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Abstract

The learning of temporal patterns is a major challenge of Data mining. We
introduce a temporal pattern model called Temporal Interval Tree Associ-
ation Rules (Tita rules or Titar). This pattern model can be used to express
both uncertainty and temporal inaccuracy of temporal events. Among other
things, Tita rules can express the usual time point operators, synchronicity,
order, and chaining, disjunctive time constraints, as well as temporal neg-
ation. Tita rules are designed to allow predictions with optimum temporal
precision. Using this representation, we present the Titar learner algorithm
that can be used to extract Tita rules from large datasets expressed as Sym-
bolic Time Sequences. This algorithm based on entropy minimization, apri-
ori pruning and statistical dependence analysis. We evaluate our technique
on simulated and real world datasets. The problem of temporal planning
with Tita rules is studied. We use Tita rules as world description models for
a Planning and Scheduling task. We present an efficient temporal planning
algorithm able to deal with uncertainty, temporal inaccuracy, discontinu-
ous (or disjunctive) time constraints and predictable but imprecisely time
located exogenous events. We evaluate our technique by joining a learn-
ing algorithm and our planning algorithm into a simple reactive cognitive
architecture that we apply to control a robot in a virtual world.
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Résumé

L’apprentissage de modeles temporels constitue I’'une des grandes problématiques

de I’Exploration de Données (Data Mining).

Dans cette these, nous avons développé un nouveau modele temporel appelé
TITA Rules (Regle associative temporelle basée sur des arbres d’intervalles).

Ce modele permet de décrire des phénomenes ayant un certain degré d’incertitude

et/ou d’'imprécision. Ce modele permet entre autres d’exprimer la synchron-
icité entre évenements, les contraintes temporelles disjonctives et la négation
temporelle. De par leur nature, les TITA Rules peuvent étes utilisées pour
effectuer des prédictions avec une grande précision temporelle.

Nous avons aussi développé un algorithme capable de découvrir et d’extraire
de maniere efficace des TITA Rules dans de grandes bases de données tem-
porelles. Le coeur de I'algorithme est basé sur des techniques de minimisation
d’entropie, de filtrage par “Apriori” et par des analyses de co-dépendance.

Notre modele temporel et notre algorithme ont été appliqués et évalués sur
plusieurs jeux de données issues de phénomenes réels et de phénomenes
simulés.

La seconde partie de cette these a consisté a étudier I'utilisation de notre
modele temporel sur la problématique de la Planification Automatique.

Ces travaux ont mené au développement d’un algorithme de planification
automatique. L’algorithme prend en entrée un ensemble de TITA Rules
décrivant le fonctionnement d’un systeme quelconque, une description de
I’état initial du systéme, et un but a atteindre. En retour, l'algorithme
calcule un plan décrivant la meilleure facon d’atteindre le but donné.

Par la nature méme des TITA Rules, cet algorithme est capable de gérer
I'incertain (probabilités), 'imprécision temporelle, les contraintes temporelles
disjonctives, ainsi que les événements exogenes prédictibles mais imprécis.
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1.2 Goals and motivations .. ... ..........
1.3 Contribution of thisstudy . ... .........
1.4 A guided tour of the chapters . . . .. ... ...

N o=

1.1 Scope

One of the main goals of physicists, and more generally of scientists, is to
develop new models to explain and predict existing phenomena. However,
scientists are not the only ones to develop models. In the everyday life,
people and especially children invent models of the world. These conscious
and unconscious models are vital for us. They represent a significant part of
our knowledge. Examples of such models are the basic laws of physics (e.g.
People know that objects tend to fall down, that fire is hot, and that they
cannot go through walls) and the basic understanding of human actions and
behaviors.

Since the earliest civilizations, humanity has tried express such knowledge
with mathematical descriptions. The first attempts appear to have been
done from a philosophical point of view. It is believed that Aristotle made
the first work on Formal Logic around 400 BC, which is the earliest known
mathematical representation of knowledge and reasoning. Through the ages,
investigation of mathematics, logic, philosophy and psychologies have con-
tributed to human understanding of natural and artificial phenomena.

With the development of Computer Science, the problem of mathematic-
ally representing knowledge has taken a new turn. A significant number of
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theories have been proposed on how to represent knowledge, how to learn
knowledge, how to transmit knowledge and how to use knowledge. With the
decrease of the price of memory, the increase of computers power, and the
digitizing of absolutely every piece of information available, these theories
become more and more useful, and increasingly used. One of the great chal-
lenges of the Computer science is to represent, learn and use automatically
and efficiently models of any phenomena. A non exhaustive list of phenom-
ena of great interest are: the weather, the earth’s climate, the behaviors of
people and animals, epidemic spread, the state of artificial systems (bridges,
car, plane, space station, etc.), and basic physic. The ability to represent
and use such knowledge is the key to technologies such as autonomous robot-
ics, computer assisted medical diagnostics, weather and climate forecasting,
automatic system fault prediction and detection, etc.

1.2 Goals and motivations

Time is a fundamental physic quantity that is present in all aspects of the
real world. It is at the core of the Physics. It is well modeled but not
well understood. Time at large scales (scale of the universe) or small scales
(scale of particles) is still a very active field of research in physics. Time is
well modeled at human scale (size, speed and duration), where time can be
represented by a scalar quantity. The fig. 1.1 illustrates with examples the
usual linear interpretation of the time.

At human scales, time has several properties that make it different from
other quantities. For example, instants of time are unique, time can be
ordered, and time has the property of transitivity (if A happens before B,
and if B happens before C, therefore A happens before C).

In computer science, time is discretized for two reasons. First, time is gener-
ally represented by fixed or floating point values because common computers
(Turing machines) cannot numerically represent real numbers. The second
reason is the link between the complexity of algorithm and the discretization
of time. Some algorithms discretize time into bins, and the time and space
complexity of these algorithms depend on the number of bins. Therefore,

past present future

The future is unknown

—t , >
Nt/

events that happened in the past

time line

Figure 1.1: Illustration of the linear interpretation of the time. Examples
of zero-duration events are given.
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time is discretized into a finite number of bins in order for the algorithms
to be run in reasonable time. In the case of learning algorithms, a third
reason exists: The discretisation of time constraints is a kind of generaliza-
tion. Therefore, it provides a solution to the sampling problem. The fig. 1.2
illustrates the linear interpretation of the time from the point of view of a
computer.

Because of the omnipresence and the particular properties of time, the study
of algorithms dealing with time has continued to be of a great interest. In
this thesis, we address two of those domains: The learning of temporal
models, and the temporal planning and scheduling.

Temporal learning

The temporal learning problem is to develop algorithms that can automatic-
ally build models of temporal phenomena. Similarly to scientists, the input
of such technique is a set of observations of a phenomenon. The output is
a model of the phenomenon. Models can be trivial (e.g. “If you touch fire,
then you will be burned”), extremely complex or even stochastic (i.e. prob-
abilistic). Models do not necessary have to be exact, but they have to be
valid in some cases. Generally, models can be applied to predict the future
state of a studied phenomenon. They can also be used in more complex
operations such as fault detection, characterisation, planning or scheduling.
The fig. 1.3 illustrates the temporal learning problem.

The temporal learning has to struggle with several problems. Below is a
non-exhaustive listing of these problems:

past present future
time line The future is unknown

1 ENIN >
Nt/

events that happened in the past

Figure 1.2: Illustration of the linear and discretized interpretation of the
time from the point of view of a computer.
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past present future
time line
|
i )
Model
observation of the past prediction of the future

Figure 1.3: Illustration of the temporal learning problem. In this example,
a model is used to predict the future of a phenomenon. Models can also be
used to predict unobserved past of a phenomenon. The core of the temporal
learning problem is to lean the model.

1. How to represent observations about phenomena?
2. How to represent models?
3. How to characterize a “good model”?

4. Since there is generally an infinite number of models, how to find the
good ones without having to test them all?

5. Since there is generally an infinite number of good models, how to find
the best ones?

6. How to detect trivial or conclusive, redundant and over specialized
models?
The problem of the representation of observations about phenomena is a
domain specific problem. Trivial and non trivial solutions exist. The five
other problems are tightly interlaced since the complexity of dealing with a
model is correlated with the structure of the model.

Temporal Planning and Scheduling

Automated Planning and Scheduling is the study of computer programs de-
signed to build strategies that lead to desired states. Domains of application
include autonomous robotics, automatic system maintenance and project
management. The input of a temporal planning and scheduling algorithm is
a description of a ‘world’, a list of possible doable actions, and a desired goal
(or a set of desired goals). The term world is a generic term that represents
an initial state and the model of a system (this model is often presented a
set of rules). The output of a Planning algorithm is a plan, i.e. a description
of the actions to perform in order to achieve a goal. The fig. 1.4 illustrates
the planning and scheduling problem.
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Final state

Initial state
of the 'world' How to reach this state ? of the 'world'

”
T solution @

Planner

Model of the world

Figure 1.4: Illustration of the planning problem. An initial state of the
world, a model of the word and a goal is given to the planner. The output
is a plan that leading the world to a final state where the goal is reached.

A system for temporal planning and scheduling must resolve several prob-
lems, including:

1. Select a way to represent data (description of the world’s states, de-
scription of the world’s mechanisms, and description of plans).

2. How to choose from a possibly infinite number of plans (i.e. choose
the plans that lead to the goals) without having to enumerate all the
possible plans?

3. How to deal with the uncertainty?
4. How to adapt plan to new and unpredicted observations?

5. How to take into account the probability of (positive of negative) side
effects of a plan.

1.3 Contribution of this study

During this thesis, we addressed two hard challenges of Computer Science:
The Automated Learning and Automated Planning and Scheduling.

This work begun by the study of temporal patterns (patterns describing
phenomenon with a temporal aspect) described in the literature. Our initial
goal was to efficiently assist people in their everyday life throughout robotic
interaction. In order to provide an efficient help to people, a context-aware
building had to be able to “understand” the behaviors of occupants. There-
fore, our first challenge was to represent the behaviors of people from the
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point of view of a context-aware building. As an example, a typical rule to
lean and use is “If somebody is knocking at the door of a room, and there
is somebody in this room, then the knocking person will probably enter the
room in the following minutes”. Another example of a rule to learn is “If
the music is playing, a person is about to leave the room, and if there are
no more people of this room, then this person will probably switch-off the
music before leaving the room.”.

The same example from the point of view of an intelligent and active en-
vironment is: “If the music is playing, a person is leaving the room, and if
there are no more people of the room, then the music should be switched-off
automatically.”.

The pattern we tried to represent were not especially complex, but since
people are by nature unpredictable, the patterns and the learning tech-
niques had to be able to represent imprecise and inaccurate rules. Because
no patterns and no algorithms met our needs, we developed a new temporal
pattern called Titar. This temporal model has been designed to express
a certain class of temporal correlations. This class of temporal correlation
had to be large enough to describe some real world phenomena, but it had
also to be simple enough to be learned efficiently. The initial goal of this
temporal model was to be able to describe human activity for robotic ap-
plications. Surprisingly, experiments showed that our temporal model could
be successfully applied to describe other domains.

The vast majority of temporal pattern in the literature can be seen as sys-
tems of temporal constraints. One of the core problems of temporal learning
is the learning of these temporal constraints. Informally, this problem con-
sists in choosing a finite set of ‘good temporal constraints’ from an infinite
set of candidate temporal constraints. We call this problem the Temporal
Constraint Selection problem. This problem is discussed and illustrated be-
low in chapter 4.5.

As with most of the literature on temporal learning, the learning of Tita
rules has to deal with this problem. Surprisingly, we observed that the ma-
jority of literature that we are aware of is proposing inefficient solutions to
this problem. In this work, we have proposed a novel solution for this prob-
lem. In opposition to the current literature, our method does not suppose
any initial properties for observations, and it does not perform exhaustive
testing on all the candidate temporal constraints. This solution is justi-
fied and validated through several experiments. Based on our solution for
the Temporal Constraint Selection problem, we present an efficient learning
algorithm called Titarl.

The second part of this thesis develops a Planning and Scheduling algorithm
based on our model of temporal rules. Given a world (or a system) described
by a set of Tita rules and a goal, our planning algorithm computes a plan
to achieve this goal in the described world.



1.4. A guided tour of the chapters 7

We show that this combination is able to produce robust and adaptable
plans, where robust means that the plans are able to deal with the un-
certainty of the world, and adaptable means that the plans have a certain
amount of freedom. A technique for representing temporal inaccuracy is
presented.

The result is validated by experiments: Our learning algorithm is integrated
with our planning and scheduling algorithm to yield a cognitive policy.

1.4 A guided tour of the chapters

Below is given an informal overview of each chapter.

e Chapter 2 reviews the existing literature concerning the problem ad-
dressed in this thesis. It begins by introducing the problems tackled
by Data mining (association rule learning, clustering, regression and
classifications). Next, it presents the common time representations
that are used in temporal data mining. A time representation defines
how to represent temporal observations such as events or states (e.g.
It is raining. It begins to rain. The rain is over. etc.) We adopt the
terminology defined by Mérchen (Mérchen, 2007) to describe the vari-
ous time representations. Next, this chapter describes the temporal
patterns used in the literature.

Temporal patterns define how to represent correlation/relation/patterns
between events (e.g. If T press the switch, then the light will be
on. Every night, it becomes dark. etc.). The presented patterns
are the general temporal constraint systems, the temporal constraint
network, the various types of episodes, the chronicles, the temporal
node Bayesian network and a type of probabilistic and temporal rule.
Next, we present existing temporal learning techniques found in the
literature. We define classical notions about temporal learning and
we present a small overview of each technique. Finally, we present
the problem of temporal planning and scheduling, and we summarizes
several works from the literature.

o Chapter 3 details the various mathematical notions and representa-
tions that will be used in this thesis. Several of these notions are quite
common but have several writing conventions and terminology. New
simple notions are introduced to make the writing of equation more
compact and easier to read. We also present our temporal pattern
model and our temporal plan. We use the first model called Titar (for
Temporal Interval Tree Association Rule) to represent temporal rela-
tion about observations. We present several examples of Titar. The
second model called Meta Titar Plan is based on our Titar. We use it
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to represent plan (description of action that will lead to a given goal).
We present several examples of Meta Titar Plans.

Chapter 4 details the technique we have designed to automatically
learn Titar from sets of observations. This chapter begins by a discus-
sion on a core issue for temporal learning algorithms: What should be
a ‘good’ temporal pattern? One of the main difficulties of temporal
learning is the learning of these constraints. We call this problem the
Temporal Constraint Selection Problem. This problem is common to
all temporal learning techniques, and it is addressed in various ways
in the literature. We propose and justify a new approach to solve this
problem.

From this approach, we design and present the Titar learner algorithm
which is presented in this chapter. This algorithm is based on four
simple operations: the creation of trivial unit rules, the addition of
condition, the division of rule and the refinement of rules. The first
section presents and illustrates these operations. The algorithm is
composed of several stages called improvement policies and based on
the four simple operations. The second section presents and illustrates
these policies. The third section is a listing of the algorithm. The
fourth section details a step by step application of the algorithm. The
last section introduces the Temporal Constraint Selection Problem.
This definition is used to discuss the Titar algorithm and compares it
to related literature.

Chapter 5 tackles the problem of temporal planning and scheduling.
It introduces the aspect of time in a classical planning and scheduling
problem. In this approach, worlds (or systems) are described with Tita
rules. Since Tita rules can represent imprecise (non-deterministic) and
inaccurate temporal relations, the Planning and Scheduling technique
we are introducing has to be able to deal with such aspects. The tree
structure of Tita rules (by opposition to the complete graph structure
of usual pattern models) allows efficient planning with disjunctive time
constraints and inaccurate temporal relations. Time is considered to
be continuous.

The tree structure of our pattern model (in opposition to the complete
graph structure found in most of the literature (Dousson and Duong,
1999; Mannila et al., 1997)) provides an interesting trade-off between
the power of expression of patterns, and the complexity of learning
them. From the point of view of automated planning, the tree struc-
ture is also easier to solve than the complete graph structure. This
structure is the key to the planning algorithm we developed. It is
able to deal with uncertainty (expressed with probabilities), temporal
inaccuracy (expressed with ranges of value and probability distribu-
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tion), and discontinuous (or disjunctive) time constraints (which is an
NP-hard problem in a complete graph structure).

The first stage of the algorithm, called Titar planner, is able to build
a plan from a goal and a single rule. The grammar of plan we develop
is called Titar Plan. The created plans have a certain amount of
freedom and do not necessarily impose an exact time for actions to be
performed: For example, if the achievement of an action at any time
in a given period lead to a goal, a good plan would define this period
instead of assigning an arbitrary time-stamp to the actions. Since a
world is generally not described with one single rule, we design an
algorithm able to combine rules to build a plan. However, because of
the temporal inaccuracy of rules, merging high confidence rules does
not always lead to a high confidence plan. This point is discussed in
details in section 3.9. Examples are given.

In order to tackle this issue, we propose a plan model called Meta
Titar plan. Informally, a Meta Titar plan is a set of Titar plans con-
nected by temporal constraints. A Meta-plan is more expressive than
a plan. A Meta-plan can express concepts such as ‘waiting on an ex-
pected exogenous event before continuing the execution of a sequence
of actions’.

We present an algorithm able to build Meta-plans from a goal, a set
of rules, and additional observations of the world. The last part of the
algorithm is the scheduling stage. The scheduling stage is the selection
of the time samples of actions to perform according to arbitrary cri-
teria. We detail a step by step run of our technique. Several illustrated
examples of plan and Meta-plan are given. We conclude the chapter
with the analysis of the time complexity of the planning algorithm.

e Chapter 6 presents the various experiments we made to validate our
work i.e. data models and algorithms. The first section of the chapter
presents the experiments on temporal learning. The second section
presents one experiment on planning where the input of the technique
is the actual output of our learning algorithm. The first section be-
gins with a presentation of several evaluation measures. We define
simple common measures such as confidence, support, range and pre-
cision. We discuss the problem of evaluation temporal learning. Based
on this discussion, we introduce a measure called ‘Score’. The score
expresses the ‘value’ of a temporal association rule. It is computed
from confidence, support and prediction range. We also introduce a
measure called Global Support Map (GSM). The GSM expresses the
relation between minimum confidence of a predictor, minimum tem-
poral precision of a predictor, and percentage of event explained by
this predictor. This measure is especially interesting to get overview
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of a set of temporal rules. Examples of GSMs are given. Our learning
algorithm is applied on several temporal domains:

— First, we apply our algorithm on a computer generated dataset.
This dataset is composed of 100 sub-parts with different temporal
patterns having various complexity and noises. These patterns
are available for evaluation of learning. This dataset also con-
tains reference predictions (or prediction ground truth) i.e. the
best predictions that can be done. Reference predictions allow
more detailed evaluation of temporal learning techniques than
‘events to predict ground truth’. This point is discussed in the
chapter. Our learning algorithm and two other techniques from
the literature are evaluated.

— In this second experiment, we evaluate the ability of our al-
gorithm to learn the behavior of a person. This experiment is
based on a 28 days of sensor data and activity annotations about
one person living in an apartment. In this experiment, we use
the algorithm to predict the activities of the person based on the
sensor data. Two algorithms from the literature are also applied
on this problem, and the results are compared with our algorithm.

— In the third experiment, we use our algorithm to predict the mo-
tions of people in a building. This experiment is based on data
recorded by over 200 proximity sensors. The algorithm success-
fully learns rules between the sensors signal. The experiment is
concluded with the reconstruction of the topological structure of
the building from the learned rules.

— In the fourth experiment, we apply our algorithm to the Foreign
exchange market (Forex). Our goal is to train our system to
predict the upward/downward trends of the markets, and auto-
matically make buying/selling orders. The results are conclusive,
and they leaded us to believe that our algorithm can be used as
the core of automatic Forex trading systems.

In the second section of this chapter, we evaluate our temporal plan-
ning and scheduling algorithm. We simulate a virtual stochastic world.
A robot is placed in this world with the goal of getting resources.
Initially, the robot does not have any knowledge about the world.
Through ‘try and observe’ behavior, the robot learns a model of the
world, and uses this model to design plans to get food. The robot is
controlled with a simple cognitive policy relying on our learning and
planning algorithms.
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The Encyclopaedia Britannica gives the following definition to Data mining;:

Data mining, also called Knowledge Discovery in Databases in
computer science, is the process of discovering interesting and
useful patterns and relationships in large volumes of data. The
field combines tools from statistics and artificial intelligence with
database management to analyze large digital collections, known
as datasets.

- Encyclopaedia Britannica

Several other definitions exist with subtle differences. However the main
ideas over the definitions are generally similar and the small differences do
not have any practical implications. The definitions can be summed up to
the following points:

1. A (possible very large) volume of data is available.
2. This dataset is not entirely random and contains some patterns.

3. These patterns are more of less interesting according to arbitrary cri-
teria.

4. Data mining (or Knowledge Discovery in Databases) is the study of
algorithms that can find (learn, extract, mine, etc.) efficiently the
more interesting patterns from the dataset.

Techniques for Data mining have been applied to a wide range of domains
ranging from computer science and business to medicine and economics.

Techniques for Data Mining can be divided into four categories:

Association rule learning is the search for of association rules. An asso-
ciation rules is a “conditions — implications” pattern. A famous example
of association rule is the fact that ‘between 5 p.m. and 7 p.m., men who
buy diaper tend also to buy beer’ (Thomas Blischok — manager of a retail
consulting group at Teradata, 1992).

Clustering is the search for groups of ‘similar’ elements such that the ele-
ments of a same group are more similar to each other than to elements of
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other groups.

Regression is the analysis of the dependence of variables. Regression is
usually the research of a function which gives an approximation of the value
of a (dependant) variable, given the value of other variables.

The Classification is the task to organize a new set of data into a known
structure.

Following this classification, the work presented in this thesis can be seen as
a form of association rule learning.

A variety of data models have been explored with varieties depending on
the process that is applied and the nature of the information that is used.

The simplest data model used for association rule learning is the transaction
data model.

Definition 2.0.1 A transaction is a set of items (or itemset) i.e. symbols.
A transaction dataset is a set of transactions. An example of transaction

dataset is {{A, B} ,{C},{A,B,C}}.

In the case of transaction data model, an association rule is a set of symbols
called a ‘condition’ and a set of symbols called a ‘head’.

More complex data models have been created by enriching the items of
transaction datasets with extra information such as, numerical values, prob-
ability, temporal localization, first order logic terms, etc.

In this thesis, we are focusing on datasets augmented with temporal and
probabilistic information. More precisely, we are dealing with ‘symbolic
time sequence’ datasets. This term will be defined in the next section.

The next section presents various temporal data models. Symbolic time
sequences are one of them (see definition in section 2.1). The section 2.2
presents several types of patterns used to describe correlation in temporal
datasets. We emphasize patterns related to Symbolic time sequences. The
section 2.3 presents Data mining algorithms of the current literature which
are designed to lean ‘symbolic time sequences’. The section 2.4 presents
an overview of the current literature on automated temporal planning and
scheduling.

2.1 Time representation

Morchen (Mérchen, 2007) proposes a general definition for the different tem-
poral data models used by the Data mining community. Other naming con-
ventions exist. Depending on the naming convention, a given name can refer
to different temporal data models. The different temporal data models are
defined as follow:
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e A time series is a set of unique time points (This defini-
tion supposes that the intervals between the time points are
similar).

e A time sequence is a multi set of time points.
o A pair of time points defines a time interval, inclusively.

e Two intervals overlap if there is at least one time point
that lies within both intervals.

e An interval series is a set of non overlapping time inter-
vals.

e An interval sequence can include overlapping and equal
time intervals.

o The series data types can be univariate or multivariate.

The series data types can be symbol, set of symbols, numerical values, etc.
For example, a symbolic time sequence is a multi-set of time points labelled
with a symbol. Fig. 2.1 shows examples of data models.

Scalar time series are generally used to represent repetitive sampling a raw
data (e.g. < 1.5,8,2,3 >) The sampling the temperature in a room every
ten minutes is an example of scalar time series.

Symbolic time series are generally used to represent series of ordered (but
non time-sampled) events (e.g. < a,b,d,a,c > or < abdac > [the two nota-
tions are equivalent]). A sentence is a symbolic time series where each letter
is a symbol. In biological research, DNA sequencing uses symbolic time
series to represent fragments of DNA. In some papers, symbolic time series
sometime refer to series of partially ordered events (e.g. < a(abc)g(be) >).

Time sequences are used when the time sampling is important. For example,
suppose a dataset which is a record of credit card operations. Since people
tend to have patterns in the use of their credit card, banks can use such
dataset to detect stolen credit card. In this scenario, the fact that twenty
purchases have been done in an hour on the same credit card might be a sign
that this credit card has been stolen. While, the fact that twenty purchases
have been done over a month might be normal. This example is a simple
illustration of the importance of time sampling in temporal datasets.

By opposition to time series, time sequences can deal with several events
defined at the same temporal location. Time sequences can also be used to
express interval series and interval sequence by giving begin and end points
of intervals. Fig. 2.2 is an example of real world symbol interval sequence
dataset.
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Numeric time serie W

Symbolic time serie ABBACBBCAACBCBAACE
Symbolic time sequence AB cBB é A é B
Symbolic interval serie [CTAl B ]

Symbolic interval sequence ‘

Figure 2.1: Several examples of temporal data models used in temporal
data mining.

File View Information Help

Windows size: | 431378.057 | Time: [1297964.923

Figure 2.2: Example of real world symbol interval series dataset (van
Kasteren et al., 2008a). The display is done with the software Event Viewer

developped diring this thesis.
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2.2 Temporal patterns

Various temporal patterns have been designed for each data models. In this
thesis we are using the temporal pattern called Symbolic time sequences.

Since several patterns for symbolic time sequences are inspired by patterns
for symbolic time series, we also present a small overview of symbolic time
series patterns and symbolic time series mining algorithms.

2.2.1 Patterns for Symbolic time series

The more common pattern for Symbolic time series is called Sequential Pat-
terns. A Sequential Patterns is actually a symbolic time series (according to
the naming convention in the thesis). For example, the sequential pattern
< abac > indicates an event a, followed by an event b, followed by an event
a and finally followed by an event c¢. Similarly to the Time representation,
in some papers, patterns for symbolic time series can be series of partially
ordered events (e.g. < a(abc)g(bc) >).

A sequential pattern does not contain information about temporal duration.
Therefore, it is not suited for a large range of domains. In addition, a
sequential pattern used for perdition/forecasting does not give information
about the temporal localization of the events to predict.

