]. A. Références1, S. S. Payen, G. A. Chu, and . Jeffrey, Comptes Rendus de l'Académie des Sciences, Acta Crystallographica Section B, vol.24, pp.830-838, 1052.

]. A. Viswanathan and S. G. Shenouda, The helical structure of cellulose I, Journal of Applied Polymer Science, vol.15, issue.3, pp.519-535, 1971.
DOI : 10.1002/app.1971.070150302

C. Ververis, K. Georghiou, N. Christodoulakis, P. Santas, and R. Santas, Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production, Industrial Crops and Products, vol.19, issue.3, pp.245-254, 2004.
DOI : 10.1016/j.indcrop.2003.10.006

]. Y. Nishiyama, J. Sugiyama, H. Chanzy, and P. Langan, from Synchrotron X-ray and Neutron Fiber Diffraction, Journal of the American Chemical Society, vol.125, issue.47, pp.14300-14306, 2003.
DOI : 10.1021/ja037055w

URL : https://hal.archives-ouvertes.fr/hal-00307326

]. R. Atalla and D. L. Vanderhart, Native Cellulose: A Composite of Two Distinct Crystalline Forms, Science, vol.223, issue.4633, pp.283-285, 1984.
DOI : 10.1126/science.223.4633.283

R. H. Atalla and D. L. Vanderhart, The role of solid state NMR spectroscopy in studies of the nature of native celluloses, Solid State Nuclear Magnetic Resonance, vol.15, issue.1, pp.1-19, 1999.
DOI : 10.1016/S0926-2040(99)00042-9

]. A. Sarko and R. Muggli, Packing Analysis of Carbohydrates and Polysaccharides. III. Valonia Cellulose and Cellulose II, Macromolecules, vol.7, issue.4, pp.486-494, 1974.
DOI : 10.1021/ma60040a016

L. M. Kroon-batenburg, B. Bouma, and J. Kroon, Stability of Cellulose Structures Studied by MD Simulations. Could Mercerized Cellulose II Be Parallel?, Macromolecules, vol.29, issue.17, pp.5695-5699, 1996.
DOI : 10.1021/ma9518058

L. Y. Yatsu, T. A. Calamari, and R. R. Benerito, Conversion of Cellulose I to Stable Cellulose III, Textile Research Journal, vol.56, issue.7, pp.419-424, 1986.
DOI : 10.1177/004051758605600704

]. M. Wada, H. Chanzy, Y. Nishiyama, and P. Langan, Crystal Structure and Hydrogen Bonding by Synchrotron X-ray and Neutron Fiber Diffraction, Macromolecules, vol.37, issue.23, pp.8548-8555, 2004.
DOI : 10.1021/ma0485585

URL : https://hal.archives-ouvertes.fr/hal-00306764

Y. P. Zhang and L. R. Lynd, Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems, Biotechnology and Bioengineering, vol.144, issue.93, pp.797-824, 2004.
DOI : 10.1002/bit.20282

]. G. Schmid, M. Biselli, and C. Wandrey, Preparation of cellodextrins and isolation of oligomeric side components and their characterization, Analytical Biochemistry, vol.175, issue.2, pp.573-583, 1988.
DOI : 10.1016/0003-2697(88)90586-6

]. A. Pereira, M. Mobedshahi, M. R. Ladisch, S. T. Willis, and . Wood, Preparation of cellodextrins, Methods in Enzymology, vol.160, pp.26-38, 1988.
DOI : 10.1016/0076-6879(88)60104-2

C. F. Cross and E. J. Bevan, LXXI.???Hydrocellulose, J. Chem. Soc., Trans., vol.85, issue.0, pp.691-693, 1904.
DOI : 10.1039/CT9048500691

A. T. Serkov, Prerequisites for developing a high-productivity machine for the manufacture of viscose textile fibre, Fibre Chemistry, vol.14, issue.9, pp.274-281, 1981.
DOI : 10.1007/BF00549107

]. A. Huebner, M. R. Ladisch, and G. T. Tsao, Preparation of cellodextrins: An engineering approach, Biotechnology and Bioengineering, vol.28, issue.10, pp.1669-1677, 1978.
DOI : 10.1002/bit.260201013

]. K. Gessler, N. Krauss, T. Steiner, C. Betzel, A. Sarko et al., .beta.-D-Cellotetraose Hemihydrate as a Structural Model for Cellulose II. An X-ray Diffraction Study, Journal of the American Chemical Society, vol.117, issue.46, pp.11397-11406, 1995.
DOI : 10.1021/ja00151a003

M. R. Bedford and G. G. Partridge, Enzymes in farm animal nutrition, Biotechnology Advances, vol.18, pp.355-383, 2000.

C. Hsu, G. T. Gong, and . Tsao, Kinetic studies of cellodextrins hydrolyses by exocellulase fromTrichoderma reesei, Biotechnology and Bioengineering, vol.128, issue.11, pp.2305-2320, 1980.
DOI : 10.1002/bit.260221108

M. K. Bhat, A. J. Hay, M. Claeyssens, and T. M. Wood, H-labelled, reduced and chromogenic cello-oligosaccharides, Biochemical Journal, vol.266, issue.2, pp.371-378, 1990.
DOI : 10.1042/bj2660371

M. Dashtban, M. Maki, K. T. Leung, C. Mao, and W. Qin, Cellulase activities in biomass conversion: measurement methods and comparison, Critical Reviews in Biotechnology, vol.581, issue.4, pp.302-309, 2010.
DOI : 10.1016/0165-022X(88)90040-1

]. S. Armand, S. Drouillard, M. Schülein, B. Henrissat, and H. Driguez, A Bifunctionalized Fluorogenic Tetrasaccharide as a Substrate to Study Cellulases, Journal of Biological Chemistry, vol.272, issue.5, pp.2709-2713, 1997.
DOI : 10.1074/jbc.272.5.2709

URL : https://hal.archives-ouvertes.fr/hal-00309899

V. Boyer, S. Fort, T. P. Frandsen, M. Schülein, S. Cottaz et al., Chemoenzymatic Synthesis of a Bifunctionalized Cellohexaoside as a Specific Substrate for the Sensitive Assay of Cellulase by Fluorescence Quenching, Chemistry - A European Journal, vol.57, issue.6, pp.1389-1394, 2002.
DOI : 10.1002/1521-3765(20020315)8:6<1389::AID-CHEM1389>3.0.CO;2-#

