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Static Analysis of Semantic Web Queries

Abstract: Query containment is defined as the problem of determining if the result
of a query is included in the result of another query for any given dataset. It has major
applications in query optimization and knowledge base verification. The main objective
of this thesis is to provide sound and complete procedures to determine containment
of SPARQL queries under expressive description logic axioms. Further, we implement
these procedures to support theoretical results by experimentation.

To date, testing query containment has been performed using different techniques:
containment mapping, canonical databases, automata theory techniques and through
a reduction to the validity problem in logic. In this thesis, we use the later technique
to test containment of SPARQL queries using an expressive logic called µ-calculus. In
doing so, RDF graphs are encoded as transition systems which preserves its character-
istics, and queries and schema axioms are encoded as µ-calculus formulae. Thereby,
query containment can be reduced to the validity test in the logic.

This thesis identifies various fragments of SPARQL (and PSPARQL) and descrip-
tion logic schema languages for which containment is decidable. Additionally, it pro-
vides theoretically and experimentally proven procedures to check containment of those
decidable fragments. Finally, this thesis proposes a benchmark for containment solvers.
This benchmark is used to test and compare the current state-of-the-art containment
solvers.

Keywords: Containment, static analysis, SPARQL, PSPARQL, entailment regimes,
OWL, RDF





Analyse Statique de Requête pour le Web Sémantique

Résumé: L’inclusion de requête est un problème bien étudié durant plusieurs décen-
nies de recherche. En règle générale, il est défini comme le problème de déterminer si le
résultat d’une requête est inclus dans le résultat d’une autre requête pour tout ensem-
ble de données. Elle a des applications importantes dans l’optimisation des requêtes
et la vérification de bases de connaissances. L’objectif principal de cette thèse est de
fournir des procédures correctes et complètes pour déterminer l’inclusion des requêtes
SPARQL en vertu d’axiomes exprimés en logiques de description. De plus, nous met-
tons en œuvre ces procédures à l’appui des résultats théoriques par l’expérimentation.

À ce jour, l’inclusion de requête a été testée à l’aide de différentes techniques: ho-
momorphisme de graphes, bases de données canoniques, les techniques de la théorie des
automates et réduction au problème de la validité d’une logique. Dans cette thèse, nous
utilisons la derniere technique pour tester l’inclusion des requêtes SPARQL utilisant
une logique expressive appelée le µ-calcul. Pour ce faire, les graphes RDF sont codés
comme des systèmes de transitions, et les requêtes et les axiomes du schéma sont codés
comme des formules de µ-calcul. Ainsi, l’inclusion de requêtes peut être réduite au test
de la validité d’une formule logique.

Dans cette thèse j’identifier les divers fragments de SPARQL (et PSPARQL) et les
langages de description logique de schéma pour lequelle l’inculsion est décidable. En
outre, afin de fournir théoriquement et expérimentalement des procédures éprouvées
pour vérifier l’inclusion de ces fragments décidables. Enfin, cette thèse propose un
point de repère pour les solveurs d’inclusion. Ce benchmark est utilisé pour tester et
comparer l’état actuel des solveurs d’inclusion.

Mots clés: Inclusion, analyse statique, SPARQL, PSPARQL, entailment regimes,
OWL, RDF
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Chapter 1

Introduction

Contents

1.1 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Summary of Publications . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Motivation and Objectives

The semantic web is an extension of the world wide web (WWW) aiming to create ma-
chine readable content on the web by giving well-defined syntax and semantics to web
resources. Over a decade of research has resulted in the development of various seman-
tic web frameworks: ontology development languages, query languages, rule languages,
and others. In the semantic web, semantically rich datasets can be created using World
Wide Web Consortium (W3C) recommended languages such as the Resource Descrip-
tion Framework (RDF) and the Web Ontology Language (OWL). RDF is a language
used to express structured information on the web as graphs. An RDF document is a
set of triples (subject, predicate, object) that can be represented by a directed labeled
graph (hence the name, RDF graph). It has a model theoretic semantics [Hayes 2004].
RDF has a lightweight schema language called RDFS (RDF Schema). RDFS allows
one to express subclass and property hierarchies, with domain and range definitions
of these properties. RDF and RDFS allow for the representation of some ontological
knowledge. The main modelling primitives of RDF/RDFS concern the organization of
vocabularies in typed hierarchies: subclass and subproperty relationships, domain and
range restrictions, and instances of classes. However a number of other features (such
as negation, cardinality restrictions, and boolean connectives) are missing, which led
to the development of OWL. OWL, built on top of RDF and RDFS, defines a family
of knowledge representation languages for creating ontologies on the semantic web. It
brings the expressive and reasoning power of description logics to the semantic web.
RDF and OWL have been developed through years of research and standardized. The
same goes for the query languages: prominently SPARQL (SPARQL Protocol And
RDF Query Language) which is a W3C recommended query language for RDF. Since
its creation it has been a source of research from various directions, mostly in terms of
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extending the language: adding paths (regular expression patterns), negation, query-
ing modulo schema, subqueries and the likes. Querying RDF graphs with SPARQL
amounts to matching graph patterns that are given as sets of triples of subjects, predi-
cates and objects. These triples, also known as triple patterns, are usually connected to
form graphs by means of joins expressed using several occurrences of the same variable.
It allows variables to be bound to components in the input RDF graph. In addition,
operators akin to relational joins, unions, left outer joins, selections, and projections
can be combined to build more expressive queries. Queries are formed from graph pat-
terns which in turn are defined inductively from triple patterns. SPARQL is more than
a query language, it is also a protocol for sending a request and receiving the answers
in different formats.

A recent effort from the semantic web community has seen the emergence of linked
data (a.k.a. web of data). It is a vision aimed at dismantling data silos: semantically
enriching web resources that will allow computers to automatically reason about the
underlying data and enable them to make reliable and logically founded conclusions.
With linked data large datasets containing billions of triples are now available across
the web.

There are three important challenges regarding querying in the semantic web.
Firstly, queries in the semantic web are evaluated over large datasets, optimizations
are indispensable in order to find minimal queries to avoid the computational cost of
query evaluation. Secondly, queries can be evaluated at remote endpoints, satisfiability
test of queries is necessary to avoid high communication costs between the sender and
receiver. Thirdly, if one query is known to be included in another, then materialized
query evaluation can be used. To tackle these challenges, static analysis of queries is
absolutely essential. Let us elaborate the second challenge, SPARQL is equipped with a
protocol that allows it to send queries to endpoints of datasets and receive the answers
at a sender’s premises. Because a given SPARQL endpoint may be an interface to a
triplestore or a relational data store [Levandoski & Mokbel 2009,Fernández et al. 2010]
or Hadoop, the ability to query several endpoints with one query is a very useful fea-
ture. To take advantage of this valuable feature, federation has been recently added to
SPARQL1.11. The idea of federated queries is that parts of a query are sent to different
endpoints on the web and the answers to those parts are collected and summarized or
merged by the sender. This feature is highly important in linked data where datasets
are spread across the web.

Erroneous queries often return the empty set for any input, i.e., they are unsat-
isfiable. Thus, an unsatisfiable query is a hint for an error in the query. Checking
if a query is unsatisfiable and warning the user in the case of an unsatisfiable query
therefore helps to debug a program containing the query, that overall leads to more
stable programs. Static program analysis of embedded semantic web data and query
languages can increase the detection of errors already at compile time, which is long
before the application is really executed. A static program analysis can surely detect
errors, which – without a static program analysis – may only be detected after running

1http://www.w3.org/TR/sparql11-federated-query/
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a huge amount of test cases, as the static program analysis considers every branch in an
application. Thus, these are major evidences why static analysis of SPARQL queries
should be studied.

The fact that SPARQL is used to query large datasets (sometimes billion of triples)
and that queries can be executed at remote endpoints (distributed query evaluation)
opens new challenges such as optimization (is one able to find an equivalent query
that runs faster), satisfiability (a query may have a solution or not), materialization (if
the results of query q is contained in the results of q�, then q can be evaluated in the
materialized view of q�). Consequently, addressing these challenges is essential.

1.1.1 State of the Art

Containment, equivalence and satisfiability problems are well studied for relational
database query languages. Their study started with a pioneering paper from Chandra
and Merlin [Chandra & Merlin 1977], which studied optimization of conjunctive queries.
They observed that minimal conjunctive queries are unique up to isomorphism, which
also means that the unique minimal conjunctive query for a given conjunctive query q

can be produced by the following simple procedure: start with q and repeatedly remove
atoms that are redundant in the sense that dropping them preserves equivalence; the
order in which atoms are dropped is irrelevant and the only non-trivial part is checking
equivalence, implemented as two query containment checks [Bienvenu 2012]. In general,
query containment is the problem of checking whether the result of one query is included
in the result of another one for any given dataset. Also in [Chandra & Merlin 1977], it is
proved that union of conjunctive query containment and equivalence problems are NP-
complete. These problems, containment, equivalence, and satisfiability, are collectively
called static analysis of queries.

Equivalence and satisfiability problems can be derived from containment, thus, we
mainly concentrate on the containment problem. In relational databases, union of con-
junctive query containment has been studied using containment mappings also known
as graph homomorphism and canonical databases. It is known that, for (union of)
conjunctive queries, query answering and containment are equivalent problems since
query containment can be reduced to query answering [Chandra & Merlin 1977]. Un-
fortunately, to apply these techniques to a query language equipped with ontologies
and regular expressions is not entirely possible. That is why for semistructured data
query languages (referred as regular path queries) automata theoretic notions are often
employed to address containment and other problems [Calvanese et al. 2000]. In addi-
tion to using automata, containment has been addressed by a reduction to satisfiability
test. In this direction, queries are translated into formulas in a particular logic that
supports the query languages features and then the overall problem is reduced into
satisfiability test. Several works exist that developed and used this technique [Cal-
vanese et al. 2000,Genevès et al. 2007,Calvanese et al. 2008] which also inspired this
thesis. Specifically, a study in [Genevès et al. 2007] has developed a tree-logic from the
alternation-free fragment of the µ-calculus and applied it to encode XPath queries and
perform static analysis tasks. Their attempt has been successful and put to practice.
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Their implementation allows one to perform containment, satisfiability and equivalence
of XPath queries. The study has been extended to several other languages namely
XQuery, CSS and JSON.

All the aforementioned results were obtained under the assumption that queries are
evaluated under set semantics. This means that the database relations given as inputs
to queries are sets (i.e., no duplicate tuples are allowed) and that queries return sets
as answers. In real database systems, however, queries are usually evaluated under
bag semantics, not set semantics: input database relations may be bags (multisets),
and queries may return bags as answers. The same holds for SPARQL. In particular,
SPARQL queries are evaluated under bag semantics, since duplicate tuples are not
eliminated unless explicitly specified in the syntax using the SELECT DISTINCT con-
struct. The reason for not eliminating duplicate tuples in SPARQL is that the values
of aggregate operators, such as AVG and COUNT, depend on the multiplicities of the
tuples in the graph. Most of the studies on query containment use set semantics rather
than bag semantics. This is due to very high complexity: for instance, containment
becomes undecidable (even for) union of conjunctive queries under bag semantics [Ioan-
nidis & Ramakrishnan 1995]. Thus, this thesis relies on the set semantics of SPARQL
to obtain decidability results.

The importance of the containment problem goes beyond the field of databases. It
has attracted a lot of attention from the description logic community. In this regard,
many of the works concentrated on the problem of conjunctive query answering as
containment follows from it. All these works have sound theoretical and mathematical
foundations, but they fail to provide an implementation (or experimentation results)
of their approaches.

Deviating from conjunctive queries in the database and description logic worlds,
we have regular path queries (RPQs): query languages used to query arbitrary length
paths in graph databases of semistructured data. Like conjunctive queries, they have
been used and studied widely. They are different from conjunctive queries in that,
they allow recursion by using regular expression patterns. The problem of contain-
ment has been addressed for several extensions of these languages: CRPQs, P2RPQs,
and ECRPQs [Florescu et al. 1998, Calvanese et al. 2000, Barceló et al. 2010] . One
prominent language used in querying semi-structured data is XPath. This language
has been studied extensively over 2 decades. One study which attracted our attention
is the one from [Genevès et al. 2007], where the static analysis of XPath queries has
been investigated using a graph logic and providing an implementation which has been
put to practice.

A comparison of SPARQL and relational algebra has already been made, to fig-
ure out important similarities and use the results of studies for relational algebra.
Consequently, the results from [Polleres 2007] and [Angles & Gutierrez 2008] taken
together imply that SPARQL has exactly the same expressive power as relational al-
gebra. From early results on query containment in relational algebra and first-order
logic, one can infer that containment in relational algebra is undecidable [Abiteboul
et al. 1995]. Therefore, containment of SPARQL queries is also undecidable [Lete-
lier et al. 2012]. Hence, in this thesis, we study the containment problem for various
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fragments of SPARQL to retain decidability.
Given the subgraph matching nature of SPARQL and its evaluation over graphs,

it can be encoded in a logic where the interpretation of that logic is over a graph.
One logic that has these characteristics is the µ-calculus: it is an extension of modal
logic which is highly expressive and has well-behaved computational complexity. It
provides fixpoint operators which allows to perform navigation in a graph in an intricate
way. Furthermore, µ-calculus is suited for system verification, reachability problems,
reasoning on graphs, and game problems. For its complexity, it is expressive enough
to encompass PDL, LTL, CTL and CTL* [Blackburn et al. 2007]. The satisfiability
problem in the µ-calculus is decidable in exponential amount of time. It has attractive
model-theoretic properties namely finite and tree model properties. Beyond all, the
availability of satisfiability solvers for the logic, makes it a very good choice for this
study.

1.2 Contributions

Having introduced the global context and the basic ideas behind containment and
equivalence of semantic web queries, we now summarize the work that will be presented
in this thesis and highlight the major contributions. Our focus will be on the static
analysis of SPARQL and PSPARQL queries. Specifically, for this study, we consider
the union of conjunctive SPARQL (resp. PSPARQL) queries. The contributions of
this thesis are sixfold:

• We provide an encoding of RDF graphs as transition systems that can be used
for determining the containment of SPARQL queries.

• We propose a technique to determine the containment of union of conjunctive
SPARQL queries under ALCH schema axioms. To do so, we encode queries
and schema axioms as µ-calculus formulas, thereby reducing containment into
unsatisfiability test. We prove the soundness and completeness of our approach.
We show that the containment problem can be determined in a double exponential
amount of time. Beyond this, we provide an implementation and experimentation
for the proposed approach.

• We address the study of the containment of PSPARQL queries. For that purpose,
we encode PSPARQL queries as µ-calculus formulas and then reduce containment
test into the validity problem in the µ-calculus. The complexity of determining
containment of path SPARQL queries (also under ALCH axioms) is double ex-
ponential. This complexity is an upper bound for the problem.

• We provide three different approaches to check containment of SPARQL queries
under, a meaning and substantial fragment of, the RDFS entailment regime (that
we call simpleRDFS entailment regime). We prove that this problem can be
solved in an exponential amount time. Moreover, we support our theoretical
results with an implementation. We also investigate the containment problem
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under, a fragment of, the OWL direct semantics entailment regime2, specifically
under ALCH entailment regime. To do so, we identify decidable fragments of the
ontology and query languages.

• We experimentally show that under currently available RDF data repositories and
SPARQL endpoints, 87% of real world SPARQL queries are tree-structured. We
propose an encoding procedure to determine containment for the mentioned type
of queries using a reduction to the modal logic Kn, and compare experimentally
the performance of containment solvers using the proposed method.

• We present a first benchmark for statically analysing semantic web queries. We
design test suites (with and without ontology axioms) that test and compare the
performance and correctness of containment solvers. In addition, the benchmark
is tested on the currently available tools.

1.3 Summary of Publications

In the following we summarize the publications that are related to this thesis.
All of the author’s publications focus on the area of statically analysing semantic

web queries. The paper [Chekol et al. 2011a] studies the containment problem for
PSPARQL (Path SPARQL) queries. All the results of this paper and additionally oth-
ers (containment of PSPARQL under constraints, two-way path queries) are discussed
in Chapter 4 of this thesis. An extended version of this paper is also published as a
research report in [Chekol et al. 2011b].

The results of Chapter 3 on the containment and equivalence of SPARQL queries
under highly expressive description logic axioms are published in
[Chekol et al. 2012b] where a double exponential upper bound is proved for the problem.
The optimality of this complexity bound is investigated in this thesis. We show that
this complexity bound is complete for the description logic SHI.

Further, W3C is working towards extending SPARQL as a query language for on-
tologies (beyond subgraph matching) also known as SPARQL entailment regimes. To
this end, it is natural to study the satisfiability, containment and equivalence prob-
lems of SPARQL under entailment regimes (RDF and OWL). In Chapter 5 we have
addressed these issues in detail and some of the results have been published in [Chekol
et al. 2012a].

1.4 Thesis Outline

In Chapter 2, we present the preliminaries that are used in the development of this
thesis. We present the foundations of the semantic web, followed by a brief overview
of modal logics, and finally we conclude this chapter with a broad survey of related
works.

2http://www.w3.org/TR/sparql11-entailment/
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Chapter 3 unveils a procedure to translate RDF graphs into transition systems. In
doing so, RDF graphs become bipartite graphs with two sets of nodes: triple nodes
and subject, predicate, and object nodes where navigation can be done using transition
programs. The next task requires encoding axioms and queries as µ-calculus formulas
and then, consequently, reducing query containment test into validity test in the logic.
We then prove that this reduction is sound and complete.

In Chapter 4, we extend the procedures of Chapter 3 to study the containment
problem for PSPARQL queries. We divide this task into three: (i) we investigate the
problem for PSPARQL queries (equivalent to conjunctive RPQs), (ii) next we add
inverse to paths of PSPARQL (equivalent to two-way conjunctive RPQs) and study
containment for this fragment, finally (iii) we address the problem under description
logic schema axioms.

Three approaches to determine containment of SPARQL queries under RDFS en-
tailment regime are discussed in Chapter 5 borrowing some of the encoding procedures
from Chapter 3 and 4. Furthermore, we show how these approaches can be extended
for the OWL Direct Semantics entailment regime3.

For tree-structured queries, that constitute a large class of real world SPARQL
queries, we consider a less expressive logic than µ-calculus to study static analysis as
discussed in Chapter 6. We provide experimental results for testing containment with
a number of benchmark queries.

In Chapter 7, we present the first-of-its-kind containment benchmark for SPARQL
queries. We propose several test suites that can be used to test containment solvers.
Accordingly, we have carried out experiments to test and compare current state-of-the-
art containment solvers. In Chapter 8, we briefly present the study of containment for
negated SPARQL queries i.e., queries constructed from MINUS graph patterns, before
concluding a summary of the results of this thesis and perspectives in Chapter 9.

In summary, in Figure 1.1, we show briefly what has been discussed in each chapter.
Our approach relies on encoding graphs, queries and schemas into a logic as shown
below:

RDF graphs G (P)SPARQL queries q Schema axioms S
↓ σ ↓ A ↓η

Transition systems σ(G) µ-calculus formulae A(q) η(S)

We reduce query containment to the problem of unsatisfiability in µ-calculus :

q �S q�

↓
|= η(S) ∧ A(q) ∧ ¬A(q�,m)

3http://www.w3.org/TR/sparql11-entailment/
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2.1 Semantic Web

The semantic web has been around for more than a decade now. In an article published
in May 2001, Tim Berners-Lee describes it as, creating machine-readable content on
the web [Berners-Lee & Hendler 2001]. It is not a separate Web but an extension of
the current one, in which information is given “well-defined meaning, better enabling
computers and people to work in cooperation”. The semantic web has grown reasonably
with a well established and “dynamic" architecture. It has languages that enable to
create machine understandable data and to query it. More recently, linked data (a.k.a
web of data) has emerged and has attracted a strong attention outside the research
world since. It is a vision that started with the aim of dismantling data silos [Heath
& Bizer 2011]. The ambiguities that surfaced over the difference and/or similarity of
the semantic web and linked data have been clarified in [Bizer et al. 2009]. There, it
is mentioned that the semantic web, or web of data, is the goal or the end result of
creating meaningful content with respect to machines. “Over time, with linked data as
a foundation, some of the more sophisticated proposals associated with the semantic
web vision, such as intelligent agents, may become a reality”.

The vision was that the semantic annotation of web resources would allow com-
puters to automatically reason about the underlying data and enable them to make
reliable and logically founded conclusions. At a global scale, the semantic web thus can
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be understood as a large knowledge base that links information from different sources
together, eases the access to information, and ultimately improves search and knowl-
edge discovery in the Internet. In an effort to bring the vision of the semantic web
to a reality, necessary measures are being taken. A strong force behind this are the
W3C working groups, highly involved with standardization and creating a means for
researchers to communicate their innovations and to share ideas.

Figure 2.1: Semantic web layer cake [Gerber et al. 2008].

The diagram in Figure 2.1, is known as the semantic web layer cake (a.k.a semantic
web architecture), shows the effort being undertaken by W3C in order to bring the se-
mantic web to reality. At the bottom of this architecture is, the encoding mechanism or
standard used for the data. As per the vision of Berners-Lee, this layer is about repre-
senting every item on the web using IRIs (Internationalized Resource Identifiers)–which
provide ways to construct names for globally identifying physical or logical resources.
The second layer is engaged in the syntactic representation of the data using XML and
RDF. A core data representation format for semantic web is the Resource Description
Framework (RDF). RDF is a framework for representing information about resources
in terms of graphs. It was primarily intended for representing metadata about WWW
resources, such as the title, author, and modification date of a web page, but it can
be used for storing any other data. It is based on triples subject-predicate-object that
form a graph. RDF is the primary representation language with a normative XML
serialization syntax. Formal semantics of RDF is defined as well. A more detailed
presentation is provided in Section 2.1.1.

In the third layer, a Simple Protocol and RDF Query Language (SPARQL) is
available for querying RDF data as well as RDFS and OWL ontologies with knowledge
bases. SPARQL is an SQL-like language, but uses RDF triples and resources for both
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Figure 2.2: Example RDF graph G about writers and their works.

matching part of the query and for returning results of the query. Since both RDFS and
OWL are built on RDF, SPARQL can be used for querying ontologies and knowledge
bases directly as well. SPARQL is not only a query language, it is also a protocol for
accessing RDF data.

In this thesis, we concentrate mainly on the third layer, a detailed discussion on the
rest of the layers of the semantic web layer cake, Figure 2.1, can be found in [Gerber
et al. 2008].

2.1.1 RDF

RDF is a language used to express structured information on the Web as graphs. We
present a compact formalization of RDF [Hayes 2004]. Let U, B, and L be three disjoint
infinite sets denoting the set of URIs (identifying a resource), blank nodes (denoting
an unidentified resource) and literals (a character string or some other type of data)
respectively. We abbreviate any union of these sets as for instance, UBL = U∪B∪L. We
refer to U, B, and L as terms of the graph. A triple of the form (s, p, o) ∈ UB×U×UBL

is called an RDF triple. s is the subject, p is the predicate, and o is the object of the
triple. Each triple can be thought of as an edge between the subject and the object
labelled by the predicate, hence a set of RDF triples is often referred to as an RDF

graph.

Example 1 (RDF Graph). Here are 8 triples of an RDF graph about writers and their

works: (all identifiers correspond to URIs, _:b is a blank node):

{ (Poe,wrote,thegoldbug), (Baudelaire,translated,thegoldbug),

(Poe,wrote,theraven), (Mallarmé,translated,theraven),

(theraven,type,Poem), (Mallarmé,wrote,_:b),

(_:b,type,Poem), (thegoldbug,type,Novel) }
These triples can also be represented graphically as shown in Figure 2.2.

RDF has a model theoretic semantics [Hayes 2004], that defines the notion of con-
sequence between two RDF graphs, i.e., does an RDF graph G entails an RDF graph
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H (known as RDF entailment). This semantics builds on the notion of interpretations.
Informally, the interpretation of an RDF graph contains all the triples that are logically
implied according to a set of rules.

2.1.1.1 RDF Schema

RDF Schema (RDFS) [Hayes 2004] may be considered as a simple ontology language
expressing subsumption relations between classes or properties. Technically, this is an
RDF vocabulary used for expressing axioms constraining the interpretation of graphs.
Hence, schemas are themselves RDF graphs. The RDFS vocabulary and its semantics
are given in [Hayes 2004]. The W3C specifications introduce two standard namespaces:
the RDF namespace http://www.w3.org/1999/02/22-rdf-syntax-ns# (pre-
fix rdf ) and the RDF Schema namespace http://www.w3.org/2000/01/rdf-schema#

(prefix rdfs). These namespaces comprise a set of URIs with predefined meaning. Be-
low, we present some of the predefined vocabulary terms, the notation in the parenthesis
is the vocabulary syntax used in this thesis:

• The predefined URI rdf:type (type) can be used for typing entities.

• rdfs:subClassOf (sc) and rdfs:subPropertyOf (sp) are used to describe subclass
and subproperty relationships between classes and properties, respectively.

• The two classes rdfs:Class (Class) and rdf:Property (Property) can be used to
assign a logical type to URIs.

• The URIs rdfs:domain (dom) and rdfs:range (range) can be used to specify the
domain and range of properties.

• All things described by RDF are called resources, and are instances of the class
rdfs:Resource (Resource).

In [Hayes 2004], rules are given which allow to deduce or infer new triples using
RDF Schema triples. For our purposes, we consider the RDFS inference or deduction
rules of [Gutierrez et al. 2004,Muñoz et al. 2007] shown below.

• Subclass (sc)

(a, sc, b) (b, sc, c)

(a, sc, c)

(a, sc, b) (x, type, a)

(x, type, b)
(2.1)

• Subproperty (sp)

(a, sp, b) (b, sp, c)

(a, sp, c)

(a, sp, b) (x, a, y)

(x, b, y)
(2.2)

• Typing (dom, range)

(a, dom, b) (x, a, y)

(x, type, b)

(a, range, b) (x, a, y)

(y, type, b)
(2.3)

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
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• Implicit Typing

(a, dom, b) (c, sp, a) (x, c, y)

(x, type, b)

(a, range, b) (c, sp, a) (x, c, y)

(y, type, b)
(2.4)

• Subclass reflexivity

(a, type, Class)

(a, sc, a)

(a, sc, b)

(a, sc, a) (b, sc, b)
(2.5)

• Subproperty reflexivity

(a, type, Property)

(a, sp, a)

(x, a, y)

(a, sp, a)
(2.6)

• Resource

(a, b, c)

(a, type,Resource)

(a, b, c)

(c, type,Resource)

(a, type, Class)

(a, sc,Resource)
(2.7)

• Property

(a, b, c)

(b, type, Property)
(2.8)

• Class

(a, b, c)

(a, type, Class)

(a, type, c)

(c, type, Class)
(2.9)

In [Ter Horst 2005], it is shown that the standard set of entailment rules for RDFS,
is incomplete and that this can be corrected by allowing blank nodes in predicate
position. The rules shown above, taken from [Muñoz et al. 2007], fix this problem. For
our purposes, we consider only a subset of these rules (see Chapter 5).

Example 2. This example shows the usage of RDFS inference rules, consider the

graph:

G ={(john, child,mary), (child, sp, ancestor),

(ancestor, dom, Person), (ancestor, range, Person)}

By applying either both typing (2.3) and subproperty (2.2) rules or implicit typing rule

(2.5), it can be inferred that {(john,type,Person), (mary,type,Person), (john,ancestor,mary)}.
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Hence, the deductive closure of the graph G, denoted as cl(G), is:

cl(G) = {(john, child,mary), (child, sp, ancestor), (ancestor, dom, Person)

(john, type, Person), (mary, type, Person),

(john, ancestor,mary)}

Note that additional triples that can be derived by reflexivity and other rules are not

displayed in cl(G), it contains only a part of the closure graph.

2.1.1.2 Entailment

Here we present simple and RDFS entailment in RDF graphs, a more detailed discussion
can be found in [Hayes 2004,Ter Horst 2005].

Simple RDF Entailment: simple entailment depends only on the basic logical form
of RDF graphs and therefore holds for any vocabulary. Given two RDF graphs G1 and
G2, a map from G1 to G2 is a function h from terms of G1 to terms of G2, preserving
URIs and literals, such that for each triple (a, b, c) ∈ G1 we have (h(a), h(b), h(c)) ∈ G2.
An RDF graph G1 simply entails G2, denoted G1 |=s G2, if and only if there exists a
map from G2 to G1.

RDFS entailment: RDFS entailment captures the semantics added by the RDFS
vocabulary. We write that G1 |=rule G2 if G2 can be derived from G1 by iteratively
applying rules in groups (subclass), (subproperty) and (typing). The closure of a graph
G, denoted as cl(G), is the graph obtained from it by iteratively applying the RDFS
inference rules. We have that G1 |=rule G2 if and only if G2 ∈ cl(G1). It turns out
that G1 RDFS-entails G2, written G1 |=rdfs G2, iff there is a graph G derived from
G1 by exhaustively applying the RDFS rules such that G1 |=rule G and G |=s G2

[Ter Horst 2005]. Alternatively, G1 |=rdfs G2 iff cl(G1, G2) |=s G2 where cl(G1, G2) is
the union of the closure of G1 and G2 obtained by exhaustively applying the RDFS
inference rules.

2.1.2 Description Logics

Description Logics (DLs) are a family of knowledge representation (KR) formalisms
that represent the knowledge of an application domain by first defining the relevant
concepts of the domain (its terminology), and then using these concepts to specify
properties of objects and individuals occurring in the domain (the world description)
[Baader & Nutt 2003, Baader et al. 2007]. Alternatively, DLs are fragments of first-
order logic that model a domain of interest in terms of concepts and roles denoting
unary and binary predicates, respectivley [Baader et al. 2007]. DLs are equipped with
a feature that allow for reasoning in a knowledge base. Reasoning enables one to infer
implicitly represented knowledge from the knowledge that is explicitly contained in the
knowledge base. A knowledge base (KB) comprises two components, the TBox and
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the ABox. The TBox introduces the terminology, i.e., the vocabulary for classes and
properties in an application domain, while the ABox contains assertions about named
individuals in terms of this vocabulary.

There are various types of description logics with differing expressivity, DL-Lite and
its extensions, SROIQ(D) and its fragments, and ALC and its extensions [Baader
et al. 2007, Horrocks et al. 2006]. In this thesis, for our purposes, we use the well-
studied DL SROIQ(D) [Horrocks et al. 2006] that underlies the foundations of the
web ontology language (OWL 2). We consider various fragments of this logic, mainly
the ALCH fragment. SROIQ(D) KB satisfiability is 2NEXPTIME-complete [Horrocks
et al. 2006,Kazakov 2008] with respect to combined complexity.

2.1.2.1 SROIQ(D)

We consider here the following constructs occurring in expressive description logics:
role hierarchy H, role transitivity S, role composition R, nominals O, role inverse I,
qualified number restrictions Q, and datatypes D. Recently, OWL 2 has become a
W3C recommended ontology language. The logic underlying this ontology language is
SROIQ(D). The syntax and semantics of this logic is presented in Table 2.1 and 2.2.
Notice that, even though we detail here its constructs, in this thesis we are interested
in its fragments, mainly in ALCH.

Syntax In SROIQ(D) concepts and roles are formed according to the syntax pre-
sented in Table 2.1, where R denotes an atomic role or its inverse, A represents an
atomic concept, C denotes a complex concept, o refers to a nominal, and n is a non-
negative integer. Additionally, the following abbreviations are used:

C1 � C2 = ¬(¬C1 � ¬C2)

� = ¬(⊥)

∀R.C = ¬(∃R.¬C)

SROIQ(D) Axioms: The TBox is a finite set of axioms consisting of concept inclu-

sions, role inclusion, role transitivity, and role chain axioms:

C1 � C2 R � S

R1 ◦ · · · ◦Rn � S

Two concepts C1 and C2 are said to be equivalent, denoted as C1 ≡ C2, if and only if
C1 � C2 and C2 � C1. Likewise, R1 ≡ R2 iff R1 � R2 and R2 � R1.

Example 3. SROIQ(D) TBox axioms modeling a university domain.
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PostgradStudent � Student

UndergradStudent � Student

Department � Faculty

Faculty � University

Staff � Student � ⊥
Professor � Person

Student � Person

Chair ≡ Person � ∃headOf.Department

Student ≡ Person � ∃takesCourse.Course

Professor ≡ Person � ∃givesCourse.Course

∃headOf.� � Professor

takesCourse ≡ givesCourse−

Here, we provide a small textual explanation for some of the TBox axioms shown above.

The first axiom states that every postgraduate student is a student, the sixth axiom

defines that every professor is a person, the ninth axiom asserts that every student is a

person and takes a certain course and vice versa.

Semantics An interpretation, I = (∆I , ·I), consists of a non-empty domain ∆I and
an interpretation function ·I that assigns to each object name o an element oI ∈ ∆I ,
to each atomic concept A a subset AI ⊆ ∆I of the domain, and to each atomic role
R a binary relation RI ⊆ ∆I ×∆I over the domain. The role and concept constructs
can be interpreted in I as depicted in Tables 2.1.

An interpretation I satisfies an inclusion C � D iff CI ⊆ DI , and it satisfies an
equality C ≡ D iff CI = DI . If T is a set of axioms, then I satisfies T iff I satisfies
each element of T . If I satisfies an axiom (resp. a set of axioms), then we say that it
is a model of this axiom (resp. set of axioms). Two axioms or two sets of axioms are
equivalent if they have the same models.

Description logic datatype syntax and semantics Datatypes restrict the in-
teractions between concrete and “abstract” parts of a knowledge base so as to avoid
problems of undecidability and to simplify implementation, and are widely used in on-
tology languages, including OWL and OWL 2. The syntax and semantics of datatypes
is summarised in Table 2.2, where D is a datatype name, T is a concrete role, v is a
data value and n is a non-negative integer. An interpretation, I = (∆I

D, ·I), consists
of a non-empty concrete domain ∆I

D and an interpretation function ·I .

Assertions about individuals In an ABox (Assertional Box), one describes a spe-
cific state of affairs of an application domain in terms of concepts and roles. Some of
the concept and role atoms in the ABox may be defined names of the TBox. In the
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Construct Name Syntax Semantics
top concept � �I = ∆I

atomic concept A AI ⊆ ∆I

atomic role R RI � ∆I ×∆I

conjunction C �D CI ∩DI

ALCdisjunction C �D CI ∪DI

negation ¬C ∆I \ CI

exists restriction ∃R.C {x | ∃y.�x, y� ∈ RI and y ∈ CI}
value restriction ∀R.C {x | ∀y.�x, y� ∈ RI implies y ∈ CI}
concept hierarchy C � D CI ⊆ DI

role hierarchy R � S RI ⊆ SI H
inverse role R− {�x, y� | �y, x� ∈ RI} I
transitive role R ∈ R+ RI = (RI)+ S
role chains R1 ◦ · · · ◦

Rn � S
RI

1 ◦ · · · ◦RI
n ⊆ SI R

nominal {o} {oI} O

number restriction
≥ n R {x | �{y.�x, y� ∈ RI} ≥ n} N≤ n R {x | �{y.�x, y� ∈ RI} ≤ n}

qualified number
restriction

≥ n R.C {x | �{y.�x, y� ∈ RI and y ∈ CI} ≥ n} Q≤ n R.C {x | �{y.�x, y� ∈ RI and y ∈ CI} ≤ n}

Table 2.1: Syntax and semantics of the ALC and S families of description Logics
(courtesy of [Baader et al. 2007,Horrocks & Patel-Schneider 2010]).

ABox, one introduces individuals, by giving them names, and one asserts properties of
these individuals. We denote individual names by IRIs such as o, o1, o2, . . . , on. Using
concepts C and roles R, in an ABox, one can make two kinds of assertions:

o : C (o1, o2) : R

The first one, o : C, is called concept assertion: it states that o belongs to (the interpre-
tation of) C, formally, oI ⊆ CI . The second one, (o1, o2) : R, is called role assertion:
it states that o1 is related by the role R with o2, formally, (oI1 , o

I
2 ) ⊆ RI . An ABox,

denoted as A, is a finite set of such assertions.

Example 4. This example shows a set of ABox assertions that model a university

domain.
A = {Jerome : Professor,

SemanticWeb : Course,

(Jerome, SemanticWeb) : givesCourse}

2.1.3 OWL

The Web Ontology Language (OWL) is a W3C recommendation which defines a family
of knowledge representation languages for creating ontologies on the semantic web.
The OWL language provides three increasingly expressive sublanguages (i.e., OWL
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Construct Name Syntax Semantics
datatype D DI ⊆ ∆I

D

data value v vI ∈ ∆I
D

concrete role T T I ⊆ ∆I ×∆I
D

enumerated datatype {v1, . . . , vn} {vI1 , . . . , vIn}
exists restriction ∃T.D {x | ∃y.�x, y� ∈ T I and y ∈ DI}
value restriction ∀T.D {x | ∀y.�x, y� ∈ T I implies y ∈ DI}
number restriction

≥ n T {x | �{y.�x, y� ∈ T I} ≥ n}
≤ n T {x | #{y.�x, y� ∈ T I} ≤ n}

qualified number
restriction

≥ n T.D {x | �{y.�x, y� ∈ T I and y ∈ DI} ≥ n}
≤ n T.D {x | �{y.�x, y� ∈ T I and y ∈ DI} ≤ n}

Table 2.2: Syntax and Semantics of Description Logics Datatypes (taken from [Horrocks
& Patel-Schneider 2010])

comes with three dialects) namely, OWL Lite, OWL DL, and OWL full. OWL Lite
is a syntactic subset of OWL DL that prohibits and/or restricts the use of certain
constructors and axioms with the aim of making the language easier to understand and
implement. OWL Lite is expressively equivalent to SHIF(D) – stands for the DL S
with role hierarchy H, inverse I and functionality F , while OWL DL is based on the
description logic SHOIN (D), shown in Table 2.1, [Horrocks & Patel-Schneider 2003].
OWL Full allows all RDF documents to be interpreted as OWL ontologies, which
can only be done at the expense of decidability. Further, with OWL Full, one gets
all the syntactic freedom of RDF. For instance, statements about statements (RDF
reification) and meta-modelling are possible. On the other hand, OWL DL offers
maximal expressiveness while maintaining decidability.