As an example, suppose the sequential pattern < abc > (i.e. a followed by
b followed by c¢). This pattern can be extended into a sequential association
rule: < ab — ¢ > (i.e. if an event of type a is followed by an event of type b,
then an event of type ¢ will occur). When this rule is applied, it predicts an
event of type ¢, but it does not give more information about the temporal
location of this event: The event ¢ might happens right after b, or after an
arbitrarily long period of time.

2.2.2 Patterns for Symbolic time sequences

This section presents several patters for symbolic time sequences mining.

2.2.2.1 Time-Interval Sequential Patterns

Chen et al. (Chen et al., 2003) extend the sequential patterns used in sym-
bolic time series mining to the mining of symbolic time sequence. This new
pattern is called Time-Interval Sequential Patterns (TISP). A TISP is es-
sentially a sequential pattern < Ao, I1, A1, Iz, Ag,-- -, In, Ay, > where {4},
are regular symbols, and the {I;}, are temporal intervals i.e. I; = [a,b]. I;
defines the range of time allowed between the events A; 1 and A;. In Chen’s
et al. definition, the temporal intervals {I;}, are limited to be elements of
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TI = {[0,T1],[Th, T3], [T5, T3], - - , [Tr—1, T7], [Ty, 00]} where {T;}, are user
defined boundaries.

Suppose T'1 = {Ip =[0,3],I; = [3,6],I2 = [6,9], I3 = [9,00]}. The TISP <
a,Is,b,I1,c > defines an event a followed between 6 and 9 time units by an
event b, followed between 3 and 5 time units by an event c.

TISPs cannot express relations such as “an event a followed between 0 and
10 time units by an event b, followed between 0 and 5 time units by an event

)7

c’.

2.2.2.2 Generalized Sequential Pattern with Item Intervals

Hirate (Hirate and Yamana, 2006) defines another extension of the sequen-
tial patterns used in symbolic time series mining. This pattern is called
Generalized Sequential Pattern with Item Intervals (GSPII). A GSPII is es-
sentially TISP where the events can be partially ordered. In addition, four
constraints are introduced:

e C1: The minimum interval between two events.
e (C2: The maximum interval between two events.
e (C3: The minimum interval between the head and the tail of a sequence.

e C4: The maximum interval between the head and the tail of a se-
quence.

The main interest of these four constraints is to limit the temporal distance
between non ordered events. The C1 and C3 constraints are set to 0 in
Hirate’s experiments.

In Hirate’s definition, the temporal intervals {I;}, are limited to be I; =
[iA, (i + 1)A], where A is a user constant. In the experiments, A is set to
60 x 60 (one hour), 60 x 60 x 8 (eight hours), 60 x 60 x 256 (256 hours) and
60 x 60 x 24 (one day).

Suppose A = 60 x 60 (one hour if the time unit is the second). The times
intervals are [0 — 1 hour],[1 — 2 hours|,[2 — 3 hours], etc. The GSPII <
a,[1 — 2 hours], (bc),[0 — 1 hour],d > defines an event a followed between
one and two hours by two events b and ¢, followed between zero and one hour
by an event d. In addition, this GSPII should satisfy the four constraints
C1-C4.

Similarly to TISPs, GSPIIs cannot express relations such as “an event a
followed between 0 and 10 time units by an event b, followed between 0 and
5 time units by an event ¢”.
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2.2.2.3 Temporal Constraint System

A Temporal Constraint System (TCS) is a collection of existing conditions
(over events) and a set of constraints (conditions) on these existing condi-
tions. In the literature, the constraints are generally binary operators over
events, but constraints based on operators with more than two arguments
can also be built (and they are not always equivalent to aggregation of bin-
ary constraints). As an example, consider the ternary constraint over the
three events located at times t1, to and t3: “the distance between t; and
should be greater than the distance between ¢ and t3”.

A TCS restricted to constraints as binary operators can be represented by
directed graphs where each node is labelled with a symbol (i.e. existing
condition of an event with such symbol), and each edge is labelled with a
constraint between two existing conditions. We will use the graph’s termin-
ology to describe such a TCS.

The simplest constraints over two temporal points (called time point binary
operators) are before, equals and after.

A rule is a TCS divided into two parts. One of the parts is called head, the
other is called body. A rule predicts that its head will be observed in the
dataset when its body is found. Rules are sometime augmented with addi-
tional information or conditions such as confidence, time distribution, etc.
Every TCS can be transformed into a rule, and all rules can be transformed
into a TCS. However, a good rule (rule with high confidence, high support
or any other measure) does not necessary give a good GCS, and vice versa.

2.2.2.4 Temporal Constraint Network

Dechter et al. (Dechter et al., 1991) define a TCS called Temporal Constraint
Network (TCN). A TCN is a TCS where constraints are restricted to be

binary operators such as t; € R Xt € R — Lot —h e C, where C is
0 otherwise

a subset of R. TCN can be represented as a graph. The structure of this

graph is unrestricted. The restriction of this problem on solving TCN where

the constraints are restricted to interval (i.e. of the form [a, b)) is called STP

(Simple Temporal Problem).

Dechter et al. (Dechter et al., 1991) define a sub-class of TCN called STP (for
Simple Temporal Network). STPs are TCNs where constraints are restricted
to be intervals. An interval is a set of numbers such that any number that
lies between two numbers in the set is also included in the set.
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2.2.2.5 Episodes

An FEpisode is a TCS where constraints are restricted to be the ‘before’
operator i.e. t; € R xt9 € R+ t; < t2 (episodes are less expressive than
TCNs). In other words, an episode is a partially ordered collection of events.
The edges can only be labelled with the before condition. A serial episode
is a completely ordered episode i.e. any two nodes are connected by an edge
labelled with a before constraint. A parallel episode is an episode with no
order i.e. the graph does not have any edge. A k-episode is an episode with
k symbols (k existing conditions). Several authors use Episodes with an
extra constraint to avoid episodes with very spread events. Such augmented
episodes can still be expressed by a TCS.

Fig. 2.3 shows three examples of episodes and one example of a rule.

Garriga’s Episodes

Garriga (Casas-Garriga, 2003) uses episodes with an additional constraint
between time points. In the technique proposed by Garriga, an Episode is
defined as a partially ordered collection of events such that the maximum
distance between the two ordered events is bounded. This maximum dis-
tance is called ‘time unit separation’. This constraint can be expressed by
adding extra edges in the graph representing this TCS.

Mannila’s et al. Episodes

Mannila et al. (Mannila et al., 1997; Mannila and Toivonen, 1996) also uses
episodes with an additional constraint between time points. For Mannila et
al., an episode is defined as a partially ordered collection of events such that,
the distance between any two events is bounded. This maximum distance is
called the ‘window size’. This constraint can be expressed by adding extra

after after
O——E——0©
® ©

(a) a serial episode (b) a parallel episode

bod
e s o head

(c) a (general) episode (d) a (temporal) rule

Figure 2.3: Four examples of temporal patterns
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edges in the graph representing this TCS. For efficiency in the learning
process, Mannila et al.’s episode are restricted to be completely ordered
(serial episode) or not ordered at all (parallel episode).

Based on this definition of episode, Mannila et al. define two types of tem-
poral rules:

The first type of rule is used in the WinEpi algorithm. Such rules are
defined as o = 3, where « and /3 are episodes, and [ subsumes (is more
general than) o. The semantic is: If the episode « is found in the window
[w, w + window size], then the episode 5 will be found in the same window.
In the case of ordered episodes, the temporal relationship between a and £
gives additional restriction on the temporal location of 3.

The second type of rule is used in the MinEpi algorithm. These rules are
defined as a[wini] = Blwing], where o and (3 are episodes, and  subsumes
(is more general than) «. The semantic is: If the episode « is found in the
minimal occurrence [ty, t.] with t. — t; < wing, then the episode § occurs
in the window [tp, te + wing]. In the case of ordered episodes, the temporal
relationship between o and [ gives additional restriction on the temporal
location of .

Méger (Méger and Rigotti, 2004) uses rules equivalent to Mannila’s rules
based on Mannila’s serial episodes.

Vilalta et al. (Vilalta and Ma, 2002) is using rules equivalent to Mannila’s
rules based on Mannila’s parallel episodes.

2.2.2.6 Chronicles

Dousson et al. (Dousson and Duong, 1999) defines a TCS called Chronicle.
The definition of Chronicle is equivalent to the definition of the Temporal
Constraint Network (TCN). However, for efficiency in the learning process,
a Chronicles’ constraints are restricted to be convex subset of R.

2.2.2.7 Probabilistic Association Rule

Oates et al. (Oates et al., 1997) define a simple type of probability rule of the
form z[t] = y[t+a—a/2,t+a+a/2]. Here, a condition x is a non temporal
conjunction of first order logic atoms. If the condition z is true a time ¢,
then the rule predicts the observation of an event y between ¢ +a — a/2 and
t+ a+ a/2. In Oates’s algorithm, the variable a is a parameter fixed by
the user. Therefore, the core of this algorithm is a non temporal learning,
therefore we are not explaining the behavior of this algorithm.
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2.2.2.8 Temporal Node Bayesian Network

Arroyo-Figueroa et al. (Arroyo-Figueroa and Suear, 1999) propose an exten-
sion of the Bayesian Networks (Pearl, 1988) to the case of temporal events.
This type of Bayesian network is called Temporal Node Bayesian Network
(TNBN). Each node of a TNBN is associated with a type of event and a set
of Boolean random variable. Each of these random variables is associated
with an interval (i.e. a convex subset of R).

Let n; and ny be two nodes of a TNBN, and v;_,5 be a vertex from n; to ns.
nq is associated with the event A. n9 is associated with the event B and has
a random variable X, associated with the interval T := [¢;, t2]. Suppose an
event of type A occurs at time t. The random variable X,,, will be true if
and only if an event of type B occurs at time ¢’ with ¢ —t € T'. The fig. 2.4
presents an example of TNBN.

This kind of pattern can express sets of simple temporal relation between
events. Several intervals can be associated with each node , and each of
these intervals have different random variables and therefore different prob-
abilities. Therefore, TNBNs can express temporal relation between two
events that none of the previously presented temporal patterns could ex-
press. However, since temporal interval are mapped to nodes (and not to
edges as it is the case in TCS), the temporal relation between a node and
all its parents are the same. Because of that, the two following relations
cannot be expressed in the same TNBN: “If A occurs at time ¢, then C will
occur between t+5 and ¢+ 10” and “If B occurs at time ¢, then C will occur
between ¢ 4+ 10 and ¢ 4+ 20”. In addition, TNBNs cannot express rules with
conjunction of conditions in the body. For example, the following relation
cannot be expressed with TNBNs: “If A occurs at time ¢, and B occurs at
time t’ with t < ¢’ <t + 10, then C will occur between ¢’ + 5 and ¢’ + 10”.

[3-8]
ool
off

Figure 2.4: An example of TNBN.
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2.2.2.9 Time Finite Automata with Granularities

Bettini et al. (Bettini et al., 1998) propose the definition of Time Finite
Automata with Granularities (TFAGs). A TFAG is a TCS where constraints
are Temporal Constraints with Granularity (TCG).

Informally, a Temporal type is a discretization of the time. Common tem-
poral types are hour, day, week, mouth, years, etc.

Given a time ¢ and a temporal type p, [t]* is the projection of ¢ according
to p. For examples, [2012/07/18 20 : 00]%¥ — [2012/07/21 07 : 00]%¥ = 3,
[2012/07 : 18 20 : 00]9¥ —[2012/07/18 23 : 00]9%Y = 0 and [2012/07/18 23 :
5919y — [2012/07/18 00 : 01]9%Y = 1.

Suppose a temporal type p. Suppose two natural numbers n € N and
m € N. Suppose two events respectively occurring at ¢; and t3. A Temporal
Constraints with Granularity [m,n]u over these two events is true if and
only if Hﬂ“ — [tl—“u € [m,n]

If the granularity is precise enough, every TCN can be converted into a
TAG. In addition, all TAGs can be converted into a TCN (See proof 4.5.1).

2.2.2.10 Calendric Association Rules

Ozden et al. (()zden et al., 1998) propose a type of association rule called
Cyclic Association Rules or Calendric Association Rules. These rules are
essentially usual association rules (association rules used in transaction data-
sets) with a cyclic condition. The cyclic condition is a temporal condition
that depends on the calendar. Examples of Cyclic Association Rules are
‘(day = monday) N A — B’ or ‘(day = monday) A (hour =8) N A — B’.

2.3 Temporal Data mining algorithms

2.3.1 Apriori algorithm

The Apriori algorithm (Agrawal and Srikant, 1994) is a classical algorithm
used to learn frequent itemsets (set of symbols) and association rules on
itemsets on transaction datasets. It is not a Temporal Data mining al-
gorithm but it inspired a consequent number of Temporal Data mining al-
gorithms. Report to definition 2.0.1 for the definition of transaction dataset
and itemset. A k-itemset is an itemset with k items (or symbols). The
support of an itemset is the number of occurrences of this itemset in the
dataset. A frequent itemset is an itemset with a support greater than the
‘minimum support’ parameter. The apriori property tells that any subset
of a frequent itemset must be a frequent itemset. For example, {a,b,c} is a
frequent itemset if and only if {a}, {b}, {c}, {a,b}, {a,c} and {b,c} also are
frequent itemsets.
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The apriori algorithm enumerates all the frequent itemsets. Instead of enu-
merating all possible itemsets (and test if they are frequent), the algorithm
eliminates a part of non-frequent itemsets with the apriori property i.e. if
all subsets of an itemset are not frequent, then this itemset is not frequent.
The algorithm begins by enumerating all the frequent 1-itemsets. At each
algorithm loop, it generates the k+1-itemsets based on previously exacted
k-itemsets.

2.3.2 Data mining algorithms for Symbolic time series

This section gives an overview of some of the techniques developed to ex-
tract temporal patterns from Symbolic time series. These techniques can be
classified into two categories: The Apriori based algorithms and the Pattern
growth based algorithms. Apriori based algorithms explore the frequent pat-
terns with a Breadth-first search strategy (see the definition of the Apriori
algorithm in section 2.3.1). The exploration is optimized with the Apriori
property. Pattern growth based algorithms explore the frequent patterns
with a Depth-first search strategy.

The GSP algorithm (Srikant and Agrawal, 1996) is a direct extension of the
Apriori algorithm to the case of symbolic time series.

The Spade algorithm (Zaki, 1998) is an improvement of the GSP algorithm:
Instead of scanning several time the dataset, the Spade algorithm builds a
vertical dataset from the original dataset (also called horizontal dataset).
The vertical dataset indexes directly the frequent patterns and their occur-
rence in the dataset. With this format of dataset, the algorithm is executed
more efficiently.

The Prefix Span algorithm (Pei et al., 2001) is a pattern growth based al-
gorithm: When a pattern is considered by the algorithm, the dataset is
projected according to this pattern i.e. informally, the parts of the data-
set that are not supporting the pattern are removed, and the parts of the
dataset that does support the pattern are optimized. In the Prefix Span
algorithm, the dataset is recursively projected while patterns are enriched.

2.3.3 Data mining algorithms for Symbolic time sequences

This section presents some of the techniques developed to extract temporal
patterns from Symbolic time sequences.

As presented in section 2.2, a symbolic time sequence pattern can be a tem-
poral constraint system (TCS) or a temporal rule. A pattern a is said to
subsume a pattern b if all matching of b is also a matching of a i.e. a is more
general than b. Except for trivial cases, the number of temporal patterns
in a dataset is exponential with the number of events. Therefore, mining
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algorithms needs to focus on extracting the more ‘interesting’ patterns. De-
pending on the author and depending on the type of pattern, there are
several measures of the level of how interesting is a pattern.

A TCS (e.g. Chronicle, Episode, etc.) is usually considered to be inter-
esting if it is matched at least a minimum number of time. The number
of occurrences of a TCS is called the support (the support of a TCS is an
integer number). In addition, an interesting TCS a may need to be closed
(or minimal) i.e. a does not subsume any TCS b such that the support of b
is equal to the support of a.

The confidence of a rule is the percentage of occurrences of the rule’s body

which also matches the body and the head of the rule i.e. 2% ort(body) __
pport(head+body)

The support of a rule is the percentage of occurrences of the rule’s head

which also matches the body and the head of the rule i.e. supijg;“ ?fgi%ﬁgg -

The (temporal) precision (or accuracy) of a rule is a measure of freedom
of the rule’s head considering the body fixed e.g. inverse of the average
range of prediction. A rule is usually interesting if it holds a minimum
confidence, minimum support and minimum precision (maximum predic-
tion range). The large majority of the algorithms that learn symbolic time
sequence patterns need for the user to define arbitrarily the precision of the
generated rules.

Since rules are by nature more complex than TCSs (a rule is a TCS with
some extra information), some rule learning algorithms begin by extracting
TCSs, and then, they convert theses TCSs into rules. In this approach,
the learning of TCSs is the core problem, while the conversion into rule is
considered to be straight forward.

Notice that a good TCS (according to the previous definition) does not
necessary give a good rule. Symmetrically, some good rules may be shaped
from bad TCSs.

Example 2.3.1 Suppose a symbolic time sequence dataset containing four
types of events A, B, C' and D. 1000 events of type A and B randomly
located. 20 events of type C' randomly located. Also, suppose that for half of
the events of type C' located at time t, there is an event of type D at time
t—5.

A wery good rule (confidence 100%, support 50%, infinite precision) is ‘If
there is an event D at time t, then there is an event C' at time t +5°. The
TCS correlated with is rule is ‘There are an event C at time t and an event
D at time t +5°. This TCS has a low support (10) in comparison to any
TCSs based on A and B (support close to 1000).

This example shows a good rule correlated with a bad TCS. It proves that
mining TCSs in order to extract good rules is not an optimum (complete)
solution i.e. all good patterns are not guaranteed to be found.
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In the general case, rules that predict rare events (events with a relative low
number of occurrences) are not associated with good TCS. This is due to
the fact that a TCS is generally considered to be good if it occurs frequently.
By definition, TCSs associated with rules predicting rare event have a low
number of occurrences. Thus, techniques extracting TCSs to build rules are
bad at learning rules that predict rare events.

Several mining algorithms for symbolic time sequences have been inspired
from the Apriori algorithm. Such algorithms are said to be ‘apriori like
algorithms’ (see the definition of the Apriori algorithm in section 2.3.1).

2.3.4 Face algorithm

The Face algorithm has been developed by Dousson et al. (Dousson and
Duong, 1999) to extract Chronicles from symbolic time sequences. This
algorithm is inspired from the Apriori algorithm. Chronicles are particularly
interesting because they are more expressive than Episodes (which is the
commonly used pattern model). An Unconstrained Chronicle is a Chronicle
without order or time constraints (between the existing conditions). An
Unconstrained Chronicle is equivalent to a parallel episode. A k-Chronicle
is a chronicle with k existing condition (k symbols).

There is no meaning of search completely unconstrained pattern in a time
sequence. The author is not clear about time point. Therefore we have been
considering an extra condition of maximum size such as (Casas-Garriga,
2003) or (Mannila et al., 1997) in our implementation.

1. The algorithm begins by constructing 1-Chronicles.
2. Then, on every algorithm loop k (staring at k=1):

(a) The algorithm computes the unconstrained k+1-Chronicles from
the unconstrained k-Chronicles.

(b) Next, it gets rid of the non-frequent k+1-Chronicles i.e. Chron-
icles with low support.

(c) Then, it computes a k+1-Chronicle from the k-Chronicles and
each unconstrained k+1-Chronicles.

3. The looping process continues until there is no k+1-Chronicles.

The computing of the frequent unconstrained k+1-Chronicles from the un-
constrained k-Chronicles (step 2.a) is based on the apriori property i.e. an
unconstrained k+1-Chronicle is frequent is and only if all its sub chronicles
are frequent. Unconstrained chronicles don’t have any conditions; therefore,
the computation of the sub chronicles of an unconstrained chronicle is simple
to compute.
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The computation of the k+1-Chronicles from the k-Chronicles and the un-
constrained k+1-Chronicles (step 2.c) is different for the case k=1 and for
the other cases (k > 1). In the case of k=1, the condition A C R of a
2-Chronicle ¢’ based on an unconstrained 2-Chronicle ¢ is done such that:
(a) A is a non empty convex subset of R i.e. A := [t1,t2] (A convex subset
of Ris asubset suchas Ve <y<zeRxec ANze A=y e A). (c) The
support of ¢ if greater than the support of ¢’ times the parameter it,,;,. (d)
The surface of A (i.e. ta — t1) is minimized.

In the case of k > 1, the computation of a k+1-Chonicle ¢’ from a set of k-
Chronicles C' and an unconstrained k+1-Chonicle ¢’ (step 2.c) is done such
that: (a) The symbols of ¢’ are the same as the ones of ¢’. (b) The condition
A between two symbols s; and sy of ¢ is defined as A = \U; Bi where B is
the set of condition between the symbols s; and s in the k-Chronicles C'.

2.3.5 WinEpi algorithm

WinFEpi is a well known algorithm developed by Mannila et al. (Mannila
et al., 1997) to learn Episodes and association rules (based on the episodes).
Basically, WinEpi discretizes a symbolic time sequence into a transaction
dataset with a fixed length window (parameter of the algorithm), and apply
the Apriori algorithm.

The three parameters of the algorithm are the window size, the window
increment and the minimum support. Suppose a time sequence from T} to
T. (boundaries). The window is positioned at the beginning of the time
sequence. Then, the window’s position is incremented until it reaches the
end of the sequence. At every new increment, a new itemset is generated
such that it contains all the symbols that are present at least one time in
the window. The fig. 2.5 shows an example of window discretisation. Once
the itemsets are computed, WinEpi computes the frequent itemsets with
the apriori algorithm. Every frequent itemset is converted into a parallel

window increment

Windows I ]

window size

Figure 2.5: An example of WinEpi window discretisation.
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Episode with the extra condition that the distance between any two events
is bounded by the window size.

The process is similar for the research of serial episodes: The window dis-
cretisation produces completely ordered item lists instead of itemsets

The second part of the WinEpi algorithm computes association rules from
the extracted episodes.

One of the main drawbacks of this algorithm is that the user fixes arbitrarily
the temporal condition in the episodes. Therefore, the algorithm is not able
to extract episodes with other temporal condition.

2.3.6 MinEpi algorithm

The MinEpi algorithm is an improvement of the WinEpi algorithm proposed
by Mannila et al. (Mannila et al., 1997). MinEpi’s grammar is richer than the
one used by Winepi, and MinEpi does not need to go through the all dataset
several times. However, MinEpi is more space consuming than WinEpi.

MinEpi extracts episodes with a minimum number of minimal occurrences.
An interval [t1,to] is a minimal occurrences of an episode « if and only if
(a) v occurs in [t1,to], and if (b) a does not occurs in any subsets of [¢1, ta].
A minimal occurrence is an occurrence. Like WinEpi, MinEpi is an apriori
like algorithm. The algorithm is:

1. Extract 1-episodes.
2. Computes minimal occurrences for these 1-episodes.

3. Get rid of the 1-episodes without a minimum number of minimal oc-
currences.

4. Do

(a) Computes k+1-episodes from k-episodes.

(b) Minimums occurrences of k+1-episodes from minimal occurrences
of k-episodes.

(c) Get rid of the k-episodes without a minimum number of minimal
occurrences.

5. Until there is no more k-episodes.

The second part of the MinEpi computes association rules from the extracted
episodes. As presented in the Temporal patterns section, MinEpi rules are
defined as afwin;] = Blwing|, where o and (3 are episodes. The user needs
to fix the parameters win; and wing (win; and wing are the same of all the
rules).



28 Chapter 2. State of the art

Similarly to WinEpi, one of the main drawbacks of the MinEpi algorithm is
that the user fixes arbitrarily the temporal conditions of the episodes (win-
dow sizes parameters). This prevents the algorithm to learn any temporal
patterns with different temporal conditions than the one specified by the
user.

2.3.7 EpiBF algorithm

The EpiBF algorithm has been developed by Garriga (Casas-Garriga, 2003).
This algorithm is inspired from WinEpi and MinEpi. One of the main
differences between EpiBF and WinEpi/MinEpi is that, EpiBF uses local
constraints between couple of elements instead of having a global window
constraint between all the elements of an episode. A Garriga’s episode is
defined as a partially ordered collection of events such that, the maximum
distance between the two ordered events is bounded. This maximum dis-
tance is called ‘time unit separation’ and need to be fixed by the user.

This definition of episodes allows to compute more precise association rules
than WinEpi or MinEpi association rules. On the other hand, this kind of
episodes is more expensive to compute than WinEpi like episodes.

2.3.8 WinMiner algorithm

The WinMiner algorithm has been developed by Méger et al. (Méger and
Rigotti, 2004). WinMiner extracts rules (called FLM rules) based on serial
episodes (completely ordered episodes) with a maximum gap between all
events (same as Mannila’s definition (Mannila et al., 1997)), and a structural
constraint: The head of an FLM rule is always the single symbol such that
there are no other symbols with higher order. Suppose the serial episode
A — B — C. From this episode, the only FLM rule is A - B = C, where
A — B is the body and C' the head.

Unlike to WinEpi, WinMiner extracts FLM rules in a depth first search.
Like MinEpi, WinMiner computes occurrences of size k+1 from occurrences
of size k.

2.3.9 GenFCE and GenREAR algorithms

The GenFCE and GenREAR algorithms have been developed by Harms et
al. (Harms et al., 2001). GenFCE extracts closed episodes from symbolic
time sequences. GenREAR uses GenFCE to extract closed episodes and
uses them to build a set of representative association rules.

Definition 2.3.2 Suppose the mapping B that associate to a set of time
windows W (set of convex intervals), the set of episodes E such that every
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episode of E occurs in all windows of W. Suppose the mapping o that
associates to a the set of episodes E, the set of time windows W such that
for every time window w of W, every episode of E occurs at least one time
inw. A closed set of episodes is a set of episodes E such that f(a(F)) = E.

The cover of a rule r : X =Y, denoted by C(r), is the set of association
rules that can be generated from r i.e.

Cr)={XUU=VIU,VCY,UNV =0, and V # 0}

A set of representative association rules with a minimum support s and a
minimum confidence c is a set of rules R such that every rule v of R has a
confidence and support greater than ¢ and s, and there are no rules ' € C(r)
such that the confidence and support of ' are greater than ¢ and s.