E. Kombrink, I. E. Somssich, J. A. Callow, J. H. Andrews, and I. C. Tommerup, Defense Responses of Plants to Pathogens, Advances in Botanical Research, vol.21, pp.1-34, 1995.
DOI : 10.1016/S0065-2296(08)60007-5

T. Boller, Chemoperception of Microbial Signals in Plant Cells, Annual Review of Plant Physiology and Plant Molecular Biology, vol.46, issue.1, pp.189-214, 1995.
DOI : 10.1146/annurev.pp.46.060195.001201

R. A. Dixon, M. J. Harrison, and C. J. Lamb, Early Events in the Activation of Plant Defense Responses, Annual Review of Phytopathology, vol.32, issue.1, pp.479-501, 1994.
DOI : 10.1146/annurev.py.32.090194.002403

]. A. Aziz, A. Gauthier, A. Bézier, B. Poinssot, J. Joubert et al., Elicitor and resistance-inducing activities of ??-1,4 cellodextrins in grapevine, comparison with ??-1,3 glucans and ??-1,4 oligogalacturonides, Journal of Experimental Botany, vol.58, issue.6, pp.1463-1472, 2007.
DOI : 10.1093/jxb/erm008

URL : https://hal.archives-ouvertes.fr/hal-00305575

]. O. Klarzynski, B. Plesse, J. Joubert, J. Yvin, M. Kopp et al., Linear ??-1,3 Glucans Are Elicitors of Defense Responses in Tobacco, Plant Physiology, vol.124, issue.3, pp.1027-1038, 2000.
DOI : 10.1104/pp.124.3.1027

]. A. Schlumbaum, F. Mauch, U. Vogeli, and T. Boller, Plant chitinases are potent inhibitors of fungal growth, Nature, vol.43, issue.6095, pp.365-367, 1986.
DOI : 10.1038/324365a0

]. A. Aziz, A. Heyraud, and B. Lambert, Oligogalacturonide signal transduction, induction of defense-related responses and protection of grapevine against Botrytis cinerea, Planta, vol.218, issue.5, pp.767-774, 2004.
DOI : 10.1007/s00425-003-1153-x

URL : https://hal.archives-ouvertes.fr/hal-00306782

]. A. Margeot, B. R. Hahn-hagerdal, M. Edlund, R. Slade, and F. , New improvements for lignocellulosic ethanol, Current Opinion in Biotechnology, vol.20, issue.3, pp.372-380, 2009.
DOI : 10.1016/j.copbio.2009.05.009

J. M. Galazka, C. Tian, W. T. Beeson, B. Martinez, N. L. Glass et al., Cellodextrin Transport in Yeast for Improved Biofuel Production, Science, vol.330, issue.6000, pp.84-86, 2010.
DOI : 10.1126/science.1192838

H. J. Flint, E. A. Bayer, M. T. Rincon, R. Lamed, and B. A. White, Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis, Nature Reviews Microbiology, vol.307, issue.2, pp.121-131, 2008.
DOI : 10.1038/nrmicro1817

R. Gokarn, M. Eiteman, S. Martin, and K. Eriksson, Production of succinate from glucose, cellobiose, and various cellulosic materials by the ruminai anaerobic bacteriaFibrobacter succinogenes andRuminococcus flavefaciens, Applied Biochemistry and Biotechnology, vol.76, issue.52, pp.69-80, 1997.
DOI : 10.1007/BF02785981

J. H. Cummings and G. T. Macfarlane, Role of intestinal bacteria in nutrient metabolism, Clinical Nutrition, vol.16, issue.1, pp.3-11, 1997.
DOI : 10.1016/S0261-5614(97)80252-X

K. Swennen, C. M. Courtin, and J. A. Delcour, Non-digestible Oligosaccharides with Prebiotic Properties, Critical Reviews in Food Science and Nutrition, vol.95, issue.5, pp.459-471, 2006.
DOI : 10.1080/10408390500215746

]. K. Pokusaeva, M. O. Connell-motherway, A. Zomer, J. Macsharry, G. F. Fitzgerald et al., Cellodextrin Utilization by Bifidobacterium breve UCC2003, Applied and Environmental Microbiology, vol.77, issue.5, pp.1681-1690, 2010.
DOI : 10.1128/AEM.01786-10

]. S. Nakamura, T. Oku, and M. Ichinose, Bioavailability of cellobiose by tolerance test and breath hydrogen excretion in humans, Nutrition, vol.20, issue.11-12, pp.979-983, 2004.
DOI : 10.1016/j.nut.2004.08.005

M. Satouchi, T. Watanabe, S. Wakabayashi, K. Ohokuma, T. Koshijima et al., Digestibility, Absorptivity and Physiological Effects of Cellooligosaccharides in Human and Rat., Nippon Eiyo Shokuryo Gakkaishi, vol.49, issue.3, pp.143-148, 1996.
DOI : 10.4327/jsnfs.49.143

D. Klemm, B. Heublein, H. Fink, and A. Bohn, Cellulose: Fascinating Biopolymer and Sustainable Raw Material, Angewandte Chemie International Edition, vol.34, issue.55, pp.3358-3393, 2005.
DOI : 10.1002/anie.200460587

G. L. Miller, J. Dean, and R. Blum, A study of methods for preparing oligosaccharides from cellulose, Archives of Biochemistry and Biophysics, vol.91, issue.1, pp.21-26, 1960.
DOI : 10.1016/0003-9861(60)90448-3

M. Voloch, M. R. Ladisch, M. Cantarella, and G. T. Tsao, Preparation of cellodextrins using sulfuric acid, Biotechnology and Bioengineering, vol.199, issue.5, pp.557-559, 1984.
DOI : 10.1002/bit.260260525

