Visual

Basic for Application (Excel-VBA). It shows, for each production tool, the real-time

risk level value. The description of the prototype aims at illustrating the significant

amount of data that had to be handled, showing the added value and efficiency of

the IPC mechanism.

For the simplicity of use, three levels of alert associated to three different colors

were defined:

• Green: The maximum risk level allowed by the company is not reached and

the situation is under control for the production tool.

6Part of this section was presented at the IEEE/SEMI Advanced Semiconductor Man-
ufacturing Conference. The presentation has been awarded with the Best Student Paper
Award [60].
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Figure 5.4: Overview of the CMP-WAR prototype.

• Orange: The risk level is very close to the maximum level specified by the

company, and actions must be taken to reduce the risk.

• Red: The maximum risk level allowed by the company is reached and the tool

must be stopped or actions immediately taken.

RI represents the Risk Indicator on the production tool. It corresponds to the

number of wafers processed on the production tool since the latest control performed

for this tool. It is also called Wafer at Risk (WAR).

To each production tool, two boxes are associated (Figure 5.5). The first box

gives the value of the risk indicator and the second box gives the best lot to validate

or control in the next defectivity step. This information is computed based on

the IPC mechanism (Section 5.3). The maximum RI tolerated by the company is

denoted A:

- If RI > A, the production tool is in red.

- If (0.6 ∗ A) < RI 6 A, the production tool is in orange.

- If RI 6 (0.6 ∗ A), the production tool is in green.
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Figure 5.5: Risk Indicator and best lot for control.

RI is defined at the tool level. This means that the context in the IPC is the

production tool. Therefore, each time a lot l is processed on a production tool m, an

IPCm
l is attached to the lot l. This IPC is equal to the IPC of the lot l′ processed

just before l on m plus the number of wafers of l (NW (l)) according to (5.1). Let us

consider the example in Table 5.1. The context is the production tool TOOL5. Each

time a lot (L1, L2, L3, L4, or L5) is processed on TOOL5, an IPC is associated

to the lot for the considered context (TOOL5). This value is never reset. If, for

example, L4 is processed on another tool (e.g. TOOL3), another IPC (IPCTOOL3
L4 )

will be attached to L4.

Once computed and assigned to each lot, the IPC information is then used to

compute and update RI by performing simple differences between integer values.

According to (5.2), RI is given by the difference between the IPC of the latest lot

l processed on production tool m and the latest lot LLM validated by a defectivity

control after being processed on m.

Let us consider the example in Table 5.2 that illustrates the way RI is computed:



106 CHAPTER 5. ANALYZING AND OPTIMIZING CONTROL PLANS

Process date Context Lot ID Number of wafers (NW) IPC

T1 TOOL5 L1 12 IPCTOOL5
L1 = 12

T2 TOOL5 L2 23 IPCTOOL5
L2 = 12 + 23 = 35

T3 TOOL5 L3 15 IPCTOOL5
L3 = 35 + 15 = 50

T4 TOOL5 L4 15 IPCTOOL5
L4 = 50 + 15 = 65

T5 TOOL5 L5 25 IPCTOOL5
L5 = 65 + 25 = 90

Table 5.1: IPC computation and mechanism

- At time T1, RI = IPCTOOL5
L1 = 12.

- At time T2, RI = IPCTOOL5
L2 = 35.

- At time T3, RI = IPCTOOL5
L3 = 50.

- At time T4, IPCTOOL5
L4 = 65 and lot L2 is validated at the defectivity step,

hence LLM(TOOL5) = L2. Therefore, RI is computed following the formula

described in (5.2), i.e. RI = IPCTOOL5
L4 − IPCTOOL5

L2 = 65− 35 = 30.

- At time T5, RI = IPCTOOL5
L5 − IPCTOOL5

L2 = 90− 35 = 55.

- At time T6, LLM(TOOL5) becomes L5 ⇒ RI = IPCTOOL5
L6 − IPCTOOL5

L5 =

114− 90 = 24.

- At time T7, RI = IPCTOOL5
L7 − IPCTOOL5

L5 = 136− 90 = 46.

RI can be computed for each context. In the CMP-WAR prototype, the context

was defined at the tool level. Therefore, RI was computed for each production tool.
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Process date Context Lot ID IPC LLM RI

T1 TOOL5 L1 IPCTOOL5
L1 = 12 RI = 12

T2 TOOL5 L2 IPCTOOL5
L2 = 35 RI = 35

T3 TOOL5 L3 IPCTOOL5
L3 = 50 RI = 50

T4 TOOL5 L4 IPCTOOL5
L4 = 65 L2 RI = 65− 35 = 30

T5 TOOL5 L5 IPCTOOL5
L5 = 90 RI = 90− 35 = 55

T6 TOOL5 L6 IPCTOOL5
L6 = 114 L5 RI = 114− 90 = 24

T7 TOOL5 L7 IPCTOOL5
L7 = 136 RI = 136− 90 = 46

Table 5.2: RI computations

A defectivity control on a lot may validate more than one production tool de-

pending on the lot history7. Let us consider the example of Figure 5.6, where a lot

L1 is processed on three different production tools (from three different workshops:

CMP, PHOTO, and ETCH) before being validated by a defectivity control.

The control performed on lot L1 gives information on the three production tools

on which L1 was processed. If the control is OK, i.e. no critical defects are de-

tected on L1, then RI can be reduced on the three production tools on which L1

7This is called “depth of control”. See Section 3.2.3 for further details.
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Figure 5.6: Depth of control.

was processed (CMP(M1), PHOTO(M2), and ETCH(M3)). The number of

production tools that can be validated by a lot at a defectivity step depends on

both the lot history and the defectivity matrices (Chapter 3). Depending on the

production tool, we may have situation such that a lot l′ processed after L1 ar-

rives in front of a defectivity control before L1. This is the case for production

tool ETCH(M3) (LLMETCH). Lot LLMETCH was processed at 14:30, after L1

(processed at 12:30), but validated before L1. In such a situation, L1 validated by

the defectivity step does not bring additional information for the production tool

ETCH(M3). In Figure 5.6, at 15:00, the new RI will be given by:

- CMP(M1): RICMP (M1) = IPCM1
LH − IPCM1

L1 .

- PHOTO(M2): RIPHOTO(M2) = IPCM2
LA − IPCM2

L1 .

- ETCH(M3): RIETCH(M3) = IPCM3
LX − IPCM3

LLMETCH
.

With the IPC information and using the equation (5.3), it is possible to directly

and easily access the information giving the best lot to control at defectivity steps.

This helps to avoid performing a control on a lot that does not bring any added

value. In the CMP-WAR prototype, the depth of control has not been considered
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when displaying the best lot to control. The lot displayed in Figure 5.5 gives the best

lot to validate considering tools separately.

For the sake of simplicity, by clicking on the box giving the best lot to validate

(Figure 5.7), the operator can directly access to the list of lots processed on the

production tool since the last control. This production tool history explains why

lot KKOCCC displayed is the best lot to control. In Figure 5.7, three lots are

highlighted in yellow and one lot in gray. For these four lots, there is a “X” in the

eighth column. This means that these four lots were flagged at the start of pro-

duction by the defectivity engineering team for a control after the CMP workshop.

Among these four lots, one has already been skipped (the one in gray), most prob-

ably because of capacity needs. The three lots in yellow (TTOOLR, PPPPPP,

KKOCCC) were flagged for defectivity control and are not yet skipped. Among

these three lots in yellow, KKOCCC is the most recent lot processed on production

tool TOOL11. It implies that measuring KKOCCC will allow skipping two lots

(TTOOLR and PPPPPP) processed just before and not yet skipped. This is why

KKOCCC is displayed as the best lot to control. This information is computed in

real time based on the IPC associated to each lot and stored in a database. The

displayed information was adjusted to be easily understandable by operators.

When a tool is in an orange status and there is no lot associated below the tool

(see TOOL8 in Figure 5.4), it means that, among all lots processed on the tool,

there are no lots waiting at the defectivity step or there are no “flagged” lots that

can be validated at the next defectivity step. As the situation starts to become

critical (orange status), information is provided on lots waiting to be processed in

the CMP area (WIP - Step N). If such situation arises, the operator is called to

check (by a simple click) on “WIP(CMP)–Step N” (Figure 5.8) to identify a lot

that is flagged for the next defectivity control step and direct this lot to the tool

which is in “orange status”. Processing such a lot on a tool in “orange status” will

allow RI to be reduced for the tool once the lot is validated at the defectivity step.

In the list of lots provided in Figure 5.8, lots in yellow are flagged for a Defectivity

control after the CMP area. However, this list concerns all production tools in CMP.

Knowing that all lots cannot be processed on all production tools and for the sake
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Figure 5.7: Production tool history.

Figure 5.8: Lots waiting in front of the CMP area.

of simplicity, we separate this list of lots by usage, tools, and processability. The

operator can therefore access to the list of lots waiting to be processed (by a specified
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group of tools) by directly clicking on the box displaying the name of the tool. The

list is sorted such that lots that are flagged appear first in the list (in yellow), followed

by other lots (Figure 5.9).

Figure 5.9: Lots waiting in front of the tool.

In a high mix environment as in the 300mm site of STMicroelectronics in Crolles,

the factory dynamics is such that we may have situations where a tool is in an or-

ange status and there is no flagged lot waiting in front of the CMP area. This is

why we provide the set of lots waiting to be processed or currently being processed

in the area before the CMP: “WIP(CMP)–Step (N-1)”. If such situation arises,

the operator is called to click on the box “WIP(CMP)–Step (N-1)” to identify a

flagged lot for the tool in CMP that is in an orange status. This allows anticipating

and accelerating some lots8 in order to reduce RI on production tools.

If there are no flagged lots in WIP(N) and WIP(N-1), the information is directly

sent to the defectivity engineers who take the decision to force a lot that is not

8Accelerating a lot consists in increasing the priority of lots on some processing steps.
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flagged for a defectivity control to reduce RI. This forced lot is called DWR9.

If the result of Defectivity control is validated, then the defectivity engineer resets

RI using the box “RESET”10. An additional box “Lots Waiting in DEF” is

also provided to show the RI reduction of each lot waiting in front of the defectivity.

Computing all of the information described above may require significant com-

puting power if data are not optimally organized. This is why the IPC mechanism

is very efficient since all computations are reduced to simple additions and sub-

tractions between integer values. The mechanism was easily understood and the

computing time strongly reduced compared to other algorithms previously imple-

mented where computing RI required to manage the tool history (list of lots, number

of wafers, processing time, technology, etc.) in real time.

Based on the simplicity and efficiency of the IPC mechanism, we decided to

use it for excursion management, i.e. when a process or a production tool falls out

of specifications. This is the case when a defectivity control on a lot is not validated,

i.e. the result of the control is judged out of specifications. The source of the defect

must be isolated as quickly as possible.

9Defect Work Request.
10Authentication is required to restrict the use of the prototype and to avoid an increase workload

for defectivity engineers.
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5.5 Excursion Management

An excursion happens in production when a process or tool falls outs of specifi-

cation11. Since defectivity controls are performed on wafers, when the sum of defects

on wafers exceeds a given threshold, an excursion occurs. The production tool gen-

erating the defects has to be identified and stopped as quickly as possible before

too many lots are impacted. Let us consider the simplified example of Figure 5.10

where lot L1 is successively processed on three different tools (from three different

workshops: CMP, PHOTO, and ETCH) before arriving in the defectivity workshop

for a control operation.

Figure 5.10: Example of an excursion management problem.

If L1 is judged out of specifications, the challenge is to:

1. Isolate the most probable source of excursion: CMP, PHOTO, or ETCH,

2. Select the best set of lots to measure in order to contain the excursion,

3. And quantify the number of lots potentially impacted.

11Part of this section was presented at the 7th International Conference on Modeling and Analysis
of Semiconductor Manufacturing (included in the 2011 Winter Simulation Conference) [61].
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Depending on the time elapsed between the excursion detection (on L1) and

the source detection, the impact can be significant. In Figure 5.10, the throughput

on the CMP production tool is 25 wafers/hour, 75 wafers/hour for the PHOTO

production tool, and 50 wafers/hour for the ETCH tool. L1 is processed on the

CMP tool at 11:00 and controlled in defectivity at 15:00. It means that 4 hours

elapsed between the process of L1 on the CMP tool and its control in defectiv-

ity. This corresponds to the process of 25 ∗ 4 = 100 wafers on the CMP tool. In

other words, related to the CMP tool, we have at least 100 wafers potentially im-

pacted. If the defect source is isolated 10 hours later, there are 14 hours (4 + 10)

between the process of L1 on the CMP tool and the control operation in defec-

tivity. This implies that, instead of having 100 wafers potentially impacted, there

are 25*14 = 350 wafers. If the process operation is non reversible, it results in 350

wafers impacted on the CMP tool. This is similar for all production tools on which

L1 was processed before arriving in the defectivity workshop for a control operation.

One of the complexities in identifying the source of excursions in high mix semi-

conductor manufacturing lies in the large amount of data to handle as quickly as

possible. Most of the time, engineers are used to navigate between different IT tools

and use their experience to identify the most probable cause of an excursion. Once

the source of defects is identified, the next step consists in determining and selecting

a lot or a set of lots to measure in order to confirm or deny the source of the excur-

sion. Depending on the current processing step of a lot, the recipe, the technology,

the WIP, the lot history, the product, etc., a commonality analysis12 is performed

to identify the lot or set of lots most likely to confirm or deny the excursion source.

The aim is to find a lot that has the same characteristics than the lot on which

the excursion has occurred. This implies manipulating a significant amount of data

leading to an overwhelming task for defectivity engineers.

To optimize the management of excursions and thus reduce the potential impact

by quickly detecting the source of defects, using the IPC is once again very

12A commonality analysis consists in identifying different links that exist among lots. These
links concern lot history, product, quantity, technology, mask, etc.
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effective. Indeed, by simplifying the computations of several types of risk, a lot of

information can quickly be gathered with little CPU effort. Let us consider another

example based on Figure 5.10. We consider that an IPC is attached to each lot

processed on production tools.

Figure 5.11: Example of excursion analysis.

Figure 5.11 illustrates how the scope of analysis can be reduced based on the

IPC. L1 has been processed on three different production tools before being judged

as out of specifications after a control operation in the defectivity workshop. Based

on the history of tools and the information brought by the IPC, it is possible to

quickly identify the set of tools that was validated by a control operation after the

process of L1. This helps in removing this set of tools from the initial scope of

analysis, and thus reducing the scope of analysis. For example, considering tool

ETCH(M3), a control was performed on lot LLMETCH processed after L1. As

LLMETCH was judged within specification, ETCH(M3) can be removed from the

initial set of analysis. To be more general, let us introduce the following notations:

• LE: Index of the Lot on which an Excursion has occurred,

• MLE: Set of Machines on which lot LE was processed,
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According to (5.1), (5.2), and (5.3), we have:

MILE = {m ∈MLE \NImLE > 0} (5.6)

LPImLE = {l ∈ {1, . . . , L} \ IPCm
l < IPCm

LE and NIml > 0} (5.7)

LPILE =

MLE⋃
m=1

LPImLE (5.8)

Where:

• MILE in (5.6) is the set of Machines to be considered in the analysis,

• LPImLE in (5.7) is the set of Lots Potentially Impacted regarding lot LE on

production tool m,

• LPILE in (5.8) is the set of Lots Potentially Impacted regarding lot LE in

the entire production.

For the case illustrated in Figure 5.11, the set of lots potentially impacted is

given by:

LPIL1 = {LPIM1
L1

⋃
LPIM2

L1

⋃
LPIM3

L1 }
= {LA,LB,LC,LD,LE,LF, LG,LH}

⋃
{LJ, LK,LF, LB,LM,LN,LO,LP, LQ,LA}

⋃
∅

= {LA,LB,LC,LD,LE,LF, LG,LH,LJ, LK,LM,LN,LO,LP, LQ}

Tool ETCH(M3) is not included in the initial set of analysis since NIM3
L1 < 0.

The number of lots to analyze is therefore reduced by reducing the set of tools to

consider. A prototype based on the IPC information was developed to

help quickly identifying the set of tools most likely to be the source of

the excursion. Figure 5.12 gives an overview of the software prototype that was

developed. More details on the prototype are provided in Chapter 8.
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Figure 5.12: Overview of the Excursion Management prototype.

Other avenues can be explored regarding the best lot to prioritize on defectivity

tools in order to contain the excursion. The lot has to be selected among the set of

lots to consider in the scope of analysis as described above (see LPIL1)13:

1. The first approach could be to select lots based on the probability of a pro-

duction tool to be most likely the source of the excursion. This probability is

defined based on the type of defects detected on wafers in the lot. Let us con-

sider the example introduced in Figure 5.11. If we focus on tool CMP(M1),

we may have the three following cases:

a. If the probability for tool CMP(M1) to be the source of defects is very

high, then the best lot to measure would be LA to confirm the excursion

and then to stop all of the lots processed on the tool after LA i.e.:

Stop the set of lots {LB,LC,LD,L1, LE, LF, LG,LH}.

b. If the probability for tool CMP(M1) to be the source of defects is very

low, then the best lot to measure would be LH to quickly validate all

13These avenues were not explored in depth in this thesis.
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the lots processed before LH and thus exclude tool CMP(M1) from the

scope of analysis.

c. If the probability for tool CMP(M1) to be the source of defects is av-

erage, then it would be interesting to choose a lot between LA and LH.

This lot could be for example LE.

The selection of lots based on probabilities linked to production tools would

be performed using the IPC.

2. The second approach would be to use the concept of dominating sets with the

aim of identifying and selecting the lot that covers the maximum number of

lots and production tools as illustrated in Figure 5.13. In this case, it would

be lot LA.

The two perspectives described above will strongly contribute in improving the

management of excursions in dynamic sampling. Indeed, using a static sampling

plan, the same lots are measured throughout production. It implies that, when a

problem occurs, it is possible to reduce the scope of analysis only based on the lot

history. The added defects of each processing step can be quantified. However,

in dynamic sampling, the selection of lots is based on the added value in term of

control. A lot does no longer have to be inspected at all stages of inspection. Hence

the challenge lies in identifying the best lot to inspect or measure in order to contain

the excursion.
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Figure 5.13: Concept of dominating sets.

5.6 Conclusion

In this chapter, we pointed out the drawbacks of static control plans, analyzed

the impact of variability in a high-mix semiconductor plant, and introduced a fab-

wide indicator that can support both the implementation of dynamic control plans,

and the optimization of excursion management. This fab-wide indicator called IPC

is based on industrial constraints and its efficiency is in the ability to compute in a

very simple way several risk indicators with little CPU effort.

In the next chapter, we introduce dynamic sampling algorithms that have been

developed within the framework of the European project IMPROVE, and industri-

alized using the IPC mechanism.
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Chapter 6

Implementing Smart Sampling

Policies

This chapter introduces the sampling algorithms that have been developed within

the framework of the European project IMPROVE1. The aim is to dynamically sam-

ple lots in front of metrology or inspection steps. By evaluating through simula-

tions the different sampling algorithms, results indicate a risk reduction of more

than 70% compared to Fab sampling. By defining financial metrics to assess the

return on investment of such algorithms, potential gains are estimated to more than

US$1,000,000.

6.1 Introduction

6.2 Smart sampling mechanism

6.3 Global Sampling Indicator (GSI)

6.4 GSI sampling algorithms

6.5 Numerical experiments

6.6 Conclusion

1IMPROVE: Implementing Manufacturing science solutions to increase equiPment
pROductiVity and fab pErformance.
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6.1 Introduction

Premature optimization is the root of all evil 2. In the previous chapter, we

analyzed the particularities of a static sampling plan, identified its main drawbacks,

and proposed an indicator (IPC) to support industrial implementation of dynamic

control plans. In this chapter, we propose a smart sampling approach to optimize

fab-wide sampling. It is based on a Global Sampling Indicator (GSI) that helps to

dynamically identify the best set of lots to measure, skip, or prioritize on metrology

tools.

The chapter is structured as follows. Section 6.2 describes the smart sampling

approach. In section 6.3, we present the different GSI formulas. Section 6.4 intro-

duces the GSI sampling algorithms that are based on GSI formulas and additional

constraints linked to the production environment. Section 6.5 is devoted to numer-

ical experiments. We analyze the efficiency of the GSI sampling algorithms versus

fab sampling, and discuss the impact of GSI parameters in the case of STMicroelec-

tronics in Crolles, France. Section 6.6 concludes the chapter.

6.2 Smart sampling mechanism

Smart sampling consists in dynamically selecting in an intelligent way the lots

to inspect or measure3. Three types of decisions are performed: Sampling, skipping,

and scheduling. These three decisions are taken based on control parameters and

metrology capacity. The order of decisions is not necessarily sequential, i.e. sample,

skip, and finally schedule. Some decisions can be taken simultaneously. The aim

is to sample and measure lots in order to minimize some objectives based on the

risks4.