GenFCE is based on the apriori algorithm. From the result of GenFCE,
GenREAR enumerates all association rules, beginning with the more com-
plex. A rule r is added to the set of representative association rules if r is
not covered by the already enumerated rules.

2.3.10 Frecpo

The Frecpo (frequent closed partial order) algorithm has been developed
by Pei et al. (Pei et al., 2006) to extract closed partial orders from sets of
symbolic time series. This algorithm cannot be applied directly on time
sequences. However, given a global or local window size, symbolic series can
be extracted from symbolic time sequences through discretization (Man-
nila et al., 1997; Casas-Garriga, 2003). Frecpo is reported to be efficient;
therefore it will be presented here.

The core of Frecpo is simple: First, Frecpo enumerates the transitive closure
of each symbolic series. For example, given the series S = (a,c,d,b). The
transitive closure of S is the set {ac, ad, ab, cd, cb, db}. Next, Frecpo considers
this set of transitive closure as an itemset, and searches for frequent closed
itemsets. Finally, each frequent closed itemsets (set of transitive closure)
are converted to partial order. For example, suppose the frequent closed
itemset S = {ab, bc,db}. The fig. 2.6 shows the partial order generated from

S.  The enumeration of the frequent itemsets is based on a depth-first
@
(b—(0)
@

Figure 2.6: Partial order generated from the transitive closure {ab, bc, db}
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search. This depth-first search is optimized by a pruning. This pruning is
based on several properties on transitive closures.

2.3.11 TNBN learning

Pablo Hernandez and his colleagues (Hernandez-Leal et al., 2011) are de-
veloping an algorithm to learn TNBNs. As detailed earlier in the chapter,
TNBNs are relatively limited to express temporal pattern with more than
two events, but the algorithm is an interesting solution to select the tem-
poral intervals (we call this problem the “interval selection problem”, and
we present and discuss it in chapter 4). We are only presenting here the
learning of intervals (we suppose the structure of the TNBN to be already
known).

Let nq and ny be two nodes of a TNBN, and v1_,9 be a vertex from nq to
ng. nq is associated with the event A, and ns is associated with the event
B. The current problem is to select the “good” intervals for the node ns.
A good interval is not necessarily an interval that implies a high confidence
or a high precision. Pablo Hernandez et al. are supposing that the distri-
bution P(t' —t|A occurs at t and B occurs at t') can be approximated by a
Gaussian mixture model. The Expected-Maximization (EM) algorithm (De-
mpster et al., 1977) is used to estimate the Gaussian mixture model. Next,
an interval [1—o, u+o] is added to the node for each Gaussian of the mixture
model, where p and o are respectively the mean and the standard deviation
of the Gaussian model. It is important to remark that this algorithm is
based on several relatively weak hypotheses on the dataset:

1. The good intervals can be found by the analysis of the shape of the
distribution.

2. The distribution is a Gaussian mixture model.

3. Given a Gaussian, the good interval is considered to be [y — o, 1 + o]
(and not [ — 0.50, u + 0.50] or [u — 20, i + 20] for example).

These hypotheses are discussed in the chapter 4.

2.3.12 Rules for rare events

Vilalta et al. (Vilalta and Ma, 2002) developed an algorithm that is especially
efficient at learning rules that explain rare events. The algorithm extracts
directly association rules without going through a step of generating TCSs.
As explained in example 2.3.1, a good rule is not necessary associated with
a good TCS, especially in the case of a rule predicting rare events.
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This algorithm is based on a window ‘fixed’” on the events to predict (called
target events). We define the targets to be the symbols of the events to
predict. The window size W is a user parameter.

First, the algorithm computes the frequent event-sets.

An event-set is a set of symbols. Following the definition of the author, an
event set {s;} occurs at time t if for all symbol s;, there is an occurrence
of an event of type s; in the interval [t — W,t] i.e. Vs € {s;} 3s;[t'] with
t'e [t — W, t].

A target event e;[t;] is supported by an event-set E is and only if E occurs
at time ¢;. Suppose a set of target events {e;[t;]} (the events that we try
to predict). The support of an event-set is the percentage of targets events
supported by this event-set. Given a minimum support minS € [0,1], a
frequent event-set is an event-set with a support greater or equal to minS.

Similarly to the apriori algorithm, this algorithm iteratively scans the data-
set to evaluate the support of events-sets, generate new events-set candidates
and prune them with the apriori property. The figure 2.7 shows an example
of dataset and event-sets.

Once the frequent event-sets S are computed, a rule is associated with each
of them i.e. for each {s;}, the rule {s;} — target is created. By convention,
the confidence of an item-set is the confidence of the rule associated with the
item-set. The confidence of each frequent event-set is computed. We define
the positive dataset to be the dataset that contains only the events e[t] of the
(original) dataset such that there is a target event in the interval [¢,t + W].
The confidence of an event-set is % where y is the number of occurrences
of the event-set in the dataset, and z is the number of occurrences of the

event-set in the positive dataset.

Finally, the remaining event-sets are partially ordered according to confid-

Event to predict a a a

Other events

d d d d
e e
Event-sets {b,c,d,e} 1d,e} {b,c}
N—_——
A windows

Figure 2.7: An example of dataset and event-sets for (Vilalta and Ma,
2002)
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ence and support. Next, a process selects iteratively a mazximal event-set s
from the ordered list of event-sets, stores s, removes s from the list, and re-
moves all the sub-sets of s contained in the list i.e. more general event-sets.
The algorithm stops when there are no more event-sets to select. The rules
associated with these item-sets are returned.

2.3.13 I-Apriori and I-PrefixSpan

Chen et al. (Chen et al., 2003) have adapted the two well known Apriori and
PrefixSpan algorithms to the case of Symbolic Time Sequences. The pattern
used by these algorithms is called the Time-Interval Sequential Patterns.

The main difference between the Apriori algorithm and the I-Apriori al-
gorithm is the generation of candidates. The generation of candidates of
size k = 2 is done with a direct enumeration of all possible candidates i.e.
L1 xT1I x Ly, where T is the set of possible time interval and L is the set
of frequent symbols. The generation of candidates of size k > 2 is optimized
with the Apriori property and the candidates of size k — 1. To optimise the
evaluation of the support of candidates, the candidates are stored in a hash
tree structure.

The main difference between the PrefixSpan algorithm and the I-PrefixSpan
algorithm is the projection of the dataset. In PrefixSpan, when a dataset
is projected according to a prefix, one tree is created. In the case of I-
PrefixSpan, because of the temporal aspect, several trees can be created.
Each of these trees needs to be computed to find the frequent cells (A cell
is a tuple of a time interval and a symbol).

2.4 Automated Planning and Scheduling

Automated Planning and Scheduling is the study of computer programs de-
signed to build strategies that lead to desired states. Some algorithms pro-
duce plans with several degrees of freedoms. Given a plan with several
degrees of freedom, a scheduling algorithm produces a plan without degree
of freedom.

Example 2.4.1 An example of plan with no degree of freedom is “Execute
action A1 at time 40”. An example of plan with one degree of freedom
is “Execute action A1 between times 20 and 30”. Example of a plan with
two degrees of freedom is “Execute action A1 between times 20 and 30, and
execute action A2 between 5 and 10 after A17.

Planning and scheduling programs are generally used by autonomous sys-
tems (robots, unmanned vehicle, etc.) and decision support systems.
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Non-temporal planning

Classical planning problems can be solved by forward chaining, backward
chaining, SAT reduction, model checking, heuristics, among other tech-
niques.

Strips (Fikes and Nilsson, 1971) is a simple algorithm that works with back-
ward chaining (or retrograde analysis). The underling idea of the backward
chaining is the following one: Strips begins by searing for the rules that can
produce the main goal (the main goal is one input of the algorithm). If these
rules are directly applicable, they are included in the plan. Otherwise, a set
of sub goals corresponding to the rules requirement to be applicable replace
the original goal. The operation is repeated until a valid plan is found.
This technique is called backward chaining because it achieved a research
starting by the conclusion (goal), and looking recursively for the required
pre-conditions.

GraphPlan (Blum and Furst, 1997) works with a straight forward chaining
to build a graph that represent all the possible reachable states.

SatPlan (Kautz et al., 2006) converts a planning problem into a SAT problem
(Boolean satisfiability problem), which is then solved with usual SAT solvers.

Probabilistic Planning and Scheduling is in concern with worlds with uncer-
tainty e.g. worlds with non-deterministic rules (Markov Decision Processes
(MDP)) and/or worlds with incomplete/probabilistic observation (Partially
Observable MDP).

Temporal planning

Temporal Planning and Scheduling extends classical planning with a tem-
poral aspect. The temporal aspect allows non zero-duration and overlapping
actions, and inaccurately located events.

Deviser (Vere, 1983) is a planning and scheduling algorithm that solves
goals such as “Make X true between t; and ¢y for at least duration n”.
The algorithm allows non-zero duration events. The algorithm needs a de-
terministic (non-probabilistic) description of the world (states and rules).
The planning stage of the algorithm produces a plan (represented as PERT
chart). A PERT chart is a graphical representation used in project manage-
ment that is equivalent to a Temporal Constraint System (see definition in
the Temporal learning related work). The plans of the first stage of Deviser
have several degrees of freedom. From such plans, the scheduling stage of
the algorithm produces a plan with zero degree of freedom i.e. a list of
nominal time of execution for every action of the plan. Deviser has been
applied experimentally in planning activities for the Voyager spacecraft in
its encounter with Uranus in 1986.
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The Temporal Constraint Satisfaction Problem (TCSP) is the problem of
determining if the time-samples of a given TCN can be assigned in such way
as to make all the constrains of the TCN valid. TCSP is a scheduling prob-
lem. It is also intractable in the general case (NP-hard problem). Solving
STP (TCN where constraints are restricted to be intervals) is a polynomial
problem.

Balaban et al. (Balaban and Rosen, 1999) define a sub-class of TCN for the
TCSP. This class defines the TCN that can be solved with a divide and
conquer strategy. The problem of checking this sub-class is called STCSP
(Structured Temporal Constraint Satisfaction Problem).

Algorithms such as DT-POP (Schwartz and Pollack, 2000) propose heuristic
based strategies to deal with this problem.

The world is generally considered to be partially uncertain. Algorithms
able to do planning with uncertainty have been proposed. STPU (Vidal
and Fargier, 1999) consider the Temporal Constraint Satisfaction Problem
where some nodes’ time-stamps are unknown and cannot be specified. In
the case of STPU, constraints are restricted to be non disjunctive.

2.5 Conclusion

This chapter presented and summarized common temporal patterns used
in machine learning, frequent-sets mining algorithms, temporal mining al-
gorithms, classical planning algorithm and temporal planning and schedul-
ing algorithms.

The next chapter presents some common notations, the mathematical ob-
jects used in the thesis and the temporal pattern we have developed to
express temporal relations and temporal plans.
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This chapter presents the various notations and mathematical objects used
in the thesis. Several of these notations and mathematical objects are
already widely used, sometime with various syntaxes and namings. This
chapter gives the terminology and notation used in this thesis. It also
presents notation for some new concepts such as a Tita rules and Tita plans.

3.1 Probability distributions

Definition 3.1.1 A probability distribution describes the probability of each
value (or interval of values) of a random variable.

35
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Four particular continuous probability distributions are widely used in this
thesis. They are presented in Fig. 3.1.

e The uniform distribution between two points a and b is noted U, p, (see
equation 3.1).

1
— f € la,b
Ugp:a— g b o '[a ] (3.1)
’ 0 otherwise
e The normal distribution is noted NW,Q (see equation 3.2).
1 _(@—w)?
N, o212+ e 202 (3.2)
oV 2

e The Dirac distribution is noted J,, (see equation 3.3).

o
%;m{*oo e =y

0 otherwise (3.3)
with /5u($) dr =1
R
e The histogram distribution is noted Hy,, 13,) (see equation 3.4).
1
H{ai}’{ﬁi} e T O‘iUﬁmﬁiﬂ(x) (3.4)
Qi j=1,-
i=1,n

Suppose a probability distribution of a continuous variable f : R — R*. By
convention, the probability distribution f’:= f+x with x € R is defined as
f' it~ f(t —x). This operation can be interpreted as a translation of the
distribution.

Definition 3.1.2 The range of a probability distribution d is defined as

/*Oo( 1 dfd(z) > 0)
o0 0 otherwise

non null part’ of the distribution. The range of the uniform distribution Uy,
is b—a. The range of the normal distribution N,, ;2 is 0o. The range of the

Dirac distribution 9, is 0.

dx. This can be understood as the ‘surface of the

3.2 Boolean function

Definition 3.2.1 A Boolean function is a function R — {0,1}. In this
work, Boolean functions are used to represent sub-sets of R: A Boolean
function b represents the set {x|b(x) =1}. We chose to represent sub-sets
of R by functions because it implies a simpler writing of the equations in this
work.
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Figure 3.1: Four particular continuous probability distributions
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Definition 3.2.2 A Boolean interval function is a particular case of Boolean

function where the property 3.5 holds.

Ve,y,z (f(z) =1 and f(z) =1l andx <y <z)= f(y) =1

We define the Boolean interval function B,y as:

Ba,bzmrﬁ{

1 ifz€la,b

0 otherwise

(3.5)

(3.6)

Property 3.2.3 Every Boolean function can be expressed as a (possibly in-
finite) sum of Boolean interval functions.

Suppose a Boolean function b. By convention, the Boolean function —b is

defined as (—b) : x — b(—z).
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3.3 Convolution

Definition 3.3.1 A convolution is a mathematical operation on two func-
tions, producing a third function. The convolution of f and g is written fxg
and is defined as follow:

+oo
u»w@w=/ f(x — Dyg(t)dt (3.7)

—0o0

We present several properties of the convolution. These properties enable
important speed ups for implementing the convolution.

e The convolution of two normal distributions is a normal distribution
(Eq. 3.8).

NH’UQ * Nul7o./2 == N/‘+N/70'2+0/2 (38)
e The convolution of any function f by a Dirac distribution ¢,, (Eq. 3.9).
[ b=z fa—p) (3.9)

e The convolution of a two Boolean interval functions is defined in
Eq. 3.10. Fig 3.2 illustrates this equation.

r—a—c ifrelatcatc+s]

s ifrela+c+s,a+c+ S
(Bos * Bea) &) = e |

at+c+S+s—z fxelatc+Sat+c+S+s]

0 otherwise

with s = min(b — a,d — ¢)
S =max(b—a,d —¢)
(3.10)

e Based on the convolution Boolean interval function and the prop-
erty 3.2.3, the convolution of a two Boolean functions is defined in
Eq. 3.11. The result is a piecewise continuous linear function that can
be computed and stored efficiently.

Frg=>Y fixg;
i J

with {f;} and {g;} the decomposition of f and g into (3.11)
Boolean interval functions '

e, () =Y filw) and g(a) = 3 gi(a)

)
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atc S S-s S

Figure 3.2: Convolution of two Boolean interval functions B,; and B, 4.
Refer to Eq. 3.10 for notation.

e From Eq. 3.11, the convolution of a histogram distribution and a
Boolean function is defined in Eq. 3.12. The result is also a piece-
wise linear function that can be computed and stored efficiently.

afZ*IB%Bﬂ 1
H= —JJ T RGP+
I Zak;; B -

with {f;} the decomposmon of a Boolean function f

(3.12)
and a histogram distribution Hy,,) (5,1

Convolution between Boolean functions is equivalent to Dechter’s compos-
ition ® operator (Dechter et al., 1991). Convolution between a Boolean
function and a probability distribution extends the Dechter’s composition
operator to probabilistic time distribution.

3.4 Temporal events and temporal states

Definition 3.4.1 A (temporal) event e is a symbol (called type and noted
symbol, ) and a time of occurrence (time.). The writing convention is e :=
symbol, [time,].

Example 3.4.2 Suppose e := A[7.5] to be an event. Literally e means that
an event of symbol A occurs at time 7.5.

Given a set of temporal events, we say that “an event of type A occurs at
time t” if the set of events contains the event A [t].

Definition 3.4.3 A (temporal) fuzzy event is an uncertain temporal event
and an imprecise temporal location. It is defined by a symbol (called type
and noted symbol, ), a confidence (conf.) and a temporal distribution (dist. ).
The writing convention is e := symbol, [conf,, diste].
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A temporal event is a particular case of temporal fuzzy event with a con-
fidence equal to one and a Dirac distribution as time distribution. Fuzzy
events are particularly useful to represent imprecise and uncertain temporal
predictions.

Example 3.4.4 Suppose e := A[50%,Us 10] to be a fuzzy event. Literally
e means that an event of symbol A occurs with 50% chance between times 5
and 10.

Definition 3.4.5 A state s is a Boolean function R — {0,1} that maps a
value for every time location (i.e. real number). If s(t) =1, s is said to be
true at time t. Otherwise, s is said to be false at time t.

Definition 3.4.6 A fuzzy state s is a function R — [0,1] that maps a
probability for every time location. If s is said to be true at time t with a
probability of s(t). Fuzzy state is an (potentially) uncertain state.

3.5 Temporal Interval Tree Association Rules

3.5.1 Definition

A Temporal Interval Tree Association Rule (Tita rule) is a temporal pattern
with the semantic of a rule i.e. a condition and a head. Several graphical
examples of rules are given in fig. 3.3.

Like Chronicles (see definition in section 2.2), Tita rules can express the
usual time point relation ‘before/after’, order and chaining, with different
level of flexibility. Tita rules can also express Negation such as e.g. ‘there
are not occurrences of events of type A during a given interval’ or ‘there are
no chains of ‘A’s followed by B followed by C’.

Definition 3.5.1 A type 1 condition ¢ is a symbol (symbol,) and a set of
type 2 conditions (conds. ). The writing convention is ¢ := (symbol,, conds.).

Given a set of events F, a type 1 condition c is true at time ¢ if:

- E contains an event e of symbol symbol, and time ¢ i.e. symbol, =
symbol, and time, = ¢.

- All type 2 conditions ¢ € conds. are true at time ¢ (see definition
below).

Definition 3.5.2 A type 2 condition ¢ is either:
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- The negation of a type 2 condition co (written ¢ := notcy). Here, ¢ is
true at time t if and only if co is false at time t.

- A condition over a state s (written ¢ := s). Here, c is true at time t
if and only if s is true at time t i.e. s(t) = 1.

- An association between a Boolean function m and a type 1 condition
c3 (written ¢ := [m,c3]). Here, ¢ is true at time t if and only if 3t
with m(t' —t) = 1 and c3 is true at time t'.

Definition 3.5.3 A Temporal Interval Tree Association Rule (Tita) r is
a symbol (symbol, ), a confidence (conf,), a non null temporal distribu-
tion (dist,) and a type 1 condition (cond, ). dist,(t —t') is the probability
density of having an event of symbol symbol,. at time t while the condi-
tion cond, being true at time t'. The writing convention is r := cond, =
head, (conf,, dist,).

When the condition cond, of a Tita rule r is true at time ¢ (also written
as cond,(t)), r is said to predict an event of symbol head, with a probab-
ility of conf, and with a temporal distribution of ¢ + dist,. An event e of
symbol symbol, = head, is said to verify such prediction if the density of
the prediction is not equal to zero at time time, i.e. f’(time.) > 0 with
f! =t + dist,.

Definition 3.5.4 Suppose a rule r, a set of events E of type head, and
P C FE to be the set of events predicted by the rule r. The support of the

rule v (suppZ or supp,.) according to the set of events E is the ratio of events
card(P)
card(E) "

e € I predicted by r i.e. supp, =

By convention the standard deviation std, of a rule r is the standard devi-
ation of its temporal distribution dist,.. Rules with low standard deviation
are generally more interesting than rules with high standard deviation be-
cause there are more “temporally accurate”.

By convention the prediction range (written range,.) of a rule r is the range
of its temporal distribution dist, (see definition 3.1.2).

The standard deviation and the prediction range of a rule are two measures
of the “temporal accuracy” of a rule. Depending on the application of the
rules, one measure can be more interesting to use than the other. The
precision of a rule r is defined as ranl o

Several particular cases of Tita rules are used in the thesis.

Definition 3.5.5 A unit Tita rule is a Tita rule with the pattern (_,0) =
_{_, ) with _ the unbound term i.e. a unit rule is a direct correlation between
two events. Unit Tita rule expresses direct correlation such as an event A
at time t implies an event B between t + 5 and t + 10.
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Definition 3.5.6 A trivial unit Tita rule is a unit rule with the pattern
(z,0) = y(100%, U_co 400). This type of rule is called trivial because as
soon as there is at least one occurrence of x and one occurrence of y, this
rule’s confidence and support are 100%.

Definition 3.5.7 A positive Tita rule is a Tita rule with no negations.
Positive Tita rules have strong properties useful for optimizing planning and
predictions (see chapter 5).

Definition 3.5.8 A linear Tita rule is a Tita rule where type 1 conditions
have at most one type 2 conditions. Linear Tita rules express chains of
conditions.

Definition 3.5.9 A forward Tita rule is a Tita rule where the temporal
distribution function is null for values below 0 i.e. Y < 0 = dist,(x) = 0,
and all Boolean functions are null for values over 0. Forward Tita rules
produces predictions in the future i.e. the conditions of a forward Tita rule
are allays anterior to its head. The forward Tita rules are useful for on-line
predictions.

3.5.2 Examples

We are now presenting four examples of Tita rules in order to illustrate
their power of expression. We specify a graphical representation to help
the understanding of the rules’ structure. Graphical representations of next
example rules are given in fig. 3.3.

Example 3.5.10 This example shows a unit rule. Suppose the rule ri :=
(A,0) = B(95%,Ui0,15). Literally, r1 expresses that if an event of type A
occurs at time t, then, an event of type B will occur between t + 10 and
t + 15 with 95% chance. This rule expresses a simple and direct correlation
between two events.

T = A»B 95%
Uio,15
ro = A—>B 95%
not s+ [[j10715
[—10,0] C—>D 100%

r _______ >

N G (N0 + Ui

S+
_ [~5,5] A—>C 95%

T4 = B=—-— >not + U115

Figure 3.3: Graphical representation of Tita rules
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Example 3.5.11 This example shows a rule with a state negation. Suppose
the rule ro := (A,{nots}) = B (95%,U10,15). Literally, ro expresses that
if an event of type A occurs at time t and the state s is not true at time
t, then, an event of type B will occur between t + 10 and t + 15 with 95%
chance.

Example 3.5.12 This example shows a rule with a chain of conditions.
Suppose the rule rs := (C,{[B_10,0, (B, {s, [B_10,0, { (4, 0)}| N]}) = D (100%, U10,15)
. Literally, rs expresses that if an event of type C occurs at time t. followed

by an event of type B at time t, (with a mazimum interval of 10 seconds

i.e. ty — 10 < t. < tp —0) followed by an event of type A at time t, (with a
mazimum interval of 10 seconds i.e. to — 10 <t <t, —0) and s is true at

time tp, then, an event of type D will occur between t, + 10 and t, + 15 with

100% chance.

Example 3.5.13 This example shows a rule with a negation of the oc-
currence of an event. Suppose the rule r4 = (A, {not [B_55,(B,0)]}) =
C (95%,U10,15). Literally, r4 expresses that if an event of type A occurs at
time t and no events of type B occur between t — 5 and t 4+ 5 i.e. there are
no events of type B around the event of type A, then, an event of type C
will occur between t + 10 and t + 15 with 95% chance.

3.6 Information gain

The entropy is a measure of disorder or unpredictability. In the information
theory, the entropy measures the uncertainty of a random variable. The
entropy Hx of a Boolean random variable X is Hx = h(p) = —plogs(p) —
(1 — p)logy(1 — p) with p the probability of X to be true. Such entropy
function is called the binary entropy function. Fig. 3.4 displays this function.

In the information theory, the information gain of a piece of information is
a measure of entropy change while taking into account, or not taking into
account this piece of information.

Suppose a Tita rule r. Following this convention, the entropy of r is h(conf,).
Suppose the rule r to be enriched (addition of condition) to become a new
rule r’. Suppose the followings variables:

e a is the number of (correct or incorrect) predictions of r also predicted
by r’.

e as is the number of correct predictions of r also predicted by /.
e —sa is the number of incorrect predictions of r also predicted by 7.

e —as is the number of correct predictions of r not predicted by r’.
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1.0

N
N\

0.0 . /

Figure 3.4: The Binary entropy function.

e —s—a is the number of incorrect predictions of r not predicted by r’.

The eq. 3.13 shows the information gain of the enrichment from r to r’.

HG(r ~ 1) = h(conf,) — SUPbr/ (—g log @ log —_‘S&)
supp, = @ s a a
SUpp,s,, —aS . —as  —Jsoa . Sa (3.13)
(1 - PPy D05, 205 D50,
supp,. —a -s —a —a

3.7 Graph coloring

Definition 3.7.1 A graph is a mathematical object defined as a set of ver-
tices V' (or points) and a set of edges E (directed or undirected links between
two points). A cycle is closed path of edges. An undirected graph is connec-
ted if and only if any two vertices are connected by a path (in the case of a
directed graph, this path should follow edges’ directions). An undirected tree
is an undirected connected graph without cycles. A directed tree is a directed
acyclic graph in which there exists a single source vertex (called trunk) that
has a unique path to every other vertex. A leaf is a vertex v without children
i.e. without any edges from v to any other verter. A forest is a disjoint
union of trees.

The graph (vertex) coloring problem consists to assign a color to every vertex
of an undirected graph such that no connect vertices share the same color.
The goal is to use the smallest number of different color.

More formally, given an undirected graph (V, E') where V is the set of vertices
and E the set of edges. The graph (vertex) coloring problem consists to find
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the mapping ¢ : V' — {1,...,n} such that any two connected vertices v
and v’ (two vertices connected any an edge) do not share the same color
(c(v) # ¢(v') with n as small as possible. The smallest n is called the
chromatic number. Fig. 3.5 shows an example of graph coloring.

The problem is NP-complete. Several polynomial heuristic exits to approx-
imate this problem. I will use the DSAT heuristic (Brélaz, 1979) in this
thesis.

3.8 Tita plan

In the automatic planning and scheduling domain, a plan is generally un-
derstood as a set of actions leading to a goal. As an example, ‘sleeping’ is a
simple plan for the goal of ‘not to be tired’. A plan has to be applied on a
world (or a system). A world is a generic term referring to an initial state
and a description of behavior. From the point of view of a person considered
as a system, the rule ‘if it is night and I sleep, then I will not be tired’ is
valid. The plan of ‘sleeping’ is a solution to the goal of ‘not to be tired’
based on the rule ‘if it is night and I sleep, then I will not be tired’.

