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Notations

Here are gathered together the different notations and major acronyms used all

along the document.

S geometric surface of a B-Rep model supporting a face F

Σ geometric curve of a B-Rep model supporting an edge E

P geometric point of a B-Rep model supporting a vertex V

F topological face in a hypergraph describing a B-Rep model

(can be used to designate face of MMAX or MI)

E topological edge in a hypergraph describing a B-Rep model

(can be used to designate edge of MMAX or MI)

V topological vertex in a hypergraph describing a B-Rep model

Γ loop bounding a face F

N node in a hypergraph

A arc in a hypergraph

R rank of a node or an arc in a hypergraph

r s entity set

rFΩVi
s faces set surrounding vertex VirF homologous face of F

MI B-Rep CAD model input from a STEP file

MMI Shape as MI after maximal faces generation

MMAX Shape as MI describing with maximal edges and faces

P Plane

Cy Cylinder

Co Cone

Sp Sphere

To Torus

CSP Candidate symmetry plane

CSA Candidate symmetry axis

GSP Global symmetry plane

GSA Global symmetry axis

BS-CSP Bisector CSP

LB-CSP Loop bisector CSP

LS-CSP Loop symmetry CSP

O-CSP Orthogonal CSP

SS-CSP Surface symmetry CSP
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Introduction

Digital Product Development (DPD) is a digital platform of traditional Product

Development Processes (PDPs). Under the help of more powerful computers, DPD

is more efficient and more accurate. A digital product document is easy to use for

knowledge management and product management. In this case, recently, with the pro-

gressing of the computer technology and the needs of Product Lifecycle Management

(PLM), DPD has been in rapid development and wide use.

Whatever the top-down or bottom-up design, it always needs the processes of dig-

ital model generation, model analysis and model modification (see Figure 1). And

these processes should normally be repeated several times. As in the DPD, the dig-

ital model is translated and modified over time. A good digital model should stay

convenient for the whole development and production processes.

Figure 1: Bottom-up and top-down design [60].

Whether in natural objects or man made products, symmetry is ubiquitous. Sym-

metry properties of components or products or, in a larger extent shapes, have many

applications. Symmetry information has been used for human face recognition [56]

[55], 3D model storage and retrieval [43]. In a PDP, using symmetries can help sim-

3
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plifying a structure subjected to a FEA or retrieving similar models from a database.

Also, symmetry properties can be useful when modifying an object or a product to

characterize some of its shape features. Manufacturing operations and tool path tra-

jectories could take advantage of symmetries in an object, e.g. to define parting planes

in stamping or molding processes. Also, shape theory strongly relies on symmetry to

analyze them and connect with a generative process [34].

Generally, some symmetry information can be attached to a component such as

mirror functions, copy operations with respect to a plane and pattern operations when

a designer models an object. However, if these operations lead to symmetries, they are

embedded in the object related to a specific design software but they are not explicit.

Hence, it is difficult to take advantage of them. Anyhow, not all the symmetries

are available because the designer can generate symmetries with standard extrude or

pocket operations. Here, the purpose is to make explicit the symmetry properties of

an object, whatever the modeling operators used during its design process.

Otherwise, not all the objects are absolutely and globally symmetric. Approximate

symmetry is more general. During the numerous analyses in a PDP, such as FEA, the

details which makes asymmetry may not be important, but create problems. Based

on the symmetry analysis, highlighting asymmetries of a component is useful for its

simplification and/or modifications. On the other hand, for completely asymmetric

models, the partial symmetry is also very useful for the same reasons. If the model is

asymmetric and the asymmetric area is not a detail, detecting the partial symmetry

is also interesting.

Nowadays, there are some researches related to symmetry detection based on dif-

ferent kinds of digital models. However, these researches are weak on calculation

complexity and accuracy. Also, they cannot locate asymmetry nor detect partial

symmetries. So, CAD softwares don’t contain a symmetry analysis function.

The considerations above support the main motivation of the present work. We

propose an algorithm to generate symmetry planes of 3D models using the B-Rep

model of CAD volumes. Design processes of volume models strongly rely on extrusion

and revolution primitives from sketches containing essentially straight line segments

and circular arcs. Hence, the boundary surfaces considered are planes, cylinders,

cones, tori and spheres. Global geometry properties help characterizing the symmetry

planes that can initiate the global symmetry planes of the object. The intersection

curves of these reference surfaces provide strong properties to characterize possible

global symmetry planes or a global symmetry axis of the object. Then, the algorithm

starts from analyzing the symmetry properties of the faces followed by the intersection

curves between them. Subsequently, the candidate symmetry planes set up contains

all the possible global symmetry planes. Finally, the properties of neighboring surfaces

and the use of intrinsic parameters of surfaces help determining robustly the global

symmetry planes, whether there is a finite number or an infinite number (axisymme-
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try) that produces a global symmetry axis.

The manuscript structure is as follows:

• Chapter 1: gives an introduction about the applications of symmetry prop-

erties during a PDP and the definition about Reflective Symmetry. Using

illustrations of symmetry detections, different approaches valid on different for-

mats of digital models are reviewed: point sets models, mesh models and B-Rep

models. Some of their limitations are highlighted and analyzed;

• Chapter 2: proposes the hypotheses of our symmetry analysis approach. It

is valid for 2-manifold B-Rep models and their surface is restricted to the com-

bination of the five reference surfaces: plane, cylinder, cone, sphere and torus.

Each face and edge of the object boundary is regarded as a infinite point set and

the proposed approach concentrates on the symmetry properties of these point

sets and their extension to the whole object. Globally, the symmetry analysis

appears as a divide and conquer process starting from a neutral representation

of a B-Rep model;

• Chapter 3: presents an analysis of the structure of the STEP format, a neutral

B-Rep model representation. It is an ISO standard for model transformation

widely used as digital model format for all CAD softwares. The five reference

surfaces are directly accessible in the STEP format, which give enough support

for the symmetry detection process. Their intrinsic parameters are the only

parameters used during the symmetry anamysis;

• Chapter 4: introduces the model preparation process that is needed to pro-

duce a boundary decomposition independent from any modeling process and

that must be compatible with the symmetry analysis. It appears that a data

structure based on hypergraphs is needed to meet these requirements. As a

graph representation, it has graph operators which are convenient for element

merging and splitting and can be used to produce a boundary decomposition

into maximal faces and edges. It is created from a STEP datastructure and

keeps a link with the parameters of this structure. A sub-graph named Dual

Graph is also introduced. Hypergraphs support the whole symmetry detection

algorithm;

• Chapter 5: describes the symmetry properties attached to faces and edges of a

B-Rep model. These faces and edges being regarded as infinite point sets. The

corresponding symmetry properties produce Candidate Symmetry Planes. It is

the divide phase of the symmetry analysis. CSPs are generated solely from the

basic symmetry properties of the five reference surfaces. There are categories of

CSPs. The Orthogonal CSP (O-CSP) is orthogonal to an edge and created by

the two neighboring faces. The Loop Bisector CSP (LB-CSP) is attached to
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a vertex and reflects a symmetry of its two adjacent edges. It is a bisector plane

of a loop constrained by its two neighboring faces. The Loop Symmetry CSP

(LS-CSP) is the symmetry information within a face containing multiple loops.

The Bisector CSP (BS-CSP) coincides with an edge contained in a bisector

plane produced by its adjacent faces. The O-CSP evolves into a Candidate

Symmetry Axis (CSA) when the intersection between two defines an infinite

number of symmetry planes;

• Chapter 6: introduces the conquer phase of the symmetry analysis. It is

founded on two levels of propagation. In a first place, the symmetric area of a

CSP propagates to cover the largest possible area of the object boundary. This

process generates CSP chains. In a second place, the propagation expands over

the boundary of the object on both sides of each CSP chain to cover the whole

boundary. If so, a global symmetry plane or a global symmetry axis is obtained.

The overall algorithmic complexity of the divide and conquer process appears

as mostly linear with respect to faces, edges and vertices of the model. This

process produces also local symmetry information. Most of the symmetry and

asymmetry over the object can be obtained within the same process;

• Chapter 7: gives some illustrations of the symmetry analysis and its divide and

conquer algorithm. The efficiency of the algorithm is analyzed. The analysis

shows clearly the areas of symmetry and asymmetry. The use of symmetry

analysis for model modification or simplification is also highlighted.

• Chapter 8: discusses the advantage and drawbacks of the approach. A synthe-

sis of the proposed approach is also given. Then, perspectives are also argued.



Chapter 1

Applications of symmetry

properties and related researches

about symmetry detection

This chapter describes the context of the manuscript, investigating the application of

symmetry properties during a product development process. For different product de-

velopment processes need different digital models, they are reviewed with respect to

symmetry properties extraction. Under the reflective symmetry definition, there are

some researches about symmetry detection based on different input models. This chap-

ter analyses these methods. Most of the researches focus on enumerative input models,

their limitations relate to their detailed representations and the high computational

complexity to extract symmetry information. B-Rep model input for symmetry detec-

tion is also addressed. It has the advantage of containing all the details of a model but

faces limitations regarding the recognition of boundary surfaces and current approaches

about symmetry detection mainly rely on heuristics.

1.1 Applications of symmetry in a product development

process and in the large

The product development process (PDP) deals with all the stages from design

to manufacturing, assembly, maintenance aspects of mechanical components. In the

context of a PDP, symmetries can be used to simplify the computational domain of

a shape subjected to structural analysis, such as Finite Element Analysis (FEA). In

another context of shape modifications, symmetry properties can be useful to modify

an object or a product while maintaining the symmetry of some of its form features.

In the context of a manufacturing process preparation, manufacturing operations and

tool path trajectories could take advantage of symmetries in an object, e.g. to define

parting planes in stamping or molding processes. Also, shape theory strongly relies

on symmetry to analyze them and connect with a generative process [34].

When a designer uses a CAD modeler to create a 3D shape representation for a

manufactured product, some symmetry information can create some local symmetries
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in a shape such as mirror operations, pattern copy operations, revolution of sketches

(axisymmetry). However, if these operations lead to shape construction features that

are symmetric (see Figure 1.10), these construction features are embedded in the ob-

ject but they are not explicit, hence it is difficult to take advantage of them. Anyhow,

not all the symmetries are available because the designer can generate symmetries with

standard extrude or pocket operations. In the context of this manuscript, the pur-

pose is to make explicit the symmetry properties of an object, whatever the modeling

operators used during its design process.

In FEA, the shape of parts has to be adapted by the mechanical engineer to

take into account the mechanical behavior hypotheses of the analysis. The shape

adaptation procedure combines the following operations:

• The removal of form features that are considered as details because they can be

removed while respecting the targeted accuracy of the mechanical simulation;

• The cut of the shape along some of its symmetry planes that are relevant for

the analysis (see Figure 1.1). A problem is symmetric according to a reflec-

tive symmetry plane P when all the following requirements are met: the shape

is symmetric with respect to P , the boundary conditions are symmetric with

respect to P ;

• The transformation of a 3D simulation problem that features a symmetry axis

into a 2D problem that is revolved around this axis.

When the shape is symmetric, while the boundary conditions of the analysis don’t

share the same symmetry properties, the mesh generation process can take advantage

of the shape symmetry as follows:

• The mesh of a shape featuring one or more reflective symmetry planes can be

generated on one of the symmetry planes, and copied by reflective symmetry

operations to complete the mesh. The main advantage of this approach is a

reduction of the time required to mesh the part;

• The mesh of a shape featuring a symmetry axis can be generated by the revolu-

tion of the planar section of the mesh around the symmetry axis. The quality of

mesh element shapes is optimal while the time of the mesh generation process

is drastically reduced (see Figure 1.2).

Many research works focused on the application of symmetry properties of shapes

in other contexts than a PDP. Even though they were devoted to other contexts, some

of them could be relevant in a PDP context. Many works [13][55][56] focused on the

detection of human face features and structuring features in photographs using gen-

eralized symmetry properties. Other works focused on the semantic enrichment and
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Figure 1.1: From a CAD model to its symmetric partial mesh model.

Figure 1.2: A hexahedral mesh generated by the revolution of the 2D section around

the symmetry axis.

digital storage of 3D models by generating a hierarchical structure of symmetries on

mesh models [62], facilitating the compression and indexing of symmetric 3D mod-

els for storage and retrieval (see Figure 1.4). In the context of a PDP, component

search and retrieval is also of interest to exploit large industrial databases, e.g. in the

aeronautic and automotive industries. In Mitra’s [44] work, an algorithm based on

curvature invariants under symmetry transformations was proposed to detect partial

reflective symmetries, rotational symmetries, and scalings of local features in 3D tri-

angulated models (see Figure 1.3). These properties are also useful in the engineering

context even though the challenge is to process CAD models rather than meshes. In

biomedicine, many biological structures are symmetric or approximately symmetric.

Symmetry detection can cover symmetry/asymmetry information from regions of the

head and explore its implication with respect to positive clinical findings [37].
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Figure 1.3: The compression of geometric model using its symmetry properties [44].

Symmetry is an intrinsic property of the nature or man made object. The sym-

metry detection and symmetry modelling operations are ubiquitous in product design,

shape analysis, shape recognition, similarity matching, synthesis and reconstruction[54].

Symmetry can be broken by some anomaly or abnormal behavior[53]. In most con-

figurations, symmetry is not strict and accurate[38]. The self-similarity is the most

general case. During the simulation, modifying the asymmetry part to get a sym-

metric model is often required to simplify the problem. Therefore, the detection of

approximative symmetries is important in numerous practical applications, including

PDP, crystallography, medical imaging, face recognition, 3D model storage, semantic

enrichment of 3D models, to mention a few[52].
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Figure 1.4: Hierarchical structure providing an organization of a 3D model [62].

1.2 Symmetry basics and PDP requirements

Formally, symmetry is an isometric property between sets of Euclidean groups of

2D or 3D shapes in Euclidean space. In IR2, reflection and rotation are two types of

symmetries which characterize axes and points as symmetry entities, (see Figure 1.5).

Reflective symmetry can be further refined with self reflective symmetry as a specific

subset of reflective symmetries. In IR3, reflective, axial, and spherical symmetries are

three types of symmetries which characterize planes, axes, and points as symmetry

entities (see Figure 1.6).

(a) (b) (c) (d)

Figure 1.5: Reflective and rotational symmetry examples in 2D: (a) self reflective sym-

metry, (b) reflective symmetry of two contours with respect to an axis, (c) rotational

symmetry, (d) rotational symmetry of two contours with respect to a point.
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(a) (b) (c)

Figure 1.6: Reflective and rotational symmetry examples in 3D: (a) reflective and self

reflective symmetry, (b) axial symmetry, (c) spherical symmetry.

It has to be noticed that Figures 1.5c, 1.6b and c illustrate configurations where

there are infinite numbers of reflective symmetry entities, i.e. axes in 2D, planes in

3D.

During a PDP, the simulation behavior of components is increasingly important

and symmetry properties of components are always used to simplify the domain of

study when the boundary conditions applied on a component satisfy the same symme-

try properties. Axisymmetric configurations are also of particular interest to generate

even simpler simulation models but they rely on reflective symmetry configurations

where there are an infinite number of symmetry planes (see Figure 1.6b). Similarly,

when designing an object, symmetry properties are difficult to incorporate because

the designer is not always able to plan the symmetry operators needed during an

object modeling process. Additionally, shape modifications required during a PDP

can generate symmetries where they were none. Detecting symmetries can be helpful

when dimensioning, tolerancing either for functional or manufacturing purposes even

though their modeling process does not contain this symmetry information.

Summarizing the above observations, reflective and rotational symmetries are the

main categories of symmetries useful for some PDP stages, i.e. central symmetry [44]

does not show up. Reflective symmetry appears as prominent to generate simulation

models and a strong contributor to other models used in a PDP. Rotational symmetry

is useful to set up periodic boundary conditions in simulations but is much less frequent

than reflective symmetry. As a first step, this research focuses on reflective symmetry.

Definition 1 : Self reflective symmetry

Given an arbitrary point X P IR3 on a reference surface F and a symmetry plane

Π, there exists a unique point XF such that XF belongs to F and satisfies:

ÝÝÝÑ
MXF � �

ÝÝÑ
MX � �‖

ÝÝÝÑ
MXF ‖ � ~n (1.1)
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(a) (b)

Figure 1.7: Illustration of symmetry definitions with respect to a plane Π: (a) the self

symmetry; (b) the reflective symmetry of two surfaces.

where F denotes a bounded reference surface, M is the normal projection of X

on Π , ~n is the normal to X at M . XF is called the image of F , i.e. the symmetric

point of X in F . Conversely, if any point X of F has a symmetric point XF lying in

F through Π, then Π is a symmetry plane for F .

For two surfaces, the definition is similar.

Definition 2 : Reflective symmetry of two surfaces with respect to a plane Π

Let two bounded surfaces be F1 and F2 then, for every point XF1
P F1, XF1

� IR3

and a symmetry plane Π, there exists a unique point XF2
such that XF2

P F2 and a

point M P Π satisfying:

ÝÝÝÝÑ
MXF2

� �
ÝÝÝÝÑ
MXF1

� �‖
ÝÝÝÝÑ
MXF2

‖ � ~n (1.2)

where F1 and F2 denote two reference surfaces each one bounded by one loop at

least, M is the normal projection of XF1
on Π, ~n is the normal to M going through

XF1
. XF2

is called the image of XF1
on F2, i.e. the symmetric point of XF1

in F2.

Because this property holds for the infinite point set defined by F1, F2 is called the

image of F1. Conversely, if any point XF1
P F1 has a symmetric point XF2

lying in

F2 through Π, then Π is a symmetry plane for F1 and F2. Similarly, this definition

applies also to space curves, too. These two definitions of reflective symmetry support

this research.



14 Chapter 1

1.3 Digital model representations

In this section, we introduce the major categories of geometric models that are

used for the description of components in a PDP, as well as other models that are

used by algorithms to identify the symmetry properties. We highlight some geometric

transformations that are applied on the models of manufactured products to simulate

their mechanical behavior with FEA or used to convert them into discrete geometric

models such as point sets, voxelizations and meshes.

1.3.1 Boundary Representation (B-Rep) models

B-Rep models are widespread in current commercial CAD modelers to represent

volume objects, otherwise called solids. B-Rep models represent solids by describing

their boundary surface with faces, edges, and vertices that separate the interior domain

from the exterior of the solid.

This model combines two types of entities:

• Topological entities, which describe how geometric entities are connected in

the solid model (solids, face, edge, vertex, co-face, co-edge, shell, loop);

• Geometric entities, which define surfaces (cylinder, sphere, cone, torus, plane,

NURBS), curves (line, circle, ellipse, parabola, NURBS), and points.

����������	�ABCB	�AD

E��D�	AB��	����	��FB	�A
B���D�BCA��AB��	��FB	�A
��D�A���C���	��FB	�A
�

Figure 1.8: Right-hand rule of co-edges in B-Rep models.

A solid is bounded by a set of closed surfaces called shells and organized as follows:
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• Each shell is a connex set of co-faces (faces oriented with the normal towards

the exterior of the solid);

• Each co-face is a face oriented with its normal towards the exterior of the solid;

• Each face is a surface patch whose boundary is defined by a set of loops;

• Each loop is a cycle of co-edges representing a boundary of a face;

• Each co-edge is an oriented edge defining a part of the boundary of a face.

As shown in Figure 1.8, co-edges are oriented such that ~t (tangent vector) and
~N (face normal) give ~v (direction orthogonal to the co-edge and towards the

interior side of the face): ~v � ~N ^ ~t;

• Each edge is the portion of a curve whose bounds are set by two vertices;

• Each vertex is a point bounding one or several edges.

Here, the focus is set on B-Rep CAD models that contain only canonical surfaces

such as cylinders, cones, planes, tori, spheres, and free-form surfaces of NURBS type.

Some conditions must hold to ensure that a B-Rep model represents a valid solid.

These conditions summarize:

• Faces may intersect only at common edges;

• Each edge is shared by exactly two faces;

• Faces around each vertex can be arranged in a cyclical sequence such that each

consecutive pair shares an edge incident to that vertex.

1.3.2 Feature based modeling

While B-Rep models enable the accurate representation of complex shapes, they

do not convey semantic information about the object (a B-Rep model only represents

geometric and topological information). Manufactured parts are designed from primi-

tive shapes having a functional meaning such as holes, slots, etc. To incorporate more

meaning, B-Rep models have been enriched by attaching ‘feature’ entities to groups

of topological entities. Features aim at representing form aspects or manufacturing

aspects or other attributes attached to sub domains that constitute the shape of ob-

jects. Initially, features where restricted to manufacturing entities (holes, chamfers,

etc.). CAD modelers adopted generic and application-independent features to create

B-Rep objects through a construction tree approach.

In the feature based modeling approach, the designer combines form features avail-

able in a reference library (see Figure 1.9):
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• reference geometric entities: planes, axis, points;

• 2D sketching primitives: creation of planar sketches composed of free-form

curves, points, axes, lines, circles, etc;

• extrusion/revolution of 2D sketches to add/remove material: 2D

sketches representing a plane bounded by a set of contours are swept along an

axis (extrusion) or a circle (revolution) to add or remove material to the object;

• surface operators: edge filleting operation is a kind of surface blend operation

that replaces sharp edges by curved surfaces having a constant radius of curva-

ture. Surface filling operations fill a hole in a surface with a patch that can be

tangent up to curvature continuous with the contours;

• symmetry operators (see Figure 1.10): 3D features can be duplicated using a

symmetry plane, a linear pattern monitored by a direction and an offset distance,

a circular pattern monitored by an arc of circle and an angle.

The parametric representation of features enables changes in the dimensions, ge-

ometric constraints and attributes of features. Because the geometric constraints of

each step of a feature construction declared in a CAD modeler is defined with respect

to the pre-existing entities of this B-Rep model, each feature depends upon its parent

features that represent the construction steps of the entities underlying the geometric

constraints of the current construction step. The consistency of the model is difficult

to maintain when modification occur on features having many children attached to

them.

1.3.3 Discrete and faceted geometric models used for geometric anal-
ysis

Discrete and faceted geometric models contrast with continuous geometric models

such as CAD B-Rep models by the fact that they represent solids with a finite set of

elements (for example: points, grid cells, triangles).

Point sets models represent a set of points in IR3, obtained by sampling the

surface of a digital or a real object:

• Points can be generated randomly on the surface of B-Rep models or triangu-

lations, until the stopping criterion is met (for example, the point count or the

target distance between neighbors) (see Figure 1.11);

• Points can be obtained by scanning real objects with a 3D scanner like coordinate

measuring machines (CMM) or laser scanners.
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Sketch

Construction tree combining design features

BREP Representation of the part

Blend

Figure 1.9: Example of a feature based modeling process in CATIA V5 CAD modeler.

Voxel models represent solids using a regular grid where each cell is assigned a

boolean information: full or empty (see Figure 1.12).

A mesh model is a collection of vertices, edges, and faces that defines the shape

of a polyhedron enclosing a volume (see Figure 1.13). Faces can be triangles, quadri-

laterals or other simple convex polygons. Faces are bounded by edges and each edge

is bounded by two vertices. Consequently, it is a category of B-Rep model where faces

are planar.

FEA uses surface meshes to simulate the behavior of shells or plates, and volume

meshes composed of hexahedrons or tetrahedrons to simulate the behavior of solids.
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Extrusion A

Extrusion A

+ Extrusion B

Extrusion A

+ Extrusion B

+ Symmetry/P of Extrusion B

Extrusion A

+ Extrusion B

+ Symmetry/P of Extrusion A

Extrusion A

+ Extrusion B

+ Symmetry/P of 

    Extrusions A and B

(a)

(b)

(c)

P’

P’

P’

P

P

P

Figure 1.10: Example of the application of a symmetry feature in CATIA V5 CAD

modeler: (a) and (b) the model is partially symmetric; (c) the model is globally

symmetric. None of the feature based models represent explicitly the symmetry plane

P’.

Figure 1.11: An example of point set model [10].
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Figure 1.12: An example of voxel model [16].

Figure 1.13: An example of mesh model.
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1.4 Symmetry detection methods

As illustrated through the previous sections, the symmetry properties of a shape

find many applications during a PDP as well as in the large. With the development of

computer aided geometric modeling and CAD technology, the research about symme-

try detection and analysis is still an up to date topic. So, symmetry detection focuses

on digital models and the corresponding algorithms have to adapt to the geometric

and topological properties of these models as well as to their data structures. Conse-

quently, for different categories of digital models, the symmetry detection and analysis

algorithms differ. It is the purpose of this section to address some of them.

1.4.1 Symmetry detection applied to enumerative models

Related to data storage techniques, early research about symmetry detection

started from datasets of 2D points [4]. The input data are point located on con-

tours created by geometric entities such as: segments, circles, points, etc. Regarding

the adjacency relationships between these entities, they help naming these relations

with respect to geometric properties and transforming them into a string. Then, clos-

ing a chain derived from these strings to form a loop characterizes the shape symmetry

properties. With a similar algorithm, Wolter [64] extended the method to polygons

and polyhedrons. Within his method, the points of the objects are structured into

cycles, then each cycle is encoded into a string of symbols. At the end, the algorithm

tests the symmetry of the encoded strings.

Figure 1.14: The projection of a 3D point on a unit sphere producing a point V with

two identifiers at V : the distance between the 3D point and the centroid; the angle

φi on the sphere between V and its neighbors: Vi, V , Vi�1.

Later, some reports have addressed approximate symmetry detection for 3D do-
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mains, where input data were 3D point sets. The symmetry information is derived

from a bipartite graph comparison method. Alt [3] reported an algorithm that esti-

mates the congruency of two point sets A and B, their similarity index and symmetry

properties. This algorithm was projecting 3D points on a unit sphere whose origin is

located at the centroid of each point set, each point V thus obtained was assigned a

distance and an angle parameter (see Figure 1.14). All the points V are vertices of

convex hulls representing A and B.

Then, considering each convex hull as a labeled planar graph, the label of each

point V containing two identifiers (see Figure 1.14), the algorithm could find out

whether or not the two input point sets A and B were isomorphic. Then, the authors

gave some criteria for grouping the vertices in order to detect symmetry or congruence

structures.

Iwanowski [27] showed a reduction algorithm based on a ǫ-approximative index to

group the point set as previous work to the symmetry detection in order to reduce

the cost of the approximate symmetry detection. The approximate symmetry analysis

being an NP-hard problem. Later, Brass [9] made some optimization but the basic

theory has not changed. The complexity of the method for symmetry detection is

n log n.

The Hausdorff distance is widely used as a measure of shape similarity in compu-

tational geometry [66][67][50][21][46] since it is commutative.

Given two sets of points X and Y , the definition of the Hausdorff distance is:

dHpX,Y q � maxtsup
xPX

inf
yPY

dpx, yq, sup
yPY

inf
xPX

dpy, xqu (1.3)

where sup represents the superior bound and inf the inferior bound of the values

(see Figure 1.15). If the Hausdorff distance is 0, the two point sets are congruent.

Hausdorff distance measurement has been used to determine the degree to which

two shapes differ from one another in pattern recognition and machine vision [25][24][12].

The definition shows that shape matching algorithms can evaluate efficiently two point

sets with a tolerance control but they give results that are still approximations with

respect to real objects. In addition, these results are obtained at expensive compu-

tational costs. To determine the congruence between two planar point sets of size n

using a Hausdorff distance criterion, the computational cost in time is Opn5q [31]. In
Krishnan’s work, leveraged FFT-based techniques for string matching were combined

with Hausdorff distance methods to compute the symmetry and approximate sym-

metry of point sets. Here, string matching can be performed in a time complexity of

s log s where s is the total length of the string [31] even though the connection be-

tween string length and n is harder to establish. Complementary, the memory storage

complexity of the strings can be yielding an overall bound of Opn3 log nq but there is
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Figure 1.15: The Hausdorff distance between X and Y [63].

the mandatory price for FFT computations to be taken into account.

Whether the Hausdorff distance or the methods mentioned before form the basis of

symmetry detection algorithms, point sets symmetry detection has limitations. The

first one is that the comparison process needs two point sets as input. There, many

informations and details are lost compared to the B-Rep CAD model of a component

or the physical object. Then, the algorithm results in an approximate symmetry

detection. In the context of shape recognition, approximate symmetry properties

are expected, but with applications in the field of mechanical engineering and PDPs,

approximate results don’t meet the accuracy requirements of the simulations taking

place in that context. To be useful, symmetry properties must be produced at the

accuracy level of B-Rep CADmodels and in interactive time. A solution to improve the

accuracy is to increase the density of sampled points over the digital model. A second

limitation shows up that is computational complexity which becomes prohibitive on

large point sets. Indeed, these two limitations interact with each other.

Subsequently, B-Rep models are considered as input. Mills et al. [41][33] tried to

use key vertices instead of point sets model. This operation can efficiently reduce the

number of points (see Figure 1.16b). Next, the author replaces certain groups of points

by their centroid to reduce further the amount of points to be processed for symmetry

detection. Then, the algorithm finds the approximate symmetries of the collection of

points remaining after this grouping. The time performance of the algorithm in the

worst case is bounded by Opn3.5 log4 nq where n is the number of key points. Due to

the reduced point set extracted, the extracted symmetries lack of robustness.

Ming Li et al. [35][36] proposed a similar symmetry detection method. The original

input data is a B-Rep model and it is translated into a discrete model as a point set.



Symmetry detection methods 23

(a) (b) (c)

Figure 1.16: The major steps of Mills operation to extract key vertices [33]: (a) B-Rep

model input; (b) key points replacing the B-Rep model; (c) key points after a grouping

operation.

The point set model is the same as the one based on key points as defined by Mills

(see Figure 1.17). Then, the method looks for symmetric cycles. The time complexity

is evaluated and divided into two parts. Incomplete cycles are determined in Opp� sq
time for a point set of size p and s initial seed sets. Then, the clustering of c cycles

takes Opc2 log cq.

Whatever Mills’ model or Ming Li’s point set models derived from a B-Rep CAD

model, their purpose is to reduce the boundary of the model that define an infinite

point set into a finite one to describe the initial model. The B-Rep model gives them a

good opportunity to translate a smooth model into a discrete one. But when ignoring

the curves and surfaces informations, the discrete point model looses important sym-

metry information, e.g. infinite numbers of symmetry planes forming axisymmetry

is not available and the positions of symmetry planes become approximate. In this

framework, many different shapes can have the same discrete point sample. Again,

these algorithms are only for approximate symmetry detection. For example, in Fig-

ure 1.16, the cube misses one corner, after grouping the key points, thus removing

the shape detail. In the engineering context, such a shape detail, if removed, must

be monitored by an engineering criterion, e.g. size of finite elements, rather than a

sampling criterion that may not be accessible to the engineer.

Berner’s algorithm of symmetry detection expects a point sampled representation

of the manifold model used as input [5][6][7][8]. The input model is also a point set

model and the first step is to translate the model into a point sampled model, which

is the same as Ming Li’s input model. Then, the algorithm creates segments linking

adjacent points sampled on the surface of the model, which are named for use during

a feature detection process. This produces a feature graph with edges and points:

G � pν, ǫq. The task is now to find a subset of graph G: UG � G, and a set of discrete
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(a) (b)

Figure 1.17: Li Ming’s model translation: (a) B-Rep model input; (b) point sets model

derived from the B-Rep one [36].

mapping functions, fGpiq, that map vertices and edges of this subset to corresponding

subgraphs U
piq
G that have approximately of the same structure [5] and characterize

symmetry properties. The subgraph matching algorithm starts with a random edge

and its neighborhood. Within the graph G, it looks for matching a graph under

graph structure criteria: edge length, geodesic distances, intrinsic angles and geodesic

curvature. Regarding the running time discussion, because the algorithm is based on

a sampled point model, the execution time depends on the details of the model that

are preserved through the sampling process. Under this possible model adjustment,

the amount data for the matching process can be kept low to reduce the time spend.

But, as said by the author, the most expensive processes are the feature detection

step and sub graph alignment [5]. Within this work, the author enhanced the point

set with features as a way to get an intuition of typical results. However, it is not

getting significantly more robust than the previous approaches.

As observed through the above analysis, symmetry detection for point set models

as input addresses a wide variety of algorithms. Because point set models, even if they

are derived from a B-Rep CAD model cannot represent a volume shape accurately, the

symmetry detection algorithms proposed can only find approximate results. This is

not suitable for the symmetry applications that were mentioned previously in a PDP

or engineering contexts.

Minovic et al. detected symmetry properties using an octree representation [42].

The octree decomposition of the object is set up using some intrinsic parameters of the

volume input: the reference frame coincides with its center of gravity and the reference
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axes are aligned with its principal inertia axes. Each octree cell can have three states:

inside of the object, outside the object and intersect the object boundary. Then, the

intersecting cell is divided into the next octree level. The symmetry evaluation is

obtained by analyzing the mass of octree cells recursively: two cells having the same

mass and symmetric inertia axes represent a symmetry property (see Figure 1.18).

(a) (b)

Figure 1.18: The octree method for symmetry detection [42]: (a) a B-Rep type volume

used as input, (b) a section of the octree decomposition used to extract symmetry

properties of the volume.

In the research of Zabrodsky [70], he introduced a concept of Symmetry Distance

(SD) and a symmetry transform operation. This operation transforms the vertices on

a 2D figure to a location where the whole figure is symmetric. SD is a quantifier of

the minimum ‘effort’ required to transform a given shape into a symmetric shape. Its

general definition enables the evaluation of both distance and rotational angle required

to transform an asymmetric figure into a symmetric one. The SD is attached to the

center of gravity of the figure. SD is obtained by measuring the moving distance of each

vertex and defined as the minimum mean squared distance over all the displacements

of these vertices. If the SD is 0, the initial figure is already symmetric (see Figure 1.19).

The proposed work was limited to 2D figures or contours even though the SD can be

applied to higher dimensions. Also, he noticed that the proposed method is valid for

continuous features, but there is a need to discretize the input figure first and then,

to use this sampled representation as basis to compute the SD (see Figure 1.20).

Podolak et al. extended the SD measurement algorithm to 3D shapes with a planar

reflective symmetry transform. The input model is now 3D meshes. The proposed

transform extends previous work on global symmetries with respect to the center
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Figure 1.19: Symmetry distance measurement algorithm [70].

of gravity of an object as well as the work of Zabrodsky. Because there is a very

large number of planes which could be symmetry planes, he also provides an iterative

refinement algorithm that uses Monte Carlo sampling algorithm [51].

Mitra presented an algorithm to detect partial and approximate Euclidean sym-

metry transforms (reflections, scalings, rigid transformations) on closed triangular

meshes[43][44].

His algorithm is based on the following steps:

• Points sampling and curvature analysis: A curvature tensor is evaluated on

a set of points pi P P sampled on the triangulated surface S with the algorithm

proposed in [2] to approximate the two principal curvatures κi,1 and κi,2 and

principal directions ci,1 and ci,2;

• Points pruning: A restricted point set P 1 � P is generated by removing quasi-

umbilic points from the initial vertices, that is points pi such that |κi,1{κi,2|  
0.75. Points pruning not only reduces the complexity of the analysis, but also

removes points where the determination of principal directions is uncertain;

• Pairing: a signature of each point of P 1 is generated. This signature contains

seven values that are invariant under one or more transformations:

– The ratio of principal curvatures σ7ppiq � κi,1{κi,2 is invariant under re-

flections, scaling, and rigid transformations;

– The principal curvatures are invariants under rigid transformations: σ6ppiq �
pκi,1, κi,2q.

The signatures are stored in spatial proximity data structures (kd-tree) to iden-

tify candidate pairs for reflections, scalings, rigid transformations;
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(a) (b)

Figure 1.20: Continuous feature to discrete feature [70]: (a) the initial 2D figure

as a continuous contour, (b) the discretized contour used to evaluate the symmetry

distance.

• Clustering: point pairs computed at the previous step are used to extract sym-

metries between larger areas, i.e. groups of pairs with a similar transformation

that corresponds to symmetric areas of the model surface. The symmetry trans-

forms of each pair, noted Γi, are identified as a 7D transformation representing

one scale factor, three translation components, and three rotation components.

Groups of similar transformations are then identified in the set of transforma-

tions Γ such that a group is formed with adjacent pairs in 3D having their

transformations that are close in 7D.

The complexity of the points sampling, curvature analysis, and pruning is linear,

while the pairing and clustering processes complexity is of Opn1 logpn1qq time complex-

ity where n1 � |P 1|.

In the example showed in Figure 1.21, the model has been sampled with 100 points

(black spheres) and 500 points (yellow spheres), leading to 280 and 1262 points in Γ,

respectively.

The symmetries of large areas of the model are identified robustly, even if the

accuracy of the identified transformations is limited for identified point pairs (pairs

don’t exactly share the identified symmetry).

A strong limitation is that symmetric areas that are smaller than the distance

between points cannot be identified. Figure 1.21a shows that every window area is

sampled with less than two points, and no self-reflection symmetry is identified in

window areas in Figure 1.21d. One could easily imagine that the number of sampled
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points would drastically increase to be able to detect symmetries on small features in

the example presented above.

Finally, the algorithm could hardly be extended to support axial symmetries, that

are viewed as an infinite number of reflective symmetry planes in the approach.

Figure 1.21: Results obtained in [44] for a model of Chambord castle: (a) input model

with random surface samples drawn from a total of 2254 samples, (b) Γi points in

7D transformation space projected in 2D and associated density plots; the symme-

tries corresponding to the largest two modes are shown on the right, (c) successive

reductions by taking out symmetric patches and resulting bounding box hierarchy, (d)

advanced editing using the extracted symmetry relations.

Another similar local reflective symmetry detection algorithm was described which

uses Hough transform [10][68][69]. Hough transform is widely used in image analysis

and computer vision. The purpose of the technique is to find imperfect instances of

objects within a certain class of shapes through a voting procedure. Hough transform

is also adapted at detecting simple shapes. For example in 2D space, a line can be

described as [17]:

y � �p
cos θ

sin θ
qx� p

r

sin θ
q (1.4)

where θ and r are the reference parameters of the line. This line equation can be

rearranged as:
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r � x cos θ � y sin θ. (1.5)

(a) (b)

Figure 1.22: The Hough transform of a line: (a) is a line and points in x � y space;

(b) after Hough transform, the same line and points in the r � θ parametric space.

It means that a point px, yq in 2D space becomes a curve in the pθ, rq parametric

space and a line in 2D space becomes a point in pθ, rq parametric space (see Fig-

ure 1.22). When processing range data or point set models, Hough transform can

also be used, thus helping process 3D shapes. Similarly, the parameters of a function

defining a plane in 3D space contains two parameters p~n, dq. Each pair of points p~v,~v1q
in the point set model can define a candidate symmetry plane as:

~n �
~v1 � ~v

}~v1 � ~v}
, (1.6)

d � ~n � p
~v � ~v1

2
q. (1.7)

Finally, the planes derived from the remaining candidate pairs of points are inserted

in a 3D Hough transform where their evaluations are accumulated into bins regularly

distributed over the transform space [11]. Because the preparation phase is similar to

that of Mitra, the time complexity of this method is the same as Mitra’s, too.

Extended Gaussian Image (EGI) which was reported by Horn [23] was used for 3D

meshes symmetry detection in the paper of Sun and Sherrah [59]. EGI is a mapping

of surface normals of an object onto the unit sphere (Gaussian sphere). For computer

computation purposes, the Gaussian sphere is tessellated. The center of the Gaussian

sphere coincides with the center of gravity of the object. Then, a spherical histogram
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is generated which maps each facet of the 3D mesh to the unit sphere. Then, the

symmetry planes can be calculated using the symmetry properties of the spherical

histogram because similar symmetry properties are preserved between the 3D mesh

and its EGI. Non convex objects however, cannot be analyzed robustly with this

approach. This method can successfully detect symmetries of symmetric shapes but

with some special asymmetric shapes, the EGI mapping could be symmetric, which

reduces the robustness of the approach. Also, the accuracy of symmetry detection

depends on the tessellated sphere and original meshes.

Kazhdan et al. [28][29][30] reported another method to describe the input digital

model. The input model is a voxel grid model. A reference center is placed at the

center of gravity of the model or at the center of its bounding box. Then, the algo-

rithm uses spherical harmonic functions to represent each voxel of the model and to

characterize its symmetry properties on the sphere (see Figure 1.23). By comparing

the angle parameter of the shape descriptors, the method can detect the symmetries

of the model. With the property of the spherical harmonics function and the help of

Fourier Descriptor method, the method also can detect axisymmetry and can be used

with a multi-resolution approach.

Figure 1.23: The spherical harmonics function description [28][29] with the shape

descriptor of the object on the left and the illustration of the range of spheres attached

to the object and used to collect its symmetry properties.

Martinet in his report [39][40] used the concept of generalized moments to charac-

terize the symmetries of an object. He found that the symmetry properties of a shape

and its generalized moments of order 2p in a direction ω behave similarly. Using this

property, the symmetry detection is translated into a set of linear equations that has

to be solved. In his approach, he also uses spherical harmonics function. The model

input must be a continuous and closed shell to be able to compute the generalized

moments. It also needs that each surface be discretized so that it can be represented

by linear equations. With these constraints, mesh models are a good candidate cat-
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egory of input models. Because mesh models are closed B-Rep models, these models

can be derived from B-Rep CAD models but each surface must be discretized, which

still incorporates approximations whose effect can be difficult to master.

In all these methods, if the mesh model is effectively symmetric, the result of

symmetry detection is good too. As the introduction given at section 1.1, mesh models,

whether for engineering purposes or in the field of computer graphics, are generated

through a transformation of a shape model, often from a B-Rep CAD model. The

problem originates from the fact that mesh models are not generated with symmetry

preserving properties of their input B-Rep CAD models. As put forward by the

explanations at the beginning of this chapter, mesh models are essentially generated

for FEA purposes or other analyses in the engineering context. With asymmetric

details or even with a symmetric original B-Rep model, mesh model generation does

not always create a symmetric mesh model. That is why users need a symmetry

preserving property during mesh model generation. This observation applies also to

steps of a PDP where symmetry properties of a component or product in important.

It has also to be pointed out that approximated symmetry properties can hardly

be acceptable from a user point of view because hidden tessellation operations can

influence the result, leaving the user with an weak process where he, resp. she, cannot

rely on these properties. Such a robustness is a key property in an industrial process.

1.4.2 Symmetry detection applied to B-Rep CAD models

The symmetry detection of B-Rep CAD models has also been addressed by re-

searchers. Early on, Davis used candidate axes to detect symmetry properties of 2D

polygons [14]. Considering two adjacent segments, an axis is their angle bisector or,

considering one segment, an axis is orthogonal to this segment and located at its

middle point. In case of two separated segments, there are four possible axes. The

candidate symmetry axes are defined hierarchically and different symmetry axes levels

contain different parts of the polygon input. This approach has been also extended to

continuous curves using an average middle line so it reduces to a polygonal approach,

too. Parui detected symmetry of 2D polygons [49]. The method was considering 2D

loops as polygons. The location of segment extremities are the reference of symmetry

axes. This work however is too basic to address the shape diversity of engineering

components.

Parray-Barwick and Bowyer present a Woodwark’s Algorithm to recognize features

which supports a multi-dimensional set theoretic context [47][48]. The key point is

a template matching process. A partial shape or an existing shape is considered as

template and then using its center of gravity, length of contour or other properties, the

algorithm recognizes if the target object is the same or not. If a rotational parameter

is added, this approach could detect symmetries. Woodwark’s algorithm is devoted
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Figure 1.24: A one-dimensional model matching process in px, yq plane [47][48]. This

illustrates the principle of the matching mechanism where a dimension of the template

intersects (matches) a range of a parameter of the input model.

to feature recognition when there is a template already available (see Figure 1.24).

In a shape analysis context, how to define a template and the matching parameters

are among the major issues. The method scans every dimension defining the shape

(see Figure 1.24). With an increase in the number of dimensions, the search space

for the matching process increases too. Consequently, the matching process will take

much more time. Indeed, reducing the extent of the area where could be located a

symmetry axis (plane) is a general problem for all symmetry detection methods. As

an example, Martin summarized that for a whole object, to find an axis, the object

has to be translated so that its centroid is at the origin because the symmetry axes

pass through the origin [38].

A different approach was proposed by Kulkarni [32]. The method reduced the 3D

shape analyzed to its 2D skeleton with the help of the Medial Axis Transform. The

medial axis of a 2D (3D) object is the locus of the centers of all maximal inscribed

circles (spheres) [20]. Kulkarni’s work addressed 2D objects only. It is a complex task

to extent to 3D because the calculation of a skeleton is expensive and it is obtained

through a discretization of the object boundary, which may influence the result. In

addition, a large disruption in the skeleton can happen when the object boundary

changes a little. Therefore, symmetric elements of the object are not necessarily

represented in the skeleton [58].
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The algorithm reported by Tate is based on a B-Rep CAD model input [58][60].

Here, the boundary surface of the model is limited to five categories: plane, cylinder,

cone, sphere, and torus. The symmetry detection process is broken down into five

steps:

• Compute loop properties;

• Identify matching loops;

• Construct axes and planes of symmetry;

• Rationalize axes and planes of symmetry;

• Extract the primary symmetry axes from the resulting set.

The loop properties used are: surface type, loop type, loop area, loop centroid,

surface normal at the loop centroid and the number of edges in the loop. If all the

properties of two loops are identical, the two loops with their underlying surfaces

are considered as congruent. The candidate symmetry planes and axes are located

from the pair of loops centroids. By comparing the locations of candidate symmetry

planes and axes, finally, the primary symmetry planes or axes can be extracted. The

computational complexity of this algorithm, in the worst case scenario, is Opn4q, where
n is the number of loops of the model. It has also to be pointed out that this algorithm

requires rather complex treatments such as computing loop area and loop centroid,

which increases the computational effort.

With some model shapes, the method can detect the symmetry properties. But as

summarized by the author, this approach faces four limitations. The first one relates

to those faces where the intersecting features have some asymmetric details that may

be ignored. This problem can originate from the object boundary decomposition

because of the influence of the modeling process (see Chapter 4). The second one

is that there are configurations where the two properties of two loops are identical

but these loops are not congruent, which is illustrated in Figure 1.25. The third one

relates to loops subjected to rotations. Rotated loops have the same properties, the

corresponding asymmetry created cannot be recognized. The last limitation relates

to the nature of features in terms of protrusions and depressions. Also, within this

work, the method uses Djinn solid modeling Application Procedural Interface (API)

and the ACIS Solid Modeler from Spatial Technology to perform the extraction of

loop properties. This environment raises several questions. One is how to monitor

the accuracy of computations, which is limited by ACIS. The second one is that it

needs to assign the status of internal or external as type to a loop but the loop type

definition is ambiguous, hence not robust. The third one relates to the decomposition

of surfaces and curves. Not all the surfaces of the B-Rep are maximal. In fact, it is a
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Figure 1.25: Some of the limitations of Tate’s algorithm [60]: (a) asymmetry of a

detail producing the same global parameters; (b) different loops with same properties;

(c) rotation problem; (d) no distinction between protrusion and depression.

general problem, because a B-Rep model always describes surfaces of revolution with

two or more pieces, which breaks the object symmetry (see Chapter 4).

Compared to the other approaches, Tate’s method is the one that uses effectively

a B-Rep model, as an infinite point set model. As discussed in Section 1.1, B-Rep

models are used in a design process as basic digital models and widely subjected to

shape transformation processes. Therefore, using a B-Rep model that directly matches

exactly its boundary, avoids problems of referring to its faceted representation. It is

a significant advantage compared to other approaches.

1.5 Conclusion

The symmetry properties of an object have many important applications for dif-

ferent processes in a PDP, which can make the simulations, search, storage, etc. more

efficient. Because of this impact, during the development of CAD tools, the research

about symmetry detection has always been active. Many algorithms are reported for

enumerative or discrete models, such as point set models, voxel models or mesh mod-

els. But because their references are discrete models, the result of symmetry detection

is only approximate. Improving the accuracy and tracking more details, increases sig-

nificantly the computational complexity of the symmetry detection. It is no longer
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applicable in the engineering context.

In a PDP context, B-Rep CAD models are more useful and more important than

the others but they are infinite point set representation and the main group of re-

searches uses a discretized version of these models as input. This does not provide a

better answer to the engineering needs. Tate’s work is an entirely new approach that

directly takes a B-Rep CAD model as input. With the description of loop properties,

the candidate symmetry informations are created but this method has many limita-

tions that restrict the results’ validity to special cases. This is inherently due to the

use of global parameters attached to areas of the object boundary that cannot reflect

precisely their spatial configuration. Finally, after many years of research, symme-

try detection on B-Rep CAD models is still an issue for its use in a PDP and other

engineering applications.
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Chapter 2

Principle of the symmetry

analysis approach and hypotheses

This chapter gives a overview of the symmetry analysis approach and sets the objectives

of the present work. The symmetry analysis is devoted to engineering applications with

CAD based models to process shapes close to real objects. The proposed approach is a

semi global one since an object boundary is decomposed into patches and curves defining

the boundary of these patches. The objects are described in STEP format, hence they

are decomposed into patches and their symmetry properties are not readily available.

Surfaces and curves bounding objects stands for infinite point sets and they form the

basis of the approach. In this case, maximal surfaces and curves generation is mandatory

before the symmetry analysis and performed with the help of hypergraphs, which form

the main datastructure of the algorithm. Then, candidate symmetry properties are

extracted from each entity of the hypergraphs to initiate a divide phase of a divide and

conquer process. The conquer phase consists in propagation processes producing global

as well as local symmetry information about the object analyzed.