OWL 2 is an extension and revision of OWL 1 augmented with rich expressiveness
and has been set as a standard since 2009 by W3C. Due to expressivity limitations
(qualified cardinality restrictions, relational expressivity, datatype expressivity, and
keys), syntax issues, meta-modeling, imports and versioning, annotations, and others
has led to the extension of OWL 1 [Grau et al. 2008]. OWL 2 DL is based on the
description logic SROIQ(D) which is more expressive than SHOIN (D) (OWL 1 DL).
Where reasoning in SROIQ(D) is 2NEXPTIME-complete [Kazakov 2008] whereas in
SHOIN (D) it is NEXPTIME-complete [Tobies 2001]. OWL 2 comes with lightweight
ontology languages with differing expressive powers called OWL profiles (namely OWL
2 EL, OWL 2 QL, and OWL 2 RL). Here, we present a brief discussion regarding OWL
2, for a detailed presentation, we refer the interested reader to [Motik et al. 2009,Grau
et al. 2008,Kazakov 2008] .

2.1.3.1 Syntax

The OWL 2 specification defines a Functional Style Syntax [Motik et al. 2009], among
others, as a simple encoding of the metamodel which is different from the OWL 1
Abstract Syntax [Grau et al. 2008]. Here, we present the function-style syntax for
OWL 2 constructs that is used as a syntax for the query language SPARQL-OWL (see
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Section 5.2.2). Table 2.3 summarizes the basic concept and role constructs of OWL
2 where A is a class name (an IRI), C (possibly subscripted) is an arbitrary class, P
is an object property name (an IRI), R (possibly subscripted) is an arbitrary object
property, T is a data property name (an IRI).

OWL 2 Axioms OWL 2 axioms provide information about classes, properties, data
ranges, keys and individuals, as shown in Table 2.4.
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Functional style Syntax DL Syntax

Descriptions(C)

A A
owl : Thing �
owl : Bottom ⊥

ObjectUnionOf(C1 . . . Cn) C1 � · · · � Cn

ObjectIntersectionOf(C1 . . . Cn) C1 � · · · � Cn

ObjectComplementOf(C) ¬C
ObjectOneOf(o1 . . . on) {o1} � · · · � {on}

ObjectSomeValuesFrom(R C) ∃R.C
ObjectAllValuesFrom(R C) ∀R.C

ObjectHasValue(R o) ∃R.{o}
ObjectMinCardinality(n R C) ≥ nR.C
ObjectMaxCardinality(n R C) ≤ nR.C
ObjectExactCardinality(n R C) = nR.C

ObjectHasSelf(R) ∃R.self

DataSomeValuesFrom(U D) ∃U.D
DataAllValuesFrom(U D) ∀U.D

DataHasValue(U v) R : o
DataMinCardinality(n U D) ≥ nU.D
DataMaxCardinality(n U D) ≤ nU.D
DataExactCardinality(n U D) = nU.D

DataRanges(D)

D D
DataIntersectionOf(D1 . . . Dn) D1 � · · · �Dn

DataUnionOf(D1 . . . Dn) D1 � · · · �Dn

DataComplementOf(D) ¬D
DataOneOf(v1, . . . , vn) {v1} � · · · � {vn}

DatatypeRestriction(D Fi vi . . . Fn vn)

ObjectProperties(R)

owl : topObjectProperty �2

owl : bottomObjectProperty ⊥2

R R
ObjectInverseOf(R) R−

Individuals (o)

o o
_:anonymous _:anonymous

Datatype Properties (U)

U U
owl : topDataProperty �u

owl : bottomDataProperty ⊥u

Data values (v)

v v

Table 2.3: OWL Descriptions, Data Ranges, Properties, Individuals, and Data Values
[Horrocks & Patel-Schneider 2010]
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Functional style syntax DL syntax

SubClassOf(C1 C2) C1 � C2

EquivalentClasses(C1 . . . Cn) C1 ≡ · · · ≡ Cn

DisjointClasses(C1 . . . Cn) Ci � Cj � ⊥, i �= j
DisjointUnion(C C1 . . . Cn) C ≡ C1 � · · · � Cn,

Ci � Cj � ⊥, i �= j

SubObjectPropertyOf(R1 R2) R1 � R2

EquivalentObjectProperties(R1 . . . Rn) R1 ≡ · · · ≡ Rn

DisjointObjectProperties(R1 . . . Rn) Ri �Rj � ⊥, i �= j
InverseObjectProperties(R1 R2) R1 ≡ R−

2

ObjectPropertyDomain(R C) ∃R.� � C
ObjectPropertyRange(R C) � � ∀R.C
FunctionalObjectProperty(P) � �≤ 1P
InverseFunctionalObjectProperty(P) � �≤ 1P−

ReflexiveObjectProperty(P) � � ∃P.self
IrreflexiveObjectProperty(P) ∃P.self � ⊥
SymmetricObjectProperty(P) P ≡ P−

AsymmetricObjectProperty(P)
TransitiveObjectProperty(P) P ◦ P � P

SubDataPropertyOf(U1 U2) U1 � U2

EquivalentDataProperties(U1 U2) U1 ≡ U2

EquivalentDataProperties(U1 U2) U1 ≡ U2

EquivalentDataProperties(U1 . . . Un) Ui ≡ Ui+1 for 1 ≤ i < n
DisjointDataProperties(U1 . . . Un) Ui � ¬Uj for 1 ≤ i < j ≤ n
DataPropertyDomain(U C) ∃U.�u � C
DataPropertyRange(U D) � � ∀U.D
FunctionalDataProperty(U) � �≤ 1U

HasKey(C U1 . . . Un) U1 . . . Un key for C

SameIndividual(o1 . . . on) oi = oi+1 for 1 ≤ i < n
DifferentIndividuals(o1 . . . on) oi �= oj for 1 ≤ i < j ≤ n
ClassAssertion(C o) o : C
ObjectPropertyAssertion(R o1 o2) (o1, on) : R
NegativeObjectPropertyAssertion(R o1 o2) o1 : (¬∃R.{o2})

Table 2.4: OWL axioms [Horrocks & Patel-Schneider 2010]
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Example 5. We represent Example 3 using functional style syntax.

SubClassOf(PostgradStudent Student)

SubClassOf(UndergradStudent Student)

SubClassOf(Department Faculty)

SubClassOf(Faculty University)

DisjointClasses(Staff Student)

SubClassOf(Professor Person)

SubClassOf(Student Person)

EquivalentClasses(Chair

ObjectIntersectionOf(Person

ObjectSomeValuesFrom(headOf Department)))

EquivalentClasses(Student

ObjectIntersectionOf(Person

ObjectSomeValuesFrom(takesCourse Course)))

EquivalentClasses(Professor

ObjectIntersectionOf(Person

ObjectSomeValuesFrom(givesCourse Course)))

EquivalentObjectProperties(takesCourse

ObjectInverseOf(givesCourse))

SubClassOf(ObjectSomeValuesFrom(headOf

owl : Thing) Professor)

ObjectPropertyDomain(givesCourse Person)

2.1.3.2 Semantics

The semantics of OWL 2 constructs is given either using model theoretic OWL Direct
Semantics or OWL RDF-based semantics [Hitzler et al. 2009].

OWL Direct Semantics In common with Description Logics, OWL 2 has a (First
Order) model-theoretic semantics called the OWL 2 Direct Semantics. This semantics
is basically equivalent to simply translating the ontology into a SROIQ(D) knowledge
base as described in Table 2.1 and Table 2.2 and then applying the standard Description
Logic semantics.

OWL RDF-based Semantics For ontologies that use the RDF syntax, an alter-
native semantic account can be given by extending the RDF model theory with new
conditions that capture the meaning of the OWL 2 vocabulary as described in the
OWL 2 RDF-Based semantics W3C document [Motik et al. 2009]. It extends the RDF
semantics specification by additional semantic conditions for the OWL specific vocab-
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ulary terms. This is due to the fact that transformation from an OWL ontology into
an RDF graph and vice versa is possible1. This is to say, an OWL 2 ontology O can be
transformed into an RDF graph G = T (O) using a translation function T . Likewise,
an RDF graph G that satisfies certain restrictions can be transformed into an OWL 2
DL ontology OG.

In practice, the main difference between the Direct semantics and the RDF-Based
semantics is that the latter can be applied to RDF graphs that do not respect the various
restrictions on OWL 2 syntax [Motik et al. 2009]; indeed, the RDF-Based semantics
can be applied to arbitrary RDF graphs. It is important to be aware, however, that
additional meaning (beyond that derived from the RDF semantics [Hayes 2004]) is
only given to those parts of the graph that correspond to OWL 2 constructions [Motik
et al. 2009].

So far, we have presented two prominent languages of the semantic web, OWL and
RDF. Now, we proceed with a discussion on how to query datasets created using these
languages.

2.2 Querying

In the semantic web, querying RDF documents and OWL ontologies is done mainly us-
ing SPARQL. In this section, we present the foundations of SPARQL and its extension
Path SPARQL (PSPARQL).

2.2.1 SPARQL

SPARQL [Prud’hommeaux & Seaborne 2008] is a W3C recommended query language
for RDF. It is based on the notion of query patterns defined inductively from triple
patterns. Next, we detail the syntax and semantics of SPARQL. We present the W3C
standard syntax and an abstract syntax that is easily readable and can be translated
into the µ-calculus (cf. Section 2.3.2).

2.2.1.1 W3C Syntax

SPARQL has an SQL-like syntax. In this section, we present the standard W3C recom-
mended syntax. The anatomy of a SPARQL query consists of an optional prefix short-
cut declaration, mandatory query result clause, optional dataset definition, mandatory
query patterns (WHERE clause), and optional query modifiers. In the following, we
briefly present these query constructs, for a detailed introduction, we refer the reader
to [Prud’hommeaux & Seaborne 2008].

1. Namespace (or prefix) declaration: names in RDF and OWL are IRIs, these are
often written as a shorthand using prefix:localname. Where prefix: is a prefix
name that expands to an IRI, and localname is the remainder of the name. Its

1http://www.w3.org/TR/owl2-mapping-to-rdf/

http://www.w3.org/TR/owl2-mapping-to-rdf/


24 Chapter 2. Preliminaries

intended purpose is to abbreviate IRI namespaces. In SPARQL, namespace dec-
laration can be done using the PREFIX keyword as shown below:

PREFIX prefixname: <localname>

where prefixname : denotes the namespace name (the shorthand) and <localname>

indicates the IRI (full name) of the resource.

Example 6. Consider the following declarations respectively for the RDF and

OWL vocabulary namespaces.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

2. Query result clause: a SPARQL query has four query result constructs, namely,
SELECT, ASK, CONSTRUCT and DESCRIBE. A SELECT query can option-
ally be specified to return unique results for each row. Query patterns often return
duplicate bindings, and implementations must not eliminate duplicates unless ex-
plicitly instructed. In order to eliminate duplicate bindings, there are two select
modifiers DISTINCT and REDUCED. The former guarantees no duplicated re-
sults whereas the latter may eliminate some, all, or no duplicates. The difference
is that: DISTINCT can be expensive; REDUCED can do the straightforward
de-duplication work (e.g. remove immediately repeated results) without having
to remember every row. In many applications that is sufficient. A SPARQL
SELECT statement can be defined using the following syntax:

SELECT <var_list>

where <var_list> indicates the list of variables to be projected.

3. Dataset definition: this is the place where the queried graphs for the query are
specified. An RDF dataset is a collection of graphs. An RDF dataset comprises
one graph, the default graph, which does not have a name, and zero or more
named graphs, where each named graph is identified by a URI. A SPARQL query
can match different parts of the query pattern against different graphs. In order
to specify the list of queried graphs in SPARQL, one uses the following syntax:

FROM <graph_uri>
FROM NAMED <named_graph_uri>

where <graph_list> indicates the IRI of the RDF default graph, similarly
<named_graph_uri> denotes the IRI of the named graph.

4. Graph patterns: the graph patterns that are to be matched in the queried graph
are placed in the where clause of a SPARQL query. Graph patterns are formed
from triple patterns using joins (.), disjunctions (UNION), left outer join (OP-
TIONAL) or filter expressions (FILTER). Triple patterns are triples of an RDF
graph where in place of IRIs, blank nodes or literals variables can appear in
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subject, predicate or object positions. A set of triple patterns form basic graph

pattern (BGP). Graph patterns that are connected with the UNION keyword to
represent alternatives are known as union graph patterns. SPARQL allows op-
tional results to be returned by using optional graph patterns. “When querying
a collection of graphs, the GRAPH keyword is used to match patterns against
named graphs. GRAPH can provide an URI to select one graph or use a vari-
able which will range over the URIs of all the named graphs in the query’s"
dataset definition [Prud’hommeaux & Seaborne 2008]. Finally, graph patterns
grouped together using curly braces, { and }, are called group graph patterns.
They determine the scope of SPARQL constructs such as FILTER.

Example 7. The following example shows the WHERE clause of a SPARQL

query composed of basic, union, optional, and filter graph patterns.

WHERE {
P1 . P2 . {P3} UNION {P4 OPTIONAL {P5}} OPTIONAL {P6}
FILTER (C)

}

where P1, ..., and P6 denote graph patterns and C denotes a filter expression

(constraint).

5. Query modifiers: these are solution modifiers which are applied on the result
set usually for ordering, slicing and rearranging. These include ORDER BY,
HAVING, GROUP BY, LIMIT, OFFSET, and VALUES. ORDER BY allows
to sort the extracted result according to some variables, either in descending or
ascending order. The sort order can be fixed using the keywords DESC and ASC
(where ASC is used as default sort order). The solution modifiers LIMIT and
OFFSET can be used to fix the number of results that are returned and the first
result mapping that should be output, respectively. They are particularly useful
when combined with modifier ORDER BY. It should be noted that we do not
consider these modifiers further in the rest of the thesis.

Next, we present an abstract syntax for SPARQL.

2.2.1.2 Abstract Syntax

In this thesis, we use an abstract syntax that can be easily translated into the µ-
calculus [Pérez et al. 2009]. A tuple t ∈ UBV × UV × UBLV in SPARQL, with V a
set of variables disjoint from UBL, is called a triple pattern. Triple patterns grouped
together using SPARQL operators (AND, UNION,OPT

2) form query patterns (or graph
patterns).

2
OPT is short for OPTIONAL.
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Definition 1 (Query Pattern). A query pattern q is inductively defined as follows:

q ::= t | q1 AND q2 | q1 UNION q2 |
q1 OPT q2 | q1 FILTER C

where C is a SPARQL constraint (a built-in condition [Pérez et al. 2009]). Constraints

are introduced using the keyword FILTER. As atomic FILTER expressions, SPARQL

allows unary predicates like BOUND, binary (in)equality predicates (= and !=), com-

parison operators like <, datatype conversion and string functions. Complex FILTER

expressions can be built using !, || and &&, representing negation, disjunction, and con-

junction, respectively.

SPARQL has four query constructs, viz. SELECT, ASK, CONSTRUCT, and DE-
SCRIBE. We focus on SELECT queries which are the core of SPARQL queries.

Definition 2. A SPARQL SELECT query is a query of the form q{−→w } where −→w is a

tuple of variables that appear in q which are called distinguished variables, and q is a

query pattern.

Example 8 (SPARQL queries). Consider the following queries q1{?x} and q2{?x} on

the graph of Example 1. q1 selects all those who translated or wrote a poem whereas q2
finds those who translated a poem or wrote anything else.

SELECT ?x WHERE {
{ {?x ex:translated ?l} UNION {?x ex:wrote ?l} }
?l rdf:type ex:Poem .

}

SELECT ?x WHERE {
{?x ex:translated ?l . ?l rdf:type ex:Poem .} UNION
{?x ex:wrote ?l }

}

q1 finds all those authors who either translated or wrote a poem whereas q2 selects those

authors who translated a poem or wrote something.

The above example represents a unary SPARQL query – a query with one dis-
tinguished variable. Example 9 illustrates an n-ary SPARQL query – the number of
distinguished variables in the query is n.

Example 9. This query selects, author names’, where they live in, and the population

of the city they live in, for those who wrote a poem and live in the same city they were

born in.

SELECT ?n ?loc ?p WHERE {
?x ex:wrote ?l .
?x ex: hasName ?n
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?l rdf:type ex:Poem .
?x ex:livesIn ?loc .
?x ex:bornIn ?loc .
?loc ex:population ?p .

}

2.2.1.3 Semantics

The semantics of SPARQL queries is given by a partial mapping function ρ from V to
UBL. The domain of ρ, dom(ρ), is the subset of V on which ρ is defined. Two mappings
ρ1 and ρ2 are said to be compatible if ∀x ∈ dom(ρ1) ∩ dom(ρ2), ρ1(x) = ρ2(x). ρ1 ∪ ρ2
is also a mapping (we use � when ρ1∩ρ2 = ∅). This allows for defining the join, union,
and difference operations between two sets of mappings M1, and M2 as shown below:

M1 ✶ M2 = {ρ1 ∪ ρ2 | ρ1 ∈ M1, ρ2 ∈ M2 are compatible mappings }
M1 ∪M2 = {ρ | ρ ∈ M1 or ρ ∈ M2}
M1 \M2 = {ρ ∈ M1 | ∀ρ2 ∈ M2, ρ and ρ2 are not compatible }

The evaluation of query patterns over an RDF graph G is inductively defined as
follows:

�.�G : q → 2V×UBL

�t�G = {ρ| dom(ρ) = var(t) and ρ(t) ∈ G}
where var(t) is the set of variables occurring in t.

�q1 AND q2�G = �q1�G ✶ �q2�G

�q1 UNION q2�G = �q1�G ∪ �q2�G

�q1 OPT q2�G = (�q1�G ✶ �q2�G) ∪ (�q1�G \ �q2�G)

�q1 MINUS q2�G = �q1�G \ �q2�G

�q{−→w }�G = π−→w (�q�G)

Where the projection operator π−→w selects only those part of the mappings relevant to
variables in −→w . The semantics of FILTER expressions is defined as: given a mapping
ρ and a SPARQL constraint C, we say that ρ satisfies C, denoted by ρ(C) = �, if:

- C = BOUND(x) with x ∈ dom(ρ),

- C = (x = c) with x ∈ dom(ρ) and ρ(x) = c,

- C = (x = y) with x, y ∈ dom(ρ) and ρ(x) = ρ(y),

- C = (x! = c) with x ∈ dom(ρ) and ρ(x) �= c,

- C = (x! = y) with x, y ∈ dom(ρ) and ρ(x) �= ρ(y),

- C = (x < c) with x ∈ dom(ρ) and ρ(x) < c,

- C = (x < y) with x, y ∈ dom(ρ) and ρ(x) < ρ(y),
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- C = (!C1) with ρ does not satisfy C1, in the following, we use ρ(C) = ⊥ to denote
this,

- C = (C1 || C2) with ρ(C1) = � or ρ(C2) = �,

- C = (C1 && C2) with ρ(C1) = � and ρ(C2) = �

It should be noted that there are semantic differences between the standard SPARQL
semantics [Prud’hommeaux & Seaborne 2008] and the semantics the we use here
(from [Pérez et al. 2009]), e.g. for FILTERs within OPTIONALs, or with respect
to the 3 valued semantics of FILTER expressions i.e., when evaluating FILTER expres-
sions the answers can be either true, false, or error. For more on the differences, we
refer the reader to [Polleres 2012].

Definition 3 (Answers to a SPARQL query). Let q{−→w } be a SPARQL query, P its

graph pattern, and G be an RDF graph, the set of answers to this query is given by:

�q{−→w }�G = {ρ | ρ ∈ π−→w (�P �G)}

Example 10 (Answers to SPARQL queries). The answers to query q1{?x} and q2{?x}
of Example 8 on graph G of Example 1 are respectively {�Poe�, �Mallarme�} and

{�Baudelaire�, �Poe�, �Mallarme�}. Hence, �q1{?x}�G ⊆ �q2{?x}�G.

SPARQL Query Evaluation under RDFS Entailment Regime

Definition 4 (SPARQL under RDFS entailment semantics). Given an RDF graph G

and a basic graph pattern P , a partial mapping function ρ is a solution for G and P

under RDFS-entailment, ρ ∈ �P �G, if:

• the domain of ρ is exactly the set of variable in P , i.e., dom(ρ) = V (P ),

• terms in the range of ρ occur in G,

• P �, obtained from P by replacing blank nodes with either URIs, blank nodes, or

RDF literals is such that: the RDF graph sk(ρ(P �)) is RDFS-entailed by sk(G).

The function sk(.) replaces blank nodes with fresh URIs (URIs that are neither

in the queried graph nor in the query).

Since SPARQL’s entailment regimes only change the evaluation of basic graph pat-
terns, the evaluation of query patterns can be defined in the standard way [Prud’hommeaux
& Seaborne 2008,Pérez et al. 2009]. Note that, the W3C working draft document3 on
the evaluation of SPARQL queries under the RDFS entailment regime considers the
axiomatic triples. However, in this thesis, we do not consider the axiomatic triples, as
can be noted from the definition above (which uses the RDFS semantics from [Muñoz
et al. 2007]).

3http://www.w3.org/TR/sparql11-entailment/

http://www.w3.org/TR/sparql11-entailment/
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2.2.2 PSPARQL

PSPARQL (short for Path SPARQL) extends SPARQL with regular expression pat-
terns. PSPARQL overcomes the limitation of SPARQL1.0 which is the inability to
express path queries. In fact, recently, W3C has taken the task of extending SPARQL
with paths known as SPARQL 1.1 property paths. Before presenting the syntax and se-
mantics of PSPARQL, let us briefly introduce the notion of regular expression patterns
(cf. [Alkhateeb et al. 2009] for detailed discussion).

2.2.2.1 Regular Expressions

Regular expressions are patterns used to describe languages (i.e., sets of strings) from
a given alphabet. Let Σ = {a1, ..., an} be an alphabet. A string/word is a finite
sequence of symbols from the alphabet Σ. A word can be either empty ε or a sequence
of alphabet symbols a1...an. A language L is a set of words over Σ which is a subset
of Σ∗, i.e, L ⊆ Σ∗. If A = a1...an and B = b1...bm are two words over some alphabet
Σ, then A.B is a word over the same alphabet defined as: A ·B = a1...anb1...bm.

Definition 5 (Regular expression pattern). Given an alphabet Σ and a set of variables

V , a regular expression can be constructed inductively as follows:

e := uri | x | e1 � e2 | e1 · e2 | e+ | e∗

such that x denotes a variable, e1 � e2 denotes disjunction, e1 ·e2 denotes concatenation,
e+ denotes positive closure, and e∗ denotes Kleene closure. Let U be a set of URIs
and V a set of variables, a regular expression R(U, V ) is a language over the alphabet
U ∪ V .

2.2.2.2 PSPARQL Syntax

The only difference between the syntax of SPARQL and PSPARQL is on triple patterns.
Triple patterns in PSPARQL contain regular expressions in property positions instead
of only URIs or variables as it is the case of SPARQL. Here, we refer to them as path

patterns. Queries are formed based on the notion of query patterns defined inductively
from path patterns: a tuple t ∈ UBV × R(U, V ) × UBLV, with V a set of variables
disjoint from UBL, is called a path pattern. Path patterns grouped together using
connectives (AND, UNION,OPT) form query patterns.

Definition 6 (PSPARQL query pattern). A PSPARQL query pattern q is inductively

defined as follows :

q = t | q1 AND q2 | q1 UNION q2 | q1 OPT q2 | q1 FILTER C

A PSPARQL SELECT query can be defined in the same way as in Definition 2.

Example 11 (PSPARQL queries). The following queries are the rewritings of q1 and

q2 of Example 8 using PSPARQL.
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SELECT ?x

WHERE {

?x (:translated | :wrote) . rdf:type :Poem .

}

SELECT ?x

WHERE {

{ ?x (:translated . rdf:type) :Poem }

UNION

{ ?x :wrote ?l .}

}

2.2.2.3 PSPARQL Semantics

The semantics of PSPARQL queries can be defined in similar way as that of SPARQL.
The only difference between SPARQL and PSPARQL is on the triple patterns. Here,
we define the evaluation of PSPARQL triple patterns recursively as follows:

�<x, ε, y>�G = {ρ | ρ(x) = ρ(y)}
�<x, z, y>�G = {ρ | <ρ(x), ρ(z), ρ(y)>∈ G}

�<x, e � e�, y>�G = �<x, e, y>�G ∪ �<x, e�, y>�G

�<x, e.e�, y>�G = ∃n.�<x, e, n>�G ✶ �<n, e�, y>�G

�<x, e+, y>�G = ∃n1, . . . , nk.
�
�<x, e, y>�G

∪ �<x, e, n1>�G ✶ �<n1, e, y>�G ∪ · · ·
∪ �<x, e, n1>�G ✶ · · · ✶ �<nk, e, y>�G

�

such that k ≥ 0

�<x, e∗, y>�G = {ρ | ρ(x) = ρ(y)} ∪ �<x, e+, y>�G

The evaluation of PSPARQL graph patterns over an RDF graph G is defined similarly
to that of SPARQL graph patterns as shown in Section 2.2.1.3. The answers to a
PSPARQL query are obtained in the same way as that of a SPARQL query which is
shown in Definition 3.

Example 12 (Answers to PSPARQL queries). The answers to query q1{?x} and

q2{?x} of Example 8 on graph G of Example 1 are respectively {�Poe�, �Mallarme�}
and {�Baudelaire�, �Poe�, �Mallarme�}. Hence, �q1{?x}�G ⊆ �q2{?x}�G.

Beyond this particular example, the goal of query containment is to determine
whether this holds for any graph. In the following, we present the notion of query
containment.

2.2.2.4 Query Containment

Evaluating a query under a set of schema axioms is a query whose answers are given
with respect to graphs satisfying these axioms. Relying on this notion, we define query
containment under schema axioms.
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Definition 7 (Containment). Given a set of (RDFS, ALCH, or OWL) axioms C and

two queries q1 and q2 with the same arity, q1 is contained in q2 with respect to C,

denoted q1 �C q2, iff �q1�G ⊆ �q2�G for every graph G satisfying C.

The arity of a query is the number of variables which appear in the result clause of

that query.

Example 13. Given a schema C = {(Student, sc, Person)}, and the following queries

q{x} = (x, type, Student) and q�{x} = (x, type, Person). It can be seen that ∀G. G |=
C, q �C q� and q� ��C q.

Definition 8 (Equivalence). Two queries q1 and q2 with respect to C are equivalent,

i.e., q1 ≡C q2, iff q1 �C q2 and q2 �C q1.

2.3 Modal Logics

In this section, we present the modal logic Kn and µ-calculus that we use to encode
the containment problem of various SPARQL fragments.

2.3.1 Kn

A modal logic is a logic with modal operators (e.g., possibility and necessity) that
extends predicate logic [Blackburn et al. 2007]. The syntax of Kn [Blackburn et al. 2007]
is composed of a sets of atomic propositions AP = {b, q, r, ...}, a set of modalities Mod =

{s, p, o, d, s̄, p̄, ō, d̄} for navigating in graphs. A program (modality) allows navigation in
a transition system i.e.. going from one node (state) to another, a program’s converse
allows navigating backwards. To elaborate on the meaning of the modalities Mod,
assume that there are nodes representing the subject, predicate and object of an RDF
triple which are connected to a certain node (let us call it triple node, i.e., a node
representing the mentioned triple). Now, in this small graph, one can navigate from
the subject (resp. predicate, object) node to the triple node using the program s (resp.
p, o) whereas their respective converse programs (s̄, p̄, ō) allow to move backwards i.e.,
from the triple node to subject, predicate, and object nodes. The program d and its
converse d̄ allow navigation between triple nodes. A modal logic formula, ϕ, can be
defined inductively as follows:

ϕ ::= � | ⊥ | q | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | �a�ϕ | [a]ϕ

where q ∈ AP and a ∈ Mod is either a transition program or its converse ā.

The semantics of Kn is given over a transition system, M = (S,R, L) where S is
a non-empty set of nodes, R : Mod → 2S×S is the transition function, and L : AP →
2S assigns a set of nodes to each atomic proposition where it holds. For converse
modalities, R can be extended as R(ā) = {(s�, s) | (s, s�) ∈ R(a)}. A modal formula ϕ

is satisfied in a state w of a transition system M, denoted M, w |= ϕ, according to the



32 Chapter 2. Preliminaries

following definition:

M, w |= � and M, w �|= ⊥
M, w |= p iff w ∈ L(p)

M, w |= ¬ϕ iff M, w �|= ϕ

M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ

M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ

M, w |= �a�ϕ iff there is some v ∈ S such that

(w, v) ∈ R(a) and M, v |= ϕ

M, w |= [a]ϕ iff for all v ∈ S, if (w, v) ∈ R(a), then M, v |= ϕ

A modal formula ϕ is satisfiable in Kn if there exists some M = (S,R, L) such that,
for some w ∈ S,M, w |= ϕ. In this case, we say that ϕ is satisfied in M.

Example 14. An example of a transition system is given in Figure 3.2.

2.3.2 µ-calculus

The µ-calculus is a logic obtained by adding fixpoint operators to ordinary modal logic,
or Hennessy-Milner logic [Kozen 1983]. The result is a very expressive logic, sufficient to
subsume many other temporal logics such as CTL and CTL* [Blackburn et al. 2007].
The modal µ-calculus is easy to model-check, and so makes a good ‘back-end’ logic
for tools. In this thesis, we mainly use the µ-calculus with nominals and converse
modalities. In the following, we present its syntax and semantics.

The syntax of the µ-calculus is composed of countable sets of atomic propositions

and nominals AP , a set of variables Var, a set of programs and their respective converses

Prog for navigating in graphs. A µ-calculus formula, ϕ, can be defined inductively as
follows:

ϕ ::= � | ⊥ | q | X | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | �a�ϕ | [a]ϕ | µXϕ | νXϕ

where q ∈ AP,X ∈ V ar and a ∈ Prog is a transition program or its converse ā. The
greatest and least fixpoint operators (ν and µ) respectively introduce general and finite
recursion in graphs [Kozen 1983]. A sentence is a formula with no free variable, i.e.,
each variable in the formula appears within the scope of µ or ν. Besides, we use the
following syntactic sugars:

⊥ = ¬�
ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ)
[a]ϕ = ¬�a�¬ϕ

νX.ϕ(X) = ¬µX.¬ϕ(¬X/X)

ϕ ⇒ ψ = ¬ϕ ∨ ψ

ϕ ⇔ ψ = (ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ)



2.3. Modal Logics 33

The semantics of the µ-calculus is given over a transition system, K = (S,R, L) where
S is a non-empty set of nodes, R : Prog → 2S×S is the transition function, and
L : AP → 2S assigns a set of nodes to each atomic proposition or nominal where it
holds, such that L(p) is a singleton for each nominal p. For converse programs, R can
be extended as R(ā) = {(s�, s) | (s, s�) ∈ R(a)}. The valuation function V : Var → 2S

maps each variable into a set of nodes. For a valuation V , variable X, and a set of
nodes S� ⊆ S, V [X/S�] is the valuation that is obtained from V by assigning S� to X.
The semantics of a formula in terms of a transition system K (a.k.a. Kripke structure)
and a valuation function is represented by �ϕ�KV ⊆ S. The semantics of basic µ-calculus
formulae is defined as follows:

���KV = S

�⊥�KV = ∅
�q�KV = L(q), q ∈ AP, L(q) is singleton if q is a nominal

�X�KV = V (X), X ∈ V ar

�¬ϕ�KV = S\�ϕ�KV

�ϕ ∧ ψ�KV = �ϕ�KV ∩ �ψ�KV

�ϕ ∨ ψ�KV = �ϕ�KV ∪ �ψ�KV

��a�ϕ�KV = {s ∈ S | ∃s� ∈ S.(s, s�) ∈ R(a) ∧ s� ∈ �ϕ�KV }
�[a]ϕ�KV = {s ∈ S | ∀s� ∈ S.(s, s�) ∈ R(a) ⇒ s� ∈ �ϕ�KV }

�µXϕ�KV =
�

{S� ⊆ S | �ϕ�KV [X/S�] ⊆ S�}

�νXϕ�KV =
�

{S� ⊆ S | S� ⊆ �ϕ�KV [X/S�]}

Note that the evaluation of sentences is independent of valuations and hence we define
the following. For a sentence ϕ, a Kripke structure K = (S,R, L), and s ∈ S, we
denote K, s |= ϕ if and only if s ∈ �ϕ�K , henceforth K is considered as a model of
ϕ. In other words, K is considered as a model of φ if there exists an s ∈ S such that
K, s |= φ. If a sentence has a model, then it is called satisfiable.

Another variety of the µ-calculus is the µ-calculus with graded modalities. Given
a transition program or its converse a and a non-negative integer n, graded modal-
ities generalize standard existential �n, a� and universal [n, a] modalities [Kupferman
et al. 2002]. For instance, �n, a� expresses that there exist at least n accessible states sat-
isfying a certain formula and [n, a] = ¬�n, a�¬. The full µ-calculus, with graded modal-
ities, converse modalities, and nominals, is undecidable [Bonatti et al. 2006] whereas
its fragments are well-behaved as shown in Table 2.5, where O denotes nominals, N is
for number restrictions (graded modalities), and I denotes converse modalities.

To study SPARQL query containment, only a specific subset of the µ-calculus pre-
sented above, namely the alternation-free modal µ-calculus with nominals and converse
[Tanabe et al. 2008], is of interest. A µ-calculus formula ϕ is alternation-free if µX.ϕ1

(respectively νX.ϕ1) is a subformula of ϕ and νY.ϕ2 (respectively µY.ϕ2) is a subfor-
mula of ϕ1 then X does not occur freely in ϕ2. For instance, νX.µY.�s�Y ∧ a) ∨ �p�X
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µ fragments Complexity Source

µ ExpTime [Kozen 1983]

+ N ExpTime [Kupferman et al. 2002]

+ O + N ExpTime [Bonatti et al. 2006]

+I + N ExpTime [Bonatti et al. 2006]

+ O + I ExpTime [Sattler & Vardi 2001]

+ O + I + N Undecidable [Bonatti & Peron 2004]

Table 2.5: Fragments of the full modal µ-calculus

is alternation-free but νX.µY.�s�Y ∧X) ∨ a is not since X bound by ν appears freely
in the scope of µY.

2.4 Related Work

Query optimization has been the subject of an important research effort for many types
of query languages, with the common goal of speeding up query processing. The works
found in [Stocker et al. 2008, Groppe et al. 2009, Schmidt et al. 2010] considered the
problem of SPARQL query optimization. So, this thesis can be used to prove the
correctness of query rewriting techniques. In the following we briefly review works that
previously established closely related results for related query languages.

An early formalization of RDF(S) graphs has been presented in [Gutierrez et al. 2004],
in which the complexity of query evaluation and containment is also studied. The au-
thors investigate a datalog-style, rule-based query language for RDF(S) graphs. In
particular, they establish the NP-completeness of query containment over simple RDF
graphs, this result is also published in the RDF semantics document [Hayes 2004]. The
query language is rather simple compared to SPARQL and no constraints were assumed
for the problem. [Serfiotis et al. 2005] provides algorithms for the containment and min-
imization of RDF(S) query patterns utilizing concept and property hierarchies for the
query language RQL (RDF Query Language). The NP-completeness is established for
query containment concerning conjunctive and union of conjunctive queries. In line
with this, a recent work in [Polleres 2007] shows how to translate SPARQL queries into
non-recursive Datalog with negation. The paper does focus on query evaluation (not
on query containment).

The work in [Groppe et al. 2009], investigated static analysis of SPARQL queries
that are embedded in a Java program. It checks the correctness of the syntaxes of
RDF data, SPARQL queries, and SPARUL update queries. Beyond this, their system
called SWOBE (Semantic Web Objects Database Programming Language), detects if
a query has a non-empty result set. Most recently, static analysis and optimization of
OPTIONAL graph patterns is studied in [Letelier et al. 2012] where they proved the
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Πp
2-completeness of query subsumption and NP-completeness of query equivalence.

Besides works that focus on querying RDF graphs, in the following, we explore the
relations and containment problem between SPARQL and query languages from other
domains.

SPARQL vs. Relational Algebra It has been shown that SPARQL is equally
expressive as relational algebra (RA) [Angles & Gutierrez 2008]. It is easy to see
that relational algebra with SPJUD (Selection, Projection, Join, Union and Difference)
[Abiteboul et al. 1995] operators is equivalent to that of SPARQL with SELECT, AND,
UNION, OPTIONAL and FILTER as shown in Table 2.6. The algebraic operators
that are defined in SPARQL resemble the algebraic operators defined in relational
algebra; in particular, AND is mapped to the algebraic join, FILTER is mapped to the
algebraic selection operator, UNION is mapped to the union operator, OPTIONAL is
mapped to the left outer join (which allows for the optional padding of information),
and SELECT is mapped to the projection operator. As opposed to the operators in
relational algebra, which are defined on top of relations with fixed schema, the algebraic
SPARQL operators are defined over so called mapping sets, obtained when evaluating
triple patterns. In contrast to the fixed schema in relational algebra, the “schema”
of mappings in SPARQL algebra is loose in the sense that such mappings may bind
an arbitrary set of variables. This means that in the general case we cannot give
guarantees about which variables are bound or unbound in mappings that are obtained
during query evaluation.

Any relational language as powerful as relational algebra is called relationally com-
plete. A relationally complete language can perform all basic, meaningful operations on
relations. Since SQL is a superset of relational algebra, it is also relationally complete.
There are some differences between the two query languages RA and SQL: Null val-
ues are usually excluded in the definition of relational algebra, except when operations
like outer join are defined. Relational algebra treats relations as sets, i.e., duplicate
tuples will never occur in the input/output relations of an RA operator. SQL relations
are multisets (bags) and may contain duplicates. Duplicate elimination is explicit in
SQL (SELECT DISTINCT). RA is also a yardstick for measuring the expressiveness
of query languages. If a query language can express all possible RA queries, then it is
said to be relationally complete. SQL is relationally complete. Vice versa, every SQL
query (without null values, aggregation, and duplicates) can also be written in RA.
Containment and equivalence of relational algebra are undecidable; this can be shown
using the undecidability over finite structures of [Trakhtenbrot 1950].