A Tita plan is a plan based on the Tita rules’ semantic. In the chapter 5,
a Tita plan is generated from a Tita rule and a set of observations (set of
events). We define the notion of Tita plan and give some examples.

General planning considers two types of events: The events that can be
triggered directly (and observed), and the events that can only be observed.
Base on the same concept, we define the doable symbols to be the set of types
of events that can be triggered and observed, and the exogenous symbol to
be the set of types of events that can only be observed. As an additional
constraint, every doable symbol is associated to a Boolean function describ-
ing when it is doable. In the case of on-line planning, this constraint is a
way to specify that it is not possible to trigger actions in the past.

Definition 3.8.1 A Tita plan is a directed forest (disjoint union of tree

Figure 3.5: Exemple of graph coloring. Minimum number of color such
that two connected vertices have different colors.
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graphs) expressing a set of constraints over temporal events. Edges are ori-
ented from the head to the leaves. FEvery vertex v is labelled with a tuple
containing a symbol (symbol,), a Boolean function (Acst,) and a set of
state symbols (states). The Boolean function of a vertex is called the ab-
solute constraint. Fvery edge e is labelled with a Boolean function noted
Reste, and a label ‘positive’ or ‘negative’. The Boolean function of an edge
is called the relative constraint.

The plan semantic is given as follow. A plan is said valid if all its vertices
are valid. A vertex v is said valid at time ¢ if:

e All the states of the set of states states, are true at time ¢.

e If the vertex symbol is doable, then the vertex symbol is doable at
time ¢

e If the vertex symbol is exogenous, then an event of symbol equal to
the vertex symbol occurs at time ¢

e The absolute constraint of the vertex is true a time ¢ i.e. Acst,(t) = 1.

e For all edges e,_,, from v to v':
If e is positive, there is at least one ' with v’ validated at time ¢’ and
Reste(t' —t) =1

If e is negative, there is no ¢’ with v’ validated at time ¢’ and Reste (¢’ —
t)=1.

A positive Tita plan is a Tita plan without negative edges. A plan can
achieve its objective at any time ¢ such that the tree’s trunk is valid at time
t. The Fig. 3.6 shows an example of Tita plan.

Definition 3.8.2 Given a wvalid Tita plan, an instance of Tita plan is a
set of (temporal) events that makes all doable vertices (vertices with doable
symbol) of the Tita plan valid. An instance of Tita plan can be viewed as a
plan without degree of freedom.

3.9 Meta Tita plan

The core of planning techniques found in the literature, such as the event
calculus, is to combine pieces of knowledge to build a plan. For the large
majority of these techniques, the knowledge is expressed as association rules.

The following example illustrates the use of two association rules to build a
plan:

Suppose the two following rules:
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b
[30,40] [70,80]

[0,100]

Figure 3.6: Example of Tita plan. The grey vertices are vertices with
doable symbols. The symbols e and b are doable in the interval [0, 100]. ¢
and d are exogenous. c is observed at times 40 and 80. d is observed at times
30 and 70. An instance of this plan is valid if it contains an event of type
b during [30,40] or [70,80], if it contains an event of type e during [0, 100],
and if the relative contains are verified. {b[32],e[10]} is a valid instance of
this Tita plan.

rule 1 : If it is night and I sleep, then I will not be tired.

rule 2 : If I am not tired, then I will pass my exams.

Suppose that my goal is to ‘pass my exams’. From rule 2, I know that I need
to ‘not to be tired’. But, since I cannot just choose to ‘not to be tired’, I
need to find a way to ‘not to be tired’. From the rule 1, I know that if I sleep
at night, I will ‘not to be tired’. To sum-up, the two rules are combined to
find a plan for the goal of ‘pass the exams’: The plan is to ‘sleep at night’.
This causes ‘not to be tired’ which will cause ‘pass the exams’.

Different rules can have very different temporal precisions. It is not always
possible to combine several temporal rules into a simple list of actions to
perform (a Titar plan), and expect to have a high confidence plan, even if
the rules that describe the world have high confidence. The example 3.9.1
illustrates this problem.

Example 3.9.1 Suppose two Tita rules:

r1 :=(A,0) = B (100%, Uo,100)
72 :=(C,{[B-10,-5,0]}) = D (100%, U10,15)

Suppose the objective to be the symbol D. Suppose A and C being the only
doable symbols. A plan would be to ‘fire’ A. (that will cause B) and finally
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fire C. But 1 generates B with low (temporal) precision (range of 100), and
ro need a mazximum precision range of & to reach a mazrimum confidence.
Therefore, even with two rules having 100% confidence, this plan has a 5%(=
%) confidence to success. The fig. 3.7 is a graphical representation of this

example.

Therefore, we do not combine several Tita rules to make a single Tita plan
(which is possible), but we combine several Tita plans to make a Meta Tita
plan (i.e. a plan of plans). With the same rules as the previous example, a
Meta-plan is: Fire A, wait for B to occur, and then fire C. This Meta-plan has
100% confidence. Meta Tita plans can express the notion of ‘intermediate
objectives to wait for’ and the disjunction of solution for an objective (or
intermediate objectives).

Definition 3.9.2 A Meta Tita plan is a directed tree graph expressing a
set of constraints over Tita plans. The edge are allays oriented from the
head to the leaves. There are two types of vertices: ‘solution vertices’ and
‘problem wvertices’. A solution vertex is only connected to problem vertices.
A problem vertex is only connected to solution vertices. The trunk of the
graph is a problem verter.

Every solution vertex v is labelled with a Tita plan (written subPlan, ). Every
problem vertex v' is labelled with a leaf of the plan of v (written subLeaf’))
such that there is an edge e from v to v', with a Boolean function called
absolute constraint and a symbol. The leaf of a plan connected to a problem
vertex of a Meta-plan is called a ‘caused’ vertez.

Example 3.9.3 Suppose a ‘caused’ vertex v of a Tita plan p associated to
a problem vertex v' of a Meta Tita plan rp. The ‘caused’ verter v is a sub-
objective of the plan p which is solved by the plans associated to children of

/

v'. The fig 3.8 represents this example.

b c d
rule 2 <_S__> | _’:l
l—l _____ v
a b
rule 1 | —— [ 5% : AN ]
= ————— >
100

Figure 3.7: Example showing that the combination of high confidence
rules doesn’t always give high confidence plan. The two rules are the ones
presented in example 3.9.1. Since the rule r; has low temporal precision,
the time of execution of C' cannot be a priori estimated. The maximum

confidence of this plan is 5%(= 125)-
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Figure 3.8: Representation of the example 3.9.3

The Fig. 3.9 shows an example of Meta Tita plan.
We define several types of particulars Meta Tita plans.

Definition 3.9.4 A Positive Meta Tita plans is a Meta Tita plans that
contains only positive Tita plans.

Definition 3.9.5 A Weak linear Meta Tita plans is a Meta Tita plans such
that every plan contains at most one caused vertex. Weak linear Meta Tita
plans are a sub class of Meta Tita plans with nice properties for computa-
tional issues.

Definition 3.9.6 A Strong linear Meta Tita plans is a Meta Tita plans
with one leaf i.e. it is a path graph. A Strong linear Meta Tita plans is
also a weak linear Meta-plan. FEvery weak linear Meta Tita plan can be
decomposed (or unfolded) into a finite set of strong linear Meta Tita plan
(see chapter 5 for more details).

3.10 Conclusion

This chapter presents some common notations, the mathematical objects
used in the thesis and the temporal patterns we have developed to repres-
ent temporal relations and temporal plans. The next chapter introduces a
data mining algorithm able to extract such temporal pattern from temporal
datasets.
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a
[80,100]

[0,100]

~ - - -

[5,105]

Figure 3.9: Example of Meta Tita plan. The main objective is A. The grey
vertices are vertices with doable symbols. The black vertices are ‘caused’
vertices. Dashed arrows represent the labels of the edges. This Meta-plan
is not (weak or strong) linear.
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This chapter presents the algorithm for learning Tita rules (see definition
in section 3.5). This algorithm named ‘Titar]’ (for Temporal Interval Tree
Association Rules Learner) is partially inspired by the apriori algorithm (see
definition in section 2.3.1) and the ID3 algorithm (Quinlan, 1986).

As discussed in the related work chapter, most of the techniques that learn
temporal rules begin by the learning temporal constraint systems (TCS),
and then, they ‘convert’ these constraint systems into temporal rules. This
is generally done by labeling a part of a constraint system to be the body
of the rule, and labeling the remaining part to be the head of the rule. The
example 2.3.1 shows that a good TCS is not guaranteed to give a good rule.

o1
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Because of this fact, we design our algorithm to directly learn temporal rules
without going through a generation of constraint systems.

The core of a constraint system (or of a temporal rule) is the temporal
constraints between the events. As discussed in the related work chapter,
for the large majority of temporal patterns, a condition can be expressed
as a subset of R (see section 2.2). This class of constraint systems is called
temporal constraint network. We call the learning of such conditions the
‘temporal interval selection problem’ (see section 4.5.2).

Different algorithms allow different degrees of freedom on the conditions
and different solutions for this problem (learning of the temporal interval).
Most of the techniques found in the literature ask for the user to specify this
temporal constraint (as an input parameter). In addition, this constraint
often needs to be a convex subset of R that contains 0.

We believe (and this is shown by experimentation) that a good algorithm
that learns constraint systems cannot use a fixed temporal constraint for
two reasons:

First, because giving the constraint intervals as a user input implies that
all the temporal constraint are the same. Therefore, fixing the temporal
constraint is equivalent to cutting the vast majority of the research space (all
the temporal intervals of a constraint system should be the same). Except
for specific datasets, there is no reason to believe that the hidden relations
of the dataset validate this constrain.

Secondly, because a family of rules whose only differences are the temporal
constraints can contains several ‘good’ elements, and it is not possible to
chose ‘the best’ temporal constraint or ‘the best’ rule. Therefore, there is no
reason to fix the temporal constraint to be unique. In fact, we often observe
such families of good rules with a “trade off” of confidence, support and
temporal precision between The figure 4.1 presents a situation where there
are several possible good intervals for such a family of rule.

From these ideas, we choose to develop a technique that does not require
for the temporal constraints to be fixed by the user. Considering this point,
the main problem is that when the temporal constraints are not fixed, it is
not possible to enumerate all the good intervals (and all the good rules) as
it is done in some data mining algorithms. In order to be tractable, we had
to choose criteria to limit the number of enumerated temporal constraints.
And because of the substantial difference between the temporal constraint
of the head of a rule and the temporal constraints of the body of a rule, we
must use two different criteria.

The underling idea of the algorithm is the following: Titarl begins by com-
puting the set of trivial unit rules. These rules are decorrelated, refined and
stored in R. Next, until a stopping criterion is met (maximum number of
rules, maximum duration of learning, etc.) the algorithm picks a rule r in
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P(t' — t|A[t] and B[] and ¢’ — ¢ € [0,10])

j

0 o5 A 10
Lo | i
JA i

Figure 4.1: We suppose a dataset where the distribution of the probability
P(t' — t|A[t] and B[t'] and ¢ —t € [0,10]) is given. The problem is to find
a good interval for a TCS between events A and B in the rule A — B.
I, Iy and I3 are three possible good intervals with a “trade off” between
confidence, support and temporal precision: The support and the confidence
from the interval I3 is the highest. The range from the interval I; is the
better. The ratio between confidence and range or support and range is the
highest for the interval I5.

the set R, it adds a condition to r, decorrelates it, refines it, and it adds
the result back to the set R (the result can be several rules). The figure 4.2
shows the global architecture of the Titarl algorithm.

The creation of trivial unit rule is a simple step described in the next section.
The improvement of a rule is based on three different operations (Addition
of condition, division (or decorrelation) and refinement). These three oper-
ations are also described in the next section.

Given a rule, the number of different parameters for the improvements (Ad-
dition of condition, division and refinement) is generally infinite. Therefore,
for each of these three operations, we associate an improvement policy. These
policies are described and justified in the section 4.2.

The section 4.3 gives the listing of the algorithm. The section 4.4 presents
a step by step detailed run of the algorithm. The section 4.5 presents a
comparison between our algorithm and other related algorithms. This last
section discusses the different approaches to the temporal interval section
problem.
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Creation of trivial unit rules

{

Decorrelation

{

\l

Until stopping criterion is met

/ Refinement

' Selection of a rule and
Addition of condition

Decorrelation
Output i.e. Division of rule

Figure 4.2: Schema of the Titarl algorithm.

Refinement

4.1 The four operations

4.1.1 Creation of trivial unit rules

Given two symbols A and B, a trivial unit rules is (4, 0) = B (100%, U_o 400)-
The confidence and the support of a trivial unit rule is 100%. The (temporal)

precision of a trivial unit rule is 0 = é Given n symbols, n? trivial unit
rules can be generated.

4.1.2 Addition of a condition to a rule

Given a rule r, ¢; a type 1 condition of r and co a type 2 condition. The
addition of a condition ¢y to a rule r at the location ¢ gives a rule 7/
such that ' is the rule r with the condition ¢; replaced by the condition
(symbol, , conds,, U{cz}). Notice that (symbol, ,conds., U{c}) is a type
1 condition.

Property 4.1.1 All events predicted by the rule v’ are also predicted by r.
Therefore, supp,, < supp,.
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Fig. 4.3 shows an example of addition of condition.

4.1.3 Division of a rule
The division of a rule consists in the splitting a rule into a set of rules.

Definition 4.1.2 A division function d is a function d : R — N with a
mazximum i.e. In Vr d(z) < n.

Given a rule r := cond, = head, (conf,,dist,) with a probability distribu-
tion dist,. The division of r according to the division function d produces a
set of rules {r;} with:
cond,, = cond, (4.1)
head,, = head,

dist,. (z) dist,(z) ifd(z) =1 (4.3)
ist,. () = )
‘ 0 otherwise

Property 4.1.3 Suppose a rule r divided into the rules {r1,...,mn,}. The
followings equations hold:

Vi supp,, < supp, (4.4)
Vi conf,; < conf, (4.5)

Vi std,, < std, (4.6)
Zconfn > conf, (4.7)

)

Fig. 4.4 shows an example of division of rule.

4.1.4 Refinement to a rule

We suppose two types of rule refinement: The refinement of a rule’s head
and the refinement of a rule’s body. The refinement of a rule’s head consists
in changing the temporal distribution of the head of a rule. The refinement
of a rule’s body consists in changing the temporal condition of a rule.

The figure 4.5 shows two examples of rule refinements.

r5 = A—>B 95%
10,15

— A—>B 95%
"6 cl=10.9 4 Ui0,15

Figure 4.3: Addition of the condition [T_1¢0, (C,0)] to the rule r5 :=
(A, ®> = B<95%,U10,15> . The result is rg := <A,{[T,10,0,<C, ®>]}> =
B (95%,U10,15)-
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T = A—>B
Us,15

7‘8 = A»B
Us,10
Ui0,15

Figure 4.4: division of r7 into {rg, 79} with the division function

A —>B 95% B A —>B 95%
C [_7_3(1’_0_}__,4— Uio,15 ‘\) C [__19,_0_]__>+ Ui2,13
(a) Head refinement
_ C—=D 95% C—>D 95%
B[___];QLQ]_>+ U10715 ‘\) B[_t_g_’____?lL U10715
AZ10,0] 1 AZ10,0]

(b) Body refinement

Figure 4.5: Two examples of rule refinements

4.2 Improvement policies

This subsection presents the three improvement policies used in the al-
gorithm. Each of these policies takes as input a rule (or a set of rules),
and gives in return a parameter for the corresponding operation. For ex-
ample, given a rule r, the policy for the division of rule returns the ‘best’
division function for r.

4.2.1 Policy for the Addition of condition

Given a set of rules R, this policy selects (a) a rule » € R, (b) a location
in 7 and (c) a condition to add to r in order to improve it (see definition
of adding of condition in section 4.1.2). The value of improvement is given
by the information gain of the addition of a condition (see definition of
information gain in section 3.6). A given percentage of the time (fixed at
90% in the experiments), the process selects the rule and the condition to
add in order to maximize the information gain. The other ten percent of the
time, the process selects a random rule and a random condition. In this last
case, the probability of a rule and a condition to be chosen is non-uniform
and depends on the number of conditions of the rule. This policy helps
preventing the algorithm from falling into a local minimum. The selection
of the highest information gain is inspired from the ID3 algorithm used to
generate decision trees (Quinlan, 1986). In this context, the information
gain of the adding of a condition to a rule measures how much confidence is
gained and how low the support becomes.
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In the case of a condition over a state, the algorithm find of the best con-
dition to add i.e. the condition with the higher information gain, with a
simple enumeration of all the possible conditions.

In the case of condition over the occurrence of temporal events, the algorithm
need to select the temporal constraint (defined as a subset of R i.e. a Boolean
function) associated with the condition. However, since the number of pos-
sible temporal constraint is infinite, the algorithm cannot enumerate and
test of all of them.

Our solution to this problem is to perform a “kind of gradient descent” to
compute the Boolean function m of the condition:

1. We compute the family of Boolean function {b;},,, based on the
histogramBounds parameter (histogramBounds is a list of n+1 ordered
real numbers). Fig. 4.10 shows several examples of histogram bounds.
The following equation defines {b;}.

bilt) = 1 if ¢t € [histogramBounds;, histogramBounds; 1]
“7 10 otherwise

2. The Boolean function m is defined as the sum of a subset of elements
of {b;j} i.e. m =3, i, _4bi where X = (x1,22,...,7,) is a Boolean
vector. The number of candidates for m (or for X) is 2" —1. Therefore,
all the candidates cannot be explored (In our experiments, n is gener-
ally defined between 10 to 50). The selection of the best candidate is
done with a gradient descent on the vector X. The gradient descent
tries to maximize the information gain.

In the case of a positive condition, the gradient descent iterates on
the addition of elements of {b;} to m. m is considered empty are the
beginning i.e. X = (0,0,...,0) at the beginning.

In the case of a negative condition, the gradient descent iterates on the
suppression of elements of {b;} to m. m is considered to be m =}, b;
at the beginning i.e. X = (1,1,...,1) at the beginning. The fig. 4.6
illustrates the gradient descent in the case of positive and negative
conditions.

Experiment shows that in small datasets (datasets with a small number
of events), the restriction for m to be a Boolean interval function is
a good solution to limit over training of rules. With this restriction,
the number of candidates for m is n(n;l). In this case, the selection of
the best candidate (the candidate with the highest information gain)
can be done with an enumeration of all the candidates (instead of a
Gradient descent on entropy).
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((oi+62 ) (o103 ) o (Cbr+on ] (o201 ) [ 62403 ] . [ b2+bn |

Y

[ﬁﬁ] bl+b2+b4| ...

(a) Tree of all possible iterations for the construction of a Positive
condition. During the construction of a condition, only one path
is explored.

bl+b2+bn

B=bl+b2+...+bn

(Bb162]) (B-b1-b3) .. (B-b1-bn ) (B-b2-b1 ) (B-b2-b3 ) .. (B-b2-bn

D

(B-b1-62-63) (B-b1-b2-b4] ... [B-b1-b2-bn)

(b) Tree of all possible iterations for the construction of a Negative
condition

Figure 4.6: Ilustration of the gradient descent of the policy for the addition
of positive and negative conditions

4.2.2 Policy for the Division of rules

We begin the presentation of this policy with an example.

Example 4.2.1 Suppose a rule r that produces predictions which always
match two events or none. Suppose, we divide this rule (see definition of
rule division in section 4.1.3) into two rules r1 and ro, and that r and
ro produce predictions which always match one event or none. Therefore,
conf,, = conf,, = conf,. Moreover std,, < std, and std,, < std, (property
4.1.3). In conclusion, 1 and ro are more precise than r but their confidence
is similar.

The goal of this policy is to produce more temporally precise rules (decrease
rule standard deviation) while loosing as less as possible confidence and
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support (like the division of r into 71 and r3).

Several possible solutions have been studied to chose the ‘best divisions’,
including the analysis of the shapes of histograms (detection of maximums,
detection of inflexions points) and the maximization of the likelihood on
models mixtures (Gaussian, exponential, uniform, log-normal, etc.). From
the experiments, we observe that the best solution is the following one:

Given a rule r, the policy selects a ‘good’ division function to divide r into
a set of rules {r;} such that the rules {r;} are independent (see definition of
rule division in section 4.1.3). This dependency division is based on graph
coloration techniques.

Suppose a rule r, and cond, the conditions of . By convention cond,(t)
is a Boolean predicate which is true if and only if cond, is true at time ¢.
The policy relies on the analysis of the probability distribution of the rule
dist, = P(t' — t"| head, [t] and cond,(t')).

1. The first step is to compute H, an N categories histogram of dist,.
The bounds of this histogram are defined by the user parameter his-
togramBounds (H is not necessary uniform). Each category i of the
histogram corresponds to the interval I;.

2. The second step is to compute an N by N co-occurrence matrix M
such as: Given a prediction ¢’ + dist, of the rule r ( cond,(t') is true)
and an event head,[t1] matching this prediction ((¢ 4 dist,)(¢1) > 0)
with ¢; — ¢’ € I;, M;; is the probability of having an event head,[ts]
also matching this prediction with to —t' € I;.

Miﬂ‘ = P( headr[tg] A (t/ + distr)(tz) >0A (tQ - t/) S Ij
| cond, (') A head,[t1] A (¢ + dist,)(t1) >0
At —t) el

M; ; is computed by considering each predictions of the rule r, and
each events which are matched by those predictions. In the case of
large datasets, M; ; can be estimated by only considering a subset of
the predictions of r.

3. Next, we apply a set of thresholds {c;} on the covariance matrix M; ;.
The next operations will be applied on each of threshold matrices.

4. For each matrix M, ;, we compute the graph G := ({v;}, {e;}) using
M, ; as an adjacency matriz. {v;} are the vertices of the graph G.
{e;} are the edges of the graph G. An adjacency matrix is defined a
follow: If M; ; = 1, then there is an edge between the vertices v; and
v;. Otherwise, there is no edge between the vertices v; and v;.
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5. We compute the vertices coloring ¢ : V' — N of GG i.e. labeling of the
graph’s vertices with colors such that no two vertices sharing the same
edge have the same color (see the complete definition of graph coloring
in section 3.7).

In this context, two vertices of different colors represent two intervals
that should be separated in the probability distribution of the rule r.

6. Finally, the division function d is defined as follow:

d(z) = e(i) with z € I (4.8)

The division function defines the temporal distribution of the newly
generated rules. We merge all the division functions and remove the
duplicates. The Thresholds are fined between 0 and 1. In our experi-
ments, the thresholds o; are set to be o; = aexp 2 for i € [0, p[ with
p =10 and a = 0.2. Decreasing the number of thresholds increases the
speed of the algorithm, but in the case of noisy dataset, the algorithm
will produce rules with less accurate temporal constraints (rule con-
fidence, support and temporal accuracy will decrease). If the dataset
is noisy, increasing the number of thresholds increases the number of
generated rules and reduces the speed of the algorithm. If the dataset
is not noisy, increasing the number of thresholds does not impact the
number of generated rules nor reduce the speed of the algorithm.

In the worst case (dataset with a very specific type of noise), the num-
(N(N+1) N(N+1)7(pr)((pr)+1)
2 2

ber of generated rules is bound by min
with NV the number of categories of the histogram. In the Home Data-
set experiment 6.1.3, the average number of created rule during this
step is 1 and in the computer simulated dataset experiment 6.1.2, it
is about 10 in the part with the highest level of noise.

Example 4.2.2 The following example details step by step the application
of policy for the division of rules. Suppose two event symbols with the fol-
lowing property: If there is an event A at time t, then there are an event
B at time t + 5 and an event B at time t + 15. Additionally, other events
B are uniformly present in the dataset. Suppose the rule r1 := (A,() =
B (100%, Ug 20). Fig. 4.7 represents the steps of the process.

(a) The input rule r1.
(b) The histogram of the distribution P(t' — t"|A[t"] and BJt']).
(¢) The co-occurrence matric M; ;.

(d) The result of applying the threshold on M; ;.
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(e) The graph with the vertices coloration.
(f) The colored distribution.

(9) And finally the output rules ro and r3.

1 ifzel0,10
The division function is d : x — fo 0, 10} .
0 if x € [10,20]

The result of the division on rule rq is

ro = (A,0) = B (100%, Uy 10)
r3 = (A,0) = B (100%, U10.20)

4.2.3 Policy for the Refinement of a rule

The refinement of a rule r is the modification of the temporal intervals of the
conditions of r or the modification of the temporal distribution of r. The
refinement has two objectives: First, in the case of the modification of the
temporal distribution, it can increase a rule confidence and precision without
decreasing significantly the support. Second, in the case of the modification
of the condition, it can improve conditions, and therefore, increase a rule
confidence and support. The example 4.2.3 illustrates this second case.

Example 4.2.3 Suppose a dataset that contains the rule r1 represented in
fig. 4.8.

In this figure, I and Iy are two temporal intervals. When applied to the
dataset, Titarl begins to learn ro. However, because of the noise in the
dataset, I is slightly different from I. Next, Titarl learns rs. Again, because
of the noise in the dataset, and because of the inaccuracy of I1, I}, is different
from I.

When applying to the rule rs, the refinement recomputes I to I] and produce
r4. Since 11 is initially estimated for ro and Iy is estimated for r3, then I}
is possibly more accurate than I{. As result, rq is more accurate than rs.

And again, I}, of r4 can be refined to produce rs possibly more precise than ry.
The refinement process can continue indefinitely. Experiments show that too
much refinement tends to over fit the rule. Therefore, we limit the refinement
to be applied once on every condition.

Head refinement

The head refinement consists in:

1. Compute a histogram of the distribution of a rule’s head.
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L= A—>B
Uo,20

(a) input rule

(b) histogram ) co-occurrence
matrix
(d) co-occurrence ) colored independence
matrix graph

with threshold

I I:I 5 10 15
5 10 15

.
10 15

5

(f) colored distribution

T2 = A»B
Uo,10
U10,20

(g) output rules

Figure 4.7: The steps of the policy for the division of rule.
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Figure 4.8: Five rules used to explain the refinement of a rule’s body.

2. Apply a small Gaussian filter on the distribution.

3. Threshold this histogram with the ruleRefinementThreshold para-
meter.

4. Set the new distribution of a rule’s head to be the thresholded histo-
gram.

The figure 4.9 presents graphical this operation.