2.1 Principles of the symmetry analysis approach

First of all, it has to be recalled that reflexive symmetry is, by definition, a point

based property (see eq. 1.1 and eq. 1.2), which has been exploited essentially for dis-

crete (point sets) and piecewise linear (mesh based or faceted models) representations

of objects. Consequently, the algorithms currently available have a rather high com-

plexity (polynomial of high degree) and have to be applied to a large amount of entities

due to the discrete representation of the objects processed. In addition, many of them

produce an approximate symmetry information because of these discrete representa-

tions. Effectively, these representations cannot represent all the details of a physical

object like engineering components. Axisymmetry cannot be extracted from discrete

representations and the location of symmetry planes stays approximative as a function

of a shape discretization, which is often not acceptable for engineering applications.

Indeed, engineering applications require symmetry properties evaluation at the level

of accuracy of manufactured components to be useful in a PDP. It is the purpose of

the proposed approach to address this issue.
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Consequently, the purpose is to set up an approach of higher level such that infinite

point sets rather than finite ones can be processed, allowing for a precise description of

objects while enabling a much faster processing. In that sense the proposed approach

is a semi global approach since an object boundary is decomposed into patches and

curves defining the boundary of these patches. There are two categories of infinite

point sets: curves defining the boundary of patches and patches defining a subset of

the object boundary. The goal of the approach is to analyze an object symmetry

without limitation of discrete representations: the resolution of point sets and the

chordal deviation between a mesh and the precise model of this object. As a result,

the input model can contain all the details necessary to get very close to real objects

if needed. Regarding the applications of symmetry properties in a PDP, the proposed

approach forms a basis to add symmetry information to several of its steps, e.g.

restructuring a modeling tree to incorporate the object symmetries since a design

process rarely expresses all the object symmetries; exploiting symmetry properties to

simplify an object for finite element simulations, to structure an assembly process, to

improve the trajectory planning of manufacturing processes, to compare objects and

characterize similarities in databases, etc. Whatever, the step considered, symmetry

properties being intrinsic to an object, they must be independent from the boundary

decomposition of this object. Indeed, this decomposition is the result of modeling and

modification processes in a PDP whereas it must be intrinsic to the object symmetries.

It is part of the principle of the proposed approach to set up an intrinsic framework

to analyze and exploit the symmetry properties of an object.

Tate’s approach [58][60], is among the closest to the proposed one. The input

model is of type B-Rep and it can contain a combination of planes, cylinders, cones,

spheres and tori with possible spline surfaces. This is an advantage but the symmetry

detection does not rely on an intrinsic decomposition, hence ambiguous parameters

and heuristics have been used and reduce the efficiency of this approach. Here, the

purpose is to preserve the intrinsic framework throughout the symmetry analysis pro-

cess to obtain a reliable and robust process. According to the contribution of different

models into a PDP as addressed at chapter 1, the B-Rep NURBS is used by many

famous CAD software to generate digital models often regarded as reference ones by

companies. B-Rep NURBS models can contain many shape details as defined by

engineers and technicians and can be combined with CSG operators.

However, patch boundaries of these models are often resulting from intersection

computations, hence they are approximated and their symmetry properties can be

perturbed and difficult to obtain robustly like faceted representations are approxi-

mations of smooth objects through chordal deviation. Here, the approach aims at

favoring the use of intrinsic parameters all through the symmetry analysis. To this

end, the intrinsic parameters of surfaces should be used as much as possible to derive

symmetry properties and addressing the geometry of intersection curves is avoided to

preserve the robustness of the analysis.
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If the proposed approach could be integrated in industrial CAD platforms di-

rectly or in tight connection with them, this would be very helpful for the design and

product development processes. Modification suggestions could be easily exploited

in the original CAD software because it would be connected to the modeling tree of

objects. Because of the commercial protection, these modeling tree and B-Rep datas-

tructures are internal, hence difficult to access and hardly generic. Even if some of

these datastructures are partly accessible, it holds in one software environment and

can be transposed to another one only with a fair amount of software development

effort.

Another possible integration focuses on shape transformations often taking place

between product views in a PDP. It can be associated with all CAD softwares and all

simulation platforms when B-Rep NURBS datastructures rely on standard formats.

In this context, object shapes can be generated from an original industrial CAD

software and may contain numerous details, which justify modification requirements,

e.g. simplifications for finite element analyses, for digital review visualization, etc.

In the present approach, the STEP format [26][71] has been selected because it is an

ISO standard where an object boundary is described with surfaces and curves forming

infinite sets of points and analytic surfaces can be explicitly available too, i.e. planes,

cylinders, cones, etc. The topology of volume boundaries is explicit and can be used

to robustly extend symmetry properties attached to patches and their boundaries.

As far as symmetry analysis is concerned, both categories of integration are part of

the current approach since symmetry is an intrinsic shape property, which relies on

datastructures and processes rather independent from CAD modeling issues. Both

categories of integration will be observed here.

Analytic surfaces are widespread in mechanical engineering applications, which

entails the description of a wide range of components while benefiting well known

symmetry properties to initiate a high level approach for symmetry analysis. Conse-

quently, the main idea of the approach is to analyze object symmetries from the level

of patches, seen as infinite point sets, and to extend progressively these point sets to

neighboring ones. This can be described as a divide-and-conquer process:

• Every surface patch is described by its intrinsic parameters and its location in

space. This is independent of their parametric or implicit equations that could

be used and it concentrates on the embedding of each patch in IR3 where the

symmetry properties take place;

• Every surface patch has self symmetry properties that can be combined with the

symmetry constraints of its adjacent surfaces to take into account its boundary

as patch boundary of a B-Rep model: this produces Candidate Symmetry Planes

(CSPs). It is the result of a division phase;

• Then, a propagation process can extend the validity of each CSP over the largest
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possible area of a model boundary to structure the global symmetry properties

of the object: it is the conquer phase.

Apart from symmetry analysis, asymmetry is also very interesting and is more

useful for design and PDPs since many components are not globally symmetric, rather

symmetry exists only at the level of a boundary subset and the loss of symmetry

can be used as a means to evaluate shape transformations that could be useful for

simplification purposes. The symmetry analysis proposed in the current approach

intend to address this issue since the propagation process helps identify and structure

areas where symmetry properties are valid.

Finally, the objectives of the approach can be summarized as the algorithms to

answer the following questions:

1. Is a B-Rep NURBS model symmetric with respect to some symmetry planes or

symmetry axes? If so, where are located these symmetry planes and symmetry

axes?

2. If a B-Rep NURBS model has no global symmetry property, doest it benefit

local symmetry planes or axes? Where are located these symmetry planes or

axes and what are their extents of validity over the model boundary?

3. How does these symmetry properties can be obtained at various steps of the

design and PDPs? Into which extent they can be obtained with a process in-

trinsic to the object shape and how robust is this process under a wide diversity

of shapes?

2.2 Hypotheses and shape range

The previous objectives and context fits into a PDP, which is a very complex in

terms shapes and models available. The purpose of this section is to define accurately

the ranges of models and PDP configurations addressed. First of all, a PDP may rely

on a wide range of geometric shapes that fit into several geometric and topological cat-

egories such as manifold or non-manifold models, volume model, etc. The hypothesis

addresses this categories of models.

2.2.1 Shape categories

The proposed approach of symmetry analysis focuses on volume models. In IR3

space, a volume is a finite and connected subspace. A volume divides the 3D space into

two partitions: one is open and outside of the volume and the other one is bounded and

defines the interior and the boundary of the volume (see Figure 2.1). It means that any
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(a) (b) (c)

Figure 2.1: Illustrations of example objects part of the volume category addressed by

the current approach.

point located strictly inside the volume, i.e. not on its boundary, has a neighborhood

defined as a ball. Then, any point located on the boundary of the volume has a

neighborhood that is topologically equivalent to a disk. The corresponding class of

objects is designated as 2-manifolds. The Euler-Poincaré theorem is applicable to

them and extends the notion of volume under the form:

#V �#E �#F � 2p#s�#hq, (2.1)

where the quantities are respectively, the numbers of vertices, edges and faces forming

the boundary of the object and the numbers of partitions and holes of this boundary.

In particular, #s extends the concept to objects dividing the 3D space into more than

two partitions. Industrial CAD modelers behave differently regarding this extension,

some allowing a subset with ‘cavities’ only, others conform exactly to this general

concept.

Here, as a first step of the proposed approach, volumes have been restricted to

‘manufactured’ objects only, i.e. when they are bounded by one partition only.

If there exist point neighborhoods of the object boundary that are topologically

equivalent to several disks or to a disk and segments (see Figure 2.2), the corresponding

class of objects is of type non-manifold. This class of objects is often appearing in

geometric models devoted to simulations like finite element ones. Here, they are out of

the scope of the proposed approach. However, non-manifold configurations have to be

distinguished from that of Figure 2.1c where the two small cylinders are geometrically

tangent to each other but not connected through an edge of the object boundary.

This configuration is indeed manifold and within the scope of the proposed approach.

In Figure 2.1c, the two top cylinders are tangent. Between them, if at their common

tangent linear edge and vertex exist, they must be two instances of the same group

of edge and vertices superimposed and forming an open chain, otherwise the model is

non-manifold.
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(a) (b)

(c) (d)

Figure 2.2: Illustrations of object examples falling outside the scope.

2.2.2 Range of objects addressed

As stated in the previous section, the shape category addressed is of type vol-

ume and follows the restrictions stated there. Industrial CAD modelers however, can

produce different object categories, sometime under the same computer type they

designate as volume, which is not accurate enough for the purpose of the proposed

approach. Here, the goal is to define the object range which is not part of the previ-

ously strictly defined volume category but that can be transformed into this category

without perturbing the symmetry analysis.

As a refinement of the non-manifold category illustrated before, let us consider

configurations where non-manifold singularities occur at vertices only and are further

restricted to configurations where the neighborhood of these points are formed by

sets of disks. Indeed, such a range of configurations is named pseudo-manifolds and

is able to describe volumes as stated previously even if they incorporate these non-

manifold singularities. Pseudo-manifold can appear as ‘extreme’ configurations in

CAD software and STEP files. For the sake of completeness, these configurations can

be converted into manifold ones through vertex duplication and fall in the scope of

the proposed approach without changing the object shape, hence without influence

on the symmetry properties of the object.

The analysis can be extended to non-manifold configurations where the singular

entity is an edge. Figure 2.1c can be interpreted in that way if a unique edge exists

as common generatrix of the two cylinders. Consequently, if the duplication of these
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edges and some of their extreme vertices modify the boundary decomposition of the

object without modifying the number of partitions, i.e. #s � 1, these transformed

objects have preserved their initial geometry and now fall into the object category

addressed here.

2.2.3 Shape geometry and reference surfaces

The previous sections have concentrated on the topological aspects of the shape

range addressed. Here, the purpose is to focus on the geometry of the models covered

in the proposed approach. The main context of the present work concentrates on PDPs

and mechanical engineering applications. There, objects are generally created through

constructive approaches using sketches and simple primitives. Line segments and arc

of circles are combined to form most of the sketches content and they are translated

or rotated to be extruded or revolved to form primitive volumes that can added to or

removed from an existing one. Processing geometry that way forms already a wide

range of manufactured objects whose boundary surfaces are derived from the previous

observations. Such faces are now designated as Reference faces.

In the framework of CAD software, 2D sketches in arbitrary planes as basis for

extrusion or revolution operators form the main method to create 3D volumes. Blends

and chamfers come afterwards as local modification of an object boundary. As a

result, the boundary surfaces of 3D volumes fall into the following configurations when

combining segments and arcs with extrusion (translation) and revolution (rotation):

• Planes: they can originate from the extrusion of a segment belonging to a

sketch, from the revolution of a segment orthogonal to the rotation axis or from

a closed planar contour of a sketch defining a face of a volume primitive;

• Cylinders: they can be obtained by revolution of a segment parallel to the

rotation axis or as extrusion of a circular arc orthogonally to the plane containing

the arc;

• Cones: they are generated by rotating a segment that is not parallel to the

rotation axis;

• Spheres: they are obtained by revolving a circular arc whose center is located

on the revolution axis;

• Tori: they originate from revolving a circular arc whose center does not lie on

the revolution axis.

As a result, assuming that sketches only contain segments and circular arcs covers

a large amount of mechanical objects. Hence, the five surface types listed above



44 Chapter 2

form the basic configurations of 3D volume boundary surfaces. These five surfaces

are called reference surfaces and noted S. Because it covers a large diversity of CAD

volumes, it is assumed that 3D volume boundaries considered here combine only these

reference surfaces. There is no restriction placed on intersection curves between these

surfaces. Consequently, configurations on blending radii with constant or variable

radius located on arbitrary intersection curve between reference surfaces can generate

free-form surfaces and are not part of the present approach.

This restriction is a trade-off between a wide enough range of objects covered and

the complexity of the approach. Perspectives still exist to widen further the current

object range.

2.3 Maximal Surfaces and Maximal Edges Model

Having specified in section 2.2 the range of input shapes covered by the proposed

approach, its principles have to be set in adequacy with the input model. First of

all, it has to be recalled that the symmetry properties of an object are intrinsic to it

whereas the B-Rep decomposition is subjected to constraints originated from the:

• Topological properties needed to describe the object, e.g. an edge must have

exactly two extreme vertices;

• Modeling kernel where the boundary surfaces need to be processed in a specific

way to meet topological requirements, e.g. a cylindrical surface must be de-

composed into two half cylinders at least to correctly embed a topological space

describing the object boundary (see Figure 2.3b);

• Modeling process as set up by a designer at each stage of a PDP, e.g. the

content of sketches and their influence on the surface generation may generate

unnecessary edges and faces, the successive modifications of designs, the trans-

formations of models between CAD and simulation software can modify the

boundary decomposition of an object without changing its 3D shape.

The purpose of the approach being to derive global symmetry properties from that

of infinite point sets, surfaces, curves and points are the entities forming the input

model and the categories of point sets processed. The corresponding faces, edges

and vertices will then be the support of the divide and conquer process to analyze

the object symmetries. As a result of their embedding in 3D, reference surfaces can

be bounded (sphere, torus) or unbounded (plane, cylinder, cone). The purpose of

curves is to restrict or bound these surfaces. Similarly to surfaces, curves can be

bounded (circle, ellipse, etc.) or unbounded (straight line, parabola, etc.). Similarly,

the purpose of vertices is to restrict or bound these curves.
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As a result, the infinite point sets must be as large as possible not to interfere with

the symmetry properties of the object. This leads to the concept of maximal faces

and maximal edges that form the basis of the divide phase when CSPs are attached to

them as starting point of the conquer phase. More precisely, the concepts of maximal

faces and edges can be explained as follows.

Maximal surfaces: During a modeling process, several surfaces S of a B-Rep model,

adjacent to each other through a common edge, can share the same surface type and

parameters (same axis and radius or same normal and reference point) because of the

successive sketches defined by the user and the type of operator applied. In addition,

if the shape boundary contains circular areas such as a full cylinder or a full torus,

all CAD software either divide these surfaces into more than one piece or open their

boundary to meet the topological requirements of 2-manifold surface models.

Because symmetry properties are global for a geometric domain, there are no longer

identical for an entire, non decomposed, surface and the same surface subdivided into

a set of adjacent domains. This is illustrated in Figure 2.3 where the cylinder halved

has two symmetry planes passing through the axis (Figure 2.3b) whereas the full

cylinder has an infinite number of symmetry planes (see Figure 2.3a). In order to

obtain the right symmetry information, faces must be of maximum area even though

they can no longer satisfy the B-Rep topology description, i.e. an object formed by a

sphere can be described with a unique face and no other edge or vertex. Consequently,

surfaces may be merged through edges or vertices to meet the area maximization and

two adjacent maximal surfaces Si and Sj have to have different characteristics (type,

location, axis location, radius, normal, etc.).

Maximal curves: Similarly to maximal surfaces S, each boundary curve Γ, i.e. a

loop, of each surface S needs to be of maximal length so that the symmetry properties

of Γ can be analyzed robustly and don’t propagate errors when analyzing S. Γ de-

composes into a set of maximal curves Σk containing at least one curve. Every curve

Σk is an intersection curve between two adjacent maximal faces pSi, Sjq . A merging

algorithm is used to generate Σk that takes into account the characteristics of the two

faces Si and Sj because intersections curves are explicitly used. Because of the five

type of surfaces, maximal curves Γ are the loci of G1 or G2 discontinuities. Similarly

to surfaces, maximal curves can be closed, thus having no vertex because they are

entirely defined by their two adjacent maximal surfaces.

The above explanations about maximal surfaces and curves show that these con-

cepts are effectively intrinsic to the object shape and get red of the constraints set by

the modeling kernel and modeling process. They show also that the requirements of

the symmetry analysis about the description of the piecewise boundary of the object

are incompatible with the intrinsic constraints related to topology, i.e. faces are not

necessarily bounded by edges and edges are not necessarily bounded by vertices.
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(a) (b)

Figure 2.3: A simple illustration of an object boundary decomposition on its symmetry

properties: (a) a full cylinder having an infinite number of symmetry planes, (b) two

half cylinders which have only one symmetry plane passing through the axis.

2.4 Preliminary processes to the effective symmetry anal-

ysis

As mentioned above, there are some treatments required prior to obtain the volume

used as input of the divide and conquer process to analyze its symmetries. The

previous section has shown that the maximal surfaces and curves are key concepts to

generate infinite point sets whose symmetry properties coincide effectively with that

of the object. Therefore, there is a one to one mapping between these point sets and

the maximal surfaces and edges. These point sets are now designated as faces, edges

and vertices and the adjacencies between surfaces, curves and points can be expressed

with a combinatorial approach.

Hypergraph datastructure is efficient at representing a wide range of adjacency

relationships between entities an it is selected for supporting the symmetry analysis.

Hypergraph datastructures provide a well suited representation of adjacency relation-

ships between faces, edges and vertices where point sets symmetry properties can be

preserved while staying connected to the topological datastructures of the initial ob-

ject. Here, emphasis is put on the hypergraph transformations needed to generate the

object boundary decomposition that preserves the object symmetry properties. Hy-

pergraphs can be transformed with a large set of operators enabling face merging, edge

merging, vertex deletion, etc. So, the first step consists in transforming the B-Rep

model topology into hypergraph data structures. Then, there should be a process for

non-manifold configuration detection and non-manifold edge and vertices splitting to

produce a volume derived from the class of objects defined in the hypotheses. Finally,

a process will merge the adjacent surfaces and curves to satisfy the maximal surface
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and maximal curve requirements. Also, the closed boundary or loop structure of a

face is needed since it can reduce the number of CSPs and it contributes to trace the

propagation during the conquer phase. A loop can be considered as a closed chain of

face boundary edges, which is edge adjacency information applicable to simple loops

where no orientation is needed. So, loops can be extracted from hypergraphs. Special

configurations will be addressed in details in chapter 4.

2.5 An overview of the symmetry analysis process

The major steps of the symmetry analysis process can be synthesized from the

description of the previous principles, hypotheses and preliminary processes and they

are structured as follows (see Figure 2.4).

The overall process starts from a STEP file input and translates the topology of

the input object into hypergraphs (see Chapter 4). Next step is the detection of non-

manifold edges and vertices and then, splitting them to build a manifold model to the

range of shapes compatible with the current scope of the analysis process. To conform

to symmetry properties of infinite point sets, i.e. faces, edges and vertices, and config-

ure the piecewise decomposition of the object boundary, all adjacent surfaces of same

type and same spacial location define the same point set and must be merged when

the adjacency operates through edges. Adjacency through vertices requires a specific

analysis of neighborhood. A similar process must be applied to the face boundaries,

i.e. the intersection curves between adjacent surfaces. Whether for surfaces or curves,

the corresponding point sets obtained satisfy the criterion of maximal point sets.

Having produced the boundary decomposition containing the maximal point sets,

the next step takes advantage of global symmetry properties of the maximal point sets

to generate CSPs attached to entities of the hypergraphs (see Chapter 5). Relying

on global symmetry properties, CSPs can be structured into several categories whose

meaning relates them to each dimension of infinite point set, i.e. dimension two for

faces, one for edges and zero for vertices. Because symmetry properties strongly rely

on the embedding of a surface in 3D space, there is a combinatorial issue to collect

all the CSPs among all the interactions between the five reference surfaces. All these

entities help defining CSPs sharing adjacency relationships with their neighborhood.

A last category of CSPs relate to loops or, otherwise stated, disconnected point sets.

The loop datastructure derived from the hypergraphs help defining the corresponding

CSPs. As a result, CSPs can be assigned to entities of the object boundary: it is the

divide phase of the analysis process.

Finally, following the adjacency relationships in the hypergraphs and loop struc-

tures, the conquer phase develops propagation processes (see Chapter 6). CSPs prop-

agation processes aim at extending point sets with valid symmetry properties to cover
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Figure 2.4: The major steps of the symmetry analysis algorithm.
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the largest possible area of the object boundary. Propagation takes place at two levels:

• Extend to point sets that intersect with the CSP;

• Extend to point sets having no intersection with the CSP.

Whether the whole object surface is valid or not for a CSP dictates its status: global

symmetry plane in the first case and local one for the second. The extent of the valid

area for a CSP relates it to the corresponding subset of the object boundary. These

results produce the answers to the targeted objectives mentioned at section 2.1.

2.6 Conclusion

This chapter has described the principle of the symmetry analysis process, which

is of type divide-and-conquer. Hypotheses have been set up to define its scope in

terms of shape category addressed to cover a first realistic set of shapes available

in engineering applications throughout a PDP. This demonstrates the interest of the

proposed approach and highlights some efficient features of the proposed approach.

Except the hypotheses, some preparation phase is mandatory and must be added to

the major steps of the divide-and-conquer process: transformations of non-manifold

singularities, when possible, to meet the category of volumes processed and, most

important, generate the maximal point sets forming the object boundary so that the

divide-and-conquer process can be effectively meaningful. It is now the purpose of the

two next chapters to detail this preparation phase.
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Chapter 3

Basic Input Data: B-Rep CAD

model and STEP format

Following the context described in the previous chapter, this chapter focuses on the

analysis of the input model for the symmetry analysis process. Here, the input model

of type B-Rep is described in the STEP format considered as a reference datastructure

that can be found either in a modeling kernel of an industrial CAD software or as

a description of an object transfered from an application software to the symmetry

analysis. Then, the analysis of the STEP format helps justifying the use of surface

parameters only and defining the range of models addressed compared to the models

stored in STEP format by geometric modelers.

3.1 Introduction

The range of shapes used as input for the analyzed models is of type volume, i.e.

a 2-manifold surface bounding the object. The input model is described through the

STEP format considered as a reference format available from any industrial modeler

and is able to form a reference model for a modeling kernel. A STEP file is an ISO

standard format for CAD. It describes objects as B-Rep models. It is suited for neutral

file exchange, data sharing and archiving. Because it is among the most widely used

data format in PDPs, our work about symmetry analysis focuses on STEP files as

input data.

3.2 Overview of the STEP format for volume description

Commonly, a B-Rep model is described through geometric and topological entities.

Geometric ones are listed as: surfaces, curves bounding the surfaces, points bounding

the curves (see Figure 3.1 for a simple example). Directly linked to the geometric

entities are associated topological ones: faces, edges bounding the faces and vertices

bounding the edges. The following presentation and analysis concentrates on the

topological entities since they are the major ones for the symmetry analysis purpose
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described throughout the next chapters. Indeed, geometric entities are kept unchanged

throughout the symmetry analysis process.

Figure 3.1: A simple B-Rep model with its associated geometric entities: Si (surfaces),

Σj (curves), Pk (points).

In the STEP data structure, each topological entity belongs to an independent

class where its geometric data is stored in an associated geometric entity. Topological

entities map each other in a hierarchical manner where, for each dimension, the highest

dimensional entity describes how it is bounded by lower ones (see Figure 3.2a, b).

These relations are expressed as a table structure (see Figure 3.2a, b for the object

displayed at Figure 3.1) between faces and edges and edges and vertices. An example

of association between topological and geometric entities is also given at Figure 3.2c.

face edge

F1 E1 E2 E3 E4

F2 E1 E5 E9 E8

F3 E2 E5 E10 E6

F4 E3 E6 E11 E7

F5 E4 E8 E12 E7

F6 E9 E10 E11 E12

(a)

edge vertex

E1 V1 V4

E2 V1 V2

E3 V2 V3

E4 V3 V4

E5 V1 V5

E6 V2 V6

E7 V3 V7

E8 V4 V8

E9 V5 V8

E10 V5 V6

E11 V6 V7

E12 V7 V8

(b)

vertex coordinate

V1 px1, y1, z1q
V2 px2, y2, z2q
V3 px3, y3, z3q
V4 px4, y4, z4q
V5 px5, y5, z5q
V6 px6, y6, z6q
V7 px7, y7, z7q
V8 px8, y8, z8q

(c)

Figure 3.2: Topological entities of a B-Rep data structure: Fi (faces), Ej (edges),

Vk (vertices) and their ‘bounded by’ relations (a), (b) as tables. (c): an example of

association between topological and geometrical data.
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Figure 3.3: STEP format elements.

3.2.1 Structure of the major entities contributing to the definition
of a B-Rep volume entity

The STEP format defines a rather sophisticated B-Rep datastructure. The entities

are shown in Table 3.1, which is decomposed into a hierarchy of 12 levels. The

hierarchical connections between the entities are described in Figure 3.3.

In a STEP file, the basic entities are called CARTESIAN POINT and DIREC-

TION, which are part of level 1. A CARTESIAN POINT is a set of point coordi-

nates, such as a reference point of an axis, the coordinates of a vertex, a control

point, etc. A DIRECTION is a vector with a unit length. These two basic elements

are combined to form the level 2 entities of the hierarchy, e.g. an axis system as

AXIS2 PLACEMENT 3D, a vertex as VERTEX POINT that reduces to a pointer

to a CARTESIAN POINT and a vector as VECTOR. Then, curves and surfaces are

described with level 1 and level 2 entities and some more parameters such as a radius,

e.g. when a curve reduces to a simple curve like a circle. They are stored at level 3,

which forms the set of geometric elements.

These elements are generically defined and only contain intrinsic parameters of

the corresponding surface or curve. There is no boundary information unless it is

mandatory to include it in the definition of a geometric element like a parametric curve.

For example, a LINE is defined from a CARTESIAN POINT plus a VECTOR and

it is infinite (see Figure 3.4b L60, L76, L155 and L162). A CYLINDRICAL SURFACE

is described as an infinite area too (see Figure 3.4c). Adding a vertex as boundary

constraint to curves to describe them as they are in MI (the input model), defines

the entity EDGE CURVE, which is stored at level 4. This is a first entity of type

topological in the series needed to describe the topology of MI boundary. At level 5,

the ORIENTED EDGE is created from an EDGE CURVE. The ORIENTED EDGE



54 Chapter 3

is part of a half edge data structure (see Figure 3.4e).

(a) (b) (c)

(d) (e)

Figure 3.4: An example of STEP file: (a) is a volume; (b) are curve elements with

orientation. There are 4 LINEs and 8 CIRCLES; (c) are surface elements, 2 CYLIN-

DRICAL SURFACEs and 3 PLANEs; (d) are EDGE CURVEs; (e) shows the ORI-

ENTED EDGEs, EDGE LOOPs, FACE OUTER BOUND, FACE BOUND and AD-

VANCED FACE with orientation.

The half edge datastructure is dedicated to the description of BMI and its corre-

sponding face adjacencies. Because in a manifold model, every edge is adjacent to two

surfaces exactly, a half edge is constructed by splitting an edge down to a pair of half

edges. This pair of half edges coincides with the original edge and they have opposite

orientation to stay consistent with their adjacent faces. The half edge datastruc-

ture has good properties for describing the adjacencies in MI and its orientation. The

STEP standard is based on a half edge datastructure. In next level of STEP structure,

ORIENTED EDGEs construct an ‘EDGE LOOP’. An EDGE LOOP is the boundary

of one surface defining one face of MI . Similar to the definition of a volume having one

partition, a surface is connected: each internal point of the surface is connected with



Overview of the STEP format for volume description 55

every neighboring point in this surface. A surface is at least G2 continuous excepted as

singular points like cone apices since the surfaces addressed here are analytical ones.

Because surfaces in STEP are addressed as parametric functions, a surface has only

one outer boundary and can have an arbitrary number of internal boundaries. So the

next level in STEP format is ‘FACE OUTER BOUND’ and ‘FACE BOUND’ (face in-

ternal boundary). With the face boundary and the surface geometry defined at level 2,

a surface with arbitrary boundaries can be described explicitly both from geometric

and topological points of view and it is named ‘ADVANCED FACE’ at level 8. Level 9

describes ‘CLOSED SHELL’ as a combination of several ADVANCED FACEs. Then,

level 10 up defines the ‘MANIFOLD SOLID BREP’ from a closed shell to add naming

attributes. The analysis of a volume with a single partition in STEP format ends here,

which fits with the hypotheses of the current work. If the model contains more than

one volume, they are stored in ‘ADVANCED BREP SHAPE REPRESENTATION’

at level 11.

3.2.2 Some insight about orientation information

The STEP format provides information about oriented reference entities. At first,

geometric elements are oriented. The VECTOR entity in the LINE one defines the

orientation of the latter. With the CIRCLE entity, its orientation is set with the right

hand rule. The thumb of the right hand is defined with the DIRECTION contained in

AXIS2 PLACEMENT 3D contributing to the definition of the CIRCLE. Then, curv-

ing the other fingers points at the circle orientation. At level 4, the EDGE CURVE

entity is assigned a start and an end vertices. If start to end vertices follow the ori-

entation of the corresponding geometric curve, the EDGE CURVE orientation is set

to ‘T’ (true) otherwise it assigned ‘F’ (false). Using this information and combin-

ing it with the right hand rule, all this orientation information avoids creating the

complementary part of an arc of circle. This example shows how various orientation

information combines to produce valid entities.

The ORIENTED EDGE entity is part of half edge data and belongs to an AD-

VANCED EDGE entity. Its orientation inherits the one of the ADVANCED FACE

it bounds. Pointing out of the volume is defined as the positive orientation of an

ADVANCED FACE entity. If, using one vector to represent the orientation of an

ORIENTED EDGE and another vector to represent the orientation of its neighbor-

ing ADVANCED FACE, the result of their cross product should point out of the

surface (see Figure 3.5). According to this definition, if the orientation of an ORI-

ENTED EDGE is the same as its corresponding EDGE CURVE, it is marked ‘T’,

otherwise it is marked ‘F’. The status of ORIENTED EDGEs in an EDGE LOOP are

identical since their orientation derives from that of the ADVANCED FACE bounded

by this loop. At level 3, the geometric surfaces have their orientation definition as well

as geometric curves. As an example, a PLANE contains an axis system, the direction
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of one of them follows the plane normal and this direction is set as positive. Similarly,

with CYLINDRICAL SURFACEs and CONIC SURFACEs, the direction pointing to-

ward their axis is negative. In case of SPHERICAL SURFACE, the direction pointing

toward its center is negative and the opposite is positive. The direction pointing in-

side a TOROIDAL SURFACE is considered as negative. The orientation definition of

the ADVANCED FACE entity follows the same principle as the ADVANCED EDGE

one: if its orientation is identical to its underlying geometric surface orientation, it is

marked as ‘T’ otherwise it is marked as ‘F’.

Figure 3.5: Relationship between curve and surface orientations.

STEP format does not only store geometric information of MI , but also its topo-

logical description to define an entire B-Rep model. As already sketched through

the description of the previous entities, a volume is divided into oriented faces (AD-

VANCED FACEs) whose orientation is pointing outward. The boundary of these

faces is described as oriented loops (EDGE LOOPs), which combine with oriented

edges. The geometric elements are independent and, somehow, the orientation of the

geometric entities is consistent with that of the topological entities to describe cor-

rectly MI but this orientation is not prescribed by the shape of MI , it derives from

the modeling process followed when generating MI . With the boundary description

of MI , surfaces, curves and curve endpoints are available. A STEP file contains all

the information needed to set up a symmetry analysis algorithm.
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(a) (b) (c)

(d) (e)

Figure 3.6: A graphic representation of the intrinsic parameters of the five reference

surfaces.
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Table 3.1: The hierarchical structure and example of STEP format entities.

Surface Parameter 1 Parameter 2 Parameter 3 Parameter 4

Plane base point normal vector

Cylinder axis point axis vector radius

Cone apex axis vector angle

Sphere center radius

Torus Center axis vector radius 1 radius 2

Table 3.2: The intrinsic parameters of geometric entities used as reference surfaces.
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3.3 From STEP format to B-Rep modeler datastructures

Indeed, STEP format can be regarded as very close to the datastructure defining

B-Rep models in an industrial modeler. It is particularly the case with OpenCas-

Cade [45] where the datastructure of a B-Rep model conforms with the entities of the

STEP format. Consequently, the previous description can be regarded as a common

denominator to configurations where a symmetry analysis is a process taking place

either as part of a range of operators belonging to a modeling kernel or as a standalone

process using a pre-existing B-Rep model available from a STEP file.

Based on the constitutive description of a B-Rep model, it appears that if each

edge is adjacent to two faces, the effective boundaries of these two faces are described

through two edge loops, each of which using independent curves to describe the edge

‘shared’ by these two adjacent faces. This geometric configuration comes from the fact

that there is no exact solution to the representation of arbitrary intersection curves

between two NURBS surfaces. This observation shows that the curves bounding the

faces of MI are not represented exactly. Rather, they are subjected to approxima-

tion processes performed during the modeling process. Consequently, the symmetry

properties of these curves are not robustly contained in these entities.

Therefore, the principle of the proposed approach aims at setting up a robust

process for the symmetry analysis, hence B-Rep curves are not part of the geometric

data used for the analysis process. The characterization of the symmetry properties

of MI solely relies on surface parameters. These parameters being used to define some

symmetry properties of the intersection curves between surfaces, the whole symmetry

analysis process uses the location and intrinsic parameters of reference surfaces to

improve, as much as possible, the robustness of this process.

It has to be noticed that the intrinsic parameters of the reference surfaces are

effectively available whether the symmetry analysis takes place as part of an operator

in a modeling kernel or as an independent process through the use of STEP files [22].

This observation validates the proposed symmetry analysis approach as a process

compatible with any step of a PDP where a B-Rep CAD model is used.

To describe the five reference surfaces and based on the data stored in a STEP file,

the intrinsic parameters of these surfaces are accessible. Whether a simple plane or

revolution surfaces, they can be represented by several geometric parameters as illus-

trated in Figure 3.6 and listed in Table 3.2. They form the basis of the datastructure

needed for the geometric information processed during a symmetry analysis process.

As highlighted in the previous section, the STEP format contains all the ori-

entation information required to define the B-Rep model of a volume. During the

symmetry analysis process, the shape of MI is not modified. The boundary decompo-

sition transformations described in the next chapter rely on hypergraphs that are non



60 Chapter 3

oriented datastructures. However, the entities of these hypergraphs reference entities

of MI described through the STEP format. Consequently, model orientation is always

available through these references if needed at some point of the symmetry analysis

process.

From the orientation point of view, the STEP format is able to describe models

with configurations extending some of the basic properties needed to model volumes,

i.e. a loop bounding a face can be in contact with itself rather than restricting loops

to be simple ones (see Figure 3.7).

Figure 3.7: Examples of loops in B-Rep models: (a) a simple loop, (b) a loop in

contact with itself.

It has also to be noticed that industrial CAD software, though they all contain

volume modelers, contain extensions to the rigorous volume modeling theory and may

describe objects that don’t fit into the category of 2-manifold objects. Figure 3.8 gives

an example of such a configuration where a vertex of the object has a non-manifold

neighborhood. It appears also that this non-manifold singularity is also appearing in

the STEP describing the object model. Consequently, the boundary preparation ofMI

addressed in the next chapter must take into these configurations so that the objects

processed in the symmetry analysis are effectively volumes bounded by a 2-manifold.
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Figure 3.8: An example of object containing a non-manifold vertex that exists both

in a CAD modeling kernel and in a STEP file.

3.4 Conclusion

The description and analysis of the STEP format have been useful to highlight the

major entities of a B-Rep model used as input of the symmetry analysis process, MI .

The corresponding B-Rep datastructure is indeed the one used for the analysis process

on top of which will be added the topological description of MI that contains the

maximal point sets and is described in next chapter using hypergraphs data models.

The analysis of the STEP format revealed also that its curve geometric description

is not a robust model of face boundary description with respect to symmetry properties

and justified the use of the sole surface parameters as geometric parameters to conduct

the symmetry analysis.
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Chapter 4

Object boundary description

using a hypergraph datastructure

The aim of this chapter is to describe how to prepare an object boundary using a

hypergraph datastructure. The hypergraph datastructure is the main work platform

for the symmetry analysis algorithm. It can represent all the connections between

topological elements while presenting the symmetry properties of the input object:

Face, Edge and Vertex. It comes from the entities available in STEP format directly.

With these basic operators, hypergraphs can be used to process objects with non-

manifold singularities and convert them, if possible, to the shape category addressed.

Also, hypergraph form the core frame work to generated the maximal faces and edges

required to fit in the scope of the hypotheses. The B-Rep description of the object

using hypergraphs stays a topological description. The geometry of the object is left

unchanged by the hypergraph transformations.

4.1 Introduction

From the description of a STEP file structure in Chapter 3, it appears that the

STEP format data structure is similar to a tree structure. The relationships between

elements located at different levels of that structure are represented through branches.

However, the connection between topological elements (faces, edges and vertices) is

tedious to trace. Complementarily, hypergraphs aim at defining entities (faces, edges,

vertices) forming point sets coinciding exactly with the real object, i.e. maximal

faces and edges. Some of the properties of these maximal faces, edges no longer

coincide with the properties of B-Rep faces, edges and vertices. Hypergraphs offer

a general framework to define the maximal faces and edges needed for symmetry

detection algorithms since they are able to describe a wide diversity of relationships

between faces, edges and vertices [1], [15], [57], [65]. In 2008, Foucault et al. presented

a hypergraph datastructure [19] for Finite Element meshing constraint generation.

Here, hypergraphs are used to set up a datastructure dedicated to the description of

the topology of the maximal faces and edges. This datastructure is placed on top of

the B-Rep datastructures available from a STEP format or derived from a geometric

modeler.
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In Chapter 2, the shape model input to the symmetry analysis algorithm has

been defined as a B-Rep model and it is noted MI . When analyzing STEP file ex-

amples, depending on the geometric modeler, the STEP file generator and reader,

non-manifold vertices may exist in B-Rep models. An algorithm is needed to detect

them and split the vertices to match the 2-manifold requirements attached to volume

models: the category of models targeted in the present work. Also, an algorithm

generating maximal faces and maximal edges is needed. All these algorithms don’t

need to modify the shape of the B-Rep model, i.e. the geometric entities of MI , they

can operate purely through the concept of topological domain. As a topological rep-

resentation, hypergraphs contain some efficient transformation operators for object

topology description.

4.2 Hypergraph description

A hypergraph is constructed from two basic elements: Node and Hyper-Arc (Arc)(see

Figure 4.1). Nodes are connected by arcs and both of them can exist indepen-

dently [19]. A node can be linked to 0 or a finite number of arcs. An arc can

connect 0 or a finite number of nodes, too. An arc can be split into half arcs. The

number of half arcs of an arc is called the rank of the arc and noted RA. A half arc

has two categories of connections, one is attached to a node, the other one is attached

to another half arc. Similarly, the number of half arcs connected to a node is called

the rank of the node and noted RN . A node can link zero or a group of half arcs

only. Different connections of half arcs generate different arc names. If RA � 2 and

the two extremities of the arc are two different nodes, it is a regular arc, e.g. A2 in

Figure 4.1. If the two extremities connect to the same node, it is loop arc, e.g. A5

in Figure 4.1. When an arc has more than two extremities, RA ¡ 2, and each one

connect to different nodes, it is a hyper-arc, e.g. A3 in Figure 4.1. Considering a

hyper-arc, if its different extremities are attached to the same node, it is a hyper-loop.

In the context of object modeling, the description of its boundary is operated with

three hypergraphs to cover all the possible connection configurations between entities

(faces, edges, vertices) [15]. Each hypergraph describes adjacency relationships. Face,

edge and vertex are the three topological elements defining an object boundary. The

three hypergraphs represent the adjacency of face-edge, edge-vertex and face-vertex,

and are noted G21, G10 and G20, respectively.

• G21 describes the face-edge adjacencies: a node represents a B-Rep face or a

maximal face and an arc represents a B-Rep edge or a maximal edge. If this

hypergraph describes a 2-manifold B-Rep object as produced by a geometric

modeler, each B-Rep edge or maximal edge is adjacent to two surfaces and in

G21, each arc connects exactly two nodes. The hypergraph reduces to a graph;
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Figure 4.1: Hypergraph basic entities and hyper-arcs designations.

• G20 describes the face-vertex adjacencies: a node represents a B-Rep face or a

maximal face and an arc represents a vertex;

• G10 describes the edge-vertex adjacencies: a node represents a B-Rep edge or

a maximal edge and an arc represents a vertex. If this hypergraph describes

a 2-manifold B-Rep object as produced by a geometric modeler, each edge has

two extremities, hence each node in G10 connects with 2 arcs.

In the various hypergraphs, the nodes and arcs represent different entities. Con-

sequently, the meaning of each half arc differs as exemplified in Figure 4.2 where Si,

Σj , Pk designates the geometric entities (surfaces, curves, points, respectively) of MI

and Fi, Ej , Vk stand for their corresponding topological entities (faces, edges, vertices,

respectively). When G21 is generated from STEP file directly, a half arc is the half

side of an edge or half edge in STEP format, which contains a half segment domain at

any point on a half edge, see Figure 4.2a. In the B-Rep object boundary of MI and

in the boundary of this object using maximal faces and edges, there is no half edge in

their object boundaries. MI transformed through maximal faces and edges generation

is noted MMax. Hence, half arcs can only result from transient configurations during

maximal faces and edges generation. In G10, the extremity of an edge is a half arc.

A finite segment has RN � 2. A half arc in G20 is a part of an open disk domain

around a vertex.
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(a) (b)

(c) (d)

Figure 4.2: The topological meaning of a half arc in the various hypergraphs: (a) the

geometric model of MI , (b), (c), (d) the hypergraphs describing the topology of MI .

4.3 Dual graph of a graph embedded in a surface

The decomposition of the volume boundary of MI , BMI , into surfaces, curves and

points can be used to form a graph G embedded in BMI . The dual graph of G is a

graph GD which has a node for each surface of G, and an arc for each curve in G

joining two neighboring surfaces, for the embedding of G in BMI . Each arc of GD can

be embedded in BMI such that it cuts a curve of G at one point only (see Figure 4.3).

The term ‘dual’ is used because this property is symmetric, meaning that if GD is

dual of G, then G is dual of GD (if G is connected).

The general concept of dual graph can be applied locally at any vertex Vi of BMI .

If Vi is a vertex with no loop edge attached to it, faces attached to Vi appear only

once around it. Then, MI defining a volume, the neighborhood of Vi is topologically

equivalent to a disk and the reduction of G to the neighborhood of Vi is a star-shaped

graph. Consequently, the restriction of GD around Vi reduces to a simple loop (see

Figure 4.3). This illustrates the difference between a dual graph GD|Vi
and hypergraph

G21.
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(a) (b) (c)

Figure 4.3: An example of dual graph GD defined from the graph G obtained using

the decomposition of a boundary BMI of a B-Rep model: (a) is the original graph

G embedded in BMI ; (b) is dual graph GD of G around point P1 (V1); (c) is the

hypergraph G21 of BMI .

4.4 Hypergraph creation from a B-Rep model

In chapter 3, the data structure of STEP format has been introduced. Within

this hierarchical data structure, ADVANCED FACE at level 8, ORIENTED EDGE

at level 5 and VERTEX POINT at level 2 are key topological entities describing a

B-Rep model topology. Level 3 entities contain the geometric description of surfaces

and curves. The CARTESIAN POINT contains the coordinates of a vertex. Other

levels contain either geometric information or complementary topological entities, e.g.

edges without orientation, edge loops, which contribute to the definition of the key

entities listed previously.

The STEP format is a typical B-Rep data structure. Depending on the model

translation process from a geometric modeler to the STEP file format, depending on

the internal model of this geometric modeler, the detailed model data contained in a

STEP file may differ. Anyhow, a B-Rep model stored under a STEP format contains

topological as well as geometric entities. A hypergraph points at the topological

entities which are represented as FHG, EHG and VHG. The geometric entities are

attached to the topological ones. The connections between the topological entities

are coming from the parent-child relationships contained in the STEP format. In this

case, from the hypergraphs, it is possible to get all geometric parameters of the faces,

edges and vertices (see Figure 4.4).

Because different users of different CAD software often produce distinct shape

generation processes of the same object model, i.e. each shape is visually identical
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Figure 4.4: Hypergraph data structure.
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(a) (b)

Figure 4.5: Spherical surface represented by different entities: (a) 3D representation

of the sphere; (b) parametric space of a patch with a singular edge.

to the others, these models may contain different entities. More precisely, configura-

tions with coinciding vertices or otherwise stated, non-manifold configurations around

vertices, produce visually equivalent objects though they contain a different set of

entities. Other configurations originate from the parametric space of surfaces, which

are bi-parametric and described by square or rectangular domains in their parametric

space. Some of their vertices must coincide when describing a surface of revolution:

see Figure 4.5 the pole of the sphere behaving like the apex of a cone in 3D because

vertices coincide together with a zero length edge. Consequently, visually similar ob-

jects may be represented by different entities of B-Rep models, some with coinciding

vertices and others with zero length edges, etc. Indeed, the edge length lE of an edge

E may not be zero, as long as it is a curve shorter than the modeler tolerance, ε. Con-

sequently, its two vertices, V1, V2 may not coincide exactly, rather their distance is

smaller than the modeler tolerance, }
ÝÝÑ
V1V2}   ε. These entities are usually created as

a result of algorithm computations. It can be also the result of internal computations

for the model translation between STEP standard and the internal model of a mod-

eler or the opposite. Because of zero length edges and coinciding vertices, they impact

the symmetry analysis of the input shape. To avoid such an influence and obtain a

generic boundary description process, the zero length edges and coinciding vertices

should be ignored prior to the generation of the hypergraphs forming the description

of the input model MI . The criteria supporting these transformations are:

Criterion 1 If the edge length of E is smaller than the user-prescribed tolerance
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lE   εu, this edge will not be collected as an HG EDGE.

Criterion 2 If the distance between two vertices V1, V2, is smaller than the user-

prescribed tolerance }
ÝÝÑ
V1V2}   εu, the second vertex V2 will not be collected as a

HG VERTEX and its neighbor connections are moved to the first one V1.

To initialize the hypergraphs, the algorithm could be created based on criteria 1

and 2 in a first place. Then, it scans all topological faces in the B-Rep model input.

For each face, it traces the boundary edges and an arc is added in G21 for each such

edge. Using each edge of the B-Rep model, its extremities can be identified and the

corresponding vertices are created in G10. Using the faces and vertices obtained in

G21 and G10, they are inserted in G20 to populate it. After this process, the B-Rep

model is transferred to the hypergraph datastructure where all its entities are valid

within the scope of εu. It is a consistent topological representation since extraneous

entities (edges, vertices) linked to the modeler behavior have been removed and these

hypergraphs form the basic datastructure of the object boundary BMI to be processed

for symmetry analysis. This gives a precise definition of the content of MI where its

hypergraph description contains no edge smaller than εu and no vertices within a

similar distance.

As a consequence of this process, loop edges can appear when vertices are merged

that belong to tangent curves. The corresponding graph structure gets modified and

the dual graph around a vertex Vi no longer reduces to a simple loop since a face

can appear several times around Vi. It can become a set of simple loops connected

through the faces appearing several times (see Figure 4.6) or exhibit dangling arcs

when edges reduce to loops. The content of hypergraphs is no longer able to define

the orientation ofMI but the hypergraphs are not oriented and the orientation ofMI is

still available through the references to B-Rep entities accessible from the hypergraph

entities. Further details about the relationship between a dual graph at a vertex and

hypergraphs are formally given at section 4.6.
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Figure 4.6: Illustration of the effect of vertex merge operations on the dual graph GD

around a vertex V1 and V2.

4.5 Hypergraphs transformation operators

Ignoring zero length edges and merging coincident vertices are preliminary steps

of object boundary preparation. As mentioned before, the adjacent identical surfaces

must be merged to generate infinite point sets where the symmetry properties are

meaningful with respect toMI . Hypergraphs, with their operators applied to the three

hypergraphs describing MI , are related to each other. The purpose of these operators

is to generate MMAX , the model containing maximal faces and edges and having

the same shape as MI . It is the purpose of this section to describe the hypergraphs

operators individually that help breaking down the overall transformation from MI to

MMAX into simpler processes. In a first place, generic or basic operators are proposed
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to form the building blocks for maximal faces and edges generation.

4.5.1 Generic hypergraph transformation operators

A hypergraph datastructure connects to basic operators to edit its nodes and arcs.

