Chemistry and deposition of mineral aerosol over the Southern oceanic area

Study on Kerguelen and Crozet Islands

Alexie Heimburger Thesis defense

Scientific context

CO₂ level in the atmosphere since 400 000 years

Years before today

CO₂ level in the atmosphere since 400 000 years

Scientific context	Issues	Methods	Results
--------------------	--------	---------	---------

CO₂ level in the atmosphere since 400 000 years

Carbon cycle

Oceanic CO₂ biological pump

Oceanic CO₂ biological pump

106 CO₂ + 77 H₂O + 16 HNO₃ + H₃PO₄ + 1/2 H₂SO₄

 $C_{106}H_{174}O_{49}N_{16}P$, $S_{0,5} + 147 O_2$

Jacques, 2006

Sunlight

Photosynthesis

Redfield ratio: C:N:P (106:16:1) Redfield, 1963

Proportionnal uptake of :

 $CO_2 = C_{inorganic}$

Nitrogen

Phosphorous

Micronutrients

by phytoplankton.

Scientific context

lssues

Methods

Oceanic fluxes

Oceanic CO₂ biological pump

Scientific context	lssues	Methods	Results

The Southern Ocean: HNLC area

[Phytoplankton pigment] (Chlorophyll; mg.m⁻³)

VASA/GSFC

The Southern Ocean: HNLC area

[Phytoplankton pigment] (Chlorophyll; mg.m⁻³)

The Southern Ocean: HNLC area

Oceanic fluxes

Micronutrient supplies

Just cycle

Atmospheric deposition to the open ocean

Low atmospheric deposition flux over the Southern Ocean

Scientific context

WWW.Dust sources in the South Hemisphere

WWW.Dust sources in the South Hemisphere

SeaWiFS image ; Edwards et al., 2006

Dust sources in the South Hemisphere

SeaWiFS image ; Edwards et al., 2006

Dust sources in the South Hemisphere

SeaWiFS image ; Edwards et al., 2006

Dust sources in the South Hemisphere

WWW.Dust sources in the South Hemisphere

What we know?

Atmospheric deposition is not well known over the Southern Ocean

What we know?

Atmospheric deposition is not well known over the Southern Ocean

Very low atmospheric concentrations: measurements are very difficult to performed, adapted ultra clean work conditions are essential!

Atmospheric deposition is not well known over the Southern Ocean

1. Only two studies based on observations available in literature before this work

→ Planquette et al. (2007) and Wagener et al. (2008): sporadic offshore atmospheric measurements (aerosols, rainwater)

deposition fluxes (dust, iron, dissolved iron)

Atmospheric deposition is not well known over the Southern Ocean

 1. Only two studies based on observations available in literature before this work
Planquette et al. (2007) and Wagener et al. (2008): sporadic offshore atmospheric measurements (aerosols, rainwater)
deposition fluxes (dust, iron, dissolved iron)

2. Models need to be contrained and/or validated by atmospheric measurements over the Southern Ocean (deposition, chemical composition, solubility, dust sources)

1. What is the atmospheric deposition flux of dust derived micronutrients that reaches the remote Southern Indian Ocean?

2. What is its chemical composition?

3. What are its different sources?

4. What is its bioavailable part for phytoplankton?

Issues

Methods

ssues

//////Strategy///

Long term observations on atmospheric deposition over the South Indian Ocean

Scientific context	lssues	Methods	Results

SCI	ont	con	tovt
JU	CIII	COLL	ιελι

Issues

Methods

FLATOCOA

« FLux Atmosphérique d'Origine Continentale sur l'Océan Austral »

Crozet Kerguelen Islands

Trace metal measurements on a continious basis

Two-year sampling (end of 2008 - end of 2010)

Scientific context

Issues

Methods

Sampling sites

Crozet

Kerguelen

Methods
Material preparation

Under ISO1 laminar flow bench in ISO5 clean room

Air quality on Kerguelen Islands: ISO4 (analog)

Concentration (particle.m⁻³)

		_		-	-	-
Class	0,1 μ	0,2 μ	0,3 μ	0,5 μ	1μ	5μ
ISO 1	10	2	0	0	0	0
ISO 4	10000	10000	1020	352	83	0

Total atmospheric deposition sampling

Duplicat systems (A, B)

Monthly or bi-monthly sampling

Scientific context

Issues

M€

37 analyzed and validated elements

	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
Г	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Scientific context

Methods

Analytical validation

Accuracy on very low trace metal concentrations

Scientific context	Issues	Methods	Results

Experimental validation

Quantities in field blanks <10% of the ones in samples

Experimental validation

lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Da	11	Mn	Du	Δm	Cm	RL	Cf	Fe	Em	Md	No
AC		га	0	H	гu		GIII	DR		LS	1 1 1 1	IVIG	UVI
[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Scientific context

Aerosol sampling

At «Jacky» only (Kerguelen) Filtration on Téflon[®] filters 2 m from ground level

Same sampling time than atmospheric deposition

Analyzed using X ray fluorescence spectrometry (Al, Na)

Scientific context

Issues

Methods

Rainwater sampling (event basis)

On Kerguelen base «PAF»