Studies on the translation of SPARQL into relational algebra and SQL [Cyga-
niak 2005,Chebotko et al. 2006] indicate a close connection between SPARQL and re-
lational algebra in terms of expressiveness. In [Polleres 2007], a translation of SPARQL
queries into a datalog fragment (non-recursive datalog with negation) that is known
to be equally expressive as relational algebra was presented. This translation makes
the close connection between SPARQL and rule-based languages explicit and shows
that RA is at least as expressive as SPARQL. Tackling the opposite direction, it was
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Remark RA SPARQL
Selection (Restriction) σ FILTER
Projection π SELECT
Join (Inner Join) �� AND
Left outer join �� OPTIONAL
Union ∪ UNION
Set Difference \ MINUS

Table 2.6: SPARQL vs. Relational algebra.

recently shown in [Angles & Gutierrez 2008] that SPARQL is relationally complete,
by providing a translation of the above-mentioned datalog fragment into SPARQL. As
argued in [Angles & Gutierrez 2008], the results from [Polleres 2007] and [Angles &
Gutierrez 2008] taken together imply that SPARQL has the same expressive power as
relational algebra. From early results on query containment in relational algebra and
first-order logic, one can infer that containment in relational algebra is undecidable.
Therefore, containment of SPARQL queries is also undecidable. Hence, in this thesis,
we considered various fragments of SPARQL to study containment.

Databases Recently most work around the study of query containment has adopted
Datalog to represent queries. A conjunctive query (CQ) in Datalog is simply a query
where each predicate in the body of a rule references an extensional database relation
[Abiteboul et al. 1995].

To decide containment for CQs there are two ways. The first method uses contain-
ment mapping. Consider a partial mapping λ from variables of a query q1 to variables
and constant of a query q2 and extend µ to subgoals so that it maps the subgoals
with same predicate name. Such a mapping is a containment mapping if it makes the
subgoals in the body of q1 a subset of the subgoals in the body of q2, and the heads
identical. q2 is contained in q1 (denoted q2 � q1) if and only if there exists a contain-
ment mapping from q1 to q2. The second technique is based on canonicalization: to
decide if q1 � q2 one first freezes q1 by replacing the variables of its body and head
with constants. Then if q2 includes the frozen head of q1 in its answer set when ap-
plied over the canonical database consisting of just the frozen predicates of q1, we may
conclude that q1 ⊆ q2. When no predicate appears more than once in the body of
the rule, a linear time algorithm exists to decide containment, otherwise the decision
problem is NP-complete [Chandra & Merlin 1977]. This approach may be enriched to
decide containment between conjunctive queries with inequalities (CQ �=) [Ullman 1997].
Containment between Datalog programs (that support recursion, but not negation) is
undecidable [Shmueli 1993,Abiteboul et al. 1995]. Containment of a Datalog program
within a conjunctive query is doubly exponential, while the converse question is eas-
ier [Chaudhuri & Vardi 1992].

Query Entailment is the decision problem associated with query answering. For
CQs, query answering and containment are equivalent problems. In fact, query con-
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tainment can be reduced to query answering [Calvanese et al. 1998]. In this regard,
conjunctive query containment under the description logic DLR is studied in [Calvanese
et al. 2008]. CQ query answering in the presence of simple ontologies (fragments of
DL-Lite) has been studied [Calvanese et al. 2007, Lutz et al. 2009]. For expressive
ontology languages, query entailment (and hence containment) in DLs ranging from
ALCI to SHIQ is shown to be 2EXPTIME in [Lutz 2008, Glimm et al. 2008, Ortiz
et al. 2008a,Eiter et al. 2009]. See Table 2.7 for a partial summary of the studies on
query answering.

In this study we do not deal with the same query language as the one dealt with
in [Glimm et al. 2008]. In fact, the supported SPARQL fragment is strictly larger than
the one studied in [Glimm et al. 2008]. Specifically, UCQs in [Glimm et al. 2008] are
made of C(x), R(x, y) for an atom C, a role R, and variables x and y, whereas we do
also support queries capable of querying concept and role names at the same time, such
as q(x) = (x, y, z). Further, the purpose of reducing the problem to the µ-calculus is
exactly about extending query containment to even more features (such as SPARQL
1.1 paths with recursion, entailment regimes, and negation). For instance, it is known
that recursive paths can be easily supported in µ-calculus (using fixpoints). Beyond
this, the novelty of the study is the reduction of the SPARQL containment problem
to µ-calculus satisfiability, and the advantages of using such a logic: expressivity, good
computational properties, extensibility. The main focus of the contribution is not the
complexity bound by itself but rather a new approach with a broader logic, paving the
way for future extensions as it was never done before.

DL Axioms Entailment

ALC C1 � C2 ExpTime [Lutz 2008]

ALCH C1 � C2, R1 � R2 ExpTime [Ortiz et al. 2008b]

ALCI C1 � C2, R1 � R2 2ExpTime-hard [Lutz 2008]

ALCHI C1 � C2, R1 � R2 2ExpTime [Calvanese et al. 1998]

SH C1 � C2, R1 � R2 2ExpTime-hard [Eiter et al. 2009]

SHIQ C1 � C2, R1 � R2 2ExpTime-complete [Glimm et al. 2008]

SHOQ C1 � C2, R1 � R2 2ExpTime-complete [Glimm et al. 2008]

Table 2.7: The complexity of query entailment for the fragments of SHOIQ.

Finally, with an implicit goal of minimizing query evaluation costs, in [Pichler
et al. 2010] comprehensive complexity results were obtained for the problem of redun-
dancy elimination on RDF graphs in the presence of rules (RDFS or OWL), constraints
(tuple-generating dependencies) and with respect to SPARQL queries.

Semistructured data In line with CQs in databases and description logic worlds,
we have regular path queries— languages that are used to query arbitrary length paths
in graph databases — in semi structured data. Like CQs, they have been used and
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studied widely. They are different from CQs in that, they allow recursion by using
regular expression patterns. The problem of containment has been addressed for ex-
tensions of this language. In this regard, a prominent language used in semi-structured
data is XPath. This language has been studied extensively over the last decade. These
studies range from extending or reducing to static analysis. Static analysis of XPath
queries has been studied in [Genevès et al. 2007], encompassing containment, equiv-
alence, coverage, and satisfiability of XPath queries. In fact, this thesis is motivated
by [Genevès et al. 2007] in that the approach to study these problems using a graph
logic and provide a working implementation.

Other notable results come from the study of Regular Path Queries (RPQs). RPQs
are extremely useful for expressing complex navigations in a graph. In particular, union
and transitive closure are crucial when we do not have a complete knowledge of the
structure of the knowledge base where this is the case for RDF graphs. Containment
of (two-way) regular path queries (2RPQs) have been studied extensively [Calvanese
et al. 2000,Calvanese et al. 2003,Barceló et al. 2010]. These languages are used to query
graph databases and containment has been shown to be PSPACE-complete, this com-
plexity bound jumps to EXPTIME-hard under the presence of functionality constraints.
On the other hand, the containment of conjunctive 2RPQs is EXPSPACE-complete, this
bound jumps to 2EXPTIME when considered under expressive description logic (DL)
constraints [Calvanese et al. 2011]. However, it is exponential if the query on the right
hand side has a tree structure (cf. for example, [Calvanese et al. 2008]). Further, paths
are being included in the new version of SPARQL, thus this work can be used to test
containment of path SPARQL queries under the RDFS entailment regime.

Containment under constraints Query containment has also been studied under
different kinds of constraints. Results in this setting include, decidability of conjunctive
query containment under functional and inclusion dependencies is studied in [Johnson &
Klug 1984], also [Aho et al. 1979] proved decidability of this problem under functional
and multi-valued dependencies. Further, decidability and undecidability results are
proved in [Calvanese et al. 2008] for non-recursive datalog queries under expressive
description logic constraints. Moreover, the undecidability is proved in [Calvanese &
Rosati 2003] for recursive queries under inclusion dependencies.

The most closely related work is [Calvanese et al. 2008] in which query containment
under description logic constraints is studied based on an encoding in propositional
dynamic logic with converse (CPDL). They establish 2EXPTIME upper bound complex-
ity for containment of queries consisting of union of conjunctive queries under DLR
schema axioms. Our work is similar in spirit, in the sense that the µ-calculus is a logic
that subsumes CPDL, and may open the way for extensions of the query languages
and ontologies (for instance OWL-DL). Besides, the two languages are different since
SPARQL allows for predicates to be used as subject or object of other triple patterns
and can be in the scope of a variable. This is not directly allowed in DLR (union) of
conjunctive queries. Our encoding of RDF graphs and SPARQL queries preserves this
capability.
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The evaluation of SPARQL queries under schema constraints is considered by W3C
under the entailment regime principle. In this case, SPARQL queries are evaluated
by taking into account the semantics of a schema language [Kollia et al. 2011]. It is
possible to define query containment under such entailment regimes. We show how this
can be done in this thesis.

Benchmarking Recently, static analysis and optimization of SPARQL queries has
attracted widespread attention, notably [Chekol et al. 2011a,Letelier et al. 2012,Chekol
et al. 2012a, Chekol et al. 2012b] for static analysis and [Stocker et al. 2008, Groppe
et al. 2009, Schmidt et al. 2010, Letelier et al. 2012] for optimization. These studies
have grounded the theoretical aspects of these fundamental problems. However, to the
best of our knowledge, there is only one implementation from [Letelier et al. 2012] and
it supports only conjunction and OPTIONAL queries with no projection (containment
of basic and optional graph patterns).

On the other hand, in databases, containment of union conjunctive queries (UCQs)
is well studied and has a well know NP-complete complexity. The importance of the
study of this problem goes beyond the field of databases, it has its fair share from the
description logic community. Many of the works, from description logics, concentrated
on the problem of query answering as containment follows from it. These works, have
sound theoretical proofs, algorithms, and mathematical explanations. However, they
lack an implementation (or experimentation) of their approaches.

Finally, various SPARQL query evaluation performance benchmarks have been pro-
posed [Bizer & Schultz 2008,Bizer & Schultz 2009,Schmidt et al. 2009], but no SPARQL
query containment benchmark to our knowledge.

Model checking is a technique for automatically verifying correctness properties of
finite-state systems. Specifications about the system are expressed as logic (in our case,
µ-calculus) formulas, and efficient symbolic algorithms are used to traverse the model
defined by the system and check if the specification holds or not. Extremely large state-
spaces can often be traversed in minutes. From a complexity analysis point of view,
model checking is less complex than satisfiability. For instance, for the alternation-
free mu-calculus, the former has PTime complexity in terms of the size of the model
and the formula, on the other hand, the latter is ExpTime-complete. Thus, there is a
huge gap between the complexity of model checking and satisfiability test. Modal model
checking is a computationally tractable task, but this is not the case for first-order logic.
In fact, model checking first-order formulas is a PSPACE-complete task (see [Chandra
& Merlin 1977]). A broad discussion can be found in [Blackburn et al. 2007]. In
addition to using model checking as a query evaluation, it can also be used to check
satisfaction of integrity constraints. In the case of RDF graphs, integrity constraints
can be produced from RDF schema axioms. Thus, it is possible to determine if a given
RDF graph satisfies a given set of schema constraints (or axioms). However, in this
thesis, we do not study model checking (neither for query evaluation nor constraint
satisfaction), we focus only on satisfiability (as the containment problem is reduced
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into unsatisfiability test in the µ-calculus).
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In this chapter, we address SPARQL query containment under expressive descrip-
tion logic constraints. We apply an approach which has already been successfully
applied for XPath [Genevès et al. 2007]. SPARQL is interpreted over graphs, hence
we encode it in a graph logic, specifically the alternation-free fragment of the µ-
calculus [Kozen 1983] with converse and nominals [Tanabe et al. 2008] interpreted
over labeled transition systems. We show that this logic is powerful enough to deal
with query containment for the fragment of SPARQL, made of basic and union graph
patterns, in the presence of ALCH schema axioms. Furthermore, this logic admits
exponential time decision procedures that can be implemented in practice [Tanabe
et al. 2005,Genevès et al. 2007,Tanabe et al. 2008].

We show how to translate RDF graphs into transition systems and SPARQL queries
and schema axioms into µ-calculus formulae. Therefore, query containment in SPARQL
can be reduced to unsatisfiability in the µ-calculus. An additional benefit of using
a µ-calculus encoding is to take advantage of fixpoints and modalities for encoding
recursion. They allow to deal with natural extensions of SPARQL such as path queries
[Alkhateeb et al. 2009] or queries modulo RDF Schema. For more on this, we refer the
interested reader to Chapter 4 and 5.

3.1 RDF Graphs as Transition Systems

In this section, we show how to translate RDF graphs into labeled transition systems.
First of all, translating RDF graphs into transition systems is necessary in order to
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restrict the models of the µ-calculus formula obtained from the translation of queries.
Additionally, if RDF graphs can be translated into transition systems, then model
checking can be used to evaluate SPARQL queries. In fact, in this regard, there is
already some progress as presented in the literature [Mateescu et al. 2009] where it is
possible to extend and encode SPARQL queries in a logic and use model checking to
evaluate the result of the query.

There are several ways of encoding RDF graphs as transition systems, for instance,
consider the following:

• for each triple (s, p, o) ∈ G, s and o become nodes of the transition system and
p is a transition program, there is an edge �s, o� where transition from node s

to o and vice versa can be done using program p and its converse p̄ respectively.
While this approach is simple and intuitive, it does not work in the general case,
i.e., in an RDF graph predicates or properties can also be nodes in an RDF graph
as shown in Figure 3.1, thus, p cannot be a transition program.

_:b john
hasFather mary

childOf

ancestor

sp person

dom

range

Figure 3.1: An RDF graph where a predicate appears as a node

• for each triple (s, p, o) ∈ G, s, p, and o become atomic propositions that are true
in the states ns, np, and no respectively of a transition system, there are are
edges �ns, np� and �np, no� that are accessible through transition programs 1 and
2 respectively. Similar to the above approach, this translation procedure does
not work in the general case when encoding RDF schema graphs. For example,
consider an RDF graph that contains the triple (subPropertyOf, subPropertyOf,

subPropertyOf).

• the last approach considers encoding RDF graphs as bipartite graphs, i.e., for
each t = (s, p, o) ∈ G introduce two sets of nodes in the transition system: one
set for each triple nt and another set for each element of the triple ns, np, and no

where atomic propositions s, p and o are set to be true respectively. Additionally,
there are edges �ns, nt�, �nt, np�, and �nt, no� in the transitions system that are
accessible through programs s, p, o and their converses respectively. The idea of
representing RDF triples as other types of graphs (for instance, hypergraphs) was
first introduced in [Baget 2005], in fact, this translation coincides with the notion
of reification of n-ary relations [Calvanese et al. 2008] that is one edge from the
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triple node to subject, predicate, and object nodes of the triple in this case. This
approach overcomes the limitations of the other two approaches. Thus, in the
following, we discuss in detail how this technique works.

3.1.1 Encoding of RDF graphs

An RDF graph is encoded as a transition system in which nodes correspond to RDF
entities and RDF triples. Edges relate entities to the triples they occur in. Different
edges are used for distinguishing the functions (subject, object, predicate). Expressing
predicates as nodes, instead of atomic programs, makes it possible to deal with full RDF
expressiveness in which a predicate may also be the subject or object of a statement.

Definition 9 (Transition system associated to an RDF graph). Given an RDF graph,

G ⊆ UB × U × UBL, the transition system associated to G, σ(G) = (S,R, L) over

AP = UGBGLG ∪ {s�, s��}, is such that:

• S = S� ∪ S�� with S� and S�� the smallest sets such that ∀u ∈ UG, ∃nu ∈ S�,

∀b ∈ BG, ∃nb ∈ S�, ∀l ∈ LG, ∃nl ∈ S�, and ∀t ∈ G, ∃nt ∈ S��,

• ∀t = (s, p, o) ∈ G, �ns, nt� ∈ R(s), �nt, np� ∈ R(p), and �nt, no� ∈ R(o),

• L : AP → 2S ; ∀u ∈ UG, L(u) = {nu}, ∀b ∈ BG, L(b) = S�, L(s�) = S�, ∀l ∈
LG, L(l) = {nl} and L(s��) = S��,

• ∀nt, nt� ∈ S��, �nt, nt�� ∈ R(d).

The program d is introduced to render each triple accessible to the others and thus
facilitate the encoding of queries. The function σ associates what we call a restricted

transition system to any RDF graph. Formally, we say that a transition system K is a
restricted transition system iff there exists an RDF graph G such that K = σ(G).

A restricted transition system is thus a bipartite graph composed of two sets of
nodes: S�, those corresponding to RDF entities, and S��, those corresponding to RDF
triples. For example, Figure 3.2 shows the restricted transition system associated with
the graph of Example 1.

Given that the logic chosen to determine containment is µ-calculus with nominals
(lacking functionality or number restrictions), one cannot impose that each triple node
is connected to exactly one node for each of the three triple-components (subject,
predicate, and object). However, we can impose a lighter restriction to achieve this by
taking advantage of the technique introduced in [Genevès & Layaïda 2006]. Since it is
not possible to ensure that there is only one successor, then we restrict all the successors
to bear the same constraints. They thus become interchangeable (bisimulation). To do
this, we introduce a rewriting function f such that all occurrences of �a�ϕ (existential
formulas) are replaced by �a��∧ [a]ϕ. As such, f is inductively defined on the structure
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Figure 3.2: Transition system encoding the RDF graph of Example 1. Nodes in S��

are black anonymous nodes; nodes in S� are the other nodes (d-transitions are not
displayed).

of a µ-calculus formula as follows:

f(�) = �
f(q) = q q ∈ AP ∪Nom

f(X) = X X ∈ V ar

f(¬ϕ) = ¬f(ϕ)
f(ϕ ∧ ψ) = f(ϕ) ∧ f(ψ)

f(ϕ ∨ ψ) = f(ϕ) ∨ f(ψ)

f(�a�ϕ) = �a�� ∧ [a]f(ϕ) a ∈ {s̄, p, o}
f(�a�ϕ) = �a�f(ϕ) a ∈ {d, s, p̄, ō}
f([a]ϕ) = [a]f(ϕ) a ∈ Prog

f(µX.ϕ) = µX.f(ϕ)

f(νX.ϕ) = νX.f(ϕ)

Thus, when checking for query containment, we assume that the formulas are rewrit-
ten using function f . Along with that, we also consider the following restrictions:

• The set of programs is fixed: Prog = {s, p, o, d, s̄, p̄, ō, d̄}.

• A model must be a restricted transition system.

The last constraint can be expressed in the µ-calculus as follows:

Proposition 1 (RDF restriction on transition systems). Let ϕ be a formula that can

be stated over a restricted transition system, ϕ is satisfied by some restricted transition

system if and only if f(ϕ) ∧ ϕr is satisfied by some transition system over Prog, i.e.

∃Kr.�ϕ�Kr �= ∅ ⇐⇒ ∃K.�f(ϕ) ∧ ϕr�
K �= ∅, where:

ϕr = νX. θ ∧ κ ∧ (¬�d�� ∨ �d�X)
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in which θ = �s̄�s� ∧ �p�s� ∧ �o�s� ∧ ¬�s�� ∧ ¬�p̄�� ∧ ¬�ō��, and

κ = [s̄]ξ ∧ [p]ξ ∧ [o]ξ with

ξ = ¬�s̄�� ∧ ¬�o�� ∧ ¬�p�� ∧ ¬�d�� ∧ ¬�d̄�� ∧ ¬�s�s� ∧ ¬�ō�s� ∧ ¬�p̄�s�

The formula ϕr ensures that θ and κ hold in every node reachable by a d edge, i.e.,
in every s�� node. The formula θ forces each s�� node to have a subject, predicate and
object. The formula f(ϕ) enforces reification (makes sure that each s�� node is connected
to one subject, one predicate, and one object node). The formula κ navigates from a
s�� node to every reachable s� node, and forces the latter not to be directly connected
to other subject, predicate or object nodes.

Proof. (⇒) Assume that ∃Kr�f(ϕ)�
Kr �= ∅, since ϕr is satisfied by any restricted tran-

sition system, one gets �ϕr�
Kr �= ∅. Hence it follows that, ∃Kr�f(ϕ)�

Kr �= ∅ and
�ϕr�

Kr �= ∅ which imply ∃Kr�f(ϕ)�
Kr ∧ �ϕr�

Kr �= ∅. From this, using the semantics
of µ-calculus formula, one obtains ∃Kr�f(ϕ)∧ϕr�

Kr �= ∅. Since a restricted transition
system is also a transition system, Kr ⊆ K, it follows that ∃K.�f(ϕ) ∧ ϕr�

K �= ∅.
(⇐) Assume that ∃K�f(ϕ) ∧ ϕr�

K �= ∅. We construct a restricted transition system
model Kr = (Sr = S

�

r ∪ S
��

r , Rr, Lr) and a function g : Kr → K from K = (S,R, L).
Add a node n�

0 to Sr with g(n�
0) = n0 where f(ϕ)∧ϕr is satisfied in K. Suppose we have

constructed a node nr of Sr. For j ∈ {s, p, o}, if there is n ∈ S with (g(nr), n) ∈ R(j),
then pick one such n and add a node n�

r to Sr with g(n�
r) = n. In such construction,

if there are concurrent s̄, p, o transitions from an S
��

r node, we retain one transition for
each modality. This is because, if such transitions are part of the model that satisfy
f(ϕ)∧ϕr, then they will be under the influence of the constraints f(.) and ϕr, and will
bear these constraints. However, if they belong to K that does not satisfy the aforemen-
tioned formula, then cutting them will not affect the capacity of the model to be a model
for the formula. Finally, for an atomic proposition p, Lr(p) = {nr ∈ Sr | g(nr) ∈ L(p)}.
The RDF triple structure is maintained in Kr i.e. �(s, s��), (s��, p), (s��, o)� is valid
throughout the graph. If there were node pairs outside of this structure, then ϕr

will not be satisfied. Throughout the graph, θ, f(.) and κ ensure that for each triple
node s�� ∈ Sr, there exists an incoming subject edge, an outgoing property edge, and
an outgoing object edge. Hence, �ϕr�

Kr �= ∅.
To verify that �f(ϕ)�Kr �= ∅, it is enough to show that �f(ϕ)�K �= ∅ ⇒ �f(ϕ)�Kr �= ∅
by induction on the structure of f(ϕ).

If a µ-calculus formula ψ appears under the scope of a least µ or greatest ν fixed
point operator over all the programs {s, p, o, d, s̄, p̄, ō, d̄} as, µX.ψ ∨ �s�X ∨ �p�X ∨ · · ·
or νX.ψ ∧ �s�X ∧ �p�X ∧ · · · , then, for the sake of legibility, we denote the formulae by
lfp(X,ψ) and gfp(X,ψ), respectively.

So far we have showed how RDF graphs can be translated into transition systems
over which the µ-calculus formulas are translated. In the following, we propose methods
that are used to encode schema axioms and queries as µ-calculus formulas. Thus, at a
later point, we use these encodings to reduce containment test into the validity problem.
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3.1.2 Encoding Axioms

In this section, we provide the encoding of ALCH axioms, which can be considered as
a fragment of SROIQ without role inverse, role transitivity, role composition, nomi-
nals and qualified number restrictions. These encodings are used together with query
encodings to determine if any two queries are contained in each other.

Definition 10 (µ-calculus encoding of an ALCH schema). Given a set of axioms

c1, c2, ..., cn of a schema C, the µ-calculus encoding of C is:

η(C) = η(c1) ∧ η(c2) ∧ ... ∧ η(cn).

Where η translates each axiom into an equivalent formula using ω which recursively
encodes concepts and roles:

• Concept Inclusion

η(C1 � C2) = gfp
�
X,ω(C1) ⇒ ω(C2)

�

ω(⊥) = ⊥
ω(A) = A

ω(¬C) = ¬ω(C)

ω(C1 � C2) = ω(C1) ∧ ω(C2)

ω(∃R.C) = �s�
�
�p�R ∧ �o�(�s��o�ω(C))

�

ω(∀R.C) = [s]
�
[p]R ⇒ [o]([s][o]ω(C))

�

ω(∃R−.C) = �ō�
�
�p�R ∧ �s̄�(�s��o�ω(C))

�

ω(∀R−.C) = [ō]
�
[p]R ⇒ [s̄]([s][o]ω(C))

�

• Role Inclusion

η(R1 � R2) = gfp
�
X,R1 ⇒ R2

�

Next, we provide procedures to translate unions of conjunctive SPARQL queries,
i.e., SPARQL queries that only use UNION and AND, into µ-calculus formulas.

3.2 SPARQL Query Containment

In this section, we encode queries as µ-calculus formulas. Then, we reduce query
containment under schemas to µ-calculus unsatisfiability test and prove the correctness
of this reduction.

3.2.1 Encoding Queries as µ-calculus Formulae

In this section, we discuss the encoding of the containment problem q1{−→w } � q2{−→w }.
For any query q{−→w }, we call the variables in −→w distinguished or answer variables.
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Furthermore, we denote the non-distinguished or existential variables in q by ndvar(q),
the URIs/constants by uris(q), and the distinguished variables by dvar(q). When
encoding q1 � q2, we call q1 left-hand side query and q2 right-hand side query. q1 is a
union of conjunctive SPARQL query whereas q2 is a union of conjunctive SPARQLcdfc

query (cf. Definition 13).
Queries are translated into µ-calculus formulas. The principle of the translation is

that each triple pattern is associated with a sub-formula stating the existence of the
triple somewhere in the graph. Hence, they are quantified by µ so as to put them out of
the context of a state. In this translation, variables are replaced by nominals or some
formula that are satisfied when they are at the corresponding position in such triple
relations. A function called A is used to encode queries inductively on the structure
of query patterns. AND and UNION are translated into boolean connectives ∧ and ∨
respectively.

Encoding left-hand side query:

q1 is frozen, that is, every term in q1 becomes a nominal in µ-calculus. Here we
introduce two sets of nominals, one set for denoting constants and the other for the
distinguished variables. Further, function A is used to recursively compute a µ-calculus
formula corresponding to q1. The encoding of the SPARQL query is A(q) such that:

A((x, y, z)) = lfp
�
X, �s̄�x ∧ �p�y ∧ �o�z

�

A(q1 AND q2) = A(q1) ∧ A(q2)

A(q1 UNION q2) = A(q1) ∨ A(q2)

In order to encode the right-hand side query, we need to define the notion of cyclic
queries.

Definition 11 (Cyclic Query). A SPARQL query is referred to as cyclic if a transition

graph induced from the query patterns is cyclic. The transition graph1 is constructed in

the same way as the transition system of Definition 9.

Example 15. Let q be the query q{x} = (x, a, y), (y, b, z), (z, c, r), (r, d, y) where

ndvar(q) = {y, z, r} and dvar(q) = {x}. q is cyclic, as shown graphically,

x y

a

s

p

o
z

b

s o

p

r

c

s o

p

d

spo

1The transition graph is similar to the tuple-graph used in [Calvanese et al. 2008] to detect the
dependency among variables.
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In this example, the cyclic component involves non-distinguished variables and constants

{b, c, d}.

Example 16. Consider the following cyclic query:

q{} = (x, r, y)(y, r, z)(z, r, x)

a graph obtained from the graph patterns is shown below:

x

r

ys o

p

z
s o

p

spo

We can identify various features from this example:

• cyclicity: the query contains a cycle,

• distinguished variable-free: the query does not refer to any distinguished variable,

• constant-free: the query does not refer to any constant.

We refer to such cycles as constant and distinguished variable-free cycles (cdfc) and

denote such queries as SPARQLcdfc.

Definition 12. A cdfc component of a query is a connected component of the query

graph that:

• contains no constants,

• contains no distinguished variables,

• contains a cycle.

We have carried out experiments on DBpedia query logs2 in order to determine
how many of the real world queries contain a cdfc component. Consequently, we found
out that non of the queries (i.e., 0%) contain a cdfc component. Thus, this highly
motivates the benefits of this thesis.

Definition 13. SPARQLcdfc is the set of SPARQL queries which do not contain any

cdfc component.

2DBpedia 3.5.1 logs between 30/04/2010 and 20/07/2010 from ftp://download.openlinksw.

com/support/dbpedia/
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Encoding right-hand side query:

the encoding of the right-hand side query q� is different from that of the left due to the
non-distinguished variables that appear in cycles in the query. The distinguished vari-
ables and constants are encoded as nominals whereas the non-distinguished variables
ndvar(q�) are encoded as follows:

• If a non-distinguished variable x occurs only once in q�, x is encoded as �.

• If a non-distinguished variable appears multiple times in q�, then we produce a set
of mappings m = {m1, . . . ,mn} such that each mi contains formula assignments
to the non-distinguished variables. m is produced as follows:

– we denote the union of the set of distinguished variables and constants of q�

by X, i.e., X = uris(q�) ∪ dvar(q�),

– for any triple t = (s, p, o), functions fs, fp, and fo return the subject, pred-
icate, and object of t respectively,

fs((s, p, o)) = s

fp((s, p, o)) = p

fo((s, p, o)) = o

– for each multiply occurring non-distinguished variable xl, given that {x1, . . . , xk} ∈
ndvar(q�), assign it one of the triple patterns tj ∈ q� where it appears in,
i.e., xl appears in the triple pattern tj , from that we obtain mi’s as:

mi =
k�

l=1

{xl �→ α(xl, tj) | xl ∈ tj}

α(x, t) =







�s��p�fp(t) if x = fs(t) and fp(t) ∈ X

�s��o�fo(t) if x = fs(t) and fo(t) ∈ X

�p̄��s̄�fs(t) if x = fp(t) and fs(t) ∈ X

�ō��o�fo(t) if x = fp(t) and fo(t) ∈ X

�ō��p�fp(t) if x = fo(t) and fp(t) ∈ X

�ō��s̄�fs(t) if x = fo(t) and fs(t) ∈ X

Note that there is an exponential number of mi’s in terms of the number
of non-distinguished variables. More precisely, there are at most O(nk)

mappings, where n is the number of triples where non-distinguished variables
appear, and k is the number of non-distinguished variables.
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• Finally, the function A uses m to encode the query inductively:

A(q,m) =

|m|
�

i=1

A(q,mi)

A((x, y, z),m) = lfp
�
X, �s̄�d(m,x) ∧ �p�d(m, y) ∧ �o�d(m, z)

�

A(q1 AND q2,m) = A(q1,m) ∧ A(q2,m)

A(q1 UNION q2,m) = A(q1,m) ∨ A(q2,m)

d(m,x) =







ϕ if (x �→ ϕ) ∈ m

� if unique(x)

x otherwise

The disjuncts in the encoding guarantee that possible set of substitutions m capture the
intended semantics of a cyclic query that contains distinguished variables and constants
in its cyclic component.

Example 17 (SPARQL query encoding). Consider the encoding of q1 � q2 of Exam-

ple 8. To encode q1, we freeze the variables and constants and proceed with A such that

A(q1) =

�
lfp

�
X, �s̄�x ∧ �p�translated ∧ �o�l

�

∨ lfp
�
X, �s̄�x ∧ �p�wrote ∧ �o�l

��
∧

lfp
�
X, �s̄�l ∧ �p�type ∧ �o�Poem

�

To encode q2, one first computes m = {m1, . . . ,mn}. Given a multiply appearing non-

distinguished variable l ∈ ndvar(q2), we produce m as follows:

m1 = {l �→ α(l, (x, translated, l))} = {l �→ �ō��p�translated}
m2 = {l �→ α(l, (l, type, Poem))} = {l �→ �s��p�type}
m3 = {l �→ α(l, (x,wrote, l))} = {l �→ �ō��p�wrote}
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Using m = {m1,m2,m3}, the encoding of q2 is produced inductively:

A(q2,m) =

|m|
�

i=1

A(q2,mi) = A(q2,m1) ∨ A(q2,m2) ∨ A(q2,m3)

=
�
lfp

�
X, �s̄�x ∧ �p�translated ∧ �o��ō��p�translated

�

∧ lfp
�
X, �s̄��ō��p�translated ∧ �p�type ∧ �o�Poem

�

∨ lfp
�
X, �s̄�x ∧ �p�wrote ∧ �o��ō��p�translated

��
∨

�
lfp

�
X, �s̄�x ∧ �p�translated ∧ �o��s��p�type

�

∧ lfp
�
X, �s̄��s��p�type ∧ �p�type ∧ �o�Poem

�

∨ lfp
�
X, �s̄�x ∧ �p�wrote ∧ �o��s��p�type

��
∨

�
lfp

�
X, �s̄�x ∧ �p�translated ∧ �o��ō��p�wrote

�

∧ lfp
�
X, �s̄��ō��p�wrote ∧ �p�type ∧ �o�Poem

�

∨ lfp
�
X, �s̄�x ∧ �p�wrote ∧ �o��ō��p�wrote

��

So far we offered various functions to produce formulas corresponding to the encod-
ings of queries and schema axioms. Hence, the problem of containment under a schema
can be reduced to formula unsatisfiability in the µ-calculus as:

q �C q� ⇔ η(C) ∧ A(q) ∧ ¬A(q�,m) ∧ ϕr is unsatisfiable.

For the sake of legibility in writing, we use Φ(C, q, q�) to denote η(C)∧A(q)∧¬A(q�,m)∧
ϕr.

3.2.2 Reducing Containment to Unsatisfiability

We prove the correctness of reducing query containment to unsatisfiability test.

Lemma 1. Given a set of ALCH schema axioms C, C has a model iff η(C) is satisfiable.

Proof. (⇒) assume that there exists a model I = (∆I , .I) of C such that I |= C. We
build a restricted transition system K = (S,R, L) from I using the following:

• for each element of the domain e ∈ ∆I , we create a node ne ∈ S�,

• for each atomic concept A, if a ∈ AI , then (na, t) ∈ R(s), (t, ntype) ∈ R(p),
(t, nA) ∈ R(o), L(type),= ntype, L(A) = nA and L(a) = na where t ∈ S��,

• for each atomic role R, if (x, y) ∈ RI , then (nx, t) ∈ R(s), (t, nR) ∈ R(p), and
(t, ny) ∈ R(o) such that nx, ny, nR ∈ S�, t ∈ S��, and L(x) = nx, L(R) = nR,
L(y) = ny,

• S = S� ∪ S��

To show that η(C) is satisfiable in K. We proceed inductively on the construction of
the formula. Since the axioms, {c1, . . . , cn}, are made of role or concept inclusions or
transitivity, we consider the following cases:
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− when η(ci) = gfp
�
X,ω(C1) ⇒ ω(C2)

�
. Since CI

1 ⊆ CI
2 , we get that �ω(C1)�

K ⊆
�ω(C2)�

K . And hence, ω(C1) ⇒ ω(C2) is satisfiable in K. Besides, the gen-
eral recursion ν guarantees that the constraint is satisfied in each state of the
transition system. Therefore, η(ci) is satisfiable.

− when η(ci) = gfp
�
X,ω(r1) ⇒ ω(r2)

�
. From rI1 ⊆ rI2 we have that ∃nr1 ∈ L(r1)

implies ∃nr2 ∈ L(r2) in K. Thus, ∃s ∈ �ω(r1) ⇒ ω(r2)�
K . As K is a construction

of I, η(ci) is satisfiable in K.

Since K is a model of each η(ci), then η(C) is satisfiable.
(⇐) consider a transition system model K for η(C). From K, we construct an inter-
pretation I = (∆I , .I) and show that it is a model of C.

• ∆I = S, AI = �A�K for each atomic concept A,

• �I = ���K , for a top concept,

• rI = {(s, s�) | ∀t ∈ �r�K ∧ t� ∈ S ∧ (s, t�) ∈ R(s) ∧ (t�, t) ∈ R(p) ∧ (t�, s�) ∈ R(o)}
for each atomic role r,

Consequently, formulas such as gfp
�
X,ω(r1) ⇒ ω(r2)

�
and gfp

�
X,ω(C1) ⇒ ω(C2)

�
are

true in I. The first formula expresses that there is no node in the transition system
where ω(r1) holds and ω(r2) does not hold. This is equivalent to ω(r1) ⇒ ω(r2) and
�r1�

K ⊆ �r2�
K since r1 and r2 are basic roles. Thus, we obtain rI1 ⊆ rI2 and I |= r1 � r2.

On the other hand, for the latter formula from above, one can exploit its construc-
tion. Note however that, similar justifications as above can be worked out to arrive
at I |= C1 � C2 if C1 and C2 are basic concepts. Nonetheless, if they are complex
concepts, we proceed as below. Consider the case when C1 = A � B and C2 = ∃R.C,
�ω(C1) ⇒ ω(C2)�

K

⇔ �ω(A �B)�K ⊆ �ω(∃R.C)�K

⇔ �A ∧B�K ⊆ ��s�
�
�p�R ∧ �o�(�s��o�C)

�
�K

⇔ �A�K ∧ �B�K ⊆ {s | ∃s�.s ∈ ��s��p�R�K ∧ s� ∈ ��s��o�C�K}
⇔ AI ∩BI ⊆ {s | ∃s�.(s, s�) ∈ RI ∧ s� ∈ CI}
⇔ (A �B)I ⊆ (∃R.C)I

⇔ I |= C1 � C2

Accordingly, from I |= c1 ∧ · · · ∧ I |= cn, it follows that I |= C.

Theorem 1 ( [Hayes 2004]). Given a query q{−→w }, there exists an RDF graph G such

that �q{−→w }�G �= ∅.

Proof. (Sketch) From any query it is possible to build an homomorphic graph by col-
lecting all triples connected by AND and only those at the left of UNION (replacing
variables by blanks). This graph is consistent as all RDF graphs. It is thus a graph
satisfying the query.