2Donald Ervin Knuth.
3In this chapter, inspecting a lot is equivalent to measuring a lot. The same for inspection steps

and metrology steps.
4In this chapter, the risk is the number of wafers processed between two control operations. It

is called Wafer at risk and denoted WAR in the sequel.
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6.2.1 Sampling mechanism

Sampling a lot is based on how much is gained when adding the lot to the set

of lots already waiting to be inspected. As illustrated in Figure 6.1, each time a lot

Lx arrives in front of an inspection step (Defectivity workshop), it must be decided

whether or not to include the lot in the set of lots already waiting for inspection. If

the lot is selected and introduced in the queue, then the lot is sampled.

Figure 6.1: Sampling mechanism.

6.2.2 Skipping mechanism

Skipping a lot consists in avoiding inspecting a lot Lx that has been sampled

(Figure 6.2). The lot is removed from the inspection queue and directed to the next

process step (next workshop). This type of decisions may happen when: (1) The

maximum size of the inspection queue is reached and there is a new lot that need

to be sampled because of the significant gain, (2) when the inspection capacity is

reduced because of the unavailability of an inspection tool, or (3) when the result

of another inspection is within specifications.
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Figure 6.2: Skipping mechanism.

1. Arrival of a new lot. When a new lot arrives in front of an inspection step

and there is no more places in the queue, it may be interesting to skip a lot

already waiting in the queue and replace it by the new lot if it brings more

information. This helps keeping the queue size smaller than a maximum value

while inspecting the best possible lots.

2. Unavailability of an inspection tool. When an inspection tool is down or

unavailable (preventive or corrective maintenance for example), the inspection

capacity is reduced. The queue size has to be adjusted to avoid increasing the

waiting time of lots for inspection. The more a lot waits for inspection, the

more its cycle time increases. Therefore, if the inspection capacity is reduced,

some lots should be skipped.

3. Inspection of another lot. Each time a lot is inspected, the situation in

term of risks changes. Depending on the results of the inspection, the priority

of lots may be modified or further analysis requested. Some lots may thus be

prioritized and others skipped.
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6.2.3 Scheduling mechanism

Scheduling lots consists in assigning sampled lots on inspection tools and se-

quencing them. This is performed each time an inspection tool becomes available.

The objective is to prioritize lots having the largest gains.

To dynamically perform these three types of decisions, i.e. sampling, skipping,

and scheduling, an indicator called GSI (Global Sampling Indicator) has been

developed [20] as described in the next section.
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6.3 Global Sampling Indicator (GSI)

The GSI is an indicator that gives a score to different sets of lots. To each

set of lots S is associated an expected level of risk on the entire production if the

lots in S are selected for inspection. Let us consider examples in Table 6.1 and

Table 6.2. Table 6.1 corresponds to the initial situation where no lot is selected.

Table 6.2 shows two outcomes if two different sets of lots S1 and S2 are selected for

inspection.

Production tools Risk Level
M1 300
M2 250
M3 450
M4 450

Table 6.1: Initial situation.

Production tools Risk Level
M1 50
M2 10
M3 450
M4 450

(a) Set of lots S1 selected.

Production tools Risk Level
M1 200
M2 200
M3 200
M4 200

(b) Set of lots S2 selected.

Table 6.2: Example if sets of lots S1 or S2 are selected for inspection.

If the set of lots S1 is selected and inspected, the resulting risk will be the one

in Table 6.2a, i.e. the risk levels of production tools M1 and M2 are reduced. If

the set S2 is selected, the resulting risk will be the one in Table 6.2b, i.e. the risk

levels of all production tools (M1, M2, M3, and M4) are reduced. In the first case,

when S1 is selected, the risk level is strongly reduced for production tools M1 (=50)

and M2 (=10) whereas M3 and M4 keep a high level of risk (=450). In the second
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case, when the set S2 is selected, the risk level is reduced for all production tools.

However, in this case, the risk levels are much higher than the risk levels of tools

M1 and M2 compared to the first case where S1 is selected. Hence the following

question: Is it better to select and inspect a set of lots that strongly reduces the risk

level of one or two production tools, or to select and inspect a set of lots that reduces

only a little the risk level of all production tools? To answer this question, a GSI has

been developed to give a weight or score to each set of lots S depending on control

parameters and inspection capacity. The set of lots S can be empty (Table 6.1) or

not (Table 6.2).

The GSI is computed for different sets of lots and not for each lot

separately. These sets of lots correspond to different possible combinations of lots

to be inspected. Let us consider the example in Figure 6.3. In the queue, there are

4 lots {L1, L2, L3, L4} selected and waiting to be inspected. A lot LX arrives in

front of the defectivity inspection and we need to decide whether the lot LX must

be sampled or not.

Figure 6.3: GSI combinations.

In the case illustrated in Figure 6.3, the queue is full. This means that sampling

lot LX will lead to skipping another lot waiting in the queue. Let us denote by

Sinitial the set of lots already waiting for a defectivity inspection, i.e. Sinitial =

{L1, L2, L3, L4}. To decide whether or not LX must be sampled, we need to analyze
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five different combinations with the GSI:

1. GSI(Sinitial) = GSI({L1, L2, L3, L4})

2. GSI({Sinitial \ L1} ∪ {LX}) = GSI({LX,L2, L3, L4})

3. GSI({Sinitial \ L2} ∪ {LX}) = GSI({L1,LX,L3, L4})

4. GSI({Sinitial \ L3} ∪ {LX}) = GSI({L1, L2,LX,L4})

5. GSI({Sinitial \ L4} ∪ {LX}) = GSI({L1, L2, L3,LX})

The set with the smallest GSI is selected. For example, if the third

combination gives the smallest GSI, then it is better to inspect the set of lots

{L1,LX,L3, L4}, i.e. sampling LX and skipping L2. If the first combination gives

the smallest GSI, then it is better to not sample LX, i.e. to inspect the set of lots

{L1, L2, L3, L4} already waiting in the queue.

The same type of combinations is computed for scheduling lots on inspection

tools. However, our approach is different than the one used when sampling/skipping

lots, in which the set of lots with the smallest GSI is selected. When scheduling

lots on inspection tools, the priority of a lot L, denoted by LSI(L) (Lot Scheduling

Indicator), is defined by the difference between GSI(Sinitial \{L}) and GSI(Sinitial).

LSI(L) is always positive since, by definition, GSI(Sinitial \ {L}) ≥ GSI(Sinitial).

The principle is to evaluate the impact of L in Sinitial by determining how much

would be lost in terms of GSI if L was not measured. The larger LSI(L), the

greater the priority of lot L on inspection tools. Let us consider the example in

Figure 6.3 with four lots {L1, L2, L3, L4} waiting to be inspected. To define the

priority of these lots on inspection tools, five combinations of lots are evaluated.

These five combinations are obtained by successively removing one by one one lot

from the initial set of lots Sinitial, i.e.:

1. GSI(Sinitial) = GSI({L1, L2, L3, L4})

2. LSI(L1) = GSI(Sinitial\{L1})−GSI(Sinitial) = GSI({L2, L3, L4})−GSI({L1, L2, L3, L4})
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3. LSI(L2) = GSI(Sinitial\{L2})−GSI(Sinitial) = GSI({L1, L3, L4})−GSI({L1, L2, L3, L4})

4. LSI(L3) = GSI(Sinitial\{L3})−GSI(Sinitial) = GSI({L1, L2, L4})−GSI({L1, L2, L3, L4})

5. LSI(L4) = GSI(Sinitial\{L4})−GSI(Sinitial) = GSI({L1, L2, L3})−GSI({L1, L2, L3, L4})

The larger LSI(L) of L (LSI(L1), LSI(L2), LSI(L3), or LSI(L4)), the greater

the priority of L on inspection tools. This means that the larger the difference with

the initial GSI (GSI(Sinitial)), the more not inspecting the lot degrades the GSI. In

the example illustrated above, if LSI(L1) > LSI(L2) > LSI(L3) > LSI(L4), the

priority on inspection tools is: L1, L2, L3, and finally L4. If LSI(L2) > LSI(L4) >

LSI(L1) > LSI(L3), then the priority is L2, L4, L1, and finally L3.

To be more general, a risk array (same type for several tools and/or several risk

types) is assigned to each lot [20]. This array contains the new value of each risk (or

of the risk reduction) if the lot is inspected. Let us consider the following notations:

• R: Number of risks,

• WLr: Warning Limit for risk r,

• ILr: Inhibit Limit for risk r,

• RVr: Current risk value for risk r,

• Gr,l: Gain on risk r if lot l is inspected,

• NRVr,l: New risk value if lot l is inspected, i.e. NRVr,l = RVr −Gr,l.

• NRVr(S): New risk value if lots in set S are inspected. The new risk value if

lots in set S are inspected is calculated as follows:

NRVr(S) = Minl∈SNRVr,l.

For defectivity controls, the risk RVr corresponds to the Wafer at Risk (WAR)

for production tool r. The WAR is the number of wafers processed on tool r since
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the process of the latest lot inspected in defectivity. This can be seen as the number

of wafers which have been processed on a tool r since the latest good defectivity

control. In this case, the gain Gr,l is the WAR reduction of the tool r if lot l is

inspected. Two control parameters are defined: Warning Limit and Inhibit Limit.

The Warning Limit WLr corresponds to the value of the WAR beyond which the

situation starts to become critical in term of control. The Inhibit Limit ILr is the

maximum number of wafers that can be ran between two defectivity inspections for

the considered tool. Exceeding this limit for the WAR may lead to stopping the

production tool.

Using parameters described above, two GSI formulas (GSI-1 and GSI-2) com-

puting two different scores have been proposed. These two GSI formulas are used

in different GSI algorithms (Section 6.4) for sampling, skipping, and scheduling

lots dynamically.

6.3.1 GSI 1

The first formula of the GSI aims at selecting sets that contain lots that help to

reduce risk values that are closer to their Inhibit Limits ILr. The Inhibit Limit ILr

represents the maximum risk value that the company tolerates to ensure that, when

a problem occurs, the potential loss will not exceed this limit. The focus is thus put

on the ratio NRVr/ILr and the goal is to increase the priority of lots with significant

gain, i.e. lots for which NRVr/ILr is very small (parameter 1/β), and decrease the

priority of lots for which NRVr/ILr is close or higher than 1 (parameter α).

GSI(S) =
R∑
r=1

[(
NRVr(S)

ILr

)1/β

+

(
NRVr(S)

ILr

)α]

The two parameters α (> 1) and β (> 1) in the GSI formula are thus used to put

more or less emphasis on getting as far as possible from the Inhibit Limit for which

the current risk value is closer. Figure 6.4 shows the evolution of the GSI depending

on the ratio between the new risk value NRVr if lots in the set S are inspected and

the Inhibit Limit ILr, with α set to 6 and β to 2. These two parameter values are
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based on numerical experiments presented in Section 6.5. They (α = 6 and β = 2)

guarantee the expected trend of the curve (Figure 6.4). However, their values may

vary depending on the factory dynamics.

Figure 6.4: GSI-1 Evolution.

Between 0 and 0.5 (see X-axis), the shape of the curve is mostly driven by the

parameter β (1/β). Beyond 0.5, the parameter α penalizes the fact that NRVr is

close to the Inhibit Limit. For example, if NRVr/ILr = 0.1, NRVr is ten times

smaller than ILr. In other words, by selecting and inspecting a given set S of

lots, the new risk value (NRVr) is much smaller than the Inhibit Limit. Since the

objective is to stay as much as possible below the Inhibit Limit, the set S of lots needs

to be prioritized. This is why, in Figure 6.4, a smaller GSI (=0.3) is associated to the

ratio NRVr/ILr = 0.1. Similarly, NRVr/ILr = 0.9 means that, when inspecting a

set S of lots, NRVr is very close to ILr. This is not interesting, since it corresponds

to a significant GSI (=1.5) that reduces the priority of selecting such a set of lots.

In Figure 6.4, note that, when the ratio NRVr/ILr is very small (i.e. the new risk

value is very far from the Inhibit Limit), the priority increases with a small GSI.

When the ratio NRVr/ILr increases, the priority is decreased with a significant

GSI. Let us consider the example in Table 6.3 already introduced in the previous

section.
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Production tools NRVr ILr
r1 50 500
r2 10 500
r3 450 500
r4 450 500

(a) Set of lots S1 selected.

Production tools NRVr ILr
r1 200 500
r2 200 500
r3 200 500
r4 200 500

(b) Set of lots S2 selected.

Table 6.3: Example1 - Evaluating two different set of lots S1 and S2 with the GSI.

We want to select a set of lots (S1 or S2) to inspect in order to reach the best

possible state in production. The Inhibit Limit is set to 500 for all production tools.

Inspecting the set of lots S1 will strongly reduce the risk level of two production

tools (r1 and r2) while keeping the risk level of two other tools (r3 and r4) close

to their Inhibit Limits. Inspecting the set of lots S2 will reduce the risk level of

all production tools while ensuring to stay well below the Inhibit Limit. Without

any computation, we can see that it would interesting to select and inspect the lots

in set S2 and keep all risk levels far from the Inhibit Limit. This decision can be

verified with the GSI formula using α = 6 and β = 2:

• Selecting S1:

GSI(S1) =

[(
50

500

)1/2

+

(
50

500

)6
]

+

[(
10

500

)1/2

+

(
10

500

)6
]

+[(
450

500

)1/2

+

(
450

500

)6
]

+

[(
450

500

)1/2

+

(
450

500

)6
]

= 3.42

• Selecting S2:

GSI(S2) =

[(
200

500

)1/2

+

(
200

500

)6
]

+

[(
200

500

)1/2

+

(
200

500

)6
]

+[(
200

500

)1/2

+

(
200

500

)6
]

+

[(
200

500

)1/2

+

(
200

500

)6
]

= 2.55

The GSI associated to S2 is smaller than the one associated to S1. Selecting

and inspecting the lots in set S2 ensures the best possible resulting state in terms
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of risk. Let us consider another example (Table 6.4) where inspecting two different

sets of lots S3 and S4 allows staying below the Inhibit Limit but we need to select

the best set.

Production tools NRVr ILr
r1 350 500
r2 300 500
r3 400 500
r4 300 500

(a) Set of lots S3 selected.

Production tools NRVr ILr
r1 350 500
r2 350 500
r3 350 500
r4 350 500

(b) Set of lots S4 selected.

Table 6.4: Example2 - Evaluating two different sets of lots S3 and S4 using the
GSI.

The resulting states (Table 6.4a and Table 6.4b) are very similar and it is not

easy to identify the best set. Using the GSI formula, we have:

• Selecting S3 gives:

GSI(S3) =

[(
350

500

)1/2

+

(
350

500

)6
]

+

[(
300

500

)1/2

+

(
400

500

)6
]

+[(
400

500

)1/2

+

(
400

500

)6
]

+

[(
300

500

)1/2

+

(
300

500

)6
]

= 3.75

• Selecting S4 gives:

GSI(S4) =

[(
350

500

)1/2

+

(
350

500

)6
]

+

[(
350

500

)1/2

+

(
350

500

)6
]

+[(
350

500

)1/2

+

(
350

500

)6
]

+

[(
350

500

)1/2

+

(
350

500

)6
]

= 3.81

Therefore, it is better to select and inspect the lots in S3 since it has the smallest

GSI. In order to understand why S3 provides the smallest GSI, let us separately

analyze the impact of parameters β and α using two different cases.



134 CHAPTER 6. IMPLEMENTING SMART SAMPLING POLICIES

6.3.1.1 Impact of parameter β

Parameter β plays an important role when we need to analyze what happens

when NRVr is well below ILr. Let us consider the example in Table 6.5.

Production tools NRVr ILr
r1 200 500
r2 200 500
r3 200 500
r4 200 500

(a) Set of lots S5 selected.

Production tools NRVr ILr
r1 10 500
r2 280 500
r3 280 500
r4 280 500

(b) Set of lots S6 selected.

Table 6.5: Example3 - Evaluating two different sets of lots S5 and S6 using the
GSI.

There are two different sets of lots S5 and S6 where the maximum value of

NRVr for each set is well below ILr (= 500). In this case, it could be interesting to

compare the total gain that each set brings, i.e.:

• r1(S5)− r1(S6) = 200− 10 = +190

• r2(S5)− r2(S6) = 200− 280 = −80

• r3(S5)− r3(S6) = 200− 280 = −80

• r4(S5)− r4(S6) = 200− 280 = −80

This means that selecting and inspecting the lots in set S5 will bring a gain

of +190 − 80 − 80 − 80 = −50 compared to the lots in set S6. In other words,

inspecting the lots in S5 will reduce the total risk by 50 more than inspecting the

lots in S6. Therefore, the best choice would be to select S5 because of the gain in

risk reduction. However, as the objective is to stay well below the Inhibit Limit,

β (in the GSI formula) will prioritize the set of lots where the risk level of one

production tool can be strongly reduced since, in both cases, we stay below and far

from the Inhibit Limit. This can be verified using the GSI formula:
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• Selecting S5 gives:

GSI(S5) =

[(
200

500

)1/2

+

(
200

500

)6
]

+

[(
200

500

)1/2

+

(
200

500

)6
]

+[(
200

500

)1/2

+

(
200

500

)6
]

+

[(
200

500

)1/2

+

(
200

500

)6
]

= 2.55

• Selecting S6 gives:

GSI(S6) =

[(
10

500

)1/2

+

(
10

500

)6
]

+

[(
280

500

)1/2

+

(
280

500

)6
]

+[(
280

500

)1/2

+

(
280

500

)6
]

+

[(
280

500

)1/2

+

(
280

500

)6
]

= 2.48

S6 is prioritized because of the significant risk reduction on production tool r1.

6.3.1.2 Impact of parameter α

Contrary to β, α penalizes cases where NRVr is close to ILr values. Let us

consider the example in Table 6.6.

Production tools NRVr ILr
r1 200 500
r2 200 500
r3 450 500
r4 200 500

(a) Set of lots S7 selected.

Production tools NRVr ILr
r1 300 500
r2 300 500
r3 300 500
r4 300 500

(b) Set of lots S8 selected.

Table 6.6: Example4 - Evaluating two different sets of lots S7 and S8 using the
GSI.

As for parameter β, we can compare the total gain of selecting lots in S7 versus

selecting lots in S8:

• r1(S7)− r1(S8) = 200− 300 = −100
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• r2(S7)− r2(S8) = 200− 300 = −100

• r3(S7)− r3(S8) = 450− 300 = +150

• r4(S7)− r4(S8) = 200− 300 = −100

We obtain: −100 − 100 + 150 − 100 = −150. This means that selecting and

inspecting the lots in set S7 will help reducing the global risk of −150 more than by

selecting and inspecting the lots set S8. In this case, the best decision is to select

and inspect the lots in set S7. However, when looking to the NRVr values if S7

is selected (Table 6.6a), we can see that, for r3, NRVr3 (= 450) is very close to

ILr3 (=500). Using the GSI formula, this is strongly penalized with α (NRVr very

close to ILr). Therefore, the GSI formula indicates that S8 is the best set of lots to

inspect even if S7 brings the largest gain in term of risk reduction:

• Selecting S7 gives:

GSI(S7) =

[(
200

500

)1/2

+

(
200

500

)6
]

+

[(
200

500

)1/2

+

(
200

500

)6
]

+[(
450

500

)1/2

+

(
450

500

)6
]

+

[(
200

500

)1/2

+

(
200

500

)6
]

= 3.39

• Selecting S8 gives:

GSI(S8) =

[(
300

500

)1/2

+

(
300

500

)6
]

+

[(
300

500

)1/2

+

(
300

500

)6
]

+[(
300

500

)1/2

+

(
300

500

)6
]

+

[(
300

500

)1/2

+

(
300

500

)6
]

= 3.29

Hence, using the GSI formula, it is always possible to identify and select the best

set of lots to inspect. However, in this first GSI formula, the Warning Limit that

represents a limit above which the situation starts to become critical is not taken

into account. Depending on the criticality of some processing steps, or the cycle

time between process and inspection tools, some lots may be prioritized to avoid

reaching the Inhibit Limit. Missing to consider the Warning Limit may lead to

situations where the Inhibit Limit will be reached because of delayed actions. This

is why a second GSI formula integrating the Warning Limit was proposed.
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6.3.2 GSI 2

The GSI-2 formula is based on the GSI-1 formula but integrates the Warning

Limit that represents a threshold above which the situation starts to become critical

in term of control. The objective is to select sets of lots that allow staying well below

the Inhibit Limit and if possible below the Warning Limit. Parameters α and β, as

in the GSI-1 formula, are used to give more or less priority depending on sets of lots

S to analyze. The score is given by:

GSI(S) =
R∑
r=1


Min

1,

NRVr
ILr
WLr
ILr




1/β

+

Max

0,

NRVr
ILr

− WLr
ILr

1− WLr
ILr



α


Or

GSI(S) =
R∑
r=1

[(
Min

(
1,
NRVr
WLr

))1/β

+

(
Max

(
0,
NRVr −WLr
ILr −WLr

))α]

With this new formula, the aim is not only to stay well below the Inhibit Limit

but also penalize sets of lots where risk values (NRVr) are larger than Warning

Limits. When NRVr < WLr, the GSI is given by:

GSI(S) =
R∑
r=1

(
NRVr
WLr

)1/β

Parameter β increases the priority of sets of lots that allow staying below WLr. The

smaller NRVr/WLr, the smaller the associated GSI (Figure 6.5).