Direct filtration on PC filters: separation of the both soluble and insoluble fractions during the sampling

16 collected rains

Digestion using H₂O₂ and HF/HNO₃ (insoluble)

Analyses using HR-ICP-MS (soluble and insoluble)

Scientific context

Issues

Methods

7 analyzed and validated elements in 5 rains

cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
90	91	92	93	94	95	96	97	98	99	100	101	102
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Fs	Fm	Md	No
222.04	221.04	220.02	19971	19.4.41	[2.4.2]	[247]	19.471	125.41	12521	12571	12501	rapat
	cerium 58 Ce 140.12 thorium 90 Th 232.04	certum praseodymium 58 59 Ce Pr 140.12 140.91 thorium 90 90 91 Th Paa 232.04 231.04	Decium praseodymium neodymium 58 59 60 Ce Pr Nd 140.12 140.91 144.24 thorium protactinium uranium 90 91 92 Th Paa U 232.04 231.04 238.03	cerium praseodymium neodymium promethium formethium formethium	certum praseedymium neodymium promethium samarlum 58 59 60 61 62 Ce Pr N.d. Pm Sm 140.12 140.91 144.24 [145] 150.36 thorium protactinium uranium neptunium plutonium 90 91 92 93 94 Th Paa U Npp Puu 232.04 231.04 238.03 [237] [234]	cerium praseodymium neodymium promethium samarium europium 58 59 60 61 62 63 Ce Pr Nd Pm Sm Eu 140.12 140.91 144.24 [145] 150.36 151.96 thorium protactinium uranium neptunium plutonium americium 90 91 92 93 94 95 Th Pa U Np Pu Am 232.04 231.04 238.03 [237] [244] [243]	cerium praseodymium neodymium promethium samarium europium gadolinium 58 59 60 61 62 europium 63 64 Ce Pr Nd Pm Sm Eu Gd Gd 140.12 140.91 144.24 [145] 150.36 151.96 157.25 thorium protactinium uranium neptunium plutonium americium curium 90 91 92 93 94 95 96 Th Paa U Np Pu Am Cm 232.04 231.04 238.03 [237] [244] [244] [243] [247]	Deckum praseedymium neodymium promethium samarium europium gadolinium terbium 58 59 60 61 62 63 64 65 Ce Pr Nd Pm Sm Eu Gd Tb 140.12 140.91 144.24 [145] 150.36 151.96 157.25 158.93 thorium protactinium uranium neptunium plutonium americium curium berkelium. 90 91 92 93 94 95 96 97 Th Pa U Np Pu Am Cm Bk 232.04 231.04 238.03 [237] [234] [243] [247] [247]	certum praseodymium neodymium promethium samarium europium gadolinium terbium dysprosium 58 59 60 61 62 63 63 64 65 66 Ce Pr Nd Pm Sm Eu 63 64 65 Dy 140.12 140.91 144.24 [145] 150.36 151.96 157.25 158.93 162.50 thorium protactinium uranium neptunium plutonium americium curium berkelium californium 90 91 92 93 94 95 96 97 98 Th Pa U Np Pu Am Cm Bk Cf 232.04 231.04 238.03 [237] [244] [243] [247] [247] [251]	certurn praseedymium neodymium promethium samarium europium gadolinium terbium dysprosium holmium 58 59 60 61 62 63 64 65 dysprosium holmium 60 Pr Nd Pm Sm Eu 63 64 7b Dy Ho 140.12 140.91 144.24 [145] 150.36 151.96 157.25 158.93 162.50 164.93 thorium protactinium uranium neptunium plutonium americium curium berkelium californium einsteinium 90 91 92 Np Puu Am Cm Bk Cf Ess 732.04 231.04 238.03 [237] [234] [243] [243] [247] [247] [247] [251] [251]	certim praseodymium neodymium promethium samarium europium gadolinium terbium dysprosium holmium erbium 63 Gd Tb dysprosium holmium erbium 68 Gd Tb Gd A67 A68 Europium 63 Gd Tb Dysprosium holmium 67 68 Europium 63 Gd Tb Dysprosium holmium 67 68 Europium 64 65 Gd Tb Dysprosium holmium 68 140.12 140.91 144.24 [145] 150.36 151.96 157.25 158.93 162.50 164.93 167.26 thorium potactinium uranium neptunium plutonium americium curium berkelium californium einsteinium 167.26 Th PA U Np Pu A6 Cm Bk Cf Bs Fermium 100 Th PA U	certurn praseedymium neodymium promethium samarium europium gadolinium terbium dysprosium holmium erbium following 58 59 60 61 62 63 64 65 66 67 68 69 Ce Pr Nd Pm Sm Eu 64 75 165 76 67 68 69 140.12 140.91 144.24 [145] 150.36 151.96 157.25 158.93 162.50 164.93 167.26 168.93 thorium protactinium uranium neptunium plutonium americium curium berkelium californium einsteinium fermium mendelevium 90 91 92 93 94 95 96 97 98 99 100 101 Th Paa U Np Puu Am Cm Bk Cf Es Fm< Mdd <