3.2. SPARQL Query Containment 53

Lemma 2. Let q be a SPARQLcdfc query, for every restricted transition system K

whose associated RDF graph is G, we have that �q�G �= ∅ iff �A(q,m) ∧ ϕr�
K �= ∅.

Proof. (⇒) Assume that �q�G �= ∅ and consider that G is a canonical instance of q (cf.
Theorem 1). Using G, we construct a restricted transition system σ(G) = (S,R, L) in
the same way as it is done in Definition 9. To prove that σ(G) is a model of A(q,m),
we consider two cases:

(i) when q is cyclic-free, and

(ii) when q contains a cyclic component among its non-distinguished variables which
is not distinguished variable-free or constant-free

Firstly, (i) if q is cycle-free, then encoding the non-distinguished variables with �
suffices to justify that σ(G) is a model of its encoding.

Secondly, (ii) let us consider when q is cyclic, in this case, its encoding is
|m|
�

i=1

A(q,mi).

This disjunctive formula can encode multiply occurring non-distinguished variables
using the distinguished variables and constants of q. Henceforth, creating a formula
that is satisfiable in cyclic models.

It can be verified that σ(G) is a model for one of the disjuncts A(q,mi), this is
because nominals encoding the constants and distinguished variables are true in σ(G)

as they exist already in G. In addition, the formulae encoding the non-distinguished
variables are satisfied in σ(G), since these variables are encoded in terms of the dis-
tinguished variables and constants of the query which are already shown to be true in
σ(G). Therefore, A(q,m) is satisfiable in σ(G). To elaborate, if (x, y, z) ∈ q and l is
either x or y or z,

• for l either a distinguished variable or constant, the translation of l is satisfiable
in σ(G) since �l�σ(G) ∈ L(l),

• for l a uniquely appearing non-distinguished variable, the translation of l is true
in σ(G) since its encoding � is true everywhere in the transition system,

• the translation l of a multiply occurring non-distinguished variable is true in σ(G)

since ∃t ∈ S�. t ∈ L(c)∧t ∈ �c�σ(G), where c is a constant or distinguished variable
in the triple (x, y, z).

Thus, since σ(G) is a restricted transition system, we obtain that �A(q,m)ϕr�G �= ∅.
(⇐) Assume that �A(q,m) ∧ ϕr�

K �= ∅. From this we can derive that, K = (S,R, L)

is restricted transition system that satisfies A(q,m) ∧ ϕr. We build an RDF graph G

from K as follows:

• ∀s1, s2, s3 ∈ S� ∧ t ∈ S��.(s1, t) ∈ R(s) ∧ (t, s2) ∈ R(p) ∧ (t, s3) ∈ R(o) and for
each triple ti = (xi, yi, zi) ∈ q if s1 ∈ L(xi)∧ s2 ∈ L(yi)∧ s3 ∈ L(zi)∧ zi ∈ ���K ,
then (xi, yi, zi) ∈ G. This case holds if xi, yi and zi are either distinguished
variables or constants. Note here that if xi or yi or zi appear in another triple
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tj = (xj , yj , zj) ∈ q, then the equivalent item in tj is replaced with the value of
the corresponding entry in ti.

• ∀s1, s2, s3 ∈ S� ∧ t ∈ S��.(s1, t) ∈ R(s) ∧ (t, s2) ∈ R(p) ∧ (t, s3) ∈ R(o) and for
each triple ti = (xi, yi, zi) ∈ q if s1 ∈ L(xi) ∧ s2 ∈ L(yi), then (xi, yi, ci) ∈ G

where ci is a fresh constant. This case holds if zi is a non-distinguished variable.
Similarly, the case when xi or yi or both are variables can be worked out.

• ∀s1, s2, s3 ∈ S�∧ t ∈ S��.(s1, t) ∈ R(s)∧ (t, s2) ∈ R(p)∧ (t, s3) ∈ R(o) and for each
triple ti = (xi, yi, zi) ∈ q and xi is a non-distinguished variable that appears in a
cycle and if s1 ∈ ���K ∧ s2 ∈ L(yi) ∧ s3 ∈ L(zi), then (ci, yi, zi) ∈ G. Where ci
is a fresh constant and all such occurrences of the variable xi in other triples are
replaced by ci’s.

Since G is a technical construction obtained from a restricted transition system that
associated with q, then it holds that �q�G �= ∅.

In the following, for the sake of legibility, we denote η(C)∧A(q1)∧¬A(q2,m)∧ ϕr

by Φ(C, q1, q2).

Theorem 2 (Soundness). Given a SPARQL query q1{−→w }, a SPARQLcdfc query q2{−→w },
and a set of ALCH axioms C, if Φ(C, q1, q2) is unsatisfiable, then q1{−→w } �C q2{−→w }.

Proof. We show the contrapositive. If q1 ��C q2, then Φ(C, q1, q2) is satisfiable. One
can verify that every model G of C in which there is at least one tuple satisfying
q1 but not q2 can be turned into a transition system model for Φ(C, q1, q2). To do
so, consider a graph G that satisfies schema axioms C. Assume also that there is
a tuple −→a ∈ �q1�G and −→a �∈ �q2�G. Let us construct a transition system K from
G. From Lemma 1, we obtain that �η(C)�K �= ∅. Further, since K is a restricted
transition system (cf. Definition 9), �ϕr�

K �= ∅. At this point, it remains to verify that
�A(q1)�

K �= ∅ and �A(q2,m)�K = ∅.
Let us construct the formulas A(q1) and A(q2,m) by first skolemizing the distin-

guished variables using the answer tuple −→a . Consequently, from Lemma 2 one obtains,
�A(q1)�

K �= ∅. However, �A(q2,m)�K = ∅, this is because the nominals in the formula
corresponding to the constants and non-distinguished variables are not satisfied in K.
This implies that �¬A(q2,m)�K �= ∅. This is justified by the fact that if a formula ϕ is
satisfiable in a restricted transition system, then �ϕ�K = S thus �¬ϕ�K = ∅. So far we
have: �η(C)�K �= ∅ and �ϕr�

K �= ∅ and �A(q1)�
K �= ∅ and �¬A(q2,m)�K �= ∅. Without

loss of generality, �Φ(C, q1, q2)�K �= ∅. Therefore, Φ(C, q1, q2) is satisfiable.

Theorem 3 (Completeness). Given a SPARQL query q1{−→w }, a SPARQLcdfc query

q2{−→w }, and a set of ALCH axioms C, if Φ(C, q1, q2) is satisfiable, then q1{−→w } ��C

q2{−→w }.

Proof. Φ(C, q, q�) is satisfiable ⇒ ∃K.�Φ(C, q, q�)�K �= ∅. Consequently, K is a re-
stricted transition system due to �ϕr�

K �= ∅ (cf. Proposition 1). Using K = (S� ∪
S��, R, L) we construct a model I = (∆I , ·I) of C such that q �� q� holds:
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• ∆I = S�, AI = �A�K for each atomic concept A,

• �I = ���K , for a top concept,

• rI = {(s, s�) | ∀t ∈ �r�K ∧ t� ∈ S�� ∧ (s, t�) ∈ R(s) ∧ (t�, t) ∈ R(p) ∧ (t�, s�) ∈ R(o)}
for each atomic role r,

• for each constant c in q and q�, cI = �c�K ,

• for each distinguished and non-distinguished variable v in q, vI = �v�K , and

• for each distinguished variable v in q�, vI = �v�K .

One can utilize Lemma 1 to verify that indeed I is a model of C. Thus, it remains to
show that �q�I �⊆ �q��I . From our assumption, one anticipates the following:

�A(q) ∧ ¬A(q�)�K �= ∅ ⇒ �A(q)�K �= ∅ and �¬A(q�,m)�K �= ∅
⇒ �A(q)�K �= ∅ and �A(q�,m)�K = ∅

Note here that, if a formula ϕ is satisfiable in a restricted transition system Kr, then
�ϕ�Kr = S. We use a function f to construct an RDF graph G from the interpretation
I. f uses assertions in I to form triples:

f(a ∈ AI) = (a, type, A) ∈ G

f((a, b) ∈ rI) = (a, r, b) ∈ G

f((a, b) ∈ (r−)I) = (b, r, a) ∈ G

f((x, y, z)) = (x, y, z) ∈ G, ∀(x, y, z) ∈ q

As a consequence, �q�G �= ∅ and �q��G = ∅ because G contains all those triples that
satisfy q and not q�. Therefore, we get �q�G �⊆ �q��G. Fundamentally, there are two
issues to be addressed (i) when q� is not cyclic and (ii) when q� contains a cycle. (i)
if there are no cycles in q�, then replacing non-distinguished variables with � suffices
(cf. the proof of Lemma 2). On the other hand, (ii) can be dealt with nominals, i.e.,
since cycles can be expressed by a formula in a µ-calculus extended with nominals
and inverse, cyclic queries can be encoded by such a formula. Hence, the constraints
expressed by ¬A(q�,m) are satisfied in a transition system containing cycles

3.2.3 Complexity

In the following, we establish the complexity of the containment problem under schema
axioms. The schema axioms can be formed using the fragments of ALCH. The ex-
pressiveness of the schema language is limited as such due to the expressive power
of the logic used for the encoding: µ-calculus with nominals and converse becomes
undecidable when extended with graded modalities [Bonatti et al. 2006].

Proposition 2 (Query satisfiability). Given an ALCH schema C and a query q, the

complexity of satisfiability of q with respect to C is 2O(|C|+|q|).
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Proposition 3. SPARQL query containment under the fragments of ALCH schema

axioms can be determined in a time of 2O(n2log n) where n = O(|η(C)|+|A(q1)|+|A(q2)|)
is the size of the formula, and η(C), A(q1) and A(q2) denote the encodings of schema

axioms C, and queries q1 and q2.

Note that due to duplication in the encoding of q2, the size of |A(q2)| is exponential
in terms of the non-distinguished variables that appear in cycles in the query. Hence,
we obtain a 2EXPTIME upper bound for containment. As pointed out in [Calvanese
et al. 2008], the problem is solvable in EXPTIME if there is no cycle on the right hand
side query. This complexity is a lower bound due to the complexity of satisfiability in
µ-calculus which is 2O(n2log n) [Sattler & Vardi 2001,Tanabe et al. 2008].

3.3 Conclusion

We have introduced a mapping from RDF graphs into transition systems and the
encodings of queries and schema axioms in the µ-calculus. We proved that this en-
coding is correct and can be used for checking query containment. We have provided
implementable algorithms, as a consequence, this work opens a way to use available im-
plementations of µ-calculus satisfiability solvers from [Genevès et al. 2007] and [Tanabe
et al. 2008] as already done in Chapter 7 of this thesis. Beyond this, we have estab-
lished a double exponential upper bound for containment test under ALCH axioms.
The presented encoding is sound (in the sense that whenever the algorithm detects that
q1 is contained in q2, the containment holds), however it is not complete (i.e., it may
happen that the algorithm fails to detect an existing containment relationship) if q2 is
not a SPARQLcdfc query (Definition 13). Interestingly, the cases where the algorithm
might be incomplete can be detected, since those cases correspond to the queries of
type SPARQLcdfc , hence the user can be warned about such a potential risk. These
cases have already been dealt with in Chapter 6.

Here, we would like to emphasize that, in addition to the complexity bound we
provide, no implementation has been reported in previous works.
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Regular path queries (RPQs) are useful for expressing complex navigations in a
graph. In particular, union and transitive closure are crucial when one does not have
a complete knowledge of the structure of the knowledge base. SPARQL 1.0 lacks
recursion mechanism and supports a simple form of RPQs however its extensions such
as PSPARQL [Alkhateeb et al. 2009] and its successor SPARQL1.1 support this feature.
PSPARQL (Path SPARQL) allows querying of arbitrary length paths by using regular
expression patterns.

Conjunctive RPQs have been studied in [Florescu et al. 1998] where an EXPSPACE
algorithm for query containment is proved. Containment of (two-way) regular path
queries (2RPQs) and their extensions have also been studied [Calvanese et al. 2000,
Calvanese et al. 2003,Barceló et al. 2010]. Most recently, containment of RPQs under
description logic constraints have been studied in [Calvanese et al. 2011], and it has
been shown that this problem is 2ExpTime-complete.

Most notably and closely related results on query containment come from the study
of regular path queries (RPQs) [Calvanese et al. 2000]. The difference between [Cal-
vanese et al. 2000] and our work lies in the features supported by the languages.
While RPQs in [Calvanese et al. 2000] support backward navigation and conjunc-
tion, PSPARQL supports variables in paths and union. Since the logic adopted for
this study allows backward navigation, inverted paths can easily be supported. Fur-
ther, using our approach, we can deal with containment of PSPARQL queries under
expressive description logic axioms.

In this chapter, we show how to translate PSPARQL queries into µ-calculus formulas
and then reduce containment into unsatisfiability test. We prove that the reduction is
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sound and complete when the right-hand side query is of type PSPARQLcdfc (refer to
Definition 14), and establish complexity bounds for the problem. Towards the end of
this chapter, we propose how to decide containment in the presence of ALCH axioms,
using their encoding from Chapter 3.

4.1 PSPARQL Containment

In this section, we show how to reduce the containment of PSPARQL queries into µ-
calculus formula unsatisfiability test. In doing so, first, we introduce a function that
translates the queries inductively into formulas in the aforementioned logic. Second,
the encodings (a.k.a formulas) are tested for satisfiability in order to determine con-
tainment.

4.1.1 Encoding PSPARQL Queries

In this section, we show how to encode queries as µ-calculus formulas. Then, in Chapter
5, we use these encodings to test query containment under the RDFS and OWL entail-
ment regimes. Before discussing the encoding procedure, we briefly assess the issue
of blank nodes. Blank nodes are existential variables that denote the existence of un-
named resources. Their definition matches the definition of non-distinguished variables
in a query. Thus, blank nodes in the queries can be considered as non-distinguished
variables. As a result, every occurrence of a blank node in the query is replaced by a
fresh variable.

The encoding of PSPARQL queries is similar to that of SPARQL queries, the only
difference lies on the encoding of regular expression patterns that appear in the pred-
icate positions of the triple patterns. As in Chapter 3, we give separate encodings
of the queries on the left and right-hand sides of �. We consider the left-hand side
to be a PSPARQL query whereas the right-hand side query must be a PSPARQLcdfc

query. This is because we do not address PSPARQL queries that contain constant and
distinguished variable free cyclic component as discussed in 13.

Encoding left-hand side query: the encoding of the left-hand side query is similar
to that of its counterpart for SPARQL. The only difference lies on the encoding of
regular expression patterns as shown below:

A
�
(x, e, z)

�
= lfp

�
X, �s̄�x ∧R(e, z)

�

A
�
(x, e∗, z)

�
= (x ⇔ z) ∨ lfp

�
X, �s̄�x ∧R(e+, z)

�

A(q1 AND q2) = A(q1) ∧ A(q2)

A(q1 UNION q2) = A(q1) ∨ A(q2)

Regular expression patterns that appear in the query are encoded using the function
R. This function takes two arguments (the predicate which is a regular expression
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pattern and the object of a triple).

R(uri, y) = �p�uri ∧ �o�y
R(x, y) = �p�x ∧ �o�y

R(e � e�, y) = (R(e, y) ∨R(e�, y))

R(e · e�, y) = R(e, �s�R(e�, y))

R(e+, y) = µX.R(e, y) ∨R(e, �s�X)

R(e∗, y) = R(e+, y) ∨ �s̄�y

Example 18 (Encoding Kleene star *). Consider the following query:

q{x, y} = (x, z, y)(z, sp∗, ancestor)

A(q) = lfp(X, �s̄�x ∧ �p�z ∧ �o�y) ∧ (z ⇔ ancestor

∨ lfp
�
X,µY.R(sp, ancestor) ∨R(sp, �s�Y

�

= lfp(X, �s̄�x ∧ �p�z ∧ �o�y) ∧ (z ⇔ ancestor

∨ lfp
�
X,µY.�p�sp ∧ �o�ancestor ∨ �p�sp ∧ �s��o�Y

�
)

In order to encode the right-hand side query, we use the notion of cyclic queries dis-
cussed in Chapter 3. The only difference in the transitions systems, obtained from
SPARQL and PSPARQL queries to determine cyclicness, is that: for SPARQL queries,
nodes of the transition system are either variables or constants (URIs) whereas in the
case of PSPARQL, nodes can also be regular expression patterns. As for SPARQL
queries (Definition 13), we identify a fragment of union of conjunctive PSPARQL
queries that contain a cyclic component among its non-distinugished variables which
constant and distinguished variable-free. We refer to these kinds of queries as PSPARQLcdfc .

Definition 14. A PSPARQL query that contains a cyclic component which is constant

and distinguished variable-free is called PSPARQLcdfc.

Encoding right-hand side query: the distinguished variables and constants are
encoded as nominals whereas the non-distinguished variables are encoded as:

• the non-distinugished variables appearing only once are encoded as �.

• before we show how multiply appearing non-distinguished variables are encoded,
we present a motivating example. Consider the SPARQL query q{x} = (x, car, y)

AND (y, z, Paris), which has one distinguished variable x and two non-distinguished
variables y and z. As shown in Chapter 3, z can be encoded as � whereas to
encode y, we produce its encodings using the nominals corresponding to the en-
codings of the distinguished variables and constants in q. We obtain two possible
subformulas for y, {y → �ō��p�car, y → �s��o�Paris}, using these formulas we
can construct the encoding for q. A restricted transition system that corresponds
to the query q is shown below:
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x y

car

s

p

o
Paris

z

s

p

o

Now, think of the same way of encoding multiply appearing non-distinguished
variables in PSPARQL queries. For instance, assume that we are encoding the
PSPARQL query q{x} = (x, car · (train | bus)+, y) AND (y, z, r). In this query,
x is a distinguished variable and y, z, and r are non-distinguished variables. z

and r can be encoded as � whereas y cannot be encoded as �. We cannot
simply introduce fresh nominals n1 and n2 for the respective triples in the query,
due to the fact that the triple pattern (x, car · (train | bus)+, y) is composed of
finitely many triples. Therefore, in order to address this, instead of introducing
a fresh nominal, we can create a formula from the other terms (constants and
distinguished variables) of the triple pattern. If the predicate of the triple pattern
is a variable, we can encode it with respect to the constants and distinguished
variables of the query. Thus, the encoding of y is: {y → (�ō�train ∨ �ō�bus)}.
Thus, using all these encodings, the formula associated to q can be constructed
inductively. In general, if a non-distinguished variable appears multiple times,
then one performs the subsequent steps. Note that the mathematical notations
used here have been introduced in Section 3.2.1.

1. If a non-distinguished variable appears multiple times in q�, then we produce
a set of mappings m = {m1, . . . ,mn} such that each mi contains formula
assignments to the non-distinguished variables of the query.

2. for each multiply occurring non-distinguished variable xl, given that {x1, . . . , xk} ∈
ndvar(q�), assign it one of the triple patterns tj ∈ q� where it appears in,
i.e., xl appears in the triple pattern tj , from that we obtain mi’s as:

mi =

k�

l=1

{xl �→ α(xl, tj) | xl ∈ tj}

α(x, t) =







ϕ(s�, fp(t)) if x = fs(t) and fp(t) ∈ X

�s��o�fo(t) if x = fs(t), fo(t) ∈ X and fp(t) �∈ X

�p̄��s̄�fs(t) if x = fp(t) and fs(t) ∈ X

�ō��o�fo(t) if x = fp(t) and fo(t) ∈ X

ϕ(o�, fp(t)) if x = fo(t) and fp(t) ∈ X

�ō��s̄�fs(t) if x = fo(t), fs(t) ∈ X and fp(t) �∈ X

where in the function ϕ, s� and o� denote subject, and object, of the triple
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pattern tj . ϕ is defined as:

ϕ(s, a) = �s��p�a ϕ(o, a) = �ō��p�a
ϕ(s, a · b) = ϕ(s, a) ϕ(o, a.b) = ϕ(o, b)

ϕ(s, a � b) =
�
ϕ(s, a) ∨ ϕ(s, b)

�
ϕ(o, a � b) =

�
ϕ(o, a) ∨ ϕ(o, b)

�

ϕ(s, a+) = ϕ(s, a) ϕ(o, a+) = ϕ(o, a)

ϕ(s, a∗) = ϕ(s, a) ϕ(o, a∗) = ϕ(o, a)

• finally the function A works inductively on the query structure using m to gen-
erate the formula. As for the left-hand side query, R is used to produce the
encodings of regular expressions. A is the same as before except that it uses the
new m and R functions (cf. Section 3.2.1).

Example 19 (Encoding queries). Consider the encoding of q � q�, where

q{x, z} = (x, (c � d) · (a � b), z)

q�{x, z} = (x, c � d, y) AND (y, a � b, z)

• The encoding of q is obtained by freezing the query and recursively constructing

the formula using A.

A(q) = lfp
�
X, �s̄�x ∧R

�
(c � d) · (a � b), z

��

= lfp
�
X, �s̄�x ∧ (�p�c ∨ �p�d) ∧ �o��s�((�p�a ∨ �p�b) ∧ �o�z)

�

• The encoding of q� is as follows:

– the constants and distinguished variables are encoded as nominals,

– y ∈ var(q�) is encoded as ϕ(o, (c � d)), since y is an object of the triple

(x, (c � d), y). Hence, m1 = {y �→ (�ō��p�c ∨ �ō��p�d)}. On the other hand,

y can also be encoded as ϕ(s, (a � b)), since y is a subject of the triple

(y, a � b, z). Thus, we get m2 = {y �→ (�s��p�a ∨ �s��p�b)}.
– finally, we use A to encode q� recursively:

A(q�,m) =

|m|
�

i=1

A(q�,mi) = A(q�,m1) ∨ A(q�,m2)

=
�
lfp

�
X, �s̄�x ∧ (�p�c ∨ �p�d) ∧ �o�(�ō��p�c ∨ �ō��p�d)

�

∧ lfp
�
Y, �s̄�(�ō��p�c ∨ �ō��p�d) ∧ (�p�a ∨ �p�b) ∧ �o�z

��

∨
�
lfp

�
X, �s̄�x ∧ (�p�c ∨ �p�d) ∧ �o�(�s��p�a ∨ �s��p�b)

�

∧ lfp
�
Y, �s̄�(�s��p�a ∨ �s��p�b) ∧ (�p�a ∨ �p�b) ∧ �o�z

��

An interesting point to note is that the encodings of two equivalent SPARQL and
PSPARQL queries differ syntactically but are semantically equivalent. For instance,
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the following SPARQL qs and PSPARQL qp queries:

qs{x, y} = (x, c, y) UNION (x, d, y)

qp{x, y} = (x, c � d, y)

produce the encodings:

A(qs) = lfp
�
X, �s̄�x ∧ �p�c ∧ �o�y

�
∨ lfp

�
Y, �s̄�x ∧ �p�d ∧ �o�y

�

A(qp) = lfp
�
Z, �s̄�x ∧ (�p�c ∨ �p�d) ∧ �o�y

�

As can be seen, the two formulas A(qs) and A(qp) are syntactically different but se-
mantically equivalent.

4.1.2 Reducing Containment to Unsatisfiability

We prove the correctness of the encoding procedure as shown in Lemma 2. Once correct
encodings of queries have been produced, the next step requires reducing containment
into the validity problem in the µ-calculus. Intuitively, q � q� is reduced to the validity
test of A(q) ∧ ¬A(q�,m) ∧ ϕr. In doing so, we prove the soundness and completeness
of the reduction. To give an overview of the overall procedure, we start of with an
example.

Example 20 (Containment test). We show the containment of the following queries:

select all descendants and ancestors (q) whose names are “john" and (q�) who share the

same name.

q{x, z} = (x, name, “john”) AND (x, ancestor∗, z) AND (z, name, “john”)

q�{x, z} = (x, name, y) AND (x, ancestor∗, z) AND (z, name, y)

We proceed by first obtaining their encodings. Consider the encoding of q � q�, we

encode triple patterns using θ and m = {y �→ �ō�name}.

A(q) = lfp
�
X, θ(x, name, “john”)

�
∧

lfp
�
X, θ(x, ancestor∗, z)

�
∧

lfp
�
X, θ(z, name, “john”)

�

¬A(q�,m) = gfp
�
X,¬θ(x, name, �ō�name)

�
∨

gfp
�
X,¬θ(x, ancestor∗, z)

�
∨

gfp
�
X,¬θ(z, name, �ō�name)

�

The formula A(q)∧¬A(q�,m) is unsatisfiable because A(q) requires its model to satisfy

the encoding of each triple pattern somewhere in the transition system. On the contrary,

the formula ¬A(q�,m) requests this model to satisfy the negation of the encoding of the

triples in the entire transition system. Hence, this leads to a contradiction and no such

model exists for the formula. Therefore, q � q�. On the other hand, it can be verified

similarly that q� �� q.
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Lemma 3. Given a PSPARQL query q{−→w }, there exists an RDF graph G such that

�q{−→w }�G �= ∅.

Proof. (Sketch) From any query it is possible to build an homomorphic graph by col-
lecting all triples connected by AND and only those at the left of UNION (replacing
variables by blanks). For the triples that contain regular expression patterns instead
of variables, we can easily use a function g to rewrite the query as:

g((x, y, z)) = (x, y, z)

g((x, e, z)) = (x, e, z)

g((x, e1 · e2, z)) = g((x, e1, y)) AND g((y, e2, z)) where y is a fresh variable

g((x, e1 � e2, z)) = g((x, e1, y)) UNION g((y, e2, z)) where y is a fresh variable

g((x, e+, z)) = g((x, e, y1)) AND g((y1, e, y2)) AND · · · AND g((yi, e, z))

such that each yi is a fresh variable where 1 ≤ i ≤ n

and n ≥ 1. If n = 1, then yi = z

g((x, e∗, z)) = g((x, ε, z)) UNION g((x, e+, z))

The graph obtained in such way is consistent as all RDF graphs are [Hayes 2004], thus,
this graph satisfies the query q.

Lemma 4. Let q be a PSPARQLcdfc query, for every restricted transition system K

whose associated RDF graph is G, we have that �q�G �= ∅ iff �A(q,m) ∧ ϕr�
K �= ∅.

Proof. (⇒) �q�G �= ∅ implies that G is at least a canonical instance of q and it produced
using a function f as shown below:

• if (x, y, z) ∈ q, then f((x, y, z)) = (x, y, z) ∈ G,

• if (x, e, z) ∈ q, then f((x, e, z)) = (x, e, z) ∈ G,

• if (x, e · e�, z) ∈ q, then f((x, e, y)) ∈ G and f((y, e�, z)) ∈ G,

• if (x, e | e�, z) ∈ q, then f((x, e, z)) ∈ G or f((x, e�, z)) ∈ G,

• if (x, e+, z) ∈ q, then f((x, e, y1)) ∈ G and . . . and f((yn, e, z)) ∈ G,

• if (x, e∗, z) ∈ q, then f((x, e+, z)) ∈ G

Since G is an instance of q, G is a model of q (cf. Theorem 3). Now, we construct
a transition system σ(G) = (S,R, L) in the same way as is done in Definition 9. To
prove that σ(G) is a model of A(q,m), we consider two cases:

(i) when q contains a cyclic component among its non-distinguished variables which
is connected to a distinguished variable or a constant, and

(ii) when q is cycle-free
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First, (i) consider when q is cyclic, in this case, its encoding is
|m|
�

i=1

A(q,mi). Using

the nominals that correspond to the encodings of the distinguished variables and con-
stants of q, one can successfully create a formula that can encode multiply occurring
non-distinguished variables. Henceforth, creating a formula that is satisfiable in cyclic
models. Further, the disjuncts in the encoding guarantee that possible set of substitu-
tions in m capture the intended semantics of a cyclic query. One can verify that σ(G) is
a model of the disjuncts A(q,mi), this is because nominals encoding the constants and
distinguished variables are true in σ(G) as they exist in G. Furhter, since the formulas
corresponding to the encoding of the non-distinguished variables are obtained using the
constants or distinguished variables, they are also true in σ(G). Therefore, A(q,m) is
satisfiable in σ(G). To elaborate, if l is either x or y or z of the triple (x, y, z) ∈ q,

• for l either a distinguished variable or constant, l is satisfiable in σ(G) since
�l�σ(G) ∈ L(l),

• for l a uniquely appearing non-distinguished variable, l is true in σ(G) since � is
true everywhere in the transition system,

• a multiply occurring non-distinguished variable l is true in σ(G) since ∃t ∈ S�.t ∈
L(c) ∧ t ∈ �c�σ(G), where c is a nominal encoding a constant or distinguished
variable of the triple (x, y, z).

• for l = e a regular expression, its encoding R(e, z) is satisfiable in σ(G) if e is
satisfiable in σ(G).

Thus, since σ(G) is a restricted transition system, we obtain that �A(q,m)ϕr�G �= ∅.
If (ii) q is cycle-free, then the encoding the non-distinguished variables with � suffices
to justify that σ(G) is a model of its encoding.
(⇐) Assume that �A(q,m) ∧ ϕr�

K �= ∅. We now create an RDF graph G from K as
follows:

• if ∀s1, s2, s3 ∈ S� ∧ t ∈ S��.(s1, t) ∈ R(s) ∧ (t, s2) ∈ R(p) ∧ (t, s3) ∈ R(o) and
for each triple ti = (xi, yi, zi) ∈ q if s1 ∈ L(xi) ∧ s2 ∈ L(yi) ∧ s3 ∈ L(zi),
then (xi, yi, zi) ∈ G. This case holds if xi, yi and zi are either distinguished
variables or constants. Note here that if xi or yi or zi appear in another triple
tj = (xj , yj , zj) ∈ q, then the equivalent item in tj is replaced with the value of
the corresponding entry in ti.

• if ∀s1, s2, s3 ∈ S� ∧ t ∈ S��.(s1, t) ∈ R(s) ∧ (t, s2) ∈ R(p) ∧ (t, s3) ∈ R(o) and for
each triple ti = (xi, yi, zi) ∈ q if s1 ∈ L(xi) ∧ s2 ∈ L(yi), then (xi, yi, ci) ∈ G

where ci is a fresh constant. This case holds if zi is a non-distinguished variable.
Similarly, the case when xi or yi or both are variables can be worked out.

• if ∀s1, s2, s3 ∈ S�∧t ∈ S��.(s1, t) ∈ R(s)∧(t, s2) ∈ R(p)∧(t, s3) ∈ R(o) and for each
triple ti = (xi, ei, zi) ∈ q if s1 ∈ ��s��p�ei�K ∈ L(ei)∧s2 ∈ L(ei)∧s3 ∈ ��ō��p�ei�K ,
then (ci, ei, di) ∈ G where ci and di are fresh constants. This case holds if xi and
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yi are multiply occurring non-distinguished variables. Similarly, all the other
cases can be worked out.

Since G is a technical construction obtained from a restricted transition system asso-
ciated to q, it holds that �q�G �= ∅.

In the following, for the sake of legibility, we denote A(q)∧¬A(q�,m)∧ϕr by Φ(q, q�).

Theorem 4 (Soundness and Completeness). Given a PSPARQL query q and a PSPARQLcdfc

q�, Φ(q, q�) is unsatisfiable if and only if q � q�.

Proof. (⇒) we prove the contrapositive, q �� q� ⇒ Φ(q, q�) is satisfiable. Assume
there exists a graph G such that there exists a tuple −→a ∈ �q�G and −→a �∈ �q��G. We
construct a restricted transition system K from G. From Proposition 1, we get that
�ϕr�

K �= ∅. We use a tuple of URIs −→a to instantiate the distinguished variables in
q and q�. Using the encodings of the instantiated queries and from Lemma 4, it can
be inferred that �A(q)�K �= ∅ and �A(q�,m)�K = ∅. The later is not satisfiable in K

because the nominals corresponding to the constants −→a are not satisfied. Consequently,
�¬A(q�,m)�K �= ∅ and A(q) ∧ ¬A(q�,m) is satisfiable. Therefore, we arrive at Φ(q, q�)

is satisfiable.
(⇐) we show that if Φ(q, q�) is satisfiable, then q �� q�. Consider a restricted

transition system model K for Φ(q, q�). We construct an RDF graph G from K and
we need to verify that �q�G �⊆ �q��G. To do so, we start from the assumption, �A(q) ∧
¬A(q�,m)�K �= ∅. Subsequently, �A(q)� �= ∅ and �A(q�,m)�K = ∅ because G contains
all those triples that satisfy q and not q�. Besides, if q� contains a cycle, the constraints
expressed by ¬A(q�,m) are satisfied due to the ability, in a µ-calculus extended with
nominals and converse, to express a formula that is satisfied in cyclic models. Therefore,
q �� q�.

4.1.2.1 Complexity

Due to duplication in the encoding of the right-hand side query q�, the size of |A(q�,m)|
is exponential in terms of the non-distinguished variables that appear in cycles in the
query. Therefore, we obtain a 2EXPTIME upper bound for containment. The problem is
solvable in EXPTIME if there is no cycle in the right-hand side query. In this case, this
complexity is a lower bound due to the complexity of satisfiability in the µ-calculus.

Proposition 4. PSPARQL query containment can be solved in a time of 2O(n), where

n is an exponential size encoding of the containment problem.

Proof. This proposition is a consequence of Theorem 4. The size of the encoding of
the containment problem is exponential due to cycles in the right-hand side query.
In the µ-calculus, the satisfiability test of a formula can be performed in exponential
time. Consequently, containment of PSPARQL queries can be performed in a double
exponential amount of time.
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4.1.3 Inverted Path SPARQL Queries

Having chosen a fragment of the µ-calculus that is equipped with converse henceforth
enabling backward traversal in a transition system, it is natural to study the contain-
ment of inverted path queries (a.k.a. two-way regular path queries). The fragment of
PSPARQL queries studied in Section 4.1.1 resemble as that of the well-studied UCR-
PQs (Union of conjunctive regular path queries). In order to allow backward naviga-
tion in a graph, we add inverted regular path expressions e− to UCRPQS resulting in
a query language UC2RPQs (union of conjunctive two-way RPQs). Note that, the in-
verse operator − handles only atomic expressions. To start with, consider the following
example.

Example 21. Consider the query q “find pairs of students who take courses together.”

SELECT ?x ?y

WHERE {

?x :takesCourse. :takesCourse- ?y .

}

4.1.3.1 Encoding Inverted PSPARQL Queries

Adding inverse to PSPARQL changes only triple patterns, thus it is sufficient to modify
the encoding of triple patterns as the other query constructs are formed inductively.
The encoding of triple patterns that contain regular expression patterns with inverses
is detailed in Definition 15. The rest of the translation is similar to the encoding of
PSPARQL queries (cf. Section 4.1.1).

Definition 15. PSPARQL triple patterns with inverse can be encoded into µ-calculus

as follows, using A and R that are extended from Section 4.1.1 to accommodate the

inverse operator −.

A((x, e−, y)) = A((y, e, x))

A((x, e−1 � e2, y)) = A((x, e−1 , y)) ∨ A((x, e2, y))

A((x, e1 � e
−
2 , y)) = A((x, e1, y) ∨ A((x, e−2 , y))

A((x, e−1 � e−2 , y)) = A((x, e−1 , y)) ∨ A((x, e−2 , y))

A((x, e−1 .e2, y)) = �o�x ∧R(e−1 · e2, y)
A((x, e1.e

−
2 , y)) = �s̄�x ∧R(e1, �ō�R(e−2 , y))

A((x, e−1 .e
−
2 , y)) = �o�y ∧R(e−2 , �ō�R(e−1 , y))

A((x, (e−)+, y)) = �o�x ∧R((e−)+, y)

A((x, (e−)∗, y)) = �o�x ∧R((e−)∗, y)
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where R is extended to encode inverted path expressions inductively as:

R(u−, y) = �p�u ∧ �s̄�y
R((e−)+, y) = µX.R(e−, y) ∨R(e−, �ō�X)

R((e−)∗, y) = R((e−)+, y) ∨ �s̄�y
R(e−1 · e2, y) = R(e−1 , �s�R(e2, y))

R(e1 · e−2 , y) = R(e1, �ō�R(e−2 , y))

R(e−1 · e−2 , y) = R(e−1 , �ō�R(e−2 , y))

Example 22. The following formula is an encoding of the query in Example 21.

A(q) = A
�
(x, takesCourse · takesCourse−, y)

�

= lfp
�
X, �s̄�x ∧R(takesCourse, �ō�R(takesCourse−, y))

�

= lfp
�
X.�s̄�x ∧ �p�takesCourse ∧ �o��ō�R(takesCourse−, y)

�

A(q) = lfp
�
X, �s̄�x ∧ �p�takesCourse ∧ �o��ō�(�p�takesCourse ∧ �s̄�y)

�

Reducing Containment to Unsatisfiability To reduce containment to the validity
problem in the µ-calculus, first we need to verify that our encoding procedure produces
a correct encoding of a PSPARQL query. As such, we need to verify that both the
left-hand side A(q) and right-hand side A(q,m) encodings are correct. We show only
for the right-hand side query, the result for the left immediately follows from it. To do
this, we rely on the following lemma.

Lemma 5. Let q be a PSPARQL query, for every restricted transition system K whose

associated RDF graph is G, we have that �q�G �= ∅ iff �A(q,m) ∧ ϕr�
K �= ∅.