]. F. Camacho, P. González-tello, E. Jurado, and A. Robles, Microcrystalline-Cellulose Hydrolysis with Concentrated Sulphuric Acid, Journal of Chemical Technology & Biotechnology, vol.67, issue.4, pp.350-356, 1996.
DOI : 10.1002/(SICI)1097-4660(199612)67:4<350::AID-JCTB564>3.0.CO;2-9

Y. P. Zhang and L. R. Lynd, Cellodextrin preparation by mixed-acid hydrolysis and chromatographic separation, Analytical Biochemistry, vol.322, issue.2, pp.225-232, 2003.
DOI : 10.1016/j.ab.2003.07.021

E. E. Dickey and M. L. Wolfrom, A Polymer-homologous Series of Sugar Acetates from the Acetolysis of Cellulose, Journal of the American Chemical Society, vol.71, issue.3, pp.825-828, 1949.
DOI : 10.1021/ja01171a017

D. Yamaguchi, M. Kitano, S. Suganuma, K. Nakajima, H. Kato et al., Hydrolysis of Cellulose by a Solid Acid Catalyst under Optimal Reaction Conditions, The Journal of Physical Chemistry C, vol.113, issue.8, pp.3181-3188, 2009.
DOI : 10.1021/jp808676d

A. A. Kiss, A. C. Dimian, and G. Rothenberg, Advanced Synthesis & Catalysis, pp.75-81, 2006.

]. M. Zabeti, W. M. Daud, and M. K. Aroua, Activity of solid catalysts for biodiesel production: A review, Fuel Processing Technology, vol.90, issue.6, pp.770-777, 2009.
DOI : 10.1016/j.fuproc.2009.03.010

Y. Li, R. Ruan, P. L. Chen, Z. Liu, X. Pan et al., ENZYMATIC HYDROLYSIS OF CORN STOVER PRETREATED BY COMBINED DILUTE ALKALINE TREATMENT AND HOMOGENIZATION, Transactions of the ASAE, vol.47, issue.3, pp.821-825, 2004.
DOI : 10.13031/2013.16078

]. C. Krishnan, L. D. Sousa, M. Jin, L. Chang, B. E. Dale et al., Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol, Biotechnology and Bioengineering, vol.98, issue.86, pp.441-450, 2010.
DOI : 10.1002/bit.22824

J. M. Lee, H. Jameel, and R. A. Venditti, A comparison of the autohydrolysis and ammonia fiber explosion (AFEX) pretreatments on the subsequent enzymatic hydrolysis of coastal Bermuda grass, Bioresource Technology, vol.101, issue.14, pp.5449-5458, 2010.
DOI : 10.1016/j.biortech.2010.02.055

C. Divne, J. Ståhlberg, T. T. Teeri, and T. A. Jones, High-resolution crystal structures reveal how a cellulose chain is bound in the 50 ?? long tunnel of cellobiohydrolase I from Trichoderma reesei, Journal of Molecular Biology, vol.275, issue.2, pp.309-325, 1998.
DOI : 10.1006/jmbi.1997.1437

]. B. Henrissat, H. Driguez, C. Viet, and M. Schulein, Synergism of Cellulases from Trichoderma reesei in the Degradation of Cellulose, Bio/Technology, vol.26, issue.8, pp.722-726, 1985.
DOI : 10.1038/nbt0885-722

URL : https://hal.archives-ouvertes.fr/hal-00309711

A. V. Gusakov, Alternatives to Trichoderma reesei in biofuel production, Trends in Biotechnology, vol.29, issue.9, pp.419-425, 2011.
DOI : 10.1016/j.tibtech.2011.04.004

D. C. Irwin, M. Spezio, L. P. Walker, and D. B. Wilson, Activity studies of eight purified cellulases: Specificity, synergism, and binding domain effects, Biotechnology and Bioengineering, vol.255, issue.8, pp.1002-1013, 1993.
DOI : 10.1002/bit.260420811

]. D. Ciolacu, S. Gorgieva, D. Tampu, and V. , Enzymatic hydrolysis of different allomorphic forms of microcrystalline cellulose, Cellulose, vol.88, issue.7, pp.1527-1541, 2011.
DOI : 10.1007/s10570-011-9601-4

L. T. Fan, Y. Lee, and D. H. Beardmore, Mechanism of the enzymatic hydrolysis of cellulose: Effects of major structural features of cellulose on enzymatic hydrolysis, Biotechnology and Bioengineering, vol.136, issue.1, pp.177-199, 1980.
DOI : 10.1002/bit.260220113

P. Kumar, D. M. Barrett, M. J. Delwiche, and P. Stroeve, Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production, Industrial & Engineering Chemistry Research, vol.48, issue.8, pp.3713-3729, 2009.
DOI : 10.1021/ie801542g

W. R. Grous, A. O. Converse, and H. E. Grethlein, Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar, Enzyme and Microbial Technology, vol.8, issue.5, pp.274-280, 1986.
DOI : 10.1016/0141-0229(86)90021-9

J. Weil, A. Sarikaya, S. Rau, J. Goetz, C. Ladisch et al., Pretreatment of yellow poplar sawdust by pressure cooking in water, Applied Biochemistry and Biotechnology, vol.34, issue.35, pp.21-40, 1997.
DOI : 10.1007/BF02785978

H. M. Zheng, G. T. Lin, and . Tsao, Pretreatment for Cellulose Hydrolysis by Carbon Dioxide Explosion, Biotechnology Progress, vol.14, issue.6, pp.890-896, 1998.
DOI : 10.1021/bp980087g

M. Taherzadeh and K. Karimi, Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review, International Journal of Molecular Sciences, vol.9, issue.9, pp.1621-1651, 2008.
DOI : 10.3390/ijms9091621

]. C. Park, Y. Ryu, and C. Kim, Kinetics and rate of enzymatic hydrolysis of cellulose in supercritical carbon dioxide, Korean Journal of Chemical Engineering, vol.18, issue.4, pp.475-478, 2001.
DOI : 10.1007/BF02698293

G. T. Zheng and . Tsao, Avicel hydrolysis by cellulase enzyme in supercritical CO2, Biotechnology Letters, vol.17, issue.4, pp.451-454, 1996.
DOI : 10.1007/BF00143469