When NRVr > WLr, the associated set of lots is strongly penalized with pa-

rameter α. In this case, the GSI is given by:

GSI(S) = 1 +
R∑
r=1


NRVr
ILr

− WLr
ILr

1− WLr
ILr


α

= 1 +
R∑
r=1

(
NRVr −WLr
ILr −WLr

)α
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Figure 6.5: GSI-2 Evolution.

Figure 6.5 shows the evolution of this new GSI formula when WLr = 0.7 ∗ ILr.
Contrary to the GSI-1 formula, sets of lots where NRVr are close to ILr are strongly

penalized with a very large value of the GSI.

Let us consider the example in Table 6.7. The same example has been evaluated

with the GSI-1 formula (see Table 6.6). The best set was S8 because, with S7, the

new risk value (NRVr) associated to tool r3 is very close to the Inhibit Limit ILr.

Tools NRVr WLr ILr
r1 200 350 500
r2 200 350 500
r3 450 350 500
r4 200 350 500

(a) Set of lots S9 selected.

Tools NRVr WLr ILr
r1 300 350 500
r2 300 350 500
r3 300 350 500
r4 300 350 500

(b) Set of lots S10 selected.

Table 6.7: Example5 - Evaluating two different sets of lots S7 and S8 using the
GSI.

Using the GSI-2 formula and defining Warning Limits based on the Inhibit Limits

(WLr = 0.7 ∗ ILr = 0.7 ∗ 500 = 350), we obtain (with α = 6 and β = 2):
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• Selecting S9 gives:

GSI2(S9) =

[(
Min

(
1,

200

350

))1/2

+

(
Max

(
0,

200− 350

500− 350

))6
]

+[(
Min

(
1,

200

350

))1/2

+

(
Max

(
0,

200− 350

500− 350

))6
]

+[(
Min

(
1,

450

350

))1/2

+

(
Max

(
0,

450− 350

500− 350

))6
]

+[(
Min

(
1,

200

350

))1/2

+

(
Max

(
0,

200− 350

500− 350

))6
]

= 3.36

• Selecting S10 gives:

GSI2(S10) =

[(
Min

(
1,

300

350

))1/2

+

(
Max

(
0,

300− 350

500− 350

))6
]

+[(
Min

(
1,

300

350

))1/2

+

(
Max

(
0,

300− 350

500− 350

))6
]

+[(
Min

(
1,

300

350

))1/2

+

(
Max

(
0,

300− 350

500− 350

))6
]

+[(
Min

(
1,

300

350

))1/2

+

(
Max

(
0,

300− 350

500− 350

))6
]

= 3.70

Contrary to the GSI-1 formula, the GSI-2 selects S9 as the best set of lots for

inspection. The set of lots S10 where NRVr values are close to WLr (r1 = r2 =

r3 = r4 = 300 and WLr = 350) are penalized. Depending on the GSI formula, the

set of lots that is selected is different:

• GSI-1 formula⇒ S8. States whereNRVr is close to ILr are strongly penalized.

• GSI-2 formula ⇒ S7. States where NRVr is close to WLr and ILr are penal-

ized.

When looking at Table 6.7, the solutions provided by the two GSI formulas

(GSI-1 and GSI-2) can be discussed. If the values of parameters α and β are not
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the same for the two GSI formulas, only using the GSI formulas to select lots is not

enough. Therefore, there is a need to consider additional parameters to ensure ef-

ficient sampling, skipping, and scheduling of lots on inspection tools. For example,

increasing the priority of some lots based on their processing history, or defining

threshold values below which a lot that has been sampled cannot be skipped.

To consider additional parameters, two different GSI sampling algorithms are

proposed. They are based on the GSI formulas (GSI-1 and GSI-2) and production

constraints such as prioritizing lots that minimize the number of Inhibit Limits that

are not satisfied, or not sampling lots that bring less than a given percentage of

gain on the GSI. The next section describes these two algorithms and section 6.5.2

presents the performance of each algorithm based on simulations.
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6.4 GSI sampling algorithms

GSI sampling algorithms are based on GSI formulas, Warning Limits, Inhibit

Limits, and some thresholds. Thresholds help mastering the cycle time of lots by

avoiding sampling lots that may be skipped later because of the arrival of new lots

containing more information. The objectives are twofold:

1. Sample, skip, and dynamically schedule lots on inspection tools while ensuring

an optimal use of the inspection capacity.

2. Minimize the risks on the entire production while ensuring a maximum risk

level below the Inhibit Limits.

In this section, we first define the different types of thresholds and then present

the GSI sampling algorithms that are evaluated through simulations (Section 6.5.2).

6.4.1 Threshold definitions

A threshold can be defined as a limit above or below which an action may be

taken. For dynamically sampling, skipping, and scheduling lots, three different

thresholds are defined:

1. Minimum threshold (TMin) = Minimum gain required for a lot to enter the

inspection queue when the latter is empty.

2. Maximum threshold (TMax) = Minimum gain required for a lot to enter

the inspection queue when the latter is full.

3. Metrology threshold (TMetro) = Minimum gain required for a lot to remain

in the inspection queue after completing the inspection of another lot.

TMin and TMax are used in the entrance of the inspection queue to help deciding

whether or not a lot should be sampled. TMetro is used for lots already in the

inspection queue. The three thresholds (TMin, TMax, TMetro) are based on the GSI,

i.e. the gain of a lot l is always evaluated within a set S of lots (section 6.3). This

gain for a lot l in a set S is given by:
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Gain(l) = 1− GSI(S ∪ {l})
GSI(S)

∈ [0, 1] .

Gain(l) is strictly positive since inspecting an additional lot cannot worsen the

GSI.

• Minimum threshold (TMin) and Maximum threshold (TMax). TMin and

TMax are fixed values that never vary. When the inspection queue is empty,

TMin is used and, when the queue is full, TMax is used. When the inspection

queue is partially filled, the threshold used is proportional to the size of the

inspection queue. The threshold is defined with the following formula:

Threshold = TMin +

[
NBQ

SQ
∗ (TMax − TMin)

]
where NBQ is the number of lots in the inspection queue and SQ the inspec-

tion queue size (i.e. capacity). All thresholds are given in percentages. Let

us consider Figure 6.6 and Figure 6.7. There are three possible cases: The

inspection queue is full (Figure 6.6a), partially filled (Figure 6.6b), or empty

(Figure 6.7). For these three cases, a decision must be taken regarding the

sampling of a lot LX that arrives in front of the inspection step. Two steps are

performed: Compute the GSI and verify if the gain associated to LX satisfies

the threshold limits.

Example: TMin = 5%, TMax = 20%.

A. Figure 6.6a → The queue is full. In this case, sampling LX leads to

skipping another lot in the inspection queue. Therefore, we need to analyze

all possible combinations and select the best one. This means evaluating:

GSI1 = GSI({L1, L2, L3, L4})
GSI2 = GSI({LX,L2, L3, L4})
GSI3 = GSI({L1,LX,L3, L4})
GSI4 = GSI({L1, L2,LX,L4})
GSI5 = GSI({L1, L2, L3,LX})
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(a) Inspection queue full. (b) Inspection queue partially
filled.

Figure 6.6: Inspection queue not empty.

Figure 6.7: Inspection queue empty.

GSI1 is the reference, i.e. the score associated to the set of lots {L1, L2, L3, L4}
already in the inspection queue. If GSI2, GSI3, GSI4, or GSI5 is lower than

GSI1, then sampling LX and skipping another lot in the queue is valuable.

For example, if GSI3 < GSI1, sampling LX and skipping L2 is interesting.

But, before performing such a decision, we need to verify that the gain associ-

ated to sampling LX satisfies the threshold. Since the inspection queue is full

(Figure 6.6a), the maximal threshold TMax = 20% is used and it is necessary

to verify that:
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Gain(LX) =

[
1− GSI3

GSI1

]
∗ 100% > 20%

If Gain(LX) > 20%, then sampling LX and skipping L2 improves the GSI

score by at least 20%.

B. Figure 6.6b → The queue is partially filled. Three lots are waiting

in the inspection queue and the queue size is 4. It means that there is an

available place and LX can be sampled. However, as we want to optimally

use all inspection tools, we want to ensure that inspecting an additional lot

improves the situation (in term of risk) enough. Therefore, we verify that:

Gain(LX) = 1− GSI({L1, L2, L3, LX})
GSI({L1, L2, L3})

∗ 100% >

TMin +
NBQ

SQ
∗ (TMax − TMin)

i.e.

Gain(LX) =

[
1− GSI({L1, L2, L3, LX})

GSI({L1, L2, L3})

]
∗ 100% > 5 + (3/4) ∗ (20− 5)%

⇒ Gain(LX) =

[
1− GSI({L1, L2, L3, LX})

GSI({L1, L2, L3})

]
∗ 100% > 16.25%

If Gain(LX) > 16.25%, then LX is sampled and added to the inspection

queue, otherwise, LX will not be sampled.

C. Figure 6.7 → The queue is empty. There are 4 available places into

the queue but we need to verify that inspecting LX improves the situation

enough. The case where LX is inspected (GSI({LX}) is compared to the

case where no lot is inspected (GSI(∅)), i.e.:

Gain(LX) = 1− GSI({LX})
GSI(∅)

∗ 100% > TMin

⇒ Gain(LX) = 1− GSI({LX})
GSI(∅)

∗ 100% > 5%
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If Gain(LX) > 5%, then LX is sampled and added to the inspection queue.

• Metrology threshold (TMetro). TMetro is a fixed value in percentage that

helps mastering the number of lots skipped after the inspection of other lots.

Each time a lot is inspected, the gain associated to lots in the inspection queue

is modified. Depending on the time spent in the inspection queue, the gain

of some lots may strongly decrease and, thus, it may be interesting to skip

these lots to avoid increasing their cycle time for nothing. Let us consider the

example in Figure 6.8. Lot L1 has been inspected and there is a need to define

whether or not a lot (LX, or L3, or L4) in the queue should be skipped. To

skip a lot l after an inspection, the gain having l in a set S of lots must be

lower than TMetro. This means:

Gain(l in S) =
GSI(S \ {l})
GSI(S)

− 1 < TMetro.

Figure 6.8: Threshold metrology (TMetro) - Skipping lots after inspection.

For example, if TMetro = 10% and L1 has just been inspected, to decide

whether a lot should be removed from the inspection queue, we need to assess

the gain of each lot in the queue i.e. in the set S = {LX,L3, L4}. This means

evaluating:

Gain(LX in S) =
GSI({L3, L4})

GSI({LX,L3, L4})
− 1
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Gain(L3 in S) =
GSI({LX,L4})

GSI({LX,L3, L4})
− 1

Gain(L4 in S) =
GSI({LX,L3})

GSI({LX,L3, L4})
− 1

If there is a lot l such that Gain(l in S) < TMetro, then l will be skipped,

removed from the inspection queue and directed to its next processing opera-

tion. For example, if Gain(LX in S) < 10%, then lot LX will be skipped.

These three thresholds (TMax, TMin, TMetro) were progressively introduced based on

simulations results (Section 6.5). The threshold TMax was introduced to reduce the

number of lots skipped. By using the GSI formulas to sample lots, we observed that

some lots were sampled because of their gains but never inspected because of the

arrival of new lots bringing more information. Consequences were the increasing of

the cycle times of those lots that were stopped at inspection steps without being

inspected. By defining a minimum gain (TMax) to satisfy before sampling a lot, we

could reduce the number of sampled lots and thus the number of skipped lots. TMin

was defined to ensure that, even if the inspection queue is empty, sampling a lot will

always improve the situation within production.

TMetro was defined to master the number of skipped lots due the reduction of the

gain after each inspection. This threshold was introduced to dissociate the thresh-

old in the entrance of the queue (TMax) and the threshold required for lots to stay

in the queue after each inspection. Increasing the threshold in the entrance of the

queue leads to the reduction of the number of sampled lots, and thus the number

of skipped lots, while increasing the threshold required for each lot to stay in the

queue leads to increasing the number of skipped lots because of the incompressible

waiting time in front of inspection tools. By separating the two thresholds (TMax

and TMetro), we could master both the number of sampled lots and skipped lots.

In the next sections, we present the different GSI sampling algorithms that have

been developed based on GSI formulas, Warning Limits, Inhibit Limits, and the
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different thresholds.

6.4.2 GSI sampling algorithm 1 (GSI-SA-1)

Sampling a lot l is based on how much is gained when adding l to the set of lots

Sinitial already in the inspection queue. We compare the number of inhibit limits

that are violated, the number of warning limits that are violated and the GSI of the

sets of lots obtained by adding l in Sinitial, i.e. Sinitial ∪ {l}, or by removing l′ from

Sinitial and adding l, i.e. Sinitial \ {l′} ∪ {l}. Let us consider the following notations:

• Sinitial: Set of lots already in the inspection queue,

• NBQ: Number of lots in Sinitial (NBQ = |Sinitial|), i.e. number of lots already

in the inspection queue,

• SQ: Size of the inspection queue,

• NbIL(S): Number of Inhibit Limits that are violated if the set of lots S is

selected for inspection,

• NbWL(S): Number of Warning Limits that are violated if the set of lots S is

selected for inspection.

The first GSI sampling algorithm (GSI-SA-1) determines the best set of lots S?

and uses the GSI-1 formula (section 6.3.1), i.e.:

GSI(S) =
R∑
r=1

[(
NRVr(S)

ILr

)1/β

+

(
NRVr(S)

ILr

)α]

If the number of lots already in the inspection queue is strictly smaller than

the size of the inspection queue, i.e. NBQ < SQ, then only adding l in Sinitial is

evaluated and compared to not adding l. Otherwise, i.e. NBQ = SQ, all combina-

tions associated to removing each l′ ∈ Sinitial from Sinitial and adding l in Sinitial are

evaluated.

In the description below, SS denotes a set of sets of lots.
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GSI-SA-1 – Selecting the best set of lots S? using IL, WL and GSI-1

1: Initialization: S? = Sinitial
2: If NBQ = SQ then
3: SS = ∅
4: For each lot l′ ∈ Sinitial
5: SS = SS ∪ {Sinitial \ {l′} ∪ {l}}
6: End for
7: ElseIf NBQ < SQ then
8: SS = {Sinitial ∪ {l}}
9: End if
10: For each set of lots S ∈ SS
11: If NbIL(S) < NbIL(S?) then
12: S? = S
13: ElseIf NbIL(S) = NbIL(S?) and NbWL(S) < NbWL(S?) then
14: S? = S
15: ElseIf NbIL(S) = NbIL(S?) and NbWL(S) = NbWL(S?) then

/* Only gains that satisfy threshold values are accepted. */
16: If GSI(S) < GSI(S?) and

[1−GSI(S)/GSI(Sinitial)] >

[
TMin +

NBQ

SQ
∗ (TMax − TMin)

]
then

17: S? = S
18: End If
19: End If
20: End for

6.4.3 GSI sampling algorithm 2 (GSI-SA-2)

Contrary to the first algorithm, the second GSI sampling algorithm ((GSI-SA-2)

uses the GSI-2 formula (section 6.3.2). Since Warning Limits are already included

in the GSI-2 formula, this second algorithm does not start by ranking solutions in a

lexicographical order, i.e. verifying the number of Inhibit Limit and Warning Limit

that are violated. The selection of the best set of lots is directly performed by using

the GSI-2 formula and threshold limits:
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GSI(S) =
R∑
r=1


Min

1,

NRVr
ILr
WLr
ILr




1/β

+

Max

0,

NRVr
ILr

− WLr
ILr

1− WLr
ILr



α


Warning Limits and Inhibit Limits are no longer thresholds to avoid in this

second algorithm.

GSI-SA-2 – Selecting the best set of lots S? using GSI-2

1: Initialization: S? = Sinitial
2: If NBQ = SQ then
3: SS = ∅
4: For each lot l′ ∈ Sinitial
5: SS = SS ∪ {Sinitial \ {l′} ∪ {l}}
6: End for
7: ElseIf NBQ < SQ then
8: SS = {Sinitial ∪ {l}}
9: End if
10: For each set of lots S ∈ SS
11: If GSI(S) < GSI(S?) and

[1−GSI(S)/GSI(Sinitial)] >

[
TMin +

NBQ

SQ
∗ (TMax − TMin)

]
then

12: S? = S
13: End if
14: End for

These two GSI sampling algorithms could have been evaluated using a fab-wide

simulation as in Gissrau and Rose [27]. However, we wanted to use historical data

that were available and focus on the sampling mechanisms. Hence, we used a sim-

ulator called S5 (Smart Sampling Skipping Scheduling Simulator) [104] developed

by the EMSE within the framework of the European project IMPROVE, to test the

GSI sampling algorithms. S5 also helped to evaluate the sampling algorithms on

datasets from various European semiconductor fabs.

In the next section we discuss the performances of each sampling algorithm and

analyze the impact of input parameters in the GSI sampling performances.



150 CHAPTER 6. IMPLEMENTING SMART SAMPLING POLICIES

6.5 Numerical experiments

Simulations presented in this section were performed on actual data from the

300-mm site of STMicroelectronics in Crolles, France. We used six weeks of histori-

cal data. With 8 different technologies and 244 production tools, the time required

to simulate a fab-wide sampling policy is 7 minutes (4 minutes for simulation and 3

minutes to generate statistics). The characteristics of the computer are: 2.53GHz,

4GB of RAM, and Windows 7 as the operating system. For all simulations, we

defined the Warning and Inhibit Limits to 1000 and 2000 respectively for all pro-

duction tools. The impact of these Warning and Inhibit Limits are evaluated and

computed for each production tool in the next chapter (Chapter 7).

6.5.1 S5 simulator

The S5 (Smart Sampling Skipping Scheduling Simulator) simulator was de-

veloped within the framework of the European project IMPROVE [104]. It uses

historical data to simulate various sampling policies (see Appendix C.1 for further

details). For each sampling policy that is simulated, the simulator provides sev-

eral statistics and we use some of these statistics to assess the performance of GSI

sampling algorithms. Among these statistics, we use the following indicators:

1. Number of lots that are sampled: The number of lots that are selected

for measurement and placed in the metrology queue.

2. Number of lots that are measured: The number of lots that are processed

on metrology tools.

3. Number of lots that are skipped: The number of lots that are removed

from the metrology queue, i.e. the number of lots that are sampled but not

measured.

4. Number of lots that are skipped (entry queue): The number of lots that

are removed from the metrology queue due to the arrival of new lots having

more information.
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5. Number of lots that are skipped (metrology): The number of lots that

are removed from the metrology queue due to the measurement of other lots.

6. Medium WAR (average): The sum of the WAR of all production tools

divided by the number of tools. It is equal to
NbTools∑
j=1

WARj

NbTools
where WARj is

the WAR for production tool j, and NbTools the number of production tools.

7. Maximum WAR (average): The sum of the maximum WAR of all produc-

tion tools divided by the number of tools. It is equal to
NbTools∑
j=1

MaximumWARj

NbTools
.

8. Number of wafers above Warning Limit: The number of wafers that are

processed on production tools when WAR is above the Warning Limit.

9. Number of wafers above Inhibit Limit: The number of wafers that are

processed on production tools when WAR is above the Inhibit Limit.

6.5.2 Evaluating GSI sampling algorithms

To evaluate the performances of the GSI sampling algorithms (section 6.4) versus

Fab sampling, we define and consider the same parameter values for the two GSI

sampling algorithms. We first aim at evaluating and quantifying the performances of

each GSI sampling algorithm, and then analyzing the impact of different parameters

(α, β, TMax, TMin, TMetro) in the sampling policy performances. We define:

• α = 6 and β = 2.

• TMin = 0%.

• TMax = 4%.

• TMetro = 0%.

• WL = 1000 and IL = 2000 for all production tools.
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• Number of metrology tools = 2 and queue size = 4. In fact, in our historical

data, 13 metrology tools are used. However, these metrology tools are not

used at 100% because of maintenance, engineering actions, or qualifications.

To compare the GSI and Fab sampling policies, we need to have the same

number of measurements. This is why we adjust the number of metrology

tools as well as the measure time. By defining 2 metrology tools used at 100%

with a measure time of X, we ensure the saturation of our metrology capacity.

The queue size is set to be twice the number of metrology tools, i.e. two lots in

front of each metrology tool. This is a choice that can be discussed depending

on the factory dynamics or the historical data.