Proof. Here, it suffices to show that every PSPARQL query with inverse can be trans-
formed into one without inverse with the same interpretation. To do so, we use a
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function f that syntactically removes the inverses from a PSPARQL query:

f
�
(x, y, z)

�
= (x, y, z)

f
�
(x, uri, z)

�
= (x, uri, z)

f
�
x, e−, y)

�
= (y, e, x)

f
�
(x, e−1 · e2, y)

�
= f

�
(z, e1, x)

�
AND f

�
(z, e2, y)

�

where z is a fresh variable

f
�
(x, e1 · e−2 , y)

�
= f

�
(x, e1, z)

�
AND f

�
(y, e2, z)

�

f
�
(x, e−1 · e−2 , y)

�
= f

�
(z, e1, x)

�
AND f

�
(y, e2, z)

�

f
�
(x, e−1 � e2, y)

�
= f

�
(y, e1, x)

�
UNION f

�
(x, e2, y)

�

f
�
(x, e1 � e

−
2 , y)

�
= f

�
(x, e1, y)

�
UNION f

�
(y, e2, x)

�

f
�
(x, e−1 � e−2 , y)

�
= f

�
(y, e1, x)

�
UNION f

�
(y, e2, x)

�

f
�
x, (e−)+, y)

�
= f

�
z, e, x)

�
AND f

�
(y, e+, z)

�

f
�
x, (e−)∗, y)

�
= (x, ε, y) UNION f

�
(x, (e−)+, y)

�

f(q1 AND q2) = q1 AND q2

f(q1 UNION q2) = q1 UNION q2

Thus, using f , we can transform a PSPARQL query q with inverse into one f(q)

without inverse. Our transformation preserves the semantics of PSPARQL queries with
inverse as already shown in [Alkhateeb 2008]. As a consequence, we can conclude that
the above lemma holds from the proof of Lemma 2.

Theorem 5 (Soundness and Completeness). Given a PSPARQL query q with inverse

and a PSPARQLcdfc q� with inverse, A(q) ∧ ¬A(q�,m) ∧ ϕr is unsatisfiable if and only

if q � q�.

Proof. Using the transformation function f , from Lemma 5, we can rephrase the above
theorem as: given two PSPARQL queries q and q� with inverse, it holds that A(f(q))∧
¬A(f(q�),m) ∧ ϕr is unsatisfiable if and only if f(q) � f(q�). Since this argument has
already been proved in Theorem 4, we obtain that the above theorem also holds.

To demonstrate how the containment test is carried out, we provide the following
example taken from [Calvanese et al. 2000]. The queries ask for all pairs of individuals
(?x, ?y) that are in the transitive closure of the sibling (including stepsibling) relation
such that there is some individual ?z that ?x and ?y have two descendants who are
respectively the father and mother of ?z.

Example 23. Given PSPARQL queries q and q� on a graph modelling a family tree,

we produce the encoding to determine q� � q as follows:
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q = SELECT ?x ?y

WHERE {

?x (:father- . :father | :mother- . :mother)+ ?y .

?x (:father | :mother)* . :father ?z .

?x (:father | :mother)* . :mother ?z .

}

q’ = SELECT ?x ?y

WHERE {

?x (:father- . :father . :mother- . :mother) ?y .

?x :father . :mother- ?y

}

It is possible to verify that q� � q. To do so, we produce the encoding of these queries,

A(q�) = lfp
�
X, �o�x ∧R(father− · father ·mother− ·mother, y)

�

∧ lfp
�
Y, �s̄�x ∧R(father ·mother−, y)

�

� �� �

ψ

= lfp
�
X, �o�x ∧R(father−, �s�R(father ·mother− ·mother, y))

�
∧ ψ

= lfp
�
X, �o�x ∧ �p�father ∧ �s̄��s�R(father, �s�R(mother− ·mother, y))

�
∧ ψ

= lfp
�
X, �o�x ∧ �p�father ∧ �s̄��s�R

�
father, �s�R(mother− ·mother, y))

�
∧ ψ

A(q,m) = lfp
�
X, �s̄�x ∧R((father− · father | mother− ·mother)+, y)

�

∧ lfp
�
Y, �s̄�x ∧R((father | mother)∗ · father, �ō��p�father)

�

∧ lfp
�
Z, �s̄�x ∧R((father | mother)∗ ·mother, �ō��p�mother)

�

Note that the encoding of the right-hand side query q, A(q,m) is equivalent to A(q)

because there are no non-distinguished variables in q. Thus, we can use the same

encoding procedure for q� and q. If we feed the encoding A(q�) ∧ ¬A(q,m) ∧ ϕr to a

µ-calculus satisfiability solver, it will respond “no” leading to the result q� � q.

Complexity The complexity of encoding path queries with inverse as formulas is
exponential (due to the encoding of the right-hand side query A(q�,m)). Thus, adding
the inverse operator to determine containment of path SPARQL queries has no extra
complexity.

Proposition 5. Given two PSPARQL queries q and q� with inverse, determining the

containment of q in q� can be performed in a double exponential amount of time.

4.2 Containment of PSPARQL Queries under Schema

Most of the results on query containment concern conjunctive queries and their exten-
sions. In [Chandra & Merlin 1977], NP-completeness has been established for conjunc-
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tive queries. In [Klug 1988,van der Meyden 1992], Πp
2-completeness of containment of

conjunctive queries with inequalities was proved and in [Sagiv & Yannakakis 1980] the
case of queries with the union and difference operators was studied. Other studies con-
sider containment in the presence of various types of constraints [Aho et al. 1979,Levy
& Sagiv 1993, Levy & Rousset 1996, Florescu et al. 1998]. In relation, we investigate
the containment of path SPARQL queries in the presence of description logic schema
axioms.

In this section, we study the containment problem for conjunctive regular path
queries with inverse (CRPQIs) in the presence of ontological axioms. We refer to this
class of SPARQL queries as PSPARQL queries with inverse. The expressive power of
the regular expression patterns is limited in that negation and number restrictions are
not allowed as containment becomes undecidable [Barceló et al. 2010]. Query contain-
ment is undecidable if we do not limit the expressive power of the query and schema
languages. In fact, in knowledge representation formalisms suitable query languages
have been designed for retaining decidability [Glimm et al. 2008,Lutz 2008,Calvanese
et al. 2008,Eiter et al. 2009,Calvanese et al. 2011,Bienvenu 2012]. Thus, we consider the
containment, of PSPARQL queries with inverse, under the presence of ALCH schema
axioms.

To motivate the study of containment in the presence of ontologies, we start with
the following examples.

Example 24. Consider the following queries that query all cities which are reachable

from Paris using a sequence of transportation means.

q = SELECT ?y

WHERE {

:train rdfs:subPropertyOf :Transport .

:Paris :train+ ?y .

}

q’ = SELECT ?y

WHERE {

:Paris :transport+ ?y .

}

With SPARQL simple entailment semantics, we have that q �� q�. However, if we

consider the RDFS semantics (a.k.a. RDFS entailment regime), then we get q � q�.

Example 25. Let us modify the queries in Example 24 and reconsider the containment

problem among them:

q = SELECT ?y

WHERE {

:Paris (:transport . :transport) ?y .

}
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q’ = SELECT ?y

WHERE {

:Paris (:train . :plane) ?y .

:train rdfs:subPropertyOf :transport .

:plane rdfs:subPropertyOf :transport .

}

Under the RDFS semantics, it can be seen that q� � q whereas q �� q�. However,

containment fails in both directions under simple entailment semantics of PSPARQL.

These examples motivate why it is necessary to address containment and equiva-
lence problems in the presence of schema axioms. In fact, query answering for expressive
description logic languages has been an important research direction in the knowledge
representation domain. In line with this, the W3C SPARQL working group has started
an important effort in order to extend SPARQL’s basic graph pattern to other en-
tailment regimes (RDF, OWL, RIF). This is indispensable because answering queries
under entailment regimes allows to include more answers by performing reasoning as
this cannot be done in SPARQL’s simple entailment semantics.

For this study we consider ALCH an extension of the description logic ALC with
role hierarchy. It encompasses the lightweight ontology language RDFS. For a separate
study of containment under RDFS semantics (or OWL entailment regimes), we refer
the reader to Chapter 5.

Encoding queries and schema axioms: the encoding of PSPARQL queries with
inverse has been presented in the previous section and likewise ALCH axioms can
be translated into µ-calculus inductively on the structure of the schema constructs as
already done in Chapter 3.

4.2.1 Reducing Containment to Unsatisfiability

PSPARQL queries can be translated into µ-calculus formulas using function A and
likewise ALCH ontology axioms become formulas with function η (cf. Chapter 3 for
details). Thus, given two queries q and q�, and schema axioms S, the problem of testing
q �S q� can be reduced to checking the satisfiability of the formula η(S) ∧ A(q) ∧
¬A(q�,m) ∧ ϕr. In the following, for legibility, we denote this formula by Φ(S, q, q�).

Theorem 6 (Soundness and Completeness). Given a PSPARQL query q, a PSPARQLcdfc

query q�, and a set of ALCH schema axioms S, q �S q� if and only if Φ(S, q, q�) is

unsatisfiable.

Proof. The proof follows from the proof of Theorem 4 and Theorem 2.

This theorem leads to the following proposition. The complexity of determining
PSPARQL containment under the presence of schema axioms has a double exponential
upper bound. This bound is a result of ExpTime satisfiability of a µ-calculus formula
and an exponential size encoding.
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Proposition 6 (Complexity). Given a PSPARQL query q, a PSPARQLcdfc query q�,

and ALCH ontology axioms S, the problem of checking q �S q� can be determined in a

time of 2O(n). n is the size of the encoding which is exponential.

The double exponential upper bound reduces to just single exponentiation when
the right-hand side query has a tree structure.

4.3 Conclusion

In this chapter, we have addressed containment of SPARQL queries with paths. We
took a similar approach to [Genevès et al. 2007] that established the optimal complex-
ity for XPath query containment. The problem of PSPARQL query containment has
been reduced to satisfiability testing in the µ-calculus. For that purpose, we encoded
PSPARQL queries as formulas. We proved that the reduction is sound and complete
when the right-hand side query is of type PSPARQLcdfc and that determining contain-
ment requires a double exponential amount of time.

Paths are included in the new version of SPARQL 1.1 which is currently under
standardization by W3C hence our results are a step towards query containment for
SPARQL 1.1. Further, this work is also relevant for determining containment of
SPARQL queries under RDFS entailment regime as discussed in Chapter 5. Simi-
larly, the encoding procedures can be extended to richer types of queries, e.g., query
modulo OWL ontologies.
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Presently, SPARQL is being extended with different entailment regimes and regu-
lar path expressions. The semantics of SPARQL relies on the definition of basic graph
pattern matching that is built on top of RDF simple entailment [Hayes 2004]. However,
it may be desirable to use SPARQL to query triples entailed from subclass, subprop-
erty, range, domain, and other relations which can be represented using RDF schema.
The SPARQL specification defines the results of queries based on simple RDF entail-
ment. The specification also presents a general parametrized definition of graph pat-
tern matching that can be expanded to other entailments beyond simple entailment.
Query answering under the RDFS entailment regime can be achieved via: (1) mate-
rialization (computing the deductive closure of the queried graph), (2) rewriting the
queries using the schema, and (3) hybrid (combining materialization and query rewrit-
ing) [Glimm 2011]. We use a technique based on the approaches (1) and (2) to study the
problem of SPARQL query containment under the RDFS and OWL entailment regimes.

Entailment regimes take into account the semantics of schema information embed-
ded in the queries, so this is different from the one in Chapter 3. We study SPARQL
query containment under the RDFS (respectively OWL Direct Semantics) entailment
regime defined as: for any graph (respectively knowledge base) that satisfies RDFS
(respectively OWL) axioms, checking whether the results of one query are included in
the results of another query. To do so, we translate SPARQL queries and a fragment
of RDFS and OWL schema axioms into µ-calculus formulae. We refer to the fragment
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of the RDFS (resp. OWL) entailment regime as smallRDFS (resp. OWL-ALCH) en-
tailment regime. Then, we show how query containment in SPARQL under smallRDFS
entailment can be reduced to unsatisfiability in the µ-calculus. Beyond, smallRDFS
entailment, we show the same procedure can be extended for the OWL-ALCH Direct
Semantics entailment regime. This is the same encoding as using the ALCH language
considered in Chapter 3. But, we provide three different approaches of this problem
based on the techniques of Chapter 3 and 4.

You may have RDFS (or OWL) statements:

1. in the query,

2. in the queried graph, or

3. in a separate schema.

You may decide to interpret them by using simple RDF entailment, RDFS entail-
ment, or OWL entailment. In principle, there are 6 possibilities but as far as query
containment is concerned, 2 cannot be considered because containment is independent
from the queried graph, this can be simulated by option number 3, so we have the follow-
ing containment problems under entailment regimes: containment under simple RDF
entailment �rdf

∅ (a.k.a. containment of SPARQL queries), containment under schema

�rdf
S , containment of RDFS queries (SPARQL queries that contain RDF schema infor-

mation) �rdfs
∅ , and containment of RDFS queries under schema (�rdfs

S ). We write �rdf
S

as just �S .
Before diving into the presentation of query containment under simpleRDFS and

OWL-ALCH entailment regimes, we would like to point out one important difference
between containment under schema axioms and containment under entailment regimes.
In doing so, we consider the example below.

Example 26. Difference between containment test under RDFS schema axioms versus

RDFS entailment.

S = {}
q1{x, y} = (x, parentOf, y) q2{x, y} = (x,motherOf, y) AND

(motherOf, sp, parentOf)

q1 ��rdfs
S q2, q2 �rdfs

S q1 q1 ��S q2, q2 ��S q1

S = {(motherOf, sp, parentOf)}
q{x, y} = (x, parentOf, y) q�{x, y} = (x,motherOf, y)

q ��rdfs
S q�, q� �rdfs

S q q ��S q�, q� �S q

From this example, one can see that if schema information is included in the queries

for which containment is to be determined, containment under entailment regimes is
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used. However, if explicitly schema axioms are given to test containment, then either

containment under schema or containment under entailment regimes can be used.

The RDFS entailment regime extends the basic graph patterns of a SPARQL1.0
query, for instance, (x, sc, transport) can be extended to

(x, sc+, transport).

In this regard, we take another example to once again outline the differences.

Example 27. Let us reconsider the containment between q and q� of Example 25.

Clearly, containment under simple entailment does not hold, i.e., q ��s q
� and q� ��s q.

On the other hand, when considering containment under RDFS entailment, we have

q� �rdfs q and q ��rdfs q�. Since, no schema axioms are provided, containment fails in

both directions for containment under schema axioms, i.e., q ��S q� and q� ��S q.

Example 28. Consider querying types of transport means:

q{x} = (x, type, y) AND (y, subClassOf, transport)

q�{x} = (x, type, transport)

Under the RDFS entailment regime, q �rdfs q
� but q� ��rdfs q.

Relying on these important differences between containment under entailment regimes
and under schema axioms, we continue addressing the problem. For the containment
under simpleRDFS entailment regime, we propose three different approaches to deter-
mine containment. But the encoding of queries is the same as that of the one given
in Chapter 3 except when queries contain schema axioms. In that case, those schema
axioms are encoded similarly as those of constraining schema axioms. Finally, we study
the containment problem under the OWL-ALCH entailment regime for SPARQL-OWL
queries [Glimm et al. 2008,Kollia et al. 2011]. Importantly, under both simpleRDFS
and OWL-ALCH entailment regime semantics, there are no non-distinguished variables
since answers are computed from the basic graph patterns of the query, projection is
considered as a post-processing step. Projection is performed, after the evaluation of
basic graph patterns, i.e., after all the variables are bound to values in the ontology.
Thus, when dealing with containment, the encoding of the right-hand side query can
be obtained in the same way as that of the left-hand side query (cf. Section 3).

In this thesis, we do not follow the W3C definitions of the SPARQL entailment
regimes1. Instead, we identify a small fragment of SPARQL, AND and UNION graph
patterns, and schema languages as discussed above. Our approach excludes the RDF(S)
axiomatic triples and non-standard use of vocabulary terms [Hogan et al. 2009], as
shown in the following definition:

Definition 16 (Non-standard vocabulary usage [Hogan et al. 2009]). An RDF triple

t has non-standard vocabulary usage if the following condition holds:

1http://www.w3.org/TR/sparql11-entailment/

http://www.w3.org/TR/sparql11-entailment/
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• a property in Voc = {dom, range, sc, sp, ObjectAllValuesFrom, ObjectSomeVal-
uesFrom, EquivalentClasses, EquivalentObjectProperties, ObjectUnionOf,
ObjectIntersectionOf} appears in a position different from the predicate position.

Besides, the so called schema queries such as (x, subClassOf, y) or (z, subPropertyOf, r)

or (x, inverseOf, y) are also excluded as shown in Definition 17. A more detailed dis-
cussion on the issue of schema queries can be found [Krötzsch 2012].

Definition 17 (Schema-free queries). A SPARQL query is schema-free if it does not

contain schema vocabulary (a property in Voc of Definition 16) in the property position

of its BGP.

5.1 Containment under simpleRDFS Entailment Regime

In the following, we propose three approaches to determine query containment under
the simpleRDFS entailment regime: encoding the RDFS semantics, query rewriting,
and encoding the schema approaches. Interestingly enough, it has been show that the
standard set of entailment rules for RDFS is incomplete and that this can be corrected
by allowing blank nodes in predicate position [Ter Horst 2005]. Nonetheless, for our
purposes, we consider the subset of RDFS inference rules presented below. Note that
this subset makes up a core fragment of RDFS, [Muñoz et al. 2007] showed that this
fragment is minimal and well-behaved as well as its semantics is equivalent to that of
the full RDFS. This fragment has the following deductive RDFS inference rules:

• Subclass (sc)

(a, sc, b) (b, sc, c)

(a, sc, c)

(a, sc, b) (x, type, a)

(x, type, b)
(5.1)

• Subproperty (sp)

(a, sp, b) (b, sp, c)

(a, sp, c)

(a, sp, b) (x, a, y)

(x, b, y)
(5.2)

• Typing (dom, range)

(a, dom, b) (x, a, y)

(x, type, b)

(a, range, b) (x, a, y)

(y, type, b)
(5.3)

5.1.1 Encoding the RDFS Semantics

When queries are evaluated under the RDFS entailment regime, the queried graph is
materialized or saturated using RDFS inference rules (or simply rules) and the schema.
Henceforth, implicit or inferred triples are considered when computing the result of
the query. Since no specific graphs are considered when dealing with containment, we
encode schema and rules. In addition, blank nodes that appear in the schema graph are
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skolemized, i.e., replaced by fresh constants that do not appear neither in the queries
nor schema.

Definition 18. The encoding of an RDF schema graph S = {t1, · · · , tn} is produced

by encoding each schema triple ti = (x, y, z) ∈ S such that:

ΦS =

n�

i=1∧ti∈S

lfp
�
X, (�s̄�x ∧ �p�y ∧ �o�z)

�

where x, y, and z are atomic propositions corresponding to triple elements.

Definition 19 (Encoding inference rules). The µ-calculus encoding of RDFS inference

rules of (5.1)–(5.3) is the disjunction of formulas (1) to (6) such that:

(1) gfp
�
X,µY.�p�sc ∧ �o�� ∨ �p�sc ∧ �s�Y

�

(2) gfp
�
X, θ(x, type, θ(a, sc, b)) ⇒ θ(x, type, b)

�

(3) gfp
�
X,µY.�p�sp ∧ �o�� ∨ �p�sp ∧ �s�Y

�

(4) gfp
�
X, θ(x, θ(a, sp, b), y) ⇒ θ(x, b, y)

�

(5) gfp
�
X, θ(x, θ(a, dom, b), y) ⇒ θ(x, type, b)

�

(6) gfp
�
X, θ�(x, θ(a, range, b), y) ⇒ θ(y, type, b)

�

θ(x, y, z) = x ∧ �s�(�p�y ∧ �o�z) θ�(x, y, z) = z ∧ �ō�
�
�p�(y ∧ �s̄�x)

We denote this formula by ΦR.

Transitive RDFS properties, sc and sp are encoded as transitive closure: sc+

and sp+, respectively. This is because, with the µ-calculus, it is not possible to enforce
transitivity of a property in a transition system. This is a consequence of the tree-model
property of the µ-calculus, and the fact that transitivity does not hold in tree-shaped
models [Sattler & Vardi 2001].

So far, we have produced the encodings of queries A(q), RDFS inference rules ΦR,
and RDFS graph ΦS . Using these encodings, in the following, we reduce query contain-
ment to unsatisfiability in the µ-calculus and prove the correctness of this reduction.

Theorem 7 (Soundness and Completeness). Given SPARQL queries q and q� and a

schema S, q �S
rdfs q

� is unsatisfiable if and only if ΦR ∧ ΦS ∧A(q) ∧ ¬A(q�) ∧ ϕr.

Proof. The proof of this theorem directly follows from the proof of Theorem 2 and
Theorem 3.

5.1.2 Query Rewriting

SPARQL query containment under simpleRDFS entailment regime can be determined
by rewriting queries using the RDFS inference rules (shown in equation (5.1)–(5.3))
and then reducing the encoding of the rewriting to unsatisfiability test. This rewriting,
first introduced in [Alkhateeb et al. 2009], is done using PSPARQL as explained in the
following definition.
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Definition 20 (SPARQL to PSPARQL). Given a SPARQL query q, a rewriting function

τ produces its PSPARQL equivalent as follows:

τ((s, sc, o)) = (s, sc+, o)

τ((s, sp, o)) = (s, sp+, o)

τ((s, p, o)) = (s, x, o) AND (x, sp∗, p) such that p /∈ {sc, sp, type, dom, range}
τ((s, type, o)) = (s, type.sc∗, o) UNION (s, x, y) AND (x, sp∗.domain.sc∗, o)

UNION (y, x, s) AND (x, sp∗.range.sc∗, o)

τ((s, x, o)) = (s, x, o) when x is a variable

τ(q1 AND q2) = τ(q1) AND τ(q2) τ(q1 UNION q2) = τ(q1) UNION τ(q2)

Example 29. Consider the rewritings of the following queries: q and q� respectively.

SELECT ?s

WHERE {

?s ?x ?d .

?x rdfs:subpropertyOf rdf:type .

?d rdfs:subclassOf ?c .

}

SELECT ?s

WHERE {

?s rdf:type ?c .

}

The rewritings of the above queries, τ(q) and τ(q�), is shown below:

SELECT ?s

WHERE {

?s ?x ?d .

?x rdfs:subpropertyOf+ rdf:type .

?d rdfs:subclassOf+ ?c .

}

SELECT ?s

WHERE {

{ ?s rdf:type . rdfs:subclassOf* ?c . }

UNION

{ ?s ?r ?y .

?r rdfs:subpropertyOf* . rdfs:domain . rdfs:subclassOf* ?c . }

UNION

{ ?y ?r ?s .

?r rdfs:subpropertyOf* . rdfs:range . rdfs:subclassOf* ?c . }

}
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Note that this example also shows a non-standard use of the RDF(S) vocabulary [Hogan

et al. 2009]. That is, the property rdf : type appears in the object position of the triple

(?x, rdfs : subclassOf, rdf : type).

Proposition 7. Given SPARQL queries q and q�, and a rewriting function τ , q �rdfs
S

q� ⇔ τ(q) �rdf
S τ(q�).

Proof. Assume that q �rdfs
S q�, we prove that τ(q) �rdf

S τ(q�). To prove this, we proceed
inductively on the query structure.

(Base case) q and q� are made of triple patterns:

• if q and q� do not contain the vocabularies type, sc, sp, dom, and range, then
τ(q) = q and τ(q�) = q�. Consequently, the proposition holds.

• if q and q� contain the vocabularies sc and sp in predicate positions of triple
patterns, then they can be translated into transitive closures: sc+ and sp+, re-
spectively. Evidently, the proposition holds since sc (resp. sp) is contained in
sc+(resp. sp+). These vocabulary terms cannot appear as subject and objects of
triple patterns because a non-standard use of a vocabulary is prohibited.

• if q and q� contain triple patterns that have properties in predicate positions, i.e.,
consider the triple pattern (s, p, o), then the rewriting is τ((s, p, o)) = (s, x, o) AND

(x, sp∗, p). In this case also, it holds that q �rdfs
S q� ⇔ τ(q) �rdf

S τ(q�). Here, p
cannot be sc, sp, or type, because the rewriting of those terms is done separately.
Instead, if p is a variable then, the rewriting is the same as the original one.
Hence, the claim still holds.

• if q and q� contain the vocabulary type, then their rewritings contain all possible
ways of inferring type relations between an instance (the subject) and a class
(the object) of a triple. Consider the triple pattern (x, type, y), its rewriting is
τ((x, type, y)) = (x, type.sc∗, y). Obviously the rewriting contains the original
one. Importantly, the rewriting extends the result set and does not affect the
containment relation. Thus, τ(q) �rdf

S τ(q�).

(Inductive case) q and q� are made of graph patterns: since the rewriting of graph
patterns is obtained from the rewritings of triple patterns by induction, and using the
base case, we have that the rewriting does not affect the containment relationship.
Thus, it follows that q �rdfs

S q� ⇔ τ(q) �rdf
S τ(q�).

Theorem 8 (Soundness and Completeness). Given an RDF schema S, SPARQL queries

q and q�, and a rewriting function τ , τ(q) �S τ(q�) ⇔ ΦS ∧ A(τ(q)) ∧ ¬A(τ(q�)) ∧ ϕr

is unsatisfiable.

Proof. The proof of this theorem follows from that of Proposition 7 and Theorem 4.
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5.1.3 Encoding the Schema

In this third approach, in order to determine query containment under the simpleRDFS
entailment regime, we encode the schema triples (axioms) as formulae. As a conse-
quence, the models are constrained to satisfy the encoding of the axioms. We consider
subclass, subproperty, domain, and range, and transitivity closure (Tr(sc) or Tr(sp))
schema axioms.

Definition 21. Given a set of axioms s1, s2, ..., sn of a schema S, the µ-calculus en-

coding of S is: η(S) = η(s1) ∧ η(s2) ∧ ... ∧ η(sn).

We use a function η to translate each si into an equivalent µ-calculus formula:

η((C1, sc, C2)) = lfp
�
X,C1 ⇒ C2

�

η((R1, sp, R2)) = lfp
�
X,R1 ⇒ R2

�

η((R, dom, C)) = lfp
�
X, �s�(�p�R ⇒ �p�type ∧ �o�C)

�

η((R, range, C)) = lfp
�
X, �ō��p�R ⇒ �s�(�p�type ∧ �o�C)

�

η(Tr(sc)) = gfp
�
X,µY.�p�sc ∧ �o�� ∨ �p�sc ∧ �s�Y

�

η(Tr(sp)) = gfp
�
X,µY.�p�sp ∧ �o�� ∨ �p�sp ∧ �s�Y

�

Note here that transitive RDFS properties sc and sp are encoded as transitive closures:

sc+ and sp+, respectively.

Lemma 6. Given a set of RDF schema axioms C = {c1, · · · , cn}, C has a model iff

η(C) is satisfiable.

Proof. The proof of this lemma is immediate from the proof of Lemma 1.

Theorem 9 (Soundness and Completeness). Given queries q, q�, and a set of RDF

schema axioms S, q �S
rdfs q

� if and only if η(S) ∧ A(q) ∧ ¬A(q�) ∧ ϕr is unsatisfiable.

Proof. The proof of this theorem follows from that of Theorem 2 and Theorem 3.

5.2 Containment under OWL-ALCH Entailment Regime

As SPARQL is being extended to become a query language for ontologies (RDFS
and OWL), it is important to study the problem of containment under a knowledge
base schema. SPARQL’s basic graph pattern is designed in such a way that it can
be extended to query different ontology languages. Since 2009, the W3C SPARQL
working group is extending SPARQL for RDFS, OWL, and RIF ontology and rule
languages respectively. SPARQL is based on simple graph matching (i.e., based on
simple entailment) and is not able to include implicitly stored answers that require
reasoning. Thus, in order to be able to query ontologies other than based on simple
entailment. It is necessary to extend the entailment regime for the respective ontology
language. This allows to generate more results that are inferred using the semantics of
the axioms in the ontology.
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For this work, we consider a fragment of OWL 2 which is based on the description
logic ALCH. OWL is a W3C recommended knowledge representation language in the
semantic web. OWL 2 has two different semantics OWL 2 direct semantics (based the
description logic semantics) and OWL RDF-based semantics.

5.2.1 SPARQL Query Containment under the OWL-ALCH Direct

semantics Entailment Regime

Checking the containment of SPARQL queries under the direct semantics (OWL DS)
entailment can be reduced to encoding OWL ontology axioms and queries as µ-calculus
formulas and checking the unsatisfiability of the encoding (or formula). Encoding
OWL axioms (built from the DL underlying OWL, SROIQ(D)) into µ-calculus with
nominals and inverse leads to undecidability. Thus, we need to consider a fragment
of OWL that alleviates this problem. Removing the features such as role inverse (I),
role composition (R), data type restrictions (D), (qualified) cardinality restrictions (Q)
from SROIQ(D) reduces the complexity from N2ExpTime to ExpTime. The OWL
fragment based on this logic can be encoded into µ-calculus. A DL-based syntax and
semantics of this language is already presented in Chapter 2.

5.2.1.1 OWL-ALCH

Here we present the syntax of OWL-ALCH concepts, roles and axioms. OWL 2 has
various syntactic notations, we use the user friendly functional style syntax2. The OWL
functional style syntax is constructed as shown in Table 5.1 and 5.2.

Descriptions(C)

A A

owl:Thing �
owl:Bottom ⊥
ObjectUnionOf(C1 . . . Cn) C1 � · · · � Cn

ObjectIntersectionOf(C1 . . . Cn) C1 � · · · � Cn

ObjectComplementOf(C) ¬C
ObjectSomeValuesFrom(R C) ∃R.C
ObjectAllValuesFrom(R C) ∀R.C

Descriptions(R)

owl:topObjectProperty �2

owl:bottomObjectProperty ⊥2

P P

Individuals (o)

o o
_:anonymous _:anonymous

Table 5.1: OWL-ALCH syntax: concept, role and individual constructs.

2http://www.w3.org/TR/owl-primer/

http://www.w3.org/TR/owl-primer/
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OWL-ALCH axioms: as the name implies OWL-ALCH axioms lack role inverse,
role composition, number restrictions, and description logic datatypes. This choice
allows to retain satisfiability of containment under the µ-calculus fragment chosen for
this study.

OWL syntax DL syntax

SubClassOf(C1 C2) C1 � C2

EquivalentClasses(C1 . . . Cn) C1 ≡ · · · ≡ Cn

DisjointClasses(C1 . . . Cn) Ci � Cj � ⊥, i �= j

SubObjectPropertyOf(R1 R2) R1 � R2

EquivalentObjectProperties(R1 . . . Rn) R1 ≡ · · · ≡ Rn

ObjectPropertyDomain(R C) ∃R.� � C
ObjectPropertyRange(R C) � � ∀R.C

ClassAssertion( C o) o : C
ObjectPropertyAssertion( R o1 o2) (o1, on) : R

Table 5.2: OWL-ALCH axioms.

5.2.2 SPARQL-OWL

SPARQL-OWL is proposed as a query language for OWL ontologies based on the OWL
Direct Semantics entailment regime [Glimm et al. 2008]. In OWL direct semantics,
the evaluation of a SPARQL query is done in such a way that both the query and
the queried graph are translated into OWL DL ontologies where the translations are
OWL structural objects with variables (SPARQL-OWL query) and OWL ontology
respectively. If there exists a mapping where the SPARQL-OWL query is entailed by
the ontology, then those mappings form an answer to the query. We refer the reader
to [Glimm 2011] for a more detailed discussion.

SPARQL-OWL has no officially standardized syntax at the moment. We adopt the
suggestions from [Glimm et al. 2008] and [Sirin & Parsia 2007] (for SPARQL-DL) which
is based on the functional style syntax of OWL constructs. The syntax of SPARQL-
OWL ontology graph patterns (OGPs) is formed from OWL axiom templates where
variables can appear in the templates instead of just IRIs as given in the definition
below.

Definition 22 (Syntax). A SPARQL-OWL query is constructed inductively using
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OWL constructs as follows:

OGP ←ClassAssertion(C o) | SubClassOf(C1 C2) |
ObjectPropertyAssertion(R o1 o2) |
EquivalentClasses(C1 C2) |
DisjointClasses(C1 C2) |
SubObjectPropertyOf(R1 R2) |
EquivalentObjectProperties(R1 R2) |
BGP1 AND BGP2 | BGP1 UNION BGP2

C ::= iri | var R ::= iri | var o ::= iri | var

Example 30. Select all departments along with their chairs.

SELECT ?x ?y WHERE {
ClassAssertion( Chair ?x ) .
ObjectPropertyAssertion (headOf ?x ?y )

}

Now, we provide a compact summary of the semantics of SPARQL-OWL query eval-
uation under OWL-ALCH DS entailment regime. A detailed discussion with insightful
examples can be found in [Glimm & Krötzsch 2010, Glimm 2011, Kollia et al. 2011].
The following definition is taken from [Glimm 2011].

Definition 23 (SPARQL-OWL query evaluation under OWL DS entailment regime).
A partial mapping function ρ is a solution for a OGP P and G under OWL Direct

Semantics entailment if:

1. G can be mapped into an OWL DL ontology O(G)

2. P can be mapped into an extended OWL DL axioms O(P )

3. Domain of ρ is exactly the set of variables in P

4. Terms in the range of ρ occur in O(G) or Voc(OWL): OWL vocabulary terms

5. If O(P �) obtained from O(P ) by replacing anonymous individuals (blank nodes)

with either IRIs or blank nodes is such that:

O(G) ∪O(P �) is an OWL DL ontology and sk(O(G)) |=OWLDS sk(ρ(O(P �)))

The function sk(.) replaces blank nodes with fresh IRIs (IRIs that are neither in the

queried graph nor in the query). |=OWLDS denotes the OWL DS entailment relation.

Definition 24 (Containment of SPARQL-OWL queries). Given two SPARQL-OWL

queries q and q�, and a set of OWL-ALCH TBox axioms S, q is contained in q� under

the OWL-ALCH entailment regime, denoted as q �owl
S q�, if and only if for any RDF

graph G that satisfies the axioms S, �q�G ⊆ �q��G.
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5.2.2.1 Encoding SPARQL-OWL Queries

The encoding of SPARQL-OWL queries is slightly different from that of SPARQL
queries due to the basic graph patterns. In SPARQL-OWL, basic graph patterns can
contain disjunctions and conjunctions of concepts, for instance consider the following
query and its respective translation into a SPARQL query (by introducing blank nodes):

SELECT ?x WHERE {
ClassAssertion (ObjectUnionOf

( AdminStaff Professor ) ?x )
}

SELECT ?x WHERE {
{ ?x a AdminStaff .}
UNION
{?x a Professor .}

}

Here, we discuss the encoding of basic graph patterns as the encoding of the other
query constructs and containment problem is similar to the one in [Chekol et al. 2012b]
and Chapter 3. Concept and role constructors are encoded as in a similar way as
that of ALCH concepts and roles whereas axioms that appear in a BGP are encoded
inductively as shown in Definition 25.

Definition 25 (Encoding SPARQL-OWL queries). The encoding of SPARQL-OWL
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query q is A(q) such that:

A(OGP ) = lfp
�
X,λ(BGP )

�

A(q1 AND q2) = A(q1) ∧ A(q2)

A(q1 UNION q2) = A(q1) ∨ A(q2)

λ
�
ClassAssertion(C o)

�
= �s̄�λ(o) ∧ �p�type ∧ �o�λ(C)

λ
�
ObjectPropertyAssertion(R o1 o2)

�
= λ(o1) ∧ �p�P ∧ �o�λ(o2)

λ(A) = A

λ(IRI) = IRI

λ(var) =

�

var if var ∈ distinguished variable

� if var ∈ non-distinguished variable

λ(ObjectUnionOf(C1 C2)) = λ(C1) ∨ λ(C2)

λ(ObjectIntersecectionOf(C1 C2)) = λ(C1) ∧ λ(C2)

λ(ObjectComplementOf(C)) = ¬λ(C)

λ(SubClassOf(C1 C2)) = �s̄�λ(C1) ∧ �p�subClassOf ∧ �o�λ(C2)

λ(EquivalentClasses(C1 . . . Cn)) =
�
�s̄�λ(C1) ∧ �p�subClassOf ∧ �o�λ(C2)

�
∧

�
�s̄�λ(C2) ∧ �p�subClassOf ∧ �o�λ(C1)

�

λ(ObjectSomeValuesFrom(R C)) =
�
�s�(�p�a ∧ �o�owl : Restriction)∧
�s�(�p�owl : onProperty ∧ �o�λ(R))∧
�s�(�p�owl : someV aluesFrom ∧ �o�λ(C))

�

λ(ObjectAllValuesFrom(R C)) =
�
�s�(�p�a ∧ �o�owl : Restriction)∧
�s�(�p�owl : onProperty ∧ �o�λ(R))∧
�s�(�p�owl : allV aluesFrom ∧ �o�λ(C))

�

λ(SubObjectPropertyOf(R1 R2)) = �s̄�λ(R1) ∧ �p�subPropertyOf ∧ �o�λ(R2)

λ(ObjectPropertyDomain(R C)) = �s̄�λ(R) ∧ �p�domain ∧ �o�λ(C)

λ(ObjectPropertyRange(R C)) = �s̄�λ(R) ∧ �p�range ∧ �o�λ(C)

Example 31 (Encoding of a query). Consider the inductive encoding of the following

SPARQL-OWL query q:

SELECT ?x

WHERE {

SubClassOf(:GraduateStudent

ObjectSomeValuesFrom(:takesCourse ?x))

}
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A(q) = lfp
�
X,λ(BGP )

�

λ(BGP ) = �s̄�λ(GraduateStudent) ∧ �p�subClassOf∧
�o�λ(ObjectSomeV aluesFrom(takesCourse ?x))

= �s̄�λ(GraduateStudent) ∧ �p�subClassOf∧
�o�

�
�s�(�p�a ∧ �o�owl : Restriction)∧

�s�(�p�owl : onProperty ∧ �o�λ(takesCourse))∧
�s�(�p�owl : someV aluesFrom ∧ �o�λ(?x))

�

= �s̄�λ(GraduateStudent) ∧ �p�subClassOf∧
�o�

�
�s�(�p�a ∧ �o�owl : Restriction)∧

�s�(�p�owl : onProperty ∧ �o�takesCourse)∧
�s�(�p�owl : someV aluesFrom ∧ �o��)

�

Containment of SPARQL-OWL queries is reduced to the validity problem in µ-
calculus. When encoding the left-hand side and the right-hand side queries using
function A in Definition 25, all the IRIs (concept and role names, OWL and RDFS
vocabularies) and variables become nominals in the µ-calculus.