1. What is the atmospheric deposition flux of dust derived micronutrients that reaches the remote Southern Indian Ocean?

2. What is its chemical composition?3. What are its different sources?

4. What is its bioavailable part for phytoplankton?

ssues

$F_{dust} = \frac{F_{AI}}{Abundance_{AI}}$

Scientific context	lssues	Methods	Results

$654 \pm 70 \,\mu g Dust.m^{-2}.d^{-1}$

Scientific context	lssues	Methods	Results

 $38 \pm 14 \ \mu g.m^{-2}.d^{-1}$ (Wagener et al., 2008) $654 \pm 70 \ \mu g.m^{-2}.d^{-1}$ (Heimburger et al., 2012) 51

Scientific context	lssues	Methods	Results

Total dust deposition flux in literature (1)

 $38 \pm 14 \ \mu g.m^{-2}.d^{-1}$ (Wagener et al., 2008) $654 \pm 70 \ \mu g.m^{-2}.d^{-1}$ (Heimburger et al., 2012) $F_{total} = direct measurements$

Indirect measurements of total deposition calculation:

$$F_{total} = F_{dry} + F_{wet}$$

 $F_{dry} = C_{aerosol} \cdot v_{dry deposition}$

 $F_{wet} = C_{aerosol}$. SR . rainfall

Total dust deposition flux in literature (1) **Observations** $38 \pm 14 \,\mu g.m^{-2}.d^{-1}$ $654 \pm 70 \ \mu g.m^{-2}.d^{-1}$ (Heimburger et al., 2012) -(Wagener et al., 2008) F_{total} = direct measurements Indirect measurements of total deposition calculation: $F_{total} = F_{dry} + F_{wet}$ $F_{wet} = C_{aerosol} \cdot SR \cdot rainfall$ $F_{dry} = C_{aerosol} \cdot V_{dry deposition}$

Total dust deposition flux in literature (1) Observations

 $38 \pm 14 \ \mu g.m^{-2}.d^{-1}$ (Wagener et al., 2008)

 $654 \pm 70 \ \mu g.m^{-2}.d^{-1}$ (Heimburger et al., 2012) $F_{total} = direct measurements$

Indirect measurements of total deposition calculation:

$$F_{total} = F_{dry} + F_{wet}$$

Scientific context	lssues	Methods	Results

Scientific context

Scientific context	lssues	Methods	Results

<u>Hypothesis</u>: aerosols scavenged by rain are in altitude and not at surface level

Scientific context	Issues	Methods	Results

Total dust deposition flux in literature (1)

Dust deposition is one order of magnitude higher than the one previously observed: atmospheric deposition is more important than expected for micronutrient supply in the South Indian Ocean

> Measurements of C_{aerosols} at surface level only do not allow atmospheric deposition flux to be well calculted over remote oceanic area

63

Simulated averaged dust deposition flux (g.m⁻².yr⁻¹)