The most basic operators are arc creation, node creation, arc and node removal. An

operation applied to an arc can be refined further down to half arc level. Adding an arc

can be further decomposed into the addition of a half arc linking the candidate node

or a half arc which already exists (see Figure 4.7a), or other variants of this operation

are depicted also in Figure 4.7a. Figure 4.7a illustrates configurations where RA is

incremented through half arc creation. Because of the node-arc connection creation,

a new node may be added to some arc neighborhood whose number of its surrounding

nodes is less than its rank (see Figure 4.7b). The effective connection of a node N to

a half arc increments its rank RN . As an example, the connection of a node N4 to an

arc already connected to a node N2 increments RN4
and RN2

both (see Figure 4.7b).

The arc and node removal operators are opposite to the creation operators. The

arc removal removes a half arc and decrements its arc rank RA (see Figure 4.7c). The

node removal deletes the candidate node N , but keeps the surrounding half arcs (see

Figure 4.7d). As a result, the ranks RAi
of the half arcs surrounding N are preserved

while the ranks of the nodes Ni surrounding N are decremented. The split and merge

operators are a couple of opposite operations, too. With the split operator, whether

it is an arc or a node, the original entity E will be split into two new ones E1, E2. Its

surrounding connections are divided into two groups and each group connects to one

of the new entities E1, E2. Consequently, if a hyperarc A or a node N is split, then

the ranks of the new ones E1 and E2 satisfies RA or RN � RE1
�RE2

.

The merge operator uses a new entity E to replace the two original entities E1

and E2 and preserves all the surrounding connections and the ranks are summed up,

i.e. RE1
�RE2

� RE (see Figure 4.8c,d). Arc contraction is a high level operator. It

can be regarded as a node merging plus an arc removal operations. The selected arc

A contracts and all nodes Ni connected to this arc are merged together to produce a

single node N : RN �
°

iRNi
� RA. As a result, the contracted arc disappears (see

Figure 4.8e). The parallel arc merging differs from the arc merging operator. It has

to happen to two arcs at least, whose ranks equal 2 and connect to the same nodes. It

can be considered that one arc only will be kept and the others are deleted, as shown

in Figure 4.8f.

These basic operators purely focus on the graph domain, independently of any

application context. As a topological data structure, the three hypergraphs describe

the boundary decomposition of MI . When these hypergraphs can be reduced to a

graph, which is the case when the B-Rep datastructure of an object is loaded and

really describes MI , this graph can be used to define the genus of MI using the Euler
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(a) (b)

(c) (d)

Figure 4.7: llustration of basic hypergraph operations (first subset).

theorem as follows:

XpMIq � #vertices�#edges�#faces. (4.1)

Here, MI designates a B-Rep model defining a volume as it can be defined in the

STEP standard or a geometric modeler. In order to preserve the Euler characteristic

XpMIq, any operation in one hypergraph must trigger some operation in the other

two hypergraphs. Because MI should be a volume and a 2-manifold boundary model

to conform to the current framework, there are several properties characterizing this

category of models in the hypergraphs. These properties support the non-manifold

configuration detection algorithm used as input to certify or transform, if needed, MI

into a real volume forming a 2-manifold model. As mentioned at section 4.4, non-

manifold vertices can exist in MI and must be removed to conform to the proposed

hypotheses. In addition, such vertices are not part of real industrial components.

Property 1 @RAi�G21, RAi�G21 � 2.

This property expresses that each edge must be exactly adjacent to two faces, a

necessary condition to define a 2-manifold. G21 is a binary graph. Using the definition

of a half arc in G21, if RAi�G21 � 2, it means the neighborhood of the edge Ai is not

a disk. So, it is either a non-manifold edge or a boundary edge or an isolated edge.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Illustration of basic hypergraph operations (second subset).

Property 2 @RAi�G20, RAi�G20 � RAi�G10.

A vertex Vi is surrounded by the set of faces rFΩVi
s and the set of edges rEΩVi

s. The
cardinality of rFΩVi

s is RAi�G20. The cardinality of rEΩVi
s is RAi�G10. Because each

edge of a 2-manifold is the intersection between two faces, the number of faces around

Vi can reach up to twice the number of edges around this vertex, hence RAi�G20 ¥
RAi�G10 (see Figure 4.9a). Any vertex Vi lies at the intersection of edges or, at

least, defines the extremities of an edge loop, so RAi�G10 ¡ 1. Complementarily, the

cardinality of rFΩVi
s has to be bounded and that of rEΩVi

s is such that RAi�G20 ¤
RAi�G10. Indeed, the number of faces gets smaller than edges when faces are bounded

by edge loops in arbitrary configurations of faces around a vertex (see Figure 4.9b).

The result is RAi�G20 � RAi�G10. This property expresses that each vertex has a

neighborhood topologically equivalent to a disk exactly: another necessary condition

to define a 2-manifold.
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(a) (b)

Figure 4.9: The illustration of RAi�G20 ¥ RAi�G10 and RAi�G20 ¤ RAi�G10.

To prepare a maximal 2-manifold model, MMAX , suited to define all the candidate

symmetry planes attached to point sets, several topological operators are needed to

transform the initial boundary decomposition of the model, i.e. MI , into maximal

entities, i.e. MMAX : non-manifold configuration detection, split non-manifold vertex,

merge surfaces, merge edges and split manifold vertex are the corresponding operators

described in the following section.

4.5.2 Non-manifold configuration detection

In a B-Rep model, depending on the geometric modeler having generated this

model, even though this modeler is said a volume modeler, it is possible that this

model MI contains non-manifold entities: either vertices or edges. Based on the expe-

rience of industrial modelers, non-manifold configurations happen at vertices for two

reasons: one is because the original B-Rep model contains non-manifold vertices, the

other derives from vertices collecting process when geometrically coinciding vertices

are merged. Under the hypotheses of the proposed approach (see Chapter 2), non-

manifold entities are forbidden. Consequently, the first task is to detect non-manifold

vertices and then to split them to produce a manifold model.

Hypergraphs form a typical topological representation of objects. A non-manifold

vertex has a special structure across the three hypergraphs describing an object. Fig-

ure 4.10 is the illustration of non-manifold configurations detection. In Figure 4.10a,

vertex V1 is adjacent to six faces forming two disks, which is highlighted in hypergraph

G20. From hypergraph G21, it can be observed that within the six faces around V1,

they connect each other into two independent loops: rF1, F2, F3s and rF4, F5, F6s. Each
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loop defines an ‘open disk’ around V1, thus characterizing the non-manifold status of

V1. Figure 4.10b is an example of a non-manifold edge, E7 characterized by a rank

RA � 4 in G21. Non-manifold edges can be easily detected to make sure that MI is

free of them and really a 2-manifold object.

(a)

(b)

Figure 4.10: Non-manifold entity detection in hypergraphs: (a) V1 is a non-manifold

vertex characterized by two disks; (b) E7 is a non-manifold edge with a two disks

neighborhood.

The purpose of the non-manifold vertex detection is to analyze the hypergraphs

neighborhood around of each vertex. The hypergraph neighborhood of a vertex Vi

is based on a subgraph of G21 to form a dual graph at Vi, which contains all its

surrounding entities (see section 4.3 for the definition of a dual graph at a vertex and

section 4.6 for the equivalence between a dual graph at a vertex and a subgraph of

G21).

The dual graph at a vertex Vi is formed from its surrounding faces and edges,

respectively. In G21, these faces and edges are represented as nodes and arcs linking

each other and each face corresponds to one node exactly. Similarly, each edge of MI

appears exactly once in G21 as an arc. At a vertex Vi, if all the edges connected at

it differs from each other and similarly, if each face connected at it differs from each

other, the corresponding subgraph of G21 forms the dual graph at Vi. As shown in

an example at Figure 4.10a, G21 contains several connected components, each one
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forming a simple loop. Indeed, it is the dual graph of vertex V1 in this case. More

generally, when loops bounding faces are tangent to each other and/or when loops

contain singular intersection points between surfaces, faces and/or edges can appear

several times around Vi, the dual graph around Vi and a subgraph of G21 restricted to

the neighborhood of Vi are still similar but they are no longer formed of simple loops

(see Figure 4.11).

Figure 4.11: The dual graph at a non-manifold vertex V1.

In a vertex dual graph, each connected component represents one disk around this

vertex. This property is used to detect no-manifold vertices (see Figure 4.10a).

The process of dual graph creation starts from an arc in G21 (an edge connected

to Vi) obtained from any half arc in G10 using Vi as input and traverses G21 up to

one of its connected node Fk (face connected to Vi). Then, it looks in G21 for the next

connected node along the arcs surrounding the current node. Because of Property. 1,

when the traversal process is going through an arc, it always can find a next node.

This traversal proceeds until it cannot find any new arc. If the last node is the start

node, the corresponding subgraph is a dual loop around Vi and forms a disk or a

subset of a disk. Otherwise, it is an open chain, which would indicate an open surface

and must not happen. Indeed, it is an open surface if an edge in G21 is not connected

to two faces otherwise a dangling edge in the dual graph indicates a loop edge (see

Figure 4.11).

If the half arcs attached to Vi in G10 haven’t been all visited, other loops exist

around Vi. When traversing G21, a node can be reused to form loops connected to

each other, but each arc can be traversed only once. If there are arcs left in G10, the

traversal will start over again within the arcs left to create a new component of dual

graph, until all the G10 arcs are traversed.

Finally, several new graphs are created. They form dual graphs GDi
at all the

model vertices. Because of Property 2, MI describing a volume, there must not be

any open chain existing around Vi. However, if a face Fk appears p times around Vi,

p ¡ 1, GDi
contains pp � 1q loops connected at Fk rather than a simple loop around

Vi. In addition, if q loop edges bound faces attached at Vi, GDi
contains q dangling
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Figure 4.12: Three different dual graphs: (a) a non-manifold vertex Vi; (b)(c) at

manifold vertices Vj , Vk.

edges. Anyhow, Vi is still a manifold vertex in each of these configurations as long

as GDi
contains only one connected component. For example Figure 4.12 illustrate

three possibilities of dual graphs at vertices: (a) GDi
two connected components, Vi

is non-manifold, (b) GDj
reduces to a simple loop, Vj is manifold, (c) GDk

contains

several loops and dangling edges forming a single component, Vk is manifold. The

main criterion of the algorithm to detect non-manifold vertices using the dual graph

components extracted from the hypergraphs can be summarized as:

Criterion 3 For each vertex Vi:

using its surrounding faces rFΩVi
s and edges rEΩVi

s, and traversing G21 using G10 to

create a dual graph GDi
:

if GDi
contains more than one component, Vi is a non-manifold vertex;

if GDi
contains one or more dual loops, each one sharing nodes with another dual loop

and/or if dangling edges are connected to these loops such that GDi
contains only one
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connected component, Vi is a manifold vertex.

4.5.3 Non-manifold vertex splitting

Having identified the non-manifold vertices, they are subjected to the following op-

erator. The non-manifold vertex splitting process uses the split arc operator described

at section 4.5.1. After non-manifold vertex detection, each dual graph GDi
contains

several connected components that divides rFΩVi
s and rEΩVi

s into the same number

of components, Nc. The number of connected components minus one pNc � 1q is the
number of times Vi has to be split. After the non-manifold vertex splitting process,

from a topological point of view, there are several coinciding vertices but the shape

of MI has not changed. Indeed, these coinciding vertices point to the same geometric

points. MI described with the hypergraphs has been changed into a manifold model

MMI suited for symmetry analysis purposes. The non-manifold vertex splitting pro-

cess is as follows for each dual graph GDi
:

• Traversal of the first pNc�1q components in GDi
to group the nodes in G20 and

G10;

• Generate the corresponding groups as reference, split arcs in G20;

• Generate the corresponding groups as reference, split arcs in G10.

4.5.4 Faces merging operator

In order to generate the maximal faces of the B-Rep model MMI , a merge faces

operator is needed. At first, the merge operation should only happen between adjacent

faces, Fi, Fj . Because of Prop. 1, after merging these faces, their common edge will

disappear (see Figures 4.13, 4.14). So, in hypergraph G21, the merge faces operator

becomes an arc contraction operation where the new face is located in node Fi,j (see

Figure 4.13a, b).

In G10, the edge loss can be represented with a node removal operation. But only

removing this node in G10 is not enough to preserve the topological consistency of

the B-Rep model. Indeed, from a topological point of view, the edge removal is not

only removing the common edge, but also removing the links between this edge and its

extreme vertices. With the definition of a hyperarc in G10, after the node removal, the

half arc connecting to the removed node must be removed too, reducing the rank of

the corresponding hyperarc. In this case, a half arc removal is needed in G10. Because

of Prop. 2, a hyperarc in G20 should be subjected to the same operation. Figures 4.13

and 4.14 illustrate the successive elementary steps of a face merging operation with
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the hypergraphs transformations. F1 and F2 are merged and E3 is removed. In

Figure 4.13b, the related arc in G21 contracts. The node merging and node removal

follow in G20 and G10. Then, modifying the hyperarcs in G20 and G10 is obtained

using the half arc removal operator to reduce the arc rank. Figure 4.13b,c represents

a complete process of faces merging operator and d, e forms another configuration of

face merging operation where the two candidate faces are identical, i.e. the edge to be

removed is internal to a face. This time, F1,2 describes only one face, the node merging

operation in G20 does not change anything. The vertex V2 becomes an internal vertex

and is deleted. The face merging process can be summarized as follows:

• Ei connects faces Fj and Fk in G21 and it connects Vs and Vt in G10;

• select the edge Ei for deletion because faces Fj and Fk need be merged;

• contract arc Ei in G21;

• merge nodes Fj , Fk in G20;

• remove node Ei in G10;

• remove the half arcs to reduce the rank of Vs and Vt in G20 and G10.

The topology of MMI is now transformed into a new one and the maximal face

generation is the first boundary transformation process applied.

4.5.5 Edge merging operator

In Figure 4.14b, E1 and E4 are geometrically defined as semi-circles having the

same radius and centre, so they can be merged to form a maximal curve. The edge

merging operator applies to a vertex V linking no more than two edges and this vertex

belongs to the intersection between the faces partially bounded by E1 and E4 in the

present example. In other words, edge merging reduces to a vertex removal operation.

This operator starts in G10. Similarly to the face merging operator, it performs an arc

contraction, too. WithinG20, the arc related to V is deleted. Because two edges merge

into one edge, in G21 the operation is a parallel arc merging operation. Figures 4.15

and 4.16 show the details of the edge merging operator applied successively to V1 and

V3. After applying the edge merging to V3, the edge E1,4 appears as an isolated node

in G10 and it isolates F1,2 in G20 too, where the face is bounded by E1,4 only.

The particular case where the rank of V is null, which means that V is isolated,

is included in this operator since it is a configuration possibly resulting from the face

merging operator but it needs a vertex removal operation, which is the content of the

edge merging operator. The edge merging process summarizes as follows:
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(a)

(b)

(c)

Figure 4.13: The steps of the face merging operator (first subset): (a) is the original

B-Rep model MMI (subset) and its hypergraphs; (b),(c) are the removal of E3 to

merge S1 and S2.

• After applying the face merging operator, the arc rank of Vi in G10 is RVi
P

t0, 1, 2u;

• if RVi
� 0, it is isolated:

remove arc Vi in G20;

remove arc Vi in G10;

• if RVi
� 1, Vi lies on one edge, which is a loop edge that has coinciding extreme

points:

remove arc Vi in G20;

remove arc Vi in G10;
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(a)

(b)

Figure 4.14: The steps of the face merging operator (second subset): (a), (b) are the

removal of E2 to “merge” S1,2 with itself.

• if RVi
� 2, Vi connects edges Ej and Ek that should be merged:

contract Vi in G10;

remove Vi in G20;

apply the parallel arc merging operator to Ej and Ek in G21.

The edge merging process carries on the boundary transformation process of MMI

that becomes now MMAX if there is no singular point among the boundary vertices

of MMI .

4.5.6 Manifold vertex splitting operator

This operator aims at modifying the boundary decomposition at vertices when

face loops produces some singular configurations that will be described in the next

section. It is applied after the face merging operator and before the edge merging

one so that the latter one produces the MMAX model. This operator is mandatory to

avoid loosing symmetry or axisymmetry information when analyzing MMAX .

Manifold vertex splitting at Vi is more complex than the non-manifold vertex split-

ting operator. It contains arc insertion, node insertion and node merging operators
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(a)

(b)

Figure 4.15: The elementary operations of the edge merging operator (first subset):

(a) is the original area of an MMI model and the corresponding hypergraph where V2

is the first vertex to be removed as an example of isolated vertex; (b) and Figure 4.16a

are V1 and V3 sequential removals.

as elementary operators because it incorporates a face merging operation (see Fig-

ure 4.17). For sake of simplicity, this operator is illustrated here with the example of

Figure 4.17 where the graph around V1 is a simple loop. The next section will state its

generic criteria and describe it more formally. Globally, this operator needs the sup-

port of a dual graph for the candidate vertex V1: GD1
. More generally, this dual graph

reduces to a subset of G21 restricted to Vi. Then, the first elementary task is to select

in GD1
the nodes defining the two faces to be merged, here F3 and F7 because they are

assumed to be identical reference surfaces around V1. After this merging operation,

the nodes surrounding V1 in GD1
form two loops indicating how the surfaces and edges

can be divided into two groups (see Figure 4.17b). These groups are used to update

G21. The other hypergraphs will be divided into the similar groups of faces and edges

in G20 and G10, respectively. In G20, the two groups of nodes pF7, F1, F2, F3q and

pF3, F4, F5, F6, F7q, are used as input for the arc splitting operation. Following the arc

splitting operation, the merged faces F3 and F7 in G21 are now merged in G20. At

same time, the arc V1 is split into V 1
1
and V 2

1
. In G10, only the arc splitting is needed
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(a)

(b)

Figure 4.16: The elementary operations of the edge merging operator (second subset):

Figure 4.15b and (a) are V1 and V3 sequential removals; (b) is the configuration after

removing V1, V2 and V3 to merge E1 and E4.

based on the unique sets of edges defined in G21: pE7, ..., E2q and pE3, ..., E6q.

A more generic statement of this operator applied at Vi summarizes when the split

operation appears between two nodes of a simple loop that are not shared with other

loops:

• In the dual graph GDi
(based on G21) of Vi, select the nodes Fj and Fk to be

merged and generate the groups described by the resulting loops: Fj , ..., Fk�1, Fk

and Fk, Fk�1, ..., Fj�1, Fj ;

• In G21, merge the nodes Fj and Fk;

• In G20, split the hyperarc which represents Vi with either of the two couples of

sets, merge the nodes Fj and Fk;

• In G10, split the hyperarc with the edge sets pEj , ..., Ekq and pEl, ..., Etq derived
from G21, which represents Vi.
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Also, GDi
can have a more complex structure with loops connected to each other

and possible dangling edges, then the splitting operation can take place either at

a common node between two or more loops or between loops and dangling edges.

Further insight about these configurations is described in the next section.

(a)

(b)

Figure 4.17: An illustrative example of a manifold vertex splitting process: (a) the

initial configuration at V1, (b) the new configuration after splitting V1.

4.5.7 Maximal face and maximal edge merging criteria

The reason for the maximal face and edge preparation is that geometric model-

ers, as well as file exchange standards, produce B-Rep decompositions subjected to

topological criteria (see section 2.3) that differ from those needed for symmetries and

integrate also the designer’s construction process, e.g. a surface of revolution or a

circular boundary can be divided into pieces. All these surfaces are adjacent to each

other to produce a closed and C8 boundary since the surface is identical on both

sides of the edges subdividing the same geometric entity. But this subdivision may

take place at arbitrary locations, hence loosing symmetries when the object is ana-

lyzed from its B-Rep decomposition, MI . From the symmetry property point of view,

the point sets forming BMI should be as large as possible, i.e. these subdivided sur-

faces need be merged. This is the concept of maximal surfaces and maximal curves
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corresponding to maximal faces and edges as topological entities.

From the topological point of view, in a 2-manifold B-Rep model MMI defined by

a set of faces rF s, i P t1, ..., nu, each edge is strictly connected to two faces. Each

face Fi is bounded. Without boundary constraint, considering only the reference

surface intrinsic parameters and its location associated with Fi, there may exist faces

adjacent to Fi whose reference surfaces are identical to that of Fi. Let Fj be one these

faces, then Fi and Fj are called homologous faces. Because this concept refers to the

reference faces of Fi and Fj , they are noted rFi and rFj , respectively. These faces being

homologous to each other, it is noted rFi � rFj .

Consequently, the maximal face generation process scans all the edges of MMI .

When detecting that a pair of adjacent faces are homologous, the hypergraph operator

“Face merging” is triggered to merge them. The criterion for adjacent face merging

can be simply stated:

Criterion 4 If two adjacent faces Fi and Fj share the edge Ek and are homologous:rFi � rFj, these two faces must be merged and Ek is deleted.

To identify the homologous faces, surface intrinsic parameters comparison criteria

are needed. The method for intrinsic parameters comparison contains three parts:

• do Si and Sj belong to the same type of reference surface?

• are the geometric parameters of Si and Sj identical?

• are the location of Si and Sj coincident?

The geometric parameters of surfaces have been introduced in section 3.2 to get

more insight into the above conditions. When grouping the reference surfaces, the

homologous faces criterion can be stated follows:

Criterion 5 Considering two planes Fi and Fj, if their respective normals ~ni and ~nj

are colinear and their reference point Pi lies in Fj and reciprocally for Pj, these planes

coincide.

Criterion 6 Two revolution surfaces (cylinders, cones, tori) Fi and Fj, are homolo-

gous if their axes coincide. The radii of cylinders, the angle of cones and the two radii

of tori must be identical.

Criterion 7 Two spheres Fi and Fj, are homologous if their centers coincide and

their radii are identical.
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Regarding orientation, at any point of the common edge between Fi and Fj , their

tangent planes coincide. Hence, their respective normals ~ni, ~nj can produce two

configurations only ~ni �~nj � �1. As defined by the existing orientation of MMI , these

normals define its interior/exterior. Having ~ni �~nj � �1 would prescribe interior, resp.

exterior, partitions on two opposite sides at the same point (see Figure 4.18), which

is not possible. ~ni � ~nj � 1 derives from the orientation of MMI , which is the only

solution left, hence no operation needs to take place about orientation.

Figure 4.18: Opposite orientations of adjacent faces cannot happen when they are

homologous to each other.

When finishing the face merging process, the set of maximal faces rFMis, i P
t1, ...,mu, m ¤ n, has been generated because all the edges of MMI have been visited

and the merging process is strictly increasing the area of surfaces. Consequently, at

every edge left, its adjacent faces have different intrinsic parameters, i.e. these edges

characterize a curvature discontinuity in BMMAX .

The next step is the maximal edge generation. Between two adjacent maximal

faces FMi and FMj , the intersection curve contains a set of points on the open interval

defined by the two extreme points of this curve. This property derives from the

property of a B-Rep NURBS modeler where every point Pk of each edge Ek of MMI ,

bounded by vertices Vr, Vs, is the image of a unique intersection point between FMi

and FMj ; except at Vr and Vs, i.e.:

w
f
ÝÑ pui, viq

~Pk � ~Pkpwq � ~Pipui, viq unique

w
g
ÝÑ puj , vjq

~Pkpwq � ~Pjpuj , vjq unique

where f , g are bijections. Vertices Vr, Vs can be the locations of singular points such
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that:

Dw1, w2 { ~Pkpw1q � ~Pi � ~Pj � ~Pkpw2q,

see Figure 4.19.

Figure 4.19: A configuration of intersection curve with a singular point ~Pk. ~Pk can be

the location of two vertices Vr, Vs. The parametric representation of Ek contains two

coinciding points ~Pkpw1q and ~Pkpw2q.

After the maximal face generation process, if a vertex is only connected to two

edges, Ek, El, surely it lies on the intersection between faces FMi and FMj . Ek and

El are continuous and their common vertex Vr is assumed to be a regular intersection

point. Consequently, Vr must be deleted. The criterion to merge adjacent edges in

this configuration states:

Criterion 8 After surface merging, if the rank of a hyperarc Ai in G10 equals or less

than 2, the corresponding vertex Vi must be removed and the two nodes representing

its adjacent edges Ek, El must be merged.

Because Vi may not be a regular intersection point between FMi and FMj whenrFMi and rFMj are tangent to each other at Vi (see Figure 4.20a). Indeed, Vi satisfies

criterion 8 and Ek, El form a C0 curve but Vi is singular and this curve is not C1 (see

Figure 4.20b), which may influence the symmetry analysis of MMI . A configuration of

tangent reference surfaces produces singular intersection points and two alternatives

can be proposed to process adjacent edges with such vertices:

• Add a geometric criterion to merge edges when C1 continuity is ensured at their

common vertex, i.e. V1 in Figure 4.20b would not be removed;

• Leave Crit. 8 as it is while ensuring the proper generation of candidate symmetry

planes.
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Indeed, both of them can be used and will be discussed in chapter 5. In the present

chapter, Crit. 8 is left as it is, which produces the largest possible edges.

(a) (b)

Figure 4.20: A continuous edge with a sharp point after the maximal edge generation:

(a), P1 connects to two curves, (b) from a topological point of view, Σ1,2 forms a single

edge E1,2.

4.6 Vertex splitting at regular and non-regular points

In order to generate the maximal boundary of MMI containing the maximal point

sets for symmetry analysis, Crit. 4 and Crit. 8 are necessary conditions but not suf-

ficient. When a set of faces rFΩVi
s shares the same vertex Vi, such as in a tangent

surfaces configuration, Vi can connect with more than two edges (see Fig 4.22a). Ac-

cording to the curves defining the edges attached at Vi, maximal edges could be derived

from these edges but their continuity is somehow broken by Vi. Within rFΩVi
s couples

of surfaces p rF1, rF4q and p rF3, rF5q are homologous, but because they only intersect at a

vertex V1, Crit. 4 cannot be applied.

Figure 4.21a is an illustration of another configuration and is also analyzed as a

preliminary example. The curves pΣ2 Y Σ3q and segments pΣ1 Y Σ4q are tangent to

each other at P1. Their common vertex V1 breaks their continuity. As of the rest of the

boundary decomposition, local symmetry properties are not correctly represented and

this model representation is still not describing a maximal boundary decomposition.

In this example, the cylinder surface S3 is not axisymmetric because of vertex V1. In

order to follow the maximal edge hypothesis, Σ2 and Σ3 should be merged into one

curve forming an edge without a vertex, Σ1 and Σ4 should be merged also as one

segment. This requires a manifold vertex splitting operation. Vertex V1 will be split

into three vertices and the faces p rF1, rF4q can be merged as well as rF3 can benefit of

axisymmetry property. Then, the edge merging operation can be applied. In the end,

the topological structure conforms to Figure 4.21b where the structure of rF2 has been

modified from one bounding loop to two loops.

The two above examples show that singular intersection points, faces with bounded
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by tangent loops and homologous faces connected to each other through a vertex

characterize the criteria of the manifold vertex splitting operation.

(a) (b)

Figure 4.21: An example configuration where curves bounding surfaces are tangent to

each other. The continuity of the corresponding edges is broken at P1: (a) the initial

B-Rep model MMI , (b) the maximal boundary model MMax.

The interesting thing is that not all the similar cases produce a manifold vertex

split operation. For example, in Figure 4.22, the local structure looks similar to

Figure 4.21a. Indeed, when analyzing the faces surrounding point P1, the cylindrical

faces FM3 and FM5 are homologous. P1 connects with S2 twice, i.e. on both sides of

P1. Obviously, FM2 is homologous to itself. Also, the planar surfaces FM1 and FM4

are homologous. Now, the difference between Figure 4.21a and 4.22a is that the pairs

of homologous surfaces in Figure 4.22a are crossing each other, i.e. pS3, S5q ‘crosses’

pS1, S4q, pS3, S5q ‘crosses’ pS2, S2q when considering their adjacencies around P1. If V1

is split and some pairs of homologous surfaces are merged, the continuity properties of

other surface pair(s) cannot be achieved. Currently, there is no criterion available to

select a pair of homologous faces to be merged or to be broken (see Figure 4.22b and c).

Because the vertex splitting operation is not unique in the present configuration and

there is no criterion appearing to justify the choice of one solution, no vertex split

should take place. Consequently, the point P1 is called a non-regular vertex and if

the point could be split it is called a regular vertex. To distinguish the regular and

non-regular configurations at vertices, the definition is as follows:

Definition 3 Considering a vertex Vα of MMI , Vα is surrounded by n ordered sectors

Φi and n ordered edges ηi, i P r1, ns, n ¥ 3, based on the adjacency relationships

between the edges attached at Vα. A sector of a face FMj is formed by two adjacent

edges of FMj whose common vertex is Vα. Based on the input model MMI , there exists

an order of sectors available from the real B-Rep datastructure of MMI that defines

the disk around Vα as part of the B-Rep model, i.e. its orientation is consistent with

that of the B-Rep. Because the sector and edge numberings differ for each one, a dual

graph based on Φi and ηi, restricted to Vα, can be generated that forms a simple loop

around Vα.
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Now, let us consider that there exists at least a couple of homologous sectors:

DpΦi,Φjq {rΦi � rΦj, pi, j ¤ nq, i   j.

If there exists at least another couple of homologous sectors: DpΦk,Φqq {rΦk � rΦq,

pk, q ¤ nq, pΦi,Φjq and pΦk,Φqq are said to cross each other if i   k   j and j   q ¤ n

or 1 ¤ q   i. This configuration is qualified as non-regular configuration at vertex

Vα and Vα cannot be split for pΦi,Φjq and pΦk,Φqq.

If there exists one or more homologous sectors only: DpΦk, . . . ,Φqq {rΦk � . . . �rΦq, k, q, . . . ¡ i and k, q, . . .   j, pΦk, . . . ,Φqq are not crossing pΦi,Φjq and form a

regular configuration at Vα. Vα can be split to assign its copy to the sectors Φt,

t P tpi� 1q, . . . , pj � 1qu

Otherwise, the configuration at Vα is said neutral because the vertex split is not

meaningful for it.

It has to be noted that each sector Φi maps to one face FMl of MMI but FMl may

generate several sectors Φi, Φj, . . . .

(a) (b) (c)

Figure 4.22: An illustration of non-regular vertex P1: (a) the original B-Rep model

MMI , (b) and (c) are two possible maximal configurations.

Figure 4.22 is an illustration of non-regular configuration. In this figure, surround-

ing point P1, rΦ3 � rΦ6, rΦ1 � rΦ5 and rΦ2 � rΦ4. pΦ3,Φ6q is crossing pΦ1,Φ5q as well as
pΦ2,Φ4q. Hence, this is a non-regular configuration at P1.

Back to the example in the Figure 4.21. rΦ1 � rΦ5 and rΦ2 � rΦ4, but both of them

are not crossing each other. Hence, this example is a regular configuration at vertex

P1.

Given this regular configuration at point P1, the face merging process is applied as

follows. Its surrounding faces can be detected easily. In Figure 4.24b, the correspond-

ing sectors are pΦ1,Φ2,Φ3,Φ4,Φ5,Φ6,Φ7q. Because sectors Φ2 and Φ4 are homologous

as well as Φ1 and Φ5 and these couples are not crossing each other, vertex V1 can be

split and face FM1 can be merged with FM4. Also, the splitting operation removes

the tangent loop in FM2.

Based on the previous qualitative analysis, the purpose is now to formalize the



92 Chapter 4

Figure 4.23: Dual graph based on sectors Φi at Vα and corresponding transformations.

characterization of the configurations and set the corresponding operators. Starting

from the distinct sectors mentioned in definition 3 that form a simple loop, the purpose

is to connect the transformations of this loop through the homologous sectors to the

maximal faces of MMI . To this end, let us consider any two homologous sectors Φ̃i,

Φ̃j , i � j. Because they are homologous to each other, this property can be expressed

in the simple loop by merging Φi and Φj to produce Φi,j . Consequently, this simple

loop becomes two tangent simple loops at the node Φi,j if |i� j| ¡ 1 (see Figure 4.23):

Φi,j , Φi�1, . . . , Φj�1 and Φi,j , Φj�1, . . . , Φn, Φ1, . . . , Φi�1. Indeed, |i � j| ¡ 1

holds because Φi and Φj cannot be adjacent otherwise they would belong to the same

maximal face, which contradicts the fact that every sector belongs to a maximal face.

Now, let us consider the following consequences:

a If Φi and Φj belongs to the same maximal face FMk, this merging operation sets

a one to one mapping between Φi,j and FMk;

b If two of the edges ηt attached to Φi and Φj are mapped to the same edge Ep of

MMI , then these edges ηr and ηs may be merged to set a one to one mapping

with Ep. If ηr and ηs connect to the same sector of index such that i�1 � j�1,

i.e. there is only one sector between Φi and Φj , then ηr and ηs can be merged

and form a dangling arc to connect Φi,j to Φi�1. Otherwise, if the sectors Φk,

Φl connecting to ηr and ηs are mapped to non homologous faces FMp, FMq,

these edges cannot be merged since merging would produce a hyperarc, which

contradicts the fact that the neighborhood of Vα is manifold.

Assuming that all homologous sectors Φ̃i, Φ̃j producing a one to one mapping

between Φi,j and FMk are effectively merged and that all edges ηi that can be merged
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are effectively merged, the resulting graph structure has a one to one mapping between

each of its nodes and a face FMk and a one to one mapping between each of its arcs

and an edge Ep. Consequently, the resulting graph pΦ, ηq is isomorphic to a subset of

hypergraph G21 restricted to the faces and edges connected at Vα: G21|Vα
. Because

of this isomorphism, the subsequent analysis is performed on G21|Vα
. Based on the

B-Rep datastructure of MMI , it can be assumed that the simple loops tangent to each

other and the possible dangling arcs are available to structure G21|Vα
.

Now, repeating the face merging process for any set of m homologous faces FMp,

FMq, . . . , in G21|Vα
produces new loops and two configurations may occur:

• All the homologous faces belong to the same simple loop, then the merge oper-

ation creates m new simple loops only from this initial loop;

• Homologous faces belong to different simple loops, then the merge operation

creates m new loops among which there can be simple loops and at least one

connection between existing simple loops.

Applying a vertex split operator to this graph structure transforms it as follows:

the split has to be associated with a face FMk of G21|Vα
and is submitted to the

configurations regarding its surrounding b edges Ei:

• If there exist h edges Ej , El, . . . whose ranks in G10, Rj�G10 � Rl�G10 � . . . � 1,

i.e. these edges are loop edges defined by a single vertex, they may generate up

to h split operations of FMk;

• Either h � 0 and b is even or h ¥ 0 and b� h is even, then Ei generates either

d � b{2� 1 or d � pb� hq{2� 1 split operations, respectively.

Then, the effect of the split is the d-times duplication of FMk whose rank is RNk:

FMk Ñ pF 1

Mk, . . . , F
d
Mkq and the connection of each F

j
Mk with a subset of Ei to

terminate each elementary split. Then, each termination of elementary split with

an increment of the number of components in G21|Vα
characterizes a regular con-

figuration and each elementary split without this increment is not terminating and

characterizes a non-regular configuration. A completed elementary split creates a

new component in G21|Vα
because it is assigned to the new copy of FMk, showing

that the neighborhood of this new vertex can be independent of that of Vα, which is

the purpose of the splitting mechanism. Similarly, a non terminating elementary split

reflects a configuration where no independent neighborhood can be found in Vα that

can be assigned to a new vertex. Hence, the vertex split criterion can be stated as

follows:

Criterion 9 Having merged all the sets of homologous faces connected at vertex Vα,

the hypergraph G21|Vα
restricted to the neighborhood of Vα is transformed with new
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connections. The type and number of edges Ei connected at Vα generate d candidate

elementary vertex split at nodes FMk. The ith elementary vertex split characterizes a

regular configuration of FMk at Vα if it increments by one the number of connected

components in G21|Vα
. As a result, the homologous faces merged to generate this

configuration can be effectively used to generate a independent neighborhood for the

new vertex generated by the elementary split.

If an edge Ei is a loop edge: Ri�G10 � 1 and if it belongs to a dangling edge or,

more generally, a branch of G21|Vα
, any copy of FMk: F

j
Mk connects to Ei, is assigned

a rank R
N

j
k

� 1 and creates a new component in G21|Vα
, which really terminates

this elementary split. If Ei is a loop edge and belongs to a loop of G21|Vα
, a copy

F
j
Mk connects to it and the new content of G21|Vα

is scanned to look for an increment

in the number of components. If its number of components has not been modified,

this elementary split is not performed and characterizes a non-regular configuration.

Repeating this process h � 1 times if b � 0 or h times if b ¡ 0 leaves b � h edges to

connect to copies of FMk.

Based on the current content of G21|Vα
, each copy F

ph�1q
Mk or F h

Mk, . . . of FMk left

is connected to two edges of Ei in accordance with the loop structure associated with

G21|Vα
. If this copy and its new connections in G21|Vα

create a new component, this

elementary split terminates and characterizes a regular configuration. Otherwise, the

configuration is non-regular. If the configuration is non-regular, some of the homol-

ogous face merge are no longer necessary because they are not meaningful. Therefore,

it is necessary to restore these loops to obtain a consistent face decomposition. To

this end, let us first consider that all the nodes candidate to the split operation have

been processed, extracting components from the initial G21|Vα
. Then, the component

left in the final version of G21|Vα
can contain nodes that were connected to simple

loops in the initial G21|Vα
. Consequently, the purpose of the transformation of the

current version of G21|Vα
consists in splitting all the nodes connecting multiple loops

to produce simple loops as large as possible but preserving the connections between

loops that were existing in the initial version of G21|Vα
.

Once all the regular and non-regular configurations have been identified through

the splitting process and the non-regular configurations have led to split face nodes

resulting from unnecessary face merge operations, it forms a subset G210 of the trans-

formed G21|Vα
. Then, the graph components generated for each regular configuration

needs to be connected again to G210 to obtain the correct version of G21|Vα
to be

inserted in G21 (see Figure 4.24 as an example of this process).

Now, coming back to examples, focusing on vertex V1 in the configuration depicted

at Figure 4.21, Figure 4.24a, b gives the hypergraph G21|V1
as well as G20|V1

providing

the set of faces surrounding V1 and G10|V1
describing the set of edges surrounding

V1, as starting point of the face merging and vertex split processes. Figure 4.26a
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illustrates the underlying connection between G21|V1
and the initial dual graph based

on sectors. Figure 4.24d illustrates the result of the face merge step in G21 and G20

where FM1 and FM4 are homologous to each other and become FM1,4. G10 represents

the configuration when FM1,4 is being processed for splitting. The set of edges Ei

connected to FM1,4 does not contain loop edges ph � 0q resulting in d � 1 elementary

splits. Figure 4.24c, illustrates the result of this elementary vertex split producing V 1
1
.

Figure 4.26b contains the new structure of G21 showing the component created with

V 1
1
. Figure 4.26b contains also the transformation attached to the next candidate face

in G21, i.e. FM2. FM2 is a pre-existing node in G20|V1
producing tangent loops. There

h � 0 and d � 1, G20 and G10 show the results of the corresponding elementary split:

V 2
1
. Figure 4.26b is the graphical representation of the split generating V 2

1
. Finally,

Figure 4.26b summarizes the final configuration after performing all the vertex splits

and subsequently the edge merge operation resulting in EM1,4 and EM2,3. Then,

Figure 4.25d represents the new local content of G21, G20, G10 to be inserted in

these hypergraphs. It can be noticed that FM2 and FM3 are now disconnected from

FM1,4 in G20 but will be connected to other surrounding faces. EM2,3 becomes an

edge without vertex and EM1,4 will be connected to extreme vertices of E1 and E4.

Comparing Figure 4.26a and b shows that the orientation of MMI contained in

the initial dual graph at V1 cannot be conveyed in the hypergraph G21 resulting from

the face merging process. However, this orientation is not mandatory for performing

the face merge and vertex splits, which is a property of this process even though it is

not formally demonstrated here.

Because F2 is homologous with itself. The next work is to “merge” them and

in this example the vertex V1 of Figure 4.21 can be split again. The last step is to

merge the edges using criterion 8, because the previous steps may create some vertices

connected only to two edges (see Figure 4.25d). All the operations in the hypergraphs

follow the hypergraph basic editing operations described at section 4.5.1.

Another example configuration is illustrated in Figure 4.28a with a set of eight

faces around V1. In this case, the homologous faces form a larger set rF1 � rF3 �rF5 � rF7 (see Figure 4.28b). Within the set of faces, there is no other homologous

faces. Regarding the criterion 9, after merging these four faces (see Figure 4.28d), the

face FM1,3,5,7 is the only candidate face for vertex split with h � 0 and d � 3. In

the present configuration, each elementary split in G21|V1
produces a new component,

thus characterizing a regular configuration. Figure 4.28c and d respectively, show the

resulting vertex configuration and the effect of the splits in G20 and G10.

Finally, the configuration of Figure 4.22 is used to illustrate how G21|V1
is trans-

formed into a configuration where FM3,5 and FM1,4 are candidate nodes for the vertex

split operator but this operation cannot terminate, highlighting the non-regular con-

figuration (see Figure 4.27).

Through the previous sections, all the processes and criteria have been clarified to
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(a) (b)

(c) (d)

Figure 4.24: The successive steps to process homologous faces at a regular vertex

through merging operations and vertex split. The final edge merging operation is also

illustrated (first subset).

generate a boundary decomposition from the initial B-Rep model MI that is suited

for its symmetry analysis. After some processing depending on the conformity of

MI with respect to a 2-manifold model, MI can be transformed into MMI with the

non-manifold vertex split. Then, the boundary decomposition of MMI is modified to

meet the symmetry analysis requirements. To this end, the maximal faces are gener-

ated with the face merge operator to remove edges between homologous and adjacent

surfaces. Maximal faces are further extended with the merging process of faces adja-

cent to each other through a vertex using a manifold vertex split. The resulting face

neighborhoods are extended around their common vertex. Finally, maximal edges are

produced through a vertex removal operation between adjacent edges. The resulting

model is MMAX that has a boundary decomposition intrinsic to the object shape

and operational for symmetry analysis. The overall process enumerated previously is

summarized in Figure 4.29.

It has to be reminded that the boundary description MMAX contained in the

hypergraphs has no effect on the geometric description of the object. All the trans-

formations performed are strictly topological and have no influence on the surfaces,

curves and points describing the object. Further, the datastructure set up estab-
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(a) (b)

(c) (d)

Figure 4.25: The successive steps to process homologous faces at a regular vertex

through merging operations and vertex split. The final edge merging operation is also

illustrated (second subset).

lishes a connection between the B-Rep CAD topological description of the object and

the hypergraphs structuring this object boundary in accordance with the symmetry

requirements. Consequently, the hypergraphs content combined with the geometric

data describing the object can be seen as a view of the object devoted to its symmetry

analysis. In the framework of a PDP, it is effectively a view of the object similarly to

the approach proposed by Foucault et al. [18] devoted to mesh generation constraints

for finite elements simulations.

Finally, for the sake of simplicity, maximal faces and edges respectively noted FMi

and EMj in this chapter will be noted as Fi and Ej in the following chapters since

all the subsequent treatments for symmetry analysis will be performed on an object

decomposition using the maximal faces and edges.
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(a) (b) (c)

Figure 4.26: The dual graph from Figure 4.24b in G21|V1
with its surrounding sectors:

(a) initial dual graph showing that the merge faces produce regular configurations,

(b) resulting graph after the face merging processes.

(a) (b) (c)

Figure 4.27: Graph transformations of G21|V1
based on Figure 4.22: (a) the status of

homologous faces; (b) the homologous configurations of faces showing that the split

vertex operator; (c) one homologous faces won’t split the graph.
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(a) (b)

(c) (d)

Figure 4.28: A special case of non-regular vertex: (a) The B-Rep model; (b) local

hypergraph around the regular vertex V1; (c) the result after splitting; (d) the result

of local hypergraph.
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Figure 4.29: The process flow of creating hypergraphs describing a maximal boundary

decomposition from an initial standard B-Rep model MI . The resulting model is

MMax, which is used for subsequent symmetry analysis.



Conclusion 101

4.7 Conclusion

Starting form a B-Rep model conforming to the STEP format to ensure a large

compatibility with industrial modelers, this chapter has described how the transfor-

mation of the boundary BMI of the input model MI can be achieved to meet the

requirements for the symmetry analysis of MI .

The symmetry analysis relying on a global approach using infinite point sets,

the surfaces and curves forming BMI are subjected to modeler constraints related to

topological properties needed to characterize a volume. Consequently, faces, edges and

vertices needed for this purpose differ from the requirements of the symmetry analysis

where the topological description of faces, edges and vertices have cross influences on

the boundaries of the infinite point sets covering MI , i.e. prescribing edges bounded

by two vertices generate bounds on closed curves that can remove their axisymmetry

properties.

Similarly, a modeling process as conducted by a designer during a PDP impacts the

object boundary with a face, edge and vertex decomposition that does not necessarily

meets the decomposition needed for its symmetry analysis, i.e. splitting an edge

subdivides a curve whose symmetry planes attached to its pieces may differ from that

of the entire curve.

Hypergraphs have been the basic tools for topology description that have been

used to describe an object boundary that is intrinsic and meets the symmetry analysis

requirements. The particular structure of edges defined with one or no vertex at all

are among these requirements to preserve the symmetry properties of the object and

justify the use of hypergraphs.

Then, the proposed operators aimed at transforming an object into a 2-manifold

if it has no impact on its shape, as perceived by a designer and, most important, they

are devoted to the generation of the object boundary decomposition into the largest

possible areas of infinite point sets spanning each dimension of entities describing the

object boundary, i.e. faces, edges, vertices. This means that each operator and its

associated criteria:

• Produce a larger point set than each of its initial operands. Merging faces fits

into this category to extend the associated surfaces embedded in the object

boundary and merging edges is similar for curves;

• Remove a point set of lower dimension to effectively modify its boundary. Merg-

ing faces can be associated to the edge removal or to the co-called manifold

vertex split that merges also faces while removing their common vertex.

All these operators generate the MMax model of the analyzed shape, which forms

the input for the divide and conquer process used to analyze the symmetry properties
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of this shape. The next chapter addresses the ‘divide’ phase of the symmetry analysis

with the study of the candidate symmetry planes that can be assigned to each face,

edge or vertex of the object boundary and their assignment process.
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Symmetry planes of point sets

defined from surfaces and curves

The algorithm of reflective symmetry analysis is based on the boundary decomposition

model with maximal point sets, i.e. maximal surfaces and curves, and the corresponding

data structure is now available in the hypergraphs of MMax. They form the elements of

BMMax and their symmetry properties are analyzed and categorized. Here, a symmetry

plane valid over the area of a maximal point set is named a Candidate Symmetry

Plane(CSP). These semi-global areas are the smallest areas used to define symmetry

planes. Several categories of CSPs are introduced depending on their attachment to

vertices, edges or faces of the hypergraphs for point sets intersecting CSPs and loops

forming point sets without intersection with CSPs. This forms the divide phase.

Loops are also analyzed for each reference surface and categorized to structure BMMax

and contribute to the symmetry analysis.

5.1 Introduction

Maximal faces and edges together with vertices define the point sets forming

BMMax. Each reference surface S̃ attached to a maximal face Fi possesses its own

symmetry properties. Each of the edges Ej bounding Fi has also its own symmetry

properties. These symmetry properties interact with each other to produce only a

subset of symmetry planes valid for both. It is the purpose of this chapter to take

into account these interactions to obtain the CSPs simultaneously valid for Ej and

Fi, thus characterizing the extent of validity of each CSP.

Whatever, the BMMax entity attached to a CSP Πk, it is characterized by a set

of intrinsic parameters and location of each of the faces Fi involved in the definition

of Πk. This avoids any reference to the intersection curve between adjacent faces

Fi and Fl since this curve is not represented exactly in CAD models. Referring to

their geometric model would necessitate taking into account the modeling accuracy

and the approximations of a modeler. The locations of extrema would become much

more difficult to determine and interpret. Referring to the surface parameters is

not influenced by the modeler accuracy and approximations, they directly reflect the

user’s input parameters and are regarded as control parameters to modify the shape

of MMax.
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In order to analyze the symmetries of MMax and, later on, modify it to remove

some asymmetries, it is important that the CSPs are assigned to the least possible

number of BMMax entities so they establish a meaningful link between each CSP and

the intrinsic parameters and location of the faces Fi involved in its definition. This

link will be helpful to define a reverse process to modify Fi parameters so that either

existence or new position of the corresponding CSP increases the extent of MMax

symmetries.

Because symmetry properties of surfaces is not always characterized by a finite

number of symmetry planes, it is also important here to distinguish geometric config-

urations producing finite of infinite numbers of CSPs. In the latter case, an infinite

number of CPSs forms a category designated as Candidate Symmetry Axis (CSA).

Finally, edges Ej bounding Fi form necessarily one loop at least. If Fi is bounded

by more than one loop, edges of these loops interact to form also CSPs and their

structure needs also be analyzed to assign the correct CSPs forming the divide phase

of the symmetry analysis of MMax.

The above observations define the framework of the following analysis assigning

CSPs and CSAs to the entities of BMMax.

5.2 Reflective symmetry properties of the five reference

surfaces

Here, we consider the so-called reference surfaces F̃ and state some of their prop-

erties related to reflective symmetry as a basis for their global properties that help

defining their symmetry planes. It is the basis of the algorithm defining the symmetry

planes of MMax, as defined at chapter 6.

As it is part of a B-Rep model, a reference surface F̃ is simply connected and

its area is finite. Regarding symmetry, the proposed approach addresses rectilinear

symmetry axes, symmetry planes and symmetry with respect to a point. The reflective

symmetry definition stated at chapter 1 is now restated in the scope of the present

work where points belong to reference surfaces.