5.2.2.2 Encoding OWL-ALCH TBox Axioms

The encoding of OWL-ALCH axioms can be produced by working inductively on the
construction of the axiom.

Definition 26 (Encoding OWL-ALCH axioms). The µ-calculus encoding of TBox
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axioms is formulated using the function η as shown below:

η(�) = �
η(A) = A

η(P ) = P

η(ObjectUnionOf(C1 · · · Cn)) = η(C1) ∨ · · · ∨ η(Cn)

η(ObjectIntersectionOf(C1 · · · Cn)) = η(C1) ∧ · · · ∧ η(Cn)

η(ObjectComplementOf(C)) = ¬η(C)

η(ObjectSomeValuesFrom(R C)) = �s�
�
�p�η(R) ∧ �o�(�s��o�η(C))

�

η(ObjectAllValuesFrom(R C)) = [s]
�
[p]r ⇒ [o]([s][o]η(C))

�

η(SubClassOf(C1 C2)) = lfp
�
X, η(C1) ⇒ η(C2)

�

η(EquivalentClasses(C1 . . . Cn)) = lfp
�
X, η(C1) ⇔ · · · ⇔ η(Cn)

�

η(DisjointClasses(C1 · · · Cn)) = lfp
�
X, (η(C1) ∧ · · · ∧ η(Cn)) ⇒ ⊥

�

η(SubObjectPropertyOf(R1 R2)) = gfp
�
X, η(R1) ⇒ η(R2)

�

η(EquivalentObjectProperties(R1 . . . Rn)) = gfp
�
X, η(R1) ⇔ · · · ⇔ η(Rn)

�

η(ObjectPropertyDomain(R C)) = η(SubClassOf(

ObjectSomeValuesFrom(R �) C))

η(ObjectPropertyRange(R C)) = η(SubClassOf(�
ObjectAllValuesFrom(R C)))

Using the above definition, we introduce the following: given an OWL-ALCH TBox
schema S = {s1, . . . , sn}, its encoding can be produced by using:

η(S) = η(s1) ∧ · · · ∧ η(sn)

So far, we have managed to define procedures to translate SPARQL-OWL queries and
OWL-ALCH axioms into µ-calculus formulas. Now, it remains to reduce SPARQL-
OWL containment under OWL-ALCH direct semantics entailment regime into unsat-
isfiability test. Given two SPARQL-OWL queries q and q�, and a set of OWL-ALCH
axioms S, q �S q� if and only if A(q)∧¬A(q�)∧ϕr∧η(S). Before proving this argument,
Theorem 10, we demonstrate the reduction process with an example below.

Example 32 (Containment test). Consider the following queries:

• q: Select any two students that take the same course.

SELECT ?x ?y

WHERE {

ClassAssertion(Student ?x) .

ClassAssertion(Student ?y) .

ObjectPropertyAssertion(takesCourse ?x ?z) .

ObjectPropertyAssertion(takesCourse ?y ?z) .

}
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• q�: Select any two students that take the same graduate course.

SELECT ?x ?y

WHERE {

ClassAssertion(Student ?x) .

ClassAssertion(Student ?y) .

ObjectPropertyAssertion(takesCourse ?x ?z) .

ObjectPropertyAssertion(takesCourse ?y ?z) .

ClassAssertion(GraduateCourse ?z) .

}

It is obvious that q� � q and q �� q� since the set of any two students taking the same

graduate courses is included in the set of any two students taking the same courses.

In fact, this argument also holds if the containment test is performed under the OWL

DS entailment regime. This can be proved by translating the queries into formulas and

checking the existence of a model for this formula i.e., A(q) ∧ ¬A(q�).

A(q) = (lfp
�
X, �s̄�x ∧ �p�a ∧ �o�Student

�

∧ lfp
�
X, �s̄�y ∧ �p�a ∧ �o�Student

�

∧ lfp
�
X, �s̄�x ∧ �p�takesCourse ∧ �o�z

�

∧ lfp
�
X, �s̄�y ∧ �p�takesCourse ∧ �o�z

�
)

�

¬A(q�) = (gfp
�
X, [s̄]¬x ∨ [p]¬a ∨ [o]¬Student

�

∨ gfp
�
X, [s̄]¬y ∨ [p]¬a ∨ [o]¬Student

�

∨ gfp
�
X, [s̄]¬x ∨ [p]¬takesCourse ∨ [o]¬z

�

∨ gfp
�
X, [s̄]¬y ∨ [p]¬takesCourse ∨ [o]¬z

�

∨ gfp
�
X, [s̄]¬z ∨ [p]¬a ∨ [o]¬GraduateCourse

�
)

A(q) ∧ ¬A(q�) is satisfiable due to the disjunct

gfp
�
X, [s̄]¬z ∨ [p]¬a ∨ [o]¬GraduateCourse

�
.

That is to say, if a tableau procedure is used to determine the satisfiability of this

formula the branch containing that disjunct will remain open [Tanabe et al. 2008]. In

line with this, a similar argument can be sketched in order to check the unsatisfiability

of A(q�) ∧ ¬A(q).

Reducing containment of SPARQL-OWL queries under OWL-ALCH DS entailment
regime into unsatisfiability test in the µ-calculus is proved in the following theorem.

Theorem 10 (Reducing containment to unsatisfiability). Given two SPARQL-OWL

queries q and q�, and a set of OWL-ALCH TBox axioms S, q �owl
S q� if and only if

A(q) ∧ ¬A(q�) ∧ η(S) ∧ ϕr is unsatisfiable.
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Proof. The proof follows directly from the proof of SPARQL query containment under
ALCH axioms (cf. Chapter 3). To achieve this, SPARQL-OWL queries are translated
into SPARQL queries, basically this is as simple as translating function-style syntax
BGP’s into Turtle syntax BGP’s using blank nodes (as shown in [Glimm 2011]). Equiv-
alently, (function-style syntax) OWL-ALCH axioms become just ALCH axioms. Here,
the nominals in the axioms or individual nominals become nominals in the µ-calculus
Thus, the respective translations can be encoded as µ-calculus formulas and reduced
to unsatisfiability test (cf. the proof of Theorem 2).

Complexity Reducing the containment problem q � q� to a µ-calculus formula
A(q) ∧ ¬A(q�) requires a polynomial amount of time. Testing whether the formula
is unsatisfiable can be done in ExpTime.

Under OWL DS entailment semantics there are no non-distinguished variables since
answers are computed from the basic graph patterns of the query. Projection is per-
formed, after the evaluation of basic graph patterns, i.e., after all the variables are
bound to values in the ontology. Note that the ExpTime complexity jumps to 2Exp-
Time if non-distinguished variables are introduced and treated as existentially quanti-
fied variables.

Proposition 8 (Complexity). The complexity of determining the containment between

two SPARQL-OWL queries under OWL-ALCH DS entailment regime q �S q� is 2n.

Where n = O(|A(q)|+ |A(q�)|+ |η(S)|).

Proof. This result follows from containment of SPARQL queries under ALCH schema
axioms (cf. Section 3). Since there are no non-distinguished variables in the queries,
we use the same encoding function A for both the left and right-hand side queries.
Consequently, we obtain that the size of the encoding of the right-hand side query is
not exponential, i.e., it is linear in the size of the query. Thus, the size of the overall
encoding is linear, i.e., n = O(|A(q)| + |A(q�)| + |η(S)|). In µ-calculus, testing the
satisfiability of a formula requires exponential amount of time. Additionally, knowledge
base satisfiability test in ALCH is ExpTime. As a consequence, containment under
OWL-ALCH DS entailment regime can be done in a time of 2n.

5.3 Conclusion

In this chapter, we have presented procedures to produce the encoding of queries, infer-
ence rules and schema as formulas. Henceforth, query containment under simpleRDFS
entailment is reduced to formula satisfiability test in the µ-calculus. We introduced
three approaches to achieve this, namely (1) encoding the RDFS semantics, (2) query
rewriting, and (3) encoding the schema. Unlike (1) and (2), the third approach can be
extended for a more expressive schema language as done in Section 6.3.1. The power
of the logic and our encoding allows one to take advantage of more expressive schema
languages. For instance, a good candidate could be the description logic SROIQ [Hor-
rocks et al. 2006] underlying OWL 2. In that direction, we have produced an ExpTime
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procedure for determining containment of SPARQL-OWL queries under OWL-ALCH
DS entailment regime. It is very important to note that, this bound rises to 2ExpTime
if non-distinguished variables appear in the right-hand side of the query, i.e., if non-
distinguished variables are treated as having existential semantics in the evaluation of
basic graph patterns.
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In general, a query is referred to as cyclic if the graph structure induced from the
query is cyclic. It has been long noted that cyclic queries contribute largely in the com-
plexity of containment and equivalence problems. Most notably, Chandra and Merlin
1977 [Chandra & Merlin 1977] proved that containment and equivalence of relational
conjunctive queries is NP-complete. However, this complexity reduces to PTime if
the queries are acyclic [Bernstein & Chiu 1981,Yannakakis 1981]. Further, the study
in [Calvanese et al. 2008] demonstrated that containment of DLR (description log-
ics with n-ary relations) conjunctive queries is double exponential but this complexity
bound reduces to exponential if the query on the right-hand side of the containment
has a tree structure. In other words, cycles among the non-distinguished variables con-
tribute largely in containment and equivalence complexity. Meanwhile, we observed
that most of the real world queries currently used are acyclic. Hence, studying acyclic
query containment is relevant.

In this chapter, we address the problem of query containment for tree-structured
SPARQL queries. The objective of this chapter is that when the queries have tree-
structure, the complexity of the problem can reduce to PSPACE in the absence of
constraint axioms. We show that this is possible, by reducing containment to unsatisfi-
ability in the modal logic Kn. We first encode queries as Kn formulas. Then, we reduce
query containment to unsatisfiability in the logic. And finally, we prove the correctness
of this reduction and provide experimental results.

6.1 Tree-structured SPARQL Queries

In order to create a compliance benchmark (see Chapter 7) and assess the current
state-of-the-art, for this study, we have identified a class of SPARQL queries called
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tree-structured queries. These are queries that have a tree structure when seen as a
graph. In the following, we introduce this notion.

In relational databases, Bernstein and Chiu [Bernstein & Chiu 1981] classified
queries into two types: tree (is an undirected graph in which any two vertices are
connected by exactly one simple path) and cyclic queries. An algorithm to decide
whether a query is cyclic or not was presented in their paper. This algorithm is based
on the idea of representing queries as hypergraphs. In fact, queries have often been
considered as hypergraphs (see [Chekuri & Rajaraman 1997, Bernstein & Chiu 1981]
for instance). It is possible to represent queries as hypergraphs where the nodes of the
hypergraph are the variables and constants in the query. There is one hyperedge cor-
responding to each query subgoal that includes the variables and constants occurring
in that subgoal. These studies proved that (Boolean) conjunctive query evaluation,
while NP-hard in general, is polynomial in case of acyclic queries, i.e., queries whose
associated hypergraphs are acyclic [Yannakakis 1981]. This distinction of queries as
tree and cyclic has its advantages: for example, the evaluation of acyclic (Boolean)
conjunctive queries is highly parallelizable [Gottlob et al. 2001].

Borrowing this notion from databases, we propose to view SPARQL queries as
graphs. More specifically, a SPARQL query is represented as a bipartite graph, with
two kinds of nodes: triple nodes and term nodes (are URIs, blank nodes, and literals).
Using this graph, one is able to determine whether a query is cyclic or not, a formal
explanation is given in Definition 11.

To the best of our knowledge, no experimental work has been conducted to verify
how many of real world queries are acyclic or cyclic. To answer this question, we
analyzed the DBpedia query log1 and obtained 378,530 real world queries, out of which
15.8% were syntactically incorrect. Using the remaining 74.2%, we tested the cyclicness
and acyclicness of queries and found out that: more than 87% of these queries are
acyclic. This suggests that acyclic queries make up a major part of the real world
queries, thus, their separate study is justified. Precise results on the analysis of the
structure of queries (tree, directed acyclic graph (DAG), and cyclic) are presented in
Table 6.1.

Query graph Query type # of queries perc.

Acyclic

Tree
UCQs 100001 31%

Other 50144 16%

DAG
UCQs 50355 16%

Other 95722 30%

Cyclic 22591 7%

Incorrect syntax 59717

Table 6.1: Query characteristics in DBPedia logs.

1DBpedia 3.5.1 logs between 30/04/2010 and 20/07/2010 from ftp://download.openlinksw.

com/support/dbpedia/

ftp://download.openlinksw.com/support/dbpedia/
ftp://download.openlinksw.com/support/dbpedia/
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Beyond the cyclic and acyclic tests, we checked how many of the queries have
projection, i.e., not all variables in the graph pattern are distinguished, or not. We
found out that 63% of the queries have projection and 37% of the queries have no
projection. Further, all of the cyclic queries have projection and out of the acyclic
ones, 65% of the queries have projection and the rest have no projection. Concerning
OPT , 88964 queries use it, i.e., 23.5%. In addition, only 40448 (10.6%) of which are
conjunctive queries. These results and the state of tools motivate the design principles
behind the benchmark structure in Chapter 7.

6.2 Encoding Queries as Kn Formulae

Triples in queries can be taken as paths in the transition system, hence triple patterns of
queries can be expressed by a formula which represents this path. For instance, a query
which contains the triple pattern q{x} = (x, a, b) can be expressed as x∧�s�(�p�a∧�o�b)
which states that x is satisfied if there exists a path in a transition system where starting
from this node labelled with x, nodes with labels a and b can be reached by programs
s, p and s, o respectively. In fact, variables are replaced by atomic propositions that
may be satisfied in a state of the transition system. In the example, the variable x

becomes an atomic proposition (AP).

In this way, the encoding of triple patterns is done by using the function P �, given
in Definition 28. P produces a formula by computing a sequence of transitions (or
modalities) starting from a given distinguished variable (which is treated as a point of
evaluation or focus, for instance in M, wf |= ϕ, we call wf a focus). As an argument
it takes a focus, a URI u or variable wf for which the transitions are to be computed
and the query itself q.

On the other hand, the function A in Definition 27 encodes queries inductively on
the structure of query patterns. AND and UNION are replaced by boolean connectives ∧
and ∨ respectively.

Definition 27. The encoding of a SPARQL query q{−→w } is A(q, q, wf ) such that:

A(q, t, wf ) = P(q, t, wf ) where wf ∈ −→w is a distinguished variable.

A(q, q1 AND q2, wf ) = A(q, q1, wf ) ∧ A(q, q2, wf )

A(q, q1 UNION q2, wf ) = A(q, q1, wf ) ∨ A(q, q2, wf )

If the focus wf does not appear in a triple pattern, then we can use a function, say

P, to recursively construct the formula. In turn, this function can use P � shown in

Definition 28.

Definition 28. The function P � computes a formula from a given triple pattern t =
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(x, y, z) and focus wf as follows:

P � : t× wf → ϕ ∈ Kn

P �((x, y, z), x) = x ∧ �s�(�p�y ∧ �o�z)
P �((x, y, z), y) = y ∧ �p̄�(�s̄�x ∧ �o�z)
P �((x, y, z), z) = z ∧ �ō�(�s̄�x ∧ �p�z)

Example 33. Consider the encoding of q{x} = (x, a, b) using P.

P(q, t, x) = P((x, a, b), (x, a, b), x)

= P �((x, a, b), x)

= x ∧ �s�(�p�a ∧ �o�b)

In the encoding function A, q appears multiple times, this duplication allows to
facilitate the encoding process. It does not contribute to the duplication of formulas in
the encoding output. Hence, this keeps the translation linear.

Example 34 (Query encoding). The recursive encoding of query q1 of Example 8,

A(q1, q1, x), is:

A(q1, q1, x) = A(q, ((x, translated, l) UNION (x,wrote, l)) AND (l, type, poem), x)

= (A(q, (x, translated, l), x) ∨ A(q, (x,wrote, l), x))

∧ A(q, (l, type, poem), x)

= (P(q, (x, translated, l), x) ∨ P(q, (x,wrote, l), x))

∧ P(q, (l, type, poem), x)

= (x ∧ �s�(�p�translated ∧ �o�l) ∨ x ∧ �s�(�p�wrote ∧ �o�l)) ∧
�s��o�(l ∧ �s�(�p�type ∧ �o�poem))

= (x ∧ �s�(�p�translated ∧ �o�l) ∨ x ∧ �s�(�p�wrote ∧ �o�l)) ∧
�s��o�(l ∧ �s�(�p�type ∧ �o�poem))

Alternative approach for encoding tree-structured queries Alternatively, an-
other approach for encoding tree-structured queries is by using preorder traversal of
a tree. First, we construct a tree out of a given query, then we traverse the tree us-
ing a focus (a distinguished variable). The principle of the encoding is that a tree is
constructed from the basic graph patterns (BGPs) of the query using a function called
constTree(.). The construction of the tree is shown in Definiton 29. Once the tree
is obtained a preorder traversal starting from a distinguished variable (which is the
focus and root of the tree) is applied to construct the formula, we use a function called
dft(T,w) for this task where T is the tree construction of a BGP and w is a distin-
guished variable or root of the tree. This procedure is best described by the following
example.

The distinguished variables and the URIs are encoding as atomic propositions
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whereas the non-distinguished variables become �.

Example 35. Consider the following query composed of a BGP.

SELECT ?x

WHERE {

?x a :Student .

?x :takesCourse ?y .

?y a :GraduateCourse .

?x :born ?z .

?z :locatedIn ?r .

?r a :Country .

}

x

a

:Student

s

o
:takesCourse

y

s

o

a

:GraduateCourse

s

o

:born

z

s

o

r

:locatedIn

s

o

a

:Country

s

o

Figure 6.1: A tree obtained from the BGP of the query

A preorder traversal of the tree results in:

x ∧ �s�(born ∧ �o�(z ∧ �s�(locatedIn ∧ �o�(r ∧ �s�(a ∧ �o�Country))))∧
�s�(a ∧ �o�Student)∧
�s�(takesCourse ∧ �o�(y ∧ �s�(a ∧ �o�GraduateCourse)))

In order to encode UNION graph patterns, we transform queries into union normal
form [Pérez et al. 2009] and then apply the procedure inductively.

Definition 29 (Constructing a tree from a BGP). For each triple (x, y, z) ∈ BGP , a

graph T = (N,E) can be obtained as follows:

− x, y, z ∈ N ,

− (x, y), (y, z) ∈ E,
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− lE((x, y)) = s and lE((y, z)) = o are labellings of edges.

We refer to this procedure as constTree(BGP ).

Definition 30 (Translation Procedure). Tree-structured union normal form SPARQL

queries can be translated into Kn formulas inductively as follows:

A(t,−→w ) = dft(constTree(BGP ),−→w )

A(BGP,−→w ) = dft(constTree(BGP ),−→w )

A(P1 UNION P2,−→w ) = A(P1,
−→w ) ∨ A(P2,

−→w )

Where dft(T,w) is a recursive preorder traversal function.
So far, we have provided two alternative ways to encode tree-structured queries.

In both methods, the translation is linear. Next we provide theorems together with
their respective proofs in order to verify the correctness of the encoding. Theorem 12
ensures the soundness and completeness of the encoding. Note that the proof is done
for unary queries but it can be extended for n-ary queries. For the sake of legibility in
the proofs, we denote the query encoding function A(q, q, w) by A(q, w).

Theorem 11. For any graph G and query q{w},

({w → u} � ρ�) ∈ �q{w}�G ⇔ σ(G), nu |= A(q, w)

Proof. The proof is by induction on the structure of the query.
(Base case): (⇒) q{x} = (x, y, z). If ({w → u} � ρ�) = ρ ∈ �q�G, this implies
(ρ(x), ρ(y), ρ(z)) ∈ G. Hence σ(G) contains:

• t ∈ S��, nρ(x), nρ(y), nρ(z) ∈ S�

• (nρ(x), t) ∈ R(s), (t, nρ(y)) ∈ R(p), (t, nρ(z)) ∈ R(o), and

• nρ(x) ∈ L(ρ(x)), nρ(y) ∈ L(ρ(y)), nρ(z) ∈ L(ρ(z)).

The formula x∧�s�(�p�y∧�o�z) evaluates to ∅ if there is no triple matching (x, y, z)

in G, otherwise it evaluates to the set of all nx states. L(nx) is the set of states which
satisfy A((x, y, z), x) in σ(G). Consequently,
σ(G), nx |= x ∧ �s�(�p�y ∧ �o�z).
σ(G), nx |= A((x, y, z), x)

(⇐) σ(G), nx |= A((x, y, z), x) entails that there is a state t ∈ S�� and nρ(x), nρ(y),
nρ(z) ∈ S�, such that �nρ(x), t� ∈ R(s), �t, nρ(y)� ∈ R(p), and �t, nρ(z)� ∈ R(o) and
nρ(x) ∈ L(ρ(x)), nρ(y) ∈ L(ρ(y)) and nρ(z) ∈ L(ρ(z)). Since the transition system
σ(G) is the encoding of an RDF graph G, this means that (ρ(x), ρ(y), ρ(z)) ∈ G. Sub-
sequently, ρ ∈ �(x, y, z)�G i.e., ρ = {w → u} � ρ�) ∈ �(x, y, z)�G for w = x. This
concludes the proof for the base case.
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(Inductive case) (for AND, the transcription for UNION is immediate):
({w → u} � ρ) ∈ �(q1 AND q2)�G

⇔ ({w → u} � ρ) ∈ �q1{w}�G � �q2{w}�G
⇔ ({w → u} � ρ1) ∈ �q1{w}�G and ({w → u} � ρ2) ∈ �q2{w}�G

with ρ1 and ρ2 and {w → u} being compatible∗.

⇔ σ(G), nu |= A(q1, w) and σ(G), nu |= A(q2, w) by induction hypothesis

⇔ σ(G), nu |= A(q1, w) ∧ A(q2, w)

⇔ σ(G), nu |= A(q1 AND q2, w)

∗ In one direction, they are compatible because they come from ρ; in the other direction
because they are extracted from the assignment satisfying the initial formula. The
argument here only works if w appears on both sides of the connective AND. If it does
not, then {w → u} is not joint to ρ2, but the next statement is then trivially true.

As a consequence of this theorem, we have the following corollary for unary queries
by simply applying the projection operation.

Corollary 1. For any graph G and query q{w},

ρ ∈ �q{w}�G ⇐⇒ σ(G), nρ(w) |= A(q, w)

6.3 Reducing Containment to Unsatisfiability

In this section, we address the problem of query containment, q1{w} � q2{w}, by
reducing it to the problem of unsatisfiability in the logic. For a proper translation of
the queries we use a variable renaming function φw

q which renames all variables in q,
but the distinguished variables in w, to obtain independent variables.

Theorem 12. Given unary SPARQL queries q1{w} and q2{w}, q1{w} � q2{w} iff

A(q1, w) ∧ ¬φw
q1(A(q2, w)) ∧ ϕr is unsatisfiable.

Proof. q1{w} � q2{w}

⇔ ∀G.�q1{w}�G ⊆ �q2{w}�G
⇔ ∀G.(σ(G), nu |= A(q1, w) ⇒ σ(G), nu |= φw

q1(A(q2, w)))

by Corollary 11 and transparent renaming

⇔ ∀G.�A(q1, w)�
σ(G) �= ∅ ⇒ �φw

q1(A(q2, w))�
σ(G) �= ∅

⇔ ∀G.�A(q1, w) ⇒ φw
q1(A(q2, w))�

σ(G) �= ∅
⇔ ∀G.�(A(q1, w)) ∧ ¬φw

q1(A(q2, w))�
σ(G) = ∅

⇔ ∀M.�(A(q1, w)) ∧ ¬φw
q1(A(q2, w))�

M = ∅
⇔ A(q1, w)) ∧ ¬φw

q1(A(q2, w)) unsatisfiable

⇔ ∀M. M �|= A(q1, w)) ∧ ¬φw
q1(A(q2, w))



98 Chapter 6. Containment of Tree-structured SPARQL Queries

All the non-distinguished variables (whether unique or multiply occurring) in the
right-hand side of the query are encoded as �, thus this hinders from the exponential
blow-up in the size of the formula.

Theorem 12 is expressed independently from queries being unary (indeed the ex-
istence of a solution is independent from the projection). In fact, this holds for n-ary
queries, but our proof relies on Corollary 1 unary query encoding.

Example 36 (SPARQL query containment). Consider the encodings of the queries in

Example 8:

ϕ1 = (A((x, translated, l)) ∨ A((x,wrote, l)))

∧ A((l, type, Poem))

ϕ2 = (A((x, translated, l))∧
A((l, type, Poem))) ∨ A((x,wrote, l))

Checking ϕ1 ∧ ¬ϕ2 ∧ ϕr in a satisfiability solver provides “no”, hence q1{x} � q2{x}.
However, the solver provides “yes” for ϕ2∧¬ϕ1∧ϕr, leading to q2{x} �� q1{x}. Indeed,

the transition system of Figure 3.2 is a model of this formula and thus, the RDF graph

of Example 1 is a counter-example to the containment.

6.3.1 Complexity

Our translation of the query containment problem does not involve duplication of
logical formulas of variable size. Therefore, the translation produces a logical formula
of linear-size in terms of the size of the queries. Thus, we reduced the problem of
query containment to unsatisfiability in modal logic Kn [Blackburn et al. 2007] which
is PSPACE-Complete.

Proposition 9. SPARQL query containment can be solved in a polynomial amount of

space.

Note that this complexity result is only an upper bound. In [Pérez et al. 2009],
it has been proved that the complexity of evaluating of SPARQL queries is PSPACE-
Complete.

The contribution of this approach is its extensibility to other SPARQL graph pat-
terns such as OPTIONAL and MINUS with or without admitting additional (com-
plexity) cost. Consider, for instance, extend the proposed approach to the containment
test between MINUS graph patterns (see Chapter 8). It suffices to extend the encoding
function A in Definition 27. For example, encoding of a MINUS query q can be done
as:

A(q, q1 MINUS q2, wf ) = A(q, q1, wf ) ∧ ¬A(q, q2, wf )
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Likewise, the same extension can be done to test containment of well-formed OP-
TIONAL graph patterns as shown in Example 37. For more on this, we refer the
interested reader to Chapter 8 and [Letelier et al. 2012].

Example 37 (Containment). Determine the containment of the following queries.

q1
1 SELECT *

2 WHERE {

3 ?x :a ?y

4 OPTIONAL { ?x :b ?z }

5 OPTIONAL { ?x :c ?r }

6 }

q2
SELECT *

WHERE {

?x :a ?y

OPTIONAL {

?x :b ?z

OPTIONAL { ?x :c ?r }

}

}

From the semantics of the optional operator, it can be inferred that q1 �� q2 and q2 � q1.

To prove this, one proceeds by encoding the queries as formulas and reduce the encoding

to satisfiability test. For the sake of readability, we denote the triple patterns in the

query (lines 3, 4 and 5) as P1, P2 and P3. Encoding of q1 is A(P1 OPT P2 OPT P3):

= A
�
(P1 OPT P2) OPT P3

�

= A
�
(P1 OPT P2) AND P3

�
UNION A

�
P1 OPT P2

�

=
�
A
�
P1 AND P2

�
UNION A(P1)

�
AND A(P3) UNION A

�
P1 AND P2

�
UNION A(P1)

=
�
A(P1) AND A(P2) AND A(P3)

�
UNION (A(P1) AND A(P3))

UNION (A(P1) AND A(P2)) UNION A(P1)

=
�
x ∧ �s�(a ∧ �o�y) ∧ �s�(b ∧ �o�z) ∧ �s�(c ∧ �o�r)

�

∨
�
x ∧ �s�(a ∧ �o�y) ∧ �s�(c ∧ �o�r)

�

∨
�
x ∧ �s�(a ∧ �o�y) ∧ �s�(b ∧ �o�z)

�
∨
�
x ∧ �s�(a ∧ �o�y)

�

Encoding of q2 is A(P1 OPT (P2 OPT P3)):

= A(P1 AND (P2 OPT P3)) UNION A(P1)

= A(P1) AND A(P2 OPT P3) UNION A(P1)

= A(P1) AND (A(P2 AND P3) UNION A(P2)) UNION A(P1)

= A(P1) AND (A(P2) AND A(P3) UNION A(P2)) UNION A(P1)

= A(P1) AND A(P2) AND A(P3) UNION A(P1) AND A(P2) UNION A(P1)

=
�
x ∧ �s�(a ∧ �o�y) ∧ �s�(b ∧ �o�z) ∧ �s�(c ∧ �o�r)

�

∨
�
x ∧ �s�(a ∧ �o�y) ∧ �s�(b ∧ �o�z)

�
∨
�
x ∧ �s�(a ∧ �o�y)

�

Reducing q1 � q2 to the satisfiability test of A(q1) ∧ ¬A(q2)
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= (
�
x ∧ �s�(a ∧ �o�y) ∧ �s�(b ∧ �o�z) ∧ �s�(c ∧ �o�r)

�

∨
�
x ∧ �s�(a ∧ �o�y) ∧ �s�(c ∧ �o�r)

�

∨
�
x ∧ �s�(a ∧ �o�y) ∧ �s�(b ∧ �o�z)

�
∨
�
x ∧ �s�(a ∧ �o�y)

�
)

�

(
�
¬x ∨ [s](¬a ∨ [o]¬y) ∨ [s](¬b ∨ [o]¬z) ∨ [s](¬c ∨ [o]¬r))

�

∧
�
¬x ∨ [s](¬a ∨ [o]¬y) ∨ [s](¬b ∨ [o]¬z)

�
∧
�
¬x ∨ [s](¬a ∨ [o]¬y)

�
)

This formula is satisfiable due to the subformula
�
x∧�s�(a∧�o�y)∧�s�(c∧�o�r)

�
being

satisfiable. Hence, q1 �� q2. Now, let us look at the other direction to determine whether

q2 � q1, reducing this A(q2) ∧ ¬A(q1)

= ((
�
x ∧ �s�(a ∧ �o�y) ∧ �s�(b ∧ �o�z) ∧ �s�(c ∧ �o�r)

�
(6.1)

∨
�
x ∧ �s�(a ∧ �o�y) ∧ �s�(b ∧ �o�z)

�
∨
�
x ∧ �s�(a ∧ �o�y)

�
) (6.2)

�

(6.3)

(
�
¬x ∨ [s](¬a ∨ [o]¬y) ∨ [s](¬b ∨ [o]¬z) ∨ [s](¬c ∨ [o]¬r))

�
(6.4)

∧
�
¬x ∨ [s](¬a ∨ [o]¬y) ∨ [s](¬c ∨ [o]¬r)

�
(6.5)

∧
�
¬x ∨ [s](¬a ∨ [o]¬y) ∨ [s](¬b ∨ [o]¬z)

�
∧
�
¬x ∨ [s](¬a ∨ [o]¬y)

�
) (6.6)

This formula is unsatisfiable: each of the disjuncts (1) – (3) are conjuncted with

their negated equivalent (4) – (6) resulting in ϕ ∧ ¬ϕ which is always false. Therefore,

this result implies that q2 � q1.

6.4 Experimentation

In order to experiment with the proposed approach, the satisfiability solvers from [Tan-
abe et al. 2005] and [Genevès et al. 2007] are used to test containment and equiva-
lence among different queries. We call the solver from [Tanabe et al. 2005] AFMU
(alternation-free mu-calculus) and the one from [Genevès et al. 2007] TreeSolver. A
set of queries, shown in Appendix A Section A.1.1, are tested for their containment
and equivalence with running times depicted in Table 6.4. In fact, the running time is
dependent on the processor speed and the size of the queries. To encode queries as Kn

formulas, we used the Jena SPARQL API 2.
All the experiments were conducted on a MacBook Pro, Intel Core i7, 2GHz pro-

cessor speed, and 4GB memory under V10.6.8. The Java programs were executed with
JRE v1.6.0_22. Table 6.4 shows the running times, in milliseconds, of containment
tests. Tests 3, 15 and 16 do not terminate for the AFMU satisfiability solver, they are
displayed as blanks (-) in Table 6.4.

A comparison of the performance of the solvers, TreeSolver and AFMU, is shown

2http://jena.sourceforge.net/ARQ/
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TreeSolver AFMU

Test No. q � q�? Yes/No time Yes/No time

1 Q1a � Q1b Yes 12 Yes 39

2 Q1b � Q1a No 11 No 38

3 Q2a � Q2b Yes 208 - -

4 Q2b � Q2a Yes 198 Yes 2328

5 Q3a � Q3b Yes 18 Yes 34

6 Q3b � Q3a No 15 No 33

7 Q4c � Q4b Yes 204 Yes 1746

8 Q4b � Q4c No 182 No 993

9 Q5a � Q5b No 10 No 28

10 Q5b � Q5a Yes 10 Yes 28

11 Q6a � Q6b No 28 No 45

12 Q6b � Q6a No 28 No 44

13 Q6a � Q6c Yes 21 Yes 33

14 Q6c � Q6a No 15 No 32

15 Q7a � Q7b No 503 - -

16 Q7b � Q7a No 475 - -

17 Q8a � Q8b Yes 228 Yes 391

18 Q8b � Q8a No 177 No 322

19 Q9a � Q9b No 83 No 1937

20 Q9b � Q9a No 79 No 1941

21 Q9c � Q9b No 83 No 1937

22 Q9b � Q9c Yes 98 Yes 7767

Table 6.2: Containment of tree-structured SPARQL queries

in Figure 6.2. As can be seen, TreeSolver outperforms AFMU in all of the test cases.
A detailed discussion, regarding these solvers, can be found in the next chapter.

6.5 Conclusion

In this chapter, we have first studied the profile of real-world queries with respect
to theoretical characterization and found that (1) a large part of these queries are
acyclic, and (2) those parts that either contain projections (effective SELECT) or not,
are significant. We have studied the demographics of SPARQL queries on a large
example, from this and state-of-the-art of query containment solvers, we have designed
a benchmark suite in order to test the performance of the containment solvers, as
detailed in Chapter 7. Beyond this, we have also shown that the double exponential
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Figure 6.2: A comparison of TreeSolver and AFMU (logarithmic scale)

upper bound for containment of queries that is proved in Chapters 3 and 5 can reduce
to just PSPACE. In fact, it is also shown, in Chapter 3, that this bound reduces to
just ExpTime when the query on the right hand side has a tree structure. Meanwhile,
here, we have proved that this problem can even reduce to PSPACE. This is due to
that fact that containment of union of conjunctive queries is known to be NP-complete.
This can also be shown for SPARQL, by translating AND-UNION SPARQL queries
into the conjunctive queries of relational algebra. Hence, the principal advantage of
this work is that, our methods can be extended for other graph patterns beyond basic
and union graph patterns, for instance, MINUS graph patterns. In addition, we proved
that this encoding is correct and can be used for checking query containment. We
also have characterized the complexity of containment test. Beyond all, experiments
were carried out to justify our approach. Two satisfiability solvers were used for this
task [Tanabe et al. 2005] and [Genevès et al. 2007].



Chapter 7

Containment Benchmark

Contents

7.1 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.1.1 Query Containment Setup . . . . . . . . . . . . . . . . . . . . . . 104

7.1.2 Structure of the Benchmark . . . . . . . . . . . . . . . . . . . . . 104

7.1.3 Benchmarking software architecture . . . . . . . . . . . . . . . . 106

7.2 Query Containment Solvers . . . . . . . . . . . . . . . . . . . . . 109

7.2.1 SPARQL-Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2.2 AFMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2.3 TreeSolver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.3 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.3.1 CQNoProj Results . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.3.2 UCQProj Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.3.3 UCQrdfs Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

The problem of SPARQL query containment has recently attracted a lot of atten-
tion due to its fundamental purpose in query optimization and information integration.
New approaches to this problem, have been put forth, that can be implemented in prac-
tice. However, these approaches suffer from various limitations: coverage (size and type
of queries), response time (how long it takes to determine containment), and the tech-
nique applied to encode the problem. In order to experimentally assess implementation
limitations, we designed a benchmark suite offering different experimental settings de-
pending on the type of queries, projection and reasoning (RDFS). We have applied
this benchmark to three available systems using different techniques highlighting the
strengths and weaknesses of such systems.

The overall purpose of this chapter is designing a benchmark and evaluating the
performance of the current state-of-the-art using this benchmark. Using the encod-
ing procedure in Chapter 3 and exponential time satisfiability solvers from [Tanabe
et al. 2005] and [Genevès et al. 2007], we conduct an experiment to test the contain-
ment and equivalence of tree-structured SPARQL queries. We compare the perfor-
mance of these two satisfiability solvers, [Tanabe et al. 2005] and [Genevès et al. 2007].
Moreover, we also evaluate the performance of the subsumption and equivalence solver
from [Letelier et al. 2012]. However, as it is not an exponential time solver like the
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other two ( [Tanabe et al. 2005] and [Genevès et al. 2007]), we judge its performance
on its own.

7.1 Benchmark

In this section, we present the query containment setup, structure of the benchmark
and the benchmark description. We first present the design of containment benchmark
suites. Each test suite is made of elementary test cases asking for the containment
of one query into another. We then introduce the principles and software used for
evaluating containment solver. The benchmark and software is available on-line at
http://sparql-qc-bench.inrialpes.fr/.

7.1.1 Query Containment Setup

A test case for containment comprises two queries q and q�, and an optional schema
S. The query containment solver (QC solver) produces yes or no answers, i.e., yes if
q is contained in q� and no otherwise. A general workflow diagram designed for this
purpose is illustrated in Figure 7.1.

q q� S

QC Solver

q �S q� ?

Figure 7.1: General workflow of query containment tests.

7.1.2 Structure of the Benchmark

The four key requirements of a benchmark laid out by the benchmark handbook
[Gray 1992] are: understandability i.e., the queries and hence axioms should be un-
derstandable, scalability, portability i.e., being able to run on different platforms, and
finally relevance i.e., testing typical operations such as joins, disjunctions, and typing
restrictions. Thus, we designed the benchmark following these principles.