]. G. Muratov and C. Kim, Enzymatic hydrolysis of cotton fibers in supercritical CO2, Biotechnology and Bioprocess Engineering, vol.7, issue.2, pp.85-88, 2002.
DOI : 10.1007/BF02935884

D. D. Patel and J. Lee, Applications of ionic liquids, The Chemical Record, vol.101, issue.3, pp.329-355, 2012.
DOI : 10.1002/tcr.201100036

N. V. Plechkova and K. R. Seddon, Applications of ionic liquids in the chemical industry, Chem. Soc. Rev., vol.447, issue.19, pp.123-150, 2008.
DOI : 10.1039/B006677J

R. P. Swatloski, S. K. Spear, J. D. Holbrey, and R. D. Rogers, Dissolution of Cellose with Ionic Liquids, Journal of the American Chemical Society, vol.124, issue.18, pp.4974-4975, 2002.
DOI : 10.1021/ja025790m

]. H. Wang, G. Gurau, and R. D. Rogers, Ionic liquid processing of cellulose, Chemical Society Reviews, vol.5, issue.4, pp.1519-1537, 2012.
DOI : 10.4061/2011/787532

H. T. Tan and K. T. Lee, Understanding the impact of ionic liquid pretreatment on biomass and enzymatic hydrolysis, Chemical Engineering Journal, vol.183, pp.448-458, 2012.
DOI : 10.1016/j.cej.2011.12.086

J. Wu, J. Zhang, H. Zhang, J. He, Q. Ren et al., Homogeneous Acetylation of Cellulose in a New Ionic Liquid, Biomacromolecules, vol.5, issue.2, pp.266-268, 2004.
DOI : 10.1021/bm034398d

H. Zhao, C. L. Jones, G. A. Baker, S. Xia, O. Olubajo et al., Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis, Journal of Biotechnology, vol.139, issue.1, pp.47-54, 2009.
DOI : 10.1016/j.jbiotec.2008.08.009

A. P. Dadi, S. Varanasi, and C. A. Schall, Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step, Biotechnology and Bioengineering, vol.7, issue.229, pp.904-910, 2006.
DOI : 10.1002/bit.21047

]. C. Li and Z. K. Zhao, Advanced Synthesis & Catalysis, pp.1847-1850, 2007.

R. Rinaldi, R. Palkovits, and F. Schüth, Depolymerization of Cellulose Using Solid Catalysts in Ionic Liquids, Angewandte Chemie International Edition, vol.56, issue.42, pp.8047-8050, 2008.
DOI : 10.1002/anie.200802879

]. F. Tao, H. Song, and L. Chou, Hydrolysis of Cellulose by Using Catalytic Amounts of FeCl2 in Ionic Liquids, ChemSusChem, vol.947, issue.11, pp.1298-1303, 2010.
DOI : 10.1002/cssc.201000184

O. Kanie, Y. Ito, and T. Ogawa, Orthogonal Glycosylation Strategy in Oligosaccharide Synthesis, Journal of the American Chemical Society, vol.116, issue.26, pp.12073-12074, 1994.
DOI : 10.1021/ja00105a066

B. L. Cantarel, P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard et al., The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics, Nucleic Acids Research, vol.37, issue.Database, pp.233-238, 2009.
DOI : 10.1093/nar/gkn663

]. E. Samain, C. Lancelon-pin, F. Férigo, V. Moreau, H. Chanzy et al., Phosphorolytic synthesis of cellodextrins, Carbohydrate Research, vol.271, issue.2, pp.217-226, 1995.
DOI : 10.1016/0008-6215(95)00022-L

URL : https://hal.archives-ouvertes.fr/hal-00310759

J. Seibel, H. Jördening, and K. Buchholz, Glycosylation with activated sugars using glycosyltransferases and transglycosidases, Biocatalysis and Biotransformation, vol.70, issue.2, pp.311-342, 2006.
DOI : 10.1105/tpc.105.035055

L. L. Lairson, B. Henrissat, G. J. Davies, and S. G. Withers, Glycosyltransferases: Structures, Functions, and Mechanisms, Annual Review of Biochemistry, vol.77, issue.1, pp.521-555, 2008.
DOI : 10.1146/annurev.biochem.76.061005.092322

C. Unverzagt, H. Kunz, and J. C. Paulson, High-efficiency synthesis of sialyloligosaccharides and sialoglycopeptides, Journal of the American Chemical Society, vol.112, issue.25, pp.9308-9309, 1990.
DOI : 10.1021/ja00181a037

]. M. Ichikawa, R. L. Schnaar, and Y. Ichikawa, Application of sucrose phosphorylase reaction in one-pot enzymatic galactosylation: Scavenger of phosphate and generation of glucose 1-phosphate in situ, Tetrahedron Letters, vol.36, issue.48, pp.8731-8732, 1995.
DOI : 10.1016/0040-4039(95)01896-P

]. D. Koshland, STEREOCHEMISTRY AND THE MECHANISM OF ENZYMATIC REACTIONS, Biological Reviews, vol.190, issue.4, pp.416-436, 1953.
DOI : 10.1021/ja01153a012

J. D. Mccarter and G. S. Withers, Mechanisms of enzymatic glycoside hydrolysis, Current Opinion in Structural Biology, vol.4, issue.6, pp.885-892, 1994.
DOI : 10.1016/0959-440X(94)90271-2

L. Wang and W. Huang, Enzymatic transglycosylation for glycoconjugate synthesis, Current Opinion in Chemical Biology, vol.13, issue.5-6, pp.592-600, 2009.
DOI : 10.1016/j.cbpa.2009.08.014

]. S. Kobayashi, Challenge of synthetic cellulose, Journal of Polymer Science Part A: Polymer Chemistry, vol.4, issue.4, pp.693-710, 2005.
DOI : 10.1002/pola.20662

]. S. Kobayashi, K. Kashiwa, T. Kawasaki, and S. Shoda, Novel method for polysaccharide synthesis using an enzyme: the first in vitro synthesis of cellulose via a nonbiosynthetic path utilizing cellulase as catalyst, Journal of the American Chemical Society, vol.113, issue.8, pp.3079-3084, 1991.
DOI : 10.1021/ja00008a042