Table 6.8 shows the experimental results for the four cases: “Fab sampling”, “All

sampling”, “GSI algo-1”, “GSI algo-2”. Fab sampling corresponds to the sampling

that was actually performed in production. All sampling corresponds to measuring

all lots. It gives indication on theoretical performances if all lots were measured, i.e.

infinite capacity. GSI algo-1 and GSI algo-2 correspond to the sampling obtained

with the two GSI sampling algorithms (Section 6.4.2 and Section 6.4.3). All results

are normalized based on Fab sampling results.

Note that, whatever the sampling policy, the four following performances indica-

tors are improved compared to Fab sampling: Medium WAR (average), Maximum

WAR (average), Number of wafers above WL, Number of wafers above IL.

The case of All sampling shows that, measuring all lots does not ensures zero

risk. Hence the importance of optimally using the metrology capacity. The two GSI

sampling algorithms (GSI algo-1 and GSI algo-2) provide better results compared

to Fab sampling for the same measurement capacity (see the number of measured

lots). GSI algo-2 provides the minimum “Medium and Maximum WAR” whereas

GSI algo-1 ensures the minimum “Number of wafers above WL and IL”. However,

the differences are not so significant and can thus be discussed depending on the

production environment. When exceeding IL may lead to stopping production tools,

then GSI algo-1 is preferable. When the primary goal is to minimize risk, i.e. the

“Medium and Maximum WAR”, then GSI algo-2 is more suitable.
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Indicators
Fab

sampling
All

sampling
GSI

algo-1
GSI

algo-2

Number of sampled
lots

A 14.21*A 8.10*A 1.25*A

Number of measured
lots

A 14.21*A 0.98*A 0.98*A

Number of skipped
lots

0 0 7.12*A 0.27*A

Number of skipped
lots (entry queue)

0 0 4.65*A 0.01*A

Number of skipped
lots (metrology)

0 0 2.47*A 0.26*A

Medium WAR
(average)

B 0.11*B 0.36*B 0.35*B

Maximum WAR
(average)

C 0.16*C 0.45*C 0.44*C

Number of wafers
above WL

D 0.10*D 0.79*D 0.87*D

Number of wafers
above IL

E 0.06*E 0.49*E 0.59*E

Table 6.8: Evaluating the GSI sampling algorithms.

Looking at the number of lots that are sampled and the number of lots that are

skipped, GSI algo-2 outperforms GSI algo-1. For the same measurement capac-

ity and approximatively the same performances in term of risk reduction (Medium

and Maximum WAR), GSI algo-2 samples only 1.25*A lots whereas GSI algo-1

samples 6 times more lots (8.10*A). Consequences are the significant number of lots

that are skipped (GSI algo-1 skips 26 times more lots than GSI algo-2) since the

measurement capacity is constant. This may impact the cycle times of lots that are

sampled but never measured, i.e. skipped. The same for the “Number of skipped

lots (entry queue)” and “Number of skipped lots (metrology)”.

Considering all the performance indicators, the two GSI sampling algorithms

outperforms Fab sampling. With the same number of measurements, the GSI sam-
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pling algorithms help in strongly reducing both the risk, i.e. the WAR (Medium and

Maximum), and the number of wafers above WL and IL. However, no conclusion can

be taken regarding the GSI sampling algorithm that provides the best performances.

Depending on the production environment (automated or not) or the management

priorities (stopping production tools once IL is exceeded or minimizing the overall

risk, i.e. Medium and Maximum WAR), a sampling algorithm (GSI algo-1 or GSI

algo-2) may be more suitable than the other.

In the next section, we analyze the impact of the five following parameters that

are used in the GSI sampling algorithms: α, β, TMax, TMin, TMetro. We aim at

understanding their real impact in the GSI sampling performances, verifying the

expected behavior of the sampling algorithms, and identifying values that ensure

good performances. We choose GSI algo-2 because of the reduced number

of skipped lots. However, this is just a choice, and the impact of parameters may

vary depending on the GSI sampling algorithm or the production constraints.

6.5.3 Analyzing the impact of GSI parameters

We successively and separately vary all the parameters. We first analyze the

impact of parameters α and β before analyzing the impact of threshold parameters

(TMax, TMin, and TMetro). α and β are directly used in the GSI formulas to compute

scores that are associated to sets of lots, whereas TMax, TMin, and TMetro are used

in the GSI sampling algorithms5 to manage the filling of metrology queues, i.e. the

number of lots that are sampled and skipped.

Each parameter is separately analyzed, i.e. when we vary a parameter, we keep

all the other parameters constant. This choice can be discussed since the impact of

a parameter may be linked to the fixed values of the other parameters. However,

simulating all possible combinations is not possible because of the time of each

simulation ( 7 minutes). Moreover, since our primary goal is to verify that the GSI

sampling algorithms have the expected behavior whatever the parameter values,

5GSI sampling algorithms are a combination of GSI formulas, threshold values, and additional
constraints linked to metrology capacity and production environment.
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analyzing parameters one after another help us understand and assess the robustness

of the GSI sampling algorithms.

We focus on evaluating different situations with different parameter values rather

than trying to find the parameters values that provide the optimal performances of

the GSI sampling algorithms. We aim at identifying values that lead to a kind of

instability, and thus reduce the space of possible values that each parameter can take.

Our choice is also motivated by the fact the GSI sampling algorithms are to be used

in different manufacturing environments with different constraints and priorities.

The parameter values might not be the same in all situations. Hence our focus on

analyzing the impact of parameters, identifying abnormalities, i.e. parameter values

that make the GSI sampling algorithms unstable, and discussing the set of values

that each parameter should take.

6.5.3.1 Analyzing the impact of parameters α and β

Parameters α and β are used in the GSI formulas to put more or less emphasis

on getting as far as possible from the Inhibit Limit for which the current risk value is

closer. α is used to penalize sets of lots for which the resulting risk values are closer

to the Inhibit Limits. β prioritizes sets of lots fro which the associated risk values

are far from the Inhibit Limits. The goal is stay as far away as possible below Inhibit

Limit while minimizing the overall risk in the entire production (Section 6.3).

We use the S5 simulator [104] and the following performance indicators to assess

the impacts of α and β:

1. Number of lots that are sampled.

2. Number of lots that are measured.

3. Number of lots that are skipped.

4. Medium WAR (average).

5. Maximum WAR (average).

We set TMax = TMin = TMetro = 0%. We start by analyzing the impact of α

when β = 1. Then, we vary β for different values of α. Results show that, to ensure
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good performances with the GSI sampling algorithms, α must be lower than 13 and

β ∈ [2, 10]. For the case of the 300-mm fab of STMicroelectronics, the

values of α = 6 and β = 2 provide satisfactory results.

a ) Impact of parameter α. To analyze the impact of α, we vary its value

between 1 and 100 and consider the following parameters:

• β = 1

• TMax = TMin = TMetro = 0%

• Warning Limit = 1000

• Inhibit Limit = 2000

Figure 6.9 shows that α impacts the number of measured lots. Note that,

if α > 13, the number of measured lots decreases, i.e. metrology tools are no longer

fully used. This means that there are either lots that are not sampled when the

metrology queue is not full, or lots that are not measured when there are available

capacity on metrology tools. This can be explained by the fact that, when α > 13,

the GSI score ((NRV /IL)α + ...) becomes very large and thus, differences between

sets of lots (GSI scores) are not so significant in term of gains. Hence the reduced

number of measured lots.

Figure 6.9: Impact of α on the number of measured lots.
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Since metrology tools should be fully used, we only consider values of α ∈ [1, 12]

and analyze the impact on the other performance indicators. Figure 6.10 and Fig-

ure 6.11 show the impact of α (∈ [1,12]) on the WAR values and on the number of

sampled/skipped lots respectively.

Figure 6.10: Impact of α on the Medium WAR and Maximum WAR.

Figure 6.11: Impact of α on the number of sampled lots and skipped lots.

Note that the impact of α is negligible. The WAR values as well as the number of

lots that are sampled and skipped are not really impacted by α. The GSI sampling

algorithm ensures the measurement of the best possible sets of lots. Therefore, to

expect good performances from the GSI sampling algorithms, α should not be too

large. We thus only keep and consider α ∈ [1,12] in the remaining simulations.
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b ) Impact of parameter β. To analyze the impact of β, we consider the

following parameters:

• α ∈ [1,12] → {1,2,4,6,8,10,12}

• TMax = TMin = TMetro = 0%

• Warning Limit = 1000

• Inhibit Limit = 2000

Parameter β is used in the GSI formula (Section 6.3.2) as 1/β (... + (NRV/IL)1/β).

This implies that, the higher β, the lower its impact in the GSI score. For example,

if β = 20, it implies that 1/β = 0.05, i.e. (NRV/IL)1/β # 1.

For β to have an impact in the GSI formula, we only consider values of β below

10. Then, by varying β between 1 and 10 for α = {1, 2, 4, 6, 8, 10, 12}, we analyze

different performance indicators (Appendix C.2 - See the average value of each per-

formance indicator).

Results show that, when α increases, whatever the value of β, the average

Medium WAR and Maximum WAR tend to increase whereas the number of lots

that are skipped decreases. As one of the primary goal is to minimize the risk in the

entire production without increasing the cycle time of lots (i.e. number of skipped

lots), we need to find a trade-off between the number of lots that are skipped and

the Medium and Maximum WAR. We thus choose the medium value of α between

1 and 12, i.e. α = 6.

To identify the value of β that ensures good performances for the GSI sampling

algorithms, we analyze our performances indicators when α = 6. Table 6.9 shows

the impact of β when it varies between 2 and 106.

Note that7 the differences in the Medium and Maximum WAR can be neglected.

Therefore, we focus on the number of lots that are skipped. Results show that the

6We do not consider the value of β = 1 since, if β = 1, it does not impact the GSI formula
(Section 6.3.2).

7All results are normalized based on Fab sampling. A is the number of lots that are sampled,
B the Medium WAR (average), and C the Maximum WAR(average).
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Values of β with α = 6
Number of

sampled lots
Number of

measured lots
Number of

skipped lots

Average
Medium
W@R

Average
Maximum

W@R

2 5.34*A 0.98*A 4.35*A 0.24*B 0.28*C

3 5.58*A 0.98*A 4.60*A 0.24*B 0.28*C
4 5.76*A 0.98*A 4.78*A 0.24*B 0.28*C
5 5.93*A 0.98*A 4.95*A 0.24*B 0.28*C

6 6.05*A 0.98*A 5.07*A 0.24*B 0.28*C
7 6.23*A 0.98*A 5.25*A 0.24*B 0.28*C
8 6.26*A 0.98*A 5.28*A 0.24*B 0.28*C

9 6.37*A 0.98*A 5.38*A 0.25*B 0.28*C
10 6.58*A 0.98*A 5.60*A 0.24*B 0.28*C

Table 6.9: Impact of β when α = 6.

value of β = 2 ensures a good trade-off between the Medium WAR, the Maximum

WAR, and the number of lots that are skipped. Hence the choice of α = 6 and

β = 2 for the case of the 300mm fab of STMicroelectronics. If these values

of α and β may vary depending on the set of data or the production environment,

selecting α < 12 and β ∈ [2,10] seem to ensure optimized sampling policies with the

GSI sampling algorithms.
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6.5.3.2 Analyzing the impact of threshold parameters

Threshold parameters (TMax, TMin, and TMetro) have been introduced in the

GSI sampling algorithms to master the number of sampled lots and skipped lots.

The aim is to ensure the measurement of the best possible lots for a fixed metrology

capacity (Section 6.4). TMax and TMin are used at the entrance of the metrology

queue, whereas TMetro is used each time a measurement is completed. TMax is the

minimum gain required for a lot to enter the metrology queue when it is full. TMin is

the minimum gain required for a lot to enter the metrology queue when it is empty.

And TMetro is the minimum gain required for a lot to remain in the metrology queue

after the measurement of another lot is completed.

These three threshold parameters have direct impacts on the lots that are sam-

pled, skipped, measured, and thus on the sampling policy performances. For ex-

ample, if the threshold in the entrance of the queue (TMax) is very high, only few

lots will be sampled because of the higher gain required to enter the queue. Con-

sequences can be the increase of the number of lots processed above Inhibit Limits

and thus an increase of the potential loss if a problem occurs in production.

To analyze the impact of the three threshold parameters, we use the S5 simulator

(Appendix C.1) and analyze the following indicators:

1. Number of lots that are sampled.

2. Number of lots that are measured.

3. Number of lots that are skipped.

4. Number of lots that are skipped (entry queue).

5. Number of lots that are skipped (metrology).

6. Medium WAR (average).

7. Maximum WAR (average).

8. Number of wafers above Warning Limits.

9. Number of wafers above Inhibit Limits.
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10. Average time spent in the queue before measurement.

11. Average time in the queue before skip (entry queue).

12. Average time in the queue before skip (metrology).

Results indicate that, TMin impacts the number of measured lots leading to

reducing the saturation of the metrology tools. TMax impacts the number of lots

that are skipped in the entrance of the queue leading to an increase of the

number of lots processed above Inhibit Limits, and TMetro impacts the number

of lots that are removed from metrology queue leading to an increase of the

cycle time of lots, i.e. the number of lots that are sampled but never measured.

For the case of the 300-mm fab of STMicroelectronics, the best trade-off

seems to be TMax = 1%, TMin = 0%, and TMetro = 0%.
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a ) Impact of parameter TMax. Table 6.10 shows the impact of TMax on the

GSI sampling performances. Let us focus on the first three indicators: The number

of sampled lots, measured lots, and skipped lots. When TMax increases (0%, 1%, 2%,

10%, 20%), the number of lots that are sampled decreases leading to a reduction in

the number of lots that are skipped. The number of measured lots remains constant

(0.98 ∗ A). The higher the value of TMax, the lower the number of skipped lots.

The number of skipped lots is the sum of the number of skipped lots at the

entrance of the queue and the number of skipped lots after a measurement is com-

pleted (see indicators 4 and 5). TMax mainly impacts the number of skipped lots

at the entrance of the queue (indicator 4). Note that, when TMax ≥ 10, no lots are

skipped. This means that the gain required for each lot to enter the queue becomes

so large that, once a lot enters the queue, it is very difficult or impossible to remove

it from the queue, or find another lot that brings a gain which is large enough.

TMax 0% 1% 2% 10% 20%

1 Number of sampled lots 5.34*A 1.12*A 1.05*A 1.00*A 1.00*A

2 Number of measured lots 0.98*A 0.98*A 0.98*A 0.98*A 0.98*A

3 Number of skipped lots 4.35*A 0.14*A 0.07*A 0.02*A 0.02*A

4 Number of skipped lots
(entry queue)

4.33*A 0.09*A 0.01*A 0 0

5 Number of skipped lots
(metrology)

0.02*A 0.05*A 0.06*A 0.02*A 0.02*A

6 Medium WAR (average) 0.24*B 0.31*B 0.32*B 0.36*B 0.37*B

7 Maximum WAR (average) 0.28*C 0.40*C 0.42*C 0.47*C 0.48*C

8 Number of wafers above WL 0.67*D 0.82*D 0.83*D 0.88*D 0.89*D

9 Number of wafers above IL 0.20*E 0.47*E 0.51*E 0.63*E 0.65*E

10 Average time spent in the
queue before measurement

X 1.07*X 0.98*X 0.83*X 0.81*X

11 Average time in the queue
before skip (entry queue)

Y 4.15*Y 8.83*Y – –

12 Average time in the queue
before skip (metrology)

Z 1.64*Z 1.87*Z 1.02*Z 1.09*Z

Table 6.10: Impact of TMax ∈ [0,20%].

Consequences are the increasing of the WAR values (Medium and Maximum

WAR), and the number of wafers processed above Warning Limits and Inhibit Limits

(see indicators 6, 7, 8, and 9). As the gain becomes very large to enter the queue,

fewer lots are sampled. However, as the metrology capacity must be fully used, the

rest of capacity is wasted by the measurement of lots that do not satisfy the required

gain.
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The average time spent in the queue before measurement (indicator 10) decreases

since there is little waiting for lots in front of metrology tools because of the reduced

number of lots that are sampled. Lots that are sampled are quickly measured. The

time spent in the queue before skip (indicator 11) increases because lots that enter

the queue have large gains, and it is very difficult to find other lots with higher

gains. For TMax = 10% and TMax = 20%, we do not report time since no lot is

skipped. The time spent in the queue before skip after a measurement is completed

(indicator 12) is impacted by TMax but no conclusion can be taken at this stage

since this last indicator is mainly mastered with TMetro.

Between 0 and 1%, the number of skipped lots in the entrance of the queue

(indicator 4) is reduced by more than 97% (4.35*A→ 0.14*A). To understand what

happens between 0 and 1%, we performed simulations by varying TMax between 0

and 1% (see Table 6.11 and Table 6.12). The same kind of observations are made

as in Table 6.10, i.e. reduction of the number of skipped lots, increase of the WAR

values, increase of the number of wafers above WL and IL, reduction of the time

spent in the queue before measurement, and increase of the time before skip.

TMax 0% 0.1% 0.2% 0.3% 0.4% 0.5%

1 Number of sampled lots 5.34*A 1.84*A 1.55*A 1.42*A 1.34*A 1.27*A

2 Number of measured lots 0.98*A 0.98*A 0.98*A 0.98*A 0.98*A 0.98*A

3 Number of skipped lots 4.35*A 0.86*A 0.57*A 0.44*A 0.36*A 0.29*A

4 Number of skipped lots
(entry queue)

4.33*A 0.81*A 0.51*A 0.39*A 0.31*A 0.23*A

5 Number of skipped lots
(metrology)

0.02*A 0.05*A 0.06*A 0.05*A 0.05*A 0.06*A

6 Medium WAR (average) 0.24*B 0.28*B 0.29*B 0.29*B 0.29*B 0.30*B

7 Maximum WAR (average) 0.28*C 0.36*C 0.37*C 0.37*C 0.37*C 0.39*C

8 Number of wafers above WL 0.67*D 0.76*D 0.77*D 0.78*D 0.80*D 0.79*D

9 Number of wafers above IL 0.20*E 0.36*E 0.39*E 0.41*E 0.42*E 0.43*E

10 Average time spent in the
queue before measurement

X 1.13*X 1.08*X 1.08*X 1.07*X 1.06*X

11 Average time in the queue
before skip (entry queue)

Y 1.58*Y 2.10*Y 2.28*Y 2.64*Y 2.79*Y

12 Average time in the queue
before skip (metrology)

Z 1.76*Z 1.53*Z 1.61*Z 1.70*Z 1.99*Z

Table 6.11: Impact of TMax ∈ [0,0.5%].

By analyzing results reported in Table 6.11 and Table 6.12, we note that the

reduction in the number of lots that are skipped is rather constant between 0.1 and
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TMax 0.5% 0.6% 0.7% 0.8% 0.9% 1%

1 Number of sampled lots 1.27*A 1.23*A 1.20*A 1.17*A 1.16*A 1.12*A

2 Number of measured lots 0.98*A 0.98*A 0.98*A 0.98*A 0.98*A 0.98*A

3 Number of skipped lots 0.29*A 0.25*A 0.22*A 0.19*A 0.18*A 0.14*A

4 Number of skipped lots
(entry queue)

0.23*A 0.19*A 0.17*A 0.13*A 0.12*A 0.09*A

5 Number of skipped lots
(metrology)

0.06*A 0.06*A 0.05*A 0.06*A 0.06*A 0.05*A

6 Medium WAR (average) 0.30*B 0.30*B 0.31*B 0.31*B 0.31*B 0.31*B

7 Maximum WAR (average) 0.39*C 0.39*C 0.40*C 0.40*C 0.40*C 0.40*C

8 Number of wafers above WL 0.79*D 0.80*D 0.81*D 0.82*D 0.81*D 0.82*D

9 Number of wafers above IL 0.43*E 0.44*E 0.46*E 0.47*E 0.47*E 0.47*E

10 Average time spent in the
queue before measurement

1.06*X 1.07*X 1.03*X 1.04*X 1.01*X 1.07*X

11 Average time in the queue
before skip (entry queue)

2.79*Y 3.04*Y 3.27*Y 3.40*Y 3.98*Y 4.15*Y

12 Average time in the queue
before skip (metrology)

1.99*Z 1.62*Z 1.80*Z 1.77*Z 1.65*Z 1.64*Z

Table 6.12: Impact of TMax ∈ [0.5,1%].

1%. However, between 0 and 0.1%, there is a significant reduction of the number of

skipped lots (4.33*A→ 0.81*A). We thus performed additional simulations between

0 and 0.1% (Table 6.13) to understand when TMax starts impacting the number of

skipped lots. Results in Table 6.13 show that, as soon as there is a minimal gain

(TMax = 0.00005%) to satisfy before entering the queue, the number of lots can be

strongly reduced without impacting too much the other indicators.