There are three qualitative dimensions along which tests can be designed: the type
of graph pattern connectors (AND, UNION , MINUS , Projection, OPT , FILTER etc.), the
type of ontology: (no schema, RDFS, SHI, OWL, etc.) and the query structure (tree,
DAG, cyclic). In addition to these dimensions, there are quantitative measures that
can be used, like:

− the number of triple patterns,

− the number of variables,

http://sparql-qc-bench.inrialpes.fr/
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− the number of join (triple patterns involving more than one variable),

− the size of the ontology.

We designed test suites of homogeneous qualitative dimensions selected with respect
to the capacity of the current state-of-the-art solvers. The benchmark contains three
test suites:

− Conjunctive Queries with No Projection (CQNoProj)

− Union of Conjunctive Queries with Projection (UCQProj)

− Union of Conjunctive Queries under RDFS reasoning (UCQrdfs)

We did not provide tests of cyclic queries since only one solver is currently able to deal
with them. However, this would be a natural addition to these tests.

Each test suite contains tests of different quantitative measures. Most of them are
used for conformance testing, i.e., testing that solvers return the correct answer. But
we also identify some stress tests trying to evaluate solvers at or beyond their limits.
Conformance tests are small size queries while stress tests are larger in size, e.g., queries
containing more than 15 joins. We discuss these test suites below.

For our compliance benchmark, queries are chosen according to the following crite-
ria: projection (or no projection), operator nesting, number of connectives (joins and
disjunctions), and requiring RDFS reasoning. Our queries also vary in general charac-
teristics like selectivity, query size, and different types of joins. One thing that should
be noted is that, the benchmark criteria are selected in line with the capacity of the
current state-of-the-art. The benchmark contains three test suites:

7.1.2.1 CQNoProj

This test suite is designed for containment of basic graph patterns. It contains conjunc-
tive queries with no projection. We have identified 20 different test cases (nop1–nop20),
each one testing containment between two queries. All the cases in this setting are
shown in Table 7.1, along with the number of connectives and variables in the queries.
Q7a and Q7b have been presented in Example 38.

Example 38. Consider the following queries that retrieve students’ information from

a university dataset.

Select all students’ information.

SELECT ?x ?y

WHERE { Q7a

?x a :Student . ?x :name ?y .

?x :nickName ?z . ?x :telephone ?t .

?x :ssn ?ssn . ?x :age ?a .

?x :sex ?sex . ?x :emailAddress ?e .

?x :memberOf ?d . ?x :takesCourse ?c .

}

Select master students’ information.

SELECT ?x ?y

WHERE { Q7b

?x a :Student . ?x :name ?y .

?x :nickName ?z . ?x :telephone ?t .

?x :ssn ?ssn . ?x :age ?a .

?x :sex ?sex . ?x :emailAddress ?e .

?x :memberOf ?d . ?x :takesCourse ?c .

?x :masterDegreeFrom ?master .

}
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Test case Problem A
N

D

V
ar

s

Jo
in

nop1 Q1a � Q1b 1
1

0
nop2 Q1b � Q1a 0 0

nop3 Q2a � Q2b 5
3

3
nop4 Q2b � Q2a 5 3

nop5 Q3a � Q3b 2
2

2
nop6 Q3b � Q3a 1 1

nop7 Q4c � Q4b 5
3

2
nop8 Q4b � Q4c 3 2

nop9 Q6a � Q6b 2
3

1
nop10 Q6b � Q6a 2 1

Test case Problem A
N

D

V
ar

s

Jo
in

nop11 Q6a � Q6c 2
3

1
nop12 Q6c � Q6a 0 1

nop13 Q6b � Q6c 2
3

1
nop14 Q6c � Q6b 0 1

nop15 Q7a � Q7b 9
10

9
nop16 Q7b � Q7a 10 9

nop17 Q8a � Q8b 3
4

3
nop18 Q8b � Q8a 2 3

nop19 Q9a � Q9b 4
3

2
nop20 Q9b � Q9a 4 2

Table 7.1: The CQNoProj testsuite. In the AND column, figures correspond to the
number of AND in the left-hand side query of the test. Vars is the number of variables
in each queries and Join the number of triples in which occurs at least three variables.

The more difficult tests used for stress testing are nop3, nop4, nop15, and nop16.
The two former ones have a larger number of conjunction (and of join), while the two
latter ones have an even larger number of conjunctions and variables.

7.1.2.2 UCQProj

This test suite is made of 28 test cases, each comprising two acyclic union of conjunctive
queries with projection. In fact, 14 tests contain projection only, 6 tests contains union
only and 2 tests contains both (see Table 7.2). Keeping these tests together allows for
comparing these supposed complex tests to less complex ones. The test cases differ in
the number of distinguished variables (Dvars) and connectives (conjunction or union).
Particular stress tests are p3, p4 (without union nor projection), p15, p16, p23, and
p24.

7.1.2.3 UCQrdfs

In query containment under RDFS reasoning, there are 28 test cases (Table 7.3). In
comparison to the test cases in UCQProj and CQNoProj setting, the query sizes are
small. Each test case is composed of two acyclic UCQs and a schema. There are
4 different small schemas, C1–C4 whose characteristics, with respect of in the type
and number of axioms used, are presented in Table 7.3). The most difficult tests are
supposed to be rdfs23, rdfs24, rdfs25, rdfs26, rdfs27 and rdfs28 with both projection
and union.

7.1.3 Benchmarking software architecture

For testing containment solvers we designed an experimental setup which comprises
several software components. This setup is illustrated in Figure 7.2. It simply considers
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Problem A
N
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N

D
va

rs

V
ar

s

Jo
in

p1 Q11a � Q11b 1 0
1

1 0

p2 Q11b � Q11a 0 0 1 0

p3 Q12a � Q12b 5 0
3

3 3

p4 Q12b � Q12a 5 0 3 3

p5 Q13a � Q13b 2 0
2

2 2

p6 Q13b � Q13a 1 0 2 1

p7 Q14c � Q14b 3 0
1

3 2

p8 Q14b � Q14c 5 0 3 2*

p9 Q15a � Q15b 0 0
2

3 1

p10 Q15b � Q15a 0 0 2 1

p11 Q16a � Q16b 2 0
1

3 1

p12 Q16b � Q16a 2 0 3 1

p13 Q16a � Q16c 2 0
1

3 1

p14 Q16c � Q16a 0 0 3 1

p15 Q17a � Q17b 9 0
10

10 9

p16 Q17b � Q17a 10 0 11 10

p17 Q18a � Q18b 3 0
4

4 3

p18 Q18b � Q18a 2 0 4 3

p19 Q19a � Q19b 4 0
2

3 2

p20 Q19b � Q19a 4 0 3 2

p21 Q19c � Q19b 4 0
2

4 3

p22 Q19b � Q19c 4 0 3 2

p23 Q20a � Q20b 2 7
10

10 9

p24 Q20b � Q20a 8 1 10 9

p25 Q21a � Q21b 6 2
2

4-6 5

p26 Q21b � Q21a 8 0 6 5

p27 Q22a � Q22b 3 1
2

2 2

p28 Q22b � Q22a 3 1 2 2

Table 7.2: The UCQProj test suite.

a containment checker as a software module taking as input two SPARQL queries (q
and q�), eventually an RDF Schema (S), and returns true or false depending if q� is
entailed by q (under the constraints of S).

This has been provided as a Java interface using Jena to express queries and RDF
Schema. It simply takes test instances and provide them to the interface, timing the ex-
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Schema Axiom types
C1 subclass (2)
C2 domain (1) and range (1)
C3 subproperty (2), subclass (1) and domain (1)
C4 subclass (1)

Test O
nt

ol
og

y
Problem A

N
D
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N

IO
N

D
va

rs

V
ar

s

Jo
in

rdfs1
C1

Q39a � Q39c 0 0
1

1 0
rdfs2 Q39c � Q39a 0 1 1 0

rdfs3
C1

Q39a � Q39b 0 0
1

1 0
rdfs4 Q39b � Q39a 0 0 1 0

rdfs5
C1

Q39b � Q39c 0 0
1

1 0
rdfs6 Q39c � Q39b 0 1 1 0

rdfs7
C1

Q39d � Q39e 4 0
1

3 2
rdfs8 Q39e � Q39d 4 0 3 2

rdfs9
C2

Q40b � Q40d 0 0
1

2 1
rdfs10 Q40d � Q40b 0 0 1 0

rdfs11
C2

Q40e � Q40b 1 0
1

2 2
rdfs12 Q40b � Q40e 0 0 1 0

rdfs13
C3

Q41b � Q41c 0 0
1

2 1
rdfs14 Q41c � Q41b 0 0 2 1

rdfs15
C3

Q41b � Q41d 0 0
1

2 1
rdfs16 Q41d � Q41b 0 0 2 1

rdfs17
C3

Q41c � Q41d 0 0
1

2 1
rdfs18 Q41d � Q41c 0 0 2 1

rdfs19
C3

Q41b � Q41a 0 0
1

2 1
rdfs20 Q41a � Q41b 0 0 1 0

rdfs21
C3

Q41e � Q41a 0 1
1

2 2
rdfs22 Q41a � Q41e 0 0 1 0

rdfs23
C4

Q43a � Q43b 3 1
2

2 2
rdfs24 Q43b � Q43a 3 1 2 2

rdfs25
C4

Q43a � Q43c 3 1
2

2 2
rdfs26 Q43c � Q43a 3 1 2 2

rdfs27
C4

Q43b � Q43c 3 3
2

2 2
rdfs28 Q43c � Q43b 3 1 2 2

Table 7.3: The UCQrdfs test suite.

ecution of the containment test within the dashed box of Figure 7.2, i.e., after query and
schema parsing. We have developed three wrappers implementing this interface for the
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q q� S

ARQ Parser ARQ Parser Jena parser

µ-calculus
Encoder 1

µ-calculus
Encoder 2SPARQL-

Algebra
AFMU TreeSolver

q �S q�?

Figure 7.2: Experimental setup for query containment test. The tester (plain rectangle)
parses queries and schemas and pass them to a solver wrapper (dashed rectangle).

respective systems: AFMU, TreeSolver and SPARQL-Algebra. AFMU and TreeSolver
first require to encode the queries and schema into µ-calculus formulas. This advan-
tages SPARQL-Algebra because it works directly on ARQ representation, whereas the
two other solvers have first the ARQ representation translated into a µ-calculus formula
which is then parsed and transformed in each solver’s internal representation.

Other systems could be wrapped in the same interface and tested in the same
conditions. This platform may also be used for providing non regression tests for
containment solvers.

7.2 Query Containment Solvers

We briefly present three state-of-the-art query containment solvers used in the exper-
iments. Our goal is to characterize their capabilities in order to design appropriate
benchmarks. In order to do so, we also analyze actual queries used on the semantic
web.

Out of the three systems, SPARQL-Algebra is self contained whereas two are µ-
calculus satisfiability solvers that need an intermediate query translation into formulas
to determine containment.

7.2.1 SPARQL-Algebra

SPARQL-Algebra is an implementation of SPARQL query subsumption and equivalence
based on the theoretical results in [Letelier et al. 2012]. This implementation supports
AND and OPT queries with no projection. An on-line version of the solver is available
at http://db.ing.puc.cl/sparql-algebra/.

http://db.ing.puc.cl/sparql-algebra/
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7.2.2 AFMU

AFMU (Alternation Free two-way µ-calculus) [Tanabe et al. 2005], is a satisfiability
solver for the alternation-free fragment of the µ-calculus [Kozen 1983]. It is a prototype
implementation which determines the satisfiability of a µ-calculus formula by producing
a yes-or-no answer.

To turn it into a query containment solver, it is necessary to turn the problem into
a µ-calculus satisfiability problem.

In previous work [Chekol et al. 2012a,Chekol et al. 2012b], we developed techniques
for encoding queries into the µ-calculus (A) in order to determine the containment of
SPARQL queries. Of the three approaches introduced in [Chekol et al. 2012a] to deal
with RDFS, we have chosen the encoding of the schema (η) into the µ-calculus. We use
these encoding schemes for deciding q �S q�: it is necessary to check if the encoding of
its negation, η(S) ∧ A(q) ∧ ¬A(q�), is satisfiable. If this is the case, then containment
does not hold, otherwise, it is established.

7.2.3 TreeSolver

The XML tree logic solver TreeSolver1 performs static analysis of XPath queries which
comprises containment, equivalence and satisfiability. To perform these tasks, the solver
translates XPath queries into µ-calculus formulas and then it tests the unsatisfiability
of the formula. Unlike AFMU, the unsatisfiability test is performed in a time of 2O(n)

whereas it is 2O(n logn) for AFMU, where n is the size of the formula.
Using TreeSolver follows the same procedure as using AFMU with a slightly different

encoding. Indeed, because TreeSolver is restricted to tree-shaped models, we use a
specific encoding of query formulas.

7.2.3.1 Features supported by solvers

AA summary of the features supported by these query containment solvers is presented
in Table 7.4.

System projection UCQ optional blanks cycles RDFS

SPARQL-Algebra
√ √

AFMU
√ √ √ √

TreeSolver
√ √ √ √

Table 7.4: Comparison of features supported by current systems.

Part of the query structures can be transformed into concept expressions in de-
scription logics and submitted to satisfiability (or subsumption) tests as well. So, in
principle, query containment solvers based on description logic reasoners could be de-
signed. However, we do not know any such solver.

1http://wam.inrialpes.fr/websolver/

http://wam.inrialpes.fr/websolver/
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7.3 Experimentation

We evaluated the three identified query containment solvers with the three test suites.
Rather than a definitive assessment of these solvers, our goal is to give first insights
into the state-of-the art and highlight deficiencies of engines based on the benchmark
outcome. None of these systems is sharply optimized as testified by numerous printout.
However, their behavior is sufficient for highlighting test difficulty.

We run experiments on a Debian Linux virtual machine configured with four pro-
cessors and 20GB of RAM running under a Dell PowerEdge T610 with 2*Intel Xeon
Quad Core 2.26GHz E5607 processors and 32GB of RAM, under Linux ProxMox 2
(Debian).

The solvers were not genuinely reentrant. Hence, each test case has been run in
a separate process after that the first case of each suite has been run as a warm up.
TreeSolver was not able to support this warm-up on tests p9 and p10 (this penalized
it).

All solvers are Java programs. The Java virtual machines were run with maximum
heap size of 2024M and a timeout at 15s (15000ms). The µ-calculus solvers take
advantage of a native BDD library. Using the native implementation doubles the speed
of these solvers, however, it also brings large initialization time (in spite of warm-up
set up) and memory problems.

Reported figures are the average of 5 runs (we run the tests 7 times and ruled out
each time the best and worse performance).

7.3.1 CQNoProj Results

On the conjunctive queries without projection, the SPARQL Algebra implementation
is 10 times faster than the µ-calculus implementations (Figure 7.3). This comes as no
surprise, since the latter are exponential time solvers whereas the former is a polynomial
time solver.

TreeSolver and AFMU time out whenever containment is determined between
queries that contain more than 10 joins (for instance, test cases nop15 and nop16).
The fact that SPARQL-Algebra does not suffer from these sets, shows that the encod-
ing of the µ-calculus solvers can be improved for such practical cases.

SPARQL-Algebra responded incorrectly, in test case nop7 (cf. Table 7.1), when
blank nodes are used in the queries. It is not expected to deal with blank nodes. The
other solvers are able to take them into account.

7.3.2 UCQProj Results

On the UCQProj test suite (see Section 7.1.2.2), we compared the two systems able
to deal with UNION : TreeSolver and AFMU. As can be seen in Figure 7.4, AFMU is
always slightly faster than TreeSolver in all of the benchmark test cases (beside p9, p10
for initialization reasons). This is surprising given the difference in complexity of both
solvers.
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Figure 7.3: Results for the CQNoProj test suite (logarithmic scale).

In the stress queries (p3, p4, p15, p16, p23, p24, p25, p26) both systems time out.
The necessary run time tends to be far longer as it often ends up in filling the available
heap. For some of these tests (p15-16), this could also be improved by adopting a
better encoding of triples.
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Figure 7.4: Results for the UCQProj test suite (logarithmic scale).

We run the same tests with the Java BDD implementation for both solvers (Fig-
ure 7.5). This shows slower run times for both systems but a nearly constant one for
TreeSolver which does only time out on two tests (p24 and p26). This indicates that
the solver’s behavior is dominated by BDD initialization in spite of the warm-up.

7.3.3 UCQrdfs Results

The results for containment of acyclic UCQs under RDFS (cf. Section 7.1.2.3) are
better. Figure 7.6 shows that both solvers answer containment queries within a few
hundreds of milliseconds. Time outs are observed for tests 7 and 8, which contains both
a (simple) subsumption test and several simple joins. In this test set, TreeSolver is in
general slightly better than AFMU. As expected, queries with larger size or projection
and union are more difficult. AFMU returns an incorrect answer for rdfs9 which seems
to be a bug in the solver.
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Figure 7.5: Results for the UCQProj test suite with Java BDD implementation (loga-
rithmic scale).

ms

rd
fs
1

rd
fs
2

rd
fs
3

rd
fs
4

rd
fs
5

rd
fs
6

rd
fs
7

rd
fs
8

rd
fs
9

rd
fs
10

rd
fs
11

rd
fs
12

rd
fs
13

rd
fs
14

rd
fs
15

rd
fs
16

rd
fs
17

rd
fs
18

rd
fs
19

rd
fs
20

rd
fs
21

rd
fs
22

rd
fs
23

rd
fs
24

rd
fs
25

rd
fs
26

rd
fs
27

rd
fs
28

0

500

1,000

1,500

TreeSolver AFMU

Figure 7.6: Results for the UCQrdfs test suite.

7.3.4 Discussion

In summary, all the solvers under all of the experimental settings responded positively
i.e., they all determined containment correctly under their stated application limits (we
tested this independently). However, from these experiments, a lot remains to be done
in order to alleviate the shortcomings of the current systems.

SPARQL-Algebra is faster on its domain of application. The advantages of this
solver compared to the others are that it supports subsumption of OPT query patterns
and also cyclic CQs. However, blank nodes are not supported.

AFMU is able to determine containment of acyclic UCQs under ontological axioms.
For queries of reasonable size, the solver determined their containment correctly. The
problem is that when queries have a larger size, e.g., more than 8 joins, the solver
saturate memory. This is shown for test cases nop15 and nop16 (Figure 7.3) as well as
for test cases. However, the implementation of this solver is not optimal: the authors
have documented improvements p15 and p16 (Figure 7.4). Moreover, determining
containment of general UCQs (beyond the acyclic ones) will require extending the
solver.

TreeSolver has similar limitations as AFMU: no support for cyclic queries and diffi-
culty with queries of large size, such as nop16 and p16. This is surprising with respect
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to its worse case complexity. However, as shown in Figure 7.5, the solver has potential
to scale if it can find more accurate ways to initialize memory.

In addition, it is a good thing that determining the type of queries to compare
(cyclic, disjunctive, with blank nodes, with projections, etc.) is easy. Hence, it is
possible to build a system assembling these solvers and providing the best possible
performances for each cases.

7.4 Conclusion

In this chapter, we have designed a containment benchmark made of three query con-
tainment test suites testing conjunctive queries without projection, union of conjunctive
queries with projection and with RDFS reasoning. We have applied these to existing
containment solvers (SPARQL-Algebra, AFMU and TreeSolver). Obviously, current
µ-calculus solvers are not optimized for conjunctive queries without projection which
are better dealt with by SPARQL-Algebra. Hence, so far the best strategy is to use
one solver when queries are conjunctive and do not have projection and another when
they have projection, union and axioms. Fortunately, this situation is easy to diagnose.

This chapter contributed to the study of SPARQL query containment in several
ways:

• from the state-of-the-art of query containment solvers, we have designed a bench-
mark suite and methodology for this problem;

• finally, after evaluating current solutions on existing solvers, we can report the
following lessons:

– All tested solutions perform correctly with respect to their declared appli-
cability limits (which are easily testable);

– SPARQL query containment can be practically evaluated, in spite of its
complexity, in a reasonable time with respect to network communication
costs,

– the current state-of-the-art is at its early stage and requires improvement
and new ways to determine containment and equivalence of queries, in order
to become a useful tool for query optimizers.

These benchmark suites are well-suited for pinpointing the theoretical shortcomings of
containment solvers.

We plan to improve and extend this benchmark, in particular by adding other
test suites designed for containment of cyclic queries and queries under expressive
description logic axioms such as OWL2.
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In this chapter, as in for AND-UNION graph patterns, we consider set semantics of
OPTIONAL graph patterns in order to study containment. We propose to fill the gap
left out by [Letelier et al. 2012], i.e., we deal with queries with projections q{−→x }. For
static analysis, the set semantics ensures the correct encoding of OPTIONAL patterns
as µ-calculus formulas.

We also address the containment problem for SPARQL queries that are made from
MINUS graph patterns. MINUS graph patterns are well known in the database com-
munity, often referred to as conjunctive queries with negation CQ¬.

Finally, we present a brief discussion on the containment of SPARQL queries under
the bag (multiset) semantics.

8.1 Containment of MINUS Graph Patterns

In databases, positive conjunctive queries are considered as the basic database queries
[Chandra & Merlin 1977]. Conjunctive queries with negation extend this class with
negation on subgoals. In SPARQL 1.1, MINUS and NOT-EXISTS are used to for-
mulate negated queries. When only positive conjunctive queries are considered, query
containment checking is NP-complete [Chandra & Merlin 1977]. It can be verified by
checking if there is a homomorphism from the containing query to the contained query.
When atomic negation is considered, the problem becomes much more complex: it is
ΠP

2 -complete [Farré et al. 2006] (Πp
2 = coNPNP , that is, Πp

2 is what can be computed
in coNP with access to an NP oracle). A general approach for checking q � q�, first
presented in [Levy & Sagiv 1993] for conjunctive queries with inequalities and adapted
in [Ullman 1997] for conjunctive queries with negation, consists of considering all ways
of completing q with positive information. Intuitively, this amounts to generating rep-
resentations of all database instances that satisfy q. On the other hand, in [Leclere
& Mugnier 2006,Mohamed et al. 2011], negative information is also explicitly added.
Such queries obtained from q by adding missing information, either positively or neg-
atively, are called completions of q (and total completions if no more information can
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be added). Then q � q� if and only if there is a homomorphism from q� to each total
completion of q. However, the number of (total) completions of q is exponential in
the size of q. Several proposals have aimed at reducing the number and the size of
completions ( [Wei & Lausen 2002, Leclere & Mugnier 2006, Mohamed et al. 2011]).
Coming back to SPARQL, in this section, we introduce a different approach than the
ones used in databases.

SPARQL 1.1 (the upcoming version) allows the creation of negated queries us-
ing MINUS and NOT-EXISTS keywords. The MINUS keyword and the ability to
use the NOT operator with EXISTS both provide a cleaner alternative to the FIL-
TER(!bound(?var)) trick used in SPARQL 1.0 to make missing values part of the
retrieval criteria.

Example 39. Query all students who are not attending a Java course as follows:
q

PREFIX : <http://www.example.com/>

SELECT ?x WHERE {

?x a :student

MINUS { ?x :takes "java" }

}

also, we can ask for all female students who are not attending a Java course.
qp

PREFIX : <http://www.example.com/>

SELECT ?x WHERE {

?x a :student . ?x a :female

MINUS { ?x :takes "java" }

}

SQL inspired operators NOT EXISTS and MINUS, representing two ways of think-
ing about negation, one based on testing whether a pattern exists in the data, given
the bindings already determined by the query pattern, and one based on removing
matches based on the evaluation of two patterns. In some cases they can produce
different answers [Harris & Seaborne 2012]. The (NOT) EXISTS graph pattern filter
operator returns true or false depending on whether the pattern matches the current
query solution. The MINUS graph pattern statement removes existing matches from
the current query solution, which boils down to a standard set subtraction. To perform
this operation, both graph patterns have to be evaluated since the MINUS operator
works only on those matches which were already found. Note that this behaviour differs
from that of the NOT EXIST operator.

Before jumping into the problem, let us briefly sketch the fragment of SPARQL-
MINUS graph patterns considered for this study.

Syntax In order to retain a decidable fragment, nestings in the right-hand side of
the MINUS operator are not allowed. Thus, the syntax of SPARQL MINUS graph
patterns considered in this study has the following form:

PP1 AND · · · AND PPn MINUS {NP1} MINUS · · · MINUS {NPm}
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where PP denotes positive graph patterns and NP denotes graph patterns that appear
to the right of MINUS, and n ≥ 1,m ≥ 0. If m = 0, then the query becomes a positive
conjunctive query.

Semantics The semantics of this fragment remains similar to that of the original, i.e.,
set difference between the mappings of the positive patterns PP and negative patterns
NP.

Example 40. For the queries in Example 39, it can be verified that qp � q and q �� qp.

As already discussed in the previous chapters, one approach to determine containment

queries is: reducing containment to formula unsatisfiability. Thus, queries are encoded

as formulas as explained below.

Similar to that of the encoding of positive graph patterns, see Chapter 3 for instance,
the translation of the containment problem concerning MINUS graph patterns requires
careful handling of the non-distinguished variables for the query on the right-hand side.
Therefore, to encode q � q�, we proceed as follows:

Encoding left-hand side query (q): a MINUS graph pattern can be encoded in-
ductively into a µ-calculus formula as:

A((x, y, z)) = lfp
�
X, �s̄�x ∧ �p�y ∧ �o�z

�

A(q1 AND q2) = A(q1) ∧ A(q2)

A(q1 MINUS q2) = A(q1) ∧ ¬A(q2)

Encoding right-hand side query (q�): translation can be done in the same way
as for the positive graph patterns discussed in Chapter 3. Here, we repeat a sketch of
that translation procedure:

A(q�,m) =

|m|
�

i=1

A(q,mi)

A((x, y, z),m) = lfp
�
X, �s̄�d(m,x) ∧ �p�d(m, y) ∧ �o�d(m, z)

�

A(q1 AND q2,m) = A(q1,m) ∧ A(q2,m)

A(q1 MINUS q2,m) = A(q1,m) ∧ ¬A(q2,m)

d(m,x) =







ϕ if (x �→ ϕ) ∈ m

� if unique(x)

x otherwise

Example 41. Consider the encoding of q � q� where:

q(x, y) = (x, a, y)

q�(x, y) = (x, a, y) MINUS (x, b, y)
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The encoding of q is A(q) = µX.�s̄�x∧�p�a∧�o�z∨ lfp(X). q� can be encoded like that

of q because there are no non-distinugished variables in q�, thus

A(q�) = A
�
(x, a, y) MINUS (x, b, y)

�

= A
�
(x, a, y)

�
∧ ¬A

�
(x, b, y)

�

= lfp
�
X, �s̄�x ∧ �p�a ∧ �o�z

�
∧ ¬lfp

�
Y, �s̄�x ∧ �p�b ∧ �o�z

�

In the following, for the sake of legibility, we use Φ(q, q�) to denote A(q)∧¬A(q�,m)∧
ϕr.

Theorem 13. Given SPARQL MINUS queries q and q�,

q � q� ⇔ Φ(q, q�)

is unsatisfiable.

Proof. Soundness of the encoding Φ(q, q�) is unsatisfiable implies that q � q�. Con-
sider the contrapositive, q �� q� implies Φ(q, q�) is satisfiable. Assume that, q �� q�.
Thus, it follows that there exists a certain RDF graph where a tuple −→ai ∈ ans(q) and
−→ai �∈ ans(q�), where ans(q) denotes the answers to q. Now, let us construct a transition
system K, using a graph obtained from q by instantiating it using −→ai . Since K is a
construction of q, it follows that K |= A(q). Consider a sub-transition system/ sub
graph of K = (W,R,L) i.e., K � ⊆ K. We construct K � = (W �, R�, L�) as:

• for any aj ∈ −→ai if ∃−→w ∈ W where L(aj) =
−→w , then add −→w to W �,

• ∀n ∈ W � and ∀n� ∈ W �, if (n, n�) ∈ R(s) or (n, n�) ∈ R(p) or (n, n�) ∈ R(o), then
(n, n�) ∈ R�(s) or (n, n�) ∈ R�(p) or (n, n�) ∈ R�(o). Note that n� denotes the
triple nodes in W ,

• L�(aj) = L(aj).

To prove that K � |= A(q), it suffices to see that K � is produced as a canonicalization of
q using −→ai . Thus, the encoding of q is satisfiable in K �. On the other hand, K � �|= A(q�),
since −→ai �∈ ans(q�). Hence, K � |= ¬A(q�). It remains to verify that K � |= A(q)∧¬A(q�),
but it obvious from the semantics of a µ-calculus formula. Also, since K � is a restricted
transition system, we have that K � |= ϕr. Overall, summing up the pieces, we arrive
at K � |= A(q) ∧ ¬A(q�) ∧ ϕr. Therefore, Φ(q, q�) is satisfiable.

Completeness of the encoding Φ(q, q�) satisfiable implies that q �� q�. Let us
assume that there exists a restricted transition system K such that, K |= A(q) ∧
¬A(q�,m) ∧ ϕr. We construct an RDF graph G from K = (W,R,L) such that q is
non-empty when evaluating on G. It is possible because K |= ϕr.

For each w1, w2, w3, t ∈ W and for atomic propositions a, b, c, if L(a) = w1, L(b) =
w2, L(c) = w3 and (w1, t) ∈ R(s) ∧ (t, w2) ∈ R(p) ∧ (t, w3) ∈ R(o), then (a, b, c) ∈ G.
This process is repeated for all states and atomic propositions of the transition system.



8.2. On the Containment of OPTIONAL Graph Patterns 119

After obtaining an RDF graph G from K, it remains to show that �q�G �⊆ �q��G.
From our assumption, we get the following:

�A(q) ∧ ¬A(q�)�K �= ∅ ⇒ �A(q)�K �= ∅ and �¬A(q�,m)�K �= ∅
⇒ �A(q)�K �= ∅ and �A(q�,m)�K = ∅

If a formula ϕ is satisfiable in a restricted transition system Kr, then �ϕ�Kr = S. As a
consequence, �q�G �= ∅ and �q��G = ∅ because G contains all those triples that satisfy
q and not q�. Therefore, we get �q�G �⊆ �q��G. If q� is cyclic, then its non-distinguished
variables are encoded using nominals as cycles can be expressed by a formula in a
µ-calculus extended with nominals and inverse. Thus, the constraints expressed by
¬A(q�,m) are satisfied in a transition system containing cycles. On the other hand, if
q� has a tree-structure, the problem becomes easier as it suffices to replaces its non-
distinguished variables with �. Thus, this concludes the completeness part and the
overall proof.

From Theorem 13, we obtain the following proposition on the complexity of con-
tainment test.

Proposition 10 (Complexity). Given SPARQL MINUS queries q and q�, checking

q � q� can be performed in a double exponential amount of time.

8.2 On the Containment of OPTIONAL Graph Patterns

Recently, optimization and static analysis of OPTIONAL graph patterns have been
studied in [Letelier et al. 2012]. In their study, they have revealed that the containment
test can be done in ΠP

2 -complete amount of time for well-designed OPTIONAL graph
patterns. They have also provided implementations to support their theoretical results.
While it is obvious that the study has important implications, it fails to consider
projections of SELECT queries, i.e, containment and equivalence are studied for AND-
OPTIONAL graph patterns.

If an OPTIONAL pattern fails to match for a particular solution, any variables in
that pattern remain unbound (no value) for that solution. We represent the “no value”
in this discussion by null. Let us proceed with an example:

Example 42. Consider the following queries:

q1{y, z} = (x, name, y) AND (x, email, z)

q2{y, z} = (x, name, y) OPT (x, email, z)

Compare the evaluation of q1 and q2 over the graph below,

G = { (p1, name, n1), (p1, email, e1), (p2, name, n2),

(p3, name, n3), (p3, email, e3), (p4, name, n4),

(p5, email, e5) }
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�q1�G = {(n1, e1), (n3, e3)}
�q2�G = {(n1, e1), (n2, null), (n3, e3), (n4, null)}

Clearly, �q1�G ⊆ �q2�G but �q2�G �⊆ �q1�G. This holds also for the general case i.e., for
any RDF graph, because in the evaluation of q1, y is bound only when z is bound due
to conjunction. On the other hand, in the evaluation of q2, y is bound irrespective of
z i.e., the value of y is returned whether z is bound to a specific value or null. Thus,
q1 � q2 but q2 �� q1.

It has been shown that the combined complexity of SPARQL query evaluation
raises from PTime-membership for the conjunctive fragment to PSPACE-completeness
when OPTIONAL is considered [Pérez et al. 2009, Schmidt et al. 2010]. In [Pérez
et al. 2009], the class of well-designed SPARQL graph patterns was introduced as a
fundamental fragment of OPTIONAL queries with good behavior for query evaluation.
In particular, it was shown that the complexity of the evaluation problem for the well-
designed fragment is coNP-complete. For this study, we consider this specific fragment.

Definition 31 (Well-designed graph patterns). A graph pattern is well-designed iff for

every OPT in the pattern

(. . . . . . (P1 OPT P2) . . . . . .)

if a variable occurs inside P2 and anywhere outside the OPT , then the variable must

also occur inside P1 [Letelier et al. 2012].

Example 43. (x, a, b) OPT

�
(y, c, d) AND (x, e, z)

�
in this example, the variable x occurs

inside and outside the OPT operator.

The semantics of the OPT operator leads to a different definition to query contain-
ment. In databases, containment of two queries is defined if they have the same number
of distinguished variables.

Definition 32 (Optional Queries Containment).

q1{−→x } � q2{−→x } ⇔ ∀G.
n�

i=1

(πxi
(�q1�G) ⊆ πxi

(�q2�G))

where xi ∈ −→x and n = |−→x |

Encoding OPTIONAL Graph Patterns Relying on the set semantics of OP-
TIONAL graph pattern evaluation, we propose to transform a pattern of the form
(P1 OPT P2) into ((P1 AND P2) UNION P1). The transformed query can be easily encoded
into a µ-calculus formula. To encode q{−→x } � q�{−→x }, we proceed as follows:

Encoding q: when translating q, the IRIs and variables are translated into nominals
in µ-calculus. The OPT operator is encoded into a conjunction and a disjunction as
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shown below.

A((x, y, z)) = lfp
�
X, �s̄�x ∧ �p�y ∧ �o�z

�

A(q1 AND q2) = A(q1) ∧ A(q2)

A(q1 OPT q2) = A(q1 AND q2) ∨ A(q1)

Encoding q�: IRIs and non-distinguished variables are encoded into nominals and the
non-distinguished variables are translated in the same way as AND-UNION queries in
Chapter 3.

The encoding of OPTIONAL patterns is not linear, it grows exponentially with
respect to the size of the OPTIONAL patterns. In addition, the encoding of the right-
hand side query q� is also exponential due to the non-distinguished variables that appear
in cycles in the query.

Reducing OPTIONAL pattern containment into unsatisfiability test

Conjecture 1. Given two well-formed OPTIONAL pattern queries q and q�, q � q� ⇔
A(q) ∧ ¬A(q�,m) ∧ ϕr.

8.3 On the containment of SPARQL queries under bag se-

mantics

A bag or multiset is a collection of objects each of which occurs one or more times in
the collection. Two kinds of semantics are given to SPARQL: set and bag semantics.
Bag semantics is the W3C standard semantics given to SPARQL. In databases, for
SQL queries three kinds of semantics have been proposed: bag semantics, i.e. duplicate
tuples are allowed in both the database and the results of queries, bag-set semantics, i.e.
duplicates are allowed in the result of the queries but not in the database, and finally
set semantics, that is, duplicates are not allowed in the result of the queries [Afrati
et al. 2010]. For conjunctive queries, the containment problem under both bag and
bag-set semantics is proved to be ΠP

2 -hard [Chaudhuri & Vardi 1993]. On the other
hand, if both the left and right-hand side queries do not contain projections, the prob-
lem can be solved in n2log(n) amount of time [Afrati et al. 2010]. As already discussed,
under set semantics the complexity of containment test is NP-complete [Chandra &
Merlin 1977]. Note that, containment of union of conjunctive queries under bag seman-
tics is undecidable [Ioannidis & Ramakrishnan 1995]. In addition, the containment of
conjunctive queries with inequalities under bag semantics is also undecidable [Jayram
et al. 2006].

On the other side, in this thesis we have addressed the containment problem for
various fragments of SPARQL under set semantics. However, for the conjunctive frag-
ments of SPARQL, the results from the study of conjunctive queries under bag-set
semantics in databases carry over. In the following, we denote by �s the containment
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problem under set semantics and �b under bag semantics. The difference between set
and bag semantics for containment in SPARQL is shown by the following example.

Example 44. Find people and their names:
q

SELECT ?x ?y

WHERE {

?x :name ?y .

}

q1
SELECT ?x ?y

WHERE {

?x :name ?y .

?x :name ?z .

}

Under set semantics q and q1 are equivalent however under bag semantics they are

not. This is due to the redundant join in q1 that affects output tuples multiplicities. On

the other hand, it is easy to see that q �b q1 under bag semantics but q1 ��b q.

Example 45. Consider the containment problem between the following queries under

both set and bag semantics:
q1

SELECT ?age

WHERE {

?x a :Student .

?x :age ?age .

}

q2
SELECT ?age WHERE {

?x a :Student .

?x a :Employee .

?x :age ?age .

?x :job ?title .

}

Under set semantics, q2 �s q1 since there exists a homomorphism from q1 to q2
whereas under bag semantics q2 ��b q1 this is due to a student may have multiple jobs.

Conversely, under both set and bag semantics, q1 �� q2.