Definition 4 : Self reflective symmetry of a face Fi

Given an arbitrary point X P IR3 of a face Fi generated from a reference surface

F̃ and a symmetry plane Π, there exists a unique point XF such that XF belongs to

Fi and satisfies:

ÝÝÝÑ
MXF � �

ÝÝÑ
MX � �‖

ÝÝÝÑ
MXF ‖ � ~n
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where Fi denotes a bounded maximal face, M is the normal projection of X on

Π , ~n is the normal to Π at M . XF is said to be the image of Fi, i.e. the symmetric

point of X in Fi. Conversely, if any point X of Fi has a symmetric point XF lying in

Fi through Π, then Π is a symmetry plane for Fi.

The definition of reflective symmetry at a point applies also to space curves when

Fi is substituted by a loop Γ, i.e. an arbitrary 3D curve either open or closed.

According to the framework of the proposed approach, the five reference surfaces

F̃ form the basis of the faces Fi used as basic surface patches combined to form a

B-Rep model and F contain infinite point sets. Each type of reference surface has its

own symmetry properties. These symmetry properties provide the basic symmetry

constraints and they provide the only symmetry possibilities if the model reduces to

a unique reference surface defining a unique face F1. These elementary symmetry

properties form the starting point of the algorithm’s conquer phase to analyze the

global symmetry properties of the model. It is the first level of semi-global symmetry.

The reference surface symmetry properties are intrinsic properties, they connect with

the intrinsic parameters of this surface only.

For example, a plane P is an infinite surface. Whatever its boundary, when it is

symmetric, the symmetry plane of the corresponding bounded surface has to follow the

properties stated before, i.e. the symmetry plane Π is orthogonal to P . The cylinder

and the cone behave similarly as the plane with the additional axisymmetry property.

With an unbounded surface of revolution, its axis is important since it characterizes the

fact that there is infinity of symmetry planes containing this axis. A bounded surface

of revolution stays axisymmetric if it is limited by circular boundaries. Considering a

cylinder Cy, if its boundary curve is symmetric with respect to a plane Π1 orthogonal

to Cy axis, Π1 is still a symmetry plane. Based on the previous observations, the

symmetry properties of the five reference surfaces F̃ can be stated as follows (see

Figure 6.2):

• Plane: In IR3, a plane Fp can be defined in different ways. All these definitions

can be reduced to a point lying on Fp and a vector orthogonal to Fp, which

defines its normal. With an unbounded plane Fp, any plane Π orthogonal to

Fp is a symmetry plane for Fp (see Figure 6.2a): there is an infinite number

of symmetry planes. Now, when Fp is bounded by a closed loop Γ, whatever

its location in Fp, the number of symmetry planes becomes either finite or is

still infinite if Γ is a circle. In the latter case, all the planes share a common

property since they contain the center of the circle but if a symmetry plane Π

exists with respect to Γ, Π has to be orthogonal with Fp. This shows that the

effect of the loops or edges Ej reduce the number of symmetry planes, usually

to a finite number, but these symmetry planes stay orthogonal to Fp, which is

a geometric constraint deriving from the planar surface;
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(a) (b) (c)

(d) (e)

Figure 5.1: Symmetry properties of the five reference surfaces.

• Cylinder: To describe a cylinder Fcy, its intrinsic parameters reduce to a point,

a vector to define its axis A and a radius. A acts as a symmetry constraint. As

a surface of revolution, a cylinder is axisymmetric, i.e. any plane Π2 passing

through A is a symmetry plane. Considering an infinite cylinder, any plane Π1,

orthogonal to A is a symmetry plane (see Figure 6.2b). Inserting loops to limit

a cylindrical area and form one domain reduces the symmetry planes to one

plane Π1 at most and up to infinity for Π2 if there are two circular loops only.

Otherwise, symmetry planes like Π2 form a finite set;

• Cone: A cone Fco intrinsic parameters contain an axis, an apex location defining

a reference point for the axis and a cone angle. The vector orientation defining

the axis can be considered as the cone orientation to reduce the cone to one

nappe. The symmetry constraint of an unbounded cone reduces to planes Π,

necessarily containing its axis and exhibiting axisymmetry (see Figure 6.2c).

Adding one or two loop(s) to generate a finite area preserves the axisymmetry

if it(they) is(are) circular, otherwise the symmetry planes Π left are in finite

number;



Reflective symmetry properties of the five reference surfaces 107

• Sphere: A sphere Fs intrinsic parameters are the location of its center and its

radius. A full sphere is symmetric with respect to any plane Π passing through

its center. Every vector originated from its center defines a symmetry axis (see

Figure 6.2d). Reducing the area of Fs but still forming a surface bounded by one

or two parallel circular loops reduces the symmetry axes to only one, orthogonal

to the plane defined by the circular loop(s). Any other number and configuration

of loops will result in a finite number of symmetry planes, all containing the

center of Fs;

• Torus: A torus Ft originates from revolving a circle whose center does not lie

on its revolution axis A. Torus intrinsic parameters are its small radius, average

radius, axis of revolution and center O. Because it is a surface of revolution, Ft

benefits of axisymmetry and all the symmetry planes Π1 contain its axis. In this

case, Ft is also symmetric with respect to Π2, a plane orthogonal to A. If the

surface of Ft is reduced by a circular loop contained in a plane Π orthogonal to

A, only the axisymmetry of Ft around A is preserved. Now, if the surface of Ft is

limited by two circular loops and if the planes P1and P2 containing each a loop

are symmetrically set with respect to O, the axisymmetry and the symmetry

plane Π2 of Ft are preserved, otherwise if P1 and P2 are not symmetrically

located around O, only the axisymmetry of Ft exists. If Ft is reduced with one

arbitrary loop only that divides Ft in two areas, symmetry properties decrease

to a finite number of planes Π1. If there are two or more arbitrarily shaped loops

bounding Ft, the symmetry properties of Ft are expressed by a finite number

of symmetry planes Π1 around A and, possibly the plane Π2. These are the

symmetry constraints set by a torus.

Definition 5 : Reflective symmetry of two faces with respect to a plane Π

Let two faces be F1 and F2 then, for every point XF1
P F1, XF1

� IR3 and a

symmetry plane Π, there exists a unique point XF2
such that XF2

P F2 and a point

M P Π satisfying:

ÝÝÝÝÑ
MXF2

� �
ÝÝÝÝÑ
MXF1

� �‖
ÝÝÝÝÑ
MXF2

‖ � ~n (5.1)

where F1 and F2 denotes two maximal faces each bounded by one loop at least, M

is the normal projection of XF1
on Π , ~n is the normal to M going through XF1

. XF2

is said to be the image of XF1
on F2, i.e. the symmetric point of XF1

in F2. Because

this property holds for the infinite point set defined by F1, F2 is said the image of F1.

Conversely, if any point XF1
P F1 has a symmetric point XF2

lying in F2 through Π,

then Π is a symmetry plane for F1 and F2. Similarly, this definition applies also to

space curves or loops, too.
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With the five reference surfaces, the reflective symmetry between any two faces

derives from their intrinsic parameters and locations in IR3. To this end, they must

be of same type, have the same intrinsic parameters (same radii, etc.). Secondly, their

locations must be symmetric with respect to a plane Π. To formalize the configuration

of symmetric location, a symmetric axes criterion is used:

Criterion 10 Reflective symmetry between axes with respect to a plane Π:

Given a symmetry plane Π and two oriented axes A1 and A2, Π is regarded as reference

entity, let V1 be an arbitrary point of A1, V1 P A1, then, V2 is a point symmetric of V1

with respect to Π and V2 P A2. Considering a second point V 1
1
, V 1

1
P A1, its symmetric

point with respect to Π is V 1
2
. If V 1

2
lies on A2, V

1
2
P A2, then

ÝÝÑ
V1V2 � ~n � �

ÝÝÝÑ
V 1
1V

1
2 � ~n,

ÝÝÑ
V1V2 �

ÝÝÝÑ
V 1
1V

1
2 ¡ 0 where ~n is the normal to Π, which shows that A1 is symmetric to A2

with respect to Π.

(a) (b) (c)

Figure 5.2: Examples of symmetric configurations for axes.

The definition of reflective symmetry for axes is described from a point set stand-

point. With the axes symmetry criterion, the reflective symmetry criterion between

two surfaces can be stated as follows:

• Planes: Any point V1 on an infinite plane Fp1 combined with the plane normal

~n1 forms an oriented axis. Considering a plane Fp2, if there exists a point V2 of

Fp2 symmetric of V1 with respect to a symmetry plane Π, a normal ~n2 of Fp2 at

V2 defines also a oriented axis. Then, Fp1 is said symmetric to Fp2 with respect

to Π if either ~n1 is symmetric to ~n2 or ~n1 is symmetric to �~n2 since ~n2 and �~n2

define the same point sets. These conditions always hold, which means that two

symmetry planes can be associated to any couple (Fp1, Fp2);

• Cylinders: Given two infinite cylinders Fc1 and Fc2 having the same radii.

Given an arbitrary point V1 on the axis of Fc1, V1 and this cylinder axis define
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an oriented axis ~Ac1. Let V2 be a point symmetric of V1 with respect to a plane

Π such that V2 belongs to the axis of Fc2. V2 and this last axis form an oriented

axis ~Ac2. Then, Fc1 is said to be symmetric to Fc2 with respect to Π if either
~Ac1 is symmetric to ~Ac2 or ~Ac1 is symmetric to � ~Ac2, i.e. similarly to a plane
~Ac2 and � ~Ac2 define the same point sets and characterize two symmetry planes;

• Cones: Considering two infinite cones Fco1 and Fco2 with one nappe having the

same angle and V1 and V2 as apices respectively. These apices together with their

respective cone axes uniquely define oriented axes ~Aco1 and ~Aco2 respectively.

If ~Aco1 is symmetric to ~Aco2 with respect to a plane Π, then Fco1 and Fco2 are

symmetric with respect to the plane Π;

• Spheres: Two spheres Fs1 and Fs2 of identical radii and center points V1 and V2

respectively are symmetric with respect to a plane Π if V1 and V2 are symmetric

with respect to this plane. V1 and V2 are sufficient to define axes for Fs1 and

Fs2 and there always exists Π for this couple of surfaces;

• Tori: The condition for two tori Ft1 and Ft2 is close to that of cylinders and

planes. Let V1 and V2 be the center of Ft1 and Ft2, respectively. These centers,

together with their respective torus axes define oriented axes ~At1 and ~At2 re-

spectively. The two tori Ft1 and Ft2 are symmetric with respect to the plane Π

either if ~At1 is symmetric to ~At2 or ~At1 is symmetric to � ~At2 since these axes

configurations define the same point sets and a unique symmetry plane.

The surface self reflective symmetry condition and two surfaces reflective symmetry

conditions are the basic symmetry properties of surfaces seen as infinite point sets that

form the basic symmetry criteria of the symmetry analysis algorithm. These symmetry

properties reflect configurations where the point sets are either connected, in the first

case, or possibly disconnected, in the second one. It is an illustration of the influence

of a topological property of the point sets: the number of connected components of

these sets.

5.3 Symmetry constraints originated from face boundary

loops

The five reference surfaces are divided into two groups: one group is of type infinite

surfaces, which contains planes, cylinders and cones; the other group is of type finite

surfaces and contains spheres and tori. The faces Fi forming MMax are bounded,

their boundary is defined by a set of closed loops. The effect of boundary loops over

a face differs according to the category they belong to. Classically, two categories are

considered for bi-parametric surfaces (see Figure 5.3a):
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• The first one is limiting the surface area and acts as an external boundary. This

category applies to unbounded surfaces (planes, cylinders, cones) or to finite

surfaces (tori) when they need to be split apart into pieces;

• The second one expresses material removal from the surface to form holes and

it helps distinguishing internal and external boundaries.

(a) (b)

Figure 5.3: Loop categories in case of parametric surfaces: (a) loop categories in the

parametric space of a plane and its corresponding surface, (b) loop categories in the

parametric space of a cylinder and its corresponding surface.

When applicable for the same type of surfaces, these two categories of loops com-

plement each other. In fact, bi-parametric surfaces can describe cylindrical, conical,

spherical, toroidal areas but their loop boundary may not match the loops obtained

after the generation of maximal curves and faces. Taking the example of a cylinder, its
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parameterization is classically based on directions along its generatrix and circular sec-

tion. B-Spline, NURBS and analytical (models using trigonometric functions) models

produce necessarily a rectangular domain where the circular section uses a reference

point to locate and stitch extremities of the parametric domain (see Figure 5.3b).

Consequently, the loops obtained after the generation of the maximal curves and sur-

faces differ from that of B-Spline and analytical models because they don’t refer to any

parameterization and any reference point. The loops derived from the hypergraphs

are regarded as more intrinsic to the cylinder than those of the B-Spline and analyti-

cal models. Rather than reasoning in the parametric space of surfaces, to stick to the

loops resulting from the maximal curves and surfaces generation it becomes necessary

to take into account the embedding of each surface in IR3 to characterize the loops

bounding the surfaces. To this end, the purpose of this sub-section is a proposal for

the characterization of the loops bounding the reference surfaces F̃ .

The external loops and internal loops are defined as:

Definition 6 External loop: An external loop is a piecewise C0 curve without self

intersection. This type of loop is defined in IR3 where a reference surface is embedded,

not in its parametric space as usual. Depending on the surface type, an external loop

can be characterized by:

• the largest bounding box when it lies on a planar surface, see Figure 5.5a;

• the largest integral angle1 covered on the section of a cylinder around its axis.

If the largest angle equals 2π, there must be two external loops, see Figure 5.5b

and c;

• the largest integral angle covered on the section of a cone around its axis. If the

maximal integral angle reaches 2π, the corresponding loop is an external one and

there can be two such ones, see Figure 5.5d, e and f;

• On a torus, if a loop reaches the integral angle of 2π around its axis, this loop

is not dividing the torus into two domains. In this case, there must be two such

loops to define a partition of the torus. Similarly, if a loop reaches 2π along its

average circle, two such loops must exist to define a partition of the torus.

Obviously, loops contributing either to the definition of a finite surface or a partition

in a finite surface are classified as external loops.

Definition 7 Internal loop: An internal loop is a piecewise C0 curve without self

intersection. This type of loop is also defined in IR3 where a reference surface is

embedded. Depending on the surface type, an internal loop is:

1the notion of integral angle will described in more details in section 5.7
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• a loop within a bounding box smaller than the largest one on a plane;

• a loop with a sector angle smaller than the largest angle or smaller than 2π on

a cylinder;

• This applies similarly on a cone and on a torus.

As a common denominator of internal loops, they are all trivial cycles from a topo-

logical point of view (see Figure 5.4a).

(a) (b)

Figure 5.4: Loop categories: (a) examples of internal loops on cylinder, cone and torus,

the marked loop is internal one and the rests are external, (b) loop configurations over

spheres and tori.

Indeed, the external loop of a cone differs from that of a cylinder because the

external loop of a cylinder is a one-cycle from a topological point of view whereas the

external loop of a cone is a trivial one. However, the external loop of a cone has a ge-

ometric feature since it contains the cone apex, a geometric singularity characterizing

the cone embedding in IR3. Therefore, loops taking into account this feature get the

status of external loop.

The case of the sphere is particular and has not been processed above. When there

is only one loop on the sphere that divides the surface into two new ones, there is no

possible classification of the loop. This observation applies also to the torus when it

is cut along trivial cycles only. However, when there is more than one loop over these

surfaces, two configurations can occur (see Figure 5.4b):



Symmetry constraints originated from face boundary loops 113

• There exists one loop containing all the others. It means that one partition of

the surface contains all the others apart from one. In this case, this loop is the

‘external’ one and the others are ‘internal’ ones. There cannot be any other loop

containing several loops;

• There is no loop containing other loops. Here, there is no classification possible.

As a conclusion regarding the above analysis, processing configurations of spheres

or tori containing only one loop is considered as a configuration without status since

there is no strong property to form a homogeneous scheme.

An infinite surface has to have at least an external loop Γex to reduce its infinite

area to a finite one. Within the finite surface area, there can be numerous loops which

are internal loops: Γin. For a face F , BF � rΓF s. Here, rΓF s designates the set of

loops of F :

rΓF s � rΓex
F s Y rΓin

F s Y rΓuk
F s

because the torus and the sphere are finite surfaces, they can exhibit configurations

where they have loops without status. Across different surface types, the external loop

number and property differ in accordance to the surface embedding (see Table 5.1 and

Figure 5.5).

Surface

type

Plane Cylinder Cone Sphere Torus

Surface ex-

tent

Infinite Infinite Infinite Finite Finite

1st ext-loop 1 1 1 1 or un-

known

1 or un-

known

2nd

ext-loop

no 1 0 or 1 no 0 or 1

Figure 5.5 (a) (b)(c) (d)(e)(f)

Table 5.1: The number of external loops for different surfaces

As mentioned in section 6.2, a surface has intrinsic symmetry constraints, but

before discussing its symmetry, an infinite surface has to be bounded to become a

subset of a B-Rep model. Consequently, a surface boundary sets also important

symmetry constraints. When adding a surface boundary, surface symmetry properties

can be summarized as follows, in accordance with the face type of F , i.e. taking into

account the embedding of the surface. Consequently, the following sections analyze

the symmetry constraints set by face boundary curves on the symmetry properties of

faces and highlight the various configurations of symmetry planes encountered.
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: Illustrations of external loops for: (a) planes, (b) cylinders, (c) cones.

5.3.1 Symmetry constraints derived from loops over planar faces

Any symmetry plane Π of a planar face P is orthogonal to P . P being bounded,

its boundary BP must be closed, i.e. it is at least C0 continuous. BP can be formed

of an arbitrary number nL of loops Γi, i P t1, � � � , nLu, each loop defining an area Si,

i.e. BSi � Γi (see Figure 5.6a). As a finite, connected, planar graph without any

edge intersection, there exist only two types of loops: one is the external loop (see

Figure 5.6, Γ1), the others are internal loops (see Figure 5.6, Γ2 and Γ3).

For any BP , the external loop, say Γ1, is unique and defines a finite planar area.

The internal loops can be in arbitrary number and lie inside the external loop. An

internal loop, Γi, i P t2, . . . , nLu, cannot contain any other loop, Γi X Γj � I, i � j

where I is either a set of isolated points if the loops touch each other or the empty

set. If I happens to be something else, P would not be connected.

Every loop Γi is described by nE maximal edges rEs. Each edge has its own

reflective symmetry information defined as orthogonal symmetry2 rΠOs or bisector

symmetry plane rΠBSs, and two edges connected at a vertex have symmetry informa-

2This category of CSP as well as the following ones are explained in detail and analyzed in the

following sections.
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(a) (b)

Figure 5.6: An example of planar face P : (a) bounded by three loops Γi and the trace

of the symmetry plane A on P , (b) with an illustration of symmetry plane categories

and their interaction with Γ1.

tion defined as loop bisector symmetry rΠLBs (see Figure 5.6b).

Considering an internal loop Γj , if a reflective symmetry plane ΠΓj
exits for it,

it has to coincide with one or two symmetry planes attached to the external loop,

i.e. they can be of type orthogonal or loop bisector symmetry planes, to extend the

validity of the symmetry properties over P . Otherwise, the edges intersecting Π and

the vertices lying on Π don’t contain the same symmetry properties. If ΠΓj
exists,

this loop symmetry plane is a subset of the CSP collection of type orthogonal and

loop bisector, rΠΓj
s � prΠOsY rΠLBsq. Because rΠOs derives from an edge and rΠLBs

from a vertex adjacent to two edges, there is no current need to analyze the symmetry

property of two disconnected edges: this is left to the propagation phase.

5.3.2 Symmetry constraints derived from loops over cylindrical faces

Any symmetry plane Π of a cylindrical face Cy is either (see section 5.2):

a) containing the cylinder axis Ac;

b) or orthogonal to it.

Existence of these symmetry planes is subjected to the symmetry properties of the

boundary BCy of Cy. Similarly to P , BCy must be closed and can be formed of an

arbitrary number of loops, nL, Γi, i P t1, � � � , nLu. The components of BCy lie on Cy

and can be parameterized in cylindrical coordinates, i.e. Γi � Γiptiq � Γipθptiq, zptiqq.
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(a) (b) (c)

Figure 5.7: Parameters for symmetry configurations on a cylinder: a) boundary Γ1pt1q
with an orthogonal symmetry plane Π and arcpA1, A2q   2π; b), c) two boundaries

Γjptjq and Γkptkq with arc � 2π; c) with extreme points.

A cylinder can have one or two external loops (see section 5.3). An external loop

provides symmetry constraints because it must be self symmetric when a symmetry

plane exists for it.

Firstly, let us consider case b) above with BCy containing one external loop. Let

Π be the symmetry plane of the straight line segments rM1,M2s (see Figure 5.7a)

coinciding with a generatrix of Cy and bounded by BCy: M1 � Γ1pθ, zMAXq, M2 �
Γ2pθ, zminq. Then, Π will be a symmetry plane orthogonal to Ac for Cy if Π holds for

any point of BCy. There can be at most one such symmetry plane Π orthogonal to Ac.

The corresponding symmetry plane can derive from an edge as orthogonal symmetry

ΠO or a vertex as loop bisector symmetry ΠLB of Γi.

Then, regarding case a), the area of Cy is finite when BCy contains one loop

Γ1pt1q if this loop projects along z into a curvilinear arc A1A2 parameterized with

an angle smaller than 2π, i.e. the definition domain of Γ1pt1q according to θ: A1 �
Γ1pθminpt1minq, rzq, A2 � Γ1pθMAXpt1MAXq, pzq and arcpA1, A2q   2π, @prz, pzq P rzmin, zMAX s
(see Figure 5.7a). θ is the radial angle of Cy and the integral angle describing BCy

is: θ P rθmin, θMAX s and |θMAX � θmin|   2π. Let Π be a plane containing Ac, Π

is generated from two points N1 � Γ1pθΠ, z1q, N2 � Γ1pθΠ, z1q of BCy. If Π is a

symmetry plane for any point of BCy, then Π is a symmetry plane for Cy. There is

no more than one symmetry plane containing Ac. Also, Π can derive from an edge as

orthogonal symmetry ΠO or a vertex as loop bisector symmetry ΠLB.

Now, if BCy contains more than one component, then either:

1) two external loops Γjptjq, Γkptkq are parameterized with an integral angle |θMAX�
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θmin| � 2π;

2) one external loop and all the loops Γiptiq are parameterized with an integral angle

|θMAX � θmin|   2π.

If BCy falls into case 1, then if Γjptjq and Γkptkq are defined as circles Cpθq (see

Figure 5.7b), i.e. Γjpθpt1q, z1q � C1pθq, Γkpθpt2q, z2q � C2pθq, θ P r0, 2πs and are

the only loops of BCy; Cy contains an infinite number of symmetry planes passing

through Ac, i.e. Cy is axi-symmetric. These two loops generate also a symmetry

plane orthogonal to Ac, that does not contain any vertex or any edge of Γj , Γk; it is

designated as loop symmetry CSP: ΠLS (see section 5.4).

If Γjptjq and Γkptkq are not circles (see Figure 5.7c) but loops such that, Γjptjq �
Γjpθi, ziq are either:

a) extreme points lying on a circle C1pθiq: Γjpθi, z1q � C1pθiq and
BΓj

Bz pθi, z1q � 0;

b) or/and points where the geometric continuity of Γjptjq is either G0 or G1 at

most. The points of G0 or G1 continuity are originated from the intersection

curves between the faces adjacent to Cy, as a result of the object modeling

process, and are the extreme points of the maximal edges.

Considering only key points b and assuming a finite number of values of θi P
tθ1, θ2, . . . , θnu, θi P r0, 2πs, and similarly for Γkptkq with z � z2 and rθis, the same

set as above. Then, the number of symmetry planes over Cy and attached to these

key point reduces to a finite number with n as upper bound. It reflects configurations

where key points of Γjptjq and Γkptkq are located on circles and may generate a set of

CSPs. These CSPs are all attached to vertices as loop bisector symmetry rΠLBs CSPs
containing Ac. If the key points listed above satisfy all the above conditions but are

not located on circles, n is no longer the upper bound.

More precisely, if n is an even number, the resulting symmetry planes containing

Ac are pairwise coinciding because pairs of symmetry planes pΠi,Πlq are referenced

by angles θi and there exist angles θl � θi � π to define Πl, which means that Πi and

Πl coincide in 3D space. Hence, the number of distinct planes in this case reduces

to n{2 as upper bound. If n is an odd number, all symmetry planes differ from each

other in 3D space: the upper bound stays n. In what follows, the distinction between

configurations with odd or even numbers of symmetry planes is not detailed for sake

of conciseness unless stated for more accuracy.

Now, Γjptjq and Γkptkq must be symmetric along θ, θi � 2π{i so that the previous

key points are really the location of symmetry planes, i.e. rΠLBs, rΠOs CSPs. This

writes: Γjpθ � iθi, zq � Γjp�θ � iθi, zq, Γkpθ � iθi, zq � Γkp�θ � iθi, zq, @i P r1, ns,
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(a) (b)

Figure 5.8: (a) Parameters for symmetry configurations on a cylinder with internal

loops, (b) Parameters on a torus.

θ P r0, πs. In addition to the previous condition, the key points being extreme values

along z, there must exist other key values where
BΓj

Bz p
rθi, z3q � 0 and/or Γjprθi, z3q, rθi P

trθ1, rθ2, . . . , rθnu, rθi P r0, 2πs between the key values θi, i.e. if Γjpθi, z1q are maxima, then

Γjprθi, z3q are minima and conversely. Between two consecutive key points pθi, θi�1q,
the arcs of Γj and Γk can be arcs of circles: extreme points reduce here to middle points

of the corresponding arcs. If rθi � pθi�θi�1q{2, i P r1, pn�1qs and Γjpθ, zq � Γjp�θ, zq,
θ P r0, rθis, the interval θ P rθi, θi�1s is symmetric with respect to rθi and if the same

property applies to Γkpθ, zq, the number of symmetry planes for Cy reaches the upper

bound 2n if n is odd or n otherwise. All the corresponding CSPs thus added are now

attached to edges and express orthogonal symmetry, rΠOs, and contain Ac.

If Γjptjq and Γkptkq don’t share the same sequence of key values, i.e. θi, i P
r1, ns and pθi, i P r1,ms respectively, the maximum number of symmetry planes varies

according with the greatest common divisor of n and m, i.e. gcdpm,nq. Anyhow, if

gcdpm,nq � 1, the resulting number of symmetry planes is at most one.

If BCy contains more loops than the two external ones Γjptjq and Γkptkq (see

Figure 5.8a), it means there are internal loops. The number of symmetry planes

deriving from Γj and Γk may be further reduced depending on the symmetry properties

of the internal loops Γi, i � j, i � k. If these components are uniformly spread over θ

and form a repetitive pattern, symmetry planes may exist in between two successive

loops, generated by the arcs connecting the components. Such a set of CSPs is related

to the symmetric location of these internal loops and fall into the category of loop

symmetry CSPs rΠLSs. The corresponding symmetry planes Πj in 3D space amount,

at most, to the number of internal loops nI , nI � pnL � 2q, when nI is odd or nI{2
when nI is even. If the loops Γi, i � j, i � k are themselves symmetric, another set

of symmetry planes Πk exists in addition to Πj , these ones are necessarily attached
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either to a vertex or an edge, hence they are either rΠLBs or rΠOs CSPs, respectively.
The amount of such symmetry planes equals to either nI or nI{2 if nI is odd or even,

respectively. Finally, the total number of symmetry planes generated by the internal

components can reach either 2nI or nI whether nI is odd or even, respectively.

The total number of symmetry planes in Cy can be stated as: nT � minpgcdpm,nq, 2nIq
in the most general configuration or other variants of this minimum when gcdpm,nq or
2nI are either odd or even, respectively. This analysis shows that the overall number

and type of CSPs of a cylindrical face is set, in a first place, by its external loops and

then, is further reduced by the properties of its internal loops. If rΠΓs defines the set

of CSPs for Cy, then rΠΓs P prΠOs Y rΠLBs Y rΠLSsq.

If BCy falls into case 2, then Cy has at most one symmetry plane Π containing

Ac since all the arcs�A1A2 whose extremities lie on BCy, are smaller than 2π and

orthogonal to Ac. Indeed, rΠΓs P prΠOs Y rΠLBs Y rΠLSsq. In particular, rΠΓs P
pΠO YΠLBq where ΠO and ΠLB are attached to the external loop of Cy.

The above analysis does not distinguish all the configurations since it intents to

highlight some categories of symmetry planes and highlight their interactions, their

connections with faces, edges, vertices and loops as well as the interest of loop status.

Some of these observations can be also applied to planar and other faces but are not

stated to avoid unnecessary repetitions.

5.3.3 Symmetry constraints derived from loops over conical faces

Any symmetry plane Π of a conical reference surface Co necessarily contains the

cone axis Ac. Existence of symmetry planes is subjected to the symmetry properties

of the boundary BCo of Co. As defined with an oriented axis, Co contains only one

sheet, possibly including the cone apex. Similarly to P and Cy, BCo must be closed

and can be formed of an arbitrary number nL of loops Γi P t1, . . . nLu. Similarly

to Cy, the loops of BCo can be parameterized in cylindrical coordinates, i.e. Γi �
Γiptiq � Γipθptiq, zptiqq.

Compared to Cy, the area defined by BCo is always finite even if BCo reduces to

only one component, i.e. there is no such condition as in case 1 of Cy. Indeed, all loops

over Co are topologically identical to each other and are cycles that can be reduced

to a point, i.e. trivial cycles. However, if BCo contains one external loop Γ1pθ, zq
parameterized with an integral angle |θMAX � θmin| � 2π, it can be handled using

the properties stated at case 1 of Cy and applied to Γ1pθ, zq alone to characterize

the maximum number of symmetry planes. This similarity holds because the cone

apex is a point with a geometric singularity that can be used to distinguish loops

cycling around it from those that are not. In case of such external loops, BCo must

bound a domain containing the cone apex, which needs to be checked prior to process

the loops Γ1pt1q. If BCo contains two loops parameterized with an integral angle
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|θMAX � θmin| � 2π, this configuration falls into case 1 of Cy. BCo cannot contain

more than two external loops.

If BCo contains more than one loop, then cases considered above for Cy apply

and processing BCo for symmetry planes related to its external boundary as well as

its internal components is similar to the description given for Cy. If one of the loops

satisfies |θMAX � θmin| � 2π, BCo conforms to case 1 of Cy, otherwise cases fall into

case 2.

5.3.4 Symmetry constraints derived from loops over toroidal faces

Any symmetry plane Π of a toroidal reference surface To is either containing the

torus axis At or orthogonal to it and passing through the center Ot. Processing To

is rather similar to the properties of Cy since To contains categories of cycles that

are topologically similar to those existing on a cylinder. The symmetry definition

particularly applies to the two categories of arcs forming To.

Let us first consider the arcs forming the small radius of To, a symmetric config-

uration holds if at least one arc exists between two points M1, M2 of BTo such that

Π, the symmetry plane orthogonal to At, is a symmetry plane for this segment (see

Figure 5.8b). Then, Π will be a symmetry plane orthogonal to At for To if Π holds

for any point of BTo. There can be at most one such symmetry plane for To.

The loops of BTo are parameterized with the intrinsic torus coordinates, i.e. Γi �
Γiptiq � Γipθptiq, αptiqq where θ is the angle around At (see Figure 5.8b).

Similarly to Cy, two configurations exist that influence the distribution of sym-

metry planes. If BTo contains more than one loop, then either:

1) two of these loops Γjptjq, Γkptkq are parameterized with an angle |θMAX � θmin| �
2π. There cannot be more than two components parameterized that way;

2) two of these loops Γjptjq, Γkptkq are parameterized with an angle |αMAX�αmin| �
2π. No more than two components can be parameterized that way;

3) all the components Γipθ, αq are parameterized with angles |θMAX�θmin|   2π and

|αMAX � αmin|   2π.

Then, the detailed study of these configurations follows the approach of cylinders

where the z parameter is substituted by α to represent case 1. It is not replicated

here but can be easily transposed from that of Cy.

Considering the arcs forming the average radius of To, parameterized with θ, these

arcs are equivalent to the generatrices of Cy and the arcs forming the small radius

of To, parameterized with α are equivalent to the circles defining the section of Cy.
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Somewhat similar to loops over Cy, loops Γjptjq, Γkptkq falling into case 2 above

define a finite area over To. At the difference of Cy where such loops would exhibit

symmetry properties as described at section 5.3.2, this configuration cannot produce

as many symmetry planes as Cy since the generatrices of Cy are now replaced by arcs.

Indeed, one symmetry plane exists at most, which is orthogonal to At and contains

Ot (see section 6.2 for the possible symmetry planes of a torus).

5.3.5 Symmetry constraints derived from loops over spherical faces

Any symmetry plane Π of a spherical face Sp necessarily contains the center of the

sphere Os. If BSp is the boundary of Sp and Γi P t1, . . . , nLu its loops, all the areas

bounded by Γi are finite and so are their complement, i.e. AreapSpq � AreapSp|Γi
q.

This property shows that the configurations 1 and 2 set for cylinders and cones are

no longer applicable here since the loop status over Sp does not refer to the concept

of external/internal. Differing from cylinders and cones, a sphere has no particular

direction for symmetry planes. Hence, symmetry planes over Sp rely more strongly on

the symmetry properties of BSp, which can be characterized from symmetry and loca-

tion properties of faces Fa adjacent to Sp. These properties are detailed in section 5.4

where the influence of references surfaces will be detailed.

5.3.6 Synthesis about loops and loop symmetry CSP

From the analysis of symmetry constraints related to face boundaries (see sec-

tion 5.3), the importance of loops and the diversity of CSPs ΠO,ΠLB,ΠLS becomes

clear in a surface symmetry analysis process. Whether a face F has an external loop

or not, the number of loops and their relative position over F , all these informations

are key elements influencing the symmetry properties of F and give bounds on the

maximum number of symmetry planes depending on loop configurations.

Each loop Γi of F has its own symmetry plane set, namely self symmetry planes:

rΠslf
Γi

s. These symmetry planes cross Γi, which indicates that they can be either of

type orthogonal rΠOs or loop bisector rΠLBs only. Now, when considering different

loops Γi,Γj P F , their common self symmetry planes may come from the intersection

between rΠslf
Γi

s and rΠslf
Γj

s. Because loops over F must be either disconnected or touch

each other at isolated points only to stay consistent with B-Rep model fundamentals,

rΠslf
Γi

sXrΠslf
Γj

s may not produce all the symmetry planes set by the constraints ΓiYΓj .

The relative position of Γi and Γj , as two disconnected infinite point sets, may

also satisfy the symmetry condition 5.1 where F1 and F2 are substituted by Γi and Γj .

Consequently, the corresponding symmetry plane Π is called loop symmetry candidate

symmetry plane and noted ΠLS . Indeed, ΠLS being derived from loops Γi and Γj ,

it can be noted more precisely ΠLS,Γi,j
. Regarding their relative position in MMI ,
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Γi and Γj cannot touch each other more than once, otherwise they define a face Fk,

homologous to F , lying in between the faces Fi and Fj that could be associated to Γi

and Γj respectively. Each contact point being surrounded by more than three faces

Fi, Fj , Fk and F , and no more than two loops in contact can be attached to two faces

(see section 5.4.2), e.g. Fi � Fj � Fij , then Fij crosses Fk (Fk � F ). Hence, other

loops (faces) touching Fi or Fj or Fk are not homologous with these ones, therefore

these faces are not crossing F and Fij and the manifold vertex splitting operator will

duplicate these contact points but the edge merging one will remove them, leaving no

more than one contact point representing the crossing configuration in MMAX . The

CSP attached to that point is necessarily of type ΠLB not ΠLS . All the contact points

associated to non crossing configurations will be removed and represented by ΠLS not

ΠLB.

This analysis shows that ΠLS are strictly attached to loop entities and, hence,

disconnected from the hypergraphs Gij, which contain vertices and maximal edges

only. This justifies the existence of loop datastructures derived from the hypergraphs

to complement the faces, edges and vertices.

Let rΓexs, rΓins and rΓuks be the sets of loops representing the external loops,

internal loops and loops of unknown status of F , respectively. The loops Γi, Γj and Γk

belong to either set rΓexs or rΓins or rΓuks without influencing the existence of ΠLS .

However, ΠLS cannot be defined by loops Γi and Γj belonging to either set: Γi P rΓexs,
Γj P rΓins, for example. Consequently to the above analysis of connected/disconnected

loops, one pair of loops only has a unique ΠLS plane. Because ΠLS
Γpi,jq

is not crossing

any other loop, ΠLS
Γpi,jq

R rΠslf
Γi

X Πslf
Γj
s. Therefore, the set of symmetry planes of Γi

and Γj satisfy:

rΠΓpi,jq
s � prΠslf

Γi
s X rΠslf

Γj
sq YΠLS

Γpi,jq
. (5.2)

In case a face F is bounded by external loops rΓexs as well as internal ones rΓins,
because rΓexs can be said as the mandatory limitation of F , i.e. the loops that

avoid having F unbounded, and they are distinct from rΓins, whatever the symmetry

properties of rΓins, if rΓexs is not symmetric, F is not symmetric. As a result, rΠBF s �
rΠΓexs. Now, considering rΓins, the symmetry planes of F must be contained in rΠΓins:
rΠBF s � rΠΓins. Finally, we have:

rΠBF s � rΠΓexs X rΠΓins. (5.3)

To unify eq. (5.3), when Γex does not exist, rΠΓexs means all possible symmetry

planes of F in IR3. Similarly, if Γin does not exist, rΠΓins means all possible symmetry

planes of F in IR3, too. In these cases, symmetry plane sets are infinite. When F

contains loops of unknown status, it means that rΠΓexs does not exist. Indeed, rΓuks
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behaves like rΠΓins and can be included in it.

As an example, regarding cylinders, their maximal number of external loops is

two. Then, with the eq. (5.2), rΠΓexs is expressed as:

rΠΓexs � rΠΓex
p1,2q

s � prΠslf
Γex
1

s X rΠslf
Γex
2

sq YΠLS
Γex
p1,2q

. (5.4)

If the number of internal loops is smaller than two, eq. (5.4) has to be filtered with

the set of symmetry planes for the internal loop but there is no ΠLS plane involved

in rΠΓins. However, if the number of internal loops is greater than or equal to two,

there is no criterion for filtering the symmetry planes. rΠΓins can be bounded by the

union of the symmetry properties of each pair of internal loops. As a result, eq. (5.4)

changes to:

rΠΓins �
¤

i�1...n
j�1...n

i j

rΠ
Γin
pi,jq

s. (5.5)

Finally, for a surface having two external loops and several internal loops, the

symmetry planes combine as follows:

rΠBF s � prΠΓexs X

� ¤
i�1...n
j�1...n

i j

rΠ
Γin
pi,jq

s



q, (5.6)

rΠBF s � r

�
prΠslf

Γex
1

s X rΠslf
Γex
2

sq YΠLS
Γex
p1,2q



X

� ¤
i�1...n
j�1...n

i j

prΠslf

Γin
i

s X rΠslf

Γin
j

sq YΠLS
Γin
pi,jq



s. (5.7)

The boundary loops of F are strong symmetry constraints. There are two different

boundary loop configurations: external ones Γex and internal ones Γin. Reference

surfaces having at least one external loop, such as planes, cylinders and cones, the

CSPs of F are constrained by the external loops first. If the number of internal loops

is less than two, symmetry planes are defined by the intersection between external

and internal symmetry plane groups only, i.e. there is no ΠLS plane. Otherwise, the

symmetry planes are defined by the intersection between external loops symmetry

planes and the union of internal loops symmetry planes including the ΠLS planes

belonging to both sets. If F has no external loop, the internal loops are the only

constraints.

Right now, the symmetry planes associated with loops stand for symmetry infor-

mation attached to a face boundary as well as neighboring faces adjacent to edges and

vertices of the loop. As a result, it incorporates symmetry properties of these faces:
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ΠO and ΠLB symmetry planes. For example in Figure 5.9, a boundary loop of the

cylinder is a planar curve and it is an ellipse. The ellipse has two symmetry planes

orthogonal to the plane containing this curve. Back to the symmetry properties of

a cylinder, valid symmetry planes either pass through the axis or are orthogonal to

it. In this case, the symmetry plane of the ellipse coinciding with its minor axis is

invalid. Consequently, the combination of symmetry constraints of faces with loop

structures reduces the number of CSPs compared to independent processing of loops

and surfaces.

Figure 5.9: Combination of face and its boundary loop symmetry properties.

5.4 Self symmetry planes of a boundary loop

Based on the discussion in section 5.3, the symmetry plane set of BF is character-

ized by the analysis the boundary loops. There are two different symmetry plane sets:

self symmetry planes rΠslf s, relying on O-CSPs and LB-CSPs, and a new category of

CSP: rΠLSs. The methods for detecting the different symmetry planes differ. This

section concentrates on rΠslf s detection.

With the reflective symmetry definition and self symmetry plane description, if a

loop Γ is symmetric with respect to a plane Π, there has to be entities, i.e. edges

or vertices, belonging to Γ and intersecting with Π where CSPs exist and are of type

either O-CSP or LB-CSP. It means that if the symmetry properties of all the entities

belonging to Γ are collected, rΓs, the effective symmetry planes of F exist in this set.

This principle conforms to the divide phase stated at the beginning of this chapter.

Hence, the purpose is to analyze all the entities of a loop to generate a CSP set

effectively containing the real symmetry planes of this loop.

Regarding the boundary model resulting from chapter 4, hypergraphs are created

from the input B-Rep model to describe the object with entities intrinsic to the object
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(a) (b)

Figure 5.10: Reasons for referring to the maximal edge concept. (a) without maximal

edge, each edge has its own symmetry property but not the real one, (b) the symmetry

property of maximal edge can lead to real symmetry.

symmetry properties. There, boundary loops contain edges and, often, vertices. After

maximal boundary generation, faces and edges are maximal point sets. In this case,

the start and end vertices of maximal edges are the locations where the surface conti-

nuity of the shape is changing, i.e. vertices indicate changes in reference surfaces. As

mentioned in section 2.3, if a vertex is located on an edge at a C8 point, it removes

the intrinsic symmetry properties of this edge: in a plane, the self symmetry axes Aslf
i

of the edges E1, E2, don’t describe the correct symmetry properties of the maximal

edge, Aslf
Max (see Figure 5.10). To obtain the symmetry properties of a sequence of

adjacent edges, such a sequence has to be processed specifically and the self symmetry

of the reflective symmetry of each edge are useless, see Figure 5.10a. Maximal edges

are therefore necessary.

On a complementary basis, after the maximal edge generation, because of the

continuity between two adjacent maximal edges differ, if these edges were merged, a

symmetry plane Π of this maximal edge combination would not be attached to their

common vertex since it is of type ΠLB. As a result, on the one hand, this new edge

is regarded as one entity but, on the other hand, this edge contains a discontinuity

generated by three surfaces at least, so Π cannot be identified as a symmetry plane.

Consequently, combinations of edges have to coincide with their reference faces to

reflect their symmetry properties: maximal edges defined at chapter 4 are sufficient.

This analysis shows that maximal edges convey intrinsic symmetry properties of an

object and justify the maximal edge generation process.

5.4.1 Symmetries defined through a Candidate Symmetry Axis (CSA)

In some cases, the intersection curve bounding a face can be a circle (for a plane, a

cone or a sphere) or a set of circles having centers lying on a straight line L orthogonal
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to their planes. In these configurations, the number of symmetry plane is infinite

because the bounded faces involved are rotational symmetric. Indeed, L coincides

with the reference face axis (for cylinders, cones, tori) or center (for spheres) and any

plane containing L is a reflective symmetry plane and there is an infinite number of

such planes. Such a configuration is denominated axisymmetry.

Among the five reference surfaces, four are surfaces of revolution. Consequently,

when a plane is orthogonal to an axis of revolution of either of the four revolving

surfaces or, alternatively, if two axes of revolving surfaces coincide, if the intersection

curves producing a reference face form a set of full circles, these faces are axisymmet-

ric. Each of their corresponding reflective symmetry planes is a Candidate Symmetry

Plane. In this case, the concept of CSP is turned into the concept of Candidate Sym-

metry Axis (CSA): a means to characterize the fact that an infinite number of CSPs

is attached to these axisymmetric faces.

Axisymmetry is a strong property contributing to the symmetry analysis algo-

rithm. In other symmetry detection algorithms [36], [35], [40], [44], [61], [62], axisym-

metry is impossible to detect rigorously with point set models or mesh based ones.

They are restricted to axisymmetry approximation only.

5.4.2 O-CSP of a maximal edge through the analysis its two adjacent
faces

Let us consider the maximal edge E, the intersection curve between two adjacent

reference faces F and Fa; F and Fa are maximal faces. F and Fa are simple analytic

surfaces but E has no simple analytic properties, in general. F and Fa interact

commutatively with each other, i.e. considering the intersection of F with Fa, or the

opposite, produces the same edge E. Hence, F can be arbitrarily taken as target

surface for the current analysis. F and Fa define the smallest possible interaction

producing an intersection curve E. In a general configuration of a B-Rep model,

intersection curves between faces are bounded by other surrounding faces. The effect

of these faces will be addressed later at section 5.4.4.

Symmetry properties of E take place at locations defined with curvature and tor-

sion extreme and reflective symmetry planes are contained in the Frenet reference

plane defined by the normal and bi-normal vectors at these extreme. As a result,

these symmetry planes can be said ‘orthogonal’ to E, hence the designation of O-

CSP, which the main focus of this section.

The symmetry properties of the maximal curve E can be either addressed as a

stand alone entity or characterized by the symmetry properties of its adjacent faces F

and Fa. On the one hand, if E is analyzed as a stand alone entity, one of the purposes

of this analysis is to detect E self reflective symmetry planes. However, E has no

simple equation and must be discretized to extract some symmetry properties, which
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requires discretization parameters and will be less robust than analytical treatments.

In addition, studying E as a stand alone entity does not take into account the sym-

metry constraints deriving from F and Fa (see the beginning of section 5.4). Another

limitation in studying E on its own holds in the fact that under specific locations of F

and Fa, E becomes a planar curve and can be the locus of a bisector plane between F

and Fa: such a global property would be difficult to extract through a digitized repre-

sentation of E. On the other hand, if the symmetry properties of E are derived from

that of F and Fa and their relative position, the resulting properties are compatible

with E and F , Fa both, including the identification of bisector planes.

Indeed, all the loops bounding F result from an intersection between F and Fa.

Here, only one loop is analyzed since the focus is set on single intersection curves.

Finally, studying the different categories of couples pF, Faq help defining the sym-

metry properties of the intersection curves E forming BF . This, leads to a combi-

natorial study, as a first approach, and the commutative interaction between F and

Fa reduces the combinations studied to those listed in Table 5.2. In a first place,

this combinatorial study is reduced to O-CSPs only; bisector symmetry planes will be

studied in detail at section 5.6.

F / Fa Plane Cylinder Cone Sphere Torus

Plane 1:pP1, P2q 2:pP,Cyq 3:pP,Coq 4:pP, Spq 5:pP, Toq
Cyliner 6:pCy,Cyq 7:pCy,Coq 8:pCy, Spq 9:pCy, Toq
Cone 10:pCo,Coq 11:pCo, Spq 12:pCo, Toq
Sphere 13:pSp, Spq 14:pSp, Toq
Torus 15:pTo, Toq

Table 5.2: Combinations of two reference surfaces.

Unless stated otherwise, symmetry planes are valid for any intrinsic parameter of

F (radius, angle,. . . ) and Fa.

Symmetry planes of pF,Faq intersections

Plane/Plane pP1, P2q: Because of the existence of an intersection curve E, P1 and

P2 are not parallel to each other. P1 and P2 are bounded by E only, their intersection

ΓP�P reduces to a unique straight line. Since P1 (F ) and P2 (Fa) belong to MMAX ,

ΓP�P is necessarily bounded to form E. There exists always a symmetry plane Π1,

orthogonal to P1 and P2 and located at the midpoint of the extreme points of E (see

Figure 5.11).

Plane/Cylinder pP,Cyq: Configurations with P and Cy subdivide into three

categories (see Table 5.3):

• P is orthogonal to the axis of Cy, Ac (see Figure 5.12a). There, Π1 coinciding

with P could be a symmetry plane, even if P and Cy are infinite, but the
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Figure 5.11: Symmetry plane derived from the intersection between two planes.

pF, Faq pP,Cyq pP,Cyq pP,Cyq

Geometric constraint PKAc P � Ac
P not KAc,

P not �Ac

Π 8: axisymmetry Π1: AcKΠ1 Π1:Ac � Π1

Table 5.3: Configurations of symmetry planes for P and Cy.

neighborhood of ΓP�Cy must be topologically equivalent to three half disks at

least. This configuration is non-manifold and cannot be included in a CAD

volume. Hence, the figure represents only the relation between the two surfaces:

when Cy is effectively bounded by P at E. In this case, E is a circle and it

is an edge without vertex to express axisymmetry. Ac is the symmetry axis.