L. F. Mackenzie, Q. Wang, R. A. Warren, and S. G. Withers, Glycosynthases:?? Mutant Glycosidases for Oligosaccharide Synthesis, Journal of the American Chemical Society, vol.120, issue.22, pp.5583-5584, 1998.
DOI : 10.1021/ja980833d

C. Mayer, D. L. Jakeman, M. Mah, G. Karjala, L. Gal et al., Directed evolution of new glycosynthases from Agrobacterium ??-glucosidase: a general screen to detect enzymes for oligosaccharide synthesis, Chemistry & Biology, vol.8, issue.5, pp.437-443, 2001.
DOI : 10.1016/S1074-5521(01)00022-9

C. Mayer, D. L. Zechel, S. P. Reid, R. A. Warren, and S. G. Withers, sp. ??-glucosidase is a greatly improved glycosynthase, FEBS Letters, vol.9, issue.1, pp.40-44, 2000.
DOI : 10.1016/S0014-5793(99)01751-2

M. Moracci, A. Trincone, and M. Rossi, Glycosynthases: new enzymes for oligosaccharide synthesis, Journal of Molecular Catalysis B: Enzymatic, vol.11, issue.4-6, pp.155-163, 2001.
DOI : 10.1016/S1381-1177(00)00084-9

]. Q. Wang, R. W. Graham, D. Trimbur, R. A. Warren, and S. G. Withers, Changing Enzymic Reaction Mechanisms by Mutagenesis: Conversion of a Retaining Glucosidase to an Inverting Enzyme, Journal of the American Chemical Society, vol.116, issue.25, pp.11594-11595, 1994.
DOI : 10.1021/ja00104a060

]. S. Fort, L. Christiansen, M. Schülein, S. Cottaz, and H. Driguez, Stepwise synthesis of cellodextrins assisted by a mutant cellulase, Israel Journal of Chemistry, vol.39, issue.3-4, pp.217-221, 2000.
DOI : 10.1560/5NCY-L9K2-JND4-MB6Q

URL : https://hal.archives-ouvertes.fr/hal-00309599

]. O. Nashiru, D. L. Zechel, D. Stoll, T. Mohammadzadeh, R. A. Warren et al., ??-Mannosynthase: Synthesis of??-Mannosides with a Mutant??-Mannosidase, Angewandte Chemie International Edition, vol.73, issue.2, pp.417-420, 2001.
DOI : 10.1002/1521-3773(20010119)40:2<417::AID-ANIE417>3.0.CO;2-V

M. B. Turner, S. K. Spear, J. G. Huddleston, J. D. Holbrey, and R. D. Rogers, Ionic liquid salt-induced inactivation and unfolding of cellulase from Trichoderma reesei, Green Chemistry, vol.5, issue.4, pp.443-447, 2003.
DOI : 10.1039/b302570e

Z. Zhang, W. Wang, X. Liu, Q. Wang, W. Li et al., Kinetic study of acid-catalyzed cellulose hydrolysis in 1-butyl-3-methylimidazolium chloride, Bioresource Technology, vol.112, pp.151-155, 2012.
DOI : 10.1016/j.biortech.2012.02.071

]. T. Welton, Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis, Chemical Reviews, vol.99, issue.8, pp.2071-2084, 1999.
DOI : 10.1021/cr980032t

M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, Colorimetric Method for Determination of Sugars and Related Substances, Analytical Chemistry, vol.28, issue.3, pp.350-356, 1956.
DOI : 10.1021/ac60111a017

]. S. Kongruang, M. J. Han, C. I. Breton, M. H. Gil, and . Penner, Quantitative Analysis of Cellulose-Reducing Ends, Applied Biochemistry and Biotechnology, vol.113, issue.1-3, pp.213-231, 2004.
DOI : 10.1385/ABAB:113:1-3:213

Y. H. Zhang and L. R. Lynd, Determination of the Number-Average Degree of Polymerization of Cellodextrins and Cellulose with Application to Enzymatic Hydrolysis, Biomacromolecules, vol.6, issue.3, pp.1510-1515, 2005.
DOI : 10.1021/bm049235j

]. S. Waffenschmidt and L. Jaenicke, Assay of reducing sugars in the nanomole range with 2,2???-bicinchoninate, Analytical Biochemistry, vol.165, issue.2, pp.337-340, 1987.
DOI : 10.1016/0003-2697(87)90278-8

]. H. Pala, M. Mota, and F. M. Gama, Enzymatic depolymerisation of cellulose, Carbohydrate Polymers, vol.68, issue.1, pp.101-108, 2007.
DOI : 10.1016/j.carbpol.2006.07.015

]. K. Gessler, N. Krauss, T. Steiner, C. Betzel, A. Sarko et al., .beta.-D-Cellotetraose Hemihydrate as a Structural Model for Cellulose II. An X-ray Diffraction Study, Journal of the American Chemical Society, vol.117, issue.46, pp.11397-11406, 1995.
DOI : 10.1021/ja00151a003

W. J. Alexander and R. L. Mitchell, Rapid Measurement of Cellulose Viscosity by Nitration Methods, Analytical Chemistry, vol.21, issue.12, pp.1497-1500, 1949.
DOI : 10.1021/ac60036a018

]. W. Aehle, Enzymes in Industry: Production and Applications, 2007.