This value of TMax will be strongly linked to the production environment. For

example, in a production environment where lots are manually transported by oper-

ators in front of metrology tools, skipping a lot may be very expensive because of the

time required to first transport the lot in front of metrology tools before transporting

it to the next process operation. In this case, having a high TMax value may be very

interesting to avoid skipping lots that enter the metrology queue without impacting

the sampling performances through the GSI sampling algorithm. For the case of

the 300mm fab of STMicroelectronics where transportation is automated,

a value of TMax = 1% has been identified as a good trade-off between the

number of skipped lots and the other performance indicators.
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TMax 0% 0.00005% 0.0005% 0.005% 0.05% 0.1%

1 Number of sampled lots 5.34*A 5.11*A 4.24*A 3.02*A 2.07*A 1.84*A

2 Number of measured lots 0.98*A 0.98*A 0.98*A 0.98*A 0.98*A 0.98*A

3 Number of skipped lots 4.35*A 4.13*A 3.25*A 2.04*A 1.09*A 0.86*A

4 Number of skipped lots
(entry queue)

4.33*A 4.11*A 3.21*A 1.96*A 1.03*A 0.81*A

5 Number of skipped lots
(metrology)

0.02*A 0.02*A 0.04*A 0.08*A 0.06*A 0.05*A

6 Medium WAR (average) 0.24*B 0.24*B 0.24*B 0.24*B 0.27*B 0.28*B

7 Maximum WAR (average) 0.28*C 0.28*C 0.28*C 0.28*C 0.33*C 0.36*C

8 Number of wafers above WL 0.67*D 0.68*D 0.68*D 0.67*D 0.75*D 0.76*D

9 Number of wafers above IL 0.20*E 0.21*E 0.20*E 0.21*E 0.32*E 0.36*E

10 Average time spent in the
queue before measurement

X 1.04*X 1.10*X 1.17*X 1.17*X 1.13*X

11 Average time in the queue
before skip (entry queue)

Y 1.04*Y 1.25*Y 1.37*Y 1.49*Y 1.58*Y

12 Average time in the queue
before skip (metrology)

Z 1.15*Z 1.51*Z 1.66*Z 1.64*Z 1.76*Z

Table 6.13: Impact of TMax ∈ [0,0.1%].

b ) Impact of parameter TMin. TMin has been introduced in the GSI sampling

algorithms to master the number of lots that enter the metrology queue when the

latter is empty. The aim is to ensure that, whatever the situation in production, or

the size of the queue, measuring a lot always improves the situation.

Table 6.14 and Table 6.15 show the impact of TMin when TMax = 1%. Note

that increasing TMin leads to reducing the number of measured lots (indicator 2).

As larger and larger gains are required before entering the queue even when it is

empty, metrology tools are no longer fully used. Consequences are the increase of

the Medium WAR (indicator 6), the Maximum WAR (indicator 7), the number of

wafers above WL (indicator 8), and the number of wafers above IL (indicator 9).

However, differences are not so significant since the GSI sampling algorithm tries to

minimize the overall risk by selecting the best possible lots. The average time before

measurement (indicator 10) decreases because of the reduced number of lots that

are sampled and measured. The time before skip (at the entrance of the queue and

after a measurement is completed) decreases or increases depending on the number

of lots that are skipped (see indicators 3 and 4). This is because of the value of

TMax = 1% that strongly reduces the number of skipped lots. As TMax and TMin

are used in combination with the size of the queue8, there is not direct link between

8When the queue is full, TMax is used. When the queue is empty, TMin is used. When the queue
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the number of skipped lots and the value of TMin.

TMin 0% 0.1% 0.2% 0.3% 0.4% 0.5%

1 Number of sampled lots 1.12*A 0.75*A 0.70*A 0.61*A 0.61*A 0.58*A

2 Number of measured
lots

0.98*A 0.62*A 0.56*A 0.50*A 0.48*A 0.46*A

3 Number of skipped lots 0.14*A 0.13*A 0.14*A 0.11*A 0.13*A 0.12*A

4 Number of skipped lots
(entry queue)

0.09*A 0.10*A 0.10*A 0.08*A 0.10*A 0.09*A

5 Number of skipped lots
(metrology)

0.05*A 0.03*A 0.04*A 0.03*A 0.03*A 0.03*A

6 Medium WAR (average) 0.31*B 0.35*B 0.38*B 0.40*B 0.42*B 0.42*B

7 Maximum WAR (average) 0.40*C 0.44*C 0.48*C 0.51*C 0.53*C 0.53*C

8 Number of wafers above WL 0.82*D 0.92*D 0.96*D 0.99*D 1.02*D 1.03*D

9 Number of wafers above IL 0.47*E 0.60*E 0.67*E 0.72*E 0.76*E 0.80*E

10 Average time spent in the
queue before measurement

X 0.74*X 0.69*X 0.68*X 0.68*X 0.67*X

11 Average time in the queue
before skip (entry queue)

Y 1.02*Y 0.87*Y 0.99*Y 0.89*Y 0.83*Y

12 Average time in the queue
before skip (metrology)

Z 1.1*Z 1.16*Z 0.85*Z 0.94*Z 1.01*Z

Table 6.14: Impact of TMin ∈ [0,0.5%].

To ensure the optimal use of metrology capacity, TMin must be as small as pos-

sible, the number of skipped lots being mainly mastered by the value of TMax. Nev-

ertheless, TMin can be very important in the case of an unavailability of a metrology

tool that leads to a reduction of the metrology capacity.

For the case of the 300mm Fab of STMicroelectronics, the value of

TMin = 0% seems to be the most effective.

is partially filled, the threshold used is given by Threshold = TMin +

[
NBQ

SQ
∗ (TMax − TMin)

]
where NBQ is the number of lots in the metrology queue and SQ the metrology queue size (i.e.
capacity).
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TMin 0.5% 0.6% 0.7% 0.8% 0.9% 1%

1 Number of sampled lots 0.58*A 0.56*A 0.54*A 0.53*A 0.52*A 0.47*A

2 Number of measured
lots

0.46*A 0.45*A 0.44*A 0.41*A 0.41*A 0.38*A

3 Number of skipped lots 0.12*A 0.11*A 0.10*A 0.12*A 0.11*A 0.08*A

4 Number of skipped lots
(entry queue)

0.09*A 0.08*A 0.08*A 0.10*A 0.08*A 0.06*A

5 Number of skipped lots
(metrology)

0.03*A 0.03*A 0.02*A 0.02*A 0.03*A 0.02*A

6 Medium WAR (average) 0.42*B 0.44*B 0.45*B 0.46*B 0.47*B 0.47*B

7 Maximum WAR (average) 0.53*C 0.55*C 0.56*C 0.57*C 0.58*C 0.58*C

8 Number of wafers above WL 1.03*D 1.05*D 1.07*D 1.08*D 1.08*D 1.10*D

9 Number of wafers above IL 0.80*E 0.83*E 0.85*E 0.88*E 0.90*E 0.92*E

10 Average time spent in the
queue before measurement

0.67*X 0.64*X 0.60*X 0.61*X 0.66*X 0.64*X

11 Average time in the queue
before skip (entry queue)

0.83*Y 1.04*Y 1.02*Y 0.70*Y 0.93*Y 0.98*Y

12 Average time in the queue
before skip (metrology)

1.01*Z 0.89*Z 1.12*Z 0.94*Z 1.07*Z 0.98*Z

Table 6.15: Impact of TMin ∈ [0.5,1%].

c ) Impact of parameter TMetro. TMetro is the minimum gain that must be

satisfied by lots to remain in the metrology queue each time a measurement is com-

pleted. The aim is to optimally use the metrology capacity by avoiding keeping in

the queue lots that are covered by other lots (i.e. lots that bring less information

than other lots). Indeed, our studies focused on defectivity controls where a control

operation on lots may cover or provide information on several production tools. As

lots are processed on different tools before arriving in front of metrology tools for

control, the risk of having lots that bring approximatively the same information is

increased with the number of products that are run concurrently. This is the case

in the 300mm fab of STMicroelectronics where more than 200 products are run in

production. This is why TMetro was introduced.

To understand its impact on the GSI sampling performances, we performed

simulations by varying TMetro between 0 and 1%. TMin and TMax are set to 0% and

1% respectively. Table 6.16 and Table 6.17 show that TMetro impacts the number of

skipped lots after measurement (indicator 5). Increasing TMetro leads to increasing

the number of lots that are skipped (metrology). As larger gain is required to stay

in the queue after each measurement, the number of lots that are skipped increases.
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TMetro 0% 0.1% 0.2% 0.3% 0.4% 0.5%

1 Number of sampled lots 1.12*A 1.26*A 1.28*A 1.31*A 1.35*A 1.40*A

2 Number of measured lots 0.98*A 0.98*A 0.98*A 0.98*A 0.98*A 0.98*A

3 Number of skipped lots 0.14*A 0.27*A 0.30*A 0.33*A 0.37*A 0.42*A

4 Number of skipped lots
(entry queue)

0.09*A 0.08*A 0.08*A 0.08*A 0.09*A 0.09*A

5 Number of skipped lots
(metrology)

0.05*A 0.19*A 0.22*A 0.25*A 0.28*A 0.33*A

6 Medium WAR (average) 0.31*B 0.31*B 0.31*B 0.31*B 0.30*B 0.31*B

7 Maximum WAR (average) 0.40*C 0.40*C 0.39*C 0.40*C 0.40*C 0.40*C

8 Number of wafers above WL 0.82*D 0.80*D 0.80*D 0.81*D 0.80*D 0.81*D

9 Number of wafers above IL 0.47*E 0.46*E 0.46*E 0.46*E 0.46*E 0.47*E

10 Average time spent in the
queue before measurement

X 0.84*X 0.82*X 0.79*X 0.76*X 0.72*X

11 Average time in the queue
before skip (entry queue)

Y 0.97*Y 0.92*Y 0.90*Y 0.83*Y 0.76*Y

12 Average time in the queue
before skip (metrology)

Z 0.76*Z 0.73*Z 0.70*Z 0.70*Z 0.70*Z

Table 6.16: Impact of TMetro ∈ [0,0.5%].

TMetro 0.5% 0.6% 0.7% 0.8% 0.9% 1%

1 Number of sampled lots 1.40*A 1.40*A 1.43*A 1.45*A 1.49*A *A

2 Number of measured lots 0.98*A 0.98*A 0.98*A 0.98*A 0.98*A *A

3 Number of skipped lots 0.41*A 0.42*A 0.45*A 0.47*A 0.51*A *A

4 Number of skipped lots
(entry queue)

0.09*A 0.06*A 0.07*A 0.07*A 0.08*A *A

5 Number of skipped lots
(metrology)

0.33*A 0.36*A 0.38*A 0.40*A 0.43*A *A

6 Medium WAR (average) 0.31*B 0.31*B 0.31*B 0.30*B 0.30*B *B

7 Maximum WAR (average) 0.40*C 0.39*C 0.40*C 0.39*C 0.39*C *C

8 Number of wafers above WL 0.81*D 0.81*D 0.81*D 0.80*D 0.80*D *D

9 Number of wafers above IL 0.47*E 0.46*E 0.47*E 0.45*E 0.45*E *E

10 Time spent in the queue be-
fore measurement

0.72*X 0.73*X 0.70*X 0.70*X 0.68*X 0.68*X

11 Time spent in the queue be-
fore skip (entry queue)

0.76*Y 0.75*Y 0.60*Y 0.59*Y 0.53*Y 0.44*Y

12 Time spent in the queue be-
fore skip (metrology)

0.70*Z 0.65*Z 0.64*Z 0.63*Z 0.62*Z 0.63*Z

Table 6.17: Impact of TMetro ∈ [0.5,1%].

However, contrary to TMin and TMax where the other performance indicators were

impacted, TMetro does not impact the Medium WAR, the Maximum WAR, the

number of wafers above WL, and the number of wafers above IL. The time spent in

the queue before measurement and skip are even improved. The problem is in the

number of lots that are skipped. As skipping too many lots may lead to increasing

the cycle time of some lots, a trade-off has to be found on the number of skipped
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lots and the other performance indicators.

As discussed for the other indicators, the value of TMetro is also linked to the

production environment where the cost incurred by the skipping mechanism will

not be the same in an automated manufacturing environment or not. For the case

of the 300mm fab of STMicroelectronics, TMetro = 0% has been identified

as the best trade-off because of the reduced number of skipped lots.
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6.5.3.3 Discussions and perspectives

The different simulations performed in this section helped us to assess the ro-

bustness of the GSI sampling algorithms that always ensure the minimum risk value

within production whatever the parameter values. By successively varying the dif-

ferent parameters (α, β, TMax, TMin, TMetro), results showed that sampling per-

formances can be strongly improved, but that a trade-off is necessary between the

different production objectives. There are no fixed values that can ensure perfect

performances but the choice depends on the production strategy or priorities. Nev-

ertheless, there are some values for which the GSI sampling algorithms may not be

as efficient and thus these values must be carefully chosen. These values mainly

concern α that must be lower than 13 and β lower than 10. The values of the other

parameters are strongly linked to the production environment.

Two main points are perspectives for further research. The first point concerns

the choice of the threshold parameters, and the second point is the anticipation of

the arrival of lots.

1. Threshold values. In the simulations presented and discussed in this sec-

tion, the value of threshold parameters (TMax, TMin, TMetro) were defined in

percentage (%). The problem of such an approach is that the gain that brings

a lot strongly depends on the number of tools in production. In the case a lot

covers two tools in a production environment with more than 300 tools, the

gain of the lot (in %) will not be significant. If the production environment is

only made of 50 tools, the gain of the lot will be significant, and so the priority

on metrology tools. The sampling strategy or selection of lots will not be the

same in the two situations. In the first case, the risk is to have too many tools

exceeding their IL because of under-estimated gains. To ensure correct evalu-

ations of gains brought by each lot, the threshold values should be expressed

as a difference between a given situation in production and the new situation

if the lot is measured. For example, the number of tools for which the lot will

help avoid reaching or exceeding the IL. This approach was implemented and

provides better results. However, it has not been done within the framework

of this thesis and results are not presented in this manuscript.
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2. Anticipating the arrival of lots. By defining different threshold values

(TMax, TMin, TMetro), we aimed at mastering the number of sampled and

skipped lots without impacting the sampling performances. However, through

simulations, we observed that if it is possible to strongly reduce the number of

sampled/skipped lots without impacting the sampling performances, there is a

trade-off between sampling lots with gains on the GSI and keeping lots already

sampled and waiting in the metrology queue. To improve the sampling policy,

the sampling of lots could be anticipated, i.e. not only sampling lots when

they arrive at a metrology step, but also lots that are still being processed and

will soon arrive at a metrology step. Some lots could be accelerated or some

special actions taken. This will avoid sampling a lot that will be skipped later.

Anticipating the arrival of lots might be modeled as a scheduling problem of

jobs with release dates and with multiple objectives, where minimizing the risk

and the waiting times of lots should be balanced. The resulting scheduling

problem could be solved using a multi-objective approach such as the one

proposed in Dugardin et al. [24]. This is an original scheduling problem

in semiconductor manufacturing, not mentioned for example in Mőnch et

al. [54].
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6.6 Conclusion

In this chapter, we presented smart sampling policies based on two GSI sampling

algorithms. These algorithms are used to dynamically sample, skip, and schedule

lots on metrology tools. They are based on an indicator called GSI and on some

threshold values. The GSI gives a weight to set of lots to be selected for inspection,

and the threshold values are used to manage the filling of metrology queues with the

aim of mastering both the number of sampled lots and skipped lots. The evaluation

of the GSI sampling algorithms were performed through simulations that indicate

a risk reduction of more than 70% compared to Fab sampling. The two GSI sam-

pling algorithms outperform Fab sampling and the performance of each algorithm

is linked to the production environement and management priorities.

In the next chapter, a Mixed-Integer Linear Programming model is proposed to

optimize the WL and IL parameters that are used in the GSI sampling algorithms.



Chapter 7

Optimizing Smart Sampling

Policies

This chapter1 introduces three versions of a Mixed-Integer Linear Programming

(MILP) model that we developed to compute the values of two parameters: Warning

Limit (WL) and Inhibit Limit (IL). These two parameters are used in the sampling

algorithms introduced in the previous chapter. They represent the level of the risks

that may be expected by a company depending on the available metrology capacity.

By varying these values in a sampling policy, results indicate that the average risk

level can be strongly impacted. By using the values of Warning Limit and Inhibit

Limit obtained with our MILP model, results show an overall risk reduction without

additional metrology capacity.

7.1 Introduction

7.2 Warning Limit and Inhibit Limit

7.3 Analyzing the impact of the Warning Limit and Inhibit Limit

7.4 Mixed-Integer Linear Programming model 1

7.5 Mixed-Integer Linear Programming model 2

7.6 Mixed-Integer Linear Programming model 3

7.7 Numerical experiments

7.8 Conclusion

1Part of this chapter is submitted for publication in the International Journal of Produc-
tion Economics [65].
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7.1 Introduction

The efficiency of an algorithm is directly linked to the quality of input parameters.

If these parameters are not optimally set, the strategy, mechanism, or algorithm can

lead to poor results. In the previous chapter, we proposed sampling algorithms that

use two main parameters (WL and IL) to dynamically select the best sets of lots

to measure. In this chapter, we assess the impact of these two parameters on the

efficiency of the algorithms, and propose a MILP model to optimize them.

The chapter is structured as follows. Section 7.2 introduces and defines WL

and IL. Section 7.3 analyzes, through simulations, the impact of WL and IL on

a sampling policy. In section 7.4, we present the MILP model we developed to

optimally compute the values of WL and IL. Section 7.5 and section 7.6 present two

improved versions of our MILP model that integrates additional constraints linked

to the production environment. Section 7.7 is devoted to numerical experiments. We

assess the performance of the results of the MILP model on the sampling algorithm

introduced in the previous chapter. Section 7.8 concludes the chapter and gives

perspectives for further works.

7.2 Warning Limit and Inhibit Limit

WL is the limit above which the situation starts to become critical in term of

control. IL is the limit above which production tools might be stopped if a control is

not performed. In term of wafers, IL represents the maximum number of wafers that

can be run between two controls, and WL is the number of wafers that needs to be

run on a production tool before increasing the priority of the tool for a control. IL is

the maximum risk that can be tolerated, and WL is an alarm that helps avoiding to

reach and exceed IL. WL and IL are defined per production tool and the objective

is twofold:

• Dynamically sample, skip, and schedule lots on metrology tools while ensuring

a maximum risk level lower than IL.
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• Reduce the number of measurements when the risk level is lower than WL,

and increase the priority of measurable lots when the risk level is closer to IL.

Let us consider the example in Figure 7.1. We have the evolution of the W@R for

a given production tool. When lots are processed on the production tool, the W@R

is increased of the number of wafers contained in the lot (Equipment W@R). When

a control is performed, the W@R is decreased of the number of wafers processed on

the production tool since the last control and before the process of the lot that has

been measured (W@R reduction). WL and IL are set to A and 2∗A respectively.

They help identifying and avoiding the two cases of Lack-of-control and Too-many-

controls. There is Lack-of-control when the value of the W@R exceeds the value of

IL, and Too-many-controls when controls are performed whereas the value of the

W@R is very far from IL.

Figure 7.1: Evolution of the W@R on a production tool.

Defining WL and IL helps ensuring optimized sampling plan policies. However,

the problem is that these values are most of the time set based on the experience

of engineers or on historical data analysis. Since the sampling algorithm has to

consider these parameters to prioritize lots on metrology tools, it is clear that if

these values are over- or under-estimated, the efficiency of the sampling algorithm
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may be impacted. For example, if these values are under-estimated, the risk may

be to prioritize too many lots to avoid exceeding the value of IL. However, as the

metrology capacity is limited, consequences will be the increasing of the cycle time

of these lots that will be sample but never measured. To deeply analyze the role of

WL and IL, and understand how they may impact a sampling policy, we perform

several sampling policy simulations using different values of WL and IL. The next

section presents and discusses the different results obtained.
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7.3 Analyzing the impact of the Warning Limit

and Inhibit Limit

We run simulations using six weeks of historical data2. With different values of

WL and IL, we simulate a sampling policy that uses the first GSI sampling algorithm

(Section 6.4.2) with the S5 simulator (Appendix C). For all the production tools,

we start by defining WL and IL to 1000 and 2000 respectively. Then, by varying

these values, we analyze the following indicators:

• Number of lots that are sampled,

• Number of lots that are measured,

• Number of lots that are skipped,

• Average medium W@R,

• Average maximum W@R.

Table 7.1 presents experimental results when WL and IL are varied together.

Note that, depending on the values of WL and IL, the results of the performance

indicators are different. Let us focus on the first three indicators: Number of sampled

lots, number of measured lots, and number of skipped lots. These three indicators

correspond to A, B, and C when WL = 1000 and IL = 2000. Considering these

latter values as a reference, let us analyze what happens in the case of over- or

under-estimation.