Axisymmetry is highlighted on Figure 5.12a with Π8;

• Now, if P is parallel to Ac, Figure 5.12b refers to only one intersection curve,

as in Table 5.3 to conform to the content of the hypergraphs describing the

object boundary, i.e. every edge in G21 and G10 can be associated with an

O-CSP. Indeed, extending P , bounded by E, up to infinity can produce another

intersection line (see Figure 5.12d). Consequently, another symmetry plane Π2

appears. Indeed, Π2 is not missing, it belongs to the loop symmetry CSP cate-

gory introduced at section 5.3.2 that will be detailed later on;

• The most general configuration of P generates E as an ellipse (see Figure 5.12c).

Only one O-CSP is valid for this configuration.

These configurations are summarized in Table 5.3 where the first line pF, Faq desig-
nates the type of face, then line Geometric constraint expresses the geometric location
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(a) (b) (c) (d)

Figure 5.12: (a) P is orthogonal to Cy axis Ac; (b) P is parallel to Ac; (c) P has an

arbitrary orientation with respect to Cy differing from (a) and (b); (d) if P is infinite

it produces a two segments configuration.

of Fa with respect to F . Π states the maximum number and relative position of sym-

metry planes. An illustration of each configuration is given in Figure 5.12.

The enumeration of all the possible intersections only considers a full intersection

curve. The original surfaces are infinite, though bounded by E. In Figure 5.12a, E is

a full circle but to conform to the content of the hypergraphs, E may be bounded by

vertices. Likewise the intersection between two planes, the location of these vertices

will be taken into account to eliminate some of the CSPs as described at section 5.4.4.

(a) (b)

Figure 5.13: (a) P is orthogonal to Co axis, (b) P is not parallel to Co axis.

pF, Faq pP,Coq pP,Coq
Geometric constraint PKAc P notKAc,

Π 8: axisymmetry Π1: Ac � Π1

Table 5.4: Configurations of symmetry planes for P and Co.

Plane/Cone pP,Coq: Compared to Cy, the symmetry planes intrinsically at-

tached to Co misses symmetry planes orthogonal to its axis Ac when P goes through
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Co apex (see Figure 5.13 and Table 5.4), which explains the difference compared to

Cy. If P goes through Co apex, each straight line segment forming the intersection

contributes to a unique maximal edge E. The corresponding symmetry plane is still

of type O-CSP and can be seen as the limit configuration of P parallel to Co axis.

Indeed, it is not attached to a vertex (Co apex) but it is not lost.

The thirteen combinatorial cases left are illustrated in Appendix A for sake of

conciseness.

The tables and figures above synthesize all the configurations of the intersection

between pF, Faq. However, they only address the complete intersection curves obtained

with infinite surfaces (planes, cylinders, cones), full spheres or full tori. In this case,

most intersection curves are closed and form one or more loops. Section 5.4.4 will

take care of the reduction of intersection curves and the corresponding effect over the

existence of CSPs.

5.4.3 CSAs generation

As mentioned at section 5.4.1, a CSA is a special case of O-CSP. O-CSPs should

turn into a CSA whenever the intersection curve between adjacent surfaces F , Fa is

a circle, meaning that the number of symmetry planes becomes infinite. Within the

discussion of the O-CSP generation (see section 5.4.2), many cases create an infin-

ity symmetry planes Π8, which indeed are CSAs. Similarly, a surface of revolution

intersecting with any other type of reference surface can generate a circular intersec-

tion curve and the corresponding respective locations need be specified, which is the

purpose of this section to synthesize the configurations and corresponding parameters

producing CSAs. To this end, the synthesis follows the combinatorial presentation set

up for O-CSP analysis and most of the relative positions of reference surfaces must

have coinciding axes to produce CSAs.

Figure 5.14 shows the cases of a plane P intersecting with a cylinder Cy, a cone

Co, a sphere Sp and a torus To. When P is orthogonal to the axis of surfaces of

revolution, the intersection curve is a circle, possibly reduced to an arc. When P

intersects Sp, a CSA is obtained whatever its orientation with respect to Sp.

Figure 5.15 illustrates a cylinder intersecting with a cone, a sphere and a torus.

The CSA generation reduces to a constraint of coinciding axes with Co and To whereas

it is a matter of coincidence between Cy axis and the center Os of Sp.

Figure 5.16 describes the axisymmetry configurations of a cone intersecting with

a cone, a sphere and a torus, respectively. Axis alignment for Co and To is the CSA

constraint and the coincidence between Sp center, Os, and the cone axis expresses the

specific properties of Sp.

Figure 5.17 expresses the axisymmetry constraints between a sphere and a sphere,
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a torus as well as the last configuration involving two tori. Indeed, all relative positions

of spheres produce a CSA whereas its center Os must coincide with To axis to generate

a CSA. Two intersecting tori produce a CSA when their axes coincide.

(a) (b) (c) (d)

Figure 5.14: Configurations producing CSAs between a plane and a cylinder (a), a

cone (b), a sphere (c) and a torus (d).

The set of configurations synthesized complements the set generating only a finite

number of O-CSPs generated at section 5.4.2. Altogether, these sets span all the

symmetry configurations where a CSP is initiated at an edge and cuts this edge.

(a) (b) (c)

Figure 5.15: Configurations producing CSAs between a cylinder and a cone (a), a

sphere (b) and a torus (c).

The existence of a CSA for each reference surface implies the existence of bounding

edges E as circles. Depending on the type of surface and location of the circles, the

reference surface can contain another symmetry plane, orthogonal to the CSA, of

type LS-CSP. It must be the case for Cy because it is bounded by two external loops

only. This never happen for Co. It can happen for Sp if it is bounded by two circles

contained in parallel planes symmetrically located with respect to Os. It can also exist

for To, similarly to Sp when the circles are symmetrically located with respect to Ot.

In all these cases, the CSP is of type LS-CSP and it can be assigned to the reference

surface right away with the CSA as a consequence of axisymmetry and surface type
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(a) (b) (c)

Figure 5.16: Configurations producing CSAs between a cone and a cone (a), a sphere

(b) and a torus (c).

(a) (b) (c)

Figure 5.17: Configurations producing CSAs between a sphere and a sphere (a) and

a sphere and a torus (b). Configuration producing a CSA between two tori (c).

combination. Taking advantage of this combination speeds up the divide phase. All

configurations with surfaces bounded by two circles can be interpreted as bounds with

two external loops, except the plane where one circle in necessarily an internal loop.

5.4.4 Incorporating edge bounds constraints in CSP generation

Because maximal edges of the object boundary form the input of the O-CSP gen-

eration process, the hypergraphs bring all the object boundary description to generate

the most probable CSPs of the object. Indeed, a real surface Fr of an object MMAX

is barely an entire surface F (a sphere or a torus) and it cannot be infinite to define

a volume, even though it is an infinite point set. Consequently, intersection curves

Er between these surfaces are only subsets of the intersection curves E described in

section 5.4.2. So, the couple of adjacent surfaces pFr, Farq of a real object MMAX is a

subset of reference surfaces F . Edges Er are also a part of the intersection curves E

used in the previous analysis while still forming infinite point sets. Er can be either
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open and bounded by two vertices V1 and V2 or closed with one or no vertex.

As a result, the following conditions hold for any edge Er of the object boundary

described in MMAX :

• V1 and V2 form a finite point set that must satisfy the symmetry condition

with regard to an O-CSP associated with Er. Therefore, these vertices must

be symmetric with respect to this O-CSP. If not, the entire edge Er is also

not symmetric with respect to this O-CSP. In Figure 5.18a, this condition is

illustrated through a cone-torus configuration where two O-CSPs Π1, Π2, may

exist. ECo�To stands for Er and the relative position of V1 and V2 with respect

to Π1 and Π2 shows that Π1 can be rejected whereas Π2 satisfies the condition;

• Er is closed and has no vertex as boundary from a topological point of view,

then Er coincides with E and the content of section 5.4.2 entirely applies. One

such edge in the hypergraphs designates only one connected component of the

intersection pF, Faq. Hence, symmetry planes of pF, Faq that are not O-CSPs, e.g.

LS-CSPs, have been already discarded and are not addressed here. Figure 5.18b

illustrates this configuration with a cylinder-torus intersection. ECy�To is the

connected component of the intersection taking part to the object boundary. Π1

and Π2 are the symmetry planes resulting from the intersection pF, Faq. Indeed,
Π1 is an LS-CSP, hence it is not processed here. Π2 only is an O-CSP and is

the only CSP attached to Er;

• Er is closed and has only one vertex V1 as boundary. Here also, Er coincides with

E. The existence of only one vertex reflects a configuration where the maximal

face/edge generation cannot remove this vertex. It is typically the case when

pFr, Farq are crossing each other (see section 4.6) and this crossing configuration

reflects pFr, Farq locations where they are tangent to each other at a point. This

point is represented by vertex V1. The content of section 5.4.2 applies and shows

that V1 lies always in an O-CSP: V1 is not producing new constraint about O-

CSP generation. If pFr, Farq ate not crossing each other, the manifold vertex

split operator combined with edge merge removes V1, which brings us to the

previous configuration.

As depicted at section 5.4.2 all the symmetry planes originated from pF, Faq do not

all belong to the O-CSP category or, more precisely, they do not always belong to the

O-CSP category, depending on the relative position of F and Fa and of their intrinsic

parameters (normal, radius, . . . ). The category change of a CSP essentially reflects

topological changes in the intersection between F and Fa. This has been characterized

in section 5.4.2 with the concept of stability of a CSP, i.e. an O-CSP is stable if, within

the configuration of pF, Faq where it appears, it always exists whatever the intrinsic

parameters of F and Fa, as long as F X Fa � φ.
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(a) (b)

Figure 5.18: Illustrations of edge bounds constraints: (a) is a pCo, Toq intersection
bounded by V1 and V2, (b) is a pCy, Toq intersection where one loop only defines

ECy�To.

When a symmetry plane is not stable, it is connected to the variation of the number

of connected components in F X Fa, hence O-CSPs evolve into LS-CSPs. They are

not lost but processed as LS-CSPs. In between the modification of the number of

components, lies singular configurations where surfaces are tangent to each other.

There, F and Fa are crossing each other and the O-CSP becomes an LB-CSP prior

to an LS-CSP. Anyhow, there no symmetry information loss.

The O-CSP set is collected from all the possible orthogonal symmetry planes of

the object boundary described by maximal faces and edges. O-CSPs being attached

to maximal edges, they can be collected by scanning all these edges in hypergraphs

G21 or G10. If E is a loop, it appears as an isolated node in G10 to be distinguished

from those bounded by vertices. If E is a loop edge, it appears as a dangling edge in

G10 and can be distinguished from the other configurations.

It has to be observed that maximal edges bounded by two vertices cannot be

attached to more than one O-CSP, Π. Indeed, if ~n is the normal of Π, and V1, V2 are

symmetric with respect to Π: ~n^
ÝÝÑ
V1V2 � ~0. Hence, Π is unique. If E is a loop, i.e. it

has no vertex, its maximal number of O-CSPs, no, cannot exceed two, as demonstrated

by enumeration of the pF, Faq combinations, when no is finite. Otherwise, no is infinite

and expresses axisymmetry. If E is a loop edge, i.e. it has one vertex V1, it is assigned

only one O-CSP that contains V1 because V1 neighborhood is C0 only and its two

tangent vectors define only one symmetry plane. Let NE , be the total number of

maximal edges of an object boundary, NE � nel�neb�nle where nel is the number of

edges defining loops, neb the number of edges bounded by vertices and nle the number

of loop edges. Then, the maximum number of O-CSPs for this object is bounded by:

NO�CSP ¤ p2nel � neb � nleq.
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5.4.5 Generation of loop bisector symmetry planes (LB-CSP) of a
face by analyzing the surrounding surfaces at a vertex

A symmetry plane Π is not only appearing in the middle of a maximal edge, it

can also appear at a vertex V of MMAX . In this case, Π acts as a bisector plane of a

maximal face F attached at V whose neighborhood is defined by:

1) two maximal edges E1, E2, each one bounded by two vertices, V being their

common vertex (see Figure 5.19a);

2) two loop edges E1, E2 sharing their unique vertex V (see Figure 5.19b);

3) a combination of both configurations above (see Figure 5.19c).

Rather than relying on the explicit description of E1 and E2, it is referred to their

adjacent surfaces, similarly to the analysis performed for the O-CSPs at section 5.4.2.

Let Fa1 and Fa2 be:

• the faces adjacent to E1 and E2, respectively, when these edges fall into config-

uration 1 above;

• the faces bounded by E1 and E2, respectively, when describing configuration 2

above;

• the faces bounded by E1 and adjacent to E2, respectively, in configuration 3.

The opposite assignment holds also for configuration 3;

their intrinsic parameters and relative position with respect to F entirely characterize

E1 and E2. Then, for a boundary loop Γ of a face F of MMAX , the plane Π P F

passing through a vertex V of Γ is a symmetry plane and is called a Loop Bisector

candidate symmetry plane of one loop (LB-CSP) if:

a) Π belongs to the intrinsic symmetry planes of F (see section 5.2);

b) Fa1 and Fa2 are of same type, have the same intrinsic parameters and are sym-

metrically located with respect to Π.

Figure 5.19a is an illustration of an LB-CSP configuration. F is the current surface.

E1 and E2 are successive edges of Γ, they intersect at V and represent case 1. E1 is

the intersection between F and Fa1, E2 is the intersection between F and Fa2.

Now, analyzing configuration 3 above and assuming that E1 is loop edge face Fa1,

it appears that the existence of one loop edge adjacent to F indicates the existence of

a crossing configuration between Fa1 and F whereas E2 is not a loop edge. Therefore,
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(a) (b) (c)

Figure 5.19: A generic configuration of the LB-CSPs. (a) is case 1: a LB-CSP with

adjacent edges bounded by two vertices, (b) is case 2: a LB-CSP with adjacent loop

edges, (c) is case 3: the combination between case 1 and case 2, but without CSP.

if Fa2 is either identical or symmetric to Fa1, it satisfies condition b above. However,

edges E1 and E2 don’t have the same extent since E2 is bounded by a vertex without

a symmetric bound for E1. As a result, configuration 3 cannot produce any LB-CSP.

Indeed, because Fa1 and Fa2 are of same type and same intrinsic parameters and

intersect at least at V , their intersection defines a bisector symmetry plane, BS-CSP

(see section 5.3.1), which will be defined more precisely at section 5.6. However, the

present configuration shows that a LB-CSP emerges at V when the bisector plane of

Fa1 and Fa2 coincides with an intrinsic symmetry plane of F at V .

Because there are five types of reference faces addressed, the number of reflective

symmetry configurations of two surfaces equals five too (see section 5.6) to define BS-

CSPs. Then, combining these five configurations with the five reference faces defining

F produces 25 different configurations where LB-CSPs hold. These configurations can

be summarized as follows (see also Figure 6.2):

• F is a plane: whatever the category of Fai (planes, cylinders, . . . ), there exists

always an LB-CSP because symmetry planes exist in every direction around a

point on a plane;

• F is a cylinder Cy: whatever the category of Fai, there exists an LB-CSP if the

bisector plane of Fai either contains the axis Ac of Cy or is orthogonal to Ac;

• F is a cone Co: for all categories of Fai, an LB-CSP exists only if the bisector

plane of Fai contains the axis Aco of Co;

• F is a sphere Sp: for all categories of Fai, an LB-CSP exists if the bisector plane

of Fai contains the center Os of Sp;

• F is a torus To: for all categories of Fai, an LB-CSP exists only if the bisector
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plane of Fai either contains the axis Ato of To or is orthogonal to Ato and contains

its center Ot.

Because the extreme vertices V1 and V2 of the two edges E1 and E2, respectively,

are opposite to their common vertex V (see Figure 5.19a), these vertices can be col-

lected and easily used for symmetry purposes. The locations of V1 and V2 can take

part to another symmetry constraint expressing the real symmetry of E1 and E2 with

respect to Π, i.e. V1 and V2 must be symmetric with respect to Π. This constraint is

similar to the one related to O-CSPs stated at section 5.4.4.

Configuration 2 is not subjected to this constraint and produces a valid LB-CSP

with conditions a and b only.

LB-CSP are related to the vertices of MMAX . In the hypergraphs Gij, a boundary

loop Γ of a surface F is a data structure derived from G10. Regarding Γ, an LB-

CSP collection process needs to scan all its nodes to set all its bisector symmetry

possibilities. Combining the LB-CSPs with the set of O-CSPs, all the CSPs of Γ are

covered:

rΠΓs � rΠΓsCSP � rΠΓsO�CSP Y rΠΓsLB�CSP . (5.8)

Indeed, generating all the LB-CSPs of MMAX requires scanning all its boundary

vertices and, around each vertex, to create all the possible LB-CSPs. Extracting the

neighborhood of a vertex V is equivalent to the generation of a dual graph around V

(see section 4.6) to create the effective sequence of faces around V . Independently of

the intrinsic parameters and relative positions of the surfaces around V , the distribu-

tion of surface types, i.e. plane, cylinder, . . . , around V brings already clues about

the existence of LB-CSPs at V . However, analyzing this distribution with regard to

the number of surfaces and the number of surface types, is complex and partly relates

to the propagation process of CSPs, which will be addressed at section 6.3 for a first

level.

Now, at the global level of the object, having its boundary described with NV

vertices and assuming that there is no more than nsMAX faces around a vertex, an

upper bound of the amount of LB-CSPs is given by: NLB�CSP ¤ NV .nsMAX , which

is linear with respect to NV (see Figure 5.20).

The above analysis of conditions defining a LB-CSP are necessary ones and don’t

take into account the effective location of the bounded areas of the adjacent sur-

faces. This location needs to be uniquely characterized. To this end, the concept of

orientation index is introduced in the following section.
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Figure 5.20: A loop combined by 6 edges has 6 LB-CSPs.

5.4.6 Characterizing the used area of a reference face using the ori-
entation index

Indeed, only referring to the intrinsic parameters of the reference faces, their rela-

tive locations as well as extreme points of some of their boundary edges is not sufficient

to characterize the symmetry properties of two reference faces with respect to a CSP

Π. Infinite sets of points thus defined may not coincide with the maximal faces of

MMAX . As an example, a hemisphere bounded by a circle as edge loop is not explic-

itly defined by the sphere parameters, location and circle boundary. At this stage, the

corresponding point set can still be either a protruded hemisphere or a hollow one.

Such configurations with multiple solutions must be removed and it is the purpose of

the orientation index.

Within the range of 3D volumes currently addressed here, available information

to characterize surface areas are:

• the orientation of a face, i.e. a subset of a volume boundary that is also a subset

of a reference face. This orientation follows the topological properties of the

composite surface bounding a volume, which must be orientable. It contributes

to the definition of a partition of IR3 forming the volume of an object and is

independent of the reference faces. This orientation is valid for the whole object

boundary;

• the curvature properties of the reference surfaces. They are independent of

their spatial location and are defined locally at a point. However, the reference

surfaces being simple, their curvature distributions are also simple enough to
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extract parameters that can be valid for a whole face.

Considering the curvature properties of the reference faces, they can be related to

a bounded subset of a reference face as follows:

• a cylinder has a uniform curvature distribution, i.e. it is valid at any point
~P pu, vq on the cylinder, where one principal curvature direction is defined by

its generatrices and the other one is orthogonal to the cylinder axis with a

constant radius of curvature. Consequently, a center of curvature at ~P pu, vq can
be uniquely defined by the vector originated from ~P to a point Q on the cylinder

axis along the normal ~n at ~P : ~n ^
ÝÝÑ
PQ � ~0. This is valid for any subset of the

cylinder forming a face of B-Rep object;

• a cone has a linearly variable curvature distribution excepted at its apex. One

principal curvature direction is always coinciding with the cone generatrices.

The other one is orthogonal to the cone axis with a curvature center Q lying on

the cone axis and has a linearly variable curvature radius. This is also valid at

any point ~P pu, vq of any subset of the cone forming a face. Here also the normal

~n at ~P satisfies: ~n^
ÝÝÑ
PQ � ~0;

• a sphere has constant radii of curvature and every point on the sphere is umbilic.

At every point ~P pu, vq, the center of curvature Q is the center of the sphere. This

is applicable for any subset of the sphere forming a face as well as: ~n^
ÝÝÑ
PQ � ~0

where ~n is the normal at ~P ;

• a torus has a variable curvature distribution. One principal curvature direction is

always contained in a plane passing through the torus axis and its corresponding

center of curvature Q1 is located on the circle of average radius. The other

curvature direction is always contained in a plane orthogonal to the torus axis

and its corresponding center of curvature Q2 is located on the torus axis. Hence,

at any point ~P pu, vq, considering the center of curvature Q1 and the normal ~n at
~P : ~n^

ÝÝÑ
PQ1 � ~0 holds. This invariant does not hold with the quantity ~n^

ÝÝÑ
PQ2;

• a plane has a uniformly vanishing curvature distribution and curvature centers

Q are located at infinity. The normal ~n at a point ~P pu, vq can be assigned on

either side of the plane. The relation: ~n ^
ÝÝÑ
PQ � ~0 holds also at any point of

the planar domain defining a face of the object.

Summing up the above analysis shows that curvature related quantities, i.e. PQ or

PQ1, based on cylinder, cone axes, sphere center, torus average radius, plane normal,

are invariant for any point of an arbitrary and bounded face, hence they can be used

at any point to characterize an entire face. Now, this quantity, which is intrinsic to

any subset of a reference surface, can be combined with the face orientation defined

for topological purposes to characterize the symmetry properties of faces.
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Let ~nv be the unit normal vector obtained at each point P to define the oriented

surface. Because of the orientation property of the object surface, either ~nv points

inside or outside the volume of the object uniformly over the surface. Let ~nf , be

the unit normal to a face such that:
ÝÝÑ
PQ � }

ÝÝÑ
PQ}~nf or

ÝÝÑ
PQ1 � }

ÝÝÑ
PQ1}~nf . Then, the

quantity:

Oi � ~nv.~nf � �1, (5.9)

changes sign whenever two faces of the object have different concavities/convexities

(see Figure 5.21). Oi is called the orientation index of a face F and can be used to

compare the convexity/concavity of faces evaluated through symmetry properties.

Figure 5.21: A summary of configurations to discriminate between faces of same

geometric type. Cylinders, spheres and tori are distinguished using the orientation

indexOi. Cones are distinguished using the apex coordinates and oriented axis. Planes

are separated with the orientation of MMAX .

However, Oi is not meaningful for a plane since ~nf can be arbitrarily chosen.

Complementary, a plane has a null curvature, hence there is no notion of convexity/-

concavity and ~nv alone is sufficient to compare two planar face since ~nv determines the

position of the interior/exterior of the object. If F1 and F2 are the faces to compare

and ~nv1 , ~nv2 their respective normals: ~nv1 .~nv2 � �1 can be used to discriminate them

with regard to their interior/exterior status.

Consequently, the orientation index is a meaningful quantity that can be added

to the generation of LB-CSPs to precisely characterize symmetric configurations to

be kept. Though the input to the symmetry analysis process is a STEP file and this

file format contains information about surfaces that may characterize their concavi-

ty/convexity, it is specific to this file format and may depend on the sending system,

its generation process of primitives and the way they are combined together. On

the one hand, there is no explicit parameter in STEP format describing the concav-

ity/convexity of a surface. This means that a model may be influenced by the users

modeling process and its STEP description may be influenced by the modeler. On

the other hand, the above approach is self-contained and is effectively discriminating

configurations as needed in the present analysis.
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5.5 Reflective symmetry planes between loops bounding

a surface (LS-CSP)

Regarding the discussion addressed at sections 5.4 and 5.3.6 about symmetry

planes generated by multiple loops of a face F , if F is bounded by only one loop,

the set rΠslf
ΓexsCSP is covering all reflective symmetry possibilities. At the opposite

and as an example, if F is bounded by two external loops, the symmetry plane Πbtw
Γex
p1,2q

is missing (see section 5.3.6).

More generally, when F is bounded by several loops, they can interact with each

other and produce new symmetry planes (see section 5.3.2). With each symmetry

plane of F , the interactions between loops, either external and/or internal ones, can

be subdivided into two distinct categories:

• symmetry planes cutting loops, i.e. more than one loop, through vertices and/or

edges;

• symmetry planes separating two loops without having intersection with them.

In the first category, several infinite point sets interact with each other. Because

the symmetry planes cut loops at some of their vertices and/or edges, the initial CSPs

involved in the identification of these symmetry planes fall into the categories of O-

CSPs, LB-CSPs or satisfy axisymmetry conditions, i.e. an edge is attached to a CSA

(see section 5.4.1). If the CSPs and CSAs initiated at these loop vertices or edges are

effective symmetry planes rΠΓ
i s of the corresponding loop Γ, these symmetry planes

must coincide with some rΠΓex

j s belonging to the outer loop Γex of F . This coincidence

establishes a connection between two infinite point sets, each of which corresponding

to a loop. Then, facing repetitively these coincidences between loops help connecting

together these disconnected point sets.

For a given CSP, Πi CSP , belonging to the previous category and connecting the

external loop(s) of F to a maximum amount of its internal loops designated by the

set rΓin
ciMAX s, internal loops not falling in the above category belong necessarily to

the second one and form the set rΓin
i LSs. The corresponding symmetry planes rΠ

Γin
i LS

j s
appear on the basis of couples of internal loops pΓin

k LS ,Γ
in
l LSq only. These CSPs, called

LS-CSPs must interact with symmetry planes rΠΓex

k s attached to the external loop(s)

of F (see Figure 5.22). As shown at section 5.3.6, symmetry planes of F are contained

into the set of planes derived from its external loop(s). More precisely, it can be

stated:

rΠ
Γin
i LS

j s P prΠΓex

k s Y rΠΓex

p1,2qs, (5.10)

showing that LS-CSPs are initiated from the symmetry properties of F external
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Figure 5.22: Illustrations of LS-CSPs and the corresponding sets of loops and symme-

try planes. (a) is combinatorial result between all pairs of internal loops, (b) shows

that with the constraints of external loop, only 2 planes are left as LS-CSPs.

loop and symmetry properties intrinsic to the embedding of F in IR3 characterized by

rΠΓex

p1,2qs. Indeed, rΠΓex

p1,2qs designates the symmetry planes of type LS-CSP generated

by two external loops, which applies to cylindrical or toroidal faces only within the

current set of reference faces when two of these loops exist. This paragraph can be

transposed also to spheres and tori with loops of unknown status when considering

these loops as internal ones always compatible with virtual external ones.

In a first place, let us assume that F contains only one external loop Γex. Let

rΠ
Γin
LS

j s be decomposed into rΠLSs, the set of F symmetry planes derived from inter-

nal loop symmetries, and rΠΓex

k s, the symmetry planes attached to its external loop

rΠΓex

k s � rΠLSs then, having symmetry planes valid for F implies: DΠLS j P rΠΓex

k s.
This observation helps reducing the number of LS-CSPs evaluated to check the sym-

metry of F .

Considering any valid CSP, Πi CSP , of Γ
ex, Πi CSP P rΠΓex

k s then, this CSP interacts

with the internal loops of F as follows: rΓins � rΓin
ciMAX s Y rΓin

i LSs and rΓin
ciMAX s X

rΓin
i LSs � tφu. Then, it can be observed that if CardprΓin

i LSsq is odd, then Πi CSP is

not valid for F .

As it appears above, generating LS-CSPs for all internal loops of F can be fairly

combinatorial. However, the previous analysis shows that ΠΓex

k planes are prominent

with respect to ΠLS ones since ΠΓex

k reduce the amount of internal loop combinations

participating to the overall loop symmetry analysis of F .

Now, two configurations emerge from the previous observations:

1) there exist a finite set of CSPs, rΠ
ΓexΓin

cMAX

k s attached to Γex and crossing a

maximum number of internal loops rΓin
ciMAX s of F ;
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2) there is no CSP crossing internal loops and the outer loop of F is axisymmetric.

Consequently, LS-CSP generation can be addressed either as checking that a CSP

is valid for a group of loops or generating all the CSPs valid for a set of internal

loops. Both LS-CSP generation processes share common steps that are described

hereafter. Starting with a CSP @Πi P rΠ
ΓexΓin

cMAX

k s, CardprΓin
ciMAX sq being even and

a loop Γk P rΓin
i LSs, CardpΓkq � nΓk

is the number of vertices or edges defining Γk. A

first step consists in selecting another loop Γj P rΓin
i LSs, then:

• if nΓj
� nΓk

;

• and if the sequences of reference faces involved in the definition of Γj and Γk

differ only with circular permutations from each other;

Γj can be analyzed further to proceed with the validation of Πk after their sequence

of reference surfaces have been aligned. If one of these conditions is not valid, there

is no valid CSP for the current couple of loops and another loop Γj can be evaluated.

If EΓj satisfying both conditions, Πk is not a valid CSP for F .

If Πk is still a valid CSP then, selecting an arbitrary vertex V
Γk
t P Γk, V

Γk
t P Et

identifies the corresponding reference face in the sequence of Γk edges. Then, a vertex

V
Γj
r P Γj , homologous to V

Γk
t , can be selected and it can be checked whether V

Γj
r is

symmetric to V
Γk
t with respect to Πk or not. If so, this process carries on with the

other homologous vertices and, furthermore, with the homologous edges. Processing

homologous edges is described hereafter. When homologous vertices and edges are

effectively symmetric with respect to Πk, Πk becomes a valid LS-CSP for Γk and Γj .

Now in configuration 2, there is no CSP Πk available: symmetry planes intrinsic to

F become the starting point to generate LS-CSPs for F . Having the external loop of

F axisymmetric means that V Γk
t and V

Γj
r must be symmetric with respect to a plane

containing the axis of a cylinder, a cone or a torus if F matches one of these faces

types, otherwise it must contain the center of a sphere or be orthogonal to a plane

if F belongs to one of these categories. Once the face type specified, the generation

process of Πk follows steps similar to configuration 1 above. Πk can be entirely defined

once a first couple of vertices V Γk
t and V

Γj
r has been from Γj and Γk.

Whatever the configuration considered, if the circular permutations generated to

align Γk and Γj are not unique, the above processes have to be reiterated as many

times as there exist circular permutations to align Γk and Γj . When the reference

faces in Γk are all of the same type and order as in Γj , their edges can be processed

as follows.

As a first simple case, if Γk and Γj have no vertex, it means they reduce to edge

loops that have to be compared to Πk. F and the two adjacent faces Fai of two edges

of Γk and Γj are the reference entities. If Fai satisfy the reflective symmetry criterion
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with respect to Πk, indeed Πk defines a bisector plane (BL-CSP). The corresponding

configurations are defined in section 5.6. In addition, Πk satisfies the intrinsic sym-

metry constraints originated from F (see Figure 5.23). As a result, Πk is an LS-CSP.

Now when Γk and Γj contain vertices, homologous edges are processed similarly

to the above paragraph.

Because coordinate comparison for symmetry properties is faster than comparing

faces parameters and location, the traversal of vertices is faster than edges. That is

why vertices are processed first.

(a) (b)

Figure 5.23: Reflective symmetry plane Π derived from loops Γ1 and Γ2 without vertex:

(a) Cy1 and Cy2 satisfy the symmetry constraints with respect to Π. Π satisfies also

the symmetry constraints of P , hence Π is an LS-CSP, (b) Π does not satisfy these

symmetry constraints.

So far, F has been considered bounded by a single external loop. Processing

reference surfaces owning two external loops can be achieved as follows. If rΠΓex

k s
designates the set of CSPs attached to Γex when F contains only one external loop,

now it is replaced by:

rΠΓex

k s � prΠΓex1

i s X rΠΓex2

i sq Y rΠΓex

p1,2qs, (5.11)

where rΠΓ
exj

i s, j P t1, 2u are the CSPs of each external loop of F and rΠΓex

p1,2qs is the
possible CSP of type LS-CSP originated from the interaction between these external

loops. Then, using this new expression of rΠΓex

k s reduces this configuration to faces F

having a single external loop.

Though the generation of CSPs is rather combinatorial since they are based on

couples of loops, the maximal number of LS-CSPs generated from nI loops depends

on the type references surface. Section 5.3.2 showed that nI loop amount to 2nI LS-

CSPs at most, showing that the number of LS-CSPs evolves linearly wiht respect to the
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number of loops. The same remark applies to planes, cones and tori when extending

the content of section 5.3.2 to sections 5.3.1, 5.3.3, 5.3.4. The only configuration of

face where the generation of LS-CSPs can stay combinatorial is the spherical faces

with a quadratic number: nIpnI�1q
2

, of LS-CSPs.

The method to generate LS-CSPs can be summarized in two steps after structuring

the loops involved in LS-CSPs. The first one relates to topological elements compar-

ison. Loop vertex or edge numbers must be identical. The second step conforms to

the analysis of the interactions between loops as described above.

5.6 Bisector symmetry plane between two surfaces (BS-

CSP)

Often, an object boundary contains several reference surfaces, hence several loops.

In order to detect its symmetry planes, the symmetry properties of loops are collected

by detecting its O-CSPs and LB-CSPs. Then, the symmetry properties of loops

interacting with each other are collected by detecting their LS-CSPs. However, the

previous categories of CSPs don’t cover all the symmetry properties of intersection

curves. Indeed, when an intersection becomes a planar curve, it can produce another

category of symmetry plane, the so-called bisector symmetry plane.

(a) (b) (c)

(d) (e)

Figure 5.24: Bisector symmetry planes of pP,Cy,Co, Sp, Toq and corresponding rela-

tive locations.
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The symmetry detection in faces F bounded by several loops is covered by the

previous section 5.5. There, pair of surfaces forming the loops interact with F and

the symmetry between these faces is also a configuration where a bisector plane can

generate an LS-CSP. Even though the CSP coming from this configuration is similar

to a bisector symmetry plane between the surfaces forming the loops, the object

boundary participating to the symmetry property is the surface containing the loops,

F , not its adjacent surfaces.

Consequently, a CSP has to be attached, in some way, to a maximal edge or a

vertex of the object boundary. This property effectively defines the bisector sym-

metry planes as a new category of CSP when the intersection curve between two

adjacent faces Fa1 , Fa2 defines a maximal edge of the object boundary. As a result,

the analysis of configurations where the adjacent faces to a maximal edge produce

a planar intersection curve is sufficient to identify how reference faces Fa1 , Fa2 can

produce Bisector symmetry planes (BS-CSP). Because the objective is to characterize

the symmetry properties of MMAX , not only the intersection curve must be planar

but its adjacent faces Fa1 , Fa2 , as infinite point sets, must be symmetric to each other

with respect to their intersection curve, which prescribes additional constraints on

Fa1 , Fa2 intrinsic parameters and locations.

Indeed, the analysis of surfaces configurations between two faces Fa1 , Fa2 has been

used to characterize O-CSPs. Here, the constraint of planar intersection curve reduces

the category to a set of surface configurations having the same type. In addition, to

effectively produce a symmetry plane valid for Fa1 , Fa2 , their intrinsic parameters

must be identical, i.e. same radius for a cylinder or a sphere, same apex angle for a

cone, same radii for a torus. Figure 5.24 shows bisector symmetry planes of the five

reference surfaces. Under these dimensional constraints, the corresponding relative

locations of Fa1 and Fa2 producing bisector planes can be stated as:

• Planes: any configuration of intersecting planes P1, P2;

• Cylinders: cylinders Cy1, Cy2 with intersecting or parallel axes. If the axes

are parallel, the intersection considered here reduces to only one straight line

representing one maximal edge of the object boundary;

• Cones: cones Co1, Co2 having the same apex angle and parallel axes A1, A2.

O1, O2 being their respective apices, they must also satisfy O1O2 K A1 or A2.

Co1, Co2 having axes intersecting is another possible configuration. The latter

subdivides into two configurations: Co1, Co2 meet at their apices or, if Lb is the

bisector line of A1 and A2, O1O2 K Lb (see Figure 5.25);

• Spheres: spheres Sp1, Sp2, whatever their relative position as long as they

intersect with each other;
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• Tori: tori To1, To2 with coinciding centers OT1
, OT2

and axes intersecting at

these points. OT1
, OT2

can be also distinct and the axes of To1 and To2 be

parallel to each other.

Because BS-CSPs are attached to edges, they can be attached to edges where O-

CSPs exist but they are independent of these O-CSPs, i.e. at any given edge, either

an O-CSP may exist or a BS-CSP or both.

(a) (b)

Figure 5.25: Refining configurations producing planar intersection curves between

Co1 and Co2 where symmetry planes exist: (a) Co1 and Co2 intersect at their apices,

(b) Co1 and Co2 intersect and their apices are symmetric with respect to Lb, i.e.

O1O2 K Lb.

5.6.1 Processing multiple solutions of bisector symmetry planes

The BS-CSP of two faces may not be unique depending on the type of reference

face. From Figure 5.24, it is clear to show that all reference faces are bounded by

a single intersection curve, possibly composed of two loops. When considering the

full surfaces, whether bounded or not, some other areas of these surfaces can create a

second bisector symmetry plane. This illustrates the multiple solutions of BS-CSP and

their ambiguity. As shown in Figure 5.26, the BS-CSP of two planes, two cylinders

and two tori are ambiguous. However, depending on the surface embedding, some

reference faces may have a unique BS-CSP. A cone, as defined in a STEP file or a

B-Rep modeler, is always reduced to one nappe. Even though it is an unbounded

surface, section 5.2 shows that an orientated axis can be uniquely assigned to a cone,

so a bisector symmetry plane only exists between two oriented axes of Co1, Co2,

hence BS-CSP is unique. A sphere has no reference axis and the intersection between

Sp1 and Sp2 produces only one curve. This configuration results in a unique bisector

plane, so there is no ambiguous configuration.
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Apart from these configurations, to collect the right bisector plane of planes,

cylinders and tori using only their intrinsic parameters is impossible. Some other

constraints must be added as follows.

(a) (b)

(c) (d)

Figure 5.26: Examples of ambiguous configurations of bisector planes: (a) and (b)

are planes, their normals provide a constraint to select the appropriate solution; ex-

amples of (c) cylinders and (d) tori with bisector planes. The planes containing the

intersection curves are the constraints to identify the correct configuration.

In case of BS-CSP between planes P1 and P2, the surface orientation of MMAX

can be used to generate the right BS-CSP. Their intersection curve is unique and

belongs to MMAX . This curve reduces P1 and P2 to half planes. Because, P1 and P2

are part of a B-Rep model, this boundary is oriented and their unit normals ~n1 and

~n2, respectively, can be used to select the correct BS-CSP. Whatever the convex or

concave configuration, the correct bisector plane only appears between the normals

of P1 and P2, i.e. a vector contained in the BS-CSP is: ~nBS�CSP � ~n1 � ~n2 (see

Figure 5.26a, b).

With cylinders and tori, intersection curves are multiple, i.e. these curves lie

into two planes Π1 and Π2, whereas the maximal edge E contributing to the object
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boundary and defining their BS-CSP varies according to the following configurations:

1) E is C0 or C1, bounded by two vertices and no more than one of them is

coinciding with the intersection of Π1 and Π2;

2) E is C0 and forms a loop lying in either Π1 or Π2;

3) E is C0 or C1 and contains a vertex at the intersection of Π1 and Π2;

4) E is only C0 and does not contain a vertex at the intersection of Π1 and Π2.

Cases 1 and 2 reflect configurations with a unique symmetry plane. Case 3 is, in fact,

a configuration where two symmetry planes can exist. Indeed, the faces Fa1 and Fa2

are crossing each other. Therefore, the manifold vertex split operator cannot operate

in this case. Each intersection curve is split by the vertices located at the crossing

points with CSPs. The symmetry planes result from the propagation process and

can amount to two planes, thus conforming to the configuration with two symmetry

planes. Finally, case 4 represents a configuration where the boundary of Fa1 and Fa2 is

obtained from curves belonging to Π1 and Π2. Because Fa1 and Fa2 are the only faces

around a vertex, if any along their boundary, the edges will be merged and produce

only one maximal edge, E, partly lying in Π1 and partly into Π2. Hence, there will

be no BS-CSP attached to this configuration.

This intersection curve is now used to characterize the right CSP or none in case 4.

To this end, a set of four non aligned points P1, P2, P3, P4 is sufficient to uniquely

identify either the solution plane or none in case 4. The candidate symmetry planes

intersect each other along a straight line L. Any two distinct points on L can be

designated as P1, P2. Consequently, the identification of the solution plane is left to

P3 and P4 to check if there is no BS-CSP attached to E (see Figure 5.27). If E belongs

to case 4, it contains several curves and one of their endpoint must coincide either

with P1 or P2. This process must be able to recognise E.

Defining the point P3 depends on the number of vertices on the intersection curve

and on their locations. If at least one vertex exists and does not lie on L, this point

becomes P3, hence the BS-CSP is uniquely defined with P1, P2, P3. If all the vertices

available lie on L or if none is available, assuming that the parameterization of the

intersection curve is regular, any distinct point from L in its parameter space can be

produced to define P3. Then, this triplet uniquely defines the BS-CSP (see for example

Figure 5.26c). If no curve endpoint of E has been found coinciding with P1 or P2, E

is C1 and the BS-CSP has been effectively identified. Otherwise, an arbitrary point

P4, located opposite to P3 with respect to P1 or P2 is defined. If P4 is coplanar with

P1, P2, P3 the corresponding BS-CSP can be assigned to E else there is no BS-CSP

attached to E because E falls in case 4.
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 5.27: Processing multiple solutions of bisector planes to select the right one or

assign none if E is not C0.
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5.7 Defining the status of face boundary loops

Sections 5.3 and 5.5 have extensively referred to loops bounding faces as well as

their status in terms of internal or external loops. This loop classification can be ad-

vantageously taken into account to analyze an object and/or speed up the algorithms.

As an example, section 5.3 showed that independently of the number of internal loops,

the type of external loop on a cylinder influences the number of symmetry planes: if

there is only one external loop, the face cannot have more than one symmetry plane

containing the cylinder axis whereas a configuration with two external loops can pro-

duce a number of symmetry planes linearly bounded by the number of internal loops.

Here, the purpose is to set up the analysis of loops that leads to an unambiguous

designation of loops as internal or external.

Let F be the face where loops are being classified. F belongs to one of the five

reference surfaces. The status of loops depends on their number and position over a

reference face. The number and category of loops are influenced by the other faces

Fai , hence their corresponding reference faces, interacting with F and by their relative

position.

Complementary, loops properties must be extracted from loops made up from

several maximal edges, i.e. when F interacts with several adjacent surfaces Fai through

a loop.

The two above configurations lead to two complementary approaches: the first one

is a combinatorial approach between F and Fa and the second one is the analysis of

a composite loop containing several maximal edges.

Figure 5.28: Loop type on the surface. (a) is loop type 1; (b) is loop type 2; (c) is

loop type 3.
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5.7.1 Deriving the status of face boundary loops from maximal edges
without vertices

There are 3 types loop on the surface for different surface. The 3 types loop are

defined by wether it is around the major revolution axis, the minor revolution axis or

not around. As explained in Figure 5.4, different loop type has its own external and

internal property if the loop is one edge loop. Loop type 1 is not around any axis,

see Figure 5.28a. It can appear on all type surfaces. For plane, cylinder and cone,

it can be external loop or internal loop respectively. Loop type 2 is around major

revolution axis and all revolute surfaces have it, except plane. A full type 2 loop only

can be external loop of the surface. Loop type 3 is around minor axis which it only

appears on torus. A full type 3 loop is external loop, too. The edge is the intersection

between two surfaces. The combinations of surfaces to be analyzed is summarized in

Table 5.5 where the 14 configurations are summarized. Compared to Table 5.2, one

configuration does not appear, pP1, P2q since the intersection between planes cannot

produce a loop.

Fr / Fa Plane Cylinder Cone Sphere Torus

Cylinder 1:pP,Cyq 2:pCy,Cyq 3:pCy,Coq 4:pCy, Spq 5:pCy, Toq
Cone 6:pP,Coq 7:pCo,Coq 8:pCo, Spq 9:pCo, Toq
Sphere 10:pP, Spq 11:pSp, Spq 12:pSp, Toq
Torus 13:pP, Toq 14:pTo, Toq

Table 5.5: Combinations of two reference surfaces where their intersection curves can

produce a maximal edge without vertex.

Now, the purpose of this section is to define the geometric constraints of relative

surface locations so that their intersection forms a loop that will be represented as

a maximal edge without a vertex in the hypergraphs describing MMAX . In addi-

tion, loops will be analyzed to classify them as loop types whenever it is meaningful.

Throughout this analysis, the tori considered are falling in the configuration where

their average radius R is greater or equal to their small radius r. The influence of

other configurations, if any, have not been investigated yet. The location and dimen-

sional conditions listed hereunder essentially express how the transition between loop

categories operates. It is not intended here to give details about the general process

of loop status identification since it is combinatorial. Appendix B gives more details

about these processes.

Plane/Cylinder pP,Cyq: Because the intersection curve entirely exists as a max-

imal edge, it exists as a loop as long as the plane normal ~n is not orthogonal to the

cylinder axis ~Ac: ~n � ~Ac � 0 (see Figure 5.29). Any loop configuration belongs to the

external loop category for Cy.

Cylinder/Cylinder pCy1, Cy2q: Without loss of generality, it is assumed that
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Figure 5.29: Loop formed by a pP,Cyq intersection classified as loop type 2 of cylinder

and loop type 1 of plane.

r1 ¡ r2. In this case, if their axes Ac1 and Ac2 intersect (pAc1 X Ac2 � φq), one loop

can be described as: loop type 2 for Cy2 and loop type 1 one for Cy1 (see Figure 5.30).

If Ac1 and Ac2 don’t intersect and are not parallel to each other, the loop status is set

by the minimal distance between Ac1 and Ac2: d12 (see Table 5.6). If Ac1 and Ac2 are

parallel to each other, they don’t generate a loop so this configuration is not relevant.

If r1 � r2 and the intersection curve between Cy1 and Cy2 reduces to only one

maximal edge, the loop status is external for Cy1 and Cy2 both when the bisector

plane simultaneously appears.

When d12 � pr1 � r2q,

pCy1, Cy2q pAc1 XAc2 � φq pAc1 XAc2 � φq
Geometric r1 ¥ r2 r1 � r2 d12 ¡ pr1 � r2q d12 ¤ pr1 � r2q
constraint non-regular

Loop Cy1: T1 Cy1: T2 Cy1: T1 Cy1: T1

status Cy2: T2 Cy2: T2 Cy2: T1 Cy2: T2

Table 5.6: Configurations of loops with an intersection between Cy1, Cy2.

Cylinder/Cone pCy,Coq: The configurations can be structured according to the

relative position of the cone apex A with respect to the cylinder axis Ac and the apex

angle α. First of all, the position of A is located either inside or outside Cy. This is

expressed with:

}
ÝÑ
AP � p

ÝÑ
AP � ~Acq � ~Ac}   R (5.12)

where P is an arbitrary point on the axis of Co, Ac is a unit vector defining the axis

of Co and the inequality expresses the fact that A is inside Cy. Within this relative
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Figure 5.30: Loop formed by pCy1, Cy2q intersections: (a)(b)(c) Ac1 and Ac2 intersect,

(d)(e) Ac1 and Ac2 don’t intersect.

location of Co and Cy, the relative angle between Co and Cy is the second parameter,

e.g.{AcoAc ¥ α (see Figure 5.31).

Table 5.7 summarizes the major configurations and the corresponding loop status

for Cy and Co. It has to be noticed that the configuration where Cy does not contain

A is characterized by a transition configuration where Co is tangent to Cy. However,

this characterization is subjected to a fair amount of parameters and cannot straight-

forwardly expressed. The Appendix B gives the details defining the corresponding

condition, which can be expressed analytically.

Cylinder/Sphere pCy, Spq: The loop status for Cy and Sp interaction is mon-

itored by the relative position of the center Cs of Sp with respect to the axis Ac of

Cy. It reduces to two categories with the first one:

prc � dq ¤ rs (5.13)
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Figure 5.31: Loop formed by pCy,Coq intersections: (a)(b) Cy contains the apex A

of Co, (c)(d)(e) A is outside Cy.

pCy,Coq pA � Cyq pA � Cyq

Geometric {AcoAc ¥ α {AcoAc   α Cy inside Cy partly Co cross

constraint Co outside Co Cy

Loop Cy: T1 Cy: T2 Cy: T2 Cy: T1 Cy: T1

status Co: T2 Co: T2 Co: T1 Co: T1 Co: T2

Table 5.7: Configurations of loops with an intersection between Cy, Co.
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Figure 5.32: Loop formed by pCy, Spq intersections: (a) Cy satisfies Eq. 5.13, (b)

complementary configuration.

where rc and rs are the cylinder and sphere radii, respectively and d, d P R
�, is

the shortest distance between Ac and Cs. The other category is obtained with the

complementary inequality and the categories are illustrated with Figure 5.32. There

is no loop status for Sp since the loops over this surface cannot be categorized (see

section 5.3). Table 5.8 summarizes the loop status for Cy.

pCy,Coq Cy ‘inside’ Sp Cy ‘outside’ Sp

Geometric constraint prc � dq ¤ rs prc � dq ¡ rs

Loop status Cy: T2 Cy: T1

Table 5.8: Configurations of loops with an intersection between Cy, Sp.

Cylinder/Torus pCy, Toq: There are three types of loops over To and two types

for Cy (see Figure 5.33a,b,c). Likewise for the interaction pP, Toq, it is necessary to

cover all the configurations generating the different categories of loops over To. Look-

ing at the configuration where the cylinder generates loops of type 1, a cylinder with

an axis Ac slanted with respect to To axis At is similar to the configuration studied

for pP, Toq. However, the curvature of the cylinder, Rc produces a configuration close

to the interaction taking place during a machining operation where the curvature of

the tool and the curvature of the machined surface are not independent of each other

(see Figure 5.33d,e).