J. Karlsson, M. Siika-aho, M. Tenkanen, and F. Tjerneld, Enzymatic properties of the low molecular mass endoglucanases Cel12A (EG III) and Cel45A (EG V) of Trichoderma reesei, Journal of Biotechnology, vol.99, issue.1, pp.63-78, 2002.
DOI : 10.1016/S0168-1656(02)00156-6

]. M. Gruno, P. Väljamäe, G. Pettersson, and G. Johansson, cellulases by cellobiose is strongly dependent on the nature of the substrate, Biotechnology and Bioengineering, vol.66, issue.5, pp.503-511, 2004.
DOI : 10.1002/bit.10838

P. Ilankovan, S. Hein, C. Ng, T. S. Trung, and W. F. Stevens, Production of N-acetyl chitobiose from various chitin substrates using commercial enzymes, Carbohydrate Polymers, vol.63, issue.2, pp.245-250, 2006.
DOI : 10.1016/j.carbpol.2005.08.060

]. J. Puls, S. Wilson, and D. Hölter, Degradation of Cellulose Acetate-Based Materials: A Review, Journal of Polymers and the Environment, vol.335, issue.2, pp.152-165, 2011.
DOI : 10.1007/s10924-010-0258-0

S. Lee, C. Altaner, J. Puls, and B. Saake, Determination of the substituent distribution along cellulose acetate chains as revealed by enzymatic and chemical methods, Carbohydrate Polymers, vol.54, issue.3, pp.353-362, 2003.
DOI : 10.1016/S0144-8617(03)00189-9

M. G. Wirick, Journal of Polymer Science Part A-1: Polymer Chemistry, pp.1965-1974, 1968.

W. G. Glasser, B. K. Mccartney, and G. Samaranayake, Cellulose derivatives with a low degree of substitution. 3. The biodegradability of cellulose esters using a simple enzyme assay, Biotechnology Progress, vol.10, issue.2, pp.214-219, 1994.
DOI : 10.1021/bp00026a011

T. Miyamoto, Y. Sato, T. Shibata, M. Tanahashi, and H. Inagaki, 13C-NMR spectral studies on the distribution of substituents in water-soluble cellulose acetate, Journal of Polymer Science: Polymer Chemistry Edition, vol.23, issue.5, pp.1373-1381, 1985.
DOI : 10.1002/pol.1985.170230511

K. D. Weaver, H. J. Kim, J. Sun, D. R. Macfarlane, and G. D. Elliott, Cyto-toxicity and biocompatibility of a family of choline phosphate ionic liquids designed for pharmaceutical applications, Green Chemistry, vol.37, issue.3, pp.507-513, 2010.
DOI : 10.1039/b918726j

V. Moreau, J. Viladot, E. Samain, A. Planas, and H. Driguez, Bioorganic &amp, Medicinal Chemistry, vol.4, pp.1849-1855, 1996.

K. G. Raghothama, PHOSPHATE ACQUISITION, Annual Review of Plant Physiology and Plant Molecular Biology, vol.50, issue.1, pp.665-693, 1999.
DOI : 10.1146/annurev.arplant.50.1.665

P. Lerouge, P. Roche, C. Faucher, F. Maillet, G. Truchet et al., Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal, Nature, vol.344, issue.6268, pp.781-784, 1990.
DOI : 10.1038/344781a0

F. Maillet, V. Poinsot, O. Andre, V. Puech-pages, A. Haouy et al., Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza, Nature, vol.64, issue.7328, pp.58-63, 2011.
DOI : 10.1038/nature09622

URL : https://hal.archives-ouvertes.fr/hal-00577122

]. B. Bago, P. E. Pfeffer, and Y. Shachar-hill, Carbon Metabolism and Transport in Arbuscular Mycorrhizas, Plant Physiology, vol.124, issue.3, pp.949-958, 2000.
DOI : 10.1104/pp.124.3.949

]. J. Sprent, Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation, New Phytologist, vol.167, issue.1, pp.11-25, 2007.
DOI : 10.1111/j.1469-8137.2007.02015.x

M. Parniske, Arbuscular mycorrhiza: the mother of plant root endosymbioses, Nature Reviews Microbiology, vol.13, issue.10, pp.763-775, 2008.
DOI : 10.1046/j.1469-8137.2002.00424.x

]. J. Downie, The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots, FEMS Microbiology Reviews, vol.34, issue.2, pp.150-170, 2009.
DOI : 10.1111/j.1574-6976.2009.00205.x

X. Perret, C. Staehelin, and W. J. Broughton, Molecular Basis of Symbiotic Promiscuity, Microbiology and Molecular Biology Reviews, vol.64, issue.1, pp.180-201, 2000.
DOI : 10.1128/MMBR.64.1.180-201.2000

J. V. Cullimore, R. Ranjeva, and J. Bono, Perception of lipo-chitooligosaccharidic Nod factors in legumes, Trends in Plant Science, vol.6, issue.1, pp.24-30, 2001.
DOI : 10.1016/S1360-1385(00)01810-0

]. W. D-'haeze and M. Holsters, Nod factor structures, responses, and perception during initiation of nodule development, Glycobiology, vol.12, issue.6, pp.79-105, 2002.
DOI : 10.1093/glycob/12.6.79R

C. Masson-boivin, E. Giraud, X. Perret, and J. Batut, Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes?, Trends in Microbiology, vol.17, issue.10, pp.458-466, 2009.
DOI : 10.1016/j.tim.2009.07.004

G. E. Oldroyd and J. A. Downie, Coordinating Nodule Morphogenesis with Rhizobial Infection in Legumes, Annual Review of Plant Biology, vol.59, issue.1, pp.519-546, 2008.
DOI : 10.1146/annurev.arplant.59.032607.092839

G. E. Oldroyd, J. D. Murray, P. S. Poole, and J. A. Downie, The Rules of Engagement in the Legume-Rhizobial Symbiosis, Annual Review of Genetics, vol.45, issue.1, pp.119-144, 2011.
DOI : 10.1146/annurev-genet-110410-132549

M. Chabaud, A. Genre, B. J. Sieberer, A. Faccio, J. Fournier et al., Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca2+ spiking in the legume and nonlegume root epidermis, New Phytologist, vol.172, issue.1, pp.347-355, 2011.
DOI : 10.1111/j.1469-8137.2010.03464.x

]. C. Gough and J. Cullimore, Lipo-chitooligosaccharide Signaling in Endosymbiotic Plant-Microbe Interactions, Molecular Plant-Microbe Interactions, vol.24, issue.8, pp.867-878, 2011.
DOI : 10.1094/MPMI-01-11-0019

H. H. Felle, É. Kondorosi, Á. Kondorosi, and M. Schultze, Nod signal-induced plasma membrane potential changes in alfalfa root hairs are differentially sensitive to structural modifications of the lipochitooligosaccharide, The Plant Journal, vol.7, issue.6, pp.939-947, 1995.
DOI : 10.1046/j.1365-313X.1995.07060939.x