From these examples, it is easy to see that the bag semantics affects the containment
and equivalence problems. Nevertheless, the satisfiability problem (whether a query has
a solution or not) remains unaffected. If q �b q�, then it always holds that q �s q�,
however, the converse is not always true as already shown in the above examples. Even
the contrapositive, if q ��s q

�, then q ��b q
� does not necessarily hold if the queries contain

MINUS graph patterns. Another important point to consider is when queries (or one of
them) contain no projections. In this regard, for conjunctive queries in databases, it has
been proved that this problem is decidable in polynomial time [Afrati et al. 2010]. As
such, the results of evaluating such queries on any set-valued database are always sets;
hence to decide bag-set containment of such queries it suffices to decide containment
under set semantics. Consequently, we can draw the following: as SPARQL queries
are evaluated over set valued databases (RDF graphs), containment of conjunctive
SPARQL queries without projections is decidable in polynomial time. Importantly, we
noted that the bag semantics of SPARQL is similar to that of the bag-set semantics of
conjunctive queries in databases, this is due to RDF data (or relations) are sets and
not multisets. For more on the transformation of SPARQL into relationa algebra and
RDF datasets into database relations, we refer the reader to [Cyganiak 2005].
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8.4 Conclusion

In this chapter, we have proposed an approach to encode SPARQL conjunctive queries
with negation (known as MINUS queries) in the µ-calculus to study containment test.
We have proved that this encoding is sound and complete and runs in a double expo-
nential amount of time in the worst-case. This bound lowers to just exponential when
the query on the right-hand side has a tree-structure. In fact, containment of tree-
structured MINUS queries is PSPACE as already shown in Chapter 6. Moreover, we
have extended the encoding procedure for union of conjunctive fragments of SPARQL
to well-designed OPTIONAL graph patterns. Finally, we have discussed the issues
related to containment test under bag semantics.
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We now summarize the main contributions of this work, and propose further re-
search directions.

9.1 Summary

Containment is a well-studied problem for relational database query languages. It
started with a pioneering paper from Chandra and Merlin [Chandra & Merlin 1977]
and has been addressed for different query languages since. Thus, SPARQL is no
exception given the advantages of containment thence this study is carried out. We
summarize the results achieved in the development of this work.

Having well-behaved computational and model theoretic properties and implemen-
tations that have been put to practice, µ-calculus has been chosen for the task of
static analysis of SPARQL queries. µ-calculus formulas are interpreted over transition
systems. SPARQL queries are evaluated over RDF graphs, these graphs can be trans-
formed to other types of graphs: hypergrahs, bipartite graphs, transition systems and
others. Thus, given a graph logic, RDF graphs can be translated into transition systems
and SPARQL queries into µ-calculus formulas, thus the formulas can be interpreted
over transition systems. Chapter 3 presents a technique for translating RDF graphs
into transition systems. In fact, the transition systems are bipartite graphs obtained by
introducing three nodes for each triple elements (subject, predicate and object nodes)
and a fourth one (called triple node) for each triple in the graph. The subject, predicate
and object nodes are connected to a triple node, the edges are labelled with transition
programs s, p and o respectively.

Containment of queries can be reduced to satisfiability test by encoding the set
inclusion as implication and the queries as formulas. In Chapter 3, algorithms are
proposed for translating queries and ALCH axioms into µ-calculus formulas. The
principle of the translation is based on reification where each triple is represented
by a node, connected to the subject, predicate and object elements of the query, for
instance, the query (x, name, y) is encoded into �s̄�x∧�p�name∧�o�y. After producing
the encoding of a triple pattern, the least fixpoint operator µ is used to propagate the
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encoding to all nodes of the transition system. That is, µ encodes a reflexive transitive
closure over all programs. The encoding of the right-hand side query is different from
that of the left due to the non-distinguished variables that appear in cycles in the
query. In fact, this is the reason for high complexity bounds in containment problems
in general. Finally, the soundness and completeness of the reduction is proved and
a double exponential upper bound complexity is established for the problem. This
complexity bound is proven to be complete for the schema language ALCH.

The next result comes from the study of the containment of path SPARQL queries
(a fragment of SPARQL 1.1 property paths1). In this direction, in Chapter 4, we
have addressed three related problems: (i) the containment of PSPARQL queries, (ii)
the containment of PSPARQL queries with inverse (also known as C2RPQs in semi-
structured data), and finally (iii) the containment of PSPARQL queries under the
presence of expressive description logic axioms. For these problems, we propose novel
encoding techniques to reduce containment to unsatisfiability test. For all these prob-
lems, containment can be tested in a double exponential amount of time.

Being a W3C recommended language and growing fame in the semantic web,
SPARQL is currently being extended as a query language for ontologies (a.k.a. SPARQL
entailment regimes) [Glimm & Krötzsch 2010]. In this direction, we contribute towards
the study of the containment problem under entailment regimes. In Chapter 5, we ad-
dressed this issue for two entailment regimes: containment under the simpleRDFS
entailment regime and containment under the OWL-ALCH Direct Semantics entail-
ment regime. For the later problem, we used the query language, SPARQL-OWL,
originally proposed in [Glimm 2011]. Moreover, we have also used a fragment of OWL
2 to retain decidability of the problem, as encoding the full OWL 2 is not possible
with the µ-calculus without graded modalities. The fragment of OWL we selected
is called OWL-ALCH, i.e, the part based on the description logic ALCH. Deciding
the containment of SPARQL-OWL queries under the OWL-ALCH Direct semantics
requires exponential amount of time. This is because in the entailment regimes non-
distinguished variables cannot appear by design, i.e., all the variables in the basic graph
pattern are treated as distinguished, projection is a post-processing step and not part
of entailment, the containment problem is ExpTime. However, this bound rises to 2Ex-
pTime if the non-distinguished variables are treated in the usual way (as existential
variables) a priori to performing reasoning.

When path query containment is considered under ontology axioms, it is necessary
to chose an expressive logic (such as the µ-calculus) upto the expressivity of the queries
and schema language. But when studying containment without schema axioms (or
when the schema language is weak), one can use a less expressive logic than the µ-
calculus to perform containment test. In Chapter 6, we studied the containment of tree-
structured SPARQL queries by encoding them in the modal logic Kn. The complexity of
satisfiability test in Kn is PSPACE. It is less expressive than µ-calculus. The encoding
methods have been experimented using benchmark queries. Beforehand, we carried
out experiments in order to asses how many of real world queries are of tree-structure.

1http://www.w3.org/TR/sparql11-property-paths/

http://www.w3.org/TR/sparql11-property-paths/
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From the DBpedia querylog, 87% of the queries are found to be tree-structured. Thus,
this result on its own is enough to motivate the purpose of Chapter 6.

In order to complement the theoretical results that have been established in this
thesis, we have carried out experiments. In this regard, in Chapter 7, we proposed a
compliance benchmark for containment, equivalence and satisfiability of semantic web
queries. The benchmark is used to test the current-state-of-the-art tools. A comparison
of these tools based on running times is discussed. Furthermore, as already discussed,
the benchmark is designed to assess the containment solvers that are available presently,
with room for extension.

Finally, in Chapter 8, we propose to extend our approaches to study the containment
problem for negation and optional patterns.

Overall, we summarize the main results achieved in this thesis in Table 9.1. The
results, shown in the complexity column, that are marked with * are novel to this work
whereas the other results come from the study of relational algebra in databases (and
OPTIONAL graph pattern containment is studied in [Letelier et al. 2012]).

9.2 Perspectives

It is beyond the scope of this thesis to address the containment problem for every pos-
sible fragment of SPARQL (resp. PSPARQL) and schema language (for instance, SH
family). This work lies the theoretical and experimental foundations, provides simply
extendible and implementable methods, for instance, the containment benchmark is
designed with respect to the current-state-of-the-art, so it needs to evolve side-by-side
with the containment solvers.

Table 9.1 features some of the open problems, those labeled with a dash - symbol.
The schema languages we considered come from the fragments of SROIQ, this logic
underlies the foundations of OWL 2. A detailed discussion on the complexity of the
fragments of SPARQL can be found in [Pérez et al. 2009]. Another interesting theoret-
ical setting is presented in Table 9.2 where fragments of the µ-calculus, SPARQL graph
patterns, and various types of description logics are shown. A line of research problems
can be seen here by considering different combinations of SPARQL graph patterns and
schema languages (DL) in an expressive µ-calculus fragment to study static analysis.
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Graph pattern Schema Lan-
guage

Complexity of Containment

SP
A

R
Q

L

AND NP [Chandra & Merlin 1977]

AND-UNION NP [Chandra & Merlin 1977]

OPT ΠP
2 [Letelier et al. 2012]

AND-OPT ΠP
2 [Letelier et al. 2012]

AND-UNION-OPT undecidable

MINUS 2ExpTime*

SP
A

R
Q

L

AND ALCH 2ExpTime*

AND-UNION ALCH 2ExpTime*

AND-UNION simpleRDFS
entailment

ExpTime*

AND-UNION OWL-ALCH
entailment

ExpTime*

OPT - -

AND-OPT - -

MINUS - -

P
SP

A
R

Q
L

AND 2ExpTime*

AND-UNION 2ExpTime*

OPT -

AND-OPT -

MINUS -

P
SP

A
R

Q
L

AND ALCH 2ExpTime*

AND-UNION ALCH 2ExpTime*

OPT - -

AND-OPT - -

MINUS - -

Table 9.1: Summary of results on the containment of SPARQL queries.
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DL Complexity

ALC ExpTime

ALCI ExpTime

ALCHI ExpTime

ALCHIF ExpTime

SHIF ExpTime

(OWL-Lite)

SHIN ExpTime

SHOIN NExpTime

(OWL-DL)

SHIQ ExpTime

SHOIQ NExpTime

SROIQ N2ExpTime

OWL profiles

SPARQL fragment Complexity

AND PTime

AND-UNION NP

AND-OPT coNP

AND-UNION-OPT PSPACE

µ extensions Complexity

µ ExpTime

+ O + I + N Undecidable

+ O + I ExpTime

+I + N ExpTime

+ O + N ExpTime

+ N ExpTime

Table 9.2: A tradeoff among µ-calculus fragments, DL schema languages and SPARQL
fragments where O = nominals, N = number restrictions (graded modalities), and I
= inverse (backward modalities).
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Appendix A

Benchmark

In the following, we present the benchmark queries. The benchmark is designed for tree-
structured and cyclic SPARQL queries. The tree-structured queries in each category
of the test suites: CQNoProj, UCQProj, and UCQrdfs are displayed in Section A.1. A
single test suite for cyclic SPARQL queries containing some corner cases is shown in A.2.
Alternatively, the benchmark is also available online at http://sparql-qc-bench.
inrialpes.fr. The benchmark queries use the namespace prefixes shown below:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX : <http://www.example.org/>

A.1 Tree-structured SPARQL Queries

A.1.1 CQNoProj Test Suite

Q1a
SELECT * WHERE {

?x :takesCourse "Course10" .

?x :takesCourse "Course20" .

}

Q1b
SELECT * WHERE {

?x :takesCourse "Course10" .

}

Q2a
SELECT * WHERE {

?x a :Student .

?x :registeredAt ?y .

?y a :University .

?x :placeOfBirth ?z .

?z a :City .

?y :locatedAt ?z .

}

Q2b
SELECT * WHERE {

?x a :Student .

?x :registeredAt ?y .

?x :placeOfBirth ?z .

?y a :University .

?y :locatedAt ?z .

?z a :City .

}

Q3a
SELECT * WHERE {

?x a :Professor .

?x :graduatedFrom ?y .

?x :memeberOf ?y

}

Q3b
SELECT * WHERE {

?x a :Professor .

?x :memeberOf ?y

}

http://sparql-qc-bench.inrialpes.fr
http://sparql-qc-bench.inrialpes.fr
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Q4a
SELECT * WHERE {

?x :takesCourse ?c1 .

?c1 :shortName "Cs200" .

?x :takesCourse ?c2 .

?c2 :shortName "Cs301" .

?x :takesCourse ?c3 .

?x :shortName "Cs401" .

}

Q4b
SELECT * WHERE {

?x :takesCourse ?c1 .

?c1 :shortName "Cs200" .

?x :takesCourse ?c2 .

?c2 :shortName "Cs301" .

}

Q4c
SELECT * WHERE {

?x :takesCourse ?c1 .

?c1 :shortName "Cs200" .

?x :takesCourse ?c2 .

?c2 :shortName "Cs301" .

?x :takesCourse _:b .

_:b :shortName "Cs401" .

}

Q5a
SELECT * WHERE {

?x ?z ?y

}

Q5b
SELECT * WHERE {

?x :name ?y .

}

Q6a
SELECT * WHERE {

?x a :Department .

?y a :University .

?x ?z ?y .

}

Q6b
SELECT * WHERE {

?x a :Faculty .

?y a :University .

?x ?z ?y .

}

Q6c
SELECT * WHERE {

?x ?z ?y .

}

Q7a
SELECT * WHERE

{

?x a :Student .

?x :name ?y .

?x :nickName ?z .

?x :telephone ?tel .

?x :ssn ?ssn .

?x :age ?age .

?x :sex ?sex .

?x :emailAddress ?email .

?x :memberOf ?dept .

?x :takesCourse ?course .

}

Q7b
SELECT * WHERE

{

?x a :Student .

?x :name ?y .

?x :nickName ?z .

?x :telephone ?tel .

?x :ssn ?ssn .

?x :age ?age .

?x :sex ?sex .

?x :emailAddress ?email .

?x :memberOf ?dept .

?x :takesCourse ?course .

?x :masterDegreeFrom :OklahomaUniversity .

}

Q8a
SELECT * WHERE {

?x :subOrganizationOf ?y .

?y :subOrganizationOf ?z .

?z :subOrganizationOf ?r .

?r :subOrganizationOf :Unibz .

}

Q8b
SELECT * WHERE {

?x :subOrganizationOf ?y .

?y :subOrganizationOf ?z .

?z :subOrganizationOf ?r .

}
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Q9a
SELECT * WHERE {

?x a :GraduateStudent .

?y a :Department .

?x :memberOf ?y .

?y :subOrganizationOf :University0 .

?x :email ?z .

}

Q9b
SELECT * WHERE {

?x a :GraduateStudent .

?y a :Department .

?x :memberOf ?y .

?y :subOrganizationOf :University1 .

?x :email ?z .

}

A.1.2 UCQProj Test Suite

Q1a
SELECT ?x WHERE {

?x :takesCourse "Course10" .

?x :takesCourse "Course20" .

}

Q1b
SELECT ?x WHERE {

?x :takesCourse "Course10" .

}

Q2a
SELECT ?x ?y ?z WHERE {

?x a :Student .

?x :registeredAt ?y .

?y a :University .

?x :placeOfBirth ?z .

?z a :City .

?y :locatedAt ?z .

}

Q2b
SELECT ?x ?y ?z WHERE {

?x a :Student .

?x :registeredAt ?y .

?x :placeOfBirth ?z .

?y a :University .

?y :locatedAt ?z .

?z a :City .

}

Q3a
SELECT ?x ?y WHERE {

?x a :Professor .

?x :graduatedFrom ?y .

?x :memeberOf ?y

}

Q3b
SELECT ?x ?y WHERE {

?x a :Professor .

?x :memeberOf ?y

}

Q4a
SELECT ?x WHERE {

?x :takesCourse ?c1 .

?c1 :shortName "Cs200" .

?x :takesCourse ?c2 .

?c2 :shortName "Cs301" .

?x :takesCourse ?c3 .

?x :shortName "Cs401" .

}

Q4b
SELECT ?x WHERE {

?x :takesCourse ?c1 .

?c1 :shortName "Cs200" .

?x :takesCourse ?c2 .

?c2 :shortName "Cs301" .

}

Q4c
SELECT ?x WHERE {

?x :takesCourse ?c1 .

?c1 :shortName "Cs200" .

?x :takesCourse ?c2 .

?c2 :shortName "Cs301" .

?x :takesCourse _:b .

_:b :shortName "Cs401" .

}

Q5a
SELECT ?x ?y WHERE {

?x ?z ?y

}

Q5b
SELECT ?x ?y WHERE {

?x :name ?y .

}

Q6a
SELECT ?z WHERE {

?x a :Department .

?y a :University .

?x ?z ?y .

}
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Q6b
SELECT ?z WHERE {

?x a :Faculty .

?y a :University .

?x ?z ?y .

}

Q6c
SELECT ?z WHERE {

?x ?z ?y .

}

Q7a
SELECT ?x ?y ?z ?t ?s ?ag ?sx ?email

?dept ?course WHERE

{

?x a :Student .

?x :name ?y .

?x :nickName ?z .

?x :telephone ?t .

?x :ssn ?s .

?x :age ?ag .

?x :sex ?sx .

?x :emailAddress ?email .

?x :memberOf ?dept .

?x :takesCourse ?course .

}

Q7b
SELECT ?x ?y ?z ?t ?s ?ag ?sx ?email

?dept ?course WHERE

{

?x a :Student .

?x :name ?y .

?x :nickName ?z .

?x :telephone ?t .

?x :ssn ?s .

?x :age ?ag .

?x :sex ?sx .

?x :emailAddress ?email .

?x :memberOf ?dept .

?x :takesCourse ?course .

?x :masterDegreeFrom ?master .

}

Q7c
SELECT ?x ?y ?z ?t ?s ?ag ?sx ?email

?dept ?course WHERE

{

?x a :Student .

?x :name ?y .

?x :nickName ?z .

?x :telephone ?t .

?x :sex ?sx .

?x :emailAddress ?email .

?x :memberOf ?dept .

?x :takesCourse ?course .

}

Q8a
SELECT ?x ?y ?z ?r WHERE {

?x :subOrganizationOf ?y .

?y :subOrganizationOf ?z .

?z :subOrganizationOf ?r .

?r :subOrganizationOf :Unibz .

}

Q8b
SELECT ?x ?y ?z ?r WHERE {

?x :subOrganizationOf ?y .

?y :subOrganizationOf ?z .

?z :subOrganizationOf ?r .

}

Q9a
SELECT ?x ?z WHERE {

?x a :GraduateStudent .

?y a :Department .

?x :memberOf ?y .

?y :subOrganizationOf :UniversityO .

?x :email ?z .

}

Q9b
SELECT ?x ?z WHERE {

?x a :GraduateStudent .

?y a :Department .

?x :memberOf ?y .

?y :subOrganizationOf :University1 .

?x :email ?z .

}
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Q9c
SELECT ?x ?z WHERE {

?x a :GraduateStudent .

?y a :Department .

?x :memberOf ?y .

?y :subOrganizationOf ?u .

?x :email ?z .

}

Q10a
SELECT * WHERE

{

?x a :Student .

{?x :name ?y }

UNION

{?x :nickName ?z }

UNION

{?x :telephone ?tel }

UNION

{?x :ssn ?ssn }

UNION

{?x :age ?age }

UNION

{?x :sex ?sex }

UNION

{?x :emailAddress ?email }

UNION

{?x :memberOf ?dept }

?x :takesCourse ?course .

}

Q10b
SELECT * WHERE {

?x a :Student .

{?x :name ?y }

UNION

{

?x :nickName ?z .

?x :telephone ?tel .

?x :ssn ?ssn .

?x :age ?age .

?x :sex ?sex .

?x :emailAddress ?email .

?x :memberOf ?dept .

?x :masterDegreeFrom ?master

}

?x :takesCourse ?course .

}

q11a
SELECT ?name ?email

WHERE

{

?x a :Student .

?x :name ?name .

?x :email ?email .

{

?x :takesCourse ?c .

?c :shortName "Course10" .

}

UNION

{ ?x :takesCourse ?c .

?c :shortName "Course20" .

}

UNION

{ ?x :takesCourse ?c .

?c :shortName "Course30" .

}

}

Q11b
SELECT ?name ?email

WHERE {

?x a :Student .

?x :name ?name .

?x :email ?email .

?x :takesCourse ?c1 .

?c1 :shortName "Course10" .

?x :takesCourse ?c2 .

?c2 :shortName "Course20" .

?x :takesCourse ?c .

?c :shortName "Course30" .

}

Q12a
SELECT ?x ?y WHERE

{

{

{ ?x a :UndergradStudent .

?x :takesCourse ?y }

UNION

{ ?x a :GraduateStudent .

?x :takesCourse ?y

}

}

?y a :CsCourse .

}

Q12b
SELECT ?x ?y WHERE

{

{ ?x a :UndergradStudent .

?x :takesCourse ?y .

?y a :CsCourse

}

UNION

{

?x a :GraduateStudent .

?x :takesCourse ?y

}

}
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A.1.3 UCQrdfs Test Suite
C1

{ (:GraduateStudent,rdfs:subClassOf,:Student),

(:UndergradStudent,rdfs:subClassOf,:Student)}

C2
{ (:headOf,rdfs:domain,:Professor),

(:headOf,rdfs:range,:Department)}

C3
{

(:maleHeadOf,rdfs:subPropertyOf,:headOf),

(:femaleHeadOf,rdfs:subPropertyOf,:headOf ),

(:FullProfessor,rdfs:subClassOf,:Professor),

(:headOf,rdfs:domain,:FullProfessor)

}

C4
{ (:CsCourse,rdfs:subClassOf,:Course) }

Q10a
SELECT ?x ?y WHERE

{

?x a :Professor .

?x :worksFor ?y .

?y a :Department .

}

Q10b
SELECT ?x WHERE

{

?x :headOf ?y .

}

Q10c
SELECT ?x ?y WHERE

{

?x a :Chair .

?x :worksFor ?y .

}

Q10d
SELECT ?x WHERE

{

?x a :Professor .

}

Q10e
SELECT ?x WHERE

{

?x :headOf ?y .

?x :worksFor ?y .

}

Q11a
SELECT ?x WHERE {

?x a :Professor .

}

Q11b
SELECT ?x WHERE

{

?x :maleHeadOf ?y .

}

Q11c
SELECT ?x WHERE {

?x :femaleHeadOf ?y .

}

Q11d
SELECT ?x WHERE {

?x :headOf ?y.

}

Q11e
SELECT ?x WHERE {

{ ?x :maleHeadOf ?y .}

UNION

{ ?x :femaleHeadOf ?y .}

}

Q13a
SELECT ?x ?y WHERE

{

{

{ ?x a :UndergradStudent .

?x :takesCourse ?y }

UNION

{ ?x a :GraduateStudent .

?x :takesCourse ?y

}

}

?y a :CsCourse .

}
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Q13b
SELECT ?x ?y WHERE

{

{ ?x a :UndergradStudent .

?x :takesCourse ?y .

?y a :CsCourse

}

UNION

{

?x a :GraduateStudent .

?x :takesCourse ?y

}

}

Q13c
SELECT ?x ?y WHERE

{

{

{

?x a :UndergradStudent .

?x :takesCourse ?y

}

UNION

{

?x a :GraduateStudent .

?x :takesCourse ?y

}

}

?y a :Course .

}

Q9a
SELECT ?x WHERE {

?x a :Student .

}

Q9b
SELECT ?x WHERE {

?x a :GraduateStudent .

}

Q9c
SELECT ?x WHERE {

{?x a :GraduateStudent . }

UNION

{?x a :UndergradStudent . }

}

Q9d
SELECT ?x WHERE {

?x a :Student .

?x :takesCourse ?y .

?x :telephone ?tel .

?x :sex "male" .

?y :courseName "Course10" .

}

Q9e
SELECT ?x WHERE {

?x a :GraduateStudent .

?x :takesCourse ?y .

?x :telephone ?tel .

?x :sex "male" .

?y :courseName "Course10" .

}

A.2 Cyclic Queries

Q1a
SELECT * WHERE {

?x ?r ?y .

?y ?r ?z .

?z ?r ?x .

?x :p :a .

?z :p :a .

?y :p :a .

}

Q1b
SELECT * WHERE {

?x ?r ?y .

?y ?r ?z .

?z ?r ?x .

?x :p :a .

}

Q2a
SELECT * WHERE {

?x ?r ?x .

}
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Q2b
SELECT * WHERE {

?x ?y ?z .

?z ?r ?x .

}

Q2c
SELECT * WHERE {

?x ?r ?y .

?y ?r ?x .

}

Q3a
SELECT * WHERE {

?x ?r ?y .

?x ?r ?x .

}

Q3b
SELECT * WHERE {

?x ?r ?y .

}

Q4a
SELECT * WHERE {

?x :r ?y .

?y :r ?z .

?z :r ?x .

:a :b :c .

}

Q4b
SELECT * WHERE {

?x :r ?y .

?y :r ?z .

?z :r ?x .

?x :b :c .

}

Q5a
SELECT * WHERE {

?x :blue ?y .

?y :red ?z .

?z :red ?r .

?r :red ?y .

}

Q5b
SELECT * WHERE {

?x :blue ?y .

?y :red ?z .

?z :red ?y .

?z :red ?z .

}

Q5c
SELECT * WHERE {

?x :blue ?y .

?y :red ?z .

?z :red ?y .

}

Q6a
SELECT * WHERE {

?x :r ?y .

?y :r ?z .

?z :r ?x .

?x :r ?w .

}

Q6b
SELECT * WHERE {

?x :r ?y .

?y :r ?z .

?z :r ?x .

}

Q7a
SELECT * WHERE {

?x ?r ?y .

?y ?r ?z .

?z ?r ?x .

?x ?r ?w .

}

Q7b
SELECT * WHERE {

?x ?r ?y .

?y ?r ?z .

?z ?r ?x .

}
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Résumé étendu

B.1 Motivation et objectifs

Le Web sémantique est une extension du World Wide Web (WWW) permettant de
créer et de partager du contenu compréhensible par les machines. Plus d’une décen-
nie de recherches a permis d’élaborer différents langages cadres pour le web séman-
tique comme langages définis et recommandés par le World Wide Web Consortium
(W3C) : « Resource Description Framework » (RDF) et « Ontology Web Language »
(OWL). RDF permet d’exprimer des informations structurées sur le Web sous forme
de graphes. Un document RDF est un ensemble de triplets (sujet, predicat, objet) qui
peut être représenté par un graphe orienté étiqueté (d’où le nom de graphe RDF).
L’interrogation des données du web sémantique, exprimées en RDF, se fait principale-
ment avec le langage de requêtes SPARQL. Il a suscité différentes recherche, en partic-
ulier pour l’extension du langage et pour l’optimisation de requêtes. L’interrogation de
graphes RDF avec SPARQL est réalisée par l’appariement de motifs de graphes, i.e.,
motifs de triplet reliés au moyen de jointures exprimées en utilisant plusieurs occur-
rences de la même variable. Comme les requêtes dans le web sémantique sont évaluées
sur de gigantesques graphes RDF, des optimisations sont nécessaires pour repérer les
requêtes minimales permettant d’alléger le coût de calcul lié à l’évaluation de la requête.
L’inclusion de requête joue un rôle essentiel dans l’optimisation. Une requête est incluse
dans une autre si, pour tout graphe RDF, le résultat de la première requête est inclus
dans le résultat de la seconde requête. L’inclusion de requête a été un point central de
discussion pour de nombreuses applications des bases des données et de connaissances,
comme les entrepôts de données, l’intégration de données et l’optimisation de requêtes.
Compte tenu de ces avantages, il est intéressant d’étudier l’inclusion, l’équivalence et la
satisfiabilité de requêtes SPARQL. Ces problèmes sont collectivement appelés analyse
statique de requêtes SPARQL.

Comme les problèmes d’équivalence et de satisfiabilité peuvent être réduits à l’inclusion
de requêtes, nous nous concentrons principalement sur le problème de l’inclusion.
Dans les bases de données relationnelles, l’inclusion d’union de requêtes conjonctives
a été étudiée à l’aide de l’appariement d’inclusion également connue sous le nom
d’homomorphisme de graphe et bases de données canoniques. On sait que, pour les
requêtes conjonctives, l’évaluation et l’inclusion de requêtes sont des problèmes équiv-
alents parce qu’il a été montré que l’inclusion peut être réduite à l’évaluation de re-
quêtes [Chandra & Merlin 1977]. Malheureusement, l’application de ces techniques
sur un langage de requête muni d’ontologies et d’expressions régulières n’est pas com-
plètement possible. C’est pourquoi la théorie des automates est souvent utilisée pour
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résoudre les problèmes d’inclusion dans le cas de langages de requêtes de données semi-
structurées (appelées aussi requêtes de chemin régulier) [Calvanese et al. 2000]. Ce
problème de l’inclusion a également été traité par des approches basées sur la réduc-
tion au test de satisfiabilité. Cela consiste à exprimer les requêtes dans une logique
particulière prenant en charge les fonctionnalités du langage de requêtes considéré,
puis à réduire le problème global à la satisfiabilité. Il existe un certain nombre de
travaux basés sur cette technique [Calvanese et al. 2000,Genevès et al. 2007,Calvanese
et al. 2008]. Cette approche a également inspiré cette thèse.

Plus précisément, [Genevès et al. 2007] a développé une logique d’arbre à partir
d’un fragment du µ-calcul et l’a appliqué pour encoder les requêtes XPath et effectuer
des tâches d’analyse statique. L’étude a été étendue à plusieurs autres langages à
savoir XQuery, CSS et JSON. Cette thèse étudie l’inclusion de requêtes SPARQL selon
une logique expressive appelée le µ-calcul. Compte tenu de la définition de SPARQL
comme une projection d’un graphe dans un autre il peut être encodé dans une logique
l’interprétation dont est sur un graphe. Une des logiques qui a ces caractéristiques est
le µ-calcul. C’est une logique modale avec une expressivité forte et une complexité de
calcul intéressante. Elle permet d’utiliser des opérateurs de point fixe pour effectuer
la navigation dans un graphe d’une manière globale. Par ailleurs, les procédures de
décision dans cette logique, qui sont théoriquement de complexité exponentielle, peu-
vent être mises en œuvre efficacement dans la pratique. On réduit donc le problème
d’inclusion de requêtes SPARQL en un problème de la validité en µ-calcul. Pour ce
faire, les graphes RDF sont codés comme des systèmes de transitions, qui conservent
les caractéristiques de graphes RDF, et les requêtes et les axiomes du schéma sont
codés comme des formules de µ-calcul. Ainsi, l’inclusion de requête peut être réduite
en un test de validité dans cette logique. Cela nous permet de régler le problème de
l’analyse statique des requêtes SPARQL, et notamment la satisfiabilité, l’inclusion et
l’équivalence de requêtes.

Dans la section suivante, nous présentons les principales contributions de cette
thèse.

B.1.1 Résumé des contributions

Après avoir présenté le contexte global et les idées de base derrière l’inclusion et
l’équivalence des requêtes du web sémantique, nous allons maintenant résumer le travail
présenté dans cette thèse et mettre en évidence les contributions importantes. Comme
cela devrait être clair à partir de la discussion précédente, nous mettrons l’accent sur
l’analyse statique de l’union de requêtes SPARQL (et PSPARQL) conjonctives. Les
contributions de cette thèse sont au nombre six:

• Nous fournissons les procédures de codage pour déterminer l’inclusion de l’union
de requêtes SPARQL conjonctives (respectivement Path SPARQL ou PSPARQL).

• Nous proposons une technique pour déterminer l’inclusion de l’union de requêtes
SPARQL conjonctives par rappart à un schéma de la logique de description
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ALCH. Pour ce faire, nous encodons les requêtes et les axiomes de schéma sous
forme de formules du µ-calcul, réduisant l’inclusion au test d’unsatisfiabilité.

• La troisième contribution de cette thèse est l’inclusion de requête PSPARQL.
Pour résoudre ce problème, nous encodons les requêtes PSPARQL en formula
du µ-calcul, puis nous réduisons le test d’inclusion au problème de la validité
dans le µ-calcul. La complexité de la détermination d’inclusion des requêtes
PSPARQL (également sous les axiomes de ALCH) est en double exponentielle.
Cette complexité est une borne supérieure pour le problème.

• Nous fournissons trois approches différentes pour vérifier l’inclusion de requête
SPARQL sous le régime d’implication de RDFS (‘RDFS entailment regime’).
Nous prouvons que ce problème peut être résolu en temps exponentiel. En outre,
nous appuyons nos résultats théoriques avec une mise en œuvre. Nous étudions
également le problème d’inclusion sous le régime d’implication de la semantique
directe de OWL. Pour ce faire, nous identifions des fragments décidable de lan-
guages d’ontologie et de la requête.

• La cinquième contribution: (i) montre expérimentalement que 87% des requêtes
SPARQL du monde réel sont arborescente, (ii) réduit le problème d’inclusion
arborescente à la logique modale Kn, et enfin (iii) compare expérimentalement
les performances des solveurs d’inclusion à l’aide de la méthode proposée.

• Nous présentons un premier banc de test (benchmark) pour analyser statiquement
les requêtes du web sémantique. Nous avons mis au point des suites de tests (avec
et sans les axiomes de l’ontologie) qui testent et comparent les performances et
l’exactitude des solveurs d’inclusion. En outre, le benchmark est testée sur les
outils actuellement disponibles montrant que l’approche prise et praticable

B.2 Organisation de la thèse

Chapitre 2: Preliminaires Dans ce chapitre, nous présentons les préliminaires qui
sont utilisés dans le développement de cette thèse. Nous présentons les bases du web
sémantique, suivies d’un bref aperçu des logiques modales, et enfin nous terminons ce
chapitre par une vaste revue des travaux connexes.

Chapitre 3: Inclusion de Requête SPARQL sous Schéma Ce chapitre propose
une procédure pour traduire les graphes RDF en systèmes de transition. Pour ce faire,
les graphes RDF deviennent des graphes bipartis avec deux ensembles de nœuds: les
nœuds triples et les nœuds sujet, prédicat, objet où la navigation peut être fait en
utilisant des programmes de transition. La tâche suivante pour déterminer l’inclusion
nécessite le codage des axiomes et des requêtes sous forme de formules du µ-calcul,
puis à réduire le test d’inclusion au test de validité de la logique. Nous avons prouvé
que cette réduction est correcte et complete et nécessite une quantité de temps double
exponentielle.
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Chapitre 4: Inclusion de Requête SPARQL à Chemin Dans ce chapitre, nous
prolongeons les procédures du Chapitre 3 pour étudier le problème d’inclusion de re-
quêtes PSPARQL. Nous divisons cette tâche en trois: (i) nous étudions le problème
pour les requêtes PSPARQL (équivalents aux RPQ conjonctives), (ii) ensuite nous ajou-
tons l’inverse aux chemins d’accès de PSPARQL (équivalent aux RPQ (Regular Path
Query) conjonctives bidirectionnelles) et étudions l’inclusion pour ce fragment, enfin
(iii) nous nous attaquons au problème sous les axiomes de schéma logique description.

Chapitre 5:Inclusion de Requête SPARQL sous Régime d’Implication Trois
approches pour déterminer l’inclusion des requêtes SPARQL sous régime d’implication
RDFS sont discutées dans ce chapitre en empruntant certaines procédures d’encodage
des Chapitres 3 et 4. De plus, nous montrons comment ces approches peuvent être
étendue pour le régime d’implication OWL sémantique directe.

Chapitre 6: Inclusion de Requête SPARQL Arborescente Pour les requêtes
arborescentes, qui constituent une grande partie des requêtes SPARQL du monde réel,
nous considérons une logique moins expressive que le µ-calcul pour étudier l’analyse
statique comme on le verra dans ce chapitre. Nous fournissons des résultats expéri-
mentaux pour les essais d’inclusion avec un certain nombre des requêtes de référence
(benchmark).

Chapitre 7: Un Banc de Test pour L’inclusion, L’équivalence et la Satisfia-

bilité de Requêtes Web Sémantique Dans ce chapitre, nous présentons un banc
d’essais de tests d’inclusion pour les requêtes SPARQL. Nous proposons plusieurs suites
de tests qui peuvent être utilisés pour tester les solveurs d’inclusion. En conséquence,
nous avons effectué des expériences pour tester et comparer des solveurs d’inclusion de
l’état de l’art.

Chapitre 8: Extensions Dans ce chapitre, nous présentons brièvement l’étude
d’inclusion de négations requêtes SPARQL et la sémantique de multi- ensembles.

Chapitre 9: Conclusion La contribution de cette thèse comprend l’identification
de divers fragments de requêtes du web sémantique et logiques de description de schéma
dont l’inclusion est décidable. En outre, il fournit des procédures éprouvées théorique-
ment et expérimentalement pour vérifier l’inclusion de ces fragments décidable. Au-
delà, la contribution comprend aussi un banc de test pour les solveurs d’inclusion.
Cette référence est utilisée pour tester et comparer les solveurs d’inclusion de l’état de
l’art. Dans l’ensemble, nous résumons les principaux résultats obtenus dans cette thèse
dans la Table B.1. Les résultats, présentés dans la colonne de complexité, qui sont
marqués d’une * sont nouveaux à ce travail, tandis que les autres résultats proviennent
de l’étude de l’algèbre relationnelle dans les bases de données et l’inclusion de modèle
graphique OPTIONAL étudiée dans [Letelier et al. 2012].
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Motif de graphes Langage de
schéma

Complexité d’inclusion
SP

A
R

Q
L

AND

-

NP [Chandra & Merlin 1977]

AND-UNION NP [Chandra & Merlin 1977]

OPT ΠP
2 [Letelier et al. 2012]

AND-OPT ΠP
2 [Letelier et al. 2012]

AND-UNION-OPT undecidable

MINUS 2ExpTime*

SP
A

R
Q

L

AND ALCH 2ExpTime*

AND-UNION ALCH 2ExpTime*

AND-UNION RDFS entail-
ment

ExpTime*

AND-UNION OWL entail-
ment

ExpTime*

OPT - -

AND-OPT - -

MINUS - -

P
SP

A
R

Q
L

AND

-

2ExpTime*

AND-UNION 2ExpTime*

OPT -

AND-OPT -

MINUS -

P
SP

A
R

Q
L

AND ALCH 2ExpTime*

AND-UNION ALCH 2ExpTime*

OPT - -

AND-OPT - -

MINUS - -

Table B.1: Sommaire des résultats sur l’inclusion des requêtes SPARQL et PSPARQL.

Perspectives Résoudre le problème d’inclusion pour chaque fragment possible de
SPARQL (respectivement PSPARQL) et langage de schéma (SHIQ, DL-Lite, SHOI,
SHOIN (D), SROI) est un prolongement possible de cette thèse. Ce travail pose les
fondements théoriques et expérimentales, fournit les méthodes simplement extensibles
et applicables, par exemple, la référence en matière d’inclusion est conçu en ce qui
concerne l’état actuel de l’art, donc il a besoin d’évoluer avec les solveurs d’inclusion.

Dans la Table B.1 sont montrés certains problèmes ouverts, ceux marquées avec un
symbole -.
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