As a consequence, the characterization of tangent configurations becomes more

complex and cannot be achieved with an analytical approach because the governing

equations become non linear and require a numerical approach. Appendix B gives

more details about the corresponding equations governing some tangent configura-

tions. The occurrence of loop type becomes also more complex because multiple
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Figure 5.33: (a)(b)(c) An illustration of the different loop types over To generated

with Cy, (d)(e) tangent configuration illustrating the curvature interactions between

To and Cy to produce different loop types, (f) an example of configuration where

different loop types appear simultaneously.

intersection curves can produce different loop types (see Figure 5.33f). Further treat-

ments are required to separate these categories to focus on the right one.

Because the radius of Cy influence the intersection curves, dimensional configura-

tions of To and Cy may not be able to produce some loop types, e.g. if Cy is smaller

than the small radius of To, Rc   r there cannot be loops of type 2.

Regarding the definition of loops, the identification of a current configuration

uses the dimensions of To and Cy and a reference configuration where To and Cy

share some tangent configurations, if possible, with a relative orientation conform

to they real orientation. From that configuration, the purpose is to determine the

displacements needed to meet the real configuration of To and Cy, the corresponding

displacement identifying the corresponding loop type (see Figure 5.34). The cone/cone

interaction hereafter gives an example of this process with more details. The remarks

about the cone/cone interaction apply also to the To and Cy one.

Plane/Cone pP,Coq: Differently from the interaction pP,Cyq, intersection curves

for pP,Coq can be either closed or open when P forms an angle greater or smaller
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Figure 5.34: Principle of the loop type determination using a reference configuration

with a tangent configuration.

than α with respect to the cone axis Ac, respectively (see Figure 5.35). When the

intersection curve is open, it cannot define a maximal edge without a vertex; hence

this configuration is not addressed here. The conditions for loop configurations reduce

to:

1 ¥ ~n � ~Ac ¡ sinα (5.14)

when the plane normal conforms to the orientation of Figure 5.35.

The loop status in that configuration is of type 2 for Co.

Cone/Cone pCo1, Co2q: The pCo1, Co2q can produce three different types of

intersection curves: open curves that should be discarded in the present study, closed

curves classified either as type 2 loops when they cycle around a cone axis or as type

1 loops otherwise. Open curves are discarded because they cannot produce edge loops

is the hypergraphs. Regarding the categories of closed curves, the loop type can be

synthesized in accordance with the relative position of an apex, say A1, with respect

to the other cone, i.e. A1 is either inside or outside Co2. This observation applies also

to A2 for Co2. As a result, the number of configurations to distinguish loops ends up

to four (see Figure 5.36a).

The two first configurations are based on the fact that A2 is inside Co1. Check-

ing the position of A2 as inside Co1 can be operated as follows (see Figure 5.36b).

Assuming that cones axes ACi are normalized: } ~ACi} � 1 and the quantities:

h �
ÝÝÝÑ
A1A2 � ~AC1, (5.15)

cosβ �
h

}
ÝÝÝÑ
A1A2}

, (5.16)
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Figure 5.35: (a) intersection curves for pP,Coq with open and closed configurations,

(b) Loop formed by a pP,Coq intersection classified as external loop.

are evaluated, then A2 is inside Co1 if:

h ¡ 0, and β   α1, (5.17)

where α1 is the apex angle of Co1. If A2 only is inside Co1, it means the loop is

type 1 for Co1 and type 2 for Co2. In addition, if A1 is inside Co2, the loops are

type 2 for Co1 and Co2 both. When A2 and A1 are both outside Co1 and Co2,

respectively, two configurations must be distinguished. Without loss of generality,

lest us assume that α1 ¡ α2. Then, the two configurations can be characterized by

Co2 partly penetrates Co1 or Co2 entirely crosses Co1. This distinction is achieved

using a reference configuration where the two cones are tangent to each other with an

arbitrary orientation and Co2 entirely inside Co1 (see Figure 5.37).

From that reference configuration, a distance parameter d can be used to evaluate

the difference between this reference configuration and the real one. If the real con-

figuration requires a variation of d so that d increases, Co2 partly penetrates Co1 and

the loop status for both is of type internal. If the real configuration differs from the

reference one when d decreases, it indicates that Co2 entirely crosses Co1 and the cor-

responding loop status is internal for Co1 and external for Co2. Table 5.9 summarizes

these configurations and loop status.

Indeed, characterizing the reference configuration is no longer analytical (see Ap-

pendix B for more details) because computing d is achieved through a non linear

trigonometric equation. This numerical requirement illustrates the increased com-

plexity to define the loop status. Arbitrary relative positions of Co1 and Co2 is not

very common in mechanical components so the generic configuration can be subdi-

vided into simpler ones that can be processed analytically, hence quickly.

Cone/Sphere pCo, Spq: The interaction pCo, Spq produces two categories of
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Figure 5.36: (a) A summary of the possible configurations of Co1 and Co2, (b) geo-

metric elements to A2 with respect to Co1.

Figure 5.37: Reference configuration of Co1 and Co2 in a tangent setting and arbitrary

configuration.
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pCo1, Co2q apex (ices) inside Co2 ‘penetrates’

Co1 or Co1 or ‘crosses’ Co1

Geometric

constraint

A2 inside Co1 A2 inside Co1
and A1 inside

Co2

Co2 partly

penetrates

Co1

Co2 entirely

crosses Co1

Loop Co1: T1 Co1: T2 Co1: T1 Co1: T1

status Co2: T2 Co2: T2 Co2: T1 Co2: T2

Table 5.9: Configurations of loops with an intersection between Co1, Co2.

loops for Co. The loop category depends on the singular configurations produced

by the relative position of the center Cs of Sp with respect to Co. Sp can be either

tangent to Co or in contact with its apex A. This produces three types of singular

configurations forming the following conditions using d and h to locate Cs:

• Cs is located inside Co, i.e. 0   d   h tanα, h ¥ 0:

h sinα� d cosα   Rs   h sinα� d cosα, (5.18)

characterizes a loop type 1 and:

Rs ¥ h sinα� d cosα, (5.19)

a loop type 2;

• Cs is located outside Co, i.e. d ¡ h tanα, h ¥ 0 and d ¡ Rs cosα, h ¡ �Rs sinα

d cosα� h sinα   Rs   d cosα� h sinα, (5.20)

produces a loop type 1 and:

Rs ¥ h sinα� d cosα, (5.21)

a loop type 2;

• Cs is located outside Co within a cone of apex A and angle pπ
2
�αq. Inside this

cone, Cs satisfies: 0   d   Rs cosα, h   �Rs sinα. Then:

Rs ¡
d

sinβ
, (5.22)

where β is the angle formed by Cs with respect to Co axis. This produces an

external loop.
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pCo, Spq h ¡ �Rs sinα h   �Rs sinα and 0   d  
Rs cosα or h ¥ 0

Geometric constraint 0   d   h tanα and Eq. 5.18

or d ¡ h tanα and Eq. 5.20

Rs ¡ d
sinβ

or Eq. 5.21

Loop status Co: T1 Co: T2

Table 5.10: Configurations of loops with an intersection between Cy, Sp.

Figure 5.38: (a) loop type 1 formed with Cs internal to Co, (b) loop type 2 generated

when Cs is external to Co, (c) loop type 2 when Cs is located inside the cone of angle

pπ
2
� αq.

Table 5.10 synthesizes these configurations and Figure 5.38 illustrates some typical

configurations.

Cone/Torus pCo, Toq: Similarly to the pCy, Toq interaction, the pCo, Toq is

rather complex and is not detailed here (see Appendix B). The loop determination

shares principles similar to the pCo, Toq and the pCo1, Co2q ones. The specific features
of Co can be also exploited to simplify the classification of reference configurations,

e.g. locating the cone apex with respect to To when To is defined as an implicit

surface (see Figure 5.39).

The other remarks stated for Cy and To and pCo1, Co2q apply also here.

Plane/Sphere pP, Spq: The interaction pP, Spq reduces to a unique type of loop,

whose existence is simply defined by: d   r, where r is the radius of Sp and d is the

minimal distance between P and the center C of Sp. There is no classification of this

loop possible on the sphere, independently of the interacting surface (see section 5.3).

Sphere/Sphere pSp, Spq: There is loop classification for this configuration since

Sp does not produce loop categorization.
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Figure 5.39: Some reference configurations of the pCo, Toq interaction.
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Figure 5.40: The sphere radii configurations of pSp, Toq.

Sphere/Torus pSp, Toq: Here also, the loop classification addresses only To and

can be studied through the relative position of Cs, the center of Sp with respect to

To using its radial distance d and height h from the center OT along the axis AT .

Then, singular positions forming transitions are tangent ones at points with d ¡ 0

and h ¡ 0. These tangency conditions express:

• based on the angle β defined as: tanβ �
�
R�d
h

�
, two tangency conditions for Rs

are expressed as:

d� pRs � rq sinβ � R, (5.23)

d� pRs � rq sinβ � R; (5.24)

• and based on the angle γ defined as: tan γ �
�
R�d
h

�
, two other tangency condi-

tions for Rs are obtained:

d�R � pRs � rq sin γ, (5.25)

d�R � pRs � rq sin γ; (5.26)

• when d � 0, the tangency configuration takes place along a circle, which reduces

the four above configurations to two governed with the angle β defined as tanβ �
R
h
:

pRs � rq sinβ � R, (5.27)

pRs � rq sinβ � R. (5.28)

Studying Eqs. 5.23 and 5.24, which produce values Rs1 and Rs2, show that: 0 ¤
Rs1 ¤ Rs2, @d, β. Similarly, Eqs. 5.25 and 5.26, producing values Rs3 and Rs4, are

such that: 0 ¤ Rs3 ¤ Rs4, @d, γ. In addition, it can be showed that: Rs1 ¤ Rs3,

@d, β, γ (see Figure 5.40).

As a result, two sets of configurations emerge to characterize the loops formed by

the pSp, Toq interaction: either Rs1   Rs2   Rs3   Rs4 (a) or Rs1   Rs3   Rs2   Rs4

(b). The loop types derived from these inequalities are:
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Figure 5.41: Illustration of loop types resulting from the interaction pSp, Toq: (a) an
example of loop of type 1, (b) an example of loop of type 2, (c) an example of loop of

type 3.

• loop type 3 with Rs P rRs1, Rs2s, loop type 2 with Rs P rRs2, Rs3s, loop type 3

with Rs P rRs3, Rs4s;

• loop type 3 with Rs P rRs1, Rs3s, loop type 1 with Rs P rRs1, Rs2s, loop type 3

with Rs P rRs2, Rs4s.

The tangency condition with d � 0 can be studied the same way and Figure 5.41

illustrates some loop configurations.

Plane/Torus pP, Toq: Loop classification is meaningful only for To where three

categories of loop exist and are reached through tangent configurations between P

and To. Type 2 loops are produced under the conditions:

pd�R sinβq ¤ r, (5.29)

β ¤ α, (5.30)

where β defines the angle between the axis At of To and the normal of P , d is

the minimal distance between the center Ot and P . The quantity α is defined by:

arcsin
�
r
R

�
.

Type 3 loops are governed by the following conditions:

pR� rq sinβ ¡ d, (5.31)

pπ � αq ¡ β ¥ α, (5.32)

of relative position of P and To. Finally, type 1 loops are characterized by the

condition:

pd�R sinβq ¥ r, (5.33)

β   α, (5.34)
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where P cuts To rather orthogonally to At and the condition:

d
�
R� r

sinβ

	
¥ 0, (5.35)

β ¡ α, (5.36)

when P cuts To rather parallel to At.

Figure 5.42: Intersections configuration for pP, Toq: (a) a configuration producing a

type 1 loop, (b) a configuration producing a type 2 loop, (c) a configuration producing

a type 3 loop, (d) location parameters of plane and torus.

Torus/Torus pTo1, T o2q: This configuration is the most complex one since each

entity has three categories of loops that must be classified and identified. The existence

of loops is also getting more complex since it has to be studied through each category

of loops to evaluate whether or not the three categories of loops can be obtained from

this initial category. Appendix B gives more details about this configuration and the

way it is processed.

Due to the fair complexity of the analysis of interactions between surfaces, the

reduction of arbitrary configurations to a subset that is sufficient to cover the shapes

of mechanical components is of great interest for the most complex interactions like

those involving To and Cy, Co and To. This simplification reduces the development

complexity and simultaneously it increases the efficiency of the code to process loops.



Defining the status of face boundary loops 167

5.7.2 Deriving the status of face boundary loops from composite
maximal edges

The previous subsection has focused on interactions reduced to loops as they can

appear in the hypergraphs since they are mandatory to avoid loosing symmetry prop-

erties when vertices break down loops as well as local symmetry properties of the

object analyzed. Now, the purpose is to focus on configurations where the loops are

no longer formed of an edge loop but they contain a set of maximal edges bounded

by vertices.

In order to classify the loops, this configuration with composite maximal edges

must benefit properties to take advantage of the loop classification so that the efficiency

of the symmetry analysis of the object can be improved. As seen in the beginning of

this section, the purpose of this analysis is to assign a status to loops so that they

are either external or internal for a cylinder or a cone or of type 1, 2 or 3 for a torus.

These surfaces share a common property of axisymmetry that can be used to evaluate

the status of a loop. Each of these surfaces is designated as Sref . The sphere is not

addressed since there is no loop classification for it.

Each edge forming the loop is an intersection curve between Sref and one of the

reference surfaces. This curve can be either open, which essentially applies to cylinders

and cones, or closed: the most common configuration. Then, the purpose of the loop

analysis is to determine whether a loop is circling around the axis of Sref or not to

determine the loop status as (see Figure 5.43):

• External when the loop circles around Sref and Sref is a cylinder or a cone.

Otherwise, the loop is internal over these surfaces;

• Type 1 loop when it circles around Sref and Sref is a torus. Otherwise, the loop

can be of type 2 or 3 over To. To determine whether the loop is of type 2 or 3

can be achieved with a similar approach since a type 2 loop is somehow circling

around the average radius of To. Using this property, the proposed approach

can be applied in cylindrical coordinates where a type 2 loop can be regarded

as circling around the average circle of To. Otherwise, the loop will be a type 3

one.

Then, determining the status of a loop Γi lying on Sref and containing n maximal

edges Ej , j P t1, . . . , nu, sequentially connected to each other is performed as follows.

Edges of Γi are oriented and their orientation is characterized by vj and vpj�1q mod n,

the initial and final vertices of Ej , respectively.

Now, considering the 2D reference frame RL defined either by a plane orthogonal

to the symmetry axis of Cy, Co or To or containing the axis of To and the origin OL

of this frame coinciding with the axis of Cy, Co or To or lying on the average circle of
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Figure 5.43: Examples of composite loops and their status determined using axisym-

metry properties of Sref . (a)(b)axisymmetry used on cylinders and cones, (c) sym-

metries used on tori.

To. The reference axes ~xL, ~yL of this frame share the origin OL and can be arbitrarily

oriented. The choice is the orthogonal projection of v1 lies on ~xL (see Figure 5.44).

Any vertex vj of Γi can be projected orthogonally onto the plane of RL and then,

with a central projection, onto a unit circle CL centered on OL to produce its image

v̂j (see Figure 5.44). Based on this transformation, the relative location of v̂j and

v̂j�1 mod n on CL misses the orientation of Ej . Applying the same transformation to

any point of the curve(s) forming Ej maps Ej into a continuous arc of circle, possibly

containing cusps, on CL.

As mentioned earlier, the curve defining Ej can belong to either an open curve or a

loop that can be either external or internal or of type 1, 2 or 3 for Sref . Independently

on this status, the orientation of Ej can be assigned to its image Êj using the integral

angle between v̂j and v̂j�1 mod n. This angle is defined as:

θ̂j �
» v̂j�1

v̂j

dθ � θv̂j�1
� θv̂j , (5.37)

and it defines which sector of CL represents Êj and sets the corresponding orientation

of Êj (see Figure 5.45a). Rather than computing this integral to take into account

the possible cusps of the projection of Ej , the loop status analysis described in the

previous section can be exploited with further parameters to define the arc containing
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Figure 5.44: Setting up the reference frame to analyze Γi and defining the image v̂j
of each vertex vj .

Êj . If Ej is:

• An open curve: there exist angular values θ̂j that cannot be reached by this curve

over CL (see Figure 5.45b). At least one of these values, θ̂Oj , can be obtained

from the loop status analysis of the previous section. Then, the correct value

for θ̂j is the arc not containing θ̂Oj ;

• An external loop or a loop of type 1 on To: the analysis of the interactions

between two reference surfaces shows that the production of an intersection as

external loop or a loop of type 1 on Sref is a monotonic curve with respect to

its angular parameterization. Consequently, its image Êj does not contain cusps

and any point interior to Ej has an image, θ̂Ej , on Êj inside rθv̂j , θv̂j�1
s on CL.

Then, the correct value for θ̂j is the arc containing θ̂Ej ;

• A loop of type 2 on To: here also, the analysis of the interactions between To and
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another reference surface shows that the production of an intersection as a type 2

loop for To is a monotonic curve with respect to its angular parameterization.

Consequently, its image Êj does not contain cusps and any point interior to Ej

has an image, θ̂T2

j , on Êj inside rθv̂j , θv̂j�1
s on CL. Then, the correct value for

θ̂j is the arc containing θ̂T2

j ;

• An internal loop or a loop of type 3 on To: in this case, the loop classification

provides information about the boundary angles limiting the projection of the

intersection curve on RL. Let these boundary angles projected onto RL be θ̂T3

jMin

and θ̂T3

jMAX . These angles define a sector on CL and the interval rθv̂j , θv̂j�1
s is

necessarily inside the interval rθ̂T3

jMin, θ̂
T3

jMAXs where the intersection curve lies.

This configuration uniquely defines the arc of CL corresponding to the integral

angle.

It has to be noticed that the value and orientation of the integral angle θ̂j is

not influenced by the projection of vj and vj�1, lying on the intersection curve

defining Ej , i.e. if vj and vj�1 have different locations on the intersection curve

but their projection on RL stay identical, the value and orientation of θ̂j is

unchanged. The reasoning process described above covers all the possible edge

configurations bounded by vj and vj�1 (see Figure 5.46).

Having defined the orientation of the image Êj of Ej on CL, the composite loop

Γi is cycling around OL if:

j�ņ

j�1

θ̂j �
¸
j

θv̂j�1
� θv̂j � 2π (5.38)

hence the corresponding status of the loop: external, type 1 or type 2. Otherwise,

Eq. 5.38 equals 0 and the loop status is internal or of type 3.

The loop analysis performed in the current section shows that the loop status can

be obtained from the parameters of the reference surfaces. This operation can be

fast, most of the time, using the surface parameters and locations. The configurations

requiring numerical processing can be simplified and restricted to fairly uncommon

ones.

The loop status is obviously an operation that is linear with respect to the number

of maximal edges, which does not alter the complexity of the divide phase of the

analysis process.
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Figure 5.45: Selecting the right integral angle for the image Êj of Ej . (a) highlighting

the two possible arcs, (b) defining the integral angle when Ej is located on an open

curve, (c) defining the integral angle when Ej is located on an external loop or a

loop of type 1 or 2, (d) angle boundaries derived from the loop analysis to define the

integral angle of Ej .
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Figure 5.46: An illustration of the invariance of Êj of Ej under the possible locations

of vj and vj�1 when their projection on RL is unchanged.

5.8 Conclusion

Collecting CSPs is a major step of the symmetry plane detection algorithm. The

analysis of maximal edges, as available in the hypergraphs and resulting from the

interaction between adjacent surfaces, help generating all the O-CSPs of the object

analyzed. Though the configurations producing O-CSP are rather combinatorial with

respect to categories of reference surfaces, it appears critical to take into account the

intrinsic symmetry properties of each reference surface when it is embedded in IR3 as

well as its geometric properties. This explains the necessary combinatorial approach

rather than simply relying on a parameterized representation of surfaces as they are

available in common B-Rep modelers.

At the same time, BS-CSPs can be collected too, since they are also attached to

the maximal edges of the object boundary. Here again, some combinatorial configura-

tions must be addressed to take into account the symmetry and geometric properties of

some reference surfaces. Then, traversing the vertices describing the object boundary

as part of the hypergraph G10, the BL-CSPs can be generated. There, combinato-

rial configurations are less prominent but there still exists some as an effect of each

reference surface properties.

The LS-CSPs only appear when a surface loop number is greater than one. Here,
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some interactions between the symmetry properties of each loop have been studied.

The effective generation of LS-CSPs will be addressed through the CSP propagation

process to characterize the extent of the symmetry properties of the object analyzed.

CSAs are special CSPs which provide an infinite number of CSPs. Each type CSP

has its own generation criterion. The final CSP set contains all the possible reflective

symmetry properties of the object whether they are finite or not. Global symmetry

planes, if they exist are in this set. This step of CSP generation can be seen as the

initialization of the conquer step of the algorithm analyzing the symmetry of an object.

The next step is to filter the CSPs and highlight the global symmetry properties of the

object. It stands for the conquer phase of the divide-and-conquer algorithm proposed

and it relies on propagation processes. They are introduced in next chapter.
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Chapter 6

The propagation of symmetry

properties as formal process to

the symmetry analysis of an

object

The set of CSPs generated during the divide phase uses the whole set of maximal edges

and vertices of MMAX and the CSPs have been categorized to structure their areas of

validity. These CSPs are valid for a minimal set of entities of BMMAX . The purpose

of this chapter concentrates on the conquer phase of the symmetry analysis process.

The corresponding propagation process is described and aims at extending the area

of validity of a CSP. This propagation process subdivides into several complementary

stages: a propagation process looking for CSPs coinciding with a reference one, a prop-

agation process devoted to CSAs interacting with CSPs, a propagation process focusing

on a new category of CSPs (SS-CSPs) and a propagation process processing LS-CSPs

when they are not coinciding with other categories of CSPs. As a result, the symmetry

analysis process provide answers to the identification of global symmetries in MMAX as

well as local symmetries and their area extent. This conquer phase always ends since

it is bounded by the finite number of edges, vertices and faces defining MMAX .

6.1 Introduction

The divide phase of the symmetry analysis has produced various categories of

CSPs and CSAs attached to different entities of BMMAX forming initial point sets

where reflective symmetry properties are valid at these entities and for all the faces

involved in the definition of the corresponding CSP or CSA. Namely, they list as:

• O-CSP: symmetry planes that are orthogonal at some point of the intersection

curve between two adjacent maximal faces Fi and Fk. The O-CSPs are attached

to each maximal edge Ej of BMMAX . The point of Ej , where the O-CSP lies, is

strictly interior to Ej since vertices, if any, bounding Ej indicate discontinuities

whereas the neighborhood of an O-CSP is continuous. There can be up to two
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O-CSPs attached to the same edge Ej if Ej is an loop edge and there is only

one O-CSP if Ej is bounded by one or two vertices;

• LB-CSP: loop bisector symmetry planes containing a vertex Vj of BMMAX lying

at the intersection of at least three maximal surfaces: F , the reference face where

the loop is analyzed, Fi and Fk the faces adjacent to F and the two edges sharing

Vj . Obviously, there is no LB-CSP for a loop edge. The maximum number of

LB-CSPs at Vj is equal to the number of faces adjacent at Vj ;

• BS-CSP: symmetry planes containing a planar intersection curve between two

adjacent maximal faces Fi and Fk. There is only one BS-CSP attached to an edge

Ej and there can be as many BS-CSP as there are maximal edges in BMMAX .

An edge Ej can carry simultaneously O-CSPs and a BS-CSP;

• LS-CSP: symmetry planes devoted to faces bounded by multiple loops. They

are attached to the reference face F where the loops are lying since an LS-CSP

is valid for all the loops bounding F . The number of LS-CSPs attached to F

cannot exceed the number of CSPs attached to the external loop(s) Γext (or

Γ1,2) bounding F where external loop(s) is applicable. If Γext (or Γ1,2) contains

n edges, then the maximum number of LS-CSPs is 2n with no more than n O-

CSPs and n BS-CSPs. With F represented as a sphere, the amount of LS-CSPs

can become quadratic with respect to the number of loops;

• CSA: symmetry axes that characterize the existence of an infinite number of

O-CSPs at an edge Ej adjacent to faces Fi and Fk. There are two specific

configurations of attachment of CSAs to entities of BMMAX : spheres and tori.

Indeed, if the object analyzed reduces to a torus, BMMAX has no edge: the

symmetry axis must be attached to the face defining the torus. Now, if the

object is a sphere, BMMAX has also no edge and the sphere has an infinite

number of CSAs. This infinite number of CSAs has to be attached to the face

representing the sphere.

Having defined all the CSPs attached to BMMAX , the purpose of the propagation

process is to effectively perform the analysis of MMAX to provide answers to one or

more questions set as objectives in Chapter 2. The propagation process forming the

conquer phase of the algorithm is not just one process but it is a set of propagation

mechanisms to take advantage of properties derived from the various categories of

CSPs and CSAs. As a preliminary stage, the analysis of the extent of validity of

CSPs/CSAs stands for an ‘initialization’ of the propagation process.
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6.2 The symmetric area surrounding a CSP or a CSA

First of all, it seems necessary to define precisely the extent of the symmetric

area valid for a current CSP or CSA. For the sake of simplicity of presentation, all

the previous entities are collectively designated as CSPs unless some distinction is

mandatory. Also, it has to be recalled that the generation of maximal faces and edges

produces a decomposition of BMMAX such that all faces are bounded by one loop at

least, i.e. there is no isolated vertex or edge. Each loop possibly reduces to a loop

edge having one or no vertex at all.

Now, starting with the simplest configuration where only two surfaces F1, F2,

involved in the generation of CSPs define BMMAX . CSA, O-CSP, BS-CSP are the

only possibilities and they must be associated with a closed intersection curve Ic
forming a loop edge and a resulting surface that is closed. It has to be noticed that

any couple of reference surfaces may not satisfy all these constraints. Then, the divide

phase assigns the possible CSA, O-CSPs or BS-CSP. Because these planes or axis are

defined from the intrinsic parameters of F1 and F2, they are valid for Ic as well as

for the entire area of F1 and F2. Hence, these planes and axis are valid for MMAX

entirely.

Then, generalizing to surfaces with a symmetric boundary, the CSP is the real

symmetry plane of F1 and F2 since their boundaries are effectively taken into account.

When the boundary of F1 or F2 is reduced to an edge bounded by two vertices, this

boundary is open and the validity of the symmetry property can be analyzed as follows

(see Figure 6.1a) after a decomposition of the interaction between F1 and F2 into

entities of different dimensions. This decomposition conforms to the topological one

into faces, edges and vertices. Then, the validity of symmetry properties is analyzed

for each category of CSP and focuses on edges as infinite point sets.

Starting from their intersection curve Ic (edge E1) and considering an O-CSP

attached to Ic, the symmetry of Ic with respect to the O-CSP is valid from the

point Vstart until its extent reaches its extreme points V1, V2. Hence, checking their

symmetry is the first level to validate this property over a bounded domain (see

Chapter 5) when creating the CSP.

Processing an LB-CSP is rather similar (see Figure 6.1b); it is attached to three

faces F1, F2, F3 and two intersection curves E1, E2 because it is assigned at their

intersection point Vstart and their extreme vertices V1, V2 must be symmetric with

respect to the LB-CSP. A BS-CSP coincides with the intersection curve Ic (edge E1)

and the symmetry property is valid for all of its points (see Figure 6.1c).

The case of an LS-CSP is slightly different. An LS-CSP acts on a rather global

domain: it is applied to two loops Γ1, Γ2 lying in a face F1 (see Figure 6.1e, f).

Each loop can be defined either by one loop edge or be composite. The symmetry
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property of the LS-CSP is valid for every point of Γ1, Γ2. If Γi are loop edges, it means

that the symmetry property is addressed globally through the relative position and

intrinsic parameters of F2 and F3, the faces defining Γ1, Γ2 and adjacent to F1 (see

Figure 6.1f). Otherwise, if Γi are composite loops edges is coming from closest vertices,

the symmetry property can be decomposed through two sets of entities: vertices of Γi

and then, edges. Checking the symmetry of these sets of vertices can be conducted

first (see Figure 6.1e) and then, using the surface parameters and locations of the faces

adjacent to F1 and defining the edges of Γi, the symmetry of the sets of edges can be

analyzed.

Finally, a CSA appears as a particular configuration of O-CSP where Ic is repre-

sented by a loop edge with no vertex. Hence, the symmetry property is valid for the

whole loop edge E1.

All the CSP configurations involving point sets corresponding to edges have now

been analyzed. Now the purpose is to focus on faces: another type of infinite point

sets. Indeed, the generation of CSPs incorporate the spatial location and parameters

of the reference surfaces adjacent to each edge involved in the definition of a CSP. The

symmetric area around a CSP is not only along its associated edges, the surrounding

surfaces of these edges is symmetric, too. Consequently, in a small area around each

point on the symmetric curve(s), the symmetry property apply to the adjacent faces:

F1, F2 for an O-CSP, a BS-CSP, a CSA; F1, F2, F3 for a LB-CSP; Fi the faces adjacent

to F1 in case of LS-CSP. Because all the points of these adjacent faces benefit of the

same geometric properties as those in the neighborhood of their common edges, the

symmetry property extends to these entire surfaces, whether they are bounded or not.

Then, each face Fi of MMAX being bounded by one loop at least, it is mandatory

to insert repetitively all the CSPs attached to the vertices, edges and to Fi that form

the boundary of Fi. Adding new vertices and edges to a first edge, means that new

faces adjacent to Fi are also added until all the loops of the surface are covered. Then,

the area of Fi is closed and all the constraints are set to analyze the symmetry over

Fi. In this case, the validity of the current CSP for the whole face can be evaluated

through the relative positions of the faces adjacent to Fi that model each edge of the

loops bounding Fi. If these are symmetrically set with respect to the CSP, then Fi

is effectively symmetric with respect to this CSP. However, if any of these surfaces is

not symmetrically set with respect to the CSP, the propagation stops. The symmetry

property is lost.

It has also to be pointed out that if the CSP is valid for Fi, the symmetry property

extends outside Fi to its adjacent faces, forming an open domain outside Fi where the

symmetry holds.

Figure 6.1a is the illustration of the symmetry area around an O-CSP. Vstart is the

intersection point between E1 and the O-CSP. The gray area around E1 illustrates

the extension of the symmetry property along F1 and F2. Then, this symmetry needs
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(a) (b)

(c) (d)

(e) (f)

Figure 6.1: Symmetry area of each CSP category: (a) symmetry area of an O-CSP;

(b) symmetry area of an LB-CSP; (c) are symmetry area of a BS-CSP; (e) and (f) are

symmetry areas of an LS-CSP.



180 Chapter 6

to be analyzed with respect to the complementary boundary entities of F1 and F2. In

F2, all boundary curves are symmetric with respect to the O-CSP. This plane is valid

for F2. But in F1, its boundary loop is asymmetric, hence the symmetry property

cannot be expanded to the finite area defined by F2.

Figure 6.1b is the illustration about the symmetry area of an LB-CSP. LB-CSP

is generated from faces F1, F2, F3. The gray area shows the extent of the symmetry

around Vstart and the edges E1 and E2, which are symmetric with respect to the

LB-CSP.

Figure 6.1c shows the symmetric area around a BS-CSP. In this chapter’s intro-

duction, it has been recalled that a BS-CSP is related to an edge E1 , intersection

of F1 and F2. The gray area indicates the propagation of the symmetry property,

starting from E1 and progressing over F1 and F2.

In Figure 6.1d, the symmetry area represented originates from a CSA. This sym-

metry axis can be seen as attached to the intersection curve E1 between F1 and F2.

E1 is necessarily a loop edge without vertex corresponding to a circle. The symmetry

area, in gray, expands on both sides of E1 to propagate the symmetry axis from E1.

Figure 6.1e and f depicts the symmetry areas attached to an LS-CSP. Depending on

the type of the internal loops, they can be either composite or loop edges. Figure 6.1e

illustrates the symmetry area restricted to vertices when they are considered as an

independent set of entities, distinct from the edges. The symmetry area propagates

from two symmetric vertices of the two loops. In Figure 6.1f, the loops are loop

edges, the LS-CSP originates from F2 and F3 So, Γ1pE1q and Γ2pE2q are symmetric

with respect to the LS-CSP and the symmetry area expands from these two edges.

Considering the bounded area of F1, the symmetry of the LS-CSP is also valid globally

for F1.

When processing an LS-CSP as well as during the second level of symmetry prop-

agation (see Section 6.7), it is necessary to check the symmetry of vertex pairs, edges

pairs and face pairs with respect to this plane that is not attached a vertex or an edge.

Evaluating the symmetry of vertices, edges and faces with respect to a symmetry

plane can be addressed through a bottom-up approach. In this case, the Figure 6.2 is

an illustration with all the successive steps to analyze the symmetry of edges E1 and

E2 and their adjacent faces, when E1 and E2 are bounded by two vertices. The first

step processes the extreme points two the edges E1 and E2. Choosing arbitrary V11

as starting vertex and the other vertex as V22, if they are asymmetric, then changing

it to V21, this time, the vertices must be symmetric otherwise the configuration is not

symmetric (see Figure 6.2a and b). Thus, assuming that the vertex pairs are symmet-

ric, Figure 6.2c illustrates the beginning of second step. With the help of hypergraph

G21, the surfaces adjacent to E1 and E2 are picked up. Then, the intrinsic parameters

and locations of F11 and F21, both cylinders (Cy1 and Cy2), are evaluated for symme-
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6.2: The symmetry analysis process for two edges E1 and E2: (a) current edges

and CSP; (b) symmetry analysis of extreme points; (c) adjacent surfaces at each edge;

(d) selection of one surface pairs; (e) the symmetrical cylinders; (f) the second pair of

surfaces; (g) the symmetrical cones; (h) all the entities leading the symmetry of E1

and E2.
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Figure 6.3: An illustration of the need to distinguish concave/convex areas during the

symmetry analysis of an object.

try. Assuming the symmetry, the homologous cylinders are shown in Figure 6.2e and

they are symmetric. Then, selecting the other pair of surfaces F12 and F22, they are

cones (Co1 and Co2), and their are symmetric with respect to the symmetry plane,

as shown in Figure 6.2g. Finally, this plane or CSP is valid for E1 and E2 as well as

for its neighboring surfaces.

If E1 and E2 are loop edges, the above symmetry analysis can be reduced to sur-

face comparison when the edges have no vertex. Indeed, the symmetry property, if

valid, applies to all the points of Cy1 and Cy2, Co1 and Co2. The B-Rep model of

the object contains information to describe the used area of a surface. The paramet-

ric representation of these surfaces and the external loop defined in their associated

parametric space characterizes their used area. However, this information does not

produce a characterization of the concavity/convexity of the corresponding face. This

is mandatory to separate configurations when analyzing the symmetry of an object

(see Figure 6.3). To this end, the concept of orientation index (see Section 5.4.6)

is used to separate the ambiguous configurations. In addition to the geometric con-

ditions stated previously, couples of faces must have the same orientation index to

effectively meet the symmetry property.

In MMAX , each edge has two neighbor surfaces. So, the propagation mechanisms

described in this section, combined with the adjacency relations available in the hy-

pergraphs can be used to conquer, i.e. to cover, the entire boundary, BMMAX . In

this case, the propagation process overlaps the face boundary and when all faces of

BMMAX are covered without any asymmetry, the CSP is upgraded to the status of

Global Symmetry Plane (GSP). Similarly, a CSA extending to the whole boundary of

MMAX becomes a GSA. A first propagation process is now described in the following

section.
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6.3 First level propagation and CSP chains

Considering the fact that the object category studied here is 2-manifold B-Reps,

this means that GSPs, if there exists any, must cut MMAX . In addition, this intersec-

tion forms one closed curve at least over MMAX . If there is more than one loop, they

are disconnected from each other. Consequently, either or both following conditions

must hold:

a) There exists at least an edge or a face of MMAX cut by a GSP. In case of a face,

it means that the GSP cuts the face without cutting its boundary;

b) There exists at least a vertex or an edge of MMAX lying in a GSP.

Now, observing locally the configuration of a GSP, if it satisfies condition a, it is

locally similar to an O-CSP if it cuts an edge or it is similar to an LS-CSP if it cuts a

face, e.g. LS-CSP orthogonal to the CSA of a cylinder. If a GSP satisfies condition b,

it can be locally similar to a LB-CSP if the GSP contains a vertex and if it contains

an edge it is locally similar to a BS-CSP.

As a result, the four categories of CSPs can be used to initiate a propagation

process producing a GSP. It has to be observed that the four categories of CSPs are

necessary and sufficient to cover all the configurations representing the intersection of

a GSP with MMAX .

The above conditions don’t incorporate the configuration where a GSP interacts

with a CSA. Such an interaction reduces to the selection of one symmetry plane from

the infinity available with the CSA. Indeed, the plane selected produces a configuration

locally similar to an O-CSP since a CSA is attached to an edge like an O-CSP. IfMMAX

contains only CSAs, they can propagate from each other to form a GSA, showing that

MMAX is axisymmetric. Again, this analysis shows that the CSA category is necessary

and sufficient to characterize the axisymmetry of MMAX and this category enlarges

the diversity of objects that can be analyzed to produce GSPs since the interaction

of a CSA with a GSP reduces it to an O-CSP. This means also that a CSA cannot

initiate the propagation process to determining the faces intersecting with a GSP.

Detecting the faces of MMAX that reflect the interaction between a GSP and

MMAX is the objective of the first propagation process. It means, if there is an

asymmetric configuration appearing, the corresponding CSP cannot become a GSP

and the propagation process stops.

The starting point of this propagation process is the lists of CSPs: rΠOs for the

O-CSPs, rΠBSs for the BS-CSPs, rΠLBs for the LB-CSPs, generated during the divide

phase. At this stage, there is no LS-CSP. Indeed, only LS-CSPs not intersecting the

external loop(s) have to be considered. Because all faces of MMAX are bounded, it

means that these LS-CSPs cutting the face they are attached to, produce a closed
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Figure 6.4: LS-CSP cutting a cylindrical face without intersecting its external loops.

curve (see Figure 6.4). Because these LS-CSPs produce directly a closed curve, there

is no need of propagation to produce a closed path, the second propagation process

can start directly using these CSPs.

This first propagation process aims at reducing the number of CSPs as soon as

possible to improve the efficiency of the algorithm. If two CSPs of the above lists

coincide or are co-planar, using the symmetry property of the area around a CSP, other

edges and neighboring faces can be identified with the help of the adjacency relations

expressed by the hypergraphs. So, this propagation process relies on a criterion of

coinciding CSPs.

Now, let us study the behavior of the propagation process with respect to the

various categories of CSPs. Starting with an O-CSP, the corresponding edge E1 is

self symmetric. Using a neighboring face of E1, it is possible to select a loop Γ which

contains the current O-CSP and to look for another CSP coinciding with the O-CSP.

Regarding CSPs attached to entities of a loop, they are among the categories O-CSP,

BS-CSP and LB-CSP. A loop having no self intersection, a property can be stated

regarding the CSPs:

Property 3 CSP propagation conditions over a loop Γ: Given a loop Γ without self

intersection, Γ contains n edges and lies on face F , and let us consider a first con-

figuration where there exists an O-CSP attached to the edge E1. If n is even, the

O-CSP must coincide with one and only one other O-CSP to able to propagate the

symmetry property across F . If n is odd, the O-CSP must coincide with one and only

one LB-CSP.

Let us consider also a second configuration where there exists an LB-CSP attached

to the vertex V1 of Γ. If n is even, the LB-CSP must coincide with one and only one

O-CSP in Γ to propagate the symmetry property across F . If n is odd, the LB-CSP

must coincide with one and only one other LB-CSP.
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There cannot be any symmetry plane of type BS-CSP in Γ.

Figure 6.5: No more than one O-CSP in a loop coincides with an initial O-CSP.

As shown in Figure 6.5, E1, E2 and E3 belong to Γ, which has no self intersection.

Let us consider an O-CSP attached to E1 as reference CSP. E1 can be used to divide

the pn � 1q other edges and n vertices of Γ into two subsets of similar entities rE1
i s,

rE2
i s; rV

1
i s, rV

2
i s. The cardinality of each set rEj

i s, rV
j
i s is identical.

If n is even, CardrEj
i s �

n�2
2

and the edge left, Ek, is the farthest one from E1 by

adjacency; CardrV j
i s �

n
2
. These sets represent the left hand side and right hand side

of Γ with respect to E1 (see Figure 6.5). Then, assuming that there exists another

O-CSP in rE1
i s, ΠO1, coinciding with the reference CSP, if F is symmetric with respect

to this reference CSP then, there exists another O-CSP in rE2
i s, ΠO2, that coincides

with the reference CSP and has the same adjacency position as ΠO1. If so, the edges

corresponding with ΠO1 and ΠO2 must coincide, which shows that Γ self intersects

along these edges. This contradicts the initial hypothesis along which Γ has no self

intersection, hence there no O-CSP in rE1
i s coinciding with the reference one. The

propagation process can take place only if Ek has an O-CSP that coincides with the

reference one.

Now, if n is odd, CardrEj
i s �

n
2
; CardrV j

i s �
n�1
2

and the vertex left, Vk, is the

farthest one from V1 by adjacency. Then, assuming that there exists an LB-CSP in

rV 1
i s, ΠO1, coinciding with the reference CSP, if F is symmetric with respect to this

reference CSP then, there exists another LB-CSP in rV 2
i s, ΠO2, that coincides with

the reference CSP and has the same adjacency position as ΠO1. If so, the vertices

corresponding with ΠO1 and ΠO2 must coincide, which shows that Γ self intersects

at these vertices. This contradicts the initial hypothesis along which Γ has no self
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intersection, hence there no LB-CSP in rV 1
i s coinciding with the reference CSP. The

propagation process can take place only if Vk has an LB-CSP that coincides with the

reference CSP.

These two analyses show that no LB-CSP can coincide with the reference CSP

when n is even and that no O-CSP can coincide with the reference CSP when n is

odd.

Following a similar reasoning process, when the reference CSP is an LB-CSP and

the reference entity is a vertex V1 leads to the results stated for the second configura-

tion.

Now, whatever the cardinality of Γ, let us assume that rE1
i s contains an edge, Ek,

having a BS-CSP coinciding with a reference CSP attached to an edge or a vertex, then

rE2
i s must contain an edge, El, having a BS-CSP also coinciding with the reference

CSP and located at the same adjacency position as in rE1
i s. If so, it means that Ek

and El coincide, hence F self intersects, which contradicts also the hypothesis. If n is

odd so that there is an edge left outside rE1
i s and rE2

i s if the reference CSP is attached

to a vertex, this edge cannot have a BS-CSP coinciding with the reference one since

these extreme vertices would lie in the reference CSP, which contradicts the symmetry

property of Γ that is needed to propagate from F to adjacent faces.

This demonstrates the above property of the propagation process of CSPs over a

loop.

Property 4 CSP propagation conditions through a vertex Vi: Given a vertex Vi whose

neighboring faces define an LB-CSP forming three adjacent faces where F is the ref-

erence face sharing the two reference edges E1, E2 with its adjacent faces. Vi as well

as its surrounding faces and edges don’t self intersect. Vi has n, n ¥ 3, surrounding

faces altogether.

Let us consider a first configuration where n is even, then the LB-CSP must co-

incide with one and only one other LB-CSP to be able to propagate the symmetry

property across Vi. If n is odd, the LB-CSP must coincide with one and only one

BS-CSP.

Let us consider also a second configuration where there exists a BS-CSP attached to

the vertex Vi with E1 the corresponding reference edge. If n is even, the BS-CSP must

coincide with one and only one other BS-CSP to be able to propagate the symmetry

property across Vi. If n is odd, the BS-CSP must coincide with one and only one other

LB-CSP.

As shown in Figure 6.6b, E2 and E8 are the reference edges defining an LB-CSP

at V1 together with F1. Let us consider this plane as reference CSP. F1 can be used

to divide the pn � 2q other edges and pn � 3q faces at V1 into two subsets of similar

entities rE1
i s, rE

2
i s; rF

1
i s, rF

2
i s. The cardinality of each set rEj

i s, rF
j
i s is identical.
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(a) (b) (c)

(d) (e) (f)

Figure 6.6: The propagation mechanisms for the first level propagation: (a) and (d)

propagation from an O-CSP to an O-CSP; (b), (e) are O-CSP to LB-CSP, and then

to BS-CSP; (c) and (f) are O-CSP to LB-CSP.

If n is even, CardrEj
i s �

n�2
2

; CardrF j
i s �

n�3
2

and the face left, Fk, is the farthest

one from F1 by adjacency. These sets represent the left hand side and right hand side

of Vi with respect to F1 (see Figure 6.6b). Then, assuming that there exists another

LB-CSP in rF 1
i s, ΠLB1, coinciding with the reference CSP, if F1 is symmetric with

respect to this reference CSP then, there exists another LB-CSP in rF 2
i s, ΠLB2, that

coincides with the reference CSP and has the same adjacency position as ΠLB1. If

so, the edges defining ΠLB1 and ΠLB2 must coincide, which shows that these edges

including Vi self intersect. This contradicts the initial hypothesis along which the

neighborhood of Vi is self intersection free, hence there no LB-CSP in rF 1
i s coinciding

with the reference one. The propagation process can take place only if Fk has an

LB-CSP that coincides with the reference one.

Now, if n is odd, CardrEj
i s �

n�2
2

and the edge left, Ek, is the farthest one from

F1 by adjacency; CardrF j
i s �

n�3
2

. Then, assuming that there exists an BS-CSP in

rE1
i s, ΠBS1, coinciding with the reference CSP, if F1 is symmetric with respect to this

reference CSP then, there exists another BS-CSP in rE2
i s, ΠBS2, that coincides with
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the reference CSP and has the same adjacency position as ΠBS1. If so, the edges

corresponding with ΠBS1 and ΠBS2 must coincide, which shows that these edges

including V1 self intersect. This contradicts the initial hypothesis along which the V1

neighborhood has no self intersection, hence there no BS-CSP in rE1
i s coinciding with

the reference CSP. The propagation process can take place only if Ek has a BS-CSP

that coincides with the reference CSP.

Changing the reference CSP into a BS-CSP and starting over the same reasoning

process the property reduced to the second configuration.

Figure 6.6e and f show the hypergraph G21 reduced to the neighborhood of V1 and

illustrate configurations where n is respectively odd or even around V1. Consequently,

a new edge E5 can be added to the symmetric elements set in Figure 6.6e and a new

face F5 is added in Figure 6.6f.

The above two properties show that one step of the propagation process can extend

the symmetry property to:

• A new edge and its adjacent face if a new O-CSP coincides with the reference

CSP;

• two new edges and their adjacent faces that bound the face of the reference CSP

when a new LB-CSP coincides with the reference CSP when the propagation is

performed over a loop;

• A new face and its two adjacent edges and the two faces adjacent these new

face and edges when a new LB-CSP coincides with the reference CSP when the

propagation is performed across a vertex;

• A new edge and its two adjacent faces when a new BS-CSP coincides with the

reference CSP.

As a result of the above synthesis, propagation rules can be set up as follows:

• If the propagation takes place over a loop, the last CSP incorporated through

the propagation process is either an O-CSP or an LB-CSP, then the next one,

Π, can be found only in the rΠOs or the rΠLBs lists and the next reference entity

for the propagation process is:

– A loop and, more precisely, an edge in this loop if Π P rΠOs;

– A vertex if Π P rΠLBs;

• If the propagation takes place across a vertex, the last CSP incorporated through

the propagation process is either an LB-CSP or a BS-CSP, then the next one, Π,

can be found only in the rΠLBs or the rΠBSs lists and the next reference entity

for the propagation process is:
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– A loop and, more precisely, an vertex in this loop if Π P rΠLBs;

– A vertex if Π P rΠBSs.

Figure 6.6a through c are illustrations of some of the previous configurations.

Now that all the possible configurations of CSP propagation under the coincidence

constraint have been studied when this propagation takes place:

• Over a loop;

• Across a vertex;

and the propagation rules have been set up on the CSP category basis as well as from

the type of entities of MMAX supporting each new CSP, the concept of CSP chain is

introduced when BMMAX solely contains faces bounded single loops.

Definition 8 CSP Chain A CSP chain contains a sequence of coinciding CSPs se-

lected from the three categories: O-CSP, LB-CSP, BS-CSP. The sequence is a chain

of items where each of them contains the CSP type and the corresponding entities

of BMMAX where the symmetry property is extended. A CSP chain can be open or

closed when the propagation process stops because there is an asymmetric configura-

tion encountered or when the last CSP found is the CSP having initiated the chain,

respectively.

Because the propagation process scans BMMAX on the basis of faces (more pre-

cisely the loop bounding each face) or vertices, the CSP Chain extension needs two

different geometric functions: checking coincidence of CSPs within a face; checking

coincidence of CSPs around a vertex.

Based on the property of CSPs over a loop and across a vertex, a CSP chain cannot

contain an element defined by a BS-CSP that is adjacent to element defined by an

O-CSP.

When a CSP chain is closed, the corresponding entities of BMMAX that define the

CSPs of this chain can be used to define a loop over BMMAX that intersects with the

CSP having initiated this chain.