B. B. Aam, E. B. Heggset, A. L. Norberg, M. Sørlie, K. M. Vårum et al., Production of Chitooligosaccharides and Their Potential Applications in Medicine, Marine Drugs, vol.8, issue.5, pp.1482-1517, 2010.
DOI : 10.3390/md8051482

C. Bosso, J. Defaye, A. Domard, A. Gadelle, and C. Pedersen, The behavior of chitin towards anhydrous hydrogen fluoride. Preparation of ??-(1???4)-linked 2-acetamido-2-deoxy-d-glucopyranosyl oligosaccharides, Carbohydrate Research, vol.156, pp.57-68, 1986.
DOI : 10.1016/S0008-6215(00)90099-5

]. J. Rupley, The hydrolysis of chitin by concentrated hydrochloric acid, and the preparation of low-molecular-weight substrate for lysozyme, Biochimica et Biophysica Acta (BBA) - Specialized Section on Mucoproteins and Mucopolysaccharides, vol.83, issue.3, pp.245-255, 1964.
DOI : 10.1016/0926-6526(64)90001-1

]. K. Nicolaou, N. J. Bockovich, D. R. Carcanague, C. W. Hummel, and L. F. Even, Total synthesis of the NodRm-IV factors, the rhizobium nodulation signals, Journal of the American Chemical Society, vol.114, issue.22, pp.8701-8702, 1992.
DOI : 10.1021/ja00048a054

]. S. Koizumi, Large-scale Production of Oligosaccharides Using Bacterial Functions, Trends in Glycoscience and Glycotechnology, vol.15, issue.82, pp.65-74, 2003.
DOI : 10.4052/tigg.15.65

E. Samain, S. Drouillard, A. Heyraud, H. Driguez, and R. A. Geremia, Gram-scale synthesis of recombinant chitooligosaccharides in Escherichia coli, Carbohydrate Research, vol.302, issue.1-2, pp.35-42, 1997.
DOI : 10.1016/S0008-6215(97)00107-9

URL : https://hal.archives-ouvertes.fr/hal-00309884

]. E. Samain, V. Chazalet, and R. A. Geremia, Production of O-acetylated and sulfated chitooligosaccharides by recombinant Escherichia coli strains harboring different combinations of nod genes, Journal of Biotechnology, vol.72, issue.1-2, pp.33-47, 1999.
DOI : 10.1016/S0168-1656(99)00048-6

URL : https://hal.archives-ouvertes.fr/hal-00309795

]. N. Grenouillat, B. Vauzeilles, J. Bono, E. Samain, and J. Beau, Simple Synthesis of Nodulation-Factor Analogues Exhibiting High Affinity towards a Specific Binding Protein, Angewandte Chemie International Edition, vol.43, issue.35, pp.4644-4646, 2004.
DOI : 10.1002/anie.200460275

URL : https://hal.archives-ouvertes.fr/hal-00306784

M. Bec-ferté, H. B. Krishnan, A. Savagnac, S. G. Pueppke, and J. C. Promé, synthesizes an array of lipooligosaccharides, including a novel compound with glucose inserted into the backbone of the molecule, FEBS Letters, vol.58, issue.2-3, pp.273-279, 1996.
DOI : 10.1016/0014-5793(96)00903-9

]. I. Robina, S. G?mez-bujedo, J. G. Fernández-bolaños, J. Fuentes, and H. P. Spaink, Synthesis and biological evaluation of oligosaccharides related to the molecule signals in plant defence and the Rhizobium-legume symbiosis, Tetrahedron, vol.58, issue.3, pp.521-530, 2002.
DOI : 10.1016/S0040-4020(01)01148-6

]. I. Robina, E. L?pez-barba, J. Jiménez-barbero, M. Martín-pastor, and J. Fuentes, Synthesis and conformational analysis of a lipotetrasaccharide related to the nodulation factor of Rhizobium bacteria, Tetrahedron: Asymmetry, vol.8, issue.8, pp.1207-1224, 1997.
DOI : 10.1016/S0957-4166(97)00108-0

J. J. Esseling, F. G. Lhuissier, and A. M. Emons, Nod Factor-Induced Root Hair Curling: Continuous Polar Growth towards the Point of Nod Factor Application, PLANT PHYSIOLOGY, vol.132, issue.4, pp.1982-1988, 2003.
DOI : 10.1104/pp.103.021634

]. N. Shibuya and E. Minami, Oligosaccharide signalling for defence responses in plant, Physiological and Molecular Plant Pathology, vol.59, issue.5, pp.223-233, 2001.
DOI : 10.1006/pmpp.2001.0364

J. E. Barnett, W. T. Jarvis, and K. A. Munday, The hydrolysis of glycosyl fluorides by glycosidases, Biochemical Journal, vol.105, issue.2, pp.669-672, 1967.
DOI : 10.1042/bj1050669

S. J. Williams and S. G. Withers, Glycosyl fluorides in enzymatic reactions, Carbohydrate Research, vol.327, issue.1-2, pp.27-46, 2000.
DOI : 10.1016/S0008-6215(00)00041-0

R. Fauré, M. Saura-valls, H. Brumer, A. Planas, S. Cottaz et al., -Transglycosylase, The Journal of Organic Chemistry, vol.71, issue.14, pp.5151-5161, 2006.
DOI : 10.1021/jo0525682

URL : https://hal.archives-ouvertes.fr/hal-01157189

]. G. Blatter, J. Beau, and J. Jacquinet, The use of 2-deoxy-2-trichloroacetamido-d-glucopyranose derivatives in syntheses of oligosaccharides, Carbohydrate Research, vol.260, issue.2, pp.189-202, 1994.
DOI : 10.1016/0008-6215(94)84038-5

]. U. Ellervik and G. Magnusson, Glycosylation with N-Troc-protected glycosyl donors, Carbohydrate Research, vol.280, issue.2, pp.251-260, 1996.
DOI : 10.1016/0008-6215(95)00318-5

M. N. Kamat, C. De-meo, and A. V. Demchenko, -Benzoxazolyl as a Stable Protecting Moiety and a Potent Anomeric Leaving Group in Oligosaccharide Synthesis, The Journal of Organic Chemistry, vol.72, issue.18, pp.6947-6955, 2007.
DOI : 10.1021/jo071191s