Body refinement

The body refinement consists in:

1. Compute all the successful occurrences of the rule i.e. successful pre-
dictions. For each prediction, we need to keep track of each conditions

old distribution

Lo N

|
E
I
I

Ll D
! I

|
t
| |
| |
| ]
= 4

I I
new distribution m

Figure 4.9: Graphical representation of the head refinement.
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matching time i.e. for each predictions, we need to keep track of the
mapping ‘type 2 condition of the rule’ — ‘matching time’.

. For each type 2 conditions of the rule ¢, compute the histogram h of

D = {time; — timepurent(c)}, Where given a prediction, time. is the
time of matching of the condition ¢, and parent(c) is the type 2 parent
condition of c.

Note: Vd € D,m(d) =1 with ¢ := [m,].

. Threshold the histogram A with the ruleRefinementThreshold para-

meter.

. Set the new Boolean function of the condition ¢ to be m’ with m/(t) = 1

if h(t) > 0, m’(t) = 0 otherwise.

4.3 The TITARL Algorithm listing

This section presents the TITARL algorithm. This algorithm is based on
the four operations and the three policies presented in the previous sections.

The algorithm uses several user specified parameters:

minConfidence as the minimum confidence of the rules to generate.
minSupport as the minimum support of the rules to generate.

minPrecision as the minimum temporal precision of the rules to gen-
erate.

maxRangeCondition (or mrc ) as the maximum size (or range) of
a condition. If this parameter is very large (in comparison to the size
of the dataset — this parameter can be infinity), rules representing
correlations between very distant events will be extracted.

maxLoop as the maximum number of loops of the algorithm. Other
stopping criteria have been tried (maximum number of rules, max-
imum computation times, minimum entropy gain, etc.). These other
criteria are not described in this manuscript.

minProbabilitiesDependency is a set of real numbers. They ex-
press a minimum probability of dependency i.e. co-occurrence. This
parameter is used on the process of rule division.

histogramBounds is a set of real numbers describing the shape of
histograms used to represent probability distribution. Fig. 4.10 shows
several examples of histogram bounds.



4.3. The TITARL Algorithm listing

65

e ruleRefinementThreshold is the real number, between 0 and 1,

used to threshold histograms in the rule refinement process.

Algorithm 1: Tita Miner

Data: A symbolic time sequence [
Result: The set R of rules

begin
let Sym to be the set of all symbols

D> initialization

compute R’ the set of all trivial unit rules i.e.

R = {(w,0) = z (100%, U_mrc +mrec) |Yw, z € Sym}
while stopping criterion is not met do

for r € R do

> division

generate with the a division function d for r (see section 4.2.2)

divide r according to d and store the result in {r;}
for v’ € {r;} do

if suppr’ > minSupport and r’ not already in R then

refine 7’ (see section 4.2.3)
put 7’ in R

> addition of condition

clear R’

select a rule r € R, a type 1 condition ¢; of r and a condition co

(see section 4.2.1)
add the condition ¢y to r and store the result in R’

i.e.

replace ¢; of r by (symbol,, ,conds., U{cz})

Cc1?

return R

Uniform borders LI T T T T T T T

Logarithmic borders | | | |

Double Logarithmic borders | IR |

Figure 4.10: Three examples of histogram bounds.
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4.4 Detailed step by step run

This section presents a step by step run of the algorithm on a simple data-
set. This dataset is made of four types of events A, B, C and D. Simple
correlations exist between these events:

(a) If there is an event A at time ¢, followed between 5 and 10 time units by
and event B at time ¢/, then there is an event C between t' + 5 and ¢’ + 10.

(b) If there is an event B at time t', then there 50% chance to be an event
C between t' + 5 and ¢’ + 10.

(c) Additionally, events of type D are spread randomly through the dataset.

We are fixing the parameter mrc to 100 (maximum distance between two
points in a condition).

1. The first task of the algorithm is to compute all the trivial unit rules:

R = {(4,0) = A(~ 100%,U_100,+100>, (B,0) = A(~ 100%,U_1007+100>
AC,0) = A(~100%,U_100,+100), (D, 0) = A (~ 100%, U_100,+100)
(A, 0) = B (~ 100%, U_100,+100), (B, 0) = B (~ 100%, U_100,+100)
{C,0) = B (~ 100%, U_100,+100), (D, ) = B {~ 100%, U_100.+100)
(A, 0) = C (~ 100%, U_100.+100), (B, 0) = C (~ 100%, U_100.+100)
(C,0) = C (~ 100%, U_100,+100), (D, 0) = C {~ 100%, U_100,+100)
,(A,0) = D (~ 100%, U_100,4100), {(B,0) = D (~ 100%, U_100,+100)
AC,0) = D (~ 100%, U_100,+100) (D,0) = D (~ 100%, U_100,+100) }

2. We begin the first loop of the algorithm

3. Next, these trivial rules are divided (if necessary). R now contains
rules such as:

R :={ry :=(B,0) = C (50%, dist,, )
,ro = (A, 1) = C (7%, dist,.,)
)

R also contains a lot of rules with low precision.

The distributions dist,, and dist,, are sampled on the dataset with a
histogram. dist,, is a uniform distribution Us 19. dist,, has the shape
of a convolution between two square functions. The fig. 4.11 represents
the distributions dist,, and dist,,.

4. Next the rules are refined. Since we are considering here that the rules
are perfectly learned, the refinement has a small impact.
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dist,,

dist,,

% 5 10 15 20
Figure 4.11: Distributions dist,, and dist,, of the step by step algorithm
run.

5. Next, the algorithm selects a rule to augment (addition of condition).
The addition of the condition [T_19 5, (A,0)] to the rule (B,0) =
C (100%, dist,, ) has the highest information gain.

6. The rule r3 := (B,{[T-10,—5, (4, 0)]}) = C (100%, dist,,) is created
and added to the result.

At this point, the rule ro and r3 express the correlations (a) and (b) of the
dataset. Depending on the stopping criterion, the learning will continue a
certain amount of time (the algorithm will continue to loop).

4.5 Discussion

This section presents a theoretical comparison between our work and the
techniques presented in the chapter on related work (chapter 2). Two dif-
ferent aspects are discussed:

First, we discuss the expressive power of the temporal patterns. The power
of expression of a pattern has direct implication on the complexity of learn-
ing. A pattern with a weak power of expression will be simple and com-
putationally inexpensive to learn, but it might not be able to capture the
complexity of a process. On the other hand, a pattern with too much power
of expression might be too complex to be learned efficiently. In the next
section, several common temporal patterns are listed, and a hierarchy is
presented.

In the second part, we define and discuss the Temporal Constraint Selection
problem. Since most temporal patterns are based on temporal constraints,
this problem is common to most temporal learning techniques.
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4.5.1 The expressive power of temporal patterns

The definitions of the temporal patterns listed in this section are given in
chapter 2.

The Temporal Constraint Network (TCN) of Dechter et al. (Dechter et al.,
1991) was initially designed for automated planning and scheduling. TCNs
is the most expressive of the temporal patterns we are studying here, there-
fore its formalism is a great tool to compare other temporal patterns. As
presented in section 2.2, TCN are sets of temporal constraints over couples
of events (the constraint is a binary operator), and these constraints can be
represented as subsets of R.

The Chronicles of Dousson et al. (Dousson and Duong, 1999) are equivalent
to TCN. However, for efficiency in the learning process, the class of learnable
Chronicles is restricted. The temporal intervals of learnable Chronicles have
to be convex (this is equivalent to STP (Dechter et al., 1991)).

The temporal patterns of Tita rules are less expressive than (unrestricted)
Chronicles because Tita rules have a tree structure while Chronicles have
an unconstrained (possibly complete graph) structure. However, Titars and
learnable Chronicles can both express patterns that the other temporal pat-
tern cannot express. Tita rules can have non-convex and negative temporal
constraints.

There are several classes of Episodes depending of the learning algorithm
and the author. All the Episode classes are less expressive than learnable
Chronicles.

Tita rules are more expressive than any serial Episode class.

Oates et al. (Oates et al., 1997) probability rules are less expressive than
both restricted Chronicles and Tita rules.

The Calendric Association Rules introduced by Ozden et al. (Ozden et al.,
1998) uses the fact that a large number of phenomena are correlated with
particular discretization of time (called cycles). For example, the schedule
of people is generally cyclic over days and weeks e.g. people tend to wake up
or eat approximatively at the same time every day and on all similar week
days.

However, Calendric Association Rules cannot have more than one temporal
condition. For example, Calendric Association Rules cannot express “If it is
raining today, and if it was raining yesterday, then it will rain tomorrow”.

The Time Finite Automata with Granularities (TFAG) pattern introduced
by Bettini et al. (Bettini et al., 1998) also uses the fact that a large number of
phenomena are correlated with particular discretization of the time. TFAGs
can express such patterns as “If it is raining today, and if it was raining
yesterday, then it will rain tomorrow”. It is important to remark that “it
will rain tomorrow” is different from “it will rain in 24 hours” : If it is
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23:59pm, “it will rain tomorrow” might be two minutes in the future.

If the granularity is precise enough, every TCN can be converted into a TAG.
In addition, all TFAGs can be converted into a TCN (See proof 4.5.1).

Proof 4.5.1 A TFAG of size 1 (i.e. a TAG with only one element) has no
temporal constraint (Temporal Constraints with Granularity - TCG), there-
fore, it is also a TCN.

Suppose a TFAG of size 2. Suppose the temporal constraint to be [m,n]u
(m and n are two real numbers, and p is a temporal type). By convention,
A, is the number of time units between two new cycles of p (i.e. if p is
‘day’, and the time unit is the second, then A, = 60 x 60 x 24). Suppose
the event e,, to occur each time p start a new cycle (i.e. if p is ‘day’, then
e, will occurs every day at midnight). Fig. .12 shows by construction how
to convert this TFAG of size 2 into a TCN of size 4. Fig. /.12 also shows
an example of such transformation.

. . . 1
Suppose a TFAG of size p with q temporal constraints (q < p(pi;)). By the
same process, this TFAG can be converted into a TCN of size p + 2 X q.
Fig. /.13 shows an example of conversion of a TFAG of size 8 into a TCN
of size 9.

As it is discussed in 2.2.1, Sequential Patterns cannot capture information
about time duration and time localization. The two types of extended Se-
quential Patterns presented in chapter 2.2.1 can express restricted informa-
tion about time duration and time localization.

The fig. 4.14 sums-up the comparison of the power of expression of the
different temporal patterns.

4.5.2 Temporal Constraint Selection problem

The Temporal Constraint Selection problem is composed of two sub-problems:

The first sub-problem is the number of possible temporal constraints: If the
time is considered to be continuous, the number of possible temporal con-
straints is infinite. However, for the vast majority of learning techniques, the
time is discretized. In this case, given a time interval discretized into n bins,
the number of possible temporal constraints is 2. With such discretized
time, and with m possible symbols, there is (m?)(mP — 1)2™ possible TCN
with p nodes. In conclusion, except for special cases, the number of possible
temporal constraints is infinite or not enumerable. Examples of special case
are Episodes: Episodes’ constraints are restricted to be either [—oo, +00],
[—00,0], or [0, +00].

Another example of special case is the Generalized Sequential Patter with
Item Intervals or the Time-Interval Sequential Patterns: In the case of these
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Figure 4.12: Definition and example of conversion of a size 2 TFAG into
a size 4 TCN. The time unit is the second.

[0,3600]

3600 x 2,3600 x 5}

Figure 4.13: Example of conversion of a size 3 TFAG into a size 9 TCN.
The time unit is the second.
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Temporal Constraint System (TCS)

/\ Time Finite Automata

Temporal Constraint Network (TCN) = Chronicles _ with Granularities (TFAG)

/ \ Y\‘—__,/

Learnable Chronicles = STP Titar rules

/

Episodes

7\

Parallel Episodes Serial Episodes

\ / Qﬂ with Item Intervals

Calendric .
A tionRul Time-Interval
ssoclationitules Sequential Pattern

Generalized Sequential Oates probability rules

is more expressive than

_— .
(non strict)

Figure 4.14: Expressive power relation between the different temporal
patterns.

two patterns, the constraints are restricted to be in {[0,T1], [T1, T3], [T2, T3],
-, [Tr=1, T}, [Ty, 00]} where {T;}, are user defined boundaries.

The second problem with the learning of temporal constraints is the fact that
the “quality” of a temporal constraint, and more generally the “quality” of
a TCN, depends on the domain of application. As far as we know, and as far
as we have searched, there is no universal metric for the quality of a TCN.
Existing solutions rely on weight, threshold of fixed value, simple metrics
such as confidence, support, range, or on closure.

In the case of temporal association rule learning, temporal constraints for the
head of a rule (temporal constraint of prediction) and temporal constraints
for the body of a rule (temporal constraint of condition) have different se-
mantics. Several techniques found the literature use the same criterion to
learn temporal constraints for the head and temporal constraints for the
body of rules. Our solution takes into account these differences: Two differ-
ent criteria are proposed and justified. The next two sections discuss these
two aspects.

We believe that the Temporal Constraint Selection problem it is the main
problem of (TCN) temporal learning.
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Temporal Constraint Selection for rules’ head

The most common metric to evaluate rules is the confidence. This metric
expresses ‘how true’ a rule is.

The second most common metric to evaluate rules is the support. This
metric expresses the quantity of events a rule can predict.

It is usually easy to extract rules with high confidence and low support, or
rules with low confidence and high support. However, these both kinds of
rules are generally not very interesting. The confidence and the support of
a rule are correlated: It is possible to increase the confidence of a rule while
decreasing its support and vice versa. Therefore, learning algorithms have
to tackle the following problem: What is the good compromise between
confidence and support for a rule? The usual solution in data-mining is
to define a minimum support and a minimum confidence. Every rule that
holds these two constraints is considered to be good. Other solutions include
linear and non linear combinations of confidence, support and other simple
metrics (Geng and Hamilton, 2006).

The apriori (Agrawal and Srikant, 1994) is a technique frequently used to
enumerate patterns with a minimum support. Unfortunately, no such tech-
nique exists to enumerate patterns with a minimum confidence.

In the context of this thesis, temporal association rules need to have a
third metric to express how precise they are. Indeed, it is trivial to ex-
tract temporal rules with 100% confidence and 100% support in symbolic
time sequence: Suppose two symbols A and B such that there is at least one
occurrence of each of them. The rule saying ‘If the event A occurs at time
t, then the event B occurs between [t — co,t + oo]’ has a 100% confidence
and support. However such a rule (called unit trivial rule) is useless. To
deal with this problem, a third metric must be introduced: The prediction
time range of a rule expresses how accurate the predictions of this rule are.
This is a measure of the size of temporal interval of the rule’s head. We call
the precision of a rule, the inverse of its prediction time range. A good rule
has usually a low prediction time range i.e. a high precision. The temporal
constraint of the head of a rule has a direct implication on the temporal
precision of a rule. The three metrics confidence, support and precision
are highly dependent. Increasing the precision of a rule usually decease its
confidence and support.

In the EpiBF algorithm (Casas-Garriga, 2003), the user defines the ‘time
unit separation’ parameter which fixes the rule’s head temporal constraint
to

[—time_unit_separation, +time_unit_separation).

In the MinEpi algorithms (Mannila et al., 1997), the user defines the ‘w2
€ R™ parameter that directly fixes the rule’s head temporal constraint to
[0, w2].
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In the WinEpi algorithm (Mannila et al., 1997) and most of the other al-
gorithm used to learn Episodes, the user defines the ‘window size € R*’ para-
meter that directly fixes the rule’s head temporal constraint to [0, window].

In the Face algorithm (Dousson and Duong, 1999), the user defines a para-
meter ‘Utmi, € [0,1]’. This parameter is related (in a non trivial way) to
the support/confidence/precision of the rules that can be extracted from
Chronicles. The temporal constraint of a 2-Chronicle ¢ is the smallest con-
nect interval such that the rule has a frequency of it,,;, times the frequency
of ¢, where ¢ is the unconstrained Chronicle associated with c.

Given two types of events, the algorithm of Pablo Hernandez et al. (Hernandez-
Leal et al., 2011) selects several “good” temporal constraint based on the
analysis of the distribution P(t' — t|A occurs at t and B occurs at t'). The
algorithm supposes that:

1. The good temporal constraint (intervals) can be found by the analysis
of the shape of the distribution.

2. The distribution is a Gaussian mixture model.

3. Given a Gaussian, the good interval is [ — 7, + 7| (and not [0.5p —
7,0.5u + 7] or [2p0 — 7,2p + 7] for example).

In the I-Apriori, I-PrefixSpan and the Generalized Sequential Pattern Min-
ing with Item Intervals algorithms (Chen et al., 2003; Hirate and Yamana,
2006) the user defines the ‘window size € R’ parameter that directly fixes a
set of possible temporal constraints. These temporal constraints are restric-
ted to be convex, mutually disjunctive and to not include negative numbers.

The algorithm we have developed does not require the user to fix the rule’s
head temporal constraint.

In the four algorithms EpiBF, MinEpi, WinEpi and Face, the temporal con-
straints must be convex. Therefore, these algorithms cannot learn patterns
with non-convex prediction ranges. An example of rule with a non convex
prediction range is ‘If A occurs are time ¢, then B will occur between ¢ + 5
and t 4 10, or between t 4+ 15 and t + 20’.

Remark 4.5.2 The semantic of a rule with a non conver prediction range
cannot be expressed with rules with convexr prediction ranges. For example,
the rule ‘If A occurs are time t, then B will occur between t +5 and t + 10,
or between t + 15 and t + 207, it not equivalent to the rules ‘If A occurs are
time t, then B will occur between t+5 and t + 10" and ‘If A occurs are time
t, then B will occur between t + 15 and t + 20"

Titar]l can learn rules with non convex prediction ranges. The algorithms
EpiBF, MinEpi and WinEpi can only learn rule with rule’s head temporal
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constraint that contains 0. For example, these three algorithms cannot learn
the rule ‘If A occurs are time ¢, then B will occur between ¢ + 5 and ¢ + 10°.
The algorithm we developed can learn rules without 0 in the rule’s head
temporal constraint.

Experiments shows that Face can deal with very small datasets, but it is
not robust to noise. In addition, Face is not robust to learn rules in dense
dataset i.e. when occurrences of rules are mixed together. Finally, in the
case of non-noisy and non-mixed datasets, Face may be unable to learn rules.
The example 4.5.3 shows a step by step application of the Face algorithm
to support the last declaration.

Example 4.5.3 Suppose a dataset composed of two types of events A and
B. All the events occur between times 0 and 1000. 50 events of type A are
randomly located. No events of type A are closer to each other than 10 time
units i.e. the dataset is not dense. For every event A located a time t, an
event B is located between time t + 5 and time t + 6. Therefore, the rules
are not mized together. There are no other events i.e. there is mo noise.
The rule to learn is ‘if an event A occurs at time t, then an event B occurs
between time t + 5 and time t + 6. This rule can be expressed with a 2-
Chronicle (Chronicles are the temporal pattern used by the Face algorithm).
This chronicle contains one temporal constraint. This temporal constraint
will be the interval [5,6]. The prediction range is the length of the temporal
constraint (the prediction range is 1 in this case).

The Fuace algorithm is presented in section 2.3. In this algorithm, the se-
lection of the temporal constraint of a 2-Chronicle is done at step 2.c with
the special case k=1. This temporal constraint is an interval. Let’s call
this interval T'. The Face algorithm uses one user specified parameter called
itmin € [0,1]. Let’s Fpax be the frequency (the number of occurrences)
of the Chronicle is the temporal constraint was | — 0o, +00[. ity define
the frequency of the Chronicle such as ‘frequency of the extracted Chron-
icle’ < itminFmaz. In this particular scenario, if itn,, s in the interval
[%, %[, the correct temporal constraint will be extracted. Therefore, the cor-
rect Chronicles will also be generated. If ity is lower than %, no chronicle
will be extracted. If ity s higher of equal than %, the extracted interval will
be too large, and the chronicle will be imprecise. More precisely, the expected
prediction range of the extracted chronicle will be 1+ (ityyin — %) X %. The
prediction range of the extracted chronicle is unstable: Small change on the
parameter will change dramatically the solution. The experience shows that,
given a dataset, there is only a small window of good values of the parameter

(which should be fixed by the user).

In all these techniques, the selection of the temporal constraint is either
fix by the user, either computed directly or indirectly from the distribution
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P(t' — t|A occurs at t and B occurs at ¢'). However, this distribution is is
not a reliable information to select temporal constraints. This distribution
is especially ineffective if the dataset is noisy, if the dataset is dense , if the
temporal constraint of the rules as an unusual shape, or if rules interfere
with each other.

The example 4.5.4 shows two different datasets with different temporal rules,
and where the temporal distributions are the same.

Example 4.5.4 Suppose two datasets D1 and Ds. Those two datasets only
containt events of type a or b.

The dataset D1 is defined as follow:

Events of type a are randomly distributed. If there is an event
of type a at time t therefore: There is an event of type b around
t+ 5. There is an event of type b around t + 15.

The dataset Do is defined as follow:

Events of type a are randomly distributed. If there is an event
of type a at time t therefore: There is an event of type b a bit
before t +5 or a bit after t + 15. There is an event of type b a
bit after t +5 or a bit before t + 15.

Suppose the unit rule “If there is an event of type a at time t then, there
is an event of type b between t and t + 20”. In the two datasets Dy and
Do, the estimated temporal distribution between the head and the body of
this rule is the same (see fig. 4.15). So, any technique only relying on this
distribution will behave exactly the same for those two datasets, and therefore
the learning on one of those datasets will be incorrect.

This example illustrates that only analyzing temporal distributions between
temporal events is not a sound solution to extract temporal patterns.

by — atla and b)

P(t =
D, l .—ﬂ_l'l r—l‘lr—.;
Dy T

0

5 10 15

5=

5) 10 15

Figure 4.15: Temporal distribution in the two datasets of the ex-
ample 4.5.4. The colors show the ideal splitting for the rule in the two
datasets.
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Therefore, in our approach, we do not rely on this distribution, but instead,
we rely on the ‘co-occurrence matrix’ to split rules and estimate their tem-
poral distributions.

Temporal Constraint Selection for rules’ conditions

The vast majority of algorithms use the same or a similar process to select
the temporal interval of prediction and conditions.

In the WinEpi algorithm (Mannila et al., 1997), the temporal interval of
conditions is defined by the user parameter ‘window size € R*’. This is the
same parameter that defines the temporal interval of prediction.

In the MinEpi algorithm (Mannila et al., 1997), the temporal interval of
conditions is defined by the user parameter ‘wl € R,

In the EpiBF algorithm (Casas-Garriga, 2003), the temporal interval of con-
ditions is defined by the user parameter ‘time unit separation’ € R*’.

In the Face algorithm (Dousson and Duong, 1999), the temporal interval of
conditions is selected like the temporal interval of prediction (see previous
section).

In our approach, we select temporal constraints for rule’s body base on
a entropy minimisation policy. In addition, the temporal constraints are
refined each time a rule is augmented with a new condition.
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The previous chapter presents a technique to extract Tita rules from Sym-
bolic Time Sequences. In this chapter, we present a planning and schedul-
ing algorithm based Tita rules. In order to do planning and scheduling,
we always suppose in this chapter that the set of input rules express causal
relations. Example 5.0.5 shows a non causal rule.

Example 5.0.5 Suppose a system where three types of events can occur: A,
B and C. To help the understanding of this example, you can suppose the
system to be a person inside a car, and the events A, B and C to be:

7
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1. A : To start up the car.
2. B : Hearing an engine noise.

3. C : The lamps of the dashboard come on.
Suppose two following rules in the system:

1. If A occurs at time t, then B will occur at time t + 5.

2. If A occurs at time t, then C will occur at time t + 7.

These two rules are true because of the mechanic of the car (we suppose the
car is working correctly).

From the point of view of somebody who has no understanding of the mech-
anic of the car, the rule ‘if B occurs at time t, then C will occur at time
t 4+ 27 also seems to be valid. This rule seems to be true because the person
has no observation of counter examples. However, this rule is a non causal
rule since it is not actually the event B that triggers the event C.

An example of counter example is: Suppose the same person. He is living
in a quiet place, and he goes in a city. At some point, he is sitting in his
car, and he ears the noise of the engine of another car passing by. In this
situation, the lamps of the dashboard will not come on; therefore the rule ‘if
B occurs at time t, then C will occur at time t + 27 is invalid.

We developed a temporal planning and scheduling algorithm that is able to
use Tita rules as input rule (see definition in sections 3.5). Tita rules can
express uncertain (probabilistic) and (temporally) inaccurate associations
between events and states. The algorithm deals with inaccurately located
events and zero duration events.

Similar to the Strips algorithm (Fikes and Nilsson, 1971), our algorithm
works with backward chaining (or retrograde analysis). As to the Deviser
algorithm (Vere, 1983), our algorithm deals with time windows on actions
and goals. Checking conflicts between positive and negatives part of the
plan is time expensive. Therefore, in the case of rules with negations, our
algorithm does not check for conflicts between the different parts of the plan.
Our solution is to generate instances of plans and check if the goal of the
plan is actually generated. This last part is a heuristic.

The algorithm is composed of four stages.

1. The first stage called TitaPlanner builds a Tita plan (see definition
in 3.8) from a single Tita rule, a set of scheduled events and states, a
goal symbol and a time window for this goal symbol.
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2. The second stage called MetaTitaPlanner is building a Meta Tita plan
(see definition in 3.9) from a set of Tita rules, a set of scheduled events
and states, a goal symbol and a time window for this goal symbol. In-
formally, a Meta Tita plan is a set of Tita plans bond together to
achieve an objective (Meta Tita plans have a greater power of expres-
sion than Tita plans). This second stage (MetaTitaPlanner) is based
on the first one (TitaPlanner).

3. The third stage ‘linearises’ Meta-plans (output of the second algorithm)
into strong linear Meta-plans (see definition in 3.9.6). Strong linear
Meta-plans are a sub-class of linear Meta-plans. A linear Meta-plan
can be decomposed into strong linear Meta-plans. This stage decom-
poses linear Meta-plans and returns the strong linear Meta-plan with
the highest confidence.

4. The final stage performs scheduling. This stage takes as input a strong
linear Meta-plan (output of the third algorithm), and return a list of
nominal time-sampled actions.