64

Case study: the model does not reflect observed seasonality

1. What is the atmospheric deposition flux of dust derived micronutrients that reaches the remote Southern Indian Ocean?

2. What is its chemical composition?

3. What are its different sources?

4. What is its bioavailable part for phytoplankton?

ssues

Total deposition fluxes

	hydrogen 1																	initia con	^{helium} 2 He
8	1.0079 lithium 3	beryllium 4											62	boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	4.0026 neon 10
	6.941	Be												B	C	N	0	F	Ne
1	sodium 11	magnesium 12												aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
	Na 22.990	Mg 24,305												A 26.982	Si 28.086	P 30.974	S 32.065	CI 35.453	Ar 39.948
	potassium 19	calcium 20		scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
	17	0-		Co	100	1/	Cr	Min	Fo	Co	NI	CII	Zn	Ga	Go	Ac	80	Dr	Kr
	N	Ca		30		V		IAILI	ге	00		Cu	211	Ga	Ge	A5	Se	DI	
	39.098 rubidium	40.078 strontium		3C 44.956 yttrium	47.867 zirconium	50.942 niobium	51.996 molybdenum	54.938 technetium	55.845 ruthenium	58.933 rhodium	58.693 palladium	63,546 silver	65.39 cadmium	69.723 indium	72.61 tin	AS 74.922 antimony	3e 78.96 tellurium	DI 79.904 iodine	83.80 xenon
3	39.098 rubidium 37	40.078 strontium 38		44.956 yttrium 39	47.867 zirconium 40	50.942 niobium 41	51.996 molybdenum 42	54.938 technetium 43	55.845 ruthenium 44	58.933 rhodium 45	58.693 palladium 46	63.546 silver 47	65.39 cadmium 48	69.723 indium 49	72.61 tin 50	AS 74.922 antimony 51	78.96 tellurium 52	79.904 iodine 53	83.80 xenon 54
8	39.098 rubidium 37 Rb	40,078 strontium 38 Sr		30 44.956 yttrium 39 Y	47,867 zirconium 40 Zr	50.942 niobium 41 Nb	51.996 molybdenum 42 Mo	^{54,938} technetium 43 TC	55.845 ruthenium 44 Ru	58.933 rhodium 45 Rh	58.693 palladium 46 Pd	63.546 silver 47 Ag	65.39 cadmium 48 Cd	69.723 indium 49 In	50 50 50	74.922 antimony 51 Sb	5e 78.96 tellurium 52 Te	79.904 iodine 53	xenon 54 Xe
8	39,098 rubidium 37 Rb 85,468 caesium	40.078 strontium 38 Sr 87.62 barium		44.956 yttrium 39 Y 88.906	47.867 zirconium 40 Zr 91.224 bafnium	50.942 niobium 41 Nb 92.906 tantalum	51.996 molybdenum 42 Mo 95.94 tungsten	54.938 technetium 43 TC [98]	55.845 ruthenium 44 Ru 101.07 osmium	58.933 rhodium 45 Rh 102.91 iridium	58.693 palladium 46 Pd 106.42 platinum	63,546 silver 47 Ag 107.87 gold	65.39 cadmium 48 Cd 112.41 mercury	69.723 indium 49 In 114.82 thallium	72.61 tin 50 Sn 118.71	A3 74.922 antimony 51 Sb 121.76 bismuth	78.96 tellurium 52 Te 127.60	D 79.904 iodine 53 1 126.90 astatine	83.80 xenon 54 Xe 131.29 radon
8	39,098 rubidium 37 Rb 85,468 caesium 55	40.078 strontium 38 Sr 87.62 barium 56	57-70	39 yttrium 39 Y 88,906 lutetium 71	47.867 zirconium 40 Zr 91.224 hafnium 72	50.942 niobium 41 Nb 92.906 tantalum 73	51.996 molybdenum 42 Mo 95.94 tungsten 74	54.938 technetium 43 TC [98] rhenium 75	55.845 ruthenium 44 Ru 101.07 osmium 76	58.933 rhodium 45 Rh 102.91 iridium 77	58,693 palladium 46 Pd 106,42 platinum 78	63,546 silver 47 Ag 107.87 gold 79	65,39 cadmium 48 Cd 112,41 mercury 80	69.723 indium 49 In 114.82 thallium 81	72.61 tin 50 Sn 118.71 lead 82	A3 74,922 antimony 51 Sb 121,76 bismuth 83	78.96 tellurium 52 Te 127.60 polonium 84	DI 79.904 iodine 53 126.90 astatine 85	83.80 xenon 54 Xe 131.29 radon 86
3	x 39,098 rubidium 37 Rb 85,468 caesium 55 Cs	Ca 40,078 strontium 38 Sr 87,62 barium 56 Ba	57-70 X	44.956 yttrium 39 Y 88.906 Identium 71	47,867 Zirconium 40 Zr 91.224 hafnium 72 Hf	50.942 niobium 41 Nb 92.906 tantaium 73 Ta	51.996 molybdenum 42 Mo 95.94 tungsten 74 W	technetium 43 TC [98] rhenium 75 Re	55.845 ruthenium 44 Ru 101.07 osmium 76 OS	58,933 rhoclium 45 Rh 102.91 iridium 77 Ir	58.693 palladium 46 Pd 106.42 platinum 78 Pt	63,546 silver 47 Ag 107.87 gold 79 Au	cadmium 48 Cd 112.41 mercury 80 Hg	69,723 indium 49 In 114.82 thailium 81 TI	72.61 tin 50 Sn 118.71 lead 82 Pb	AS 74.922 antimony 51 Sb 121.76 bismuth 83 Bi	78.96 tellurium 52 Te 127.60 polonium 84 PO	79.904 Iodine 53 I 126.90 astatine 85 At	xenon 54 Xee 131.29 radon 86 Rn