When WL and IL are over-estimated (+5%, +10%, +20%, etc.), the number of

lots that are sampled (0.94*A, 0.90*A, 0.79*A, etc.) decreases. This is because the

maximum risk that is tolerated becomes very large. As long as WL and IL are not

reached, the situation is supposed to be under control, and thus only few lots are

sampled. This reduction of the number of sampled lots leads to a reduction of the

number of skipped lots (0.91*C, 0.85*C, 0.68*C, etc.) since the metrology capacity

2Part of this section has been communicated to the 4th International Conference on In-
dustrial Engineering and Systems Management [63].
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remains constant (B). The GSI sampling algorithm ensures that the metrology ca-

pacity is always used even if the maximum risk that is tolerated is very far from the

actual risk. Consequences are the waste of metrology capacity due to the measure-

ment of lots that do not bring any added value. This can be seen in the values of

the Medium (D, D, 0.99*D, 1.01*D, D, 1.02*D, 1.02*D) and Maximum W@R (E,

0.99*E, E, 1.01*E, 1.01*E, 1.01*E, 1.03*E) that tend to increase. Note that if the

variations of the Medium and Maximum W@R seem to be negligible, the impact

can be significant when dynamically sampling lots. Indeed, in our experiments, we

use 6 weeks of historical data. This means that the Medium and Maximum W@R

reported in Table 7.1 are based on 6 weeks of historical data. As the GSI sampling

algorithm aims at minmizing the overall risk within the production, this explains

why we do not have too much variations of the Medium and Maximum W@R.

Variation of the WL and
IL values

Number of
sampled lots

Number of
measured lots

Number of
skipped lots

Average
Medium
W@R

Average
Maximum

W@R

-90% ⇒ (100, 200) 1.38*A B 1.59*C 1.50*D 1.62*E
-80% ⇒ (200, 400) 1.41*A B 1.63*C 1.36*D 1.47*E
-60% ⇒ (400, 800) 1.39*A B 1.59*C 1.21*D 1.28*E

-40% ⇒ (600,1200) 1.27*A B 1.41*C 1.03*D 1.07*E
-20% ⇒ (800,1600) 1.21*A B 1.33*C 1.02*D 1.05*E
-10% ⇒ (900,1800) 1.14*A B 1.21*C 1.02*D 1.02*E

-5% ⇒ (950,1900) 1.09*A B 1.14*C 1.02*D 1.02*E
(WL,IL) = (1000,2000) A B C D E

+5% ⇒ (1050,2100) 0.94*A B 0.91*C D 0.99*E

+10% ⇒ (1100,2200) 0.90*A B 0.85*C D E
+20% ⇒ (1200,2400) 0.79*A B 0.68*C 0.99*D 0.99*E
+40% ⇒ (1400,2800) 0.68*A B 0.50*C 1.01*D 1.01*E

+60% ⇒ (1600,3200) 0.61*A B 0.40*C D 1.01*E

+80% ⇒ (1800,3600) 0.58*A B 0.36*C 1.02*D 1.01*E
+90% ⇒ (1900,3800) 0.55*A B 0.31*C 1.02*D 1.03*E

Table 7.1: Impact of the WL and IL values on the sampling plan policy.

When WL and IL are under-estimated (-5%, -10%, -20%, etc.), the situation

corresponds to an over-estimation of the metrology capacity. Note that the num-

ber of sampled lots (1.09*A, 1.14*A, 1.21*A, etc.) increases. This is because the

maximum risk that is tolerated becomes smaller and smaller. Hence the necessity

to sample more and more lots in order to reduce the risk level. However, as the

metrology capacity is limited (B), the more lots are sampled, the more the number
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of skipped lots (1.14*C, 1.21*C, 1.33*C, etc.). There is thus a negative impact on

the cycle time for these lots that are sampled but never measured. Moreover, the

overall risk is increased because of the inability of the sampling algorithm to take

relevant decisions (see the Medium and Maximum W@R).

In order to better understand the impact of WL as well as IL, we vary them

separately. In Table 7.2, we vary WL (first column) while keeping IL constant. In

Table 7.3, we vary IL (first column) while keeping WL constant.

Variation of the WL value
Number of

sampled lots
Number of

measured lots
Number of

skipped lots

Average
Medium
W@R

Average
Maximum

W@R

-90% of WL ⇒ (100,2000) 1.32*A B 1.49*C 1.08*D 1.10*E

-80% of WL ⇒ (200,2000) 1.33*A B 1.50*C 1.05*D 1.08*E
-60% of WL ⇒ (400,2000) 1.29*A B 1.44*C 1.02*D 1.05*E
-40% of WL ⇒ (600,2000) 1.20*A B 1.31*C 1.01*D 1.03*E

-20% of WL ⇒ (800,2000) 1.10*A B 1.15*C D 1.01*E
-10% of WL ⇒ (900,2000) 1.05*A B 1.08*C D E
-5% of WL ⇒ (950,2000) 1.04*A B 1.06*C D 1.01*E

(WL,IL) = (1000,2000) A B C D E
+5% of WL ⇒ (1050,2000) 0.96*A B 0.94*C D E
+10% of WL ⇒ (1100,2000) 0.96*A B 0.93*C D 0.99*E

+20% of WL ⇒ (1200,2000) 0.90*A B 0.84*C 1.01*D 1.01*E
+40% of WL ⇒ (1400,2000) 0.78*A B 0.66*C 1.02*D E
+60% of WL ⇒ (1600,2000) 0.65*A B 0.46*C 1.01*D 1.01*E
+80% of WL ⇒ (1800,2000) 0.59*A B 0.36*C 1.04*D 1.02*E

+90% of WL ⇒ (1900,2000) 0.55*A B 0.30*C 1.05*D 1.03*E

Table 7.2: Impact of the WL value on the sampling plan policy.

Results reported in Table 7.2 shows that the value of WL may impact the per-

formance of the sampling policy. The same kinds of observations as in Table 7.1

can be made regarding the over- or under-estimation of WL, i.e. impact on cycle

time, instability, and inefficiency of the sampling algorithm. However, contrary to

Table 7.1 where WL and IL are varied together, Table 7.2 shows that the value of

WL does not impact too much the Medium and Maximum W@R. This because WL

is just a alarm that indicates that the situation starts to become critical. As long

as the value of IL is far from the actual risk, the sampling algorithm is still able to

take relevant decisions regarding the best lots to measure for reducing the risk. The
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main problem is in the cycle time of lots that are sampled because of the WL, but

never measured because of the IL.

In Table 7.3, we fix WL and analyze the impact of IL. We do not vary IL below

−40% since WL must be lower than IL. Varying IL below −40% would lead to

situations where the value of WL will be higher than the value IL, which does not

make sense.

Variation of the IL value
Number of

sampled lots
Number of

measured lots
Number of

skipped lots

Average
Medium
W@R

Average
Maximum

W@R

-40% of IL ⇒ (1000,1200) 1.01*A B 1.02*C 1.04*D 1.08*E
-20% of IL ⇒ (1000,1600) 1.13*A B 1.21*C 1.01*D 1.03*E
-10% of IL ⇒ (1000,1800) 1.08*A B 1.13*C 1.01*D 1.01*E
-5% of IL ⇒ (1000,1900) 1.06*A B 1.09*C 1.02*D 1.02*E

(WL,IL) = (1000,2000) A B C D E
+5% of IL ⇒ (1000,2100) 0.99*A B 0.98*C D E

+10% of IL ⇒ (1000,2200) 0.96*A B 0.93*C D E

+20% of IL ⇒ (1000,2400) 0.93*A B 0.90*C D E
+40% of IL ⇒ (1000,2800) 0.86*A B 0.79*C 0.99*D 1.01*E

+60% of IL ⇒ (1000,3200) 0.86*A B 0.79*C 0.99*D 1.02*E

+80% of IL ⇒ (1000,3600) 0.85*A B 0.77*C 0.99*D 1.03*E
+90% of IL ⇒ (1000,3800) 0.85*A B 0.77*C D 1.03*E

Table 7.3: Impact of the IL value on the sampling plan policy.

As in Table 7.1 and Table 7.2, over- or under-estimating the value of IL has an

impact on all the performance indicators, i.e. the number of lots sampled, skipped,

Medium W@R, and Maximum W@R. However, results reported in Table 7.3 show

that if the value of IL is very close to the value of WL, the whole system be-

comes instable. This is the case when the value of IL is under-estimated of −40%

(WL = 1000 and IL = 1200). The number of sampled lots decreases instead of

increasing, and the Medium and Maximum W@R are strongly increased compared

to variations between −5% and −20%.

Through all of these experiments on varying WL and IL, note that if the values

of WL and IL are not optimally set, the entire sampling strategy can be impacted

and the resulting risk level can be significant. With the aim of minimizing the risk
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level on entire fab while ensuring an optimal use of metrology tools, we propose in

the next section a MILP model to compute optimally the two values of WL and IL

for each production tool.
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7.4 Mixed-Integer Linear Programming model 1

The MILP model presented in this section aims at minimizing the maximum

exposure within the production, i.e. minimizing the maximum risk level that can

be incurred when processing a lot on a production tool3. The approach consists

in determining IL values by allocating controls to production tools such that the

maximum risk is minimized. The values of WL are deduced from the IL values.

Parameters:

• Et: Exposure for tool t (i.e. the financial cost for each wafer processed on a

production tool t).

• Vt: Production volume on tool t.

• Pmt: Time of a measurement to validate production tool t.

• KMAX : Maximum number of measurements for any production tool.

• CAPA: Total capacity (given in time) for measurement.

• M : Number of production tools.

Variables:

• ILt: Inhibit Limit of production tool t.

• dkt : Binary variable that is equal to 1 if the number of measurements for

production tool t is k, 0 otherwise.

• EMAX : Maximum exposure.

The MILP model is as follows:

MinimizeEMAX (7.1)

3Part of this section has been communicated to the 13ème congrès de la société Française
de Recherche Opérationnelle et d’Aide à la DÉcision (ROADEF) [66].
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Subject to:

EMAX ≥ Et ∗ ILt ∀t ∈ {1 . . .M}. (7.2)

ILt ≥
KMAX∑
k=1

Vt

k
∗ dkt ∀t ∈ {1 . . .M}. (7.3)

KMAX∑
k=1

dkt = 1 ∀t ∈ {1 . . .M}. (7.4)

M∑
t=1

KMAX∑
k=1

Pmt ∗ k ∗ dkt ≤ CAPA. (7.5)

ILt ≥ 0 ∀t ∈ {1 . . .M}. (7.6)

dkt ∈ {0, 1} ∀t ∈ {1 . . .M}, ∀k ∈ {1 . . .KMAX}. (7.7)

EMAX ≥ 0. (7.8)

Constraints 7.2 define the maximum exposure among all production tools, which

is minimized in the objective function. Constraints 7.3 express that the IL of pro-

duction tool t (ILt) is larger than or equal to the production volume on t divided

by the selected number of measurements for t. Constraints 7.4 specify the number

of measurements for the production tool t, i.e. that one and only one variable must

be equal to 1. Constraint 7.5 ensures that the measurement capacity is satisfied.

This MILP model is evaluated in Section 7.7.1. Results indicate an optimized

sampling plan policy without additional metrology capacity. However, this first

MILP version presents some limitations that have been pointed out during simu-

lations. The delay or traveling time between production and metrology

tools has not been taken into account. Indeed, depending on the process type

or production state, a control operation can be performed either directly after the

process operation, five hours later, or sometimes one or two days after the process.

Moreover, the organization of the clean room is such that the distance between

production and metrology tools is not always the same. The availability or quali-

fication of production tools as well as metrology tools can also increase or reduce

the traveling time between tools. Hence the necessity of defining a kind of average

delay between tools. This delay can be expressed as an average time required be-

fore obtaining the result of a control operation, or as an average number of wafers

that are processed on a production tool between the time a decision is taken to
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perform a control, and the time the control is actually performed on a metrology

tool. The next section presents a second version of our MILP model that integrates

this average delay between production and metrology tools.
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7.5 Mixed-Integer Linear Programming model 2

The MILP model 2 is an evolution of the MILP model 1 where the main modifi-

cation concerns the delay or traveling between production and metrology tools. This

delay is defined as WDt and corresponds to the number of wafers that are processed

on the production tool t between the end of a process operation on t and the control

of this process operation on a metrology tool. It is expressed as WDt = THt ∗CTt,
where:

• THt = Throughput of the production tool t.

• CTt = Average cycle time of lots that are processed on the production tool

t between the end of the process operation on t and the end of the control

operation on a metrology tool.

The new version of the MILP model is as follows:

MinimizeEMAX (7.9)

Subject to:

EMAX ≥ Et ∗ ILt ∀t ∈ {1 . . .M}. (7.10)

ILt ≥
KMAX∑
k=1

Vt

k
∗ dkt +WDt ∀t ∈ {1 . . .M}. (7.11)

KMAX∑
k=1

dkt = 1 ∀t ∈ {1 . . .M}. (7.12)

M∑
t=1

KMAX∑
k=1

Pmt ∗ k ∗ dkt ≤ CAPA. (7.13)

ILt ≥ 0 ∀t ∈ {1 . . .M}. (7.14)

dkt ∈ {0, 1} ∀t ∈ {1 . . .M}, ∀k ∈ {1 . . .KMAX}. (7.15)

EMAX ≥ 0. (7.16)

The difference with the MILP model 1 is in the constraints 7.11 that express that

the IL of production tool t (ILt) is larger than or equal to the production volume

on t divided by the selected number of measurements for t, plus the average delay

necessary to control the production tool t.
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This new version of our MILP model is evaluated in Section 7.7.2. Results show

an improved sampling policy compared to the first version of our MILP model. How-

ever, as the first version, this second version of our MILP model also presents some

limitations that have been highlighted when coming to the industrial implementa-

tion. The model does not include metrology tools qualifications and capabilities.

All control operations cannot be performed by all metrology tools. To each

metrology tool is associated a group of control operations. These control operations

are defined based on the capabilities of the metrology tools and, the time of a

control operation is linked to the metrology tool. This means that the metrology

capacity is not consumed in the same way depending on the metrology tool or the

set of metrology tools to be used. The same for the delay or traveling time between

production and metrology tools. Depending on the metrology tool availability or

qualifications, the time between process and control operations is not the same.

Hence the necessity of defining different group of metrology tools, with different

capacity, and different delays between tools.

The next section presents a third version of the MILP model that integrates

these new parameters.
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7.6 Mixed-Integer Linear Programming model 3

The MILP model 3 is an evolution of the MILP model 2 and integrates the

additional following parameters:

• D: Number of groups (one per capability) of metrology tools.

• CAPAd: Total capacity (given in time) for measurement for the group of

metrology tools with capability d.

• Pmt,d: Time of a measurement on a metrology tool with capability d to vali-

date production tool t.

• WDt,d: Average delay between a process operation (performed on a production

tool t) and the control operation performed on a metrology tool that belongs

to the group of tools with capability d.

The binary variable dkt becomes dkt,d that is equal to 1 if the number of measure-

ments on metrology tools with capability d to validate the production tool t is k, 0

otherwise.

Model 3 is as follows:

MinimizeEMAX (7.17)
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Subject to:

EMAX ≥ Et ∗ ILt ∀t ∈ {1 . . .M}. (7.18)

ILt ≥
Vt

D∑
d=1

KMAX∑
k=0

(k ∗ dkt,d)

+

D∑
d=1

KMAX∑
k=0

(WDt,d ∗ k ∗ dkt,d)

D∑
d=1

KMAX∑
k=0

(k ∗ dkt,d)

∀t ∈ {1 . . .M}. (7.19)

KMAX∑
k=0

dkt,d = 1 ∀t ∈ {1 . . .M},

∀d ∈ {1 . . . D}. (7.20)

M∑
t=1

KMAX∑
k=0

Pmt,d ∗ k ∗ dkt,d ≤ CAPA
d ∀d ∈ {1 . . . D}. (7.21)

ILt ≥ 0 ∀t ∈ {1 . . .M}. (7.22)

dkt,d ∈ {0, 1} ∀t ∈ {1 . . .M},

∀k ∈ {1 . . .KMAX},

∀d ∈ {1 . . . D}. (7.23)

EMAX ≥ 0. (7.24)

Constraints 7.19 express that the IL of production tool t (ILt) is larger than or

equal to the production volume on t divided by the selected number of measure-

ments for production tool t on all the D groups of metrology tools, plus the sum of

delays necessary to control production tool t on the right group of metrology tools.

Constraints 7.20 specify the number of measurements for production tool t on all the

D groups of metrology tools, i.e. that one and only one variable dkt,d must be equal

to 1 for each production tool t and each group of metrology tools. Constraint 7.21

ensures that the measurement capacity in each group d of metrology tools is satisfied.

This new model that integrates additional industrial constraints is no

longer linear. The problem comes from Constraints 7.19 and especially from

the term
D∑
d=1

KMAX∑
k=0

(k ∗ dkt,d) in the denominator. To linearize our model, we define

new variable dtkt such that:

dtkt =
1

D∑
d=1

dkt,d

. (7.25)
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where dtkt = 1 if the number of measurements on the production tool t is k, and 0

otherwise.

Constraints 7.19 can be rewritten as:

ILt ≥ Vt ∗
KMAX∑
k=0

1

k
∗

1
D∑

d=1

dkt,d

+
D∑

d=1

KMAX∑
k=0

(WDt,d ∗ k ∗ dkt,d) ∗
KMAX∑
k=0

1

k
∗

1
D∑

d=1

dkt,d

∀t ∈ {1 . . .M}. (7.26)

By replacing 7.25 in 7.26, we obtain:

ILt ≥ Vt ∗
KMAX∑
k=1

1

k
∗ dtkt +

D∑
d=1

KMAX∑
k=0

(WDt,d ∗ k ∗ dkt,d) ∗
KMAX∑
k=1

1

k
∗ dtkt ∀t ∈ {1 . . .M}. (7.27)

With

KMAX∑
k=1

dtkt = 1 ∀t ∈ {1 . . .M}. (7.28)

dtkt ∈ {0, 1} ∀t ∈ {1 . . .M}, ∀k ∈ {1 . . .KMAX}. (7.29)

The model is still non linear because of the term dkt,d in Constraints 7.27. We again

introduce a new variable ddk,k1t,d such that:

ddk,k1
t,d = dk1

t,d ∗ dt
k
t (7.30)

where ddk,k1t,d = 1 if the number of measurements to validate production tool t is

equal to k1 on group d of metrology tools, and k on all metrology tools in all groups

of tools, and 0 otherwise.

Constraints 7.27 can be rewritten as:

ILt ≥ Vt ∗
KMAX∑
k=1

1

k
∗ dtkt +

D∑
d=1

WDt,d ∗
KMAX∑
k=0

(k ∗ dkt,d) ∗
KMAX∑
k=1

1

k
∗ dtkt ∀t ∈ {1 . . .M}. (7.31)

By defining parameter k1 such that k1 ≤ k, Constraints 7.31 become:

ILt ≥ Vt ∗
KMAX∑
k=1

1

k
∗ dtkt +

D∑
d=1

WDt,d ∗
KMAX∑

k1=0;k1≤k

(k1 ∗ dk1
t,d) ∗

KMAX∑
k=1

1

k
∗ dtkt ∀t ∈ {1 . . .M}. (7.32)
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Or

ILt ≥ Vt ∗
1

k
∗ dtkt +

D∑
d=1

WDt,d ∗
k∑

k1=0

(k1 ∗ dk1
t,d) ∗

1

k
∗ dtkt ∀t ∈ {1 . . .M}, ∀k ∈ {1 . . .KMAX}. (7.33)

Or

ILt ≥ Vt ∗
1

k
∗ dtkt +

D∑
d=1

k∑
k1=0

k1 ∗WDt,d

k
∗ (dk1

t,d ∗ dt
k
t ) ∀t ∈ {1 . . .M},∀k ∈ {1 . . .KMAX}. (7.34)

By replacing 7.30 in 7.34, we obtain:

ILt ≥ Vt ∗
1

k
∗ dtkt +

D∑
d=1

k∑
k1=0

k1 ∗WDt,d

k
∗ ddk,k1

t,d ∀t ∈ {1 . . .M}, ∀k ∈ {1 . . .KMAX}. (7.35)

With

KMAX∑
k=1

dtkt =
D∑

d=1

KMAX∑
k=1

k∑
k1=0

ddk,k1
t,d ∀t ∈ {1 . . .M}. (7.36)

D∑
d=1

KMAX∑
k=1

k∑
k1=1

ddk,k1
t,d = 1 ∀t ∈ {1 . . .M}. (7.37)

ddk,k1
t,d ∈ {0, 1} ∀t ∈ {1 . . .M}, ∀d ∈ {1 . . . D},

∀t ∈ {k1 . . . k}, ∀k ∈ {1 . . .KMAX}. (7.38)

Therefore, the final version of MILP model 3 is:

MinimizeEMAX (7.39)
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Subject to:

EMAX ≥ Et ∗ ILt ∀t ∈ {1 . . .M}. (7.40)

ILt ≥ Vt ∗
KMAX∑
k=1

1

k
∗ dtkt +

D∑
d=1

KMAX∑
k=1

k∑
k1=0

k1 ∗WDt,d ∗ ddk,k1
t,d

k
∀t ∈ {1 . . .M}. (7.41)

KMAX∑
k=1

dtkt = 1 ∀t ∈ {1 . . .M}. (7.42)

D∑
d=1

KMAX∑
k=1

k∑
k1=0

ddk,k1
t,d = 1 ∀t ∈ {1 . . .M}. (7.43)

KMAX∑
k=1

dtkt =

D∑
d=1

KMAX∑
k=1

k∑
k1=0

ddk,k1
t,d ∀t ∈ {1 . . .M}. (7.44)

M∑
t=1

KMAX∑
k=1

Pmt,d ∗ k ∗ dkt,d ≤ CAPA
d ∀d ∈ {1 . . . D}. (7.45)

ILt ≥ 0 ∀t ∈ {1 . . .M}. (7.46)

dtkt ∈ {0, 1} ∀t ∈ {1 . . .M},

∀k ∈ {1 . . .KMAX}. (7.47)

ddk,k1
t,d ∈ {0, 1} ∀t ∈ {1 . . .M},

∀d ∈ {1 . . . D},

∀k1 ∈ {1 . . . k},

∀k ∈ {1 . . .KMAX}. (7.48)

EMAX ≥ 0. (7.49)

This model, which seems to be most suitable for industrial implementation, can

no longer be solved with a standard solver because of its complexity. It is thus

necessary to develop dedicated methods to solve the model. This has not been done

within the framework of this thesis. Nevertheless, a first approach and perspective

could be to relax some constraints or develop specific heuristic.
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7.7 Numerical experiments

We ran simulations using six weeks of historical data from the site of STMicro-

electronics in Crolles, France. The different versions of our MILP model are solved

with the commercial solver MP-XPRESS. Each version provides IL values (per pro-

duction tool) that we use to deduce the values of WL (WL = 0.5 ∗ IL). Then, with

the S5 prototype (Appendix C), we simulate GSI sampling policies (Section 6.4.2)

by using the WL and IL obtained with the MILP model. To assess the efficiency of

the values obtained with our model, we perform comparisons with a sampling policy

where WL and IL are set to 1000 and 2000 for all production tools 4. We use the

following indicators:

• Number of sampled lots,

• Number of skipped lots,

• Number of measured lots,

• Average Medium W@R,

• Average Maximum W@R,

• Number of wafers above WL,

• Number of wafers above IL.