Section 5.1 introduces the different stages of the algorithm. Section 5.2
presents a step by step detailed run of the algorithms. Section 5.3 discusses
the complexity of the algorithms.

5.1 The algorithm

This section presents the four stages of the temporal planning and scheduling
algorithm. Figure 5.1 shows a complete example of Meta-planning.

5.1.1 Stage 1: Tita planner

The Tita planner takes as input a Tita rule, a set of scheduled events and
states, a goal symbol and a time window for this goal symbol. It generates
a Tita plan describing how to produce the goal symbol in the time window
request with the given rule. The given rule should have as a head symbol
the requested goal symbol. The user provides a parameter defining the
minimum confidence for the plan to build. The output plan has the same
tree structure as the input rule.

Next, we present three simple examples that illustrate the behavior of the
Tita planner. In these three examples, the objective is to find a way to
generate an event of type A in the interval R = [50,100]. These examples
show the underling idea of the computation of a plan with each of these
rules.
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Figure 5.1: This figure shows a complete example of Meta-planning. The
Meta-plan (b) is computed from the set of Tita rules (a). Next, a strong lin-
ear Meta-plan (c) is extracted from the Meta-plan (b). In this example, the
strong linear Meta-plan (c) is the strong linear Meta-plan with the highest
confidence that can be extracted from (b). Finally, an instance (d) is com-
puted from the strong linear Meta-plan (c).
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Example 5.1.1 Suppose the rule r1 introduced in fig. 5.2. Let f(t) =
((—disty,) * R)(t). If an event of type B occurs at time t, then f(t) is
the probability of having an event of type A in the interval R because of the
rule r1. f(x) threshold by ¢ € R defines a binary function b. The plan ‘trig-
ger an event B at time t with b(t) = 1’ has a probability of ¢ to generate an
event of type A in the interval R. The fig. 5.2 shows R, b and f.

Example 5.1.2 Suppose the rule ro introduced in fig. 5.2. This rule is
equivalent to the rule r1 with an extra condition. Suppose R, f and b as
defined in example 5.1.1. In the rule ro, the temporal constraint between B
and C'is the Boolean functionm =B_19 _5 (i.e. m(x) =1 if and only if x €
[—10, —5]). If an event of type B is triggered at time t1 and an event of type
C is triggered at time to with m(ta —t1) = 1, then f(t1) is the probability of
having an event of type A in the interval R because of the rule rs.

Example 5.1.3 Suppose R, f, m and b as defined in examples 5.1.1 and
5.1.2. Suppose the rule ro introduced in fig. 5.2. Suppose that events of
type C cannot be triggered (i.e. C'is an exogenous symbol). Suppose that
an event of type C occurs at time 50. Let V' = Bsse0. In order for the

rule 7 B—> A 100%
U10,20
B—> A 100%
rule ro L2054 Ui0,20
rule 3 C—>B 100%
\ U10,20
R NI
0
f
b
14
b=b []
f”’
b 0
0 T T T T 5'0 T T T T 1(l)O T

time

Figure 5.2: Therulery, ro, 73, R, b, f, V', 0", f"" used in the examples 5.1.1,
5.1.2, 5.1.3 and 5.1.4 of behavior of the Tita planner.
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constraint between B and C to be valid, an event B has to occur at time t
with V' (t) = 1. Let V' (t) = b(t) - V/(t). If an event of type B occurs at time t
with V' (t) = 1, then f(t) is the probability of having an event of type A in
the interval R because of the rule ro. If an event of type B occurs at time t
with b"(t) # 1, then the rule ro cannot be applied or the generated event C
is not in the R.

Stage 1 is given as follows:

1. Build a Tita plan p from a Tita rule r
The Tita plan p is build recursively with the function TitaPlanner.

2. Propagate the absolute constraints in the Tita plan p
The propagation can be achieved with two depth-first explorations of
the plan’s tree. If an absolute constraint becomes null, the plan is
discarded (or invalid). The two equations for the propagation of the
constraints are the following ones:

For every edge e := v — v of the plan p:

(Acsty *(— Reste))(x) = 0 = Acsty(z) =0 (5.1)
(Acsty * Reste) () = 0 = Acsty () =0

Function TitaPlanner
Data:

A Tita rule r > The source of the plan

A Tita plan p &> The output plan

A request interval R [> The interval for the head of the rule to occur
The minimum confidence of the plan minConf

Result: The Tita plan p

begin

initialise p to be an empty graph

Let b be the Boolean function such as:

{1 if ((— dist,) * R)(x) > minCont

conf,
0 otherwise

add a vertex v to p with Acst, = b
call SubTitaPlanner(conds, v, positive’)
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Function SubTitaPlanner(c:a type 1 condition, v:a vertex of the plan p,
[-’positive’ or 'negative’)

Data:

A Tita plan p > The output plan

A symbolic time sequence [

A set of doable symbols D

A time interval describing when the doable symbols can occur T'
begin

set symbol,, = symbol,.

let m be the Boolean function of symbol, activation

i.e. m(t) =1 when there is an event of type symbol, at time ¢.
if symbol, is doable i.e. symbol, € D then

L set m/(z) := {1 ifm(z)=1orT(z)=1

0 otherwise
else

L set m' =m

set Acst,(x) := Acsty(z) - m/(x)

if V, Acst,(z) = 0 i.e. Acst, is null then
discard the plan

return

for ¢ € conds. do
if ¢ is a negation of a type 2 condition ¢’ then
if | =’positive’ then

L call SubTitaPlanner(¢” v, negative’)

else if | =’negative’ then
L call SubTitaPlanner(c” v, positive’)

else if ¢ is condition over a state s then
let m be the Boolean function of s activation

i.e. m(t) =1 when s is true at time ¢.
if s is doable i.e. s € D then

L set m/(x) := {1 ifm(z)=1or T(x)=1

0 otherwise

else

L set m' =m

set Acsty(x) := Acsty(z) - m/(z)

if Va, Acsty(z) =0 i.e. Acst, is null then
L discard the plan

return

add s to the set of states states, of v

Ise if ¢’ is an association between a Boolean function m and a
type 1 condition ¢’ then

add a vertex v’ to p with Acst, = Acst, *m

add an edge e := v — v/ with Rest, = m

set the label of e to be [

call SubTitaPlanner(¢” v’ positive’)

o)
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5.1.2 Stage 2: Tita Meta-planner

The Meta Tita planner takes as input a set of Tita rules, a set of scheduled
events and states, a goal symbol and a time window for this goal symbol. It
generates a Meta Tita plan that contains the information of how to produce
the goal symbol in the time window request with a combination of the given
rules. The user provides a parameter defining the minimum confidence the
Meta-plan to build.

Stage 2 uses stage 1 to build Tita plans, and it combines them into a Meta
Titar plan. The temporal constraints of the plans are propagated trough the
Meta-plan. The following example illustrates the behavior the Meta Tita
planner. It shows the combination of two rules into a Meta Tita plan.

Example 5.1.4 Assume the two rules rs and ry displayed in fig. 5.2. As
with to the last example, the objective is to generate an event of type A in
the interval R = [50,100]. Suppose that C is a doable symbol but that B
is an exogenous symbol. The functions of this example are displayed in the
fig. 5.2.

First, the planner tries to apply the rule r3 to generate A in the interval R.
The condition for r3 to be applied is to get an event of type B at time t with
b(t) = 1, with b as defined in the example 5.1.1 (This step is similar to the
example 5.1.1). Since B is an exogenous symbol, it needs to be generated by
a rule.

The same process is applied again with the rule r4 to generate an event of
type B at time t with b(t) = 1. Let’s define f"'(t) = ((— dist,,) * b)(t), and
b"" the threshold of the function f" with ¢ € R. If there is an event C at
time t" with b (t') = 1, then the rule r4 generates an event of type B at time
t with b(t) = 1, and then the rule rs3 generates an event of type A in the
interval R.

The listing of the stage 2 is given as follows:

1. Build a Meta Tita plan rp
The Meta Tita plan is build with the function MetaTitaPlanner.

2. Propagate the absolute constraints in the Meta-plan and the
plans
The propagation into the Meta-plan and plans can be achieved with
two depth-first explorations.

If the absolute constraint of a ‘problem’ vertex v becomes null, the
vertex and all its children are deleted from the graph. If the ‘caused’
vertex v of a plan p labelled to a ‘solution’ vertex v’ is not labelled
by any problem vertex, the ‘solution’ vertex v’ and all its children are
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deleted from the graph. If the recursive plan does not contain any
vertices, it is discarded.

Propagation of constraints must satisfy the following two conditions.

a) The absolute constraint of every caused vertex v should be equal to
the absolute constraint of the ‘problem’ vertex v’ with is labelled to v
i.e. subLeaf,, = v implies Acst, = Acst,,

b) Suppose a ‘problem’ vertex v. Suppose an edge e := v — v’ with v/
a ‘solution’ vertex labelled with a plan p. Suppose v” the trunk of the

plan p. The two equations of propagation are:

((—disty) * Acst, ) (x) < minConJ = Acsty(z) =0 (5.3)
conf,
(dist, * Acstyr)(x) < %ﬁfonf = Acsty(z) =0 (5.4)

With r the rule of the plan p and minConf the minimum confidence

of the plan p.

Function MetaTitaPlanner

Data:

A Meta Tita plan rp > The output Meta-plan

A request symbol s > The objective of the plan

A request interval R [> The interval for the objective to occur

The minimum confidence of the plan minConf

Result: The Meta Tita plan rp

begin
initialise rp to be an empty graph
add a ‘problem’ vertex v to rp with Acst, = R and symbol, = s
call SubMetaTitaPlanner(v,minConf)

5.1.3 Stage 3: Meta-plan linearization

The linearization (of a Meta-plan) is the extraction of the valid strong lin-
ear Meta-plan (see definition is section 3.9.6) with the highest confidence.
Strong linear Meta-plans are important because they are the intermediate

step into the computation of a (Meta) plan instance.

We are presenting an efficient algorithm to linearise Meta-plan. This al-
gorithm requires as input a weak linear Meta-plan without negation of doable

symbols.

The algorithm enumerates all the paths (strong linear Meta-plans) of the
input Meta-plan (a Meta-plan has a tree graph structure). The confidence
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of a path is the product of the confidences of the plans associated with its
vertices. In the worst case, the number of paths of a tree graph is equal to
the number of nodes minus one.

If the algorithm is fed with a weak linear Meta-plan with negation, it can
produce invalid plans. A simple heuristic to deal with such Meta-plans is to
enumerate the Meta-plans and test its validity. In this case, we are returning
the valid Meta-plan with the highest confidence.

5.1.4 Stage 4: Building of (Meta) plan instance

Given a plan we can compute an instance of this plan (see definition 3.8.2).
By convention, an instance of a strong linear Meta-plan is an instance of the
plan associated with the (unique) leaf of the Meta-plan.

To compute such instance, the plan structure is explored with a depth first
search. At each doable node n of the plan, an event of type symbol, and
time time; is added to the instance, such that time; satisfy the absolute
constraint of n and the relative constraint of the parent of n.

5.2 Detailed step by step run

This section describe step by step the TitaPlanner and MetaTitaPlanner
algorithms presented in this chapter: The building of a plan and the building
of a Meta-plan.

5.2.1 Building of a plan

We present the step of the TitaPlanner algorithm to build the plan shown
in fig. 5.4 based on the rule presented in fig. 5.3. In this example, we set the
minimum confidence to 0. The goal is to find a plan to produce an event a
between 50 and 100.

1. The b Boolean function is computed to be B35 g0.
2. The vertex v; associated with b is added.

3. The absolute constraint of vy is set to b.

10, 5] B—> A 100%
_____________ > Uio,15

Figure 5.3: Example of Tita rule.
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Before propagation:
[35,90]

Figure 5.4: Example of Tita plan. A similar plan has already been presen-
ted and explained in fig. 3.6.

4.
5.
6.

10.

11.

12.
13.

14.

15.

16.

The vertex vy associated with ¢ is added.
An edge is added between v; and vs.

The relative constraint of this edge is set to B_19—5 (based on the
rule’s condition).

The absolute constraint of vy is computed: c¢ is exogenous. There is
one occurrence of ¢ at time 30. The absolute constraint of vy is B3g 30

The vertex vs associated with e is added.
An edge is added between vy and vs.

The relative constraint of this edge is set to B_29 10 (based on the
rule’s condition).

The absolute constraint of v3 is computed from the relative constraint
between v9 and v3, and the absolute constraint of vs.

The vertex vy associated with d is added.
An edge is added between v1 and vy.

The relative constraint of this edge is set to B_19 9 (based on the rule’s
condition).

The absolute constraint of vy is computed: d is exogenous. There is
one occurrence of d at time 40. The absolute constraint of vy is B4 40

We propagate the equations 5.2 and 5.1: The absolute constraint of
the nude labelled with b becomes B4 40.
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5.2.2 Building of a Meta-plan

We present the step of the MetaTitaPlanner algorithm to build the Meta-
plan shown in fig. 5.1 based on the rules presented in the same figure. In
this example, we set the minimum confidence to 0 and the parameter N to
1. The goal is to produce a Meta-plan to produce the event a between 50

and 100.

1. Create a ‘problem’ node for a with an absolute constraint of Bsg 100-

2. There is only one rule that can produce a. Add a ‘solution’ node, and
compute a plan for a based on this rule.

3. Label this ‘solution’ node with the computed plan.
4. The body b of this rule is exogenous. Add a ‘problem’ node for b.

5. There are three rules that can produce b. For every of these rules, add
a ‘solution’ node and compute a plan for b based on this rule.

6. Label these ‘solution’ nudes with the computed plans.

7. The body c of one of these rules is exogenous. Add a ‘problem’ node
for c.

8. There is only one rule that can produce c. Add a ‘solution’ node and
compute a plan for ¢ based on this rule.

5.3 Algorithms computation complexity

This section presents a computation complexity analysis of the four al-
gorithms presented in the chapter.

5.3.1 Tita planner

The Tita planner is a recursive exploration of the input rule structure with
a branch cutting optimization. Therefore, in the worst case, the number
of calls of the main function SubTitaPlanner is equal to the number of
conditions in the rule. The number of conditions of a rule is related to the
size of the training dataset. In our experiments, the number of conditions
of the rules rarely exceeds eight, and is generally under five. The more
expensive operation in the SubTitaPlanner function is the dichotomic search
of event which has an algorithmic complexity of O(log n) with n the number
of events (we suppose the number of types of events to be fixed).
Therefore, the worst case algorithmic complexity of the Tita planner is
O(c log n) with ¢ the number of conditions of the rule and n the number of
event in the dataset.
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5.3.2 Meta Tita planner

The Meta Tita planner is a recursive exploration of different combinations
of rules with a branch cutting optimization. In the worst case, the function
SubMetaTitaPlanner calls recursively itself O(m N 2¢) times, with m the
number of rules fitting the current sub goal, N the parameter of the al-
gorithm (usually fixed around 4) and ¢ the maximum number of conditions
of the m rules. The branch cutting works with a minimum plan confidence
and a maximum search depth d.

Therefore, the worst case algorithmic complexity of the Meta Tita planner
is O(d™ ™V 2°). The worst case occurs when all the rules are recursive i.e.
the rules have the same symbol in the head and in the body.

5.3.3 Meta-plan linearization

The Meta-plan linearization is a direct exploration of the structure of the
Meta-plan. Its complexity is O(n) with n the number of nodes in the Meta-
plan. The Meta-plan linearization can be merged into the Meta Tita planner
improves computer execution time.

5.3.4 Building of plan instance

The building of plan instance is a direct exploration of the plan. Its com-
plexity is O(n) with n the number of nodes in the plan. In the case of plan
with negation, a simple heuristic produces instances until a valid instance is
found.

5.4 Conclusion

This chapter presented our planning and scheduling algorithm. The al-
gorithm takes as input a set of Titar rules and generates a plan called Meta
Titar plan.

We believe, that one of the main interests of this algorithm, in compar-
ison to classical planners, is its capacity to deal with imprecisely located
(exogenous and no-exogenous [or endogenous|) events. This makes pos-
sible to use imprecise rules as input of the algorithm. Rules extracted by
learning algorithms in real world applications have generally some level flex-
ibility /imprecision. One of our motivations during the development of our
planning algorithm was the fact that it can be theoretical combined with our
learning algorithm. We tried this combination in one of our experiments,
and the results are presented in the next chapter as well as the results of
several other experiments.
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Function SubMetaTitaPlanner(v:a vertex of the recursive plan rp, c:the
current minimum confidence)

Data:

A set of Tita rules {r;}

A Meta Tita plan rp > The output Meta-plan

A symbolic time sequence [

A set of doable symbols D

A time interval describing when the doable symbols can occur T'

An integer N describing the ‘confidence discretisation’

Result: The Meta Tita plan rp

begin
for All the rules r € r; such that head, = symbol, and conf, > ¢ do
for j € [0 —1] do
set  =c+j Confr € D> ¢ is the minimum confidence of the (sub)plan

that will be created for this node.

set {c;} to be the set of type 1 conditions of r such that

symbol & D 1> {c;} is the set of conditions for which we need to search
(sub)plan for (the condition over exogenous events).

for All the subsets C' of {c;}

Note: If we select only the subsets of cardinality lower or equal

to one, the Meta-plan will be weak linear. do
compute the plan p with TitaPlanner, the rule r, the

request interval Acst,, the minimum confidence ¢’ and the

doable symbols D’ with D’ the symbols of C.

> Each type 1 condition of C' is associated with a vertex of p. These

vertices are ‘caused’ vertices

if the plan p is valid then

add a ‘solution’ vertex v’ to rp labelled with the plan p
add an edge e :== v — v/ to rp

, _ number of ‘caused’ vertices of p. "

= , B>oc
conf),

remaining amount of confidence. The remaining confidence is

set ¢’ is the

spread equally on the (sub) plans. Solutions with different
distributions can be considered. However, the next sections mainly
focus on weak linear plan, and weak linear plans have at most one
‘caused’ vertex. Therefore, we are not considering alternative
confidence distribution.
for all the ‘caused’ vertices v" of p do

add a ‘problem’ vertex v to rp with

Acstym = Acstyr, symbol,,» = symbol,» and labelled

with v

call SubMetaTitaPlanner(v” ,c”)
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Generated (or simulated) datasets make possible to evaluate algorithms with
a large variety of controlled situations. Since we generated these datasets, we
know the temporal patterns and level of noise they contain. Therefore, we
can evaluate the responses of techniques to different types of noise, different
level of noise, complexity of the dataset, etc.

Real world datasets are also important. They give us the guarantee that
our algorithms work on real applications.

6.1 Temporal learning

6.1.1 Evaluation measures

In this thesis, the result of a temporal learning process returns a set of tem-
poral patterns. Several measures exist to evaluate ‘how good/interesting’ is
a pattern, a set of patterns, or a pattern in a set of patterns. A lot a differ-
ent measures have been developed and studied for general (non temporal)
data-mining patterns (Geng and Hamilton, 2006). In the case of temporal
learning, a part of these measures are not relevant. This section presents
the different measures for temporal rules used in this work.

6.1.1.1 Simple metrics

The simple metrics are the confidence (conf), the support (supp), the pre-
diction range (range) and the standard deviation (std). These four measures
are defined in section 3.5.

When a reference rule (or ground truth rule) r,.s is available, we can com-
pute the ratio between the metrics of a rule to evaluate r and the metrics of

su range. .
Cofnfr , PPy £% _ and tfith . Since reference
confr, ;7 supp, . rangeTTef stdr,.. ¢

rules are generally not known, such ratios can’t be computed.

the reference rule i.e.

6.1.1.2 Normalized confidence and normalized support

The normalized metrics are used to compare the confidence and the support
of a set of rules with various prediction ranges. The prediction ranges of
the rules {r;} are reduced to be equal to the prediction ranges of a reference
rule 7.y while their confidence is maximized.

The result is the rule {7/} with range(r;) = range(ryef). The normalized
confidence of r; is the confidence of r}. The normalized support of r; is the
support of r,. These metrics are easy to read. However, we need a reference
prediction range to compute them, and such reference prediction range is
not always available.
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6.1.1.3 Confidence and support temporal lift

The lift is a common metric for classical/non-temporal association rules.
The lift compares the performance of a rule against the performance of the
randomness. The performance can either be the confidence or the support
of the rule. Suppose a non temporal rule A — B. The lift of confidence of

this rule is Plgﬁ'gf;‘) with:

e P(B|A) is the probability of having the head of the rule true when the
body of the rule is also true i.e. the confidence of the rule.

e P(B) is the probability of having the head of the rule true.

With the same notation, the lift of support of this rule is Plgf(‘f'g).

We extend the measure of lift to the temporal association rules. Suppose
a temporal rule A — B [r] where A is the body of the rule, B is the head
of the rule and r € R is the prediction range of the rule i.e. the average
size of the prediction interval. In the case where the events A and B are
independent, the (independent) confidence and the (independent) support
of the rule are given by the equations (6.1) and (6.2).

confingep =1 — (1 — §)|B | Independent confidence (6.1)

SUPPpndep = 1 — (1 — C)|A| Independent support (6.2)

Where |B| is the number of time the rule’s head event occurs in the dataset,
| Al is the number of time, the rule is triggered i.e. the number of predictions,
and d is the duration of the dataset.

With this notation, the temporal confidence lift is % and the temporal
indep
support lift is ﬁ.
indep

By opposition to non temporal lifts (i.e. classical lift), temporal lifts cannot
be use directly because they will give very high score to rules with small
prediction ranges and small support, in comparison to rules with higher
prediction range and support.

In order to tack this problem and obtain a measure to rank the rules, we
define the score of a rule to be the product of the temporal confidence lift,
and the temporal support.

f
score(r) = o . supp (6.3)

confpdep
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By opposition to temporal lift, score gives credit to rules with high confid-
ence, high support and low prediction range. Score is a measure without
unit.

Experiments show that the score is sometime giving too much importance
to prediction range (rules with highest score have confidence that is too low
to be useful). If needed, the definition of the score can be slightly modified
to give more a less importance to confidences, support and prediction ranges
of the rules (for example, by adding factor parameters to the score equation

Cocrlf’fr?fd -supp?). This alternative score does not have the semantic of
indep

lift x support, but experiments show that it is also a useful tool to analyze
and understand rules.

l.e.

Given a dataset composed of two of events A and B with the given cor-
relation: If an event A occurs at time ¢, then an event B occurs at time
t + Un, 1, with U the uniform distribution. Suppose the family of rule
{4 > Bt + X,t +Y|VX,Y with0 <Y — X < M}, i.e. if an event A oc-
curs at time ¢, then an event B occurs between t + X and ¢t 4+ Y. The limit
M is used in the next proof. Each of the rules of this family is associated
with a score. If the range of the rule is small in comparison of the range of
the dataset i.e. M << d, and if the dataset is sparse i.e. |B| << 4%, then
the rule A, — Bt + T1,t + T5] is the rule in the dataset with the highest
score.

Proof 6.1.1 The confidence, the independent confidence and the support of
the rule Ay — B[t + X, t + Y] are :

in(Y,Ts) — X, T
conf = max (0, min(¥, T) — max(X, 1)> Confidence
T — 1Ty
supp = conf Support
Y- X
confingep =1 — (1 — 7)‘3‘ Independent confidence
Y - X)|B Y-X Y- X
= ( y )IB| + O((( 7 ))2)) Series expansion at T = 0

We approzimate the independent confidence.

(Y — X)|B|
d

confipdep ~

We are looking for X and Y such that the score is maximized.
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X and Y mazimize score
(max (0 min(Y,75)—max(X,71) ) > 2
) T 7T
<X and Y mazimize 2—11
1—(1—5)lB]
in(Y, Tp) — max(X, Th))
<X and Y mazximize (min(Y, T5) — max(X, T1))
1—(1—5)5]
in(Y, Tp) — max(X, Th))*
<X and Y mazimize (min(Y, 2; H;?X( ,Th))

SX =T andY =Ty
Therefore, the rule Ay — Bt + T1,t + Ts] has the highest score.

Experiments show that if we add noise to the dataset, the rule A, — B[t +
10, ¢ + 20] is still the rule with the highest score.

For readability and computational convenience, we compute the log of the
score:

conf

log score = - supp

confipdep

= log conf + log supp — log conf ;¢

6.1.1.4 Rule gain

The gain of a rule is a measure of ‘how much’ a rule will produces/wins/prevents/etc.
in a given process/use. For example, in Forex (foreign exchange market)
trading, the gain of a rule can be the expected value and the standard de-
viation of the monetary gain.

6.1.1.5 Global Support Map

A Global Support Map (GSMap) is a tool used to evaluate a set of pre-
dictors (such as association rules) on a temporal dataset. A support map
m : [0,1] x [0,00] — [0,1] is a function mapping a minimum confidence
(probability of the predictions to be true) and a mazimum prediction range
(or size of prediction’s window) to a global support. The global support is the
percentage of events predicted by rules with a confidence greater or equal
than the minimum confidence, and a prediction range lower or equal than
the maximum prediction range. The main advantage of GSMaps over clas-
sical metrics (e.g. confidence or support) is to not require an arbitrary fixed
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window size as it is usually done in related literature. A GSMap can be rep-
resented as a two dimensional picture. Two GSMaps can also be compared
together.

The figure 6.1 shows a GSMap with uniform and logarithmic range axis.
The figure 6.2 shows the subtraction of two GSMaps. This type of figure
helps the comparison of sets of rules.

In order to compute the GSMap, the confidences of the rules to evaluate
need to be estimated. We need to estimate the confidence of the rules to
compute GSMaps. This estimation is an empirical probability; therefore,
the confidence of rules with a low number of uses cannot be accurately
estimated. Therefore, GSMaps are sensible to rules with a low number of
uses. In consequence, rules with low number of uses are discarded when

computing GSMaps.
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Figure 6.1: Three graphical representations of the same GSMap. (a) uses
a uniform scale for the range axis. (b) uses a logarithmic scale for the range
axis. (c) uses a uniform scale for the range axis with a multi-color map. It
is easy to read global tendencies when using a mono-color color map (see
(a) and (b)). It is convenient to read punctual support value when using a
multi-color map (see (c)).

The GSMap measure is interesting because it describes sets of rules (when
other measures describe only one rule), and because it does not need to have
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Figure 6.2: Difference of two GSMaps g1 and go. The higher is the value,
the better is the GSMap g1 in comparison to go. In this example, the set
of rules evaluated by g; it globally better than the set of rules evaluated by
go. In addition, the difference is especially important for confidences in the
interval [30%, 50%)] and for prediction ranges in the interval [50, 170].

references rules.