	39,098 rubidium 37 Rb 85,468 caesium 55 CS 132,91 fragelum	40,078 strontium 38 Sr 87,62 barium 56 Baa 137,33 redium	57-70 X	44.956 yttrium 39 Y 88.906 iutetium 71 LUU 174.97	47.867 zirconium 40 Zr 91.224 hafnium 72 Hf 178.49	50.942 niobium 41 Nb 92.906 tantaium 73 Ta 180.95	51.996 molybdenum 42 Moo 95.94 tungsten 74 W 183.84 seebergium	54.938 technetium 43 TC 198 rhenium 75 Re 186.21 behrium	55.845 ruthenium 44 Ruu 101.07 osmium 76 OS 190.23 baseium	58,933 rhodium 45 Rh 102.91 iridium 77 Ir 192.22 moltacrium	58,693 palladium 46 Pd 106,42 platinum 78 Pt 195,08	63,546 silver 47 Ag 107.87 gold 79 Au 196.97	eadmium 48 Cd 112.41 mercury 80 Hg 200.59	69,723 indium 49 In 114.82 thallium 81 TI 204.38	72.61 tin 50 Sn 118.71 blad 82 Pb 207 2	AS 74 922 antimony 51 Sb 121.76 bismuth 83 Bi 208.98	78.96 tellurium 52 Te 127.60 polonium 84 PO [209]	79.904 iodine 53 126.90 astatine 85 At [210]	xenon 54 Xee 131.29 radon 86 Rn [222]
3	A 39,098 rubidium 37 Rb 85468 caesium 55 CS 132.91 francium 87	40.078 strontium 38 Sr 87.62 bartum 56 Baa 137.33 radium 88	57-70 ★ 89-102	44.956 yttrium 39 Y 88.906 Udetburn 71 LUU 174.97 lawrencium 103	47,867 zirconium 40 Zr 91,224 hafnium 72 Hff 178.49 rutherfordium 104	50.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95 dubnium 105	51.996 molybdenum 42 MO 95.94 tungsten 74 W 183.84 seaborgium 106	43 technetium 43 TC 98 rhenium 75 Re 186.21 bohrium 107	55.845 ruthenium 44 Ruu 101.07 osmium 76 OSS 190.23 hassium 108	58,933 rhoclium 45 Rh 102.91 iridium 77 Ir 192.22 meitnerium 109	58,693 palladium 46 Pd 106,42 platinum 78 Pt 195,08 ununnilium 110	63,546 silver 47 Ag 107,87 gold 79 Au 196,97 ununnim 111	65.39 cadmium 48 Cd 112.41 mercury 80 Hg 200.59 ununbium 112	69,723 indium 49 In 114.82 thallium 81 TI 204.38	72.61 tin 50 Sn 118.71 lead 82 Pb 207.2 ununquadium 114	AS 74 922 antimony 51 Sb 121.76 bismuth 83 Bi 208.98	78.96 tellurium 52 Te 127.60 polonium 84 Po [209]	79.904 iodine 53 126.90 astatine 85 At [210]	xenon 54 Xee 131.29 radon 86 Rn [222]
3	A 39,098 rubidium 37 Rb 85468 caesium 55 CS 132,91 francium 87 E	40.078 strontium 38 Sr 87.62 barium 56 Baa 137.33 radium 88 Do	57-70 ★ 89-102 ★ ★	44.956 yttrium 39 Y 88.906 Iutetium 71 LUU 174.97 Iawrencium 103	47.867 zirconium 40 Zr 91.224 hafnium 72 Hff 178.49 rutherfordium 104 Df	so.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95 dubnium 105 Db	st 996 molybdenum 42 Mo 95.94 tungsten 74 W 183.84 seaborgium 106	43 technetium 43 TC 198 rhenium 75 Re 186.21 bohrium 107 Bb	55.845 ruthenium 44 Ruu 101.07 osmium 76 OSS 190.23 hassium 108	58.933 rhcclium 45 Rh 102.91 iridium 77 Ir 192.22 meitnerium 109 M#	58.693 palladium 46 Pd 106.42 platinum 78 Pt 195.08 ununnilium 110	63,546 silver 47 Ag 107.87 gold 79 Au 196.97 unununium 111	est.39 cadmium 48 Cd 112.41 mercury 80 Hg 200.59 ununbium 112	69,723 indium 49 In 114.82 thallium 81 TI 204.38	72.61 tin 50 Sn 118.71 lead 82 Pb 207.2 ununquadium 114	A 922 antimony 51 Sb 121.76 bismuth 83 Bi 208.98	78.96 tellurium 52 Te 127.60 polonium 84 PO [209]	79.904 lodine 53 l 126.90 astatine 85 At [210]	83.80 xenon 54 Xe 131.29 radon 86 Rn [222]
	39,098 rubidium 37 Rb 85468 caesium 55 CS 132.91 francium 87 Fr	40.078 strontium 38 Sr 87.62 barium 56 Ba 137.33 radium 88 Ra	57-70 ★ 89-102 ★ ★	44.956 yttrium 39 Y 88,906 Udetium 71 LUE 174.97 lawrencium 103 Lr	47.867 zirconium 40 Zr 91.224 hafnium 72 Hff 178.49 rutherfordium 104 Rf	so.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95 dubnium 105 Db	st 996 molybdenum 42 Mo 95.94 tungsten 74 W 183.84 seaborgium 106 Sg	43 technetium 43 Tc 198 rhenium 75 Re 186.21 bohrium 107 Bh	55.845 ruthenium 44 Ruu 101.07 osmium 76 OSS 190.23 hassium 108 HS	58.933 rhcdium 45 Rh 102.91 iridium 77 Ir 192.22 meitnerium 109 Mt	58.693 palladium 46 Pd 106.42 platinum 78 Pt 195.08 ununnilium 110 Uun	63.546 silver 47 Ag 107.87 gold 79 Au 196.97 unununium 111 Uuuu	catality catality catality data data data data data data data da	69,723 indium 49 In 114.82 thallium 81 TI 204.38	72.61 tin 50 Sn 118.71 lead 82 Pb 207.2 ununquadium 114 Uuq	AS 74.922 antimony 51 Sb 121.76 bismuth 83 Bi 208.98	78.96 tellurium 52 Te 127.60 polonium 84 PO [209]	79.904 Iodine 53 I 126.90 astatine 85 At [210]	83.80 xenon 54 Xee 131.29 radon 86 Rn [222]

lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium
57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Correlation coefficients (Jacky)

Scientific context	lssues	Methods	Results

Principal Component Analysis

Scientific context

7

6

5

4

3

2

1

0

11/08

01/09

03/09

05/09

07/09

09/09

11/09

Dates (month/year)

01/10

03/10

05/10

07/10

09/10

11/10

Scientific context	lssues	Methods	Results

... in comparison with others elements such as Pb, As, Cr, Cu and V....

Scientific context	Issues	Methods	Results

4

3

2

1

0

01/09

03/09

... for which an anthropogenic contribution in deposition is observed during the austral winter.

11/09

Dates (month/year)

01/10

03/10

05/10

07/10

09/10

11/10

05/09

07/09

09/09

Scientific context Issues Methods Results

Gradient from Crozet to Kerguelen Islands due to transport and/or emission?

Scientific context	Issues	Methods	Results

Total deposition fluxes

PCA, correlation coefficients and enrichment factors

Sea-salt	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
Crustal	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
Anthropogenic in winter	138.91 actinium 89	140.12 thorium 90	140.91 protactinium 91	144.24 uranium 92	[145] neptunium 93	150.36 plutonium 94	151.96 americium 95	157.25 curium 96	158.93 berkelium 97	162.50 californium 98	164.93 einsteinium 99	167.26 fermium 100	168.93 mendelevium 101	173.04 nobelium 102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Issues

Results

1. What is the atmospheric deposition flux of dust derived micronutrients that reaches the remote Southern Indian Ocean?

2. What is its chemical composition?

3. What are its different sources?

4. What is its bioavailable part for phytoplankton?

Issues

Methods

Results

ssues

Dust sources in the South Hemisphere

SeaWiFS image ; Edwards et al., 2006

Correlation between Kerguelen (no enriched) and South America samples

Scientific context	Issues	Methods	Results

Correlation between Crozet (no enriched) and South Africa samples

Scientific context	lssues	Methods	Results

But no correlation with samples from Australia

Scientific context Is	sues Methods	Results

Kerguelen (enriched) influenced by both South America and South Africa during the austral winter

Scientific context	Issues	Methods	Results

Crozet (enriched)?

Scientific context Issues Methods Results	Scientific context	context Issues	Methods	Results

Kerguelen:

Influenced by dust coming from South America

Kerguelen:

Influenced by dust coming from South America

Deposition influenced by South Africa during the austral winter

SeaWiFS image

Kerguelen:

Influenced by dust coming from South America

Deposition influenced by South Africa during the austral winter

Crozet:

Influenced by dust coming from South Africa only

SeaWiFS image

Kerguelen:

Influenced by dust coming from South America

Deposition influenced by South Africa during the austral winter

1. What is the atmospheric deposition flux of dust derived micronutrients that reaches the remote Southern Indian Ocean?

2. What is its chemical composition?

3. What are its different sources?

4. What is its bioavailable part for phytoplankton?

ssues

Results

Results

Element	Range (5 rains)
AI	67% - 96%
Ce	68% - 96%
Fe	51% - 91%
La	70% - 96%
Mn	66% - 94%
Nd	70% - 98%
Ti	33% - 83%

High solubilities (> 60%), high solubility for other not measured elements (Ni, Cu, Co, Zn...)

Scientific context	Issues	Methods	Results

Fe solubility in rainwater

Calculation from:

1) Median of Fe sc	lubility = 82%
Element	Range (5 rains)
Fe	51% - 91%

2) Fe flux on Kerguelen islands of 28 µg.m⁻².d⁻¹ (Heimburger et al., 2012),

Bioavailable Fe flux: 23 μ g.m⁻².d⁻¹ (412 nmol.m⁻².d⁻¹)

23 µg.m⁻².d⁻¹ (412 nmol.m⁻².d⁻¹) with a solubility of 82%

Atmospheric vs. oceanic inputs

High dissolved micronutrient fluxes over the South Indian Ocean due to high solubility

Micronutrient imputs coming from atmospheric deposition and bioavailable for phytoplankton are more important in the micronutrient oceanic budget than expected.

Conclusion

1. First direct measurement of dust flux over the South Indian Ocean $F_{dust} = 650 \ \mu g.m^{-2}.d^{-1}$ In line with atmospheric models but not with previous observation: Atmospheric deposition flux more important than expected for micronutrient supply. Using C_{aerosol} to find total deposition flux over remote oceanic areas seems not appropriate because aerosols collected at surface level are not representative of aerosols scavenged by precipitations.

Conclusion

- 1. First direct measurement of dust flux over the South Indian Ocean $F_{dust} = 650 \ \mu g.m^{-2}.d^{-1}$ In line with atmospheric models but not with previous observation: Atmospheric deposition flux more important than expected for micronutrient supply. Using C_{aerosol} to find total deposition flux over remote oceanic areas seems not appropriate because aerosols collected at surface level are not representative of aerosols scavenged by precipitations.
- 2. First chemical composition of deposition flux over the South Indian Ocean Anthropogenic contribution observed during the Austral winter

Scientific context	Issues	Methods	Results

/////Conclusion

- 1. First direct measurement of dust flux over the South Indian Ocean $F_{dust} = 650 \ \mu g.m^{-2}.d^{-1}$ In line with atmospheric models but not with previous observation: Atmospheric deposition flux more important than expected for micronutrient supply. Using C_{aerosol} to find total deposition flux over remote oceanic areas seems not appropriate because aerosols collected at surface level are not representative of aerosols scavenged by precipitations.
- 2. First chemical composition of deposition flux over the South Indian Ocean Anthropogenic contribution observed during the Austral winter
- 3. Deposition received on Kerguelen comes predominantly from South America during all the year, except during the austral winter where deposition seems to come also from South Africa. On Crozet, just one source was observed: South Africa