During this propagation process, each CSP added to a CSP chain is removed from

the list corresponding to its category, i.e. either rΠOs, rΠLBs or rΠBSs, hence reducing
the number CSPs available as initiators of CSP chains. Consequently, the first level

propagation process stops when there no CSP left is the lists rΠOs, rΠLBs or rΠBSs.

Now, considering the example model of Figure 6.7 that is presently reduced to a

simple cube to meet the current constraint where faces are bounded by single loops,

O �CSP1 and LB �CSP1 are two example CSPs used to illustrate the propagation
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Figure 6.7: An example model with a subset of CSPs chosen as initiators of CSP

chains.

Figure 6.8: 2 closed CSP chains of the example model at Figure 6.7 with their 3D and

unfolded representations.
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process. Figure 6.8a and b contains the 3D representation of the entities involved in

the propagation starting with O�CSP1 and the unfolded representation of the same

entities. The Start and End mark the start and end edges of a propagation process.

The dotted lines indicate areas not taken into account. Figure 6.8g and h contains

also the 3D representation of the entities in the propagation initiated by LB�CSP1.

In accordance with the above analysis of the propagation process, the complexity

of each step, whether it is a propagation over a loop or across a vertex, is able to define

a new CSP, if any, in a constant time. As a result, the complexity of the propagation

process is linear with respect to the number of faces and vertices ofMMAX even though

the number of faces and vertices involved in each propagation process is significantly

lower than the total amount of faces and vertices defining MMAX .

As stated previously, the current description of the propagation process addresses

BMMAX under the hypothesis where all the faces are bounded by a unique loop. Let

us now remove this condition to process faces bounded by an arbitrary number of

loops. The next section focuses on this new configuration.

6.4 Propagation of first level with faces bounded by mul-

tiple loops

In a first place, let us observe how the propagation process is influenced when the

loops are not classified at all, i.e. there is no use of external / internal status. As a

variant to the previous propagation, this new class of input model MMAX can contain

symmetry axes but this aspect is not addressed here yet. The main purpose now, is

to address the generation of LS-CSPs.

Let us consider that processing faces with multiple loops takes place during a

second phase of the propagation process, the first one being the propagation process

with faces bounded by a unique loop. rΠBSs are not influenced by faces with multiple

loops since they are attached to edges only and they cannot cross any face to coincide

with an LS-CSP.

Having structured the CSP lists, the first phase of the propagation process can

take place and produces a set of CSP chains. Now, these CSP chains are stopping

under the following conditions:

a) The CSP chain forms a loop;

b) An asymmetric configuration is encountered;

c) A face bounded by multiple loops is encountered.

The new configuration now is c. The second phase of the propagation process can take
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place to proceed with the faces containing multiple loops. Because the loops have no

status, they cannot be distinguished from each other, hence it is not possible to take

advantage of external loops to reduce the complexity for determining the LS-CSPs.

This second phase processes the CSP chains satisfying condition c. Starting from

the CSPs attached to the boundary of each loop bounding a face, the LS-CSPs of

this face that coincide with these boundary CSPs are determined combinatorially (see

Section 5.5). Processing these faces produces a set of LS-CSPs that form a list: rΠLSs.
Then, these CSPs can be used to carry on the propagation process and extend the

corresponding CSP chains.

Regarding the example of Figure 6.8, the loops left during the first phase are now

processed as illustrated in Figure 6.8c, d and e, f. Then, the generation of the LS-CSPs

for these faces merges some of the existing CSP chains.

The above configuration describes a general scheme that can be improved if the

loop status can be added to loops of each face. As described in the previous section

and the beginning of this section, if the propagation process has to take advantage

of the loop status, this status must be available right away at the beginning of the

propagation. Then, each loop is assigned the status external or internal unless the

loops are attached to a spherical face where no loop status can be assigned.

Having the loop status assigned, the boundary of MMAX forms a set of adjacent

loops since each edge of a loop is adjacent to two faces. Therefore, a loop has a status

related to the face F where it lies in and a status with regard to its adjacent faces

Fai. Indeed, the status with regard to the adjacent faces is the same for all faces,

i.e. either internal or external, since it refers to a property representing disconnected

components. This means that a loop status, with regard to Fai, has a unique status,

i.e. @pi, jq, the edges shared with Fai and Faj have the same status. As a result, each

loop has two status assigned, one for F and one for Fai. Hence, the combinations

deriving from that observation can be distinct couple formed from: external, internal,

unknown.

Then, the first phase of the propagation process can use as initiators only the

entities of loops having a status external/external to generate the CSP chains. Af-

terward, the second phase of the propagation can take advantage of the loop status

available to determine the LS-CSPs that can be reduced to the set of valid CSPs that

are attached to entities of the loops whose status is external with respect to F . As

described at Section 5.5, exploiting the loop status reduces the complexity of deter-

mining the LS-CSPs that can carry on the extension of CSP chains. This extension

is obtained by the insertion of LS-CSPs at the end of CSP chains and/or by merging

together pre-existing CSP chains when an LS-CSP has to be added. Loops with a

status internal or unknown with respect to its reference face are processed in a second

row to take advantage of LS-CSP generation of their adjacent faces that reduces the

number of CSPs.
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Compared to the configuration where the loop status is not used, when the second

phase uses this loop status, it produces an algorithm applicable even if not all the loops

have a loop status of type external of internal: loops with an unknown status can be

processed too. The complexity of the algorithm is not increased by this diversity

of configurations, which confirms the interest of using the loop status to reduce the

complexity of generating the valid LS-CSPs.

Within this second phase of the propagation process can be inserted the CSA pro-

cessing since the axisymmetry appearing at some edges often reduces to the generation

of multiple loops and cannot be treated in the first phase. It is the purpose of the

next section to describe the specific aspects of propagating CSAs.

6.5 Axisymmetry processing during the first level prop-

agation

In Chapter 2, axisymmetry analysis and detection has been stated as one objective

of the shape symmetry analysis. Axisymmetry is characterized by an infinite number

of symmetry planes intersecting each other along the same line. In order to study the

propagation process of symmetry axes, a first step consists in studying the interactions

between CSPs and CSAs when they appear over the same face, which is characterized

by a multiple loop configuration over that face.

6.5.1 Interactions between CSAs and CSPs

When reviewing the interactions between the reference surfaces (see Section 5.4.3),

CSAs appear when the edge forming the intersection curve between two surfaces is

a full circle, then a CSA is attached to this edge. A CSA characterizes a symmetry

property with an infinite number of symmetry planes cutting each other along the

CSA.

When processing faces with multiples loops, a configuration can appear where one

loop is a loop edge and has a CSA attached to it and another loop, a composite one,

where O-CSPs, LB-CSPs are attached to it that form CSPs globally valid for this

loop.

It has pointed out that a BS-CSP attached to an edge of a loop cannot be a CSP

expressing symmetry properties valid for the face where the loop lies, all the other

edges of this loop and all the other faces adjacent to these edges. Indeed, if a loop

reduces to a loop edge, it means that the BS-CSP contains the whole loop, hence it

cannot be valid to define a symmetry plane separating this loop into two halves. If the

loop is a composite one, the previous observation attached to the edge containing the

BS-CSP shows that this CSP cannot separate the loop into two halves. Consequently,
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BS-CSPs cannot contribute to the generation of symmetry planes valid for one or more

loops, i.e. in this last case, they don’t need to take part to the LS-CSP generation

process.

Focusing now on the interaction between CSPs and CSAs, Figure 6.9 is an illus-

tration of an elementary configuration between them. The surface S1 is planar and

bounded by a circle and a square hole. These boundaries form two loops Γex
1.1 and

Γin
1.2. Without loss of generality, one can assume that the propagation process moves

from the O � CSPΣ1
, Σ1 P Γin

1.2 toward CSAΣ5
. All entities belonging to Γin

1.2 are

symmetric with respect to O �CSPΣ1
. To propagate O �CSPΣ1

across the loops of

S1, Σ5 and its loop Γex
1.1 are selected for multiple loops processing. Γex

1.1 has only one

curve Σ5, which is a circle, and has a CSAΣ5
coinciding with O � CSPΣ1

. Here, the

objective is to assign the resulting symmetry to S1. Because CSAΣ5
coincides with

O � CSPΣ1
, the only common symmetry plane between CSAΣ5

and O � CSPΣ1
is

indeed O�CSPΣ1
. As a result, the symmetry properties of S1 reduce to the symmetry

plane O � CSPΣ1
, the CSAΣ5

is no longer valid.

The geometric constraint for the propagation process between a CSA and a CSP,

whatever its type, can be stated as: the axis defining the CSA must lie in the plane

corresponding to the CSP. The resulting symmetry for the whole loops is characterized

by: there is only one symmetry plane ‘preserving’ the CSP.

Figure 6.9: An example of multiple loops propagation within a face, between a CSP

and a CSA: the CSA degrades into a CSP.

When a CSA interacts with another one that is parallel to it but not coincident,

is another configuration where CSA(s) interaction reduce to a single CSP. Figure 6.18
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is an example of this configuration. The model only contains CSAs. CSAΣ2
does not

coincide with CSAΣ3
, so the axisymmetry cannot propagate across S3. CSAΣ2

and

CSAΣ3
are not collinear but parallel to each other, they reduce to a CSP. This CSP

results from the propagation of the CSAs and connects them. Because all the faces of

the object have been taken into account, their edges are also symmetric with respect

to the CSP. Hence, the CSP is indeed a GSP.

The geometric configurations analyzed above cover all the configurations able to

a CSP as a result of interactions between CSAs and CSPs. Now, the purpose is to

describe the propagation process devoted to CSAs.

6.5.2 CSA propagation process

As a consequence of the previous section, axisymmetry detection is purely based on

CSAs and the only geometric configuration enabling the propagation of axisymmetry

is the collinearity of CSAs. This means at a global level, that MMAX can benefit

axisymmetry ðñ all its maximal edges reduce to loop edges and each of them is

attached to a CSA and all these CSAs are collinear to each other. Then, these CSAs

convert into a GSA (Global Symmetry Axis).

The integration of CSA processing within the first level propagation process can

obtained as follows. The first phase can process some of the CSAs as CSP chain

initiators since axisymmetric faces bounded by a single loop can appear for planes,

cones and spheres. However, the propagation process can take place in only one

configuration when the adjacent face to the first axisymmetric one is also bounded

by a single loop. In this case, there cannot be any other CSA or CSP attached to

the object, which means that the CSA becomes a GSA. Figures 5.14c and 5.17a are

object examples falling in this case.

In all other configurations, the CSP chain initiators having axisymmetry property

do not propagate because they are adjacent to faces having multiple loops. During

the second phase of the propagation process, there may exist any number of CSP

chains containing only their initiator that is a CSA. If there is none, it means that

axisymmetric areas may exist but each of them is located in between non axisymmetric

areas. If there is n, each of them defines an extremity of an axisymmetric area.

Then the second phase of the propagation process either expands the axisymmetric

areas from their extremities, if any, or looks for the initiators of axisymmetric areas

that must be chosen among the faces bounded by two loops whose types are loop

edges and both have assigned a CSA. Starting from these initiators, the propagation

operates using G21 to determine the adjacent faces. All the faces processed must have

either two loops and a CSA assigned to each of them or they must be axisymmetry

extremities, otherwise the axisymmetry propagation stops.
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Figure 6.10 illustrates the axisymmetry propagation process. The model has CSAs

only. CSAΣ1
and CSAΣ5

are CSP chain initiators obtained from the first phase.

Following G21 content and choosing CSAΣ1
, it propagates to F2 through E1. Because

F2 belongs to the correct class of face with two loops and CSAΣ2
is collinear to CSAΣ1

,

the propagation takes place andG21 can be used to identify F3. Then, the propagation

carries on until it reaches F6 that contains another axisymmetry extremity CSAΣ5
.

The propagation covers goes all the faces and edges. The analysis ends up with a

GSA.

(a) (b)

Figure 6.10: The axisymmetry propagation process and its connection with G21 con-

tent.

The CSA propagation process is mandatory but not sufficient to cover all the

possible symmetry properties, another propagation process must take place that is

related to LS-CSPs. First of all, the LS-CSPs must be initiated. Conditions for their

existence have been stated in Section 5.4.3. These CSPs are always orthogonal to the

CSAs and they must be propagated to determine whether or not an LS-CSP can be

valid for the whole axisymmetric area. BS-CSPs are also CSPs that can initiate a

propagation.

Assuming that the axisymmetric area extends over n faces, the following configu-

rations have to be evaluated:
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• The axisymmetric area has only one extremity: there is no LS-CSP or BS-CSP

globally valid for this area;

• The axisymmetric area has two extremities. If n is even, the symmetry plane

must a BS-CSP. The BS-CSP, if any, must be located at the pn
2
� 1qth edge in

terms of adjacency position from either extremities. If n is odd, the symmetry

plane must be an LS-CSP. If any, this plane is located at the pn
2
� 1qth face in

terms of adjacency position from either extremities;

• The axisymmetric area has no extremity. The symmetry plane follows the same

types and locations as previously whether n is even or odd.

Having defined and located the CSP, its propagation process can take place to

check, on both sides of this CSP, if the faces are symmetrically laid out, i.e. they

must be of same type, symmetrically located and with the same intrinsic parameters.

If this propagation process succeeds to cover the axisymmetric area, this symmetry

plane:

• Becomes a GSP if the axisymmetric area has two ends;

• Stays a CSP if the axisymmetric area has no ends. Here, the extremities of this

area become the source of the propagation process of second level to carry on

the symmetry analysis.

Indeed, during this propagation the initial CSP is compared with a new category of

CSPs that will be addressed at Section 6.7. It has to be noticed that this propagation

process must take place first during the second phase of propagation, before processing

all the other faces with multiple loops.

6.6 Synthesis of the first level propagation process

Using the description of the previous processes devoted to phases one and two,

the effect of using the loop status to speed up the generation of LS-CSPs, Figure 6.11

summarizes the major processes taking part to the first level propagation process.

First of all, CSP chain propagation starts with and propagates using the rΠOs,
rΠLBs, rΠBSs lists for entities attached to loops having the status external for their

reference face as well as for their adjacent ones. This process forms the first phase of

this propagation process.

Then, the second phase starts with the CSA propagation. The rΠSAs list is ex-

ploited to extend the pre-existing CSP chains, which can stop the whole propagation

process if MMAX is axisymmetric because a GSA has been generated. The list rΠLSs
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of LS-CSPs is also initiated at this stage and exploited to create new CSP chains that

can propagate and produce a GSP orthogonal to the GSA. At this stage of the second

phase, all the axisymmetric objects have been processed.

The next treatment is now devoted to the faces with multiple loops to carry on

extending the CSP chains. In a first place, the faces having a loop whose status is

external with respect to their reference face, are processed and rΠLSs list is updated
when LS-CSP are generated. Accordingly, when these CSPs are generated, rΠOs,
rΠLBs are decreased if the LS-CSPs coincide with O-CSPs or LB-CSPs or if these CSPs

are no longer valid for the loops of the face being processed. Also, CSP chains are

extended with these faces. Then, faces with multiples loops whose status is unknown

with respect to their reference face. rΠLSs is updated when LS-CSP are generated

and lists are decreased as long as the propagation, over each such face and with their

adjacent ones, carries on. Finally, faces bounded by a single loop and having a status

internal or unknown with respect to their adjacent faces, are processed to carry on the

extension of CSP chains. Having processed the other categories of loops before takes

benefit from the generation of LS-CSPs that removes CSPs from the rΠOs, rΠLBs lists.

At the end of these two phases, the CSP chains obtained fall into one the following

configurations:

• The CSP chain contains more than one item and it is a closed chain. This

configuration describes a loop over MMAX . The corresponding CSP can still

generate a GSP;

• The CSP chain contains a unique item that is attached to an LS-CSP and this

plane does not intersect any loop of the reference face. This CSP can still

generate a GSP;

• The CSP chain contains a unique item that is attached to a BS-CSP and this

plane entirely contains a loop of the reference face. This CSP can still generate

a GSP;

• The CSP chain contains more than one item and it is an open chain. This CSP

cannot generate a GSP.

Figure 6.11 highlights a last process since the CSP chains contain no more than

one loop whereas the intersection between MMAX and a CSP can generate several

loops. There it is mandatory to merge the CSP chains lying in the same plane so that

the second propagation process can be as efficient as possible and produces the correct

number of CSPs. Without this merging process, several GSPs would be produced that

would coincide, which incorrect. In addition, the second propagation process would

cover twice the surface of MMAX , which is not optimal.

It has to be noticed that Figure 6.11 indicates that even CSP chains containing

open loops are subjected to the merging process because it is a contribution to the
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Figure 6.11: An overview of the first level propagation process with the major pro-

cesses involved.

objective of the symmetry analysis to determine the areas of symmetry and asymmetry

over MMAX . If the global symmetry is the only objective, this process can be avoided.

As illustrated in Figure 6.11, the loop status is not mandatory to maintain the

proposed process flow. Using the loop status is effectively a complementary process

used to speed up the propagation.

Now, the propagation process has to cover the areas of BMMAX left: it is the

purpose of the ‘two sides’ propagation that is described now.
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6.7 Two sides propagation

From the unfolded drawings of Figure 6.8, one can clearly see CSP chains only valid

for some of the edges of MMAX only and some surface areas. Opposite edges of loops

haven’t been analyzed for symmetry as well as opposite surfaces that are adjacent to

the faces already checked for symmetry. To validate the edges and faces left, there is

a need for another propagation process that is named ‘two sides’ propagation.

6.7.1 Principle of the ‘two sides’ propagation process

Just as its name describes it, two sides propagation extends from both sides of the

CSP chains generated by the first level propagation. This process is in fact similar to

the propagation described for LS-CSP or BS-CSP that can be attached to a axisym-

metric object. This process can be decomposed into two categories of configurations:

faces bounded by a single loop and faces containing multiple loops. Figure 6.12 gives

a first illustration of the principle of this propagation.

(a) (b)

Figure 6.12: The principle of ‘two sides’ propagation starting from an O-CSP: (a) is

the local area of the B-Rep model around the O-CSP; (b) is the neighborhood of E1

in G21 that represents the same area of the B-Rep model.

Let us now illustrate some details of this propagation process. The starting point

is the content of a CSP chain originated from the first level propagation process.

Assuming that the first element of this chain is an O-CSP attached to edge E1 (see

Figure 6.12a), it means that V1 is symmetric to V2. Similarly, F1 is symmetric with

respect to the O-CSP, as well as its adjacent face F2.

Because it is an O-CSP, the two sides propagation can start from pV1, V2q: the
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couple of reference vertices. The purpose of the propagation is to check whether

neighboring faces of pF1, F2q are symmetric with respect to the CSP chain, or not. A

first global condition holds in the numbers of faces surrounding V1 and V2, respectively.

If they differ, their neighborhoods are asymmetric. Otherwise, the propagation carries

on.

Within F1, the loop attached to E1 contains E2 and E11 as adjacent edges to E1

through vertices V1 and V2. Using again adjacencies, pE2, E11q determines the adjacent

faces F3 through E2 and F10 through E11. Consequently, F3 and F10are homologous,

E2 and E11 as well, i.e. in the hypergraph G21 these entities are symmetric with re-

spect to F1 (see Figure 6.12b). To finalize the symmetry analysis of this configuration,

it is mandatory to use geometric informations. Thus, if the surface type of F3 and E2

are identical as well as their intrinsic parameters, if the location of F3 is symmetric to

F10 with respect to the CSP chain, then E2 and E11 are also symmetric with respect

to this CSP chain if and V3 is symmetric to and V12. Indeed, this last conditions is

dropped down for now. The above process stands for one step of propagation and the

symmetric area now extends to F3 and F10.

Now, from the hypergraph G21 or, more precisely from the dual loops of V1 and

V2, the next edge pair is pE3, E10q. With the same process, the symmetry area can

propagate to F4 and F9, etc.

Coming back to the symmetry condition dropped for V3 and V12, the neighbor-

ing faces of F1 and F3 define edges that intersect with E2 at V3. Hence, if these

neighboring faces satisfy the symmetry property, V3 is also symmetric because it lies

at the intersection of edges that are symmetric. It means that if this propagation

process covers all the faces of MMAX , apart from those already addressed during the

first level propagation, all the surfaces forming the boundary of MMAX are symmetric

with respect to the CSP chain. Because, every edge of MMAX is exactly adjacent

to two faces, the intersection curves between these faces contain the edge of MMAX .

Hence, the symmetry of surfaces contains the symmetry of the curves supporting the

edges. If so, benefiting of the symmetry property for the curves implies that some

of the intersections of these curves defines the vertices of MMAX . So, the symmetry

property of surfaces is sufficient to assign the symmetry property to edges and vertices

of MMAX considered as independent sets.

However, edges bound faces to characterize the area of the surfaces used in each

face of MMAX . This interaction is not taken into account in the previous analysis.

To be able to compare the used areas of surfaces with respect to a symmetry prop-

erty, Section 5.4.6 has introduced the concept of orientation index. Consequently, if

surfaces defining the faces of MMAX are symmetric with respect to a CSP chain and

if symmetric faces have the same orientation index, then it is sufficient to ensure the

symmetry of MMAX with respect to the CSP chain, i.e. the CSP chain generates a

GSP.



202 Chapter 6

(a) (b)

Figure 6.13: The principle of ‘two sides’ propagation starting from a BS-CSP: (a) is

the local area of the B-Rep model around the BS-CSP; (b) is the neighborhood of E1

in G10 that represents the same area of the B-Rep model.

The above analysis shows that the combination of the first and second propagation

processes entails the algorithm to terminates and to produce a correct answer with

regard the existence of GSPs.

The above description of the propagation process has started from an O-CSP but

other initial configurations can be encountered: BS-CSPs and LB-CSPs. Considering

the configuration with a BS-CSP (see Figure 6.13), the edge E1 it is attached to

lies into the CSP chain. Faces F1 and F2 sharing E1 have already been checked for

symmetry (see Figure 6.13a). To check the symmetry of other faces, it is mandatory

to identify a pair of edges. Let us select V1, an arbitrary vertex of E1. Then, looking

for edges adjacent to F1 and F2 in hypergraph G10, the subset of G10 reduced to F1

and F2 uniquely defines the couple pE2, E11q (see Figure 6.12b). From then, adjacent

faces can be identified as input for the propagation process.

If the starting item is an LB-CSP, the previous analysis can be extended to the

extreme vertices of the two edges defining the LB-CSP.

After current iteration of the propagation process, a new couple of faces can be

identified when exploring the faces around the couple of reference vertices: pV1, V2q
for the O-CSP and pV1, V1q for the BS-CSP. If all the faces have been visited, then

the propagation can move symmetrically to new reference vertices using edges like E2

and E11 of O-CSP configuration, to find new faces. If there is none, a new couple of

reference vertices can be found using the unvisited faces.

Applying this propagation to the elementary example of Figure 6.8 produces the

result illustrated in Figure 6.14 where the dotted lines indicate the loops that have
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Figure 6.14: The unfolded drawing of Figure 6.8a and e after 1st propagation.

not been taken here since the propagation process has been described only for faces

bounded by a single loop. The configuration of faces with multiple loops is addressed

at Section 6.7.3.

The principle of the ‘two sides’ propagation process compares the relative position

of a couple of surfaces with respect to a CSP chain. Indeed, this appears to be a new

category of CSPs.

6.7.2 Introducing the SS-CSP category

The ‘two sides’ propagation process compares two faces F1 and F2 of MMAX that

don’t share any other edge or vertex of MMAX : i.e. there is no B-Rep adjacency

relationship between F1 and F2 (see Figure 6.15). This is new compared to:

• O-CSPs: two faces share a common edge;

• BS-CSPs: two faces share a common edge that lies in the symmetry plane;

• LB-CSPs: three faces share two common edges that are symmetrically set with

respect to the symmetry plane of the reference face;

• LS-CSPs: at least two loops of a face share a common symmetry plane that

belongs to one of the symmetry planes of the external loop of this face.

Because intersection curves between the reference surfaces of F1 and F2 always

exist in the existing categories, the Surfaces Symmetry candidate symmetry plane
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Figure 6.15: An example of SS-CSP illustrating the difference of interaction between

the surfaces F1 and F2 compared to a BS-CSP.

(SS-CSP) characterizes configurations where the reference surfaces of F1 and F2 may

not intersect at all. This is particularly true for spheres and tori. Anyhow, if they

intersect their intersection is not part of MMAX so that F1 and F2 do not share any

edge or vertex in MMAX .

Indeed, the ‘two sides’ propagation process checks that the surfaces on both sides

of a CSP chain share the same SS-CSP, which is defined by the CSP chain.

Now, considering the geometric constraints producing these SS-CSPs, they are

very close to those related to BS-CSPs. The conditions for BS-CSPs must, and ef-

fectively, incorporate the existence of an intersection curve whereas this condition is

no longer necessary for SS-CSPs. SS-CSPs must also incorporate configuration where

the reference surfaces of F1 and F2 coincide exactly, i.e. the intersection between F1

and F2 is a surface.

6.7.3 Processing faces with multiple loops

The generation of CSP chains and the ‘two sides’ propagation process introduced in

this section strongly rely on adjacency relations available in the hypergraphs. However,

the generation of LS-CSPs is a first example where no adjacency relations are available

between the loops forming the boundary of the face where the LS-CSPs are generated.

Indeed, this configuration is fairly similar to generation of LS-CSPs. The initial

configuration expresses the lack of connectivity between loops but the existence of an

LS-CSP structures the loops. It becomes possible to identify:

• The edge Eα that is symmetric to a reference edge Eβ of the same loop if the

LS-CSP halves this loop;

• The loop Γα that is symmetric to a reference one Γβ if the LS-CSP separates
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them without intersecting them. Within Γα it becomes also possible to identify

the edge Eδ that is symmetric to a reference edge Eη P Γβ .

These are indeed adjacency relations. Therefore, when the ‘two sides’ propagation

process encounters faces with multiple loops, it can take advantage of these new adja-

cency relations generated together with the LS-CSPs. This propagation process over

couples of faces F1 and F2with multiple loops can be summarized as follows, once the

reference surfaces of F1 and F2 have been checked against the current SS-CSP:

• If F1 and F2 have a different number of loops, the propagation stops;

• If F1 and F2 have the same number of loops, the lists of LS-CSPs of F1 and F2

is searched for any couple of planes pΠLS1,ΠLS2q that are symmetrically located

with respect to the current SS-CSP (see Figure 6.16). If pΠLS1,ΠLS2q exists, the
‘adjacencies’ between ΠLS1 and the internal loops of F1 can be used to carry on

the ‘two sides’ propagation process. Because ΠLS2 plays the same role for F2, it

can be used with its ‘adjacencies’ to locate the loops and the entities within these

loops that must be symmetric to F1. During this phase, ‘two sides’ propagation

process applies as described at the beginning of this section. This propagation

may fails and the purpose stays the coverage of the whole faces of MMAX . An

example of this propagation is given in Figure 6.17;

• If F1 and F2 have the same number of loops and the lists of LS-CSPs of F1 and

F2 don’t produce any couple of planes pΠLS1,ΠLS2q symmetrically located with

respect to the current SS-CSP. In this case, the use of an LS-CSP to cover the

internal loops of F1 and F2 is not possible. It becomes necessary to generate

the connections between the loops inside each face and across each face to find

homologous faces if any. These connections are generated on a combinatorial

basis since there is no property similar to the existence of CSPs attached to the

external loop of face F1 or F2 and used to reduce the number of iterations.

The above analysis of configurations shows that the ‘two sides’ propagation process

reduces to propagation through faces. This means that its complexity is linear with

respect to the number of faces of MMAX . It has to be pointed out that MMAX being a

2-manifold model, the Euler theorem applies and shows that the propagation process

through faces is most efficient than its counter part based on edges.

Complementarity, the analysis of the ‘two sides’ propagation process operates

mostly in constant time when moving from one face to another since adjacency rela-

tions are available most of the time and if not available, connections between faces can

be obtained for faces with multiple loops when they contain LS-CSPs. It is only in

the configuration of faces with multiple loops without LS-CSP that the propagation

mechanism becomes quadratic for some entities. This last configuration is really a

worst case.
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Figure 6.16: The use of LS-CSPs as a reference to structure faces with multiple loops

and the symmetric condition to satisfy in the ‘two sides’ propagation process.

Coming back on the propagation of first level, a similar analysis can be conducted

since propagating over a loop or crossing a vertex is achieved in constant time. Again,

some restricted number of configurations can produce a quadratic complexity. This

process is linear with respect to the number of faces and vertices.

Overall, the conquer phase can be regarded as mostly linear with respect to the

faces and vertices of MMAX . The divide phase indicated a similar behavior, which

leads to a global behavior for the analysis of MMAX with respect to a CSP that is a

process of mostly linear complexity with respect to entities defining MMAX .
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Figure 6.17: An example of ‘two sides’ propagation process highlighting the use of the

‘adjacencies’ obtained from the LS-CSPs.

6.8 Highlighting asymmetry in MMAX

The propagation process is the conquer phase of the symmetry analysis of MMAX .

Whether the first level propagation process or the ‘two sides’ propagation is under

focus, their basic principle is close from each other. They start from any CSP or CSA

belonging to an edge, a vertex or a face or they start from a CSP chain and extend it

through the adjacencies available in the hypergraphs.

If these propagation mechanisms succeed in finding a CSP or CSA or another

SS-CSP coinciding with the reference plane, Π, the propagation goes on. Whenever

the propagation cannot find a CSP or CSA or another SS-CSP coinciding with Π, the

propagation stops and shows that Π cannot get the status of GSP or GSA. Throughout

the description of the propagation phase, the generation of CSP chains as well as the

‘two sides’ propagation have been presented to define the maximal extent of each of

them: CSP chains are merged even though they are not closed and the ‘two sides’

propagation has been stated with a stop criterion that is the complete coverage of

MMAX faces.

Indeed, if the focus of the symmetry analysis of MMAX is placed on the identifi-

cation of GSPs or GSA, every time the propagation cannot find a new CSP or CSA

or another SS-CSP, the conclusion is clear for the corresponding reference plane, it

cannot be a GSP or a GSA. Then, the conquer can stop and move on with the next

reference plane. Such a conquer process does not change the algorithm complexity

but the propagation will terminate much earlier and this can significantly speed up

the generation of GSPs and GSA. This behavior matches the first objective stated at
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Chapter 2.

When the first level propagation spreads until both sides of a CSP chain cannot

propagate and then, merging the CSP chains whose reference planes coincide, is able

to divide the intersection between MMAX and the corresponding reference plane Π is

two areas: one area symmetric with respect to Π and another one that is asymmetric.

It has to be noticed that the symmetric and asymmetry parts are precisely defined

with respect to the faces, edges and vertices of MMAX since the CSPs and CSAs are

initiated at every entity of MMAX . From there, the generation of the maximal CSP

chains defines the continuous arc of the intersection ΠXMMAX . Then, merging all the

CSP chains coinciding with Π generates all the arcs belonging to ΠXMMAX , which

corresponds to the symmetric area of Π XMMAX . This symmetric area, if formed

by a set of arcs, cannot contained isolated points because the only CSPs attached to

vertices are LB-CSPs but their existence derives from the symmetric configuration

of some of its adjacent faces. Hence, if an LB-CSP exists, there is a non null arc

belonging to ΠXMMAX .

Now, when considering the ‘two sides’ propagation starting from the previous CSP

chains, using the entire coverage of the faces of MMAX ensures that the faces can be

categorized into symmetric or asymmetric with respect to Π. Whatever, the shape

of the symmetric areas, they are obtained from this propagation process. However,

classification of the faces does not include their boundaries. Section 6.2 has shown

that the symmetry area of an O-CSP can be an unbounded domain. Consequently,

the ‘two sides’ propagation does not provide a precise answer to the second objective.

This is also rooted in the fact that the ‘two sides’ propagation uses some of adjacencies

between faces, i.e. not all the edges of MMAX take part to the propagation process.

Hence, the categorization of edges into symmetric or asymmetric is incomplete.

A simple asymmetric case (see Figure 6.18) illustrates the prominence of symme-

try information about face boundaries to define, as clearly as possible the symmet-

ric/asymmetric areas.

To reach the second objective, complementary treatments are mandatory that

focus on the symmetry properties of edges and some complement about SS-CSPs. The

edges of MMAX that have not been visited during the conquer phase must be visited

to classify them. Section 6.2 shows that the symmetry status of edges involves two

couples of faces in the ‘two sides’ propagation. This forms the basis of the treatment

needed. However, if the two couples of adjacent faces are already symmetric with

respect to Π, the two common edges are also symmetric and can be categorized as

such even though they were not visited. The categorization of edges requires a real

treatment only for edges located at the boundary of symmetric areas.

Another treatment is related to SS-CSPs. At present, the symmetric / asymmetric

areas that can be identified are attached to the SS-CSPs that coincide with the planes

obtained from the CSP chains. To provide a complete answer to the second objective,
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Figure 6.18: The area with red color is not axisymmetric when the propagation is

attached to CSAΣ1. S3 attached to CSAΣ2 is axisymmetric with respect to CSAΣ1

but it is asymmetric when attached to CSAΣ3, hence the prominence of more precise

boundary status.

it is mandatory to consider the configurations where there exist a SS-CSP attached

to one couple of surfaces, at least, but this SS-CSP does not coincide with any CSP

chain (see Figure 6.19).

In this case, the goal is to find two sets of faces, not adjacent to each other, whose

intrinsic parameters are identical on a two by two basis. These two sets must share

the same SS-CSP and this one should not coincide with the planes already defined by

the CSP chains. Because of time, this matter has not been investigated further.
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Figure 6.19: An example where the SS-CSP does not coincide with the available CSP

chains.

6.9 Conclusion

CSPs and CSAs generation is part of the divide process. The propagation is a

conquer process that has been decomposed into two levels. The first one is based on

the necessary intersection between GSPs or GSA and a volume object, it creates CSP

chains and propagates them. Because it starts from the O-CSPs, LB-CSPs and BS-

CSPs that enumerates all the possible interactions between GSPs, GSA and MMAX ,

it is a necessary and sufficient process to identify all the GSPs, GSA of MMAX .

The second one propagates the symmetry property over each side of CSPs, it

is the ‘two sides’ propagation starting from the CSP chains obtained from the first

level. Because the results of the first level enumerate all the possible CSPs, the GSPs

obtained after this propagation process are effectively all the GSPs of MMAX .

Axisymmetry propagation has been set as part of the first level since CSA propa-

gation is a unidirectional process. As a result, all the global symmetry properties as

well as all the local ones leading or not to the global ones are also available to char-

acterize MMAX . The corresponding conquer process appears to be a process of linear

complexity with respect to the faces, edges and vertices of MMAX . The topology of

MMAX evolving linearly with respect to these entities, any volume defined from the

reference surfaces can be processed with a linear complexity. The only treatment that

does fit into this schema is the particular case of some faces with multiple loops where

quadratic complexity may be necessary.

It has been demonstrated also that this divide and conquer process can nearly reach

the second objective with the algorithmic complexity since this process can define the
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symmetric area of MMAX for any CSP chain, hence the corresponding asymmetry

over MMAX . However, the introduction and analysis of the new CSP category, the

SS-CSP, shows that not all the possible symmetric / asymmetric areas over MMAX

can be obtained from the divide and conquer algorithm. To reach entirely the second

objective a complementary process needs to be set up.

The purpose is now to illustrate and to evaluate the efficiency of the proposed

approach through various examples.
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The examples and applications for

reflective symmetry detection

After the detailed description of the divide and conquer algorithm, the whole algorithm

of reflective symmetry analysis is available and justified. In this chapter, several ex-

amples are presented to illustrate the process of reflective symmetry analysis and to

evaluate it. From the examples, the algorithm achieves the global symmetry plane

detection, axisymmetry detection and highlight most of the asymmetric areas. The

models selected are all manifold and without complex tangent configurations. The

more examples and details left to Appendix C.

7.1 Introduction

The software environments for testing the symmetry detection algorithm have

been created on two systems. The first one is developed using the Macro facility of

CATIA V5 R19 under Windows operating system, the status of computer is Inter(R)

Core(TM)2 Duo CPU E8400 @ 3.00GHz and with 3.24G memory. The model in-

put is created within CATIA or it can be imported in that environment as a STEP

file. Because CATIA B-Rep data structures are not opened at the macro level, all

the informations about faces, edges, vertices as well as their adjacency relationships

cannot be accessed. The preparation phase with simple treatments such as surface

type recognition and surfaces intrinsic parameters extraction, etc., can be performed

using CATIA macros using the CATIA ‘measure’ function or through new functions

dedicated to the symmetry analysis process.

Because the direct access to B-Rep datastructure is not possible, the conquer phase

of the symmetry analysis could not be coded with the schema described in the previous

chapters. Hence, the time complexity of this implementation has not been studied

because it is no relevant. Furthermore, the CATIA Macro execution environment is

much slower than the same functions directly implemented in the modeling kernel,

which makes time measurements non representative of the algorithm efficiency.

Indeed, the major interest of CATIA Macros, is a rather easy access to the history

tree of an object, which a good environment to illustrate the possible reorganizations
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in a history tree when symmetry properties have been identified.

The hypergraphs construction, the divide phase with the CSPs collection have been

implemented with algorithm variants because of the limitations set by the available

macros and the lack of access to the B-Rep datastructure of the object. Because

CATIA surface selection behaves nearly like the identification of maximal surfaces

when an object has been entirely generated within CATIA and because of the lack

of access to the B-Rep datastructure, it has not possible to implement the surface

preparation process with all the merging configurations described, i.e. it is not possible

to process all surface connections with the CATIA Macro environment.

The software system uses OpenCascade CAD software library available on Linux

and Windows. It runs on a labtop with Intel(R) Core(TM)2 CPU T7200 @ 2.00GHz

and 2G memory. From this library, a dedicated application software has been devel-

oped that perform the symmetry analysis of an object. It reads STEP files directly

as input and follows the processes described in the previous chapters. The object is

described in the STEP both from a geometric and topological point of view.

The examples and figures that will be shown in the next sections were generated

on both systems. However, the time statistics are created on the second software

system only: OpenCascade, for the reasons mentioned above about the limitations of

CATIA Macro execution environment.

7.2 Global symmetry detection

The reflective symmetry detection algorithm starts with a STEP file input. The

STEP file has been exported from a CAD software. The first example is a bearing

holder illustrated at Figure 7.1)a that represents the initial B-Rep model. The first

work is to generate the initial hypergraph and at same time to read the surface pa-

rameters. Figure 7.2 shows the three initial hypergraphs. There are 186 reference

surfaces and 446 curves, hence as many faces and edges. Next, comes the processes

for maximal faces generation and maximal edges generation. The initial hypergraphs

change to Figure 7.3 and the model MMAX contains now 142 faces and 273 edges. It

has 63 planes, 61 cylinders, 2 cones, 3 spheres and 13 tori. Figure 7.1)b, c, d, e show

the different maximal faces.

From the hypergraphs, loop structures are extracted. Then, the divide phase

starts with the collection of the O-CSPs, BS-CSPs, LB-CSPs and CSAs. Figure 7.4a

gives the view with all 436 CSPs that will be used during the conquer phase. The set

of CSPs decomposes into 252 O-CSP, 68 BS-CSPs, 6 LB-CSPs, 33 LS-CSPs and 77

CSAs. The LS-CSPs generated during the first level propagation process are also part

of this figure. Figure 7.4b though f give a representation of each category of CSP.

The first level propagation process starts from one CSP within the group of O-
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Figure 7.1: A reflective symmetry detection example: (a) is the initial model; (b)

colored view highlighting the different categories of reference surfaces; (c)-(e) view of

reference surfaces by category.

CSP, BS-CSP and LB-CSP. It merges all coinciding CSPs and CSAs and should cover

all faces which intersect with these CSPs (CSAs). Figure 7.5a shows a result of this

propagation propagation process for one O-CSP. The red surfaces are all valid, i.e.

symmetric with respect to this CSP, based on their intrinsic parameters. Except

for some edges not taken into account during this propagation process, all areas of

the red surfaces are symmetric with respect to the current CSP. After this first level

propagation has ended, the second level propagation starts, i.e. ‘two sides’ propagation

process. It validates the symmetry properties of the object extending at the left and

the right of the CSPs resulting from the first level. Figure 7.5b illustrates this process.

In fact, the initial CSP is a real symmetry plane. So, the second level propagation

process covers successfully the rest of faces of the object and this CSP changes its

status to a GSP. Figure 7.5c is the result of the symmetry detection process. There

are two global symmetry planes.

The total time cost of the symmetry detection of this example running on the

OpenCascade CAD environment is 384ms. Except the hypergraph creation and loops

preparation, the time for symmetry detection, i.e. the divide and conquer phases, is

about 200ms.
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The complexity of the algorithm is not easy concluded by a simple function. It

can be divided into different process:

• Preparation process covering: hypergraph generation, maximal faces generation,

maximal edges generation, loops extraction and loops status analysis;

• Divide phase: generation of the four categories of CSPs and CSAs;

• Conquer phase: propagation processes of first and second levels.

For a manifold model input, this model contains nF faces, nE edges and nV vertices.

To generate the initial hypergraphs is a mapping process and has to go through all

the elements of the model. So, the complexity of this initialization is OpnF � nE �
nV q. The maximal faces generation checks whether two adjacent faces through a

common edge are homologous or not, which is based on the number of edges. Similarly,

maximal edges generation is based on vertices. The maximal faces generation using

the regular vertex split operator needs to scan all vertices of the model and it is linear

process with respect to the number of vertices. However, it has to be noticed that

this process incorporate some complexity since it to scan the edges and faces around

the reference vertex. The corresponding complexity has not been studied. Then, the

loop extraction process needs to cover all the faces. The detail of this process uses the

help of hypergraphs: they provide the adjacent edges and vertices which are already

linked as loops. Right now, the previous processes cover all the elements of the B-Rep

and these processes differ in time depending on the category of entity addressed. In

a first place, this complexity is OpnEq � OpnV q � OpnF q. Regarding the loop status

analysis, in worst case, the algorithm needs to analyze all the edges in order to get

their status with respect to their two adjacent faces. This process can be represented

with complexity of OpnEq. Finally, summing up all the preparation processes applied

to the input model, the complexity can be represented by OpnF �nE �nV q, as a first

approach since the processing time vary for the faces, vertices and edges.

Then, it is the divide phase with the CSP generation process. From the algorithm

description, O-CSP and BS-CSP (including CSA) generation varies linearly with re-

spect to nE . In the worst case, there will be one O-CSP and one BS-CSP generated for

each edge. So, the number of CSPs is 2nE . The LB-CSP generation needs to process

all the vertices of the model. The complexity is OpnV q. However, the number of LB-

CSPs is hard to estimate. To describe precisely, this number is linked to the number

of faces around each vertex. Here, a parameter p is added to describe the maximum

number of adjacent faces around a vertex. So, pnV of LB-CSP are generated in the

worst case. The number of LS-CSPs depends on the number of CSPs attached to the

external loops of faces. If the external loop is axisymmetric or if all the loops are

assigned an unknown status, the number of LS-CSPs depends on the number of loops.

A sphere model with many circular holes can be considered as the worst case. All
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loops on this surface are of type unknown. In this case, generating the LS-CSPs is

a combinatorial process. The corresponding complexity is Opn2
Eq and the number of

LS-CSP is p0.5n2
E � 0.5nEq when all edges are loop edges. Except some special and

very symmetric models, from the experience of testing different mechanical models,

the most populated category of CSPs is the O-CSP and then it is the BS-CSP.

The last part is conquer phase using the propagation processes. After covering all

the faces of the model, the propagation process stops and the current CSP is upgraded

to global symmetry plane. So, the complexity of this process for one CSP is OpnF q. In
the worst case, each CSP is going to through this propagation process. Consequently,

if there are nCSP CSPs, the total complexity is OpnCSPnF q. However, there are

several aspects of the algorithm to take into account that significantly reduces this

evaluation. During the first level propagation process, when a CSP coincides with a

reference one, the new one is removed from the list of CSPs, so lists of CSPs decrease

during the propagation process. Then, the number of resulting CSP chains is much

smaller than the initial number of CSPs. Finally, the second level propagation process

takes place after having merged the CSP chains and only the CSP chains containing

loops can generate GSPs. So, the real time cost is far less then OpnCSPnF q.

The complexity of the whole algorithm is hard to estimate, but the example shows

that in the OpenCascade CAD environment, it is a very quick process. Figures 7.6

and 7.10 give another global symmetry detection example. Its total time cost is 211ms.



218 Chapter 7

Figure 7.2: The initial hypergraph of the Figure 7.1.
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Figure 7.3: The hypergraph after maximal faces and maximal edges generation of the

Figure 7.1.
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Figure 7.4: The set of CSPs of the example in Figure 7.1.

Figure 7.5: The conquer phase applied to the example of Figure 7.1: (a) first level

propagation process, (b) second level propagation, (c) the result about global symme-

try planes.
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Figure 7.6: A reflective symmetry detection example: (a) is the initial model with the

statistics about the faces, edges and vertices; (b)- (e) the views of different reference

surfaces.
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Figure 7.7: The initial hypergraph of the Figure 7.6.
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Figure 7.8: The hypergraph after maximal faces and maximal edges generation of the

Figure 7.6.
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Figure 7.9: The set of CSPs of the example in Figure 7.6.

Figure 7.10: The propagation process and the symmetry detection results of the model

in Figure 7.1. (a) is the first level propagation of one CSP, (b) is the result of the

second level propagation, (c) illustrates the global symmetry planes.
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7.3 Highlighting asymmetry and modification suggestions

During the propagation process, when it stops because an asymmetric config-

uration is encountered, some asymmetric faces, and possibly edges, are found. Fig-

ure 7.11-7.14 gives an example of asymmetric area related to a CSP that is highlighted.

The axis should be the location of symmetry planes, obviously. But after the sym-

metry detection phase, there is no global symmetry plane nor global symmetry axis.

Then, selecting interactively a CSP chain which is possibly a contribution to a global

symmetry plane, the algorithm can highlight where the propagation stops (see Fig-

ure 7.13a). Figure 7.14a gives all asymmetric areas after merging the coinciding CSPs.

Using this information, the user can find that the asymmetry comes from the teeth

(see Figure 7.14b). After rotating the teeth slightly, two symmetry planes appear (see

Figure 7.14c). If needed, the details at the bottom of the model can be removed and

the model will have 24 symmetry planes.
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Figure 7.11: A reflective symmetry detection example applied to a rotor: (a) is the

initial model; (b)- (e) the views of the different reference surfaces.
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Figure 7.12: The set of CSPs of the example in Figure 7.11.
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Figure 7.13: The propagation process can’t cover all faces. The red part is the sym-

metric one, the blue part represents the asymmetric one: (a) the location where the

first level propagation process stops with a vertical CSP, (b) the location where the

first level propagation stops with an horizontal CSP.
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Figure 7.14: The reasons explaining the asymmetry and the results after modifications:

(a) asymmetric area represented in red, (b) the tooth location is the asymmetry reason,

(c) the global symmetry planes obtained after rotating the teeth slightly, (d) when

ignoring the detail at the bottom, more symmetry planes are found.
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7.4 Axisymmetry modification under suggestions derived

from asymmetry identification

In this example, the initial model has only one symmetry plane. Figure 7.15a,

b, c shows the initial B-Rep model, maximal boundary model and all CSPs. Af-

ter the propagation process, one global symmetry plane is found (see Figure 7.15d).

With respect to the CSA selected interactively in Figure 7.15e, the red surfaces are

highlighted, because they are not axisymmetric.

Figure 7.16 gives the result of after ignoring some details on the model. There are

more global symmetry planes cerated but the object is not axisymmetric yet. Finally,

after removing the holes, the model is axisymmetric, which is shown in Figure 7.17.
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Figure 7.15: A reflective symmetry detection example: (a) is the initial model; (b)

represents the maximal faces and maximal edges; (c) shows all the CSPs (CSAs); (d)

is the result of the symmetry detection: one global symmetry plane.
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Figure 7.16: After a modification, the model in Figure 7.15 becomes more symmetric:

(a) is the initial model; (b) represents the maximal faces and maximal edges; (c) shows

all the CSPs (CSAs) generated; (d) is the result of the symmetry detection: there are

more global symmetry planes; (e) represents the non axisymmetric faces with regard

to the CSA.
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Figure 7.17: With further modifications with the removal of the through holes, the

model in Figure 7.15 becomes axisymmetric: (a) is the initial model; (b) represents

the maximal faces and maximal edges; (c) shows all the CSPs (CSAs) generated; (d)

is the result of symmetry detection: the axisymmetry.
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7.5 Conclusion

The models shown in this chapter prove the validation of the reflective symmetry

analysis. The goals of detection of global reflective symmetry planes, global axisym-

metry and asymmetric areas, are achieved. With the help of the asymmetry areas

highlighted, a user can find the right symmetry planes and also know where to mod-

ify the input model to remove some asymmetry. The algorithm has been developed

with variants in CATIA Macro execution environment under Windows OS and as

an OpenCascade CAD application under Linux or Windows OS. The complexity for

each major step has been discussed. With input models having hundreds of elements

model, the time cost has a magnitude of a few tens of second. Compared to the

other symmetry detection methods, this algorithm is fast and this makes applicable

in an interactive context for various PDP applications. The examples proposed show

that asymmetric areas can be useful to operate model transformations and they form

a good basis to set up an algorithm using them assist the user in performing these

modifications.
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Conclusions and perspectives

Conclusion

The present work has been motivated by the needs of improving PDPs because

symmetries are widely used in many simulations processes. Shape analysis can help

the user understand digital models more easily and can initiate suggestions for model

modifications and shape simplifications. Indeed, reflective symmetry is a main prop-

erty of many man made products and is ubiquitous in product digital models and, as

examples, it can be used in model storage and retrieval, model simplification for FEA

as well as assembly planning processes.