URL : https://hal.archives-ouvertes.fr/hal-00577277

A. F. Bongat, M. N. Kamat, and A. V. Demchenko, Chemoselective Synthesis of Oligosaccharides of 2-Deoxy-2-aminosugars, The Journal of Organic Chemistry, vol.72, issue.4, pp.1480-1483, 2007.
DOI : 10.1021/jo062171d

W. Dullenkopf, J. C. Castro-palomino, L. Manzoni, and R. R. Schmidt, N-Trichloroethoxycarbonyl-glucosamine derivatives as glycosyl donors, Carbohydrate Research, vol.296, issue.1-4, pp.135-147, 1996.
DOI : 10.1016/S0008-6215(96)00237-6

A. L. Fink and G. W. Hay, The enzymic deacylation of esterified mono- and di-saccharides. IV. The products of esterase-catalyzed deacetylations, Canadian Journal of Biochemistry, vol.47, issue.3, pp.353-359, 1969.
DOI : 10.1139/o69-053

O. Kirk, M. W. Christensen, F. Beck, and T. Damhus, Lipase-Catalyzed Regioselective Acylation and Deacylation of Glucose Derivatives, Biocatalysis and Biotransformation, vol.29, issue.2, pp.91-97, 1995.
DOI : 10.3109/10242429508998155

M. Niemietz, L. Perkams, J. Hoffman, S. Eller, and C. Unverzagt, Selective oxidative debenzylation of mono- and oligosaccharides in the presence of azides, Chemical Communications, vol.14, issue.37, pp.10485-10487, 2011.
DOI : 10.1039/c1cc13884g

L. D. Hall and J. F. Manville, -hexopyranosyl fluoride, Canadian Journal of Chemistry, vol.45, issue.11, pp.1299-1303, 1967.
DOI : 10.1139/v67-214

URL : https://hal.archives-ouvertes.fr/hal-00309584

G. Zemplén and E. Pacsu, Berichte der deutschen chemischen Gesellschaft (A and B Series), pp.1613-1614, 1929.

]. K. Bock, C. Pedersen, and H. Pedersen, Carbon-13 Nuclear Magnetic Resonance Data for Oligosaccharides, Carbon-13 Nuclear Magnetic Resonance Data for Oligosaccharides, pp.193-225, 1984.
DOI : 10.1016/S0065-2318(08)60125-0

]. S. Singh, J. Packwood, C. J. Samuel, P. Critchley, and D. H. Crout, Glycosidase-catalysed oligosaccharide synthesis: preparation of N-acetylchitooligosaccharides using the ??-N-acetylhexosaminidase of Aspergillus oryzae, Carbohydrate Research, vol.279, pp.293-305, 1995.
DOI : 10.1016/0008-6215(95)00302-9

]. T. Yasukochi, C. Inaba, K. Fukase, and S. Kusumoto, Nitropyridyl glycosides: new glycosyl donors for enzymatic transglycosylation, Tetrahedron Letters, vol.40, issue.36, pp.6585-6589, 1999.
DOI : 10.1016/S0040-4039(99)01279-4

]. B. Masschalck and C. W. Michiels, Antimicrobial Properties of Lysozyme in Relation to Foodborne Vegetative Bacteria, Critical Reviews in Microbiology, vol.29, issue.3, pp.191-214, 2003.
DOI : 10.1080/713610448

U. R. Zehavi, J. J. Pollock, V. I. Teichberg, and N. Sharon, Oligosaccharides containing Glucose as Substrates for Hen's Egg White Lysozyme, Nature, vol.104, issue.5159, pp.1152-1154, 1968.
DOI : 10.1021/ja01000a044

]. K. Akiyama, K. Kawazu, and A. Kobayashi, A novel method for chemo-enzymatic synthesis of elicitor-active chitosan oligomers and partially N-deacetylated chitin oligomers using N-acylated chitotrioses as substrates in a lysozyme-catalyzed transglycosylation reaction system, Carbohydrate Research, vol.279, pp.151-160, 1995.
DOI : 10.1016/0008-6215(95)00288-X

Y. Matahira, K. Ohno, M. Kawaguchi, H. Kawagishi, and T. Usui, N-Acetylglucosaminyl Disaccharide and Trisaccharide Formation Through Lysozyme-Catalyzed Transfer Reaction, Journal of Carbohydrate Chemistry, vol.369, issue.2, pp.213-225, 1995.
DOI : 10.1080/07328308808058904

J. L. Frahn, J. A. Edgar, A. J. Jones, P. A. Cockrum, N. A. Anderton et al., ) pastures, Australian Journal of Chemistry, vol.37, issue.1, pp.165-182, 1984.
DOI : 10.1071/CH9840165

]. E. Valeur and M. Bradley, Amide bond formation: beyond the myth of coupling reagents, Chem. Soc. Rev., vol.61, issue.2, pp.606-631, 2009.
DOI : 10.1039/B701677H

C. A. Montalbetti and V. Falque, Amide bond formation and peptide coupling, Tetrahedron, vol.61, issue.46, pp.10827-10852, 2005.
DOI : 10.1016/j.tet.2005.08.031

]. M. Kunishima, C. Kawachi, K. Hioki, K. Terao, and S. Tani, Formation of carboxamides by direct condensation of carboxylic acids and amines in alcohols using a new alcohol- and water-soluble condensing agent: DMT-MM, Tetrahedron, vol.57, issue.8, pp.1551-1558, 2001.
DOI : 10.1016/S0040-4020(00)01137-6

S. A. Raw, An improved process for the synthesis of DMTMM-based coupling reagents, Tetrahedron Letters, vol.50, issue.8, pp.946-948, 2009.
DOI : 10.1016/j.tetlet.2008.12.047

R. Albert, K. Dax, A. E. Stütz, and H. Weidmann, Acetyl Migration in Partially Acetylated D-Glucopyrano-Sides and Acylamidohexopyranosides, Journal of Carbohydrate Chemistry, vol.1974, issue.3, pp.279-292, 1983.
DOI : 10.1080/07328308308057874