Conclusion

- 1. First direct measurement of dust flux over the South Indian Ocean $F_{dust} = 650 \ \mu g.m^{-2}.d^{-1}$ In line with atmospheric models but not with previous observation: Atmospheric deposition flux more important than expected for micronutrient supply. Using C_{aerosol} to find total deposition flux over remote oceanic areas seems not appropriate because aerosols collected at surface level are not representative of aerosols scavenged by precipitations.
- 2. First chemical composition of deposition flux over the South Indian Ocean Anthropogenic contribution observed during the Austral winter
- **3.** Deposition received on Kerguelen comes predominantly from South America during all the year, except during the austral winter where deposition seems to come also from South Africa. On Crozet, just one source was observed: South Africa

4. First measurement of solubility in rainwater events in the South Indian Ocean High solubility (> 60%)
Bioavailable Fe flux = 23 μg.m⁻².d⁻¹, i.e. 5 times higher than the ones previoulsy predicted and observed. This result suggests that atmospheric supply is the major source of micronutrients for phytoplankton in the studied area.

Perspectives and remaining questions

- 1. In order to confirm the hypothesis that aerosols collected at surface level do not allow total atmospheric deposition flux to be well calculated observed remote oceanic area, vertical aerosol measurements need to be performed.
- 2. In order to confirm deposition sources highlighted by Pb isotopes, new tracers are needed such as REE profils.
- **3.** It is necessary to confirm solubility values found in rainwater samples by new field experiments on solubility in the South Indian Ocean.

Scientific context	Issues	Methods	Results

Perspectives and remaining questions

- 1. In order to confirm the hypothesis that aerosols collected at surface level do not allow total atmospheric deposition flux to be well calculated observed remote oceanic area, vertical aerosol measurements need to be performed.
- 2. In order to confirm deposition sources highlighted by Pb isotopes, new tracers are needed such as REE profils.
- **3.** It is necessary to confirm solubility values found in rainwater samples by new field experiments on solubility in the South Indian Ocean.
- What are the causes responsible for seasonality observed in atmospheric dust deposition during the austral spring? (intensity of dust emissions from sources, transport efficiency, ...)
- What is the connection between higher dust deposition fluxes and phytoplankton bloom, both observed during the austral spring?
- Why aerosol solubility observed in rainwater and colleced on Kerguelen Islands is so high? Which processes lead to such values?

Scientific context	Issues	Methods	Results

Thanks for your attention

Scientific context

Issues

Methods

MAN DUPRESNO

Results

Ceanic CO2 pump

The open ocean is an important sink of carbon Strong contribution of high southern latitudes

Scientifc context

Oceanic CO₂ physical pump

Scientific context
Oceanic CO₂ biological pump

Scientific context

Ceanic CO₂ biological pump

Scientific context

Results

110

Carbon export in the open ocean

Strong contribution of high southern latitudes

Scientific context	lssues	Methods	Results

The Southern Ocean: HNLC area

Scientific context

POC vs phytoplankton

POC export (gC.m⁻².yr⁻¹)

Scientific context

37 analyzed and validated elements

lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	11	Nn	Pu	Δm	Cm	Rk	Cf	Fe	Em	Md	No
AC		ra	0	11P	Гu		GIII	Dr		LJ		IVIG	NU
[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Scientific context

Soil sampling

Goals:

Field prospecting N/N-W of «Jacky» and «Guillou» sites: sampling of soils potentially erodable

Local emissions of dust?

32 collected soils:

over 500 km²

analases using using X ray fluorescence spectrometry (Ti, Al)

Scientific context

Issues

Methods

Total deposition flux: variability

Biomass burning?

Scientific context	Issues	Method	Results

$$F_{dry} = C_{aerosol} \cdot V_{dry deposition}$$

1-3 cm.s⁻¹ over the South Indian Ocean

(Ezat and Dulac, 1995; Wagener et al, 2008)

	FLATOCOA	Wagener et al., 2008
Al concentrations in aerosols (ng.m ⁻³) median ± SD	1,86 ± 1,75	1,00 ± 0,49
Al dry deposition flux (µg.m ⁻² .d ⁻¹)	20 - 60	31 ± 11

117

	FLATOCOA	Wagener et al., 2008
Al concentration in aerosols (ng.m ⁻³) median ± SD	1,86 ± 1,75	1,00 ± 0,49
Al dry deposition flux (nmol.m ⁻² .d ⁻¹)	< 10%	> 50 %

of the total deposition

Scientific context	Issues	Methods	Results

	FLATOCOA	Wagener et al., 2008
Al concentration in aerosols (ng.m ⁻³) median ± SD	1,86 ± 1,75	1,00 ± 0,49
Al dry deposition flux (nmol.m ⁻² .d ⁻¹)	< 10%	> 50 %

of the total deposition

Difference between fluxes is due to wet deposition calculation

 $F_{wet} = C_{aerosol}$. SR . rainfall

	FLATOCOA	Wagener et al., 2008	
Al concentration in aerosols (ng.m ⁻³) median ± SD	1,86 ± 1,75	1,00 ± 0,49	
Al dry deposition flux (nmol.m ⁻² .d ⁻¹)	< 10%	> 50 %	
of the total deposition			