The thesis reports a reflective symmetry analysis algorithm. The algorithm is valid

on B-Rep CAD models which are two manifolds objects whose boundary is obtained

through the combination of five reference surfaces: planes, cylinders, cones, spheres

and tori. The symmetry analysis process is of type divide-and-conquer. In order to

stay consistent with the symmetry properties extracted, the B-Rep model input is di-

vided into maximal surfaces, maximal edges and vertices. As a contribution to encode

their adjacency relationships, these three categories of entities are structured with

hypergraph data structures and connected to the surface intrinsic parameters. Hyper-

graphs form a topological description of the object boundary and stay connected to

its B-Rep topological datastructure, which is kept unchanged. These are the prelimi-

naries of the proposed symmetry analysis process and, during this preliminary phase,

all the boundary singularities are processed. Then, the five reference surfaces form

the initial infinite point sets and, with their associated symmetry properties, they can

initiate the divide phase. The combinations of couples of these surfaces provide the

symmetry constraints to generate the CSPs forming the target of the divide phase.

These CSPs are attached to the edges, vertices and faces of the object boundary.

Five categories of CSPs: O-CSP, BS-CSP, LB-CSP, LS-CSP, SS-CSP and a CSA have

been defined, which contain all the local symmetry possibilities of the object. Using

propagation processes, which describe the conquer phase, local symmetry properties

are expanded through the adjacency relationships encoded by the hypergraphs. The

conquer phase subdivides into two complementary propagation processes. The first

one, merges coincident CSPs/CSAs together to form CSP chains representing the in-

tersections between symmetry planes and the object boundary. Then, the second one

carries on the expansion of the symmetric areas on both sides of these CSP chains,
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forming SS-CSPs, until all surfaces are covered without the occurrence of asymmetry.

This leads to the desired GSPs and axisymmetry. This divide and conquer approach

does not only provide global symmetry properties but also the extent of CSPs/CSAs

over the object boundary.

Compared to other symmetry detection methods, the divide-and-conquer method

proposed has the following advantages:

• A B-Rep CAD model forms input model and is addressed as an infinitive point

set. Compared to the finite point sets representations which can only give ap-

proximate symmetry planes, the CAD model covers all the details and singulari-

ties of the corresponding shape. Because the surface locations and their intrinsic

parameters are the only geometric information processed, the tolerance of the

symmetry detection can be set to that of the geometric modeler. The symmetry

properties obtained are precise results because all the singularities of the ob-

ject boundary have been encoded in the hypergraph datastructures. Choosing

the STEP format as reference data structure, which is an ISO file format, the

algorithm can be widely used during a PDP;

• The hypergraphs datastructure provides the object boundary with a topological

representation intrinsic to the object shape and consistent with the symmetry

properties addressed. Compared to classical B-Rep datastructures, loop edges

with one or no vertex is a major difference. Consequently, hypergraphs support

well the major processes of this symmetry analysis algorithm starting from the

maximal faces and edges generation (the core infinite point sets), the CSPs

collection and propagation processes;

• Maximal faces and maximal edges representation is needed that form the core

point sets of the divide and conquer process. The input B-Rep model often

breaks surfaces into pieces due to the modeling process, topological require-

ments, etc. and also the symmetry properties. This limits other methods based

on classical B-Rep model datastructures. Referring to maximal faces and edges

is independent from the modeling process, the surface parameterization, em-

bedding and singularities. This preparation phase ensures that all the CSPs

attached to the surfaces can reflect the inherent symmetry properties of the ob-

ject. Tangent configurations in the B-Rep model form singularities that can be

processed with the help of the hypergraphs. So, the regular and non-regular

points are defined to support the face merging process, which can contribute to

the consistent representation of the object boundary;

• The CSPs may not be only included in the global symmetry planes, but also

contribute to partial symmetry properties. CSPs are attached to the vertices,

edges or faces of the object boundary and they cover all the meaningful rela-
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tionships between these entities. Consequently, it is a local symmetry property

with respect to its original entities.

Even though there is a combinatorial complexity appearing in the CSP genera-

tion process with regard to the categories of reference surfaces, a closer look is

needed there. Related to infinite point sets, curvature distribution, singularities

of the embedding, behavior at infinity, topological features of the corresponding

surfaces are among the core mathematical issues that can be faced. In addition,

combining surfaces exhibiting at least one the previous features can hardly avoid

some combinatorial processing. Now, it happens that the reference surfaces ad-

dressed cover a large spectrum of the above features. The above features are

hardly taken into account in many approaches. Discrete approaches [44] with

discrete curvatures are note able to distinguish ombilic points from the apex of

a cone as one among other observations related to these approaches.

Indeed, the five reference surfaces combine open surfaces (plane, cylinder and

cone) and closed ones (sphere and torus), surfaces with null curvature (plane)

and constant one (sphere) without unique directions of curvature, surface with

singularity (cone), which creates specific treatments anyway.

Coming back to the CSPs, each one represents a basic symmetry property. Af-

ter the conquer phase, these partial symmetry planes cover an area as large as

possible until asymmetry occurs. This propagation process produces the sym-

metry analysis of the object. So, after the detection of the global symmetry

properties, all partial symmetry properties are also, which is a good basis for

shape analysis and is obtained at a low complexity. Few other approaches can

provide equivalent information;

• Referring to parametric surfaces makes the symmetry detection process works on

a precise and global basis. Tate’s [60][58] uses such an approach. Her method

compares surface loops using some global geometric properties like area, etc.,

which don’t exist in the input model and need to be computed through accu-

racy thresholds. Surface intrinsic parameters are available and stored in the

B-Rep model input. The algorithm presented here only reads these and use

them to identify the symmetry properties. Once the parameters of two surfaces

characterize a symmetric configuration, the infinite points formed by the corre-

sponding surfaces are symmetric. The symmetric layout of surfaces propagates

to their intersection curves without requiring a complex analysis of the trimming

curves defining a B-Rep CAD model. All these features significantly improves

the robustness of the approach compared to Tate’s one;

• Axisymmetry is accessible. Axisymmetry is a configuration with an infinite

number of symmetry planes. With the finite points sets representations and

their approximate results, a precise axisymmetry cannot be generated. The

proposed approach incorporates symmetry axes right from the divide phase and
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the global approach set up with infinite points sets helps extracting precisely

and easily the axisymmetry properties at all levels of the divide-and-conquer

process;

• The time cost of the algorithm is low. Using surfaces makes the symmetry detec-

tion operates using infinite points set without any discretization. Even the edges

of the B-Rep model are not approximated but processed globally through the

parameters of their adjacent surfaces. As a complement, hypergraphs provide all

the consistent adjacency relationships. The preparation phase and divide-and-

conquer method make the algorithm fairly less combinatorial than the current

approaches with a nearly entirely linear complexity and keep the whole process

at low cost.

The examples illustrated in this thesis demonstrate the feasibility of our approach.

The CATIA macros developed prove that the approach is valid for industrial CAD

software and can be readily incorporated as a new function.

Perspectives

Regarding further research, the divide and conquer symmetry analysis has some

more potentialities, among which:

• The extension to multiple volumes and assembly models. At present, the input

model is only one volume. Symmetry properties exist not only for a single

component, but also for groups of objects, including assembly models. In fact,

the second level propagation process does not require, with the SS-CSPs, that

the left and right faces belong to same volume. If a CSP attached to two volumes

is generated, the propagation process can be applied over these two volumes. To

implement the algorithm on assembly models, a topological relationship between

its volumes needs to be created;

• To include new categories of reference surfaces. Currently, the five categories

of reference surfaces is a strict constraint of the algorithm and real engineering

components cannot be covered entirely. In prior research, surfaces of revolution,

ruled surfaces, blends and free-form surfaces are categories that could be added

into our approach. Especially NURBS curves and surfaces that can be used

arbitrary surface generation;

• To detect rotational symmetries. Currently, the approach can detect reflective

symmetries only. Rotational symmetry is also an important shape property. The

criteria used in our approach is purely focusing on reflective symmetry. There is

a need to define the concept of Candidate Rotational Symmetry Axis (CRSA) at
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a similar level as the CSPs, CSAs so that it can take part to the divide phase and

incorporated in the propagation processes. Another question is how to extract

these CRSAs from MMAX and check that the concept of maximal faces and

edges is adequate with respect to this concept;

• Non-manifold model processing. Non-manifold models are also useful for ge-

ometric modeling and PDPs. For example, many simulation models for FEA

are simplified as planes, segments, etc. The hypergraphs form a powerful tool

which can represent not only manifold models, but also non-manifold ones. So

the objective is to adapt the current approach to non-manifold models where

the edge/face adjacency relationship can vary from one edge to the other inside

the input model. A global approach in this context is indeed a challenge;

• Valid for mesh models. Mesh models are a special category of B-Reps, which

has a wide range of application in PDPs. A mesh generation process breaks the

surface representation into many pieces forming the mesh cells. In some cases,

a mesh model is macroscopically symmetric, but it is not true when compar-

ing each cell. The current divide-and-conquer symmetry analysis algorithm is

not producing the desired in this case., So whether to use tolerance control or

rebuilding some initial surfaces, there are some issues to be solved to process

efficiently mesh models.
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Appendix A

Combinatorial analysis of the

combination of reference surfaces

producing CSPs

Plane/Sphere pP, Spq: ΓP�Sp reduces to circles and defines E. All configura-

tions are axisymmetric with Os the center of Sp such that Os � Π and ΠKP .

Figure A.1: Intersection between a plane P and a sphere Sp.

(a) (b) (c)

Figure A.2: (a) P orthogonal to At, (b) P is parallel to At, (c) P is neither orthogonal

nor parallel to At.

Plane/Torus pP, Toq: Symmetry properties of To are similar to those of Cy

(see Figure A.2) and summarized in Table A.1. A difference holds for orthogonal

symmetry plane Π1 that necessarily contains At, the torus axis. If P has an arbitrary
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pF, Faq pP, Toq pP, Toq pP, Toq
Geometric PKAt P � At P not KAt,

constraint P not �At

8 Π1: At � Π1 Π1: At � Π1

Π axisymmetry Π2: AtKΠ2, Ot � Π2

Table A.1: Configurations of symmetry planes for P and To.

orientation (see Figure A.2c) with respect to To, the intersection curve can reduce to

a curve with singularity when P has a point tangent to To and here, Π1 contains this

singularity. In this configuration, Π1 is no longer an O-CSP but the two loops forming

this configuration produce two distinct maximal edges. These maximal edges end

up with one vertex only since these loop edges characterize a crossing configuration

around the vertex, hence Π1 is not lost but appears as an LB-CSP.

Cylinder/Cylinder pCy1, Cy2q: Based on the symmetry properties of Cyi alone,

the space location of symmetry planes reduces to three configurations (see Figure A.3,

Table A.2):

• Cy1 and Cy2 are orthogonal. In Figure A.3a and d, the maximal edge E changes

from one component to two disconnected ones. In Figure A.3a, Π1 and Π2 are

both O-CSPs whereas in d, Π2 is no longer an O-CSP. Similarly to (P , Cy),

it is not lost but appears as an LS-CSP and evolves in an LB-CSP if Cy1 and

Cy2 are tangent to each other. In addition, when Ac1 and Ac2 intersect (see

Figure A.3e), another plane Π3 appears. That plane originates from the two

components defining the intersection with E1 and E2. It is not mentioned in

Table A.2 since it never belongs to the O-CSP category, rather it is an LS-

CSP evolving into a BS-CSP when Cy1 and Cy2 have the same diameter (see

section 5.6);

• Cy1 and Cy2 are parallel to each other (see Figure A.3c). The resulting inter-

section is similar to the (P , Cy) where Cy is parallel to P , which explains the

reduction of the intersection to one straight line only;

• Cy1 and Cy2 are neither parallel nor orthogonal to each other but Ac1 and Ac2

intersect (see Figure A.3b). Only one symmetry plane exists, Π1. The limiting

configuration where Cy1 and Cy2 have the same radius, has no influence over

the status of Π1.

Cylinder/Cone pCy,Coq: Between Cy and Co, symmetry properties mainly

rely on their axes Acy, Aco relative locations (see Figure A.4, Table A.3). Intersection

configurations producing either one or two disconnected components do not generate

any particular symmetry plane.
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pF, Faq pCy1, Cy2q pCy1, Cy2q pCy1, Cy2q
Geometric constraint Ac1KAc2, Ac1 XAc2 � pt, Ac1 � Ac2

Π1: Ac1 � Π1,

Ac2KΠ1

Π1:

Ac1, Ac2 � Π1

Π1: Ac1, Ac2KΠ1

Π Π2: Ac1 � Π2,

Ac2KΠ2,

Table A.2: Configurations of symmetry planes for Cy1 and Cy2.

Configurations where Co becomes tangent to Cy do not alter the status of the

symmetry planes nor their number (see Figure A.4a, b, c). Coinciding axes produce

an axisymmetric configuration (see Figure A.4d).

pF, Faq pCy,Coq pCy,Coq
Geometric constraint AcyKAco, Not co-planar Acy XAco � pt

Π Π1: Aco � Π Π1: Acy, Aco � Π1,

pF, Faq pCy,Coq pCy,Coq
Geometric constraint Acy XAco � pt, AcyKAco Acy � Aco

Π
Π1: Acy, Aco � Π1 8: axisymmetry
Π2: Aco � Π2, AcyKΠ2

Table A.3: Four configurations of symmetry planes for Cy and Co, first subset.

Cylinder/Sphere pCy, Spq: The relative locations of Cy and Sp end up with

two configurations (see Figure A.5a, b and Table A.4) whether the center Os lies on

Cy axis Ac or not. Having Os on Ac produces axisymmetry as well as an intersection

with two disconnected components and a symmetry plane of type LS-CSP, which is

not part of the current analysis.

pF, Faijq pCy, Spq pCy, Spq
Geometric constraint Os � Ac Os � Ac

Π
Π1: Ac � Π1, Os � Π1, 8: axisymmetry
Π2: AcKΠ2, Os � Π2

Table A.4: Two configurations of symmetry planes for pCy, Spq.

Cylinder/Torus pCy, Toq: Depending on the location of Cy axis, Ac, with re-

spect to the axis At and center Ot of To, five categories of symmetry plane configura-

tions emerge (see Figure A.6, Table A.5):

• At is parallel to Ac (see Figure A.6b). If the intersection curve contains only

one component, Π1 is an O-CSP. However, if To is tangent to Cy Π1 changes
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(a) (b) (c)

(d) (e)

Figure A.3: Categories of symmetry plane distribution between intersecting cylinders

Cy1 and Cy2.

category to LB-CSP. Now, if their relative position generates an intersection

with two disconnected components, Π1 still exists but as an LS-CSP;

• At is orthogonal to Ac (see Figure A.6c) and they are crossing each other. The

same analysis process as above applies now with Π2;

• At is orthogonal to Ac (see Figure A.6d) but they are not crossing each other.

The same analysis process as above applies with Π2;

• At is neither orthogonal nor parallel to Ac but At intersects with Ac (see Fig-

ure A.6a). Π1 is the only O-CSP when the intersection reduces to one maximal

edge E. Π1 evolves into an LB-CSP when To is tangent to Cy or to an LS-CSP

when their intersection produces two disconnected components;

• At coincides with Ac and produces an axisymmetric configuration (see Fig-

ure A.6e).

Cone/Cone pCo1, Co2q: Symmetry properties of Co generate two configurations

close to that of Cy and Sp. If the two axes Ac1, Ac2 coincide, ΓCo�Co is a circle, hence
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(a) (b) (c) (d)

Figure A.4: Symmetry properties between a cylinder and a cone.

(a) (b)

Figure A.5: Symmetry properties between pCy, Spq.

the axisymmetry (see Figure A.7b). The other configuration produces a symmetry

plane Π1 when Ac1 and Ac2 intersect. The O-CSP thus obtained is stable under

Coi dimensional parameter variations whether the intersection between Co1 and Co2

produces one loop or two or a singular configuration where the loops touch each other.

Cone/Sphere pCo, Spq: It is also close to the pCy, Spq configurations with the

difference that Ac � Os generates no more than one symmetry plane Π1 (see Fig-

ure A.8 and Table A.7).

Cone/Torus pCo, Toq: The different axes locations synthesize with five categories

of symmetry planes (see Table A.8 and Figure A.9), rather close to Cy and To ones:

• At is parallel to Ac (see Figure A.9b). If the intersection curve contains only

one component, Π1 is an O-CSP. However, if To is tangent to Co, Π1 changes

category to LB-CSP. Now, if their relative position generates an intersection

with two disconnected components, Π1 still exists but as an LS-CSP;

• At is orthogonal to Ac (see Figure A.9c) and they are crossing each other. The

same analysis process as above applies with Π1. Whatever the relative position

of Co with respect to To, Π2 stays an O-CSP;
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pF, Faq pCy, Toq pCy, Toq pCy, Toq

Geometric constraint
Ac XAt � pt Ac � At AcKAt,

Ac XAt � pt

Π

Π1:

pAc, Atq � Π1

Π1:

pAc, Atq � Π1

Π1: AcKΠ1,

At � Π1

Π2: Ot � Π2,

pAc, AtqKΠ2

Π2: AtKΠ2,

Ac � Π2

pF, Faq pCy, Toq pCy, Toq
Geometric constraint AcKAt, Ac XAt � φ Ac � At

Π
Π1: AtKΠ1, Ac � Π1 8: axisymmetry
Π2: AcKΠ2, At � Π2

Table A.5: Five configurations of symmetry planes for Cy and To.

pF, Faq pCo,Coq pCo,Coq
Geometric constraint Ac1 XAc2 � pt Ac1 � Ac2

Π Π1: Ac1, Ac2 � Π1 8: axisymmetry

Table A.6: Two configurations of symmetry planes for pCo1, Co2q.

• At is orthogonal to Ac (see Figure A.9d) but they are not crossing each other.

The same analysis process as above applies with Π1;

• At is neither orthogonal nor parallel to Ac but At intersects with Ac (see Fig-

ure A.9a). Π1 is the only O-CSP when the intersection reduces to one maximal

edge E. Π1 evolves into an LB-CSP when To is tangent to Co or an LS-CSP

when their intersection produces two disconnected components;

• At coincides with Ac and produces an axisymmetric configuration (see Fig-

ure A.9e).

Sphere/Sphere pSp1, Sp2q: It reduces to only one axisymmetric configuration

whose axis is Os1Os2 (see Figure A.10 and Table A.9).

Sphere/Torus pSp, Toq: Three categories appear (see Figure A.11 and Table A.10)

among which the coincidence of Os with At produces the axisymmetry configuration

(see Figure A.11c).

Whatever the relative position of Os with respect to At, there exists a symmetry

plane Π1 containing these entities (see Figure A.11a). When the intersection curve

generates only one maximal edge E, Π1 is an O-CSP, which transforms into an LB-

CSP or LS-CSP when two loops appear progressively without missing any symmetry

plane. If At is orthogonal to OtOs, two symmetry planes appear where Π1 plays
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(a) (b) (c)

(d) (e)

Figure A.6: Symmetry properties between Cy and To.

(a) (b)

Figure A.7: Symmetry properties between Co1 and Co2.

the same role as previously and Π2 stays an O-CSP under the transformation of the

intersection curve.

Torus/Torus pTo1, T o2q: pTo1, T o2q ends up with six configurations (see also

Table A.11):

• In Figure A.12a, b and c, the axes At1 and At2 are co-planar, which forms a

sub-category containing two configurations. Whether At1 and At2 intersect (see

Figure A.12a) or are parallel to each other with centers Ot1Ot2 not orthogonal to

Ati (see Figure A.12b), the symmetry plane Π1 thus produced behaves similarly.

Π1 defines an O-CSP when there is a single intersection curve E, otherwise it

is not lost but evolves toward an LS-CSP through an LB-CSP. Figure A.12c

depicts the configuration where Ot1Ot2 is orthogonal to Ati. This configuration
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(a) (b)

Figure A.8: Symmetry properties between Co and Sp.

pF, Faq pCo, Spq pCo, Spq
Geometric constraint Os � Ac Os � Ac

Π Π1: Ac � Π1, Os � Π1, 8: axisymmetry

Table A.7: Two configurations of symmetry planes for pCo, Spq.

adds Π2, which is a stable O-CSP;

• Figure A.12d illustrates a configuration where At1 and At2 are orthogonal to

each other, with Ot1Ot2 orthogonal to either At1 or At2 and ||Ot1Ot2|| ¡ 0. The

resulting symmetry plane Π1 behaves identically to the previous configurations;

• In addition to the previous constraints, when Ot1Ot2 is orthogonal to At1 and

At2 both and ||Ot1Ot2|| ¡ 0, Π2 emerges (see Figure A.12e). Likewise Π2 in

the configuration where At1 and At2 are parallel to each other, Π2 is a stable

O-CSP;

• When At1 coincides with At2, the configuration becomes axisymmetric (see Fig-

ure A.12f);

• Finally, At1 is orthogonal to At2 and Ot1 coincides with Ot2 (see Figure A.12g).

This configuration necessarily produces two curves or four ones and E is one

of them, which means that Π1 is necessarily an LS-CSP, i.e. one of the three

symmetry planes appearing in this configuration belongs to the LS-CSP cate-

gory. Then, Π2 and Π3 are O-CSPs but either Π2 or Π3 can evolve toward the

LS-CSP category while the other plane is stable in the O-CSP category.
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(a) (b) (c)

(d) (e)

Figure A.9: Symmetry properties between Co andTo.

pF, Faq pCo, Toq pCo, Toq pCo, Toq

Geometric constraint
Ac XAt � pt Ac � At AcKAt,

Ac XAt � pt

Π

Π1:

pAc, Atq � Π1

Π1:

pAc, Atq � Π1

Π1: Ac � Π1,

At � Π1

Π2: AtKΠ2,

Ac � Π2

pF, Faq pCo, Toq pCo, Toq
Geometric constraint AcKAt, Ac XAt � φ Ac � At

Π Π1: AtKΠ1, Ac � Π1 8: axisymmetry

Table A.8: Five configurations of symmetry planes for Co and To.

pF, Faq pSp, Spq
Geometric constraint @ (Os1, Os2)

Π 8: axisymmetry

Table A.9: Configurations of symmetry planes for Sp and Sp.
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Figure A.10: Intersection and symmetry properties between pSp1, Sp2q.

pF, Faq pTo, Spq pTo, Spq pTo, Spq
Geometric constraint At � Os AtKOsOt At � Os

Π

Π1: At, Os � Π1 Π1:

pAt, Osq � Π1

8:

Π2: AtKΠ2,

Ot � Π2

axisymmetry

Table A.10: Configurations of symmetry planes for Sp and To.

(a) (b) (c)

Figure A.11: Symmetry plane configurations of Sp and To.
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pF, Faq pTo1, T o2q pTo1, T o2q pTo1, T o2q
Geometric At1 XAt2 � pt At1 � At2, At1KAt2,

constraint Ot1Ot2 not KAt1 Ot1Ot2KAt1 Ot1 � Ot2

Π

Π1:pAt1, At2q � Π1, Π1:pAt1, At2q � Π1

Π1:pAt1, At2q � Π1 Π2:At1KΠ2, At2KΠ2 Π2:At1 � Π2,

At2KΠ2,

Π3:At2 � Π3, At1KΠ3

pF, Faq pTo1, T o2q pTo1, T o2q pTo1, T o2q
Geometric At1KAt2, At1KAt2, At1 � At2

constraint Ot1Ot2KAt1 Ot1Ot2KAt1,

Ot1Ot2KAt2

Π

Π1:At1KΠ1, Ot1 � Π1 Π1:At1KΠ1, Ot1 � Π1 8:axisymmetry

Π2:At2KΠ2, Ot2 � Π2

Table A.11: Symmetry plane configurations for two tori.

(a) (b) (c)

(d) (e) (f) (g)

Figure A.12: Symmetry plane configurations of pTo1, T o2q.
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Appendix B

Details about the loop status

analysis

B.1 Cylinder and cone

Figure B.1: The tangent loop status generated by pCy,Coq.

Between cylinder and cone, the intersection loop types are divided by the tangent

configurations. The Figure B.1a gives the tangent configuration and the parameters

where the cone is described by apex, axis and the angle α; the cylinder is described

by its axis and radius R. At first, the condition is that axis of cylinder and axis of

cone are co-planar and their angle is β. The propose is to get the location of point

C when the cylinder is tangent to the cone. Here C is the intersection point between

the two axes, which is described by h an CD.
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AB � R
sin θ

cosβ
(B.1)

AD � ABtanα (B.2)

CD � CA�AD

� R cos θ �R
sin θ

cosβ
tanα (B.3)

With the tangent condition, B and B’ coincide:

CD �
R

cos θ
(B.4)

R sin θ cos θ
tanα

cosβ
�Rpcos2 θ � 1q � 0 (B.5)

sin θ cos θ
tanα

cosβ
� sin2 θ � 0 7 θ � 0,6 sin θ � 0

cos θ
tanα

cosβ
� sin θ

tan θ �
tanα

cosβ
(B.6)

The result of the tangent condition is:

h tanα � CA�AD � CD

�

�
R cosparctanq

tanα

cosβ
�R

tanα

cosβ
sinparctanp

tanα

cosβ
qq

�
(B.7)

When h tanα is bigger or smaller then the condition, it will give a different loop

type for the initial cone and the cylinder.

With a more general configuration, the axes of cylinder and cone are not co-planar

but at a distance d (see Figure B.1b). The condition is:

h tanα � CD� d (B.8)

B.2 Cylinder and torus

Figure B.2a gives the illustration that Cy axis is orthogonal and intersecting with

To axis: ACKAT and AC XAT � φ. In this case:

d �
���ÝÝÝÝÑOTAC

��� (B.9)

pRc � rq2 � R2 � d2 (B.10)
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Figure B.2: The intersection loop status generated by pCy, Toq.

If the intersection loop is Type 1 for cylinder and type 2 for torus, it needs RC within:a
d2 �R2 � r   RC   pd� rq (B.11)

When ACKAT and AC X AT � φ (see Figure B.2b), in order to get type 1 loop on

cylinder and type 2 loop on torus, the constraint of cylinder radius is:

in constraint : δ   R (B.12)

d2 � pR� δ2q � pr �RCq
2 (B.13)

δ ¤
a
pr �RCq2 � d2 �R (B.14)

or RC ¡
a

d2 � pR� δq2 � r (B.15)

The next special configuration is that AC and AT are intersecting but not orthogonal.

The angle pAC , AT q is defined as Π

2
� α, α P p0,Πq. The extreme values of α are

tangent configurations shown by Figure B.2c:

α � arcsinp
r

R
q (B.16)

Only giving the range of α is not enough to get the intersection loop type. Different

intrinsic parameters of torus and cylinder can make cylinder tangent to torus “inside

the hole” (see Figure B.2d). The rest of the analysis aims at characterizing the tangent

condition. At a tangent point, the normals pointing to torus and cylinder are defined
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Figure B.3: The intersection loop status generated by pCy, Toq: (a) is the parameter

representation of torus; (b) is the parameter representation of cylinder with reference

frame rotation.

as ~n and ~nC , respectively. Because it is a tangent configuration, ~nC �~n � �1. A torus

is described by intrinsic parameters pR, rq and parameters pu, vq, the center is located
at the origin of the reference frame. The point P on the torus is:

~P �

$&%
x � pR� r cos vq cosu
y � pR� r cos vq sinu
z � r sin v

(B.17)

The derivatives respect to pu, vq are

B ~P
Bu

�

$&%
�pR� r cos vq sinu
pR� r cos vq cosu
0

B ~P
Bv

�

$&%
�r sin v cosu

�r sin v sinu

r cos v

(B.18)

B ~P
Bu

�
B ~P
Bv

�

$&%
pR� r cos vq cosu r cos v

pR� r cos vq sinu r cos v

pR� r cos vq sinu r sin v sinu� pR� r cos vq cosu r sin v cosu

(B.19)

�

$&%
rpR� r cos vq cosu cos v
rpR� r cos vq sinu cos v
rpR� r cos vq sin v�����B ~PBu �

B ~P
Bv

����� � rpR� r cos vq (B.20)

~npu, vq �
B ~P
Bu � B ~P

Bv���B ~PBu � B ~P
Bv

��� �
$&%

cosu cos v

sinu cos v

sin v

(B.21)
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The second derivatives of pu, vq are:

B2 ~P
Bu2

�

$&%
�pR� r cos vq cosu
�pR� r cos vq sinu
0

(B.22)

B2 ~P
Bv2

�

$&%
�r cos v cosu

�r cos v sinu

�r sin v

(B.23)

B2 ~P
BuBv

�

$&%
r sin v sinu

�r sin v cosu

0

(B.24)

The Gaussian curvature:

K �
LN �M2

EG� F 2
(B.25)

In the Equation B.25:

L �
B2 ~P
Bu2

� ~n (B.26)

� �pR� r cos vq cos2 u cos v � pR� r cos vq sin2 u cos v

� �pR� r cos vq cos v

N �
B2 ~P
Bv2

� ~n (B.27)

� �r cos2 v cos2 u� r cos2 v sin2 u� r sin2 v

� �r

M �
B2 ~P
BuBv

� ~n (B.28)

� r sin v sinu cosu cos v � r sin v cosu sinu cos v

� 0

E �
B ~P
Bu

�
B ~P
Bu

(B.29)

� pR� r cos vq2 sin2 u� pR� r cos vq2 cos2 u

� pR� r cos vq2

G �
B ~P
Bv

�
B ~P
Bv

(B.30)

� r2 sin2 v cos2 u� r2 sin2 u sin2 v � r2 cos2 v

� r2

F �
B ~P
Bu

�
B ~P
Bv

(B.31)

� rpR� r cos vq sinu sin v cosu� rpR� r cos vq cosu sin v sinu

� 0
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and then, here it is:

EG� F 2 � r2pR� r cos vq2 (B.32)

Finally, K is:

K �
�pR� r cos vq cos vp�rq � 0

r2pR� r cos vq2
�

cos vpR� r cos vq
pR� r cos vq2r2

�
cos v

rpR� r cos vq
(B.33)

The representation of cylinder is illustrated in the Figure B.3(b). The reference

frame of cylinder is the ~x rotation result of reference frame torus which rotates θ. The

rotation matrix is:

R~x �

��1 0 0

0 cos θ � sin θ

0 sin θ cos θ

�� (B.34)

In the cylinder reference frame, the cylinder is represented by intrinsic radius RC

and parameters ph, ωq:

~PC �

$&%
xC � RC cosω

yC � h

zC � RC sinω

(B.35)

So, put the cylinder into the torus reference frame produces:

~PC �

$&%
x � RC cosω � δ

y � h cos θ �RC sin θ sinω

z � h sin θ �RC cos θ sinω �RC

(B.36)

Here δ is the distance between the axes cylinder and torus which is only a ~x

parameter.

With the same process calculation, the ~nc of cylinder is:

B ~PC

Bω
�

$&%
�RC sinω

�RC sin θ cosω

RC cos θ cosω

(B.37)

B ~PC

Bh
�

$&%
0

cos θ

sin θ

(B.38)
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B ~PC

Bω
�
B ~PC

Bh
�

$&%
�RC cosω

RC sinω sin θ

�RC sinω cos θ

(B.39)

~nC �
B ~PC

Bω � B ~PC

Bh���B ~PC

Bω � B ~PC

Bh

��� �
$&%

� cosω

sinω sin θ

� sinω cos θ

(B.40)

~nC � ~n � � cosω cosu cos v � sinω sin θ sinu cos v � sinω cos θ sin v (B.41)

� �1

Another condition is ~nc � ~n � 0:

~nc � ~n �

�� � cosω

sinω sin θ

sinω cos θ

���

�� cosω

sinu cos v

sin v

�� (B.42)

�

$&%
sinω sin θ sin v � sinu cos v sinω cos θ

sinω cos θ cosu cos v � cosω sin v

� cosω sinu cos v � sinω sin θ cosu cos v

(B.43)

�

$&%
sinωpsin θ sin v � sinu cos v cos θq � 0

sinω cos θ cosu cos v � cosω sin v � 0

� cos vpsinu cosω � sinω sin θ cosuq � 0

(B.44)

Within the equation system, there are pu, v, ω, hq 4 unknowns. The Equation B.41

and B.44 give 4 equations. The tangent configuration can be calculated by these

4 equations but equation system is non linear and requires a numerical approach.

This is a much slower process than the processing configurations through analytical

treatments. It has also to be considered that curvature compatibility equations based

on the Gaussian and principal curvatures need to be added to characterize the loop

behavior around the tangent configurations.
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B.3 Cone and cone

Figure B.4: The tangent loop status generated by pCo,Coq.

The analysis of arbitrary configuration between pCo,Coq is similar to the process

of (Cy,To). The Figure B.4 gives the condition and the parameters of two cones. The

point O is the original point of the reference frame. The axis of cone 1 coincides with

the axis ~z.

The parameter equation of cone 1 is:

~P1 �

$&%
x1 � h1 tanα1 cosu1
y1 � h1 tanα1 sinu1
z1 � h1 h1 ¥ 0

(B.45)

The derivatives respect to parameters ph1, u1q are:

B ~P1

Bh1
�

$&%
tanα1 cosu1
tanα1 sinu1
1

(B.46)

B ~P1

Bu1
�

$&%
�h1 tanα1 sinu1
h1 tanα1 cosu1
0

(B.47)

and then:

B ~P1

Bh1
�
B ~P1

Bu1
�

$&%
�h1 tanα1 cosu1
h1 tanα1 sinu1
h1 tan

2 α1 cos
2 u1 � h1 tan

2 α1 sin
2 u1 � h1 tan

2 α1

(B.48)
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For the cone 2, with the frame transform matrix, the parameter equation is:

~P2 �

$&%
x2 � h2 tanα2 cosu2 sinβ �∆h

y2 � h2 tanα2 sinu2 �∆h� d

z2 � h2 cosβ �∆h� h2 tanα2 cosu2 cosβ h2 ¥ 0

(B.49)

The derivatives respect to ph2, u2q, the result are:

B ~P2

Bh2
�

$&%
tanα2 cosu2 sinβ

tanα2 sinu2
cosβ � tanα2 cosu2 cosβ

(B.50)

B ~P2

Bu2
�

$&%
�h2 tanα2 sinu2 sinβ

h2 tanα2 cosu2
�h2 tanα2 sinu2 cosβ

(B.51)

So, there is:

B ~P2

Bh2
�
B ~P2

Bu2

�

$'''''''&'''''''%

�h2 tan2 α2 sin
2 u2 cosβ � h2 tanα2 cosu2pcosβ � tanα2 cosu2 cosβq

h2 tan
2 α2 sinu2 cosu2 sinβ cosβ�

h2 tanα2 sinu2 sinβpcosβ � tanα2 cosu2 cosβq

h2 sinβ tan2 α2 cos
2 u2 � h2 sinβ tan2 α2 sin

2 u2 � h2 sinβ tan2 α2

(B.52)

�

$&%
�h2ptan2 α2 cosβ � tanα2 cosu2 cosβq � �h2 tanα2 cosβptanα2 � cosu2q
h2 tanα2 sinβ cosβpsinu2 � 2 tanα2 sinu2 cosu2q
h2 tan

2 α2 sinβ

The tangent condition makes the cross product between the normals coming from

two faces equal to ~0:
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�
B ~P1

Bh1
�
B ~P1

Bu1

�
�

�
B ~P2

Bh2
�
B ~P2

Bu2

�
(B.53)

�

$&%
�h1 tanα1 cosu1
h1 tanα1 sinu1
h1 tan

2 α1

�

$'''''''&'''''''%

�h2 tanα2 cosβptanα2 � cosu2q

h2 tanα2 sinβ cosβ

psinu2 � 2 tanα2 sinu2 cosu2q

h2 tan
2 α2 sinβ

(B.54)

�

$'''''''''''&'''''''''''%

h1 tanα1 sinu1h2 tan
2 α2 sinβ�

h1 tan
2 α1h2 tanα2 sinβ cosβpsinu2 � 2 tanα2 sinu2 cosu2q

h1 tanα1 cosu1h2 tan
2 α2 sinβ�

h1 tan
2 α1h2 tanα2 cosβptanα2 � cosu2q

�h1 tanα1 cosu1h2 tanα2 sinβ cosβpsinu2 � 2 tanα2 sinu2 cosu2q�
h1 tanα1 sinu1h2 tanα2 cosβptanα2 � cosu2q

� ~0

3 equations are generated:

p1q tanα2 sinu1 � tanα1 cosβpsinu2 � 2 tanα2 sinu2 cosu2q � 0 (B.55)

p2q tanα2 sinβ cosu1 � tanα1 cosβptanα2 � cosu2q � 0 (B.56)

p3q � sinβ cosu1psinu2 � 2 tanα2 sinu2 cosu2q � sinu1ptanα2 � cosu2q � 0 (B.57)

The Equation B.57 is not independent. The Equation B.55 and B.56 can be

transformed as follows:

p1q sinu1 �
tanα1

tanα2

cosβpsinu2 � 2 tanα2 sinu2 cosu2q (B.58)

p2q sinβ cosu1 � �
tanα1

tanα2

cosβptanα2 � cosu2q (B.59)

Equation B.58 is combined with Equation B.59:

tanu1 � � sinβ
sinu2 � 2 tanα2 sinu2 cosu2

tanα2 � cosu2
(B.60)

� �Apu2q (B.61)

It is a result independent with ph1, h2q represented by the parameter Apu2q.
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Because on the tangent condition, the tangent point is on both surfaces. So there

is a common result between parameters pu1, h1q and pu2, h2q. From the z1 � z2 of

Equations B.45 and B.49, it comes:

h1 � h2 cosβp1� tanα2 cosu2q �∆h (B.62)

Then x1 � x2 which is in the Equation B.60 and B.67 is substituted by the

Equation B.62:

h2 tanα1 cosu1 cosβp1� tanα2 cosu2q �∆h tanα1 cosu1 (B.63)

� h2 tanα2 cosu2 sinβ �∆h

h2 rtanα1 cosu1 cosβp1� tanα2 cosu2q � tanα2 cosu2 sinβs (B.64)

� ∆hp1� tanα1 cosu1q

h2 �
∆hp1� tanα1 cosu1q

rtanα1 cosu1 cosβp1� tanα2 cosu2q � tanα2 cosu2 sinβs
(B.65)

Put h1 in Equation B.62 and h2 in Equation B.65 into y, here is:�
∆hp1� tanα1 cosu1q cosβp1� tanα2 cosu2q

tanα1 cosu1 cosβp1� tanα2 cosu2q � tanα2 cosu2 sinβ
�∆h

�
tanα1 sinu1

�
∆hp1� tanα1 cosu1q tanα2 sinu2

tanα1 cosu1 cosβp1� tanα2 cosu2q � tanα2 cosu2 sinβ
�∆h� d (B.66)

On the other hand, y1 � y2 substituted by x1 � x2, here is:

tanu1 �
h2 tanα2 sinu2 �∆h� d

h2 tanα2 cosu2 sinβ �∆h
� Bph2,u2q (B.67)

Combine the Equation B.60 and B.67, the result is:

h2 tanα2 sinu2 �∆h� d � �Aph2 tanα2 cosu2 sinβ �∆hq (B.68)

h2 tanα2 psinu2 �A cosu2 sinβq � �A∆h�∆h� d (B.69)

h2 � �
Ap1�∆hq � d

tanα2psinu2 �A cosu2 sinβq
(B.70)

� �Cpu2q

Transform the Equation B.67, here is:

let : t � tan
u1

2

tanu1 �
2t

1� t
� Bph2,u2q (B.71)
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So:

Bph2,u2qt
2 � 2t�Bph2,u2q � 0 (B.72)

t �
�2� 2

b
1�B2

ph2,u2q

2Bph2,u2q

�
�1�

b
1�B2

ph2,u2q

Bph2,u2q
(B.73)

From x1 � x2 of the Equation B.45 and B.49, here is:

h1 tanα1 cosu1 � h2 tanα2 cosu2 sinβ �∆h (B.74)

Replacing h1 by the Equation B.62, and using t to represent cosu1, the result is:

rh2 cosβ p1� tanα2 cosu2q �∆hs tanα1

�
1� t2

1� t2



� h2 tanα2 cosu2 sinβ �∆h

(B.75)

Here t is represented by Bph2,u2q. Then replacing h2 by Cpu2q represented in the

Equation B.70, the Equation B.75 has only one unknown u2. It is a non linear equa-

tion. So, it needs numerical processing.

B.4 Cone and torus, torus and torus

The intersection analysis between pCo, Toq and pTo, Toq are similar with the previ-

ous works, such as the analysis of pCy, Toq or pCo, Toq. Finally, the result are equation
systems of high order which needs special mathematical method, such as numerical

analysis, to give the solution. The purpose of these combinatorial analyses is to get

the type of the loop without vertex and to reduce the number of candidate symmetry

planes to process during the LS-CSP generation process. There is no need to spend

much more time on solving non-linear equations. Consequently, the configurations

which can give loop type directly are discussed in the chapter 5. The analysis of the

other configurations are listed in this appendix. But within the symmetry analysis

algorithm, when generating the LS-CSP, it shows that the configurations listed here

may not supersede the combinatorial process where loops are processed combinato-

rially. A more detailed analysis would be needed to evaluate the efficiency of each

approach.
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More examples and statistic

The purpose of this appendix is to illustrate the behavior of the algorithm as

implemented using the OpenCascade software library through a larger of example

shapes and to evaluate the correlation with the complexity analysis performed in

the main part of the manuscript. This appendix addresses also the behavior of the

algorithm with respect to accuracy issues.

First of all, let us go through the range of test models used for the performance

evaluation of the algorithm. Figures C.2, C.3, C.4 describe the shape of each test

model and its corresponding identifier that will be used in the performance charts to

identify each model.

As a parameter to characterize the complexity of a model, the sum of faces, edges

and vertices is used throughout this performance analysis. This is consistent with the

complexity analysis conducted at each step of the algorithm since faces, edges and

vertices of the B-Rep model input where the essentially parameters of these analyses.

However, using the sum of these parameters assumes that the time required for each

elementary operation applied to either of these entities is nearly identical. This simili-

tude has been observed precisely because of the variability of each configuration where

the operations are conducted. The description of the detailed content of each operator

does not show large differences of elementary operations between them, which is a first

justification of the chosen assumption.

Figure C.1 shows the number of Face+Edge+Vertex of the different models. Their

variation in complexity is a compromise between their symmetry properties and their

functional meaning as components of digital mock-ups of industrial products. Fig-

ure C.5 and Table C.1 show the relationship between the total elements number and

the total time cost of the symmetry analysis, i.e. determining global as well as local

symmetries. Under the above assumptions, it shows that except the models M04,

M16 and M28, generally, the time cost is evolving rather linearly. Regarding these

three models, they all look similar but they aren’t. M16 distinguishes from the others

in the facts that it contains a face bounded by 14 loops, which can generate a fair

amount of LS-CSPs, and the processing time is based on a basic and purely combi-

natorial implementation of the LS-CSPs generation. Additionally, all three models

contain faces with loops containing a large amount of edges. The version of the al-

gorithm scanning all the edges of a face during the first level propagation, it has a

significant impact over the efficiency of this subset of the algorithm.
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Figure C.1: The total number of Face+Edge+Vertex per test model Mxx.

Figures C.6, C.7, C.8 and Tables C.2, C.3, C.4 give the statistics about the time

cost for different algorithm steps and their plots with respect to an increasing model

complexity. By analyzing the different processes, the time cost of the 1st level prop-

agation process is not linear. Models M04, M16 and M28, which are variants of one

original model, cost more time than the others and don’t follow the linear time evolu-

tion. Reasons explaining these differences have been stated previously. A complemen-

tary aspect amplifying this behavior can also originates from a common hypothesis of

complexity analysis: the data access is assumed to be to constant and identical for all

faces, edges and vertices. Indeed, the current implementation of the algorithm uses

multimaps in order to simplify the development and maintenance compared to the use

of pointers. However, this data access is no longer constant and can be comparable

in amount to the operators of boundary preparation or first level propagation, which

can have a significant influence on the corresponding task time.
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��� ��� ���

��� ��� ���

��	 ��A ��B

��� ��� ���

Figure C.2: The list of example models in the statistics. Subsection 1.
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��� ��� ���

��� ��� ���

��	 �AB �A�

�AA �A� �A�

Figure C.3: The list of example models in the statistics. Subsection 2.
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��� ��� ���

��� ��� ��	

Figure C.4: The list of example models in the statistics. Subsection 3.
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Figure C.5: The statistic of the total time cost with respect to the number of

Face+Edge+Vertex, i.e. the model complexity.
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Table C.1: The data used in Figure C.5, the total number of Face+Edge+Vertex and

the total processing time for each model.

Figure C.6: The statistics of the CSPs generation step and its corresponding processing

time.
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Table C.2: The data of Figure C.6: the number of maximal Edge+Vertex and the

processing time of CSPs generation.

Figure C.7: The statistics of the 1st propagation process time with respect to the

number of CSP chains generated.
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Table C.3: The data of Figure C.7, the relationship between the number of CSP chains

and 1st level propagation processing time.

Figure C.8: The statistics of the 2nd propagation time with respect to the number of

faces covered.
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Table C.4: The data of Figure C.8, the number of face covered and the 2nd propagation

process time.

��� ��� ���

Figure C.9: The shape comparison of the different piston representations.



275

Table C.5: The data corresponding to tests with the different piston representations.
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Now, the purpose is to illustrate the behavior of the algorithm with respect to

the accuracy of the input model. Throughout the performance tests performed, the

accuracy parameter used in the algorithm is a distance of 0.001mm, which similar to

the accuracy used in CATIA V5 to connect surface patches or perform other similar

operations.

To this end, figure C.9 and Table C.5 highlight the comparison between different

representations of the same object: a piston. As a smooth B-Rep model, M01 has

less elements than models M29 and M30 that are faceted representations of the same

object (see Table C.5). M01 has 2 symmetry planes. M29 is a faceted model of

M01 that has been generated with a common mesh generator. As a result, the mesh

topology and its vertices distribution are no longer precisely symmetric and the global

symmetry planes are lost. M30 is also a faceted model of M01. This mesh has been

generated by a mirror operation applied to one quarter of the faceted piston. So, it

is symmetric with a high accuracy: the distance accuracy is of the order 10�8mm for

single precision arithmetic. Thus, the result gives 2 symmetry planes. This behavior

shows that if the location of vertices in a faceted model is not monitored within

the accuracy of the algorithm, symmetry properties will be lost between the smooth

representation and the faceted one. Consequently, a very highly dense mesh would be

necessary to obtain the same symmetry properties as the initial smooth model, which

could not be processed interactively.

Benefiting from this example, however, it can be observed that the algorithm

scales well with respect to the model complexity because the faceted models have

been processed like smooth ones while their complexity reaches over 20 000 entities.

Also, perturbing the location of one arbitrary vertex of the symmetrically faceted

model with a displacement of 0.001mm shows that the 2 symmetry planes are no

longer found. Again, this test confirms the fact that the symmetry properties can be

analyzed at the level of accuracy of the modeling kernel.
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Shape Analysis of B-Rep CAD Models to Extract Partial and Global
Symmetries

Ke LI

Abstract

Symmetry properties of objects described as B-Rep CAD models are analyzed locally as well

as globally through an approach of type divide-and-conquer. The boundary of the object is

defined using canonical surfaces frequently used when shaping mechanical components. Then,

the first phase consists in generating maximal faces and edges that are independent from the

object modelling process but that preserve its symmetry properties. These faces and edges

form infinite sets of points that are processed globally. The second phase is the division one

that creates candidate symmetry planes and axes attached to the previous maximal edges

and faces. Finally, comes the propagation step of these candidate symmetry planes and axes

forming the conquer phase that determines the local as well as the global symmetries of the

object while characterizing its asymmetric areas.

Key words

Shape analysis, CAD, B-Rep model, Partial and global symmetry detection, Hypergraphs,

Divide-Conquer process.
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Analyse de forme des modèles B-Rep CAO pour extraire des
symétries partielles et globales

Ke LI

Résumé

Les propriétés de symétrie d’un objet représenté sous la forme d’un modèle B-Rep CAO sont

analysées localement et globalement à travers une approche de type diviser pour conquérir. La

surface frontière de l’objet est décrite à partir de surfaces canoniques fréquemment utilisées

dans les formes de composants mécaniques. La première phase de l’analyse consiste en la

génération de faces et d’arêtes maximales indépendantes du processus de modélisation de

l’objet mais préservant ses propriétés de symétrie. Ces faces et arêtes constituent des ensembles

infinis de points traités globalement. La seconde phase est l’étape de division consistant en la

création de plan et axes de symétrie de candidats pour les faces et arêtes maximales générées

précédemment. Enfin, suit l’étape de propagation de ces plans et axes de symétrie représentant

la phase de conquête et déterminant les propriétés de symétrie locales et globales de l’objet

et caractérisant ses zones non-symétriques.

Mots clés

Analyse de forme, CAO, modèle de B-Rep, Détection de symétrie partielle et globale, Diviser-

conquérir processus.