Property 6.1.2 Given a dataset d, a finite number of rules {r;}, and the
support map m of {r;} on d. Let r be the largest prediction range of the
rules {r;} i.e. r = max;(range,, ). The following property holds Vc,Vr' >
r,m(c, ") =m(c,r).

6.1.2 Computer generated dataset

Dataset generation

This section presents our symbolic time sequence dataset. We have con-
structed this dataset because of the lack of good symbolic time sequence
datasets available to evaluate and compare symbolic time sequence learning
algorithms. Most available temporal datasets are either too small to be used
or built from a pre-processed time series. The conversion from time series
to symbolic time sequences is a complex problem with no perfect solution.
In this last case, existing solutions bias the input data of symbolic time se-
quence learning algorithms in such way that it becomes difficult to compare
two techniques.

Moreover, as far as we know, there is currently no available symbolic time
sequence dataset associated with a ‘ground truth’. For a symbolic time se-
quence, a ground truth is not a set of the actual events to predict, but a set
of best possible predictions to do. With such a ground truth, it is possible to
evaluate how good an algorithm is, independently from any other algorithm,
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and even with patterns with low confidence/support. If the dataset contains
a large enough number of different patterns with various complexities, it be-
comes possible to analyze precisely the robustness, completeness and power
of expression of any algorithm.

Based on these observations we decided to build a dataset, with a large
number of different patterns with various complexities (the patterns are
documented), with various levels and types of noises, with a record of the
best possible predictions, and with a tool for automatically evaluate the
various metrics of a given set of predictions.

This computer generated dataset provides a powerful tool for temporal data
mining and temporal learning algorithms.

The dataset is divided into 100 parts. Each part is constructed in this
following way: The algorithm randomly generates a temporal association
rule (structure and metrics) called reference rule. The confidence is chosen
between 60% and 90%, the support is chosen between 40% and 90%, the
number of conditions is chosen between 1 and 4, the number of uses of the
pattern is chosen between 1000 and 50000. The ratio of noisy events/useful
events is selected between 0% and 1000%. Several types of noise are con-
sidered: A noise non-correlated with the pattern, as well as noise with dif-
ferent types of correlation with the pattern. Next, the algorithm generates
a dataset’s part with the selected rule and parameters. This process is a
heuristic, and the metrics of the rule need to be re-evaluated on the gener-
ated part. The generated part contains an infinite number of temporal rules
(e.g. a dataset where the reference rule is A - - B — (' also contains the rule
B — C with a lower confidence). However, the generative algorithm guar-
anties that the reference rule is the rule with the highest score according to
Equ. 6.3.

Every part is divided into two sub-parts in order to perform cross valida-
tion. In addition, the dataset contains (for every part) a list of reference
predictions i.e. a ‘ground truth’. These predictions are (with a small error
rate) the best predictions that can be expected to do. We use the Mersenne
Twister pseudo-random number generator as source of randomness for the
patterns and additional noises. Fig. 6.3 shows three examples of patterns of
the dataset.

The fig. 6.4 shows a sample of the html document which describes each part
of the dataset.

The dataset is available online (Guillame-Bert, 2011). A Python script is
provided to automatically compare user predictions (the predictions from the
set of rules you want to evaluate) with reference predictions. Fig. 6.5 shows
a screen-shot of the script’s interface. The script computes the confidence,
support and temporal precision of the user and reference predictions. In
addition, it computes ratio of measure and normalized measures (see defini-
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Figure 6.3: Three example of patterns of the computer generated dataset.

tion is previous section). It also computes various analyses of the predictions
such as relations between predictions, confidence and several measure of the
complexity of the dataset. The output report is also presented as an Html

page.

Learning evaluation

We apply our algorithm for 60 seconds on each part of the dataset. We
applied the Minepi (Mannila et al., 1997) until it reaches the fourth loop.
The time bound is fixed to 100s and the window sizes parameter is fixed to
all integer between 1 and 100 i.e. 1,2,3,---,99,100. The algorithm is run
one time for each of these values and the results are combined.

We applied the Face (Dousson and Duong, 1999) algorithm until it stops.
On every part of the dataset, the FACE is run ten times with the pMin
parameter fixed between 0.1 and 1 i.e. pMin € {0.1,0.2,0.3,---,0.9,1}.
The algorithm is run one time for each of these values and the results are
combined.

The running time of our algorithm took a couple of minutes on a multi-
threaded machine. Face and Minepi algorithms took several days.

Each generated rule is scored according to score defined in section 6.1.1.3.
Since each part of the dataset is based on only one temporal rule (called a
reference rule), and because the temporal distribution of this rule is always a
uniform distribution, the reference rule is guaranteed to be the rule with the
highest score in a given part of the dataset. Therefore, for each algorithm,
we only keep the best learned rule (according to the score) from each part
of the dataset.

The cross validation is performed in the following way: (a) We extract rules
for each part of the dataset (b) We select the rule with the highest score. (c)
Finally, we evaluate the rule on another part of the dataset that contains the
same pattern. We know the exact patterns (reference rules) for each parts
of the dataset. The ranges of rule predictions are normalized to the ranges
of the reference predictions in order to compare supports and confidences
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Sub part name : part_59
Events

Number of events to predict : 1908
Time range of dataset : [0, 10000 ]
Density of events to predict : 0.1908
Number of different symbols : 20
Patterns

Number of patterns : 1
Maximum future of prediction : 10.0000
Temporal precision : 3.0000
Maximum condition window distance : 20.0000
Maximum condition window size : 10.0000
Number of conditions : 2
Noise

Maximum ratio number of noise events/number  0.1000

of events to predict :

Symbols noises ratio: a:0.0000, b:0.0214, ¢:0.0117,
d:0.0338, €:0.0952, £:0.0929,
£:0.0305, h:0.0535, 1:0.0545, j:0.0380,
k:0.0019, 1:0.0822, m:0.0004,
n:0.0185, 0:0.0880, p:0.0115,
q:0.0443, r:0.0795, s:0.0838, t:0.0592

Probability of type 0 noise : 50.00%
Probability of type 1 noise : 50.00%
Probability of type 2 noise : 0.00%
Type 1 and 2 noise probability parameter : 30.00%
Rule random signature : 0,1

Average of all cross-validations

Total number of events : 6427

Symbols (+number of occurrences) : a:1621, b:24, c:13, d:39, e:111,
£:1863, g:35, h:62, i:63, j:44, k:1, 1:96,
m:0, n:21, 0:102, p:13, q:51, r:93,

$:2106, t:69
Patterns :
f———%a [70.10%]
< [-12.7,-7.2] + [5.1,7.6] confidence : 70.10%

support : 60.31%
number of use : 1630
standard deviation : 0.7161
number of conditions : 2

Cross-validation 1 ( part_59_1 )

Total number of events : 5444

Symbols (+number of occurrences) : a:1343, b:21, c:11, d:33, e:95, £:1585,

g:30, h:53, i:54, j:38, k:1, 1:82, m:0,
n:18, 0:87, p:11, q:44, r:79, s:1800,

t:59
Patterns :
{——————%2a [68.86%]
< [-12.7,-7.2] + [5.1,76] confidence : 68.86%
support : 60.39%
number of use : 1352
standard deviation : 0.7161
number of conditions : 2
Cross-validation 2 ( part_59_2 )
Total number of events : 7422
Patterns :
f———a [71.33%]
s [-12.7,-7.2] + [5.1,76] confidence : 71.33%
support : 60.24%
number of use : 1908
standard deviation : 0.7161
number of conditions : 2

Figure 6.4: Sample of the html description provided for the part 59 of the
dataset.
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evaluatePrediction.py
by Mathieu Guillame-Bert

PhD Student - INRIA Rhdne Alpes
Mail : mathieu.guillame-bert@inrialpes.fr
Web site : http://www-prima.imag.fr/guillame-bert

User predictions directory :

dataset_refPred/

Reference predictions directory :

dataset_refPred/

Events directory (optional) :

dataset/

Dataset descriptions directory (optional) :

dataset_desc/

Output report :

report.html

MNumber of full repert (-1 for all reports) :

10

Start analyse
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Figure 6.5: Screen-shot of the comparison script interface.

(called normalized support and normalized confidences).

Table 6.1 shows the average ratio between the normalized confidence, nor-
malized support, average range and number of predictions of the learned
rules and the confidence, support, average range and number of predictions

(n.o.p.) of the reference rules.

Table 6.1: Evaluation of Titarl, MINEPI and FACE algorithms on the
computer generated dataset. The table shows the average of the ratio meas-
ure/reference measure for the normalized confidence, normalized support,

average range and number of predictions.

algorithm Normalized Normalized av. range n.o.p.
confidence support /reference /reference
av. range n.o.p.
Face 0.49 0.71 16.29 2.21
Minepi 0.51 0.78 3.75 1.43
Titarl 0.90 0.99 2.09 1.11
Reference 1.00 1.00 1.00 1.00

Minepi gives a slightly better normalized confidence and normalized support
than Face. We also observe that our algorithm outperforms Minepi and Face
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on normalized confidence and normalized support. Minepi prediction ranges
are far better than Face prediction range. Our algorithm outperforms Minepi
and Face on prediction range.

6.1.3 Home dataset
Dataset presentation

The ‘Home activities dataset’ created by Tim van Kasteren et al. (van
Kasteren et al., 2008b) is a record of 28 days of sensor data and activity an-
notations about one person performing activities within an apartment. An
apartment is equipped with sensors on doors, cupboard, fridge, freezer, etc.
Activities of the person are annotated (prepare breakfast, dinner, having a
drink, toileting, sleeping, leaving the house, etc.). The dataset is divided
into two categories: sensor events (start_sensor_fridge, end sensor_fridge,
start_sensor_frontdoor, etc.) and change of activities (start_action_get_drink,
end_action_get_drink, start_action_prepare_dinner, etc.). S is composed of 24
states describing the time of the day (it_is_lam, it_is_2am, it_is_3am, etc.). In
this experiment, the algorithm is applied in order to predict activity change
events according to sensor events and states describing the time. F contains
42 types of events and 2904 occurrences of events. We expect to observe
patterns in the person’s activity.

Remark on learned rules

We apply our algorithm to the dataset. The algorithm is executed for 120
seconds for every type of event to predict. The confidence, support and
prediction range of rules depend of the kind of activity to predict.

While actions such as sleeping or using the bathroom are fairly well explained
(relatively high confidence, support and low prediction range — see fig. 6.6),
actions such as getting a drink or leaving the house cannot be explained with
high confidence, high support and low prediction range at the same time.
Fig. 6.6 shows the global support maps of different types of actions for our
technique.

As an example, fig. 6.6 shows that we can predict all of the uses of bath-
room with at least 58% confidence and a temporal precision of less than
100 seconds, or with 100% confidence and a temporal precision range of 400
seconds.

The algorithm extracts rules of different complexity. For example, the dir-
ect implication between the use of the toilet flush and the action of using
toilets (fig. 6.7.a - confidence: 92%, support: 82%, prediction range: 220
seconds and standard deviation: 46 seconds), or the use of the front door
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Figure 6.6: Global support maps for the ‘Home activities dataset’
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and the action of leaving the flat (fig. 6.7.b - confidence: 51%, support:
100%, prediction range: 50 seconds and standard deviation: 11 seconds).

More complex rules are based on several conditions. As an example, the
action of going to bed is predicted with a 100% confidence, 66% of the time
by the rule represented on fig. 6.7.d. Some other examples of complex rules
are presented in fig. 6.7.

GSMap comparison with other techniques

The dataset is divided into two parts of equal sizes. We apply our algorithm,
the Face algorithm and the Minepi algorithm to the first part, and evaluate
the results with the second part. Our algorithm is applied for 120 seconds.
Face and Minepi are applied until they stop. Since the number of rules
generated by the Minepi algorithm is too large to be analysed, we only keep
the 10000 rules with the highest scores.

The fig. 6.8 shows the average GSMaps of the rules learned with the Face,
Minepi and our algorithm. The figure 6.9 shows the subtraction of these
GSMaps. Table 6.2 shows the statistics of the subtraction of these GSMaps.

We observe (fig. 6.9 and table 6.2) that globally, Face is more efficient than
Minepi: With the same confidence and range constraints, Face explains an
average of 41% more of events than Minepi. Titarl (our technique) out-
performs both Face and Minepi algorithms: With the same confidence and
range constraints, Titarl explains an average of 10% more of events than
Face and 51% more of events than Minepi.

) 220 s 00 il 0 . . (a)
start sensor toilet flush =~ sart action use toilet
conf:92% supp:82%

-50 -25 -0 (b)
start sensor frontdoor start action leave house

conf:51% supp:100%

- 0
end sensor groceries cupboard % start action prepare Breakfast ©

conf:42% supp:77%

end sensor Hall Bedroom door % start action go to bed (d)

2JONES I 0 conf:100% supp:66%

start sensor hall toilet door - +

start sensor plates cupboard E start action prepare Breakfast (©

end sensor groceries cuppoard ——————————— >+ conf:100% supp:77%

-50 25 ! -0 f)
start sensor frontdoor start action leave house (

0 conf:80% supp:100%

end sensor hall bathroomdoor — > (neg)
g
end sensor fridge (neg)

hour 19 (neg)

Figure 6.7: Example of learned rules from the HomeDataSet (experiment
2)
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Figure 6.9: Subtraction of the GSMaps of the Face, Minepi and our al-
gorithm. Each cell represents the GSMap of the algorithm X (written on
left column) minus the GSMap of the algorithm Y (written on the top line).
A positive support value z means that given the same confidence and range
constraints, the algorithm X predicts more events than the algorithm Y.
The given value is a difference (and not a ratio) e.q. if one technique as
a support of 50% and the other technique as a support of 100%, then the
difference is 50%.

Remark 6.1.3 The given percentage represents means of differences of global
support. If the techniques A and B have respectively a global support of 50%
and 100%, the B explains +50% of events than A.

Fig. 6.10 shows the evolution of the average of the GSMap for the Titarl
algorithm according to training time. Most of the actions can be explained
with the trivial rules learned during the first loop (spike at time = 2). Next,
the rules are refined and the metrics are improved until they stabilize.

Best rule comparison with other techniques

For this comparison, we use the set of learned rules from the previous com-
parison. Next, each generated rule is scored according to score defined in
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Table 6.2: Statistics of the subtraction of the GSMaps display in fig. 6.9.
The ‘strict pos.” is the percentage of the global support strictly greater than
0. The GSMaps are computed with a prediction range between 0s an 500s
with 100 x 100 cells.

Y . . Titarl
Face Minepi ]
X (Our technique)
mean 1 41.65% mean : -15.83%
median 1 47.33% median : -9.82%
Face std 1 17.51% std : 17.68%
strict pos. 1 97.70% strict pos. : 26.84%
mean 1 -41.65% mean : -57.42%
3 3 median 2 -47.33% median : -59.59%
Mlnepl std 1 17.51% std : 12.20%
strict pos. : 1.72% strict pos. : 1.78%
s mean : 15.83% mean : 57.42%
Tltarl median : 9.82% median : 59.59%
: std : 17.68% std : 12.20%
(Our teChnlque) strict pos. : 73.16% strict pos. : 98.22%
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Figure 6.10: Evolution of the GSMap average with the training time i.e.
the curve shows the average (on the different actions) of the average (for a
given GSMap) of the GSMaps according to the training time.

section 6.1.1.3. For each algorithm and each type of event to predict, we
only keep the rule with the highest score (called the ‘top rule’).

Table 6.3 shows the ‘log score/confidence/support /average range’ of the top
rule for each algorithm and each type of event to predict. We only display
result for actions that occur at least 10 times in both the learning and
evaluation dataset.

As expected (see section 6.1.1.3), the top rules have relatively low support
and prediction range. Minepi gives a higher confidence than Face (57%
vs. 36%) and more precise range (6.25s vs. 18s) but Face gives higher
support (60% vs. 11%) than Minepi. Our (complete) algorithm gives a
higher confidence than Face and Minepi.
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Table 6.3: Evaluation of our algorithm, Minepi and Face algorithms on the
Home activities dataset. Each cell contains the log score, the confidence,
the support and the average prediction range of the best rule (rule with
the highest score). Example: The best Face’s rule for predicting going to
bed’ has a log score of 6.02, a confidence of 30%, a support of 54% and a
prediction range of 30 seconds.

‘ Action ‘ Face ‘ Minepi ‘ Titarl ‘
go to bed 6.02 30% 54% 30 | 7.47 75% 15% 5 | 6.42 100% 8% 9.50
leave house 5.84 25% 79% 30 | 5.69 55% 5% 5 6.05 75% 11% 9.63
prepare Breakfast | 8.01 70% 50% 10 | 7.05 67% 10% 5 | 8.15 100% 40% 10.0
use toilet 6.53 20% 44% 2 | 4.25 32% 14% 10 | 6.38 76% 48% 9.59

| Average \ 36% 60% 18 | 57% 11% 6.25 | 88% 27% 9.68 |

State comparisons

In the previous evaluation, we were focused on predicting events describing
beginning and ending of actions or states. For examples, events such as
‘going to bed’ and ‘leaving bed‘ define the state of ‘sleeping’. With such
events and for every time point, we can compute the probability for the
person to be in a given state. The fig. 6.11 shows example of conversion
from events to states.

In this experiment, we use the beginning and ending predictions of actions
to compute the probability for the person to be in any of the possible states.
For example, if at a given time, the probability for the person to sleep is
100%, and if we predict that the person wakes up with 70% chance, then
the probability for the person to sleep becomes 30%, and the probability
for the person to be awake becomes 70%. We evaluate our predicted states
with the cross validation protocol.

In real applications, the cost of a temporal imprecision is generally propor-
tional to the duration of the state to predict. For example, having a 1 minute
error on predicting a 2 minute state is worst than having a 1 minute error

Begin State 1 | |
End State 1 |
Begin State 2 | |
End State 2 | |

State 1 I I |—|
State 2 |_| |—|

Figure 6.11: Example of conversion events <> states
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on predicting a 2 hours state. In this case, evaluating the states instead of
the beginning and ending events is meaningful. In the home dataset, actions
with long durations are ‘sleeping’ and ‘being out’.

Table 6.4 shows the precision and recall for the prediction of sleeping and
being out.

Table 6.4: Precision and Recall of the prediction of the person long duration
states

State Precision Recall

Sleeping 97.97% 99.03%
Being out 97.23% 96.74%

Since the ‘going to bed’ and ‘leaving bed‘ events were well predicted (see
fig. 6.6), it is not a surprise that the precision and recall of sleeping are high.
The interesting fact is that, even if the ‘leaving home’ and ‘entering home*
events were not as well predicted as ‘going to bed’ and ‘leaving bed* (see
fig. 6.6), the precision and recall of 'being out’ are equally high.

Table 6.3 shows that the score is favoring rule with low prediction range (all
the top rules have a prediction range lower than 30s).

6.1.4 In office people motion prediction
Dataset presentation

The MERL Motion Detector Dataset created by Chris Wren et al. (Wren
et al., 2007) is a one year record of over 200 infra-red proximity sensors
placed in the MERL (Mitsubishi Electric Research Labs) office building.
The sensors are ceiling mounted every two meters in the public places of
the building (corridors, lobbies and meetings rooms). They are arranged
such that there is no overlap into their different fields of view. The fig. 6.12
shows the floor plan of the building. The fig. 6.13 shows the location of the
infra-red proximity sensors.

Each time a person walks in front of a sensor, it records a time sampled
event sy[t], where n is the sensor id and t is the current time. In addition
to proximity sensor events, the dataset contains information such as the
weather, the list of meeting, the fire department visits, etc. In this experi-
ment, we are only using the proximity sensors data. The dataset is divided
into several sequences. We are using the first sequence (‘0114’ sequence).
This sequence contains around 4 500 000 time sampled events and 147 types
of events.
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Figure 6.12: Plan of the building. The observed areas are shaded.

Learning

Our experiment on the dataset is inspired from the following idea: When
people are in corridors, they are usually walking (people tend to sit or stand
in offices and walk in corridors). Therefore, if a corridor sensor s fires, and
if we suppose that the person that triggers the sensor is walking, then one of
the neighbor sensors of s will fire in the following seconds. This rule is true
if the person is not entering a space which is not cover by sensors (private
offices, toilets, etc.). The fig. 6.14 illustrates this idea.

The goal of the experiment is the following one: We learn the temporal
correlations between the sensor events, and we expect to be able to construct
a topological representation of the building from those rules.

We are using Titarl to learn temporal rules between sensor events. To avoid
learning rules that bond temporally and spatially distant sensors, temporal
intervals are restrained to be contained in [—5,0]. The minimum confidence
and minimum support is respectively fixed to 25% and 5%.

Since the dataset is quite massive, the first loop can take almost a minute.
The algorithm is run for 50 seconds once the first loop is achieved.

The topological graph is constructed as following: A node is created and
labelled with each of the proximity sensors. For each learned rule r with a
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Figure 6.14: Illustration of the correlation between sensors.
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head symbol head, and first condition symbol symbol
between the nodes head, and symbol

an edge is added

cond,’

cond*

Result

During the learning process, around 1200 rules are extracted. The topolo-
gical graph contains 146 nodes and 425 edges. An example of unit rule from
the first learning is given in the fig. 6.15. Simple rules tend to correlate
symbols of spatially close sensors. An example of complex rule from the
second learning is given in the fig. 6.16. Complex rules tend to be ‘chains’
of aligned sensors. The fig. 6.17 shows the topological graph. The fig. 6.18
shows the topological graph superposed to the building plan. Except for the
connections between the sensors 426, 423 and 424, all the structure of the
building is captured. The analysis of the dataset shows that rules between
426, 423 and 424 have confidence lower than 25% (the limit chosen in the
experiment).

-—L

0.01 1.76 5
start 327 * start 326

conf:61% supp:59%

Figure 6.15: Unit rule between two neighbor sensors. The sensors 327 and
326 are neighbours.

e —
151 325 5
Start 320 m— (1 326

5 275 -0.509 conf:81% supp:39%

el s s Start 330 +
+

35 -1.76 -0.01

start 340

Figure 6.16: Complex rule between aligned sensors. The sensors 340, 330,
329 and 326 are aligned in a corridor. Therefore if a person activates the
sensors 340, 330 and 329, there is a high probability for the sensor 326 to
be activated.
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Figure 6.17: Topological graph of the Merl buidling.
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Figure 6.18: Topological graph of the Merl buidling aligned with the plan
of the building.
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6.1.5 Foreign exchange market trading
Stock exchange markets

A stock exchange market is a market used by traders to exchange products
such as shares, bonds, warrants, index funds, currencies, oil, etc. In these
markets, the selling/buying prices (also called ask/bid prices) are automat-
ically calculated according to the supply and demand (the buying price is
always higher than the selling price). The difference between the buying
price and the selling price is called the spread. Since the value of goods are
constantly changing, the goal of the brokers is to buy products at low price,
and resale them later at higher price. The work of a trader is to forecast
the evolution of the product prices.

Traders are either professional workers in financial institutions or individual
investors. Professional traders invest their company money, while individual
investors use their own resources. Trader’s predictions are based on market
observation, market knowledge and the world news.

A large panel of theories and tools has been developed to assist the traders.
Two families of tools can be distinguished: (a) The information systems
that produce more or less complex signals and alerts interpretable by the
traders and (b) The automated or robotic traders that directly send buy/sell
orders.

Tools from both families need precise parameter tuning. Therefore in the
case of automated trading, a human trader should still be present to adjust
the parameters of the automated trader.

Forex

The Foreign exchange market (Forex) is a type of stock exchange market
where traders trade currencies (e.g. US Dollars, Euros, Yen, etc.).

This market is the largest market in the world in term of money transaction
(approximately $4 trillion are exchanged every day). The market is open
all week, it has a high liquidity (the difference between selling and buying
price is small), and it has not fixed cost by order. This market is especially
sensitive to employment reports, economic forecasts, economic reading and
banks activities.

Since currencies are bonded to countries (or groups of countries), values of a
currencies are correlated to countries’ stability, the countries’ resources, and
the countries’ interest rate. The fluctuation of exchange rate between curren-
cies depends on the value of each currency individually. These fluctuations
are generally small, and traders need to use leverage to make significative
gains.



116 Chapter 6. Experimental evaluation

The leverage is the borrowing of a large amount of money, to invest it in
a pair of currency, resale the pair, and reimburse the ‘loan’. This opera-
tion allows traders with small amount of money to make reasonable benefit.
Leverage increases the benefit but also increases the losses. The Forex op-
erators (brokers) erquire a guarantee for the loan (the loan is between 50x
and 400x). If the lost of an order exceeds the guarantee, the broker closes
the order, takes back the loan, and the trader looses the guarantee. This
approximate description gives an idea of how leverage works.

The next example shows a detailed Forex buying transaction.

Example 6.1.4 Consider the ask (asking price) of the EURUSD to be 1.33075
(i.e. 1 Euro gives 1.33075 Dollars). A trader predicts that the EURUSD
will increase, therefore he buys 100 000€ for $133 075. With a leverage of
100, the trader has to give a guarantee of $1 330.75. Thirty minutes later,
the bid of the EURUSD is 1.33198. The trader sell its 100 000 € for $133
198. He reimburses the $133 075 loan. At the end of the operation, the
trader has won $111 = $133 198 - $133 075.

The fig. 6.19 shows an example of a (selling) transaction.

Forex exchange rates are updated in real time (up to the micro second for
(automated) high frequency trading). In order to be used by humans, the
exchange rates are discretized (usual discretization periods are lmn, 5mn,
15mn, 30mn, 1h and 4h). Most traders use 30mn or 1h periods. The orders
of human traders generally have duration of a couple of hours.

Traders use indicators (or indexes) to understand the situation of the market
(SMA, MACD, etc.). Basic indicators are presented in the next section.
Trader can also be assisted by Information Systems. Such systems give
indications and alerts on the probable evolution of the exchange rates.

Figure 6.19: Example of Forex transaction with positive profit
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On the other hand, fully automated trade systems are computer programs
that send buying and selling orders automatically. Such programs are gen-
erally based on production rules such as:

Buy - When the 30-day moving average (MA) crosses above the 60-day MA
Sell - When the 30-day MA crosses below the 60-day MA

Stop - Maximum loss of 10 units

Target - Target of 10 units

The work of the trader is to configure the parameters of the program. Auto-
mated trade systems are widely used, especially by large financial institu-
tions (in 2006, 25% of Forex orders where generated by fully automated
trade systems). The fact that a trader is using an automated trade system
is generally known, but the rules used by the system are kept secret.