Différence between fluxes is due to wet deposition calculation

	FLATOCOA	Wagener et al., 2008
Al concentration in aerosols (ng.m ⁻³) median ± SD	1,86 ± 1,75	1,00 ± 0,49
Al dry deposition flux (nmol.m ⁻² .d ⁻¹)	< 10%	> 50 %

of the total deposition

Différence between fluxes is due to wet deposition calculation

	FLATOCOA	Wagener et al., 2008		
Al concentration in aerosols (ng.m ⁻³) median ± SD	1,86 ± 1,75	1,00 ± 0,49		
Al dry deposition flux (nmol.m ⁻² .d ⁻¹)	< 10%	> 50 %		

of the total deposition

Différence between fluxes is due to wet deposition calculation

$$F_{wet} = C_{aerosol} \cdot SR \cdot rainfall$$

$$SR = \frac{C_{i, rain} \cdot \rho_{air}}{C_{i, aerosol}}$$
Scientific context
$$SR = \frac{C_{i, rain} \cdot \rho_{air}}{C_{i, aerosol}}$$
Results

Scavenging ratio

Scavenging ratio

<u>Hypothesis</u>: aerosols scavenged by rain are in altitude and not at surface level

Scientific context	lssues	Methods	Results

Total deposition fluxes

Ratio: flux at «X» / flux at «jacky»

Al, Fe, Mn, Si: Similar fluxes for the 3 sites (Ker and Cro: 1400km apart)

Scientific context	lssues	Methods	Results

Total deposition fluxes

Ratio: flux at «X» / flux at «jacky»

Differences between fluxes for Co, Ti, Nd, Ce, La, Ni and Ba

Scientific context	Issues	Methods	Results

Total deposition fluxes

Ratio: flux at «X» / flux at «jacky»

Differences between fluxes for Cu, As, V, Pb and Cr

Scientific context	Issues	Methods	Results

Total deposition fluxes: REE

Ratio: flux at «X» / flux at «jacky»

Scientific context	Issues	Methods	Results

Total deposition fluxes: REE

Ratio: flux at «X» / flux at «jacky»

Enrichement of LREE on Crozet Island

Scientific context	Issues	Methods	Results

Enrichment factors

Anthropogenic enrichment for Pb (and As, Cu, Cr, V) during the austral winter

			_
Scientific context	Issues	Method	Results

Rare earth elements

REE profils are different between Kerguelen and Crozet suggesting that crustal source is not the same for both locations

Scientific context	Issues	Methods	Results
Scientific context	Issues	Methods	Results

Scientific context

Methods

Issues

Scientific context

Methods

Issues

Issues

On Kerguelen and Crozet Islands air masses comme from South America and South Africa

Issues

Methods

Pb isotopes

Scientific context	Issues	Methods	Results

Pb isotopes: local soil contamination?

No correlation with Pb ratios in Kerguelen rocks

Scientific context	Issues	Methods	Results

Pb isotopes: anthropogenic contamination?

No correlation with Pb ratios in gasoline and polluted lichens

Scientific context	Issues	Methods	Results

Solubility 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% Ti Fe Mn A Ce Nd La High solubility > 65%

Fe solubility in literature

Al solubility in literature

Mn solubility in literature

Dissolved Fe flux in literature

23 µg.m⁻².d⁻¹ (412 nmol.m⁻².d⁻¹) with a solubility of 82% (Heimburger et al., in review)

Observed dissolved Fe deposition flux using a solubility of 14% (wet deposition): 6 µg.m⁻².d⁻¹ (100 nmol.m⁻².d⁻¹) (Planquette et al., 2007)

Scientific context	lssues	Method	Results

Colonatific constant Decult				
Scientific context issues Method Result	Scientific context	Issues	Method	Results

Atmospheric vs. oceanic inputs

Scientific context

Results

Publications

- 3 published articles as first author,
- 1 pubished article as second author,
- 1 article in review (first author),
- 1 article in prep (firsti author),
- 1 blog on my field campaign on Kerguelen Islands (on Paris 7 website),
- 1 short film (popularization of my thesis research),
- 9 communications (talk and poster) during international conferences.

Recommandations

1. Testing our hypothesis that aerosols collected at surface level do not allow total atmospheric deposition flux to be calculated:

a) sampling of aerosols in altitudes,

b) direct measurements of total atmospheric deposition coupled with aerosol measurements have to be performed over other remote oceanic areas in a continious basis during one year at least.

- 2. Automatic samplers are needed to minimaze human factors.
- **3.** Studies on chemical composition (solubility, REE profils, Pb isotopes) of aerosols emitted in aera sources of the South Hemisphere (South America, South Africa). Evolution of aerosols during their transport in the atmosphere.
- 4. Review the micronutrient budget in the South Indian Ocean with our results.

//////Islands in remote ocean