7.7.1 Evaluating MILP model 1

The first version of the MILP model was run on a computer of 2.8GHz, 12GB of

RAM, and with Windows 7 as the operating system. With 578,769 variables and 733

constraints, the computational time to obtain the optimal solution is 24,766 seconds.

Table 7.4 and Table 7.5 present the GSI sampling policy performances when the

WL and IL computed with the MILP model are used. We ran the model with dif-

ferent values of the exposure. We aimed at analyzing and quantifying the impact of

4The values of WL = 1000 and IL = 2000 are representative of the production.
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the tool criticality on the sampling policy. In Table 7.4, the performance indicators

are related to the values of WL and IL obtained for an exposure value which is equal

to 1 for all of the tools. In Table 7.5, the exposure is defined per workshop and per

tool. The different values of exposure are based on historical data where we use the

Medium W@R. The larger the Medium W@R, the lower the exposure value.

Table 7.4 presents a comparison of the sampling performances when WL = 1000

/ IL = 2000, and when WL and IL are obtained with the MILP model for an

exposure value of 1. Note that, with the same number of measured lots (C), all the

performance indicators (except the Maximum W@R) are improved with the WL and

IL computed with the MILP model. This means that, the GSI sampling algorithm

is able to take relevant decisions regarding the lot to sample, skip, or measure. Only

few lots are sampled and skipped for an improved Medium W@R value. The case of

the Maximum W@R is explained by the production volume and exposure. Indeed,

all of the production tools do not produce or process the same quantity of wafers.

Some tools process twice or three times more wafers than others. As we define the

same exposure value for all tools, the situation is such that controls are allocated

in the same way for all tools. However, as the metrology capacity is limited, only

a fixed number of lots can be measured and, thus, the overall risk level cannot be

minimized for all tools. This is why there is an increased value for the average

Maximum W@R.

Performance indicators
WL = 1000 and

IL = 2000
MILP-1 values

(exposure = 1)

Number of sampled lots A 0.72*A
Number of skipped lots B 0.56*B

Number of measured lots C C
Average Medium W@R D 0.99*D

Average Maximum W@R E 1.01*E

Number of wafers above WL F 0.62*F
Number of wafers above IL G 0.43*G

Table 7.4: Evaluating the WL and IL obtained with the MILP model 1 (Exposure=1
for all production tools).

The number of lots above WL and IL is also reduced but we still have lots pro-
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cessed on production tools above IL (0.43 ∗G). This means that the GSI sampling

algorithm cannot satisfy the WL and IL optimized by the MILP model. Therefore,

although the sampling policy can be improved, defining the same exposure value for

all production tools does not provide WL and IL that can ensure optimal sampling

decisions with the GSI sampling algorithm. There is a need to adjust this value of

exposure depending on the tool or set of tools.

Table 7.5 shows the sampling performances obtained for an exposure defined per

workshop and per tool. Note that, when the exposure is defined per workshop, the

number of lots above IL is divided by more than two (0.18∗G). When the exposure

is defined per tool, this number is almost zero (0.02 ∗ G). This means that the

exposure must be defined per tool, and that the WL and IL provided by our MILP

model help ensuring optimized sampling decisions. No lot is processed above IL, and

the number of lots that are sampled and skipped is reduced. However, the values

of the Medium and Maximum W@R are increased compared to the case where the

exposure is set to 1 (Table 7.4). This can be explained as follows.

Performance indicators
WL = 1000 and

IL = 2000

MILP-1
(Exposure per

workshop)

MILP-1
(Exposure per

tool)

Number of sampled lots A 0.66*A 0.70*A

Number of skipped lots B 0.47*B 0.53*B

Number of measured lots C C C
Average Medium W@R D 1.20*D 1.65*D

Average Maximum W@R E 1.19*E 1.57*E

Number of wafers above WL F 0.43*F 0.28*F
Number of wafers above IL G 0.18*G 0.02*G

Table 7.5: Evaluating the WL and IL obtained with the MILP model 1 for different
values of the exposure.

When the exposure is set to 1, the risk is minimized in the same way for all tools.

This is why the Medium and Maximum W@R are decreasing. However, the problem

of defining the same exposure for all tools is that a very bad or less critical tool may

relax all the other tools. On the contrary, by defining an exposure per tool, we

minimize the overall risk taking into account the criticality of production tools. The
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overall risk is thus increased because of less critical tools for which we tolerate a high

level of risk. This increased level of risk (Medium and Maximum W@R) may also

be impacted by the distance between tools. As the delay or traveling time between

process and metrology tools may vary depending on the process operation to be

performed, or the process tool to be used, missing to consider such a parameter in

the model may also explain the increased level of the Medium and Maximum W@R.

This is why we proposed a second version of the MILP model to integrate the delay

between tools. The next section presents numerical experiments related to this new

version of the MILP.

7.7.2 Evaluating the MILP model 2

This second version of the MILP model was run on a computer of 2.8GHz, 12GB

of RAM, and with Windows 7 as the operating system. With 578,769 variables and

733 constraints, the computational time to obtain the optimal solution is 24,766

seconds.

We ran the MILP model by defining an exposure per tool and an average delay

between tools. This delay is expressed as an average number of wafers. Table 7.6

presents the GSI sampling performances obtained with the WL and IL computed

with this new version of the MILP model. We compare the case where the delay

is defined per workshop and the case where delay is defined per tool. Note that,

for both cases, the number of lots above IL is equal to zero. This shows that the

values or WL and IL provided by the second MILP model are optimized values since

the GSI sampling algorithm is able to satisfy these limits. Moreover, the Medium

and Maximum W@R are reduced compared to the first model where delays between

tools are not taken into account (Table 7.5). The GSI sampling algorithm is able to

select a reduced number of lots while minimizing the overall risk.

Using the WL and IL computed with the MILP model helps ensuring optimized

GSI sampling decisions. However, the model presents some limitations that need

to be highlighted. First, the model is based on historical data. The values of WL
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Performance indicators
WL = 1000 and

IL = 2000
MILP-2: Delay
per workshop

MILP-2: Delay
per tool

Number of sampled lots A 0.44*A 0.46*A

Number of skipped lots B 0.13*B 0.16*B
Number of measured lots C C C
Average Medium W@R D 0.96*D 1.15*D

Average Maximum W@R E 1.04*E 1.23*E
Number of wafers above WL F 0.02*F 0.02*F
Number of wafers above IL G 0 0

Table 7.6: Evaluating the WL and IL obtained with MILP model 2 (delay defined
per workshop and per tool).

and IL are thus only valid for some specific periods, i.e. when the mix of products

or fab loading does not change too much. In the case of a significant change of

the production volume for example, there will be a necessity to compute again these

values. Second, the model computes WL and IL based on the actual control plan. It

gives indication on the level of the risk (IL) that may be expected by the company,

but do not provide solutions to reduce this expected level of risk. The GSI sampling

algorithm tries to minimize the risk on the entire fab, but the mechanism is based on

WL and IL that give indication on what can be expected. If WL and IL values are

arbitrarily set, the GSI sampling policy will lead to poor results because of incoherent

information. Therefore, the only way to improve or reduce the values of WL and IL

computed with our MILP model is to work directly on the control plan, and try to

define optimal positions of control operations. This is done within the framework

of the PhD thesis of B. BETTAYEB [10] [11] and G. RODRIGUEZ-VERJAN [81].

The works of B. BETTAYEB mostly focus on allocating controls on pro-

duction tools with the aim of minimizing the global exposure. Depending on the

available metrology capacity and the mix of products, the goal is to define, for each

production tools the number of control operations that can be performed using some

predefined criteria. The works of G. RODRIGUEZ-VERJAN mostly focus on

defining the right positions of control operations throughout production. The goal

is to minimize the average delay or traveling time between control operations and

thus reduce the W@R in production. The two works mainly address the modeling

and definition of an optimal control plan whereas in my thesis I am interested in

computing WL and IL using a predefined control plan.
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7.8 Conclusion

In this chapter, we presented three versions of a MILP model we developed to

optimize the values of two parameters: WL and IL. These two parameters are key in

the GSI sampling policies introduced in Chapter 6. We firstly discussed the impact

of these values on the sampling policy performances, and then analyzed their added

value through simulations. By simulating sampling policies with different values of

WL and IL, results indicate a direct impact on the sampling policy performances.

The average risk level can be increased and cycle time of lots impacted. If WL and

IL are arbitrarily set, the sampling mechanism becomes instable. By using the WL

and IL obtained with our MILP model in a GSI sampling policy, results show an

overall risk reduction on the entire Fab without additional metrology capacity.

However, the MILP model we propose is based on historical data and, whenever

there is a significant change in production (e.g. production volume or fab load-

ing), it will be necessary to update the different values. Moreover, when modeling

all the parameters that may interact in a real-time industrial implementation, the

model complexity has strongly increased. Therefore, one of the main perspectives

is in working in the source of the problem instead of focusing on the consequences,

i.e. identifying and defining optimized positions of control operations instead of

computing the expected levels of risk based on a static control plan.
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Chapter 8

Industrial Developments and

Implementations

This chapter1 gives a general overview of specific solutions that have been pro-

posed within the framework of this thesis: Prototypes and financial metrics. These

specific solutions have supported the industrialization of the main concepts proposed

and developed in the thesis. This is one of the strengths of this thesis.

8.1 Introduction

8.2 CMP-WAR Prototype

8.3 Excursion Management Prototype

8.4 Financial Metrics

8.5 Conclusion

1Part of this section is accepted for publication in the proceedings of the 8th International
Conference on Modeling and Analysis of Semiconductor Manufacturing (included in
the 2012 Winter Simulation Conference) [62].
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8.1 Introduction

The company culture, production constraints, and resource management in a

high-mix manufacturing environment are such that, providing, developing, or de-

ploying a new concept or algorithm requires getting in touch with everybody. On

the one hand, even if a new software solution can contribute to increase yield or

reduce cycle time, it will also often impact other activities, workload of engineers,

or existing tools with consequences on product prices. On the other hand, the main

objective of a company is to go forward by developing and finding new strategies to

stay competitive in the market. This implies that each innovation within the com-

pany must be easily adopted and understood, otherwise it may be rejected. This is

why, within the framework of this thesis, we focused on interacting as much as pos-

sible with experts in the company, and on validating our algorithms and solutions

through simulations and prototypes that could be understood by everybody.

Section 8.2 presents a general overview of the CMP prototype introduced in

Chapter 5. In section 8.3, we describe the prototype that has been developed for

an optimized management of excursions using the IPC mechanism. Section 8.4 is

devoted to the financial metrics we proposed to assess the return on investment of

the dynamic sampling algorithms introduced in Chapter 6.

8.2 CMP-WAR Prototype

The CMP-WAR prototype described in Chapter 5 has been implemented using

data coming from different databases. Figure 8.1 shows an overview of the different

databases that are used and, Figure 8.2 the final user interface. Excel-VBA and

SQL languages were used for the main developments.

The prototype has been deployed for in-line use in the CMP and defectivity work-

shops. During the evaluation phase, the prototype was used only twice a day by the

engineering team. Figure 8.3 shows the first evaluation performed two weeks after

the prototype was deployed. Note that the number of lots processed on production

tools with a risk indicator larger than 0.33 (0.33 is the maximum risk allowed by
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Figure 8.1: General schema – Databases.

Figure 8.2: Overview of the CMP WAR prototype.

the company) was reduced by more than 65%. 0.33 represents the maximum risk

allowed by the company.
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Figure 8.3: Results on global Risk Indicator (RI) reduction.

Figure 8.4 provides another evaluation of the prototype on several weeks. Note

the strong impact of the prototype on the risk reduction. Note also that, during the

holidays where the number of qualified operators is reduced, the risk significantly

increases until the prototype was used again.

These encouraging results led to additional analysis and observations within the

company. After 6 months of evaluations and analysis, the decision was

taken to industrialize the solution.
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Figure 8.4: Impact of the prototype on the overall risk.

8.3 Excursion Management Prototype

This second prototype has been developed based on the same types of data than

the CMP-WAR prototype. Figure 8.5 shows the final user interface that has been

deployed in the defectivity workshop. By entering the name of a lot for which an

excursion is detected, the prototype provides the set of tools that can be removed

from the initial scope of analysis. This information is computed in real time using

the IPC mechanism (see Chapter 5).
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Figure 8.5: Overview of the Excursion Management prototype.

8.4 Financial Metrics

To assess the added value of the dynamic sampling algorithms introduced in

Chapter 6, we proposed three different financial metrics, among which one was

deemed to be more suitable for defectivity controls. However, depending on the fab

or the type of the risk that is addressed, one metric may be more suitable than

another. The three metrics are:

1. The number of metrology tools that can be saved by using a GSI

sampling algorithm. The idea is to compute the number of metrology tools

required with the GSI algorithm to obtain performance indicators that are as

good as in current fab sampling. However, as our goal is not to reduce the

number of measured lots but to reduce the number of measurements without

added value, this first metric was not judged to be the most suitable.

2. The downtime costs incurred when Inhibit Limits are exceeded. The

idea is to consider that a financial cost is incurred when a production tool is

stopped because an Inhibit Limit is exceeded. The resulting downtime is a non
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productive time which costs money. We assume that the production tool stays

down until the W@R becomes smaller than its corresponding Inhibit Limit.

However, the problem of this second metric is that, in practice, a production

tool will not always be stopped when its Inhibit Limit is exceeded. Therefore,

this second metric was not chosen.

3. The risk related costs incurred when Inhibit Limits are exceeded.

The idea is to consider that the risk of losing wafers is increased when the

W@R of a production tool is above its Inhibit Limit. Based on a probability

of failure, it is possible to calculate how much money could be saved. This

last metric was deemed to be the most practical.

Using the third metric, we introduce the following notations to compute the

gains of the GSI sampling algorithms:

• NW t
s,IL : Number of wafers above the Inhibit Limit (IL) with the fab sampling

(static sampling) for production tool t.

• NW t
d,IL : Number of wafers above the Inhibit Limit (IL) with the GSI sam-

pling (dynamic sampling) for production tool t.

• P t
w : Cost of a wafer above the Inhibit Limit (IL) for production tool t.

• Gt
w : Gain in term of term of risk reduction (number of wafers) for production

tool t.

• PGe : Potential financial gain in term of money (e). This value represents the

global amount of money potentially saved with the GSI sampling.

Therefore, for a given production tool t, the gain in term of risk reduction (Gt
w)

is given by:

Gt
w = max(0, NW t

s,IL −NW t
d,IL)

The potential financial gain (PGe) is:

PGe =
∑
t

Gt
w ∗ P t

w ∗ Ploss
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where Ploss is the probability of losing wafers when the W@R of a production

tool is above its Inhibit Limit.

By considering the results in Table 6.8 (see Section 6.5.2), assuming a probability

of losing wafers Ploss = 1/2000, and an average wafer cost of 1500 e, the potential

financial gains are:

PGe = (9,517,277 - 7,759,743)*(1500) * (1/2000) = 1,318,150 e.

This significant potential gain, combined with the prototype results,

was one of the main drivers behind the industrialization of the GSI sam-

pling algorithms.
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8.5 Conclusion

In this chapter, we summarized the main industrial solutions that have been

proposed within the framework of this thesis. We presented the two main proto-

types that have supported the industrialization of the IPC mechanism, and financial

metrics that helped in assessing the added value of the GSI sampling algorithms be-

fore a fab-wide industrialization. Several other prototypes have been developed and

deployed in the fab, but we did not describe them in this manuscript since they

are more or less based on the two main prototypes and algorithms described in the

previous chapters.
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General Conclusion and

Perspectives

General Conclusion

Not everything that is faced can be changed. But nothing can be changed until

it is faced2. In this thesis, we faced the problem of implementing dynamic control

plans in semiconductor manufacturing. We analyzed the complexity of designing

control plans, developed novel algorithms, and provided smart solutions to support

the change from static to dynamic control plans. Our different algorithms have been

validated through simulations and prototypes, before being industrialized within the

300mm fab of STMicroelectronics in Crolles, France. Some of the solutions proposed

in this thesis have been used in other sites of STMicroelectronics. The question re-

mains whether they can be extended to other types of industries or activities.

One of the important contribution of this thesis lies in the industrial imple-

mentation of dynamic control plans in a high-mix environment. Indeed, in such

an environment, the complexity is such that, if some critical parameters (product

types, tool specificities, production constraints, etc.) are not appropriately taken

into account, a dynamic control plan can lead to very poor results and worsen the

situation in production. This is why most of the solutions proposed in the literature

are usually impracticable for an industrial deployment. The required investment,

the resource management, or the huge amount of data to handle in real time are

factors that lead companies to prefer static control plans whereas dynamic con-

2James Arthur Baldwin.
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trol approaches have been shown to be more suitable. This thesis has offered new

approaches and solutions to support industrial implementation of dynamic control

plans, showing that it is the only way for modern companies to stay competitive by

increasing the yield without impacting the cycle time.

This thesis was conducted within the framework of a joint collaboration between

industry and academics. We thus started our research by modeling and understand-

ing the various control plan approaches within the 300mm fab of STMicroelectron-

ics. We focused on defectivity controls and especially on sampling techniques that

aim at finding a trade-off between yield and cycle time. We stated our working

hypothesis on the added value of controls. Observations helped us to understand

the main drawbacks of static sampling that often lead to several cases of over- and

lack-of-controls.

With the aim of generalizing our problem related to static sampling, we per-

formed a literature review to classify our problem and analyze previously proposed

solutions. We noted that dynamic sampling are more suitable for modern semicon-

ductor plants, but that the efficiency of each solution or approach is directly linked

to the production environment.

Once our problem was clearly understood, generalized, and classified, we pro-

posed dynamic sampling algorithms that we validated through simulations and pro-

totypes. To support industrial implementation of these dynamic sampling algo-

rithms (GSI algorithms), we developed the IPC (Permanent Index per Context)

indicator to handle a large amount of data with little CPU effort. The combination

of both the IPC and the GSI sampling algorithms led to the industrial implemen-

tation of dynamic control plans whose potential gains was estimated to more than

1, 000, 000 e and a return on investment of less than 6 months.

Perspectives

This thesis on dynamic control plans opened perspectives for further works.

These perspectives concern the optimized management of excursions using
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the IPC mechanism, and the implementation of predictive sampling.

Our first perspective is related to the management of excursions. By im-

plementing dynamic sampling policies, lots or wafers are no longer stopped at all

control steps. There is thus no quantification of defects whenever a problem occurs

throughout production. The amount of data to analyze in order to contain the ex-

cursion strongly increases. As the IPC is efficient to handle a very large amount

of data, we propose to formalize the problem using the concept of dominating sets

and, based on the IPC, select the lot that covers the maximum number of lots in

production. This will help in quickly reducing both the material at risk and the

scope of analysis.