High-frequency trading is a special kind of trading made by automated
traders. This kind of trading is very fast (orders can be as short as 10
milliseconds) and produces a large amount of order (millions of simultan-
eous orders). Such a trading system tries to spot increases or decreases of
rate before the other actors of the market.

Because of the high update frequency (large dataset), direct outcomes, and
complexity of the problem, the Forex is one of the great challenges for ma-
chine learning. Many techniques have been applied to Forex trading problem
to produce Information Systems and Fully automated traders. These include
Neural network (Gan and Ng, 1995; Yao and Tan, 2000), Support vector ma-
chines (Cao and Tay, 2001; Kamruzzaman et al., 2003) and Evolutionary
algorithms (Myszkowski and Bicz, 2010; Dittmar et al., 1996; Connor and
Madden, 2006). The paper (Atsalakis and Valavanis, 2009) is a summary
and analysis of more than one hundred articles dealing with Forex forecast-
ing with Neural Networks.

In this experiment, we designed an automated trade system based on the
Titarl algorithm. The experiment has two goals. The first goal is to evaluate
the capacity of the Titar leaner to deal with a large dataset (we use a 3 years
record of the EURUSD (Euro/US Dollars) exchange rate with a 30 minute
sample period). The second goal is to evaluate the ‘profit’ and the ‘risk’
of the automated trade system. The next section presents the experiment
setup, report and discusses the results.

6.1.5.1 Experiment setup

For this experiment, we use a record of three years of the EURUSD ex-
change rate sampled approximately every minute (from June 5 2008 to June
5 2011). From the dataset, we extract ‘trends’ (see definition below). We
compute three basic indicators (MACD(12,26,9), SMMA(14) and Awesome
— see definitions below) with a 30 minute window size. The signals of the
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indicators are discretized with two types of states (X-is-greater-than-Y and
X-is-lower-than-Y) and two types of events (X-becomes-greater-than-Y and
X-becomes-lower-than-Y), where X is an indicator and Y is a fixed value.
Next, the record is split into three 1 year long parts. The first part of the
dataset is used for the learning (June 5 2008 — June 5 2009), the second
part is used for the over training analysis (June 5 2009 — June 5 2010), and
the last part is used for evaluation (June 5 2010 — June 5 2011). We use
the Titarl algorithm to learn and predict the future trends according to the
discretized signals.

Definition 6.1.5 A Moving Average (MA) is a finite impulse response fil-
ter (i.e. the response is computed from a finite set of sample) used to smooth
out small fluctuations. It is computed as an average of the last N values of
a signal (or from N wvalues sampled with a window size in the case of con-
tinuous signal). By convention, MA(N) is a moving average based on the
last N values.

The Simple Moving Average (SMA) is a moving average where the last N
values have the same weight. If v; represent the i value. The SMA at
time i is SMA; = vi+vi_1+vi_2j\jm+vi7(]\771). The fig. 6.20 gives an example
of SMA.

With the same convention, the Exponential Moving Average (EMA) is
defined as EM Ay = vy and EMA; = av; + (1 —a)EM A;_1 with o = NL_H
The SMoothed Moving Average (SMMA) is an EMA with different at ini-
tialization. Additionally, the N parameter of the SMMA (written Ngnrara)

is defined as Ngppra = % with Ngayra the N parameter of the EMA.

Definition 6.1.6 A Moving Average Convergence Divergence (MACD(X,Y,Z))
index is composed of two output signals. The first one is the difference

Exchange Rate

_ — —  Simple Moving Average (SMA)

>
>

Figure 6.20: An example of signal, and the simple moving average (SMA)
on this signal.
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between an EMA(X) and an EMA(Y) of the exchange rate. The second one
is an EMA(Z) of the first output signal.

Definition 6.1.7 The Awesome index is the difference between a SMA(5)
and a SMA(34). These SMAs are computed from the ‘middle points’ of the
exchange rate. Given a signal and a window, the middle point is the average
of the highest value and the lower value of the signal in this window.

Definition 6.1.8 A trend is a tendency of the exchange rate to increase
(upward trend) or decrease (downward trend) from a time scale (from dec-
ades to minutes).

In this work, we characterize trends with four parameters: A direction (up-
ward or downward), a beginning time, a duration and a gradient.

There is an upward trend between times ¢; and t5 (the duration of the trend

is tg — t; > 0, and the gradient is %ﬁtl) > 0), if the value v(¢) of signal
t—t1

a time ¢ € [t1,15] is always greater than v(t1) + (v(t2) —v(t1)) =1

Symmetrically, there is a downward trend between times ¢ and ¢ if the value
v(t) of signal a time ¢ € [t1, t2] is always lower than v(t1)+(v(t2) —v(t1)) L=

to—t1 "
v(ti)::(h) <0.
2—t1

In this experiment, the duration and gradient of the trends are limited to
pre-defined sets of values. Several trends can occur simultaneously, but
we avoid having overlapping trends with similar durations and gradients.
We use a greedy algorithm to extract trends from the exchange rate sig-
nal. For every possible durations and gradients, we associate a symbol e.g.
‘start_upward_trend_grad_is_X_duration_is_Y’. The fig. 6.21 gives an example
of upward and downward trends.

In this case, the gradient is

: downward trend

1upward trend !
I

e

>

Figure 6.21: An upward an a downward trends.
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Often, Traders cannot spot trends from their beginning, but with some delay.
A late spotted trend can still generate profit if it is long enough.

In order to be able to use such trends, and because we configure the Titar
learner to do prediction in the future only, we extract and learn to predict
‘delayed trends’. The trends are delayed between 0% and 60% of their
duration. We associate a symbol to each type of delayed trend e.g.
‘start_upward_trend_grad_is_X_duration_is_Y _delays_Z’.

The final dataset contains:

e 264 601 exchange rate from the 1 minute samples
e 42 253 exchange rate from the 30 minute samples

e H98 076 discretized events and states

Fig. 6.22 shows 24 hours of signal, indicators and discretized events.

6.1.5.2 Results

The Titarl algorithm is applied in the first dataset (June 5 2008 — June
5 2009). The input events and input states are the discretized indicators.
The output (or target) events are the discretized trends. The learning uses
a logarithmic histogram bounds (the temporal precision decreases with the
temporal distance) selected such that the predictions are always in the future
(from O to 12 hours in the future). The number of conditions is limited to
eight. The minimum confidence is set to 30%, the minimum support is set
to 5%, and the minimum number of uses of the rules is set to 20. We run the
algorithm for ‘300 seconds + initialization time’ on every type of discretized
trend. The algorithm returns 886 343 rules. The repartition of the number
of conditions is given by fig 6.23. Fig.6.24 shows an example of a learned
Tita rule.

In the rest of the document, we will evaluate the profit of learned rules.
By writing convention, the average profit of a rule is the average profit of
the orders made by this rule. The gain and the risk of a prediction are
proportional to the initial investment and the leverage. Some automated
trading systems can select different initial investment. In our case, we are
set all the initial investment to be 100 000 money unit (called a lot). We are
also using a leverage of 100x, and we are supposing a spread of 1 pip (i.e. a
difference of 0.0001 between the buying price and the selling price) on the
EURUSD. These values are common values.

First try The confidences of the rules are estimated on the first part of
the dataset (June 5 2008 — June 5 2009). The average annual profits, annual
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Figure 6.22: Twenty four hours preview of signal, indicators and discret-
ized events of the EURUSD exchange rate.
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Figure 6.23: Repartition of the number of conditions for the Forex learned
rules.
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Figure 6.24: Example of learned rules that predicts the beginning of an
upward trend.

profits and number of orders are estimated on the second part of the dataset
(June 5 2009 — June 5 2010).

The fig. 6.25(a) shows the correlation between the number of orders of the
rules in the first and the second dataset parts. The fig. 6.25(b) shows the
correlation between the average annual profit of the rules in the first and the
second dataset parts. We observe a strong correlation between the number
of uses of rules from the first and second dataset (fig. 6.25(a)). However,
the average annual profits from the first and second datasets appear to be
decorrelated (fig. 6.25(b)). The fig. 6.26 shows the correlation between the
confidence of the rules, the average annual profits, the annual profits and the
number of orders. We observe a strong correlation between the confidence
of a rule, and the number of uses of this rule: Rules with low confidence are
applied more time than rules with high confidence (fig. 6.26(a)). However,
there is no correlation between the confidence of a rule, and the average
annual profits (fig. 6.26(b)). The average profits and average losses of rules
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Figure 6.25: Correlation (Average annuals profit and number of orders)
between the first and second datasets
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Figure 6.26: Correlation between the confidence, the average annual profit,
the annual profits and the number of orders of rules. Q1, Q2 and Q3 are
respectivly the first, second and third quantiles. The second quantile is the
median. D1 and D9 are the first and ninth deciles.



124 Chapter 6. Experimental evaluation

with high confidence are both higher than the ones of rules with low con-
fidence. There are no correlations between the confidence of a rule, and the
annual profits of a rule (fig. 6.26(c)). The annual profits and the annual
losses of rules with low confidence are higher than the ones of rules with
high confidence. Finally, the average profits, and the annual profits is close
to zero and slightly negative (fig. 6.26(b) and fig. 6.26(c))

This first try of the experiment is non-conclusive. The learned rules seem to
be globally over-trained (the confidence of the rule is globally uncorrelated
between the first and second dataset parts).

Second try In the second part of the experiment, we filter the over-trained
rules (learned from the first part of the dataset) with the second parts of
the dataset (June 5 2008 — June 5 2009 and June 5 2009 — June 5 2010).
The rules that are kept will be evaluated on the third part of the dataset
(June 5 2010 — June 5 2011).

Observations reveal that the predictions of some type of trends show a cor-
relation between the average profits on the dataset parts 1 and 2. The
figs. 6.27(a) and 6.27(b) show two trends with correlation. The fig. 6.27(c)
shows a trend with no correlation through the two datasets.

We propose two measures to characterize the correlation between the average
profits:

1. Given a set of rules predicting a given discretized trend, the first meas-
ure is the percentage of the rules with positive average profits in the
two dataset parts. Given a threshold «, we are keep trends with such
ratio greater than «. In addition, we are only keeping the rules with
positive average profits in the two dataset.

2. Given a set of rules predicting a given discretized trend, the second
measure is the square mean of the difference of average profits on the
two dataset. Given a threshold (5, we are keep trends with such ratio
lower than 8. In addition, we are only keeping the rules with positive
average profits in the two dataset.

We evaluate all the type of trends with theses two measures. We consider
several values for the thresholds of the two measures (from 0 to 1 for «, and
from 0 to 2 for S).

The fig. 6.28 represent graphically the experiment as well as the two meas-
ures to filter the rules.

Figs. 6.29(a), 6.29(b), 6.29(c) and 6.29(d) show the number of remaining
rules, the number of orders, the average profits and the annual profits of
the rules filtered with the first measure. Figs. 6.30(a), 6.30(b), 6.30(c) and



6.1. Temporal learning 125

500 400
(] o
5 0 5 200
3 S
2 . S
R s 0
=5 =8
—250 —200
-250 0 250 500 —200 0 200 400
profit/order 1 profit/order 1
(a) (b)
KX
300 s
(]
5 150 .
5 W
3 0 &° o 5‘-.' .
g s
& Yo |
-150 .;{‘_‘{“ o
—-150 0 150 300

profit/order 1

()

Figure 6.27: Correlation of average profits between the first and second
datasets for three different trends.

6.30(d) show the number of remaining rules, the number of orders, the av-
erage profits and the annual profits of the rules filtered with the second
measure.

For the first measure, the number of rules and the number of orders by
rule (approximately) decreases exponentially when the threshold « increases
(figs. 6.29(a) and 6.29(b)). The average profits and the annual profits
increase with « (figs. 6.29(c) and 6.29(d)). This profit is computed with the
third part of the dataset. The distances between quantiles of the average
profits are constant. With a = 80%, it remains 1186 rules with an average
profit by order of $480, the average annual profits of rules over the year is
$3061, and the average number of orders by year is 6.4.

For the second measure, the number of rules and the number of orders by
rule increases when the threshold [ increases (figs. 6.30(a) and 6.30(b)).
The average profits and the annual profits decrease with g (figs. 6.30(c)
and 6.30(d)). This profit is computed with the third part of the dataset.
With g = 0.4%, it remains 443 rules with an average profit by order of $194,
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Figure 6.28: Graphical representation of the experiment. The rules are
filtered according to their average profile on the years 2008 and 2009. The
two parameters (a and  of the filters are displayed.

the average annual profits of rules over the year is $2733, and the average
number of orders by year is 14.6.

6.1.5.3 Discussion

To demonstrate the scalability of the Titar algorithm, we apply our al-
gorithm to a large dataset.

We developed a simple methodology to convert time series of Forex records
into symbolic time sequences. This method is basic, exhaustive and non-
specific for Forex trading. Having a deeper knowledge of the Forex would
have certainly leaded us to design a more suitable method with better nu-
merical results. However, this simple method shows that our technique is
non-specialized and can be use in other domains.

We applied our learner and evaluate the result with a cross-validation pro-
tocol. We chose to split the dataset into three temporal continuous subsets
of one year each. The other option would have been to split the dataset
day by day (of week by week), and assign each day (or each week) to one of
the subset. Fig. 6.31 shows these two types of splitting. This second option
would have lead to more ‘uniform’ subsets. However, this would have also
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Figure 6.29: Number of rules, number of orders, the average profits and
the annual profits of the rules filtered with the first measure. Q1, Q2 and
Q3 are respectivly the first, second and third quantiles. The second quantile
is the median. D1 and D9 are the first and ninth deciles.
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Figure 6.30: Number of rules, number of orders, the average profits and
the annual profits of the rules filtered with the second measure. Q1, Q2 and
Q3 are respectivly the first, second and third quantiles. The second quantile
is the median. D1 and D9 are the first and ninth deciles.
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required to learn from data in the future in order to predict events in the
past.

Since the Forex changes over time, some of the rules that were true in 2008
are no longer valid in 2009 or 2010. We believe this is one of the reasons
for the absence of correlation between the confidence and the profit of the
rules learned in 2008 and evaluated in 2009 (first experiment). However, we
have supposed that some of the rules of the Forex are constant over time
periods longer than couple of years. This hypothesis has been confirmed by
the conclusive results of the second part of our experiment.

In conclusion, we developed a global methodology including preprocessing of
Forex record, cross-selection and cross-validation to evaluate our algorithm
to predict Forex market. The results are conclusive.

Continous year cross dataset |

(our option) part 1 | part 2 | part 3 |

year 2008 year 2009 year 2010

Continous week cross dataset | part 1 | part 2 | part 3 | part 1 | part 2 | part 3 | part 1 | part 2 | part 3 | part 1 |

week 1 week 2 week 3 week 4 week 5 week 6 week 7 week 8 week 9 week 10

Figure 6.31: Division of the dataset in three part with continuous years or
continuous weeks.
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6.2 Temporal planning

6.2.1 Robot in a simulated world

This experiment shows one of the possible uses of the planning algorithm
presented in chapter 5 and the learning algorithms presented in chapter 4.
We shows how a robot located in an (initially) unknown world, will learn
the rules of the world, and use this knowledge to achieve its goals. With the
Titarl algorithm, the robot has the ability to understand the world. With
the Titarl Planner algorithm, the robot has the ability to generate plans to
reach its goals.

In this experiment, we assume that the world is non deterministic (an event
cannot be predicted with 100% confidence), the world is inaccurate (pre-
dictions can only be made on time ranges and not on time points), and
the world has unpredictable processes running i.e. even if the robot does
not do anything, some events will still occur. By opposition to the usual
experiments in planning and scheduling, time is considered to be continuous.

The world is composed of three buttons, three lights and a treat dispenser.
The goal of the robot is to get treats. There are several mechanisms between
the buttons, lights and the treat dispenser. These mechanisms have different
levels of complexity and uncertainty. These mechanisms are unknown from
the robot. The hidden “rules” of the world are presented in the next section.
Fig. 6.32 is a visual representation of the problem.

Virtual world rules

The world is composed of three buttons (called bl, b2 and b3), three lights
(called 11, 12 and 13) and a treat dispenser (called treat). The goal of the
robot is to get as many treats as possible. The rules of the world are the
following ones:

Inputs Outputs

L1 TSN A Bl
~AED K
L2 ~PR & B
° NN
7 O~
L]

1@ ©® A B3
Iﬁl

Treat ' B d

Figure 6.32: Visual representation of the “Robot in simulated world” prob-
lem.
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e 79 : Thelights 11,12 and 13 flashes randomly with a respective average
of a flash every 50, 40 and 100 seconds.

e 11 : There is a 50% chance that a treat is given to the robot between
3 and 4 seconds after the button bl is pressed, if the button bl was
not pressed in the previous 20 seconds.

e 15 : There is a 90% chance that the light 12 flashes between 0 and
10 seconds after the button b3 is pressed, if the button b3 was not
pressed in the previous 2 seconds.

e r3: Thereis a 90% chance that a treat is given to the robot between
3 and 4 seconds after the button b2 is pressed, if the light 12 has flashed
in the previous 3 seconds, and if the button b2 was not pressed in the
previous 3 seconds.

The rule rg gives an external noise in the world that the robot cannot predict.
The goal of this external noise is to simulate the uncertainty of the real world.

This rule r; directly correlates an action to the reward. This rule is the
simplest rule that predicts treat. However, this rule has a low probability
(50%) and it cannot be used more than once every 20 seconds.

The rule r9 combined with the rule r3 can be combined to get a treat.
This combination is the best solution to maximize the number of treats.
These two rules are not perfectly accurate (ro and rs have respectively a
10 and 3 seconds range). The combination of these two rules is partially
similar to the example 3.9.1: The optimal plan is to trigger the rule rs,
wait for the light 12 to be activated (12 might never be activated), and
when (and if) 12 is activated, to trigger the rule r3. This combination is
especially complex because the robot has to wait for the light 12, but it has
no guaranties that it will actually happen. Such Meta-plan has optimally a
confidence of 81% = 90%90%. If the robot combines these two rules into a
plan (not a Meta-plan), then the resulting plan would have a confidence of
8.1% = 90% 90% 5=

The robot can also wait for the rule g to tiger the light 12, and use the rule
r3 to get a treat.

Robot cognitive policy

The robot cognitive policy is composed of two states: the exploration state
and the planning state.

Initially, the robot does not know the world and will only do random actions
at random times. The action to perform is chosen with a random uniform
selection through the possible robot actions. The amount of time the robot
waits between actions is also uniform random between 0 and 20 seconds.
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After a period of random acting, the robot analyses its behavior and the
behavior of the world with the Titarl algorithm. It extracts a set of Tita
rules and enters the planning state.

In this state, ten times a second, the robot builds and executes a linear
Meta Tita plan with the objective of getting food in the next 30 seconds,
based on the learned rules. The robot only stores the plan instances (the
robot does not store/keep in mind the all linear Meta-plan). The Meta-
plan is recomputed every time. This process is a simple architecture with
the ability to react to the uncertainty of the world e.g. if, while a plan
is executed, a new and better plan appears to be possible (because of the
external sources of randomness of the world for example), the old plan will
be replaced by the new one. This aspect is discussed in the conclusion of
the experiment.

Results of the experiment

Table 6.5 shows the duration, number of events, number of triggered rules
and number of treats of the exploration and planning phases of the experi-
ment.

Table 6.5: Duration, number of events, number of triggered rules and
number of treats of the exploration and planning phases of the experiment.
The abbreviation “N.o.” replace “Number of”.

Phase Duration N.o. events N.o. rule tigers N.o. treats
bl: 554 11: 211 rl: 183
Exploration 10000s b2: 622 12: 590 r2: 529 190

b3: 545 13: 258 r3: 99

bl: 0 I1: 98 «r1: O
Planning 5000s b2: 335 12: 375 r2: 365 301
b3: 365 13: 117 1r3: 335

The figures 6.33 and 6.34 present respectively a sample the record of the
exploration and planning phases. The events trigger_rl, trigger_r2 and trig-
ger_r3 represent the triggering of the rules rl, r2 and r3. Of course, the
robot does not have access to these signals.

During the experiment, the confidence spread is fixed to 5. Reducing this
parameter will produces smaller Meta-plan but will possibly “miss” some
solutions. A confidence spread of 5 produces Meta-plans too large to be
printed. Therefore, we will use a confidence spread 1 for the following fig-
ures. As expected, we see experimentally that, the Meta-plans built with
a confidence spread of 1 gives less efficient plan that the ones built with a
confidence spread of 5. However, the results (number of treats, structure of
the graph, etc.) are still close enough to be presented.
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Figure 6.33: Extract of the exploration phase.

Figure 6.34: Extract of the planning phase.

The fig. 6.35 shows one of the Meta-plans generated during the planning
phase. The fig. 6.36 shows the linear Meta-plan extracted from this Meta-
plan.

Conclusion

The first observation about the experiment is that the robot successfully
understood the hidden rules of the world, and it successfully uses them
to get treats. Second, the robot did not extract the exact rules of the
world: The negative parts of the conditions of the rules r» and 73 are not
correctly understood. However, the robot reaches its goal with the learned
approximate rules. The analysis of the rules learned by the robot shows
that the negation of the rules ro and r3 are actually detected but the time
intervals associated with the conditions are not correctly estimated. Because
of this incorrect estimation, the rules with negations have low confidence and
are discarded by the planning algorithm.

Other simulations with longer exploration phase or with less activation of
the rule 7y (external random source) shows that the robot can actually
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Figure 6.35: Representation of the (non linear) Meta-plan built with a
confidence spread of 1. The graph is too large to be detailed on a page, the
main interest of this figure is to show the global structure of the graph. The
relative and absolute constraints are not displayed.

treat conf: 95%
[11.5,38.5]

b3
[8.5,12.4]

conf: 88%
b2
[10.5,34.6]

12
[10.5,34.6]

12
[10.5,34.6]

S~—— -

Figure 6.36: Representation of the linear Meta-plan built with a confidence
spread of 1. Goal was to produces ‘treat’ in the interval [8.5,38.5] when the
current time was 8.5 (No actions cannot be done before 8.5). The global
confidence of the Meta-plan is the product of the nodes’ confidences i.e.
95% - 88% = 84%.
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correctly learn the negations of the rules ro and r3 with larger or less noisy
training examples. This is an example of how an approximate/incorrect
representation of a system (the rules are not perfectly learned) can still be
good enough to accomplish some goals.
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This thesis addresses two challenges from two distinct domains of Computer
Science.

The first challenge, which part of the Data Mining domain, is to define tem-
poral pattern models (models able to describe temporal processes) and to
develop algorithm able to extract (or learn) these patterns from sets of ob-
servations. The core of this challenge is for the models and the algorithms to
be respectively efficient in describing temporal processes, and to be efficient
in extracting these temporal patterns.

The second challenge is part of the Planning and Scheduling domain. Sup-
pose a theoretical world described by rules. The second challenge is to
automatically build plans that will lead to desired states in this theoretical
world.

7.1 Contributions

The outcome of this thesis can be summarized with four main contributions:

e First, we introduce a new temporal pattern model for temporal as-
sociation rule. We called this pattern Tita rules (or Titar). This
pattern model can express both uncertainty and temporal inaccuracy
of temporal events. Among other things, it can express the usual time

137
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point operators, synchronicity, order, and chaining, as well as temporal
negation.

e The second contribution is the development of an efficient learning
algorithm for Tita rules in large and noisy time sequences.

e Since Tita rules can describe imprecise and inaccurate phenomena,
usual planning algorithms and planning grammars are not suited to
deal with phenomena described with Tita rules. Our third contribu-
tion is the introduction of a grammar to express temporal plans based
on Tita rules. We called this grammar Meta Titar Plan.

e The last contribution is the development of a planning and schedul-
ing algorithm that automatically build Meta Titar Plan from a world
described with Tita rules.

7.2 Impact and Perspectives

The main work of this thesis was to propose a novel technique to represent
and learn temporal patterns. The core problem of temporal learning (the
Temporal Constraint Selection problem) has been identified, and an efficient
solution was proposed and successfully evaluated on several of our domains
of interest. The learning of temporal patterns has a large number of possible
direct and indirect applications:

First of all, it is a powerful tool to analyze and understand complex stochastic
processes. Examples of such processes are automated fault prediction and
detection: In complex systems, each component has a certain probability
to fail. Moreover, the probability of each component to fail is correlated
with the use of the system and the behavior of other components. In the
case of large, complex and critical systems, being able to locate and predict
components fails is essential.

Second, temporal learning can be use to automatically build models, and use
these models to predict/infer future/hidden phenomena. For examples, De-
cision aids tools for human biology: The human body is by nature extremely
complex to understand, and it seems to be subject to a large amount of ran-
domness from a physician point of view. In this case, temporal learning
can be used to analyze medical records, to build generalized models of the
human biology, and finally to infer diagnostics when a new medical record
is presented. Another good example of such use is the prediction of human
behavior: Being able to learn the habits of people is the key to powerful
Home automation systems.

Third, temporal learning can be integrated into more complex automatic
systems in order to give them a certain degree of autonomy. This is espe-
cially useful in domains where human cannot operate because of inability to
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communication with the system, communication latency with the system,
too slow human reactivity or too important cost of operators.

From our point of view, an interesting extension of our technique would be
the Spatio-temporal learning problem. Similarly to Time, Space is a non
trivial dimension in Machine Learning: The space is a multi-dimensional
space with very specific properties. We think that our solution for the
Temporal Constraint Selection Problem can be adapted to a solution for
the ‘Spatial Constraint Selection Problem’ that would represent the core
of spatial learning. The result would lead to an efficient Spatio-temporal
learning algorithm.

Such techniques could be used in a new range of domains such as epidemic
spread analysis or animal migration analysis.

In this work, we were able to identify a non trivial use for our temporal
pattern model: Planning and Scheduling. We investigate the implications
of using our model for this task, and we discovered new useful theories and
tools such as the Meta-plans. Our experiment of merging our temporal
learning algorithm and our temporal planning algorithm, in order to con-
trol a robot, illustrates the possible combination of temporal learning and
temporal planning.

We believe that the meeting of different scientific domains is a great source
for new discoveries. Therefore, similarly to the planning and scheduling
domain, we believe that the use of the Titar model in other domains would
be very interesting, and would possibly lead to new theories and new tools.
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