Figure 8.6 gives an overview of the concept of dominating sets. The aim is to

contain as quickly as possible the excursion by selecting and measuring lots that

release the uncertainty on other lots. For example, selecting LB help to release

the uncertainty on lots LJ and LK, i.e. LB was processed after LJ and LK on

the same production tools and/or with the same context3. Selecting LH help to

release the uncertainty on the set of lots {LA, LB, LC, LD, LE, LF, LG, LT, LS},
and selecting LA provides information on the set {LJ, LK, LM, LN, LP, LQ, LO,

LU, LS, LT, LW, LV}. As LA covers the largest number of lots, the priority would

be given to measuring LA. If the control of LA does not reveal any problem, then

the uncertainty can be released on the set of lots covered by LA. If a problem is

detected on LA, then the set of lots covered by LA could be quickly stopped and

potentially saved with rework operations.

The second perspective involves the implementation of predictive sampling [67].

In dynamic sampling, lots are dynamically selected without taking into account the

arrival of future lots. There is no guarantee that a lot that has been sampled will

be measured since new lots bringing much more information may arrive in the near

future. We therefore think that it would be interesting to analyze sets of lots by

considering lots that are known to arrive in a near future. This could be done by

defining a time horizon where lots containing more information will be prioritized,

3A context can be a recipe, a technology, a process operation, etc.
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Figure 8.6: Concept of dominating sets.

and others directly sent to the next process operation.

This anticipation of the arrival of lots can be modeled as a scheduling problem of

jobs with release dates and with multiple objectives, where minimizing the risk and

the waiting times of lots should be balanced. The resulting scheduling problem could

be solved using a multi-objective approach such as the one proposed in Dugardin

et al. [24]. This is an original scheduling problem in semiconductor manufacturing,

not mentioned for example in Mőnch et al. [54].
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A.1 Glossary

APC Advanced Process Control - A set of four control
techniques (FDC, R2R, SPC, VM) used for controlling
processes and machines.

Breach of control A place in the control plan where a control operation
might be added or removed.

Bottleneck A place in the production chain where the capacity is
limited such that the capacity is reduced in the whole
production chain.

CMP Chemical Metal Polishing - A work area where
wafers are mechanically and chemically polished.

Cycle time The time a wafer or a lot stays in a work area or the
entire fab.
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Defectivity A term used to describe particles or defects generated
on wafers during the production. This is mainly due to
the mechanical parts of production tools, and the size
of ICs is such that every particle can be critical.

Exposure Financial cost incurred when processing a lot on a pro-
duction tool.

Excursion Deviation in process or product specifications.

Fab A semiconductor fabrication plant - The factory where
integrated circuits are produced on silicon wafers.

FDC Fault Detection and Classification - A technique of
monitoring statistically process variations by analyzing
process equipment parameters.

FOUP Front Opening Unified Pod - A box that contains
25 wafers.

GSI Global Sampling Indicator - A score that helps se-
lecting the best set of lots to sample, measure, or skip.

IC Integrated Circuit - An electronic circuit built on a
single piece of substrate (typically silicon).

IL Inhibit Limit - A limit above which the production
may be stopped if no control is performed. In term of
wafers, IL represents the maximum number of wafers
that should be run on a production tool between two
controls.

IMPROVE Implementing Manufacturing science solutions
to increase equiPment pROductiVity and fab
pErformance - A 42-month European project that fo-
cuses on the development of virtual metrology, predic-
tive equipment behavior, and dynamic control plans.
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IPC Index Permanent par Contexte or Permanent
Index per context - A counter increased each time a
context is verified. The context can be defined by cham-
ber, by recipe or recipe type level (e.g. photoresist), by
technology, by product, or by any combination of the
previous element.

Lot A group of 25 wafers placed in a FOUP.

Measurable lot A lot for which the product is measurable i.e. a lot that
contains a product for which a recipe exists and has been
created on a metrology tool.

Metrology In this thesis, the term Metrology as well as Inspection
are related to control operations performed on metrology
or inspection tools.

Qualification The definition and approval of different recipes that can
be used on a process tool.

Recipe A set of data required for an equipment to physically
treat a wafer or a lot.

SPC Statistical Process Control - A technique based on
statistical methods to analyze process stability.

S5 Smart Sampling Skipping Scheduling Simulator
- A simulator that simulates several sampling policies
using historical data. It is implemented in Excel VBA.

Risk In this thesis, the term risk is related to the material
at risk, i.e. the potential loss if a problem occurs in
production.

R2R Run-to-Run - A closed-loop control solution to correct
for process deviation from the desired target.
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Throughput time The production speed (of a recipe) on a tool.

TRIZ Teoriya Resheniya Izobretatelskikh Zadatch. In
English, it is defined as Theory of Inventive Problem
Solving (TIPS) approach [4] developed in 1946 by Gen-
rich S. Altshuller for solving technical problems.

Toolset A group of tools in a workshop that can perform the
same or similar kinds of recipes.

VM Virtual Metrology - A technique for predicting mea-
surements based on previous metrology measurements
and equipment outputs.

Wafer A thin circular plate on which the integrated circuits are
produced.

WAR Wafer at Risk - The number of wafers processed on a
production tool since the last control.

WIP Work-In-Progress or Work-In-Process - The set of
lots that are awaiting to be processed.

WL Warning Limit - A limit above which a situation starts
to become critical in term of control. In term of wafers,
WL represents the number of wafers that needs to be
run on a production tool before increasing the priority
of the tool for a control.

Workshop A set of tools that are used for conducting a certain
production step.
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B.1 Clean room - ISO standard Classification

Classification
Numbers (N)

Maximum concentration limits (particles/cm3 of air) for particles
equal to and larger than the considered sizes shown below

0.1µm 0.2µm 0.3µm 0.5µm 1µm 5.0µm
ISO1 10 2
ISO2 100 24 10 4
ISO3 1 000 237 102 35 8
ISO4 10 000 2 370 1 020 352 83
ISO5 100 000 23 700 10 200 3 520 832 29
ISO6 1 000 000 237 000 102 000 35 200 8 320 293
ISO7 352 000 83 200 2 930
ISO8 3 520 000 832 000 29 300
ISO9 35 200 000 8 320 000 293 000

Table B.1: Clean room - ISO Standard Classification [97].
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Appendix C

C.1 S5 prototype

The prototype S5 (Smart Sampling Skipping Scheduling Simulator) was imple-

mented in Excel VBA by the EMSE. Figure C.1, Figure C.2, and Figure C.3 show

different user interfaces for defining the parameters of simulations.

• Figure C.1 shows the user interfaces for selecting data and a type of simulation.

The version of the prototype used in this thesis offers the possibility to simulate

six different sampling policies (Figure C.1b):

1. Without sampling, i.e. a sampling policy where no lot is inspected.

This is not really a sampling policy but the aim is to evaluate the maxi-

mum risk that can be achieved within the production if no lot is sampled

for inspection.

2. All sampling, i.e. a sampling policy where all lots are inspected. The

aim is to compare other policies to the ideal case.

3. Threshold sampling, i.e. a sampling policy where lots are sampled

only when a given risk threshold (Warning Limit) is reached.

4. GSI sampling, i.e. a sampling policy using the first GSI sampling algo-

rithm (Section 6.4.2).

5. Fab sampling, i.e. the actual fab sampling policy (based on historical

data).
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6. Full GSI sampling, i.e. a sampling policy using the second GSI sam-

pling algorithm (Section 6.4.3).

• Figure C.2 shows the user interfaces for generating graphs after each simu-

lation, and for defining the values of parameters (α, β, TMax, TMin, TMetro,

Measure time, Warning Limit, Inhibit Limit, Number of metrology tools, and

Inspection queue size).

• Figure C.3 shows the user interface for initializing data or for generating more

statistics.
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(a) S5 - Module DATA INPUT. (b) S5 - Module SIMULATIONS.

Figure C.1: S5 interfaces (Modules DATA INPUT and SIMULATIONS).

(a) S5 - Module GRAPHS. (b) S5 - Module PARAMETERS.

Figure C.2: S5 interfaces (Modules GRAPHS and PARAMETERS).
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Figure C.3: S5 (Module RESET).

C.1.1 Input data

Three main types of historical data are necessary to simulate a sampling policy:

1. Process input data (Figure C.4) that contains historical data of production

tools.

2. Measurement input data (Figure C.5) that contains historical data of in-

spection tools (Defectivity tools).

3. Defectivity models (Figure C.6) that defines the set of process operations

that can be validated by a control operation, and the set of control operations

that can validate a process operation.
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Figure C.4: Process input data.

Figure C.5: Measurement input data.

Figure C.6: Defectivity models.

C.1.2 Output results - Statistics

The S5 prototype provides several indicators that are used for further analysis.

Among these parameters, we have:

1. Number of lots that are sampled, i.e. the number of lots that are chosen to be

inspected and which are placed in the inspection queue.
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2. Number of sampled lots (directly inspected), i.e. the number of lots that do

not wait in the inspection queue. Once sampled, they are directly inspected.

3. Number of sampled lots (directly queued), i.e. the number of lots that are

sampled when the inspection queue is not full.

4. Number of sampled lots (exchanged), i.e. the number of lots that are sampled

when the inspection queue is full. These lots are exchanged with some lots

already waiting in the inspection queue.

5. Number of lots that are inspected i.e. the number of lots that are actually

inspected or the number of lots processed on an inspection tool.

6. Number of lots that are skipped, i.e. the number of lots removed from the

inspection queue or the number of lots that are sampled but not inspected.

7. Number of lots that are skipped (entry queue), i.e. the number of lots that

are skipped due to the arrival of new lots bringing more information.

8. Number of lots that are skipped (metrology), i.e. the number of lots that are

skipped due to the inspection of other lots.

9. Medium WAR (average) i.e. the sum of the WAR for all production tools

divided by the number of tools, i.e.
NbTools∑
j=1

WARj

NbTools
where WARj is the

WAR for the production tool j.

10. Maximum WAR (average), i.e. the sum of the maximum WAR of all produc-

tion tools divided by the number of tools, i.e.
Nbtools∑
j=1

MaximumWARj

NbTools
.

11. Number of lots above Warning Limit.

12. Number of wafers above Warning Limit.

13. Time spent above the Warning Limit. It corresponds to the sum of the times

that all lots spent above the Warning Limit.
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14. Number of lots above the Inhibit Limit.

15. Number of wafers above Inhibit Limit.

16. Time spent above the Inhibit Limit. It corresponds to the sum of the times

that all lots spent above the Inhibit Limit.

17. The average time spent by lots in the inspection queue before being inspected.

18. The maximum time spent by lots in the inspection queue before being in-

spected.

19. The average time spent by lots in the inspection queue before being skipped.

20. The maximum time spent by lots in the inspection queue before being skipped.

21. The set of control operations used to reduce the WAR during the simulation.

22. The number of times a control operation was used during the simulation.

23. The number of control operations used during the simulation.

C.2 Impact of parameter β
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Values of β with α = 1
Number of

sampled lots
Number of

measured lots
Number of

skipped lots

Average
Medium
W@R

Average
Maximum

W@R

1 5.15*A 0.98*A 4.17*A 0.24*B 0.28*C

2 5.34*A 0.98*A 4.35*A 0.23*B 0.28*C
3 5.59*A 0.98*A 4.61*A 0.23*B 0.28*C
4 5.7*A 0.98*A 4.71*A 0.23*B 0.28*C

5 5.87*A 0.98*A 4.89*A 0.23*B 0.28*C
6 6*A 0.98*A 5.02*A 0.23*B 0.28*C
7 6.15*A 0.98*A 5.17*A 0.23*B 0.29*C

8 6.27*A 0.98*A 5.28*A 0.24*B 0.29*C
9 6.33*A 0.98*A 5.35*A 0.23*B 0.28*C
10 6.43*A 0.98*A 5.45*A 0.23*B 0.28*C

MIN 5.15*A 0.98*A 4.17*A 0.23*B 0.28*C
MAX 6.43*A 0.98*A 5.45*A 0.24*B 0.29*C

AVERAGE 5.88*A 0.98*A 4.9*A 0.23*B 0.28*C

Table C.1: Impact of β when α = 1.

Values of β with α = 2
Number of

sampled lots
Number of

measured lots
Number of

skipped lots

Average
Medium
W@R

Average
Maximum

W@R

1 5.22*A 0.98*A 4.24*A 0.24*B 0.27*C
2 5.34*A 0.98*A 4.36*A 0.23*B 0.27*C
3 5.47*A 0.98*A 4.48*A 0.23*B 0.27*C

4 5.71*A 0.98*A 4.73*A 0.23*B 0.28*C
5 5.9*A 0.98*A 4.92*A 0.23*B 0.27*C
6 6.01*A 0.98*A 5.02*A 0.23*B 0.28*C

7 6.15*A 0.98*A 5.17*A 0.23*B 0.28*C

8 6.26*A 0.98*A 5.28*A 0.23*B 0.28*C
9 6.27*A 0.98*A 5.29*A 0.24*B 0.28*C
10 6.4*A 0.98*A 5.42*A 0.23*B 0.28*C

MIN 5.22*A 0.98*A 4.24*A 0.23*B 0.27*C
MAX 6.4*A 0.98*A 5.42*A 0.24*B 0.28*c

AVERAGE 5.87*A 0.98*A 4.89*A 0.23*B 0.28*C

Table C.2: Impact of β when α = 2.
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Values of β with α = 4
Number of

sampled lots
Number of

measured lots
Number of

skipped lots

Average
Medium
W@R

Average
Maximum

W@R

1 5.21*A 0.98*A 4.23*A 0.24*B 0.28*C

2 5.31*A 0.98*A 4.33*A 0.24*B 0.28*C
3 5.53*A 0.98*A 4.54*A 0.24*B 0.28*C
4 5.68*A 0.98*A 4.7*A 0.24*B 0.28*C

5 5.9*A 0.98*A 4.91*A 0.24*B 0.28*C
6 6.07*A 0.98*A 5.09*A 0.24*B 0.28*C
7 6.25*A 0.98*A 5.27*A 0.24*B 0.28*C

8 6.27*A 0.98*A 5.29*A 0.24*B 0.28*C
9 6.35*A 0.98*A 5.37*A 0.24*B 0.28*C
10 6.46*A 0.98*A 5.48*A 0.24*B 0.28*C

MIN 5.21*A 0.98*A 4.23*A 0.24*B 0.28*C
MAX 6.46*A 0.98*A 5.48*A 0.24*B 0.28*C

AVERAGE 5.9*A 0.98*A 4.92*A 0.24*B 0.28*C

Table C.3: Impact of β when α = 4.

Values of β with α = 6
Number of

sampled lots
Number of

measured lots
Number of

skipped lots

Average
Medium
W@R

Average
Maximum

W@R

1 5.21*A 0.98*A 4.23*A 0.25*B 0.28*C
2 5.34*A 0.98*A 4.35*A 0.24*B 0.28*C
3 5.58*A 0.98*A 4.6*A 0.24*B 0.28*C

4 5.76*A 0.98*A 4.78*A 0.24*B 0.28*C
5 5.93*A 0.98*A 4.95*A 0.24*B 0.28*C
6 6.05*A 0.98*A 5.07*A 0.24*B 0.28*C

7 6.23*A 0.98*A 5.25*A 0.24*B 0.28*C

8 6.26*A 0.98*A 5.28*A 0.24*B 0.28*C
9 6.37*A 0.98*A 5.38*A 0.25*B 0.28*C
10 6.58*A 0.98*A 5.6*A 0.24*B 0.28*C

MIN 5.21*A 0.98*A 4.23*A 0.24*B 0.28*C
MAX 6.58*A 0.98*A 5.6*A 0.25*B 0.28*C

AVERAGE 5.93*A 0.98*A 4.95*A 0.24*B 0.28*C

Table C.4: Impact of β when α = 6.
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Values of β with α = 8
Number of

sampled lots
Number of

measured lots
Number of

skipped lots

Average
Medium
W@R

Average
Maximum

W@R

1 5.19*A 0.98*A 4.21*A 0.24*B 0.28*C

2 5.26*A 0.98*A 4.28*A 0.24*B 0.28*C
3 5.57*A 0.98*A 4.59*A 0.24*B 0.28*C
4 5.82*A 0.98*A 4.83*A 0.24*B 0.28*C

5 5.93*A 0.98*A 4.95*A 0.24*B 0.28*C
6 6.07*A 0.98*A 5.09*A 0.24*B 0.28*C
7 6.21*A 0.98*A 5.22*A 0.24*B 0.28*C

8 6.24*A 0.98*A 5.26*A 0.25*B 0.29*C
9 6.39*A 0.98*A 5.41*A 0.24*B 0.28*C
10 6.46*A 0.98*A 5.48*A 0.24*B 0.28*C

MIN 5.19*A 0.98*A 4.21*A 0.24*B 0.28*C
MAX 6.46*A 0.98*A 5.48*A 0.25*B 0.29*C

AVERAGE 5.91*A 0.98*A 4.93*A 0.24*B 0.28*C

Table C.5: Impact of β when α = 8.

Values of β with
α = 10

Number of
sampled lots

Number of
measured lots

Number of
skipped lots

Average
Medium
W@R

Average
Maximum

W@R

1 5.17*A 0.98*A 4.19*A 0.25*B 0.28*C
2 5.34*A 0.98*A 4.36*A 0.24*B 0.28*C
3 5.51*A 0.98*A 4.53*A 0.24*B 0.28*C

4 5.77*A 0.98*A 4.79*A 0.24*B 0.29*C
5 5.9*A 0.98*A 4.92*A 0.24*B 0.28*C
6 6.12*A 0.98*A 5.14*A 0.25*B 0.29*C

7 6.25*A 0.98*A 5.27*A 0.25*B 0.28*C

8 6.27*A 0.98*A 5.29*A 0.25*B 0.28*C
9 6.39*A 0.98*A 5.41*A 0.25*B 0.29*C
10 6.5*A 0.98*A 5.51*A 0.25*B 0.28*C

MIN 5.17*A 0.98*A 4.19*A 0.24*B 0.28*C
MAX 6.5*A 0.98*A 5.51*A 0.25*B 0.29*C

AVERAGE 5.92*A 0.98*A 4.94*A 0.25*B 0.28*C

Table C.6: Impact of β when α = 10.
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Values of β with
α = 12

Number of
sampled lots

Number of
measured lots

Number of
skipped lots

Average
Medium
W@R

Average
Maximum

W@R

1 5.19*A 0.98*A 4.21*A 0.24*B 0.27*C

2 5.39*A 0.98*A 4.41*A 0.24*B 0.28*C
3 5.52*A 0.98*A 4.54*A 0.24*B 0.28*C
4 5.71*A 0.98*A 4.73*A 0.25*B 0.29*C

5 5.95*A 0.98*A 4.97*A 0.25*B 0.29*C
6 6.05*A 0.98*A 5.06*A 0.25*B 0.29*C
7 6.18*A 0.98*A 5.2*A 0.25*B 0.29*C

8 6.3*A 0.98*A 5.31*A 0.25*B 0.29*C
9 6.45*A 0.98*A 5.47*A 0.25*B 0.29*C
10 6.41*A 0.98*A 5.43*A 0.25*B 0.28*C

MIN 5.19*A 0.98*A 4.21*A 0.24*B 0.27*C
MAX 6.45*A 0.98*A 5.47*A 0.25*B 0.29*C

AVERAGE 5.91*A 0.98*A 4.93*A 0.25*B 0.28*C

Table C.7: Impact of β when α = 12.
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sampling algorithms.
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namique au sein d’un environnement semiconducteur multi-produits. Nous nous sommes focalisés

sur le compromis entre le rendement et le temps de cycle, la réduction du nombre de contrôles sans

valeur ajoutée, et l’optimisation de l’utilisation de la capacité de contrôle. Nous avons commencé

par formaliser et généraliser le problème au travers d’une révue de la littérature. Ensuite, nous

avons proposé trois principales solutions pour supporter l’implémentation industrielle des plans de

contrôle dynamique. La première solution que nous avons proposée est basée sur un indicateur

qui permet le traitement d’un très grand volume de données et l’évaluation de plusieurs types de

risques avec une très faible consommation des ressources informatiques. La deuxième solution est

basée sur des algorithmes d’échantillonnage intelligents que nous avons développés pour perme-

ttre le choix en dynamique des meilleurs produits ou lots à contrôler. Et la troisième solution

est un programme linéaire mixte en nombres entiers que nous avons développé pour optimiser les

paramètres clés qui sont utilisés dans les algorithmes d’échantillonnage dynamique.

L’originalité des travaux de cette thèse se trouve dans l’industrialisation des différentes solu-
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solutions ont été étendues à d’autres sites de la compagnie. Plusieurs perspectives ont été identifiées

et offrent ainsi de nombreuses pistes de recherche.
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